REPORT ON THE 2001 EXPLORATION PROGRAMS

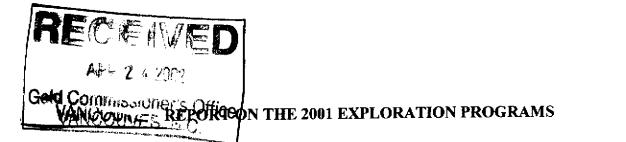
(GEOLOGICAL, GEOCHEMICAL, TRENCHING AND DIAMOND DRILLING)

NEW DISCOVERY MASSIVE SULFIDE TARGET

on the

SILVER LAKE PROPERTY KAMLOOPS MINING DIVISION BRITISH COLUMBIA NTS 92P/9W

For


CHRISTOPHER JAMES GOLD CORP. 102-418 St. Paul Street Kamloops, B.C. V2C 2J6

By

R.C. Wells P.Geo., FGAC. KAMLOOPS GEOLOGICAL SERVICES LTD. 910 Heatherton Court Kamloops, B.C. V1S 1P9

> March 15, 2002 GEOLOGICAL SURVEY BRANCH

R. C. Wells, P.Geo., FGAC. Kamloopper Geological Services Elles

(GEOLOGICAL, GEOCHEMICAL, TRENCHING AND DIAMOND DRILLING)

NEW DISCOVERY MASSIVE SULFIDE TARGET

on the

SILVER LAKE PROPERTY KAMLOOPS MINING DIVISION BRITISH COLUMBIA NTS 92P/9W

For

CHRISTOPHER JAMES GOLD CORP. 102-418 St. Paul Street Kamloops, B.C. V2C 2J6

By

R.C. Wells P.Geo., FGAC. KAMLOOPS GEOLOGICAL SERVICES LTD. 910 Heatherton Court Kamloops, B.C. V1S 1P9

March 15, 2002

TABLE OF CONTENTS

(

 $\left(\right)$

(

SUMMARY	. 1
1.0 INTRODUCTION	. 5
1.1 LOCATION AND ACCESS	. 5
1.2 TOPOGRAPHY, VEGETATION AND CLIMATE	
1.3 PROPERTY	
1.4 EXPLORATION HISTORY	
1.5 GEOLOGICAL ENVIRONMENT	
A. Regional Geology	
B. Local Geology	
C. BC Survey Branch Regional Till Geochemistry	24
2.0 2001 EXPLORATION ON THE NEW DISCOVERY TARGET	31
2.1 INTRODUCTION	31
2.2 WINTER GEOPHYSICAL SURVEY	31
2.3 SAMPLE HANDLING, ANALYTICAL PROCEDURES AND CHECKS	
DURING PHASE 1 AND 2 EXPLORATION	33
2.4 PHASE 1 GEOCHEMICAL SURVEYS	34
2.5 PHASE 1 GEOLOGICAL MAPPING AND PROSPECTING	36
2.6 PHASE 1 TRENCHING PROGRAM	
2.7 PHASE 1 DIAMOND DRILLING PROGRAM	46
3.0 2001 PHASE 2 EXPLORATION	52
3.1 TARGET DEFINITION GEOPHYSICAL SURVEYS	
3.2 ACCESS	
3.3 PHASE 2 DIAMOND DRILLING PROGRAM	
J.J. THASE 2 DIAMOND DRILLING TROOMENT	• •
4.0 CONCLUSIONS WITH DISCUSSIONS	60
5.0 RECOMMENDATIONS AND COST ESTIMATE	63
6.0 STATEMENT OF EXPENDITURES	65
7.0 STATEMENT OF QUALIFICATIONS	67
8.0 REFERENCES	68

AT REAR

APPENDIX 1 STATEN	AEN I	OF	WORK
-------------------	-------	----	------

- APPENDIX 2 GEOCHEMICAL AND GEOPHYSICAL COMPILATION MAPS
- APPENDIX 3 2001 PHASE 1 EXPLORATION: TARGET DEFINITION DATA
- APPENDIX 4 2001 PHASE 1EXPLORATION: TRENCH AND SAMPLING DATA
- APPENDIX 5 2001 PHASE 1 EXPLORATION: DIAMOND DRILLING DATA.
- **APPENDIX 6** 2001 PHASE 2 EXPLORATION: DIAMOND DRILLING DATA

LIST OF FIGURES

C

 $\left(\right)$

 $\left(\right)$

Figure 1	Property Location Map	4
Figure 2	Silver Lake Property: Claim Map	8
Figure 3	Ta Hoola, Silver, HC 8 Rock Island Claims 1987 with western part of the Silver Lake Property	11
Figure 4	Compilation Map with Exploration Targets	15
Figure 5	Claim Map with 1999-2001 Exploration Areas	17
Figure 6	Discovery Grid 2000 Compilation Map	18
Figure 7	Regional Geology	20
Figure 8	Local Geology	22
Figure 9	Mineral Occurrences in the Property Area	25
Figure 10	Till Geochemistry. a = Au, b = Cu, c = Mo	28-30
Figure 11	New Discovery Grid Location	32
Figure 12	Geophysical Compilation Map	Appendix 2
Figure 13	Geochemical Compilation Map	Appendix 2
Figure 14	Geological Map with Sample Location	Appendix 3
Figure 15	Pit A. Geology and Sampling Plan.	Appendix 4
Figure 16	Trench-05: Geology and Sampling Plan.	Appendix 4
Figure 17	Trench-10: Geology and Sampling Plan.	66 99
Figure 18	Trench-15: Geology and Sampling Plan	66 77
Figure 19	Trench-16: Geology and Sampling Plan	66 93
Figure 20	Geology Map with Drillhole Geology	Appendix 3
Figure 21	Drill Profile: DDH's. ND2001-01 and 02	Appendix 5
Figure 22	Drill Profile: DDH: ND2001-03	66 7 7
Figure 23	Drill Profile: DDH's: ND2001-04 & 05	LC 99
Figure 24	Drill Profile: DDH. ND2001-06	44 33
Figure 25	DDH.ND2001-07. Section 600W	Appendix 6
Figure 26	DDH.ND2001-08. Section 807W	££ 79

List of Figures cont'd

C

 $\left(\right)$

Figure 27	DDH.ND2001-10. Section 900W	Appendi	ix 6
Figure 28	DDH.ND2001-09. Section 994W	ui .	••
Figure 29	DDH.ND2001-11. Section 1150W	44	51
Figure 30	DDH.ND2001-12. Section 1309W	61	; •
Figure 31	DDH.ND2001-14. Section 1562W		**
Figure 32	DDH.ND2001-13. Section 1700W	**	,,

LIST OF TABLES

Page No.

Table 1	Silver Lake Property - Claim Information	9
Table 2	Summary of Highest Concentration Till Samples for Key Elements	26
Table 3	New Discovery Grid: Grid Soil Survey	Appendix 3
Table 4	New Discovery Grid : Road Deep Soil Sample Survey	66 33
Table 5	New Discovery Grid: Prospecting Samples	66 33
Table 6	New Discovery Grid: July Trenching	Appendix 4
Table 7	New Discovery Grid: July-August Trenching	44 7 7
Table 8	Sampling Results, Main Trench-Area A	64 7 7
Table 9	Phase 1 Drilling Information and Highlight Assay Intervals	48
Table 10	Phase 2 Drilling Information and Highlight Assay Intervals	55

SUMMARY

This report documents 2001 exploration by Christopher James Gold Corp. on the New Discovery Target in the southern part of the Silver Lake Property located 17 kilometres northwest of Little Fort, north of Kamloops, BC. There is excellent logging road access to the property and Worldstock target from Highway 24 to the south. This large property covering approximately 4900 hectares consists of the Discovery, Worldstock, Crater and Leslie mineral claims. Christopher James Gold Corp. owns these claims 100% subject to two NSR agreements (total 3%).

The property covers a section of Nicola Group (Upper Triassic) rocks in the Quesnel Terrane including northwest trending volcanic, sedimentary rocks with numerous intrusions. Exploration over the last 40 years mainly in the western half of the property has identified a large number of targets including veins, vein stockworks, broad alteration zones and skarns. Most, if not all of these have variable combinations of metals from gold, silver, copper, lead, zinc and molybdenum. Prior to 2001 only three of the seven best developed targets on the property had received drilling by previous operators, and this was of a preliminary nature with no follow-up.

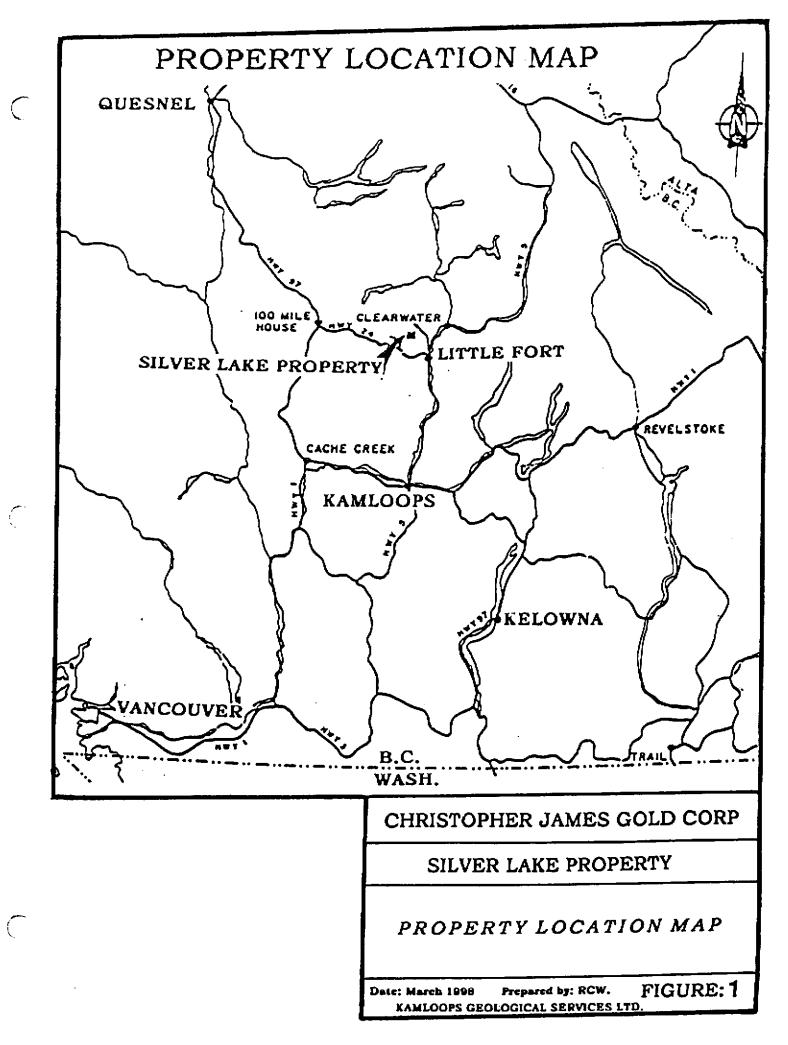
Recent exploration by the company (since 1997) has focussed on two new targets with high potential called the Worldstock (porphyry) and New Discovery (massive sulfide) in the eastern and southern parts of the property respectively.

Prospecting by P. Watt in the summer of 2000 resulted in the discovery of two areas of massive sulfide float 1 kilometre apart, south and southeast of Portage Lake. Sampling returned copper values between 1% and 6% with multi-gram silver and anomalous gold. This was followed by a preliminary exploration program consisting of grid preparation, soil geochemical, geological, prospecting and magnetic, VLF-EM geophysical surveys. Northwest trending, semi-coincident

copper in soil, magnetic and VLF-EM anomalies were outlined between the float discoveries A and B. These results suggested a proximal source for the copper rich, massive sulfide float.

The 2001 exploration by the company on the New Discovery target took place between February and November and was in three phases with expenditures totalling \$189,087.86. A short winter geophysical program outlined IP chargeability anomalies in three important areas. These were coincident with earlier VLF-EM anomalies and proximal to chalcopyrite rich float.

The summer-fall exploration program was in two phases and consisted of geophysical, geochemical and geological programs focussed on target definition. These were followed by preliminary trenching and diamond drilling on priority targets.


A high grade copper (silver \pm gold) massive sulfide-quartz vein zone was discovered during trenching downslope from Discovery A in July. This northwest trending zone yielded copper values in the 2 to 15% range with 34 to 177 g/t silver over 0.6 to 1.5 metre sample widths.

A 6 hole, Phase 1 metre diamond drilling program (548.43) in August tested the geometry of this zone at shallow depth over an 85 metre strike length. Three of the holes returned encouraging results including 5.37 metres averaging 1.76% copper, 11.23 g/t silver in Hole ND2001-01. A compilation of the results suggested a southeast plunge to the mineralization.

Detailed (in-fill) geophysical IP, magnetic and VLF surveys were completed along the Discover A-B trend during September. A strong IP chargeability anomaly was outlined from grid 500W to 1900W (1.4 kilometres). This IP feature was coincident with the main VLF anomaly and up-slope from strong copper in soil anomalies and mineralized float. West of grid 1500W the chargeability anomaly broke into two separate trends, the stronger bending to the southwest.

In October a Phase 2 diamond drilling program (934.52 m) consisted of eight, 100 to 250 metre spaced exploration holes along the main northwest geophysical-soil trend between grid 588W and 1700W (1.1 kilometres). This program encountered copper values along the main structure for 700 metres strike length. An area (hot spot) of higher grade mineralization is indicated 600 metres west of Discovery A. The style of mineralization, metal distribution (1.68% Cu, 16.6 g/t Ag/1 metre) and geological setting in Hole ND2001-12 is identical to Discovery A. This hole is up slope from the main copper in soil anomaly (strongest section) and is at the bend in the IP anomalies (fault intersection area?). The southwest IP trend west of here has not been drill tested. Holes ND2001-13 and 14 did not locate the bedrock source of high grade copper (Ag, Au) float at Discovery B (grid 1700W).

Exploration on the Discovery copper-silver (gold) trend is still at a relatively early stage; further exploration is recommended. There is plenty of room along strike and to depth for larger, high grade zones at structural intersections and proximal to intrusive contacts.

1.0 INTRODUCTION

This report presents the results from year 2001 exploration programs on the New Discovery Target on the Silver Lake Property, Kamloops Mining Division of British Columbia. This program took place between February and December 2001 and was supervised by R.C. Wells, P.Geo, FGAC, consulting geologist for Kamloops Geological Services Ltd. The program was financed by Christopher James Gold Corp. with offices at 102-418 St. Paul Street, Kamloops BC. This company is currently exploring the Silver Lake property for a variety of polymetallic targets.

Year 2001 exploration on the property focussed on two target areas. Firstly, the Worldstock porphyry target which has potential for a high level copper (Au, Ag, Mo?) porphyry style system in the eastern claim area; secondly, the New Discovery massive sulfide copper (Ag, Au) target in the southern property area. For company purposes the 2001 exploration programs of these two promising targets are documented in separate reports.

Total exploration expenditures by the company on the Silver Lake property in 2001 were approximately \$320,440.89. All of the claims were grouped (Event No. 3174597). \$210,000.00 from the 2001 exploration expenditures are being applied to the group plus a PAC withdrawal of \$55,800.00 for a total of \$265, 800.00 assessment work credit (Appendix 1). Regarding the New Discovery target approximately \$189,087.86 was spent on exploration in 2001.

1.1 LOCATION AND ACCESS

The Silver Lake property is located 17 kilometres northwest of Little Fort, BC., Latitude 51°33'N and Longitude 120°21'W as shown in Figure 1. The property lies within NTS topographic map sheet 92P/9W and covers a northwest trending panel 13 km long by 3 to 4 km wide, north of Deer Lake (Figure 2). Rock Island Lake lies close to the centre of the property.

Access to the property is from Provincial Highway No. 24 which links Little Fort with 100 Mile House. Two main logging roads branch north from Hwy 24, one to Deer Lake, the other along Nehalliston Creek. They access the western and eastern parts of the property respectively. A network of old and new logging roads and trails occur on the property, very few areas are more than a kilometre from a road.

1.2 TOPOGRAPHY, VEGETATION AND CLIMATE

The property lies within an undulating plateau region with numerous lakes. Elevations are in the 1250 to 1550m range with the higher ground forming a southeast trending ridge east of Lost Horse Lake. Nehalliston Creek drains southeast from Lost Lake through Meadow, Silver and Portage Lakes on the property (Figure 2).

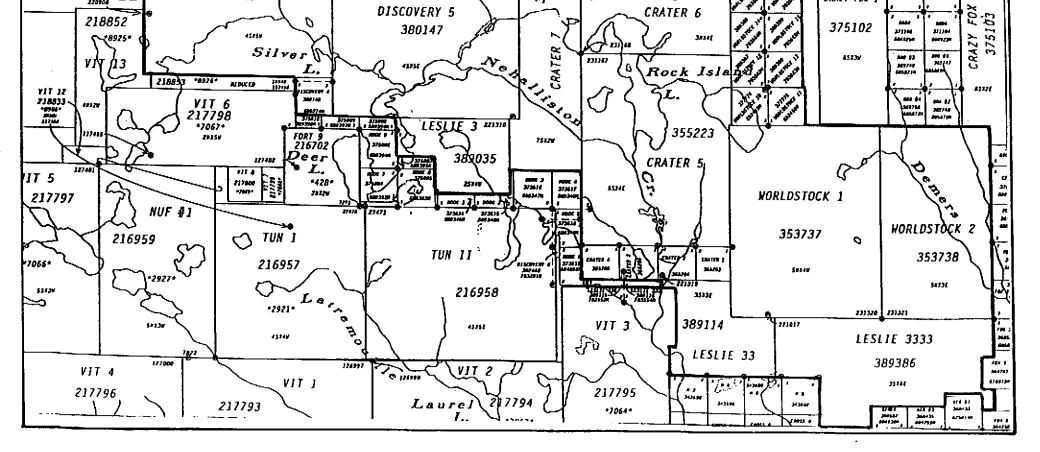
Fairly thick stands of mature spruce, fir, pine and balsam occur on the property. These have been subject to logging by Tolko Industries Ltd. over the last decade. Numerous clear-cut blocks occur on the property, several of which are very recent. The property area has typical upland climate for the central interior with dry summers and cool to cold winters. Snow cover is basically form late October through to April, with accumulations up to 1.5 metres.

1.3 PROPERTY

The Silver Lake Property consists of 211 units in two-post and modified grid mineral claims covering approximately 4900 hectares. Table 1 gives details regarding the individual claims and Figure 2 shows their locations. Basically the property is an amalgamation of three contiguous groups: from west to east the Discovery (original PGR), Crater and Worldstock. In August 200 the original PGR two-post claims were abandoned and relocated as the Discovery 1-5 modified grid claims. In 2001 the property was expanded to the north and south by the Worldstock #12 to 17 (6 units) and Leslie 3, 33, 330, 333, 3333 (37 units) mineral claims.

The claims are all owned 100% by Christopher James Gold Corp. with offices located at #102-148 St. Paul Street, Kamloops, BC, V2C 2J6. There are two NSR agreements: one with the original vendors for 1% NSR (with buy-out), the other for 2% NSR with a finder group.

1.4 EXPLORATION HISTORY


The geology for the property area is highly favourable for a wide variety of deposit types. A short summary of previous exploration in the area follows:

1. Before 1950: Exploration was mainly for base and precious metal skarn and replacement deposits. In the early 1930's the Lakeview skarn zones were discovered south and southwest of Deer Lake (on the adjacent property to Silver Lake). These were hosted by limey units proximal to dioritic intrusions. Gold values up to several ounces were reported from magnetite-pyrrhotite skarn.

2. 1960 to 1975: This period was dominated by Cu-Mo porphyry exploration, mainly by Anaconda (1965-68) and Imperial Oil Ltd (1972-73). Integrated geological, geochemical and geophysical programs included some trenching and percussion drilling. None of the drilling was on the Silver Lake property area. Barriere Reef Resources (1972 to 1973) explored the area south and southwest of Deer Lake for both skarn and porphyry targets.

3. 1975 to 1985: Alkalic copper-gold porphyry zones were the main target during this period. Auriferous alteration zones received some attention. This exploration period featured major companies and large properties. Figure 3 is included for reference and shows claims that were active during this period. SMD Mining and BP-Selco conducted major integrated programs on the Ta Hoola and Silver claim areas which produced several coincident polymetallic soil (Au, Ag, Cu, Pb and Zn) and geophysical targets. The most important and strongest of these occur on the

FIGURE 2. SILVER LAKE PROPERTY - CLAIM MAP

 $\langle \gamma \rangle$

201161

355225

Handcestre L.

+

355224

 \bigcirc

380144

Mondow

DISCOVERY 2

380145

Lost Horse

237552

237552

DISCOVERY 3

380146

483 FE

DISCOVERY 1

dir

0

GINA 1

380948

34748

220904

Сr

L.

_1Km

Principa de la 372362 4073200

1984,22,923 2072,364 8873,229

202352394 2022394 44223294

CRAZY FOX 3

Packard 11 302343 6473478

PHASE NE SE 372548 847368

нцца) Элды

27736

1000) 371104 8863246

212118

212336

ŝ

CRAZY

° 5 5

375104

32240

272364 in the

WALLER !!

-871EH

£0)

CRAZY

11111

212117

371340 #14943

гч.

375105

582.PE

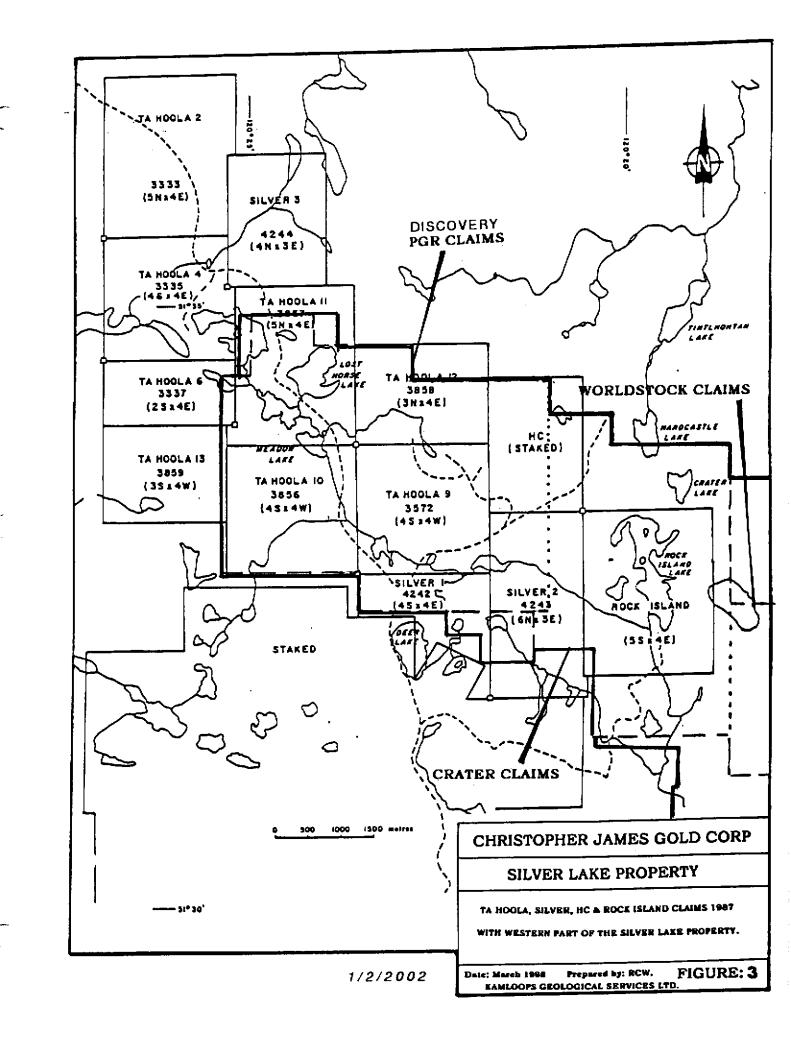
N

TABLE 1: SILVER LAKE PROPERTY - CLAIM INFORMATION

CLAIM NAME	UNITS	RECORD	RECORDED DATE	CURRENT EXPIRY
		NO.		DATE
DISCOVERY I	20	380144	Aug. 31, 2000	Ang. 31, 2010
DISCOVERY 2	20	380145	Aug. 23, 2000	Aug. 23, 2010
DISCOVERY 3	20	380146	Aug 31, 2000	Aug. 31, 2010
DISCOVERY 4	<u> </u>	380148	Aug. 22, 2000	Aug. 22, 2010
DISCOVERY 5	20	380147	Анд. 18, 2000	Aug. 18, 2010
DISCOVERY 6	1	382446	Nov. 4, 2000	Nov. 4, 2010
CRATER 1	1	355203	Apr. 12, 1997	Apr. 12, 2010
CRATER 2		355204	Apr. 12, 1997	Apr. 12, 2010
CRATER 3	1	355205	Apr. 12, 1997	Apr. 12, 2010
CRATER 4	<u> </u>	355206	Apr. 12, 1997	Apr. 12, 2010
CRATER 5	20	355223	Apr. 11, 1997	Apr. 11, 2010
CRATER 6	12	355224	Apr. 13, 1997	Apr. 13, 2010
CRATER 7	14	355225	Арт. 15, 1997	Арт. 15, 2010
WORLDSTOCK 1	20	353737	Feb. 8, 1997	Feb. 8, 2010
WORLDSTOCK 2	15	353738	Feb. 8, 1997	Feb. 8, 2010
WORLDSTOCK 10	i	377774	May 26, 2000	May 26, 2010
WORLDSTOCK 11	1	377775	May 26, 2000	May 26, 2010
WORLDSTOCK 12	1	389387	Sept. 5, 2001	Sept. 5, 2010
WORLDSTOCK 13	1	389388	Sept. 5, 2001	Sept. 5, 2010
WORLDSTOCK 14	1	389389	Sept. 5, 2001	Sept. 5, 2010
WORLDSTOCK 15	1	389390	Sept. 5, 2001	Sept. 5, 2010
WORLDSTOCK 16	1	389391	Sept. 5, 2001	Sept. 5, 2010
WORLDSTOCK 17	ł	389392	Sept. 5, 2001	Sept. 5, 2010
LESLIE 3	8	389035	Aug. 23, 2001	Aug. 23, 2010
LESLIE 33	9	389114	Aug. 25, 2001	Aug. 25, 2010
LESLIE 330	ı	389115	Aug. 26, 2001	Aug. 26, 2010
LESLIE 333	1	389116	Aug. 26, 2001	Aug. 26, 2010
LESLIE 3333	18	389386	Sept. 1, 2001	Sept 1_2010

TOTAL 211 Units

present PGR claim area. BP-Selco trenched many of these with variable success. Some trenches returned multigram gold values with silver and/or copper, lead and zinc (combinations of).


In 1983 Lornex drilled 33 percussion holes on several targets including 10 on the Meadow Lake Zone (Ta Hoola 9 and 12) in the PGR area. This geochemical-geophysical target returned interesting gold values. The best hole averaged 254 ppb gold over 118 feet.

4. 1987 to 1989: Two junior companies, Rat Resources Ltd. (Ta Hoola claims) and Lancer Resources (HC claims) were active in the property area during this period; Rebagliati Consulting managed the exploration. Exploration focussed on a variety of targets including veins, porphyry and quartz-carbonate zones with gold and/or silver. Both claim groups received some testing by diamond drilling and/or trenching as well as more detailed fill-in soil sampling.

On the Ta Hoola (PGR) four diamond drill holes tested targets peripheral to the Lornex Meadow Lake Zone. These returned several gold intersections including 4.29 g/t gold from a 3.10 metre quartz-carbonate vein zone in DDH 88-7.

Lancer Resources (1988) drilled 8 diamond drill holes on gold in soil anomalies that were coincident with alteration zones. Structural-alteration and porphyry style zones produced gold and gold-copper intersections. DDH 88-4 returned gram plus gold values. These drill programs were preliminary, and many target areas were not tested.

5. 1991 to 1994: During this period staking by P. Watt generated the PGR property (parts of old Ta Hoola 9, 10, 11 and 12). Prospecting by the property owner was assisted by new logging blocks and indicated widespread polymetallic mineralization (with gold) in bedrock and float throughout the claim area. In the 1992 to 1993 period, 21 prospecting samples out of 50 returned gram plus gold values with silver up to 178 g/t. Significant copper, lead, zinc and molybdenum values were associated with some of these. A major prospecting program in 1994 was very

successful, 22 out of 66 samples returned more than a gram. Some high gold samples were in the 20 to 30 g/t range with more than 500 g/t silver. A polymetallic road showing north of Silver Lake returned multi-gram gold, silver with copper, lead, zinc and molybdenum.

6. 1995-1996: This exploration was by Cambridge Minerals and was restricted to the Silver Lake and Lost Horse Lake (east) area on the PGR claims. In 1995 five trenches were excavated in the Road Showing area. A northerly trending vein and alteration zone 5 or more metres wide averaged 2 to 3 g/t gold. A narrow parallel zone returned 0.5 metres at 62.8 g/t gold, 183 g/t silver. Detailed compilations of previous work in 1996 was followed by a drilling program consisting of 11 reverse circulation and 7 diamond drill holes. RC holes 1 to 8 tested the area drilled by Lornex in 1983 and Rat Resources in 1988. Five of the holes intersected gold values, the best hole averaging 0.26 g/t over 30 metres. The better intersections came from the northern holes in the 1988 drilling area. Five of the eight holes were however drilled subparallel to the predominant NNW alteration trend? Many of the holes did not test the targets. RC holes 10 and 11 tested possible strike extensions to the Road Showing zone (200 to 350 metres away) and again did not really adequately cover the target. Five diamond drill holes tested IP chargeability anomalies east of Silver Lake and intersected pyritic, altered and quartz veined volcanics with sedimentary interbeds. A 2.4 metre altered interval in hole 96 DDH-4 returned 0.74 g/t gold, 19.1 g/t silver. Hole 96 DDH-6 tested an IP chargeability anomaly southeast of Lost Horse Lake and returned weakly anomalous gold values.

Following the drilling programs the PGR claims were returned to P. Watt (early in 1997). It is important to note that no surface work other than trenching (1995) took place on the property during this period.

During 1997 the property owner staked the Crater and Worldstock claims. The eastern Crater and Worldstock mineral claims cover an area with very little recorded previous exploration. The former Ta Hoola and Silver claim groups did not extend this far to the east (Figure 3).

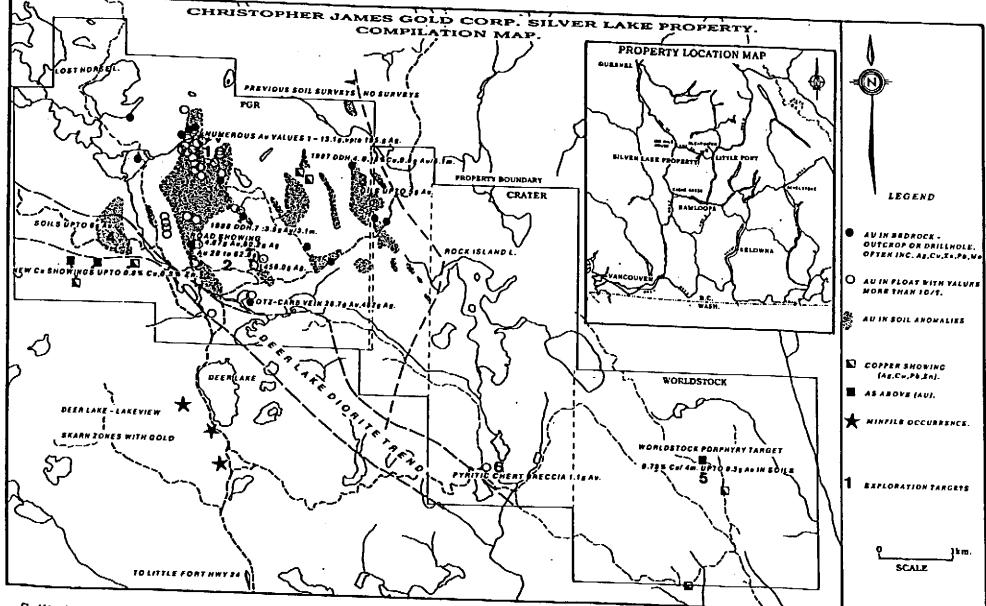
R. C. Wells, P.Geo., FGAC. Kamloops Geological Services Ltd.

12

Prospecting by P. Watt in the central parts of the Worldstock claims in 1996 resulted in the discovery of copper-gold mineralization in a possible porphyry setting.

Christopher James Gold Corporation optioned the PGR, Crater and Worldstock claims early in 1998 and combined them in to the Silver Lake Property.

7. 1998 Data Compilation and Exploration Targets: Early in 1998 a compilation was made of all previous exploration results to define targets for future work. These are shown on Figure 4, the lack of previous exploration east of Rock Island is clearly evident.


Previous exploration in the property area in the 1970's and 80's was hindered by more difficult access and thick tree coverage. Companies such as Imperial Oil (1972-73), SMD Mining (1981-82), Lornex (1983) and BP-Selco (1984-86) basically explored for large porphyry targets only. Broad scale geological, geochemical and geophysical surveys outlined some excellent large polymetallic and gold soil anomalies including local gold values up to 6 g/t. This exploration surprisingly did not involve any diamond drilling on the claim area. Exploration in the 1987 to 1989 period by juniors Lancer Resources and Rat Resources (work by Rebagliati Geological Consulting Ltd) focussed on silver-gold-polymetallic mineralized vein, alteration and porphyry zones discovered during the previous programs in the highly anomalous soils area between Rock Island and Lost Horse Lakes (Figure 4). These programs on a local scale improved soil anomalies with some gold values in the 1 to 5 g/t range. Trenching in this Target 1 area yielded values in the 1 to 5 g/t gold and 12 to 118 g/t silver ranges from polymetallic veins. Four drill holes tested two other areas on this target, these returned highly anomalous gold values. A 3.1m vein intersection in hole 7 averaged 4.3 g/t. The 1988 exploration program by Lancer included eight drill holes (testing some targets) on the gold in soils anomaly within the Target 3 area. These intersected porphyry and vein styles of copper-gold mineralization, an 8.1 metre intersection in hole 4 averaged 0.18% copper and 0.8 g/t gold.

Exploration by the P. Watt (1992-1998) has involved compilations, prospecting, sampling and preliminary ground truthing of earlier anomalies. This work revealed promising mineralized environments in several large areas on the property; these are exploration Targets 1 to 6 on Figure 4. Of these, Targets 1 to 4 have received some previous exploration, Targets 5 and 6 involve recent discoveries by P.Watt.

Targets 1 and 3 have received a limited amount of previous drilling with interesting gold and copper results (Rat, Lancer). Prospecting in the Target 1 area in the 1990's produced numerous gold values in the 1 to 13 g/t range, and silver to 195 g/t from float and four areas in bedrock. These frequently had associated copper, lead, zinc and also molybdenum values (up to 0.4%). Both high level porphyry (copper-gold) and polymetallic vein stockwork target types occur in this area.

Targets 2 and 4 are proximal to the Deer Lake 'diorite trend' and feature strong gold in soil anomalies. Prospecting in the Target 2 area 1994 to 1998 returned multi-gram gold values from the road showing (polymetallic, Au up to 62.8 g/t), large quartz boulders (28 and 35 g/t Au, up to 1456 g/t Ag) and a new quartz-carbonate vein showing (27 g/t Au, 482 g/t Ag). This area has high grade vein potential. Copper values up to 0.8% with associated zinc, lead and gold values have been returned from massive to disseminated, stratabound pyrite zones in volcanics exposed by recent logging road construction in the southern parts of Target 4. Skarn and massive sulfide and porphyry (diorite) targets occur in this area.

Pyritic siliceous (cherty) breccias with gold values up to 1.1 g/t and anomalous copper were discovered during 1997 prospecting along the northern edge of the diorite trend in Target 6 and southeast parts of Target 2. This is of significant interest as it suggested potential for porphyry and, or syngenetic (VMS?) gold environments.

R.Wells/ P.Watt 1998

FIGURE 4: COMPILATION MAP WITH EXPLORATION TARGETS.

 \cap

Lastly Target 5, a 1997 copper (gold) discovery on the Worldstock claims (Wells, 2000): strong chloritic altered volcanics exposed on a landing within a drift covered area returned 0.78% copper from a 4m by 3m panel sample. Reconnaissance soil sampling in this area produced copper values with associated gold up to 300 ppb. Altered dioritic intrusions exposed in nearby outcrops suggested potential for a porphyry environment.

8. 1999-2000 Exploration by Christopher James Gold Corp.: Recent exploration by the company has focussed on two promising areas on the Silver Lake Property, these are outlined on a claim map, Figure 5. Details regarding exploration on these two targets prior to 2001 can be obtained from an earlier report (Wells, Dec.2000), a short summary follows.

The **Worldstock Porphyry Target** located in the central parts of the eastern Worldstock claims was Target 5 (Figure 4) involving a copper (silver, gold) discovery by P. Watt in 1997. 1999 exploration by the company outlined a polymetallic (Cu, Au, Ag, Mo, Zn) soil anomaly over 700 metres long, open to the north and south in a largely overburden (till) covered area with fairly gentle relief. The soil geochemistry and presence of copper-gold mineralized, potassic altered monzodiorite suggested potential for a high level porphyry style system. An expanded grid-soil program in 2000 increased the copper soil anomaly length to over 1.1 kilometres. IP and magnetic grid geophysical surveys were recommended for 2001 with follow-up trenching and drilling.

The **New Discovery Target** was the result of prospecting discoveries by P. Watt in 2001. This prospecting identified two areas of massive sulfide, chalcopyrite rich float, one kilometre apart near Portage Lake (Discovery 5, Crater 7 claims). Sampling returned copper values between 1% and 6% with multi-gram silver and anomalous gold. Soils in the eastern Discovery A area returned up to 1% copper. These discoveries prompted the abandonment of the PGR twopost claims and relocation of the Discovery modified grid claims in order to close any potential

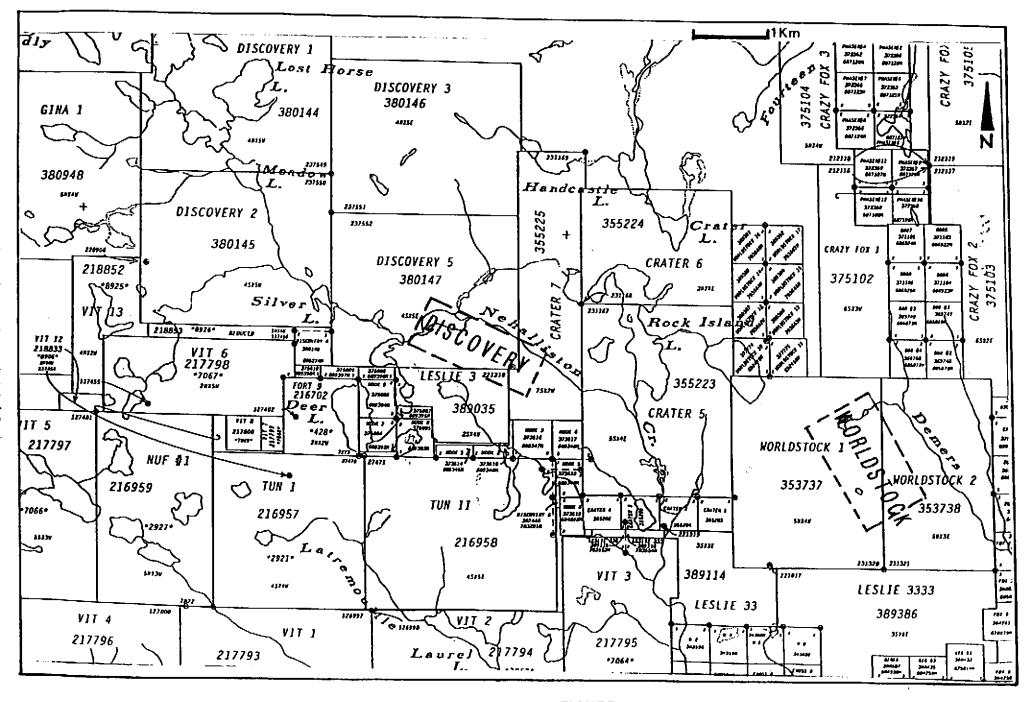


FIGURE 5: CLAIM MAP WITH 1999-2001 EXPLORATION AREAS

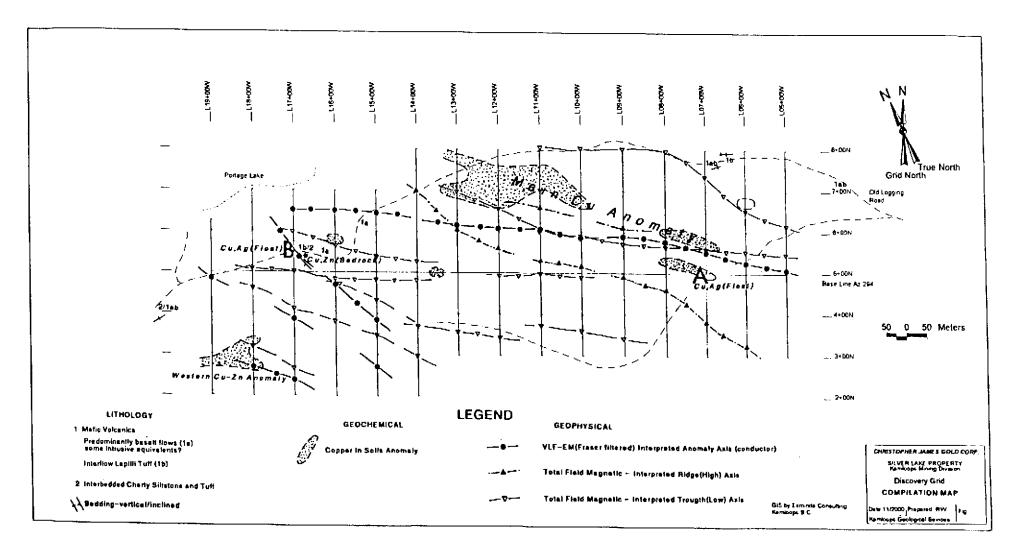


FIGURE 6: DISCOVERY GRID 2000 COMPILATION MAP

171

2 N

 $\langle \cdot \rangle$

fractions. The exploration program that followed consisted of grid preparation, soil geochemical. preliminary geological, prospecting and magnetic, VLF-EM geophysical surveys (Wells, 2000).

The 2000 program outlined several interesting coincident anomalies (Figure 6) and indicated potential for volcanic hosted, massive sulfide zones rich in copper (with silver plus or minus gold and zinc). Basaltic volcanic flows, lapilli tuffs and locally pyritic interflow cherty units underlie the grid area. Discovery A occurs proximal to a strong northwest trending copper in soil anomaly with near coincident magnetic trough and VLF-EM conductor. This anomalous trend over 700 metres long represented an attractive target for IP geophysical and diamond drilling programs in 2001. Discovery B also features coincident magnetic, VLF and soil anomalies. These are however less well defined than in area A. The sources for the copper-rich massive sulfide float in both areas A and B were thought to be fairly proximal (based on several features), probably less than 100 metres.

1.5 GEOLOGICAL ENVIRONMENT

A. Regional Geology

The Silver Lake property is located near the eastern edge of the Intermontane belt of the Canadian Cordillera in the highly mineralized Quesnel Terrane (Figure 7, after Schiarizza, 2001). Directly east of the Quesnel Terrane are generally older rocks of the Omineca Belt belonging to the Slide Mountain and Kootenay terranes. Upper Paleozoic age rocks in the Slide Mountain include mafic volcanics, intrusives and cherty sediments. Proterozoic to Paleozoic age rocks of the Kootenay include metamorphosed and deformed sedimentary, volcanic, intrusive rocks. Mesozoic age granitic rocks of the Raft and Baldy batholiths crosscut the boundaries between these terranes.

The Quesnel Terrane features an Upper Triassic to Lower Jurassic age magmatic arc complex. Paleozoic age arc sediments and volcanics of the Harper Ranch Group underlie

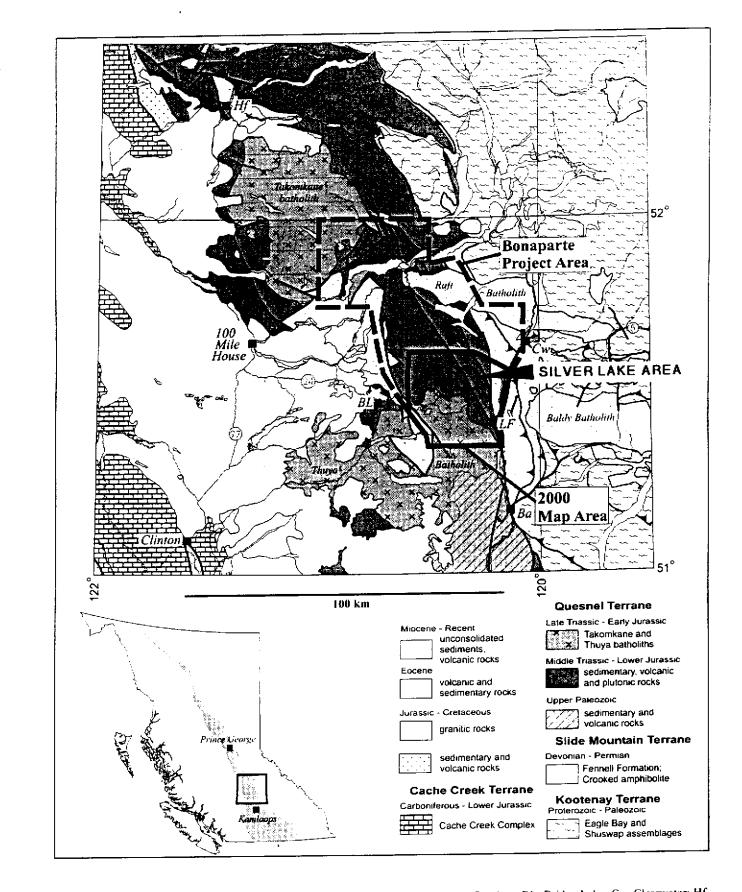
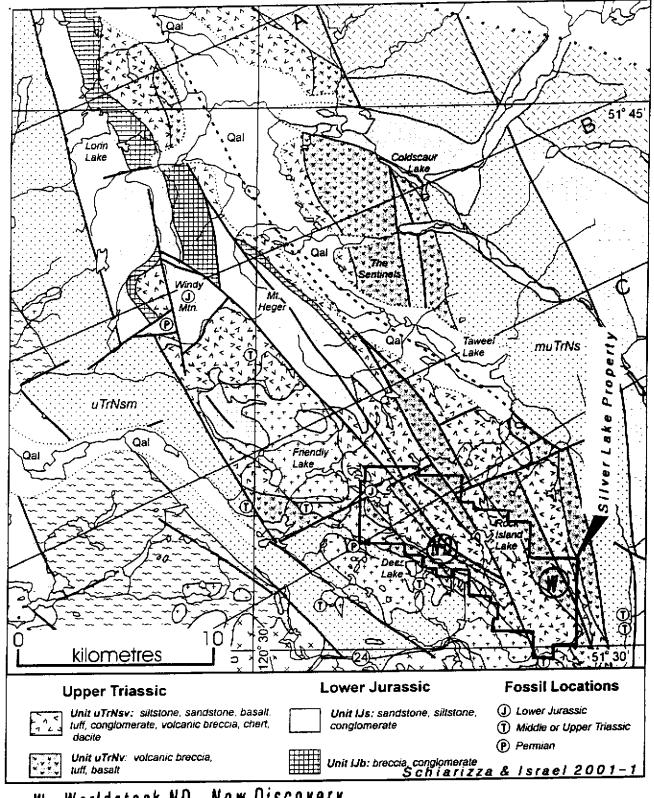


Figure 1. Regional geologic setting of the Bonaparte project area. Abbreviations: Ba, Barriere: BL, Bridge Lake: Cw. Clearwater; Hf, Horsefly: LF, Little Fort. Inset shows location of the map in south-central British Columbia, with distribution of the Quesnel Terrane shown in grey.


Schiarizza & Israel 2001-1

(inconformably?) Nicola Group (Mesozoic) volcanics and sediments. There are numerous intrusions of all scales ranging from large calc alkaline granitic batholiths (Thuya) to smaller alkaline intrusives and mafic to ultramafic complexes in the Nehalliston area. The Quesnel Terrane is well known for a variety of deposit types but in particular for calc-alkaline (Cu-Mo, Mo) and alkaline (Cu-Au) porphyry deposits and camps. The Highland Valley (calc-alkaline-Cu Mo) and Iron Mask (alkaline Cu-Au) camps near Kamloops and Copper Mountain (alkaline Cu-Au) camp near Princeton are good examples.

B. Local Geology

The Bonaparte bedrock mapping program by the British Columbia Geological Survey took place in the property area during 2000 and 2001. This regional mapping at 1:50,000 scale was recently released in Open-File 2002-4 by P. Schiarizza et al. The object was to improve the quality and detail of bedrock maps in the area, in particular by the Geological Survey of Canada in the 1960's (Campbell and Tipper, 1971). This recent mapping by the BCGS was very important as it demonstrated (confirmed) that the volcanic-sedimentary stratigraphy in the area north and east of Deer Lake belonged to the Nicola Group, not Middle Jurassic as inferred by Campbell and Tipper (1971). As mentioned earlier the Nicola Group is highly prospective for a variety of deposit types. Many of the porphyry deposits can be correlated with the Nicola volcanic arc period (Triassic-Lower Jurassic).

The property lies in an area of strongly faulted and probably folded Nicola Group rocks with generally northwest strike. A series of intrusive bodies with similar trend lie along the southwestern property boundary near Deer Lake and extend northwest to Friendly Lake and southeast to Dum Lake (near Little Fort). These appear to be predominantly Late Triassic to Early Jurassic age diorites, gabbros, microdiorite, local syenites and intrusion breccias and possibly represent the core to the volcanic arc. To the northeast on the property occur three main bands of pyroxene lapilli tuff-agglomerate/breccia which were recognized during mapping by BP-

W...Worldstock ND...New Discovery

0

Selco in the 1980's (Gamble, 1986) and by the BCGS (Schiarriza, 2002. Unit uTrnv). These rocks are medium to dark green, massive and medium to coarse-grained pyroclastics. Fragment sizes vary from 1 cm to 20 cm and are comprised of subangular to subrounded porphyritic augite andesite. Clasts are supported by a matrix of fine grained ash tuff. Subordinate units of andesite flows and feldspar crystal tuffs are interbedded with the pyroxene porphyritic units. Pyrite occurs in minor concentrations as widely spaced disseminated grains.

The epiclastic sediments interbedded with, and flanking the volcanic units consist of siltstone, argillite, chert, greywacke and conglomerate. Siltstone predominates. Pyrite is sparse, occurring as disseminated grains, but reached 0.5% to 10% in light grey bands as heavy disseminations with interstitial carbonate. Subordinate, very fine grained, massive, black, carbonaceous argillite is occasionally interbedded with the siltstone. Disseminated pyrite is ubiquitous.

A large, fine to medium grained diorite stock comprised of 20% matics, 75% plagioclase and 5% quartz lies along the western side of the claims. East of Deer Lake, the intrusive is a hornblende-diorite.

At the boundary between the old Ta Hoola 10 and Ta Hoola 13 claims (western Discovery #5), a diorite breccia has formed as a contact phase along the margin of the main diorite pluton. It contains angular diorite fragments to 10 cm in size, which are supported in a diorite matrix. Epidote-chlorite-quartz veins are present. The pyrite content is less than 1%.

Numerous northwest and northeast trending faults traverse the property. Their traces are marked by the alignment of lake chains and a rectangular stream drainage pattern. The main north-northwest striking faults are interpreted as part of a Tertiary (Eucene?) dextral strike-slip system (Schiarizza, 2002).

A high density of mineral occurrences occur in the Little Fort-Deer Lake area within Nicola Group rocks and associated intrusives. These occurrences cover a wide variety of metals and deposit types including porphyry, skarn, vein and disseminated (Figure 9). None of these are considered to be at a more advanced stage of exploration. It is the author's opinion that exploration in this section of the Nicola Belt has been hindered by several factors including extensive till blanket, heavy timber cover/poor access (until recently) and lack of an (economically significant) early discovery. The majority of the known mineral occurrences are in the southern more accessible area. These correlate with, or occur proximal to the Nicola age intrusive belt between Dum and Friendly Lakes. Mineral occurrences on the property were briefly discussed in Section 1.4 in this report.

C. BC Survey Branch Regional Till Geochemistry

In January 2000 the British Columbia Survey Branch released Open File 2000-17 (Ministry of Energy and Mines) titled "Till geochemistry of the Chu-Chua-Clearwater area, BC." (Parts of NTS 92P/8 and 92P/9). This report (Paulen et.al.) provided results from a drift exploration program covering a 350 square kilometre area west and northwest of Little Fort, including the Silver Lake property. 170 fairly evenly spaced till samples were taken by the survey branch; these were analysed for a large number of elements. A major objective of this program was to provide data that would lead to the discovery of economic mineralization in area now covered by a blanket of unconsolidated sediments.

The results from the till survey are very important as they clearly indicate the high mineral potential of the Silver Lake property area. Numerous anomalous gold, silver, copper, zinc and molybdenum values occur in the property area, some of these are shown in Figures 10 a to c. In fact, almost half of the highest values in these metals were from till samples taken on the property as indicated in Table 2.

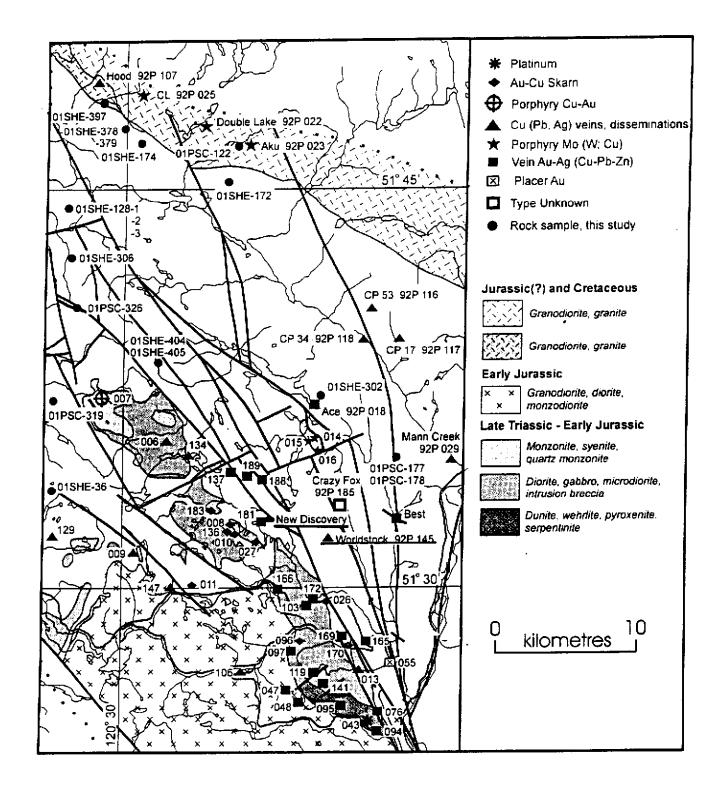


Figure 5. Locations of MINFILE occurrences in the southern and central parts of the Bonaparte project area, and selected rock samples collected during the 2001 field season. Base map is derived from Figure 2, with only plutonic rocks and faults shown. Occurrences discussed in text are shown with name and full MINFILE number. Other occurrences, discussed by Schiarizza and Israel (2001), are designated with only the last 3 digits of their 92P MINFILE number. See figures 2a and 3 for Place Names mentioned in text.

Geological Fieldwork 2001, Paper 2002-1

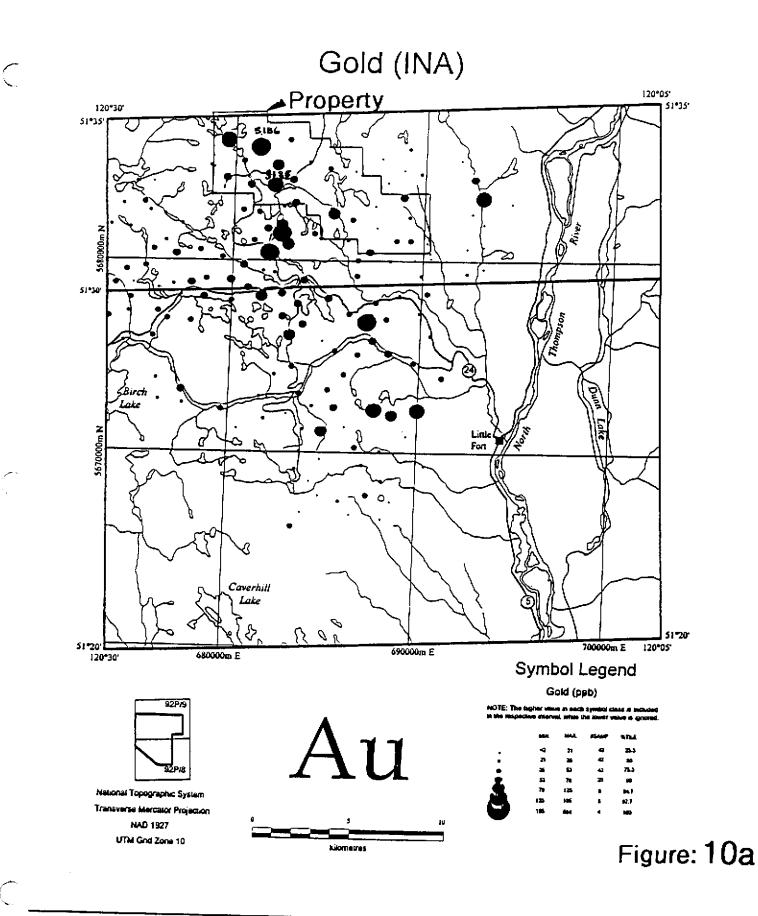
As was demonstrated in an earlier report (Wells, 2002) some of the till anomalies can be related to the known showings and exploration targets on the Silver Lake property. In many cases the amount of glacial transport to the southeast appears to be limited, often less than 500 metres. A few comments follow regarding the relationship between stronger till anomalies and current exploration targets.

TABLE 2

SUMMARY OF HIGHEST CONCENTRATION TILL SAMPLES FOR KEY ELEMENTS

ELEMENT	SAMPLE NUMBERS
SILVER	*989186, *989569, *989163, **989316, 989162, 989229
COPPER	989195, ***989305, 989320, *989569, ***989308
GOLD	*989186, 989195, 989170, 989355, *989185
ARSENIC	989332, 989184, 989354, 989322, 989186
LEAD	*989186, *989188, **989200, 989339, 989226
CADMIUM	989342, 989320, 989186, 989316, 989188, 989184
NICKEL	989544, 989565, 989529, 989528, 989566
MOLYBDEN	UM *989184, 989320, **989316, 989342, 989195, *989308
ZINC	989320, *989186, *989184, *989188, 989342, 989226
*	Discovery Claims/Christopher James Gold Corp.
**	Crater Claims/Christopher James Gold Corp.

*** Worldstock Claims/Christopher James Gold Corp.

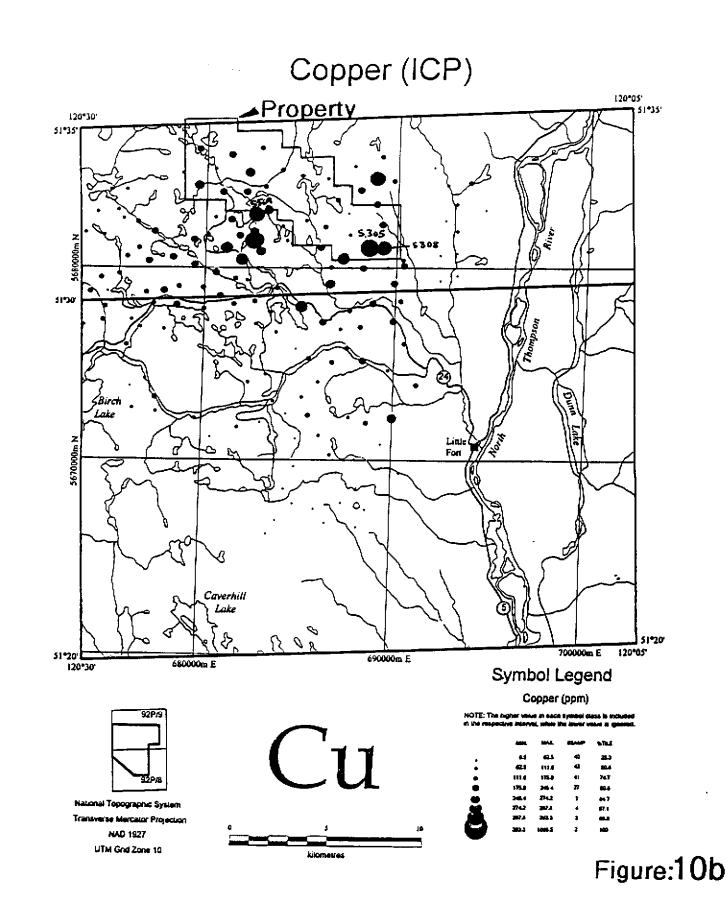

The highest (coincident) gold-silver till value from sample 186 lies in the middle of the Target 1 area (Figures 10). This, and nearby till samples are distinctly polymetallic with coincident Au, Ag, Pb, Zn, As and Mo which correlates well with the known polymetallic vein stockwork mineralization within the target area.

The second highest copper in till value in sample 305 with high molybdenum (Figure 10c). zinc and bismuth occurs just south, down-ice from the Worldstock Porphyry Target. The gold, silver, lead and arsenic values are relatively low. Again the metal distribution correlates well with the known mineralization.

Strong molybdenum-silver in till values occur in sample 316 south of Target 1 in the southern Crater claims (Figure 10c). This area has siliceous breccia float with gram gold values but no significant molybdenum and silver to date.

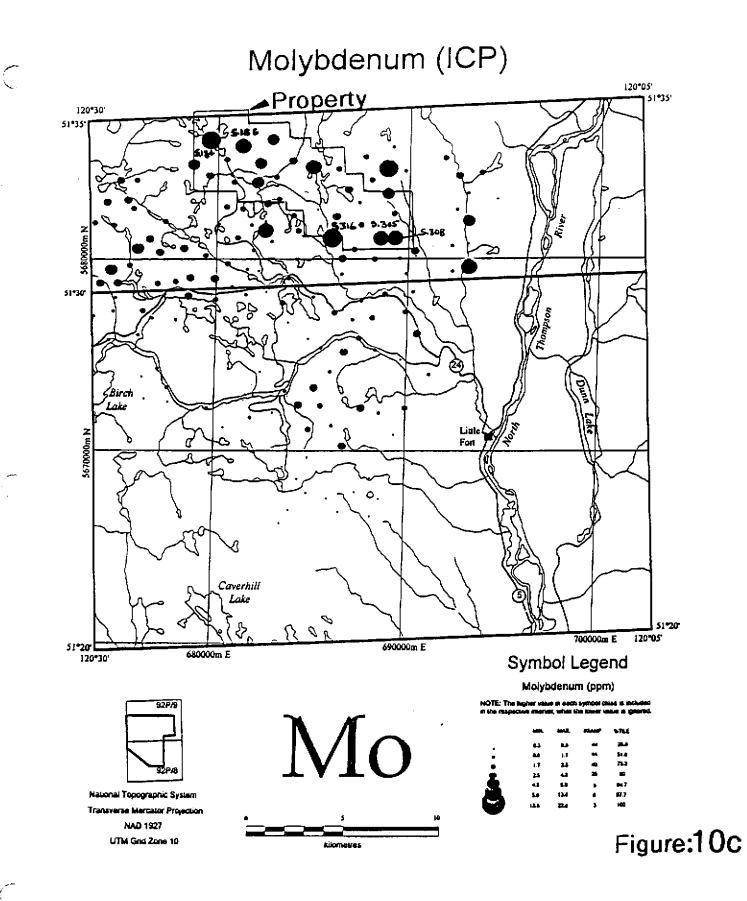
The second highest silver in till value with coincident anomalous copper in sample 569 occurs along the southern boundary of the Discovery claims (PGR). This is just south of Portage Lake where a massive sulfide (Cu, Ag) float discovery was made in 2000.

Several till sample sites that are anomalous in gold, silver, zinc and molybdenum lie within or just south of the property and cannot at this time be related to known mineralization. These offer new targets for future exploration.



Till Geochemistry Au

Open File 2000-17


.

(

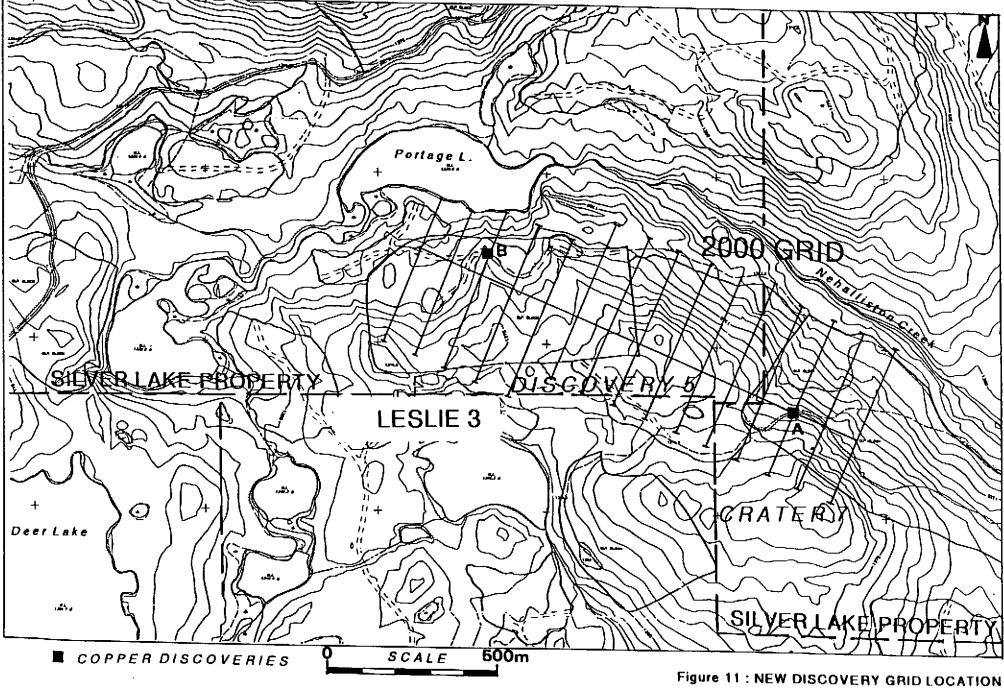
Ć

C

2.0 2001 EXPLORATION ON THE NEW DISCOVERY TARGET

2.1 INTRODUCTION

Year 2000 exploration on the New Discovery massive sulfide target(s) was highly successful. It indicated several coincident geological, geophysical and geochemical targets proximal to the earlier massive sulfide-copper float discoveries (Section 1.4). The Discovery grid follows a northeast trending ridge with a maximum of 65 metres relief (Figure 11). Timber in this area is mainly second growth within two sub-mature plantations, separated by a narrow corridor of old growth. This old growth corridor is to be logged in the near future by Tolko Industries Ltd. (Louis Creek).


Exploration by the Company on the New Discovery target was in three parts with total expenditures of \$189,087.86. A winter program in February consisted of a preliminary induced polarization geophysical survey on several of the 2000 grid lines. Phase 1 exploration (June to mid-August) involved target definition, grid based geological, geochemical and prospecting surveys. These were followed by extensive trenching of targets and preliminary diamond drilling program with seven holes in the Discovery A area.

Phase 2 exploration (August to November) involved fill-in geophysical IP. and magnetic surveys on the grid. This was followed by road construction and eight diamond drill holes testing the Discovery A to B trend.

2.2 WINTER GEOPHYSICAL SURVEY

a) Introduction

An Induced Polarization survey was conducted on the Discovery grid from February 24 to 27 by Scott Geophysics Ltd. of Vancouver (Scott, Feb. 2001). Seven test IP. lines were run in

 $\langle \uparrow \rangle$

 \sim

areas with coincident VLF-EM, magnetic, copper soil geochemical anomalies and mineralized float.

b) Method

A total of 3.8 line kilometres of IP survey was completed using a pole-dipole array at an electrode spacing of 25 metres and 'n' separations of 1 to 5 inclusive. A Scintrex IPR12 receiver and a Scintrax TSQ3 transmitter were used for the surveys with readings taken in time domain.

c) Results

The results from the geophysical surveys were plotted using a variety of plans which are available in a logistic report by Alan Scott (2001). More complete IP coverage took place later in the year during early Phase 2 exploration using the same operator. Anomalous trends are outlined on a geophysical compilation map (Figure 12) which is discussed in a later section in this report. At this stage the IP survey outlined chargeability anomalies in three important areas. These coincide with VLF-EM anomalies (Fraser filtered) proximal to concentrations of chalcopyrite rich float in the A and B discovery areas.

2.3 SAMPLE HANDLING, ANALYTICAL PROCEDURES AND CHECKS DURING PHASE 1 AND 2 EXPLORATION

All of the analytical work of the Phase 2 exploration program was by Eco-Tech Laboratories Ltd. in Kamloops BC.

Soil, rock and split core samples were all transported by company vehicle to a secure site in Kamloops where they were sorted and stored prior to pick-up by laboratory personnel.

Soil samples were dried and sieved (-80 mesh) at the laboratory, then run for 28 elements using standard ICP following aqua-regia digestion. Rock samples were crushed (-10 then 250

gram split to -140 mesh) and run for 28 elements using the same analytical procedure. Gold analysis for soils and rock were geochemical, 30 grams fire assay, A.A. finish. Rock samples with high copper (>9000 ppm) and silver (>30ppm) were assayed, with values in % of g/t respectively.

The laboratory conducted its own analytical checks every 7 to 19 samples; these are shown on the certificates. Comparisons between initial results and check samples did not indicate any significant variations in the main elements of interest which were Au, Ag, Cu, Zn and Mo.

The company conducted checks on higher grade copper-silver trench and drill core samples using the same laboratory. These produced very similar analytical results. All of this analytical data occurs within the appropriate Appendices to this report.

2.4 PHASE 1 GEOCHEMICAL SURVEYS

Two soil geochemical programs were conducted on the Discovery grid during Phase 1 target definition:

A. Grid Soils

This program involved: (1) in-fill soil sampling on 50 metre intermediate grid lines along the copper soil anomaly-geophysical trend between 600W and 1400W, (2) soil sampling on extended grid lines to the north between 1100W and 1600W. All of the sample locations are shown on a grid geo-chemical compilation map (Figure 13) with some 2000 data.

'B' soil horizon samples were taken by P. Watt and G. Wells using a mattock, tree planting shovel combination. These were at 25 metre stations on new compass and topofil lines. 81 samples were run by Eco-Tech Laboratories. Geochemical gold (30 gram) and 28 element ICP (Certificates ak2001-129, 136, 144) results are summarized in Table 3. As described in the

previous report (Wells, 2000) the target 'B' soil horizon is very variable throughout the grid area and often poorly developed and/or modified by logging activities.

Examination of the analytical results indicated the greatest variability occurred with copper, which is one of the main metals of interest. Gold and silver values in soils are generally low to weakly elevated with some spotty higher values locally correlating with high copper. Copper values for the new soil samples are shown on Figure 13 accompanied by proportional symbols for elevated and anomalous values. Note that copper values for 2000 anomalous soil samples are also shown.

The 50 metre in-fill soil sampling on the grid better defined the previous copper in soil trend with numerous anomalous values up to 950 ppm. There are two 'hot spots' on this fairly linear northwest trend, one at 700 to 800W (Discovery A), the second and larger between 950W and 1350W (Figure 13).

The soils taken on the grid extension to the north did not reveal any significant copper anomalies. This area, especially towards Portage Lake features thick till cover with local moraines limiting the use of soils. Some elevated to weakly anomalous copper in soil values occur downslope from the hot spot area on grid line 1100W.

B. Deep Soils

This program attempted to sample basal till or soil 'C' horizon along the two main logging roads crossing the grid. The aim was to use this data to vector into areas of bedrock mineralization using dispersal trails. The north road which is downslope from the soil-geophysical anomaly trend was well suited to this purpose. Sampling beneath banks along the roads enabled deeper penetration of the overburden.

Samples were taken from between 1 and 3 metres depth by P. Watt and G. Wells using a soil auger along the north (samples DSG) and south (samples DSSR) logging roads. A total of 38 samples were run by Eco-Tech labs for gold (geochemical 30 gram) and 28 elements ICP (certificates AK2001-111, 129, 137). Sample locations are shown on Figure 13 with copper values and proportional symbols. Table 4 gives sample grid locations and summary analytical data on Cu, Ag, Au and Zn.

This program produced excellent results with clusters of highly anomalous values along the north road (Figure 13). One cluster occurs at the western end of the copper soil anomaly at 1400W with a high at Sample SG-7 (1693 ppm Cu, 1.2ppm Ag). A second tight cluster occurs west of grid 1700W near till Discovery B with a high at Sample SG-25 (2848 ppm Cu, 0.6ppm Ag). Deep till samples on the north road between 700W and 800W produced weak anomalous copper values downslope from till Discovery A.

2.5 PHASE 1 GEOLOGICAL MAPPING AND PROSPECTING

A geological mapping and prospecting program took place during Phase 1 Target Definition mainly in June and July. Some geological mapping did however take place later in August-September as a follow-up to geophysical and geochemical results.

A. Geological Mapping

This program continued where 2000 mapping left off (Wells, 2000) and consisted of 1:2500 scale grid geological mapping by the author (Figure 14). Topographically the grid covers a northwest trending ridge with 60 to 70 metres relief and crest close to the base line. Portage Lake at the northwestern edge of the grid is drained by the east flowing Nehalliston Creek. There is fairly extensive coniferous forest cover on the grid with two immature plantations separated by a narrow corridor of old-growth (Figure 11). Very few outcrops occur on the grid as there is

extensive till and overburden cover which ranges from a metre to probably in excess of 10 metres thickness in drainage areas. Pebbly, east trending moraines occur near Portage Lake.

Lithologies

The 2001 geological mapping indicated that the grid area was underlain by a sequence of mafic volcanic flows and intrusive equivalents (**unit 1a**) interbedded with lapilli tuffs (**1b**) and cherty siltstones with fine tuffs (**unit 2**). In the eastern area these flows and lapilli tuffs strike west to northwest with subvertical dips. In the western area, strikes and dips are more variable from west to NNW, subvertical to 60° (south to southeast) suggesting larger scale folding.

Grey to medium green, rhythmically bedded cherts, cherty siltstones and fine tuffs? of unit 2 are well exposed in two outcrops along the logging road at grid (approx.) 1700W and 2000W. These units are a few metres in (exposed) width and feature centimetre scale bedding (lamination) which is generally planar but locally contorted and dislocated. The cherty beds are very fine grained, highly siliceous with local concordant fine sulfides, predominantly pyrite. Tuff interbeds are also fine grained, pyritic in places with patchy epidote, dark chlorite and rare carbonate. The adjacent units to this sequence are fine gained and massive green volcanics probably flows with local disseminated pyrite.

Unit1b lapilli tuffs are medium green with millimetre to 2cm long matrix supported, angular lapilli. The lapilli are of mafic volcanics similar to the surrounding flows, while the matrix appears fine grained with significant amounts of carbonate. These units are moderately magnetic and have well developed shape fabrics-bedding.

Massive medium to darker green volcanic rocks of Unit 1a are quite magnetic, massive units which are fine to medium grained, often augite and/or feldspar phyric. In hand specimen they appear to be basalts to microgabbros, and may include intrusive units Unit 1G.

Careful mapping during the 2001 program did not reveal many new outcrops on the grid. Several subcrops were identified in the western plantation along trails. These were mainly Unit 1a augite phyric basalts (flows, breccias) interbedded with Unit 1b lapilli or lithic tuffs (basaltic) and Unit 2 cherty siltstones with local bedding, lamination. Some more massive cherty subcrops may simply represent hornfels after fine grained basalts or tuffs.

Interpretation

The geological mapping by Schiarizza et.al.(Open File 2002-4) suggests that the Discovery grid is underlain largely by Nicola Group (Triassic) Unit uTrNsv sediments and volcaniclastic rocks with minor flows (Figure 8). Unit uTrNv mafic metavolcanics and tuffs are mapped along Nehalliston Creek to the north. This interpretation is not correct based on the grid geological mapping by the author, as mafic volcanic flows dominate to the south with lapilli tuffs and sediments to the north. Mapping also indicates that there is a bend in the strike of units from northwest to west across the grid.

B. Prospecting and Sampling

Prospecting and sampling in the grid area by P. Watt and G. Wells was concurrent with geological mapping by the author. The prospecting focussed on detailed grid coverage but was hindered by the extensive overburden and vegetation cover.

Samples were located by grid coordinates and are shown on the geological map (Figure 14). Table 5 gives brief descriptions and summary analytical data for nine samples (Certificate AK 2001-110R). A variety of samples were taken for analysis, including pyritic-altered basalt (1a), lapilli tuff (1b) and cherty units (2). The majority of samples were from the north road but were spread out over a kilometre length.

Sample 21775 was taken from a large boulder, north of the road near float Discovery B. This variably laminated, magnetite, pyrite and chlorite rich sample contained local quartz veining

with chalcopyrite, and returned 1.84% Cu, 13 g/t Ag and 100ppm Au. These values are comparable with earlier samples taken from this area. Two pyritic float samples taken further to the west (21776 and 21813) returned copper values of 2102 ppm (160ppb Au) and 775 ppm copper (low gold). Neither of the samples contained significant amounts of magnetite.

A pyrite mineralized, magnetic and chloritic basalt sample (21772) taken to the west of the copper soil anomaly (1100W-1350W) returned 1671 ppm Cu and 3.2 ppm Ag. This area produced strongly anomalous copper values from deep soil samples taken in Phase 1.

Sample 21774 taken from the road bank at 1675W was of interest. It featured a fine lapillilithic tuff with pyrite clasts suggesting potential for syngenetic sulfides in the area. This sample however returned very low Cu, Ag and Zn values.

2.6 PHASE 1 TRENCHING PROGRAM

Introduction

Earlier exploration on the Discovery grid indicated a large number of semi-coincident geochemical and geophysical targets in areas with mineralized float. Geological mapping was hindered by an extensive till blanket and vegetation cover, however the depth of overburden often appeared to be in the 2 to 5 metre range. The deep soil sampling program confirmed this. Trenching was considered the best option to test the anomalies and improve geological understanding in poorly exposed areas. A PC250 excavator owned and operated by J. Monette based in 108 Mile Ranch, BC was mobilized onto the grid in early July, and remained for the duration of the Phase 1 and 2 programs.

A total of 17 trenches and one large pit were excavated in July to early August (Figure 14). These were of variable width, length and depth, depending on the target size and overburden. Groundwater levels were exceptionally high due to the unusually wet spring, and

caused numerous problems with trench flooding and caving (waterlogged till). In several important areas deep overburden prevented satisfactory testing of the target(s). Some trenches were too dangerous to sample because of the unstable till profile. All trenches, other than trench 14 were reclaimed shortly after sampling. Trench 14 was left open and used as a reservoir during Phase 2 drilling.

Method

The trenching program was supervised directly by the author. Mapping and sampling was largely by the same person, assisted by either P. Watt or C. Weston. The majority of samples were standard chips or chip-panels with local grabs. Samples were run for gold (geochemical 30 gram) and 28 element ICP with assay checks on higher Cu and Ag values (Certificates AK2001-187, 207, 229). Tables 6 and 7 summarize the sampling data with brief sample descriptions. Sampling and geological data for the trenches that encountered bedrock occur on a series of plans (Figures 15 to 20). All trench locations are shown on the geological plans (Figure 14, 20).

Pit A required a significant amount of excavator time with follow-up cleaning using light pump and pressure hose equipment by P. Watt and C. Weston.

Results

A short summary of trenching results follows; frequent reference should be made to Figure 14 which shows all trench locations, and to Appendix 4 (Trench and Sampling Data).

Trench-1: Origin at 6+97 W/0+15N. Az026, Length 65m.

This trench tested semi-coincident soil, VLF-EM (filtered) and IP chargeability anomalies on line 700W, 50 metres downslope from float discovery A. Proximal to grid station 5+50N, the trench encountered a steeply dipping 1 metre wide zone of oxidized massive pyrite-chalcopyrite with minor quartz and disseminated sulfides in the augite phyric basalts. Sample 21952 returned 9.10% Cu, 68.5g/t Ag and 300 ppb Au which was confirmed by a later repeat sample 21957 (see

Table 6). This represented the first discovery of bedrock copper rich massive-sulfides in the grid area. The mineralized area in Trench-1 was later incorporated into Pit A (Figure 15). The northern 25 metres of the trench was in deep waterlogged till with no bedrock exposures.

Trench-2: Origin at 7+07W/5+55N, Az 315, Length 10m.

This trench tested the northwest strike projection of the Trench-1 massive sulfide zone and confirmed an azimuth 315NW trend. The sulfide zone again features a massive pyrite, chalcopyrite zone with quartz up to 0.7 metres wide. Strongly chloritized and locally deformed volcanic wallrocks contain significant amounts of disseminated pyrite and local chalcopyrite. Three chip samples (21959, 21960, 21961) returned from 6.92% to 15.30% Cu with up to 177g/t Ag and 330 ppb Au. A 2.45 metre, true width composite sample (at 4m, Figure 15) including mineralized wallrocks averaged 3.75% Cu and 36.3 g/t Ag. The Trench-2 mineralized zone was later incorporated into Pit A (Figure 15).

Trench/Pit-3: Centred at 6+90W/5+43N, 4x4m.

The pit tested the southwest strike projection of the Trench-1 massive sulfide zone and encountered thick sandy till overburden locally >4 metres deep. A small window of bedrock exposed at the bottom of the pit featured a 10cm wide milky quartz vein (Az. 270) with blebby chalcopyrite and chloritized pyritic wallrocks. A 1 metre chip sample (21963) returned 3.26% Cu, 27.6g/t Ag and 140 ppb Au.

Pit A: Incorporates sulfide zones in Trenches 1, 2 and 3 centred at 7+00W/5+50N.

Figure 15 is a sampling plan with simplified geology for this pit, and incorporates data from the three other trenches. This pit basically follows the massive sulfide-quartz zone(s) for 25 metres, azimuth 305 to 320. The sampling data for the pit area is summarized in Table 8.

The massive sulfide zone is copper rich (Ag, Au) and lies 50 metes north and downslope (up-ice) from float discovery A. It very probably represents a source area for the high grade float.

The pyrite-chalcopyrite massive sulfide-quartz vein zone follows a fault/shear in Nicola Group, augite porphyry basalts and varies between 0.5 and 1.5 metres in true width with local pinch-outs. The wallrocks are chloritized, commonly sheared with magnetite, disseminated pyrite and chalcopyrite. Chip sampling returned copper values in the 2% to 15% range with 34 to 177g/t Ag and 330 ppb Au over 0.6 to 1.5 true widths. Two composite samples which included disseminated wallrock mineralization returned 3.75% Cu, 36.3 g/t Ag over 2.45 metres and 4.58% Cu, 34.3g/t Ag over 2.0 metres. Sampling of two anastomosing fracture zones with quartz veining and chalcopyrite included one with 3.26% Cu over 1 metre width. These zones are subparallel and 3 to 4 metres south of the main zone.

Trench-4: Origin 6+00W/5+13N, Az. N, Length 35m.

This trench tested the projected trend of the massive sulfide zone, and geophysical VLF-EM and chargeability anomalies. The overburden is greater than 6 metres deep, consisting of pebbly to bouldery till with sandy clay matrix. Some subcrop of augite porphyry basalt was possibly encountered along the trech floor.

Trench-5: Origin at 7+98W/4+00N, Az. 024, Length 20m (Figure 16).

This trench tested a till covered area with high IP chargeabilities at the edge of a magnetic ridge (Figure 12). An anomalous copper in soil value of 1010 ppm was returned from a sample 25 metres to the east (Figure 13). The massive andesites to basalts exposed in the trench were non-magnetic with sparse pyrite. One narrow milky quartz vein with northeast trend and narrow silicified selvedges contained disseminated pyrite and chalcopyrite. Samples taken in the vein area returned up to 850ppm Cu with elevated Ag to 0.8 ppm.

Trench-6: Origin at 8+00W/7+96N, Az .024, Length 26m.

This trench tested the edge of an IP chargeability and VLF-EM anomaly in the northern grid area. It encountered thick bouldery float/till above blue clay and did not penetrate bedrock. The boulders are mainly coarse mafic volcaniclastics with lapilli tuffs and breccias. Some of these

are strongly magnetic containing disseminated and veinlet pyrrhotite with pyrite. One float sample contained weakly elevated copper at 122ppm (21967).

Trench-7: Origin at 13+84W/7+10N. Az 180, Length 30m.

This trench tested an area with high copper values from deep soil samples (up to 1693 ppm) at the northwest end of a strong copper in soil anomaly. A magnetic high occurs in this area. Deep clayey till and high water in this trench were a problem; no bedrock was penetrated. Float examined from the trench was predominately magnetic augite phyric basalt with minor disseminated pyrite.

Trench-8: Origin at 13+95W.7+00N. Az. 265, Length 25m.

This trench, perpendicular to the previous was along the southern edge of the road, and encountered a bedrock ridge below 1 to 2 metres of overburden. The bedrock was fairly homogeneous, variably magnetic augite basalt, locally chloritic and fractured with sparse pyrite. No bedrock samples were taken. Within the eastern trench area a significant amount of medium to coarse, angular, chalcopyrite mineralized, chloritic and magnetite rich float rested on bedrock. Some of these have features very similar to the mineralized zone in Pit A, and contain centimetre scale chalcopyrite veins in a magnetite rich host. Grab samples returned up to 3.30% Cu with 32.5f/t Ag (Table 6). This float concentration is not oxidized, suggesting a proximal mineralized zone either up-slope to the south or up-ice (glacial transport direction) to the west.

Trench-9: Origin at 14+05W/6+30N, Az. 206, length 30m.

This trench was a follow-up to B and tested the area 35 metres up-slope to the south. Higher IP chargeabilities occur in this area; there is not however any clear VLF anomaly. Much of the trench was underlain by strongly fractured and altered (often cherty) volcanics which may represent hornfels. Conditions in this trench were highly dangerous due to unstable walls, consequently no sampling took place. Material excavated from the trench was weakly pyritic, and no strong sulfide rich zones were observed.

Trench-10: Origin at 17+40N, 5+75N Az. 195, length 38m

This trench tested the area west of float discovery B and featured coincident VLF anomaly with high copper values in deep soils (up to 2848 ppm). Weak copper (Zn) mineralization occurs in pyritic metavolcanics and cherty siltstones in an outcrop, 65 metres to the east along the road.

A sequence of augite porphyry basalt and pyritic cherty tuffs is exposed below shallow sandy till in the northern parts of this trench (Figure 17). Up to and greater than 10% disseminated pyrite occurs in the cherty units which locally are clearly volcaniclastic rocks. These units are generally narrow, less than 5 metres wide. Chip and grab samples (Table 6) returned elevated copper values up to 1033 ppm, accompanied by anomalous gold values between 155 and 280 ppb. Arsenic values were also elevated up to 185 ppm. The southern end of the trench encountered thick till with two or more sequences dominated by pebbles and cobbles (locally exotic). Deep soil samples in this area (high in copper) appear to have been taken above transported till. The same is true for copper mineralized float in the discovery area to the east. These observations promoted many questions regarding the source of the (non to weakly oxidized) mineralized float at discovery B.

Trenches-11 A and B: Centred at 17+20W/5+70N, Az. 026, length 10m.

These two pits/trenches encountered deep overburden beneath copper mineralized float to the east of Trench-10. This suggested that the source of this float was probably to the north or northwest.

Trench-12: Origin at 7+50W/5+50N, Az 026, length 20m **Trench-13**: Origin at 7+65W/5+45N, Az 026, length 30m **Trench-14**: Origin at 7+97W/5+55N, Az 026, length 65m

These three trenches were step-outs to the west from Pit A and attempted to intersect the massive sulfide-vein zone along its projected northwest trend. Filtered VLF, IP chargeability, and

copper in soil anomalies are semi-coincident with this trend, and lie along the northern edge of a magnetic ridge (Figures 12 and 13). All three trenches encountered deep sandy clay till, and filled rapidly with groundwater. Some augite porphyry bedrock was encountered at the southern ends of these trenches, however the overburden/bedrock contact dipped steeply to the north. A detailed examination of trench dumps did not indicate any massive sulfide float.

Trench-15: Origin at 18+00W/3+45N, Az. 204, length 50m.

This trench tested an area of anomalous copper in soils coincident with an east to northeast trending chargeability anomaly. Rapid inflow of groundwater was again a problem, however a long section of bedrock was examined in the southern area (Figure 18). Massive to strongly jointed and variably epidote altered basalts generally contain sparse pyrite. These are cut by several narrow, northeast trending quartz veins and fault zones. Samples taken from these (Table 7) did not return any significant Cu, Ag or Au values.

Trench-16: Origin at 16+90W/4+20N, Az 235, length 35m.

This trench was 100 metres north of Trench 15 along the same northeast to east trending IP chargeability anomaly (stronger values). Variably fractured, non magnetic and locally pyritic basalt and mafic lapilli tuffs are cut by several strongly oxidized fracture zones with easterly trend and subvertical dips. Four chip and grab samples taken from these structures (Figure 19) returned copper values with elevated Ag, local Au and Zn. Magnetite rich zones with disseminated pyrite (samples 21985 and 86) returned the higher values of up to 1878 ppm Cu and 2.0 ppm Ag. This style of mineralization is similar to that observed in float samples with higher copper values along the north road, and alteration selvedges to massive sulfide veins in Pit A.

Trench-17: Origin at 17+00W/6+00N, Az. 285, length 25m.

This trench was along an old logging trail, 30 metres north of float discovery B, and was an attempt to locate bedrock mineralization (source area). Much of the trench is in deep cobbly

till (>4 metres) with short sections of strongly fractured cherty and pyritic volcaniclastic bedrock. Some more massive sections are plagioclase phyric. No samples were taken from this trench.

Outcrop on North Road: 16+75W/5+50N

This outcrop was cleaned by the excavator and later washed with high pressure hoses. As observed earlier (Wells, 2000) this outcrop features a cherty siltstone bedded unit above augite porphyry basalt (flows?). Strong concentrations of disseminated pyrite occur proximal to the bedded unit, and in narrow northwest to north trending fracture zones below with epidote and magnetite (Table 7). Narrow chip and grab samples returned copper up to 1147 ppm, zinc up to 2073ppm, and silver values up to 0.6ppm.

2.7 PHASE 1 DIAMOND DRILLING PROGRAM

The trench discovery of a copper rich massive sulfide-vein zone in area A was followed by a Phase 1 diamond drilling program in August. This program was designed to test the geometry of the sulfide-vein zone at shallow depth and along strike. It was also to test for proximal parallel zones and disseminated mineralization in the mafic volcanic-volcaniclastic host rocks. This was the first drilling to be recorded in this area on the property.

A. Procedure

The drilling consisted of six, NQ diamond drill holes totalling 548.3 metres that were completed between August 7 and 16, 2001. A Boyles 56 drilling rig was used by a crew from Core Enterprises Ltd. based in Clinton, BC. Water for drilling was pumped from a small drainage near grid 750W. Minor trail construction was required to access Holes 1, 2 and 6, the other holes were along the south logging road (Figure 14).

Drilling was supervised by the author. A temporary core logging and sampling facility was set up proximal to the drilling area. All core logging was by the author and sampling by

C. Weston. Core samples were split using a standard Longyear splitter. One half of the core was sent to Eco-Tech Laboratories in Kamloops, BC for geochemical gold (30 gram) and 28 element ICP analysis. The remaining core in original boxes was transported to, and stored at a secure site in Kamloops, BC.

B. Results

Table 9 gives details with sampling highlights on the holes drilled in the Phase 1 program. Drill hole collar locations traces are shown on several plans including Figures 12, 14 and 20. Appendix 5 is devoted to Phase 1 diamond drilling data and includes: copies of original diamond drill logs, drill profiles (Figures 21 to 24) and sampling tables and laboratory certificates of analysis. This data is generally sorted by drill hole, in numerical order. A brief review of the drilling results follows on a section basis.

1. DDH's ND2001-01 and 02 (Figure 21)

Holes 1 and 2 were drilled to the north from the same drill pad close to the section 700W. These holes tested the Pit A massive sulfide-quartz zone at shallow depths. Semi-coincident VLF, IP chargeability, and copper in soil anomalies occur in this area (Figure 21).

These two holes intersected a sequence of variably epidote altered, augite phyric basalt flows and breccias with local strongly laminated and chlorite, magnetite altered intervals. The latter contain disseminated pyrite and local chalcopyrite and may represent both structural zones (faults) and bedded tuffs.

The main sulfide-quartz zone is sub-vertical and was intersected by both holes; the stronger sulfides occur in the upper hole 1. In Hole 1 a 0.55 metre interval of massive chalcopyrite and pyrite returned 14.70% Cu, 98.9 g/t Ag and 295 ppb Au, which is very similar to the values in Pit A, 20 metres above. This interval combined with disseminated mineralization in the chlorite-magnetite alteration-fault zone below, averaged 1.76% Cu and 11.23 g/t Ag over a

NEW DISCOVERY PROGRAM: PHASE 1 DRILLING INFORMATION

Ŋ

DDH NO.	GRID LOCATION (Collar)	AZIMUTH	INCLINATION	DIP TEST @ m (corrected)	LENGTH m	CASING m	START	FINISH
ND2001-01	7+02.5W :5+20.5N	026	-50	-50@93.57	93.57	3.66	7/9	8/9
ND2001-02	As Above	026	-65	-58@98.75	98.75	3.05	8/9	10/9
ND2001-03	7+25W:5+06.5N	026	-45	-43@84.4	102.71	3.66	11/9	12/9
ND2001-04	6+77W:0+17N	026	-55	-49@63.0	78.33	6.10	13/9	14/9
ND2001-05	6+77W:0+17.5N	026	-65	-61@78.33	9 0.52	4.88	14/9	15/9
ND2001-06	7+62W:5+46N	026	-50	-48@50.9	84.42	4.57	15/9	16/9

HIGHLIGHT ASSAY INTERVALS

SECTION	HOLE	FROM	то	LENGTH	COPPER	SILVER	GOLD
7+00W	ND2001-01 (-50)	41.63m	47.00m	5.37m	1.76%	11.23 g/t	
	Includes	41.63m	42.18m	0.55m	14.70%	98.9 g/t	0.30 g/t
6+77W	ND2001-04 (-55)	29.39m	31.39m	2.00m	0.44%	2.5 g/t	
		37.23m	40.40m	3.17m	0.92%	12.67 g/t	
	Includes	37.23m	38.23m	1.00m	2.39%	38.17 g/t	0.23 g/t
6+77W	ND2001-05 (-65)	53.64m	56.62m	2.98m	0.71%	5.44 g/t	

TABLE 9

5.37 metre length. In hole 2 the zone was 20 metres deeper and featured a strong chloriticmagnetite altered shear 3.30 metres wide. This interval contained 5% to 10% disseminated pyrite and minor chalcopyrite with lower copper values up to 1117 ppm.

The narrow quartz vein zone just south of the sulfide zone in Pit A was also intersected by both holes and has a shallower 50° south dip (on section). This represents another narrower cross-cutting structural-vein-alteration zone. It ontains magnetite, chlorite, disseminated sulfides and quartz veins. A narrow 1 metre interval in Hole 1 returned 1161 ppm Cu.

Figure 21 clearly indicates the excellent correlation on this section between geochemical, geophysical anomalies and the known mineralization in pit and drillholes. The main sulfide zone (Pit A) clearly is subvertical, with the strongest sulfide mineralization occurring proximal to fault intersections.

2. DDH. ND2001-03 (Figure 22)

Hole-3 on Section 725W was a 25 metre step-out to the west. It intersected a similar sequence of augite porphyry basalt flows with local breccias and possible volcaniclastic units. Several structurally controlled (and/or tuff hosted) alteration units with chlorite, magnetite, disseminated sulfides and rare quartz were encountered. A subvertical 2 to 3 metre wide structural-alteration zone with low copper values (up to 1302 ppm) correlates with the structure on section 700W. The copper mineralization appears to be higher in the structural hanging-wall with a narrow zone of chalcopyrite rich veinlets (9 metres above) returning 4752 ppm Cu, 2.4 ppm Ag over 0.65 metres. The shallower, south dipping and sulfide bearing quartz vein zone on section 700W also appears to be present, and returned 1235 ppm Cu over a 1.2 metre interval (Figure 22).

3. DDH'S ND2001-04 and 05 (Figure 23)

These two holes from the same pad on section 677W were a 25 metre step out to the east from holes 1 and 2. Both holes encountered several mineralized alteration zones (often structural, faults) with disseminated pyrite and variable chalcopyrite. These cut a sequence of generally massive augite basalts with patchy epidote alteration and background copper values (generally <300 ppm). The alteration zones interpreted on this section appear to represent intersecting high angle structures, and range from 2 to 7 metres in apparent width. The main subvertical zone contains the higher grade copper intervals as on section 700W. The upper intersection of this zone in Hole 4 lies 25 metres below surface and returned 0.92% Cu, 3.17 ppm Ag over 3.17 metres. This includes a 20 cm band of massive pyrite and chalcopyrite which returned 2.39% Cu, 28.17 g/t Ag and 230 ppb Au over 1 metre (Pit A type values). The lower intersection of the zone in Hole 5 involved a much broader zone of disseminated mineralization with magnetite and breccia zone (fault near base). This zone returned an average of 0.71% Cu, 5.44 ppm Ag over 2.98 metres.

A shallower south dipping alteration zone up to 2 metres wide intersects the main sulfide zone at shallow depth (Figure 23) and probably correlates with a similar feature on section 600W. This zone is better mineralize in hole 04 and returned 0.44% Cu, 2.5 ppm Ag over a 2.0 metre sample interval.

4. DDH.ND2001-06 (Figure 24)

Hole 6 on section 762W was a further step-out to the west from Hole 3. This hole intersected a generally massive sequence of augite basalt (flow) units with patchy epidote alteration. Two narrow quartz vein-alteration zones less than 2 metres wide returned higher copper values. The upper and better of these was 0.34% Cu, 1.8 ppm Ag over a 1 metre sample interval.

C. Comments

- Closely spaced drill holes on the Pit A massive sulfide-vein target indicated complicated geometry relating to intersecting, variably mineralized and steeply dipping structuralalteration zones.
- The main sulfide zone on section 700W displayed an excellent correlation with geochemical and geophysical anomalies.
- Stronger sulfide mineralization appears to occur at structural intersections. A possible east rake to the Pit A zone was suggested.
- Drill results in the eastern holes suggested potential for broad zones of disseminated mineralization possibly averaging 1% copper or better.
- Drill results to the west were not encouraging with long intervals of barren, augite porphyry basalts.

3.0 2001 PHASE 2 EXPLORATION

3.1 TARGET DEFINITION GEOPHYSICAL SURVEYS

a) Introduction

Following Phase 1 exploration a compilation of grid exploration data indicated that further more detailed geophysical coverage would greatly assist in defining future drill targets along the Discovery A-B trend. Coincident filtered VLF, IP chargeability and copper in soil anomalies had been instrumental in the discovery of bedrock mineralization in area A.

In August F. Laroche was hired to brush out the 50 metre spaced intermediate grid lines used during Phase 1 soil sampling. Some further geological mapping on the grid took place at this time by the author.

b) Method

A crew from Scott Geophysics Ltd. was mobilized onto the property early in September. A total of 5.2 line kilometres of IP and 3.3 line kilometres of magnetic/VLF surveys were completed from September 5 to 10. Exactly the same instruments and procedures were used as in the November 2000 (Wells, 2000) and February 2000 (this report) surveys by the same company (also same crew). The IP surveys involved complete grid coverage on 100 metre spaced lines. The magnetic/VLF survey was on the intermediate 50 metre spaced lines.

c) Results

A report and maps by Alan Scott, geophysicist (September 14, 2001) integrated the geophysical results from Phase 2 and earlier geophysical surveys on the grid. The geophysical anomalies defined by these surveys are summarized in Figure 12 which also shows the location of earlier trenches and all 2001 drillholes.

The Phase 2 geophysical results confirmed and better defined earlier trends. Semicoincident and fairly continuous IP chargeability and filtered VLF (Cutler, Maine Station) anomalies occur between discoveries A and B, and have northwest to west trend. VLF filtered anomalies are narrow and linear compared to generally broad IP. chargeability anomalies with local lobes. A broad area of high IP. chargeabilities occurs between 800W and 1100W. A narrower, more westerly trending chargeability anomaly continues to the west and off the grid. A locally coincident magnetic ridge shows a similar bend to the west across the grid (Figure 12) with local narrow NNE trending 'breaks'.

The area drilled during Phase 1 clearly lies near the eastern end of the anomalous geophysical trend. Coincidently, virtually all of the anomalous copper in soils and deep soils lie to the northwest and downslope from the main geophysical (A-B) trend.

3.2 ACCESS

At this time only the eastern and western plantation areas were drill accessible by a network of old logging trails. The heavily timbered old-growth corridor between grid 850W and 1200W featured some of the better geochemical-geophysical targets along the A-B trend and posed an access problem for drilling.

Tolko Industries Ltd. with operations based in Louis Creek had current logging permits for this corridor and plans for activities early in 2002. An agreement was made for Tolko to log an access trail just north and parallel to the grid base line under their permit. The location of this access called the 'Tolko Trail' is shown on most of the larger plans in this report (Figures 12, 14, 20). This trail was installed and logged between September 20 and 30, and with pre-existing trails links the main north and south logging roads. The services of J. Monette's PC250 excavator was used for some of this work assisted by P. Watt.

3.3 PHASE 2 DIAMOND DRILLING PROGRAM

A compilation of Phase 1 and 2 exploration data indicated a >1.4 kilometre long geological, geochemical and geophysical target along the A-B trend with several 'hot spots'. A Phase 2 drill program was designed to test these northwest to west trending anomalies at 100 to 200 metre intervals with single holes. The object was basically to locate hot spots with bedrock Cu (Ag, Au) mineralization like the massive sulfide-vein zone in the Pit A area (Phase 1). These would be further tested by future trenching and drilling.

A. Procedure

Phase 2 drilling consisted of eight, NQ diamond drill holes totalling 934.51 metres that were completed between September 26 and October 16. The same drill rig and crew from Core Enterprises Ltd. were used for this program. Water for drilling was pumped from a reservoir (Trench #14) and creek along the grid line at 800W.

All drilling was supervised by the author. Poor weather conditions resulted in all core logging and splitting taking place at the company storage site in Kamloops, BC. Core logging was by the author and sampling by G. Wells using the same equipment and procedures outlined in Phase 1 drilling. As in Phase 1 all analytical work was by Eco-tech Laboratories Ltd using the same procedures.

B. Results

Table 10 gives details on the holes drilled in the Phase 2 program with sampling highlights. Drill hole collar locations and traces are shown on several plans including Figures 12, 14 and 20. Appendix 6 is devoted to Phase 2 diamond drilling data and includes copies of original diamond drill logs, drill profiles (Figures 25 to 32), sampling tables and laboratory certificates of analysis. This data is generally sorted by drillhole and by section from east to west. A brief review of the drilling results follows on a section basis.

DDH NO.	GRID LOCATION (Collar)	AZIMUTH	INCLINATION	DIP TEST @ m (corrected)	LENGTH m	CASING m	START	FINISH
ND2001-07	5+88W 4+90N	000N	-55	-50@87.48	90.83	6.70	26/9	28/9
ND2001-08	8+07W 5+27N	026	-45	-45@121.0	121.62	8.23	28/9	29/9
ND2001-09	9+94W:5+25N	026	-45	-43@93.57	139.29	5.18	30/9	1/10
ND2001-10	9+00W:5+42N	026	-45	-45@139.29	139.29	9.14	2/10	3/10
ND2001-11	11+50W:5+41N	026	-45	-42.5@63.1	139.29	3.66	4/10	8/10
ND2001-12	13+09W:5+65N	026	-45	-42@63.1	114.91	9.75	9/10	10/10
ND2001-13	17+00W::5+65N	026	-45	-43@51.0	139.29	19.51	12/10	15/10
ND2001-14	15+62W;6+10N	026	-50	-50@38.71	49.99	5.18	15/10	16/10

NEW DISCOVERY PROGRAM: PHASE 2 DRILLING INFORMATION

Ŋ

 $\langle \cdot \rangle$

HIGHLIGHT ASSAY INTERVALS

SECTION	HOLE	FROM	то	LENGTH	ณ %	Ag ppm	Au ppb	Мо ррт
5+88W	ND2001-07 (-55)	48.03 57.15	52.50 58.15	4.47 1.00	0.135 0.426	<0.2	5	
8+07W	ND2001-08 (-45)	64.94	65.69	0.75	0.983	1.8	30	
9+00W	ND2001-10 (-45)	86.73 122.05	88.00 123.00	1.27 0.95	0.166 0.125	1.0 0.2	5 280	
9+94W	ND2001-09 (-45)	48.58	49.98	1.40	Low	0.4	65	B42
11+50W	ND2001-11 (-45)	105.46	106.50	1.04	0.54	2.4	35	
13+09W	ND2001-12 (-45)	58.80	59.80	1.00	1.68	16.6	105	*
15+42W	ND2001-14	1	No signif	ficant values.	·	• -		.
]7+00W	ND2001-13	1	No signif	ficant values.				

TABLE 10

1. DDH.ND2001-07. Section 600W (Figure 25)

This hole was a 75 metre step-out from Phase 1 drilling and tested the eastern projection of the mineralized zones and coincident IP-VLF geophysical targets. Earlier, Trench 4 had failed to penetrate the deep till overburden in this area.

Hole 7 encountered a sequence of augite to feldspar phyric basalt units with several magnetite-chlorite alteration zones up to 5 metres (apparent) width. These featured disseminated pyrite and local chalcopyrite mineralization. Two closely spaced zones returned copper values with low Ag and Au, these include 0.135% Cu over 4.47 metres (composite) and 0.426% Cu over 1 metre. These intersection and alteration zones correlate with the IP chargeability anomaly.

2. DDH. ND2001-08. Section 807W (Figure 26)

This hole was a 45 metre step-out to the west from Hole 6 (Phase 1) and tested a filtered VLF-EM anomaly at the northern edge of strong IP chargeabilities (Figure 26).

Several pyrite-chalcopyrite mineralized, chlorite-magnetite alteration zones were identified in a sequence of massive to rubbly augite and/or feldspar phyric basalts. One main brecciated section between 76.83 and 97.37 metres possibly correlates with the structural-mineralized zone in Pit A. A narrow 0.75 metre interval near the base of this brecciated section featured chalcopyrite rich carbonate veining and returned 0.98% Cu, 1.8 ppm Ag. Another narrow alteration zone higher in the hole returned 0.4% Cu over 1.0 metre (low Ag, Au).

3. DDH.ND2001-10. Section 900W (Figure 27)

Hole 10 tested the northern edge of a strong IP chargeability anomaly in an area with two filtered VLF anomalies approximately 30 metres apart. The soil survey in this area did not indicate any anomalous copper values.

The top of this hole encountered a pyritic and fine veined, cherty sequence with local siltstones? (hornfels) and returned anomalous gold (up to 100 ppb) and Mo (up to 211 ppm) values. This sequence correlates with the southern VLF anomaly and stronger IP chargeabilities. A sequence of rubbly augite phyric basalts below contain local quartz vein stockworks with low values. Below this, more massive basalt units feature strong magnetite-chlorite alteration along several narrow fault zones with disseminated pyrite and chalcopyrite. Two of these underlying the northern VLF anomaly returned 0.95 to 1.27 metre intervals of 1250 and 1659 ppm Cu. The lower of these was anomalous in Au (280 ppb) and Mo (425 ppm).

4. DDH.ND2001-09. Section 994W (Figure 28)

This area features strong IP chargeabilities with several semi-coincident VLF anomalies and magnetic ridges (highs). Lithologies were similar to those in hole 10 with a distinct pyritic, siliceous-cherty sequence with epidote alteration (hornfels, calc-silicates) below overburden. Intense quartz veining with stockworks occur at 41.60-47.09 m and 68.92-74.80 m with local anomalous Mo values up to 842 ppm. The massive augite to feldspar phyric basalt sequence below does not feature any significant copper mineralized (magnetite-chlorite) alteration zones, and sampling returned low values.

5. DDH.ND2001-11. Section 1150W (Figure 29).

This area features a single VLF anomaly that lies up slope from a copper in soil anomaly beginning at 725N. There is a distinct trough in the main IP chargeability anomaly along grid line 1200W. Hole 11 encountered non magnetic, sparsely mineralized gabbroic intrusive rocks below overburden. These are in contact with magnetic, silicified (cherty) tuffs and possibly siltstones/hornfels with disseminated pyrite and pyrrhotite. Downwards these hornfels grade into non-magnetic equivalents with less disseminated sulfides. The lower half of the hole is dominated by massive to brecciated augite phyric basalts. These are cut by an upper chlorite-carbonate altered shear with low copper values. A lower chlorite-magnetic alteration zone (105.46-

106.50m) featured disseminated pyrite and chalcopyrite associated with quartz-carbonate veining. A 1.04 metre sample interval returned 0.54% Cu and 2ppm Ag.

The VLF anomaly on this section spans the sulfide mineralized hornfels and alteration zones in basalts. The presence of gabbroic intrusive rocks is interesting and may correlate with the IP chargeability trough to the east. This interpretation is consistent with the hornfels at the top of Holes 9 and 10 to the east.

6. DDH.ND2001-12. Section 1309W (Figure 30).

Hole 10 was a 160 metre step-out west from hole 11 and tested an area of coincident high IP chargeabilities and VLF anomalies. A strong copper in soil anomaly north of grid 700N occurs downslope from these.

Cherty units probably representing hornfels were encountered at the top of the hole with a long sequence of augite phyric basalts below. A chlorite-magnetite altered, fault zone between 56.85 and 59.80 metres contained quartz veining with disseminated to semi-massive, pyrite and chalcopyrite. A 1.04 metre interval returned 1.68% Cu, 16.6 g/t Ag and 105 ppb Au. Copper values up to 650 ppm were returned from a 9 metre interval of magnetite-hematite alteration below.

The size of the mineralized structural-alteration zone and styles of mineralization are similar to those observed in the Pit A area at 700W. VLF and IP chargeability anomalies on this section span the pyritic hornfels and mineralized zone (Figure 30).

7. DDH.ND2001-14. Section 1562W (Figure 31).

This final short hole of the drill program tested below an outcrop of feldspar to augite phyric basalt with disseminated pyrite and local pyrrhotite veins along the north logging road. IP chargeability and VLF anomalies project into this area (Figure 12).

Hole 14 encountered a mixed sequence of variably bedded lapilli and lithic tuffs (unit 1b), intruded by a 10 metre wide feldspar phyric basalt dike. This dike projects vertically to the road outcrop. Samples from pyritic (1-4%) volcaniclastic rocks did not return any significant copper values. The IP chargeabilities (and VLF) in this area can probably be related to the disseminated pyrite.

DDH.ND2001-13. Section 1700W (Figure 32).

This was the most westerly section to be tested by drilling in 2001. Hole 13 tested coincident geophysical and soil geochemical anomalies in the float discovery B area. Strong IP chargeabilities are centred near Trench 17, 30 metres north of the logging road.

A 19.0 metre interval of pebbly to cobbly till occurs at the top of this hole and probably represents a glacial channel. Beneath this (to 72 metres) occurs a very mixed sequence of lapillilithic tuffs, volcanic sediments, cherty units with local augite phyric basalt units. The volcaniclastics appear to be patchy silicified with widespread disseminated to veinlet pyrite which correlates with the IP chargeability anomaly. Several (late) clayey fault zones cut the sequence, one fault projects vertically to structures within Trench-17 (Figure 32).

The lower half of Hole 13 features variably magnetic augite to feldspar phyric rubbly basalt (flow?) units interbedded with mafic lapilli tuffs. These correlate with a magnetic geophysical feature. Samples taken from this sequence returned low copper values.

Hole 13 was important as it demonstrated that the mineralized float at B did not originate from a proximal bedrock source to the north. The source of the high grade copper (Au, Ag) float in the discovery B area remains a problem.

4.0 CONCLUSIONS WITH DISCUSSIONS

Exploration by the company on the New Discovery target area following the original float discoveries A and B in 2000 has advanced the project to an early-mid drilling and trenching stage. The exploration target is volcanic hosted, massive sulfide-vein zones with high grade copper-silver plus or minus gold. Both 2000 and 2001 exploration programs were highly successful, leading to the discovery of bedrock copper-silver (gold) mineralization in two main areas on the grid with excellent potential for more in the future.

The integrated geological, geophysical and geochemical programs outlined a strongly anomalous, northwest to west trend between (and past) the two float Discoveries A and B. Semicoincident IP chargeability, filtered VLF-EM, magnetic and copper in soil anomalies occur along this >1.4 kilometre long trend. The grid area is underlain by a sequence of basaltic volcanic flows, lapilli tuffs and local pyritic cherty units. These are however covered by an extensive though generally thin till blanket with sparse bedrock exposure.

Phase 1 trenching was very useful in testing geophysical and geochemical targets but was hindered locally by high groundwater conditions and deeper till. Approximately half of the trenches failed to adequately test their targets. Trenching of coincident targets in Area A at 700W resulted in the discovery of a northwest trending massive sulfide (pyrite-chalcopyrite)-quartz vein zone greater than 25 metres long with variable width. This zone follows a fault/shear in augite phyric basalt and volcaniclastics and has pyritic, chlorite-magnetite alteration envelopes. Detailed systematic sampling of this zone in Pit A returned copper values predominantly in the 2% to 9% range (up to 15.3%) over 0.5 to 2.45 metre true widths. Narrow parallel zones lay to the south. Significant copper values up to 0.2% (with Ag) were encountered in similar fault-alteration zones in Trench-16 (1700W) in the western anomaly area. Deep overburden (till) in the Discovery B area was a major problem.

A Phase 1 drilling program with 6 closely spaced holes tested the Pit A zone at regular intervals and shallow depths. This drilling indicated that the main structural-alteration zone is subvertical and hosts the better copper, silver (gold) values in Hole 1 directly below Pit A (700W) and Holes 4 and 5 to the east (677W). Narrow massive sulfide (pyrite, chalcopyrite) zones were encountered in Holes 1 and 4; Hole 1 returned a 5.37 metre interval averaging 1.76% Cu, 11.23 g/t Ag (includes 0.55m @14.70% Cu, 98.9 g/t Ag, 0.3 g/t Au). Hole 4 returned 0.92% Cu, 12.67 g/t Ag from mainly disseminated mineralization over a 3.17 metre interval. Narrow mineralized zones in the western Holes 3 and 6 returned 0.2 to 0.5% copper over intervals of 1 metre or less. The results from the Phase 1 drill program indicated potential for both high grade (>2% Cu) and broader, lower grade (0.7 to 1% Cu) copper zones with silver (plus gold) values. Structural intersections between the main fault zone and shallower faults appeared to be important in the localization of higher grade copper shoots. A possible east rake to the main sulfide zone was interpreted.

The Phase 2 drilling program tested the main northwest to west trending, geophysicalgeochemical anomaly over a 1.1 kilometre length with 8 holes at 100 to 250 metre intervals. Most of the holes encountered narrow zones of alteration hosted mineralization with 0.2 to 1% copper values over 0.75 to 1.40 metre intervals. An area (hot spot) of higher grade copper (Ag. Au) mineralization was indicated by Hole 12 (1309W), 600 metres west of Pit A and featured very similar styles of alteration and mineralization. A 1 metre sulfide rich interval returned 1.68% Cu, 16.6 g/t Ag (105 ppb Au). This hole is up-slope from the main copper in soils anomaly and at a bend in IP chargeability and magnetic anomalies. Hole 7 drilled to the east of the Pit A zone (600W) intersected broad zones of disseminated pyrite-chalcopyrite mineralization with one 4.47 metre interval averaging 0.135% Cu.

The new area of mineralization at 1309W indicated by the intersection in Hole 12 is interesting as it probably occurs proximal to a buried intrusion (gabbro in Hole 11 and widespread

hornfels). This intrusion may coincide with the north trending IP chargeability trough and explain the bend in geophysical anomalies in this area (magnetic, VLF-EM and IP).

A compilation of the results from exploration on the grid area indicates that there is plenty of room along strike and to depth for larger, high grade copper (Ag, Au) zones at structural intersections and in intrusive contact zones? Exploration is still at a relatively early stage.

5.0 RECOMMENDATIONS AND COST ESTIMATE

2001 exploration on the Discovery massive sulfide target area produced some highly encouraging results and clearly demonstrated that high grade copper (Ag, Au) mineralization occurs in place. Potential exists for this style of target throughout the grid area and further exploration is strongly recommended in the Pit A (700W) and 1300W target area (Hole 12).

The Pit A zones have been tested at shallow depth during 2001 Phase 1 drilling. Two deeper 200 metre long holes should test the system at deeper levels for potential subvertical or east raking high-grade shoots.

The target area at 1300W has been tested by a single hole (12) and returned significant Cu and Ag (plus Au) values. These were from a structurally controlled, vein-alteration zone similar to those at 700W (Pit A). The nearest holes to 12 are Hole 11, 160 metres to the west and Hole 14, 250 metres to the west. Further drilling and trenching in this area should test for more sizeable disseminated and massive sulfide copper-silver (Au) zones.

A two phase exploration program is recommended; an outline and cost estimate follows:

PHASE 1

Reclamation. Clean up existing disturbance, back-fill Trend Grass seeding. Allow.	ch 14,	\$2,000.00
Trenching 4 days, Hole 12 Target area. Supervision, mapping, sampling. Analytical.	Sub Total	5,000.00 4,000.00 <u>2,000.00</u> \$13,000.00
 Diamond Drilling Area A, 2 deeper holes, 400m total. Hole 12 Target area, 1100W to 1400W. 5 holes, 800 m. total. 		
All-in drilling cost with supervision, core logging, Sampling and analytical @\$100 per metre. Total 1200 m Road and pad construction Environmental, clean-up	Sub Total	\$120,000.00 3,000.00 <u>2,000,00</u> 125,000.00
	Contingency	\$12,000.00
	Total Phase 1	\$ <u>150,000.00</u>
SE 2 (Contingent on Results from Phase 1)		

PHAS Ë

Allow 1500 metres Diamond Drilling All in cost including roads, pads, environmental @ \$110/metre \$220,000.00

Contingency \$20, 000.00

Total Phase 2 \$240,000.00 С. Ħ ş

6.0 STATEMENT OF EXPENDITURES

2001 NEW DISCOVERY EXPLORATION PROGRAM FEBRUARY TO DECEMBER 2001

1. Winter Geophysical Program (February 2001) Worldstock and New Discovery Zones

Scott Geophysics Ltd (Feb.19 -28)	\$14.579.94
R.C. Wells 4.5 days + Truck	
Expenses	602.59
J. Kemp (Feb. 12-27) Labour	2,80000
Expenses	. 1,458.43
F. LaRoche Feb 1-27)	. 3.200.00
Expenses	. 1,339.83
Snow Plowing A.D. Kerr Earth Moving (Feb. 12, 13, 18)	
Total	\$27,500.79
New Discovery Portion	\$9,136.54

2. Phase 1 Exploration

(June 6 - July 10)

A. Target Definition: Geological-Geochemical-Prospecting

R.C. Wells 5 days		. \$2.125.00
P. Watt 9 days		2,160.00
G. Wells 8.5 days		1,105.00
Expenses		2,297.65
Analytical. Eco-Tech Lab. (AK2001-110, 110, 129, 136, 137, 144)		
	Total	\$9,973.37

B. Trenching (July 10 - August 10)

R.C. Wells 21 days \$8,925.00
P. Watt 8 days
C. Weston 20 days
Expenses
J. Monette Excavator Services
Analytical. Eco-Tech Lab. (AK2001-187, 207, 229) <u>1,134.32</u>
Total \$26,308.10

C. Diamond Drilling Phase 1 Program (August 6 - 31)

NQ Diamond Diamond Drilling: Core Enterprises Ltd
6 holes for total of 548.3m \$30.130.00
R.C. Wells. Core Logging and supervision 19 days
C. Weston. Core splitting, assistant 17 days 2.125.00
Expenses
Analytical. Eco-Tech Lab (AK2001-248, 254, 263, 264, 265, 266)
131 core samples Au + ICP, 5 assay checks
Total \$45,187.44

Phase 1 Total <u>\$81,468.91</u>

3. Phase 2 Exploration

A. Target Definition: Geophysical-Geological. (August 15 - September 25)

Scott Geophysics Ltd. 5.2 km IP and 3.3 km Magnetic/VLF surveys	
(Sept. 5-10) \$10.295.6	2
F. LaRoche, Grid installation, IP assistant (Aug. 15 - Sept. 10)	0
R.C. Wells, Supervision and geological 8 days 3,400.0	
P. Watt. Assistant 10 days	
Expenses	
J. Monette, Excavator services, road and drill pads 3.430.0	<u>0</u>
Total \$25,231.7	

B. Diamond Drilling Phase 2 Program (September 25 to October 21)

NQ Diamond Drilling: Core Enterprises Ltd.
8 holes for total of 934.51m \$47,925.00
R.C. Wells, Core logging and supervision 25.5 days 10,837.50
P. Watt. Assistant 6 days 1,440.00
G. Wells, Core splitting 7.5 days 1,050.00
F. LaRoche, GPS. hole locations
Expenses
Analytical. Eco-Tech Lab (AK2001-342, 347, 348, 349, 363,
364, 372, 375) 159 core samples Au + ICP with checks $2.643.00$
Total \$65,250.71

Phase 2 Total \$90,482.41

4.	Report Cost	 \$ 8,000.00
4.	Report Cost	 40

PROGRAM TOTAL \$189,087.86

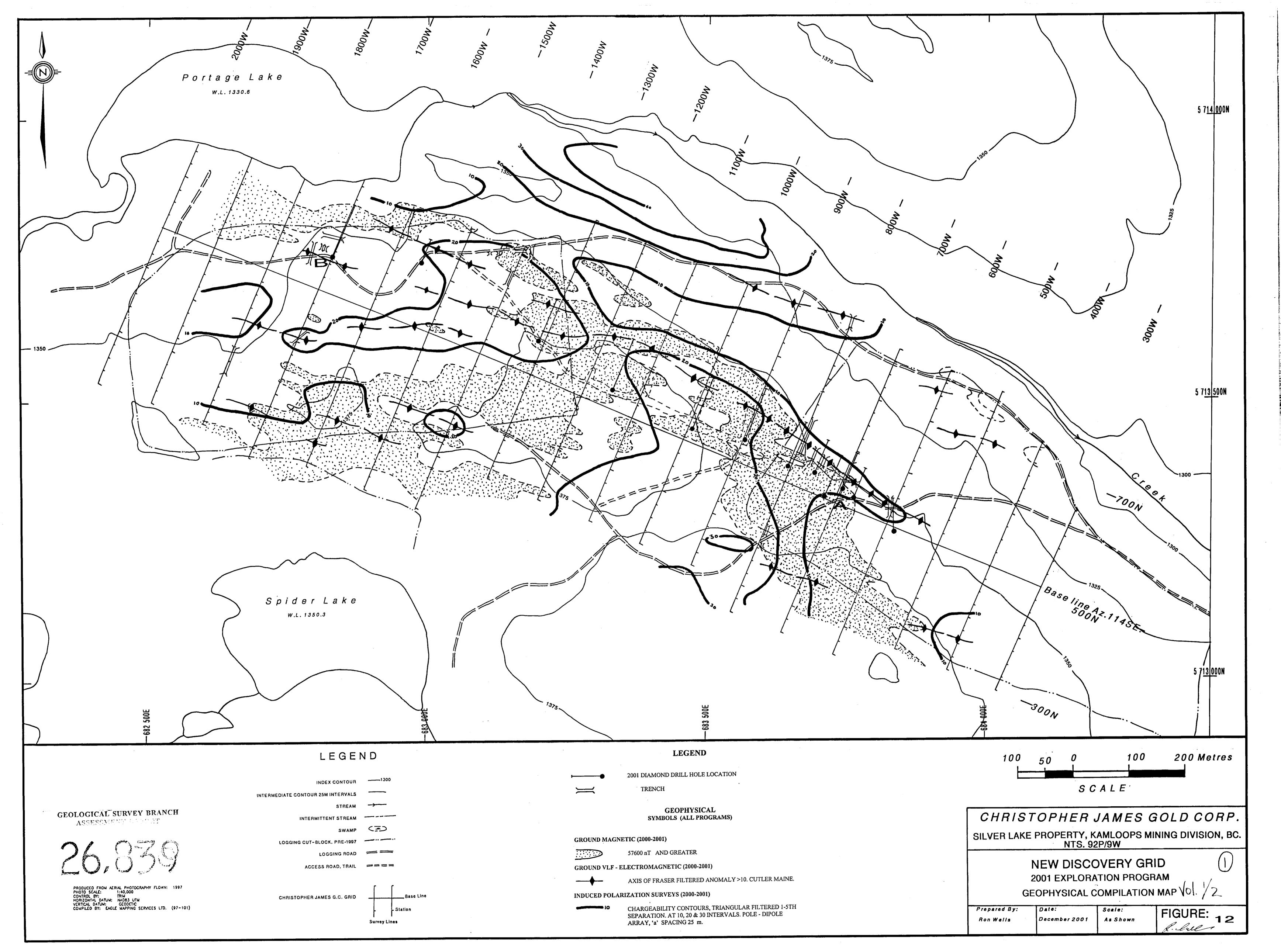
7.0 STATEMENT OF QUALIFICATIONS

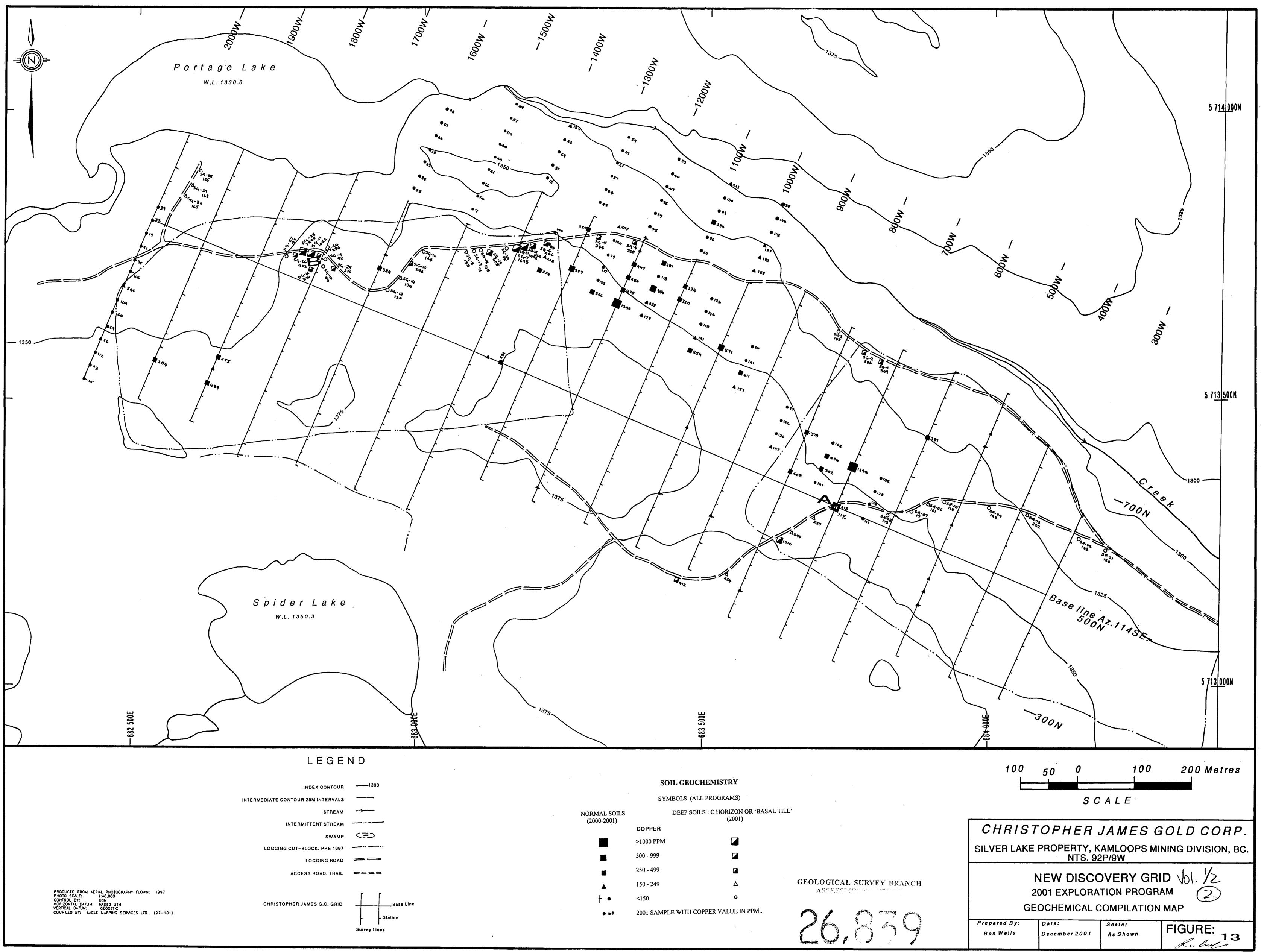
I, Ronald C. Wells, of the City of Kamloops, British Columbia, hereby certify that:

- 1. I am a Fellow of the Geological Association of Canada
- 2. I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia.
- 3. I am a graduate of the University of Wales, U.K. with a B. Sc. Hons. in Geology (1974), did post graduate (M. Sc.) studies at Laurentian University, Sudbury, Ontario (1976-77) in Economic Geology.
- 4. I am presently employed as Consulting Geologist and President of Kamloops Geological Services Ltd., Kamloops, B.C.
- 5. I have practised continuously as a geologist for the last 23 years throughout Canada, USA and Latin America and have past experience and employment as a geologist in Europe.
- Ten of these years were in the capacity of Regional Geologist for Lacana Mining Corp., then Corona Corporation in both N. Ontario / Quebec and S. British Columbia.
- 7. The author supervised the all exploration on the Silver Lake property during 2001.
- 8. The author has no interests in the Silver Lake Property, or securities of Christopher James Gold Corp nor does he expect any.

R.C. Wells, P.Geo., FGAC

8.0 REFERENCES


- Belik, G.D., 1997. Drilling Report on the PGR Claim Group. Assessment Report for Cambridge Minerals Ltd.
- Belik, G.D., 1996. Trenching report on the PGR Claim Group. Assessment Report for Cambridge Minerals Ltd.
- B.C. Assessment Reports: 981, 1061, 1169, 1690, 4028, 4260, 4262, 4678, 4684, 5191, 10287, 10880,11413, 12101, 15221
- Campbell, R.B. and Tipper, H.W., 1971. Geology of Bonaparte Lake Map Area, British Columbia, G.S.C. Memoir 363.
- Gamble, A.P.D., 1986; 1985 Summary Exploration Report, Geology, Geochemistry, Geophysics and Trenching on the Ta Hoola Project, Kamloops Mining Division.
- Hirst, P.E., 1966; Anaconda American Brass. Company correspondence.
- Preto, V.A.G., 1970; Geology of the area between Eakin Creek and Windy Mountain; in Geology, Exploration and Mining in British Columbia. B.C. Department of Mines and Petroleum Resources, pp. 307-312.
- Rebagliati, C.M., P.Eng., 1987; Assessment Report on the HC Project. Kamloops Mining Division. British Columbia for Lancer Resources Inc.
- Rebagliati, C.M., P.Eng., 1988; Assessment Report on the Ta Hoola Property, Kamloops Mining Division, British Columbia for Rat Resources Ltd.
- Ruck, P., 1982; 1982 Exploration Report, Geology, Geochemistry, Geophysics, Tahoola Project, Kamloops M.D.
- Serack, M.L., 1983; 1983 Percussion Drill Report on the Ta Hoola, Ro and Silver Claims. Kamloops M.D., Lornex Mining Corporation.
- Schiarizza, P. and Israel, S., 2001; Geology and mineral occurrences of the Nehalliston Plateau, Soth-Central British Columbia. Geol. Fieldwork 2000. BCMEM Paper 2001-1.
- Schiarizza, P. et al., 2001; Geology of Quesnel and Slide Mountain terranes west of Clearwater, South-Central British Columbia. Fieldwork 2001. BCMEM. Paper 2002-1.
- Wells, R.C., Evans, G.W., 1992; Geological and Prospecting Report on the PGR Claim Group. Assessment Report.


Wells, R.C., 1993; Geological Report on the PGR Claim Group. Assessment Report.

- Wells, R.C., 1994; Geochemical Report on the PGR Claim Group. Assessment Report.
- Wells, R.C., 1995. Prospecting and Soil Geochemical Report on the PGR Claim Group. Assessment Report for P. Watt.
- Wells, R.C., 1998. Phase 1 Exploration Program. Geochemical, Sampling and Mapping Report for the Silver Lake Property. Assessment Report for Christopher James Gold Corp.
- Wells, R.C., 2000; Soil Geochemical and Prospecting Report for the Worldstock Copper-Gold Target, Silver Lake Property. Assessment Report.
- Wells, R.C., 2000; Report on the 2000 Exploration Programs (Geological, Geochemical and Geophysical) on the Silver Lake Property. Assessment Report.

APPENDIX 2

GEOCHEMICAL AND GEOPHYSICAL COMPILATION MAPS

•

APPENDIX 3

2001 PHASE 1 EXPLORATION: TARGET DEFINITION DATA

TABLE 3: SILVER LAKE PROJECT 2001NEW DISCOVERY GRID: GRID SOIL SURVEY

SAMPLE NO	LOC	ATION	Cu	Ag	Au	Zn
	E/W	N/S	ppm	ppm	ррь	ppm
L6+50W 5+00N	6+50W	5+00N	111	< 0.2	20	74
L6+50W 5+25N	6+50W	5+25N	134	< 0.2	35	64
L6+50W 5+50N	6+50W	5+50N	125	<0.2	20	62
L6+50W 5+75N	6+50W	5+75N	132	<0.2	10	69
L7+50W 5+25N	7+50W	5+25N	101	<0.2	5	69
L7+50W 5+50N	7+50W	5+50N	352	<0.2	5	63
L7+50W 5+75N	7+50W	5+75N	486	<0.2	25	122
L7+50W 6+00N	7+50W	6+00N	163	<0.2	40	72
L8+50W 5+50N	<u>8+5</u> 0W	5+50N	197	<0.2	30	89
L8+50W 5+75N	8+50W	5+75N	126	<0.2	20	68
L8+50W 6+00N	<u>8+50W</u>	6+00N	164	<0.2	15	65
L8+50W 6+25N	<u>8+50W</u>	6+25N	97	< 0.2	25	81
L9+50W 6+25N	<u>9+50W</u>	6+25N	157	<0.2	10	73
L9+50W 6+50N	9+50W	<u>6+50N</u>	411	0.4	<5	75
L9 +50W 6+75N	9+50W	<u>6+75N</u>	141	<0.2	25	63
L9 +50W 7+00N	9+50W	7+00N	60	<0.2	20	71
L 10 + 00W 8+25N	<u>10+00W</u>	8+25N	158	0.2	30	151
L 10 + 00W 8+50N	10+00W	8+50N	182	0.6	50	151
L 10 + 00W 8+75N	10+00W	8+75N	157	0.2	30	156
L 10 + 00W 9+00N	10+00W	<u>9+00N</u>	103	<0.2	25	105
L 10 + 00W 9+25N	10+00W	9+25N	144	0.6	70	116
L 10 + 00W 9+50N	10+00W	9+50N	38	1.0	10	179
L10+50W 6+50N	<u>10+50W</u>	<u>6+50N</u>	254	<0.2	15	145
L10+50W 6+75N	10+50W	6+75N	<u>191</u>	<0.2	25	85
L10+50W 7+00N	<u>10+50W</u>	7+00N	103	<0.2	15	79
L10+50W 7+25N	10+50W	7+25N	146	<0.2	15	80
L10+50W 7+50N	10+50W	7+50N	126	<0.2	20	85
L 11 + 00W 8+25N	11+00W	8+25N	30	0.6	10	178
L 11 + 00W 8+50N	11+00W	8+50N	86	0.8	15	261
L 11 + 00W 8+75N	<u>11+00W</u>	<u>8+75N</u>	284	0.8	70	210
L 11 + 00W 9+00N	11 <u>+00W</u>	9+00N	99	0.6	20	112
L 11 + 00W 9+25N	11+00W	9+25N	130	0.6	20	128
L 11 + 00W 9+50N	11+00W	<u>9+50N</u>	223	<0.2	25	80
L11+50W 6+75N	<u>11+50W</u>	6+75N	179	<0.2	10	66
L11+50W 7+00N	11+50W	7+00N	238	<0.2	10	76
L11+50W 7+25N	<u>11+50W</u>	7+25N	950	0.6	20	127
L11+50W 7+50N	<u>11+50W</u>	7+50N	113	<0.2		82
L11+50W 7+75N	11+50W	7+75N	281	<0.2	25	80
L 12 + 00W 8+25N	12+00W	8+25N	45	0.2	10	132
L 12 + 00W 8+50N	12+00W	8+50N	39	0.4	5	184
L 12 + 00W 8+75N	12+00W	8+75N	88	0.2	20	202
L 12 + 00W 9+00N	12+00W	<u>9+00N</u>	47	0.2	20	187
L 12 + 00W 9+25N	12+00W	9+25N	40	0.4	10	121
L 12 + 00W 9+50N	12+00W	<u>9+50N</u>	33	0.4	25	110
L12+50W 6+75N	12+50W	6+75N	266	<0.2	10	75
L12+50W 7+00N	12+50W	7+00N	123	<0.2	5	78

SAMPLE NO	LOC	ATION	Cu	Ag	Au	Zn
	E/W	N/S	ррш	ppm	ppb	ррш
L12+50W 7+25N	12+50W	7+25N	117	< 0.2	5	71
L12+50W 7+50N	12+50W	7+50N	79	<0.2	10	69
L12+50W 7+75N	12+50W	7+75N	120	<0.2	10	70
L12+50W 8+00N	12+50W	8+00N	237	<0.2	10	85
L 13 + 00W 8+00N	13+00W	8+00N	43	< 0.2	5	76
L 13 + 00W 8+25N	13+00W	8+25N	84	< 0.2	5	66
L 13 + 00W 8+50N	13+00W	8+50N	27	0.4	<5	150
L 13 + 00W 8+75N	13+00W	8+75N	27	< 0.2	20	68
L 13 + 00W 9+25N	13+00W	9+25N	29	<0.2	<5	74
L 13 + 00W 9+50N	13+00W	9+50N	59	<0.2	10	84
L13+50W 6+75N	13+50W	6+75N	274	< 0.2	20	67
L13+50W 7+00N	13+50W	7+00N	203	< 0.2	10	67
L13+50W 7+25N	13+50W	7+25N	84	<0.2	10	70
L13+50W 7+50N	13+50W	7+50N	140	< 0.2	10	80
L14+00W 8+25N	14+00W	8+25N	13	0.2	20	168
L14+00W 8+50N	14+00W	8+50N	87	0.4	30	116
L14+00W 8+75N	14+00W	8+75N	69	0.6	40	169
L14+00W 9+00N	14+00W	9+00N	62	0.2	15	
L14+00W 9+25N	14+00W	9+25N	185	<0.2	30	138
L15+00W 7+25N	15+00W	7+25N	7	<0.2	<5	53
L15+00W 7+50N	15+00W	7+50N	50	<0.2	10	63
L15+00W 7+75N	15+00W	7+75N	66	<0.2	10	93
L15+00W 8+00N	15+00W	8+00N	41	0.4	10	141
L15+00W 8+25N	15+00W	8+25N	43	< 0.2	25	87
L15+00W 8+50N	15+00W	8+50N	40	<0.2	25	141
L15+00W 8+75N	15+00W	8+75N	110	0.4	15	212
L15+00W 9+00N	15+00W	9+00N	57	0.6	15	137
L15+00W 9+25N	15+00W	<u>9+25N</u>	69	<0.2	25	88
L16+00W 7+25N	16+00W	7+25N	45	<0.2	15	87
L16+00W 7+50N	16+00W	<u>7</u> +50N	86	<0.2	10	60
L16+00W 7+75N	<u>16+00W</u>	7+75N	69	<0.2	15	51
L16+00W 8+00N	16+00W	8+00N	18	0.6	5	45
L16+00W 8+25N	16+00W	8+25N	66	0.8	20	143
L16+00W 8+50N	16+00W	8+50N	67	0.4	35	117
L16+00W 8+75N	16+00W	8+75N	98	<0.2	40	106
L 20 + 00W 2+00N	20+00W	2+00N	15	0.6	5	92
L 20 + 00W 2+25N	20+00W	2+25N	93	< 0.2	10	171
L 20 + 00W 2+50N	20+00W	2+50N	112	< 0.2	30	181
L 20 + 00W 2+75N	20+00W	2+75N	66	0.6	10	285
L 20 + 00W 3+00N	20+00W	3+00N	69	< 0.2	10	191
L 20 + 00W 3+25N	20+00W	3+25N	60	< 0.2	25	226
L 20 + 00W 3+50N	20+00W	3+50N	109	< 0.2	30	477
L 20 + 00W 3+75N	20+00W	3+75N	245	0.2	30	161
L 20 + 00W 4+00N	20+00W	4+00N	106	< 0.2	10	147
L 20 + 00W 4+25N	20+00W	4+25N	35	<0.2	10	91
L 20 + 00W 4+50N	20+00W	4+50N	81	0.4	5	102
L 20 + 00W 4+75N	20+00W	4+75N	19	< 0.2	ं	48
L 20 + 00W 5+00N	20+00W	5+00N	33	<0.2	5	49
L 20 + 00W 5+25N	20+00W	5+25N	39	<0.2	10	57

R. C. Wells, P.Geo., FGAC. Kamloops Geological Services Ltd.

TABLE 4: SILVER LAKE PROJECT 2001NEW DISCOVERY GRID: DEEP SOIL SAMPLE SURVEY

SAMPLE	I	OCATION	Cu	Ag	Au	Zn
NO	Ν	W	ppm	ppm	ррЬ	ррт
DSG-1	7+65	7+30	309	0.2	35	220
DSG-2	7+70	7+60	286	0.4	35	164
DSG-3	7+83	8+17	148	0.4	10	105
DSG-4	7+87	12+12	328	<0.2	25	143
DSG-5	7+70	12+75	344	<0.2	<5	80
DSG-6	7+25	13+57	466	0.2	20	101
DSG-7	6+95	14+03	1693	1.2	10	79
DSG-8	6+55	14+80	185	<0.2	20	85
DSG-9	5+52	16+94	42	<0.2	<5	186
DSG-10	5+38	16+92	50	<0.2	<5	57
DSG-11	5+50	17+20	1022	0.8	25	83
DSG-12	5+25	17+12	316	<0.2	10	79
DSG-13	5+42	15+85	120	<0.2	5	72
DSG-14	5+70	15+70	194	<0.2	10	74
DSG-15	6+00	15+65	293	<0.2	15	69
DSG-16	6+28	15+50	144	<0.2	10	64
DSG-17	6+62	14+70	71	<0.2	10	74
DSG-18	6+68	14+60	145	<0.2	20	74
DSG-19	6+70	14+45	605	0.6	40	66
DSG-20	6+90	14+20	55	<0.2	5	64
DSG-21	7+05	13+90	1472	2.2	30	69
DSG-22	7+10	13+80	560	0.2	20	75
D\$G-23	5+40	16+75	376	<0.2	25	69
D\$G-24	5+52	17+08	286	<0.2	25	55
D\$G-25	5+50	17+35	2848	0.6	40	123
DSG-26	5+40	17+45	402	0.4	30	63
D\$G-27	5+30	17+60	129	<0.2	10	66
DSG-28	6+12	19+55	165	<0.2	20	74
DSG-29	5+82	19+57	169	<0.2	20	74
DSG-30	5+60	19+63	165	<0.2	20	53
DSSR-01	6+12	2+35	120	<0.2	40	80
DSSR-02	6+12	2+87	143	<0.2	35	98
DSSR-03	6+15	3+87	202	<0.2	10	61
DSSR-04	6+00	4+55	124	<0.2	15	72
DSSR-05	5+80	5+26	118	<0.2		68
DSSR-06	5+65	5+52	161	<0.2		80
DSSR-07	5+40	5+75	171	<0.2	Ì	92
DSSR-08	5+20	6+10	103	<0.2		

19-Jun-01

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2001-111

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

ATTENTION: RON WELLS

No. of samples received: 11 Sample type: Soil Project #:ND 2001-02 Shipment #: None Given Samples submitted by: Ron Wells

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na%	Ni	P	Pb	Sb	Sn	Sr	Ti %	υ	v	w	Ŷ	Zn
1	DSG-1	35	0.2	2.37	40	255	5	1.20	3	82	453	309	7.22	<10	3.66	1538	8 < 0.01	369	1460	32	<5	<20	74	0.08	<10	163	<10	<1	220
2	DSG-2	35	0.4	2.79	75	165	<5	0.76	1	82	482	286	8.01	<10	4.30	1747	8 < 0.01	235	1410	36	<5	<20	43	0.08	<10	215			
3	DSG-3	10	0.4	2.77	25	160	<5	0.85	1	42	443	148	5.01	<10	3.23	1350	5 < 0.01	195	940	26	<5	<20	48		-	- · -	<10	<1	164
4	DSG-4	25	<0.2	2.49	65	105	<5	0.57	<1	53	142	328	6.96	20	2.35	1922	5 < 0.01	78	1580	36		-		0.08	<10	144	<10	<1	105
5	D\$G-5	-5	<0.2	3.00	<5	175	<5	0.97	<1	58	270	344	7.05	<10	3.88		<1 <0.01	82			<5 - 5	<20	32	0.04	<10	182	<10	1	143
6	DSG-6	20	0.2	3.02	15	130	10	0.90	<1	72	533	466	9,70	<10	4.12		4 < 0.01	162	1350	26	<5	<20	50	0.16	<10	157	<10	<1	60
7	DSG-7	10	1.2	2.81	<5	185	35	0.44	1	100	243	1693	>10	<10	3.35	1821	6 < 0.01		1290	32	<5	<20	38	0.17	<10	242	10	<1	101
8	DSG-8	20	<0.2	1.71	20	105	<5	1.79		41	241	185	5.33	<10	2.01	1069		64	1430	26	<5	<20	27	0.17	<10	220	<10	<1	79
9	DSG-9	<5	<0.2		10	100	<5	0.35		45	308	42	6.68	<10			<1 <0.01	91	1410	24	<5	<20	76	0.10	<10	112	<10	<1	85
10	DSG-10	<5	<0.2	2.05	<5	70	<5	0.25	<1	27	244	50	5.25	<10	2.43	822	<1 <0.01	73	1660	22	<5	<20	24	0.16	<10	156	<10	<1	186
11	DSG-11	25	0.8	2.44	<5	120	20		<1	80	259	1022			1.49	336	<1 <0.01	45	860	18	<5	<20	19	0.17	<10	121	<10	<1	57
	200 //	20	0.0	-	-U	12.0	20	2.01	~1	00	209	IVZZ	8.17	<10	3.13	1161	2 <0.01	86	1220	24	<5	<20	98	0.11	<10	151	<10	<1	83
	TA:																												
Repea	t:																												
1	DSG-1	35	<0.2	2.34	45	255	<5	1.17	2	7 9	446	304	7.03	<10	3.60	1483	8 <0.01	266	1400			-06	~ .						
10	DSG-10		<0.2	2.05	<5	70	<5	0.26	<1	27	239	51	5.17	<10	1.47	332		355	1480	30	<5	<20	71	0.09	<10	161	<10	<1	197
					v		-•	VIEV			200	U 1	9.17	~10	1.47	33Z	<1 <0.01	43	840	16	<5	<20	19	0.18	<10	121	~10	<1	57
Stend: GEO'0		125	1.4	1.63	55	140	<5	1.55	<1	18	54	89	3.45	<10	0.92	668	-1 0.04	. .			-		_						
					20		-0	1.00	~	10	74	09	0.40	- 10	0.92	069	<1 0.01	24	730	26	5	<20	57	0.09	<10	69	<10	3	73
								•																					

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

dl/111 XLS/01 cc: ron wells fax @ 372-1012

29-Jun-01

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2001-137

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

ATTENTION: RON WELLS

No. of samples received: 19 Sample type: Soils Project #: None Given Shipment #: ND 2001-04 Samples submitted by: Ron Wells

Values in ppm unless otherwise reported

Et #	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi I	Ca %	Cd	Co	Cr	Cu	Fe %	Lai	Mg %	Mn	Мо	Na %	Ni	P	Pb	Şþ	Sn	Şr	Ti %	U	٧	W	Y	Zn
1	DSG 12	10	<0.2	2.82	<5	95	<5	0.84	<1	56	319	316	6.42	<10	3.79	982	<1	0.01	122	1070	12	<5	<20	39	0.13	<10	134	<10	<1	79
2	DSG 13	5	<0.2	2.51	<5	95	<5	0.65	<1	44	294	120	5.94	~10	2.95	727	1	0.01	79	1320	1 1	<5	<20	54	0.16	<10	133	<10	<1	72
3	DSG 14	10	<0.2	2.26	<5	95	<5	1.01	<1	45	283	194	5.90	~10	2.83	927	<1	0.01	74	1420	10	<5	<20	61	0.14	<10	129	<10	<1	74
4	DSG 15	15	<0.2	2.23	<5	115	<5	0.68	<1	56	260	293	7.01	10	2.38	804	1	0.01	67	1150	14	<5	<20	63	0.15	<10	125	<10	<1	69
5	DSG 16	10	<0.2	2.41	<5	100	<5	0.67	<1	53	407	144	6.53	10	3.33	929	<1	0.01	105	1260	12	<5	<20	50	0.16	<10	130	<10	<1	64
6	DSG 17	10	<0.2	3,40	30	105	<5	0.59	<1	86	640	71	8.44	20	5.17	2208	2	<0.01	162	1460	17	<5	40	25	0.15	<10	200	<10	<1	74
7	DSG 18	20	<0.2	2.45	10	85	<5	0.60	<1	46	380	145	5.85	20	3.37	888	<1	0.01	128	1190	13	<5	<20	32	0.13	<10	135	<10	<1	74
8	DSG 19	40	0.6	2.08	<5	110	<5	0.59	1	69	196	605	7.85	20	2.90	1821	4	0.01	59	1210	20	<5	20	36	0.10	<10	156	20	11	66
9	DSG 20	5	<0.2	3.16	<5	105	<5	0.72	~1	47	352	55	5.98	20	3.80	857	<1	0.02	98	1300	10	<5	<20	64	0.19	<10	153	<10	<1	64
10	D\$G 21	30	2.2	2.43	<5	125	<5	0.92	1	50	313	147 <u>2</u>	6.72	20	3.53	1074	2	0.01	69	1500	12	<5	<20	64	0.15	<10	152	10	<1	69
11	DSG 22	20	0.2	2.98	<5	150	<5	0.98	<1	47	357	560	5.72	30	3.72	991	<1	0.01	93	1200	15	<5	40	79	0.14	<10	124	<10	3	75
12	DSG 23	25	<0.2	2.14	<5	110	<5	0.63	<1	56	334	376	6.49	40	2.76	946	1	0.01	74	1300	14	<5	20	42	0.12	<10	126	<10	<1	69
13	DSG 24	25	<0.2	1.91	<5	105	<5	0.60	<1	63	355	286	7.21	40	2.64	972	2	0.01	71	1380	12	<5	<20	40	0.13	<10	131	<10	<1	55
14	DSG 25	40	0.6	2.00	<5	145	<5	0.57	2	116	300	2848	9.63	60	2.72	994	5	0.01	76	1340	22	<5	<20	42	0.14	<10	141	<10	<1	123
15	DSG 26	30	0.4	2.01	<5	125	<5	0.74	<1	60	310	402	6.95	50	2.77	1103	<1	0.01	77	1420	14	<5	<20	51	0.12	<10	137	<10	<1	63
16	DSG 27	10	<0.2	2.53	<5	95	<5	0.63	<1	47	283	129	6.24	50	3.05	766	<1	0.01	80	1440	10	<5	40	56	0.17	<10	143	<10	<1	66
17	DSG 28	20	≮0.2	2.96	<5	135	<5	0.60	<1	50	280	165	6.53	50	3.75	969	2	0.01	70	1580	11	. <5	40	43	0.17	<10	155	<10	<1	74
16	DSG 29	20	<0.2	2.32	<5	135	<5	0.73	1	52	351	169	6.25	50	3.05	736	3	0.01	98	1580	16	<5	40	45	0.15	<10	127	10	<1	74
19	DSG 30	20	<0.2	2.21	<5	115	<5	0.73	<1	54	211	165	5.56	50	2.49	715	3	0.01	111	1690	14	<5	20	112	0.13	<10	101	<10	<1	53

CHRISTOPHE	R JA	MES GOL	D COI	RP.						ŀ	CP CE	RTIFIC	ATE OF		LYSIŞ	AK 200	01-137	,						I	ECO-TE	CHLA	BORAT	TORIES	LTD.	
Et #. Tagi	#	Au(ppb)	Ag	AI %	As	Ba	BI	<u>Ca %</u>	Cd	Ċo	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	Р	Pb	Sb	Sn	Sr		U	v	w *	Y	Zn
OC DATA:																														
Repeat: 1 DSG 10 DSG		35	0.4 2.2	2.91 2.41	<5 <5	110 150	<5 <5		<1 <1	60 51	347 325	324 1513	6.70 6.73	<10 20	4.01 3.68		<1 3	0.01 0.01	128 67	1150 1580	16 13	<5 <5	40 60	38 61	0.13 0.16	<10 <10	139 153	<10 <10	<1 <1	81 69
<i>Standard:</i> GEO'01		-	1.6	1.69	50	165	<5	1.58	2	20	56	95	3.46	10	1.03	632	<1	0.02	24	790	18	5	<20	56	0.11	<10	72	<10	7	73

ECOTIECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

FP/kk df/136 XLS/01 cc: ron wells fax @ 372-1012

.

29-Jun-01

ECO-TECH LABORATORIES LTD, 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2001-129

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

ATTENTION: RON WELLS

No. of samples received: 40 Sample type: Soil Project #: None Given Shipment #: ND 2001-03 Samples submitted by: Ron Wells

Values in ppm unless otherwise reported

Et	f. Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi (Ca %	Cd	Co	Cr	Cu	Fe %	La I	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
1	L 10 + 00W 8+25E	30	0.2	2.38	40	135	5	0.80	2	36	196	158	6.12	10	2.46	991	5	0.01	113	1310	30	<5	<20	45	0.05	<10	121	<10	<1	151
2	L 10 + 00W 8+50E	50	0. 6	3.13	70	115	<5	0.54	1	64	422	182	7.04	10	3.37	1393	3	0.01	209	910	23		<20	33	0.05	<10	183	20	<1	151
3	L 10 + 00W 8+75E	30	0.2	2.87	90	40	<5	0.33	1	43	224	157	7.24	10	2.85	1436	1	<0.01	116	1400	27		<20	25		<10	222	<10	<1	156
4	L 10 + 00W 9+00E	25	<0.2	3.52	35	65	<5	0.20	<1	42	441	103	6.99	<10	4.09	772	<1	<0.01	160	1030	19		<20	11			194	<10	<1	105
5	L 10 + 00W 9+25E	70	0.6	3.58	110	30	<5	0.32	1	74	511	144	>10	10	4.71	1619	<1	<0.01	112	1290	27	<5	<20	20	0.08			<10	<1	116
6	L 10 + 00W 9+50E	10	1.0	3.12	30	30	<5	0.17	2	19	198	38	4.74	<10	1.34	334	3	0.01	72	470	18	≺5	<20	40	0.00	-10	105	~10		470
7	L 11 + 00W 8+25N	10	0.6	1.94	25	95	<5	0.14	1	18	65	30	3.58	<10	0.65	643	2	0.01	30	1560	15	~5	~20 <20	18 9	0.09 0.03		195 70	<10	<1	179
8	L 11 + 00W 8+50N	15	D,8	3.43	15	90	<5	0.33	3	30	142	86	4,43	10	1.26	631	2	0.01	82	840	17	~5 <5	~20 <20	28	0.03		70	<10	<1	178
9	L 11 + 00W 8+75N	70	0.8	2.83	40	95	<5	1.06	3	37	294	284	6.14	20		1150	3	0.01	150	1390	26	<5	<20	111	0.00	<10	100	<10 <10	2 18	261 210
10	L 11 + 00W 9+00N	20	0.6	3.71	15	65	5	D.79	5	41	207	99	6.91	20		1383	4	0.01	63	880	17	<5	<20	67	0.02		196	<10	10 <1	112
																						-		-			100	-10		112
11		20	0.6	3.20	10	85	<5	1.04	2	28	367	130	5.85	20	2.54	431	2	0.01	114	500	13	<5	<20	69	0.18	<10	178	10	<1	128
12		25	<0.2	3.10	<5	75	<5	0.36	1	41	479	223	7.09	20	3.21	423	1	0.01	120	320	15	<5	<20	23			186	<10	<1	80
13		10	0.2	2.06	15	90	<5	0.16	2	23	137	45	4.76	10	1.15	380	2	0.01	52	1160	18	<5	<20	10	0.10		117	<10	<1	132
14		5	0.4	2.29	20	105	<5	0.13	2	24	109	39	4 31	<10	0.86	374	2	0.01	53	1300	14	<5	<20	10	0.06	<10	98	<10	<1	184
15	L 12 + 00W 8+75N	20	0.2	2.54	30	115	<5	0.28	2	36	170	88	5.79	10	1.80	999	3	<0.01	89	1570	19	<5	<20	22	0.04	<10	107		<1	202
16	L 12 + 00W 9+00N	20	0.2	2.36	15	100	<5	0.19	1	29	140	47	5.05	<10	1.32	566	2	0.01	50	740	18	-5	<20	13	0.15	-10	100			407
17	L 12 + 00W 9+25N	10	0.4		25	70	5	0.20	<1	21	119	40		<10	1.19	320	1	0.01	42		20	~0 <5		13 B	0.15		133	<10	<1	187
18	L 12 + 00W 9+50N	25	0.4		20	70	<5	0.16	1	23	108	33	4.40	<10	0.86	472	2	0.01	32	830	16	<5		10	0.13		136 118	10 <10	<1	121
19	L 13 + 00W 8+00N	. 5	<0.2	2.59	<5	120	<5	0.30	1	37	324	43		<10	2.77	600	<1	0.01	88	710	.14	<5		19	0.13		150	<10 <10	<1	110
20	L 13 + 00W 8+25N	5	<0.2	3.77	10	110	5	0.84	<1	49	1079	84	5.66	<10	5,19	1315	<1	0.01	327		10	<5		38		<10	157	<10	<1 <1	76 66
															-		-						-20		0.11	10	107	~ 10	~1	00
21		<5	0.4	1.72	5	65	<5	0.20	1	22	130	27	4.27	<10	0.82	514	1	0.01	42	1700	15	<5	<20	13	0.11	<10	107	<10	<1	150
22	L 13 + 00W 8+75N	20	<0.2	1.45	20	65	<5	0.11	1	15	98	27	4.89	<10	0.65	384	4	0.01	27		17	<5		10	0.14		140	<10	<1	68
23		<5	<0.2	3.96	<5	40	<5	0.34	<1	52	444	29	8.12	10	4.65	1002	<1	<0.01	90	460	11	<5	-	18	0.18		232	<10	<1	74
24		10	<0.2	2.80	<5	50	<5	0.52	<1	30	403	59	6.22	[*] <10	3.17	529	<1	0.01	62		11	<5	-	18	0.17		183		<1	84
25	L 20 + 00W 3+50N	30	<0.2	2.65	15	80	<5	0.33	1	32	152	109		<10 ige 1	1.50	453	3	0.01	52	560	13	<5	-	73	0.15		103	<10	<1	477

CHRISTOPHER JAMES GOLD CORP.

ICP CERTIFICATE OF ANALYSIS AK 2001-129

ECO-TECH LABORATORIES LTD.

Et #	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La I	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	w	Y	Zn
26	L 20 + DOW 3+75N	30	0.2	2.28	<5	80	5	0.53	2	28	152	245	4.61	20	1.58	904	4	0.02	56	590	12	<5	<20			<10		<10	8	161
27	L 20 + 00W 4+00N	10	<0.2	2.26	<5	80	<5	0.32	1	29	107	106	5.74	10	1.14	491	3	0.01		1400	12		<20			<10	109	<10	<1	147
28	L 20 + 00W 4+25N	10	<0.2	2.72	<5	50	<5	0.17	<1	22	72	35	3.62	<10	0.65	301	2	0.01	19	1260	10		<20	25		<10	80	10	<1	91
29	L 20 + 00W 4+50N	5	0.4	2.94	<5	70	<5	0.21	<1	25	123	81	5.12	10	1.31	425	2	0.01	35	1580	13	-	<20	52		<10	102	<10	<1	102
30	L 20 + 00W 4+75N	<5	<0.2	2.55	<5	85	<5	0.24	<1	21	101	19	4.25	≺10	0.90	344	_1	0.01	24	740	10	<5	<20	24	0.17	<10	91	<10	<1	48
31	L 20 + 00W 5+00N	5	<0.2	1.77	<5	60	<5	0.36	<1	25	138	33		<10	1.49	295	2	0.01		1420	11		<20	28			89	<10	≺1	49
32	L 20 + 00W 5+25N	10	<0.2	2.63	<5	65	20	0.33	≺1	25	166	39	5.70	<10	1.36	280	<1	0.01		1980	13	<5	20	30	0.19		130	20	<1	57
33	DSSR-01	40	<0.2	1.72	25	100	<5	0.70	<1	35	185	120		10	1.80	924	1	0.02	. –	1430	16		<20	41	0.10		104	<10	2	80
34	DSSR-02	35	<0.2	2.10	20	145	<5	1.44	1	37	230	143	4.91	20	2.24	1002	2	0.02	97	1360	27		<20	74	0.10		111	<10	2	98
35	DSSR-03	10	<0.2	3.73	15	190	10	1.00	<1	53	635	202	5.59	10	6.28	1036	<1	0.01	372	530	13	<5	60	59	0.11	<10	132	<10	6	61
36	DSSR-04	15	<0.2	2.32	10	285	<5	0.91	<1	44	429	124		<10	3.62	937	-1	0.01	220		22	<5	<20	48	0.11		109		<1	72
37	DSSR-05	10	<0.2	2.42	15	240	<5	3.61	-1	40	526	118		<10	3.59	796	<1	0.01			20	<5	<20	146	0.11		92		<1	68
38	DSSR-06	5	<0.2	2.62	15	245	5	0.86	<1	55	391	161	6.02	<10		1143	<1	0.01	+	1470	16	<5	<20	39	0.12		131	<10	<1	80
39	DSSR-07	10		2.66	10	215	<5	Q.98	<1	51	384	171		<10	3.71	1025	1	0.01			12	<5	20	39	0.13		128		<1	92
40	DSSR-08	10	<0.2	2.20	20	120	<5	0.58	<1	41	212	103	5.82	<10	2.35	870	1	0.01	69	1300	15	<5	<20	33	0.13	<10	130	<10	<1	80
QC_D Repa																														
лері 1	L 10 + 00W 8+25E	_	0.2	2.42	30	135	<5	0.79	2	36	193	155	6.04	20	2.50	973	6	0.01	107	1320	24	<5	<20	45	0.05	<10	121	<10	<1	148
4	L 10 + 00W 9+00E			2.42		-			_	-			•			-		-	-	-	-	_	-	-	-			•		-
10			0.8	3.58	25	55	<5	0.78	4	40	203	95	6.82	10	2.02	1358	3	0.01	65	870	14	<5	<20	65	0.04	<10	190	<10	<1	116
19	L 13 + 00W B+00N				<5	135	<5	0.30	<1	38	327	43		20	2.82	593	<1	0.01	89	740	14	<5	<20	19	0.19	<10	149	-10	<1	77
28	L 20 + 00W 4+25N		<0.2		<5	50	<5		<1	. 22	78	36	3.60	<10	0.69	309	1	0.01	21	1260	11	<5	<20	25	0.13	<10	80	<10	<1	88
30								-	-	-	_		-	-	-	-	-	-	-	-	-	-	-	-				-	-	-
36		_	<0.2	2.34	20	290	<5	0.93	<1	44	433	123	4.85	<10	3.67	938	<1	0.02	225	1460	20	<5	<20	45	0.12	<10	109	<10	<1	73
40		25		• •	-	-	•	•	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	. .		-	-	-
Star	dard:																													
GEC	101	115	1.4	1.69	50	150	<5	1.53	<1	18	55	86					<1		26		18	<5		61					4	72
GEC	'01	-	1.4	1.72	55	150	<5	1.56	<1	19	57	89	3.55	<10	0.96	674	<1	0.02	26	740	18	<5	<20	62	0.11	<10	73	3 <10	5	76

6539 ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

FP/kk df/129 XLS/01 cc: ron wells fax @ 372-1012 .

.

29-Jun-01

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La Mg %	Mn	Mo Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
1	L20+00W 2+00N	5	0.6	2.95	5	65	<5	0.14	<1	22	58	15	3.34	<10 0.22	785	<1 0.01	12	2740	12	<5	<20	45	0.14	<10	69	<10		
2	L20+00W 2+25N	10	<0.2	2.46	<5	45	<5	0.40	<1	36	205		5.58		542	2 0.01	52		11		<20				140			
3	L20+00W 2+50N	30	<0.2	2.35	<5	50	<5	0.31	<1	34	167						46		18		<20	• =			• • •		•	•••
- 4	L20+00W 2+75N	10	0.6	2.78	15	55	<5	0.32	2	33	168		5.77			2 0.01	43	960	12	<5	<20			• •	125	10	<1	285
5	L20+D0W 3+00N	10	<0.2	2.01	10	45	<5	0.27	1	25	137	69	4,80		338	2 0.01		1320	12	<5	<20	. –			114		<1	200
6	L20+00W 3+25N	25	<0.2	2.30	10	75	<5	0.26	2	22	96	60	4.18	<10 1.07	303	3 0.01	42	620	13	<5	<20		0.11	<10	91	20	<1	226

OC DATA:

Repeat:		
1 L20+00W 2+00N	- 0.6 2.88 10 60 <5 0.14 <1 22 58 15 3.31 <10 0.22 770 2 0.01 11 2740 12 <5	<20 12 0.14 <10 67 <10 <1 94

FP/kk df/136 XLS/01 cc: ron wells fax @ 372-1012

ICP CERTIFICATE OF ANALYSIS AK 2001-136

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

ATTENTION: RON WELLS

No. of samples received: 6 Sample type: Soit Project #: None Given Shipment #: ND 2001-04 Samples submitted by: Ron Wells

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

5-Jul-01

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2001-144

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

ATTENTION: RON WELLS

No. of samples received: 57 Semple type; Soils Project #: ND 2001-05 Shipment #: None Given Samples submitted by: Ron Wells

Values in ppm unless otherwise reported

Et #	. Tạg #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	P	Pb	Sb	Sn	Sr	71 %	υ	v	w	v	Zn
1	L14+00N 8+25E	20	0.2	1,28	5	45	<5	0.11	1	15	38	13	2.63		0.13	594	<1	0.02	-	1650	10	<5	<20	-	_	<10	81	<10	<1	
2	L14+00N 8+50E	30	0.4	3.80	35	55	<5	0.29	<1	47	441	87	6.76	<10	3.16	643	<1	0.01		1140	8	-5	<20	13	0.14	<10	172	20	•	168
3	L14+00N 8+75E	40	0.6	3.42	15	60	<5	0.32	<1	39	278	69	5.45	<10	2.92	673	<1	0.01	181	1520	10	-5	<20	14	0.14	<10	118		<1	116
4	L14+00N 9+00E	15	0.2	3.39	20	55	5	0.19	<1	39	382	62	5.24	<10	2.25	458	4	0.01	154	780	4	<5	<20		0.14	<10		10	<1	169
5	L14+00N 9+25E	30	<0.2	2.67	30	85	<5	0.78	2	34	117	185	5.29	10	1.76	1023	3	0.02	149	460	10	<5	<20	58	0.13	<10	141 112	<10	<1	84
																	-	0.02	ערו	400	10	~5	~20	90	0.12	~10	ΠZ	<10	(138
6	L15+00N 7+25E	<5	<0.2	2.81	<5	75	<5	0.98	<1	44	331	7	6.43	<10	3.45	724	<1	0.02	78	730	<2	<5	<20	60	0.19	<10	146	<10	- 4	
7	L15+00N 7+50E	10	<0.2	2.66	10	110	<5	0.45	<1	33	282	50	4.9	<10	2.68	458	<1	0.01	191	1090	2	<5	<20	21	0.19	<10	122		<1	53
8	L15+00N 7+75E	10	<0.2	3.03	10	115	<5	0.41	<1	37	206	66	5.16	<10	2.97	560	<1	0.01	92	890	2	-5	<20	17	0.13	<10	132	<10	<1	63
9	L15+00N 8+00E	10	0.4	2.70	15	200	<5	0.3	1	27	131	41	4.67	<10	1.14	546	<1	0.01	50	2200	6	<5	<20	20	0.13	<10		<10	<1	93
10	L15+00N 8+25E	25	<0.2	2.12	20	85	<5	0.19	<1	23	111	43	4.17	<10	0.98	431	1	0.02	38	780	6	~÷ <5	~20 <20	11	0.12	<10	108	<10	<1	141
															0.00			0.02	50	100	U	-0	~20	••	V. I	\$10	108	<10	<1	87
11	L15+00N 8+5DE	25	<0.2	2.27	10	120	<5	0.22	1	22	115	40	5.58	<10	1.11	696	2	0.01	38	1230	8	<5	<20	19	0.15	<10	140	~10	- 4	
12	L15+00N 8+75E	15	0.4	3.42	25	90	<5	0.33	1	43	372	110	6.07	<10	2.38	1202	3	0.01	114	960	14	<5	<20	20	0.13	<10	127	<10	<1	141
13	L15+00N 9+00E	15	0.6	2.76	20	80	<5	0.26	<1	28	183	57	5.22	<10	1.54	381	Ť	0.01	57	1110	12	<5	<20	15	0.13	<10 <10	127	<10	<1	212
14	L15+00N 9+25E	25	<0.2	2.25	30	100	<5	0.21	<1	28	341	69	5.78	<10	2.07	462	i	0.01	78	890	12	~5 <5	<20	14				<10	<1	137
15	L16+00N 7+25E	15	<0.2	2.24	10	130	<5	0.28	<1	26	254	45	4.43	<10	1.8	455	<1	0.01	106	1360	6	~0 <5	<20	13	0.15	<10	159		<1	88
									•						1.0	400	-,	0.01	ΝQ	1300	0	~0	~20	13	0.12	<10	114	<10	<1	87
16	L16+00N 7+50E	10	<0.2	2.98	-5	170	<5	0.93	<1	47	529	86	5.37	<10	3.68	1228	<1	0.02	376	670	2	-5	<20		0.40		400			
17	L16+00N 7+75E	15	<0.2	2.56	5	65	<5	0.39	<1	34	364	69	4.93	<10	2.91	385	<1	0.01	207	960		<5 ~5		41	0.18	<10	129			60
18	L16+00N 8+00E	5	0.6	2.56	10.	115	<5	0.23	<1	15	114	18	2.92	<10	0.31	395	<1	0.02	207	4000	4	<5	<20	16		<10	117		<1	51
19	L16+00N 8+25E	20	0.8	2.93	40	95	<5	0.32	1	38	249	66	5.78	<10	1.97	655	2	0.01			4	<5	<20	14		<10	51	<10	<1	45
20	L16+00N 8+50E	35	0.4		20	105	<5	0.34	1	30	229	67	5.36	<10	1.66	875		0.01	74		14	<5	<20	19		<10	147		<1	143
		••	V V		20		-4	0.04	•	30	228	07	5.50	-19	1.00	0/0	<1	0.02	64	900	14	<5	<20	28	0.15	<10	140	<10	<1	117

Page 1

.

L6+50W 5+00N 12 0.02 62 1260 2.47 818 1 134 6.27 <10 188 41 0.62 <1 <10 <1 <0.2 2.35 10 100 <5 <20 57 0.13 <10 132 L6+50W 5+25N 35 10 <5 1340 2 0.02 69 2.7 1033 5.63 <10 188 125 0.79 <1 43 <10 145 <10 <1 10 120 <5 0.16 <0.2 2.22 <20 54 L6+50W 5+50N 20 1300 4 <5 64 <1 0.02 847 5.95 <10 3.06 42 185 132 <5 1.04 <1 2.54 <5 130 < 0.2 L6+50W 5+75N 10 <1 140 <10 <10 44 0.18 1000 4 <5 <20 <1 0.02 94 696 101 5.84 <10 3.25 305 44 0.56 <1 <10 <1 <5 85 <5 0.18 <10 177 <0.2 2.82 <5 <20 51 5 10 26 L7+50W 5+25N 55 1020 971 1 0.02 9.42 <10 3.46 352 <1 70 169 285 5 0.8 0.19 <10 145 <10 <5 2.89 35 5 <0.2 6 <5 <20 L7+50W 5+50N 92 450 0.02 1047 2 486 6.53 <10 2.35 192 51 <5 <1 <10 <1 10 115 0.44 0.12 <10 134 <0.2 3.22 <5 <20 55 25 L7+50W 5+75N 76 1180 8 2 0.02 1008 2.44 163 5.8 <10 40 179 0.85 1 <10 <1 15 145 <5 <10 191 0.17 40 <0.2 2.10 6 <5 <20 47 17+50W 6+00N 1270 0.01 94 2 197 7.37 <10 3.54 1351 245 <1 47 0.63 <5 75 10 <0.2 2.88 30 L8+50W 5+50N 162 <10 <10 35 0,18 <2 <5 <20 510 0.01 97 <1 6.33 <10 3.58 834 333 126 49 0.55 <1 <5 130 <5 36 0.18 <10 157 <10 <0.2 3.38 <20 20 6 <5 L8+50W 5+75N 73 731 <1 0.02 760 <10 2.83 6.01 164 40 270 <5 0.42 <1 140 <10 <10 < 0.2 2.89 10 85 <20 27 0.16 L8+50W 6+00N 15 8 <5 86 1140 0.02 771 1 97 5.65 <10 2.59 40 209 <1 80 <5 0.49 195 <10 10 49 0.19 <10 25 <0.2 2.60 <5 <20 8 LB+50W 6+25N 57 1260 1045 <1 0.02 3.38 157 6.79 <10 161 <5 0.78 <1 47 158 <10 135 <10 10 <5 44 0.15 < 0.2 2.87 <5 <20 L9+50W 6+25N 97 1260 6 0.02 2 <10 3.64 939 261 411 7.42 59 <1 5 0.81 2.97 15 130 <5 0.4 L9+50W 6+50N 158 <10 <20 58 0.19 <10 <5 1 0.02 52 1190 10 845 <10 2.78 41 173 141 6.2 <5 0.69 <1 183 <10 <5 115 <10 25 <0.2 2.44 <5 <20 62 0,21 <2 L9 +50W 6+75N 53 1560 1334 <1 0.02 60 6.67 <10 4.84 157 <1 51 130 <5 1.38 152 <10 <5 <10 20 < 0.2 3.46 <20 50 0.21 <5 L9 +50W 7+00N 71 750 2 921 <1 0.02 2.81 <10 44 180 254 6.14 <1 <5 0.82 <5 155 <10 14B <10 15 <0.2 3,25 <5 <20 49 0.19 10 L10+50W 6+50N 73 1300 1004 <1 0.02 5.77 <10 2.8 191 191 0.91 <1 42 <5 <10 2.87 5 145 63 0.17 <10 170 <0.2 25 <5 <20 L10+50W 6+75N 69 1180 14 1 0.02 2.9 878 <10 49 165 103 6.77 0.78 <1 110 <5 <5 15 <0.2 2.76 40 L10+50W 7+00N 127 <10 40 0.14 <10 10 <5 <20 2 0.02 99 880 <10 2.51 745 5.66 40 249 146 <5 0.78 <1 100 166 <10 25 15 <0.2 2.62 <5 <20 50 0.18 <10 110+50W 7+25N Б 87 1360 0.02 <10 3.71 1052 1 6.4 45 159 126 <5 1.22 1 2.80 10 135 <10 173 <10 < 0.2 42 L10+50W 7+50N 20 <20 58 0.19 <2 <5 60 1610 839 <1 0.02 3.32 179 6.35 <10 <1 45 189 <5 0.86 135 <10 <0.2 2.81 <5 <10 170 10 <20 51 0.19 43 L11+50W 6+75N 2 <5 86 1120 <10 3.51 863 -1 0.02 238 6.54 48 237 <1 <5 165 <5 0.81 148 20 L11+50W 7+00N <0.2 3.01 <10 10 <5 <20 46 0.15 3 0.02 132 930 12 10 2.53 1867 950 6.51 52 272 25 0.86 1 280 0.6 3.04 20 45 L11+50W 7+25N 20 147 <10 33 0.16 <10 <20 <5 <1 0.02 123 770 12 <10 3.22 768 338 113 5.89 0.67 <1 41 <5 30 <0.2 2.81 30 85 <10 128 <10 L11+50W 7+50N <5 <20 42 0.13 16 139 1400 0.02 <10 3.42 1026 1 281 5.67 384 0.96 <1 43 120 <5 25 < 0.2 2.53 15 70 0.17 <10 149 <10 L11+50W 7+75N <2 <5 <20 119 590 <1 0.02 <10 4.41 1073 6.32 50 350 266 <1 <5 205 <5 1.22 <0.2 3.98 154 . <10 L12+50W 6+75N 10 <5 <20 74 0.21 <10 -2 880 <1 0.01 63 123 6.01 <10 3.43 818 48 177 0.97 <1 <0.2 2.83 <5 115 <5 5 45 0.2 <10 178 <10 L12+50W 7+00N <5 <20 1320 <2

CHRISTOPHER JAMES GOLD CORP.

Tag #

1 16+00N 8+75E

Et #.

21

22

23

24

25

27

28

29

30

31

32

33

34

35

36

37

38

39

41

44

46

47

48

49

50 L12+50W 7+25N

Au(ppb)

40

20

.....

ICP CERTIFICATE OF ANALYSIS AK 2001-144

La Mg %

2.46

10 1.87

<10

Cu Fe %

98 5.33

111 5.71

Со

33

38

Cd

<1

<1

Ba

As

25 145

5 65

Ag Ai%

<0.2 2.26

<0.2

5

. ·

3.24

2.58

<0.2

Bi Ca %

<5 0.61

<5

0.81

Cr

113

149

ECO-TECH LABORATORIES LTD.

v

129 <10

143

146

U

<10

<10

<10

Sr Ti%

64

40 0.15

37 0.14

0.11

Sb

<5 <20

<5 <20

<5 <20

P

Ni

56 940

52 1190

69

Mo Na%

3

1 0.02

0.02

Mn

835

1074

Pb

10

6

Sn

Y Ζn

<1

<1

<1

4 122

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

-21

<1

<1

<1

<1

<1

106

74

64

62

69

69

63

72

89

68

65

81

73

75

63

71

145

85

79

80

85

66

76

127

82

80

75

78

71

w

<10

<10

<10

117 6.83

49

<1

0.76

<5

155

<5

246

897

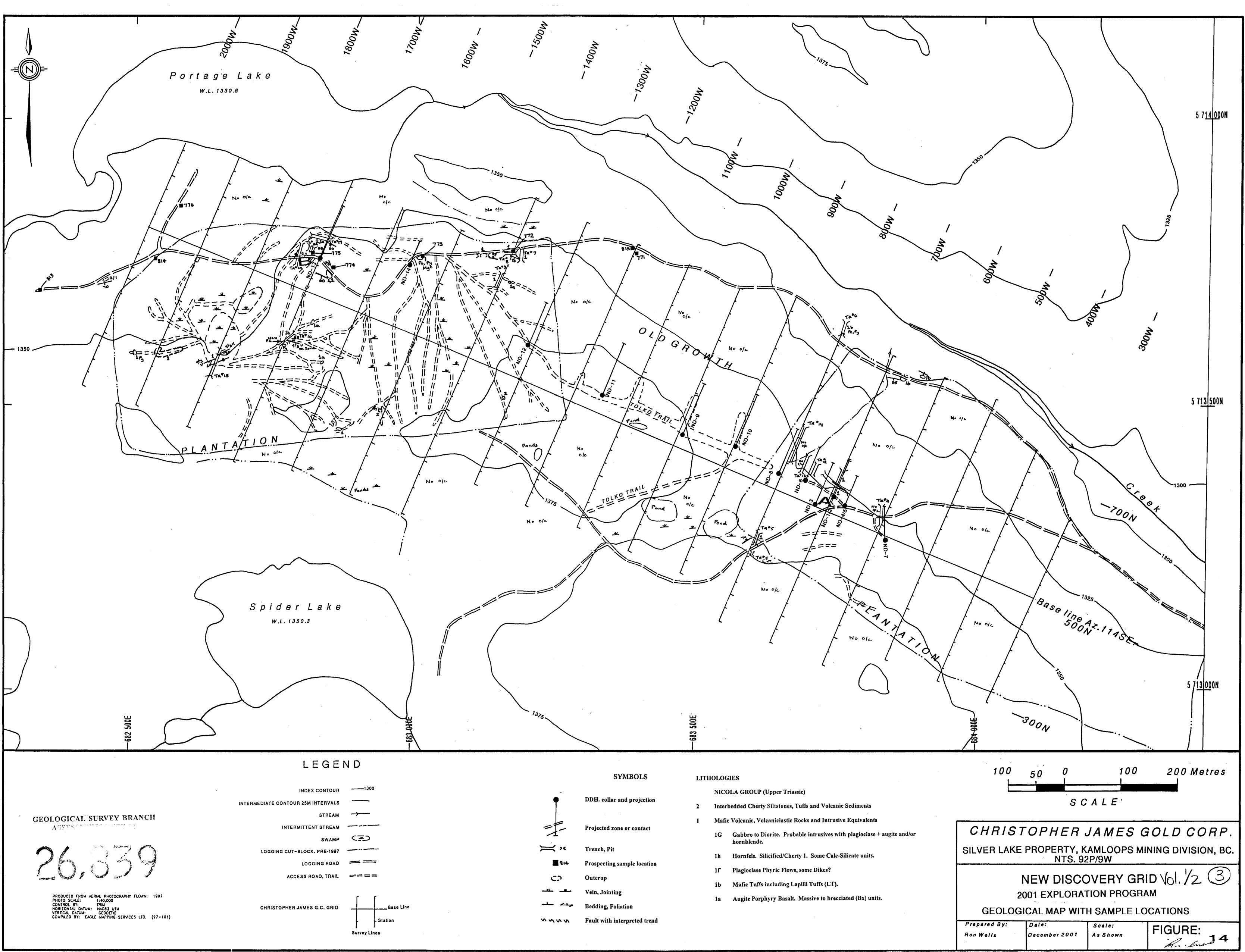
3.9

<1 0.02 CHRISTOPHER JAMES GOLD CORP.

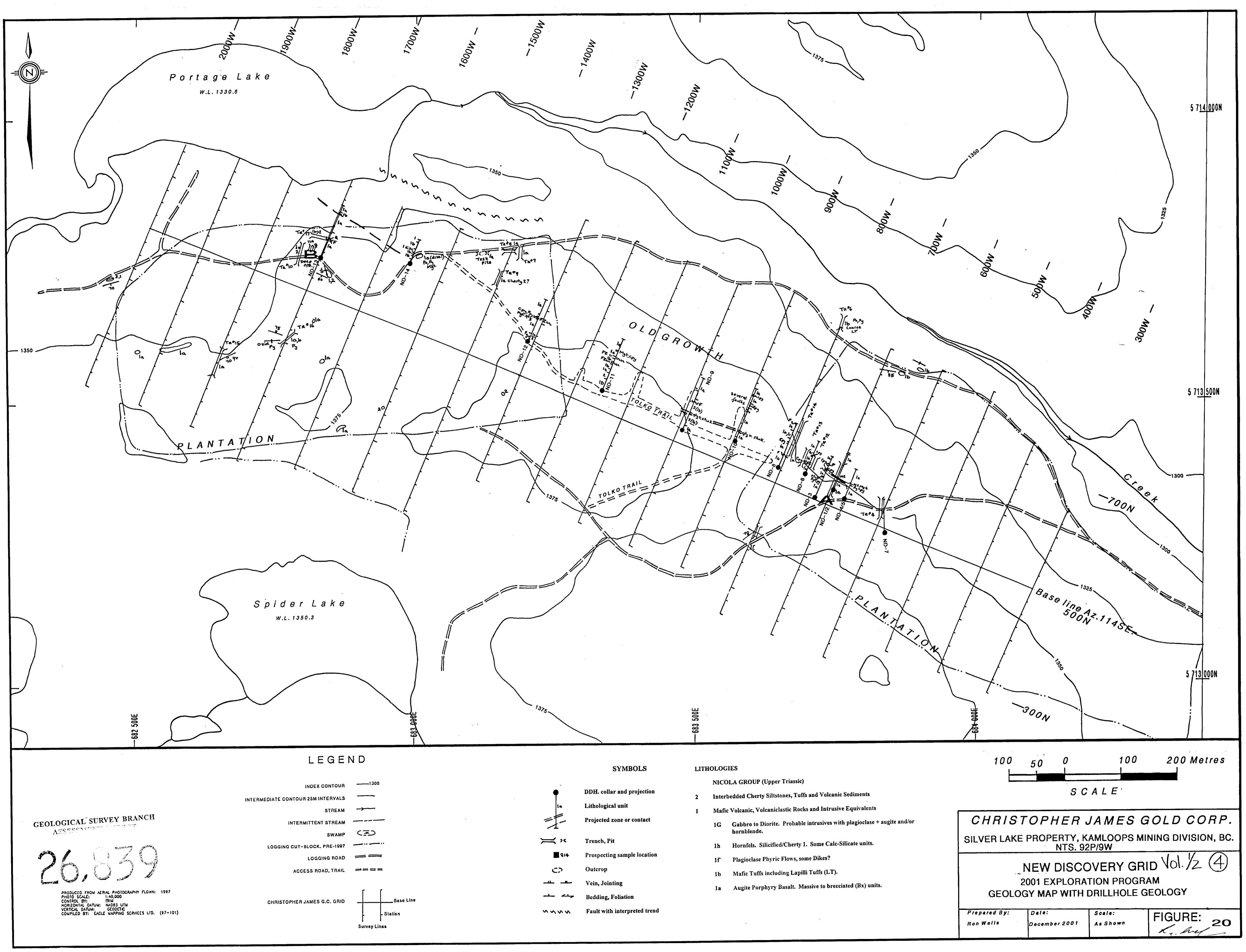
ICP CERTIFICATE OF ANALYSIS AK 2001-144

ECO-TECH LABORATORIES LTD.

Et#	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Nĭ	P	Pb	Sb	Sn	o.,	T 2 B/		.,			_
51	L12+50W 7+50N	10	<0.2	2.94	<5	145	<5	0.77	<1	49	279	79	6.57	<10	3.64	823	<1	-							Ті %	U	V	W	Υ	Zn
52	L12+50W 7+75N	10	<0.2	3.09	<5	60	<5	0.78	<1	53	550	120	6.33	<10	4.37			0.02	83	1540	2	<5	<20	57	0.2	<10	162	<10	<1	69
53	L12+50W 8+00N	10	<0.2	3.58	10	265	<5	1.27	<1	51	473	237	7.11	<10		1035	<1	0.02	171	1270	6	<5	<20	47	0.18	<10	171	<10	<1	70
54	L13+50W 6+75N	20	<0.2	3.19	<5	125	<5	0.91	<1	63	302	274	6.96		5.56	1143	<1	0.02	151	1540	-2	<5	<20	50	0.2	<10	187	<10	<1	85
55	L13+50W 7+00N	10	<0.2		<5	110	<5	0.64	<1	45	337	203	6.12	<10	2.72	635	2	0.02	78	440	6	<5	<20	66	0.21	<10	145	<10	<1	67
					•		· •	0.04	~1	40	331	203	0.12	<10	3.36	721	<1	0.02	81	1270	<2	<5	<20	64	0.18	<10	138	<10	<1	67
56	L13+50W 7+25N	10	<0.2	3.04	<5	145	<5	0.57	<1	43	285	84	6.74			~~~														
57	L13+50W 7+50N	10	<0.2	3.52	<5	120	<5	0.56	-1	48	332	140	5.74 6.45	<10	3.03	782	<1	0.02	81	1120	<2	<5	<20	50	0.24	<10	142	<10	<1	70
							-0	0.00	-1	40	332	140	0.40	<10	3.71	868	<1	0.02	92	770	<2	<5	<20	51	0.22	<10	153	<10	<1	80
36 45	At: L14+00N 8+25E L15+00N 8+25E L16+00N 8+25E L7+50W 5+75N L9+50W 6+75N L11+50W 7+25N L13+50W 8+75N ard: 1	10 20 15 10 20	0.4 <0.2 0.8 <0.2 <0.2 0.6 <0.2 1.4 1.6	2.89 3.20 2.40 2.95	10 20 40 5 <5 25 <5 50 50	45 90 95 110 285 125 150 155	<5 <5 <5 <5 <5 <5 <5 10 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	0.12 0.21 0.33 0.44 0.67 0.84 0.89 1.61 1.64	र र र र र र र र र र र र र	16 24 39 50 41 51 61 19 20	41 116 254 193 170 271 285 56 59	12 45 62 483 135 906 288 95 96	2.71 4.36 5.93 6.47 6.22 6.49 6.76 3.61 3.7	<10 <10 <10 <10 <10 <10 <10 <10	0.15 1.03 1.93 2.35 2.75 2.48 2.8 0.98 1.01	620 443 666 1024 855 1862 624 692 703	<1 1 3 2 2 2 1 1	0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.03 0.03	12 41 77 90 56 133 77 25 26	1730 820 1260 440 1200 910 410 660 680	8 8 24 6 14 10 <2 14 12	\$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5	<20 <20 <20 <20 <20 <20 <20 <20 <20 <20	9 11 18 37 49 47 69 69 70	0.09 0.11 0.13 0.19 0.18 0.14 0.21 0.11	<10 <10 <10 <10 <10 <10 <10 <10	82 111 145 144 155 145 146 76 78	<10 <10 <10 <10 <10 <10 <10 <10	<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1 <th>69 92 158 118 67 128 61 71 72</th>	69 92 158 118 67 128 61 71 72


FP/kk df/144 XLS/01 cc: ron wells fax @ 372-1012

5


ECO-TECH LABORATORIES L

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

.

\bowtie	><
	814
C	2
<u>_4</u>	
	<u>~</u> ,
~~	n n

Lithological unit	
Projected zone or contact	

TABLE 5: SILVER LAKE PROJECT 2001NEW DISCOVERY GRID: PROSPECTING SAMPLES

	LO	CATION	SAMPLE DESCRIPTION	SAMPLE	Au	Ag	Cu	Pb	Zn	As
NO	N/S	E/W		TYPE	ppb	ppm	ppm	ppm	ppm	ppm
			Light grey, fine grained, w/m carbonated mafic volcanic				PP	PP	IPP a	PP.m
			with 5-7% fine disseminated pyrite. Local "ghosts" of							
			fragments some with disseminated 1-2 mm biotite laths.	F/large						
21771	7+80N	12+00W	Some irregular, fine carbonate veinlets.	boulder	50	0.6	80	22	44	<
			Chloritic basalt, dark grey to green. Patchy f to c grained							
			disseminated pyrite. Moderate magnetic throughout - fine]		8
21772	6+94N	14+07W	magnetite?	F	25	3.2	1671	30	74	<
			Pyrite-magnetite massive sulfide vein up to 3 cm wide,	<u> </u>			1071		/-	
			local laminated. Local Cpy. Host rock is f/m grained							
			pyroxene basalt with f/m disseminated Py. variably							
21773	6+45N	15+40W	magnetic.	SC	65	1.2	747	26	83	<
			Fine lapilli-lithic tuff with local pyrite clasts. Fine		<u> </u>					· · · · ·
	ł		disseminated pyrite throughout. Patchy weak magnetic.	F/large						
21774	5+55N	16+75W	Moderate pervasive carbonate alteration.	boulder	70	0.6	44	28	27	1
			Pyritic and chloritic rock with local quartz veining and						27	
			chalcopyrite. The host is laminated strongly chloritic,							ļ
			patchy w/s magnetic, sparse carbonate. Variable pyrite						ł	}
			locally >10% (some banding), patchy f/m Cpy. (up to 5%).						1	
		Í	The milky quartz veining up to 5 cm wide has patchy f/m	F/1 m						ľ
21775	5+56N	17+25W	Py. and Cpy. especially along contacts.	boulder	100	13.0	1.84%	22	366	4
]		Andesite-basalt, medium green, fine grained and weak							
21776	5+55N	19+60W	magnetic. Patchy m/c grained disseminated Py, 5-10%.	F	160	1.6	2101	22	33	3
			Chloritic to cherty, medium green, fine grained with >10%		1					
		1	medium grained to local coarse disseminated Py. cubes.		1					
21813	3+25N	21+30W	Local Py veinlets.	F	30	1.0	775	12	116	5
			Coarse breccia? with 10cm clast containing >10% fine						110	
			disseminated Py. epidote-silica rich matrix. Non							
21814	4+50N	19+58W	magnetic, sparse carbonate.	F	30	0,4	120	10	80	80
	3 3+25N 21+30W		Lapilli tuff-epiclastic with angular 1-2 cm med. Green							<u>`</u>
			volcanic clasts, local chert and more rounded pyrite clasts.							
21815	7+80N	12+00W	Matrix supported. Minor matrix Py.	F/boulders	35	0.2	69	16	66	2:

20-Jun-01

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2001-110R

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

ATTENTION: RON WELLS

No. of samples received: 9 Sample type: Rock Project #: ND-2001-01 Shipment #: None Given Samples submitted by: Ron Wells

Values in ppm unless otherwise reported

<u>Et #.</u>	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	₽b	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
1	21 771	50	0.6	0.47	<5	45	<5	>10	2	43	176	80	7.31	<10	0.70	1476	2	0.01	72	1290	22	<5	<20	294	0.18	<10	214	<10	<1	44
2	21772	25	3.2	3.33	<5	15	10	0.37	2	176	270	1671	>10	<10	4.09	1369	4	0.02	53	1520	30	<5	<20	4	0.17	<10	241	<10	<1	74
3	21773	65	1.2	1.65	<5	10	<5	0.87	2	207	187	747	>10	<10	1.78	533	3	0.02	87	1220	26	<5	<20	64	0.10	<10	83	10	<1	83
4	21774	70	0.6	0.83	10	15	<5	>10	2	37	344	44	4.76	<10	1.29	1085	3	0.01	72	1250	28	<5	<20	198	0.13	<10	60	<10	<1	27
5	21775	100	13.0	2.03	40	20	<5	0.48	4	262	257	>10000	>10	<10	2.37	6 86	14	0.01	59	270	22	<5	<20	15	0.10	<10	115	20	<1	366
6	21776	160	1.6	0.86	30	<5	<5	0.23	3	418	43	2101	≻10	<10	0.78	271	11	0.03	146	510	22	<5	<20	13	0.06	<10	47	20	<1	33
7	21813	30	1.0	1.5 9	50	5	<5	0.64	2	144	74	775	>10	<10	0.91	1421	4	0.04	125	1100	12	-5	<20	31	0.10	<10	152	10	<1	116
8	21814	30	0.4	0.85	80	10	<5	1.11	2	91	137	120	>10	<10	0.74	870	60	0.02	137	1140	10	<5	<20	97	0.14	<10	63	<10	<1	80
9	21815	35	0.2	1.97	25	20	<5	7.63	2	20	46	69	4.95	<10	1.80	1272	2	0.02	13	1220	16	<5	<20		<0.01	<10	134	<10	<1	66
QC DA Respli 1 Repea 1 2	t: 21771	55 - 25	0.6 0.6	0.44 0.51	10 5	35 40	<5 <5	>10 >10	2 3	41 44 -	155 179 -	80 90 -		<10 <10	0.65 0.76	1439 1549	3 2		70 75 -		26 26 -	<5 <5	<20 <20	298 321	0.16	<10 <10 -	199 228 -	<10 10	<1 <1	38 44
Standa GEO'0		160	1.4	1.87	60	150	<5	1.91	2	22	60	86	4.36	<10	1.01	792	<1	0.02	26	870	32	<5	<20	63	0.14	<10	84	<10	4	87

df/104 XLS/01 cc: ron wells fax @ 372-1012

Page 1

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

18-Jun-01

18041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) \$73-5700 Fax (250) \$73-4557 email; ecotech@direct.ca

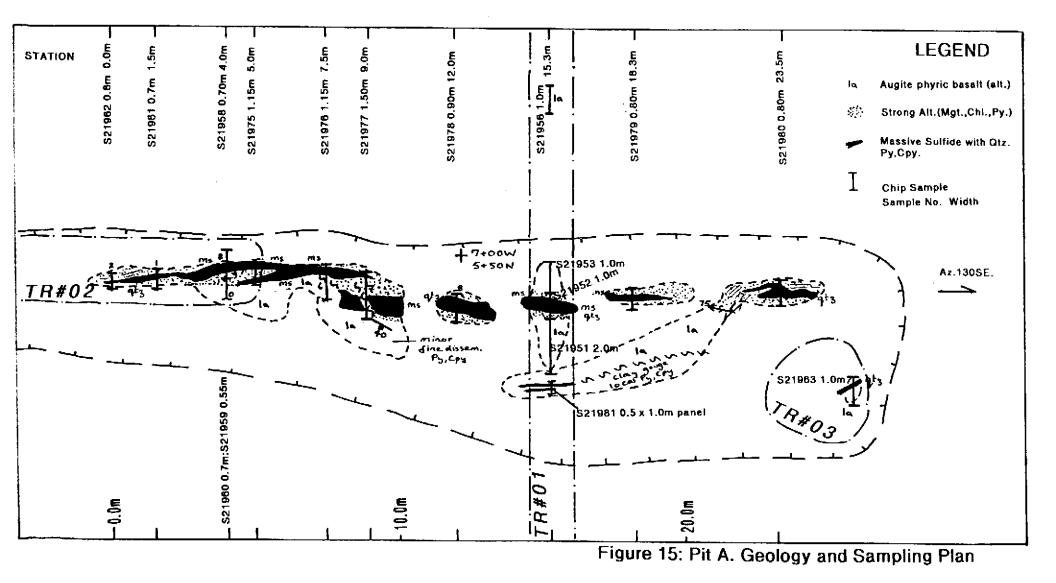
CERTIFICATE OF ASSAY AK 2001-110

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

ATTENTION: RON WELLS

No. of samples received: 9 Sample type: Rock Project #: ND-2001-01 Shipment #: None Given Samples submitted by: Ron Wells

		Cu
ET #.	Tag #	(%)
5	21775	1.84

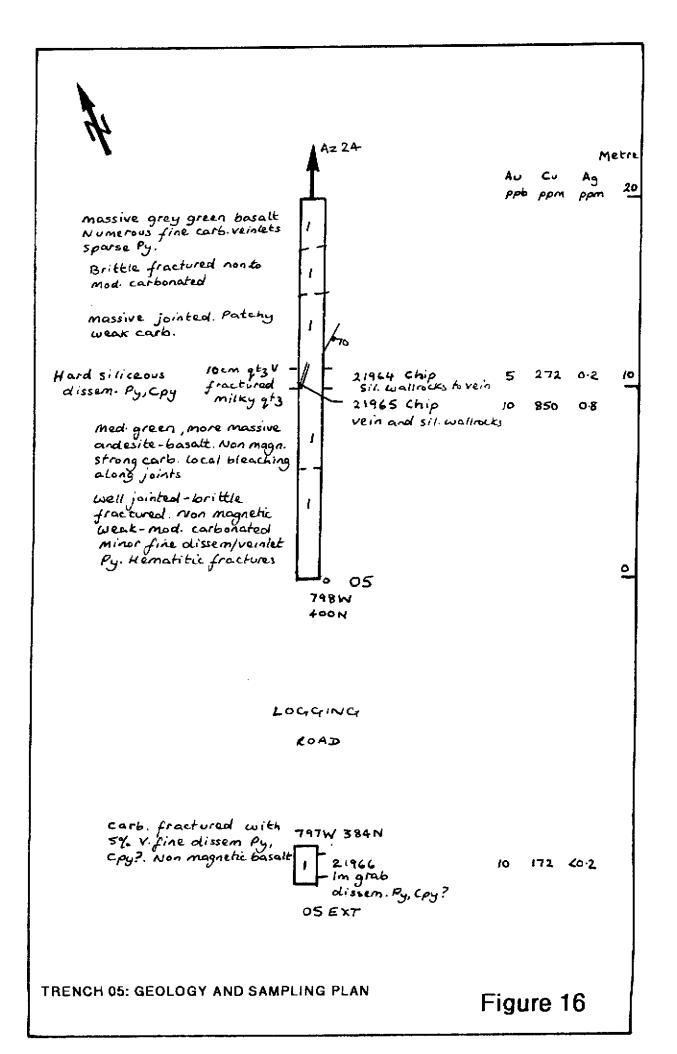

ECO-TECHLABORATORIES LTD Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

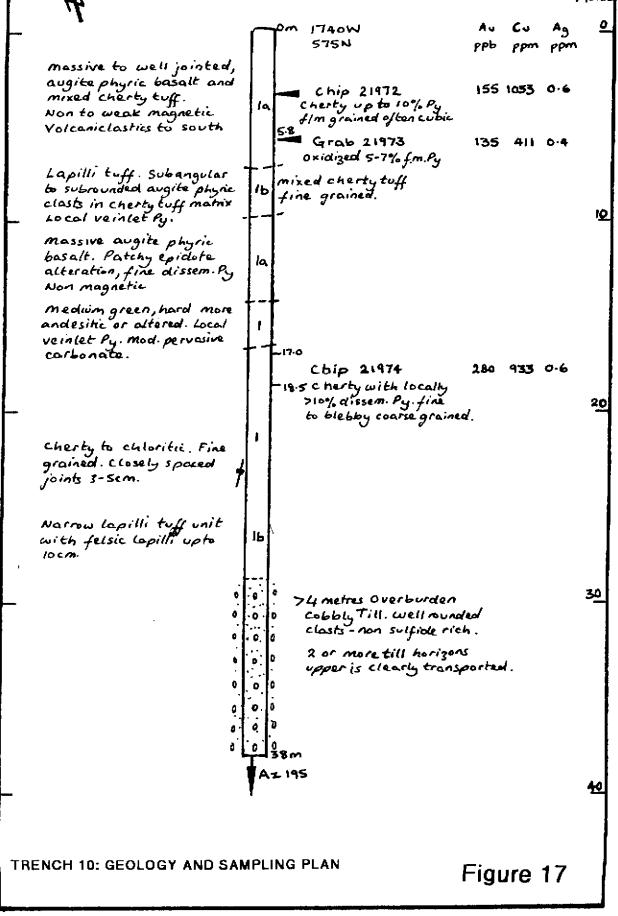
XLS/01

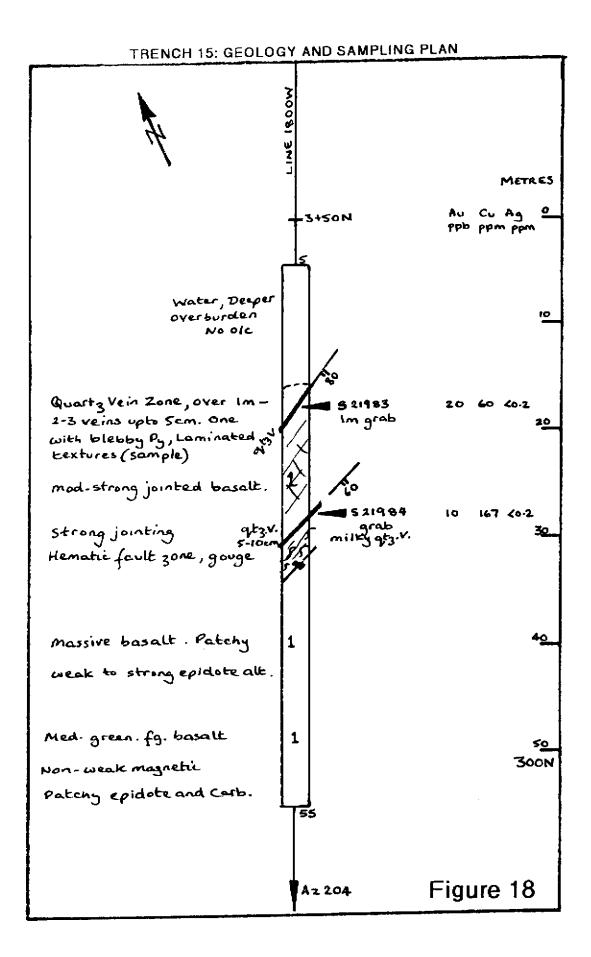
APPENDIX 4

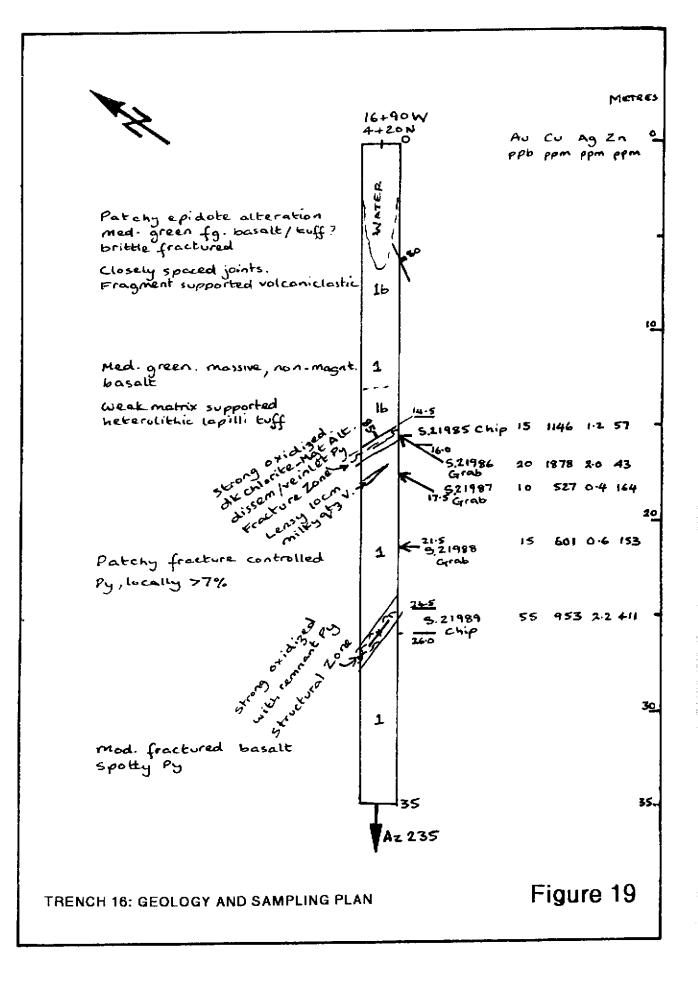
2001 PHASE 1 EXPLORATION: TRENCH AND SAMPLING DATA


CHRISTOPHER JAMES GOLD CORP. SILVER LAKE PROPERTY - NEW DISCOVERY PROJECT SAMPLING RESULTS, MAIN TRENCH-AREA A

				A	NALYTIC/	AL DATA*	**	
S	AMPLE LOCATION	SAMPLE WIDTH (feet			RESPLIT	ASSAY	GEOCHEM	ICP
	TRENCH GRID*	(** composite)	Cu (%)	Ag (g/t)	Cu (%)	Ag (g/t)	Au (ppb)	Ag (ppm)
	MAIN ZONE:	· · · · · · · · · · · · · · · · · · ·						
NW	@0.0m	0.6m (1.97	7) 6.96	58.2	6.91	59.8	120	
	@1.5m	0.7m (2.30	0) 6.92	74.8	6.64	77.0	120	
	@4.0m	**2.45m (8.04	3.75	36.3			74	
	Inc.	0.70m (2.30	0.98				10	0.6
		0.55m (1.8	0) 15.30	177.0	15.10	178.0	330	
	@5.0m	1.15m (3.7)	7) 2.09	37.6			105	
	@7.5m	1.15m (3.7	7) 3.56	48.5			95	
	@9.0m	1.50m (4.9)	2) 9.24	69.7			105	
	@12.0m	0.90m (2,9	5) 4.07	67.5			85	
	@15.3m	**2.00m (6.5	6) 4.58	34.3			150	
	Inc.	1.0m (3.2	B) 9.10	68.5				
	@18.3m	0.80m (2.6	2) 4.69	44.8			95	
\$E	@23.5m	0.80m (2.6	2) 0.39				35	6.0
	PARALLEL ZONES:							
	@15.3m/3.5m South	0.50m (1.6	4) 0.38				65	2.8
	@26.0m/3.5m South	1.0m (3.2	8) 3.26	i			140	27.6


* All samples are chip/panels by R.C. Wells, P.Geo., FGAC.


** Composites involve 2 or 3 individual samples, none <0.5m.


*** All analytical work by Eco-Tech Laboratories Ltd., Kamloops BC.

METRE

TABLE 6: SILVER LAKE PROJECT 2001NEW DISCOVERY GRID: JULY TRENCHING

SAMPLE	LOCATION	SAMPLE DESCRIPTION		Au	Cu	Ag
NO			SAMPLE TYPE	ppb	ppm	ppm
21951	TR 2001-01	Green augite basalt 1-3% blebby Py, strong magnetic.	Chip 31-33 m	5	172	< 0.2
21952	tî.	Massive Py, Cpy with fractured milky quartz.	Chip 33-34 m	300	9.10%	68.5
		Green augite basalt 1-3% blebby Py. Local coarse pink		-		
21953	17	carb patches fine Py, Cpy.	Chip 34-35 m	<5	697	<0.2
21954	11	Green augite basalt, patchy epid, carb, dissem. Py, Cpy.	grab at 40 m	5	400	<0.2
21955	1*	Same as 21952 representative sulfides, Py, Cpy.	Grab rep. of high grade	150	10.70%	90.4
21956	11	Green augite basalt, patchy epid, carb, dissem. Py, Cpy.	Chip 40-41 m	10	297	<0.2
21957	19	Massive Py, Cpy with fractured milky quartz.	Chip 33-34 m check	315	7.92%	70.8
21958	TR 2001-02	See Figure 15	Chip, length 0.7m at 0.5 m	10	0.98%	0.6
21959	n	11	Chip, length 0.55m at 0.5 m	330	15.30%	177
21960	11	11	Chip, length 1.2m at 0.5 m	10	736	0.2
21961	н	N	Chip, length 0.7m at 3.5 m	120	6.92%	74.8
21962		н	Chip, length 0.6 m at 5.0 m	120	6,96%	58.2
		10 cm qtz vein with fine Py, blebby Cpy. Wallrocks are			— Ţ	
		massive chl basalt with up to 10% fine dissem Py, minor				
21963	TR 2001-03	Сру	1 m chip across vein	140	3.26	27.6
		Med. Green andesite/basalt, non magnetic. Fine dissem.				
21964	TR 2001-05	Ру	chip, 10-11m east wall		272	0.2
1		As above silicified with milky quartz vein(10cm), Dissem.				
21965	n	Ру, Сру.	chip, 10-11m west wall		850	0.8
		Carb. and fractured, non magnetic basalt. 5% dissem. V.				
21966	TR 2001-05 EX1		1 m grab		172	<0.2
		Augite basalt lapilli tuff with dissem./veinlet Po, Py, spotty				· · · · · · · · · · · · · · · · · · ·
21967	TR 2001-06	Сру	float		122	<0.2
		Chloritic, magnetic volcanic with dissem. Py, Cpy. Local				
21968	TR 2001-08	lensy Cpy veins upto 1cm wide.	float		3.30%	32.5
		As above, chloritic with patchy fine-medium grained Py,				
21969	н	Сру.	float		131	<0.2
21970	"	As above strong magnetic, patchy fine Py, Cpy.	float		2245	2.4
		Highly magnetic with mgt. veinlets and veins of Cpy upto				
21971	**	1 cm.	float		1.81%	15.8

21972 21973		Cherty upto 10% fine/med. grained, commonly cubic Py. Oxidized with 5-7% fine/med. grained Py. Cherty.	chip, 3.3-3.8 m grab at 5.8 m	155	1033 411	0.6
21974	11	Cherty and pyritic locally >10% fine patchy to coarse Py.	chip, 17.0 - 18.5 m	280	933	0.6

20-Jul-01

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2001-187

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

ATTENTION: RON WELLS

No. of samples received: 24 Sample type: Core Project #: ND 2001-05 Shipment #: None Given Samples submitted by: Ron Wells

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Сr	Cu F	e %	La I	Mg %	Mn	Мо	Na %	Ni	P	РЬ	Sb	Sn	Sr Ti%	บ	v	w	Y	Zn
1	21951	5	<0.2	1.49	<5	105	<5	1.04	<1	46	159	172	5.87	<10	2.02	524	2	0.03	39	1410	4	<5	<20	36 0.09	<10	98	<10	<1	37
2	21952	300	>30	0.56	60	35	<5	0.72	6	395	67 >10	000	>10	<10	0.72	249	<1	0.02	46	٠	10	<5	<20	25 <0.01	<10	36	<10	<1	86
3	21953	<5	<0.2	1.71	~5	110	5	2.40	<1	39	150	<u>697</u>	4.69	<10	2.30	696	<1	0.03	40	1420	4	<5	<20	76 0.09	<10	107	<10	<1	38
4	21954	5	<0.2	1.41	<5	105	<5	1.62	<1	37	161	400	4.16	~10	1.87	546	<1	0.03	37	1400	2	<5	<20	45 0.09	<10	80	<10	<1	41
5	21955	150	>30	0.02	<5	40	<5	0.03	5	720	38 >10	000	≻10	10	<0.01	5	<1	<0.01	48	•	12	<5	<20	9 <0.01	<10	6	<10	<1	73
6	21956	10	<0.2	1.60	<5	110	<5	1.27	-1	39	146	297	4.02	<10	2.05	564	<1	0.02	37	1460	2	<5	<20	36 0.07	<10	79	<10	<1	44
7	21957	315	>30	0.38	<5	35	<5	0.15	7	398	62 >10	000	>10	<10	0.49	114	<1	0.02	52	*	12	<5	<20	23 <0.01	20	47	<10	<1	141
8	21958	10	0.6	0.61	<5	150	<5	1.18	<1	72	138 >10	000	5.63	<10	1.01	405	1	0.03	31	870	2	<5	<20	33 0.08	<10	77	<10	<1	50
9	21959	330	>30	0.04	<5	50	<5	0.64	17	609	25 >10	000	>10	10	0.07	83	<1	0.01	59	•	22	-5	<20	35 <0.01	<10	6	<10	<1	107
10	21960	10	0.2	1.89	<5	70	<5	3.24	<1	56	133	736	7.48	<10	2.73	810	1	0.03	45	1390	6	<5	<20	104 0.10	<10	134	<10	<1	50
11	21961	120	>30	0.44	<5	40	<5	0.76	11	355	77 >10	000	>10	10	0.74	213	<1	0.02	45		14	<5	<20	24 <0.01	<10	39	<10	<1	223
12	21962	120	>30	0.23	<5	50	<5	0.40	7	352	78 >10	000	>10	<10	0.41	126	<1	0.04	26	*	22	<5	<20	19 <0.01	10	32	<10	<1	57
13	21963	140	27. 6	0.93	35	30	<5	0.26	<1	330	111 >1(000	>10	-10	1.15	233	3	0.02	41	*	8	<5	<20	20 0.09	<10	65	<10	<1	59
14	21964	5	<0.2	1.21	<5	75	<5	4.11	<1	29	77	272	4.34	-10	2.43	873	2	0.03	25	1590	6	<5	<20	180 <0.01	<10	93	<10	<1	32
15	21965	10	0.8	0.61	<5	75	<5	3.74	<1	26	88	850	3.47	<10	1.89	741	3	0.02	19	1060	8	<5	<20	183 <0.01	<10	53	<10	<1	27
16	21966	10	<0.2	0.22	<5	60	<5	2.25	<1	29	30	172	5.16	<10	0.82	585	3	0.03	18	1390	6	<5	<20	225 <0.01	<10	24	<10	<1	18
17	21967	10	<0.2	1.43	<5	25	<5	5.79	<1	36	111	122	4.85	<10	1.76	1103	<1	0.02	23	1190	12	<5	<20	118 0.04	<10	105	<10	<1	56
18	21968	30	>30	0.99	<5	30	<5	0.25	2	327	89 >1(000	>10	<10	1.21	332	3	0.02	43	+	16	<5	<20	6 0.11	<10	92	<10	<1	101
19	21969	5	<0.2	2.21	<5	45	<5	0.54	<1	44	154	131	8.95	<10	2.75	1020	<1	0.02	35	1520	8	<5	<20	14 0.12	<10	152	<10	<1	52
20	21970	5	2.4	1.26	<5	35	<5	0.97	<1	68	85 2	245	9.19	<10	1.65	524	2	0.03	22	1300	10	<5	<20	19 0.11	<10	134	<10	<1	40

CHRISTOPHER	JAMES GOLD CORP.
-------------	------------------

ICP CERTIFICATE OF ANALYSIS AK 2001-187

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	۷	W	Y	Zn
21	21971	70	20.4	2.79	5	30	<5	0.41	1	209	124 >	>10000	>10	<10	3.22	1195	17	0.01	31	290	6	<5	<20	12	0.04	<10	228	<10	<1	152
22	21972	155	0.6	0.63	155	15	<5	0.31	2	141	64	1033	>10	<10	0.47	379	4	0.04	54	770	8	<5	<20	19	0.05	<10	34	<10	<1	39
23	21973	135	0.4	0.32	125	20	<5	0.35	1	84	49	411	8.97	<10	0.03	74	5	0.03	51	560	14	<5	<20	123	0.10	<10	38	<10	<1	26
24	21974	280	0.6	0.82	185	15	<5	0.39	3	97	48	933	>10	<10	0.66	542	3	0.04	61	710	8	<5	<20	21	0.06	<10	82	<10	<1	41
<u>QC DA</u> Respli 1	-	5	<0.2	1.47	5	105	<5	1.05	<1	46	156	153	5.91	<10	2.00	520	1	0.03	41	1510	4	<5	<20	35	0.09	<10	97	<10	<1	38

Repest: 1 21951 10 21960	5 5	<0.2 0.5	1.50 1.88	<\$ <5	105 65	<5 <5	1.04 3.25	<1 <1	46 57	159 134	190 800	5.88 7.54			526 812	<1 <1	0.03 0.03	39 44	1450 1460	4 6	<5 <5	<20 <20	35 100	0.09 0.10	<10 <10	98 133	<10 <10	<1 <1	38 51
Standard: GEO'01	120	1.2	1.75	60	150	<5	1.86	<1	17	62	83	3.67	<10	0.85	680	<1	0.02	24	680	20	<5	<20	54	0.06	<10	60	<10	<1	73

NOTE: * = No Results due to massive Cu Interference.

FP/kk df/187 XLS/01 cc: ron wells fax @ 372-1012 -Cart

a second s

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

CERTIFICATE OF ANALYSIS AK 2001-187

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

26-Jul-01

ATTENTION: RON WELLS

No. of samples received: 24 Sample type: Core **Project #: ND 2001-06 Shipment #: None Given** Samples submitted by: Ron Wells

ET #.	Tag #	Au (ppb)	Pd (ppb)	Pt (ppb)	
5	21955		<5	<5	
9	21959	290	<5	-	
1 1	21961	145	-	-	
12	21962	105	-	-	

CH LABORATORIES LTD. ECO 76 Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/01

10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 ernail: ecotech@direct.ca

CERTIFICATE OF ASSAY AK 2001-187

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

ATTENTION: RON WELLS

No. of samples received: 24 Sample type: Core **Project #: ND 2001-06 Shipment #: None Given** Samples submitted by: Ron Wells

		Ag	Ag	Cu	
ET #.	Tag #	(g/t)	(oz/t)	(%)	
2	21952	68.5	2.00	9.10	
5	21955	90.4	2.64	10.70	
7	21957	70.8	2.07	7.92	
8	21958	-	-	0.98	
9	21959	177.0	5.16	15.30	
11	21961	74.8	2.18	6.92	
12	21962	58.2	1.70	6.96	
13	21963	-	-	3.26	
18	21968	32.5	0.95	3.30	
21	21971	15.8	0.46	1.81	

QC	DAT	Α:

Repeat: 2 21952

Standard: Mpla

70.0 2.04

2.00

68.5

1.44

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/01

Page 1

20-Jul-01

10041 Dallas Drive, Kamloops, B.C. V2C 674 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

CERTIFICATE OF ANALYSIS AK 2001-187

24-Jul-01

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

ATTENTION: RON WELLS

No. of samples received: 24 Sample type: Core Project #: ND 2001-06 Shipment #: None Given Samples submitted by: Ron Wells

		Au	
ET #.	Tag #	(ppb)	_
9	21959	290	_
11	21961	145	
12	21962	105	

2 ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/01

26-Jul-01

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

ICP CERTIFICATE OF ANALYSIS AK 2001-207

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

ATTENTION: RON WELLS

No. of samples received: 7 Sample type: Rock Project #: ND 2001-07 Shipment #: None Given Samples submitted by: R. Wells

<u> </u>	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr Cu	Fe %	Lø	Mg %	Mn	Мо	Na %	Ni	Þ	Pb	Sb	Sn	Sr	Ti %	U	v	w	v	Zπ
1	21975	105	>30	0.50	30	10	<5	4.85	2	522	90 >10000	>10	<10	0.72	567	10	0.03	42	180		<5				_		_	_	
2	21976	95	>30	0.99	30	15	<5	5.16	4	354	104 >10000		<10	1.38	499	5	D.03	50	++	0	-	<5	125	0.07	<10	46	<20	<1	35
3	21977	105	>30	0.51	50	10	<5	0.97	6	524	71 >10000		<10	0.77	321	6	0.03		**	8	10	<5		<0.01	<10	75	<20	<1	41
4	21978	85	>30	0.64	75	15	<5	2.04	5	481	120 >10000		<10	0.91				40		10	20	<5		<0.01	<10	43	<20	<1	58
5	21979	95	>30		45	10	<5	0.54	5	342	135 >10000	-			405	<1	0.03	46	**	8	<5	<5		<0.01	<10	60	<20	<1	104
6	21980	35	6.0	0.49	25	15	<5	4.13	<1	268			<10	2.66	597	<1	0.02	47	**	4	5	<5	8	<0.01	<10	125	<20	<1	80
7	21981	65	2.8	0.10	15	<5	<5	1.02					<10	0.75	518	4	0.03	32	570	6	5	<5	95	D.06	<10	58	<20	<1	32
-		00		0.10		-0	-0	1.02	<1	264	119 4175	>10	<10	0.17	160	3	0.02	22	520	6	<5	<5	37	0.05	<10	25	<20	<1	1
<u>QC DAT/</u> Resplit: 1	<u>4:</u> 21975	110	>30	0.51	45	5	<5	4.52		537	80 > #0000	.10	-10		550	10													
-				0.01	-0		-0	4.02	4	237	90 >10000	>10	<10	0.74	556	12	0.03	51	240	8	30	80	115	0.07	<10	48	<10	<1	34
Repeat: 1	21975	-	>30	0.48	40	<5	<5	4.71	3	511	89 >10000	>10	<10	0.70	586	11	0.03	45	220	8	15	60	117	0.06	<10	45	<10	<1	33
<i>Standard</i> GEO'01	d:	-	1.2	1.67	85	150	<5	1.61	<1	21	56 B4	3.71	<10	0.90	709	<1	0.02	28	830	20	10	<20	56	0.09	<10	69	<10	<1	78

NOTE: ** = Massive Cu Interference - No results available.

FP/kk df/201 XLS/01 cc: ron wells fax @ 372-1012

CH LABORATORIES LTD. ECQ-1 fank /. Pezzotti, A.Sc.) Pertified Assaye

10041 Dallas Drive, Kamloops, B.C. V2C 614 Phone (250) 573-5700 Fax (250) 573-4557 email: ecolech@direcl.ca

CERTIFICATE OF ASSAY AK 2001-207

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

24-Jul-01

ATTENTION: RON WELLS

No. of samples received: 7 Sample type: Rock Project #: ND 2001-07 Shipment #: None Given Samples submitted by: R. Wells

ET #.	Tag #	Ag (g/t)	Ag (oz/t)	Cu (%)	
1	21975	37.6	1.10	2.09	
2	21976	48.5	1.41	3.56	
3	21977	69.7	2.03	9.24	
4	21978	67.5	1. 97	4.07	
5	21979	44.8	1.31	4.69	
6	21980	6.0	0.18	0.39	
7	21981	2.7	0.08	0.38	
QC DATA:					
Resplit: R/S 1	21975	38.0	1.11	2.10	

 Repeat:
 37.5
 1.09
 2.06

ECO-TECH LAGORATÓRIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/01 cc: ron wells fax @ 372-1012

10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

CERTIFICATE OF ASSAY AK 2001-207-Resplit

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

26-Jul-01

ATTENTION: RON WELLS

No. of samples received: 7 Sample type: Rock Project #: ND 2001-07 Shipment #: None Given Samples submitted by: R. Wells

		Cu
ET #.	Tag #	(%)
7	21981	0.40

QC DATA:

Repeat: R7	21981	0.40
Standard: SUla		0.96

ECOTECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/01 cc: ron wells fax @ 372-1012

10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

CERTIFICATE OF ANALYSIS AK 2001-207

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9 26-Jul-01

ATTENTION: RON WELLS

No. of samples received: 7 Sample type: Rock **Project #: ND 2001-07** Shipment #: None Given Samples submitted by: R. Wells

		Pd	Pt	
<u> </u>	Tag #	(ppb)	(ppb)	
3	21977	<5	<5	

ECO TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assaver

XLS/01

TABLE 7: SILVER LAKE PROJECT 2001NEW DISCOVERY GRID: JULY/AUGUST TRENCHING

SAMPLE	LOCATION	SAMPLE DESCRIPTION		Au	Cu	Ag	Zn
NO			SAMPLE TYPE	ppb	ppm		ppm
21975	ND TR-2001-01,02,03	See Figure 15	Chip, length 1.15m, at 0+5m		2.09%		
21976	10	М	Chip, length 1.15m, at 0+7.5m		3.56%		
21977	19	r)	Chip, legnth 1.50m, at 0+9.0m		9.24%	69.7	
21978	11	et	Chip, length 0.90m, at 0+12m		4.07%	67.5	
21979	11	t)	Chip, length 0.8m, at 0+18.3m		4.69%		
21980	"	11	Chip, length 0.80m, at 0+23.5m	35	4462	6.0	
21981	91	11	Panel Sample, 30x1m, at 15.0m, 3m south	65	4175	2.8	
		Qtz. vein zone. 2-3 veins per metre with blebby Py.					
21983	ND TR-2001-15	laminated	1m grab, 3+31N 18+00W	20	60	< 0.2	
21984	11	Milky qtz. Vein 5-10cm wide.	Grab, 3+21N 18+00W	10	167	< 0.2	36
		Strong oxidized, dissem. and stringer Py. Dark chlorite-					
21985	ND TR-2001-16	magnetite rich host.	Chip grab, 14.5m to 16.0m	15	1146	1.2	57
21986	*1	Similar to above.	Grab at 15.5m	20	1878	2.0	
21987	н	10cm milky qtz. vein, 5-7% fracture Py. in alt. basalt.	Grab at 17.5m	10	527	0.4	164
		Patchy fracture controlled f/m. grained Py locally >7%.					
21988	м	in alt. basalt.	Grab at 21.5m	15	601	0.6	153
21989	11	Strong hematitic-limonitic, oxidized fracture zone.	Chip grab, 24.5m to 26.0m	55			
		Top of outcrop 1m below bedded cherty sequence. >20%					
21990	OC 16+75W on road	f/m. grained Py with fine magnetite.	Grab, top of outcrop	15	1147	0,4	2073
<u> </u>	**	Narrow 20-30cm fracture zone with local >20% Py,	· •	-			
21991	OC 16+75W on road	cherty with local fine magnetite.	20cm chip, mid outcrop	5	122	<0.2	884
		Lower outcrop. 30cm wide zone with 10-20% Py, fine					
21992	OC 16+75W on road	magnetite local epidote.	Chip over 30cm, lower outcrop	20	1026	0.6	1247
						1	t
				1			t
				<u> </u>			t
					 	t	t
				1			
			• · · · · · · · · · · · · · · · · · · ·	†			

9-Aug-01

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2001-229

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

ATTENTION: RON WELLS

No. of samples received: 10 Sample type: Rock Project #: ND-2001-08 Shipment #: None Given Samples submitted by: Ron Wells

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	A! %	As	Ba	Bi	Ca %	Cd	Co	Cr	Сш	Fe %	La	Mg %	Mn	Мо	Na %	NL	Р	Pb	Sb	Sn	Sr	Ti %	U	V	w	Y	Zn
1	21983	20	-0.2	0.54	10	30	<5	1.99	<1	14	93	60	2.65	<10	0.79	1048	2	0.04	16	850	4	<5	<20	91	<0.01	<10	28	<10	<1	76
2	21984	10	<0.2	0.33	10	25	<5	0.08	<1	9	176	167	2.91	<10	0.24	459	8	<0.01	14	50	<2	<5	<20	9	<0.01	<10	17	<10	<1	36
3	21985	15	1.2	4.35	95	<5	<5	0.43	<1	96	270	1146	≻10	<10	4.15	929	2	0.01	77	1260	8	<5	<20	9	0.04	<10	172	20	<1	57
4	21986	20	2.0	2.70	200	<5	<5	0.20	<1	65	191	1878	>10	<10	2.65	582	<1	<0.01	84	1020	4	<5	<20	6	0.02	10	103	<10	<1	43
5	21987	10	0.4	1.81	50	<5	<5	0.28	1	34	204	527	>10	<10	1.85	919	3	0.01	50	490	4	<5	<20	23	0.03	<10	71	<10	<1	164
6	21988	15	0.6	4,78	65	5	<5	0.43	<1	35	385	601	>10	<10	5.08	1232	4	0.01	88	1440	12	<5	<20	13	0.01	<10	199	<10	<1	153
7	21989	55	2.2	2.59	40	35	<5	0.23	1	26	362	953	>10	<10	2.37	490	8	0.01	46	850	<2	<5	<20	60	0.05	20	182	<10	<1	411
8	21990	15	0.4	0.65	65	<5	<5	0.52	20	138	61	1147	>10	<10	0.34	1105	<1	0.01	28	620	<2	<5	<20	77	0.04	<10	32	<10	<1	2073
9	21991	5	<0.2	0.40	20	30	5	1.00	8	19	86	122	3.16	<10	0.20	562	6	0.03	13	860	4	<5	<20	76	0.10	<10	38	<10	<1	884
10	21992	20	0.6	0.70	200	<\$	<5	1.41	13	139	56	1026	>10	<10	0.51	1866	1	0.02	39	540	6	<5	<20	75	0.04	<10	22	10	<1	1247
QC DA Resplit																														
1	21983	35	-0.2	0.54	5	25	<5	2.02	<1	15	102	59	2.69	<10	0.79	1043	3	0.04	16	850	4	<5	<20	89	<0.01	<10	28	<10	<1	58
Repeat	t																							•••			20	-10		
1	21983	-	<0.2	0.53	10	25	5	1.97	<1	14	92	58	2.60	<10	0.77	1036	3	0.04	17	850	6	<5	<20	87	<0.01	<10	27	<10	<1	56
Standa	rd:																													~~
GEO'0	1	115	1.2	1.61	60	140	<5	1.53	<1	18	51	83	3.37	<10	0.89	655	<1	0.02	25	730	20	<5	<20	52	0.09	<10	67	<10	<1	78

FP/kk df/229 XLS/D1 cc: ron wells fax @ 372-1012

ECO-TECH LABORATORIES LTD.

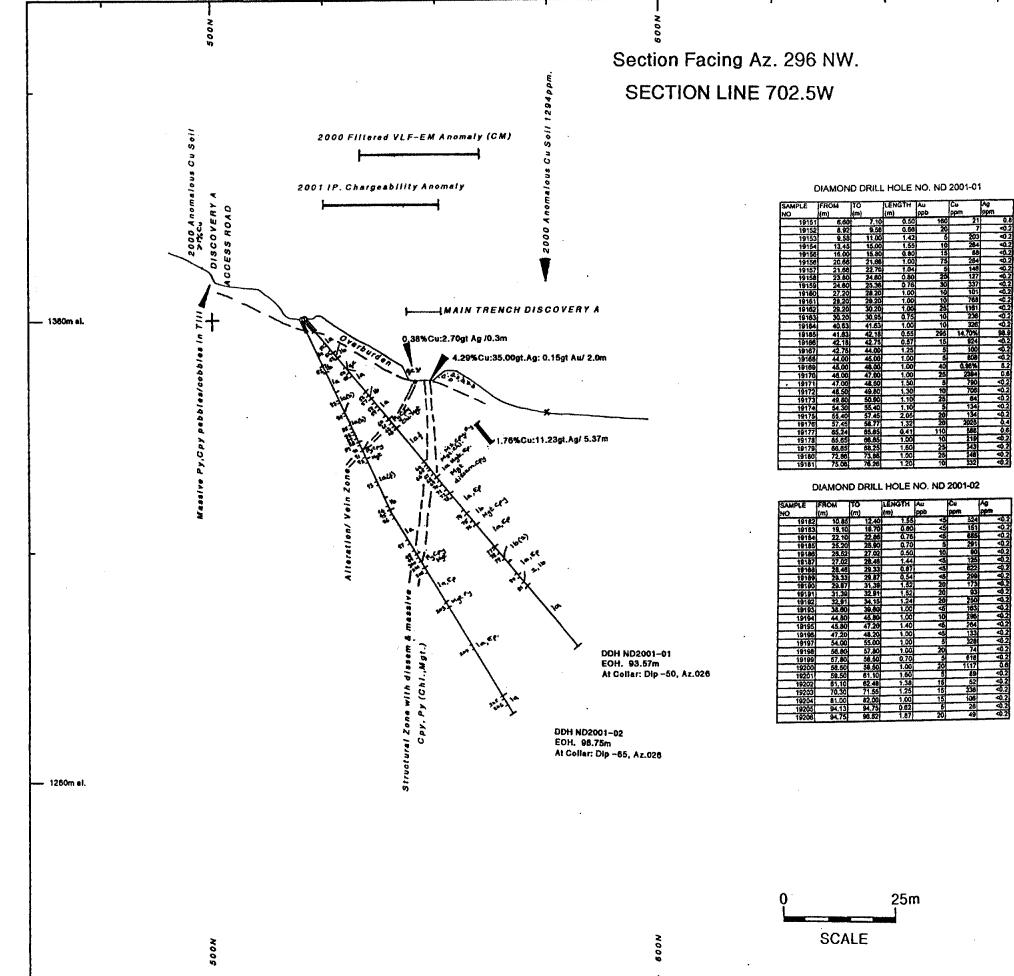
Frank J. Pezzotti, A.Sc.T. 8.C. Certified Assayer

APPENDIX 5

2001 PHASE 1 EXPLORATION: DIAMOND DRILLING DATA

R. C. Wells, P.Geo., FGAC. Kamloops Geological Services Ltd.

,


DDH NO.	GRID LOCATION (Collar)	AZIMUTH	INCLINATION	DIP TEST @ m (corrected)	LENGTH m	CASING 10	START	FINISH
ND2001-01	7+02.5W :5+20.5N	026	-50	-50@93.57	93.57	3.66	7/9	8/9
ND2001-02	As Above	026	-65	-58@98.75	98.75	3.05	8/9	10/9
ND2001-03	7+25W:5+06.5N	026	-45	-43@84.4	102.71	3.66	11/9	12/9
ND2001-04	6+77W:0+17N	026	-55	-49@63.0	78.33	6.10	13/9	14/9
ND2001-05	6+77W:0+17.5N	026	-65	-61@78.33	90.52	4.88	14/9	15/9
ND2001-06	7+62W:5+46N	026	-50	-48@50.9	84.42	4.57	15/9	16/9

NEW DISCOVERY PROGRAM: PHASE 1 DRILLING INFORMATION

HIGHLIGHT ASSAY INTERVALS

SECTION	HOLE	FROM	то	LENGTH	COPPER	SILVER	GOLD
7+00W	ND2001-01 (-50)	41.63m	47.00m	5.37m	1.76%	11.23 g/t	
	Includes	41.63m	42.18m	0.55m	14.70%	98.9 g/t	0.30 g/t
6+77W	ND2001-04 (-55)	29.39m	31.39m	2.00m	0.44%	2.5 g/t	
		37.23m	40.40m	3.17m	0.92%	12.67 g/t	
	Includes	37.23m	38.23m	1.00m	2.39%	38.17 g/t	0.23 g/t
6+77W	ND2001-05 (-65)	53.64m	56.62m	2.98m	0.71%	5.44 g/1	

TABLE 9

 $\langle \rangle$

	Ag
R	ppm
524	<0.2
151	<0.2
685	<0,2
	<0.2
90	<0.2
125	=0.2
622	<0.2
299	40.2
175	<0.2
93	<0.2
260	4.2
103	<0.2
295	40.2
264	<0.2
133	<0.2
328	<0.2
74	<0.2
	<0.2
1117	0.6
89	<0.2
52	<0.2
336	40.2
1(17 69 52 336 106 28 49	432 432 432 432 432 432 432 432 432 432
28	<0.2
44	40.2

1380m el. -

LEGEND

gy or Alteration Unit

Unit or Zone

Bedding, Veins or Contact

......

LITHOLOGIES

NICOLA GROUP (Upper Trianic)

Hele Collar Casio Sample No (Last 2 digits)

Highlight Assay

terbedded Cherty Siltstones, Tuffs and Vo

Hernfels, Silicified/Cherty I. Some Calc-Silicate units.

Plagiociase Phyric Flows, some Dikes?

Mafic Tuffs including Lapilli Tuffs (LT).

Augite Porphyry Basalt. Massive to brecclated (Bx) units.

	1280m el
r	
CHRISTO	OPHER JAMES GOLD CORP.
KA	R LAKE PROPERTY MLOOPS MINING DIVISION SCOVERY ZONE A
	OFILE: DDHs ND2001-01&02 ECTION 702.5W
DATE: 15/12/2001	PREPARED BY: <i>R. c. Male</i> Fig. 21
KAMLOOPS G	EOLOGICAL SERVICES

SILVER LAKE PROPERTY NEW DISCOVERY GRID

DDH NO. NO ROOI-	- 67						PAC	ge no. 🦌
	L	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
MAIN UNITS	GL	SUB UNITS				FROM	TO	NUMBER
-3.66 Casing in	0.0	Sondy clay T.H. Materix suggested					-	
verburden and sea Kered Bedrock		petites / could abore weathord	4					
	12	augile parphysy.						
-66 - 28-20	11	3.66-9.58 Faily massive med graying the	massive line carte.	Patch, pervasive _	26.90 Less mide			
Augite Parphyry	14	fine grained augite porphysy bacalt.		carb, carb vainlets.	illevelot to the voice	6.60	7./0	19/51
Basalt	1	mod magnetic ST angite & herecycle			HO"CA 3-4 % fine diese			
	11	battom Patchy fine faldepar lathe -	- 9	CAIS 3. CA by verniets	Wellinsk P. 6-60-7.10	8-92	9.58	19152
1	125	4 58-11.00 THE Braces Stragget manufi	CINCE COMPANYAA COCH	STINANE! Path said a	Laral Lun Chame and	9.58	//-00	19153
	- Fie	4.58-11.00 Ture precise. Stranger maynetic CM scale 6 Accined augite porphysy	to by Higher density	local humanite fractures	V. fine dissam. By mine			
	12			7	ر ۲			
	11	11.00-20.66 mainly medicing green	Numerous Lin cash	Basalt has winkt	13-95-15-90 Variatio	13.45	15.00	19154
	$ \mathscr{L} $		vointets to 13.45m			15.00	15.80	19155
		with local magnetite cich hold Bx_ as above. Pyroxee basalt			v .			
	/	dominates below 13.50m. maderate	Varia 30-45-09 01430	Tuff has permosive			••••••••••	
	14		inggy rain Below		some ton 150-15.5	-		
	벽/:	20.66-22.70 Tuff braceia - augita		Parmaning and rate	Much disseminated	20.66	21 66	19156
	14						12.70	19157
	12	porphyry Fine granted, lacat	density za-110 ca. Massite to Carninated	carboate , lo cal week epidate	laced him director Co	·		
	16	22:10-25:36 mainy gray dy angite	1 .	۱·	local fin dissem. Cpy	23.80	24.60	19158
		clayby goden . Faults or matrix.	Clayor 30 Act @ 22.94 24.12524.78-25.30		Both clone, goes hast abundant fine disemen	44.60	25.36	
	- 1Ż	25.86-28.20 Augite Local falls and		Pervasive mad. carb	chungant fine dissones	<u> 24-60</u>	63.36	19159
	14	winshipy weak to the and sections	Fine conte veraleto	weak watty epidale	verintett, come with come	\$7.20		
	1	- W/M. Marshi Foith Massive 183.20 - 29.27 Black als Altration Zom 14.37-29.45 Dk. Chi Mg At 5-10% Sylery)	Sonyo's A locally pyribe massife Verning 90's4	Mat + carb	sinters, course out vainters, course out disserve by developments 3.5%, fine disserve of (course blacks, fractore by, course searce for	28.10	18.10	19160
11.10-30.95 Vena -	19-7	18995 Just Vien onthe the inte		chi + coils + Mat	these freeture by , cay	19.20	29.20	19161
Alteration - Sulficle Zaa	╸	-189.95-30.95 Vinger Carb ate with	Warney subported ca	1	Sparse ry	10-20	30.95	13/63
30.95-40.85		Fairly homogeneous Augite	a sparse fine and	Pater acousting	19% los dime			·····································
Augila Porphyry	12	phone syste to been commonly exide	minlets generally	Potchy permasive	62% fine direm			·
Basalt. Patchy Epidal	~ ^∕	Fini and a contract. Made the		epidate alteration	ly, sparse coy			
-	~	Fini grained ground man. Mucherafa	high ang a ca.		clusters with pidate			
	12	magsete			presented aprillage		1	
		1					t	

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY

DATE: August 8, 2001.

SILVER LAKE PROPERTY NEW DISCOVERY GRID

0-1001 CM	-						PA	GENO. 2
· · · · · · · · · · · · · · · · · · ·		THOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
MAIN UNITS		SUB UNITS				FRÓM	TO	NUMBER
40 168-42.75 HALCOPYENE - MAGNETITE	7	40.43-41.63 May 16 Mar , fini 400-1000 41.63-42.18 Mar 10 10 10 100 100 Cory 2 Pos 42.18-418 St. May 100 10, fine grant and	American cost winter	Mgt, Chi, variable Mgt, chi, variable Mgt, calb. Lacal gt inclusions inclusions inclusions mgt salestic epicture	Cubic for dissem by	40.63	41.63	19164
NLORITE ZONE	<u>//-</u>	42.14.43.75 mayretit, free grouted	a for 10-20 ca	Inclusions	beat attern to By Cay	42:18	-4 2.15	19166
1.75 - 45.00 Altered	ЦÆ	Fairly crowded angite parphysy. Strang-	Carlo verslotz	week personsive carb,	Patrie fine dessen By	42.76	44.00	13167
gite Porphyry Basalt	51	Magnetic or its apidate a theread phease, any ge		mgt relevenie epidale	7 TT	44.00	45.00	15/48
	Z.]	Black, fine grained, strong any aster	LOCOX COLD LAUNING	V. weak carb. Fing	apper-maily desses	45.00	46.00	17167
ARAR MA CIAL ZOAR .		with 1-2-1 discome - had to.	Some Con fractives	maguetite - patety	cap. by I domawoods	46.00	M7.00	19/70
ith dissemiated Coy	1	Massive, made cate magastic	Markly 30-40 Sume	chammards. V. weak.	PASS Kon Co. rich	#7.00	A8.50	19171
		Mossive, dedecate augustic	Marchly 30 - 40 " Sume Lawron TO- 85" CA	epidole & dream ands	which is a cast 44-45	A8.50	49.80	19172
1.80-55.40 Epidok		NUMERUS 2-4 mm angile phase cayst				49.00	50.90	19/73
bered Augite Porphys	1-	in for groundmoss with patch,	61263 Mary 20-7. CA	salective - phanel -	beal specks of Coy			
asalt.	4	epidete-carbonate.	local tuff lomin so lice	anygeloles. Carb Heigh	porusal to egit / corb	54.30		19174
	F		<u> </u>		TRy Allac Log base	\$5.40	\$7.45	
5-40-50.77 Augite		Bisculated to fine laminated with fine to zlass angular lapiti.	60-65'ca 57.45-58-77	chlosite potety	Patchy by beally	57.45	69.77	19176
uff (Structure?)		fragmats. here to and my achi	consectant sulfides	margin integ. card + H	ST. 17 . 67.27 with ohl, car		\$8.77	1.2//16
58.77-65.24 Epidole so		As at 19 to marsive, mad may sh	Carb vislety at	corb maily in	7+37-7-1			
Hered Angite Porphysy		with pattly epidate alteration	provide any lase c.a.	variable . Porcay	Misor fine dimen			
••	1		34/14 15-30 CA	5-8 / (alachus epid)	by rora specke (py			
65.24-69.40 Fine	1	65. 84-68-25 DK gray to black strong ray	MILLY of S LEVA & SS'CA	Permine myseti.	local and g. Com	65.24	65.65	17/77
gite Boundt / Tuff -		tyff / bx . A gite Parphy frog manter	Cride to mid. Labori.	Pately w/n cart coin	at edge of als Pake		1	19178
reccin, Tuff (hadded)		(125-69.40 Fine bedded gray green epid at aquigranular tiffiquicher.		Pately w/m costs, epid		1 14.65	69.25	13175
	Ĭ.		Sorstica.	Carte mainly in	to sulfide in heff.			
69-40-73-03 Epidahe 10		As at \$3.20 fairly married. and.	Carstin Lacal low angle CA.	ventile Pottly	sparse sulfiles	<u></u> <u></u> +		
Usered Augite Porphyry	1/;	regestri, patrice, spidate	COTO LOLALLE SOME	selective epid.	Cocally with epid.	70.00	72.9/	
13-03-76-26 Bedded Tuff	1	predominanty fine ground , equigrance			2-47 freeline, diese n		73.86	19184
7626 - 93.57	1.	predeniantly fine ground , equiprosche voriable groops Beddeed - la minated	Sparse irrage tar carb wi	A AVER & OAID Comer	fg. P. below 75.06	75.05	76.26	19/ \$1
Epidote Alternal					Subporellal wayy carbs	4		
Augite loghyry		he at 49:00 pourse while feldyout lattis. Maderate magneti	pro the maxime . Kocak	Forch epidate	hocal for dimen		ł	
	Wi	1 (ATTAS. Made/att Magnets	1 1-10 aple costs weight	utek comment				l

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: hello

DATE: August 8-9, 2001.

SILVER LAKE PROPERTY NEW DISCOVERY GRID

DH NO. NO 2001-01			· · · · · · · · · · · · · · · · · · ·	-			GE NO. 3
	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
MAIN UNITS GL	SUB UNITS				FROM	TO	NUMBER
	Continued from Pg2				ł		
		low angle conte					
1/		we inter 1-2 was					
11	weak evidate alterned anoite.	10cm					
11	weak epidate alternat angite, fine feldapor parahyry						·
			Caidale waster	1-3% fine diman.			
4		assign early and	and more salection	& in wallacks to			
· 4		90-17-90-20 Carb 140	with death	By in wallacts to			
· · · · · · · · · · · · · · · · · · ·		with wanter Chi 40	· · ·	and the hast in			
/		Soice		angle CA fractures			
73-57	End of Hole			, <u>, , , , , , , , , , , , , , , , , , </u>	1		
							· · · ·
							·
1							
					<u> </u> ·		
			1	······································	f		
			· · · · · · · · · · · · · · · · · · ·		1 1		
					1 1		
					1 1		
					T T		
							l
							i
				````			
					t t		h ·

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY:

DATE: August 9, 2001 ...

# DIAMOND DRILL HOLE NO. ND 2001-01

SAMPLE	FROM	TO	LENGTH	Au	Си	Ag
NO	(m)	(m)	(m)	ррв	ppm	ppm
19151	6.60	7.10	0.50	160	21	0.8
19152	8.92	9.58	0.66	20	7	<0.2
19153	9.58	11.00	1.42	5	203	<0.2
19154	13.45	15.00	1.55	10	264	<0.2
19155	15.00	15.80	0.80	15	68	<0.2
19156	20.66	21.66	1.00	75	264	<0.2
19157	21.66	22.70	1.04	5	146	<0.2
19158	23.80	24.60	0.80	20	127	<0.2
19159	24.60	25.36	0.76	30	337	<0.2
19160	27.20	28.20	1.00	10	101	<0.2
1 <b>91</b> 61	28.20	29.20	1.00	10	768	<0.2
19162	29.20	30.20	1.00	25	1161	<0.2
19163	30.20	30.95	0.75	10	236	<0.2
19164	40.63	41.63	1.00	10	326	<0.2
19165	41.63	42.18	0.55	295	14.70%	98.9
19166	42.18	42.75	0.57	15	924	<0.2
19167	42.75	44.00	1.25	5	100	<0.2
19168	44.00	45.00	1.00	5	808	<0.2
19169	45.00	46.00	1.00	40	0.98%	5.2
19170	46.00	47.00	1.00	25	2394	0.6
19171	47.00	48.50	1,50	5	790	<0.2
19172	48.50	49.80	1.30	10	706	<0.2
19173	49.80	50.90	1.10	25	64	<0.2
19174	54.30	55.40	1.10	5	134	<0.2
19175	55.40	57.45	2.05	20	134	<0.2
19176	57.45	58.77	1.32	20	2025	0.4
19177	65.24	65.65	0.41	110	586	0.6
19178	65.65	66.65	1.00	10	219	<0.2
19179	66.65	68.25	1.60	25	343	<0.2
19180	72.86	73.86	1.00	25	246	<0.2
19181	75.06	76.26	1.20	10	332	<0.2

22-Aug-01

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4 .

Phone: 250-573-5700 Fax : 250-573-4557

#### ICP CERTIFICATE OF ANALYSIS AK 2001-248

#### CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

#### ATTENTION: RON WELLS

No. of samples received: 31 Sample type: Core Project #: ND-2001-D1 Shipment #: None Given Samples submitted by: Ron Wells

Values in ppm unless otherwise reported

<u> </u>	Tag #	Au(ppb)	Ag	Al %	As	Ba	B}	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	W	Y	Zn
1	19151	160	0.8	1.16	20	35	<5	7.91	<1	36	161	21	5.09	<10	1.85	853	41	0.05	39	1380	108	<5	<20	143	0.14	<10	107	<10	<1	41
2	19152	20	<0.2	1.46	20	145	<5	4.65	<1	32	228	7	5.49	<10	2.01	724	<1	0.04	36	1590	6	<5	<20	120	0.18	<10	122	<10	<1	35
3	19153	5	<0.2	1.48	10	225	<5	3.49	<1	29	142	203	5.62	<10	1.87	699	<1	0.04	26	1650	6	<5	<20	179	0.18	-10	123	<10	<1	32
4	19154	10	<0.2		15	130	<5	4.18	<1	38	176	264	6.56	<10	2.29	843	<1	0.04	30	2070	10	<5	<20	164	0.23	<10	181	<10	<1	48
5	19155	15	<0.2	1.72	20	105	<5	4.56	<1	38	184	68	6.02	<10	2.39	795	<1	0.04	35	1630	10	<5	<20	138	0.22	<10	148	10	<1	40
6	19156	75	<0.2		25	50	<5		<1	47	231	264	7.32	<10	4.39	1135	з	0.04	52	1670	14	-5	<20	156	0.18	<10	207	<10	<1	50
7	19157	5	<0.2	1.75	20	145	<5	4.44	<1	35	207	146	5.43	<10	2.39	766	<1	0.05	39	1650	8	<5	<20	124	0.18	<10	139	<10	<1	32
8	19158	20	<0.2		10	40	<5	5.17	<1	42	230	127	7.04	<10	3.63	1129	2	0.04	50	1700	10	<5	<20	136	0.19	<10	187	<10	<1	66
9	19159	30	<0.2	1.99	25	15	<5	8.82	<1	43	201	337	6.70	<10	3.03	1264	4	0.04	44	1540	16	<5	<20	175	0.17	<10	146	<10	<1	58
10	19160	10	<0.2	1.73	15	85	<5	5.51	<1	35	187	101	6.03	<10	2.45	964	2	0.04	35	1520	10	<5	<20	145	0.18	<10	155	<10	<1	39
11	19161	10	<0.2	2.48	25	65	<5	1.94	<1	55	175	768	>10	<10	3.62	914	<1	0.04	43	1760	6	<5	<20	48	0.20	<10	212	10	<1	76
12	19162	25	<0.2	1.54	20	10	-5	3.22	1	103	173	1161	>10	<10	2.32	659	3	0.05	42	1470	8	<5	<20	74	0.20	<10	163	10	<1	56
13	19163	10	<0.2	1,50	15	70	-5	6.23	2	36	185	236	5.47	<10	1.94	679	<1	0.04	34	1570	8	<5	<20	243	0.22	<10	131	<10	<1	37
14	19164	10	<0.2	2.48	20	100	<5	4.35	<1	48	215	326	9.35	<10	3.27	1143	<1	0.04	- 44	1700	10	<5	<20	139	0.24	<10	1 <b>8</b> 5	<10	<1	70
15	19165	295	>30	0.22	65	<5	<5	1.36	8	434	63	>10000	≻10	<10	0.31	152	4	0.02	34	**	<2	25	**	37	<0.01	<10	28	••	<1	113
16	19166	15	<0.2	2.47	10	25	<5	1.31	<1	67	193	924	8.74	<10	3.14	774	<1	0.04	43	1680	10	<5	<20	44	0.22	<10	171	<10	<1	64
17	19167	5	<0.2	1.50	<5	155	≺5	3.03	<1	30	184	100	5.14	<10	1.83	694	<1	0.04	30	1550	6	<5	<20	140	0.20	<10	114	<10	<1	32
18	19168	5	<0.2	2.07	15	65	<5	1.85	<1	86	205	808	9.67	<10	2.64	780	<1	0.04	38	1720	8	<5	<20	104	0.21	<10	148	<10	<1	47
19	19169	40	5.2	2.42	15	55	<5	0.73	<1	191	206	>10000	>10	<10	3.27	841	<1	0.04	41	1680	4	<5	<20	31	0.19	10	189	<10	<1	91
20	19170	25	0.6	2.63	25	30	<5	2.95	<1	98	193	2394	>10	<10	3.68	989	<1	0.04	44	1550	8	<5	<20	79	0.19	<10	203	<10	<1	75

CHRISTOPHER JAMES GOLD CORP.

ICP CERTIFICATE OF ANALYSIS AK 2001-248

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Çr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	РЬ	Sb	Sn	Sr	TI %	U	v	w	v	Zn
21	19171	5	<0.2	2.12	15	115	<5	1.88	<1	57	191	790	>10	<10	2.84	808	<1	0.04	40	1630	8	<5	<20	51	0.18	<10	166	<10	<1	
22	19172	10	<0.2	2.19	15	55	<5	1.63	<1	72	189	706	>10	<10	2.93	920	1	0.04	42	1690	8	<5	<20	40	0.19	<10		. –		57
23	19173	25	<0.2	1.58	20	60	<5	2.53	<1	53	186	64	5.10	<10	1.96	581	<1	0.03	35	1640	10	<5	<20	40 143		-	151	<10	<1	60
24	19174	5	<0.2	1.68	15	150	<5	4.14	<1	35	210	134	5.08	<10	2.24	754	<1	0.04	39	1610	8				0.20	<10	87	<10	<1	36
25	19175	20	<0.2	2.42	20	95	<5	4.87	<1	53	445	134	5.75	<10	3.63	850	<1				-	<5	<20	121	0.20	<10	115	<10	<1	38
							-			00	440	10-1	5.75	-10	5.05	000	51	0.03	119	1620	12	<5	<20	97	0.15	<10	113	<10	<1	51
26	19176	20	0.4	3.00	25	10	<5	3.96	<1	129	462	2025	>10	<10	4.25	915	5	0.03	137	1560	10	۰E	-00	440					-	
27	19177	110	0.6	1.47	15	65	<5	2.39	<1	30	167	586	5.23	<10	2.14	945	<1				12	<5	<20	112	0.16	<10	134	≺10	<1	54
28	19178	10	<0.2	1.72	10	270	<5	3.51	<1	35	151	219	5.99	<10	2.14				23	1280	42	<5	<20	51	0.17	<10	130	<10	<1	43
29	19179	25	<0.2	1.85	10	40	<5	3.74	<1	62	179	343				1005	1	0.04	30	1720	10	<5	<20	151	0.19	~10	138	<10	<1	48
30	19180	25	<0.2	2.55	20	185	<5	3.32	<1				6.57	<10	2.54	960		0.05	37	1720	28	<5	<20	109	0.21	<10	154	<10	<1	49
••		LU	-0.L	2.00		105	-0	2.22	~1	46	204	246	7.14	<10	3.08	1066	<1	0.05	41	2210	16	<5	<20	176	0.24	<10	187	<10	<1	64
31	19181	10	<0.2	1.33	20	55	<5	2.41	<1	37	136	332	5.59	<10	1.69	685	<1	0.05	24	1980	18	5	<20	156	0.22	<10	127	<10	<1	38
OC DA	TA-																													
Resplit																														
1	19151	160	1.0	1.20	25	30	<5	7.84	<1	38	170	22	5.38	<10	1.91	867	43	0.05	41	1500	126	<5	-00	400						
													0.00	-10		007	40	0.05		1300	120	<0	<20	136	0.14	<10	112	<10	<1	45
Repeat	:																													
1	19151	155	1.0	1.19	35	30	<5	8.09	<1	38	169	22	5.27	<10	1.91	882	43	0.05	39	1430	116		-00							
10	19160	10	<0.2	1.74	15	90	<5	5.51	<1	35	188	102		<10	2.46	966		0.05			-	<5	<20	142	0.15	<10	113	<10	<1	43
19	19169	30	5.2	2.46	25	55	<5	0.78	<1	195		>10000		<10	3.33	862			34	1510	10	<5	<20	144	0.19	<10	156	<10	<1	40
								00		100	214 -	- 10000	-10	~10	0.00	002	<1	0.04	44	1770	8	<5	<20	34	0.20	<10	194	<10	<1	94
Standa	rd:																													
GEO'01		115	1.0	1.81	75	140	<5	1.67	<1	20	57	05	0.70	- 10	0.05							_								
				1.01		170	-5	1.07	~1	20	51	85	3.76	<10	0.95	702	<1	0.03	25	800	22	<5	<20	64	0.12	<10	75	<10	<1	78

FP/kk df/253 XLS/01 cc: ron wells fax @ 372-1012

ECO-TECH ABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



10041 Dallas Drive, Kamloops, B.C. V2C 614 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

### CERTIFICATE OF ASSAY AK 2001-248

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

22-Aug-01

**ATTENTION: Ron Wells** 

No. of samples received: 31 Sample type: Core **Project #: ND-2001-D1 Shipment #: None Given** Samples submitted by: Ron Wells

		Ag	Ag	Cu	
ET #.	Tag #	(g/t)	(oz/t)	(%)	
15	19165	98.90	2.88	14.70	
19	19169	-	-	0.98	

ECO-TECH ABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/01



10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

### CERTIFICATE OF ASSAY AK 2001-248R

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

29-Aug-01

**ATTENTION: Ron Wells** 

No. of samples received: 31 Sample type: Core **Project #: ND-2001-D1 Shipment #: None Given** Samples submitted by: Ron Wells

			Cu
_	ET #.	Tag #	(%)
	15	19165	13.60
	19	19169	0.93

ECO-TECHLABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/01

### SILVER LAKE PROPERTY NEW DISCOVERY GRID

DDH NO. ND 2001-				_			PAC	GE NO. /
	_	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL.	ING
	GL	SUB UNITS				FROM	TO	NUMBER
-3.05 Casing /n verburden and	0.0 P.0	0-2.0 Soudy Till with pebbles/ Cobbbs						
esthered bedrock	$\sim$	2.0-10.85 Exhedral augite pheasenst	4					
	1	2-4 mm with first foldspor lates	Earch Massing block	Patch assuration	space fine			
05-57.20 Augite	14	in fg. ground mass. Becaltic Cump.	recovery File carb mit	W-M carbonate	dissen. Ry			
prohyry Basalt . Tuff.	1	moderate magnetic , lacal epidote		selection epidate all	y			
reccia sections with		patiles	Local heartile luch .	Calendary March 14				
agnetite.	1	r	@ 50'-ST'C4 @9.26m 2cm	More evident 10.0.				
	1		COND VALA LA-SE CA	10.85 dk chi son ale		· · · · ·		
	ŀ÷	10.85-12.40 Tuff-Br Stopag magneti	Reals care large by		EL A IN			
	Ļ/!.	fine grained . Crude lamination . 84	Blocky Care . Isregular Carb Vite . 9 0- 30'CA	Parthy corb, Local	Flor ly dissem, fracture, lacal	10.85	12.40	<u>19</u> )12
	60	12.40-17.69 Dark grey make equipments	Massire & weak					
					Space for dissem by			
	ŀ .	fraturing 2-6 cm Sub-angular/sub-much	1 V	win patchy pervesive				
	Ŀ÷	low dessity of fine feed latts with 1769, 22:00 minuted - epidalt angit	veraletr	catt sparse epidate		· · · ·		
	Γy		Local irregidar		Local norme sections			······································
to,	12	basalt with more equigranular bolas	Carle minlete variable		f dissen fg. ly	19.10	19.70	<u></u>
	11.	probably a course vollagicaliti / Bx week folicital chlores moring	ayles ca.	W-M carbonate and	assoc. with epocarb			
		22.26-22.68 Lan till or det . 3000 22.26 - 22.68 Lan till or det . 3000 22.68 - 25.20 Med to 4 atk grato	Caminaled So CA	e pictore de Chi-Myneld	or co.6 V. 40 19-2-19.6			
	<b>r</b> .	, 22 68-25-20 Med to Hatk graco.	have been a series in the	Poter, weak corb		22.10	12.86	/ 9 184
	Ŀ	fine grained, equigranular hasalt	Winters, variable CA.	and Epidote.	Some vifine by on y			
	52	AS:20-19:33 Mainly epid. alt. Lugite	10785.20-25.90 W	Patchy W-M permin	Fine dissen. Py	25.20	25.90	19185
	14	Parphycy. Mod. magnetic palably a	cost verset in the ch	Corbonate. Patrice	associated with matri	26.52	\$7.02	19186
	12	const Volcani clashe socal carbenygo	P26.45 Similar Zom	selective epid. Mainly	oreas Y vuggy vein	27.02	28.46	19187
30	#	2335-86.57 Lania typicter. Med. magashi	Comminated Hora	matrix/gness areas,	selved ges to cal fine	28.46	29.53	19158
	1	29.97-33.50 Mainly angite prophysy	Mad vera density	Pakty a m permin	Local case of fine	37.33	23: EZ	19189
	1	- pately weak epidate, mod myselie	magy and veins wat	epidale-carbonste	Py rief aske with	31.39	32.91	<u> 9</u> 191
	łvł	Alash The Idea A the	314 60 70CA 45.90CA	1	weine tocal the black co	30.91	34.15	19 192
	F.	Black Tuff Idag. Angite porch. Bx. 34-15-43.90 Finer augite porphyse	fairly massive local	the manaturlight que	Lo cal Coy of In disen			
	14		Fairly requier carb	Patch, 4-1 carto	Eine dissem Py			
		, with feld. lates. Bx flow? or Volcaniclastic local matrix lam.	prietek 20:30 CA	and epidate	local cpy assoc.			
	1	<b>A</b>	stronger verining		with versees	39.60	39.60	19198
	1	Mod. magnetic	28-60-33-60				3.0.00	<b>A</b>

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY:

DATE: August 10,2001.

### SILVER LAKE PROPERTY NEW DISCOVERY GRID

DH NO. ND 2001-		ITHOLOGY	CTRUCTURE	ALTERATION				GE NO. 2
MAIN UNITS (1)		SUB UNITS	STRUCTURE	ALTERATION	MINERALIZATION	FROM 1	SAMPL	
	GL					FROM	то	NUMBER
	÷.	See Pg.1	· · · · · · · · · · · · · · · · · · ·	stronger patchy could towards base				
	X	HR.90-4580 BK. Aug to Polphyny	Failly massive borol	Magaebi- light che.	Strampt Carlo V.			
	$\mathcal{X}$		high h. Ed costs		@ 45.20 with 2-5%	44.80	45.80	19194
		Manie. Mod-sharp Maghete		becoming patery w.		45.80	47.20	19195
	٠,	45.80-57.80 Augete and Augete-		<u> </u>	<i>J</i> .	47.20	48.20	19/74
	_	Fine Feldeper perph. Baselt.	Fairly regular fine					
50.	Γ/		card mendets 15-15 CA					
	Ζ.	at che altered matics. Fint	local 60°CA					
	12	grand mar. much magar ti	Q4742-47.50 Mayder					
	2,	<i></i>	Carb V. Crica Vernichild.			54.00	\$5.00	19197
			by veralet us ca.					
	17		@ 5230 20 carby		· · · · · · · · · · · · · · · · · · ·	56.80	\$7.80	19198
50-GI-10 chloritic	1	med to strong faliated, light to	@ 54.94 20'CA Py V.	made arean chil.	5-10% fire disem.	\$7.80	58.5p	19199
hear ZOAL in Augure	///	med queen chlorite . Strong	Variable show AN		Py glen as leaves	58.50	59.50	19200
phyry 60.	14	manipi libi	Variable show for so-cora irranito fire	sérverile. corb.	Local specks of Con	59.50	61.10	19201
	14	Ethologia angite lago transitional	massive to with And.	epid. gets smore r	sporse fine dissem		42.48	19202
	ŕ	62.47-78.57 Epidate altered	massive to wk. fel.	mayette V	P.			11202
110-98.75 Variably	۱.	angite perphysy. massing with	Local vailet (Carl					
pidote Altered	17	leval darker, Stager magneti	40-SUCA SOME WITH				•	
Augite Porphyry	ľ,	sections	fine Py. Sparse					
Basalt.	Þ2		U. fine vaining in					
70.	ľ		epidate cich section				· · · ·	
	7/		· · · · · · · · · · · · · · · · · · ·	70.30 - 2055 magnetta		70.30	71.55	19203
	ĥ	·		with by alt.				
		, <b></b>		<i>.</i>				[
	14							· · · · ·
	11		720-78.0 higher					
	1.		density of carts v.					
	1		many 20-40- CA.					
<b>T</b>	1.1		0			T		

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY

DATE: August 10,2001.

### SILVER LAKE PROPERTY NEW DISCOVERY GRID

NO. ND 20							PA	GE NO. 3
		LITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
MAIN UNITS	GL	SUB UNITS		·		FROM	то	NUMBER
		cont. from Pg 2	80.0-84.80 Sparse					
			corto. veinteto		RI-15 carb blebs	\$1.00	11.00	17204
		weak to made variably magnetic	84-80-81-00 Several		with concretion			
	11	magnetie	1-2 cm linear after	epid. + Carb altered				· · · · · ·
	- V/.		constalline carby	epid Carb altered mafiphenes, anydole	Contro Sullides			
	- [//		20-50 CA				,	
								· • • •
	7							
	1		·					
		Deck-med green, as a bave len opid mais dk green chi. mederate megnetic	Higher density of	Mod. dk. chi. less	1-3% eakly dister	74-13	94.75	19105
		less apid mais dk green chi.	carb we let local &	coldate Patrica	Pre local clusters	94.75	94.67	19206
	1.1	moderate magnetic	dk chi. notive local	and permassive corb.	0			
	1		lam Chi. V. 55'CA					
		98.75 EOH - 58				·····		·
	/**_							
						·····		
						·		
		·					· · · · · ·	
								·
								· · · ·
			1					

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R.E. Luly

DATE: 10 August 2001 .

# DIAMOND DRILL HOLE NO. ND 2001-02

SAMPLE	FROM	TO	LENGTH	Au	Cu	Ag
NO	(m)	(m)	(m)	ppb	ppm	ppm
19182	10.85	12.40	1.55	<5	524	< 0.2
19183	19.10	19.70	0.60	<5	151	<0.2
19184	22.10	22.86	0.76	<5	685	<0.2
19185	25.20	25.90	0.70	5	291	< 0.2
19186	26.52	27.02	0.50	10	90	<0.2
19187	27.02	28.46	1.44	<5	125	<0.2
19188	28.46	29.33	0.87	<5	622	<0.2
19189	29.33	29.87	0.54	<5	299	<0.2
19190	29.87	31.39	1.52		173	<0.2
19191	31.39	32.91	1.52	20	93	< 0.2
19192	32.91	34.15	1.24	20	250	<0.2
19193	38.60	39.60	1.00	<5	163	<0.2
19194	44.80	45.80	1.00	10	296	<0.2
19195	45.80	47.20	1.40	<5	264	<0.2
19196	47.20	48.20	1.00	<5	133	< 0.2
19197	54.00	55.00	1.00	5	328	<0.2
19198	56.80	57.80	1.00	20	74	<0.2
19199	57.80	58.50	0.70	5	618	<0.2
19200	58.50	59.50	1.00	20	1117	0.6
19201	59.50	61.10	1.60	5	89	< 0.2
19202	61.10	62.48	1.38	15	52	<0.2
19203	70.30	71.55	1.25	15	336	<0.2
19204	81.00	82.00	1.00	15	106	<0.2
19205	94.13	94.75	0.62	5	28	<0.2
19206	94.75	96.62	1.87	20	49	<0.2

22-Aug-01

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

#### ICP CERTIFICATE OF ANALYSIS AK 2001-254

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

#### ATTENTION: RON WELLS

.

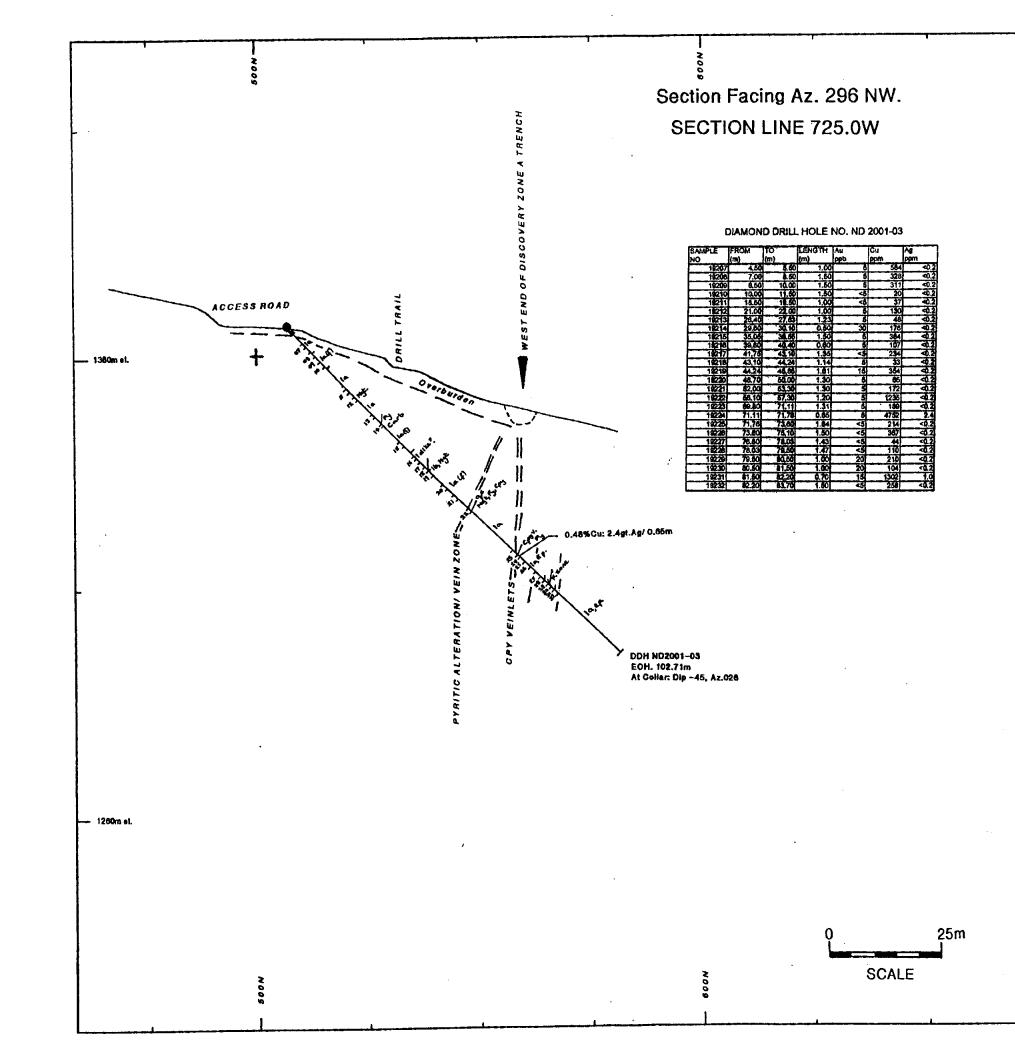
No. of samples received: 25 Sample type: Core Project #: ND 2001-D2 Shipment #: None Given Samples submitted by: Ron Wells

Values in ppm unless otherwise reported

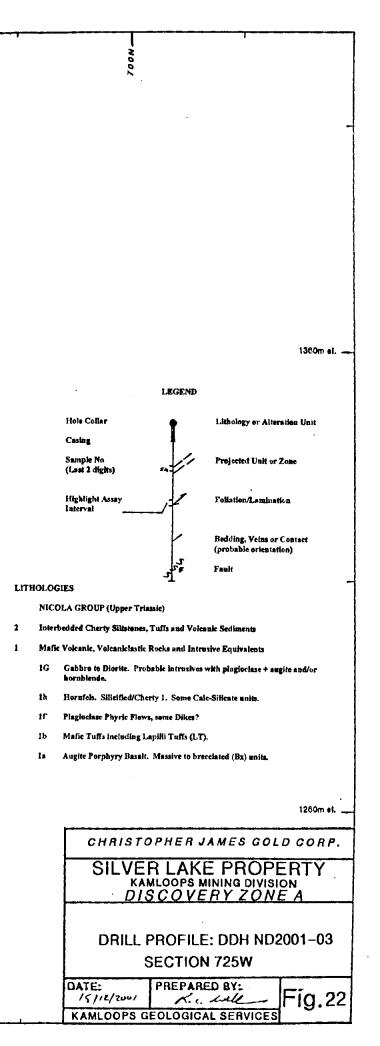
Et #.	Tag #	Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	P	РЬ	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
1	19182	<5		2.38	15	75	<5	2.15	<1	57	187	524	>10	<10	3.11	783	4	0.04	41	1610	-2	<5	<20	102	0.18	<10	155	<10	<1	56
2	19183	<5	<0.2	1.89	15	60	<5	3.93	<1	34	184	151	5.81	<10	2.45	755	<1	0.04	35	1790	6	<5	<20	156	0.21	<10	139	<10	<1	40
3	19184	<5	<0.2	1.83	10	90	<5	3.17	<1	38	134	685	5.66	<10	2.31	768	<1	0.04	25	1740	6	<5	<20	157	0.20	<10	132	<10	<1	42
4	19185	5	<0.2	1.43	15	40	<5	5.07	<1	42	154	291	5.36	<10	1.87	653	<1	0.04	29	1460	å	<5	<20	133	0.18	<10	114	<10	<1	34
5	19186	10	<0.2	1.51	10	40	<5	4.06	<1	29	197	90	4.74	<10	1.95	602	<1	0.04		1460	4	<5	<20	163	0.17	<10	112	<10	<1	32
6	19187	<5	<0.2	1.50	20	50	<5	2.97	<1	32	193	125	4.87	<10	1.93	563	<1	0.04	31	1550	4	<5	<20	130	0,18	<10	114	<10	<1	24
7	19188	<5	<0.2	1.67	15	75	<5	3.13	<1	29	146	622	4.99	<10	2.06	655	22		31	1760	4	-5	<20	192	0.18	<10	132	<10		34
8	19189	<5	<0.2	1.68	15	85	<5	2.12	<1	32	163	299	5.21	<10	2.22	650	<1		34	1820	6	<5	<20		0.22	<10		-	<1	38
9	19190	20	<0.2	1.72	10	40	<5	4.43	<1	35	190	173	5.07	<10	2.23	692	<1	0.04	36	1500	4	<5	<20	152	0.19	<10	136	<10	<1	41
10	19191	20	<0.2	1.80	15	80	<5	4.39	<1	32	196	93	5.37	<10	2.40	720	<1		35	1540		~5 <5	~20	143	0.19		119	<10	<1	36
																/ 20	•	0.01	-04	.0-0	<b>T</b>	~0	~20	143	0.20	<10	140	<10	<1	36
11	19192	20	<0.2	2.40	10	35	<5	3.21	~1	71	198	250	9.51	<10	3.21	742	1	0.04	37	1540	4	<5	<20	95	0.20	-40				
12	19193	<5	<0.2	1,51	15	110	<5	4.47	~1	29	185	163	4.26	<10	1.90	559	<1		31	1470	6	<5	<20			<10	173	<10	<1	55
13	19194	10	<0.2	2.22	20	35	<5	3.28	<1	60	196	296	>10	<10	3.06	825	-	0.03	39	1560	6	~0 <5		197	0.19	<10	104	<10	<1	28
14	19195	<5	<0.2		5	105	<5		<1	37	178	264	6.04	<10	2.04	668	<1		32	1540		-	<20	98	0.17	<10	175	<10	<1	51
15	19196	<5	<0.2	1.62	15	60	<5		<1	44	187	133	5.30	<10	2.12	715	<1		34		4	<5	<20	87	0.19	<10	123	<10	<1	34
							•		•		101	100	0.00	~10	2.12	115	~ 1	0.00	- 24	1590	4	5	<20	102	0.17	<10	116	<10	<1	34
16	19197	5	<0.2	2.02	15	60	<5	2.50	<1	41	184	328	7.11	<10	2.56	802	2	0.04	37	1610	6	<5	<20	83	0.18	-40	4.40		- 4	70
17	19198	20	<0.2	1.63	15	75	<5	2.29	<1	33	224	74	5.34	<10	2,19	605	<1		40	1560	4	-5	<20	95		<10	142	<10	<1	70
18	19199	5	<0.2	2.29	20	35	<5	2.17	<1	50	448	618	6.77	<10	3.33	606	2		115	1520	6	<5		90 47		<10	117	<10	<1	34
19	19200	20	0.6	2.33	35	<5	<5		<1	256	412	1117	>10	<10		750	9		158		-	-	<20		0.15	<10	120	<10	<1	42
20	19201	5	<0.2		15	45	<5	2.17	<1	50	222	89	>10	<10	3.80	1067				• • •	10	<5 - F	<20	57	0.11	<10	131	20	<1	53
		•	0.2			.0			-1	00	~~~	09	~ 10	-10	9.QU	1001	< I	0.03	55	1550	6	<5	-20	54	0.18	<10	187	<10	<1	66

CHRISTOPHER JAMES GOLD CORP.

ICP CERTIFICATE OF ANALYSIS AK 2001-254


ECO-TECH LABORATORIES LTD.

Et #.	Tag #	Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg % [.]	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
21	19202	15	<0.2	1.62	10	85	<5	3.88	<1	31	174	52	5.52	< 10	2.19	779	<1	0.03	34	1520	4	<5	<20	161	0.19	<10	120	<10	<1	37
22	19203	15	<0.2	3.26	15	40	<5	1.03	<1	48	191	33 <del>6</del>	>10	<10	4.32	1313	3	0.03	46	1600	4	<5	<20	28	0.17	<10	203	10	<1	82
23	19204	15	<0.2	1.89	15	135	<5	2.32	<1	35	197	106	4.93	<10	2.42	682	<1	0.04	<b>4</b> 1	1580	10	<5	<20	110	0.16	<10	110	<10	<1	38
24	19205	5	<0.2	2.42	15	15	<5	1.43	<1	44	257	28	6.43	<10	3.34	793	<1	0.04	53	1890	10	<5	<20	81	0.22	<10	146	<10	<1	51
25	19206	20	<0.2	1.99	15	35	<5	5.36	<1	33	208	49	5.13	<10	2.73	858	<1	0.04	39	1510	8	<5	<20	182	0.18	<10	124	<10	<1	41
QC DA Resplit																					•									
1	19182	<5	<0.2	2.42	25	70	<5	2.17	<1	59	198	534	>10	<10	3.14	803	3	0.04	41	1700	8	<5	<20	100	0.19	<10	159	10	<1	59
Repeat	:																													
1	19182	≺5	<0.2	2.39	15	70	<5	2.16	<1	59	187	527	>10	<10	3.12	794	3	0.03	39	1670	6	<5	<20	98	0.18	<10	155	<10	<1	58
10	19191	15	<0.2	1.76	15	75	<5	4.30	<1	31	191	89	5.26	<10	2.35	704	<1	0.04	34	1540	6	<5	<20	140	0.18	<10	135	<10	<1	35 35
Standa	rd:																													
GEO'01	-	115	1.0	1.75	65	140	<5	1.57	<1	19	56	87	3.58	<10	0.93	678	<1	0.03	24	750	22	5	~20	60	0.11	<10	73	<10	<1	76


FP/kk df/253 XLS/01 cc: ron wells fax @ 372-1012

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. 6

B.C. Certified Assayer



О



### SILVER LAKE PROPERTY NEW DISCOVERY GRID

DDH NO. NO 2001							PA	GE NO. 1
		ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION	•	SAMPL	
MAIN UNITS	GL	SUB UNITS				FROM	то	NUMBER
-3.66 Casing in	6.	sandy, peter till above						HOUDER
verburden and	e.	and the second			·			
ventered bedrock	<b>P</b> **	3.66. 8.07 Moderately counded		waak - low mod	local for cpy	4.50	5.50	17207
		argite perphysy minor foldspor	Calls Mushels Vanish	egad patchy perv.	maisle with eard.			<u> </u>
66-56.10 Augite	11	PROFILING PICKIE OUT IT AND	angles CA.	Carb. Con scale blebs ep-carb + Cpy	·			
Porphyry Basatt.		Moderate magneti	· · · · · · · · · · · · · · · · · · ·	ep-carb+cpy		7.00	8.50	19208
••	. [7]	8.07-12.59 Fine angite - falds por	Higher density of	Patchy pervasive	Space V. fire P.	9.50	10.00	19209
4		parphysy latch predspor lather Fg.	Carto varialets 40 lica					
	1 %		210-32 Jen carb v		Py, Cpy Vein (at)	10.00	11.50	19210
		12.59-15.25 Crowdad relativel.	laminatul 20'CA		Selvedges. Coy		- <b></b> ·	
	ł				in veinlats & blebs.			
		push ought parpty og	low-mod desity of	an-m patrosinal	Sporse U.f.			
			Cotto versete 30-65're	carb sporse epid	dissem Py			
		15.25-21.75 Weak epidato			<u> </u>			
	1.1	altered angite - fine feldspor	Faith, uniform carb	mod. pervesive card	Potch Line diesen			
,		pacpay of Vaciable weak to	minutes por loca	Potet aken salachi	e .	10.0		
-		miderate negretic	Many @ SoitA	J J	g, an spicks	18.50	19:50	19211
			Same 69-9+ CA.	epid. Local darker	Cay Strage By			
	1.		P22 slickensiden Sier	more magnetic section		21.00	22.00	
	1.1.		@ 22 slickensides sice	-12 h 19.70	blebby a dissen cay			
	مرجع ا		24.0-27.83 Lighter	······	21-22 ASSOC WITH			. –
	· · ·		density carb v.		RA-Carby, Webs	26.40	27.62	19213
			50-6. CA displaced		@ 22 1-2-1. fm			
	17	·	by low angle weins					
1	<u>, L</u>		13.0-30.0 So'CA		Py ossoc with		····	
	7/		Py-corb. zone		verales	29.60	30.10	172.14
		31.75-32.60 Augite - fine fald.				· ····		
	$ N\rangle$		low costs into	011		· · · ·		
		popphysy. Fourly connelled	low carb vein	Potchy w-m periosin	V. fine dissen by			
	1.1	augett to here with fine	many, generally	corb, epid. Mad.	associated with	35.05	36.55	19215
		phogioclase latter. Fg. goudman	same voriable	behieven 34-30 7	strange met.			
	1	variable moderale magneti	angles CA.	37.00	Generally Trace			
	- <b> </b>		to and the state					
	4 6	Next - 13.	water contact		By Miene Cpy wilk ep			

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY:

DATE: August 11, 2001.

### SILVER LAKE PROPERTY NEW DISCOVERY GRID

DH NO. NO 2001-0	3						PAC	GE NO. 2
		OLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	
MAIN UNITS		SUB UNITS				FROM	то	NUMBER
	38.1	co-44.24 Med. green equipromber salt dy ke? Variable W-S magnetic	form-mad dessity of	carb is mainly in verified	some Py with corby	39.90	4+.40	13214
1	1 60	salt de ka? Variable and marchie	coch varialet many	Man some fractures Man meens his doustak	only veinlets	41.75	43.10	19217
		-12- Bx ( def) section refu	with pink he make	Weak carb, myrekt	2.7% (m. dissem P.	43.10	44.24	13218
ange		atran marstie. fabrics 75-900	Correct veins 1-2cm	light chlants source	10 cal 1-2% Con	44.24	45.85	13213
WEMT .		5.85-56.10 Augite and Agite-	com ages ca magy.	epidete				
		alalapar Parphysy Basalt		with patching perse.	3 parse dimen P.			
	16			epid to carto local		48.70	50.00	19720
s./		ariably w.m. nagratic. Patchy	Man- Liem @ colo	hereby weight y	acherolly with easid			_
~  ~	/	lteration		springera.	J			
/	· . [ ]			· · ·		52.00	58.30	19221
	/ -							
			mine cath string	marge lite , chile site	5660-5668 5-87d aun			
10-57.30 Pyrihi	<i>•</i>	dark-strong magnetic with sof by	@ \$6.60-58.68 94.ce	mine onteh cart	Pyate local Coy vein.	56.10	57.30	19122
lteration . Vein Zone		57.30-71.76 Augite Posphyry	Py-Cpy van It ca		local Coy			
1.		lastly widely spaced augita	low-mod density,	weak-mod pation				
57.30-79.50 60-	7	elene 2-4 ma after chloritic		pervosing carb	Sauce Line Lines			· · · · · · · · · · · · · · · · · ·
Augite Perphyry (		Itered . Fig. groundmass, sparse		1	Sparse fine dimen			
Basalt. Varially								
epidole altered	1/7	guite variable		gman patches.				
<b>,</b>	$\langle \vdash$	70						
	ノト							···
	·>		68-71 uniform 452		1-24 fine dissem	69.90	70.0	19223
7.			Carb. Veinlets		Cay-pates	7611	7676	19224
			-		TI-40-71-50 MAXIN C		73.60	19125
	7	1.76-79.50 Epidete altered	In density of	Moderate permani	TI-40-71-50 MAXIN G	73.40		172.26
	. 0	with basalt 25-40% epidate	and willing	epidate as con.	local M/c Ry			
	".L	atches weak magnetic. Chl.	faitly massive	scale pateries,	blebs seme			
		for epid alt. phenes(augite).	section.	carb maisly in	Spanse Cpy Counder	74.60	78.03	17227
		uma yoto Ica. Altered		veialets 6/263		78-03		19228
		mundmen local carb anushele		· · · ·				
	L_ 🛛	with Cpy						1

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY R. Wells

DATE: 12 August 2001.

### SILVER LAKE PROPERTY NEW DISCOVERY GRID

DDH NO. ND ROOI-	03							
	Ľ	ITHOLOGY	STRUCTURE					GE NO. 3
	GL	SUB UNITS		ALTERATION	MINERALIZATION		SAMPL	
79-50-92-20 Fault-		med green to black. Mis manashi	Foliation 60-65 CA	Maanatit		FROM	TO	NUMBER
Alteration Zone in		Med green to black, MIS magnetic Anastomosing chloritic fracture zones with waable B	11-64-1173 Carb- Py Veras 60 CA	Magnetite, light chlight radiable com patho carb	mare for dimon D.	79.50	\$0.50	19227
Angles Porphyny			V8/A3 60'CA		local toy	80.50	\$1.5-	19230
	1	¥2.20-102.70 Ac @ 71.76			sparse /y	\$1.50	12.20	19231
		Epidate alleved angite purphysy	Massive , /au corb	Patoly epid, undall	doccenting down	82.20	33.70	19232
\$2.20-102.70	11	bosalt. Mad. magretic	vaislets generally	patchy (local >106)	-hole			
Augita Porphyry	11	···	at low & high	weak carb yeserve				
	]	· · · · · · · · · · · · · · · · · · ·	angles ca. Some	as veialets				
veriable epidate to.	17		low age inggy	Stranger \$ 7.0-74.0	Sparse fine dissen			
	17		Corb varalsk.	A(30 77.5-/51.0	Ry rare Con	·		
	ľ				0/ 13			
	1,							
	1	······	96-99 and 101-102					
	1/		Mad. carb v. density					
			Mony SO-60'CA some		· •			
( ^~=			Vuggy. Some chl.					
			venteto @ 101.00					
-								
		(+ <u>2.7</u> 0 E0H	·					
			· · · · · · · · · · · · · · · · · · ·	·	·			
	1				·			
					······································			
			· · · · · · · · · · · · · · · · · · ·					
			· · · · · · · · · · · · · · · · · · ·					
	Į		······································					
			· · · · · · · · · · · · · · · · · · ·		•			
1	1		······································					
			····-	· · · · · · · · · · · · · · · · · · ·				
L			······································					

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: Rec. belly

DATE: Agest 12,2001 ...

# DIAMOND DRILL HOLE NO. ND 2001-03

SAMPLE	FROM	то	LENGTH	Au	Cu	Ag
NO	(m)	(m)	(m)	ppb	ppm	ppm
19207	4.50	5.50	1.00	5	584	<0.2
19208	7.00	8.50	1.50	5	328	<0.2
19209	8.50	10.00	1.50	5	311	<0,2
19210	10.00	11.50	1.50	<5	20	<0.2
19211	18.50	19.50	1.00	<5	37	<0.2
19212	21.00	22.00	1.00	5	130	<0.2
19213	26.40	27.63	1.23	5	48	<0.2
19214	29.60	30.10	0.50		176	<0.2
19215		36.55	1.50	5	384	<0.2
19216		40.40	0.60	5	107	<0.2
19217			1.35	<5	234	<0.2
19218		44.24	1.14	5	33	<0.2
19219		45.85	1.61	15	354	<0.2
19220		50.00	1.30	5	65	<0.2
19221	52.00	53.30	1.30	5	172	<0.2
19222	56.10	57.30	1.20	5	1235	<0.2
19223	69.80	71.11	1.31	5	189	<0.2
19224	71.11	71.76	0.65	5	4752	2.4
19225			1.84	<5	214	<0.2
19226	73.60		1.50	<5	367	<0.2
19227	76.60		1.43	<5	44	<0.2
19228			1.47	<5	110	< 0.2
19229	79.50		1.00	20	210	<0.2
19230	80.50		1.00	20	104	<0.2
19231	81.50	82.20	0.70	15	1302	1.0
19232	82.20	83.70	1.50	<5	258	<0.2

.

(

.

ſ

22-Aug-01

#### ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

#### ICP CERTIFICATE OF ANALYSIS AK 2001-263

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

.

#### ATTENTION: RON WELLS

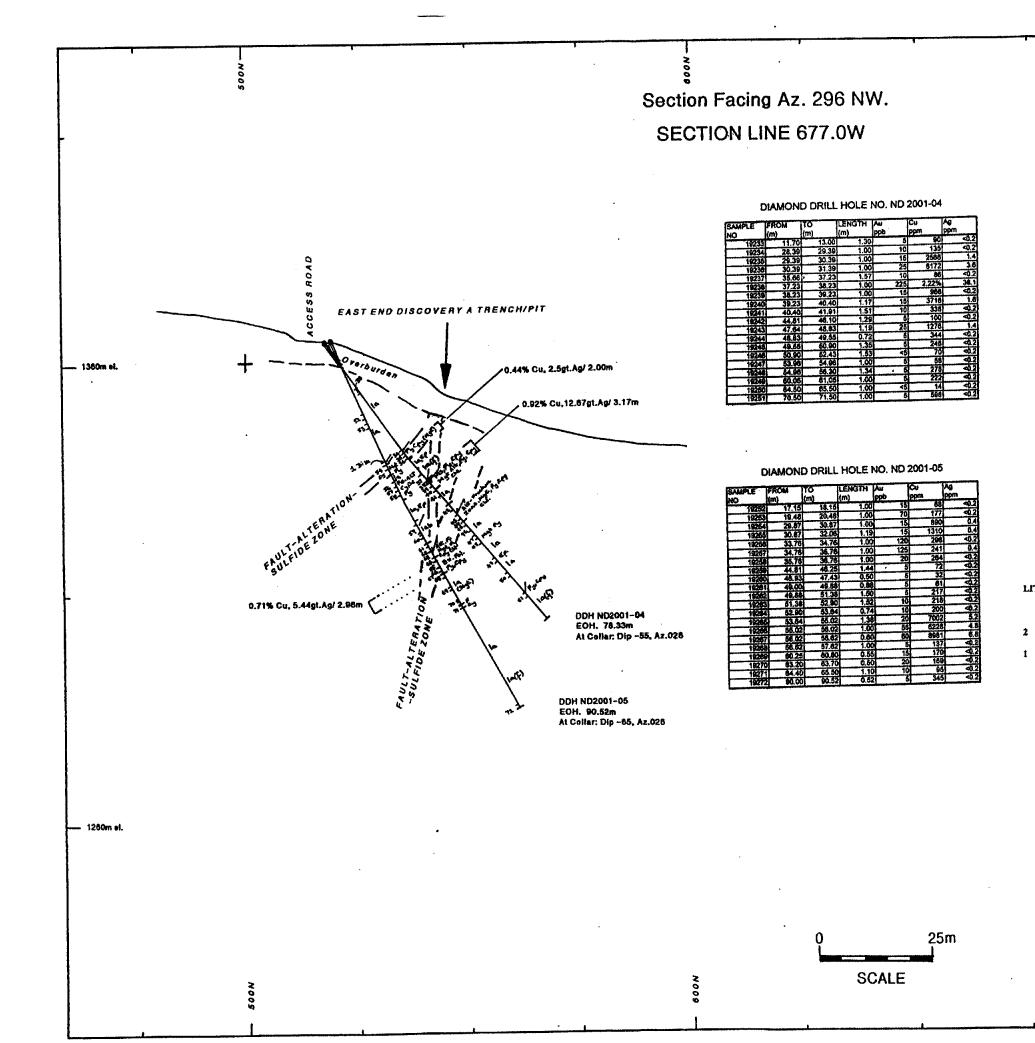
.

No. of samples received: 26 Sample type: Core Project #: ND 2001-D3 Shipment #: None Given Samples submitted by: Ron Wells

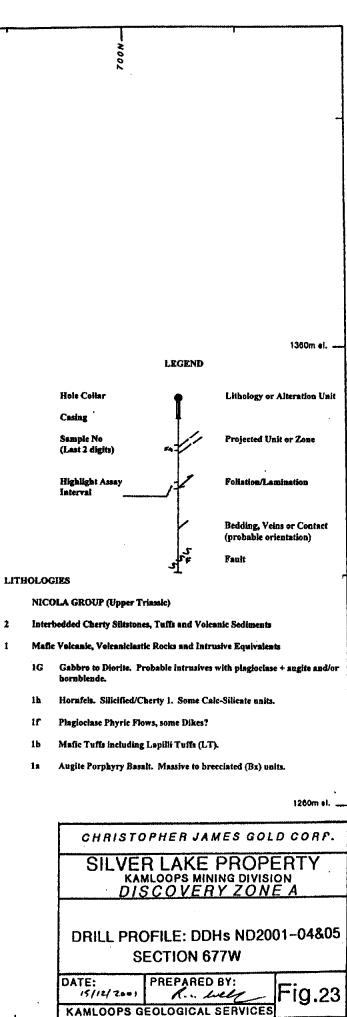
Values in ppm unless otherwise reported

																										-				
Et #.	Tag #	Au(ppb)		AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
1	19207	5	<0.2		5	80	<5	1.77	<1	30	172	584	4.52	<10	2.11	601	<1	0.03	33	1500	4	<5	<20	54	0.12	<10	106	<10	<1	46
2	19208	5	<0.2	1.66	5	90	<5	2.41	<1	31	163	328	4.68	<10	2.18	595	<1	0.03	33	1510	4	<Š	<20	71	0.13	<10	108	<10	<1	45
3	19209	5	<0.2	1.69	10	60	<5	2.77	<1	34	154	311	4.79	<10	2.19	652	<1		33	1500	6	<5	<20	63	0.13	<10	110	<10	<1	
4	19210	<5	<0.2	1.59	15	70	<5	4.14	<1	32	163	20	4.81	<10	2.16	688		0.03	32	1500	6	-5 -5	<20	113	0.13					43
5	19211	<5	<0.2	2.39	15	90	<5	3.48	<1	40	168	37	5.55	<10		870	<1			1530	12	<5			-	<10	117	10	<1	38
													4.44		0.00	0.0	-,	0.00		1000	12	<b>NO</b>	-20	80	0.16	<10	133	<10	<1	54
6	19212	5	<0.2	1,77	10	160	<5	4.22	<1	31	171	130	4.50	<10	2.39	728	<1	0.03	24	1470										
7	19213	5	<0.2	1.71	5	75	<5		<1	32	159	48	4.85	<10	2.21	683			34	1470	4	<5	<20	123	0.16	<10	112	<10	<1	38
8	19214	30	<0.2	1.56	10	25	<5		<1	34	178	176	5.53	<10			<1	0.03	33	1490	10	<5	<20	106	0.13	<10	119	10	<1	48
9	19215				<5	155	<5		<1	35	142	384			2.35	744	<1	0.04	35	1460	18	<5	<20	86	0.14	<10	141	10	<1	51
10	19216	_	<0.2		 	30	<5		<1	33 29	144 69	- 364 107	4.97	<10	2.38	664	<1	0.03	31	1500	6	<5	-20	119	0.16	<10	113	<10	<1	51
		•	U.L	1.12	.0	00	-0	0.12	~1	29	69	107	5.17	<10	1.50	861	2	0.04	16	1850	10	~5	<20	265	0.11	<10	118	<10	<1	39
11	19217	<5	<0.2	1.66	5	80	<5	2.93		24	00	004																		
12	19218	+	<0.2		10	70	~5 <5		<1	34	86		6.66	<10		875	<1		19	2090	8	<5	<20	133	0.15	<10	144	10	<1	49
13	19219	15	<0.2		. –		-		<1	44	106	33	8.69	<10		905	<1	0.03	26	1940	10	<5	<20	59	0.16	<10	171	<10	<1	55
14	19219				20	15	<5		<1	60	192	354	>10	<10	3.26	970	1	0.03	55	1680	20	<5	<20	49	0.14	<10	182	10	<1	75
			<0.2		15	75	<5		<1	33	184	65	4.58	<10	2.08	567	<1	0.03	33	1550	10	<5	<20	118	0.15	<10	108	<10	<1	31
15	19221	5	<0.2	1.58	10	80	<5	2.84	<1	30	190	172	5.17	-10	2.13	567	<1	0.04	35	1490	8	<5	-20	82	0.15	<10	124	<10	<1	36
**		-			_																							10	.,	00
16	19222		<0.2		-5	15	-5		<1	93	161	1235	≻10	<10	2.94	685	4	0.04	40	1390	8	<5	<20	70	0.14	<10	161	<10	<1	54
17	19223	5	<0.2		15	155	<5	3.97	<1	31	238	189	5.13	<10	2.47	637	<1	0.03	40	1440	6	<5	<20	122	0.14	<10	120	<10	<1	
18	19224	5	2.4	2.13	10	40	<5	2.14	<1	54	227	4752	6.89	<10	3.06	790	15	0.03	46	1590	12	<5	~20	61	0.14	<10	143		-	32
19	19225	<5	<0.2	1.28	10	45	<5	2.64	<1	35	149	214	4.25	<10	1.73	514	26	0.03	32	1470	8	10	<20	84				<10	<1	54
20	19226	<5	<0.2	1.28	<5	115	<5	2,47	<1	23	160	367	3.43	<10	1.65	498		0.03	30	1500	6	10		* *	0.12	<10	83	<10	<1	32
																		0.00	30	1900	U U	10	~20	127	0.12	<10	72	<10	<1	31

CHRISTOPHER JAMES GOLD CORP.


ICP CERTIFICATE OF ANALYSIS AK 2001-263

ECO-TECH LABORATORIES LTD.


Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
21	19227	~5	<0.2	1.03	10	35	<5	5.71	<1	39	125	44	3.78	<10	1.30	637	1	0.03	28	1490	8	5	-20	163	0.12	<10	58	<10	<1	23
22	19228	<5	<0.2	1.74	15	80	<5	3.40	<1	35	165	110	4.36	<10	2.25	739	<1	0.04	37	1650	12	<5	<20	122	0.16	<10	100	10	<1	38
23	19229	20	<0.2	2.61	20	45	<5	2.28	<1	48	396	210	6.81	<10	3.79	739	2	0.03	117	1660	16	<5	<20	59	0.11	<10	125	10	<1	52
24	19230	20	<0.2	2.47	20	40	<5	1.53	<1	49	453	104	5.89	<10	3.76	679	3	0.02	124	1720	16	-5	~20	40	0.10	<10	113	<10	<1	52
25	19231	15	1.0	2.09	20	10	<5	2.34	<1	152	264	1302	>10	<10	3.05	719	4	0.03	81	1460	16	<5	<20	50	0.12	<10	138	10	<1	51
26	19232	<5	<0.2	1.62	10	125	<5	2.01	<1	37	187	258	5.10	<10	2.17	635	<1	0.03	35	1590	8	5	<20	56	0.14	<10	116	<10	<1	40
<u>QC DA'</u> Resplit 1		5	<0.2	1.72	15	80	<5	1.88	<1	33	176	581	4.79	<10	2.18	629	<1	0.03	37	1680	10	<5	<20	54	0.12	<10	110	<10	<1	51
Repeat	-																													
1	19207	5	<0.2	1.69	15	80	<5	1.80	<1	31	178	594	4.61	<10	2.16	608	<1	0.03	33	1540	6	<5	<20	53	0.13	<10	109	<10	<1	47
10	19216	5	<0.2	1.08	10	30	≺5	7.92	<1	29	68	102	5.13	<10	1.43	841	1	0.04	16	1830	10	<5	<20	254	0.11	<10	115	<10	<1	39
Standa GEO'01		115	1.2	1.66	70	140	<5	1.57	<1	19	53	85	3.52	<10	0.92	685	<1	0.02	26	770	22	10	<20	52	0.09	<10	68	<10	<1	81

FP/kk df/263 XLS/01 cc: ron wells fax @ 372-1012 ECO-TECH LABORATORIES LTD.

ECO-TECH / ABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



·



### SILVER LAKE PROPERTY NEW DISCOVERY GRID

DDH NO. ND 2001-0							PAC	GE NO. 1
		THOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
MAIN UNITS	GL	SUB UNITS				FROM	то	NUMBER
0-6-10 Casing in	; •	0-4.27 Sandy clay till with						
at 4.27		pabbles and capples of mysile paraly		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
4 <u>1</u> 87-29-39 Augite -		4.27-6.10 Braken and weathered angite perphysy bedrock.						
Porphyry Basalt	、	6.10-25.68 Uniform augite	Massive, low deality	weak to local	Sparse fine dimen			
io.	/	parphysy. Med. gray-grass, fine grained with augite phennesysty	of fine carbonate varialets variable	moderate pervasive carbonete, patchy	Py . Often at edges			
	1	upto 4mm. Variable moderate	Angles CA.	epidate	patches.	11:70	12.00	/9233
		magastic and epidote altered.		weakening epidole				
	1			alteration downward				
	``							
20.	·.					·	·	
	₽.		20.0-24.29 Mad.					
	".			24-29-25.68 weak carb	Local dire dissem.	· _		
	12		CA. Below carb	24-29-25-68 Greak carb Mainly as verally. Mod. permetive Epidale. W.M. Batchy Carb.	Ry, small clusters			
	Ň	Ortohna by Tull deferred	som lanination Soice	w.m patchy carb. downwoods				
29-39-31.95 Nognetite 30		med Stens, and magnetic massive to be cocat commated matrix Dark green black notfled. Magnetite	Faid, manual a se	0.1:1		28.37	19.39	19234
alterstion Zone with		rich gove . Carb-epid any golales at	Sickensides - In	Patchy Weak carb	Q 29.90 (an inted 75 CA	29.37	30-39	19135
Pyrite and chalcopyrite		and all sach .	angle frontures	Strong magastile	with five R. Coy	30.39	21.37	19236
31.95-37-23 Augite	5	21.95 - 30.57 Exido to altered anote		mot epidate pakeny	Pateley dis distance			
Porphyry Basalt	ĵ	\$4:57-37.28 Med grey sugete - fine	40.45 CA Cost veinlot	weak patelon epid	space fine disser by	25.64	37.23	19237
37.28 - 40:40 Maynetites	1	feldspore possibility . Machine . Mad- magnetic	80-30 CA		fine by			
Chlorite Alteration Zone		Mottled grey green bik. strag maritale chi. altered. Dissen By Loy Locke		hight chiente, menalite. Patchy	37-92-38-11 Massing. Coy mine by to word	37.23		19238
with chak-pyrite 40	· · · ·	chi altered. Dissen Py Cay locke	Conce comm sora-		to cally to min at at.	_78.2.3_	37-23	19239

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. c. Wells

DATE: 14 hight 2001.

### SILVER LAKE PROPERTY NEW DISCOVERY GRID

DDH NO. ND2001-04	<u> </u>					PAG	GE NO. 2
	LITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
MAIN UNITS 40 GL	SUB UNITS				FROM	то	NUMBER
10-40-44-21 Augite 17	weak epidate altered anyite boxall	. carb varalets high	Patch, wm epidok	39.23-40.40 11,00 lar	40.40	41.71	19241
Bosalt 1	weak epidate altered anyite baself Same magnetic and lacally stong	angles the low-mod	and cachenete local	carp verdets ante press			• –
1.	magnetic (patery)	density 40-50 CA	Mass marnera rich	Mainy fine dissem P-	44.81	46.10	19242
44-81-49-55 Structure - +17.	\$4. 21-46.10 fg. black, regelite sich + by	Local carboly vains 35"CA	patches.	Alles with cars realls	••		•
Alteration Zone. Some	4 6. 10 - 47. 64 Strong med. grace chi. alteration			straig zone of dietem			
magnetite bands, dissem by	47.64-48.23 Stones chlarite alteration	Local Strong Chil. fat.	days-chlastini	fine Ry local speck Ga	47.64	48.23	17243
	Caminated with 5-210% fine Py	TOCA. Structural zone			43.83	49.55	19244
49.55-54.96 Weak Sal	, mod myreti at tap, pater w-	@ 50.35 2cm carb v.	variable weak	Aleb hy for grained	49.55	50.90	19245
epidete altered Augite 1.	below. Med. greens. Small contines	20 CA Much dam_	policy epidete and	olumen. Ry 2-4%	50.90	52.43	19246
Besalt	with carbonale, local days.	and covities		54-30-54-56 cluster of			
	·	. <u> </u>		for blebby fy	53.96	54.96	. 19242
し てき	54-96-55-80 strangly angustic section with dis enich Street Gry	Massive	magnetite obscures	2-5% for dimen	54.96	56.30	17248
54.96-78.33 Epidale	with dide enith Bred Gpy		nemetite obscures technos, non carb, weak epictule	Ry.			
allered Augite Basalt.	Early meesive, and greens.	· · · · · · · · · · · · · · · · · · ·	· · · · ·	v			
60	Fine grained with 2-4 an augite		Moderate to strong	local anals			
1	phenesnysts and local plations.		epidota 55.7-57.00	clusters of time P.	60.05	61.05	19249
	lather 1-2 mm. Moderate, veriably		decreasing down-	<i></i>			
	magnetic becal cart x or		hale				
	epidate filled anygdales	·····				65.50	19250
		66.14-66.85 Wagy					
· · · · ·	· · · · · · · · · · · · · · · · · · ·	corb vein + c.61.	fairly weak	spore ly			
		stuk 20'ca sporte	epidale				
70		3~(fide					
		e Tile Lamination	·	70.50-71.25 f. Py	70.50	71.50	19251
		45-50 CA		with local course			
	increasing feldypor lates			blebby Cpy with			·····
	with depth	· · · · ·		corb			······
							·····
	<b>-</b>	ł					
	-78.53M EOH.				· · · ·	ł	

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: Kar. Leells

DATE: 14 August 2001.

# DIAMOND DRILL HOLE NO. ND 2001-04

SAMPLE	FROM	ТО	LENGTH	Au	Cu	Ag
NO	(m)	(m)	(m)	ppb	ppm	ppm
19233	11.70	13.00	1.30	5	90	<0.2
19234	28.39	29.39	1.00	10	135	<0.2
19235	29.39	30.39	1.00	15	2566	1.4
19236	30.39	31.39	1.00	25	6172	3.6
19237	35.66	37.23	1.57	10	86	<0.2
19238	37.23	38.23	1.00	225	2.22%	38.1
19239	38.23	39.23	1.00	15	966	<0.2
19240	39.23	40.40	1.17	15	3716	1.6
19241	40.40	41.91	1.51	10	338	<0.2
19242	44.81	46.10	1.29	5	100	<0.2
19243	47.64	48.83	1.19	25	1276	1.4
19244	48.83	49.55	0.72	5	344	<0.2
19245	49.55	50.90	1.35	5	246	<0.2
19246	50.90	52.43	1.53	<5	70	<0.2
19247	53.96	54.96	1.00	5	58	<0.2
19248	54.96	56.30	1.34	5	278	<0.2
19249	60.05	61.05	1.00	5	222	<0.2
19250	64.50	65.50	1.00	<5	14	<0.2
19251	70.50	71.50	1.00	5	598	<0.2

23-Aug-01

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2001-264

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

#### ATTENTION: RON WELLS

-

No. of samples received: 19 Sample type: Core **Project #: ND 2001-D4 Shipment #: None Given** Samples submitted by: Ron Wells

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
1	19233	5	<0.2	1.70	10	90	<5	3.34	<1	33	190	90	4.71	<10	2.29	522	<1	0.03	38	1480	6	<5	<20	101		<10	98	<10	<1	33
2	19234	10	<0.2	1.42	<5	85	<5	2.62	<del>&lt;</del> 1	27	174	135	4.89	<10	1.89	569	<1	0.03	32		6	<5	<20	90		<10	100	<10	<1	34
3	19235	15	1.4	1.76	5	50	<5	1.30	<1	65	159	2566	>10	<10	2.50	617	1	0.03		1430	10	<5	<20	27	0.10	<10	148	~10 <10	<1	54 69
4	19236	25	3.6	1.91	<5	65	<5	0.95	<1	82	172	6172	9.54	<10		615	<1		38		8	5	<20	27	0.11	<10	146	10	•	
5	19237	10	<0.2	1.24	<5	70	<5	3.07	<1	31	156	86		<10		580	<1		29		ő	<5	<20	99	0.12	<10	99	<10	<1 <1	78 31
6	19238	225	>30	1.31	25	20	<5		2	225	123	>10000	>10	<10	1.98	590	8	0.03	47	250	8	10	<20	59	0.11	<10	116	<10	<1	66
7	19239	15	<0.2	1.68	5	65	<5	1.88	<1	68	145	966	8.36	<10	2.21	619	<1	0.03	36	1420	10	<5	<20	59		<10	119	<10	<1	47
8	19240	15	1.6	1.66	<5	70	<5	3.38	<1	98	153	3718	9.38	<10	2.19	652	2	0.03	35	1330	10	<5	<20	•••	0.12	<10	125	10	<1	53
9	19241				10	55	<5	2.86	<1	53	190	338	5.84	<10	1.99	694	<1	0.03	37	1580	10	5	<20		0.11	<10	100	<10	<1	43
10	19242	5	<0.2	3.43	15	95	<5	1.52	<1	51	187	100	>10	<10	4.53	1159	5	0.02	68	1500	14	<5	<20	38		<10	153	20	<1	43 64
11	19243	25	1.4	2.31	25	10	<5	2.13	<1	130	350	1276	>10	<10	3.93	784	21	0.03	144	1350	16	<5	<20	47						
12	19244	5	<0.2	2.76	20	55	<5	1.66	<1	82	153	344		<10		961	4	-	49		14	<5	<20		0.10	<10	133	10	<1	59
13	19245	5	<0.2	1.58	10	125	<5	3.77	<1	39	189		5.67	<10		789	<1		39		10	~5		37		<10	163	<10	<1	71
14	19246	<5	<0.2	1.48	10	110	<5	2.72	<1	37	192		4.78	<10		674	<		38			•	<20		0.12	<10	113	<10	<1	49
15	19247	5	<0.2	1.21	5	60	<5		<1	33	174	58		<10		576	4		34		10	<5	<20		0.12	<10	94	<10	<1	38
							•			•••		00	0.00	- 10	1.00	510	-	0.04	-34	1900	6	5	<20	43	0.11	<10	93	<10	<1	41
16	19248	5	<0.2	2.23	<5	45	<5	0.97	<1	62	172	278	>10	<10	3.13	993	4	0.03	50	1640	14	<5	~10		0.40					
17	19249	5	<0.2	1.58	10	90	<5	2.52	<1	36	177		4.48		2.19		<1		37		12	-	<20		0.12	<10	148	<10	<1	74
18	19250	<5	<0.2	1.74	10	65	<5		<1	42	195		4.98	<10		652	<1		41			<5	<20		0.11	<10	86	<10	<1	35
19	19251	5	<0.2	1.98	20	70	<5		<1	42	193	598		<10		741	2		43		12	<5	<20		0.12	<10	96	<10	<1	40
						. –	•						0.45	-10	£.00		4	0.03	43	1600	16	<5	<20	83	0.13	<10	117	<10	<1	44

CHRIS	OPHER -	JAMES GO	LD CC	RP.						I	CP CEF	RTIFICA	TE OF	ANAL	ysis <b>A</b>	K 200	1-264								ECO-TI	ECH LA	BORA	TORIES	3 LTD.	
Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	<u>P</u>	Pb	Sb	Sn	Sr	<u>TI %</u>	U	v	w	<u>Y</u>	Zn
QC DA Resplit 1		5	<0.2	1.76	10	85	<5	3.59	<1	35	196	83	4.89	<10	2.35	544	<1	0.03	40	1620	10	<5	<20	100	0.13	<10	101	10	<1	36
Repeat 1 10	19233 19242		<0.2 <0.2		10 15	90 90	<5 <5	3.37 1.55	<1 <1	34 53	191 192	90 103	4.73 >10	<10 <10		525 1189	<1 6	0.03 0.03	38 70		10 18	<5 <5	<20 <20	99 36	0.13 0.13	<10 <10	98 156	<10 20	<1 <1	34 67
Standa GEO'01		115	1.2	1.64	60	145	<5	1.55	1	19	52	83	3.53	<del>&lt;</del> 10	0.92	674	<1	0.02	24	770	22	10	<20	54	0.09	<10	68	<10	<1	78

FP/kk df/264 XLS/01 cc: ron wells fax @ 372-1012

ECO-TECH LAEORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



#### ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

#### CERTIFICATE OF ASSAY AK 2001-264

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

.

24-Aug-01

ATTENTION: RON WELLS

No. of samples received: 19 Sample type: Core **Project #: ND 2001-D4 Shipment #: None Given** Samples submitted by: Ron Wells

		Ag	Ag	Cu	
ET #.	Tag #	(g/t)	(oz/t)	(%)	
6	19238	38.1	1.11	2.22	

QC DATA:

Standard: Mpla

69.8 2.04 1.43

-TECH LABORATORIES LTD. ECO Frank J. Pezzotti, A.Sc.T. **B.C. Certified Assayer** 

XLS/01

Page 1



#### ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dailas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

#### CERTIFICATE OF ASSAY AK 2001-264R

#### CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

29-Aug-01

ATTENTION: RON WELLS

No. of samples received: 19 Sample type: Core **Project #: ND 2001-D4 Shipment #: None Given** Samples submitted by: Ron Wells

		Cu	
ET #.	Tag #	(%)	
4	19236	0.59	
5	19237	0.02	
6	19238	2.55	

QC DATA:

Standard: Mpla

1.43

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/01

Page 1

### SILVER LAKE PROPERTY NEW DISCOVERY GRID

DH NO. ND 2001-0						PAG	GE NO. 1
	LITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	
MAIN UNITS	GLSUB UNITS				FROM		NUMBER
0 0 - 4 97 Casing in	5 sandy clay till to 4.200						HUMDLK
verburden and	avecturing angite purphy ag bedrack.		······································				
weathered bedrock.							
4.87-20-15 Augite	4.27-12.08 Augite bosalt, more	Generally marine,	link hand with	0. 10 1: 1:			
not feedspor Porphyry	1. counded pheno with depth, generally	low density of carb		sparse fine disson			
Sosalt.	1-4 mar. Frie grained green to grey		for the correspondence	₿ <b>у</b>			
	1- goundmess in inthe weak local	fractures low angles	CO COL CULAR PARATE				
м <b>–</b>	1/ moderate magneti	to CA.	·····				···
	/	· · · · · · · · · · · · · · · · · · ·					
	7.	· · · · · · · · · · · · · · · · · · ·					
	1 12.08-18-15 Mattled area - amit	Ar along O to the					
	1, 12.08-14.15 Mottled greens augit	1	Generally weak	By concertations			
	. faldspor prephysy. Weak spidste	ica pica corp vero	party corb and	assoc. with sin			·
	altered variable weat to local	cant give by	epidote Local darke	Som fice Py in alle			
1			chloatri alteration		<u>17:15</u>	18-15	19252
_ متر		1147-20.42 clayey	weak-mod pervoise	Sparse fine dissen.	. 19.48	20.48	19253
1	prephycy similar to 4.87 m but	fault gone with fine		Py			·
	masterate magnetic	diven R. fraction	epidek.				
	-	35-45 ct. Sono politic					
	ेते	@ 23.0 m Geal Slicks		····			
	5	OA Carbonale freching	epidate increasing				
	6 o'ra		to lower contact				
18-15-29-86 Basalt . Dike	Eine ge. equigranular. M.s. mague the	massive laces bittle		local fice by fore time		]	
		drectures			27:27	39.87	19254
19:26-32:06 Dort magachta rich zone with dissem. Py		Local carb source	Mainly megnetite	1-5 / fine chisen Ry	30.97	32.06	19255
32-06-33-76 Aug/HL	green angete porphysy baralt . weak	75 CA 4 3485-3487	local initit carb	lacal specks Cay often			
1012hgg Basalt 38.76-38.70	in an and a second a second		Chloritzed.	with cars.	13.76	34.76	19256
Fracture Alteration "	F Clayey chloritic fracture zones	closey fract was ;	mayashte rea bonds	,	34.76	35.76	-19257
	with fine dersem. By separated	34.50-35.35; 35.97-364			25.76	34.76	19258
Zint	it by fg. messive megnetite Ach	Areas between	Huninghaut . Race				
	to books	Magnetite rich +	epidate.			T	

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. . Wells

DATE: 14 August 2001

# SILVER LAKE PROPERTY NEW DISCOVERY GRID

DDH NO. NO 2001-1	05							<u>SE NO. 2</u>
		THOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	
MAIN UNITS	GL	SUB UNITS				FROM	TÔ	NUMBER
8.70-49.00 Epidole	- 1	38.70-44.26 Epidale altered anit	faitly massive local	WEAR pervessive epid.	space fine disen			
ltered Augite Parphyry	1		44.0-44.90 Several Subar	and corbonate	A.			
			Cars vein steckwerts	esidate and carb	·····			
		with anyth phenorally to Some w-m magnetic 44.24-46.25 Anyte paratyay braccia	some Caminakin/fol.	altered pregments.	Sporte fine dimen.	44.81	46.25	19259
	14	2-10 cat subaryular programs coldate	mania interiora	-	Local fg. dissem by			
		46.25- 49.00 Exidate all anite parch	Aigh & low angle CA.	strong epidate, weak carbonale . Patch for	also veralets	46.93	47.43	19260
	1.	strong alteration, highly versible mis	card veinters. Locat	negnetite.				
A	2	49.00-49.00 Poichy 2014+Mgt + My 49.88-52.30 Darth grees, fine grand Cuite gr blas at two, trong magnetic Dt chiesite + magnite Direm By	Brecciated to <u>folioted</u> 45 CA logicales	Isreaular c.M. scale	Local bands / vein haca	49.00	49.88	19261
9.00-52.90 Derk 39	14	with gty blabs at top. Strong magnetic		mod. epid, wk. corb Grey to bluish dissem gly to 3%	brace Coy.	49.88	\$1-38	19262
aquelite rich gone	11	DK CALLENOL + MAY AUR DITTER MY.		ale to 2%	in crude bands Locar	51.38	52.90	1.9263
V-Tuff? Dissem 9+3	1	Mixed Cominated gones with fine		Patchy ned green Chi.	DESEM fine to course		53.64	19263
Z.90->+-BZ Dieccities	-	Mixed Cominated games with fine to coaste granted Byc Cpy pts + Chlonie + magnetile Augite Porphyn	Commonly So 40 CA up 55 CA with with a start	of the most in the	Signficent amounts of	52.90 53.64		(9245
a <b>minated</b> Zone with Py-Cpy in Augite Porph.Bx	1	dinem. Py + 161. + marchile	-cuiconinahi-	Carbo mainte veraleta. Ata verning No zera	tring & Cay with 9/31		55.02	
East.	$\mathcal{F}$	56.62-5763 DK green chloritic, strong may.	Local Bertie's A Carb	chlorite, poking mat.	Fine dessen. By aspec.	55-02	56.02	19266
56-62 - 90-52 Augite	Γ,	57.63-64.40	weidels send py				56.68	19267
Porphyry Basalt ig	<b>١</b> /	57.63-64.40 park anygolalaidal. Carb	prochable intervals		@ 60.25-60-10 for this zone with chil high			17268
	1	and a contract, parting any starting	120-40 CA. 50-4	mynete Patchy	divern. to Py guile	60.25	60.80	19269
	17.	alteration Variable M.S. maynetic		weak carb 7 with	Claysy * \$3.70 - 63.70			
	'		Carb. veidels	veidele	as above.	63.20	63.70	19270
		64.40-90.52 Weak epidate	Generally mossive	Weak - Lacal Mad.	64-40-65-50 Serve	64.40	65.50	19271
	K.	altered aveils perphyry, some	low carb winter	weak-local mad. epidak (selectione) V. agak satur	inits yours to Toca		· ·	
	1	foldspar lathe Varable M-S	denity, low angles		P TO COONSE ROTORDY CY			
	1.1	magnetic. Some dark megnetite	CA. Local high					
19	∳ ?	rich intervals	angle 70-90 CA /Em.	regnetite				
	1		Stringer		local small	<u>}</u>		
	卜,				petities of for.			
	1				grained Py. 20.5-715			
	12		+	·	· · · · · · · · · · · · · · · · · · ·			
			77.43-77.42 (compler					ļ
	1		multi-phase carby rein		· · · · · · · · · · · · · · · · · · ·			
	1.		come carb crystale			l		ļ
	· '		at margins	<u> </u>		1		i

KAMLOOPS GEOLOGICAL SERVICES LTD.

DATE: August 15, 2001.

LOGGED BY: R. e. Luella

### SILVER LAKE PROPERTY NEW DISCOVERY GRID

l	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
MAIN UNITS GL	SUB UNITS				FROM	то	NUMBE
	weak epidate altered angite perphysics	Early massive	local mod saidale	Sparse for gr. Py local clusters			
	balow 50m. Ha mogeneous to and of hole		corb .	with cost potetes	· • • • • • • • • • • • • • • • • • • •		
7	vadable an-m. nogetti vague breccia lextures below						
91 <u>-1</u>	90.52.EOM			90.00-90.52 longular epiclate some fine	90.00	90-52	19272
				Epy.			
			·	· · · · · · · · · · · · · · · · · · ·	<u> </u>		
					<b>.</b>		<b>†</b>
					+		

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY:

DATE: August 15,2001.

# DIAMOND DRILL HOLE NO. ND 2001-05

SAMPLE	FROM	то	LENGTH	Au	Cu	Ag
NO	(m)	(m)	(m)	ppb	ppm	ppm
19252	17.15	18.15	1.00	15	68	<0.2
19253	19.48	20.48	1.00	70	177	<0.2
19254	29.87	30.87	1.00	15	890	0.4
19255	30.87	32.06	1.19	15	1310	0.4
19256	33.76	34.76	1.00	120	298	<0.2
19257	34.76	35.76	1.00	125	241	0.4
19258	35.76	36.76	1.00	20	264	<0.2
19259	44.81	46.25	1.44	5	72	<0.2
19260	46.93	47.43	0.50	5	32	<0.2
19261	49.00	49.88	0.88	5	61	<0.2
19262	49.88	51.38	1.50	5	217	<0.2
19263	51.38	52.90	1.52	10	218	<0.2
19264	52.90	53.64	0.74	10	200	<0.2
19265	53.64	55.02	1. <b>38</b>	20	7002	5.2
19266	55.02	56.02	1.00	55	5228	4.8
19267	56.02	56.62	0.60	60	8981	6.8
19268	56.62	57.62	1.00	5	137	<0.2
19269	60.25	60.80	0.55	15	170	<0.2
19270	63.20	63.70	0.50	20	169	<0.2
19271	64.40	65.50	1.10	10	95	<0.2
19272	90.00	90.52	0.52	5	345	<0.2

(

23-Aug-01

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2001-265

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

#### ATTENTION: RON WELLS

No. of samples received: 21 Sample type: Core Project #: ND 2001-D5 Shipment #: None Given Samples submitted by: Ron Wells

Values in ppm unless otherwise reported

																								•						
Et #.	Tag #	Au(ppb)		Al %	As	Ba	_	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Şn	Sr	Ti %	ບ	v	w	Y	Zn
1	19252	15		1.80	10	70	<5	6,31	<1	36	169	68	4.71	<10	2.32	745	<1	0.03	41	1590	10	<5	<20	151	0.12	<10	108	<10	<u></u>	35
2	19253	70	<0.2	1.79	20	25	<5	4.07	<1	47	205	177	6.66	<10	2.90	802	39	0.03	52	1670	20	10	<20	95	0.10	<10	123	<10	<1	
3	19254	15	0.4	2.11	15	70	<5	1.64	<1	61	135	890	>10	<10	2.82	827	9	0.03	35	1590	12	5	<20	49	0.12	<10			-	42
4	19255	15	0.4	2.31	10	80	<5	1.74	<1	68	139	1310	>10		3.17	817		0.04	38	1930	16	10	<20	52			171	10	<1	71
5	19256	120	<0.2	1.84	30	35	<5	6.25	<1	43	146	298	6.80	<10		947		0.03	36	1550	16	<5	<20	52 169	0.13 0.12	<10 <10	194 162	20 10	<1 <1	67
																						••	-20	108	0.12	510	104	10	<b>~</b> 1	52
6	19257	125	0.4	0.94	60	5	<5	5.23	<1	41	94	241	6.81	<10	1.50	720	58	0.04	29	1540	10	5	<20	130	0.08	~10		~~		~~
7	19258	20	<0.2	2.32	<5	50	<5	2.95	<1	44	182	264	9.22	<10	3.47	920	1	0.03	44	1840	18	<5	<20	68	0.00 0.14	<10	94	20	<1	36
8	19259	5	<0.2	1.26	15	BO	<5	2.82	<1	20	105	72	4.66	<10	1.63	778	1	0.03	23	1630	10	<5	~20			<10	194	<10	<1	75
9	19260	5	<0.2	1.50	15	70	<5	2.91	<1	46	127	32	4.96	<10	1.91	778	2		40	1580		-		116	0.09	<10	87	10	<1	34
10	19261	5	<0.2	2.01	10	60	<5	1.81	<1	51	132	61	9.44	<10			<1	0.03	37		14	<5 - F	<20	91	0.10	<10	92	<10	<1	43
									•			0.	0.44		2	047	~1	0.03	31	1610	16	<5	<20	62	0.10	<10	122	20	<1	47
11	19262	5	<0.2	3.92	10	25	<5	0.41	<1	58	130	217	>10	<10	4.03	1330	4	0.02	24	1690	20									
12	19263	10	<0.2	4.11	25	35	<5		<1	87	146	218	>10	<10		1284	, ,		34 46		22	<5	<20	12		<10	170	10	<1	53
13	19264	10	<0.2	4.05	10	25	<5	0.38	<1	149	164	200	>10			1054		0.02		1710	26	<5	<20	14		<10	160	20	<1	53
14	19265	20	5.2	1.87	10	15	<5	0.60	2	463	338	7002	>10		2.80			0.02	45	1640	28	<5	<20		0.11	<10	177	20	<1	52
15	19266	55	4.8	0.79	15	5	<5	1.57	-	345	254	5228	>10	<10	1.50	300	18		132	1100	10	15	<20	25	0.12	<10	106	<10	<1	51
						-	•	1.07	•	040	2.04	5220	-10	510	1.50	300	24	0.04	116	1040	6	10	<20	53	0.08	<10	63	<10	<1	36
16	19267	60	6.8	0.84	10	15	<5	4.20	3	378	220	8981	>10	<10	1.53	521	174	0.00	400											
17	19268	5	<0.2		<5	135	<5	1.08	<1	49	166	137	8.21	<10			174	0.03	102	910	12	15	<20	100	0.07	<10	58	10	<1	37
18	19269	15	<0.2		<5	10	<5	4.16	<1	39	172	170	>10			1018			43	1710	12	5	<20	38	0.12	<10	168	10	<1	71
19	19270	20	<0.2		5	35	<5	3.61	<1	68				<10				0.03	42	1230	12	<5	<20	103	0.10	<10	128	<10	<1	64
20	19271	10	<0.2		10	55	~5 <5	3.43	<1	34	161	169	>10	<10	3.39		-	0.03	45	1540	18	<5	<20	80	0.13	<10	153	20	<1	68
21	19272		<0.2		15	135	~5 <5				166	95	5.34	<10	1.90	712	<1	D.03	33	1570	10	5	-20	105	0.13	<10	87	<10	<1	34
	10212	5	~υ.Z	1.10	10	199	~0	1.59	<1	33	253	345	4.27	<10	2.31	553	<1	0.03	62	1620	16	<5	<20	104	0,15	<10	88	<10	<1	48

CHRIST	OPHER	JAMES GO	LD CO	RP.						I	CP CEF	RTIFIC	CATE O	F ANA	LYSIS	AK 20	01-265	5						I	ECO-TE	CH LA	BORA	TORIES	i LTD.	
<u> </u>	Tag #	Au(ppb)	Ag	AI %	As	Ва	Bi	<u>Ca %</u>	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	РЬ	Sb	Sn	Sr	Ti %	υ	<u>v</u>	w	Y	Zn
<u>OC DA</u> <i>Respilt</i> 1		15	<0.2	1.83	10	75	<5	6.63	<1	37	170	83	4.83	<10	2.35	769	<1	0.03	41	1670	14	<5	<20	155	0.12	<10	109	<10	<1	37
Repeat 1 10	: 19252 19261	15 10	<0.2 <0.2	1.83 2.01	10 10	70 55	<5 <5		<1 <1	36 50	171 132	69 60	4.80 9.47	<10 <10		760 851	<1 1	0.03 0.03	42 37		12 10	<5 <5	<20 <20	149 66	0.12 0.10	<10 <10	109 123	<10 10	<1 <1	36 47
Standa GEO'01		125	1.2	1.56	65	140	<5	1.52	<1	18	51	79	3.45	-10	0.87	665	<1	0.02	25	760	24	5	<20	52	0.09	<10	65	<10	<1	76

FP/kk df/264 XLS/01 cc: ron wells fax @ 372-1012

ECO-TEO/LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



#### ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

#### CERTIFICATE OF ASSAY AK 2001-265R

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

29-Aug-01

#### ATTENTION: RON WELLS

No. of samples received: 21[°] Sample type: Core **Project #: ND 2001-D5 Shipment #: None Given** Samples submitted by: Ron Wells

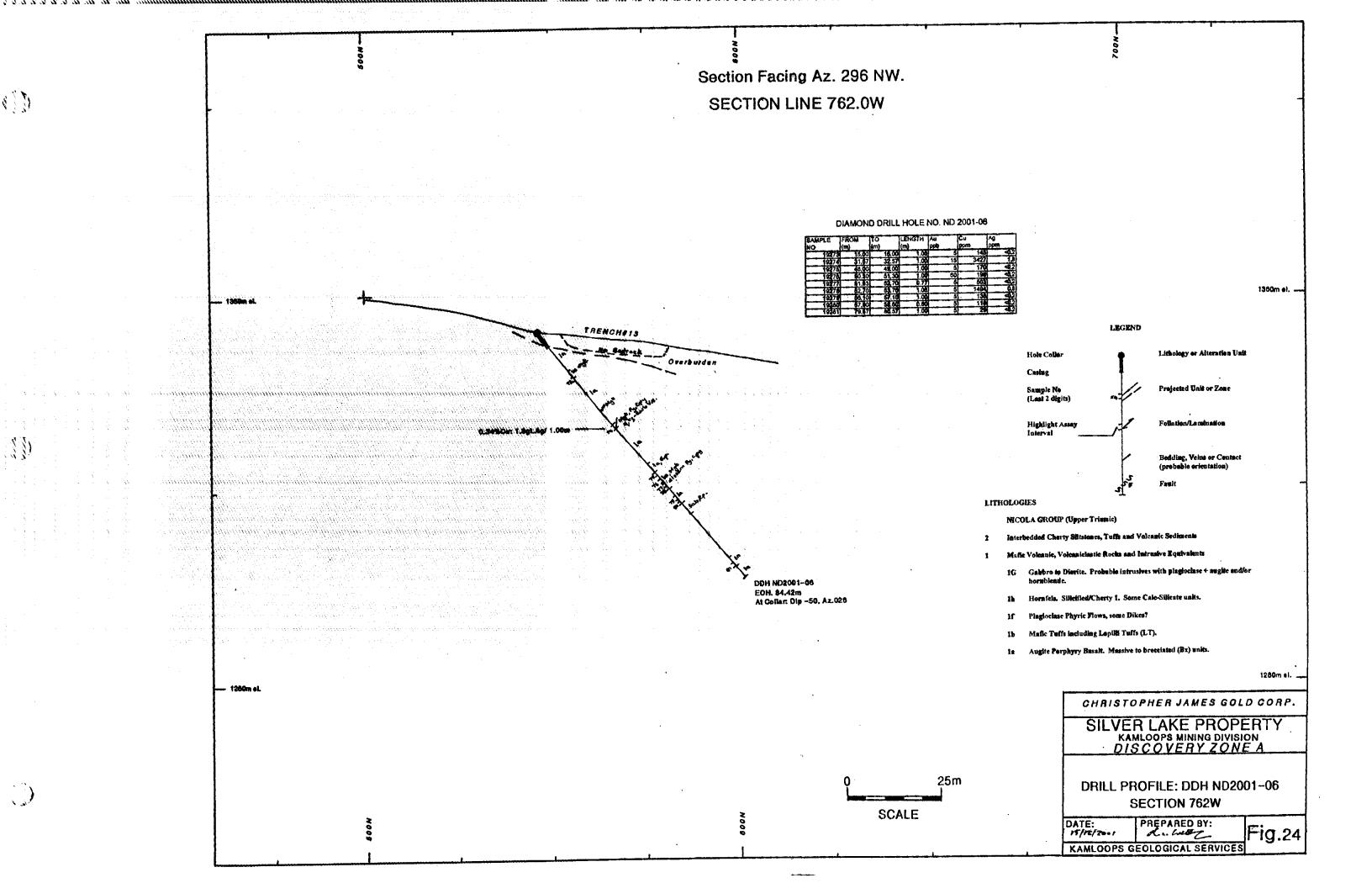
		Cu	
ET #.	Tag #	(%)	
14	19265	0.77	
15	19266	0.58	
16	19267	0.80	

QC	DATA:
-	

Repeat:	
14	19265

Standard: Mpla

1.43


0.76

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/01

Page 1



### SILVER LAKE PROPERTY NEW DISCOVERY GRID

DH NO. ND 2001-							PAC	GE NO. 4
		ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	
MAIN UNITS	GL	SUB UNITS				FROM	TO	NUMBER
0-457 Casing in Overburden Sud waattered bedrock.		Sandy clay till with peoples. Bedack angete peoply of Q S. 05m						
	F	3.05-26:57 Med win gray- gasen,	massive with a	weak, selective	Space for driven.			
05-49-94 Augite	1	fine grained will altered	face norther 40-70 co	epidate alteration.	Py, lacal patches			
^g ∍tphyry Basait ∾,	;/  /	augite planecysts 2-4mm. Space fallspor lathe moderate magnetic	carbonati veialetz.	un potety provosuit carbonat	near corte veinteto			
				13.0-15.5 dorker fg			· · · · · · · · · · · · · · · · · · ·	
	<b>"</b>	pelan 15.5				15.00	16.00	19273
20		haaroge and argite porphyg variable wom magnetic	Ince desity of fine case veialeto @ 17-08 10-15 CA Urggy Carb Vein					
		26.52-26.71 magnetite rich section		Dorth green - black strong megnetic	diara mg. ly Toca.	· · · · · · · · · · · · · · · · · · ·		
Jo		Andregeneous argite parphysy						
		31.50-32.57 nogratile rich section	31.77-32.13 Jaken.	rately maynetic	central win has			
	ĸ	gtg-corb veining with By Coy	AS CA	ucueak carb + epid. 22.57-54.0 Patchy	fractive controlled	31.57	32:57	19274
				woon excidente	wall ock for dinen			

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY K. c. Welly

DATE: 15 August 2001.

### SILVER LAKE PROPERTY NEW DISCOVERY GRID

DHNO. ND2001-		· · · · · · · · · · · · · · · · · · ·					PAC	GE NO. 2
		ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
MAIN UNITS	GL	SUB UNITS				FROM	то	NUMBER
	1	weak alt eved ougite porphyry	lew corb windet	weak epidata - carbonata	Sporre fra. gr. diven Py			
	:	47.0-49.94 Pately mod. epidole		weak-m epidate A down to 50-51.5				
9.74-53.76 Magnetics.		Dack grey augite prophysy besout.	massive with local	Semi-pervosive mod - wk. Carb. Maiol-	con with paidale	4 2.00 Sa.20	49.00 51-30	19275 19276
ugite Porphyny	· ·	strong magnetic the aughout	1- corb-sullide veins	Veialet - 48.2-42.5	fim disem by 23%	51.93	52.70	192.77
2.76-65-30 Augite		\$3.76-58.60 Dack grey augite	massile (and cash	winter anythe darker maythe secon pethy spid noncers. Lotte high angle co hearts winter	best specki of Cpy = 52:43 minut of Carb b/Lb + Cpy	\$2.70	53.76	(9.278
orphysy Variably Itered and veined	K.	purphysy baselt consider cars	verslet elensity	· · · · · · · · · · · · · · · · · · ·	Cold laminated V with flm dissen Py + Cpy	56.10	\$7.16	<u>_ 19 27 9</u>
	1	58:60-61.82 Epidate attered (acell	54.15 20 CA carb	weak-mod paking epictule, weak carb-		\$7.80	58.60	19280
-•		Coorse brecciated . 4 m maratic	manior local low					
	$\sum$	bosalt are wated and epidete	massive with 6x-	Grenerally weak				
	<u>الأ</u>	altered 43.30-65.30	moleonisteste section	Pepid-carle stranger				
5.20- \$4.42 Augite		altered augute parphysy		wite bracia				1
^p orphyry Basalt 1	$\left  \right\rangle$		68-58-68-78 44994-					
~	<b>]</b> . '							
						······		
	1							
		78.0-81.0 Week browieted	messive, free carb	w-m pately epidate	space fine during			
	10/2	() frogmental textures	vertets	W-S corbonate	Py 1	79.57	80.57	19281

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. L. WILLS

DATE: 15-16 August 2001

### SILVER LAKE PROPERTY NEW DISCOVERY GRID

	<u> </u>	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION	SAMPLING			
MAIN UNITS	GL	SUB UNITS				FROM	TO	NUMBEI	
	L-	<i>P</i> و2.							
	11	910-20.42 martine auerts	matting Inc. Inn.		·				
	17	And a fact and an indefided		······································	1	<u> </u>			
	1/1	with early care moderate memory	AND COLO VEININ						
		810-84.42 Massive auget. poration local anyodoloidal with epid+ carb moderate negative 84.42 EON			- t ·	· · · · · ·		<u> </u>	
			1						
			<u> </u>				······		
			<b>4</b> · · · · · · · · · · · · · · · · · · ·						
			┼────┤	· · · ·					
	ł								
			4						
						1			
							······		
							<b></b>		
		······································							
				N			<u> </u>		
				· -	<u> </u>	<u> </u>	<u> </u>		
							···~		
						1		L	

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY R.L. Ladle

DATE: 16 August 2001.

# DIAMOND DRILL HOLE NO. ND 2001-06

SAMPLE	FROM	то	LENGTH	Au	Cu	Ag
NO	(m)	(m)	(m)	ppb	ppm	ppm
19273	15.00	16.00	1.00	5	145	<0.2
19274	31.57	32.57	1.00	15	3427	1.8
19275	48.00	49.00	1.00	5	170	<0.2
19276	50.30	51.30	1.00	60	196	<0.2
19277	51.93	52.70	0.77	5	503	<0.2
19278	52.70	53.76	1.06	5	1494	0.8
19279	56.10	57.10	1.00	5	138	<0.2
19280	57.80	58.60	0.80	5	118	<0.2
19281	79.57	80.57	1.00	5	29	<0.2

23-Aug-01

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2001-266

#### CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

#### ATTENTION: RON WELLS

No. of samples received: 9 Sample type: Core Project #: ND 2001-D6 Shipment #: None Given Samples submitted by: Ron Wells

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	V	W	Y	Zn
1	19273	5	<0.2	2.64	<5	85	<5	1.39	<1	65	229	145	9.81	< 10	3.35	820	<1	0.03	54	1590	16	<5	<20	43	0.12	<10	154	<10	<1	58
2	19274	15	1.8	1.65	15	25	<5	1.23	<1	266	161	3427	>10	<10	2.16	469	3	0.04	50	1340	16	<5	<20	36	0.11	<10	110	<10	<1	58
3	19275	5	<0.2	2.19	5	65	<5	2.31	<1	46	187	170	6.62	<10	2.80	859	<1	0.03	40	1690	16	<5	<20	76	0.14	<10	126	<10	<1	54
4	19276	60	<0.2	1.65	-5	95	-5	1.52	<1	30	177	196	3.96	<10	2.16	609	<1	0.03	35		14	15	<20	125	0.13	<10	75	<10	<1	43
5	19277	5	<0.2	3.62	10	80	-5	0.79	<1	56	144	503	>10	<10	4.33	1329	10	0.03	41	1860	30	<5	<20	25	0.12	<10	178	20	<1	88
6	19278	5	0.8	2.89	15	40	<5	1.05	<1	115	300	1494	>10	<10		828	10	0.03	115		22	<5	<20	34	0.09	<10	104	10	<1	52
7	19279	5	<0.2	1.71	10	80	<5	3.52	<1	33	215	138	4.99	<10	2.22	606	₿		41	1510	16	<5	<20	84	0.12	<10	113	<10	<1	36
8	19280	5	<0.2	1.41	10	140	<5	2.57	<1	30	205	118	4.29	<10	1.85	483	<1	0.03	37		12	<5	<20	84	0.10	<10	80	<10	<1	31
9	19281	5	<0.2	1.83	5	90	<5	2.49	-1	34	176	29	5,10	-10	2.47	652	<1	0.03	37	1830	14	<5	<20	112	0.10	<10	100	<10	<1	43
<u>OC DA</u> Resplit 1		5	<0.2	2.66	5	85	<5	1.40	<1	68	238	154	>10	<10	3.39	821	1	0.03	53	1670	20	<5	<20	40	0.12	<10	156	20	<1	61
Repeat 1	19273	5	<0.2	2.66	15	90	<5	1.40	<1	65	229	142	9.79	<10	3.38	816	<1	0.03	52	1630	20	<5	<20	41	0.12	<10	154	20	<1	57
Standa GEÓ'0		115	1.0	1.56	65	140	<5	1. <b>52</b>	<1	19	51	79	3.46	<10	0.87	670	<1	0.02	24	780	24	15	<20	49	Q.08	<10	65	<10	<1	78

FP/kk df/264 XLS/01 cc: ron wells fax @ 372-1012

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

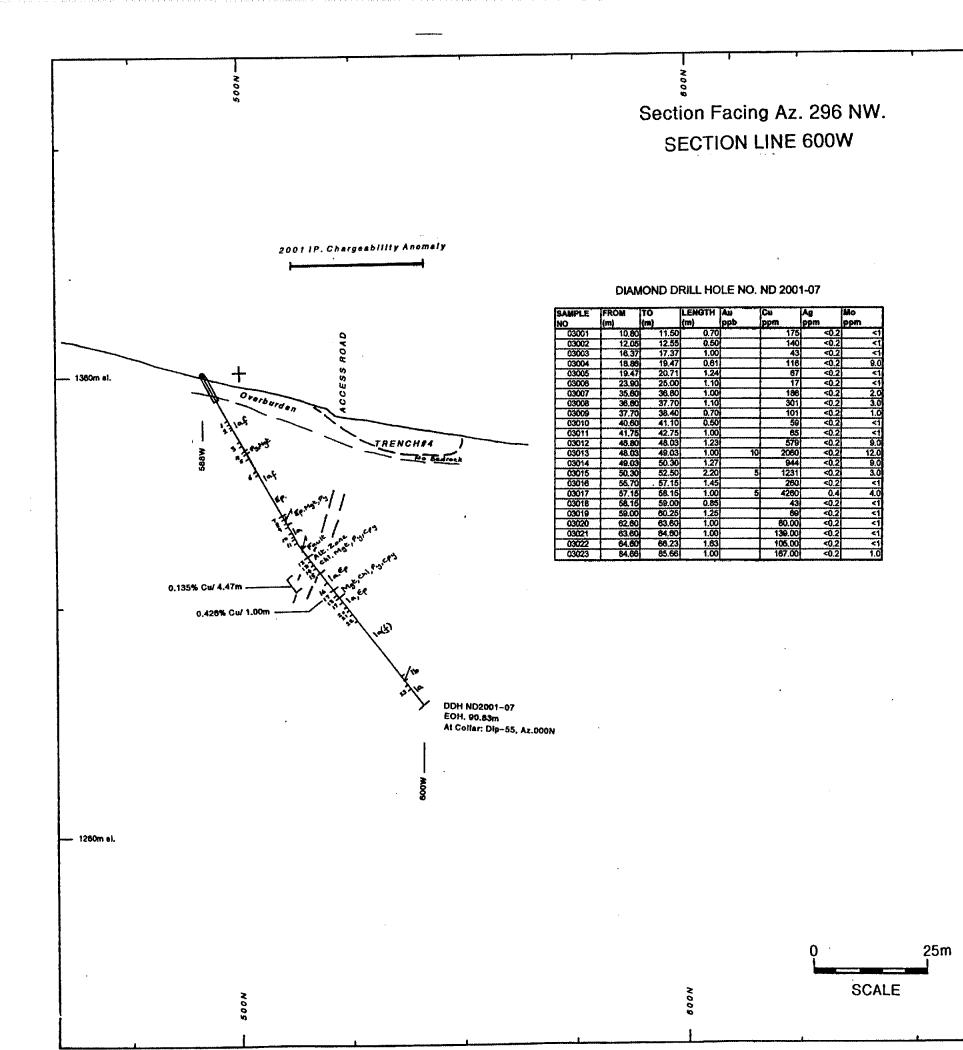
#### **APPENDIX 6**

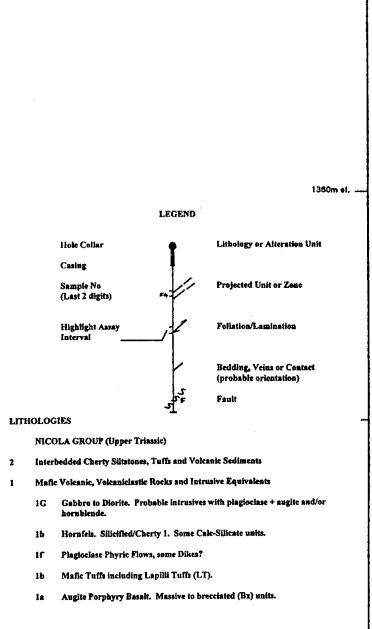
ł. – –

#### 2001 PHASE 2 EXPLORATION: DIAMOND DRILLING DATA

.

R. C. Wells, P.Geo., FGAC. Kamloops Geological Services Ltd.


# NEW DISCOVERY PROGRAM: PHASE 2 DRILLING INFORMATION


DDH NO.	GRID LOCATION (Collar)	AZIMUTH	INCLINATION	DIP TEST @ m (corrected)	LENGTH m	CASING m	START	FINISH
ND2001-07	5+88W 4+90N	000N	-55	-50@87.48	90.83	6.70	26/9	28/9
ND2001-08	8+07W 5+27N	026	-45	-45@121.0	121.62	8.23	28/9	29/9
ND2001-09	9+94W:5+25N	026	-45	-43@93.57	139.29	5.18	30/9	1/10
ND2001-10	9+00W:5+42N	026	-45	-45@139.29	139.29	9.14	2/10	3/10
ND2001-11	11+50W:5+41N	026	-45	-42.5@63.1	139.29	3.66	4/10	8/10
ND2003-12	13+09W:5+65N	026	-45	-42@63.1	114.91	9.75	9/10	10/10
ND2001-13	17+00W::5+65N	026	-45	-43@51.0	139.29	19.51	12/10	15/10
ND2001-14	15+62W;6+10N	026	-50	-50@38.71	49.99	5.18	15/10	16/10

#### HIGHLIGHT ASSAY INTERVALS

SECTION	HOLE	FROM	TO	LENGTH	CU %	A <u>g</u> ppm	Au ppb	Mo ppm
5+88W	ND2001-07 (-55)	48.03 57.15	52.50 58.15	4.47 1.00	0.135 0.426	<0.2	5	
8+07W	ND2001-08 (-45)	64.94	65.69	0.75	0.983	1.8	30	
9+00₩	ND2001-10 (-45)	86.73 122.05	88.00 123.00	1.27 0.95	0.166 0,125	1.0 0.2	5 280	
9+94W	ND2001-09 (-45)	48.58	49.98	1.40	Low	0.4	65	842
11+50W	ND2001-11 (-45)	105.46	106.50	1.04	0.54	2.4	35	
13+09W	ND2001-12 (-45)	58.80	59.80	1.00	1.68	16.6	105	
15+42W	ND2001-14		No signif	ficant values.			•	-
17+00W	ND2001-13		No signi	ficant values.			<u></u>	

TABLE 10





.

1

		1280m el
CHRISTO	OPHER JAMES GOL	D CORP.
KAJ	R LAKE PROPI MLOOPS MINING DIVISI SCOVERY ZON	ON I
	PROFILE: DDH ND2 ECTION 600W	2001–07
DATE: 15/12/201	PREPARED BY: R. with	Fia.25
KAMLOOPS G	EOLOGICAL SERVICES	

# SILVER LAKE PROPERTY NEW DISCOVERY GRID

6-70-17-37 redium green-grey,	STRUCTURE Marine local Laminder (fine) 55-65 cd. Massine, law reinlat deasities Maising corb tot spid.	Patchy wern carb. Patchy went epid	1-24 in tuff.	FROM		ING NUMBER
0-4.27 Sandy clay till some pebbles and cableles 4.27-6.70 A-bbly bedack massive with some laminated chl carb tyl?? 6.70-17.37 medium geen-gray, availe - Bild cast meabres has alt	(fine) 55-60 c4. Mossine, low	Patchy wern carb. Patchy went epid	Sparse find disen by 1-2 % in triff.	FROM	то	
4.27-6.70 A-bbly bedack massive with soda laminated chl carb tyl? 6.70-17.37 Medium geen-gray, availe - Bild carb meabres has alt	(fine) 55-60 c4. Mossine, low	Patchy wern carb. Patchy went epid	1-24 in tuff.			
4-27-6-70 A-664 bedack massive with some laminated chi carb typ? 6-70-17-37 medium geen-gray, availe bild cart meabres healt	(fine) 55-60 c4. Mossine, low	Patchy wern carb. Patchy went epid	1-24 in tuff.			
with some laminated chil carb hiff? 6-70-17-37 modium green-gray, availe bild carb meabren breat	(fine) 55-60 c4. Mossine, low	Patchy wern carb. Patchy went epid	1-24 in tuff.			
with some laminated chil carb hiff? 6-70-17-37 modium green-gray, availe bild carb meabren breat	(fine) 55-60 c4. Mossine, low	Patchy wern carb. Patchy went epid	1-24 in tuff.			
with some laminated chil carb hiff? 6-70-17-37 modium green-gray, availe bild carb meabren breat	(fine) 55-60 c4. Mossine, low	Patchy wern carb. Patchy went epid	1-24 in tuff.			
6-70-17-37 redium green-gruy,	Massine low	Patchy weat epid	Doorse fine dimen			
availe bld capt one show baselt	the externation of the second se					
1-3 modissem chi epid alt orgita 1-2mm feldsport lates same epid alt.	Mainly carb Yor spid.					
1-2mm feldsportathe same epid alt.	and and and a second	Aligned attack				
Phase in the second of the second	11.97 CA. A (So CO/6 30	Alenesayst alteration	A A A A A A A A A A A A A A A A A A A	≈ <b>r/o</b> .80	11.20	03001
HIS VERIONA MOM COUNTRY	15-20-17-27 1-3 Cart	pervosive epid. Call?	ty troll, to cal (py:			
to sporze	winles per loem ver.	date and		12.05	12.55	03002
Laminated ( helf?) intervals 11.0-11.4	selvedges.	processing corres				
12.05-12.50						ļ
17.37-18.86 Grassish grey fine grained	Sparser and normality	W. m patchy epidate	e a ma l' l	<u>16:37</u>	<u>17:37</u>	03.003
Py zane, strang met local line Hen winkt		1				
19-47-20-71 Epid with doman Py.	Fairly Manufa man and	and the	10-206 fine dissem. Ru		19.47	0.3.00 L
		A L.	local fine log 1	1¶.47	20.71	03005
more enidate decreasing down	Nousit un sinht					
hole.		Spicare Selective	Py Miner Carperke	23.90	25.00	03004
	and Ly.	WERK dimen. ca/6.	with epidate.			
		··				
	@ 31.7					
	West Vuggy Cors V.	·				
	CA GALL CA.					
Same aneular By texture @ enter	<u> </u>					
	Annuis L. Late	A. 4.1	<u> </u>	15.60	36.60	03007
Paraite areab-a-bile?	well cride comination	COLLING M-S PENNELLE		36.60	37.70	03008
- 38.10 - 44.20 Amile Preder A. H	met Mak 0 50 - 56 CA	27 05 magratile go is		\$7.70	38.90	07009
perpage bralt	MASSINE & WK. BX.	Martin week coid.				
	12.05-12.50. 17.37-18.86 Greenish grey fine grained Py zare, stone net local fire Hen workt 19.47-20.71 Epile with done My. 20.71-35-60 As above pyrite zare, mare epidote decreasing draws. hale. Seas angular Bx texpusa @ subo Variable celeur. Epidate attared Pugite perphysics - hilf?	12.05-12.50. 17.37-18.86 Greenish grey fine grained Sparset and manuals Py zare, strong agt local fie Hen works By-chi vendets Py zare, strong agt local fie Hen works By-chi vendets at top 19.47-20.71 Epide with dosen Py. Fairly maxime, ungay cart 20.71-35-to As above pyrite zare, low carts visatet Mare epidate decreasing down. Consisty variable hale. Orgelen CA. Ball 7 ungay carts Y. (an wide low engle CA. See anywhar By the hore of subp Variable colour. Epidate altered massive to book and proste perphysion - hill? Constant for the hore to and proste perphysion - hill?	12.05-12.50. 17.37-18.86 Greenish grey fine greined ³ parset and manuals windlet carts. Py zane, 3 trans met local fine Hen winkt ly-chi veinelet top. 5mm of petr. magnetic 19.47.20.71 2018 with distan Py. 20.71-35.60. As above pyrits zane (an carts veinelet Patchy lo-m petr. Mare epidate docreasing dama. density variable epidate. solection hale. 20.31.7 weggy carts V. (ca wide law angle Ca. Same angular by technica of subo variable celour. Epidate altered messive to barke of lotting M-s permission provide celour. Epidate altered messive to barke protocolor of the second	12.55-12.50 17.37-12:56 Greenish gray frie grained i parser out aannuer werdele corte Sporse frie by Py gane, strag ogt lace frie Hen weidele By - Chi winker at by 19.47-20.71 E ord with din on Py Forg manine wege cart Mad. patch provide Eq. 1.32 for best end for they 19.47-20.71 E ord with alonen Py Forg manine wege cart Mad. patch provide Eq. 1.32 for best end for they 20.71-35-50 Ar above py the gane (an cart vanalet Patch y we may be the person of the tool out it by Mare epidote decreasing down. Manity variable epidote - selection Py. Noner Car yeeks hale. 0.31-7 wagy carts Y. 10.41-20-71 is pide with a for the select of the	to spore lander over your portely carbo land and poten carbo land of the spore land of the spore over lander of the spore over lander of the spore lander of the spore lander of the spore lander of the spore lander over lander over lander carbo lander over la	13.05-12.50. 17.37-18.86 Greenish gravit fin gravit Corte vandster Corte potenii epidote 3 porsa fin by. 16.37 17.37 17.37-18.86 Greenish gravit fin gravit Corte vandster corte. 19.300, strang out lace fin then with by cli vandster to a strang potential lo-20% fin dissen. By 19.47 19.300, strang out lace point gave 19.47 20.71 20.71 20.71 20.71 19.92 19.47 20.71 20.71-35.60 A above point gave law corte vandster Poten potentia Epidote fin dissen. By 19.47 20.71 Mare epidote decreasing dama. Corte vandster Poten potentia Epidote fin dissen. By 19.47 20.71 Mare epidote decreasing dama. Corte vandster Poten green in the first fin decol and the first for decol and t

KAMLOOPS GEOLOGICAL SERVICES LTD.

ζ

LOGGED BY: R. Lully

DATE: 27 August 2001

### SILVER LAKE PROPERTY NEW DISCOVERY GRID

DDH NO. ND 2001-0							PA(	GE NO. 2
	-	THOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
MAIN UNITS	ΞL	SUB UNITS			× 1	FROM	TO	NUMBER
		see lg 1			Que Ag + 42.45 Icm wide	40.60	41-10	03010
· · · · · · · · · · · · · · · · · · ·	1	<b>.</b>			Que 48 + 42 45 1cm wide to the las with moch the dimen by some Cay for loom in coloradges	41.75	42.75	
4.20-46.80 Broken	`/	Tuff for at east of section .		Pately dk fg. Mgt.	70			
Lone-Fault	7		Bodly broken. Clay	unk-mod chlorite	lacal but diman P			
2	Ź	find gramed, chloriki	seam @ 46.82-46.52				118.47	£ 7 . /7
6-80-52.50 chlorite -	- 1	46.20-50.30 Foult-alteration zone		P. M. ALLALA	some baken carb, v.		48.03	63012
laquetite Zone with			haniable massive to	contray can rege	5-15% from grained		49-03	- 030/3
disseminated pyrite sel	15	in argite parphyay. Fine dimem. By local			disseminated by	43.03		03014
le la	17	50.30-52.50 fine grained lamit lat	Contrates 18.1 in	areas.	local specks of Gay	50.30	52.50	070.15
A FRANCISCO A HANNEL	742	Seni messive R. with Chl. Potes. Mat 50:30-52:50 fine grained lamiflet and Mat rich. August popping hast	Contraction / Lot. 90 CA	fg. strong Myt, chl.	547 for dissen by			
2.50-57.15 Altered 5								
hysite Porphyry		Augite perphys, hast, windly altered. Textures largely preserved	M-high density of	Week-mod spid, carh	Partity fine dimen.	<u>ا</u>		
	$\sim$	altered. Textures largely preserved	fine carb veraleto	local mgt, chl.	local coulet fg. Py	55.70	57.15	63416
	<u>_</u>	-+	60-70 CA		1-3.6.	57.15	58.15	63017
7.15-59.00 Magnetite -	1	strange, magnetic, five prained, massive with magnetice throughout	Local corb+gtz+cpy	DK. magastite with 141	57-15-57-60 Patchy Carb	51.15	\$9.00	030/8
yrite Zone with Cpy co	<u> </u>	with my relice throughout	verins at 45 ca.	carts minkets.	1m. Coy N 10%.	59.00	60.25	03017
19.00-66.70 Altered ]	$\Sigma_{2}$	Green to gry augite local	Eardy massive	Patchy w. M	75% fg dissen by			
Augite Porphyry.	Ζ.	augite-fildspor parphyoy. Fine	low costs windet		clusters of and amina	4 67.60	1140	67.020_
Amydaloidal with cart	1	gravied variable patition epidate	•	local dark chinte	Clusters of predominant M.g. Py Lipto 1.Scm Locally occide Dissen	(7.40	64.60	03021
epid fill (at top)	:у	-carbonate blocky by Variable	angles CA.	marsente	Mg Marnelik with Ry	64.60	66.23	03022
	1	mederate repetric		0	<u> </u>			
6-70-76-45 Massive		Mottled mediin greys, greens	Fairly Thessille.	Winter Land change	comp his disco			
	1	local black. Fine grained with		and the Couche was	sporse fine dimen		•••	
figile-Feldspor Prost & Basalt Ja	11	altered augits phenocapte to 4m	inidate at minut	epidote, carbonate	<i>y</i> .			
Perphysy Basalt. To		provide amounts of fold. latte	angles CA.	rich patetus.				
	•	Local dack epill-regretite	- <del>/ / / / / / / / / / / / / / / / / / /</del>	na process	· · · · ·			
'	-							
	•	allered Med local strong			1			
	/			·····	<u>                                      </u>	┢┈────		
76.45-9052			Annelia	041		<b>-</b>		
Variably altered	•	76.45-82.10 Pabably a coarse		Patchy epidate	Sparse fine dimen	• ··· ·	<b></b>	
Aughte Porphyry Bosalt	.1	precisional flow write. avoite with	A Corb. VELALLY	coth often mixed	Ry.	<u> </u>	ł	
<u></u>	<b>L</b>	foldspor Gnow epid-carb alteres	<u> </u>	with pink carb blebs	<u>L</u>	L		

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. hells

DATE: 27-25 September 200;

### SILVER LAKE PROPERTY NEW DISCOVERY GRID

	Ľ	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	GE NO. 3
MAIN UNITS	GL	SUB UNITS				FROM	то	NUMBER
		See Pg 2						
	<i>14,</i>	See Pg 2 #2-10-93:00 Find grained equigrants tuff? 83:00-90:52 as at 76:45 m Pakatt a want brecciated flow. Augite Lacal plot purphy quite counded with augite near base Short p ynthic sections. 90:93 EOH	could lesion/fel	ut opid fine higt.	mine fre dinen.			
		83.00-90.52 as at 76.45m Probabl	Fairly massive	weak epid. and	Py. 4.68-8545 Pyntic	84.66	85-66	03023
	1	a weak breecisted flow Augite	local fine corts.	Carb. Maish, stringer	He ground dursen			
		local pld purphy quite	voialeto, undable_	verilets local	2.3% local 37%			
	1	considered with angite rear base	angles CA	dimen.	4 at 15 05 - 85-35			
	70 -	Shott pynthe sections.		· · · · · · · · · · · · · · · · · · ·	· · ·			
		90.93 EOH					· -·	
	Į							
				· · · · · · · · · · · · · · · · · · ·				_ <del></del>
				·				
			· · · · · · · · · · · · · · · · · · ·					
			· · · · · · · -					
						<u> </u>		
				····				
						ļ		
						<b> </b>		· · ·
								ł
	1	· · · · · · · · · · · · · · · · · · ·				· ·	·	l
							·	
	ļ			· · · · · · · · · · · · · · · · · · ·		<u> </u>	· · · ·	l
	1		······································					
				· + · · · · · · · · · · · · · · · · · ·	<b></b>	┨──────		
						╋── ┈──		
						1	ł	<b> </b>

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY K. Welly

DATE 28 September 2001.

### DIAMOND DRILL HOLE NO. ND 2001-07

SAMPLE	FROM	TO	LENGTH	Au	Cu	Ag	Мо
NO	(m)	(m)	(m)	ppb	ppm	ppm	ppm
03001	10.80	11.50	0.70		175	<0.2	<1
03002	12.05	12.55	0.50		140	<0.2	<1
03003	16.37	17.37	1.00	<b></b>	43	<0.2	<1
03004	18.86	19.47	0.61		116	<0.2	9.0
03005	19.47	20.71	1.24		67	<0.2	<1
03006	23.90	25.00	1.10		17	<0.2	<1
03007	35.60	36.60	1.00		186	<0.2	2.0
03008	36.60	37.70	1.10		301	<0.2	3.0
03009	37.70	38.40	0.70	-	101	<0.2	1.0
03010	40.60	41.10	0.50		59	<0.2	<1
03011	41.75	42.75	1.00		65	<0.2	<1
03012	46.80	48.03	1.23		579	<0.2	9.0
03013	48.03	49.03	1.00	10	2060	<0.2	12.0
03014	49.03	50.30	1.27		944	<0.2	9.0
03015	50.30	52.50	2.20	5	1231	<0.2	3.0
03016	55.70	57.15	1.45		260	<0.2	<1
03017	57.15	58.15	1.00	5	4260	0.4	4.0
03018	58.15	59.00	0.85		43	<0.2	<1
03019	59.00	60.25	1.25		69	<0.2	<1
03020	62.60	63.60	1.00		60.00	<0.2	<1
03021	63.60	64.60	1.00		139.00	<0.2	<1
03022	64.60	66.23	1.63		105.00	<0.2	<1
03023	84.66	85.66	1.00		167.00	<0.2	1.0

₹

5-Oct-01

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2001-342

#### CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

#### ATTENTION: RON WELLS

No. of samples received:23 Sample type. Core Project #: ND 2001-07 Shipment #: 1 Samples submitted by: Ron Wells

-

Values in ppm unless otherwise reported

Et #.	Tag #		AI %	As	Ba	Bi (	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Рb	Sb	Sn	Sr	Ti %			u.		_
1	03001	<0.2	1.64	<5	95	5	2.70	<1	36	225	175	4.85	<10	2.16	670	<1	0.04	39							U	<u> </u>		Ŷ	Zn
2	03002	<0.2	1.55	<5	50	10	6.45	<1	33	195	140	4.79	<10	1.96	728	<1	0.04	38		8	<5	<20	98	0.17	<10	109	<10	15	33
3	03003	<0.2	1.31	5	65	15	6.72	<1	30	164	43	4.42	<10	1.71	711	<1	0.04	- 38 - 38	1440	8	<5	<20	185	0.15	<10	97	<10	12	30
4	03004	<0.2	2.81	<5	65	30	0.71	<1	139	170	116	>10	<10	3.45	740	- 9	0.04		1400	8	<5	<20	173	0.13	<10	90	<10	15	27
5	03005	<0.2	1.41	<5	120	10	1.33	<1	28	189	67	4.53	<10	1.78	431	-1 -1		64	1180	8	<5	120	26	0.14	<10	161	<10	<1	45
								-			•••	4.00	-10	1.70	401	~1	0.04	36	1590	8	<5	<20	131	0.13	<10	69	<10	11	24
6	03006	<0.2	1.68	<5	75	15	4.34	<1	31	218	17	4.22	<10	2.15	729	<1	0.04		4500	-	-								
7	03007	<0.2	1.33	<5	75		1.26	<1	30	193	186	6.00	<10	1.75	637			38		8	<5	<20	174	0.13	<10	84	<10	8	30
8	03008	<0.2	1.50	<5	65	<5	1.26	<1	41	192	301	8.02	<10	1.98	688	2	0.04	35		6	<5	<20	65	0.13	<10	99	<10	10	33
9	03009	<0.2	1.23	<5	155		2.43	<1	28	201	101	3.96	<10		546	3	0.04	36		6	<5	<20	54	0.12	<10	105	<10	<1	35
10	03010	<0.2	2.06	<5	55	-	3.59	<1	66	264	59	6.30	<10	2.74		1	0.05	32		6	<5	<20	181	0.12	<10	82	<10	11	25
							0.00		**	<b>L</b> U-1	40	0.30	~10	2.74	874	<1	0.04	68	1550	32	<5	<20	120	0.17	<10	110	<10	5	47
11	03011	<0.2	2.03	<5	75	10	2.89	<1	44	247	65	5.86	<10	2.72	939	-4													
12	03012	-0.2	2.18	<5	55		0.79	<1	90	349	579	>10	<10		939 611	<1	0.04	58		10	<5	<20	125	0.16	<10	118	<10	8	53
13	03013	<0.2	2.57	<5	65	_	0.52	1	181	436	2060	>10	<10			9	0.04	135		10	<5	<20	31	0.12	<10	132	<10	<1	52
14	03014	<0.2	1.78	<5	65		0.46		393	397	944	>10	<10	4.05	567	12	0.04	139		10	<5	<20	20	0.12	<10	144	<10	<1	54
15	03015	<0.2	3.56	<5	85	-	0.51	<1	97	500	1231	>10		3.12	313	ម	0.05	117	1240	8	<5	<20	22	0.12	<10	123	<10	<1	39
				-		•	0.01	- 1	57	000	1231	210	<10	5.24	709	3	0.02	189	1460	14	<5	<20	19	0.10	<10	137	<10	<1	53
16	03016	<0.2	1.61	<5	90	<5	2.45	<1	35	228	260	5.65	~10	2.13	0.50														
17	03017	0.4	2.03	<5	75		1.50	<1	83	213	4260	>10	<10		658	<1	0.04	43		18	<5	<20	69	0.15	<10	132	<10	17	40
18	03018	<0.2	1.92	<5	125	-	1.94	<1	39	225	43	6.52		2.72	790	4	0.04	45		10	<5	<20	52	0.14	<10	147	<10	<1	52
19	03019	-0.2	1.70	<5	95		1.42	<1	42	209	-			2.44	772	<1	0.04	43		10	<5	<20	59	0.16	<10	122	<10	6	40
20	03020	<0.2	1.54	<5	70		1.97	<1	39		69	5.51	<10	2.18	643	<1	0.04	41	1650	10	<5	-20	56	0.15	<10	111	<10	12	34
		<b>7</b> 1 <b>-</b>			· ·	10	1.91	~1	28	218	60	5.51	<10	2.01	648	<1	0.05	41	1610	14	<5	<20	68	0.15	<10	107	<10	13	40
21	03021	<0.2	1.92	<5	115	10	3.00	<1	38	216	120			<b>.</b>													_		
22	03022	<0.2	1.60	<5	75		1.94	<1			139		<10	2.46	768	<1	0.04	43		136	<5	<20	71	0.17	<10	122	<10	10	49
23	03023	<0.2	2.45	<5	60		1.46	<1	53	207	105	5.14	<10	2.09	609	<1	0.03	42	1600	44	<5	<20	65	0.14	<10	100	<10	12	36
		-0.2			00	10	1.40	51	72	273	167	9.37	<10	3.16	751	1	0.04	72	2080	16	<5	<20	48	0.15	<10	145	<10	<1	53
																											- 10		55

Page 1

Et #.	Tag #	Ag	A1 %	6 <u>As</u>	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Ma	Мо	<u>Na %</u>	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	¥	Zn
																								•					
Resplit	t:																												
1	03001	<0.2	1.6	2 <5	95	5	2.91	<1	38	231	158	5.10	<10	2.14	692	<1	0.04	41	1620	12	<5	<20	91	0.17	<10	109	<10	13	37
Repeat	t:																												
í	03001	<0.2	1.6	4 <5	90	<5	2.79	<1	37	232	172	5.00	<10	2.15	685	<1	0.04	44	1570										
10	03010	<0.2			55	20		<1	68	270	59						0.04	41	1570	10	<5	<20	92		<10	110	<10	16	35
	00010	-0,2	<b>L</b> .U	J	00	20	0.00	~1	00	210	59	6.44	<10	2.78	893	<1	0.04	70	1590	34	≺5	<20	121	0.17	<10	112	<10	5	49
C to a ala																													
Standa GEO'01		1.2	1.6	2 70	150	5	1.56	<1	20	57	81	3.56	<10	0.87	674	<1	0.03	26	760	22	~5	~20	50	0.40	- 10	74	-10		78
9200	I	1.2	1.6	2 70	150	5	1,56	<1	20	57	81	3.56	<10	0.87	674	<1	0.03	26	760	22	<5	<20	53	0,10	<10	71	<10		21

ICP CERTIFICATE OF ANALYSIS AK 2001-342

FP/Ih df/341 XLS/01 cc: ron wells fax @ 372-1012

5-Oct-01

ECO-TECH LABURATORIES LTD. Frank J. Pezzőtti, A.Sc.T. B.C. Certified Assayer

CHRISTOPHER JAMES GOLD CORP.



ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

#### CERTIFICATE OF ANALYSIS AK 2001-342

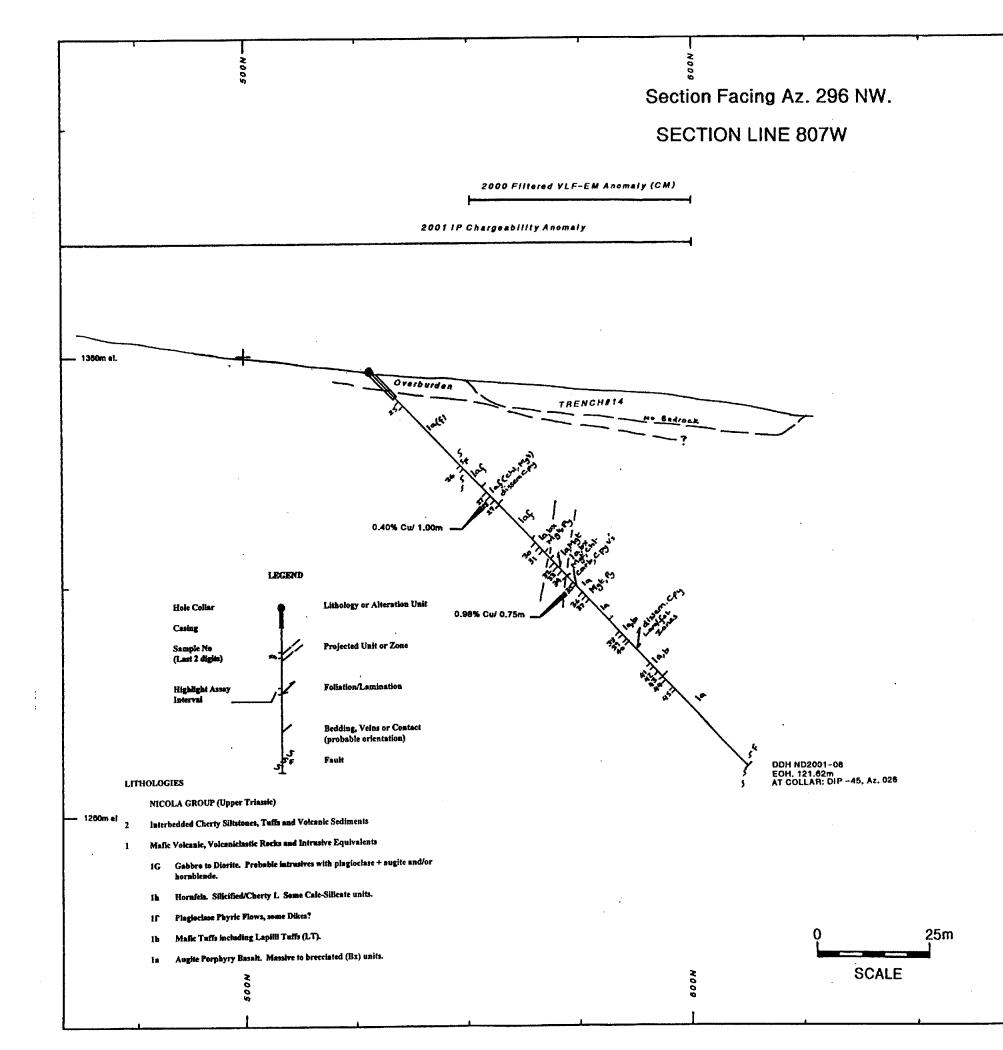
CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

#### ATTENTION: RON WELLS

No. of samples received:23 Sample type: Core Project #: ND 2001-07 Shipment #: 1 Samples submitted by: Ron Wells

		Au
ET #.	Tag #	(ppb)
13	03013	10
15	03015	5
17	03017	5

#### QC DATA:


Standard: GEO'01

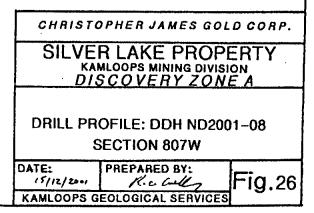
115

ECO-TECHYZABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/D1

5-Oct-01




)

i Turana Turana 1380m el. ...

#### DIAMOND DRILL HOLE NO. ND 2001-08

SAMPLE NO	FROM (m)	TO (ო)	LENGTH (m)	Au ppb	Cu ppm	Ag ppm	Mo ppm
03025	9.17	10.50	1.33		175	<0.2	<1
03026	28.12	29.53	1.41		40	<0.2	3.0
03027	37.10	38,90	1.80		204	<0.2	<1
03028	38.90	39,90	1.00	25	4024	<0.2	10.0
03029	40.78	41.78	1.00		491	<0.2	<1
03030	53.00	54.00			76	<0.2	2.0
03031	54.00	55.00	1.00	1	57	<0.2	5.0
03032	59.00	60.00	1.00		802	<0.2	5.0
03033	60.00	61,45	1.45		48	<0.2	7.0
03034	81.45	62,95			194	<0.2	. <1
03035	64.94	65.69			0.96%	1.8	2.0
03036	67.72	68,72			485	<0.2	4.0
03037	68.72	70.00			92	<0.2	<
03038	79.80	80.60			54	<0.2	<
03039	80.00	81.84			492	<0.2	<1
03040	81.84	82.30			156		
03041	89.52	90.52			251	<0.2	
03042	90.52	92.00			721	<0.2	<
03043	92.00	93.37			86	<0.2	2.0
03044	93.37	94,87			355	<0.2	<1
03045	96.37	97.37			176		1

1260m el. _



NOO

### SILVER LAKE PROPERTY NEW DISCOVERY GRID

DDH NO. ND 2001-0							PA	GE NO. 1
	_	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPI	
		SUB UNITS				FROM		
0-8-83 Cosing in	·	0-6.71 Sendy clay till with				PROM	10	NUMBER
verburden and	0.0	pebbles and cebbles		······································		·		
esthered bedrock !	•		· · · · · · · · · · · · · · · · · · ·			<u> </u>		
	?		· · · · · · · · · · · · · · · · · · ·					
	•			······································				
5.71-76.83 Augite	$\sim$	6.71-8.23 Anothe marking all shows the						·
esphyry Basatt with -		6.71-8.23 Augite pacphyry, chi phenecyd 8-23-12-32 Augite pacphyry, chi phenecyd	FIAL IMPRUAT CATS	med-show pervosive cont	sparse fine dimen. P.		·	
itervals of Augite - "	ZI.I		VELOCED 33 CA ALLEL	Variable (d+3 arrowin	Patchy fire dimen Py			
erdepor porphyry - weak	$\mathcal{N}$	traching maderate to strong magnetic	Minor Lematite Few irregular Cart veinte Staa letty tocol fat laith, nagtatite ho ca	coch, patety negretite	local cpy allociated	9.17	10.50	03025
. <del>ľ</del>	4	to an exact duit it is the	aill machabile bics	weak epidata	with earth @ 9.90			
o moderate epidate .	、 İ	12.32-22.50 Augite and augite -		Highly variable, pakky				
lteration, moderate	.//	foldspor parphyry. Angite to 4mm,	Literecally Low carbonal	w-s pervessive carb.	Space V. fice dimen			
raznatic [	$\left  \right $		MICALL CLEASE, 1-2 DET	Alter MA to CA Crah	R can uling			
	20	generative the part of the sector	leca Meny @ 30 1 Co CA	epid-te-wayan. Patri	amor with carb.			
	./	to strong magnetic		maga thite	veinlets & selvedges.			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7.1							······································
	1			·				· · ·
	-, I							
	4.						J	
	Ţ						·	·
ł	1							
	<i>.</i> .							
FAULT 2	1110	28-50-29-10 Foult with clay gauge and carbonate pering. 29-10-38-0 Brownster avoils person	cath veidlet shuk	cley.corb-chl.alt.	Fine dissen P. with day	19.14		
ter ter		Server Corberator UPINIAL	100/1CL 40-45TH,		<u> </u>		29:53	03026
r	<i>'</i>		40-45 fel. in matrix	chl.+ mgt matrix				
ŀ		patably related to fault ~~	·······	local strong magnetic				
		32.0-36.0 Ar above fault						
	1	angile & angete -faldspor prophysy	· · · · · · · · · · · · · · · · · · ·					
		360-41.60 Ar about, more		Chart chingthe march	Fin discus d			
		altered and copper sineralized.		Mora Chlasite, magnetic	the case of the constant	37.10	<u>38.90</u>	03027
	<u> </u>			carb altered, parts	Local clusters to lam.	38.90	<u>39.90</u>	0 20 2.8

KAMLOOPS GEOLOGICAL SERVICES LTD.

ت

LOGGED BY Reader for the

DATE: 30 September Root

### SILVER LAKE PROPERTY NEW DISCOVERY GRID

HNO. ND2001-							PA	GE NO. 2
		1THOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
MAIN UNITS	<u>dG</u> L	SUB UNITS				FROM	TO	NUMBER
	11	See By.1	beat 40-50 CA Carb, va isleta with cpy		Fine Coy anousted			
	f-7	41.60-51.10 Fairly uniform and		Patray with carb.	Space fin dinen	40.76	41.74	03029
	1/	mussive augite, ougite - faletspor	-local mod. density of	local strong with fire				
	1	parphyry, patery nuclecate negat	Line carts ye alet	ly weak, patchy	in August contact.			
	12		20-40 SA.					
	17			magnetic poletres	3			·
	1			program participation of the				
\$					-	······		
	1.57	51-10-55-00 Brecciated sugite purply	centimetre scole	morenetite large Chi	water with the set of			
	1.2	with anyouther, calorite, local foliation		W/m polich, carb.		\$3.00		
	1		local lam that make	weak epidate, mad	in late fractions.	54.00	54.00	0.3030
	F÷	55-00-58-28 Massine sugile perphys	20-45'CA @ 13.20-5840	permanice potety	Py, Cpy	34.00	55.00	03031
	1.	minar to care feldspor latter made		cart. Rore epidate	Sparse fine dimen.		_	
	1.1	magnetic	Sparse fine carbonate		R.			
	14	58-28-63.09 Mattled and altered.	Fairly ANALONS find		Fine-red. disem.	59.00		
-		with brechested intervale, Dark	carbonate veinlets	Cal, magnetite		60.00		03032
		through manshile. Alteration master			Py, minor fine Cay.	61-45	61.45	03033
	14	porphysitic textures More veinets	60.95.61.60 BR Ken Mare altered Sapaka		Mgt- 641. 30m	<u></u>	_ <b>42.95</b>	0.3034
	Ľ	63.07-76.83 Mixed avoite and	fault. Some fabrice 400		59.40-59.74 (75%)	(4.04		
	1	angite-feldepac pacpahyay Massi	Fairly marine with	Patrix managerate	@ 65-12 Cpy lich	67.72	<u>65-69</u>	03035
	1.	and fairly hameyeasens.	local icceptor con	Advertise cart label	carb vein lem wide	68.72	68.72 70:00	03036
	L,		verillets @ 65.12 lem	weak a nidely forest		10 ¥ <u>·</u> /2	10.00	03037
	7.		unde Counch carb	weak epidate lacat magnetite rich games	3012 with 8-6% fim			
	1		wein soice	with Py.	A 69 15 Carb bleks 5			
	1				leases with find by , Cay			
	-		·		0.5.9			
	1.							· ·
	-							
98-97-87 Augite	5	76-23-21-24 Brecisted and alteres		w-m pately epid.	Patery diver R.			^
dy Brecha with	· [2	angete perphyse. 2- loca syntar	and form. Several low	and carb. mad.	local specks Con			
inated Tuff !	14	frequento higite purphyon motinx	wataleh sana Hege TI 7-TH	manthe	79.90- 80.80 5-9%, patelos	79.80	80.80	03038

KAMLOOPS GEOLOGICAL SERVICES LTD.

**ل** 

LOGGED BY R. Wally

DATE: 30 Sept, 20stober, 2001.

### SILVER LAKE PROPERTY NEW DISCOVERY GRID

DDH NO. ND2001-			·				PAG	GE NO. 3
		LITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPLI	ING
MAIN UNITS	<b>s</b> GL	SUB UNITS				FROM	TO	NUMBER
Mixed sequence	2				80.9-81-84 1-3% 49.	80.80	81 84	0 3039
subargular 3->10 cm		\$1.84-92.30 Norrow bleached good with	9/3 Lein nuner Carte. 45"CA Leen mide	Selica- carbonate		31.84	82.50	
ingles porphyry will		\$2.30- \$6.42 maying to weaky precision	Fairly neverie few	w-m, patchy epidok	in and and	~ ~ ~ ~	01.20	0.3040
lk chi. Laminated / f	1 1	angite and augite - felds pac purphycy	carbonate veinteto.	contente focal	sparse fine dimen			
natrix Local fine		moderate magastic	clayey froctores @	clayey fractures.	e.	· · ·		
dissen. Py, Cry	75		84.27355 6001 557					
This may be a bx.	14	basalt as above with sections of	1* 	deskelle it want	Highly war able fin			·
llow unit. short	90 4	none magnetic laminated traff 5	Bre chated & crudely	und at la an al a vota	dimen by locally			·
clayey sections -		and carbonated triff. some of	50-55°CA	voroble carbonete -	27% . Local cuber.	89.52	10.52	03041
probable foults		this may to tectoric faliation		patchy permasive.		90.52	92.00	03042
	2			w.m. potry epidote	92.0-93.57 77 P.	92.00	_9337	03043
		hatter than hip lanication.	· · · · · · · · · · · · · · · · · · ·	······································	with corb. paters. Mgt	93-37	_ <u>94 37</u>	03074
	13	farinated going are more allow	······					
7.37-121.62 Augite	1	and pychi				9637	97:37	07045
-		Here and here the						
Porphyry Basalt	100.	this is a medium green, fairly		Patchy w-m epidet			٤	
	11		corbonate windet	and carbonate. Local				
		(flow?) wait becal carbonate	dessities	dark chile. No				
		anydales. The gound new is	· · · · · · · · · · · · · · · · · · ·	obviews magnetite				
		fine to medica grained, nederal		patches focal more				
	Ē,	magnetic.	· · · · · · · · · · · · · · · · · · ·	pervosina epidate				
		······································		in fg. patches with				
		/	}	sporre pheneroph.				
	~~			,				
			·····					
		/						
	- I-		·					
	1							
	•	<u>م</u>	· · · · · · · · · · · · · · · · · · ·					
		118.0-119.80 Subparallel h CA	higher dentes of		stragel poteting			
	12.01/	1 brittle fractures.	Corp. rai alete below 118		evidate below 1180			

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: K.c. Wally

DATE: October 2,2001.

### SILVER LAKE PROPERTY NEW DISCOVERY GRID

HNO. ND 200		THOLOGY						GE NO, 4
		THOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	
MAIN UNITS	GL	SUB UNITS				FROM	то	NUMBER
	المنسا	SUB UNITS 119.80-121.62 <u>Freetowed ongite perphysy</u>	abundant carb renk	1 moderate said - and	alient his dimen			
	- <del>۴ "</del>	ILINGLESH.	Strong clay foult	ale and all	a find a avera			
				Cray gouge Bernu	Misse fine dimen By in clay gauge			
							· · · · ·	- ··
				}				
					· · · · · · · · · · · · · · · · · · ·			
								·
					· · · · · · · · · · · · · · · · · · ·			
		·						l i i i i i i i i i i i i i i i i i i i
		·····						· · · · · · · · · · · · · · · · · · ·
								<b> </b>
· · · · · · · · · · · · · · · · · · ·			······································					İ
			· · · · ·				4	l
					· · · · · · · · · · · · · · · · · · ·			
		······································	·····		ł		•	
	1							1
								ł
					······			
	1	·					·	l
					······································			
		· · · · · · · · · · · · · · · · · · ·						1
	1							
	1					·	ł	<u> </u>
							l	1

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. c. helly

DATE October 7, 2001.

#### SAMPLE FROM то LENGTH Au Ċu Ag Мо NO (m) (m) ppb (m) ppm ppm mqq 175 03025 9.17 10.50 1.33 < 0.2 <1 03026 28.12 29.53 1.41 40 < 0.2 3.0 1.80 03027 37.10 38.90 204 <0.2 <1 03028 38.90 39.90 1.00 25 <0.2 4024 10.0 03029 40.76 41.76 1.00 491 < 0.2 <1 03030 53.00 54.00 1.00 76 < 0.2 2.0 03031 54.00 55.00 1.00 57 < 0.2 5.0 03032 59.00 60.00 1.00 602 < 0.2 5.0 03033 60.00 61.45 1.45 <0.2 7.0 48 03034 61.45 62.95 1.50 194 < 0.2 <1 03035 64.94 65.69 0.75 30 0.98% 2.0 1.8 03036 67.72 68.72 1.00 485 < 0.2 4.0 03037 68.72 70.00 1.28 92 < 0.2 1 03038 79.80 80.80 1.00 54 <0.2 <1 03039 80.00 81.84 1.84 492 < 0.2 <1 03040 81.84 82.30 0.46 156 0.6 1.0 03041 89.52 90.52 1.00 251 <0.2 <1 03042 90.52 92.00 721 1.48 < 0.2 <1 03043 1.37 92.00 93.37 86 < 0.2 2.0 03044 93.37 94.87 1.50 355 < 0.2 <1 03045 96.37 97.37 1.00 176 <0.2 1

#### DIAMOND DRILL HOLE NO. ND 2001-08

11-Oct-01

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2001-347

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

#### ATTENTION: RON WELLS

No. of samples received: 21 Sample type: Core Project #: ND2001-8 Shipment #: None Given Samples submitted by: Ron Wells

#### Values in ppm unless otherwise reported

Et #.	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Çu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr	<u>Ti %</u>	U	v	w	Y	Zn
1	03025	<0.2	1.62	5	40	<5	7.97	<1	49	305	175	5.94	<10	2.42	1037	<1	0.02	66	1630	76	<5	<20	202	0.11	<10	160	<10	13	74
2	03026	<0.2	2.12	<5	60	20	7.18	<1	49	275	40	6.18	<10	2.97	1010	3	0.03	71	1690	58	<5	<20	189	0.13	<10	135	<10	11	41
3	03027	<0.2	2.44	<5	165	<5	5.06	<1	46	375	204	5.87	<10	3.34	806	<1	0.04	93	1700	26	<5	<20	127	0.12	<10	133	<10	16	38
4	03028	<0.2	3.36	<5	170	<5	1,90	<1	64	375	4024	9.85	<10	4.53	1119	10	0.03	104	1560	26	<5	<20	55	0,17	<10	175	<10	<1	57
5	03029	<0.2	2.63	<5	175	<5	4.65	<1	48	316	491	6.64	<10	3.43	956	<1	0.04	74	1710	24	≺5	<20	143	0.17	<10	146	<10	7	37
6	03030	<0.2	4,14	<5	130	20	3.86	<1	71	541	76	9.81	<10	5.43	1441	2	0.02	154	1700	28	<5	-20	84	0.10	<10	165	<10	<1	72
7	03031	<0.2	3.20	~5	80	25	4.17	<1	59	411	57	8.53	<10	4.31	1248	5	0.03	120	1780	30	<5	<20	85	0.14	<10	156	<10	-1	60
8	03032	<0.2	2.51	<5	105	<5	3.46	<1	83	256	602	>10	<10	3.48	998	5	0.05	63	1830	24	<5	20	117	0.13	<10	186	<10	<1	52
9	03033	<0.2	2.12	<5	85	15	4.20	<1	43	178	48	7.15	<10	2.89	1035	7	0.06	41	1990	26	<5	<20	141	0.15	<10	187	<10	14	44
10	03034	<0.2	2.03	<5	85	10	5.76	<1	47	141	194	6.90	<10	2.58	1192	<1	0.04	33	2210	24	<5	<20	206	0.12	<10	184	20	16	49
11	03035	1.8	2.56	<5	75	<5	3.70	<1	130	188	9825	9.67	<10	3.25	870	2	0.05	50	1640	26	<5	40	119	0.15	<10	177	20	2	58
12	03036	<0.2	2.96	<5	105	<5	1.97	<1	102	207	485	>10	<10	3.81	931	4	0.03	56	1810	24	<5	40	60	0.11	<10	225	<10	<1	70
13	03037	<0.2	2.24	<5	190	20	3.64	<1	40	210	92	6.04	<10	2.60	755	<1	0.05	46	1860	20	<5	<20	131	0.10	<10	152	<10	16	35
14	03038	<0.2	2.24	<5	80	25	5.23	<1	100	190	54	6.56	<10	2.85	1037	<1	0.05	46	1920	20	<5	~20	241	0.11	<10	124	<10	10	38
15	0303 <del>9</del>	<0.2	2.45	<5	240	<5	4.74	<1	56	194	492	6.29	<10	3.06	1107	<1	0.05	46	1990	22	<5	<20	200	0.12	<10	170	<10	18	47
16	03040	0.6	0.61	<5	30	15	1.43	<1	40	162	156	5.04	<10	0.95	334	1	0.06	32	1600	250	<5	<20	41	0.10	<10	74	<10	18	25
17	03041	<0.2	2.76	<5	85	<5	2.22	<1	58	488	251	7.34	<10	4.40	805	<1	0.04	120	1820	24	<5	<20	72	0.12	<10	139	<10	5	48
18	03042	<0.2	2.96	<5	70	5	2.08	<1	84	547	721	8.67	<10	5.03	894	<1	0.03	156		30	<5	<20	65	0.07	<10	135	10	<1	52
19	03043	<0.2	2.44	<5	70	25	7.19	<1	55	221	86	8.21	<10	3.15	1150	2	0.05	57		24	<5	<20	208	0.10	<10	189	10	15	44
20	03044	<0.2	2.23	<5	75	-5	7.71	<1	50	222	355	7.00	<10	2.70	1094	<1		49		24	<5	<20	204	0.14	<10	175	10	21	36
21	03045	<0.2	1.88	<5	110	<5	8.04	<1	43	253	176	5.98	<10	2.31	1018	1	0.05	56		22	<5	<20	214	0.11	<10	129	<10	11	30

Page 1

CHRIS	TOPHER JAN	IES G	OLD CO	RP.						1	CP CE	RTIFIC	ATE O	F ANA	LYSIS	AK 20	01-347	7							ECO-TI		BORA	TORIES	S LTD.	
Et #.	Tag #		Ag	AI %	As	Ba	81	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Nī	Р	Pb	Sb	<u>Sn</u>	Sr	Ti %	ບ	v	w	Ŷ	Zn
	TA:																	. –				_								
Repea 1	t: 03025		0.2	1.86	5	40	5	8,18	<1	50	314	180	6.14	<10	2.45	1067	<1	0.02	70	1760	84	<5	<20	202	0.08	<10	159	<10	16	78
10	03034		<0.2	1.99	<5	85	15	5.72	<1	46	139	198	6.80		2.56		1	0.04	35		24	<5	20	201	0.09	<10	178	<10	15	47
Standi GEO'0			1.2	1.71	55	160	-	1.00			50	•••	• ••									_								
5200	•		1.2	1.71	55	100	5	1.60	<1	21	59	82	3.62	<10	0.91	689	<1	0.01	24	770	22	~5	<20	58	0.06	<10	66	<10	21	75

FP/kk df/349 XLS/01 cc: ron wells fax @ 372-1012

Churt

ECO-TECH (ABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



#### ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dattas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

#### CERTIFICATE OF ASSAY AK 2001-347

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

12-Oct-01

#### ATTENTION: RON WELLS

No. of samples received: 21 Sample type: Core Project #: ND2001-8 Shipment #: None Given Samples submitted by: Ron Wells

		Cu	
<u>ET #.</u>	Tag #	(%)	
11	03035	0.98	

QC DATA:

<i>Repeat:</i> R11	03035	0.98

Standard:

SUIA

0.96

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/01

Page 1



ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

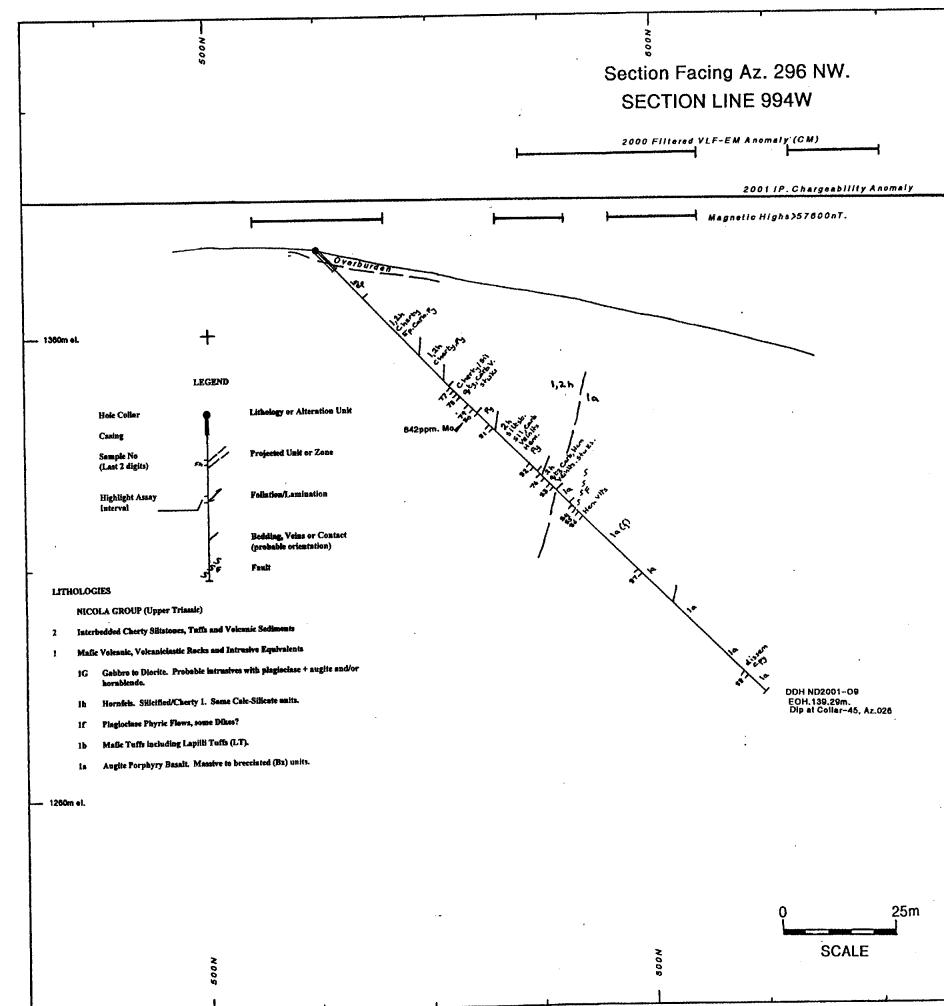
10041 Dallas Drive, Karnloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

#### CERTIFICATE OF ANALYSIS AK 2001-347

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

#### ATTENTION: RON WELLS

No. of samples received: 21 ' Sample type: Core **Project #: ND2001-8 Shipment #: None Given** Samples submitted by: Ron Wells


ET #.	Tag #	Au (ppb)	
4	03028	25	
11	03035	30	
<u>QC DA1</u> Repeat 4		25	
<i>Standar</i> GEO'01	rd:	120	

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T.

**B.C. Certified Assayer** 

XLS/01

17-Oct-01



and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s

1380m el. -DIAMOND DRILL HOLE NO. ND 2001-09 133 1260m el. . CHRISTOPHER JAMES GOLD CORP.

SILVER LAKE PROPERTY KAMLOOPS MINING DIVISION DISCOVERY GRID DRILL PROFILE: DDH ND2001-09 SECTION 994W DATE: IS/IZ/2001 PREPARED BY: IS/IZ/2001 PREPARED BY: IS/IZ/2001 Fig.28

## SILVER LAKE PROPERTY NEW DISCOVERY GRID

DDH NO. NO ROOL				_			PΔ	GE NO. 1
MAIN UNITS	_	THOLOGY	STRUCTURE	ALTERATION	MINERALIZATION			
	GL	SUB UNITS				FROM	SAMPL	
- 5-18 Casing in	0	0-3.66 sendy clay till some pahalos				TROM	<u></u>	NUMBER
verturden and	0	and complex			······			
nathered bedrock	ŝ							
18-8-20 Augite Popphyn		Medicin to dack green basaltie Massing to weak fractured Sparse to 10% augite plane with up to 3mm. 8.20-41:65 Skaleton cere due to truck	Madaraha denit					
whedral augite in fine		to weak fractured same to 10%	Lis and the fit	verset exidity, weak	Local 1-2% fine Py		<u> </u>	
wined ground mase, non		avoite sterrenste us to 3mm.	with a sidely of a	Carb while of winter	14 2-3mm clusters since			
agrette.	$\sim$	8.20-41:65 Skaletan core due to truck	and proper & dema	areas Non "magnetic	larger patches with epid		اقح	
- ··-	. / .	Bax + 7 for 9.500 Med and some fold						
120 - 1814 Augite and, or	1	Bart +2 C + Som Med. group graces feldige	COLGENARIE INIA LELO	weak cackwate and	Sparse Py	Ň.	<u> </u>	
eldspor Porphyry.	1	(angite) perphyry baselt with aligned feldspor lathe 1-tom in length.	Couded Wide and lake	epidota		°.	•	
514-86.56 Altered		in length.	supporally to ca.				,	
herty sequence -								
			telegidal fice epid.	Appears silicified.	A-4% fine dimen.	ų	2	
lorgfels. Probably	1	green, fine grained. Nen- magnetic cherty and exite / basalt shore averte	and corbonate winter	W/m pervasive + minte	and martine winlet	1		· · · ·
ictudes altered volcanies	Ľ	cherty andesite /basalt sparse augite	variable angles CA.	epidate weak carts.	Prote	<u> </u>	9	
off and charty sed. ² to.				'NON Magnetic. Stronger	@ 20m care stress	- č	- 00 -	
lumenous vocalets and				19-20-42	carb with 77% patches			····
vides presed fine dissem		21-24 In upper part play, fine grained and strong carb. Below light green, fine grained and epidate attered	Low winket density in	Remarine moderate	of flow grained Py.		- <u>ù</u>	
pyrite. Local vernlets.	Ý.	fire provined and poidate alterna	Cath gone increasing	Carte abour More	1-3% fore disen by		<del></del>	
			لتراطين وبالمنعو بالمناه				<u>_•</u> +	
	V	25-30 As above with epidole allertic balow, strager carbonate above, Non					2-	
	A ~			ألجليم ومعاجد طالكا فكالأك			<del>-</del>	
	T,	magnetic, silicense charty sections	and low angles ca.	lower chert mating	and the state Fry		— 🛍 🗌	
3+_	<u>.</u>	these fractured / braccinted			Walker dest/ kartien		<u> </u>	·
	21	20-35 distinctly Vifine ground,	Local banding /	weak call with	As above.	<u> </u>		
	1	light coloured and chesty/silicent	Commetion Soch M/S	chert. Some silica			<u> </u>	
	183	Non magnetic	fearburing fearing	is clearly alteration		—÷	<u> </u>	
	E.		widdle ander ca.	fraction related.				
	[]]	35-416 A. above, light greys and	Low- noderate		7			
	1	groces, fire grained, hard and		Fracture prevalet	viewe - d' free			
	2	cherty. Non nagratic	Generally at find	related alteration	annerworked and	<u> </u>		
	LŦ		Generally at high , anyles En	non magnetic	variated en elated by			

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. wills

DATE October 5, 2001

## SILVER LAKE PROPERTY NEW DISCOVERY GRID

NO. NO 200		TUOLOGY					PA	GE NO.
MATH LINETC		ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION	····	SAMPL	
MAIN UNITS	_49 GL	SUB UNITS				FROM		
						FROM	то	NUMB
	d'	41.60-47.07 light giess-gray to buff.	Alucan come din minte	Line and				
	1 M	est comely fine grained , hard , charty	Mumerous fine voiale	sugaly sile ceaus.	Patchy fire, local	42.00	43.00	03077
	1		and verte many at	Primary-secondary?	The a grained dunin			
	Ø.	with strudart fine wintets Non	augu augus ca Most	weak care outside of	Py Lacal P.	44.07	45.07	03078
	L.F.	magnetic	are glz-corb. Multi-	veraleta. Non magalti	veilles			
	- KX	47:09-49:38 Highly silicence Zone	Vein shekworks	Hughly silicens, little		47.01	49.58	03079
	£	with Qtg-Carb Veralet stockworks	multiphose. windle set	carb Grey vois gly bx.	diview Prite	48.58		
	72	49.83- 15.45 Medine to dark boun	Centimetre scale	Siliceous Han mont		48.20	49.98	03080
	- i	gray, extremely fire granied, bodde			Extremely fine			
	سب ا	calconic sillstone - cherty sittstone	45-70's A. Rottle		dissem. Py though			
			] /	contets local fine	Mare abundent	53.53	54:69	03081
		Forly usyform, non magnetic.	of fine clarb verset	hematite consiste	near bottom.			<u></u>
	Γ.	55.45 - 68.92 Medium aceras and	Vala Tica to sade					
				Patch W/m permin	Trace to 1%			
		green frae graned netrus conic-	bedded to-ISea	carbourte throughout	fine dimen P.			
	6 7	volc. silt stone . He angenous and	George Low density	Distinct from check	lacal winas	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		······································
•	1	carbonated. Non negretic		sequences obove a				
	4		Same sections have	below. Sections with				
	· / _		faith aburdant	hematite usidely				
	ΓL.		manan herakte	Fairly chile the				
		Average grain size increases	weighte wariable angle	the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s				·
	1-	balans 67.0 to fine 68.0-69.72	CA WALL A CO WALL	the user	66.0-67.5 2-4 4 fine	66.00	67.05	03082
	1	transitional charty sections/ongite Pop	CA. High ayer 68-68.97		to med grained			<b>-</b>
	ت ا	69.92 - 74.00 Holly - 1 cil			cherry Ry esp where			
	~1 <u>%</u>	68.92 - 74.80 Mottled, siliceous, fine grained cloth, sequence. Strong	Heterogeneous with	Mixed Siliceans and	serg o	67.19	70.47	03076
	反		ende bedding to	cathereas incal				
	Ēź	Veining and alkeration, arm-	0×. 75.85 ch Almen	a chlaste-henstite		72.24	73.74	03083
	-   <del>*</del>	mogneti	Placeto lacal Hemot	<u> </u>	······································			- 0300.3
		74.20-78.00 Rubbly augite		Med/strong pervoyie	have fine by			
	1/2	parphyry Eine - medium grained	Hematite initets at	Mad/strong perusing Corbonate, humans humatice veriles	7 3-			
	- L	for physitic at base light goon myst	the care verifies	Re neer to.	· · · · · · · · · · · · · · · · · · ·			
		18.00- Strong quarte-carbonate.	Rivners glaceare	Highly siliceous, mine	1-34 1 1			·
••••	1.//	Verning, chilontic host	weins 45-75'CA	Cather and a child shi	and concordent veinlet			

KAMLOOPS GEOLOGICAL SERVICES LTD.

DATE: Out 5 2001

## SILVER LAKE PROPERTY NEW DISCOVERY GRID

DH NO. NO 2001	_		·				PAC	GE NO. 3
	_	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
	GL	SUB UNITS		<b>.</b>		FROM	ТО	NUMBER
FAULT		Barthathon Fault / Cation also an	601.40-45:04 Wave - 60-70 CA off- Cart Willie Wards at air angles	Most pervasive corboat	extremely fine by	80.26	81.00	OBORS
	//	as at 78.00m.	to it at any ages	"Highly Estimous variable	Catch, dimenineted	81:00	82.60	030 # 6
	1	83-28-86-86 Medium green anduite-	Fine irreptor carbond	Fairly chlorite , note at	to cal concordant seams	<b>-</b>		
	12	non magseti.	agendant documents.	An mayselic	TI- 2° lo fine prote mainty in local chister and verifiers	·		
6.56-137:29	Ľ.	86:56 - 123:65 As general description	Mossive to weak	Fairly chloritic	Sparse fine			
gite Perphysy Basalt	1	horingeneous augite perphysy	brecciated bacal	weak to local mod.	dimeninated Py			
Indium greens. Augite 90_	·~~	with write feldapor latts,	naine con scale	potchy permesive	Cocol concentration			
enocrysts 1-5mm with	//	generally low density Massure	Commented zones	cortenate local	associated with			
cal feldspar lasts	12	fleve Stronger magachi sections	45-60 CA Low	epidolo poteter	catherate verns		<u> </u>	
fine graniel gound -	14		deasing of care.	(small upt Icm) Local dark		•	l	
recurated - rubbly	12		angles ca.	Mole monstric			l	<del>-</del>
roderate magnetic.	Ŀ	· · · · · · · · · · · · · · · · · · ·		patrice.				
	1.			/	19:67-100:47 cm.	99.67	100.47	03087
	11				Scale carb vains			
	ſ,				with 37 stringer			
	1/	1 - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take - Take			and wall mik Py		ļ	
	1.2					·		
	17							
110	à		110:19-111.29 distinit					·····
			laminaho' - flan		· · · · ·			
	74	conded anget parphyry 14-115.6	Heading 60 CA					
	1	Potchy weak - Moderate epidate	Gica Paliet by	·····	local 2-3% V. fine	·		
	$\left  \right\rangle$		progenestal textures		y in methy areas		<u>├</u>	······································
	-'	/	Y 0					
	12	·	· · · · · · · · · · · · · · · · · · ·					
	e	<u>.</u>					1	

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. c. Luells

## SILVER LAKE PROPERTY NEW DISCOVERY GRID

1 NO. ND 2001-							PAC	GE NO. 4
MAIN UNITS		THOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
MAIN UNITS He	GL	SUB UNITS				FROM	тоТ	NUMBER
	÷	See lg 3						
	C						·	
		123.65-12790 Dark group to	massive. low made	stranger many fits	Years of P:			
	1	black fairly crouded, strongly	dessity of cash some	stranger magnetite	dimension for all a			
	-	magnetic queite perphyse basalt	eaid realets made	Pakel what a wish	under and the off pro-			
		black fairly concled, strongly magazati angite perphysy basalt	high and CA.	save winter				· · · · · ·
	· •	127.90-135.79 Similar Crouded	high angle CA. Eastly massine		A Course P		·	
130.	~	angite popphycy to atom med.	(marked ant desid	Potchy w/m porrent	sparce ry			· · · · ·
	. '	allens. Varable weak - Stoppo	el l'a nort in inte	a the to the	LOCOR OUNEM. CAY			
	2	avgile persony to above med. greene, Variable week-strong magnetic, Epidate + carbonate	Vinishia anda aa	PPINON INALLE_	amounted with			
	1.	anygdoles	line to dia to day	magnetic	epid in anyodale.	132.30	133 30	0.3088
·	1	00	al cast second					
	K,	135.19-139.29 Meduin groons fairly counded angile posphyry with carb onyglot 139.29 =04. yph km Mod. megueti	Auguite 1	· · · ·				
	ó,	a waite and a site and a	THRESHUE, LOW	Weak periosive can	Sporse fine			
	0.	128.18 TOUL WAS KEN Mart Start	CRIALOE OLEASITIES.	Cocal epidote with	dinen Py.			
140_		CATE - CA. Spin Int Color. Manager		cart anygolales				
	l		·					
		······································						
				<u> </u>				
	1							
			· · · · · · · · · · · · · · · · · · ·					
	1							
	ļ	<u> </u>	· · · · · · · · · · · · · · · · · · ·					
							·	

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: K Greug

DATE: October 6, 2001.

# DIAMOND DRILL HOLE NO. ND 2001-09

SAMPLE	FROM	ТО	LENGTH	Au	Cu		Mo ppm
NO	(m)	(m)	(m)	ррь	ppm	ppm	
03077	42.00	43.00	1.00		72	<0.2	
03078	44.07	45.07	1.00	5	94	<0.2	
03079	47.09	48.58	1.49	10	54	<0.2	37
03080	48.58	49.98	1.40	65	51	0.40	
03081	53.53	54.69	1.16	5	157	<0.2	12
03082	66.00	67.05	1.05	5	33	<0.2	5
03076	69.19	70.67	1.48	5	84	<0.2	4
03083	72.24	73.74	1.50	5	42	<0.2	3
03084	79.26	80.26	1.00	25	41	<0.2	3
03085	80.26	81.00	0.74	70	60	1.80	7
03086	81.00	82.60	1.60	20	53	<0.2	4
03087	99.67	100.67	1.00	5	29	< 0.2	<1
03088	132.30			<5	39	<0.2	<1

۰.

11-Oct-01

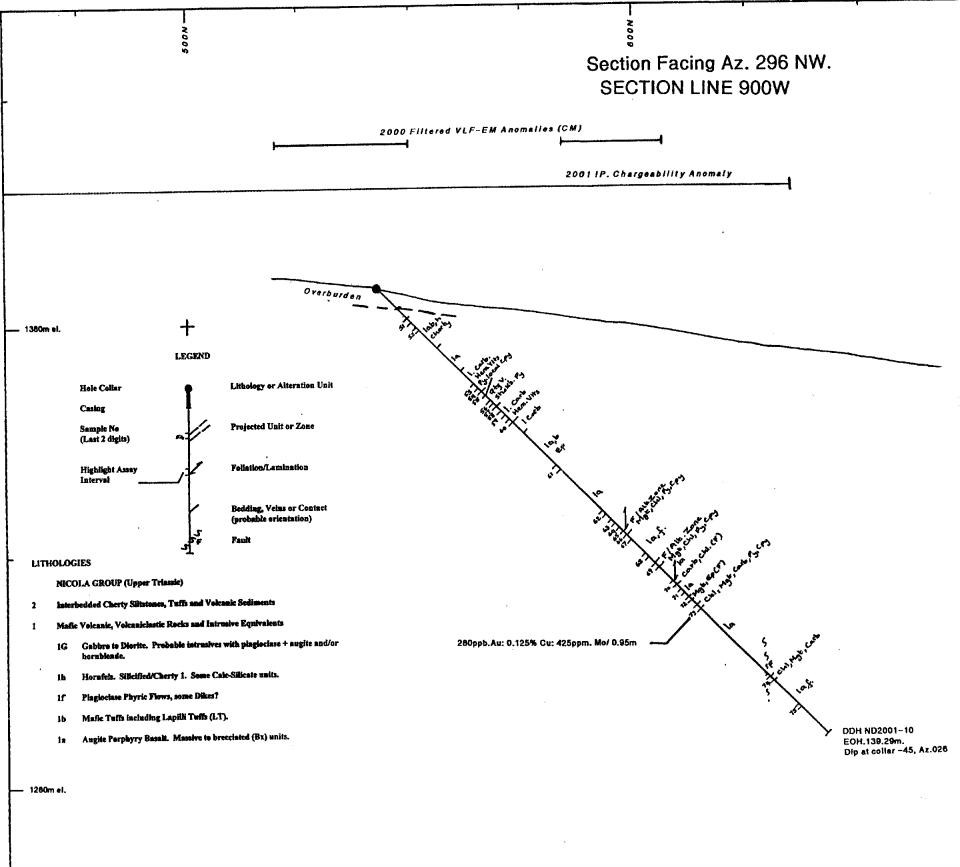
ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2001-348

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

#### ATTENTION: RON WELLS

No. of samples received: 13 Sample type: Core Project #: ND 2001-9 Shipment #: None Given Samples submitted by: Ron Wells


Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Şr	Ti %	U	V	W	Y	Zn
1	03076	5	<0.2	1.17	<5	70	10	7.52	<1	43	277	84	5.69	<10	4.69	1230	4	0.02	110	1350	16	<5	<20	313	0.01	<10	144	<10	4	38
2	03077	5	<0.2	0.62	<5	135	<5	4.40	<1	23	26	72	3.57	<10	2.30	733	7	0.03	12	1190	10	<5	20	177	<0.01	<10	42	<10	9	47
3	03078	5	<0.2	0.52	<5	80	15	5.32	<1	40	30	94	5.11	<10	2.69	1283	5	0.02	17	1690	8	<5	40	151	<0.01	<10	51	10	9	75
4	03079	10	<0.2	0.19	<5	30	10	5.59	<1	27	52	54	4.75	<10	2.74	844	37	0.03	26	1030	4	<5	20		<0.01	~10	50	<10	<1	44
5	03080	65	0.4	0.16	15	20	15	6.82	<1	31	89	51	5.09	<10	3.29	836	842	0.03	68	1070	56	<5	20		<0.01	<10	77	<10	-1	35
6	03081	5	<0.2	0.85	25	70	<5	3.73	<1	29	68	157	4.05	<10	1.75	605		0.04	24	1700	12	<5	-20	122	0.03	<10	139	<10	11	22
7	03082	5	<0.2	2.43	<5	65	15	8.10	<1	64	286	33	6.97	<10	6.51	1974		<0.01	100	1180	14	<5	-20	209	0.02	<10	138	<10	<1	98
8	03083	5	<0.2	1.16	<5	120	10	5.19	<1	30	232	42	4.97	<10	3.71	1651	Э	0.01	86	940	10	<5	<20	231	0.01	<10	119	<10	<1	86
9	03084	25	<0.2	1.15	<5	110	5	5.15	<1	31	234	41	5.00	<10	3.70	1651		0.01	86	990	12	<5	<20	224	0.03	<10	120	<10	2	89
10	03085	70	1.8	0.55	<5	40	10	>10	<1	47	128	60	5.20	<10	2.13	2516		< 0.01	81	980	6	<5	<20	194	0.01	<10	79	10	7	45
11	03086	20	<0.2		<5	55	10	7.94	<1	40	118	53	6.24	<10	3.30	1411	4		40	1550	18	<5	40	196	0.05	<10	185	10	1	55
12	03087	5	<0.2		<5	80	15	8.06	<1	40	253	29	5.74	<10	2.58	940	<1	0.03	51	1600	20	<5	<20	228	0.17	<10	137	10	15	32
13	03088	<5	<0.2	2.19	<5	125	20	3.62	<1	44	320	39	5.91	<10	3.09	691	<1	0.03	69	1790	20	<5	<20	133	0.18	<10	135	<10	18	26
QC_DA Resplit	-																													
1	03076	10	<0.2	1.17	<5	65	10	7.29	<1	42	281	79	5.59	<10	4.62	1204	3	0.03	107	1350	16	<5	<20	303	0.02	<10	143	<10	5	38
Repea	t <del>.</del>																													
1	03076	5	<0.2	1.15	<5	60	10	7.29	<1	42	272	81	5.56	<10	4.62	1202	4	0.02	107	1310	16	<5	<20	303	0.02	<10	143	<10	6	37
Standa GEO'0		-	1.2	1.76	70	165	~5	1.67	<1	22	62	83	3.78	<10	0.93	714	<1	0.01	24	850	22	5	<20	58	0.05	<10	67	<10	20	82

FP/kk df/349 XLS/01 cc: ron wells fax @ 372-1012

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



 $\begin{pmatrix} a' & b_1 \\ -a & b_1 \\ -a & b_2 \end{pmatrix}$ 

25m

SCALE

1380m el. ...

DIAMOND DRILL HOLE NO. ND 2001-10

SAMPLE	FROM	TO (m)	LENGTH (m)	Au ppb	Cu opm	Ag ppm	Mo
NO	(m)	1				1.7	
03051	9.14	12.30	0.60	80	139		60
03052	11.70			<5		<0.2	
03053	29.87	30.67		<5		<0.2	
03054	30.67	31.87	1.00	<5		<0.2	Ē
03055	31.87	33.24	1.37			<0.2	18
03058	34.25		1.22	5	And the owner of the owner of the owner.		
03057	35.47	38.47	1.00	<5	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec	<0.2	
03058	36.47	38.00	The second second second second second second second second second second second second second second second s		the second second second second second second second second second second second second second second second se	<0.2	
03059	38.00	39.10				<0.2	
03060	40.60	41.96	1.36			<0.2	
03061	56.10	58.68	1.58	15		<0.2	
03062	70.00	71.00	1.00	<5			
03063	72.87	73.87	1.00	<5	344	<0.2	
03064	73.87	75.29	1.42	<5	26	· <0.2	<1
03065	75.29	78.58	1.27	5	382	<0.2	<
03066	78.56	77.68	1.32	30	797	<0.2	
03067	77.88	79.30	1.42	<5	159	<0.2	
03068	83.48	84.48	1.00	5	878	<0.2	
03069	86.73		And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	5	1659	0.60	<
03070	92.25			Sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector sector se		Contraction of the local division of the loc	<
03071	94,95			<5		<0.2	<
	97.05			L		<0.2	
03072				And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se			
03073	99.95						
03074	122.05						
03075	130.58	131.60	1.04	5	23	<0.2	<u> </u>

1260m el. _ CHRISTOPHER JAMES GOLD CORP. SILVER LAKE PROPERTY KAMLOOPS MINING DIVISION DISCOVERY ZONE A DRILL PROFILE: DDH ND2001-10 SECTION 900W DATE: 15 /12/2001 PREPARED BY: R. c. wally Fig.27 KAMLOOPS GEOLOGICAL SERVICES

## SILVER LAKE PROPERTY NEW DISCOVERY GRID

DDH NO. ND 2001-	and the second division of	ITHOLOGY					PA	GE NO. 7
MAIN UNITS	IGL	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
PIAN UNITS	GL	SUB UNITS				FROM	TO	NUMBER
	-	0-6.10 Sandy clay till. Miner						HOMBER
-9.14 Casing in	<b>?</b> ]	couples and petitles						
verburden and							+	·
cothered Bedrock	0.			·				
	متم	6.10-9.14 Med. green to grey, Non-	story bakes.	light all and all all	Mine la l'			
10-18-32 Mixed	1	magnetic, fine granted checky		fight coloured, cherty -Silicant sections, Frequents intertended	Minor fire direm			
ugite Porphyry Basalt		siltspre, anderite	Pablith appears by.	with nore chloritic vole	- yate			
ith chlaritic Andesite?"-	41		and the second					
rochired cherty		9:14-15:70 As above with reconsistable augice perphase sections claused	PREVER PRESS	Variable weak - strang silvefied? Pakky	/	9.14	10.14	03051
ections.	1	the broken chesty sections now be		carbonale. Local	associated with by			
	2		-fel subparallel to	Carb-hematile vering	9/3 @ 11.98. Patch.	11:70	12.30	03052
	152	alteration ( no mographite remains)	963 10 @ 746 10cm	Canal and mar of the	fine dimen ly			
	5	15.70-18.32 Bx augil porphyny. mad	963 Lein Co'ca Boten	weak esidate.	accorde 124			
	14	12-10-1832 Bx augue porphyn, mad gruen as about, sen myneter. Any ier fragmento 5 to 200 cm dark 640 matri Weak preciated to 21.0	Volconicloshi pohlik	weak cash and cold	Specie has dinen			
	1.	fragments 5 to 710 cm dark the matri	weighter, langes winds	Nonnecretic chloriti	R.			
8.32-25.70 Augite 12	1종	weak breciated to 210	anyce ca;	Pater perusitie	Sparse fine			
lorphyny. Mossive lo 🗧	17.	below fairly massive, uniform	low carb veialet	weak weal med.	dimen that a sh	****		
ublig. Medium gray to	12		density mainly 35-sill	epidate and soll.	disseminated sate			
reen. Uniform. Non	ľ¢.		Epidate traching	local pink hemotite				
to weak magnetic	4		Varialety voriotte ante	with cost would be				
	<b></b>	25.70-32.13 Med. gracas, fine	CA.	trank to also	Div 111		·	
5.70-41.96 Anderite-	1.	grained and with bosalt wear to	Variate back when		Dissessinated and			
asalt. Fine gromed	17	moderate practiced with marrow benetite verilleto. This may be a full wait.	WK bereisted	ALLER LE COIDE	fraction controlled			
1+53/6/y a tuff 31	X	he makite we islets. This may be	Averens Acredite	Madecate. chi niti	fice by local spece			
Ilteration masks	14	a huff whit	1-3 cash veins per to	with with a product	of Gogely is	29.97	30.17	02053
textures	Ľ				associated with edge	30.87	31.97	03054
<b>,</b> ,	4	32.13-33.24 As about	high & low angles (A.	- Chaughaut	1 stronge costs chil 12213- 033.24 little carl	31.87	33.24	03055
grzvein	Ŵ	13.14-36.80 Strong vera zone. Kost rocks of above. Nen Brogebi		Pervasive silica back ground ablants	little cast			
stuk.	ľX	locally briciated - multi mense			latch, fine diver	39.25	35.47	03056
	P	four -vern zone.	angles CA Many at	fine beautite with	ty generally 25%	35.47	34.47	0 3057
	1.1	36 80-4196 As about 25.70 Carbonate & bematile usined	34.58 34.68 Aly V. 350	made note service	Local patches of	34.47	32.00	
	1X.	anderite -basalt	Fine carb and hem.		fie dinen P.	38.00	39.10	-0.3058
			angles ch		generally spane			<u>03057</u>

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY Re. Loelig

DATE: Petaber 3,3001.

## SILVER LAKE PROPERTY NEW DISCOVERY GRID

DDH NO. ND2001-10	LITHOLOGY					PA	GE NO. 2
MAIN UNITS "GL			ALTERATION	MINERALIZATION		SAMPL	ING
	SUB UNITS				FROM	TO	NUMBER
*	See Mg 1.				40.60		
11.96-44.85 Augite	median grean fine grained with low	local crude fabrics	Fairly chlority Mis	Mines Have & out		41.96	03060
Orphyry Basalt 1	deasity of exhadral angite plans coust	at variable and a ca	Actives Carbonate Sum	Minor Hem. + carb verseto. custors of 19-by	<u> </u>		
	- often chlacitized. Non oragrapie	four density of carts	seidote .	Spare to 1.2%			
4:15-56.68 Altered	As general description Alteration		Paten was epidate	Sporte to rer			
ndesite-Basalt. Tuff _ )	and widespread versing marks	Moderate winter	M/s contractor End	fine dans m. ry mercy	<u> </u>		
meccia? Patchy pervasive	textures. Much of this section	density some which the	chlaster loss tons	with epid. By selvedges	— <u> </u>		
	appeals prescripted possibly	clearity some voice to	in the			· · · · ·	
textures S	presenting a more muchly flow	first hemotite Many		veraleta			
N.	unit - autobraccia	of the weiskto Quartie	····				
5	<	cA.					···
, 				550-56-68 1-24 dise			
9	- 56.68-60 60 Forder counted avail	Massin to cash	10 1	Py	55.10	56.68	03061
16.68-139.27 Augite	- 56-68-60.60 Fairly counted angle	Cuble En inn it	Madellale permasure	- Sparse fine dimen			
A	( perphyse forally weak precisited ( cutting) fow foldspoor latter losal	Forth in white the	Carb. lecal small	Py.	·		
nadium grey-green.	- Chi xenelites to Ica. W/m. magnetic						
	60.60-72.67 Faich willow marin	ala with a first in a	chi augite y xenolites			—·	
Augula phonocrysts in "	60.60-72.67 Fairly waiform massive	and have like to give	aya permane carts.				
fine grained groundmass	to weak precuated angite and				·····		
iniform moderate magnetic	- angite foldspot porphyse, Similar	Lang fine chante	backgound churite.				
	- to above with 1-2000 feldepar	WE/A 105					
· · · · · · · · · · · · · · · · · · ·	lattes variable predominentry	+					
-	. madecate magastic Same couds						
¹⁰ -	- augite parating sections	+	· · · · · · · · · · · · · · · · · · ·		70.00	71.00	03067
-		<del> </del>	······································		72.97	73.87	03063
			·		73.87	75.29	03064
	72.67-76.56 Connoled angite	Local cars vering	Variable moderate	Stronger Most dura hale			
24	possbyry, variably altered mixed	20-40'ch Some high	carb acar mal.	vaciable 1-4% fine	75.29	76.56	03065
Frecture - Alteration	with angele - feld spor paratury when no	I. C. H. G. H. C. M.	Patchy dk chlo ite -	dinen Py local car	76.56	77.88	03066
ZONE	14:56-71:82 Calorite - carb - Mat Alterate Fracture zone with dissern U sulfides.	Variable deliation Asra Carat corte ven stork	Mat + Chi + patchy trong cart. chio at I magnetile	Mainly fine lacal come descard. By, fine Coy 1-2			
	a syste perstyne.		Chie Alle I Magnetia	with the	77.88	79.30	0 70 67
		Usintety.	dereasing days, M. Carb,	Migor of the olymen by			

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: K Wells

DATE: October 4,2001

## SILVER LAKE PROPERTY NEW DISCOVERY GRID

NO. NO 2001-	_	ITHOLOGY					PA	GE NO. 🔅
MAIN UNITS	GL	SUB UNITS	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	
	. /	79.40-86:73 Massive to cubbly augite	Local 20-40'CA Cart	Marthan I and i		FROM	то	NUMBE
	1	and augite - feldspar perphysics.	variateto sono unto la	Mad pervesive carb	generally sparse			
	1	Moderate magnetic Patchy general		patring chiente	fine drimem. P. 183.42- \$4.25 5-74. fine			
	[7]	weak alteration	\$3:74, Mgt fal. 40'ca.	real sections	chinsen by minor Coy with Mat.	<u></u>	84.48	03069
Fracture -	7/	\$6-73-88-00 chlorite + Magnetite alteration Franklure from with depen sulfides	Variably Aliated 400	mainly chlorite local	3-10% fine dimen			
Alteration Zone	12.	88:0-92:25 Marine with vague angit			By head can with ch	86.75	88.00	03067
<b>*</b> 0_	1	polabycy textures. M/s magazhi	of line cart with	Patchy variable	Miner fice /v. fice			
	"/'		some with chante	Mad permine carb	olisian Ry sparse co			
	1/2	92.25-93.30 Foliated Carb-Chl. Zone	strong filther 451	Strong and patricy Chi+N	t. 2 h 75 % fine Py	92.25	98.30	03070
	1	93.20-97.05 Mad to dk. green - black	how to mederate	11/2 matrix land in the	ا `` م `'م 'مم	94.95	95.95	03071
	<u>ا</u> بک	White uniable marching	weinter variable angles	wis chiente, Myt, corb	P. mare with Mat.			
	133	6/1 variable negatic 97.05-98.20 May after epid. altered 98.20-99.95 conded avoit prophes.	100	And parasuis Mgt	@95.50 local black (a	97:05	98.20	03072
104	57	94.20-99.95 conded argits purphysy	mapine Bur winkt	Percha W/M each	Fraces of V fine dave			
		199.95-101.50 strangly altered amile Port	weilets and altershi	general and the	Sparse fine dosen P	<u>, 99.95</u>	101.50	<u>03073</u>
	۳		30ALS 50-70'CA Mainly	1 A 2 4. 26. A. A. L. P. 24. M 1	dissen by lacor con			·
		101-50-119.60 Massive, weak altered	Cate vernets	1 October 1 1 1	Generally brace		·	
		Bugile - Beldsport perphysica. Narrows	massive to weak	I dead with a flam to	amounts of dissem			
	1	sections with care and/or excidents	core winters		Py. lacressing to			
		<i>JJJ</i>		and negretite	J-27 with higt.			
<i>!!</i> *_			······	······································				·
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
				<u> </u>	··			
	1							
E4 -	L_							
		- 119.60-120.20 Fault-clay gauge	fault carlants 40°CM	churite-clay.				

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: Riss well

## SILVER LAKE PROPERTY NEW DISCOVERY GRID

NO. NO 2001		ITHOLOGY	CTRUCTURE	· · · · · · · · · · · · · · · · · · ·			PAG	GE NO. 4
MAIN UNITS	GL	SUB UNITS	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
	$\mathbf{N}$	As above fault see Pg 3				FROM	то	NUMBE
4 (terahin Zone		<u> </u>	122.05- 123.00 fot. 45'ch	Chi+ carb+ Mgt atterd	·	122.05	/23.00	03074
	ŀ,	porphycy Alacrow altered section	·					
		Variable W/m magnetic. deus than above fault					······	·····
130				130-56-131-60 Variable	2- 5 % clusters and	130.56	131.60	03075
				w/sepid.controll.	aggregates of fine			- 3075
	1				ßy			····
	Ì,							
140		-139:23 E.OH.						

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: Reconcepted

DATE October 4, 2001.

11-Oct-01

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2001-349

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

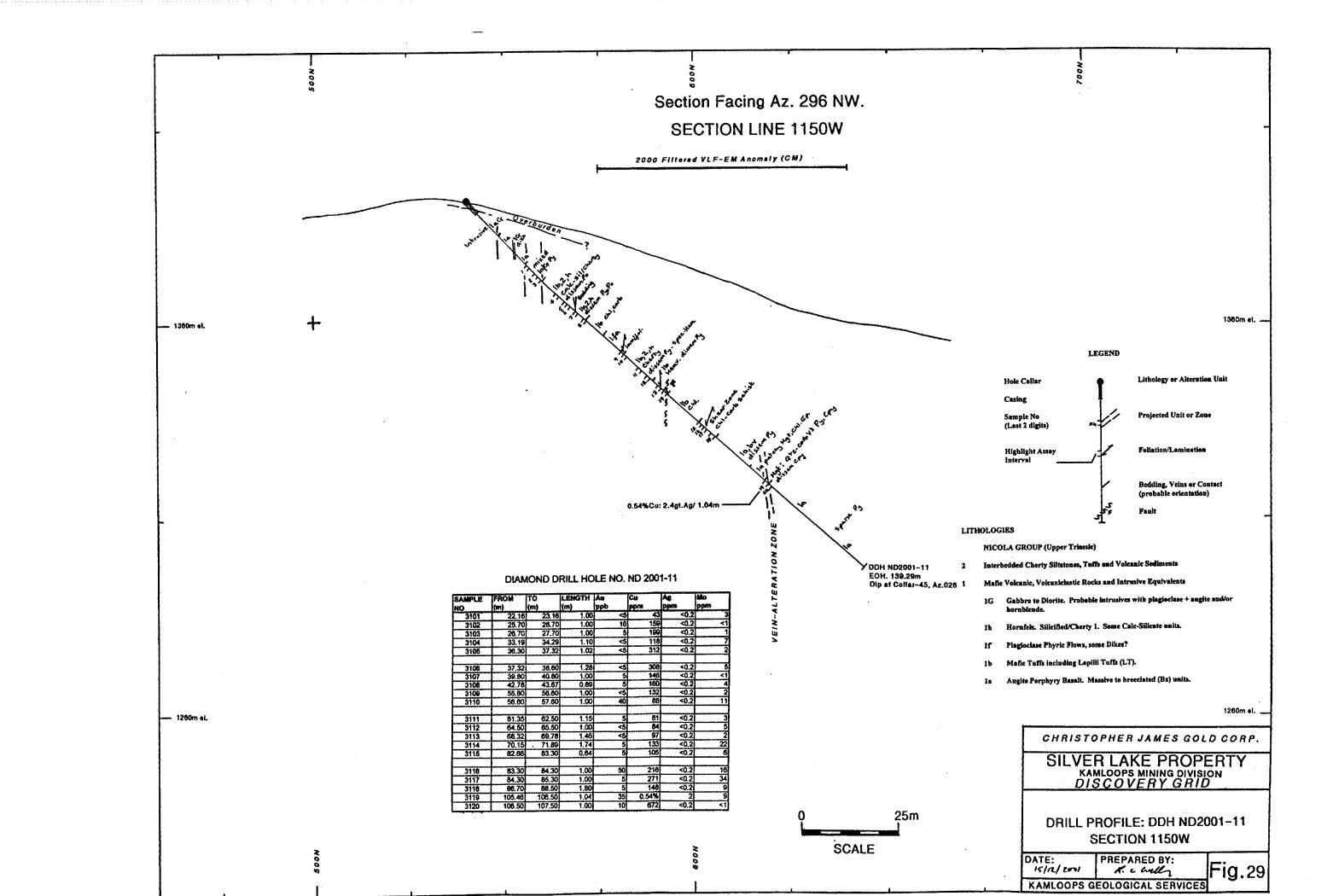
ATTENTION: RON WELLS

No. of samples received:25 Sample type: Core Project #: ND 2001-10 Shipment #: None Given Samples submitted by: Ron Wells

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	Р	Pb	8 L	<b>P</b> -	<b>e</b> -	<b>~</b>					
1	03051	100	<0.2	2.97	<5	65	10	9.56	<1	40	374	99			4.30							Sb	Sn		<u> </u>	<u> </u>	<u> </u>	<u></u> W	<u>Y</u>	Zn
2	03052	80	<0.2	4.42	<5	60	10		<1	49	419	139		<10				<0.01	99	1030	30	<5	<20			<10	174	<10	<1	32
3	03053	<5	<0.2	2.34	<5	80	<5	5.97	<1	32	75	111	6.30	<10				< 0.01	109	1210	24	<5	<20	276	0.03	<10	234	10	<1	46
4	03054	<5	<0.2	2.67	5	65	<5	4.68	<1	41	107	151	7.49		3.49			0.04	17	1420	6	<5	<20	338	0.07	<10	199	<del>&lt;</del> 10	10	26
5	03055	<5	<0.2	2.86	<5	50	-5	2.84	<1	42	103	275		<10		973		0.03	29	1490	8	<5	<20	2 <del>9</del> 2	0.04	<10	226	<10	4	31
							-		-	•=	100	2/0	0.00	~10	0.04	813	o	0.02	38	1770	10	<5	<20	126	0.02	<10	211	<10	4	40
6	03056	5	<0.2	1.29	<5	55	<5	6.96	<1	37	267	153	5.09	c10	4.52	1204	40	0.04		4456		_								
7	03057	<5	<0.2	1.23	<5	70	<5	6.02	<1	32	98	191	5.42	<10			16	0.01	95	1100	6	<5	<20	334	0.03	<10	142	<10	7	44
8	03058	<5	<0.2	2.49	<5	115	<5		<1	43	173	197	5.95	<10			4	0.01	39	1290	6	<5	<20	322	0.04	<10	182	10	16	49
9	03059	<5	<0.2	2.58	<5	75	5		<1	47	66	158	6.63	<10			4	0.02	46	1480	8	<5	<20	219	0.06	<10	198	<10	12	55
10	03060	5	<0.2	2.62	5	60	<5	8.27	<1	43	103	227	6.27	<10			1	0.03	25	1520	10	<5	20	184	0.12	<10	229	<10	16	54
					•		-	<b>.</b>		40	103	221	0.27	510	3.39	1714	4	0.02	35	1390	12	<5	<20	330	0.08	<10	208	<10	9	51
11	03061	15	<0.2	3.55	<5	40	10	5.02	<1	47	262	196	7.11	~10	4 62	4000														
12	03062	<5	<0.2	2.32	<5	95	20		<1	47	217	120		<10	4.53 2.97		8	0.01	74		14	<5	<20	138	0.08	<10	217	<10	7	79
13	03063	<5	<0.2	2.32	<5	50		7.62	<1	48	216	344	6.82	<10		1042	<1	0.05	52	1690	12	<5	-20	136	0.22	<10	215	<10	30	32
14	03064	<5	<0.2	2.48	<5	50	20		<1	46	218	26		. –			<1	0.05	53	1640	14	<5	<20	152	0.19	<10	221	10	23	32
15	03065	<5	<0.2	2.71	<5	130		7.01	<1	50	213	382		<10			<1	0.04	52	1670	14	<5	<20	148	0.17	<10	221	<10	20	41
					-			1.01		50	413	302	6.92	<10	3.36	1390	<1	0.06	54	1700	12	<5	<20	178	0.18	<10	226	<10	23	39
16	03066	30	<0.2	1.56	5	50	<5	5.66	<1	105	207	797	>10	-40		~~~	_													
17	03067	<5	<0.2	2.52	<5	100	10	7.77	<1	50	225	159		<10	2.31	985		0.04	50	1280	26	<5	<20	135	0.12	<10	142	10	<1	96
18	03068	5		2.51	<5	70	<5	3.38	<1	93	225			<10		1217	<1	0.04	52	1630	14	<5	<20	202	0.20	<10	203	<10	17	33
19	03069	5	0.6	2.67	<5	50	-5	1.71	-	78		678		<10		914	2	0.03		1700	18	<5	<20	102	0.12	<10	216	<10	6	51
20	03070	5	<0.2	2.06	<5	50	15	>10	<1		331	1659		<10		959	<1	0.04		1630	60	<5	~20	53	0.15	<10	189	<10	3	61
			2.2		-0	00	10	- 10	-1	46	221	169	6.64	<10	3.06	1388	<1	0.03	52	1550	20	<5	<20	195	0.18	<10	185	<10	22	36
																						-			0.10	~10	100	~10	22	30

CHRISTOPHER JAMES GOLD CORP.


ICP CERTIFICATE OF ANALYSIS AK 2001-349

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	Au(ppb)	Ag	AI %	Ав	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	РЬ	Sb	Sn	Sr	Ti %	IJ	v	w	Y	Zn
21	03071	<5	<0.2	2.34	<5	60	<5	4.24	<1	51	298	872	6.84	<10	3.57	963	<1	0.04	74	1580	26	<5	<20	113	0.15	<10	144	10	18	52
22	03072	<5	<0.2	2.51	<5	125	15	2.14	<1	69	228	247	9.54	<10	3.31	801	<1	0.03	51	1630	16	<5	<20	75	0.15	<10	161	10	-10 <1	-⇒∠ 40
23	03073	<5	<0.2	2.55	<5	150	<5	2.94	<1	72	224	375	>10	<10	3.29	846	- 1	0.04	48	1630	14	~5	~20	90					•	•
24	03074	280	<0.2	2.04	10	45	<5	5.12	<1	60	173	1250		<10		1175	425	0.04	53	1630	42	-			0.16	<10	179	<10	<1	38
25	03075	5	<0.2	1.70	<5	65	25	7.42	<1	38	208	23		<10	2.00	901	423	0.04				<5	40	134	0.14	<10	164	20	<1	57
		•	•		-					50	200	20	0.40	510	2.00	901	~1	0.05	40	1710	16	<5	<20	368	0.18	<10	137	<10	17	24
QC DA Resplit 1		100	<0.2	3.33	<5	60	10	>10	<1	46	441	100	6.17	<10	4.72	1569	210	<0.01	119	1160	50	<5	<20	375	0.03	<10	192	<b>&lt;10</b>	<1	43
Repeat	-	J																												
1 10	03051 03060	100	<0.2		<5	70	10		<1	39	350	97	5.13	<10	3.86			<0.01	91	1080	36	<5	<20	373	0.03	<10	158	<10	<1	31
10	03000	Ş	<0.2	2.64	<5	60	10	8.50	<1	45	105	226	6.44	<10	3.40	1761	3	0.02	36	1500	18	<5	<20	332	0.09	<10	210	10	11	55
Standa GEO'01		\$10	1.2	1.71	55	160	5	1.60	-1	24	50		<b>.</b>					• • •												
0000	1	10	1.4	1.71	99	100	5	1.00	<1	21	59	82	3.62	<10	0.91	689	<1	0.01	24	770	22	<5	<20	58	0.06	<10	66	~10	21	75

FP/kk df/349 XLS/01 cc: ron wells fax @ 372-1012 CO-TECHT ABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



- Contraction

## SILVER LAKE PROPERTY NEW DISCOVERY GRID

	Ī	ITHOLOGY					PA	GE NO.
MAIN UNITS	GL	SUB UNITS	STRUCTURE	ALTERATION	MINERALIZATION		SAMP	
						FROM	TO	NUMBER
- 3.66 Casing in	0	0-2.50 Soudy Querburden-Till				11.011		NOMDER
	hż							
usathered Bedrock.		Uniform medium to coase grained	Sew, fire epidate,	Permine and				
50-11-52 Crowded		with could augite phenecrysty	chlarite and carb		V. Sparse in Gides			
lugite Porphyry. Felsic	1/	upto 6 mm in a white peloie		The otto of the	miller V. Line dimen	·		
mudmass, epidote		gowed mass Gabbon to diarite,	Veinletz variatio	7 9 mund faid.	<u>Ry</u>			
	1	miner amounts of quart-	angles CA. Local	Epocie Corbonate	<u> </u>			
abbroic appearance 10.	7/	muser amounto of questy	1-2cm 45°CA banda	mainly in inialets.				
robably a Dike	+ 9		Lantar - Carb . Lantar	tocal cm. scale	,			
152-BLAE Dack and		E the second he	245 CA, Irregular	Silica pote has @ 8.15m			····	
1.52-21.45 Dark green	×7.	Fairly uniform 10-15% augite	fam desets of the	wards and at	2		·	
ugite Porphyry Bosalt	17	Attaccoust 2-4mm in for dark ground ma	epidate and tarb	enidate. V. weak mit	As about any		···	
Magnetic throughout.	/·.	afor megaetri throughout.	Veinletz, some	mainly in verilation	culture sporse			
	14	Falsic augite Perphyse Dike 17.06-17. 40° contact. Counded. Dock augite porphyse a above dib	& larger to lon mo	latais dike wash				
Dike	Ŧ,	40 contact. Conded.	30-4. CA.	"Epidote altered				
7-		Dock angite porphyzy as above dib		Veraleto				
20_	ſ ¥	21.17-21.45 strong chlority carts contact	lation wind					
		This unit may be an earlier dike ?	Revenue	parcely pervosive	Local concentration			
2145-27.92 Mixed Zone	1	Section of counter and a	A AL	The ard carb and	of fine Ry on lense	22.16	23.16	03101
Telsic augite porphyny		Sections of conded angite parply						
and dask was it.	ï/,	The participation ( new megaletic ) as	and marchela 20115'14	week epidate Non	chlorite (contre me)			
and dark green fine		· · · · · · · · · · · · · · · · · · ·		magretic	locales ush 87 P.	26.2		
sined variably assimilated country rock	11	dark green fg. coustry rock also	bando 35-40°CA		Ozeles uph 87 Py Ozer 22 M fine dissen By mintrasibe	25.70	26.70	02/42
Zes and	"				To 24 1	26.70	<u>-27·70</u>	03103
17.82-31.73 Strong Carb. 80	1	med to dark greens uniform and	Local chloritic	Apricasing changes call	Te-2% fine demen			
time grained, tuff? -"	1.	The stand of the grained locally	Wieten 4 CA	Acruasive strong con Chlorite me epidate	Fy Cacol Po :			
•	-7-	The reason of the corbe	rest nomine fors/an	lecol marcon	acce fine cpy			
31.73-43.67 Mixed	1	31.73-29.70 hight green -grey,	dansity of live carb	hematite with coror	@ 26.70-27.70 veralets			
Icanic dominated sads.	17.	very fine grained checky sillitane	dansity of fine carb	Patric unte		33.19	34.27	63104
indominantly v. fine to	1		Bedded 30-40 CA	Polch, w/m	Po, Py largely with			
ing grained grey to	1/	centrastre scale bodding bacol	autored desit	pervasive cost-epid	epidate, Between			·
icen churty silkshine	1	gilty biff bads	could + a sid to a	& down hole .	31.23-42.00 Javeral Cale-Sill cate 29.00 with Epid-cart- tak chib cite	34.80	37:32	03/05
sillatore, hope, 4. beddige.		/	cost = epid in alto		ead-carb- the child	37.32	38.6	-03106

LOGGED BY:

. . . . .

DATE: October 7,2001

### SILVER LAKE PROPERTY NEW DISCOVERY GRID

DH NO. ND 2001-							PAC	GE NO. 2
	_	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	
MAIN UNITS	GL	SUB UNITS	· · · · · · · · · · · · · · · · · · ·			FROM	то Т	NUMBER
	1	39.70-42.78 stud green fire grained strangly corbonated make hill be to cat any the state to ill of any a prophy 42.78-43.67 statted light gray charty y	Vaciable Soliabian bedding 50-170th core Verniss to vernde, bedged, brittle fractures core scames.	Chlasitet M/s pervasive cash	Fine disea. Py	39.10	40.80	03/07
13.67-49.25 Intermediate		4248-42.67 sufficient light gray every	Massible to vicude bedded, brittle fracture carte variets Madecate daavit, al	li antre sub tombe	lacal assiegates 2-5% fine of mem by tenzy assingates vertebe Lacal small		<u>47.67</u>	03108
· Mafie Tyff. Non	$\mathcal{S}$	fine gramed may be a flow but no	fine epidote and	pervasive carb, parthy	agangates of fine Po			
nometric	4	abrien contacts	COLO DE LA LA LA LA LA LA LA LA LA LA LA LA LA	Collecte marching intro				III
49.25-56.60 Fine B- Feldspot- Augite Porphys		49.33-54.56 Aledian to dark grey,	massive arith low	related chloritic, Chloritic, patchy	sparse sulfides			
Bosalt . Parsible flow.	],	light coloured folds par lathe in	carb weinlets , local	Mys pervasive carb				
		fire grained grandmass. Varek/m may	Rematile stringers Banding and laminab		2-54 dia diam	<b>FF</b> (1)	51.14	
5.60-66.31 Cherty	//	Scale barded and laminated games . Hard and chesty . Generally fine.	25-60 CAP SED - 56-12 Milly 93- Fatting band.	Carte	2-54 fine demen By assoc. with silica		56.60	03/07
iltstone-tuff. Fine to	1	grained, siliceous with little cart.	Brittle fractured	silicons thoughout	2-5% fine dimen			
fine grained. Grey o brownish grey	1	java	Lart veinlets. local	miller Lord Pink-	and fracture by	61-25	62.50	03//1
nassive. Non magnetic	1		Ison milting gly vouled	due to fine hemitite	elsewhere 1-2%			······
	2		spowlar nematite		local specetarite	64·So	65.50	<u>2/12</u>
caminated tuffs		fine grained, strangly laminated	SOCA Foilly number	Chlatitic patchy Carb Dissen. and	direct 1-3% fine	68.32	67.79	03/13
0-16-71-89 FAULT	1	strong chlastic, foliated with	cathe varakh-shallow i angles CA also 50°CB	strage c be matile	ventet Py			
ZONE	ورج	pinkearborate quarty wein	foliation and 1-Sea	Carl.	Bulley remine is bacconstrast 1-5% fin By Sparse fine	70.15	72-85	02114
11.89-82.66 Chloribic ntermediate to Mapi					Sparse fine			
offs. Fire grained	1	some fine la pille ?	of fine cath verillets	local homotite	divien by			
~			higher and to CA.	J				

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. C. Lully-

DATE: October 9, 2001.

### SILVER LAKE PROPERTY NEW DISCOVERY GRID

DDH NO. ND 2001-							PAC	GE NO. 3
	LITHOLOGY		STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
MAIN UNITS	<u>.                                    </u>	SUB UNITS				FROM	то	NUMBER
1	50	· 1g2				82.66	83/30	03115
66- 88-55 Shear Zone	1			•		83.30	84.30	03/16
hlerite-Carbonate Schistli	5 Ron Magne	hi. Clayey zones five grained	Time Connetion To"CA	stringers of the	3-5% fine dissem Py.	84.30	85.30	03/17
ith disseminated pyrite	4- 80-96-	a med green fractured and	enmenove fire chieste	calorite formatite,	Lecel fine duren P.		<u> </u>	<u> </u>
ž.	H magnatic,	the avgil departy . Non-	hamatite carbonate	patchy wijs pervasive	with stronger pliation	86.70	88.50	
	\$ 96.70-88.5	A. Clayey zones fine grained bi. clayey zones fine grained of the avgite throng how -, though fine and fine hyper -, thoughly finetwood and the grained non magnetic - Ste Mattled medium	fractures. local 70'ch	Strang permosive cont	Fine diman D.			03/18
<b>58-55-1</b> 05.46		, fine granded non magnetic	local strong fabrics 7000	local clay homotite.				
ugite Porphyry 10-1	3 88.55-100	-54 Mottled medium	89.55-90.0 weak h	@ 92.20 x 99.55 Man	generally sporse			
asatt - Coarse Brecia	a greens_A	rederate to course provides	99.55-90-0 weak h moderate corbonate - hemotite versite 60-70	and GOEM at manable	fine dissen. Ry		+-	
l'	auth loce	toff fschist materix	CA. 90.00-100.50 Patchy	Highly whichle non-	LACOL TOCA SCOME			
	with fin	- dimenisated pyrte.	Chlorite foliation 60.70	Med pervisive carb.	in streager & lister			
l. I.	1 Patchy A	onto weak negretic.	CA. Low density of	als chloritic local	ger follows			
		mag magnetic patches_	carb veintels, minor	Genetic Patch				
· · · · · · · · · · · · · · · · · · ·	<	<i>o</i>		w/m permasive conducte				
	/			• • • • • • • • • • • • • • • • • • • •				·
	- 100.54 - 10	2.18 As above, Patchy	Low dessity of fine	Rotchy chlaster, epidd	Source line dimen			
ŀ	alteration	and variably magnetic	corte verileto	negretite	R			
- F	102.18-105	46 As at ## 55 More	As charle unique	weak pately	Os okoń			
	1 marine a	igite perspina, fine foldepal		pervasive carb, epid.				
5.46-106.50 Magnetile	Derk Line	oranged and strong manufic	at veinge strange		water 15% Line to	105.44	106.50	03119
the Alteration Zone	anth gtas	granded and string may she tining + carle + cony ms = 12-105.95	4 - 45 CA foliohan ( CA	little carb, epid local	Loosse cay with 9/3.	106.50		
	- 106.50-1	28:34 Medium grey-gree	Fairly massive laca	. 7.3	1-2's fine diesem. Co.y			03/20
0650-139.29 WA	1 Hine grai	and with avoit denound	Weak by Pheasenst	carbonate and evidate	In age-by seams.			
Augite Porphyry	uph Sme	n ascar good alignment	alignment 40.60 CA	chinate seams	Local fine disser			·
Besalt.	- Woak to	moderate magnétic	low deasity of cart.		Cpy (106.50-108.50)			
	11	en . Llanow sections with	venteto 2/con wide	<u> </u>	Below sporse fine			
	• 'f <del>cachaaa</del> ti	anygolales .	gun ally high		dimensionated Pro			
	`,		angles CA. Normen					
	, }	· · · · · · · · · · · · · · · · · · ·	Chloribi shears @					
	<u>، ا</u>		121-40-30'CA					
176	<u>v / I</u>		127.00 - 2+ CA		1			

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY R. Welles

### SILVER LAKE PROPERTY NEW DISCOVERY GRID

Η NO. Α-Φ :	1001	LITHOLOGY		<b></b>				GE NO. 4
MAIN UNITS	120		STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	
PIAIN UNITS	. /20					FROM	TO	NUMBER
	ŀ	Augite prophysy bosolt	from Ararow chi. seams 124-10 20'CA; 127.0.20	N				· · ·
	180_	5 128.34-136.80 As above ve						
		: 1 augite pleascarst alterates	carb veinlet densis	л — — — — — — — — — — — — — — — — — — —	spore fine dimen			· · · · · · ·
		1 epidote ± chlosite . Darke	CA	of phenecasts	<i>P</i>			
	ľ	( , coloured and mod. magne Phono cost smaller 2-3mm	I					
	k	126-00-139-29 Green augete.	proceshing			ł		
		/ hasalt as at 106.50 w/m may locat carts omygdales for 139.29 EOH. chuded warse	etc. nessive face carb.		spone fine dimen			·
	14वर्ष	139-29 EOH. Chided inarse	augite varalets.		Ry-			
					·			
					·			
	Ì							
				<u> </u>				
	1				····			
						┫┥		
						╉╌┈───╁		
					<u> </u>	┨┈────┤	· ·	
						┨────┤		
			/			╉━━━╸╴┧		
		· · · · · · · · · · · · · · · · · · ·			+	╉┈───╋		

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. s. Luelly

## DIAMOND DRILL HOLE NO. ND 2001-10

SAMPLE	FROM	ТО	LENGTH	Au	Cu	Ag	Мо
NO	(m)	(m)	(m)	ppb	ppm	ppm	ppm
03051	9.14	10.14	1.00	100	99	<0.2	211
03052	11.70	12.30	0.60	80	139	<0.2	60
03053	29.87	30.87	1.00	<5	111	<0.2	4
03054	30.87	31.87	1.00	<5	151	<0.2	5
03055	31.87	33.24	1.37	<5	275	<0.2	6
03056	34.25	35.47	1.22	5	153	<0.2	16
03057	35.47	36.47	1.00	<5	191	<0.2	4
03058	36.47	38.00	1.53	<5	197	<0.2	4
03059	38.00	39.10	1.10	<5	158	<0.2	1
03060	40.60	41.96	1.36	5	227	<0.2	4
03061	55.10	56.68	1.58	⁻ 15	196	<0.2	8
03062	70.00	71.00	1.00	<5	120	<0.2	<1
03063	72.87	73.87	1.00	<5	344	<0.2	<1
03064	73.87	75.29	1.42	<5	26	<0.2	<1
03065	75.29	76.56	1.27	<5	382	<0.2	<1
03066	76.56	77.88	1.32	30	797	<0.2	7
03067	77.88	79.30	1.42	<5	159	<0.2	<1
03068	83.48	84.48	1.00	5	678	<0.2	2
03069	86.73	88.00	1.27	5	1659	0.60	<1
03070	92.25	93.30	1.05	5	169	<0.2	<1
03071	94.95	95.95	1.00	<5	872	<0.2	<1
03072	97.05	98.20	1.15	<5	247	<0.2	<1
03073	99.95	101.50	1.55	<5	375	<0.2	1
03074	122.05	123.00	0.95	280	1250	<0.2	425
03075	130.56	131.60	1.04	5	23	<0.2	<1

### DIAMOND DRILL HOLE NO. ND 2001-11

(

(

(

SAMPLE	FROM	то	LENGTH	Au	Cu	Ag	Мо
NO	(m)	(m)	(m)	ppb	ppm	ppm	ppm
3101	22.16	23.16	1.00	<5	43	<0.2	3
3102	25.70	26.70	1.00	10	159	<0.2	<1
3103	26.70	27.70	1.00	5	199	<0.2	1
3104	33.19	34.29	1.10	<5	118	<0.2	7
3105	36.30	37.32	1.02	<5	312	<0.2	2
3106	37.32	38.60	1.28	<5	308	<0.2	5
3107	39.80		1.00		146	< 0.2	<1
3108	42.78	43.67	0.89		160	<0.2	4
3109	55.60	56.60	1.00	<5	132	<0.2	2
3110	56.60	57.60	1.00	40	88	<0.2	11
3111	61.35	62.50	1.15	5	81	<0.2	3
3112	64.50	65.50	1.00	<5	84	<0.2	5
3113	68.32	69.78	1.46	<5	97	<0.2	2
3114	70.15	71.89	1.74	5	133	<0.2	22 6
3115	82.66	83.30	0.64	5	105	<0.2	6
3116	83.30	84.30	1.00	50	216	<0.2	16
3117	84.30	85.30	1.00	5	271	< 0.2	34
3118	86.70	88.50	1.80	5	148	<0.2	9
3119	105.46	106.50	1.04	35	0.54%	2	9
3120	106.50	107.50	1.00	10	672	<0.2	<1

24-Oct-01

#### ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

.

ICP CERTIFICATE OF ANALYSIS AK 2001-363

#### CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

#### ATTENTION: RON WELLS

No. of samples received: 20 Sample type: Core Project #: ND 2001-11 Shipment #: None Given Samples submitted by: Ron Wells

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cď	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Nł	Р	РЬ	Sb	Sn	Sr	T: 9/		.,			-
1	03101	<5	<0.2	3.97	<5	35	20	5.76	<1	37	170	43	7.50		4.62	_	3		40			-				U	<u>v</u>	<u></u>	<u> </u>	Zn
2	03102	10	<0.2	3.03	<5	30		6.12	5	51	189	159		<10			<1	0.02	40	1180	34	<5	<20		0.16	<10	157	<10	7	148
3	03103	5	<0.2	4.45	<5	35	<5	9.09	<1	49	411	199		<10		1705	~			1340	8	<5	<20	136	0.16	<10	158	<10	18	609
4	03104	<5	<0.2	0.76	10	25	<5		<1	29	55	118		<10	0.45	823		0.01	98	1620	10	<5	<20	248	0.11	<10	206	<10	<1	126
5	03105	<5	<0.2	1.43	50	65	<5		<1	57	71		6.32	<10		924		0.03	30	1210	<2	<5	<20	175	0.1 <del>9</del>	<10	160	<10	40	16
							+			•		0.2	0.02	~10	0.87	844	4	0.04	30	1010	8	≺5	<20	157	0.26	<10	211	<10	37	29
6	03106	<5	<0.2	2.10	25	45	<5	2.77	<1	60	43	308	6.02	<10	1.75	720	-	0.04	40			_								
7	03107	5	<0.2	3.57	<5	50		8.20	<1	49	159	146		<10		-		0.04	16	970	12	<5	<20	100	0.27	<10	126	<10	41	39
8	03108	5	<0.2		130	75			<1	36	70	160					<1	0.02	61	1270	18	<5	<20	206	0.24	<10	251	<10	23	118
9	03109	<5	<0.2		<5	135	<5		<1	43	253			<10		968	4	0.03	26	640	10	<5	<20	126	0.21	<10	355	<10	46	34
10	03110	40	<0.2		<5	50		6.97	<1	36	169		6.83		4.85		2		63	1590	6	<5	<20	294	0.04	<10	171	<10	<1	106
				0.00	-0		-0	0.81	~1	- 30	109	88	5.38	<10	3.56	1150	11	0.02	59	1230	<2	<5	<20	296	0.02	<10	99	<10	<1	86
11	03111	5	<0.2	0.62	<5	50	<5	5.28	<1	31	31	81							_											
12	03112	<5	<0.2		<5	105		3.52	<1	28	23		5.54		2.51		3	0.02	8	800	4		<20	259	0.03	<10	75	<10	<1	99
13	03113	<5	<0.2		<5	155	10		<1			84	5.79	<10	2.41	1447	5	0.03	<1	590	4	<5	<20	237	0.03	<10	93	<10	<1	90
14	03114	-	<0.2		<5	65	<5	>10	<1	44	165	97	6.93	<10	3.92			0.02	55	1490	10	<5	<20	193	0.06	<10	219	<10	<1	35
15	03115		<0.2	-	<5	75	10	-		49	465	133		<10				<0.01	174	1010	72	<5	<20	289	0.03	<10	124	<10	<1	53
	00110	5	~U.Z	3.00	~0	70	10	1.90	<1	51	482	105	7.96	<10	5.84	1640	6	<0.01	133	1420	38	<5	<20	180	0.12	<10	218	<10	<1	71
16	03116	50	<0.2	2.37	<5	45	15	6.58	<1	57	447	040																		
17	03117	5	<0.2	2.36	<5	115	<5		<1	-	417	216	7.92	<10			16	0.01	128	1350	54	<5	<20	139	0.15	<10	172	10	8	74
18	03118	5	<0.2	2.10	-5	55	-5			47	224	271	5.47	<10		1161	34	0.02	71	1070	52	<5	<20	90	0.24	<10	161	<10	36	52
19	03119	35	2.4	2.60	-		-		<1	43	193	148	4.17	<10	2.97	1540	9	0.02	48	1600	20	<5	<20	149	0.20	<10	181	10	29	62
20	03119				<5 . r	75	<5		<1	132	473		>10	<10	3.92	842	9	0.02	130	930	26	-5	<20	87	0.21	<10	128	<10	<1	57
<b>A</b> .V	03120	10	<0.2	2.17	<5	80	<5	4.15	<1	52	370	672	5.99	<10	3.28	802	<1	0.03	85	1400	14	<5	<20	87	0.23	<10	102	<10	28	30
																										10		- 10	20	ΨŲ

	24-Oct-01	1								ŀ	CP CEF	RTIFIC	CATE O	F ANA	LYSIS	AK 20	01-363	3					c	HRIS	торне	R JAM	ES GO	LD COR	۹P,	
<u> </u>	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cď	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	РЬ	Sb	Sn	Sr	<u>Ti %</u>	U	<u>v</u>	w	Y	Zn
<u>QC DA</u> Resplit 1		<5	<0.2	4.03	<5	35	10	6.10	<1	37	164	45	7.50	<10	4.71	1903	3	0.02	43	1170	24	<5	<20	92	0.16	<10	154	<10	6	141
Repeat 1 10	03101 03110	<5 45	<0.2 <0.2		<5 <5	35 50	15 10	5.77 7.10	<1 <1	36 37	170 176	<b>4</b> 6 92	7.47 5.52	<10 <10		1886 1176	2 11	0.02 0.02	41 60	1170 1290	18 8	<5 <5	<20 <20	93 292	0.17 0.02	<10 <10	163 98	<10 <10	7 <1	138 99
Standa GEO'01		-	1.2	1.70	60	155	<5	1.69	<1	20	61	80	3.92	<10	0.87	708	<1	0.02	23	730	24	<5	<20	51	0.12	<10	73	<10	13	76

FP/kk df/363 XLS/01 сс: гол wells fax @ 372-1012

•

Λ.

ECO-TECH LABORATORIES LT Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

Page 2



#### ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecolech@direct.ca

### CERTIFICATE OF ASSAY AK 2001-363

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

25-Oct-01

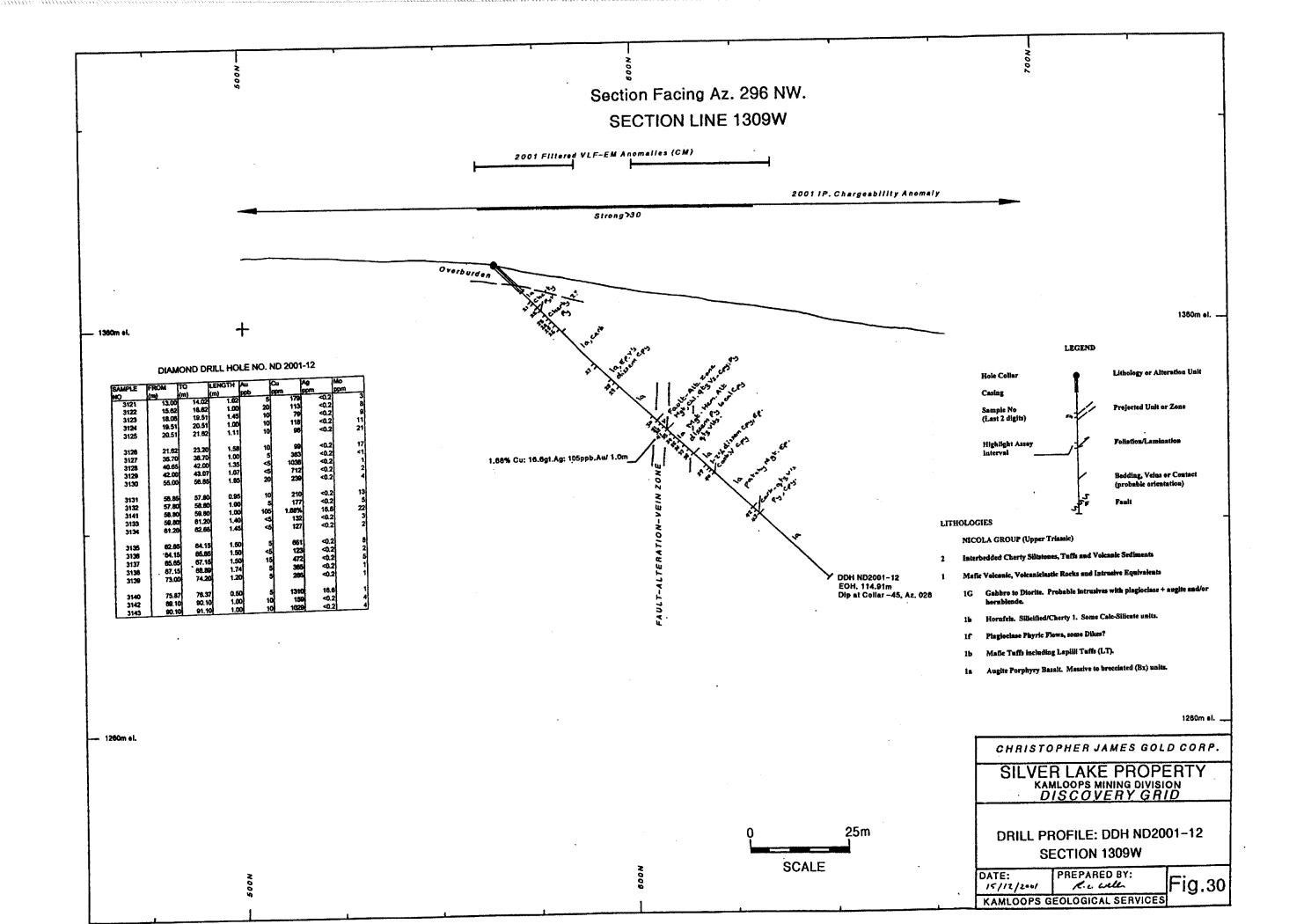
#### ATTENTION: RON WELLS

No. of samples received: 20 Sample type: Core Project #: ND 2001-11 Shipment #: None Given Samples submitted by: Ron Wells

		Cu	
ET #.	Tag #	(%)	
19	03119	0.54	

#### QC DATA:

Repeat:		
R19	03119	0.54


Standard: SU1A 0.98

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

FP/kk XLS/01 cc: ron wells fax @ 372-1012

Page 1



 $\mathbb{C}$ 

### SILVER LAKE PROPERTY NEW DISCOVERY GRID

DH NO. NO 2001-1						PAC	SE NO. 🕖
	LITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
MAIN UNITS o GI	SUB UNITS				FROM	то	NUMBER
Presburden and	0-8.23 Sandy clay till with pebble	s					
reathered Bedrock.			······································				
1.23-15.62 Altered	8.23-7.20 Median grygreen, faidy conded angels provident, to might	massive few carb	waak pooravie corb.	misse v. fui dinen			
hugite Porphyry	usit	Brittle fractured bich	Highly siliceous find grained, weak carb.	1-2°/. fine dimer.	<u> </u>		
cherty units	10-24-15-62 hight to maish gray to	w/m glg >> corb	local dk chlorite at	Py Local Seams			
Ŭ	9 my, fine grained nugite porphys	y vering raish	veinlet selvedges.	fine dimen P, at	13.00	14.02	03121
	florally considered with planarryck in	ageen CA may 60-Zat		selvedges to Carb, chi. verilat. Miler fine dies			
		Contact 60 cA.	Highly siliceous		Y. 15 - 67	16.62	03122
5.62-23.94 cherty by	Mattled light browns , extremely for		enith little carbonete	@ 15.94 1-2 cm wide			
Unit, Pyrike X	gracied, highly siliceous + herby	with local arason	Hemptite weights	60°CA mad. grained pyste weighting some nemotilization	18.06	19:51	03/23
201	Massive to ende bedded Battle	henalite coulets	and V: fine dissen. P.	some remobilization	19.51	20.51	03124
	fractured. Alos magastic	aly > carte verilate 60-70	4		20.51	2162	03125
		other at variable angles			21.67	23.20	03126
13.94-56-85 Augitz	13. Au -4 4. 16 Modum to dack	Local chienthe lomina bade sachica count contact Bo-90 CA bx.	a				
	, green, exhadral augite phenering	4 Hannahan	Mindaget	<u> </u>			
Porphyry Basatt		weak carbonate	1 · · ·		ł		
	upto Sana in fine grandmass		Tarbonate 23.74-28.00				
	maderate magashi Dackar	exister dessity	weak potry below				
*-	Colouled and more sugache	Voneble angles CA	conscides with		<u> </u>		
		- 23.94-28.00 fairly		······		ł	
l'	/	Aurenovs hemate	Below 27.00 weak	· · · · · · · · · · · · · · · · · · ·			
· · · · · · · · · · · · · · · · · · ·		fractive verialista	(Local moderate)		200	<b>a</b>	
l			Mace mogratic below		35-70	36.70	03137
1	/	fracture lamination		· · · · · · · · · · · · · · · · · · ·	1	<u>├</u>	
	<b>`</b>	15 'CA.					ł
							<b> </b>

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Walls

DATE: 13 9 40 1007 2001.

## SILVER LAKE PROPERTY NEW DISCOVERY GRID

DH NO. NO 2001							PAC	ENO. 2
		ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	NG
MAIN UNITS 4	GL	SUB UNITS				FROM	то	NUMBER
	1	40.16-49.30 As above with patchy	40.2.43.0 M/S	M/S fracture	40-20-43.0 upto 2%	40.65	42.00	03129
	12	strager epidete alteration +		castralled epidate	· · ·	42.00	43.07	63129
	X	fine disseminated Cong		wifn carbonate at				-
	ľŽ		some wider epid		wispy ogenerates			
		· · · · · · · · · · · · · · · · · · ·		epid, carb below.				
	1/		with Cpy, low		······			
			density carb verslet					
, <b>s</b>	۵ L	49-30-56-#5 Med to dock groen	below/	Patchy magnetite	Finces of fine			
	X	augite prophyry locally conded	low-mod density of	weak epidate local	dinen Py local			
	1	and conver with phenocryph to be	fine carb seinlet	strong pervasive	specks of cpy			
	5.	(epid altered) Variable with maynet		calls.				
	1	ficie goundmass	252-30 chl. sheat Son wide 25-30°CA.			55.00	56.85	03120
85-59.80 Chloritic		- chloritic, fine grawed, sheared	son wide 25-30 ca.	egincite, carb, pates	fine to sease Cay?	56.85	57.80	03121
sult Zone with Magnel	it f	and precurated with strong Mgt,	Falsahon inining	Mge . above . string Mge	fine to coarse Cay? By with tox gtz	57.80	58.80	
ite, Qtz veining + Cpy	$\mathcal{N}$	quarty verning, seni-massive Cpy-By	- 100nus 50-00 CA-	ghz wins, cpy, Py, below	Inining below. 2. 2%	58.80	59.80	0314L
20-68.89 magnetite	- 1.		Generally low	· · · · · · · · · · · · · · · · · · ·	dissen Py local gly	59.80_	61.20	03133
emolite) Altered	5/	Dark groy, fine growed, Mgt	density of fine	Powerive magnetil	(19 0 13	61.70	62.65	67134
rite Porphyny Basa	1t · ]/	lesser hematite atteration		patrley, weaker	Fine dimen. and	62.65	64.15	03135
× •5		exerprinting vertably convolod		he matite . w/m	Fracture Py thought	64.15	65.65	03136
	1	augite parphysy. Vague texture	adisplaced gly certas	patring corbonate	local cubic. Finer		67.15	
			to lon ginerally	rave epidate.	dimen Cpy offer.	67.15	67.89	03138
	- k_		high angles ( a.	·····	associated with			
3.89-114.91 Augite .	74 -	68.87-89-0			9/2 veinlets		-	
orphyny Bosalt.		Medium groy to green, fine grained with recognizable	low-mod dessity					
	ľ	grained with recognizable	1 proce cars verale	Marca calasti	73.0-74.0 1-2% fine			
	- I.	altered. variable maderateless	A 76.20 los 1 de			73-00	74.20	03/39
		istrono monastri with monasti	and land it	smaller cm. scale	1 r -			
		strong negatic with mysetic		epid. patches.	276-20-76-30 Carb	<u>75.87</u>	76.37	01/40
	- T/		<u>Cpy 45°CA.</u>	some anygolates		<u> </u>		
	امه			1	Sey aggregates.			<u> </u>

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY R welle

DATE: 13 October 200)

### SILVER LAKE PROPERTY NEW DISCOVERY GRID

		LITHOLOGY	CTDUCTUDE					GE NO. 3
MAIN UNITS	GI		STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	
		68.89-89-10 Centraved from Pg 2	low dessity of	79-74-92.00 Moderate		FROM	то	NUMBE
	_ \		Low angle CA Call	also Epid anyoptales Mod. magnetic. V. paking cart. cuis	· · · · · · · · · · · · · · · · · · ·	· · - ·		· · · ·
	11	h	verilets	pately cost. wis				
	K			local sometite variable				
				· · · · · · · · · · · · · · · · · · ·				·
	90_	23 above, iniable, mysetic with corp-	60-70 CA Maderate Lais	fatchy 14/5 carb.	fine dimen Py	<u>\$9.10</u>	90.10	03142
<i>,</i>	11	the reining	White cars + 4cm	where and miner	carbuschs by some	96.10	71.10	03/43
		91.10-114.91 Augite Corphys, Cosal	mainly so-70 cg 11	epid.	90.94 hour pie (pm			
		as at 62.27 Acolina to dark	Eaily marsing.	Generally V. weak				
	- 1/	green, fine grained with writh		estery carbonate	Py in Wallneks.			
	Ľ	to home foral and day	unander fine carb	Epidate is stranger				
	. 1/,	1	at which there are	acad moderate as	Sporse fine diman	····		
	/**_ ''	with darker calassed paraling	1.1	@ 167.5- 103.5	<i>Ty</i>			
	k	Short internals with ware		stronger monshite			_	
	Þ	brecciated textures as at		vory politic epid.				
		101-104 cubbly flow?		r cars.	· · · · · · · · · · · · · · · · · · ·			
	1	/	2/01-65-108-81 Alama	<b>}</b>	·			
			with some for moth			·		
	<i>"</i>		vien					
	! '	/	<u> </u>				·	
		/		l				
	4	//		<u> </u>				
				<u>+</u>		<u>├</u> ────		
	1							
	1							·····

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. C. Culls

DATE: 15.0 claker 2001.

## DIAMOND DRILL HOLE NO. ND 2001-12

SAMPLE	FROM	то	LENGTH	Au	Cu	Ag	Мо
NO	(m)	(m)	(m)	ppb	ppm	ррт	ppm
3121	13.00	14.02	1.02		179	<0.2	3
3122	15.62	16.62	1.00	20	113	<0.2	8
3123	18.06	19.51	1.45	10	79	<0.2	9
3124	19.51	20.51	1.00	10	118	<0.2	11
3125	20.51	21.62	1.11	10	96	<0.2	21
3126	21.62	23.20	1.58	10	99	<0.2	17
3127	35.70	36.70	1.00	5	383	<0.2	<1
3128	40.65	42.00	1.35	<5	1036	<0.2	1
3129	42.00	43.07	1.07	<5	712	<0.2	2
3130	55.00	56.85	1. <b>85</b>	20	239	<0.2	4
3131	56.85	57.80	0.95	10	210	<0.2	13
3132	57.80	58.80	1.00	5	177	<0.2	5
3141	58.80	59.80	1.00	105	1.68%	16.6	22
3133	59.80	61.20	1.40	<5	132	<0.2	3 2
3134	61.20	62.65	1.45	<5	127	<0.2	2
3135	62.65	64.15	1.50	5	651	<0.2	8
3136	64.15	65.65	1.50	<5	123	<0.2	8 2 5
3137	65.65	67.15	1.50	15	472	<0.2	5
3138	67.15	68.89	1.74	5	365	<0.2	1
3139	73.00	74.20	1.20	5	265	<0.2	1
3140	75.87	76.37	0.50	5	1310	16.6	1
3142	89.10	90.10	1.00	10	159	<0.2	4
3143	90.10	91.10	1.00	10	1029	<0.2	4

-

25-Oct-01

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

.

ICP CERTIFICATE OF ANALYSIS AK 2001-364

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

ATTENTION: RON WELLS

No. of samples received: 23 Sample type. Core Project #: ND 2001-12 Shipment #: None Given Samples submitted by: Ron Wells

																								-		-				
<u>Et #.</u>	Tag #	Au(ppb)			As	Ba		Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	υ	v	w	v	Zn
1	03121	5	<0.2	3.08	<5	70	<5	6.19	<1	49	415	179	8.62	<10	6.44	1463	3	0.01	214	1320	12	<5	<20	205			-		<u> </u>	
2	03122	20	<0.2	0.24	<5	45	<5	1.38	<1	24	117	113		<10	0.52		ŏ	0.02	10						0.03	<10	171	<10	<1	84
3	03123	10	<0.2	0.25	<5	65	<5	2.62	<1	14	109	79		<10		501			10	340	8	5	<20	66	0.02	<10	48	<10	<1	29
4	03124	10	<0.2	0.37	<5	55	<5	6.96	<1	36	149	118					9	0.03		360	2	5	<20	140	0.01	<10	32	<10	<1	27
5	03125		<0.2		<5	65	<5	2.71	<1	19				<10		1350	11	0.02	97	740	6	<5	<20	362	0.01	<10	75	<10	<1	68
				0.10	.0		-0	2.71	~1	18	98	96	3.26	<10	1.04	601	21	0.04	9	520	4	10	<20	<b>18</b> 5	0.01	<10	35	<10	<1	28
6	03126	10	<0.2	0.22	<5	55	<5	1.74	<1	12	130	99	3.07	-10		200														
7	03127	5	<0.2		<5	70	<5	3.13	<1	37					0.67	396	17	0.04	2		4	15	<20	141	0.02	<10	35	<10	<1	34
B	03128	_	<0.2		<5	90	<5				359	383	5.13	<10	2.55	639	<1	0.02	70	1610	12	<5	<20	142	0.14	<10	65	<10	16	36
ů.	03129		<0.2		~5 <5		_	3.54	<1	42	399	1036		<10		754	1	0.02	79	1510	16	<5	<20	196	0.18	<10	63	<10	17	39
10	03130				-	70	<5	3.63	<1	38	344	712		<10	2.58	701	2	0.02	69	1560	12	<5	<20	277	0.18	<10	58	<10	20	33
10	03150	20	50.Z	2.38	<5	65	<5	7.26	<1	61	462	239	8.51	<10	3.50	1469	4	0.02	101	1570	18	<5	<20	152	0.18	<10	166	<10	10	58
11	03131	10	<0.2	2 70					_																					00
12	03132				<5	65	15	7.99	<1	66	505	210	>10	<10	4.11	1658	13	0.01	122	1430	28	<5	<20	177	0.14	<10	195	<10	~1	76
			<0.2		<5	70	15	7.60	<1	99	551	177	≻10	<10	5.66	1974	5	< 0.01	175	1380	34	<5	<20	249	0.09	<10	185	<10	<1	
13	03133			2.71	<5	255	15	5.93	<1	52	250	132	9.95	<10	3.90	1120	3	0.01	52	1710	24	<5	<20	131	0.18	<10	195		•	85
14	03134		<0.2		<5	190	10	5.01	<1	53	223	127	>10	<10	3.65	1044	2	0.02		1860	22	<5	<20	103				<10	8	42
15	03135	5	<0.2	3.16	<5	125	<5	3.28	<1	86	244	651	>10		4.19		8	0.01	44		28	<5			0.21	<10	189	<10	12	45
															4.10	1000	Ų	0.01		1020	20	50	<20	77	0.15	<10	236	<10	<1	55
16	03136	<5	<0.2	2.32	<5	165	10	6.34	<1	55	242	123	8.77	<10	3.37	1069	2	0.01	44	1770	22	-F	-00							
17	03137	15	<0.2	2.75	<5	90	<5	5.88	<1	101	230	472		<10		1184	5					<5	<20	134	0.16	<10	218	<10	14	46
18	03138	5	<0.2	1.60	<5	70	<5	5.65	<1	42	218	365	7.63		2,19		5		42		24	<5	<20	126	0.18	<10	216	<10	<1	50
19	03139	5	<0.2	1.55	<5	165	<5	5.29	<1	37	220					926		0.02			16	<5	<20	101	0.21	<10	157	<10	27	33
20	03140	-		-	<5	165	<5	9,13				265			2.06	770	1	0.02	32		16	<5	<20	125	0.18	<10	116	<10	24	35
	00140		~U.Z	1.44	~5	165	~0	9,13	<1	38	196	1310	6.76	<10	1.80	1072	1	0.02	29	1720	18	<5	<20	162	0.20	<10	137	<10	27	32
21	03141	105	16.6	3.02	<5	75	<5	1.95	<1	623	264	10000		-10	<u> </u>	4005			÷											
22	03142	10		1.86	<5	95	10	>10	<1				>10	<10		1083	22	<0.01	68	660	38	<5	<20	42	D.11	<10	197	20	<1	113
23	03143		<0.2		~5 <5					44	309	159	6.28	<10		1524	4	0.01	74	1530	20	<5	<20	146	0.16	<10	123	<10	22	67
20	00140	10	¬υ.Ζ	2.19	5	130	<5	8.83	<1	46	334	1029	7.14	<10	3.18	1332	4	0.02	83	1530	20	<5	<20	179	0.19	<10	137	<10	23	74
																												- • •	دع	14

Page 1

	25-Oct-01	١								I	CP CE	RTIFK	CATE O	F ANA	LYSIS	AK 20	01-						(	CHRIS	торне	R JAM	ES GO	LD COF	ŧ₽.	
Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Çr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
<u>QC DA</u> Respiit																														
1	03121	5	<0.2	2.99	<5	70	5	6.45	<1	53	438	157	9.01	<10	6.18	1514	6	<0.01	234	1400	28	<5	<20	183	0.03	<10	175	<10	<1	95
Repeat	t																													
1	03121	5	<0.2	2.96	<5	65	<5	6.21	<1	49	414	166	8.59	<10	6.18	1458	5	<0.01	215	1350	20	<5	-20	186	0.02	- 40	4=0			
10	03130	20	<0.2	2.22	<5	65	<5	7.44	<1	63	472	214	8.72	<10				0.02	106	1580	20	<5	~20 <20	137	0.03 0.19	<10 <10	170 165	<10 <10	<1 12	87 64
Standa	rd:																													
GEO'01	1	110	1.2	1.67	60	155	<5	1.76	<1	22	64	77	3.88	<10	0.86	739	<1	0.01	24	750	22	<5	<20	58	0.12	<10	74	<10	14	78

FP/kk df/363 XLS/01 cc: ron wel/s fax @ 372-1012

٢

ECOTECH LABORATORIES LTD. Frank J. Pezzotti, K.Sc.T. B.C. Certified Assayer

#### ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, B.C. V2C 674 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

#### CERTIFICATE OF ASSAY AK 2001-364

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

ATTENTION: RON WELLS

No. of samples received: 23 Sample type: Core **Project #: ND 2001-12** Shipment #: None Given Samples submitted by: Ron Wells

		Cu	
ET #.	Tag #	(%)	-
21	03141	1.68	•

#### QC DATA:

Repeat:		
R21	03141	1.68

Standard: SU1A

0.98

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

FP/kk XLS/01 cc: ron wells fax @ 372-1012

Page 1

25-Oct-01





; )

1360m el. -

	125014	TÔ	LENGTH	Au	Cu	Ag	Mo	
SAMPLE NO	FROM (m)	(m)	(m)	ppb	ppm	ppm	ppm	
3151	21.00	22.10	1.10	<6	194	0.:	3 5	
3152	28.36	30.00		10				
3153	30.00	31,00	1.00	15 10				
3154 3155	31.00 37.43	32.00 38.41	0.98	<5				
0100	1				ļ		1 1	
3156	39.90	41.20	1.30					
3157	44.60		0.90					
3158 3159	53.23 60.04		1.00			0.	3 4	
3159 3160	60.04		0.85	<5				
	]		0.00	ł	1	J -	4 2	
3101	62.17		1.50	40				
3162	63.67 65.00				101	a a	2 5	
3163	65.00		0.48	5	ij <b>3</b> 08	s 0.	2 4	
3165	68.60		I			s <0.	2 2	
	1			. 4	7	7 <0.	2 1	
3166	67.60					5 <0.	2 <1	
3167 3168	108.15			10	) 13	8 0.	2 3	
3169	126.94						2 <1	
2001-13 9.29M							1260m (	1.
2001–13 9.29M Jiler ~45.	<del></del>							
2001–13 3.29M Jiar -45,	сн						DCORI	
2001–13 9.29M Jiar -45,	сн	ILVE	RL	AKE	PR	OPE	o cori	
2001–13 3.29M Niar -45,	сн S	ILVE				OPE	D COR	
2001–13 3.29M Jiler ~45.	сн S	ILVE	RL		PR	OPE	o cori	
2001–13 3.29M Jiar -45,	сн S DI	ILVE SCC	R L	AKE PPS MII 7 Y G			D COR	
	сн S DI DI	ILVE SCC	R L VER	AKE PS MII TY G	PR NING C RID		D CORI	
	CH S DI DF	ILVE SCC	PROF	AKE PS MI TY G	DDH I		о соял ERTY <u>REA</u> 01-13	P.
	CH S DI DF	ILVE SCC	PROF	AKE PS MII TY G	DDH I		D CORI	P.

#### DIAMOND DRILL HOLE NO. ND 2001-13

### SILVER LAKE PROPERTY NEW DISCOVERY GRID

DH NO. NO 2001 -							PAC	GENO. 1
	-	HOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL!	ING
MAIN UNITS G	- 1	SUB UNITS	· · · · · · · · · · · · · · · · · · ·			_FROM	то	NUMBER
· · · · · · · · · · · · · · · · · · ·	•• ⊢							
- 19-51 Casing in 10	်စ	- 7.0 sandy clay till with pebbles						
verburden and 10	صل ۱۰	and calebles						
weathered Bedrock .	÷  -				-			
	<u>_</u>	· · · · · · · · · · · · · · · · · · ·						
	۱þ	1.0-12.0 Fither a large boulder or						
		bedrack lip weak epidde altered						
10 -		rugile perphysy			-			
	∕:∖_	/						
	° 1	200-19.0 sandy till with pebbles						
0	<u>ء</u> (	and cabbles . Konchle clay						·····
· · · · · · · · · · · · · · · · · · ·	0	J*						
		919 M						
o	0							·····.
19-00-20.34 Augite in	<u>~</u>	Med groon fire provided with variable	A lew corporate	weak satch cart				
Porphyry Basalt "	1/	Non to weak man by	whilets variable and	selecture chi altert	1-5-1 la milet	41.00		03151
20-34-22.10 Silicous-	1	Med green, fine grained with variable contribution chier strend growing to 4 mm her to interest and the strend fine granted Light greens great extremely fine granted charter, stilling and the strend with 12	contacts soich Rathe	Highly silicears . Cosh	and dring a worked P.	21:00	22.10	03/51
charty Unit 22.10-28.36 Augite		Medium green, fine grained with 13m	fractured with bracking	Highly siliceans carb restricted to veriles	5			
Porphyry Basalt	1	dinem mapi phene capets - epid and/	low-mod dessite of	Weak ast he according	Sand this desire		<u> </u>	
,		Chl. altered (augite perhable) . w/m	carbonate and or	bleak, patchy permin epidete and carts.	P.			
		magastic. Eastly chloritie	ZS-So'CA	fairly chloritic			┼───┤	
28-36-32-00 Siliceous-	کر !	Mottled green and gray extremely	sharp lower control si	1 9	and lacall L wil	10.71		
chart with with Prochate	11	fice grained, highly siliceaus. Patchy			2º/ locally upto 10%		30.00	03152
Charley only and i grind	И	alketation becal strong magnetic	local Abrics Al 25.50	a verilet carb silican	Post Py mainly fire.	30.00	32.00	03/53
ſ	1	Acat 29.10 Med. areen with	low-had death of went	e veralet carb silicon the thoughout.	Local bands unioble	31-00	26.00	03/34
32.00 - 87.43 Augite Pointy		waringle altered augite phenocast	generally 0 - 45 cA.	weak and cathe	and the		t	
Besalt	μ,	weak becoming moderate	low angle cold - cart	ead at the weater	32.0-32.0 1-2% fine dimen local upic Let			
		magnetic downwards	weinlets.	more chlocitic below	Po. Sparse below	1	1	
37.43-38.41 Alteration	/	Mattled stragly altered with	Beittle Leachered in	Later Start		37.43		17165
2012	1	vogue remeast perphyse toxtures	vereleto, los al só bon	1 - silica. chi fine	2-10 to very patchy	<u> </u>	39.41	03155
39.41-56.13 Sun 79 2.	اسرز	son by 2	@ 37.30 2cm vuggy gla	74-40 pleached with	Azey	†		

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY Restruction

DATE: 15,17, October 2001.

### SILVER LAKE PROPERTY NEW DISCOVERY GRID

DHNO. NO 2001-	_						PAG	ie no. 2
		THOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPLI	NG
MAIN UNITS 4G		SUB UNITS				FROM	то	NUMBER
HI- Sto 13 Cont. Itered Augite (fine	1 sh	39-41-44-50 Altered had hak gray Aldepor physic white 1-3mm tabular feldsport. Dark coloured, non myselik	fine carb local epid ventets, high angles	Dark coloured, hard (siliceous), carb and epid restriction to	Patchy 1-3' fice	39.90	41.20	03156
idspar) Porphyry "		fine grained ground mass. Some stearing	eA	epid respected to	diset by thoughout	44.50	45.40	63157
	· -[	14.50 AB.70 Medium to dark	low density of fine.	Dack, son negretic	44.50-45.30 Bystic			
-		greenish grey augite porphysy bosall Non magnetic		minor veralet cort.	cerboot sein			
-		48:70 - 53:28 Fracture - foult rose	Ich cors win 40 CA, B.	As above with clave	2ºlo 61200 Py.			
FAULT	١VI	same whit as above with chloritie	Strongest fracting	-rhlaritie fractures	Sparse fine by			
ZONE	ý,	and clayer fractures. Non rayastic	gouge Tones variable angles CA. Local 30-600	•	<u>.</u>			A 4 ( D
		53.23 - 56.13 Med to dark gray gies	Local coore bedding	Mod. potchy pervocine	Patchy 2.16 fine		50.23	03158
	1	badded major tuff ?	high angle cart wind		to charmands locali			
herty Unit.	<u>ل</u> ة ا	fine grained, hard and siliceous	With brittle front ming with file carts you will be carts of the gauge found with gauge To're	Highly silicenes with vernett carbonate	1-2" fine practure venter by.			
8.30-71.95 Tuffs and	ديم برتر ک	\$8.30-60.04 Very similar to tuf	638 30 clayey Fault	Fairly chlorite path	1-2 % fine dimen.			
Icanic Sedimento	ŧ,	patchy alteration abscures textures	58-2-62-17 light how of with annual of yours	siliceous, non carb.	2-3% find ounem.	60.04	61-32	03159
eining with pyritic zone	1/4	fine grained triff white ? non	62.17-66.14 As above		Ay local cas patible	<u>61-32</u> 67-17	62.17 63.67	03/61
5 /* 5	Ĥ.	Magnetri Lacal bedding To'CA.	hamment gts u. local	along low angle fronte veintets.	·····	-43.67	65.00	03162
			66-14-66.60 By gove	1-2cm 4 and 4 45-70'th	30-50% fm. Pyste	<u>65.00</u>	<u> 66.14</u> 66.60	07163
	2		to 60-01-95 hopi toff local suger	Pervasive mod. arts.	Generally Amio	66.60	67.60	03/65
76 -	1		Mind density of costs	below 67.0. Silice us above with some often	dimen Py	67.60	62.97	03166
11.95-78.52 Augite	ŀ	medium grey-green, fairly	Variable angles ch.	Fairly chlocitie				
Porphyry Basatt	11	waiform with variably conded angute phenocysts 2-4 mm	Faitly massive . 44/0 carburgin let densite.	um pervasive carb.	Sporse fine dune	<u>p</u>	<b> </b>	
	H	wym nogsetic. fg. govalnas.	Variable argles CA.		· <del>·</del>	1		
	1	anite to the place E :	Many 0-20'CA	Mars			<b> </b>	
78.52-21.25 Carbonated Maple Tuffer.	1	gravitat to hife @ 66.6 Fine gravited crided beddod, carbonated	15-70 CA	Mis pervasive carb foirly chloritic.	dissen line Ry.	<u>├</u> ───-	<u> </u>	·

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY:

DATE: 17 Outober 2001.

## SILVER LAKE PROPERTY NEW DISCOVERY GRID

DH NO. NO 2001							PAG	GE NO. 3
MAIN UNITS	GL I	THOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
MAIN UNITS and	읫	SUB UNITS				FROM	TO	NUMBER
ŀ	<u>"</u>	mapic tuffs continued from Pg 2	some concordent	he cal concordant		-		
1-25-91-70 Augite	、]	Med. greens - greys, fine grained						
Feldspor) Porphyny	1	with variably counded angite_	massive Low density	week - moderate	Space fise during			
Sosalt.	-7	phenergyste I-4mm after alkend	faligred carb	pervasive carb.	ly.	_		
ļ,	1.	Local fine 1-2ma feld, latter	verstels generally	·				
	1	Early massure, w/m magnetic.	to sich Fairly					
	1.	<i>v</i>	icregular					
16	<u>,                                    </u>		0					· · · <u>-</u> -··
11.70 - 93.93 Augita	7	At above - transferation Vedable	Bearinged , Cominated	- Patch weak carb	Techel tie dimen	92.85	93.93	03167
Porphyny Basalt / Tuff	¥	As above - fragmented. Varably epidentised Subargular 2-20cm fragment	hatn's 60-70 CA	and enidole.	Py maisty in notice			
Breccia.	t		epidate carto contate.		Long patel.			
13.93-118-45 Augite		93.93-108.15 Epidate alkered	massive with low		57-5			· · · · ·
brohyry Basalt. Massive	•	augite purphysy at at \$1.25. Med.	dessity of fine	Patchy coidota.	sparse file dimen			
vill Breceiveted / Tuff	1	green- grey, rare feldspor Massin	carb. vailete. Loral	alteration	Py			· - ·
intervale. in		with patchy epidate alteration	cavities with carts .	·	J			
	•	Kaciably conded 2-4ma argite		····				
	ſ	phenocast w/m. nogretic.						
	•	Intervale with chlorite and or		Epidate descenses				· · · ·
	1	epidate anygdales.		towards lower contact				
	_	weak brechisted flow with						
	· /	local chloritic lamination (matri	story 30 Calistra	, <b>-</b>	Spotly fire dimen			
	1	HUE-12-110-70 Derk grau, to green	Some So Local br.	chloritic, potety	R	108.15	109 70	03/68
<i>iio</i> _	2	ACHIARITE SHEAT. FINE ALGINED WITH M	C MAR COCH & A V. CICM.	MAGAGAGE CORD and	J			- 2768
	1	110-70-111-45 Massive to Liecciate	Manuie to pricioto	henshle				
	Y	augite pocohyag. Variable course	flow? Local fabre	Patchy weak to	Sparse fine divien			
	15	augua preserve Else gourdone	-lamination prodom	moderate pervasize	14.			
	ŊΥ	com magnetic. Brocciated	HORA Coral SU-GOICA	Carbo ante , spotty epid				
	151	intervals with chlorite lamination	a boundersity of la	henalite Local				
and a set	ľ7	All All All All All All All All All All	agre ca inception	strager ligt				
118.45 - 123.04 LapIlli Tull. A. it Ant	-	grained magnetic lapilis, little Tuff	carb reistets.	Chierte Takat 14				
Tuff. Augite Borphyny 120 Breccia.	0	grained may wat Lapilli, THEIE TUF	Tof Carinahin 8-70	A patchy carporate	Sparse Rie dimen Py.		[	

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: Realing

DATE October 17,18,2001

### SILVER LAKE PROPERTY NEW DISCOVERY GRID

MAIN UNITS in GL	and coarses lap Med to local 123-04 - 126-94 Vi Weak proceeded 126-94 - 120-95 Dark 126-94 - 120-95 Dark 2000 - 120-95 Dark	String magnetic winty counded, any to perphysy of the perphysy whe processed for perphysy. Variably agt. Made magnetic to greece with	STRUCTURE Irregular low ages CA carb windeta cruale braciated low wardet densities Maining Carb Pace are sein 126-08 "Brace sold banding fabrics 80-90'CA Sparse frie carb minit local of great phenocy fabrics 70-85 CA.	more chientric download weak epidole. magnetice, chiente. walter, core chiertric weak g pately carb spotty	MINERALIZATION sparse fine donen. Local v. fine donien ly with magnetite Sparse fine donien Py	FROM	SAMPL1 TO (27-95	0.3169
104-132.63 Breciated gite Porphyry Basatt Snably magnetic. con 130 130 130 130 130 130 130 130 130 130	Mad to Incal 123-04 - 126-94 Ve weak proceisted 12/2 magaetic 12/2 magaetic 127-95-132-62 Cr 127-95-132-62 Cr 127-95-132-62 Cr 127-95-132-62 Cr 127-95-132-62 Cr Crusted pheson Medun glow	String magnetic winty counded, any to perphysy of the perphysy whe processed for perphysy. Variably agt. Made magnetic to greece with	CA carb windeta contale braning of law windet aleasities Total carb very 126.05 " Branisted banding - fabrics 80-90'ch Sparse fine carb very 126.	Increase in a control strang manufic at end of section creat to w/m pakky more chio rite downhat weak epidole. Magretate, chio rite wanter, core chioritic weak patchy carb spotty	Local v. fine device Ry with magnetite			······································
gite Porphyry Bosatt Driably magnetic con Ba 12.63-139.29 Massive	Mad to Incal 123-04 - 126-94 Ve weak proceisted 12/2 magaetic 12/2 magaetic 127-95-132-62 Cr 127-95-132-62 Cr 127-95-132-62 Cr 127-95-132-62 Cr 127-95-132-62 Cr Crusted pheson Medun glow	String magnetic winty counded, any to perphysy of the perphysy whe processed for perphysy. Variably agt. Made magnetic to greece with	CA carb windeta contale braning of law windet aleasities Total carb very 126.05 " Branisted banding - fabrics 80-90'ch Sparse fine carb very 126.	manufai at end of southing a soft policy perunsing contains more chioritic downhat weak epidole. Magnetite, chiorite walken, corts chioritic weak 3 potchy carb spotty	Local v. fine device Ry with magnetite	126.94	127.95	03169
gite Porphyry Bosatt Driably magnetic con Ba 12.63-139.29 Massive	123-04-126-94 Vo weak braccisted 126-94-120-95 Dark gamed marks 127-95-132-62 Co Lanialed augite counted phease Medura glous	scienti, counciled, angite petphysy of the petphysy of the second of petphysy. Variably agt . Mad. negath to greece with	contale bracciated law wardet dessition maining carts 7060 carts varia 126:05 7 Braccioted banding - fabrics 80-90'cd 5 parse fine carts vanile	Weak epidole. More chloritic downhat Weak epidole. Magnetic, chlorite walter, core chloritic weak potety core	Local v. fine device Ry with magnetite	126.94	127.95	03169
2.63-139.29 Massive	12/2 magaeli 12/2 94-122-95 Dark gamed watally 12795-132-62 Ce Lanialed augite Counted phease Meduan glous	vole brecciated for peoply of Variably agt - Made megaliti to greece with	Mainly Carts Total Carts Usin 126:05 -126:18 - Parce John Danding - fabrics 80-90'ch Sparse fine carts minile	Weak epidole. Magnetic, chionte. winden, cort. chioriti weak potchy cart spott.	P., with magnetite	126.94	127-95	03165
12.63-139.29 Massive	A granded water i 12795-13262 Cro Laniasted augite Counted phease Medura grays	vole brecciated for peoply of Variably agt - Made megaliti to greece with	- Force inted boarding - for ris 80-90 CA Sparse fine carb minile	magnetice, chio rice walter, core chioritic weak a patchy carb spotty	Py with magnetite	126.94	127.95	03169
12.63-139.29 Massive	A granded water i 12795-13262 Cro Laniasted augite Counted phease Medura grays	vole brecciated for peoply of Variably agt - Made megaliti to greece with	sparse fine carb minh	chloritic weak				
2.63-139.29 Massive	- Redungley	vole brecciated for peoply of Variably agt - Made megaliti to greece with	sparse fine carb minh	patchy carb spotty	sparse fine dimen			
2.63-139.29 Massive	nedum group	aget . Mad magnet		porthy carb sperty	Py	1		
	nedum greys	to greene with	Cabries 70-25 FA.					
				epidate				
	w/m crowded_A		Massive with low	weak corbonate	sporse fine dimen.			
with Rocal - Rocalt		wgite phenocrysts	density of 40-70 CA	mainly variateto. Sporth	Py. "			
igite Porphyny Basalt	Local anyodal		carb veinlets (acol	epidole after phenes				
	, med. magaceter 6	lecal negrepte	epidate.	-angelales Pakhy				
	, sich patches to	I'mm.		magnetze.	· · · · · · · · · · · · · · · · · · ·			
400	-139-21 COH				· · · · · · · · · · · · · · · · · · ·			
	· · · · · · ·							
	···.							
		····			····			
		<b>-</b> *			···			
	······································		<u> </u>	· · · · · · · · · · · · · · · · · · ·		<b>}</b>		
			<u> </u>		·····			
		·····					· · ·	
		<u>18</u>	· ·		·	<b>├</b> ──	•	
			<u>-</u>		· · · · · · · · · · · · · · · · · · ·	1		
i i		· · · · · · · · · · · · · · · · · · ·				1	·	
					<u> </u>			
		······································				<u> </u>		·
				1	÷	1	<u>├</u> ────	
						<u> </u>		l

KAMLOOPS GEOLOGICAL SERVICES LTD.

DATE: Oct. 18 , 200 / ....

## DIAMOND DRILL HOLE NO. ND 2001-13

SAMPLE	FROM	ТО	LENGTH	Au	Cu	Ag	Мо
NO	(m)	(m)		ppb	ppm	ppm	ppm
3151	21.00	22.10	1.10	<5	194	0.3	5
3152	28.36	30.00	1.64	10	221	0.2	<1
3153	30.00	31.00	1.00	15	246	0.4	<1
3154	31.00	32.00	1.00	10	433	0.4	6
3155	37.43	38.41	0.98	<5	58	0.2	<1
3156	39.90	41.20	1.30	<5	136	0.2	<1
3157	44.50	45.40	0.90	<5	57	0.2	243
3158	53.23	54.23	1.00	<5	101	0.3	2
3159	60.04	61.32	1.28	25	58	0.3	4
3160	61.32	62.17	0.85	<5	71	0.2	<1
			0.00				l l
3161	62.17	63.67	1.50	40	140	0.4	2
3162	63.67	65.00	1.33	5	109	0.2	2
3163	65.00	66.14	1.14	5	40	0.2	5
3164	66.14	66.60	0.46	5	308	0.2	2 2 5 4 2
3165	66.60	67.60	1.00	<5	76	<0.2	2
				ļ			
3166	67.60	68.97	1.37	<5	77	<0.2	1
3167	92.85	93.93	1.08	<5	135	<0.2	<1
3168	108.15	109.70	1.55	10	136	0.2	3
3169	126.94	127.95	1.01	<5	42	<0.2	<1

(

{

29-Oct-01

.

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

· .

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2001-372

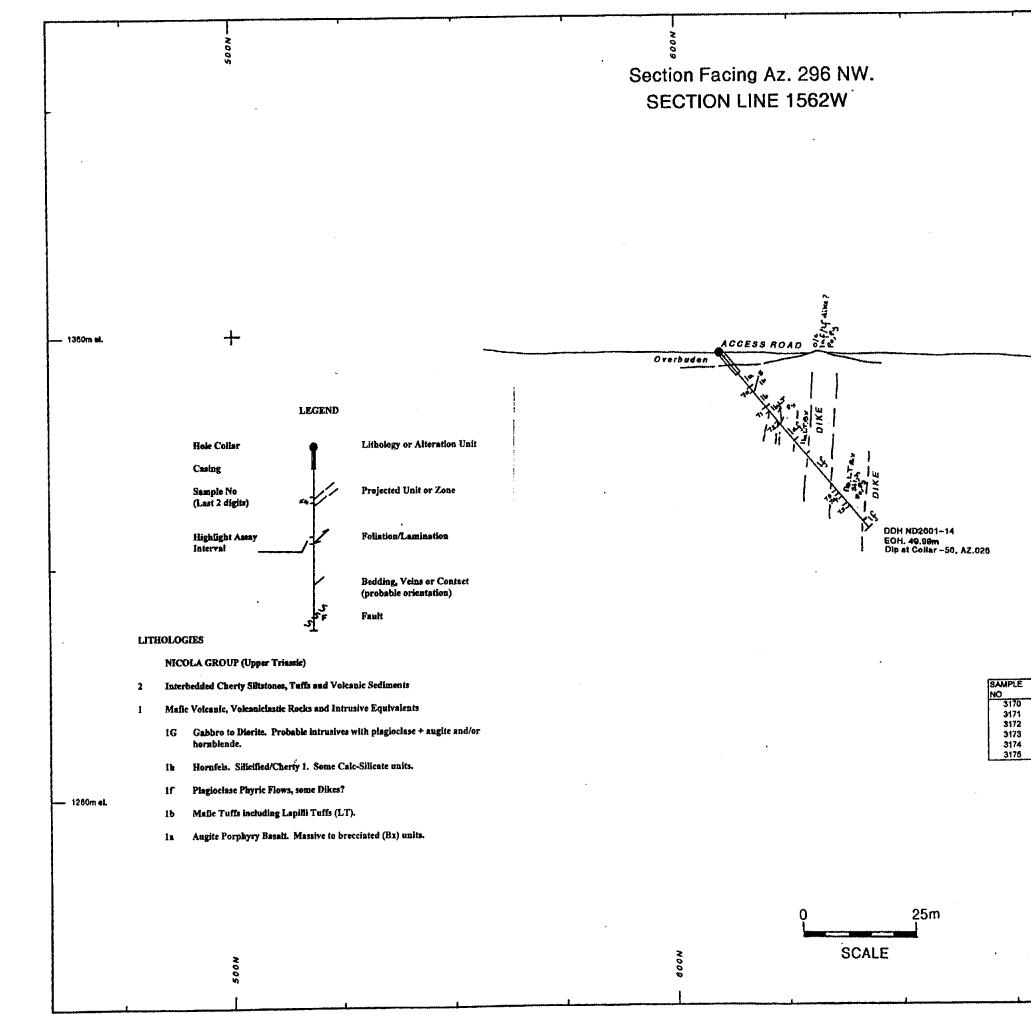
#### CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

#### ATTENTION: RON WELLS

No. of samples received: 19 Sample type: Core Project #: ND-2001-14 13 Shipment #: None Given Samples submitted by: Ron Wells

Values in ppm unless otherwise reported

-- - --


<u>Et #.</u>	Tag #	Au(ppb)	Ag	Al %	As	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	υ	v	w	Y	Zn
1	03151	<5	0.3	0.97	<5	60	<5	2.30	-1	35	110	194	3.57	<10	1.00	481	5	0.05	29	530	6	<5	<20	82	0.14	<10	27	<10	60	47
2	03152	10	0.2	0.70	<5	90	<5	2.29	<1	50	41	221	3.25	<10	0.60	307	<1	0.06	24	760	6	<5	<20	133	0.16	<10	2	<10	64	91
3	03153	15	0.4	0.44	<5	40	<5	2.86	<1	54	29	246	2.62	<10	0.35	211	<1	0.04	29	740	6	<5	<20	112	0.18	<10	17	<10	51	26
4	03154	10	0.4	1.39	<5	70	<5	2.57	<1	87	71	433	4.82	<10	1.38	429	6	0.04	63	920	10	<5	<20	230	0.19	<10	52	<10	28	43
5	03155	<5	0.2	0.69	5	30	5	3.51	<1	32	54	58	1.39	<10	0.68	311	<1	0.04	47	1420	6	<5	<20	175	0,10	<10	18	<10	23	15
6	03156	<5	0.2	0.86	<5	40	<5	2.02	<1	28	50	136	2.73	<10	0.85	400	<1	0.06	21	1300	а	<5	<20	67	0.12	<10	60	<10	25	71
7	03157	<5	0.2	3.84	5	165	20	1.60	<1	46	449	57	6.73	<10	5.09	908	243	0.02	282	1200	24	<5	-20	46	0.20	<10	81	<10	2	71
8	03158	<5	0.3	3.04	<5	80	20	4.28	<1	39	56	101	6.64	<10	3.98	1151	2	0.03	16	710	24	<5	<20	157	0.29	<10	314	10	30	87
9	03159	25	0.3	0.71	<5	75	10	5.70	<1	35	126	58	5.27	<10	3.51	1110	4	0.03	35	920	R	<5	-20	585	0.04	<10	162	<10	-30	
10	03160	<5	0.2	1.01	<5	195	10	7.57	<1	36	331	71	5.36	<10	4.97	1203	<1	0.02	114	1170	6	<5	<20	760	0.05	<10	246			71
					-			-					0.00			1200		0.02		,	v	·	~20	100	0.00	~10	240	<10	6	88
11	03161	40	0.4	1.53	<5	70	10	6.63	<1	45	340	140	6.45	<10	5.19	1353	2	0.03	101	1350	10	<5	<20	496	0.07	<10	260	<10	4	81
12	03162	5	0.2	1.32	<5	120	10	7.31	<1	50	310	109	6.33	<10	5.16	1532	2	0.03	86	1330	8	<5	<20	493	0.07	<10	220	<10	7	78
13	03163	5	0.2	0.90	<5	115	20	8.06	<1	43	254	40	6.26	<10	4.86	1427	5	0.03	58	1200	4	<5	<20	399	0.05	<10	187	<10	, 6	61
14	03164	5	0.2	2.05	<5	70	<5	6.31	<1	226	345	308	9.16	<10	5.38	1799	4	0.02	75	1310	12	<5	<20	229	0.08	<10	196	<10	<1	105
15	03165	<5	<0.2	1.96	<5	160	20	6.83	<1	44	362	76	6.77	<10	5.56		2		109	1430	10	<5	<20	263	0.08	<10				
													0.01		0.00	1010	-	0.01	100	1400		-0	~40	203	0.06	~10	232	<10	6	95
16	03166	<5	<0.2	1.38	<\$	70	10	7.68	<1	43	276	77	5.93	<10	4.79	1121	1	0.02	84	1210	10	<5	<20	335	0.05	<10	210	<10	7	67
17	03167	<5	<0.2	2.15	<5	70	10	3.72	<1	44	296	135	5.11	<10	2.86	717	<1	0.03	55		16	<5	<20	191	0.18	<10	90	<10	16	
18	03168	10	0.2	2.53	<5	105	15	6.71	<1	50	203	136	7.86	<10	3.64	1759	3	0.02	40		20	<5	<20	198	0.18	<10	210			44
19	03169	<5	<0.2	2.65	<5	155	15	4.39	<1	43	363	42	5.93	<10	3.68	862	<1	0.03	99	1710	20	<5	<20	141				<10	6	88
		-			-								0.00	-10	0.00	004		0.05	55	1110	20	-0	~20	141	0.19	<10	129	<10	21	58

CHRIS	TOPHER	JAMES GOI	D CO	RP.						ŀ	CP CEI	RTIFIC	ATE O	F ANA	LYSIS	AK 20	01-372	2						I	ECO-TE	CH LA	BORA	TORIES	S LTD.	
Et <i>#.</i>	Tag #	Au(ppb)	Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %_	Mn	Mo	Na %	Ni	P	РЬ	<u>Sb</u>	Sn	Sr	Ti %	U	v	w	<u>Y</u>	Zn
QC_DA Respli 1		5	0.2	0.9 <del>9</del>	<5	70	<5	2.35	<1	38	110	197	3.81	<10	1.00	500	5	0.05	30	570	10	<5	<20	82	0.14	≺10	17	≺10	59	53
<b>Repea</b> 1 10	t: 03151 03160	<5 <5	0.3 0.2	0.99 1.02	<5 <5	60 200	5 15	2.40 7.56	<1 <1	36 36	116 339	192 70	3.70 5.55	<10 <10	1.00 5.01	490 1208	<b>4</b> 1	0.05 0.02	31 116	550 1180	8 6	<5 <5	<20 <20	82 770	0.14 0.05	<10 <10	40 257	<10 <10	63 5	51 101
Standa GEO'0			1.2	1.77	60	155	5	1.60	<1	19	56	84	3.62	<10	0.92	675	<1	0.02	20	730	22	<5	<20	59	0.11	<10	65	<10	23	75

FP/kk df/367 XLS/01 cc: ron wells fax @ 372-1012

ECO-TECH ABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer 0

Page 2



			1360m el,
D	IAMOND DRILL HOLE NO. ND 200		
	(m) (m) ppb ppm 9.38 10.38 1.00 <5 150	Ag ppm <0.2 0.3	Mo ppm <1 <1
1 3	5.00 16.20 1.20 <5 215 8.12 19.85 0.73 5 79 8.71 39.71 1.00 5 78 8.71 40.71 1.00 <5 31	<0.2 <0.2	7 <1
	1.75 43.28 1.53 10 49		
	•		1260m el
	CHRISTOPHER JAME		
	SILVER LAKE PR KAMLOOPS MINING		=RIY on
		<b>***</b> **********	
	DRILL PROFILE: DI SECTION 156		2001–14
•	DATE: PREPARED BY: 15/12/2001 R.c. Will		Fig.31
	KAMLOOPS GEOLOGICAL SEP	RVICES	[

## SILVER LAKE PROPERTY NEW DISCOVERY GRID

DH NO. ND 2001-14						PAQ	GE NO. 1
	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
MAIN UNITSGL	SUB UNITS				FROM	TO	NUMBER
= 5 18 Casing in Till -	0-3:46 Overburden Sandy clay till			· · · · · · · · · · · · · · · · · · ·			
od weathered Bedrack	with cobbles pebbles			·····			
16-9.38 Augite	Fairly massive, green-grey, fine	Eastly numerous	Polichy week periosu	local small			
sphyry- Mapie Tup. 1		penerolly v. fine	carb. Fine would	clusters of for alto			
	Argite phenocasts 1=3mm Here	corts epid veraleta	epidate, cash.	Cubic Py-Local fine			
1. The second second second second second second second second second second second second second second second	are commonly altored Possibly	corts epid werelets 30-60 Ch Corol bords		By verslets. Averge			· · · · · · · · · · · · · · · · · · ·
38-11-33 silicified	Similar size littic clark. Monnagel greenish frey fine grained cryde bodded - Fine fur at the lapilli at base. Obscured taxtures.	Bedding 40-45'CA	silicipial, sports call				
rolely bedded tuff, "	bodded Fine ( of at top legilli at	local 65 banding BX	George pid + chi	Local clusters of	9.38	10-38	03/70
aprilie toff	6052. 06scured taxture.	Secaline. Face Deinters	along fractures.	fine dissem by upto			
-33-15.00 Massine	Darker greenish grey, masure and	Local suggested can	weak carb y eaid	T' ganerally 1-2%			
nafie Tup.	fine grained	bedding 40-45 CA	mainly reinlets	1-2% fm Bynte local			
500-19 12 Mamx	Medium greens; penely sorted men.	My Y condo winters	Fairly chloritic	cubes dusin and blabby along culeta	15.00	16.20	6.517.1
upported Lepilli Tuffs	Scale littin ash to 3em menter	Muthers fix ventets Inclicates epide of constants conder	weak carb & epid.	2.50 fine demen and windle Py (porting).			······
	Capille Mainly ash composition Field	CANETA 4 10 J		varalle P5 (potting).		· ·	
12-19.15 Dark chloritie 7	Contilli Mainte och composition Frie grandet faitly thistic obn nyretie motion Frie grandet chileritie locally contented	store Chia/61 nic	strong dk. chi. ite	Patcher 1-2% day	19:12	19.85	03172
12-19.15 Dark Chlorite	conterted	May be conse by?	patchy carb some gtg	proised dimen P.			<u></u> _
1.02-W112 /			weak worstet	lacally cubic			·
(Bosalt?)	Madium grozene, fine grained with patrix augite phonorythes 1-3mm, Local phone to the 12 mm, Local grante convolad won magnetic.	carb epid local Py	related alteration				
	a quite counced . Non magnetic.	chilles, beet 35-45 C	chloritic matrix	Local fine cluste			
14.92-28.50 Coarse 2	A A A	1641-4 COTA SMARS	weak patchy epid,		1	ł	1
Lapalli Tuff - Breecia	0 food, sorted angular clost upto 2000 Daniely lawilli size profesiths include County porgh angue plat paral and	angle CA fine corb	Carb naish winter	Average 12 upto 3%			
Heterolithic 9	Tupes. Fine chloritic matrix (supported)	epid. local by viile	weak patchy		ł	<b>_</b>	
18 50-3610 Fine 10	, massive with chilled marries.	massive with		Sparce fine dimen			
aldspor Porphyny - "	hight to need green grey, fine	innable v. fine	Veinlets	P.	<b></b>		ļ
Mafic Dike	grained with white feed latter	epid I carb with			<u> </u>	1	
<u>۲</u>	Local chloritized angite 1-2mm	ZO-60CA.			· -··	1	
L	, weak to win name	35-64-36.10 chl. Shear 25 CA					
L L	ø	Shear as CA			1		<b> </b>
36-10-47-54 Silicified	12 As at \$4.92 though fine to	NUMBOUS Ling	Siliceous thoushaw	Pathy fine drosen		1	[
Lapilli Tuffe	A med one was laville habit	ate, ste-cate call	(herefels!) mintet		38.71	39.71	A 7 17-
	coloured in find grained green nation	Phy vointeto		local fice Po aggregat		40.71	03173

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY Rec. Lastle

DATE: October 18, 2001.

## SILVER LAKE PROPERTY NEW DISCOVERY GRID

DH NO. ND 2001-							PAC	GE NO. 2
		ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	
MAIN UNITS	GL	SUB UNITS				FROM	то	NUMBER
	6	Least from lg 1. Hard checkfailiceans (hompeld) Near to weak patchy nogochim	manable angle CA		Med. ground more			
	pğ	Hard checky siliceous (hompeld)	basically a fine		Cubic Py	41.75	43.28	03175
	CS.	Non to weak patchy regardin	wainlet stockwork	·		7		
	5000 V		some when					
	10		9to we relet					
17.54-49.98 Dark		Dack grey fine grained, white	Numerous fine	Patchy permesuie w/m corbonate (no file hematic winkles	Saara fine			
Mapic (Bosalt) Dike	ſ	feldspor physic shorp upper contain 49.98 EDH (Similar to 28.50 m)	carb. vaialeto	w/m carbonate (uco	dimen P.			
• • •	╡──	49.98 EDH (Similar to 28.50m)	pariable angles ( A.	fine heretite jointels				
		weak mayneti		0				
	1							
		· · · · · · · · · · · · · · · · · · ·						
			·					
		·						
								····
	1							_
								· · ·
	1							
	1							
					·	-		
					·		ł	···
				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			······
								_
					·····		t	
							<u>†</u>	
						1	t	
						†	<u> </u>	
						┨┛╌───	╂	
		, <u>, , , , , , , , , , , , , , , , , , </u>		1	<b> </b>		1	l

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: Reader for the

DATE: OLE 18, 2001.

## DIAMOND DRILL HOLE NO. ND 2001-14

SAMPLE	FROM	то	LENGTH	Au	Cu	Ag	Мо
NO	(m)	(m)	(m)	ррб	ppm	ppm	ppm
3170	9.38	10.38	1.00	<5	150	<0.2	<1
3171	15.00	16.20	1.20	<5	215	0.3	<1
3172	19.12	19.85	0.73	5	79	<0.2	7
3173	38.71	39.71	1.00	5	78	<0.2	<1
3174	39.71	40.71	1.00	<5	31	<0.2	<1
3175	41.75	43.28	1.53	10	49	<0.2	<1

,

,

29-Oct-01

#### ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

#### ICP CERTIFICATE OF ANALYSIS AK 2001-375

#### CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

#### ATTENTION: RON WELLS

No. of samples received: 6 Sample type: Core Project #: ND 2001-14 Shipment #: None Given Samples submitted by: Ron Wells

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	Al %	As	Ba	Bi (	Ca %	Cd	Co	Cr	Cu	Fe %	La	Ma %	Mn	Мо	Na %	Ni	P	РЬ	Sb	Sn	Sr	TI %	п	v	<b>1</b> 47	v	7
1	03170	<5	<0.2	1.50	<5	25	10	1.01												-			_			_	•			20
		=			-	40	. –											0.05	10	750	- 14	<5	<20	29	0.24	<10	31	<10	42	38
	03171	<\$	0.3	1.52	5	35	<5	3.61	<1	49	38	215	4.69	<10	1 26	508	e1	0.04	11	1420	4.4	~5	-20	67						
3	03172	5	<0 2	4.36	-5	115	20	4.20		-								0.04		1420	14	×0	×20	97	0.14	<10	60	10	18	48
<u> </u>			~V.4	4.00	~5	115	20	4.30	<1	40	63	79	9.42	<10	5.30	1362	- 7	0.02	35	580	26	<5	20	65	0.22	<10	220	<10	~1	250
4	03173	5	< 0.2	0.46	<5	25	<5	1.87	<1	15	60	79	1.43	~10	0.36													-10	~1	200
5	03174	-5	-0.0	0.40			-											0.05		680	6	<5	-20	70	0.10	<10	31	<10	21	16
5	03174	S0	<u.z< td=""><td>0.48</td><td>&lt;\$</td><td>100</td><td>&lt;5</td><td>2.49</td><td>&lt;1</td><td>11</td><td>63</td><td>- 31</td><td>1.34</td><td>&lt;10</td><td>0.39</td><td>314</td><td>&lt;1</td><td>0.05</td><td>9</td><td>620</td><td>A</td><td><b>ح</b>5</td><td>- 20</td><td>140</td><td>0.08</td><td>~10</td><td></td><td></td><td></td><td></td></u.z<>	0.48	<\$	100	<5	2.49	<1	11	63	- 31	1.34	<10	0.39	314	<1	0.05	9	620	A	<b>ح</b> 5	- 20	140	0.08	~10				
6	03175	10	<0.2	0.75	<5	30	5	2.44	<1	17	77																23	<10	17	- 17
•		10	· • • • • •	0.70		00		2.44	~ 1	17	- 11	49	2.13	<1Ų	0.75	420	<1	0.06	5	580	10	<5	<20	79	0.09	<10	34	<10	16	33
																											2.	-,•	.0	00

OC DATA:
<b>D</b> #4

<i>Resplit:</i> 1 03170	5 <0.2 1.46	<5 20	10 0.98	<1 29	41 14:	3 4.02	<10 1.28	375	<1 0.05	9 790	18	<5 <20	22 0.24	<10	24	<10	41	40
Repeat: 1 03170	- <0.2 1. <b>4</b> 6	5 20	10 1.02	<1 30	45 146	3 4.06	<10 1.28	382	<1 0.05	9 780	20	<5 <20	25 0.28	<10	27	<10	38	41
<i>Standard;</i> GEO'01	120 1.2 1.78	65 155	10 1.67	<1 21	59 8:	3 3.80	<10 0.92	701	1 0.02	23 760	24	5 <20	59 0.13	<10	58	<10	23	82

FP/kk df/367 XLS/01 CC: TON Wells fax @ 372-1012

ECO-TECH LABORATORIES LTD. Frank J. Pezzoli, A.Sc.T.

B.C. Certified Assayer