Ŀ

Ĺ

L

L

L

L_

· ---

Province of British Columbia Ministry of Energy, Mines and Petroleum Resources GEOLOGICAL SURVEY BRANCH

ASSESSMENT REPORT

TITLE OF REPORT [type of survey(s)]	TOTAL COST
Geochemical and Geophysical	\$43,326.17
AUTHOR(S) RICHARD LODIELL	SIGNATURE(S) KUTUKI
LARRY D. LUITJEN	And Atto
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S)	YEAR OF YORK 2001-2002
STATEMENT OF WORK - CASH PAYMENT EVENT NUMBER(S)/DATE(S)	3175991 - Feb. 6, 2002
PROPERTY NAME GI Claim Group	
CLAIM NAME(S) (on which work was done) G.M.L. CM2. M3. GM	4, G15, GM5, G18, G19, G112 and Gm 13
· · · · · · · · · · · · · · · · · · ·	
COMMODITES SOUGHT Copper, Molybdenum, Gold,	Platinum, Palladium
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN	
MINING DIVISION Kamloops	_NTS_ 921/068 and 921/058
LATITUDE	120 ° (at centre of work)
OWNER(S)	
n <u>Gold Mask Ventures Ltd.</u>	_ 2)
	·
MAILING ADDRESS	
Box 1192	
Kamloops, BC	
<u>V2C 6H3</u>	-
OPERATOR(S) [who paid for the work]	
n _Gold Mask Ventures Ltd.	_ 2)
MAILING ADDRESS	
Box 1192	
Kamloops, BC	-
<u>V2C 6H3</u>	
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure,	alteration, mineralization, size and attitude):
PLEASE SEE ATTACHED	
······	÷
·····	·
REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT R	EPORT NUMBERS N/A
•	
	26848 INFR

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (Incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping	<u></u>		
Photo Interpretation		·	
EOPHYSICAL (Ine-kilometres)			
Ground		· · · · · · · · · · · · · · · · · · ·	
Magnetic			
Bectromagnetic			
Induced Polarization			ļ
Radiometric			<u> </u>
Seismic			
Other Self Potential - 1	5.5 Km	GM 1 to 6, 8 & 9 and	L
Airborne	· · · · · · · · · · · · · · · · · · ·	12 & 13	
GEOCHEMICAL number of samples analysed for)	ement	Same	-
Soil 410 TETTASOT FRALLE			<u> </u>
Silt			l
Rock			· · · · · · · · · · · · · · · · · · ·
Other			<u> </u>
)RiLLING			 ,
Com			
			ļ
		- <u> </u>	
			<u> </u>
Muteralographic			{
	- <u></u>		<u> </u>
HUSPECTING (scale, anda)	·····		
HEMANATORY/PHYSICAL	line, 15 5 Km	Same	
Une/grid (kilometres) 1.0 Kill Dase. Gridlines			<u> </u>
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/trail			
Trench (metres)			
Undérground dev. (metres)			
		TOTAL COST	\$ 43 326 17

ć

GENERAL OBSERVATIONS AND GEOLOGICAL FRAMEWORK

From a brief examination, during my one-day field visit, of recent core from drill holes beneath the Afton pit it would seem that there is potential for Pd mineralization within the area in general, in addition to concealed Cu/Mo/Au porphyry deposits. Of note is the fact that the Pd mineralization is considered to be associated with mafic rocks, and the GM claim blocks incorporate land that previous workers have interpreted to be underlain by mafic volcanics.

The GM claim blocks comprise an area of rolling hills with a vegetation cover dominated by Ponderosa pine and Douglas fir in an open parkland environment at an elevation of 2700' (approx. 920m a.s.l.). The general consistency to the pale brown colour, silty texture and depth of soil profiles renders the soils as an appropriate medium for collection and inter-site comparisons of analytical data. In some areas, notably draws, the soils are a little more enriched in clays. There are several open areas devoid of trees and shrubs that are present as topographic depressions. One of these was examined, and a soil pit was dug. At a depth of about 1 m the soil was still very rich in organic material. Such areas were avoided and sampled only on their margins in order to obtain soils of a similar nature to the rest of the claim blocks.

The GM claim blocks are covered almost entirely with a blanket of glacial till. The only outcrop has been described as a mafic tuff (Sugar Loaf unit) near the eastern limit of the survey area (L.900S, 500E). Geological work by others suggests that the tills overlie mostly mafic volcanic rocks of the Upper Triassic Nicola Group with the predicted contact with the Iron Mask batholith (Triassic/Jurassic) in the northeastern corner of the survey area. This contact is represented by the Cherry Creek Fault – a major northwest-trending lineament (Kwong, 1987; Monger, 1989). Rocks of the Nicola Group from the general area are known to comprise metabasalts, meta-andesites and tuffs which, at the fault contact, are predicted to be juxtaposed to the Sugar Loaf unit of the Iron Mask batholith comprising porphyritic hornblende +/- augite microdiorite (Kwong, 1987). Ultramafic picrite outcrops approx. 2 km northwest of the survey area.

Geophysical work carried out by Gold Mask Ventures had indicated several magnetic anomalies of interest, but their significance needs to be established. Diamond drilling, overburden drilling, trenching, or geochemical surveys can only effectively carry this out. Because the drilling and trenching will be expensive, it was recommended that they only be undertaken following closer refinement of the anomalous levels of Pd, Pt, Au and base metals that were established during our orientation surveys. It was recommended that in order to refine these targets an appropriate geochemical exploration survey should be undertaken.

GOLD MASK LTD.

GEOCHEMICAL AND GEOPHYSICAL ASSESSMENT REPORT ON THE GM CLAIM GROUP TO FEBRUARY 6, 2002

REC	Eľ	VE	D	TAB		TENTS					
MAY Gold Commi VALEDO	n 8 7 Ission Uver	0 <u>02</u> er:s Oi <u>; B.C.</u>	ffice Log	ation Ma	ap of GM Clair	ms					1
:	2	-	GM	Claims	Map in the Ka	mloops	Mining Div	vision			a Maria (Maria) ang Kang Sang Sang Sang Sang Sang Sang Sang S
3	3	-	Expl	oration	Grid Location	n Map					
4	4	-	Mag	nətomə	ter Map						a na an
6	5	-	A Re By D	port on r. Colin	i the Terrasol Dunn (24 Pag	Geocher jes)	nical Surv	rey			
5	5a	-	Tørra (14 F	asol Ge Pages)	ochemical Su	rvey App	əndix l				
6	5	-	A Re By L	port on arry D.	the Self Pote Lutjen	ntial Sur	vey				
7	,	-	A Re By L	port on arry D.	the Terrasol Lutjen	Survey					
8	•	-	The i	temize	d Cost Statem	ent					
9)	-	Write	ers Cert	ification (4 Pa	ges)	GEOLO AS	GICAL	SURVE	Y BRA	NC
B	Back F	Pouch:	:	1.	Plate for Self	Potentia	I Survey				
				6.	Plates for Tei	rraso) Su	Irvey	5,	6		

The Exploration Grid Location Map The Baseline is 1.5 km

The Afton Haul Road - -

This road follows along the contact of the Nicola Mafic / Ultramafic rocks with the Iron Mask Batholith.

OUS DOS DOS <thdos< th=""> <thdos< th=""> <thdos< th=""></thdos<></thdos<></thdos<>	M M I A A		· · · ·										· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Min M	005	1008	2005	3008	4005	500,8	600\$	700\$	800\$, 208	10009	11008	1200,	8 13005	14008	1520	5		• • • •
1/10 1/10																	1.		
<i>inter inter inter</i>	1125	1385	2620	2431	2131	- 2177 -	2159	2254 2421 -	2225	2316	2274 -	- 2264	1 2148	23(4	2455	2615	100		
1000 10000 1000	1110	1401	2356	2101 -	2194-	2010	225	2234	/ 1980	1896	-234/	1994	2371	2418,	2183	2131	*)		
Base And Base	1001	1325	2215	2044	21 +4	2011	2257	1921	1813 1874	2142 2180	1753-	2521	2349	1923	2013	- 1958 1816	Y		
Sign April	. H49 51/2	1574	2435	2015	2213	1973 18:59	مەنۋىلا 1760 ب	20-3 /	1891 1931	2012 1	2774	2287	2100	1905	1845	1863	24		
1002 410 1002	7.55 745	× 1262 841	1894	2102 2013	2121	1904 2086	.424 2106	1814	2038	1445	237	2430	1678 1635 /	1245	1627 1587	152	in .		
date date <th< td=""><td>927</td><td>419 A</td><td>1969</td><td>2672</td><td>2081</td><td>18/5</td><td>2194</td><td>1976</td><td>1634 1702 -</td><td>1938 /</td><td>2373</td><td>1468</td><td>- 2463</td><td>1303</td><td>1351</td><td>124</td><td>305</td><td></td><td>a staling i s Sati</td></th<>	927	419 A	1969	2672	2081	18/5	2194	1976	1634 1702 -	1938 /	2373	1468	- 2463	1303	1351	124	305		a staling i s Sati
(a) (b) (b	B41- 1013	930 A	1953	2147	2030	1874 1974	2002	1991	2230	2125	2257	- 1899	1869	1561	1435	1208			
Alf and the set of the s	945	794 951	1842	1915	2022	1411	1894	1746	1984	1921	- 1874	2/21	1193	1412	1103	968	E)		
New Product	1214	1116	1928	1884 2044	1433	1938	1763	1777	1877	2004	2242	2019	1437	1241-5	91.9	1138	20		
1 1	1400	(16.5 3.33	1830	1747	1942	1815	1750	1-516	1399	1617	1687	1545	1312 5	1199 A	A 1034 A	1438			
1.1.1 1.1.2 <td< td=""><td>136.0</td><td>12-17</td><td>1811 1</td><td>1660</td><td>1643</td><td>1775</td><td>1890</td><td>1355</td><td>1572</td><td>8.19</td><td>1276</td><td>1373</td><td>A 1028 A</td><td>1272</td><td>1833</td><td>1834 2157</td><td>1X7</td><td></td><td>an an taon an taon an An taon an taon</td></td<>	136.0	12-17	1811 1	1660	1643	1775	1890	1355	1572	8.19	1276	1373	A 1028 A	1272	1833	1834 2157	1X7		an an taon an taon an An taon an taon
1000 1000	1641	1174	1773	1417	1980	1813	1132	1345	1434	A. 0.3	1037 T.	A. 173 A	1555	1772	2223	2389			•
index index <th< td=""><td>1531</td><td>1576</td><td>11:5:5</td><td>16.92</td><td>15.10</td><td>1243</td><td>1491</td><td>13:24</td><td>1288 A</td><td>A 111</td><td>A 835</td><td>1224</td><td>- 2674 19733</td><td>1011</td><td>2011</td><td>2192</td><td>145</td><td>AZIMUTH</td><td></td></th<>	1531	1576	11:5:5	16.92	15.10	1243	1491	13:24	1288 A	A 111	A 835	1224	- 2674 19733	1011	2011	2192	145	AZIMUTH	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1488	1:50	1520	1870	1408	1418	1-37 5	12rd T	7 EO9	× 1.€1 ×	1525 1996	(783)	1819 1824	12018	-5%	2462 2652	R.		2000 - 1990 -
$ \frac{2116}{107} \frac{2216}{107} \frac{223}{107} \frac{232}{107} \frac{116}{107} \frac{116}{107} \frac{116}{107} \frac{116}{107} \frac{1167}{107} \frac{1167}{1$	16:36	12424 1451	1130	1685	A 1042 4	(364 1356	1274	10(4)	- 491 2	1472 1556	12401	182	1705	2172	2.761	2404	1.11		-
Area (SM)	2118	1723	1573 15%	1127 A	125.9 ·	D-124	156	14/5	1.50	1367	1617	1871	15-31 (F3-	244	2613	2172	ġ.	an a	
1005 1004	1261	(6'74 1950	1575 1354 - *	463	1151	10.77	1222 2	1317	15:2 15:2	1491	1784	12-16	1617	2507		2044	۲		
1003 110 1004	180 X 1443	19-4 1729	12111-1	ic, 2 961	1170	1639	× 1567	16.20	1492	1567	1647	1 - 62	1675	12700	2.17	2311	3 Q.	andra andra Angelaria Angelaria	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1543	iex A	581 550	1116	A Bri 7	1195	1:2-	1515	1790	1764	15-3	1787	2106	2.714	21-01	2464	· · · · ·		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1860	1870	1025 -5	602	D1051 Jr	1431	1754	1694	18/2	1737	- 2056	1781	1 22.95	22317	2718	2674	M		
$\frac{1}{2324} \frac{1}{234} \frac{1}{2257} \frac{1}{767} \frac{1}{4} \frac{1}{1627} \frac{1}{2207} \frac{1}{2116} \frac{1}{2207} \frac{1}{2177} 1$	18:15	1900 1	4 HCE	124 7 2.21 7 2.31 7	¥ 12/4	1553	-1907	2034	211/2	2247	2206	· 1967 /	2475	2309	2403	3074	2.12		
1874 2217 1832 1452 1522 2153 2454 2157 2167 2366 2346 1115 1877 26 31 24 34 1635 1744 -24 35 1745 2262 24 35 1745 1877 172 1877 172 1877 172 1600 174 1747 1600 174 1747 1600 1747 1600 174 1600 174 1600 174 1600 174 1600 174 1600 174 1600 174 1600 174 1600 1600 174 1600 174 1600 </td <td>2114</td> <td>2054</td> <td>744</td> <td>769 4</td> <td>1410</td> <td>/ 220/</td> <td>2116</td> <td>-2204 -</td> <td>2374</td> <td>244</td> <td>2311</td> <td>2141</td> <td>2695</td> <td>2603</td> <td>155</td> <td>244</td> <td>ζ.</td> <td></td> <td>and a second second</td>	2114	2054	744	769 4	1410	/ 220/	2116	-2204 -	2374	244	2311	2141	2695	2603	155	244	ζ.		and a second
2017 2018 2014 -2117 1201 1213 1212 1111 1712 1813 21.55 22.54 22.54 1.55 1225 1225 1212 -7777 1854 1722 1724 1012 1724 21.55 22.54 22.54 1.55 1225 1225 1212 -7777 1854 1735 1602 1744 22.62 22.54 22.54 1.55 1225 1225 1212 -7777 1854 1735 1602 1744 GOLD MASK VENTURES LTD. 23.22 22.44 22.64 22.64 1745 174	1870	2217	1636	1455	1362	2199	2223	1435	2305	2561	2457	224	/ 2309	2346	1115	1577 1822	l'ant	* . V	
224 224 224 224 224 224 224 224 224 224	20.94	2318	1900	2040	- 2:17// - 2394 / /	150	- 724	1202 1282	1913 -	151	- 2457	- 2112 -	1717	1733	1722	1815	GOLD	MASK VENTU	RES LTD.
GM CLAIM GROUP More Tobal Control Con	2264 2323	2-240	26.27	2:2:1	2501	1781 1520	1351	4:0	1414 (31×	154	1745	1613	16/1: 2601	1701	17.9	1.557			
MAGNETOMETER SURVEY SUICED GAMMANDS FEAM EALA ESTRACT SUICED GAMMANDS FEAM EALA ESTRACT Drawn: L.D.L. Scale 1:5,000 Figure 1	-				- /	ININ SESS	Contract.	14-1 C							·		G	M CLAIM GRO	OUP
921/9WKamboops M.P.October 2000Drawn: L.D.L.Scale 1:5,000Figure 1			<i>k0</i> 5.	1992 - 400 1982 - 1401 Strace &	~10~ 8-12.4 2.6 6+7-191198	DSS D FEIME	15 752 P.S.R.	W-									MAG	NETOMETER	SURVEY
Drawn: L.D.L. Scale 1:5,000 Figure 1																	921/9W	Kamloops M.P	October 2000
													1				Drawn: L.D.L	Scale 1:5,000	Figure 1

This plate defines the magnetometer low that is referred to on the terra sol plates

This work was done 2002

1

Colin E. Dunn, PhD, P.Geo

Consulting Geologist/Geochemist 8756, Pender Park Drive, SIDNEY, BC, V8L 3Z5, CANADA (Tel. 250-655 9498) (Fax. 250-655 9408) e-mail colindunn@shaw.ca

Richard Lodmell Gold Mask Ventures PO Box 1192 Stn. Main Kamloops BC V2C 3K4

13th March 2002

Dear Richard and Larry

I am pleased to submit, herewith, my report on the Terrasol geochemical data obtained on the soil samples from your GM claim blocks. There are some interesting patterns of element distributions and associated suites of elements that appear to make geological and mineralogical sense. This should be considered a first pass assessment of the data, since, as your program develops, I'm sure some of the concepts will evolve. Just to reiterate, keep in mind that from a selective leach dataset of this sort there is no way of assessing whether the 'highs' indicate significant mineralization or just sub-economic geochemical associations. Also, don't just focus on the highs – 'lows' surrounded by a series of 'highs' can be equally significant. As with any exploration program, the final assessment can only come from the drill. The factors that I consider to be of particular interest are the multi-element associations that provide encouragement for further investigation.

As mentioned both on the phone and in my e-mail of yesterday, I can provide the maps in digital form on a CD – let me know the format that you prefer and I can prepare copies for you.

I hope you find the data of use in your exploration program. Please advise me if I can be of further assistance.

Yours sincerely

- E. Sum-

Colin E. Dunn

EXECUTIVE SUMMARY

Selective leaching of soil samples provides a means to determine concealed zones of metal enrichment. The PGE TerraSolsm technique offered by Activation Laboratories (ActLabs) relies on a weak acid attack of mostly manganese and iron oxide coatings to soil particles, upon which elements that have migrated upward from zones of metal enrichment may become loosely attached. They are typically present in the ppb range and, once released by selective leaching, can be determined and quantified by inductively-coupled plasma mass spectrometry (ICP-MS).

The GM claim blocks are almost entirely covered by a blanket of glacial deposits such that short of drilling and trenching, exploration must rely upon geophysical and geochemical methods to assist in locating zones of metal enrichment. Further to positive geophysical indications established by Gold Mask Ventures, soils were collected from 359 stations within a 1km x 1.5km block and submitted to ActLabs for PGE TerraSolsm determinations of 60 elements by ICP-MS.

Since the method involves a selective leach, absolute concentrations are not of importance, but analytical precision (reproducibility) is imperative for meaningful interpretation of the multi-element distribution patterns – both positive and negative. After several iterations to obtain stable data, a dataset of adequate quality was obtained. Each element was gridded by kriging and percentile values determined for plotting. In addition, kriged data, unconstrained by percentile values, were forwarded to ActLabs for their interpretation of the element distribution patterns.

The data show that most of the slightly elevated precious metal values, although all close to the detection limit, occur in the northern part of the survey area.

Elevated levels of many elements, including Cu, Mo, Re, As and Hg, occur close to the northwesterly trend of the haulage road. A review of the multielement associations (high and low values) suggests that this trend is not an artifact of road construction or contamination, but is probably reflecting the location of the Cherry Creek Fault and, therefore, the contact between the Iron Mask batholith to the NE with the Nicola volcanics. Multi-element patterns, notably Hg, also suggest a conjugate set of faults that trend at ~60°.

Nickel closely follows the trend of the main magnetic low, which is flanked on both sides by elevated levels of the high field strength elements niobium, titanium and zirconium.

In the centre of the survey area, within the magnetic low, several elements, including Cu, Mo, V, U, W, Re, As, Sr (with traces of Au and Pt), have

i

elevated levels suggesting the presence of a concealed zone of metal enrichment. However, field notes should be checked to ensure that soil samples did not have an elevated organic content, because organic material can scavenge many of the elements that have elevated concentrations in this area.

In the southwest part of the survey area there appears to be a chalcophile association of elements (Cd, Zn, Pb, Ga, In, Co, Se, Pd) that indicate the possible presence of a zone with concealed sulphide enrichment.

A compilation map (Fig.13) shows an interpretation of the geochemical data. Breaks in geochemical trends suggest that there may be concealed northeast-trending faults that appear to have a dextral offset of about 100m. Five principal zones of interest are shown that would be worthy of closer investigation.

As exploration progresses, the TerraSol data should be reviewed to further refine and extract the information contained within the wealth of numbers and to determine the relevance of the patterns to the underlying geology.

Colin E. Dunn

Colin E. Dunn, PhD, P.Geo Consulting Geochemist Sidney, British Columbia, Canada

colindunn@shaw.ca

March 2002

CONTENTS

1.0	Introduction	1
2.0	Background to the Present Survey	1
	2.1 Location	1
	2.2 General Observations and geological framework	1
	2.3 Geochemical Surveys	2
	2.4 Recommendations	3
3.0	Sample Collection and Analysis	4
4.0	Data	6
	4.1 Data quality	6
	4.2 Data presentation	8
5.0	Results	9
	5.1 Precious metals	3
	5.2 Element enrichments along haulage road	10
	5.3 Molybdenum, vanadium, tungsten and antimony	13
	5.4 Nickel, niobium, titanium and zirconium	14
	5.5 Sulphide association	16
	5.6 Chromium hafnium, scandium and beryllium	17
6.0	Discussion, Conclusions and Recommendations	20

FIGURES

Fig. 1 Sketch Map showing location of soil survey area	1
Fig. 2 Location of soil sample sites in GM claim blocks	
superimposed on predicted geology (complete till	
cover except for single outcrop)	5
Fig. 3 Comparison of distribution patterns for rhenium (Re)	
- first set of analytical data and final data set	7
Fig. 4 Comparison of distribution patterns for chromium	
- first set of analytical data and final data set	8
Fig. 5 Precious metals - Percentile plots of element concentrations	10
Fig. 6 Percentile plots of copper, thallium, arsenic and strontium	11
Fig. 7 Percentile plots of mercury, rhenium, lithium and indium	12
Fig. 8 Kriged data for europium, beryllium, gallium and thorium,	
showing 'lows' along road	13
Fig. 9 Molybdenum, vanadium, tungsten and antimony	
distribution patterns	14
Fig. 10 Nickel, niobium, titanium and zirconium distribution	
patterns	15
Fig. 11 Cadmium, Lead, Gallium and Palladium distribution	
nafferns	16
Fig. 12 Chromium, Hafnium Scandium and Bervilium	
distribution patterns	17
Fig. 13 Preliminary interpretation of structure and main areas	
of interest	19

Table 1 Analytical data listings	10 pages
Table 2 Analytical controls	3 pages
Table 3 Statistical summary	1 page

Appendix 2

Element plots - listed alphabetically by element

1.0 Introduction

On Friday 28th September 2001 I had the opportunity to drive and walk around much of GM claim blocks that comprise the area of the survey covered by this report. This served to provide the basis for the comments and recommendations that I submitted in my letter of opinion dated 29th September 2001. Of particular value were observations of the many soil pits dug during the day at scattered and representative locations over your property. These built upon my review of some preliminary geochemical data (pine bark and soils) that you sent me earlier in the year. Also taken into consideration are the results of my field experience in the general vicinity of your claim blocks.

2.0 Background to the Present Survey

2.1 Location

The northern end of the GM claim blocks are located 10 km southwest from the centre of Kamloops and 1 km south of Sugar Loaf Hill on NTS map 92I/9W (Fig. 1). The Trans Canada (Coquihalla) highway is located close to the western margin of the claim blocks.

Fig. 1 Sketch Map showing location of soil survey area

2.2 General Observations and Geological Framework

From a brief examination, during my one-day field visit, of recent core from drill holes beneath the Afton pit it would seem that there is potential for Pd mineralization within the area in general, in addition to concealed Cu/Mo/Au porphyry deposits. Of note is the fact that the Pd mineralization is considered to be associated with mafic rocks, and

4 [[[

the GM claim blocks incorporate land that previous workers have interpreted to be underlain by mafic volcanics.

The GM claim blocks comprise an area of rolling hills with a vegetation cover dominated by Ponderosa pine and Douglas fir in an open parkland environment at an elevation of 2700' (approx. 920m a.s.l.). The general consistency to the pale brown colour, silty texture and depth of soil profiles renders the soils as an appropriate medium for collection and inter-site comparisons of analytical data. In some areas, notably draws, the soils are a little more enriched in clays. There are several open areas devoid of trees and shrubs that are present as topographic depressions. One of these was examined, and a soil pit was dug. At a depth of about 1 m the soil was still very rich in organic material. Such areas were avoided and sampled only on their margins in order to obtain soils of a similar nature to the rest of the claim blocks.

The GM claim blocks are covered almost entirely with a blanket of glacial till. The only outcrop has been described as a mafic tuff (Sugar Loaf unit) near the eastern limit of the survey area (L.900S, 500E). Geological work by others suggests that the tills overlie mostly mafic volcanic rocks of the Upper Triassic Nicola Group with the predicted contact with the Iron Mask batholith (Triassic/Jurassic) in the northeastern corner of the survey area. This contact is represented by the Cherry Creek Fault – a major northwest-trending lineament (Kwong, 1987; Monger, 1989). Rocks of the Nicola Group from the general area are known to comprise metabasalts, meta-andesites and tuffs which, at the fault contact, are predicted to be juxtaposed to the Sugar Loaf unit of the Iron Mask batholith, comprising porphyritic hornblende +/- augite microdiorite (Kwong, 1987). Ultramafic picrite outcrops ~2km northwest of the survey area.

Geophysical work carried out by Gold Mask Ventures had indicated several magnetic anomalies of interest, but their significance needs to be established. Diamond drilling, overburden drilling, trenching, or geochemical surveys can only effectively carry this out. Because the drilling and trenching will be expensive, it was recommended that they only be undertaken following closer refinement of the anomalous levels of Pd, Pt, Au and base metals that were established during your orientation surveys. It was recommended that in order to refine these targets an appropriate geochemical exploration survey should be undertaken.

2.3 Geochemical Surveys

The following rationale was put forward:

- Only one rock outcrop is known, therefore pre-empting the possibility of conducting a lithogeochemical survey.
- The overburden cover is largely glacial till, which is material that has been transported from some considerable distance and is, therefore, exotic. A till geochemical survey may contribute useful knowledge on the vectors of transport and may help in locating the sources of precious metal-rich material. However,

this is a fairly expensive type of survey that is unlikely to provide significant new exploration targets within the claim blocks.

- Conventional soil surveys (e.g. ICP-ES analysis of an aqua regia digestion of a 80 mesh soil sample) will only provide data on the soil profile developed on top of the till cover. Thus, it will be mostly a reflection of the chemistry of the exotic till material and will probably not add significant information to assist in locating any concealed base and precious metals that might be present on the property
- Studies have shown that there are high concentrations of various metals (notably Cu, Au, Ni, Pd) in pine bark from the survey area. Work carried out by the GSC several years ago established the Cu, Ni and Au enrichments, and the orientation surveys undertaken by Gold Mask Ventures have confirmed these high values and shown, for the first time, that Pd enrichment is present. Because the tree roots penetrate the soils to a modest depth, and integrate the geochemical signature of the loosely bound components of these soils, a systematic survey of the area using pine bark could provide new information of value to the exploration program. Since the roots attack the loosely bound metals, they do, in effect, perform a selective leach of the soils. However, the area of the claim blocks has been affected by the extensive mining activities of the past century, and it appears likely that some of the metal enrichments are attributable to airborne contamination - either direct precipitation of metal-bearing dust onto the bark, or precipitation on to the ground with subsequent dissolution and uptake by the tree roots. Furthermore, examination of the property shows that there is probably inadequate coverage of pine to conduct a comprehensive biogeochemical survey. An alternative would be to use the bark of Douglas fir, which is more evenly distributed over the claim blocks.
- Another approach suggested was to collect soils for a selective leach of metals. Most of these leach methods operate on the principle that metals move upward from concealed zones of mineralization (by diffusion, capillary action, galvanic cells, or seismic pumping), perhaps as nanoparticles and are captured on the charged surfaces of amorphous oxide coatings of soil grains - primarily Mn and Fe oxides. There are many commercially available selective leach methods e.g. enzyme leach, hydroxylamine hydrochloride, MMI (mobile metal ions). A relatively new method is the PGE-Terrasol leach offered by Activation Laboratories Ltd. of Ancaster, Ontario. The Terrasol is a somewhat more rigorous acid attack than most other leaches, and has the particular advantage that it selectively leaches most of the precious metals. In addition, the ICP-MS analysis of the solutions provides data for more than 50 additional elements, some of which may be useful 'pathfinder' elements for locating mineralization. This technique has not been extensively tested, but it has been proven to be of use for defining PGE mineralization at the West Rambler deposit in Wyoming and Cu porphyry mineralization in Arizona.

2.4 Recommendations

In light of the above, it was recommended that, as a preliminary test, soil samples should be collected from the B-horizon (generally at a depth of 10-15 cm, as

demonstrated in the field) at intervals of 100m along lines spaced 100 m apart. throughout the extent of the established grid of approximately 1000 m by 1500 m. At approximately every 20th site (or less) a duplicate sample should be collected from a second soil pit dug about 1 m from the first. Samples should be placed in standard 'kraft' soil bags, half to ¾ filling the bag. Samples should be clearly labelled and no sample preparation should be undertaken before sending them to Activation Laboratories Ltd for analysis by their PGE-Terrasol technique. Activation Laboratories Ltd. has the highest available accreditation of any laboratory in the country (ISO 17025) and is one of the world's leading analytical facilities - especially for exploration geochemistry. It was strongly recommended that prior to submitting samples for analysis some control ('standard') samples should be inserted - at least one sample in each batch of 20. If possible, a bulk field sample should be collected (e.g. from a site at which elevated levels of Pt and Pd in the soil had been established). This provides control on precision of the analytical data. Ideally, several kilograms of material should be collected, sieved to -80 mesh and thoroughly homogenized. In my report of 29th September it was stressed that users of PGE-Terrasol should appreciate that, although the technique may provide near total concentrations of the precious metals, it is a selective extraction, and therefore the results do not indicate the total content of metals in the samples. The extraction attacks primarily the amorphous manganese and iron coatings to soil particles, and attacks also some of the crystalline phases of Mn and Fe. Metals released from concealed zones of mineralization are considered to move upward (through either diffusion, capillary action, electrochemical cells or seismic pumping) and become trapped on the 'chemical sponge' of the oxide coatings of the soils. It is not possible to quantify element concentrations to the point that a certain level can be declared as indicative of mineralization. The technique is one of pattern recognition that takes a trained eye to interpret the patterns. Multi-element patterns must be examined and the spatial relationship of inter-element associations ascertained (both positive and negative values) in relation to other geological and The process is one of stacking the entire geoscience geophysical parameters. information base to provide vectors toward potential concealed mineralization. It is possible that encouraging multi-element signatures reflect geochemical signatures of slight element enrichment that are not economically viable. Only drilling and rock analysis will confirm the economic status of subtle enrichments in the surface materials.

> It was recommended that once data are received they should be carefully evaluated for precision and accuracy (by examining the analyses of the duplicates and control samples), and then plotted as maps. Subsequently, any trends or anomalies that appear to be of significance should be more closely examined. Any further action at that time will depend on the nature and extent of any multi-element associations.

3.0 Sample Collection and Analysis

1

Richard Lodmell and Larry Lutjen undertook soil sample collection. I am informed that samples were collected at depths of 10-15 cm from 359 pits 40m apart along 15 lines

100m apart, trending northeast throughout several of the GM claim blocks. Figure 2 shows the sample locations with respect to the approximate location of the haulage road, the outline of a magnetic low established by Larry Lutjen, and the predicted geological substrate beneath the till cover, based on previous studies (e.g. Kwong, 1987).

Duplicate samples were not collected, but a bulk sample was obtained, homogenized and split into 15 portions for inclusion at regular intervals within the sample sequence as an over all control on analytical precision. Samples were submitted directly to ActLabs in Ancaster. I did not see the sample collection, but I am assured that samples were collected at constant depth (approx. 15 cm) and that their consistency was similar. I am advised that a few samples from the northern end of the survey area had a slightly greasy feel suggesting that they may have minor clay content. I am further assured that no samples were collected from disturbed sites – in light of the presence of the haulage road through the survey area this observation is key to some of the interpretations of the following dataset. If any sample had been from a disturbed site, or dug from a greater depth (e.g. C horizon) this would result in a different interpretation to that given in the following text and negate some of the conclusions derived from the patterns that parallel the trend of the haulage road (e.g. Cu, Re, As, Hg).

Fig. 2: Location of soil sample sites in GM claim blocks superimposed on predicted geology (complete till cover except for single outcrop). Approximate locations of haulage road and main magnetic low are plotted.

4

5

The suite of 374 soils samples submitted for analysis comprised 359 survey samples plus 15 quality control samples (bulk sample split to estimate analytical precision). Samples were dried at ActLabs, and prepared for analysis by method 7PGETS (PGE TerraSolsm). In their 2001 fee schedule, ActLabs describes this method as:

"a more aggressive leach (than Enzyme Leach) that attacks all components of amorphous mixed-oxide coatings and certain crystalline iron and manganese oxides. The oxidant used in the process also dissolves a substantial portion of the Au and platinum group elements (PGE) in the soil sample. TerraSolsm performs best over shallower mineral deposits. The PGE option is particularly useful for revealing platinum group and associated trace element patterns in buried mafic sequence.

Pattern recognition is the key to proper interpretation of Enzyme Leachsm and TerraSolsm data, since anomaly patterns can be different from conventional geochemical data. Selective extractions have been shown to work effectively in both acidic and alkaline environments, and have been used successfully in desert, tropical, glacial and permafrost terrains."

Upon receipt of the B-horizon samples at ActLabs they were "dried in special rooms kept below 40°C and leached (using a proprietary solution) under rigidly controlled conditions. The resultant solutions were analyzed using a state-of-the-art Perkin Elmer Sciex ELAN 6000 ICP-MS (inductively-coupled plasma mass spectrometer)".

4.0 Data

N. Contraction of the second s

í

Table 1 (Appendix 1) lists all of the analytical data, as received from ActLabs. These data are included, also, as an Excel Table on the CD included with this report.

4.1 Data Quality

Upon receipt in digital form, the data were reviewed and bar graphs of each element in the control samples were plotted. This approach served to evaluate the analytical precision. Absolute accuracy could not be determined, because no standards of known composition were included in the set of samples. Since absolute concentrations of elements are of no real importance to selective leach studies, this was not a concern. It is the patterns of element distribution that are of importance and therefore the analytical precision (i.e. reproducibility) is critical. From the bar graphs derived from the first set of data received it was evident that there was some instrumental drift that had occurred during analysis of the sequence of samples. Adjustment of data for a few elements did not solve all of the problems, and consequently the samples were reanalyzed. This dataset also contained some spurious data for a few elements. Detailed discussions with the analysts failed to resolve all of the problems, and so another digestion and analysis was undertaken. On February 14th a final dataset was received that was sufficiently stable for nearly all elements that some meaningful plots could be made of the data. The following observations are based on the Feb. 14th dataset. A review of the analytical precision achieved for this dataset is given in Table 2 (Appendix 1), along

with mean value and standard deviations for each element. These data still show a modicum of variation for some elements, but there is no obvious systematic analytical drift. They are, therefore, 'fit for the purpose' (Bettany and Stanley, 2001) and, with a few exceptions, they can be plotted with confidence that distribution patterns are valid natural variations, and not an artifact of analytical determinations.

The critical importance of obtaining data of good precision is demonstrated in the following two figures in which data from the original set of analyses are plotted and compared with data from the final set of analyses used for this report. In the first pair of plots data are shown for rhenium, which, even though the standard deviation of the control samples was quite large, show that the distribution patterns from the two data sets remain essentially the same (Fig. 3).

Fig. 3 Comparison of distribution patterns for rhenium (Re) – first set of analytical data and final data set.

From Fig. 3 it is evident that, although the absolute numbers are different, the data from either data set could be used to determine the distribution patterns for rhenium. Note, too, that these data are from two completely separate digestions and analytical determinations of the Re content of the soils (2 separate sample splits), attesting to the fact that these variations are, indeed, true natural variations and not an artifact of the analytical methodology. This reproducibility of distribution patterns from the two analyses is typical for *most* elements, but not all. For example, Fig. 4 shows that there are dramatically different distribution patterns for Cr from the two sets of analyses.

7

Fig. 4 Comparison of distribution patterns for chromium – first set of analytical data and final data set.

Clearly from Fig.4, the wrong conclusions would be drawn from consideration of the distribution patterns obtained from the first data set. The high values to the right of the plot from the 1st analysis represent nothing more than some instrumental drift. This factor was identified from the control samples that were interspersed.

4.2 Data presentation

Table 3 (Appendix 1) shows a basic statistical analysis of all elements except those that returned all values below the detection limit (Ag, Te, Rh, Ir). 'SQ' after an element indicates that the data should be considered as semi-quantitative (as reported by ActLabs). Data plots have all been prepared in the same manner after gridding the data using the kriging method. For the purposes of plotting the relative concentrations of elements, percentile values have been calculated and, on the element distribution maps in Appendix 2, the following colour scheme has been applied throughout.

- Purple >98th percentile
- Red 95-98th percentile
- Salmon 90th-95th percentile
- Yellow 80th-90th percentile
- Green 70th-80th percentile

In addition, contours are plotted of the 50th percentile with contour values printed, but (as requested) no colour has been provided for this interval in order that the higher values stand out. This presentation serves to provide a picture of areas where relatively high concentrations of elements are located. However, for Terrasol (and other selective leaches) data interpretation should not rely entirely on relatively high concentrations of elements. It must be remembered that the technique is only a *selective leach* that extracts only those elements attached to oxide coatings of the soil particles.

Consequently, areas of element *depletion* can be as significant as those with element enrichment (i.e. leached zones can be identified).

The CD that accompanies this report includes:

- map plots of the percentile values, as shown in hard copy in Appendix 2, with the maps sorted in alphabetical order of the elements. Since the rare earth elements (REE) all show much the same distribution patterns (because of their chemical coherence in Nature), only representative REE are plotted – La, Ce (representing the light REE), Eu (because of its multi-valency states) and Yb (representing the heavy REE). Consequently there are no plots for Pr, Nd, Sm, Gd, Dy, Ho, Er, Tm and Lu.
- map plots (also kriged) of all values, without constraining the data with percentile values. These are the types of plot that ActLabs typically use for elucidating the significance of element distribution patterns. Copies of all of these maps were sent to ActLabs for their review and comments and, after discussions with Greg Hill and Bob Clark (both of ActLabs) additional information that they have supplied is included in this report. Hard copy of these plots is not provided in the appendices, but some relevant plots are included in the following section.

5.0 Results

For ease of discussion, the elements have been grouped in accord with similar distribution patterns.

5.1 Precious Metals

It is important to note that all samples yielded concentrations of the precious metals either close to or below the detection limit (d.l.). At these concentrations the reproducibility is typically +/- 100%, and therefore these data should be treated with caution and viewed in context of other geochemical associations and any geological and geophysical data.

No sample yielded a detectable level of rhodium (d.l. 5 ppb Rh) or iridium (d.l. 10 ppb Ir). A few samples yielded greater than the detection level of 0.1 ppb Os and 0.2 ppb Ru. Figure 5 shows that detectable levels of the precious metals cluster mostly in the northern part of the survey area (i.e. left side of map). Palladium has slightly elevated levels in a few samples from the southern part of the survey area at sites (e.g. 1200S, 200W) where there appears to be some enrichment of sulphides (see later discussion). Detectable levels of Pd occur at the northwestern end of the magnetic low. Of note are the slightly elevated levels of gold north of the haulage road, and coincident subtle enrichment of Au, Pd, Ru and Os (see osmium map in Appendix 2) around 500S, 100-200E. Slightly elevated levels of Au and Pt occur in the center of the magnetic low, around 900S and the baseline.

Precious metals - percentile plots of element concentrations

5.2 Element enrichments along haulage road

Figure 6 shows a linear zone of element enrichments that parallel the haulage road. At first sight it would seem that these enrichments might be due to contamination of the samples from the road itself and the haulage traffic that has passed along it. I am told that these samples were not collected from disturbed sites, and it appears unlikely that, since they were collected at depths of about 15 cm, they can be due to any dust contamination from the road. There does remain the possibility that metal-rich dust from the road settled on the surface and was subsequently leached downward, but this appears unlikely, especially in view of the multi-element suite of samples that show this trend.

Figure 6 shows that there are high levels of leachable copper (up to 88,000ppb [88 ppm] Cu) along the trend of the road. Thallium, arsenic and strontium also follow this trend, but also display a northeasterly trend along line 800 and 900S (approximately 060°). The implication of this second trend is that it represents a conjugate set of enrichments along the plane of concealed faults.

Elevated levels of Cu, Tl, As and Sr along trend of haulage road. Note conjugate (ENE) trends. Percentile plots (98th, 95th, 90th, 80th, 70th, 50th).

Fig. 6 Percentile plots of copper, thallium, arsenic and strontium.

From Fig. 6 it is evident that the highest concentrations of arsenic occur in the northeast, close to the solitary outcrop in the area, and over the central part of the magnetic low. At the latter site there is coincident enrichment of a number of elements, including strontium, molybdenum, vanadium and slight enrichment of Au, Cu, and Pb. Provided this sample did not have a slight enrichment of organic matter (which tends to concentrate these elements), then this site is worthy of closer investigation. The Cu level is also elevated in the southeast (L1300S.320E).

Figure 7 shows that, in addition to elements shown in Fig. 6, there are similar enrichments along the haulage road of mercury, rhenium, lithium and indium. Furthermore, the mercury and, to a lesser extent, the rhenium exhibit the same conjugate patterns of enrichment as those seen for some elements in Fig. 6. In light of the volatile nature of mercury, it is likely that the mercury distribution pattern is reflecting concealed structure and/or breccia zones. If this is the case, the data indicate that the Cherry Creek Fault is a little farther to the southwest than where is has been predicted to occur by others (e.g. Kwong, 1987).

Elevated levels of Hg, Re, Li and In along trend of haulage road. Note conjugate (ENE) of Hg. Percentile plots (98th, 95th, 90th, 80th, 70th, 50th).

Fig. 7 Percentile plots of mercury, rhenium, lithium and indium

Further evidence that the above trends of element enrichments are related to structure, comes from consideration of those elements that are depleted along the trend of the road. Fig. 8 shows the kriged data (not defined as percentiles) of europium, gallium, beryllium and thorium. Other elements that exhibit the same depletions include germanium, hafnium, titanium, niobium and zirconium. The implication is that these elements are depleted because of leaching from a zone of weakness – i.e. the Cherry Creek fault/breccia zone. Note that in the southwest (i.e. around 900S.150W) these elements indicate a break that may reflect an offset fault. This is especially noticeable in Th, and will be discussed later.

Elements showing relatively low concentrations along a trend parallelling the haulage road (similar depletions in Ge, Hf, Ti, Nb and Zr)

Fig. 8 Kriged data for europium, beryllium, gallium and thorium, showing 'lows' along road.

From the above patterns it is concluded that there is leakage of elements upward from concealed faults and/or breccia zones.

5.3 Molybdenum, vanadium, tungsten and antimony.

The common factor to these elements is the elevated level that occurs over the central part of the magnetic low, at ~900S and the baseline. The molybdenum distribution is similar to that of Cu (especially along the road) and there is a broadly similar pattern for antimony. There is a long list of elements that are moderately to slightly enriched at the 900S/baseline location, including As, Au, REE, Mn, Mo, Ni, Pt, Re, Sr, Th, W, U, and V.

Elevated levels of Mo, V, W and Sb over central magnetic low. Also elevated in this area are As, Au, REE Ni, Pt, Re, Sr, Tl, Th and U. Percentile plots (98th, 95th, 90th, 80th, 70th, 50th).

5.4 Nickel, niobium, titanium and zirconium

There is a striking similarity to the trends of these elements, with Nb, Ti and Zr mostly running parallel to the margins of the magnetic low, but with similar areas of elevated levels extending to the southwest (Fig. 10). Nickel follows the same southeast-northwest trend, but with elevated levels mostly confined to the magnetic low, therefore sitting central to the peripheral patterns of the other three elements.

With respect to the magnetic low, the following relationships are observed:

- Over the low: relative enrichment of Ni, Co, Mo, Pb and locally As, Sb and Pd
- East of the low: relative enrichment of As, Be, Cr, Co, REE, Ga, Ge, Hf, In, Li, Mn, Hg, Mo, Nb, Pd, Pt, Re, Ru, Sc, Se, Sr, TI, Th, Ti, V, Zr.
- West of low: relative enrichment of Ba, Cd, Rb, Ti, Rb, Zn

Elevated levels of Ni over linear magnetic low; depleted Nb, Ti and Zr over magnetic low, with elevated levelsalong the north and south margins. Note conjugate trends (ENE). Percentile plots (98th, 95th, 90th, 80th, 70th, 50th).

Fig. 10 Nickel, niobium, titanium and zirconium distribution patterns

5.5 Sulphide association

Figure 11 shows the distribution patterns of several elements that are commonly associated with sulphides – cadmium and gallium tend to follow zinc. Selenium, too exhibits some enrichment in this area, as do germanium, indium and a subtle enrichment of tin.

Elements showing relative enrichments in the southern part of survey area

5.6 Chromium, Hafnium, Scandium and Beryllium

Of note is the area in which Cr values are relatively high (Fig. 12) since this corresponds to the area of elevated levels of most of the precious metals. The implication is that this could be an ultramafic association. The significance of the other elements shown in Fig.12 is uncertain. Other elements exhibiting similar distribution patterns include barium and lead.

Distribtion of Cr, Hf, Sc and Be (similar patterns for Ba and Pb)

6.0 Discussion, Conclusions and Recommendations

The Terrasol partial extraction of oxide-phase elements associated with coatings to soil particles has provided a wealth of data comprising determinations for 60 elements on 374 samples (more than 22,000 items of data). There are many ways to synthesize and view these data, and this report presents them primarily as percentile plots. In addition, plots of kriged data, unconstrained by percentile intervals, have been prepared and examined to help elucidate the element associations and their significance.

Since Terrasol data consist of element concentrations expressed in parts per billion (or less), and only part of each element in the soils is recovered from the extraction procedure (partial leach), the approach to determining the significance of element distribution patterns is somewhat different from that of conventional element extractions using strong acids. Zones of element depletions need to be considered, as do zones of element concentrations that may be peripheral to those of 'commodity' elements that may appear directly above a zone of mineralization. Furthermore, where a zone of element enrichment in the substrate is close to the surface, the response derived from Terrasol may be directly over the source rather than peripheral to it. Consequently, at this stage of data interrogation, the primary objective has been to ascertain the validity of the data (i.e. good precision) and to provide a simple visual portrayal of the element distribution patterns. Obvious associations have been grouped together and briefly described. More subtle associations need to be considered, and the data re-evaluated on a constant basis as more geophysical, geochemical, and geological information becomes available.

Figure 13 provides a preliminary interpretation of the area based upon the Terrasol geochemical database. The inferred faults are based upon shifts in element trends (after due consideration of data quality).

Fig. 13 Preliminary interpretation of structure and main areas of interest

At this stage it would seem that the following deductions can be made from the the observations provided in this report:

- A zone of element enrichment (including Cu, Mo, Re, As and Hg) parallels the haulage road. A coincident zone of element depletion, indicating leaching, is seen in REE, Be, Th and Ga. After consideration of the information provided on the locations and nature of the samples collected, it seems probable that this zone reflects a significant fault and/or breccia zone in the near subsurface. This may prove to be the true location of the Cherry Creek Fault that juxtaposes the Iron Mask batholith against the Nicola volcanics.
- A second zone of element enrichments (including Hg, As, Sr, REE, Th, and V [among others]) appears to comprise a feature, striking at ~60°, that reflects a conjugate fault. The leakage of mercury, in particular, is likely to take place along such a feature.
- Precious metal concentrations are low and precision at the neardetection levels is poor. However, there appears to be a consistent northerly trend to the Pt and Ru data in the north part of the survey area, and coincident subtle enrichment of Pd, Os and Au at around 500S.
 0-100E.

- A second zone of weakly elevated Pd occurs in the south where there are indications of sulphide enrichments (a chalcophile association) - Cd, Zn, Pb, Ga, In, Co, Se. This is centred on L1200S.200W and slightly to the north.
- A multi-element association that includes Cu, Mo and traces of Au and Pt, occurs in the central part of the magnetic low. Provided the samples from this area did not have an elevated organic component the association would suggest some concealed Cu/Mo enrichment. It should be noted, though, that even slight enrichment of organic matter can scavenge metals and give rise, therefore, to elevated levels
- The magnetic low that transects the survey area has coincident elevated levels of Ni and Co, and is flanked on both sides by elevated levels of Nb, Ti and Zr. The inference is that this may represent hydrothermally altered body of mafic to ultramafic rocks.

The data set is generally of high quality and deserves closer scrutiny, based upon exploration models for the area. For example, it is known that for porphyry Cu/Mo/Au deposits there is commonly a central zone of Cu with coincident Mo, Au, and Ag with possibly Bi, W, B and Sr (Pantaleyev, 1995). Peripheral enrichment in Pb, Zn, Mn, V, Sb, As, Se, Te, Co, Ba, Rb and Hg is documented. These associations, and their various permutations, should be examined to further develop exploration models.

Consideration should be given to additional geophysical surveys (e.g. IP), focusing $\frac{1}{2}$ zones with multi-element anomalies. Additional geochemical work should focus on similar anomalies. This could include determinations on C-horizon samples, using an ultra-low level fire assay method for the precious metals, and/or biogeochemical methods (e.g. Douglas-fir bark) since the roots of trees penetrate to the C-horizon and in effect sample that part of the soil profile. Ultimately, the validity and significance of the multi-element anomalies and the geophysical information needs to be assessed through trenching and/or drilling.

References

- Bettany, L., and Stanley, C., 2001. Geochemical data quality: the Fit-for-Purpose approach. Explore, v.111, p.12, 21-22.
- Kwong, Y.T.J., 1987. Evolution of the Iron Mask Batholith and its Associated Copper Mineralization. BC Geological Survey Branch, Bull. 77, 55 pp.
- Monger, J.W.H., 1989. Geology of Hope and Ashcroft Map Areas, British Columbia. Geol. Survey Canada Maps 41-1989 and 42-1989, 10 maps.
- Pantaleyev, A., 1995. Porphyry Cu +/- Mo +/- Au. In: Selected BC Mineral Deposit Profiles – vol.1 – Metallics and Coal (Eds. D.V. Lefebure and G.E. Ray). BC Ministry of Energy, Mines and Petroleum Resources, Geological Survey Branch, Open File 1995-20, p.87-91.

APPENDIX 1 Tables

Table	1	Analytical	data listings10		pages
Table	2	Analytical	controls 3		pages
Table	3	Statistical	summary	1	page

Π

Γ

Π

Γ

Π

ĺ

Gold Mask Vortures Terrasol dataset - revised data used for plotting

Table 1 · Anargacal data.xls 23539crp

i

PGE Package:	_	R	re Earth	Elemen	ts:											thoohil	Flomen										
Sample ID:	-	La	Ce	Pr	Nd	Sm	Eu	Gd	Dy	Но	Er	Tm	Yb	Lu	S.Q. I	Be	S.Q. Sc	Mn	Rb	Sr	Cs	Ba	R	P.G.E.	<u></u>		Pł
00S-20W		2660	7260.0	832.0	3730.0	835.0	204.00	726.0	665.0	135.00	405.00	50.80	339.0	55.2	11	8 20.5	245	448000	171.0	15876	3.0	57760	-0.	2 -5	2 -0.	-10	-0.1
005-0000		3150	8520.0	992.0	4530.0	1000.0	242.00	878.0	769.0	155.00	463.00	56.80	382.0	60.0	-10	5 31.8	319	473000	105.0	12247	1.4	50400	-0.3	25	1 -0.1	-10	-0.1
005-260		2890	7020.0	908.0	4030.0	904.0	200.00	751.0	696.0	133.00	419.00	53.50	346.0	54.1 59.0	8	8 21.6	210	459000	388.0	24494	8.1	45440	-0.:	2 -5	2 -0.1	-10	-0.1
005-300W		2730	6540.0	834.0	3710.0	822.0	204.00	712.0	653.0	134.00	401.00	51.60	347.0	56.0	16	9 32 9	433	271000	413.0	18468	110	59600 75360	-0.	2 -5	3 -0.1	-10	-0.1
1005-60E		823	876.0	228.0	1030.0	242.0	82.60	222.0	221.0	45.20	132.00	17.20	123.0	25.0	9	2 4.4	165	100000	99.0	65448	14.4	59040	0.4	-5	-1 -0.1	-10	-0.1
100S-100E		2840	5796.0	838.0	3870.0	894.0	232.00	765.0	716.0	147.00	431.00	56.80	371.0	58.1	15	3 33.8	295	226000	271.0	15163	15.7	65520	-0.	2 -5	2 -0.	-10	-0.1
BI 1005	•	1860	4020.0	506.U	3100.0	703.0	1/5.00	626.0	595.0	120.00	360.00	45.80	303.0	51.8	12	5 26.6	245	396000	308.0	12442	6.1	74320	-0.3	2 -5	1 -0.1	-10	-0.1
100S-20W		1830	2160.0	528.0	2370.0	534.0	141.00	464.0	424.0	R4 60	248.00	30.80	208.0	46.2	10	024.7 780	3/8	221000	239.0	14258	2.8	43360	-0.1	2 -5	2 -0.1	-10	-0.1
100S-60W		2130	7140.0	615.0	2790.0	635.0	164.00	580.0	519.0	105.00	314.00	39.50	269.0	45.2	105	D 14.4	336	455000	276.0	25402	47	49260	-0.	2 -5	-1 -0.1	-10	-0.1
1008-100W		2620	6300.0	851.0	3800.0	858.0	209.00	712.0	680.0	133.00	394.00	51.40	349.0	57.3	10	4 22.1	370	365000	327.0	15617	7.2	23600	-0.3	2 -5	2 -0.1	-10	-0.1
100S-140W		2520	5668.0	818.0	3700.0	818.0	209.00	707.0	644.0	129.00	379.00	49.70	335.0	54.8	12	2 25.8	319	362000	383.0	17431	7.8	68560	-0.3	2 -5	2 0.1	-10	-0.1
100S-220W		1270	1482.0	414.0	1890.0	829.0 442.0	208.00	377.0	639.0 362.0	130.00	388.00	51.30	364.0	55.9	21	2 27.4	174	267000	238.0	23522	5.1	27280	-0.3	2 -5	3 -0.1	-10	0.1
100S-260W		2440	6600.0	794.0	3500.0	777.0	190.00	663.0	604.0	119.00	358.00	47.20	342.0	30.2 52.4	1/	4 24.0 5 22.5	304	54000	390.0	14256	19.3	29520	-0.:	2 -5	1 -0.1	-10	-0.1
100S-300W		3110	7140.0	966.0	4340.0	950.0	227.00	817.0	760.0	154.00	452.00	58.30	390.0	63.3	14	2 30.5	354	317000	185.0	15293	4.0	70240	-0.	5	3 -0.1	-10	0.1
100S-340W		2910	6720.0	870.0	3900.0	854.0	208.00	751.0	684.0	136.00	408.00	53.20	357.0	57.0	12	5 31.3	360	268000	165.0	11923	4.7	60560	-0.	-5	2 -0.1	-10	-0.1
2008-380W		2900	7200.0	895.0	4090.0	933.0	226.00	807.0	743.0	153.00	450.00	59.90	406.0	63.6	11	1 29.7	396	302000	142.0	13738	2.5	68880	-0.3	2 -5	3 -0.1	-10	0.2
2008-100E		661	750.0	170.0	782.0	193.0	64.70	173.0	179.0	37.00	453.00	15 50	393.0 106.0	23.1	12	0 26.3	418	382000	290.0	18338	6.9	53120	-0.3	2 -5	3 -0.1	-10	0.2
200S-140E		2820	8280.0	885.0	4010.0	928.0	230.00	808.0	718.0	147.00	450.00	56.50	365.0	62.9	12	D 17.4	307	349000	148.0	13154	2.4	42240	U.: -0 *) -0) -5	-1 -0.1	-10	-0.1
200S-180E		2800	7380.0	854.0	3740.0	840.0	197.00	720.0	639.0	127.00	387.00	51.00	328.0	52.2	11	2 20.7	322	405000	231.0	12768	3.3	59920	-0.1	2 -5	2 -0.	-10	-0.1
2008-220E		2890	7440.0	907.0	4250.0	949.0	238.00	854.0	761.0	155.00	466.00	57.70	385.0	62.6	14	4 21.0	264	330000	219.0	11275	4.1	53280	-0.5	2 -5	-1 -0.1	-10	-0.1
2003-200E		3040	8280.0	939.0	4410.0	1070.0	241.00	8/1.0	800.0	159.00	480.00	61.50	415.0	64.B	15	0 25.5	257	205000	200.0	11923	3.4	51040	-0.1	2 -5	1 -0.1	-10	-0.1
2008-340E		2630	7560.0	832.0	3660.0	821.0	193.00	706.0	632.0	123.00	379.00	47.50	322.0	51.7	13	5 21.5	244	2/2000	260.0	11146	4.9	56000	-0.1	2 -5	2 -0.1	-10	-0.1
2008-380E		3490	8100.0	1130.0	5140.0	1100.0	251.00	946.0	841.0	169.00	515.00	65.70	434.0	69.7	13	7 23.4	264	264000	217.0	19505	4.4	43840	-0.2	2 -5	2 -0.1	-10	0.1
200S-420E		4120	10140.0	1310.0	5990.0	1290.0	297.00	1100.0	973.0	193.00	569.00	72.50	471.0	75.2	16	1 25.3	275	385000	155.0	13673	3.0	70800	-0.1	-5	2 -0.1	-10	-0.1
2008-460E		3190	8940.0	1010.0	4510.0	964.0	217.00	839.0	701.0	139.00	420.00	53.20	363.0	56.5	9	8 20.2	230	445000	193.0	13284	2.8	58880	-0.3	2 -5	2 -0.1	-10	-0.1
BL200S		2150	4750.0	705.0	3300.0	737.0	187.00	831.0 646.0	813.0	125.00	383.00	50.40	385.0	59.7	10	8 20.7	319	368000	198.0	10044	4.3	51840	-0.1	2 -5	1 -0.1	-10	-0.1
200S-20W		1980	5592.0	636.0	2960.0	676.0	170.00	608.0	557.0	118.00	348.00	44.40	300.0	49.5	8	8 19.0	268	357000	217.0	14015	5.0	4/840	-0.	-5	2 -0.1	-10	0.1
2008-60W		2520	6600.0	781.0	3520.0	784.0	190.00	687.0	634.0	125.00	378.00	50.10	330.0	52.7	9	7 21.2	308	379000	304.0	12053	6.0	56960	-0.1	-5	2 -01	-10	-0.1
200S-100W		2220	6600.0	710.0	3160.0	716.0	174.00	640.0	583.0	117.00	351.00	44.40	302.0	50.4	9	4 23.3	292	571000	211.0	11923	3.8	52480	-0.1	-5	1 -0.1	-10	-0.1
2005-160W		3630	9720.0	1160.0	5310.0	814.0 1170.0	199.00	/31.0	659.0	129.00	385.00	49.50	338.0	52.9	11	9 20.3	281	523000	250.0	11405	4.5	65600	-0.3	2 -5	2 -0.1	-10	-0.1
200S-220W		1680	2256.0	565.0	2580.0	606.0	154.00	533.0	502.0	101.00	314 00	41.30	275.0	47.2	10	9 40.0	2/6	228000	288.0	18403	5.3	63120	-0.3	2 -5	1 -0.1	-10	-0.1
200S-260W		1990	2724.0	641.0	2960.0	674.0	171.00	598.0	566.0	113.00	343.00	45.60	303.0	50.0	11	8 29.2	372	321000	183.0	18922	4.5	62480	-0.		2 -0.1	-10	-0.1
2005-300W		1960	2700.0	656.0	3040.0	687.0	172.00	612.0	578.0	119.00	357.00	47.50	329.0	52.7	10	9 21.7	293	264000	269.0	22680	6.5	42480	-0.3	-5	2 -0.1	-10	-0.1
2008-34077		2830	7320.0	884.0	3980.0	901.0	225.00	803.0	734.0	150.00	457.00	58.80	406.0	64.7	16	B 31.3	247	316000	217.0	13414	3.6	65440	-0.2	-5	3 -0.1	-10	-0.1
2008-420W		1950	2952.0	621.0	2710.0	621.0	149.00	547.0	498.0	102.00	299.00	39.10	344.U	42.0	11	9 21.9	268	494000	257.0	11794	5.6	54880	-0.2	-5	2 -0.1	-10	-0.1
300S-20E		2680	6720.0	890.0	4010.0	875.0	212.00	768.0	693.0	142.00	419.00	53.10	374.0	56.6	15	4 28.6	243	273000	170.0	12960	3.2	59000	-0.2	-0	1 -0.1	-10	-0.1
300S-80E		2950	5862.0	915.0	4220.0	934.0	227.00	797.0	750.0	149.00	449.00	58.10	396.0	65.2	16	28.0	299	273000	371.0	18792	9.6	62880	-0.3	-5	3 -0.1	-10	0.1
300S-180E		2710	7632.0	861.0	3920.0	872.0	223.00	727.0	687.0	139.00	409.00	51.90	354.0	58.1	11	4 20.9	326	314000	187.0	11520	5.5	51520	-0.2	-5	1 -0.1	-10	-0.1
300S-260E		2830	9576.0	858.0	4020.0	931.0 887.0	224.00	764.0	722.0	142.00	424.00	54.40	351.0	57.4 50.5	10	5 24.2	416	366000	209.0	11160	3.9	59120	-0.2	-5	-1 -0.1	-10	-0.1
300S-300E		3250	9432.0	1040.0	4800.0	1090.0	257.00	910.0	823.0	168.00	510.00	64.10	424.0	68.0	11	5 23.2	328	392000	227.0	10512	3.7	50240	-0.3	-5	1 -0.1	-10	0.1
300S-340E		4160	10368.0	1300.0	5910.0	1310.0	303.00	1100.0	1020.0	207.00	602.00	77.30	525.0	83.1	12	9 31.7	414	352000	286.0	14040	5.6	61520	-0.2	-5	2 -0.1	-10	-0.1
3008-380E		2950	9216.0	956.0	4400.0	993.0	243.00	856.0	803.0	163.00	482.00	64.40	431.0	66.6	14	2 29.8	347	595000	327.0	18792	8.4	70320	-0.3	-5	1 -0.1	-10	-0.1
3008-460E		3310	9216.0	1080.0	4910.0	1080.0	257.00	927.0	801.0	162.00	464.00	60.40	416.0	67.5	11	27.1	276	308000	268.0	12384	6.2	55040	-0.2	-5	2 -0.1	-10	-0.1
300S-500E		1270	1735.2	357.0	1620.0	373.0	102.00	311.0	297.0	59.50	174.00	22.80	154.0	29.5	7	5 21.0 1 40	108	188000	194.0	11304	4.4 6.4	45600	-0.2	-5	1 -0.1	-10	-0.1
8L300S		1980	5292.0	683.0	3100.0	710.0	173.00	598.0	584.0	119.00	362.00	48.30	321.0	54.9	10	4 24.8	377	237000	251.0	11664	4.9	38880	-0.3	-0	2 01	-10	-0.1
300S-20W		2310	3643.2	753.0	3450.0	764.0	184.00	651.0	611.0	123.00	365.00	47.50	313.0	53.6	12	3 21.3	332	296000	374.0	11448	10.2	44480	-0.1	-5	1 -0.1	-10	-0.1
300S-100W		2900	3558.8	787 0	4190.0	944.0	231.00	504.0 747.0	732.0	148.00	424.00	56.10	383.0	60.6	14	8 27.5	337	439000	107.0	15912	1.4	54160	-0.2	-5	2 0.1	-10	0.1
300S-140W		2290	3780.0	790.0	3540.0	831.0	213.00	695.0	683.0	138.00	419.00	55.40	365.0	03.3 59.5	13	4 19.8 3 22 2	328	324000	214.0	18216	4.0	52320	-0,2	-5	-1 -0.1	-10	-0.1
3008-180W		2590	3902.4	839.0	3750.0	855.0	205.00	699.0	686.0	138.00	408.00	53.40	353.0	58.4	19	23.1	372	335000	479.0	18648	11.9	64480	-0.2	-0	2 0.1	-10	-0.1
300S-220W		2650	4048.4	879.0	4020.0	923.0	241.00	759.0	729.0	147.00	432.00	58.10	382.0	80.9	24	1 40.0	492	408000	415.0	26136	10.8	69680	-0.3	-5	2 -0.1	-10	-0.1
3008-2009		2010	4327.2	1010.0	3570.0	859.0	234.00	724.0	704.0	140.00	419.00	53.80	372.0	60.7	13	2 24.8	313	390000	99.4	12168	2.1	60160	-0.3	-5	1 -0.1	-10	-0.1
3008-340W		2450	4443.1	794.0	3640.0	836.0	201.00	730.0	891.0	1/2.00	428.00	58.00	440.0 381.0	64.7	13	7 21.4	307	302000	116.0	19080	3.2	54000	-0.2	-5	1 -0.1	-10	-0.1
3008-380W		2740	9234.7	876.0	3880.0	860.0	217.00	761.0	717.0	144.00	431.00	55,90	371.0	60.6	13	2 20.7	392	292000	254.0	12816	7.5 6.4	45920	-0.2	-5	-1 0.1	-10	-0.1
3008-420W		1850	3484.8	650.0	3000.0	718.0	191.00	619.0	629.0	131.00	400.00	53.60	361.0	61.0	11	7 30.5	443	196000	107.0	13484	3.2	34880	-0.2	-5	1 -0.1	-10	-0.1
3008-460W		1860	3467.4	543.0	2440.0	567.0	157.00	486.0	478.0	97.20	292.00	38.30	266.0	46.0	9	9 7.8	244	302000	121.0	32184	4.7	58640	-0.2	-5	1 -0.1	-10	-0.1
4008-60E		2760	9670.3	861.0	4000.0	913.0 911.0	221.00	607 0	776.0	144.00	434.00	53.80 50 70	360.0	61.4 68 5	10	5 28.6	251	370000	284.0	14184	6.4	82400	-0.2	-5	2 -0.1	-10	-0.1
4008-100E		2650	9498.1	816.0	3760.0	832.0	208.00	718.0	667.0	134.00	406.00	51,60	358.0	58.9	10	∠ 28.4 7 25 R	297	292000	275.0 209.0	11808	5.9 30	51440	-0.2	-5	1 -0.1	-10	-0.1
400S-220E		2420	4800.3	771.0	3630.0	847.0	213.00	731.0	708.0	148.00	437.00	54.70	367.0	59.4	15	3 22.1	338	270000	136.0	6633	2.7	47200	-0.2	-5	∡ -0.1 1 -0 1	-10	-0.1
400S-260E		1880	4765.5	622.0	2890.0	678.0	170.00	573.0	557.0	112.00	338.00	42.20	302.0	50.6	15	4 20.6	267	357000	204.0	16200	4.1	58800	-0.2	-5	1 0.1	-10	-0.1
4008-340E		2830	12196.2	900.0 1170 0	4430.0 5270 0	995.0	235.00	813.0	761.0	157.00	461.00	60.20	395.0	66.1	13	1 21.3	302	274000	145.0	6669	2.7	48480	-0.2	-5	1 0.1	-10	-0.1
4008-380E		3430	11587.0	1100.0	5090.0	1110.0	263.00	927.0	833.0	167.00	489.00	62.00	421.0	69.7 68.1	11	1 31.3	365	413000	276.0	12240	5.6	52240	-0.2	-5	1 -0.1	-10	-0.1
4008-420E		2780	5227.2	930.0	4260.0	954.0	226.00	804.0	725.0	151.00	459.00	59.30	404.0	64.4	16	17.1	317	363000	216.0	15264	4.0	48060	-0.2	-0	1-0.1	-10	-0.1
4008-460E		2670	5122.7	847.0	3890.0	876.0	211.00	749.0	704.0	144.00	429.00	57.60	386.0	62.7	9	5 28.7	427	384000	186.0	20736	3.0	52240	-0.2	-5	2 -0.1	-10	0.1
-000-000E		3220	5067.8 6288.0	789.0	4660.0	1050.0	254.00	585.0 732.0	802.0	163.00	498.00	63.90	422.0	66.5	13	2 25.2	272	277000	224.0	14544	4.9	49120	-0.2	-5	1 -0.1	-10	-0.1
4008-20W		2880	4300.6	922.0	4180.0	910.0	229.00	803.0	751.0	154.00	463.00	57,40	396.0	65.4	10	26.9	492	251000	243.0	14328	5.1	47760	-0.2	-5	2 -0.1	-10	0.1
							540.00					00.10	-00.0	00.4	10	J 20.8	30/	₹00000	407.0	0011	12.9	02320	-0.2	-5	2 -0.1	-10	0.1

Colin E. Dunn 10thMaroh 2002

4

.

1

Table 1: Analytical data, as received from Actilabs 14th February 2002

Gold Mask vertures Terrasol dataset - revised data used for plotting

T T

> Table 1 - Anaimical data.xls 23539crp

PGE Package:	Ra	e Farth I	Flement	*'										,	ithonh	ile Flemer	te.						PGF			
Sample ID:	 La	Ce	Pr	Nd	Sm	Eu	Gd	Dy	Ho	Er	Tm	Yb	Lu	S.Q.	Li B	. S.Q. Sc	Mn	Rb	Sr	Cs	Ba	R	u Rh í	20 0	a ir	Pt
400S-60W	2850	4419.4	912.0	4090.0	933.0	235.00	783.0	752.0	149.00	453.00	60.40	404.0	66.1	1-	40 33.	4 463	309000	396.0	19728	11.0	78800	0.	4 -5	2 -0.4	1 -10	0.2
4008-100W	2720	3975.8	832.0	3770.0	643.0	215.00	706.0	703.0	143.00	418.00	58.90	372.0	59.0	1	43 23.	2 543	313000	309.0	16128	10.3	88800	0.	3 -5	2 -0.1	1 -10	0.2
400S-140W	4030	4197.0	1280.0	3750.0 5830.0	1300.0	318.00	1060.0	1000.0	209.00	420.00	79.20	377.0 532.0	59.9 83.4	2	14 19. 95 37	3 390 1 454	284000	267.0	17352	53	/6640 68320	U. 0	5-5 4-5	2 -0.1	1 -10 -	-0.1
4005-220W	3030	5282.6	944.0	4250.0	967.0	248.00	828.0	779.0	159.00	470.00	60.20	402.0	65.3	1	31 26.	1 444	335000	232.0	16200	4.9	72720	0.	4 -5	1 -0.	1 -10 -	-0.1
400S-260W	3210	4664.9	977.0	4520.0	997.0	252.00	846.0	790.0	161.00	479.00	62.00	421.0	69.6	1	52 22	1 427	255000	217.0	13680	5.0	75600	0.	3 -5	2 -0.	1 -10	0.2
4005-300W	3540	9662.4	1080.0	4850.0	1080.0	271.00	930.0	862.0	179.00	524.00	68.60	460.0	72.7	1.	40 29.	2 518	316000	270.0	14616	7.9	63200	0.	3-5	2 -0.	1 -10	0.2
400S-340W	3330	8725.2	1030.0	4660.0	1070.0	271.00	912.0	864.0	180.00	544.00	68.50	477.0	76.9	1	46 28.	8 440	387000	190.0	13608	5.0	74240	-0.	2 -5	2 -0.1	1 -10	0.2
400S-380W	2850	///4.8 8305.2	912.0	3970.0	929.0	227.00	791.0	745.0	153.00	445.00	59.60	405.0 386.0	65.4	1	15 24. 10 38	0 415 1 506	310000	190.0	20016	5.6	51600	0.	4-0	2 -0.	1 -10 -	-0.1
400S-460W	2730	8487.6	896.0	4130.0	944.0	234.00	785.0	783.0	161.00	474.00	60.10	423.0	66.3	1	46 27.	7 446	420000	184.0	16848	3.3	50000	-0.	2.5	2 -0	1 -10	0.1
400S-500W	1840	4668.0	510.0	2260.0	543.0	152.00	446.0	442.0	93.20	267.00	37.70	242.0	41.8		93 8.	3 341	312000	147.0	72120	13.9	65520	1.	4 -5	-1 0.	1 -10 -	-0.1
500S-20E	2660	5988.0	833.0	3750.0	874.0	227.00	736.0	700.0	143.00	428.00	57.70	388.0	62.9	1	38 31.	5 329	254000	210.0	32880	6.2	65600	0.	4 -5	2 -0.1	1 -10	0.2
500S-60E	3450	8040.0	1050.0	4770.0	1090.0	281.00	925.0	875.0	185.00	556.00	72.50	494.0	76.4	1	29 36.	6 386	236000	135.0	11580	3.2	69280	-0.	2 -5	3 0.1	2 -10	0.2
5008-100E	2980	7702.0 8804.0	946.0	4310.0	1010.0	235.00	833.0	798.0	160.00	459.00	65.30	423.0	63.U 68.Q	1	02 20. 03 13	2 30	310000	228.0	13820	6.2	45200	-0	2.5	2 -0.	1 -10	0.3
500S-280E	3000	8124.0	931.0	4290.0	973.0	248.00	839.0	779.0	160.00	467.00	61.60	397.0	62.5	1	66 23.	7 246	335000	186.0	10728	8.9	52240	-0.	2 -5	-1 -0	1 -10	0.1
500S-300E	2610	5628.0	809.0	3660.0	837.0	204.00	692.0	667.0	136.00	389.00	52.60	345.0	56.2	1	12 17.	4 362	236000	259.0	21840	9.1	47760	-0.	2 -5	-1 -0.	1 -10	0.1
500S-340E	4020	7880.0	1230.0	5800.0	1260.0	305.00	1040.0	942.0	190.00	561.00	72.40	464.0	72.0	1	24 24.	5 275	282000	215.0	11892	5.9	45360	-0.	2-5	1 -0.	1 -10	0.1
500S-380E	3300	8016.0	1060,0	4900.0	1110.0	271.00	902.0	841.0	173.00	526.00	69.60	461.0	71.6		99 28.	5 478	283000	185.0	26520	5.3	50480	0.	2 -5	2 -0.	1 -10	0.2
5003-420E	2020	7140.0	961.0	4500.0	1010.0	209.00	734.0	801.0	188.00	409.00	53.00 64.10	418.0	56.∠ 87.7	1	02 20. 24 27	3 34° 8 28/	317000	230.0	20/00	5.5 6.3	59200	-0.	2 -0	-1 0.	1 -10	0.1
5008-500E	3940	9528.0	1200.0	5420.0	1220.0	286.00	987.0	923.0	188.00	559.00	74.60	484.0	74.1	1	39 22.	4 428	416000	278.0	23520	5.0	63920	-0.	2 -5	2 -0.	.1 -10	0.2
BL500S	2820	6190.0	809.0	3450.0	938.0	233.00	788.0	765.0	102.00	489.00	63.60	410.0	63.8	1	06 29.	3 548	380000	267.0	12800	4.1	54160	-0.	2-5	3 -0.	.1 -10	0.2
500S-20W	2850	5210.0	903.0	4100.0	940.0	233.00	782.0	763.0	159.00	461.00	62.30	411.0	64.7	1	35 37.	5 453	301000	141.0	27360	3.5	67520	-0.	2-5	2 -0.	.1 -10	0.2
500S-60W	3220	6970.0	988.0	4430.0	1010.0	248.00	821.0	779.0	162.00	467.00	60.30	398.0	62.0	1	80 37.	2 478	332000	286.0	11412	7.6	58960	-0.	2 -5	1 -0.	1 -10 -	-0.1
5008-1009V	3860	7620.0	1200.0	5430.0	1230.0	219.00	1020.0	985.0	204.00	431.00 588.00	76.50	513.0	82 R	1	ZI 20. 74 33	0 52	409000	244.0	23760	57	78320	-0.	∡ -0 2_5	2 -0.	1 -10 -	-0.1
500S-160W	4280	13900.0	1340.0	6110.0	1390.0	338.00	1140.0	1090.0	218.00	652.00	85.40	544.0	85.2	1	46 35.	3 42	360000	256.0	12600	6.0	60000	-0.	2 -5	1 -0.	1 -10	-0.1
500S-220W	2630	6050.0	832.0	3820.0	893.0	222.00	745.0	734.0	149.00	442.00	59.80	397.0	63.1	1	57 28.	9 361	266000	184.0	12960	5.6	57360	-0	2 -5	2 -0.	.1 -10	0.2
5008-260W	2910	6350.0	890.0	4090.0	912.0	228.00	773.0	743.0	157.00	464.00	62.10	392.0	62.9	1	43 24.	6 42	303000	271.0	12480	8.7	67200	0.	3-5	1 -0.	.1 -10	0.2
500S-300W	3300	7630.0	1000.0	4500.0	996.0	249.00	860.0	801.0	165.00	480.00	63.70	410.0	64.5 70.1	1	64 32.	7 50	362000	215.0	12960	5.7	62320	-0.	2 -5	2 -0.	1 -10	0.2
500S-380W	2310	5250.0	734.0	3450.0	782.0	202.00	665.0	627.0	132.00	388.00	50.60	326.0	55.0		98 22	3 35	303000	158.0	13680	3.0	38640	-0.	2 -0	1 -0.	1 -10	-0.1
500S-420W	2670	5680.0	889.0	4140.0	975.0	254.00	838.0	809.0	169.00	499.00	68.50	435.0	67.2	3	93 45	2 21	49800	501.0	28320	17.9	27360	0	4 -5	2 0	1 -10	-0.1
5008-460W	2560	5680.0	833.0	3800.0	896.0	228.00	743.0	746.0	156.00	461.00	61.40	404.0	64.6	1	63 28	7 33	289000	200.0	69720	9.0	38080	0	5 -5	2 -0.	.1 -10 -	-0.1
600S-20E	3110	6370.0	961.0	4250.0	950.0	232.00	783.0	758.0	157.00	448.00	60.80	389.0	64.2	1	59 34	8 40	226000	271.0	12960	9.3	58240	-0	2 -5	2 -0.	.1 -10	0.2
600S-60E 600S-100E	2700	7090.0	855.U 997.0	3860.0	1050.0	207.00	697.0 880.0	838.0	169.00	440.00	57.50	383.0 428.0	52.7 70.3	1	43 27. 58 20	9 501 5 301	33/000	231.0	26880	3.4	65240	0	3-5	2 0.	.1 -10	0.2
600S-140E	3390	7620.0	1010.0	4580.0	1040.0	254.00	871.0	818.0	164.00	478.00	64.10	418.0	66.3	1	97 28	.7 554	3 390000	416.0	11376	12.1	65440	-0	2 -5	2 -0.	2 -10	0.2
6008-180E	2570	5710.0	828.0	3900.0	898.0	233.00	762.0	747.0	153.00	453.00	61.50	376.0	63.0	1	58 18	5 34	303000	140.0	27120	3.9	48720	ō	6 -5	-1 -0	.1 -10	-0.1
600S-260E	3120	6090.0	963.0	4500.0	1010.0	252.00	864.0	814.0	168.00	493.00	64.80	434.0	68.8	1	39 24	2 38	365000	227.0	14760	5.7	50480	-0	2 -5	2 -0.	.1 -10	0.2
600S-300E	3070	6790.0	964.0	4530.0	1020.0	256.00	860.0	802.0	164.00	493.00	65.40	434.0	68.2	1	32 33	.3 34	347000	125.0	14160	6.8	46960	-0	2 -5	-1 -0.	.1 -10 -	-0.1
6008-340E	3130	5780.0	914.0	4600.0	1040.0	241.00	857.0	823.0	189.00	504.00	66.00	404.0	68.6		24 27	2 35	236000	185.0	14280	5.∠ 5.4	44480	-0	2.5	1 -0.	1 -10	-0.1
600S-420E	2920	6010.0	945.0	4400.0	1010.0	250.00	823.0	807.0	169.00	503.00	65.00	443.0	71.1	1	50 20	4 32	283000	208.0	12360	5.8	48600	ő	2 -5	1 -0	1 -10	0.1
600S-460E	2890	4950.0	914.0	4410.0	991.0	241.00	861.0	841.0	174.00	519.00	71.40	450.0	73.7	1	29 39	.8 44	3 240000	195.0	13080	4.6	49840	-0	2 -5	2 -0.	.1 -10	0.2
600S-500E	3370	7170.0	1040.0	4810.0	1090.0	258.00	905.0	829.0	170.00	508.00	65.10	433.0	68.8	1	57 25	.1 32	281000	231.0	12480	4.8	54640	0	.2 -5	2 -0.	.1 -10	0.1
BLB005	2460	5100.0	762.0	3600.0	882.0	212.00	737.0	707.0	141.00	461.00	57.60	395.0	64.5		45 29	./ 51:	269000	158.0	13800	5.1	43360	-0	2 -5	2 -0.	.1 -10	0.1
600S-60W	3050	6090.0	950.0	4440.0	1010.0	244.00	856.0	810.0	165.00	492.00	62.30	418.0	67.5	1	73 29	.5 39	256000	290.0	10944	8.7	40800	0	3 -5	2 -0	1 -10	-0.1
600S-100W	3490	8030.0	1090.0	4960.0	1130.0	269.00	936.0	878.0	183.00	545.00	72.30	477.0	77.3	1	97 37	9 57	331000	268.0	15960	6.4	68560	-0	2 -5	3-0	1 -10	0.4
600S-140W	2410	5740.0	793.0	3640.0	847.0	215.00	738.0	710.0	146.00	425.00	54.10	372.0	56.7	1	42 21	.7 40	5 392000	165.0	9708	4.0	44560	-0	.2 -5	-1 -0	.1 -10	-0.1
600S-180W	2710	5280.0	865.0	4050.0	940.0	237.00	777.0	757.0	157.00	459.00	62.40	411.0	65.2	1	93 25	.7 40	9 260000	258.0	14760	7.2	44640	-0	.2 -5	1 -0.	.1 -10	0.3
600S-260W	2810	6200.0	909.U 898.0	4180.0	959.0	245.00	829.0 823.0	781 0	170.00	493.00	62 90	429.0 424 N	64.3	-	200 37	.⊎ 55 4 ⊿∩	200000 302000	188.0	12000	4.3	43680	-0	25	2 0.	.1 -10	0.1
6005-300W	2910	5720.0	911.0	4230.0	966.0	238.00	815.0	790.0	185.00	485.00	63.20	432.0	69.5	1	95 28	.4 40	308000	278.0	12480	6.1	50880	0	4 -5	1 -0	1 -10	0,1
600S-340W	2699	7672.9	857.0	4011.0	902.5	212.00	706.9	732.9	147.49	434.60	55.00	373.3	86.1		99 28	.1 40	4 187680	174.0	9684	3.8	49500	-0	.2 -5	2 -0	1 -10	-0.1
600S-380W	2410	7174.3	748.8	3465.0	780.4	182.60	607.9	642.6	126.28	385.40	48.40	320.3	57.9		79 31	.1 34	4 279680	200.0	12600	6.6	45600	-0	.2 -5	2-0	.1 -10	-0.1
600S-420W	1881	4348.9	649.0 681 4	3108.0	728.0	190.00	564.3	596.4	119.95	355.70	47.00	334.8	56.2 53 0	3	132 38 128 24	.3 24	3 71944	393.0	22080	15.8	29600	-0	2 -5	3-0	.1 -10	-0.1
7008-20F	2987	9528.8	946.4	4347.0	9791	226.00	748.4	751.8	154.43	451.00	57 20	383.5	69.1		120 24	6 30 B 39	0 109020 0 294400	276.0	15840	57	88700	-0	2 -0	2 -0	.1 -10	-0.1
700S-60E	2266	8282.3	744.6	3381.0	755.6	176.80	580.1	604.8	121.79	352.60	46.80	314.2	56.8		25 28	.6 38	3 342240	251.0	17040	4.7	57100	-0	2 -5	2 -0	1 -10	-0.1
700S-100E	2781	6869.6	863.2	3906.0	875.6	200.00	689.0	682.5	142.39	430.50	55.00	359.0	67.2	:	212 51	.8 48	5 187440	543.0	16800	15.5	69800	-0	2 -5	2 -0	1 -10	-0.1
7008-140E	2657	7395.9	873.6	4158.0	943.9	226.00	756.4	777.0	153.61	467.40	56.60	395.8	69.9		150 28	.8 36	5 209760	240.0	12800	5.5	65300	-0	.2 -5	2 -0	.1 -10	-0.1
7005-180E	2359	6121.7	777.9	3096.0	9814	202.00	659.3	093.0 705 P	140.76	420.25	54.00	371.3	55.5 89.5		130 31	./ 40	4 125070	269.0	14750	7.3	61100	-0	.2 -5	2 -0	.1 -10	-0.1
7008-340E	2843	8420.8	904.8	4200.0	935.6	210.00	746.5	741.3	146.27	428.45	58,00	379.4	66.3		131 32	4 41	9 222640	177 0	12840	3.6	50500	-0-	2.5	-1-0	1 -10	-0.1
7008-380E	2948	7700.6	944.3	4557.0	1014.3	240.00	817.7	816.9	166.06	492.00	61.40	420.2	75.6		151 36	.0 37	4 235520	262.0	15120	5.9	58900	-0	2 -5	1 -0	0.1 -10	-0.1
7005-420E	1638	5207.6	540.8	2520.0	552.7	133.40	449.5	451.5	88.33	268.55	34.20	228.4	39.0		91 20	.0 33	8 252080	279.0	12120	6.8	42500	-0	2 -5	2 -0	.1 -10	-0.1
700S-460E	3069	9362.6	994.2	4620.0	1001.9	232.00	790.0	760.2	152.80	451.00	56.60	395.8	68.3		198 47	.3 38	1 242880	222.0	17040	6.0	51600	-0	.2 -5	1 -0	1 -10	-0.1
7005-500E	2616	/356.2	673.6	4158.0) 919.1 704 -	214.00	/22.7	/39.2	147.70	9 440.75	40.00	387.6	67.7 68.7		132 24	.d 40	3 208640	270.0	11976	3.8	49700	-0	.2 -5	1 -0	1 -10	-0.1
7008-20W	2103	6365.4	909.0	4263 0) 962 P	5 110.0U	738.6	751.8	146.47	432.55	58.20	385.6	50.7 63.3		140 34	40	9 281520	. ∠00.0)244.∩	11352	0.0	40400 51900	-0	2 -5	-1 -0	11 -10	-0.1
7008-60W	2534	7562.1	807.0	3717.0	852.8	192.00	669.2	682.5	134.44	395.65	50.80	363.1	84.4		197 26	.8 38	0 244720	328.0	13800	6.7	61500	-0	2 -5	1 -0	1.1 -10	-0.1
7008-100W	2534	8226.9	811.2	3780.0	865.3	204.00	677.2	718.1	144.84	430.50	53.40	377.4	65.0		160 52	.7 46	3 257600	268.0	13440	7.0	57300	-0	2 -6	2 -0	1 10	-0.1
7008-140W	2513	8171.5	823.7	3927.0	863.2	208.00	695.0	718.1	144.02	422.30	55.60	363.1	65.5		95 33	.5 39	9 252080	177.0	14880	2.9	58400	-0	.2 -5	-1 -0	.1 -10	-0.1
7008-180W	2122	00¥2.6	073.9	3024.0	/ 045.8	3 100.40	508.9 845.5	043.9 688.7	139.01	313.65	37.40	240.8	41.2 85.5		110 97	4 43	∠ 154192 3 223840	139.0	11340	4.6	48100	-0	2 -6	1 -0	1 -10	-0.1
7008-260W	2390	6454.1	771.7	3675.0	842.5	5 196.20	635.6	684.6	137.70	397.70	51.40	352.9	63.1		147 28		7 204240	288.0	15720	9.2	54300	-0	2 .5	1 -0	11 -10	-0.1

Colin E. Dunn 10thMarch 2002

i.

Table 1: Analytical data, as received from Actlabs 14th February 2002

Gold Mask vertures Terrasol dataset - revised data used for plotting

٦

1

Table 1 - Anasytical data.xls 23539crp

PGE Package:	R	are Earth	Element	s:										4	ithanhi	le Elemé	nta:					PGEs
Sample ID:	La	Ce	Pr	Nd	Sm	Eu	Gd	Dy	Ho	Er	Tm	Yb	Lu	S.Q.	Li Be	8.Q. S	c Mn	Rb	Sr	Cs	Ba	Ru Rh Pd Os ir Pt
700S-300W	2245	5678.5	725.9	3444.0	799.0	196.20	619.7	672.0	134.23	389.50	50.20	346.6	62.2	13	39 33.3	3 28	9 156216	191.0	10140	8.1	53700	-0.2 -5 1 -0.1 -10 -0.1
7008-340W	1963	6232.5	690.6 813.3	3255.0	751.4	194.40	603.9	665.7 734 6	134.84	399.75	51.60	346.8	60.9	11	12 28.1	I 50	0 276000	153.0	14520	12.3	37400	-0.2 -5 1 -0.1 -10 -0.1
700S-420W	2023	5346 1	707.2	3339.0	799.0	200.00	594.0	863.6	129.54	389.50	49.60	344.8	59.2	14	18 38 1) 38 I 38	7 200560	179.0	21120	53	44800	-0.2 -5 2 -0.1 -10 -0.1
7005-460W	2101	5844.7	755.0	3654.0	846.6	222.00	669.2	718.2	146.68	446.90	55.80	381.5	69.6	2	6 31.	5 36	7 239200	319.0	20760	14.5	39400	-0.2 -5 -1 -0.1 -10 -0.1
7008-500W	2348	5955.5	769.6	3570.0	809.4	187.00	639.5	674.1	135.86	407.95	51.00	369.2	63.9	14	17 37.7	7 52	7 204240	337.0	17160	7.1	44800	-0.2 -5 3 0.2 -10 -0.1
8005-202	2616	6758.8	852.8	4011.0	912.9	212.00	700.9	720.3	143.41	426.40	54.00	375.4	67.7	10	32 38.8	3 43	7 184000	208.0	12840	3.7	51700	-0.2 -5 2 -0.1 -10 -0.1
800S-60E	2513	7118.9	811.2	3717.0	854.9	198.40	774.2	774 0	132.60	385.40	49.40	342.7	60.6	18	96 34.4 33 424	1 44	8 217120 5 340400	300.0	15840	6.0 3.6	53400	-0.2 -5 2 -0.1 -10 -0.1
800S-140E	2019	5983.2	669.8	3150.0	716.2	174.00	576.2	581.7	119.95	364.90	44.80	328.4	56.0	1	51 27.3	7 44	8 2410400	232.0	15360	3.8	75600	-0.2 -5 1 -0.1 -10 -0.1
800S-180E	1351	4404.3	461.6	2205.0	523.7	141.20	407.9	432.6	68.13	254.20	33.20	238.7	37.4	1:	34 34	1 31	1 123098	184.0	14160	8.6	51400	-0.2 -5 1 -0.1 -10 -0.1
800S-220E	1936	6454.1	624.0	2835.0	639.6	153.40	510.8	506.1	98.74	295.20	36.40	253.0	42.9	1	93 21.1	1 30	7 312800	218.0	15120	5.2	45800	-0.2 -5 -1 -0.1 -10 -0.1
800S-300E	1790	5706.2	611.5	2877.0	687.2	166.40	554.4	556.5	111.18	352.60	43.60	295.8	50.0	10	31 36.6	5 26	8 176088	120.0	15720	2.0	42100	-0.2 -5 -1 -0.1 -10 -0.1
800S-340E 800S-380E	2245	4986.0	746.7	3570.0	799.0	184.80	710.8	634.2	131.17	399.75	50.80	340.7	61.4 87.0	1:	38 23.	/ 38	1 142232	243.0	10956	3.7	58100	-0.2 -5 -1 -0.1 -10 -0.1
800S-420E	2369	7672.9	844.5	3927.0	921.2	246.00	774.2	747.6	148.31	424.35	52.60	383.5	69.9	1:	22 43.0	0 59	7 181240	199.0	14840	4.9	62900	-0.2 -5 -1 -0.1 -10 -0.1
800S-460E	1967	5401.5	711.4	3465.0	873.5	246.00	706.9	735.0	144.23	424.35	54,40	381.5	66.1	1	51 49.	8 60	3 277840	77.8	14040	2.5	77400	-0.2 -5 2 0.2 -10 -0.1
800S-500E	1574	4847.5	567.8	2667.0	637.6	175.00	530.8	518.7	98.12	299.30	36.80	287.2	42.3	2	37 33.0	0 50	0 288880	175.0	18240	8.2	103000	-0.2 -5 1 -0.1 -10 -0.1
BL800S	1998	5484.6	723.6	3381.0	784.5	181.20	649.4	623.7	101.00	393.60	48.80	350.9	65.0	1	12 39.	7 47	4 184000	293.0	15960	5.6	44000	-0.2 -5 2 -0.1 -10 -0.1
8005-20W	2098	7423 6	767.5	3612.0	817.0 817.7	180.80	740.0 641.5	798.U R48.B	128.11	377 20	45 20	324.4	53.8	1	04 DD. 71 33/	/ 40 5 38	4 240400 4 263020	335.0	12380	1.9	48300	-0.2 -5 -1 -0.1 -10 -0.1
800S-100W	2163	7008.1	753.0	3528.0	774.2	185.80	596.0	613.2	117.71	362.85	45.00	314.2	52.1	1	52 39.	2 28	7 255760	165.0	13440	2.8	42600	-0.2 -5 -1 -0.1 -10 -0.1
800S-140W	2122	5456.9	707.2	3192.0	720.4	161.60	566.3	569.1	112.20	330.05	38.40	285.6	48.6	1	81 27.	5 34	6 191360	367.0	11112	8.1	50800	-0.2 -5 2 -0.1 -10 -0.1
800S-180W	5525	8825.2	1347.8	5985.0	1279.3	304.00	1069.2	1003.8	192.58	559.65	72.60	473.3	82.3	1	87 23.	D 37	6 511078	351.0	16560	7.3	49500	-0.2 -5 -1 -0.1 -10 -0.1
800S-220W	5284	8293.4	1260.5	5775.0	1275.1	304.00	1047.4	1020.6	198.90	571.95	74.60	499.8	83.6	1.	47 28.	8 47	8 508723	184.0	21600	2.8	51200	-0.2 -5 1 -0.1 -10 0.2
8005-200W	3188	6593.2	1227.2 058 A	4347.0	080.5	290.00	1051.4 841.5	835.8	187.00	3/8.10	/4.40	497.8	84.U 71.4	1.	29 27.1	8 40 8 50	2 552912	198.0	17780	4.9	34800	-0.2 -5 1 -0.1 -10 0.2
800S-340W	4736	7828.0	1177.3	5313.0	1211.0	310.00	1053.4	1005.9	201.35	592.45	78.80	516.1	85.9	1	20 22	1 40	3 593510	168.0	30240	5.8	47400	-0.2 -5 1 -0.1 -10 0.2
800S-380W	3603	6481.8	1139.8	5166.0	1134.4	284.00	978.1	936.6	187.27	547.35	72.20	483.5	84.4	1	32 23.	0 44	2 520499	291.0	39600	7.1	50300	-0.2 -5 -1 -0.1 -10 0.2
8008-420W	5219	7395.6	1277.1	5859.0	1341.4	332.00	1126.6	1113.0	214.20	629.35	80.60	544.7	89.5	1	97 26.	8 42	4 478106	468.0	24120	16.7	50200	-0.2 -5 1 -0.1 -10 0.3
8005-460W	4651	6947.2	1235.5	5943.0	1428.3	398.00	1233.5	1241.1	248.88	715.45	90.80	612.0	101.6	1	74 21.	2 24	8 499302	467.0	29520	19.1	38500	-0.2 -5 1 -0.1 -10 -0.1
9008-20F	3012	5517.6	813.3	3570.0	774.2	218.00	685.1	625 B	120.97	352.60	44.80	304.0	58.0	'	09 20, 00 A	0 50 2 14	0 09/043	437.0	20920	14.0	55600	-0.2 -5 1 -0.1 -10 0.2
900S-60E	7946	11983.0	1782.6	7812.0	1668.4	404.00	1494.9	1308.3	259.08	762.60	97.60	826.3	108.4	1	37 33.	8 40	7 541696	296.0	21500	5.3	63300	-0.2 -5 -1 -0.1 -10 0.1
900S-100E	4935	7429.1	1374.9	6111.0	1355.9	352.00	1199.9	1115.1	226.44	658.05	86.00	573.2	103.1		89 26.	8 27	9 268493	145.0	26400	2.9	73100	-0.2 -5 1 -0.1 -10 0.2
900S-140E	4913	9556.5	1424,8	6468.0	1411.7	342.00	1199.9	1119.3	214.20	627.30	80.80	559.0	97.9	1	37 24.	1 38	3 383898	302.0	17400	5.8	64200	-0.2 -5 -1 0.1 -10 0.2
900S-180E	5131	7977.0	1449.8	6342.0	1384.8	312.00	1184.0	1083.6	210.12	604.75	78.40	538.6	97.4	1	14 29.	7 44	6 342682	195.0	15900	3.8	58700	-0.2 -5 -1 -0.1 -10 0.2
9003-220E	2410	4720 1	682.2	2982.0	874.8	171 60	617 A	558.6	107 71	307.50	39.20	269.3	60.5		19 19. 24 8	9 30 3 18	1 337971	924.U	15500	34	43100	-0.2 -5 -1 -0.1 -10 0.1
900S-300E	3687	8143.8	1112.8	4851.0	1039.1	256.00	918.7	814.8	155.65	461.25	59.40	395.8	76.7	1	76 12.	7 2	6 427469	291.0	30900	6.2	46900	-0.2 -5 -1 -0.1 -10 -0.1
900S-340E	1407	2160.6	359.8	1593.9	383.0	120.60	354.4	359.1	70.38	211.15	28.20	192.0	50.0		52 4.	1 28	6 412160	146.0	32700	5.5	30200	-0.2 -5 1 0.1 -10 -0.1
900S-380E	3337	4670.2	1048.2	4914.0	1111.6	266.00	952.4	942.9	187,48	549.40	71.60	487.6	91.4	2	53 26.	3 30	2 314640	206.0	20600	6.1	37200	-0.2 -5 -1 -0.1 -10 -0.1
9005-420E	2616	9350 0	1496.0	5250.0	1/00.4	500.00	1399.6	1590.0	314.10 280 AB	803.60	102.60	/ 34.4 870 3	115.1	1	/0 2/. 08 20	ວ 31 ດ 34	3 3/9040	208.0	16600	19.4	38200	-0.2 -5 1 -0.1 -10 -0.1
900S-500E	2493	3889.1	694.7	3087.0	701.7	210.00	611.8	581.7	112.40	315.70	40.60	277.4	62.2	1	91 6.	5 10	4 364320	195.0	60500	16.4	54500	-0.2 -5 1 -0.1 -10 -0.1
BL900S	2940	7379.3	870.0	3733.0	758.0	160.00	626.0	633.0	102.57	319.00	53.00	354.0	58.0	1	27 30.	2 43	2 260640	303.0	18500	6.1	41800	-0.2 -5 1 -0.1 -10 0.2
900S-20W	4347	10670.0	1362.4	6006.0	1347.6	348.00	1174.1	1148.7	224.40	666.75	91.00	628.3	112.1	1	02 28.	8 48	1 209760	245.0	86500	3.9	16800	-0.2 -5 1 -0.1 -10 0.3
900S-00W	4182	7828	1318.7 950 A	3904.0	1335.2 982.6	236.00	841.6	1081.5	147.20	430.50	78.00	393.5	98.1	1	20 15.	9 2' 7 1'	8 837200	512.0	70800	5.3 17 8	36000	-0.2 -5 -1 -0.1 -10 0.1
900S-140W	3420	5700.	1096.2	4956.0	1080.5	274.00	982.1	892.5	169.32	504.30	66.20	432.5	75.6	1	09 23.	2 4	1 292560	193.0	23400	7.3	58000	-0.2 -5 -1 -0.1 -10 -0.1
900S-180W	2960	4304.6	927.7	4095.0	927.4	228.00	799.9	751.8	151.37	444.85	58.20	385.6	65.5		94 22	0 3	0 344080	154.0	17900	2.3	41100	-0.2 -5 -1 -0.1 -10 0.1
900S-220W	3584	6348.8	1114.9	5040.0	1084.7	266.00	938.5	886.2	175.24	518.66	66.40	457.0	79.4	1	09 27.	6 43	4 360640	231.0	18600	5.5	53300	-0.2 -5 1 -0.1 -10 -0.1
9005-260W	327	5600.	1004.6	4494.0	983.3	244.00	861.1	837.9	168.10	483.80	63.60	440.6	77.7	1	04 19.	2 43	4 344080	384.0	21500	15.1	48000	-0.2 -5 1 -0.1 -10 -0.1
9008-340W	486	8310 (1514.2	4809.0	1041.2	372.00	1336.5	1197.0	246 84	460.80	89.60	420.2	103.5	1	DU 33. 97 95	3 4: 7 3:	8 382720	431.0	23900	13.3	71100	-0.2 -5 -1 -0.1 -10 -0.1
9005-380W	354	6614.	1117.0	5208.0	1150.9	290.00	1035.5	959.7	190.94	569.90	72.60	487.6	83.8	1	43 27.	7 4	2 366160	300.0	15300	7.3	49000	-0.2 -5 1 -0.1 -10 -0.1
900S-420W	263	6883.	696.5	4116.0	962.6	252.00	871.2	856.8	169.12	508.35	66.80	448.8	74.6	1	18 15.	6 3-	4 469200	353.0	24700	9.4	43100	-0.2 -5 -1 -0.1 -10 -0.1
900S-460W	288-	6431.	919.4	4095.0	950.1	254.00	839.5	774.9	152.18	444.85	56.00	383.5	66.4	1	04 10.	4 1	331200	215.0	38700	11.4	35400	-0.2 -5 -1 -0.1 -10 -0.1
900S-500W	323-	6614.	1004.6	4452.0	989.5	240.00	867.2	819.0	163.81	485.85	62.20	410.0	71.4	1	13 28.	1 4	38 358000	304.0	21600	8.5	45400	-0.2 -5 -1 -0.1 -10 -0.1
1000S-60F	350	7794	1021.3	4620.0	1016 4	250.00	924 7	814 R	159 53	467.40	61.00	410.0	68.5	1	07 35	0 3 1 3	0 2/9000	244.0	13700	4.9	55700	-0.2 -5 1 -0.1 -10 -0.1
10008-100E	354	6764.	1033.8	4368.0	939.8	224.00	619.7	747.6	150.76	438.65	55.80	373.3	67.0	1	32 38	1 4	5 279680	497.0	18000	13.0	66600	-0.2 -5 -1 -0.1 -10 0.2
1000\$-140E	391-	7612.	1166.9	5124.0	1105.4	270.00	958.3	867.3	171.97	506.35	65.80	430.4	74.6	1	64 25.	4 3	54 296240	327.0	17500	6.9	81700	-0.2 -5 -1 -0.1 -10 -0.1
10008-180E	339	4371.	998.4	4557.0	1012.2	238.00	855.4	814.8	157.90	471.50	61,40	406.0	70.4	1	39 34	2 3	4 202400	139.0	14500	3.4	59700	-0.2 -5 -1 -0.1 -10 0.1
10008-220E 10008-280E	355	6581.	1064.6	4683.0	1014.3	244.00	887.0	823.2	101.57	483.30	60.20	420.2	71.6	1	63 35.	7 3	99 329360 00 301780	485.0	19300	12.0	66500	-0.2 -5 -1 -0.1 -10 -0.1
10008-300E	319	3 6082.	988.0	4431.0	966.7	230.00	855.4	791.7	158,10	465.35	59,20	401.9	69.1	1	22 25	7 3	2 314640	293 D	18000	5.0	51100	-0.2 -5 -1 -0.1 -10 -0.1
10008-340E	85	2207.	218.4	963.9	223.6	70.80	207.9	206.6	40.19	123.82	17.62	110.4	27.5		11 4	9 2	0 242880	110.0	35200	3.5	15100	-0.2 -5 -1 -0.1 -10 -0.1
1000S-420E	288	4 7146.	863.2	3908.0	867.3	224.00	748.4	711.9	136.68	401.80	49.80	338.6	60.1	1	00 29	3 3	37 255760	314.0	16200	6.9	74100	-0.2 -5 1 -0.1 -10 -0.1
10008-460E	198	1 5789.	3 613.6	2898.0	668.6	183.00	576.2	552.3	105.67	311.60	39.00	277.4	48.7	1	03 24	9 2	78 277840	192.0	14900	3.9	56500	-0.2 -5 -1 -0.1 -10 -0.1
Bi 10008	108	o ∡o∡6. 5 5790	290.4	3318.0	724 5	178.60	203.3 831 R	202.0	48.35	364.90	48.90	118.3	20.9		24 4. 18 22	∠ 1. 0 3	71 235527	93.9 1 280 ^	27400	9.3	43100	-0.2 -5 -1 -0.1 -10 -0.1
10008-20W	276	0 6564.	819.5	3633.0	819.7	200.00	691.0	669.4	133.01	383.35	49.00	336.6	61.5	-	22 22	4 4	3 272320	325.0	22900	6.0	58300	-0.2 -5 2 -0.1 -10 -0.1
10008-60W	212	2 5152	834.4	2835.0	827.2	158.60	548.5	504.0	100.37	295.20	37.80	265.2	49.1		89 32	.1 4	2 241040	400.0	28900	16.5	53400	-0.2 -5 2 -0.1 -10 -0.1
10008-100W	304	6814.	948.5	4158.0	910.8	228.00	813.8	707.7	141.58	418.20	54.60	361.1	62.2	1	33 29	2 4	05 283380	358.0	21300	7.8	48900	-0.2 -5 2 -0.1 -10 -0.1
10008-140W	327	9168.	950.6	4326.0	954.3	236.00	819.7	764,4	144.84	420.25	52.60	357.0	63.4	1	20 32	7 3	95 268840	363.0	20100	6.4	46000	-0.2 -5 2 -0.1 -10 -0.1
10008-220W	268	1 10387	5 1146 1	5313.0	1163.3	290.00	978 1	934 5	183 10	+ +38.70 537.10	6R 40	3/0.4 461 0	73.1	1	28 33	.04 74	DU 231840	/ 305.0) 223.0	21000	6.2 5.4	45200	-0.2 -5 1 -0.1 -10 -0.1
10008-260W	333	7 9390.	3 1023.4	4494.0	999.8	248.00	857.3	804.3	157.49	471.50	60.80	401.9	65.7	4	10 34	5 4	05 322000	299.0	22800	6.5	57100	-0.2 -5 2 -0.1 -10 -0.1 -0.2 -5 2 -0.1 -10 -0.1
1000S-300W	249	3 10055.	1 819.5	3854.0	859,1	220.00	748.5	705.6	141.17	428.40	54.40	361.1	61.7	-	08 26	9 3	37 355120	230.0	23900	31	55700	-02 -5 2 -01 -10 -01

 \square

Colin E. Dunn 10thMaroh 2002

Í

Table 1: Analytical data, as received from Actlabs 14th February 2002

Gold Mask Vertures Terrasol dataset - revised data used for plotting

Table 1 - Anarcadal data xis 23539crp

PGE Package:	Rara Farth Flomante	i ithanhila Elemente	005-
Sample ID:	La Ce Pr Nd Sm Eu Gd Dy Ho Er Tm Yb Lu	S.Q. Li Be S.Q. Sc Mn Rb Sr Cs Be	RuRhPol Os ir Pt
1000S-340W	3564 13240.6 1129.4 5019.0 1107.5 272.00 1009.8 915.6 181.97 543.25 69.40 454.9 74.8	150 33.3 426 515200 342.0 15200 7.2 66600	-0.2 -5 2 -0.1 -10 -0.1
1000S-420W	3729 11717.1 1229.3 5565.0 1227.5 314.00 1108.8 1052.1 210.12 529.35 80.80 524.3 85.1	110 34.5 327 447120 154.0 15500 2.4 49100 151 31.2 344 333040 373.0 15300 9.5 50900	-0.2 -5 1 -0.1 -10 -0.1 -0.2 -5 2 -0.1 -10 -0.1
1000S-460W	2431 9002.5 821.6 3759.0 871.5 228.00 782.1 724.5 146.88 428.45 54.80 369.2 63.0	66 20.8 260 469200 201.0 14500 4.4 37500	-0.2 -5 -1 -0.1 -10 -0.1
1000S-500VV 1100S-20E	2513 7257.4 836.2 3738.0 852.8 205.00 716.8 686.7 136.68 391.55 51.00 344.8 58.6 3111 13298.0 985.1 4137.0 910.8 220.00 811.8 724.5 144.43 428.40 52.20 350.0 80.5	120 31.5 184 299920 197.0 25100 7.0 34600 91 19 9 507 783840 229 0 15000 5.0 50100	-0.2 -5 1 -0.1 -10 -0.1
1100S-80E	2663 9750.4 927.7 4116.0 917.0 212.00 792.0 718.2 142.19 428.45 54.20 373.3 64.1	103 21.8 338 355120 239.0 15700 3.6 45400	-0.2 -5 2 -0.1 -10 -0.1
1100S-100E	2513 9362.6 792.5 3402.0 741.1 182.00 665.3 611.1 120.77 348.50 44.20 289.7 49.8	98 22.1 293 312800 363.0 13100 6.6 48900	-0.2 -5 -1 -0.1 -10 -0.1
1100S-140E	2/81 10442.9 840.3 3633.0 /90.7 186.00 691.0 627.9 124.85 3/1.05 46.40 320.3 54.2 3090 9057.9 906.9 4053.0 888.0 214.00 782.1 724.5 143.41 416.20 52.40 381.1 61.3	99 24.4 474 456320 401.0 17300 8.5 59200 129 35.1 390 218960 354.0 13600 5.3 58100	-0.2 -5 3 -0.1 -10 0.1
1100S-220E	2390 6426.4 792.5 3570.0 788.7 195.20 697.0 665.7 128.32 385.40 49.60 336.6 57.8	118 29.6 357 180688 268.0 12400 9.0 42200	-0.2 -5 1 -0.1 -10 -0.1
1100S-260E 1100S-300F	2081 8575.7 673.9 2898.0 631.4 154.20 558.4 514.5 99.76 289.05 39.20 277.4 47.9 2005 7894.5 911.0 4011.0 873.5 214.00 778.2 703.5 137.70 407.95 50.60 339.8 60.1	99 25.2 387 506000 190.0 21300 2.6 62500 117 25 2 268 268880 423.0 14300 0.0 48600	-0.2 -5 2 -0.1 -10 -0.1
1100S-340E	2595 8060.7 840.3 4011.0 912.9 228.00 796.0 76.2 147.29 436.65 57.00 373.3 62.2	211 20.8 263 323840 136.0 14000 2.1 43600	-0.2 -5 2 -0.1 -10 -0.1 -0.2 -5 -1 -0.1 -10 -0.1
1100S-380E	2987 6869.6 950.6 4326.0 937.7 228.00 821.7 772.8 147.90 457.15 59.00 391.7 63.4	63 23.6 305 270480 233.0 19400 4.4 65000	-0.2 -5 2 0.1 -10 -0.1
1100S-500E	2061 0614.2 060.4 3150.0 720.4 162.20 621.7 596.5 120.36 356.70 47.40 320.3 55.0 2245 7506.7 767.5 3612.0 805.2 204.00 693.0 651.0 127.50 377.20 49.40 328.4 56.5	108 25.3 256 230000 109.0 16600 1.1 40700 81 21 2 270 369840 192.0 13100 2.7 48200	-0.2 -5 1 -0.1 -10 -0.1
BL11005	1920 5179.9 665.6 2940.0 654.1 167.60 582.1 546.0 111.79 338.25 45.60 297.8 51.2	108 27.4 409 213440 298.0 15400 5.5 43900	-0.2 -5 1 -0.1 -10 -0.1
1100S-20W 1100S-60W	3770 10498.3 1092.0 4935.0 1059.8 250.00 887.0 837.9 159.73 463.30 59.60 403.9 66.2 2988 5873.4 931.4 4170.0 917.0 238.00 780.3 730.9 140.76 418.20 54.00 383.1 81.5	131 33.6 394 274160 522.0 16000 8.6 54100	-0.2 -5 2 -0.1 -10 0.1
1100S-100W	3584 10027.4 1127.4 4914.0 1097.1 272.00 958.3 865.2 168.71 506.35 63.40 420.2 70.1	124 33.3 376 277840 225.0 17100 3.3 51100	-0.2 -5 2 -0.1 -10 -0.1
1100S-140W	3193 7202.0 1004.6 4578.0 1030.9 254.00 877.1 854.7 169.73 514.55 64.40 440.6 72.0	172 36.0 387 237360 360.0 17400 6.7 49000	-0.2 -5 2 -0.1 -10 -0.1
1100S-180W	3111 /25/.4 919.4 4284.0 997.7 250.00 853.3 852.6 157.48 481.75 62.20 432.5 69.3 1887 6454.1 576.2 2583.0 552.7 137.40 475.2 453.6 88.54 254.20 32.60 220.3 40.5	157 39.6 467 215280 318.0 17000 7.0 55400 87 17.8 315 574080 312.0 17700 8.0 81700	-0.2 -5 2 -0.1 -10 -0.1
11008-260W	2863 10803.0 931.8 4179.0 972.9 246.00 831.6 816.9 158.51 465.35 59.00 395.8 67.2	187 32.7 338 364320 243.0 16200 5.9 45200	-0.2 -5 2 -0.1 -10 -0.1
1100S-300W	3420 9528.8 1137.8 5334.0 1198.5 294.00 1041.5 1020.6 198.08 588.35 77.00 516.1 81.1	128 24.0 350 309120 225.0 15000 5.3 52100	-0.2 -5 1 -0.1 -10 -0.1
1100S-380W	2204 7645.2 730.1 3318.0 761.8 193.00 677.2 640.5 125.87 373.10 47.80 314.2 54.0	78 18.8 262 458160 241.0 12500 4.9 45400	-0.2 -5 2 -0.1 -10 -0.1
11008-420W	2781 9445.7 923.5 4116.0 921.2 242.00 883.3 798.0 160.14 479.70 61.00 393.7 66.6	103 26.7 331 323840 312.0 12100 7.7 38900	-0.2 -5 -1 -0.1 -10 -0.1
1100S-460W 1100S-500W	1825 5623.1 619.8 2877.0 666.5 162.20 556.4 562.8 109.34 321.85 43.00 291.7 49.8 1310 3711.8 459.7 2016.0 457.5 112.40 409.9 390.6 77.52 233.70 30.00 107.9 38.9	89 18.0 211 270480 232.0 14300 3.4 34400 82 25 8 248 195040 114.0 10400 2.7 24000	-0.2 -5 -1 -0.1 -10 -0.1
12008-20E	1947 5761.6 630.2 2814.0 629.3 153.40 542.5 518.7 100.78 305.45 40.60 283.2 49.4	73 28.9 335 353280 215.0 21300 3.7 44000	-0.2 -5 -1 -0.1 -10 -0.1
1200S-80E	2616 6177.1 865.3 3948.0 871.5 212.00 742.5 724.5 145.45 428.45 55.00 389.6 64.9	88 28.0 351 239200 275.0 13900 5.3 36300	-0.2 -5 1 -0.1 -10 -0.1
12008-140E	2657 7006.1 852.8 3927.0 904.6 216.00 786.3 753.9 150.76 451.00 57.80 401.9 67.8 2616 7008.1 842.4 3885.0 871.5 210.00 738.6 709.8 140.76 428.45 54.20 365.2 58.8	116 24.8 294 255760 219.0 16800 2.9 39300 86 20 7 250 298080 222 0 10700 3 2 34700	-0.2 -5 1 -0.1 -10 -0.1
1200S-180E	2987 9695.0 936.0 4242.0 962.6 232.00 809.8 795.9 157.90 465.35 60.40 418.2 69.7	153 29.1 440 410320 438.0 19400 9.8 59300	0.2 5 2 -0.1 -10 0.1
1200S-220E 1200S-280E	3337 11994.1 1006.7 4389.0 954.3 240.00 887.2 760.2 151.37 453.05 56.40 367.2 62.8 2740 8836.3 798.6 3402.0 738.0 176.00 855.4 598.5 119.34 348.45 44.60 202.8 52.5	140 24.4 381 437920 403.0 15000 8.7 54300	-0.2 -5 1 -0.1 -10 -0.1
1200S-300E	2760 8226.9 886.1 3822.0 815.6 197.40 728.6 683.6 133.21 395.65 49.40 322.3 56.9	100 33.9 430 355120 251.0 12500 3.5 59400	-0.2 -5 2 -0.1 -10 0.1
12008-340E	3440 11163.1 1067.0 4704.0 999.8 236.00 889.0 785.4 153.00 457.15 55.60 377.4 63.4	107 25.1 433 452640 279.0 9980 4.9 60600	-0.2 -5 1 -0.1 -10 -0.1
12005-380E	3543 5355.4 1021.3 4431.0 940.0 220.00 785.1 718.2 138.52 403.85 49.00 350.9 59.2 1403 5096.8 403.5 1806.0 403.7 115.00 401.9 375.9 78.13 231.65 30.60 201.1 39.9	96 25.8 558 463920 285.0 12100 5.8 83800 53 9.2 212 355120 135.0 20400 5.1 49800	-0.2 -5 2 -0.1 -10 -0.1
BL1200S	2307 8925.0 780.0 3507.0 782.5 187.00 653.4 655.2 106.68 383.35 50.80 350.9 59.9	118 28.2 463 268000 291.0 15100 5.5 40300	-0.2 -5 1 -0.1 -10 0.1
1200S-20W 1200S-60W	3749 5930.5 1129.4 5040.0 1107.5 262.00 908.8 867.3 164.22 467.40 62.00 406.0 68.5 3378 6315.6 983.8 4494.0 1012.2 260.00 869.2 846.3 163.20 475.60 61.40 307.8 69.7	141 38.0 353 375380 288.0 18200 4.7 48900 134 39.3 448 349800 234.0 18100 4.9 75200	-0.2 -5 2 -0.1 -10 -0.1
1200S-100W	3502 6884.1 1127.4 5040.0 1130.2 272.00 964.3 905.1 180.13 520.70 67.80 442.7 74.3	139 36.6 411 487600 177.0 16500 2.6 55100	-0.2 -5 2 -0.1 -10 -0.1
1200S-140W	3790 7479.0 1150.2 5103.0 1196.5 308.00 1069.2 1035.3 206.04 600.65 75.20 518.2 86.1	142 39.9 416 539120 264.0 16400 4.7 56900	-0.2 -5 2 -0.1 -10 0.1
1200S-220W	3275 6365.5 1029.6 4557.0 1043.3 262.00 910.8 844.2 169.93 492.00 60.80 420.2 72.5	123 35.7 438 406640 323.0 17300 6.6 57500	-0.2 -5 3 -0.1 -10 -0.1
1200S-260W	3461 7179.6 1092.0 4914.0 1086.8 268.00 922.7 915.6 180.13 524.80 65.00 428.4 73.1	134 35.1 444 445280 412.0 12700 14.3 47400	-0.2 -5 2 -0.1 -10 -0.1
1200S-300W	3008 6880.7 981.8 4326.0 931.5 234.00 841.5 785.4 155.24 469.45 58.80 385.6 63.0 4285 8825.2 1343.7 6195.0 1411.7 354.00 1237.5 1211.7 244.80 899.05 88.80 583.4 91.8	117 27.1 411 500480 240.0 15100 6.7 48300 188 42 7 410 483920 380.0 12800 10.4 58000	-0.2 -5 2 -0.1 -10 -0.1
12008-380W	3914 7395.9 1216.8 5628.0 1318.6 324.00 1124.6 1117.2 222.36 637.55 77.80 530.4 86.9	140 43.0 441 500480 233.0 14000 4.6 56300	-0.2 -5 2 -0.1 -10 -0.1
1200S-420W	3378 6016.4 1019.2 4641.0 1090.9 264.00 898.9 915.6 174.01 508.40 64.80 434.5 71.6	160 41.4 481 344080 295.0 14900 7.2 61100	-0.2 -5 2 -0.1 -10 -0.1
12008-500W	2987 4553.9 936.0 4221.0 948.1 228.00 796.0 793.8 159.32 4/5.80 60.00 3/7.4 62.4	63 15.2 265 642160 214.0 10700 5.5 44000 209 8.3 101 162268 281.0 63900 6.1 35800	-0.2 -5 -1 -0.1 -10 -0.1
1300S-20E	2598 4838.4 904.8 3990.0 875.6 222.00 774.2 730.8 150.78 446.90 58.00 363.1 63.2	110 23.7 325 423200 237.0 16700 6.1 33900	-0.2 -5 1 -0.1 -10 -0.1
13005-60E 13008-100E	3090 6731.1 969.3 4410.0 1008.1 252.00 835.6 823.2 159.94 469.45 61.00 428.4 68.5 3111 6631.4 948.5 4116.0 929.4 224.00 772.2 739.2 142.39 418.20 52.60 355.0 60.3	122 27.2 357 552000 276.0 19700 5.9 56700	-0.2 -5 2 -0.1 -10 -0.1
1300S-140E	3420 6431.9 1106.6 5019.0 1101.2 276.00 990.0 942.9 188.90 557.60 71.60 457.0 77.3	103 25.3 376 439760 178.0 13800 3.5 47100	-0.2 -5 1 -0.1 -10 -0.1
1300S-180E	3049 5299.0 958.9 4368.0 975.0 242.00 857.3 814.8 157.90 465.35 59.00 399.8 65.7 2784 5040.2 050.6 4347.0 0587 000 877.6 700.6 457.00 467.10 000 101.0 000	136 24.6 335 379040 189.0 12700 1.6 46100	-0.2 -5 -1 -0.1 -10 -0.1
13008-280E	3255 6481.8 1040.0 4683.0 1010.2 244.00 918.7 867.3 184.02 487.90 65.20 420.2 69.3	109 24.9 372 439760 238.0 14600 5.0 54100 120 30.2 288 448960 307.0 13900 7.2 58100	-0.2 -5 1 -0.1 -10 -0.1
13008-300E	3317 6448.6 1056.6 4683.0 1024.7 252.00 918.7 650.5 161.77 498.15 66.00 432.5 71.6	132 28.0 307 401120 433.0 11600 12.0 69300	-0.2 -5 2 -0.1 -10 0.1
13008-340E 13008-380E	2307 4936.1 721.8 3402.0 774.2 191.00 665.3 674.1 128.93 393.60 50.00 320.3 58.6 2853 5085 7 902 7 4053 0 914 9 224.00 773 2 743 4 148 51 438 40 54.00 353 9 61 3	601 26.0 240 294400 181.0 13300 4.6 43900	-0.2 -5 -1 -0.1 -10 -0.1
13008-420E	3749 7495.6 1216.8 5523.0 1223.4 296.00 1045.4 1003.6 199.51 578.10 72.80 508.0 80.2	116 31.8 437 557520 169.0 15200 2.3 41500	-0.2 -5 1 -0.1 -10 -0.1
1300S-460E	2948 4869.7 921.4 4158.0 917.0 218.00 778.1 764.4 148.27 434.60 58.40 379.4 61.1	120 25.5 310 336720 203.0 9010 3.9 62200	-0.2 -5 1 -0.1 -10 -0.1
13008-20W	2380 9910.0 / 80./ 3012.0 332.1 209.00 /14.8 580./ 10/.90 40/.95 52.80 361.1 62.2 3255 6049.7 1008.8 4725.0 1070.2 266.00 912.8 926.1 184.42 533.00 67.80 459.0 74.8	120 29/3 460 258000 255.0 17280 4.1 38000 140 30.6 363 323840 189.0 17280 2.8 52800	-0.2 -5 1 -0.1 -10 0.1
13008-60W	3481 7412.5 1123.2 5040.0 1088.1 282.00 908.8 881.0 185.44 494.05 64.60 418.2 85.1	109 38.6 395 494960 237.0 17280 3.7 67200	-0.2 -5 2 -0.1 -10 -0.1
1300S-100W 1300S-140W	3502 5960.4 1145.2 5166.0 1151.3 294.00 1025.6 976.5 196.66 567.85 72.20 481.4 79.2 3214 6382 1 1058 7 4956.0 1128 2 278.00 958 3 947 1 188.98 537 10 7040 485 4 70 4	122 33.3 392 430560 342.0 15120 8.4 43500	-0.2 -6 2 -0.1 -10 -0.1
13008-180W	3317 6431.9 1056.6 4809.0 1084.7 262.00 938.5 894.6 176.26 526.85 69.80 465.1 75.0	122 45.4 449 436080 219.0 17040 4.2 66800	-0.2 -5 -1 -0.1 -10 -0.1 -0.2 -5 3 -0.1 -10 0.2
1300S-220W	3296 7163.2 1052.5 4851.0 1076.4 272.00 950.4 919.8 181.36 535.05 69.60 463.1 73.7	129 36.6 368 406640 306.0 15120 6.4 58200	-0.2 -5 2 -0.1 -10 -0.1
13008-200W	3087 0418.3 1178.4 5229.0 1167.5 290.00 1015.7 966.0 196.04 561.70 71.60 499.8 81.3 3131 6016.4 995.9 4599.0 1097.1 270.00 914.8 915.6 183.60 526.85 64.60 457.0 74.8	135 40.2 413 371680 357.0 15360 11.2 57900 133 33 3 304 483820 306 0 12840 8.5 53700	-0.2 -5 2 -0.1 -10 0.1
13008-340W	3008 6382.1 1002.6 4883.0 1051.6 256.00 906.8 894.6 179.52 539.15 70.80 454.9 75.2	130 37.2 357 443440 303.0 15720 7.4 58500	-0.2 -5 2 -0.1 -10 -0.1
1300S-380W 1300S-420M	3059 9141.0 1037.9 4914.0 1136.4 264.00 968.0 1008.0 196.04 553.50 75.80 508.0 81.7	134 34.5 379 371680 232.0 14160 6.6 40700	-0.2 -5 1 -0.1 -10 -0.1
	2010 1100.1 010.0 000.0 000.0 212.00 100.0 108.2 144.04 420.40 08.00 380.6 03.6	103 10.4 202 399280 291.0 28400 5.8 27000	-0.2 -5 -1 -0.1 -10 -0.1

Colin E. Dunn 10hMarch 2002

i

Table 1: Analytical data, as received from Actiabs 14th February 2002

Gold Mask Ventures Terrasol dataset - revised data used for plotting

ι,

> Table 1 - Anaiyucal data.xls 23539crp

PGE Package:	Rare Farth Floments	Lithophilo Elomente:	805-
Sample ID	La Ca Pr Nd Sm Eu Gd Dy Ho Er Tm Yh Lu	SOUL BASO So Ma Ph Sr Ca Pa	By Bb Dd Oa is Db
13005-460W	1564 4996 0 536 6 2415 0 548 6 133 20 431 6 432 6 83 84 250 10 32 60 228 5 30 3	0.4.173 135 228320 273 0 30720 9 4 8220	
1300S-500W	1749 4598 2 590 7 2888 0 592 151 60 512 8 581 10180 30135 3040 255 0 48 e	00 18 5 045 153824 143 0 14400 4.8 01500	-0.2 -5 -1 -0.1 -10 -0.1
1400S-20F	2493 83158 792 5 3833 0 797 1 105 00 708 0 881 5 133 62 397 70 51 20 34 8 50 8	80 28 4 271 195040 207.0 15340 4.8 40400	-0.2 -5 -1 -0.1 -10 -0.1
14008-80E			-0.2 -3 -1 -0.1 -10 -0.1
1400S-100E	1959 3088 8 840 1 2082 0 874 8 181 80 558 4 582 8 113 83 348 50 48 00 301 1 54 6	134 23 0 377 147569 103 0 15060 3.8 40500	-0.2 -5 -1 -0.1 -10 -0.1
1400S-140E	3111 8703 4 075 5 4515 0 543 228 00 704 70 701 7 151 16 46 20 50 80 10 1 54 0	124 23.8 317 147000 183.0 10800 3.0 46000	-0.2 -5 2 -0.1 -10 -0.1
14005-180E		35 31.0 302 210900 130.0 14100 3.3 4/300	-0.2 -5 1 -0.1 -10 -0.1
1400S-220E	1887 4875 5 565 7 365 8 548 8 134 90 465 2 464 4 000 00 48 2 40 2 40 2 40 1 40 554 9 59 5 10	211 30.0 496 426/20 251.0 23660 4.6 /6100	-0.2 -5 2 -0.1 -10 -0.1
1400S-280E	1007 401012 300.7 200.0 340.0 104.0 400.0 400.3 404.1 52.00 200.00 34.00 200.0 43.9 2104 240.00 200.00 43.9		-0.2 -5 -1 -0.1 -10 -0.1
1400S-300E			-0.2 -5 -1 -0.1 -10 -0.1
1400S-340E	2451 87885 8488 2001 21801 3110 1000 4001 4001 5070 20100 3100 2440 422	114 17.0 276 230332 190.0 13200 3.7 39700	-0.2 -5 -1 -0.1 -10 -0.1
1400S-380E	2401 0100.0 040.0 0013.2 040.7 185.40 700.3 025.3 105.32 310.03 05.00 437.0 71.0	141 21.7 351 100020 201.0 12300 5.2 37700	-0.2 -5 2 -0.1 -10 -0.1
14005-4205	2712 0040.0 002.0 1213.0 013.0 210.00 144.1 100.2 100.04 403.30 01.00 403.9 00.1		-0.2 -5 -1 -0.1 -10 -0.1
14005-4605	1934 4045 8 06 2 3740 5 50 40 0 0 40 0 0 0 0 55 500 0 57 00 58 0 244 50 2	110 21.5 312 210666 165.0 14040 2.7 54000	-0.2 -5 1 -0.1 -10 -0.1
R. 1400S	2028 2024 584 2 2707 580 205 124 0 451 452 225 28 0 201 1 43 2	97 Z2.1 314 219556 161.0 10776 2.7 40200	-0.2 -5 1 -0.1 -10 -0.1
14005-2010/	2010 87074 9145 39115 7514 198 90 850 8400 497, 94,00 275,15 37,00 207,2 44,9		-0.2 -5 1 -0.1 -10 -0.1
14005-80W			-0.2 -6 1 -0.1 -10 -0.1
1400S-100W	3606 74078 0007 4567 008 200 980 784 1 720 4 65 54 40 45 50 00 101 0 38 00 2012 44.3	113 21.4 203 249/29 192.0 13320 7.7 41/00	-0.2 -5 -1 -0.1 -10 -0.1
1400S-140W	2841 4443 730 3418 712 178 60 521 178 61 501 176 100 51 405 40 552 4013 570		-0.2 -5 1 -0.1 -10 -0.1
14005-1900/	2758 5061 7508 35805 7721 10100 8318 8741 38 27 390 50 52 20 3031 30.0	140 29.1 225 255298 109.0 15120 4.6 40500	-0.2 -5 1 -0.1 -10 -0.1
14005-2200/			-0.2 -5 1 -0.1 -10 -0.1
14005-280W		78 10 2 204 390622 103.0 13120 2.3 39300	-0.2 -5 1 -0.1 -10 -0.1
1400S-300W	2464 51799 727 6 33495 710 184 00 8318 6857 134 33 42 05 528 381 1 57 8	130 25 2 285 230602 214 0 15000 5 1 28700	-0.2 -5 -1 -0.1 -10 -0.1
1400S-340W	2865 61217 610 0 3719 1 787 7 155 40 681 1 716 1 141 17 420 25 260 361 1 60 1	100 23.2 200 20002 214.0 10000 3.1 38700	-0.2 -5 1 -0.1 -10 -0.1
1400S-380W	2225 4825 9 683 5 3118 5 688 6 171 60 584 1 590 1 115 87 388 45 45 20 304 0 50 4		-0.2 -5 -1 -0.1 -10 -0.1
1400S-420W	1237 2617.7 372.9 1815.7 405.7 108.00 328.7 392.7 76.91 227.55 33.60 224.4 41.0	186 24.4 141 50107 153.0 18580 2.0 13300	-0.2 -0 -1 -0.1 -10 -0.1
1400S-460W	1711 2883 9 548 1 2587 2 573 4 144 00 473 2 497 7 100 16 309 55 43 20 301 9 49 8	245 22 8 127 3558 385.0 17280 0.2 13200	-0.2 -3 -1 -0.1 -10 -0.1
1400S-500W	1500 1891.9 466.8 2196.8 494.7 129.60 425.7 462.0 95.47 297.25 41.00 306.0 52.9	215 17 0 160 40200 278 0 22680 6 4 15400	-0.2 -5 1 -0.1 -10 -0.1
1500S-20E	3080 5283.0 828.3 3927.0 770.0 192.40 675.2 663.6 130.15 391.55 52.20 338.6 54.2	107 28 3 318 235451 180.0 12840 3.0 52500	-0.2 -0 -1 -0.1 -10 -0.1
1500S-60E	2450 5096.8 5887 3234.0 687.2 170.00 574.2 592.2 117.30 350.55 46.40 301.9 51.5	111 20.4 281 238798 251.0 10418 4.4 33800	-0.2 -5 1 -0.1 -10 -0.1
1500S-100E	3321 7423.6 906.0 4065.6 811.4 168.80 653.4 880.4 128.93 375.15 50.20 334.6 55.4	127 36.3 434 288252 253.0 12720 5.0 41500	-0.2 -5 1 -0.1 -10 -0.1
1500S-140E	2758 5844.7 743.6 3465.0 703.8 162.40 558.4 569.1 110.57 319.80 42.80 269.7 51.0	134 23.4 365 363682 290.0 11608 7.1 46700	-0.2 -0 1 -0.1 -10 -0.1
1500S-180E	2785 5207.8 755.0 3441.9 687.2 163.40 590.0 594.3 117.91 352.60 46.80 297.8 51.0	176 26.8 422 255655 425.0 10956 10.9 47300	-0.2 -5 -1 -0.1 -10 -0.1
1500S-220E	3240 5595.4 687.7 3927.0 763.8 182.60 663.3 646.8 129.34 379.25 48.80 318.2 54.2	120 31 2 378 192348 190 0 11388 3.8 43700	-0.2 -5 1 -0.1 -10 -0.1
1500S-260E	3937 6398.7 1029.6 4781.7 989.5 244.00 833.6 867.3 167.89 494.05 65.60 446.8 73.1	138 22 7 405 290948 249 0 12240 5 2 47400	-0.2 -5 1 -0.1 -10 -0.1
1500S-300E	1666 3517.9 478.2 2270.7 465.8 115.20 386.1 407.4 82.01 239.85 31.80 220.3 37.2	82 18.3 294 190731 199.0 9864 4.3 32000	-0.2 -5 -1 -0.1 -10 -0.1
1500S-340E	2496 4819.8 688.7 3187.6 627.2 147.80 516.8 539.7 100.16 305.45 41.60 281.5 44.9	106 16 9 283 282864 148 0 12360 2.2 53800	-0.2 -5 -1 -0.1 -10 -0.1
1500S-380E	2705 5706.2 775.6 3534.3 716.2 170.60 605.9 592.2 116.08 336.20 44.20 301.9 51.0	100 25.9 389 199891 63.9 11172 1.0 34600	-0.2 -5 -1 -0.1 -10 -0.1
1500S-420E	2919 6814.2 814.5 3649.8 714.2 165.40 598.0 579.6 112.40 332.10 44.80 297.8 48.1	122 30.6 351 352907 268.0 13920 6.0 40800	-0.2 -5 -1 -0.1 -10 -0.1
1500S-460E	2675 5013.7 750.5 3441.9 660.3 157.00 570.2 564.9 107.51 338.25 45.20 295.8 50.8	101 28.7 301 285558 141.0 12480 2.5 39900	-0.2 -5 1 -0.1 -10 -0.1
BL15008	2041 4044.2 604.0 2772.0 550.6 138.80 491.0 495.6 98.53 307.50 40.40 265.2 45.8	122 21.9 370 241647 216.0 14040 3.6 43100	-0.2 -5 1 -0.1 -10 -0.1
1500S-20W	2584 5456.9 741.3 3372.6 685.2 170.60 582.1 564.9 114.04 342.35 46.40 304.0 50.2	110 24.3 272 268586 187.0 12720 4.6 34000	-0.2 -5 -1 -0.1 -10 -0.1
1500S-60W	3053 7091.2 826.0 3742.2 757.6 184.80 617.8 611.1 118.73 348.50 45.40 293.8 49.6	142 26.8 384 409479 295.0 13080 10.6 60600	-0.2 -5 -1 -0.1 -10 -0.1
1500S-100W	1907 3684.1 448.2 1972.7 405.7 109.40 390.1 424.2 85.68 254.20 32.40 204.0 35.9	99 24.5 536 35829 260.0 9096 4.4 50100	-0.2 -5 1 -0.1 -10 -0.1
1500S-140W	959 1994.4 192.9 799.3 136.2 32.60 117.2 110.0 21.83 62.12 8.02 50.6 12.2	56 15.4 322 25161 280.0 10248 10.4 43600	-0.2 -5 -1 -0.1 -10 -0.1
1500S-180W	1802 4044:2 542.3 2564.1 546.5 140.20 457.4 499.8 97.72 293.15 37.40 263.2 43.7	90 17.2 353 374458 178.0 15840 4.0 39500	-0.2 -5 -1 -0.1 -10 -0.1
1500S-220W	1232 3711.8 340.9 1478.4 302.2 73.00 257.4 270.9 50.59 149.04 19.30 126.3 22.3	97 16.9 230 244071 202.0 8892 4.6 32100	-0.2 -5 -1 -0.1 -10 -0.1
1500S-260W	2999 6315.6 876.3 4065.6 875.6 218.00 742.5 793.8 154.02 453.05 60.20 426.4 65.9	132 30.6 432 408786 132.0 15480 5.4 43200	-0.2 -5 1 -0.1 -10 -0.1
15008-300W	2161 4930.8 654.4 3095.4 654.1 161.00 544.5 594.3 118.52 348.50 44.40 299.9 51.2	143 16.4 288 379846 248.0 15120 6.9 38500	-0.2 -5 -1 -0.1 -10 -0.1
1500S-340W	2288 5096.8 677.2 3095.4 658.3 160.20 534.6 579.6 114.04 332.10 43.60 297.8 50.4	112 25.0 353 350213 124.0 11628 1.6 33000	-0.2 -5 -1 -0.1 -10 -0.1
1500S-380W	2022 3517.9 617.8 2887.5 604.4 162.40 538.6 577.5 115.46 356.70 48.40 332.5 57.1	160 28.9 239 161367 155.0 19200 2.9 24600	-0.2 -5 -1 -0.1 -10 -0.1
3008-100E	951 2152.3 233.4 1081.1 254.8 78.20 231.7 277.2 54.88 170.58 24.60 156.1 30.0	851 6.4 507 347519 561.0 33600 20.4 23300	-0.2 -5 -1 -0.1 -10 -0.1
500S-140E	1717 3905.7 450.7 2051.3 432.6 127.00 376.2 394.6 77.52 227.55 30.60 199.7 34.2	1232 9.0 332 347519 342.0 26520 9.2 32300	-0.2 -5 -1 -0.1 -10 -0.1
12008-500E	1385 2728.5 363.8 1591.6 339.5 94.40 299.0 296.1 58.75 179.38 22.00 145.9 27.3	110 10.0 193 162175 123.0 42240 6.4 42700	-0.2 -5 -1 -0.1 -10 -0.1

Colin E. Dunn 10th March 2002

1

Table 2 - Analytical Precision xls QC

PGE Package:	Oxid	ation	Suite.											Base	e Metal	s:			Ra	eo A	lotal _	Chale	nnh <i>ili</i>
Sample ID:	S.Q. CI	۷	As	Se	Мо	Sb	Те	w	Re	Au	S.Q. Hg	Th	U	Co	Ni	Cu	Zn	Pb	Ga	Ge	<u>Δα</u>	Cd	In In
BL100S	-25000	809	127	56	49	11	-10	12	0.06	0.2	2.7	195	77	1260	2530	2050	2120	76	54	~~	-75	36	0.6
BL200S	-25000	737	123	81	55	9	-10	15	0.08	-0.1	2.2	254	85	1310	2990	2205	2340	73	сл СЛ	- - -	-20	30	0.0
BL300S	-25000	622	119	71	58	9	-10	15	0.10	-0.1	2.1	241	79	1210	2860	1649	1800	61	04 EC	0	-20	47	0.7
BL400S	-25000	805	113	53	64	11	-10	19	-0.05	-0.1	1.7	244	85	1460	3000	2000	1050	67	50	9	-25	35	0.5
BL500S	-25000	800	122	80	55	11	-10	19	0.06	-0.1	21	215	78	1600	2660	1000	1000	0/ 0F	5/	12	-25	35	0.6
BL600S	-25000	757	115	74	64	8	-10	17	0.08	-0.1		193	Q1	1650	2000	1600	2050	85	66	9	-25	43	0.7
BL700S	-25000	745	128	77	52	9	-10	16	-0.05	-0.1	19	254	91 86	1040	2000	1620	2050	80	60	11	-25	47	0.6
BL8005	-25000	872	125	83	55	10	-10	19	-0.05	-0.1	28	245	00	1240	2040	1960	1890	75	54	7	-25	41	0.5
BL900S	-25000	896	141	84	61	9	-10	16	0.21	-0.1	2.0	27J	00	1340	2030	2180	2030	63	62	8	-25	35	0.5
BL1000S	-25000	625	128	77	44	10	-10	16	0.06	-0.1	2.5	221	90	1944	2/10	1800	1790	73	66	15	-25	35	0.5
BL1100S	-25000	624	105	79	45	8	-10	16	0.00	-0.1	1.9	201	50	1134	2680	1610	1940	80	65	12	-25	30	0.5
BL1200S	-25000	883	121	8.4	56	10	10	17	0.00	-0.1	2.3	230	/4 70	1146	2480	1650	1820	75	61	9	-25	41	0.7
BL1300S	-25000	707	170	75	50	10	-10	17	0.07	-0.1	2.1	269	79 1-	1654	2800	1670	1980	79	67	12	-25	47	0.7
BI 1400S	-25000	596	125	70	57		-10	16	-0.05	-0.1	2.4	251	88	1610	2920	1740	1850	86	66	13	-25	45	0.7
BL 1500S	-23000	000	120	/ 4	55	<i>'</i>	-10	14	0.08	-Q.1	2.7	210	69	1121	2860	1800	2010	66	60	7	-25	38	0.5
BE13003	-25000	622	124	69	50	8	-10	17	0.06	-0.1	2.3	227	80	1225	2830	1950	1900	74	53	7	-25	35	0.5
Mean		745	123	74	55	9		16	0.05		,	232	82	1360	1769	4050	4044	74	_ -				
Std. Dev.		106	8	9	6	1		2.1	0.07		0.3	22	6	190	177	206	1944	(4 7	61	10		39	1
													_			200	100	•	Ş	- X		6	U.1

Terrasol Study

Table 2: Analytical Precision Repeat analyses of control sample from the survey area, interspersed among the sequence of soil samples

Colin E. Dunn 10th March 2002

1

!

Table 2 - Analytical Precision xls

Gold Mask Ventures Terrasol Study

QC

PGE Package:		Hig	High-Field Strength Elements:								Rare Earth Elements:								
Sample ID:	Sn	TI	Bi	S.Q. TI	S.Q. Cr	Y	Zr	Nb	Hf	Ta	La	Ce	Pr	Nd	Sm	Eu	Gd	 Dv	Ho
BL100S	19	6.6	-0.5	4590	197	2980	2830	24	70	1.4	1860	4020	596	2740	619	156	526	600	103
BL200S	-10	4.3	-0.5	4710	178	3360	3370	27	87	1.9	2150	4750	705	3300	737	187	646	613	105
BL300\$	14	7.0	-0.5	3830	128	3310	3230	23	81	1.2	1980	5292	683	3100	710	173	508	594	120
BL400S	-10	6.4	-0.5	4370	158	3720	3620	23	84	2.0	2320	6288	789	3690	847	218	730	711	106
BL500S	-10	3.7	-0.5	6460	256	3940	4310	30	87	2.3	2820	6190	809	3450	938	233	792	765	100
BL600S	-10	3.9	-0.5	5470	203	3660	3810	25	88	2.3	2480	5100	828	3800	882	212	737	705	104
BL700S	-10	3.9	-0.5	6375	203	2880	3750	24	88	1.9	2163	5762	722	3360	785	176	507	620	100
BL800S	-10	3.3	-0.5	6500	223	2990	3980	26	87	1.8	1998	5485	724	3381	785	181	592	630	105
8L900S	-10	4.9	-0.5	6190	159	3140	4077	32	72	1.4	2940	7379	870	3733	758	160	676	622	101
BL1000S	-10	5.8	-0.5	5150	141	3150	3798	28	82	1.5	2225	5789	738	3318	725	170	620	633	103
BL1100S	-10	4.3	-0.5	6360	174	2860	4100	31	90	1.8	1920	5180	666	2940	854	169	500	594	121
BL1200S	-10	4.8	-0.5	6180	184	3170	4480	25	79	1.6	2307	6925	780	3507	792	100	202	040 055	112
BL1300S	-10	3.8	-0.5	6300	200	3170	4550	26	90	1.5	2390	4471	799	3612	833	204	745	655	107
BL1400S	-10	8.3	-0.5	5630	120	2570	3500	24	70	2.1	2038	3933	581	2703	560	105	/15	687	108
BL1500S	-10	6.4	-0.5	5260	137	2600	3450	26	73	1.8	2041	4044	604	2703	509	100	401	498	95
							-				2041		004	2112	551	139	491	496	99
Mean		5		5558	177	3167	3790	26	82	2	2242	5374	726	3294	745	180	628	623	107
Sta. Dev.		1.5		873	38	390	477	3	7	0.3	315	1044	88	367	111	28	93	76	

Table 2: Analytical Precision Repeat analyses of control sample from the survey area, interspersed among the sequence of soil samples

Colin E. Dunn 10th March 2002

.

.

i

i

.

Gold Mask Ventures Terrasol Study

Table 2 - Analytical Precision xls QC

PGE Package: _					Litho	phile	e Element	<u>s:</u>						?.G.E	.s:			
Sample ID:	Ër	Tm	Yb	Lu	S.Q. Li	Be	S.Q. Sc	Mn	Rb	Sr	Cs	Ba	Ru	Rh	Pd	Os	lr	Pt
BL100S	309	41	268	46	100	25	378	221000	239	14256	2.8	43360	-0.2	-5	2	-0 .1	-10	-0.1
BL200S	383	50	335	55	104	32	404	252000	250	1 451 5	5.0	47840	-0.2	-5	2	-0.1	-10	0.1
BL300\$	362	48	321	55	104	25	377	237000	251	11664	4.9	38880	-0.2	-5	2	-0.1	-10	-0.1
BL400S	439	57	396	65	107	27	492	251000	243	14328	5.1	47760	-0.2	-5	2	-0 .1	-10	0.1
BL500S	489	64	410	64	106	29	548	380000	267	12800	4.1	54160	-0.2	-5	3	-0 .1	-10	0.2
BL600S	461	60	395	65	105	24	515	269000	280	13800	5.1	43360	-0.2	-5	2	-0.1	-10	0.1
BL700\$	387	49	335	59	108	34	463	174432	266	14760	5.6	46400	-0.2	-5	-1	-0.1	-10	-0 .1
BL800S	3 94	49	351	65	112	40	474	184000	293	15960	5.6	44000	-0.2	-5	2	-0.1	-10	-0.1
BL900S	319	53	354	58	127	30	422	260640	303	16500	6.1	41800	-0.2	-5	1	-0.1	-10	0.2
BL1000S	365	49	314	56	116	23	371	235520	280	15600	4.5	43800	-0.2	-5	1	-0.1	-10	-0.1
BL1100S	338	46	298	51	108	27	409	213440	298	15400	5.5	43900	-0.2	-5	1	-0.1	-10	-0.1
BL1200S	383	51	351	60	118	26	463	268000	291	1 5 100	5.5	40300	-0.2	-5	1	-0.1	-10	0.1
BL1300S	408	53	361	62	125	29	460	258000	255	17280	4.1	38000	-0.2	-5	1	-0.1	-10	0.1
BL1400S	277	38	267	45	120	21	371	243533	236	14880	4.8	44900	-0.2	-5	1	-0.1	-10	-0.1
BL1500S	308	40	265	46	122	22	370	241647	216	14040	3.6	43100	-0.2	-5	1	-0.1	-10	-0.1
Mean Std. Dev.	375 59	50 7	335 47	57 7	112 9	28 5	434 58	245947 46488	265 26	14726 1399	5 0.9	44104 3973			1 1			

Table 2: Analytical Precision Repeat analyses of control sample from the survey area, interspersed among the sequence of soil samples

.

Gold Mask Verifures Terrasol dataset - revised data used for plotting

Table 1 - Anaşsıcal data.xls 23539crp

PGE Package:	Oxidation Sulta:	D		
Sample ID:	S.Q.CI V As Se Mo Sh Te W Re All SO He Th II		Base Metal - Chalcophile Associat	High-Field Strength Elements:
1300S-460W	82500 351 58 81 59 9 10 27 040 01 21 104 78 2	1045 4 4400 - 205 - 70 - 20	Gal Gel Agi Col In Sn Ti Bi	S.Q. TIS.Q. Cr Y Zr No Hf Ta
1300S-500W	-25000 349 48 50 101 5 -10 14 0.08 -0.1 16 171 875	1240.4 1490 380 70 33	42.9 6 -25 13.7 -0.2 -10 3.0 -0.5	4880 60 1970.0 2460.0 21.6 38.7 -0.1
1400S-20E	-25000 407 52 72 47 7 10 18 005 01 17 212 020	161.5 2100 807 222 35	40.0 8 -20 13.0 0.3 -10 6.5 -0.5	5270 101 2360.0 2430.0 20.6 43.2 0.3
1400S-60E	-25000 651 59 90 47 11 -10 16 -0.05 -0.1 2.6 227 74.3	1097.0 2700 2000 298 30 3398.1 4780 3750 333 40	59.6 10 -25 41.6 0.3 11 6.3 -0.5	4840 101 3140.0 3280.0 22.8 67.2 0.4
1400S-100E	-25000 675 107 69 27 14 -10 11 0.09 -0.1 1.9 218 98.5	1397 1 3800 2370 448 44	66.0 14 -25 27.5 0.5 -10 8.2 -0.5	3740 165 3380.0 2570.0 17.4 56.7 0.3
1400S-140E	-25000 628 64 83 52 9 -10 19 -0.05 -0.1 17 254 128	2021 8 2270 2110 201 40	49.7 10 -25 30.7 0.7 -10 8.7 -0.5	6630 178 2570.0 4140.0 29.9 79.6 0.2
1400S-180E	-25000 916 119 122 77 14 -10 26 0.08 -0.1 3.6 414 126	2021.0 3270 2110 291 00	63.3 12 -25 26.6 0.4 -10 8.7 -0.5	6290 200 3440.0 3970.0 30.2 79.5 0.5
1400S-220E	-25000 433 45 42 59 6 -10 11 -0.05 -0.1 0.0 188 88.4	1580.6 2070 1020 1240 110	66.2 19 -25 62.3 0.5 11 9.3 -0.5	7680 264 4700.0 5380.0 39.6 107.0 0.9
1400S-260E	-25000 530 42 88 28 8 10 13 0.05 0.1 12 188 79.2	1316.3 2000 1420 260 60	47.3 6 -25 24.9 0.2 -10 3.5 -0.5	4130 101 2030.0 2380.0 18.1 47.0 -0.1
1400S-300E	-25000 399 75 72 70 7 -10 17 0.08 -0.1 23 185 423	1343.3 4150 1820 202 02	63.0 11 -25 19.3 0.4 -10 13.0 -0.5	3820 110 3380.0 2820.0 17.7 53.7 0.2
1400S-340E	-25000 500 34 110 49 9 -10 17 -0.05 -0 1 31 204 179	1038 1 3300 1610 777 50	01.0 8 -25 30.3 0.4 -10 14,7 -0.5	4540 143 2580.0 2570.0 18.2 55.3 -0.1
1400S-380E	-25000 760 48 95 65 9 -10 15 -0.05 -0.1 2.8 159 108	71026 4850 2780 425 79	80.8 13 -25 28.4 0.4 -10 17.4 -0.5	4370 168 4830.0 4550.0 21.5 96.4 0.5
1400S-420E	-25000 480 39 89 26 5 -10 13 -0.05 -0.1 2.0 204 82.4	805.5 2870 2020 485 72	87.8 13 - 25 31.0 0.4 - 10 9.0 - 0.5 73.0 0 05 07.0 0.4 10 0.0 0.5	3370 120 4170.0 2750.0 17.3 62.8 0.4
1400S-460E	-25000 527 67 68 75 6 -10 15 0.07 -0.1 0.9 191 89.6	828.0 2570 2820 780 82	73.8 9 -25 27.8 0.4 -10 9.2 -0.5	4380 119 3380.0 3870.0 25.4 79.2 0.3
BL-1400S	-25000 586 126 74 55 7 -10 14 0.08 -0.1 2.7 210 68.8	1120.5 2000 1800 2010 88	00.8 8 20 31.1 0.5 19 11.5 0.5	5560 135 2700.D 3980.O 29.7 79.3 -0.1
1400S-20W	-25000 917 47 80 74 12 -10 18 -0.05 -0.1 2.2 267 88.6	1898 8 4530 2040 140 04	58.7 7 -25 38.0 0.5 -10 8.3 -0.5	5630 120 2570.0 3500.0 24.0 69.6 2.1
1400S-60W	-25000 809 80 65 21 19 -10 13 -0.05 -0.1 2.5 208 257	1363 5 2680 2400 204 50	70.0 11 -20 52.8 0.4 -10 11.0 -0.5	5760 206 3440.0 4100.0 30.2 86.1 0.3
1400S-100W	-25000 594 53 87 62 9 -10 18 0.08 -0.1 1.5 254 114	1842 8 3420 2340 437 112	58.0 9 -25 51.1 -0.2 -10 5.5 -0.5	3140 180 2710.0 2570.0 14.5 47.8 0.2
1400S-140W	-25000 697 53 71 50 12 -10 13 -0.05 -0.1 1.9 237 95.6	1032 8 1880 2300 250 80	67.6 15 -25 46.9 U.5 -10 6.2 -0.5	4540 168 3970.0 4090.0 26.0 87.0 0.5
1400S-180W	-25000 478 41 87 73 7 -10 14 -0.05 -0.1 2.3 237 88.0	1555 0 2480 1980 358 87	70 9 41 25 20 2 0 2 40 50 0.5	5280 139 3480.0 3940.0 26.4 76.2 0.3
1400S-220W	-25000 519 76 72 58 6 -10 17 -0.05 -0.1 1.9 233 617	1866 4 3510 1960 337 93	10.5 11 -25 29.3 0.3 -10 5.6 -0.5	4100 135 3460.0 3760.0 24.9 76.1 0.3
1400S-260W	-25000 1002 122 72 17 18 -10 22 0.05 -0.1 4.5 263 21.4	1221 8 2530 3980 110 88	67.2 11 -25 31.9 0.3 -10 5.8 -0.5	4460 131 3140.0 3540.0 23.7 69.1 0.4
1400S-300W	-25000 556 74 78 50 13 -10 20 -0.05 -0.1 1.8 218 79.6	1508.6 2780 2390 445 80	00.7 10 -20 31.3 0.3 -10 6.8 -0.5	5010 208 2880.0 2410.0 19.3 38.8 0.2
14005-340W	-25000 488 42 83 36 12 -10 18 -0.05 -0.1 2.1 188 118	2305 1 3330 3090 109 54	727 12 25 287 02 40 05 05	4540 103 3540.0 3970.0 24.6 79.3 0.2
1400S-380W	-25000 644 48 111 33 17 -10 22 -0.05 -0.1 30 191 70.9	2138 4 3460 1600 105 34	72.7 12 -23 20.7 -0.2 -10 2.5 -0.5 85.2 10 25 121 0.2 10 0.5 0.5	3390 78 3700.0 3160.0 18.4 65.3 0.3
1400S-420W	-25000 1544 84 75 57 15 -10 14 -0.05 -0.1 1.5 177 112	597 4 1270 2280 67 22	43.1 8 25 184 02 04 452 05	3910 59 3080.0 2720.0 17.2 54.0 0.2
1400S-460W	-25000 1557 62 95 34 27 -10 -10 -0.05 -0.1 0.9 198 247	143.3 1030 5710 40 12	40.1 0 -20 10.4 -0.2 34 15.3 -0.5	3550 177 2240.0 2680.0 18.6 43.5 0.1
14008-500W	87800 1264 139 101 75 30 -10 11 0.08 -0.1 2.6 185 149	429.8 1120 2030 -20 14	443 7 -25 137 02 10 104 05	3510 93 3160.0 3600.0 22.2 53.4 0.1
1500S-20E	-25000 439 34 74 28 7 -10 18 -0.05 -0.1 1.4 194 113	1660.5 3000 2200 196 74	77 3 11 -25 300 03 10 82 05	3060 152 2860.0 3350.0 15.9 48.1 -0.1
1500S-60E	-25000 626 44 66 52 7 -10 15 -0.05 -0.1 1.7 215 37.6	2031.8 6090 2460 168 54	827 9 -25 270 -02 -10 54 05	5380 142 3490.0 3890.0 25.0 92.5 0.4
1500S-100E	-25000 804 60 86 101 8 -10 17 0.05 -0.1 2.2 299 68.9	2460.4 4610 2070 287 110	926 15 -25 345 04 -10 80 05	2690 1/3 2950.0 1/90.0 11.1 44.1 0.1
1500S-140E	-25000 417 44 81 118 5 -10 21 -0.05 -0.1 3.1 237 81.0	2112.8 3860 1110 172 76	693 10 -75 316 04 -10 37 0F	7100 265 3250.0 4120.0 34.4 95.5 0.5
1500S-180E	-25000 382 72 68 82 2 -10 19 0.08 -0.1 2.7 266 77.8	1339.9 3180 1700 570 76	724 9 25 337 03 10 82 05	5030 151 2750.0 3320.0 23.2 71.7 0.3
1500S-220E	-25000 442 36 86 73 5 -10 18 -0.05 -0.1 3.1 210 107	1667.3 3220 1910 189 67	80.2 11 -25 273 0.3 -10 47 0.5	6350 208 2980.0 4030.0 28.8 95.2 0.5
1500S-260E	-25000 566 48 75 93 11 -10 20 -0.05 -0.1 1.9 189 137	2055.4 4980 2890 289 85	88.7 11 -25 40.2 0.3 -10 3.7 -0.5	5700 132 3320.0 4360.0 27.8 98.1 0.3
1500S-300E	-25000 394 40 53 120 4 -10 13 0.08 -0.1 1.8 180 31.3	837.0 3240 1240 870 52	54.7 7 -25 288 08 27 04 05	5760 148 4390.0 4190.0 25.4 95.9 0.4
1500S-340E	-25000 443 51 69 110 5 -10 15 -0.05 -0.1 2.3 228 72.0	1576.1 3330 1420 531 87	62.9 11 -25 25.2 0.3 -10 80 0.5	5910 101 2120.0 2050.0 15.3 47.9 -0.1
1500S-380E	-25000 590 49 63 63 6 -10 11 -0.05 -0.1 1.2 224 105	1360.1 2380 1770 216 96	681 11 -25 205 04 -10 80 .05	5210 1/6 2610.0 3/20.0 28.5 /6.0 0.3
1500S-420E	-25000 393 40 65 135 3 -10 22 -0.05 -0.1 2.2 264 89.1	1856.3 3050 903 417 92	788 8 25 315 03 10 40 05	6610 209 2600.0 3550.0 31.6 82.2 0.2
1500S-460E	-25000 453 44 59 107 5 -10 19 -0.05 -0.1 2.5 222 82.3	1441.1 3450 1500 659 78	66.9 8 -25 30.7 0.3 -10 7.2 -0.5	
BL1500S	-25000 622 124 69 50 8 -10 17 0.06 -0.1 2.3 227 79.7	1225.1 2830 1950 1900 74	53.2 7 -25 346 0.5 -10 64 -0.5	4770 144 2830.0 3560.0 25.3 83.1 0.2 5260 427 2800.0 2460.0 26.4 70.0 1.2
1500S-20W	-25000 586 61 78 37 11 -10 26 -0.05 -0.1 2.7 233 59.6	1593.0 3130 1580 246 76	66.3 7 -25 39.8 0.3 -10 45 -0.5	4130 118 2040 0 2020 0 40 7 0 4 0 0
1500S-60W	-25000 445 35 80 122 9 -10 27 -0.05 -0.1 2.3 284 50.2	1488.4 3200 770 288 109	74.8 10 -25 344 0.5 -10 4.5 -0.5	F130 110 2940.0 2930.0 18.7 54.0 0.3
1500S-100W	-25000 570 46 66 -1 8 -10 -10 -0.05 -0.1 1.4 129 111	361.1 1070 4010 322 69	40.9 4 -25 34.6 0.5 13 29.9 0.5	
1500S-140W	-25000 630 65 47 12 -1 -10 -10 -0.05 -0.1 1.1 111 37.8	260.6 563 630 430 56	32.3 2 -25 12.8 0.6 62 524 -0.5	4760 157 2240.0 3710.0 15.4 91.7 0.2
1500S-180W	-25000 558 128 51 33 15 -10 29 -0.05 -0.1 3.6 236 27.0	968.6 2100 1210 2110 76	67.5 6 -25 38.4 0.6 -10 6.8 -0.5	4200 200 507.0 2150.0 B.1 63.0 -0.1
15008-220W	-25000 250 63 36 72 -1 -10 17 -0.05 -0.1 1.0 185 26.6	918.0 1370 597 992 109	48.3 3 -25 19.5 0.5 12 5.3 -0.5	5320 154 1190 0 1940 0 20 0 40 4 0 4
15008-260W	-25000 505 51 92 52 18 -10 32 -0.05 -0.1 3.1 275 90.9	2106.0 2210 1870 237 83	77.3 12 -25 28.1 0.7 75 3.1 -0.5	6180 131 3870.0 4170.0 20.0 49.4 -0.1
15008-300W	-25000 414 38 51 21 14 -10 29 -0.05 -0.1 2.3 208 47.0	1586.3 2520 1420 465 47	55.2 8 -25 23.8 0.5 93 1.9 -0.5	3510 71 2980 0 3360 0 43 0 50 7 61
15008-340W	-25000 522 44 78 49 12 -10 30 -0.05 -0.1 2.7 237 63.9	1761.8 2780 1600 211 65	64.9 8 -25 28.2 0.4 -10 8.9 -0.5	5880 193 2780 0 3080 0 34 4 70 0 00
10005-360W	-25000 1308 71 74 37 39 -10 23 -0.05 -0.1 2.1 227 238	742.5 2020 3520 367 54	60.0 9 -25 28.4 0.2 -10 10.1 -0.5	5200 258 3140.0 3200.0 254 050 0 1
3008-100E	-25000 /03 220 83 191 40 -10 15 0.44 -0.1 11.4 46.4 21.2	1339.9 1800 88000 2060 363	29.8 3 -25 138.0 1.7 -10 12.0 -0.5	044 280 1400 0 5040 1 65.8 0.4
12008-14UE	-2000 9/2 109 69 270 31 -10 32 0.18 -0.1 9.3 115 22.5	1576.1 3840 37200 871 155	47.4 5 -25 69.4 1.0 -10 2.9 -0.5	2040 247 2040 0 629 0 4 2 240 0 4
12000-000E	-20000 910 141 /8 5 23 -10 20 0.61 -0.1 5.2 110 32.9	614.3 1770 2500 243 47	32.3 6 -25 32.4 0.2 12 7.9 -0.5	2310 159 1570 0 944 0 56 175 04

Colin E. Dunn 10th March 2002

Gold Mask Ventures Terrasol dataset - revised data used for plotting

1

Table 1 - Anaiyasai data.xk 23539crp

PGE Package:	Oxidation Suite:		Beze Met	Bese Metel - Cheicophile Associat	High-Field Strength Elements:
5emple ID: 1000\$-340W	-25000 508 83 109 113 9 10 21 0.07 0.1 2.1	Th U	Co Ni Cu Zn Pb	GalGe Ag Col In Sn Ti Bi	S.Q. TI S.Q. Cr Y Zr Nb Hf Ta
1000S-380W	-25000 706 89 94 79 15 -10 27 -0.05 -0.1 31	234 113	2012.0 0300 2020 4/6 11/	101.7 15 -25 40.1 0.4 -10 12.0 -0.5	4730 145 4580.0 5110.0 34.3 84.5 0.6
1000S-420W	-25000 579 68 97 67 15 -10 23 -0.05 -0.1 2.3	270 80.3	2236.5 4820 2620 246 81	102.6 18 -25 29.5 0.5 -10 9.7 -0.5	300 118 5530.0 4200.0 29.0 58.9 1.0 4300 159 5440.0 4740.0 31.0 74.0 0.0
1000S-460W	-25000 509 68 65 71 16 -10 26 -0.05 -0.1 2.1	191 53.3	2587.5 5890 2820 297 59	71.9 14 -25 22.2 0.4 10 5.7 -0.5	2630 89 3770.0 2040.0 15.0 36.2 0.4
1000S-500W	-25000 559 52 77 95 21 -10 19 0.13 -0.1 2.5	234 52.9	1566.0 3310 1910 32 52	69.4 13 -25 20.9 0.3 -10 5.5 -0.5	4220 112 3500.0 3760.0 30.2 54.3 0.4
1100S-60E	-25000 500 50 63 90 128 11 10 22 0.07 0.1 19	305 04.4	2/22.5 6/90 2000 1/10 104	97.2 14 -25 88.3 0.7 -10 6.3 -0.5	7260 195 3560.0 4590.0 37.5 73.8 0.7
1100S-100E	-25000 530 53 71 98 7 -10 15 -0.05 -0.1 1.9	272 33.5	1845.0 8140 1470 383 70	788 12 -25 273 05 12 00 05	3930 153 3680.0 3870.0 27.4 63.8 0.5
1100S-140E	-25000 577 113 63 158 6 -10 28 -0.05 -0.1 2.8	314 88.7	2171.3 4930 2350 559 123	89.2 11 -25 48.4 0.8 -10 6.7 -0.5	4200 108 2900.0 2900.0 20.5 51.2 0.3 8900 174 3090 0 6310 0 44.7 98.6 0.3
1100S-180E	-25000 518 59 81 44 5 -10 13 -0.05 -0.1 1.5	266 97.0	1622.3 4800 2550 218 86	85.0 13 -25 29.9 0.6 25 11.5 -0.5	5510 182 3610.0 4970.0 34.9 80.7 0.5
1100S-220E	-25000 565 63 58 58 10 -10 17 -0.05 -0.1 2.5	248 61.0	1273.5 4740 2800 455 46	64.7 13 -25 19.9 0.5 -10 8.6 -0.5	4600 184 3220.0 3360.0 24.1 57.1 0.4
1100S-300E	-25000 428 56 75 37 10 -10 15 -0.05 -0.1 29	200 08.8	1/28.0 4100 1580 1230 184	69.8 13 -25 36.6 0.6 -10 5.2 -0.5	8980 178 2540.0 5090.0 50.3 84.5 0.4
1100S-340E	-25000 694 75 83 38 16 -10 22 -0.05 -0.1 2.6	225 52.2	2011.5 6610 3930 229 48	73.0 13 -25 33.4 0.4 -10 42 -0.5	4830 139 3490.0 4160.0 27.7 75.0 0.5
1100S-380E	-25000 681 75 80 51 18 -10 19 -0.05 -0.1 2.1	237 122	1449.0 3390 5210 521 57	77.0 15 -25 42.1 0.5 33 5.2 -0.5	5310 95 3970.0 4890.0 31.7 71.4 0.6
1100S-460E	-25000 856 208 86 33 18 -10 15 0.14 -0.1 2.2	261 61.2	1588.5 5190 4690 400 48	65.8 13 -25 28.0 0.4 -10 5.1 -0.5	3260 159 3130.0 3270.0 20.3 50.0 0.3
BI 11005-500E	-25000 634 105 70 45 8 10 15 0.08 0.4 0.2	215 62.6	2317.5 7500 3540 596 47	64.9 13 -25 30.5 0.2 -10 4.6 -0.5	2770 116 3390.0 2420.0 16.6 41.1 0.5
1100S-20W	-25000 520 57 88 93 8 -10 16 -0.05 -0.1 2.0	230 /4.3	1146.0 2480 1650 1620 75 1599.8 3850 1510 335 74	50.9 9 -25 41.0 0.7 -10 4.3 -0.5	6360 174 2860.0 4100.0 31.3 89.7 1.8
1100S-60W	-25000 732 82 77 48 10 -10 -10 0.09 -0.1 1.9	288 108	1104.8 2900 2490 484 63	69.6 14 -25 56.5 0.4 -10 1.1 -0.5	6460 152 4080.0 5050.0 34.3 86.2 0.7 6130 101 2020 0 5410 0 37.2 82.5 0.4
1100S-100W	-25000 695 75 97 81 10 -10 18 -0.05 -0.1 2.3	266 118	1703.3 4430 2110 458 78	90.0 15 -25 56.6 0.5 -10 6.4 -0.5	5470 154 4330.0 4750.0 35.8 77.0 0.8
1100S-140W	-25000 636 101 86 38 15 -10 18 -0.05 -0.1 1.9	233 112	1482.8 3870 3340 380 86	79.2 15 -25 58.4 0.3 -10 5.0 -0.5	4420 122 4380.0 4700.0 28.5 78.8 0.6
11008-180W	-25000 543 56 76 51 14 -10 18 -0.05 -0.1 1.9	263 149	1536.8 3820 3580 236 77	78.4 14 -25 41.0 0.5 14 5.3 -0.5	5260 130 4210.0 5280.0 33.9 91.9 0.6
1100S-260W	-25000 842 101 82 48 28 -10 17 -0.05 -0.1 30	234 45.2	1305.0 2040 701 1160 58 1988 8 5040 3560 533 85	60.1 8 -25 65.3 0.4 14 3.2 -0.5 79.7 13 -25 81.9 0.5 10 80 0.5	6080 B8 2180.0 3640.0 32.0 63.4 0.1
1100S-300W	-25000 568 87 99 50 10 -10 18 -0.05 -0.1 3.1	225 79.9	1824.8 4870 2370 377 48	81.9 17 -25 437 04 -10 41 -05	4130 312 3980.0 3910.0 25.7 62.5 0.5
1100S-340W	-25000 764 74 73 80 13 -10 20 -0.05 -0.1 2.2	245 107	1674.0 4100 2910 368 72	83.1 16 -25 35.6 0.4 13 8.0 -0.5	4390 128 4770.0 4500.0 33.5 77.5 0.8
1100S-380W	-25000 400 58 47 84 5 -10 25 -0.05 -0.1 2.2	191 47.2	1741.5 3780 1680 887 61	62.7 10 -25 40.4 0.4 27 3.7 -0.5	3200 47 3170.0 3010.0 18.4 51.6 0.4
1100S-460W	-25000 404 42 79 89 6 -10 21 -0.05 -0.1 27 -25000 232 135 58 43 3 -10 20 0.07 -0.1 24	182 88.8	2115.0 5110 2440 206 39	76.0 13 -25 21.0 0.3 -10 3.4 -0.5	3090 93 3980.0 2760.0 14.5 52.8 0.4
1100S-500W	-25000 439 162 36 103 6 -10 14 0.17 -0.1 2.3	165 55 4	812 3 1750 485 750 40	51.7 8 -25 19.5 0.3 -10 2.8 -0.5 45.5 7 -25 18.4 0.4 10 5.4 0.5	3350 61 2760.0 2490.0 22.6 40.4 0.1
1200S-20E	-25000 521 57 54 130 8 -10 18 -0.05 -0.1 3.7	236 77.9	1163.3 2970 1090 1720 45	60.4 10 -25 85.3 0.6 -10 5.6 -0.5	5970 55 1980.0 2350.0 27.1 47.4 0.2 6410 131 2810.0 3780.0 37.5 70.0 0.4
1200S-60E	-25000 626 61 72 143 12 -10 19 -0.05 -0.1 1.8	233 103	1266.8 3910 1770 531 44	62.9 12 -25 34.9 0.5 -10 6.1 -0.5	5060 146 3630.0 3770.0 29.6 65.4 0.3
1200S-100E	-25000 830 72 68 61 19 -10 17 -0.05 -0.1 2.2	234 104	1737.0 5120 3110 355 47	64.2 12 -25 35.6 0.3 11 6.7 -0.5	3960 137 3800.0 3770.0 27.3 62.1 0.7
12005-180E	-25000 910 97 79 60 15 -10 22 0.08 -0.1 2.0	200 00,1	1/05.5 5590 2000 437 44	63.5 15 -25 34.1 0.3 10 3.0 -0.5	2940 82 3710.0 2500.0 16.7 43.2 0.4
1200S-220E	-25000 800 48 61 71 8 -10 18 -0.05 -0.1 1.5	254 97.4	2947.5 6570 3440 531 116	856 12 -25 419 05 -10 25 -05	7800 166 3940.0 5530.0 38.0 94.6 0.6
1200S-260E	-25000 644 130 53 72 6 -10 18 -0.05 -0.1 3.1	276 99.2	2497.5 4500 2560 353 106	78.3 10 -25 30.1 0.4 -10 3.1 -0.5	8670 239 2800 0 5380 0 41 3 97 0 0.5
1200S-300E	-25000 673 64 71 64 8 -10 17 -0.05 -0.1 2.7	239 93.1	2250.0 4760 2190 282 81	71.4 12 -25 29.8 0.5 -10 1.6 -0.5	7360 136 3200.0 4650.0 35.1 84.4 0.6
12005-340E	-25000 6/2 69 /5 114 / -10 18 0.06 -0.1 1.6	282 85.1	2317.5 5870 2390 733 102	77.8 17 -25 33.4 0.6 -10 2.1 -0.5	6790 220 3710.0 4110.0 30.3 71.1 0.5
12008-420E	-25000 972 134 44 46 9 -10 19 0.09 -0.1 3.6	200 90.3	1674.0 3820 2110 1410 117 1521.0 5420 2900 372 42	/3.6 13 -25 50.0 0.7 12 1.5 -0.5 41.2 5 -25 37.8 0.4 15 1.7 0.6	8150 181 3320.0 4460.0 34.7 82.0 0.3
BL1200S	-25000 883 121 84 56 10 -10 17 0.07 -0.1 2.1	269 79.0	1653.8 2800 1670 1980 79	67.0 12 -25 46.6 0.7 -10 4.8 -0.5	2260 126 2060.0 1640.0 10.7 27.8 0.2 6180 184 3170.0 4480.0 25.4 78.8 1.6
1200S-20W	-25000 780 80 117 75 11 -10 19 -0.05 -0.1 1.9	303 106	2362.5 4570 2620 279 92	88.1 16 -25 70.2 0.7 25 9.3 -0.5	6240 160 4040.0 4830.0 36.8 85.7 0.7
1200S-60W	-25000 854 101 131 77 10 -10 19 0.07 -0.1 1.8	284 145	2317.5 3870 3050 374 101	78.4 15 -25 60.3 0.7 -10 11.8 -0.5	7750 145 3860.0 5400.0 37.5 94.3 0.5
1200S-140W	-25000 914 131 111 101 18 -10 25 -0.05 -0.1 15	366 /8./	2317.5 4330 1780 1280 139	89.7 15 -25 88.1 0.8 30 11.7 -0.5	8110 214 4290.0 5620.0 48.0 95.9 0.8
1200S-180W	-25000 899 117 123 100 14 -10 21 -0.05 -0.1 1.7	363 169	2385.0 4220 2510 282 114	89.0 14 - 25 73.6 0.6 - 10 8.5 - 0.5 90.9 13 - 25 43.4 0.7 10 7.4 - 0.5	6280 148 4830.0 5030.0 35.5 89.4 0.7 2280 157 4420.0 6040.0 40.4 444.0 0.7
1200S-220W	-25000 757 96 111 102 14 -10 21 0.07 -0.1 2.9	282 107	2857.5 4420 2390 461 85	77.8 16 -25 61.2 1.0 148 5.3 -0.5	5730 118 3990.0 4470.0 32.1 78.4 0.5
1200S-260W	-25000 712 87 125 154 8 -10 24 -0.05 -0.1 2.5	314 95.4	2745.0 4830 2760 502 107	85.8 13 -25 43.0 0.7 -10 6.1 -0.5	7360 203 4120.0 4650.0 30.2 86.1 0.7
12005-300VV	-25000 552 90 99 120 7 -10 22 -0.05 -0.1 2.0	299 79.6	2587.5 4470 1680 1000 107	75.8 12 -25 39.1 0.6 -10 5.5 -0.5	6470 177 3600.0 4440.0 31.7 78.5 0.6
12008-380W	-25000 778 113 119 121 14 -10 25 -0.05 -0.1 21	250 124	2635.0 5760 4060 373 147 2947 5 5120 2960 302 115	101.7 18 -25 36.1 0.5 -10 4.5 -0.5	6670 221 5600.0 4650.0 36.4 92.3 1.1
12008-420W	-25000 665 94 93 73 17 -10 21 -0.05 -0.1 2.4	300 165	2238.5 4660 3620 260 121	77.8 12 -25 47.5 0.5 -10 5.8 -0.5	7150 185 4990.0 4530.0 37.2 89.0 0.9
12008-460W	-25000 638 49 83 94 17 -10 39 -0.05 -0.1 3.6	191 43.2	3105.0 6640 2070 78 58	69.1 10 -25 31.1 0.2 -10 3.2 -0.5	3200 65 3880.0 1880.0 13.8 41.3 0.7
1200S-500W	-25000 1070 204 128 15 20 -10 21 -0.05 -0.1 0.9	324 53.1	571.5 1560 1100 -20 33	47.1 11 -25 16.3 -0.2 -10 6.4 -0.5	4300 148 3660.0 2070.0 21.3 22.0 0.4
1300S-60E	-25000 081 149 102 97 12 -10 22 -0.05 -0.1 3.1	264 81.0	2295.0 4220 1590 439 65	65.4 11 -25 30.4 0.6 50 4.8 -0.5	7420 164 3510.0 3740.0 32.8 67.7 0.5
1300S-100E	-25000 621 129 77 128 9 -10 23 -0.05 -0.1 2.8	278 93 2	2032.0 0000 2080 1050 92 2295.0 5010 1680 2930 142	71.0 11 -25 126.0 0.6 -10 3.5 -0.5 74.6 11 -25 94.8 10 10 40 05	7970 208 3790.0 4980.0 39.3 82.8 0.6
1300S-140E	-25000 906 103 122 65 18 -10 16 0.11 -0.1 2.3	270 64.8	3037.5 8780 3810 313 78	81.3 14 -25 51 9 0.8 A8 3.4 -0.5	10100 286 3240.0 4250.0 40.1 81.6 0.5
1300S-180E	-25000 861 162 105 35 10 -10 20 0.08 -0.1 1.0	320 64.6	2340.0 5940 2920 551 100	67.1 12 -25 44.5 0.5 37 2.8 -0.5	5050 213 3650 0 3400 0 25.7 60.7 0.4
1300S-220E	-25000 677 103 90 91 12 -10 25 0.05 -0.1 2.2	293 71.5	2083.5 4690 2040 1290 97	70.5 9 -25 40.1 0.5 -10 3.4 -0.5	6960 172 3520.0 4240.0 35.7 80.1 0.7
13008-300E	-25000 933 82 90 52 19 10 20 0.07 0.1 20	26/ 123	2902.5 6560 2590 293 128	71.5 13 -25 32.9 0.3 -10 2.4 -0.5	4950 102 3830.0 3900.0 26.2 73.2 0.7
1300S-340E	-25000 1080 117 81 170 17 -10 14 0.20 -0.1 1.9	270 614	2000.0 6970 4150 216 106	66.1 14 -25 35.1 0.3 -10 3.6 -0.5	8390 197 3700.0 4790.0 32.8 84.0 0.7
13008-380E	-25000 613 70 66 97 9 -10 18 -0.05 -0.1 1.9	288 76.9	2272.5 4960 2280 616 79	66.5 10 -25 36.3 0.6 -10 2.8 -0.5	7050 224 2950.0 3010.0 24.8 58.9 0.4
13008-420E	-25000 935 98 126 141 12 -10 20 0.10 -0.1 1.9	293 106	2880.0 5810 2420 534 102	82.0 17 -25 46.0 0.8 -10 1.8 -0.5	5950 170 4540.0 4210.0 23.5 86.2 0.8
13008-460E	-25000 633 52 108 51 11 -10 18 -0.05 -0.1 1.9	251 109	2083.5 4390 3080 175 95	65.2 12 -25 23.9 0.3 -10 2.4 -0.5	5380 132 3330.0 3700.0 28.9 75.4 0.3
1300S-20W	-25000 798 88 99 52 15 -10 10 -0.05 -0.1 15	201 05.0	1010.0 2920 1740 1850 85 2340.0 4460 3490 354 93	00.0 13 -25 44.7 0.7 -10 3.8 -0.5	6300 200 3170.0 4550.0 25.5 90.4 1.5
13008-60W	-25000 668 154 102 69 12 -10 20 -0.05 -0.1 1.6	447 137	2031.8 3930 1560 1490 172	01.3 13 -25 45.0 0.3 -10 3.5 -0.5 858 15 -25 650 0.7 -10 4.2 0.5	5950 204 4030.0 4020.0 32.3 80.2 0.6
13008-100W	-25000 717 80 108 87 16 -10 22 -0.05 -0.1 1.9	332 126	2632.5 5120 2780 430 135	86.1 15 -25 55.6 0.5 -10 3.7 -0.5	7130 201 4260.0 4750.0 31.0 04.2 0.4
1300S-140W	-25000 949 112 104 56 19 -10 27 0.08 -0.1 1.8	348 62.6	2272.5 4790 2610 606 97	72.3 15 -25 58.8 0.4 -10 4.0 -0.5	5000 237 3980.0 2920.0 22 A 57 3 0.8
13008-180W	-20000 /1/ 101 78 70 11 -10 22 -0.05 -0.1 3.1	309 166	2632.5 3540 2680 398 105	80.8 14 -25 48.7 0.4 -10 2.6 -0.5	8070 127 3950.0 6020.0 41.8 117.0 0.6
13008-260W	-25000 507 47 90 49 13 -10 20 -0.05 -0.1 1.9	315 137	2497.5 4660 2310 232 114	85.3 13 -25 33.8 0.4 -10 2.7 -0.5	5900 133 4080.0 4850.0 38.0 91.4 0.7
13008-300W	-25000 648 74 92 47 16 -10 21 -0.05 -0.1 2.3	203 123	2497.5 4170 2550 145 111	00.0 10 -25 37.4 0.5 -10 2.2 -0.5 73.9 12 -75 28.2 0.4 18 24 0.4	7880 167 4180.0 4910.0 35.6 103.0 0.7
1300S-340W	-25000 617 87 105 86 10 -10 23 -0.05 -0.1 1.9	326 149	2362.5 3750 2520 312 127	79.5 11 -25 33.1 0.4 -10 18 -0.5	504U 12U 38/0.0 3790.0 29.0 72.8 0.6 6930 143 3840.0 4850.0 20.4 00.5 0.0
13008-380W	-25000 810 116 95 57 19 -10 23 -0.05 -0.1 3.0	296 78.8	2317.5 4510 3070 392 82	79.5 13 -25 28.9 0.6 -10 3.5 -0.5	6530 224 4220.0 3610.0 26.0 76.0 0.0
-3008-920W	-20000 014 09 87 124 20 -10 32 -0.05 -0.1 1.9	327 121	2103.8 3520 1440 51 72	55.0 14 -25 18.4 0.2 18 1.7 -0.5	4920 138 3250.0 3030.0 24.7 58.0 0.4

 \square

Colin E, Dunn 10thMarch 2002

.

Table 1: Analytical data, as received from Actiabs 14th February 2002

Gold Mask vertures Terrasol dataset - revised data used for plotting

> Table 1 - Anagracal data.xis 23539crp

PGE Package:	Oxidation Suite:		Bese Met	Ross Matel Chalmanhile Associat	
5mmple ID: 700S-300W	S.Q. CI V As Se Mo Sb Te W Re Au	S.Q. Hg Th U	Co Ni Cu Zn Pb	Gal Ge Ag Cd In Sn Ti Bi	High-Field Strength Elements:
700S-340W	-25000 720 00 59 18 14 -10 19 -0.05 -0.1	2.0 197 45.5	1626.8 3170 4090 152 58	55.2 9 -25 18.4 0.3 -10 3.6 -0.5	3524 233 3150 0 2330 0 14.7 80.8 0.5
700S-380W	-25000 581 59 90 64 11 -10 20 -0.05 -0.1	26 227 758	1806.8 3270 1070 1350 63	58.6 9 -25 32.8 0.6 -10 4.7 -0.5	4884 178 3050.0 2480.0 18.0 68.1 0.6
700S-420W	-25000 861 86 104 36 12 -10 19 -0.05 -0.1	2.7 230 59.2	1552.5 2880 2370 190 60	60.7 8 -25 31.0 0.3 -10 3.0 -0.5	4771 203 3400.0 2580.0 17.7 63.8 0.8
700S-460VV 700S-500V/	-25000 796 103 90 37 22 -10 21 -0.05 -0.1	4.9 182 87.1	2002.5 3220 2600 261 52	62.7 7 -25 19.6 0.4 -10 4.1 -0.5	6893 191 3100.0 3980.0 29.7 89.6 0.6
8008-202	-25000 515 95 92 101 7 -10 28 -0.05 -0.1	1.8 239 128	1480.5 2120 1090 289 79	60.1 7 -25 31.8 0.6 -10 4.2 -0.5	9234 201 3140 0 4660 0 37 8 120 0 0 8
800S-60E	-25000 585 63 63 38 10 -10 20 -0.05 -0.1	1.5 236 123	1635.8 3690 1920 177 133	67.2 11 -25 31.4 0.3 -10 6.5 -0.5	5873 244 3300.0 4250.0 28.9 101.0 0.9
800S-100E	-25000 828 79 107 68 13 -10 26 -0.05 -0.1	1.6 279 141	2925.0 5430 2220 270 117	73.1 12 -25 23.6 0.3 64 3.9 -0.5 79.6 11 25 21.2 0.2 10 0.4 0.5	6245 265 3120.0 4040.0 26.0 89.3 0.7
8005-140E 8005-180E	-25000 669 105 92 51 11 -10 20 -0.05 -0.1	2.2 243 70.6	1773.0 4390 2790 546 84	60.1 11 -25 43.8 0.2 -10 3.2 -0.5	8181 270 3420.0 4620.0 33.9 108.0 0.9
8008-220E	-25000 1488 164 102 18 22 -10 16 -0.05 0.2	5.1 179 29.5	1338.8 4040 6090 305 78	53.6 4 -25 25.1 0.4 -10 16.8 -0.5	7525 196 2810.0 4940.0 33.8 109.0 0.6 5832 439 1930.0 2140.0 14 8 41.2 0.5
800S-300E	-25000 1281 80 81 68 17 -10 22 -0.05 -0.1	1.8 198 64.3	2157.8 4380 1690 279 55	54.6 8 -25 27.3 0.2 -10 2.5 -0.5	3483 166 2470.0 2880.0 19.1 60.3 0.4
800S-340E	-25000 462 38 77 72 6 -10 15 -0.05 -0.1	0.6 179 129	1030.3 4210 5820 170 82 1218 5 2350 2140 247 78	58.0 9 -25 28.2 0.4 -10 8.2 -0.5	4722 268 2820.0 3380.0 22.9 69.5 0.4
800S-380E	-25000 827 84 104 16 6 -10 13 -0.05 -0.1	2.4 225 100	1714.5 3570 2430 240 102	70.2 10 -25 21.8 0.3 10 7.5 0.5	5978 197 3080.0 3950.0 28.1 89.7 0.7
800S-420E	-25000 745 91 66 24 7 -10 13 -0.05 -0.1	2.0 251 60.3	1521.0 2320 2490 774 62	78.2 11 -25 26.6 0.8 -10 9.2 -0.5	4/95 210 3340.0 3680.0 22.0 84.9 0.9
800S-500E	-25000 481 169 90 28 7 -10 -10 -0.05 -0.1	2.6 180 61.0	1901.3 1450 2800 2320 37	81.7 9 -25 29.9 0.6 -10 4.0 -0.5	4487 134 3400 0 2980 0 214 73 1 0 7
BL600S	-25000 872 125 83 55 10 -10 19 -0.05 -0 1	2.2 210 50.4	1298.3 1990 1100 3380 101	66.2 8 -25 33.8 1.0 -10 7.1 -0.5	7250 220 2290.0 2510.0 26.7 73.6 0.7
600S-20W	-25000 998 67 141 71 12 -10 18 -0.05 -0.1	2.4 248 137	2542.5 6250 3520 363 114	61.6 8 -25 35.0 0.5 -10 3.3 -0.5	6500 223 2990.0 3980.0 26.3 86.6 1.8
800S-60W 800S-100W/	-25000 542 39 60 78 6 -10 20 -0.05 -0.1	2.3 257 83.0	1858.3 5780 1310 307 108	58.2 3 -25 29.4 0.2 -10 3.1 -0.5	6683 331 3710.0 4260.0 31.3 98.9 0.9
8008-140W	-25000 804 113 84 44 10 -10 22 -0.05 -0.1	2.1 261 69.7	1928.3 4890 2190 554 109	56.8 10 -25 26.9 0.3 -10 6.1 -0.5	5210 265 2910.0 3640.0 23.0 79.8 0.6 5382 229 2850 0 3470 0 23.5 80.0 0 0
800S-180W	-25000 637 42 83 104 6 10 15 0.05 0.1	1.2 225 56.9	906.8 2230 724 1080 86	54.6 8 -25 25.1 0.3 -10 5.3 -0.5	4990 170 2500.0 2910.0 18.9 72.1 0.8
800S-220W	-25000 1264 113 84 122 12 -10 18 -0.05 -0.1	1.6 4/3 08.8	1901.3 4210 1480 332 92	64.2 13 -25 30.0 0.5 -10 19.8 -0.5	5500 204 4960.0 3339.0 22.6 85.4 1.7
800S-260W	-25000 976 90 79 101 9 -10 23 -0.05 -0.1	2.0 437 105	2520.0 4060 2010 317 68	72.6 14 -25 24.7 0.6 -10 18.5 -0.5	7530 266 5200.0 4995.0 38.2 86.1 1.9
800S-300W	-25000 790 228 81 159 7 -10 24 -0.05 -0.1	1.7 471 60.1	2011.5 3400 1940 632 70	70.9 14 -20 24.7 0.5 -10 17.6 -0.5	6850 219 5230.0 3663.0 30.6 69.0 1.8
8005-380W	-25000 1416 230 79 68 21 -10 20 -0.05 -0.1	2.8 567 91.4	2385.0 4070 3510 307 80	66.5 14 -25 31.3 0.7 15 124 -0.5	
800S-420W	-25000 1010 130 82 105 15 -10 22 0.11 -0.1	2.2 486 164	1908.0 2570 1740 301 50	67.1 15 -25 26.0 0.5 14 11.9 -0.5	9040 142 4950.0 4852.0 38.3 79.0 1.9
800S-460W	-25000 1056 64 87 206 45 -10 27 -0.05 -0.1	1.8 400 103	2040.8 2720 2540 483 58	74.4 16 -25 28.5 0.4 -10 9.3 -0.5	6600 139 5710.0 4131.0 31.6 78.1 2.2
800S-500W	-25000 904 71 97 151 15 -10 23 0.08 -0.1	2.3 458 144	2677.5 3500 2480 233 53	75.2 20 -25 22.4 0.4 -10 7.2 -0.5	3160 100 6620.0 1701.0 15.0 41.8 2.1
900S-20E	-25000 1832 286 73 45 37 -10 24 0.09 0.4	4.3 293 33.5	1590.8 2950 4200 116 74	42.1 20 -25 28.6 0.5 -10 6.1 -0.5 42.1 12 -25 45.2 0.3 10 40 0.5	7080 160 5630.0 4176.0 28.3 79.9 2.0
9003-00E 900S-100E	-25000 808 133 80 198 12 -10 22 0.10 -0.1	2.6 423 162	3690.0 4800 2470 754 119	82.3 19 -25 71.5 0.4 -10 81 -0.5	2/00 130 2410.0 1890.0 11.7 26.7 0.9
900S-140E	-25000 824 280 75 80 6 -10 15 0.12 -0.1	2.2 425 74.3	1530.0 2290 2210 1720 72	60.8 14 -25 46.2 0.4 -10 11.0 -0.5	6250 174 4990.0 4149.0 38.7 80.8 1.5 6250 175 3410.0 3474.0 35.4 80.8 4.0
900S-180E	-25000 647 140 77 87 6 -10 17 0 10 -0 1	2.3 410 102	3282.5 6100 3850 339 61	65.0 14 -25 27.1 0.5 13 8.3 -0.5	6060 193 3170.0 3996.0 32.5 73.0 1.1
900S-220E	-25000 856 107 75 67 13 -10 18 -0.05 -0.1	1.9 320 79.4	2295.0 3440 1800 694 63	66.2 14 -25 28.9 0.6 -10 8.4 -0.5	9500 155 3110.0 4752.0 40.6 91.7 1.2
900S-260E	-25000 603 170 56 95 6 -10 13 -0.05 -0.1	2.2 145 53.3	2036.3 2860 1690 548 52	370 7 -25 307 02 10 74 05	3400 187 3440.0 1863.0 15.2 42.8 1.2
9005-300E 9005-340E	-25000 782 216 63 246 12 -10 17 0.33 -0.1	3.1 273 85.1	2058.8 3040 1210 1560 77	52.7 12 -25 43.7 0.4 -10 4.7 -0.5	2460 82 1590.0 1485.0 13.3 26.8 0.4
900S-380E	-25000 952 190 65 81 10 -10 14 0.29 0.1	12.4 188 50.4	1257.8 1230 44700 261 44	19.1 4 -25 62.9 1.0 13 13.7 -0.5	588 119 1040 0 382 5 1 5 9 6 0 2
9008-420E	-25000 1656 512 87 20 10 -10 20 0.25 -0.1	14 407 320	1215.0 2450 1510 985 40	58.8 13 -25 25.8 0.5 -10 9.5 -0.5	5600 146 2860.0 3465.0 30.8 68.8 1.2
900S-480E	-25000 938 212 75 20 9 -10 14 0.14 -0.1	2.0 294 50.0	2148.8 779 1850 1820 33	69.6 19 -25 23.5 0.6 -10 9.5 -0.5 57 3 13 -25 19 5 0.7 14 04 05	3850 72 5620.0 1602.0 11.4 33.9 1.8
9005-500E	-25000 1112 560 67 15 13 -10 17 0.09 0.2	5.1 207 32.4	693.0 1300 1990 125 30	29.8 9 -25 347 0.3 -10 124 -0.5	3450 -40 5450.0 1782.0 15.5 37.8 1.6
900S-20W	-25000 090 141 84 61 9 -10 16 0.21 -0.1	2.5 227 90.0	1543.5 2710 1800 1790 73	66.3 15 -25 35.3 0.5 -10 4.9 -0.5	2030 101 1050.0 560.5 5.7 10.5 0.5 6190 159 3140.0 4077.0 22.1 74.0 4.4
900S-60W	-25000 1816 584 93 474 32 -10 39 0.18 -0.1	1.8 558 2410	1233.0 4300 2040 649 54	63.5 19 -25 58.8 0.7 -10 5.4 0.5	5550 255 3440.0 5274.0 29.6 84.0 1.4
9005-100W	-25000 471 47 89 27 10 -10 23 0.07 -0.1	3.9 363 17.6	2407.5 3880 3050 625 79	61.8 19 -25 29.0 0.3 -10 2.2 -0.5	4670 234 3200.0 2718.0 26.0 41.2 1.4
900S-140W	-25000 624 72 101 69 16 -10 19 -0.05 -0.1	2.5 266 95.8	1527.8 2610 2350 270 57	70.4 18 420 30.8 40.2 -10 1.1 -0.5 84.9 21 -25 24.2 0.8 -10 20 0.5	4940 141 3220.0 4239.0 34.0 55.4 0.6
900S-720W	-25000 624 278 88 84 11 -10 19 -0.05 -0.1	2.3 318 99.4	1581.8 3850 2150 1300 108	67.3 19 -25 44.1 0.5 -10 4.1 -0.5	4860 110 3920.0 3528.0 27.1 87.8 0.9
900S-260W	-25000 580 89 86 80 15 -10 17 -0.05 -0.1	2.1 320 113	1723.5 3660 1980 799 91	79.1 19 -25 31.0 0.7 -10 4.5 -0.5	7200 213 3800 0 4311 0 37 2 78 0 0 0
900S-300W	-25000 647 114 90 125 11 -10 23 0.05 -0.1	38 318 75 2	1336.5 2460 1930 960 63	73.7 18 -25 49.4 0.5 -10 3.7 -0.5	6440 108 3640.0 4185.0 32.8 75.3 0.7
900S-340W	-25000 715 95 107 72 17 -10 22 -0.05 -0.1	2.6 287 111	1615.5 4160 2440 391 91	83.9 19 -25 49.6 0.6 -10 4.4 -0.5	6550 203 3580.0 3528.0 33.5 68.5 0.7
9008-380VV	-25000 574 84 87 51 16 -10 20 0.05 -0.1	2.1 275 82.4	2038.5 4850 2920 318 57	86.5 20 -25 27 0 0.5 -10 3.4 -0.5	5150 174 6630.0 3672.0 29.2 76.0 1.3
900S-460W	-25000 865 162 83 130 14 -10 21 -0.05 -0.1	2.7 327 60.1	1309.5 2930 1620 3850 67	70.7 17 -25 38.1 0.5 12 3.7 -0.5	4100 14/ 4190.0 3420.0 23.4 68.4 1.1 5030 134 3770.0 3465.0 21.2 60.4 0.0
900S-500W	-25000 667 149 85 118 10 -10 21 -0.05 -0.1	2.8 290 22.9	1028.3 2410 2600 237 52	65.8 14 -25 25.8 0.2 -10 4.2 -0.5	4150 171 3370.0 2025.0 15.7 28.1 0.8
1000S-20E	-25000 848 109 93 53 18 -10 17 0.09 -0.1	2.7 265 62.3	2106.0 6740 4310 352 81	78.8 15 -25 34.5 0.7 -10 3.8 -0.5	7920 192 3640.0 4660.0 39.6 79.5 0.8
1000S-80E	-25000 1240 92 70 67 12 -10 20 0.07 -0.1	2.3 288 65.2	2542.5 8790 4940 537 169	90.0 18 -25 47.9 0.8 -10 4.8 -0.5	5000 237 3850.0 3843.0 29.2 70.9 0.9
1000S-140E	-25000 /13 /5 80 66 10 -10 19 0.06 -0.1	2.5 294 156	2166.8 4030 2850 270 104	82.6 15 -25 33.7 0.5 -10 3.8 -0.5	5370 382 3540.0 2772.0 27.7 52.7 0.8 8870 197 3300.0 5778.0 47.4 50.0 0.8
1000S-180E	-25000 796 93 73 29 10 -10 15 0.07 -0.1	2.5 302 115	2092.5 5500 2970 358 110	86.0 20 -25 24.2 0.5 -10 3.4 -0.5	4940 202 3740 0 3951 0 28 2 72 4 0 7
10008-220E	-25000 901 106 93 65 13 -10 20 0.10 -0.1	2.5 315 837	1/23.5 4830 3710 284 78	73.4 16 -25 21.3 0.3 -10 5.2 -0.5	5400 189 3580.0 4005.0 35.6 71.5 0.6
1000S-260E	-25000 738 84 100 54 18 -10 17 0.05 -0.1	2.2 230 66.6	2103.8 6750 4040 339 51	77.3 19 25 34.7 0.5 18 3.2 -0.5	7080 174 3540.0 5483.0 45.7 95.9 0.9
10008-300E	-25000 603 97 76 39 12 -10 16 0.05 -0.1	2.1 255 90.7	1581.5 5150 2910 841 92	83.8 19 -25 27.5 0.4 -10 2.8 -0.5	3370 212 3970.0 2052.0 14.7 42.7 0.9
1000S-420E	-20000 540 155 51 147 9 -10 -10 0.80 -0.1	13.4 109 34.9	688.5 1060 37900 273 45	18.3 4 -25 61.5 1.2 56 7.7 -0.5	4030 106 4060.0 4167.0 33.5 71.6 0.7
1000S-460E	-25000 844 142 80 33 18 -10 13 -0.05 0.1	2.0 221 102	1583.8 3820 4450 739 76	77.0 16 -25 25.7 0.4 -10 5.1 -0.5	4600 104 3630 0 3816 0 32 8 66 8 0 6
1000S-500E	-25000 601 264 51 -1 8 -10 -10 -0.05 -0.1	3.8 75.0 14.7	1803.0 0800 5980 415 55 263.3 901 1980 45 24	51.1 13 -25 31.9 0.3 17 7.3 -0.5	2630 173 2840.0 2052.0 12.8 39.0 0.2
BL10008	-25000 625 128 77 44 10 -10 15 0.08 -0.1	1.9 231 80.3	1134.0 2680 1610 1940 R	∡3.8 / -25 29.1 0.3 -10 18.5 -0.5 65.2 12 -25 29.5 0.5 10 5.9 4 5	1800 143 1300.0 353.7 2.9 5.4 -0.1
10008-2000	-2000 508 92 98 38 11 -10 16 -0.05 -0.1	2.3 228 72.7	1480.5 4480 2910 1280 61	72.4 14 -25 80.8 0.5 37 94 05	5150 141 3150.0 3798.0 27.7 82.2 1.5
10008-100W	-25000 524 101 91 68 10 40 48 000 04	2.6 233 73.4	580.5 1790 1670 2160 57	88.1 13 -25 68.0 0.8 -10 6.5 -0.5	
10008-140W	-25000 498 59 104 88 11 -10 18 0.05 -0.1	2.4 200 85.0	1020 0 3520 1820 398 74	65.2 17 -25 35.1 0.6 -10 4.9 -0.5	6160 148 3770.0 5050 0 35 5 70 4 0.4
10005-180W	-25000 679 100 93 43 17 -10 15 -0.05 -0.1	2.7 218 85.5	1561 5 3870 3880 356 50	81.5 19 -25 54.8 0.4 -10 4.0 -0.5	4560 131 3820.0 4520.0 28.7 74.4 0.6
10008-220W	-25000 553 111 104 117 13 -10 24 -0.05 -0.1	3.6 273 110	2155.5 4950 2300 1400 85	98.1 19 -25 651 04 14 147 07	3550 148 3950.0 3700.0 22.5 62.1 0.7
10008-300W	-25000 516 51 92 94 10 -10 20 -0.05 -0.1	2.3 266 114	2020.5 3380 2840 326 65	82.5 17 -25 51.4 0.8 15 13.0 -0.5	5010 145 4810.0 4310.0 29.3 67.9 0.7
		2.3 310 38.9	2148.8 4630 2730 886 79	81.1 13 -25 53.1 0.4 -10 13.7 -0.5	4190 143 3620.0 4540.0 31.8 64.1 0.6

Colin E. Dunn 10th March 2002

i.

Table 1: Analytical data, as received from Actlabs 14th February 2002

Gold Mask Ventures Terrasol dataset - revised data used for plotting

 \square

Table 1 - Anastričal data.xls 23539crp

PGE Peckage:	Oxidation Suffe:	Base Meta	Base Metal - Chalcophile Associat	High-Field Strength Elements
Sample ID: 400S-60W	S.Q. CI V As Se Mo Sb Te W Re Au S.Q. Hg Th U	Co NI Cu Zn Pb	Ga Ge Ag Cd In Sn Ti Bi	S.Q. TI S.Q. Cr Y Zr Nb Hf Ta
400S-100W	-25000 828 106 110 78 13 -10 16 0.10 -0.1 18 327 72.5	1950.0 4740 2920 485 62 1530.0 2010 2760 807 85	57.8 10 -25 47.8 0.5 -10 1.7 -0.5	5570 223 3890.0 4130.0 28.4 110.0 1.9
4008-140W	-25000 883 107 120 73 17 -10 19 0.07 -0.1 1.8 357 58.9	1780.0 4530 2710 898 60	657 10 -25 51 1 0.8 -10 2.4 -0.5	5550 318 3650.0 3910.0 26.6 103.0 1.8
400S-180W	-25000 741 82 133 99 13 -10 23 -0.05 -0.1 1.7 319 149	2280.0 4500 3360 501 83	76.6 16 -25 38.2 0.5 -10 2.6 -0.5	4360 198 5330 0 4040 0 27 0 115 0 2 0
4005-220VV 4005-280W	-25000 946 103 100 103 12 -10 24 0.09 0.2 2.0 317 78.0	2540.0 5400 3550 365 104	63.9 11 -25 31.9 0.5 -10 3.9 -0.5	3630 288 3890.0 2600.0 19.2 76.3 2.2
4005-300W	-25000 834 102 111 77 10 -10 22 0.05 -0.1 2.0 372 118	1640.0 3280 2770 725 93	62.7 11 -25 35.7 0.4 -10 5.2 -0.5	4070 238 3980.0 3390.0 24.7 98.2 2.2
400S-340W	-25000 906 76 115 88 16 -10 24 -0.05 0.2 1.6 343 131	2560.0 3910 3700 771 97	12.2 13 -25 32.1 0.6 -10 5.3 -0.5 67.7 13 -25 43.7 0.6 -10 4.5 -0.5	5570 277 4380.0 3750.0 29.9 107.0 2.9
4005-380W	-25000 757 110 102 120 12 -10 20 0.08 0.1 1.8 331 107	1800.0 2840 1470 498 112	58.9 9 -25 31.6 0.5 17 4.1 -0.5	5560 224 3790 0 3280 0 26 2 94 6 2 2
4005-420VV	-25000 583 91 59 95 7 -10 22 -0.05 -0.1 1.8 391 106 -25000 631 165 72 118 8 10 36 0.05 0.1 4.0 364 447	2030.0 3430 1990 1070 104	71.3 11 -25 29.2 0.6 -10 3.8 -0.5	4690 204 3610.0 3970.0 28.2 115.0 2.1
400S-500W	-25000 1380 230 80 43 18 -10 19 -0.05 0.4 4.8 181 48.7	2000.0 3260 1260 1310 121	63.5 11 -25 32.3 0.4 390 3.5 -0.5	5150 169 3830.0 3680.0 32.4 108.0 2.1
5008-20E	-25000 2270 208 121 45 39 -10 23 0.14 0.3 2.5 322 60.4	2090.0 5360 7380 408 90	67.9 11 -25 482 0.6 -10 145 0.5	2430 217 2390.0 1520.0 12.9 35.9 1.3
5008-60E	-25000 849 120 91 24 12 -10 18 -0.05 0.1 1.8 327 110	1930.0 3650 5510 1170 101	80.6 15 -25 38.4 0.6 -10 10.0 -0.5	4960 259 4940.0 4560.0 37.3 112.0 2.6
5008-220E	-25000 697 53 133 47 15 -10 20 0.15 0.1 1.7 285 123	2140.0 3630 3340 304 83	66.0 12 -25 37.9 0.4 -10 3.9 -0.5	4060 224 3840.0 3320.0 22.7 82.2 1.8
500S-260E	-25000 1020 71 105 64 22 -10 19 0.16 0.3 1.3 265 38 1	2230.0 5360 5370 246 80	67.6 12 -25 32.9 0.5 -10 3.4 -0.5	3430 172 4230.0 2490.0 17.7 67.0 2.1
500S-300E	-25000 482 78 98 111 10 -10 16 -0.05 -0.1 1.0 268 85.7	1190.0 2400 1670 1360 46	60.4 10 -25 37.7 0.5 15 42 -0.5	
5005-340E	-25000 744 53 112 55 12 -10 17 -0.05 2.3 1.4 254 124	1790.0 4050 2920 498 63	77.6 18 -25 29.8 0.3 -10 5.1 -0.5	2590 160 4830.0 2400.0 15.1 70.3 2 1
5008-420E	-25000 1150 102 119 /3 13 -10 17 -0.05 -0.1 1.6 310 131	2010.0 3820 2490 872 82	72.6 13 -25 38.0 0.5 14 10.3 -0.5	4530 331 4340.0 3590.0 22.7 94.9 2.3
500S-460E	-25000 812 63 94 79 12 -10 16 -0.05 -0.1 1.0 304 159	1990.0 3840 2390 548 99	01.0 11 -20 44./ 0.6 -10 3.9 -0.5 71.0 11 -25 39.9 0.3 10 5.0 0.5	3440 204 3520.0 2270.0 15.9 64.9 2.1
500S-500E	-25000 814 86 101 106 11 -10 28 0.12 -0.1 1.2 389 153	2210.0 3760 1690 1530 127	87.2 15 -25 39.7 0.5 22 3.8 -0.5	3550 191 4080.0 3630.0 24.9 94.3 1.9 5310 261 4660.0 4280.0 32.1 142.0 2.7
BL500S	-25000 800 122 80 55 11 -10 19 0.08 -0.1 2.1 215 78.0	1590.0 2880 1900 1700 85	66.4 9 -25 43.2 0.7 -10 3.7 -0.5	6460 256 3940.0 4310.0 30.2 87.2 2.3
500S-60W	-25000 1090 129 77 108 14 -10 20 -0.05 0.1 2.0 292 121	1950.0 3930 3370 941 101	68.6 14 -25 38.4 0.6 -10 5.9 -0.5	6190 356 3920.0 4110.0 32.5 118.0 2.0
500S-100W	-25000 947 78 91 70 9 -10 23 -0.05 -0.1 1.0 365 93.4	2350.0 4700 2730 543 120	/1.9 12 -25 28.5 0.4 -10 3.5 -0.5 82.4 8 -25 28.0 0.2 11 25 05	4470 373 3810.0 3070.0 28.0 68.1 2.4
500S-140W	-25000 976 97 125 98 14 -10 24 -0.05 -0.1 1.7 336 161	2580.0 5450 3760 288 135	82.0 14 -25 44.5 0.4 -10 3.0 -0.5	4360 217 3590.0 3930.0 29.2 103.0 2.1
500S-180W	-25000 1080 69 128 73 13 -10 19 -0.05 -0.1 1.6 329 99.0	2270.0 5630 3080 289 126	80.2 16 -25 29.2 0.6 -10 6.8 -0.5	3650 358 5330.0 3040.0 20.3 90.1 2.6
5005-260W	-25000 1120 91 83 4/ 1/ -10 16 -0.05 0.1 1.3 335 84.2	2030.0 4410 4790 371 103	66.3 9 -25 36.8 0.4 -10 5.1 -0.5	3920 306 3670.0 3480.0 21.5 94.1 1.9
5008-300W	-25000 700 68 94 83 8 -10 19 -0.05 -0.1 1.7 379 950	1700.0 2890 2220 666 101	63.0 13 -25 38.6 0.5 -10 3.2 -0.5 76.6 13 25 40.2 0.4 40 44 0.5	3860 238 3810.0 2880.0 19.8 82.1 1.6
500S-340W	-25000 822 73 100 117 10 -10 25 -0.05 -0.1 2.0 361 92.7	2450.0 4770 2130 315 121	73.3 12 -25 30.9 0.5 -10 62 -05	
5008-380W	-25000 801 129 77 103 10 -10 24 0.17 -0.1 1.6 319 77.8	1770.0 3360 2480 291 90	57.1 10 -25 28.2 0.4 -10 4.0 -0.5	4890 214 3220.0 2780.0 25.0 74.7 1.9
5005-460W	-20000 11/9 90 129 24 24 -10 12 -0.05 -0.1 1.2 338 281	639.0 2010 3930 91 30	65.0 15 -25 21.1 0.2 -10 24.1 -0.5	3490 180 4810.0 3760.0 19.3 84.0 2.2
6008-20E	-25000 683 66 107 82 9 -10 14 -0.05 -0.1 1.1 349 136	2080.0 3450 2530 621 142	70.3 12 -25 39.4 0.5 -10 3.5 -0.5	5760 320 3930.0 3610.0 27.4 101.0 1.9
600S-60E	-25000 792 98 74 99 9 -10 19 -0.05 -0.1 1.7 371 116	1590.0 2940 1720 1490 74	59.9 13 -25 44.7 0.4 -10 3.8 -0.5	6370 3690.0 4220.0 32.0 123.0 2.0
600S-100E	-25000 1098 71 92 78 14 -10 22 -0.05 -0.1 1.3 370 93.0	2340.0 6310 4740 386 142	66.1 13 -25 29.6 0.2 -10 4.2 0.5	3700 420 4050.0 3200.0 24.9 83.9 2.1
600S-180E	-25000 148 00 67 78 12 -10 21 0.11 -0.1 1.7 314 108	2440.0 4370 3180 495 131	74.9 15 -25 30.3 0.5 -10 2.4 -0.5	5310 371 3880.0 3300.0 24.8 99.4 2.0
600S-260E	-25000 638 61 92 89 13 -10 24 -0.05 0.2 1.7 276 141	2490.0 4410 4200 352 81	01.3 11 -25 50.0 0.5 -10 2.4 -0.5 785 13 -75 381 0.2 -10 3.8 0.5	3080 343 3790.0 2140.0 15.5 58.7 2.1
600S-300E	-25000 1242 89 100 77 26 -10 15 -0.05 0.2 2.8 307 55.7	2300.0 4180 5670 245 105	67.8 12 -25 40.9 0.5 -10 4.0 -0.5	2740 323 4170.0 2310.0 15.3 62.9 2.1
6005-340E	-25000 1215 8/ 111 36 14 -10 16 -0.05 -0.1 1.3 283 142	1630.0 3120 4080 342 99	66.4 12 -25 29.3 0.4 -10 7.9 -0.5	4050 321 4120.0 2570.0 21.3 77.9 1.8
600S-420E	-25000 814 75 87 62 19 -10 17 -0.05 0.2 11 332 77 9	1900.0 4150 4120 688 60	64.5 15 -25 38.4 0.3 -10 2.0 -0.5	3270 247 4460.0 1940.0 15.1 62.9 2.1
600S-460E	-25000 700 69 93 53 14 -10 18 0.07 0.2 2.1 260 183	1710.0 3190 2880 1240 74	70.1 11 -25 31.7 0.5 16 3.7 -0.5	3700 332 4170.0 2840.0 15.5 76.9 1.7
8008-500E	-25000 606 62 79 63 14 -10 17 -0.05 -0.1 1.4 284 140	1930.0 3700 2270 620 87	77.2 15 -25 28.6 0.4 -10 2.7 -0.5	3890 239 4170.0 2960.0 21.4 80.2 20
6008-20W	-25000 972 109 86 30 18 10 18 0.05 0.4 2.8 203 28.6	1550.0 2850 1620 2050 80	60.1 11 -25 46.6 0.6 -10 3.9 -0.5	5470 203 3660.0 3810.0 24.9 88.0 2.3
600S-60W	-25000 676 67 98 63 9 -10 17 0.17 -0.1 1.6 338 95.4	1920.0 4140 2710 247 92	54.4 5 -25 47.7 0.7 -10 11.9 -0.5 69.4 12 -25 33.0 0.5 21 68 0.5	3310 494 3460.0 1880.0 12.7 49.8 1.7
600S-100W	-25000 881 63 88 61 10 -10 20 -0.05 0.3 1.4 423 185	2580.0 4350 3040 470 141	74.7 9 -25 33.3 0.5 -10 54 -0.5	4300 306 3990.0 3160.0 20.5 66.3 1.8
6005-140W	-25000 714 72 68 79 8 -10 17 -0.05 -0.1 2.0 268 39.4	2340.0 5120 2580 1310 71	61.6 9 -25 34.1 0.4 -10 3.3 -0.5	3460 270 3500.0 1880.0 13.5 64.2 1 8
6008-220W	-25000 768 97 75 77 13 -10 17 -0.05 -0.1 1.3 331 107	1700.0 3170 3340 446 91	61.3 15 -25 38.2 0.5 -10 5.8 -0.5	3250 225 3860.0 2680.0 17.0 79.0 1.9
600S-260W	-25000 862 65 72 66 10 -10 15 -0.05 -0.1 1.6 346 100	2010.0 3290 3340 284 119	72.4 10 -25 28.9 0.4 -10 6.4 -0.5 64.3 9 -25 32.6 0.3 -10 7.1 -0.5	5050 260 4140.0 3750.0 27.4 108.0 2.4
6008-300W	-25000 569 52 103 70 6 -10 18 -0.05 -0.1 1.3 346 99.0	1670.0 2490 1900 611 88	65.1 11 -25 33.8 0.5 18 4.0 -0.5	3740 196 4040 0 3090 0 19 7 87 9 1 7
600S-380W	-25000 526 46 77 30 7 10 18 0.05 0.1 1.9 218 80.6	1800.0 4330 2410 158 88	65.3 9 -25 23.8 0.4 -10 7.1 -0.5	3688 225 3260.0 2610.0 15.8 69.8 0.9
6008-420W	-25000 1317 106 83 23 39 -10 14 -0.05 -0.1 2.0 201 160	2121.8 4280 1920 322 102 564.8 1860 3190 195 30	62.0 10 -25 41.5 0.4 -10 2.1 -0.5	4253 154 3040.0 2870.0 16.1 78.7 0.8
6008-460W	-25000 555 83 63 78 8 -10 19 -0.05 -0.1 2.5 213 102	1197.0 2530 953 365 49	58.9 10 -25 34.1 0.3 -10 40 -05	3329 145 3020.0 3050.0 16.4 51.6 0.7 7128 160 3760 0 3050.0 00.2 70.4 0.7
7008-20E	-25000 637 57 81 86 8 -10 23 -0.05 -0.1 1.8 303 121	2632.5 5410 2010 407 142	71.6 9 -25 44.8 0.4 -10 3.3 -0.5	6107 234 3290.0 4500.0 28.7 111.0 1.0
7008-100E	-25000 642 80 107 33 10 10 18 0.05 0.1 17 261 128	2272.5 5630 1570 627 108	62.1 10 -25 41.1 0.3 -10 3.1 -0.5	6067 212 2630.0 4160.0 28.2 91.3 0.7
700S-140E	-25000 654 55 72 44 12 -10 18 -0.05 -0.1 2.6 227 64.1	2218.5 5790 3140 503 91	73.6 10 -25 35.5 0.4 -10 5.6 -0.5 70.8 13 -25 31.2 0.4 11 4.2 0.5	9396 302 3170.0 5450.0 35.9 148.0 0.9
7008-180E	-25000 667 59 72 65 12 -10 19 -0.05 -0.1 2.1 230 72.0	1503.0 3890 2340 508 68	56.3 11 -25 34.3 0.5 -10 8.0 -0.5	4350 315 3500.0 2830.0 19.5 72.0 0.9 6051 254 3180.0 3760.0 24.8 06.0 0.9
7008-300E 7008-340E	-25000 640 51 71 22 6 -10 15 -0.05 -0.1 1.8 219 124	1487.3 2920 2500 198 108	58.7 7 -25 25.4 0.3 25 5.7 -0.5	4658 193 3140.0 3760.0 22.4 92.6 0.7
7008-380E	-25000 777 57 77 45 9 -10 21 -0.05 -0.1 1.1 224 124	1/43.8 3710 1710 264 119 2016.0 4210 2430 244 80	69.6 9 -25 32.5 0.2 11 4.1 -0.5	5735 256 3170.0 3640.0 24.2 90.9 0.8
7008-420E	-25000 359 35 63 102 4 -10 21 -0.05 -0.1 2.0 168 43.6	1332.0 3350 807 1760 78	09.0 9 ÷20 29.5 −0.2 −10 4.3 −0.5 54.8 5 −25 45.8 0.2 253 2.8 0.5	4277 268 3690.0 3530.0 19.1 92.2 0.9
700S-400E	-25000 661 51 69 68 10 -10 21 -0.05 -0.1 1.8 249 96.7	2164.5 4790 2260 268 111	75.2 10 -25 29.2 0.3 30 3.2 -0.5	9997/ 181 1960.0 2040.0 16.3 61.3 0.5 4747 390 3310.0 3110.0 17.5 93.5 0.7
7008-000E BL700S	-2000 544 83 81 49 7 -10 25 -0.05 -0.1 2.0 239 59.8	2058.8 4960 1800 486 79	59.0 9 -25 33.2 0.4 -10 3.3 -0.5	5800 354 3200.0 3580.0 23.9 89.1 0.6
7008-20W	-25000 732 54 66 57 9 -10 19 -0.05 -0.1 2 254 86.0	1239.8 2540 1960 1890 75 2385.0 5410 2090 250 440	53.7 7 -25 40.8 0.5 -10 3.9 -0.5	6375 203 2860.0 3750.0 24.4 87.6 1.9
7008-60W	-25000 505 44 77 63 6 -10 19 -0.05 -0.1 2.1 281 116	2081.0 4920 2130 352 101	62.5 9 -25 42.5 0.6 -10 2.8 -0.5	4423 251 3170.0 3040.0 22.6 79.4 0.6
7008-100W	-25000 846 74 93 76 10 -10 23 -0.05 -0.1 2.1 233 110	2902.5 7000 3820 249 104	70.5 6 -25 35.2 0.4 -10 4.8 -0.5	5160 309 3120.0 9470.0 25.5 106.0 0.7
7008-180W	-25000 312 40 57 58 3 10 14 0.05 0.1 1.3 293 77.9	1653.8 4230 2350 1020 121	60.8 7 -25 55.3 0.3 -10 5.6 -0.5	5030 339 3120.0 3190.0 23.3 72.2 0.7
7008-220W	-25000 889 81 77 46 9 -10 19 -0.05 -0.1 2.0 234 90.4	1303.0 2100 1160 1470 145	59.5 5 -25 38.2 0.6 -10 7.8 -0.5 57.5 0 -25 34.9 0.2 10 40.5	5681 250 2290.0 2920.0 19.9 77.6 0.5
700S-260W	-25000 675 56 74 30 8 -10 18 -0.05 -0.1 2.2 219 99.2	2121.8 3530 3320 63 87	58.2 5 -25 29.8 D.4 -10 40 -0.5	5176 172 3110 3730 0 20 8 75.5 0.7

Colin E. Dunn 10hMarch 2002

4

4

Table 1: Analytical data, as received from Actlabs 14th February 2002

Gold Mask Ventures Terrasol dataset - revised data used for plotting

 $\overline{}$ J.

Table 1 - Anayrical data.xls 23539crp

PGE Package:	Oxidation	Sulte:								Be	ee. Mets				B#	se Mota	i - Cheid	ophile A	ssociat.	н	ioh-Field	Strength El	lamante ·		
Sample ID: 005-20W	8.Q. CI V	As	Se N	lo Sb	Te W	Re	Au S.Q. H	Th Th	U	Co	Ni	Cu	Zn	Pb	Ga	Ge Ag	Cd	In S	in TI Bi	S.Q.	TI S.Q. CI	Y	Zr Nb	Hf	Te
005-2011	-25000 776	92 74 4	10 7	11 51	-10 18	-0.05	0.1 1.	3 269	96.4	2490.0	4040	2768	253	81	67.8	11 -25	41.6	0.3 10	1 2.7 -0.5	324	0 143	3790.0 3	100.0 22.9	68.2	1.7
008-220W	-25000 917	110 1	05 14	1 14	-10 18	0.27	-0.1 1.	5 242	69.3	2450.0	5660	2264	517	107	78.9	15 -26	31.0	0.4 3	1 3.9 -0.5	306	0 216	4350.0 2	330.0 19.0	59.9	1.8
008-260	-25000 830	98	85 8	8 12	-10 24	0.33	0.1 7	5 280	134	24/0.0	4290	3320	337	143	65.4	14 -25	33.4	0.3 8	8 1.0 -0.5	406	0 204	3850.0 3	080.0 27.5	63.9	1.7
00S-300W	-25000 748	83	73	9 10	-10 15	-0.05	-01 1	3 274	135	1000.0	2870	3484	505	80	77.0	10 -20	9 41.1	0.6 4	1 2.3 -0.5	673	0 154	4030.0 4	460.0 32.3	103.0	1.9
100S-60E	-25000 736	286	38 1	3 21	-10 -10	0.05	0.3 7.	2 94.5	32.0	378.0	409	2144	132	31	13.0	4 .25	23.0	0.5 4	2 4.9 -0.5	471	0 143	3900.0 4	360.0 29.1	97.1	1.9
100S-100E	-25000 682	95	89 3	9 13	-10 15	-0.05	0.1 1.	3 196	110	1580.0	2690	3056	307	61	70.3	13 -25	28.0	0.4 5	3 82 05	206	0 134	1260.0	255.0 1.4	6.7	0.5
100S-140E	-25000 577	49	50 11	75	-10 18	-0.05	-0.1 1.	3 195	60.3	2780.0	6490	2648	360	74	68.2	11 -25	34.5	-0.2 5	2 40 .05	320	0 131	4230.0 3	360.0 24.6	62.1	1.9
BL100S	-25000 809	127	56 4	9 11	-10 12	0.06	0.2 2.	7 195	77.2	1260.0	2530	2050	2120	76	54.1	9 -25	35.4	0.6 1	9 6.6 -0.5	459	0 197	2980.0 2	300.0 17.1	00.9 R0.7	1.4
1005-20W	-25000 461	95	74 6	2 8	-10 12	0.26	-0.1 2.	115	33.3	969.0	2290	4232	386	49	39.4	7 -25	31.9	0.4 -1	0 3.9 -0.5		8 96	2410.0	8460 53	20.3	1.4
1008-0000	-25000 /1/	144	47 92	23 23	-10 27	0.73	0.3 2.:	2 157	30.1	2680.0	5040	20000	941	85	62.4	8 -25	72.4	0.7 1	8 -0.5 -0.5	201	0 125	3010.0 2	400.0 14.5	56.3	14
1005-140W	204000 828	75 1	03 11	4 10	-10 22	0.88	0.1 1.:	2 239	129	2190.0	4300	2688	407	39	66.1	12 -25	45.7	0.5 3	0 0.7 -0.5	492	0 125	3790.0 3	670.0 29.2	84.3	1.5
100S-180W	-25000 1040	112	00 / 98 #	1 21	-10 21	0.12	0.1 1.	23/	94.0	2100.0	4990	2528	290	38	62.3	12 -25	33.4	0.5 4	6 0.5 -0.5	434	0 106	3730.0 3	200.0 24.0	71.9	1.7
100S-220W	-25000 848	103	47 2	4 14	-10 -10	-0.05	-01 1	157	123	490.0	1120	2112	388	52	63.4	13 -25	47.2	-0.2 6	0 1.8 -0.5	373	0 116	3670.0 3	900.0 28.2	78.7	1.7
100S-260W	-25000 773	139	84 10	5 12	-10 22	0.19	0.1 1.	305	124	2490.0	3690	1536	512	23	37.5 66.0	11 25	20.3	-0.2 0	7 10.3 -0.5	230	0 105	2090.0 2	290.0 12.4	52.6	1.1
100S-300W	-25000 589	95	80 6	3 11	-10 17	-0.05	0.1 1.	3 236	130	2190.0	3360	2272	626	70	77 1	14 -25	35.8	0.0 2	0 23 05	830	0 141	3380.0 4	960.0 42.5	110.0	1.6
100S-340W	-25000 488	89	93 6	337	-10 17	0.10	0.1 1.	3 261	108	1560.0	2560	2424	430	77	68.4	13 -25	26.2	0.5 -1	0 33 -05	437	0 175	4200.0 4	220.0 30.4	107.0	2.3
1008-380W	-25000 652	96	79 E	6 7	-10 22	0.05	-0.1 1.	282	124	1940.0	2890	2096	946	83	71.1	13 -25	27.2	0.5 -1	0 5.3 -0.5	481	0 175	4180.0 3	830 0 32 4	90.8	2.0
2003-202	-25000 571	61	99 11	4 11	-10 22	-0.05	-0.1 1.	3 260	128	2300.0	3810	1208	434	47	72.0	14 -25	35.2	0.5 -1	0 1.0 -0.5	490	0 102	4140.0 4	080.0 27.3	110.0	1.8
2005-140E	-25000 450	117	20 10	/1 / /8 10	-10 -10	0.13	0.1 6.	3 98.1	31.8	584.0	501	9840	244	33	15.3	3 -25	46.9	1.1 7	1 29.0 -0.5	35	2 88	1050.0	265.0 1.5	8.4	0.4
2005-180E	-25000 460	67	85 14	2 10	-10 21	0.12	-0.1 1.	316	59.U 96.7	2090.0	5590	2536	548	77	68.6	13 -25	35.7	0.4 -1	0 3.6 -0.5	300	0 227	4020.0 2	980.0 20.5	67.4	2.1
2008-220E	-25000 680	72 1	09 4	7 11	-10 19	-0.05	0.2 2	222	32.9	2030.0	5850	3224	100	67	66.0	11 -20	42.3	0.5 2	4 1.8 -0.5	331	0 173	3460.0 2	600.0 19.2	64.5	1.6
200S-260E	-25000 654	72	87 4	1 9	-10 16	0.06	0.1 0.1	212	65.5	1590.0	4540	2418	188	78	72.6	13 -20	20.4	0.2 1	3 1.8 -0.5	186	0 207	4160.0 1	820.0 11.8	51.1	1.8
2008-300E	-25000 634	63 1	04 5	i3 8	-10 16	0.05	-0.1 1.	264	58.7	1530.0	4730	1912	565	76	78.4	15 -25	22.4	0.4 -1	0 64 05	204	0 143	4380.0 24	400.0 14.0	64.9	2.2
200S-340E	-25000 541	186	74 7	94	-10 22	0.07	-0.1 1.3	2 330	52.8	1770.0	4250	1184	497	86	63.2	10 -25	24.3	0.5 2	9 28 -05	200	0 191	4490.0 2	040 0 19.4	72.7	2.2
200S-380E	-25000 847	85 1	03 11	1 8	-10 19	-0.05	-0.1 1.9	5 297	92.0	1610.0	4300	1408	1110	68	77.0	17 -25	30.6	0.5 -1	0 3.0 -0.5	304	0 159	4690.0 2	940.0 23.6	70.1	1.0
2005-4205	-25000 767	81 1	24 7	6 8	-10 16	0.06	-0.1 1.:	2 297	94.7	1830.0	4670	1808	874	110	83.5	15 -25	28.6	0.3 -1	0 2.7 -0.5	268	0 282	4860.0 2	690 0 21 2	724	2.1
2003-400E	-20000 072	107	60 11	0 7	-10 21	80.0	0.2 1.4	315	78.5	1630.0	4070	872	934	117	75.1	14 -25	35.9	0.4 2	8 1.7 -0.5	342	0 184	3610.0 3	170.0 24.6	78.7	2.0
BL200S	-25000 737	123	80 C	5 0	-10 18	0.08	-0.1 1.9	9 194	70.7	2850.0	8770	2624	389	52	71.1	13 -25	21.2	0.4 2	3 1.3 -0.5	251	0 184	4190.0 1	980.0 14.1	61.0	2.0
2008-20W	-25000 635	45	62 6	IB 12	-10 18	-0.05	-0.1 2.	204	44.0	1310.0	2990	2205 3	2340	73	63.9	10 -25	47.0	0.7 -1	0 4.3 -0.5	471	0 178	3360.0 3	370.0 26.6	87.2	1.9
200S-80W	-25000 451	72	80 12	8 8	-10 22	-0.05	-01 1:	203	41.1 80.8	1950.0	4/40	1280	305	40	53.4	9 -25	22.4	0.5 -1	0 0.9 -0.5	218	0 128	3110.0 1	690.0 14.0	47.6	1.6
200S-100W	27000 822	110	54 11	98	-10 25	0.13	-0.1 1.1	292	46.5	2250.0	4200	1890	890	158	66 6	9 - 20	30.2	0.4 -1	0 1.2 -0.5	429	0 120	3290.0 3	230.0 24.9	81.0	1.4
2008-140W	-25000 547	48	63 15	5 10	-10 28	-0.05	0.1 2.0	248	45.6	2680.0	5360	1754	532	82	63.6	11 -25	341	0.5 15	6 -05 -05	393	0 185	3050.0 2	230.0 22.4	59.5	1.6
200S-180W	-25000 655	49	92 16	5 15	-10 35	-0.05	0.1 2.1	252	78.6	3880.0	6680	1764	484	102	80.0	16 -25	31.7	0.5 1	3 -0.5 -0.5	253	0 165	4950.0 2	480.0 18.2	71.7	1.9
2005-22099	-25000 836	135	80 4	8 17	-10 18	0.49	-0.1 2.1	255	41.2	1080.0	2990	1712	408	51	52.5	9 -25	41.0	0.5 1	8 2.2 -0.5	489	0 289	2790.0 2	800.0 31.3	76.9	15
2005-200W	-25000 565	142	67 1U 50 B	0 10	-10 18	-0.05	-0.1 1.1	267	81.6	1440.0	2590	1029	1260	54	57.7	10 -25	32.3	0.7 2	8 1.9 -0.5	623	0 151	3020.0 3	540.0 37.5	95.1	1.4
2005-340W	-25000 751	137	68 d	4 9	-10 10	-0.05	-0.1 2.1	232	09./ 58.2	1350.0	2560	1554	802	73	53.7	10 -25	33.5	0.6 -1	0 3.0 -0.5	390	0 122	3170.0 2	790.0 23.0	77.0	1.8
2005-380W	-25000 457	65	63 12	2 9	-10 27	-0.05	-01 11	241	72 R	2010.0	3260	1082	412	8/	54.1	10 -25	32.1	0.4 -1	0 1.2 -0.5	312	0 118	3790.0 3	700.0 26.7	89.9	2.1
200S-420W	-25000 410	167	53 19	7 2	-10 23	0.18	-0.1 1.1	256	50.8	1350.0	1990	709 2	3860	94	54.7	7 -25	33.3 47 B	0.0 1	4 -0.5 -0.5	333	0 78	3400.0 2	830.0 22.4	74.5	1.5
300S-20E	-25000 521	64	71 4	07	-10 19	-0.05	-0.1 1.3	255	100	1800.0	2990	2604	580	62	56.9	11 -25	23.2	0.8 -1	0 2.1 -0.5	499	0 166	2650.0 20	030.0 25.9	63.2	1.4
300S-60E	-25000 626	83	87 4	2 14	-10 17	0.18	0.2 1.5	238	132	1900.0	3180	2993	298	57	62.3	11 -25	28.6	0.3 -1	0 1.3 -0.5	427	0 125	3070.0 3	340.0 23.7 050 0 24 7	104.0	1.7
3003-18UE	-25000 738	51	94 10	3 12	-10 18	-0.05	-0.1 1.4	243	87.9	2120.0	4840	3623	300	71	71.5	13 -25	21.6	0.5 -1	0 8.3 -0.5	272	0 215	3830.0 2	790 0 21 3	85 3	1.0
300S-260F	-25000 578	80	04 1U 70 6	8 0	-10 19	-0.05	-0.1 1.4	228	75.4	2190.0	5050	3045	716	74	77.7	12 -25	28.2	0.5 -1	0 5.0 -0.5	293	0 194	3910.0 2	290.0 20.0	59.4	1.8
300S-300E	-25000 676	65	99 6	R 10	-10 19	-0.05	-0.1 1	219	03.0	2320.0	4940	3402 1	1020	97	80.5	12 -25	32.2	0.5 8	4 1.6 -0.5	242	0 143	4020.0 2	460.0 15.1	64.8	1.7
3008-340E	-25000 801	60 1	19 10	3 12	-10 21	-0.05	-0.1 t.4	275	130	2660.0	6410	2352	629 550	80	79.6	14 -25	33.4	0.4 -1	0 3.3 -0.5	268	D 176	4750.0 2	510.0 17.5	67.7	2.2
300S-380E	-25000 804	92	83 10	1 14	-10 20	-0.05	-0.1 1.1	282	70.8	2000.0	4860	3119 3	3090	140	91.Z	14 -25	28./	0.4 16	2 5.7 -0.5	330	0 250	5550.0 3	390.0 23.2	84.6	2.8
300S-420E	-25000 597	57 1	03 6	4 11	-10 18	-0.05	-0.1 1.3	240	144	1810.0	3400	2008	313	81	79.5	15 -25	26.2	0.0 8	1 1.2 -0.5	350	0 206	4560.0 30	070.0 24.5	76.0	2.0
300S-480E	-25000 548	48	85 5	9 10	-10 18	0.16	-0.1 0.1	245	108	1410.0	4030	2037	847	75	76.3	13 -25	27.7	0.3 1	3 84 -05	250	0 138	44/0.0 32	740.0 122.9	83.3	1.9
3005-300E	-25000 990	145	39 2	3 10	-10 12	-0.05	0.2 3.4	106	37.2	684.0	1250	1922	362	48	27.0	4 -25	28.3	0.6 -1	0 14.3 -0.5	107	169	1700.0	655.0 5.0	15.0	1.9
3008-20W	-25000 358	47	/1 3 45 0	5 8	-10 15	0.10	-0.1 2.1	241	78.6	1210.0	2860	1649	1890	61	55.8	9 -25	34.7	0.5 1	4 7.0 -0.5	383	0 128	3310.0 3	230.0 22.7	80.5	1.2
3008-60W	-25000 927	123	90 12	3 13	-10 10	0.00	-0.1 1.1	248	113	1580.0	3040	1500	1680	60	64.9	11 -25	32.5	0.5 -1	0 6.4 -0.5	323	0 137	3400.0 20	670.0 20.2	70.6	1.5
300S-100W	-25000 861	86	84 6	4 23	-10 21	0.07	0.3 20	208	54.4	2870.0	5400	3070 1	1240	20	70.7	14 -25	35.0	0.5 8	1 2.3 -0.5	433	0 209	3910.0 3/	480.0 31.3	84.7	2.1
3008-140W	-25000 897	75	79 14	3 18	-10 27	0.07	-0.1 1.0	329	115	2150.0	4700	1920	576	59	01.1 #1.0	10 .25	33.0	0.5 4	0 1.9 -0.5	164	0 151	4060.0 1	530.0 7.3	48.3	1.8
3005-180W	-25000 665	73	67 11	6 11	-10 18	0.10	-0.1 2.0	313	104	2080.0	3920	1950	354	61	58.0	10 -25	21.6	0.0 -1	0 2.7 -0.5	424	0 192	3890.0 28	880.0 22.8	69.8	1.6
3005-220W	-25000 831	111 1	00 7	2 11	-10 24	0.09	-0.1 3.1	285	101	2420.0	4800	2440	980	119	73.5	12 -25	41.3	0.8 1	8 3.5 -0.5	501 ∡77	0 14/ 1 204	4080.0 2	130.0 28.0 640.0 29.2	59.1 00.e	1.7
3008-2004	-25000 1460	142	78 5	6 20	-10 25	-0.05	0.3 2.6	335	33.8	2510.0	6490	5680	678	95	60.5	13 -25	36.3	0.5 -1	0 4.6 0.6	307	0 395	3700.0 1/	840.0 28.3	47.2	2.0
3008-340W	-25000 1000	87	51 B	4 18	-10 22	0.07	-0.1 2.1	317	84.9	1960.0	4250	2460	401	81	68.0	13 -25	18.2	0.5 -1	0 4.3 -0.5	327	0 202	4620.0 2	590.0 20.1	66.9	1.0
3005-380W	-25000 543	80	73 5	0 14	-10 18	-0.05	0.3 3.1	245	63.0	2110.0	4440	6000	193	60	58.9	10 -25	23.0	0.5 -1	0 5.9 -0.5	232	258	3840.0 1/	600.0 11.2	43.7	1.8
300S-420W	-25000 751	168	45 10	Ă Ő	-10 10	-0.05	-0.1 1.1	265	60.0	1920.0	2620	2110	343	90	68.6	11 -25	28.0	0.5 12	6 1.6 -0.5	349	0 137	3800.0 21	800.0 20.7	74.0	1.8
3005-460W	-25000 908	151	52 3	7 11	-10 17	-0.05	0.2 3.6	160	53.9	1240.0	2000	3140	430	50	02.1	11 -25	28.0	0.6 1	8 9.0 -0.5	393	0 266	3460.0 24	450.0 19.6	70.6	1.8
400S-20E	-25000 578	57	84 11	3 10	-10 25	-0.05	-0.1 1.6	311	83.2	1960.0	3970	2530	124	78	87.8	12 .25	32.4	0.4 1	0 7.0 -0.5	191	0 118	2630.0 1F	870.0 14.0	41.6	1.3
4008-60E	-25000 711	60	62 4	4 16	-10 18	-0.05	0.2 1.1	240	86.1	2420.0	5830	4790	255	54	66.1	12 26	29.8	0.4 2	4 29 -0.5	423	⊔ 1348 1 17≏	3640.0 36	680.0 23.9	93.6	2.0
4008-100E	-25000 701	60	72 10	0 10	-10 20	0.19	0.1 1.3	319	78.1	2090.0	3950	2930 1	1320	81	64.7	9 -25	29.0	0.4 -1	0 4.6 -0.5	209	2 1/0	3450.0 20	09UU 18,4 2800 284	/3.9	1.9
4005-2205	-25000 677	57	58 7	8 12 P	-10 20	-0.05	0.2 1.3	235	99.4	2070.0	4450	2710	339	53	61.2	12 -25	17.4	0.4 -1	0 3.1 -0.5	280	123	3790.0 2	840.0 18 3	77.2	1.9
4008-300F	-23000 771	72		0 14	-10 23	-0.05	-0.1 4.3	286	30.2	1500.0	3880	1630 3	3950	89	53.5	7 -25	44.7	0.7 -1	0 6.3 -0.5	393	279	2840.0 11	920.0 19.9	49 1	1.1
4008-340E	-25000 552	48	AB 12	5 8	-10 1/	-0.05	-0.1 0.6	275	/2.9	1530.0	3840	1780	905	50	67.3	9 -25	25.5	0.5 -1	0 3.9 -0.5	261	187	4020.0 11	980.0 14.9	56.7	1.8
4008-380E	-25000 592	74	99 8	3 10	-10 21	-0.05	-0.1 1/	320	78 7	2120.0	3150	1090	917 072	88 97	82.0	12 -25	36.4	0.5 -1	2.0 -0.5	278	141	4520.0 2	290.0 18.7	73.8	2.3
4008-420E	-25000 678	79	70 12	2 14	-10 22	-0.05	-0.1 1.4	302	95.3	1820.0	4840	2210 4	1310	81	/1.4	10 25	30.0	0.5 1	1 2.0 -0.5	272	218	4150.0 23	390.0 14.0	71.3	2.0
4008-460E	-25000 779	97	72 28	1 11	-10 25	0.08	0.1 1.4	290	71.9	1820.0	4290	3240	1380	169	70 F	11 -26	30./ 47.0	0.3 14	∠ 3.0 -0.5 5 4 3 ∩£	341	183	3820.0 26	970.0 22.2	84.0	2.0
4008-500E	-25000 682	52	75 8	4 13	-10 21	~0.05	-0.1 1.4	258	122	1850.0	4150	3090	613	72	68.5	12 -25	31.0	0.3 1	1 1.6 -0.5	400	325	3/60.0 30	090.0 25.0	91.5	1.8
DL9008	-25000 805	113	53 6	4 11	-10 19	-0.05	-0.1 1.7	244	85.0	1460.0	3090	2090 1	1850	67	56.5	12 -25	34.8	0.8 -1	0 6.4 -0.5	437) 159	3720.0 24	820 0 23 4	82.0	2.1
	-2000 6/0	26	04 4	ษ 12	-10 16	0.07	0.1 1.6	277	96.6	17 5 0.0	3710	3190	288	64	59.4	11 -25	33.3	0.4 -1	D 4.1 -0.5	336	170	3920.0 3	460 0 23 0	04.3	2.0
																									A.U

.

Table 1: Analytical data, as received from Actlabs 14th February 2002

	N	Mean	Std. Dev.	Minimum				Percentiles	5			Maximum
					25	50	70	80	90	95	98	
AS	359	98	68	34	62	81	103	117	162	208	280	58
AU	359	0.08	0.13	0.05	0.05	0.05	0.05	0.05	0.14	0.22	0.35	2.2
BA	359	51199	13106	6320	43680	50800	57900	61500	67520	73100	78136	10300
BE	359	27	8	2	22	27	31	34	37	40	45	5
BI	359	0.25	0.03	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.5
CD	359	36	15	13	28	33	38	44	51	63	79	13
CE	359	6656	2112	750	5227	6615	7560	8280	9446	10140	11691	1390
CL_SQ	359	13529	11507	12500	12500	12500	12500	12500	12500	12500	12500	20400
CO	359	1879	578	143	1562	1908	2156	2320	2580	2774	2948	388
CR_SQ	359	191	76	20	141	176	213	240	288	340	381	62
CS	359	6.1	3.4	1.0	3.8	5.3	6.7	8.0	10.6	13.9	16.7	. 20.
	359	3201	5840	385	1880	2440	2960	3320	4040	5510	9348	8800
	359	/30	189	110	641	/35	803	853	949	1082	1169	159
	359	435	108	02	3/9	435	4/6	507	560	609	693	87
GA	359	223	00	30	190	224	245	260	288	314	354	58
GD	350	765	205	14	651	770	/5	/9	85	88	92	10
Ge	350	12	205	11/	001	112	000	911	1016	1100	1227	160
HF	359	74	23	5	63	76	13	10	100	110	19	
HG SO	359	22	13	0.8	16	20	23	92	2.0	27	5.2	14
HO	359	147	37	20	128	147	162	160	3.2	210	0.2	101
IN	359	0.46	0.19	01	03	0.44	0.5	0.6	0.7	0.79	220	>
LA	359	2845	823	661	2410	2830	3120	3378	3730	4160	5002	7049
LI SQ	359	143	100	11	109	130	145	150	101	211	316	1.92
LU	359	63	14	12	55	63	68	72	79	87	103	11202
MN	359	323441	114383	3556	254000	314000	370000	409479	473000	520499	581730	837200
MO	359	85	87	The second second	49	73	94	106	128	161	254	
NB	359	25	9	1	19	25	29	32	36	38	44	53
ND	359	4026	1029	782	3534	4050	4440	4782	5250	5859	6296	7812
NI	359	3958	1406	409	3040	3930	4660	5010	5660	6490	6934	8790
OS	359	0.05	0.02	0.05	0.05	0.05	0.05	0.05	0.05	0.11	0.14	0.24
PB	359	82	34	12	59	79	95	106	121	140	160	363
PD	359	1.29	0.74	0.5	0.5	1	2	2	2	2	3	4
PR	359	882	228	170	768	886	977	1046	1150	1273	1385	1783
РТ	359	0.07	0.05	0.05	0.05	0.05	0.05	0.11	0.16	0.19	0.25	0.37
RB	359	242	91	64	184	229	278	305	365	416	487	561
RE	359	0.07	0.12	0.03	0.03	0.03	0.06	0.08	0.13	0.2	0.49	1.13
RU	359	0.12	0.09	0.1	0.1	0.1	0.1	0.1	0.1	0.28	0.4	1,41
SB	359	12.1	6.2	0.5	8.3	10.8	13.5	15.5	18.5	22.7	31.8	45.3
SC_SQ	359	354	91	101	293	355	403	431	472	503	552	60.3
SE	359	84	20	26	72	83	92	100	109	121	129	153
SM	359	899	235	136	774	911	996	1070	1163	1310	1412	1786
	359	15.5	32.8	5	5	15000	5	14	31	67	121	390
	359	10130	10821	0009	12/00	15200	1//60	21120	26520	32880	65448	87600
	359	260	72		0.5	0.8	1./	1.9	2.1	2.2	2.6	3.0
1 50	350	4794	1752	40	2400	205	297	318	348	391	457	594
1_00	350	5.0	5.0	0.05	3490	4058	5560	6190	/130	/9/0	9024	10500
M	359	56	14	0.25	3.2	4.0	60	0	10	70	22	52
	359	96	128	16	49	99	109	100	12	19	100	111
,	359	730	275	020	577	00	811	969	1020	1242	162	2410
v	359	19.3	40	50	17.0	10.0	21.1	22.8	25.0	27.0	1533	2768
	359	3590	872	507	3140	3640	3070	4190	25.0	27.0	50.8	39.0
B	359	378	91	COUT -	330	3040	/15	4100	4000	4990	5940	0030
N	359	606	562	10	288	421	621	870	1200	1620	2200	2000
D	350	3304	1097	255	2670	3460	3060	4250	1290	5140	5517	0000

l

(

Table 3: Statistics by SPSS Elements arranged alphabetically

GM CLAIM GROUP - 921/9W

SELF - POTENTIAL SURVEY - 2001

BY: Larry D. Lutjen

SELF-POTENTIAL voltages both positive and negative will occur over blind mineralized deposits as they form a galvanic cell from the interaction of ground water flowing through the mineralization. Potentials above the mineralized deposit are almost always negative with positive background potentials at the outer limits of the mineralized deposit. The level of these potentials are proportional to the thickness of the over-burden over the deposit and in the case of the GM Claims it is estimated to be 20 to 30 meters. A model for this type of deposit is a galvanic cell extending into the earth at an angle equivalent to the dip of the ore body, with an electrical negative voltage at the surface of the earth and a positive voltage at the bottom of the deposit. This cell will set-up galvanic currents from negative to positive with resultant surface expressions of negative voltages over the deposit and positive voltages on the flanks at distances proportional to the dip of the ore body. Several problems with measuring these voltages are telluric currents induced into the earth by the solar winds blowing off of the sun and the inability to get repeatable contact with the earth when measuring millivolt levels of voltages. To solve the telluric problem we used a common ground reference that we measured every morning and night and adjusted the telluric effects by normalizing the data as you would on a magnetometer survey. To solve the contact problem we used 15 to 20 centimeter holes to make contact with the earth and the ceramic pots. We would then measure the resistance of the contact and dig deeper and deeper until the resistance dropped to our reference value. Often times we had to dig multiple hole to make the correct contact. We have done many self-potential surveys, but this one was over the most over-burden that we have ever surveyed. The results were voltage potentials from minus 15 millivolts to plus 18 millivolts which made the survey most difficult at these low levels. Once the ceramic pots resistance was equal to or lower than our reference value we would take our millivolt readings on a Micronta auto-range digital voltmeter, serial number 16210, which proved to be very durable and dependable.

SELF-POTENTIAL RESULTS in figure 1 show a negative anomaly that runs for over 800 meters at an azimuth of approximately 300 degrees with flanking positive anomalies on either side. Between line 800 south and 900 south there appears to be some strike-slip faulting that I have approximated at 20 degrees. If this off-set is part of the original anomaly, it represents another 300 meters of extension to first 800 meters. The Cherry Creek Fault appears to run through the GM Claims at approximately 300 degrees, the same as the negative anomaly. With anomalous negative and positive voltages running off of the original grid it will be very important to expand the existing baseline and gridlines. The final results will come from the drill core, but preliminary results from the self-potential survey are very promising.

GM CLAIM GROUP - 921/9W

TERRASOL SURVEY - 2002

By: Larry D. Lutjen

TERRASOL LEACH selectively leaches the amorphous oxide coatings on soil grains by dissolving the manganese oxide amorphous coatings and most of the limonite. As a result, trapped trace elements are released into the leach solution. Copper and Moly (Cu/Mo) anomalies form strong terrasol halos around shallowly buried deposits, suggesting the presence of an underlying Cu/Mo porphyry.

In figure 1, Copper values of 3440 ppb to 88000 ppb in the terrasol leach form an anomalous zone paralleling the Cherry Creek Fault at approximately a 300 degree azimuth across 800 meters of grid lines. The data strongly suggests a potentially buried unexplored Co/Mo porphyry system, with structurally controlled mineralization radiating from the inferred porphyry that could underlie the GM Claims.

In figure 2 the Moly values of 100 to 1154 ppb in the terrasol leach also follow the Cherry Creek Fault system at approximately a 300 degree azimuth, the same as the copper anomalies. Additional Moly values form conjugate shear zones which appear to strike through the Cherry Creek Fault at azimuths of 20 to 60 degrees. The conjugate shears also appear to be off-set along strike-slips that trend northerly.

In figure 3 the Rhenium values of .05 to 1.13 ppb strike along the Cherry Creek Fault at 300 degrees. Rhenium is the ninth rarest element and often forms halos above the margins of a buried Cu/Mo porphyry. In addition there are several Rhenium anomalies that appear to be leakage in the conjugate shear zones.

In figure 4 the Thallium values of 10 to 52 ppb also strike with the Cherry Creek Fault at 300 degrees and the conjugate shears at 20 to 60 degrees. Thallium terrasol results suggest subsurface structural zones trending with the Cherry Creek Fault and the conjugate shears.

In figure 5 the Niobium values of 26 to 53 ppb in the terrasol leach also trend with the Cherry Creek Fault and the conjugate shears. Niobium halos also form around deep seated fault structures. The Niobium trends appear to represent structures that guided the flow of mineralized fluids out of the porphyry system.

In figure 6 the Palladium values from 2 to 4 ppb in the terrasol leach also shows a trend with the Cherry Creek Fault and the conjugate shears. The data strongly suggests that some of the Palladium values extend off of the grid lines and warrant further exploration.

TERRASOL DATA from the B-horizon soil samples from the GM Claims have yielded diagnostic signatures indicative of a blind Copper/Moly porphyry. Porphyry deposits are marked by their large scale zoned metal and alteration assemblages. Central parts of the mineralized zone appear to have higher Au/Cu ratios than the margins. The Copper Porphyry deposits are found mostly in the Triassic/Jurassic volcanic terranes and the presence of hydrothermally altered clasts in coarse pyroclastic deposits can be used to locate mineralized intrusive centers.

GOLD MASK VENTURES LTD. ITEMIZED COST STATEMENT

FOR PHASE ONE OF THE 2001 - 2002 TWO PHASE MINERAL EXPLORATION PROGRAM ON THE GM CLAIMS

September 28, 2001 to February 6, 2002

1.	Geologists Field Trip:		
	Colin Dunn, Project Geologist, 1 Day Plus Vehicle Pental Exponse	\$	680.00
	Air Fare		578.66
	Hotel		97.18
	Richard Lodmell, 1 Day		250.00
	Larry Lutjen, 1 Day		250.00
	1 Truck (200 km) at \$0.35 KM		70.00
	Meals (3 Man Days) at \$30.00 Per Day		90.00
2.	Labour for Field Work:		
	Preparation of 1.5 Km of Baseline and 15.5 Km of Grid Lines		
	Richard Lodmell, 5 Days at \$250.00 Per Day		1,250.00
	Larry Lutjen, 5 Days at \$250.00 Per Day		1,250.00
	Collection of 416 Terrasol Soil Samples of Uniform Color and Texture		
	Richard Lodmell, 9 Days at \$250.00 Per Day		2,250.00
	Larry D. Lutjen, 8 Days at \$250.00 Per Day		2,000.00
	Self-Potential Geophysical Survey		
	Richard Lodmeil, 17 Days at \$250.00 Per Day		4,250.00
	Larry D. Lutjen, 17 Days at \$250.00 Per Day		4,250.00
3.	Transportation for Field Work:		
	Richard Lodmell, 31 Days at 40 KM Per Day and \$0.35 / KM		434.00
	Larry D. Lutjen, 30 Days at 200 Km Per Day and \$0.35 / KM		2,100.00
4.	Meals for Field Days:		
	Richard Lodmell, 31 Days at \$30.00 Per Day		930.00
	Larry D. Lutjen, 30 Days at \$30.00 Per Day		900.00
5.	Field Supplies and Shipping Costs:		
	Bags, Boxes, Radios, Flagging, Hip Chain, Etc.		853.74
6.	Self-Potential Equipment Rental: at \$500.00 Per Month		500.00
7.	Terrasol Soil Sample Analysis:	1	1.381.59
_			
8.	Drafting of Plates 1 to 7 for 2 Days Per Plate (S.P. and Terraol Surveys): at \$250.00 Per Day – Larry D. Lutjen		3,750.00
9.	Interpretation and Report on Terrasol Survey:		5,211.00
	For 8 Days Plus Costs By Dr. Collin Dunn		
	TOTAL OF EXPENDITURES ON THE GM CLAIMS TO FEBRUARY 6, 2002	\$	43,326.17

. . . .

··· • ·

February 6th, 2002

I, RICHARD LODMELL, of Box 1192, Kamloops, BC, V2C 6H3, state:

that I have received a Certificate for Industrial Records at Malaspia College, BC

that I have received a Statement of Course Completion in Mineral Exploration for Prospectors; and

that I have been active in Mineral Exploration in BC for over 20 years.

R bolmel

Richard Lodmell

- · · · · · · · · · · · · · · · · · · ·	
Statement c	of Course Completion
	RICHARD LODMELL
	has
	Tido
Successfully Comp	leted 180 Hours of Instruction
MINERAL I PRESENTED BY B.C. MIN B.C. MIN	EXPLORATION FOR PROSPECTORS ISTRY OF ENERGY, MINES AND PETROLEUN RESOURCES ISTRY OF EDUCATION
APRIL 16	to 30, 1983 - MESACHIE LAKE, B.C.
MAY 2, 1983	Alexandre Jahren der
Dated at Nanaimo, British Columbia, Canada	Director Dean
Malaspina	Alfine Registrar
- Concge	Instructor

February 6th, 2002

I, LARRY D. LUTJEN, of RR #1, Site 11, Box 12, Chase, BC, V0E 1M0, state:

that I have received a Degree in Electrical Engineering at the College of San Mateo, California;

that I have received a Statement of Course Completion in Mineral Exploration for Prospectors; and

that I have been active in Mineral Exploration in BC for over 20 years.

erch Larry D. Lutjen

HOS 1100\$ Bass 700\$ 200\$ 00 S ŧ0 -2 -2 в r-| -ARCIMUT ID _ 6, ē -9 -/ 6, / 6, _ -4 -3 ų -4 Ο -/ ____ -4 б -3 -9 -----5 -19 -5 ___ σ -3 生 \mathbb{I} ļĺ ę Π -1 Ĝ Ú 8j \mathcal{S} II// % ____ 10, •/0 // +10 ____ GEOLOGICAL SURVEY BRANCH ASSESSEMENT PRODUCT ---a.

s 5 - E	ΦE			
1 3_ 4	ŴĒ			
	BØE			
2	00 E			
, , ,	00 E			
WS AZIM	1577			
<u> </u>	0111			
б 6 и 0	∞w	·		
7 3 7	200 W			
7 ′ 3 4	600 W			
7 5 4	100 W		-	
7	500 W			
GOLD MASK VENTURES LTD.				
GM CLAIM GROUP				
SELF - POTENTIAL SURVEY				
921/	9W	Kamloops M.D.	February 2002	
Drawn	: L.D.L.	Scale 1:5,000	Figure 1	
.L			L <u></u>	
	+			

500E 400E 300E 200 E 100E 145° AZIMUTH 100 W 200 W 1 300 W 3520 400 W 500 W GOLD MASK VENTURES LTD. **GM CLAIM GROUP** 11,1 **TERRASOL SURVEY - Cu** February 2002 92I/9W Kamloops M.D. Figure 1 Scale 1:5,000 Drawn: L.D.L

5				
- 500E				
7				
35 400 E				
0				
20 300E				
200 E				
6				
1. 100E				
15° AZIMUTH				
2. 1 <i>0</i> 0 W				
200 W				
300 W				
400 W				
500 W				
GOLD MASK VENTURES LTD.				
GM CLAIM GROUP				
TERRASOL SURVEY - Mo				
921/9W	Kamloops M.D.	February 2002		
Drawn: L.D.L.	Scale 1:5,000	Figure 2		

_

500E

400 E

300E

200 E

100E

145° AZIMUTH

100W

200 W

300 W

400 W

500 W **GOLD MASK VENTURES LTD.**

GM CLAIM GROUP

TERRASOL SURVEY - Re

921/9W	Kamloops M.D.	February 2002
Drawn: L.D.L.	Scale 1:5,000	Figure 3

1.4 1508 500E 400 E 300E 200 E 100E 145° AZIMUTH 100 W 29 29 52 200 W 300 W 400 W 500W GOLD MASK VENTURES LTD. **GM CLAIM GROUP TERRASOL SURVEY - TI** 92I/9W February 2002 Kamloops M.D. Drawn: L.D.L. Scale 1:5,000 Figure 4

500E 400E 300E 200 E 100E INS AZIMUTH 100 W 200 W 300 W 400 W 500 W **GOLD MASK VENTURES LTD. GM CLAIM GROUP TERRASOL SURVEY - Nb** February 2002 Kamloops M.D. 92I/9W Drawn: L.D.L Figure 5 Scale 1:5,000

500E

400E

300E

200 E

100E

145° AZIMUTH

100W

200 W

300 W

400 W

500 W GOLD MASK VENTURES LTD.

GM CLAIM GROUP

TERRASOL SURVEY - Pd

921/9W	Kamloops M.D.	February 2002
Drawn: L.D.L.	Scale 1:5,000	Figure 6