

ASSESSMENT REPORT

ON A PROGRAM OF

GEOLOGICAL MAPPING, GEOCHEMICAL SOIL AND ROCK SAMPLING

ON THE

MONTANA CLAIM

FOURTH OF JULY CREEK AREA,

GREENWOOD MINING DIVISION, BRITISH COLUMBIA

49° 26' North latitude 118° 53` 30'' West longitude N.T.S. 82E/07

OWNER: Mike Muzylowski Suite 1160, 1040 West Georgia Street Vancouver, BC Canada V6E 4H1

WRITTEN BY: Lloyd C. Brewer Suite 604, 700 West Pender Street Vancouver, BC Canada V6C 1G8

DATE: March 5, 2002

GEOLOGICAL SURVEY BRANCH

TABLE OF CONTENTS

•

i	Page
Summary and Conclusions	1
Introduction	2
Claim Information and Property Ownership	2
Location and Access	3
Physiography	3
History of Previous Work	7
Regional Geology	7
Property Geology & Mineralization	7
Control Grid	8
Geochemical Survey	8
Conclusions and Recommendations	9
Selected Bibliography	. 10
Statement of Qualifications	. 11
Statement of Costs	12

APPENDICES

 $\left(\right)$

1

Appendix I	Statement of Exploration & Development	Rear of Report
Appendix II	Rock Sample Descriptions	Rear of Report
Appendix III	1:5,000 scale maps of data plots	Rear of Report
Appendix IV	Analytical Results (Rocks)	Rear of Report
Appendix V	Analytical Results (Soils)	Rear of Report

LIST OF FIGURES

1	Property Location Map	4
2.	Regional Geology Map	5
3.	Claim and Grid Location Map	6
4.	Soil Geochemistry - Arsenic	Appendix III
5.	Soil Geochemistry – Zinc	Appendix III
6.	Soil Geochemistry - Copper - Gold	Appendix III
7.	Rock Samples – Geology	Appendix III

SUMMARY AND CONCLUSIONS

The Montana Claim is a 20 unit 4 - post claim, staked in 2000 over an area of historic workings, and several former (now cancelled) Crown Granted Mineral Claims along Fourth of July and Canyon Creeks. The geology of the property consists mainly of Carboniferous or older Anarchist Group greenstones, metaandesites and some sediments. These are intruded by granodiorites and feldspar porphyry dykes. The BCDM MINFILE lists mineralized showings of copper, silver and gold on these former Crown Grant sites, including the old Fourth of July Crown Grant. Sampling by previous claim holders, from an adit here in 1996 yielded results up to 27.74g/t Au and 160.7g/t Ag over 15cm.

In 2001 exploration work consisting of geological mapping, control grid emplacement and soil and rock sampling was carried out over the northwestern portion of the claim. A total of 5.175 lkm of east-west control grid lines was emplaced, marked with flagging tape. A total of 196 soil samples were taken at 25m intervals along the grid. The collection of 12 rock chip samples and geological mapping were also carried out within the gridded area. An initial batch of 76 soil samples and the 12 rock samples were analyzed using gold analysis and 28 element ICP at Cominco Exploration Laboratory in Vancouver. The balance of the soil samples (120 samples) was analyzed using 28 element ICP only.

Soil samples detected elevated values of Arsenic (\pm Zinc) within the eastern section of the survey area. Several elevated copper values were also detected within this area. Zinc mineralization is widespread within the survey area. The Arsenic and Zinc anomaly is open to the north, south and east.

In light of the previous work and the results of this work program, the Montana Property seem to have a good potential for hosting disseminated (epithermal) mineralization. In order to follow up on the results of the current program additional soil sampling should be carried out to follow the soil anomaly out. Geological mapping and sampling should also be carried out in this area.

INTRODUCTION

The exploration work described herein was carried out by an exploration crew from Madman Mining Co. Ltd. on behalf of the claim owners between June 9th and June 14th, 2001. The work consisted of Control Grid emplacement, Soil and Rock sampling as well as geological mapping. The grid comprised an 800m long north/south base line and 11-east/west cross-lines, varying in length from 250m to 550m and having a line separation varying between 50m and 100m apart, for a total of 5.175-line km. A total of 196 soil samples and 12 rock samples were collected and analysed. Geological mapping was carried out within the grid area.

CLAIM INFORMATION AND PROPERTY OWNERSHIP

The Montana Claim, located in the Greenwood Mining Division is a 20 unit 4-post mineral claim, staked on July 3rd, 2000 by Mr. Gerrard Gallissant (Figure 2) for Mike Muzylowski. Through a Bill of Sale, a 100% interest in the title was subsequently formerly transferred to Mr. Muzylowski. Additional claim information is summarized below:

CLAIM	CLAIM	TENURE	NUMBER	ANNIVERSARY
NAME	Type	Number	OF UNITS	DATE *
MONTANA	4-post	378472	20	July 03, 2003

* The anniversary date reflects the new date pending acceptance of this report for assessment purposes.

LOCATION AND ACCESS

The Montana Claim is located 295 kilometers east of Vancouver, 25 kilometres north of Westbridge and just west of the Kettle River (Figure 1). The property is in the Greenwood Mining Division, and is centered at approximately 49°26'N latitude and 118°53'30" W longitude on NTS Map Sheet 82 E/7W. The claim is accessed by the Fourth of July Forestry Service road, which leaves the Westbridge - Christian Valley - Monashee Pass Road at kilometer 25. The Fourth of July FSR traverses the claim from southeast to northwest, with some minor trails branching off the main logging road.

PHYSIOGRAPHY

The property is situated within the Monashee Mountains of the Southern Interior Physiographic Region, and elevations range from 810m along Canyon Creek to 1230m on ridges adjacent to Fourth of July Creek. Slopes are gentle except in the Canyon Creek valley. Vegetation consists mainly of mature pine and fir with open grazing areas on the ridge adjacent to Fourth of July Creek. There is evidence of old woodlots, and recent winter logging has taken place west of Fourth of July Creek. There is relatively little underbrush, except along Canyon Creek where vegetation is thick. The climate features warm summers and mild winters. Water is plentiful in Canyon Creek, but Fourth of July Creek flow is intermittent.

HISTORY OF PREVIOUS WORK

Old Crown Granted claims in the area date to the late 1800s. The B.C. Minister of Mines Annual Reports of the early 1900s mentions developments on the Fourth of July (L.2638), Montana (L.2640) and Mayflower (L.1284). Several other Crown Grants were located along Fourth of July Creek and Canyon Creek. BCDM MINFILE references list Assessment Reports that indicate work on past claims in the 1970s and 1980s that partly include the present Montana claim. The Lake Ridge district, 5km north of the Montana claim has seen more intensive exploration and development. Limited exploration work was carried out in the immediate are of the Montana claim during the 1990's.

REGIONAL GEOLOGY

The area is within the Omineca Crystalline Belt, a NW trending belt dominated by plutonic and high-grade metamorphic rocks. Regional geology is presented in Figure 2, simplified from G.S.C. Map 1736-A by D. Templeman-Kluit. The Montana claim is underlain by the Carboniferous or older Anarchist Group. This unit includes amphibolites, greenstones, quartz - chlorite and quartz - biotite schists, minor ultramafics, sediments and chert. Granodioritic plugs of middle Jurassic Nelson plutonics, as well as Jurassic - Cretaceous intrusions of the Okanagan batholith outcrop in the area. To the east of the Montana Claim, Eocene volcanics of the Marron Group outcrop in a fault-bounded graben expressed by the Kettle River valley. The Anarchist Group rocks are also overlain south of the property by Eocene Springbrook Formation Conglomerate.

PROPERTY GEOLOGY & MINERALIZATION

Anarchist Group rocks outcropping on the Montana Claim comprise mainly green and grey meta-andesites. These are massive generally with little fabric, although phenocrysts are evident. Minor disseminated pyrite and lesser pyrrhotite are common. Silicified and pyritic altered zones are present on the ridge east of Fourth of July Creek. Thin-bedded turbiditic siltstones were also observed here. Fine-grained dioritic intrusives cut the Anarchist Group rocks in the vicinity of Fourth of July Creek, and may be related to the Nelson plutonics. Medium - grained granodiorites crops out along Canyon Creek in the southwest corner of the property. Intrusives are also present in the northeast corner and along the eastern margin of the claim. Feldspar porphyry dykes, trending northeast, was observed near the headwaters of Fourth of July Creek. Quartz - carbonate - sulphide veins were identified on the old Fourth of July Crown Grant, as well as in Canyon Creek. Several oxidized clay gouge and fault zones were also noted at the latter location. On the old Fourth of July Crown Grant an adit follows a vein - fault system. At adit the portal, the fault zone is about 60cm wide, with 5cm of clay gouge on the hanging-wall. The zone consists of silicified and clay altered volcanics with disseminated pyrite and trace chalcopyrite. Two parallel quartz - carbonate veins up to 8cm wide veins merge into one follows the fault zone north for about 13m. At this point the adit follows the vein to the northeast within a variably sheared and broken fault zone up to 2m wide. The vein here is generally up to 25cm wide. Within the vein are shoots of massive fine-grained pyrite and pyrthotite up to 20cm wide. Additional sulphide minerals observed in the carbonate and quartz vein material include chalcopyrite and galena. A sample taken in 1996 (MTR04-G) assayed 27.74 g/t Au (0.809 oz/ton) over a 15cm width of sulphide within the quartz carbonate vein.

During the 2001 exploration program – geological mapping was carried out over the control grid and in the immediate vicinity of the grid area. During the coarse of the work program various old working were encountered which were mapped and sampled during Gal's previous work (1996), and little time was spent during this effort in evaluation or resampling these.

Mapping was successful in a least partially determining the extent of the silicified zone in both the east and the west. Most often samples were taken of strongly silicified rock which, which usually had increased

concentrations of sulphides. As limited previous information exists with respect to this form of mineralization on the property - no single key can be noted as being an indicator to the presence or absence of mineralization in any given locale/setting on the property.

The dominant lithology appears to be a dark, apanitic, blue-grey andesite, which typically is at least in part silicified, and which locally appears to have undergone moderate chloritic alteration, and elsewhere (where silicification is strongest) a fair amount of "bleaching". Normally this rock hosts <0.5% to 1% disseminated fine-grained sulphides, which are dominantly pyrite to the east, and pyrrhotite in the west. Zones of strongest silicification appear to be bound by Feldspar porphyry dykes. Locally thin layers of dark cherty rock were noted, more often than not within close proximity of the baseline. Only one minor fault was inferred to occur in the west silicified zone area. The other major lithology was a diorite intrusive, which occurs in the north portions of the claim proximal to the West Silicified Zone. Rock sample descriptions are located within Appendix II, and sample locations and property geology are shown on Figure 7 within Appendix III, both at rear of this report.

CONTROL GRID

A total of 5,175m of control grid lines (including the 800m long baseline) was emplaced utilizing hipchain, GPS and compass, and marked with flagged stations at 25m intervals. The grid comprises an 800m long - north/south base line and 11 - east/west crosslines that range in length from 250m to 550m and have a line separation varying between 50m and 100m apart. The grid as emplaced is shown on Figures 4 thru 7.

GEOCHEMICAL SURVEY

A total of 196 soils samples were collected at 25m intervals from the control grid and from a single line along a road cut – the "Road Traverse". The samples were collected from the "B" Horizon using a "Clam Shovel" (a narrow long bladed shovel). Samples were placed in Kraft paper soil sample envelopes/bags and the corresponding grid co-ordinate was written on each bag. A layer of volcanic ash a few cm thick was often encountered near the top of the B-horizon, and may have had a dampening effect on the geochemical signature of the soils, ie. leading to lower than normal values. Although soil geochemical values seem low due of the effect of ash, anomalous areas are still apparent. Soil geochemistry plotted for As, Zn and Cu/Au are presented in Figures 4, 5 and 6 at the rear of the report.

All 196 soil samples were submitted to Cominco Exploration Laboratory for 28 element ICP (0.5gram sample digested in hot reverse aqua regia). 76 Soil samples from Lines 11N, 14N, 16N, 16.5N and TRV4 were also analysed for Gold using Aqua regia decomposition / solvent extraction / AAS.

Elevated levels of Arsenic are confined to the eastern section of the survey area on the eastern ends of sample lines 10N thru 15N over a detected width of between 100m and 150m. The anomaly is open to the north, south and east. With the exception of one spot anomaly this was the only area of elevated Arsenic values detected. The highest As value was 561ppm and was obtained from a sample located above an uphill, and along strike, from an old adit.

Elevated values of Zinc were encountered throughout the grid area. The anomaly is open to the north, south and east. Elevated Zinc values occur coincident with elevated Arsenic within the eastern section of the grid area. The highest Zn value is 448ppm. This sample was collected on Line TRV4 and is located within a broad Zn anomaly.

Copper results were lower than expected with the maximum value received being 205ppm. Only eight soil samples returned values greater than 80ppm. Of these samples, 6 occur within the coincident As, Zn anomaly, and all 8 occur within the broader Zn anomaly.

Of the 76 samples that were analysed for gold only 10 returned values greater than 10ppb, with the highest gold value obtained being 25ppb. This sample site is located within the 4th of July Creek valley and is most likely reflecting a "concentrated" gold effect. Three samples (L11N) showed elevated gold from locations uphill, and along strike, from an old adit.

CONCLUSIONS AND RECOMMENDATIONS

The 2001 exploration program covered approximately 20% of the surface area within the Montana property. Geological mapping indicated a prospective host rock environment with widespread silicification (locally strong) occurring within several rock units throughout the survey area. Geochemical results have identified a large arsenic and zinc anomaly that is open to the north, south and east. Arsenic is traditionally a good pathfinder for locating gold mineralization within an epithermal environment.

Further work within the property should include the collection of additional soil samples to extend (follow out) the soil anomaly. Additional geological mapping should be carried out in the area of the soil anomaly. Rock samples collected should be submitted for petrography, PIMA alteration study as well as analytical work.

SELECTED BIBLIOGRAPHY

 $\left(\right)$

BCMEMPR MINFILE	082ESE168 (Mayflower) and 082ESE111 (Montana)
B.C. Minister of Mines	Annual Reports 1900 (p.879), 1901 (p.1136), 1902 (p.182), 1903 (p.248).
Gal, L.P. (1996)	Prospecting and Geophysical Report on the Montana Claim, Greenwood M.D., B.C. 1996
Little, H.W. (1961)	Geology, Kettle River (West Half), British Columbia; Geological Survey of Canada, Map 15-1961
Tempelman-Kluit, D.J. (1989)	Geology, Penticton, British Columbia; Geological Survey of Canada, Map 1736A, scale 1:250 000

STATEMENT OF QUALIFICATIONS

I, Lloyd C. Brewer, of Suite 604, 700 West Pender Street, in the City of Vancouver, British Columbia, Canada do hereby certify:

- 1. THAT I am president and owner of White Wolf Explorations Ltd. and Madman Mining Co. Ltd., and have worked in the mining industry on a full time basis since 1981;
- 2. THAT I have held direct interests in various mineral claims located in the proximity of the Montana Project since 1995;
- 3. THAT this report is based on exploration work carried out under my direct supervision, on the Montana property during June 2001.
- 4. I grant permission to use this report, in whole or part, in a prospectus or other financial offering.

Signed and Dated at Vancouver, British Columbia, this 5th day of March, 2002.

Lloyd C. Brewer

STATEMENT OF COSTS

 $\left(\right)$

<u>.</u> ۱

The following is the statement of costs directly associated with the exploration work on the Montana Claim, Greenwood Mining Division, BC.

DESCRIPTION	DATES	RATE	SUB-TOTAL
Tom Lewis, B.Sc, P.Geo	June 9 – 14 th , 2001	5 days @ \$300.00/day	\$1,500.00
Crew accommodation and meals	June 9 14 th , 2001	5 days @ \$52.00/day	\$260.00
Vehicle rentals (4x4 pick-up truck)	June 9 – 14 th , 2001	5 days @ \$100.00/day (including mileage)	\$500.00
Survey supplies (consumables)	flagging, topofil thread, sample bags, fuel etc.		\$258.16
Equipment Rental (general exploration equipment, hip chains, power saw, etc	June 9 – 14 th , 2001	5 days @ \$50.00/day	\$250.00
Analytical Work	Comineo Exploration Laboratory	76 soil samples (28 element ICP + Au) (\$11.77 each)	\$1,831.84
		120 soil samples (28 element ICP only) (\$6.42 each)	
		12 rock samples (28 element ICP + Au) (\$13.91 each)	
Report preparation			\$400.00
Total cost of project			\$5,000.00

APPENDIX 2

MONTANA ROCK SAMPLE DESCRIPTIONS

- 129497 11+00N 3+30E Grab strong silicification grayish volcanic local patchy dark green (chlorite?), overall bleached, local abundant fine-grained disseminated pyrite up to 5% locally. Overall probably 3% - moderate hematite on weathered surfaces
- 129498 12+75N 5+00E Grab bluish/gray volcanic partly bleached strong silicification ~ 1% very fine grained disseminated pyrite, local patchy, hematite & trace manganese oxide on weathered surfaces
- 129499 13+00N 4+55E Grab greyish volcanics strong silicification patchy pyrite with some very fine grained disseminated 1-2% total, strong hematite on weathered surfaces
- 129500 13+00N 3-80E Grab much as 129499 also with strong hematite + manganese oxide on weathered surfaces
- 129501 14+00N 4+50E Grab Altered diorite? porphyritic quartz/flooding pervasive green (chlorite?) altered. Moderate to strong silicification, slight clay alteration of feldspars, strong hematite on fractured surfaces – patchy fine-grained sulphides (about 1 -2%)
- 129502 17+50N 1+06W Grab Small Old trench Diorite fine to medium grained quartz/flood pervasive green (chlorite?) alteration, <1% very fine grained po/py moderate hematite/limonitic staining.
- 129503 16+50N 0+95W Grab Bluish/gray aphanitic, silicious & partly bleached, <1% disseminated very fine-grained pyrite, trace potasasic alteration, heavy hematite/limonite/manganese oxide on weathered surface
- 129504 16.50N 1+23W Grab Silicious medium grained diorite, bluish/grey, with <1% very fine grained po/py, hematite weather on fractured surfaces
- 129505 16.55N 2+10W Grab Old trench vuggy somewhat friable material leached possible quartz vein with sulphides removed. Heavy (pervasive) hematite limonite staining
- 129506 16+00N 0+50W Grab Bluish/gray aphanitic partly bleached, very silicious, < 1% disseminated patchy po/py, hematite/limonite on weathered surfaces
- 129507 14+83N 0+03W Grab Old Trench just below Road Light gray aphanitic, bleached, silicious, < 0.5% fine grained po/py – local blebs, heavy hematite, local limonite, trace manganese oxide on fractured surfaces, rock somewhat friable
- 129508 16+55N 2+10W Grab Same trench as 129505 composite of various pieces from dump some boxwork noted with bull quartz matrix, some material as sample in 505, varying sulphide po/py contents – all fairly strongly oxidized.

APPENDIX 3

GEOCHEMICAL & GEOLOGICAL PLOTS

- Figure 4 Arsenic
- Figure 5 Zinc Figure 6 Copper & Gold
- Figure 7 Geology and Rock Samples

LEGEND

Fourth of July Creek

Gravel Road

Pit/Trench

- Topographic Contours (100 ft intervals)
- ≻ Adit
 - I Soil Sample Site (Collected at 25m intervals)

TO ACCOMPANY REPORT BY: L. C. BREWER

200 metres **LEGEND** Scale - 1:5,000 Fourth of July Creek **Gravel Road ABBOTT MINES LIMITED MONTANA PROPERTY** Pit/Trench GREENWOOD M.D. NTS. 82E 7W Topographic Contours (100 ft intervals) SOIL SAMPLES - ZINC ppm Adit Soil Sample Site - (collected at 25m intervals) ł TO ACCOMPANY REPORT BY: L. C. BREWER FIGURE NO. 5 DATE: FEBRUARY 2002

NOTE: - Gold was analysed for Lines 11N, 14N, 16N, 16.5N and L-TRV4 only (Values of <10ppb Au have not been plotted)

LEGEND

45 Gold Value (ppb) - Plotted Above the Grid Line - SEE NOTE

124 Copper Value (ppm) - Plotted Below the Grid Line

Fourth of July Creek

Gravel Road

Pit/Trench

Topographic Contours (100 ft intervals)

- Adit
- Soil Sample Site (Collected at 25m intervals) 1

TO ACCOMPANY REPORT BY: L. C. BREWER

ABBOTT MINES LIMITED

MONTANA PROPERTY

GREENWOOD M.D. NTS. 82E 7W

SOIL SAMPLES Cu (ppm) & Au (ppb)

DATE: FEBRUARY 2002

PIGURE NO. 6

- SV Silicified Fine Grained Blue/Grey Volcanics (typically with <0.5% - 1% Very Fine-grained Arseno pyrite
- SVG Silicified Fine Grained Greenish (Chlorite Alteration) Volcanic
- MGD Medium Grained Equigranular Dioritic Intrusive

Fault

Z

Fourth of July Creek

Gravel Road

Pit/Trench

Topographic Contours (100 ft intervals)

– Adit

X Rocks Sample Site

TO ACCOMPANY REPORT BY: L. C. BREWER

DATE: FEBRUARY 2002

FIGURE NO. 7

APPENDIX 4

ANALYTICAL RESULTS

Cominco Exploration Laboratory

(ROCK)

÷.

MADMAN MINING INC LTD-X01

Report date 20 JUL 2001

#129497 - 129522

LAB NO FIELD NUMBER Au Wt Au ppb gram R0103441 129497 30 5 32 R0103442 129498 5 R0103443 129499 <10 5 40 R0103444 129500 5 R0103445 129501 <10 5 R0103446 129502 84 5 <10 R0103447 129503 5 5 R0103448 129504 <10 100 5 R0103449 129505 R0103450 129506 42 5 54 R0103451 129507 5 <10 5 R0103452 129508 <10 - 5-*0103453 129509 1040 R0163454 129510 5 <10 5 R0103455 129511 <10 5 R0103456 129512 <10 5 R0103457 129543 R0103458 129514 <10 5 5 R0103459 129515 <10 R0103460 129516 <10 5 <10 5 R0103461 129517 R0103462 129518 <10 5 <18 5 R0103463 129519 <10 5 R0103464 129520 <10 5 R0103465 129521 <10 3 R0103466 129522 _____

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised If requested analyses are not shown , results are to follow

ANALYTICAL METHODS

Au Aqua regia decomposition / solvent extraction / AAS

Wt Au The weight of sample taken to analyse for gold (geochem)

MADMAN NINING INC LTD-X01

Job V 01-0270R

#129497 - 129522

Report date 20 JUL 2001

	ELD NUMBER	Cu	Pb	ZD	Хg	λs	Ba	Cđ	Co	Ni	Pe	Мо	Cr	81	Sb	v	Sn	W	Sr	Y	La	Mn	Mg	тi	Al	Ca	Na	K.	P
		ppm	DDm	9pm	bbw	ppm	ppm	00m	ppn	ррш	4	bbw	ppm	ppn	ppm	фрш	ррш	ppm	ppm	ppm	ъ б ш	ppm	٩		۲.	۲	*		ppm
0103441 1294	97	59	1374	176	<.4	30	32	1	9	22	2.61	<2	7B	~5	 ح5	59			86	 5		·····-	 60	 ^c		• • • • • • •		· 	
0103442 1294:	98	57	29	111	<.4	107	21	د1	15	21	2.83	<2	59	<5	₹5	56	-2	~7	90	6		460	.05	.00	4.24	1.48	. 27	.04	853
10103443 1294	99	97	78	159	<.4	28	32	1	11	16	2.62	<2	45	< 5	<5	50	2	~ 2	17	ě		101	.75	109	4.18	1.28	. 25	.05	1106
10103444 1295	00	52	77	60	<.4	59	38	<1	21	16	2.28	<2	88	<5	-5	58	-2	~ ~ ~	50	7	,	352	. 43	. 15	.97	1.15	.1	.08	1142
0103445 1295	01	198	12	74	c.4	48	40	<1	16	33	5.71	-2	41	-5	-5	74	5	- 2	10	,		501	. 56		4.12	1.3	.21	.05	1390
0103446 1295	02	123	34	6360	2.2	23	61	65	11	16	5.32	<2	77	<5	-5	81		~ 7	5 5 9 1	10		1704	. 99	. 18	1.97	1,13	.03	.07	1521
1295	03	72	32	81	<.4	7	53	<1	11	17	3.29	- 2	49	25	~5	90	2	~7	50	10		431	.00	.02	1.95	.48	.07	.28	2200
0103448 1295	04	119	30	105	. 5	4	42	<1	19	21	5.16	×2	44		-5	73		~ ~ ~	80	0	2	451	. 25	. 19	1.83	1.04	.16	.29	1305
0103449 1295	05	1500	17	40	e.4	656	18	<1	8	448	41.84	3	<4	<5		17		-2		,	د د ر	129	. 35	. 19	2.78	2.25	. 2	.06	1345
0103450 1295	06	52	15	63	<.4	8	42	<1	9	8	4.19	<2	71	<5	-5	38	1	~2	47	2		204	.02	<.01	.46	,05	.01	.07	348
0103451 1295	07	32	14	21	۲.4	622	90	<u>د</u> ا	5	5	1.72	-2	66			0	-2	~*	*/		-	204	.00	.08	1.24	.82	.17	.1	863
0103452 1295	08	220	44	88	<.4	6	45	<1	21	14	3.84	c2	89		-5	72	3	~2	е БО	10	4	23	.07	<.01	.43	. 22	.02	.26	797
A1<u>821</u>53 12 95	·09·						61	· • •1			3.47		74		··					1 <i>4</i>	ہ 		1.20	. 19	1.62	1.04	. 07	.26	780
0103454 1295	10	14	87	15	25.0	<2	10	<1	1	6	.42	۲۲	198	<5	c5			-2	28	- 2	- 10-	75	1.0		2.07-		.06		
20103455 1295	11		B	26	<.4	<2	31	د1	<1	9	1.17	5	131	-5	-5	, s	-	~ 2					.09	<.UI	. 21	, 13	.02	- 04	22
0103456 1295	12	7	<	- 9	- +	- <2	20	<1	د1		.41	17	123		-5	ž		~*	о Е	د د ر	~~	99	.03	<.01	. 38	.08	. D6	.15	160
R0103457 1295	13	37	6	50	.4	<2	-11-		2	7	3.45	529	97	<5	<5	11	-2		, 11	1		754	4.VI	<.01	. 25	.04	.07	.14	15
R0103458 1295	14	21	<4	14	<.4	<2	38	_ دا	- 21		56	*7	232		-5		- 5	- 1	-	- 7	•	239	.31	.09	.95	. 25	.06	, 24	804
R0103459 1295	15	30	<4	89	<.4	<2	143	<1	Ż	Å.	1.1	60-			~ *	17	- 7	~ 2	41	< 4 6	-	226	.01	<.01	.25	. 07	.04	,12	55
R0103460 1295	16	2	<4	29	e.4	<2	44	- 1	e 1	6		50	176	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		7	~~	- 7		~	y 70	114	. 27	.06	. 96		. 06	. 37	351
R0103461 1295	17	-1	7	23	e.4	< 2	60	1	-1		1.11	701	156	-5	-5					-	40	114	.05		.44	. 23	.06	.17	662
R0103462 1295	18	3	4	11	e.4	-2	7	-1	1	- 7	59		128	-5	~5	~~		- 1			B	61	.03	<.01	- 39	.08	.06	.2	304
R0103463 1295	19	6	×4	18		-2	22		1		1 69	91	130	4J 4F		,			5	- 1		- 109	.0z	<.01	. 26	.06	.07	.1	27
R0103464 1295	20	1	7	11	~ ~		59	-1	1		1 75	53	110		-5	2		~4		2	2	184	.03~	01_		.08	.07	.1	96
20103465 1295	21	165	- 4	21	~ *	,	21	-1	5		2.63	33				20	×2 - 3	<2	26	6	53	36	.02	<.01	. 9	- 1 -	21	.38	82
			~ ~		~	-			3	2		2	54		< 5	32	٢Z	< 2	28	8	В	108	.21	.13	.6	. 57	.09	.ത	991.

Ininsufficient sample X-small sample Exexceeds calibration C-being checked R-revised

If requested analyses are not shown , results are to follow

ANALYTICAL METHODS

ICP PACKAGE :0.5 gram sample digested in hot reverse agua regia (soil,silt) or hot Agua Regia(rocks).

APPENDIX 5

ANALYTICAL RESULTS

Cominco Exploration Laboratory

(SOIL)

MADMAN MINING INC LTD-X01

Л

L11/L14/L16/L16.5/TRV4

Job V 01-0271S

Report date 20 JUL 2001

.

	LAB NO.	FIELD NUMBER	East+ West-	North+ South-	Au ppb	Wt Au gram
	S0101357	L11N 0+00			25	10
	S0101358	L11N 0+25E			<10	10
	\$0101359	L11N 0+50B			<10	10
	S0101360	L11N 0+75B			<10	10
	\$0101361	L11N 1+00E			<10	10
	S0101362	L11N 1+25E			<10	10
	S0101363	L11N 1+50E			<10	10
	S0101364	L11N 1+75B			15	10
	80101365	L11N 2+00E			<10	10
	\$0101366	L11N 2+25E			20	10
L LLAN	S0101367	L11N 2+50B			<10	10
	S0101368	L11N 2+75E			17	10
	S0101369	L11N 3+00B			22	10
	S0101370	L11N 3+25B			<10	10
	S0101371	L11N 3+50B			<10	10
	S0101372	L11N 3+75B			<10	10
	S0101373	L11N 4+00B			20	10
	\$0101374	L11N 4+25B			<10	10
	S0101375	L11N 4+50E			-10	10
	S0101376	L11N 4+75B			<10	10 10
	S0101377	LIIN SHUVE			<10	10
	S0101378	LI4N 0+255			<10	10
	S0101379	LIAN 0+505			<10	10
	SULU138U .	14N 14007			12	10
	SUIU1381 /	514N 1+005			-10	10
	50101382 1	LIAN 1+236			<10	10
	50101383	LIAN 143VE			<10	10
	50101304 1	14W 24000			<10	10
	20101396 1	14N 24008			30	10
	CO101307 1	14N 2450R			<10	10
	S0101388 1	LIAN 2+758			<10	10
	50101389 1	L14N 3+00E			12	10
しらと	90101390 1	L14N 3+25E			<10	10
	S0101391 1	L14N 3+50B			<10	10
	50101392	L14N 3+75E			<10	10
	S0101393 J	L14N 4+00E			<10	10
	\$0101394 1	L14N 4+258			<10	10
	S0101395 1	L14N 4+50B			45	10
	80101396 1	L14N 4+75B			<10	10
	S0101397 I	L14N 5+00E			<10	10
	S0101398 I	L14N 5+25E			<10	10
	S0101399 I	L14N 5+50E			<10	10
1-2		L16.5N 0+00			<10	10
	S0101401 I	16.5N 0+25W			<10	10
	S0101402 I	16.5N 0+50W			<10	10
	S0101403 I	16.5N 0+75W			<10	10
$\mathcal{M}_{\mathrm{ext}}$	S0101404 I	16.5N 1+00N			<10	10
	S0101405 I	16.5N 1+25W			<10	10
	S0101406 I	16.5N 1+50W			<10	10
	S0101407 H	L16.5N 1+75W			<10	10

·						
1	LAB NO.	FIELD NUMBER	East+	North+	Au	Wt Au
/			West-	South-	ppb	gram
	S0101408	L16.5N 2+00W			<10	10
	S0101409	L16.5N 2+25W			<10	10
	S0101410	L16.5N 2+50W			<10	10
·	S0101411	L16N 0+00			12	10
	S0101412	L16N 0+25W			<10	10
	S0101413	L16N 0+50W			<10	10
	S0101414	L16N 0+75W			<10	10
	S0101415	L16N 1+00W			<10	10
	S0101416	L16N 1+25W			<10	10
21	S0101417 J	L15N 1+50W			<10	10
	S0101419	L16N 1+75W			<10	10
	S0101419 J	L16N 2+00W			<10	10
	S0101420 I	L16N 2+25W			<10	10
	S0101421 I	L16N 2+50W			<10	10
	S0101422 1	rrv4 0+00			<10	10
	S0101423 7	TRV4 0+50			<10	10
	SQ101424 1	CRV4 1+00			<10	10
	S0101425 T	CRV4 1+50			<10	10
	S0101426 T	rrv4 2+00			<10	10
	S0101427 1	RV4 2+50			<10	10
	S0101428 T	TRV4 3+00			<10	10
	S0101429 T	RV4 3+50			<10	10
	S0101430 T	RV4 4+00			<10	10
	S0101431 T	RV4 4+50			<10	10
	S0101432 T	RV4 5+00			<10	10

.....

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised If requested analyses are not shown ,results are to follow

ANALYTICAL METHODS

Au Aqua regia decomposition / solvent extraction / AAS Wt Au The weight of sample taken to analyse for gold (geochem)

MADMAN MINING INC LTD-X01

Job V 01-02718

L11/L14/L15/L16.5/TRV4

Report date 20 JUL 2001

AB NO	FIELD NUMBER	Cu ppn	РЪ ррш	7n ppm	Ag ppm	As ppm	Ba ppm	Cd. ppm	Co mgg	ni PPM	Fe %	Mo ppm	Cr ppm	Bi ppm	Sb ppm	V ppm	Sn ppm	N Dom	Br ppm	У ррв.	La ppm	Ma ppm	Mg %	TÌ T	A1	Ca %	Na %	К %	P
101357	L11N 0+00	31	11	102	 < . 4	48	 89	~1	10		2.33	 e2	16	 c 5		36	· · · · · · , 7	· · · · · · · · · · · · · · · · · · ·	30						1 95				
101358	L11N 0+25B	58		98	.5	44	59	<1	5	15	1.72	~2	9	<5	c5	18	1	~2	49	12	21	240	.31	.04	1.75	.29	.02	.07	1283
101359	L11N 0+50E	49	9	199	.4	49	84	<1	11	18	2.13	<2	9	<5	<5	22	2	~2	21	5	3	320	10	.04	1.30	. / 9	EU.	- 05	229
101360	L11N 0+75E	в	9	94	<.4	38	102	<1	4	10	1.44	<2	9	<5	<5	18	<2	<2	15	3	я	575	12	.05	1 47	. 47	.02	.07	812
101361	L11N 1+00E	27	9	90	e.4	78	83	<1	4	15	1.73	<2	10	<5	<5	16	<2		21	14	22	333	16	.03	2.17	. 2	.U.4	.02	1133
101362	L11N 1+258	16	8	73	<.4	70	104	د1	5	13	1.65	<2	9	<5	<5	22	2	-2	15		A	377	- 40	.00	2,35		- 03	.04	497
101363	L11N 1+5DE	12	8	95	<.4	46	114	<1	5	13	1.61	₹2	. 9	7	د5	21	-2		23	Ă	0	403	17	.05	1 07	. 4 1	- 0.3	.06	0/3
101364	L11N 1+758	44	10	211	<.4	47	112	<1	18	24	2.63	<2	12	<5	<5	34	2	< 2	24	1	12	1123		.05	, , , , , , , , , , , , , , , , , , , ,	. 49	.03	.08	753
101365	L11N 2+00E	29	12	99	<.4	31	203	<1	16	19	2.03	<2	10	<5	<5	27	2	-2 - 2	34	-		2655		.07	3 1	,47	.07	-08	590
101366	L11N 2+25B	39	13	87	ح.4	41	103	<1	11	18	2.47	<2	11	<5	<5	30	ح2	<2	29		, A	1645	23	100	1 01	.35	.07	.07	/ 39
101367	L11N 2+50B	23	9	67	۰.4	33	112	<1	8	15	2.06	<2	12	< 5	<5	30	<2	<2	13	5	- -	A58		07	2.91	.23	.00	.09	112
101369	L11N 2+75E	38	8	135	<.4	114	206	<1	17	26	2.81	<2	10	< 5	-5	31	-2	<2	12	7	7	1843	. 23	06	7 45	.12	.03		940 9696
101369	L11N 3+00E	97	12	197	. 4	561	229	2	و	13	2.05	<2	10	<5	< 5	19	2	<2	34	6	10	1987	-18	.05	2.17	78	.01	. 10	2000
101370	L11N 3+25E	28	14	97	۲.4	104	171	<1	10	15	1.96	<2	10	<5	< 5	25	3	<2	37	5	8	2222	.21	.01	2.27		.04	.00	1700
101371	L11N 3+50B	33	13	121	<.4	80	181	1	13	16	2.44	<2	12	< 5	< 5	36	2	<2	37	12	17	2275	. 28	.05	2.5		.00		1/00
101372	L11N 3+75E	143	21	155	.7	415	282	4	48	22	3.78	<2	8	<5	5	57	4	<2	108	18	8	6483	. 17	01	1 87	1 19			2065
101373	L11N 4+00E	49	15	102	.4	63	205	<1	16	14	3.14	< 2	11	<5	<5	42	2	<2	33	16	15	1995	. 18	05	3 05	40		10	2003
101374	L11N 4+25E	41	11	131	e.4	64	76	<1	8	12	2.13	<2	10	<5	<5	21	2	<2	35	20	22	1089	. 26	.04	2.31	75	.00	.13	101
0101375	L11N 4+50E	23	36	110	<.4	25	405	1	11	14	2.43	<2	18	< 5	<5	29	<2	<2	131	10	36	4341	.51	.01	2.04	1.23		.03	2011
101376	L11N 4+75E	19	14	96	<.1	75	133	<1	12	13	2.47	₹2	10	<5	<5	29	<2	<2	38	- 6	6	1565	.23	05	3.4		.00	0.5	2136
101377	L11N 5+00E	17	11	53	<.4	68	117	<1	8	11	1.84	<2	в	<5	<5	23	< 2	<2	29	8	12	961	.22		7.18	31		- 03	4133
101378	414N 0+25E	13	12	68	.4	29	90	<1	s	11	1.65	<2	10	<5	<5	20	<2	< 2	26	5	14	412	. 19	05	1 66	26		.01	590
101379	L14N 0+50E	146	10	122	.4	108	97	<1	52	25	7.13	6	12	<5	<5	41	3	<2	25	7	7	2668	.14	. 63	2.51	70	.04	05	3007
101380	L14N 0+75E	3	8	54	c.4	15	89	<1	3	9	1,22	<2	8	<5	<5	17	<2	<2	17	2	B	587	.11	.03	1.37	16		.03	3007
0101381	L14N 1+00E	17	12	72	<.4	18	117	<1	7	11	2.15	<2	10	< 5	<5	26	2	< 2	11	3	7	727	.14	.05	1.94		40. CD	.04	1007
01013B2	L14N 1+25E	5	7	45	۰.4	11	176	<1	3	6	1.24	<2	8	<5	<5	15	<2	<2	15	3	10	1403	.1	.02	. 97	14	.02	.03	744
0101383	L14N 1+508	15	6	91	۲.4	21	115	<1	5	13	1,6	<2	10	جې	< 5	19	<2	<2	12	2	6	434	.16	.04	1.63	.11	02	.03	740
0101304	L14N 1+75E	23	8	171	<.4	28	67	<1		10	1.45	<2	6	<5	<5	22	<2	<2	14	2	4	944	.1	.04	1.46		.0.	.01	274
101385	L14N 2+D0E	29	10	168	<.4	97	256	<1	10	16	2,09	<2	10	<5	<5	19	<2	<2	27	-		1524	.17	. 64	2.29	, 23		.05	3557
101386	L14N 2+25E	49	8	117	<.4	69	93	<1	12	20	2,52	2	12	<5	<5	33	<2	<2	20	7	4	510	. 28	. 67	2.79		. 04	.00	3331
0101387	L14N 2+50E	21	6	135	<.4	70	127	<1	7	15	1.99	<2	12	<5	<5	21	<2	<2	23	5		124	.20	. V/	2.06	2. 26	.04	.00	030
101388	L14N 2+75E	29	10	205	ج.4	6B	140	<1	10	19	2.63	<2	14	< 5	<5	32			12	5	6	944	76	. va Ré	7 1	11	. 02	- 04	010
0101389	1.14W 1+00P			101														~			•	211			2.1		. 02	-05	508

. •

n 1997 - Er al de la sectet de la secte participation de la secte de la secte de la secte de la secte de la sec

, we get [1] and even to descend the explicit the static product $p_{1,2}(s)$ nger mit solare dit

•																											-		
LAB NO.	FIELD NUMBER	Cu	Pb	Zn	Ag	λs DDT	Ba	Cd	Co	Nİ	Pe .	Mo	Cr	B1	6b	v	Śn	W	Sr	Y	La	Mn	Мg	Tİ	A1	Ca	Na	ĸ	₽
											•								ррш 	ppm	ppm 		*	•	•	*	•	ł	ppm
80101390	L14N 3+25E	34	11	68	<.4	117	104	<1	12	19	2,34	<2	12	<5	<5	35	2	<2	24	5	8	752	.24	.06	2.41	. 25	.02	.05	548
50101391	L14N 3+50E	15	8	54	≺.4	90	123	<1	8	20	2.2	< 2	13	<5	<5	37	<2	<2	25	4	- 4	577	.25	.08	2.59	. 22	.03	.06	813
\$0101392	L14N 3+75E	в	10	62	< . 4	229	163	<1	6	12	1.62	<2	12	<5	<5	27	<2	<2	23	2	5	1132	.19	.05	1.78	.23	.02	.07	889
50101393	L14N 4+00E	18	7	45	<.4	246	73	<1	6	14	1.74	<2	9	< 5	< 5	20	2	₹2	16	4	5	116	.16	. 07	2.65	.24	. 04	,05	272
S0101394	L14N 4+25E	é	9	76	< . 4	90	129	<1	5	10	1.35	<2	8	< 5	< 5	9	2	≺2	21	2	2	772	.13	.04	1.61	.23	.03	.05	1801
\$0101395	L14N 4+50E	22	В	67	<.4	280	96	<1	10	15	2.1	<2	10	< 5	< 5	32	<2	₹2	19	4	6	869	.21	.08	2.95	.15	. 03	.05	1280
90101396	L14N 4+758	12	в	B1	۲.4	374	154	1	9	13	1.66	<2	В	< 5	< 5	18	<2	<2	28	2	2	557	.21	. 05	2.27	.25	.03	.07	945
80101397	L14N 5+90E	7	5	93	۲.4	144	130	<1	7	11	1.15	<2	6	<5	<5	13	<2	<2	13	<2	<2	729	.11	. 05	2.01	.14	.03	04	1248
80101398	L14N 5+25E	58	10	102	<.4	81	136	1	21	20	2.03	<2	9	<5	<5	22	<2	<2	21	4	2	1643	.17	.05	1.68	. 26	.07	.06	889
\$0101399	L14N 5+50E	196	19	63	.4	53	74	<1	19	18	3.02	2	8	<5	<5	27	з	<2	40	6	в	1184	.16		2 71	37	06	.00	2055
80101400	L16.5N 0+00	23	14	114	< , 4	17	252	1	21	20	2.94	<2	11	<5	<5	30	<2	<2	42	7	7	3980	25	06	2 76	33		.00	2033
80101401	L16.5N 0+25W	24	17	92	۲.4	13	160	<1	10	19	2.27	<2	12	<5	<5	31	э	<2	30	5	12	1445	75	07	2 50		.00	.07	41/4
\$0101402	L16.5N 0+5DW	12	10	96	۲.4	12	87	<1	5	12	1,86	<2	10	<5	<5	23	<2	<2	14	3	4	401	.13		1 87	14	03	. 05	977) 974
80101403	L16.5N 0+75W	18	7	313	<.4	17	144	<1	11	14	2.37	< 2	11	<5	<5	23	2	<2	33	2	-	1058	12	06	2.09	. 1.1	.03	.00	201
80101404	L16.5N 1+00W	56	14	151	۲.4	22	197	<1	14	16	3.45	<2	10	<5	<5	32	<2	<2	29	-	-2	2715	16	04	1 8 3		.03		1100
S0101405	L16.5N 1+25W	14	9	86	< . 4	14	156	<1	7	16	2.04	<2	12	<5	<5	33	2	- 1	14	Ă		011		, VT 77	2.34	. 2 2	.07	-07	1308
\$0101406	L16.5N 1+50W	13	9	50	<.4	23	118	<1	5	12	1.8	<2	11	<5	<5	28	<2	 	27		15	547	16		7 74	.13	.03	.06	890
\$0101407	L16.5N 1+75W	9	7	89	5.4	32	120	<1	Å	12	1.54	c2	10	- 5	-5	19		~ 2	21			563	.10	.00	2.24	. 23	.03	.06	999
S0101408	L16.5N 2+00W	7	в	156	<.4	24	133	<1	5	12	1.43	 د2	ģ	-5	<5	15		-2	13	- 1 - 2	2	663	13	. 0.9	1.83	.15	.02	.05	1522
S0101409	L16.5N 2+25W	25	8	43	c.4	22	82	 ح1	5	12	2.15	2	11	25	-5	27	~~		20	5	10	347	.13	.04	1.68	. 12	-03	.04	1370
80101410	L16.5N 2+50W	4	5	49		10	110	۰ <u>-</u>	-	13	1.41					20			17		- 14	31/	. 10	.05	1.36		. 02	- 05	483
50101411	L16N 0+00	106	12	80		23	54	-1 -1	25	24	3.48		11		~~	36		.2	10	3	2	100	. 13	.05	1.68	.12	.03	.04	517
\$0101412	L16N 0+25W	11		116		15	103	1	5		1 24	-2		~*		16	ه در	-0	10	•	• •	1333	. 23	.05	2,1	.08	.02	- 05	1177
50101413	LIKN 0+50W	11	10	85	- 4	10	76	~1	11	16	3 45	- 1	11	- 6		15		< <u>4</u>	71	-	-	1398	.09	.02	.77	.30	.04	.04	452
80101414	L16N 0+75W	74	-v s	227	~ 4	20		~1		10	3.43	- 2		- 6	- 5	30	~ 2	~ X X	40	5	8	465	.20	.04	3.01	.23	.02	.06	637
80101415	L16N 1+00W		11	308	~ 4	15	100			11	1 60	~ 7	,	- 5	-5	10	- 4	~2	27			546	.10	.05	1.67	.18	.03	.09	607
\$0101415	LIGN 1425W	12		747		25	160			14	1.03		10	< 3 . F	< 0 . F	10	< 4 	*2	10	1	10	472	.15	. 04	1.53	.13	. D2	.05	428
50101417	LIGN 1450W	12		145		21	174	-1	, ,	11	1.40	× 4 - 0	10	< 5	< 3	22	< 2	< Z	36	3	4	1106	.21	. 04	1.60	.21	.02	.1	820
80101418	1.16W 1.75W		-	115		10	124	~1	5	10	1,57	< 2		< 2	<5	22	<2	<2	30	3	Ş	960	.14	. 04	1.47	. 2	.02	. 07	800
80101419	116M 2+00W	,	10	53		1.2	,,,	-1		12	A. //	<4	11	< 3	< 5	26		<2	26	4	10	703	.2	. 05	1.4	.26	.02	. 06	299
90101420		р 16		57	5.1	10	89	<1 - 1	6	12	2.08	< 2	13	<5	< 5	38	2	< 2	24	2	6	1054	. 27	.04	1.65	. 21	.02	.09	306
40101421	115W 3150W	76		67	<.4	21	191	<1	7	9	1.99	<2	13	<5	<5	31	<2	<2	52	13	34	2233	. 26	.03	1.72	.43	. D2	.09	1051
80101477	TRUA 0.00	25	-	48	< 1	22	81	<1	7	14	2.34	<2	16	< 5	<5	38	<2	<2	18	6	16	622	. 25	.05	1.9	. 19	. D2	.06	876
20101432	INV& U+UU		1	227	< 4	3	121	<1	5	8	1.72	<2	6	< 5	<5	21	<2	<2	19	2	6	308	.26	.07	2.4	.15	. 02	.08	1818
00101444	1894 0+50	2	<1	848	۲.4	3	78	<1	1	7	1.48	<2	5	≺5	<5	16	<2	<2	21	2	Э	298	. 2	.07	2 39	.15	.03	.08	1407
00101449	TRV4 1+00	7	7	160	<.4	5	130	<1	4	8	1.5	<2	6	<5	<5	20	<2	< 2	25	2	10	294	. 25	.05	1,47	. 21	.02	. 09	1460
20101432	TRV4 1+50		- 4	350	4.4	<2	163	<1	4	7	1,44	<2	5	<5	<5	16	<2	c2	26	3		407	26	0.4	1 8	20	0.2	1	2721

																								01-	02719	PAGE	Э			
LAB NO	FIELD NUMBER	Сы ррж	Pb Dom	Zn ppm	Ag ýpan	ya Tadd	Ba ppm	Cd ppm	Co ppm	Ni ppm	Fe	Mo Ppm	Cr ppm	Bi ppm	9b ppm	v ppm	Sn FFM	w ppm	Br ppm	Y ppm	La ppm	Mn ppm	Mg %	Ti %	л1 *	Ca X	Na %	R R	P DOM	
B0101426	TRV4 2+00	4	9	246	<.4	<2	102	e 1	4	 7	1 50													• • • • • • •						
B0101427	TRV4 2+50	в	4	185	c.4	-2	100	21	-	,	1.35		5	<5	<5	17	2	₹2	26	2	3	312	. 3	. 06	1,78	. 3	.02	.1	833	
80101428	TRV4 3+00	5	6	171	c.4	3	117	-1	5	0	1.70	< 4		<5	<5	21	<2	<2	36	3	<2	458	.45	. 05	1,97	. 33	.02	.13	1847	
80101429	TRV4 3+50	10	7	123	c.4		68	-1	-	3 10	1.19	7		~5	<5	14	<2	<2	35	2	4	751	. 2	. 05	2.17	.28	.02	.09	3455	
\$010143 8	TRV4 4+00	6	7	99	r 4	2	122	-1	-	10	1.22	\$		25	<5	23	<2	<2	22	2	< 2	350	. 29	.05	1.87	.19	- 02	.13	1086	
80101431	TRV4 4+50	10	5	77	- A	<u>م</u>	116	-1			1.6		6	<5	<5	23	<2	<2	17	3	10	563	. 24	.06	1.7	.15	.02	.06	972	
S0101432	TRV4 5+00	6	5	01	~ 4		110	-1		- 13	1.34	<2	9	<5	<5	19	< 2	<2	17	2	7	516	.25	.05	1.57	.1	.02	08	R83	
			····								1.66	<2 	<4 	<5 	<5	20 	2	<2	26	3	4	477	. 31	.06	1.85	. 19	.02	.1	1310	
	отенгвешие х	-amall s	sample	E-ex	ceeds 4	calibr.	ation	Cubeir	on che	ok a d	P-rew!																			

I-insufficient sample X-small sample E-axceeds calibration C-being chacked R-revised If requested analyses are not shown , results are to follow

ANALYTICAL METHODS

ICF PACKAGE :0.5 gram sample digested in hot reverse aqua regia (soil,silt) or hot Aqua Regia(rocks).

LAB NO	HELD NUMBER	Cu	ቦኑ	Zn	٨g	As	Ba	Cđ	Co	Ni	Fe	Mu	Cr	Bi	Sb	v	Sn	w	Sr	Y	1.a	Ma	Mg	Ti	Al	Ca	 Na	к	
••••••••••••••••••••••••••••••••••••••		ppm	ррт	ррт	ppm	ppen	Ppm	րթու	ppm	ppm	%	ppm	ppm	ppm	ppm	ppin	ррт	ppm	ppm	Ppm	ppm	ppm	%	%	%	%	%	%	- բթո
S0101433	L10N 0+00	23	12	61	<4	47	115	<1	10	17	7 39	<2	9	~5	~5		······		••••••		••••••							••••••	
50101434	1.10N 0+25E	12	8	71	<4	22	73	<1	5	15	1.77	<2	u i	<3	<	21	3	-2	17	4	5	458	0.19	0.05	2.77	0.42	0.03	0.06	768
\$0101435	L10N 0+50E	38	8	82	<4	31	100	<1	11	18	7 19	<2	12	<5	<5	23	Z	<2	24	6	6	776	0.17	0.02	3.65	0.77	0.02	0.00	029
S0101436	1.10N 0 (75E	25	8	98	<.4	18	120	<1	4	10	1 48	<2	10	<5	<5	14	<2	<2	42	å	7	656	0.17	0.03	2.35	0.22	0.03	0.05	730
80101437	L10N 1+00E	17	9	127	<.4	35	79	<1	4	15	178	<2	1	<5	<5	15	<2	<2	29	7		458	0.15	0.07	2.44	0.43	0.05	0.03	043
S0101438	L10N 1+25E	37	9	73	<.4	16	102	<1	5	13	1.69	<2	11	- 5	<5	74	2	<2	74	6	, o	466	0.15	0.05	2.37	0.55	0.02	0.00	045
\$0101439	LION 1+50H	38	9	91	<.4	41	113	<1	5	13	1.65	<2	11	<5	<5	23	~2	<7	27	4	á	603	0.14	0.05	2.97	0.20	0.02	0.04	554
50101440	L10N 1 (75E	25	11	204	<.4	72	110	<1	18	24	7 70	<2	8	<5	-5	25	2	<2	74	4	÷	565	0.12	0.00	2.33	0.23	0.02	0.07	753
S0101441	L10N 2+00E	33	13	94	₹.4	51	209	<1	16	18	7.00	<2	E	<5	<5	24	2	~	34		a	245	0.12	0.00	2.07	0.22	0.05	0.07	/90
50101442	1.10N 2+25E	17	14	106	<.4	47	176	<1	11	18	2.09	<2	10	<5	-3	27	-	<2	73	4		545	0.12	0.04	2.03	0.07	0.06	0.04	534
S0101443	L10N 2+50E	25	8	92	<.4	60	120	<1	8	15	2.17	<2	8	<5	<5	24	-	<7	15	-		469	0.23	0.04	1.31	0.27	0.07	0.05	412
80101444	L10N 2+75E	13	9	49	<.4	48	777	<1	17	26	2.12	<2	9	<5	4	30	2	0	31	, 7	,	430	0.21	U.100	1.04	0.33	0.05	0.06	720
\$0101445	L10N 3+00E	18	13	99	0.5	65	247	2	9	13	2.07	<2	9	4	<5	3.4	2	~	22	14	,	043 480	0.23	0.00	2.43	0.22	0.06	0.08	474
S0101446	1.10N 3+25E	12	15	86	<.4	87	194	<1	10	15	2.11	<2		<5	đ	27	1	à	22	16	10	488	11.1.1	0.07	3.13	0,49	0.07	0.09	646
S0101447	L10N 3+50H	84	12	82	<.4	90	104	1	13	16	2.07	<2	11	<5	<1	22	7	~	10	10	17	987	0.23	0.06	216	0.27	0.04	0.05	950
S0101448	1.10N 3+75E	67	20	87	0.6	204	204	4	48	22	2.31	<7	11	<5	5	33	4	~	15	-		677	0.24	0.04	2.54	0.17	0.03	0.08	768
50101449	1.10N 4+00E	40	15	90	0.8	96	304	<1	16	14	3,89	5		<5	-5	41	י ר	~1		,		883	0.24	0.06	1.51	0.35	0.06	0.05	506
S0101450	L10N 4+25E	10	10	82	<4	350	221	<1	8	12	3.23	~	0	~5	đ	71	2	~	34	, y	15	433	0.27	0.04	2.53	0.39	0.05	0.09	645
80101451	L10N 4+50E	84	35	156	<4	320	427	1	11	14	2.19	-0	2	~	~	77	-	~	119	,	2	/54	0.22	0.03	2.35	0.45	0.05	0.09	552
\$0101 452	L10N 4+75E	76	13	218	<4	138	437	<	11	13	2.30	<7	Q	<5	-	73	~	~	116	~	30	220	0.2	0.03	0.88	0.34	0.07	0.07	456
80101453	L10N 5+00B	81	10	210	<4	110	143	<1	9	11	2.54		11	~		21	~	~2	,,,			202	0.4.5	0.04	1.42	0.54	0.07	0.06	635
S0101454	L12N 0+00	20	10	73	<.4	33	120	3	13	12	1.89	~	11		~	10	-1	2	03	n 	y 	806	0.2	0.07	2.24	0.53	0.08	0.07	450
80101455	1.12N 0+25B	30	11	42	<4	34	97	<1	12	11	1.69	~	13	~5	~5	10	~	~	21	y 	13	542	0.18	0.05	2.52	0.42	0.117	0.12	347
S0101456	L12N 0+50E	18	13	57	<.4	18	(1)4	<1	29	25	7.34		10	~*	~	17	~~	4	20	y .	14	662	0.13	0.06	2.78	0.26	0.03	0.03	585
80101457	L12N B+75E	11	9	92	< 4	26	90	<1			1.25		14			32	, ,	~	20	fi 1.1	7	557	0.13	0.09	2.63	0.29	0.04	0.04	745
50101458	L12N 1+00E	25	14	76	< 4	31	126	<1	5	11	2.21	~1	17			22	~4	< <u>-</u>		14	18	557	A.14	0.06	2.46	0.16	0.05	0.05	645
\$0101459	L12N 1+25E	17	8	96	< 4	41	190	<1	4	6	1.27	0	14	~	~	22		~2	14	3	7	747	0.15	0.04	1.29	0.25	0.05	0.06	654
80101460	1.12N 1+50E	36	8	67	< 4	33	124	-1		11	1.60	~2	11			25	~~	<2	12	9	10	443	0.13	0.03	1.79	0.25	0.06	0.08	564
\$0101461	1.12N 1+75F	16	7	154	< 4	47	12		0	10	1.49			3	~	19	•.2	~2		3	9	467	0.13	0.02	2.06	0.31	0.03	0.05	474
50101462	112N 2+00E	 7	11	79	< 4	45	278		10	16	2.15	~2	•			17	<2	<2	15	2	7	874	0.14	0.06	2.32	0.42	0.02	0.06	845
\$0101463	1.12N 2+25E	22	0	116	- 4	40	100	-	12	20	2.59		Ŷ	,		10	•2	<2	24	5	6	563	0.13	0.05	2.91	0.32	9.05	0.08	546
\$0101464	1.12N 2+50E	47	, o	01		49	117	- 1	7	15	2.04	•.2		5.3	· ·	21	~2	·2	23	5	4	544	0.17	0.06	2.41	0.22	0.02	0.07	554
\$0101465	L12N 2175F	30	12	RO	- A	67	111	. 1		10	2.70		11	~ 3		22	×2	<2	22	3	4	525	0.16	0.07	1 59	0.32	0.03	0.06	668
••••••••••										• • • • • • • •	4.30	•4	1.5	< 3		.00	3	-2	11	5	6	874	0.14	0.05	2 78	031	0.02	0.06	534

1.10/1.12/1.13/1.15/1.17/1.17.5/1.18

Job V01-02718

MADMAN MINING INC 1.175-X01

Report Date 21 JUL 2001

1.5

01-02738 PAGE 2

LAB NO	FIELD NUMBER	Cu	Ph	Zn	Λg	Λ.	Ra	Cđ	Сө	Ni	Fe	Mo	Cr	Di	Sb	v	Sn	w	Sr	Y	l.a	Mn	Mg	тi	AI	Ca	Na	к	 ۲
		ррпі	חייויו	ננצוק	ppm	ppm	Բիսո	թրու	թթա	गणग	n _{io}	ppm	ուլդ	արո	ppm	ppm	سطا	ppm	ppni	Ppm	ppni	րիա	%	n _{io}	~	24	%	•~	ppm
S0101466	2N 3+00E	26	9	98	<.4	90	112	<1	ii ii	20	2.41	<2	11	<5	<5	27	2	ź	29		5	773	0.71	6.04	315	0.59	0.06	0.04	460
\$0101467	2N 3+75E	16	10	114	0.5	97	132	<	9	19	2.26	<2	13	<5	<5	26	2	•2	19	5	4	752	0.71	0.04	2.65	0.27	0.00	0.04	748
50101468	2N 3+50B	74	9	127	<.4	89	176	<1	7	20	1.87	<2	12	<5	<5	25	·2	- 2	16	5	3	577	0.16	0.05	2 53	11.74	0.02	0.05	663
\$0101469	2N 3+75E	9	11	135	<.4	108	78	<	7	32	1 79	<2	11	<5	<.5	24	-12	<7	24	2	<2	952	0.12	0.06	2.85	0.21	0.01	0.00	640
80101470	2N 4+00E	96	ĸ	142	<.4	228	139	<	8	14	1 30	-2	10	<5	<5	22	2	×2	15	5	6	1161	0.17	0.07	245	0.21	0.04	0.07	642
\$0101471	2N 4+25E	37	8	189	<4	134	103	<1	9	10	2 15	\sim	R	<5	<5	14	2	·2	20	<7	6	777	0.75	0.07	1.55	0.70	0.02	0.07	643
\$0101472	2N 4+50E	56	7	130	<4	149	166	<1	Ð	15	1 70	<2	10	<5	<5	24	<2	-2	26	3	Å	760	0.17	0.07	1.05	0.33	0.05	0.00	650
\$0101473	2N 4+75E	82	6	176	<4	312	140	1	10	13	1.10	<2	9	<5	<5	22	<2	-2	25	6	3	557	0.17	0.00	1.93	0.34	0.00	0.04	640
50101474	2N 5+00E	18	6	145	.4	206	146	<1	12	11	2.00	<2	B	<5	<5	25	ō	0	73	Š	3		0.17	0.09	1.41	0.24	0.07	0.05	945
\$0101475	3N 0+00	18	15	49	<.4	12	79	1	20	20	2.05	~2	13	<5	<5	17	0		73	2		774	0.24	0.00	1.41	0.18	0.02	0.06	1121
\$0101476	3N 0+25W	12	16	56	<.4	16	777	<1	13	19	3.03	2	11	<5	<5	33	3	<7	40	ć		976	0.15	0.01	2.30	0.52	0.05	0.08	682
50101477	3N 0+50W	15	9	82	<.4	18	172	<1	n	12	2.02	⊲2	11	< 5	<5	31	ح	-7	30	,	17	440	0.15	0.05	2.42	0.21	0.06	0.09	765
S0101478	3N 0+75W	34	7	68	< 4	25	153	<1	13	14	4.53	<2	13	< 5	<5	36	- <u>-</u> -	.7	23	3	12	902	0.33	0.06	2.4	0.14	0.03	0.08	745
50101479	3N 1+00W	26	13	78	<4	14	135	<1	12	16	7.44	⊲.	12	<5	<5	42			22	2		6/2	0.27	0.07	1.42	0.24	0.03	0.07	764
50101480	3N 1+25W	61	8	90	<4	21	100	<1	6	16	2.44	-2	12	< 5	<5	33	-2	.7	19	3	4	242	0.11	0.05	2.24	0.18	0.04	0.04	548
S0101481	3N 1+50W	35	я	97	<4	18	128	<1	5	12	5.55	<2	10	<5	<5	22	-0		17			575	0.23	0.06	1.44	0.23	0.04	0.05	475
\$0101482	3N 1+75W	21	6	129	<4	39	147	<1	5	12	2.10	~	14	~5	-5	21	~7		23	;	10	444	0.20	0.06	1.34	0.24	0.64	0.06	649
\$0101483	3N 2+00W	27	7	178	-: 4	41	163	<1	7	12	1.60	ā	10	-5		24	~1		24	4 .2	4	343	11.15	11.06	2.83	0.24	0.06	0.06	545
S0101484	3N 2+25W	24	7	167	<4	78	89	<1	13	12	1.35	-	10	-5	-5	76	~1		23	~	•	/34	11.14	0.05	2.65	11.41	0.08	0.06	640
50101485	3N 2+50W	31	4	143	<.4	54	170	4	4	13	1.47		11	6	~~~~	71	~	-1	17	4	9	4414	0.15	0.05	1.36	10.33	0.08	0.05	643
50101486	3N 2+75W	15	5	114	<.4	61	97	<1	6	17	2.21	~		~		21		-2	13	4	2	322	0.12	0.07	1.68	0.55	0.02	0.05	564
50101487	3N 3+00W	27	6	93	<.4	74	70	<1	6	15	1.47	~		4		22	··2	~2	20	0	11	454	0.17	0.09	1.73	0.22	0.03	0.07	476
\$0101488	3N 3+25W	51	9	96	< 4	87	18	<1		19	3.55				~		~2	~	28	4	fi -	476	0.15	0.04	2.14	0.24	0.03	0.05	1245
50101489	3N 3+50W	14	13	96	< 4	73	145	<1	12	16	1.32	2	11	~	5	13	-2	2	19	3	8	856	0.21	O.OR	1.76	0.22	0.04	0.04	467
\$0101490	3N 3+75W	82	4	112	0.6	88	121	<1	11	15	3.55	2		~	~5	20	~2	~2	22	2	4	467	0.25	0.04	1.65	0.25	0.02	0.05	336
50101491	3N 4+00W	45	7	78	< 4	t 14	112	-1		13	2.39	~	17		~2	41	~2	•:2	23		8	685	0.21	0.06	1.35	0.54	0.02	0.04	560
50101402	3N 4+25W	71	0	190	< 4	159	132	~1	ú	13	1.74	~	12	~>	~ 3	23	~2 ~	<2	25	4	9	679	0.23	0.05	1.43	0.49	0.04	0.05	755
50101493	3N 4+50W	65	R	161	0.7	750	176			24	2.34	~	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~ 3	- 3	22	~2	<2	Z4	4	9	853	0.26	0.09	Z.1	0.37	0.04	0.08	864
50101494	3N 4+75W	76	ŝ	205	11.4	190	78		12	19	1.61	~	12	~ 3		25	~2	<2	27	2	7	494	0.24	0.04	3.13	0.66	0.03	0.07	887
50101495	3N 5+00W	17	6	91	< 4	175	139			19	1.82	~1	12	~ 3	~ 3	24	*:Z	*2	25	<2	5	857	0.16	0.08	2.36	0.73	0.03	11.06	563
50101495	3N 5+25W	22	ň	170	< 4	790	103	1		10	2.14	~2	13	< 3	< 3	19	3	<2	25	4	6	745	0.18	0.07	1.65	0.39	0.04	0.07	556
50101497	5N 0+00	20	10	145	~ 4	19	146	~		11	2.04	-2	13	< 3	< 3	16	<2	<z< td=""><td>32</td><td>2</td><td>7</td><td>752</td><td>0.12</td><td>0.07</td><td>2.17</td><td>0.47</td><td>0.03</td><td>0.04</td><td>434</td></z<>	32	2	7	752	0.12	0.07	2.17	0.47	0.03	0.04	434
50101409	5N:0125W	12		00	·	20	157	- 1	21	20	2.41	2	11	~3		23	~2	-72	26	4	8	537	0.21	0.06	2.23	0.24	0.04	0.06	575
50101498	5N 0150W	10	0 4	71/	4 4	20	122	5 L 7	10	6.1 1.6	1.77	< <u>2</u>	12	<5	<5	24	~2	- 7	28	7	7	653	0.22	0.05	2.21	0.25	0.04	0.05	554
50101500	5N 0 + 75W	11	, ,	67 67	0.4	10	118	3	11	13	1 52	52	13	~5	*.5	27	- 12		42	5	3	584	0.25	0.05	1.23	0.12	0 02	0.06	545
\$0101501	5N TOHOW	24 30	ź	07 107	0.4 0.4	14	172	- 1	*	10	1.56	<2	12	• 1	•3	31	<7	• 2	43	5	8	377	0.28	0.08	2 32	0.53	0.02	0.08	456
		29	.)	61	0.9	74	143	~1	17	22	1.48	<1	9	1	- 5	30	4	× 2	17	4	5	1142	0.17	0.03	2 23	0.39	0.03	0.08	654

a balan antikan di Makamatén di antika karana karaka di kepada karang baharang baharang akarang akarang karang k

01-02718 PAGE 3

LABINO	FIELD NUMBER	Cu	Pb	Zn	Λę	Ая	Ва	Cd	Co	Ni	Fe	Mo	 Ст	Bi	SP 20	•••••	·· · ·		 e,	·····		····	••••			••••		· • • • • • • • • •	· · · · ·
		तस्तत	ppm	րյաս	ppm	թրու	Բթո	ppni	ppm	ppm	%	pixm	ррт	ppm	DDD	DD M	01907	-,	DUM	Para	1.8	MR	Mg	Ti	AI	Ca	Na	ĸ	Р
50101502	5N 1+25W	19	13	110	<.4	16		<1	9	14		0			~			ppm a	P	rpm	ран	ррт	76	~~	'%	%	%	°6	րրու
50101503	5N 1+50W	14	7	92	× 4	20	106	51	10	17	1.63	0	10		•.) 	.3.5	<2	~2	24	4	6	343	046	0.06	2.14	0,73	0.04	0.05	533
\$0101504	5N 1275W	20	10	116	< 4	28	10]	<1	23	12	1.81	-2			~3 ~4	27	< <u>-</u> 2	≺z	31	3	9	543	0.15	0.04	2.86	0.63	0.02	0.06	445
50101505	5N 2100W	39	17	148	<.4	30	132	<1	78	15	1.53		°	••• 	•.5	20	<2	<2	19	2	4	447	0.17	0.06	1.97	0.43	0.02	0,07	634
\$0101506	5N 2+25W	19	5	178	< 4	41	56	<1	16	12	1.63	~		~ >	<u></u>	25	<2	-2	25	3	3	574	0.23	0.08	2.32	lł.47	0.04	0.09	346
\$0101507	5N 2+50W	10	9	184		40	154	<1	10	10	1.67	~	10	• • •	<.) 	27	~	~2	33	5	8	479	0.21	0.07	2.32	0.34	0.03	0.05	454
\$0101508	5N 2+75W	28	8	99	< 4	30	78	-1	11	15	2.24	.2	12	< 3	0	25	Z	<2	32	4	x	865	0.24	0.04	1.2	0.64	0.02	0.06	666
\$0101509	5N 3+00W	34	7	112	<4	96	111	<1	17	13	1.71			<5 	< 2 . 4	23	<2	<2	32	5	6	685	0.26	0.06	1.24	0.53	0.02	0.08	535
80101510	5N 3+25W	15	11	86	< 4	77	122	1	14	13	1.72	~	10	<>	0	24	<2	-2	30	2	8	456	0.22	0.05	1.75	0.22	0.33	0.06	366
50101511	5N 3+50W	46	13	42	< 4	48	[46	<1	13	24	2.24	-2	10		<3 .4	26	<2	<2	27	3	6	557	0.28	0.05	1.25	0.52	0 03	0.07	420
\$0101512	5N 3+75W	37	9	135	×.4	119	40		12	14	2.14	-2	10	·:>	0	24	<2	~2	24	3	3	698	0.23	0.03	1.68	0.29	0.03	0.06	563
50101513	5N 4+00W	42	4	176	< 4	740	46	~1	12	10	2.44	~2	ь 10	<>	<	23	<2	<2	21	5	5	1125	0.31	0.04	1.97	0.37	0.02	0.05	552
\$0101514	5N 4+25W	65	9	204	< 4	116	88	-1		10	L.64	~2	10	0	<5	19	2	<2	24	5	7	1764	0.19	0.04	2.1	0.67	0.02	0.06	436
\$0101515	5N 4)50W	16	9	164	- A	317	163	-1	0 5	26	1.59	~2	11		<	24	<2	<2	27	3	5	445	0.22	0.05	L.74	1.19	0.03	0.09	453
\$0101516	5N 4+75W	51	7	198		245	192	-1		20	1.48	<2	12	<1	<\$	25	<2	<2	34	5	4	545	0.2	0.06	1.55	0.49	0.03	0.07	543
\$0101517	5N 5+00W	91	13	118	< 4	717	145	-1	,	1.5	t.84	<2	8	<5	ও	24	<2	<2	31	6	7	269	0.24	0.06	1.67	0.15	0.04	0.06	344
50101518	5N 5+25W		6	78		118	145	~1	۰ د	15	1.36	<2	9	<5	ব	27	<2	-2	22	3	8	436	0.18	0.05	1.95	0.42	0.05	0.05	634
80101519	5N 5+50N	14	6	96	< 4	06	122	~1		10	1.55	~2	12	<5	<5	33	<2	<2	25	5	4	458	0.2	0.04	1.57	0.33	0.02	0.09	543
50101520	7N 0+00	11	 8	115		17	155	~1	10	- 12	1.45	<2	14	<1	<5	32	2	<2	26	6	2	653	0.11	0.04	1.67	0.23	0.02	0.04	534
S0101521	7N 0+25W	34	л я	317	~4	1,	126	•.1	13	14	1.63	<2	12	<5	<5	30	2	<2	13	4	8	648	0.23	0.04	1.87	0.32	0.03	0.04	856
S0101522	7N 0+50W	17	17	200	 	11	120	-1	13	12	1.66	<2 ~	9	~5	<5	18	\triangleleft	~2	37	4	8	655	11, 14	0.04	1.77	0.25	0.02	0.05	472
80101523	7N 0+75W	92		186	~ 4	13	184	<.1 <1		14	3,43	<2	8	-:5	<5	33	-2	<2	29	6	6	457	0.22	0.05	2.21	0.33	0,03	0.06	457
S0101524	7N 1+00W	71	13	09	- 4	20	139	<) ,	×	1.5	2.18	-7	10	<5	<5	24	4	2	23	3	б	664	0.27	0.06	2.21	0.48	0.03	0.07	557
\$0101525	7N 1+25W			85	~.4	14	100		-	11	1.69	~2	8	<5	<5	18	<2	<2	21	3	9	554	0.23	0.06	2.37	0.23	0.02	0.07	778
80101526	7N 1+50W	24	, ,	03	~ 4	10	147			14	2.17	<2	9	<5	<5	22	⊲	<2	33	5	9	765	0 33	0.05	1.86	0.21	0.07	80.0	974
\$0101527	7N D 75W	10	, ,	911	~.4	13	142				1.66	<2	8	-5	<5	23	<2	<2	27	3	15	954	0.24	0.04	2.34	0.49	0.03	0.03	606
80101528	7N 2+00W	16	11	00	•.4	19	98	<	15	12	1.98	~2	11	<5	<5	23	2	<2	24	2	F1	506	0.25	0.04	2.32	0.23	0.03	0.04	565
\$0101529	7N 7+25W	10	23	20	5.4 4	22	114	<1	6	12	2.05	≺2	10	<5	<5	35	2	<2	24	2	15	865	0.23	0.05	2.43	0.32	0.03	0.05	553
S0101530	7N 2+50W	31	17	72 56		31	145	<1		9	2 11	-2	9	<5	<5	31	-2	<7	31	5	17	235	fl 22	0.03	2.72	0.23	0.04	A.06	751
50101531	7+5N 0100	150	12	20	4		157	<1	7	14	2.13	·*2	16	-5	<5	34	<2	<2	27	9	9	532	0.24	0.03	3.18	0.39	0.02	0.07	476
80101537	715N 0+25W	12.0	2	41	• 4	10	112	<1	5	ĸ	1 77	-2	11	<5	<5	27	12	<2	36	6	1	552	0.19	0.04	2.69	0.35	0.03	0.05	118
\$0101533	715N 0150W	25		33	<.4	70	110	<	4	7	1.69	~Z	5	<5	<5	19	√2	~2	23	6	5	59B	0.15	0.06	1.39	0.25	0.04	0.06	497
\$0101534	715N 0+15W	2.9	2	13	- 4	20	109	<1	Ħ	к	178	-2	9	× 5	<5	20	<2	<2	24	4	15	594	0.15	0.03	2.47	0.22	0.02	0.06	664
\$0101535	715N 100W	10	2	70	- 4	19	83	4	10	7	1.54	··2	5	<5	~5	16	· 2	•2	25	5	11	496	0.16	0.03	2.8	0.22	0.02	0.09	551
80101536	7+5N 1+75W	00 V		12	• 4	22	79	- 1	4	7	1.46	· 2	7	. 5	~5	18	2	· 2	20	11	9	343	0.19	0.06	2.57	0.31	0.03	0.11	433
\$0101537	7+5N 1+50W	12	,, 7	08	• 4	2.5	198	1	5	*	1.63	-2	11	- 5	~5	28	2	7	33	5	6	1455	0.25	0.05	2.97	0,16	0.03	0.12	745
		12	,	./X	4	16	[47	~1	5	9	1.69	7	7	· 5	~ 5	16	2	2	36	2	6	1644	0.17	0.04	145	0.18	0.04	0.11	545

and the second second

.......

n 1997 - Andrea Alexandro, and an an an an antipart and an antipart for the state of the

01-02718 PAGE 4

LAB NO	FFELD NUMBER	Cu	Ph.	Zn	٨٣	۸.	¥.,	C4	· · .		r.						•••••	• • • • • • •		• • • • • • •		· · · · · ·	••••• • •			· · · · · · · · ·			
		oom	D ates	0000	000		1	v.u		154	re	Mo	Cr	Ri	Sh	v	Sn	Ŵ	Se.	Y	l.a	Mn	Mg	Ťi	A1	Ca	Na	к	p
00101420	1.0.0		1.,	P.Paul	ppin	1.bun	ւթա	ppm	ppm	րյաս	%	հոտ	ppm	րդառ	ppm	ppm	ppm	րթող	ppm	Ppm	ppm	លហា	%	%	94	٩८	a .	a/	
00101038	7+5N 1+75W	14	8	80	<.4	38	118	<	4	10	7 17	5	9	<5	< 5	24	~									<i>.</i> ,,	~ e	20	ppm
801811539	7+5N 2+00W	21	х	101	< 4	15	78	<1	4	×	4.13	-7	0				~	• 2	~ ~	2	6	367	0.19	0.04	2,87	0.29	0.02	0.09	453
\$0101540	7+5N 2+25W	27	6	87	< 4	22	76	<i>c</i> 1		12	1.71				• • •	2.5	<2	-:7	14	5	17	646	0.15	0.07	2.43	0.25	0.02	0.07	472
\$0101543	7+5N 2-50W	20	6	67	- 4	74				13	1,77	*:Z	11	<5	<5	17	\triangleleft	•2	12	2	17	446	0.15	0.06	2.43	0.19	0.03	0.07	754
\$0101542	RN 0+00	37		47		27	11.5	×1	2	5	2.06	<2	<4	<5	<5	27	2	<2	24	5	4	865	0.21	0.06	2 46	0.31	6.02	0.04	454
\$0101543	UNI 0 - 0 0	27		11.4	• 4	11	82	1	6	8	2,75	<2	H	<5	<5	23	2	-2	26	3	6	44¥	0.14	0.00	1 6 3	0.04	0.02	0.00	920
50101349	619 V*23 W	23	6	42	<.4	12	144	<1	4	6	2.27	<2	8	< 5	<5	26	-2	<7	10		~	746	0.10	0.01	1.55	0.26	12.05	0.11	564
AU101544	8N 0+50W	16	9	¥2	<.4	12	89	<]	4	9	1 / 6	<2	6	<5	<5	16	~				<u>/</u>	10.1	0.17	0.06	1.54	0.23	0.06	11.07	455
\$0101545	8N ()+75W	10	7	110	<.4	12	67	<1	3	12	1.00	<7	10			20	~2	• 2	31	4	5	407	0.15	0.05	2.34	10.2.5	0.07	0.96	766
50101546	8N 1+00W	33	н	56	< 4	70	94	1	- 7	10	1.69	~	12		•••	.14	<2	-2	36	5	8	543	0.18	0.06	3.45	0.34	0.05	0.02	835
\$0101547	8N 1+25W	77	7	90	~ *	11			,	19	1.48	- 12	9	<5	<5	38	<2	<2	26	3	9	844	0.19	0.07	1.98	0.33	0.06	0.07	\$67
80101548	8N 1+50W	14	, ,					~1	8	3	1.21	<2	9	< 5	<5	41	2	<2	23	3	11	845	0.11	0.06	2.23	0.23	0.02	0.04	666
Seteran	851 1. 7CH		y	43	5,4	10	97	<1	6	9	1.97	<2	7	<5	<5	27	<2	-2	23	5	15	660	лэс	0.07	2.2.4		0.03	0.00	020
\$0101547		24	6	86	<.4	17	89	< 3	6	ĸ	1.77	- 2	11	<5	<5	25	2	<7	12	-		1477	0.15	0.00	2.34	0.25	0.03	0.02	398
301013.30	8N 2100W	36	6	57	<.4	19	87	<1	5	11	1.65	-7	10	<5	<5	73	ā		17			1435	0.40	0.04	2.43	0.13	0.04	0.03	597
80101551	8N 2+25W	18	7	71	<.4	27	93	< ł	10	12	1.02	0		- 5			-1	~~. 		>	3	064	0.23	0.08	2.48	0.14	0.12	0.08	656
S0101552	8N 2+50W	10	7	86	< 4	23	142	<1	0	14	1.08	~			~1	22	<2	~2	26	2	8	553	0.18	0.09	1.84	0.25	0.03	0.08	743
								•			1.69	· 74	y	~0	-0	31	<2	<2	19	2	9	343	0.22	0.05	1.74	0.35	0.09	0.03	543

$1\mathchar`-insufficient sample X-small sample Energies calibration C-being checked R-revised$

If requested analyses are not shown , results are to follow

ANALYTICAL METHODS

ICP PACKAGE (0.5 gram sample digested in hot reverse separregia (soil, silt) or hot Aqua Regia (recks).

