

ASSESSMENT REPORT

on

Gold Commissioner's Office VANCOUVER, B.C. Prospecting and Soil and Rock Sampling

of the

ALLENDALE PROPERTY

Alley 1 to 50 Mineral Claims

Osoyoos and Greenwood Mining Divisions,

British Columbia

NTS Latitude 49°23' N Longitude 119°21' W

Prepared for:

Santoy Resources Ltd. 900-475 Howe Street Vancouver, B.C. V6C-2B3

by:

David Mehner, P. Geo. 333 Scenic Drive Coldstream, B.C. V1B-2X3 GEOLOGICAL SURVEY BRANCH ASSESSMENT DEPORT

26

April 4, 2002

Page No.

TABLE OF CONTENTS	ii
LIST OF APPENDICES	. iii
LIST OF FIGURES	. iii
LIST OF MAPS	iii
SUMMARY	1
INTRODUCTION Location and Access Topography and Vegetation Property and Ownership	1 2 2
PREVIOUS WORK	. 3
GEOLOGY Regional Setting Property Geology	.4 .4 .4
GEOCHEMICAL SAMPLING Introduction Sample Preparation and Analysis Rock Sampling Soil Sampling	.6 .6 .6 .7
CONCLUSIONS	. 7
REFERENCES	.9

. Ĺ

L

.

ſ .

LIST OF APPENDICES

- Appendix A Statement of Expenditures Summary of Geochemical Results from Prospecting Grant Appendix B Appendix C Rock Descriptions of Prospecting Grant Samples
- Appendix D Rock Geochemical Results
- Appendix E Rock Descriptions

1

١.

۲.

Ł

- Appendix F Rare Earth Element Rock Results
- Appendix G Soil Geochemical Results
- Appendix H Statement of Qualifications

LIST OF FIGURES

After Page

Figure 1.	Allendale Property Regional Location Map	1
Figure 2.	Allendale Property Detailed Location Map	1
Figure 3.	Allendale Property Claim Map (1:50,000)	2
Figure 4	Allendale Property Regional Geology	
_		

LIST OF MAPS

Map 1.	Alley Property, Historical Work (1:10,000)	in pocket
Map 2.	Alley Property, Geology and Rock Geochemical Sampling (1:10,000)	in pocket
Map 3.	Alley Property, Soil Geochemical Sampling (1:10,000)	in pocket

SUMMARY

The Alley claims cover most of the 8 km. sq. Allendale, Eocene-aged, Coryell stock located east of Okanagan Falls in the south Okanagan Valley of BC. They were optioned in the spring of 2001 as a potential alkalic porphyry copper target with elevated gold and platinum group metals after a grab sample taken by the vendor returned 1.85 g/t PGE plus Au. An initial program of rock grab sampling of old workings, showings and pyroxenite boulders along roads returned highly anomalous values of up to 2.2 % Cu, 31.8 ppm Ag, 1048 ppb Au, 66 ppb Pt and 407 ppb Pd. A follow-up program included chip sampling of the Spoon showing, prospecting and rock sampling over the entire property and detailed soil sampling over the Spoon target along with soil sampling over widely spaced reconnaissance lines established over the western side of the stock. This work revealed the Allendale stock is composed largely of very fresh syenite. The zone of copper mineralization with elevated gold and platinum group elements appears quite limited and there is no indication of a hydrothermal alteration or mineralizing system associated with it

The most interesting target on the property as defined by geophysical and geochemical surveys of previous workers continues to be the low-lying, swampy bowl situated south of the known showings. Any future work on the property should be directed at this potentially mineralized and glacier eroded area. A short ground magnetometer and reconnaissance style IP survey conducted in winter months are recommended to test this area and identify potential drill targets for future testing.

INTRODUCTION

The Alley mineral claims cover a syenitic stock hosting copper mineralization in the south Okanagan region of central British Columbia. The claims were originally staked in early 2001 by Adam Travis who through the course of a Prospector's Assistance Grant, recognized the geological setting as being similar to other alkalic porphyry copper targets where enriched platinum group elements along with gold were being discovered. Following a short study and sampling program which yielded a sample grading 1.85 g/t PGE + Au from the old Spoon target (Appendices B and C), the claims were optioned to Santoy Resources Ltd. who carried out prospecting along with soil and rock sampling to assess the platinum group potential of the property.

The work was conducted during three separate trips to the property and included prospecting, reconnaissance style geological mapping and the collection of 58 rock samples and 200 soil samples. All known showings and workings both on and near the claims were visited and examined and a thorough review of all historical work was completed.

Field work was carried out by Clay Travis (sampler), Dave Mehner (geologist) and Adam Travis (geologist) on behalf of Santoy Resources Ltd..

Location and Access

í.

The Allendale property is situated along the plateau that separates the Okanagan Valley to the west from the Kettle River Valley to the east approximately 20 km south south-east of Penticton, B.C. in the south Okanagan (Figure 1). The claims are plotted on map sheets 82E/034 and 82E/044 and are centered approximately 1.5 km west of Allendale Lake at 1700 meters elevation. Co-ordinates are 49°23' N latitude and 119°21' W longitude (Figure 2).

Access is via 25 km. of well maintained logging road leaving Highway 97 at Okanagan Falls and heading east along Shuttleworth Creek for 20 km then north along Kilmer Creek towards Allendale Lake. From there a number of roads and trails on the property are negotiable with a pick-up truck.

Topography and Vegetation

In the west central part of the property, a northeast trending ridge acts as a divide, separating relatively gently to moderately rolling topography with predominantly moderate, north facing slopes to the north from a steep sloped, south-facing bowl to the south. Local rocky knolls and precipitous terrain are most often associated with the upper edges of the bowl-shaped topography on the south side of the ridge.

Elevations on the property range from 1860 meters above sea level atop the divide ridge to 1520 meters above sea level along Kilmer Creek in the southern part of the property.

The entire property is situated below tree line and aside from logged-out areas is covered by light stands of jack pine with spruce and alder common in the lowermost parts of the property. Swampy meadows occur in two areas along Kilmer Creek: around a small pond in the heart of the "bowl" feature situated at the headwaters of the creek and lower down towards the southern edge of the property.

Glacial overburden is widespread throughout the property but appears thickest at lower elevations, especially in low-lying areas along Kilmer Creek and on the north facing slopes north of the divide.

Property and Ownership

.

.

Ŀ.

The Allendale property is made up of the Alley 1-50, two post mineral claims located in the Osoyoos and Greenwood Mining Divisions (Figure 3). They include the following:

Claim	Mining Division	Tenure No.	Date Recorded	Due Date *
Alley 1	Osoyoos	383534	Jan 18-01	Jan.18-05
Alley 2	Osoyoos	383535	Jan 18-01	Jan 18-05
Alley 3	Osoyoos	383536	Jan 18-01	Jan 18-05
Alley 4	Osoyoos	383537	Jan 18-01	Jan 18-05
Alley 5	Osoyoos	383538	Jan 18-01	Jan 18-05
Alley 6	Osoyoos	383539	Jan 18-01	Jan 18-05
Alley 7	Osoyoos	383540	Jan 18-01	Jan 18-05
Alley 8	Osoyoos	383541	Jan 18-01	Jan 18-05
Alley 9	Osoyoos	383542	Jan 18-01	Jan 18-05
Alley 10	Osoyoos	383543	Jan 18-01	Jan 18-05
Alley 11	Osoyoos	383544	Jan 18-01	Jan 18-05
Alley 12	Osoyoos	383545	Jan 18-01	Jan 18-05
Alley 13	Osoyoos	383546	Jan 18-01	Jan 18-05
Alley 14	Osoyoos	383547	Jan 18-01	Jan 18-05
Alley 15	Osoyoos	383548	Jan 19-01	Jan 18-05
Alley 16	Osoyoos	383549	Jan 19-01	Jan 18-05

Table 1.Alley Property Claims

Claim	Mining Division	Tenure No.	Date Recorded	Due Date *
Alley 17	Osoyoos	383550	Jan 19-01	Jan 18-05
Alley 18	Osoyoos	383551	Jan 19-01	Jan 18-05
Alley 19	Osoyoos	383552	Jan 19-01	Jan 18-05
Alley 20	Osoyoos	383553	Jan 19-01	Jan 18-05
Alley 21	Osoyoos	383554	Jan 19-01	Jan 18-05
Alley 22	Osoyoos	383879	Feb 07-01	Jan 18-05
Alley 23	Osoyoos	383880	Feb 07-01	Jan 18-05
Alley 24	Osoyoos	383881	Feb 08-01	Jan 18-05
Alley 25	Osoyoos	383882	Feb 08-01	Jan 18-05
Alley 26	Osoyoos	383883	Feb 10-01	Jan 18-05
Alley 27	Osoyoos	383884	Feb 10-01	Jan 18-05
Alley 28	Osoyoos	383885	Feb 10-01	Jan 18-05
Alley 29	Osoyoos	383886	Feb 10-01	Jan 18-05
Alley 30	Osoyoos	383887	Feb 10-01	Jan 18-05
Alley 31	Osoyoos	383888	Feb 10-01	Jan 18-05
Alley 32	Osoyoos	383889	Feb 10-01	Jan 18-05
Alley 33	Osoyoos	383890	Feb 10-01	Jan 18-05
Alley 34	Osoyoos	383891	Feb 10-01	Jan 18-05
Alley 35	Osoyoos	383892	Feb 10-01	Jan 18-05
Alley 36	Osoyoos	383893	Feb 10-01	Jan 18-05
Alley 37	Osoyoos	383894	Feb 10-01	Jan 18-05
Alley 38	Osoyoos	383895	Feb 10-01	Jan 18-05
Alley 39	Osoyoos	383896	Feb 10-01	Jan 18-05
Alley 40	Greenwood	383897	Feb 10-01	Jan 18-05
Alley 41	Greenwood	383898	Feb 10-01	Jan 18-05
Alley 42	Greenwood	383899	Feb 11-01	Jan 18-05
Alley 43	Greenwood	383900	Feb 11-01	Jan 18-05
Alley 44	Greenwood	383901	Feb 11-01	Jan 18-05
Alley 45	Greenwood	383902	Feb 11-01	Jan 18-05
Alley 46	Greenwood	383903	Feb 11-01	Jan 18-05
Alley 47	Greenwood	383904	Feb 11-01	Jan 18-05
Alley 48	Greenwood	383905	Feb 11-01	Jan 18-05
Alley 49	Greenwood	383906	Feb 11-01	Jan 18-05
Alley 50	Greenwood	383907	Feb 11-01	Jan 18-05

* due date after grouping and filing this report

The claims are owned by Santoy Resources Ltd. with offices at Suite 900, 475 Howe Street, Vancouver, B.C. V6C 2B3.

PREVIOUS WORK

6

.

÷

.

ŝ...

1

i.

L

The first record of copper mineralization being discovered in the area was in 1966 when R.W. McLean and K.G. Ewers staked the Lynx claims over a showing 1.25 km west of Allendale Lake. These were

optioned to General Resources Ltd. who reportedly spent \$25,000 on trenching and access road construction. In 1968 Gunnex Ltd. optioned the property and completed detailed soil geochemical and ground magnetometer surveys over the main mineralized area. This was followed by Selco Exploration Co. Ltd. who optioned the property in 1971 and then carried out limited IP geophysical survey work before drilling 2 holes. The results were low and the option dropped. From then until 1981 when Knie Resources carried out an assessment of the Moon and Dick claims no work is recorded in the area.

In 1982 Allendale Resources acquired the property and drilled 5 holes. Kerr Dawson and Associates were hired to log the core and on the basis of their recommendations 44 km of widespread grid soil geochemical sampling along with ground magnetometer and IP surveys were carried out in 1983. Five targets for follow-up drill testing were defined but never tested.

In 1986 Noranda Exploration Co. optioned claims in the area and conducted further recce. style soil geochemical sampling. Results were poor and the option dropped.

Yukon Minerals Corp. optioned all claims in the area in 1989 and carried out limited geological mapping, geophysical surveys and diamond drilling before dropping the option.

A compilation of most of this previous work is plotted on Map 1.

GEOLOGY

ć.

١.

ŝ.

L

1 · · · ·

į.

ι

ŗ

L

Regional Setting

The focus of the Allendale property is an 8 sq. km., elliptical shaped, Eocene aged, Coryell, alkalic stock (Figure 4) which has intruded schists and gneisses of the Eocene(?), Okanagan Gneiss and granitic rocks of the Creatceous and/or Jurassic Okanagan Batholith and hornblende granodiorite of possibly Eocene age (Templeman-Kluit, 1989).

Property Geology

Lithologies:

On the property, the oldest rocks are schists and gneisses which were originally mapped as Proterozoic but most recently dated as Eocene. These rocks which outcrop in the extreme south and southwest corners of the claim group (Map 2) form the western boundary of the Allendale Stock.

Within the Alley claims, most of the Allendale Stock is composed of medium to coarse grained, dark grey, hornblende-biotite syenite composed primarily of orthoclase feldspar crystals 1 to 3 cm in diameter with 5-10% interstitial mafics, usually as biotite clots. A subtle increase in mafic content to as much as 25-30% is evident in the southwestern part of the property however the relatively equigranular, homogenous nature of the syenite makes separation into meaningful units very difficult if not impossible. Apatite and magnetite are common throughout the syenite with magnetite content increasing to 3-5% in areas where biotite clusters occur.

At the Spoon showing, xenoliths of fine to medium grained, leuococratic syenite with sharp to partly assimilated contacts occur within the more common dark grey syenite. The xenoliths are up to 6 meters long but typically are in the order of 1 meter across. The origin of these inclusions which are spatially associated with the best mineralization on the property remains unknown.

Along the southwest portion of the stock where the mafic content of the syenite increases, a number of small outcrops of pyroxenite were mapped and have been identified as hornblende clinopyroxenites by Graham Nixon (pers. comm.). Numerous hornblende clinopyroxenite boulders have also been noted along the eastern side of the property mainly west of the southern portion of Allendale Lake.

Separating pyroxenites from older gneiss is a large outcrop of medium grained mixed or hybrid material having characteristics of both the syenite stock and gneiss. It appears this unit formed as a result of mixing and assimilation during emplacement of the Allendale Stock.

To the northeast, off the property but likely related to the stock are outcrops of medium grained, equigranular gabbro. Although limited in extent, these rocks along with the pyroxenites to the south west provide evidence that the Allendale stock is differentiated.

The youngest rocks on the property are fine-grained buff white to light grey granodiorite, granite or aplite that typically occur as dykes, sills and small discontinuous lenses that are too small to map. It is thought that they are related to the hornblende granodiorite of possible Eocene age.

Alteration:

Ĺ

Most of the Allendale Stock is very fresh with only weak, local propylitic alteration in the form of 1-2 mm thick filling along fracture faces and minor calcite veining scattered throughout the property. Secondary biotite has been noted adjacent to quartz-feldspar pegmatite dykes and blows but these are rare and isolated.

Mineralization:

L

The main focus of mineralization within the Allendale Stock is the Spoon showing where chalcopyrite and bornite occur as scattered grains within leucocratic xenoliths, usually within clots of mafic minerals. This mineralization appears to be primary magmatic. Additional chalcopyrite, bornite with minor pyrite occur along fractures (joint planes?) in both the xenoliths and syenite country rock. This mineralization appears to be remobilized and of very limited extent. Malachite is widespread along fractures and the bluff face.

A somewhat similar style of mineralization occurs around rock samples AR-03 to AR-06 about 550 meters west of the Antler showing. Here xenoliths of leucocratic syenite are associated with small minette dykes and leucocratic syenite dykes within typical fresh syenite. The mineralized zone is of very limited extent.

Elsewhere on the property, mineralization is restricted to very small fractures or shears, often associated with, late granitic to aplitic dykes. Normally mineralization consists of malachite, occasionally with specks of chalcopyrite or bornite.

Approximately 2.5 km northeast of the Spoon showing (off the property) trace amounts of fracture pyrite and chalcopyrite were noted in gabbro.

GEOCHEMICAL SAMPLING

Introduction

i

.

ŝ,

ъ

Rock samples which include grabs and chips taken from mineralized or mafic rich outcrops, large pyroxenite boulders and known showings were collected in plastic sample bags and secured with sure-lock straps. During the course of field work samples were stored in a house trailer during work in July and in a locked motel room at Okanagan Falls during work in October. At the completion of each work program the samples were shipped to Vancouver for analysis.

Soil samples were taken from a detailed grid established over the Spoon showing as well as from four reconnaissance style grid lines put in with a topo chain and compass to test the northern, western and southern portion of the Allendale Stock and its contact with the Eocene gneisses. The samples were taken from the "B" soil horizon wherever present and collected in Kraft paper bags. Prior to shipping to Vancouver for analysis, samples were hung and dried at room temperature for up to 4 days. Grid lines were located with a GPS.

Sample Preparation and Analysis

All rock and soil samples were analyzed by Acme Analytical Laboratories Ltd. in Vancouver, B.C. for platinum, palladium and gold assay and a 30 element suite by ICP-ES methods.

Soil samples were dried at 60 C and sieved to -80 mesh. Rock samples were crushed and reduced to 70% measuring -10 mesh. A 250 gram split of this material was pulverized to 95% at -150 mesh.

Each rock and soil sample was treated by fire assay then analyzed by inductively coupled plasmaatomic emission spectrometry (ICP-ES) for gold, platinum and palladium on a 30 gram sample. Detection limits are 2 ppb for gold, 2 ppb for platinum and 2 ppb for palladium.

Samples were also analyzed for a 30 element suite by leaching a 0.5 gram sample with 3 ml of 2-2-2-HCL-HNO3-H2O at 95 degrees C for 1 hour then diluting to 10 ml and analyzing by ICP-ES methods.

Rock Sampling

Initial rock sampling on the property was largely restricted to taking grabs and a few chips of known showings and old workings during site visits on June 25 and July 5 to 7, 2001 to determine to what extent platinum, palladium and gold mineralization occurred on the property. The initial results from this work were encouraging especially from the Spoon showing where samples 417276 to 417279 (Map 2) yielded values up to 2.2 % Cu, 31.8 ppm Ag, 1048 ppb Au, 66 ppb Pt and 407 ppb Pd. The combined Pt+Pd+Au values for sample 417276 are 1521 ppb (Map 2).

Somewhat lower but still elevated values were also obtained in sample C 114161 located about 600 meters west of the south end of Allendale Lake where values range up to 1.5 % Cu, 15.2 ppm Ag, 38 ppb Au, 1 ppb Pt and 106 ppb Pd. Lastly, sample C 114163 located about 600 meters northwest of the Antler showing yielded values to 0.76 % Cu, 13.7 ppm Ag, 103 ppb Au, 2 ppb Pt and 14 ppb Pd. A follow-up sampling program between Oct. 12 and 17 expanded the reconnaissance style grab sampling along roads and soil grid lines and included detailed 5 meter chip sampling of the

mineralized rock face at the Spoon showing. The results of this work which were not very encouraging indicate PGE and gold values occur in a very restricted area associated with erratic bornite mineralization. Values range up to 699 ppm Cu, 0.3 ppm Ag, 79 ppb Au, 4 ppb Pt and 17 ppb Pd.

Sampling of weakly mineralized gabbro 2.5 km. to the northeast returned similarly low values of 673 ppm Cu, 0.4 ppm Ag, 3 ppb Au, 2 ppb Pt and 3 ppb Pd.

Rock geochemical results are tabled in Appendix D and rock descriptions are in Appendix E. Five samples were also submitted for rare earth element analysis. These results are in Appendix F.

Soil Sampling

Detailed soil sampling on 25 meter spaced intervals over the Spoon showing was carried out in an attempt to trace mineralization away from the known showing (Map 3). The values are all low and range to 84 ppm Cu, 0.5 ppm Ag, 4 ppb Au, 4 ppb Pt and 4 ppb Pd (Appendix G). No orientation on the mineralization is discernable from this work.

Reconnaissance soil line 1700 N is a 2250 meter, east-west line put in below or south of previously identified Cu and Ag soil geochemical anomalies, a large magnetic low and induced polarization anomalies. Results from the line range up to 25 ppm Cu, 0.1 ppm Ag, 4 ppb Au, 4 ppb Pt and 3 ppb Pd.

To test the west-central portion of the property, lines 2800 N (1400 meters long) and 3200 N (1350 meters long) were put in. Line 2800 N covered previously identified Cu-Ag soil anomalies within a "probable" IP geophysical anomaly about 80 meters south of the Tessa showing. Values to 125 ppm Cu, 0.1 ppm Ag, 3 ppb Au, 5 ppb Pt and 4 ppb Pd were obtained. Line 3200 N which passes within 50 meters of the Antler showing covered a "definite to probable" IP geophysical anomaly and scattered Cu-Ag soil geochemical anomalies. Values, particularly for copper are slightly more elevated between 50 and 250 meters west of the Antler showing and correspond closely with previously identified Cu and Ag soil anomalies. Values range up to 264 ppm Cu, 0.4 ppm Ag, 21 ppb Au, 4 ppb Pt and 4 ppb Pd.

Line ALS, 1100 meters long tested the ridge about 1 km. north of the Spoon showing. Values from this line are low, ranging to 12 ppm Cu, 0.1 ppm Ag, 2 ppb Au, 3 ppb Pt and 5 ppb Pd.

CONCLUSIONS

Initial grab rock samples of chalcopyrite, bornite and malachite bearing syenite yielded elevated platinum, palladium and gold with strong copper values. Follow-up prospecting and geological mapping indicate the Allendale Stock contains differentiated pyroxenite, gabbro and syenite phases but all are fresh with no significant alteration. Rock chip and soil geochemical sampling show the anomalous values occur over a very restricted area and the prospect of finding a significant mineralized zone within it are limited.

Any further work conducted on the property should focus on the low-lying, swampy area that sits in the bottom of the bowl south of known mineralized showings. Previous geophysical and soil

geochemical surveys surround the area and identify it as a highly anomalous target that could be understain by altered and mineralized rocks obscured by glacial till.

Respectfully submitted,

nehnen

David Mehner, P. Geo.

April 4, 2002

REFERENCES

- Amemdolagine, E., 1982 Property prospecting and geologic observations on the Moon and Dick claims. Unpub. Rpt. For Knie Resources Inc.
- Cartwright, P.A., 1983, Report on the induced polarization and resistivity survey on the Allendale Lake Property. Assessment Report 12290.
- Church, N., 1971, Lynx, Late. Geology, Exploration and Mining in British Columbia, 1971.
- Gill, G., 1986, Geochemical survey on the Allendale Lake Property. Assessment report 15,466
- Kerr, J. R., 1982, Report on the Lynx, Cam and Fox claims. Unpub. Rpt. For Allendale Resources Ltd.
- Kerr, J.R., 1983, Summary report on the Allendale Lake Property. Unpub. Rpt. For Allendale Resource Corp.
- Mark, D.G., 1989, Summary report on geophysical surveys on the Power Project. Unpub. Rpt. for Yukon Minerals Corp.

Reed, L.E., 1971, Induced polarization survey, Allendale Lake area, Assessment report 3481

٦

ŝ,

÷

- Rose, K.C., 1968, Geochemical and geophysical report on the Lynx and Lata claims. Assessment Report 1741.
- Templeman-Kluit, D.J., 1989, Geological Map with mineral occurrences, fossil localities, radiometric ages and gravity field for Penticton Map Area (NTS 82E), Southern British Columbia; G.S.C. Open File 1969.

APPENDIX A

L

1.00

Г 1 1

ų,

£

Statement of Expenditures

STATEMENT · OF EXPENDITURES

۲ :

-

10 m l

-

.

۲ د

ŗ

1

L.

.

Υ.

į

ŝ,

i,

۲

Salaries	#C 033 04
Adam Travis (A. Travis Geologicai) – Geologist	\$5,833.04
Dave Mehner (Dave Mehner Geological Ltd.) - Geologist	2,621.50
Ron Nichols (Nichols Management Ltd.) – Supervision	
Accomodation and Food	
Meals and groceries	
Hotel	
Transportation	
Truck rental, gas, mileage (A. Travis Geological)	
Freight	
Sample shipping	
Geochemistry	
Acme Analytical Laboratories	
ALS Chemex	
Miscellaneous	
BCYCM Data Centre (Maps, Assessment reports)	
Field supplies	
Drafting Services	
Terry Lee (computer drafting contractor)	
Report Writing	
Dave Mehner (Dave Mehner Geological Ltd)	
TOTAL EXH	PENSES: 25,397.95

APPENDIX B

ŗ

* : .

4 -

.

,

`

.

. . .

ŝ.

۲. . . .

r . .

-

•

.

ς.

.

۲ ۱

Summary of Geochemical Results from Prospecting Grant

A0111082-CERTIFIED CLIENT : "TRAVIS, ADAM" # of SAMPLES : 7 A.JJK DATE RECEIVED : 28-JAN-2001 PROJECT : " " CERTIFICATE COMMENTS : "ATTN: ADAM TRAVIS"

975 976 977 ### 2119 2120 557 2121 2122 2123 2124 2125 2128 2127 2128 2150 2130 2131 2132 ### 2134 2135 2138 2137 2138 2139 2140 551 2141 2142 2143 2144 2145 2148 2147 2148 SAMPLE Au Pt Pd Ag Al в Be Bi Аь Ва Ce Cđ Co Cr Cu Fe Ge Hg к La Mg Μn Мо s Na Ni P Pb Sb Sc Т П w St U ν DESCRIPTIONppb ppb ppb ppm 0% ppm ppm ppm ppm ppm 0% ppm pom pom pom 0% ppm ppm 0% ppm 0% ppm ppm 0% ppm ppm ppm 0% ppm ppm 0% ppm ppm mgg mgg DOM 131701 4 <5 2 <.2 0.24 6 <10 40 <.5 <2 0.77 < 5 8 43 7 5.67 <10 <1 004 40 0.13 280 1 0.01 14 2990 2 <.01 <2 <1 73 0.04 <10 <10 155 <10 131702 <2 <5 <2 <.2 0.12 10 6 20 < 5 <2 0.77 <.5 58 6 7.49 <10 <1 9 0.03 40 0.1 225 <1 0.01 16 2980 4 <.01 <2 <1 66 0.03 10 <10 207 <10 131703 <2 <5 <2 <.2 0.21 <2 10 40 <.5 <2 0.55 <.5 17 6 3.47 <10 <1 5 006 20 011 165 <1 0.01 6 2030 2 <.01 <2 <1 53 0.03 <10 <10 94 <10 131704 4 10 8 < 2 0.97 2 <10 90 05 <2 08<5 9 18 29 3 25 <10 <1 0.06 10 0.53 935 <1 0.01 8 2400 12 0.02 <2 3 58 0.03 <10 <10 88 <10 131705 10 <5 <2 <.2 0.94 4 <10 80 <.5 <2 0.48 < 5 10 29 15 2.59 <10 <1 0.12 <10 0.56 295 <1 0.03 18 700 6 0.01 <2 41 0.06 <10 <10 2 83 <10 131706 2 16 <2 <.2 0.59 2 <10 60 <.5 <2 037 < 5 0 07 <10 0.41 220 10 46 11 413 <10 <1 1 0.02 17 800 6 <.01 <2 1 27 0.07 <10 <10 164 <10 131707 <2 <5 <2 <2 0.1 2 10 10 < 5 < 2 0.68 < 5 7 28 4 5.7 <10 1 0.02 30 0.07 175 <1 D.01 8 2690 <2 <.01 <2 <1 52 0.02 <10 <10 159 <10

A0111083-CERTIFIED CLIENT : "TRAVIS, ADAM" # of SAMPLES : 10 DATE RECEIVED : 26-JAN-2001 PROJECT : " " CERTIFICATE COMMENTS : "ATTN. ADAM TRAVIS"

975 976 977 2118 2119 2120 557 2121 2122 2123 2124 2125 2128 2127 2128 2150 2130 2131 2132 2151 2134 2135 2136 2137 2138 2139 2140 551 2141 ### 2143 2144 2145 2146 2147 2148 SAMPLE Au Pt Pd Aa AL As B Ba Ře. Bi Ca Cd Co Cr Cu Fe Ge Hg к La Ma Mn Мо Na Mi P Ph - 8 Sb Sc Sr Ti п 11 V w DESCRIPTION ppb ppb ppb **Ppm** 0% ppm ppm ppm ppm ppm 0% ppm ppm ppm ppm 0% ppm ppm 0% ppm 0% ppm ppm 0% ppm ppm ppm 0% opm ppm ppm 0% ppm ppm DOM DOM 126608 <2 <5 <2 0.2 1.73 6 <10 2010 < 5 2 4.27 < 5 26 68 24 2.43 10 <1 1.21 100 3.18 325 <1 0.16 114 >10000 B 0.03 <2 4 766 0.13 30 <10 81 <10 126609 < 2 <5 <2 0.2 2.16 12 <10 1700 0.5 <2 4.05 0.5 23 80 21 3.98 10 <1 1.23 80 2.76 430 <1 0.3 76 >10008 6 0.01 <2 7 873 031 20 <10 148 <10 126610 <2 <5 <2 02 0.26 <2 <10 40 < 5 <2 0.08 <.5 <1 87 2 0.46 <10 <1 0.19 <10 0.03 60 <1 0.05 2 10 6 <.01 <2 <1 19 <.01 <10 360 5 <10 126611 4 <5 4 <.2 270 < 5 1.14 4 <10 6 1.15 <.5 15 30 165 3.77 10 <1 1.06 80 1.41 420 1 0.08 21 4060 24 <.01 1 127 10 <10 115 <10 2 8.25 120012 696 196 \$26 4 0.42 6 <10 80 8 2.31 <.5 1 3060 6 44 1.# <10 <1 0.24 110 0.79 300 2 0.1 7120 17 28 0.07 <2 4 150 0.05 30 <10 42 <10 126613 . - 64 1.38 <2 <10 4.8 <.2 210 0.5 4 5.12 1.5 28 25 467 8.01 10 <1 0.53 10 1 72 1245 <1 0.14 15 7000 4 0.03 <2 18 261 0.18 <10 <10 322 <10 126814 4 H < 2 0.83 6 <10 40 1 2 3.68 1.5 18 31 290 8.72 10 <1 0.13 <10 1 04 980 1 0.11 9 4850 8 0.02 <2 9 201 0.18 <10 <10 **332** <10 126615 <2 10 8 < 2 0.23 <2 <10 10 < 5 18 0.07 < 5 84 398 з 4.8 <10 <1 0.13 <10 >15.00 545 <1 <.01 1610 <10 -2 0.08 < 2 5 3 <.01 <10 <10 21 <10 126616 <2 <5 2 < 2 7 34 <2 <10 930 1 24 0.03 < 5 53 802 <1 472 30 <1 5.93 <10 10.55 500 <1 0.31 747 <10 8 <.01 <2 11 15 0.14 <10 30 88 10 120817 <2 25 8 .2 0.92 <2 <10 90 < 5 12 0.07 < 5 60 533 8 289 <10 <1 0.74 <10 10 45 425 <1 0.03 1316 20 2 01 <2 5 6 001 <10 <10 18 <10

APPENDIX C

1.1

Ŀ,

٩.

,

.

.

,

.

,

÷.

-

۰ .

.

.

ŝ,

۔ د

•

•

5

Rock Descriptions of Prospecting Grant Samples

Prospector Grant 2000 - Adam Travis Sampling

en en anter a server en entre en entre a server a server a server a server a server a serva entre a serva entre

Sample #	Туре	Date	Location	Remarks								
126601	Rock Chip	June 11	Bendelin Creek	Fw Zone qtz-pegmatite dyke, rusty sheared, moly < 2 cm- 1m chlp								
126802	Rock Chip	June 11	Bendelin Creek	central "buck" quartz core- 1 m chip								
126603	Rock Chip	June 11	Bendelin Creek	Hw, pegmatoidal phase, Musc, garnet, moly- 1 m chip								
126604	Rock Float	June 11	Bendelin Creek	2 km up from bridge, below Jim Logan showing, qtz float								
126605	Rock Float	June 11	Bendelin Creek	spur road across creek + west of final post, qtz float								
126606	Rock Grab	June 12	Honey claims	99JL005-66 also, qtz veined stokwrk intrusive								
126607	Rock Grab	June 12	Honey Claims	north switchback rd, qtz veined sed in road cliff								
125608	Rock float	Jan. 13	Allendale Lk.	250 m from lake, med-cree grained bio-qtz monzonite								
126609	Rock float	Jan, 13	Allendale Lk.	1 km south of lake, (22.2 km mark), pyroxene cumulate monzonite								
126610	Rock float	Jan. 13	Allendale Lk	4.2 km south of lake, large boulder of pegmatite cutting gnelss								
126611	Rock float	Jan, 14	Allendale Lk.	24 km marker west of lake, feldspar cumulate monzonite								
126612	Rock grab	Jan. 14	Allendale Lk.	Spoon showing, attempt to get mail. staining on cliff, pyroxenite								
126613	Rock grab	Jan. 15	Elk 7	magnetic, f.g hombiendite, minor pyx, trace po+cpy ?								
126614	Rock float	Jan, 15	Elk 7	talus float from cliffs down to lake edge, mafic volc?								
126615	Rock float	Jan. 15	Elk 3	boulder beside railway grade near Elk 3, mafic volc, homblendite								
126616	Rock Grab	Jan. 16	Shuttleworth As.	nearly 100% blotite as lens in peridotite								
126617	Rock Grab	Jan. 16	Shuttleworth As.	average peridotite, some anthophyllite alt'n								
131701	silt	Jan. 13	Kilmer Creek	drains Allendale becomes Shuttleworth, taken at Ok Falls FS road								
131702	panned silt	Jan. 13	Kilmer Creek	panned of 131701 to ~ 1/10 of original 3 kg								
131703	sitt	Jan, 14	Shuttleworth	just below canyon, 2 km road marker, near 1918 Platinum ??								
131704	sit	Jan. 15	Hali Creek	300 m's south of Arlington Lake, drains area of Elk 7 and 3								
131705	silt	Jan. 15	Hall Creek	at Hall Creek rest stop on Hwy 33, drains Minfile showings								
131706	panned silt	Jan. 15	Hall Creek	panned 131706 to ~ 1/10 th original size								
131707	panned slit	Jan. 15	Shuttleworth	panned sample of 131703								

APPENDIX D

Rock Geochemical Results

-

From ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 @ CSV TEXT FORMAT To Santoy Resources Ltd. Acme file # A101984 Received: .ILL 4 2001 * 9 samples in this disk file

in the second second second second second second second

	10190-	nece	nveu.	JUL 4	2001	¥ 58	ampies	s in this	s aisk	ne.																							
ELEMENT	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	P	La	Cr	Mo	Ba	ті	R	Δt	Na	к	w	Au++ C	3e**	Ddee
SAMPLES	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	maa	DDM	maa	ppm	%	%	nnm	000	····9	nnm	%	nnm	04	140		2000		-L	nnh
417276	< 1	17293	15	41	22.3	29	9	519	1.7	4	. 8	<2	97	236	0.5	< 3	8	55	5 75	1 778	654	24	1 00	63	0 03	2 3 2 3	^0 A	∩ 11	0.20	- 2	1010	ee ee	407
417277	1	13883	35	52	22.1	43	14	235	1.8	2	< 8	< 2	27	77	0.5	4	< 3	54	0.83	0.332	109	40	0.6	251	0.00	10	0.4	0.1	0.23	22	1040	~ 0	407
417278	2	22474	13	25	29.7	32	6	157	1.8	3	< 8	< 2	11	639	0.5	< 3	5	47	0.98	0.285	104	31	0.0	370	0.14	7	1.12	0.1	0.00	~ 2	10 1	~ 4	111
417279	1	21117	34	38	31.8	40	12	207	2.1	< 2	< 8	< 2	22	111	0.3	6	8	53	0.84	0.314	123	20	0.51	276	0.14	, 0	0.00	0.29	0.37	5 Z 2 D	90	2	111
417280	33	6482	11	52	2.2	228	118	146	9.2	< 2	< 8	< 2	7	167	<.2	6	Š	37	0.83	0.261	140	20	0.00	210	0.10	0 ¢	1.00	Q.1	0.52	< Z	41	8	113
417281	< 1	2509	11	151	3.8	68	26	775	9.9	< 2	15	< 2	170	151	13	< 3	< 3	308	3.01	0.891	541	118	1.24	460	0.07	2	1.0	0.12	0.10	~ 4	15	3	13
417282	< 1	60	< 3	61	< .3	65	22	523	4	< 2	< 8	< 2	5	584	0.8		د ع	168	1 00	0.001	115	66	7.04	102	0.04	د ج	1.04	0.12	0.87	< Z	33	9	19
RE 417282	< 1	55	3	59	< .3	62	22	510	3.8	4	< 8	< 2	5	558	n q	3	- 3	150	4.53	0.703	110	60	2.00	400	0.07		2.07	0.6	0.58	< 2	< 2	< 2	< 2
STANDARD	27	67	34	172	6	40	11	791	34	58	23	2	21	26	23	16	76	86	9.57	0.001	17	470	2.12	400	0.05	5	1.96	0.58	0.55	< 2	< 2	< 2	2
STANDARD	< 1	1	< 3	38	<.3	9	4	550	21	< 2	< 8	< 2	5	65	0.2	~ 3	~ 3	44	0.00	0.000	זו יד	172	0.59	147	0.09	22	1.8	0.04	0.16	16	495 4	72	496
			•			•	-	000	<u>~</u> .,	• 🖛	. 0	- 2		ψŲ	0.2	~ 3	~ 3	44	V.04	0.090		82	0.6	Z24	Ų.15	- 4	0.92	0.07	0.47	2	0	0	0

(1) F. 103 (F. 1996) (F

γ i

.

· · · · · · · ·

ACME ANALYTAU (ISO 9002 AA	Ac	LA cred	AT	d C 3an	toy	Т <u>R</u> е	<u>eao</u>	<u>urc</u> 900 -	5∡ ⁷ 1 GE <u>es</u> 475	S. n OCH Ltc Howe	лз) IEM <u>I.</u> St.	IIC PR(AL DJE	ANI	VAN ALY: Al:	lor SIS	С da	ER: le	rifi Lal		Ro E Fil	le Je	Рно. # А	иж (6 102	04	453 	-31 -	58.1	PAX () ≡ ,8∪4) 25 3	-]7	15 ¹
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Min ppm	Fe %	As ppm	U meqe	Au ppm	Th ppm	sr Ppm	Cd ppm	Sb ppm	Bi ppm	V mqq	Ca %		La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	W /	Au** I ppb	>t** ppb	Pd** ppb
N 417283	2	23333	471	69	42.8	45	20	451	4.08	2	<8	<2	34	75	<.2	<3	6	106	80	285	92	32	1 07	376	16	4	1 26	no	97	2	17	-7	37
N 417284	<1	65	11	66	.3	153	33	484	4.05	3	<8	<2	4	752	2	<3	3	145	5.28	1 045	174	112	3 7/.	4057		~7	2 /0	20	1 07	2	''z	~2	-2
N 417285	<1	47	17	99	<.3	311	58	976	5.22	4	<8	<2	17	1490	3	<3	ž	37	9.20	2 061	371	88	6 60	8027	.03	ر. ۲	2.40	1/	47	<u>,</u>	د ۲	č	-2
N 417286	<1	32	19	134	.3	28	12	625	3.42	<2	<8	<2	15	174	.2	<3	-3	87	2 61	344	86	56	1 17	162	17	.7	-70	. 14	.0/	7	ں در		×2
N 417287	<1	2878	16	118	3.0	45	21	529	4.67	3	<8	<2	12	135	<.2	<3	6	152	2.04	.399	247	53	2.16	479	.05	6	1.49	.10	1.39	5	7	3	13
N 417288	<1	2212	9	127	2.1	49	25	571	5.51	<2	<8	<2	11	128	<.2	<3	4	184	2.23	.406	289	- 66	2.56	582	.06	<3	1 67	10	1 4.9	7	17	4	
N 417289	4	537	24	6	1.6	75	128	43	3.64	<2	<8	<2	10	180	<.2	<3	3	33	.09	.062	36	10	03	43	05	3	20	05	20	ŝ		~	7
N 417290	<1	54	9	52	<.3	13	18	500	3.78	3	<8	<2	2	74	<.2	<3	<3	130	1.52	.174	10	30	1.48	277	20	~	1 02	18	.20	5	~		.) .)
N 417291	<1	45	5	35	<.3	26	21	373	2.60	<2	<8	<2	<2	30	<.2	<3	<3	79	1.25	109	Ă	- 00	1 01	205	26	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 52	12	51	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-2	20
N 417292	<1	3	9	11	<.3	1	<1	1924	4.85	3	<8	<2	10	145	.4	<3	<3	174	7.11	.020	6	35	.02	24	.11	उ	2.30	.16	.08	<2	<2	<2 <2	<2 <2
N 417293	3	17	7	18	<.3	5	1	76	. 95	<2	<8	<2	2	16	<.2	<3	<3	16	. 15	.015	2	24	.06	उर	03	<3	27	07	08	7		.2	~2
N 417294	3	37	11	- 4	<.3	2	1	69	1.91	<2	<8	<2	3	21	<.2	<3	<3	15	14	.050	3	32	.07	86	.04	<3	25	03	13	-2	7	~2	-2
RE N 417294	3	36	8	4	<.3	2	1	68	1.88	<2	<8	<2	3	20	<.2	<3	<3	14	13	.049	3	33	.07	84	03	23	25	.03	17	2	~2	22	~ ~ ~
N 417295	<1	3	8	40	<.3	62	15	376	3.60	3	<8	<2	8	352	2	<3	<3	04	4 05	871	72	41	1 81	104	0.	2	1 21	10	. 7.5	2	~	~~	~2
N 417296	<1	9	12	70	<.3	126	25	618	3.83	2	<8	<2	Ž	746	<.2	<3	3	132	4.49	.822	165	122	2.69	2681	.03	<3	1.77	.18	1.14	2	<2 <2	3	<2 <2
N 417297	<1	1	8	61	.3	173	35	382	3.93	3	<8	<2	4	729	< 2	3	<3	171	A 50	845	138	107	3 75	6280	07	7	7 50	17	1 00	-	-	47	
N 417298	<1	<1	12	60	< 3	160	27	395	5.65	2	<8	<2	2	881	- 2	- 3		199	5 10	.005	112	150	2.17	0200	.05	3 -7	4 /4	. 17	1.70	2	2	14	11
STANDARD C3/FA-10R	26	65	40	177	6.0	37	12	771	3.36	56	22	2	22	20	22 0	18	22	- 90	57	1923	19	171	6.30	743	.02	10	1.40	.30	.42	17	<2	170	<2
STANDARD G-2	1	3	5	44	<.3	8	4	545	2.06	3	<8	<2	6	72	<.2	-3	<3	42	.66	.095	8	81	.62	227	.09	3	.90	.04	. 10	3	499	478	4//

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK R150 60C AU** PT** PD** GROUP 3B BY FIRE ASSAY & ANALYSIS BY ICP-ES. (30 gm) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data FA //

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME ANALYTIC	AL LASUATORIES LTL. 852 B. MASTINGS ST. VANCOUVER BC VOA 1R6 PHONE (604) 253-3156 FAX (604) 253-1716 2 Accredited Co.)
	GEOCHEMICAL ANALYSIS CERTIFICATE <u>Santoy Resources Ltd. PROJECT Allendale Lake</u> File # A103724 900 - 475 Howe St., Vancouver BC V6C 2B3 Submitted by: Adm Inavie
SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W Au** Pt** Pd** ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm
SI C 114151 C 114152 C 114153 C 114154	<1 3 54 70 <.3 1 <1 16 .03 3 <8 <2 <2 1 .7 <3 <3 1 .07 <.001 <1 4 <.01 5<.01 <3 .01 .34 <.01 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 220 23 93 <.3 19 11 436 2.71 <2 <8 <2 16 94 .3 <3 <3 94 .80 .232 87 38 1.08 199 .14 <3 .95 .12 .78 <2 6 <2 2 <2 <2 251 38 133 <.3 35 17 598 3.83 <2 <8 <2 13 157 .2 <3 <3 130 1.60 .390 91 56 1.77 259 .08 3 1.19 .10 .93 <2 4 <2 4 <2 4 <2 608 14 93 <.3 33 15 454 3.33 <2 <8 <2 26 155 <.2 <3 3 116 1.54 .409 109 55 1.44 291 .08 <3 .96 .11 .85 <2 79 4 17 <2 699 25 103 .3 33 17 523 3.64 <2 <8 <2 24 171 <.2 <3 <3 125 1.59 .375 141 59 1.69 360 .08 <3 1.13 .11 1.12 2 20 <2 6
C 114155 C 114156 C 114157 C 114158 C 114159	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
C 114160 RE C 114160 C 114161 C 114162 C 114163	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
C 114164 C 114165 C 114166 C 114167 C 114168	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
C 114169 C 114170 C 114171 C 114172 C 114173	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
C 114174 C 114201 C 114202 C 114203 STANDARD DS3/FA-10R	4 76 3 11 .3 5 8 124 1.84 <2
GR UPI AS Sa	ROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. IPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ISSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB SAMPLE TYPE: ROCK R150 60C AU** PT** PD** GROUP 3B BY FIRE ASSAY & ANALYSIS BY ICP-ES. (30 gm) Hamples beginning 'RE' are Reguns and 'RRE' are Reject Reguns.
DATE RECEIVED:	D: OCT 19 2001 DATE REPORT MAILED: OUT 29/01 SIGNED BY. C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS
All results are cor	onsidered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only. Data MFA YUA
and a second	Ana'd

APPENDIX E

.

۲ .

į

.

λ,

ب د

້.

Rock Descriptions

Allendale Lake Rock Sampling

,

1

Sample #	Sampler	Lab File	Date	UTM x	UTМ у	Туре	Details
417276	AT	A101984	25-Jun-01	329360	5473490	grab	Spoon Showing, block from road blast, coarse grained monzonite, pyx to actinolite-tremolite and biottie, 3 % bornite as blebs in mafics, trace gold in fractured feldspars
417277	AT	A101984	25-Jun-01	329477	5473397	grab	south of Hole 3, syenite with biotite, adundant mai, some azurite, 1-3% bornite, upper blast pit
417278	AT	A101984	25-Jun-01	329496	5473405	grab	south of Hole 3, syenite with biotite, adundant mal, some azurite, 1-3% bornite, middle blast pit
417279	AT	A101984	25-Jun-01	329497	5473408	grab	south of Hole 3, syenite with biotite, adundant mal, some azurite, 1-3% bornite, lower-main blast pit
417280	AT	A101984	25-Jun-01	329700	5472950	grab	Road Showing area, pyritic float with 1 % cpy and trace bornite
417281	AT	A101984	25-Jun-01	329550	5472195	grab	pegmatoidal blast pit, malachite stained coarse peg.
417282	AT	A101984	25-Jun-01	329040	5472310	grab	mafic differentiate, pyroxenite some biotite, some gabbro
417283	AT	A102049	5-Jul-01	329307	5474720	grab	showing above Sandberg claims, small 1-2 m malachite stained megacrystic gabbro
417284	AT	A102049	6-Jul-01	330408	5472341	float	mafic boulders in till alongside of and above main Allendale Lake road
417285	AT	A102049	6-Jul-01	330148	5472452	float	1.5 m 2 mafic boulder alongside overgrown road, feldspar, pyroxene-biotite
417286	AT	A102049	6-Jul-01	329904	5472709	grab	k-spar veined megacrystic monzonite, cht, epidotite, no minz'n visible
417287	AT	A102049	6-Jul-01	329449	5473278	grab	composite grab of average megacrystic monzonite with biotite, tr mal in blast pit
417288	AT	A102049	6-Jul-01	329427	5473352	grab	average monzonite, pyx -> biotite, some zenoliths mineralized and copper stained, blast pit
417289	AT	A102049	6-Jul-01	329015	5473104	grab	rusty, 040 trend, pyritic biotitic syenite-monzonite, Antler Zone
417290	AT	A102049	6-Jul-01	328328	5471840	float	mafic phase in monzonite, gneissic
417291	AT	A102049	6-Jul-01	328328	5471845	float	more mafic than 417290, trace sulphide ?
417292	AT	A102049	6-Jul-01	328081	5471813	float	stockworked veined boulder, 2 m2, Fe carb alt'd ultramafic, syenite veinlets, epidote crystals
417293	AT	A102049	6-Jul-01	326668	5471609	float	rusty quartz veined gneiss, float off claims
417294	AT	A102049	6-Jul-01	326697	5471579	float	same as 417293
417295	AT	A102049	6-Jul-01	328306	5471835	float	carb and epidote veined and chlorite altered gabbro
417296	AT	A102049	6-Jul-01	328067	5472952	float	gabbro, mafic differentiate float
417297	AT	A102049	6-Jul-01	328067	5472967	float	large boulder of mafic differentiate in log cut
417298	AT	A102049	7-Jul-01	327565	5470759	float	float in road bed of mafic differentiate

a completing of a completion of a star of the provide the star of the provide the provide

Allendale Lake Rock Sampling October 2001

1

Sample ID	Date	Location	UTM x	UTM y	Туре	Unit	Description
				-			
114151	Oct 12 2001	Spoon	329190	5473495	chip	syenne	porpriyritic blotte syenne 30-35% matics, 0- 5 m chip, u mai.
114152	Oct 12 2001	Spoon	329190	5473490	chip	syenite	porphymic biolite syenite 30-35% mance, 5-10 m crup, v mai.
114153	Oct 12 2001	Spoon	329190	5473485	chip	syenite	porphyritic biotite syenite 30-35% matics, 10-15 m chip, tr mai.
114154	Oct 12 2001	Spoon	329190	5473480	chip	syenite	porphyritic biotite syenite 30-35% mafics, 15-20 m chip, rare mat.
114155	Oct 13 2001	Spoon	329190	5473475	chip	syenite	porphynitic biotite syenite 30-35% matrics, 20-25 m chip,no mal., ridge top
114156	Oct 13 2001	Spoon	329190	5473470	chip	syenite	porphynitic biotite syenite 30-35% mafics, 25-30 m chip,no mal., ridge top
114157	Oct 13 2001	Spoon	329190	5473465	chip	syenite	porphyritic biotite syenite 30-35% matics, 30-35 m chip,no mal., ridge top
114158	Oct 13 2001	Spoon	329190	5473460	chip	syenite	porphyritic biotite syenite 30-35% mafics, 35-40 m chip,no mal., ridge top
114159	Oct 13 2001	Spoon	329190	5473455	chip	syenite	porphyritic biotite syenite 30-35% matics, 40-45 m chip,no mal., ridge top
114160	Oct 15 2001	East Alley	329070	5472880	ficat	рух	altered bi pyx boulder, rounded, no sx
114161	Oct 15 2001	East Alley	329000	5472720	grab	felsite	mal assoc, with tetsic dyke cutting syenite, sugary qta, aplitic, tr cc ?
114162	Oct 15 2001	Far West	328492	5473286	deng	syenite	minette dyke, 040/20 NW, tr mal, ez, mag , << 1 %py
114163	Oct 15 2001	Far West	328497	5473286	grab	syenite	same area as 62, no sx, tr mai, az
114164	Oct 15 2001	Far West	328462	5473251	grab	syenite	rusty shear, leached out homblende
114165	Oct 16 2001	Alley North	330957	5475526	grab	gabbro	rusty homlende, med grained, fract stringer py, tr cpy, magnetic
114166	Oct 16 2001	Alley North	332835	5475418	ficat	gabbro	coarse porphyritic pyroxene gabbro, boulders in road bed, wk rust
114167	Oct 16 2001	Alley North	332926	5475655	float	рух	boulder of fine grained pyx, diss, clots of < 1% pyrrhotite
114168	Oct 16 2001	Alley North	330938	5475427	grab	diorite	hbld, < 1% diss py, stringer py, no obvious cpy, magnetitic
114169	Oct 16 200 ⁴	1 Alley North	330906	5475339	grab	dionte	as previous samples, magnetite in veins ?
114170	Oct 16 2001	1 Alley North	a 330957	5475288	grab	gabbro	cut by homblendite vein, < 1 % py, tr cpy and magnetite
114171	Oct 16 200 ⁴	1 Alley North	330940	5475523	float	gabbro	hbld, biotite, tr cpy, 0.5% py, cut by crse gr hbld-feld veining, on road
114172	Oct 17 200*	1 Alley SW	328304	5471839) float	migmatite	magmatic mixing, contact of gneiss - syenite,py < 1%, pyx ghosts
114173	Oct 17 200	1 Alley SW	328776	5472144	float	mafic	mixed zone ?, biotite rich, 2-3% py, tr cpy along fractures, small stringers
114174	Oct 17 200	1 Alley SW	329140	5471200) float	gneiss	Fe stained, sugary siliceous texture, boulder, 1-2% py
114201	Oct 13 2001	1 Alley S	328947	5472635	i grab	рух	biotite pyroxenite, 10 m outcrop, no sx
114202	Oct 14 200	1 Alley SW	327964	5473102	float	syenite	biotite-amphibole rich syenite
114203	Oct 14 200	1 Alley SW	328011	5472948	dero (avx.	interfayered with mafic syenite, 7 m outcrop in log cut

_

APPENDIX F

1

L.

i L

v.

.

4

,

ς.

F

-

,

.

:

5 11 J

1

-. .

۰.

Rare Earth Element Rock Results

Sample	e # Date	Туре	Description
126608	Jan. 13	Rock float	250 m from lake, med-crse grained bio-qtz monzonite
126609	Jan. 13	Rock float	1 km south of lake, (22.2 km mark),pyroxene cumulate monzonite
126610	Jan. 13	Rock float	4.2 km south of lake, large boulder of pegmatite cutting gneiss
126611	Jan. 14	Rock float	24 km marker west of lake, feldspar cumulate monzonite
126612	Jan. 14	Rock grab	Spoon showing, attempt to get mal. staining on cliff, pyroxenite

. •

Ċ.

٠.

.

i,

i.

, X

.

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: SANTOY RESOURCES LTD.

900 - 475 HOWE ST. VANCOUVER, BC V6C 2B3 Page Number :1-A Total Pages :1 Certificate Date: 12-MAR-2001 Invoice No. :10112749 P.O. Number : Account :RQM

Project : Comments: ATTN: ADAM TRAVIS

								4			CE	RTIF	CATE	ÔF /	ANALY	SIS		A0112	749		
SAMPLE	PR CO	EP DE	Ba ppm	Ce PPM	Cs ppm	Co PP	Cu ppm	Dy ppm	Er ppm	Eu pp m	Gđ PP m	Ga pp m	Hf PP m	Но ррш	La ppm	Pb ppm	Lu ppm	Nđ ppm	Ni ppm	Nb ppm	Pr P P
126608 126609 126610 126611 126612	244 244 244 244 244	200 200 200 200 200	1890 1885 1155 1985 903	331 496 12.0 329 655	$1.3 \\ 1.1 \\ 1.3 \\ 1.8 \\ 1.2$	48.0 48.5 < 0.5 17.5 20,0	25 30 < 5 185 2930	8.1 10.5 1.9 4.3 9.8	3.2 4.2 1.1 1.9 4.5	6.7 9.3 0.4 3.8 6.2	21.5 29.0 1.2 11.8 24.5	10 18 11 20 19	3 4 < 1 < 1 3	1.3 1.8 0.3 0.7 1.7	125.0 192.5 6.0 149.0 294	<pre></pre>	0.2 0.3 < 0.1 0.1 0.6	171.5 246 4.0 121.0 239	195 140 < 5 25 45	21 66 < 1 39 41	42.4 62.5 1.1 35.7 71.5
									_									lÌ			

ſ

CERTIFICATION:

・ん

 $\mathcal{G}U_{\Box}$

ALS Chemex

the second se

r

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: SANTOY RESOURCES LTD.

900 - 475 HOWE ST. VANCOUVER, BC V6C 2B3 Page Number : 1-B Total Pages : 1 Certificate Date: 12-MAR-2001 Invoice No. : 10112749 P.O. Number : Account : RQM

Project : Comments: ATTN: ADAM TRAVIS

											CE	RTIFI	CATE	OF A	NAL	(SIS	/	<u> 1011</u> 2	2749	
SAMPLE	PR CO	EP DE	Rb ppm	Sm ppm	Ag PP#	Sr pp	Ta PP #	Tb ppm	T1 pp≡	Th PP B	Tm ppm	Sn pp n	W PP R	U PPm	V PPm	Yb ppm	т ррш	Zn pp m	Zr pp=	
26608 26609 26610 26611 26612	244 244 244 244 244	200 200 200 200 200	52.6 48.4 134.5 143.5 67.0	29.5 40.4 1.0 16.8 34.9	< 1 < 1 < 1 < 1 3	1145 2700 427 2030 1360	< 0.5 1.0 < 0.5 < 0.5 1.0	2.4 3.3 0.3 1.3 2.8	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 14 8 20 60	0.3 0.4 < 0.1 0.1 0.5	<pre>< 1 < 1</pre>	<pre>< 1 < 1</pre>	2.5 3.0 332 5.0 13.0	100 320 < 5 135 115	2.2 3.2 0.8 1.5 4.2	34.0 47.0 8.5 21.0 45.0	70 130 < 5 115 105	128.0 191.0 10.0 99.0 237	
																		1		ŕ

Г

CERTIFICATION:

181-

.. ..

~~

Chemex A S Aurora Laboratory Services Ltd.

Analytical Chemista * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: SANTOY RESOURCES LTD.

900 - 475 HOWE ST. VANCOUVER, BC V6C 2B3

Page Number :1-A Total Pages :1 Certificate Date: 12-MAR-2001 Invoice No. :10112749 P.O. Number : Account :RQM

۲

Project :

Comments: ATTN: ADAM TRAVIS

											CE	RTIFI	CATE	OF /	ANALY	'SIS		A0112	749		
SAMPLE	PR CO	EP DE	Ba pp a	Ce ppm	Cs ppm	Co ppm	Cu ppm	Dy ppm	Er ppn	Eu pp n	Gd pp=	Ga ppm	Hf ppn	Но ррд	La p pn	Pb ppm	Lu PPm	Nd PP n	Ni. PPm	Nb ppm	Pr ppm
126608 126609 126610 126611 126612	244 244 244 244 244 244	200 200 200 200 200	1890 1885 1155 1985 903	331 496 12.0 329 655	1.3 1,1 1,3 1.8 1.2	48.0 48.5 < 0.5 17.5 20.0	25 30 < 5 185 2930	8.1 10.5 1.9 4.3 9.8	3.2 4.2 1.1 1.9 4.5	6.7 9.3 0.4 3.8 6,2	21.5 29.0 1.2 11.8 24.5	10 18 11 20 19	3 4 < 1 < 1 3	1.3 1.8 0.3 0.7 1.7	125.0 192.5 6.0 149.0 294	<pre></pre>	0.2 0.3 < 0.1 0.1 0.6	171.5 246 4.0 121.0 239	195 140 < 5 25 45	21 66 < 1 39 41	42.4 62.5 1.1 35.7 71.5
																		Ú			

Г

CERTIFICATION:

 \mathcal{M}

To: SANTOY RESOURCES LTD.

900 - 475 HOWE ST. VANCOUVER, BC V6C 2B3

Page Number :1-B Total Pages :1 Certificate Date: 12-MAR-2001 Invoice No. :10112749 P.O. Number : Account : DOM ROM Account

Г

~

e 1 ° 1

1.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

North Vancouver V7J 2C1

Chemex

· · · · ·

S

Aurora Laboratory Services Ltd.

۰...

Α

Project : Comments: ATTN: ADAM TRAVIS

		1						••••••			CE	RTIFI		OF A	NAL	(SIS		\0112	2749	
SAMPLE	PRE	EP DE	Rb PPM	Sm ppm	Ag pp	Sr ppm	Ta ppm	Tb ppm	T1 PP	Th ppm	Ta ppa	Sn ppm	₩ PP m	U PPm	V ppm	Yb ppm	Y ppa	Zn pp n	Zr ppm	
126608 126609 126610 126611 126612	244 244 244 244 244 244	200 200 200 200 200	52.6 48.4 134.5 143.5 67.0	29.5 40.4 1.0 16.8 34.9	<pre>< 1 < 1 < 1 < 1 < 1 < 1 < 3</pre>	1145 2700 427 2030 1360	< 0.5 1.0 < 0.5 < 0.5 1.0	2.4 3.3 0.3 1.3 2.8	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 14 8 20 60	0.3 0.4 < 0.1 0.1 0.5	<pre>< 1 < 1</pre>	<pre>< 1 < 1</pre>	2.5 3.0 332 5.0 13.0	180 320 < 5 135 115	2.2 3.2 0.8 1.5 4.2	34.0 47.0 8.5 21.0 46.0	70 130 < 5 115 105	128,0 191,0 10,0 99,0 237	<u>Mari 117</u>
															-					
															•					•
																		()		
															EATIFIC				l Ī.O	
																		-	\mathbb{Z}	

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

900 - 475 HOWE ST. VANCOUVER, BC V6C 2B3 RECEIVED

MAR 16 2001

A0112749

Comments: ATTN: ADAM TRAVIS

Ans'd

CERTIFICATE

A0112749

(RQM) - SANTOY RESOURCES LTD.

Project: P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 12-MAR-2001.

	SAM	PLE PREPARATION
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
244 200 297	5 5 5	Pulp; prev. prepared at Chemex Whole rock fusion Meta-borate fusion charge

	NUMBER		DESCRIPTION	METHOD	DETECTION	UPPER LIMIT
2855	5	Ba ppm:	ICP-MS	ICP-MS	0.5	10000
2501	5	Çe bbar	ICP-MS	ICP-MS	0.5	10000
2836	5	Cs ppm:	ICP-MS	ICP-MS	0.1	10000
2039		Co ppm:	ICP-MS	ICP-MS	0.5	10000
2600	5	Cu ppa:	ICP-MS	ICP-MS	5	10000
2503	5	by ppm:	ICF-MS ICP MG	ICP-MS	0.1	1000
2504	5	EL PPER	ICF-MO TCB_WO	ICP-MS	0.1	1000
2505	5	Ed ppm:	ICP-MS TCD_WO	ICP-MS	0.1	1000
2861	ś	Ga ppm:	TCP-WS	ICP-MS	0.1	1000
2842	5	Rf nnw	TCP-WS	ICP-MS	1	1000
2506	5	Ro ppm.	TDC-HS	TCP-MS	1	10000
2507	5	La ppe	ICP-MS	TCD-NS	U.I	1000
2862	5	Pb ppm	TCP-MS	ICP-AS	0.5	10000
2508	5	Lu DDBI	ICP-MS	TCP-M3	5	10000
2509	5	Nd ppm:	ICP-MS	TCP-MS	0.1	1000
2863	5	Ni ppm:	ICP-MS	TCP-MS	V.3 5	10000
2844	5	Nb ppm:	ICP-MS	ICP-MS	3	10000
2510	5	Pr ppm:	ICP-MS	ICP-MS	0 1	10000
2864	5	Rb ppm:	ICP-MS	ICP-MS	0.2	1000
2511	5	Sm ppm:	ICP-MS	ICP-MS	0.1	10000
2865	5	Ag ppm:	ICP-MS	ICP-MS	1	1000
2867	5	Sr ppm:	ICP-MS	ICP-MS	0.1	10000
2868	5	Ta ppm:	ICP-MS	ICP-HS	0.5	10000
2512	5	Tb ppn:	ICP-MS	ICP-MS	0.1	1000
2869	5	Tl ppm:	ICP-MS	ICP-MS	0.5	1000
2550	5	Th ppm:	ICP-MS	ICP-MS	1	1000
2513	5	Tm ppm:	ICP-MS	ICP-MS	0.1	1000
2670	5	Sn ppm:	ICP-MS	ICP-MS	1	10000
2671	5	W ppm:]	ICP-MS	ICP-MS	1	10000
2549	5	Uppm: 1	LCP-MS	ICP-MS	0.5	1000
28/2	2	V ppan: 1	ICP-NS	ICP-MS	5	10000
2014	2	YD ppm:	ICP-MS	ICP-MS	0.1	1000
28/3	5	Y ppm: 1	ICP-MS	ICP-MS	0.5	10000
20/9	2	Zn ppm:	ICP-MS	ICP-MS	5	10000
20/3 1	2	zr ppm:	ICP-MS	ICP-MS	0.5	10000

ANALYTICAL PROCEDURES

APPENDIX G

L

۰.

Soil Geochemical Results

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) GEOCHEMICAL ANALYSIS CERTIFICATE Santoy Resources Ltd. PROJECT Allendale Lake File # A103725 Page 1 900 - 475 Howe St., Vancouver BC V6C 2B3 Submitted by: Adam Travis														JT. Al		NCC YSJ		SK E		уьд ⁾ ТСУ	IR6		P)	HON	\$ (6		253	-31!	58)	AX (6U4)	25.	-7715	
	1	Sar	ito	y I	Res	ou	rce	s I 900	1td 475	P] Howe	ROC St	JEC	T 1 ancou	Al . wer	Len BC V	<u>da</u>] /6C 2	L <u>e</u> 283	La) Sub	<u>ce</u> mitte	Fi. d by:	le Ada	# 7 m Tr	A10: avis	372	5	P	ag	e 1	· · · ·					
SAMPLE#	мо ррт	Cu ppm	Pb ppm	Zn ppm	Ag PPm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U PPm	Au PPM	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V mqq	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	⊺i %∣	8 ppm	Al %	Na %	K %	W ppm	Au** ppb	Pt** ppb	Pd** ppb	<u></u>
G-1 L3200N 13+50W L3200N 13+00W L3200N 12+50W L3200N 12+50W	2 <1 <1 1 1	2 13 17 12 7	3 4 9 9 8	38 32 31 37 30	<.3 <.3 <.3 <.3 <.3 <.3	4 11 10 10 8	3 6 6 6 4	530 155 230 212 118	1.77 1.91 1.87 1.98 2.26	3 4 6 8 7	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	4 4 4 3 4	62 75 118 73 74	<.2 .2 <.2 <.2 .2	4 <3 <3 <3 <3	3 3 3 3 3 3	40 51 53 51 56	.49 .27 .26 .22 .18	.098 .199 .100 .247 .273	7 15 19 15 11	13 12 13 12 11	.52 .23 .31 .28 .20	207 87 113 99 77	. 12 . 11 . 12 . 12 . 14	3 3 3 3 3 3 3 3	.81 1.82 1.58 1.75 1.72	.06 .02 .02 .02 .02	.47 .06 .07 .06 .07	^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 3 21 <2 <2	2 <2 3 2 <2	2 <2 <2 4 4 <2	
L3200N 11+50W L3200N 11+00W L3200N 10+50W L3200N 10+00W RE L3200N 10+00W	1 <1 1 1	15 19 18 10 11	10 7 8 7	42 40 41 46 47	<.3 <.3 <.3 <.3 <.3	16 12 15 12 1 3	7 6 6 6	159 167 204 344 351	1.90 1.97 2.01 2.01 2.00	6 8 6 7 7	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	3 9 5 4 4	68 61 59 48 49	<.2 .2 .2 .2 .2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	⊲ ⊲ ⊲ ⊲ ⊲	48 52 52 54 52	.28 .35 .36 .27 .29	. 169 . 283 . 263 . 239 . 246	18 29 29 19 20	17 15 16 16 17	.46 .32 .35 .29 .31	130 84 112 118 119	. 16 . 12 . 12 . 12 . 11 . 12	3 3 3 3 3 3 3 3 3 3 3	1.57 1.95 1.91 1.54 1.60	.02 .02 .02 .02 .02	.07 .05 .08 .06 .06	<>><><><><><><><><><><><><><><><><><><	<2 <2 <2 <2 <2 <2	2 <2 <2 <2 <2 <2	<2 <2 <2 2 2 <2	
L3200N 9+50W 13200N 9+00W L3200N 8+50W L3200N 8+00W L3200N 7+50W	1 1 5 <1	21 31 4 36 18	12 12 11 13 8	32 38 44 50 47	<.3 .3 <.3 <.3 <.3	11 11 4 15 12	7 7 3 7 7	389 199 187 249 453	1.94 2.05 1.28 2.71 1.90	7 4 3 10 5	10 8 <8 <8 <8	<2 <2 <2 <2 <2 <2	3 6 4 12 4	116 59 17 29 33	.2 .2 <.2 .3 <.2	4 3 3 3 3 3 3	<3 <3 3 3 3 3	58 49 33 75 48	.37 .24 .13 .27 .25	.125 .110 .113 .318 .263	29 25 9 42 22	16 14 9 19 14	.29 .36 .13 .50 .31	212 120 45 59 94	. 13 . 15 . 09 . 16 . 12	<3 2 <3 2 <3 2 <3 1	2.23 2.37 .60 2.01 1.80	.03 .03 .02 .02 .02	.07 .09 .05 .10 .07	2 √√√√ √√	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 3 3 2 2 2	3 3 3 3 <2	
L3200N 7+00W L3200N 6+50W L3200N 6+00W L3200N 5+50W L3200N 5+50W	3 1 2 1 <1	81 43 85 96 28	17 15 12 12 10	55 68 37 58 118	<.3 <.3 <.3 <.3 <.3	21 30 27 21 38	12 13 9 9 19	1122 598 526 445 546	2.48 2.50 2.23 2.33 2.84	5 2 7 5 8	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	4 5 7 25	124 69 83 47 113	.2 .3 .2 .4	<3 <3 4 3 9	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	58 51 57 52 70	.49 .35 .40 .38 .92	. 161 . 138 .091 .295 .327	40 25 28 30 63	20 22 24 22 30	.44 .48 .44 .46 1.75	171 194 216 134 268	. 11 . 12 . 15 . 14 . 22	<3 <3 <3 <3 <3 <3	2.24 2.77 2.52 1.73 2.43	.02 .02 .03 .01 .02	.08 .10 .10 .08 .46	<2 <2 <2 <2 <2 <2 <2 <2	2 ~2 ~2 ~2 8	2 <2 2 4 2	3 3 3 3 2	
L3200N 4+50W L3200N 4+00W L3200N 3+50W L3200N 3+00W L3200N 2+50W	2 1 1 1	14 13 28 115 82	12 12 16 46 23	46 50 107 199 142	<.3 <.3 <.3 <.3 <.3	19 12 23 57 33	8 5 11 29 20	350 370 832 1150 572	2.01 1.69 2.30 4.70 2.77	9 6 5 2 4	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	4 4 8 6 4	27 18 47 148 75	.3 .3 <.2 .6 <.2	5 <3 3 4 3	ও ও ও ও ও ও ও	45 36 64 121 71	.20 .15 .44 1.43 .68	.267 .179 .220 .378 .324	16 13 47 110 46	18 12 22 47 28	.30 .21 .67 2.58 1.16	97 95 131 496 380	. 13 . 13 . 17 . 14 . 21	<3 2 <3 2 <3 1 <3 1 <3 1	2.62 2.09 1.85 2.81 1.70	.02 .02 .02 .03 .03	.06 .06 .14 1.18 .36	3 <2 <2 <2 <2 <2	<2 <2 2 2 2 2 2 2 2 2	2 <2 <2 <2 <2 <2 <2 <2 <3	<2 <2 <2 <2 <2 <2 <2	
L3200N 2+00W L3200N 1+50W L3200N 1+00W L3200N 0+50W L3200N 0+00W	2 1 2 2 1	264 20 159 53 50	16 8 24 18 16	76 72 49 53 58	<.3 <.3 <.3 .4 .3	38 17 29 16 13	10 7 8 9 6	326 336 209 201 246	2.08 1.93 2.12 1.93 1.92	8 8 4 6 7	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	4 3 4 4 4	90 21 56 17 16	.4 .3 .2 .2	4 4 3 3 3 3	८ ८ ८ ८ ८ ८ ८ ८ ८ ८	61 42 52 40 45	. 38 . 19 . 22 . 14 . 14	.062 .224 .069 .211 .169	30 15 21 12 15	20 18 21 14 14	.51 .28 .44 .27 .30	170 95 161 92 78	. 14 . 13 . 14 . 14 . 14	3 3 3 3 3 3 3 3 3	2.28 2.22 2.22 2.25 2.24	.01 .01 .02 .0 3 .01	.09 .06 .09 .06 .05	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 3 <2 3 <2	<2 <2 3 <2 3 <2	
L2800N 14+00W L2800N 13+50W L2800N 13+00W L2800N 13+00W STANDARD DS3/FA-10R	1 1 1 1 10	11 11 10 19 126	8 7 7 8 34	23 33 22 31 160	<.3 <.3 <.3 <.3 <.3	7 8 10 36	4 4 5 12	82 313 104 133 824	1.33 1.39 1.28 1.62 3.19	6 6 5 7 32	<8 <8 <8 <8 <9	<2 <2 <2 <2 <2 <2	2 2 3 5 3	31 187 89 112 28	<.2 .2 .2 <.2 5.9	<3 <3 <3 3 6	<3 <3 <3 <3 7	32 32 30 41 80	.14 .32 .18 .22 .54	.040 .047 .074 .076 .097	23 13 9 15 17	7 9 8 8 191	.17 .19 .18 .17 .61	83 1 3 8 94 102 145	11 12 11 11 08	<3 1 <3 1 <3 1 <3 1 <4 1	.80 .77 .78 .86 .74	.03 .02 .03 .03 .03	.06 .06 .05 .06 .17	~2 ~2 ~2 ~2 ~2 ~2 ~5	<2 <2 <2 <2 <2 480	<2 2 3 <2 472	3 3 <2 <2 468	

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: SOIL SS80 60C AU** PT** PD** GROUP 3B BY FIRE ASSAY & ANALYSIS BY ICP-ES. (30 gmm) Samples beginning (RE/ are Reruns and (RRE/ are Reject Reruns.

DATE RECEIVED: OCT 19 2001 DATE REPORT MAILED: Oct 31/01

SIGNED BYD. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data de FA

Santoy Resources Ltd. PROJECT Allendale Lake FILE # A103725

Page 2

'না

G-1 1 1 2 5 1 1 1 2 5 1 1 2 5 1 1 2 5 1 1 1 2 5 1 1 1 2 5 3 6 1 1 2 5 1 <th1< th=""> 1 1 1</th1<>	SAMPLE#	Mo	Cu ppm	Pb ppm	Zn pom	Ag DOM	Ni	Co pom	Mn	Fe %	As nom	Ų maa	Au	Th	Sr	Cd	Sb	Bi	V	 Ca	P	La	Cr	Mg	Ba	Ti	B	AL	Na	K	μ.	Au**	Pt**	Pd**	
L2800N 11*50V 1 13 53 22 13 53 224 12 34 67 47 2 22 22 22 22 22 22 22 23 34 17 51 35 32 24 13 93 35 32 23 35 35 22 24 35 35 32 35 35 32 35 35 32 35 35 32 35 35 35 32 35	G-1	1	2	5	7.9	~ 3	<u> </u>	7	5 66 -					 الطرط			- Hereit		ppin		^	ppin	ppm	/4	ppm	76	ppm		- 7,		ppm	ppb	ppb	ppb	
12800N 11:50u 11:50 <	L2800N 12+00W	1	5	8	26	~ 3	7	ן כ ז	244 80 /	1.03	~2	- 9 - 9	~2	2	04 57	<.2	<5	<5	41	.52	- 101	9	13	.53	224	.12	3	.84	.07	.47	2	<2	<2	<2	
12800H 11 7 54 33 13 720 150 730 150 23 33 111 13 1220 111 15 133 123 111 111 125 111 125 111 125 111 125 111 125 111 125 111 125 111 125 111 125 111 125 111 125 111 125 111 125 111 111 125 111 111 125 111 111 111 125 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 11111 11111 11111 11111 11111 11111 11111 11111111 111111 11111111	L2800N 11+50W	1	13	ä	35	< 3	12	A	205 1	00	0	-0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7	24	• 4	< 3 - 7	<>	30	. 15	.222	6	10	. 14	86	-11	<3	1.09	.01	.04	<2	<2	2	2	
L2800H 10+50H $(1 - 7 + 11 - 52 < 3 + 7 - 60 + 1.06 + 50 < 4 - 64 < 2 + 3 + 9 - 62 < 3 < 3 + 52 - 1.09 + 19 + 18 - 18 + 119 + 18 - 11 < 3 + 1.28 (1 - 7 + 11 - 52 < 3 + 7 - 61 + 19) + 16 - 31 + 16 + 11 < 11 < 11 < 12 < 12 < 12 < 100 - 10 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < $	L2800N 11+00W	l i	11	7	54	< 3	18	7	780 1		~	29	~~~	2	32		53	53	50	.18	-177	13	12	.23	75	.13	<3	Z.06	.01	.06	<5	<2	<2	<2	
Link in the field of the start is a field of the start is start in the start the start in the start t	L2800N 10+50W	1	7	11	52	< 3	17	Å.	301 4	06	<u>د</u>	~0		2	70	5.2	<0 .7	< 3 .7	73	.42	. 199	19	18	. 36	197	.13	5	1.33	.02	.06	<2	<2	<2	2	
Re L2800N 10-50U L2800N 9+50U L2800N 9+50U18135453196602.06868 <2 450 <2 335641013331.300206 <2 2 <2 <2 <2 <2 <3 35 <2 <2 <3 <3 <3 <1 <3 <1 <3 <1 <3 <1 <3 <1 <3 <1 <3 <1 <3 <1 <3 <1 <3 <1 <3 <1 <3 <1 <3 <1 <3 <1 <3 <1 <3 <1 <3 <3 <3 <3 <2 <2 <3 <3 <5 <2 <3 <3 <5 <2 <3 <3 <3 <1 <3 <1 <1 <3 <1 <1 <3 <1 <1 <3 <1 <1 <3 <1 <3 <1 <1 <3 <1 <3 <1 <3 <1 <3 <1 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 </td <td></td> <td></td> <td></td> <td>••</td> <td>32</td> <td></td> <td>• •</td> <td>U .</td> <td></td> <td>·. 70</td> <td>,</td> <td>50</td> <td>52</td> <td>4</td> <td>47</td> <td>5.2</td> <td>50</td> <td>د></td> <td>22</td> <td>.25</td> <td>.129</td> <td>14</td> <td>16</td> <td>.31</td> <td>143</td> <td>. 1Z</td> <td><3</td> <td>1.25</td> <td>.02</td> <td>.06</td> <td><2</td> <td><2</td> <td><2</td> <td><2</td> <td></td>				••	32		• •	U .		·. 70	,	50	52	4	47	5.2	50	د>	22	.25	.129	14	16	.31	143	. 1Z	<3	1.25	.02	.06	<2	<2	<2	<2	
L28000 9+50v 1 <th< td=""><td>RE L2800N 10+50W</td><td>1</td><td>8</td><td>13</td><td>54</td><td><.3</td><td>19</td><td>6 4</td><td>405 2</td><td>2.04</td><td>8</td><td><8</td><td><2</td><td>4</td><td>50</td><td><.2</td><td><3</td><td><3</td><td>57</td><td>26</td><td>120</td><td>16</td><td>17</td><td>72</td><td>1/0</td><td>12</td><td>.7</td><td>1 70</td><td>63</td><td>DZ</td><td>-7</td><td>- 2</td><td></td><td></td><td></td></th<>	RE L2800N 10+50W	1	8	13	54	<.3	19	6 4	405 2	2.04	8	<8	<2	4	50	<.2	<3	<3	57	26	120	16	17	72	1/0	12	.7	1 70	63	D Z	-7	- 2			
1 1 <th1< th=""> 1 1</th1<>	L2800N 10+00W	<1	16	6	49	<.3	17	7	243 2	2.38	3	<8	<2	Ś	68	< 2	<3	<3	66	- 36	267	26	19	.36	107	11		1.30	- 02	.00	<2	<2	<2	<2	
L2800W 9+00u 1 1 6 5 3 6 7 4 7 6 2 6 5 2 <t <="" td=""><td>L2800N 9+50W</td><td>1</td><td>12</td><td>7</td><td>46</td><td><.3</td><td>14</td><td>5</td><td>171 1</td><td>.93</td><td>2</td><td><8</td><td><2</td><td>4</td><td>40</td><td><.2</td><td><3</td><td><3</td><td>48</td><td>.22</td><td>277</td><td>16</td><td>13</td><td>.45</td><td>112</td><td>11</td><td></td><td>1.01</td><td>.02</td><td>.07</td><td>~2</td><td>2</td><td><2</td><td><2</td><td></td></t>	L2800N 9+50W	1	12	7	46	<.3	14	5	171 1	.93	2	<8	<2	4	40	<.2	<3	<3	48	.22	277	16	13	.45	112	11		1.01	.02	.07	~2	2	<2	<2	
L2800W 8+50u 1 8 7 29 < 3 8 4 70 1.71 5 8 < 2 4 57 < 2 3 < 3 56 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	L2800N 9+00W	1	14	6	56	<.3	16	7 :	347 2	2.09	7	<8	<2	6	45	.2	4	3	52	.25	259	21	16	32	119	12	~	2 12	. 02	.05	~2	2	2	<2	
L2800N 8-00W 1 12 8 50 33 6 305 2.03 7 8 22 6 23 33 6 105 10	L2800N 8+50W	1	8	7	29	<.3	8	4	70 1	.71	5	<8	<2	4	57	<.2	3	<3	36	.20	.238	17	12	.14	no.	11	ž	2 00	.02	.00	22		2	×2 7	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				_														_					•	• • •	· •	•••	~2	2.00	.02	.01	72	~4	2	2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L2800N 8+00W	1	12	8	50	<.3	13	6	305 2	2.03	7	<8	<2	6	28	.2	<3	<3	50	.22	.283	22	14	.27	92	.12	<3	2.01	.02	.05	0	<2	2	-2	
L2BODN 74000 1 17 9 36 3 17 7 187 1.96 7 48 2 5 49 .2 3 34 .23 28 10 11 13 16 .33 17 7 787 .29 2 3 34 .23 .203 24 20 .30 117 .11 .31 .64 .01 .09 .35 .00 .27 .2 <	L2800N 7+50W	11	14	7	50	<.3	13	6	141 1	.85	7	<8	<2	- 4	26	<.2	<3	<3	41	. 19	.292	27	12	.21	80	. 12	<3	2.35	.02	.07	<2	~2	~2	<2	
L2800N 0 + 50N 1 1 1 1 3 11 0 + 3 17 7	12800N /+00W		17		56	<.3	17	<u> </u>	187 1	.96	7	<8	<2	5	49	.2	<3	<3	43	.23	.281	17	16	.29	95	. 12	<3	2.14	.01	.07	<2	$\overline{2}$	~2	2	
LEBOON BHOOM (1) 6 7 3 28 22 3 73 <.2 3 73 <.2 3 73 <.2 3 73 <.2 3 73 <.2 3 73 <.2 3 73 <.2 3 73 <.2 3 73 <.2 3 73 <.2 3 73 <.2 3 73 <.2 3 33 21 10 9 <3 25 0.0 0.1 11 1.23 61 0.9 <3 25 0.0 7 22 3 33 83 1.32 .48 11 1.6 1.4 2 3 33 21 .46 11 1.5 1.5 1.6 1.7 7 84 2 7 1.7 22 2.7 7.7 1.7 1.3 2.5 7.7 1.1 31 2.6 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	12000N 6+20W		15	11	65	<.5	17	7	878 2	2.09	4	<8	<2	3	58	<.2	<3	<3	49	.25	.203	24	20	.30	117	.11	<3	1.46	.01	.08	<2	<2	5	<2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	LZOUUN GTUUW	51	0	1	32	<.5	ĨŪ	5	152 1	.12	3	<8	<2	3	73	<.2	<3	<3	26	.22	.060	11	11	.23	61	.09	<3	.85	.02	.07	<2	Ž	3	<2	
L2800N 4+50W 1 <th< td=""><td>L2800N 5+00W</td><td>1</td><td>125</td><td>25</td><td>127</td><td><.3</td><td>35</td><td>16 /</td><td>431 7</td><td>25</td><td>2</td><td>-8</td><td>~2</td><td>17</td><td>203</td><td>- 2</td><td>-7</td><td>17</td><td>07</td><td>1 73</td><td>/07</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>• •-</td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td></th<>	L2800N 5+00W	1	125	25	127	<.3	35	16 /	431 7	25	2	-8	~2	17	203	- 2	-7	17	07	1 73	/07						-	• •-			_				
L2800N 4-00W <1	L2800N 4+50W	1	16	10	49	<.3	20	7 2	250	18	2	-0 -7R	~2	7	67	2.2		~~	50	26.1	-407	140	29	1.29	269	.08	-3	2.07	.04	.34	<2	3	<2	<2	
L2800N 3+50W 1 1 15 15 17 2.22 7 -6 < 2 7 < 3 2.6 < 7 140 < 7 < 3 < 3 < 7 < 11 < 3 1.25 < 7 < 11 < 3 1.25 < 7 < 7 < 7 < 3 < 2 < 3 < 3 < 5 < 2 < 3 < 3 < 5 < 2 < 3 < 3 < 7 < 7 < 7 < 14 < 3 < 7 < 7 < 7 < 3 < 2 < 3 < 3 < 7 < 7 < 7 < 3 < 2 < 3 < 3 < 7 < 7 < 7 < 3 < 2 < 3 < 3 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7	L2800N 4+00W	<1	7	10	69	<.3	14	5 /	467 1	74	7	- 28	~2	7	20	2.2	7	~2	70	.30	1 30	33	21	- 40	116	-14	<5	1.8/	. 0Z	.09	<2	2	2	3	
L 2800N 3+00W 1 12 8 30 < 3 3 6 1.77 < 2 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3	L2800N 3+50W	1	15	15	117	<.3	25	10	772 2	22	ż	<8	~2	7	140		~	23	16	. 17	.169	50	2	- 23	11	• 11	<5	1.62	.01	.06	<2	<2	3	2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L2800N 3+00W	1	12	8	30	<.3	9	3	64 1	.77	<2	<8	~2	3	10	< 2	<3	Ì	35	.07	104	01	10	- 11	211	4 1 2	<s -7</s 	1.70	.01	.10	<2	3	2	<2	
L2800N 2+50W 2 33 30 126 \cdot 32 15 884 2.89 6 \cdot 4 \cdot											-	-	-	•						.07	. (2.)	7	10	. 16	00	. 12	د>	2.43	.02	.04	<2	<2	<2	<2	
L2800N 1 4 6 2 10 36 .2 -3 -3 68 .36 .294 31 23 .84 159 .19 -3 1.92 .01 .12 -2 2 2 2 2 4 -2 -2 2 4 -2 -2 2 4 -2 -2 2 4 -2 -2 2 4 -2 -2 2 4 -2 -2 2 4 -2 -2 2 4 -2 -2 2 4 -2 -2 2 4 -2 -2 -2 3 -3 3 4 -2 -2 -4 -2 -2 -2 4 -2 -2 -4 -2 <	L2800N 2+50W	2	33	30	126	<.3	32	15 8	884 2	2.89	6	<8	<2	4	55	.2	<3	<3	79	.49	.256	56	26	1.10	255	17	۶۶	2 03	01	24	~2	~7	2	-1	
L2800N 1+50W <1	L2800N 2+00W	1	46	20	118	<.3	27	12 ;	708 2	2.61	4	<8	<2	10	36	<.2	<3	<3	68	.36	. 294	31	23	.84	159	.19	3	1.92	.01	12	2	~2	5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
L2800N 1+00N 1 53 19 70 < 3 18 7 268 2.07 5 < 8 < 2 6 22 $.3$ < 3 48 $.22$ $.250$ 30 13 $.37$ 97 $.14$ < 3 2.46 $.01$ $.05$ < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 3 $< 3 3 3 3 3 3 3 26 22 2 3 3 3 10 0 0 0 0 0 0 3 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $	L2800N 1+50W	<1	16	12	79	<.3	24	15 3	361 1	.84	<2	<8	<2	4	32	<.2	<3	<3	40	.27	.423	18	16	.32	226	.12	3	1.68	.01	.09	2	5	2	~	
L2800N $0+50W$ 1 83 26 53 31 4 117 1.62 5 8 2 5 24 2 3 37 20 158 14 13 25 74 11 <3 1.16 01 06 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	12800N 1+00W	1	55	19	70	<.3	18	7 2	268 2	.07	5	<8	<2	6	22	.3	<3	<3	48	.22	.250	30	13	.37	97	. 14	< <u>3</u> .	2.46	.01	.05	~	~2			
L2800N 0+00W 1 34 12 58< \cdot 3 18 \cdot 6 \cdot 2 \cdot 4 \cdot 20 \cdot 2 \cdot 3	L2000N 0+20W	1	65	2Q	22	<.5	51	4	117 1	.62	5	<8	<2	5	24	<.2	3	<3	37	-20	. 158	14	13	.25	74	. 11	<3	1.16	.01	.06	<2	<2	<2	2	
L1700N 0+00E 1 <th< td=""><td>12800N 0+00H</td><td>1</td><td>34</td><td>12</td><td>5R</td><td>~ 7</td><td>18</td><td>4 7</td><td>220 1</td><td>00</td><td>7</td><td>-0</td><td>-7</td><td>,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td>-</td><td></td></th<>	12800N 0+00H	1	34	12	5R	~ 7	18	4 7	220 1	00	7	-0	-7	,																		_		-	
L1700N 0+50E 1 5 6 2.3 1.25 7 8 < 2 2 15 < 2 < 3 < 10 < 10 < 80 $.09$ < 3 1.83 $.01$ $.04$ < 2 < 2 2 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3	L1700N 0+00E	<1	8	9	52	< 3	R	<u> </u>	727 1	28	r R	~0	~~	- 4	15	S. 4	<3	<3 -7	45	. 18	. 186	17	13	.27	83	.12	<3	1.95	.01	.05	<2	<2	<2	2	
L1700N 1+00E <1	L1700N 0+50E	1	5	6	43	< 3	Ř		17 1	.20	7	~0	~2	7	47	2.2	9	9	22	. 10	.179	6		.10	80	.09	<3	1.83	.01	.04	<2	<2	2	3	
L1700N 1+50E 1 9 8 53 <.3 12 4 187 1.67 5 <8 <2 2 29 <.2 3 <3 24 10 122 .10 122 .10 122 .10 <3 1.43 .02 .05 <2 2 <2 29 <2 3 <3 34 .19 .297 7 9 .15 78 .11 <3 2.40 .01 .05 <2 2 4 297 7 9 .15 78 .11 <3 2.40 .01 .05 <2 2 4 2 2 9 .297 7 9 .15 78 .11 <3 2.40 .01 .05 <2 2 4 2	L1700N 1+00E	<1	5	8	79	< 3	Ř	6	270 1	26	, ,	~Q	~2	2	14	`. C Z	~7	53	24	.15	-152	10	8	.13	60	.08	<3	1.39	.01	.03	<2	<2	<2	2	
L1700N 2+00E 3 13 9 43 .3 13 6 22 1 2 2 4 2 L1700N 2+00E 3 13 9 43 .3 13 6 228 1.69 9 <8	L1700N 1+50E	1	9	8	53	< 3	12	<u>د</u> ک	187 1		5	~R	~2	2	207	- 2	~	~7	27	. 27	.2/0	2		. 10	122	.10	<5	1.43	.02	.05	<2	2	<2	<2	
L1700N 2+00E 3 13 9 43 <.3										101	-	-0	<u>۲</u> ۲	E	.,		5	~3	34	- 17	. 291	ł	Ŷ	. 15	78	•11	<5	2.40	.01	.05	<2	5	4	2	
L1700N 2+50E 4 15 9 37 <.3 14 6 235 1.68 7 <8 <2 4 19 .4 4 <3 38 .11 .154 8 10 .15 67 .13 3 2.73 .02 .04 <2 <2 3 3 L1700N 3+00E 2 17 7 47 <.3 10 7 480 1.66 5 <8 <2 2 15 .2 <3 <3 32 .08 .219 8 10 .14 86 .12 <3 2.68 .01 .04 <2 <2 3 2 L1700N 3+50E 1 10 7 44 <.3 14 7 239 1.78 6 <8 <2 3 24 .2 <3 <3 40 .20 .263 10 12 .22 77 12 <3 2.68 .01 .04 <2 <2 3 2	L1700N 2+00E	3	13	9	43	<.3	13	6 2	228 1	.69	9	<8	<2	3	29	.2	<3	<3	35	. 16	.151	10	10	10	81	10	12	1 00	01	0 2	.2				
L1700N 3+00E 2 17 7 47 <.3 10 7 480 1.66 5 <8 <2 2 15 .2 <3 <3 32 .08 .219 8 10 .14 86 .12 <3 2.68 .01 .04 <2 <2 3 2 L1700N 3+50E 1 10 7 44 <.3 14 7 239 1.78 6 <8 <2 3 24 .2 <3 <3 40 .20 .263 10 12 .22 77 12 <3 2.68 .01 .04 <2 <2 3 2	L1700N 2+50E	4	15	9	37	<.3	14	6 2	235 1	.68	7	<8	<2	4	19	.4	4	<3	38	.11	.154	8	10	. 15	67	17	י <u>ז</u>	00.ו דל ל	.01	.00	<2	<2	<2	< <u>Z</u>	
	L1700N 3+00E	2	17	7	47	<.3	10	74	80 1	.66	5	<8	<2	2	15	.2	<3	<3	32	.08	219	ă	10	. 14	86	.12	3	2 68	.02	.04	~~	<2	5	5	
	L1700N 3+50E	1	10	_7	44	<.3	14	72	239 1	.78	6	<8	<2	3	24	.2	<3	<3	40	.20	.263	10	12	.22	77	. 12	~ ~	2 10	.01	.04	~ 7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	4	
STANDARD DS3/FA-10R 10 124 36 152 .3 37 12 815 3.15 34 <8 <2 3 28 5.5 5 6 80 .54 .093 18 191 .60 153 .09 5 1.74 04 17 3 407 484 487	STANDARD DS3/FA-10R	10	124	36	152	.3	37	12 8	315 3	. 15	34	<8	<2	3	28	5.5	5	6	80	.54	.093	18	191	.60	153	.09	5	1.74	.04	.17	`۲ ۲	407	د ۸۹۵) / 87	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA

Santoy Resources Ltd. PROJECT Allendale Lake FILE # A103725

TICAL

Data K FA YIN

SAMPLE#	Mo	CU	Ph	70	40	Mi	Co	Mm	E۰	40		A	TL	C r	6.4	CL.	0.2				•	-												
	DOM	DOM	DOM	DDM	DDM	DOM	00	חויים המכוכו	ге 12	745 1000	u nom	AU DOM	- 11	୍ବମ ନମନ	LCI DOD	SD	61	V	Ca	P •	La	Cr	Mg	Ba	Ti	B	AL	Na	K	Μ.	Au**	Pt**	Pd**	
				PPill	PPm	PP-11	P.P.			μη	<u>рдып</u> .	PPin	ppiii	ppin	Чла	hhu	ppii	ррн	A		ppm	ppm_	74	ppm	- 74	ppm	76	%	74	ppm	ppb	ppb	ppb	
G-1	1	2	<3	34	<.3	5	3	505	1.69	2	<8	<2	6	61	<.2	<3	<3	37	.49	.095	7	12	<u>۶</u> ۵	192	11	7	77	64	£.£	£	,	- 2	-	
L1700N 4+00E	2	22	5	69	<.3	13	7	333	1.85	8	<8	<2	5	27	.4	<3	<3	40	18	235	13	14	23	100	- 1 1	- 7 - 7	1 01	.00	,44 07	-2	4	~2		
L1700N 4+50E	2	18	8	60	<.3	14	7	354	1.75	10	<8	<2	4	29	2	<3	<3	78	21	217	16	13	26	122		.7 .	1.71	.02	.07	~~	~2	~2	~~	
L1700N 5+00E	2	14	3	67	<.3	16	8	313	1.70	8	<8	<2	4	33	<.2	<3	<3	35	22	210	12	12	23	128		- 72	1 00	.01	.07	~2	~2	<2	<u>د</u>	
L1700N 5+50E	2	19	9	96	<.3	15	9	880	1.91	10	<8	<2	3	23	.3	<3	<3	43	20	310	13	14	-2J -70	161	12	27	7.24	.02	.07	~2	4	<2	<2	
											-	_	-		•••						1.2	14		141	. 12	5	2.30	.01	.00	<2	<2	<z< td=""><td><2</td><td></td></z<>	<2	
L1700N 6+00E	2	13	7	88	<.3	13	8	481	1.57	7	<8	<2	4	31	.2	<3	<3	34	- 25	226	15	13	23	104	10	12	1 20	01	05	~	<u>د ا</u>	.2		
1700N 6+50E	1	12	7	71	<.3	11	6	295	1.46	10	8	<2	4	31	.3	3	<3	28	19	264	11	ō	17	00	10	27	> 17	.01	.05	20	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- 2	<2	
L1700N 7+00E	2	22	10	65	<.3	18	8	426	2.27	10	<8	<2	6	36	.3	<3	<3	55	27	230	27	17	51	113	15	22	5.17) E1	.92	.05	20	-7	52	<2	
L1700N 7+50E	1	21	10	59	<.3	15	8	487	2.24	10	<8	<2	5	44	.2	3	<3	56	31	241	22	16	44	126	12		2.71	.02	.07	<u>`</u>	<u>~</u>	~~	< <u><</u>	
L1700N 8+00E	2	23	8	54	<.3	15	8	318	2.31	10	<8	<2	5	31	.5	4	<3	59	.23	.211	23	18	38	120	16	-73	2.00	.02	.07	2	-2	~ ~	<2	
												-	-			-	-							127	• • •			.02	101	2	50	×4	<2	
L1700N 8+50E	2	21	8	76	<.3	15	8	681	1.93	14	<8	<2	3	25	.4	3	<3	42	.15	.290	17	13	.27	123	.13	<3 2	7 AR	02	05	0	2	~	2	
L1700N 9+00E	1	25	10	67	<.3	17	8	523	2.25	8	<8	<2	5	31	.3	<3	<3	53	.25	.230	21	18	.43	146	15	3	56	02	07	22	5	<u>``</u>	2	
L1700N 9+50E	1	14	9	66	<.3	13	6	643	1.85	5	<8	<2	5	30	.2	<3	<3	43	.27	.278	24	14	.24	118	. 11	3	77	.02	-04	22	~2	~	2	
L1700N 10+00E	1	12	3	22	<.3	7	- 4	161	1.68	3	<8	<2	5	47	<.2	<3	<3	45	.49	.249	38	12	.18	67	06	ã	76	01	.00	5	2	~~~	2	
L1700N 10+50E	1	8	5	31	<.3	9	4	214	1.46	6	<8	<2	15	33	<.2	<3	<3	34	.23	.215	18	11	14	79	.07	3	1.02	.01	.05	2	~2	5	~2	
		_																						•••	• • •					-	~	5	~2	
RE L1700N 10+50E	1	7	5	32	<.3	8	4	210	1.46	8	<8	<2	4	32	<.2	<3	<3	35	.24	.219	18	11	.14	82	.08	3 '	1.05	.01	. 05	2	0	0	~2	
L1700N 11+00E	2	. 9	7	23	<.3	- 7	3	68	1.35	8	8	<2	4	13	<.2	<3	<3	29	.10	. 180	10	9	.10	66 .	.09	<3 2	2.06	.02	.04	2	<2	2	~~	
L1700N 11+50E	1	15	9	29	<.3	13	- 5	235	1.58	2	<8	<2	5	49	<.2	<3	<3	43	.37	.104	31	16	.41	125	.09	<3	.87	.01	.09	õ	- 2	2	~2	
L1700N 12+00E	<1	5	4	17	<.3	- 7	3	78	.79	5	<8	<2	3	36	<.2	<3	<3	15	. 19	.064	16	7	.16	69.	.06	<3	.88	.02	.05	~	ž	-2	~	
L1700N 12+50E	<1	7	4	28	<.3	10	4	199	1.20	6	<8	<2	5	24	<.2	<3	<3	26	.18	.088	18	9	.21	89	.09	3 1	.08	.01	.05	<2	<2	<2	<2	
17004 17.005		-	,							_	_	_	_																	-	-		۰ L	
L1700H 13+00E	<1		4	29	<.5	10	- 4	223	1.22	3	<8	<2	3	18	<.2	<3	<3	27	.14	.091	13	9	. 19	64.	.08	<3	.98	.02	.05	<2	<2	2	<2	
L1700N 1373UE		13	ç	37	<u>.</u> .	14	<u></u>	125	1.57	2	10	<2	3	27	<.2	<3	<3	32	.24	. 197	20	12	.34	84 .	.12	<3 1	.68	.02	.09	<2	<2	<2	<2	
1700W 14+00E		12	4	22	<.5	12	2	144	1.32	5	11	<2	5	19	<.2	<3	<3	25	. 12	. 166	12	9	. 18	102 .	.10	<3 1	.87	.03	.07	<2	<2	<2	<2	
L1700N 14+30E		20	14	22	<u>.</u> .	10	4	116	1.54		<8	<2	5	17	<.2	<3	<3	33	. 13	.303	16	10	. 18	105 .	. 10	<3 1	.47	.02	.06	<2	<2	2	<2	
L1700N 13+00E		10	y	34	د.>	14	2	210	1.58	٥	10	<2	4	18	<.2	<3	<3	33	. 16	. 223	19	13	. 19	85.	.09	<3 1	.60	.02	.06	<2	<2	<2	<2	
11700N 15+50E	1	18	7	70	. 7	44	1	17/	1 5/	,	-0			F/			-																	
11700N 16+00E	1	11	'z	22	~ 7	11	7	124	1.24	4	<u><0</u>	< <u>2</u>	<i>°</i>	24	<. <u>2</u>	<5	<5	57	.46	.240	40	15	.28	82.	.07	<3 1	.04	.01	.07	<2	3	2	<2	
1700N 16+50E	1	21	7	30	2.2	17	4 5	757	1.22	2	50	~~	2	44	<.Z	<3	<5	58	.36	.158	33	13	.35	. 88	. 10	<3 1	.06	.01	.08	<2	<2	<2	<2	
11700N 17+00E	1	16	16	42	2 2	12	2	221 121	1.40	É	-0	~2	- (-	01	<.2	<5	<5	35	.44	.158	30	15	.34	120 .	.09	4 1	.29	.02	. 16	2	<2	<2	<2	
11700N 17+50E	1	16	9	60	2.2	10	 ∡	431 Eng	1.00	2			5	23	<.2	<5	<5	57	.20	.235	21	13	. 25	93.	.11	<3 1	.48	.02	.06	<2	<2	<2	2	
	•	10	0	07		10	Ģ	200	1.50	0	50	< <u>Z</u>	4	25	.2	<٢	<5	51	.20	.170	17	12	.27	93.	. 10	-31	.39	.02	.06	<2	3	2	<2	
L1700N 18+00E	1	71	8	36	<.3	17	5	134	1 67	4	٥	~	7	٥٨	10	12	12	27	17	414	77	17	70					••		-				
L1700N 18+50E	1	11	5	45	< 3	17	5	384	1 3/	8	, جع	-2	ź	17	~ 2	~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	37	.43	160	37	10	.32	104 .	.09	<51	.41	.0Z	.08	<2	3	<2	3	
L1700N 19+00E	1	16	6	60	< 3	20	- Á	265	1 20	र	<8	~2	~	37	2.2	~~	~7	20	- 14	150	14	у 10	.20	105 .	10	<3 1	-79	.01	.05	<2	3	3	2	
L1700N 19+50E	1	10	8	80	<.3	15	5	695	1 36	8	<8	<2	ž	17	~.~~	1	~3	20	.20	147	17	10	. 20	119.	10	41	.60	.UZ	.07	<2	<2	<2	2	
STANDARD DS3/FA-10R	10	123	33	152	<.3	37	12	802	3.12	34	Ř	<2	ž	28	6.0	5	4	49 78	. UY 5/	. 107	17	107	- 1D E O	1U9 . 1//	10	<51	.70	.02	.05	<2	2	2	<2	
														20	0.0			10		.074	17	100	. 39	144 .	08	ונ	.12	.04	.17	4	493	476	482	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME ANALYTICAL

Santoy Resources Ltd. PROJECT Allendale Lake FILE # A103725

SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	Р	La	Cr	Mg	Ba	Ti	В	AL	Na	κ	W /	Au** i	Pt**	>d**	
	ppm	opm	ppm	ppm	ppm	ppm	ppm p	pm	Χ.	opm p	pm p	opm p	ypm (ypm (obu t	ybu i	ppm	ppm	%	*	ppm	ppm	X	ppm	X	ppm		*	× (ppm	ppb	ppb	ppb	
G•1	1	2	<3	37	<.3	4	3 5	538 1	.81	4	9	<2	6	67 -	<.2	<3	<3	39	.53	.102	7	12	.52	209	. 12	<3	.84	.07	.53	4	<2	<2	2	
L1700N 20+00E	1	11	6	43	<.3	16	5 °	164 1.	.46	9	<8	<2	4	19	.2	<3	<3	30	. 13	.134	13	11	.23	120	.11	<3	1.78	.02	.06	<2	<2	<2	<2	
L1700N 20+50E	1	10	5	52	<.3	14	5 ′	94 1	.48	3	<8	<2	7	42 -	<.2	<3	<3	32	.32	. 163	30	14	.38	96	.09	<3	1.14	.01	.07	<2	<2	<2	<2	
L1700N 21+00E	1	12	9	46	<.3	14	5 1	191-1	.50	9	8	<2	4	18	.3	3	<3	31	. 12	.147	13	10	. 20	121	.11	3	2.03	- 02	.06	2	<2	<2	<2	
L1700N 21+50E	1	19	11	61	<.3	18	7 3	268 1	.76	5	<8	<2	5	32	.2	<3	<3	39	.20	.221	17	14	.39	135	.13	<3	2.18	.02	.07	<2	<2	<2	3	
L1700N 22+00E	1	10	6	41	<.3	12	5 7	295 1	.52	6	<8	<2	5	34	<.2	<3	<3	34	.26	. 145	21	12	.30	106	.09	<3	1.29	.02	.07	2	<2	<2	<2	
L1700N 22+50E	<1	10	5	34	<.3	13	5 '	170 1	.43	5	8	<2	6	29 ·	<.2	<3	<3	31	.21	.083	23	12	.32	109	.09	<3	1.05	.02	.07	<2	<2	<2	<2	
0+100N 0+100W	2	8	9	40	.3	15	6 7	226 1	.68	5	<8	<2	3	7	.3	<3	<3	33	.05	.201	5	13	. 15	52	.13	<3	2.81	.01	.04	<2	<2	<2	2	
0+100N 0+75W	1	10	6	35	<.3	13	4	96 1	.55	4	<8	<2	5	20 ·	<.2	<3	<3	37	. 14	.092	16	16	.21	54	.11	<3	1.29	.02	.04	<2	<2	<2	<2	
0+100N 0+50W	1	19	8	63	<.3	19	7	116 1	.97	4	<8	<2	3	14	.3	<3	<3	40	.09	. 183	8	17	.26	68	. 13	<3	2.29	.02	.06	<2	<2	<2	<2	
0+100N 0+25W	1	11	11	58	<.3	17	8 4	421 Z	.16	7	8	<2	4	15	.3	<3	<3	45	.11	. 258	11	21	.20	58	. 13	<3	2.64	.02	.05	<2	<2	2	3	
0+100N 0+00E	1	27	9	60	<.3	15	7:	348 1	.87	4	<8	<2	8	73 ·	<.2	<3	<3	45	.55	.239	43	17	.54	140	.11	3	1.36	.02	.20	<2	<2	<2	<2	
0+75N 0+100W	3	23	14	28	.5	15	10 (532 1	.08	9	<8	<2	<2	123	.2	<3	<3	21	.59	.118	9	18	.22	179	.05	<3	1.76	.01	.08	<2	2	2	<2	
0+75N 0+75W	1	9	10	56	<.3	9	4	96 1	. 33	6	<8	<2	2	11	.2	<3	<3	27	.08	. 256	7	11	. 14	59	.11	<3	1.66	.02	.04	<2	2	<2	<2	
0+75N 0+50W	1	15	8	62	<.3	19	8	152 2	.04	5	11	<2	4	14	.3	<3	3	39	.12	.178	12	18	. 28	86	. 13	<3	2.71	.02	.05	<2	<2	<2	<2	
0+75N 0+25W	1	15	11	49	<.3	11	5 3	243 1	.42	7	9	<2	2	21	.2	<3	<3	32	. 16	. 137	11	14	.20	71	.09	<3	1.34	.01	.08	<2	<2	2	<2	
0+75N 0+00E	1	31	8	43	<.3	16	7 (277 1	.95	2	<8	<2	8	109 -	<.2	<3	<3	54	.87	.319	66	21	.60	135	.11	<3	.81	.03	.26	<2	2	2	<2	
0+50N 0+100W	1	19	8	40	<.3	12	5	100 1	.67	5	<8	<2	5	17	<.2	<3	<3	37	.12	. 140	18	16	.22	62	- 12	<3	1.75	.01	.07	<2	<2	<2	<2	
0+50N 0+75W	1	11	11	47	<.3	14	5	115 1	.48	7	<8	<2	3	21	.2	<3	<3	32	.12	. 155	11	18	.22	75	- 12	<3	1.59	.02	.05	2	<2	<2	• <2	
0+50N 0+50W	<1	18	9	47	<.3	12	5 :	324 - 1	.68	9	8	<2	3	13	<.2	-3	<3	37	.10	. 144	9	13	.22	69	.12	<3	1.81	.02	.05	2	2	<2	<2	
RE 0+50N 0+50W	1	18	11	49	<.3	13	5 3	328 1	.70	7	9	<2	3	13	.2	<3	<3	37	.10	.146	11	12	.22	71	.12	<3	1.83	.02	.05	<2	<2	<2	<2	
0+50N 0+25W	1	16	9	67	<.3	17	8	255 1	.66	6	<8	<2	- 4	15	<.2	<3	<3	33	.12	.207	12	12	.25	73	.12	<3	2.44	.01	.06	<2	2	<2	<2	
0+50N 0+00E	1	26	8	52	<.3	15	6 :	265 2	.10	<2	<8	<2	8	66	<.2	<3	<3	49	.45	.175	36	17	.52	119	.12	<3	1.50	.01	.12	<2	<2	<2	<2	
0+25N 0+100W	1	10	9	58	.4	12	5	204 1	.62	6	<8	<2	4	12	.2	3	<3	36	.11	.137	10	16	.20	60	-11	<3	1.40	.02	.04	<2	<2	3	3	
0+25N 0+75W	1	11	10	41	<.3	12	5	89 1	.55	5	<8	<2	3	13	.4	<3	<3	32	.07	.130	7	10	.13	63	.13	<3	2.58	.02	.05	<2	3	<2	<2	
0+25N 0+50W	1	13	10	46	<.3	13	6	120 1	.70	4	<8	<2	4	12	.4	3	<3	34	.08	. 164	9	11	. 16	55	. 14	3	3.29	.02	.05	2	2	<2	<2	
0+25N 0+25W	1	14	9	42	<.3	14	5	162 1	.83	3	11	<2	5	31	<.2	<3	<3	47	.24	.130	27	16	.35	46	.13	<3	1.01	.02	.06	2	<2	<2	<2	
0+00N 0+100W	<1	7	10	47	<.3	7	3	19 1 1	.35	5	<8	<2	2	8	.2	<3	<3	29	.06	. 268	7	10	.09	67	.11	<3	1.73	.02	.03	<2	<2	2	<2	
0+00N 0+75W	2	22	11	60	<.3	19	8	169 1	.74	8	<8	<2	3	18	<.2	6	<3	35	.12	.179	13	12	.26	117	.13	<3	2.66	.02	.05	2	<2	<2	<2	
0+00N 0+50W	1	11	10	63	<.3	14	6	334 1	.64	6	<8	<2	3	19	<.2	<3	<3	34	. 14	. 253	12	11	.21	105	. 12	<3	2.01	.02	.05	<2	2	3	<2	
0+00N 0+25W	1	24	11	66	<.3	17	7	270 1	.89	6	<8	<2	4	22	<.2	<3	<3	40	. 16	.229	16	14	.28	127	.14	3	2.57	.02	.06	<2	<2	5	<2	
0+25E 0+100N	1	14	7	32	<.3	14	4	103 1	.80	5	<8	<2	3	23	<.2	<3	<3	42	. 16	.160	14	16	.23	53	. 12	<3	1.72	.02	.04	<2	<2	<2	<2	
0+25E 0+50N	1	43	11	41	<.3	17	5	122 2	.01	4	10	<2	6	24	.2	<3	<3	40	. 14	.170	13	15	.20	129	.13	3	2.55	.03	.06	2	<2	4	<2	
0+25E 0+25N	1	14	10	30	<.3	10	4	207 1	.90	3	<8	<2	2	13	<.2	<3	<3	44	.10	.304	13	13	.11	52	.11	<3	2.55	.02	.03	2	2	<2	<2	
STANDARD DS3/FA-10R	10	120	35	153	<.3	36	12	798 3	.13	31	13	<2	3	27	5.8	4	5	77	.53	.094	17	185	.60	141	.09	<3	1.72	.04	.16	5	487	495	481	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data // FA

ACHE ANALYTICAI

Santoy Resources Ltd. PROJECT Allendale Lake FILE # A103725

Page 5

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn	Ag	Ni	Co ppm	Mn ppm	Fe X	As ppm	U Mora	Au ppm	Th	Sr ppm	b) mag	Sb ppm	Bi pom	V OOM	Ca %	PX	La	Cr DOM	Mg %	Ba Dom	Ti %	B	Al X	Na %	K X n	W	Au**	Pt**	Pd**	
G-1	1	2	<3	37	<.3	6	3	516	1.70	2	8	<2	6	62	<.2	<3	<3	37	- 49	.092	8	11	-50	209	.11	<u>م</u> م		07	" P 50	6 6	e2	·2	<u>مہم</u> در	
0+25E 0+00N	1	20	9	17	<.3	8	3	51	1.46	9	<8	<2	2	6	.3	<3	<3	30	-04	159	13	ö	00	44	12	Ā	2 00	02		~	5	~~~	~~	
0+25E 0+25S	1	19	7	37	<.3	13	5	127	1.71	5	<8	<2	5	33	<.2	<3	<3	38	20	201	31	15	20	87	10	ž	1 41	01	0/	~2	~2	~2	5	
0+25E 0+50S	1	29	17	61	<.3	20	8	219	2.98	7	<8	<2	Ĩ.	21	< 2	F	<7	07	22	152	50	27	8/	67	32	1	1 22	.01	07	~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	22	2	
0+25E 0+75S	1	17	7	28	<.3	13	5	130	2.00	Å	<8	0	7	35	< 2	~7	~7	18	35	276	30	16	.04	47		~2	1.32	.02	.07	2	4	-2	-2	
	'		•				-	120		•		74	•		··.	-1	~	40		. 214		10		63	.00	10	1.35	.01	.04	~2	2	< <u>2</u>	<z< td=""><td></td></z<>	
0+25E_0+100s	1	68	7	42	< 3	18	7	263	2 17	3	c 8	12	7	176	20	z	~2	42	1 0/	4.04	04	27	40	175	00	.7	77	00			~			
0+50F 0+100M	l i	10	7	10	23	0	ż	84	70	ž	~2	5	5	EE.	~ . 2	-7	7	20	70	.400	70	24	-04	132	.09	< <u>-</u>	.75	.02	. 21	< <u>Z</u>	4	<2	<2	
0+50E 0+75N	1	8	11	10	2.7	' ź	ž	7/	1 14	4	~0	22	2	10			7	20	.50	000	20	40	.24	40	.00	<5	.74	.02	.04	< <u>z</u>	د	<2	<2	
0+505 0+500	1	47	'ż	50	22	17	2	204	2 53	2	~0	20	6	40	1.4	.7	() .7	21	- 19	.059	12	10	-17	22	.11	<3	1.03	.02	.04	<۲	2	<2	<2	
0+505 0+25N		7	Ď	12	2.7	4	7	200	4 57	17	-0		0	32	<.2	<u></u>	< >	DI	.20	- 299	28	22	.44	55	.15	<5	1.82	.01	.05	<2	<2	<2	<2	
0+30C 0+23N	l '	'	o	12	·	0	2	40	1.55	13	< 0	< <u>Z</u>	2	15	- 6	4	<5	51	.05	.145	5	6	.07	54	.13	<3	2.28	.02	.03	<2	<2	2	3	
0+505 0+000		17	10	75	. 7		,	70	1 7/	10			~	**	-	-				4.785						_						-		
0+505 0+250	5	77	10	23	2.2	15	4 E	170	1.24	10	0		<u> </u>	10		2	< <u>></u>	28	.07	.175	ð	8	.08	60	.10	<3	1.74	.02	.04	2	<2	<2	3	
DE 0+50E 0+233 DE 0+50E 0+350	2	70	16	41		12	2	170	4.43		10	~2	, Y	28	<.Z		<5	111	-2(.472	40	29	.43	67	. 10	<3	2.09	.01	.06	3	<5	<2	2	
0+605 0+600		30	47	72	2.3	14	2	1/3	4.30	11	<0	~~	10	21	<.2	<2	<5	110	.26	.465	- 39	28	-42	67	.10	3	2.05	.01	.06	2	3	<2	<2	
0,505 0,750		21	14	43	<u>.</u> ,	14	0	130	1.72	10	<8	< <u><</u>	6	- 22	Z	<3	<3	45	.22	.112	18	17	.43	119	. 15	<3	2.12	.02	.07	<2	<2	3	<2	
0+30E 0+735	•	11	Ö	10	د.>	. Y	2	79	1.05	4	<8	<2	5	25	<.2	<3	<3	27	. 19	.110	22	10	.21	49	.10	<3	.76	.01	.04	<2	3	<2	2	
0+50F 0+100S	1	56	0	12	. 7	14	7	177	2 21	7	-0	-3	E.	20		.7			27	-	-					-				_	_	_		
0+755 0+1000	1	34	10	22	2.2	10		100	6.21	1	50	- 52	2	27	5.2	<3	<2	22	.27	.215	30	18	.41	76	.13	<3	1.78	.01	.06	<2	3	<2	3	
		1/	10	17	2.2		4	100	.70		<0 .0	~~	2	98	<.2	<3	<5	22	.41	.040	20	10	.35	57	.09	5	.83	.02	.06	<2	2	<2	<2	
0+75E 0+60N	1 :	14	0	42	5.5	13		142	1.00	12	<8	<2	4	22	<-2	<5	<5	32	.16	.264	13	12	.17	81	.11	3	2.36	.02	.04	<2	2	<2	2	
0+75E 0+35N		24		42	<.3	12	4	110	1.08	ž	<8	<2	2	- 54	<.2	<3	<3	-58	. ZQ	.174	16	14	.21	70	. 10	<3	1.88	.02	.05	<2	2	3	2	
U+73E U+23N	1	40	I.S	42	د.>	14	þ	201	2.12	9	<8	<2	6	20	<.2	<3	<3	49	.18	.280	26	15	.30	84	. 15	<3	2.64	.02	.06	<2	3	<2	4	
0+75E 0+00N	1	11	0	34		10	5	120	\$ 72	17	~9		E	44		.7	.7	71	47	707	47		• /			-		•••		-	_	_	_	
0+75E 0+25S		16	7	70	2.2	17		167	1 00	12	20	~~~	2	10	<u>.</u>	<u>د</u> >	<>	20	. 15	.307	15	11	.16	68	.10	5	2.20	.01	.03	<2	3	3	2	
04756 04508		10	6	20	2.2	10	,	122	1.70	12	50	- 54	4	21	- 2	<3	<2	41	.10	.218	21	15	.28	11	.12	<3	2.17	.01	.04	<2	<2	<2	<2	
0+756 0+756	1	20	7	21	~ 7	16	2	1/0	1./1	17	<u>``</u>	2	2	20	5.2	<2 *	< <u>></u>	41	. 22	.239	27	14	.21	62	. 10	<3	1.59	.01	.04	<2	3	<2	<2	
0+755 0+1000		20	6	21	2.2	12	2	147	2.03		50	~~~		22	<.2	<u>د</u> >	<2	21	. 29	.192	54	18	.35	63	.10	<3	1.37	.01	.05	<2	<2	<2	<2	
0+75E 0+1005	1	24	Q	44	<.5	10	D	100	2.00	0	<8	<2	8	40	<.Z	<5	<3	54	.32	.190	43	21	.40	73	. 11	<3	1.29	.01	.06	<2	2	<2	<2	
0+100E 0+100N	1	26	10	22	~ 2	13	5	120	1 59	4	~9	~2	0	7.0		-7	-7	7/	20	4 76	70	45						~ ~			-	_	_	
0+100E 0+75N	-1	21	6	25	~ 7	17	1	01	1 71	0	~0	~2	,	47		-7	10	24	. 29	.172	29	12	.28	80	.11	<5	1.24	.01	.05	< <u>2</u>	<2	<2	2	
0+100E 0+50N	1	6	7	22	22	10	7	71	1.70	¥			4	20	5.6	< <u>></u>	< 3 - 7	30	. 10	. 191	10	15	- 19	85	.11	<3	1.74	.01	.05	<2	2	2	2	
0+1002 0+254		20		20	2.2	17	2	450	1.70	10	50	SZ	•	- 27	<.2	2	< <u>></u>	20	.28	. 588	22	14	-17	81	.07	3	1.41	.01	.05	2	<2	<2	2	
0+100E 0+25N		2V 1/	11	27	2.3	17	¥ E	122	1.01	10	<0	~2	2	01	- 2	<2	< <u>s</u>	36	.29	.112	25	15	.34	213	.13	<3	2.43	.02	.07	<2	<2	2	4	
UTIQUE UTUUN	11	14	õ	20	<.5	1Ų	>	11	1.85	16	8	<2	5	15	.3	4	<3	38	.08	.242	19	13	.14	78	.11	<3	2.63	.02	.04	4	4	<2	3	
0+100F 0+25S	1	33	8	22	~ 7	15	5	101	2 05	11	-9	~2	0	27	7	-7	-7	50	17	275		15	25	07				0.5			-	_	_	
0+100E 0+50S	1	11	Å	34	2.7	10	1	110	1 77	7	20	~2	7	26	د.	-7	-7	20	- 17	.223	21	12	. 25	¥3	.11	<5	2.8/	.02	.06	< <u>Z</u>	Z	2	3	
0+100E 0+750	1.7	2/	5	10	2.7	11	4	1/0	1.05	- 27	<u>~0</u>	~2	0	20	5.4	<) .7	<3 -7	4U E/	.20	.21/	51	15	- 22	61	.09	<3	2.02	.01	.04	<2	<2	<2	3	
0+100E 0+733 0+100E 0+100e		07	2	- 17	×.3	17	4	140	1.72	52	<0 10	< <u><</u>	6	80	<.2	<5	<5	24	. 84	.384	75	20	.30	69	.06	<3	.52	.01	.10	<2	<2	<2	3	
STANDADD DOZ/PA 400		120	77	466	<u>د.</u>	77	17	217	2.89	13	10	<2	8	21	.2	Ž	<3	19	.23	.495	39	22	.47	118	.20	<3	2.86	.02	.10	<2	<2	<2	3	
STANDARD DSS/FA-TUR	7	120	22	122		3/	12	0UY	3.14	22	<9	<2	\$	28	2.2)	6	11	.54	.094	19	185	.60	152	.08	<3	1.74	.04	.17	4	498	467	479	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🖉 FA

Santoy Resources Ltd. PROJECT Allendale Lake FILE # A103725

Data 🖉 FA

Page 6

SAMPLE#	M	0	Cu	Pb	Zr	n Ag	g	Ni Co	D	Mn F	e	As	U	Au	Th	i S	r	Cd	sb	Bi	v	Ca	F	, La	Cr.	Ma	Ba	Ti	R	At	Na	ĸ	u	Δı ı**	D+**	Dri**	
	pp	m p	ipm	ppm	рря	n ppi	mp	ion ppr	n p	xpm :	%p	pm p	xpm	ppm	ppn) pp	mp	pm (ppm	ppm	ppm	*	,	(ppm	ppm	*	ppm	*	ppm	7	%	×	ppm	ppb	ppb	ppb	
G-1		1	1	-3	30		z	5 7	2 5		τ	2	8	~>	5			2	~7	.7	2.4	E 1	0.01		4.5								<u> </u>	·			
0+255 0+1004		1	Ŕ	15	51		ζ ζ	7 7	. 1	70 1 3	0	7	8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7	, .	4 \ 0		2	$\frac{3}{7}$	41	.21	1050) () , , , , , , , , , , , , , , , , , , ,	12	.25	221	14	<u> </u>	-84	.07	.48	4	<2	<2	<2	
0+25s 0+75V	- I -	1	13	12	51	~	ž	13 /	4 1	52 1 0	í	7	8		ż	. 1	, ,	· č	~	1	61	.00	. 102	1 10	10	. 15	29	- 11	3	. 14	.02	.05	<2	~2	<2	<2	
0+25\$ 0+50W		1	20	11	65	<	ž	15	έż	54 1 9	5	ś	-8	- 2	5	2	22	. ~	2	7	41	10	.227	10 10	12	.24	105	. 14	<31	1.75	.02	.05	<2	<2	<2	2	
0+25S 0+25W	·	1	29	11	87	<	3	21 8	RZ	77 2 1	ś	7	- 8	~2	ž	2	6 - 6 -	·~	~7	·	9 <u>6</u> 50	- 17	205	17	14	.34	102	. 12	< <u>></u> 2	2.22	.02	.07	<2	<2	<2	2	
		-			-						•	,	~	-	_		ψì	- 6	~J	1	50	4	. 202		10	.43	77	. 14	< 5 6		.02	. 15	<2	<2	<2	2	
0+50\$ 0+100W		2	40	13	44		3	19 8	8 1	98 1.9	1	5	<8	<2	4	. 1	2	.2	<3	<3	37	<u>na</u>	154	10	15	21	77	17	12 3		02	05	-2	<i>.</i> ,	-3	-3	
0+50S 0+75W		2	20	15	- 58	l <	3	15 6	6 2	60 1.7	5	9	<8	<2	3	1	2	.2	جع		37	11	185	12	12	27	103	11	~ ~ ~ ~	> 37	- 02	.05	20	<u>``</u>	~2	2	
0+50\$ 0+50W	- I -	1	40	16	67	' < .	3	16	78	57 1.9	Ō	4	<8	~2	5	4	1 <	2	3	ž	2A	30	135	375	16	- 50	16.6	11	21		.02	.00	20	2	-2	×2	
RE 0+50S 0+00E	- I ·	1	20	10	- 44	. <	3	12 5	51	78 1.6	2	6	ģ	<2	3	2	<u> </u>	.2	<3	<3	37	.16	.156	16	12	- 24	01	10	-71	7/	01	.00	22	22	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-2	
0+50\$ 0+25w	·	1	49	12	40) <.)	3	17 7	7 2	65 2.0	1	<2	<8	<2	7	10	- 9 <	.2	<3	3	56	.88	332	71	20	.61	128	10	 	75	02	26	5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~2	~~~	
																			-	_			1000		20						.04	. 20	2	10	~2	~2	
0+50\$ 0+00E	;	2	22	12	- 46	i <	3	13 5	5 1	77 1.6	8	11	<8	<2	3	2	6 <	.2	<3	<3	36	.17	. 164	17	13	. 25	100	11	<3.1	RR	02	07	2	2	-2	~>	
0+75S 0+100W	·	1	15	10	- 47	' .: .:	3	13 é	6 2	32 1.6	9	9	<8	<2	5	1	3	.3	<3	<3	37	.09	. 137	- 11	12	18	06	.12	<3 1	07	.02	30	-2		- 22	~2	
0+758 0+75W	;	2	31	12	50) <.:	3	16 6	51	60 1.7	9	7	<8	<2	5	2	7 <	.2	<3	<3	38	. 16	. 154	16	12	.26	111	.12	<3.2	18	02	05	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~2	~2	
0+758 0+50W	·	1	16	- 9	- 55	<	3	16 6	62	35 1.74	4	5	<8	<2	5	3	2 <	.2	<3	<3	41	.24	. 188	22	13	.32	93	.10	<3 1	30	02	07	2	5		~2	
0+75\$ 0+25W	·	1	19	13	- 53	; <.:	3	14 5	51	35 1.8	2	7	<8	<2	6	2	0	.2	<3	<3	40	.19	.252	18	14	.21	66	10	<31	.47	.02	05	~2	~2	~2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
																											•••	•••					· • •		-6	12	
0+75\$ 0+00E	;	2	62	12	30) <.:	3	11 4	4	89 1.6	3	3	<8	<2	- 3	; 1	3 <	.2	<3	3	33	.06	.217	r 19	8	.14	69	.12	<3.3	. 16	.02	- 05	<2	<2	2	0	
0+100\$ 0+100W	'	1	25	9	- 46	, <.:	3	21 7	71	57 1.8	3	8	<8	<2	- 4	1	9	.2	<3	<3	38	.13	.186	5 16	13	.24	97	.12	उंदे	.38	.02	.06	2	2	2	<2	
0+100s 0+75w	·	1	41	13	- 74	· <	3	20 7	7 2	83 2.0	8	11	-8	<2	5	2	4	.2	<3	<3	50	.23	.175	23	14	.39	99	.12	<31	.97	.02	.06	<2	$\overline{2}$	~2	2	
0+100s 0+50W		2	16	13	69) <.:	3	12 5	51	68 1.8	1	10	<8	<2	5	1	6	.2	<3	- 4	42	.14	.265	16	13	.21	65	.11	-3 1	.66	.01	.04	<2	<2	~2	<2	
0+100\$ 0+25W		1	84	10	42	! < .	3	17 7	7 Z	74 2.3	6	3	<8	<2	13	11	6 <	.2	<3	<3	70	.98	.413	; 90	23	.61	127	.10	<3	.71	.03	.24	Z	<2	<2	2	
			••				_																						_			•	-			-	
STANDARD DS3/FA-1	UR 1	01	25	35	156) < .	5	37 12	28	31 3.19	9	32	<8	<2	3	2	85	.8	5	6	80	.53	. 093	i 17	191	.61	153	.08	4 1	.76	.04	.17	4	486	470	486	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACHE ANALYTICAL

Santoy Resources Ltd. PROJECT Allendale Lake FILE # A103725

Page 7

Data WFA

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	P	La	Cr	Ma	Ra	Ti	R	ا ۵	No	K	u	A	D+**	Dd##	
	ppm	ррт	ppm	ppr) ppm	ppm	ppm	ppm	X	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	7	%	ppm	ppm	ž	pom	*	ppm	Ω,	%	x.	maa	bob	bob	DOD	
<u>6-1</u>	4	1	~7	76			z	670	1 74	-2	-0					.7		70			· · · · · · · · · · · · · · · · · · ·			<u> </u>						-		FF ~	-44	
ALS-001	1	ż	6	20	2.2	17	5	00	04	~~	~0	~2		04	<.2	< <u>></u>	<2 -7	22	.49	.094		12	-52	206	.12	6	.82	.06	.49	5	<2	<2	- 3	
ALS-002	1	ž	6	20	2.2	10	7	77	1 4 2	4	7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~	44	. 2	< S .7	<>	20	. 25	.087	11	12	.54	65	.10	<3 1	.22	.03	.05	<2	<2	2	2	
AL \$-003		4	,	- 67		10	2	12	1 70	2	-0		2	20	<.۲	<u>د</u> >	<5	- 30	-19	.235	12	15	.18	$\overline{\Pi}$.11	<3 1	1.21	.01	.05	2	<2	2	5	
AL 5-005		10	0	40		12	, ,	102	1.70	2	<0	~~	?	03		2	<2	45	-46	.323	19	18	.57	68	. 14	3 1	1.35	.02	- 06	3	<2	2	2	
AL3-004	'	10	y	47	<.3	14	D	120	2.05	<2	<8	<2	4	25	. 2	<3	<3	39	.15	.255	11	15	.29	82	. 14	<3 2	2.54	.02	.06	<2	<2	<5	<2	
ALS-005	1	9	9	33	<.3	11	4	100	1.74	11	<8	<2	4	30	3	6	<3	43	10	326	13	16	21	67	11	12 3	57	0.2	07	,	- 2	~	-2	
ALS-006	2	10	12	51	<.3	11	4	121	1.96	10	Ā	- 2	रं	22	4	5		40	13	378	10	17	10	82	17	7.	5.Jr 3.70	.02	.04			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>``</u>	
ALS-007	1	9	10	36	<.3	12	4	137	1.73	R	<8	<2	ž	24	.7	7	-3	78	17	266	11	13	10	87	12	-7.2		.02	.05	2		2	5	
ALS-008	1	10	8	24	< 3	7	Å	80	1.54	Ř	<r< td=""><td><2</td><td>ž</td><td>14</td><td></td><td>2</td><td>7</td><td>30</td><td>07</td><td>310</td><td>11</td><td>6</td><td>10</td><td>01 20</td><td>12</td><td></td><td>. 42</td><td>.02</td><td>.05</td><td>2</td><td>~~~</td><td><2</td><td><2</td><td></td></r<>	<2	ž	14		2	7	30	07	310	11	6	10	01 20	12		. 42	.02	.05	2	~~~	<2	<2	
RE ALS-008	1	10	- Q	24	< 3	ż	Ż	79	1 56	6	8	-2	ž	14	.7	~~		30	07	376	11	å	10	00 40	47	- <u></u>	2.04 2.07	.02	.05	~2	<2	<2	< <u>Z</u>	
						•		••								1.2			.07	. 364		7	. 10	07	. 19	ND 3	5.07	.02	.05	<2	2	<2	4	
ALS-009	1	8	8	44	<.3	14	5	533	1.70	10	<8	<2	3	23	.4	5	<3	38	. 18	.246	12	15	.24	68	13	3.2	. 46	.02	04	4	~	2	2	
ALS-010	1	7	11	- 40	<.3	9	4	253	1.61	6	<8	<2	3	17	<.2	<3	<3	35	12	195	8	11	17	70	.12	-7.1	80	02	07	2	~ ~ ~	~ 5	5	
ALS-011	1	8	13	62	<.3	14	6	490	1.79	10	<8	<2	4	17	.3	6	<3	37	.14	284	12	14	20	107	13	3 2	26	02	05	2	~2	-2		
ALS-012	<1	- 7	9	- 63	<.3	15	5	474	1.61	5	<8	<2	7	25	<.2	<3	<3	35	19	202	16	14	21	72	11	-71	74	01	.05	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~2		
ALS-013	1	9	11	71	<.3	16	6	335	1.89	7	<8	<2	6	25	.3	5	<3	43	22	250	10	17	24	00	17	31	91	.07	.00	~~	<u>```</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~2	
												-	•			-								,,			-01	.02	.00	۲	2	×2	3	
ALS-014	1	6	13	68	<.3	16	6	496	2.01	8	<8	<2	4	28	<.2	<3	<3	44	.24	.266	20	20	.28	59	12	<3 1	65	02	05	2	-2	<i>(</i> 2	~2	
ALS-015	1	12	11	61	<.3	18	6	230	2.11	11	<8	<2	6	29	.4	7	<3	45	20	.265	19	20	20	76	14	र र	A0	01	05	7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~2	22	
ALS-016	1	9	9	65	<.3	15	5	138	1.69	7	<8	<2	4	23	<.2	<3	<3	34	.16	276	13	13	21	76	12		11	02	07	-2		22	2	
ALS-017	1	7	11	65	<.3	14	6	226	1.99	6	<8	<2	4	23	<.2	<3	<3	43	17	.236	15	17	24	103	12	21	70	02	.05	22	2	~~~	~2	
ALS-018	1	8	12	36	<.3	8	4	99	1.71	9	<8	<2	4	11	.3	3	3	34	.07	108	7	in	12	64	17	-3.2	1 75	01	.01	2	-2	2	24	
																		2.								·J 6		.01	.04	c	<u>۲</u> ۲	<u>۶</u> ۲	~4	
ALS-019	1	12	10	28	<.3	12	5	104	1.66	5	<8	<2	5	56	<.2	<3	<3	36	.25	.094	27	13	.23	92	. 11	<3 1	58	03	66	2	~7	-2	7	
ALS-020	1	7	9	27	<.3	8	4	101	1.46	4	<8	<2	6	38	<.2	3	<3	34	.23	. 185	22	12	.21	68	09	<3 1	30	02	00.	2	22	22	-2	
ALS-021	1	9	9	- 48	<.3	14	6	232	2.07	8	<8	<2	7	58	<.2	<3	<3	47	47	.456	39	22	.78	86	10	31	47	02	05	õ	~2	~2	~2	
ALS-022	<1	7	9	51	<.3	14	6	202	2.00	4	<8	<2	6	50	<.2	<3	<3	46	.40	300	36	22	37	83	12	. 7 1	12	02	.05	27		~2	~~~	
STANDARD DS3/FA-10R	10	125	34	157	.3	35	12	838	3.25	33	9	<2	4	29	5.8	5	6	82	.56	.097	19	193	.62	149	10	3 1	79	04	17	` <u>c</u>	470	479	4	
	•														-															-	410	470	410	

Sample type: SOIL SSB0 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

APPENDIX H

Statement of Qualifications

STATEMENT OF QUALIFICATIONS

I, David T. Mehner, of 333 Scenic Drive of the Municipality of Coldstream, Province of British Columbia hereby certify that:

- 1. l am a Consulting Geologist with a business office at 333 Scenic Drive< Coldstream, British Columbia, V1B-2X3
- 2. I am a graduate of the University of Manitoba with a Bachelor of Science, Honours Geology Degree, 1976 and a Master of science Degree (Geology), 1982.
- 3. I am a Registered Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia (No. 19587).
- 4. I am a Fellow of the Geological association of Canada.
- 5. I have practiced my profession as a geologist continuously since graduation.
- 6. The foregoing report is based on carrying out geological mapping, prospecting and rock sampling for Santoy Resources Ltd. on the Alley claims between October 12 and 17, 2001.
- 7. I own no direct, indirect or contingent interest in the Alley claims or Santoy Resources Ltd. nor do I expect to receive directly or indirectly any shares or securities in Santoy Resources Ltd.

ind mehuer

David T. Mehner, P. Geo. Consulting Geologist

April 10, 2002

