

Geochemical Assessment Report

On The

Red Property

Lac La Hache, British Columbia

UTM 92P.093/ 92P.094

610000E 5755500N

Clinton Mining Division

By

David E. Blann, P.Eng.

Norian Resources Corp.

March, 2002

GEOLOGICAL SURVEY BRANCH ASSESSMENT DEPONT

26.82

Table of Contents

Page

1.0 Summary	3
2.0 Introduction	4
3.0 Location and Infrastructure	4
4.0 Physiography and Climate	4
5.0 Property Status	4
6.0 History	5
7.0 Regional Geology	5
8.0 Property Geology	6
9.0 Structure	7
10.0 Alteration and associated Mineralization	7
10.1 Rock Sample Results	7
11.0 2001 Geochemical Survey	8
12.0 Geochemical Survey Results	8
13.0 Discussion	9
14.0 Conclusions	9
15.0 Recommendations	.10
16.0 Proposed Budget	.10
17.0 References	.11
18.0 Statement of Costs	12
19.0 Statement of Qualifications	13
Tables	
Table 1 Claim Status	4

Figures

Ľ,

ب

.....

ί.

Figure	2	Following Page
1	Location map	4.
2	Claim location	4 .
3	Regional Geology	5.
4	Grid and Geochemical Survey Location	6.
5-10	Geochemical Anomaly Maps	8.

Appendices

- Appendix A Soil/ rock Assay Certificates
- Appendix B Soil and Rock Descriptions, Histograms and Log Probability Plots
- Appendix C Figures 11-23 Soil Geochemical data Plots

1.0 Summary

Γ

*

Ĺ.

L.

Ε.

The Red property is located 16 kilometres north-northeast of the village of Lac La Hache, in the south central Cariboo region of British Columbia. The property is accessed by approximately 28 kilometres of all weather logging roads, and in part by old skid trails. Lac La Hache is located on B.C. Highway 97, and is serviced by B.C. Rail, and B.C. Hydro.

The claim area is underlain by the west central portion of the Quesnel Trough, an Upper Triassic-Jurassic volcanic island arc sequence intruded by high level coeval dikes and stocks of gabbro, diorite, monzonite, and locally syenite. These rocks are in contact with the 193 m.y. old composite Takomkane batholith to the east, and Eocene to Miocene volcanic rocks crosscut and cover portions of the older rocks. The area was covered by approximately 1200-1800 metres of ice during glaciation, and removed both Tertiary and older rocks, and deposited between 1 and 30 metres or more of till, glaciofluvial and lacustrine cover.

The property is approximately 80% covered by glacial and glaciofluvial deposits. Sporadic outcrop occurs predominantly in the eastern portion of the claims; here, the property is underlain by fine grained units including limestone, greywacke, siltstone and argillite, and andesite to basalt volcanic breccia, flow and tuff and intrusive breccia; these rocks are cut by dikes of monzonite and basalt composition. Eocene-Miocene aged volcanic rocks occur to the southeast and west of the Red claims, and on the north side of Spout Lake.

Previous geochemical surveys on the Red claims returned 25 samples containing greater than 40 ppb gold, and a further 18 samples containing 100-1930 ppb gold. Induced polarization surveys outlined a 2 kilometre by 1 kilometre area of anomalous chargeability that remains open to the west. A float sample of soft, magnetite-rich sericite-magnetite-carbonate altered augite andesite containing 0.7% copper, and the North zone of G.W.R. Resources Inc. contains a "drill indicated resource of 595,000 tonnes grading 1.79% copper and 50% magnetite" near the eastern edge of the property.

In the fall of 2001, 10.2 kilometres of grid, and 115 hand-auger till samples were performed over a magnetic anomaly on the western portion of the Red property. Two rock samples of the Road showing to the east returned up to 5,612 ppm copper, 10.8 ppm silver, 10 ppb gold, 4 ppb palladium. Till samples were analyzed by both acid leach and cyanide leach methods. Results of the till sampling include two coincident to overlapping 90%, 95%, 99% probability anomalies of copper, arsenic, potassium and gold approximately 200 metres in width and 600 metres in length, and approximately 150 metres in width, 300 metres in length, respectively. Cyanide leach gold anomalies support ICP anomalies, and their correlation with proximity to the magnetic anomaly. In addition cyanide leach results returned a unique molybdenum and palladium anomaly approximately 200 metres in width and 800 metres in length in the northeast portion of the survey, remains open.

It is recommended that induced polarization and further linecutting and till sampling be performed to cover and expand on current and previous geochemical surveys. Test pitting of the main copperarsenic-potassium-gold anomaly outlined in this survey is warranted.

2.0 Introduction

i.

ŝ,

κ.

•

b--

p

ł

The purpose of the 2001 program was to explore a magnetic anomaly located on the western side of the property, where 4 till samples returned anomalous copper and gold values during previous work (Blann, 1998). Approximately 3-20+/- metres of poor to strongly sorted glacial till and unknown distribution of Eccene/Miocene aged volcanic cover rock occur, and complicate geochemical interpretation. 10.2 kilometres of grid, 115 hand-auger till and two rock samples were taken and analyzed at Acme Analytical Laboratories, in Vancouver, B.C., by CN- leach, standard ICP, and Loss on Ignition methods.

3.0 Location and Infrastructure

The Red claims are located 17 kilometres north-northeast of the village of Lac La Hache, and approximately 400 kilometres northeast of Vancouver, British Columbia (Figure 1). The approximate NTS coordinates are 51° 57' N latitude and 121° 23" W longitude. The property is accessible by approximately 30 kilometres of paved and all-weather gravel road; logging roads and cut block spurs transect the property. Highway 97, B.C. Rail, B.C. Hydro, and a natural gas pipeline are located in Lac La Hache. Twenty-six kilometres south of Lac La Hache is the town of 100 Mile House, population 5,000. The local economy is primarily dependent on forestry and ranching.

4.0 Physiography and Climate

The Red 1-6 claims are situated in the Central Plateau of the Cariboo region of south central British Columbia. The area is characterized by gentle hills with elevations ranging from 850 to 1500 metres. Approximately 40% of the fir, spruce and pine forest in the immediate area has been logged and replanted. Several large lakes and numerous creeks provide water year-round. The annual precipitation is from 500 to 1000 millimetres, with most of it occurring during the winter months. Winter snow cover averages 1-2 metres, arriving by early November and departing by April.

5.0 Property Status

The Red property is comprised of 4 modified grid and 2 single unit claims recorded in the Clinton Mining Division (Figure 2).

Claim	Record Number	Units	Expire Date*
Red 1	353253	20	Jan 15, 2003
Red 2	353254	18	Jan 15, 2003
Red 3	353255	1	Jan 15, 2003
Red 4	353292	15	Jan 15, 2003
Red 5	353293	8	Jan 15, 2003
Red 6	353294	1	Jan 15, 2003
* pending Assessment Approval		Total 63 units	

Table 1 Claim Status

6.0 History

L

ĺ.

1

The Lac La Hache area was initially prospected for placer gold during the Cariboo Gold Rush in the 1890's. In 1966 the federal government performed an airborne magnetic survey of the Lac La Hache area resulting in the delineation of a large annular magnetic anomaly. This was followed by exploration for porphyry copper and skarn mineralization. In 1966-1967, the Coranex Syndicate initiated regional reconnaissance soil sampling, resulting in the discovery of porphyry copper mineralization on the Peach showings, south of Peach Lake.

In 1971, Amax Exploration Ltd. conducted geological and geochemical surveys west of Coranex ground resulting in the discovery of the WC chalcopyrite-magnetite skarn zone (North and South zones). Between 1971 and 1974 Amax defined two mineralized zones, approximately 500 metres east of the northeast corner of the Red property.

The area remained relatively unexplored until the mid-1980's when B.P.Selco and later, Cominco, performed regional programs. The properties eventually reverted back to the crown and were staked several times by various companies. Airborne and ground geophysical surveys, soil sampling, and trenching were performed, increasing knowledge of the area.

Subsequent drilling on the North zone produced a " drill indicated possible geological mineral reserve of 595,113.2 tonnes grading 1.79% copper, 0.12 g/t gold and 50.5% magnetite (Dunn, 1993). Further exploration in the area resulted in discoveries of porphyry copper-gold mineralization at the Miracle, Ophir and Peach Melba (Blann, 1994,1995).

The area of the Red claims were explored between 1988-1993 by airborne and ground geophysical surveys, soil, silt and rock geochemistry, trenching, and minor geological mapping (Seyward, 1989, White, 1989,1992, 1993, Blann, 1996).

A previous soil geochemical survey in the eastern portion of the Red property returned 25 samples containing greater than 40 ppb gold, and a further 18 containing 100-1930 ppb gold (White, 1989). PGE's were not analyzed for. In 1998, soil samples taken to the west returned values of up to 2619ppm copper and 156ppb gold, and suggests a broad area of greater than 10 ppb gold in soil remains open to the north and northwest portion of the Red property (Blann, 1998). Diamond drilling of two short holes in 1998 returned pyrite, chalcopyrite, bornite, chalcocite and native copper in intense propylitic volcanic rocks in proximity with a monzonite dike (Blann, 1999).

7.0 Regional Geology

The Peach Lake area covers approximately 5 kilometres in width and 10 kilometres in length within the Quesnel Trough (Figure 3). The regional geology consists of north-northwest trending Upper Triassic-Jurassic Nicola group sediments, volcanic and high level intrusive rocks, a large centrally located monzonite stock and the Takomkane batholith. The edge of the Takomkane batholith occurs approximately 5 kilometres to the east of the property where it is up to 50 kilometres in width and estimated to be 193 million years old (Whiteaker, 1995). The Takomkane Batholith is in part

comprised of granodiorite with monzonite, gabbro- pyroxinite, and locally more felsic phases. All of the rocks are locally crosscut and covered by Tertiary basalt and andesite.

West of the Takomkane Batholith, a doughnut shaped aeromagnetic high anomaly with dimensions of 15 kilometres north-south and 10 kilometres east-west is partially mapped and interpreted to be centered by a locally mineralized monzonite stock; this stock is in part covered by Miocene- Eocene volcanic rocks. Peripheral to the stock is a magnetic high anomaly related to mafic- intermediate intrusions cutting Nicola volcanic-sediments; these rocks are propylitic to potassic altered, and contain broad zones of 0.5 - 10% pyrite, hydrothermal magnetite, and trace to 1% chalcopyrite, locally bornite, molybdenite, and associated gold-silver values.

Upper Triassic-Jurassic Nicola volcanic rocks are fine to coarse-grained, augite-hornblende and feldspar porphyritic flow, crystal tuff. lithic tuff and breccia of basalt to andesite composition. Fine grained carbonate amygdule volcanic rocks, siltstone, argillite, limestone and debris flow occur south of Spout lake, on the eastern side of the Red property. Bedding orientation varies as folding and faulting is evident. Intrusive rocks include gabbro, diorite, monzonite, monzodiorite, and locally syenite, inferred to be marginal phases of the Takomkane granodiorite. Intrusions are variably biotite-pyroxine-hornblende-feldspar porphyritic, occur as stocks, sills or dikes, and display textural and compositional zoning and crosscutting relationships. Intrusion breccia may locally grade into intrusive and volcanic breccia, although relationships are not clear.

Carbonate amygdaloidal, vessicular and feldspar porphyritic basaltic-andesite of Tertiary age unconformably overlie and crosscut Triassic-Jurassic and Cretaceous rocks. These rocks are generally fresh to weakly chlorite-epidote altered and hematitic in the Peach Lake-Spout Lake area. Tertiary rocks occur generally to the west and south of the Red property.

Glaciation and erosion has smoothed what once was likely part of a large mountain range, and glacial-related deposits from 1-30 metres in thickness cover most of the area. In portions of the Quesnel Trough, Tertiary volcanic cover has in part protected copper-gold porphyry deposits from glaciation, and deposits may be partially exposed.

8.0 Property Geology

Outcrop on the Red property can be located in the east and northeast portion of the property (Figure 4). Trenches, roads, gravel pits and two drill holes suggest 2-30 metres of poor to well sorted glacial related deposits occur elsewhere.

Rocks in the southern and eastern portion of the Red 1 claim are comprised of hard-weathering, coarse clast heterolithic volcanic-intrusive breccia and conglomerate of andesite-monzodiorite composition. Fine grained volcanic-sedimentary rocks occur in the north portion of the Red 1 and southeast portion of the Red 2 claim; these rocks include argillite, siltstone, limestone, and fine to coarse volcanic breccia of andesitic to basaltic composition. Rocks to the north and east of the property are comprised of augite-homblende porphyrytic basaltic andesite flow and breccia cut by

monzonite dikes. Volcanic breccia clast size, texture, composition and associated alteration vary spatially.

Reworked glacial and glacio-fluvial till deposits from between 2 and 30 metres likely occur in gentle terrain in the western portion of the property. Geological Survey of Canada data suggests the area was near the apex of the last major glacial period, and movement was locally determined. Outcrop to the east of the Red property suggests at least one ice direction is east-west through the Spout-Peach lake area.

9.0 Structure

Minimal outcrop, alteration and deformation limit structural information. The contact between fossiliferous limestone and adjacent volcanic sediments is northerly with a westerly dip. A coarse volcanic-intrusive breccia unit occurs from the southeast to northwest corner of the Red claims, following a topographic ridge. Intercalated volcanic-sedimentary units increase in abundance to the northwest. A northwest trending magnetic structure through the property may be part of the regionally mapped Timothy Creek Fault, and is parallel to chargeability and resistivity structures (Figure 5, Blann, 1998). VLF–EM surveys suggest northeast, northwest, and east trending structures occur (White, 1989).

10.0 Alteration and associated Mineralization

Volcanic and volcanic-sedimentary rocks on the Red property are deformed, weak to strongly fractured, and propylitic to locally potassic altered. Rocks from outcrop in the southern portion of the Red 1 claim contain structurally controlled zones of chlorite, epidote, calcite, sericite, clay, magnetite and hematite alteration with associated pyrite and chalcopyrite mineralization. Previous chip sampling on the Road zone returned 5 metres containing 0.25% copper and 5 metres containing 0.11% copper from propylitic altered intrusive and volcanic breccia within an area of less than 5 millisecond chargeability (White, 1989). Mineralization in this area is comprised of fine grained specular hematite, goethite, malachite, azurite, chalcopyrite, bornite and chalcocite within matrix and breccia clasts. The host is very weakly magnetic. Refer to Figure 4.

10.1 Rock Sample Results

i_

5

t

In 2001, sample R01-DB-2 was taken to test for Platinum Group Elements in the Road zone.

Pyrite concentrations of up to 10% occur within hornfelsed volcanic-sediments and propylitic volcanic rocks near the axis of the high chargeability, approximately 400 metres north of the Road zone. In 2001, Sample R01-DB-01 was taken to test for Platinum Group Elements.

	-	. –	.
Rock	Samo	lo F	2 penite
I YOUN	CONTR	10 1	

ELEMENT>	Мо	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	Au**	Pt**	Pd**
SAMPLES	ppm	ppm	ppm	ppm	ppm	ppm	opm	ppm	%	ppm	ppb	ppb	ppb
R01-DB-1	2	114	7	70	0.5	12	14	737	3.36	33	3	5	2
Avg R01-DB-2	3	5612	6	137	10.8	6	14	1812	3.66	4	10	<2	4

**Refer to Appendix A

Norian Resources Corporation

11.0 2001 Geochemical Survey

Between October 1 and 4, 10.2 kilometres of hipchain and flag grid was constructed at 100 and 200 metre line spacing with hand-auger holes and samples taken at 100 metre intervals. A total of 115 samples were taken from the "C" horizon at a minimum depth of 0.3 metres and maximum depth of 1.1 metres. The general soil profile is comprised of an organic "A" horizon between 5-25 cm in thickness underlain by thin, poorly developed B followed by "C" horizon comprised of silty to sandy glacial till with 10-25% angular to sub-rounded pebble and some cobble sized fragments. Soil samples were placed in a Kraft paper bag, dried and shipped to Acme Analytical Laboratories, in Vancouver, British Columbia, and analyzed by CN leach and ICP-MS , LOI, and 30 element I.C.P. analysis and gold by aqua-regia digestion with AA finish (appendix A). The 2001 soil and rock sample descriptions, histograms and Log probability plots with estimated element values at 90%. 95%, and 99% were selected to represent anomalous concentrations in the population and are provided in Appendix B. Grid value plots of Loss on Ignition, ICP copper, ICP arsenic, ICP potassium (%), ICP-MS gold, Depth/Color, CN gold, CN copper, CN arsenic, CN K(ppm), CN Mo, CN Pd, are located in Appendix C.

12.0 Geochemical Survey Results

L

Auger sampling in rocky till was difficult and time consuming. Maximum sample depth varied from 0.30 to 1.11 metres. In places, subcrop may have been approached where consistent brown, crumbly, weathered material was returned from holes and may suggest proximity to Miocene/Pliocene volcanic rocks. Elsewhere, heterogeneous silty to sandy grey till prevails. Grey till samples are locally oxidized, and contain orange-red coloration; an area of this colored soil/till is marked in Figure 23, Appendix C, and generally correlates with ICP copper, arsenic and gold anomalies. Loss on Ignition of samples averaged 4.9%, ranging from 1.5 to 9.6%. Areas of elevated Loss on Ignition occur dominantly in wet, low-lying areas marked by more organic material. The northeastern portion of the survey grid contained the greatest LOI values and may relate to swampy ground in the area.

In ICP data plots in Figures 5-8 there are two coincidental to overlapping copper, arsenic, gold and potassium anomalies. The main trend of the anomaly is northwest and is approximately 200 metres in width and 600 metres in length, with a second anomaly located to the south between lines 28 and 30 west, 1000 to 1200 south. Gold anomalies by CN leach also support the location of this multi-element anomaly, Figure 9.

Molybdenum, palladium and potassium anomalies by CN leach occur in the northeast portion of the surveyed area (Figure 10) however, coincident LOI anomalies occur locally. The anomalous area trends northwest, is approximately 800 metres in length, and remains open to the east- northeast.

Other, smaller anomalies of copper, arsenic, gold, potassium, and molybdenum occur to the southwest and southeast.

13.0 Discussion

The Red Property is underlain by rocks of the Nicola Group, a Triassic-Jurassic island arc sequence, cut and overlain by Tertiary-Miocene/Pliocene volcanics; these younger volcanic rocks likely protected portions of the underlying Nicola Group rocks from glacial abrasion. Drilling in 1998 intersected strong to intensely propylitic and oxidized volcanic rocks cut by a monzonite dike to the northeast of the 2001 survey. These rocks contain structurally controlled zones of sericite-carbonate-clay alteration with hematite, limonite, chalcocite and native copper. Approximately 2 kilometres to the east, rock samples of the Road showing taken in 2001returned up to 5,612 ppm copper, 10.8 ppm silver, 10 ppb gold, and 4 ppb palladium.

In the western portion of the Red property, an auger soil/till sampling program returned two largely coincident copper, arsenic, potassium, and gold anomalies approximately 200 metres in width and 600 metres in length, and approximately 150 metres in width, 300 metres in length, respectively. These anomalies occur in proximity to a magnetic anomaly, and remain open to the northwest, which may be in part down-ice spread from a source in the magnetic anomaly.

CN leach anomalies of molybdenum, palladium and potassium approximately 200 metres in width and 800 metres in length occur in the northeast portion of the survey, and are in part located within low, swampy ground. Although some concentration of metals may be expected within more organic material, these anomalies may be hydromorphically transported from bedrock mineralization nearby.

14.0 Conclusions

The Red property is located northeast of Lac La Hache in south central British Columbia. The area is underlain by Upper Triassic Lower Jurassic Nicola Group sedimentary, volcanic, and intrusive rocks of alkaline nature, and represents an island arc sequence. These rocks are cut and overlain in part by Tertiary-Miocene/Pliocene volcanic rocks. The area was affected by glaciation and glacial till. glaciofluvial and lacustrine deposits between 1 and 30 metres in thickness cover the area.

Till sampling in 2001 returned anomalous copper, arsenic, gold, and potassium concentrations in proximity to a magnetic anomaly. The main geochemical anomaly is approximately 200 metres in width and 600 metres in length, and trends northwest. A second, smaller anomaly occurs to the south. CN leach gold values support the definition of this anomaly. CN leach molybdenum, palladium and potassium anomaly approximately 200 metres in width and 800 metres in length occur in the northeastern portion of the survey, and remain open to the east- northeast. Loss on Ignition is also locally anomalous in this area, and suggests at least some metal concentration within more organic material.

Coincident and overlapping geochemical and geophysical anomalies outlined by the 2001 till sampling program warrant further investigation to determine their source.

15.0 Recommendations

It is recommended for phase 1 that an induced polarization survey, additional line-cutting and till geochemistry be performed to cover and expand upon the 2001 and earlier surveys. An initial test pit on the main copper, arsenic, potassium and gold anomaly outlined by the current survey is warranted. Further trenching or drilling is recommended to test combined geochemistry, chargeability and magnetic anomalies.

16.0 Proposed Budget

Phase 1

Line cutting	15 kilometres	@	\$400.00/km		\$6,000.00
Geochemistry	10 kilometres	@	\$400.00/km		\$4,000.00
Induced Polarization Survey	15 kilometres	@	\$1,500.00/km		\$22,500.00
Support	100 p-days	@	\$75/day		\$7,500.00
Geological	15 days	@	\$400.00/day		\$6,000.00
		1		Subtotal	\$46,000.00

Phase 2

Trenching	500 metres	@	\$50/m		\$25,000.00
	k			Total	\$71,000.00

17.0 References

Blann, D.E., (1995), Geological Report on the Peach Lake property, G.W.R. Resources Inc.

Blann, D.E. (1996), Assessment Report on the Club 1 and 2 claims, G.W.R. Resources Inc.

Blann, D.E. (1997), Assessment Report on the Red claims, Norian Resources Corp.
 Blann, D.E. (1999), Assessment Report on the Red property. Norian Resources Corp.
 Campbell, R.B. and Tipper, H.W; G.S.C. Memoir 363, 1972 "Geology of Bonapart Map Area".

DePaoli, G.M., Hodgson, C.J., (1973), Spout Lake Copper Property (WC claims), Amax Potash Ltd.

Dunn, D.St.C. (1993) Report on diamond drilling on the Peach Lake Project., G.W.R. Resources Inc.

Gale, R.E., (1991), Assessment Report on the Geology and Drilling of the Pee Wee 1, 2,3, Club 15, Dora M.C., Dora 1, and Miracle Fr. Claims. Peach Lake Resources Inc., Asarco Inc.

Hodgson, C.J., DePaoli, G.M., 1972, Spout Lake Copper Property, Assessment Report 3690.

Lloyd, J., Von Guttenberg, R., (1994) An assessment report on an induced polarization survey on the Dora M.C. claim group, Clinton Mining Division, Report for Regional Resources Ltd., G.W.R. Resources Inc.

Lloyd, J., Von Guttenberg, R., (1995), An assessment report on an induced polarization survey on the PMA Property. Dora 1.2. claim group. Clinton Mining Division. Report for Regional Resources Ltd., G.W.R. Resources Inc., PMA Resources Ltd.

Seyward, M., (1989) Magnetometer survey on the Club 3-5, 8-14, 16 claims, Assessment Report # 19869.

Vollo, N.B., 1975, Diamond Drilling Report, WC. Claims. Assessment report #5488.

Von Guttenberg, R., (1994), Report of 1994 Drill Program, Peach Lake Claims, Clinton Mining Division, NTS 92P14/W, for Regional Resources Ltd., G.W.R. Resources Inc.

White, G., (1989), Geophysical, geochemical and trenching report on the Club 6,7 claims, Assessment Report # 18589.

White, G., (1992), Induced Polarization Survey on the Club 6,7 claims, Assessment Report # 22203.

18.0 Statement of Costs

Work done: 10.2 km of flag and hipchain grid, collect 115 auger soil samples, two rock samples

Period: August 1 to October 25 2001

Wages

			<u>Days</u>	<u>s/Day</u>	
	David Blann,				
	P.Eng., Geol.		8	\$450.00	\$3,600.00
	Neil Mcleod, geolog	ical technician	5.5	\$225.00	\$1,237.50
-	Transportation				
	1/2 ton				
•	4X4Truck	1000 km +	5.5	\$115.91	\$637.50
۰ ۲	Accomodations				
•	+food		11	\$50.00	\$550.00
	Field Support, supp	plies,			
	equipment		13.5	\$41.77	\$563.94
. .	Analytical				
	Services				
		ICF	۹ 115 ^م		\$1,333.86
-		Group1TIL, LO	i 1 17		\$2,490.64
				Analysis, Report, color reproductions	\$2,500.00

TOTAL: \$13,935.19

٩.

19.0 Statement of Qualifications

I, David E. Blann, of Burnaby, B.C., do hereby certify:

- 1.) That I am a Professional Engineer registered in the Province of British Columbia.
- 2.) That I am a graduate in Geological Engineering from the University of Montana, Butte, Montana (1987).
- 3.) That I am a graduate in Mining Engineering Technology from the B.C. Institute of Technology (1984).
- 4.) That I have engaged in mineral exploration and development since 1984.
- 5.) The 2001 assessment work on the Red property was performed under my supervision.

Dated at Burnaby, B.C., March 15, 2002

David E. Blann, P.Eng.

APPENDIX A

Assay Certificates

j,

	<u></u>			8	tan	daı	rd 60	Me 1 K -	6795	s PB Sonso	OJE AVE	CT Buri	REI) () BC 1	1 /5# 4	Fi CŠ	le Subs	# nitte	A10 d by)35 : D.	64 B\m	m	Pac	je 1			<u></u>					T	
AMPLE#	Au ppb	Ag. ppb	As ppb	AL ppm	Ba pipini	₿i ppb	Br pp# p	Ca xpm p	Cl XPM P	Co Cr pb ppm	Cu ppr	Fe popum	Hgi ppb	1 magen	K ppm	La ppb	9M Mgg	Nn ppm	Mo ppb	N I PPM	P PPIN	Pib ppb	Pd ppb p	sb ís spb pp	e S npp	r To na popula	e Th bippolo	Ti ppan	U ppb	V mcpp	W ppb	2n ppm	
34W 0+005 34W 1+005 34W 2+005 34W 3+005 34W 4+505	1.7 .4 1.7 1.6 6.7	12 15 3 18 8	87 57 137 231 110	35 75 <10 30 60	. 14 . 22 . 05 . 14 . 23	55555	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<5 < <5 < 26 < 31 < <5 <	<10 <10 <10 <10 <10	8<.05 54<.05 4<.05 12<.05 14<.05	.67 .79 1.72 1.51 .74	23 36 <5 22 33	2 2 3 2 2	ব ব ব ব ব	10 10 <10 10 10	59557	7 10 <5 7 9	.1 .5 ≺.1 .1 .2	5 9 5 5 5	.05 .10 .07 .09 .05	7 25 2 5 15	<10 <10 <10 <10 <10	ব ব ব ব ব	<5<.0 <5<.0 <5<.0 19<.0 <5<.0	15.1 15.1 15.2 15.1	1	5 45 5 45 5 45 5 45 5 45	1 1 1 1	5 5 5 5 5 5 5 5 5	.53 .31 .55 .73 .54	<10 <10 <10 <10 <10	.08 .20 .06 .23 .07	
.34W 5+00s .34W 6+00s .34W 7+00s .34W 8+00s .34W 8+00s .34W 9+00s	1.8 1.8 1.8 1.0 .5	6 8 11 12 13	166 162 113 41 139	50 28 55 63 38	.20 .12 .17 .20 .22	5 5 5 5 5 5 5 5 5 5	র্ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ	5 18 <5 <5 20	<10 <10 <10 <10 <10	13<.05 12<.05 10<.05 16<.05 40<.05	1.18 1.40 .63 .86	i 28) 15 i 24 5 29 1 19	2 3 2 3 3	<1 <1 <1 <1 <1	11 <10 <10 <10 11	5 5 5 2 5 2 5	8 (5 7 5 5	.1 .1 .4 .3	\$\$\$76	.06 .06 .03 .10 .14	10 7 18 23 10	<10 <10 <10 <10 <10	<1 <1 <1 <1 <1	<5<.(<5<.(<5<.(<5<.(15.1 15.1 15.1 15.1	4 < 9 < 0 < 1 < 4 <	5 <5 5 <5 5 <5 5 <5	1 -1 -1 -1	00000	.65 .75 .56 .35 .59	<10 <10 <10 <10 <10	.06 .07 .04 .21 .14	
L34W 10+008 L34W 11+008 L34W 12+008 L34W 13+008 L34W 13+005 L34W 14+005	1.0 53.9 2.3 .5 1.3	14 29 9 25 11	140 134 135 101 148	66 56 58 121 <10	.26 .25 .16 .35 .08	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ようやいや	<5 7 <5 13 66	<10 <10 <10 <10 <10 <10	17<.05 23<.05 20<.05 23 .06 5<.05	1.13 1.20 .90 2.30	5 29 3 29 3 20 3 57 3 57	2233	<1 <1 <1 <1 <1	12 14 12 11 <10	8 7 5 80 5	7 8 5 10 <5	.1 .3 .2 .4 <.1	6 6 5 11 5	.09 .09 .04 .15 .11	12 14 17 33 3	<10 <10 <10 11 <10	1 1 1 1	ଟର ଟର ଟର ଟର ଟର	5.1 5.1 5.1 5.1 5.1	5 < 8 < 13 < 16 <	5 3 5 3 5 1 5 1 5 3	; 1 ; 1 ; 1 ; 1 ; 1	8 6 6 6 5 5 5 6 6 5 5	.62 .70 .57 .58 .97	<10 <10 <10 <10 <10	.30 .20 .11 .15 .11	
L34W 15+DOS L33W 8+OOS RE L33W 8+OOS L33W 9+OOS L33W 9+OOS L33W 10+OOS	2.7 1.0 .5 1.4 1.5	16 23 22 7 14	277 104 105 81 131	31 134 131 59 72	. 14 . 89 . 86 . 22 . 22	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	55555	19 138 132 <5 <5	<10 <10 <10 <10 <10	12<.05 31 .07 30 .17 12 .07 92<.05	i 1.8 2.6 2.6 7.7 1.2	1 22 9 98 4 94 2 26 2 29	234	<1 1 1 <1	<10 17 16 <10 <10	<5 416 405 6 11	5 13 12 7 5	.1 1.1 1.0 .1 1.2	5 14 14 5 8	. 10 . 26 . 25 . 06 . 08	9 50 51 13 28	<10 28 32 <10 <10	4 3 2 4 1	<5<.1 6<.1 <5<.1 <5<.1 <5<.1	05 .4 05 .4 05 .4 05 .4 05 .4	19 < 55 < 52 < 08 <	5 3 5 2 5 1 5 4 5 4	5 1 0 2 7 2 5 1 5 1	<5 10 9 <5 <5	.88 .61 .59 .48 .88	<10 <10 <10 <10 <10	. 11 . 35 . 40 . 16 . 50	ł
L33W 11+00S L33W 12+00S L33W 13+00S L33W 14+00S L33W 14+00S L33W 15+00S	5.4 4.1 14.7 .7 1.2	15 11 11 11 9	56 1102 139 83 106	52 96 36 82 <10	.22 .41 .19 .29 .08	\$ \$ \$ \$ \$ \$ \$ \$ \$	5 5 5 5 5 5 5 5 5	31 47 28 <5 41	<10 <10 <10 <10 <10	17<.05 31 .12 13<.05 18<.05 16<.05	5 1.1 2 3.3 5 1.3 5 .9 5 1.9	7 24 9 44 3 20 3 36 7 <5	<pre><2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</pre>	ব ব ব ব	<pre><10 17 17 12 12 11 </pre>	7 36 5 12 5	5 10 5 8 <5	.2 .7 .1 .2 .2	9 11 <5 6	.08 .12 .06 .06 .15	12 33 6 15 3	<10 10 <10 <10 <10	<1 2 1 <1	<5<. 16<, 5<, 7<, <5<,	05 .7 05 .7 05 .7 05 .7 05 .7	22 • 29 1 27 • 11 • 32 •	5 < 12 < 5 < 5 < 5 <	5 1 7 2 5 1 5 1 5 1	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$.44 .56 .67 .53 .75	<10 <10 <10 <10 <10 <10	.18 .51 .15 .12 .41	:
L32W 0+00S L32W 1+00S L32W 2+00S L32W 2+00S L32W 3+00S L32W 8+00S	. 1 .5 1.5 14.9 6.8	17 13 24 20 20	187 167 94 276 127	<10 <10 16 46 107	.06 .06 .11 .25 .43	55555 555 55	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	125 80 55 24 35	<10 <10 <10 <10 <10	2 .09 5 .09 12 .09 19 .19 23 .19	9 1.1 9 1.2 9 2.0 9 2.2 0 2.2	2 < 9 (5 19 8 4(9 5(<1 <1 <1 <1 <1	<10 <10 <10 12 12	<5 <5 \$ 8 60	<5 5 9 9	<.1 <.1 .1 .2	<5 6 8 7 9	.09 .13 .18 .15 .13	1 2 4 14 27	<10 <10 12 <10 <10	<1 <1 <1 1 1	ଟ୍ୟ ଟ୍ୟ 11ୟ 5	05 . 05 . 05 . 06 . 05 .	45 34 28 15 24	5 < 5 < 5 < 5 1	5 <' 5 <' 5 ' 0 '	5 5 5 5 5 5 5 5 5 5 5 5 5	.96 .85 .57 .96 .58) <10 ; <10 / <10 ; <10 ; <10 ; <10	.04 .07 .13 .13 .16	
1 32W 9+00S STANDARD DS3/DOLONITE	1.1	2 11 7 75	95 1647	76 375	.32 1.39	<5 56	ক <5	14 119	<10 92	37.1 125.2	0 1.4 8 15.4	0 3 0 17	2 <2 7 51	<1 (1 13 4 48	13 144	8 25	22.6 22.6	8 669	.09 .25	14 42	<10 172	1 12	<5<. 171 .	05. 39.	16 25 19	<5 98 4	5 9 1	<5 3 3 3 9	.67 .67	2 <10 7 264	.10 2.05) ; 1
1				1. LQ) GM : L - L Sampl	SAMPI OSS (E Tyi	LE CO DW IO PE: 1	NTI NITI SOIL	UOUS ION - SS80	i Rolli) 60C	NG WIT <u>San</u>	H .3	X CYA begi	NID	E AMD	.1% <u>E' a</u>	i naoi	H FOR	t1 ₩ <u>sand</u>	IOUR .	ANA <u>E' a</u>	LYSEI re <u>R</u> i	b B¥ eieci	ICP-M t Reru	15. F15.								
DATE RECEIVE	D:	ост	9 20)1	DATE	R	POR	т в	P I	2 ED : (Dıl	26	;/0	I	SI	GANI	LD P	×	-, .',	Ļ		J-D.	TOYE	, C.L	EONG	, J.	WANG	; CEI	171F1	ED B	I.C. /	SSAT	E
	;,,					- 1-			.f +b	a clie	nt år	and the	SSLEN	HS T	he li	abíl	itie	s for	act	uat	cost	of	the 4	malys	is c	nly.				C	Jata	L.F.	Ą

. L · L. · L. ÷, L____ . κ. к., 4 . • • 4 i, . * £., . κ. . ĸ. . **4** 1 .

03/05 Standard Metals PROJECT RED-01 FILE # A103564 Page 2 ACKE AWALYTICA Min No Ni P Pb Pd Sb Se Sr Te Th Ti V V Zn LOI Cu Fe Hg 1 K La Mg -11 പ് SAMPLE# Au Ag As Al Ba Bi Br Ce Cl Co Cr dag dag pob pom pon polo pom pom pom polo pom ppe ppn ppb pps pps ppb pps pon pob pom pob pob pob pom pom pob pob pom pob ppm opb X 2 <1 5 <5.10 14 <10 <5<.05.16 <5 -5 <5 .74 <10 .08 3.8 L32W 10+00S 2.6 15 118 59 <5 23 <10 39 .10 1.38 Z4 10 8 1 .20 <5 6 2 .12 4.0 39 Z 19 8 5.20 15 <10 5<.05 .14 <5 .66 <10 L32W 11+00S 1.8 9 202 73 . 30 <5 <5 14 <10 22 .11 1.65 1 11 .2 1 .12 3.2 L32V 12+00s 1.3 17 73 103 .32 <5 <5 10 <10 28 .10 1.10 51 <2 <1 11 38 7 .3 6.12 28 <10 <1 <5<.05 .10 4 6 2 <5 .64 <10 L32W 13+00S .18 <5 <5 28 <10 16 .07 1.30 23 <2 1 11 6 5 .2 6.16 12 < 10 1 5<.05 .22 <う 4 1 -6 .74 <10 .14 5.1 1.8 15 170 44 .24 <5 <5 11 <10 24 .08 1.14 35 <2 1 12 9 7 5 .10 22 <10 1 <5<.05.11 <5 .69 <10 .11 3.7 .3 <5 1 5 132V 14+00S 1.6 10 136 82 7<.05 .16 <5 <5 132W 15+00s 1.5 154 110 61 .21 <5 <5 16 <10 17 .08 1.34 28 <2 1 <10 9 6 .Z 5.11 15 <10 <1 1 <5 .64 <10 .10 4_2 7 <10 20 .12 1.14 30 <2 <1 <10 8 6 -3 6 .07 20 <10 <1 <5<.05 .08 55 1 <5 .81 <10 .10 3.0 131W 8+005 33.6 20 135 67 .19 <5 <5 GC42531716 9 49 <10 39 .14 1.75 59 <2 1 11 84 .3 10 .15 26 <10 1 <5<.05 _2B <5 -13 2 <5 .69 <10 .12 4.9 L31W 9+00S 1.7 16 128 98 .42 <5 <5 93 <2 7 1.5 1 <10 51 10 .10 67 13 1 5<.05.11 5 13 2 131W 10+00S 1.8 11 173 118 .32 <5 <5 19 <10 60.24 1.70 5 1.68 <10 .14 3.7 8 133 56 .17 <5 <5 7 <10 27 .12 1.44 26 <2 1 11 - 6 - 5 .3 9 .08 15 <10 <1 <5<.05 .13 <5 <5 1 <5 .75 <10 .11 4.6 L319 11+005 2.4 .2 5 .11 34 <10 1 <5<.05 .22 <5 10 2 <5 .67 <10 .12 3.6 .41 <5 <5 25 <10 28 .15 .83 48 <2 <1 11 81 6 L31W 12+00S 1.4 18 93 87 .85 78 1 12 45 10 .6 9.11 105 14 <5 8 5 3.3 20 .49 <5 <5 16 <10 31 .23 <2 1 6<.05 .18 3 .55 <10 .30 4.3 155 180 L311 13+00s 8 .2 8.13 29 <10 2 < 5 16 .38 <5 <5 22 <10 23 .20 1.11 48 <2 1 11 32 1 <5<.05 .23 <5 - 5 .68 <10 . 19 7.3 L31W 14+00S , В 109 66 Š 6 5 .42 <10 13 49 55 .13 <5 <5 <10 13 .10 .58 25 <2 <1 <10 .1 <5 .05 19 <10 <1 <5<.05 .05 <5 <5 1 • .10 2.7 L31W 15+00s .6 68 <10 ,12 <5 <5 135 <10 <2<.05 1.36 <5 <2 <1 12 <5 <5 <.1 <5 .12 1 <10 <1 <5<.05 .52 <5 <1 <5 .27 <10 .04 2.1 130¥ 0+00 .7 29 FAX 130M S+008 112 <10 .03 <5 <5 127 <10 Z<.05 .50 <5 <2 <1 <10 <5 <5 <.1 5.11 __1_<10_<1__<5<,05_,52_<5<,<1_<5__,51<10__,11__4.2 .7 9 34 <2 1 <10 17 - 7 .2 9 .16 18 <10 <1 <5<.05 .14 <5 5 1 6 .54 <10 .20 3.5 130M 3+00S 1.2 15 74 48 , 15 <5 <5 25 <10 14 .14 1.90 <2 .2 6.13 25 .15 <5 <5 45 <10 17 .06 2.28 20 1 <10 <5 6 4 <10 <1 <5<.05 .27 <5 - 5 1 <5 .77 <10 .09 4.9 L30M 4+00S 2.1 9 198 <2 <1 <10 5 7 <5 <5 .17 <5 <5 <10 12.08 .82 29 .1 <5 .04 12 <10 <1 <5<.05 .08 1 <5 .56 <10 .07 2.3 L30W 5+00S 7 54 .7 86 11 <10 <1 <5<.05 .07 <5 67 52 .17 <5 <5 <10 12 .08 -81 28 <2 <1 <10 6 6 .1 <5 .04 <5 1 <5 .56 <10 .07 2.2 RE L30W 5+00S 9.0 8 1 <10 <5 <5 <.1 <5 .12 <1 <5 1, 15 <10 , 16 4,8 .06 <5 <5 53 <10 5.06 3.47 <5 <2 7 <10 <1 <5<.05 .38 <5 <5 LAB L30H 6+00S 2.8 16 241 <10 <5 <5 <10 22 .07 1.47 32 <2 1 <10 11 7 .3 7.06 18 <10 1 <5<.05 .11 <5 <5 1 <5 .66 <10 .20 4.2 10 143 72 .22 Ś L30M 7+00S 5.7 7 <5 <5 18<.05 1.72 28 <2 1 10 7 .2 5.10 10 46 1 <5<.05 .23 1 <5 .73 <10 .15 4.7 141 53 <5 <5 14 <10 130M 8+00S 12 .20 1.1 ANALYT:CAL 6<.05 1.88 <5 2 <1 <10 <5 <5 <.1 <5.07 3 <10 <1 7<.05 .41 <5 <5 <1 <5 .91 <10 .10 4.3 .06 <5 <5 45 <10 L30W 9+00S 12.9 9 157 <10 <5 <5 57 <10 11<.05 2.10 <5 1 <10 <5 <5 .1 <5 .10 3 <10 <1 <5<.05 .43 <5 <5 <1 <5 .84 <10 .11 4.8 L30W 10+00S 1.9 16 124 <10 .08 Z .1 <5.16 .09 <5 <5 105 <10 17<.05 1.80 6 2 1 11 <5 <5 3 <10 <1 <5<.05 .63 <5 <5 <1 <5 .94 <10 .11 5.6 L30H 11+00\$ 10 126 <10 .8 <5 <5 9 <10 9<.05 1.06 13 2 1 13 <5 .1 <5 .08 8 <10 <1 <5<.05 .29 <5 <5 1 <5 .57 <10 .17 4.3 123 - 31 .21 <5 L30W 12+00S .7 14 **28** 2 1 16 8 6 .2 6.10 15 <10 1 8<.05.12 <5 -5 1 <5 .72 <10 .44 3.8 L30W 13+00S 1.3 17 126 62 .15 <5 <5 <10 18.06 1.85 .17 <5 <5 <10 27 .06 1.57 31 2 1 12 12 5 .3 8,12 25 <10 1 <5<.05.13 <5 <5 1 <5 .83 <10 .31 4.7 1.2 16 165 68 L30W 14+00S 1.9 15 155 45 .15 <5 <5 <10 18<.05 1.40 22 1 10 <5 -6 .2 6 .12 14 <10 <1 <5<.05 .25 <5 <5 1 <5 .77 <10 .30 4.5 2 L30W 15+00S 2.1 19 141 78 .23 <5 <5 <10 32<.05 1.16 33 2 1 10 13 6 .3 7 .07 23 <10 <1 <5<.05 .14 <5 <5 1 <5 .67 <10 .12 4.0 L29V 8+00S 6.9 79 1934 393 1.48 64 <5 110 103 134 .33 16.96 198 52 5 51 163 25 26.6 759 .30 42 193 13 194 .40 .30 170 55 10 355 .78 274 2.24 45.9 STANDARD DS3/DOLOMITE Sample type: SOIL SS80 60C. Samples beginning (RE' are Returns and (RRE) are Reject Returns. .

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Oata 📈 FA 🔤

007-29-2001 MCN 1115C AM ACME

6042531716

<u>N</u>

7 ĤX

LHB

ANALYT: CAL

ACKE

ĤÍ

00T-29-2001 MUN

STANDARD DS3/DOLOMITE

<2 1 <10 9 <5 .2 6.08 22 <10 <1 <5<.05 .15 .61 <10 .10 4.9 62 .13 <5 <5 9 - 11 31 .16 1.27 23 -6 <5 1 <5 26 1 13 77 .21 <5 6 <5 11 25 .13 1.00 <2 8 5 .2 5.06 18 <10 <1 <5<.05 .12 **5** <5 1 <5 .54 <10 -08 3.6 1 12 5.07 9 <10 17 127 48 . 17 <5 <5 34 <10 15 .13 1.73 21 <2 5 5 .3 1 <5<.05 .32 <5 <5 1 5 .60 <10 .09 4.6 -5 .2 <5 .18 236 <10 .02 <5 <5 45 11 13 .09 2.31 <2 1 <10 <5 -6 4 <10 <1 <5<.05 .24 <5 <5 <1 <5 1.03 <10 .13 5.7 L299 12+005 9.5 9 <2 10 .3 58 . 19 <5 <5 11 <10 18 .10 2.67 26 1 10 6 1.19 15 <10 1 (5<.05.21 (5 (5 1 <5 .77 <10 .11 5.6 1 29V 13+00S .2 12 148 .7 181 62 .18 <5 <5 17 <10 21 .10 1.85 26 <2 1 11 10 6 . Z 5.09 13 <10 <1 <5<.05 .25 <5 <5 1 <5 .67 <10 .16 5.4 L29W 14+009 20 <5 <5 <10 12 .08 1.07 16 <2 1 <10 5 <5 9 .13 <5 .1 <5 .09 10 14 <1 <5<.05 .17 <5 <5 1 6 .50 <10 .10 3.6 84 49 .1 L291 15+00S .62 68 <2 1 16 61 <5 .8 21 .06 196 14 1 <5<.05 .11 <5 8 2 6 .38 <10 .25 5.3 29.2 41 153 363 .53 <5 <5 6 17 35<.05 L284 0+00 72 <10 <.01 <5 <5 82 <10 2<.05 1.26 <5 <2 <1 <10 <5 <5 <.1 <5 .04 1 <30 <1 <5<.05 .32 <5 <5 <3 <5 L28¥ 1+00S - 4 .17 <10 .04 1.5 <.1 <5 <5 7 <10 <2<.05 1.67 <5 <2 <1 <10 <5 <5 <.1 <5 .06 <1 <10 <1 <5<.05 .28 <5 <5 <1 <5 .16 <10 .05 5.1 1284 2+00S <.1 13 35 <10 .01 5<.05 .41 <5 - <2 <1 <10 <5 <5 <.1 <5 .03 10 <10 <1 <5 .05 .22 <5</p> <5 <1 <5 .28 <10 .04 3.1 L282 3+005 <.1 -5 49 25 .07 <5 - 5 18 <10 <5 L28W 4+00S 48 135 337 , 18 <5 <5 <5 <10 27 .06 .56 - 31 2 2 21 23 <5 .4 9 .05 186 <10 1 <5<.05.03 6 1 8 .41 <10 .09 4.2 <.1 84 282 <5 <5 10 <10 27<.05 .22 51 <2 1 21 17 <5 1.3 17 .08 191 <10 1 12<.05 .07 <5 8 2 5 .43 <10 .21 4.5 L28M 5+005 11 .33 <.1 <5 <5 8 <10 13<.05 1.09 25 <2 1 <10 9 6 .Z 6.06 15 <10 <1 <5<.05 .09 <5 (5 1 -5 .40 <10 .09 3.1 15 66 .13 L28W 6+005 1.5 76 16<.05 2.06 20 <2 1 <10 <5 15 <10 5 .2 5 .08 11 <10 <1 <5<.05 .16 <5 <5 -5 .66 <10 .07 4.9 14 175 48 .12 <5 <5 1 128W 7+00S 1.4 <5 56 <10 10<.05 2.15 <5 2 <1 <10 <5 <5 .1 <5.08 2 <10 <1 <5<.05 .38 <5 <5 <1 <5 .56 <10 .06 4.8 L289 8+00S 14 110 <10 . 03 <5 1.1 11<.05 2.03 <\$ <2 <1 <10 <5 -5 <5 .08 2 <10 <1 <5<.05.36 <5 <5 <1 б. .76 <10 .08 4.9 .03 <5 6 67 <10 .1 L254 9+005 .9 12 172 <10 .74 59 <2 1 13 45 5 .5 12 .07 68 10 <5<.05.28 <5 2 <5 .20 4.2 .35 <5 46 <10 34 - .05 1 7 .35 <10 L25W 10+00S <.1 31 101 123 -5 .73 59 45 5 12 .07 <1 <5<.05 .27 <5 46 <10 33.13 <2 1 13 68 1Z 7 2 5 .35 <10 .21 4.2 RE L28W 10+005 .9 28 102 121 . 35 -5 -5 -4 L28W 11+00S .7 18 127 <10 .05 <5 -6 75 <10 11<.05 1.82 6 2 <1 <10 <5 <5 .1 <5.09 1 <10 <1 <5<.05 .43 اك -5 <1 <5 .68 <10 .13 4.4 .8 12 112 56 .10 <5 <5 17 <10 19<.05 1.00 14 <2 1 <10 6 <5 -2 6 .04 17 <10 <1 <5<.05 .17 <5 <5 1 <5 .50 <10 .09 4.3 L28W 12+00S .91 18 <2 1 13 29 <5 . 2 5.06 21 <10 1 <5<.05.19 <5 <5 1 <5 .38 <10 .10 4.2 23 91 91 .26 <5 <5 11 <10 15<.05 L28¥ 13+00S .3 .98 20 <2 18 <5 .7 8.06 30 <10 <1 <5<.05 .07 <5 <5 <5 .53 <10 .11 3.5 128H 14+00\$.3 10 85 80 .09 <5 <5 <5 <10 12<.05 1 13 1 . 15 <5 <5 9 <10 15<.05 1.26 20 Z 1 <10 9 <5 .2 <5 .09 14 <10 1 <5<.05 .17 <5 <5 1 <5 .62 <10 .10 4.3 .7 15 120 53 L28W 15+005 <5 <5 44 <10 55<.05 .76 152 3 2 16 40 5 4.1 32 .12 263 26 3 <5<.05 .22 <5 19 4 10 .44 <10 .49 8.1 161 416 .62 L26W 0+00 .4 34 2 34 26 9 1.9 53 .55 39 14 125 45 .49 <5 <5 193 <10 25 .07 15.07 61 6 1 <5<.05 .70 <5 6 1 18 .54 <10 1.61 15.5 1269 1+005 2.0 32 9 .35 <10 .28 5.2 2 2 <10 27 2 <5<.05 .05 <5 27 .8 20 184 449 .44 <5 <5 5 <10 23<.05 .45 66 <5 1.8 15 .04 287 21 L26W 2+005 <5 <5 102 <10 98 .13 1.01 273 -5 2 14 68 7 6.0 54 .22 261 75 - 4 <5<.05 .53 <5 28 8 11 .40 <10 1.19 12.3 33 110 462 3.34 L26W 3+005 .3 <5 25 .95 259 5 2 20 39 5 16.5 42 .15 476 88 5 <5<.05.17 7 11 .41 <10 2.22 10.9 .2 46 131 552 1.78 <5 <5 34 <10 126 .07 L26W 4+00S .32 26 <2 1 20 15 <5 .2 6 .05 108 <10 1 <5<.05 .05 <5 6 1 <5 .25 <10 .05 2.8 71 199 .18 <5 <5 <10 23<.05 L26# 5+00S .4 12 . .29 8 <2 <1 <10 <5 <5 <.1 <5 .02 10 <10 <1 <5 .05 .27 <5 <5 <1 <5 .21 <10 .04 1.4 7 29 30 .12 <5 <5 23 <10 10<.05 L26W 6+00S

Standard Metals PROJECT RED-01 FILE # A103564

I K La Mg

7.4 75 1781 417 1.68 71 <5 130 83 143 .35 15.91 219 49 4 53 158 31 24.9 669 .32 42 202 3 178 .36 .33 167 56 13 335 .75 247 2.29 46.0

paw paw ppb ppm ppm ppb ppm

Cu Fe Hg

Sample type: SOIL SS80 600. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 3

ppm ppb ppm ppg dog dog dog ppm ppm ppb ppg dog ppm ppm 🛛 🕺

U

Mn Mo Ni P Pb Pd Sb Se Sr fe Th fi

A DE ANN ITTICA

V V Zn LOI

Standard Metals PROJECT RED-01 FILE # A103564

ບິຣັ/ບໍຣົ nché anal viticai Cu Fe Hg I K La Mg Mn No Ni P Pb Pd Sb Se Sr Te Th Ti U V W Zn LOI SAMPLE# Au Ag As Al Ba Bi Br Co Cl Co Cr പ് ppa ppb 7 ppb ppm bbu bbo bbu bba bba bba bba Ditter. pob opb .1 37 85 199 <5 <5 49 <10 44 .23 1.15 95 18 92 14 1.4 16 .16 62 21 1 <5<.05 .30 <5 12 - 4 5 .54 <10 .42 6.5 L26W 7+00S .56 2 1 6 5 .06 10 <10 <1 <5<.05 .19 -5 <5 9 57 51 .24 <5 <5 22 <10 20 .21 .68 27 **- 2** <1 10 - 8 .2 1 <5 .45 <10 _11 _2.7 L26U 8+00S 12.8 .33 <5 <5 23 <10 19 .16 1.37 38 2 <1 15 17 11 .3 8.08 17 <10 1 <5<.05 .22 <5 - 5 2 <5 .66 <10 .24 4.7 26 139 85 126W 9+00S <.1 <2 <1 17 7 10 .3 6 .10 10 <10 <1 <5<.05 .28 75 .38 <5 31 <10 21 .15 1.43 31 <5 Z <5 .57 <10 .09 4.2 1264 10+00S 1.0 37 109 <5 <5 <2 <1 13 19 11 .5 9.07 52 36 <1 <5<.05 18 <.1 9 99 139 .43 <5 <5 19 <10 31 .14 .59 60 <5 6 2 <5 .44 <10 .16 3.3 126H 11+005 6 .42 <10 .20 4.8 2.07 67 <2 1 14 137 10 .7 11 .13 63 10 1 <5<.05.35 -<5 10 2 L26¥ 12+005 - 34 92 165 .60 <5 <5 51 <10 23 .28</p> .8 <5 78 <10 44 .23 1.24 97 2 1 13 181 9 1.4 17 .14 144 19 2 <5<.05 .59 <5 - 14 3 7 .51 <10 .28 7.2 L26W 13+00S 26 1**36 262** .92 <5 6.4 oC42531718 .3 10 .05 48 11 <1 <5<.05 .12 123 155 .49 <S <5 15 <10 34 .20 .45 47 <2 1 <10 16 7 <5 6 2 <5 .55 <10 .16 4.1 L26U 14+00S 20 <.1 <5 <5 27 <10 15 .10 1.69 27 <2 <1 <10 .13 5.4 55 - 6 7 .2 6 .12 13 <10 <1 <5<.05 .23 <5 <5 1 < 5 .75 <10 20 151 . 19 L26W 15+D0S 1.5 <5 <5 29 <10 16<.05 1.77 28 <2 <1 <10 6 7 .2 6 .12 13 <10 <1 <5 .25 <5 <5 1 <5 .76 <10 .10 5.2 146 56 RE L26W 15+00S <.1 18 .20 .14 4.8 25+00V 8+00S 23 83 114 .37 <5 <5 28 <10 33 .09 1.71 64 <2 <1 <10 47 7 .2 12 .11 19 12 2 <5<.05 .11 <5 9 2 <5 .58 <10 1.0 .55 71 4 1 14 43 <5 2.8 23 .09 163 16 2 <5<.05 .02 <5 12 2 8 .40 <10 .38 7.9 L24W 8+00S 152 440 .30 <5 <5 8 <10 30 .21 <.1 10 .30 3 2 <10 43 <5 .7 14 .07 205 11 2 <5<.05 .06 10 2 7 .60 <10 .17 5.3 L24M 9+00S 173 411 <S <5 13 <10 32 .19 .76 58 - - 5 <.1 17 <5 <5 <.1 <5 .02 5 <10 <1 <5 .05 .48</p> **८ ९ ५** .29 <10 .12 <5 <5 55 <10 4<.05 .53 <5 <2 <1 <10 <5 .03 2.4 L24W 10+005 1.1 8 65 28 9 157 71 .18 <5 <5 29 <10 21<.05 1.38 31 <2 <1 12 6 9 .3 7,08 15 <10 1 <5<.05 .15 <5 <5 1 - 5 .64 <10 .10 4.3 124W 12+00S .4 .60 29 <2 <1 10 16 8 5 .05 20 <10 <1 <5<.05 .10 <5 <5 .17 <5 <5 21 <10 15<.05 .2 1 <5 .55 <10 .08 3.2 L24W 13+005 1.0 1Z 100 83 <5 27 <10 15<.05</p> .2 <5 .04 22 <10 <1 <5<.05 .19 <5 <5 .75 21 <2 <1 13 6 5 1 5 .32 <10 .05 3.4 13 85 76 .18 <5 L24W 14+005 <.1 .75 29 <2 <1 12 19 6 .2 6.04 30 <10 <1 <5<.05 .14 <5 <5 1 <5 .54 <10 .08 3.6 L24W 15+005 7.4 17 86 84 .15 <5 <5 24 <10 16<.05 7 250 233 .54 <5 <5 26 <10 66 .19 .91 161 <2 <1 11 22 19 1.1 21 .16 75 20 2 <5<.05 .12 <5 12 4 5 2.25 <10 .23 4.7 23+00¥ 8+00\$ <.1 .45 52 <2 <1 <10 14 6 .4 12 .05 45 37 <1 <5<.05 .12 <5 <5 2 <5 .29 <10 .21 3.5 49 86 . 34 <5 <5 55 <10 30<.05 L22V 8+00S .1 11 1 13 29 <5 1.6 34 .09 272 25 3 <5<.05 .06 <5 12 3 9 .65 <10 .21 8.0 .33 <5 <5 27 <10 49.08 .47 167 - 4 LHB 122V 10+005 15 183 458 <.1 47 121 .19 <5 <5 29 <10 21<.05 .65 37 <2 <1 12 26 1 .4 9.06 47 <10 <1 <5<.05.09 <5 <5 1 <5 .35 <10 .16 3.6 L22W 11+00S 1.1 13 .36 <5 <5 31 <10 21<.05 ./1 49 <2 <1 15 25 11 .3 8 .08 31 <10 1 <5<.05,14 <5 <5 2 <5 .46 <10 .12 3.6 76 117 L22W 12+005 9 <.1 .42 <5 <5 43 <10 28<.05 1.08 57 <2 <1 21 15 12 .4 9 .12 19 <10 1 <5<.05 .23 <5 <5 3 <5 .76 <10 .15 4.9 4.1 12 142 103 L22W 13+00\$ 78 121 188 .67 <5 <5 88 <10 78 .06 20,84 118 7 2 31 84 29 2.9 26 .38 31 <10 5 <5 .06 .45 <5 19 4 31 .77 <10 .27 20.0 1229 14+00s 1.3 .4 27 171 309 .45 <5 <5 27 <10 27<.05 1.66 55 2 1 26 37 10 .4 10 .06 90 <10 1 <5<.05 .10 <5 5 2 5 .54 <10 .12 4.4 1 22W 15+00\$ 6.4 71 1798 412 1.39 63 <5 126 90 122 .38 15.48 210 48 2 57 140 33 23.3 625 .30 45 195 14 173 .36 .30 168 51 11 338 .77 238 2.04 45.5 STANDARD DS3/DOLOMITE

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Roruns.

All results are considered the confidential property of the client. Acres assumes the liabilities for actual cost of the analysis only.

Data 🛝 FA

Page 4

HNALY LUHL HULE 드 1 : 50 NUT-23-200. 700

2 лĤХ

TT	· · ·	÷			<u>St</u>	and	ard	M.e	ta]	95 80	PROJ	ECT	RE	D O by BC	1 V5H	Fil 465	e # Subm	A1 itted	035 by:	64R D. Bl	900) 900)	Pag	e l	-						1
SAMPLE#	No ppm	Cu ppm	Pb	Zn	Ag ppen	Ni ppm	Ca ppm	nHn ppm	Fe Z	Ae ppm	U P P M	Au	Th ppm	Sr ppn	Cot picm	Sb ppm	Bi ppra	V Maqq	Ca X	P 2	La pipas	Cr ppm	Mg X	Ba ppm	Fi X	8 ppm	AL X	Na X	K X	V ppm
G-1 L34W 0+005 L34W 1+005 L34W 2+005 L34W 3+005	1 <1 1 <1	2 29 37 118 103	<3 3 4 5 4	37 23 60 48 41	<.3 <.3 <.3 <.3 <.3	6 10 23 23 22	3 6 15 13 13	495 286 558 713 552	1.63 1.88 3.43 3.64 3.70	<2 4 10 10	\$\$ \$\$ \$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$ \$ \$ \$ \$ \$ \$ \$	5 2 2 2 2 2 2	58 47 43 54 55	<.5 <.5 <.5 <.5 <.5	3 3 3 3 3 3 3 3 3 3	99999 99999	36 73 115 111 114	.49 .70 .64 .81 .84	.094 .073 .087 .128 .128	7 7 7 10 9	15 31 58 49 56	.51 .47 .83 .80 .82	196 43 74 112 94	. 10 . 12 . 14 . 12 . 13	3 3 3 3 3 3 3 3 3	.80 .98 1,46 1.98 1.92	.05 .02 .02 .03 .03	.44 .08 .11 .20 .18	5.5.5. 2.5.5.2
L349 4+50s L349 5+00s L349 6+00s L349 7+00s L349 8+00s	<1 <1 <1 <1 <1	46 93 111 46 29	4 5 4 3 4	28 42 45 25 29	<.3 <.3 <.3 <.3 <.3	13 20 19 12 11	8 12 13 7 5	397 531 550 297 311	2.22 3.59 3.61 2.07 1.54	7 9 6 2	\$ \$ \$ \$ \$ \$ \$ \$ \$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	46 49 52 39 44	<.5 <.5 <.5 <.5	3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3	81 111 116 72 57	.64 .67 .72 .55 .53	.126 .130 .133 .116 .049	8 9 7 6	24 39 41 25 24	.49 .73 .80 .46 . 36	62 107 109 65 64	.11 .12 .12 .09 .12	3 3 3 3 3 3 3 3 3 3 3 3 3	1.17 1.90 2.03 1.18 1.13	.02 .02 .02 .02 .02	.08 .17 .19 .09 .05	8.8.8.8 8.8.8.8 8.8.8
L34W 9+00s L34W 10+00s L34W 11+00s L34W 12+003 L34W 13+00s	1 1 3 5 1	59 59 77 64 59	7 6 5 4 4	47 41 42 35 36	<.3 <.3 <.3 <.3 <.3	32 27 18 15 15	12 11 13 12 9	500 368 579 533 444	3.14 2.97 3.02 2.86 2.30	6 6 7 4	ସ୍ତ୍ର ସ୍ତ୍ର ସ୍ତ୍ର ସ୍ତ୍ର	8 8 8 8 8	33222	48 44 52 53 48	<.5 <.5 <.5 <.5 <.5		3 3 3 3 3 3 3 3	85 87 99 103 76	.56 .54 .63 .66 .56	.127 .107 .121 .122 .085	13 11 9 9 11	50 43 31 28 29	.78 .64 .65 .56 .49	134 115 101 81 82	. 14 . 13 . 11 . 12 . 12	00000 00000	1.72 1.72 1.64 1.51 1.47	.02 .02 .02 .02 .02	. 16 . 13 . 13 . 11 . 10	2222
L34µ 14+005 134µ 15+005 L33¥ 8+005 RE L34¥ 8+005 L33¥ 9+005	ব ব ব ব	105 102 59 29 44	6 5 4 4 4	52 46 30 29 31	<.3 <.3 <.3 <.3 <.3	23 20 13 11 13	14 12 7 5 7	647 501 330 512 330	3.83 3.70 1.84 1.60 1.96	9 9 4 5 4	<ଟ ବର ବର ବର ବର	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 2 7 2 2 7 2 2	63 55 51 45 42	<,5 <,5 <,5 <,5 <,5	3 3 3 3 3 3	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	118 110 57 59 72	.80 .78 .62 .53 .55	. 152 . 135 . 109 . 051 . 082	12 10 13 7 7	39 46 24 25 25	.84 .79 .47 .38 .46	124 103 84 66 75	- 11 - 12 - 09 - 12 - 12	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.91 1.85 1.37 1.15 1.25	.03 .03 .02 .02 .01	. 16 . 19 . 10 . 06 . 09	20006
1.33W 10+00S 1.33W 11+00S 1.33W 12+00S 1.33W 12+00S 1.33W 13+00S 1.33W 14+00S	<1 <1 <1 <1 <1	48 51 79 89 47	5 3 4 5 4	40 35 41 42 30	<.3 <.3 <.3 <.3 <.3	18 14 19 21 14	10 9 13 13 8	459 415 614 589 357	2.24 2.55 3.0/ 3.37 2.17	5 3 / 8 4	<8 <8 <8 <8 <8	~2 ~2 ~2 ~2 ~2 ~2	2 <2 2 2 2 2	45 41 51 56 46	<.5 <.5 <.5 <.5 <.5	ও ও ও ও ও ও ও ও	5 5 5 5 5 5	80 84 104 111 77	.55 .61 .62 .73 .60	.082 .081 .122 .127 .082	8 6 10 10 7	31 28 31 40 27	.51 .67 .62 .73 .47	92 69 89 108 77	. 13 . 13 . 11 . 13 . 12	3 3 3 3 3 3 3 3	1.43 1.26 1.44 1.68 1.32	.02 .01 .02 .02 .02	.09 .12 .14 .16 .11	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
L33W 15+00S L32W 0+00S L32W 1+00S L32W 2+00S L32W 2+00S	<1 <1 <1 <1 <1	94 30 56 43 88	4 3 4 5	44 21 35 34 43	<.3 <.3 <.3 <.3 <.3	19 11 19 15 21	13 6 11 10 12	590 240 428 448 439	3.03 2.59 5.31 2.73 4.11	7 6 8 6 9	< < < \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	< < < < < < < < < < < < < < < < < <> </td <td>20222</td> <td>61 38 60 53 53</td> <td><.5 <.5 <.5 <.5 <.5</td> <td>4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</td> <td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>100 85 108 89 114</td> <td>.77 .60 .87 .86 .74</td> <td>. 122 .091 . 131 . 113 . 136</td> <td>9 8 9 10</td> <td>32 28 46 37 51</td> <td>.69 .46 .74 .63 .73</td> <td>103 63 77 76 110</td> <td>.12 .06 .11 .11 .12</td> <td>0 0 0 0 0 0 0 0 0 0</td> <td>1.49 .75 1.32 1.24 1.85</td> <td>.03 .02 .03 .03 .02</td> <td>. 15 . 07 . 13 . 11 . 15</td> <td>8 8 8 8 8 8 8 8 8 8</td>	20222	61 38 60 53 53	<.5 <.5 <.5 <.5 <.5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 85 108 89 114	.77 .60 .87 .86 .74	. 122 .091 . 131 . 113 . 136	9 8 9 10	32 28 46 37 51	.69 .46 .74 .63 .73	103 63 77 76 110	.12 .06 .11 .11 .12	0 0 0 0 0 0 0 0 0 0	1.49 .75 1.32 1.24 1.85	.03 .02 .03 .03 .02	. 15 . 07 . 13 . 11 . 15	8 8 8 8 8 8 8 8 8 8
L32W 8+005 L32W 9+005 Standard DS3	<1 <1 10	66 59 126	4 4 36	33 28 153	<.3 <.3 .3	15 13 36	8 8 11	350 293 818	2.28 2.15 3.14	5 5 31	<8 <8 <8	<2 <2 <2	<2 2 4	49 39 27	<.5 <.5 5.7	<3 <3 6	ও ও 5	78 69 75	.58 .51 .54	.084 .192 .097	8 7 18	29 27 189	.57 .49 .61	87 83 150	.12 .10 .08	4 4 4 4	1.56 1.39 1.77	.02 .02 .03	.12 .09 .16	<2 <2 4
DATE RE	CEIV	SROUP JPPER - SAM Sampli	1D - LIMIT PLE TY as bes	0.50 (S -) (PE) (Innu 1 20	GM S/ AG, AL SOIL F <u>ng 'R</u>	MPLE J, HG, PULP C art	LEACI W = Al RET	160 ¥ 100 J* Ry <u>IS 8</u> 2081	ITH 3 PPN; i Acid Dd. <u>(r</u>) Maaj	HL 2 NO, CI LEAC RE <u>'</u> a	-2-2 o, CD, NED, / re Rej ±	ICL-HA SB, INALYZ Iect I	403-Hi BI, 1 LE BY Leruna 9/	20 AT IN, U ICP-1 / 0 /	95 DI 4 R = 15. (1 5:	EG. C = 2,0(10 ym) E (3))18	For (D0 PP#) ED B1	жена 1; си, 	шя, (, рв.,	DILUTI ZN, I	ED 10 NI, M	10 MI N, AS, Toye,	, AN/ , V, I , C,LE	ALYSEC A, CA CNG,) 87) } = 70	CCP-E 0,000	S. PPM. Certif	TED 8	.c. A	SSAY
) are	oneir	locad	the .	confid	lentia	il ore	mento	v of	the c	lient.	Acme	- 8651	mes t	the li	abili	ities	for a	actua	l cosi	t of	the ar	เล่งร่	is oni	. v.			0	eta	e FA

- ----

.

and the second second

. . • 05/02

Standard Metals PROJECT RED-01 FILE # A103564R

Page 2

AA	
ACHE ANNI YTICAL	

	C & LW1 + - H												5 ° 4 ° 7								4.7	· · · ·		- <u></u> _					-			
<u>ь:</u>	SAMPLER	Ma	CU;	Pb		Ag	N i	Co	Mn	Fe	As	u	AU	Th	\$r	Cd	SÞ	Bí	v	Ca	P	La	Cr	Mg	Ba	Ji	8	AL	Na	K	¥	Aur
		h han	- Litra	ppn	ppm	ppm	ppm	tribiti	ppm)	7.	ppm	, ppm	ppra	ppa	ppm	ppn	ppm	ppin	ppm	X	7	pps	ppn	x	ppm	X	ppn	x	X.	۲.	ppn	ppb
	G-1	1	1	-3	35	<.3	5	3	457	1.57	-62	۰.8	-2		54	2 E	л	л	74		067		44									
	L32V 10+00s	<1	51	4	30	<.3	14	ā	322	2.16	4	<8	2	2	6	<.5	3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20		.065	0	20	.4/ .1e	199	.09	<	.70	.05	.42	2	<.2
1	L32W 11+00s	1	51	12	39	<.3	41	11	378	2.93	7	<8	<z< td=""><td></td><td>36</td><td><.5</td><td>्द</td><td>्र</td><td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td><td>- 70 - 70</td><td>109</td><td>16</td><td>20 24</td><td>.40</td><td>134</td><td>11</td><td><<u>-</u></td><td>.21</td><td>.02</td><td>.10</td><td><<u>Z</u> /</td><td>27.8</td></z<>		36	<.5	्द	्र	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- 70 - 70	109	16	20 24	.40	134	11	< <u>-</u>	.21	.02	.10	< <u>Z</u> /	27.8
	132W 12+00S	<1	28	4	- 28	<.3	15	6	236	1.76	2	<8	<2	<2	30	<.5	3	ā	59	.35	.049	6	27	.07	61	- 12	- 73 1	-4Z 07	.01	. 11	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7-3 7 8
	L32W 13+00S	<1	63	6	38	<.3	28	11	444	2.92	6	<8	<2	2	47	<.5	<3	<3	81	.52	. 105	- 11	43	.63	118	13	31	52	.07	- 14	2	3.0 6 A
	704 44.00-				-	_																•••					- U I	• • ٢			۰ <u>د</u>	4.4
	L32W 14100S		62	- 4	30	<.3	20	10	415	2.53	5	<8	<2	2	47	<.5	<3	<3	80	.56	. 106	9	30	.53	91	. 12	<31	.49	.02	. 12	-2	7.6
e	1710 RADOS	× 	20	4	33	<.3	18	9	358	2.53	5	<8	<2	2	49	<.۶	- 3	<3	78	.54	.094	8	30	.52	95	.12	<31	.50	.02	. 10	<2	4.1
71	1410 04003		43	د ۲	20 ZD	<.3 2 7	11		338	1.77	4	<8	<2	~?	44	<.5	<3	<3	65	- 54	. 080	6	22	.42	60	.11	া ১	. 16	.02	.08	<2	11.8
	1311 10+005	1	31	- 	34	2.3	10	×	341	4 04	2	<0	~2	5	49	<.5	্র	<3	17	.57	.069	8	27	.53	85	.12	- 3 I	.51	.02	.11	<2	17.6
ŝ					23		10	Đ	201	1.01	2	< 0	*۲	×2	30	<'>	<5	<3	65	.45	.075	6	20	.35	47	.10	ব 1	.03	.01	.06	<2	2.6
3 1	L31V 11+005	1	73	4	30	<.3	16	9	418	2.59	6	đ	ð	>	46	<.5	4		94	23	000		71	EA	67							
ည္း	L31W 12+00S	<1	33	3	29	< 3	16	7	240	1.75	ž	- Č	<2	~2	40	< 5	्र	्त	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		.052	2	74	.70	- 63 - 44	. 12	- 31	.42	.02	. 10	<2	9.0
	L318 13+00S	<1	- 34	- 4	- 43	<.3	22	9	310	2.48	3	48	- Ž	\bar{q}	40	<.5	3	Ğ	74	.40	.082	7	24	- 30	87	12		- 10- 20-	,01	.07	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	3.8
Ó i	L31W 14+00S	<1	- 43	5	33	<.3	27	9	308	2.50	4	<8	<2	Z	- 44	<.5	ā	- 3	78	.47	.092	÷	- 35	52	0A	14	21	.30	- 07	.07	~ 7	11 4
Z,	L31W 15+005	<1	26	5	40	<.3	17	6	193	1.47	2	<₿	<2	<2	39	<.5	-3	<3	50	.44	.027	6	23	.35	60	15	31	.26	.01	.00	3	3.5
ž	1701 0.00				3-1	_																-	_		••	•••					-	3.3
n.	L30M 0+00	<1	45	4	- 33	<.3	28	10	410	2.14	5	<8	<2	2	48	<.5	<3	<3	63	.66	. 110	11	33	.49	117	.09	3	.87	.03	.09	<2	3.1
	1304 24005		42	< 5 *	40	<.3	19	15	615 7/17	5.47	?	<8	<2	2	39	<.5	<5	<3	104	.73	. 108	6	26	.97	111	. 18	<3 1	.21	.07	.77	<2	2.4
		- 1	114	2	29 44	<.3 - 7	11			2.03	4	<2	< <u>Z</u>	< <u>z</u>	48	\$.5	a	ব	74	.70	. 107	7	29	.42	47	.11	<3	.92	. OZ	.08	<5	9.2
	L30M 5+00S		34	ź	27	<u>د ۲</u>	43	4	261	3.3V 1 04	7	~Q _/R	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5	11/	<.5 . E	<u>د</u> >	্য ন	109	. 80	.118	10	38	.78	113	- 14	্র 1	.74	.03	-18	<2	8.5
						·	1.5		241	1.70	2	40	12	12	.34	د.>	4	د>	0	.47	.054	5	27	. 39	48	.11	<3	-96	.01	.06	<2	9.5
	RE L30W 5+00s	<1	34	3	26	<.3	12	6	235	1.97	3	<8	<z< td=""><td><2</td><td>30</td><td><.5</td><td><5</td><td></td><td>70</td><td>63</td><td>116.7</td><td>5</td><td>74</td><td>2.00</td><td>47</td><td>10</td><td>-7</td><td>07</td><td></td><td></td><td></td><td></td></z<>	<2	30	<.5	<5		70	63	116.7	5	74	2.00	47	10	-7	07				
θIJ	1.50W 6+00S	<1	141	4	45	<.3	18	12	504	3.57	9	<8	<2	ž	63	<.5	ð	3	110	Ť	.130	ó	35	. 30	110	12	- 74 1	.92 76	.01	.UD 17	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8.8 C 0
i	L30¥ 7+005	<1	79	- 4	33	<.3	16	12	496	2.62	7	<8	<2	2	51	<.S			92	.62	110	7	25	.58	90	12	31	53	.03	13	~2	7.6
<u> </u>	L30W 8+00s	<1	90	4	43	<.3	19	12	524	3.24	7	<8	<2	Ž	53	<.5	3	<3	109	.64	.106	ġ	34	.70	99	13	31	72	02	12	-2	4 7
S	L 30W 9+00\$	<1	106	4	45	<.3	21	14	619	3.63	8	<8	<2	2	62	<.5	<3	<3	119	.75	.131	10	33	.84	105	.13	_⊲ <u>3</u> i	.68	.03	. 14	2	7.5
	1 701 10,000				70					.		_	_	_																	-	
- 1	L30W 107005		101		. 36	<.S		14	495.	3.66	10	<8	<2	2	50	<.5	<3	<3	125	.75	. 163	9	28	-85	100	.16	া বা	.74	-02	. 17	<2	6.9
त.	L300 171005		51	13	4Y 72	<.>	10	14	(77)	3.83	2		~2	2	20	<.5	<3	<3	127	.72	.161	11	28	1.03	114	.17	୍ ଓ 1	.60	.02	. 26	<2	7.7
ĤΝ	L30W 12+003		24	12	47	<.3 < 7	10	- 17	+/2	3.24 7 64	ć	<8	<2	2	- 47	5- <u>2</u> -	<3	<3	94	.55	.130	14	43	-63	151	.12	-उ १	.46	.02	,10	<2 :	32.0
	L30V 14+005		46		37		22	10	462	2.21	2	<0 -9	-2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	41	<.3 . E	<5	<3	86	.58	.092	7	34	.59	77	.12	<3 1	.45	-02	. 15	<2	6.B
		- '					~~	10	400	6. I V	U	10	12	2	41	<.>	< 3	< <u>5</u>	ന	.55	. 104	Ŷ	51	.56	91	. 13	-31	.46	.01	. 10	~ 2	5.5
7	L30M 15+00S	<1	76	6	48	<.3	24	12	463	3_05	6	<8	<2	2	51	<.5	<3	3	95	.56	101	10	38	A1	108	13	28.1	57	0.2			10 3
Σ	L29W 8+00S	<1	62	4	32	<.3	16	10	421	2.53	6	<8	<2	2	41	<.5	<3	3	92	.55	094	7	30	55	21	11	- 21	30	-06	. 11	- <u>54</u> (47.C
n.	STANDARD 053	9	128	35	149	.3	35	12	779	3,11	29	<8	<2	4	26	5.7	5	5	74	.51	.089	18	187	.57	147	.08	~ ~ 1	. 37	.01	- 47	~ <u>~</u> ~ ~	10 0
ω		••••••																						• • •	1-1	- 144			. 40		4	17.9
-																																

Sample type: SOIL PULP. Samples beginning 'Rt' are Reruns and 'RRE' are Reject Reruns.

Dato FA

Ł

Ĺ.

NOV-39-2001 FK1 U2:18 PM ACME ANALYTICAL LAI

k

	Δ	
	ACHE AN	
1		

Ы

NUV-J3-ZUČ. FRJ

Standard Metals PROJECT RED 01 FILE # A103564R

Sample type: SOII PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🖡 FA

Page 3

10	44
<u>1</u> 1 1	ADE ANLYLIA

Standard Metals PROJECT RED 01 FILE # A103564R

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRF' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only,

NOV-D9-2001 FRI 02:20 PN ACKE ANALYTICAL

Page 4

		:GIC		.83	60.	י <u>פו</u>		dar	G đ 📕	EO et:	CHR als	PI	TAL 2017	AI EC	TAL	TS ED	15 - <u>01</u>	CR	RTI Pil	FIC e	'AT A	e 10:	356	55									
SAMPLE#	Mo	Cu	Pb	2n ppn	Ag ppn	Ni ppm	Co	An Mn ppm	Fe 2 p	As As	U U D	AVE AU PIII F	Th Part p	rneb Sr pnrp	y ac Cd pan p	Sb pmp	463 Bi pm pp	V T	Ca X	P %	La pps	Cr ppm	Ng	Ba	Ťi ¥	istan A	AL X	Na X	K T	W Au	ر **ر ت **ر	Pt** ppb	Pd** ppb
S1 R01-D8-1 R01-D8-2 RE R01-D8-2	<1 2 3 2	2 114 5723 5501	<3 7 8 3	1 70 139 135	<.3 .5 10.8 10.7	<1 12 6 6	<1 14 14 13	4 737 1845 1780	.03 3.36 5.72 5.59	2 33 3 4	ଏମ୍ ଏମ୍ ଏମ୍ବ ଏମ୍ବ	<2 <2 <2 <2	<2 <2 1 <2 <2	1 < 79 74 71	.2 .2 .7 .8	5 5 5 5 5	<3 3 15 4 16 <3 15	1 52 6. 50 1. 53 1.	.05<. .70 . .45 . .39 .	001 227 145 140	1 14 8 8	5< 33 32 29	.01 .61 .91 .87	1< 59 27 26	.01 .27 .24 .23	<3 5 4 5	.01 1.62 1.20 1.16	.26< .15 .10 .09	.01 .08 .06 .07	<2 <2 2 3	<2 3 13 7	2 5 2 2 2	<2 2 2 6
	GROUP UPPER Assay Sampl	10 LIM REC PLE es b	- 0. 175 0MME TYPE egin	50 GJ - AG NOED : ROC ning	I SAN AU, For CK R1 <u>'RE'</u>	PLE L HG, ROCK 50 60 BFE	EACH W = 1 AND 1 C <u>Reru</u>	ed Wi 100 P Corre All*	TH 3 ! PM; M SAMPLI * PT* <u>d (RR</u>	4L 2 3, C Es 1 * PD E' g	-2-2 0, CD F CU ** GR ire Re	HCL SE PB 2 OUP	HNO3 3, BI 2N AS 38 B t Rer	-H20 , TH > 1 Y FJ) AT I, U IX, A IRE A	95 D & 8 \G > \SSAY	EG. (= 2,1 30 Pi ' & Al	2 FOI 200 I PM & NALYS	tone PPM; AU > 515 B	HOU CU, 100 Y IC	R, D PB, 0 PP P-ES	(LUT ZN, 8 . (3	ED T N1, 0ger	ю 10 мн,	ML, AS,	. ANA V, 1	LYSET A, CI) BY R = 1	1CP- 0,00	-es.)o ppn	•		
DATE RECEI	VED1	00	т 9	2001	Di	ATE	REP	ORT	MYI	LED	C	d	р. 17	/	Dj	9	icn	R D	_{ву.} (1 :	L.		7	. 10	τE,	C.LE	ONG,	J. W	ANG;	CERT	FIE	D B.C	. ASSA)
																							1										
						-																											
			•		,																												
I																																	
																																	1

the a second terms to be a second terms to be a second to be the terms to be the terms to be the terms to be the

i i

APPENDIX B

Rock and Soil Sample Descriptions Histograms, Log Probability Plots

Company: Norian Resources Corp.

Rock Sample Description Sheet

record record records and records

Prospect: Red Property

Sampled by: David Blann

Date: 10/02/01

1.1.1

v ...

NAD 83 UTM

NAC	<u>) 83 (</u>	JTM			<u>.</u>								_					Alter	ration	n Sca	le 1-	-5
<u>North</u>	<u>East</u>	Elev.	Sample	Comment	S Rock	ole/ Int/ Si	Structure	Chip	Grab	%	%	%	%	%	%	%		к				
(M)	(M)	_(M)	Number	ſ	Code	/, +, =,L9	000/00	m/sq.m	Kg.	Ру	Ср	Sp	ĢI	Qvn	Mag	Hem	Ser	Feld	Ca	Chl	Ep	Clay
			R01DB1	1 2 metre	Abx	V	-	2.0	2.5	3	-	-	-	-	1	3	3	-	3	_	1	1
		_	chip sar	mple of propyliti	c, brown ve	olcani	c flow	/brecc	i <mark>a, m</mark> e	oderat	e hen	natite,	pyrite	e, non	magr	netic.	Sericit	e-calo	cite alt	ered.		
			Approxi	mately 400 met	res north o	fthe	Road :	zone,	near i	north (edge o	of clea	rcut			·						
			R01DB2	²					L													
			At road	d zone10 kg.	Grab sa	mple	of m	alaci	hite/a	zurit	e sta	ined	hete	rolith	ic fe	lsic ir	ntrusi	ve br	reccia	a, Me	oder	ately
			Propylit	ic, weak k-felds	par, trace b	ornite	e, nati	ve cor	орег/ с	oxide.												
							L															
	<u></u> .												-									
							·····													_		
	.			·																		
							<u></u>															
			·····												,							
							1	· · · ·	r			p# 1	r									
	-																L					
								<u></u>		·					····· ·							
	·					r			1				F									
		_							l				[
						-																
			r				<u> </u>	<u> </u>				<u> </u>		T	-	r						
			┝╼┯╼╾┛╴					L					L				L					
						-									_ _							
				المحمد والمحمد والمح																		

and the second case of the second commence and the

-Г _ C [[

Red Property ICP Soil Geochemical Data

					Gold (ppb)
Line	South	Au	Cu	As	Cu(ppm), As(ppm)
West	m.	ppb	ppm	ppm	0.0 10.0 20.0 30.0 40.0 50.0
3400	0	7.4	29	4	0
3400	100	3.1	37	4	100
3400	200	14.3	118	10	310
3400	300	8.2	103	10	300
3400	400	18.2	46	7	400
3400	500	16.2	93	9	000
3400	600	7.9	111	9	808
3400	700	5.4	46	6	700
3400	800	6.9	29	2	800
3400	900	3.8	59	6	900
3400	1000	15.9	59	6	1000
3400	1100	8.8	77	7	1100
3400	1200	11.1	64	7	1330
3400	1300	3.8	59	4	1300
3400	1400	6.6	105	9	1400
3400	1500	8.9	102	9	1520
3300	800	8.3	59	4	823
3300	900	4.6	44	4	SOU DESCRIPTION OF THE OWNER
3300	1000	7.3	48	5	1990
3300	1100	7.2	51	з	1100
3300	1200	8.4	79	7	1201
3300	1300	6.6	89	8	1300
3300	1400	8.9	47	4	1400
3300	1500	17.9	94	7	1900
3200	0	3.4	30	6	· Planet and a second s
3200	100	50.1	56	8	100
3200	200	6	43	6	300
3200	300	6.9	88	9	
3200	800	9.1	66	5	A10
3200	900	25.9	59	5	900 mm
3200	1000	27.8	51	4	THE REAL PROPERTY AND ADDRESS OF
3200	1100	2.3	51	7	1100
3200	1200	3.8	28	2	1200
3200	1300	48	63	6	1300
3200	1400	7.6	62	5	1400
3200	1500	4.1	66	5	1500
3100	800	11.8	43	4	ACC DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWN
3100	900	11.6	65	5	800
3100	1000	2.6	31	3	1000
3100	1100	9	73	6	1100
3100	1200	3.8	33	2	1200
3100	1300	2.9	34	3	
3100	1400	11.4	43	4	1400
3100	1500	3.5	28	2	1400
3000	0	3.1	43	5	
3000	200	24	42	5	200
3000	300	0.2	24	4	300
3000	400	85	114	0	400
3000	500	0.5	24	2	530
3000	800	0.0	1.44	0	400
3000	700	6.4	70	7	NO THE REAL PROPERTY OF THE RE
3000	800	6.2	00	4	and 100 million and
3000	000	7.5	100	P	900
0000	900	1.0	100	0	town in the second seco

1 of 3

Π [[L Г L L L [C Г r L [-[

Red Property ICP Soll Geochemical Data

					Goid (ppb)
Line	South	Au	Cu	As	Cu(ppm), As(ppm)
West	m.	ppb	ppm	ppm	0.0 10.0 20.0 30.0 40.0
3000	1000	6.9	101	10	1300
3000	1100	7.7	99	9	1100
3000	1200	32	54	7	1200
3000	1300	6.8	80	5	1300
3000	1400	5.5	66	6	1400
3000	1500	28.2	76	6	1500
2900	800	13	62	6	810
2900	900	8	76	7	000
2900	1000	8.9	67	6	1000
2900	1100	6.3	101	7	1100
2900	1200	9.2	117	0	1200
2900	1300	0	82	5	1300
2000	1400	8.4	04		1400
2000	1500	5.4	54	0	1800
2900	1000	0.4	01	D	
2800	400	2.4	40	D	
2800	100	4.9	64	8	300 Statement Statement Statement
2000	200	9.7	47	5	300
2800	300	4.7	28	4	and the standard second
2800	400	3.7	24	З	
2800	500	12	18	2	
2800	600	5.8	42	5	
2800	700	8.4	107	9	
2800	800	14	123	9	
2800	900	17.6	130	11	RCO
2800	1000	4.9	40	4	1000
2800	1100	9.6	108	8	1100
0085	1200	8.6	63	7	1203
2800	1300	3.9	45	5	1990
2800	1400	2.9	46	4	1400
2800	1500	3.8	55	5	1600
2600	0	0.9	25	4	*
2600	100	3.6	90	5	100
2600	200	45.4	32	5	233
0080	300	40.4	15	2	200 00000000000000000000000000000000000
2600	400	15	21	2	400
2600	500	2.2	47	0	100
0800	600	27	14	0	800
600	700	2.1	19	4	700
0000	001	2.0	28	2	aco
000	000	10.8	35	4	
000	900	4	62	6	1000
000	1000	9.8	12	6	1100
000	1100	9.9	35	4	1300
600	1200	33.4	54	3	1300
600	1300	31	40	4	1400
600	1400	4.9	34	4	THE OWNER DESCRIPTION OF TAXABLE PARTY.
600	1500	7.9	82	7	and the second descent second second
500	800	4.2	63	5	The second se
400	800	1.9	31	4	and the second party statement of the second
400	900	15.8	37	3	and a state water a state of the state of the
400	1000	<.2	47	4	
400	1200	4.7	74	8	
1 10 10					1 13/21

2 of 3

Red Property ICP Soll Geochemical Data

Line	South	Au	Cir	As	Gold (ppb) Cu(ppm), As(ppm)
West	m.	unp	ppm	ppm	0.0 10.0 20.6 30.0 41.0 50.0
2400	1400	5.2	51	6	The second statement of the second second state
2400	1500	7.2	50	4	1500
2300	800	2.5	28	4	200
2200	800	3.4	20	2	
2200	1000	2.8	27	4	
2200	1100	2.6	35	2	
2200	1200	4.1	42	4	
2200	1300	6.2	61	6	
2200	1400	6.6	284	8	
2200	1500	4.7	66	4	1900

Red Property

2001 Auger Till Sample Summary Notes

Line	South	Depth	Moisture	Material	Color	Comments
West	m.	(cm)	D,M,W	Slt,S,C		
3400	0	40.0	M	Slt	Br/Gy	
3400	100	45.0	D	SLT/grave	Gy	
3400	200	50.0	M	SLT/S	Gy/Gn/Br	•
3400	300	56.0	M	SLT/C	White/Gy	/or/Br
3400	400	45.0	M	SLT/C	Gy/Br	
3400	500	50.0	M	Slt	Gy/Br/Or	
3400	600	50.0	D	Slt	Gy/Br/Or	
3400	700	30.0	D	SLT/C	Gy/Br	
3400	800	35.0	D	Sit	Grey	25m N of road
3400	900	78.0	D	С	Grey	
3400	1000	66.0	D	С	Grey	
3400	1100	55.0	D/M	С	dk brown	
3400	1200	52.0	D	SLT/C	dk brown	
3400	1300	53.0	D	SLT	Grey	
3400	1400	69.0	D/M	С	Tan/Or	
3400	1500	79.0	D/M	С	Or/brown	
3300	800	45.0	D	Slt	Grey	1
3300	900	45.0	М	C/gravel	dk brown	
3300	1000	54.0	M	C/gravel	dk brown	
3300	1100	50.0	M	C/gravel	dk brown	
3300	1200	72.0	M	С	dk brown	
3300	1300	67.0	M	С	dk brown	
3300	1400	54.0	M	C/Slt	dk brown	
3300	1500	71.0	M	С	dk brown	
3200	0	45.0	M	S/SIt	Or/Br/Gy	
3200	100	52.0	М	Slt	Or/Br/Gy	
3200	200	38.0	М	SIt/C	Gy	rocky
3200	300	57.0	M	S/SIt	Or/Br/Gy	
3200	400					
3200	500					
3200	600					
3200	700					
3200	800	48.0	D	С	dk brown	
3200	900	56.0	М	С	dk brown	
3200	1000	55.0	M	С	brown/or t	flecks
3200	1100	71.0	M	С	dk brown	
3200	1200	62.0	Ń	C	dk brown	
3200	1300	74.0	M	С	dk brown	
3200	1400	52.0	М	С	dk brown	
3200	1500	67.0	M	С	dk brown	

Red Property

Π

Π

2001 Auger Till Sample Summary Notes

Line	South	Depth	Moisture	Material	Color	Comments
West	m.	(cm)	D,M,W	Sit,S,C		
3100	800	42.0	M	С	dk brown	
3100	900	44.0	D	С	Grey	
3100	1000	70.0	M	С	Grey/or fle	eck
3100	1100	62.0	M	С	brown/or f	flecks
3100	1200	63.0	M	С	dk brown	
3100	1300	42.0	M	C	dk brown	
3100	1400	49.0	M	С	dk brown	
3100	1500	53.0	M	С	Grey	
3000	0	90.0	M	С	Grey	
3000	100	50.0	D	С	Grey	
3000	200	75.0	W	S	Or/Br/Gy/	Gn
3000	300	44.0	M	C	Grey	
3000	400	73.0	D	C/SIt	Gy/Br	
3000	500	56.0	D	C/Slt	Grey	
3000	600	70.0	D	C/SIt	Grey	
3000	700	40.0	D	C/SIt	Grey	rocky
3000	800	54.0	D	SIt/S	Gy-Br-Gn	
3000	900	76.0	D	SIt/S	Brown/Gn	/or flecks
3000	1000	70.0	M	Slt/S	Brown/Gn	/or flecks
3000	1100	80.0	M	Slt/S	Br-Or	
3000	1200	75.0	M	Slt/S	Brn	
3000	1300	60.0	M	Slt/S	Brown/Gy	/Gn
3000	1400	72.0	M	Slt	Brown/Gy	/Gn
3000	1500	74.0	M	Slt	Gy-Br-Gn	
2900	800	46.0	D	Slt/C	Gy/Tan	
2900	900	54.0	D	Slt/C	Gy/Tan	
2900	1000	50.0	D	Slt/C	Gy tr Br	
2900	1100	65.0	M	Slt/C	Gy/Gn/Br	
2900	1200	70.0	M	Slt/C	Gy/Gn/Br	
2900	1300	52.0	D	SIt/C	Gy/Tan	
2900	1400	56.0	D	Slt/C	Gy/Tan	
2900	1500	46.0	D	SIt/C	Gy/Tan	
2800	0	60.0	M	S	dk brown	
2800	100	111.0	M	S	dk brown	
2800	200	101.0	D	С	dk brown	
2800	300	62.0	D	С	dk brown	
2800	400	53.0	D	Slt/C	dk brown	
2800	500	42.0	D	Slt/C	dk brown	
2800	600	46.0	M	С	dk brown	
2800	700	45.0	M	С	dk brown	
2800	800	75.0	D	Slt/C	Gy	
2800	900	70.0	D	Slt/C	Gy/Gn/Br	

2 of 3

-

Red Property

[

L

-

Π

Π

2001 Auger Till Sample Summary Notes

Line	South	Depth	Moisture	Material	Color	Comments
West	m.	(cm)	D,M,W	Slt,S,C		
2800	1000	30.0	M	Org-C	Gy	boulders
2800	1100	70.0	D/M	Slt/C	Gy/Gn	
2800	1200	45.0	D	Slt/C	Gy	powder
2800	1300	62.0	D	Slt	Gy/Tan	
2800	1400	60.0	D	Slt/C	Gy/Tan/B	r
2800	1500	60.0	D	SIt/C	Gy/Tan/B	r
2700	800					
2600	0	52.0	M	Slt/S	dk brown	
2600	100	95.0	D	till/slt	black	
2600	200	65.0	D	S/Slt	dk brown	
2600	300	71.0	D	Slt	dk brown	
2600	400	52.0	D	Slt	dk brown	
2600	500	56.0	D	Slt	dk brown	
2600	600	59.0	D	Slt	dk brown	
2600	700	39.0	M	Slt/C	dk brown	
2600	800	55.0	M	С	dk brown	
2600	900	45.0	M	С	dk brown	
2600	1000	56.0	W	С	dk brown	
2600	1100	47.0	D	SIt/C	dk brown	
2600	1200	40.0	M	С	dk brown	
2600	1300	38.0	D	SIt/C	dk brown	
2600	1400	51.0	D	С	brown/or f	lecks
2600	1500	58.0	M	С	brown/or f	lecks
2500	800	40.0	M	С	dk brown	marsh
2400	800	57.0	D	Slt	dk brown	
2400	900	50.0	D	Slt	dk brown	
2400	1000	70.0	M	С	dk brown	
2400	1100	N/S				swamp
2400	1200	56.0	M	С	dk brown	
2400	1300	42.0	M	C/slt	dk brown	
2400	1400	50.0	M	С	dk brown	
2400	1500	44.0	M	С	dk brown	
2300	800	35.0	W	С	dk brown	marsh
2200	800	37.0	D	Slt	dk brown	
2200	900	NS				swamp
2200	1000	33.0	D	Slt	dk brown	
2200	1100	40.0	D	Slt	dk brown	
2200	1200	43.0	D	Slt	dk brown	
2200	1300	59.0	M	C	dk brown	
2200	1400	42.0	W	C	black	marsh
2200	1500	56.0	M	C	dk brown	
	Avg Depth:	57	Cm			

3 of 3

r

-

È.

ſ

Γ Į. []

Ĺ.

-

.

j •---

x = 8.8

.

. .

.

.

٣

~

Į.,

Ĺ.

L

ſ

Ĺ.

۱.

L.

L

٢

APPENDIX C

Geochemical Data Plots

Figures 11 - 23

