REPORT ON THE 2001 EXPLORATION PROGRAMS

.

(GEOLOGICAL, GEOCHEMICAL, TRENCHING AND DIAMOND DRILLING)

WORLDSTOCK PORPHYRY TARGET

on the

SILVER LAKE PROPERTY KAMLOOPS MINING DIVISION BRITISH COLUMBIA NTS 92P/9W

For

CHRISTOPHER JAMES GOLD CORP. 102-418 St. Paul Street Kambops, B.C. V2C 2J6

By

R.C. Wells P.Geo., FGAC. KAMLOOPS GEOLOGICAL SERVICES LTD. 910 Heatherton Court Kamloops, B.C. V1S 1P9

March 15, 2002

REPORT ON THE 2001 EXPLORATION PROGRAMS

(GEOLOGICAL, GEOCHEMICAL, TRENCHING AND DIAMOND DRILLING)

WORLDSTOCK PORPHYRY TARGET

on the

SILVER LAKE PROPERTY KAMLOOPS MINING DIVISION BRITISH COLUMBIA NTS 92P/9W

For

CHRISTOPHER JAMES GOLD CORP. 102-418 St. Paul Street Kamloops, B.C. V2C 2J6

By

R.C. Wells P.Geo., FGAC. KAMLOOPS GEOLOGICAL SERVICES LTD. 910 Heatherton Court Kamboops, B.C. V1S 1P9

March 15, 2002

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

(

.

 $\left(\right)$

С.

١.

SUMMARY 1
1.0 INTRODUCTION 5
1.1 LOCATION AND ACCESS
1.2 TOPOGRAPHY, VEGETATION AND CLIMATE
1.3 PROPERTY
1.4 EXPLORATION HISTORY
1.5 GEOLOGICAL ENVIRONMENT 19
A. Regional Geology 19
B. Local Geology
C. BC Survey Branch Regional Till Geochemistry
2.0 2001 EXPLORATION ON THE WORLDSTOCK TARGET
2.1 INTRODUCTION
2.2 PHASE 1 GEOPHYSICAL SURVEYS
2.3 SAMPLE HANDLING, ANALYTICAL PROCEDURES AND CHECKS 34
2.4 PHASE 2 TARGET DEFINITION
2.5 PHASE 2 ROAD CONSTRUCTION AND TRENCHING
2.6 PHASE 2 DIAMOND DRILLING PROGRAM
3.0 CONCLUSIONS WITH DISCUSSION
4.0 RECOMMENDATIONS AND COST ESTIMATE
5.0 STATEMENT OF EXPENDITURES
JUSTATEMENT OF LALENDITORES
6.0 STATEMENT OF QUALIFICATIONS 58
7.0 REFERENCES

AT REAR

- APPENDIX 1 STATEMENT OF WORK
- **APPENDIX 2** GEOCHEMICAL AND GEOPHYSICAL COMPILATION MAPS
- APPENDIX 3 2001 PHASE 2 EXPLORATION: TARGET DEFINITION DATA
- APPENDIX 4 2001 PHASE 2 EXPLORATION: TRENCH AND SAMPLING DATA
- **APPENDIX 5** 2001 PHASE 2 EXPLORATION : DIAMOND DRILLING DATA.

LIST OF FIGURES

ł

Figure 1	Property Location Map	4
Figure 2	Silver Lake Property: Claim Map	8
Figure 3	Ta Hoola, Silver, HC 8 Rock Island Claims 1987 with western part of the Silver Lake Property	11
Figure 4	Compilation Map with Exploration Targets	15
Figure 5	Claim Map with 1999-2001 Exploration Areas	17
Figure 6	Discovery Grid 2000 Compilation Map	18
Figure 7	Regional Geology	20
Figure 8	Local Geology	22
Figure 9	Mineral Occurrences in the Property Area	25
Figure 10	Till Geochemistry. a = Au, b = Cu, c = Mo	28-30
Figure 11	Silver Lake Property: Worldstock Grid. Soil Geochemical Program 1999 to 2000, Cu (ppm)	32
Figure 12	2001 Exploration Program. Geophysical Compilation Map	Appendix 2
Figure 13	2001 Exploration Program. Geochemical Compilation Map	Appendix 2
Figure 14	2001 Exploration Program. Geological Map with Drillhole, Trench and Pit Locations	Appendix 3
Figure 15	2001 Exploration Program. Sample Locations.	Appendix 3
Figure 16	Trench WS 2001-1: Geology and Sampling Plan.	Appendix 4
Figure 17	Trench WS 2001-2: Geology and Sampling Plan.	66 7 3
Figure 18	Drill Profile: DDH.WS2001-02	Appendix 5
Figure 19	Drill Profile: DDH.WS2001-01	66 9 7
Figure 20	Drill Profile: DDH's.WS2001-03 & 07	دد ۲۹
Figure 21	Drill Profile: DDH's.WS2001-04,05 & 06	46 9 9

and the second s

(

LIST OF TABLES

 $\left(\right)$

Page No.

Table 1	Silver Lake Property - Claim Information	9
Table 2	Summary of Highest Concentration Till Samples for Key Elements	26
Table 3	Worldstock Grid: Whole Rock Data	Appendix 3
Table 4	Worldstock Grid: 2001 Prospecting Samples	66 33
Table 5	Worldstock Grid: Grid Soil Survey	66 77
Table 6	Worldstock Grid: Prospecting New Road Samples	66 77
Table 7	Worldstock Grid: Trenching Samples	Appendix 4
Table 8	Phase 2 Drilling Information	46

SUMMARY

This report documents 2001 exploration by Christopher James Gold Corp. on the Worldstock Porphyry Target in the eastern part of the Silver Lake Property located 17 kilometres northwest of Little Fort, north of Kamloops, BC. There is excellent logging road access to the property and Worldstock target from Highway 24 to the south. This large property covering approximately 4900 hectares consists of the Discovery, Worldstock, Crater and Leslie mineral claims. Christopher James Gold Corp. owns these claims 100% subject to two NSR agreements (total 3%).

The property covers a section of Nicola Group (Upper Triassic) rocks in the Quesnel Terrane including northwest trending volcanic, sedimentary rocks with numerous intrusions. Exploration over the last 40 years mainly in the western half of the property has identified a large number of targets including veins, vein stockworks, broad alteration zones and skarns. Most, if not all of these have variable combinations of metals from gold, silver, copper, lead, zinc and molybdenum. Prior to 2001 only three of the seven best developed targets on the property had received drilling by previous operators, and this was of a preliminary nature with no follow-up.

Recent exploration by the company (since 1997) has focussed on two new targets with high potential called the Worldstock (porphyry) and New Discovery (massive sulfide) in the eastern and southern parts of the property respectively. Much of the eastern property area, in particular the Crater and Worldstock claims had received little to no previous exploration due to the extensive till and forest cover.

Following the discovery of copper (Au, Ag) mineralization at the Worldstock showing in 1997, the company conducted two low budget exploration programs involving grid installation, soil geochemical surveys and limited prospecting. These outlined a 1.1 kilometre long by up to

R. C. Wells, P.Geo., FGAC. Kamloops Geological Services Ltd.

1

250 metre wide, northwest trending copper (plus or minus Ag, Au, Mo, Zn) soil anomaly open to the south.

The 2001 exploration by the company on the Worldstock target took place between February and December and was in two phases with expenditures totalling \$128,243.11. Phase 1, winter geophysical surveys outlined an extensive and strong IP chargeability anomaly, larger than (in large part coinicident with) the main copper soil anomaly and open to the north. Phase 2 exploration consisted of grid based geological, prospecting and detailed soil surveys to define targets in the anomaly areas for follow-up trenching and drilling. This exploration demonstrated that the main copper soil-IP anomaly was an excellent target featuring porphyry style alteration, extensive pyrite and local chalcopyrite mineralization. Several 'hot spots' with bedrock copper mineralization were identified.

Follow-up trenching was restricted to three small areas due to high groundwater conditions. Three of the four trenches/pits returned significant copper-silver values including 24 metres averaging 0.19% Cu in Trench #1 at the Worldstock showing. Grab samples from Pit-2 located 250 metres to the southeast returned up to 2.69% Cu with 31.5 g/t Ag.

Seven NQ diamond drill holes totalling 888.19 metres tested four widely spaced sections between 200 and 250 metres apart. Strongly anomalous copper-values were associated with pyritic-propylitic, argillic-phyllic and potassic alteration zones which were centred on crowded feldspar porphyry dikes and/or early structures predominantly in volcaniclastic rocks. Several significant copper (silver) intersections were returned including 10.4 metres averaging 0.38% cu, 2.6 g/t Ag in hole #1.

Further drilling is clearly warranted as only a small area on this large geochemicalgeophysical anomaly has been preliminarily tested at shallow depth. There is good potential for

higher grade and intrusive centred bulk-tonnage copper, silver (plus or minus Au, Mo) at depth and along the northwest trend.

A two phase drilling program is recommended to further advance this promising exploration target.

1.0 INTRODUCTION

This report presents the results from year 2001 exploration programs on the Worldstock Porphyry Target on the Silver Lake Property, Kamloops Mining Division of British Columbia. This program took place between February and December 2001 and was supervised by R.C. Wells, P.Geo, FGAC, consulting geologist for Kamloops Geological Services Ltd. The program was financed by Christopher James Gold Corp. with offices at 102-418 St. Paul Street, Kamloops BC. This company is currently exploring the Silver Lake property for a variety of polymetallic targets.

Year 2001 exploration on the property focussed on two target areas. Firstly, the Worldstock porphyry target which has potential for a high level copper (Au, Ag, Mo?) porphyry style system in the eastern claim area; secondly, the New Discovery massive sulfide copper (Ag, Au) target in the southern property area. For company purposes the 2001 exploration programs of these two promising targets are documented in separate reports.

Total exploration expenditures by the company on the Silver Lake property in 2001 were approximately \$320,440.89. All of the claims were grouped (Event No. 3174597). \$210,000.00 from the 2001 exploration expenditures are being applied to the group plus a PAC withdrawal of \$55,800.00 for a total of \$265, 800.00 assessment work credit (Appendix 1). Regarding the Worldstock porphyry target approximately \$128,243.11 was spent on exploration in 2001.

1.1 LOCATION AND ACCESS

The Silver Lake property is located 17 kilometres northwest of Little Fort, BC., Latitude 51°33'N and Longitude 120°21'W as shown in Figure 1. The property lies within NTS topographic map sheet 92P/9W and covers a northwest trending panel 13 km long by 3 to 4 km wide, north of Deer Lake (Figure 2). Rock Island Lake lies close to the centre of the property.

R. C. Wells, P.Geo., FGAC. Kamloops Geological Services Ltd.

5

Access to the property is from Provincial Highway No. 24 which links Little Fort with 100 Mile House. Two main logging roads branch north from Hwy 24, one to Deer Lake, the other along Nehalliston Creek. They access the western and eastern parts of the property respectively. A network of old and new logging roads and trails occur on the property, very few areas are more than a kilometre from a road.

1.2 TOPOGRAPHY, VEGETATION AND CLIMATE

The property lies within an undulating plateau region with numerous lakes. Elevations are in the 1250 to 1550m range with the higher ground forming a southeast trending ridge east of Lost Horse Lake. Nehalliston Creek drains southeast from Lost Lake through Meadow, Silver and Portage Lakes on the property (Figure 2).

Fairly thick stands of mature spruce, fir, pine and balsam occur on the property. These have been subject to logging by Tolko Industries Ltd. over the last decade. Numerous clear-cut blocks occur on the property, several of which are very recent. The property area has typical upland climate for the central interior with dry summers and cool to cold winters. Snow cover is basically form late October through to April, with accumulations up to 1.5 metres.

1.3 PROPERTY

The Silver Lake Property consists of 211 units in two-post and modified grid mineral claims covering approximately 4900 hectares. Table 1 gives details regarding the individual claims and Figure 2 shows their locations. Basically the property is an amalgamation of three contiguous groups: from west to east the Discovery (original PGR), Crater and Worldstock. In August 200 the original PGR two-post claims were abandoned and relocated as the Discovery 1-5 modified grid claims. In 2001 the property was expanded to the north and south by the Worldstock #12 to 17 (6 units) and Leslie 3, 33, 330, 333, 3333 (37 units) mineral claims.

The claims are all owned 100% by Christopher James Gold Corp. with offices located at #102-148 St. Paul Street, Kamloops, BC, V2C 2J6. There are two NSR agreements: one with the original vendors for 1% NSR (with buy-out), the other for 2% NSR with a finder group.

1.4 EXPLORATION HISTORY

The geology for the property area is highly favourable for a wide variety of deposit types. A short summary of previous exploration in the area follows:

1. Before 1950: Exploration was mainly for base and precious metal skarn and replacement deposits. In the early 1930's the Lakeview skarn zones were discovered south and southwest of Deer Lake (on the adjacent property to Silver Lake). These were hosted by limey units proximal to dioritic intrusions. Gold values up to several ounces were reported from magnetite-pyrrhotite skarn.

2. 1960 to 1975: This period was dominated by Cu-Mo porphyry exploration, mainly by Anaconda (1965-68) and Imperial Oil Ltd (1972-73). Integrated geological, geochemical and geophysical programs included some trenching and percussion drilling. None of the drilling was on the Silver Lake property area. Barriere Reef Resources (1972 to 1973) explored the area south and southwest of Deer Lake for both skarn and porphyry targets.

3. 1975 to 1985: Alkalic copper-gold porphyry zones were the main target during this period. Auriferous alteration zones received some attention. This exploration period featured major companies and large properties. Figure 3 is included for reference and shows claims that were active during this period. SMD Mining and BP-Selco conducted major integrated programs on the Ta Hoola and Silver claim areas which produced several coincident polymetallic soil (Au, Ag, Cu, Pb and Zn) and geophysical targets. The most important and strongest of these occur on the

 \cap

 $\widehat{}$

FIGURE 2. SILVER LAKE PROPERTY CLAIM MAP

TABLE 1: SILVER LAKE PROPERTY - CLAIM INFORMATION

CLAIM NAME	UNITS	RECORD	RECORDED DATE	CURRENT EXPIRY
		NO	· · · · · · · · · · · · · · · · · · ·	DATE
DISCOVERY 1	20	380144	Aug. 31, 2000	Aug. 31, 2010
DISCOVERY 2	20	380145	Ang. 23, 2000	Aug. 23, 2010
DISCOVERY 3	20	380146	Aug 31, 2000	Aug. 31, 2010
DISCOVERY 4	1	380148	Aug. 22, 2000	Aug. 22, 2010
DISCOVERY 5	20	380147	Aug. 18, 2000	Aug. 18, 2010
DISCOVERY 6	1	382446	Nov. 4, 2000	Nov. 4, 2010
CRATER 1	1	355203	Apr. 12, 1997	Apr. 12, 2010
CRATER 2	1	355204	Apr. 12, 1997	Apr. 12, 2010
CRATER 3	1	355205	Apr. 12, 1997	Apr. 12, 2010
CRATER 4	1	355206	Apr. 12, 1997	Apr. 12, 2010
CRATER 5	20	355223	Apr. 11, 1997	Apr. 11, 2010
CRATER 6	12	355224	Apr. 13, 1997	Apr. 13, 2010
CRATER 7	14	355225	Apr. 15, 1997	Apr. 15, 2010
WORLDSTOCK 1	20	353737	Feb. 8, 1997	Feb. 8, 2010
WORLDSTOCK 2	15	353738	Feb. 8, 1997	Feb. 8, 2010
WORLDSTOCK 10	1	377774	May 26, 2000	May 26, 2010
WORLDSTOCK 11	1	377775	May 26, 2000	May 26, 2010
WORLDSTOCK 12	1	389387	Sept. 5, 2001	Sept. 5, 2010
WORLDSTOCK 13	1	389388	Sept. 5, 2001	Sept. 5, 2010
WORLDSTOCK 14	1	389389	Sept. 5, 2001	Sept. 5, 2010
WORLDSTOCK 15	1	389390	Sept. 5, 2001	Sept. 5, 2010
WORLDSTOCK 16	1	389391	Sept. 5, 2001	Sept. 5, 2010
WORLDSTOCK 17	1	389392	Sept. 5, 2001	Sept. 5, 2010
LESLIE 3	8	389035	Aug. 23, 2001	Aug. 23, 2010
LESLIE 33	9	389114	Aug. 25, 2001	Ang. 25, 2010
LESLIE 330	1	389115	Ацд. 26, 2001	Aug. 26, 2010
LESLIE 333	1	389116	Aug. 26, 2001	Ацд. 26, 2010
LESLIE 3333	18	389386	Sept. 1, 2001.	Sept 1, 2010

TOTAL 211 Units

present PGR claim area. BP-Selco trenched many of these with variable success. Some trenches returned multigram gold values with silver and/or copper, lead and zinc (combinations of).

In 1983 Lornex drilled 33 percussion holes on several targets including 10 on the Meadow Lake Zone (Ta Hoola 9 and 12) in the PGR area. This geochemical-geophysical target returned interesting gold values. The best hole averaged 254 ppb gold over 118 feet.

4. 1987 to 1989: Two junior companies, Rat Resources Ltd. (Ta Hoola claims) and Lancer Resources (HC claims) were active in the property area during this period; Rebagliati Consulting managed the exploration. Exploration focussed on a variety of targets including veins, porphyry and quartz-carbonate zones with gold and/or silver. Both claim groups received some testing by diamond drilling and/or trenching as well as more detailed fill-in soil sampling.

On the Ta Hoola (PGR) four diamond drill holes tested targets peripheral to the Lornex Meadow Lake Zone. These returned several gold intersections including 4.29 g/t gold from a 3.10 metre quartz-carbonate vein zone in DDH 88-7.

Lancer Resources (1988) drilled 8 diamond drill holes on gold in soil anomalies that were coincident with alteration zones. Structural-alteration and porphyry style zones produced gold and gold-copper intersections. DDH 88-4 returned gram plus gold values. These drill programs were preliminary, and many target areas were not tested.

5. 1991 to 1994: During this period staking by P. Watt generated the PGR property (parts of old Ta Hoola 9, 10, 11 and 12). Prospecting by the property owner was assisted by new logging blocks and indicated widespread polymetallic mineralization (with gold) in bedrock and float throughout the claim area. In the 1992 to 1993 period, 21 prospecting samples out of 50 returned gram plus gold values with silver up to 178 g/t. Significant copper, lead, zinc and molybdenum values were associated with some of these. A major prospecting program in 1994 was very

successful, 22 out of 66 samples returned more than a gram. Some high gold samples were in the 20 to 30 g/t range with more than 500 g/t silver. A polymetallic road showing north of Silver Lake returned multi-gram gold, silver with copper, lead, zinc and molybdenum.

6. 1995-1996: This exploration was by Cambridge Minerals and was restricted to the Silver Lake and Lost Horse Lake (east) area on the PGR claims. In 1995 five trenches were excavated in the Road Showing area. A northerly trending vein and alteration zone 5 or more metres wide averaged 2 to 3 g/t gold. A narrow parallel zone returned 0.5 metres at 62.8 g/t gold, 183 g/t silver. Detailed compilations of previous work in 1996 was followed by a drilling program consisting of 11 reverse circulation and 7 diamond drill holes. RC holes 1 to 8 tested the area drilled by Lornex in 1983 and Rat Resources in 1988. Five of the holes intersected gold values, the best hole averaging 0.26 g/t over 30 metres. The better intersections came from the northern holes in the 1988 drilling area. Five of the eight holes were however drilled subparallel to the predominant NNW alteration trend? Many of the holes did not test the targets. RC holes 10 and 11 tested possible strike extensions to the Road Showing zone (200 to 350 metres away) and again did not really adequately cover the target. Five diamond drill holes tested IP chargeability anomalies east of Silver Lake and intersected pyritic, altered and quartz veined volcanics with sedimentary interbeds. A 2.4 metre altered interval in hole 96 DDH-4 returned 0.74 g/t gold, 19.1 g/t silver. Hole 96 DDH-6 tested an IP chargeability anomaly southeast of Lost Horse Lake and returned weakly anomalous gold values.

Following the drilling programs the PGR claims were returned to P. Watt (early in 1997). It is important to note that no surface work other than trenching (1995) took place on the property during this period.

During 1997 the property owner staked the Crater and Worldstock claims. The eastern Crater and Worldstock mineral claims cover an area with very little recorded previous exploration. The former Ta Hoola and Silver claim groups did not extend this far to the east (Figure 3).

Prospecting by P. Watt in the central parts of the Worldstock claims in 1996 resulted in the discovery of copper-gold mineralization in a possible porphyry setting.

Christopher James Gold Corporation optioned the PGR, Crater and Worldstock claims early in 1998 and combined them in to the Silver Lake Property.

7. 1998 Data Compilation and Exploration Targets: Early in 1998 a compilation was made of all previous exploration results to define targets for future work. These are shown on Figure 4, the lack of previous exploration east of Rock Island is clearly evident.

Previous exploration in the property area in the 1970's and 80's was hindered by more difficult access and thick tree coverage. Companies such as Imperial Oil (1972-73), SMD Mining (1981-82), Lornex (1983) and BP-Selco (1984-86) basically explored for large porphyry targets only. Broad scale geological, geochemical and geophysical surveys outlined some excellent large polymetallic and gold soil anomalies including local gold values up to 6 g/t. This exploration surprisingly did not involve any diamond drilling on the claim area. Exploration in the 1987 to 1989 period by juniors Lancer Resources and Rat Resources (work by Rebagliati Geological Consulting Ltd) focussed on silver-gold-polymetallic mineralized vein, alteration and porphyry zones discovered during the previous programs in the highly anomalous soils area between Rock Island and Lost Horse Lakes (Figure 4). These programs on a local scale improved soil anomalies with some gold values in the 1 to 5 g/t range. Trenching in this Target 1 area yielded values in the 1 to 5 g/t gold and 12 to 118 g/t silver ranges from polymetallic veins. Four drill holes tested two other areas on this target, these returned highly anomalous gold values. A 3.1m vein intersection in hole 7 averaged 4.3 g/t. The 1988 exploration program by Lancer included eight drill holes (testing some targets) on the gold in soils anomaly within the Target 3 area. These intersected porphyry and vein styles of copper-gold mineralization, an 8.1 metre intersection in hole 4 averaged 0.18% copper and 0.8 g/t gold.

Exploration by the P. Watt (1992-1998) has involved compilations, prospecting, sampling and preliminary ground truthing of earlier anomalies. This work revealed promising mineralized environments in several large areas on the property; these are exploration Targets 1 to 6 on Figure 4. Of these, Targets 1 to 4 have received some previous exploration, Targets 5 and 6 involve recent discoveries by P.Watt.

Targets 1 and 3 have received a limited amount of previous drilling with interesting gold and copper results (Rat, Lancer). Prospecting in the Target 1 area in the 1990's produced numerous gold values in the 1 to 13 g/t range, and silver to 195 g/t from float and four areas in bedrock. These frequently had associated copper, lead, zinc and also molybdenum values (up to 0.4%). Both high level porphyry (copper-gold) and polymetallic vein stockwork target types occur in this area.

Targets 2 and 4 are proximal to the Deer Lake 'diorite trend' and feature strong gold in soil anomalies. Prospecting in the Target 2 area 1994 to 1998 returned multi-gram gold values from the road showing (polymetallic, Au up to 62.8 g/t), large quartz boulders (28 and 35 g/t Au, up to 1456 g/t Ag) and a new quartz-carbonate vein showing (27 g/t Au, 482 g/t Ag). This area has high grade vein potential. Copper values up to 0.8% with associated zinc, lead and gold values have been returned from massive to disseminated, stratabound pyrite zones in volcanics exposed by recent logging road construction in the southern parts of Target 4. Skarn and massive sulfide and porphyry (diorite) targets occur in this area.

Pyritic siliceous (cherty) breccias with gold values up to 1.1 g/t and anomalous copper were discovered during 1997 prospecting along the northern edge of the diorite trend in Target 6 and southeast parts of Target 2. This is of significant interest as it suggested potential for porphyry and, or syngenetic (VMS?) gold environments.

R.Wells/ P.Watt 1998

FIGURE 4: COMPILATION MAP WITH EXPLORATION TARGETS.

Lastly Target 5, a 1997 copper (gold) discovery on the Worldstock claims (Wells, 2000): strong chloritic altered volcanics exposed on a landing within a drift covered area returned 0.78% copper from a 4m by 3m panel sample. Reconnaissance soil sampling in this area produced copper values with associated gold up to 300 ppb. Altered dioritic intrusions exposed in nearby outcrops suggested potential for a porphyry environment.

8. 1999-2000 Exploration by Christopher James Gold Corp.: Recent exploration by the company has focussed on two promising areas on the Silver Lake Property, these are outlined on a claim map, Figure 5. Details regarding exploration on these two targets prior to 2001 can be obtained from an earlier report (Wells, Dec.2000), a short summary follows.

The Worldstock Porphyry Target located in the central parts of the eastern Worldstock claims was Target 5 (Figure 4) involving a copper (silver, gold) discovery by P. Watt in 1997. 1999 exploration by the company outlined a polymetallic (Cu, Au, Ag, Mo, Zn) soil anomaly over 700 metres long, open to the north and south in a largely overburden (till) covered area with fairly gentle relief. The soil geochemistry and presence of copper-gold mineralized, potassic altered monzodiorite suggested potential for a high level porphyry style system. An expanded grid-soil program in 2000 increased the copper soil anomaly length to over 1.1 kilometres. IP and magnetic grid geophysical surveys were recommended for 2001 with follow-up trenching and drilling.

The New Discovery Target was the result of prospecting discoveries by P. Watt in 2001. This prospecting identified two areas of massive sulfide, chalcopyrite rich float, one kilometre apart near Portage Lake (Discovery 5, Crater 7 claims). Sampling returned copper values between 1% and 6% with multi-gram silver and anomalous gold. Soils in the eastern Discovery A area returned up to 1% copper. These discoveries prompted the abandonment of the PGR twopost claims and relocation of the Discovery modified grid claims in order to close any potential

 $\bigcap_{i=1}^{n} (i) = \sum_{i=1}^{n} (i) = \sum_{i=1}^{n$

FIGURE 5: CLAIM MAP WITH 1999-2001 EXPLORATION AREAS

s

FIGURE 6: DISCOVERY GRID 2000 COMPILATION MAP

fractions. The exploration program that followed consisted of grid preparation, soil geochemical, preliminary geological, prospecting and magnetic, VLF-EM geophysical surveys (Wells, 2000).

The 2000 program outlined several interesting coincident anomalies (Figure 6) and indicated potential for volcanic hosted, massive sulfide zones rich in copper (with silver plus or minus gold and zinc). Basaltic volcanic flows, lapilli tuffs and locally pyritic interflow cherty units underlie the grid area. Discovery A occurs proximal to a strong northwest trending copper in soil anomaly with near coincident magnetic trough and VLF-EM conductor. This anomalous trend over 700 metres long represented an attractive target for IP geophysical and diamond drilling programs in 2001. Discovery B also features coincident magnetic, VLF and soil anomalies. These are however less well defined than in area A. The sources for the copper-rich massive sulfide float in both areas A and B were thought to be fairly proximal (based on several features), probably less than 100 metres.

1.5 GEOLOGICAL ENVIRONMENT

A. Regional Geology

The Silver Lake property is located near the eastern edge of the Intermontane belt of the Canadian Cordillera in the highly mineralized Quesnel Terrane (Figure 7, after Schiarizza, 2001). Directly east of the Quesnel Terrane are generally older rocks of the Omineca Belt belonging to the Slide Mountain and Kootenay terranes. Upper Paleozoic age rocks in the Slide Mountain include mafic volcanics, intrusives and cherty sediments. Proterozoic to Paleozoic age rocks of the Kootenay include metamorphosed and deformed sedimentary, volcanic, intrusive rocks. Mesozoic age granitic rocks of the Raft and Baldy batholiths crosscut the boundaries between these terranes.

The Quesnel Terrane features an Upper Triassic to Lower Jurassic age magmatic arc complex. Paleozoic age arc sediments and volcanics of the Harper Ranch Group underlie

Figure 1. Regional geologic setting of the Bonaparte project area. Abbreviations: Ba, Barriere; BL, Bridge Lake; Cw, Clearwater; Hf, Horsefly; LF, Little Fort. Inset shows location of the map in south-central British Columbia, with distribution of the Quesnel Terrane shown in grey.

Schiarizza & Israel 2001-1

(inconformably?) Nicola Group (Mesozoic) volcanics and sediments. There are numerous intrusions of all scales ranging from large calc alkaline granitic batholiths (Thuya) to smaller alkaline intrusives and mafic to ultramafic complexes in the Nehalliston area. The Quesnel Terrane is well known for a variety of deposit types but in particular for calc-alkaline (Cu-Mo, Mo) and alkaline (Cu-Au) porphyry deposits and camps. The Highland Valley (calc-alkaline-Cu Mo) and Iron Mask (alkaline Cu-Au) camps near Kamloops and Copper Mountain (alkaline Cu-Au) camp near Princeton are good examples.

B. Local Geology

The Bonaparte bedrock mapping program by the British Columbia Geological Survey took place in the property area during 2000 and 2001. This regional mapping at 1:50,000 scale was recently released in Open-File 2002-4 by P. Schiarizza et al. The object was to improve the quality and detail of bedrock maps in the area, in particular by the Geological Survey of Canada in the 1960's (Campbell and Tipper, 1971). This recent mapping by the BCGS was very important as it demonstrated (confirmed) that the volcanic-sedimentary stratigraphy in the area north and east of Deer Lake belonged to the Nicola Group, not Middle Jurassic as inferred by Campbell and Tipper (1971). As mentioned earlier the Nicola Group is highly prospective for a variety of deposit types. Many of the porphyry deposits can be correlated with the Nicola volcanic arc period (Triassic-Lower Jurassic).

The property lies in an area of strongly faulted and probably folded Nicola Group rocks with generally northwest strike. A series of intrusive bodies with similar trend lie along the southwestern property boundary near Deer Lake and extend northwest to Friendly Lake and southeast to Dum Lake (near Little Fort). These appear to be predominantly Late Triassic to Early Jurassic age diorites, gabbros, microdiorite, local syenites and intrusion breccias and possibly represent the core to the volcanic arc. To the northeast on the property occur three main bands of pyroxene lapilli tuff-agglomerate/breccia which were recognized during mapping by BP-

FIGURE 8: LOCAL GEOLOGY

Selco in the 1980's (Gamble, 1986) and by the BCGS (Schiarriza, 2002. Unit uTrnv). These rocks are medium to dark green, massive and medium to coarse-grained pyroclastics. Fragment sizes vary from 1 cm to 20 cm and are comprised of subangular to subrounded porphyritic augite andesite. Clasts are supported by a matrix of fine grained ash tuff. Subordinate units of andesite flows and feldspar crystal tuffs are interbedded with the pyroxene porphyritic units. Pyrite occurs in minor concentrations as widely spaced disseminated grains.

The epiclastic sediments interbedded with, and flanking the volcanic units consist of siltstone, argillite, chert, greywacke and conglomerate. Siltstone predominates. Pyrite is sparse, occurring as disseminated grains, but reached 0.5% to 10% in light grey bands as heavy disseminations with interstitial carbonate. Subordinate, very fine grained, massive, black, carbonaceous argillite is occasionally interbedded with the siltstone. Disseminated pyrite is ubiquitous.

A large, fine to medium grained diorite stock comprised of 20% mafics, 75% plagioclase and 5% quartz lies along the western side of the claims. East of Deer Lake, the intrusive is a hornblende-diorite.

At the boundary between the old Ta Hoola 10 and Ta Hoola 13 claims (western Discovery #5), a diorite breccia has formed as a contact phase along the margin of the main diorite pluton. It contains angular diorite fragments to 10 cm in size, which are supported in a diorite matrix. Epidote-chlorite-quartz veins are present. The pyrite content is less than 1%.

Numerous northwest and northeast trending faults traverse the property. Their traces are marked by the alignment of lake chains and a rectangular stream drainage pattern. The main north-northwest striking faults are interpreted as part of a Tertiary (Eucene?) dextral strike-slip system (Schiarizza, 2002).

A high density of mineral occurrences occur in the Little Fort-Deer Lake area within Nicola Group rocks and associated intrusives. These occurrences cover a wide variety of metals and deposit types including porphyry, skarn, vein and disseminated (Figure 9). None of these are considered to be at a more advanced stage of exploration. It is the author's opinion that exploration in this section of the Nicola Belt has been hindered by several factors including extensive till blanket, heavy timber cover/poor access (until recently) and lack of an (economically significant) early discovery. The majority of the known mineral occurrences are in the southern more accessible area. These correlate with, or occur proximal to the Nicola age intrusive belt between Dum and Friendly Lakes. Mineral occurrences on the property were briefly discussed in Section 1.4 in this report.

C. BC Survey Branch Regional Till Geochemistry

In January 2000 the British Columbia Survey Branch released Open File 2000-17 (Ministry of Energy and Mines) titled "Till geochemistry of the Chu-Chua-Clearwater area, BC." (Parts of NTS 92P/8 and 92P/9). This report (Paulen et.al.) provided results from a drift exploration program covering a 350 square kilometre area west and northwest of Little Fort, including the Silver Lake property. 170 fairly evenly spaced till samples were taken by the survey branch; these were analysed for a large number of elements. A major objective of this program was to provide data that would lead to the discovery of economic mineralization in area now covered by a blanket of unconsolidated sediments.

The results from the till survey are very important as they clearly indicate the high mineral potential of the Silver Lake property area. Numerous anomalous gold, silver, copper, zinc and molybdenum values occur in the property area, some of these are shown in Figures 10 a to c. In fact, almost half of the highest values in these metals were from till samples taken on the property as indicated in Table 2.

Figure 5. Locations of MINFILE occurrences in the southern and central parts of the Bonaparte project area, and selected rock samples collected during the 2001 field season. Base map is derived from Figure 2, with only plutonic rocks and faults shown. Occurrences discussed in text are shown with name and full MINFILE number. Other occurrences, discussed by Schiarizza and Israel (2001), are designated with only the last 3 digits of their 92P MINFILE number. See figures 2a and 3 for Place Names mentioned in text.

Geological Fieldwork 2001, Paper 2002-1

As was demonstrated in an earlier report (Wells, 2002) some of the till anomalies can be related to the known showings and exploration targets on the Silver Lake property. In many cases the amount of glacial transport to the southeast appears to be limited, often less than 500 metres. A few comments follow regarding the relationship between stronger till anomalies and current exploration targets.

TABLE 2

SUMMARY OF HIGHEST CONCENTRATION TILL SAMPLES FOR KEY ELEMENTS

ELEMENT	SAMPLE NUMBERS
SILVER	*989186, *989569, *989163, **989316, 989162, 989229
COPPER	989195, ***989305, 989320, *989569, ***989308
GOLD	*989186, 989195, 989170, 989355, *989185
ARSENIC	989332, 989184, 989354, 989322, 989186
LEAD	*989186, *989188, **989200, 989339, 989226
CADMIUM	989342, 989320, 989186, 989316, 989188, 989184
NICKEL	989544, 989565, 989529, 989528, 989566
MOLYBDEN	UM *989184, 989320, **989316, 989342, 989195, *989308
ZINC	989320, *989186, *989184, *989188, 989342, 989226
*	Discovery Claims/Christopher James Gold Corp.
**	Crater Claims/Christopher James Gold Corp.

*** Worldstock Claims/Christopher James Gold Corp.

The highest (coincident) gold-silver till value from sample 186 lies in the middle of the Target 1 area (Figures 10). This, and nearby till samples are distinctly polymetallic with coincident Au, Ag, Pb, Zn, As and Mo which correlates well with the known polymetallic vein stockwork mineralization within the target area.

The second highest copper in till value in sample 305 with high molybdenum (Figure 10c), zinc and bismuth occurs just south, down-ice from the Worldstock Porphyry Target. The gold, silver, lead and arsenic values are relatively low. Again the metal distribution correlates well with the known mineralization.

Strong molybdenum-silver in till values occur in sample 316 south of Target 1 in the southern Crater claims (Figure 10c). This area has siliceous breccia float with gram gold values but no significant molybdenum and silver to date.

The second highest silver in till value with coincident anomalous copper in sample 569 occurs along the southern boundary of the Discovery claims (PGR). This is just south of Portage Lake where a massive sulfide (Cu, Ag) float discovery was made in 2000.

Several till sample sites that are anomalous in gold, silver, zinc and molybdenum lie within or just south of the property and cannot at this time be related to known mineralization. These offer new targets for future exploration.

R. C. Wells, P.Geo., FGAC. Kamloops Geological Services Ltd.

-

Till Geochemistry Au

Open File 2000-17

Till Geochemistry Cu

Open File 2000-17

Till Geochemistry Mo

Open File 2000-17
2.0 2001 EXPLORATION ON THE WORLDSTOCK TARGET

2.1 INTRODUCTION

In 2001, exploration continued on the promising Worldstock porphyry target. Previous exploration by the company in 1995 to 2000 consisted of grid preparation, soil geochemical, preliminary prospecting and geological surveys (Wells 2000). This work was entirely on the Worldstock #1 and 2 mineral claims as indicated in Figure 5. At the conclusion of the 2000 exploration program a northwest trending copper (± Au, Ag, Mo, Zn) soil anomaly 1.1 km long by up to 250 metres wide has been outlined on the grid (Figure 11) and was open to the south. This anomaly was located in an area of variable till and swamp cover. The till appeared to thicken to the north, west and south, severely limiting the use of soils in these areas.

The 2001 exploration on the Worldstock target was in two phases totalling \$128, 243.11 in expenditures. Phase 1 took place in February and involved grid Induced Polarization and Magnetic surveys. Phase 2 took place between May and December and consisted of: (1) follow-up geological, prospecting and soil programs, (2) limited road building and trenching and (3) preliminary diamond drilling with seven NQ holes.

2.2 PHASE 1 GEOPHYSICAL SURVEYS

A) Introduction

Induced Polarization and Magnetometer surveys were conducted on the Worldstock grid from February 19 to 23 by Scott Geophysics Ltd. of Vancouver (Scott, 2001). The main aims of these geophysical surveys were to outline bedrock conductors and help interpret geological trends in this largely overburden covered area.

Ċ

 $\int_{-\infty}^{\infty}$

A total of 5.6 line kilometres of IP and magnetic surveys were completed on the grid using 200 metre line spacing. The pole-dipole array was used for the IP survey at an electrode spacing of 25 metres and at 'n' separations of 1 to 5 inclusive. A Scintrex IPR12 receiver and TSQ3 transmitter were used for the survey with readings taken in time domain. Magnetometer readings were taken on the IP lines at 12.5 metre intervals using a Scintrex ENVI magnetometer. This data was corrected used a fixed base station, another ENVI magnetometer.

C) Results

The results from the geophysical surveys were plotted using a variety of plans which are available in a logistical report by Alan Scott (2001). Anomalous trends are outlined on a geophysical compilation map Figure 12 in the form of chargeability contours, resistivity high axes and magnetic high areas (>56,900 nT). This should be compared with geochemical compilation map Figure 13. Both these figures show the locations of 2001, Phase 2 drill holes and trenches.

The IP chargeability data indicates a strong continuousanomaly with northwest trend and two or more lobes. This anomaly is widest and strongest at grid 1400N (>800 metres wide, 20-30) values tapering to the south >300metres wide (10-20 values) at grid 200N as shown in Figure 12. The magnetic anomaly (high) also has a northwest trend and lies east of the grid base line (Figure 12), it is again widest at the north end tapering to the south (discontinuous south of grid 6+00N). This magnetic anomaly coincides with a resistivity (high) trend suggesting a lithological cause (intrusion?). Semi-coincident chargeability and resistivity anomalies to the southeast and northwest may indicate alteration related sulfide zones. A north trending resistivity high just west of the base line in the northern grid area lies close to the 2001 drill hole collars (Figure 12). This feature coincides with a weak chargeability trough within the main copper in soil geochemical anomaly.

2.3 SAMPLE HANDLING, ANALYTICAL PROCEDURES AND CHECKS

All of the analytical work for the Phase 2 exploration program was by Eco-Tech Laboratories Ltd in Kamloops, BC.

Soil, rock and split core samples were all transported by company vehicle to a secure site in Kamloops where they were sorted and stored prior to pick-up by laboratory personnel.

Soil samples were dried and sieved (-80mesh) at the laboratory then run for 28 elements using standard ICP following aqua-regia digestion. Rock samples were crushed (-10 then 250 gram split to -140 mesh) and run for 28 elements using the same analytical procedure. Gold analysis for soils and rock were geochemical, 30 grams fire assay, A.A. finish. Rock samples with high copper (>9000 ppm) and silver (>30 ppm) were assayed, with values reported in % or g/t respectively.

Samples selected for whole rock analysis were run for 11 major and trace oxides using ICP with whole rock and internal standards. This involved a lithium-metaborate fusion and nitric acid digestion.

The laboratory conducted its own analytical checks every 7 to 10 samples, these are shown on the certificates. Comparisons between initial results and check samples did not indicate any significant variations in the main elements of interest which were Au, Ag, Cu, Zn and Mo.

2.4 PHASE 2 TARGET DEFINITION A) Introduction

The Phase 2 target definition program took place between May 8 and June 15, 2001 and consisted of grid geological mapping, prospecting and detailed soil geochemical sampling. This program was largely to ground truth the IP and magnetic anomalies defined by the February geophysical surveys and improve target definition for later trenching and drilling.

B) Geological Mapping

The grid area covered by earlier geophysical-geochemical surveys was mapped at 1:2500 scale by the author. Seven representative lithology and alteration samples were selected for ICP-Whole rock analysis (Certificates of Analysis AK01-080 and 108). These are briefly described in Table 3 with a summary of the analytical data.

Topographically the grid lies in a gently undulating watershed area with northwest trending ridges and broad valleys. Elevations are in the 1250 to 1325 metre range asl. with the higher ground in the east and west. The drainage areas in the central and southern parts of the grid feature extensive swamp and several ponds with no outcrop. Much of the grid area is covered by a thin blanket of glacial till that locally may be up to several metres thick.

Lithologies

The results from the geological mapping program are shown on Figure 14. Regional scale mapping by Schiarizza (2001) indicated that the Worldstock grid covered the northwest trending contact between Nicola Group mafic volcanics, Unit uTrNv and mixed volcanics and sediments of Unit uTrNs (to the west) as shown in Figure 8. The grid geological mapping generally agreed

with this, it must however be stressed that there is very limited bedrock exposure especially in the western grid area.

Unit 2 is comparable with uTrNv and is locally well exposed along the eastern ridge area. It consists predominantly of green, massive to brecciated pyroxene phyric basalts, hornblende and, or plagioclase phyric andesites-basalts with variable augite and more massive fine grained aphyric units (andesite-basalt?). In the field it is difficult to determine whether these are intrusives or volcanics, especially where they are more massive. An intrusive component is strongly suspected with some of the coarser grained, fairly fresh and weakly magnetic units along the eastern ridge. The whole-rock data for the less altered samples of unit 2 (Table 3) indicates alkaline latite to trachyandesite compositions with high Na₂O and K₂O. SiO₂ levels are in the andesite to basaltic-andesite range.

Unit 3 appears to underlie the main copper in soil anomaly and features a very poorly exposed sequence of volcaniclastic rocks with local massive to rubbly flows similar to unit 2. Virtually all of the geological information on this sequence comes from later trenches and drill holes in the soil -IP anomaly area. A few subcrops of altered unit 3 occur along the main logging road and grid lines to the northwest. Unit 3 lies to the west and (probably) stratigraphically above unit 2, the contact is interpreted to lie just east and sub-parallel to the grid base-line. This steeply west dipping sequence features aphyric to augite and, or feldspar phyric, rubbly volcanic flows locally identical to unit 2 but usually more altered. Volcaniclastic rocks predominate, mainly medium to coarse, variably bedded lapilli tuffs and coarser breccias. These range from strong matrix (ash) supported to clast supported with some finer lapilli to lithic tuffs which are locally well bedded. Some volcaniclastic units are composed predominantly of augite porphyry to aphyric andesite-basalt lapilli (unit 2), others are dominated by lighter coloured feldspar (plagioclase) phyric dacite-trachyandesite with remnant groundmass K.feldspar. Locally, lapilli tuffs are bi-modal with varying proportions of these two clast lithologies. Some more massive to

rubbly intervals of crowded feldspar porphyry (dacite) may represent flows and local narrow (feeder) dikes.

Another strongly altered sequence of mixed flows, probable volcaniclastics and sediments, occurs in the southeastern grid area around 500N, 500E. Subcrops in this logged area are highly oxidized and phyllic to propylitic altered, making protolith identification difficult.

Structure

The main geological units have northwesterly strike with steep west dips based largely on drill information. Outcrops along the eastern ridge have joint sets with similar orientations. A fault zone has been interpreted close to the eastern contact of unit 2 just east of baseline, again mainly based on drill information.

C) Prospecting, Alteration and Mineralization

Alteration mapping and sampling of mineralization took place by the author during the geological survey. A crew of P. Watt and G. Wells focussed on prospecting and sampling during the same period. Samples were located with grid coordinates and are shown on Figure 15. Table 4 gives brief sample descriptions and summary analytical data (Certificates of Analysis AK 2001-088 and 109).

During geological mapping two areas of stronger alteration were identified east and west of the unit 2 mafic volcanics and intrusives exposed along the eastern ridge. Outcrops of unit 2 on the ridge are generally fresh to weak epidote-carbonate altered and retain some weak magnetism. Minor amounts of fine to medium grained disseminated pyrite are present with local concentrations up to 5% in more rubbly units or proximal to intrusive contacts. Local milky quartz veins have narrow siliceous to carbonated selvedges.

In the vicinity of the soil Cu geochemical anomaly west of grid 150E there is a notable increase in bedrock alteration, often obscuring original textures and making it difficult to distinguish unit 2 from 3. This alteration clearly affects both units but appears strongest in unit 3 volcaniclastics. Alteration is both pervasive and veinlet related, 'porphyry style' with propylitic, argillic and phyllic mineral assemblages. These commonly occur in close proximity and have transitional contacts. Lithological variations especially in volcaniclastics result in complex alteration patterns. Propylitic alteration is common in unit 2 and features variable proportions of chlorite, epidote, carbonate, hematite with fairly abundant (3 to>7%) disseminated pyrite, minor chalcopyrite. Argillic alteration features light coloured, clayey assemblages with sericite, minor carbonate, 1 to 5% disseminated pyrite and local chalcopyrite concentrations. It is difficult to impossible to distinguish argillic alteration from clay weathering and gouge along faults. Phyllic alteration is better exposed than argillic as outcrops are more resistant with quartz-sericite-pyrite (3 to>7%). This alteration often features fine quartz veinlet stockworks with abundant pyrite and local chalcopyrite, carbonate is rare to absent.

The eastern alteration area between 200N and 700N, east of 400E features a northeast trending ridge with numerous subcrops of resistant phyllic (quartz-sericite-pyrite) alteration. This laterally grades rapidly into propylitic alteration assemblages. Both contain between 2 and 7% disseminated pyrite.

Sampling results are summarized in Table 4, the large majority of samples were from patchy float (F) with a few from subcrops/bedrock (SC/BR). Samples taken from milky quartz veins up to 30 cm wide in the eastern ridge area (unit 2) locally contained disseminated pyrite with galena and sphalerite. Sample 21768 returned 1834 ppm Pb, 1005 ppm Zn with 6.2 ppm Ag. Fairly barren milky quartz vein float on the western side of the ridge (sample 21761) returned anomalous gold at 235 ppb with low base metals.

Pyritic, propylitic altered samples from the main soil geochemical-alteration trend (baseline area) generally returned elevated copper values in the 100 to 300 ppm range with elevated silver up to 2.4 ppm, low gold. More phyllic altered samples with quartz veinlets and local stockworks with some K.feldspar returned significantly higher copper values between 2400 and 3000 ppm accompanied by silver to 4.8 ppm. Phyllic altered samples 21806 and 807 just west of the base-line (logging road) contained anomalous zinc up to 321 ppm.

The mapping sampling program demonstrated that the main copper soil-IP trend was probably underlain by strongly altered and pyritic unit 3 flows and volcaniclastic rocks. Stronger, phyllic alteration with veinlets returned the strongest copper-silver valves with highly anamolous copper in soils (700 to 850 ppm) in the Worldstock discovery area (0.78% Cu, 4x3 m) and baseline area at 1100N.

D) Soil sampling -Eastern IP. Anomaly

A northwest trending zone of strong alteration and disseminated/veinlet pyrite occurs at the eastern edge of the grid between 300 and 700N (Figure 14). This is over 75 metres wide and coincides with a strong IP chargeability anomaly (Figure 12). There are numerous subcrops of this flat ridge top area, soils are thin to absent. An examination of this area indicated that closely spaced 'C' horizon-soil samples could be used to evaluate the potential for bedrock base and precious metal mineralization.

C soil horizon samples were taken by P. Watt using a mattock, tree planting shovel combination. These were at 12.5 metre stations on extended grid lines 300, 400 and 500N between 300 and 500E. Sample locations are shown on Figure 13 with copper values. The samples were run geochemically for gold (30 gram) and 28 element ICP (Certificate AK 2001-86). Results are summarized on Table 5.

Zinc and gold values in soils from this area are fairly uniform and low. Copper, silver and molybdenum are more variable and locally quite anomalous with maximums of 631 ppm Cu, 1.2 ppm Ag and 112 ppm Mo (not coincident). Elevated silver often accompanies anomalous copper values; molybdenum appears erratic. A weak northerly copper-silver anomalous trend is apparent but at this time does not constitute a priority target. There is no evidence of significant Cu, Au, or Ag in bedrock. Based on this program, the IP anomaly can be related to high concentrations of disseminated pyrite.

2.5 PHASE 2 ROAD CONSTRUCTION AND TRENCHING

This program of road construction, with limited pit and trench excavation took place during June and was supervised by the author. A PC 250 excavator owned and operated by Joe Monette based in 108 Mile Ranch, BC was mobilized into the property in June. Prospector P. Watt worked continuously with J. Monette during the excavator program.

A) Road Construction

This involved construction of a northwest trending drill access road following the higher ground west of the grid baseline between 800N and 1390N (Figures 12 to 15). The trunk road is 600 metres long, originating at the Worldstock showing on the main logging road. It follows a sandy clay moraine ridge with local shallow bedrock. Four spur roads approximately 75 metres long and totalling 310 metres were constructed to the northeast at 100 metre intervals. The purpose was to have good drill access to the northern parts of the soil geochemical-IP anomaly. As this area is timbered, a limited amount of tree falling was involved which was covered by a Free Use Permit issued by the Kamloops Forest District.

Road construction was within the main soil geochemical-IP anomaly. Excavation uncovered some mineralized float and local strongly altered (phyllic to propylitic) bedrock with pyrite-chalcopyrite mineralization. During this program seven samples were taken for analysis, their locations are shown on Figure 15, with brief descriptions and summary analytical data in Table 6 (Certificate AK 2001-125).

Resistant knobs of mineralized bedrock were uncovered on the three northern spur roads between 1050N and 1250N. The most interesting of these were at the end of the southern spur at 1100N near a concentration of mineralized float (section 2.3C). Three grab samples (21930 to 21932) taken from phyllic alteration with disseminated pyrite and chalcopyrite (volcanic host) returned copper values in the 2000 to 4000 ppm range accompanied by 2 to 4.6 ppm Ag and anomalous gold to 115 ppb. Sample 21934 from the junction area on the northern spur at 1250N featured strongly bleached volcanic (near intrusive contact?) with disseminated pyrite, chalcopyrite and abundant malachite. This sample returned 3967 ppm Cu and 3.4 ppm Ag with elevated gold at 40 ppb.

A large milky quartz boulder (sample 21936) taken from the trunk road at 870N contained fine pyrite, chalcopyrite, sphalerite aggregates, and returned 4485 ppm Zn, 1.6 ppm Mo. Road construction confirmed that the northern part of the copper soil-IP anomaly was underlain by altered and mineralized bedrock volcanics.

C) Trenching and Test Pits

Two trenches and two test pits were excavated during June. Unseasonably wet conditions and resulting high water table made direct sampling difficult to impossible especially in the test pits. Thorough sampling in trench WS-01 at the Worldstock showing was very important and was

facilitated by pumping equipment supplied by F. LaRoche. Due to the wet conditions the trenches had to be back-filled immediately after sampling. All sampling of pits and trenches was by the author. Samples were run for gold (geochemical 30 gram) and 28 element ICP with assay checks on higher values (all Certificate AK 2001-119). Table 7 summarizes the sampling data with descriptions for pit grab samples. Sampling and geological data for the trenches occur on plans, Figures 16 (WS-01) and 17 (WS-02). A few comments follow on the results:

Trench WS-01 tested the original Worldstock showing at 810N (Figure 16) and was 52 metres long, Azimuth 110SE parallel to the logging road. This trench orientation crossed interpreted geological-geophysical-geochemical trends at a high angle. High water inflow made sampling difficult, especially at the east end near the valley floor. The trench cut from west to east phyllic (quartz-sericite-pyrite) grading into propylitic altered (chlorite-epidote-pyrite) volcanics possibly belonging to unit 3. Alteration and deformation especially at the western end of the trench made protolith identification difficult, some volcaniclastics may occur here. The strongest propylitic alteration with disseminated pyrite, chalcopyrite and malachite staining accompanies stronger deformation (shearing/foliation) with north to northwest trend, beneath the original Worldstock showing. Continuous chip-panel sampling (Figure 16) returned 24 metres averaging 0.19% Cu and 1.71 g/t Ag (open to west). Within this, at the showing, a 10 metre interval averaged 0.28% Cu, 2.4 g/t Ag (ppm values converted to % and g/t). Gold values are elevated throughout these intervals, generally <100 ppb but locally up to 215 ppb, Mo values are low.

Trench WS-02 was excavated on trend with WS-01, 125 metres to the west and on the other side of the valley (Figure 14). This 56 metre long trench encountered deep, pebbly sandy clay till and high groundwater at its western end. Bedrock was exposed for 15 metres at the higher eastern end of the trench and featured strongly weathered, variably pyritic (propylitic altered) mafic volcanics (flows) of unit 2. Sampling returned low copper and silver values, this correlates with the trench location at the eastern edge of the main copper in soil geochemical

anomaly. IP chargeabilities are relatively strong in this area reflecting the pyrite content? A prominent bedrock ridge in the western trench area features a siliceous zone with quartz veinlets and minor chalcopyrite. The veinlets have a dark coloured mineral along selvedges which is probable molybdenite. Sample 21928 returned 192 ppm Mo with low to elevated Cu, Au, Ag and Zn values.

Pit-1 was excavated approximately halfway between the two trenches to test below the valley axis within the main copper in soil anomaly. Bedrock was encountered beneath 5 to 6 metres of clay till and alluvium. Water flowed into the pit continuously at high rates and consequently samples had to be collected from the excavator bucket after scraping bedrock. The bedrock material featured strong phyllic (sericite rich) to argillic altered and commonly brecciated volcanics? Vuggy quartz veins and stockworks contained patchy disseminated pyrite and local chalcopyrite. A milky quartz boulder lying on bedrock (Sample 21901) returned 6.2 ppm Ag and 405 ppm Mo. Mineralized quartz stockwork (grab) samples from bedrock returned anomalous copper up to 1496 ppm accompanied by elevated gold values up to 180 ppb.

Pit 2 was excavated 150 metres to the south of 1 also along the valley axis and within the main copper in soils anomaly. This pit had the same water problems as pit 1 with similar depths of waterlogged till. The bedrock material was also similar, sericitic to clay altered volcanics with vuggy quartz stockworks and local clayey fracture zones. Quartz stockworks contained local blebby chalcopyrite with fairly high chalcopyrite to pyrite ratios, other areas were strongly pyritic. Sampling of stockworks returned higher copper values from 2237 ppm up to 2.69% accompanied by silver up to 31.5 g/t and elevated gold up to 170 ppb.

The trenching program was highly informative and clearly demonstrated that the copper in soil anomaly area was underlain by altered volcanics rocks with promising copper, silver and local gold values. Both structure and lithology appeared to exert a strong control on alteration and

mineralization. Alteration, veining and mineralization had features consistent with high levels in a porphyry style system.

2.6 PHASE 2 DIAMOND DRILLING PROGRAM

Based on the highly encouraging results generated by the earlier programs a decision was made to test the main copper in soil IP chargeability anomaly with several NQ diamond drill holes. This drilling focussed on the northern and central parts of this anomaly that featured stronger IP chargeabilities, known bedrock copper (Ag, Au) and strong alteration. It is important to note that this preliminary drilling was the first to take place in the eastern part of the property (based on available data).

A) Procedure

The drilling program consisted of seven NQ diamond drill holes totalling 888.19 metres that were completed between June 28 and July 7, 2001. A Boyles 56 drilling rig was used by a crew from Core Enterprises Ltd based in Clinton, BC. Water for drilling was pumped from the main drainage near the grid base-line at 770N.

Drilling was supervised by the author and the core was transported to Kamloops on a daily basis for storage. Core logging, splitting and sampling did not take place until October-November 2001 due to a shift in exploration focus to the New Discovery Zone (several significant trench discoveries). All core logging was by the author, splitting and sampling were by G. Wells and F. LaRoche. Core samples were split using a standard Longyear splitter. One half of the core was sent to Eco-Tech Laboratories in Kamloops, BC for geochemical gold (30 gram) and 28 element ICP analysis. The remaining core was returned to the original boxes and stored at a secure site in Kamloops BC. It should be noted here that the sampling of drill core was selective, often with sizeable gaps. Budget and time restraints at the end of the program dictated that the sampling

should focus on higher potential, more mineralized intervals. The sampling is clearly indicated on the drill profiles (Figures 18 to 21) with intervals for future sampling (2002) based on adjacent analytical results.

B) Results

Table 8 gives details on the holes in the Phase 2 drilling program. Drill hole collars and traces are shown on many of the plans including geological map, Figure 14. Appendix 5 is devoted to diamond drilling data from Phase 2 exploration and includes: copies of original diamond drill logs, drill profiles (Figures 18 to 21), sampling tables and laboratory certificates of analysis. This data is generally sorted by drill hole.

A brief discussion of the drilling results follows and is on a section basis from south to north, not in the order of drilling. This discussion can be related directly to the drill profiles, Figures 18 to 21. These profiles show the positions of geophysical and geochemical anomalies relative to the section line, as well as relevant surface geological sampling information. Frequent reference should also be made to Figure 14.

1. DDH. WS 2001-02 (Figure 18)

This drill section (Az. 227) is approximately at grid 625N. Hole WS-02 was drilled west from the edge of the main logging road and tested the copper (Ag, Au) mineralization exposed in Pit #2 at shallow depth. Strongly anomalous (main anomaly) copper in soils coincide with the edge of an IP. chargeability anomaly in this area (see Figure 18).

Hole 2 intersected a sequence of non-magnetic, variably altered, pyritic volcaniclastic rocks with local flows belonging to Unit 3. Feldspar phyric lapilli tuffs and breccias appear to predominate locally with remnant(?) groundmass K.feldspar. Shape fabrics indicate that the

Chemistry of

the second second second second second second

TABLE 8: WORLDSTOCK 2001 PROGRAM: PHASE 2 DRILLING INFORMATION

DDH NO.	GRID LOCATION (Collar)	AZIMUTH	INCLINATION	DIP TEST @ m (Corrected)	LENGTH m	CASING m	START m	FINISH m
WS2001-01	8+30N: 0+85W	70	-50	-48@96.62 -49@206.35	208.78	5.59	28/6	29/6
WS2001-02	6+25N: 0+62E	227	-50	-48@93.57 -48@145.39	148.44	9.14	30/6	37262
WS2001-03	10+56N: 0+46W	30	-55	-52@75.28 -52@136.75	144.78	12.8	37262	37293
WS2001-04	12+94N: 0+16.5E	210	-45	-45@87.48 -45@148.44	157.58	7.32	37321	37352
WS2001-05	12+94N: 0+16E	34	-45	-44@84.42	84.43	7.32	37382	37382
WS2001-06	12+62N; 0+46W	210	-50	-48@38.4	38.41	6.71	37382	37413
WS2001-07	10+82N; 0+09E	30	-68	-67@105.77	105.77	7.32	37413	37413

HIGHLIGHT ASSAY INTERVALS

HOLE NO.	FROM (m)	TO(m)	LENGTH (m)	Cu (ppm)	Ag (ppm)	Zn (ppm)
WS2001-01	11.15	29.4	18.25	505		1400
WS2001-01	59	69.4	10.4	3800	2.6	
WS2001-02	92	97.55	5.55	1381	1.52	
WS2001-03	44.86	52.8	7.94	1200		
WS2001-04	48	54	6	1600		
WS2001-07	34.4	55.3	20.9	1700	2.4	

sequence dips steeply to the west. Numerous clayey faults occur in this hole with the main interval between 56.42 and 86.35 metres; these structures appear to dip steep west, subparallel to the stratigraphy. The main fault zone projects upward into the Pit -2 area, though no quartz vein stockworks were observed in drill core.

Either side of the main structure there is variable propylitic argillic and phyllic alteration partially controlled by lithology. Fault intervals are invariably clayey and contain extremely fine to fine grained disseminated and fracture controlled pyrite. Higher concentrations of veinlet and, or disseminated pyrite occurs in the altered rocks. The highest Cu, Au, Ag, Mo and Zn values in this hole were returned from the altered rocks west of the main fault zone, down dip from the core area to the copper soil anomaly. Narrow intervals 1 to 5.55 metres long returned 1000 to 1400 ppm Cu with elevated Ag up to 2.42 ppm (Mo up to 198 ppm, Zn to 532 ppm). The strong copper mineralization sampled in Pit -2 is not evident in the hole, though elevated copper values up to 590 ppm were returned from pyritic clay gouge.

2. DDH. WS2001-01 (Figure 19)

This drill section (Az. 070) is approximately at grid 825N, 200 metres northwest of the previous. This hole was drilled east from a logging trail to test the copper (Ag, Au) mineralization exposed at the Worldstock Showing and Trench #1 at shallow depth. As indicated in Figure 19 the upper part of the hole also tested below the eastern edge of the main copper-soil anomaly. The hole continued well past the trench mineralized zone towards stronger IP chargeabilities and past the projection of Pit -1.

Hole 1 intersected a mixed sequence of variably altered Unit 3 volcaniclastic rocks with local flows. Alteration made protolith difficult especially in the upper parts of the hole, however lapilli tuffs and breccias are clearly evident below 170 metres. Narrow plagioclase phyric units with significant amounts of groundmass K.feldspar occur in three main areas. The upper crowded plagioclase porphyry dike between 62-63 and 66.80 metres is fractured, veined and chalcopyrite

mineralized. Two porphyry units below may also represent dikes, especially 151.77 to 154.10 which has associated sili-potassic alteration.

Contacts, shape fabrics, foliation and veining in this hole have interpreted steep altitudes, vertical or to the west as in hole 2. Strong fracturing or foliation with local quartz veinlet zones occur at the top of the hole and in the vicinity of the upper dike (59.00 to 82.70m). One main fault (late) occurs at 141.65m and projects upward into the creek and Pit -1 area.

Phyllic alteration with quartz-sericite-pyrite mineral assemblage predominates down to 175 metres in the hole with propylitic carbonate bearing assemblages below. At the top of the hole phyllic alteration with quartz veinlets returned a 18.25m interval (open ended) averaging 1400 ppm Zn and 505 ppm Cu. Chalcopyrite-pyrite mineralization is associated with quartz veinlet zones and potassic (K.feldspar) alteration at and below the crowded porphyry dike (62.63m). A 10.4 metre interval (open ended) averaged 0.38% Cu and 2.6 g/t Ag (converted from ppm) and included 1.41m of 0.935% Cu at the dike. This porphyry style mineralization projects upwards to the zone in Trench #1 (0.28% Cu/10m) and Cu in soil anomaly (peak values). Copper values in the hole drop below 100m commonly less than 500 ppm, this correlates with propylitic alteration. The higher IP chargeabilities in this eastern area do not correlate with an increase in sulfides in the hole, more sulfides occur to the west?

3. DDH's WS 2001-03 and 07 (Figure 20)

This drill section (Az.030) is centred at grid 1075N approximately 250 metres to the north of the previous drill section. Two holes, numbers 3 and 7 were drilled northeast at the same azimuth with different dips. The object was to test beneath a poorly exposed area of bedrock copper mineralization, a copper-soil anomaly and IP chargeability anomaly (stronger to east).

These two closely spaced holes encountered a mixed sequence of variably altered Unit 3 volcaniclastic breccias and rubby flows? The former include lithic to coarse lapilli tuffs and

breccias. Volcaniclastics may be homolithic with either feldspar phyric ('dacite') or augite phyric basalt lapilli/fragments or heterolithic (bi-modal) with both. The rubbly units also may be feldspar or augite phyric, basalts or 'dacites'. The latter appear similar to crowded porphyry dikes in hole 1 but do not have clear intrusive contacts. If dikes these units were brecciated prior to porphyry style alteration.

Shape fabrics, bedding, foliation and veinlets again have interpreted steep west dips. Several larger faults were recognized, the upper clayey fault in hole 3 (at 52.8m) appears late and has a steep west dip, projecting upward to the main gully (drainage) axis. A second fault with alteration overprint and disseminated green mica (fuchsite) appears early and could not be penetrated by hole 3 (abandoned). Foliation measurements indicate a shallow dip to the fault or oblique orientation to the section-line. Hole 7 did not intersect this fault and was probably terminated in the structural hanging-wall.

Variable propylitic to phyllic alteration appears to be lithologically and locally structurally controlled. Phyllic mineral assemblages with pyrite and local chalcopyrite are often associated with volcaniclastic and more deformed units. Propylitic alteration with chlorite, epidote, carbonate, hematite and pyrite mineral assemblages are more common in massive to coarse brecciated intervals. Vuggy chalcedonic quartz (local carbonate) veinlets and patches occur predominantly in mineralized lapilli tuffs.

Highly elevated copper values in the 200 to 3189 ppm range were returned from the pyritic and altered volcanic sequence in both holes. The higher values were commonly accompanied by high silver (upto 8.1 ppm) and gold (up to 120 ppb) with zinc up to 1960 ppm nearby. On receiving the analytical results it was clear that many core intervals (especially in hole 3) needed to be sampled. The steeper hole 7 returned the best continuous intersection with 0.17% Cu, 2.4 g/t Ag (converted) over 20.9 metres. Hole 3 featured more variable copper values with a 7.94 meter

interval averaging 0.12% Cu above the upper fault and 0.1% Cu over 11.2 metres above the lower fault.

The copper mineralization encountered in these two holes (especially hole 7) have associated silver and gold values locally with (nearby) zinc. It is interesting to note that the steeper hole 7 returned higher more continuous values than 3, possibly indicating a preferred orientation to the mineralization. This mineralization in hole 7 underlies the main copper in soil anomaly and surface copper mineralization which is at the edge of a strong IP chargeability zone.

4. DDH's WS 2001-04, 05 and 06 (Figure 21)

This drill section is centred at grid 1275N approximately 200 metres north of the previous and features three holes. The object with this fence of holes was to test the broad IP. chargeability anomaly (strong) with coincident copper in soil geochemical anomaly in the base line area. A short 38.4 metre long hole 6 tested beneath a mineralized surface showing on the road which had previously returned 3967 ppm Cu, and 3.4 ppb Ag from a grab sample.

The three holes encountered a sequence of Unit 3 lapilli tuffs, breccias and rubbly flows similar to that at 1075N. Feldspar and augite phyric volcaniclastics predominate, heterolithic (bimodal) units are rare to absent. Fabrics, contacts and veins again have interpreted steep west to sub-vertical dips. Probable (1 to 8 metre wide) feldspar porphyry and hornblende/augite phyric dikes occur in hole 5 east of the copper in soil anomaly. A narrow, steeply dipping feldspar porphyry dike also occurs beneath the copper in soil anomaly in holes 4, 6 and uppermost parts of hole 5. The country rocks on hole 5 east of the soil anomaly are propylitic altered (chlorite-epidote-carbonate) with locally greater than 10% disseminated pyrite. Analytical data for this hole clearly shows a drop in copper values downwards (to east) correlating with the transition to predominantly propylitic altereding. Gold values up to 235 ppb accompany the higher copper in mixed propylitic to phyllic altered lapilli tuffs at the top of the hole.

Hole 4 with mixed propylitic-phyllic alteration has highly variable copper values similar to hole 3 and requires additional sampling. One 6 metre interval (48.0 to 54.0) returned 0.16% Cu (converted) with low gold and silver values, and featured 5 to 10% disseminated pyrite in a clay altered, feldspar phyric volcaniclastic(?) unit.

Hole 6 was largely in altered augite phyric basalt (flows?) cut by a narrow felsic dike. Highly elevated copper values between 260 and 961 ppm were returned from samples with the higher values below the dike. This area with 2 to 5 % disseminated pyrite returned 700 ppm Cu over a 14.37 metre interval. The distribution of copper values in this hole and at surface above suggests an association with the felsic dike. Gold and silver values were low.

On this drill section the higher copper values are associated with pyritic argillic to phyllic alteration with lower values in the adjacent pyritic propylitic alteration. The overall abundance of disseminated pyrite explains the high IP. chargeabilities.

3.0 CONCLUSIONS WITH DISCUSSION

Exploration by the company on the highly promising Worldstock copper-silver (Au, Mo, Zn) target since discovery by P. Watt in 1997 has advanced the project to an early trenching and drilling stage.

Low budget grid and soil geochemical programs in 1999 and 2000 outlined a large continuous, northwest trending copper (plus or minus Ag, Au, Mo, Zn) in soil anomaly over 1.1 kilometres long and up to 250 metres wide (open to southeast). Rare subcrops and float in the anomaly area were strongly altered and pyritic with local copper values, and strongly suggested a porphyry style system.

The object of the company's 2001 exploration was to develop the soil target(s) through an integrated geophysical, geological and geochemical program to a trenching and drilling stage. Priority targets would be tested where possible by preliminary trenching and drilling so that a decision could be made on potential, and level of future exploration.

The winter geophysical program outlined a strong IP. chargeability anomaly with several lobes, coincident and larger than the main soil anomaly. This IP. anomaly was strongest and widest (over 700 metres) at its northern end, and clearly extended further to the north. A sub-parallel magnetic anomaly (high) was outlined along the eastern edge of the IP. anomaly.

Surface exploration during the target definition phase indicated that the northern end of the soil-IP. anomaly was underlain by pyritic-propylitic, argillic and phyllic altered, Nicola Group volcaniclastic rocks, breccias with local flows. Prospecting and later road construction revealed widespread copper-silver mineralized (plus or minus Au, Mo, Zn) float and local subcrop within the anomaly area.

The large size of the copper soil-IP. anomaly dictated that preliminary trenching and drilling should concentrate on 'hot spots' in particular areas with known copper-silver mineralized and altered bedrock. Difficult access did not allow testing of the southern parts of the soil anomaly.

Significant copper values were returned from 2 trenches and pits on the soil anomaly between grid 600N and 850N. Trench 1 cutting across the original Worldstock Showing returned 24 metres averaging 0.19% Cu including 10 metres at 0.28% Cu and 2.4 g/t Ag. Pit -2, 250 metres to the southeast featured considerable quartz-carbonate veining with chalcopyrite in phyllic-argillic alteration. Grab samples returned copper values from 0.22% to 2.69% accompanied by silver up to 31.5 g/t and elevated gold.

The seven 2001 drill holes tested the soil-IP. anomaly on four widely spaced sections between 200 and 250 metres apart. These holes were drilled in two directions with variable dips in order to maximize coverage. Strongly anomalous copper values were associated with pyritic, propylitic, argillic-phyllic and potassic alteration zones which are locally centred on crowded feldspar porphyry dikes or early structures. The copper mineralization is extensive, commonly fine grained and often difficult to identify because of abundant pyrite. Some fill-in core sampling is clearly required.

Hole #1 beneath Trench #1 intersected 10.4 m averaging 0.38% Cu, 2.6 g/t Ag including 1.41 m with 0.935% Cu in a crowded porphyry dike. An alteration zone at the very top of the hole averaged 0.14% Zn, 505 ppm Cu over an 18.25 m interval.

Hole #7, 250 metres to the northwest of hole #1 intersected 20.9 m averaging 0.17% Cu, 2.4 g/t Ag. Hole #3 above intersected 7.94 m averaging 0.12% Cu.

The other four holes all encountered strongly anomalous copper values commonly in the 200 to 1500 ppm range with local Au up to 250 ppb and Mo up to 150 ppm.

2001 exploration on Worldstock outlined a large (kilometre scale) and probably zoned 'porphyry' target with local copper-silver (Au, Mo, Zn) mineralization. The alteration and mineralization styles encountered to date indicate a high level system predominantly in volcanic rocks with structural and lithological controls. Further drilling is clearly warranted since only a small area on this large anomaly has been (preliminarily) tested at shallow depth. There is good potential for higher grade and intrusive centred, bulk-tonnage copper-silver (plus or minus Au, Mo) at depth and along the northwest trend.

The Worldstock is the first high level, zoned porphyry style Cu-Ag (Au, Mo) target to be recognized in the property area.

4.0 RECOMMENDATIONS AND COST ESTIMATE

Further diamond drilling is clearly warranted on the Worldstock Porphyry Target to better assess its potential for higher grade, bulk-tonnage, copper-silver (plus or minus Au, Mo) mineralization. The Phase 1 drilling consisting of 4 to 5 holes would commence with a deeper hole stepped back (to west) and beneath hole WS 2001-01. The following holes would be step-outs based on results and interpretations from the first. An expanded Phase 2 drilling program would be contingent on results generated by Phase 1.

Phase 1

1. Fill-in core sampling 2001 drill core (allow) \$2,000.00 2. Minor road construction, drill pads 5,000.00 3. 1200 metres NQ diamond drilling, supervision, core logging))
and sampling all in @ \$100 per metre 120,000.00)
4. Environmental)
5. Data Entry -2001 and 2002 drill data. Initial data-base for program and future)
6. Reports and Maps 4,000.00)
7. Contingency)
Total	}
Phase 2 1. Road Construction and drill pads 2. 3000 metres NQ diamond drilling. All in cost @ \$100 per metre \$300,000.00)
3. Environmental)
4. Reports and Data-Base 10,000.00)
5. Contingency)
Total)
R. C. WELLER	

5.0 STATEMENT OF EXPENDITURES 2001 WORLDSTOCK EXPLORATION PROGRAM **FEBRUARY TO DECEMBER 2001**

PHASE 1 GEOPHYSICAL PROGRAM (February 2001) 1. Worldstock and New Discovery Zones

Scott Geophysics Ltd (Feb 19-28)	14,579.94
R.C. Wells 4-5 days + Truck	2,200.00
Expenses	602.59
J. Kemp (Feb 12-27) Labour	2,800.00
Expenses	1,458.43
F. LaRoche (Feb 1-27)	3,200.00
Expenses	1,339.83
Snow Ploughing A.D Kerr Earth Moving (Feb 12, 13, 18)	<u>1320.00</u>
	27,500.79

Worldstock Portion Total

\$18,364.25

PHASE 2 EXPLORATION

2

(Ally 6 w June 15)	
R.C. Wells 13 days	5,525.00
P. Watts 12 days	2,880.00
G. Wells 10 days	1,300.00
Expenses	2,957.21
Analytical Eco-Tech Lab. (AK 2001 - 080,086,088,108,109)	<u>1,575.20</u>
Total	\$14,237.41
B. TRENCHING AND ROAD CONSTRUCTION (June 10 to 25)	
R.C. Wells 7 days	2,975.00
P. Watt 10 days	2,400.00
G. Wells 4 days	520.00
Expenses	2,517.18
I. Monette Excavator Services	6,737.50
Analytical. Eco-Tech Lab. (Ak 2001 - 107,119,125)	718.74
	ALC 0/0 /0

C. DIAMOND DRILLING PROGRAM (June 20 - July 9) Drilling and Supervision Diamond Drilling. Core Enterprises Ltd.

C

3.

7 NQ. DDM's total 888.19 metres		\$45,650.00
Supervision and Support		
RC Wells 11.5 days		4,887.50
P. Watt 7 days		1,680.00
C. Weston 6 days		720.00
Expenses		<u>2,691.29</u>
-	Sub-Total	\$55,628.79
Core Logging and Sampling (Oct 15- Nov 30)		
R.C. Wells 22 days		9,350.00
F. LaRoche 11.5 days		2,587.50
G. Wells 2 days		280.00
Expenses		200.00
Analytical. Eco-Tech Labs. (AK 2001 - 392/398,401, 414, 417, 420, 421	, 427)	4,727.58
	Sub-Total	17,144.98
	Total	\$72,773.77
REPORT COST		7,000.00
TOTAL	L PHASE 2	\$102,878.86
WORLØSTOCK TOTAL		<u>\$128,243.11</u>

6.0 STATEMENT OF QUALIFICATIONS

I, Ronald C. Wells, of the City of Kamloops, British Columbia, hereby certify that:

- 1. I am a Fellow of the Geological Association of Canada
- 2. I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia.
- 3. I am a graduate of the University of Wales, U.K. with a B. Sc. Hons. in Geology (1974), did post graduate (M. Sc.) studies at Laurentian University, Sudbury, Ontario (1976-77) in Economic Geology.
- 4. I am presently employed as Consulting Geologist and President of Kamloops Geological Services Ltd., Kamloops, B.C.
- 5. I have practised continuously as a geologist for the last 23 years throughout Canada, USA and Latin America and have past experience and employment as a geologist in Europe.
- 6. Ten of these years were in the capacity of Regional Geologist for Lacana Mining Corp., then Corona Corporation in both N. Ontario / Quebec and S. British Columbia.
- 7. The author supervised the all exploration on the Silver Lake property during 2001.
- 8. The author has no interests in the Silver Lake Property, or securities of Christopher James Gold Corp nor does he expect any.

R.C. Wells, P.Geo., FGAC

7.0 REFERENCES

- Belik, G.D., 1997. Drilling Report on the PGR Claim Group. Assessment Report for Cambridge Minerals Ltd.
- Belik, G.D., 1996. Trenching report on the PGR Claim Group. Assessment Report for Cambridge Minerals Ltd.
- B.C. Assessment Reports: 981, 1061, 1169, 1690, 4028, 4260, 4262, 4678, 4684, 5191, 10287, 10880,11413, 12101, 15221
- Campbell, R.B. and Tipper, H.W., 1971. Geology of Bonaparte Lake Map Area, British Columbia, G.S.C. Memoir 363.
- Gamble, A.P.D., 1986; 1985 Summary Exploration Report, Geology, Geochemistry, Geophysics and Trenching on the Ta Hoola Project, Kamloops Mining Division.

Hirst, P.E., 1966; Anaconda American Brass. Company correspondence.

- Preto, V.A.G., 1970; Geology of the area between Eakin Creek and Windy Mountain; in Geology, Exploration and Mining in British Columbia. B.C. Department of Mines and Petroleum Resources, pp. 307-312.
- Rebagliati, C.M., P.Eng., 1987; Assessment Report on the HC Project, Kamloops Mining Division, British Columbia for Lancer Resources Inc.
- Rebagliati, C.M., P.Eng., 1988; Assessment Report on the Ta Hoola Property, Kamloops Mining Division, British Columbia for Rat Resources Ltd.
- Ruck, P., 1982; 1982 Exploration Report, Geology, Geochemistry, Geophysics, Tahoola Project, Kamloops M.D.
- Serack, M.L., 1983; 1983 Percussion Drill Report on the Ta Hoola, Ro and Silver Claims, Kamloops M.D., Lornex Mining Corporation.
- Schiarizza, P. and Israel, S., 2001; Geology and mineral occurrences of the Nehalliston Plateau, Soth-Central British Columbia. Geol. Fieldwork 2000. BCMEM Paper 2001-1.
- Schiarizza, P. et al., 2001; Geology of Quesnel and Slide Mountain terranes west of Clearwater, South-Central British Columbia. Fieldwork 2001. BCMEM. Paper 2002-1.
- Wells, R.C., Evans, G.W., 1992; Geological and Prospecting Report on the PGR Claim Group. Assessment Report.

Wells, R.C., 1993; Geological Report on the PGR Claim Group. Assessment Report.

Wells, R.C., 1994; Geochemical Report on the PGR Claim Group. Assessment Report.

- Wells, R.C., 1995. Prospecting and Soil Geochemical Report on the PGR Claim Group. Assessment Report for P. Watt.
- Wells, R.C., 1998. Phase 1 Exploration Program. Geochemical, Sampling and Mapping Report for the Silver Lake Property. Assessment Report for Christopher James Gold Corp.
- Wells, R.C., 2000; Soil Geochemical and Prospecting Report for the Worldstock Copper-Gold Target, Silver Lake Property. Assessment Report.
- Wells, R.C., 2000; Report on the 2000 Exploration Programs (Geological, Geochemical and Geophysical) on the Silver Lake Property. Assessment Report.

APPENDIX 2

GEOCHEMICAL AND GEOPHYSICAL COMPILATION MAPS

(

 \square

APPENDIX 3

2001 PHASE 2 EXPLORATION: TARGET DEFINITION DATA

 $\left(\right)$

(

R. C. Wells, P.Geo., FGAC. Kamloops Geological Services Ltd.

ų,

		Т	ABLE 4: SIL	VER LAKE PROJECT 2001WORLDS PROSPECTING SAMPLES	тоск	GRID				
SAMPLE	LOC	ATION	SAMPLE	SAMPLE DESCRIPTION	Au	Ag	Ce	Pb	Za	As
21751	10+71N	0+05E	F/grab	Milky gtz vein, fairly solid local hem.	10	0.4	49	14	18	25
21752	10+80N	0+205	Floreb	Siliceous, 3-5% fine dissem. Py, local veinlets.	26	0.6	396			
21732	10+8014	UT20E	F/glaD	Pinkish-grey alt. volc/int? fine k. feld. Veinlets.	25	0.0	385	0	••	
21753	11+00N	0+12E	F/grab	Patchy dissem. Cpy w/m magnetic. Med. Green, fine grained volc. with alt. augite?	50	1.2	2474			<5
21754	11+00N	0+11E	F/grab	Mod. Pervasive carb, ep. Patches. Minor fine dissem, Py, Cpy.	30	0.4	711	10	116	<
21755	11+ 72N	0+53E	F/grab	carb.	15	0.6	54	12	47	10
21756	7+55N	0+10E	F/gmb	Strong alt. FP. Crowded, sil-k.feld. g. mass. >5% f/m dissem. Py. Weak carb.	5	⊲0.2	80	10	133	<
21757	8+00N	0+03E	F/grab	Strong alt. sil, fine grained. 2-4% fine dissem/veinlet Py.	30	1.2	343	6	77	5
21758	9+90N	1+065	SC/grah	As shown sill wir carb 4.5% v fine dissem Pv	<	<0.2	36	12	40	~
21760	(0.005	Time	As above, patchy >5% f/m dissem Py, w/m						
21759	0+92N	0+528	F/grab	patchy carb.		0.4	124	4	153	<
21760	6+94N	0+47E	F/grab	Light med. green feld. + augite phyric volcanic. Fine carb. veinlets, minor dissem. Py.	10	0.2	85	4	41	<5
21761	6+49N	1+02E	F/grab [']	Milky atz v. >3cm wide, local banding, no carb.	235	1	41	38	19	<
				Grey-green, sil-carb alt. Wk. fracturing with						
21762	6+47N	0+85E	BR/1m chip	vemlets.	30	4.8	2947	8	53	<
21763	2+45N	0+15E	BR/1m chip	Hand Trench. Strong oxid, sil with fine dissem. Py.	25	0.2	9 3	8	44	<5
21764	2+45N	0+15E	BR/1m chip	Hand Trench. As above.	30	0.4	104	12	50	<5
21765	12+24N	0+24W	F/grab	dissem. Py.	15	0.4	94	4	56	10
21766	12+32N	0+06W	F/grab	V. similar to above.	15	0.8	740	4	68	<5
21767	13+98N	1+50W	F/grab	Bedded siltstone/Argilite minor dissem/veinlet Py.	<5	<0.2	71	24	105	<5
21801	8+08N	0+30E	F/grab	Green sil. volc. with dissem. Py, some Cpy?	5	0.4	124	14	99	<5
21802	6+55N	0+72E	F/grab	Sil-wk carb, 3-5% f/m dissern. Py, local veinlets	20	0.4	174	12	50	<5
21803	15+00N	3+85W	BR/grab	Road oc. Alt augite porphyry (2a), 3-4% m/c Py local irregular veinlets. W/m pervasive carb.	5	0.4	182	16	68	5
				I ight green more sil 1.4% m/c Pv. dierem						
21804	14+95N	3+85W	F/grab	Local veinlets, aggregates. 3-5mm qtz veinlets.	15	0.4	123	22	57	15
21805	8+38N	0+85W	SC/grab	2m square area. Oxid, strong alt qtz-ser-Py. >- 7% dissem Py. Sparse veinlets.	15	0.2	37	12	163	ব
21806	8+35N	0+88W	SC/grab	Very similar to above, finer Py. Local f/m Py veinlets.	20	0.4	124	8	279	<
				Alt. volcanic, mod. Pervasive carb. Fine qtz-carb veinlets local malachite. V. fine-fine						
21807	8+16N	0+50W	F/grab	dissem/veinlet Py, Cpy.	35	1.4	2944	4	321	<
21808	8+12N	0+50W	F/grab	Py (Cpy) veinlets, some with malachite. Stwk style mineralization.	35	2.2	2737	10	117	ব
				Start 5m west of 21762 fractured/oxid, light grey- med. Green vol. Alt sil-variable carb, 3->5% f/m						
21809	6+42N	0+90E	2m cont. chip	dissem local veinlet Py.	15	0.4	173	18	61	<5
21810	6+41N	0+92E	2m cont. chip	As above.	20	2.4	142	162	129	<5
21812	6+39N	0+94E	2m cont. chip	As above, some fine Cry	10	0.6	28/		108	
			<u></u>	Series of milky qtz veins to 20 cm. Grey fg. sil. wallrocks with fine dissem. Py, local galena. In						
21768	9+14N	5+45E	SC/grab	sphalerite at edge of vein.	10	6.2	39	1834	1005	ব
21769	9+30N	5+50E	SC/grab	10% fine dissem. Py.	15	2.4	44	210	369	10
	$\boldsymbol{\lambda}$									1

/ /

POND

Pond

1282.8m

667

/

.800N

/

0 93

934

6

0\66

11

Ŵi

¥933,20 055

53 (930 931 932 052

6 805

· ____ ` ____`

POND

1215

205I

065

¥== *

1300

80B

N500N-

1400N

1200M

1 toph

10001

900N -

1325

1300N 1

· Jos

30014

200N

/

TABLE 3: SILVER LAKE PROJECT 2001WORLDSTOCK GRID: WHOLE ROCK DATA

SAMPLE	LOCA	TION	SAMPLE DESCRIPTION	SAMPLE	BaO	P ₂ 0 ₅	SiO ₂	MnO	Fe ₂ 0 ₃	MgO	Al ₂ 0 ₃	CaO	TiO ₂	Na ₂ O	K ₂ 0	L.O.I.
NO	N/S	E/W		TYPE	%	%	%	%	%	%	%	%	%	%	%	%
21851	15+00N	3+75E	Pinkish grey, feldspar rich, fine to medium grained, altered volcanic, local spherical amygdales. 1% fine dissem. Py. Non magnetic.	F/grab	0.03	0.27	45.95	0.13	9.47	8.88	11.68	8.96	0.55	1.84	1.48	10.50
21852	8+00N	2+00E	Light med. Green, fine grained andesite with dark hornblende needles up to 4mm (locally aligned). Patchy ep, carb. w/m magnetic. Unit 2a.	BR/grab	0.08	0.33	55.01	0.14	7.33	3.21	16.68	5.73	0.61	4.84	3.64	2.40
21853	3+80N	4+50E	Light grey green, fine grained, non magnetic, hornblende porphyry (2), Local mm scale altered mafics. Weak Carb. 3- 5% v. fine-fine disseminated Py.	BR/grab	0.03	0.34	56.45	0.07	8.80	1.94	16.20	3.77	0.67	5.17	1.56	5.00
21854	4+00N	3+15E	Light to med. green, fine grained, non magnetic, hornblende porphyry (2a), Local augite phenocrysts. 3% fine dissem. Py.	BR/grab	0.05	0.44	48.88	0.13	9.33	5.05	16.97	6.85	0.67	3.36	3.67	4.60
21855	6+50N	0+85E	Silicified/carbonated, fine grained volcanic. Fine grained dissem. Py, Cpy local malachite, non magnetic.	BR/grab	0.04	0.40	51.18	0.19	6.63	2,85	16.12	5.51	0.51	4.30	4.67	7.60
21856	8+55N	1+00W	Quartz-sericite-pyrite (phyllic) altered volcanic? 5-7% fine- med-grained dissem. Py.	F/grab	0.04	0.33	56.50	0.05	7.75	3.30	17.38	0.33	0.50	3.68	4.04	6.10
WSR-01	9+60N	5+50W	Grey-white, crowded feldspar porphyry with tabular plagioclase laths 1-3mm. Altered mafic microphenocrysts. W/m pervasive carb, weak magnetic.	BR/grab	0.13	0.20	58.33	0.13	6.36	2.30	17.38	4.73	0.50	4.49	3.06	2.40

200

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

t0041 Dallas Drive, Kamkoops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

WHOLE ROCK CERTIFICATE OF ANALYSIS AK2001-080

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON COURT KAMLOOPS, B.C. V1S 1P5

1-Jun-01

ATTENTION: RON WELLS

No. of samples Received: 6 Sample Type: Rock Project #: WS 2001-01 Shipment #: Not Given Sample submitted by: Ron Wells

Values expressed in percent

ET #.	Tag #	BaQ	P205	SiO2	MnÖ	Fe203	MgO	AI203	CaO	TiO2	Na2O	K20	L.O.I.
1	21851	0.03	0.27	45.95	0.13	9.47	8,88	11.68	8.96	0.55	1.84	1.48	10.50
2	21852	0.08	0.33	55.01	0.14	7.33	3.21	16.68	5.73	0.61	4.84	3.64	2.40
3	21853	0.03	0.34	56.45	0.07	8.80	1.94	16.20	3.77	0.67	5.17	1.56	5.00
4	21854	0.05	0.44	46,88	0.13	9.33	5.05	16.97	6.85	0.67	3.36	3.67	4.60
5	21855	0.04	0.40	51.18	0.19	6.63	2.85	16.12	5.51	D.51	4.30	4.67	7.60
6	21856	0.04	0.33	56.50	0.05	7.75	3.30	17.38	0.33	0.50	3.68	4.04	6.10
QC/DATA:													
ntepeat #: 1	21851	0.03	0.24	46.14	0.13	9.74	8.76	11.41	9.28	0.56	1.72	1.49	10.50
Resplit #:													
1	21851	0.01	0.22	46.09	D.13	9.64	6.90	11.59	9.08	0.55	1.83	1.46	10.50
Standard:													
SY2		0.05	0.53	5 9 .63	0.31	5.95	2.60	12.08	7.56	0.12	4.51	4.62	1.84
SY4		0.02	0.13	50.58	0.10	5.93	0.53	20.98	7.51	0.26	7.56	1.63	4.56
MRG1		<0.01	0.06	40.45	0.17	17.04	12.97	8.50	14.21	3.45	0.84	0.15	2.22

ECO-TECH JABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/01 df/wr80 cc: ron weits fax @ 372-1012

Page 1

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

WHOLE ROCK CERTIFICATE OF ANALYSIS AK2001-108

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

ATTENTION: RON WELLS

No. of samples Received: 1 Sample Type: Rock Project #: WS 2001-04 Shipment #: None Given Sample submitted by: Ron Wells

Values expressed in percent

ET #.	. Tag #	BaO	P205	Si02	MnO	Fe203	MgO	AI203	CaO	TiO2	Na2O	K20	<u>L0.1</u>
1	WSR-01	0.13	0.20	58.33	0.13	6.36	2.30	17.38	4.73	0,50	4.49	3.06	2.40

QC/DATA:

Repeat: 1	WSR-01	0.12	0.20	59.64	0.12	6.08	2.22	17.91	4.78	0.47	4.67	3.07	2.40
Standard:													
SY2		0.06	0.37	60.20	0.31	5.98	2.55	12.16	7.45	0.13	4.14	4.60	1.84
MRG1		0.02	0.04	39.56	D.17	17.97	12.34	8.19	15.12	3.74	0.53	0.10	2.22

ECO TECH LABORATORIES LTD. Frank J. Pezzetti, A.Sc.T.

B.C./Certified Assayer

XLS/01 df/wr108

Page 1

19-Jun-01

SAMPLE	LOC	ATION	SAMPLE	SAMPLE DESCRIPTION	Au	Ag	Cu	Pb	Ž.	As
NO	NORTH	EAST/WEST	туре		ppb	ppm	ppm	рраз	ppm	ppm
21751	10+71N	0+05E	F/grab	Milky qtz vein, fairly solid local hem.	10	0.4	49	14	18	25
				Siliceous, 3-5% fine dissem. Py, local veinlets.						
21752	10+80N	0+20E	F/grab	Wik patchy carb.	25	0,6	385	6		ৎ
				Pinkish-grey alt, volc/int? fine k. feld. Veinlets.			• · - ·			
21753	11+00N	0+12E	F/grab	Patchy dissem. Cpy w/m magnetic.	50	1.2	2474	4	77	ব
		[Med. Green, fine grained voic. with all augne?						
21764	11.0017		-	Mod. Pervasive carb, ep. Paiches. Minor tine						
21754	11+00N	0+11E	F/grab	dissem, Py, Cpy.	Ų٤	U.4	711	10	116	<
21766	11.701	0.890	Ti /k	while hard-su, 5-7% t/m, dissem. Py. Non-wk						
21/35	11+72N	0+53E	r/grap	Callo	15	<u> </u>		IZ	4/	10
21764	746613	0.100	E/	Strong art PP. Crowded, sit-creat g. mass.		~ ~ ~ ~	6 0			
217.50	77531		LUEISD	Stong of all fine grained 2.4% fine		20.2	00	10	133	
21757	8+00N	0+03E	E/arah	discontinuinat Dr	30	1 2	343	6	77	
21151	0.001	UTUDE				1.4	540			2
21758	0+90N	1+06E	SC/grab	As showe sit which 4.5% v fine dissem Pu	5	<0.2	36	12	40	<5
21130		TINGL	0078140	As shown patchy $>5\%$ f/m dissem Py and		-0.2		. 12		
21759	6+95N	0+52E	F/orab	nstehu cath	5	0.4	124	4	153	<5
				pandy care.			121		122	~~~~
				Light med, green feld, + angite phyric volcanic.						
21760	6+94N	0+47E	F/grab	Fine carb, veinlets, minor dissern, Pv.	10	0.2	85	4	41	<
								· · · ·		
21761	6+49N	1+02E	F/grab	Milley atz v. >3cm wide, local banding, no carb.	235	1	41	38	19	<5
				Grev-green, sil-carb alt, Wk, fracturing with						
				Malchite 1-2% med, dissem Py, y, fine Cpy in						
21762	6+47N	0+85E	BR/1m chip	veinlets.	30	4.8	2947	8	53	<5
				Hand Trench. Strong oxid, sil with fine dissem.						
21763	2+45N	0+15E	BR/Im chip	Ру.	25	0.2	93	8	44	<5
21764	2+45N	0+15E	BR/Im chip	Hand Trench. As above.	30	0.4	104	12	50	<
				Light grey, sil-carb, fine grained, 2-3% f/m				Í		
21765	12+24N	0+24W	F/grab	dissem. Py.	15	0,4	94	- 4	56	10
21766	12+32N	0+06W	F/grab	V. similar to above.	15	0.8	740	4	68	<u>্</u>
				Bedded siltstone/Argilite minor dissem/veinlet						
21767	13+98N	1+50W	F/gnab	Py.	ব	<0.2	71	24	105	<
21801	8+08N	0+30E	F/grab	Green sil. volc. with dissem. Py, some Cpy?	5	0.4	124	14		4
	4				-					
21802	6+55N	0+72E	F/grab	Sil-wk carb, 3-5% t/m dissem. Py, local veinlets	20	0.4	174	12		0
					ľ					
				Road oc. Alt augne porphyry (28), 3-4% nVc Py	_					
21803	15+00N	3+85W	BK/grab	local pregular vemiets. W/m pervasive caro.		0,4	162	10	50	
				Tight many many all 2 49/ m/s Dr. discore						
31804	14-055	2 . 9631/	Elamb	Lagal green more sil 5-476 mbc Py, dissent.	15		122	n	51	15
21804	14+93N	3+83W	r/grau	2						12
31805	0+1 0 1	0+8531/	SC/	Zin square area. Oxid, shong an qiz-ser-r y. 5- 794 dianan Dr. Samta uminlata	15	0.2	37	12	163	~
21005	NIGCTO	WCOTU	Scograd	Very similar to show finer Py Local fim Py	17	0.2		14		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
21806	8+15N	0+88W	SC/orah	venjets	20	04	124	8	279	<5
11000	0,0011	0.0017	- Co grad	Alt, volcanic, mod, Pervasive carb, Fine otz-carb						·····
				veinlets local malachite. V fine-fine						
21807	8+16N	0+50W	F/orsh	dissem/veinlet Py Crry	35	14	2944	4	321	<
				Large 2m square boulder, sil, wk carb. Otz-carb-						
				Pv (Cov) veinlets, some with malachite. Stwk				1		
21808	8+12N	0+50W	F/grab	style mineralization.	35	2.2	2737	10	117	<5
				Start 5m west of 21762 fractured/oxid, light grey-						
				med. Green vol. Alt sil-variable carb, 3->5% f/m						
21809	6+42N	0+90E	2m cont. chip	dissem local veinlet Py.	15	0.4	173	18	61	<5
21810	6+41N	0+92E	2m cont. chip	As above.	20	2.4	142	162	129	4
21811	6+40N	0+94E	2m cont. chip	As above, some fine Cpy.	15	0.8	287	14	111	<
21812	6+39N	0+96E	2m cont. chip	As above, some fine Cpy.	10	0,6	231	12	108	5
				Series of milky qtz veins to 20 cm. Grey fg. sil.		T	- 1	Ī	T	
				wallrocks with fine dissem. Py, local galena. In	I]				
				qtz brown sphalerite aggregates. Local galena-		1				ĺ
21768	9+14N	5+45E	SC/grab	sphalerite at edge of vein.	10	6.2	39	1834	1005	<5
				Light grey strong alt, sil-carb augite poph. (2a) 7-						
21769	9+30N	5+50E	SC/grab	10% fine dissem. Py.	15	2.4	44	210	369	10

TABLE 4: SILVER LAKE PROJECT 2001WORLDSTOCK GRID PROSPECTING SAMPLES

6-Jun-01

ECO.TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

111

Phone: 250-573-5700 Fax : 250-573-4557

.

ICP CERTIFICATE OF ANALYSIS AK 2001-088

٦,

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

ATTENTION: RON WELLS

No. of samples received: 29 Sample type: Rock Project #:WS 2001-02 Shipment #: 2 Samples submitted by: Ron Wells

Values in ppm unless otherwise reported

Et#.	Tag 🖊 🔤	Au(ppb)	Ag	AI %	_As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	<u> </u>	Mg %	<u> </u>	Mo	Na %	N	P	Pb	<u>SÞ</u>	Sn	<u>Sr</u>	<u>Ti %</u>	<u> </u>	V	W	Υ_	Zn
1	21751	10	0.4	0.09	25	25	<5	0.03	2	3	139	49	1.00	<10	0.02	138	144	<0.01	6	170	14	30	<20	6 <	0.01	<10	5	<10	<1	18
2	21752	25	0.6	0.36	<5	25	<5	4.93	2	38	17	385	5.90	<10	1.71	2590	1	0.01	7	2310	6	<5	<20	135 <	0.01	<10	17	<10	<1	88
3	21753	50	1.2	0.39	<5	70	20	4.60	3	26	18	2474	4.74	<10	1.53	1374	<1	0.02	3	1500	4	<5	<20	217 <	0.01	<10	54	<10	<1	77
4	21754	30	0.4	1.89	<5	70	10	2.15	2	28	20	711	6.22	<10	2.15	1374	≺1	0.02	5	2050	10	<5	<20	89	0.05	<10	174	<10	<1	116
5	21755	15	0.6	0.28	10	20	<5	0.14	2	22	25	54	5.38	<10	0.12	56	9	0.04	10	1610	12	20	<20	30 <	0.01	<10	25	<10	<1	47
6	21756	5	<0.2	0.84	<5	10	5	4.51	2	44	144	80	7.27	<10	1.69	1268	1	0.03	50	1190	10	<5	<20	64	0.08	<10	82	<10	<1	133
7	21757	30	1.2	0.29	5	15	<5	4.24	2	16	26	343	4.98	<10	1.90	1047	2	0.03	10	1670	6	<5	<20	194 <	0.01	< 10	26	<10	<1	77
8	21758	5	<0.2	1.51	<5	115	<5	0.60	2	11	25	36	3.29	10	0.44	322	<1	0.03	8	410	12	<5	<20	68	0.08	<10	112	<10	9	49
9	21759	5	0.4	0.26	<5	10	<5	5.84	2	36	24	124	7.27	<10	2.59	1985	<1	0.02	10	1730	4	-5	<20	173 <	0.01	<10	36	<10	<1	153
10	21760	10	0.2	0.34	<5	25	<5	6.10	3	16	19	85	2.63	<10	0.65	1743	1	0.02	3	1410	4	<5	<20	160 <	0.01	-10	13	<10	5	41
11	21761	235	1.2	0.19	<5	30	<5	4.19	2	4	122	41	0.93	<10	0.24	506	32	<0.01	6	180	38	5	<20	230 <	:0 .01	<10	67	<10	1	19
12	21762	30	4.8	0.84	<5	15	<5	3.09	2	16	24	2947	3.84	<10	1.04	1110	<1	0.03	- 4	1650	8	<5	<20	68 <	0.01	<10	56	<10	2	53
13	21763	25	0.2	0.47	<5	35	<5	0.52	3	28	31	93	6.00	<10	0.08	559	9	0.03	14	1770	8	<5	<20	20 <	0.01	<10	52	<10	<1	44
14	21764	30	0.4	0.45	<5	35	<5	0.44	3	23	19	104	5.87	<10	0.09	805	15	0.02	10	1650	12	<5	<20	22 <	0.01	<10	39	<10	<1	50
15	21765	15	0.4	0.34	10	25	<5	2.24	2	22	25	94	4.70	<10	0.54	1758	3	0.02	5	1730	4	15	<20	71 -	:0 .01	<10	9	<10	<1	56
16	21766	15	0.8	0.33	<5	30	<5	4.27	2	24	19	740	5.1 5	<10	1.54	1688	1	0.02	9	1950	4	<5	<20	120 <	<0.01	<10	16	<10	<1	68
17	21767	<5	<0.2	1.88	<5	15	<5	0.73	3	22	48	71	4.94	<10	1.62	631	5	0.04	16	1200	24	<5	<20	17	0.21	<10	165	<10	7	105
18	21801	5	0.4	2.22	₹5	55	<5	1.90	2	39	90	124	6.50	<10	2.34	1629	2	0.02	25	1720	14	<5	<20	62	0.13	<10	159	<10	<1	99
19	21802	20	0.4	0.60	<5	10	<5	4.70	2	28	24	174	5.60	<10	1.59	1644	1	0.02	13	2000	12	<5	<20	124 -	<0.01	<10	33	<10	<1	50
20	21603	5	0.4	3.29	5	20	<5	5.54	2	46	159	182	7.20	<10	4.09	2604	<1	0.02	52	1490	16	<5	40	189 -	<0.01	<10	185	<10	<1	68

ECO-TECH LABORATORIES LTD.

ICP CERTIFICATE OF ANALYSIS AK 2001-088

CHRISTOPHER JAMES GOLD CORP.

1

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	BL	Ca %	Cđ	Ċo	Cr	Cu	Fe <u>%</u>	La	Mg <u>%</u>	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr 1	Ti %	U	<u> </u>	W	Y	Zn
21	21804	15	0.4	3.39	15	15	<5	8.05	3	32	163	123	6.37	<10	4.31	2795	~ 1	0.01	50	1460	22	<5	40	359 (0.03	<10	172	<10	<1	57
22	21805	15	0.2	1.02	<5	<5	<5	0.21	2	21	44	37	7.57	<10	1.50	453	3	0.02	8	1510	12	<5	<20	8 <	0.01	<10	32	<10	<1	163
23	21806	20	0.4	1.06	<5	5	<5	0.65	3	18	46	124	6.30	<10	1.55	615	4	0.02	7	1420	8	<5	<20	22 <	0.01	<10	40	<10	<1	279
24	21807	35	1.4	0.45	<5	35	15	4.14	4	17	30	2944	4.58	<10	1.31	1395	<1	0.02	9	1740	4	<5	<20	99 - 4	0.01	<10	27	<10	-<1	321
25	21808	35	2.2	1.52	<5	20	20	3.84	2	41	42	2737	6.4B	<10	2.87	2475	<1	0.02	22	1950	10	<5	<20	103 🗠	0.01	<10	85	<10	<1	117
26	21809	15	0.4	1.13	<5	15	<5	1.34	2	28	31	173	6.74	<10	1.40	1012	2	0.02	10	2070	18	<5	<20	32 <	0.01	<10	54	<10	<1	61
27	21810	20	2.4	1.06	<5	25	5	0.09	2	18	55	142	7.26	<10	1.25	941	11	0.03	7	1810	162	<5	<20	7 <	0.01	<10	73	<10	<1	129
28	21811	15	0.8	1.75	5	15	<5	4.65	2	31	36	287	6.65	10	2.19	2155	3	0.02	16	1630	14	<5	<20	107 <	0.01	<10	100	<10	<1	111
29	21812	10	0.6	1.79	<5	15	<5	5.42	3	33	36	231	6.73	10	2.45	1922	<1	0.02	17	1570	12	<5	<20	123	0.02	<10	117	<10	<1	108
<u>OC DA</u> Resplit 1	IA: :: 21751	10	0.4	0.09	30	25	<5	0.03	2	3	175	47	1,12	-10	0.01	147	158	<0.01	7	190	14	30	<20	3 <	∝0.01	<10	5	<10	<1	22
Repeat	t:																													
1	21751	10	0.4	0.08	25	25	<5	0.03	2	2	146	46	1.04	<10	0.01	135	150	<d.01< td=""><td>5</td><td>170</td><td>16</td><td>30</td><td><20</td><td>4 <</td><td><d.01< td=""><td><10</td><td>5</td><td><10</td><td><1</td><td>20</td></d.01<></td></d.01<>	5	170	16	30	<20	4 <	<d.01< td=""><td><10</td><td>5</td><td><10</td><td><1</td><td>20</td></d.01<>	<10	5	<10	<1	20
6	21756	5		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	•	-	-	-	-	-	-	-	-
10	21760	-	0.2	0.36	<5	30	<5	6.23	2	16	20	68	2.70	<10	0.68	1789	1	0.03	2	1440	4	<5	<20	166 <	<0.01	<10	14	<10	5	42
19	21802	-	0.6	0.63	<5	10	<5	4.93	2	30	25	180	5.87	<10	1.66	1719	2	0.02	15	2080	16	<\$	-20	128 <	<0.01	<10	35	<10	<1	53
23	21806	20	•	-	-	-	-	-	-	-	•	•	-	-	-	•	-	-	•	-	-	-	-	-	-	-	-	•	-	-
Standi GEO'0	<i>ird:</i> 1	125	1,6	1.78	45	140	<5	1.78	3	22	56	80	4.09	<10	0.99	751	<1	0.02	22	800	22	<5	~20	56	0.12	<10	78	<10	5	76

ECO-TECH) ABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

df/87 XLS/01 cc: ron wells fex @ 372-1012

15-Jun-01

 $\sim -\infty$

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

LLW.			<u>y</u>		~2	DĦ	01	Ga 76	υų _		<u> </u>	<u> </u>	F8 %		mg %	IN D	MO	N8 74	N1	r	PD	SD	5ಗ	- Sf	11 %	U	v	W	Ϋ́	Zn.
1	21768	10	6.2	0.20	<5	15	30	6.49	23	11	86	39	2.40	<10	0.43	1380	556	0.01	8	700	1834	10	<20	743	<0.01	<10	28	<10	<1	1005
2	21769	15	2.4	1.57	10	15	<5	3.12	5	44	93	244	9.31	<10	1.84	1390	4	0.02	20	1710	210	<5	<20	92	0.20	<10	271	<10	<1	369
3.	21770	15	0.4	1.73	<5	20	<5	2.12	2	35	64	801	8.47	<10	1.30	692	4	0.04	30	1710	14	<5	<20	45	0.20	<10	148	<10	<1	74
<u>OC DA:</u> Respilt	[A :																													
1	21768	10	6.6	0.22	5	10	35	7.22	26	12	132	40	2.69	<10	0.46	1531	630	0.01	10	790	2162	10	<20	780	<0.01	<10	32	<10	<1	1165
Repeat																														
1	21768	-	6.2	0.20	<5	10	30	6.82	24	12	90	38	2.52	<10	0.44	1457	582	0.01	10	750	1936	5	<20	744	<0.01	<10	29	<10	<1	1098

df/104 XLS/01 cc: ron wells fax @ 372-1012 ICP CERTIFICATE OF ANALYSIS AK 2001-109

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

ATTENTION: RON WELLS

No. of samples received: 3 Sample type: Rock Project #: WS-2001-04 Shipment #: None Given Samples submitted by: Ron Wells

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

TABLE 5: SILVER LAKE PROJECT 2001WORLDSTOCK GRID: GRID SOIL SURVEY

SAMPLE NO	LOCA	ATION	C	Ag	Au	Zn
	N/S	E/W	ppm	ppm	ppb	ppm
L3+00N 3+00E	3+00N	3+00E	59	0.6	10	114
L3+00N 3+12.5E	3+00N	3+12.5E	85	0.2	5	100
L3+00N 3+25E	3+00N	3+25E	114	0.4	<5	126
L3+00N 3+37.5E	3+00N	3+37.5E	181	<0.2	5	107
L3+00N 3+50E	3+00N	3+50E	113	<0.2	<5	85
L3+00N 3+62.5E	3+00N	3+62.5E	334	0.2	<	89
L3+00N 3+75E	3+00N	3+75E	70	⊲0.2	\$	150
L3+00N 3+87.5E	3+00N	3+87.5E	631	0.4	10	101
L3+00N 4+00E	3+00N	4+00E	309	<0.2	5	78
L3+00N 4+12.5E	3+00N	4+12.5E	196	<0.2	5	108
L3+00N 4+25E	3+00N	4+25E	74	0.4	<	157
L3+00N 4+37.5E	3+00N	4+37.5E	143	0.4	5	121
L3+00N 4+50E	3+00N	4+50E	468	<0.2	10	141
L3+00N 4+62.5E	3+00N	4+62.5E	127	0.4	<	142
L3+00N 4+75E	3+00N	4+75E	141	0.4	<5	137
L3+00N 4+87.5E	3+00N	4+87.5E	171	0.4	<5	156
L3+00N 5+00E	3+00N	5+00E	85	0.6	<5	113
L4+00N 3+00E	4+00N	3+00E	39	0.2	<5	81
L4+00N 3+12.5E	4+00N	3+12.5E	88	0.4	<5	110
L4+00N 3+25E	4+00N	3+25E	63	0.4	5	119
L4+00N 3+37.5E	4+00N	3+37.5E	88	0.4	5	117
L4+00N 3+50E	4+00N	3+50E	136	0.2	<5	93
L4+00N 3+62.5E	4+00N	3+62.5E	87	0.2	<	79
L4+00N 3+75E	4+00N	3+75E	162	0.6	5	135
14+00N 3+87.5E	4+00N	3+87.5E	238	0.4	10	106
L4+00N 4+00E	4+00N	4+00E	161	1.0	25	176
L4+00N 4+12.5E	4+00N	4+12.5E	249	0.6	5	139
1A+00N 4+25E	4+00N	4+25E	176	<0.2	20	76
LA+00N 4+37.5E	4+00N	4+37.5E	213	<0.2	10	94
LA+00N 4+50E	4+00N	4+50E	198	<0.2	10	88
L4+00N 4+62.5E	4+00N	4+62.5E	121	<0.2	5	118
L4+00N 4+75E	4+00N	4+75E	58	< 0.2	5	71
LA+00N 4+87.5E	4+00N	4+87.5E	161	0.4	<5	100
14+00N 5+00E	4+00N	5+00E	118	0.4	<5	70
1.5+00N 3+00E	5+00N	3+00E	116	0.4	5	98
L5+00N 3+12.5E	5+00N	3+12.5E	61	0.4	ব	91
1.5+00N 3+25E	5+00N	3+25E	99	<0.2	5	97
L5+00N 3+75.5E	5+00N	3+75.5E	138	0.4	ব	112
L5+00N 3+50E	5+00N	3+50E	99	0.2	5	78
L5+00N 3+62.5E	5+00N	3+62.5E	168	<0.2	10	95
1.5+00N 3+75E	5+00N	3+75E	172	1.2	5	97
1.5+00N 3+87.5E	5+00N	3+87.5E	249	0.6	5	149
1 5+00N 4+00E	5+00N	4+00E	127	0.6	ব	106
1.5+00N 4+12 SE	5+00N	4+12.5E	147	0.4	~	177
1.5+00N 4+25E	5+00N	4+25E	226	0.2	5	100
L5+00N 4+37 SE	5+00N	4+37.5E	160	0.4	5	183
L5+00N 4+50E	5+00N	4+50F	135	0.6		87
1.5+00N 4+62 SF	5+00N	4+62 SF	75	0.4	<5	82
L5+00N 4+75E	5+00N	4+75E	Insuff I	Insuff		Insuff
L5+00N 4+87 5E	5+00N	4+87.5F	91	<0.2	<5	89
L5+00N 5+00E	5+00N	5+00E	61	0.4	<5	103

R. C. Wells, P.Geo., FGAC. Kamloops Geological Services Ltd.

6-Jun-01

ECO-TECH LABORATOR/ES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2001-086

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

ATTENTION: RON WELLS

No. of samples received:51 Sample type: Soil Project #: WS 2001-03 Shipment #: None Given Samples submitted by: Ron Wells

Values in ppm unless otherwise reported

Et <u>#</u> .	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	P	Pb	Sb	Sn	Sr	Π%	U	<u>v</u>	W	Y	Zn
1	L3+00N 3+00E	10	0.6	2.99	<5	60	<5	0.24	2	25	34	59	4.55	<10	0.87	565	1	0.02	29	1980	8	<5	<20	21	0.10	<10	91	<10	<1	114
2	L3+00N 3+12.5E	5	0.2	2.54	<5	45	<5	0.41	2	32	48	85	5.42	<10	1.23	893	2	0.01	30	750	10	<5	<20	33	0.11	<10	123	<10	<1	100
3	L3+00N 3+25E	<5	0.4	3.08	<5	55	<5	0.19	3	50	17	114	5.62	<10	0.46	1747	23	0.01	18	2160	10	-5	<20	20	0.10	<10	96	<10	<1	126
4	L3+00N 3+37.5E	5	<0.2	2.37	<5	25	5	0.30	3	33	13	181	9.13	10	0.73	877	13	0.01	8	1430	72	<5	<20	39	0.12	<10	134	<10	<1	107
5	L3+00N 3+50E	<5	<0.2	2.77	<\$	30	<5	0.28	2	21	30	113	5.05	<10	0.69	377	4	0.02	15	750	6	<5	<20	24	0.13	<10	90	<10	<1	85
6	L3+00N 3+62.5E	<5	0.2	3.14	<5	25	10	0.28	3	58	27	334	>10	10	1.57	1550	6	0.01	22	2960	4	<5	<20	17	0.07	<10	195	<10	<1	89
7	L3+00N 3+75E	<5	<0.2	5.60	15	45	<5	0.25	2	30	61	70	4.15	<10	1.05	657	2	0.02	38	2820	2	<5	<20	20	0.15	<10	64	<10	<1	150
8	13+00N 3+87.5E	10	0.4	3.17	<5	40	10	0.10	3	47	37	631	>10	20	1.42	1470	21	0.01	41	3070	8	<5	<20	18	0.02	<10	168	<10	<1	101
9	L3+00N 4+00E	5	<0.2	2.86	5	60	10	0.31	3	42	41	309	7.18	<10	1.15	493	13	0.02	39	1000	8	<5	<20	52	0.11	<10	144	<10	<1	78
10	L3+00N 4+12.5E	5	<0.2	3.01	10	55	<5	0.54	2	39	93	196	7.33	<10	2.08	844	3	0.01	41	380	26	<5	20	31	0.18	<10	201	<10	<1	108
11	L3+00N 4+25E	<5	0.4	2.72	<5	75	<5	0.17	3	22	25	74	6.09	<10	0.60	336	7	0.02	17	1760	12	<5	<20	38	0.11	<10	111	<10	<1	157
12	L3+00N 4+37.5E	5	0.4	2.60	5	80	<5	0.12	3	19	31	143	8.54	<10	0.81	304	9	0.01	13	3050	16	<5	<20	41	0.11	<10	129	<10	<1	121
13	L3+00N 4+50E	10	<0.2	2.92	<5	80	<5	0.13	3	35	38	468	>10	10	1.21	578	28	0.02	21	2930	34	<5	<20	65	0.14	<10	162	<10	<1	141
14	L3+00N 4+82.5E	<5	0.4	3,13	<5	80	<5	0.14	2	28	32	127	7.01	<10	0.82	470	10	0.01	26	1810	12	<5	<20	25	0.12	<10	118	<10	<1	142
15	L3+00N 4+75E	<5	0.4	2.91	<5	90	<5	0.25	3	22	29	141	7.45	<10	1.00	506	11	0.01	19	2330	12	<5	<20	36	0.10	<10	138	<10	<1	137
16	L3+00N 4+87.5E	<5	0.4	3.27	<5	65	5	0.22	3	36	31	171	7.29	<10	0.92	478	7	0.02	24	1770	12	<5	<20	38	0.12	<10	121	<10	<1	156
17	L3+00N 5+00E	<5	0.6	3.90	<5	65	<5	0.20	2	21	31	85	4.05	<10	0.63	494	2	0.02	27	1500	2	<5	<20	19	0.13	<10	71	<10	<1	113
18	L4+00N 3+00E	<5	0.2	2.13	<5	60	<5	0.30	2	23	32	39	3.72	<10	0.78	739	1	0.01	17	1360	12	<5	<20	. 26	0.10	<10	85	<10	<1	61
19	L4+00N 3+12.5E	<5	0.4	2.23	<5	80	<5	0.27	2	30	50	88	5.32	<10	0.86	1539	2	0.02	24	1890	4	<5	<20	38	0.10	<10	96	<10	<1	110
20	L4+00N 3+25E	5	0.4	3.21	<5	65	<5	0.22	2	32	39	63	4.67	<10	0.79	694	3	0.02	25	1070	4	<5	<20	23	0.10	<10	100	<10	<1	119

Page 2

.

Et #.	Tag #	Au(ppb)	Ag	AI %	As_	Ва	Bi	C <u>a %</u>	Cd	Co	Cr	Cu	Fe <u>%</u>	La	lg %	Мл	Mo	Na %	NI	P	РЬ	Sb	Sn	\$r_	<u>Ti %</u>	U	V	W	Y	Zn
21	L4+00N 3+37.5E	5	0.4	3.01	<5	60	<5	0.25	2	35	30	88	5.69	<10	0.73	822	1	0.02	21	1570	12	<5	<20	28	0.11	<10	112	<10	<1	117
22	L4+00N 3+50E	<5	0.2	2.13	<5	75	<5	0.30	2	22	25	136	9.40	<10	1.79	1597	67	0.01	9	1630	32	<5	<20	44	0.07	<10	200	<10	<1	93
23	L4+00N 3+62.5E	<5	0.2	2.32	<5	55	<5	0.18	3	29	88	87	5.66	<10	1.68	1424	7	0.01	24	1030	6	<5	<20	21	0.11	<10	165	<10	<1	79
24	L4+00N 3+75E	5	0.6	3.10	<5	55	<5	0.19	3	39	44	162	7.61	<10	1.08	948	3	0.01	30	1790	10	<5	<20	24	0.10	<10	96	<10	<1	135
25	L4+00N 3+87.5E	10	0.4	2.54	<5	50	<5	0.24	3	37	61	238	8.73	<10	1.58	888	5	0.01	27	2610	14	<5	<20	29	0.08	<10	149	<10	<1	106
26	14+00N 4+00E	25	1.0	2.40	<5	90	<5	0.11	4	32	25	161	>10	<10	0.45	798	122	0.02	19	4090	.118	10	-20	63	0.06	<10	156	<10	<1	176
27	L4+00N 4+12.5E	5	0.6	2.77	<5	50	5	0.17	3	27	21	249	7.61	10	1.12	636	14	0.02	18	1220	26	<5	<20	54	0.07	<10	169	<10	<1	139
28	L4+00N 4+25E	20	<0.2	2.68	<5	45	10	0.37	3	31	63	178	5.82	<10	1.78	804	2	0.01	29	700	4	-5	<20	31	0.12	<10	169	<10	<1	76
29	L4+00N 4+37.5E	10	<0.2	2.46	<5	60	<5	0.25	2	30	42	213	8.48	<10	1.04	388	12	0.01	27	2290	16	<5	<20	44	0.07	<10	144	<10	<1	94
30	L4+00N 4+50E	10	<0.2	3.14	<5	80	<5	0.20	2	23	64	198	8.05	10	1.48	531	4	0.02	28	2050	4	5	<20	54	0.11	<10	156	<10	<1	88
31	L4+00N 4+62.5E	5	<0.2	3.43	10	85	<5	0.36	2	28	53	121	5.47	<10	1.53	830	<1	0.01	28	1820	<2	-<5	<20	28	0.09	<10	155	<10	<1	118
32	L4+00N 4+75E	5	<0.2	2.74	<5	40	<5	0.37	2	17	34	58	3.54	<10	0.87	389	<1	0.01	21	1460	2	<5	<20	22	0.10	<10	101	<10	<1	71
33	L4+00N 4+87.5E	<5	0.4	3.12	<5	60	<5	0.39	3	28	47	161	6.85	<10	1.27	598	10	0.01	29	1030	32	<5	<20	32	0.15	<10	145	<10	<1	100
34	L4+00N 5+00E	<5	0.4	2.44	<5	60	<5	0.55	2	23	56	118	4.68	<10	1.35	1213	2	0.01	25	690	4	<5	<20	33	0.11	<10	150	<10	<1	70
35	L5+00N 3+00E	5	0.4	2.60	≺5	55	<5	0.22	3	25	30	116	5.23	<10	0.81	590	5	0.01	22	1830	10	<5	<20	24	0.11	<10	95	<10	<1	98
36	L5+00N 3+12.5E	<5	0.4	2.42	<5	45	<5	0.24	2	21	19	61	3.48	<10	0.44	713	3	0.02	14	1550	8	<5	<20	22	0.10	<10	69	<10	<1	91
37	L5+00N 3+25E	5	< 0.2	2.14	<5	40	<5	0.15	2	18	31	99	4.17	<10	0.82	527	4	0.01	18	1300	8	<5	<20	12	0.09	<10	95	<10	<1	97
38	L5+00N 3+75.5E	<5	0.4	3.09	5	55	<5	0.31	3	39	38	138	5.43	<10	1.04	798	1	D.01	34	1580	<2	<5	<20	29	0.11	<10	105	<10	<1	112
39	L5+00N 3+50E	5	0.2	2.50	<5	55	<5	0.31	2	27	43	99	5.09	<10	1.23	924	1	0.01	23	1250	6	<5	<20	31	0.10	<10	117	<10	<1	78
40	L5+00N 3+62.5E	10	<0.2	2.41	<5	50	<5	0.21	2	26	47	168	7.10	<10	1,22	502	5	0.01	27	1240	12	<5	<20	20	0.07	<10	110	<10	<1	95
41	L5+00N 3+75E	5	1.2	2.58	10	65	<5	0.33	3	30	51	172	6.61	10	1.11	1230	2	0.01	27	1530	12	<5	<20	28	0.07	<10	119	<10	<1	97
42	L5+00N 3+87.5E	5	0.6	2.79	<5	65	<5	0.27	3	40	42	249	8.09	<10	1.25	1117	21	0.01	29	1580	30	<5	<20	28	0.07	<10	131	<10	<1	149
43	L5+00N 4+00E	<5	0.6	2.17	<5	100	5	0.28	4	23	34	127	8.48	<10	1.14	891	44	0.03	14	2250	44	<5	<20	106	0.06	<10	147	<10	<1	106
44	L5+00N 4+12.5E	<5	0.4	2.69	30	45	<5	0.14	3	33	19	147	7.22	<10	0.46	1260	6	0.02	15	2510	14	<5	<20	13	0.12	<10	99	<10	<1	177
45	L5+00N 4+25E	5	0.2	3.13	<5	60	<5	0.33	2	31	60	226	8.02	<10	1.52	1343	3	0.01	28	2090	6	<5	<20	28	0.12	<10	177	<10	<1	100
46	L5+00N 4+37.5E	5	0.4	3.71	10	90	<5	0.31	2	31	36	169	5.93	<10	0.89	762	1	0.01	30	2620	8	<5	<20	27	0.11	≺10	106	<10	<1	183
47	L5+00N 4+50E	5	0.6	5 2.98	<5	50	<5	0.12	2	24	33	135	8.68	10	1.04	590	9	0.01	23	2290	6	<5	<20	17	0.12	<10	155	<10	<1	67
48	L5+00N 4+62.5E	E <5	0.4	5.49	20	45	<5	0.22	2	28	22	75	5.01	<10	0.36	436	5	0.02	23	3 1590	6	<5	<20	15	0.14	<10	68	<10	<1	B 2
49	L5+00N 4+75E	<5		Insufi	licient	Sample	,	-																						
50	L5+00N 4+87.5E	E <5	<0.2	2 3.59) 10	70	<5	0.44	2	29	52	91	5,53	<10	1,15	636	; 4	0.02	30) 1280	16	<5	<20	26	0.14	<10	141	<10	<1	89
51	L5+00N 5+00E	<5	0.	4 3.05	5 <5	100	<5	0.32	2	27	50	61	4.58	<10	1.00	1345	5 2	0.02	28	9 1270	8	5	<20	22	0.13	<10	125	<10	<1	103

CHRISTOPHER JAMES GOLD CORP.

7 5

ICP CERTIFICATE OF ANALYSIS AK 2001-086

 $\sim - \infty$

ECO-TECH LABORATORIES LTD.

 $\sum \lambda$

1 N

 $\langle \gamma \rangle$

CHRISTOPHER JAMES GOLD CORP.

ICP CERTIFICATE OF ANALYSIS AK 2001-086

ECO-TECH LABORATORIES LTD.

<u>Et #</u>	. Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	РЬ	Sb	Sn	Sr	Ti %	U	<u>v</u>	w	Y	Zn
	ATA:																													
Repe	at:																													
1	L3+00N 3+00E	10	0.6	3.09	- 5	55	<5	0.24	2	24	33	65	4.36	<10	0.90	554	1	0.02	27	1920	<2	<5	<20	21	0.09	<10	92	<10	<1	101
7	L3+00N 3+75E	<5	-	-	-	-	-	-	•	-	-		-	-	-	•		-	-	· _	-	-		-	-		-	-		
19	L4+00N 3+12.5E	-	0.2	2.26	<5	80	<5	0.27	2	31	50	91	5.40	<10	0.68	1566	3	0.02	25	1940	6	<5	<20	39	0.10	<10	98	<10	<1	111
26	L4+00N 4+00E	25		-	-	-	-	-	•	-	•		-	-	-	-		-	-	-	-	-	-	-	•	-	-	-	-	-
28	L4+00N 4+25E	-	< 0.2	2.76	5	45	~ 5	0.38	2	33	65	181	6.03	<10	1.84	838	з	0.01	29	740	8	<5	<20	31	0.12	-10	174	<10	<1	79
36	L5+00N 3+12.5E	<5	0.6	2.64	<5	40	<5	0.27	2	24	22	66	3.99	<10	0.49	797	3	0.02	18	1740	10	<5	<20	20	0.11	~10	77	<10	<1	108
45	L5+00N 4+25E	-	0.4	3.19	<5	60	5	0.36	2	33	65	220	8.51	<10	1.54	1452	4	0.01	28	2220	10	<5	<20	28	0.13	<10	185	<10	<1	114
Stan	dard:																													
GEO	01	110	1.2	1.81	40	145	<5	1.62	2	16	58	85	3.27	<10	0.97	700	<1	0.02	19	650	18	<5	<20	67	0.10	<10	72	<10	3	70
GEO	01	115	1.4	1.96	40	145	<5	1.67	2	19	52	82	3.75	<10	1.05	714	<1	0,02	22	750	18	<5	<20	71	0,12	<10	81	<10	4	73

df/86a XLS/01 cc: ron wells fax @ 372-1012

.

.

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

,

TABLE 6: SILVER LAKE PROJECT 2001WORLDSTOCK GRID: PROSPECTINGNEW ROAD SAMPLES

19-Jun-01

ECO-TECH LABORATORIES LTD. 10041 Dailas Drive KAMLOOPS, B.C. V2C 6T4

r

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2001-125

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

ATTENTION: RON WELLS

No. of samples received: 7 Semple type: Rock Project #: WS 2001-06 Shipment #: None Given Samples submitted by: Ron Wells

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cđ	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sп	Sr	Ti %	U	v	W	Y	Zn
1	21930	35	2.0	2.26	10	45	20	4.39	<1	34	39	1969	7.95	10	2.57	2964	<1	0.02	9	1620	22	<5	<20	124	0.02	<10	159	10	<1	163
2	21931	60	4.6	0.37	<5	35	35	4,51	2	31	29	3989	5.97	<10	1.41	3358	<1	0.02	12	1600	10	<5	<20	185	<0.01	<10	21	<10	<1	252
3	21932	115	2.8	0.33	<5	35	15	4.23	4	40	23	2152	7.39	<10	1.63	2229	1	0.02	11	1580	6	<5	~20	174	<0.01	<10	20	<10	<1	323
4	21933	15	0.4	0.31	<5	30	<5	0.22	<1	17	20	50	6.10	<10	0.05	405	3	0.01	- 4	1750	14	5	~20	22	<0.01	<10	10	<10	<1	20
5	21934	40	3.4	1.05	<5	35	50	4.04	1	19	29	3967	4.50	<10	1.57	1297	4	0.03	7	1850	8	<5	<20	167	<0.01	<10	51	<10	<1	153
6	21935	10	0.2	1.65	<5	55	<5	1.59	<1	20	45	109	7.24	<10	1.94	981	<1	0.02	8	2010	18	<5	<20	47	0.10	<10	129	<10	<1	70
7	21936	25	1.6	0.14	15	30	10	0.03	35	2	177	187	1.99	<10	0.05	98	162	<0.01	5	370	216	<5	<20	7	<0.01	<10	12	<10	<1	4485
QC DA Resplit 1	IA: : 21930	40	1.8	2.21	<5	45	25	4.16	<1	31	35	1958	7.81	10	2.59	2811	<1	0.02	10	1800	20	<5	<20	123	0.01	<10	155	<10	<1	165
Rереа : 1	21930		2.0	2.30	<5	45	25	4.36	1	33	39	1991	7.92	10	2.60	2944	<1	0.02	10	1770	22	<5	<20	124	0.01	~ 10	161	<10	<1	161
Standa GEO'0	ird: I		1.4	1.63	60	150	5	1.66	<1	19	55	87	3.96	<10	0.88	698	<1	0.01	25	780	32	5	<20	57	0.09	<10	68	<10	3	74

df/223 XLS/01 cc: ron wells fax @ 372-1012

.

.

ECO-TECH LABORATORIES LTD. Frenk J. Pezzoter, A.Sc.T. B.C. Certified Asseyer

APPENDIX 4

2001 PHASE 2 EXPLORATION: TRENCH AND SAMPLING DATA

R. C. Wells, P.Geo., FGAC. Kamloops Geological Services Ltd.

TRENCH WS2001-1 SAMPLE No 1 m. 4 . تاموم PP. Ag Zn Ciu \$2 Aυ sil - Py - Ser Alteration 21907 1002 10 111 25 50. (Phyllic) weathered and oridized 908 1937 105 50 Variable Mod-strong foliation / jointing. 124 70 909 710 0.8 Siliceous podsipatches with 75% fm. dissem Py 910 1146 1-0 102 215 Local fine Cpy. widespread malachite. spane cash. 1551 911 123 15 0.11% Cu, 171 3t Hard siliceous Rnob in 1.0 145 20 912 422 vicinity of original WS. 49. showing Massive to 913 1768 £19 50 1.8 foliated. much malachite 914 3517 Local fine dissem Ry, Cpy. 24 152 60 Patchy Sil, Ser. dissem. Py 41 915 2523 1-6 127 45 Local gtz veinlets / stringers 0.23% 916 3297 variable fine dissem Py, Cpy. 4.0 227 75 Mls shearing, cm. scale bands A 917 2098 Sil-ser-Az-Cpy 172 30 1.4 I 30 Fairly massive with dissm 1-6 fine by minor cpy. 918 1041 173 20 water, fractured, oxidized, local bedrock. Fractured and stong oxid. 919 985 1-4 209 30 Dip in overburden 2و_ No bedrock. Bedrock knoll. Med. gram Augite porphyry. W/m. carb. As above stronger alteration 198 920 qts veinlats 4-5% dissem Ry Bedrock Knoll. Augite porph. weak carb, dissim by local Cay ? 108 95 921 water, overburden. 10 9/ab 409 Massive to mod- jointed 50 922 Med. green , valcanic (andesite - basalt) disem Ry Local meak gtz. v. shuks. some veins to +5cm. Local fine cpy. much water o Az. HOSE 790N 014-24 Figure 16 TRENCH WS2001-1: GEOLOGY AND SAMPLING PLAN

TABLE 7: SILVER LAKE PROJECT 2001 WORLDSTOCK GRID: TRENCHING SAMPLES

R. C. Wells, P.Geo., FGAC. Kamloops Geological Services Ltd.

20-Jun-01

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

÷.

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2001-119

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

ATTENTION: RON WELLS

No. of samples received: 29 Semple type: Rock Project #: WS2001-05 Shipment #: None Given Samples submitted by: Ron Wells

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Ma %	Mn	Mo	Na %	м	D	0 1	0 L	6 -	<u> </u>						
1	21901	40	6.2	0.08	60	40	<5	1.70	2	4	122	346	1 44	<10	0.74	727	406	-0.04			FN	30	Sn	Sr II	1 %		<u> </u>	<u></u>	<u> Y</u>	Zn
2	21902	1D5	1.0	0.25	<5	35	<5	6.37	<1	16	38	1496	3.07	<10	263	4607	400	~0.01	3	590	220	100	<20	47 <0	0.01	<10	32	<10	<1	71
3	21903	180	0.6	0.58	<5	20	<5	3.58	<1	31	30	435	8.06	~10	1 70	1007	3	0.03	2	1290	6	<5	<20	193 <0	0.01	<10	20	<10	<1	58
4	21904	170	>30	0.31	<5	25	<5	4 16	Å	7	24	×10000	4 01	-10	1.78	1301		0.02	18	1570	8	<5	<20	93 <0	.01	<10	27	<10	<1	94
5	21905	60	2.4	0.46	<5	25	<5	3 73	<1	17	24	20000	4.47	~10	1.09	1/1/	<1	0.02	3	<10	8	<5	<20	111 0	.01	<10	23	<10	<1	181
					-		~	0.70	~ 1		31	2231	4,14	<10	1.69	1537	2	0.02	6	1420	8	<\$	<20	111 <0	.01	<10	33	<10	<1	107
6	21906	85	7.6	0.29	<5	20	٢Ē	4.05	~1	16	40	0260																		
7	21907	25	10	0.63	<5	40	~~	0.34		10	42	8308	3.94	<10	1.68	1570	<1	0.01	2	980	4	<5	-20	113 <0	.01	<10	13	<10	<1	121
8	21908	50	16	0.00	~5	30	-0	4.70	51	33	15	1002	6.94	<10	0.29	1304	2	0.02	14	2040	8	<5	<20	14 <0	.01	<10	28	-= 10	e1	111
9	21909	70	0.8	0.51	-5	30	~7	4.73	1	36	24	1937	7.08	<10	1.93	2040	<1	0.02	15	1400	6	<5	<20	101 <0	.01	<10	25	<10		105
10	21910	215	10	0.42	-5 -5	30	<0	2.72	<1	31	34	790	6.82	<10	0.65	1610	2	0.02	19	1380	8	<5	<20	41 <0	.01	<10	19	<10	-1	424
	21010	£17	1.0	V.92	~ 0	35	<0	2.19	<1	38	29	1146	7.35	<10	0.81	1294	3	0.01	15	2000	10	5	<20	50 <0	.01	<10	15	e10		400
11	21011	D.C.		0.25	- 2	-																		•			10	~10	~1	102
12	24042		1.4	0.30		50	<5	1.47	<1	34	26	1551	6.72	<10	0.49	1851	1	0.01	13	1990	6	<5	<20	38 <0	01	c10	17	~10		400
12	21012	20	1.0	0.03	<0	55	<5	0.89	<1	28	21	922	7.22	<10	0.51	1723	2	0.02	12	2060	B	<5	<20	27 <0	01	~10	47	~10		123
13	21813	50	1.8	0.76	<5	35	<5	3.34	2	27	39	2768	7.31	<10	1.59	2308	<1	0.02	22	1840	12	<5	<20	04 -0	01	~10	47	510	<1	145
17	21914	60	2.4	1.31	<5	40	<5	2.73	<1	25	26	3517	6.88	<10	1.98	1916	<1	0.02	12	1840	14	-5	<20	04 -0	.01	~10	0/	<10	<1	219
15	21915	45	1.6	1.03	<5	45	<5	2.23	<1	24	27	2523	5.98	<10	1.40	1824	1	0.02	14	1770	14	~5	~20	01 50 60 -0	.01	<10	92	<10	<1	152
																	•		••				~20	00 <q< td=""><td>.01</td><td><10</td><td>60</td><td><10</td><td><1</td><td>127</td></q<>	.01	<10	60	<10	<1	127
16	21916	75	4.0	0.63	15	20	<5	3.00	2	25	60	3297	6.91	<10	1.33	1629	2	0.02	17	1800	24	-								
17	21917	30	2.4	1.43	<5	30	<5	2.67	<1	29	30	2098	5.51	10	1.90	1457	2	0.02		1000	29	<0	<20	85 <0	0.01	<10	133	<10	<1	229
18	21918	20	1.6	1.51	<5	30	<5	2.77	1	. 24	29	1041	5 45	20	1 92	1481	~1	0.02		1010	10	<0	<20	78 <0	0.01	<10	88	10	1	172
19	21919	30	1.4	1.20	<5	25	<5	2.20	2	27	30	985	6.33	10	1 28	1226	- 1	0.02		1800	18	<5	<20	76 <0	1.01	<10	88	<10	- 4	173
20	21920	45	0.4	1.96	<5	40	<5	4.94	<1	29	52	208	6.00	20	3 17	1024	1	0.02	5	1880	16	<5	<20	62 0	.02	<10	79	20	7	209
					-				- •			200	v.80	20	9.11	1034	3	0.02	17	1670	14	<5	20	181 <0	.01	<10	89	10	<1	99

1

Et #.	Tag #	Au(ppb)	Ag	AI %	Аs	Ba	Bi	Ca %	Cd	Cn	Cr	Cu	Fe %	1.0	M- W					_										
21	21921	95	0.8	1.80	<5	30	55	>10	<1	44	EF	400	140		Mig 76	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	W	Y	Zn
22	21922	50	0.6	1.04	5	35	-5	8 00	1		40	100	>10	10	2.08	2328	3	0.01	16	1360	20	<5	<20	355	<0.01	<10	64	10	<1	98
23	21923	15	0,4	0.64	<5	30	-5	6.33 6.44	-1	22	42	409	4.49	<10	1.34	1933	2	0.02	4	1560	18	<5	<20	237	<0.01	<10	31	<10	<1	88
24	21924	15	<0.2	1.30	<5	36		5.54		21	~~~	200	4.70	<10	0.82	1589	1	0.02	6	2160	10	<5	<20	267	<0.01	<10	35	<10	<1	67
25	21925	15	<0.2	1 69	<u>ح</u>	30	~0	5.04	0 • •	25	29	122	6.24	<10	1.52	1823	15	0.02	32	2180	10	85	<20	185	<0.01	<10	82	<10		07
					-	50	~0	0.23	~1	23	45	112	6.90	10	1.92	2414	5	0.02	22	2060	10	<5	<20	167	<d.01< td=""><td><10</td><td>95</td><td><10</td><td>-1</td><td>20</td></d.01<>	<10	95	<10	-1	20
26	21926	· 10	<0.2	1.29	<5	26	-5	4 57										-									~~		•1	υæ
27	21927	10	0.4	0.50	~5	40	~0 ~5	4.37	~1	23	28	133	5.04	10	1.63	1428	<1	0.02	6	2390	12	<5	<20	140	<0.01	<10	69	<10	29	50
28	21928	75	0.8	0.00	~5	40	<0	5.50	2	26	27	91	5.47	<10	0.81	2187	2	0.03	10	2650	10	<5	<20	254	<0.01	<10	30	~10		165
29	21929	30	0.0	1 02	~0	40	<5	>10	5	15	38	141	5.58	10	1.27	3218	192	0.02	13	2360	14	<5	<20	323	<0.01	×10	43	~10		103
		••	0.0	1.02	-0	40	<5	>10	3	18	26	122	5.65	<10	1.85	4018	18	0.02	14	1980	10	<5	<20	356	<0.01	-10	45	~10		260
<u>QC DA</u> Resplit	IA: :																													
1	21901	45	6.6	0.09	60	45	<5	1.70	2	5	122	325	1.53	<10	0.78	757	416	<0.01	6	690	250	110	<20	50	<0.01	<10	35	<10	<1	71
Repeat	2																												•	
1 7	21901 21907	45 25	6 .0	0.07	65	40	<5	1.78	2	4	129	333	1.49	<10	0.74	785	419	<0.01	4	600	236	105	<20	45	<0.01	<10	22	~10	~1	20
10	21910	•	1.0	0.44	<5	40	~5	- 	_					-	-	-	-	•	-	-	-	-	-	_	-		50	~10	~1	18
19	21919		1.2	1.20	<5	30	~0	2.36	< I 4	40	31	1168	7.75	<10	0.83	1364	1	0.01	15	2100	8	10	<20	52	<0.01	<10	16	-10		440
					-0	50	~0	2.10	1	26	29	964	6.03	10	1.31	1213	<1	0.02	6	1960	12	<5	<20	64	0.02	<10	70	~10	~1	110
Standa	rd:																								V.UL	-10	18	~10	ø	196
GEO'01		120	1.4	1.63	60	150	<5	1.66	<1	19	55	87	3.96	<10	0.88	698	<1	0.01	25	780	32	5	<20	57	0.09	<10	68	<10	. 3	74

df/223 XLS/01 cc: ron wells fax @ 372-1012

.

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

Page 2

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS

6

ICP CERTIFICATE OF ANALYSIS AK 2001-119

ECO-TECH LABORATORIES LTD.

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

CERTIFICATE OF ASSAY AK 2001-119

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

20-Jun-01

.

ATTENTION: RON WELLS

No. of samples received; 29 Sample type: Rock **Project #: WS2001-05 Shipment #: None Given** Samples submitted by: Ron Wells

		Ag	Aġ	Cu	
ET #.	Tag #	 (g/t)	(oz/t)	(%)	
4	21904	31.5	0.92	2.69	

ECO-TECH ABORATORIES LTD.

ECO-TECH/ABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/01

Page 1

APPENDIX 5

2001 PHASE 2 EXPLORATION: DIAMOND DRILLING DATA

R. C. Wells, P.Geo., FGAC. Kamloops Geological Services Ltd.

TABLE 8: WORLDSTOCK 2001 PROGRAM: PHASE 2 DRILLING INFORMATION	1
--	---

DDH NO.	GRID LOCATION (Collar)	AZIMUTH	INCLINATION	DIP TEST @ m (Corrected)	LENGTH m	CASING m	START m	FINISH m
WS2001-01	8+30N: 0+85W	070	-50	-48@96.62 -49@206.35	208.78	5.59	28/6	29/6
WS2001-02	6+25N: 0+62E	227	-50	-48@93.57 -48@145.39	148.44	9.14	30/6	1/7
WS2001-03	10+56N: 0+46W	030	-55	-52@75.28 -52@136.75	144.78	12.80	1/7	2/7
W\$2001-04	12+94N: 0+16.5E	210	-45	-45@87.48 -45@148.44	157.58	7.32	3/7	4/7
WS2001-05	12+94N: 0+16E	034	-45	-44@84.42	84.43	7.32	5/7	5/7
WS2001-06	12+62N: 0+46W	210	-50	-48@38.4	38.41	6.71	5/7	6/7
W\$2001-07	10+82N: 0+09E	030	-68	-67@105.77	105.77	7.32	6/7	6/7

HIGHLIGHT ASSAY INTERVALS

HOLE NO.	FROM (m)	TO(m)	LENGTH (m)	Cu (ppm)	Ag (ppm)	Zn (ppm)
WS2001-01	11.15	29.40	18.25	505		1400
WS2001-01	59.00	69.40	10.40	3800	2.6	
WS2001-02	92.00	97.55	5.55	1381	1.52	
WS2001-03	44.86	52.80	7.94	1200		
WS2001-04	48.00	54.00	6.00	1600		
WS2001-07	34.40	55.30	20.90	1700	2.4	

R. C. Wells, P.Geo., FGAC. Kamloops Geological Services Ltd.

j,

SILVER LAKE PROPERTY WORLDSTOCK GRID

DDH NO. WS2001-	01							
	L	ITHOLOGY	STRUCTURE	ALTERATION		<u></u>	PA	<u>GE NO. 7</u>
MAIN UNITS	GL	SUB UNITS	SIRUCIURE	ALIERATION	MINERALIZATION		SAMPL	ING
0-54t Conin		Orthu Sondy also Till				FROM	то	NUMBER
Ortefundes								
the start and the start	Ũ							
Wight a addres	1.	- 10- 10 Vointy and and matted	Variable foliation Se-	Pervosive silico -	2-5% very fine			
2.114 - 47.17 Eta	وبنز	white brown, cubbly care recovery	60 CA. (sidesplead bottle	secicite? Weak	diverninated Py			
1.44- 01.63 Strang	2	Fine grained, silverand - pynke. Voriably	freehing Local sek-	axidized, no cocharat	local by verilita			
Altered Volcaniclastic	T.	versed local glasts of forgomets-logilli	Prophermatic gly mins					
Rocks. Variable Alteration	13	Non magnetic	6 Smm (25 60 CA)					
of Deformation most	12	10-80-13-65 A obeve, net oxidized.	iccogular fine quarte	As above	2-75% direminate	,	1	
primary textures,	1	Local granular appearance - Andrews?	wintete sharp and		and wishet by man	11.15	13.45	03701
Augite Porphyny Sections	12	· · · · · · · · · · · · · · · · · · ·	vogue casterts.		abundant quarts			
	1	13.65-15.50 Light green counded angels	Story flow alignment	bleached , lammash	Patches and lesses	13.45	15.50	
	11	dise Stained grind new alloament.	quety walks wich	rinmed phenocycli pisite	a lon Rite local enter	1000	17 60	03202
4	12	1550-28,40 light coloured, fine	Variable foliaboin 6000	Silica- Rate (Sedente)	End of inem and	17.50	10.00	03203
	بسجا	grained silicense pyritic with	70-90 CA ly weights	Difference for anound	will P A and	(7-30	<u>//</u> //00	04804
	SIL.	insighte foliation (secicite)	Rtz variance variable 15 20	anes mineral (com)	(brichle 254) Buch			· · · · · · · · · · · · · · · · · · ·
			ct also high null	and and at section	-24.75 milk, to yeining	- FI-00	X0.TO	03205
			0.0	0	mine al (Sph) miner to	<u>20-80</u>	22.40	03204
		22.40-27-22 Mottled greens, remont	Store Papiers 10-60	Variable Hearted	Variable his disc	22.40	<u>84.40</u>	03207
	ľ k	parphysitic textures 26.0-27.32 Altered	cassibly bear mental -	with a manual and a	rougon first damen	24.40	26.20	03205
	14	angele and of hemblende physic. Ober mites	Idiated matrix local	annacol - s la - a	had a started of the second			
	12	phenos, some filder local remnant frequents	chich and CA R. s. A.	anate?	herede	24.20	27.32	03209
	1	27.32-42.68 light gray to area-	1-Ven dide	Silicon an allili. 7	panors.	27.32		<u> 0 3 2 1 0</u>
	4~	grays fire graved with local	A has increased as also	with a same of	A A			
	1	stragent frequental textures	inialeta to loop.	Patch, week chi	- A few puche			
	12	Same shorts of frequents upto 1200	Fabrics lation	Local line analytic	e località de lap	<u> </u>		
	3	long. Non carbonated an marsetic	is generally cards	area autoreal	gaserous / Smar.			
1	1/	comment, excluded acipinal	Sarbo'CA Same A.		uggregates of fine ,	·		
	12	med gained as Polalagas struge	verialety of the of		med ground by			
1	12	sections ?	section.	· · · · ·	39.60			
					40.25 TH4/4			
	-	-		······································	Chiefelicie 3-37 fine	70		

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: K.S. Wills

DATE: 21 October 2001

SILVER LAKE PROPERTY WORLDSTOCK GRID

LITHOLOGY STRUCTURE ALTERATION MINERALIZATION SAMPLING MAIN UNITS GL SUB UNITS Prime statisticania ATTERATION MINERALIZATION SAMPLING MAIN UNITS GL SUB UNITS Prime statisticania ATTERATION MINERALIZATION SAMPLING Adde 18170 Southeast and factors	DDH NO. WS 2001-0)t				·	PΔſ	SENO 2
MAIN UNITS GL SUB UNITS Prove Visit of the form of the		LITHOLOGY	STRUCTURE		MINEDALIZATION	••••••••••••••••••••••••••••••••••••••	CAMPI	
Story The Start of fermining for the set of fermining for the set of	MAIN UNITS	SUB UNITS	2		PUNERALIZATION	EDOM 1		
18 18-19 19 100 19 100 19 100 19 100 19 100 19 100 19 100 10 10 10 10 10 10 10 10 10 10 10 10		9	Stronger So-co'CA foliation				<u> </u>	NUMBER
1262-66.80 Crouded Light growth Evidence of the service states and the service states and the service service and service service service and service			21'CA			40.70	42.69	03212
12. 12. 1. And Abord (Lacel sylp) figure (aborder all print) (2000) (2010) (E-	42.68-52.70 Sanchlad fight and	Edi-hi di sat	<i>0</i>		#2.68	44.68	03213
12.62-66-80 Crouded Links shart of the spectral for the start of the spectral start start start start start start start start of the spectral start s		(shite and found () and a (i)	Foundation - of - one	Penicoure Silico -	2+3 % dense minated	- 44-68	46.47	03214
1263-66-80 Crouded Light part for the formation of the constant for the second the secon		Part and the first safe	a generally to ch crude	Pyate (Secirite), Astrony	fine grained Py	46.47	49.31	03215
2482-6680 Crouded light gast field gast field gast field gast field and gast field with the second field with the second field gast field with the second field with second with the second with the second field with second with the second		First Amendally free grained facar	SUB-CONCOLOGAT 60-80 CA	clay. No corb. Shows	throughout incl.	48.31	50.31	03216
1. Stand Charled Lington (1) 12 mark control (2) 12 mark contro		protection Non carb,	13 Veinter generally (10	cloy 30 18 46.47 - 4831	clayer gone bocal	50-21	52.70	03217
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	سر - بعر -	non magnetic	Manable density, I-Z	More silicons either	racow A, veinlets			
14 Santo-22.32 Metted light be note more required for the first birth birther of the first of th			ghy weine to low 20'50	side. 4580-4647	60-80 CA.			
5270-52.32 Milled Light & and more reserve with frach a moderal 1.3% frie dimen. 1 grann and grays. Fine grand, dan line vaiolet dearty cheak light the appendix light for a finite dearty cheak throughout. grann grays. 1 grann and grays. Fine grand, dan line vaiolet dearty cheak light the grand light for appendix with light for a finite more finite dearty cheak finite more finite dearty cheak finite more finite dearty cheak finite more finite dearty for a finite more finite dearty cheak finite more finite dearty for a finite more finite dearty finite more finite dearty for a finite more finite dearty for a finite more finite more finite more finite more finite dearty for a finite more finite finite more finite		<u>/</u>	at end of section	chilly granter				
1 genera and genere frå general dan fan waarde staring estering estering far terregenet. 1 genera and genere genere genere genere and the search of the search and the search was the at end of sectors 1 general provide genere and the search of the search of the search and the search of the sectors 1 general genere and the search of th	4	52.70-62.32 Mottled light to ned	more more with	freak to moderate	1-2% fine dimen			
1 magashi isal glante of figurestal fan normen high level fainten. 134 Cay (flm) with testime - punctury could legate the for a for a for a level of section for a for a for a level of section for a for a for a level of section for a for a for a level of section for a for a for a for a level of section for a		green and greys. Fine ground, don.	Low veralet density	cheate throughout	Ry Honghust.			
Lieburger - party collid light and a gold in the and a sole of a strille Cold a governet, were be at end of soleting and a soleting of the soleting and and a soleting of the soleting of t		anagaetic. lacal ghate of fragmental	Few narrow, high	Local foliation.	2-34 Cay (fm) with			
1 particle 2 Early coloring with and 2009 miles and the series into the series in the		textures - procly solled lapilli tuf	age ca gto millet	Epiclote gave mill, wea	tox at end of section			· · · · · · · · · · · · · · · · · · ·
and light gridde the second of	11	portalith? Fairly chieritic with	Grat Roca	M/c 57.0-60.0.	local benotite.			
12-63-66-80 Crounded Light and faid you Many faitures and 2-3% find fraction for a series in a margarity of the fait for a series for the fait of the		patchy epidate	61. Ro . 61.90 irregular	weak corb with the epid		59.00	61.00	037/8
12-63-66.80 Crowded light pick pick pick per Many finiture and 2.34 finit fracture 1000 1000 1000 1000 1000 1000 1000 10			Soca 912 corb ven by	Nen mografic		\$1.40	67.63	01219
62-63-66-80 Crowded parety dite custor 65.42 (Strag weilet So-rice By Strong growdross By in Constructor 62-63 64.01 03220 Feldspar Perphyny Dike parety dite custod). The dite. Centrale US (A K. Letterne in dite miner Coy. 75% B, Cast (5.92 0322) and Petrossic Altered custor for the subscreet discuss. And weather constructions of the subscreet discuss for the subscreet discuss. Service and weather could be subscreet discuss for the subscreet discuss. Service and weather could be subscreet discuss for the subscreet discuss. Service and weather could be subscreet discuss for the subscreet discuss. Service and weather could be subscreet discuss for the subscreet discuss. Service and weather could be subscreet discuss for the subscreet discuss. Service and weather could be subscreet discuss for the subscreet discuss. Service and weather could be subscreet discuss for the subscreet discus for the subscreet discuss for		Counded light pick feld spor	Mary fractures and		2.3% fine bracture			,
Feldspar Perphyny Dike Stanciated and sulpide varied). The dike. Centerle US CA K bedepar in dike miner Cov. 55% P. 6401 65.92 03221 and Petassic Altered Schlacked freshered disea. Wallocks. bloasted freshered disea. Wallocks. Strong Hight grey to byff, Felinkin after Sock Silica - Sericite: Variable 1.3% free 66:80 69:22 Wallocks. bloasted frequently with weak low electify of ats Clay Fine Py. No dependented Py 68:26 03222 Hered, fine grained and the frequently with weak low electify of ats Clay Fine Py. No dependented Py 68:26 03:22 Hered, fine grained and the second for the second	62.63-66.80 Crowded	parphys, dike 6401-6542 (Strong	Veidet So-TOCA . BX	strong around mass	Pu in constancesta	67.62	64.00	~ 7 . 7 .
and Potossic Attered Studences, blacked fractioned diver wallocks. Service? and block for the first diver wallocks. Service? and block for the first diver wallocks. Service? and block for the first diver first of the prevent with reak low descin of of the service? Variable 1.3% for the first diver first of the prevent with reak low descin of of the first of the first diver for the first diver Altered, first grained method for the first of the first diver of the first diver of the first of the first diver with volcanic tasks of the prevent with and the first diver of the first	Feldspor Porphyny Dike	Appreciated and sulpide vaired). The	dille. Contacts 45 CM	K. Lidson in dike	MARCOW, SSI P.	11.01	15.02	- 200 /
Wallrocks. (480-116.05 Strong Alterad, fine grained m to mederate filiation looklith, Ediation after 50'ch Silica - Sericite - Variable 1.3% file 66:80 69.26 03223 Alterad, fine grained m to mederate filiation looklith, variates 65 mm k feldspor at carb biological filiation looklith, variates 65 mm k feldspor at carb biological filiation looklith, variates 65 mm k feldspor at carb biological filiation looklith, variates 65 mm k feldspor at carb biological filiation united valear - fine grained valeanic facally, vaggy with sericite carboat forming to bla probables? Probables? 15.20 75.50 03225 15.20 75.50 75.50 03225 15.20 75.50 7	and Patassic Altered	Enclosers, blocked fractioned disy a.		and malineks. Sericite?	and bleb by Con in dike	65.07	66.90	<u>0_37.2.</u>
4480-116.05 Strong II fine ground, frequently with weak low descript of oth Clay-Fine Py. No dimensionated Py 18.26 03224 Alberad, Fine ground in the maderate poliation leabolith wantets & Som K. felds for at carb briefler of affec 18.26 03224 with Volcaniciastic of weller - fine ground walcanic for ally wiggy with service content from indice to gly 18.26 03224 Problithe? are hyfe. fine dance (30:60:6) difficult to estimate to gly 18.20 03225 25'CA 75:50 75:50 03225 16'Can grave 7125-72:0 weilted 17:50 03226 76:00-82:70 highter coloured Conter faliation Silica + Py = Set Driven ghy series 77:50 73:20 03227 Nore silicifield with weak of soice of a faliation Silica + Py = Set Driven ghy series 77:50 73:20 03227 Nore silicifield with weak of soice of a faliation for workele and of the soil of the faliation of the faliation of the soil of the faliation of the soil of the faliation of the faliation of the soil of the faliation of the soil of the faliation of the soil of the faliation	Wallnocks.	66.00-76.00 fight grey to byff.	Estimbin alter Sock	Silica - secicite-	Vaciable 13% kie	46.90	60.97	
Alterad, fine grained and to maderate filiation lastalith vantets i 5 mm to test lastar or arts bright of affen with Volcaniciastic and unlease (acally Wiggy with sericite content previous to gly or holiths?	66-80-116.05 Strong	y fire grained, frequently with work	low desite of sta	Class Fine Py. No	dependented R	/ 0. 7/		03223
with Volcaniciastic and the second volcanic (acally voggy with sericife contest previous to gran probability?	Alterad , Fine grained and	to noderate Isliation Contality	vaintets 65mm	K. Reldsons at carb	history of alles		•1:¥0	01929
Probelithe? Probelithe? Probelithe? Probelithe? Probelithe? Probelithe? Problem Proble	with Volcaniclashie and	2 unclear - fine grained integnie	Cocally wagy with	sericite content	forminal to at			
Clay gave 7125-72.0 25 ch 75.50 75.50 03225 7600-82.70 highter coloured Conter fahistron Silicar Py = Ser Davey ghy Laine 77.50 79.00 03227 25 ch 7600-82.70 highter coloured Conter fahistron Silicar Py = Ser Davey ghy Laine 77.50 79.00 03227 20 may silicified with unggy ghy Sich Valar 0.5 h 20 work liced for Py 79.00 80.50 03228 20 work laced flor Py 79.00 80.50 03228 20 work laced stringen of 20 CA. Unggy/ duse. 20 CA. Unggy/ duse.	Proholiths?	ac hife	Line daise (30: 60 CA	difficult to estimate	caining becal h		····	
25°CA 75.50 77.50 03226 7600-82.70 highter coloured Conter fabiotron Silica + Py = Ser Darry of series 77.50 79.00 03227 20-20 silicified with ungay of 3 SiCA. Value 0.5 h earth lacal f/m Py 79.00 80.50 03228 21 since silicified with ungay of 3 SiCA. Value 0.5 h earth lacal f/m Py 79.00 80.50 03228 21 since silicified with ungay of 3 SiCA. Value 0.5 h earth lacal flow Py 79.00 80.50 03228 22 since strate freine fr	4 1		CLAY 2000 71-25-72.0	W	veillet	78.20	76.60	A7945
1 7400-82.70 Lighter coloured Corder faliation Silice + Py = Ser Darry gtz value 77.50 79.00 03227 1 new silicified with wagay gtz Si'CA. Value 0.5 /a 056 0546 lacal f/m Pz 79.00 03227 1 new silicified with wagay gtz Si'CA. Value 0.5 /a 056 0546 lacal f/m Pz 79.00 80.50 03228 1 weinlete freine /cm waabble ayle lacal strigen of 03228		/	25°CA			75.5-	17.64	~ 297/
/ more silicificed with weger gtz Sica. Value 0.5 /2 // weinlete fraine // weinlete fraine // weinlete fraine // weinlete fraine // weinlete fraine // CA. Weger/ duse. // Ry/Ca. 970, minetel ? // Ry/Ca. 970, minetel ?	i ii	- 7400-82:70 highter coloured	corder faliation	Silica + P. = Ser	Down at water	77.6	74.44	USALP
// veislete freise /cm varable angles lacal stringen of		mere silicified with magn ats	Sica Walne 0.5 h		with Jacob Ile D.		19.00	0322/
11/1 CA. Wygy/ dwse. Py/cay grey mineral?	1	1 weinlete frains	1 cm varable areles		local stringer of	(7-00-		03228
		/	CA. Wagy/ duse.		Pylca, gree mineral ?			

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY:

DATE: . October .. 30, 2001

SILVER LAKE PROPERTY WORLDSTOCK GRID

DDH NO.	W\$200	1-0)/	· · · · · · · · · · · · · · · · · · ·					PAC	GE NO. 3
			U	THOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
MAIN	UNITS	80 0	GL	SUB UNITS				FROM	то	NUMBER
			2					80-50	\$2.50	03229
1		Ľ	2							
1		- [-	7	12.70-100.01 Light arrays to bourset	Crude to moderate	silice - minor	Fire to y. fine			
		F		Fina arrived bits eiteren alteration	foliation (seriate ?)	soricite - fine Pa	dimen. P 1-2%			· · · · · · · · · · · · · · · · · · ·
ł		ł		obscure textures carde to moderate	250 CA Locally Hours	Personia physic Alb.	local small P. blebs			
			\sim	Chiated throughout. Minor amounts.	Low density of time	Nexa mansive and	-agricolie alem.			
		Ĩ	\sim	of five disseminated with Non	at beistets generally	cilicous 94.95-97-32	Silicons 2000 hos			
		70	/	carbonated, non manuske	Ho-LOCA	-	local 40-50 CA P.			
			/		Below 92m some		verilete and local			
			<i>.</i> .	· · · · · · · · · · · · · · · · · · ·	chlorite stringers 30-100		higher conventionton	93.23	94.95	03230
		1	2					94.95	96.40	03231
		I						96.40	97.60	03272
Į			1							
1		Jar	1							
1			77							
		~~	<u></u>	100.07-108.69 Similar & above but	Variable mad/strong	weak chloritic	1-2% lie to ver			
		ļ	1.	mare appointe and societte. Mare	filiphing soich aligned	at the safter	time watch dimen	102.25	104-25	01233
			1/	bliated downwoods with relist	fraemato 45°CA	less altered down	p.	104.25	106.00	03234
1			12	his legilli toll texture. Aliered	V. Low density of	No costo, non month	J			
			10	francesto / 1-sea), antine supporte	ato versiteto					
			1		<i>v</i> , <i>v</i> =					
			12]108-69-110-31 light gray green, fine	(Laminakan (fine) Soi CA	Sartite , chl. ? perman	2.2.3% fire dimen P.	108.89	1031	03235
ļ		40		grand, nor tristic foliable /lamine	Vou denit, cart & usedo	a weak carb. Near And		16.31	112.24	03236
			17	uesucuse light greys to buff, for	ne variable M/s fine	sericite - Py - patchy	Variable 1-4% fine			
			12	grained, mad faliated with some	foliation Sica.	Carb (weak) Sona	pathy dime m. Ry.		 	
1			12	greenish sericite-chlorite (carb) section	as Conservant corto win	the weak clay with 6x		11475	116.08	03237
Į.			1/	Alex mysetic local remaast la alle.	local By 114-116.05	at dept.		╞╴╶╺	L _	ļ
			4	B brecciated (some writ below) More by with clay.	<u> </u>	l	116.08	118.08	03238
16-05-129.	82 Frieg	, And a state	4~	116-08-123-80 As general description	Marine Local wea	Siliceous, non cash	2.2. pri disem	L		^
Falsic Uni	it rich in			ļ	fabrics. V. Law	Storg K. feldspor.	by local aggregates	l		ļ
K. Acidspor	, dike or fl	·			Carsily of go verilet	(Pritary or Secondary ?)	Some fine Cpy ?	118-08	12-08	03239

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY:

DATE: Re Pet / Lever 2 cont.

SILVER LAKE PROPERTY WORLDSTOCK GRID

DDH NO. WS 2001-0	1		· · ·				PAC	GE NO. 🗲
	LI	THOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
MAIN UNITS	GL	SUB UNITS				FROM	TO	NUMBER
Light pink punk will 2-5%		· · · · ·	2-3 per metre generally	K. fuldinger primary or	con exurginit at	120.08	122.08	03240
Local crowdent Aldian Para	(, [with Cpy	secondary?	USIA @120.6	122.08	123.30	072
K-fald. rich ground rass. 1.	Δ	123.80-125-15 Crowded F.P. Strong alignment	Strong Fabrics 45 CA	K. letterne a mused and	······································	17 8 20	125.15	03742
Non magnetic, Non carto.	Δ	125-15-129-82 Light ares more siliceous	Lecol carde 45 ca	sili - actoric (k. lela) source him by	125-15	127-15	03243
r f	N	with amount last work textures	tabace . Numerow your	with precishon r	1-3% line district	127.15	127-82	03244
	স	store k. Aldsont any dones how	at will priotic only	ghy verillets stucks.	and local wein the			
	$\langle \langle$	meretic	CA. Below (28m strong)		wintets + Webb P.	129.82	132.10	03245
130-17		199-82-132-10 MIXED AREL DIREAS. 10.	finder local by verse 450	chlond (service)	more abundant beton 725			
LAR DO - MILLAS FIRE	Æ	chlorite sericite with filedered and	marine co personal 450	chlocitic and coch	3-5% fill closen			
amined strength Altered	-	132-10-135-73 med origen for with 2-3 m	printle dia assat llas	Non manuti	2-5% has dimen X			
and variable pliated	1	chloritized rapi phenelyst, carbonated	Locally strong 40-50'CA		2-11 Line dimen the			
Units Propylitic- Phyllic.	1	131-73-17477 Fa. s. Med. Abore So CA	local che sil ventets.	Light aroun sericite	local loop by veins its	125.72	124.77	03244
	Ţ,	136-77-141-63 Light aroun full to access	Fue lawinghan	-chinite Some silie	Greneral concordent			
		La. stress Caliated Haminted. Non	-labies bo'ca. Fine		dissect and stringer			
	/	carbo Servicite ? Minor chlorite, class	inconver at white		fine araised P. Level			
40		Sections	chan Palastin 650					
141-65 - 142-34 FAULT (65 CA)	13	strong chlorite - clay fault	Some Lackling	Silicence with ato	147.34-145.0 3-1".	11.2.24	1411.34	03947
11.9.4 - 151.77 At at	X	192.345-14673 Light grey to white	Briguistion and	VEIDING SPORE K. AN	verilet 11m Prate	144.34	146.34	03248
127.82	X	gte & Py veining. Fine grained with	more connerted /fabot	have potches of	decemment below			
	12	local energial green mineral.	at using depth, Cancentral	win corb.	J			
		14673-15177 Light are to arrenish	Variable lon / lat.	Sericite - cart -				
	12	grey transitional with whit above.	and some carcordan	+ sunte -same silico.	Py veialets - low			
an j	12	Visione fine commaken/fal Sec/chi	By vinteto so ch loca	-week chlorite	dessite some durin	149.77	151-77	03249
1	1	weak and personic cash. And regard	I len verns To'ch local	non nometric	3045 (concordent).	151-77	153.15	03250
151.77-154.10 Felsic Dim?		Twente becoming pinkah flor grained	171 Weinerg.	Silicens potesus (ka)	5-7% fine grained	153.15	154-53	03451
Altered. Fire medium	1	Altered Feldson Prinking sparse all	at a plan carto will	in also potety permi	disem Py	154.53	156-53	03252
grained O.L.	174	maples. Silleous-K. plat ground mass	wegable angly CA	cade.		156-53	158.34	07253
154-10-157-80 Sili-(K-faldy	λ:,	- APRILATION SITE PARTIE	Subported cA.	Sili-petersie ? with	3-5% fine and dis	A- 158-24	159.80	03254
Alteration.	11	(+ pedapai) alteration with pate	Fairly mossive loca	service patchy cart	local insister Pay			<u> </u>
	<i>\</i> .'	sericite, carbonate	Constant Contract To	Same may be	Sparles of Can	ļ	I	
	<u> </u>		TT Maisles	altered intensive	158.50-159.50	1		

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY:

DATE: Mev. 1 2001

SILVER LAKE PROPERTY WORLDSTOCK GRID

LITHOLOGY STRUCTURE ALTERATION MINERALIZATION FROM TO NUMBER 1900-170-22 Strong GL GL GL GL FROM TO NUMBER 1900-170-22 Strong GL GL GL GL FROM TO NUMBER 1900-170-22 Strong GL GL GL GL GL FROM TO NUMBER 1901-170-170-170 GL	DDH NO. WS 2001-	01						PAC	GE NO. 🗲
MAIN UNITS GL SUB UNITS 1400-170.22 Strong Interest Ciple gray to grass to many massime with come Green service - Choice - Choice Ciple gray to grass to make and the service of the ciple control of the ciple gray to grass with angle to the descendent of fragments controls - Choice -		Ľ	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
140-174.22 Storg terration, Seriete Within the second beaming maxime with some Green seriete - leterly leight of the second sec	MAIN UNITS 100	GL	SUB UNITS		•		FROM	то	NUMBER
(aration, Serieile Chink " mine uniform genen with depth. Eine delenite of fine Chinike, patery, waishie 15% fine the delenite serieile with natural viernes contensity in the prime in the series of the series o	159.80-174.22 Strong	`;	Mixed light grows to grooms becoming	massive with low	Green sericite _	Patchy, bight			
Hyllie - Propylitie) Hyllie - Propylitie) Hyllie - Propylitie) Hyllie - Propylitie) Hyllie - Propylitie Hauselpoint gathery existing data into a fair of the land of the second fair of the life of the second fair of th	Alteration, seri cite-chlorite:	<u>//</u>	mile uniform green with depth. Fine	deride of fine	chlorite, patchy	variable 1-5 to fine			<u>_</u>
14. Standsong geschele Annumente Verifikte Level, mit will geschele and geschele Some Inv to 116.40 03256 (Lelen 162) Parkety of Standing and Lange Standing of Particip Sound in certainty. (Lelen 162) Parkety of Standing and Lange Standing of Particip Sound Standing. (Lelen 162) Parkety Standing and Lange Standing of Leve New Tragents. (Level 11: 60 Course. Level 11: 60 Course. Lev	Phyllic - Propylitic)		gravand silica-sericite with carbonate	illeguese costs.	siliceous. Vanable	disen by Lecal	163.64	16440	03255
(cellen (12) Cabady a Consisting dark chladt & Polton peidole bile insisten i habere playing and progrittin inter-ites of glacok liten Non magetin i habere playing and progrittin inter-ites of glacok liten Non magetin i habere playing and progrittin inter-ites of glacok liten Non magetin i habere playing and progrittin inter-ites of the second i have to ident cellen in the second i have to ident cellen in the second progrittin inter-ites of the second inter-ites of the i have to ident cellen inter-ites of the second i have to ident cellen in the second progrittin inter-ites of the progrittin of the second inter-ites of the second		4	developing patches exidente documenda	voillets la cally with	w/m permosive carb.	Aspargation Some	164-40	166.40	03256
18:40-19:45 Uniform Film Film Film Film Film Series for States Allow States Allo	ļ	-	(selaw 162) Porbably a Conscipion	dock chlorite Q	Patchy epidate below	veileto.			
19 18 Alternation Patras villeur ere 18200 with sine bits of the second second of the second second second for the second for the second of the second second for the second second for the second sec			behaven phyllic and popplitic	166.10-166.30 gtaccock	1620 Non magnetic				
19. 2 Kurson Er idale sontein lave 1. Leaning alla fields sontein lave 1. Leaning alla fields and later bolos 1. Leaning and and and and and and alla fields and and all sonteines for the sonteines of the sonte and		÷.	alteration. Patchy silicens exp 163.04	winfueralet gone bica	. 4				
14:22-131:60 Coarse 140 140 140 140 140 140 140 140	17.	· '~	164.40. Enidate section have						· · · · · · · · · · · · · · · · · · ·
1422-13160 Coarse. 1420-13160 Coarse. Lapitli Tyle - Brecin? Pobable cearse logitli hyle - Lecuis Rubbly, pinary? Patchy poworine Patchy fine driven Pobable cearse logitli hyle - Lecuis Rubbly, poworine Patchy fine driven Pobable cearse logitli hyle - Lecuis Rubbly, poworine Patchy fine driven Pobable cearse logitli hyle - Lecuis Rubbly, poworine Patchy fine driven Pobable cearse logitli hyle - Lecuis Rubbly, poworine Patchy fine driven Pobable cearse logitli hyle - Lecuis Rubbly, poworine Patchy fine driven Pobable cearse logitli hyle - Lecuis Rubbly, poworine Patchy fine driven Pobable cearse logitli hyle - Lecuis Rubbly, poworine Patchy fine driven Pobable cearse logitli hyle - Lecuis Rubbly, poworine Patchy fine driven Pobable cearse logitli hyle - Lecuis Rubbly, poworine Patchy fine driven Pobable cearse logitli hyle - Lecuis Rubbly of the second carbonale drive fine - 14, y fine Pobable comesting of fine are - 14, y fine Pobable carbonale and another in the second and driven Ry. Pobable fine Types Patchy fine Patchy fine are - 14, y fine Pobable comesting of fine are - 14, y fine Pobable logitli Types Patchy fine Patchy fine are - 14, y fine Pobable logitli Types Patchy fine Patchy fine are - 14, y fine Pobable logitli Types Patchy fine Patchy fine are - 14, y fine Patchy fine Patchy fine are - 14, y fine Patchy fine - 14, y fine Patchy fine Patchy fine - 14, y fine Patchy fine	· ·	1-	seconyigable feldapar lables below		·····				
1422-181.60 Coarse			48-	·					
Lapilli Tyle - Breccia? Mined parts, militer, grey, fine trahvers head fare werk carbonate. Janiced rakts, militer, grey, fine trahvers head fare werk carbonate. Janiced rakts, merked with 57% carbonate later parts Malecard rapic. United, werk carbonate later parts Malecard rapic. United, werk carbonate later parts Malecard rapic. United, werk carbonate later parts 18:40-19:48 Uniform Flow 18:40-19:48 Uniform Flow 18:40-19:48 Uniform Flow 18:40-19:48 Uniform Flow	174-22-181.60 Coarse		Probable course logilli hift-beering	Rubbly primary?	Patchy posucsive	Patchy fine divien			
19148-208-78 ECH Probable Lagilli Tyff Sequence 19148-208-78 ECH Probable Lagilli Tyff Sequence 19148-	Lapilli Tyf - Brecin?	上	moved pents, whiter, greep fine	textures becal fine	weak carbonate	P.	175.45	177-20	03257
19:48-208.78 ECH Probable Lagilli Tyff Sequence 19:48-208.78 ECH Particles Suggest for your for green for your for green for land for and the second of	· ··	Ĩ.	grained - rubbly specked with 5-7%	cart. verileto upplice	Peakish colour paket				
19148-20878 ECH Probable Lagilli Tylf Sequence 19148 Lagilli Tylf 19148 - 20878 ECH Probable Lagilli Tylf 19148 - 20878 ECH 19148 - 20878 ECH 191		V//h	altered notice ladably weak carb.	wide, itedable ageles (due la dimeninati	/			
19148-20878 ECH Probable Logilei Tuff Sequence 19148-20878 ECH 19148-20878 ECH 19148-208788 ECH 19148-208788 ECH 19148-208788 ECH 19148-208788 ECH 19148-208788 ECH 19148-20	190	1	A Non may the a Citis any 12 an early dite	D@175-6-178-92 Strong	heartite				L
181.40-191.48 Uniform Flow 22 Uniform light group to greens Low density of fine areak carbonals clinens by . 1. fine groups unit, could be carbonalt versite alteration, minor		Ж		lownation 20 A		Trace - 1% . V. fine			
19148-208-78 ECH & Catch, light greys be greens Low density of weak to moderate Sparse fire diment Probable Logilli Type & Catch, light greys be greens Low density of weak to moderate Sparse fire diment Sequence & Catch, light greys be greens Low density of weak to moderate Sparse fire diment Catch of the sparse of the sparse of the catch of the catch of the catch of the sparse fire diment Sequence & Catch, light greys be greens Low density of the sparse fire diment Catch of the sparse of the sparse of the catch of the catch of the catch of the sparse fire diment Catch of the sparse of the sparse of the sparse of the sparse of the diment Sequence & Catch of the sparse fire weak to moderate Sparse fire diment Catch of the sparse of the spars	181.60-191.48 Uniform Flow	۴¥	Uniform light gray & gran,	Low density of fine	weak carborate	dimen Py .			
19148-208-78 ECH Probable Lapilli Tuff Sequence	or fine Tufes	7.	fine grained, menine with , canto be	carbonate veraleto	alteration, minor				
191:48-208:78 EOH Probable Logilli Tuff 10 Lacally speckled. Lamaast fine carbonale, percense fine chinem 191:48-208:78 EOH Probable Logilli Tuff 10 Lacally speckled. Lamaast fine carbonale, path, percense fine chinem 10 Lacally speckled. Lamaast fine carbonale, path, percense fine chinem 10 Lacally speckled. Lamaast fine carbonale, path, percense fine chinem 10 Lacally speckled. Lamaast fine carbonale, path, percense fine chinem 10 Lacally speckled. Lamaast fine carbonale, path, percense fine chinem 10 Lacally speckled. Lamaast fine carbonale, path, percense fine chinem 10 Lacally speckled. Lamaast fine carbonale, path, percense fine chinem 10 Lacally speckled. Lamaast fine carbonale, percense fine chinem 10 Lacally speckled. Lacally		14	flow or mossive fine tuff local	locally with some	chinte				
191:48-208:78 EOH Probable Lapilli Tuff Sequence 19:48-208:78 EOH Probable Lapilli Tuff 19:48-208:78 EOH 19:48-208:78 EOH 10:48-208:78 EOH 10:48-208:78 EOH 10:48-208:78 EOH 10:48-208		-	remaant, grandar fortures. Non	dark chlorite					
19148-208-78 EOH Probable Lagilli Tuff 19 Lacally speckled lamaast fine carbonale patry persone fine dimem Probable Lagilli Tuff 10 Lacally speckled lamaast fine carbonale patry persone ly isolated textense suggest fine upto 2cm lacal By is inlete arbonate isone incideto.	1	1.	magnetic						
19148-208-78 EOH & Patchy light greys be greens low density of weak to maderate sparse fine dimem Probable Logilli Tyff & Locally speckled havenat fine containate patchy personale by Isolated Sequence & textense suggest fine upto 2cm lacal By coulete contained weight. Some weights.		, '	·		Į				
19148-20878 EOH Forbable Lopilli Tuff Sequence Sequence Forbable Lopilli Tuff Sequence Forbable Lopilli Tuff Sequence Forbable Lopilli Tuff Forbable Lo	1	√ -∕							
19148-20878 EOH & latchy light grey to green low density of weak to medicate sparse five diverm Probable Logilli Tuff & Lacaley speskled Lamaast five carbonate patchy percessive ly isolated Sequence & texteres suggest five upto 2cm lacal by recelete carbonate Some weights.									
Probable Logilli Tuff 10 Locally specifiled lamoast five contrante, patricy pervasure ly isolated Sequence 11 fextures sugged five upto 2cm lacal ly results contrants. Some veralets. 14 angelas la pilla. Some fixe involte angles CA. chloritic sections.	191.48-20B.78 EOH	10	Potchy light grey to greens	Low density of	weak to moderate	Sparse fire dimen			
seguence (textino sigged fre upto los lacal ly coulet tarbonate some veceleto.	Probable Lopilli Tuff	1	lacally speckled have ast	fine corbonate	postily periorise	Py Isolaked			
1. angellar la pilla. Some per provolle angles CA. chloritre sections.	seguence	ſ	Errines sugged face upto 200	lacal Py Malety	tachonate . Some	vienteto	 	-	
		12	ayelar la pelle. Some per	provide angles CA.	Chloritic Sections.	<u> </u>	<u></u> +∙−−−	 	
grander whytern sections as down. Prokul hemetrice		1	granned services certains as above.	· · · · · · · · · · · · · · · · · · ·	Minkul herefity			 	
Sectore		_ '			Sections .		+		

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: K. Luelle

DATE: Norember 1, 2001

DIAMOND DRILL HOLE NO. WS 2001-01

SAMPLE	FROM	то	LENGTH	Au	Cu	Ag	Мо	Zn
NO	(m)	(m)	(m)	ppb	ppm	ppm	ippm	ppm 4680
3201	11.15	13.65	2.50	20	488	0.4		476
3202	13.65	15.50	1.85	30	834	0.3		532
3203	15.50	17.50	2.00	30	//5	0.9		1204
3204	17.50	19.00	1.50	25	377	0.0	12	1276
3205	19.00	20.80	08.1		511	0.0	<u> </u>	<u> </u>
2206	20.90	22.40	1 60	45	707	0.8	1	2186
3200	20.00	22.40	2.00	15	422	0.7	रा	992
3207	22.40	26 20	1 80	15	192	0.6	<1	863
3209	26 20	27.32	1.12	35	458	0.6	<1	1392
3210	27.32	29.40	2.08	55	327	0.6	<1	3124
3211	39.00	40.25	1.25	30	498	0.5	<1	196
3212	40.70	42.68	1.98	10	288	< 0.2	2	191
3213	42.68	44.68	2.00	5	34	< 0.2	2	57
3214	44.68	46.47	1.79	5	43	<0.2	<u>2</u>	30
3215	46.47	48.31	1.84	10	265	. 0.2	13	
	(0.04	60.04	0.00		242	0.2	62	74
3216	48.31	50.31	2.00	10	243	0.2	34	130
3217	50.31	52.70	2.39	20	1002	n 4	<1	116
3218	59.00	01.00	4.00	20	4750	25		148
3219	62.62	64.03	1 38	120	4250	28	<1	395
3/20	02.03	04.01						
3221	64 01	65.42	1.41	80	9333	9.3	3	388
3222	65.42	66.80	1.38	65	3053	2.3	18	115
3223	66.60	66.26	1.46	40	2917	0.9	<1	100
3224	68.26	69.40	1.14	45	1357	0.3	<1	81
3225	73.60	75.50	1.70	240	935	1.0	5	236
3226	75.50	77.50	2.00	80	590	0.5	<1	497
3227	77.50	79.00	1.50	45	543	0.7	<1	2355
3228	79.00	80.50	1.50	45	1255	1.0	<1	202
3229	80.50	82.30	1.80	60	1328	0.7	<1	60
3230	93.23	94.95	1.72	50	1353	0.5	<u> <1</u>	ا ۹ ا
		00.10	4 25	45	1376	0.2	R	31
3231	94.95	96.40	1.45	20	1166	0.2		24
3232	36.40	104.00	1.20	20	200	<0 2		33
3233	102.25	104.20	1 74	20	89	<0.2	3	28
3234	104.20	110.00	1.42	30	286	0.4		88
3230	100,09	110.01	1.74					
3236	110.31	112.26	1.95	45	445	0.6	<1	46
3237	114.57	116.08	1.51	15	391	<0.2	<1	54
3238	116.08	118.08	2.00	30	437	0.4	2	28
3239	118.08	120.08	2.00	40	913	1.0	2	92
3240	120.08	122.08	2.00	15	271	<0.2	<1	32
				l	L		L	
3241	122.08	123.80	1.72	10	214	< 0.2	3	32
3242	123.60	125.15	1.35	5	90	<0.2		
3243	125.15	127.15	2.00	20	95	0,2		150
3244	127.15	129.82	2.67	20	191	0.2		141
3245	129.82	132.10	2.28	40	203	<u></u>		
-	405 70	126 77	1.04	10	308	<0.2		40
3246	135.73	130.77	2 00	25	156	12	21	75
324/	142.34	146 94	2.00	25	80	0.4	13	49
3240	149.77	151 77	2.00	15	165	<0.2	1	37
3250	151 77	153 15	1.38	5	197	<0.2	<1	34
				├ ──`				
3251	153.15	154.53	1.38	10	216	<0.2	27	31
3252	154.53	156.53	2.00	15	352	<0.2	3	23
3253	156.53	158.34	1.81	15	330	<0.2	<1	46
3254	158.34	159.60	1.46	10	246	<0.2	1	28
3255	163.04	164.40	1.36	10	87	<0.2	<1	33
	1	L					ļ	L
3256	164.40	166.40	2.00	15	162	<0.2	9	36
3257	175.45	177.20	1.75	30	87	<0.2	10	32

14-Nov-01

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2001-392

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

ATTENTION: RON WELLS

No. of samples received:30 Sample type: Core Project #: WS 2001-01 Shipment #: 01 Samples submitted by: Ron Wells

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	\$n	Sr	Ti %	U	v	w	Y	Zn
1	03201	20	0.4	0.51	<5	35	<5	4.83	10	29	37	488	5.67	20	2.43	2727	<1	0.02	9	1640	12	-<5	<20	177	0.01	20	21	<10	10	1562
2	03202	30	0.3	2.18	<5	40	<5	7.25	З	38	226	834	5.86	20	5.94	4061	<1	0.01	123	1150	4	<5	<20	407	0.02	20	85	<10	6	475
3	03203	30	0.9	0.53	5	35	<5	6.01	4	21	31	775	5.18	20	2.75	2327	<1	0.03	11	1690	4	5	<20	326	0.01	20	23	<10	8	532
4	03204	25	0.8	0.32	10	30	<5	5.09	8	21	39	536	5.45	20	2.45	2653	3	0.02	8	1620	6	15	<20	209	0.01	20	16	<10	Ř	1204
5	03205	30	0.6	0.29	15	30	<5	4.86	9	20	50	377	5.78	20	2.36	2519	12	0.02	7	1610	8	40	<20	191	0.01	10	14	<10	B	1276
6	03206	45	0.8	0.34	25	35	<5	5.24	15	25	37	707	5.54	20	2.35	3004	1	0.02	7	1670	6	55	<20	191	0.01	20	17	<10	7	2186
7	03207	15	0.7	1.16	<5	35	<5	4.12	7	24	51	422	5.28	20	2.42	3095	<1	0.02	13	1720	4	<5	<20	117	0.01	20	47	<10	8	992
8	03208	15	0.6	0.96	<5	30	<5	4.22	6	28	35	192	6.11	20	2.59	2946	<1	0.02	4	1630	6	<5	<20	124	0.01	10	31	<10	7	883
9	03209	35	0.6	0.92	<5	40	<5	8.76	9	31	119	458	5,68	20	4.40	5492	<1	0.02	82	1210	6	<5	<20	277	0.02	20	43	<10	8	1392
10	03210	55	0.6	0.58	<5	35	<5	4.69	20	31	45	327	6.91	20	2.23	2077	<1	0.02	8	1710	8	<5	<20	153	<0.01	<10	21	<10	8	3124
11	03211	30	0.5	0.79	-5	35	<5	4.44	2	42	98	498	7.77	20	2.68	2280	<1	0.01	34	1530	8	<5	<20	150	<0.01	<10	30	<10	9	196
12	03212	10	<0.2	0.30	<5	40	<5	4.64	1	28	40	288	5.75	20	1.87	1692	2	0.02	7	1830	10	<5	<20	107	< 0.01	10	13	<10	13	191
13	03213	5	<0.2	0.51	<5	35	<5	3.89	<1	27	59	34	6.26	20	1.82	780	2	0.02	9	1720	10	<5	<20	140	< 0.01	10	30	<10	10	57
14	03214	5	<0.2	0.99	<5	35	<5	3.20	<1	34	48	43	7.97	20	2.37	855	2	0.02	11	1790	8	<5	<20	142	<0.01	<10	49	<10	9	50
15	03215	10	0.2	0.77	<5	25	<5	3.30	<1	33	56	265	7.06	30	2.02	946	13	0.02	18	1770	4	<5	<20	219	<0.01	<10	105	<10	23	70
16	03216	15	0.2	0.85	<5	35	<5	2.94	<1	29	34	243	7.36	30	1.75	955	62	0.02	9	1820	32	<5	<20	175	<0.01	20	92	<10	26	. 74
17	03217	20	0.4	0.77	<5	20	<5	3.76	1	34	46	661	6.27	30	2.16	1180	34	0.04	8	1540	12	<5	<20	176	<0.01	<10	104	<10	27	130
18	03218	20	0.4	2.07	<5	25	<5	2.63	<1	43	43	1098	6.91	30	2.94	1187	<1	0.02	13	1980	14	<5	<20	187	<0.01	<10	116	<10	31	116
19	03219	60	2.5	1.44	5	35	<5	3.93	1	37	37	4750	5.95	30	2.66	1498	<1	0.03	12	1890	14	<5	<20	199	0.01	<10	130	<10	29	146
20	03220	120	2.8	0.94	5	40	<5	5.08	2	25	51	4250	6.66	30	2.21	1787	<1	0.02	11	1630	48	<5	<20	193	0.01	<10		<10	34	395

CHRISTOPHER JAMES GOLD CORP.

ICP CERTIFICATE OF ANALYSIS AK 2001-392

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cđ	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	P	Pb	Sb	· Sn	Sr	TI %	U	v	w	Y	Zn
21	03221	80	9.3	0.50	40	30	15	3.52	3	16	74	9333	5.62	20	1.47	1389	3	0.02	9	1170	40	10	<20	132	0.02	<10	74	<10	20	388
22	03222	65	2.3	1.05	5	45	25	7.53	<1	39	60	3053	6.74	30	2.52	1707	18	0.04	30	1610	34	<5	<20	250	0.01	<10	141	<10	28	115
23	03223	40	0.9	1.30	<5	45	<5	5.23	1	41	64	2917	7.28	30	3.36	1407	<1	0.02	33	1400	16	<5	<20	214	0.01	<10	170	<10	21	100
24	03224	45	0.3	1.19	<5	55	<5	6.04	<1	45	64	1357	8.01	30	3.76	1547	<1	0.03	35	1370	6	<5	<20	296	<0.01	10	144	<10	18	81
25	03225	240	1.0	0.37	<5	30	<5	4.92	2	25	40	935	4.62	10	1.77	905	5	0.02	5	2040	10	<5	<20	106	<0.01	<10	16	<10	16	236
26	03226	80	0,5	0.32	10	30	<5	5.49	4	29	34	590	5.59	20	2.15	2213	<1	0.01	7	2130	8	<5	<20	124	<0.01	<10	13	<10	12	497
27	03227	45	0.7	0.31	20	25	<5	4.63	24	20	45	543	4.62	20	1.74	1866	<1	0.02	4	1680	14	20	-20	97	<0.01	<10	13	<10	14	2355
28	03228	45	1.0	0.34	35	30	<5	4.85	2	30	43	1255	4.41	10	1.76	1582	<1	0.02	5	1860	8	20	<20	93	<0.01	<10	13	<10	11	202
29	03229	60	0.7	0.36	<5	30	<5	4.44	<1	16	44	1328	3.88	10	1.73	1105	<1	0.02	6	2020	4	<5	<20	110	<0.01	<10	13	<10	16	66
30	03230	50	0.5	0.50	<5	35	<5	3.99	1	38	62	1353	7.47	20	2.68	1074	<1	0.02	18	1460	2	<5	<20	117	<0.01	10	44	<10	5	41
<u>OC DA</u> Resplit	<u>TA:</u> t:																													
1	03201	25	0.4	0.52	<5	40	<5	5.98	10	31	41	488	6.16	20	2.46	2912	<1	0.02	8	1670	12	<5	<20	185	0.01	<10	23	<10	10	1704
Repeat	t																													
10	03210	35	0.2	0.59	<5	30	<5	4.75	20	32	45	327	A 94	20	2 22	2085	د ا	0.02	7	1750	e	~5	~20	140	-0.04	10		-10		0004
19	03219	60	2.5	1.46	<5	30	15	3.66	1	35	37	4923	5.68	30	2.70	1448	<1	0.02	12	1780	6	<5	<20	200	0.01	<10	130	<10	25	3204 135
Standa	rd:																													
GEO'0'	1	130	1.2	1.60	50	170	<5	1.63	<1	20	56	92	3.72	20	1.02	696	<1	0.02	25	740	18	10	<20	65	0.11	<10	75	<10	15	76

ECO-TECH CABORATORIES LTD. Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

FP/kk df/392 XLS/01 cc: ron wells fax @ 372-1012

.

14-Nov-01

ECO-TECH LABORATORIES LTD. 10041 Dailas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2001-398

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

ATTENTION: RON WELLS

No. of samples received:27 Sample type: Core Project #: WS 2001-01 Shipment #: 2 Samples submitted by: Ron Wells

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	Al %	As	Ba	Bì	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	P	Pb	Sb	Sn	Sr	Ti %	U	v	W	Y	Zn
1	03231	45	0.2	0.46	<5	40	<5	3.67	<1	23	52	1375	3.45	10	1.91	712	8	0.02	6	1650	6	<5	40	146	<0.01	<10	23	<10	8	31
2	03232	20	0.4	0.32	<5	40	<5	4.44	<1	25	59	1166	3.60	10	2.16	832	6	0.03	7	1510	6	<5	40	170	<0.01	<10	18	<10	8	24
3	03233	20	<0.2	0.69	<5	50	<5	3.91	<1	36	52	200	6.67	20	2.29	1170	2	0.01	13	2050	4	<5	60	155	<0.01	<10	40	<10	11	33
4	03234	20	<0.2	0.41	<5	40	<5	2.63	<1	40	71	89	7.68	20	1.36	583	3	<0.01	19	1940	4	10	60	107	<0.01	<10	25	<10	10	28
5	03235	30	0.4	1.07	<5	40	<5	5.17	<1	28	30	288	4.90	20	1.59	1859	<1	0.02	4	2190	16	<5	40	162	<0.01	<10	43	<10	13	88
6	03236	45	0.6	0.66	<5	45	<5	4.44	<1	27	49	445	5.39	20	1.55	1498	<1	0.02	9	1830	16	10	40	124	<0.01	<10	37	<10	18	46
7	03237	15	<0.2	1.13	<5	40	<5	2.70	<1	37	53	391	6.26	30	2.05	1108	<1	0.03	13	2160	12	<5	60	172	<0.01	<10	83	<10	25	54
8	03238	30	0.4	0.50	<5	35	<5	1.45	<1	18	45	437	4.35	30	0.61	434	2	0.03	<1	1630	12	<5	20	110	<0.01	<10	41	<10	20	28
9	03239	40	1.0	0.41	<5	35	<5	2.45	<1	17	49	913	3.82	30	0.98	967	2	0.03	3	1560	14	10	20	98	<0.01	<10	38	<10	22	92
10	03240	15	<0.2	0.40	<5	40	<5	2.83	<1	17	41	271	3.91	30	1.15	918	<1	0.03	<1	1490	10	<5	40	9 5	<0.01	<10	35	<10	26	32
11	03241	10	<0.2	0.43	<5	35	<5	2.12	<1	17	42	214	3.93	30	0.97	630	3	0.03	1	1520	10	<5	40	83	<0.01	<10	44	<10	22	32
12	03242	5	<0.2	0.48	<5	35	<5	2.69	<1	35	53	90	5.40	20	1.21	726	4	0.02	16	1830	12	-5	40	110	<0.01	<10	48	<10	20	33
13	03243	20	0.2	0.33	<5	30	<5	2.71	<1	18	39	95	4.12	20	0.90	1148	<1	0.03	1	1650	16	5	20	77	<0.01	<10	37	<10	20	142
14	03244	20	0.2	0.53	<5	35	<5	3.30	<1	17	43	191	4.17	20	Q.84	1181	<1	0.03	2	1560	16	5	40	94	<0.01	<10	35	<10	19	159
15	03245	45	0.6	1.17	<5	30	<5	4.58	<1	27	30	265	5.41	20	1.76	1992	4	0.02	8	1950	18	<5	60	149	<0.01	10	67	<10	16	141
16	03246	10	<0.2	0.30	<5	35	<5	3.19	<1	17	39	308	4.14	10	1.36	666	<1	0.03	5	1520	10	-5	40	98	<0.01	<10	11	<10	13	40
17	03247	25	1.2	0.25	25	30	<5	5.78	<1	23	41	156	5.17	20	2.47	1579	21	0.03	12	1680	40	55	60	132	<0.01	<10	20	<10	16	75
18	03248	25	0.4	0.26	10	35	<5	6.40	<1	33	43	80	6.82	20	2.08	1474	13	0.03	25	1540	32	20	80	136	<0.01	<10	19	<10	14	49
19	03249	15	<0.2	0.94	5	45	<5	6.55	<1	32	41	165	5.82	20	1.68	1466	1	0.02	14	1720	14	<5	60	193	<0.01	<10	48	<10	15	37
20	03250	5	<0.2	0.91	5	45	<5	5.32	<1	33	41	197	5.53	20	1.60	1158	<1	0.03	6	2020	14	<5	60	164	<0.01	<10	57	<10	22	- 34

CHRISTOPHER JAMES GOLD CORP.

ICP CERTIFICATE OF ANALYSIS AK 2001-398

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	в	Ca %	Cd	Со	Cr	Cu	Fe %	La 1	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	<u>v</u>	W	Υ	Zn
21	03251	10	<0.2	0.95	5	35	<5	6.47	<1	22	37	216	3.81	20	1.43	1406	27	0.02	4	1670	14	10	40	175	<0.01	<10	62	<10	27	31
22	03252	15	<0.2	0.88	<5	40	<5	5.48	<1	29	44	352	3.96	10	0.85	922	3	0.03	8	1890	12	15	40	179	0.08	<10	51	<10	12	23
22	03253	15	<0.2	1 07	10	40	<5	4.96	<1	28	35	330	4.16	10	1.32	993	<1	0.03	6	1870	14	10	40	136	0.08	<10	64	<10	11	46
20	00200	10	20.2	0.00	-5	40	<5	6 02	<1	28	34	246	4 31	20	1 23	1065	1	0.03	5	1880	14	5	40	125	80.0	<10	70	<10	17	28
24	00204	10	-0.2	1.00	-0	26	~5	4 20	-1	18	55	87	3.78	10	1 21	800	ح1	0.03	ă	1480	14	<5	40	100	0.05	<10	51	<10	17	33
25	03200	10	ς0.Ζ	1.00	Ð	22	~9	9.20	~1	10	55	07	3.10	10	1.41	039	~ 1	0.03	5	1400	17	-•	-0		0.00	.10	•			~~
26	03256	15	<0.2	1.19	<5	40	<5	4.41	<1	22	47	162	4.12	10	1.39	1030	9	0.03	4	1510	14	5	40	103	0.05	<10	46	<10	14	36
27	03257	30	<0.2	0.73	15	35	<5	7.13	<1	26	41	87	4.85	20	1.29	1470	10	0.03	9	1640	22	10	40	221	<0.01	<10	52	<10	23	32
<u>QC DA'</u> Respitt 1	TA: : 03231	55	0.4	0. 4 4	<5	25	<5	3.83	<1	23	54	1346	3.63	10	1.88	753	9	0.02	6	1710	~2	<5	<20	131	<0.01	<10	23	<10	5	34
Repeat	2																													
i	03231	70	0.4	0.47	<5	40	~5	3.80	<1	24	57	1316	3.59	10	1.87	731	9	0.02	6	1670	6	<5	40	140	<0.01	<10	24	<10	8	33
10	03240	15	0.2	0.43	<5	45	<5	2.96	<1	18	- 44	276	4.12	30	1.21	965	2	0.03	1	1540	12	5	40	102	<0.01	<10	37	<10	29	35
19	03249	20	<0.2	0.95	10	35	<5	6.86	<1	33	41	161	5.90	20	1.68	1476	1	0.02	14	1780	16	<5	60	197	<0.01	<10	49	<10	16	38
Standa	rd:																					_								
GEO 0	1	135	1.0	1.72	60	160	<5	1.63	<1	21	57	89	3.56	20	0.97	670	<1	0.02	24	730	22	5	20	58	0.12	<10	60	<10	13	- 74

ECO-TECHLABORATORIES L.TD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

FP/kk df/395 XLS/01 cc: ron wells fax @ 372-1012

SILVER LAKE PROPERTY WORLDSTOCK GRID

DDH NO. W\$2001- 0	2						PAC	SE NO /
	Ľ	THOLOGY	STRUCTURE	ALTERATION	MINERAL TRATTON		CAMDI	
MAIN UNITS	GL	SUB UNITS				FROM		NUMBER
0-9-14 Casing in	. ·	0-7.67 Soudy Clay Till with					- 10	HUMBER
Overburden and weathered		cobbles						
Bedrock		·		•				
	00				•			
	.0							
	ŗ.							
7.62-17.00 Propylitic	-4-	Bloached - weathered at top.					•	· · · · · · · · · · ·
Altered , Porphysitic "	í /	hight green, fine grained and ran	Moderate dessity of	Veralet and antere	1-2% first during			
Andesite - Basatt (Flow ?)	∤i	negachi Fairly uniform with darke	fine upto_ Ino	W/m periasive carb.	- antche Pur bocal			· · · · ·
	1.7	group 1-3mm, chlaritized make	Carbonate voialeta.	Selective charite	hearture / verilet	13.37	15.10	03744
	1//	phennessta (5-7%) These are locally	Vaciable angles some	Probably some	eso low mele sets			
	14.	aligned subposabled SA. At 14m	stuk are distinct	goundary service				
gradational	┡	same lon gharts of angular fragments	sof soica	/				
	14	170-28.15 From 17-19m gradational	some alignment	Fairly silice ous near	1-2% brackwelpinter			
17.00-43.10 Alteration	11	with above some altered planaryste.	rear top Below low	battam. No K. feldson	Py to 19m. Below	19:00	20.56	637.67
Unit. Speckled with "	1	below 190 faith, hard siliceous	density of ghz (rach)	Sparse carb.	3-4% for dissem by	20.56	22.15	03768
white background. Variable	¥"-	with carbonate.	veralete.		often in clustere	22.15	23.65	03769
hard, fine grained . Argithin	4	22.15-25.57 Ac above fairly siliceous	Low angle 20-45 CA	Silicenus, patchy	2.5% patchy flm.	23:65	25.57	03270
- Phyllic Alteration with	11	Mora glz-carb veialeto	gly carelete - contribes	weak windet cart.	Py generally not			
hard siliceous, less	Γ,	25.57-33:43. As general description.	with fine druse		in veix	25.57	21:57	03271
corbonated sections	1%	Speckled while, fine grained, strong	Low density of	Pervasive clay spirit	1-3% fg. Ry in	L · · · · · · · · · · · · · · · · · · ·		
Fine to local Medium	a	pervosive atteration hosally clayey	predeminantly	- carbosate - pyrite	clusters most notably	_28:57_	31.00	03272
ground dimensated a	17	partely corbasets lacal remark	care versuite 25m		in by sections.			
and each winter My.	10	Tubbly textures suggesting services				31:00	33.43	03273
NOA MAGNERC	[·	THE PROVEN						·
		Chandled with same -	LADIN ANGLE S. 10 Ch	STTONE CLOY Allahing	2. Il fue dimen.	33.43	35.43	03274
	12	clan anual	and for the second	a flacturing Patricy	the sale in fractures			
	25	000	Carly available to the	COLL				
4 4	ነ.	37.49-43.10 Mottled white	More massive	Ontal and	1.4.1.1.1.1.1.1	37.49	39.20	03275
<i>µ</i>	12	with vague med-coarse bracin fextures	Mainly cortenate .	mad cook	AL ALONE CUMAN Py			

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY

DATE: Nov 5, 2001

SILVER LAKE PROPERTY WORLDSTOCK GRID

DDH NO. WS 2001-02	2					· · · · · · · · ·	PAC	GE NO. 2
······································	LT	THOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
MAIN UNITS	iL	SUB UNITS				FROM	TO	NUMBER
1	<u>s</u> [Fine grafied , made rately consorted. Grant of angular programmenta 2-1000	lea wide Carb V's	Patery permise mad	local to bonds	39.20	41.00	03276
1	81		Local 1., bonds 45 CA	K. felde por (1" or 2nd?)	as at 39.70	41.00	4 3.10	03277
43.10-56.42 Faidspor	5	+3.12-47-20 As general description .	weak to moderate	Patience goundmass	1-3% fine chisen.	41.10	45.40	03278
Porphysy. Speckled pink &	8	braceiated section	breculation. Fine	K. feldigar, weak card	Py locally dance			
and white . White feldens ;	24		coth winder		brackwag	45.60	47.30	03279
1-3mm in pinkish fine	- 7-	47.30-56.42 Mare marsing pickich	Low-mod dessity	weak polch	Variable 3-5%	41.30	50.30	627 80
grained groundmass	٧ŀ	faldspot perphyses. Firs to and ground	of fire carb in alle	De Marine Carb. Sparse	flor Pu generally			
Non sagretie. Brecister	21	goverdmen will first obundant	variable angles CA.	altered notics.	as assesses lace	50.30	51-40	03781
sections. Fragmented diker	Ť	K. feldsper, sea magnetic.	Below 55 mars	secicite and for chlorid	reisets.			
or volcaniclastic unit.	~r	@ SI.40-53.45 Cave must lost care.	feartwood with		@ 58.45-53.95 720%			
[,	x.	55.45-56.42 male fracticed	poxinity to fault.		the accined Pu	53.45	54.47	03292
	\mathbb{N}							
1 t	<u></u>	hight to medicin greys, fine	Foliation and	strong clay. Palch,	in a line to line			
5642- 86-35 FAULT ZONE	\mathbb{W}	grained and saft due to pervasion	local carb verilets	weak tackanate -	Prate. allen			
strong clay, fine grained to	\mathbb{Z}	clay local veining and vein	upto Irm 0-15°CA.	carte verileta.	convent control along			
with strong fabrics and		fragments mainly corborate. Clearly	·		low ande bractives			
verslets subparallel to		a structural zone subparallel to	· · · · · · · · · · · · · · · · · · ·					
15°CA.	$\langle \rangle$	CA		@ 61.7-62.73 chlaite-				
	35	@ 58.40- 67.75 light green chlonk		clay carts (propulitie				
	α	- clay carbonate alteration. strong		alleration).				
1	?	fabrice 30 CA.		, , , , , , , , , , , , , , , , , , ,				
	29	<i></i>	-					
1 20-4	"							
	1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
	5				· · · · · · · · · · · · · · · · · · ·	73.97	75-60	07293
	5						· · · · ·	
- · · · · · · · · · · · · · · · · · ·	(· · · · · · · · · · · · · · · · · · ·						1
	55	77.20-78.20 Mare massive clay	Miner carto windeta		·	75.30	77.30	03284
		week carbonele	MS CA.		····-		-	·
	5			·			ļ	L
L 14]	L		I	<u> </u>	1	I	1	1

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. L Wells

DATE: Nov. 5, 6001
SILVER LAKE PROPERTY WORLDSTOCK GRID

DDH NO.	WS 1	2001	- 0:	2				-	PAG	ENO. 3
			L	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPLI	NG
MAIN U	NITS		GL	SUB UNITS			F	FROM	то	NUMBER
			55							
			14	\$150-86-35 Transitional June Decreaning	fractures and shape	& pervasive clay,	sporse local			
			الأبر	fracture intensity beliet la silli	fabrics laise ca	A cash claushole.	concordant 1, trails			
			1.1	to A (heterslike) lexpres	Some wany vering		J	84-35	86-35	03285
			ľ.	-01	with fine druse					
86.35-99.19	serio	ite -		86.35-97.55 White speckled faich ,	Fairly massive with	sericite clay - P.	3-5% for grained	76.35	89.35	01286
Clan- Purite	Alte	ration.	1	homogeneous, fine grained . Variatio	local soica fractures	with local carb.	disseminated minte			
	-	94	4://	hardness. Sericito - clay - prate 200	weinlets 92.95m	cannel weak pervous	92.95m ante is	89.35	92.00	03287
			17	Local weak carbosate	more incegular carb	carb. Backgound	Maraly in icrogular			
			1	•	verilet variable	K. Bldgool priman?	minteto 7-5%.	92.00	95.00	03118
			<i>]</i>]/.	•	ander CA. local P.	so cicito?				
			//		weightet			95.00	97.55	03183
			[]							
			17	9755-99.12 Mederate hard white to	irregular at white	mainly stopme k. loldes	r Local stringers of	97.55	99-12	03290
		14 -	"hr	pink with gtz veins	variable drillo, CA	with at minlets.	find for and Com			
97-19-118-58	Alter	red	13	199-12-118.58 Mattled white and	massive to braccista	Hand to distinguish		99-12	101.17	072 11
Lavilli Tul	7 ?		0	pists. Rubbly - prescripted with lace	low density of	alteration from	Fine discon 2-3%			
d	• •			anewar breezewate. Suspection the	& suliceous fine inide	saman minerala	Ru			
			12	a this is a people sacked lo celli	minor carbonate.	in eachicular K. leld.	0	1014-00	105.77	63292
Į				- by LR at breesinted Bids por (blo		204.47-105.05 Ar al	4			
1				acabucu Alan manachi	1 massive to weak A	97.55 K. leld.				
Į.			T.	@ 107.79-110.54 Mare hamon acar	a foldspor latter loca	4	maisly rejult and	107.79	110-54	03293
			ار 🗸	ank lette por paraturas, Lin	plined subparallel CA	Non mouthin Patrick	leasture dias Pa			
ļ			k	- graved goundman	Subparallel to 45 CA fin	silica of K. fold.	×14.			
ļ			14	2 110-54-112-58 of at 19-17 Campan	1 93 veinces 1	bleaching .	2-3º Line diesem			
			Ľ	bachines again sugagent landli	Local subporallel		R.			
1				that at by EP	to BEA fractures.		0	114.00	116.00	03294
				· · ·	contacto. @ 114.21					
1			['(fem budged at	•		116.00	118.59	03295
119-58-129	70 M	adum	, F	C See Pour	WIG 30 CA				[
to coarse L		Tuff.	. D							I

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: K. t. Lielly

DATE: . Nav. 4, 2001

SILVER LAKE PROPERTY WORLDSTOCK GRID

DDH NO. WS 2001-0	2				,	PAG	SE NO #
	LITHOLOGY	STRUCTURE		MINEDALIZATION		CAMPI	
MAIN UNITS G	GL SUB UNITS		ACIENTION	MINERALIZATION	EDOM	JAMPL TO I	
Medium to coose lopilli U	C Fabrics are plianed subparallel	variable provision	le contracted	1 = 1 = 1	FROM	10	NUMBER
tuff-breccia Mainly)	Por ca. some andesite claste water soom	laborer who malles	carbonate Parkable	Pr Lacally in another			
white pink peldspor 19	10-subravaded. To 1250 pick FP	CA. Seasse viewing	line service and?	in it a lar			
porphyry clasts local 0	no claste de minate, belave more	@127.20-127.60 interio	/	16°/ ml 1/ /. /			······································
large green for perphyrikie	0 beterolithic	ate wining with divine		Cuting B			·
andesite		A. Superallel & lines		DBR Py		127.00	_63296
l H	£9						
129.20-148.44EDH. J	129.70-138.40 As general deveretion	Local Pabrics	Annear Lail	1-3.1 1 : 11:00			
Perrossive alteration	Faith, messive and homogeneous	Charcelest - Joica	societi sobell	in pin dessen			
mosks textures Pobable	aloie coarse pressio or law with	Pad abase muchly	And the Alitica	in case verallet. PL			
coarse lapilli heft-brecia	Recepture alteration. Also marchine	a more altand	aller to draw		177.66	/36.0Z	03297
homolithic. Fine provided	Ś	anivalent las	catherate				··
local remnant beldenry		denit. Liz to					
atenacout vinne	K	incide @ mitica					
altered notice. Phyllic !	1) 132.40 -144.90 Similar & above	Level 7 - 8+ CA.	serieite also 7				
to phyllic-argillic alt.	placed guesentica of large clasts	Aliaban / lamination	Prite Are cach	D fue dimen	(35-65	<u>. 141.60</u>	132.98
Disseminated ainte	((sub-ounded). Stranger lingert laborer	Warths'the culoud	/ / / / / / / / / / / / / / / / / / /				
	16 - Colication Loss operious operation	a mund + laste			_/47-54	-14339-	03299
l ['	L' tenture	SAATSP Inciden	Ann torister				
I F	1 144.90-148.42 Similar to above	populie & week	A COLORIAL	- the first dimen.			
	becoming salter with clay altert	deliabed	citing pyrea do	~y			·
4	148.44 CON.				<u> </u>		<u></u>
					· · · · · · · · · · · · · · · · · · ·		
1							
	· ·						
			· · · · · · · · · · · · · · · · · · ·				
							· ·

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. K. Walley

DATE: Mor 7. Test

DIAMOND DRILL HOLE NO. WS 2001-02

SAMPLE	FROM	TO	LENGTH	Au	Cu	Ag	Мо	Zn
NO	(m)	(m)	(m)	ppb	ppm	ppm	ppm	ppm
3266	13.37	15.10	1.73	10	394	0.6	<1	71
3267	19.00	20.56	1.56	10	66	<0.2	<1	62
3268	20.56	22.15	1.59	5	115	<0.2	2	49
3269	22.15	23.65	1.50	10	57	<0.2	7	29
3270	23.65	25.57	1.92	10	47	<0.2	<1	28
3271	25.57	28.57	3.00	10	125	<0.2	1	41
3272	28.57	31.00	2.43	5	163	<0.2	<1	50
3273	31.00	33.43	2.43	<5	470	<0.2	<1	51
3274	33.43	35.43	2.00	10	330	0.6	<1	78
3275	37.49	39.20	1.71	5	433	<0.2	<1	<u>137</u>
3276	39.20	41.00	1.80	<5	221	0.2	<1	82
3277	41.00	43.10	2.10	<5	176	<0.2	<1	72
3278	43.10	45.60	2.50	<5	88	<0.2	<1	74
3279	45.60	. 47.30	1.70	<5	180	0.4	<1	78
3280	47.30	50.30	3.00	<5	96	<0.2	<1	79
3281	50.30	51.40	1.10	<5	137	<0.2	<1	77
3282	53.45	56.42	2.97	5	89	0.6	<1	81
3283	73.87	75.30	1.43	30	590	0.8	<1	152
3284	75.30	77,30	2.00	10	203	0.6	<1	176
3285	84.35	86.35	2.00	15	187	0.6	<1	98
3286	86.35	89.35	3.00	15	284	0.6	<1	84
3287	89.35	92.00	2.65	15	285	0.6	2	111
3288	92.00	95.00	3.00	45	1654	1.8	1	88
3289	95.00	97.55	2.55	30	1061	1.2	2	108
3290	97.55	99.12	1.57	15	121	<0.2	21	190
						_		
3291	99.12	101.12	2.00	15	361	0.4	<1	69
3292	104.00	105.27	1.27	15	152	1.0	35	417
3293	107.79	110.54	2.75	25	684	0.4	1	63
3294	114.00	116.00	2.00	45	613	1.0	27	345
3295	116.00	118.58	2.58	45	982	1.0	<1	
3296	126.80	127.80	1.00	20	1037	2.4	198	532
3297	133.90	136.02	2.12	55	702	0.8	<1	80
3298	139.29	141.60	2.31	35	493	0.6	<1	52
3299	142.34	143.39	1.05	40	478	0.8	147	141

E.

(

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive

KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2001-401

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

ATTENTION: RON WELLS

No. of samples received: 34 Sample type: Core Project #: WS-2001-02 Shipment #: None Given Samples submitted by: Ron Wells

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	A! %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mo	Мо	Na %	Ni	Р	Pb	Sh	So	Sr Ti 4		v	14/	v	-
1	03266	10	0.6	2.26	<5	45	<5	5.30	<1	33	57	394	6.33	20	2.71	1313	<1	0.02	38	1670	8		-20	191 -0.04	-40	400		<u> </u>	20
2	03267	10	<0.2	0.43	<5	35	<5	3.34	<1	38	55	68	6.40	20	1.89	972	<1	0.01	27	1700	Å		~20		< 10 	106	<10	8	71
3	03268	5	-0.2	0.36	<5	35	<5	3.57	<1	36	65	115	5.77	20	1.88	858	2	0.01	28	1500	-		~20	75 -0.01	<10	20	<10	7	62
4	03269	10	-0.2	0.33	<5	35	<5	3.32	<1	33	55	57	5 71	20	1 74	730	- 7	0.01	20	4620	0 7		~20	79 <0.01	<10	19	<10	7	49
5	03270	10	<0.2	0.38	<5	40	<5	4.36	<1	33	60	47	6.55	20	1 93	767	-4	0.01	20	1750	~	-5	-20	/4 <0.01	<10	21	<10	6	29
													0.00	+-	1.00	102	~1	0.02	20	1790	Ð	<0	×20	110 <0.01	<10	22	<10	9	28
6	03271	10	<0.2	0.72	<5	35	<5	4.88	<1	35	64	125	<u>6 55</u>	20	1 22	801	<i>c</i> 1	0.03	24	4700		40							
7	03272	5	<0.2	1.00	10	40	<5	3.28	<1	39	65	163	7 47	20	1.04	824	~1	0.03	34	1700	4	10	-20	106 < 0.01	<10	47	<10	9	41
8	03273	<5	<0.2	0.94	<5	40	<5	2 75	<1	39	87	470	9.19	20	1.07	024		0.03	20	1000	8	35	<20	105 <0.01	<10	66	<10	8	50
9	03274	10	0.6	1.35	<5	35	<5	6 88	×1	38	72	320	0.10 0.00	20	1.07	4000		0.02	20	1640	8	20	<20	111 <0.01	<10	53	<10	8	51
10	03275	5	<0.2	1.03	<5	35	<5	0.05	e 1	26	57	422	0.00	20	2.13	1323	<1	0.02	45	1750	6	<5	<20	160 <0.01	<10	79	<10	16	78
					-	~~	-•	4.00		50	57	400	0.27	20	1.57	1749	<1	0.02	52	1530	4	<5	<20	250 <0.01	<10	62	<10	22	137
11	03276	<5	0.2	1.84	<5	40	<5	546	<1	37	66	224	6 70	20	5 66	4570													
12	03277	<5	<0.2	1.42	<5	35	<5	6 12		20	20	478	6.70	20	2.88	1578	<1	0.02	41	1580	12	<5	<20	137 <0.01	<10	161	<10	14	82
13	03278	<5	<0.2	1 40	<5	35		5 15	-1	20	50	1/0	0.32	ZU	2.20	1403	<1	0.02	34	1690	10	<5	<20	153 <0.01	<10	110	<10	15	72
14	03279		04	1 52	<5	46	-6	A 74	-1	32	85 67	400	5.31	20	2.52	11/6	<1	0.03	30	1850	4	<5	<20	138 <0.01	<10	96	<10	16	74
15	03280	-0	0.1	1 33	~6	-40	~0	4./4 £ 00		30	57	160	7.22	20	2.99	1306	<1	0.02	30	1730	12	<5	<20	140 <0.01	<10	96	<10	17	78
	UDLOQ	-•	-0.2	1.00	-0	50	~0	0.0Z	51	31	58	96	7.11	20	2.19	1458	<1	0.02	31	1870	14	<5	<20	145 <0.01	<10	92	10	14	79
16	03281	<5	<0.2	1 40	<5	40	~5	6 62	~9	50	62	444	7.00		• • •														
17	03282	5	0.6	1.60	-5	40		6.02		30	03	137	7.82	20	2.44	1805	<1	0.02	45	1500	16	<5	<20	172 < 0.01	<10	130	<10	17	77
18	03283	30	0.0	0.01	~5	40	~0	0.70	~ 1	40	78	89	8.94	30	2.74	1590	<1	0.02	49	1540	16	<5	<20	140 <0.01	<10	144	<10	17	81
19	09284	10	0.0	4 27	~U ~E			2.00	<1	37	63	590	7.51	20	1.42	870	<1	0.01	21	1700	40	<5	<20	85 < 0.01	<10	44	<10	16	152
20	00204	45	0.0	1.97	~0 ~5	30	<0 	4.72	<1	37	54	203	5.83	20	2.03	1578	<1	0.02	37	1640	28	5	<20	124 <0.01	<10	78	<10	21	178
20	05205	10	0.0	1.20	~0	-30	<5	5.59	<1	35	52	167	5.79	20	1.64	2181	<1	0.01	36	1790	18	<5	<20	108 <0.01	<10	50	<10	15	170
																							-				~ 10	10	20

CHRISTOPHER JAMES GOLD CORP.

ICP CERTIFICATE OF ANALYSIS AK 2001-401

ECO-TECH LABORATORIES LTD.

<u>Et #.</u>	Tag #	Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mo %	Mn	Mo	Na %	Ni	P	Ph	Sh	8-	e-	T1 0/				.,	-
21	03286	15	0.6	0.80	<5	40	<5	3.63	<1	33	66	284	6.56	20	1.87	866	د1	0.01	20	1000	16	-5	-00		11.76				, Y	<u></u>
22	03287	15	0.6	0.70	<5	25	<5	4.25	<1	37	58	285	5 39	10	1.64	740	- 1	0.01	20	2400	10	50	~20	102	<0.01	<10	36	<10	16	84
23	03288	45	1.8	0.85	<5	40	<5	4.66	<1	36	65	1654	6.40	20	1.60	070	4	0.02	20	2190	12	<0	<20	103	<0.01	<10	33	<10	11	111
24	03289	30	1.2	1,17	<5	35	<5	2.67	<1	38	61	1061	6 30	20	7.70	4435		0.02	20	2020	20	10	<20	101	<0.01	<10	42	<10	15	88
25	03290	15	<0.2	0.36	<5	30	<5	2.69	i	11	50	121	190	10	4.00	070	~	0.02	19	2030	24	<5	<20	85	<0.01	<10	92	<10	30	108
				-	_		-	2.00	•	••	00	121	1.00	10	1.00	019	21	0.02	12	2240	26	10	<20	73	<0.01	<10	39	<10	20	190
26	03291	15	0.4	0.70	<5	40	<5	2.58	<1	41	50	284	5 5 2	20	4.45		- 4					_								
27	03292	15	1.0	0.58	<5	30	<5	2 72	4	34	44	460	3.00	20	1.40	826	<1	0.02	20	2100	22	<5	<20	106	<0.01	<10	78	<10	26	69
28	03293	25	0.4	0.85	<5	35	<5	271	-1	33	49	102	3.60	20	1.45	768	35	0.02	14	2060	136	<5	<20	97	<0.01	<10	71	<10	30	417
29	03294	45	1.0	0.60	<5	35	-5	A 26	2	20	40	004	3.47	20	1./1	676	1	0.02	20	1 9 30	12	-5	<20	111	<0.01	<10	96	<10	28	63
30	03295	45	10	0.95	<5	40		3.58	~ 4	50	70	013	4.45	20	2.09	1254	27	0.02	28	1630	54	<5	<20	137	<0.01	<10	66	<10	28	345
				0.00	-•	40	~••	3.00	~1	50	18	982	7.18	30	2.33	1391	<1	0.02	44	1520	18	<5	<20	129	<0.01	<10	128	<10	30	96
31	03296	20	24	0.82	~5	20	-5	2.04		~~																				
32	03297	55	0.8	0.02	~5	30	~0	3.01	5	20	65	1037	4.09	20	1.99	1834	198	0.02	22	3740	224	<5	<20	127	<0.01	<10	87	<10	28	532
33	03298	35	0.0	0.72	~5	30	~0	4,44	S 1	1/	4/	702	4.18	10	1.48	1439	<1	0.03	20	2200	8	5	<20	148	<0.01	<10	53	<10	16	80
34	03200	40	0.0	0.20	~0 	20	50	3.95	<1	21	51	493	4.85	10	1.72	1326	<1	0.01	15	1770	10	<5	<20	82	<0.01	<10	10	<10	11	52
•••	00200	-10	0.0	Ų.27	5	30	<0	4.64	<1	18	74	478	4.29	10	2.06	2082	147	0.02	18	1600	62	-5	<20	98	< 0.01	<10	12	<10	à	141
	TA-																												v	171
Resniit	•																													
1	03268	10	0.2	2 40	- 6																									
•	03200	ι υ	0.2	2.18	~0	35	<\$	5.58	<1	34	59	362	6.58	20	2.65	1382	<1	0.01	39	1670	12	<5	-20	169	< 0.01	<10	108	<10	A	90
Renast																											100	-10		00
1	03266		•	0.04		A -																								
10	03200	-	0.4	4.21	<0 -/5	35	<5	5.44	<1	34	60	377	6.50	20	2.65	1342	<1	0.02	38	1670	12	<5	<20	168	<0.01	<10	108	<10	٥	75
10	02204	c 40	0.0	1.04	<5	30	<5	8.99	<1	36	58	436	6.38	20	1.58	1783	<1	0.02	55	1550	4	<5	<20	245	<0.01	~10	62	~10	24	10
28	03204	10	<u.2< td=""><td>1.42</td><td><5</td><td>35</td><td><5</td><td>4.78</td><td><1</td><td>37</td><td>55</td><td>213</td><td>5.89</td><td>20</td><td>2.10</td><td>1606</td><td><1</td><td>0.02</td><td>36</td><td>1640</td><td>28</td><td><5</td><td><20</td><td>130</td><td>-0.01</td><td>~10</td><td>02</td><td>~10</td><td>21</td><td>142</td></u.2<>	1.42	<5	35	<5	4.78	<1	37	55	213	5.89	20	2.10	1606	<1	0.02	36	1640	28	<5	<20	130	-0.01	~10	02	~10	21	142
2 0	03293	25	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-			-20	100	~0.01	×10	00	\$10	¥ 1	173
Stand-																							-	-	-	-	•	-	•	-
	a;	400																												
56001		120	1.0	1.61	55	155	<5	1.57	<1	20	66	84	3.63	10	0.92	690	<1	0.02	32	700	24	10	<20	64	0.00	-10		- 4 -		
																						10	-20	-04	0.00	<10	50	<10	13	79

FP/kk df/401 XLS/01 cc: ron wells fax @ 372-1012 ECO-TECH LABORATORIES LTD.

ECO-TECH LABORATORIES LTD. Frank J. Pezzoti, A.Sc.t. B.C. Certified Assayer

din 1 North State

Section Facing Az.300NW

**	LENGTH	Au	Cu	Ag	Ma	Zn	
7.71	1.00	30	600	0.8	14 ppm	138	
9.60	1.89	35	667	0.7	<1	101	
11.55	1.95	40	231	0.4	24	80	
14.33	1.22	15	293	0.3	ব	100	
17.30	2.00	20	241	0.4	6	185	
18.95	1.65	20	435	0.5	<1	173	
20.60	1.85	55	843	1.5	<1	835	
25.45	2.45	25	284	0.3	<1	214	
29.57	3.05	25	236	0.3	م <1	113	
34.40	1.79	50	497	0.9	5	118	
35.70	1.30	55	1370	1.5	- 24	148	
37.00	4.10		/000				
39.20	1.32	120	3189	8.1	1	728	
44.81	3.05	100	2019	23	<1	956	
47.40	2.59	90	1568	2.5	<1	203	
49.30	1.90	30	1342	1.3	<1	185	
53.05	1.85	50	2135	2.5	3	154	
55.30	2.25	30	1002	1.1	2	171	
07.40 59.15	1.75	15	155	0.2	5	130	
62.15	3.00	10	143	<0.1	7	72	
65 15	300	75	184	01		1122	
68.14	2.99	10	143	0.1	2	219	
70.64	2.50	10	144	0.1	2	500	
75.29	2.91	25	295	0.2	4	309	
78.33	3.04	70	1367	0.4	8	59	
83.56	2.18	40	816	0.3	11	43	
93.70	2.44	15	381	0.1	3	45	
			,,,,,,,				
95.88	2.18	20	1057	1.7	13	138	
99.75	2.00	 15	601	0.8	6	89	
101.05	1.30	20	1111	1,4	13	93	
							1200m
		CH SILV KAI	IRISTO VER	PHER LAP		GOLD GDIV	CORP. ERTY ISION
		И	IOR.	LDS	100	K G I	RID DIF

	AZ.000 CENTILED	entron
DATE: (\$ / 12/ 2001	PREPARED BY: R. C. Cull	Fig.
KAMLOOPS	GEOLOGICAL SERVICES	20
-		

SILVER LAKE PROPERTY WORLDSTOCK GRID

DDH NO. WS 2001-03			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·		PA	GE NO. /
	Ĺ	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMD	ING
MAIN UNITS	3L	SUB UNITS		ACTENTION	PHINCKALIZATION	FROM		NUMBER
0-12.80 Casing in	::	0-17.0 Sandy clay till with calles						
Overburden	<u>.</u>	and boundars including angite purphyse						
.'	0	baselt						· • • • •
	ģ							······································
l la	å							
	0							************
	0			······		-		<u> </u>
i li	D 0				·			
12.80-15.75 Foldson	ŵ	Remark estite bildering a stati		At. 1 1 14 1				
Parature Alexched his	1	howhere Siliconst antalas the mark	mane or proversed	10/cashed with patric	Below 1332 Amound	<u> </u>		
are used an under ass	Y		Internet silica patrines	<u>silica, non cashe datid</u>	Alla grained by winder	14.54	15.75	03501
15-75-31-25 Propulitie	Ī.	15.75-24.30 White brackt atter to	13.72 Nor aby a fund	1 March - 1 H	10 COLL 35%	15.75		013+2
to Phyllic/Argillic		grazaish Alteration obscures textures	16-So-Je-To Karioble	with society (alow)	B. P A			
Altered. Porphyritic 2	-	Clearly a play inclose prophyse	density of fine the veriles	quate silingon notify	17. Kacal veriles			
Volcenic? problith	5	where loss altered with 1-3m lother	angle CA Py veintels	no carbonate		10.417		- 37 - 3
Altered make and feldgoor			Cast core		@ 22.70 70-20 CA P.	22.47	74.30	072.0//
phenocryste. Fine groundnes					seems with sil reining	24-30	27.17.	63865
	Ţ,	24-30-27-12 Mottled greens. Epidode	Lew fored. dessity of	Propyliki alteration	2.5% pice dissia			
1	2	patches and phenescyst alteration	fine carb - epid variatets	med potchy spidde	and local winder by			
	7	Patchy weak magnetic.	Same SO CA, must high and	manale corborate locally				
	\langle	weak corbonal. Relict perphysic lenture	irregular card Scienter	Theasitiesel propliki	1-3 the fire dissen R			
31.25-3675 Alteration	10	Strager pervasive alteration precurate	Above 25:35 to M / Low	what man epiden				
masks textures . Lapilli	4	sections with depth . 31.25-25-25	-foliation 45-55 Ca. Few	sericile - auite with	2.47 Lin Remarks	31.25	12.78	07306
Toff with autobreccia	R	logilli-tuff_ predominant lithology	73	silicous actebra losal	about (2) 76.15.75.94	21.70		03307
below?	1	is make perphysy.	Some incegular matrix	which below becomin	bended ab minute		<u> </u>	05306
	0	· · · · · · · · · · · · · · · · · · ·	uquite to	weak chloritic. As carb	beal Pr.	35.28	26.75	A27.4 3
3675-46.10 Propylike	1	36.75-44.86 As general desception	been all seits of	Transitional phyllic	1-2 la fine dession	36.75	18-70	023/0
Intered Porphyritic	1	more prescipted in upper part	the silicana windels	store 41 co Below	Ry deare 41.50. Loral			
	ŗ,	,	, corbonale	THERE CLICATE	bands To'ch to Zem.			

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY:

DATE: Nev. 7 , 2001

SILVER LAKE PROPERTY WORLDSTOCK GRID

DDH NO. WS 2001-03	<u> </u>						
	UTHOLOGY	STOUCCUPE				PA	GE NO. 🤽
MAIN UNITSGI	L SUB UNITS	SIKULIUKE	ALTERATION	MINERALIZATION		SAMPL	ING
Plagoclass and Chioritized	/	mine to day	0		FROM	TO	NUMBER
Make pheno cryste . Aven	,	CREATERS BELALL	Propylitic with weat		41.55	42.11	.03311
maynetic	1 44.30-44.10 Jeansitual wait wait	unadia angles (A	patchy carbonate.	Below 4150 fine diven			
	textures some convision FP. at the	sharp at 25 CA. Minar	· · · · · · · · · · · · · · · · · · ·	and veinee Py 2.5%	44.86	46.10	43312
46.10-48.60 Tuff- Lapilli	may be a hift?	verilleto 73	Are corbonate famous	Mainly fine Ry			
tuff Leminated and Altered	Tom Same FP.	Strong Lamination , ofthe	K. pluspor fairly		46.10	<u>49.60</u>	03313
48.60-52.80 Braciated	A stilled greens, find to coarse	Barris and and for	SILICONS.	canicidant by.			·
Porphyriae Basalt with "	> bassiabed Subangular clasts- clast	density of law and	Porchy selective	dimensated y winter	48.60	50.50	0.3314
altered feidsper, hornblende	Inported Cystic non manufic	ca ale caralete arriv	and the same miner	Vacable 3.4 >10%	SauSe.	\$2.80	03315
	As above clay altered several	Clay aguas . 5 hand	A inclusion	fice dissem Py.			
\$2.90-\$740 FAULT 2018 9 1	s interrale upto I'm wide of class and	tracking and almo	Las and sat) foral high onele			
high angle to ca.	v	to 61.70 Alusson	A COLOCADE	CA. bands and seams			
	6	aliand limitimes (in		Clay zones have sparse			
57.90-64.95 Mafie 52	Bleached and fractured to 61.70.	Soca, Printie and		to 2% first dimen ly	57.90	60.04	03316
Porphyry as at 42.60 60	Much border, less clay, Below 610	ax idized below (1.70	Class alter alter the	and high anythics_			
Breceivated, some augite /	1 selict pressia textures chloritized	Equi la veraleta para	demands.	2-5-1 (: A S.L.	l		
y y y y	" make pleasaget to 6mm - anteste	dire at which a which	LIJA-LUIS Patal	(anidized)	60.04	_61:67	03317
<u>ل</u> ا ا	augite	CA. 63	hlooched - sil alter-hi	-6170-64 00 Variable	6:67	-63.09	63319
	· · · · · · · · · · · · · · · · · · ·	how deasity of 4 lin		FICE DISSEMINOUNTED Py	63.07	64.95	0.3119
64.15-17.35 Phyllic	Protolith appears strangly bacuake	ato window. V. line	Hard and viliance	1-3-1 1	-64.95	67.00	0.3320
Quarty-sericito-Pynte	Alteration marks tex fune. Fine	Ry we inlet - 10 reavior	some chlorite	- for fire dumen	· · ·		
Alteration	grained, non magretic	NS'CA. 1-4cm als		and launder ry	ł		
7*-	1 Toconze zo linkich groy fin fildy	usingues 13	silicous, original	castack what i 1	_		
dig P	Parphysy - facely counded	@7/10 toca gly V.	goundman K. feld.	ains with diss dimen	70.00	<u></u>	03321
	Man uneform strongly alressed,	Lacol So-Tora foliation	preserved ?	R. and trails - are	71.00	74.50	
	the perphysics manue to woak	low density of fick	Variable security,	metallic mineral?	72.57	70.04	03392
	Farmer Cockgourd & foldypat	ly weister	Ateand Py. Strong	Voriable P. willot	76.79	79.20	<u> </u>
	- 77 an and a we for any group	1) 74.80-77.35 Marie P.	penosine alteration	dimen tres P. 2-5%		- 10.88	0342.4
77.15-96.34 Maki	Care on Partie a care - it	a year ca and the		local fine can	77.35	79.00	07225
Porphymunit as at 48.60 as	acchucies lakel. the salest in the	Patelitt cloarly	Popytiki- chiate	7135-9050 fine			
		Contenter (and ballar)	1) patchy/selection	desorm > veineet Pro			
KAMI OODE OFOL OBJOLL OF			· _	· - 75 % .			

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY:

SILVER LAKE PROPERTY WORLDSTOCK GRID

DDH NO. WS 2001- 0	3	· · ·		·····			PAC	GE NO. 3
	LI	THOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	
	ŝL	SUB UNITS				FROM	то	NUMBER
Variably brecciated, mainly	1/2	alkeration. Local weak magnetic	buff some munded	a) epidate	Local Ry veins	79.00	80.73	03324
Local weak nagnetic	(*	\$3.68-44.47 (ighter coloured more siliceous sericitle	Low density of epid-sit. We ralete variable and in a Numerous fine of 3 versee	siliceous + sericite+R	S-7 1 dissem. and . Vointet Pu	\$3.50	94-60	03327
	¢; ;?;	84.42-90-34 Asottled green, med.	Sparse high angle co	Propyliki with very	Local by revoluto			
	8	to ac matrix supported toff? Mapi	Larger (cm wide ssin	Come_epiden.	fine chipsen & veinlet	99.90	96-34	0 3378
	<u>'</u> 2	Non masselle			2-46	90.34	92.00	43329
70-34-180-15 ALEEMATING	Ŕ	90.34 - 93.57 Light coloured, Silicou	weak at voidet shirt	Suliceers Hisughout	1-3% fine dimen P.	92.00	93.57	03330
Propylitte and siliceous-	-	Po 57- 48 pp (1-1/ pm / table 4 pp 1	agen ca.	As corbonate.	mainly in alterad hist			
Make Whants Bulik		alle cosporated on his colonic	Low to moderate density	Colonias ballanova	1-27 fine dursem by			
rage voicance Prototing	7/		some chinte veintets	alier waine. Chi cakadu	V COMAMON LOCAN			
	-+	98.00-102.11 Light coloured with	high angles cA.		98.8 - 100.0 Z h >10"	41	100.00	03331
		pickish patcher, lacal primary K. fold	98.0-100.0 Bronciated	Siliceous Some sprint	quate majol in sie			
···	-	Siliceaus lacally presciated Alteration	some siliceous varialet.	with mate, as carb	1-2% patel diven P	100.00	107-11	03717
		overprints textures some FP.	Several high angles CA					
	1,	102.11-107.00 Similar to 93.57 fine	by veralels to 2 dm wide	chierite backgound	1-2% fine Ry Veinles			
	1	govered, green, cate soled. make us	Low density of fine	And permanine carb.	local larger wins.	105.50	(07-00	03333
	",	local chunitized notic plennings	increation Cart veralet			_		
	$\overline{\mathbf{v}}$	107.00-114.20 Mottled groens	with of some Ay	chlorite patchy				
	6	brecanted textures moles purphys	Knew also estame	epidate. Local wank	Local Py reinlets	109.00	(10.50	03334
**	\mathbb{Z}	Past symilar to be gree in hale.	the selective alteration	petrosive carb potete	1-34 109-0-110-0			ļ
	22	lacal week manastri	noinly at inner	· · · · · · ·		}		
	20	small lault 114-70+114-70	10.0; VIG. 10-114.76		· · · · · · · · · · · · · · · · · · ·			
4	136	114. 20-12 1.74 Transitional provite	fault - chlorite - clay	Faich chloritic in	Fine we alst P	114.20	<u>US+Z.@</u>	~ 3335
	К	- phyllic alteration Fine grained	Brechated in upper	user ant more	114-20-118-0 1000		·	···
	1	local altered make phenoryto.	chloritic verilete	sericitie? below	densiby 1-3% also			· · · ·
	1	131.00-121.74 shart section of	Below weak - mod	pately win penni	120-171.74. Potche			1
	12	crowded PP.	and the second	corbonate 1	1-2% Py between.			

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY:

DATE: ... Abu ... 8, 2001.

SILVER LAKE PROPERTY WORLDSTOCK GRID

DDH NO. WS 2001-0	3						PAC	GE NO. 4
	Û	THOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
MAIN UNITS	GL	SUB UNITS				FROM	TO	NUMBER
		continued from Pg 3.				120.74	121.74	-03336
ſ	7	121.74-126.42 Papiline altered	las advects dessity	Background chiert	2-73th fine diver			
	∜ /	refie undersic. Mottled greens,	of fire carts vintele	patchy epidola ofter	and menter by	123.20	124-60	03337
	///	fire grained , lacal V. Leok mezneti	variable angles CA.	LAPINS Y COORE bonding	lsp./21.20-/24.60.			
	÷.	126-41-12843 Light Coloured hard Sticker	Brecciation and some	apto loca ante	fin grand	126.42	122.43	03338
	$\mathcal{T}_{\mathcal{T}}$	Could be related to the matter matrix	at variable angles CA.	and corbenste	1-3°L kine diesen			
130.15-141.35 130.		epidate - carbbot popylitic alt.	Cannotion 45 CA year	Patchy epid + carb	local is fine verset P.	130.15	132.47	03335
Crouded Feldspor	Ű	130.15-136.47 Az general	madente la simily	Poter, sericite alt.	2.5.1. Jm. dinen			
Porphysy. Conded .		description, Non Carbonate	fractived and some	no costo, siliceous	By Honighart + 1.34	132-47	134.85	03340
plagioclase phenocysts	1		By varalets common_	wind and patien	verilet by locally	134.85	136.42	03341
1-4 mm in white to pink	1	· · · · ·	at variable apply CA	MK pates, carb.	semi-monine	136.42	137-85	03742
fine grained groundness	7	136-42 -137-23 Brochisted problitte	genes upto Ziemy (Some here and	Solet for by in	. <u>.</u>		
Alteration and ceining	P	strong carbonate - Make verining local	mainly carb - Ry as	Patray secrite - gly	bands hains local	137-85	(39.50	03343
obscures textures.	1	Semi-masive	Mainly high and ca	Phyllic overprint.	Semi-massing	139.5	141-35	07344
Disseminated and 140	13	137.99-141.35 A at 130.15 weined	fine by winter local	strong clay.	simer ly			
winket Py. Non magnetic	17	Much clay gauge End of section	Ead of lade foliohi	crey-serverte - prate	- clay gauge	142.95	144.78	03345
141-75-144-78 004	1	strong fractioned FP with energed	70.90 CA.	green mica	Numan R. wines			
	12	green numeral			below clay.			
		HOLE ASANDONED						
1		could not pass fault.						
	1	· ,				<u> </u>		
				ļ				
	{	<u></u>	ļ —	↓ ·				L
					· · · · · · · · · · · · · · · · · · ·			
						1		
1				<u> </u>	<u> </u>	l	1	
	-				<u> </u>		Į	L
					<u> </u>			

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: Resetts

DATE: Mer. 9, Log.

DIAMOND DRILL HOLE NO. WS 2001-03

(

SAMPLÉ	FROM	TÓ	LENGTH	Au	Cu	Ag	Мо	Zn
NO	(m)	(m)	(m)	ppb	ppm	ppm	ррт	ppm
3301	14.54	15.75	1.21	20	1097	0.3	6	44
3302	15.75	16.76	1.01	45	521	0.3	2	56
3303	20.42	22.42	2.00	75	772	0.3	<1	45
3304	22.42	24.30	1.88	30	640	0.2	<1	44
3305	24.30	27.12	2.82	20	490	<0.2	<1	/0
								107
3306	31.25	32.78	1.53	25	1122	0.7	<u> </u>	137
3307	32.78	33.78	1.00	30	047	0.2		240
3308	33.78	35.28	1.50	40	650	0.3	18	82
3309	30,28	30.75	0.47	20	628	0.2	4	80
3310	30.75	30.90	2.10	<u></u>				
2211	41.65	42.88	1 33	50	1659	1.0	6	87
3311	41.55	46 10	1.00	55	1411	0.9	<1	109
3312	46 10	48.60	2 50	70	1101	1.3	<1	855
3314	48.60	50.50	1.90	25	1200	0.7	<1	94
3315	50.50	52.80	2.30	50	1169	0.3	<1	82
	00.00							
3316	57.90	60.04	2.14	35	724	0.4	<1	102
3317	60.04	61.60	1.56	30	351	<0.2	<1	81
3318	61.70	63.09	1.39	35	338	<0.2	3	74
3319	63.09	64.95	1.86	20	853	0.8	<1	88
3320	64.95	67.00	2.05	35	303	0.7	11	130
3321	70.00	71.80	1.80	95	295	1.3	151	351
3322	71.80	73.53	1.73	40	219	0.3	<1	165
3323	73.53	75.29	1.76	15	465	<0.2	3	89
3324	75.29	77.35	2.06	25	1276	1.0	<1	85
3325	77.35	79.00	1.65	25	544	0.6	22	157
3326	79.00	80.73	1.73	10	915	0.5	<1	64
3327	83.50	84.60	1.10	20	383	0.2	<1	1/0
3328	88.80	90.34	1.54	15	603	0.3		75
3329	90.34	92.00	1.00	20	- 773	0.0	6	65
3330	92.00	83.57	1.57	- 15		U. 4		
0004	00.00	100.00	2 00	25	1224	0.8	<1	44
3331	100.00	100.00	2.00	25	<u></u>	<0.2	<1	56
3332	106.00	102.11	1.50	20	212	<0.2	6	67
3333	1/10 //	110.50	1 50	20	317	<0.2	ন	157
3335	114 20	115 20	1.00	50	996	0,3	- 1	40
3336	120 74	121 74	1.00	30	1160	0.8	9	60
3337	123.20	124.60	1.40	20	1712	1.0	13	64
3338	126.42	128.43	2.01	45	968	1.4	11	95
3339	130.15	132.47	2.32	25	716	0.4	2	48
3340	132.47	134.85	2.38	50	1278	0.7	2	51
							·	
3341	134.85	136.42	1.57	40	687	0.6	4	43
3342	136.42	137.85	1.43	20	1111	1.1	<1	82
3343	137.89	139.50	1.61	15	969	0.9	7	131
3344	139.50	141.35	1.85	10	1161	1.2	7	450
3345	142.95	144.78	1.83	10	138	<0.2	<1	63

ECO-TECH LABORATORIES LTD. 10041 Dailas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2001-414

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

ATTENTION: RON WELLS

No. of samples received:46 Sample type: Core Project #: WS 2001-03 Shipment #: None Given Semples submitted by: Ron Wells

Values in ppm unless otherwise reported

Tag #	Au(ppb)	Ag	A! %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr Tl	%	U	v	w	Y	Zn
03301	20	0.3	0.28	<5	35	<5	3.68	<1	45	34	1097	5.83	30	1.33	929	6	0.03	11	1880	4	<5	<20	164 <0.0)1 <	<10	88	<10	25	44
03302	45	0.3	0.61	<5	30	<5	3.58	<1	38	34	521	5.23	20	1.77	1353	2	0.02	14	1790	6	<5	<20	145 <0.0	01 🔹	<10	78	<10	24	56
03303	75	0.3	0.59	10	40	<5	3.84	<1	33	37	772	5.54	30	1.93	1032	<1	0.02	11	1650	7	<5	<20	162 <0.0	01 🔹	<10	79	<10	28	45
03304	30	0.2	1.05	10	30	<5	2.20	<1	33	33	640	5.32	30	1.54	870	<1	0.02	8	1850	6	<5	<20	76 <0.	01 •	<10	105	<10	26	44
03305	20	<0.2	1.30	<5	35	<5	4.22	<1	30	43	490	5.18	20	1.94	1399	<1	0.02	19	1630	4	<5	<20	131 0.0	02 <	<10	88	<10	16	70
03306	25	0.7	1,28	<5	40	<5	3.66	<1	37	63	1122	6.50	30	2.48	1500	<1	0.02	17	1650	6	<5	<20	157 <0.0	01 -	<10	145	<10	20	137
03307	30	0.2	0.93	<5	35	<5	4.05	<1	40	54	547	5.67	20	1.96	1271	7	0.02	15	1740	5	<5	<20	127 <0.0	01	c10	69	<10	17	113
03308	45	0.5	0.39	5	35	<5	4,36	1	27	64	607	4.99	20	2.24	1372	33	0.03	14	1560	27	<5	<20	156 <0.	01 -	c10	56	<10	22	240
03309	15	0.2	1.29	<5	30	<5	2.21	<1	40	63	659	5.19	20	2.28	871	16	0.03	15	1740	4	<5	<20	73 <0.	01 🗸	<10	140	<10	19	82
03310	20	0.2	1.09	<5	30	5	2.74	<1	33	53	628	4.36	30	2.02	771	4	0.03	15	1960	3	<5	<20	101 <0.	01 🖣	<10	114	-10	23	80
				_		_																							
03311	50	1.0	0.84	<5	35	<5	2.73	<1	28	57	1659	4.90	30	1.71	782	6	0.03	11	1590	5	<5	<20	92 <0.	01 👎	<10	83	<10	23	87
03312	55	0.9	0.44	<5	40	<5	4.69	<1	30	43	1411	4.88	20	2.15	1604	<1	0.02	18	1370	6	<5	<20	165 <0.	01 +	<10	83	<10	21	109
03313	70	1.3	0.21	160	30	<5	5.17	6	31	59	1101	5.96	20	2.94	2499	<1	0.03	26	1410	19	125	<20	140 <0.	01 +	<10	26	<10	15	855
03314	25	0.7	0.84	<5	55	<5	5.36	<1	41	82	1200	6.74	20	4.10	1507	<1	0.02	45	980	5	<5	<20	212 0.	03 🖪	<10	131	<10	8	94
03315	50	0.3	1.18	<5	50	<5	4.42	<1	42	96	1169	8.43	30	3.64	1459	<1	0.03	27	1240	4	<5	<20	181 0.	04 -	<10	131	<10	15	82
				_		_																							
03316	35	0.4	0.64	<5	45	<5	4.30	<1	48	100	724	9.30	30	2.25	1637	<1	0.02	40	1260	5	<5	-20	163 0.	02 🔹	<10	155	<10	12	102
03317	30	<0.2	0.57	<5	45	<5	5.04	<1	39	86	351	8.10	30	2.44	1722	<1	0.02	38	1350	5	<5	<20	203 0.	D1 •	<10	190	<10	13	81
03318	35	<0.2	0.57	<5	50	<5	5.47	<1	37	66	338	7.86	30	2.71	1727	3	0.03	37	1340	5	<5	<20	205 0.	03 🔹	<10	213	<10	12	74
03319	20	0.8	0.51	<5	45	<5	5.62	<1	38	71	853	7.09	20	2.84	2348	<1	0.02	36	1480	7	<5	<20	165 0.	01 🔹	<10	118	<10	14	88
03320	35	0.7	0.21	20	30	<5	4.18	<1	29	56	303	5.42	20	2.25	1660	11	0.03	7	1530	49	<5	<20	98 < 0.	D1 •	<10	27	<10	13	130
03321	95	1.3	0.20	90	25	<5	3.02	4	17	83	295	3.98	10	1.45	1779	151	0.01	8	1220	76	30	<20	63 < 0.	01 ·	<10	15	<10	11	351
03322	40	0.3	0.22	35	20	<5	3.56	<1	26	35	219	4.56	10	1.74	1753	<1	0.02	7	1710	14	<5	<20	83 < Q.	01 ·	<10	16	<10	15	165
03323	15	<0.2	0.29	<5	30	<5	3.43	<1	27	41	465	4.46	10	1.70	1095	3	0.03	9	1720	7	<5	~20	93 < 0.	01 ·	<10	37	<10	11	89
03324	25	1.0	0.35	<5	35	<5	4,58	<1	30	81	1276	5.88	20	2.39	1656	<1	0.03	18	1360	8	<5	<20	138 <0.	01 ·	<10	40	<10	14	85
03325	25	0.8	1.48	10	50	<5	6.56	<1	40	112	544	6.95	20	3.31	2777	22	0.02	40	1140	32	<5	<20	203 0.	05 ·	<10	277	<10	16	157
	Tag # 03301 03302 03303 03304 03305 03306 03307 03308 03309 03310 03311 03312 03313 03314 03315 03316 03317 03316 03317 03318 03319 03320 03321 03322 03324 03325	Tag # Au(ppb) 03301 20 03302 45 03303 75 03304 30 03305 20 03306 25 03307 30 03308 45 03309 15 03310 20 03311 50 03312 55 03313 70 03314 25 03315 50 03316 35 03319 20 03320 35 03321 95 03322 40 03323 15 03324 25 03325 25	Tag # Au(ppb) Ag 03301 20 0.3 03302 45 0.3 03303 75 0.3 03304 30 0.2 03305 20 <0.2	Tag # Au(ppb) Ag Al % 03301 20 0.3 0.28 03302 45 0.3 0.61 03303 75 0.3 0.59 03304 30 0.2 1.05 03305 20 <0.2	Tag #Au(ppb)AgAl %As03301200.30.28 <5 03302450.30.61 <5 03303750.30.591003304300.21.05100330520 <0.2 1.30 <5 03306250.71.28 <5 03307300.20.93 <5 03308450.50.39 5 03309150.21.29 <5 03310200.21.09 <5 03311501.00.84 <5 03312550.90.44 <5 03313701.30.2116003314250.70.84 <5 03315500.31.18 <5 03316350.40.64 <5 0331730 <0.2 0.57 <5 0331835 <0.2 0.57 <5 03319200.80.51 <5 03321951.30.209003322400.30.22350332315 <0.2 0.29 <5 03324251.00.35<<<5	Tag #Au(ppb)AgAl %AsBa03301200.30.28 <5 3503302450.30.61 <5 3003303750.30.59104003304300.21.0510300330520 <0.2 1.30 <5 3503306250.71.28 <5 4003307300.20.83 <5 3503308450.50.3953503309150.21.29 <5 3003310200.21.09 <5 3003311501.00.84 <5 3503312550.90.44 <5 4003313701.30.211603003314250.70.84 <5 5003315500.31.18 <5 5003316350.40.64 <5 450331730 <0.2 0.57 <5 500331835 <0.2 0.57 <5 5003319200.80.51 <5 5003321951.30.20902503322400.30.2235200332315 <0.2 0.29 <5 3003324251.00.35 <5 3503325250.6 <t< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>Tag #Au(ppb)AgAlAsBaBiCa %03301200.30.28<5</td>35<5</t<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Tag #Au(ppb)AgAlAsBaBiCa %03301200.30.28<5	Tag #Au(ppb)AgAl %AsBaBiCa %Cd03301200.30.28<5	Tag #Au(ppb)AgAl %AsBaBiCa %CdCo03301200.30.28<5	Tag #Au(ppb)AgAl %AsBaBiCa %CdCoCr03301200.30.28<5	Tag #Au(ppb)AgAl %AsBaBiCa %CdCoCrCu03301200.30.28<5	Tag #Au(ppb)AgAlAsBaBiCa %CdCoCrCuFe %03301200.30.28<5	Tag #Au(ppb)AgAl %AsBaBiCa %CdCoCrCuFe %La03301200.30.28<5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Tag #Au(ppb)AgAl %AsBaBiCa %CdCoCrCuFe %La Mg %Mn03301200.30.28<5	Tag #Au(ppb)AgAlAsBaBiCaCdCoCrCuFe %LaMg %MnMo03301200.30.28<5	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Tag # Au(ppb) Ag At As Bi Ca % Cd Co Cr Cu Fe % La Mg % Mn Mo Ni P Pb Sb Sn Sr T 03301 20 0.3 0.28 <	Tag Au(ppb) Ag Al % As Ba Bi Ca % Cd Co Cr Lu Mg % Mn Mo Ni P Pb Sb Sn Sr Ti % 03301 20 0.3 0.28 <5	Tag # Au(ppb) Ag A!% As Ba Bi Ca ⁺ Cd Co Cr Cu Fe ⁺ La Mg ⁺ Min No Ni P Pb Sb Sn Sr Ti ⁺ U 03301 20 0.3 0.28 45 35 45 3.68 <1	Tag # Au(ppb) Ag Al % Ba Bi Ca ⁺ / ₂ Cd Co Cr Cu Fe La Mg % Mn Mo Ni P Pb Sb En Sr Ti% U V 03301 20 30 20 30 20 30 4 30 4 30 1.33 929 6 0.03 11 1880 4 5 20 164 400.01 10 78 03304 30 0.2 1.05 10 30 55 4.22 1 30 43 490 5.18 20 1.94 1399 1 0.02 18 1850 6 -5 20 16 0.01 -10 185 03306 25 0.7 1.28 -5 4.05 3.0 4.90 5.18 20 1.94 1.902 17 1650 6 -5 20 157 -0.01 -	Tag # Au(ppb) Ag A! % As Ba Bi Ca Co Cr Cu Fe % La Mg % Mn Mo Na % NI P Pb Sb Sn Sr Ti % U V W 03301 20 0.3 0.88 <5	Tag # Au(ppb) Ag Af Mag Bit Bit Ca Ca <thca< th=""> <thca< th=""> Ca</thca<></thca<>

.

ICP CERTIFICATE OF ANALYSIS AK 2001-414

CHRISTOPHER JAMES GOLD CORP.

<u>Et #.</u>	Tag #	Au(ppb)	Ag	AI %	As	Ва	BI	Ca %	Cđ	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	TI %	υ	v	w	Y	Zn
26	03326	10	0.5	1,47	<5	50	<5	4.50	<1	44	62	915	7.58	30	3.19	1561	<1	0.02	31	1390	7	<5	<20	205	0.02	<10	227	<10	26	64
27	03327	20	0.2	1.36	<5	35	<5	3.23	<1	35	78	383	6.90	30	2.87	1844	<1	0.02	23	2020	17	<5	<20	127	0.01	<10	229	<10	18	176
28	03328	15	0.3	1,14	<5	45	<5	4.82	<1	31	59	603	5.34	20	3.17	1693	<1	0.02	28	1600	6	<5	-20	182	0.02	~10	140	<10	16	00
29	03329	20	8.0	0.25	<5	35	<5	5.02	<1	20	39	1111	3.09	10	2.09	1102	3	0.04	14	3250	13	<5	<20	183	<0.02	~10	10	~10	22	75
30	03330	15	0.4	0.64	<5	50	<5	5.32	<1	29	53	773	4.72	20	1.90	1407	ě	0.03	17	1100	, Ç	-5	~20	107	~0.01	~10	10	~10	23	70
									-		••					,	v	0.00	.,	1100	Ŷ	-5	~20	107	-0.01	~10	04	<10	10	69
31	03331	25	8.0	0.32	<5	40	<5	5.34	<1	29	49	1224	5.40	20	1.60	1061	c 1	0.04	10	1700	40	~E	~20	404	-0.04		6.0			
32	03332	25	<0.2	0.46	<5	45	<5	5.70	<1	35	38	405	5.40	20	2.04	2414	1	0.07	74	1740	16	~0	~20	104	-0.01	<1U	20	<10	18	44
33	03333	20	<0.2	1.08	<5	30	<5	6.05	<1	31	46	212	5.70	20	2.01	4709	~1	0.02	21	1710	9	< <u>0</u>	< <u>ZU</u>	212	<0.01	<10	45	<10	15	56
34	03334	20	<0.2	1 24	<5	35	25	4 74	-1	פר	67	347	5.21	20	2.40	1780	0	0.02	23	1010	12	<0	<20	226	<0.01	<10	68	10	17	67
35	03335	50	03	1 10	-5	26	~5	245	~1	20	54	000	0.00	30	2.31	1981	<1	0.03	21	1750	10	<5	<20	215	<0.01	<10	164	<10	31	157
•••	00000		0.0		-0	23	-0	2.19	~1	21	51	990	4.0Z	20	1.72	494	<1	0.04	12	1710	5	<5	<20	110	<0.01	<10	125	<10	25	40
36	03336	30	0.8	1 47	-6	45	10	5 40	~1	24	40	4400									_									
37	03337	20	10	1 70	~5	46	10	Q. 14. 4 04	- 4	31	49	1100	4.07	20	2.68	1528	9	0.03	23	1710	7	<5	<20	267	0.01	<10	181	<10	22	60
20	00007	20	1.0	1.78	~0	40	10	4.01	* 1	35	46	1/12	5.97	20	2.56	1229	13	0.02	25	1820	5	<5	<20	232	0.02	<10	146	<10	22	64
30	000000	40	1.4	0.00	~ 5	40	<0	0.76	<1	27	41	968	5.05	20	1.41	1438	11	0.02	25	1770	80	<5	<20	279	<0.01	<10	85	<10	26	95
38	03339	25	0.4	0.57	<5	30	<5	2.53	<1	39	69	716	7.43	30	1.53	571	2	0.02	19	1870	9	<5	<20	121	<0.01	<10	68	<10	20	48
40	03340	50	0.7	0.71	<5	30	5	1.40	<1	38	49	1278	7.07	30	1.28	423	2	0.02	18	2050	7	<5	-20	124	<0.01	<10	82	<10	22	51
					-		_																							
41	03341	40	0.6	0.56	<5	25	<5	2.74	<1	32	47	687	6.00	30	1.38	707	4	0.02	15	1920	8	<5	<20	126	<0.01	<10	71	<10	28	43
42	03342	20	1.1	0.74	<5	30	10	4.88	<1	26	48	1111	5.55	20	1.50	1142	<1	0.03	20	1680	8	<5	<20	165	<0.01	<10	72	<10	18	82
43	03343	15	0.9	0.44	<5	30	<5	4.01	<1	31	50	969	5.57	30	1.53	1123	7	0.03	15	1740	24	<5	<20	194	<0.01	<10	105	<10	25	121
44	03344	10	1.2	0.33	<5	35	<5	4.42	4	31	55	1161	5.70	20	2.15	1729	7	0.03	16	1740	10	<5	<20	159	<0.01	<10		-10	20	450
45	03345	10	<0.2	0.16	10	25	<5	8.61	<1	41	71	138	5.53	20	4.88	1428	<1	<0.01	127	740	7	<5	<20	667	-0.01	~10	23	~10	21	400
														_•			•			, 44	,		-20	007	~0.01	510	34	~10	14	03

QC DA) Resplit	[A: :																												
1 36	03301 03336	20	0.3 0.8	0.38 1.47	<5 <5	30 45	<5 10	3.48 5.21	<1 <1	45 32	43 47	1101 1278	5.94 4.53	30 20	1.33 2.72	925 1529	7 9	0.03 0.03	13 24	1890 1730	4 7	<5 <5	<20 <20	160 <0.01 273 0.01	<10 <10	99 182	<10 <10	24 23	47 60
Repeat 1 10 19 36	: 03301 03310 03319 03336	15 20 20	0.2 0.2 0.8 0.8	0.29 1.14 0.52 1.45	<5 <5 <5 <5	35 35 45 40	<5 <5 <5 <5	3.62 2.81 5.41 5.23	<1 <1 <1 <1	43 34 38 32	34 56 72 49	1062 638 844 1144	5.73 4.49 7.12 4.57	30 30 20 20 P	1.32 2.08 2.62 2.64 2.64 2.64	929 795 2345 1521	5 3 <1 9	0.03 0.03 0.02 0.03	10 14 32 24	1890 2000 1490 1730	4 4 7 7	<5 <5 <5 <5	<20 <20 <20 <20	164 <0.01 104 <0.01 163 0.01 265 0.01	<10 <10 <10 <10	88 118 119 179	<10 <10 <10 <10	24 23 14 23	46 83 88 59

26-Nov-	01							I	ICP CEI	RTIFIC		ANALYSIS	AK 20	01-414					c	HRIS	TOPHE	R JAME	ES GO	LD COF	‹ P.	
Et#. Tag#	Au(ppb)	Ag	AI %	As	Ba	Ві Св	% Cd	Co	Cr	Cu	Fe %	La Mg %	Мл	Mo Na%	Ni	P	РЬ	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
Standard:																										
GEO'01 GEO'01	125 125	1.4 1.4	1.60 1.61	50 45	145 145	<5 1.3 <5 1.3	32 <1 34 <1	16 16	55 54	79 79	3.77 3.69	10 0.83 10 0.82	596 607	<1 <0.01 <1 <0.01	21 21	670 690	19 17	<5 <5	<20 <20	40 42	0.05 0.05	<10 <10	55 52	<10 <10	12 12	68 68

FP/lh df/414 XLS/01 cc: ron wells fax @ 372-1012

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer C

Page 3

SILVER LAKE PROPERTY WORLDSTOCK GRID

DDH NO. WS 2001-0	7							
	L	THOLOGY	STRUCTURE				PA0	JE NO. 7
MAIN UNITS	GL	SUB UNITS	SIRUCIURE	ALTERATION	MINERALIZATION	r	SAMPL	ING
0.6.71 Casing in		Patro Sand Till the same				FROM	то	NUMBER
and and a surf shads and	0.0						-	
Official and Charant	0							· · · · · · · · · · · · · · · · · · ·
DLATOCK.	<u>~</u> 1	11 m 7 / 41 / 1		· · · · ·				
the second second second second	2	1. W + O A Line gran the me supported	mind dersity of carb	Pageytike chloaten	Variable 2.10% from			
and in the same a suit	- 3	Breached below overlander.	many love up to um	ballground latch	distanly bruleto	6.71	ו?.ר	04051
Medium ro contse Lageriti	0		the an dealing of spice		increase deservande.	1.71	9.60	-04052
tuff Breccia. Vague 10	0.	1.60-11.55 Martind Light green to grey	ingular carb windets	W/m perconie coop. et.	3.5% for disservate	9.60	11-55	04453
cm scale clash	0	Vague semanat could till tertime	wagen tof facure . Same	top there silvered low	y hocally 75% luch			
11-55-13-11 Fine Feldsper	++	Very light coloured FP, equiptonular	fine i verileto	care. below.	milet for P.	11:55	13.11	0405u
Perphyry. Possible Dike.	<u>t</u>	background/g-mass with K. Alleyor, silien 1	for t read, Ky fire Py 10-10	Corbeents	24% fine dustin Py		14.53	64055
13-11-2545 As at 4.00m	\sum_{r}	13-11-18.95 Light to med green, and	Fail, massive lan	Siliceous at typ. Mainly	Variable 2-47 /m.			
Altered fine to Course		The man fine perphysitis make waite	density of fin icroyula	papylite with chief	dimen and windet	15.30		04056
la pilli tre / breccia.	17	lacal suggestion of contra frequents	cart wisterton Py cart	w/m permine carb	Py (maine, vai) lavella	17:30	18-95	A#0.57
	<u>}</u>	usak negechi	rains to be a sica perfor	Local week pregratie				
	ħġ,	18.95- 20 to hight grey with stoney hift	Februar 4 45 ch . land	Mala phylic some	5% V fore to fire dimen	18.95	20.80	04058
	14	an encesus Fine to reduin lapilli	corte verilles 60.70CA	Spricite and much fire		20.30	71.00	04054
	Z	truff Flogmant to motive supported	Tuf fobries 40-SOCA	Propertitie with chierto	2-4 the for dinem.			
	0	Appears fairly hamalithic nafi	Med to high density	betty and win ermi	and voislet the	21:00	25.44	A40/0
1	00	perphyse logisti alteration local	Thorne im carb y	cash local week and				
25.45-32.85 Plagioclase		and the states	Ho Go CA . Local By V.		miner verialet R.	26.67	79.57	A40()
physic. Homolithic	N	Fairly Annageneeus, light arens , shi	. weak bittle fraction	Hard silicums, way	Tc-2% line			
medium - c-arse capilli	1	weak- anderstaly counted playiocins	with fear diamer chi.	little carb. Am	dinen A locally	29.57	32.61	040(7
hiff or president water.	Ľ.	(1-30) physic local tuff or Bx. to how	varialisto bocal fine	manetic.	in small cluster.			UTPAC
	انيا	little matrix, son magnetic	Littegulacfusizoy carb			l		
32.75- 59.15 Stray	17	12:15-39.23 Light gray & bounist	windets	Silicens, spore	Sport P. Local	32.61	3440	04063
Alteration masks textures	1	fairly hard siliceous & fine ground	22.85-34-00 Local fin	cart Miner security	concectant ventet			
Proteiths - mixed fuff	1//	Fragmented protolith ingre texture	clamated/Bet u.c.	· · · · · · · · · · · · · · · · · · ·	fin grained	34 40	35.70	64064
to Lapilli Tuff, Some	E.	and to allecohen. Nen negetic	Bx & progrested.			25.70	37.88	04065
medium to zearse.	19	,	fabrics commonly with	1-27 V. fire fine		37.55	17 20	04044
l.		37.13-39.20 Mart Silicous with	137-28-37-26 11-194 9t	direct Py with				
. L	1	Vugsu als veins	V. & silicification will	+ silicification			1	l

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Malle

......

DATE: 20 Mers 2001,

SILVER LAKE PROPERTY WORLDSTOCK GRID

DDH NO. WS 2001-	07	,			···		PA	GE NO. 2.
	Ĺ	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
MAIN UNITS	<u>GL</u>	SUB UNITS				FROM I		NUMBER
	1	37.20-43.30 light grey to bouridy	Fabrics-tuff lam.	Transitional promitic	Variable 3-75%	39.20	/11.76	04067
	1	hard, warably lamated such is here	and raining produce	cost, dk. chloate	time dimen for	41.76	4	ou of
	14	with more mosting, subby sections.	40-SESA . Sparse rejain	Fail bord-siliceous	Convertioning in			
	N	Local semant forgenestal textures	lacal a to cub encoling	some corricity soons	mare laminated mas	44.81	117.160	646/3
	190	Alteration largely absences toxhores	ca there as presende	cachasate No veislote	Sand revileto			
	11.	lacal fine ash-lapitli.	base	non magnetic		47.4-	(13.70	04070
	<u></u>	49.30-53.05 light to med. grays. Fini	massive with low	Local marcin	Upper and Lower			
۴.	17	grained fairly bamageacour hill	med density of line	4. notile - souliti	allos 7 - 6% La dine			
	$\left \right $	partible logilli till at bottom	cate with local	- culentic Patric	P. Central court	5420	69.05	044034
	2	Propylikie alteration local whomand	alk chinte manale	ALCHARING CATE INCOM	1-2-1 Juis aliana	31° CD	3 3 9 3	
	¥	53:05-59:15 Transitional zone light	AnaluCA	Progressie for the for the	0	~~ e		
	12	grave to brangish. Fine grained	Tull loginghing 11	alicense calles series	to 1-34 and this		22.20	04072
	1	-local la ville tule Alteration maste	45-50 CA. 73.05-55.5	- cla materia lacat	dines P 1	77.50	57.40	04673
	1	textures non encoretic.	Vacal late Vuaque	alaladanic at 1	his winter			<u> </u>
57-15-105-74 (501)	14	2 ·	a to scholendary H	in motiv	620 00 - 14 1 14	37.40	39.05	- OH A74
Light coloured to white	17	59.15-68.14 As several description	Marinia to La 1	Phyllip ym ielde	Acto Q in the		<u> </u>	64075
la -itti Ti Cla and	12	cannot obspinarish framental to	line merital laborer	A sadara Ellason				
and the state	12	possible bx intrusive ! white has	atten 45,5000 la	able contaile of	ACH & CARACTER AND	<u> </u>	<u> (3:/5</u>	04076
alford	1	around locally letterant duris	desite of fire he	a ite en est	FUNER Py Office	ł	 	
	P	mine chloritional line matter	1	ryan and the	and the state of the		<u> </u>	
1 .	Z		179 . Secario		Fy Wintes	65.15	68.14	04077
		- co.14-72.58 White to mint int	dearmine , the attion	Annak K Lado	102-36-DE-14 3-8%	1	<u> </u>	
1.		and an instanting to statistics	white a section	ACEMANNE R. / LET !	Areen mineral (mecht	276 <i>8.14</i>	70.44	04478
1 "	11	Apprice Potchy chaladanic-vum	Landard Tooks (A	along service -	3-7% for deser by			
	1	I daze.	Same for a with	lacally under	often in agregates	10.64	77.38	
	ľ	72.37-75-29 Store chiened tule	Fabrics wire ha	7	of Con	22.38	75.29	- 04080 ·
	12	Lobrics So'CA Elemente con scale	Soich Kattan Sant	e and a sacistic later	Imantle Zalet			-
	ž	fragments.	Idining large sand	, <u> </u>	Los dinen A	13.27	78-33	04081
	Ľ	75.29-72.56 Coarse braccio -	Cups.	Kadable bardenes	Aniel la fine			+
	1	Demonstal textures Bigindal anall	Toff fabries 40-50	Cilicany samila	a so so the second	71:33	<u></u>	04082
	0	The feldso rich as above, with more mal	Concordant fly in	lacal clay .	for all clash	1		
		(has another a)			- contraction of the second se	1		<u> </u>

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Wally

SILVER LAKE PROPERTY WORLDSTOCK GRID

DDH NO. WS 2001-07				· · · · · · · · · · · · · · · · · · ·		PAG	ENO. 3
L	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	NG
MAIN UNITS 🙀 GL	SUB UNITS				FROM	TO	NUMBER
2	San be through antis local chairs and				84.20	*1.54	
2	way silica						
	23.56-93.70 Helenlithic coare	Brecciated, local	Chleritic local weak	variable for graines	87.56	86.00	04084
7/	Lapilli tyff. breecia Mainly	40.50 CA fabrics	epidote some along.	ly maisty is materix			· · · · ·
	for mapic clast resser my divite	sporse in fine carb	At depth weak	quite pably a			
	Elosphyty Mare felsie at tap of	weights	1. to moderate	\$3.56-86.00 3-6-1.			
5	section logsylitic + clay alteration		APTUBLINE CATA.	86:00-11.50 2-4%		1	
* 4	Med. green, chlicitic local weak			9150 - 93.70 -5 -1	i l		
	magnetic. Fragment to weak				9450	93.70	duet C
	matrix suggest.	· ····		· · · · · · · · · · · · · · · · · · ·		·	
	93.70-15.88 Dark coloured, fraction	Clange bractures	clan exercist as	75% din lucha	97.74	90.90	04/ D #/
\ \//.	and clayer, fertures descured by alternitis	35-40CA SOOTS LAIN	ceth	Controlled P.			
	15.88-97.75 Vain shockwark. Integrar	Highly voiable	strong to med	Eine aliman P		6 7.7 c	
	97:75-101.05 medium Lapilli Tulk IRcord	Leining	parvosive cash fint	12 hard love 200	81.70	99.25	
50	Fine felds are obvice and more matin	Local crude labrice	from heartily minor	Londs SSCA (fine Py)		1	04035
"• <i>70</i>	Cm. scale clasts metrox - wk francest	45 CA. Low density	Hard local societhe	0.34 1	1 <u>1-/</u> 2	10/202	
	100.05-105.76 Mad. allen line	fine gly- corb winter	clan work of the all	a fine disser			
	around lack maxing to landsons	Failly Massive law	Position 11 th	acor cristers			
	anotheratic and evidence altered	to asite al luis and	Lasa (No. cate)	CARAFALL SPOR	<u> </u> '		
	145.76 EOH	in its for the second	and the faces	free changes Py	<u> </u>		
		A A A A A A A A A A A A A A A A A A A	epice, cocal deman	treatery upb 22.			
1			WIN PORTY PRIVEIPE CO	ffer	<u> </u>		
				·	╂──╍──		
		<u> </u>	· · · · · · · · · · · · · · · · · · ·		+		
Ι					╋┓┓		
ļ Ì				<u> </u>	<u> </u>	<u> </u>	<u> </u>
1 1		T		· · · · · · · · · · · · · · · · · · ·	<u> </u>	 	
					† – – –		<u> </u>
			· · · · · · · · · · · · · · · · · · ·	1	╋━━━━━		ł
1			··	<u> </u>	<u>+</u>		<u>+</u>
				·····	+	<u> </u>	┫────

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY:

DATE: 40, 2001

DIAMOND DRILL HOLE NO. WS 2001-07

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SAMPLE	FROM	TO	LENGTH	Au	Cu	Ag	Мо	Zn
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NO	(m)	(m)	(m)	ppb	ppm	ppm	ppm	ppm
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4051	6.71	7.71	1.00	30	600	0.8	14	138
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4052	7.71	9.60	1.89	35	667	0.7	<1	101
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4053	9.60	11.55	1.95	40	231	0.4	<1	80
4055 13.11 14.33 1.22 15 293 0.3 <1	4054	11.55	13.11	1.56	45	273	0.4	24	79
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4055	13.11	14.33	1.22	15	293	0.3	<1	100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4056	15.30	17.30	2.00	20	241	0.4	6	185
4058 18.95 20.80 1.85 555 843 1.5 <1 833 4059 20.80 23.00 22.0 70 416 0.8 <1 255 4060 23.00 25.45 2.45 256 264 0.3 <1 211 4061 28.52 29.57 3.05 225 236 0.3 4 111 4062 29.57 32.61 3.04 40 292 0.4 <1 102 4066 32.61 3.04 40 292 0.4 <1 102 4066 37.88 2.18 70 1636 3.2 (1.32) 120 3189 8.1 1 722 4066 37.88 39.20 1.32 120 3189 8.1 1 721 4066 44.81 47.40 2.59 90 1568 <th< td=""><td>4057</td><td>17.30</td><td>18.95</td><td>1.65</td><td>20</td><td>435</td><td>0.5</td><td><1</td><td>173</td></th<>	4057	17.30	18.95	1.65	20	435	0.5	<1	173
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4058	18.95	20.80	1.85	55	843	1.5	<1	835
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4059	20.80	23.00	2.20	70	416	0.8	<1	255
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4060	23.00	25.45	2.45	25	264	0.3	<1	214
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4061	26.52	20.57	3.05		236		<u>A</u>	113
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4001	20.52	29.07	3.03		200	0.0	<	102
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4002	27.07	34 40	1 70		<u></u>	<u>0.4</u>	5	118
4065 35.70 37.88 2.18 70 1636 3.2 < 1 4066 37.88 39.20 1.32 120 3189 8.1 1 722 4067 39.20 41.76 2.56 75 1723 2.4 < 1 200 4068 41.76 44.81 3.05 100 2019 2.3 < 1 956 4069 44.81 47.40 2.59 90 1568 2.5 < 1 200 4070 47.40 49.30 1.90 30 1342 1.3 < 1 163 4071 51.20 53.05 1.85 50 2135 2.5 3 155 4072 53.05 55.30 2.25 30 1002 1.1 2 177 4074 57.40 59.15 1.75 15 155 0.2 5 166 4077 65.15 66.14 2.99 10 143 <	4003	34.40	35.70	1.75	55	1370	15	24	148
4066 37.88 39.20 1.32 120 3169 8.1 1 722 4067 39.20 41.76 2.56 75 1723 2.4 < 1 200 4068 41.76 44.81 3.05 100 2019 2.3 < 1 250 4069 44.81 47.40 2.59 90 1568 2.5 < 1 200 4070 47.40 49.30 1.90 30 1342 1.3 < 1 168 4071 51.20 53.05 5.30 2.25 30 1002 1.1 2 17 4072 53.05 55.30 2.25 300 1002 1.1 2 17 4074 57.40 59.15 1.75 155 0.2 5 166 4077 65.15 62.15 3.00 10 143 0.1 2 <td>4065</td> <td>35.70</td> <td>37.88</td> <td>2.18</td> <td>70</td> <td>1636</td> <td>3.2</td> <td><1</td> <td>309</td>	4065	35.70	37.88	2.18	70	1636	3.2	<1	309
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4066	37.88	39.20	1.32	120	3189	8.1	1	728
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4067	39.20	41.76	2.56	75	1723	2.4	<1	203
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4068	41.76	44.81	3.05	100	2019	2.3	<1	956
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4069	44.81	47.40	2.59	90	1568	2.5	<1	203
4071 51.20 53.05 1.85 50 2135 2.5 3 154 4072 53.05 55.30 2.25 30 1002 1.1 2 177 4073 55.30 57.40 2.10 15 477 0.5 1 133 4074 57.40 59.15 1.75 15 155 0.2 5 166 4075 59.15 62.15 3.00 10 143 0.1 7 77 4076 62.15 65.15 3.00 15 154 0.1 4 1122 4076 62.15 65.15 3.00 15 154 0.1 4 1122 4077 65.15 68.14 2.99 10 143 0.1 2 2112 4078 68.14 70.64 2.50 10 144 0.1 2 800 4080 72.38 75.29 2.91 25	4070	47.40	49.30	1.90		1342	1.3	<1	165
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4071	51 20	53 05	1.85	50	2135	2.5	3	154
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4072	53.05	55 30	2.25	30	1002	1.1	2	171
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4073	55.30	57.40	2.10	15	477	0.5	1	138
4075 59.15 62.15 3.00 10 143 <0.1 7 77 4076 62.15 65.15 3.00 15 154 0.1 4 1127 4077 65.15 68.14 2.99 10 143 0.1 2 211 4078 68.14 70.64 2.50 10 144 0.1 2 800 4079 70.64 72.38 1.74 10 435 0.3 <1	4074	57.40	59,15	1.75	15	155	0.2	5	160
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4075	59.15	62.15	3.00	10	143	<0.1	7	72
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									4100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4076	62.15	65.15	3.00	15	154	0.1	4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4077	65.15	68.14	2.99	10	143	0.1		219
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4078	68.14	/0.64	2.50	10	144	0.1	2	1060
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4079	70.64	72.38	1.74	10	435	0.3		200
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4080	72.38	/5.29	2.91	25	290	0.2	4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4081	75.29	78.33	3.04	70	1367	1.2	9	77
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4082	78.33	81.38	3.05	30	593	0.4	8	59
4084 83.56 86.00 2.44 15 361 0.1 3 44 4085 91.50 93.70 2.20 20 1153 1.3 5 126 4086 93.70 95.88 2.18 20 1057 1.7 13 138 4086 93.70 95.88 2.18 20 1057 1.7 13 138 4087 95.85 97.75 1.90 25 550 1.1 2 157 4088 97.75 99.75 2.00 15 801 0.8 6 85 4089 99.75 101.05 1.30 20 1111 1.4 13 93	4083	81.38	83.56	2.18	40	816	0.3	11	43
4085 91.50 93.70 2.20 20 1153 1.3 5 126 4086 93.70 95.88 2.18 20 1057 1.7 13 138 4087 95.85 97.75 1.90 25 550 1.1 2 157 4088 97.75 99.75 2.00 15 801 0.8 6 85 4089 99.75 101.05 1.30 20 1111 1.4 13 93	4084	83.56	86.00	2.44	15	361	0.1	3	45
4086 93.70 95.88 2.18 20 1057 1.7 13 138 4087 95.85 97.75 1.90 25 550 1.1 2 157 4088 97.75 99.75 2.00 15 801 0.8 6 85 4089 99.75 101.05 1.30 20 1111 1.4 13 95	4085	91.50	93.70	2.20	20	1153	1.3	5	126
4060 55.05 2.10 20 101 11 15 164 4087 95.85 97.75 1.90 25 550 1.1 2 15' 4088 97.75 99.75 2.00 15 801 0.8 6 85' 4089 99.75 101.05 1.30 20 1111 1.4 13 95'	4000	02 70	98 30	2 19	20	1057	17	12	138
4007 55.05 57.75 1.30 20 500 1.1 2 10 4088 97.75 99.75 2.00 15 801 0.8 6 85 4089 99.75 101.05 1.30 20 1111 1.4 13 95	4000		07 75	1 00	20	550	<u>1</u> 1		151
<u>4089</u> 99.75 101.05 1.30 20 1111 1.4 1.3 93	4007	07 75	00 75	2 00	15		0.8	8	89
	4080	00 75	101.05	1 30	20	1111	14	13	93

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2001-427

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

ATTENTION: RON WELLS

No. of samples received: 39 Sample type: Core Project #: WS 2001-07 Shipment #: None Given Samples submitted by: Ron Wells

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	ບ	<u> </u>	W	Y	Zn
1	04051	30	0.8	1.21	<5	55	10	7.50	<1	45	122	600	8.06	30	2.76	2664	14	0.02	52	1240	6	-5	<20	240	0.02	<10	240	<10	22	138
2	04052	35	0.7	1.08	10	45	5	6.00	<1	39	97	667	7,44	30	1.94	1852	<1	0.02	36	1550	8	<5	-20	185	0.01	<10	180	<10	18	101
3	04053	40	0.4	0.54	10	40	<5	5.13	<1	27	45	231	6.07	30	1.97	1304	<1	0.03	12	1540	6	<5	-20	155	<0.01	<10	165	<10	23	80
4	04054	45	0.4	0.40	10	30	20	4.44	~1	24	41	273	5.18	30	1.71	1250	24	0.03	10	1740	8	<5	<20	126	<0.01	<10	150	10	24	79
5	04055	15	0.3	1.02	<5	45	<5	4.29	<1	35	37	293	6.24	30	2.25	1638	<1	0.02	9	2130	4	<5	<20	145	<0.01	<10	189	<10	26	100
6	04056	20	0.4	1.42	<5	50	<5	4.90	<1	30	40	241	6.89	30	2.63	1659	6	0.02	12	2020	4	<5	<20	170	<0.01	<10	191	<10	27	185
7	04057	20	0.5	1.47	<5	45	<5	4.94	<1	33	39	435	6.10	30	2.42	1872	<1	0.02	16	2050	6	<5	<20	153	0.01	<10	201	<10	22	173
8	04058	55	1.5	0.99	10	50	<5	7.44	6	36	81	843	7.39	30	2.78	2427	<1	0.02	37	1480	10	-5	<20	256	0.01	<10	243	<10	21	835
9	04059	70	0.6	1.08	5	50	<5	7.00	<1	33	72	416	6.31	30	2.42	2310	<1	0.02	33	1620	8	-5	<20	223	0.03	<10	231	<10	21	255
10	04060	25	0.3	1.45	5	50	<5	4.96	<1	34	59	264	6.14	30	2.50	2316	<1	0.02	25	1660	6	<5	<20	164	0.04	<10	223	<10	20	214
11	04061	25	0.3	0.27	10	45	<5	3.79	<1	20	39	236	4.15	20	1.45	2088	4	0.02	6	1490	6	<5	<20	120	<0.01	<10	48	<10	15	113
12	04062	40	0.4	0.20	10	40	<5	3.99	<1	23	39	292	4.46	20	1.68	2180	<1	0.02	8	1630	10	<5	<20	102	<0.01	<10	15	<10	13	102
13	04063	50	0.9	0.26	70	35	<5	4.98	<1	36	45	497	5.92	20	2.51	2015	5	0.02	20	1650	8	40	<20	117	<0.01	<10	20	<10	11	118
14	04064	55	1.5	0.31	185	35	<5	4.58	<1	28	45	1370	5.48	20	2.47	1779	24	0.02	23	1780	26	25	<20	115	<0.01	<10	36	<10	13	148
15	04065	70	3.2	0.20	340	25	10	5.37	2	23	51	1636	4.80	20	2.72	2478	<1	0.03	23	1720	124	45	<20	128	<0.01	<10	27	<10	15	309
16	D4066	120	8.1	0.16	770	30	<5	4.63	6	25	57	3189	5.66	20	2.29	2101	1	0.02	14	980	110	625	<20	111	<0.01	<10	17	<10	12	728
17	04067	75	2.4	0.26	80	35	<5	5.46	<1	39	46	1723	6.01	20	2.19	1895	<1	0.02	20	1760	28	105	<20	193	<0.01	<10	18	<10	15	203
18	04068	100	2.3	0.25	5	40	20	5.71	8	30	42	2019	5.76	20	2.15	2227	<1	0.02	15	1880	184	10	<20	193	<0.01	<10	26	<10	17	956
19	04069	90	2.5	0.24	225	60	<5	5.51	<1	30	50	1568	5.96	20	2.22	2121	<1	0.02	- 14	2080	98	225	<20	216	<0.01	<10	21	20	24	203
20	04070	30	1.3	0.71	<5	55	<5	4.80	<1	35	35	1342	5.54	30	1.68	2085	<1	0.02	15	2220	6	<5	<20	173	<0.01	<10	109	<10	24	165

ECO-TECH LABORATORIES LTD. CHRISTOPHER JAMES GOLD CORP. ICP CERTIFICATE OF ANALYSIS AK 2001-427 Bi Ca % Y Zn Et #. Tag # Au(ppb) Ag Al % As Ba Cď Co Cr Cu Fe % La Mg % Mn Mo Na % Ni Р Pb Sb Sn Sr Ti% U v w 28 21 04071 2.6 0.82 5 40 10 5.45 <1 36 61 2135 6.96 30 1.77 2013 3 0.02 1740 16 <20 185 < 0.01 <10 134 20 22 154 50 5 04072 1.1 0.31 45 5.72 29 47 1002 20 2,39 2226 2 0.02 20 1730 <5 <20 193 <0.01 <10 48 <10 22 171 22 30 <5 <5 <1 5.18 8 04073 15 0.39 <5 50 5 4.59 <1 20 1831 1 0.03 18 <5 <20 170 < 0.01 <10 105 <10 20 138 23 0.5 31 61 477 5.68 2.24 1850 10 04074 30 <5 <1 5 0.02 86 < 0.01 <10 19 <10 11 160 24 15 0.2 0.26 <5 3.96 36 42 155 3.72 10 1.81 741 19 1860 18 5 <20 12 72 04075 30 39 57 143 752 7 0.02 22 1860 <20 93 < 0.01 44 <10 25 10 < 0.1 0.34 <5 <5 3.34 <1 3.91 10 1.38 8 10 <10 26 04076 15 0.29 <5 30 39 17 <5 <20 98 < 0.01 <10 37 <10 11 1122 0.1 <5 2.91 11 48 154 4.22 10 1.26 625 4 0.02 1920 10 9 219 27 04077 10 0.1 0.27 <5 30 <5 2.56 39 143 4.98 561 2 0.02 21 1820 22 <5 <20 84 < 0.01 <10 26 <10 <1 64 10 1.11 26 8 800 28 04078 10 0.1 0.35 <5 30 <5 1.91 6 39 64 144 4.75 10 0.80 457 2 0.01 17 1890 18 10 <20 90 < 0.01 <10 <10 29 04079 10 0.3 0.41 <5 35 <5 3.60 11 35 51 435 5.24 20 1.71 1791 <1 0.02 21 2000 24 <5 <20 150 <0.01 <10 80 <10 16 1960 04080 35 17 2130 <5 -20 153 < 0.01 <10 13 309 30 25 0.2 0.34 5 <5 4.05 <1 35 50 298 4.62 20 1.93 912 4 0.02 8 <10 44 77 <10 13 31 04081 70 1.2 0.30 10 40 5 5.46 <1 44 48 1367 5.60 20 2.75 1050 9 0.02 21 2150 4 20 <20 160 < 0.01 <10 28 59 32 04082 30 <5 35 <5 5.43 22 39 2.42 1237 8 0.02 18 1870 <5 <20 179 < 0.01 <10 44 <10 19 0.4 0.46 <1 593 4.14 10 4 33 <5 11 <20 187 < 0.01 199 43 04083 40 0.3 1.26 30 <5 4.04 <1 61 58 816 6.29 20 2.60 996 0.02 33 1800 14 <5 <10 <10 24 34 35 57 55 30 16 <20 30 45 04084 15 <5 <5 3.38 3.36 770 0.02 32 1750 <5 204 < 0.01 <10 259 <10 0.1 1,71 <1 361 6.88 3 35 04085 <5 7.12 52 20 3.26 5 0.02 38 1820 20 <5 <20 229 0.03 <10 23 126 20 1.3 1.65 5 45 <1 47 1153 6.08 1901 <10 196 31 138 36 04086 20 1.7 1.28 10 45 <5 5 75 <1 51 **4**R 1057 6 22 30 3.27 2059 13 0.02 29 1630 124 <5 <20 290 < 0.01 <10 268 <10 <10 27 151 37 04087 25 1.1 0.79 5 40 5 6.95 <1 39 55 550 6.00 30 2.32 1636 2 0.02 30 1760 132 <5 <20 282 < 0.01 <10 163 26 2020 12 <20 233 < 0.01 31 69 38 04088 15 8.0 1.13 <5 35 <5 4.60 <1 42 55 801 6.76 30 2.35 1307 6 0.02 5 <10 141 <10 39 40 6.26 59 1.79 1602 26 1800 18 15 <20 229 < 0.01 125 <10 33 93 04089 20 14 0.94 <5 <5 <1 40 1111 7.15 30 13 0.02 <10 OC DATA: Resplit 54 1320 <5 230 <10 22 157 1.2 1.13 <5 45 <5 7,28 45 571 8.21 30 2.61 2677 14 0.01 12 60 208 0.01 <10 1 04051 25 <1 119 15 40 <5 30 3.30 2091 15 0.02 27 1620 142 <5 60 295 < 0.01 <10 270 <10 32 138 36 04086 25 2.2 1.30 5.77 <1 48 49 933 5.94 Repeat: 04051 0.8 1.20 <5 55 5 7.72 <1 46 124 599 8.33 30 2.76 2734 0.02 55 1350 8 <5 40 244 0.01 <10 240 <10 23 146 1 30 14 50 10 04060 20 0.4 1.43 5 <5 4.94 <1 34 59 262 6.16 30 2.47 2312 <1 0.02 26 1650 8 <5 40 163 0.04 <10 219 <10 20 221 29 2000 19 04069 95 2.8 0.23 205 40 5 5.39 <1 47 1568 5.83 20 2.20 2081 <1 0.02 14 88 230 40 196 < 0.01 <10 20 <10 19 191 Standard: GEO'01 <1 0.01 125 0.4 1.50 55 150 <5 1.50 <1 20 59 83 3.42 20 0.91 670 27 780 20 -5 20 45 0.09 <10 63 <10 14 76

FP/kk df/427 XLS/01 cc: ron wells fax @ 372-1012

125

GEO'01

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

,

 $\langle \rangle$

DIAMOND DRILL HOLE NO. WS 2001-04

SAMPLE	FROM	TO	LENGTH	Au	Сы	Ag	[Mo	Zn
NO	<u>(m)</u>	(m)	(m)	ррф	ppm	ppm	ppm	opm
3351	9.00	11.90	2.90	10	102	<d.2< td=""><td><1</td><td>47</td></d.2<>	<1	47
3352	11.90	13.90	2.00	15	367	<0.2	<1	66
3353	13.90	15.06	1.16	60	300	<0.2	<1	93
3354	15,06	16.95	1.89	15	388	<0.2	2	53
3355	16.95	18.40	1.45	15	325	<0.2	<1	53
225		67.60						
3357	10.40	21.20	2.80	10	90	<0.2	2	32
3358	20.04	20.00	2.01		154	<0.2		33
3359	32 31	13.86	4,94		248	-0.2	41	
3360	38.07	40.24	2.17	5	316	<0.2		55
				<u>_</u>		-V.Z		
3361	40.24	43.24	3.00	5	88	<0.2	<1	10
3362	46.00	4B.00	2.00	5	470	<0.2	<1	
3363	48.00	50.00	2.00	10	2102	0.4	<1	31
3364	50.00	52.00	2.00	5	722	<0.2	<1	17
3385	52.00	54.00	2.00	10	1654	0.5	<1	30
3366	54.00	55.00	1.00	5	83	<0.2	<1	21
3367	57.80	59.80	2.00	5	55	<0.2	<1	75
3368	65.10	67.10	2.00	15	266	<0.2	4	114
3369	67.10	69.60	2.50	10	156	<0.2	1	196
3370	70.71	72.24	1.53	10	314	<0.2	2	51
0074								
3371	/4.00	78.00	2.00	15	168	<0.2	<1	40
<u> </u>	80.00	82.30	2.30	10	69	<0.2	<1	45
33/3	90.00	93.62	3.02	20	221	<0.2	<1	73
3374	93.62	96.13	2.51	25	131	<0.2		177
3315	80.13	98.42	2.29	20	175	<0.2	<1	47
3376	102.00	104.00	2.00				-4	
3377	104.00	109.00	2.00	10	30	<0.2	<u>دا</u>	30
3378	109.05	107 70	1.65	10	20	<0.2	41	
3379	107.70	109.55	1.85	20	4/7 216	<0.2		
3380	112.00	114 00	2.00	10	215	10.2		34
					210	-0.2		
3381	119.00	120.50	1.50	20	29	<0.2	<1	26
3382	125.00	126.80	1.80	15	327	<0.2	<1	61
3383	126.80	128.70	1.90	20	1268	1.2	<1	265
3384	132.68	134.37	1.69	20	73	<0.2	<1	32
3385	138.25	139,29	3.04	15	39	<0.2	<1	26
3386	139.29	141.33	2.04	5	102	<0.2	<1	649
3387	141.33	143.75	2.42	5	110	<0.2	62	174
3386	145.50	147.00	1.50	5	87	<0.2	1	29
3308	151.49	153.40	1.91		106	<0.2	<1	4 Đ
2220	153.40	155.32	1.921	5	1631	< 0.2	3	40

DIAMOND DRILL HOLE NO. WS 2001-05

SAMPLE	FROM	TO	LENGTH	Au	Cu	Ap	Mo	lΖn
NQ	(m)	(m)	(m)	ppb	ppm	ppm	ppm	ppm
4001	7.31	9.40	2.09	15	161	<0.2	<1	30
4002	9.40	10.60	1.20	235	390	<0.2	<1	59
4003	10.60	13,18	2.58	35	199	< 0.2	<1	79
4004	13.18	15.20	2.02	20	196	<0.2	<1	95
4005	15.20	17.70	2.50	25	829	0.5	2	104
4006	18.80	21.80	3.00	150	245	<0.2	~1	66
4007	21.80	23.30	1.60	20	164	<0.2	<u>s1</u>	5B
4008	26.30	28.30	2.00	35	169	<0.2	8	78
4009	2B.30	30,46	2.16	20,	136	₹0.2	<1	129
4010	30.46	33.46	3.00	45	564	0.4	<1	313
4011	34 75	36 76						
4012	41 58	42.60	2.00	10	217	<0.2	<1	118
4013	46.40	43.00	2.04	10	200	<0.2	<1	78
4014	49.40	40.40 60.40	2.00	40	1/6	<0.2	<1	72
4015	50 40	57.40	2.00	10	233	<0.2	<1	119
	50,40		2.00	10	194	<0.2	1	64
4016	52.40	53,40	1.00	15	126	<0.2		
4017	53.40	55.15	1.75	15	55	<0.2		32
4018	55,15	57.50	2.35	10	101	50.2		
4019	57.50	59.30	1.80	15	121	0.2	10	310
4020	57.30	61.30	4.00	15	141	<0.2	<1	52
4021	61.30	63.04	1.74	15	130	<0.2	<1	102
4022	63.64	65.14	1.50	10	102	<0.2	3	119

DIAMOND DRILL HOLE NO. WS 2001-06

SAMPLE	FROM	то	LENGTH	Au	Cu	Ag	Mo	ĺŹn
NO	(m)	(m)	(m)	ppb	ppm	ppm	ppm	ppm
4030	10.50	13.00	2.50	15	264	<0.2	<1	64
4031	15.D0	16.23	1.23	20	768	0.5	<1	95
4032	18.80	19.81	1.01	20	292	<0.2	10	80
4033	19.81	21.80	1.99	20	409	<0.2	2	61
4034	21.80	23.80	2.00	25	896	0.4	<1	124
4035	23.80	25.00	2.00					
4036	20.00	20.00	2.00	20	666	0.6	2/	162
40.30	20.0V	27.00	1.20	30	B61	0.2	<u> 1'</u>	85
4037	27.00	29.17	2.17	20	689	0.2	3	129
4038	29.17	32.10	2.93	30	679	0.3	2	129
4039	32.10	34.18	2.08	25	692	<0.2	<1	115

SAMPLING RESULTS FOR FIGURE 21

SILVER LAKE PROPERTY WORLDSTOCK GRID

DDH NO. WS 2001-0	4						PAG	ENO. /
	U	THOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPLI	NG
MAIN UNITS .G	Ĺ	SUB UNITS				FROM	TO	NUMBER
0-7.22 Casing in	Q.	2-4-27 sandy clay till with colles						
Cys churde a and	'ન	<i>J V</i>						
weathered Bedrock is	2							
4.27-15.06 PLyllic Altered	쒸	Fairly hamage secures, fine grained	Earth marine local	Phyllic Sericite +	4-8% lui wand			
Volcanie - volcanic lashic .		with relict (foldsport) perphyne	fabrics al small	atra ante Paritela	lu maistre in 2-5 mm.			
Remark workwrite	2	textures becal semant textures	ander CA. Rare	Some clay No backson	of dimeninded			
textures non carbonated,	<i>D</i> .	suggest velcaniclastic potalith with	cachangle verillets	K. foldenes of served	agregates. Some			
non magnetic 100	2	elemente angular claste subjectables to	20°CA.		Carnez demonte 20-tors	9.00	11-90	03351
	7	CA. Disconciontral and could green (mice)				11.90	13.90	03352
1 17	1	mineral .				13.20	15.06	03353
l ľ	1							
15.06- 18.45 Propylitic -		Matterd light to medium grocess,	for denity of fine	Popyliki with	Fine to coarse black	15.06	16.95	03854
Altered masking protolith ,	h.	fine grained Perrosine modurate	carbanete and	moderate cocharate	myite maister in	-16.95	18-40	03355
Volcaniclastic ?		cothente, son negsetic	separate Py injulate	spotty chloate same	indicates 30. 55 cd	18-40	420	03756
18.45-40.24 White to	1	18.45-21.20 Transitional, approves conta	Low dervice of high	seriute	2-3% fine dimen.			
and pink speckied]	<u>}</u>	bearisted, commant prophy to strong	lagel cort which to them	perceive	Ry.			
feldspor porphyry. 2-Sam	17	21.20-25.05 light white to pisks anthed	matrix suggested	Pinkish throughout	3-67 for dinon			
White tabilar Beedspors	ę,	nor pick with depth. Allered, conded	breccia. Sparse vifis	staining indicates	Ry in aggregates	-		
fine grained ground mass	0,	feldament parphysics with ghast of angula	- carbonale inistet	try k. pld (remark!	Locall, upto lon	25.54	28.05	03357
Non magnetic. Massing to	<u>ە</u> י	clast with similar compasition. Them.		Corolly in gross sat				
fragmental with angular	\mathcal{O}_{i}	ere alteration are printed or associated	¥	in frogments . Patchy				
Con scale frequents of	ì	•	├ ───-	w/m pervosive carts.				
similar composition to	0	28.05-38.07 Fairly uniform convoled	mias fine carbonate	Pately weak cash.	2-6% for fyros	29.77	32:31	01358
Alteration often masks	P	plagiactase perphysy hered angular	and commente fine	seme backyound	about local fine			
textures. Frasmental	(d,	fragmental or brockin textures	Ty vainteto generally	K. feldepar (g. mass)	Rycainleto	32.31	33.96	03359
or intrusion breccia.	bř)	Ae-ST CA.	weak clay alteration				
	18			of flat digen rs				
	Ľó	·	Higher death of					·
	P?		125-1350. Wente Br.					
	¥	1 39.07-40.24 M. ODOWS Just grant grand	to lem to to ca wim	(Actensing clay alt	4-8% for to cance	78-07	46.24	03360
	¥	I VOLUME DEPROVED OUTE COMY ALERANA	Los up ch for the	CARS. WEEK Jokhy	Ty in vertes & established		L	

KAMLOOPS GEOLOGICAL SERVICES LTD.

D Ica.

LOGGED BY:

DATE: . ARY. 2, 200

SILVER LAKE PROPERTY WORLDSTOCK GRID

DDH NO. WS 2001-04							PAG	GE NO. 2
	L	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
MAIN UNITS	GL	SUB UNITS				FROM	то	NUMBER
40-24-54-00 Pervasive	10	vague technes due to alteration	41-0 - 41-0 Conte	moducate accusive	ever the dimens.	40.24	43.24	03361
Clay Alteration masks	83	everprist, Apponie similar to waite.	fragmental technol	clay thousand	excite after as			
textures. Feldspor	1	atrade foldspot patphysys have	becal alignments	lecally resulting in	Subcounded aggregates			
Posphyry- Wicaniclashe	· · ·	suggestion of coarse first mestal	10-30 CA SADDE WAY	block, dearing	upto iscon			
prototick?	1	fixtras	fine cart souleto	Spore carbonate	·	46.00	42.00	03362
-	14		40-20CA	-				
	. .					48.00	50.00	03363
	17	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		50.00	52.00	03364
	:/							
	1.	· · · · · · · · · · · · · · · · · · ·				52.00	54.00	03365
54-00 - 62-90 Similar	<u>۲</u> ۳		<u> </u>			54-00	5500	03166
protolith to above.	2	Mattled white pink . Fire grained	local lamination in	Decreasing to weak	2.6.75% fie			
weaker alteration.	11	mague feidspor porphyse tixtures	mathin 10-35 CA	Clay alteration . lacrows	dimen by lacal			
Remnant coarse volcanie	1/2)	59 0-56.0 Seme subjected	l'i actionte ta	URIALLA SETS CA	57.80	59.80	03367
closhe textures 4.	1ñ	/	to ca fin ly mucht	moderate parmine	by aggregation and an			
	12		Belaw low dearing of	from St. 2. downson	comme abore.	· · · · · · · · · · · · · · · · · · ·		
	Ľ		Schooled of					
Landa tan Par 114	14			A				
61.70- 69.80 Propyline	14	main hard, matter greens and pinkish	Matrix supported	Patchy porvasine	2-4 / for lighter	<u>65:10</u>	67.10_	03368
Altered. Fine to cont	1	gaine evangular & a Storm Ane	frequents in upper	modecate entherate.	as fine is interes and	67.10	69.60	03369
Laperer / Up . mart	Y,	Grand wilconic presmente in	part Vagio below.	for grained epidole	clusters with epidote			
supported.	1	pinkish fine grander, feld spar plyar	Spark for ungela	A patches. Local	potence to fry metal	···		·
1 6 8 90 0 98 . // d	Έ7	15 ch lower contact.	Receipto to the face	and magnetic	ane more fire	- 70.71	12.24	03370
Group Alasiation	K	69.80-79.30 light addraid aller	A Mak Line	A int many 2	ly in frequents		· · · · · · · · · · · · · · · · · · ·	
Character and a contract		Live arginand Lacally Polding	limituries local	V cont ales	Er			
Variable alteration		service & save maker laken	Sup mailel & 20'	a contracto	- C/m grand			
Ansks fextures	Ţ.	weath backcound K. feldent.	le vois lote prises		accounts, and with	74.00	76.00	0337
(flow or intrusive ?)	-		V. fine carborate		Vacable 2-4-1		<u> </u>	
	1						1	<u> </u>
	•					<u> </u>		

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Lall

DATE: Mer. 13, 2001.

SILVER LAKE PROPERTY WORLDSTOCK GRID

DDH NO. WS 2.00	21-0	4			·····		PAC	GE NO. 3
	<u> </u>	THOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
MAIN UNITS	- GL	SUB UNITS			· · · · · · · · · · · · · · · · · · ·	FROM	TO	NUMBER
		79.30-93.62 Mottled light to	Generally massive.	modetate permain	1-47 In dissen	80.00	82.30	03372
	<u>ا</u>	medium green with moren/ pink	Local vague coarse	catherate Patchy	and verilet P.			
		patchen due to he matite. Pape, the	braces hentenes.	chlante local				
	- Tí	allecation averpanting faile	low density of the	benetite backening				
		homegeneous, non h u weak magnet	i carp. winteto some	Disseminated In.				
	1	Hast appears winty makyshi	with dark chlority.	esidate mainte				
	~ /		low and wish and in	real aring laborator				
	۳ ۱ //		CA. Local 1-2 cm	Beld out	÷-	90.60	97.69	A 2 3 7 3
			ate-carb veins 50-60 CA					
· · · · · · · · · · · · · · · · · · ·	14		Sand law and to Pr. vaile			93.61	94.13	03374
	- †-·	93.62-98.42 light generich grey, has	Egith marsing low	liticeous cons	Variable 2-5-1 Im			
	- 17	and silicene. Strong alteration	density of irregular	spricite + ounte	mate maise in	96.13	98.42	03875
		Aberuras faldapar physic tenturas_	ly winters 30-40TA	(phylic)	minlets some dimen			
		9842-98-15 Fine grained + laminated	Local aborate-chi.		line exempates			· · · ·
		to cally contarted toff - existantic .	veraleto Go- VCA	Sorted alon 98.65-	92.42 102.00 2-3.1.			
98-42-157-58	_ _]∖	198.42-105.05 to general description	Epithe massing	100.0. Below some	fire dissen for			
Feidspar Popphay. F	i/	1 recognizable his conder laters	checal law angle	back around K. hildren	107-00-106-05 4-6%	107.00	law 0.0	0337/
mossive alteration obs	cone 1	dine. linkah u kine goundmens	locatures. Few y. kin	e here energet area	for winter Py			
taxtures. Fuldsoor ph	, ric		30-40 CA Previolate	mineral mainty Sit-	assas and a commen	10,000	101-05	A 1277
locally conded.	Ϋ́Γ	•		la no corte.		101.05	107.70	07379
Supportion of course	. Ľ	, 106.05-109 55 manua light area an	- Faith marine how	Siliconne un minne	2.5 % In diason	107.70	109.55	A7.978
volcaniclashi tanturas	- 12	remiler to 23.62	density of 40-70 CA	carporate some	ly common assurants			
non-manetic	*	1 109.55-125:00 Fragment supported	Line cart u. Ireando	servicite + sunte	also are for blacks			
J	- Va	a med-course la villi by - processia.	Mic By Minuto 400	a	amay with at carb v			
	Ľ,	4) Masselithic foldspore prophysing	Clast elization	Alteration storely	Voiable 1-5%	112.00	1/4-00	03380
	- M	angular clarte relargate at low	and motion	influenced to matel	fine division a			
	扬	angles ca losely carted. Clash	Comination 20.300	A some backyound	lacal vinlet Ry			
	- K	I can be fire to medico grained	Low decisity of fin	i K. feldepar local	Same Hebr J. N.C.			
<i>*</i>	1	local disinentated emerald	cate and appraished	to secicite clay	R			1
	. j/	gales maineral (mica)	Heaven there we to	ici				
,,,,,,	R		Pry- 111.5-112 Low and	4		11700	120.50	07381
			Clayey frectures to 10	· /				

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY:

DATE: Now 14, 2001.

SILVER LAKE PROPERTY WORLDSTOCK GRID

DDH NO. WS 2001-	54					PAC	ie no. 4
	LITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPLI	NG
MAIN UNITS // (SUB UNITS			l l	FROM	то	NUMBER
	Q Contract R . P. 7						
	4	······································					
ſ	00		· · ·				
	2,					ł	
4	- 125.00 - 128.70 Male marine vegue	Alumenes subporall	I situreaus, pychi	5.8% ly mainly	-125.00	126.80	03382
1	1. feldepar pacpanyay lexhous . Hard	to 20'CA Py vislets	÷	initito for. Local	<u>124-80</u>	128.70	07383
	Silicens, more abundant Py.	local 40. TOCA Sil.		dimen R. aggregater			
		le asea /we ralety		5 050			
130 -	128.70-157.58 Fragment suspected	Generally low	strongly in livened	Highly upichle 1-47			
	1. mad- charge lavilli tole on at	density of link	to applite lait	march dinem for la	122.69	134.87	07784
	19 10955 Enial uni laca maraliteri	and Auguste CA	1 and 1 and				
	land and and an a standard	h + A + A + A + A					· · · · · · · · · · · · · · · · · · ·
	, teldspec, perpaying, any well	arg + Fy vailable		aggregates, tocal	·		_
	/) clanger cheste at low angle la.	Lacal ry wint	- (Q) 140-107 - C	P. carales upto len	136.25	(37 27	03385
	<i>`</i> / `	coph 10 m (2133-60	151-155-5	Siliceons and of3	ŀ		<u></u>
	00	45'04		coined aloos with	i 1		
	.0	+		3-26% fim local	139:22	141.33	03396
140-	0//	<u> </u>		ALC P.	141-33	143.75	03287
1					1 I		
					11.6.50	<i>[4</i>].ee	077 Ø3
	1/0						
	10/						·
	·//0				h		
	w//4	-			{ ┦		
(5+		······································		1			-
	///				151.49	153.40	03389
	00		· · · · · · · · · · · · · · · · · · ·		╋━───┘		ļ
	V. //				153.40	155:32	03390
	(n/)				╂━━───		
			· · · ·				
`\	100 K7-58 EOH			· · · · · · · · · · · · · · · · · · ·			1
					1	1	
						1	

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY Kie under

DIAMOND DRILL HOLE NO. WS 2001-04

SAMPLE	FROM	TO	LENGTH	Au	Cu	Ag	Мо	Zn
NO	(m)	(m)	(m)	ppb	ppm	ppm	ppm	ppm
3351	9.00	11.90	2.90	10	102	<0.2	<1	47
3352	11.90	13.90	2.00	15	367	<0.2	<1	66
3353	13.90	15.06	1.16	60	300	<0.2	<1	93
3354	15.06	16.95	1.89	15	388	<0.2	2	53
3355	16.95	18.40	1.45	15	325	<0.2	<1	53
3356	18.40	21.20	2.80	10	90	<0.2	2	32
3357	25.54	28.05	2.51	5	154	<0.2	1	33
3358	29.77	32.31	2.54	5	249	<0.2	<1	34
3359	32.31	33.86	1.55	5	77	<0.2	<1	32
3360	38.07	40.24	2.17	5	316	<0.2	<1	55
3361	40.24	43.24	3.00	5	88	< 0.2	<1	10
3362	46.00	48.00	2.00	5	470	<0.2	<1	25
3363	48.00	50.00	2.00	10	2102	0.4	<1	31
3364	50.00	52.00	2.00	5	722	<0.2	<1	17
3365	52.00	54.00	2.00	10	1654	0.5	<1	30
			4.00			-0.0		
3366	54.00	55.00	1.00	5	93	<0.2	<1 	21
3367	57.80	59.80	2.00	5	000	<0.2	<1	13
3368	65.10	67.10	2.00	15	200	<0.2	4	114
3369	67.10	69.60	2.50	10	130	<0.2	<u> </u>	190
3370	70.71	/2.24	1.03	10	514		2	
0074	74.00	70.00	2.00	46	169	<0.2		40
3371	74.00	10.00	2.00	10	001			45
3372	00.00	02.30	2.30	20	221	<0.2		73
2274	90.60	93.02	2.51	20	131	<0.2		177
3374 2275	93.02	90.13	2.01	20	175	<0.2		47
3375	90.13	90.42	2.23	20				
3376	102.00	104 00	2 00	10	35	<0.2	<1	
3377	102.00	106.05	2.00	10	120	< 0.2	<1	38
3378	106.05	107 70	1.65	15	279	<0.2	<1	32
3379	107 70	109.55	1 85	20	215	<0.2	<1	32
3380	112.00	114.00	2.00	10	275	<0.2	<1	34
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
3381	119.00	120.50	1.50	20	29	<0.2	<1	26
3382	125.00	126.80	1.80	15	327	<0.2	<1	61
3383	126.80	128.70	1.90	20	1266	1.2	<1	265
3384	132.68	134.37	1.69	20	73	<0.2	<1	32
3385	136.25	139.29	3.04	15	39	<0.2	<1	26
					·			
3386	139.29	141.33	2.04	5	102	<0.2	<1	649
3387	141.33	143.75	2.42	5	110	<0.2	62	174
3388	145.50	147.00	1.50	5	67	<0.2	1	29
3389	151.49	153.40	1.91	5	106	<0.2	<1	49
3390	153.40	155.32	1.92	5	163	<0.2	3	<i>,</i> 40

C

(

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2001-417

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

ATTENTION: RON WELLS

No. of samples received:40 Sample type: Core Project #: WS 2001-04 Shipment #: None Given Samples submitted by: Ron Wells

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	Al %	Aß	Ba	Bi	Ca %	Cd	Co	Ċr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NE	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
1	03351	10	<0.2	0.29	<5	45	<5	5.07	<1	37	57	102	6.67	20	2.66	1072	<1	0.01	26	1560	8	<5	<20	143	<0.01	<10	22	<10	7	47
2	03352	15	<0.2	0.35	<5	45	<5	4.39	<1	33	45	367	5.34	20	1.97	1081	<1	<0.01	20	1740	4	<5	<20	157 -	<0.01	<10	21	<10	10	66
з	03353	60	<0.2	0.34	<5	50	<5	5.05	<1	35	54	300	6.18	20	2.18	1210	<1	0.01	31	1580	19	<5	<20	151	<0.01	<10	25	<10	16	93
4	03354	15	<0.2	0.92	<5	30	<5	5.71	<1	24	49	388	4.07	20	1.05	1064	2	<0.01	20	1550	4	-5	<20	167 <	<0.01	<10	45	<10	10	53
5	03355	15	<0.2	1.45	<5	40	<5	4.61	<1	27	63	325	4.71	20	1.77	1028	<1	0.01	21	1610	2	<5	<20	128 •	<0.01	<10	92	10	16	53
																														•••
6	03356	10	<0.2	0.95	<5	40	<5	5.58	<1	35	68	90	6.32	20	1.56	850	2	0.01	29	1590	4	10	<20	159 -	<0.01	<10	82	<10	15	32
7	03357	5	<0.2	0.71	<5	45	<5	4.68	<1	37	62	154	6.92	30	1.10	666	1	0.02	25	1650	5	<5	<20	127	0.01	<10	103	<10	23	33
8	03358	5	<0.2	0.70	<5	35	<5	2.60	<1	35	54	249	6.53	30	1.40	376	<1	0.02	18	1610	5	5	<20	106 •	<0.01	<10	106	<10	22	34
9	03359	5	<0.2	0.91	<5	45	<5	4.77	<1	35	83	77	6.29	30	2.04	522	<1	0.02	25	1560	4	<5	<20	164	<0.01	<10	118	<10	22	32
10	03360	5	<0.2	0.67	50	45	<5	4.08	<1	29	72	316	6.79	20	1.44	368	<1	0.02	19	1730	5	40	<20	129 •	<0.01	<10	49	<10	18	55
11	03361	5	<0.2	0.96	<5	30	<5	1.37	<1	37	89	88	6.56	20	1.52	144	<1	<0.01	21	1740	4	<5	<20	56	<0.01	<10	47	<10	10	10
12	03362	5	<0.2	1.24	60	35	<5	2.10	<1	34	87	470	6.17	20	2.47	226	<1	<0.01	23	1780	3	35	<20	97 •	<0.01	<10	75	<10	12	25
13	03363	10	0.4	1.11	125	45	10	2.30	<1	37	84	2102	6.31	20	2.45	225	<1	0.01	28	1600	3	95	~20	119	<0.01	<10	65	<10	10	31
14	03364	5	<0.2	0.95	50	50	5	4.17	<1	32	85	722	4.92	20	2.95	423	<1	0.02	26	1510	2	30	~20	252 <	<0.01	<10	70	<10	13	17
15	03365	10	0.5	0.75	95	5 0	<5	4.44	<1	36	78	1654	5.70	20	2.66	417	<1	0.01	29	1600	3	75	<20	252 •	<0.01	<10	40	<10	13	30
		_			_		_																							
16	03366	5	<0.2	0.71	<5	50	<5	3.29	<1	32	64	93	5.68	20	2.12	315	<1	0.02	18	1840	4	<5	<20	168 •	<0.01	<10	43	<10	13	21
17	03367	5	<0.2	1.05	<5	25	<5	5.43	<1	27	65	65	5.20	20	1.82	779	<1	0.02	24	1620	5	-5	<20	159 -	<0.01	<10	95	<10	16	75
18	03368	15	<0.2	0.98	<5	40	<5	4.57	<1	31	52	266	4.99	20	1.11	1426	4	0.02	16	1560	5	<5	<20	135	0.05	<10	68	<10	12	114
19	03369	10	<0.2	0.99	<5	35	<5	4.97	<1	24	47	156	4.45	20	1.28	1549	1	0.02	15	1430	4	<5	<20	132 •	<0.01	<10	70	<10	16	196
20	03370	10	<0.2	0.29	<5	25	<5	4.01	<1	18	42	314	3.36	10	1.12	1611	2	0.02	7	1420	6	-5	<20	151 •	<0.01	<10	13	<10	11	51
					_		_																							
21	03371	15	<0.2	0.29	<5	35	<5	4.55	<1	19	38	168	3.62	10	1.13	1587	<1	0.02	8	1380	5	5	<20	177 •	<0.01	<10	14	<10	12	40
22	03372	10	<0.2	0.77	<5	35	<5	5.23	<1	16	35	69	3.14	20	0.94	1769	<1	0.02	10	1320	- 4	<5	<20	164	<0.01	<10	37	<10	16	45
23	03373	20	<0.2	1.23	<5	45	<5	4.82	<1	21	36	221	3.19	20	1.34	1798	<1	0.01	14	1390	4	<5	<20	167	<0.01	<10	61	<10	15	73
24	03374	25	<0.2	0.31	<5	35	<5	4.97	3	18	45	131	3.56	10	1.34	1809	4	0.01	11	1320	4	<5	<20	222 -	<0.01	<10	13	<10	12	177
25	03375	20	<0.2	0.34	<5	35	<5	5.50	<1	22	36	175	3.80	10	1.62	2078	<1	<0.01	11	1430	5	<5	<20	234	<0.01	<10	12	<10	12	47
														•	age 1													. –		.,

67

ICP CERTIFICATE OF ANALYSIS AK 2001-417

CHRISTOPHER JAMES GOLD CORP.

Et #.	Tag #	Au(ppb)	Ag	Al %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	Lal	Vig %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
26	03376	10	<0.2	0.29	<5	30	<5	3.59	<1	22	54	35	4.70	10	1.88	550	<1	0.02	12	1590	4	<5	<20	93	<0.01	<10	13	<10	8	30
27	03377	10	<0.2	0.28	<5	30	<5	3,77	<1	26	53	120	5.33	20	1.92	741	<1	0.02	14	1780	4	10	<20	155	<0.01	<10	15	<10	8	38
28	03378	15	<0.2	0.28	<5	30	<5	4.24	<1	22	38	279	3.85	10	1,61	868	<1	0.02	8	1650	3	<5	<20	203	<0.01	<10	12	<10	10	32
29	03379	20	<0.2	0.26	<5	25	<5	4.44	<1	25	40	215	4.57	10	1.71	821	<1	0.02	10	1730	5	<5	<20	185	<0.01	<10	14	<10	11	32
30	03380	10	<0.2	0.27	<5	30	<5	3.71	<1	32	47	275	6.14	20	1.95	670	<1	0.02	11	1740	4	15	<20	1 1 8	<0.01	<10	14	<10	9	34
31	03381	20	<0.2	0.41	<5	50	<5	4.24	<1	42	66	29	6.24	20	1.97	348	<1	0.02	28	1660	4	<5	-20	180	<0.01	<10	61	<10	6	26
32	03382	15	<0.2	0.28	5	30	<5	3.73	<1	28	42	327	5.53	20	2.00	751	<1	0.01	11	2050	6	15	<20	105	<0.01	<10	15	<10	10	61
33	03383	20	1.2	0.30	85	35	<5	3.37	<1	30	50	1266	6.96	20	1.83	612	<1	0.01	11	2000	10	115	<20	99	<0.01	<10	15	<10	11	265
34	03384	20	<0.2	0.67	<5	40	<5	3.98	<1	36	74	73	7.40	20	2.45	602	<1	0.02	25	1470	6	<5	<20	151	<0.01	<10	86	<10	12	32
35	03385	15	<0.2	0.57	<5	40	<5	4.28	<1	35	69	39	6.13	20	2.21	484	<1	0.02	22	1620	6	<5	<20	153	<0.01	<10	86	<10	16	26
36	03386	5	<0.2	0.63	<5	40	<5	4.23	4	39	72	102	7.12	20	2.64	782	<1	0.03	24	1530	13	<5	<20	184	<0.01	<10	131	<10	13	649
37	03387	5	<0.2	0.41	<5	50	<5	6.92	-1	28	76	110	5.71	20	2.15	719	62	0.02	23	1270	36	<5	<20	213	<0.01	<10	66	<10	14	174
38	03388	5	<0.2	0.51	<5	50	<5	4.18	<1	38	62	67	6.92	20	2.23	384	1	0.02	26	1560	9	<5	-20	174	<0.01	<10	49	<10	16	29
39	03389	5	<0.2	0.58	<5	40	<5	3.85	<1	40	79	106	7.36	20	2.07	684	<1	0.01	26	1640	7	<5	-20	94	<0.01	<10	38	<10	12	49
40	03390	5	<0.2	0.35	<5	40	<5	4.08	<1	37	67	163	6.47	20	2.26	964	3	0.01	24	1580	6	<5	<20	125	<0.01	<10	24	<10	11	40
QC DA Resplit	τ Α: ;																													
1	03351	10	<0.2	0.28	<5	35	<5	4.77	<1	35	55	115	6.27	20	2.59	1028	<1	0.01	26	1520	7	≺5	<20	133	<0.01	<10	20	<10	7	44
36	03386	10	<0.2	0.64	<5	35	<5	4.11	3	37	75	99	6.76	20	2.63	769	<1	0.03	22	1460	13	<5	<20	177	<0.01	<10	131	<10	12	617
Repeat																														
1	03351	10	<0.2	0.29	<5	35	<5	4.82	<1	35	55	99	6.39	20	2.57	1026	<1	0.01	26	1530	8	<5	~20	126	<0.01	<10	20	<10	8	44
10	03360	5	<0.2	0.69	55	50	<5	4.23	<1	30	75	328	7.02	20	1.49	381	<1	0.02	21	1800	6	35	<20	134	<0.01	<10	51	<10	16	63
19	03369	10	<0.2	0.99	<5	35	<5	4.92	<1	25	47	156	4.40	20	1.29	1540	2	0.02	16	1430	5	<5	<20	133	<0.01	<10	70	<10	16	189
Standa	rd:																													
GEO'0'	1	120	1.4	1.61	50	140	<5	1.44	<1	18	58	82	3.29	10	0.93	631	1	0.01	26	690	17	<5	<20	51	0.11	<10	61	<10	12	64
GEO.0.	1	120	1.2	1.66	45	140	<5	1.44	<1	18	60	83	3.44	20	0.94	635	1	0.02	25	690	19	<5	<20	52	0.11	<10	66	<10	12	63

FP/lh df/414 XLS/01 cc: ron wells fax @ 372-1012

ECO-TECH LABORATORIES LTD. Frank J. Pezzotli, A.Sc.T. B.C. Certified Assayer

SILVER LAKE PROPERTY WORLDSTOCK GRID

DDH NO. WS 2001-05						 DA/	
· · · · · · · · · · · · · · · · · · ·	LITHOLOGY	STRUCTURE	ALTERATION	MINEDALIZATION	· · · · · · · · · · · · · · · · · · ·		<u>3E NU. 7</u>
MAIN UNITS	SUB UNITS			MINERALIZATION		SAMPL	ING
0-7-31 Casing in Overburger	. a. 4.88 Soudy Till with addies				FROM	10	NUMBER
and weathered Benny A	b						
11.99 - 65.15 Fine to Comment							
Logilli Tuff. Floomathe	the war-inco he arend down it is						
weak making sungerted	To to al must be will be a find	Tuff fobres Tor 10 CA	Balow 4.88 little	Highly warable			
Annulas con scale (a silli	the second of the second of	Lacal ghy (corts)	clay weathing . Fairly	locally 710% fine			
	To find to the total fire, P.	iccognia verilato	hard seve servite	matrix Py 3-5%	7.36	9.40	DYPOI
grien fine player physe	of tice of a my abor may al De	Subperallel CA.	local emocald green Min	fini dirsen. P.	9-40	10.60	84 667
AND TO WERE MEGALOL	TE 10.60-13.18 Courser Lapilli Tuff / STOLMA	TA Charles					
Propyline - Phyllic Attaching	Whith altered angels prophysic closes	A Beat and and	As above local viewak	Iniable loss P. Has	14.64	17.18	
	The form aligned sarsors	Ayer ch granuties	patchy cars Non macrochi	about Local watrie			
	13-10-13 to Med green, Med-course	Tuff fabrics high angle	Chloriti local said.	2.3% action (m	1.2:1.8	1.20	nggarg
	The part the and the angle porphy of last	Ki high angle carb bill	K. weak patchy carb	dipen Pulperel reco	15.20		
	10 15-20-30.46 Fine & medicin lapill	Tuff Pabrics at	Alternation populiti	Highly underlie		17-76	04005
	a bif Matrix ash to local progress	thisparder carlow	with silicians an In-	water Cal his hast			
10	a supported fore accognizable night	deseite al cash-at-	Fairly hand little	and dias a		21-20	04006
1 1	Operphyry closts. Alternating light	vaialets - 2 sets	clair Phillic is more	ing. autom ing th			
	1 gray to generich sections. Transitions	sub porallel and 60.45	in and with land	papyune + Mara	21.90	23.30	04007
	Oppartitie - phyllic alteration Phillip	CA.	energed announces in	1 2 1/			
	alteration observe texture and is		Pro 12 Anno mica	a 13 h generally			
	To assemptiate to local emerged	76.70-00.011 04	Energial con more	fac dimen Py.			
ļ	Sauce mice Clucksite alter	milinana and shared	pyale-colo analito		26.30	28.30	<u>QUADR</u>
1	(moren ?)	Vacation					
		Laurat the start			28.30	30.46	OYDO9_
	30.46-4640 Medium & CARTE	The first of	A 111 11 11 11				•
1	Ochailli bill- bacuis - Anaular to	high police of	Papyline - or K chied	Vacable disem	50-44	-33-46	04010
1	a supported againty quests much	the south the	backgound with	for by , lacal			-
	2. casto hocal amendalaidad tort	Lood los y for	porch for spidst	course . Same fine			
	Section of highly apples on him	ince, sace exidete	10 cally storg.	aigh angle is	34.75	36-75	040/1
(I	Call and to all	and as	ratchy pervasive	veralets 3-7% Py.			
		ague ca.	W/M. calbonate				
	74	<u> </u>					
			1				

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Lully

SILVER LAKE PROPERTY WORLDSTOCK GRID

	1					· ·	PA	GE NO. 2.
MAIN UNITS	าตา	SUB UNITE	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	INĠ
	0					FROM	TO	NUMBER
	100	continued form lg 1.		41.56-63.60 Copertitie				
	202			alteration M/s eatcher		111.54	47.60	Olious
	0			dermy is coid. at a				
	200			carb v. work shockwarks				
		46:40.55-15 Transitional Propylike	Tuff and some win	Transitured	3.764 la diam			
	10	- Phyllic alteration largely observes	taber at high and	P-libi PL Vie	a i - a i i i i	41.40	48.40	04013
	20	Centrues Coarre augite porchura	ca have desite of	the work on chein	the A is a second		· · · · ·	
	5 2	logilli hill-breria	has carts in all to	Attend with an Ard	ac angle angles co.	48.40	50.40	. 04014
	6		low-loved dessits of	and the second second				
	2	selicited Transitional Inc.	has a state	and the come wer		<u> </u>	52.40	awars
	2		52-50555.15 (Del Soen	Zhagharic		<u>. 52.40</u>	<u></u>	044.6
5-15-63-64 Fine	سنا		SI-Trica, Fine dere			51.40	15 IS	-04017
Idsoor Parabuas	1.	Faith counted with takeloc	Ali an an a company			55.15	57-50_	. 44018
mante - ditta 7/ink	s 12	planinglast alarmant 4 3 - 5	WUMERON V. ANE	Selicens and original	3-5% fice diesen	57:5e	59.50	04019
inkish one desired	- KS	amind airkat an denat will	10- 10 CA org in alle	K faldsport. Fine	by after in south			
the cast the	۳×	alization all sites of maline	Some Ky, chlanti	graned. Alteration	azzaigates Lacal Py	59.30	61.30	04070
any ric , s - i = (, and erea	」 ドン	Change Changes.	Tare carbonale Local	mainly amor with	revolet. Dk gre,	61.30	63.64	04021
apes possibly permanent			olk mineral with 10m	vairilita	more with a to V.			
ton megnetic, to cathornel		63.64-66.00 Fine foliated satethe	gtornia (selvedges)		/*	63.64	65.14	AUAZZ
3.64-68.54 Strong		An will be a factorite the purphyry	strong fine faliation	stong sericite some	Sporse Py.			
Deformation - Fault Los	•••• { <i>1</i>	topen typ protolith	1 winder	silica				
sith sericite Schist abo	~ i //	Hi above, stragly baken, lacal feld.	/					
	F-2	Decempon (Darma alikes)	Tuff toblic high	matrix sericite,	Sporse Py			
	<u>~</u> ~~	mater ash shapertal 13	angles CA. sparse	cla, altered.	-			
upportage Micour Lapil		- Fine graced, equipronular, bloasted	man denit at worde	appear freeh.	Sparse Py		· · · · · · · · · · · · · · · · · · ·	
SS-71.85 Mafic Di	KC 0		Carta valetta		<i>r y</i> -			
11.85-77.37 Augite 169	~~]~	Auguse purphyry as about dike	· · · · · · · · · · · · · · · · · · ·	legelli tiff is			-	1
south of ut by	وم	meant spourfed	· · · · · · · · · · · · · · · · · · ·	servite loy altered			i — —	1
cloyey foult zones	۲.	strong clay foult zones	clanger zones a.	<u> </u>				1
77.37-73.155mm			15.27 -76.74		Smal R	1		1
Chloritic Lominator Del 78.75-84.42 Fine Add	2.m///	MARINE, MUS, THEN, AND ANALLE WIN	rom/for aren.	chloriti	7	†		
August Augusta		1-some augete phenoryets time cur:	<u> </u>	faitly chloritic promo	Carle P	†	t	ł

KAMLOOPS GEOLOGICAL SERVICES LTD.

94

LOGGED BY: Re. Cally

......

DATE: Nov. 12, 2001.

DIAMOND DRILL HOLE NO. WS 2001-05

Í.

SAMPLE	FROM	то	LENGTH	Au	Cu	Āg	Мо	Zn
NO	(m)	(m)	(m)	ppb	ppm	ppm	ppm	ppm
4001	7.31	9.40	2.09	15	161	<0.2	<1	
4002	9.40	10.60	1.20	235	390	<0.2	<1	59
4003	10.60	13.18	2.58	35	199	<0.2	<1	79
4004	13.18	15.20	2.02	20	196	<0.2	<1	95
4005	15.20	17.70	2.50	25	829	0.5	2	104
4006	18.80	21.80	3.00	150	245	<0.2	<1	66
4007	21.80	23.30	1.50	20	164	<0.2	<1	59
4008	_26.30	28.30	2.00	35	169	<0.2	6	78
4009	28.30	30.46	2.16	20	136	<0.2	<1	129
4010	30.46	33.46	3.00	45	564	0.4	<1	313
4011	34.75	36.75	2.00	10	217	<0.2	<1	116
4012	41.56	43.60	2.04	10	255	<0.2	<1	78
4013	46.40	48.40	2.00	40	176	<0.2	<1	72
4014	48.40	50.40	2.00	10	233	<0.2	<1	119
4015	50.40	52.40	2.00	15	194	<0.2	1	64
4016	52.40	53.40	1.00	15	126	<0.2	2	59
4017	53.40	55.15	1.75	15	55	<0.2	3	32
4018	55.15	57.50	2.35	10	101	<0.2	1	44
4019	57.50	59.30	1.80	15	121	0.2	10	319
4020	57.30	61.30	4.00	15	141	<0.2	<1	52
4021	61.30	63.04	1.74	15	130	<0.2	<1	102
4022	63.64	65.14	1.50	10	102	<0.2	3	119

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2001-420

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

ATTENTION: RON WELLS

No. of samples received:22 Sample type: Core Project #: WS 2001-05 Shipment #: None Given Samples submitted by: Ron Wells

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	РЬ	SЬ	Sn	Śr Ti%,	н	v	w	v	7
1	4001	15	<0.2	0.16	<5	40	<5	6.09	<1	40	63	161	7.08	20	3.82	701	<1	0.02	37	1420	-2	26	×20	101 -0.01				<u> </u>	
2	4002	235	<0.2	0.14	20	20	≺5	5.78	<1	41	67	390	7.86	20	3.64	1087	<1	0.02	35	1300	~	05	~20	191 <0.01	510	22	<10		30
3	4003	35	-0.2	0.25	<5	25	<5	7.42	<1	42	69	199	7.05	20	3.85	2081	<1	<0.02	41	1300	~2	-5J	~20	204 40.01	- 10	31	<10	6	59
4	4004	20	<0.2	0.88	<5	45	<5	6.70	<1	38	92	196	6.33	20	7 44	2040	- 1	0.01	49	1000	~	~0	~20	200 <0.01	<10	29	<10	8	79
5	4005	25	0.5	0.29	<5	35	5	6.47	<1	29	48	820	5 02	20	2 04	1059		0.01	20	1500	~2	- 5	~20	220 <0.01	<10	101	<10	9	95
							-		-		10	020	0.02		2.01	1000	-	0.01	20	1520	~2	50	<20	230 <0.01	<10	26	<10	13	104
6	4006	150	<0.2	0.58	<5	35	<5	7.62	<1	40	60	245	6 74	20	2 1 3	2206	ا سر	0.04	20	1765	-0		.00						
7	4007	20	<0.2	0.59	<5	40	<5	6.07	<1	47	44	164	8.08	20	3 40	2200	~ 1	0.01	39	1200	~2	-5	<20	215 < 0.01	<10	89	<10	12	66
8	4008	35	<0.2	0.15	<5	30	<5	7 37	<1	30	53	160	6.00	20	2.10	4780		0.01	31	1240	<2	<5	<20	297 < 0.01	<10	40	<10	11	59
9	4009	20	<0.2	0.26	<5	30	<5	6.59	-	24	45	100	0.00 ¢.04	20	3,30	1044		0.01	39	1260	2	~5	<20	275 < 0.01	<10	15	<10	13	78
10	4010	45	04	1 69		30	-5	6.53	י - ה	22	40	130	0.04	20	3.23	1944	<1	0.01	28	1370	<2	<5	<20	286 < 0.01	<10	21	<10	10	129
		10	0.4	1.00	.0		-0	0.01	-	30	40	004	0.78	20	3.20	2189	<1	0.02	25	1480	<2	<5	<20	277 <0.01	<10	211	<10	16	313
11	4011	10	<0.2	2 44	<5	30	c6	5 21	-1	42		247	0.00	-	0.07	40.40													
12	4012	10	=0.2	1 40	25	35	~0	0.01 6 00		43	44	217	0.09	20	3.37	1943	<1	0.01	24	1600	<2	<5	<20	160 0.02	<10 ·	222	<10	13	116
13	4013	40	<0.2	0.61		35	-0	0.00	~ 1	40	44	200	7.20	30	2.51	1978	<1	0.02	23	1720	<2	<5	-20	122 <0.01	<10	156	<10	21	78
14	4014	10	~0.2	0.01	~0	30	~0	0.90	51	46	64	1/6	7.21	20	0.90	1283	<1	0.02	31	1760	6	5	-20	103 0.03	<10	56	10	6	72
15	4016	15	-0.2	0.00	-0	30	~0	7.20	<1	41	66	233	8.01	20	1.06	1287	<1	0.02	27	1580	<2	<5	-20	118 0.03	<10	74	<10	6	119
15	4010	15	SU.2	0.00	~0	35	<5	5.83	<1	34	65	194	6.72	20	1.30	1197	1	0.03	24	1500	4	<5	-20	115 0.04	<10	83	<10	7	64
18	4040	46	-0.0	~ ~~	,	~~																							
17	4010	15	<u.z< td=""><td>0.95</td><td>5</td><td>30</td><td><5</td><td>4,41</td><td><1</td><td>20</td><td>57</td><td>126</td><td>4.01</td><td>20</td><td>1.17</td><td>954</td><td>2</td><td>0.03</td><td>16</td><td>1360</td><td>4</td><td><5</td><td>~20</td><td>102 0.01</td><td><10</td><td>97</td><td><10</td><td>17</td><td>59</td></u.z<>	0.95	5	30	<5	4,41	<1	20	57	126	4.01	20	1.17	954	2	0.03	16	1360	4	<5	~20	102 0.01	<10	97	<10	17	59
17	4017	15	<0.2	0.81	<5	30	<5	3.82	<1	21	64	55	4.00	20	1.05	791	3	0.03	14	1330	4	5	<20	108 <0.01	<10	70	<10	17	32
10	4018	10	<0.2	0.57	<5	25	<5	0.99	<1	24	58	101	4.97	20	0.80	299	1	0.02	7	1350	4	10	<20	27 <0.01	<10	47	<10	13	44
19	4019	15	0.2	0.29	5	25	<5	0.62	1	24	64	121	5.18	20	0.37	217	10	0.02	5	1360	10	10	<20	16 <0.01	<10	26	<10	7	210
20	4020	15	<0.2	0.32	<5	25	<5	1.29	<1	23	58	141	4.63	20	0.61	524	<1	0.02	9	1430	2	<5	<20	55 <0.01	<10	20	~10	10	510
21	4021	15	-0.2	0.23	10	25	<5	1.70	<1	24	58	130	5.09	20	0.61	767	<1	0.03	8	1400	6	<5	<20	36 <0.01	~10	55	~10	10	402
22	4022	10	<0.2	0.24	140	55	<5	>10	<1	35	213	102	4.76	20	5.01	1540	3	0.01	215	660	22	- 6	~20	653 -0.01	~10	00	~10	1.3	102
																				****		-0	-20	000 ~0.01	~10	90	~ IU	14	119

		Y													,													1	V	
:	26-Nov-01									K	CP CEI	RTIFIC	ATE O	FANAL	YSIS	AK 20	01-420	1					ı	CHRIS	TOPHE	R JAMI	ES GO	LD COR	RP.	
Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La N	lg %	Mn	Mo	Na %	Ni	Р	Pb	Sь	Sn	Sr	Ti %	U	v	w	Y	Zn
<u>OC DA1</u> Respiit:	[A :																													
1	4001	15	<0.2	0.14	5	35	-5	5.56	<1	40	53	162	7.05	20	3.65	665	<1	0.01	37	1340	<2	35	<20	174	<0.01	<10	21	~ 10	7	28
Repeat.	ť																													
í	4001	15	<0.2	0.15	10	25	<5	5.68	<1	38	57	158	6.77	20	3.73	675	<1	0.02	35	1380	27	25	~20	170	-0.01	~10	22	-10	-	
10	4010	30	<0.2	1.69	5	35	<5	6.73	2	36	47	562	6.91	20	3.19	2217	<1	0.02	24	1530	4	<5	-20	277	0.01	<10	212	-10	16	∡o 319
Standar GEO'01	rd:	125	1.4	1.68	50	155	<5	1.89	<1	20	56	86	3.79	20	0.98	670	2	0.02	28	700	18	<5	<20	60	0.13	<10	67	<10	11	66

FP/lh df/420 XLS/01 cc: ron wells fax @ 372-1012

- Ć ъ

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

SILVER LAKE PROPERTY WORLDSTOCK GRID

UDH NO. WS 2001 - 0	> 6							
	L	ITHOLOGY	CTONOTUDE			PAGE NO. /		
MAIN UNITS		SUB UNITS	STRUCTURE	ALTERATION	MINERALIZATION	SAMPLING		
0-6.70 Casing in		Octup Soud Till				FROM	TO	NUMBER
Overhunder and weathered								
Bedrock.								
4-00-21.80 Medium oren	ΞŤ.	4.0-6.7 woothered and evidined had all						
Augite Parphyry. Fine	/	augite souther and catherated						
gound mass, non nometic	1	4. To - to to Augite placements because	Marine In 1 and	0				
	\mathcal{S}	more counted and courses, he amundance	density of his and	Lopylitic schloritic	Sporse upto 2%			
1	4	And suggesti	Variable and a	backgound Matchy	fine dimeninated Py			
اوب	÷,	10-50-12:30 Bleached and lacoffer	Faich anaring 11-19	weak epidene, mad cart.	Accession Access	10.50	13:00	04030
1 1		exidized. avoite perphyse	Hacking clause sam	weather and , and com.	Porchy 1-27 fine by			
1	7	13.30-19.21 Med. greens altered, his	213 VEIL GX. U	Chlasti Laska				
	X	angite parphyny. Local bleached -	dessite of carts & and	unichle week and	Very pately 1-23%			
1	••••	aridized in fractional areas (16-165)	gray white uph 1.5cm	Weak-mad so he.	fine debien to	-15.00-	14-35	04031
	Xes .		Fine veris of variable	carte	aggingate of the			
1941-21.40 Felsic Dike			Pink Carl Vain 30 CA					<u> </u>
light grey-pink fine grained	+	Persetyustic to fine equigranular	Vagia altered contacts	Sil lelds not in with	2 LNEY A dia	12-8		04032
to feldyor porphyrite		Siliceous contact zunas	Subparallal of - carb ly	when appressive cards	head would be	19.8/	11.10	04033
AI-BO-38-41 Andlesife -	//	RI. RO-27:00 Light grey, white to be	weak-med. willet	Seffer seciente-class	Highly mainter 2.54	2080	23.80	04074
Basale some Tuff !	~~	Mettind . Fine ground - bleached	dessity dome wess	section Patch weak	for dimen and	Y	15.60	04.035
Mine grained Local	13	Contesto - 26-80 - Clayon Jones weak	maraly to Jo ca come	pervosine carb	-SADER- 27 1.		1.00	
Allice angule phenochysis.			Corbing V. Ich 40-60'CA	logentitie - chilonte	dimen some winter	17		
Non to Villar mognitic	#	100-23-17 hight-med, area haveners	Carle variable	for the and with paths	14.			04037
		that still light greg - white from lad	SOME 45-60'CA	Bleached local mail	3-0% frieland	19-17	17.10	
	Ľ	Seticity - class attacabas	gotza carto la caleto	patchy carb Pennous	diver and walt le			<u>euotx</u>
	#.	32.10-38.41 FOR	las des X 1 1	med servere day.		12.10	14-18	04533
	1	Medicin another accurs his	and which the	Chinate backgouse	Sporse, local 1.2%			
	11	grained propyliki allound as at	Lienda Ca di Lien	party war epidate	for desser and			
	F.	27-000	in the section of the	corbinete, asar	fractione ly			
ļ ·		31-61 EOH.	windst.	magne tre .				
·				· · · · · · · · · · · · · · · · · · ·				

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: A. Lalle

DIAMOND DRILL HOLE NO. WS 2001-06

SAMPLE	FROM	то	LENGTH	Au	Cu	Ag	Мо	Zn
NO	(m)	(m)	(m)	ррв	ppm	ppm	ppm	ppm
4030	10.50	13.00	2.50	15	264	<0.2	<1	64
4031	15.00	16.23	1.23	20	788	0.5	<1	95
4032	18.80	19.81	1.01	20	292	<0.2	10	80
4033	19.81	21.80	1.99	20	409	<0.2	2	61
4034	21.80	23.80	2.00	25	896	0.4	<1	124
4035	23.80	25.80	2.00	25	886	0.6	2	162
4036	25.80	27.00	1.20	30	961	0.2	1	85
4037	27.00	29.17	2.17	20	689	0.2	3	129
4038	29.17	32.10	2.93	30	67 9	0.3	2	129
4039	32.10	34.18	2.08	25	692	<0.2	<1	115

r
26-Nov-01

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2001-421

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

ATTENTION: RON WELLS

No. of samples received: 10 Sample type: Core Project #: WS 2001-06 Shipment #: None Given Samples submitted by: Ron Wells

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi C	a %	Cd	Ċo	Cr	Cu	Fe %	La	Ma %	Mo	Mo	Na %	Ni	Б	Dh	Ch	e	.	T1 6/		.,			_
1	4030	15	<0.2	0.53	<5	65	<5	8.38	<1	24	37	264	4 78	20	2 4 2	1704		0.00	74	1200		30		ər	11.76	<u> </u>	<u> </u>		<u>Y</u>	Zn
2	4031	20	0.5	1.20	<5	50	<5	6.71	<1	21	44	788	3.84	20	4.92	1070	21	0.02	24	1300	<2	<5	<20	199	<0.01	<10	39	<10	23	64
з	4032	20	<0.2	0.84	<5	65	<5	9.40	<1	25	61	202	5.04	20	1.00	1010	51	0.02	21	1270	4	5	<20	221	<0.01	<10	68	<10	18	95
4	4033	20	<0.2	0.50	<5	50	<5	4.06	-1	24	63	400	3.29	- 30	1.39	1621	10	0.02	29	1350	<2	5	<20	410	<0.01	<10	100	<10	19	80
5	4034	25	04	0.67	<u>ج</u> ہ	50		3.46	~1	24	60	409	0.67	30	1.20	837	2	0.03	17	1500	2	5	<20	124	<0.01	<10	74	<10	20	61
-		20	4.4	0.01	-0	50	~0	3.40	~1	30	51	896	4.49	20	0.73	1021	<1	0.02	17	1720	2	10	-20	89	<0.01	<10	78	<10	20	124
6	4035	25	06	0.68	<5	50	-5	3.01	~1	20		000	4.05				_													
7	4036	30	0.2	0.60		45	-6	~10		27		000	4.95	30	0.53	1014	2	<0.01	14	1730	2	5	<20	65	<0.01	<10	59	<10	26	162
Ŕ	4037	20	0.2	1 97	-5		-0	2.07	51	22	00	961	2.82	20	0.97	1548	1	0.01	28	1240	<2	<5	<20	215	<0.01	<10	32	<10	21	85
ŏ	4007	20	0.2	0.02	-0	00	SD .	2.07	<1	34	63	689	5.48	30	1.98	1015	3	0.02	22	1570	4	<5	<20	92	<0.01	<10	100	<10	31	129
40	4030	30	0.3	0.61	< 5	45	<5	5.04	<1	35	62	679	4.99	20	1.34	1227	2	0.02	23	1550	<2	10	<20	155	<0.01	<10	130	<10	27	170
10	4039	25	<0.2	2.28	<5	55	<5 :	5.22	<1	33	104	692	6.37	30	2.66	1391	<1	0.02	43	1410	2	<5	<20	210	<0.01	<10	160	<10	21	115
QC DAT	Δ.																												- •	
Resplit:																														
1	4030	15	<0.2	0.53	~5	60	75	8 33	~1		20	000			.															
Repeat;			•	0.00	.0	00	-0	0.35	~1	23	30	200	4.67	20	2.42	1803	<1	0.02	24	1330	<2	<5	<20	195	<0.01	<10	39	<10	23	69
1	4030	15	<0.2	0.54	5	65	<5	8 73	c1	22	20	285	4.05	-		4704		•												
Standar	d:				•			0.20	-,	25	50	200	4.00	20	2.41	1764	<1	0.02	22	1290	<2	<5	<20	197	<0.01	<10	39	<10	24	61
GEO'01		125	1.4	1.75	55	155	<5	1 55	~1	20	e e		0 F.F		<u> </u>															
					50		-0	1.00	-1	20	93	60	3.33	20	0.97	6/4	<1	0.02	28	740	22	10	<20	60	0.10	<10	55	<10	15	70

FP/lh df/421 XLS/01 cc: ron wells fax @ 372-1012

Frank J. Pezzofti, A.Sc.T.

B.C. Certified Assayer