

ASSESSMENT REPORT

SOIL AND ROCK GEOCHEMISTRY PROGRAM NORTH AND SOUTH EXTENSION - PAN GRIDS JASPER PROPERTY, VICTORIA M.D.

NTS: 092C 088

LAT: 48°52' LONG: 124°36'

Report for Owner

INSPIRATION MINING CORP.

Report by:

Arne Birkeland, P. Eng.

ARNEX RESOURCES LTD.

Date:

February 20, 2002

GEOLOGICAL SURVEY BRANCH

Jasdoc\jasar200101.doc

1.	Summary4
2.	Introduction5
2	.1. General
3.	History10
4.	Geology12
4 4	.1. Regional Geology .12 .2. Local Geology .14 .3. Structure and Alteration .14 .4. Mineralization .16 4.4.1. Mineralization – Description – J-Branch Main Showing .16 4.4.2. Mineralization – Description – Pan Road Showing Area .17
5.	Geochemistry - North Pan and South Pan Grid Extensions
5 5 5 5 5	.1. Introduction 18 .2. Procedure 18 .3. Threshold Values – RGS 24 Survey 19 .4. Soil Geochemistry Results – North Pan Grid 43 .5. Soil Geochemistry Results – South Pan Grid 43 .6. Rock Chip Sampling Results 43 .7. Soil Profile Results 45
6.	GPS Survey47
7.	Conclusions47
8.	Recommendations
9.	Certificate of Qualification and Consent49
10.	Bibliography, Selected References

.

.

.

TABLE OF CONTENTS

TABLE OF FIGURES

Figure 1: Property Location Map - British Columbia (1:2,00,000)
Figure 2: Claim and Pan Soil Grid Location Map (1:50,000)8
Figure 3 : BCGS Geology Map (1: 2,069,137)13
Figure 4 : Local Geology Map (1:500,000)15
Figure 5: Minfile - Lakes, Rivers and Roads (1:250,000)9
Figure 6 : Location Map - Jas and Pan Grids11
Figure 7: North Pan Soil Grid - Sample Location Map (1:5,000)22
Figure 8 : North Pan Soil Grid - Copper Values (ppm)23
Figure 8S : North Pan Soil Grid - Copper Values (sypbol map)24
Figure 9: North Pan Soil Grid - Zinc Values (ppm)25
Figure 9S: North Pan Soil Grid - Zinc Values (symbol map)26
Figure 10: North Pan Soil Grid - Lead Values (ppm)27
Figure 10S : North Pan Soil Grid - Lead Values (symbol map)28
Figure 11: North Pan Soil Grid - Silver Values (ppm)29
Figure 11S : North Pan Soil Grid - Silver Values (sympol map)30
Figure 12: North Pan Soil Grid - Gold Values (ppm)
Figure 12S : North Pan Soil Grid - Gold Values (sympol map)32
Figure 13 : South Pan Soil Grid - Sample Location Map (1:5,000)
Figure 14 : South Pan Soil Grid - Copper Values (ppm)
Figure 14S : South Pan Soil Grid - Copper Values (symbol map)34
Figure 15 : South Pan Soil Grid - Zinc Values (ppm)
Figure 15S : South Pan Soil Grid - Zinc Values (symbol map)
Figure 16 : South Pan Soil Grid - Lead Values (ppm)

•

ì

TABLE OF FIGURES (Continued)

Figure 16S : South Pan Soil Grid - Lead Values (symbpl map)	38
Figure 17: South Pan Soil Grid - Silver Values (ppm)	39
Figure 17S : South Pan Soil Grid - Silver Values (symbol map)	40
Figure 18 : South Pan Soil Grid - Gold Values (ppb)	41
Figure 18S : South Pan Soil Grid - Gold Values (symbol map)	42
Figure 19: Soil Profile - Location 1350N, 975E	46
Figure 20 : Soil Profile - Location 1425N, 1000E	46

LIST OF TABLES

Table 1:	Mineral Tenure – Jasper Property
Table 2:	Soil Sample (and Stream Sediment) Analytical Results
Table 3:	Rock Sample Analytical Results – Selected Elements
Table 4:	Anomalous Threshold Values

APPENDICIES

APPENDIX A: Statement of Expenditures

APPENDIX B: Analytical Procedures and Certificates - ALS Chemex Labs

APPENDIX C: Geochemical Data Sheets – Soil, Stream Sediment and Rock Chip Samples

APPENDIX D: GPS Survey - Pan Soil Sample Grid - Year 2001

APPENDIX E: Field Crew - Year 2001 Field Days

.

JASPER PROPERTY, VICTORIA MINING DIVISION

1. SUMMARY

A soil and rock geochemical exploration program was conducted on the Pan grid area on the Jasper Property. The program was conducted during October, 2001 by Arnex Resources Ltd. for Inspiration Mining Corp. One hundred and five soil (and moss mat) and three rock chip samples were taken. A limited GPS survey was also conducted.

The Jasper Property lies within close proximity to tidewater on west central Vancouver Island. An extensive logging road network provides cheap access to the area.

A +four km long northward striking extensive intense alteration zone in present within lower Jurassic Bonanza volcanics that underlie the property. Poly-metallic massive sulphide showings and soil/stream sediment anomalies are present within the alteration zone. Junior and Major Mining Companies have conducted a number of exploration programs on the Jasper, Tam and Pan Showing Areas since 1970. All prospects were consolidated under one ownership in 1994 and acquired by Inspiration Mining in 1995.

In 1998, an exploration program consisted of rock chip sampling of showings and mineralized float and grid soil geochemistry was completed at the South Pan Soil Grid. The grid detected numerous poly-metallic soil geochemical anomalies that indicate base metal mineralization is present within the intense alteration zone that partly underlies the soil grid. Poly-metallic geochemical anomalies trended northward beyond the grid.

In 2000, a soil geochemistry program extended the 1998 grid northward. As was similar to results from the 1998 South Pan Soil Grid, numerous poly-metallic soil geochemical anomalies were detected by the Pan Central and Pan North Grids, many of which were from orange coloured gossanous soils associated with the alteration zone.

The 2001 program extended the Pan Grid to the north and south. Polymetallic base metal soil anomalies are present. Total length of the now established anomalous zone is 1.6 km in strike length The anomalies are open up-slope and along strike.

Additional grid soil geochemistry is recommended at the Pan Grid area as part of a phased program. As well, bedrock and surficial geology mapping should be completed accompanied by appropriate grid geophysics to define mineralized targets. Prospecting and hand and/or mechanized trenching should be carried out on the highest priority targets. Subject to results, diamond drill targets should be prioritized and drilled on a phased program basis.

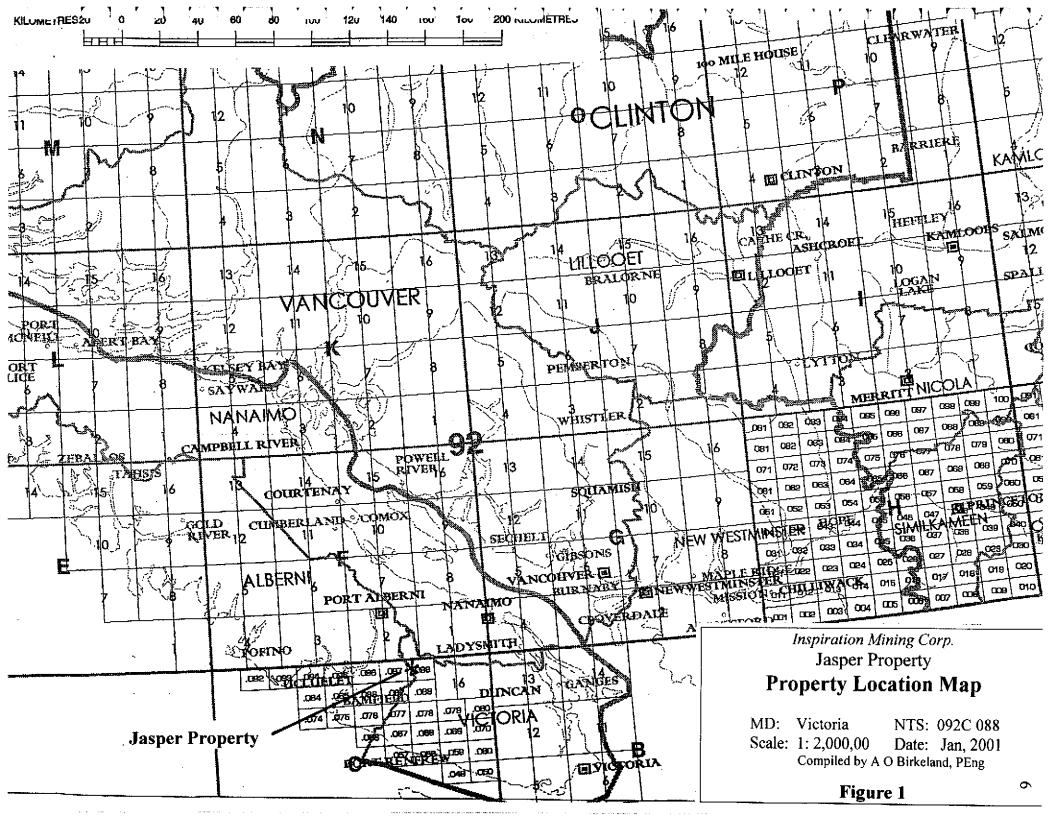
2. INTRODUCTION

2.1. General

Arnex Resources Ltd. conducted a ten person-day field exploration program for Inspiration Mining Corp. on the Jas 1-3 and Jasmin 1-2 Mineral Claims during the period September 26 2000 to January 17, 2001. The fieldwork was conducted October 19 to 23, 2001 by a two-person crew (APPENDIX E, Year 2001 Field Days).

One hundred and five soil samples (includes two moss mats) and three rock chip samples were taken. The North Pan Grid was extended 175 metres to the north. The South Pan Grid was extended 125 metres to the south. Two soil profiles were also sampled.

ALS Chemex Labs in North Vancouver processed the soil and rock samples as per APPENDIX B, Analytical Procedures and Certificates. A total expenditure of \$19,418.76 was incurred as per APPENDIX A, Statement of Expenditures. A Statement of Work, Event Number 3173245, was filed at the Vancouver Sub-Recorders office dated October 29, 2001. The work was not conducted under an Annual Work Approval Number as no surface disturbance was caused.


2.2. Property Tenure

The Jasper Claim group consists of the Jas 1 to 3 and Jasmin 1 and 2 Mineral claims that total 82 units (Table 1, Mineral Tenure, and Figure 2, Claim Location Map). The property is 100% owned by Inspiration Mining Corp., Client Number 138196.

2.3. Location and Access

The Jasper Property is located in BCGS Map Sheet 092C 088 (NTS 92C/15, Figures 1 and 2). The Jasper property lies along Four Mile Creek and extends over the height of land to the tributaries of Jasper Creek. Logging road access is via Port Alberni or Cowichan Lake. J Branch road accesses the northern portion of the property and Caycuse Main the southern portion. Access roads are plotted on Figure 5, Minfile – Lakes, Rivers and Roads.

Steep incised drainages with rugged relief to approximately 300 meters (m) characterizes the physiography of the area. Much of the region has been logged in recent years and young second growth forest is present over most of the claims. Climatic conditions are temperate.

Mineral Titles Search by Owner

The mineral tenure information at this site was last updated on the morning of January 15, 2002.

Title Search by Owner

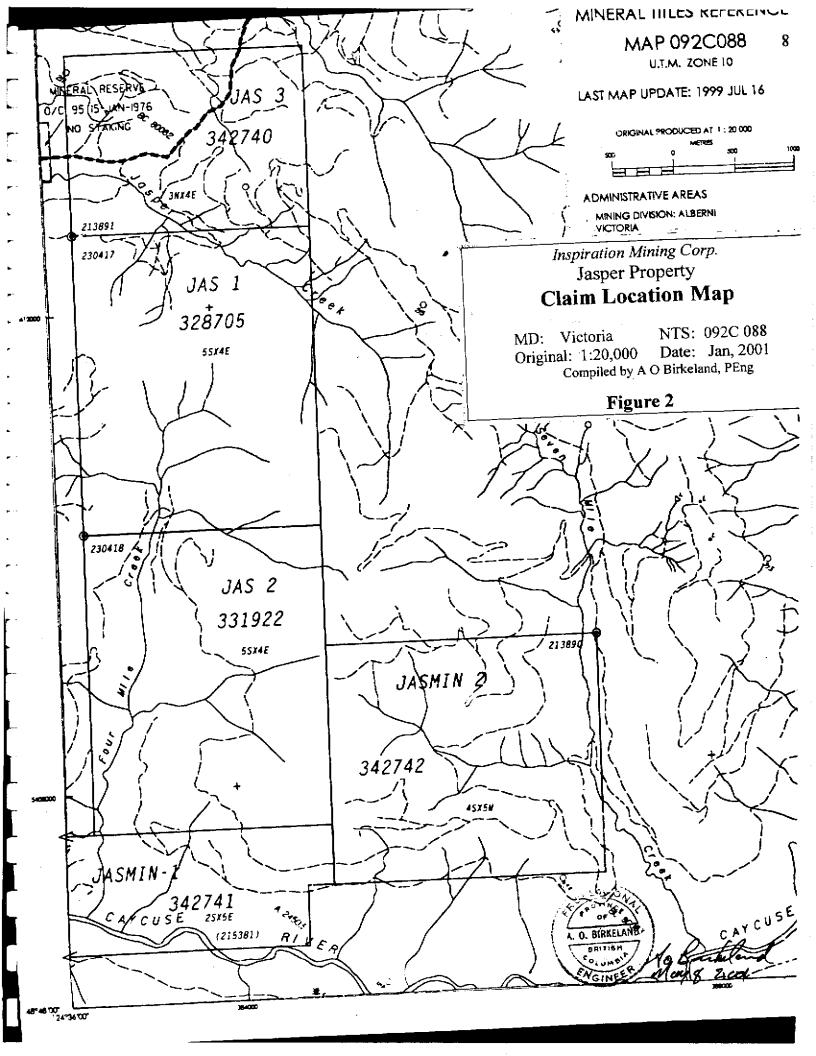
Client Number: 138196 Tenure Type: All Standing: Good

Tenures held by INSPIRATION MINING CORPORATION:

There were 5 results.

Tenure Number	Claim Name	Owner Number	Map Number	Work Recorded To	Status	Mining Division	Units	Tag Number
328705	JAS 1	138196 100%	092C088	20021030	Good Standing 20021030 24 Victoria		20	230417
331922	JAS 2	138196 100%	092C088	20021030 Good Standing 20021030		24 Victoria	20	230418
342740	JAS 3	<u>138196</u> 100%	092C088	20021030	Good Standing 20021030	24 Victoria	12	213891
<u>342741</u>	JASMIN-1	<u>138196</u> 100%	092C087	20021030	Good Standing 20021030	24 Victoria	iO	215381
3 <u>42742</u>	JASMIN 2	<u>138196</u> 100%	092C088	20021030	Good Standing 20021030	24 Victoria	20	213890

Your use of this site is subject to this disclaimer.


To download this information to a comma delimited text file click here.

Shortcuts: [Main Menu] [Free Miner] [Tenure Number] [Owner] [Locator] [Map] [Claim Name] [Tag Number] [Lot]

Last date page updated July 04, 2001.

•Top •Copyright •Disclaimer •Privacy

•Feerlback

Minfile - Lakes, Rivers and Roads

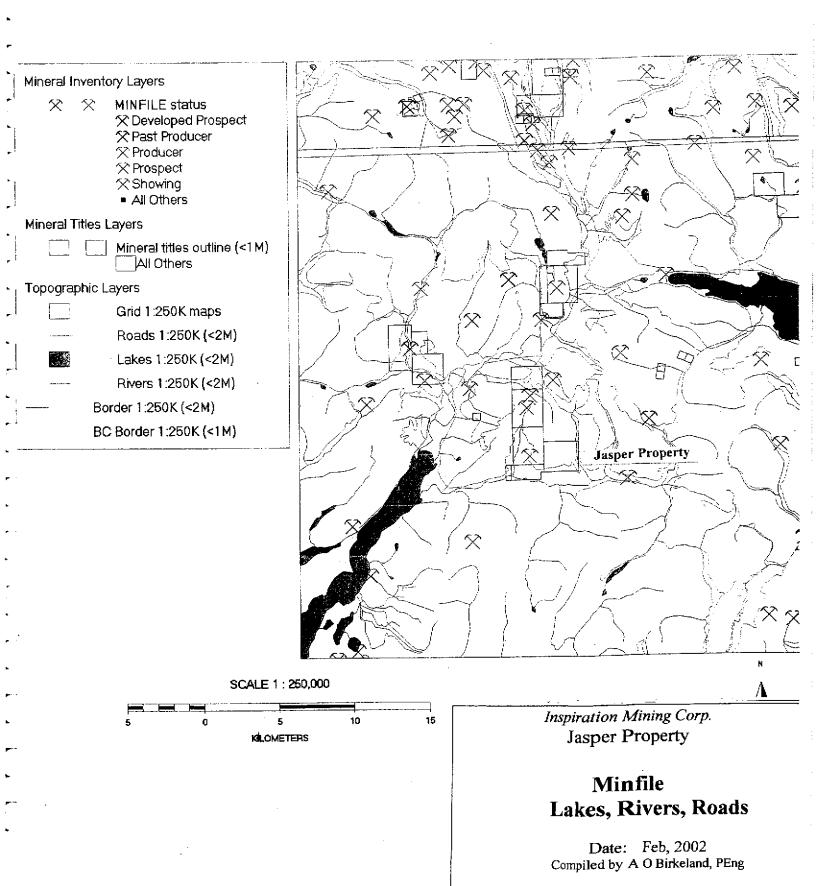
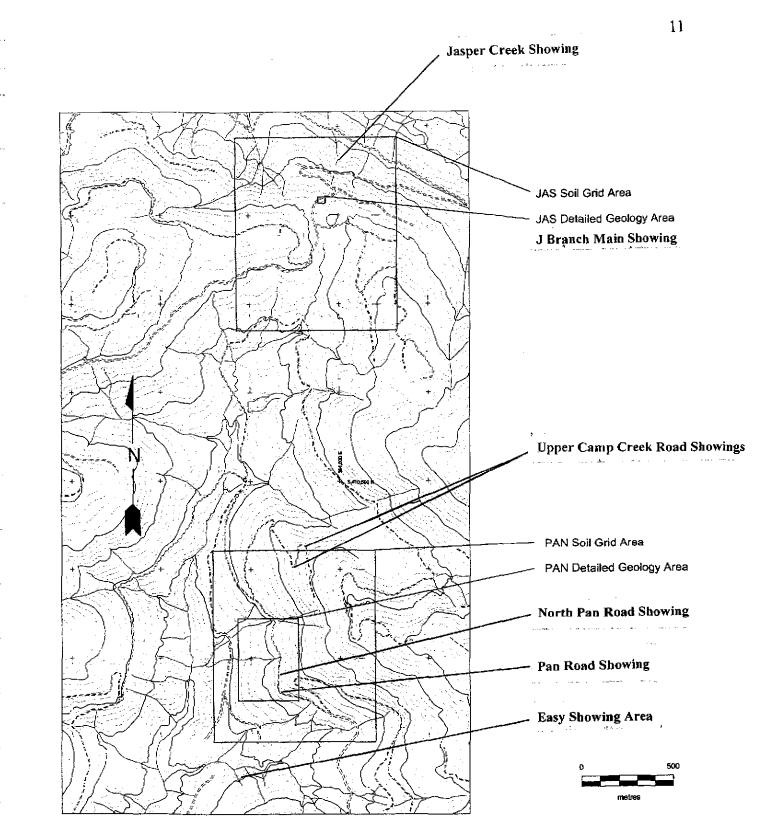


Figure 5

3. HISTORY

L.

The Jasper Property consists of three former Minfile occurrences known from north to south as the Jasper 1 (092C 080), Tam 16 (092C 081) and Pan-Easy (092C 088) prospects. The location of the Jasper J Branch Main Showing area and the southern Pan area are plotted on the accompanying Figure 6 – Location Map – Jas and Pan Grids.


The Tam and Easy properties were previously staked by Hudson Bay Mining and Smelting who conducted geological mapping, soil and rock chip geochemistry and an IP geophysical survey in 1970 and 1971. Also in 1971, Marshall Creek Copper conducted an extensive soil sampling program on the Pan, Easy and Tam properties. It is reported that Noranda conducted a regional magnetic survey during this era, but no information regarding the results were filed as a matter of public record.

The next period of exploration activity occurred in 1980 and 1981 when Malibar Mines conducted soil sampling on the Jasper Property. Also in 1980, Umex Corporation conducted a grid geochemical soil sampling program on the Easy prospect. Claims covering the Jasper prospect were eventually forfeited.

In 1984, a prospecting program was carried out by Ron Bilquest on the Jasper prospect and the J-Branch Main Zone massive sulphide showing was found in recently constructed roadcuts. The claims were restaked and optioned to Falconbridge Limited who conducted geological mapping, soil and rock geochemistry and a VLF-EM program. It is reported that Falconbridge did additional work during 1985 including packsack diamond drilling, but no Assessment Report was filed. Asamara Inc. then conducted a brief geology, soil sampling and VLF-EM program in 1987. The Jasper claims eventually lapsed following a negative recommendation by Asamara's consultant and a general lack of exploration interest in BC at the time.

The Jasper claims were relocated by Arne O. Birkeland in the summer and fall of 1994, who also staked claims covering the Tam, Easy and Pan prospects when existing claims were allowed to forfeit. This was the first time all the prospects were consolidated under one ownership. A detailed geologic mapping and sapling program was carried out in August, 1994 on the J Branch Main Showing.

The Property was optioned in 1995 to Consolidated Taywin Resources Ltd., (now Inspiration Mining Corp.) who acquired the Property outright by way of a Bill of Sale, Event Number 3086088 dated May 9, 1996. A geological, geochemical and geophysical program was carried out between December, 1995 and June 1996 in the vicinity of the Jasper Main Showing area. Diamond drill targets were identified and additional work was recommended.

Inspiration Mining Corp Jasper Property Location Map JAS and PAN Grids & Detail

Date: Feb, 2002 Compiled by A O Birkeland, PEng

Figure 6

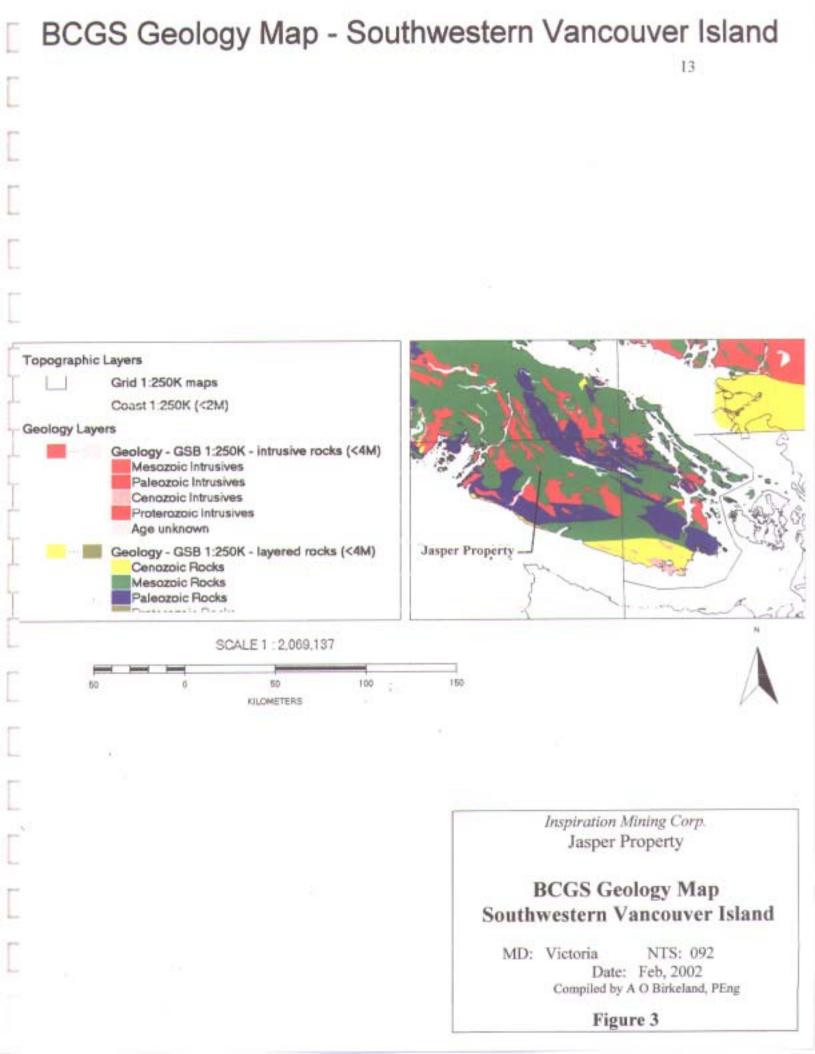
Base Map:

Projection: UTM Zone 10 Datum: NAD83 Original Scale: 1:20,900 Contour Interval: 20m A rock and grid soil geochemical program was carried out in the vicinity of the Pan Road Showing by Arnex Resources Ltd for Inspiration Mining Corp during December, 1998. A poly-metallic soil anomaly was discovered trending northerly off the soil grid. Four outcrop showings were sampled that returned values ranging from 2%-4.9% Cu, 4.5%-17% Pb, 18%-32% Zn with up to 76.8 ppm Ag and 315 ppb Au over widths between 0.36 metre to 2.1 metre.

In 2000, soil sampling extended the 1998 grid 650 metres northward. Numerous polymetallic soil geochemical anomalies were identified on the Pan Central and Pan North Grids. Orange coloured gossanous soils associated with the alteration zone are present in the anomalous areas. Three principle anomalous areas were identified. Best results are present in the South Anomaly where soil values of up to +1000 ppm Pb-Cu-Zn and rock values of 1.5% Cu are present. Both the Central and North Anomalies also contain extensive soil anomalies >99th Percentile that are open up-slope to the east.

4. GEOLOGY

4.1. Regional Geology


Vancouver Island lies within the Canadian Cordillera within terrain classified as Wrangellia. Central and western Vancouver Island is predominantly underlain by Paleozoic and Mesozoic strata intruded by Jurassic and Tertiary Intrusions (Figure 3, BCGS Geology Map).

The Jasper property is hosted in a belt of rocks mapped as lower Jurassic Bonanza group which trends southeasterly from Nitinat Lake through Gordon River, south of Cowichan Lake.

The Bonanza Group in this vicinity consists of a variety of maroon to grey-green, feldspar phyric basalt and andesite flows, dacite and felsic lapilli tuff containing various minor gabbro, andesite and dacite dykes. There is a lack of lithologic continuity and distinct marker beds are absent. In the basal part of the sequence, sedimentary rocks are found interbedded with lapilli and crystal tuffs and a sub-aqueous environment is indicated.

Several granodiorite Island Intrusion stocks occur in the area. The coeval stocks are regular to elongated in shape with steep sides. The major lithology is granodiorite to quartz-diorite and most of the stocks are rich in mafic inclusions, particularly in marginal zones where magmatic intrusive breccias are developed. Stocks are rounded in outcrop shape.

Numerous RGS anomalies and Minfile occurrences are present in the general Nitinat -Cowichan area and both porphyry and VMS style mineralization has been reported by

BCGS geologists. Porphyry style Cu-Mo occurrences are commonly associated with high level sub-volcanic dykes and sills. The Debbie - Lizzard - Thistle VMS belt occurs in the northern portion of the region hosted in rocks mapped as Sicker Group. Massey and Friday note VMS stratigraphic mineral potential where reported "sulfidic argillites are found interbedded with tuffs" in the basal part of the Bonanza sequence in the Alberni - Cowichan area.

The potential for finding undiscovered metallic mineral deposits for the tract underlying the Jasper Property is classified as being Highest by the BCGS Mineral Potential Program ranking system.

4.2. Local Geology

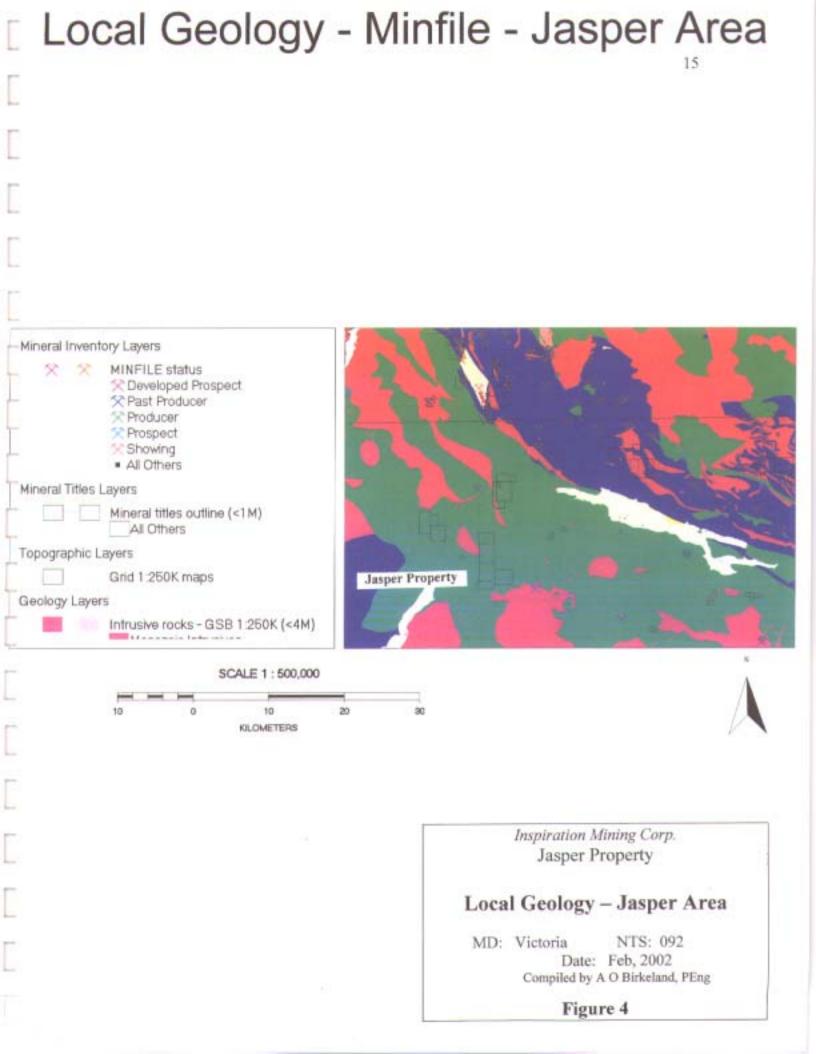

The Jasper property is underlain by mafic to felsic volcanic rocks that have been previously mapped as Bonanza group. The central part of the property is underlain by a north-south trending sequence of intermediate flows and flow breccias that are flanked to the east by mafic flows. A wedge shaped body of felsic flows overlies the mafic rocks to the east. Felsite dykes intrude the intermediate and mafic volcanics and are likely feeders to the younger felsic flows. Often the intermediate and mafic flows and flow breccias are massive and bedding orientation is impossible to determine. Local foliation is oriented north-south.

Figure 4, Local Geology, illustrates the distribution of claims and Minfile occurrences associated with the Bonanza group in this area.

4.3. Structure and Alteration

A late major fault suture cuts Vancouver Island from the mouth of the Carmanah River on the West Coast to Qualicum Beach on the East Coast. The Pan and Tam occurrences along Four Mile Creek and the J Branch Main Showing on Jasper Ridge occur along this major fault structure. A north trending gossanous alteration zone with a strike length greater than 4 kilometers underlies the Jasper Property along the fault from the Caycuse Creek drainage in the south to the Nitinat Valley in the north. The alteration zone is characterized by moderate to intense argillization and silicification accompanied by ubiquitous pyrite flooding. The alteration zone is generally concordant with the foliation and srtatigraphy throughout its strike length. Based on the huge volume of intensely altered rock present, a very major period of hydrothermal activity has taken place along the strike length of the system. The Jasper and Pan Grid areas are partially underlain by the intense alteration zone. On the Pan grid, ferrocrete and till commonly overlie the alteration zone and have the effect of "masking" residual soil anomalies.

Steeply dipping, cross cutting, north trending fractures, shears and fault gouge zones are prevalent within the alteration zone and form the recessive valley containing Four Mile

Creek. Coincident narrow fault and fracture zones often emanate as a conjugate set at right angles to the main north trending fault system and control second order drainages that are the side creeks of the main Four Mile Creek drainage system.

Offsets of all structures are not known as units have not been mapped across structures. Local brittle faulting commonly causes minor offsets to massive sulphide lenses in outcrop.

4.4. Mineralization

Six high-grade Cu, Zn +/- Pb sulphide showing areas have been sampled by the Arnex-Inspiration programs carried out between 1994 to 2000.

The two showings of principle interest are the Jasper J-Branch Main Showing and Pan Road Showing.

4.4.1. Mineralization – Description – J-Branch Main Showing

At the J-Branch Showing, semi-massive to massive pyrite, chalcopyrite, sphalerite and minor galena outcrops in logging road-cuts on Jasper Ridge. Two massive sulphide bands of true width between 0.4 and 1.3 metres separated by 5 metres of chloritic mafic volcanics outcrop over a strike length of 44 metres.

Twelve channel samples were taken during the 1994 program from the massive sulphide lenses that returned a weighted average grade of 2.1% Cu, 3.2% Zn and 304 ppb Au over an average true width of 0.8 metres.

The mineralization consists of 70% to 90% pyrite, 5% to 20% sphalerite, 1% to 5% chalcopyrite and minor amounts of galena. The sulphides are medium to coarse grained and commonly display crude banding imparted by compositional and textural variations. In places, large crudely banded massive sulphide fragments and volcanic wallrock fragments are contained within a finer grained massive sulphide matrix.

The mineralization is hosted in feldspar phyric mafic flows. The massive sulphide bands are generally concordant to jointing, and to the contact between intermediate and mafic volcanic units.

Although the massive sulphide bands are commonly offset by north and northeast trending fractures and small displacement faults, there is good continuity to the mineralization over its exposed 44 metre strike length. The southeastern strike extension of the mineralization is covered by till which contains blocks of semi-massive to massive sulphides. The northwest strike extension is covered by colluvium and trends down the slope towards Zinc Creek.

4.4.2. Mineralization - Description - Pan Road Showing Area

Two showings outcrop in Caycuse Main road-cuts at the Pan Road Showing.

At the northern showing, massive stringer style mineralization is present in a crosscutting sheared alteration zone. The up-slope trend of the zone is covered by ferrocrete and gossanous till that returned highly anomalous soil geochemical results and the down-slope trend is covered by the roadbed.

A composite weighted interval across the stringer zone returned the following values of 4.6% Cu, 17.4% Zn and 152 ppb Au over a true width of 2.0 metres.

Of geological significance is a massive sulphide layer emanating from the stringer zone that is exposed in the road-cut over a strike length of approximately 30 metres. The massive sulphide band consists of coarse "black-jack" sphalerite containing lesser amounts of galena. The sulphide layer is hosted in, and is concordant to, argillically altered intermediate flows and tuffs. The sulphide band is faulted off to the south by a second crosscutting stringer zone containing anomalous base metal values. A channel sample across the sphalerite layer assayed 16.2% Zn and 2.7% Pb over 0.25 metres.

At the southern Pan Road Showing, a massive sulphide lense outcrops in the logging road-cut and roadbed. Massive sphalerite and galena occur in highly argillically altered and pyritized mafic (?) flows. The up-slope eastern extension of the lense is faulted off. The massive sulphides outcrop in the roadbed and then are covered by road-fill on the western down-slope trend of the zone.

The massive sulphides occur as massive sphalerite and galena containing up to 5% chalcopyrite. The sulphides are capped by a thin 0.25 metre thick calcite (barite?-chert) exhalite horizon. A 2.0 metre massive sulphide boulder on the west side of the road also has a calcite (barite?) exhalite cap preserved intact. A representative channel sample across the sulphide lense assayed as follows22.3% Zn, 17.2% Pb and 2.1% Cu over 1.9 metres.

Semi-massive sulphide boulders containing up to 1.5% Cu are present at location 1350N, 975E.

Two narrow massive pyrite - chalcopyrite lenses occur at the 465 m elevation level on the spur road 100 m east of the Pan Road Showing and probably represent the strike extension of the Pan zone.

5. GEOCHEMISTRY – NORTH PAN AND SOUTH PAN GRID EXTENSIONS

5.1. Introduction

The objective of the 2001 soil geochemical program was to extend the grid sampling to the north and south beyond the established grid.

Two soil profile pits were sampled at locations where previous sampling resulted in the identification of poly-metallic base metal anomalies.

5.2. Procedure

Conventional B horizon soil samples were taken (where possible) on a flagged hip chain and compass grid extending the North Pan Grid to Line 2250N and the South Pan Grid to Line 850 N. The grid was sampled at 25 metre sample intervals with 50 metre line spacing (See Figures 7 and 13, Sample Location Maps). Two moss mat and three rock chip samples were taken and are also plotted on Figures 4 and 10.

Sample descriptions and observations were recorded and are reported in APPENDIX C, Geochemical Data Sheets.

All rock chip, soil and stream sediment (moss mat) samples were taken by qualified field personnel employed by Arnex, project Operator. No samples were taken, or were available to, any employee, officer, director, or associate of Inspiration Mining Corporation, property Owner. Samples were transported from the field and stored at Arnex's locked warehouse until truck delivery to ALS Chemex Labs in North Vancouver, BC. ALS Chemex Labs is ISO 9002 certified by KPMG in Canada.

Rock chip samples were crushed and split and rejects were stored. Three kilogram split samples were ground to -150 mesh and analyzed by ICP-32 and Au 983 FA+AA.

Stream sediment and soil samples were dried and screened to -80 mesh and split samplers were analyzed by ICP-32 and Au 983 FA+AA.

All sample pulps are stored at Arnex's office and storage facility.

No consistent check assaying procedure was employed as the Property is at an early stage of exploration.

In the author's opinion, sampling, sample preparation, security and analytical procedures employed by Arnex and ALS Chemex Labs during the above referenced programs were adequately carried out.

Analytical Procedures and Analytical Certificates are appended as APPENDIX B and values for selected elements are contained in Table 2, Soil Sample Analytical Results and Table 3, Rock Sample Analytical Results. Soil Grid values and symbol maps are contained in Figures 8 to 18S.

5.3. Threshold Values – RGS 24 Survey

Table 4 is a Statistical Summary of Sediment Samples taken as part of the BC MEMPR RGS 24 Survey conducted in 1988. Extensive soil and sediment sampling from western Vancouver Island has demonstrated continuity between hydromorphically transported sediment and soil sample mediums. Thus Threshold Values for soil sampling at the Pan Grids can be established as defined by the regional sediment values listed in Table 4.

Table 4

Anomalous Threshold Values for lower Jurassic Bonanza Group

Element	90th percentile	95th percentile	99th percentile
Gold	70 Ppb	200 ppb	680 Ppb
Copper	74 Ppm	111 ppm	129 Ppm
Lead	9 Ppm	11 ppm	41 Ppm
Silver	0.1 Ppm	0.2 ppm	0.3 Ppm
Zinc	124 Ppm	170 Ppm	215 Ppm

From : Statistical Summary of Sediment Samples – 599 Samples BC MEMPR RGS 24 – GSC OF 2128

The 99th percentile has been used previously to determine anomalous Threshold values for Cu, Zn, Pb, Au and Ag. Normally the 90th or 95th percentile would be used to establish thresholds. However, soil vales are so high at the Pan grid that the 99th percentile was used. Symbol maps identify the >99th percentile anomalies.

Table 2

Γ

L

L .

έ.

i. .

P

ь.

.

-

.....

.

Soil Sample (and Stream Sediment) Analytical Results - Pan Soil Grid - Year 2001 Selected Elements

Sample Number 190401 190402 190403 190404	Northin	cation g Easting	Au	Ag	As	Ba	Cd	C	Cr	Ô	Fe	Mn	Mo	Pb	Sb	
190401 190402 190403		g Lasting						Co	Gr	Çu			NHO-	FU	30	Ż
190402 190403			ppb	ppm	ppm	ppm	ррпя	ppn	ppm	ppm	%	ppm	ppm	рркп	ppm	ppn
190403	2050	1025	<5	<0.2	6	60	<0.5	5	16	43	6.21	345	1	20	6	8
	2050	1050	10	<0.2	<2	50	<0.5	ě	18	50	6.17	480	à	18	ĕ	100
190404	2050	1075	<5	<0.2	<2	80	<0.5	16	11	68	4.55	1220	4	46	10	180
	2050	1100	5	<0,2	4	60	<0.5	9	11	48	4.52	1065	2	10	2	
190405	2050	1125	<5	<0.2	4	80	<0.5	6	14	104	4.35	610	1	8	2	60
190406	2050	1150	-5	<0.2	6	40	<0.5	9	16	113	5.59	760	4	ž	14	110
190407	2100	1025	<5	<0.2	2	140	⊲0.5	26	13	36	3.64	2710	1	24	6	98
190408	2100	1050	<\$	<0.2	<2	80	<0.5	19	11	40	4.7	1105	3	14	2	68
190409	2100	1075	<5	<0.2	4	30	<0.6	7	9	29	4.29	365	<1	4	6	60
20410	2109	1100	<ð	<0.2	6	40	<0.5	7	14	56	5.51	645	2	6	6	106
90411	2100	1125	<5	<0.2	4	50	<0.5	9	11	38	4.1	860	1	ž	6	72
190412	2100	1150	<5	0.2	<2	40	<0.5	5	13	43	5.63	365	1	6	ě	82
90413	2150	1025	-5	<0.2	4	80	<0.5	10	9	85	5.Z7	1075	2	12	5	110
190414	2150	1050	<5	<0.2	2	40	<0.5	ä	12	56	6.09	800	2	6	14	90 10
I9D415	2150	1075	હ	<0.2	à	30	<0.5	Ä	12	38	4,51	600	1	14	8	96
90416	2150	1100	-45	<0.2	2	40	<0.5	3	12	20	3.71	210	1	6	å	
90417	2150	1125	5	<0.2	<2	50	<0.5	3	8	20	3.35	265	<1	8	2	39 46
90418	2200	1025	<5	<0.2	-2	60	<0.5	17	15	20	4.97	1145	5	38		
90419	2200	1050	<5	-0.2	4	50	<0.5	15	12	55	4.33	875	Ă	32	10 -4	262
9042D	2200	1075	<5	<0.2	6	50	<0.5	9	12	31	4.78	1220	3		4	142
90421	2200	1100	<5	Q.2	2	40	<0.5	10	13	56	4,63	820	4	6 8		80
90422	2200	1125	<5	<0.2	2	60	<0.5	12	13	99	5.61	1080	5	18	10	116
90423	2150	975	<5	<0.2	4	80	<0.5	12	9	79	3.96	1045	3		18	162
90424	2150	950	উ	<0.2	Ā	40	<0.5	8	¥ 8	30			-	16	4	96
90425	2150	925	4	<0.2	2	50	<0.5	10	7	30 31	4.87	460	1	4	8	60
90426	2150	900	10	<0.2	6	40	<0.5	11	7		4.42	1040	1	5	10	68
90427	2150	875	<5	<0.2	<2	50	<0.5	7	5	26	4.85	1260	2	6	~2	64
90428	2150	850	<5	0.2	2	60	<0.5			13	4.19	730	1	~?	2	46
90429	2150	825	<5	<0.2				18	8	33	4.68	2410	1	<2	8	84
90430	2200	975	5	<0.2	2	60	<0.5	18	12	53	5.16	860	1	4	12	124
90431	2200	950	-5		8	60	<0.5	28	19	102	5.97	1520	3	32	10	156
90432	2200	925	-	<0.2	6	50	<0.5	9	15	49	5.64	810	1	8	6	76
90433	2200	900	<5	<0.2	6	50	<0.5	10	8	20	4.54	710	1	2	<2	52
90434	2200	875	10 <5	<0.2 <0.2	2	50	<0.5	11	11	39	5.53	965	1	<2	10	104
90435	2200	850			2	30	<0.5	8	7	19	4.75	980	1	6	- 4	48
90436			<5	<0.2	4	40	<0.5	5	6	16	4.49	720	1	2	8	38
90436	2200	825	<5	0.2	2	40	<0.5	7	8	28	4.3	660	1	8	2	60
90438	2200 2250	800	<5	<0.2	6	70	<0.5	16	10	45	5,16	1635	1	4	10	82
90438		975	<5	≪0.2	<2	50	<0.5	8	10	37	4.81	905	<1	6	-2	50
	2250	950	<5	<0.2	<2	30	<0.5	5	9 .	38	5.65	395	1	2	8	64
90440	2250	925	10	<0.2	8	50	<0.5	11	10	54	4.89	685	3	52	12	154
90441	2250	900	<5	<0.2	4	30	<0.5	13	26	58	6.15	490	1	10	6	122
0442	2250	875	୍	0.2	6	50	<0.5	30	17	58	4.68	1700	2	6	12	128
0443	2250	650	<5	<0.2	2	60	<0.5	18	14	43	5.09	2090	3	4	4	126
0444	2250	625	<5	<0.2	<2	80	<0.5	13	12	52	4.78	1060	1	4	10	104
0445	2250	800	<5	<0.2	2	60	<0.5	13	12	32	5.41	950	1	8	2	80
00446	850	1025	15	⊲0.2	10	120	⊲0.5	15	9	65	4.3	960	5	20	8	112
	850	1050	<10	<0.2	2	100	<0.5	3	4	19	1.93	125	1	6	<2	34
	850	1075	<5	<0,2	6	60	⊲0.5	4	8	21	4.31	225	3	8	6	50
	850	1100	<5	<0.2	2	70	<0.5	5	9	19	3.78	245	i	6	- v	28
	850	1125	<5	<0.2	8	70	<0.5	9	10	117	4,93	475	3	14	8	104
	850	1150	<5	<0.2	2	120	<0.5	9	6	79	3.79	525	4	18	Å.	58
0452	850	1175	10	<0.2	ő	50	<0.5	9	10	32	5.23	355	1	10	6	- 36 70
0453	850	1200	10	<0.2	6	80	<0.5	5	5	25	2.29	210	4	6	2	52
	850	1240	20	<0.2	ě	130	<0.5	18	13	247	5.43	620	1	36	12	а <u>г</u> 310

.

Table 2

L

L

1...

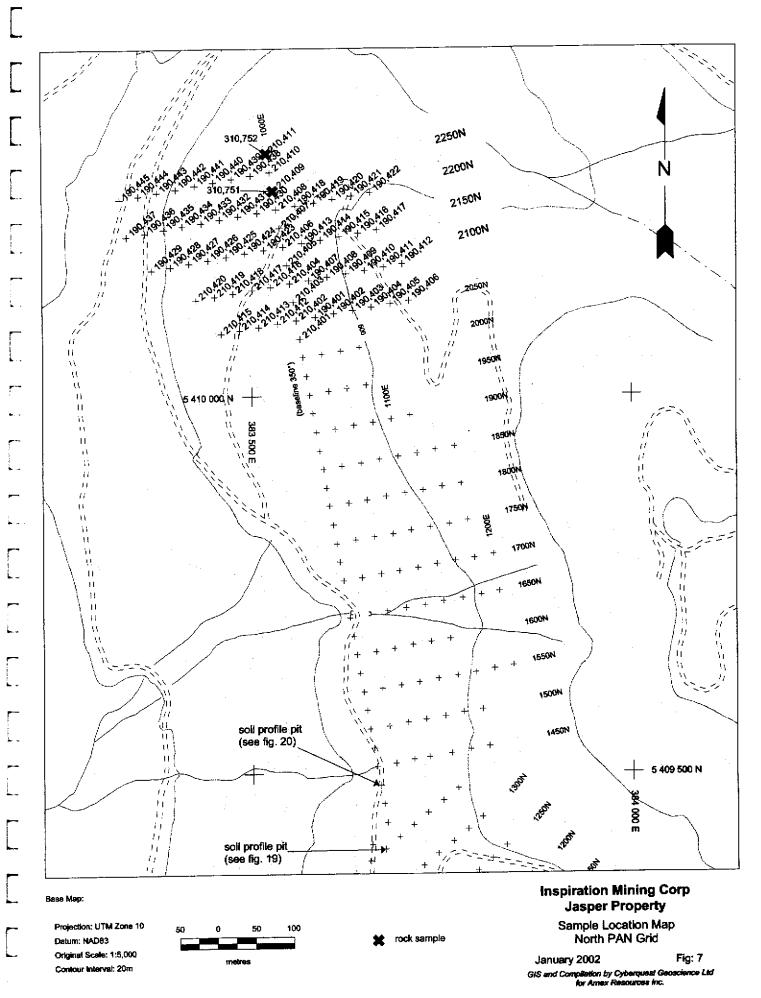
Ì. .

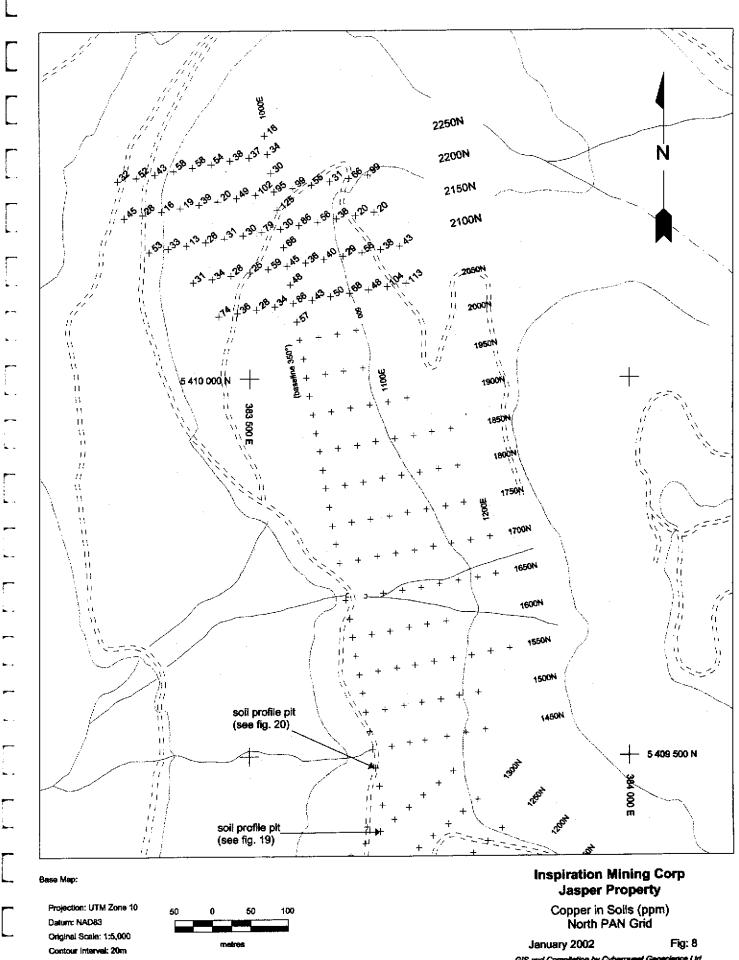
.

÷ L.

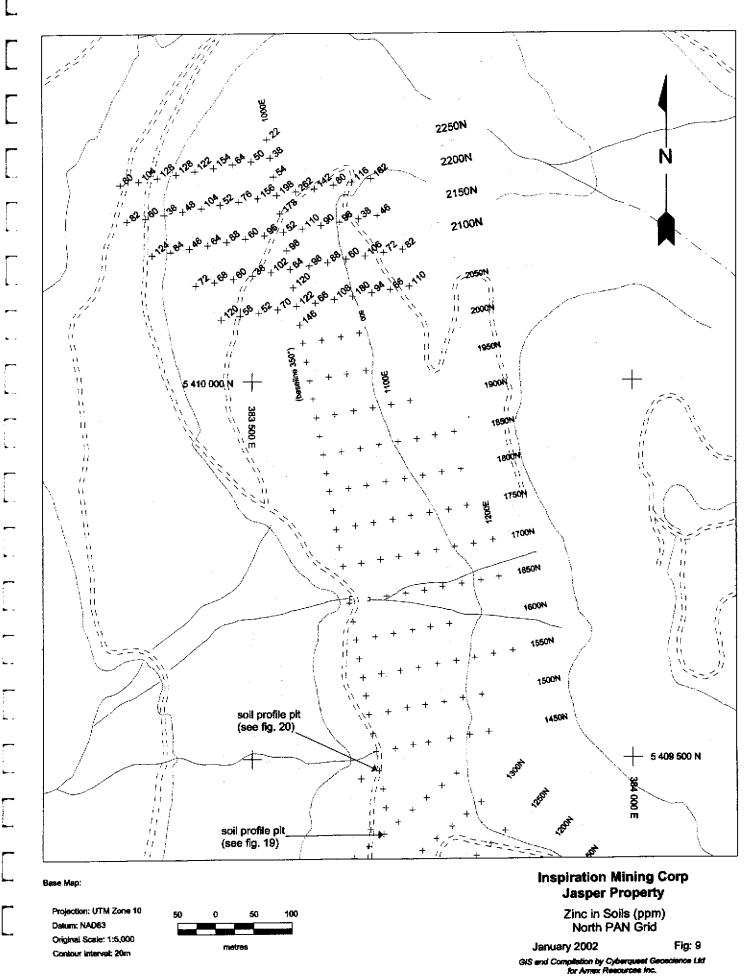
b.....

h....

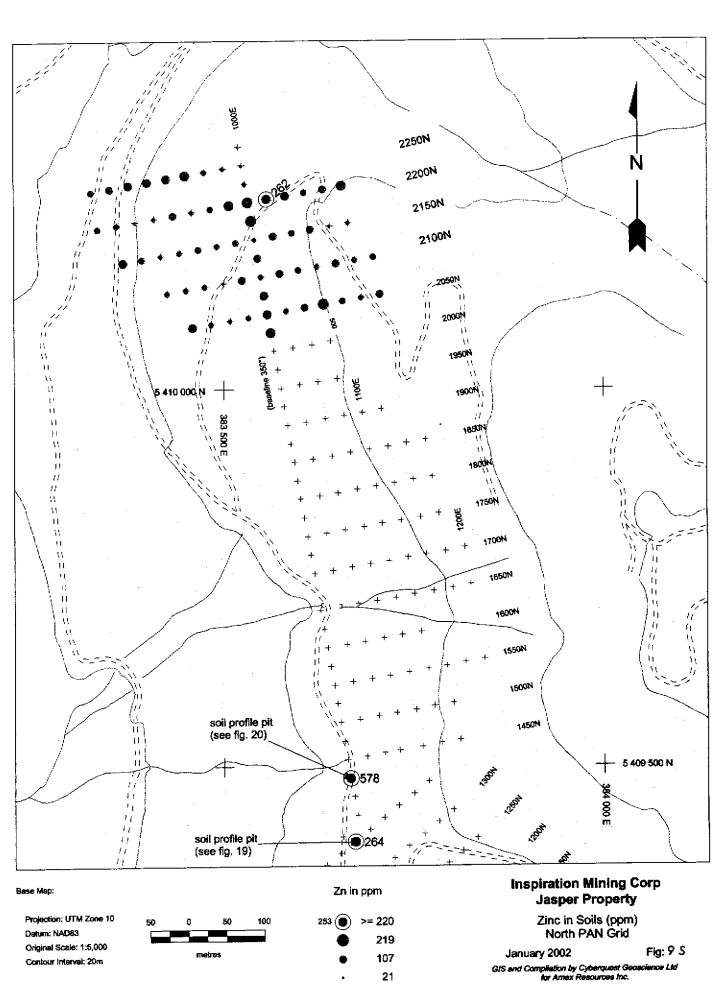

L

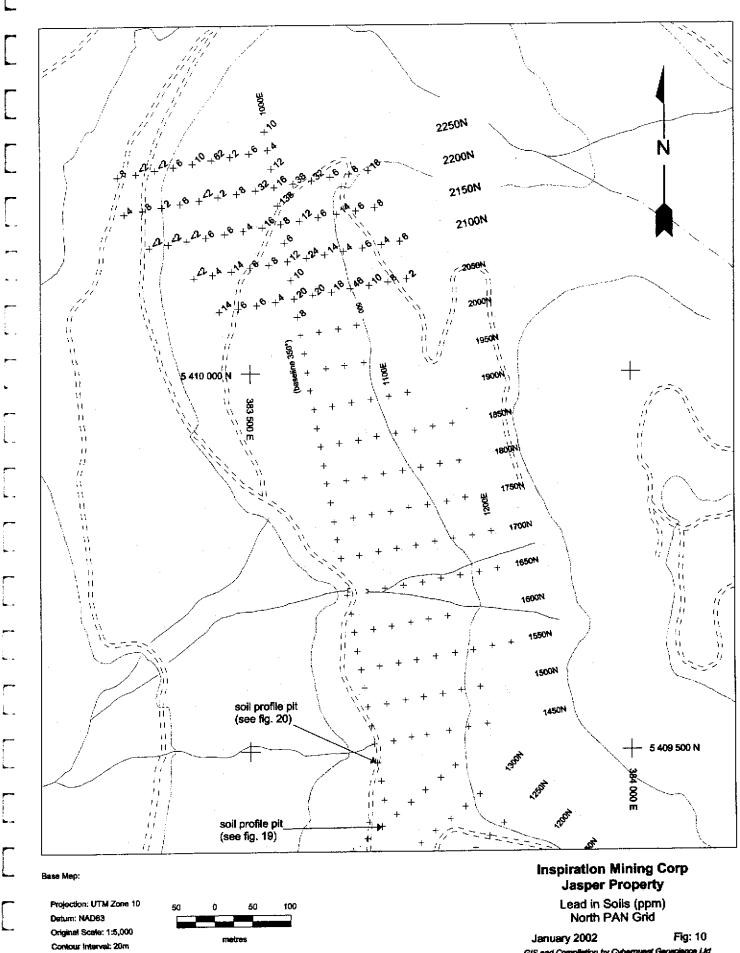

ł

Soil Sample Analytical Results - Pan Soil Grid - Year 2001 Selected Elements

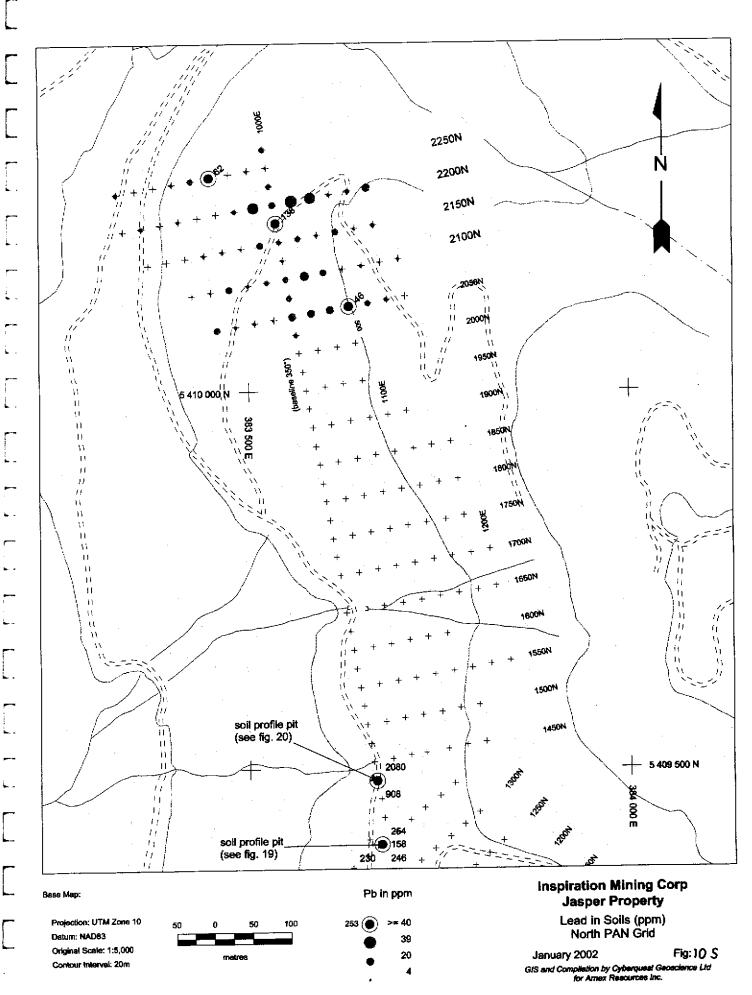

CODE			983	2118	2120	2121	2126	2126	2127	2128	2150	2135	2136	2140	2141	2149
Sumple	Loca		Au	Ag	As	Ba	Cđ	Co	Cr	Ću	Fe	Ma	Mo	Pb	Sb	Za
Number	Northing	Easting	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	ppm	рргя	ррп
210401	2025	1000	5	<0.2	6	70	<0.5	14	12	57	4.74	1135	1	а	2	146
210402	2050	1000	<5	<d.2< td=""><td>10</td><td>80</td><td>< 0.5</td><td>20</td><td>13</td><td>86</td><td>5.87</td><td>1685</td><td>i</td><td>20</td><td>2</td><td>122</td></d.2<>	10	80	< 0.5	20	13	86	5.87	1685	i	20	2	122
210403	2075	1000	<5	<0.2	<2	70	<0.5	8	10	48	5.39	685	<1	10	Ā	120
210404	2100	1000	<5	<0.2	6	70	<0.5	8	10	45	6.17	610	1	12	Ĕ	64
210405	2125	1000	5	<0.2	6	60	<0.5	11	12	66	7.37	820	1	6	ā	98
210406	2150	1000	<5	<0.2	4	40	<0.5	5	9	30	4.32	560	<1	B	6	52
210407	2175	1000	5	0.2	6	120	<0,5	18	6	125	4,75	1225	5	138	8	178
210408	2200	1000	<5	0.2	2	80	<0.5	32	9	95	5.14	2730	5	16	6	198
210409	2225	1000	<5	<0.2	<2	50	<0.5	7	7	30	3,99	900	1	12	Ž	54
210410	2250	1000	<5	<0.2	4	50	<0.5	13	8	34	4,49	1075	2	4	6	38
210411	2275	1000	15	<0.2	<2	50	<0.5	4	6	16	2.27	1025	- ī	10	<2	22
210412	2050	975	<5	0.2	2	70	<0.5	11	9	34	4.64	675	1	4	2	70
210413	2050	950	<10	<0.2	2	70	<0.5	6	8	28	4.75	585	2	6	6	52
210414	2050	925	<5	0.2	2	40	<0.5	10	10	36	4.88	580	<1	6	6	58
210415	2050	900	<5	<0.2	6	50	<0.5	10	20	74	5.76	660	2	14	15	120
210416	2100	975	<5	0.2	2	60	<0.5	11	12	59	5.68	635	1	8	6	102
210417	2100	950	10	<0.2	<2	50	<0.5	8	8	25	3.89	290	1	6	ě	36
210418	2100	925	<5	0.2	4	130	<0.5	22	7	28	4	2770	1	14	6	60
210419	2100	900	-5	<0.2	2	40	<0.5	8	10	34	4.55	710	1	4	10	68
210420	2100	875	<5	0.2	2	80	<0.5	8	10	31	5.07	920	2	4	6	72
210421	975	1000	20	<0.2	12	100	<0.5	18	11	132	5.21	1165	5	14	12	132
210422	950	1000	5	<0.2	8	200	<0.5	22	11	122	5.69	1110	3	16	6	108
210423	925	1000	<5	0.2	4	170	<0.5	33	11	107	5.39	2030	5	10	8	138
210424	900	1000	10	⊲0.2	8	160	≪0.6	14	12	111	5.5	585	6	12	12	150
210425	875	1000	10	<0.2	18	140	<0.5	19	12	88	4.93	1090	1	24	6	98
210426	630	1000	10	⊲0.2	12	190	0.5	13	8	51	3.28	1030	<1	20	6	134
210427	950	1025	10	<0.2	2	100	<0.5	12	7	75	4.41	1020	2	6	12	76
210428	960	1050	<5	<0.2	6	80	<0.5	9	10	34	4	670	1	8	2	64
210429	960	1075	<5	<d_2< td=""><td>6</td><td>110</td><td><0.5</td><td>12</td><td>11</td><td>149</td><td>4.84</td><td>720</td><td><1</td><td>6</td><td>8</td><td>88</td></d_2<>	6	110	<0.5	12	11	149	4.84	720	<1	6	8	88
210430	950	1100	5	0.2	2	110	<0.5	14	12	88	5,18	815	4	ž	12	106
210431	950	1125	<5	<0.2	6	60	<0.6	13	10	116	5.12	980	3	2	10	112
210432	950	115D	<5	<0.2	8	80	<0.5	7	6	26	3.17	435	1	6	2	40
210433	950	1175	15	<0.2	10	100	<0.5	19	11	137	5.06	1000	1	ē	16	132
10434	900	1025	5	0.4	8	50	<0.5	9	16	54	6.35	460	4	6	14	96
10435	900	1050	-5	<0.2	<2	100	<0.5	12	10	74	4.63	575	4	6	14	88
10436	900	1075	5	<0.2	6	120	⊲0.5	10	10	41	4.36	735	3	20	6	150
10437		1100	<5	<0.2	6	240	<0.5	14	9	41	3.62	2920	3	38	10	158
10438		1125	<10	<0.2	2	320	<0.5	10	6	33	2.69	1795	2	28	6	102
10439		1150	15	<0.2	2	430	2	6	2	25	1.49	2660	3	14	4	58
10440		1190	<5	0.4	6	160	<0.5	42	7	77	5.21	1665	i.	10	6	90
10441		975	<5	<0.2	6	90	<0.5	18	9	130	4.4	840	t	14	10	80
10442		850	10	<0.2	10	60	⊲0.5	14	14	144	5.2	575	3	18	12	120
10443		935	15	<0.2	14	60	<0.5	9	9	33	3.87	425	<1	6	4	56
10444		975	<5	≪0.2	10	100	<0.5	18	8	123	5.04	1125	3	16	4	84
10445		975	10	0.6	8	120	<0.5	11	12	53	3.15	870	1	18	6	96
10446		97 5	5	1.4	8	70	<0.5	3	3	112	2.59	1295	6	158	à	62
10447		975	100	6.4	70	80	<0.5	7	4	765	13	1220	73	230	8	146
10448		975	20	1	10	20	<0.5	4	4	1730	4.15	470	17	248	-Q	110
10449	1350 1	975	25	1.4	14	140	<0.5	17	11	1425	7.49	1260	22	254	B	264
10450		1000	25	0.6	8	110	0.5	29	6	1160	6.31	2610	17	806	ē	578
10451	1425	1000	115	0.8	8	100	2	87	6	1080	6.58	5180	13	2080	ĕ	932

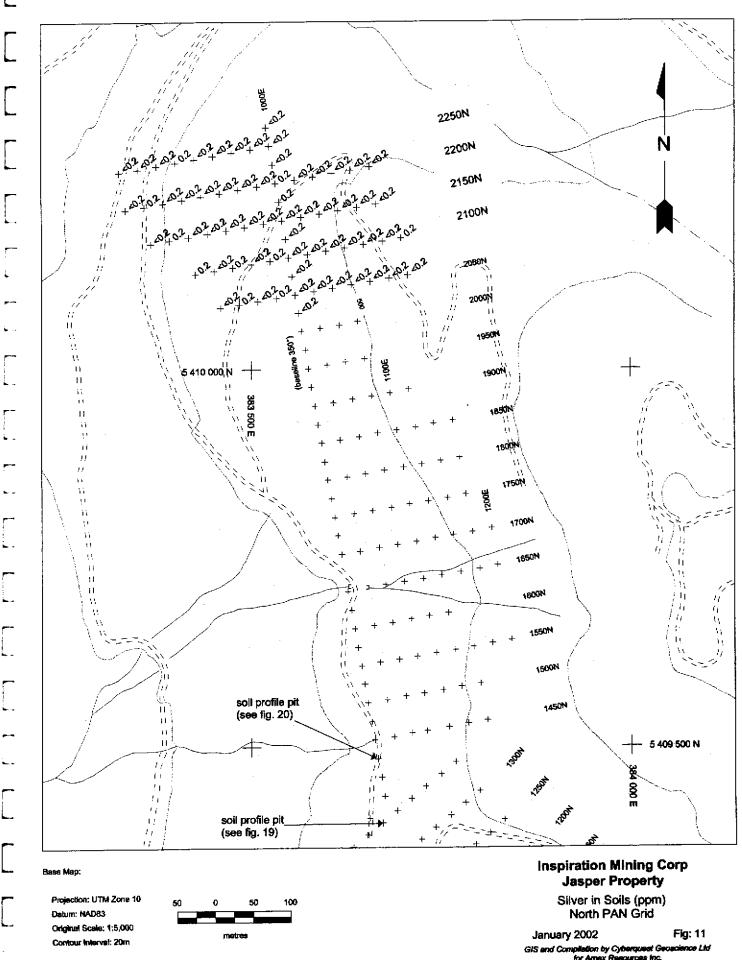
i





GIS and Compliation by Cyberqueel Geoscience Ltd for Amex Resources Inc.

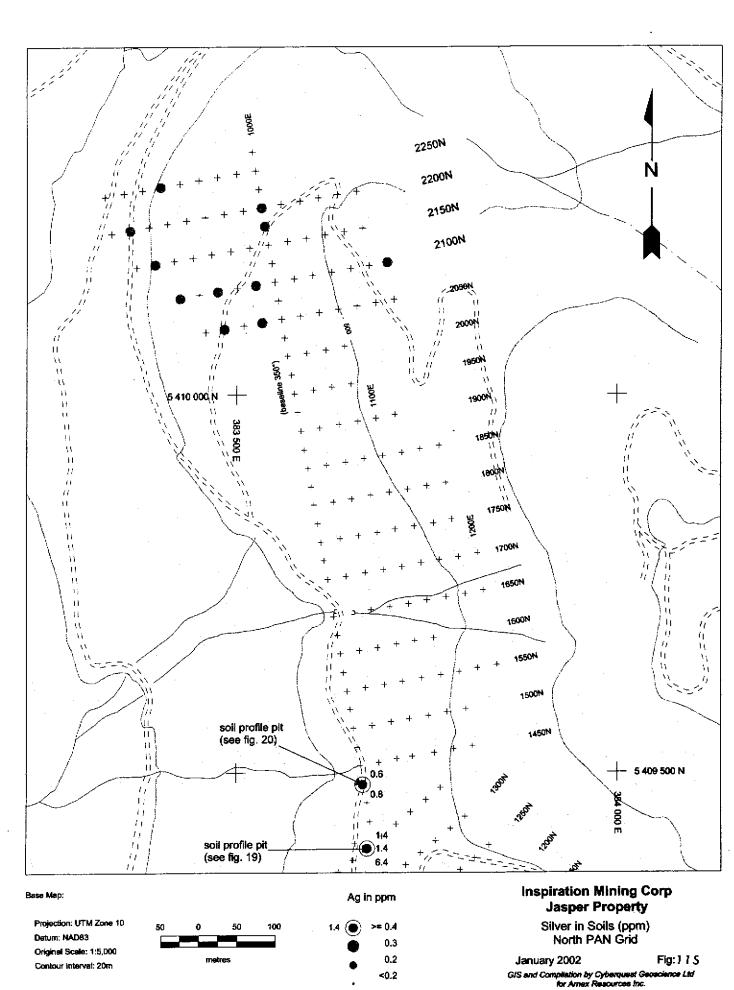



Ŀ,

1

L

GIS and Complication by Cyberquest Geoscience Ltd for Amex Resources inc.


L

μ.

μ.

29

GIS and Compliation by Cyberquest Geoscience Ltd for Amex Resources Inc.

È.

έ.

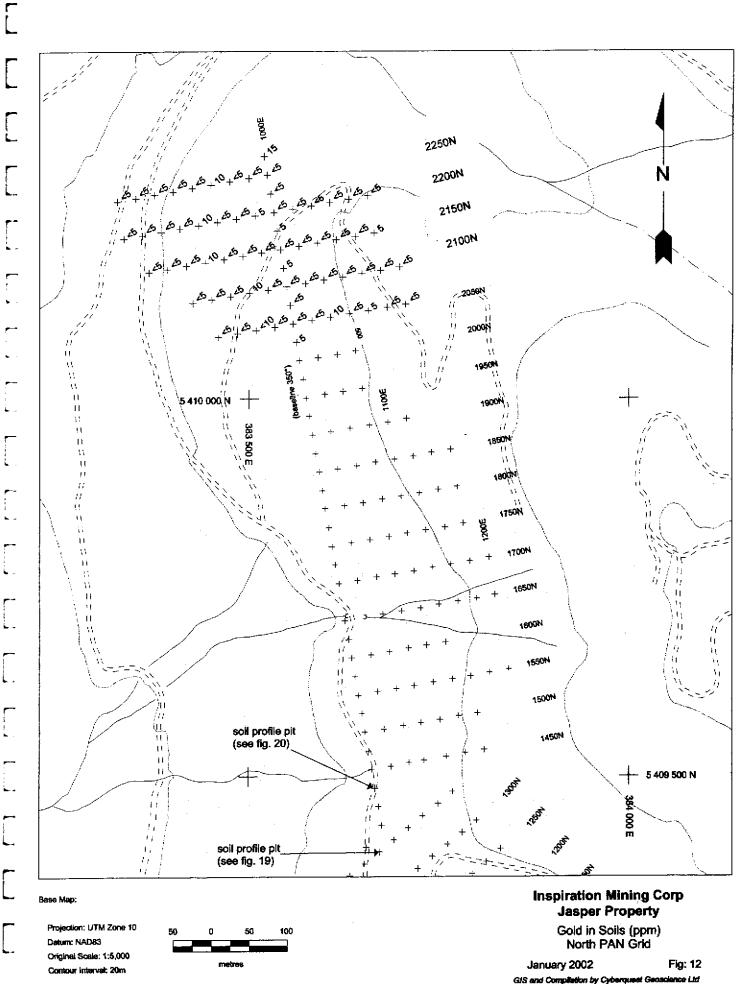
κ.,

i.

÷. ..

÷....

i. .

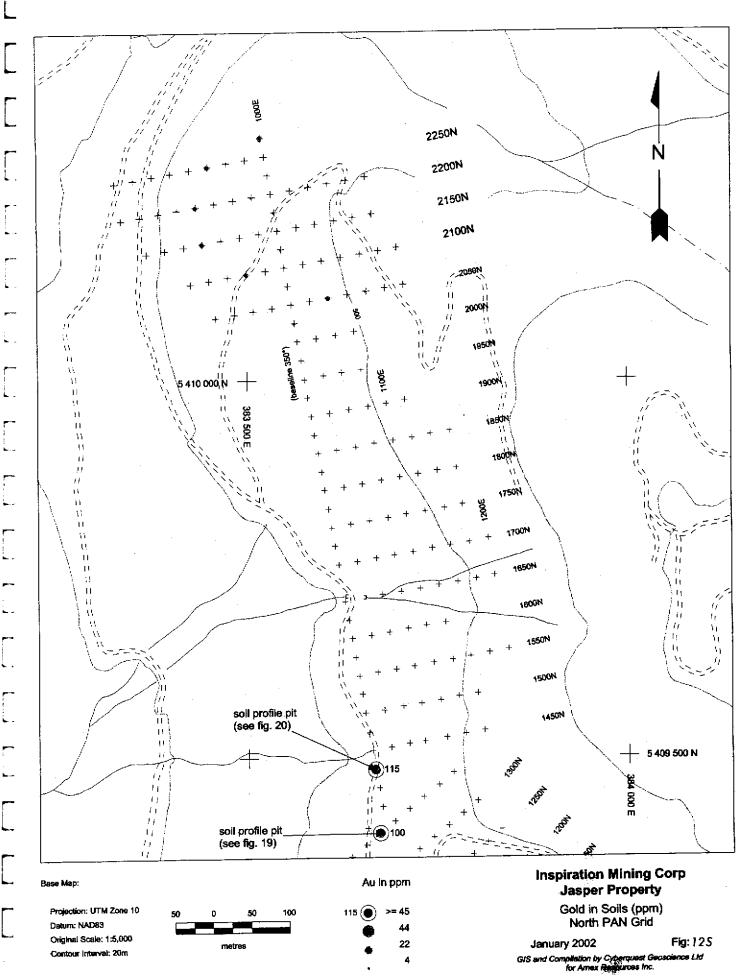

. Ber a

i.

c

ω.

•


.

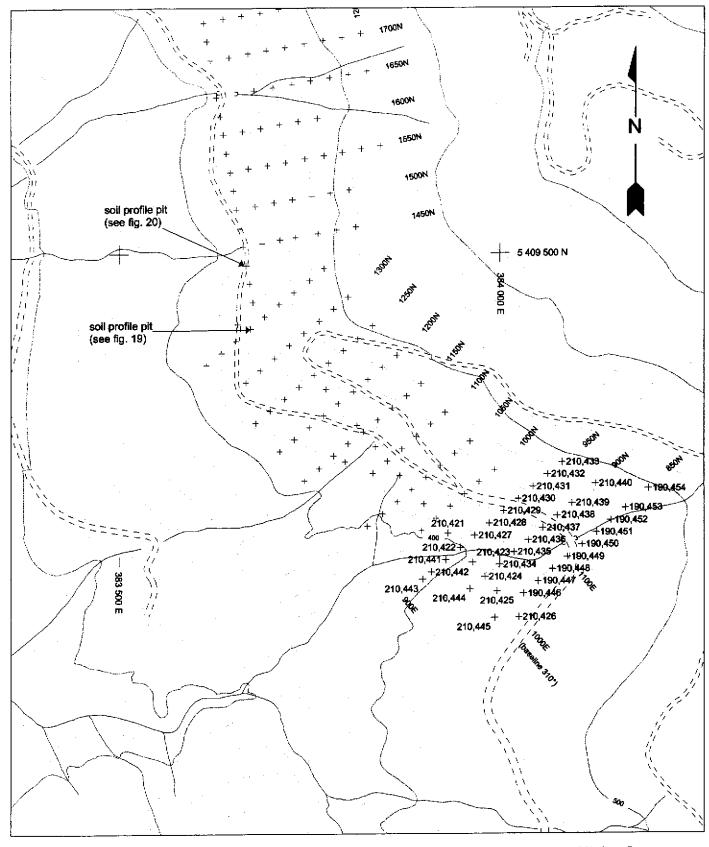
i

i.

È,

GIS and Compilation by Cyberquest Ge for Arnex Resources Inc.

i.


5

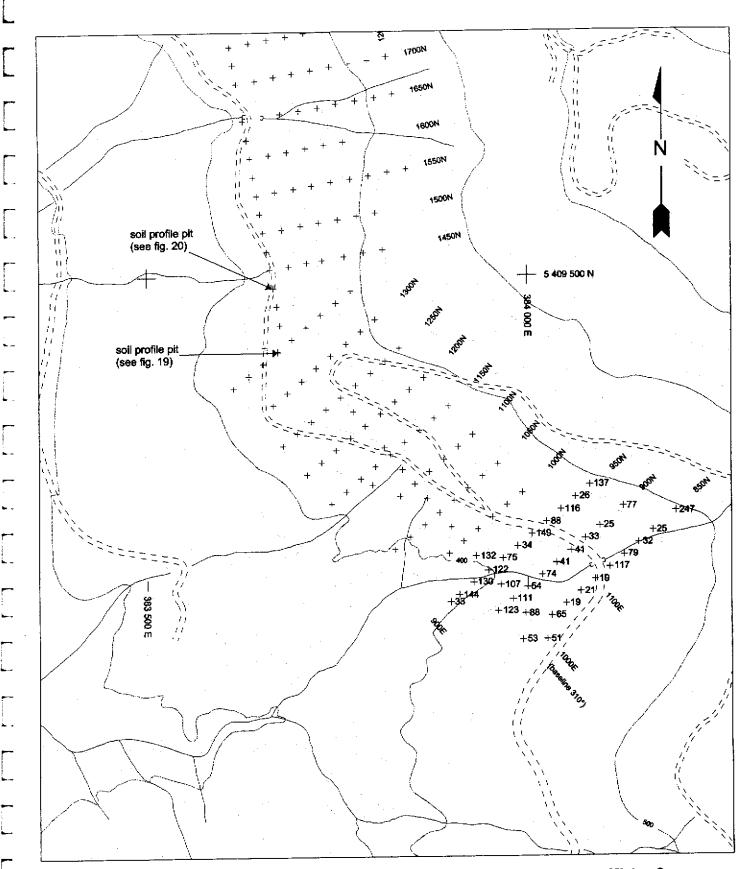
1

-

ί.

j Maria . . È L.

Base Map:


Projection: UTM Zone 10 Datum: NAD83 Original Scale: 1:5,000 Contour Interval: 20m

Inspiration Mining Corp Jasper Property

Sample Location Map South PAN Grid

January 2002 Fig: 13 GIS and Compliation by Cyberquest Geoscience Ltd for Amer Resources Inc. 32a

Base Map:

ľ

.....

....

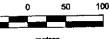
.

È.

.....

ы. .

<u>.</u>


b----

L.,

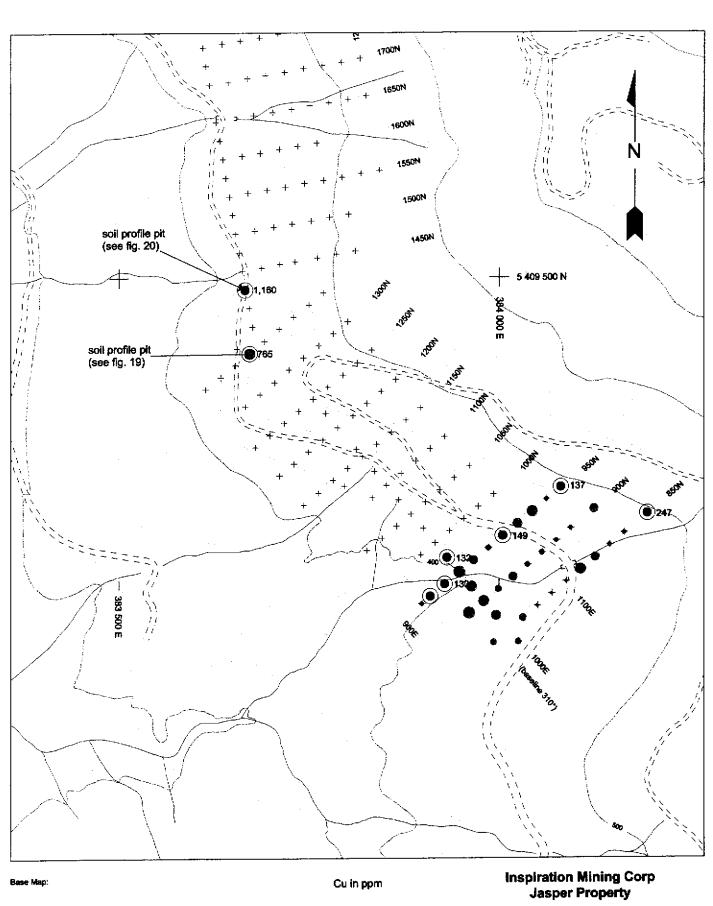
.....

L

Projection: UTM Zone 10 Datum: NAD83 Original Scale: 1:5,000 Contour Interval: 20m

50

metres


Inspiration Mining Corp Jasper Property

Copper in Soils (ppm) South PAN Grid

January 2002

Fig: 14

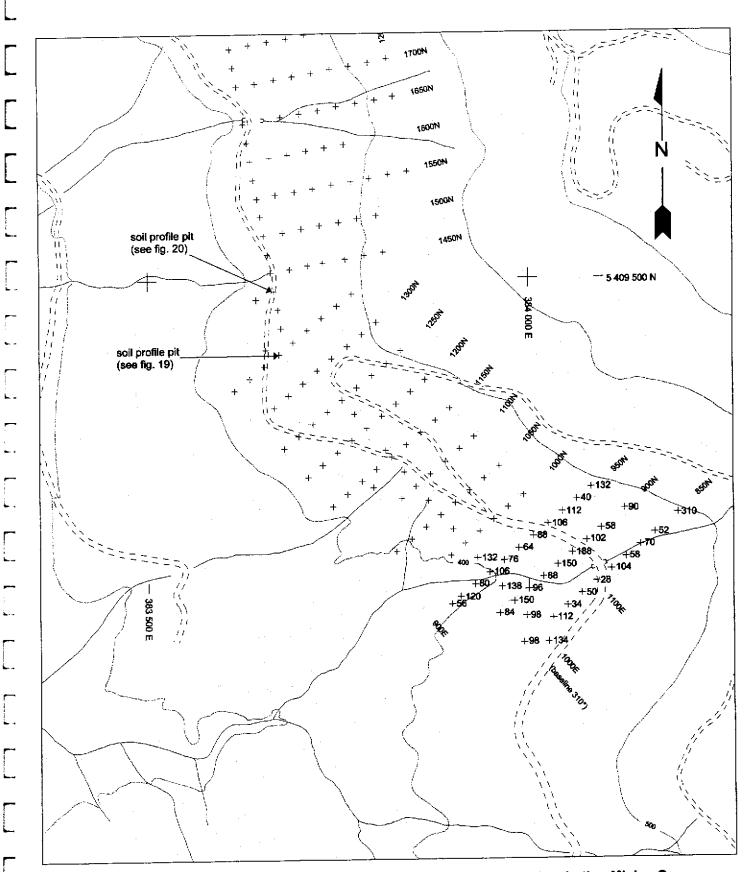
GIS and Compilation by Cyberquest Geoscience Ltd for Arrex Resources inc.

129

65

13

60



Copper in Soils (ppm) South PAN Grid

January 2002 Fig: 145 GIS and Compliation by Cyberquest Geoscience Lid for Amex Resources Inc.

34

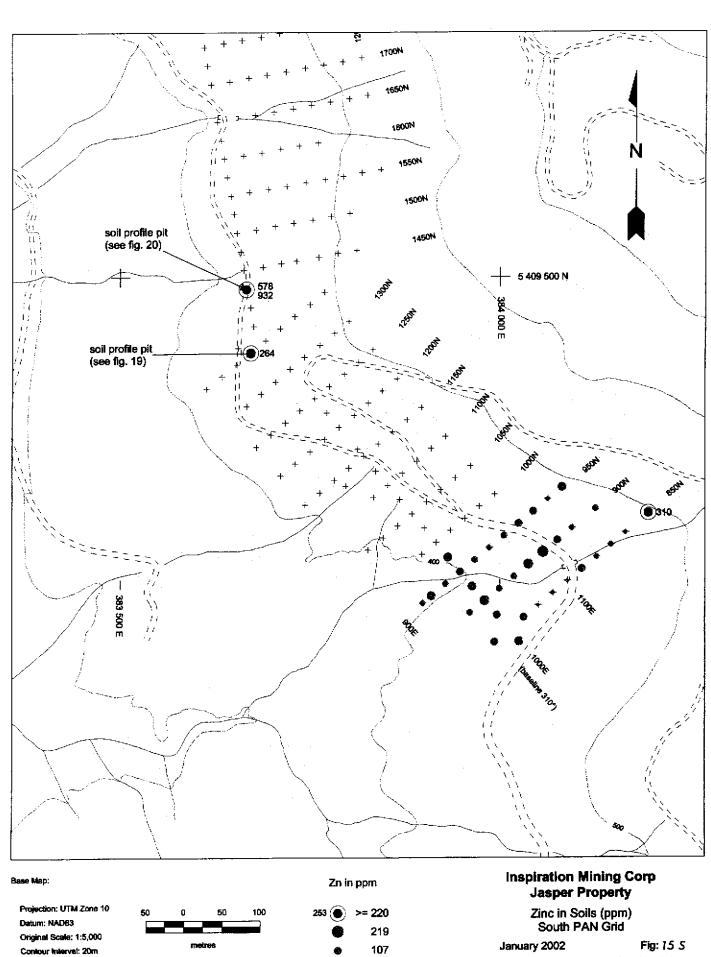
L ... È. ٣ . . L_ j. L., L. د بية L. ; •----

Bese Map:

L

-

Projection: UTM Zone 10 Datum: NAD83 Original Scale: 1:5,000 Contour Interval: 20m


50

Inspiration Mining Corp Jasper Property

Zinc in Soils (ppm) South PAN Grid

Fig: 15

January 2002 GIS and Compliation by Cyberquest Geoscience Ltd for Amex Resources Inc.

21

L

L ..

Ĺ.

-

۰.

۱.

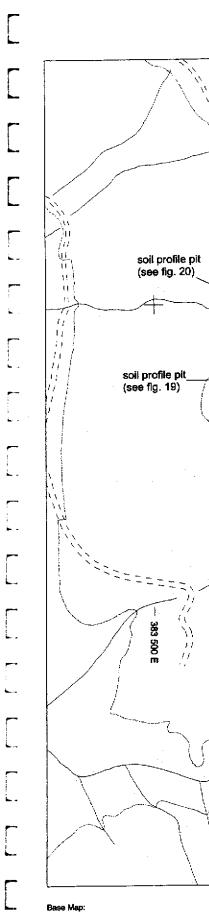
: •---

k.

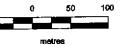
b------

٢

.....


÷....

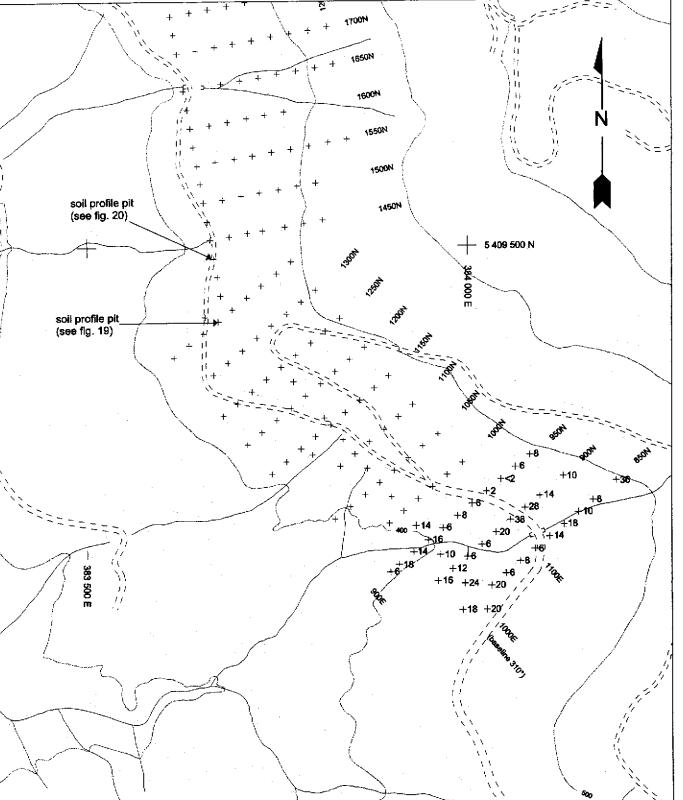
.

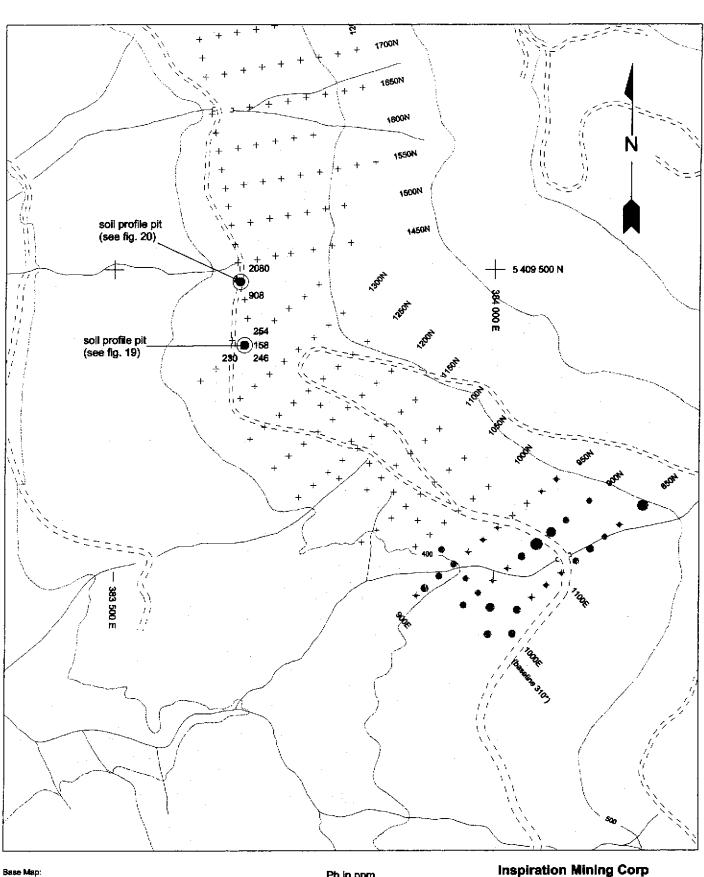

.

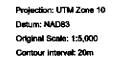
ţ

GIS and Compilation by Cyberquest Geoscience Liti for Arnex Resources Inc.

Projection: UTM Zone 10 Datum: NAD83 Original Scale: 1:5,000 Contour Interval: 20m


50


Inspiration Mining Corp Jasper Property


٦.

Lead in Soils (ppm) South PAN Grid

January 2002 Fig: 16 GIS and Complication by Cyberquest Geoscience Ltd for Amex Resources Inc.

L

h....

1

Ĺ.

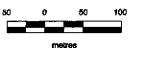
ы. ...

÷ ...

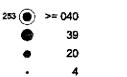
ĥ.

L....

L.

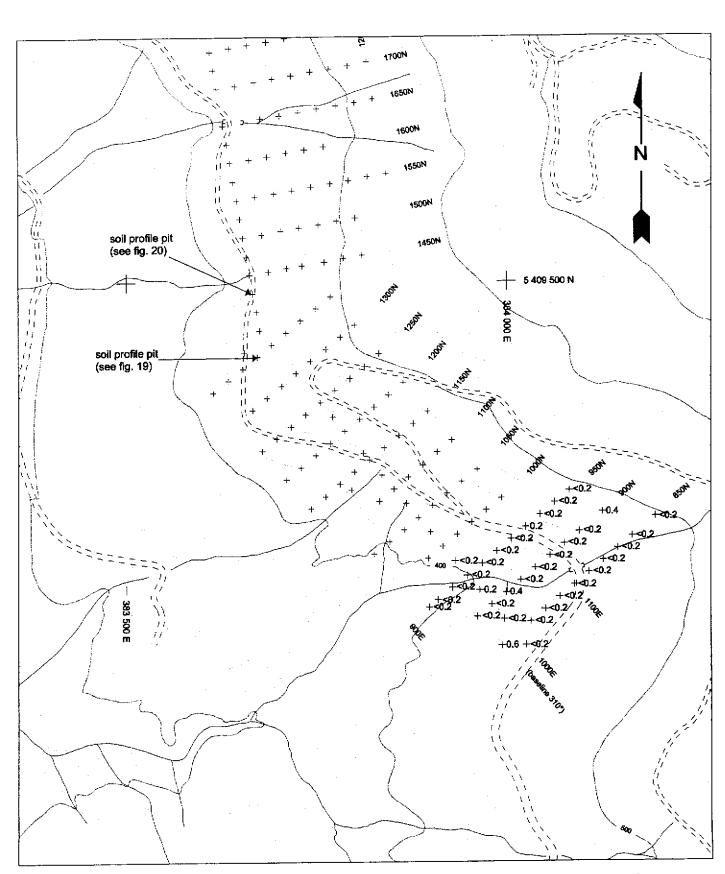

6.

....


٢

L

Ĺ



Inspiration Mining Corp Jasper Property

Lead in Soils (ppm) South PAN Grid

Fig: 16 S January 2002 GIS and Complication by Cyberqueal Geoscience Ltd for Arnex Resources Inc.

Base Map:

-

à.....

× ...

٠

. . .

٢

. .

ł

ſ

L

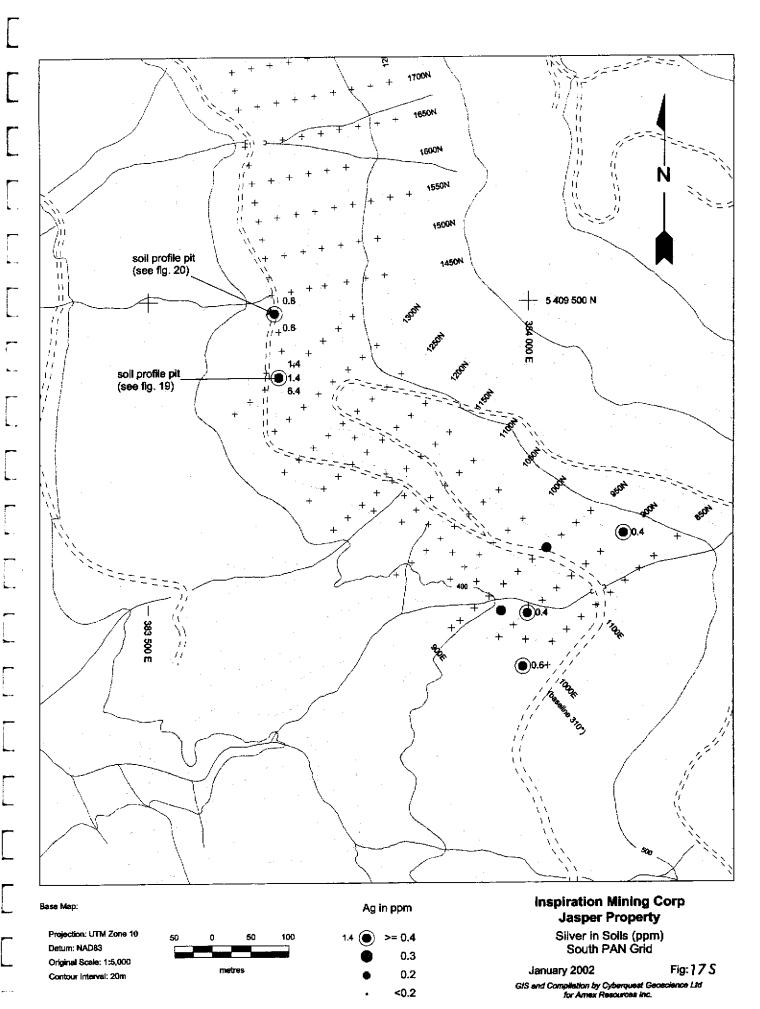
Ĺ.

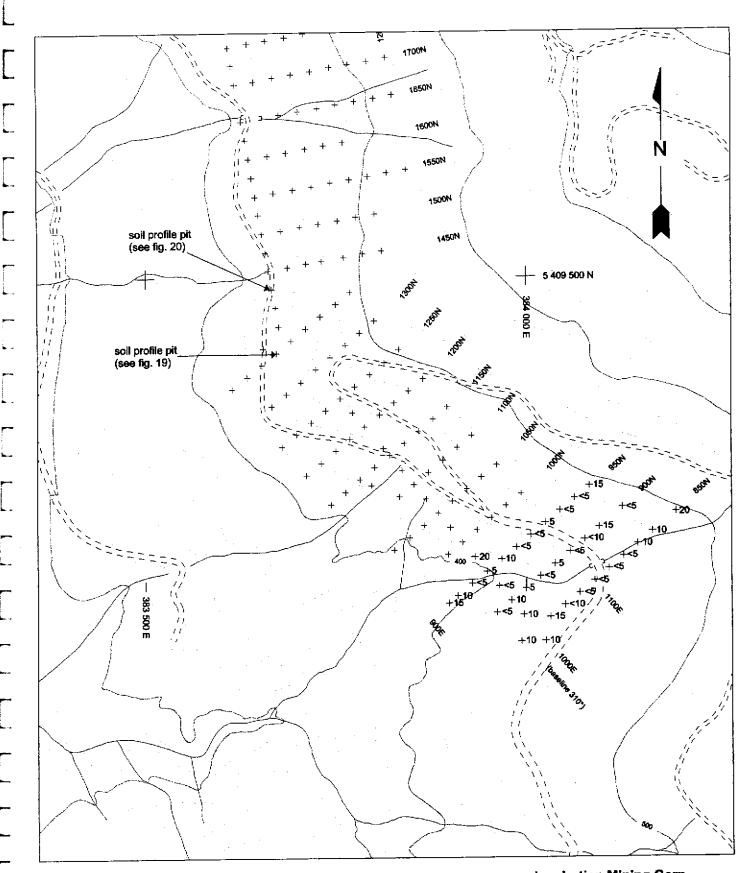
. .

L

Projection: UTM Zone 1D Datum: NAD83 Original Scale: 1:5,000 Contour Interval: 20m

50


Inspiration Mining Corp Jasper Property


> Silver in Soils (ppm) South PAN Grid

January 2002

Fig: 17

GIS and Compliation by Cyberquest Geoscience Ltd for Amex Resources Inc.

Base Map:

è...

.....

Ĺ.,

. .

L .

Г í.,

.

.

È.

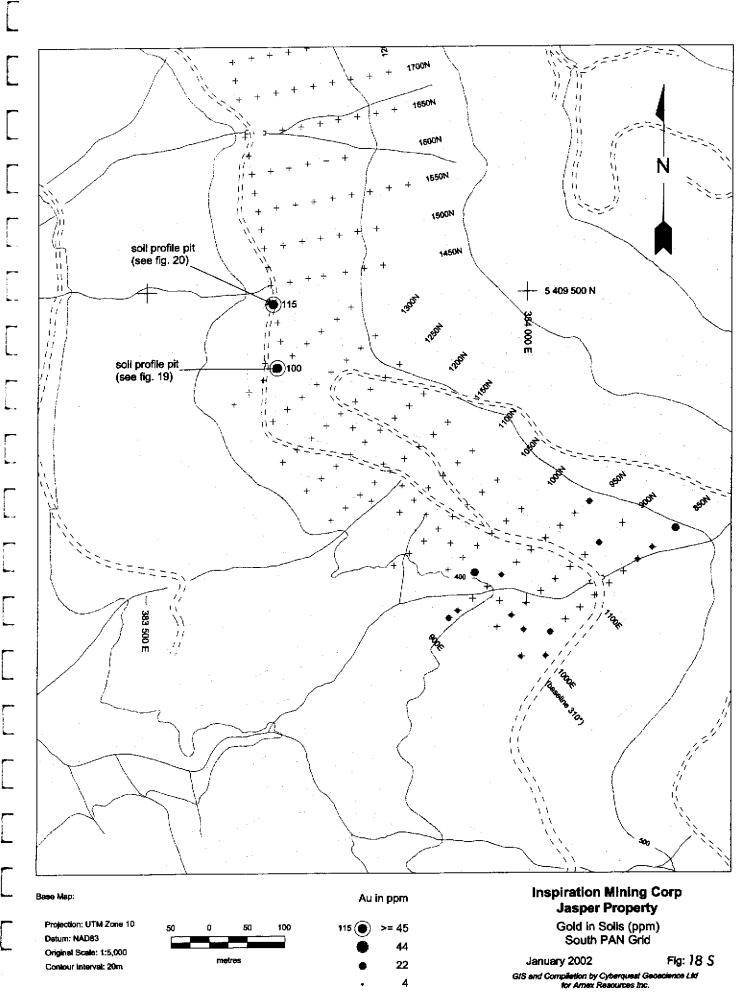
_

L.,,

h.....

L

Projection: UTM Zone 10 Detum: NAD83 Original Scale: 1:5,000 Contour Interval: 20m


Inspiration Mining Corp Jasper Property

Gold in Soils (ppm) South PAN Grid

January 2002

Fig: 18

GIS and Compilation by Cyberquest Geoscience Ltd for Amex Resources Inc.

L

<u>.</u>

-

1

Ĺ___

42

5.4. Soil Geochemistry Results – North Pan Grid

At the North Pan Grid (Table 2, Figures 7 to 12S), there is a cluster of Zn, Pb Cu anomalies centered on the Baseline (1000E) at 2175N. Values of up to 262 ppm Zn and 138 ppm Pb occur in orange brown rubbly soil containing pyritized felsic boulders. The anomaly is cut-off up slope. The anomaly is still open on the most northerly Line where 99th percentile Pb and 95th percentile Zn anomalies are present. The ploy-metallic base metal soil anomaly was extended approximately 250 metres to the north.

5.5. Soil Geochemistry Results – South Pan Grid

High Cu values are present in soils at the South Pan Grid(Table 2, Figures 13 to 18S), particularly along Line 950N. The sample from the end of the Line highest up the hillside returned a value of 137 ppm Cu establishing that the anomaly is open up-slope. Soils from this area are described as being gossanous and contain pyritized felsic float.

While Line 950N is strongly anomalous in Cu and has modest Zn-Pb values, Line 950N contains moderate (95th percentile) Zn-Pb values and relatively low Cu values. The soils are gossanous and altered pyritized felsic volcanic float was noted to be present.

With the exception of the soil profile pits, the highest Cu-Zn soil values occur at sample 190454, which is highest up the hill on the southeastern edge of the grid. Cu values of 247 ppm, 310 ppm Zn, 0.4 ppm Ag and elevated Pb and Au are present in red-brown gossanous soil.

The poly-metallic anomaly is open upslope and to the south of the extended grid.

5.6. Rock Chip Sampling Results

Three representative rock chip samples were taken. Analytical results for Selected Elements are presented in Table 3 and sample descriptions are contained in Appendix C.

Two samples are from the North Pan Grid area.

Sample 310751 from Line 2225N is from a 30 cm channel sample from a 60 cm thick bed. The sample is described as being an altered felsite containing disseminated fine grained pyrite. The presence of possible resorbed quartz eyes indicates that the felsite is probably an altered rhyolite. The material sampled is considered to be "country rock". Base metal values were background but precious metals are surprisingly high returning 205 ppb Au and 1.2 ppm Ag. The implication is that some of the unmineralized rhyolitic

Table 3

the second contraction of the second se

Rock Sample Analytical Results - Pan Soil Grid - Year 2001 Selected Elements

CODE			983	2118	2120	2121	2125	2126	2127	2128	2160	2135	2136	2140	551	2141	2149
Sample Number	Northing	Location Easting	Au opb	Ag pom	As ppm	Ba ppm	Cd	o mqq	Cr	Cu	Fe	Mn	Мо	Pb	S	Sb	Zn
						PP	ppm_	. ppm	ppm	ppm		ppm	ppm	ррт	%	ppm	ppm
301751 301752	2250 2275	1000	205	1.2	16	40	<0.5	8	91	56	2.53	450	14	18	1.36	<2	40
301753	950	1000 950	95 15	1.4	4	60 50	<0.5 <0.5	16	53	3900	4.89	1285	4	14	2.03	4	96
			15	0.2	0	50	-0.5	1	32	30	3.74	560	5	6	2.16	<2	36

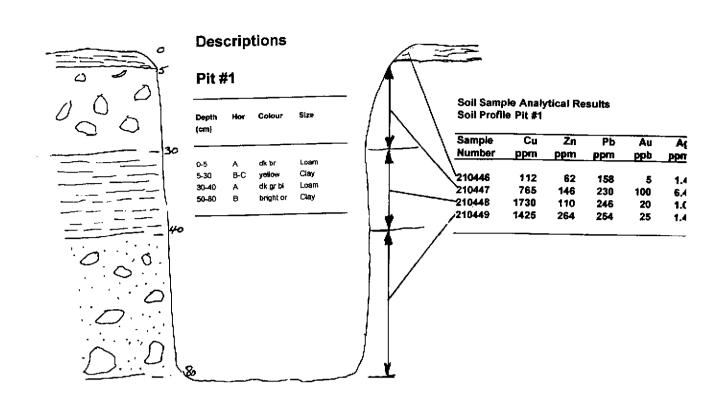
volcanics are precious metal enriched. This suggests that massive sulphide mineralization associated with the felsic volcanics may also contain precious metals.

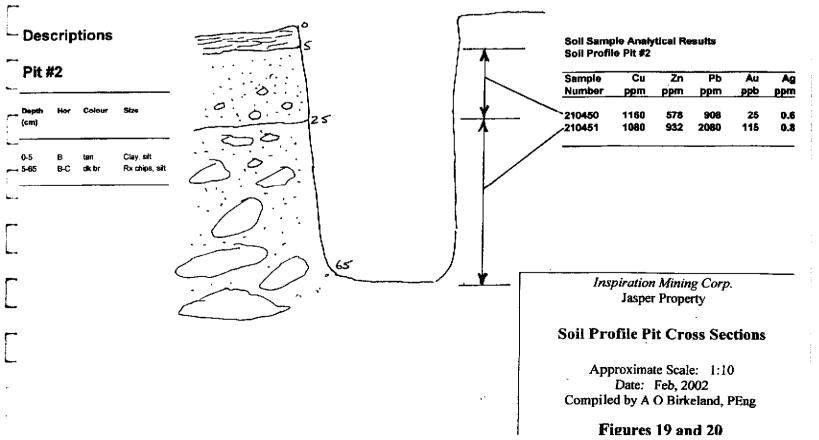
Sample 310752 was taken from the baseline at location 2275N, 1000E. The sample is from a representative chip channel across a 30 cm wide sulphide "stringer" zone. Up to 10% coarse grained euhedral pyrite occurs in a steeply dipping silicified altered zone. Calcopyrite and malachite (up to 2%) were noted. The sample returned a value of approximately 0.4% Cu.

Sample 301753 was taken from the south grid at soil sample number 210442 at location 590N, 950E. The sample is from a leached silica (chert?) calcite exhalite or highly altered rhyolite. Values were low.

5.7. Soil Profile Results

L.,


Two soil profile pits were dug and sampled in the central portion of the Pan Grid. Pit Cross Sections and sample results are plotted on Figures 19 and 20.


The pits were dug at locations where previous soil sampling had encountered very high base metal values. The objective of the soil profile sampling was to help determine if the soil anomalies are residual, proximal anomalies near to the mineralizing source, or if anomalies are transported distal anomalies some distance from the source. The procedure is to dig pits and to take samples of A, B, and B-C horizons. If anomalies are concentrated in the B horizon and drop off at depth, it is interpreted that the anomaly is hydromorphically transported and is located some distance for the source. If values increase with depth, some component of the anomaly is mechanically transported and it is interpreted that the anomaly is over or very near to source.

Pit #1 was dug at location 1350N, 975E. Orange weathering gossanous soils containing pyritized altered felsic volcanic fragments are present in this area. Previous sampling returned soil values of 759 ppm Cu, 484 ppm Pb and 182 ppm Zn. This sample is directly below Rx 739306 (Cu=1.5%) where a very high poly-metallic anomaly was found by the 1998 Survey.

At Pit #1 (Figure 19), two soil cycles are present The first cycle contains a thin organic A horizon overlying a 25 cm thick yellow-orange jarositic B horizon. It is interpreted that this horizon is a local scree slide that overlies the deeper soil cycle. The deeper residual soil cycle is characterized by a 10 cm thick organic rich A horizon underlain by bright orange oxidized clay rich B horizon.

Values for Zn and Pb, and to some degree Cu, are increasing to depth. Precious metals are concentrated in the upper B horizon. Because base metals are increasing with depth and are highest deepest in the pit, it is interpreted that the base metal component is in-situ and close to source.

Pit #2 was dug at location 1425N, 1000 E. Previous sampling returned 1735 ppm Pb, 1505 ppm Cu and 1070 ppm Zn occur from soil sample number 100331. The soil sample is up-slope from a massive sulphide stringer zone (sphalerite rich) that outcrops in the logging road-cut.

At Pit #2 (Figure 20), a conventional one cycle soil profile is present. A thin 5 cm organic rich A horizon is underlain by a 20 cm thick clay rich B horizon that grades partially into a mixture of B (soil) and C (bedrock) layers at 65 cm depth.

Values for Zn, Pb, Au and Ag all increase strongly to depth. The high Pb value of 2080 ppm strongly suggests that the soil anomaly is very close to source. Copper values are relatively constant.

6. GPS SURVEY

A limited GPS survey was conducted. The objective was to tie grid locations in the field to map co-ordinates contained in the GIS database.

The GPS datum used was UTM Zone 10 Projection, WGS84 Datum. The instrument used was a Garmin Etrex Legend. Accuracy's are reported to be to +/- 15 metres.

Appendix D documents Latitude-Longitude-Elevation GPS readings for selected locations.

7. CONCLUSIONS

Coincident extensive poly-metallic soil geochemical anomalies detected by the soil grids indicate base metal (and lesser precious metal) mineralization is present proximal to, or up-slope from the anomalies.

Polymetallic base metal geochemical anomalies are present associated with an intense gossan alteration zone over a 1.6 km strike length. Anomalous soil values are present on the Lines furthest to the north and south on the grid. Some of the best anomalies are at the up-hill eastern ends of Lines and the anomalies are open up-slope.

The 2001 exploration program established the following:

• Pb-Zn-Cu soil geochemical anomalies are present trending north off the North Pan Grid. The anomalies are generally Pb-Zn rich. Gossanous soils are present in roadcuts to the north of the grid. It is concluded that the geochemical anomaly and associated mineralization may continue off the grid along trend towards the Jasper Main Showing to the North.

- At the South Pan Grid, Line 950N is strongly anomalous in Cu, while Line 900N is moderately anomalous in Zn-Pb. At both Lines 950N and 850N, the most anomalous samples are at the extreme upslope end of the lines. The anomalies are open upslope, and to the south.
- Preliminary indications from two soil profile pits indicate that high value soil anomalies in these areas are near source in-situ anomalies.
- Rock chip sampling of a mineralized stringer zone returned values of up to approximately 0.4% Cu. Geochemically elevated Au values are present in altered rhyolite "country rock". If base metal volcanogenic base metal deposits are the source of the soil geochemical anomalies, they may contain a precious metal component.

8. RECOMMENDATIONS

A phased \$500,000 exploration program has been recommended in a Technical Report by Arnex for Inspiration dated May 8, 2001. Phase 1 will be the continuation of surface work at the Pan (and possibly Jas) grid area, and Phase 2 will include diamond drilling.

Phase 1 work should include the following:

L.

- 1. Extend the existing cross lines on the Pan soil grids upslope to the east to close off anomalies and extend the grids to the north and south,
- 2. Hand dig pits and conduct soil geochemical profiles at the most significant soil anomalies to determine proximity to source,
- 3. Do surficial geology mapping along roadcuts and use the results to interpret where the mineralized source areas are for the significant soil anomalies,
- 4. Prospect, map and sample in detail all areas adjacent to the most important showings and soil anomalies.

Upon completion of the Phase 1 field program, exploration targets should be prioritized utilizing GIS analysis and specific recommendations for a Phase 2 Work Program and Budget should be made. Phase 2 work should include completing geophysical surveys over the Pan and extended J-Branch Main Showing grids. Phase 2 work may include mechanized trenching and will include diamond drilling of the highest priority targets. A Notice of Work should be filed at least 60 days prior to the planned commencement of Phase 2 fieldwork.

9. CERTIFICATE OF QUALIFICATION AND CONSENT

I, Arne O. Birkeland, do hereby certify that:

- 1. I am a Geological Engineer in the employ of Arnex Resources Ltd. with offices at 2069 Westview Drive, North Vancouver, British Columbia.
- 2. I am a 1972 graduate of the Colorado School of Mines with a Bachelor of Science Degree in Geological Engineering.
- 3. I have been a registered Professional Engineer with the Association of Professional Engineers Association of British Columbia since 1975, Registration Number 9870.
- 4. My primary employment since 1966 has been in the field of mineral exploration and development, namely as a Geological Engineer.
- 5. My experience has encompassed a wide range of geological environments including extensive experience in classification of deposit types as well as considerable familiarization with geochemical and geophysical survey techniques and diamond drilling procedures.
- 6. I have conducted and supervised the field exploration work as reported on the subject property. I have authored this report that is based on observations and sample results obtained during the Year 2001 exploration program. The report is NI 43-101 compliant where applicable.
- 7. The author holds no interest in the Jasper Property that is the subject of this report. The author does not own any equity shares of have any options in Inspiration Mining Corp. ("Inspiration") and is acting as an independent Qualified Person as geological consultant for Inspiration.
- 8. I consent for Inspiration to use this technical report to file as an assessment report and also for use as required by regulatory authorities.

Dated at North Vancouver, British Columbia,

day of February, 2001 This

A. D. BIRKELAND Arne O. Birkeland, P. Eng. President, Arnex Resources Ltd.

10. BIBLIOGRAPHY, SELECTED REFERENCES

Birkeland, A.O. (1995): Geological and Geochemical Report, Jas 1 Mineral Claim, Victoria M.D.

Birkeland, A.O. (1996): Geological and Geochemical Report, Jasper Property, Victoria M.D.

Birkeland, A.O. (1999): Rock and Soil Geochemistry Program, Jasper Property, Victoria M.D.

Birkeland, A.O. (1999): Soil and Rock Geochemistry Program, Jasper Property, Victoria M.D.

Fyles, James T. (1955): Geology of the Cowichan Lake Area, Vancouver Island, British Columbia, BCDM Bulletin No. 37.

Gravel, J.L. and Matysek, P.F. (1989): 1988 Regional Geochemical Survey, MEMPR Paper 1981-1.

Massey, N.W.D. and Friday, S.J. (1987): Geology of the Chemainus River-Duncan Area, Vancouver Island, 92C/16; 92B/13.

Massey, N.W.D., Friday, S.J., Tercier, P.E., Rublee, V.J. and Potter, T.E. (1986-87): Geology of the Cowichan Lake Area, NTS 092C/16, Geoscience Map 1991-2.

Massey, N.W.D., Friday, S.J., Tercier, P.E., and Potter, T.E. (1987): Geology of the Duncan Area, NTS 092B/13, Geoscience Map 1991-3.

Massey, S.J., Friday, J.M., Riddell and S.E. Dumais (1988): Geology of the Port Alberni - Nanaimo Lakes Area, NTS 92F/1W, 2E and Part of 92F/7E, Geoscience Map 1991-1. Matysek, P.F., Gravel, J.L., and Jackaman, W. (1990): Victoria/Cape Flattery - NTS 92B, 92C, RGS 24, GSC O.F. 2182.

Matysek, P.F., Gravel, J.L., and Jackaman, W. (1990): Alberni - NTS 92F, RGS 25, GSC O.F. 2183.

MEMPR MINFILE, (1990): 092F - Alberni.

MEMPR MINFILE, (1991): 092C - Cape Flattery.

Muller, J.E. (1977): Geology of Vancouver Island, GSC O.F. 463.

Muller, J.E. and Carson, D.J.T. (1969): Geology and Mineral Possibilities of Vancouver Island, Canadian Mining Journal (May).

Muller, J.E. and Carson, D.J.T. (1969): Geology and Mineral Deposits of Alberni Map-Area British Columbia (92F), Geological Survey of Canada, Paper 68-50.

Northcote, K.E., (1972): The Geology of the Nitinat Triangle.

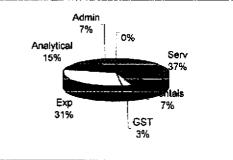
Sutherland Brown, A. (1989): Mineral Inventory of the Alberni Region Vancouver Island, British Columbia (092C, 092F).

Wheeler, J.O. and McFeely, P. (1991): Tectonic Assemblage Map of the Canadian Cordillera and Adjacent Parts of the United States of America; Geological Survey of Canada, Map 1712A, Scale 1:2,000,000.

Wilton, P. (1980): Sicker Group Workshop and Personal Communication, B.S.G.S. Wilton, H. Paul (1989): Geology and Metallogeny, Southern Vancouver Island and Adjacent Mainland.

APPENDIX A

Statement of Expenditures 2001 Geochemical Survey Program


Jasper Claim Group, Victoria M,D.

Prepared for: Inspiration Mining Corp.

Prepared by: Arnex Resources Ltd.

For the Period: Oct 1, 2001 to Jan 31, 2002

Services Rentals	P. Eng, Soll Sampler Subtotal Services Ford F250 4x4 Toyota 4Runner 4x4 Camper Chain Saws (1) ICH 18 Radios (2) Motorola Radios (2) Field Equipment	\$550.00 \$350.00 \$80.25 \$80.25 \$32.10 \$20.00 \$10.00 \$5.00	/day /day /day /day /day /day	10.00 5.00 5.00 6.00 5.00 5.00	day day day day day	\$5,500.00 \$1,750.00 \$7,250.00 \$401.25 \$481.50 \$160.50
	Soil Sampler Subtotal Services Ford F250 4x4 Toyota 4Runner 4x4 Camper Chain Saws (1) ICH 18 Radios (2) Motorola Radios (2)	\$350.00 \$80.25 \$80.25 \$32.10 \$20.00 \$10.00	/day /day /day /day /day	5.00 5.00 6.00 5.00	day day day day	\$1,750.00 \$7,250.00 \$401.25 \$481.50 \$160.50
Rentais	Subtotal Services Ford F250 4x4 Toyota 4Runner 4x4 Camper Chain Saws (1) ICH 18 Radios (2) Motorola Radios (2)	\$80.25 \$80.25 \$32.10 \$20.00 \$10.00	/day /day /day /day	5.00 6.00 5.00	day day day	\$7,250.00 \$401.25 \$481.50 \$160.50
Rentals	Ford F250 4x4 Toyota 4Runner 4x4 Camper Chain Saws (1) ICH 18 Radios (2) Motorola Radios (2)	\$80.25 \$32.10 \$20.00 \$10.00	/day /day /day	6.00 5.00	day day	\$401.25 \$481.50 \$160.50
Rentals	Toyota 4Runner 4x4 Camper Chain Saws (1) ICH 18 Radios (2) Motorola Radios (2)	\$80.25 \$32.10 \$20.00 \$10.00	/day /day /day	6.00 5.00	day day	\$481.50 \$160.50
	Camper Chain Saws (1) ICH 18 Radios (2) Motorola Radios (2)	\$32.10 \$20.00 \$10.00	/day /day /day	5.00	day day	\$481.50 \$160.50
	Chain Saws (1) ICH 18 Radios (2) Motorola Radios (2)	\$20.00 \$10.00	/day /day		day	\$160.50
	ICH 18 Radios (2) Motorola Radios (2)	\$10.00	/day	5.00		
	Motorola Radios (2)		-	0.00	day	\$100.00
	Motorola Radios (2)	\$5.00	/day	10.00	day	\$100.00
		WV. WV	/day	10.00	day	\$50.00
	• •	\$16.05	/day	10.00	day	\$160.50
	Subtotal Rentals					\$1,453.75
GST - Services, Rentals						\$609.26
Expenses	Board	\$50.00	/mday	11.00	/mday	\$550.00
	Room	\$60.00	/mday	10.00	/mday	\$600.00
	Field supplies	\$25.00	/day	11.00	day	\$275.00
	Analytical, soil samples	\$26.25	/smpt	105.00	smpl	\$2,756.25
	Rock Geochem	\$26.25	/smpl	3.00	smpl	\$78.75
	Rock Assay	\$25.25	/smpl	1.00	smpl	\$25.25
	Expenses - Gas, Ferry				•	\$982.36
	Digitizing data	\$65.00	Лhr	8.00	hr	\$520.00
	Report					\$3,000.00
	Subtotal Expenses					\$8,787.61
Admin Fee (Expenses @15%)						\$1,318.14
TOTAL						\$19,418.76
	·····	7	Serv	\$7,	.250	

Serv	\$7,250
Rentals	51,454
GST	\$609
Ехφ	\$5,927
Analytical	\$2,860
Admin	\$1,318
T = t = 1	
Total	\$19,419

APPENDIX B

محطا

÷.....

.....

h- -

b-----

-

ы.

p......

b....

-

– –

Ŀ.

_

.....

-

Analytical Procedures and Certificates ALS Chemex Labs

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

1 1 1

CERTIFICATE

A0127382

(AN) - ARNEX RESOURCES LIMITED

Project: JAS P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 02-NOV-2001.

SA	MPLE	PREPARATION
METHOD CODE	NUMBER SAMPLES	DESCRIPTION
SCR-42 SCR-01 LOG-22 222 229	105 105 105	-180 micron screen - Save Minus Screen - Save Plus Charge Samples received without barcode Drying charge (0-3 Kg) ICP - AQ Digestion charge
NOTE 1:		

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Ba, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W. To: ARNEX RESOURCES LIMITED

1

]

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

A0127382

Comments: ATTN: ARNE BIRKELAND

METHOD CODE	NUMBER SAMPLES		METHOD	DETECTION LIMIT	UPPEI LIMIT
WEI-21		Weight of received sample	BALANCE	0.01	1000.0
Au-AA23		Au-AA23 : Au ppb: Fuse 30 grams	гл-лля	5	10000
Ag-ICP41		Ag ppm: 32 element, soil & rock	ICP-AES	0.2	100.0
A1-ICP41 As-ICP41		Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
B-ICP41		As ppm: 32 element, soil & rock B ppm: 32 element, rock & soil	icp-aes icp-aes	2 10	10000
Ba-ICP41		Ba pum: 32 element, soil & rock	ICP-AES	10	10000
Be-ICP41		Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
B1-ICP41	105	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
Ca-ICP41	105	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
Cd-ICP41		Cd ppm: 32 element, soil & rock	ICP-AES	0.5	500
Co-ICP41		Co ppm: 32 element, soil & rock	ICP-AES	1	10000
Cr-ICP41	1	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
Cu-ICP41 Fe-ICP41	1	Cu ppm: 32 element, soil & rock	ICP-AES	1	10000
Ga-ICP41		Fe %: 32 element, soil & rock Ga ppm: 32 element, soil & rock	icp-aes icp-aes	0.01	15.00
Hg-ICP41		Hg ppm: 32 element, soil & rock	ICP-AES	10 1	10000
X-ICP41		R %: 32 element, soil & rock	ICP-ARS	0.01	10.00
La-ICP41		La ppm: 32 element, soil & rock	ICP-AES	10	10000
Mg-ICP41		Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
Mn-ICP41		Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
Mo-ICP41		No ppm: 32 element, soil & rock	ICP-AES	1	10000
Na-ICP41	1	Na %: 32 element, soil & rock	ICP-AES	0.01	10.00
Ni-ICP41 P-ICP41		Ni ppm: 32 element, soil & rock	ICP-AES	1	10000
Pb-ICP41		P ppm: 32 element, soil & rock Pb ppm: 32 element, soil & rock	icp-aes icp-aes	10	10000
S-ICP41		S %: 32 element, rock & soil	ICP-AES	2 0.01	10000
Sb-ICP41		Sb ppm: 32 element, soil & rock	ICP-AES	2	10.00
Sc-ICP41		Sc ppm: 32 elements, soil & rock	ICP-AES	1	10000
Sr-ICP41		Sr ppm: 32 element, soil & rock	ICP-AES	i	10000
TI-ICP41		Ti %: 32 element, soil & rock	ICP-AES	0.01	10.00
T1-ICP41		Tl ppm: 32 element, soil & rock	ICP-AES	10	10000
U-ICP41		U ppm: 32 element, soil & rock	ICP-AES	10	10000
V-ICP41 W-ICP41		V ppm: 32 element, soil & rock	ICP-AES	1	10000
M=TC547	. 103	W ppm: 32 element, soil & rock	ICP-AES	10	1000

•

Chemex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ARNEX RESOURCES LIMITED

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

A0127382

Comments: ATTN: ARNE BIRKELAND

CERT	IFIÇA	TE A0127382				ROCEDURE	S 2 of 2	
N) - ARNEX I roject: JAS O, # :		CES LIMITED	METHOD CODE	NUMBER	DESCRIPTION	METHOD	DETECTION	upper Limit
amples submi		o our lab in Vancouver, BC. nted on 02-NOV-2001.	Zn-ICP41	105	Zn ppm: 32 element, soil & roc)	icp-aes	2	10000
SA	MPLE	PREPARATION						
METHOD CODE	NUMBER SAMPLES	DESCRIPTION						
SCR-42 SCR-01 LOG-22 222 229	105 105 105 105 105	-180 micron screen - Save Minus Screen - Save Plus Charge Samples received without barcode Drying charge (0-3 Kg) ICP - AQ Digestion charge						
NOTE_1:								
race metal: lements for igestion is	s in which possib	package is suitable for soil and rock samples. the nitric-aqua regia ly incomplete are: Al, K, La, Mg, Na, Sr, Ti,						

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ARNEX RESOURCES LIMITED

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

1

1

Page Number : 1-A Total Pages :3 Certificate Date: 02-NOV-2001 Invoice No. : 10127382 P.O. Number : Account : AN

Project : JAS Comments: ATTN: ARNE BIRKELAND

CERTIFICATE OF ANALYSIS A0127382

Invoice No. : 1012, P.O. Number : Account : AN

	··· []							· · · · ·												
SAMPLE	PREP		Au ppb Fa+aa	Ag ppm	Al %	λs ppm	B ppm	Ba ppm	Ве ррп	Bi ppm	С а %	Cd ppm	Co	Cr ppm	Cu ppm	Fe %	Ga pym	Hg ppm	К %	La рум
190401	94069407	0.34	< 5	< 0.2	2.86	6	< 10	60	< 0.5	< 2	0.08	< 0.5	5	16	43	6.21	10	< 1	0.04	< 10
190402	\$4069407	0.38	10	< 0.2	4.51	< 2	< 10		< 0.5	< 2	0.08	< 0.5	8	18	50	6.17	10	< 1	0.03	< 10
L90403	\$4069407	0.46	< 5	< 0.2	4.22	< 2	< 10	80	0.5	< 2	0.13	< 0.5	16	11	68	4.55	10	< 1	0.04	< 10
190404	94069407	0.46	5	< 0.2	2.83	- 4	< 10	60 -	< 0.5	< 2	0.14	< 0.5	9	11	48	4.52	< 10	< 1	0.03	< 10
190405	4069407	0.42	< 5	< 0.2	2.22	< 2	< 10	80	< 0.5	< 2	0.22	< 0.5	6	14	104	4.35	< 10	< 1	0.03	< 10
190406	94069407	0.48	< 5	< 0.2	6.39	6	< 10	40	0.5	< 2	0.15	< 0.5	9	16	113	5.59	< 10	< 1	0.02	< 10
190407	94069407	0.48	< 5	< 0.2	2.37	2	< 10	140	0.5	< 2	0.23	< 0.5	26	13	36	3.64	< 10	< 1	0.07	< 10
190408	94069407	0.44	< 5	< 0.2	2.70	< 2	< 10	80	0.5	< 2	0.14	< 0.5	19	11	40	4.70	10	< 1	0.03	< 10
190409	94069407	0.58	< 5	< 0.2	2.74	4	< 10		< 0.5	2	0.12	< 0.5	7	9	29	4.29	< 10	< 1	0.03	< 10
190410	94069407	0.52	< 5	< 0.2	4.75	6	< 10	40	< 0.5	4	0.14	< 0.5	7	14	58	5.51	10	< 1	0.04	< 10
190411	94069407	0.52		< 0.2	2.40	4	< 10		< 0.5	< 2	0.22	< 0.5	9	11	38	4.10	< 10	< 1	0.04	< 10
190412	94069407	0.50		0.2	3.53	< 2	< 10	-+-	< 0.5	< 2	0.11	< 0.5	5	13	43	5.63	10	< 1	0.02	< 10
190413	94069407	0.48		< 0.2	3.65	4	< 10		< 0.5	6	0.17	< 0.5	10	9	86	5.27	10	< 1	0.07	< 10
190414	94069407	0.46		< 0.2	4.74	2	< 10		< 0.5	< 2	0.15	< 0.5	6	12	56	6.09	10	< 1	0.05	< 10
190415	94069407	0.50	< 5	< 0.2	3.57	< 2	< 10	30	< 0.5	< 2	0.14	< 0.5	8	12	38	4.51	10	< 1	0.03	< 10
190416	94069407	0.46	< 5	< 0.2	1.46	2	< 10	40	< 0.5	< 2	0.10	< 0.5	3	8	20	3.71	< 10	< 1	0.01	< 10
190417	\$406\$407	0.44	5	< 0.2	1.57	< 2	< 10	50	< 0.5	< 2	0.18	< 0.5	3	8	20	3.35	< 10	< 1	0.03	< 10
190418	\$406\$407	0.52	< 5	< 0.2	5.74	6	< 10	60	0.5	< 2	0.12	< 0.5	17	15	99	4.97	10	< 1	0.05	< 10
190419	94069407	0.50	< 5	< 0.2	3.92	4	< 10	50	0.5	< 2	0.14	< 0.5	15	12	55	4.33	< 10	< 1	0.03	< 10
190420	94069407	0.44	< 5	< 0.2	2.90	6	< 10	50	< 0.5	< 2	0.12	< 0.5	9	12	31	4.78	< 10	1	0.03	< 10
190421	94069407	0.44	-	< 0.2	4.63	2	< 10		< 0.5	< 2	0.10	< 0.5	10	13	66	4.63	< 10	< 1	0.04	< 10
190422	94069407	0.42	•	< 0.2	5.88	2	< 10	60	0.5	< 2	0.09	< 0.5	12	13	99	5.61	10	< 1	0.06	< 10
190423	94069407	0.52	•	< 0.2	3.12	4	< 10		< 0.5	< 2	0.36	< 0.5	12	9	79	3.96	< 10	< 1	0.06	< 10
190424	94069407	0.62	-	< 0.2	3.53	< 2	< 10		< 0.5	4	0.11	< 0.5	8	8	30	4.87	10	< 1	0.04	< 10
190425	94069407	0.52	< 5	< 0.2	5.04	2	< 10	50	< 0.5	< 2	0.11	< 0.5	19	7	31	4.42	< 10	< 1	0.03	< 10
190426	94069407	0.60		< 0.2	3.23	6	< 10		< 0.5	2	0.12	< 0.5	11	7	26	4.85	10	1	0.03	< 10
190427	P4069407	0.60		< 0.2	2.58	< 2	< 10		< 0.5	< 2	0.20	< 0.5	7	5	13	4.19	10	1	0.03	< 10
190428	94069407	0.48		0.2	4.76	2	< 10		< 0.5	< 2	0.24	< 0.5	18	8	33	4.88	10	1	0.03	< 10
190429 190430	94069407	0.52		< 0.2	5.78	2	< 10	60	0.5	< 2	0.34	< 0.5	18	12	53	5.16	10	< 1	0.04	< 10
190430	94069407	0.46	5	< 0.2	5.07	8	< 10	60	< 0.5	< 2	0.78	< 0.5	28	19	102	5.97	10	< 1	0.07	< 10
190431	94069407	0.42		< 0.2	3.16	6	< 10	50	< 0.5	< 2	0.16	< 0.5	. 9	15	49	5.64	10	< 1	0.04	< 10
190432	94069407	0.56		< 0.2	2.75	6	< 10		< 0.5	< 2	0.22	< 0.5	10	é	20	4.54	10	< 1	0.04	< 10
190433	94069407	0.60		< 0.2	4.26	2	< 10		< 0.5	< 2	0.15	< 0.5	11	11	39	5.53	10	< 1	0.03	< 10
190434	94069407	0.46		< 0.2	2.45	2	< 10		< 0.5	2	0.14	< 0.5	8	7	19	4.75	10	< 1	0.03	< 10
190435	94069407	0.36	i < 5	< 0.2	2.09	4	< 10	40	< 0.5	< 2	0.12	< 0.5	5	6	16	4.49	< 10	< 1	0.03	< 10
190436	94069407	0.38		0.2	2.97	2	< 10		< 0.5	< 2	0.13	< 0.5	7	8	28	4.30	< 10	< 1	0.02	< 10
190437	94069407	0.62			3.85	6	< 10		< 0.5	< 2	0.29	< 0.5	16	10	45	5.16	10	< 1	0.05	< 10
190438	94069407	0.52		< 0.2	2.85	< 2	< 10		< 0.5	< 2	0.20	< 0.5	8	10	37	4.81	10	< 1	0.04	< 10
190439	P4069407	0.58		< 0.2	3.73	< 2	< 10		< 0.5	< 2	0.09	< 0.5	5	9	38	5.65	10	< 1	0.02	< 10
190440	P4069407	0.58	1 10	< 0.2	4.88	8	< 10	50	< 0.5	< 2	0.08	< 0.5	11	10	54	4.89	10	< 1	0.03	< 10
				•						-										

CERTIFICATION:

مراجع معسر من مسلم من من من مرجع مسلم مسلم من من

190433

190434

190435

190436

190437

190438

190439

190440

94069407

4069407

94069407

4069407

4069407

4069407

64069407

4069407

0.49

0.34

0.34

0.45

0.72

0.33

0.30

0.60

965

960

720

660

1635

905

395

685

1 < 0.01

1 < 0.01

1 < 0.01

1 < 0.01

1 < 0.01

1 < 0.01

3 < 0.01

< 1 < 0.01

5

2

3

3

5

4

3

5

1140

1020

690

890

1140

1320

750

980

< 2

6

2

8

4

6

2

62

0.04

0.04

0.04

0.04

0.04

0.04

0.03

0.04

10

4

ß

2

10

8

12

< 2

5

4

4

5

7

4

6

9

14

18

17

13

17

15

8

8

0.11

0.10

0.13

0.11

0.16

0.06

0.09

0.11

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

[

.S Chemex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assavers 212 Brooksbank Ave., North Vancouver

British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ARNEX RESOURCES LIMITED

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

Page Number :1-B Total Pages :3 Certificate Date: 02-NOV-2001 Invoice No. :10127382 P.O. Number Account : AN

A0127382

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

127

115

116

106

127

109

162

120

52

104

48

38

60

82

50

64

154

Project : JAS ATTN: ARNE BIRKELAND Comments:

CERTIFICATE OF ANALYSIS

PREP Mg Ni Mn Mo Na P Pb S SЪ Sc Sr Ti **T**1 υ v W $\mathbf{Z}\mathbf{n}$ SAMPLE Ŷ. CODE ۹. ppm ppm ppm שכע DDM. * <u>ppm</u> DDM))))) * ppm **PP** ppm ppm ppm 190401 4069407 0.40 345 1 < 0.01 5 850 20 0.03 6 12 4 0.13 < 10 < 10 151 < 10 66 190402 94069407 0.69 480 3 < 0.01 7 860 18 0.04 6 6 11 0.11 < 10 < 10 144 < 10 108 190403 **\$406\$407** 0.64 1220 4 < 0.01 5 870 46 0.05 10 5 14 0.08 < 10 < 10 80 < 10 160 190404 94069407 0.57 1065 2 < 0.014 610 10 0.03 2 4 14 0.08 < 10 < 10 97 < 10 94 94069407 190405 0.35 610 1 < 0.015 590 8 0.04 2 3 22 0.11 < 10 < 10 98 < 10 66 190406 84069407 0.65 760 4 < 0.01 4 1480 2 0.05 14 7 14 0.09 < 10 < 10 93 < 10 110 64069407 190407 0.69 2710 1 0.01 9 900 24 0.05 6 4 15 0.09 < 10 < 10 80 < 10 98 190408 **\$406\$407** 0.51 1105 3 < 0.014 570 14 0.03 2 4 14 0.07 < 10 < 10 111 < 10 88 190409 94069407 0.25 365 < 1 < 0.01 3 650 4 0.02 6 4 12 0.05 < 10 < 10 119 < 10 60 190410 94069407 0.61 645 2 < 0.01 5 1020 0.04 6 6 5 13 0.06 < 10 < 10 111 < 10 106 190411 4069407 0.69 860 1 < 0.01 780 4 0.03 6 4 20 . 0.05 < 10 < 10 86 < 10 72 190412 4069407 0.37 365 1 < 0.01 3 680 6 0.02 8 6 15 0.07 < 10 < 10 153 < 10 82 190413 84069407 0.88 1075 2 0.01 5 1010 12 0.06 6 8 16 0.13 < 10 < 10 106 < 10 110 190414 **64069407** 0.71 800 2 < 0.01 5 1240 6 0.04 14 6 16 0.08 < 10 < 10 108 < 10 90 190415 94069407 0.59 600 1 < 0.01 720 4 14 0.03 8 5 17 0.07 < 10 < 10 96 < 10 98 190416 64069407 0.23 210 1 < 0.012 390 6 0.03 < 2 3 10 0.05 < 10 < 10 117 < 10 38 190417 94069407 0.34 285 < 1 < 0.01 2 440 8 0.03 2 3 14 0.07 < 10 < 10 96 < 10 46 190418 **\$406\$407** 0.72 1145 5 < 0.01 6 1330 38 0.05 10 7 12 0.07 < 10 < 10 93 < 10 262 190419 94069407 0.44 875 4 < 0.01 810 32 5 0.04 4 5 13 0.07 < 10 < 10 93 < 10 142 190420 94069407 0.41 1220 3 < 0.013 660 6 0.03 4 5 14 0.07 < 10 < 10 126 < 10 80 190421 94069407 0.46 820 4 < 0.01 1130 4 8 0.04 10 6 9 0.06 < 10 < 10 108 < 10 116 190422 **\$4**06**\$40**7 0.50 1080 5 < 0.011090 18 0.04 18 9 12 0.02 < 10 < 10 123 < 10 162 190423 **\$406\$407** 0.71 1045 3 < 0.015 1210 16 0.05 4 5 20 0.12 < 10 < 10 81 < 10 96 190424 94069407 0.49 460 1 < 0.01 4 1560 4 0.03 5 2 15 0.12 < 10 < 10 112 < 10 60 190425 94069407 0.26 1040 1 < 0.01 4 1550 6 0.06 10 7 12 0.10 < 10 < 10 75 < 10 88 190426 64069407 1260 0.35 2 < 0.01 2 1120 6 0.03 < 2 5 15 0.12 < 10 < 10 112 < 10 64 190427 730 64069407 0.51 1 < 0.01 630 1 < 2 0.03 2 4 19 0.15 < 10 < 10 96 < 10 46 190428 **84069407** 0.44 2410 1 < 0.01 4 1180 < 2 0.06 8 16 6 0.15 < 10 < 10 111 < 10 84 190429 94069407 0.99 860 1 < 0.01 8 1390 < 2 0.04 12 12 24 0.22 < 10 < 10 115 < 10 124 190430 94069407 1.45 1520 3 < 0.01 12 1270 32 0.06 10 12 39 0.19 < 10 < 10 128 < 10 156 190431 84069407 0.63 810 1 < 0.01 6 1130 8 0.03 6 6 15 0.10 < 10 < 10 141 < 10 76 190432 4069407 0.59 710 1 < 0.01 690 2 0.03 < 2 5 33 0.15 < 10 < 10 117

CERTIFICATION:

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ARNEX RESOURCES LIMITED

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1 Page Number :2-A Total Pages :3 Certificate Date: 02-NOV-2001 Invoice No. : 10127382 P.O. Number : Account : AN

1

Project : JAS Comments: ATTN: ARNE BIRKELAND

CERTIFICATE OF ANALYSIS A0127382

	PREP	Weight	Au ppb	λg	A1	λs	В	Ba	Be	Bi	Ca	Cd	Co	Cr	Сц	Fe	Ga	Hg	K	La
SAMPLE	CODE	Kg	ГА+АА	ppm	*	ppm	ppm	Dim			*	<u>ppm</u>	ppm	ppm	ppm	*	ppm	ppm	*	<u>prm</u>
190441	94069407	0.68	< 5	< 0.2	6.19	< 2	< 10	30	< 0.5	< 2	0.06	< 0.5	13	26	58	6.15	10	< 1	0.02	< 10
190442	94069407	0.60	< 5	0.2	4.72	6	< 10	50	< 0.5	6	0.18	< 0.5	30	17	58	4.68	10	< 1	0.04	< 10
190443	94069407	0.82	< 5	< 0.2	4.10	2	< 10	60	< 0.5	< 2	0.18	< 0.5	18	14	43	5.09	10	< 1	0.05	< 10
190444	94069407	0.80	< 5	< 0.2	4.51	< 2	< 10	80	0.5	< 2	0.11	< 0.5	13	12	52	4.78	10	< 1	0.03	< 10
190445	94069407	0.72	< 5	< 0.2	3.17	2	< 10	60	< 0.5	< 2	0.18	< 0.5	13	12	32	5.41	10	< 1	0.04	< 10
190446	94059407	0.78	15	< 0.2	3.45	10	< 10	120	0.5	< 2	0.17	< 0.5	15	9	65	4.30	10	< 1	0.07	< 10
190447	• •••••••••••••••••••••••••••••••••••	0.72	< 10	< 0.2	0.96	2	< 10	100	< 0.5	< 2	0.39	< 0.5	3	4	19	1.93	< 10	< 1	0.04	< 10
190448	\$406\$407	0.94	< 5	< 0.2	3.23	6	< 10	50	< 0.5	< 2	0.07	< 0.5	4	8	21	4.31	< 10	< 1	0.05	< 10
190449	\$406\$407	0.82	< 5	< 0.2	2.44	2	< 10	70	< 0.5	< 2	0.12	< 0.5	5	9	19	3.78	< 10	< 1	0.04	< 10
190450	94069407	1.02	< 5	< 0.2	4.69	8	< 10	70	0.5	< 2	0.12	< 0.5	9	10	117	4.93	10	< 1	0.04	< 10
190451	94069407	0.98	< 5	< 0.2	2.25	2	< 10	120	< 0.5	< 2	0.24	< 0.5	9	6	79	3.79	< 10	< 1	0.08	< 10
190452	\$406\$407		10	< 0.2	3.66	6	< 10	50	< 0.5	< 2	0.07	< 0.5	9	10	32	5.23	10	< 1	0.04	< 10
190453	\$406\$407	0.98	10	< 0.2	1.60	6	< 10	80	< 0.5	< 2	0.11	< 0.5	5	5	25	2.29	< 10	< 1	0.08	< 10
190454	\$406\$407	0.84	20	< 0.2	6.02	6	< 10	130	0.5	< 2	0.09	< 0.5	18	13	247	5.43	< 10	< 1	0.09	< 10
210401	94069407	0.88	5	< 0.2	3.34	6	< 10	70	< 0.5	< 2	0.15	< 0.5	14	12	57	4.74	10	< 1	0.04	< 10
210402	94069407	0.92	< 5	< 0.2	3.53	10	< 10	80	< 0.5	< 2	0.32	< 0.5	20	13	86	5.87	10	< 1	0.09	< 10
210403	94069407	1.40	< 5	< 0.2	3.78	< 2	< 10	70	< 0.5	< 2	0.18	< 0.5	8	10	48	5.39	< 10	< 1	0.05	< 10
210404	94069407	0.90	< 5	< 0.2	3.19	6	< 10	70	< 0.5	- 4	0.15	< 0.5	8	10	45	6.17	10	< 1	0.04	< 10
210405	94069407	0.98	5	< 0.2	4.82	6	< 10	60	< 0.5	< 2	0.08	< 0.5	11	12	66	7.37	10	< 1	0.07	< 10
210406	\$4069407	0.82	< 5	< 0.2	2.45	4	< 10	40	< 0.5	< 2	0.13	< 0.5	5	9	30	4.32	< 10	< 1	0.05	< 10
210407	94069407				3.87	6	< 10	120	< 0.5	2	0.55		18	6	125	4.75	< 10	< 1	0.07	< 10
210408	94069407				4.76	2	< 10	80	0.5	< 2	0.14	< 0.5	32	9	95	5.14	10	< 1	0.05	< 10
210409	94059407				2.93	< 2	< 10	50	< 0.5	6	0.23		7	7	30	3.99	10	< 1	0.05	< 10
210410	P406P407				3.09	4	< 10	50	< 0.5	< 2	0.29		13	8	34	4.49	10	< 1	0.07	< 10
210411	P406P407	1.12	15	< 0.2	1.23	< 2	< 10	50	< 0.5	2	0.27	< 0.5	4	6	16	2.27	< 10	< 1	0.05	< 10
210412	94069407				3.64	< 2	< 10	70	< 0.5	< 2	0.21		11	5	34	4.64	1.0	< 1	0.04	< 10
210413	94069407				3.43	2	< 10	70	< 0.5	4	0.16		6	. 8	28	4.75	10	< 1	0.04	< 10
210414	94069407				3.89	2	< 10	40	< 0.5	< 2	0.12		10	10	36	4.88	< 10	< 1	0.04	< 10
210415	94069407				6.61	6	< 10	50	< 0.5	< 2	0.10		10	20	74	5.76	10	< 1	0.05	< 10
210416	94069407	0.94	L < 5	0.2	4.69	2	< 10	60	< 0.5		0.13	< 0.5	11	12	59	5.68	10	< 1	0.04	< 10
210417	94069407	0.92	2 10	< 0.2	2.75	< 2	< 10	50	< 0.5	<. 2	0.10	< 0.5	8	8	25	3.89	< 10	< 1	0.03	< 10
210418	\$406\$40 7				2.29	< 2	< 10	130	< 0.5	< 2	0.37	< 0.5	22	7	28	4.00	10	< 1	0.06	< 10
210419	\$40694 07				4.30	2	< 10	40	< 0.5	< 2	0.12	< 0.5	8	10	34	4.55	< 10	< 1	0.04	< 10
210420	\$406940 7				4.06	< 2	< 10	80	< 0.5	< 2	0.14	< 0.5	8	10	31	5.07	10	< 1	0.09	< 10
210421	94069407	7 1.04	L 20	< 0.2	5.56	12	< 10	100	0.5	< 2	0.13	< 0.5	18	11	132	5.21	10	< 1	0.07	< 10
210422	9406940				4.17	6	< 10	200	0.5	< 2	0.23		22	11	122	5.69	10	< 1	0.12	10
210423	94069407				5.35	4	< 10	170	1.5	< 2	0.18		33	11	107	5.39	10	< 1	0.07	10
210424	\$406\$40				5.94	8	< 10	160	1.0	< 2	0.11		14	12	111	5.50	10	< 1	0.13	10
210425	9406940				3.46	18	< 10	140	0.5	< 2	0.35		19	12	88	4.93	< 10	< 1	0.10	< 10
210426	94069401	7 1.5	2 10	< 0.2	2.24	12	< 10	190	0.5	< 2	0.34	0.5	13	8	51	3.28	< 10	< 1	0.13	< 10

منعقة ويستعمن يحسر

+

To: ARNEX RESOURCES LIMITED

1 - []

> 2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

Page Number :2-B Total Pages :3 Certificate Date: 02-NOV-2001 Invoice No. :10127382 P.O. Number ż Account : AN

1

.

Chemex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

- · ·]

ſ

ſ 1

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Project : JAS Comments: ATTN: ARNE BIRKELAND

CERTIFICATE OF ANALYSIS A0127382

[]]

	1																		
	PREP	Mg	Mn	Mo	Na	Ni	P	Pb	S	Sb	Sc	Sr	Ti	Tl	υ	v	W	Zn	
SAMPLE	CODE	*	ppm	ppm	*	ppm	ppn	ppm	*	ppm.	ppm	ppm	*	ppm.	ppm	mada	ppm	ppm	
90441	94069407	0.64	490	1 <	0.01	10	1170	10	0.06	6	10	7	0.15	< 10	< 10	157	< 10	122	
90442	94069407	0.72	1700	2 <	0.01	10	1620	6	0.05	12	7	12	0.17	< 10	< 10	127	< 10	128	
90443	94069407	0.76	2090	3 <	0.01	7	830	< 2	0.05	4	6	18	0.12	< 10	< 10	124	< 10	128	
90444	94069407	0.52	1080	1 <	0.01	6	1050	< 2	0.05	10	7	14	0.11	< 10	< 10	109	< 10	104	
0445	4069407	0.93	950	1 <	0.01	6	600	8	0.03	2	6	18	0.13	< 10	< 10	160	< 10	80	
90446	94069407	0.84	960	5 <	0.01	5	840	20	0.03	8	6	13	0.05	< 10	< 10	90	< 10	112	
90447	\$406\$407	C.26	125	1 <	0.01	2	710	6	0.10	< 2	1	21	0.03	< 10	< 10	44	< 10	34	
90448	94069407	0.41	225		0.01	3	650	8	0.04	6	4	9	0.02	< 10	< 10	96	< 10	50	
90449	P4069407	0.35	245		0.01	3	430	6	0.02	< 2	4	11	0.03	< 10	< 10	114	< 10	28	
90450	94069407	0.52	475	3 <	0.01	5	650	14	0.03	8	7	15	0.03	< 10	< 10	108	< 10	104	
0451	94069407	0.29	525	4	0.01	2	840	18	0.05	< 2	3	15	0.03	< 10	< 10	68	< 10	58	
0452	94069407	0.57	355		0.01	4	540	10	0.03	6	6	9	0.03	< 10	< 10	127	< 10	70	
90453	94069407	0.27	210		0.01	1	480	8	0.04	2	2	9	0.01	< 10	< 10	50	< 10	52	
90454	94069407	1.08	620		0.01	11	880	36	0.04	12	10	15	0.02	< 10	< 10	95	< 10	310	
10401	94069407	0.84	1135	1 <	0.01	7	710	8	0.03	2	6	14	0.16	< 10	< 10	117	< 10	146	
L0402	94069407	1.54	1685		0.01	8	1270	20	0.03	2	12	24	0.24	< 10	< 10	115	< 10	122	
L0403	94069407	0.53	885	< 1 <		4	950	10	0.04	8	6	16	0.14	< 10	< 10	135	< 10	120	
10404	94069407	0.51	610		0.01	4	1140	12	0.04	6	6	15	0.16	< 10	< 10	149	< 10	64	
10405	94069407	1.01	820		0.01	5	1750	6	0.03	B	12	11	0.18	< 10	< 10	126	< 10	98	
10406	94069407	0.35	560	< 1 <	0.01	3	970	8	0.04	6	4	12	0.09	< 10	< 10	96	< 10	52	
10407	94069407	1.03	1225		0.01	4	1080	138	0.08	8	8	29	0.13	< 10	< 10	72	< 10	178	
10408	94069407	0.72	2730		0.01	6	1230	16	0.05	6	é	13	0.10	< 10	< 10	99	< 10	198	
10409	94069407	0.33	900		0.01		1240	12	0.04	< 2	<u>4</u>	16	0.07	< 10	< 10	98	< 10	54	
10410	94069407	0.41	1075		0.01	3	1140	4	0.03	6	5	20	0.06	< 10	< 10	105	< 10	38	
10411	94069407	0.17	1025	1 <	: 0.01	1	660	10	0.05	< 2	2	15	0.07	< 10	< 10	83	< 10	22	
10412	94069407	0.44	675		0.01	4	670	4	0.04	2	6	22	0.17	< 10	< 10	118	< 10	70	
10413	94069407	0.29	585	2	0.01	3	730	6	0.03	6	5	20	0.10	< 10	< 10	118	< 10	52	
10414	94069407	0.44	580	_	0.01	5	970	6	0.05	6	7	15	0.13	< 10	< 10	117	< 10	58	
10415	94069407 94069407	0.99 0.71	660 635	2	0.01	9 6	1420 900	14	0.07	16 6	16 9	14	0.18	< 10	< 10	130	< 10	120	
10416		U./1	666 		: 0.01	o	300	8	0.04	Ō		13	0.15	< 10	< 10	123	< 10	102	
10417	\$406\$407	0.22	290	1 <	0.01	3	710	6	0.03	6	4	13	0.10	< 10	< 10	118	< 10	38	
10418	94069407	0.45	2770	1	0.01	6	1240	14	0.08	6	3	23	0.10	< 10	< 10	76	< 10	60	
10419	94069407	0.37	710		c 0.01	- 4	1040	4	0.04	10	7	16	0.13	< 10	< 10	101	< 10	68	
10420	94069407	0.36	920	2	0.02	4	1580	< 2	0.01	6	9	18	0.23	< 10	< 10	130	< 10	72	
10421	94069407	0.82	1165	5 <	< 0.01	7	1130	14	0.03	12	9	12	0.05	< 10	< 10	102	< 10	132	
10422	94059407	1.11	1110	-	< 0.01	9	1030	16	0.11	6	11	22	0.08	< 10	< 10	112	< 10	106	
10423	P406P407	0.81	2030	-	< 0.01	8	1100	10	0.04	8	11	15	0.07	< 10	< 10	103	< 10	138	
10424	94069407	0.90	585	-	< 0.01	8	1120	12	0.03	12	11	10	0.03	< 10	< 10	110	< 10	150	
10425	94069407	1.22	1090		< 0.01	8	1200	24	0.02	6	9	20	0.11	< 10	< 10	98	< 10	98	
10426	94069407	0.94	1030	< 1 •	< 0.01	6	780	20	0.06	6	5	17	0.05	< 10	< 10	57	< 10	134	

CERTIFICATION:

K. e.

1

emex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

[]

Г

To: ARNEX RESOURCES LIMITED

2069 WESTVIEW DR, NORTH VANCOUVER, BC V7M 3B1

Project : JAS Comments: ATTN: ARNE BIRKELAND

Page Number :3-A Total Pages :3 Certificate Date: 02-NOV-2001 Invoice No. : 10127382 P.O. Number : Account : AN

1

1

SAMPLE	PREP													NAL)			40127			
	CODE	Weight Kg	ац ррb Fλ+λλ	λg ppm	۲۲ *	λs ppm	B ppm	Ba ppm	Be ppm	Bi ppn	Ca %	Cđ ppm	Co	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	К %	La ppm
.0427	94069407	1.16	10	< 0.2	4.31	2	< 10	100	0.5	< 2	0.20	< 0.5	12	7	75	4.41	< 10	< 1	0.07	< 10
.0428	4069407	0.96	< 5	< 0.2	2.88	6	< 10	80	< 0.5	< 2	0.15	< 0.5	9	10	34	4.00	< 10	< 1	0.06	< 10
.0429	94069407	0.98	< 5	< 0.2	4.55	6	< 10	110	< 0.5	< 2	0.10	< 0.5	12	11	149	4.84	10	< 1	0.06	< 10
.0430 .0431	94069407 94069407	0.86	5 < 5	0.2 < 0.2	5.19 5.19	26	< 10 < 10	110 60	0.5	< 2 < 2	0.11 0.14	< 0.5 < 0.5	14 13	12 10	88 116	5.18 5.12	10 10	< 1 < 1	0.06 0.08	< 10 < 10
0432	94069407	1.00	< 5	< 0.2														_		
.0433	94069407	1.40	15	< 0.2	2.45	8 10	< 10 < 10	80 100	< 0.5	< 2	0.12	< 0.5	7	6	26	3.17	< 10	< 1	0.05	< 10
0434	94069407	0.90	5	0.4	6.20	8	< 10	50	0.5 0.5	< 2 < 2	0.16 0.09	< 0.5 < 0.5	19 9	11 16	137 54	5.06	10	< 1	0.10	< 10
0435	94069407	0.88	< 5	< 0.2	4.36	< 2	< 10	100	0.5	< 2	0.09	< 0.5	12	10	74	6.35 4.63	< 10 < 10	< 1	0.05	< 10
L0436	94069407	1.06	5	< 0.2	4.19	6	< 10	120	0.5	< 2	0.05	< 0.5	10	10	41	4.36	10	< 1 < 1	0.05 0.05	< 10 < 10
10437	94069407	0.76	< 5	< 0.2	3.71	6	< 10	240	1.0	< 2	0.19	< 0.5	14	9	41	3.62	10	< 1	0.10	10
L0438	94069407	0.94	< 10	< 0.2	2.64	< 2	< 10	320	0.5	2	0.38	< 0.5	10	6	33	2.69	< 10	$\overline{\langle 1}$	0.08	< 10
L0439	94069407	0.76	15	< 0.2	1.44	2	< 10	430	0.5	< 2	1.06	2.0	6	ž	25	1.49	< 10	< î	0.06	20
L0440	94069407	1.94	< 5	0.4	2.48	6	< 10	160	1.0	2	0.49	< 0.5	42	7	77	5.21	< 10	< 1	0.23	10
L0441	94069407	1.06	< 5	< 0.2	3.52	6	< 10	90	< 0.5	< 2	0.18	< 0.5	18	9	130	4.40	< 10	< 1	0.06	< 10
L0442	94069407	1.34	10	< 0.2	5.02	10	< 10	60	< 0.5	< 2	0.10	< 0.5	14	14	144	5.20	10	< 1	0.05	< 10
L0443	94069407	0.92	15	< 0.2	2.24	14	< 10	60	< 0.5	< 2	0.13	< 0.5	9	9	33	3.87	10	< 1	0.06	< 10
L0444	94069407	1.18	< 5	< 0.2	3.17	10	< 10	100	< 0.5	< 2	0.34	< 0.5	18	8	123	5.04	< 10	< 1	0.11	< 10
L0445 L0446	94069407 94069407	1.34 0.80	10 5	0.6 1.4	1.68 1.03	8 8	< 10 < 10	120 70	0.5 < 0.5	< 2 < 2	0.25 0.40	< 0.5 < 0.5	11 3	12 3	53 112	3.15 2.59	< 10 < 10	< 1 < 1	0.11 0.06	< 10 < 10
L0447	94069407	1.40	100	6.4	2.22	70	< 10	80	0.5	< 2	0.03	< 0.5	7	4	765	13.00	10			
10448	94069407	0.62		1.0	1.15	10	< 10	20	< 0.5	< 2	0.05	< 0.5	4		1730	4.15	< 10	< 1 < 1	0.89 0.06	< 10 < 10
10449	94069407	0.92		1.4	4.18	14	< 10	140	< 0.5	< 2	0.09	< 0.5	17	11	1425	7.49	10	< 1	0.05	< 10
10450	94069407	0.68	25	0.6	4.47	8	< 10	110	0.5	< 2	0.15	0.5	29	-6	1160	6.31	10	< 1	0.07	10
10451	4069407	1.24	115	0.8	4.57	8	< 10	100	1.0	< 2	0.21	2.0	87	6	1080	6.58	10	< 1	0.10	10

CERTIFICATION:

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ARNEX RESOURCES LIMITED

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

Page Number :3-B Total Pages :3 Certificate Date: 02-NOV-2001 Invoice No. : I0127382 P.O. Number : Account : AN

Project : JAS Comments: ATTN: ARNE BIRKELAND

=										CE	RTIFIC	CATE	OF A	NAL	rsis	/	0127	382	
SAMPLE	PREP CODE	Mg %	Mn ppm	Mo ppm	Na %	Ni ppn	P ppm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U DDm	v	W	Zn ppm	
10427	94069407	0.49	1020		0.01	4	1070	6	0.04	12	7	22	0.05	< 10	< 10	98	< 10	76	
10428	94069407	0.52	670		: 0.01	4	950	8	0.04	2	4	12	0.04	< 10	< 10	95	< 10	64	
.0429 .0430	94069407 94069407	0.71	720	< 1	0.01	5	1200	6	0.03	8	7	12	0.04	< 10	< 10	103	< 10	88	
.0431	94069407	0.89 0.91	815 980		: 0.01 : 0.01	9 6	860 1320	2 < 2	0.03 0.02	12 10	8 8	13 15 <	0.04	< 10 < 10	< 10 < 10	111 110	< 10 < 10	106 112	
0432	94069407	0.44	435	1 <	0.01	3	610	6	0.03	2	4	13	0.01	< 10	< 10	71	< 10	40	
0433	P4069407	1.13	1000		0.01	9	1260	8	0.02	16	9	15	0.01	< 10	< 10	103	< 10	132	
0434	94069407	0.49	460		0.01	6	1130	6	0.05	14	8	9	0.05	< 10	< 10	127	< 10	96	
.0435	94069407	0.75	575		0.01	7	840	6	0.04	14	6	10	0.05	< 10	< 10	99	< 10	88	
.0436	94069407	0.61	735	3 <	« 0.01	4	700	20	0.03	- 6	6	9	0.01	< 10	< 10	91	< 10	150	
.0437	94069407	0.68	2920		0.01	7	880	38	0.04	10	5	15	0.01	< 10	< 10	68	< 10	188	
.0438	94069407	0.53	1795		0.01	4	560	28	0.03	6	4	20	0.01	< 10	< 10	60	< 10	102	
.0439 .0440	94069407 94069407	0.36	2660	3	0.01	3	1090	14	0.10	4	1	40	0.01	10	< 10	29	< 10	58	
0441	94069407	1.50 0.84	1665 840		< 0.01 < 0.01	13 6	1480 1070	10 14	0.31 0.05	6 10	8 6	15 16	0.04 0.07	< 10 < 10	< 10 < 10	35 87	< 10 < 10	90 80	
0442	94069407	0.98	575	3 4	0.01	9	750	18	0.05	12	9	13	0.12	< 10	< 10	104	4 10		•
0443	94069407	0.82	425		< 0.01	5	510	6	0.03	< 2	5	12	0.07	< 10	< 10	85	< 10 < 10	120 56	
0444	\$406\$407	1.12	1125	3 -	< 0.01	6	1140	16	0.06	4	8	22	0.11	< 10	< 10	88	< 10	84	
.0445	94069407	0.93	870		¢ 0.01	9	680	18	0.07	6	4	15	0.05	< 10	< 10	53	< 10	98	
.0446	94069407	0.22	1295	6 <	c 0.01	1	890	158	0.07	< 2	1	24	0.04	< 10	< 10	51	< 10	62	
L0447	94069407	1.37	1220	73	0.02	1	850	230	2.64	8	5	10	0.04	< 10	< 10	83	< 10	146	
LO448 LO449	94069407 94069407	0.35	470		< 0.01	1	910	246	0.27	< 2	3	7	0.05	< 10	< 10	55	< 10	110	
10450	94069407	0.51 0.63	1260 2810		< 0.01 < 0.01	3	1090 1440	254 908	0.25	8	8	11	0.04	< 10	< 10	133	< 10	264	
L0451	94069407	0.81	5180		< 0.01	7	1530	2080	0.08 0.06	8 6	8 10	12 15	0.05 0.08	< 10 10	< 10 < 10	107 85	< 10 < 10	578 932	

the second s

r

CERTIFICATION:_

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

CERTIFICATE

A0127383

(AN) - ARNEX RESOURCES LIMITED

Project: JAS P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 31-OCT-2001.

S		PREPARATION
METHO		DESCRIPTION
PUL-3 STO-2 LOG-2 CRU-3 SPL-2 22	1 3 2 3 1 3 1 3	Pulv. <250g to >85%/-75 micron Reject Storage-First 90 Days Samples received without bercode Crush to 70% minus 2mm Splitting Charge ICP - AQ Digestion charge

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Ba, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W. To: ARNEX RESOURCES LIMITED

·· 1

1

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

A0127383

Comments: ATTN: ARNE BIRKELAND

METHOD CODE	NUMBER	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
WEI-21	3	Weight of received sample	BALANCE	0.01	1000.0
Au-AA23	3	Au-AA23 : Au ppb: Fuse 30 grams	FX-XXS	5	10000
Ag-ICP41	3	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	100.0
AI-ICP41		Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
λs-ICP41	3	As ppm: 32 element, soil & rock	ICP-AES	2	10000
B-ICP41	3	B ppm: 32 element, rock & soil	ICP-AES	10	10000
Ba-ICP41	3	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
Be-ICP41		Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
Bi-ICP41		Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
Ca-ICP41		Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
CA-ICP41		Cd ppm: 32 element, soil & rock	ICP-AES	0.5	500
Co-ICP41 Cr-ICP41		Co ppm: 32 element, soil & rock	ICP-ARS	1	10000
Cu-ICP41		Cr ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock	ICP-AES	1	10000
Ja-ICP41	3	Fe %: 32 element, soil & rock	icp-aes icp-aes	1 0.01	10000 15.00
Ga-ICP41	-	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
Hg-ICP41	1	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
K-ICP41		K %: 32 element, soil & rock	ICP-AES	0.01	10.00
La-ICP41	3	La ppm: 32 element, soil & rock	ICP-AES	10	10000
Ng-ICP41	3	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
Mn-ICP41		Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
Mo-ICP41		Mo ppm: 32 element, soil & rock	ICP-AES	1	10000
Na-ICP41		Na %: 32 element, soil & rock	ICP-AES	0.01	10.00
Ni-ICP41		Ni ppm: 32 element, soil & rock	ICP-AES	1	10000
P-ICP41		P ppm: 32 element, soil & rock	ICP-AES	10	10000
Pb-ICP41		Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
S-ICP41 Sb-ICP41		S %: 32 element, rock & soil	ICP-AES	0.01	10.00
Sc-ICP41		Sb ppm: 32 element, soil & rock Sc ppm: 32 elements, soil & rock	ICP-AES	2	10000
ST-ICP41		Sr ppm: 32 elements, soil & rock	ICP-AES ICP-AES	1	10000
TI-ICP41	_	Ti %: 32 element, soil & rock	ICP-AES	0.01	10000
T1-ICP41	-	T1 ppm: 32 element, soil & rock	ICP-AES	10	10000
U-ICP41		U ppm: 32 element, soil & rock	ICP-NES	10	10000
V-ICP41	3	V ppm: 32 element, soil & rock	ICP-AES	1	10000
V-ICP41	. 3				

(ALS)

Γ

Chemex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ARNEX RESOURCES LIMITED

.

ŗ

1

1

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

A0127383

[---]

Comments: ATTN: ARNE BIRKELAND

CERT	IFICA	FE A0127383			ANALYTICAL PI	ROCEDURE	S 2 of 2	
AN) - ARNEX F roject: JAS .O.#:		CES LIMITED	METHOD CODE	NUMBER	DESCRIPTION	METHOD	DETECTION LIMIT	upper Limit
amples submi		o our lab in Vancouver, BC. ated on 31-OCT-2001.	W-ICP41 Zn-ICP41	-	W ppm: 32 element, soil & rock Zn ppm: 32 element, soil & rock	ICP-AES ICP-AES	10 2	10000 10000
SA	MPLE	PREPARATION						
METHOD CODE	NUMBER SAMPLES	DESCRIPTION						
POL-31 STO-21 LOG-22 CRU-31 SPL-21 229	3 3 3 3 3 3	Pulv. <250g to >85%/-75 micron Reject Storage-First 90 Days Samples received without barcode Crush to 70% minus 2mm Splitting Charge ICP - AQ Digestion charge						
race metal: lements for ligestion is	s in which possib	package is suitable for soil and rock samples. the nitric-aqua regia ly incomplete are: Al, K, La, Mg, Na, Sr, Ti,						

Г

Т

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

1

1

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

To: ARNEX RESOURCES LIMITED * Page Number

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1 Page Number :1-A Total Pages :1 Certificate Date: 31-OCT-2001 Invoice No. : I0127383 P.O. Number : Account :AN

Project : JAS Comments: ATTN: ARNE BIRKELAND

CERTIFICATE OF ANALYSIS A0127383

SAMPLE	PREP CODE	Weight Rg	λи рур Fλ+λλ	λg ppm	λ1 %	λs ppm	B Dow	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	R %	La ppm
01751 01752 01753	94139402 94139402 94139402	1.44 1.56 1.44	205 95 15	1.2 1.4 0.2	1.03 2.88 1.48	16 4 6	< 10 < 10 < 10	60	< 0.5 0.5 < 0.5	< 2 < 2 < 2	0.24 0.64 0.94	< 0.5 < 0.5 < 0.5	8 16 7	91 53 32	56 3900 30	2.53 4.89 3.74	< 10 < 10 < 10	< 1 < 1 < 1	0.08 0.04 0.21	< 10 < 10 < 10
																				-
<u>_</u>													······					and the second s		

To: ARNEX RESOURCES LIMITED

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

Page Number :1-B Total Pages :1 Certificate Date: 31-OCT-2001 Invoice No. :10127383 P.O. Number : Account :AN

Project : JAS Comments: ATTN: ARNE BIRKELAND

PREP	Mar																
CODE	Mg %	Mn ppm	Mo ppm	Na %	ni ppm	P	Pb ppm	S %	Sb jepm	Sc ppm	Sr ppm	Ti %	T1 ppm	U magg	V Dim	W ppm	Zn ppm
94139402 94139402 94139402	2.75	450 1285 560	14 4 5	0.02 < 0.01 0.02	5 7 4	460 550 810	18 14 6	1.36 2.03 2.16	< 2 4 < 2	3 5 7	21 49 34	0.03 0.01 0.18	< 10 < 10 < 10	< 10 < 10 < 10	23 52 39	< 10 < 10 < 10	40 96 36

CERTIFICATION:

....

بمسمد سبب سامیم سود مسلم

1

A0127383

ľ (AL

SAMPLE

301751 301752

301753

1

nex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

1

CERTIFICATE OF ANALYSIS

-

. .

• •

.

L .

i.

È.

.

1

. .

b......

-

Geochemical Data Sheets Soil, Stream Sediment and Rock Chip Samples

_

. .

-

-

۰ . ۲-

. .

....

μ.

.....

-

....

.

SOIL SAMPLE GEOCHEMICAL DATA SHEET - PAN SOIL SAMPLE GRID - Year 2001

PROJECT: JAS

NTS: 092C/080

C:\myties\jes\jespois2001scos

1

Sample Number	Northing	Location Easting	Depth I (cm)	iorizon	Colour	Particle Size	% Organic	Slope Gradient	Observations Remarks
			• •	•••					
190401	2050	1025	20	в	ar	Sand	20%	Flat	JBv, gossan fi
190402	2050	1050	10	в	01	Sand	5%	10%	
190403	2050	1075	10	B	or	Sand	10%	Flat	
190404	2050	1100	10	в	ban or	Sand gravel	5%	15%	
190405	2050	1125	10	в	br	Sand	5%	15%	
190406	2050	1150	10	в	br or	Sand	5%	15%	
190407	2100	1025	10	8	or br	Sand	15%	Flat	Readcut, JBv oc
190408	2100	1050	6	в	or rusty	Sand	10%	Flat	······································
190409	2100	1075	6	в	rusty or	Sand	5%	10%	
190410	2100	1100	6	в	rusty or	Sand	5%	20%	
190411	2100	1125	6	В	OF DI	Sand, humus	15%	25%	
190412	2100	1150	5	B	or .	Sand	5%	25%	
90413	2150	1025	5	8	or i	Sand	5%	5%	
190414	2150	1050	5	B	or	Sand	5%	10%	
190415	2150	1075	Š	ĕ	or or	Sand	5%	10%	JBv, gossan fi
190416	2150	1100	10	B	orbr	Sand gravel	ວກ 10%	15%	AD4, Rosani II
190417	2150	1125	5	B	br	Sand graver	20%	20%	JBy, fl
90418	2200	1025	10	B	red or	Sand gravel	15%	10%	JBv, gossan fi
190419	2200	1050	5	В	ar	Sand	5%	15%	JDY, QOSSAN II
190420	2200	1075	10	В	br	Sand	5%	15%	
190421	2200	1100	5	В	-				JBv nubble
190422	2200	1125		В	br	Sandy loam	5%	15%	·····
			5		br	Sandy loam	5%	20%	JBv talus, just below road
90423	2150	975	5	В	dk br	Sand	15%	Flat	JBv
90424	2150	950	5	8	or br	Sand	10%	20%	JBy fi
90425	2150	925	5 ·	8	or	Sand	15%	20%	JBy rubble
90426	2150	900	5	в	0r	Sand	159	20%	
90427	2150	875	10	в	br	Sand	159	20%	JBv, rust in soil
90428	2150	650	10	в	br	Sandy sitt	15%	15%	Just above road
90429	2150	825	5	в	br rusty	Sand	5%	15%	JBv oc, roadcut
90430	2200	975	10	в	or rusty	Sand pebble	5%	Flat	
90431	2200	950	5	в	rusty or	Sand pebble	5%	10%	
90432	2200	925	3	в	br	Sand	15%	15%	
90433	2200	900	5	B	br	Sand	10%	15%	
90434	2200	675	10	B	br	Send	20%	20%	
90435	2200	850	10	B	br	Sand	15%	20%	Rusty gossan soil
90436	2200	825	15	в	br	Sand	20%	15%	
90437	2200	800	10	в	br	Sand	10%	30%	Bank above road
90438	2250	975	в	в	br	Sand	15%	20%	JBy rubble
90439	2250	950	10	Ð	or .	Sand	10%	10%	JBv fl
90440	2250	925	10	B	or	Sandy mud	10%	5%	
90441	2250	900	15	Ð	br	Sand pebble	5%	15%	
90442	2250	875	8	8	br	Sand	15%	25%	JÐv 11
90443	2250	650	15	8	br	Send	10%	20%	
90444	2250	825	10	В	br	Sand	10%	15%	
90445	2250	800	10	B	br	Clay, sand	15%	15%	5 m above road
90446	850	1025	10	B	br	Sandy pebble	5%	20%	Bank above road
90447	850	1050	10	8	bi bi	Sandy mud	20%	20%	Gossan rubble
90448	850	1075	10	В	or .	Sandy pebble	2074 5%	15%	Costan (UUU)
90449	850	1100	10	8	ten or				
90450	850	1125				Sandy peoble	15%	15%	
			10	8	tan rusty	Sand	5%	20%	
90451	850	1150	5	8	tan br	Sandy peoble	15%	20%	Felsic fl blocks
90452	650	1175	10	B	or	Sand	5%	20%	Just N of small creek
90453	850	1200	5	8	bior	Silt, sand	20%	20%	Below roadcut
30454	850	1240	10	в	red or	Sand	5%	30%	Above roadcut

L ...

•

. .

. .

λ.

b....

L.,

6....

• -

. • ---

SOIL SAMPLE GEOCHEMICAL DATA SHEET - PAN SOIL SAMPLE GRID - Year 2000

NTS: 092C/080

PROJECT: JAS

C:Um/Resijanjaageda2001sx xts

Sample	Loc	ation	Depth	Horizon	Colour	Particle	% Organic	Slope	Observations
Number	Northing	Easting	(cm)			Size		Gradient	Remarks
210401	2025	1000	В	в	or br	Silt	Low	Mod, flat	JBy
210402	2050	1000	5	в	br	Silt gravel	Low	Mod. Rel	Small R, elt JBv with py
210403	2075	1000	4	в	br or	Silt, sand, loam	Mod	Mod. flat	All JEV, or gossan soli
210404	2100	1000	8	в	br or	Silt, send, loam	Mod	Mod, flat	OC: fresh mess and, no aith
210405	2125	1000	8	8	br or	Silt, sand, loam	Mod	Mod, flat	OC: alt and, gossan, py, it go chi, clay
210406	2150	1000	6	в	tan br	Sitt, sand, loam	LOW	Mod, flat	FI: alt rusty by voic
210407	2175	1000	5	в	10110	Coarse rubbly soil	Low mod	Flat	Rigo: rusty gossan soit. 2 m FI 5% py
210408	2200	1000	15	8	red br	Fine silt, soil	Very low	Fiel, mod	OC: all JBv, rusty, py<5%, apple on chi, prop
210409	2225	1000	3	B	cik br	Coarse loam, soi	Mod high	Mod, steep	OC: JBv and with alt rhy, Rx 301751
210410	2250	1000	20	в	dk br	Rubbly soil loam	Mod high	Mod, steep	JBy, mass med gr and
210411	2275	1000	3	B, no A	br	Clay, soil	Mod	Mod, steep	JBv, por and
210412	2050	975	6	ß	gr br	Ckary, silt	Mod	Mod, sleep	No attri
210413	2050	950	3	B	br	Clay, icam	Mod low	Steep	No OC or Fi
210414	2050	925	10	B	tan br	Cley, loam	Mod high	Steep	No OC or Fi
210415	2050	900	10	B	br or	Clay, toam	Mod	Steep	OC: mass JBv and, unall
210416	2100	975	10	B	tan br	Clay, Icam	Mod	Mod, steep	FL: mass JBy and
210417	2100	950	15	B-A	br bi	Cley, sit	Mod high	Mod	No OC or Fi
210418	2100	925	10	A	bi	Clay, organics	Very high	Mod	FL: mass JBv and
210419	2100	900	20	в	or	Clay, soil	Mod	Mod	Contact of Gossan Soil
210420	2100	875	25	в	bror	Clay, soil	Mod	Mod	Soil: very rusty gossan, OC: unait JBy and
210421	975	1000	15	в	or	Silt, clay	Mod	Mod	OC: all rusty JBy
210422	950	1000	20	c	or br	Gravel rubble	Mod low	Mod	OC: alt rusty JBv
210423	925	1000	20	B	or	Sitt, clev	Mod	Mod	OC: JBy, erg to adv arg altn, high py, Rx 32710
210424	900	1000	10	в	bror	Silt, day	Mod	Mod	Till to 10 m thick
210425	875	1000	50	Ti	br	THE	Low	Mod, steep	Till to 15 m thick
210426	830	1000	moss mat						
210427	950	1025	20	в	tan br	Clay, silt	Mod	Mod. steep	
210428	950	1050	10	в	tan br	Clay, icam	Mod	Mod, steep	Large ang FI: ali py JBy volc
210429	950	1075	5	в	tan br	Clay, silt	Mod	Mod, steep	Large ang FI: ett py JBv voic
210430	950	1100	10	B	tan or	Clay, sill	Mod	Mod, steep	Large and FI: alt py JBy voic
210431	950	1125	35	B	br or	Clay, silt	Mod	Mod. sleep	Soil very rusty, sample from the root
210432	950	1150	55	8	br	Clay	Mod	Mod. steep	Thick A plus road debris
210438	950	1175	Ū	Ū	br	Taius Anes	LOW	Mod. steep	Upper roadicua
210434	900	1025	10	Б	or	Clary, loam	Mod	Mod	Gossan soil
210435	900	1050	15	B	tain bror	Ciay, loam	Mod	Mod	Gossari soli
210436	900	1075	15	B-C	tan br	Rubble, sol	Low	Mod	Large ang FI; alt py JBv voic
210437	B00	1100	10	B-C	dk br	Rubble, soil	Mod	Mod	Large ang FI: alt py JBy volc
210438	900	1125	20	A-B-C	dk br	Rubble, soil	Mod	Mod. steep	Fi: fresh JBv
210439	900	1150	5	A	bt	Clay, organics	Very high	Mod, steep	Fi: fresh JBy
210440	900	1190	5	Ċ	gr green	Talus fines	Very fow	Mod steep	OC: mess unall JBy
210441	950	975	15	8	ban bror	Clay, sit	Mod	Mod	Ftatt JBv
210442	950	950	5	B	br or	Clary, silt	Mod	Steed	
210443	950	935	15	в	br or	Clay, sill	High	Very sleep	Too of cliff skarp
210444	900	975	5	в	br	Clay, sili	Mod	Very steep	Top of chill skarp, ang FI; all JBy
210445	850	975	nicss mat	-		••		· · · · · · · · · · · · · · · · · · ·	and the second
210446	1350	975	5	A	dk br	Loam, organics	High	Mod	A very thin, poor soil development
210447	1350	B75	0-5	вĊ	vellow	Clay	Mod	Mod. flat	Jarosii-cley-decomposed roc' layer, in til?
210446	1350	975	30-40	Â	cik a tel	Loam	Very high	Mod fiat	2nd A Horizon below Jarceite layer
210449	1350	975	50-80	В	bright or	Clav	Vey knw	Mod, flat	Besal B Horizon
210450	1425	1000	5	Ē	tan	Clarv, silt	Mod high	Mod	Upper 8 Horizon
210451	1425	1000	65	B-C	dk br	,			

GEOCHEMICAL DATA SHEET - PAN SOIL GRID - YEAR 2001

STREAM SEDIMENT GEOCHEMISTRY

PROJEC	T: JAS					NTS: 092	C/080		C:/myfiles/jasgcds2001ss.xbs		
Sample Number	Lo Northing	cation Easting	Voluri Width	ne (m) Depth	Drainage Gradient	Type of Sample	Colour	Texture	% Organic	Petrography Bedrock/Float	Observations Remarks
210428	830	1000	1	0.3	Mod-steep	MM	Br	Silt	High	JBy	Very thick till banks
210445	850	975	D.B	0.2	Mod-sietp	MM	Br	Sitt	Mod	JBv	

APPENDIX C

GEOCHEMICAL DATA SHEET - PAN SOIL SAMPLE GRID - YEAR 2001

ROCK CHIP SAMPLING

PROJEC	PROJECT: JAS					2C/080		C: Uny@lestjestjesgcds2001rx.ets		
Sample Number	Loca Northing	tion Easting	Rock Type	Sample Type	Width	Alteration	Weathering	Minearalization	Observations Remarks	
310751	2225	1000	νBL	Rep chip	30 cm app	Intense clay-sil, patchy chi	Fresh	Des 19 py<5%	Light grey sil fektile; resorbed puartz eyes?; all rhydite bed 60 cm thick, sample is rhydite "country rock"	
310752	2275	1000	JBv	Rep chip	30 cm app	Limonite, sil, bi chi, clay	Mod-fresh	Py, cpy, mal	Säcfied alt x-cutting qtz sulphide "stringer" zone 30 cm vide, orientation East-West, steep, coarse exhedral py to 10%, med coarse biebs and veins of cpy, mal, Cu=approx 2%	
301753	960	950	JBv	Rep chip	40 cm app	Sil, cal, clay	Very Poor	Py, boxworks	② 210442, isached silica - calcile exhaite, highly eliered thyolits?	

APPENDIX D

GPS Survey - PAN SOIL SAMPLE GRID - Year 2001

PROJECT: JAS

DATUM: WGS 84

Reference Number	Lo Northing	cation Easting	Latitudø degrees	Longitude degrees	Elevation feet	Observations Remarks
	2250	785	48 49.995	124 35.360	1446	
190437	2200	800	48 49.982	124 35.385	1403	
210415	2050	900	48 49.942	124 35.535	1401	
100330	1850	1000	48 49.845	124 35.228		Caycuse ML road junction
739303	1675	1000	48 49.777	124 35.137		Creek
Pan Roed Showin	g		49 49.592	124 35.100		
	1000?	1000	49 49 497	124 34.872	1398	Road junction, baseline
190446			49 49.463	124 34.754		
210406	2150	1000	49 49.995	124 35.266	1453	
210408	2200	1000	48 50.015	124 35.244	1531	
210440	900	1190	48 49.623	124 34.699	1357	
301752	2275	1000	48 50.053	124 35.213	1586	

APPENDIX E

Jasper Property - Field Crew - Year 2001 Field Days

Date	Name	Title	Description
17-Oct-0	1 Arne O. Birkeland	P. Eng., Geological	Base maps, equipment mobilization
18-Oct-0	1 Arne O. Birkeland	P. Eng., Geological	Base maps, equipment mobilization
19-Oct-0	1 Arne O. Birkeland	P. Eng., Geological	Travel, rock chip and grid soil sampling
20-Oct-0	1 Arne O. Birkeland	P. Eng., Geological	Rock chip and grid soil sampling
21-Oct-0	1 Arne O. Birkeland	P. Eng., Geological	Rock chip and grid soil sampling
22-Oct-0	1 Ame O. Birkeland	P. Eng., Geological	Rock chip and grid soil sampling, GPS Survey
23-Oct-0	1 Arne O. Birkeland	P. Eng., Geological	GPS Survey, Travel
24-Oct-0	1 Arne O. Birkeland	P. Eng., Geological	Demob, sample dry and prep
28-Oct-0	1 Arne O. Birkeland	· · · · · · · · · · · · · · · · · · ·	GIS Data Input
29-Oct-0	1 Arne O. Birkeland	• •	GIS Data Input
19-Oct-0	1 Art Freeze	P. Geol.	Travel, grid soil sampling
20-Oct-0	1 Art Freeze	P. Geol.	Grid soil sampling
21-Oct-0	1 Art Freeze	P. Geol.	Grid soil sampling
22-Oct-0	1 Art Freeze	P. Geol.	Grid soil sampling
23-Oct-0	1 Art Freeze	P. Geol.	Grid soil sampling, Travel

ı.

L 1 _ ω. . . ____ . • • ----.... B. L r ---. 6..... [**.**.... _ L --

jascrew2001