

on the

MYOFF CREEK PROPERTY

M 2-5, 7-12, 20, 21; N 2-7; T 10-21; TN 1-21 Mineral Claims

Kamloops Mining Division

NTS: 82M/7E, 7W

B.C. Geographic System Map Sheet: 082M.037

Latitude: 51° 21' N; Longitude 118° 44' W

UTM: 5 690 300 N; 379 000 E; Zone 11

Owner and Operator: Cross Lake Minerals Ltd.

Author: Jim Miller-Tait, P.Geo.

December 10, 2001

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

	Section	Title	Page			
A	Report	Introduction	3			
1		Property				
•	<u></u>	Location and Access	1 4			
_		Climate, Topography and Vegetation	4			
		History	5			
.		Regional Geology	6			
	· · · · · · · · · · · · · · · · · · ·	Property Geology	7			
		Trenching Program	9			
	· · · ·	Geological Mapping and Rock Sampling	11			
-	· · · · · · · · · · · · · · · · · · ·	Check Assays	14			
		Petrographic Studies	15			
		Conclusions	15			
		Recommendations	17			
		List of References	17			
	• • •	Statement of Qualifications	19			
В	Property	Schedule of Mineral Claims	20			
Č	Expenditures	Statement of Expenditures	20			
D	Analytical Reports	Activation Laboratories Ltd :				
		- Certificates of Analysis (4)				
		- Statement of Analytical Procedures				
		Teck Cominco Exploration Research Laboratory:				
		- Certificates of Analysis (3)				
		- Statement of Analytical Procedures				
		ALS Chemex Labs:	· · · · · · · · · · · · · · · · · · ·			
	· · · · · · · · · · · · · · · · · · ·	- Certificates of Analysis (1)				
· · ·	1	- Statement of Analytical Procedures	,			
		Trench Sampling Weighted Average Calculations				
	······································	Check Assay Comparison Table				
E	Petrographic Reports	Harris Exploration Services:				
		- Petrographic Report				
		- Mineralogical Report				
F	Illustrations					
	Plan Number	Title	Scale			
	MC-01-1 (after p.4)	General Location Plan	1:250 000			
	MC-01-2 (after p.4)	Location Plan	1:50 000			
	MC-01-3 (after p.4)	Mineral Claims	1:50.000			
	MC-01-4 (in pocket)	Property Geology	1:20:000			
	MC-01-5 (in pocket)	Trenching Plans	1:250			

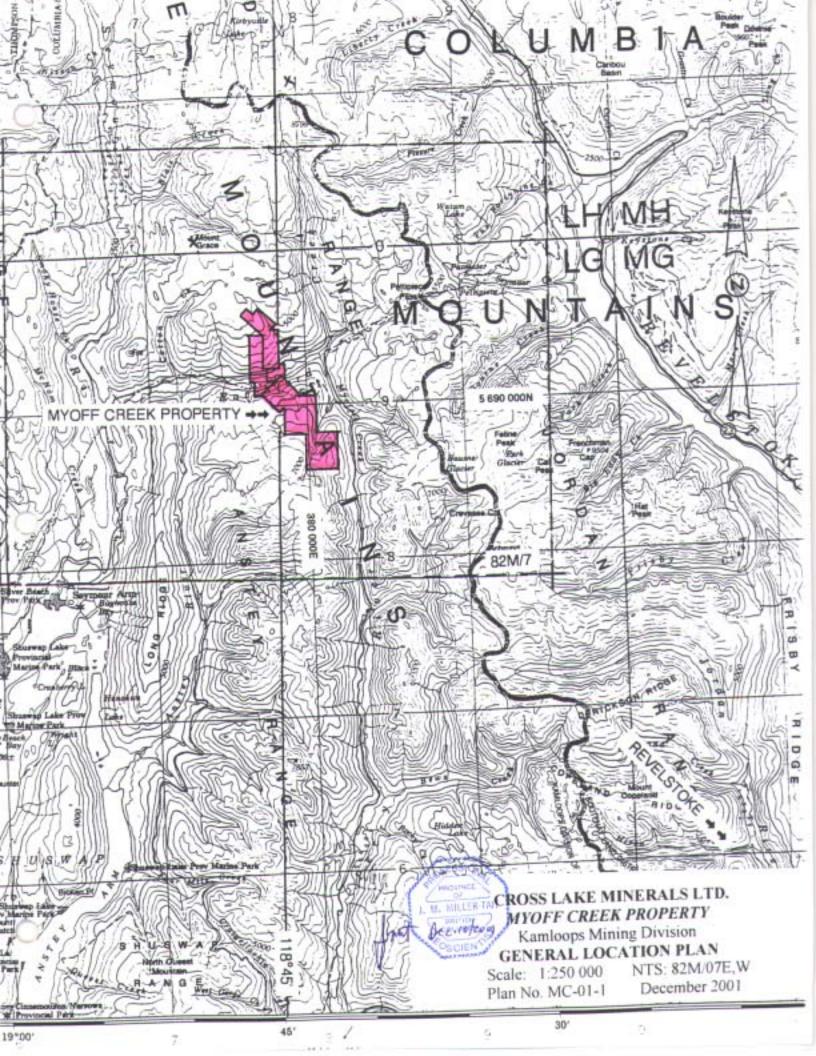
SECTION A: REPORT

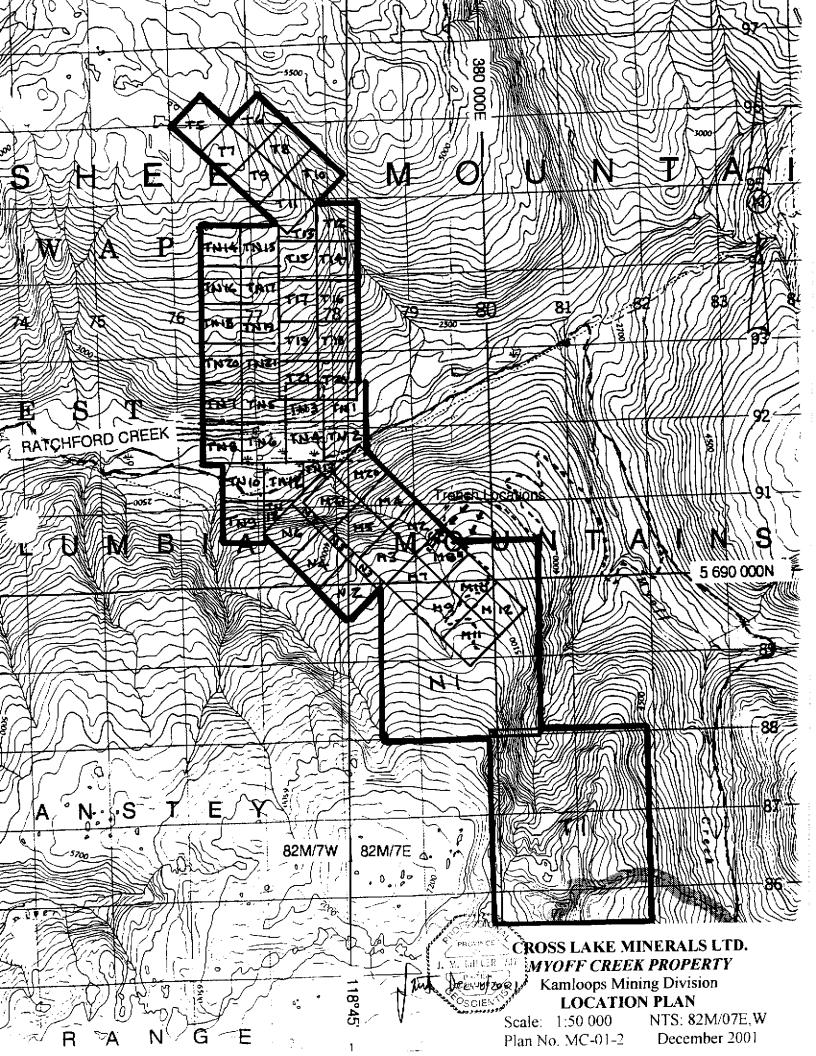
INTRODUCTION:

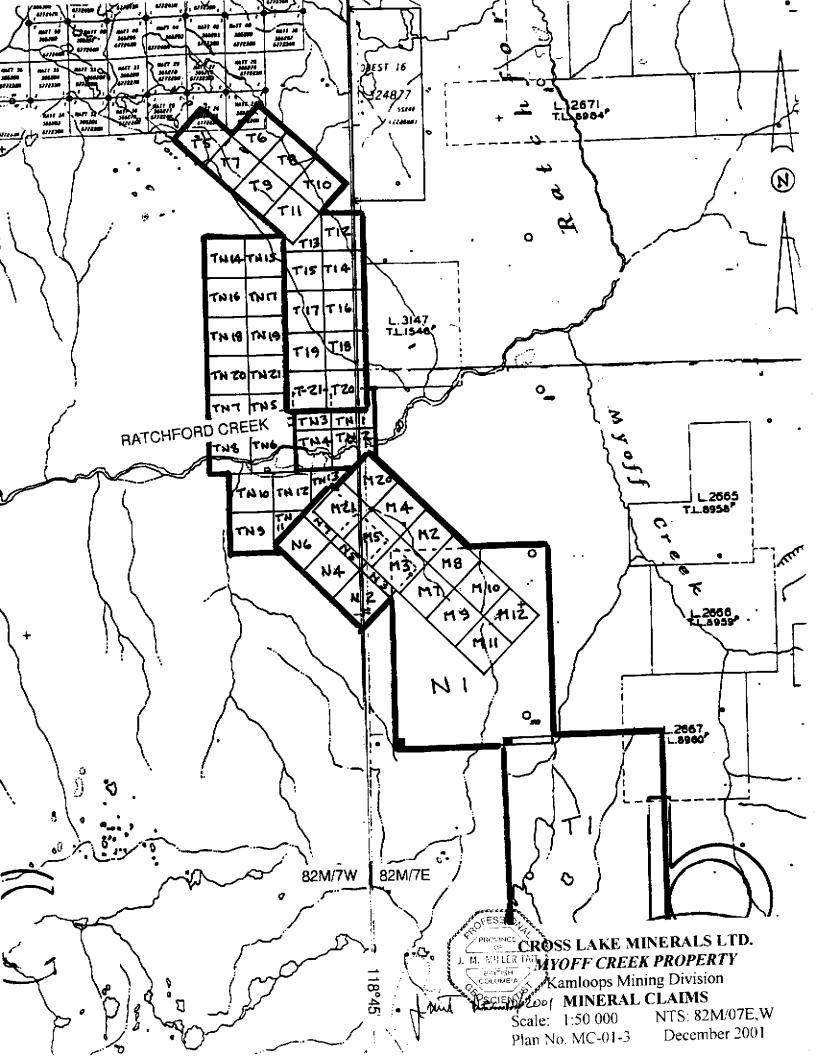
Cross Lake Minerals Ltd. owns a 100% interest in the Myoff Creek Property. The property was staked in 2001 following a review of prospective areas in British Columbia for tantalum, niobium and rare earth elements. The Myoff Creek Property is located 55 kilometres northwest of Revelstoke, B.C., in the Kamloops Mining Division. The claims cover 12 kilometres of a prospective belt of carbonatite that hosts tantalum, niobium and the rare earth elements lanthanum, cerium and neodymium. This report summarizes three phases of field exploration carried out from late May to October 2001. The first phase of fieldwork from May 27 to June 5, 2001 consisted of rehabilitating eight kilometres of access road and excavating, sampling and mapping four trenches across the prospective carbonatite unit. The second phase of exploration from August 13-20, 2001 consisted of geological mapping over the property and sampling the carbonatite where exposed. The third and final phase of fieldwork was carried from October 1-5, 2001 and consisted of rock saw channel sampling across the carbonatite where creek erosion had exposed a 35 metre true thickness. A check assay program and preliminary petrographic and mineralogical studies have also been completed on selected carbonatite samples for mineralogical identification.

PROPERTY:

The Myoff Creek Property is 100% owned by Cross Lake Minerals Ltd. and was acquired by staking on various dates from January to October of 2001. The property is located 55 kilometres northwest of Revelstoke, B.C. in the Kamloops Mining Division. The property consists of 58


mineral claims totally 96 units and covers an area of approximately 2,400 hectares. A list of the claims is appended in Schedule B. The claims are located on NTS mapsheets 82M/7E and 7W and BCGS map 82M.037. Geographic coordinates are latitude 51°21'N and longitude 118°44'W while the UTM coordinates are 5 690 300N and 379 000E in Zone 11. The property location and mineral claims are shown on plan numbers MC-01-1, MC-01-2 and MC-01-3.


LOCATION AND ACCESS:


The property is located 55 kilometres northwest of Revelstoke, B.C. in the Anstey Range of the Monashee Mountains near the confluence of Myoff and Ratchford Creeks. Access to the property is excellent due to extensive logging and hydro transmission line access roads around and on the claims. The Perry River main haul logging road provides the main access to the claims from the settlement of Craigellachie, located 40 kilometres to the south on the Trans-Canada Highway. Craigallachie is on the main line of the Canadian Pacific Railway and is located halfway between the major centres of Salmon Arm and Revelstoke. Additional access is available by road from Seymour Arm at the north end of Shuswap Lake. Approximately six kilometres of the 12 kilometre length of the property has been logged so secondary logging roads also provide access. The B.C. Hydro 500 KVA transmission line from the Mica Creek Dam and its accompanying service road crosses the property on the south side of Ratchford Creek.

CLIMATE, TOPOGRAPHY AND VEGETATION:

Warm, fairly wet summers and moderately cold winters with heavy snowfall characterize the climate of the area. Elevations on the property range from 610 metres at Ratchford Creek in the centre of the Property to 2,040 metres at the southern end. The slopes below the 1,200 metre elevation are steep but become more gradual at higher elevations, especially the in area where

the trenching was completed. The vegetation consists of fir, cedar, hemlock, alder and devils club. Significant areas of the property have been clear-cut including the area where the trenching was completed.

HISTORY:

In 1983, Duval International Corporation completed geological mapping, prospecting and sampling over a three kilometre strike length of the carbonatite in the claim area. Duval collected 469 soil, 72 rock and 15 stream sediment samples during their exploration program. There were several highly anomalous areas outlined and the rock samples were highly anomalous in niobium, tantalum, cerium, lanthanum and neodymium, with the highest values being 2,400 ppm niobium, 72 ppm tantalum, 9,890 ppm cerium, 6,965 ppm lanthanum and 330 ppm neodymium.

The 1983 rock samples were analyzed for uranium and thorium and are well below the provincial moratorium threshold of 0.05% uranium or 0.15% thorium. The average of the 21 rock samples tested was 0.0022% thorium and 0.00013% uranium.

In 1988, Teck Explorations Limited completed stream silt sampling (89 samples) from four drainages, 17.85 line kilometres of magnetometer surveying, 15.35 line kilometres of spectrometer/scintillometer surveying and 749 metres of trenching. The trenches were dug with a Cat 225 excavator, mapped and then sampled with 282 rock channel samples being collected. The best niobium values were from trench ATR-2 of 0.19% niobium over a width of 55 metres. Carbonatite that was excavated in all trenches averaged 0.13% niobium. Cerium and lanthanum

were all highly anomalous but the values were not plotted. The rock samples were not analyzed for tantalum or neodymium.

REGIONAL GEOLOGY:

The region is underlain by the Shuswap Metamorphic Complex, which is a terrain of moderate to high-grade regional metamorphic rocks. The main area of interest lies within the Monashee Complex along the northwestern margin of Frenchman Cap Dome. The core of the dome is composed of a mixed paragneiss and orthogneiss succession of Aphebian age, and is mantled by an uncomformably overlying succession of metasedimentary rocks locally intruded by a suite of alkalic gneiss. The metasediments consist of quartzite, quartz-mica schist, semi-pelitic and pelitic schist, biotite-quartz-feldspar paragneiss, calc-silicate and thin but continuous marble horizon.

Two types of carbonatite occur within the calc-silicate unit (McMillan, 1970). Type I is a medium to coarse grained, well banded intrusive unit composed of 70 to 80% calcite with accessory apatite, biotite, amphibole and minor magnetite, sphene, pyrite, pyrrhotite, molybdenum, pyrochlore, monazite and chalcopyrite. It may be locally associated with syenite or nepheline syenite gneiss, and there may be some fenetization.

Type II, named the Mount Grace carbonatite, is an extrusive phase. It lies in contact with a white marble unit and has a strike length exceeding 45 kilometres. It is medium to coarse grained, grades into the white marble unit, and consists of 80 to 90% calcite with accessory

phlogopite, plagioclase, apatite, amphibole and minor magnetite, pyrite, graphite and chalcopyrite.

The structure of the northwestern portion of the Frenchman Cap Dome is dominated by the tight, early Mount Grace Syncline. Its axial surface is defined by a foliation of aligned platy minerals and flattened quartz grains. Later phase two folding trends southwest and plunges variably towards the west, and is superimposed on large isoclinal folds.

Regional metamorphism reached amphibolite facies and produced sillimanite-kyanite, sillimanite and sillimanite-potassic feldspar assemblages in pelitic rocks and recrystallized carbonate and carbonatite units to form medium to coarse grained granoblastic marbles.

PROPERTY GEOLOGY:

The Myoff Creek Property is located along the northwestern flank of the Frenchman Cap Dome and is underlain by the Monashee Series which consists of a basal quartzite unit overlain by a succession of interbanded pelitic schist, pelitic gneiss, cale-silicate, and marble. There are two types of carbonatite occurring on the property. Type I is an intrusive phase carbonatite and the Type II is the extrusive phase. All of the tantalum, niobium and rare earth minerals are associated with the intrusive, Type I, phase. The Type II phase, extrusive carbonatite, is virtually barren of mineral of economic importance.

The Type I carbonatite is located on the southern half of the property on the south side of Ratchford Creek. The carbonatite unit has been traced by mapping and trenching for

approximately three kilometres and it varies in width from 20 to 200 metres. The carbonatite strikes generally northwest-southeast and dips from 25 to 45 degrees southwest. The rock weathers to a rough textured, mottled orange brown color and has a well banded salt and pepper pattern. Narrow quartz-feldspar pegmatite dykes cross the carbonatite at various angles. The unit is composed of 70 to 80% calcite with accessory apatite, biotite, amphibole and minor magnetite, sphene, pyrite, pyrrhotite, molybdenum, pyrochlore, monazite and chalcopyrite. It may be locally associated with syenite or nepheline syenite gneiss, and there may be some fenetization.

The Type II extrusive carbonatite has been mapped along the entire 12 kilometre length of the Myoff Creek Property. This mapping was completed by the British Columbia Geological Survey, previous workers in this area and Cross Lake Minerals Ltd. The carbonatite consists of three separate horizons or may be the same horizon in tight isoclinal folds. The unit strikes northwest-southeast and dips 20 to 45 degrees southwest. The extrusive phase is situated approximately 300 metres in the hanging wall and parallel to the intrusive phase. The extrusive carbonatite consists of pyroclastic flow to ash-fall tuff and is thinly banded with tephra blocks 1 to 5 centimetres in size with fenite, albitite and wallrock clasts flattened and aligned along banding. It is medium to coarse grained, grades into the white marble unit, and consists of 80 to 90% calcite with accessory phlogopite, plagioclase, apatite, amphibole and minor magnetite, pyrite, graphite and chalcopyrite.

Both phases of carbonatite are hosted by gneiss and thicken and narrow probably due to structural deformation during metamorphic folding. Mapping the extrusive phase is very

important because it can be used as a marker unit for the location and structural thickening of the intrusive carbonatite which hosts the minerals of economic interest.

TRENCHING PROGRAM:

A Cat 325 excavator was used to rehabilitate eight kilometres of secondary logging road and to trench the prospective carbonatite unit. A total of 346 metres of trenching was completed in a series of four trenches exploring approximately 500 metres of strike length. Of the 346 metres, 276.8 metres of trenching was completed in the carbonatite unit and 69.2 metres completed in the gneiss host rock on either side of the carbonatite and in some minor cross-cutting quartz-feldspar pegmatite dykes. The trenches were excavated to an average depth of 2.5 metres and a width of 3.0 metres. The dimensions of the trenches is set out in the following table.

Trench No.	Length	Width	Depth	Total Volume
!	(metres)	(metres)	(metres)	(cubic metres)
MT-01-1	74.0	3.0	2.5	555.0
MT-01-2	60.0	3.0	2.5	450.0
MT-01-3	67.0	3.0	2.5	502.5
MT-01-4	145.0	3.0	2.5	1,087.5
TOTAL	346.0			2,595m ³

Note: The trenches were reclaimed but representative bedrock samples were placed on the side of the reclaimed trench for later viewing and/or metallurgical sampling.

The trenching, including Teck Explorations Limited trenching in 1988, has exposed the carbonatite for a strike length of approximately 1,000 metres. The carbonatite, where trenched, varies in width from 20 to 150 metres and has been mapped up to 200 metres in width. In the 2001 trenching carried out by Cross Lake, the carbonatite is the narrowest, 50.8 metres, at the

north end of the trenching in MT-01-1 and the widest, 120.0 metres, in MT-01-4 at the south end of the trenching area. The carbonatite strikes at 330 to 335 degrees and dips fairly consistently at 35 degrees to the southwest. The host rock on either side is a hard, well-banded gneiss with some minor, narrow (< 1 metre), concordant carbonatite layers. The location of the four trenches is shown on plan no. MC-01-4 and the detailed mapping of the trenches is illustrated on plan no. MC-01-5. The width of the carbonatite in each trench and the weighted assay averages of the rock chip channel samples of the carbonatite, not including the gneiss and minor pegmatite dykes, are set out below. A table of the weighted average calculations for each of the trenches is appended in Section D.

Trench No.	Carbonatite width (m)	Ta ₂ O ₅ Tantalum Pentoxide (ppm)	Nb ₂ O ₅ Niobium Pentoxide (ppm)	La ₂ O ₃ Lanthanum Trioxide (ppm)	Ce ₂ O ₅ Cerium Pentoxide (ppm)	Nd ₂ O ₃ Neodymium Trioxide (ppm)
MT-01-1	50.8	30.0	1411.9	424.1	832.3	325.0
MT-01-2	50.0	28.0	950.7	52.0	536.5	232.4
MT-01-3	56.0	34.6	1063.9	310.1	595.1	255.6
MT-01-4	120.0	37.8	1659.2	451.0	834.8	336.5
Weighted Average	Total 276,8	34.0	1365.4	345.5	732.0	299.2

In general the tantalum is relatively uniformly distributed, the niobium is elevated in the central core, and the rare earth oxides are elevated on the west side or hanging wall of the carbonatite. It is important to note that in MT-01-4 where the carbonatite is widest, the values of tantalum, niobium and rare earth elements are the highest. This is a positive development because further south where the carbonatite is the widest at 200 metres, the elements of economic interest should also increase.

The rock samples were shipped to Activation Laboratories Ltd. in Ancaster, Ontario and were analysed using X-Ray Fluorescence (XRF) for niobium and Instrumental Neutron Activation (INAA) for tantalum and 34 other elements. The analytical reports are appended in Section D.

GEOLOGICAL MAPPING AND ROCK SAMPLING:

During August 2001 a geological mapping and sampling program was completed on the Myoff Creek Property. The results of the mapping program are illustrated on plan no. MC-01-4. The main focus of the mapping was to trace the intrusive phase of carbonatite which contains the elements of economic interest. The intrusive was mapped for a three kilometre strike length on the south side of Ratchford Creek and sampled in several locations. The extrusive phase was also mapped for the entire 12 kilometre length of the property. It was also sampled in several locations. Even though there are no minerals of economic interest in the extrusive phase it is important to map as a marker horizon in order to estimate the location of the intrusive phase and its possible thickening and therefore higher values in the elements of interest. The location of the intrusive phase can be estimated as it is located approximately 300 metres east or in the footwall of the extrusive phase. The following tables summarize the samples collected in the intrusive and extrusive phases with the sample locations being given as UTM coordinates: **Intrusive Carbonatite:** Conformable layered intrusion with well developed fenite margins.

Sample No.	Туре	Length (m)	Description
347408	chip	0.5	Calc-silicate gneiss
347409	chip	0.2	Fenite/contact
347410	chip	1.0	Carbonatite
347411	chip	1.5	Carbonatite/fenite
347412	chip	0,5	Fenite
347413	chip	0.3	Carbonatite
347414	chip	0.3	Fenite
347415	chip	0.2	Carbonatite
347416	chip	0.8	Carbonatite

Resampled southern Teck Trench: 5 689 632N / 379 360E

Main creek exposure: 5 691 110N / 378 440E

Sample No.	Type	Length (m)	Description
347352	grab	n/a	True thickness of carbonatite: 80 m
347353	grab	n/a	Grab samples at struc base, 10m apart

Sample No.	Туре	Length (m)	Description	
347101	grab	n/a	Fenite – Carbonatite	
347102	grab	n/a	Carbonatite	
347103	chip	5.0	Carbonatite	
347104	chip	5.0	Carbonatite	

Main creek exposure - east tributary: 5 690 890N / 378 880E

Extrusive carbonatite: also named the Mount Grace Carbonatite (MGC). Pyroclastic flow grading to air-fall tuff. Thinly banded, tephra block size typically 1 – 5cm, flattened, aligned along banding. MGC is present as three discrete conformable layers: layer 1 in east (structurally lowest) to layer 3 in west (structurally highest). Combined evidence suggests that the three layers represent three separate volcanic events and are not fold or fault-repeated expressions of a single layer.

Sample No.	Туре	Length (m)	Description
347356	chip	1.0	MGC (layer 1)
347357	chip	1.0	Complex deformation.
347358	chip	1.5	True thickness of carbonatite: est. >15 m
347359	chip	0.8	
347360	chip	0.9	
347361	chip	1.0	

Extrusive carbonatite: 5 692 312N / 375 785E

Extrusive carbonatite: 5 692 857N / 376 335E

Sample No.	Туре	Length (m)	Description
347418	chip	3.0	MGC (layer 1)
347419	chip	3.0	True thickness of carbonatite: 32 m
347420	chip	3.0	One unsampled (covered) area between P347418 & 19
347421	chip	3.0	Sample lengths represent true thicknesses
347422	chip	3.0	
347423	chip	3.0	
347424	chip	3.0	
347425	chip	3.0	

Extrusive carbonatite: 5 694 220N / 376 287E

Sample No.	Туре	Length (m)	1	Description
347351	grab	N/a	MGC (layer 2)	

Sample No.	Туре	Length (m)	Description
347354	chip	1.0	MGC (layer 2)
347355	chip	0.5	

Extrusive carbonatite: 5 692 269N / 375 589E

Extrusive carbonatite: 5	5 691	295N / 375 589E
--------------------------	-------	-----------------

Sample No.	Туре	Length (m)	Description	Ì
347427	grab	N/a	MGC (layer 2) South of Ratchford Creek	_
347428	chip	2.0	MGC (layer 2) South of Ratchford Creek	-

	Extrusive carbonatite:	5 691 145N / 376 391E	
--	------------------------	-----------------------	--

Sample No.	Туре	Length (m)	Description
347426	Chip	2.0	MGC (layer 3) South of Ratchford Creek

Extrusive carbonatite: 5 693 188N / 375 523E

i	Sample No.	Type	Length (m)		Description
ĺ	347417	Chip	1.0	MGC (layer 3)	

The assay certicates for this sampling are appended in Section D. It is interesting to note how the extrusive phase of the carbonatite is virtually barren of minerals of economic importance.

The highest grade of tantalum at 123ppm in sample #347352 was located 600 metres northwest of trench MT-01-1. The resampled southern Teck trench was significantly higher in rare earth elements than samples collected elsewhere.

The grab sample #347352 that yielded the high tantalum result was taken where the creek has eroded the overburden so that a true thickness of 35 metres was exposed. In October 2001 a rock saw was used to cut a continuous 35 metre channel on this showing. Seven 5-metre samples were cut and the material was submitted to the Teck Cominco Exploration Research Laboratory in Vancouver for analysis. The assay values and the weighted averages over the entire 35 metres are set out in the following table. The analytical reports are appended in Section D.

Sample No.	Carbonatite width (m)	Ta (ppm)	Nb (ppm)	Ce (ppm)	La (ppm)	Nd (ppm)
347551	5.0	28	350	282	180	160
347552	5.0	28	355	927	434	267
347553	5.0	40	420	654	283	297
347554	5.0	16	533	472	220	252
347555	5.0	21	720	619	308	258
347556	5.0	3	770	280	143	186
347557	5.0	20	827	225	128	145
Weighted Average	Total 35.0	22	568	494	242	224
		Ta ₂ O ₅ Tantalum Pentoxide (ppm)	Nb ₂ O ₅ Niobium Pentoxide (ppm)	Ce ₂ O ₅ Cerium Pentoxide (ppm)	La ₂ O ₃ Lanthanum Trioxide (ppm)	Nd ₂ O ₃ Neodymium Trioxide (ppm)
		27	812	609	283	262

These values are close to those obtained in the trenching thus emphasizing the consistency of grade in the intrusive carbonatite.

CHECK ASSAYS:

Fifteen selected sample rejects were sent to Teck Cominco Exploration Research Laboratory in Vancouver, B.C. for check assaying in order to provide a comparison with the earlier results from Activation Laboratories Ltd. It should be noted that the analyses completed by Teck Cominco were by X-Ray fluorescence pressed pellet while Activation Labs used instrumental neutron activation for tantalum and 34 other elements and X-Ray fluorescence for niobium. There is excellent correlation between the assays for niobium and cerium and satisfactory correlation between those results for tantalum, lanthanum and neodymium. A table of comparison is appended in Section D.

PETROGRAPHIC STUDIES:

Two petrographic studies were carried out by Harris Exploration Services, the first on a rock sample of carbonatite from trench MT-01-4 and the second on four heavy mineral slides made from gravity separation using tetrabromoethane of the reject material from four rock channel samples from the trenches. The two reports are appended in Section E.

The first petrographic report was on two thin sections from a carbonatite rock sample collected from trench MT-01-4 at 105 metres from the east end of the trench. Both of the slides are similar consisting of aggregates of calcite forming a matrix to individual grains and local clumpy segregations of biotite, amphibole and apatite. Minor amounts of sulphides consisting of pyrrhotite and pyrite and iron-titanium oxides also occur.

The second report describes the results of four heavy mineral slides made by gravity separation using tetrabromoethane on the rejects from four rock channel samples from the trenches. All four of the slides are similar in composition of pale green amphibole, apatite, magnetite, ilmenite and various iron sulphides in varied relative proportions. Although the minerals containing the niobium and tantalum were not positively identified, it was concluded that the elements are occurring in iron and iron/titanium oxides. The mode of occurrence of rare earth element minerals was not determined.

CONCLUSIONS:

• Cross Lake Minerals Ltd. owns 100% of 58 mineral claims totalling 96 claim units and covering 2,400 hectares of a promising intrusive carbonatite belt hosting tantalum, niobium, phosphate and rare earth elements.

• Access to the Myoff Creek Property is excellent by using the main and secondary logging and hydro transmission line service roads that cross the claims. The B.C. Hydro 500 KVA power transmission line crosses the claims as well.

• The town of Revelstoke, a source of experienced mining personnel and equipment, is located 55 kilometres southeast of the property. The Trans-Canada Highway and Canadian Pacific Railway are located 40 kilometres south of the claims.

• The elevations of the property range from 610 to 2,040 metres and the main area of trenching is located on relatively flat topography at an elevation of 1,400 metres. This area has been clearcut and can be worked at all times of the year.

• The intrusive carbonatite with the elements of economic interest has been explored for a strike length of 3,000 metres over widths from 20 to 150 metres. The carbonatite has been trenched, channel sampled and mapped over a strike length of 1,000 metres. The thickness, dip and relatively flat topography where the unit has been trenched are favorable for a possible open pit mining scenario.

• The extrusive carbonatite, an important marker horizon, has been mapped and sampled for the 12 kilometre length of the property. This unit can be used to locate the intrusive phase because it is located 300 metres in the hanging wall.

• There are several high priority areas on the property to explore for higher grade and thicker portions of the intrusive carbonatite, especially where mapping has identified stratigraphic thickening due to folding during metamorphic deformation.

RECOMMENDATIONS:

- Continue to complete petrographic and metallurgical studies to identify the minerals that host the elements of economic importance and determine levels of recovery.
- Explore by surface mapping, soil and rock sampling the strike extensions of the intrusive phase of the carbonatite.
- Complete exploration drilling where mapping has identified structural thickening from metamorphic deformation to intersect the stratigraphic horizon of the intrusive carbonatite.
- For the next phase of work, complete an NQ core size diamond drill program on 100 metre sections delineating the carbonatite to a 100 metre vertical depth along the 1,000 metre strike length that has been trenched. Additional drilling is recommended in the area located south of the trenches where geological mapping has identified the carbonatite to be 200 metres in thickness.

Respectfully submitte

Jim Miller-Tait, P.Geo.

LIST OF REFERENCES:

Hoy, T. and Kwong, Y.T.J. (1986): The Mount Grace Carbonatite – A niobium and Light Rare Earth Element-enriched Marble of Probable Pyroclastic Origin in the Shuswap Camplex, Southeastern British Columbia; in Economic Geology, vol. 81, pp 1374-86.

Lovang, Gudmund (1988): Report on Geochemical and Geophysical Surveys and Trenching on the Apati Claim Group, Kamloops Mining Division, Teck Explorations Limited.

McMillan, W.J. (1970): West Flank Frenchman Cap Gneiss Dome, Shuswap Terrain, British Columbia; in Structure of the Canadian Cordillera, GSC Special Paper no. 6, pp 99-106.

Pilcher, S.H. (1983): Report on the Geology and Geochemical Surveys and Physical Work, Ren I, II, III, and IV Claims, Kamloops Mining Division, B.C.; Assessment Report 11,639 dated October 4, 1983.

STATEMENT OF QUALIFICATIONS:

For: Jim Miller-Tait of 828 Whitchurch Street, North Vancouver, B.C. V7L 2A4

I graduated from the University of British Columbia with a Bachelor of Sciences Degree in Geology (1987);

I have been practicing my profession as a geologist in mineral exploration and mining continuously since 1987;

I am a fellow in good standing with the Geological Association of Canada;

I am a registered member in good standing as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia;

The observations, conclusions and recommendations contained in the report are based on field examinations, personal sampling, and the evaluation of results of the exploration programs completed by the operator and owner of the property.

28-16 Jim

SECTION B: PROPERTY

MYOFF CREEK	SCHEDULE OF MINERAL CLAIMS											
PROVINCE: British Columbia	CLAIMS: 58	UNITS:	96	AREA: 2400 ha								
MINING DIVISION: Kamloops	NTS: 82M/7E, W		BCG	S: 082.M.037								
LOCATION: 55 km northwest of Revelstoke,	LATITUDE: 51°2	21.5'	LONGITUDE: 118°44.5'									
near the confluence of Myoff Creek and	UTM: ZONE 11	5 691	000N	378 500E								
Ratchford Creek.	PROPERTY INTEREST: Cross Lake Minerals Ltd. – 100%											
MAP SHEET (1:250 000): 82M-Seymour Arm (1:50 000): 82M/7-Ratchford Creek												

CLAIM	TENURE	UNITS	RECORD	DUE DATE	ANNUAL	RECORDED
NAME	NUMBER		DATE	(yyyy-mm-dd)	WORK	HOLDER
			(yyyy-mm-dd)	1	REQUIRED	<u> </u>
M 2	383634	01	2001-01-30	2006-01-30	\$200.00	Cross Lake Minerals Ltd.
M 3	383635	01	2001-01-30	2006-01-30	\$200,00	Cross Lake Minerals Ltd.
M 4	383636	01	2001-01-30	2006-01-30	\$200,00	Cross Lake Minerals Ltd.
M 5	383637	01	2001-01-30	2006-01-30	\$200.00	Cross Lake Minerals Ltd.
M 7	383638	01	2001-01-30	2006-01-30	\$200.00	Cross Lake Minerals Ltd.
M 8	383639	01	2001-01-30	2006-01-30	\$200.00	Cross Lake Minerals Ltd.
M 9	383640	01	2001-01-30	2006-01-30	\$200.00	Cross Lake Minerals Ltd.
M 10	383641	01	2001-01-30	2006-01-30	\$200,00	Cross Lake Minerals Ltd.
MII	383642	01	2001-01-30	2006-01-30	\$200.00	Cross Lake Minerals Ltd.
M 12	383643	01	2001-01-30	2006-01-30	\$200.00	Cross Lake Minerals Ltd.
M 20	383644	01	2001-01-30	2006-01-30	\$200.00	Cross Lake Minerals Ltd.
M 21	383645	01	2001-01-30	2006-01-30	\$200.00	Cross Lake Minerals Ltd.
NI	384276	20	2001-02-16	2006-02-16	\$4000.00	Cross Lake Minerals Ltd.
N 2	384277	01	2001-02-16	2006-02-16	\$200.00	Cross Lake Minerals Ltd.
N 3	384278	01	2001-02-16	2006-02-16	\$200.00	Cross Lake Minerais Ltd.
N 4	384279	01	2001-02-16	2006-02-16	\$200.00	Cross Lake Minerais Ltd.
N 5	384280	01	2001-02-16	2006-02-16	\$200.00	Cross Lake Minerals Ltd.
N 6	384281	01	2001-02-16	2006-02-16	\$200.00	Cross Lake Minerals Ltd.
N 7	384282	01	2001-02-16	2006-02-16	\$200.00	Cross Lake Minerals Ltd.
ΤI	384275	20	2001-02-17	2005-02-17	\$4000.00	Cross Lake Minerals Ltd.
Т 5	384283	01	2001-02-17	2005-02-17	\$200.00	Cross Lake Minerals Ltd.
Т б	384284	01	2001-02-17	2005-02-17	\$200.00	Cross Lake Minerals Ltd.
Т7	384285	01	2001-02-17	2005-02-17	\$200.00	Cross Lake Minerals Ltd.
T 8	384286	01	2001-02-17	2005-02-17	\$200.00	Cross Lake Minerals Ltd.
Т9	384287	01	2001-02-17	2005-02-17	\$200,00	Cross Lake Minerals Ltd.
Т 10	384288	01	2001-02-17	2005-02-17	\$200.00	Cross Lake Minerals Ltd.
T 11	384289	01	2001-02-17	2005-02-17	\$200,00	Cross Lake Minerals Ltd.
T 12	384290	01	2001-02-17	2005-02-17	\$200.00	Cross Lake Minerals Ltd.
Т 13	384291	01	2001-02-17	2005-02-17	\$200.00	Cross Lake Minerals Ltd.
Т 14	384292	01	2001-02-17	2005-02-17	\$200.00	Cross Lake Minerals Ltd.
T 15	384293	01	2001-02-17	2005-02-17	\$200.00	Cross Lake Minerals Ltd.
T 16	384294	01	2001-02-17	2006-02-17	\$200.00	Cross Lake Minerals Ltd.
T 17	384295	01	2001-02-17	2006-02-17	\$200.00	Cross Lake Minerals Ltd.
T 18	384296	01	2001-02-17	2006-02-17	\$200.00	Cross Lake Minerals Ltd.
Т 19	384297	01	2001-02-17	2006-02-17	\$200.00	Cross Lake Minerals Ltd.

CLAIM	TENURE	UNITS	RECORD	DUE DATE	ANNUAL	RECORDED
NAME	NUMBER		DATE	(yyyy-mm-dd)	WORK	HOLDER
			(yyyy-mm-dd)		REQUIRED	
T 20	384298	01	2001-02-17	2006-02-17	\$200.00	Cross Lake Minerals Ltd.
T 21	384299	01	2001-02-17	2006-02-17	\$200.00	Cross Lake Minerals Ltd.
TNI	389120	01	2001-08-18	2006-08-18	\$200,00	Cross Lake Minerals Ltd.
TN 2	389121	01	2001-08-18	2006-08-18	\$200.00	Cross Lake Minerals Ltd.
TN 3	389122	01	2001-08-18	2006-08-18	\$200.00	Cross Lake Minerals Ltd.
TN 4	389123	01	2001-08-18	2006-08-18	\$200.00	Cross Lake Minerals Ltd.
TN 5	390359	01	2001-10-04	2003-10-04	\$100.00	Cross Lake Minerals Ltd.
TN 6	390360	01	2001-10-04	2003-10-04	\$100.00	Cross Lake Minerals Ltd.
TN 7	390361	01	2001-10-04	2003-10-04	\$100.00	Cross Lake Minerals Ltd.
TN 8	390362	01	2001-10-04	2003-10-04	\$100.00	Cross Lake Minerals Ltd.
TN 9	390363	01	2001-10-04	2003-10-04	\$100.00	Cross Lake Minerals Ltd.
TN 10	390364	01	2001-10-04	2003-10-04	\$100.00	Cross Lake Minerals Ltd.
TN 11	390365	01	2001-10-04	2003-10-04	\$100.00	Cross Lake Minerals Ltd.
TN 12	390366	01	2001-10-04	2003-10-04	\$100.00	Cross Lake Minerals Ltd.
TN 13	390367	01	2001-10-04	2003-10-04	\$100.00	Cross Lake Minerals Ltd.
TN 14	390368	01	2001-10-04	2003-10-04	\$100.00	Cross Lake Minerals Ltd.
TN 15	390369	01	2001-10-04	2003-10-04	\$100.00	Cross Lake Minerals Ltd.
TN 16	390370	01	2001-10-04	2003-10-04	\$100.00	Cross Lake Minerals Ltd.
TN 17	390371	01	2001-10-04	2003-10-04	\$100.00	Cross Lake Minerals Ltd.
TN 18	390372	01	2001-10-04	2003-10-04	\$100.00	Cross Lake Minerals Ltd.
TN 19	390373	01	2001-10-04	2003-10-04	\$100.00	Cross Lake Minerals Ltd.
TN 20	390374	01	2001-10-04	2003-10-04	\$100.00	Cross Lake Minerals Ltd.
TN 21	390375	01	2001-10-04	2003-10-04	\$100.00	Cross Lake Minerals Ltd.
58 claims		96			\$17500.00	

ASSESSMENT WORK SUMMARY

Date of Filing (yyyy-mm-dd)	Work Filed \$	New Work Applied \$	PAC Credits Applied	PAC Credits Saved	Total PAC Credits	Date of Approval (yyyy-mm-dd)	Event Number
2002-01-23	N/G	-	-	-	-		3175664
2002-01-23	35093.13	35000.00	0	93.13	-		3175665

SECTION C: EXPENDITURES

ltem	Work Performed	Quantities / Rates	Amount
Project Geologist:	Project supervision, geological		
J. Miller-Tait, P.Geo.	mapping and channel sampling		
J. Miller-Tall, F.Oco.	Period: May 28-Jun 4, 2001	8 days @ \$250.00	S2800.00
	Oct 1-5, 2001	8 days @ \$350.00	
	0011-5, 2001	5 days @ \$350.00	<u>1750.00</u> 4550.00
Field Geologist:	Geological mapping, sampling		
C. Church	and channel sampling		
	Period: Aug 13-20, 2001	8 days @ \$267.50	2140.00
	Oct 1-5, 2001	5 days @ \$267.50	1337.50
	000110,2001		3477.50
Field Geologist:	Geological mapping and		
G. Gibson	sampling		
	Period: Aug 13-19, 2001	7 davs @ \$267.50	1872.50
Transportation:	4x4 pickup truck:		
Vancouver to	Period: May 28-Jun 4, 2001	8 days @ \$105.00	840.00
property, onsite and	Aug 13-20, 2001	8 days @ \$105.00	840.00
return	Oct 1-5, 2001	5 days @ \$105.00	525.00
	· ·		2205.00
Accommodation and	Period:		
Meals	May 28-Jun 4, 2001	1 person in camp	204,10
	Aug 13-20, 2001	2 persons in hotel	1274.90
	Oct 1-5, 2001	2 persons in motel	670.32
			2149.32
Trenching Contractor:	Mobilization/demobilization		·
Hoedown Creek	from Lillooet to site and return.	Transport charges	1579.88
Resources Ltd.	Trenching utilizing a Cat 325	59 hours @ \$133.75	7891.25
	excavator during the period		9471.13
	from May 29 to Jun 3, 2001		
Field Supplies and	Camp materials, sampling		
Equipment Rentals	supplies and radio equipment		
	Period: May 28-Jun 4, 2001	1	78.99
	Aug 13-20, 2001		224.26
	Oct 1-5, 2001	Rock saw and pump	965.98
			1269.23
Freight:	Sample shipments:		
to Activation Labs in	Westjet Air Cargo	Jun 04 2001	153,99
Ancaster, Ontario	Greyhound Courier Express	Jun 04 2001	159.97
	Grevhound Courier Express	Jun 07 2001	56.76
	Reimer Express Lines Ltd.	Aug 21 2001	<u>91.78</u>
			462,50

Item	Work Performed	Quantities / Rates	Amount
Analytical Services			
Activation Labs	Nb, Ta and rare earth analysis	109 samples	4091.99
Teck Cominco Lab	Nb, Ta and rare earth analysis	27 samples	800,36
ALS Chemex Labs	ICP-41 element analysis	1 sample	<u>45.95</u>
		1	4938.30
Petrographic Services:	Petrographic examination of 2	2 samples	278.20
Harris Exploration	thin sections.		
Services	Mineralogical microscopic	6 samples	<u>877.40</u>
	examination of samples		1155.60
Report Preparation:	J. Miller-Tait, P.Geo.	4 days @ \$350.00	1400.00
Base Map Preparation,	Tindall Geoservices Inc.	15.75 hrs.@ \$42.80	674.10
Data Plotting and	Integrex Engineering	32.5 hrs. @ \$42.80	1391.00
Geological Map		Printing expenses	<u>76.95</u>
Preparation	<u> </u>		2142.05
Total			\$35093.13

Expenditure Apportionment:

•

Work Program	Mineral Claims	Work Quantities	Expenditure
Phase 1:	M8	4 trenches / 346 metres	\$19277.62
Trenching		73 samples	
Phase 2:	M 2-5, 7-12, 20 and 21	Mapping over an area of	\$9981.31
Geological Mapping	N 2-7	1500 hectares;	
and Sampling	T 10-21; TN 1-21	36 samples	
Phase 3:	M2	1 saw-cut channel;	\$5834.20
Channel Sampling	!	35 metres: 7 samples	i
Total			\$35093.13

SECTION D: ANALYTICAL RESULTS

- 1. Analyses carried out by Activation Laboratories Ltd. of Ancaster, Ontario
 - Certificate of Analysis #22125 dated June 22, 2001
 - Certificate of Analysis #22137 dated June 27, 2001
 - Certificate of Analysis #22125B dated August 22, 2001
 - Certificate of Analysis #22698 dated September 11, 2001
 - Statement of Analytical Procedures
- 2. Analyses carried out by Teck Cominco Exploration Research Laboratory of Vancouver, B.C.
 - Certificate of Analysis #V01-0350R dated September 27, 2001
 - Certificate of Analysis #V01-0407H dated October 5, 2001
 - Certificate of Analysis #V01-0455R dated October 23, 2001
- 3. Analyses carried out by ALS Chemex Labs of North Vancouver, B.C.
 - Certificate of Analysis A0121300 dated August 7, 2001
 - Statement of Analytical Procedures
- 4. Trench Sampling Weighted Average Calculations
 - Trench MT-01-1
 - Trench MT-01-2
 - Trench MT-01-3
 - Trench MT-01-4
- 5. Check Assay Comparison Charts:

Element-1: Original analysis by Activation Laboratories Ltd. Element-2: Check analysis by Teck Cominco Exploration Research Laboratory

- Tantalum
- Niobium
- Cerium
- Lanthanum
- Neodymium

JUL 1 :

Quality Analysis...

Innovative Technologie

Invoice No.: 22125 Work Order: 22353 Invoice Date: 22-JUN-01 Date Submitted: 05-JUN-01 Your Reference: MYOFF CREEK/200 Account Number: C026

CROSS LAKE MINERALS LTD. 240-800 WEST PENDER ST. VANCOUVER, B.C. V6C 2V6 ATTN: JIM MILLER-TAIT

CERTIFICATE OF ANALYSIS

30 ROCKS (PREP. REV3)

were submitted for analysis.

The following analytical packages were requested. Please see our current fee schedule for elements and detection limits.

REPORT 22125 CODE 1D ENHANCED INAA(INAAGEO.REV1) REPORT 22125 B CODE 4C1-XRF PRESSED PELLET

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

CERTIFIED BY :

DR E.HOFFMAN/GENERAL MANAGER

ACTIVATION LABORATORIES LTD.

1336 Sandhill Drive, Ancaster, Ontario Canada L9G 4V5 TELEPHONE -1.905.648.9611 or +1.888.228.5227 FAX +1.905.648.9t

Activation Laboratories Ltd. Wurk Order: 22353 Report: 22125

Sample ID)		Ag	As	Ba	Br	Ca	Co		Св	Fe %	Hf	Hg		Мо	Na %	NI	Rb	Sb	Sc	Se	Sn %	Şr %	Ta ppm	Th DOM	U pom	W ppm	Zn	La	Ce
		ррь (ppm	ppm	ppm	ppm	%	ppm	ppm p	pm	% p	φm	ppm (ntes b	ADI II	70	ppm	ppm	ppm	ppm	ppm	/0	/0	Phil	hhiu	φ μ αι.	pp://	ppm	ppm	ppm
203194	TRENCH MT-OL	- 2	-5	-0.5	2000	-0.5	Э	11	61	-1	4	4	-1	-5	-1	2.72	-85	-15	-0.1	42 6	-3	-0 02	-0.05	4	9.4	3.4	-1	185	120	225
203194	1114-11-1-1	-2	-5	-0.5	1200	-0.5	24	37	19	-1	5.37	2	-1	-5	-1	0.22	-67	-15	-0.1	29.6	-3	-0 03	0.59	51.4	18.6	31	-1	-50	404	679
203135		-2	-5	-0.5	1900	-0.5	6	7	32	-1	3.15	5	-1	-5	-1	2.61	-94	77	-0.1	43.0	-3	-0 02	0.1	4.1	16	2.2	-1	165	100	184
203197		-2	-5	-0.5	1300	-0.5	12	11	44	-1	3.46	з	-1	-5	-1	1.22	-94	66	0.1	39.9	-3	-0.02	0.3	32.9	14.3	28.1	-1	95	242	446
203198	v v	-2	-5	-0.5	1400	-0.5	13	10	30	-1	3.54	3	-1	-5	-1	0.97	-76	58	-0.1	26.8	-3	-0.02	0.27	45.8	35.8	20.2	-1	95	211	447
203199		-2	-5	1.6	1300	-0.5	13	12	33	-1	3.58	2	-1	-5	-1	1.12	-68	71	-01	24.5	-3	-0.02	0.4	18.6	17	8.2	-1	147	200	383
203200		4	-5	1.4	730	-0.5	18	12	36	2	2.98	2	-1	-5	-1	0.68	-89	-15	-0.1	19.2	-3	-0.02	D.34	49.9	12.6	40.7	-1	-50	288	524
255701		6	-5	Э	1100	-0.5	5	13	33	-1	5.21	3	-1	-5	5	1.18	-76	135	-0.1	34.2	-3	-0.02	0.09	9.7	30.1	8	-1	288	194	389
255702		6	-5	1.7	2000	-0.5	9	11	50	2	3.47	-1	-1	-5	39	1.48	-66	60	-0.1	10.7	-3	-0.02	0.2	0.5	12.3	-0.5	-1	175	206	382
255703		-2	-5	-0.5	1700	-0.5	3	2	111	-1	0.7	1	-1	-5	4	3.17	-53	96	-0.1	3.3	-3		-0.05	1.3	1.8	0.6	-1	-50	14.9	30
255704		-2	-5	1.2	1300	-0.5	12	8	21	2	3.85	2	•1	-5	9	1.02	-57	60	-0.1	19.6	-3	-0.01	0.31	12.3	7.4	6	-1	-50	89.4	190
255705		3	-5	1.9	1300	-0.5	13	7	13	-1	4.31	6	-1	-5	5	2.21	-68	58	-0.1	44.1	-3	-0.01	0.31	18.1	7.5	5	-1	189	334	642
2 . 0	6	Э	-5	-0.5	1700	-0.5	20	12	12	4	4.76	2	-1	-5	34	0.43	-70	33	-0.1	53.7	-3	-0.01	0.56	27.6	1 8.7	15.5	-1	106	277	537
25. 4	50	-2	-5	1.5	1800	-0.5	8	12	20	3	4.73	18	-1	-5	12	3.63	-50	34	-0.1	35.7	-3	-0.01	0.2	15.8	24 1	7.4	-1	130	170	336
255708		-2	-5	-0.5	1100	-0.5	29	10	6	4	4.17	4	-1	-5	9	0.22	-50	-15	-0.1	40.5	-3	-0.01	0.57	11.7	21.2	79	-1	-50	376	686
255709		-2	-5	1.3	1200	-0.5	25	14	6	-1	8.13	2	-1	-5	28	0.19	-50	-15	-0.1	30.8	-3	-0.01	0.47	9.6	31.4	48	-1	95	288	544
255710		-2	-5	1.8	1600	-0.5	23	12	12	-1	5.13	4	-1	-5	24	0.36	-50	-15	-0.1	46.9	-3	-0.01	0.49	20.4	37.5	23 8	-1	-50	460	683
255711		-2	-5	-0.5	530	-0.5	18	19	41	-1	9.69	1	-1	-5	46	0.23	-50	55	-0.1	27.3	-3	-0.01	0.39	21.2	41.5		-1	182	390	710
255712		-2	-5	3.6	1800	-0.5	27	20	-5	4	5.68	3	-1	-5	19	0.21	-50	-15	-0.1	27.9	-3	-0.01	0.54	37.2	52	30	-1	-50	511	824
255713		-2	-5	-0.5	1600	-0.5	21	12	-5	-1	3.84	1	-1	-5	21	1.14	-50	-15	-0.1	23.3	-3	-0.01	0.37	7.7	12		-1	-50	401	632
255714		-2	-5	-0.5	810	-0.5	5	14	95	-1	4.77	7	-1	-5	7	4.78	-50	-15	-01	46.9	-3		0.08		16		-1	-50	128	242
255715		-2	-5	-0.5	1400	-0 5	7	24	93	-1	4.96	12	-1	-5	26	3.55	•50	90	-0.1	28.7	-3		0.15				-1	144	873	175
255716		-2	-5	-0.5	1800	-0.5	24	19	75	-1	5.22	5	-1	-5	-1	0.46	-50	-15	-0.1	28.8	-3		0.4		29		-1	-50	288	610
255717		-2	-5	-0 5	2900	-0.5	28	18	7	-1	6.73	10	-1	-5	-1	0.25	-50	-15	-0.1	25.7	-3		0.37		18.3		-1	147	416	808
255718		-2	-5	-05	2800	-0.8	28	17	-5	.1	3.31	4	-1	-5	-1	0.2	-50	-15	-0.1	31.6	-3		0.46		27.8		-1	-50	561	1050
255719		-2	-5	26	4100	-0.5	22	8	-5	-1	2.46	-1	-1	-5	-1	0.52	-80	-15	-0.1	23.6	-3	-0.02	0.58		15.9		-1	-50	1010	1670
255720		4	-5	-0.5	3100	-0.5	19	19	13	-1	506	-1	•]	-5	-1	0.38	-80	-15	-0.1	30.6	-3	-0.02	0.4	86.6	26.6	80.6	-1	98	696	1150
255721		3	-5	-0.5	3200	-0.5	11	26	31	-1	6.12	5	-1	-5	-1	0.84	-80	-15	-0.1	42.2	-3		0.27	62.4	27.2	76	-1	111	543	951
255722		-2	-5	4.6	1200	-0.5	24	8	-5	-1	3.73	-1	-1	-5	16	0.37	-80	-15	-0.1	28.6	-3		0.41		16.4		-1	-50	881	1170
255723		-2	-5	3.6	470	-0.5	17	5	-5	-1	3 95	2	-1	-5	-1	0.75	-83	-15	-0.1	42.8	5		0.38		23	-0.5	-1	-50	431	725
TAN-1-2		-9	-7	31.1	-190	-1.6	-2	-1		826	-0.1	26	-2	-5	-1		-359	2660	19.1	7.6	-6	-0.07		2360	5		-3	-68	7.2	-3
TAN-1-1		-11	-7	27.5	-170	-2.1	-2	-2		826	-0.09	24	-2	-5	-1		-364	2750	19.6	20.0	-7	-0.07	-0.05		47	23.7	-4	-63	6.7	-3
DMMAS		488	-5	2040	360	2.6	<u>_</u>	64	157	-1	7.96	3	-1	-5	-2	0.75	449	-15	3.4	20.8	-3		-0.05		13		21	304	13.3	25
DMMAS		472	-5	2010	450	2.5	7	59	158	-1	8.07	3	-1	-5	-1	0.76	-64	47	11.5	21.2	-3		-0.05		12		19	291	12 3	22
DMMAS		634	-5	2170	450	3	8	66	158	-1	8.59	2	-1	-5	-1	0.77	-57	54 2700	13.2	217	-3	-0.02	-0.05	-05 2360	1.3	-05 238	17	265	12.7	24
TAM 1 C							3.0			830	AE . A OE	o. 4				4.6 0.74+-0.48		38+-10	17. 3	20.5+-3.4					15.05	₹ 2 8	104 2 1	250+-50 1		77.7
	d Value-DMMAS-18B	544+-72	2	020+-224 4	35+-150 3	2.5+-1.5	14-2	387-15	101+-20	8.	05+-0.85	∡+•1				<i>↓.14+-</i> ↓48		90+~10	12+-3	20.31-3.4					1.5+-0.5		19+-2 2	200+-00-1	2.2++1.3	23+-3
	* *																													

Accepted

Sample ID	Nd	Sm	Eu	тъ	Yb	Lu	Mass
	ppm	ppm	ppm	ррт	ppm	ppm	g
203194 MT-01-4							
203194 MT-01-4	98	13 8	45	0.5	1	0.15	1.203
203195	261	39.7	10.7	2.7	2.6	0.39	1.416
203 196	75	12 2	3.1	0.5	0.6	0.1	1.428
203197	195	30 5	B.4	2	1.6	0.26	1.555
203198	225	37.2	9.5	2.2	1.5	0.21	1.243
203199	167	26.9	8	1.7	1.5	0.2	1.412
203200	234	36.5	9.6	2.1	2.2	0.3	1.46
255701	171	26	7.4	1.6	1.2	0 13	1.274
255702	150	24.5	7.5	1.5	0.9	0.14	1 38
255703	9	15	0.5	-0.5	0.2	-0.05	1.367
255704	81	14.6	3.6	0.9	0.9	0.14	1.227
255705	300	42.1	11	2	1.8	0.26	1.42
255706	248	34.4	98	2.1	2.1	0.31	1.401
255707	168	24.1	6.6	1.3	1.8	0.26	1.31
255708 ¥	302	37.4	111	2.4	2.9	0.41	1.395
255709	262	38 9	10 6	2.3	2.5	0.36	1.307
255710	400	58 2	17.5	3.8	3.2	0.49	1.337
255711	330	44.3	11.4	2.4	2	0.3	1.557
255712	323	44.6	12.7	2.6	2.8	0.42	1 505
255713	240	27.9	7.2	1.4	1.2	0.19	1.417
255714	107	16	4.1	12	08	0.13	1.225
255715	75	12.4	3	0.9	1.2	0.17	1.306
255716	290	44.2	12	2.7	2.8	0.42	1.277
255717	360	48 5	12 7	3	2.8	0.42	1.258
25571B	452	615	16.3	4.2	3.5	0.53	1.234
255719	615	70.1	17.1	3.7	3.4	05	1.316
255720	469	56	14.9	3.9	2.7	04	1.225
255721	427	54.5	14.B	3.3	33	0.45	1.311
25572 2	372	36.2	9	1	1	0.15	1.351
255723	266	33.2	7.7	2	1.5	0.23	1.239
TAN-1-2	-5	2.4	-0.2	-0.5	-0.3	-0.05	0.3
TAN-1-1	-5	2.4	-0.2	-0.5	-0.3	-0.05	0.3
DMMAS-18-117	12	4 1	1.2	-0.5	3.7	0.55	1.451
DMMAS-18-117	11	4	1.2	-0.5	3.9	0.62	1.451
DMMAS-18-116	12	41	1.3	0.7	3.7	0.57	1.318
TA*' * Cert							

d Value DMMAS-18B 11+-3 4.1+-0.5 1.2+-0.2 0.8+-0.35 3.6+-0.6 0.54+-0.05 Α

Activation Laboratorles Ltd. Vyurk Order: 22353 Report: 22125B

Sample	Nb	
	ppm	
		TRENCH
203194	186	MT-01-4
203195	7 99	1-((-0))-4
203196	407	
203197	735	
203198	1118	
203199	838	
203200	515	
255701	1402	
255702	474	
255703	70	
255704	1699	
255705	3211	
255706	2140	
255707	1843	
255708	1701	
255709	1559	
255710	1857	
255711	1564	¥
255712	2288	
255713	526	
255714	347	
255715	513	
255716	554	
255717	331	
255718	801	
255719 255720	329	
255721	1241 690	
255721	648	
255723	855	
200723	000	
Standard		
SY-2	29	
SY-2	30	
SY-2	28	
SY-2 Cert.	29	
\$Y-3	146	
SY-3 Cert.	148	
OKA-2	442	
OKA-2	440	
AGV-1	15	
AGV-1 Cert.	15	
JG-1A	12	
JG-1A Cert.	12	
LKSD-1	5	
LKSD-1 Cert.	7	
Monitor	2145	

現し 打する

Quality Analysis...

Innovative Technologi.

Invoice No.: 22137 Work Order: 22380 Invoice Date: 27-JUN-01 Date Submitted: 08-JUN-01 Your Reference: MYOFF CREEK Account Number: 3086

CROSS LAKE MINERALS LTD. 240-800 WEST PENDER ST. VANCOUVER, B.C. V6C 2V6 ATTN: JIM MILLER-TAIT

CERTIFICATE OF ANALYSIS

43 ROCKS (PREP.REV3.1)

were submitted for analysis.

The following analytical packages were requested. Please see our current fee schedule for elements and detection limits.

REPORT 22137 CODE 1D ENH'D INAA(INAAGEO.REV1) REPORT 22137 B 4C1-XRF PRESSED PELLET

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

CERTIFIED BY :

DR E.HOFFMAN/GENERAL MANAGER

ACTIVATION LABORATORIES LTD.

Sample ID	Au Ag pob pom	As ppm	Ba ppm	Br C ppm %			Fe Hf Hg Ir % ppm ppm ppb	r Mo)ppm	Na Ni % ppm	Rb : ppm pt	Sb Sc om ppm	Se	\$n %	Sr %	Ta ppm	Th (ppm pp	u v m ppn	-	La Ce
TREACH										PP PI	and the second	P-P-11		~	Paper 1	An war	n ppn	n bbu	ррт ррт
203151 MT 01-1	-2-5	-0.5	3300		8 1		4.24 5 -1 -5		3.58 -57		0.1 27	-3	-0.01		13.2		.2 -		193 348
203152	-2-5 -2-5	-0.5	2000 1900	-0.5 2) 72 9422	2.87 2 -1 -5		0.44 -50		0.1 21.6	-3	-0.01	0.53	7.9	19.9 1			231 462
203153 203154	-2-5	-0.5 -0.5	700	-0.5 1		9 42 2 2 -5 -1	4.83 4 -1 -5		2.13 -62		0.1 36	-3	-0.01		13 3	14.5	4 -		238 463
203155	-2 -5	-0.5	2400			2 70 1	242 -1 -1 -5		0.12 -45 4.18 -67		0.1 19 0.1 50.5	-3	-0.01	0.47	44.4	17.7 14			157 337
203155	-2 -5	1.2	290	-0.5 2		8 -5 -1	2.64 -1 -1 -5		4.18 +07 0.13 -47		0.1 50.5 0.1 20.4	-3 -3	-0.01 -0.01	0.08 0.49	-0.5 26.5	11 2 21.6 10			211 371
203157	5 -5	-0.5	1300	-0.5 1		5 38 1	489 4 -1 -5	_	1.7 -63		0.1 20.4 0.1 48.1	-3 -3	-0.01	0 34	20.5 19.7		.1 - 5 -		195 422
203158	7 -5	-0.5	1100			1 30 -1	3.62 3 -1 -5		1.09 53		0.1 30.7	-3	0.08		22.1	24.7 10		1 95 1 77	201 416 163 354
203159	-2 -5	1.2	530	-0.5 1	8 1	2 38 2	3.96 2 -1 -5		0.99 -55		0.1 27.3	-3	0.01	046	6.3	23.4	3.		163 354 211 459
203160	-2 -5	-0.5	970	-0.5 2	:1 1	3 42 -1	4.66 3 -1 -5	59	0.34 314		0.1 36.7	-3	0.01	0.62	45	44.2 27	-		286 597
203161	-2 -5	-0.5	1600	-0.5 2	:1 1	7 39 -1	5.37 3 -1 -5	58	0.48 -63	51 -(0.1 28.4	-3	-0.01		21.7	42 11			371 688
203162	3-5	1.7	1100	-0.5 2		6 24 -1	3.78 2 -1 -5	5 -1	0.77 -61	41 -(0.1 23.3	-3	-0.01	0 63	24 1	17.4 30			387 731
20 LO344	5-5	-0.5	1100	-0.5 2		5 -5 -1	4.85 4 -1 -5		0.16 255		01 25.2	-3	-0.01	0.46	11 9	17.4	2 -		475 884
20. 203165	-2 -5	19	1000			5 49 -1	4.98 4 -1 -5		0.6 -56		0.1 24. 9	-3	0.05	0.31	17 7		12 -	108	252 490
203166 203167	-2-5 6-5	-0.5	1800			4 17 2 3 82 2	5.07 1 -1 -5		0.71 -62		3.1 21.2	-3	-0.01		15.4	12.1 12		-	471 855
and the second se		-0.5 -0.5	4000			<u>3 82 2</u> 0 105 -1	<u>8.12 6 -1 -5</u> 4.15 5 -1 -5		4 05 275		0.1 42.8	-3	-0.01	0.19	35.6	53.9 9		=*	423 710
203169 MTOI-Z 203170	3-5	-0.5	2200			3 89 -1	4.10 5 -1 -5 3.89 3 -1 -5		4.4 -60 1.56 -61		0.1 35.3	-3	-001	0.13	4	11.1 3	-		113 227
203171	2 -5	-0.5	470			8 35 1	2.99 1 -1 -5		0.17 194		0.1 39.2 0.1 16.6	.3 .3	0.06 -0.01		31.7 10.1	19.9 32			169 369
203172	-2 -5	1.7	2500	-0.5 2			7.03 6 -1 -5		0.43 -64		0.1 10.0 0.1 31.1	-3 -3	-0.01		10.1 79.4	28.4 4 71.5 50			198 450 289 608
203163 MT-01-1	2 -5	-0.5	1300			<u> </u>	4.15 2 -1 -5		0.13 -76		0.1 20.9	-3	-0.02		20.3	41.9 14	-		
203 168	-2 -5	-0.5	1100			7 80 -1	4.41 9 -1 -5		2.33 -82		0.1 74.8		-0.02	0.26	7.6	21.3 5			621 1060 640 998
203173 MT-01-2	2 -5	-0.5	910	0.5	ð	7 32 1	3.1 6 1 -5	5 9	1.7 -45		0.1 29.3	-3	-0.01	0.2	0.2	45.3 8			145 282
203174	-2 -5	-0.5	920			7 44 -1	4.57 2 -1 -5	58	0.88 -50	48 -0	0.1 22.1	-3	-0.01	0.24	24.4	24.6 16			201 384
203175	-2-5	-0.5	1000			0 36 -1	3.06 2 -1 -5		1.08 -44		0.1 14.1	-3	-0.01	0.23	12.1	1737		-	190 393
203176	-2 -5	1.9	1000	-0.5 2		2 -5 -1	4.32 3 1 5		0.13 50		0.1 21.6	-3	-0.01	0.32	12.4	13.9 8	9 -	95	305 556
203177	-26	-0.5	1500	-		5 56 -1	378 3 -1 -5		0.5 262		0.1 22.6		-0.01		23.3	16 24		67	315 588
203178 203179	-2 -5 -2 -5	-0.5 -0.5	980 1300		-	7 42 -1 0 5 -1	328 4 -1 -5		3.38 50		0.1 32.4	-3	-0.01	0 14	8.3	12.3 5			157 278
203180 MT 01-3	-2 -5	-0.5	2100		4 3		<u>394 2 -1 -5</u> 7.56 3 1 -5		<u>0.4 48</u> 2.76 -47		0.1 <u>18.5</u> 0.1 25.8	-3	0.01	0 28	19.4	20.4 22			254 454
203181	-2 -5	-0.5	1500	-0.5 2		3 -5 -1	2.46 5 -1 -5		2.76 -47		0.1 25.8 0.1 10.4	-3 -3	-0.01 -0.01	0 05 0 47	-0.5 98.9	2.3 -0			45.9 86
203182	4 -5	-0.5	1200			3 64 2	4.56 3 -1 -5		1.62 286		0.1 10.4 0.1 50	-3 -3	-0.01	0.47	98.9 79	24.8 15 10.6	.1 - 3 -		277 514
203183	Z -5	-0.5	990			7 -5 -1	2 -1 -1 -5		0.52 -45		0.1 18.9	-3	0.01		28.5	6.3 33	-		183 333 191 364
203184	-2 -5	1.9	2200		5	7 52 -1	2.57 5 -1 -5		4 18 - 55		0.1 38.1	-3	-0.01		13.3	23.4 7			99.8 199
203 185	2 -5	3.9	1700	-05 1	2 1	0 16 -1	4.6 3 -1 -5	5 24	1.02 -59		0.1 37.8		-0.01		47 8	27.9 38		93	262 528
203109	-2 -5	-0.5	990	-0.5 1		0 43 -1	3.37 2 -1 -5	5 65	0.57 325	39 -0	0.1 24.9	-3	-0.01		25 4	25.3 23			216 420
20 81	-2 -5	-0.5	1900	-0.5 1		4 42 -1	3.91 5 -1 -5		1.29 -52		0.1 20.1	-3	-0.01	0.28	21.8	59 11			203 390
203 iud 1 3	-2 -5	-0.5	1200		-	6 29 -1	5.32 5 -1 -5		1.1 -54		0.2 32.2	-3	-0.01	0.26	30.7	33.2 1	8 -		187 382
203189	-2 -5	-0.5	910			0 64 2	3.03 2 -1 -5		2.98 -51		0.1 14.1	-	-0.01	0.12	30	28.3 23	.6 3	73	186 354
203190 203191	-2-5	-0.5	1100	-		7 18 2	5.07 4 -1 -5		0.66 -55		0.1 24.6		-0.01		15.5	191 8		105	264 535
203191	3-5 -2-5	1.5 -0.5	2200 2100		82 71	6 106 3 9 54 -1	8.28 3 -1 -5 5.42 4 -1 -5		1.77 -88	119 -0			-0.02		25.7	16 6 20			670 995
203193	-2-5 2-5	-0.5	2600	-0.5 1		9 54 -1 6 30 -1	5.42 4 -1 -5 5.28 5 -1 -5		1.19 -60 1.26 -66).1 32.7).1 41.4	-	-0.01		21.4	17.2 19			321 590
TAN-1-2	-13 -5	26.3	-150			5 -5 819	-0.07 22 -2 -6		4.65 -307		<u>).1 41.4</u> 24 4.2	-3	-0.01		38.1	26.3 3	_		313 559
TAN-1-1	-14 -7	24.2	-180			7 -6 844	-0.1 23 -2 -9		5.15 -322	2070 24	-	- व - य	-0.05 -0.06		2350 2380	5.3 23		~~	64 13
DMMAS-18-119	512 -5	2230	460	2.6		5 156 2	8.34 2 -1 -5		0.81 52		10 21.1	-5	-0.00	-0.05	2380	44 22		-	6.3 13 13 24
DMMAS-18-118	647 -5	2180	410			3 160 2	8.65 2 -1 -5		0.79 -52).2 22	-		-0.05	-0.5	14 -0			13 24 12.6 26
Accepted Value-DMMAS-18B 5 TAN-1 Cert.	44+-72 2	2020+-224 43	35+-150 2	.5+-1.5 7+-	2 58+-1	5 151+-20 <i>8</i> 830	1.05+-0.85 2+-1 22				-3 20.5+-3.4	-				1.5+-0.5 4 5 23	19+-3		2.2+-1.3 23+-3

Activation Laboratories Ltd.	Work Order: 22380	Report: 22137
		• • • • • • • • • •

TRENCH ppm ppm	Sample ID		Nd	Sm	Eu	ть	Yb	Lu	Mass	
203151 $h T - o1 - l$ 149 24.8 6.1 1.8 2.3 0.35 1.413 203152 200 32.7 8.3 1.9 1.5 0.2 1563 203153 190 32.2 8.4 2.2 2.8 0.41 1.451 203154 143 25.6 6.8 1.5 1.6 0.24 1.679 203155 132 20.9 4.8 1.5 1.7 0.25 1.406 203156 199 3.6 6.5 2.1 1.2 0.16 1.615 203156 199 3.6 6.7 2 1.3 0.18 1.433 203160 255 42.6 11 2.6 0.4 1.533 203162 297 47.5 12.7 2.8 2.8 0.43 1.454 203162 205 2.25 1.33 2.5 0.32 1.617 2.023 1.617 203162 205 2.55 1.33 2.8 2.2 0.32 1.617 203163 hT -	TE	SENCH.	ppm	ppm	ppm	ppm	ppm	ppm	g	
203152 200 32.7 8.3 1.9 1.5 0.2 1.663 203153 190 32.2 8.4 2.2 2.8 0.41 1.451 203154 143 25.6 6.8 1.5 1.6 0.24 1.679 203155 132 20.9 4.8 1.5 1.7 0.25 1.406 203155 132 20.9 4.8 1.5 1.7 0.25 1.566 203157 17.8 29.3 7.2 1.6 1.7 0.25 1.566 203159 209 3.6 8.7 2 1.3 0.18 1.433 203160 255 42.6 11 2.6 2.6 0.4 1.533 203161 264 40.6 10.5 2.3 2 0.20 1.844 203165 205 3.2.4 7.3 1.8 3.6 0.38 1.429 203162 297 7.5 1.3 2.8 2.2 0.32 1.611 203161 1.42 2.7 7			1/0	24.9	6.1	1.8	23	0.35	1 4 13	
203153 190 32.2 8.4 2.2 2.8 0.41 1.451 203154 143 25.6 6.8 1.5 1.6 0.24 1.679 203155 132 20.9 4.8 1.5 1.7 0.25 1.406 203156 199 32.6 8.5 2.1 1.2 0.16 1.615 203159 209 33.6 8.7 2 1.3 0.18 1.433 203160 265 4.06 10.5 2.3 2 0.28 1.392 203161 264 40.6 10.5 2.3 2 0.28 1.392 203162 297 47.5 12.7 2.8 2.8 0.34 1.449 203165 205 32.4 7.3 1.8 3.6 0.38 1.429 203164 381 58 1.3 2.8 2.2 0.32 1.617 203165 2017 241 34 8.3 0.5 2.3 2.0 1.511 203166 HT - 61-Z <	· · · ·									
203154 143 25.6 6.6 1.5 1.6 0.24 1.679 203155 132 20.9 4.8 1.5 1.7 0.25 1.406 203155 132 20.9 4.8 1.5 1.7 0.25 1.6015 203156 199 32.6 6.5 2.1 1.2 0.15 1.615 203158 160 26.5 6.6 1.7 1.5 0.21 1.574 203160 255 42.6 11 2.6 2.0 4.1533 2.0316 3.2 0.28 1.392 203161 264 40.6 105 2.3 2 0.28 1.392 2.0316 3.28 2.2 0.32 1.617 203166 352 52.5 13.3 2.8 2.2 0.32 1.617 203166 352 52.5 13.3 2.8 2.2 0.32 1.511 203171 219 35.1 9.2 1.9 1.3 0.21 1.512 203172 266 3.5 0.8										
203155 132 20.9 4.8 1.5 1.7 0.25 1.406 203156 199 32.6 8.5 2.1 1.2 0.15 1.615 203157 17.8 29.3 7.2 1.6 1.7 0.25 1.536 203159 209 33.6 8.7 2 1.3 0.18 1.433 203160 255 42.6 11 2.6 2.6 0.4 1.533 203161 264 40.6 10.5 2.3 2 0.28 1.454 203162 297 47.5 12.7 2.8 0.43 1.454 203165 205 32.4 7.3 1.8 3.6 0.38 1.429 203166 352 52.5 13.3 2.8 0.22 0.32 1.511 203163 $\mathbf{hT} - \mathbf{o} (-T Z)$ 86 15 3.5 0.8 1.2 0.21 1.552 203170 164 267 7.1 1.5 1 0.15 1.36 203173 $\mathbf{h} T - \mathbf{o} (-T Z)$ </td <td></td>										
203156 199 32.6 8.5 2.1 1.2 0.16 1.615 203157 178 29.3 7.2 1.6 1.7 0.25 1.536 203158 160 26.5 6.6 1.7 1.5 0.21 1.574 203160 255 42.6 11 2.6 0.4 1.533 203161 264 40.6 10.5 2.3 2 0.28 1.392 203162 297 47.5 12.7 2.8 2.8 0.43 1.454 20.3165 2005 32.4 7.3 1.8 3.6 0.38 1.429 203166 352 52.5 1.33 2.8 2.2 0.32 1.511 203166 352 52.5 1.33 2.8 2.2 0.32 1.51 203170 241 34 8.3 -0.5 2.3 0.35 1.51 203171 219 35.1 9.8 1.1 0.8 1.51 2.0 203173 MT - 01 - Z 132 21										
203157 178 29.3 7.2 1.6 1.7 0.25 1.536 203158 160 26.5 6.6 1.7 1.5 0.21 1.574 203159 209 33.6 8.7 2 1.3 0.18 1.433 203160 255 42.6 11 2.6 2.6 0.4 1.533 203161 264 40.6 10.5 2.3 2 0.28 1.392 203162 297 47.5 12.7 2.8 2.8 0.43 1.454 203165 205 32.4 7.3 1.8 3.6 0.38 1.429 203166 352 52.5 1.3 2.8 2.3 0.35 1.511 203169 $MT-01-Z$ 86 15 3.5 0.8 1.2 0.21 1.512 203170 164 267 7.1 1.5 1 0.15 1.366 203171 219 35.1 9.2 1.2 0.33 1.666 203172 260 4.3.5 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
20315816026.56.61.71.50.211.57420315920933.68.721.30.181.43320316025542.6112620.4153320316126440.610.52.320.281.39220316229747.512.72.82.80.431.45420.3 16438158153.32.50.321.61720.3 16520532.47.31.83.60.381.42920316635252.513.32.82.20.355.11203167241348.3-0.52.30.351.51120317016426.77.11.510.151.36620317121935.19.21.91.30.211.512203163MT-GI-T43663.715.93.12.40.331.686203163MT-GI-T13221521.21.50.231.5420317521129.98.11.61.90.251.34920317624137.59.41.81.50.221.467203173MT-61-T13221521.21.50.231.5420317621129.57.11.61.20.181.32720317621138.39.72.430.451.467 </td <td></td>										
20315920933.68.721.30.181.43320316025542.6112.62.60.41.53320316126.440.610.52.320.281.39220316229747.512.72.82.80.431.45420316229747.512.72.82.80.431.45420316520532.47.31.83.60.381.42920316635252.513.32.82.20.321.511203167241348.3-0.52.30.351.511203169 $\mathbf{HT} - 01 - \mathbf{Z}$ 86153.50.81.20.21.25520317121935.19.21.91.30.211.51220317226043.611.92.63.20.461.518203173 $\mathbf{HT} - 01 - \mathbf{Z}$ 132215.21.21.50.232031752112.97.11.61.90.251.3492031752112.9.57.11.61.90.251.3492031741.82.96.71.71.50.241.4132031752112.9.57.11.61.90.251.34920317424137.59.41.81.50.221.4132031752112.9.67.81.71.50.25 <td></td>										
20316025542.61126260.4153320316126440.61052.320.281.39220316229747.512.72.82.80.431.45420316520532.47.31.83.60.381.42920316635252.513.32.82.20.321.511203167241348.30.52.30.351.511203169 $\mu\tau$ -01-Z86153.50.81.20.21.25520317016426.77.11.510.151.386203163 $\mu\tau$ -01-145663.715.93.12.40.331.68620317226043.611.92.63.20.461.518203163 $\mu\tau$ -01-713221521.20.181.57203173 $\mu\tau$ -01-713221521.20.181.32720317418429.98.11.61.90.251.34920317521129.57.11.61.20.181.32720317624137.59.41.8150.221.44720317811617.44.40.91.20.211.46720318124138.39.72.430.451.46720318317327.57.21.31.40.191.391 <td></td>										
20316126440.610.52.320.281.39220316229747.51272.82.80.431.45427.31.6438158153.32.50.321.61720.31.6520532.47.31.83.60.381.42920316635252.513.32.82.20.321.511203169 ht^-otr-Z 86153.50.81.20.21.25520317016426.77.11.510.151.38620317121935.19.21.91.30.211.51220317226043.611.92.63.20.461.518203173 ht^-otr-1 43663.715.93.12.40.331.686203163 ht^-otr-7 13221521.21.50.231.54203173 ht^-otr-7 13221521.21.50.231.5420317521129.57.11.61.90.251.34920317624137.59.41.81.50.231.3420317811617.44.40.91.20.211.46720317811617.44.40.91.20.211.3692031811612.646.4-0.51.70.251.3272031821612.64 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
203162 297 47.5 12.7 2.8 2.8 0.43 1.454 273164 381 58 15 3.3 2.5 0.32 1.617 20.3166 352 52.5 13.3 2.8 2.2 0.32 1.617 203166 352 52.5 13.3 2.8 2.2 0.32 1.511 203167 241 34 8.3 0.5 2.3 0.35 1.511 203160 HT-01-Z 86 15 3.5 0.8 1.2 0.2 1.255 203170 164 26.7 7.1 1.5 1 0.15 1.366 203171 219 35.1 9.2 1.9 1.3 0.21 1.512 203173 HT-01-Z 132 21 52 1.2 1.5 0.23 1.54 203173 HT-01-Z 132 21 52 1.2 1.5 0.23 1.54 203174 184 29.9 8.1 1.6 1.9 0.25 1.349 20								-		
$2^{\circ}3 164$ 38158153.32.50.321.617 203165 205 32.4 7.3 1.8 36 0.38 1.429 203166 352 52.5 13.3 2.8 2.2 0.32 1.511 203167 241 34 8.3 0.5 2.3 0.32 1.511 203169 $\mathbf{MT} - 01 - \mathbf{Z}$ 86 15 3.5 0.8 1.2 0.2 1.255 203170 164 26.7 7.1 1.5 1 0.15 1.386 203171 219 35.1 9.2 1.9 1.3 0.21 1.512 203163 $\mathbf{MT} - \mathbf{GI - 1}$ 436 63.7 15.9 3.1 24 0.33 1.896 203172 250 43.5 11.9 2.6 3.2 0.46 1.518 203173 $\mathbf{MT} - \mathbf{OI} - \mathbf{Z}$ 132 21 52 12 0.33 1.54 203175 211 29.9 8.1 1.6 1.9 0.25 1.349 203176 241 37.5 9.4 18 15 0.22 1.413 203179 192 29.6 7.8 1.7 1.5 0.25 1.327 203183 173 27.5 7.2 1.3 1.4 0.9 1.2 0.21 203184 87 14.6 1.9 0.5 1.9 0.27 1.389 203184 87 14.4 3.5										
203165 205 32.4 7.3 1.8 3.6 0.38 1.429 203166 352 52.5 13.3 2.8 22 0.32 1.511 203167 241 34 8.3 0.5 23 0.35 1.511 203169 $\mathbf{MT} - 01 - \mathbf{Z}$ 86 15 3.5 0.8 12 0.22 1.555 203172 266 43.6 11.9 2.6 32 0.46 1518 203163 $\mathbf{MT} - 01 - \mathbf{Z}$ 132 21 0.33 1.666 203173 $\mathbf{MT} - 01 - \mathbf{Z}$ 132 21 52 12 0.18 1.557 203173 $\mathbf{MT} - 01 - \mathbf{Z}$ 132 21 52 12 0.18 1.557 203175 211 29.5 7.1 16 12 0.18 1.327 203176 241 37.5 9.4 18 15 0.221 1.447 203176 241 38.3										
20316635252.513.32.82.20.321.511203167241348.3-0.52.30.351.511203167241348.3-0.52.30.351.5112031701642677.11.510.151.38620317121935.19.21.91.30.211.51220317226043.511.92.63.20.461.518203163 $\mathbf{MT} - 01 - 1$ 43663.715.93.12.40.331.686203168 $\mathbf{MT} - 01 - 7$ 13221521.21.50.231.54203173 $\mathbf{MT} - 01 - 7$ 13221521.21.50.231.5420317521129.57.11.61.20.18132720317624137.59.41.8150.221.41320317726741.610.72.12.30.341.24420317919229.67.81.71.50.251.327203180 $\mathbf{h} \mathbf{T} - 0 - 3$ 386.51.9-0.51.90.271.38920318116626.46.4-0.51.70.251.21820318317327.57.21.31.40.451.4672031848714.43.5-0.50.80.121.359203183 <td></td>										
203167 241 34 8.3 -0.5 2.3 0.35 1.511 203169 $hT - 0I - Z$ 86 15 3.5 0.8 1.2 0.2 1.255 203170 164 267 7.1 1.5 1 0.15 1.386 203171 219 35.1 9.2 1.9 1.3 0.21 1.512 203163 $hT - 0I - 1$ 436 63.7 15.9 3.1 2.4 0.33 1.686 203163 $hT - 0I - 7$ 132 21 5.2 1.2 0.18 1.577 203173 $hT - 0I - 7$ 132 21 5.2 1.2 0.18 1.54 203175 211 29.5 7.1 1.6 1.2 0.18 1.327 203176 241 37.5 9.4 1.8 1.5 0.22 1.413 203177 267 41.6 107 2.1 2.3 0.34 1.24 203178 116 17.7 2.6 7.8 1.7 1.5 0.25 1.327	20. 3 16 5									
203169 $hT - 6I - Z$ 86 15 3.5 0.8 1.2 0.2 1.255 203170 164 26.7 7.1 1.5 1 0.15 1.386 203171 219 35.1 9.2 1.9 1.3 0.21 1.512 203172 260 43.6 11.9 2.6 3.2 0.46 1.518 203163 $hT - 6I - 1$ 436 63.7 15.9 3.1 2.4 0.33 1.686 203163 $hT - 0I - Z$ 132 21 5.2 1.2 1.5 0.23 1.54 203173 $MT - 0I - Z$ 132 21 5.2 1.2 1.5 0.23 1.54 203175 211 29.5 7.1 1.6 1.2 0.18 1.327 203176 241 37.5 9.4 1.8 1.5 0.221 1.413 203174 16 17 2.1 2.3 0.34 1.244	203166		352	52.5	13.3	2.8	2.2	0.32	1.511	
20317016426.77.11.510.151.38620317121935.19.21.91.30.211.51220317226043.611.92.63.20.461.518203163 $\mathbf{hT} - 01 - 1$ 43663.715.93.12.40.331.686203164314489.81.51.20.181.57203173 $\mathbf{hT} - 01 - \mathbf{Z}$ 132215.21.21.50.231.5420317521129.57.11.61.90.251.34920317624137.59.41.81.50.241.41320317624137.59.41.81.50.221.41320317919229.67.81.71.50.251.327203180 $\mathbf{hT} - 01 - \mathbf{J}$ 386.61.9-0.51.90.271.38920318111617.44.40.91.20.211.46720318216126.46.4-0.51.70.251.38920318317327.57.21.31.40.191.3912031848714.43.5-0.50.80.121.35920318317327.57.21.31.40.191.3112031848714.43.5-0.50.80.121.55920318523638	203 167		241	34	8.3	-0.5	2.3	0.35	1.511	
20317121935.19.21.91.30.211.51220317226043.611.92.63.20.461.518203163 $\square \Upsilon - 0 I - I$ 43663.715.93.12.40.331.666203168314408.91.51.20.181.557203173 $\square \Upsilon - 0I - Z$ 132215.21.21.50.231.5420317418429.98.11.61.90.251.34920317521129.57.11.61.20.181.32720317624137.59.41.81.50.221.41320317726741.610.72.12.30.341.24420317811617.44.40.91.20.211.467203180 $\square \Upsilon - 0.1 - \mathbf{J}$ 386.61.9-0.51.90.271.38920318111617.44.40.91.20.211.46720318216126.46.4-0.51.70.251.32720318317327.57.21.31.40.191.3912031848714.43.5-0.50.80.121.359203185236389.52.22.10.311.534203184871.443.5-0.50.80.121.359203185236387.31.8 </td <td>203169</td> <td>17-01-Z</td> <td>86</td> <td>15</td> <td>3.5</td> <td>0.8</td> <td>1.2</td> <td>0.2</td> <td>1.255</td> <td></td>	203169	17-01-Z	86	15	3.5	0.8	1.2	0.2	1.255	
20317226043.511.92.63.20.461.518203163 $\mathbf{MT} - 01 - 1$ 43663.715.93.12.40.331.666203168314408.91.51.20.181.557203173 $\mathbf{MT} - 01 - \mathbf{Z}$ 132215.21.21.50.231.5420317418429.98.11.61.90.251.34920317521129.57.11.61.20.181.32720317624137.59.41.81.50.221.41320317811617.44.40.91.20.211.46720317919229.67.81.71.50.251.327203180 $\mathbf{h} \mathbf{T} - 6 \mathbf{i} - 3$ 386.61.9-0.51.90.271.38920318124138.39.72.430.451.46720318317327.57.21.31.40.191.3912031848714.43.5-0.50.80.121.359203185236389.52.22.10.311.5342031848714.43.5-0.50.80.121.359203185236389.52.22.10.311.53420318417428.87.31.81.70.251.55920318917128.8 <td>203170</td> <td></td> <td>164</td> <td>26.7</td> <td>7.1</td> <td>1.5</td> <td>1</td> <td>0.15</td> <td>1.386</td> <td></td>	203170		164	26.7	7.1	1.5	1	0.15	1.386	
203163 $\mathbf{MT} - \mathbf{G} \mathbf{i} - \mathbf{i}$ 43663.715.93.12.40.331.666203168314408.91.51.20.181.557203173 $\mathbf{MT} - \mathbf{O} \mathbf{i} - \mathbf{Z}$ 132215.21.21.50.231.5420317416429.98.11.61.90.251.34920317521129.57.11.61.20.181.32720317624137.59.41.81.50.221.41320317726741.610.72.12.30.341.24420317811617.44.40.91.20.211.467203180 $\mathbf{h} \mathbf{T} - \mathbf{G} \mathbf{i} - \mathbf{J}$ 386.61.9-0.51.90.251.327203180 $\mathbf{h} \mathbf{T} - \mathbf{G} \mathbf{i} - \mathbf{J}$ 386.61.9-0.51.90.271.38920318124138.39.72.430.451.46720318216126.46.4-0.51.70.251.21820318317327.57.21.31.40.191.3912031848714.43.5-0.50.80.121.359203185236389.52.22.10.311.534207 7519431.27.91.81.50.231.31120318917125.26.21.31.40.21.262 <td>203171</td> <td></td> <td>219</td> <td>35.1</td> <td>9.2</td> <td>1.9</td> <td>1.3</td> <td>0.21</td> <td>1.512</td> <td></td>	203171		219	35.1	9.2	1.9	1.3	0.21	1.512	
203163 $\mathbf{MT} - 0 \mathbf{i} - \mathbf{i}$ 436 63.7 15.9 3.1 2.4 0.33 1.666 203168 314 40 8.9 15 1.2 0.18 1.557 203173 $\mathbf{MT} - 0 \mathbf{i} - \mathbf{Z}$ 132 21 5.2 1.2 1.5 0.23 1.54 203174 184 29.9 8.1 1.6 1.9 0.25 1.349 203175 211 29.5 7.1 1.6 1.2 0.18 1327 203176 241 37.5 9.4 1.8 15 0.22 1.413 203176 241 37.5 9.4 1.8 15 0.22 1.447 203178 116 17.4 44 0.9 1.2 0.21 1.467 203179 192 29.6 7.8 1.7 1.5 0.25 1.327 203180 $\mathbf{h} \mathbf{T} - \mathbf{e} \mathbf{i} - \mathbf{J}$ 38 6.5 1.9 0.27 1.389 203181 241 38.3 9.7 2.4 3 0.45 1467 203182 161 26.4 4.5 1.7 0.25 1.218 203183 173 27.5 7.2 1.3 1.4 0.19 1391 203184 87 14.4 3.5 -0.5 0.8 0.12 1.359 203185 236 38 9.5 2.2 2.1 0.31 1534 $20^{-1} T5$ 194 31.2 7.9	203172		260	43.6	11.9	2.6	3.2	0.46	1.518	
203168 314 40 8.9 1.5 1.2 0.18 1.557 203173 $MT - 01 - Z$ 132 21 5.2 1.2 1.5 0.23 1.54 203174 164 29.9 8.1 1.6 1.9 0.25 1.349 203175 211 29.5 7.1 1.6 1.2 0.18 1327 203176 241 37.5 9.4 1.8 15 0.22 1.413 203177 267 41.6 10.7 2.1 2.3 0.34 1.244 203178 116 17.4 4.4 0.9 1.2 0.21 1.467 203179 192 29.6 7.8 1.7 1.5 0.25 1.327 203180 $hT - 61 - 3$ 38 6.6 1.9 -0.5 1.9 0.27 1.389 203181 241 38.3 9.7 2.4 3 0.45 1.467 203182 161 26.4 6.4 -0.5 1.7 0.25 1.218 203183 173 27.5 7.2 1.3 1.4 0.19 1.391 203184 87 14.4 3.5 -0.5 0.8 0.12 1.359 203185 236 38 9.5 2.2 2.1 0.31 1.534 $20^{-1} T5$ 194 31.2 7.9 1.8 1.7 0.25 1.559 203185 236 38 9.5 2.2 <td< td=""><td></td><td>1-10-71</td><td>436</td><td>63.7</td><td>15.9</td><td>3.1</td><td>2.4</td><td>0.33</td><td>1.686</td><td></td></td<>		1-10-71	436	63.7	15.9	3.1	2.4	0.33	1.686	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			314	40	8.9	15	1.2	0.18	1.557	
20317418429.98.11.61.90.251.34920317521129.57.11.61.20.181.32720317624137.59.41.81.50.221.41320317726741.610.72.12.30.341.24420317811617.44.40.91.20.211.46720317919229.67.81.71.50.251.327203180 $h \tau - 6.1 - 3$ 386.61.9-0.51.90.271.38920318124138.39.72.430.451.46720318216126.46.4-0.51.70.251.21820318317327.57.21.31.40.191.391203185236389.52.22.10.311.534203*85236389.52.22.10.311.534203*081782887.31.81.70.251.559203*081782887.31.81.70.251.559203*092804210.62.12.10.321.443203*092804210.62.12.10.321.443203*092804210.62.12.10.321.443203*0926737.19.3220.281.327203		T-01-7		21		1.2	1.5		1.54	
20317521129.57.11.61.20.181.32720317624137.59.41.81.50.221.41320317726741.610.72.12.30.341.24420317811617.44.40.91.20.211.46720317919229.67.81.71.50.251.327203180 $h T - 01 - 3$ 386.61.9-0.51.90.271.38920318116126.46.4-0.51.70.251.21820318216126.46.4-0.51.70.251.21820318317327.57.21.31.40.191.391203185236389.52.22.10.311.534203185236389.52.22.10.311.534203185236389.52.22.10.311.534203185236389.52.22.10.311.55920318523638.47.71.41.70.211.2812031902804210.62.12.10.321.4132031902804210.62.12.10.321.41320319138451.112.22.62.20.31.53620319225338.39.72.22.40.381.447 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>1.6</td><td>1.9</td><td>0.25</td><td>1.349</td><td></td></t<>						1.6	1.9	0.25	1.349	
20317624137.59.41.81.50.221.41320317726741.610.72.12.30.341.24420317811617.44.40.91.20.211.46720317919229.67.81.71.50.251.327203180 $h \tau - 6_1 - 3$ 386.61.9-0.51.90.271.38920318124138.39.72.430.451.46720318216126.46.4-0.51.70.251.21820318317327.57.21.31.40.191.3912031848714.43.5-0.50.80.121.359203185236389.52.22.10.311.534203185236389.52.22.10.311.534203185236389.52.22.10.311.55420318017828.87.31.81.70.251.55920318917125.26.21.31.40.21.2622031902804210.62.12.10.321.41320319225338.39.72.22.40.361.44720319226737.19.3220.281.327TAN-1.2-5-0.1-0.2-0.5-0.3-0.050.3				29.5		1.6	1.2	0.18	1.327	
20317726741.610.72.12.30.341.24420317811617.44.40.91.20.211.46720317919229.67.81.71.50.251.327203180 $h \uparrow - 6 i - 3$ 386.61.9-0.51.90.271.38920318124138.39.72.430.451.46720318216126.46.4-0.51.70.251.21820318317327.57.21.31.40.191.3912031848714.43.5-0.50.80.121.359203185236389.52.22.10.311.53420717519431.27.91.81.50.231.311203185236389.52.22.10.311.559203185236389.52.22.10.311.55920318917125.26.21.31.40.21.2622031902804210.62.12.10.321.41320319138451.112.22.62.20.31.53620319225338.39.72.22.40.381.44720319326737.19.3220.281.327TAN-1-2-5-0.1-0.2-0.5-0.3-0.050.3										
20317811617.4440.91.20.211.46720317919229.67.81.71.50.251.327203180 $h au - 6 au - 3$ 386.61.9-0.51.90.271.38920318124138.39.72.430.451.46720318216126.46.4-0.51.70.251.21820318317327.57.21.31.40.191.391203185236389.52.22.10.311.534203*519431.27.91.81.50.231.311203*6817828.87.31.81.70.251.55920318523638.9.52.22.10.311.53420***519431.27.91.81.50.231.31120***519431.27.91.81.70.251.55920318917125.26.21.31.40.21.2622031902804210.62.12.10.321.41320319138451.112.22.62.20.31.53620319225338.39.72.22.40.381.44720319326737.19.3220.281.327TAN-1-2-5-0.1-0.2-0.5-0.3-0.050.3DMMAS								0.34	1.244	
2031791922967.81.71.50.251.327203180 $h \cdot \mathbf{T} - 6 \mathbf{i} - 3$ 386.61.9 -0.5 1.90.271.38920318124138.39.72.430.451.46720318216126.46.4 -0.5 1.70.251.21820318317327.57.21.31.40.191.3912031848714.43.5 -0.5 0.80.121.359203185236389.52.22.10.311534203**519431.27.91.81.50.231.311203**6118630.47.71.41.70.211.281203**05236389.52.22.10.311534203**05236389.71.81.50.231.311203**051.782887.31.81.70.251.559203**0917125.26.21.31.40.21.252203**092804210.62.12.10.321.443203**0926737.19.3220.281.327TAN-1-2-5-0.1-0.2-0.5-0.3-0.050.3DMMAS-18-119134.21.30.83.60.541.122										
203180htt-61-338661.9-0.51.90.271.38920318124138.39.72.430.451.46720318216126.46.4-0.51.70.251.21820318317327.57.21.31.40.191.3912031848714.43.5-0.50.80.121.359203185236389.52.22.10.311.534207:7519431.27.91.81.50.231.311203185236389.52.22.10.311.534207:7519431.27.91.81.50.231.31120318617828.87.31.81.70.251.55920318917125.26.21.31.40.21.2522031902804210.62.12.10.321.41320319138451.112.22.62.20.31.53620319225338.39.72.22.40.381.44720319326737.19.320.281.327TAN-1.2-5-0.1-0.2-0.5-0.3-0.050.3DMMAS-18-119134.2130.83.60.541.122										
20318124138.39.72.430.451.46720318216126.46.4-0.51.70.251.21820318317327.57.21.31.40.191.3912031848714.43.5-0.50.80.121.359203185236389.52.22.10.311.534207.7519431.27.91.81.50.231.311205.186719630.47.71.41.70.211.28120318917125.26.21.31.40.21.2522031902804210.62.12.10.321.41320319138451.112.22.62.20.31.53620319225338.39.72.22.40.381.44720319326737.19.3220.281.327TAN-1.2-5-0.1-0.2-0.5-0.3-0.050.3DMMAS-18-119134.21.30.83.60.541.122										
20318216126.46.4-0.51.70.251.21820318317327.57.21.31.40.191.3912031848714.43.5-0.50.80.121.359203185236389.52.22.10.311.534203'r519431.27.91.81.50.231.31120'r519431.27.91.81.70.211.281203'r6817828.87.31.81.70.251.55920318917125.26.21.31.40.21.2622031902804210.62.12.10.321.41320319138451.112.22.62.20.31.53620319225338.39.72.22.40.381.44720319326737.19.3220.281.327TAN-1.2-5-0.1-0.2-0.5-0.3-0.050.3DMMAS-18-119134.21.30.83.60.541.122		11-01-2								
20318317327.57.21.31.40.191.3912031848714.43.5-0.50.80.121.359203185236389.52.22.10.311.53420217519431.27.91.81.50.231.311205308178170.41.70.211.28120316917125.26.21.31.40.21.2522031902804210.62.12.10.321.41320319138451.112.22.62.20.31.53620319225338.39.72.22.40.381.44720319326737.19.3220.281.327TAN-1-2-5-01-02-05-0.3-0.050.3DMMAS-18-119134.2130.83.60.541.122										
2031848714.43.6-0.50.80.121.359203185236389.52.22.10.31153420**519431.27.91.8150.231.31120**519431.27.91.8150.231.31120**519431.27.91.81.70.211.28120316817828.87.31.81.70.251.55920318917125.26.21.31.40.21.2522031902804210.62.12.10.321.41320319138451.112.22.62.20.31.53620319225338.39.72.22.40.381.44720319326737.19.3220.281.327TAN-1-2-5-0.1-0.2-0.5-0.3-0.050.3DMMAS-18-119134.21.30.83.60.541.122										
203185 236 38 9.5 2.2 2.1 0.31 1534 203185 194 31.2 7.9 1.8 1.5 0.23 1.311 203185 194 31.2 7.9 1.8 1.5 0.23 1.311 203185 194 31.2 7.9 1.8 1.7 0.21 1.281 203168 178 28.8 7.3 1.8 1.7 0.25 1.559 203189 171 25.2 6.2 1.3 1.4 0.2 1.252 203190 280 42 10.6 2.1 2.1 0.32 1.413 203191 384 51.1 12.2 2.6 2.2 0.3 1.536 203192 253 38.3 9.7 2.2 2.4 0.38 1.447 203193 267 37.1 9.3 2 2 0.28 1.327 TAN-1-2 -5 -01 -02 -05 -0.3 -0.05 0.3 DMMAS-18-119 13 42 13<										
207*75 194 31.2 7.9 1.8 1.5 0.23 1.311 20 3.08 T 186 30.4 7.7 1.4 1.7 0.21 1.281 203.08 178 28.8 7.3 1.8 1.7 0.25 1.559 203.169 171 25.2 6.2 1.3 1.4 0.2 1.252 203.190 280 42 10.6 2.1 2.1 0.32 1.413 203.191 384 51.1 12.2 2.6 2.2 0.3 1.536 203.192 253 38.3 9.7 2.2 2.4 0.38 1.447 203.193 267 37.1 9.3 2 2.028 1.327 TAN-1.2 -5 -0.1 -0.2 -0.5 -0.3 -0.05 0.3 TAN-1.1 -5 -0.1 -0.2 -0.5 -0.3 -0.05 0.3 DMMAS-18-119 13 4.2 1.3 0.8 3.6 0.54 1.122 <td></td>										
2D 3/87 186 30.4 7.7 1.4 1.7 0.21 1.281 203 ro8 178 28.8 7.3 1.8 1.7 0.25 1.559 203 ro8 171 25.2 6.2 1.3 1.4 0.2 1.252 203 ro8 171 25.2 6.2 1.3 1.4 0.2 1.252 203 ro8 171 25.2 6.2 1.3 1.4 0.2 1.252 203 ro8 171 25.2 6.2 1.3 1.4 0.2 1.252 203 ro8 280 42 10.6 2.1 2.1 0.32 1.443 203 ro8 257 37.1 9.3 2 2 0.28 1.327 TAN-1.2 -5 -0.1 -0.2 -0.5 -0.3 -0.05 0.3 TAN-1.1 -5 -0.1 -0.2 -0.5 -0.3 -0.05 0.3 DMMAS-18-119 13 4.2 1.3 0.8 3.6 0.54 1.122										
203 ro8 178 28 8 7.3 1.8 1.7 0.25 1.559 203 ro8 171 25.2 6.2 1.3 1.4 0.2 1.252 203 ro8 171 25.2 6.2 1.3 1.4 0.2 1.252 203 ro8 280 42 10.6 2.1 2.1 0.32 1.413 203 ro8 384 51.1 12.2 2.6 2.2 0.3 1.536 203 ro9 253 38.3 9.7 2.2 2.4 0.38 1.447 203 ro9 267 37.1 9.3 2 2 0.28 1.327 TAN-1.2 -5 -0.1 -0.2 -0.5 -0.3 -0.05 0.3 TAN-1.1 -5 -0.1 -0.2 -0.5 -0.3 -0.05 0.3 DMMAS-18-119 13 4.2 1.3 D.8 3.6 0.54 1.122 <td></td>										
203189 171 25.2 6.2 1.3 1.4 0.2 1.252 203190 280 42 10.6 2.1 2.1 0.32 1.413 203191 384 51.1 12.2 2.6 2.2 0.3 1.536 203192 253 38.3 9.7 2.2 2.4 0.36 1.447 203193 267 37.1 9.3 2 2 0.28 1.327 TAN-1-2 -5 -0.1 -0.2 -0.5 -0.3 -0.05 0.3 DMMAS-18-119 13 4.2 1.3 0.8 3.6 0.54 1.122										
203 190 280 42 10.6 2.1 2.1 0.32 1.413 203 191 384 51.1 12.2 2.6 2.2 0.3 1.536 203 192 253 38.3 9.7 2.2 2.4 0.38 1.447 203 193 267 37.1 9.3 2 2 0.28 1.327 TAN-1-2 -5 -0.1 -0.2 -0.5 -0.3 -0.05 0.3 DMMAS-18-119 13 4.2 1.3 0.8 3.6 0.54 1.122										
203191 384 51.1 12.2 2.6 2.2 0.3 1.536 203192 253 38.3 9.7 2.2 2.4 0.38 1.447 203193 267 37.1 9.3 2 2 0.28 1.327 TAN-1-2 -5 -0.1 -0.2 -0.5 -0.3 -0.05 0.3 TAN-1-1 -5 -0.1 -0.2 -0.5 -0.3 -0.05 0.3 DMMAS-18-119 13 4.2 1.3 D.8 3.6 0.54 1.122										
203192 253 38.3 9.7 2.2 2.4 0.38 1.447 203193 267 37.1 9.3 2 2 0.28 1.327 TAN-1-2 -5 -0.1 -0.2 -0.5 -0.3 -0.05 0.3 TAN-1-1 -5 -0.1 -0.2 -0.5 -0.3 -0.05 0.3 DMMAS-18-119 13 4.2 13 D.8 3.6 0.54 1.122										
203193 267 37.1 9.3 2 2 0.28 1.327 TAN-1-2 -5 -01 -0.2 -0.5 -0.3 -0.05 0.3 TAN-1-1 -5 -0.1 -0.2 -0.5 -0.3 -0.05 0.3 DMMAS-18-119 13 4.2 1.3 0.8 3.6 0.54 1.122										
TAN-1-2 -5 -0 1 -0.2 -0.3 -0.05 0.3 TAN-1-1 -5 -0.1 -0.2 -0.5 -0.3 -0.05 0.3 DMMAS-18-119 13 4.2 1.3 0.8 3.6 0.54 1.122										
TAN-1-1 -5 -0.1 -0.2 -0.5 -0.3 -0.05 0.3 DMMAS-18-119 13 4.2 1.3 0.8 3.6 0.54 1.122										
DMMAS-18-119 13 42 13 D.8 3.6 0.54 1.122										
DMMAS-18-118 11 4.3 12 06 3.8 0.56 1.306										
	DMMAS-18-11	18	11	4.3	12	06	3.8	D.56	1.306	

Accepted Value-DMMAS-18B 11+-3 4.1+-0.5 1.2+-0.2 0.8+-0.35 3.6+-0.6 0.54+-0.05 TAN-1 Cert.

Sample	Nb	
	ppm	- Break and 1
002151	058	TRENCH
203151	856 974	MT-01-1
203152 203153	303	
203153	837	
203155	245	
203155	1157	
203157	848	
203158	766	
203159	909	
203160	1264	
203161	986	
203162	214	
203163	649	
203164	452	
203165	865	
203166	1808	
203167	1877	
203168	212	
203169	242	MT-01-Z
203170	543	
203171	717	
203172	1390	
203173	991	
203174	539	
203175	439	
203176	569	
203177	343	
203178	507	
203179	610	
203180	26	MT-01-3
203181	1110	
203182	485	
203183	378	
203184	368	
203185	935	
203186	776	
203187	1122	
203188	1093	
203189	596	
203190	387	
203191	1319	
203192	574	
203193	568	
Standard		
SY-2	29	
SY-2	30	
SY-2	28	
SY-2 Cert.	29	

Sample	Nb
	ppm
SY-3	146
SY-3 Cert.	148
OKA-2	442
OKA-2	440
AGV-1	15
AGV-1 Cert.	15
JG-1A	12
JG-1A Cert.	12
LKSD-1	5
LKSD-1 Cert.	7
Monitor	2145

Quality Analysis...

Innovative Technologies

Invoice No.: 22125B Work Order: 22353 Invoice Date: 22-AUGJUN-01 Date Submitted: 26-JUL-01 Your Reference: MYOFF CREEK/200 Account Number: C026

CROSS LAKE MINERALS LTD. 240-800 WEST PENDER ST. VANCOUVER, B.C. V6C 2V6 ATTN: JIM MILLER-TAIT

CERTIFICATE OF ANALYSIS

30 ROCKS (PREP.REV3)

were submitted for analysis.

The following analytical packages were requested. Please see our current fee schedule for elements and detection limits.

REPORT 22125 C CODE 4B-MAJ ELEM FUS ICP(WRA.REV2)

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

CERTIFIED BY : DR E.HOFFMAN/GENERAL MANAGER

ACTIVATION LABORATORIES LTD.

1336 Sandhill Drive, Ancaster, Ontario Canada L9G 4V5 **теlephone +1**.905.648.9611 or -1.888.228.5227 FAX +1.905.648.9613

TRENCH MT-01-4

SAMPLE			Fe2O3									TOTAL	Ba	Sr	Y	Sc	Zr	Be	v
000404	% 	%	%	%	%	%	%	%	%	%	%		••	ppm		•••	ppm	•••	
203194	55.38	9.43		0.202	8.38				0.225	1.18	2.65			768	24	53	183	12	79
203195	3.80			0.650		41.45			0.097		32.35				50	28	96	1	9
203196		10.37					4.19					100.25			16	50	269	9	68
203197	24.31	4.27		0.394				2.54			21.63				39	44	145	7	46
203198	22.07			0.400						-	22.13				37	31	149	4	40
203199	25.06			0.480					0.196		21.06				34	28	89	4	26
203200	15.56			0.450					0.134		28.45				47	20	114	1	18
255701	41.22			0.263					0.597						27	39	180	5	76
255702		10.08		0.377					0.458		14.48				35	13	31	2	48
255703		16.94		0.042					0.083		0.94				3	3	48	3	6
255704	22.00			0.616					0.171		26.97				20	22	63	3	19
255705	35.48			0.445					0.246		11.93				40	44	238	6	42
255705/R	35.69			0.442					0.250		11.93				45		263	6	43
255706	11.35			0.781					0.186		31.63				42	51	91	3	26
255707		10.94		0.269		12.35			0.225		11.44				33	36	825	5	41
255708	3.26			0.651		39.05			0.256		37.72				62		264	2	47
255709	4.58			0.593		35.18			0.342		34.07				54		114	2	126
255710	5.59			0.656					0.298		31.62				69		196	2	60
255711	4.15	-		0.576					0.601		31.44				47		85	2	166
255712	4.27			0.563					0.293		32.99				56		143		61
255713	13.06			0.718					0.087		31.40				30		42		19
255714		10.64		0.188		7.24			0.341		5.65				19		234	7	81
255715		11.20		0.191					0.644		9.35				15		502		75
255716	7.10			0.343		36.03			0.326		31.42				56		405		80
255717	7.11			0.344	• -	36.19			0.327		30.73				55		406	1	77
255718	7.72			0.380		41.66			0.201		31.20				68		114	1	32
255719	11.60			0.540					0.061		33.37		-		73		51	-1	5
255720	9.48			0.556					0.272		31.19				56		96	2	28
255721	17.94			0.379					0.419		24.03				57	• -	187	4	56
255722	4.77			0.924					0.034		38.79				36		57		6
255722/R	4.67			0.927					0.034		38.79			4299	37	29	59	1	10
255723	12.62	1.30	5.57	0.918	16.12	26.05	1.07	1.21	0.083	1.73	32.08	98.75	282	4143	31	43	57	3	14
SY3 CERT		11.75		0.32						<u>0.54</u>	1.16		450		Z18			20	50 .
SY-3/B		11.53		0.321					0.149				438				341	20	50
MRG-1 CERT	39.09			0.17				<u>0.18</u>			1.56		61	266	14	_	<u>108</u>	0.61	526 g
MRG-1/C	38.30	8.36	17.95	0.167	13.51	14.47	0.75						52	270	13	53	99	-1	526
W-2 CERT	<u>52.44</u>	<u>15.35</u>	<u>10.74</u>	0.163	<u>6.37</u>	10.87	2.14	0.627	<u>1.06</u>	<u>0.131</u>	0.60		182	<u>194</u>	24	35	<u>94</u>	1.3	262 d
W-2/B	52.07	15.13	10.88	0.165	6.45	10.79	2.31	0.61	1.034	0.13			175	190	22	36	98	-1	263

Adrienne I. Rittau, B.Sc., ClChem ICP Technical Manager

Negative values indicate less than the reporting limit LOI values less than -0.01% represent a Gain on Ignition Page 1 of 2 8/21/01

Activation Laboratories Ltd. Work Order No. 22353 Report No. 22125C

SAMPLE	SiO2	AI2O3	Fe2O3	MnO	MgO	CaO	Na2O	K2Q	TiQ2	P2O5	LOI TOTA	L Ba	Sr	Y	Sc	Zr	Be	v	
	%	%	%	%	%	%	%	%	%	%	%	% ppm	ррт	ppm	ppm	ppm	ppm	ppm	
DNC-1 CERT	<u>47.04</u>	<u>18.30</u>	<u>9.93</u>	<u>0.149</u>	10.05	11.2Z	<u>1.87</u>	<u>0.229</u>	<u>0.48</u>	0.085	0.60	114	<u>145</u>	<u>18</u>	<u>31</u>	41	1	148	dolerite
DNC-1/B	46.79	18.44	9.91	0.145	10.29	11.29	1.97	0.21	0.473	0.07		105	141	17	31	43	-1	139	
BIR-1 CERT	47.77	15.35	<u>11.26</u>	<u>0.171</u>	<u>9.68</u>	<u>13.24</u>	1.75	0.027	0.96	0.05		7.7	<u>108</u>	16	<u>44</u>	22	0.58	313	basak
BIR-1/B	47.86	15.60	11.57	0.171	9.68	13.19	1.90	0.07	0.944	0.03		8	108	16	44	22	-1	322	
G-2 CERT	<u>69.08</u>	<u>15.35</u>	2.66	0.032	0.75	1.96	<u>4.08</u>	<u>4.48</u>	0.48	<u>0.14</u>		<u>1882</u>	<u>478</u>	11	<u>3.5</u>	<u>309</u>	2.5	36	granite
G-2/B	70 28	15.13	2.66	0.032	0.77	1.94	4.12	4.35	0.467	0.14		1909	465	13	4	324	2	34	
NBS 16335 CERT	49.24	28.43	11.13	0.020	<u>0.799</u>	2.11	0.271	2.26	1.32	0.53		709	1041		41			296	fly ash
NBS 16335/B	49.19	28.72	11.51	0.018	0.81	2.15	0.27	2.44	1.271	0.54		725	1042	90	42	243	12	290	
STM-1 CERT	59.64	18.39	5.22	0.22	<u>0.101</u>	1.09	8,94	4.28	0.135	<u>0.158</u>		560	<u>700</u>	46	<u>0.61</u>	<u>1210</u>	9.6	(8.7	syenite
STM-1/C	59.94	18.19	5.32	0.220	0.09	1.13	8.90	4.24	0.136	0.16		598	695	43	-1	1210	8	-5	
IF-G CERT	41.20	0.15	55.85	0.042	<u>1.89</u>	1.55	0.032	0.012	0.014	0.063		1.5	3	9	0.38	2.4	4.7	- 4	iron form sample
IF-G/B	40.34	0.14	56.13	0.038	1.95	1.53	0.06	0.01	0.014	0.07		7	4	8	-1	14	4	-5	
FK-N CERT	65.02	18.61	0.09	0.005	0.01	0.11	2.58	<u>12.81</u>	<u>0.02</u>	0.02		200	39	0.3	0.05	13	1	3	K-feldspar
FK-N/C	66.50	18.63	0.13	0.004	0.02	0.10	2.63	12.82	0.014	0.02		206	38	3	1	19	1	-5	

Note: Certificate data underlined are recommended values; other values are proposed except those preceded by a "(" which are information values. Note: The Fe2O3 for the standards is Total Fe2O3 and has not been adjusted for the FeO.

SEP 257

Quality Analysis...

Innovative Technologies

Invoice No.: 22698 Work Order: 22959 Invoice Date: 11-SEP-01 Date Submitted: 28-AUG-01 Your Reference: MYOFF CREEK Account Number: 3086

CROSS LAKE MINERALS LTD. 240-800 WEST PENDER ST. VANCOUVER, B.C. V6C 2V6 ATTN: JIM MILLER-TAIT

CERTIFICATE OF ANALYSIS

36 ROCKS (PREP. REV3.2)

were submitted for analysis.

The following analytical packages were requested. Please see our current fee schedule for elements and detection limits.

REPORT 22698 CODE 1D ENHANCED INAA(INAAGEO.REV1) REPORT 22698 B CODE 4C1-NB-XRF PRESSED PELLET

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

CERTIFIED BY :

DR E.HOFFMAN/GENERAL MANAGER

The second second second

ACTIVATION LABORATORIES LTD.

1336 Sandhill Drive, Ancaster, Ontario Canada L9G 4V5 TELEPHONE +1.905.648.9611 or +1.888.228.5227 FAX +1.905.648.9613

~

Sample ID	Au A ppb pp	Ag om	As ppm	Ва ррт	Br Ca ppm %	і Со ррт	Cr Cs ppm ppm	Fe Hf Hg % ppm ppm p	lr Mo pob ppm	Na N % ppm		Sc S opm pp	Se Sn m %	Sr 1 % pp		W U maga ma	Zn ppm	La Ce ppm ppm
347351	-2	-5	1.6	410	-0.5 36	6	18 -1	1.7 1 -1	-5 -1	1.35 -23	3 -15 -0.1		-3 -0 02	0 21 -0		0.5 -1	-50	26.4 42
347352	7	-5	4.1	990	-0.5 35		6 -1	5.72 5 -1	-5 -1	0.18 -39	the second se		-3 -0.02	0.86 12		53 1	-50	330 642
347353	6	-5	2.3	570	-0.5 30		12 -1	2.94 1 1	-5 -1	0.07 -30			-3 -0.02	0 91 13		98 -1	-50	219 434
347354	4	-5	1.6	270	-0.5 33		48 2		-5 -1	0.4 -20			-3 -0.02	0.06 -0	the second s	0.9 -1	-50	32.4 50
347355	-2	-5	1.8	360	-0.5 46		16 -1	1.05 -1 -1	-5 -1	0.11 -20			-3 -0.01	0.15 -0		0.5 -1	124	9.2 17
347356	-2	-5	2.4	240	-0.5 3		50 2	2.72 1 -1	-5 -1	0.59 -2			-3 -0.02	0.16 -0		0.5 -1	-50	31.9 49
347357	7	•5	1.8	170	1.1 40		36 2	2.01 1 -1	-5 3	0.28 -20			-3 -0.02	0.2 -0		0.5 3	-50 54	25.9 37
347358	-2	-5	3.3	510	-0.5 34	-	42 2	2.41 1 -1	-5 -1	0.86 -2			-3 -0.02	0.14 -0		0.0 J 05 -1	-50	
347359	-2	-5	3.5	180	-0.5 34		49 2	2.61 1 -1	-5 -1	0.4 -2		-	-3 -0.02	0.21 -0		0.5 -1	-50 -50	
347360	-2	-5	15.9	260	0.5 3		39 1	2.08 1 -1	-5 -1	0.33 -20			-3 -0.01	0.13 1		0.5 -1	-50 -50	. –
347361	-2	-5	2.2	220	0.5 3		51 3	256 1 -1	-5 1	0.29 -20			-3 -0.01	0.18 -0		•••		23.4 37
347408	29	-5	-4.5	2800	4.5		-5 -1	5.46 11 -1	-5 -1	2.62 -160			-3 -0.03	-0.05 -0			<u>53</u> -50	30.9 47
34 341409	61	-5	-4.4	2300	-4.5 1		38 -1	8.07 6 -1	-5 -1	3.43 -166			-3 -0.03	-0.05 -0				2820 3100
34. 341410	-2	-5	-0.5	2000	-0.5 20		28 -1	4.74 -1 -1	-5 11	0.47 -7			-3 -0.03	0.29 28		2.5 -1 5.2 -1	223 -50	2590 2470
347411	-2	-5	-0.5	9100	-0.5 1		22 -1	4.34 4 -1	-5 -1	0.4 -9			-3 -0.03	0.66 25		1.3 •1	-50 183	326 497
347412	-2	-5	-0.5	4000	-0.5 19		27 -1	6.7 -1 -1	-5 -1	0.27 -8			-3 -0.03	0.33 24		9.9 -1		1220 1860
347413	-2	-5	-0.5	4400	-0.5 20		26 -1	4.21 6 -1	-5 -1	0.41 -9			-3 -0.02	0.33 24		9.9 -1 0.1 -1	-50	410 563
347414	-2	-5	-0.5	3100	-0.5 10		7 -1	4.81 -1 -1	-5 -1	0.61 -9			-3 -0.02	0.36 28			-50	516 1010
347415	-5	-5	-0.5	2100	-0.5 2		19 -1	3.35 4 -1	-5 -1	0.26 -66			-3 -0.02				128	451 667
347415	-5	-5	-0.5	12000	-0.5 2		22 -1	5.87 5 -1	-5 -1	0.26 -8				0.62 42		0.4 -1	-50	708 1180
347417	-2	-5	-0.5	650	-0.5 2		54 3	2.42 1 -1	-5 -1	0.42 -2			<u>-3 -0.02</u> -3 -0.01	0.67 29			-50	1290 1840
347418	.2	-5	-0.5	1800	-0.5 2		64 3		-5 -1	0.92 -2	and the second se		-3 -0.01	0.1		<u>1.2 -1</u> 2.5 -1	88	30.2 39
347419	4	-5	-0.5	290	-0.5 3		40 1		-5 -1	0.45 -24			-3 -0.01				66	41.3 56
347420	-2	-5	-0.5	180	-0.5 2		44 2	231 1 -1	-5 -1	0.54 -21			-3 -0.01			05 -1	-50	35 54
347421	-2	-5	-0.5	200	-0.5 34		26 2	1,43 -1 -1	-5 -1	0.26 -2		-	-3 -0.01	0.12		1.5 -1	-50	26.9 41
347422	3	-5	1.2	340	-0.5 3		39 2	2 -1 -1	-5 -1	0.45 -20			-3 -0.01	0.16 -0		1.1 -1 or -	-50	18.2 26
347423	-2	-5	-0.5	210	-0.5 3		31 3	2.19 3 -1	-5 -1	0.59 -20			-3 -0.01	0.16 -0		0.5 -1	-50	22.7 34
347424	-2	-5	-0.5	410	-0.5 3		42 3	2.4 2 -1	-5 3	0.55 -20			-3 -0.01			1.8 -1	-50	394 63
347425	4	-5	1.6	890	-0.5 2		63 3	3.49 2 -1	-5 3	0.5 -20			-3 -0.01			1.8 -1	57	34.7 50
347426	3	-5	6.3	140	0.5 4		-5 -1	0.32 1 1	-5 3	0.08 -20			-3 -0.01	016 1		1.7 -1	66	47.7 80
347427	-2	-5	2.5	720	-0.5 3		20 -1		-5 2	0.25 -23			-3 -0.01	0.17 -0		0.8 1 0.7 1	100	3.5 4
347428	-2	-5	2.3	480	-0.5 4		5 -1	0.38 -1 -1	-5 2	0.09 -20			-3 -0.01	0.17 -0			-50	16.2 28
347101	-2	-5	-0.5	5000	0.5		32 -1	1.84 3 -1	-5 -1	5.28 -34			-3 -0.01			$\frac{1}{13}$ 1	429	51 7
347 102	2	-5	-0.5	2000	-0.5 3		13 -1	2.52 3 -1	-5 5	0.14 -33			-3 -0.02	0.63 17			-	53 1 118
347103	-2	-5	-0.5	3000	-0.5 3		14 -1	3.39 2 -1	-5 -1	0.2 -42			-3 -0.02	0.6 27		6.9 -1 55 -1	-50	348 651
347104	6	-5	-0.5	2300	-0.5 3		-5 -1	3.75 4 -1	-5 5	0.14 -3			-3 -0.02	0.55 9			-50	464 809
3 (PULP DUP 34141)		-5	-0.5	9500	-0.5 2			4,48 4 -1	- <u>5</u> -1	0.42 -6			-3 -0.02	0.55 9		<u>68 -1</u> 16 -1	-50	399 724
347425(PULP DUP)	-2	-5	1.8	960	-0.5 2			3.67 3 -1	-5 -1	0.53 -2			-3 -0.02	0.69 27			152	1240 1920
347104(PULP DUP)	7	-5	-0.5	2400	-0.5 3				-5 6	0.14 -3			-3 -0.02	0.12 1		1.6 -1	75	514 85
DMMAS-18-2000	593	-5	2060	510	2.5		154 2	8.4 3 -1	-5 -2	0.8 -3			-3 -0.02			67 -1	-50	418 765
DMMAS-18-1998	605	-5	2120	510	3.5	7 65	143 -1	8.66 3 -1	-5 -1	0.75 -3						05 20	187	12.6 25
Accepted Value-DMMAS-18B	544+.72				2.5+-1.5 7+-			8.05+-0.85 2+-1	J -1	0.74+-0.48	38+-10 12+-3 :		-3 -0.02	-0.05 -0	.5 1.5 ⊣ 1.5+-0.5	0.5 16 19+-2	275 250+-50 1	12.5 24 2.2+-1.3 23+-3

Activation Laboratories Ltd. Work Order: 22959 Report: 22698

Sample ID	Nd	Şm	Eu	Tb	Yb	Lu	Mass
	ppm	ppm	ppm	ppm	рртт	ppm	9
347351	15	3.1	0.6	-05	0.9	0.15	23.49
347352	314	56	15.7	1.6	3.4	0.51	27.01
347353	200	319	9.1	2.1	1.5	0.2	25.06
347354	19	36	0.6	-0.5	1	0.16	23.1
347355	-5	11	03	-0.5	0.4	0.07	21.53
347356	19	3.5	0.7	-0.5	1	0.14	22.73
347357	17	29	0.5	-0.5	1	0.16	19.4
347358	27	4	0.8	-0.5	1	0.16	20.53
347359	20	3.6	0.7	-0.5	1.1	0.17	21.83
347360	12	2.7	05	-0.5	0.7	0.12	24.56
347361	18	3.4	0.8	-0.5	0.9	0 15	26.07
347408	761	38.9	10.6	4.1	2.5	0.38	30.2
3.	640	30.9	8.1	2.3	2.3	0.35	29.73
34,	204	33.8	10.6	2.1	2.6	0.39	26.02
347411	663	46.4	16	3.5	2.1	0.31	22.56
347412	213	31.6	9.8	2.8	2.7	04	21.95
347413	411	46.8	15.7	3.8	3.4	0.52	23.45
347414	227	39.6	12.5	3.1	2.4	0.34	21.96
347415	482	48.8	16.1	3.9	2.8	0.42	28.78
347416	603	53.5	18.9	4.3	3.4	0.31	26.86
347417	13	2.8	0.9	-0.5	07	0.12	23.48
347418	18	3.7	1	-0.5	0.9	0.13	28.56
347419	20	3.7	0.8	-0.5	1	0 15	26.49
347420	14	3.2	0.5	-05	0.9	0.14	25 87
347421	11	21	0.4	-0.5	0.7	0.11	24.93
347422	8	2.5	0.7	-0.5	0.9	0.14	24.58
347423	26	4.7	1.1	-05	0.9	0.14	25.36
347424	19	3.4	0.7	-05	0.9	0.14	25.64
347425	31	5.4	1.1	0.7	1.6	0.25	27.37
347426	-5	0.3	-0.2	-0.5	-0.2	-0.05	23.34
347427	11	2.3	0.7	-05	0.8	0.11	25.48
347428	-5	0.5	-0.2	-05	0.2	-0.05	26.6
347101	44	7.1	19	-0.5	0.4	0 07	26.6
347 102	288	50.6	14 9	4.3	4.3	0.63	29.3
347103	344	54.8	15.7	4.2	4.3	0.64	23.26
39- 1	320	51.4	15 8	4.2	3.8	0.56	25.34
3 (PULP DUP)	696	48 9	16.3	3	2.3	0.34	22.62
347425(PULP DUP)	30	56	12	0.6	1.5	0.23	24.13
347104(PULP DUP)	332	54	15.9	4.4	3.7	0.55	22.09
DMMAS-18-2000	15	4.1	1.3	0.8	3.7	0.7	25.55
DMMAS-18-1998	13	3.9	1.4	-0.5	3.6	0.53	25.67

Ν,

Accepted Value-DMMAS-18B 11+-3 4.1+-0.5 1.2+-0.2 0.8+-0.35 3.6+-0.6 0.54+-0.05

Page 2 of 2

Sample	Nb pom	
	PP410	
347351	7	
347352	500	
347353	414	
347354	12	
347355	4	
347356	10	
347357	8	
347358	11	
347359	9	
347360	8	
347361	10	
347408	118	
347409	389	
347410	533	
347411	427	
347412	304	
347413	204	
347414	185	
347415	544	
347416	335	
347417	10	
347418	15	
347419	12	
347420	9	
347421	8	
347422	8	
347423	28	
347424	9	
347425	14	
347426	2	
347427	9	
347428	3	
347101	68	
347102	96	
347103	172	
347104	90	
Standard	Nb	
BHVO-1	19	
BHVO-1 Cert.	19	
AGV-1	16	
AGV-1 Cert.	15	
OKA-1	3340	
OKA-1 Cert.	3700	
LKSD-3	9	
STSD-2	21	

Subject: methods

Date: Mon, 23 Jul 2001 18:03:05 -0400 From: Eric Hoffman <a href="https://doi.org/10.1011/journation-complexity-table-ca-base-

METHODS

Preparation: Code RX2 Samples were crushed using a TM Rhino crusher to 90% -10 mesh , riffle split and a portion pulverized using a mild steel TM ring and puck pulverizer to better than 95% -150 mesh.

CODE 4c1- XRF was used for the determination of Nb on a 6 gram pressed powder pellet.

CODE 1D enhanced- INAA (instrumental neutron activation) was used for the determination of Ta and 34 other elements. For INAA the sample powder is encapsulated, irradiated in a nuclear reactor and after an appropriate decay measured on a high purity Ge detector.

Activation Laboratories Ltd is accredited by the Standards Council of Canada to ISO/IEC Guide 25 (soon to change to ISO 17025) and Can-P-1579 (mineral analysis laboratories) for specific registered tests. The Mining Standards task force suggest using labs with this accreditation.

Jim, let me know if you need further information. Regards Eric Hoffman, Phd

Eric Hoffman, Phd General Manager Activation Laboratories Ltd 1336 Sandhill Drive Ancaster, Ontario L9G 4V5 Canada ph-1-905-648-9611 ext 123 fax-1-905-648-9613 e-mail: hoffman@actlabs.com

CROSS LAKE MINERALS-X01

MYOFF CR. PROP.

PAGE 1

057 - 2001

Job V 01-0350R Report date: 27 SEPT 2001

LAB NO	FIELD NUMBER	ND	Ta (1)	Ce	La(1)	Nd	Sc		
		ppm	ppm	ppm	ppm	ppm	ppm		
R0104733	203154	906	39	295	107	126	22	TRENCH N	17-01-1
R0104734	203167	2015	65	612	283	231	37		
R0104735	203172	1373	52	495	183	219	29	TRENCH 1	17-01-2
R0104736	203181	1114	77	643	261	268	21		7-01-3
R0104737	203193	557	22	538	208	200	39	INENCH M	
R0104738	203195	703	40	667	282	270	27		
R0104739	203200	491	66	532	241	250	25	TRENCH "	47-01-4
R0104740	255714	351	13	257	97	105	46		
R0104741	255715	519	27	191	65	68	29		
R0104742	255716	524	48	555	220	248	30		
R0104743	255717	286	25	697	286	290	27		
R0104744	255718	796	39	914	378	373	32		
R0104745	255719	288	20	1559	779	576	26		
R0104746	255720	1299	53	1110	511	429	30		
R0104747	255721	659	66	897	381	367	37		

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

Nb X-Ray fluorescence / pressed pellet Ta(1) X-Ray fluorescence / pressed pellet Ce X-Ray fluorescence / pressed pellet La(1) X-Ray fluorescence / pressed pellet Nd X-Ray fluorescence / pressed pellet Sc X-Ray fluorescence / pressed pellet

2 OCT 2001	Charge state	ement fo	r COM	INCO E.R	.L. Jo	DD NO : Y	V01-0350R
	COMINCO E	XPLORATI	ON RESI	EARCH LA	BORATOR	RY	
Project : CROSS Ref/I.D.: (MYOS							
	D : J.MILLEN : J.HARRIS)4733 to R01	5		Red	ceived	at lab:	27 08 01 28 08 01 27 09 01
Analysis/prep	reported	no req	no @	rate	no @	rate	\$ TOTAL
Nb XRF Ta XRF Ce XRF La XRF/PP Nd XRF Sc XRF	18 09 01 18 09 01 18 09 01 27 09 01	15 15 15 15	15 @	\$4.00	15 @ 15 @ 15 @ 15 @	\$2.00 \$2.00 \$2.00	60.00 30.00 30.00 30.00 30.00 30.00 30.00
					3.S.T (7%) = \$	210.00 14.70

TOTAL PAYABLE (Cdn) = \$ 224.70

Methods of analysis were reported with the results, as were field nos Enquiries to: Susie Woo/Jim McLeod Cominco Exploration Research Laboratory 1486 East Pender Street, Vancouver, B.C. V5L 1V8 PHONE (604)685-3032 / FAX (604)844-2686

1

CROSS LAKE MINERALS-X01

MYOFF CR/HEAVY MIN. SMPLS

PAGE 1

Job V 01-0407H

Report date: 05 OCT 2001

LAB NO	FIELD NUMBER	La (1)	Ta(1)	Nb	Ce
		ppm	ppm	ppm	ppm
•=====================================					
H0100893	203167	340	89	E8300	1179
H0100895	203181	376	774	E10000	1308
H0100897	255719	1170	322	E10000	E2878
H0100898	255720	2380	217	E7080	E4963

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

La(l) X-Ray fluorescence / pressed pellet Ta(l) X-Ray fluorescence / pressed pellet Nb X-Ray fluorescence / pressed pellet Ce X-Ray fluorescence / pressed pellet

2 NOV 2001 Job costs for TECK COMINCO METALS LTD. Job No: V01-0407H TECK COMINCO METALS/EXPLORATION RESEARCH LABORATORY Project : CROSS LAKE MINERALS Ref/I.D.: (MYOFF CR/HEAVY MIN. SMPLS) Reported to : J.HARRIS and : J MILLER-TAIT Shipped to lab : 21 09 01 Received at lab: 21 09 01 Lab Nos : H01-00893 to H01-00898 Work completed : 05 10 01 Analysis/prep reported no req no @ rate no @ rate \$ TOTAL

 Heavy Mineral TBE Prep.
 6 @ \$25.00

 Polished Thin Section
 4 @ \$26.00

 La XRF/PP
 04 10 01
 4 @ \$4.00

 Ta XRF
 04 10 01
 4 @ \$4.00

 Ta XRF
 04 10 01
 4 @ \$4.00

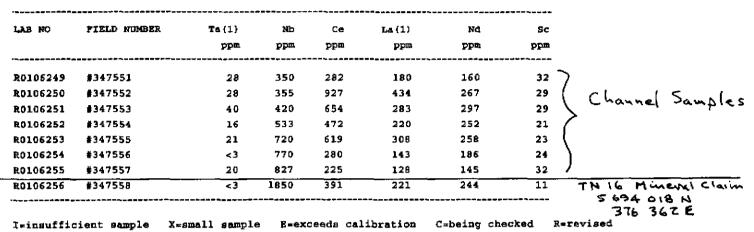
 Ce XRF
 04 10 01
 4 @ \$4.00

 Ce XRF
 04 10 01
 4 @ \$6.00

 150.00 104.00 16.00 4 @ \$2.00 4 @ \$2.00 4 @ \$2.00 8.00 8.00 Casting Prep 4 @ \$6.00 24.00 JOB COST = \$ 318.00 G.S.T @ 7% = \$ 22.26 TOTAL PAYABLE (Cdn) = \$ 340.26

Methods of analysis were reported with the results, as were field nos Enquiries to: Susie Woo / Jim McLeod TECK COMINCO METALS-Exploration Research Laboratory 1486 East Pender Street / Vancouver, B.C. V5L 1V8 PHONE (604)685-3032 / FAX (604)844-2686

NOV 1 3 2001


CROSS LAKE MINERALS-X01

347551-558

PAGE 1

Job V 01-0455R

Report date: 23 OCT 2001

If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

Ta(1) X-Ray fluorescence / pressed pellet
Nb X-Ray fluorescence / pressed pellet
Ce X-Ray fluorescence / pressed pellet
La(1) X-Ray fluorescence / pressed pellet
Nd X-Ray fluorescence / pressed pellet
Sc X-Ray fluorescence / pressed pellet

a presidente da la companya de la companya de la companya de la companya de la companya da la companya da serve

25 5.04

15 3.88

9 1.92

11 3.79

11 3.11 2

6 28

3

<2

<2

19

ĝ < 5

21

22

14

<5

<5

< 5

< 5

<5

<5

< 5

< 5

< 5

< 5

<5

23

6 5 < 2

27

< 2

<2

B 6 <2

5 <2 4394

6 <2

9 <2

4

CROSS LAKE MINERALS-101

LAB NO

.____

R0106249

R0106250

R0106251

R0106252

R0106253

R0106254

R0106255

R0106256

347551-558

FIELD NUMBE

#347551

#347552

\$347553

\$347554

#347555

1347556

#347557

#347558

Cu

51

27

16 123

16

24

26

15

16

₽Ъ

ppa

33

83

35

34

29

20

50

Ζn

ppm

333

208

282

107

311

163

374

210

٨g

ppa

< . 4

<.4

< . 4

c.4

5.4

<.4

<.4

<.4

15

15

16

14

622

354

63B

694

10 1552

<1

<1

~1 11

<1

<1

10

14

6

3

PAGE 1

E14600

E12800

818480

E13050

E11570

8655

1.72

Job V 01-0455R Report datas 23 OCT 2001

2999 4.63 0.10 1.00 821.37 0.18 1.35

3678 5.64 0.06 0.51 E23.75 0.13 0.68

3599 7.74 0.08 1.19 E19.05 0.16 1.52

2625 1.61 0.06 0.52 230.6 0.13 0.36

5.17 0.08 0.76 £24.44 0.11 1.04

1.20 E14,86 0.20

λs ppm	Ba ppm	Cd. ppm	Co ppa	bbur Nî	Te \	Мо ррш	Cr ppm			v		W	Br pom	¥		Mn	Mg	ті	λ1 4	Ca	Na	×	P ppa	
16	421		18			-																		
28	555		13		3.56	2							2665 4640							E12.19 E19.27			7074 511500	
13	772	<1	12	16	5.35	Э	19	s 5	<5	23	5	<2	4394	52	319	7999	4 67	0.10	1	821 37				

<2

52 319

53

53

38

32

81

268

314

175

172

241

3579

3105

6.75 0.08

4982

5164

4429

3923

6537

(2)

I-insufficient sample X-small sample Exerceds celibration C-being checked Rerevised If requested analyses are not shown, results are to follow

ANALYTICAL METBODS

ICP PACKAGE : 0.5 gram sample digestad in hot reverse aqua regia (soil.silt) or hot Aqua Regia(rocks).

1) Channel Samples @ Sample on TN 16 mineral claim 5694 018 N 376 362 E

2 NOV 2001	Job costs fo	or TECK C	COMINC	O METALS	LiD.	Job No:	V01-0455R
TECK	COMINCO META	LS/EXPLC	RATIC	N RESEAR	CH LABO	ORATORY	
Project : CROS Ref/I.D.: (34)		RALS					
	to : J.MILLEI i :	R-TAIT					09 10 01 10 10 01
Lab Nos : R01-	-06249 to R01	-06256		Wo:	rk comp	pleted :	23 10 01
Analysis/prep	reported	no req	no @		-	rate	\$ TOTAL
Ta XRF Nb XRF Ce XRF La XRF/PP Nd XRF Sc XRF 28 Element ICE Pan-dry Rock F Standard Rock	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 8 8 8 8 8	-	\$4.00 \$7.00 \$1.50 \$5.00		-	32.00 16.00 16.00 16.00 16.00 16.00 56.00 12.00 40.00
~ ~ ~ a _ a _ a _ a ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	··· =	** ** ** ** ** <u>**</u> **	 T	OTAL PAYA	3.S.T (78) = \$	220.00 15.40 235.40

AAEED

1701

17011 0001

Tah

- - -

0112/222

Methods of analysis were reported with the results, as were field nos Enquiries to: Susie Woo/Jim McLeod TECK COMINCO METALS/Exploration Research Laboratory 1486 East Pender Street, Vancouver, B.C. V5L 1V8 PHONE (604)685-3032 / FAX (604)844-2686

ALS Chemex

Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

CERT	IFICA	ΓE A0121300
WT)-CROSS	LAKE M	INERALS LTD.
roječi: } .O. # :	4YOF	f Creek
		o our lab in Vancouver, BC. nted on 07-AUG-2001.
SA	MPLE	PREPARATION
METHOD	NUMBER	
CODE	SAMPLES	DESCRIPTION
PUL-31		Pulv. <250g to >85%/-75 micron
STO-21 LOG-22		Reject Storage-First 90 Days Samples received without barcode
CRU-31	1	Crush to 70% minus 2mm
SPL-21 229		Splitting Charge ICP - AQ Digestion charge
	1	

The 32 element ICP package is suitable for trace matals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

5: CROSS LAKE MINERALS LTD.

240 - 800 W. PENDER ST. VANCOUVER, BC V6C 2V6

Comments: ATTN: JIM MILLER-TAIT

A0121300

	Ţ	· ····-	·····		
METHOD CODE	NUMBER SAMPLES		METHOD	DETECTION LIMIT	uppe Limi
1433	1	Weight of received sample	BALANCE	0.01	1000.
λυ-λλ23		Au-AA23 : Au ppb: Fuse 30 grams	FA-AAS	5	1000
λg-ICP41		Ag ppm: 32 element, soil & rock	ICP-AES	0.2	100.
Al-ICP41	-	Al %: 32 element, soil & rock	ICP-AES	0.01	15.0
Ad-ICP41		As ppm: 32 element, soil & rock	ICP-AES	2	1000
B-ICP41 Ba-ICP41		B ppm: 32 element, rock & soil	ICP-AES	10	1000
Be-ICP41		Ba ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock	ICP-AES ICP-AES	10 0.5	1000
Bi-ICP41		Bi ppm: 32 element, soil & rock	ICP-AES	0.5	100.
Ca-ICP41		Ca %: 32 element, soil & rock	ICP-AES	0.01	15.0
Cd-ICP41		Cd pum: 32 element, soil & rock	ICP-AES	0.5	15.0
Co-ICP41	-	Co ppm: 32 element, soil & rock	ICP-AES	1	1000
Cr-ICP41		Cr ppm: 32 element, soil & rock	ICP-AES	1	1000
Cu-ICP41		Cu ppm: 32 element, soil & rock	ICP-AES	1	1000
Pe-ICP41	1	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.0
Ga-ICP41	1	Ga ppm: 32 element, soil & rock	ICP-AES	10	100
Hg-ICP41		Hg ppm: 32 element, soil & rock	ICP-AES	1	100
K-ICP41	-	K %: 32 element, soil & rock	ICP-AES	0.01	10.
La-ICP41	-	La ppm: 32 element, soil & rock	ICP-AES	10	100
Mg-ICP41		Mg %: 32 element, soil & rock	ICP-AES	0.01	15.0
Mn-ICP41		Mn ppm: 32 element, soil & rock	ICP-AES	5	100
Mo-ICP41	_	Mo ppm: 32 element, soil & rock	ICP-AES	1	1000
Na-ICP41 Ni-ICP41		Na %: 32 element, soil & rock	ICP-AES	0.01	10.0
P-ICP41		Ni ppm: 32 element, soil & rock	ICP-AES	1	100
Pb-ICP41		P ppm: 32 element, soil & rock Pb ppm: 32 element, soil & rock	ICP-AES ICP-AES	10	100
8-ICP41		S %: 32 element, rock & soil	ICP-AES	2	100
Sb-ICP41		Sb ppm: 32 element, soil & rock	ICP-AES	0.01	10.0
So-ICP41		Sc ppm: 32 elements, soil & rock	ICP-AES	1	100
Sr-ICP41	-	Sr ppm: 32 element, soil & rock	ICP-AES	1	100
Ti-ICP41		Ti %: 32 element, soil & rock	ICP-AES	0.01	10.
T1-ICP41		T1 ppm: 32 element, soil & rock	ICP-AES	10	100
U-ICP41	. 1	U ppm: 32 element, soil & rock	ICP-AES	10	100
V-ICP41	. 1	V ppm: 32 element, soil & rock	ICP-AES	1	100

•

ALS Chemex

Analylical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: CROSS LAKE MINERALS LTD.

240 - 800 W, PENDER ST. VANCOUVER, BC V6C 2V6

A0121300

Comments: ATTN: JIM MILLER-TAIT

CERTIFICA	TE A0121300		ANALYTICAL PROCEDURES 2 of 2									
NWT) - CROSS LAKE N Project: P.O. # :	MINERALS LTD.	METHOD CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT					
Samples submitted t	to our lab in Vancouver, BC. Inted on 07-AUG-2001.	W-ICP41 Zn-ICP41		W ppm: 32 element, soil & rock Zn ppm: 32 element, soil & rock	icp- aes icp- aes	10 2	10000 10000					
SAMPL	E PREPARATION											
	DESCRIPTION											
PUL-31 1 STO-21 1 LOG-22 1 CRU-31 1 SPL-21 1 229 1	Pulv. <250g to >85%/-75 micron Reject Storage-First 90 Days Samples received without barcode Crush to 70% minus 2mm Splitting Charge ICP - AQ Digestion charge											
* NOTE 1:												
trace metals in Elements for whic digestion is possi	package is suitable for soil and rock samples. the nitric-aqua regia bly incomplete are: Al, , K, La, Mg, Na, Sr, Ti,											

-

hemex Α Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

5: CROSS LAKE MINERALS LTD.

240 - 800 W. PENDER ST. VANCOUVER, BC V6C 2V6

Page iber :1-A Total, des :1 Certificate Date: 07-AUG-2001 Invoice No. :10121300 P.O. Number : NWT Account

Project : Comments: ATTN: JIM MILLER-TAIT

									CERTIFICATE OF ANALYSIS			'SIS		A0121	300				
SAMPLE	PREP CODE	Weight Au ppb Kg FA+AA	λg ppm	Al %	λs ppm	3 ppm	Ba prm	Be ppm	Bi pym	Ca %	Cd ppm	Co ppn	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K z	La ppm
G-1	94139402		0.8	0.37	< 2	< 10		< 0.5	< 2		< 0.5	13	53	356	9.87	< 10		< 0.01	< 10
													CERTIFI						

<

ALS Chemex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 North Vancouver

'o: CROSS LAKE MINERALS LTD.

.

240 - 800 W. PENDER ST. VANCOUVER, BC V6C 2V6

Page nber 1-B Total rages 1 Certificate Date: 07-AUG-2001 Invoice No. : 10121300 P.O. Number Account NWT

1

Project : Comments: ATTN: JIM MILLER-TAIT

-																			
										CE	RTIFI	CATE	OF A	NAL	rsis		\0121 ;	300	
SAMPLE	PREP CODE	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	ppm_	Pb ppm	8	Sb	Sc ppm	Sr ppm	Ti %	Tl ppm	U Dom	V pjm	ppm W	Zn prm	
1	94139402	0.09	1570	13 <	: 0.01	111	2670	< 2	4.61	6	< 1	92	0.03	< 10	< 10	35	< 10	18	
																	,	· 、	
								<u> </u>					<u></u>						<u> </u>
														CERTIF		:	· 2		<u>'/</u>

VHEMEA LADO

212 Brooksbank Avenue North Vancouver, BC Canace V7J 2C1

Phone 604-984-0221 Fax 604-984-0218

FACSIMILE MESSAGE

To:	CROSSLAKE MINERALS	From: Stuart Mcleod
Name:	Jim Miller Tait	Pages: 6 (including this page)
Fax:	688 - 5443	Date: January 14, 2000
Re:	Analytical methods used .	

Dear Mr. Jim Miller Tait,

Please find attached 5 pages regarding the analytical methods we used to analyze your samples.

Please let me know if you need anything else.

Thank You Stuart Mcleod. UNENEA LADO

🔆 <u>Geochemical Procedure</u> - G32 Package

Sample Decomposition:Nitric Aqua Regia DigestionAnalytical Method:Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP - AES)

A prepared sample (1.00 gram) is digested with concentrated nitric acid for at least one hour. After cooling, hydrochloric acid is added to produce aqua regia and the mixture is then digested for an additional hour and a half. The resulting solution is diluted to 25ml with demineralized water, mixed and analyzed by inductively coupled plasma-atomic emission spectrometry. The analytical results are corrected for inter-element spectral interferences.

Chemex				Detection	Upper
<u>Code</u>		Element	<u>Symbol</u>	<u>Limit</u>	Limit
			,	,	,
229		ICP-AQ Digestion	n/a	n/a	n/a
2119	•	Aluminum	AI	0.01%	15 %
2141		Antimony	Sb	2 ppm	1%
2120		Arsenic	As	2 ppm	1%
212 1	*	Barium	Ba	10 ppm	1%
21 <u>22</u>	*	Bervilium	Be	0.5 ppm	0.01 %
2123		Bismuth	Bi	2 ppm	1 %
557		Boron	В	10 ppm	10,000 թթու
2125		Cadmium	Cd	0.5 ppm	0.05 %
21 24	٠	Calcium	Ca	0.01%	15 %
2127	*	Chromium	Cr	1 ppm	1 %
2126		Cobalt	Co	1 ppm	1 %
2128		Copper	Cu	1 ppm	1 %
2130	٠	Gallium	Ga	10 ppm	1 %
2 150		lron	Fe	0.01%	15 %
2151	*	Lanthanum	La	10 ppm	1%
2140		Lead	Pb	2 ppm	1%
2134	¥	Magnesium	Mg	0.01%	15 %
2135		Manganese	Mn	5 ppm	1 %
2131		Mercury	Hg	1 ppm	1 %
2136		Molybdenum	Mo	1 ppm	1 %
2138		Nickel	Ni	1 ppm	1 %
2139		Phosphorus	Р	10 ppm	1 %
2132	+	Potassium	К	0.01%	10 %

April 9, 1999

Geochemical Procedure - G32 Package (con't)

Chemex <u>Code</u>		Element	<u>Symbol</u>	Detection Limit	Upper Limit
2142	٠	Scandium	Sc	1 ppm	1 %
2118		Silver	Ag	0.2 ppm	0.01~%
2137	*	Sodium	Na	0.01%	10~%
2143	*	Strontium	Sr	1 ppm	1%
551		Sulfur	S	0.01 %	5%
2145	*	Thallium	Tl	10 ppm	1%
2144	+	Titanium	Ti	0.01%	10 %
2148	*	Tungsten	W	10 ppm	1%
2146		Uranium	U	10 ppm	1%
2147		Vanadium	v	1 ppm	1%
2149		Zinc	Zn	2 ppm	1%

*Elements for which the digestion is possibly incomplete.

CHEMEA LADO

Chemex Labs

<u>01/14</u>/00 FRI 08:43 FAX 804 984 0216

Assay Procedure - Arsenic, Bismuth, Cadmium, Copper, Iron, Lead, Molybdenum, Silver, and Zinc by Nitric- Aqua Regia digestion

Sample Decomposition:Nitric - Aqua Regia DigestionAnalytical Method:Atomic Absorption Spectroscopy (AAS)

A prepared sample (0.2 to 2.0g) is digested with concentrated nitric acid for one half hour. After cooling, hydrochloric acid is added to produce aqua regia and the mixture is then digested for an additional hour and a half. An ionization suppressant is added if molybdenum is to be measured. The resulting solution is diluted to volume (100 or 250 ml) with demineralized water, mixed and then analyzed by atomic absorption spectrometry against matrix-matched standards.

International Units:

Code	Flement	Symbol	Detection Limit	Upper <u>Limit</u>
2000		<u></u>		
331	Arsenic	As	0.01 %	100 %
349	Bismuth	Bi	0.001 %	100 %
320	Cadmium	Cđ	0.001 %	100 %
301	Copper	Cu	0.01 %	100 %
3501	Copper	Cu	0.001 %	100 %
3508	Copper	Cu	10 ppm	1,000,000 ppm
326	Iron	Fe	0.01 %	100 %
312	Lead	РЬ	0.01 %	100 %
306	Molybdenum	Mo	0.001 %	100 %
307	Molybdenum as MoS ₂	MoS,	0.001~%	100 %
386	Silver	Ag	0.3 g/t	350 g/t
956	Silver (Rush charge)	-	0.3 g/t	350 g/t
316	Zinc	Zn	0.01 %	100 %
8089	Manganese	Mn	0.01 %	100 %
	<u>Code</u> 331 349 320 301 3501 3508 326 312 306 307 386 956 316	CodeElement331Arsenic349Bismuth320Cadmium301Copper3501Copper3508Copper326Iron312Lead306Molybdenum307Molybdenum as MoS2386Silver956Silver (Rush charge)316Zinc	CodeElementSymbol331ArsenicAs349BismuthBi320CadmiumCd301CopperCu3501CopperCu3508CopperCu326IronFe312LeadPb306MolybdenumMo307Molybdenum as MoS2MoS2386SilverAg956Silver (Rush charge)Ag316ZincZn	CodeElementSymbolLimit331ArsenicAs 0.01% 349BismuthBi 0.001% 320CadmiumCd 0.001% 301CopperCu 0.01% 3501CopperCu 0.01% 3508CopperCu 0.001% 3508CopperCu 10 ppm 326IronFe 0.01% 312LeadPb 0.01% 306MolybdenumMo 0.001% 307Molybdenum as MoS ₂ MoS ₂ 0.001% 386SilverAg 0.3 g/t 316ZincZn 0.01%

American/English Units:

Chemex <u>Code</u>	Element	<u>Symbol</u>	Detection <u>Limit</u>	Upper <u>Limit</u>
385	Silver	Ag	0.01 oz/ton	10.0 oz/ton
980	Silver (Rush charge)	Ag	0.01 oz/ton	10.0 oz/ton

Valence analysis

AT-TH-AA LET AA'42 TUT AA2 DA4 APTA

Fire Assay Procedure - Gold, Silver

Sample Decomposition: Fire Assay Fusion Analytical Method: Gravimetric

A prepared sample is fused with a mixture of lead oxide, sodium carbonate, borax, silica and other reagents in order to produce a lead button. The lead button containing the precious metals is cupelled to remove the lead. The remaining gold and silver bead is parted in dilute nitric acid, annealed and weighed as gold. Silver, if requested, is then determined by the difference in weights.

	iternation Routine	al Units: Rush		*Sample		Detection	Upper
	Code	<u>Code</u>	<u>Element</u>	Weight	<u>Symbol</u>	Limit	<u>Limit</u>
	397	474	Gold	₩ assay ton	Au	0.1 g/t	1,000 g/t
¥	99 7	9 55	Gold	1 assay ton	Au	$0.07 {\rm g/t}$	1,000 g/t
	3597		Gold	50 grams	Au	0.07 g/t	1,000 g/t
	1297		Gold	2 assay ton	Au	0.03 g/t	1,000 g/t
	1597		Gold	5 assay ton	Au	0.03 g/t	1,000 g/t
	448		Gold	all	Au	0.002 mg	30 mg
*	384	473	Silver	½ assay ton	Ag	3g/t	3,500 g/t
••	447		Silver	alĺ	Ag	0.1 mg	100 mg

American/E Routine <u>Code</u>	inglish Uni Rush <u>Code</u>	ts: <u>Element</u>	*Sample Weight	Symbol	Detection Limit	Upper <u>Limit</u>
396	471	Gold	12 assay ton	Au	0.003 oz/ton	30 oz/ton
996	954	Gold	1 assay ton	Au	0.002 oz/ton	30 oz/ton
3596		Gold	50 grams	Au	0.001 oz/ton	30 oz/ton
1296		Gold	2 assay ton	Au	0.001 oz/ton	30 oz/ton
1596		Gold	5 assay ton	Au	0.001 oz/ton	30 oz/ton
383	470	Silver	12 assay ton	Ag	0.1 oz/ton	100 oz/ton

"Note:	½ assay ton 1 assay ton		14.5883 grams 29.166 grams
	2 23884 10T		59.322 grams
	5 assay ton	2	145.83 grams

01/14/00 FRI 08:44 FAA 004 804 0440

часява сары

Fire Assay Procedure - Trace Gold

Sample Decomposition: Fire Assay Fusion Analytical Method: Atomic Absorption Spectroscopy (AAS)

A prepared sample is fused with a mixture of lead oxide, sodium carbonate, borax, silica and other reagents as required inquarted with 6 mg of gold-free silver and then cupelled to yield a precious metal bead.

The bead is digested for \star hour in dilute nitric acid. Hydrochloric acid is then added and the solution is digested for an additional hour. The digested solution is cooled, diluted to 7.5 ml with demineralized water, homogenized and then analyzed by atomic absorption spectrometry.

International Units:

F	loutine <u>Code</u>	Rush <u>Code</u>	<u>Element</u>	Sample Weight (grams)	Symbol	Detection Limit	Upper Limit
	100	990	Gold	10	Au	5 ppb	10,000 ppb
	96	1090	Gold	10	Au	0.005 ppm	10 ppm
*	983	99 1	Gold	30	Au	5 ppb	10,000 ppb
	99	1091	Gold	30	Au	0.005 ppm	10 ppm
	494	1209	Gold	30	Au	0.005 g/t	10 g/t
	3583		Gold	50	Aα	5 ppb	10,000 ppb
	3584		Goid	50	Au	0.005 ppm	10 ppm
	3594		Gold	50	Au	0.005 g/t	10 g/t

American/English Units:

Routine <u>Code</u>	Rush <u>Code</u>	Element	Sample Weight (grams)	Symbol	Detection <u>Limit</u>	Upper <u>Limit</u>	
877	1977	Gold	30	Au	0.0002 oz/ton	0.3 oz/ton	

1

Trench Sampling Weighted Average Calculations

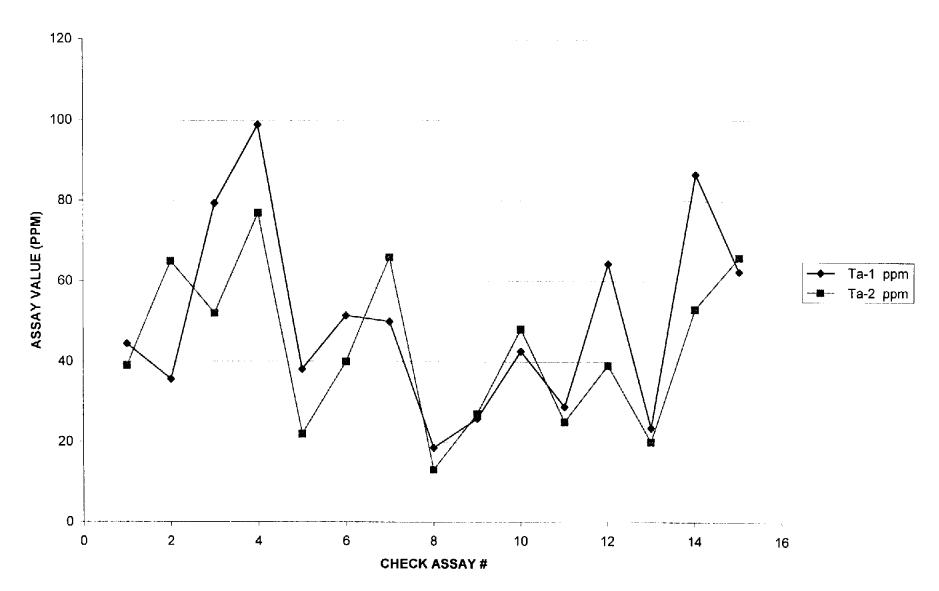
- Trench MT-01-1
- Trench MT-01-2
- Trench MT-01-3
- Trench MT-01-4

.

			. Tal	Nb	La	Ce	Nd Ta	1	Nb	La	Ce .	Nd	Geology	Ta ₂ O ₆	Nb ₂ O ₆	La ₂ O ₃	Ce,O,	Nd₂O,
	:		ррт	ppm	ррт	ppm	ppm W	к Та	W x Nb	WĸLa	W x Ce	W x Nd		W x Ta ₂ O ₆	W x Nb ₂ O ₆	W x La ₂ O ₃	W x Ce ₂ O ₅	
3151	MT-01-1	6	13.2	856	193	348	149	792	5136	1158	2088	894	Gneiss	96.6	7344.5	1354.9	2568 2	1046.0
		03	79	974	193 231	462	200	2.37	292 2	69.3	138.6		Carbonatite	29				
3153	MT-01-1	2.7	13 3	303	238	463	190	35.91	818.1	642 6	1250 1	513	Gneiss	43.8	1169.9	751.8		
3154	MT-01-1	0.5	44 4	837	157 i	337	143	22.2	418 5	78.5	168.5	71.5	Carbonatite	27.1	598.5	91.8		
3155	MT-01-1	5.5	0	245	211	371	132	0	1347.5	1160.5	2040.5	726	Gneiss	0.0		1357.8		1
	MT-01-1	2	26 5	1157	195	422	199	53	2314	390	844	398	Carbonatite	64.7	3309.0	456.3		
	MT-01-1	4	19.7	848	201	416	178	788	3392	804	1664	712	Gneiss	96.1	4850.6	940 7	2046 7	. 833.0
	MT-01-1	; 5	22 1	766	163	354	160	110.5	3830	815	1770	800	Carbonatite	134.8	5476.9	953.6	2177.1	
	MT-01-1	3	63	909	211	459	209 255	18.9	2727	633	1377	627	Carbonatite	23.1	3899.6	740.6	1693 7	
	MT-01-1	5	45	1264	286	597		225	6320	1430	2985	1275	Carbonatite	274.5	9037.6	1673 1	36716	si 1491.8
03161	MT-01-1	15	21.7	986	371	688	264	108.5	4930	1855	3440	1320	Carbonatite	132.4	7049.9	2170.4	4231.2	1544.4
	MT-01-1	5	24.1	214	387	731	297 436	120.5	1070	1935	3655	1485	Carbonatite	147.0	1530.1	2264.0	4495.7	1737.
	MT-01-1	5	20.3	649	621	1060	436	101.5	3245	3105	5300	2180	Carbonatite	123.8	4640 4	3632.9	6519.0	
	MT-01-1	5	11.9	452	475	884	381	59.5	2260	2375	4420	1905	Carbonatite	72.6	3231.8	2778.8		
	MT-01-1	5	17.7	865	252	490	205	88 5	4325	1260	2450	1025	Carbonatite	108.0	6184.8	1474 2	3013.5	
	MT-01-1	5	15 4	1808	471	855	352	77	9040	2355	4275	1760	Carbonatite	93.9	12927.2	2755.4	5258.3	
	MT-01-1	5	35.6	1877	423	710	241	178	9385	2115	3550	1205	Carbonatite	217.2	13420.6	2474.6		
03168	MT-01-1	5	7.6	212	640	998	314	38	1060	3200	4990		Gneiss	46.4	1515.8	3744 0		
		74	·															-
EIGHTED	AVERAGE	OVER 74 MET	RES IN PPM:			i		18.9	836.6	343.0	627.1	250.4		23.0	1196.4	401.3	771.3	292.9

MYOFF TI	RENCH M	T-01-2		,										í	;			
Sample ID	Trench #	Width (m)	Ta ppm	Nb ppm	La ppm	Ce	Nd T ppm W		Nb W x Nb	La W x La	Ce W x Ce	Nd W x Nd	Geology	Ta ₂ O; W x Ta ₂ O;	Nb ₂ O ₅ W x Nb ₂ O ₅	La ₂ O ₃ W x La ₂ O ₃	Ce ₂ O ₆ W x Ce ₂ O ₅	Nd ₂ O ₃ W x Nd ₂ O ₃
			ppm	ppin	PPIII	Phin	ppin						ł		10 2 10 205	: :	10 × 00203	VI A 114203
203169	MT-01-2	5	4	242	113	227	86	20	1210	565	1135	i i 430	Gneiss	24.4	1730.3	132.2	1396.1	503.1
203170	MT-01-2	5	31.7	543	169	369	164	158.5	2715				Carbonatite	1	•	1	2269.4	1
203171	MT-01-2	5	10.1	717	198	450	219	50 5	3585	990	2250	1095	Carbonatite	61.6	5126.6	231.7	2767.5	1
203172	MT-01-2	5	79.4	1390	289	608	260	397	6950	1445	3040	1300	Carbonatite	484 3	9938 5	338.1	3739.2	1521.0
203173	MT-01-2	5	8.2	991	145	282	132	41	4955	725	1410	660	Carbonatite	50.0	7085.7	169.7	1734.3	772.2
203174	MT-01-2	5	24.4	539	201	384	184	122	2695	1005	1920	920	Carbonatite	148.8		235.2	2361.6	1076 4
203175	MT-01-2	5	12.1	439	190	393	211	60.5	2195	950	1965	1055	Carbonatite	73.8	3138.9	222.3	2417.0	1234.4
203176	MT-01-2	5	12.4	569	305	556	241	62	2845	1525	2780	1205	Carbonatite	75.6	4068.4	356.9	3419.4	1409.9
203177	MT-01-2	5	23.3	343	315	588	267	116.5	1715	1575	2940	1335	Carbonatite	142.1	2452.5	368.6	3616.2	1562.0
203178	MT-01-2	5	8.3	507	157	278	116	41.5	2535	785	1390	580	Carbonatite	50.6	3625.1	183.7	1709.7	678.6
203179	MT-01-2	5	19.4	610	254	454	192	97	3050	1270	2270	960	Carbonatite	118.3	4361.5	297.2	2792.1	1123.2
	;	55m	······································]							· · · · ·	1			
WEIGHTED	AVERAGE	OVER 55 ME	TRES IN PPM			•	+ .	21.2	626.4	212.4	417.2	188.4		25.9	895.7	49.7	513.1	220.4
		1				•	ļ	T 1 100). <u>2777</u> 12 	··· - = = = =	1		1	1	1	1		
WEIGHTED	AVERAGE	OF THE 50m	OF CARBON	ATITE ON	LY IN PPP	VI:	_	22.9	664,8	222.3	436.2	2 198.6	i i	28.0	950.7	52.0	536.5	232.4

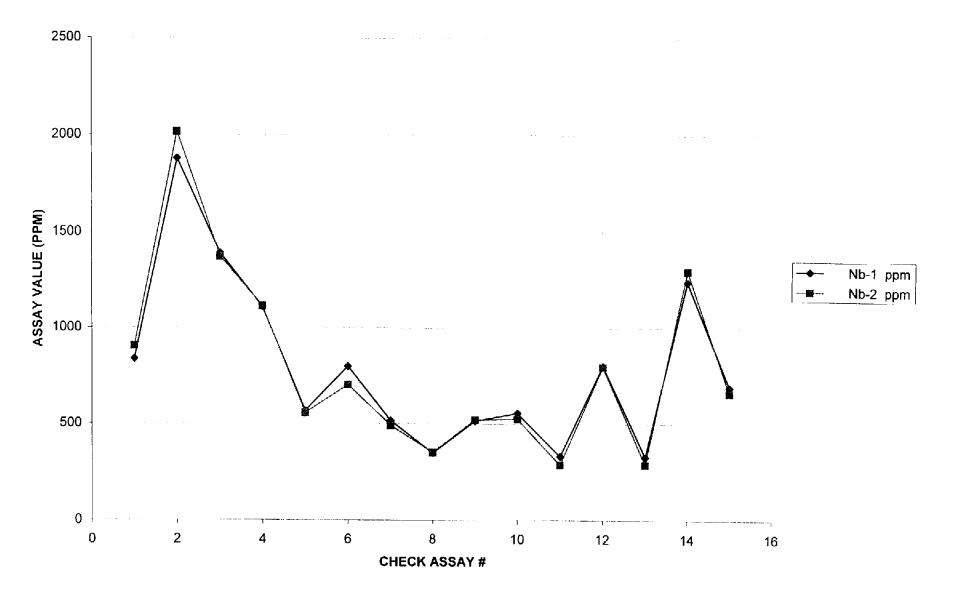
	French #	Width (m)	Taj	Nb	La	Ce	Nd	Ta	Nb	La	Ca	Nd	Geology	Ta ₂ O ₅	Nb ₂ O ₅	La ₂ O ₃	Ce,Os	Nd ₂ O ₃
1	· · · ·		ррт	ppm	ppm	ppm	ppm	W x Ta	WXND	WxLa	WxCe	W x Nd		W x Ta ₂ O ₅	W x Nb ₂ O ₅	W x La ₂ O ₃	W x Ce ₂ O ₅	W x Nd ₂ O ₃
03181	MT-01-3	1	98.9	1110	277	514	241	98.9	1110	277	514	241	Carbonatite	120.7	1587.3	324.1	632.2	282.0
03182	MT-01-3	5	7.9	485	183	333	161	39.5	2425	915	1665	805	Gneiss	48.2	3467.8	1070.6	2048.0	941.9
03183	MT-01-3	5	28.5	378	191	364	173	142.5	1890	955	1820	865	Carbonatite	173.9	2702.7	1117.4	2238.6	1012.1
03184	MT-01-3	5	13.3	368	99.8	199	87	66.5	1840	499	995	435	Carbonatite	81,1	2631.2	583.8	1223.9	509.0
03185	MT-01-3	5	47.8	935	262	528	236	239	4675	1310	2640	1180	Carbonatite	291.6	6685.3	1532.7	3247.2	1380.6
03186	MT-01-3	5	25.4	776	216	420	194	127	3880	1080	2100	970	Carbonatite	154.9	5548 4	1263.6	2583.0	1134 9
03187	MT-01-3	5	21.8	1122	203	390	186	109	5610	1015	1950	930	Carbonatite	133.0	8022.3	1187.6	2398.5	1088
03188	MT-01-3	5	30.7	1093	187	382	178	153.5	5465	935	1910	890	Carbonatite	187.3	7815.0	1094.0	2349.3	1041.:
03189	MT-01-3	5	30	596	186	354	171	150	2980	930		855	Carbonatite	183.0	4261.4	1088.1	2177.1	1000.4
03190	MT-01-3	5	15.5	387	186 264	535	280	77.5	1935	1320	2675	1400	Carbonatite	94,6	2767.1	1544.4	3290.3	1638.0
03191	MT-01-3	5	25.7	1319 574	670	995	384	128.5	6595	3350	4975	1920	Carbonatite	156.8	9430.9	3919.5	6119.3	2246.4
03192	MT-01-3	5	21.4	574	321	590	253	107	2870	1605	2950	1265	Carbonatite	130.5	4104.1	1877.9	3628.5	1480.
03193	MT-01-3	5	38.1	568	313	559	257	190.5	2840	1565	2795	1285	Carbonatite	232.4	4061.2	1831.1	3437.9	1503.8
		61										1 1		-				
VEIGHTED	AVERAGE	OVER 61 ME1	RES IN PPI	A:	i	-		26.7	723.2	258.3	471.5	213.8		32.6	1034.2	302.2	579.9	250.

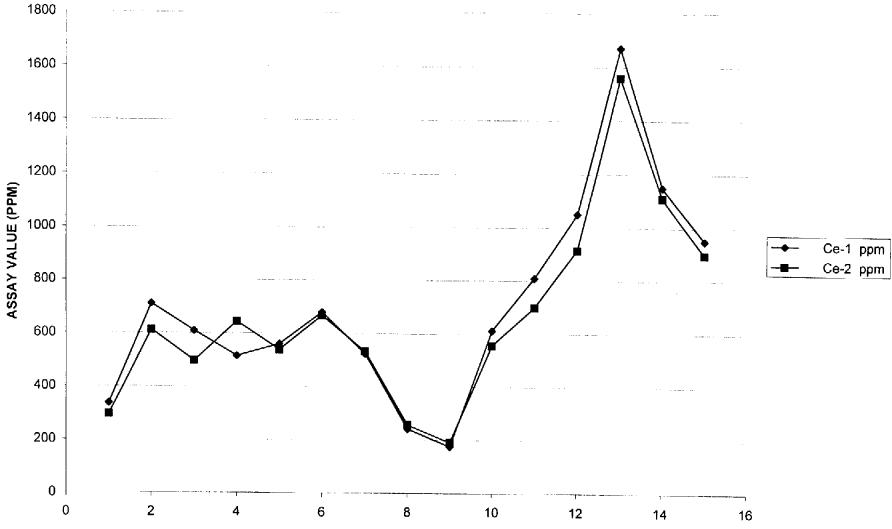

Y.

ATUFF 1	RENCH	viii-v1-4			i			;			:					1			
Sample ID	Trench #	Width (m).	Та	Nb	La	Ce	Nd	Та	Nb	La	Ce	Nd	Geology	Ta ₂ O ₅	Nb ₂ O ₅	La ₂ O ₃	Ce ₂ O ₁	Nd ₂ O ₃
				ppm	ppm	ppm	ppm	ppm	WxTa	W x Nb	W x La	W x Ce	W x Nd	- ·	W x Ta ₂ O ₅	W x Nb ₂ Os	W x La ₂ O ₃	W x Ce ₂ O ₅	W x Nd ₂ O ₃
203194	MT-01-4		3	4	186	120	225	98	12	558	360	675	294	Gneiss	14.6	797.9	421.2	830.3	344.
203195	MT-01-4	i	5	51.4	799	404	679	261	257	3995	2020	3395	1305	Carbonatite	313.5	5712.9	2363.4	4175.9	1526.
203196	MT-01-4		5	4.1	407	100	184	75	20,5	2035	500	920	375	Pegmatite	25.0	2910.1	585.0	1131.6	438.
203197	MT-01-4		5	32.9	735	242	446	195	164.5	3675	1210	2230	975	Carbonatite	200.7	5255.3	1415.7	2742.9	1140.
203198	MT-01-4	1	5	46 8	1118	211	447	225	234	5590	1055	2235	1125	Carbonatite	285.5	7993.7	1234.4	2749.1	1316.3
203199	MT-01-4	I	5	18 6	838	200	383	167	93	4190	1000	1915	835	Carbonatite	113.5	5991.7	1170.0	2355.5	977 (
203200	MT-01-4	1	5	49.9	515	288	524	234	249.5	2575	1440	2620	1170	Carbonatite	304.4		1684.8	3222.6	1368
255701	MT-01-4		5	9.7	1402	194	389	171	48.5		970	1945	855	Pegmatite	59.2	10024.3	1134.9	2392.4	1000.4
255702	MT-01-4	i	5	0.5	474	206	382	150	2.5	2370	1030	1910		Pegmatite	3.1		1205.1	2349.3	877.
255703	MT-01-4		5	1.3	70	14.9	30	9	6.5	350	74.5	150	45	Pegmatite	7.9		87.2	184.5	52.
255704	MT-01-4	· · · · · · · · · · · · · · · · · · ·	5	12.3	1699	89.4	190	81	61.5					Carbonatite	75.0		523.0	1168.5	
255705	MT-01-4	· • - ···· · ····	5	18.1	3211	334	642	300	90.5			3210		Carbonatite	110.4			3948.3	
255706	MT-01-4	1	5	27.6	2140	277	537	248	138	10700				Carbonatite	168.4	15301.0			
255707	MT-01-4	ł	5	15.8	1843	170	336	168	79	9215			840	Carbonatite	96.4	13177.5			982
255708	MT-01-4	1	5	11.7	1701	376	686	302	58.5			3430		Carbonatite	71.4	12162.2			
255709	MT-01-4		5	9.6	1559	288	544	262	48					Carbonatite	58.6				
255710	MT-01-4	- 1	5	20.4	1857	460	883	400	102					Carbonatite	124.4				
255711	MT-01-4	1	5	21.2	1564	390	710	330	106	7820				Carbonatite	129,3				
255712	MT-01-4	1	5	37.2	2288	511	824	323	180	5 11440				Carbonatite	226.9				
255713	MT-01-4	1 .	5	7.7	526	401	632	240	180 38.5	5 2630				Carbonatite	47.0				
255714	MT-01-4		5	18.5	347	128	242	107	92.9					Carbonatite	112.9				
255715	MT-01-4	1	5	25.8	513	87.3	175	75						Carbonatite	157.4				
255716	MT-01-4	1	5	42.5	554	288	610	290	212.					Carbonatite	259.3			3751.5	
255717	MT-01-4	1	5	28.7	331	416	808	360	143.5					Carbonatite	175.1				+ · · · · · · · · · · · · · · · · · · ·
255718	MT-01-4	i	5	64.3	801	561	1050	452	321.9			5250		Carbonatite	392.2	5727.2	3281.9	6457.5	
255719	MT-01-4	1	5	23.5	329	1010	1670	615	117.5			8350		carbonatite	143.4		5908.5	10270.5	
255720	MT-01-4		5	86.6	1241	696	1150	469	43	6205	3480	5750	2345	Carbonatite	528.3	8873.2	4071.6	7072 5	2743.1
255721	MT-01-4		5	62.4	690	543	951	427	312	3450		4755	2135	Carbonatite	380.6	4933 5	3176.6	5848.7	2498.0
255722	MT-01-4	1	5	11.2	648	881	1170	372			4405	5850	1860	Carbonatite	68.3	4633.2	5153.9	7195.5	2176.
255723	MT-01-4	•	7	2.5	855	431	725	266	17.1	5 5985	3017	5075		2 Gneiss	21.4	8558.6	3529 9	6242.3	
•		15	50							1	1		· · · ·			1			•
WEIGHTE	AVERAG	E OVER 18	0 MET		PPM:				25.	9 1064.5	352.8	622.4	261.5	5	31.6	1522.2	412.7	765.6	305.9
				~ ~ ~ ~					31.	0 1160.3	385.5	687.7	287.6		37.8	1	451.0		

Check Assay Comparison Charts:

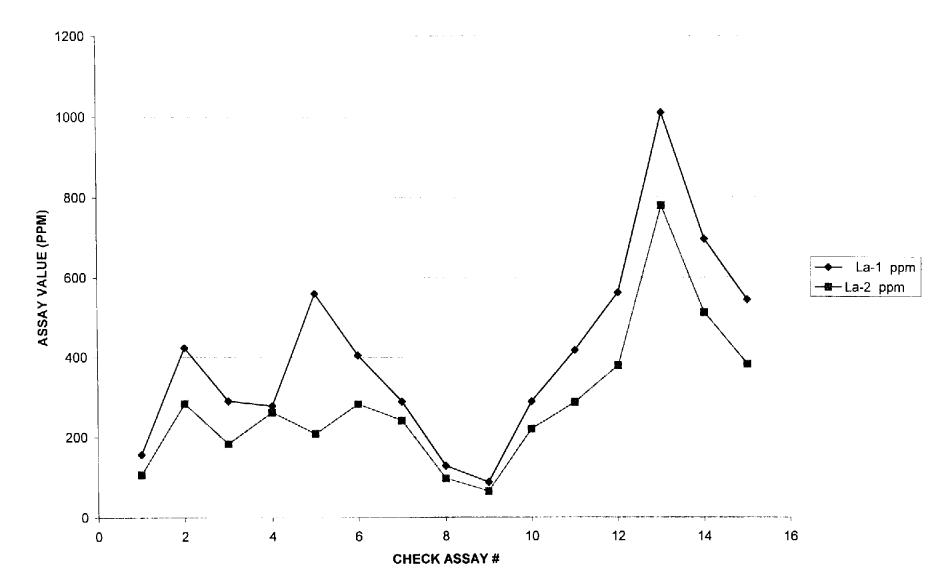
Element-1: Original analysis by Activation Laboratories Ltd. Element-2: Check analysis by Teck Cominco Exploration Research Laboratory


- Tantalum
- Niobium
- Cerium
- Lanthanum
- Neodymium

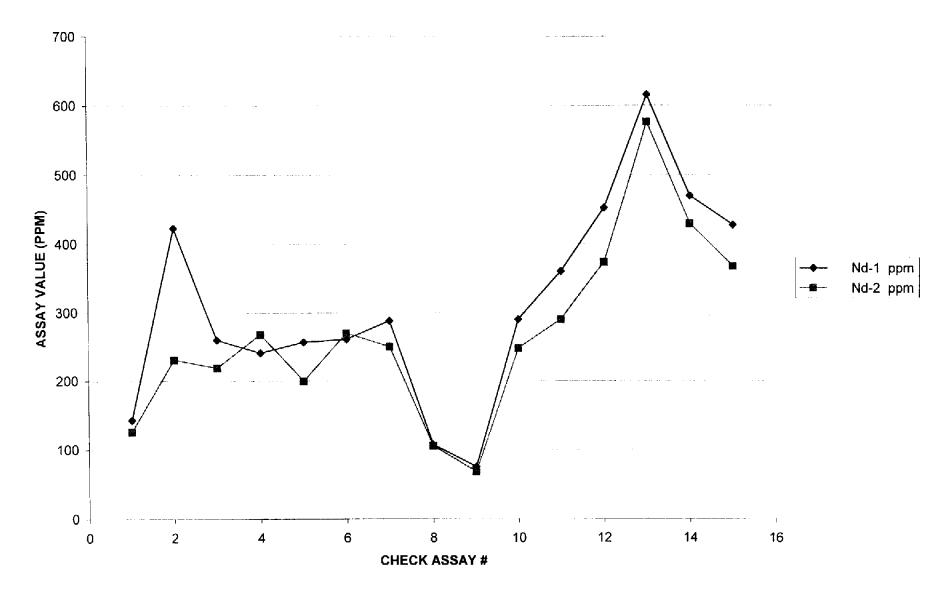


MYOFF CREEK PROPERTY - TANTALUM CHECK ASSAYS

The Theorem 1 and the second s Second secon second sec


MYOFF CREEK PROPERTY - NIOBIUM CHECK ASSAYS

MYOFF CREEK PROPERTY - CERIUM CHECK ASSAYS


CHECK ASSAY #

.

MYOFF CREEK PROPERTY - LANTHANUM CHECK ASSAYS

MYOFF CREEK PROPERTY - NEODYMIUM CHECK ASSAYS

SECTION E: PETROGRAPHIC REPORTS

Petrographic and mineralogical analyses carried out by Harris Exploration Services of North Vancouver, B.C.

- Petrographic Report #01-73 dated August 3, 2001
 Mineralogical Report #01-91 dated October 24, 2001

MINERALOGY AND GEOCHEMISTRY

534 ELLIS STREET, NORTH VANCOUVER, B.C., CANADA V7H 2G6 TELEPHONE (604) 929-5867

Report for: Cross Lake Minerals Ltd., 240 - 800 West Pender Street, VANCOUVER, B.C. V6C 2V6 Report 01-73

Report 01-75

August 3, 2001

PETROGRAPHIC EXAMINATION OF SAMPLES FROM A ND-Ta-REE PROSPECT

Introduction:

2 samples, said to be designated 255715 and 255716, were submitted to the Cominco E.R.L. for thin sectioning. Apparently these were received as two individually unmarked pieces of rock in a bag labelled "MET SAMPLE T-4 @ 105 m." They were arbitrarily designated A and B, and typical portions prepared for the present study as polished thin sections (Slides 01-3397 and 3398).

Summary:

Both thin sections are of similar general type, consisting dominantly of varigranular aggregates of calcite which form a matrix to disseminated individual grains - and local clumpy/lenticular segregations - of biotite, amphibole and apatite.

Minor amounts of sulfides (pyrrhotite and pyrite) and Fe-Ti oxides are the remaining constituents - again occurring as individual disseminated grains, sometimes associated with the silicate/ phosphate accessories, and - rarely - as laminar strings.

Mode of Occurrence of Nb, Ta and Rare Earths:

No specific minerals of these elements were recognizable in the petrographic study.

A strongly anisotropic oxide-like phase, occurring as a few disseminated grains, was suspected of being columbite-tantalite but, when checked by SEM/EDX microanalysis, was found to contain only Fe and Ti (and to be, by implication, a form of ilmenite). No unusual minerals which might be carriers of rare earths were noted.

An SEM scan of slide T-4(B) for areas of high electron back-scatter (potentially indicative of concentrations of elements of high atomic weight such as Ta or the rare earths) led to the checking of a small, rounded grain (0.1 mm in size) of sub-opaque material with a thin rim of pyrite. This yielded the peaks of Nb and Ta. A single tiny grain of similar appearance was subsequantly noted in Slide T-4(A).

This does not account for overall levels of Nb of 500 ppm or so, and total rare earths of 1000 - 1500 ppm, as indicated by the given assay data for Sample 255716.

If assay reject material is still available for these specific samples, it could be used to produce gravity concentrates. Mineralogical study of the latter (by optical, SEM and possibly XRD methods) would have a better chance of locating and identifying the mineral form of the elements of economic interest. Random thin sections of the untreated rock (as in the present study) - could very well have failed to include any of the minerals in question if, as is likely, these are of low abundance and spotty distribution.

Individual petrographic descriptions are attached.

J.F. Harris Ph.D.

SAMPLE T-4(A) Slide 01-3397

Estimated mode

Calcite	92
Amphibole	0.5
Biotite	4
Apatite	2
Plagioclase	trace
Pyrrhotite	1
Pyrite	0.5
Chalcopyrite	trace
Ilmenite	trace

This thin section consists dominantly of carbonate, as an anhedral, locally complex-margined aggregate of widely varied grain size. Much of it has a grain size in the 1 - 3 mm range, but there are also a few, thin laminar zones and irregular patches of a finergrained variant of grain size 0.05 - 0.15 mm.

The carbonate is strongly reactive to dilute HCl, indicating calcitic composition.

A variety of minor to trace accessory constituents occur scattered through the carbonate matrix. In part these show laminar distribution or grain elongation which defines an incipient foliation.

The most abundant accessory is a weakly pleochroic, pale orangebrown variety of biotite, occurring as individual flakes, 0.5 -2.0 mm in size, and occasionally as elongate clumps thereof. Small grains of a pale green, non-pleochroic amphibole (actinolite?) sometimes occur associated with the biotite, and are also seen in independently disseminated form.

Sub-rounded individual grains of apatite, 0.2 - 1.0 mm or more in size, are the second most abundant accessory. These typically occur randomly disseminated through the carbonate matrix, or are occasionally associated with clumps of biotite.

Opaques consist principally of pyrrhotite and pyrite, often closely associated. These occur in like mode to the other accessories, as randomly disseminated individual grains, 0.1 - 0.5 mm in size, occasionally concentrated as small clumps and strings, and/or moulded onto biotite, apatite or amphibole. One hairline stringer of sulfides follows a laminar zone of fine grain size in the carbonate host.

Minor proportions of ilmenite occur in similar mode to the sulfides.

Estimated mode

Calcite	67
Biotite	20
Amphibole	8
Apatite	3.5
Pyrite)	1
Pyrrhotite)	
Chalcopyrite	trace
Magnetite)	0.5
Ilmenite)	

This sample is closely similar in composition and general character to T-4(A), but contains higher proportions of the accessories biotite, amphibole and apatite. The thin section includes clumpy/ lenticular segregations of biotite and amphibole up to 1 or 2 cm in size.

Traces of sulfides (pyrrhotite, pyrite and rare chalcopyrite) and Fe-Ti oxides occur as disseminated grains, ranging in size from about 0.5 mm down to a few microns. These are sometimes seen interstitial or peripheral to biotite, amphibole or apatite, but also occur randomly within the carbonate matrix.

OCT 3 0 2001

MINERALOGY AND GEOCHEMISTRY

534 ELLIS STREET, NORTH VANCOUVER. B.C., CANADA V7H 2G6 TELEPHONE (604) 929-5867

Report for: Jim Miller-Tait, Cross Lake Minerals Ltd., 240 - 800 West Pender Street, VANCOUVER, B.C. V6C 2V6 Report 01-91

October 24, 2001

MINERALOGICAL EXAMINATION OF HEAVY MINERAL CONCENTRATES

Introduction:

XRF analyses of Nb, Ta, Ce and La on 15 assay pulps from the Myoff Creek property, submitted to Teck-Cominco ERL for check purposes, showed satisfactory agreement with the original data.

On the basis of the chemical data, 6 samples (listed below) were selected from this suite for additional work. Relevant data are as follows:

TABLE 1: Original Samples (mean assay values)

Field :	No. Lab	No. N	ib T	'a C€	e La
20316	7 01-4	734 18	46 5	0 66	51 353
20317	2 01-4	-	-	0 55	50 236
20318	1 01-4	736 11	12 8	8 57	78 269
25571	8 01-4	744 7	98 5	1 98	32 479
25571	9 01-4	745 3	02 2	1 161	4 894
25572	0 01-4	746 12	.70 8	2 113	30 592

These particular samples were selected on the basis that the first three show relatively high contents of Nb and Ta, and the last three are relatively high in rare earths. Sample 255720 is high in both criteria.

These samples were subjected to gravity separation in tetrabromoethane (at S.G. 2.96) to produce heavy mineral concentrates. Yields obtained, plus assays of four of the heavy concentrates selected for additional mineralogical work, are shown in the following table:

TABLE 2: Heavy Mineral Concentrates

Field No. Lab No. (cr)* (cr)** %*** Nb Та Ce La 203167 H01-893 653 102.4 16 8300 89 1179 340 203172 HO1-894 545 97.7 18 203181 HO1-895 431 32.8 8 774 >10000 1308 376 255718 H01-896 498 66.1 14 255719 H01-897 519 80.2 16 >10000 322 2878 1170 255720 21.9 5 H01-898 513 7080 217 4963 2380

* Starting weight
** Weight of heavy concentrate
*** Heavies yield(%)

As shown above, the yields of heavies ranged from about 5% to 18%. Assuming that the minerals carrying the economically interesting elements all reported to the heavies, the assays of these concentrates should have shown upgrading - relative to those of the original untreated samples - ranging from about 5.5 to 20 fold. Comparison with Table 1 shows that, whilst upgrading was certainly achieved, it varied considerably in degree, both from sample to sample and from element to element within samples.

Estimated mineralogical compositions, based on microscopic examination of polished thin sections prepared from the four chemically analysed heavy concentrates in Table 2, are as follows:

TABLE 3: Estimated Mineralogical Composition of Heavy Concentrates

Sample:	203167 (conc.H01-893)	203181 (conc.H01-895)	255719 (conc.H01-897)	255720 (con.H01-898)
Amphibole	46.0	30.0	27.5	24.0
Pyroxene	1.5	-	-	5.5
Biotite	12.0	-	4.0	-
Apatite	12.0	27.0	36.0	43.5
Carbonate	3.0	14.5	17.0	11.5
Magnetite	11.5	3.5	3.5	2.5
Ilmenite	7.5	6.0	7.5	4.5
Pyrite	2.5	0.5	2.5	3.0
Pyrrhotite	3.5	18.0	1.5	3.5
Limonite	0.5	0.5	0.5	2.0

The heavy concentrates all consist dominantly of liberated mineral grains, 0.1 - 1.0 mm in size, plus scattered, coarser carbonatite rock fragments up to 2.0 mm or so. The latter are the source of the significant contents of carbonate contamination in three of the four concentrates.

All four heavies concentrates show generally similar compositions being made up mainly of pale green amphibole, apatite, magnetite, ilmenite and Fe sulfides in varied relative proportions.

Nb/Ta and REE minerals could not be definitively recognized from the optical examinations. However, scattered grains of a variety of minor accessory constituents of uncertain identity are present, and examples of these (ranging in size from 0.2 - 1.0 mm) were located and marked for compositional checks by SEM/EDX microanalysis in two of the slides (H01-898 - which showed the highest Nb and Ta assays, and H01-898 - which had the highest Ce and La assays).

Results of this work were as follows:

Sample H01-895:

1) a grain of a weakly anisotropic phase thought to be ilmenite proved to have Nb and lesser Fe as its only detectable constituents (presumably combined with oxygen, which is undetectable by X-ray fluorescence).

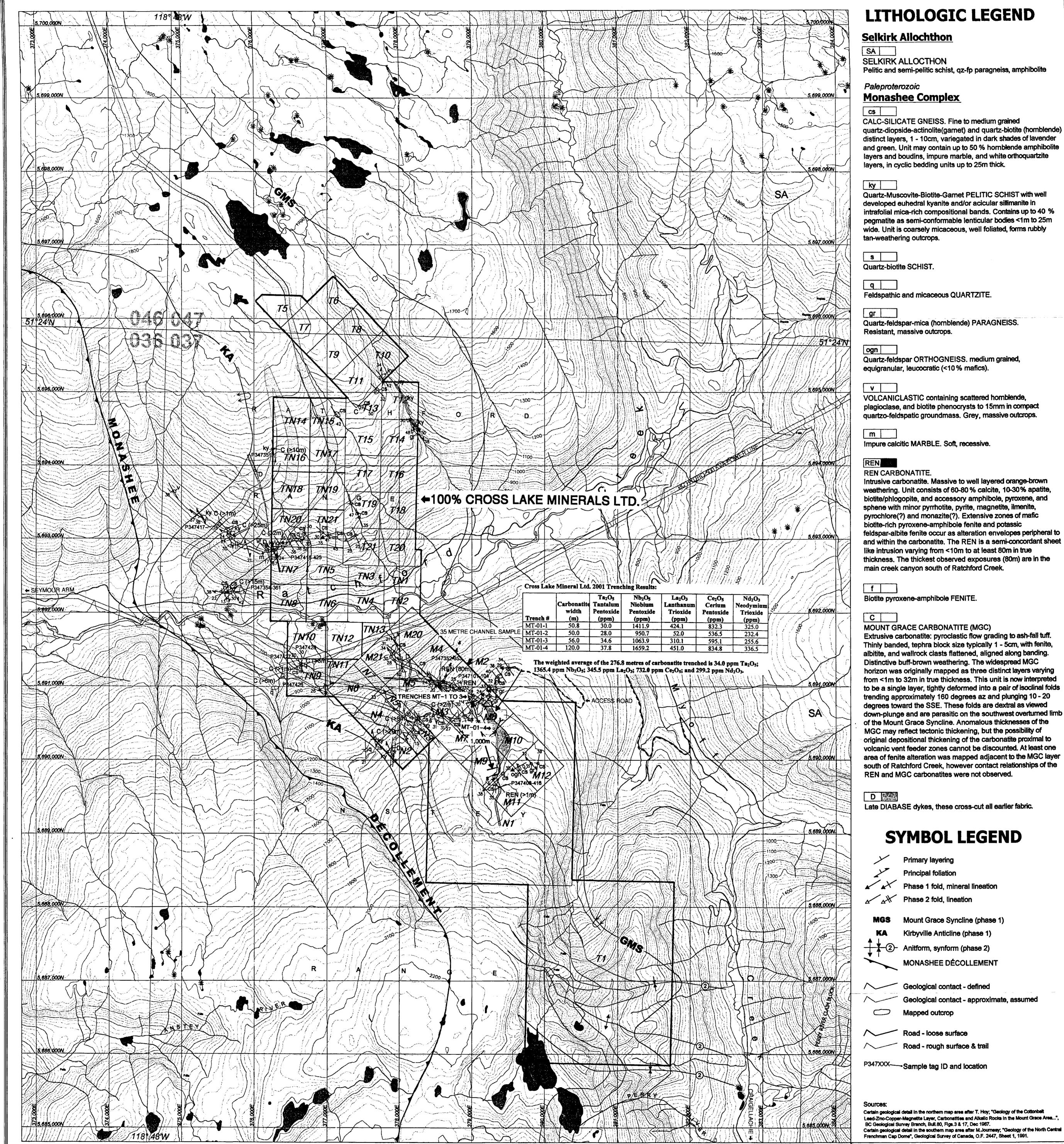
ii) a strongly anistotropic, eutectoid-textured constituent, previously thought to be a form of ilmenite, proved to have Nb as its major constituent, together with accessory Ta, Fe and Ti.

iii) an isotropic translucent mineral occurring as small inclusions in the previous mineral, and thought possibly to be picotite (a variety of spinel), was found to be composed principally of Nb, with Ta, Ti, Ca and U as accessory constituents. This may be a calcium niobate such as the mineral ellsworthite.

iv) another grain previously thought to be ilmenite showed major Nb and accessory Fe (as in i)), accompanied, in this case, by detectable Ti.

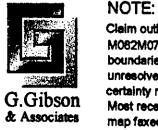
v) another example of the microeutectoid phase (see ii))a was found to contain major Nb and lesser Fe and Ti (but, in this case, no detectable Ta).

Sample H01-898:

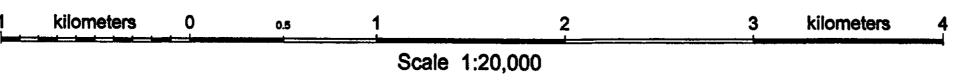

i) a dark red-brown translucent mineral was found to contain major proportions of Nb, Ta and U, and accessory proportions of Ca and Ti. It appears to be a Ta-rich variant of the grain denoted iii) in H01-985.

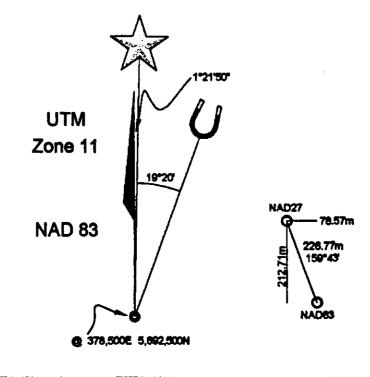
ii) a yellow-brown translucent grain likewise showed major Nb and Ta, and accessory Ca, Ti and U. It is obviously a variant of the previous mineral.

iii) a brown, sub-transparent grain was found to consist principally of Fe, Ca, Al and Si, with subsidiary Ce and La. This is consistent with the mineral allanite (a form of epidote). It is the only one


SECTION F: ILLUSTRATIONS

Plan Number	Title	Scale
MC-01-1 (after p.4)	General Location Plan	1:250 000
MC-01-2 (after p.4)	Location Plan	1:50 000
MC-01-3 (after p.4)	Mineral Claims	1:50 000
MC-01-4 (in pocket)	Property Geology	1:20 000
MC-01-5 (in pocket)	Trenching Plans	1:250

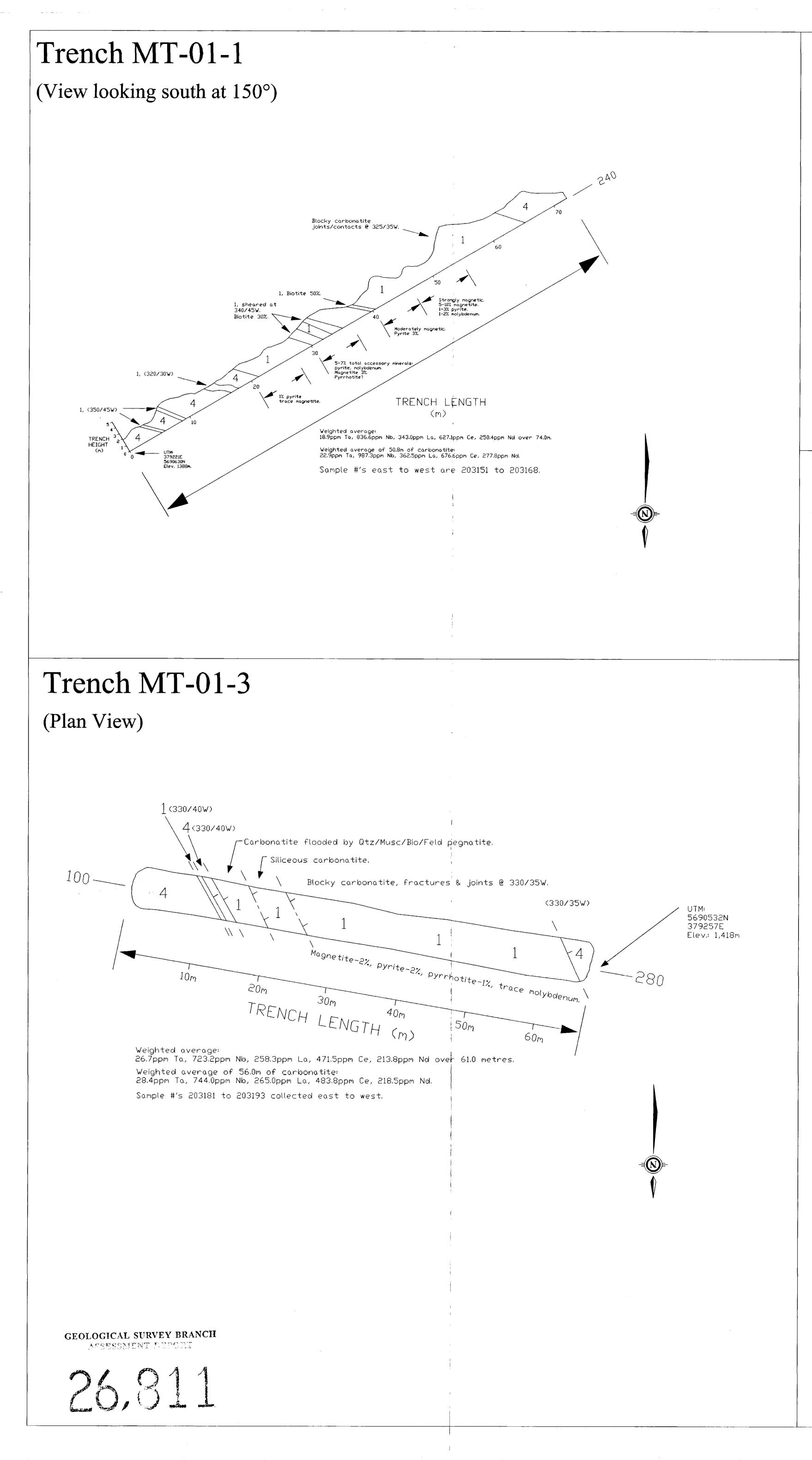




Claim outlines from BC Mineral Titles Reference M082M07E & M082M07W positioned to a best fit with topography. Claim boundaries across map sheets inconsitentent by about 140m and is unresolved herein. Claim boundaries otherwise located with a certainty no better than 50m. Most recent staking stradding Ratchford Creek located from claim map faxed by Mineral Titles Branch, Kamloops office, 25Sep01.

CROSS LAKE MINERALS Ltd.

Myoff Creek Project Area Geology, Claims & Topography

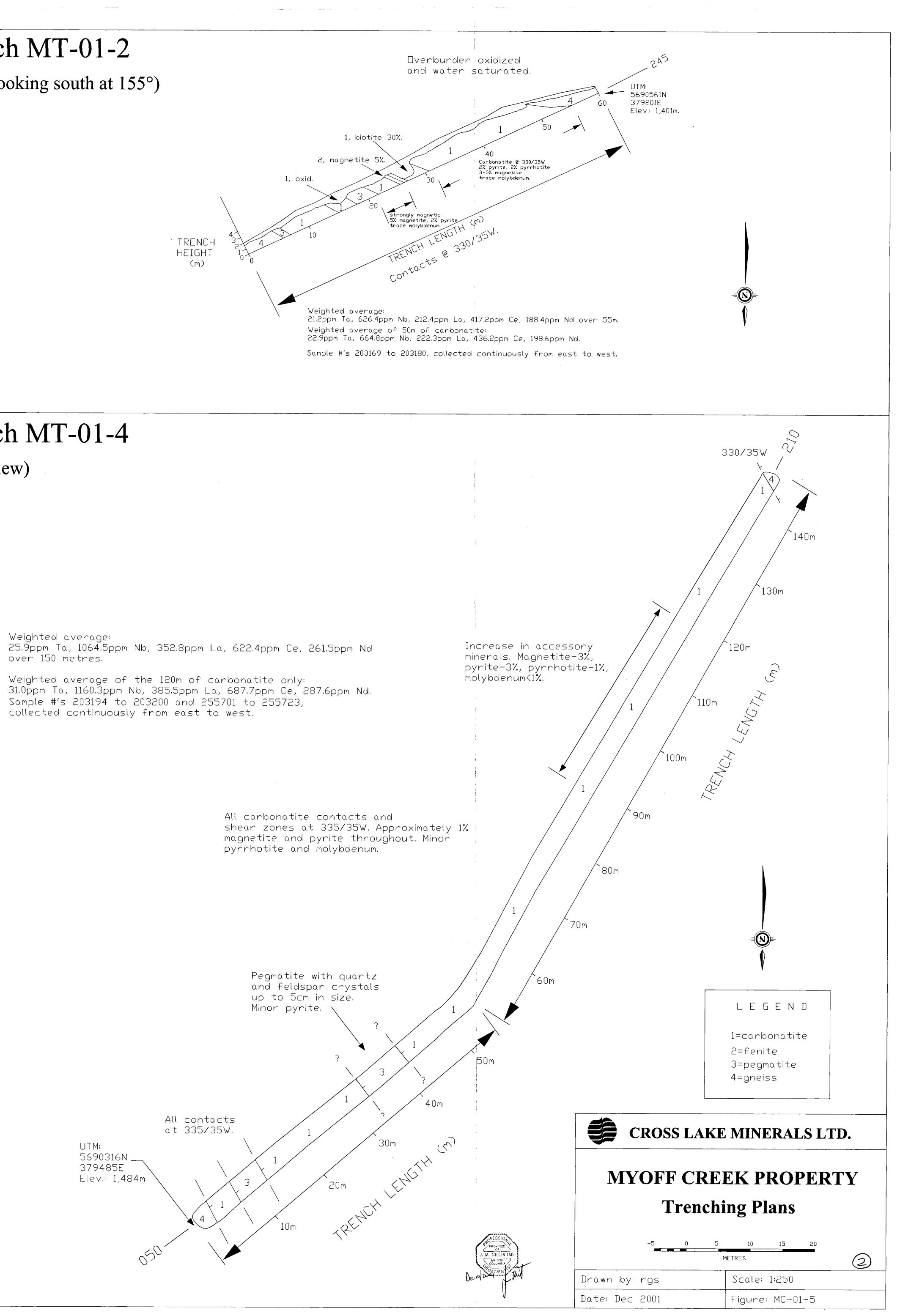


1 11 111 2 3

Decidizoor

CROSS LAKE MINERALS LTD. MYOFF CREEK PROPERTY Kamloops Mining Division **PROPERTY GEOLOGY** Scale: 1:20 000 NTS: 82M/07E,W Plan No. MC-01-4 December 2001

Trench MT-01-2


(View looking south at 155°)

Trench MT-01-4

(Plan View)

over 150 metres.

collected continuously from east to west,

