

C

on the

WILD GOOSE PROPERTY

WILD GOOSE 1-4, 14 AND 15 MINERAL CLAIMS

REVELSTOKE AREA

REVELSTOKE MINING DIVISION, B.C.

NTS: 082M/01W Latitude: 51° 09' 45" N Longitude: 118° 26' 10"W F. Jenkins, R. Cameron Owners: New Blue Ribbon' Resource OLOGICAL SURVEY BRANCH Operator: ASSESSMENT DEDORT Consultants: **Discovery** Consultants T.H. Carpenter, P.Geo. Author: Date: March 26, 2002

TABLE OF CONTENTS

SUMMARY	Page	1
INTRODUCTION	Page 2	2
LOCATION AND ACCESS	Page 2	2
TOPOGRAPHY	Page 2	2
PROPERTY	Page 1	3
HISTORY	Page 4	4
GENERAL GEOLOGY	Page :	5
SHOWING DESCRIPTIONS	Page (5
WORK COMPLETED	Page 8	8
CONCLUSIONS	Page 1	0
RECOMMENDATIONS	Page 1	2
BIBLIOGRAPHY	Page 1	13
STATEMENT OF COSTS	Page 1	14
STATEMENT OF QUALIFICATIONS	Page 1	15

LIST OF ILLUSTRATIONS

ving Page 2
ving Page 2
ket
ving Page 6
ving Page 7
ket

LIST OF APPENDICES

APPENDIX A

Ç

 $\left(\right)$

Rock Sample – Assay Results

SUMMARY

The Wild Goose property is a vein-hosted Pb-Zn occurrence lying within the Precambrian Shuswap Metamorphic Complex on the south flank of the Frenchman Cap Gneissic Dome. The Shuswap Complex comprises a belt of high grade metamorphic rocks. Rocks on the property consist of mixed biotite-feldspar gneisses and quartzite with crosscutting diabase dykes.

The Wild Goose occurrence is located about 23 kilometres northwest of Revelstoke and 5 km north of Mt. Copeland on the north fork of Copeland Creek.

(

Exploration work has been carried out in the area since the early 1890s. During the 1960s extensive exploration was carried out on the Mt. Copeland molybdenum deposit to the south, immediately west of the summit of Mt. Copeland. Immediately east of the Mt Copeland summit the King Fissure deposit comprises a low-grade stratabound lead-zinc deposit explored during the early 1960s.

In 2001 a program of rock sampling was carried out on the Wild Goose property.

INTRODUCTION

In September, 2001 Discovery Consultants was retained by Mr. Larry Kryska, President of New Blue Ribbon Resources Ltd. to carry out a limited exploration program on the Wild Goose property. Sufficient work was requested to maintain the claims in good standing for a year beyond the expiry date of December 15.

The exploration program was not intended therefore to be a comprehensive evaluation of the Wild Goose property.

LOCATION AND ACCESS

The Wild Goose property is centred at latitude 51° 09' 45" north and longitude 118°26'10" west, 23 kilometres northwest of Revelstoke (Figure 1).

Access to the property can be gained by helicopter from Revelstoke.

TOPOGRAPHY

The property covers a cirque and surrounding ridges at the northwest fork of Copeland Creek and extends southerly to cover part of the headwaters of Copeland Creek. Topography ranges from moderate to steep with elevations ranging from 3700 feet (1130 m) to in excess of 8500 feet (2590 m).

and the state of the

ويكها بالمعادة فالمراجع والمراجع والمحادة

PROPERTY

The Wild Goose property (Figure 2) comprises six four-post claims designated the Wild Goose 1 to 4, 14 and 15 claims. The Wild Goose 1 to 4 claims were staked on February 28, 2000 and recorded in Vernon, B.C. on March 1, 2000. The Wild Goose 14 and 15 were staked on February 13, 2001 and were registered in Vernon B.C. on February 21, 2001. A Common Anniversary Date was applied for on February 21, 2001 and the anniversary date extended to December 15, 2001 and 2002 respectively.

New Blue Ribbon Resources Ltd. has issued a press release stating that it had signed an option agreement with the claim owners. Ownership of the claims has not yet however been transferred to New Blue Ribbon.

Claim Name	Record No.	Owners of Record	Anniversary Date *
Wild Goose 1	374598	F. Jenkins/R. Cameron	December 15, 2002
Wild Goose 2	374599	F. Jenkins/R. Cameron	December 15, 2002
Wild Goose 3	374600	F. Jenkins/R. Cameron	December 15, 2002
Wild Goose 4	374601	F. Jenkins/R. Cameron	December 15, 2002
Wild Goose 14 Wild Goose 15	383910 383911	F. Jenkins/R. Cameron F. Jenkins/R. Cameron	December 15, 2003 December 15, 2003
			•

* Pending acceptance of this report.

HISTORY

Exploration was in the area was first reported in 1895 with the staking of the Goose Chase showing, a small high-grade zinc vein that occurs on the ridge northeast of the north fork of Copeland Creek.

It was not until the 1960s that any significant work was carried out in the area with exploration carried out principally on the Mt. Copeland molybdenum deposit and the King Fissure lead-zinc deposit. Both deposits are located on the flanks of Mt. Copeland south of the main drainage of Copeland Creek.

Exploration during this period led to the discovery of the Copeland Creek or Bews Creek showing (Minfile #082M 095) described by Fyles (1970) as occurring 1.5 km northeast of the pass between Copeland and Bews Creeks. The showing comprises coarse galena , sphalerite and dark brown iron carbonate along a shear zone trending 015° with a 70° east dip. The mineralization zone is up to 6' thick (1.8 m) and is exposed along strike for a distance of 150' (46 m). Masses of galena and sphalerite to 2' in thickness (0.6m) occur on either side of mafic dyke. The dyke is reported to be highly altered, suggesting that the sulphide mineralization is later than the dyke.

This showing is remarkably similar to the Galena Creek Showing on the Wild Goose claims. This showing, located in the south wall of the cirque containing the north fork of Copeland Creek, was discovered by the claim holders in the late 1980s. The Galena Creek showing is the largest of several showings in the claim area. Several smaller showings occur on the north wall of the cirque and include the 2N Showing.

GENERAL GEOLOGY

The Wild Goose property is found near the northwest edge of the area mapped by J.T. Fyles from 1964 to 1966. Fyles' map shows the Bews Creek Fault extending northeasterly from the headwaters of Bews Creek to the cirque area containing the Galena Creek and 2N showings. The fault then swings southeasterly along the south edge of the cirque to the area of the junction of Copeland Creek and the north fork of Copeland Creek. On the south side of the fault occur calc-silicate gneiss, with marble to the west and greyish and greenish grey gneiss to the east.

To the north of the fault occur white quartzite and conglomerate, mica schist and quartzite, and mixed (biotite-feldspar) gneiss. These rocks are believed to be older than those to the south and are interpreted to have been uplifted.

SHOWING DESCRIPTIONS

The Galena Creek showing is a massive galena vein with quartz and silicified rock inclusions and is exposed over a length of 10 metres and a width in excess of 1 metre. The showing grades about 60% galena and comprises two shoots of massive galena measuring 10 and 20 cm in width separated by a zone of galena veins in bleached, silicified wallrock. The latter is granular in appearance and may represent altered dyke material (Figure 4).

To the south about 25 m, finer grained mineralization is found within the creek bed and probably represents an extension of the main showing. Further mineralization is reported by the claim owners to exist within the creek bed further uphill to the south. This mineralization was not visited during the course of the present program.

This mineralization is contained within a shear zone averaging 5 to 6 metres in width. To the south of the main Galena Creek showing this zone is offset by a conjugate series of fractures and is reportedly offset by a shear zone about 40 m upstream from the main showing. This shear zone may be related to the mapped Bews Creek fault.

The north end of the Galena Creek Showing is covered in talus. Likewise the host structure is obscured by talus and soil of the north fork cirque. The structure has been traced some 600 metres to the north wall of the cirque and is seen in air photos as a lineament extending in a northerly direction from this point. In the north wall the structure contains altered dyke material but no evidence of mineralization.

In the north wall of the cirque but to the east of the extension of the Galena Creek structure occurs the 2N Showing. This showing follows a creek over a distance of approximately 100 m and comprises 3 or more 5 to 10 cm thick galena, sphalerite and

quartz veins with altered margins up to 30 cm in width. The veins cut biotite gneiss and pinch and swell over the length of the showing.

Parallel to the showing, trending in a northerly direction, occurs a mafic dyke ranging from 0.5 to 1 metre in width. This dyke is not intimately associated with the mineralization (Figure 5).

Prospecting in the area north of the cirque, to the north and west of the 2N showing, shows that similar dykes occur in many of the creeks in the area. These dykes appear to be contained within shear zones that run parallel to those that contain the Galena Creek and 2N showings.

West of the Galena Creek showing on the south side of the cirque is found another showing known as the "Gold Vein". This showing, approximately 12 metres in length and up to 0.5 metres in width, comprises pods of massive galena in a barite/carbonate vein. The vein trends ~030° with a 70° east dip. Several narrow quartz veins parallel the main vein. East of the main vein about 2 m and parallel to the main vein occurs a 1m wide mafic dyke similar to others seen on the property.

WORK COMPLETED

In 2001 a rock-sampling program was carried out on the Wild Goose property. Twenty-seven rock samples and one silt sample were collected from various showings. Samples were submitted to ALS Chemex in North Vancouver, B.C. where they were analyzed by Fire Assay and ICP methodology.

Sample locations are shown on Figure 3. Assay results and rock descriptions are contained in Appendix A.

Program Results

Anomalous to highly anomalous lead, zinc and silver values were detected in all samples collected on the Wild Goose claims. Lead values ranged to >50%, zinc values to 8.3%, and silver values to 1130 grams per tonne.

The most significant base metal values were returned from the main showing on Galena Creek. Sample 595-R-03 contained >50% lead, 8.3% zinc, 532 gpt Ag and 365 ppb Au. The most significant gold value on Galena Creek was in 595-R-01, which contained 3200 ppb Au.

At the Gold Vein Showing, to the west of the Galena Creek Showing, four of nine samples collected contained in excess of 3000 ppb Au with a maximum value of 16.6 grams per tonne.

Elsewhere on the property an altered sample (595-R-26) collected from float at the head of the cirque containing the Galena Creek, 2N and Gold showings contained 3660 ppm lead and 6090 ppm zinc.

A silt/talus sample (595-S-01) collected to the north of the north fork of Copeland Creek, in a cirque draining into the Jordan River, contained anomalous values in lead, zinc, silver and gold with analytical results of 530 ppm, 254 ppm, 0.4 ppm and 30 ppb respectively. This sample however appears to have been collected outside the claim area. Complete assay results are contained in Appendix 1.

· .

.

CONCLUSIONS

The Wild Goose property is host to a number of number of base and precious metal showings including the Galena Creek, 2N and Gold Showings. These showings are hosted by a series of northerly trending structural zones to several metres in width that also host a series of lamprophyric to diabasic dykes. The age relationships of the dykes to mineralization are uncertain as both fresh and altered dyke material is present within the structural zones. Limited prospecting and air photo study have shown that these structural zones are largely parallel and extend for several kilometres northerly from the known showings. The presence of the mafic dykes within the structural zones may be advantageous in tracing these structures by magnetic surveys in till covered areas.

The showings discovered to date comprise similar style mineralization over a large area. All are similar to the Bews Creek showing located approximately 3 km west of the Galena Creek showing.

Elsewhere on the property the Copeland Creek geochemical anomaly occurs north of the junction of Copeland Creek and the north fork of Copeland Creek. This area is devoid of outcrop but highly anomalous lead, zinc and silver values have been detected in silt samples. These values range up to >4000 ppm Pb, 3530 ppm Zn and 29 ppm Ag. Other than silt sampling no detailed exploration has been carried out in this area.

Overall the mineral showings located to date on the north fork of Copeland Creek are of sufficient grade to warrant additional exploration. The showings are contained within structural zones that extend over several kilometres. Exploration to date has been

10

(

has been confined to a relatively small area within the cirque containing the fork of Copeland Creek.

 (\cdot)

There is also a possibility of stratabound mineralization within the claim area. The highly anomalous nature of silt samples in areas away from the known shear-hosted veins shows that the area may be geochemically enriched in base and precious metals.

RECOMMENDATIONS

A comprehensive exploration program should be carried out on the Wild Goose property. The program should initially comprise an air photo study of the claim area to define structural zones to be followed by prospecting, geochemical sampling, geological mapping and geophysical surveys.

At the moment all the showings, including the Bews Creek showing, appear to be located north of the Bews Creek fault. The air photo study and mapping would determine whether the structural zones extend southerly through the fault.

Any structures defined should be traced under overburden by magnetometer and/or VLF-EM surveys. Silt sampling and soil sampling should be carried out over these areas where practicable to define additional mineralized zones.

Respectfull μ T.H. Carper

Vernon, B.C. March 29, 2002

BIBLIOGRAPHY

British Columbia Ministry of Energy and Mines- Minfile Database- Capsule Geology and Bibliography- Minfile #082M 095.

Fyles, J.T., (1970) The Jordan River Area – A Preliminary Study of Lead-zinc Deposits in the Shuswap Metamorphic Complex. B.C. Department of Mines, Bulletin No. 57.

Hoy, T. and Andrew, K. (1990) Report on Wild Goose Property visit.

Wright, R.L. (1989) A Report on the Wild Goose property

(

(-

WILD GOOSE PROPERTY

.

STATEMENT OF WORK

(

 $\left(\right)$

 $\left(\right)$

	Total .	Assessment Work:	<u>\$</u>	9,695.59
or 20% of exploration expenditure:		1,386.32		
	164.00	164.00>		164.00
b) Truck 380km @30¢/km gas	\$ 114.00 50.00			
or 50% of exploration expenditure:		\$3,465.79		
4. Transportationa) Helicopter		\$2,600.00>		2,600.00
	Explore	tion Expenditure:	\$	6,931.59
Lodging & Meals		510.00		1,588.57
Field Supplies	-	45.50		
Equipment Rental		100.00		
Analysis		910.60		
Office		5.40		
3. Expenses Communications		17.07		
				393.02
Dratting Secretarial		313.02 80.00		
2. Personnel		212.02		4,750.00
0.5 days @ \$450/day		225.00		4 050 00
Data Interpretation				
W.R. Gilmour, P.Geo.				
5.5 days @\$450/day	. ·	\$2,475.00		
Report Writing & Data Interpretation		2,200.00		
Field Program		2 250 00		
T.H.Carpenter, P.Geo.				
1. Professional Services				

-

STATEMENT OF QUALIFICATIONS

I, THOMAS H. CARPENTER of 3902 14th Street, Vernon, B.C., V1T 3V2, DO HEREBY CERTIFY that:

- 1. I am a consulting geologist in mineral exploration with Discovery Consultants of Vernon, B.C.
- 2. I have been practicing my profession since graduation.
- 3. I am a 1971 graduate of the Memorial University of Newfoundland with a Bachelor of Science degree in geology.
- 4. I am a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia.
- 5. This report is based upon knowledge of the Wild Goose property gained from a review of earlier work and completion of the field program.

Vernon, B.C. March 29, 2002

APPENDIX A

.

Rock Sample Descriptions and Assay Results

.

Ć

 $\left(\right)$

Sample Descriptions

595-R-01 Galena Creek. Showing above main showing. Fine grained massive galena with 10-15% pyrite. Heavily limonitic fractures.

595-R-02 Galena Creek. As above. Coarser grained galena with pyrite and quartz. Limonitic.

595-R-03 Galena Creek. Main showing. Massive galena. Coarse grained with some quartz.

595-R-04 Galena Creek. Main showing. Massive galena. Coarse grained.

595-R-05 Quartz vein lying in creek. About 3" thick. Trends 005°/80°E dip. Some gouge in creek. Probable continuation of Galena Creek shear zone.

595-R-06 Bleached gouge material. Possible altered dyke material. Zone about 2.5m wide with splay off to northwest.

595-R-07 Same location as 06. Similar material.

595-R-08 New mineralized zone. Manganese rich oxidized shear zone. Minor quartz veining. Narrow veinlets (1-2") galena and pyrite. Shear trends ~350°. Some tension gashes filled with quartz up to 1m long and 10cm wide at right angles to shear.

595-R-09 Quartz outcrop and float. Vein trends ~360° and is about 3m wide. Length unknown.

595-R-10 1-2" vein of galena, pyrite and pyrrhotite(?) in an altered shear zone up to 2' wide. Rocks in creek are predominantly biotite gneiss trending 290°/20° S dip. Diabase dyke ~3m east at this location.

595-R-11 Bleached rock with 10-15% pyrite. Zone of bleaching ~ 5m wide at this location on east side of drainage. Trends 006°. Other possible alteration barely visible ~7-8m to west in base of drainage.

595-R-12 2N showing. Grab from zinc showing on east side of showing.

595-R-13 2N. Grab of galena mineralization.

595-R-14 Below gold showing. Quartz vein about 10 cm thick. Trends 020°/85° west dip.

595-R-14a Quartz float from creek at same location.

595-R-15 "Gold" vein. Barite vein with sphalerite. Sample 15 cm in width. Crystalline calcite/barite. South end of showing.

595-R-16 Gold vein. Oxidized zone \sim 15 cm wide containing limonite on fractures. Baritic with some galena. Adjacent to 15.

595-R-17 Gold vein. Baritic vein ~ 15 cm wide. Coarsely crystalline. Adjacent to 16.

595-R-18 Gold vein. Baritic vein with sphalerite and galena veinlet about 25 cm wide. Centre of vein. 7m from 15, 16 and 17.

595-R-19 Gold vein. Altered wallrock on east side of north end of vein. Bleached and limonitic.

595-R-20 Gold vein. Boxwork quartz veining bordering barite. North end of vein.

595-R-21 Gold vein. Barite vein ~ 15cm wide. North end of main vein.

595-R-22 Gold vein. Quartz vein with limonite ~20' on strike north of main vein.

595-R-23 Gold vein. Quartz vein \sim 8-10' east of north end of main vein. Vein \sim 25cm thick with same trend as main vein. Bounded to west by 1m thick diabase.

595-R-24 Float below Galena Creek showing. Bleached siliceous rock with pyrite as disseminations and fracture coatings and 5mm galena veinlet.

595-R-25 Chip sample across 3-4" galena vein on Gold Creek.

C

595-R-26 Float from head of cirque. Sericitized rock with greyish, fine grained material in matrix.

595-S-1 Glacier area to north of cirque. Sample of silt/talus fines.

Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver

British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

CEF	RTIF		TE A0126286
(BPI) - DISC	OVER		ISULTANTS
Project: { P.O. # :	595		
Samples su This repor	bmitt	ed to	o our lab in Vancouver, BC. nted on 22-OCT-2001.
	SAM	IPLE	PREPARATION
CO CO	DE SA	MPLES	DESCRIPTION
PUL	-31	27	Pulv. <250g to >85%/-75 micron
LOG	-21 -22 -31	27 27 27 27	Samples received without barcode
SPL	-21	27 15	Splitting Charge ICP - AQ Digestion charge
+ NOTE 1	•		

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Ba, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W. to: DISCOVERY CONSULTANTS

P.O. BOX 933 VERNON, B.C. V1T 6M8

Comments: ATTN: TOM CARPENTER

CC: LARRY CRYSKA

				of 3	
METHOD CODE	NUMBER SAMPLES	DESCRIPTION	METHÓD	DETECTION	UPPER
WEI-21	27	Weight of received sample	BALANCE	0.01	1000.0
λu-λλ23	27	Au-AA23 : Au ppb: Fuse 30 grams	7A-XXS	5	10000
Au-GRA21	2	Au g/t: 1 assay ton, grav.	FA-GRAVIMETRIC	0.07	1000.0
Ag-ICP41	15	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	100.0
Al-ICP41	15	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
As-ICP41	15	As ppm: 32 element, soil & rock	ICP-JES	2	10000
B-ICP41	15	B ppm: 32 element, rock & soil	ICP-AES	10	10000
Ba-ICP41	15	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
Be-ICP41	15	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
Bi-ICP41	15	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
Ca-ICP41	15	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
Cd-ICP41	15	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	500
Co-ICP41	15	Co ppm: 32 element, soil & rock	ICP- AES	1	10000
Cr-ICP41	15	Cr ppm: 32 element, soil & rock	ICP-ALS	1	10000
Cu-ICP41	15	Cu ppm: 32 element, soil & rock	ICP-AES	1	10000
Fe-ICP41	15	Fe %: 32 element, soil & rock	ICP-ARS	0.01	15.00
Ga-ICP41	15	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
Ng-ICP41	15	Eg ppm: 32 element, soil & rock	ICP-AES	1	10000
K-ICP41	15	K %: 32 element, soil & rock	ICP-AES	0.01	10.00
La-ICP41	15	La ppm: 32 element, soil à rock	icp-ars	10	10000
Mg-ICP41	15	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
Mn-ICP41	15	Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
No-ICP41	15	No ppm: 32 element, soil & rock	ICP-AES	1	10000
Na-ICP41	15	Na %: 32 element, soil & rock	ICP- NES	0.01	10.00
R1-ICP41	15	Ni ppm: 32 element, soil & rock	ICP-AES	1	10000
P-ICP41	15	P ppm: 32 element, soil & rock	ICP-AES	10	10000
PD-ICP41	15	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
S-ICP41	15	S %: 32 element, rock & soil	ICP-AES	0.01	10.0
BD-ICP41	15	Sb ppm: 32 element, soil & rock	ICP-AES	2	1000
Sc-ICP41	15	Ho ppm: 32 elements, soil & rock	ICP-AES	1	1000
ST-ICP41	15	ST ppm: 32 element, soil & rock	ICP-XIS	1	10000
T1-ICP41	. 15	Ti %: 32 element, soil & rock	ICP-AES	0.01	10.00
T1-ICP41	15	Ti ppm: 32 element, soil & rock	ICP-AES	10	1000
U-ICP41	. 15	U ppm: 32 element, soil & rock	ICP- AES	10	10000

A0126286

Г

Chemex S AL Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: DISCOVERY CONSULTANTS

P.O. BOX 933 VERNON, B.C. V1T 6M8

Page Number :1-A Total Pages :1 Certificate Date: 22-OCT-2001 Invoice No. :10126286 Invoice No. P.O. Number BPL Account

Project : 595 Comments: ATTN: TOM CARPENTER

CC: LARRY CRYSKA

CERTIFICATE OF ANALYSIS A0126286

SAMPLE	PREP CODE	Weight Kg	λu ppb Γλ+λλ	λu Fλ g/t	λg ppn	л *	λs ppm	B ppa	Ba ppm	Be ppn	Bi ppm	Ca.	cq midd	Co pjm	Cr pjm	Cu ppm	ro X	Ga ppm	Hg ppm	x z
595-R01	94139402	1.60	3200																	
595-R02	\$4139402	1.20	585	*****			***									*				
595-R03	94139402	1.30	365																	
595-RU4 595-R05	94139402	0.94	< 5		15.6	0.10	108	< 10	10	< 0.5	< 2	0.03	1.5	< 1	122	50	0.50	< 10	< 1	0.08
595-R06	94139402	0.76	< 5		5.8	0.24	98	< 10	30	0.5	< 2	0.10	< 0.5	2	62	15	1.24	< 10	< 1	0.15
595-R07	P4139402	0.50	< 5		0.2	0.24	14	< 10	30	1.5	< 2	0.15	< 0.5	3	77	3	1.54	< 10	< 1	0.16
595-RU8	64139402	1.94	112		>100.0	0.04	2500	< 10	< 10	0.5	< 2	0.16	50.0	9	14	85	11.30	< 10	2	0.07
595-R10	94139402	0.50	25											·····		4	0.40			0.05
595-R11	94139402	0.60	40																	
595-R12	þ 413 þ 402	1 0.64	140																	
595-R13	94139402	0.68	20																	*****
595-R14 595-R14X	94139402	0.92	< 5		0.2	0.09	14	< 10 < 10	820 50	< 0.5 < 0.5	< 2	1.00	0.5	4	87 70	1 2	1.64 1.65	< 10 < 10	< 1 < 1	0.10 0.17
595-R15	94139402	1.52	>10000	16.64																
595-R16	P4139402	0.78	>10000	14.76																
595-R17	P4139402		20		0.0	< 0.01	4	< 10	2300	< 0.5	< 2	< 0.01	. < 0.5	< 1	7	9	0.05	< 10	< 1	< 0.01
595-R19	\$4139402	2 0.92	40		6.2	0.21	305	< 10	1990	< 0.5	< 2	< 0.01	0.5	< 1	82	98	2.38	< 10	< 1	0.21
595-R20	94139402	2 0.96	460																	
595-R21	94139403		5 < 5		1.4	< 0.01	6	< 10	2040	< 0.5	< 2	2 < 0.03	< 0.5	< 1	13	4	0.04	< 10	< 1	< 0.01
DYD-K44 895-D71	DA13040		1 3010 A 1		30.4	0.00	210	< 10	1170	< 0.5		(< U.U) > / 0 01	< U.5	< 1 2	105	55	0.69	< 10	< 1	0.06
595-R24	9413940	2 0.24	75		82.6	0.16	1395	< 10	40	< 0.5		2 < 0.01	5.0	2	108	344	2.75	< 10	< 1	0.03
595-R25	9413940	2 1.34	<		95.0	0.46	24	< 10	150	1.0	< 2	2 0.17	6.5	6	48	81	3.14	< 10	< 1	0.30
595-826		2 0.3			3.6					1.0			. 18.0	15	45	30	5.17	< 10	3	0.40
											-			CERTIF		:	14			•

Chemex S AL Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: DISCOVERY CONSULTANTS

P.O. BOX 933 VERNON, B.C. V1T 6M8

Page Number :1-B Total Pages :1 Certificate Date: 22-OCT-2001 Invoice No. :10126286 P.O. Number : Account : BPI

.

1

Project : 595 Comments: ATTN: TOM CARPENTER CC: LARRY CRYSKA

CERTIFICATE OF ANALYSIS

A0126286

SAMPLE	PREP	La ppm	Mg X	Ma ppa	No PPR	Na t	Ni PPM	ppa P	Pb Ppm	8 %	SD PPR	Sc. ppm	Sr ppm	Ti t	Tl ppa	n D	v P pm	pper M	Zn ppn	Al % (ICP)
595-R01	94139402														*****					0.04
DJJ-RU4 EQE_D03	64336407													~~~~~						0.07
595-R04	64136402																			4.13 A 22
595-R05	4139402	< 10	0.01	80	2	< 0.01	3	30	7790	0.17	20	< 1	1	< 0.01	< 10	< 10	< 1	< 10	440	
595-R06	\$413\$402	30	0.01	410	< 1	< 0.01	2	250	2920	0.07	4	3	5	< 0.01	10	< 10	3	< 10	108	
595-R07	94139402	30	0.03	240	3	< 0.01	3	320	218	< 0.01	2	- 4	7	< 0.01	10	< 10	3	< 10	78	
595-R08	P4139402	< 10	0.41	>10000	16	< 0.01	1	100	>10000	3.75	302	< 1	18	< 0.01	< 10	100	< 1	< 10	9310	
595-R09	P4139402	< 10	< 0.01	340	1	< 0.01	3	30	586	< 0.01	< 2	< 1	< 1	< 0.01	< 10	< 10	1	< 10	50	
595-R10	94139402										*****							*****		1.86
595-R11	P413P402															*****				6.19
895-R12	P413P402														****					6.98
P95-R13	P4139402	1		1228		~ ^ ^1	,													4.95
595-R14	94139402	< 10	0.13	645	i	0.03	4	120	178	0.02	< 2	3	15	< 0.01	< 10	< 10	3	< 10	412	
595-R15	94139402																			0.06
595-R16	\$413\$40 2																			5.20
595-R17	\$413\$402	< 10	< 0.01	5	< 1	< 0.01	< 1	< 10	136	0.07	2	< 1	39	< 0.01	< 10	< 10	< 1	< 10	24	
595-R18	P4139402																			0.65
595-R19	94139402	· < 10	0 < 0.01	3050	< 1	< 0.01	3	110	3290	0.08	18	< 1	8	< 0.01	< 10	< 10	< 1	< 10	956	
595-R20	P4139402								*****											0.80
595-R21	P4139402	< 10	(< 0.01)	. 160	< 1	< 0.01	1	< 10	116	0.06	4	< 1	29	< 0.01	< 10	< 10	< 1	< 10	40	**
595-R22	94139402	4 10		565	2	< 0.01	2	10	2200	0.07	96	< 1	3	< 0.01	< 10	< 10	< 1	< 10	222	
D90-R23	64139402		1 < 0.01	. >TOOOO	< 1	< 0.01		30	10000	0.09	< 2	< 1	36	< 0.01	< 10	50	1	< 10	2790	
D95-K24									>10000	3.07	88	< 1	< 1	< 0.01	< 10	< 10	< 1	< 10	1440	
595-R25	P413P402		> 0.09	1 7170	1	. < 0.01	. 2	500	>10000	0.81	104	- ÷	20	0.03	< 10	< 10	11	< 10	2370	
D32-KT0	Parsae01	(1 210000	ţ			000	2000	0.43	54	Ð	1	< 0.01	< 10	50	7	< 10	6090	*****

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers 212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: DISCOVERY CONSULTANTS

P.O. BOX 933 VERNON, B.C. V1T 6M8

1

() Page Number :1-C Total Pages :1 Certificate Date: 22-OCT-2001 Invoice No. :10126286 P.O. Number : Account :BPI

Project : 595 Comments: ATTN: TOM CARPENTER

CC: LARRY CRYSKA

CERTIFICATE OF ANALYSIS A0126286

SAMPLE	PREP CODE	Sb pps (ICP)	(ICP)	Be ppm (ICP)	Bi ppm (ICP)	Cd ppm (ICP)	Ca % (ICP)	Ce ppm (ICP)	Cs ppm (ICP)	Crypm (ICP)	Coppen (ICP)	Cuppa (ICP)	Gayym (ICP)	Ge ppm (ICP)	Fe % (ICP)	La ppe (ICP)	Pb ppm (ICP)	Li ppm (ICP)	Ng % (ICP)	Mn ppm (ICP)
595-R01 595-R02	94139402 94139402	>1000.0 573.9	20.5	0.05	0.86	24.1 294	0.01	0.18	0.10	55 102	29.1 16.8	1975.0 1995.0	0.40	0.35	18.10	< 0.5	>10000 >10000	5.6 8.4	< 0.01	30 695
595-R03 595-R04 595-R05	9413940: 9413940:	904.2	50.0	0.10	0.95	26.5	< 0.01	1.33	0.25	74	4,4 	2180	1.35	0.10	7.68	0.5	>10000	2.8	0.01	1460
595-R06 595-R07	9413940 9413940	2																		
595-R08 595-R09 595-R10	9413940 9413940	474.9	104.0	0.90	2.98	268	0.08	8.47	1.70	118	26.6	110.8	5.75	0.50	15.55	4.1	>10000	1.8	0.15	635
595-R11 595-R12	9413940 9413940	2 17.5	5 240.0	1.95	0.35	21.0 88.7	0.09	36.6	4.10	287 308	27.5	56.0	18.50	1.35	15.05	15.0	8420 8340	4.6	0.26	220
595-R14 595-R14	9413940 9413940	2																	V.03 	248U
595-R15 595-R16 595-R17	9413940 9413940 9413940	2 90.3 2 452.7	5>10000 903.2	0.15	0.09	17.90 49.0	< 0.01 0.01	0.21 6.35	0.15	37 153	0.6	472.0 2710	0.90	0.35	0.29	< 0.9 3.0	5 2200 >10000	4.0 13.6	< 0.01 0.10	650 1390
595-R18 595-R19	9413940 9413940	2 267.8	583.6	i 0.35	0.25	273	< 0.01	1.53	0.70	73	0.7	1325.0	3.20	0.10	1.15	0.9	5>10000	37.6	< 0.01	35
595-R20 595-R21 595-R22	9413940 9413940 9413940	2 67.3	5 1152.0	0.45	0.15	105.0	< 0.01	1.32	0.65	198	0.8	260.4	3.35	0.05	2.24	0.:	5 7890	45.8	0.01	425
595-R23 595-R24	9413940 9413940	2									*****	***** -****	 							
595-R25 595-R26	9413940 9413940	2						*****												
1																		_		

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

fo: DISCOVERY CONSULTANTS

P.O. BOX 933 VERNON, B.C. V1T 6M8 () Page Number :1-D Total Pages :1 Certificate Date: 22-OCT-2001 Invoice No. : I0126286 P.O. Number : Account :BPI

Project : 595 Comments: ATTN: TOM CARPENTER

CC: LARRY CRYSKA

CERTIFICATE OF ANALYSIS A0126286

PREP No ppa Ni ppa Nb ppa P ppa K % Rb ppm Åg ppm Na % Sr ppm Ta ppm Te ppm Tl ppm Th ppm Ti % W ppm U ppm V DDa Y DDa Za DDa SAMPLE CODE (ICP) 94139402 17.0 270 < 0.01 595-R01 1.15 0.1 0.5>100.0 0.01 7.2 < 0.05 < 0.050.90 < 0.2 < 0.010.1 0.4 < 1 0.5 3720 595-R02 4139402 0.85 10.2 250 0.01 0.7>100.0 0.01 < 0.1 4.6 < 0.05 < 0.050.80 < 0.2 < 0.01 0.1 < 0.1 < 1 0.1 >10000 64139402 1.25 6.2 < 0.05 < 0.05 595-R03 3.4 0.1 220 0.07 5.3>100.0 0.02 1.32 0.4 < 0.010.3 0.2 < 1 0.5 >10000 595-R04 94139402 0.80 3.8 0.2 220 0.08 7.2>100.0 0.01 4.8 < 0.05 < 0.05 1.22 0.2 < 0.010.5 < 0.1 1 0.5 4680 595-R05 64139402 ------------____ 94139402 595-R06 94139402 595-R07 94139402 595-R08 ____ **\$413\$402** 595-R09 ____ 595-R10 \$4139402 1.55 30.8 1.2 300 0.70 63.4>100.0 0.01 13.6 < 0.050.35 2.95 0.8 0.11 1.3 0.4 49 1.4 >10000 64139402 2.20 595-R11 47.4 6.6 560 2.60 266 9.80 0.12 12.4 0.45 < 0.054.72 0.6 0.44 230 4.6 0.2 3.7 5990 595-R12 4139402 1.60 47.0 9.1 630 2.59 313 13.60 0.15 58.1 0.95 < 0.054.86 0.4 0.47 9.2 0.3 251 4.5 >10000 94139402 595-R13 28.6 22.8 2.35 4.2 730 1.83 191.0>100.0 0.12 0.30 < 0.053.06 0.2 0.24 1.3 0.3 101 5.8 >10000 595-R14 \$413\$402 ____ --------------------------------595-R14A 94139402 --------595-R15 94139402 0.80 2.6 < 0.1 130 0.01 1.2 33.0 0.01 107.0 < 0.05 < 0.050.10 < 0.2 < 0.01 0.6 0.4 1 0.1 1385 595-R16 64139402 2.55 160 240 >100.0 4.4 1.2 1.92 0.14 68.8 0.10 < 0.053.00 1.4 0.02 4.8 0.3 1 1.1 >10000 595-R17 64139402 --------595-R18 \$4139402 7.4>100.0 $0.01 \quad 106.0 < 0.05 < 0.05$ 2.55 3.2 0.1 130 0.05 0.28 0.4 < 0.0122.6 < 0.1 < 1 0.3 >10000 595-819 b4139402l ____ ----------------____ --------595-R20 64139402 180 3.15 8.6 0.3 0.17 13.8 34.5 < 0.01 147.0 < 0.05 < 0.05 0.28 0.4 < 0.011.6 < 0.1 < 1 0.3 >10000 595-R21 **\$413**\$402 ____ -------------____ --------____ 595-R22 94139402 ----_____ ____ 595-R23 b413b402i _____ 595-R24 64136402 ____ _____ ----595-825 64139402 ----____ --------595-R26 64139402

CERTIFICATION:

al

A0126287

Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To:	DISCOVERY	CONSULTANTS

P.O. BOX 933 VERNON, B.C. V1T 6M8

1

SAMPLES

METHOD

CODE

Comments: ATTN: TOM CARPENTER CC: LARRY CRYSKA

ANALYTICAL PROCEDURES											
DESCRIPTION	METHOD	DETECTION LIMIT	upper Limit								
received sample Au ppb: Fuse 30 grams	BALANCE FA-AAS TOB-AKS	0.01	1000.0								
lement, soil & rock	ICP-AES	0.01	15.00								
element, soil & rock	ICP-AES	2	10000								
element, rock & soil	ICP-AES	10	10000								

	NFT-01		Notable of according to an an		
nuver, BC.	311-32	4	Weight of feceived simple	BALANCE Pl-110	0.01
01.	Au-AALS		Ad-AAAS I Ad ppor Fuse SU grams	2 A-AAD 703-3300	
	AJ_TCP41		1 % 32 element soil & rock	107-120	0.4
	AL-TOPA1	1	la mont la element soil t rock	TCD-100	0.01
	B-TCD41	1	R nume 22 alament work t soil	ICF-RED TOD-180	10
	Ba-TCP41	1	Ba work 32 alament soil & work	TCP-ALS	10
	Be-TCP41	1	Ba rem. 12 element soil & rock	1CF-ALO	10 T0
	BI-TOPA1		be plat by element, soil & rock	10F-ALG	0.5
DN I	CastCR41	ī	Co Y. 17 element soil & sort	10F-A60	
	Cd-TCP41	;	Cd ymm, 12 alemant, soll & rock	10F-A60	0.01
	Co-TCP41	•	Co way 32 element, soil & rock	107-AB0	0.3
Ļ	Cr-TCP41	ī	Cr mm. 22 alement, soil & rock	107-170 TCD-170	4
TION	CI-ICP41	î	Co pres 22 clement, soil & rock	TOD NDG	1
TION .	Te-TCP41	1	To by 32 element, soil & rock	TCP-ALS	4 A A
	da-TCP41	,	Co provi 12 alement soil & rock	1CF-ALD TCD_1P0	0.01
	Ha-TOBA1	1	Ha pro. 12 element, soil & rock	TOD-190	10
n - Save Minus	r-top41		W & 32 alament and a work	10F-860 TAB-390	4 A A A
Charge	Les TOPA1		Te www. 13 alamath and a math	TOD. NEG	0.01
Without Darcode	Ma-TCP41	÷	Marke 12 element soil & rock	ICP-AES	10
a charge	Mp_TCP41	÷	My way 22 closest soil & rock	ICP-AES	0.01
	Mo-TCD41	÷.	Ma mana 22 alamant, soll a rock	ICF-ALS	5
	Ne-TCD41	1	We by 32 element, soll & rock	TOP ARS	1
	Wi-TCP41	1	the ways 20 slowers soil a rock	TOP AND	0.01
	B-TCB41		Ni pini 32 element, soll & rock	TCP-ALS TCD-ARS	1
	Ph-TCR41	ŝ	The man 12 alement soil & mak	105-180 109-180	19
	8-10041	1	is k. 12 alament work t and	TOD-NED	A 41
	Sh-TCR41	-	S of SA Greener, FOCK & SOIL	ICF-ALS	0.01
		;	So way 22 elements soil t meth	ICF-RES	
	Se-ICF41	÷.	Su man, 22 elements, soll & rock	ICP-AES	1
	TI-TCP41	1	Mi to 32 element soil & rock	108-AE8 708-380	1
	T1-TCP41	- Î	The second second second second	10 5-01 0	0.01
le for	TTCP41	1	It your 32 alement soil & wook	107-863	10
mples.	V-TOBA1	,	W man, 32 alemant, soil & rock	TOP-AND TOP-AND	10
regia	W-TCBA1	1	W mon, 31 Alement soil 5	ICP-865	
	20-10241	1	To provide an alternation of a rock	TCD-120	10
r, 11,	200-14F41	-	an pym. Ja wament, soll a rock	101-120	

(BPI) - DISCOVERY CONSULTANTS

CERTIFICATE

Project: 595 P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 18-OCT-2001.

SAMPLE PREPARATION							
METHOD	NUMBER SAMPLES	DESCRIPTION					
SCR-42 SCR-01 LOG-22 229	1 1 1	-180 micron screen - Save Minus Screen - Save Plus Charge Samples received without barcode ICP - AQ Digestion charge					
* NOTE 1:							

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

A0126287

10.00

10000

10000

10000

S Chemex AL Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: DISCOVERY CONSULTANTS

P.O. BOX 933 VERNON, B.C. V1T 6M8

Page Number :1-A Total Pages :1 Certificate Date: 18-OCT-2001 Invoice No. :10126287 P.O. Number : BPI Account

Project : 595 Comments: ATTN: TOM CARPENTER

1

CC: LARRY CRYSKA

CERTIFICATE OF ANALYSIS A0126287

SAMPLE	PREP CODE	Weight Kg	λυ ppb Γλ+λλ	λg ppm	х1 *	λs ppm	B D D w	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg	к %	La ppm
SAMPLE 595- \$ -01	CODE	Kg 0.56	Ρλ+λλ 30	ppa 0.4	1.50	52	ppm < 10	99m 360	0.5	99m < 2	- % 0.47	0.5	ppm 12	28	99m. 31	2.98	2 Juni	ppm < 1	0.69	99m 30
	<u> </u>	1												CERTIFI			-2			

.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: DISCOVERY CONSULTANTS

P.O. BOX 933 VERNON, B.C. V1T 6M8

1

ſ

() Page Number :1-B Total Pages :1 Certificate Date: 18-OCT-2001 Invoice No. : J0126287 P.O. Number : Account :BPI

Project : 595 Comments: ATTN: TOM CARPENTER

CC: LARRY CRYSKA

										CERTIFICATE OF ANALYSIS A0126									3287		
Sample	PREP CODE	Mg X	Mn ppm	No ppm	Na %	Ni P r m	P PPm	Pb ppm	s %	Sb mqq	Sc ppm	Sr ppm	Tİ X	T1 ppm	U Mqq	V PPM	M M	2n ppm			
595- \$ -01	94069407	0.92	810	3	0.03	25	1410	530	0.07	< 2	4	113	0.12	< 10	< 10	42	< 10	254			

CERTIFICATION:_

an

GEND	
ment silt sample location	
e location	
sample location	
ea.	
coundary	
bedding	
jointing	
foliations	
and attitude	
po Pyrrhotite	
q Quartz vein	
sp Sphalerite	
Mor.27/2002 REVISION	
703\DWG\GE0_703	
0*58'	
Thue Marth	
tour interval = 100 metres	
50 200 250 300 350	
IETRES	
Consultants	
on Resources Ltd.	
se Property	
ck Sample Locations	
8 Scale: 1.5000 UTM: 11	
2 Drawn By: RM Figure: 3	

