

49°46'00"Lat., 117°46'30"Long.

UTM 5513800N, 444700E

for CRYSTAL GRAPHITE CORPORATION Suite 1750 – 999 West Hastings Street Vancouver, B.C. V6C 2W2

> by TOM LEWIS, B.Sc., FGAC, Consulting Geologist

> > February 2002

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

26.85

TABLE OF CONTENTS

SUMMARY1
INTRODUCTION AND TERMS OF REFERENCE
PROPERTY DESCRIPTION AND LOCATION
ACCESSIBILITY, CLIMATE, AND PHYSIOGRAPHY5
HISTORY
GEOLOGIC SETTING
MINERALIZATION16
WORK PROGRAM19
SAMPLING METHOD AND APPROACH20
SAMPLE PREPARATION, ANALYSES AND SECURITY
DATA VERIFICATION
MINERAL RESOURCE ESTIMATES25
INTERPRETATION AND CONCLUSIONS
RECOMMENDATIONS
REFERENCES
STATEMENT OF EXPLORATION EXPENDITURES
APPENDIX A: DRILL & TRENCH LOGS
APPENDIX B: ANALYTICAL RESULTS

.

LIST OF TABLES

Table 1: Mineral Claims - Black Crystal Property Slocan Mining Divi	sion, BC4
Table 2: Stratigraphic Section	10
Table 3: Mineral Resource Totals by Category	25
Table 4: Resource Estimate Regolith Zone	26
Table 5: Regolith Zone - Material Type Within Classification	26
Table 6: Resource Estimate Hard Rock	27
Table 7: Hard Rock Resource by Grade Range	27
Table 8: Projected Costs of Proposed Exploration	34

•

.

.

1

LIST OF FIGURES

Figure:	After
	Page
Figure 1 PROPERTY LOCATION MAP	3
Figure 2 CLAIM MAP	4
Figure 3 REGIONAL GEOLOGY	8
Figure 4 LOCAL GEOLOGY	9
Figure 5 PROPERTY GEOLOGY MAP	14
Figure 6 CROSS SECTION	16
Figure 7 DRILL HOLE LOCATION MAP	18
Figure 8 SLIT TRENCH LOCATION MAP	19
Figure 9 LINEAR TRENCH LOCATION MAP	20

SUMMARY

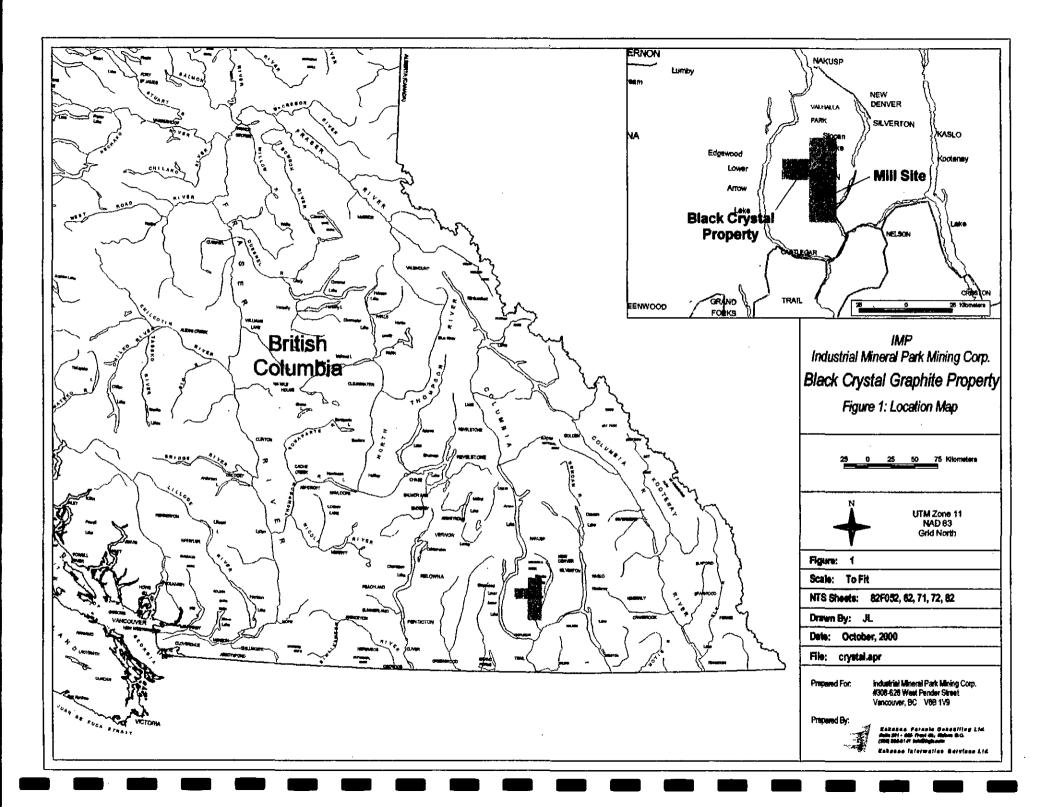
At the commencement of the field season of 2001 Crystal Graphite Corporation embarked on an exploration program consisting of geological mapping, diamond drilling, trenching and later in the season a further extensive combined trenching/bulk sampling program on it's 100% owned Molly and PB claims, which contain the "Black Crystal" disseminated graphite deposit (Minfile 082F260).

Omineca belt high grade metamorphic rocks of the Valhalla assemblages underlie the property, and are intruded by possible Eocene LadyBird Quartz Monzonite dykes and sills in various locales in the deposit area. Upper amphibolite facies calc-silicate rocks are the host for the disseminated graphite mineralization encountered locally. Numerous discontinuous pegmatitic sweats and dykes cut the local rock, appearing to be pene-contemporaneous to the metamorphism, which reportedly culminated during the Late Cretaceous. Two distinct types of calc-silicate rocks which host graphite mineralization of interest are noted here, with the higher grade graphite mineralization being determined to occur in the area of interest as two major discrete, roughly east to westerly trending bands, the most southerly of which appears to have the greatest economic potential.

During 2001's exploration campaign a total of 42-diamond drill holes were drilled on the property for a total of approximately 1895 metres of NQ size hole. The core generated from this program was logged, and prospective zones were split, and analyzed, either at Bondar Clegg in North Vancouver or at CGC's lab facility at Crystal Graphite Corporation's nearby beneficiation plant. A total of 644 samples were generated in the course of the drilling program. Additionally a program of slit trenches was undertaken concurrent to drilling, to evaluate the economic potential of the graphite mineralized glacio-fluvial till, and the in-situ weathered calc-silicate regolith material, which occurs on the property. In total 149 of these trenches were excavated, and 325 samples were taken of the graphite mineralized till, and regolith encountered. A program of check trenching/sampling was conducted during September to ensure the quality of the data generated during the summer program, wherein a further 17 trenches were excavated, and another 43 samples taken. During November a program of linear trenching was undertaken which enabled the company to better estimate the vertical extent of the weathered material, and to extract a further bulk sample for processing at the Koch Creek facility. During this program 1855 metres of trenching were excavated, and approximately 10,000 tonnes of friable calc-silicate mineralized material which had been extricated from the trenches was trucked to Koch Creek for processing. Additionally, a further approximately 3,000 tonnes was excavated and shipped to Koch Creek from the "Pit" area, which was the site of the year 2000 bulk sample. During this phase of the exploration a further 157 samples were taken, and shipped to Bondar Clegg for analysis.

Based on field observations and analytical results, MDS Mining Consultants of Auckland, New Zealand has produced a resource estimate for the property, and an application for a mine permit is in the process of being submitted to the B.C. Ministry of Energy and Mines. A large low-grade hard rock graphite resource has been established on the property, which is still open down dip and to the northeast. The approximate limits of the southern "pod" of weathered calc-silicate mineralization was defined during the work, while there is still some uncertainty to the size of the "pod" of weathered material which exists at the northern edge of the area of investigation. Concurrent to all this work Crystal Graphite continued work on its Koch Creek Pilot Beneficiation Plant, and the first graphite was produced from material taken during the Year 2000 10,000 tonnes bulk sample during August 2001. As of this date the plant has been substantially completed and work is ongoing to bring the plant to full capability, while fine-tuning the process.

A further exploration program is proposed for the project area, which will better define the northern pod of unconsolidated mineralized material, while some shallow drilling in the area will also determine the viability of future mining operations in this area where present knowledge is limited. Additionally, property scale mapping and prospecting is proposed in order to possibly determine if other areas of interest are located within the claim area, and to finally gain a clear understanding of the geology of the surrounding area. Also, diamond drilling is proposed to increase the confidence level of the resource contained immediately to the south of the area of greatest interest, while exploratory drilling would be done in areas which appear to be prospective from the work done in the initial phase. The complete program is estimated to cost approximately \$582,000.


INTRODUCTION AND TERMS OF REFERENCE

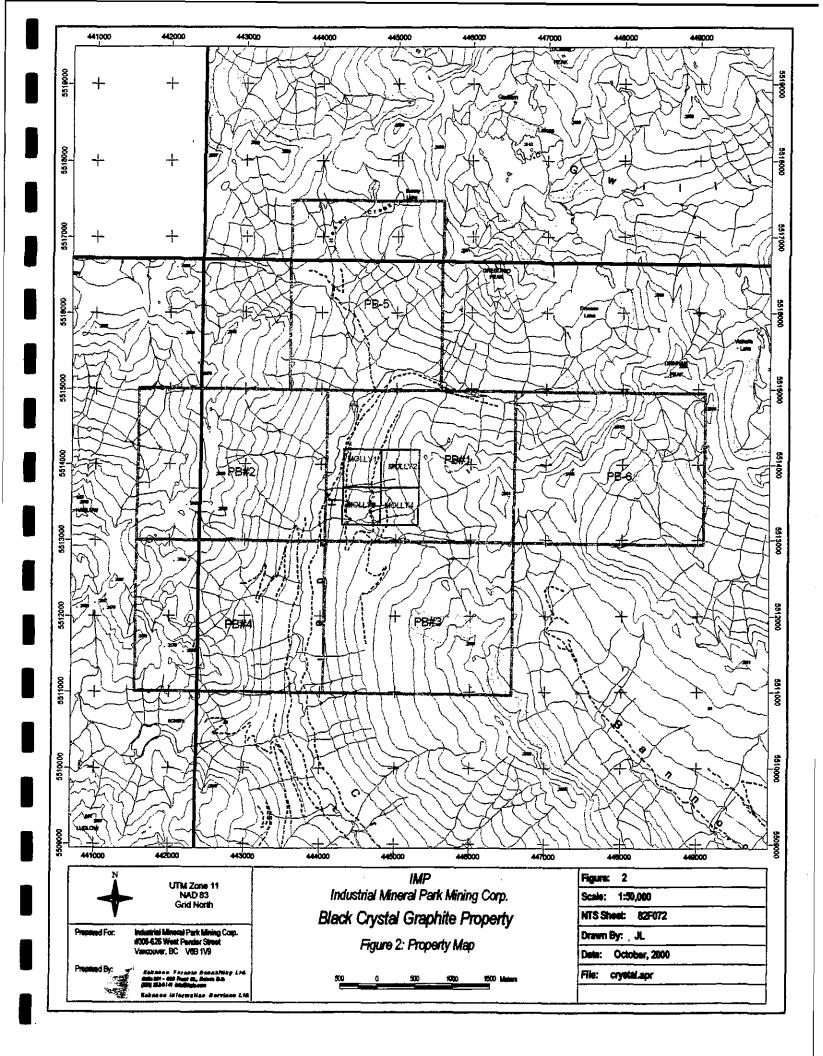
The author was retained by Crystal Graphite Corporation to conduct a program of geological mapping, diamond drill core logging, trench sampling and supervision. As time went on the writer became the sole continuing geoscientist on the project, and further responsibility was assumed for all other aspects of the program, including quality control, data compilation, the summarizing of all events of the exploration program in this, and other reports. Initially the work was under the direction of, and shared with Bernhardt Augsten P.Geo., who subsequently left the project at the beginning of September. James Chapman P.Geo. spent the month of September on the property, conducting an overall review of the program, and also carrying out check sampling, prospecting etc. During the advanced trenching program in October and November Linda Lewis P.Geo. assisted with the mapping and sampling, while Ed Craft P.Eng. was responsible for safety, and all other operational aspects of conducting the bulk sample. The exploration program was originally designed by MDS Mining Consultants of Auckland, New Zealand, and modified by field staff where local conditions were not conducive to the implementation of the program as planned. MDS was selected as CGC's geological modeling consultant because of their purported extensive experience of modeling sand and weathered type deposits. From this fieldwork MDS has subsequently estimated the resource contained in the "Black Crystal" Graphite deposit (Minfile 082F260), which is located within the claim area.

This report details all work on the claims from the commencement of field work in May of 2001, until the termination of the linear trenching program at the end of November, and makes recommendations for future work on the property.

PROPERTY DESCRIPTION AND LOCATION

As shown in Figure 2, the property consists of four two-post mineral claims, and six four-post mineral claims for a total of 10 claims, for a net total of approximately 3000

hectares (7410 acres). All claims are contiguous, and the four two-post mineral claims are entirely enveloped by one of the overlying Modified Grid four-post mineral claims. Crystal Graphite Corporation holds a 100% interest in all of these claims. Application has been made to the Crown to convert all four two-post mineral claims which cover the deposit area to mining lease, and it has been indicated that approval has been made, but the documentation has not been received as of yet. During the course of applying for the mining lease the two-post mineral claims have been surveyed by a registered legal surveyor. All claims are depicted on B.C. Energy and Minerals Division, Mineral Titles Branch, Mineral Titles Reference Maps 082F071, 082F072, and 082F082.


All of the claims are presently in good standing, and the pertinent data is provided in the Table below:

				_
CLAIM	TENURE NO.	CLAIM TYPE	NUMBER OF UNITS	EXPIRY DATE*
MOLLY 1	305145	2 POST	1	Sept. 20, 2012
MOLLY 2	305146	2 POST	1	Sept. 20, 2012
MOLLY 3	305147	2 POST	1	Sept. 20, 2012
MOLLY 4	305148	2 POST	1	Sept. 20, 2012
PB#1	318625	GRID	20	June 28, 2012
PB#2	318626	GRID	20	June 28, 2012
PB# 3	318627	GRID	20	June 28, 2012
PB#4	318628	GRID	20	June 28, 2012
PB#5	371670	GRID	20	Sept. 14, 2012
PB# 6	371671	GRID	20	Sept. 18, 2012

Table 1: Mineral Claims - Black Crystal Property Slocan Mining Division, BC

* Subsequent to the acceptance of this report for Assessment Credit

The entire property is located within the Slocan Mining Division, British Columbia, and the area of greatest interest on the property is roughly centered at UTM coordinates

5513800N, and 444700E, or 49°46'00" north latitude, and 117°46'30" longitude, and is approximately 51 kilometres north of Castlegar, or approximately 27.5 kilometres northwest of the village of Passmore. The property is located in the Valhalla Range of the southern Selkirk Mountains, and is displayed on NTS map 82F/13, or Trim maps 082F071, 072 and 082.

ACCESSIBILITY, CLIMATE, AND PHYSIOGRAPHY

The property is accessed from Highway 6 turning west on Passmore Upper Road just south of the village of Passmore, and then turning on to the Little Slocan Forest Service Road (F.S.R.) after approximately 4 kms, which point is signed as kilometre 44 (from Slocan City). It is a further 21.5 kms to the Hoder Creek F.S.R. junction, where one turns onto that road. Alternatively one may leave Highway 6 at Slocan City, traveling southerly on the Little Slocan Road approximately 22.5 kilometres to the Hoder Creek Road junction. From this junction it is approximately 18.5 kilometres to the junction where the Black Crystal access road leaves Hoder Creek Road. It is a further 2.5 kilometres up to the project area. Numerous upgraded roads exist in the general area of the work described herein, and several new exploration trails were constructed during the course of the year 2000, and 2001 work on the property. All roads are in good condition, and with few exceptions are generally passable with two-wheel drive during the snow free periods of the year. Access to other portions of the property may be gained by utilizing the Hoder Creek Road, or alternatively the Bannock Burn F.S.R., which leaves the Little Slocan Road at approximately the 17km mark. Access to the more remote portions of the property, or those which are considerably higher in elevation is best achieved by helicopter, with machines suitable for exploration work being based in both Nelson, and Castlegar. The Koch Creek Plant site is situated on the Koch Creek F.S.R., approximately half a kilometer up from it's junction with the Little Slocan Road, which occurs at approximately the 34.5 kilometre mark. All roads in the general area are well signed.

The property is within the Wet Interior bioclimatic zone. Winter usually extends from November into late April or early May, and considerable snowfall occurs at this time. The property is typically snow free from early June until early to mid November, although this may vary depending on yearly conditions. The short summers can be somewhat rainy at times, although conditions during that season are normally quite conducive to performing fieldwork.

The property is located in steep mountainous country. The area of the work reported herein would probably be best classified as sub-alpine, while the claim block stretches up into alpine terrain on Rinda Ridge. Elevations range from 1370 metres A.S.L. in the Hoder Creek drainage, to highs of 2380 metres A.S.L. on the aforementioned ridge. The area of investigation is covered for the most part by immature Engleman Spruce, and Alpine Fir, having been logged in the late 60's or early 70's. Abundant slide alder is also encountered in this area. There are stands of mature Spruce and Fir elsewhere on the property, while the upper portions of the property are characterized by alpine meadow, where the plant growth is typically grasses and mixed legumes with local scrubby spruce growth.

HISTORY

The Black Crystal area has been the focus of a considerable amount of exploration work, especially within the past several years. The property was originally staked in the early seventies by Mr. Steve Paszty, of Castlegar, B.C., but was allowed to lapse before long. The property lie dormant until 1992 when it was restaked by Mr. Paszty, who subsequently optioned it to Industrial Mineral Park Mining Corporation in July of 1993. Several more claims were staked at this time to increase, and consolidate the land package.

In 1993 a six hole reverse circulation drilling program of 250 metres of drilling was conducted on the property. Some limited surficial geological mapping was also done at

this time. Additionally, a 440 kilogram bulk sample was taken at this point, and subjected to flotation testing.

In 1995 13 diamond drill holes were drilled for a total of 577 metres of NQ diameter drill hole. These holes were drilled in two strings, one along the bottom access road on the way up from the Hoder Creek valley floor, and the other on the road to the present day pit area. Depths ranged from 30 to 92 metres. Also, a 3000 tonne bulk sample was excavated from the property, and hauled to the Koch Creek plant site for eventual beneficiation.

A further diamond drilling campaign was undertaken in 1997, wherein 27 NQ diameter holes were drilled, for a total of 913.8 metres. The core produced from this work was split but only four of the samples produced were analyzed and the rest was not submitted to a laboratory at this time.

In 2000 new investors assumed control of the company, renaming it Crystal Graphite Corporation, and embarking on an aggressive exploration campaign, as well as a multitude of studies into the impact that a mining operation/processing facility would have on the general area. Construction work was resumed on the Plant facilities at the junction of Hoder Creek, and the Little Slocan River. During the fall of 2000 CGC drilled 22 NQ diameter diamond drill holes, for a total of approximately 1181 metres to confirm the results from earlier drilling, and to further the known limits of the deposit. Also, they extracted the remaining 7,000 tonnes from the previous bulk sample of the weathered "regolith" material found locally, and excavated and sampled 27 vertical trenches, in an attempt to further define the extent of the regolithic material, which had been noted to develop where the calc-silicate host rock weathers in-situ. Channel samples were also taken of mineralized rock in the pit area. Petrographic work was done on samples of varying lithologies derived from the drill program in an attempt to better determine the exact lithological nuances of the rocks encountered on the property. In December of that year the samples taken from the 1997 diamond drilling program were finally shipped for analyses.

GEOLOGIC SETTING

The Black Crystal project is wholly situated within the Omineca Crystalline Belt. This belt along with the Foreland Thrust Belt to the east, the Intermontane Belt immediately to the west, the Coast and Insular belts further outboard make up the five distinct morphogeological provinces, which comprise the Canadian Cordillera. The Omineca Crystalline Belt is best typified as being an area of extensive tectonic uplift which is underlain by metamorphosed miogeoclinal rocks, along with local rocks which were formed in island arc settings, and subsequently accreted to the margin of the ancestral North American Craton during the Jurassic era. The property itself is located within the Valhalla Complex, which is a structural or domal culmination of high-grade metamorphic (upper amphibolite grade) rocks. Foliation and outwardly dipping layering define this 30 x 90km gneiss complex, which is located at the eastern exposed edge of the Shuswap Generally the lithologies contained within the metamorphic complex (Figure 3). complex are divided into three sheet like layers of variably deformed paragneiss and middle Cretaceous to Eocene igneous rocks. Apparently (Carr etal 1987) exhumation along Eocene normal faults have resulted in a "tectonic denudation" which has given rise to the domal shape of the complex. The Valkyr ductile extensional shear zone (which arches over the complex) bounds the complex on all but the eastern margin, where the complex terminates against the easterly dipping Slocan - Champion Lake ductile-brittle normal fault. There are three subculminations within the complex, the project being located on the west central flank of the northernmost of these - the Valhalla dome. The other two subculminations, the Passmore dome, and the Southern Valhalla complex, are lithologically, and structurally distinct from the Valhalla dome.

Lithologically, the Valhalla assemblage on the west flank of the Valhalla dome consists of an approximately 1.5km thick, heterogeneous package of upper amphibolite facies pelitic schist, marble, calc-silicate gneiss, psammitic gneiss, metaconglomerate, amphibolite gneiss, and ultramafic schist (figure 4). The base of the section is comprised of a sequence of conglomerate, calc-silicate gneiss, and marble interlayered with 50 – 100 metre thick units of aluminum poor semi-pelitic schist. The sequence

becomes more carbonate rich moving up in the metamorphic section, with thick marbles and calc-silicate gneisses interlayered with quartzites and sillimanite bearing pelitic schists. It also contains amphibolite gneiss and ultramafic schist, which do not occur in those sections which are structurally lower. The upper portion of the exposed sequence contains 30m thick marble and quartzite layers. Metasedimentary rocks in the core of the Valhalla dome generally consist of psammite, semi-pelitic and pelitic schist, quartzite, marble, and calc-silicate and amphibolite gneiss.

Schaubs and Carr (1988) have tentatively correlated the metamorphic rocks in this region with the sediments of the Lardeau Trough, as observed in the Goat Ranges (Klepacki, 1985), based on bulk composition, order, thickness (although tectonic thinning of up to 60% would have had to have occurred) etc. More specifically they believe that the Rinda Ridge composite unit correlates with the Index Formation of the Lardeau Group while the Rinda marble (unit 9), and Quartzites (unit 10), correlate with the Index Formation, the Badshot Formation, and Hamill Group respectively. Should this correlation be correct, the implication is that the section has been inverted locally.

It is possible that the host of the Black Crystal graphite deposit is, as reported by Bernie Augsten (2001), correlative to Schaubs & Carr's (1998) Rinda marble. While various criteria such as thickness, presence of graphite etc, are consistent with that unit, there is still enough uncertainty to make such a correlation premature. However there is no doubt, based on the proximity to existing local mapping, and overwhelming presence of carbonate in many of the lithologies present on the property that the rocks encountered are in the upper portions of the section as proposed by Schaubs & Carr. One of the curious things about the property is that the abundance of schists reported by Schaubs & Carr locally is not seen here, as all rocks to date have been positively identified through petrological work as being gneissic. Although some of the more pelitic samples could be taken for schists in weathered outcrop, they lack the well developed schistosity, or crenulation cleavage, which is essential for classification as such.

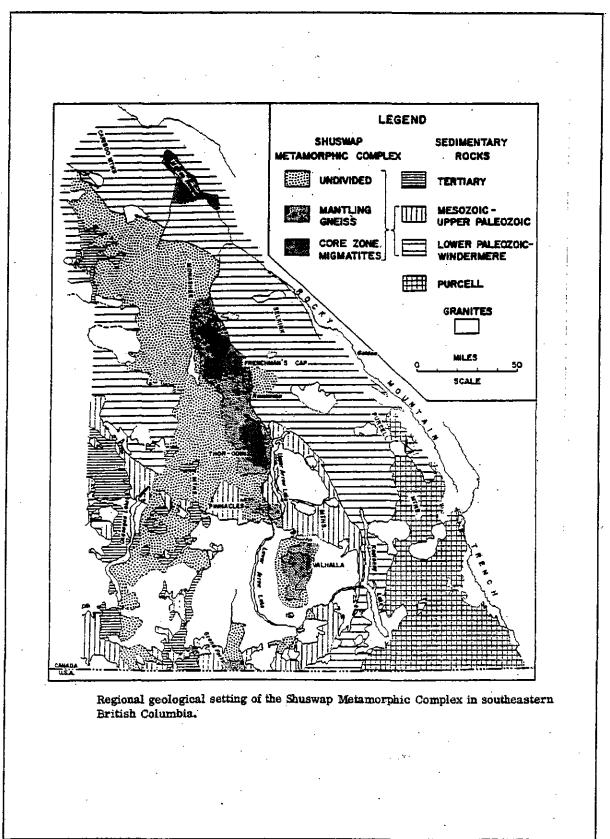


FIGURE 3 - REGIONAL GEOLOGY (after Reesor & Moore, 1971)

Lithologically, the idealized stratigraphic section (Table 2) is comprised of the following rock types, which are reported from the observed top of the section (oldest protolith - due to probable inversion):

UNIT	DESCRIPTION	GROUP?	FORMATIO	N? AGE?
Biotite/Feldspar/Quartz/ +/-Garnet Gneiss Hangingwall	Dark brown Moderate to strongly foliated	LARDEAU	INDEX	EARLY PALEOZOIC
Calc-Silicate Gneiss1	Creamy whitish Quartz/Calcium Carbonate rich rock with 2 ~ 3% disseminated graphite	BADSHOT		EARLY CAMBRIAN
Calc-Silicate Gneiss2	Greyish - green Quartz/Calcium Carbonate rich rock with 3 – 5% disseminated flake graphite			
Quartz Footwall	Rosy pink massive quartz, locally oxidized, fractured	HAMILL	MOUNT SYMONDS	EOCAMBRIAN
Intercalated Zone	Zone of thin bands of varying metamorphic lithologies			
Biotite/Feldspar/Quartz/ +/-Garnet Gneiss	Dark brown, Moderate to strongly foliated	HORSETHIEF CREEK GROUP?	FAWN LAKE ASSEMBLAGE	NEOPROTEROZOIC

Table 2: Stratigraphic Section

- Biotite/Feldspar/Quartz/+/-Garnet Gneiss: Content of constituents varies locally. Occasionally (Drill hole BC0124) may contain sections with up to 3.5% flake graphite. This is the hanging wall variation, and is typically only seen to the south, and the west of the immediate area of interest, although local pods have been noted where the entire section is preserved. As noted above the actual ordering of the contained minerals can vary significantly, and it is often the case it is reported in the order presented above, when actually the subordinates reported are the dominant constituent due to the inherent inclination to overestimate the quantity of platy minerals in any specimen.

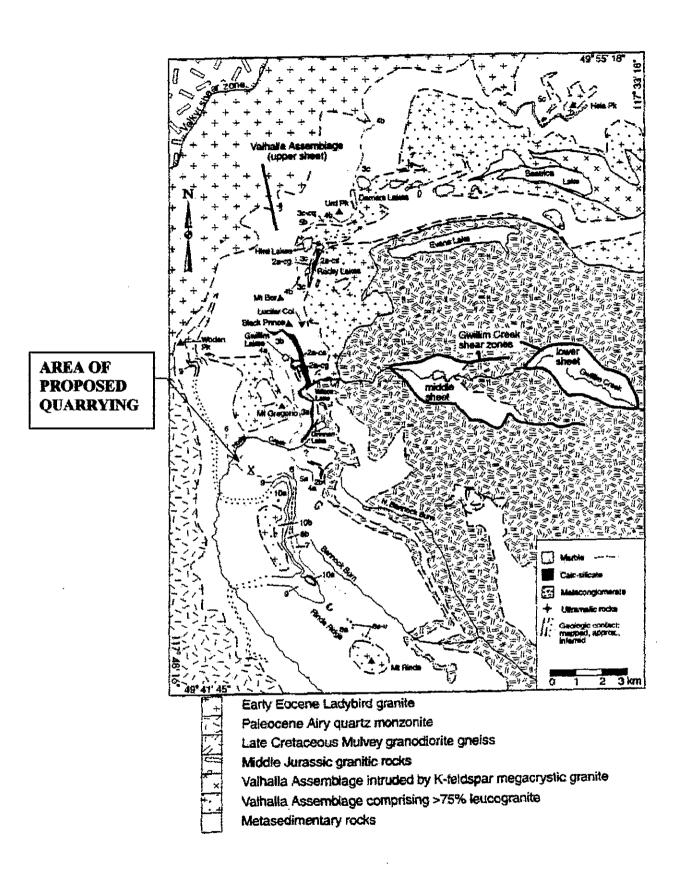


Figure 4 LOCAL GEOLOGY (after Schaubs & Carr 1998)

Calc-Silicate Gneiss (Cs1): One of the two principal graphite-bearing units identified to date on the Black Crystal graphite property. This rock is fine to medium grained, varying in colour from a light to medium grey; to light to medium greenish (diopsidic), grey. This unit is usually weakly to moderately foliated. It is also characterized by a distinctive grainy sucrosic texture. Graphite occurs a disseminated fine to medium grained discrete flakes, while Pyrrhotite/Pyrite is very fine grained, and occurs as disseminations, or in local blebs.

Modal Composition:

35 - 40%
25%
15%
10 -15%
5%
1.5 - 3%
1%
1-2%
<1%
<1%

Calc-Silicate Gneiss (Cs2): The second, and economically most important of the two principal graphite-bearing units on the Black Crystal property. This unit is fine grained, moderately to well foliated, and variable in colour from medium to dark grey to medium greenish grey. This rock also has a grainy sucrosic texture. Aside from the darker colour this rock is also distinguishable from Cs1 because of the presence of very fine-grained, bright emerald green spinel, and often the texture is somewhat distinct as fine elliptical segregations or pods of white (calcite +/- feldspar) minerals have developed. Graphite occurs as discrete disseminated fine-grained euhedral crystals, which are aligned parallel to sub parallel to foliation. Pyrite/pyrrhotite is typically very fine grained, and occurs as disseminations or local small blebs. Cs1 and Cs2 appear to be conformable, although in some instances are seen to be intercalated. The relationship between the two is presently not understood. It may be possible that factors such as discrete differences in protolith bulk composition may have played an important role in determining those sections, which developed into Cs1 or Cs2.

Modal Composition

Quartz	30%
Scapolite	30%
Clinopyroxene	10%
Calcite	10%
K-Feldspar	10%
Graphite	3 - 5%
Pyrrhotite/pyrite	1 – 2%
Sphene	1 – 2%
Amphibole	<1%
Spinel	<1%
Apatite	2-3%
Chlorite	trace

- Quartz: The Quartz unit forms the footwall of the deposit, although it is not present in all locations. A similar quartz unit has been noted to occur in the extreme eastern portions of the deposit in the hanging wall. The quartz has variable texture, but is often typically moderately to strongly limonite stained, coarse grained, recrystallized, and quite blocky or fractured. Minor sulphides (pyrrhotite) and traces of feldspar and chlorite/hydrobiotite are noted to occur. In many instances a thin conformable pegmatite (10 20 cm) has been observed occuring at the top of the quartz unit. The genesis of this quartz unit is somewhat enigmatic.
- **Intercalated Zone:** Not a separate lithology as such, but more correctly a commonly occurring correlatable zone, which is stratigraphically below the footwall quartz. This zone is comprised of thin bands (typically up to .5 metres)

of all the lithologies noted to occur locally on the property, it tends to be variably silicified or quartz flooded.

- Marble: Typically pale grey to whitish to pale greenish grey, medium to coarsegrained quartzy marble. Tends to be massive to very weakly foliated, and although modal composition can vary considerably, the main constituents are: calcite, quartz and diopside (Clinopyroxene). This rock typically contains < .5% graphite, and < .5% sulphides (pyrrhotite/pyrite/sphalerite).</p>
- Biotite/Feldspar/Quartz +/- Garnet Gneiss: Much the same as the hanging wall unit noted above.
- Skarn: Occurs throughout the section, often times adjacent to the Pegmatitic or Quartz Monzonite dykes or sills noted below. It is typically an aphanitic, medium to dark green rock, which is rich in quartz, diopside, and calcite. Somewhat less altered sections of the above lithologies are typically contained within skarn sections.
- Quartz Syenite: Typically white to pale grey, massive, medium grained felsic rock composed mainly of white feldspar, with lesser grey quartz and minor green mafics. The feldspar is predominantly white k-feldspar (microperthitic?). This rock usually forms small sills or dykes within the metamorphic sequence. In hand specimen it appears to be intrusive, but given the high-grade metamorphism it may very well be derived by partial melting.
- Quartz Monzonite: Sills, or dykes of this medium grained leucocratic biotitic intrusive which is massive to weakly foliated are noted to occur with the greatest frequency in the northern most area, within the area of interest. Their occurrence in this area may be coincidental, or they may bear some relationship to the genesis of the deposit. Such relationship is not readily apparent presently. They strike roughly east west, and appear to dip steeply to the

north for the most part, although it is possible that they are locally vertical, or dip steeply to the south. From surface, and drill hole data it has been interpreted that apophyses of quartz Monzonite have radiated from the dykes along foliation planes, as thin Quartz Monzonite lenses or stringers were noted locally in drill holes, which were typically proximal to a larger dyke.

- **Pegmatite:** Medium to coarse grained leucocratic pegmatite comprised principally of feldspar, quartz, and minor biotite, with trace pyrrhotite is noted to occur as "sweats" or discrete dykes throughout the section, invading all of the meta-sedimentary rocks noted above. They appear to be concordant to foliation. A pegmatite swarm has been tentatively identified as occuring on the southern margins of the area of the main focus of investigation (DDH's BC0012 & 13, and BC0137 & 138).
- Lamprophyre: Occurs as a dark biotite, and pyroxene rich dyke in several drill holes, in various locales on the property, and in one discreet location in the eastern extremes of the area mapped during 2001. The modal constitution of this rock is estimated to comprise of 45% Biotite, 38% Pyroxene, 15% Plagioclase, with trace K-feldspar, and 1% Sphene, and 1% Opaques.

Thickness of the above lithological units varies considerably from location to location, and it is next to impossible to typify. However some generalizations can be made about the widths of some of the units observed locally. Thickness of the hanging wall Biotite/Feldspar/Quartz+/-Garnet Gneiss has not been determined, as the top has not been seen, although to date the thickest intercept of this unit has been in the order of 40 metres. The Cs1 unit has been observed as occuring from subtle intercalations with Cs1 up to a thickness of approximately 11 metres. The footwall Quartz unit is not present in every location, but where it does occur it is usually in the order of 1 to 2 metres wide, although considerably wider intercepts have been logged. The intercalated zone, if present, has been observed from 1 - 13 metres in thickness, while the marble can be in the order of

11 - 21 metres. Footwall Biotite/Feldspar/Quartz+/-Garnet Gneiss has been noted to occur from 5 metres up to 10+ metres.

Appearances are that the graphite mineralized zone of interest in the general area of proposed quarrying operations presents a near surface, five to fifty meter thick, planar surface which strikes at approximately 130° Azimuth, and dips moderately to the southwest at approximately 35°. Should the northernmost band of Cs2 mineralization (Figure 5) be correlative to the southern band it would indicate that there is cumulative displacement in the order of 30 metres across a fault, or faults which have roughly east - west trending axes, and which have been inferred to occur somewhere between the locations where the two principal bands of Cs2 outcrop. The displacement appears to be primarily dip-slip with the southern plate having moved upwards in relation to the Quite possibly pre - emplacement faults were the locus for Quartz northern plate. Monzonite intrusion. Hence it may be the case that slight movement along several such Quartz Monzonite filled fractures resulted at least in part for the cumulative displacement noted above, as some post emplacement slippage was noted to have occurred on the margins of these dykes locally. All structural data (dips/strikes) taken from the area to date, except for the odd erratic measurement, support the faulted repetition hypothesis, but as of yet no detailed examination has been made of the all data available. Additionally north - south trending faults have been inferred to occur with regular frequency in the area of investigation, with one such fault having been observed during the trenching on the northern end of trench "C". It presently appears that these faults are both reverse, and normal, possibly with the majority being of the normal variety. The cumulative displacement along these faults apparently results in exaggerated surface elongation of the surface trace of the zone of interest, sub parallel (roughly east - westerly axis) to the local dip of the metamorphic lithostratigraphy.

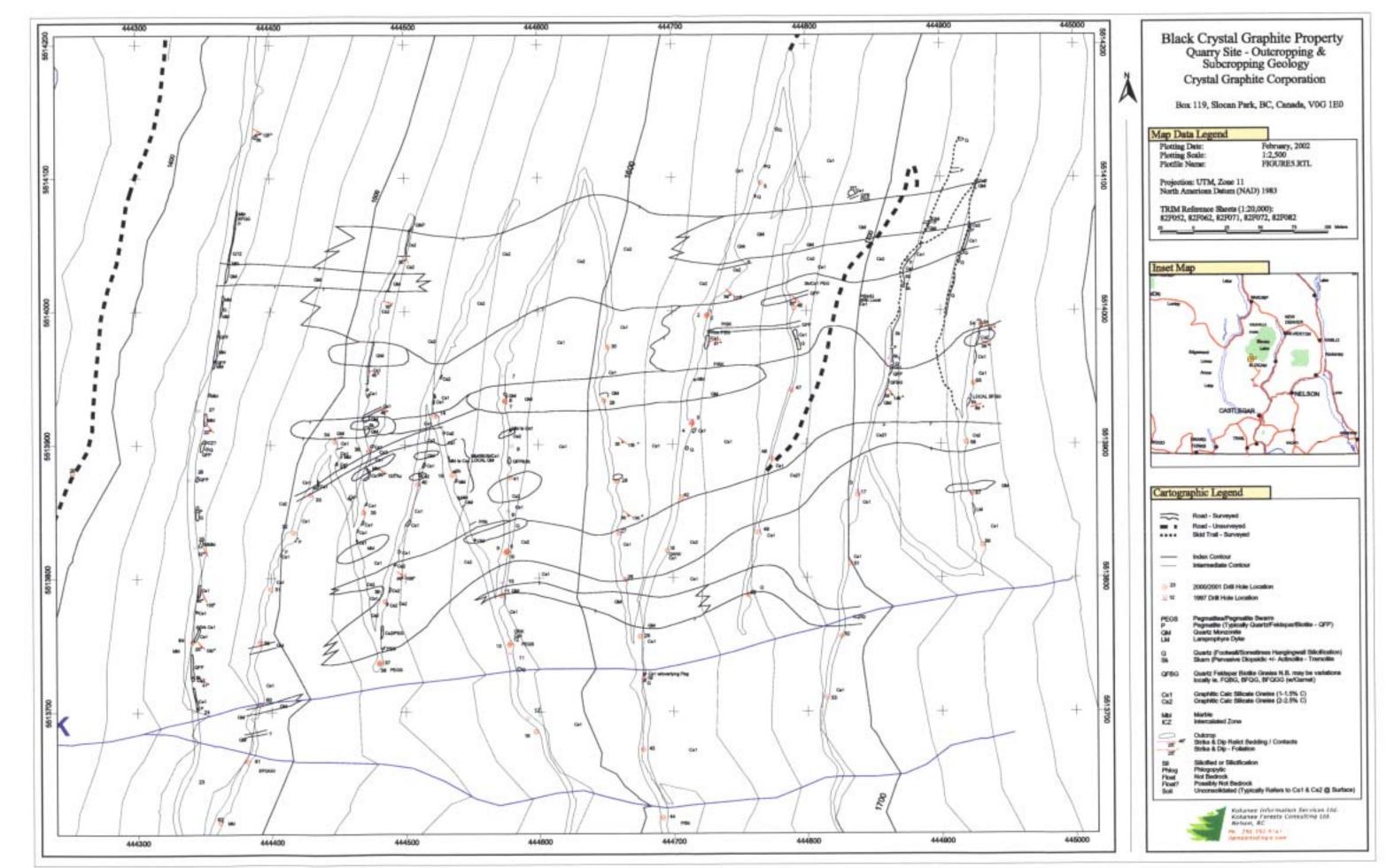
It became apparent during the course of this investigation that the actual mineral content of the Biotite/Feldspar/Quartz Gneiss unit can vary significantly, and that it is often the case it is reported in the order of predominance mentioned here, when the reported subordinates are actually the dominate constituent. This is due to the inherent

inclination to overestimate the quantity of platy minerals in any given specimen, but also often it is reported in the order above to facilitate correlation, and to simplify, what could be a very complex metastratigraphic sequence, should one decide to delve into too much detail.

MINERALIZATION

Graphite mineralization on the property is almost ubiquitous, occuring at least locally in all rock types except for the Quartz Monzonite intrusives. That being said, however calc-silicate gneisses are the preferred host for the most consistently higher-grade mineralization seen on the property. These calc-silicate gneisses have been split into two groups (Augsten 2001) on the basis of mineralogy (presence or absence of dark, emerald green, fine grained disseminated spinel), texture, colour and concentration of graphite, the second of these groups - "Cs2" locally containing typically in the order of 2 to 5% flake graphite, or organic carbon, (which is hereafter referred to as Fixed Carbon or abbreviated as FC). Graphite occurs as discrete disseminated grains most typically from .5mm to 1mm in diameter. These crystals have developed with a preferred orientation parallel to sub - parallel to foliation. While pyrite is fairly common throughout the section, very fine-grained disseminated pyrite +/- pyrrhotite are common in the graphitic calc-silicate host rock.

A regolith has formed in-situ above both Cs units locally, and also locally there exists a "transition zone" of slightly weathered Cs material, which is less friable than the regolithic zone, but is still somewhat amiable to extraction utilizing only an excavator. Of these two calc-silicate units the weathering is typically more pronounced over the Cs2 unit, and while both of these materials are important economically, the in-situ weathered Cs2 material is of primary importance. In this weathered material the dissolution of calcium carbonate (possibly assisted by the creation of sulphuric acid due to the oxidization of contained sulphides) has caused a substantial loss of cohesion, and hence they are friable and easily extractable. Additionally there is an increase in overall graphite content compared to the parent rock due to the decrease in density,


because of the dissolution of the aforementioned constituent. As this material is sited immediately above the areas proposed for hard rock quarrying it makes a desirable initial target due to the ease of extraction, higher grade, and also the ease of beneficiation. Locally this material can reach combined thicknessess approaching five metres, and in the odd rare location the Cs2 thickness itself can approach that figure.

As alluded to above the regolithic and transition zones are by and large the best targets on the property, as overall organic carbon concentrations quite often are from 3 to 5% FC in the Cs2, and 2 to 3% FC in the Cs1 derived material. Graphite may reach concentrations of 1 to 2% FC in glacio-fluvial till locally, although there are areas where numerous blocks of Cs material comprise boulders or cobbles within the till, and graphite concentrations can be in the 2 to 3% FC range. From the 157 samples taken during the fail 2001 trenching program, which included some mineralized till, Cs1, and Cs2 samples, the numerical average of these was 3.1072% FC. To break this down further the 93 samples of Cs2 material taken returned a numerical average of 3.69% FC, and the 57 Cs1 samples returned a numerical average of 2.00% FC, while the 7 samples of relatively decent graphite mineralized till taken returned an average of 1.30% FC. The simple process of screening out pegmatites, silicified lumps, and other unwanted material prior to processing can bring these reported grades up considerably.

There does appear to be some enrichment of graphite spatially related to the Quartz Monzonite dykes. From the sampling done to date it appears that the Cs2 taken proximal to the northernmost dyke is in the order of 0.5% FC higher than corresponding material from other locales, but at this point the relationship has not been fully studied.

• - 1

All information to date indicates that the flake graphite present in the Black Crystal deposit is of high quality, and is amiable for usage in a wide range of commercial applications, and it has become apparent from some of the work reported further on in this report, that a least a portion of the flake graphite which may be produced from this area will be suitable for "higher end" applications. XRD analysis by Newman Energy Research Ltd., of Christchurch New Zealand (Newman 2002), has indicated that the

E.

в.

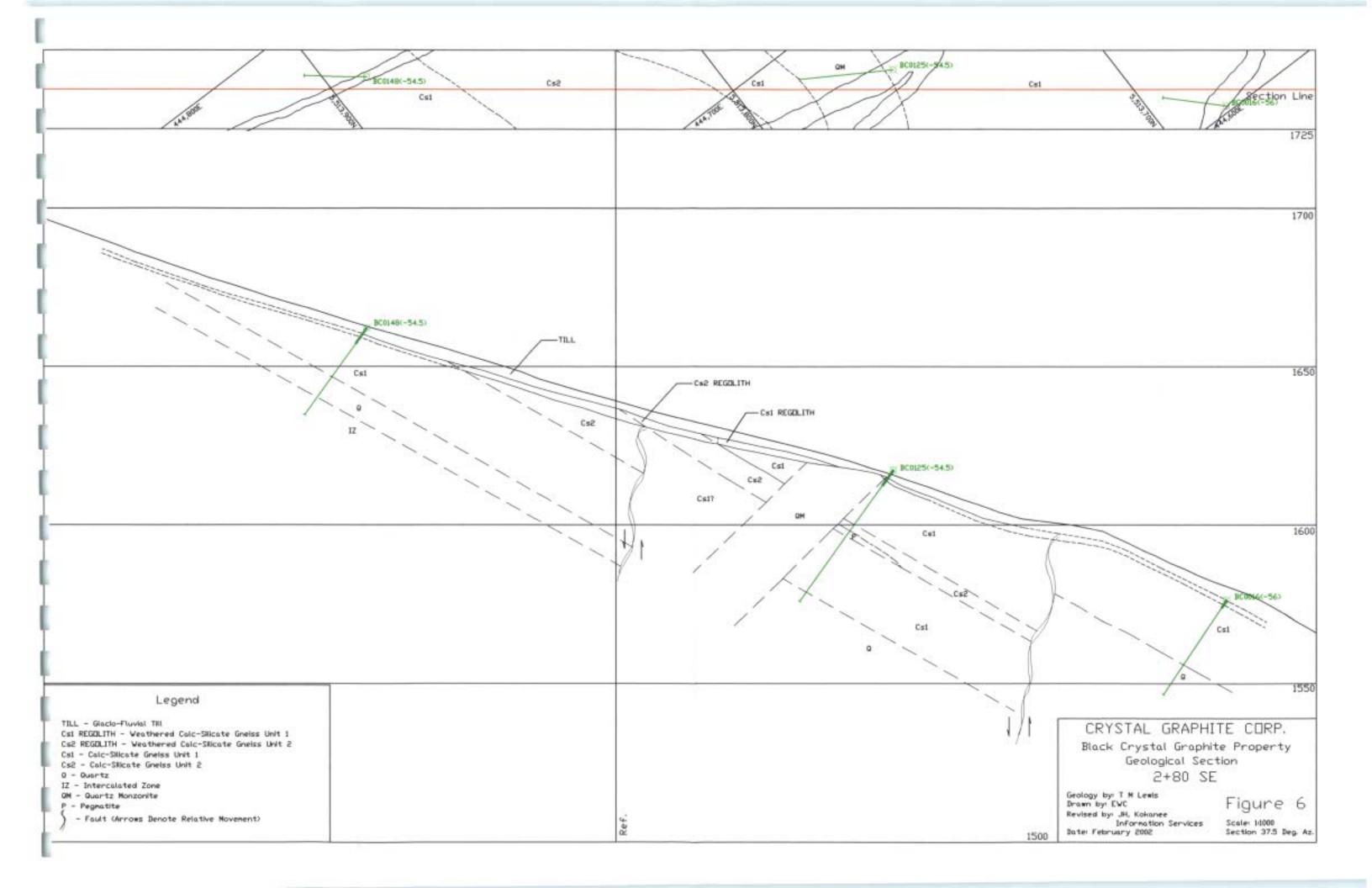

а.

Figure 5 Property Geology

maximum reflectance of this graphite is in the order of 17.8% (Romax – measured perpendicular to the C-axis of the graphite crystal), and minimum reflectance (Romin) is 0.6% which are values which are quite close to those documented (18% - Romax) for true (perfect) graphite. Additionally d-spacing (a function of crystalline density) of 3.354 was also determined, which is probably why the Black Crystal graphite reportedly has excellent electrical characteristics, which makes it suitable for use in the construction of fuel cell bipolar plates.

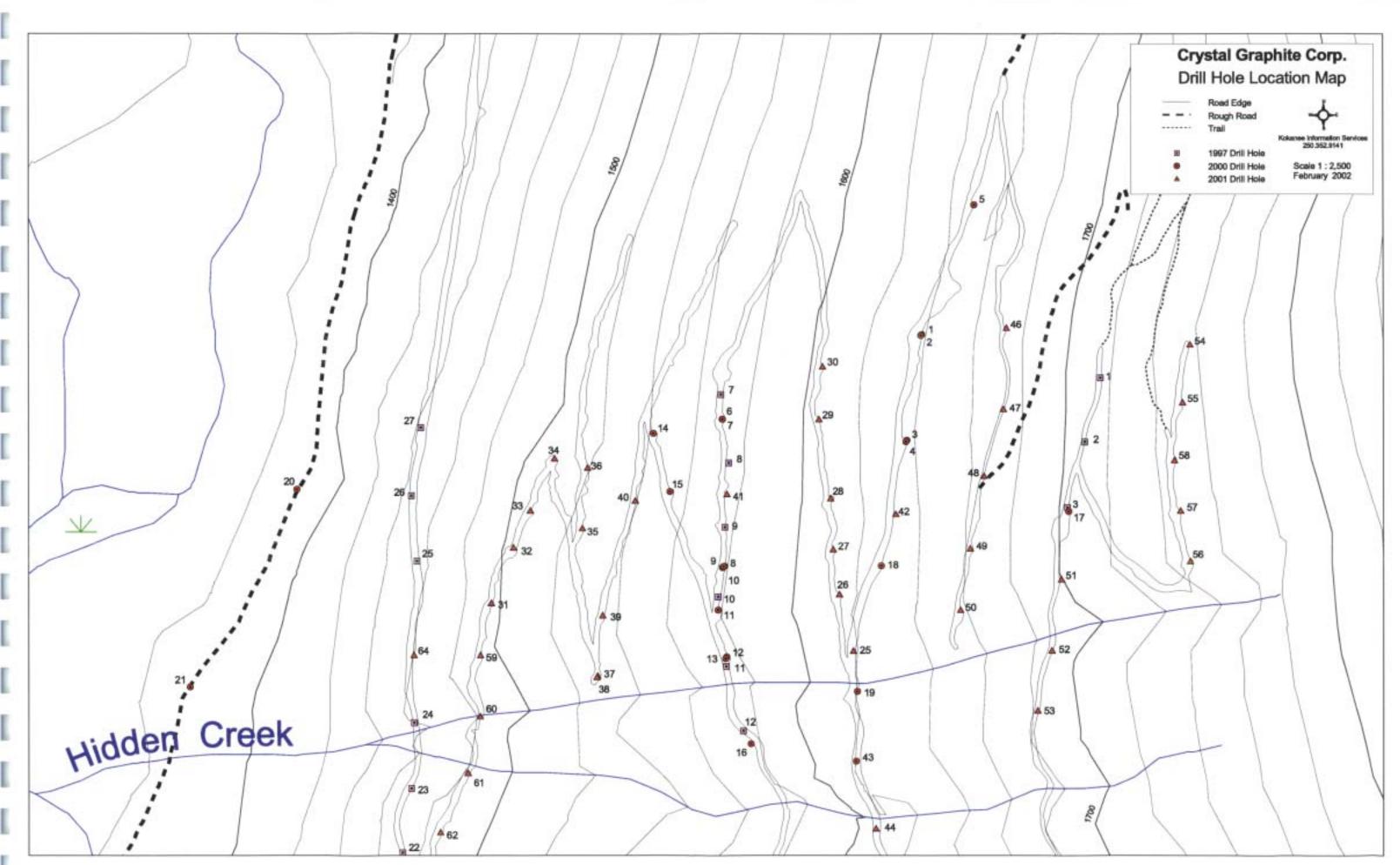
Petrographic observations to date have determined that the CGC graphite flake is relatively undeformed, and also that it is quite pure, exhibiting only the odd inclusion of syndepositional and secondary quartz, with only an insignificant local trace of hematite. At the time of the writing of this report work is still ongoing regarding this and other aspects of the quality of the local graphite.

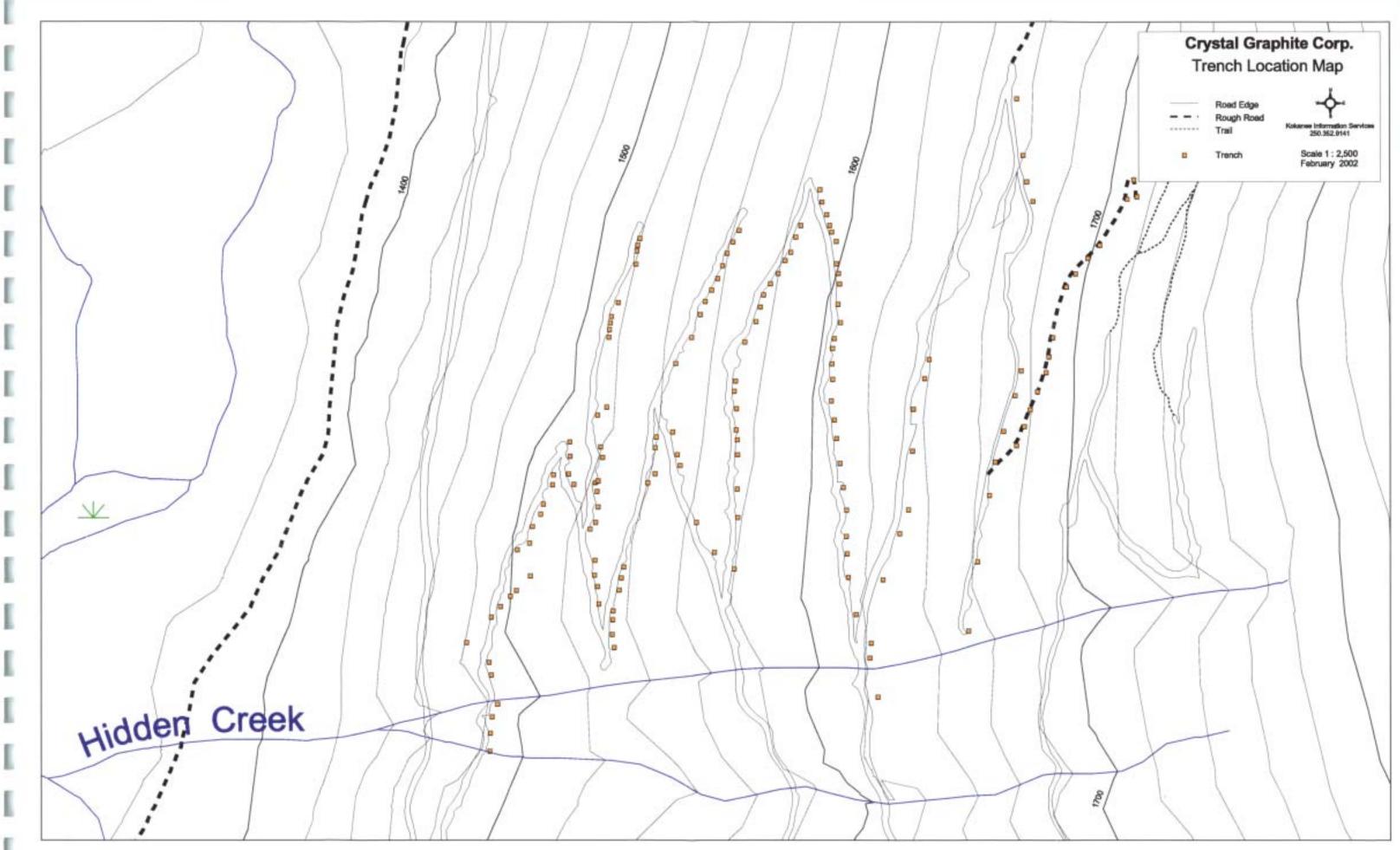
The disseminated crystalline flake mineralization of interest locally probably is best categorized as a slight departure from Simandl etal's (1995) Category 1 "Graphite Disseminated in Marble", as the host rock is related, but obviously is not a true marble as such. The alternative would be to place it in his Category 2 mineralization, which is "Graphite Disseminated in Quartzite", which is more clearly not the case. Low-grade mineralization, which is definitely the former, is seen on the property at depths below the calc-silicate horizons of interest, while the author has noted the latter form of mineralization elsewhere in the region along what is believed to be the same Graphite was found to occur in anomalous concentrations in mineralized trend. Biotite/Feldspar/Quartz Gneiss locally in outcrop, and also in Quartz/Feldspar/Biotite Gneiss at the top of the section penetrated in diamond drill hole BC0124, which mode of occurrence corresponds with Simandl etal's category 4 - "Graphite Disseminated in Paragneiss". Presently this mode of occurrence is of limited interest, due to the presence of biotite, which could pose some difficulties in separating it from the graphite during processing.

WORK PROGRAM

Starting in mid-May (with a hiatus from early June until mid-July) a drill campaign was undertaken wherein 42 diamond drill holes were drilled on the property for a total of approximately 1895 metres of NQ diameter hole. Drill holes in the Year 2001 program were drilled at 35° Azimuth and were typically inclined at -57° to the horizontal, which resulted in the holes usually terminating in the -55° range. The first two holes of the program (BC0123 & 124) were drilled to test the down dip continuity of the mineralized horizons, and to test deeper horizons which may also be prospective for containing disseminated, or other commercially interesting graphite mineralization. The bulk of the other holes were drilled with an eye to producing a resource estimate, although some exploratory holes were drilled to gain a better understanding of the geology of some of the peripheral areas. By and large the program was quite successful, and the known limits of the zone were better defined, and extended especially to the south. The core generated from this program was transported to CGC's Hoder Creek facility, where it was logged both geologically, and geotechnically. Percentages of pegmatites or pegmatitic sweats were measured in each sample interval to get an idea of how much pegmatites affect overall grade. A total of 644 samples were generated in the course of the drilling program. A modest check-sampling program was undertaken after the drilling program to determine the validity of the analyses.

Commencing in August 2001 a program of slit trenches was undertaken concurrent to the diamond-drilling program detailed below, to evaluate the economic potential of the graphite mineralized glacio-fluvial till, and in-situ weathered regolith material, which occurs on the property. A total of 149 of these trenches were excavated, and 325 samples were taken of the graphite mineralized till and regolith encountered. These samples were prepped at Crystal Graphite's laboratory, and then sent to Bondar Clegg for analyses. A program of check trenching/sampling was conducted during September to determine the quality of the data generated, and a further 17 trenches were excavated, and another 43 samples taken. Approximately 2.3 kms of exploration trail was constructed in the course of this combined phase of drilling and trenching.




Figure 7 Drill Hole Location Map

During November a program of linear trenching was undertaken which enabled the company to better estimate the vertical extent of the weathered material, and to extract a further bulk sample for processing at the Hoder Creek pilot plant facility. During this program 1855 metres of trench were excavated, and approximately 10,000 tonnes of friable calc-silicate mineralized material were trucked to the Hoder Creek plant for processing. During this phase of the exploration a further 157 samples were taken, and shipped to Bondar Clegg in Vancouver for analysis. Two samples from more prominent pegmatites were sent to Vancouver Petrographic for study to determine if any gem or any other precious, semi precious, or other mineral of interest occurred, as well as four samples being sent to Bondar Clegg for analyses to determine if there were any rare earth elements in the pegmatites, or conversely any deleterious elements which would pose a future environmental hazard. A modest check-sampling program was instituted during the course of the program to determine analytical reliability, and accuracy.

Geological mapping was undertaken starting the beginning of July, and was ongoing throughout the project, ending only at the cessation of the linear trenching program at the end of November. The linear trenching was extremely useful with respect to geological mapping, as outcrop was somewhat sparse in the area, and a real sense of the surficial and near surface lithological pattern, had not been achieved prior to this program.

SAMPLING METHOD AND APPROACH

The bulk of the samples taken from the drill core produced during the Year 2001 drilling program were taken from prospective zones at one metre intervals. In holes BC0123, and BC0124, which were both deeper, exploratory tests, any interval which was mineralized with any appreciable quantities of graphite was sampled, such as the biotite/feldspar/quartz unit mentioned earlier, or the marble unit which is stratigraphically below the calc-silicate units, and which typically has <0.5% disseminated graphite.

Ł

£

Ł

Figure 8 Trench Location Map

During the regular drilling program only the Cs1, and Cs2 units were sampled, as this was the focus of the investigation. Smaller pegmatites, other dykes, skarn, or other poorly mineralized patches or pods were usually included in any sample interval unless they were of sufficient size to break out and treat separately in the logging process.

In the slit-trenching program, samples were taken of all till, and mineralized material encountered in each trench location. Rough channel samples were taken vertically in these trenches, which is sub-perpendicular to the shallowly dipping stratification. Sample widths varied considerably depending on local conditions, but would typically range from 0.5 to 2 metres. Care was taken to ensure samples were taken in homogeneous material, although at times this was near impossible due to the occasional difficulty in determining exact boundaries. During the linear trenching program a few samples were taken of some of the better mineralized till encountered, but by and large most samples were taken of the calc-silicate material, which had weathered in–situ. The comments regarding sampling the slit-trenches above applies to these trenches also. Photographs were taken of the vast majority of all the trenches.

SAMPLE PREPARATION, ANALYSES AND SECURITY

All core and other samples were brought directly from the field by the author, or one of the other consulting geologists mentioned earlier, and placed in CGC's core logging area at the Koch Creek facilities. After geological and geotechnical logging of the drill core, the author or a technician working under the author's direction would break the core into manageable pieces, and split it in half using a core splitter. One half would be placed in a bag while the other half would be put back in its original position in the core box. An identification tag would then be placed in the bag, and a corresponding tag would also be stapled in position in the core box. Photographs were taken of all core, usually but not always as the final step before putting it away in core racks for long term storage. All samples were stored in the core logging facilities until such time as they were handed over to CGC employees, either for preparation at Koch Creek, or for direct shipping to Bondar Clegg in Vancouver.

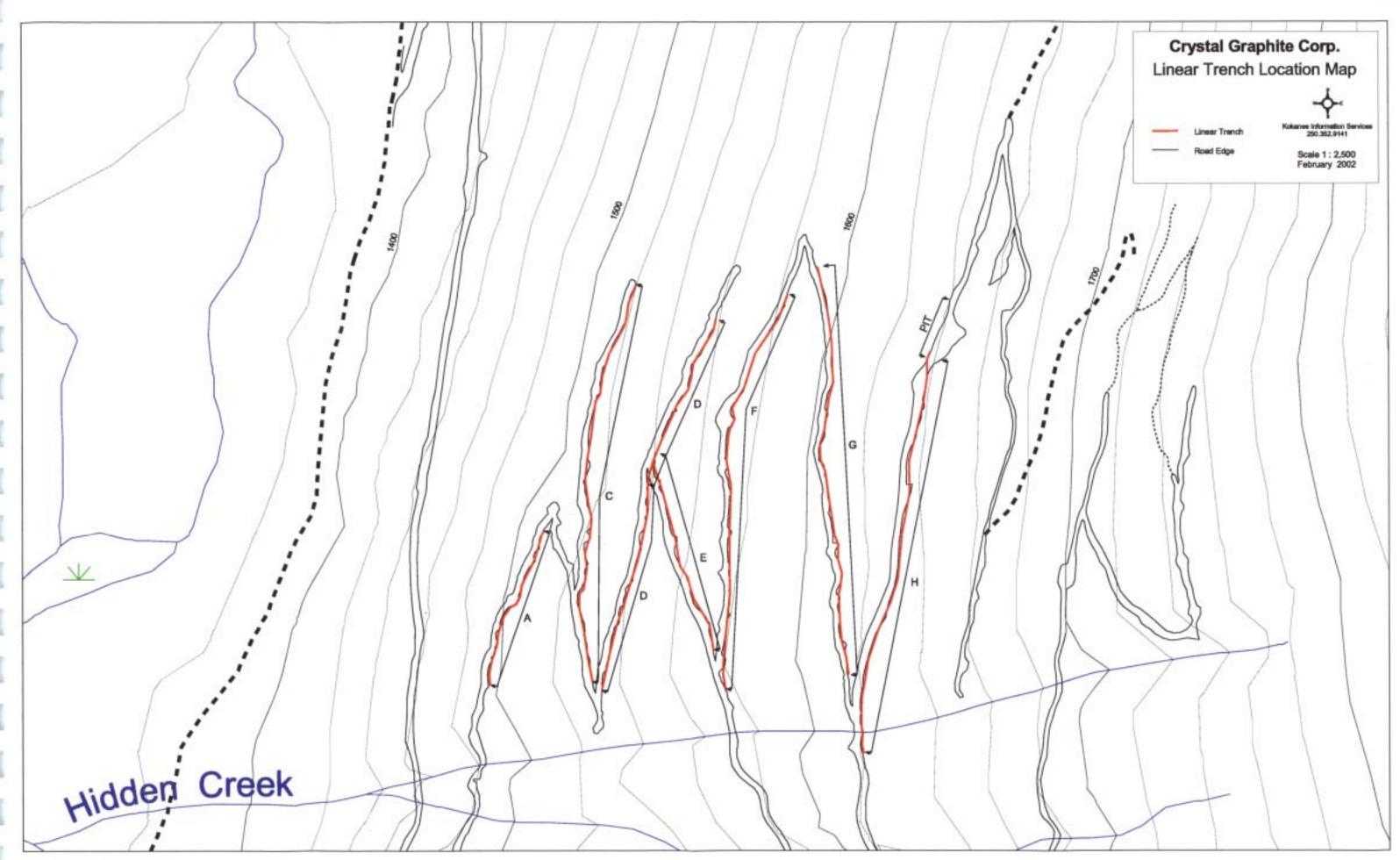


Figure 9 Linear Trench Location Map

Crystal Graphite Corporation installed sample preparation facilities, and a Leco analyzer, and had staff trained by Leco, and Jeff Austin P.Eng. of International Metallurgical and Environmental Inc. of Kelowna, B.C. Staff was instructed in the handling, preparation, and analysis of samples. The first 158 core samples from drilling were all prepped, and analyzed at CGC's facility, and at Bondar Clegg, while all the samples from the slit-trenching program were prepped at CGC's Koch Creek facility, and then sent for analysis at the Bondar Clegg laboratory. It is understood that Mr. Austin of IME had complete responsibility for all aspects of the preparation and analytical work done here at this time. Over time consulting staff were able to convince management that this arrangement was not particularly suitable for the purposes of exploration work, due to security and contamination, as well as perception issues, and management eventually saw the dilemma, and from that point on all samples were sent out to Bondar Clegg in North Vancouver for preparation and analysis.

The protocol for the sample preparation and analytical procedure was standardized between the laboratories used. Samples were first dried and then crushed using a jaw crusher to produce an approximately minus 6 mesh product. This is then riffle split to produce a 200 gram sample, which is then pulverized in a ring and puck pulverizer. The minus 150 mesh material thusly produced is then ready for analysis. The crusher and pulverizer are cleaned with clean quartz sand after every sample preparation to prevent cross contamination between samples. From here the sample material is placed in a Leco crucible, and weighed, and then is immersed in a dilute hydrochloric acid leach, which removes virtually all inorganic carbon. The resulting chloride residue inside the Leco crucible is washed off with de-ionized water after placing the crucible into a suction apparatus. After drying, the crucible containing the leached graphite sample is placed in a Leco 200 analyzer, where it is essentially vaporized in a highfrequency induction furnace at temperatures approaching 1500° C. Combustion at these temperatures is achieved through the introduction of a stream of oxygen. The gasses produced are then passed directly into a cell through which infrared (IR) energy is transmitted. The carbon dioxide produced in vaporizing the sample absorbs IR energy at a precise wavelength within the IR spectrum, hence through determination of the amount of absorption, the total fixed carbon content of the sample can be calculated by the instrument. As substantially all inorganic carbon has been removed during the preparation phase, the total carbon reported is the organic or fixed carbon which is contained within the sample. The instrument is calibrated at regular intervals with a known carbon standard to ensure that the information displayed is accurate.

It has been the author's observation that guite a disparity can exist from laboratory to laboratory, or from subsequent re-analysis of any given sample at a single laboratory utilizing the Leco method. Howard (1994) noted this problem of assay reliability also, and attributed it primarily to the small sample size. As he pointed out, it is "...unrealistic to think that 1 gram is representative of a tonne of material." Subsequent to CGC personnel's trip to China in December 2001, wherein three producing graphite operations were visited (T. Nunn, P.Eng. personal communication), there has been considerable discussion between various staff of Crystal Graphite over whether or not the Chinese "double loss on ignition" method might be more indicative of grade. Correspondence continues with the Chinese regarding this mater, with grade investigation/analytical work being performed at CGC's laboratory. Independent studies are ongoing and are presently headed by Mr. Peter Gunn, M.Sc. of Christchurch, New Zealand to determine which is the more accurate method. It should be noted that the Chinese graphite operations (T. Nunn, P.Eng. personal communication) only consider in-situ graphite grades as a guide, placing emphasis on visual observation within the quarry as grade control.

Except for trips to the field, the author was on site at the logging/preparation area almost for twenty-four hours a day, for the duration of all the field work reported. Quite often when the author was not on site one of the geologists mentioned earlier in the report would be in the vicinity. An eye was kept open for any tampering or other mishandling of the samples. No evidence was noted of anything untoward occuring, and subsequent analysis of the data generated does not indicate that any great discrepancies exist.

DATA VERIFICATION

As time went on the author became more involved with all aspects of the exploration program, and it was obvious that it would be desirable to verify the results obtained to date, and in the course of future work. In September seventeen duplicate samples were taken from the remaining core from the 2001 drill program, from intervals which were previously prepped, and or analyzed at CGC's facility, and were resubmitted with new numerical identifiers to Bondar Clegg for analysis. Additionally, in September 17 check slit-trenches were excavated adjacent to trenches done during the summer program, and the 43 samples thusly produced were shipped directly to Bondar, and Acme Analytical in Vancouver. At this point some comparison work was also done wherein identical samples were sent to Bondar, and Acme, and also analyzed in-house. Finally, during the linear trenching program six samples were split, with duplicates being sent to CGC's, and Acme's laboratories. One of these samples was a blank sample which should contain negligible amounts of organic carbon.

There tended overall to be relatively good agreement between all the laboratories, and no great differences were noted, on an overall basis. Having said that, however occasionally a fair amount of difference did sometimes appear in some check sampling assays, but as mentioned in the section above it is the author's experience that a considerable amount of analytical discrepancy is to be expected from laboratory to laboratory, and even from some reruns of the same sample by the same lab. Results have been noted to be distributed fairly evenly both positive and negative from anything prepared and analyzed or prepared only at the Koch Creek facility. No gross error, or other significant overstatement or understatement appears to have been reported by any of the labs used. It should be noted here that CGC's laboratory always ran one, or if results dictated two repeat analyses of all samples submitted, usually with decent agreement. Also the author often spent time in CGC's laboratory, monitoring results as they became available, and did not see anything which was alarming or which generated any great deal of concern with respect to methodology, reported results etc.

MINERAL RESOURCE ESTIMATES

- ---

The bulk of the exploration work on the Black Crystal property, which was performed during 2000 and 2001 was planned with a view to produce resource estimates. Planning for this work was conducted by MDS Mining Consultants of Auckland, New Zealand. Local geologists were responsible for the implementation of the program, with license to alter or amend it when conditions on the ground necessitated changes. From the work performed up to, but not including the Fall 2001 trenching program MDS (2001) produced an Interim Mineral Resource Assessment wherein they calculated that the following resource exists on the property:

Resource	Tonnes	Graphite	Graphite								
Category	(t x 1000)	(% FC)	(t x 1000)								
Insitu Resource – Regolith Zone											
Inferred	0.4	2.68	0.0								
Indicated	300.8	2.78	8.4								
Measured	711.8	1.27	9.0								
Total Insitu	1,013.0	1.72	17.4								
Insitul	Resource – H	ard Rock Zor	ne								
Inferred	856.0	1.59	13.6								
Indicated	9,895.7	1.28	126.8								
Measured	1,199.8	1.35	16.2								
Total Insitu	11,951.5	1.31	156.5								
	Total Reso	ource									
Inferred	856.4	1.59	13.6								
Indicated	10,196.5	1.33	135.1								
Measured	1,911.7	1.33	25.4								
Total Insitu	12,964.6	1.34	174.1								

Table 3: Mineral Resource Totals by Category

Resource Category	Material Type	Volume m3	Tonnes (t)	Densit У	Graphite (% FC)	Graphite (t)
Inferred	Till	80	130	1.64	1.28	2
	Cs1	70	110	1.54	2.26	2
	Cs2	80	120	1.53	4.57	5
	Total	230	360		2.68	10
Indicated	Till	24,450	40,100	1.64	1.54	616
	Cs1	3,670	5,700	1.54	1.65	94
	Cs2	680	1,000	1.53	4.01	40
	Transition	127,000	254,000	2.00	3.00	7,620
	Total	155,800	300,800		2.78	8,371
Measured	Till	410,330	672,940	1.64	1.20	8,046
	Cs1	15,470	23,800	1.54	1.63	387
	Cs2	9,870	15,100	1.53	3.88	585
	Total	435,670	711,840		1.27	9,019
Total Insitu		591,700	1,013,00		1.72	17,400
	1					1

Table 4: Resource Estimate Regolith Zone

Table 5: Regolith Zone - Material Type Within Classification

Material Type	Volume m3	Tonnes (t)	Density	Graphite (% FC)	Graphite (tonnes)
Till	434,870	713,170	1.64	1.21	8,664
Cs1	19,200	29,570	1.54	1.63	483
Cs2	10,630	16,260	1.53	3.89	633
Transition	127,000	254,000	2.00	3.00	7,620
Total	591,700	1,013,000		1.72	17,400

Resource	Material	Volume	Tonnes	Densit	Graphite	Graphite
Category	Туре	m3	(t)	У	(% FC)	(tonnes)
Inferred	Cs1	160,960	455,570	2.83	1.11	5,066
	Cs2	143,500	400,400	2.79	2.13	8,520
	Total	304,460	855,970		1.59	13,586
Indicated	Cs1	3,349,400	8,464,751	2.83	1.16	98,423
	Cs2	571,580	1,430,994	2.79	1.98	28,331
	Total	3,920,980	9,895,745		1.28	126,754
Measured	Cs1	366,009	1,035,899	2.83	1.24	12,831
	Cs2	58,755	163,926	2.79	2.04	3,347
	Total	424,763	1,199,825		1.35	16,179
Total Insitu		4,225,440	11,951,540		1.31	156,518

Table 7: Hard Rock Resource by Grade Range

Grade Range	Volume m3	Tonnes (t)	Graphite (% FC)	Density	Graphite (tonnes)
<0.5	76,570	216,680	0.36	2.83	782
0.5-1.0	919,360	2,601,720	0.83	2.83	21608
1.0-1.5	2,164,450	6,142,360	1.25	2.83	76436
1.5-2.0	739,040	2,080,880	1.68	2.82	34903
2.0-2.5	224,320	626,160	2.20	2.79	13,774
2.5-3.0	43,790	122,180	2.69	2.79	3,286
3.0-3.5	30,130	84,060	3.29	2.79	2,769
3.5-4.0	24,100	67,250	3.76	2.79	2,526
4.0-4.5	3,050	8,500	4.09	2.79	348
4.5-5.0	230	630	4.64	2.79	29
>5.0	400	1,120	5.15	2.79	58
Totals	4,225,440	11,951,540	1.31		156,518
	1			1	

INTERPRETATION AND CONCLUSIONS

The trenching and diamond drilling programs were successful in increasing the confidence in the geometry, and limits of, as well as defining the extent of graphite mineralization within the area of interest. Additionally the diamond drilling campaign has indicated that a potential further resource lies down-dip from the project area. The slit-trenching program was successful in determining that a large resource of low grade graphite mineralized glacio-fluvial till of almost 450,000 tonnes (MDS 2001), which would be very amenable to extraction, exists in the area of investigation. The linear trenching program determined that two principal areas exist where the graphitic calc–silicate host has been weathered, and which are of primary importance economically.

The diamond drilling program was extremely beneficial in determining those areas of hard rock resource which are of greatest interest economically, at least initially, while indicating and partially delimiting those areas of lesser economic interest, where due to various factors, or conditions one would be best advised not to concentrate ones efforts in the near future. MDS Mining Consultants (MDS, 2001) were able to use this information coupled with the information produced during the Year 2000 drill program, to determine that a total of almost 12,000,000 tonnes of resource exists within the area of investigation. Additionally it was shown that mineralization does occur down–dip to the south of that previously known to occur, as the normal section starting with Cs2 was encountered starting at a depth of 61 metres (all of which was overburden) in drill hole BC0123, which was at the time of drilling roughly 400 metres south of the closest drill hole in the deposit area.

As mentioned above the slit trenching program was quite effective in evaluating the contained resource within the glacio-fluvial till which blankets the area of interest. However at this point there was still quite a bit of uncertainty surrounding the weathered Calc-Silicate resource, as it was felt that a "transition zone" existed which could not be properly evaluated by utilizing slit trenches. Quite often the slit trenches would

terminate in what ultimately turned out to be fairly thin pegmatites, or siliceous zones that halted advancement. At the end of the slit trenching program a full 127,000 tonnes of "Transition Zone" material existed within the Indicated Category (MDS 2001), and it was felt desirable to move as much of that as possible into the Measured Category.

The linear trenching program worked well in providing the necessary insight into the "transition zone", which had been identified during slit trenching efforts in the past year, but which had not been fully explored. As mentioned earlier, this zone along with the other weathered Calc-Silicate material is the single most important target on the property, due to it's proximity to surface, the ease with which it could be extracted, and also as it is the highest grade target in the area of investigation. Loss of cohesion, and mass, due to the dissolution of carbonate, which results in an increase in overall percentage of graphite, make this a very appealing target. A revised resource figure with respect to the weathered material, and the "transition zone" has not been determined (subsequent to the completion of the linear trenching program) as of yet. Additionally, considerable information was gleaned with respect to subcropping geology during the execution of this phase of the project.

From the work undertaken it appears that there are two well defined, more or less parallel bands of Cs2 mineralization which outcrop/subcrop, and at least one more which is less well defined which occurs between these two. Interior to these two areas there is a band of Cs1 mineralization, and there is another to the south of the more southerly of the two Cs2 bands. As the observed dips of the two Cs2 units are concordant, and the sections in both areas terminate (for the most part) in the Quartz footwall, and the most northerly Cs2 band is not seen stratigraphically bellow the southernmost unit, it appears that this repetition is most likely due to displacement along roughly easterly trending fault(s). There is some evidence locally to suggest (local hanging wall quartz unit) the faint possibility of recumbent folding along an easterly trending axis, however the data to date best fits the faulted recurrence theory. This near surface faulted repetition of the zones of interest explains why such a large area of mineralization occurs at or near the surface in the area of interest. It appears

that the bulk of the Quartz Monzonite intrusives occur in the northernmost to central portions of the area of interest, and seem to be less prevailent as one moves southerly.

To date the structure in the area of investigation has not been properly worked out, and all of the controlling factors of mineralization have not been determined. Additional data generation, coupled with a detailed analysis of the data produced to date may very well define the local geometry, and controls on mineralization.

Petrographic work (Harris 2001) on two pegmatite samples, and rare earth element work on four pegmatite samples did not disclose the presence of any gem, precious or semi-precious stones, or rare earth element, or any other material of any economic importance.

In Conclusion:

- 1. The drilling program has provided overall positive results and the deposit has been better defined, although there is some evidence to suggest that there are limits in certain directions. At this juncture it would be premature to condemn any area locally as not being prospective for hosting at least interesting quantities of Calc-Silicate hosted Graphite mineralization as still more work needs to be done (mapping, structural interpretation etc.) before totally precluding any area from future plans. That being said however it is obvious from the data generated where the highest priority areas lie, as most importantly it has been proven that the deposit does extend down-dip.
- The slit trenching program was successful in determining that a sizable lowgrade resource of graphite mineralized till exists on the property, and that also several areas were quite prospective for hosting economically significant deposits of regolithic or transitional zone mineralization.
- Outcrop mapping earlier on in the program, and then subcrop mapping during the linear trenching program were effective in producing a map of surficial geology.

4. The linear trenching program conducted in the fall has given an increased understanding of the extent of, and the volume of Calc-Silicate weathered material, although a final volumetric determination has not been made as of the date of this report.

RECOMMENDATIONS

The work described on the property has been generally quite positive to date, and CGC management has decided to proceed to the mine planning, and permitting stage. In support of this forward looking thinking, an exploration program is proposed for the property, which would entail an expenditure of approximately \$580,000. The purposes of this program would be four fold. First to delimit the northern pod of weathered Cs material, and to better define the underlying hard rock mineralization, in the immediate locale, in an effort to increase the confidence level in the resource contained, for ultimate determination if it is a minable target. Secondly, to better define the lateral limits of the southern pod of weathered Cs mineralization. Thirdly to better define, and "prove up" the down dip resource to the south. Fourthly, to explore the claims in the general area, for the continuation of the mineralization seen in the area of interest, and/or determine if more areas of mineralization, exist in the general area.

The initial steps of the program envisioned would entail the construction of exploration trails in the area of both the northern, and southern pods of weathered Cs material. It would probably be most advantageous to start in the vicinity of the southern pod of Cs material, and to try to co-ordinate this work so that it dovetails or compliments any of the activities planned with respect to the proposed mining in this area. Concurrently mapping/prospecting would commence on the property. This will serve several purposes; a) correlate the rocks seen here with those reported regionally, b) determine the property scale geological structure, so that this knowledge may then be applied in an effort to determine any structural controls on mineralization which can lead to a predictive structural model, which then could lead to pinpointing areas which may host

economically significant mineralization, c) locate areas where similar graphite mineralized calc-silicate rocks, or other mineralized lithologies outcrop.

Once the southern pod of mineralization has been delimited in the process of trail/road building it could then be determined if drilling is necessary for any reason to facilitate the commencement of operations in this area. If not, then work would proceed on the northern pod, and after exploration trail construction and the mapping of any exposures uncovered in the process of trail building, drilling would be initiated in this area. Locally the northern pod is overlain by guite a thick blanket of till, hence it is anticipated that drilling alone would be the most cost effective tool for the garnering of information with respect to the weathered zone, and the hard rock mineralization beneath it. It is envisioned that controlled drilling using a diamond drill could provide the required information during penetration of the weathered zone. Excellent recovery is possible during saprolite drilling in weathered climates utilizing a core drill, and can usually be guaranteed by inclusion of a penalty of non-payment for substandard recovery in the contract. However, as this would be a slow process with respect to drilling, an hourly rate, or bonus should also be included in the contract for this work. These holes would be guite shallow – probably only up to 20 metres in depth, and should be terminated immediately in the footwall quartz unit. Because of the delicacy of such an operation a geologist, or other technical person should be on site at all times during drilling. Should sufficient weathered calc-silicate material resource be identified near surface, and should quarry operations be underway concurrently on the southern pod of mineralization, and the equipment available, it may also be advantageous at this juncture to take a bulk sample, or several smaller samples from this general area for metallurgical testing.

At the termination of work in the northern area the small drill which would be most suitable for shallow work of this nature would be demobilized, and a larger drill would be mobilized for work in the southern area where work would commence, drilling definition holes, and all southerly, and lateral step outs as deemed necessary. Following the termination of drilling in the southern area, and curtailment of the regional exploration, and subsequent to the initial compilation of the data generated during that aspect of the proposed program, the drill would be moved elsewhere on the property for an exploratory drill program in an attempt to tag the mineralized horizon elsewhere. Due to the possible existence of more weathered horizon material a technical person should be on hand for all overburden drilling during this exploratory drilling also, in order to closely monitor the cuttings for any sign of graphite mineralization.

Table 8: Projected Costs of Proposed Exploration

Phase I

1,000 metres NQ Diamond Drilling @ \$75/m	\$75,000
Mob/demob drilling equipment	\$4,000
Regolith Drilling – 40hrs @ \$100/hour	\$4,000
Geologist	\$21,000
Project geologist	\$24,000
Excavator & Operator	\$20,500
2 - 4 x 4 Pickup Trucks	\$7,200
Helicopter 20 hrs x \$1250/hr	\$25,000
350 Samples @ \$20/sample	\$7,000
2 Assistants @ \$4,000 per month each	\$16,000
Accommodation & Food	\$6,000
Permitting Costs	\$1,000
Shipping	\$1,000
Phone/Fax/Sat Phone	\$1,000
Preliminary reporting/drafting/data analysis	\$3,000
Remediation costs	\$4,000
Fuel/Field Supplies/Equipment Rental	\$5,700
Contingency 15%	\$33,810
SUBTOTAL PHASE I COSTS	\$259,210
Phase II	
2500m NQ Diamond Drilling @ \$75/	\$187,500
Mob/Demob drilling equipment	\$5,000
Excavator & Operator	\$20,000
Project Geologist	\$24,000
Technician	\$8,000
2 - 4 x 4 Pickup trucks	\$7,200
Fuel/Field Supplies/equipment rental	\$6,000
Accommodation & Food	\$4,000
Transportation	\$2,000
200 Assays @ \$20/sample	· \$4,000
Phone/Fax/Sat Phone	\$1,000
Shipping	\$1,000
Report Preparation & Drafting	\$4,500
Computer Modeling	\$15,000
	¢4.000

SUBTOTAL PHASE II COSTS \$322,520

TOTAL ESTIMATED COSTS

Remediation/cleanup

Contingency 15%

\$581,730

\$4,000

\$29,320

REFERENCES

Addie, G. G. (1998): 1997 Diamond Drill Report on the Black Crystal Property (Graphite). Unpublished Report.

Augsten, B. (2000): Report on the Black Crystal Graphite Property. B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 26413.

Augsten, B. (2001): 2000 Diamond Drill Report on the Black Crystal Graphite Property. B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 26622.

Austin, J.B. (2000): Graphite Recovery Report, Laboratory Test Work Results. Unpublished Report.

B.C. Ministry of Energy, Mines and Petroleum Resources: Minfile # 082F260.

Boucher & Company Inc. (2001): Crystal Graphite Corporation – Equity Research Note. Unpublished Report

Carr, S.D., Parrish, R.R., and Brown, R.L. (1987): Eocene Structural Development of the Valhalla Complex, Southeastern British Columbia. Tectonics, 6: pages 175 – 196.

Carr, S.D., (1995): The Southern Omineca Belt, British Columbia: New Perspectives From the Lithoprobe Geoscience Program. Canadian Journal of Earth Sciences 32: pages 1720 – 1739.

Hanson, W., (1999): Drilling Report on the Superior Graphite Property. B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 26,272.

Harris, J.F. (2001): Vancouver Petrographics Ltd. petrographic report. Unpublished Report.

Howard, D.A. (1994): Report on the Exploration Potential of the Black Crystal Property. B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 23,406.

Howard, D.A. (1995): Report on the Exploration Potential of the Black Crystal Property. B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 23,754.

Klepacki, D.W. (1985): Stratigraphy and Structural Geology of the Goat Ranges area, Southeastern British Columbia. Ph.D. thesis, Massachusetts Institute of Technology. Boston, Mass. **Parrish, R.R., Carr, S.D., and Brown, R.L.** (1985): Valhalla Gneiss Complex, Southeast British Columbia: 1984 Fieldwork in Current Research, Part A, Geological Survey of Canada, Paper 85-1A, pages 81-87.

Mine Design Systems Ltd. (2001): Black Crystal Graphite Project - Project Update and Recommendations for Further Exploration. Unpublished Report.

Mine Design Systems Ltd. (2001): Report on Interim Mineral Resource Assessment for the Black Crystal Prospect. Unpublished Report.

Newman Energy Research (2001): Analysis of graphite sample 01-41144. Unpublished report.

Northcote B. (2001): Petrographic Report (5 drill core samples) prepared for Crystal Graphite Corporation. Unpublished Report.

Parrish, R.R., Carr, S.D., and Brown, R.L. (1985): Valhalla Gneiss Complex, Southeast British Columbia: 1984 Fieldwork in Current Research, Part A, Geological Survey of Canada, Paper 85-1A, pages 81-87.

Reesor, J.E. (1965): Valhalla Gneiss Complex, British Columbia. Geological Survey of Canada, Bulletin 129.

Schaubs, P.M. and Carr, S.D. (1998): Geology of Metasedimentary Rocks and Late Cretaceous Deformation History in the Northern Valhalla Complex, British Columbia. Canadian Journal of Earth Sciences 35: pages 1018 – 1036

Simandl, G.J., Paradis, S., Aliquette, G., and Jacob, H., (1995): Simandl, G.J., Paradis S., Valiquette, G., and Jacob, H.-L. (1995): Crystalline Graphite Deposits, Classification and Economic Potential, Lachute-Hull-Mont Laurier Area, Quebec; *in* Proceedings of 28th Forum on the Geology of Industrial Minerals, Martinsburg, West Virginia, May 3-8, 1992, pages 167-174.

Snell, J. (1998) Geological Evaluation and Production Feasibility Study of the Black Crystal Graphite Deposit. Unpublished Report

Snell, J. (1999) Geological Evaluation and Exploration Recommendation for the Black Crystal Graphite Deposit. B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 25,921.

Todd, I., and Bigg, T. (2002): Lakefield Research – An Evaluation of the Pilot Plant Operation of Crystal Graphite Corporation, Unpublished Report.

Statement of Exploration Expenditures

____ _

TOTAL

\$349,438.67

STATEMENT OF QUALIFICATIONS

I, Thomas M. Lewis of the City of Rossland, in the Province of British Columbia, hereby certify that:

- 1. I am a consulting mineral exploration geologist, and I reside at #43-891 Monte Vista Drive, Rossland, B.C.
- 2. I am a graduate of Brandon University, Brandon Manitoba, with a BSc., with a major in Geology (1989).
- 3. I am a graduate of Mount Royal College, Calgary Alberta with a diploma in Petroleum & Mineral Land Management (1986), and of Fanshawe College, London Ontario with a diploma in Social Sciences, and Humanities (1975).
- 4. I am a fellow of the Geological Association of Canada.
- 5. I have worked in various capacities in the exploration field, both for hydrocarbons and mineral resources since 1975, and have been working primarily as a consulting geologist since graduation in 1989.
- 6. This report is based on actual observations I made while in the course of my duties as a geological consultant, while employed by Crystal Graphite Corporation, or from information obtained from the references cited.
- 7. I have no direct or indirect interest in Crystal Graphite, or any associated company as of the date of this report, nor do I expect to receive any in the future.

Dated at Slocan Park, British Columbia on this 22nd day of February, 2002.

Thomas M. Lewis, B.Sc., FGAC Consulting Geologist

Appendix A: Drill & Trench Logs

.

CRYSTAL GRAPHITE CORPORATION

FALL 2001 - TRENCH DATA FORM

LOC	ATION	RD - D	ATUM	SAMPL	LITH	COMMENTS			UNCONS	and the second
Tr #	M's	Start	End	No.			BASE	Pict #		TILL/OB ABV
"H"	15	-1.2	-2.3	3178	Cs2a	Pit - Orangey brown to greyish	Cs2	4	N	1.2
"H"	15	-2.3	-4.3	3179	Cs2b	Pit - With bands to 30 cm of consolidated Cs2	Cs2	4	N	
"H"	20	-1	-1.8	3180	Cs2a	Pit - Medium orange brown - no spinel noted	Р	5	N	1
"H"	20	-1.8	-2.9	3181	Cs2b	Pit - With some consolidated - medium grey to rusty orange	Р	5	N	
"H"	25	-1.3	-2	3182	Cs1b	Semi-competent with ~ 8% Pegmatite lenses ~ 1 % graphite	P/Sk	6	N	1.3
"H"	30	-0.7	-1.8	3183	Cs1a	Rusty graphitic sand - 1-2% graphite	Р	7	N	0.7
"H"	45	-1.3	-2.1	3184	TILL	< .5% disseminated graphite	P/sk	8	N	2.4
"H"	55	-0.5	-2	3185	Cs2	Bucket Chan ~ 4% graphite	P?	16	Ň	1
	Blank	Blank		3186	TILL	Sand from "borrow pit" across from mill - analytical blank			N	
"H"	105	-0.5	-1.4	3201	Cs1a	Grey/rusty brown with 1 - 2% graphite	Cs2?	9	N	1
"H"	110	0	-1	3202	Cs1a	Grey/rusty brown with 1 - 2% graphite		10	N	1.3
"H"	110	-1	-2.3	3203	Cs2a	Steel grey - oxidized with spinel, 2-3% graphite	Cs2	10	N	
"H"	115	-0.8	-1.8	3204	Cs1a	Med orangey brown with 1 - 2% graphite		11		1.8
"H"	115	-1.8	-3.2	3205	Cs2a	Greenish grey to brown with 5% graphite	Cs2	11	N	
"H"	120	-1.4	-3.2	3206	Р	With ~ 10% medium brown weathered Cs1	Ρ	12	N	2.2
"H"	125	-0.7	-1.7	3207	TILL	CS1/OB < 1% disseminated graphite	Р	13	N	2.5
"H"	130	-2	-3.2	3208	TILL	CS1/OB < 1% disseminated graphite	Cs1	14	N	4.5
"H"	135	-0.9	-2.8	3209	TILL	CS1/OB < 1% disseminated graphite	Cs1	15	N	2.8
"H"	180	grab	grab	3210	Cs2a	Bucket Channel - Greenish grey - 4% disseminated graphite	Cs2		N?	3.3
"H"	185	-0.9	-2.9	3211	Cs2a	Brownish grey - 5 - 6% graphite	Cs2	20	N	1.9
"H"	195	-0.9	-3.4	3212	Cs2a	Light brownish grey, ~ 8% Pegmatite, 5 - 7% graphite	Cs2	21	N	2.1
"H"	200	-1	-3.7	3213	Cs2a	As above	Cs2	22,23	N	2.5
"H"	205	-0.9	-3.8	3214	Cs2a	As above	Cs2	24,25	N	3.3
"H"	210	-0.7	-2.7	3215	Cs2a	As above		1		4.2
"H"	210	-2.7	-4.2	3216	Cs2a	As above 4 - 6% disseminated graphite	Cs2	2	N	
"H"	215	-2	-3.2	3217	Cs2a	Light brownish grey, 4 - 6% graphite				5.3
"H"	215	-3.2	-4.2	3218	Cs2a	As above	Cs2	3	N	
"H"	220	-1	-2.5	3219	Cs2a	Medium orangish, 4 - 6% graphite				3.5
"H"	220	-2.5	-4.5	3220	Cs2a	As above but more of a browinish grey colour	Cs2	4	N	
"H"	225	-1.2	-2.7	3221	Cs1a	Medium orange brown, 1 - 2% graphite				3.5
"H"	225	-2.7	-4.2	3222	Cs1a	As above - chunky semi-consolidated at base	Cs1	5	N	

f

E

										,
"H"	225	-2.7	-4.2	3222	Cs1a	As above - chunky semi-consolidated at base	Cs1	5	N	
"H"	235	0	-2.3	3223	Cs2a	Cs1 appearance, but trace of spinel present				2.2
"H"	235	-2.3	-3.6	3224	Cs2a/b	As above - with pods of semi - cons. Cs2		7		
"H"	235	0	1.2	3225	Cs2a	Light orangey grey, 2% graphite	Cs2	6	N	
'H'	240	0	-1	3226		Sample of Cs2 block Till		8		3.2
'H"	240	-1	-2.5	3227	Cs2	Low grade 1 - 2%	QM	9	N	
H"	245	-0.6	-1	3228	Cs2a	Medium orangey brown - 1-2% graphite, trace spinel	QM	10	N	3
Ή"	250	-1.2	-1.9	3229	Cs2a/b	Cs2/Sk - 20% consolidated, Trace spinel, 1 - 2% graphite	QM	11	N	3.6
'G"	10	-2	-3	3230	Cs2a	Medium brown/grey, 2% graphite		14		4
'G"	10	-3	-4.5	3231	Cs2a	Light brown/grey, ~3% weathered pegmatite, 2 - 3% graphite	Cs2	15	<u>N</u>	
'G"	15	-2	-4	3232	Cs2a	Light brown/steel grey, 3 - 4% graphite		16		4
"G"	15	0	-2	3233		Abundant weathered Cs2 blocks in Till	Cs2	17	N	
'G"	20	-0.5	-2	3234	Cs2a	Light brownish/grey, 3 - 4% graphite		18		2
'G"	20	-2	-3.5	3235	Cs2a	As above	Cs2	19	N	
'G"	25	0	-1	3236	Cs2a	Medium brown grey, 10% pegmatites, 3% graphite		20		1.5
"G"	25	-1	-3	3237	Ċs2a/b	Light brown/grey, ~3% weathered pegmatite, 2 - 3% graphite	Cs2	21	N	
"G"	30	0	-1	3238	Cs2a	With ~ 10% Till mixed in				1.5
'G"	30	-1	-2.7	3239	Cs2a	Peg & Silicified pods to 20% -	Cs2		N	
'G"	40	0	-0.7	3240	Cs1a&b	Med yellowish-orange 1 -2% graphite - peg & sil lenses to 20%	Cs1		N	1.5
G"	45	0	1	3241	Cs1a	Med yellowish-orange 2% graphite	Cs1		N	1.5
'G"	50	0	1	3242	Cs1a&b	Med yellowish-orange 2% graphite	Cs1		N	1.5
'G"	55	0	-1.5	3243	Cs1a&b	Med orangey brown 15% consolidated & 15% Peg	Cs1			1.5
Ğ"	55	-1.5	-3	3244	Cs1a&b	Med orangey brown 15% consolidated & 15% Peg	Cs1		N	
'G"	60	0	1	3245	Cs1a	Light orangey brown, 2 - 3% graphite		3		1
"G"	60	0	-1.5	3246	Cs1b	Light brownish grey, semi consolidated, 2% graphite		4		
'G"	60	-1.5	-3	3247	Cs1b&c	Light rusty orangey brown, 1 - 2% graphite	Cs1		N	
"G"	65	-0.5	1	3248	Cs1a&b	Med orange brown, 20% pegmatite, 10% consolidated Cs1		5		1.5
"G"	65	-0.5	-2	3249		As above but 50% semi-consolidated, 20% peg	Cs1	6	N	
"G"	70	0	-1.3	3250	Cs1a&b	Med orange brown, 20% pegmatite, 2% graphite		7		1.5
"G"	70	-1.3	-2.8	3251	Cs1b	As above with 50% pegmatite & increasingly consolidated	Cs1/P	8	N	
"G"	75	0	1	3252	Cs1a	Med orange brown, 8% peg, 1 - 2% graphite		9	· · · · · · · · · · · · · · · · · · ·	1
"G"	75	0	-2	3253	Cs1a	Rusty brown, 15% peg, 1% graphite	Cs1/P	10	N	
"G"	80	0	-1	3254	Cs1a	Light brown, 1-2% graphite		11		1.5
"G"	80	-1	-2	3255	Cs1a	Light brownish grey, 10% peg pods & lenses, 1 - 2% graphite	Cs1	12	N	
"G"	85	0	-2	3256	Cs1b	Med orange brown, semi-competant, 1 - 2% graphite	P/Sk	16-20	N	2.5

.

ſ

Ē

f

.

"G"	117	0	0.7	3257	Cs/Mb1	Sil Cs & 30 cm of Mbl,		21		
"G"	117	0	-1.2	3258	Cs2a	Dark greyish to reddish brown, 5 - 7% graphite, 3% Peg	Cs2	22	N	1.5
"G"	120	0	0.4	3259	Cs/Mb1	Sil Cs & Mbl, similar to 3257		23		
"G"	120	0	-1.2	3260	Cs2a	Dark greyish brown, 5 - 7% graphite, 3% Peg	Cs2	24	N	1
"G"	125	0	1	3261	Cs2a	As above	Cs2	1	N	1.5
"G"	150	0	-2	3262	TILL	< 1% graphite	TILL	4,5	Y	
"G"	170	-2.5	-3.5	3263	Cs1a	Bucket chan - Reddish brown ~2% graphite	Cs1		N	4
"G"	175	-2.5	-4	3264	Cs1a	Bucket chan - 40 cm sil pod within	Cs1	6,7	N	4
"G"	180	2	3.6	3265	Cs1a	Med orange brown with ~ 30% TILL mixed in		8		1.5
"G"	180	0	2	3266	Cs1a/b	Med orange - sandy, 20% conslidated, 2% graphite		9		
"G"	180	0	-2.5	3267	Csa1/b	Bucket channel, 20% consolidated, 2 - 3% graphite	Cs1	10	N	
"G"	185	0	2	3268	Cs2a/b	Med to dark brown, 20% consolidated, 3 - 4% graphite		13		2
"G"	185	0	-1.5	3269	Cs1a?	Orangey brown, no spinel, 4 - 5% graphite		14		
"G"	185	-1.5	-3.5	3270	Cs1a/b/c	Bucket grab - Compentancy increases with depth, 40%a, 40%b	Cs1	15	N	
"G"	190	0	1.5	3271	Cs2a	Med brownish grey, some foliation		16		1.5
"G"	190	0	-1.7	3272	Čs2a/b	As above, with 20% competent	·	17		
"G"	190	-1.7	-3.2	3273	Cs1a/b	Bucket chan - Med orange brown, 25% semi-consolidated	Cs1	1	N	
"G"	195	1.5	-1	3274	Cs2a	Med brownish grey, 4 - 5% graphite		2		1.5
"G"	195	-1	-3.5	3275	Cs1a/b	Bucket chan - orange brown, 25% semi-consolidated 4% graphite	Cs1	3	N	
"G"	200	0	1.5	3276	Cs2a	Light to Med brownish grey, 4 - 5% graphite		4,5		1.5
"G"	200	0	-2	3277	Cs2a	Bucket chan - Med orange brown/grey, 40% semi & consolidated		7		
"G"	200	-2	-4.5	3278	Cs1a/b	Bucket chan - Med orange brown, 4 - 5% graphite	Cs1	8	N	
"G"	205	0	-2.5	3279	Cs2a	Bucket chan - Lt to Med brownish/grey, greenish, 4 - 5% graphite		11		2.5
"G"	205	-2.5	-5	3280	Cs2a	Bucket chan - As above - pegmatite layers to 25 cm	Cs1	12	Ν	
"G"	210	-0.5	-3	3281	Cs2a	Bucket chan - brown grey ~ 5% graphite		18,19		3,5
"G"	210	-3	-5.5	3282	Cs2a/b	Bucket chan - as above, increasing competentcy towards base	Cs2	20	N	
"G"	215	-1	-3	3283	Cs2a	Bucket chan - As above - Pegmatite noted above persists		1		3.5
"G"	215	-3	-5	3284	Cs2a/b	Bucket chan - As above - Pegmatite noted above persists	Cs2	2	N	
"G"	220	-0.5	-2.7	3285	Cs2a	Light brownish grey - minor Pegmatite, 5 - 6%		3		2.5
"G"	220	-2.7	-4.7	3286	Cs2a	As above	Cs2	4	N	
"G"	225	-0.5	-3.5	3287	Cs2a	Med orangey brown/grey - 25% Pegmatite, ~ 4% graphite	Cs2	5,6	N	2.5
"G"	230	-1	-3.5	3288	Cs2a	As above - decrease in Pegmatite lenses	Cs2	7,8	N	3
"G"	235	-1	2	3289	TILL	Abundant Weathered Cs2 blocks in Till ~ 3% graphite		10		3
"G"	235	-1	-4	3290	Cs2a/b	Med orangey brown Peg lenses to 40 cm, 4 - 5% graphite	Cs2	11	N	
"G"	240	0	-2.5	3291	Till	Abundant weathered Cs2 blocks in Till	Cs2	12,13	N	4.5

Ĩ

ŧ

t

Ē

Ē

f

Ē

E

E

ŧ

I

"F"	270	-0.5	-1.1	2382	Cs1a	Med orangey brown		3&4	<u>N</u>	1.25
"F"	265	-2.5	-1.5	2383	Cs1a	Med orangey brown		3&4	N	1.25
"F"	250	-2.4	-1.7	2384	Cs1a	Med orangey brown		3&4	N	1
"F"	245	-2.7	-2.1	2385	Cs2	Greyish with 4 - 5% graphite		3&4	N	1.25
"F"	239	-0.5	-1.5	3317	Cs2a	Med brownish grey - 4 - 5% graphite	P/Sk?	12	N	1.3
"F"	205	0	-0.6	3316	Cs1	Med orange to reddish brown, 2% graphite	Cs/P	11	N	2
"F"	157	-0.5	-1.1	3315	Cs2a	Med reddish grey - 2 - 3% graphite	Cs2?		Ň	1.5
"F"	55	-5	-5	3314	Cs2b/c	Bucket grab - from base of trench	Cs2	4	N	6.5
۳F۳	50	-3.5	-5	3313	Cs1a	Bucket Chan/grab - from base of trench	P		N	5.5
"F"	40	-3	-5.6	3312	Cs1a	Bucket Chan/grab - from base of trench	Cs2		N	5.5
"F"	35	-4	-6	3311	Cs1a	Bucket Chan/grab - from base of trench	Cs2	3	N	6
"F"	30	-5	-5	3310	Cs2b	Bucket Chan/grab - from base of trench	Cs2	2	N	7
"E"	0	-2.4	-1.84	2378	Cs2	Greyish brown with 4 - 5% graphite	Cs2	23	N	1.5
"E"	21	-1.75	0.25	2379	Cs2	Greyish brown with 4 - 5% graphite	Cs2	24	Y ~ 20cm	2
"E"	90	-0.6	0	2380	Cs2	Grevish brown with 4 - 5% graphite	Cs2	25	. N	2.25
"E"	120	-1.3	-0.4	2381	Cs1	Laced with abundant pegmatites/pegmatitic sweats	P	25	N	2
"D"	25	-1.4	-0.2	2369	Cs2	Greyish brown with 4 - 5% graphite	Cs2	17	N	1.6
"D"	30	-1	0.5	2370	Cs2	Greyish brown with 4 - 5% graphite		18	N	1.75
"D"	30	-2.5	-1	2371	Cs2	Greyish brown with 3 - 4% graphite	Cs2	18	N	
"D"	35	-1.8	0	2372	Cs2	Greyish brown with 4 - 5% graphite		19	N	1.4
"D"	35	0	1.8	2373	Cs2	Greyish brown with 5 - 6% graphite	Cs2	19	N	
"D"	40	-1.4	1.4	2374	Cs2	Greyish brown with 4 - 5% graphite	Cs2		N	1.5
"D"	45	-1.1	1.1	2375	Čs2	Greyish brown with 4 - 5% graphite	Cs2	20	N	1
"D"	62.5	-1	1.5	2376	Cs2	Greyish brown with 4 - 5% graphite	Cs2	21	N	1
"D"	157.5	-3.3	1.1	2377	Cs2	Bucket Channel - greyish brown with 4 - 5% graphite	Cs2	22	Y ~ 20cm	0.9
"D"	215	0	2	3292	Cs1a	Light yellowish grey, 2 - 3% graphite	1	14		2
"D"	215	0	-1.5	3293	Cs1b	Light greenish - Mbl bands to 30 cm interlayered with Cs1		15		
"D"	215	-1.5	-2	3294	Cs2a/b	Light greenish grey - semi consolidated, 3 - 4% graphite	Cs2	16&17	N	
"D"	220	0	2.5	3295	Cs2a	Medium reddish brown to grey, 4 - 5% graphite		18		2.5
"D"	220	0	-1.8	3296	Cs2?a	Greenish grey abundant diopside, 2% graphite	Cs2	19	N	
"D"	225	0	-2.5	3297	Cs2a	Light greenish grey - ~ 2% graphite	Cs2	20, 21	N	4
"D"	230	-1	-3.2	3298	Cs1a	Med orangey brown, < .5% graphite	Cs1	22,23	N	5
"D"	235	-1	-3	3299	Cs2a/b	Bucket Channel, 3 - 4% graphite	Cs2/P		N	5.5
"D"	240	-2	-3.1	3300	Cs2a/b	Bucket Channel, 3 - 4% graphite	Cs2	5,6	N	6
"D"	250	-4	-5	3301	Cs2a/b	Bucket Channel, 2 - 3% graphite	P	7	N	8

I

t

ŧ

.

"D"	255	-1.5	-3.5	3302	Cs2a/b Bucket Channel, 4 - 5% graphite	Cs2	8,9	Ν	5
"D"	260	-0.5	-2.3	3303	Cs2a/b As above	Cs2	12,13	Y ~ 10cm	4
"D"	265	-0.5	-2.7	3304	Cs2a Light brown to greenish grey, 4 - 5% graphite	Cs2	14,15	N	3.5
"D"	270	-1	-3.2	3305	Cs2a As above	Cs2	18-20	N	4.5
"D"	275	-1.5	-2.5	3306	Cs2a Brownish grey - 30cm Peg, 4% graphite	QM	21,22	N	5
"D"	280	-2	-3.5	3307	Cs2a Brown to greenish grey, Peg 20%, 4% graphite	Cs2	23,24	Y	5.5
"D"	285	-2.5	-6	3308	Cs2a Bucket channel - Description as above	Cs2	24,25	N	6
"D"	290	-2.5	-5	3309	Cs2a Light to Med brownish grey, 4 - 5% graphite	Cs2	1	N	5.5
"C"	Ō	-3.2	-1.1	2386	Cs2 & Cs1 With some pegmatite	Cs1	L16	N	1.75
"C"	5	-2.5	0.7	2387	Cs2 & Cs1 Orange brown with some steel grey	Cs1	L16	N	1.5
"С"	10	-1.8	-0.4	2388	Cs1 Orangey brown with 2 - 3% graphite	Cs1	L16	N	1.25
"C"	15	-2.1	-1.5	2389	Cs1 Orangey brown with 2 - 3% graphite	Cs1	L16	N	1
"C"	20	-2	-1.4	2390	Cs2 Greyish brown with 4 - 5% graphite	Cs1	L16	N	1.5
"C"	75	-3	-1.25	2391	Cs1 Orangey brown with 2 - 3% graphite	Cs1	L17	N	1.5
"A"	30	-1.5	-0.5	2392	Cs1 Orangey brown with 2 - 3% graphite	Cs1	11	N	1.5
"A"	35	-1.75	0	2393	Cs1 Orangey brown with 1 - 2% graphite	Čs1	11	N	1.25
"A"	40	-1.35	0	2394	Cs1 Orangey brown with 2 - 3% graphite	Cs1	16	N	1.5
"A"	50	-1	0.6	2395	Cs1 Orangey brown with 2 - 3% graphite	Cs1		N	1
"A"	60	-2	0	2396	Cs1 Orangey brown with 2 - 3% graphite	Cs1		N	1.8
"A"	70	-1.5	-1	2397	Cs1 Orangey brown with 2 - 3% graphite	Cs1		N	1.8
"A"	105	-2.25	-0.5	2398	Cs2 Greyish brown with 4 - 5% graphite	Cs2	17	N	2
"A"	155	-2.5	-1.5	2399	Cs2 Greyish brown with 4 - 5% graphite	Cs2	1	N	1
"A"	160	-2.5	-2	2400	Cs2 Greyish brown with 4 - 5% graphite	Cs2	1	N	0.5

E

ŧ

1

ŧ

ł

Ē

Ē

Ē

Ē

Ē

Ľ

	SURVEY DATA									DRILLING D	АТА					
SURVEY		DEPTH	-		DIP	T	RUE AZIMUTH	[GR	D		GRII) SYSTEM	М	INE
	(ft	.)	(m)		True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX.	NORTHING (m)		
Collar													APPROX	. EASTING (m)		
Dawn Hole	. (ft	.)	(m)	Read	True	Read	Тгие						APPROX. I	ELEVATION (m)		
														DRILLING ARTED	May	18/2001
	_												DATE DRI	ILLING ENDED	May	26/2001
]							(ft.)	(m)
												4	тоти	al Depth	954.05	290.78
								1					CASH	NG DEPTH	200	60.95
								1					C	ASING		
				1									STEE	L IN HOLE	No	Ft.
								1					LOC	GGED BY	T. Lewis	
								4					LOGO	GING DATE	May 21 -	27/2001
								<u>.</u>								
GEO	LOG	ICAL	I I	ІТНО			LITHOLO	GICAL F	DESCRIPTION				SAMPI			
IN'	TERV	AL		CODE									Sample Interval Pegmat		1 .	AMPLE UMBER
FROM (I	n)	TO (m)										From (m)	To (m)	Cum. Total (
0		60.96			CASING - O	VERBURDEN	I						+			
						el, Clay, Bouid		lithologies								
						, .		-						1		
										· · · ·	•••	~	+			
60.96		72.04		CS2		ATE GNEISS			•		· .	60.96	62.00	0.03	40	51
						- Medium to a d divergence of d			strongly			62.00	64.00	0	40	52
-						e spinel, local r						64.00	66.00	0.82	40	
	[-				- Ineg	gular anhedral d	juartz masses	to .5 cm.				66.00	68.00	0.10	40	54
			_		- Loc	al trace fine to a	medium grain	ed pyrite, < .	5% disseminated ve	ery fine grained pyrr al sections up to 2.5	hotite.	68.00	70.00	0	40	55 .
					- Min	eralized zone is	ueu nne to me s weakly oxidi	zed with ner	a Graphite, with lot vasive limonite stai	ning in local patches	v. s and strong limo	nite 70.00	72.04	0	40	56
	1				stain	ing on fracture	surfaces - typ	nically @ 55°	to core axis.	in toon patono.	-, •••••••••••••••••••••••••••••••			+		
					1									-		
					1		÷						1	1		
]											

Page 1 of 7

23 Page 2 of 7

GEOLO	GEOLOGICAL LITHO		LITHOLOGICAL DESCRIPTION	SAMPLE LOG					
INTER		CODE	LITHOLOGICAL DESCRIPTION	Sample Interval		Pegmatites	SAMPLE		
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)	NUMBER		
			 CS2 cont'd Within section there is an amorphous graphite lined fault with Breccia bands 3 - 4 cm wide on either side @ 71.32m's. Fault angle is ~ 70° to core axis. From 61.55 to 61.74 - band of Biotite Gneiss, weakly foliated @~70° to core axis no CaCo3 in zone From 65.18 to 66.10 Quartz Feldspar Pegmatite. With partially assimilated Cs2. Also contains stringers which tend to be moderately oxidized, which contain <1% graphite, and <1% pyrite/pyrrhotite Overall Approximate Composition: Quartz 50 - 55% CaCo3 30 - 35% Scapolite 10 -15% Graphite 1.5 - 3% 	4					
72.04	74.50	P	 Pyrite/Pyrrhotite <1% QUARTZ FELDSPAR BIOTITE PEGMATITE Sheared & friable - with few competent blocks greater than 10cm. Locally up to 1% pyrite, and pyrrhotite Locally up to 1% Medium grained graphite Limonitic weathering Trace CaCo3 Fractures @ 80°, 70°, and 50° to core axis 	72.04	74.37	2.33	4057		
74.50	79.25	QFBG	OUARTZ FELDSPAR BIOTITE GNEISS - Weak to moderately foliated @ ~75° to core axis - Fairly competent - Trace disseminated pyrrhotite - Local thin bands with 1 ~ 2% disseminated graphite - From 77.78 to 78.22 Calc-Silicate Gneiss band, light grey, medium crystalline, trace pyrite, <1%						

7 3 of

GEOLO	GICAL	LITHO	LITHOLOGICAL DESCRIPTION	SAMPLE LOG				
INTER		CODE		Sample I	interval	Pegmatites	SAMPLE NUMBER	
From (m)	<u>To (m)</u>		QFBG cont'd	From (m) To (m)	Cum. Total (m)			
			- Quartz 45% - Feldspar 35% - Biotite 10% - Clinopyroxenc/Diopside 10%		· · · · · · · · · · · ·			
79.25	80.13	P	- QUARTZ FELDSPAR PEGMATITE					
			 Creamy grey, coarsely crystalline Irregular clots of biotite, with associated trace fine grained pyrite Amorphous Quartz 45% Smokey Quartz Eyes 15% Feldspar 40% 					
			- Biotite/Pyrite/Other Accessory minerals <1%			· · · · · · · · · · · · · · · · · · ·		
80.13	100.98	M1	 Locally grades to Cs1 Buff to Creamy grey, locally greenish (pervasive epidote in skarn?) Locally weakly foliated - typically @80° to 90° to core axis Typically massive, granular with medium grained quartz & calcite crystals Fine to Medium grained phlogopite, typically in darker, stronger foliated sections <0.5% disseminated fine to medium grained graphite throughout section with local concentrations between 0.5% and 1% Pegmatite @~98.25m's with marginal skarn mineralization - Actinolite/Tremolite & some quartz present as larger "eyes" N.B. Oxidation ends @~74.50m 					
			 N.B. Oxidation ends @ ~/4.50m Approximate Composition: CaCo3 60% - Quartz 25-30% Diopside 10% - Graphite < 1% Pyrite/Pyrrhotite trace - Access. Minerals 1-2% 					

7 4 Page of

GEOLOGICAL	LITHO	LITHOLOGICAL DESCRIPTION	SAMPLE LOG				
INTERVAL	CODE		Sample I	nterval	Pegmatites	SAMPLE NUMBER	
From (m) To (n) 100.98 145.2		 INTERCALATED ZONE Zone of highly variable lithologics, most typically gneisses of varying mineralogic compositions. The most predominate of these being a pale greenish (pervasive epidote?) weakly to moderately foliated Feldspar/Quartz/Biotite Gneiss with a trace of CaCo3. Local patches of skarn mineralization occurs with Actinolite/Tremolite series minerals present. The second most common lithology is Feldspar/Biotite Gneiss, which is moderately foliated – typical from 70° to 80° from the core axis. Fine to medium grained, irregularly shaped disseminated faint retrograde garnets are present in this section, usually hosted in the first five meters of the contact of the above M1 unit. Generally < 1% disseminated pyrite/pyrrhotite Several narrow relatively clean, medium grained marble bands occur in this in this zone, which contain < 0.5% disseminated graphite Pegmatites of Varying widths are also present, typically being of the Feldspar/Quartz/Biotite variety. The more notable/wider of these being: 108.88 to 110.73 and 139.35 to 141.86 	From (m)	To (m)	Cum. Total (m)		
145.20 176.2	0 QFBG	 QUARTZ FELDSPAR BIOTITE GNEISS Medium to dark grey, finely laminated with alternating dark & light bands Moderately foliated @ 70° to 90° to core axis - most typically 80° Numerous thin pegmatites typically 5 to 20cm wide, which are quite often conformable of semi-conformable to foliation. Local sections grading to Quartz/Feldspar/Biotite/Garnet Gneiss which displays medium to coarse grained faint pink retrograde garnets which are disseminated, and locally comprise up to 2% of the mass. Most notable garnetiferous section is from ~161 to 163.75 (which also exhibits noticeable stain with up to .5% stretched augens, and < .5% disseminated fine grained graphite). Shearing at ~161.63 in a heavy Biotitic zone, adjacent to ~40 cm (up to ~162m) of strong skarn replacement with Actinolite/Tremolite series minerals present. 					

GEOLO	GICAL	LITHO	LITHOLOGICAL DESCRIPTION		SA	MPLE LOG	
INTER	RVAL	CODE	LITHOLOGICAL DESCRIPTION	Sample Interval		Pegmatites	SAMPLE
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)	
176.20	197.86	Р	PEGMATITE SWARM ZONE				
			- Zone of abundant pegmatites of typically Feldspar/Quartz/Biotite composition				
			 Contained Quartz/Feldspar/Biotite/Garnet Gneisses tend to be texturally more mottled or spotted than above 	4	1		
			section with weaker foliation, with increased feldspar/Quartz content as manifest in the increased frequency		1		
			and width of these gneissic bands.				
	- Garnet content in select sections in this interval is noticeably higher than seen elsewhere, the gar typically faint, pink, medium to coarse grained.	- Garnet content in select sections in this interval is noticeably higher than seen elsewhere, the garnets being typically faint, nink, medium to coarse grained.			· · · · · · · · · · · · · · · · · · ·		
			- Foliation in this zone is typically $@$ 70° to 80° to the core axis.				
			- Margins of the Pegmatites quite often indistinct, and there appears to be considerable assimilation &/		· ·		
			alteration of the host rock - Bottom of zone (from ~ 197 to 197.86) gradually decreasing alteration due to increasing distance from				
			pegmatite.				
	· · · · · ·		 Most notable pegmatites: 		<u> </u>		
			179.23 to 180.13 182.57 to 183.06 183.93 to 184.80 187.15 to 190.63* *with abundant coarse biotite.				
			with additional coarse biolite.			· · · · · · · · · · · · · · · · · · ·	ļ
					<u> </u>		· · · ·
197.86	220.00	OFBG	QUARTZ FELDSPAR BIOTITE GNEISS				
197.00	220.00	Qrbu			- · · · · · · · · · · · · · · · · · · ·		
			- Dark grey, banded with typical band width <1 mm	41.			<u> </u>
			 Moderately to strongly foliated @ 80° to core axis Typically trace to <0.5% fine grained disseminated graphite 				
			 - <0.5% disseminated fine grained pyrthotite 				
		Local trace fine to med grained poorly formed pink anhedral garnet		ļ			
			- Typically Consists of:				
			- Quartz 45 – 50% - Feldspar 35 – 45% - Biotite 15% - Graphite <1%				L
	- Mica/Phlogopite <1%						

7 5 of Page

6 of 7

GEOLO	GEOLOGICAL		LITHOLOGICAL DESCRIPTION	 	SA	MPLE LOG	ELOG	
INTER	VAL	LITHO CODE		Sample Interva		Pegmatites	SAMPLE NUMBER	
From (m)	To (m)		QFBG continued	From (m)	To (m)	Cum. Totai (m)		
			 Feldspar Quartz Biotite Pegmatite from 219.14 to 219.65 Pegmatitic/Digest zone from 212.32 to 214.50 					
			- Gouge filled fault @ 218.20 – fault @ 80° to core axis	4				
	· · · · · · · · · · · · · · · · · · ·							
220.00	226.60	Р	FELDSPAR QUARTZ BIOTITE PEGMATITE - Texture ranges from medium to coarsely crystalline.					
	· · · · · · · · · · · · · · · · · · ·	 Interval includes silicified/replaced marble? Section with trace CaCo3, greyish green (pervasive chlorite/or epidote?) with crystalline texture. <0.5% Biotite, Trace fine grained pink anhedral gamet, possible trace mica. 224.40 to 226.60 - coarsely crystalline - pure pegmatite 						
226.60	230.08	Р	SILICIFIED MARBLE?					
			 Mottled grey/green, medium to coarsely crystalline Massive to weakly foliated @90° to core axis Ouartz 75% - Feldsnar 20% 					
			 Biotite/Mica <1% - Chlorite? 5% Feldspar occurs as discrete narrow bands 	p2				
			- Fractures – sub parallel to core axis – Quartz/ CaCo3 healed.					
230.08	264.55	QFBG	QUARTZ FELDSPAR BIOTITE GNEISS					
			 Much like other QFBG seen throughout hole Foliation 85° to 90° to core axis in upper portions - @ 70° in lower (from ~250m on) Overall in the neighbourhood of 10 - 15% Pegmatite dykes in section Contact with Crystalline Marble unit below is gradational & see a decrease in biotite content starting @~263.25 					
						· · · · ·		
		. 	- Pegmatite @ 264.17		1		l	

GEOLO	GEOLOGICAL LITHO				SAMPLE LOG					
INTER		CODE	LITHOLOGICAL DESCRIPTION	Sample I	nterval	Pegmatites	SAMPLE NUMBER			
From (m)	To (m)			From (m)	To (m)	Cum, Total (m)	NUMBER			
From (m) 264.55	<u>To (m)</u> 271.45 290.78		MARBLE - Creamy grey, medium to Coarse grained crypto crystalline - Faint pale green (epidote?) hue - Trace disseminated fine grained graphite - Constituent Minerals: - CaCo3 70% Quartz 10% - Diopside 10% Biotite/Phlogopite 1%	- From (m)	To (m)	Cum. Total (m)				
			 271.45 to 272.92 Quartz Feldspar Diopside Marble? replacement zone 272.92 to 275.59 Quartz Feldspar Biotite Gneiss – with Foliation @ ~ 75° to core axis 275.59 to 281.70 Quartz Feldspar Diopside Marble? replacement zone, local sections trace CaCo3, & sections of actual marble locally. Weakly foliated @ 75° to LCA 281.70 to 290.78 Quartz Feldspar Biotite Gneiss. First 70cm's gradational lithology change from unit above. Finely laminated typically, with sections of coarser banding. Foliation ~85° to core axis. Bottom I meter of this section has abundant (4 - 5%) disseminated fine to medium grained poorly formed pink garnet 	A.						

						SURVEY D	ATA						DRILLING E	ATA	
SURVEY		DEPTH		DIP	Т	RUE AZIMUTH	1		GR	מ		GRI	D SYSTEM	М	INÉ
	(ft.)	(17)	True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (n) APPROX.	NORTHING (m)		
Collar												APPROX	. EASTING (m)		
Down Hole	(ft.)	(m) Read	True	Read	Тгие		••				APPROX.	ELEVATION (m)		
1	221.00	67.3	46 -53°	-53°	024°	042.5°	1						DRILLING		
2	471.02	143.:	56 -54	-54	025°	043.5°	1					DATE DR	ILLING ENDED		
														(ft.)	(m)
											i.	тот	AL DEPTH	474.00	144.47
							1					CASI	NG DEPTH	20.00	6.1
				· · ·			1					(ASING		
							1				-	STER	L IN HOLE	No	Ft.
							1					LO	GGED BY	T. Lewis	
							1					LOG	GING DATE	May 29 -	31/2001
	LOGIC FERVA		LITHO CODE			LITHOLO	OGICAL E	DESCRIPTION			SAMPLE LO		1		
	CODE									Samp	le Interval	nterval Pegmatite		AMPLE UMBER	
FROM (n	n) '	ТО (m)									From (m) To (m)	Cum. Total (
0		6.1		CASING - O	VERBURDE	N (TO 4.7M)							:		
					(And other D										
		••••													
6.1		24.7	QFBG	QUARTZ FE	ELDSPAR BIO	DTITE GNEI	<u>SS</u>				- 13.4	14.40	0	40	58
				- Ligh	t grev handed	moderately fo	listed @ 709	o to 80° to core axis	1		14.4) 15.40	0	40	59
				- Inclu	des section of	partial digest/s	skam @~10.	.40 to 13.40 with tr	emolite/actinolite mi		15.4) 16.40	0	40	60
							3.40 to 18.40	, with 1 – 2% very	fine gained dissemin	ated graphite with	n < 0 16.4) 17.40	0	40	61
					local dissemina		medium arai	ned poorly develop	ed nink gemet		17.4) 18.40	0.54	40	62
				Delo	w 10.4m dace	uissemmated i	incomin gran		eu plitk gathet		18.4) 19.40	0	40	63
				1											
				DIOTITE OF		(D.) D. ()		~ ~ ~							
24.7		34.15	BQFGG	BIOTITE QU	UARTZ FELI	ISPAR GARN	NET GNEIS	<u>8</u>							
				- Dark	Banded, Mod	erately foliated	d @ 80° to co	ore axis							
					,		~								

5

of

Page 1

GEOLO	GICAL	LITHO	LITHOLOGICAL DESCRIPTION		SA	MPLE LOG	
INTER	VAL	CODE		Sample Interval		Pegmatites	SAMPLE NUMBER
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)	I CHINER
			 Biotite Quartz Feldspar Garnet Gneiss cont'd Abundant (~5%) disseminated med grained pink poorly developed garnet Faulting/slippage @ 26.00, 30.60, 31.80, & 32.30 - typically parallel to foliation ~ 5% narrow pegmatites 	4		0.24	
34.15	46.98	SQFBG	 SPOTTED QUARTZ FELDSPAR BIOTITE GNEISS Partial assimilated zone? Predominately spotted whitish with, with faint banding, weak foliation @ 75° to core axis Quartz/Feldspar with < 5% Biotite, < 0.5% pyrite/pyrrhotite, loc diopside, & trace chlorite Stronger foliation with an increase in Biotite content from 41.00m to 43.50m * < 5% thin (i.e.: 5 to 10 cm) pegmatitic dykes, contacts often quite indistinct/gradational Partial alteration of feldspars to clay from 43.75 to 46.94 			*	
46.98	60.40	QFBG	 QUARTZ FELDSPAR BIOTITE GNEISS Banded – alternating whitish thin bands & light brown with greenish tints biotite rich bands Moderately foliated @ 80° to core axis Light to moderate alteration of feldspars to greenish clay Fault @ 56.08m parallel to foliation, similar but wider fault @ 59.13m Local trace disseminated graphite Distinct patch of light green clay mineralization @ 55.35m 			2.19	
60.40	61.88	P	QUARTZ FELDSPAR BIOTITE PEGMATITE - Coarsely crystalline with trace limonite weathering			1.38	

2 of 5

	LITHO	LITHOLOGICAL DESCRIPTION		SA	MPLE LOG		
INTER	RVAL	CODE		Sample Interval		Pegmatites	SAMPLE NUMBER
From (m)	To (m)		Quartz Feldspar Biotite Pegmatite cont'd	From (m)	To (m)	Cum. Total (m)	
			- ~ 10cm section of greenish skarn (diopside, tremolite/actinolite) mineralization				
				61.88	63.00	0	4064
61.88	73.00	CS2	<u>CALC-SILICATE GNEISS – GRAPHITIC – CS2</u>	63.00	64.00	0	4065
			- Light grey with greenish tinge, especially in first 1m of section	64.00	65.00	0	4066
			- Very weakly foliated @ 85° to core axis	65.00	66.00	0	4067
			 Fluoresces moderately in 1st meter of the section, and then strongly thereafter Local sections of limonitic weathering 	66.00	67.00	0	4068
			- Darker Section with trace of very fine grained spinel @ 71.42 to 71.67	67.00	68.00	0	4069
			- Local trace Biotite - patchy	68.00	69.00	0	4070
			- Approximate Composition: - Quartz 40 – 60% - CaCo3 20 – 30%	69.00	70.00	0	4071
			- Diopside 10 – 20% - Pyrite/Pyrthotite < 1%	70.00	71.00	0	4072
			- Graphite 1 – 2%	71.00	72.00	0	4073
				72.00	73.00	0	4074
73.00	77.72		SILICIFIED/PARTLY REPLACED ZONE W/INTERIOR PEGMATITE - Creamy grey silicified, locally mottled greenish - Strongly silicified pegmatite margin from 74.00 to 75.27 - Quartz 70 - 80% Diopside 20 - 25%	уб			
-			- Pyrite/Pyrrhotite 1% Graphite < 0.5%				
			- Biotite Trace CaCo3 Trace				
77.72	110.87	Ml	GRAPHITIC MARBLE		 		
11.12	110.07	IAIT					
			- Light grey to creamy white with greenish tinge				

3 of 5

Page

BC0124	Page
--------	------

4 of 5

GEOLO	GICAL	LITHO	LITHOLOCICAL DESCRIPTION	SAMPLE LOG				
	INTERVAL		LITHOLOGICAL DESCRIPTION	Sample Interval		Pegmatites	SAMPLE NUMBER	
From (m)	To (m)		· · · · · · · · · · · · · · · · · · ·	From (m)		Cum. Total (m)		
			Graphitic Marble cont'd	77.92	79.00	0.25	4075	
			- Very weakly foliated @ 80° to core axis	79.00	80.00	0	4076	
		1	- <1% disseminated very fine grained pyrite/pyrrhotite	80.00	81.00	0	4077	
			- graphite fine to medium grained – disseminated	81.00	82.00	0	4078	
		1	 From 87m down to bottom of interval tends to host higher graphite concentrations & grades more to CS1 Pegmatitic Dyke from 84.76 to 85.75 m - with a trace of graphite - not sampled 	82.00	83.00	0.17	4079	
			 regnatic Dyke from 34.76 to 85.75 m – with a frace of graphite – hot sampled Limit of Limonitic weathering on fractures, & in matrix is at ~ 98.80 m 	83.00	84.00	0	4080	
	· · ·	1	- Several sections of "dirty" marble with Mica/Phlogopite	84.00	84.72	0	4081	
			 Haematitc/Biotite/Pyritic sections: from 90.48 - 91.30 and 96.40 - 99.00 Overall very competent with one weak zone with predominate fracturing along foliation planes from 97.00 to 					
	· · · · · ·		- Overall very competent with one weak zone with predominate fracturing along tollation planes from 97.00 to 99.00	85.76	87	0	4082	
			- Sample 4101 is visually the highest grade material, possibly grading up to 1%	87	88	0	4083	
	÷	-	- Some sections trend towards "quartzite" with only slight CaCo3 content	88	89	0	4084	
		+	- Overall approximate composition: - CaCo3 30 – 90% Quartz 10 – 30%	89	90	0	4085	
			- Diopside 5 – 10% Graphite <1%	90	91	0	4086	
			- Graphite < .5%	91	92	0	4087	
				92	93	0	4088	
		+		93	94	0	4089	
				94	95	0	4090	
				95	96	0.10	4091	
	·			96	97	0	4092	
		+.		97	98	0	4093	
				98	99	0	4094	
		+		99	100	0.15	4095	
				100	100	0.06	4096	
				100	101	0.04	4097	
		-		101	102	0	4098	
				102	105	0	4099	
				103	104	0	4100	
				1.04	105	L •		

GEOLO	SICAL	LITHO	LITHOLOGICAL DESCRIPTION		SA	MPLE LOG	
INTER		CODE	LITHOLOGICAL DESCRIPTION	Sample I	Interval	Pegmatites	SAMPLE NUMBER
From (m)	To (m)	+		From (m)	To (m)	Cum. Total (m)	
		1	Graphitic Marble Cont'd	105	106	0	4101
				106	107	0	4102
				107	108	0	4103
				108	109	0	4104
				109	110	0.01	4105
				110	110.87	0.04	4106
110.87	144.47		 INTERCALATED ZONE Zone of highly variable lithologies Most typically gnoisses of varying mineralogic compositions Predominate is a pale green/greyish diopside and/or locally actinolite/tremolite rich gneiss Compositionally Feldspar/Quartz/Biotite +/- CaCO3, +/- Diopside, +/- Tremolite -Actinolite, +/- Pyrite - Pyrrhotite, +/- Graphite (typically on a trace a most) 138.38 to 142.20 Feldspar/Quartz (almost equal proportions) Biotite Gneiss, with a few narrow pegmatites included. Foliation at the top of the section is 70-80°, while lower in the section foliation is 80 - 90° to core axis Abundant narrow Feldspar/Quartz/Biotite +/- Tremolite - Actinolite, +/- Pyrite/Pyrrhotite Pegmatitic Dykes. Dykes are typically narrow & sinuous with skarn mineralization adjacent quite often. Most notable are: 110.40 to 113.00 - very fractured, non-competent 120.20 to 121.36 - vuggy with haematitic stain 				

5 _{of} 5

Page

						SURVEY D	ATA						DRILLING L	ATA	
SURVEY	D	ертн		DIP	T	RUE AZIMUTH	[GR	ID		GRII	D SYSTEM	N	MINE
	(ft.)	(m)		True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX.	NORTHING (m)		
Collar												APPROX	. EASTING (m)		
Down Hole	(ft.)	(m)	Read	Тгие	Read	True						APPROX. I	ELEVATION (m)		
1	161.00	49.07	7 -55°	-55°	014	032.5°							DRILLING TARTED		
]					DATE DR	ILLING ENDED		
							1							(ft.)	(m)
]				ż.	тот	AL DEPTH	167.00	50.90
												CASE	NG DEPTH	26.71	7.01
							7					C	ASING		
							1					STEE	L IN HOLE	No	Ft.
												LOG	GGED BY	T Lewis	· · · · · · · · · · · · · · · · · · ·
							1					LOGO	GING DATE	June Ot	- 02/2001
	LOGICA FERVAL	l	LITHO CODE			LITHOLC	IGICAL I	DESCRIPTION			Sample	Interval	MPLE LOG Pegmatite	es s	SAMPLE
FROM (n	a) T() (m)								••••••••••••••••••••••••••••••••••••••	From (m)	To (m)	Cum. Total (N (m)	UMBER
0	-	7.01		CASING O	VERBURDEN	ŕ									
				CASING-0	ERBURDEN	-									
· · · · · ·												··	· · · ·		
7.01		7.40		QUARTZITI	C BOULDER	?					÷-				
	· · · .			1											
				GAT G BIT		00.001									
7.40	2	0.72	Csl	CALC - SILI	CATE GNEIS	65 C 51					7.4	8	0		107
					Light to me	dium grey. V	Weakly to mo	oderately foliated @	80 - 90° to core ax	is.	8	9	0.15		108
			<u> </u>			on varies but o					9	10	0.32		109
				-	 Quartz 35 Scapolite 1 		- CaCo3 2 - Diopside				10	11	0.20		110
ļ					Pyrite/Pyrr	hotite < 1%	- Graphite	1 – 3%			11	12	0.08	1	111
				-	Trace Bioti	te/Phlogopite					12	13	0.07		112
				-	 Numerous Several 	thin pegmatit	ic stringers	on with appoidant	le pervasive limonite		13	14	0.13		113
					Several ZOI	ies of weakne	ss/Oxiuizati	on, with considerab	e pervasive innonite	¢	14	15	0.33	41	114

of 4

Page 1

2 Page of

4

GEOLO	GEOLOGICAL LITHO		LITHOLOGICAL DESCRIPTION	SAMPLE LOG					
INTE		CODE	LITHOLOGICAL DESCRIPTION	Sample Interval		Pegmatites	SAMPLE NUMBER		
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)	NONIBER		
			<u>Calc – Silicate Gneiss cont'd</u>	15	16	0	4115		
				16	17	0	4116		
			 Two zones (@ 11m, and @~18.5m) darkish with Cs2 texture, but no spinel noted Graphite is typically fine to medium grained, disseminated, and aligned parallel to foliation 	17	18	0.44	4117		
			 Pegmatites typically carry a trace of medium grained disseminated graphite 	18	19	0.02	4118		
-			 Marble with < 0.5% disseminated graphite from 13.7 to 14.8m Extremely poor recovery samples 4115, & 4116 as the Cs1 is extremely friable (drillers noted "sand"). Strong limonitic stain in this interval 	19	20	0.06	4119		
20.72	22.85	Cs2	<u>CALC - SILICATE GNEISS CS2</u>	20	21	0.39	4120		
-			- Medium to dark grey	21	22	0.02	4121		
			 Weakly foliated @ 80 - 85° to core axis Cs2 unit begins immediately below an approximately 37 cm wide pegmatitic dyke Local somewhat unique texture, as narrow white carbonate bands pinch out at either end Local greenish tinge, up to 15% diopside Overall 2 - 3% disseminated fine grained (locally medium grained) disseminated graphite, aligned parallel to foliation <1% disseminated fine grained pyrite/pyrrhotite bottom of unit is slightly friable, and limonitic ends in pegmatitic dyke @ ~ 22.85m 	22	23	0.15			
22.85	25.30	P	FELDSPAR QUARTZ PEGMATITE DYKE - White with pink/rose coloured haematitic sections - Not particularly competent from ~23 to 24 meters - Trace disseminated fine to medium grained graphite						
							<u> </u>		

CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geologi

nloa	ical	Loa	Hole-	ID:	

BC0125 Page 3

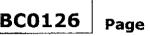
4 of

GEOLOGICAL LITHO		LITTIO	LITHOLOGICAL DESCRIPTION	SAMPLE LOG					
	INTERVAL CODE		LITHOLOGICAL DESCRIPTION	Sample Interval		Pegmatites	SAMPLE		
From (m)	To (m)		· · · · · · · · · · · · · · · · · · ·	From (m)	To (m)	Cum. Total (m)			
25.30	46.92		<u>CALC – SILICATE GNEISS Cs1</u>						
			- Much as Interval 7.40 to 20.72	25	26	0.25	4123		
			- Weakly to very weakly foliated, although a few sections exhibit moderate foliation. Typically 80 - 90° to	26	27	0.27	4124		
	· · · · · · · · · · · · · · · · · · ·		core axis	27	28	0.20	4125		
			 Locally the section has some physical characteristics similar to Cs2, 38.72 to 42.00 is darker with increased fine grained graphite ~2 to 3.5% - but no spinel 	28	29	0	4126		
	•		- Skarn zone below dyke at 25 to 26m, with abundant diopside, increased silicification, and tremolite/actinolite	29	30	0.06	4127		
			mineralization.	30	31	0.02	4128		
			 28.65 to 30.01 is diopsidic marble with < 0.5% graphite, aligned in thin bands Slight fracture & limonitic stain in Section ~37 - 37.79 (ends in Pegmatitic dyke 37.79 - 38.04) 	31	32	0.04	4129		
			 Strong fault from 42 to 44 m's, with epithermal type carbonate breccia with medium to coarse grained clasts, 	32	33	0	4130		
		•	carbonate cement, with some very fine calcite crystal growth in cavities. Some clay/carbonate gouge	33	34	0	4131		
			 associated with the fault also noted Thin tremolite/actinolite rich skarn zone ~ 5 cm wide at contact with quartzy unit below. 	34	35	0	4132		
			- This remonterational fich skall zone ~ J chi wide at contact with quartzy this below.	35	36	0.03	4133		
				36	37	0	4134		
				37	38	0.21	4135		
				38	39	0.04	4136		
		+		39	40	0	4137		
				40	41	0	4138		
				41	42	0	4139		
				44	45	0 .	4140		
				45	46	0	4141		
				46	47	0	4142		
			-	<u> </u>	+		+		
			-		+				
	·······		-						
				· - ·					
		<u> </u>	1			<u> </u>	1		

BC0125 P	age 4	of	
----------	-------	----	--

Δ

GEOLO	GICAL	LITHO	LITHOLOGICAL DESCRIPTION	SAMPLE LOG				
INTER	VAL	CODE		Sample Interval		Pegmatites	SAMPLE NUMBER	
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)		
46.92	50.90	Q	QUARTZ					
			 Medium grey to creamy white locally Mottled with pink hues typically Local limonitic weathering Patchy green Tremolite/Actinolite mineralization Local trace CaCo3 on fracture surfaces Local patchy disseminated medium grained graphite < 0.5% overall Oxidized disseminated sulphides <1% Unit is quite blocky/fractured from ~ 48.30 to 49.50 					
			- Trace fresh – unoxidized fine grained pyrite locally					
	· · · · · · · · · · · · · · · · · · ·			······································				
				<i>ب</i> م 				
· · · · · · · · · · · · · · · · · · ·								


BC0126 Pag е

1.	of	3

							SURVEY D	ATA	,					DRILLING D	АТА				
SURVEY	D	ЕРТН		D	1P	TI	RUE AZIMUTH	[GR	D		GRIE	SYSTEM	м	INE			
	(ft.)	(m		Tr	ue	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX.	NORTHING (m)					
Collar													APPROX.	EASTING (m)					
Down Hole	(ft.)	(m) R	ead	True	Read	True				· · · · · · · · · · · · · · · · · · ·		APPROX. E	LEVATION (m)		· · · · · ·			
1	145	44.1	9 -	55	-55	023	045							DRILLING ARTED	July	16/01			
				ν.]				4	DATE DRI	LLING ENDED	July	17/01			
												*			(ft.)	(m)			
]					тотя	l Depth	160	48.77			
													CASI	NG DEPTH	15	4.57			
_								1					C	ASING					
								1					STEE	L IN HOLE	No	Ft.			
		**						1					LOC	GGED BY	T. Lewis	•			
						•.		1					LOGG	ING DATE	ATE July 18/01				
INT	FERVAL		CODE										¥_4+	Democratic		AMPLE			
												Sample	Interval	Pegmatite		UMBER			
FROM (m	a) T(O (m)		-	• • • •					••••		From (m)	To (m)	Cum. Total (m)				
0	4	4.57	CASE	<u> </u>	CASING - (OVERBUR	<u>DEN</u>					Å.							
4.57		5.70	ČS1	— c	CALC - SI	LICATE G	NEISS												
								dykes, onl y	y total of 30cm	of this interval is	Csl								
																· · ·			
5.70	č	3.30	QM			IONZONI / – very wea		1											
									fine mined -	yrite – typically o	widized								
						fractured -				Mulzeu.									
				D	JUCKY VELY	nactured - (ciayey iaun	ee approx	10.3011					1					

2 Page of

GEOLO INTER		LITHO CODE	LITHOLOGICAL DESCRIPTION		SA	MPLE LOG	
				Sample I	nterval	Pegmatites	SAMPLE NUMBER
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)	
8.30	15.14	CS2	CALC - SILICATE GNEISS	8 *	9	0.02	4144
	· · · ·		Dark grey typically with 2 - 3 % disseminated fine grained graphite -	9	10	0.02	4145
			local sections - largely not oxidized. Grades to light grey Cs1 locally (interdigitated?) with	10	11	0.13	4146
			no spinel present brecciated section with quartz cement @ top of	11	12	0.10	4147
			section adjacent to fault - several thin pegmatitic dykes present -bottom of section ragged with	12	13	0.03	4148
			indigitated pegmatite 13.60 - 14.30 graphite possibly up to 4%Overall typically: Quartz 45%	13	14	0.14	4149
			CaCo3 30% Scapolite 10% Diopside 10% Pyrite / Pyrrhotite 1%Spinel - trace, oxides 1%	14	15	0.00	4150
	<u></u>		Weak to moderately foliated @ 40 - 60° to lca – stronger graphitic section noted above is @ $\sim 40^{\circ}$	15	16	0.45	4151
15.14	18.71	SK	SKARN				
<u> </u>			Calc – Silicate Skam/partial digest zone, with trace thin poorly defined pegmatites.		· · · · · ·		
			Patches of strong silicification, & Cs1 mineralization (most notable being 18.35 to 18.71)		 		
		-	Typically pale grey to creamy, with slight greenish tinge (diopside, and loc tremolite	*			
······································			- actinolite mineralization) weakly foliated locally @ 70° to lca. local trace disseminated fine grained graphite				
18.71	21.30	LM	LAMPROPHYRE DYKE		 	1	
			Darkish brown with slight greenish tinge, mottled/speckled – biotite/mica 65%, feldspar 25% diopside? 5%, quartz present as fracture filling < 5%, accessories <2% Top contact with above unit @ 35° to lca, bottom contact faulted. massive no foliation apparent				

GEOLO INTEI		LITHO CODE	LITHOLOGICAL DESCRIPTION	SAMPLE LOG						
	···· · · · · · · · · · · · · · · · · ·	-		Sample	Interval	Pegmatites	SAMPLE NUMBER			
From (m)	<u>To (m)</u>	· · ·		From (m)	To (m)	Cum. Total (m)				
	41.60	Cs1	CALC – SILICATE GNEISS Light grey - weakly foliated @ 70 - 80° to lca (steepens to 80° in lower portions of interval) Typical constituents: Quartz 45% CaC03 30% Scapolite 12% Epidote 5% Graphite - fine to locally medium grained disseminated 1 - 2% Clay/Soil!!! lined fault @ 34m's @ ~ 10° to lca Darker - more graphitic section from ~ 35.7 to 37.7 Brecciated fault at the top of the section - ends @ ~ 22 m's Other faults @ 24m, 25.6m, & fracture @ 5 - 10° to lca from 24.35 to 25m - clay/soil? Filling!! 30 - 32 m - more properly marble with quartz/epidote & <.5% disseminated fn grained graphite	22 23 24 25 26 27 28 29 30 31 32	23 24 25 26 27 28 29 30 31 32 33	0 0.05 0.06 0 0.07 0.02 0 0 0 0 0 0 0 0 0 0 0	4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162			
40.60	48.77	Q	QUARTZ Medium grey with some slightly greenish sections & locally rosy/pinkish - coarse crystalline mottled - local sections slight limonitic stain. Local trace CaC03 on fracture surfaces. Local - trace patchy disseminated fine to medium grained graphite. Oxidized disseminated sulphides <1%. Pegmatite from ~ 46.30 to 47.50. Silicate with trace CaC03 w/ ~1% disseminated graphite section@ bottom of hole	33 34 35 36 37 38 39 40 41	34 35 36 37 38 39 40 41 42	0 0.03 0 0 0 0 0 0 0 0	4163 4164 4165 4165 4167 4168 4169 4170 4171			

								DRILLING D	ATA						
SURVEY		DEPTH		DIP	T	RUE AZIMUTH	1		GR	ID		GRI) SYSTEM	MINE	
	(ft.)	. (m)	Тгие	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX.	NORTHING (m)		
Collar												APPROX	EASTING (m)		
Down Hole	(ft.)	(m) Read	True	Read	True						APPROX. I	ELEVATION (m)	1	
1	152.00	0 39.8	19 -55°	-55°	014	032.5°							DRILLING ARTED	July	17, 2001
					-							DATE DR	LLING ENDED	July	18, 2001
														(fi.)	(m)
											14	ТОТ/	AL DEPTH	160.00	48.77
												CASI	NG DEPTH	26.71	7.9
												С	ASING		-
												STEE	L IN HOLE	No	Ft.
	_											LOO	GGED BY	T Lewis	, ,
												LOGO	ING DATE	July 20/2	2001
GEOL	LOGI	CAL	LITHO				CICAL D	DESCRIPTION	,			SA	MPLE LOG		
INT	ERVA	LL.	CODE			LINOLO	Joichin D				Sample	ple Interval Pegmat		tes SAMPLI NUMBE	
FROM (m))	TO (m)									From (m)	To (m)	Cum. Total (m)	UNIDEA
0		7.9	CÁSE	CASING -	OVERBUR	DFN - no	esibly in fr	Table Cs22							······
					<u>O' ERDOI</u>	<u>wen</u> - po	asioly in ii					†			
				0						· · · ·			1		
7.9		8.33	Р	QUARTZ I	FELDSPAR	BIOTITE	PEGMA	TTTE			,				
				CALC ST		NEIGO									
8.33		11.30	Cs2	<u>CALC – SI</u>	LICATE G	NEISS					8.33	9	0.02		172
				Dark Grey,	with slight g	reenish ting	<i>be</i>				9	10	1.00*		173
				Weakly foli			5-				10	11	0.31*		174
				Limonite on							11	12	0.67*	41	175
				Friable/weat	thered from	8.33 to 9.14	with mod	lerate limonitic :	stain						
				Pegmatite w			n 9.14 to ~	10.20							
			<u> </u>	Local irregu	lar pegmatit	ic sweats									
L			l												

Page 1

4

Page

B

GEOLO	GEOLOGICAL INTERVAL LITHO CODE		LITHOLOGICAL DESCRIPTION	SAMPLE LOG							
INTER	VAL		LI IIOLOGICAL DESCAIL IION	Sample I	nterval	Pegmatites	SAMPLE NUMBEE				
From (m)	To (m)			From (m)	То (ш)	Cum. Total (m)	NUMBER				
			CS2 continued								
			Composition:								
			Quartz $60 - 70\%$ - CaC03 $10 - 20\%$ Diopside $5 - 10\%$				[
			Scapolite 10%	4							
	<u> </u>		Pyrite/pyrrhotite ~ 1% disseminated fine grained								
-			Graphite 2 – 3 % disseminated fine grained – with some medium grained								
			* in pegmatite column denotes existence of barren skarn developed proximal to pegmatite				· .				
11.30	17.21	SK	<u>CALC – SILICATE SKARN ZONE</u>								
			Pale green – mottled								
			Quartz occurs as patches r segregations	12	13	0.00	4176				
			Pronounced longitudinal fracture top of section	13	14	0.00	4177				
			Local crypto crystalline marble patches	14	15	0.09	4178				
			Faint banding/foliation @ 70° to lca in upper section, @ 80° in lower	15	16	0.00	4179				
			Abundant diopside, local actinolite/tremolite	16	17	0	4180				
			Transition to Cs1 below is quite gradual!! < .5% fine to medium grained disseminated graphite								
17.01				17	10	0.00	41.01				
17.21	29.13	Csl	<u>CALC – SILICATE GNEISS</u>	17	18	0.08	4181				
			Light grey with local greenish bands	18	19	0.05	4182				
			As noted above the transition from the above unit is quite gradual, but foliation and graphite	19	20	0.03	4183				
			content both increase markedly @ 17.21	20	21	0.04	4184				
		<u> </u>	Foliation at 75° to lca	21	22	0.09	4185				
	. <u>.</u> .	·		22	23	0.00	4186				
				23	24	0.00	4187				

GEOLO	GICAL	LITHO	LITHOLOGICAL DESCRIPTION	SAMPLE LOG					
INTER	RVAL	CODE		Sample Interval		Pegmatites	SAMPLE		
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)			
			CS2 continued	24	25	0.00	4188		
			Composition:	25	26	0.00	4189		
			Quartz 50 - 60% - CaC03 20 - 30% - Scapolite 10%	26	27	0.01	4190		
		1	Diopside 5%	27	28	0.05	4191		
			< 1% disseminated fine grained pyrite/pyrrhotite	28	29	0.12	4192		
			 1 - 1.5% disseminated fine grained with local medium grained graphite transitional skarn develops from ~ 27m down, 28 - 29m increased skarn mineralization, decrease graphite * 29 - 30 pretty much skarn/quartz 	29	30	1.00*	4193		
		-							
29.13	37.94	Q	QUARTZ Rose – Pinkish Massive Crystalline, with limonitic stain fractures						
			Blocky – jointed, with several fracture plains Slightly vuggy						
			Local disseminated & patchy pyrite, & trace disseminated medium grained graphite Top 0.5m of zone < .5% disseminated fine to medium grained graphite	<i>à</i>					
37.94	48.77	IZ	INTERCALATED ZONE						
			Zone of highly variable lithologies						

Page 4 4 of

GEOLO	GICAL	LITHO	LITHOLOGICAL DESCRIPTION		SA	MPLE LOG		
INTER	IVAL	CODE		Sample l	nterval	Pegmatites	SAMPLE NUMBER	
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)	NOMBER	
From (m)	Intercalated Zone cont'd Predominate lithology is a pale green/greyish diopsidic Tremolite actinolite skarn locally Top of section silicified – transitional from above	Predominate lithology is a pale green/greyish diopsidic Tremolite actinolite skarn locally Top of section silicified – transitional from above & becomes increasingly calcic downwards local thin feldspar/quartz/biotite pegmatites several sections of relatively pure marble	From (m)	To (m)	Cum. Total (m)			
		ļ						
					- <u>-</u>			
				I	l	L	}	

						SURVEY D	DATA						DRILLING D	ATA	
SURVEY	DEI	ртн		DIP	า	RUE AZIMUTI	ſ		GRI	D		GRII) SYSTEM	M	INE
	(ft.)	(m)		True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX.	NORTHING (m)		
Collar												APPROX	EASTING (m)		
Down Hole	(ft.)	(m)	Read	True	Read	True		· · · · · · · · · · · · · · · · · · ·		.		APPROX. I	ELEVATION (m)		
l	74.80	22.8	-55°	-55°	018.5°	037°	-						DRILLING	July I	8, 2001
							1					DATE DRI	ILLING ENDED	July 1	9, 2001
							-							(ft.)	(m)
	-				· ···=		-				4	тот	94	28.65	
							-					CASI	NG DEPTH	22	6.7
				-								с	ASING		1
					• • • • • •		-					STEE	L IN HOLE	No	F
												LOC	GGED BY	T Lewis	ł
	-						1					LOGG	July 22/20	22/2001	
							<u> </u>				Ī				
GEO	LOGICAI		LITHO			LITHOLO	GICAL D	ESCRIPTION	J			SA	MPLE LOG		
INT	TE RVA L		CODE						`		Sample	Interval	Pegmatite		AMPLE UMBER
FROM (n	n) TO	(m)								· · ·	From (m)	To (m)	Cum. Total (UMBER
0	6	.7	CASE	CASING	OVERBUR	DIDITINI									
				CASING-	UVERBUR	DEN						1			
				CALC - SI		NEISS (n	ossible bo	uldar9)	······································						
6.7		.0	CS1					d @ 70° to Lea			<u>"</u> 6.7	7.0	0.02		4194
									hotite up to 1%						
					ed fine grain				notice up to 176						
					·	<u> </u>							+		
7.0	8	.1	CS2	<u>CALC – SI</u>	LICATE G	NEISS					7.0	8.01	0.10		4195
· · · ·				Dark Grey,	with slight o	reanish tin	10								-
					ated (a) 72° t		30								
							ie to 2 thin	Permatites & 3	0cm Mbl section	from 7.23 to 7	30				
			 .						Sour Mibi Socilon	1.23 107		·			
				Slight oxida	ition () imon	ite) on fract	ture surface	25							

of 3

Page 1

BC0128

Page

GEOLO		LITHO	LITHOLOGICAL DESCRIPTION		SA	MPLE LOG	PLE LOG	
INTER	VAL	CODE		Sample I	nterval	Pegmatites	SAMPLI NUMBE	
From (m)	To (m)		Calc – Silicate Gneiss cont'd	From (m)	To (m)	Cum. Total (m)	, COMPL	
			Quartz 35%, CaCo3 25%, Scapolite 10 – 15%, Diopside 5 – 10%, $<1\%$ disseminated pyrite/pyrrhotite, tr bright green Spinel, 2 – 2.5% disseminated fine grained graphite			· · · · · · · · · · · · · · · · · · ·		
8.01	21.30	CS1	CALC - SILICATE GNEISS	*	9	0.20	4196	
				9	10	.02	4197	
			Light grey, with greenish tinge, weakly foliated @ 70° to Lca	10	11	.20	4198	
			Overall fairly competent	11	12	0	4199	
			Quartz 35%, CaCo3 25%, Diopside 15%, Scapolite 10-15%, Graphite $1-2\%$ very fine grained disseminated, < 1% disseminated very fine grained pyrite/pyrrhotite	12	13	0.05	4200	
			Few pegmatites present, most notable from $\sim 10.65 - 10.80 \& \sim 12.50 - 12.60$				4200	
			Local thin segments of skarn – Tremolite/Actinolite mineralization	13	14	0	4201	
			Locally grades to graphitic Marble with some accessory quartz	14	15	0.02	4202	
			Sample 4207 Possibly 2 – 2.5% fine grained disseminated graphite	16	10	0	4203	
				17	17	0.04	4204	
	• •			18	19	0	4205	
				19	20	0	4207	
	· · ·			20	21.3	0.22	4208	
				÷- 21.3	22	0.50	4209	
21.30	24.26	P	FELDSPAR QUARTZ BIOTITE PEGMATITE					
		24.20 P Massive, coarse crystalline Pale creamy grey Local patches very pale green pervasive mineralization (chlorite/epidote?)						

3 3 Page of

GEOLO	GICAL	LITHO	LITHOLOGICAL DESCRIPTION		SA	MPLE LOG	
INTER		CODE		Sample	nterval	Pegmatites	SAMPLE NUMBER
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)	HUMBER
24.26	28.65	Q	QUARTZ				
			Rose – Pinkish Fairly massive with few joints				
· · · · · · · · · · · · · · · · · · ·			Limonite stain on fracture surfaces Local disseminated & patchy pyrite Trace disseminated graphite locally			· · · · · · · · · · · · · · · · · · ·	
			Several thin pegmatites included in section				
	······································			·			
				<i>»</i> .	· · ·		

	SURVEY DATA													DRILLING D	ATA	
SURVEY		DEPTH			DIP	ТІ	RUE AZIMUTH	I		GR	ID		GRI	SYSTEM	N	IINE
	(f	t)	(m)		True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX.	NORTHING (m)		
Collar										· · · · · · · · · · · · · · · · · · ·			APPROX.	EASTING (m)		_
Down Hole	(1	t.)	(m)	Read	True	Read	Тгие						APPROX. E	LEVATION (m)		
l		5	12.43	-55	-55	27	45.5]						DRILLING ARTED	July	19, 2001
													DATE DRI	LLING ENDED	July	20, 2001
															(ft.)	(m)
												4	тотя	L DEPTH		52.54
													CASH	NG DEPTH		2.13
													C.	ASING		
].					STEE	L IN HOLE	No	Ft.
													LOC	GED BY	T Lewis	
]					LOGG	ING DATE	July 26,	2001
GEO		ICAL	1 17	гно					DESCRIPTION	r	·		SA	MPLE LOG		
	TERV)DE				GICAL I	ESCRIPTION			Sample	Sample Interval Pegmatit		1~	AMPLE
FROM (I	m)	TO (m)					· · ·				· · · · · · · · · · · · · · · · · · ·	From (m)	To (m)	Cum. Total (m) N	UMBER
					CASING -	OVERBUR	DEN									
0		2.13	- CA	ASE	CADATO	O'LIMDON										
														-		
					0.11. 2000							st.				
2.13		10.93	Q	QM	QUARTZ N	MONZONI	<u>I E</u>									
					Medium Gr	ev. somewha	at norphyrit	ic textured						-		
									acture surface				-			
						tact fairly dis										
		.				ated @~75		0								
					-	<i>\</i>								+		
												· · · ·	<u> </u>			
		÷	1													
			_											1		

3 of

Page 1

2 Page of

GEOLO	GICAL	LITHO	LITHOLOGICAL DESCRIPTION	SAMPLE LOG					
INTE	RVAL	CODE		Sample Interval		Pegmatites	SAMPLE NUMBER		
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)	NUMBER		
10.93	15.92	SK	CALC-SILICATE SKARN						
			Pale green, weakly to moderately foliated @ 75° to LCA						
			Interval 11.0 – 11.5m is foliated with local moderate limonite along vuggy foliation planes						
			All carbonate replaced by silica						
		-	< .5% disseminated fine to medium grained graphite						
			Several Pegmatites in section – most notable from 15.24 to 15.81 - Contacts @ ~ 85° to LCA Pervasive green – diopside, local sections of bladed Tremolite/Actinolite mineralization						
-			· · · · · · · · · · · · · · · · · · ·						
15.92	15.92 19.12	CS2	CALC-SILICATE GNEISS	15.92	17	0.20	4210		
			Light grey with pervasive brownish red limonitic stain throughout	17	18	0	4211		
			Lightly foliated @ 85° to LCA	18	18.86	0	4212		
			Siliceous @ top of section – becoming less so downwards	18.86	19.12	0	4213		
			Overall <1/2% disseminated fine to medium grained graphite	ļ					
			Thin pegmatite around 16.75m – with thin skarn envelope developed directly above						
• •			Occasional thin darker section with increased graphite content N.B. – only see odd spinel in upper portion of interval – spinel increases around 18.10						
			Sample 4213 – last 26 cm's of interval – skarn – fairly well developed pale to medium green, with		·				
~			some medium grained Tremolite/Actinolite crystals with trace of graphite	<i>±-</i>					
			Graphite concentration from 19.12 down – obviously negligible						
19.12	29.22	QM	QUARTZ MONZONITE						
			As 2.13 to 10.02 Weakly faliated @ 759 to LCA						
			As 2.13 to 10.93 - Weakly foliated @ ~ 75° to LCA Medium Grey, somewhat porphyritic textured			· · · ·			
•			Fairly competent with some longitudinal fractures						
			Both contacts $@ \sim 70^\circ$ to LCA						

3 3 Page of

GEOLO	GICAL	LITHO	LITHOLOGICAL DESCRIPTION		SAMPLE LOG					
INTER		CODE	LI HOLOGICAL DESCRIPTION	Sample	[nterva]	Pegmatites	SAMPLE NUMBER			
From (m)	To (m)		Quartz Monzonite cont'd	From (m)	To (m)	Cum. Total (m)	NUMBER			
			Top 1 ½ to 2 meters less mafic than whole Limonite stain on fractures, and clay alteration of feldspars around 28m Skam/siliceous zone with thin pegmatite top 75 cm – possible fault immediately below – yellowish clay developed							
29.22	52.54	CSI	CALC-SILICATE GNEISSLight grey, very weakly to weakly foliatedFoliation appears to be @ 75° to LCA in upper section, & ~ 80° to LCA in the lower portionsUpper portion of interval is more of an impure Marble, while the bottom is more correctly a calc- silicate gneissDiopside present throughout & ranges from $5 - 15\%$ Graphite is fine to medium grained disseminated trace to 5% - overall <.5%	48	49	0	4214			
52.54	2.54 54.86		QUARTZ MONZONITE As above intervals - Very weakly foliated Thin Feldspar Quartz Biotite pegmatite at top of section	A.						

2

of

Page 1

					SURVEY D	ATA						DRILLING D	ATA	
SURVEY	DEPTH		DIP	T1	RUE AZIMUTH	[GR	10		GRIE	SYSTEM	N	AINE
	(ft.)	(m)	True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX.	NORTHING (m)		
Collar				· .							APPROX.	EASTING (m)		
Down Hole	(ft.)	(m) Rea	j True	Read	True	-			* . <u></u> .	· · · ·	APPROX. F	LEVATION (m)		
1	92	28.04 55°	55°	18°	36.5°							DRILLING ARTED	July	21, 2001
					-	1					DATE DRI	LLING ENDED	July	23, 2001
, , , , , , , , , , , , , , , , ,				1	1	1							(ft.)	(m)
						1				ŕ	TOTA	AL DEPTH	100	30.48
						1					CASI	NG DEPTH		7.62
						1					CASING			
											STEEL	L IN HOLE	No	Ft.
				1							LOC	GGED BY	T Lewis	•
						1					LOGG	July 28, 2001		
			·····	···· · · · · · · ·	· · · · · · ·					1		,		
GEOLO	OGICAL	LITHO			LITHOLC)GICAL D	ESCRIPTION	Ĭ			SA	MPLE LOG	· · · · · · · · · · · · · · · · · · ·	
INTE	RVAL	CODE			LIIIOD					Sample	Interval	Pegmatite		AMPLE UMBER
FROM (m)	TO (m)	1						· ·		From (m	To (m)	Cum. Total (UNBER
0	7.62	CASE	CASINC	- OVERBUE	DINEN									
	_		CABING-	- UY ERDUP	DEN						-			
			Drillers not	ed – strong g	graphitic mi	neralizatior	n while drilling	the surface hole f	for casing –		-			
· · · · · · · · · · · · · · · · ·				t approximat			-		-	- ia				
								· · · · · · · · · · · · · · · · · · ·						
7.40	20.72	CS1	$\sim CALC - S$	ILICATE G	NEISS				•	6.60	8	0.04		4215
			[ight grey	with convide	rable nerve	ive nale 🛲	eenish (diopsid	ic) hue locally		8	9	0.12		4216
								e medium grained	Llocally	9	10	0.69		4217
								margins of pegma		10	11	0.22		4218
				ion pervasive				mar Burn or FoBun		11	12	0.12		4219
		-		o moderately foliated @ 85 to 90° to LCA					12	13	0.83		4220	
				······································						13	14	0.42		4221

GEOLOG	and a second with M. T. J. M.	LITHO	LITHOLOGICAL DESCRIPTION	SAMPLE LOG						
		CODE	LITHOLOGICAL DESCRIPTION	Sample Interval		Pegmatites	SAMPLI NUMBE			
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)				
			CS1 cont'd	14	15	0.39	4222			
		-		15	16	0.03	4223			
			Tight skarn with interior pegmatite @ ~ 8.9 to 10.7 meters Pegmatites - 12.15 - 14.85 & 14.85 - 17.42	,16	17	0.40	4224			
17.42	19.93	CS2	CALC – SILICATE GNEISS	17	18	0.09	4225			
					19	0.06	4226			
			Medium grey, with distinct greenish tinge (pervasive diopside) with local bands of increased diopsidic content Typically weak to moderate foliated @85° to LCA Trace disseminated fine grained dark green spinel Slightly oxidized (limonite) locally Obvious skarn mineralization especially bottom 10 cm which contacts QM & has thin pegmatite immediately at contact	19	20	0.30	4227			
19.93	30.48	QM	QUARTZ MONZONITE Very weakly foliated at 60° to LCA Medium grey with creamy groundmass – local coarse distinct quartz crystals Medium to Coarse grained hypidiomorphic textured							

				SURVEY DATA									DRILLING DA	DATA	
SURVEY		DEPTH		DIP	T	RUE AZIMUTH	1		GR	ก		GRID	SYSTEM	М	IINE
	(ft.	.) (m)	Тгие	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX. N	NORTHING (m)		
Cellar												APPROX.	EASTING (m)		
Down Hole	(ft.) (m) Read	True	Read	Тгие			• • • • • • • • • • • • • • • • • • •	· · · · ·		APPROX. E	LEVATION (m)		
1	16:	2 49.3	38 53	53	15	33.5	-				4		DRILLING ARTED	July :	24, 2001
												DATE DRI	LLING ENDED	July	25, 2001
											[(ft.)	(ш)
											·+ .	TOTA	L DEPTH	170	51.82
							-				ſ	CASI	IG DEPTH	7	2.13
							1	۶.			Ē	C.	ASING		
												STEE	L IN HOLE	No	Ft.
												LOC	GED BY	T Lewis	
												LOGG	July 30, 2001		
[· · · ·									84			
GEO	LOGI	CAL	LITHO			LITHOLO)GICAL I	DESCRIPTION	I			ЭA	MPLE LOG		
INT	FERV	AL	CODE								Sample	Interval	Pegmatites	~	AMPLE UMBER
FROM (n	n)	TO (m)				· · ·					From (m)	To (m)	Cum. Total (n		OMBER
0		2.13	CASE	CASINC	OVERBUE	אזרו									
				CASING-	UVERDUE	UEN									
2.13		11.65	CS1	CALC - SI	ILICATE G	NEISS					<i></i>				··· ·
	-			-							2.13	3	0		4228
									hues – pervasive	diopside - skar	n 3	4	0.	-	4229
			-		noderately f						4	5	0		4230
								down to 9.14m			5	6	0		4231
					aller (up to 2 ion @ ~ 4m		antes				6	7	0		4232
					tion from ~ 1		30 with < 4	5% graphite			7	8	0.16		4233
					tioned soluti						8	9	0.03		4234
				1							-				
			1	1											

Page 1 of 3

2 3 Page of

GEOLOG	GICAL	LITHO	LITHOLOGICAL DESCRIPTION		SAI	MPLE LOG	
INTER		CODE	LITHOLOGICAL DESCRIPTION	Sample Interval		Pegmatites	SAMPLE NUMBER
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)	
	· · · · · · · · · · · · · · · · · · ·		Calc – Silicate Gneiss cont'dFairly consistent mineralization but there are several sections with diminished graphite contentGraphite $1.5 - 2\%$ down to $.5 - 1\%$ disseminated fine grained< .5% disseminated & blebby pyrite/pyrrhotite – fine grained	9 10 11	10 11 12	0.04 0.03 0.15	4235 4236 4237
11.65	12.80	CS2	CALC - SILICATE GNEISS Medium grey with slight greenish tinge Moderately foliated @ ~ 80° to LCA 1.5 - 2% disseminated fine grained graphite, < 1% disseminated fine grained pyrite/pyrrhotite Trace very fine grained disseminated Spinel (very rare) Use colour & graphite content to approximately determine contact with CS1 below		13 14	0.09 0.04	4238 4239
12.80	29.72	CS1	 N.B. CS2 unit is poorly developed relative to those seen elsewhere <u>CALC - SILICATE GNEISS</u> As 2.13 to 11.65 See local patches of green mineralization less intense than spinel, but darker than diopside – Chlorite? Pseudo CS2 (i.e. darker, increased graphite content etc) from ~ 22m to ~ 25m Impure Marble with local phlogopite, and <.5% disseminated graphite bottom 30 – 40 cm of section 	14 	15 16 17 18 19 20 21 22 23 24	0.08 0.02 0 0 0.05 0 0.08 0.16 0.20 0.50	4240 4241 4242 4243 4244 4245 4246 4247 4246 4247 4248 4249

ı.

3 Page of

GEOLO	GEOLOGICAL LITHO	LITHO	LITHOLOGICAL DESCRIPTION		SA	SAMPLE LOG		
INTEF	IVAL	CODE		Sample I	nterval	Pegmatites	SAMPLE NUMBER	
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)	NUMBER	
			<u>Calc – Silicate Gneiss cont'd</u>					
	·			24	25	0	4250	
				25	26	0.51	4251	
				₹26	27	0.35	4252	
				27	28	0.08	4253	
				28	29	0.09	4254	
				29	30	0.33	4255	
	·····							
29.72	30.80	0.80 Q QUARTZ						
			Pale grey to creamy off white, locally pinkish/rose hue					
	····		Locally blocky & fractured & local patches (~30m depth) strong oxidation, foliated & fractured.					
			Foliation in above patches $@ \sim 55^\circ$ to LCA					
30.80	51.81	IZ	INTERCALATED ZONE					
	·····	<u> </u>	Variable lithologies with local quartz flooded areas, some calc silicates (silica rich) locally, with					
			trace graphite	μ.	<u> </u>			
			Predominate lithology is a pale greenish skarn with local coarse Tremolite/Actinolite - trace					
			CaC03 on fractures					
		·	Foliation typically @ 75° to LCA	} <u> </u>	<u> </u>	······		
		Megacrystic syenite from \sim 39.65 to 40.30 Amorphous graphite section – foliated - $@ \sim$ 32.75 to 34m. Slightly gametiferous			,			
·			Clay/Carbonate gouge filled fault @ ~ 20° to LCA at ~ 46.50m		· ·			
			Local limonite stain on fracture surfaces					
· · · · · · · · · · · · · · · · · ·		+						
· · · · · · · · · · · · · · · · · · ·				<u> </u>		l	·····	

CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological L

ological	Log	Hole-ID:	BC0132

Page 1 of 2

			-	SURVEY DATA								DRILLING DA	АТА		
SURVEY	DEPTH		DIP	Т	RUE AZIMUTI	ł		GR	D		GRIE	SYSTEM	M	1INE	
	(ft.)	(m)	True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX.	NORTHING (m)			
Collar											APPROX.	EASTING (m)			
Down Hole	(ft.)	(m) Ri	ad True	Read	Тгис						APPROX. F	LEVATION (m)			
1	68 2	0.73 -	5 -55	17	35.5	-						DRILLING ARTED	July	25, 2001	
						7					DATE DRI	LLING ENDED	July	25, 2001	
					·								(ft.)	(m)	
										ų.	TOTA	AL DEPTH	76	23.16	
											CASI	NG DEPTH	8	2.44	
											C.	ASING			
											STEE	L IN HOLE	No	Ft.	
											LOC	GGED BY	T Lewis		
											LOGG	Angust 0)1, 2001		
											SAMPLE LOG				
	OGICAL				LITHOLO	DGICAL I	DESCRIPTION	1			5A				
INTE	ERVAL	CODE								Sample	Interval	Pegmatite		AMPLE	
FROM (m)	TO (m)						·			From (m)	To (m)	Cum. Total (1		UNIDER	
0	2.44		CASING	- OVERBUR	DEN								_		
			Casinana	acibly 6 to 0	mators into	aammatan	CS1				· · ·				
			Casing pt	ssibly .6 to .9	meters muo	competen				ذعو ا					
2.44	15.91	CSI	CALC -	SILICATE G	NEISS					1.84	3	0		4256	
	15.91									1.64	4	0.04		4250	
			Light gre	y with local sli	ghtly green	ish tinge				4	5	0.04	···	4258	
				locally mode							6	0.03		4259	
	1-1.5%			- 1.5% disseminated fine to medium grained graphite						6	7	0.03		4260	
<u> </u>		<u> </u>		< 1% disseminated fine grained pyrite/pyrrhotite							8	0		4261	
				Light bluish green mineral (smoky quartz?) @ 4.5 m Pseudo CS2 @ 6.2 - 7.5 m - Darker, increased graphite content, no spinels noted however							9	0		4262	
<u> </u>			Pseudo C	S2 @ 6.2 − 7.3	m - Dark	er, increase	ea graphite cont	ent, no spinels no	ted however	8	,			1 6- 0 6-	
		_ I									L	1			

2 2 of Page

GEOLO	GICAL	LITHO	LITHOLOGICAL DESCRIPTION		SAI	MPLE LOG	. <u> </u>
INTER		CODE	LITHOLOGICSE DESCRIPTION	Sample Interval		Pegmatites	SAMPLE NUMBER
From (m)	<u>To (m)</u>			From (m)	To (m)	Cum. Total (m)	HOMBER
			CALC - SILICATE GNEISS CONT'D	9	10	0	4263
			Very few pegmatites/pegmatitic sweats noted	10	11	0.11	4264
			Marbly last 1.5 meters of interval	.11	12	0.03	4265
				12	13	0.04	4266
				13	14	0	4267
				14	15	0.08	4268
				15	16	0.02	4269
15.91	23.16		QUARTZ				
			Pale grey to pinkish/rose coloured				
			Massive, locally blocky & fractured, with several joint planes				
			Moderate limonitic stain on fracture surfaces				
			Locally foliated - weak to moderately developed $@ \sim 70^\circ$ to LCA				
			.5% disseminated fine grained graphite				ļ
			< .5% disseminated patchy fine grained pyrite/pyrrhotite	de			
		-	Top of section slightly richer in graphite & sulphides Local trace greenish skarn mineralization				,
· · · · · · · · · · · · · · · · · · ·							
		<u> </u>	A				
							· · · · · · · · · · · · · · · · · · ·
							L

						SURVEY D	АТА						DRILLING D	АТА	
SURVEY		DEPTH		DIP	TI	RUE AZIMUTH			GR	ID		GRII	SYSTEM	М	INE
	(fi.) (m)	Тгие	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX.	NORTHING (m)		-
Collar												APPROX.	EASTING (m)		
Down Hole	(Ո.) (m) Read	Тгие	Read	Тгие						APPROX. E	ELEVATION (m)		
1			NO	TEST									DRILLING ARTED	July 2	25, 2001
												DATE DRI	LLING ENDED	July 2	26, 2001
														(ft.)	(m)
											4	тотя	L DEPTH	50	15.24
												CASH	NG DEPTH	19	4.88
]					C	ASING		
											ľ	STEE	L IN HOLE	No	Ft.
												LOC	GGED BY	T Lewis	
							1					LOGG	ING DATE	August 02	2, 2001
]												
GEOI	LOGI	CAL	LITHO			LITHOLO	GICAL E	DESCRIPTION	ſ			SA	MPLE LOG	- 1	
INT	ERV.	AL	CODE								Sample	Interval	Pegmatite		AMPLE UMBER
FROM (m)	TO (m)									From (m)	To (m)	Cum. Total (i		MIDER
0		4.88	CASE	CASING	OVERBUR	DEN						+			
				CASING -	UVERDUR	DEN						1			
		· · ·										· · · · · · · · · · · · · · · · · · ·			
4.88		10.39	CS1	<u>CALC – SI</u>	LICATE G	NEISS					- 3.21	4	0		4270
]			•	/		• • •	4	5	0.04		4271
									/ little diopsidie :	skarn) tinge	5	6	0		4272
								ole to $\sim 5 \text{ m dep}$		⇒ 70 760 k- TA	6	7	0.03		4273
				KOCK IS WE	seminated py	to locally re	ecompositi	onally banded (e.g. @ 9.75 m) (ay 70 - 75° to Li	ZA 7	8	0.05		4274
									2-3mm phlogopi	to on what a @ 8	7	9	0		4275
									panied by weak		9	10.39	0		4276
					sseminated f				ipanies of weak						
]		grunnou	0- apinto ti					1			
]											
]											

Page

1

of

2 of

GEOLO			LITHOLOGICAL DESCRIPTION		SA	MPLE LOG	
		LITHO CODE	LITHOLOGICAL DESCRIPTION	Sample I	nterval	Pegmatites	SAMPLE NUMBER
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)	NOWIBER
10.39	15.24	Q	QUARTZ	13.87	14.49	0	4277
-			QUARTZ Light to medium grey with limonitic stain Medium to coarse crystalline, with weak foliation Locally sporadic graphite crystals Minor disseminated biotite <1% disseminated fine grained pyrite/pyrrhotite Minor narrow (5cm) sections of a quartz/feldspar/biotite gneiss, plus larger zone at 13.87 – 14.49 Which is well foliated @ 60° to LCA, with <1% disseminated graphite, <1% disseminated pyrite throughout & on fracture surfaces. Minor limonite stained fractures & displays gradational contacts				
	· · · · · · · · · · · · · · · · · · ·						
							· · · ·

						SURVEY E	рата			.			DRILLING D	АТА	
SURVEY	DE	ртн		DIP	т	RUE AZIMUTH	3		GR	D		GRH	SYSTEM	м	AINE
	(ft.)	(m)	Тгие	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX.	NORTHING (m)		
Collar		1										APPROX	. EASTING (m)		
Down Hole	(ft.)	(11) Kead	True	Read	True						APPROX. J	ELEVATIÓN (m)		
1			NÓ	TEST			-						DRILLING ARTED	July	26, 2001
							7					DATE DRI	ILLING ENDED	July	26, 2901
]				,			(ft.)	(m)
											÷.	TOT	AL DEPTH	40	12.19
											:	CASH	NG DEPTH	7	2.13
												С	ASING		
												STEE	L IN HOLE	No	Ft.
												LOC	GGED BY	B. Augst	en
												LOGO	GING DATE	Aug 01/2	2001
			[·	· · · ·		SA	MPLE LOG		
	LOGICA	L	LITHO			LITHOLO	OGICAL D	DESCRIPTION	I						
	ERVAL		CODE								Sample	Interval	Pegmatite	1 ~	AMPLE
FROM (m)) TO	(m)									From (m)	To (m)	Cum. Total (·
0	2	.13	CASE	CASING	OVERBUR	DEN					· · ·				
··				<u>ensite-</u>	OVERDUR	DEN							1		
												· · · -			
2.13	2	.20	QM	QUARTZ	MONZONI	TE – (BOU	LDER?)				سرقو				
				CALC SI	LICATE G	NETCO									
2.20		.86	CS1	$\frac{CALC-51}{CALC}$	LICATE G	INE 100					2.20	3	0.02		4278
				Light to me	dium grey to	o pale green					3	3.86	0		4279
				Weakly foli	ated to local	ly somewhat	at composit	tionally banded,	fine grained such	rosic rock				-	
	····-	· · · · · ·			sseminated f										
					ninated fine								<u> </u>		
<u> </u>				Lower conta	act sharp & 1	marked by a	a 15 cm peg	gmatite & diges	ted rock - contac	t @ 47° to LCA	A				
				ł							· · · · · · · · · · · · · · · · · · ·		<u> </u>		
												1	1		

Page 1 of 2

2 Page of

GEOLO	GICAL	LITHO	LITHOLOGICAL DESCRIPTION		SA	MPLE LOG	
INTER	IVAL	CODE		Sample 1	Interval	Pegmatites	SAMPLE NUMBER
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)	NOMBER
3.86	7.00	QM	BIOTITE QUARTZ MONZONITE?				
			Medium grained, locally altered equigranular intrusive cut by several pegmatitic sweats & dykes Weak limonitic staining as a pervasive wash through 60% of unit Lower contact @ 50° to LCA				
7.00	10.13	Q	QUARTZ With local quartz gneiss patches				
			Medium coarse grained recrystallized quartz with localized ghostlike feldspars giving a pseudo – porphyritic texture Weak pervasive limonitic was through much of the unit Several small sections of coarse Feldspar pegmatite				
10.13	11.09	QM	BIOTITE QUARTZ MONZONITE				
			Medium grained equigranular, limonite stained	*~			
11.09	12.19	IZ	INTERCALATED ZONE				
			Section of narrow bands of various lithologies, including: Coarse grained quartz – marble			· · · · ·	
			Quartz feldspar biotite gneiss Pervasive skarn altered rock				

						SURVEY D	DATA						DRILLING D	ATA	
SURVEY		DEPTH		DIP	T	RUE AZIMUTH	<u> </u>		GR	D		GRIE) SYSTEM	М	INE
	(ff.	.) (m)	True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX.	NORTHING (m)		
Collar												APPROX.	EASTING (m)		
Down Hole	(ft.	.) (m) Read	True	Read	True						APPROX. 1	LEVATION (m)		<u> </u>
ì	62	18.	9 -56	-56	18.5	37					-		DRILLING ARTED	July 2	26, 2001
	-											DA'TE DRI	LLING ENDED	July 2	27, 2001
											- ((ft.)	(m)
												τοτ	AL DEPTH	70	21.34
				-								CASI	NG DEPTH	6	1.83
												С	ASING		
							-					STEE	L IN HOLE	No	Ft.
												LOC	GGED BY	T Lewis	
				-			1					LOGG	ING DATE	August 0	4, 2001
													MPLE LOG		
GEOL			LITHO			LITHOLO	GICAL E	DESCRIPTION				5A	WIPLE LUG	· · · · · ·	
INT	ERV	AL	CODE								Sample	Interval	Pegmatite		AMPLE UMBER
FROM (m))	TO (m)									From (m)	To (m)	Cum. Total ()		OWIDER
0		1.83	CASE	CASING	OVERBUR	DEN									
				CASING-	UVENDUN	DEN						· · ·			
													-		· ··
1.83		7.95	CS1	CALC – SI	LICATE G	<u>NEISS</u>					1.56	3	0.04		4280
				1							3	4	0.10		4281
								0 - 85° to LCA	4000 B 40040		4	5	0.49		4282
								(samples 4282,	grained graphite		5	6	0.20		4283
				averages fr	m 5 to 1%	x < 1% disc	seminated	fine grained pyr	i granieu grapine		6	7	0.09		4284
									graphite in Pegn	natites	7	7.95	0.18		4285
				Top of secti	ion (to $\sim 4m$ c	depth) diops	side rich –	graphite poor	graphice in regn	iatites					
								n abundant phlo	gopite						
									$(a) \sim 5.5 \text{ m cuts } 1$	foliation @~9	0°	1			
]		•		U	<u>c</u>	Ŭ,		1			
. -]								1			

2

of

1

Page

D:	BC0135	
ν.	DCCT22	

ge 2 of 2

GEOLOGICAL LITHO INTERVAL CODE		LITHOLOGICAL DESCRIPTION	SAMPLE LOG					
	CODE		Sample Interva		al Pegmatites	SAMPLE NUMBER		
To (m)			From (m)	To (m)	Cum. Total (m)			
14.45	Q	QUARTZ						
		Footwall Quartz zone – rose/pink limonitic stain on blocky fracture surfaces Slightly vuggy, local skarn mineralization (tremolite/actinolite) Cut locally by small pegmatites Local patchy pyrite/pyrrhotite mineralization Dominate fracture pattern @ ~ 30° to LCA Gneiss @ 12.5 to ~ 12.95 – see tight fold with quartz in center						
21.33	IC	INTERCALATED ZONE Siliceous zone of rapid lithological changes Varies from Feldspar/Quartz/Biotite gneiss to Siliceous Marble with some local skarn mineralization Couple of thin Pegmatites included in section, both of which appear to be earlier or early – contemporaneous to the silica flooding.						
			÷-					
	To (m) 14.45	To (m)	To (m) QUARTZ 14.45 Q Footwall Quartz zone – rose/pink limonitic stain on blocky fracture surfaces Slightly vuggy, local skarn mineralization (tremolite/actinolite) Cut locally by small pegmatites Local patchy pyrite/pyrrhotite mineralization Dominate fracture pattern @ ~ 30° to LCA Gneiss @ 12.5 to ~ 12.95 – see tight fold with quartz in center 21.33 IC INTERCALATED ZONE Siliceous zone of rapid lithological changes Varies from Feldspar/Quartz/Biotite gneiss to Siliceous Marble with some local skarn mineralization Couple of thin Pegmatites included in section, both of which appear to be earlier or early –	To (m) From (m) 14.45 Q QUARTZ Footwall Quartz zone – rose/pink limonitic stain on blocky fracture surfaces Slightly vuggy, local skarn mineralization (tremolite/actinolite) Cut locally by small pegmatites Local patchy pyrite/pyrrhotite mineralization Dominate fracture pattern @ ~ 30° to LCA Gneiss @ 12.5 to ~ 12.95 – see tight fold with quartz in center 21.33 IC INTERCALATED ZONE Siliceous zone of rapid lithological changes Varies from Feldspar/Quartz/Biotite gneiss to Siliceous Marble with some local skarn mineralization Couple of thin Pegmatites included in section, both of which appear to be earlier or early – contemporaneous to the silica flooding.	To (m) From (m) From (m) To (m) 14.45 Q QUARTZ	To (m) From (m) To (m) To (m) To (m) Cum. Total (m) 14.45 Q QUARTZ		

Page 2

Page 1 of	2
-----------	---

			····· 1- · · · · · ·		·····	SURVEY D	ATA	· · · · · · · · · · · · · · · · · · ·					DRILLING D		· · · · ·
SURVEY	DEP	ГН		DIP	TF	UE AZIMUTH	l		GR		······		O SYSTEM	M	INE
	(ff.)	(m)		True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)		NORTHING (m)		
Collar							ļ		l	<u> </u>	<u> </u>	APPROX	EASTING (m)		
Down Hole	(ft.)	(m)	Read	True	Read	True						APPROX. I	ELEVATION (m)		
1		No	Test										DRILLING ARTED	July 2	7, 2001
												DATE DRI	LLING ENDED	July 2	8, 2001
]							(ft.)	(m
												ŤOT.	AL DEPTH	50	15.2
							1					CASI	NG DEPTH	6	1.8
							1					с	ASING		
							1					STEE	L IN HOLE	No	
							1					LOC	GGED BY	T Lewis	
							1					LOGO	SING DATE	August 04	, 2001
		·····													
GEOLO	GICAL		LITHO			LITHOLO	GICAL D	ESCRIPTION				SA	MPLE LOG		
GEOLO INTEF			LITHO CODE			LITHOLO	OGICAL D	DESCRIPTION			Sample		Pegmatite	s sa	MPL
INTER	RVAL					LITHOLO	GICAL D	DESCRIPTION	<u></u>		Sample From (m)	Interval		es sa NU	MPL) JMBE
INTEF FROM (m)	RVAL TO (m)	CODE	CASING			OGICAL D	DESCRIPTION	<u></u>			Interval	Pegmatite	es sa NU	
INTER	RVAL	m)		CASING -	OVERBUR		OGICAL D	DESCRIPTION				Interval	Pegmatite	es sa NU	
INTEF FROM (m) 0	TO (m) 3	CODE		OVERBUR	DEN	OGICAL D	DESCRIPTION			From (m)	Interval To (m)	Pegmatite Cum. Total (es sa m)	JMBE
INTEF FROM (m)	RVAL TO (m) 3	CODE			DEN	OGICAL D	DESCRIPTION			From (m)	Interval To (m) 3	Pegmatite Cum. Total (0.04	25 SA m)	4286
INTEF FROM (m) 0	TO (m) 3	CODE	<u>CALC – SI</u>	OVERBUR LICATE G	DEN NEISS		DESCRIPTION			From (m)	Interval To (m) 3 4	Pegmatite Cum. Total (es SA m)	4286 4287
INTEF FROM (m) 0	TO (m) 3	CODE	<u>CALC – SI</u> Light grey, 1	OVERBUR	DEN NEISS 1 pale greer	aish		- 8 5°		From (m) 1.76 3 4	Interval To (m) 3 4 5	Pegmatite Cum. Total (0.04 0.10 0.49	S SA m)	4286 4287 4288
INTEF FROM (m) 0	TO (m) 3	CODE	<u>CALC – SI</u> Light grey, t Weakly to n	OVERBUR LICATE GI top of section noderately fo	DEN NEISS 1 pale greer 1 liated (@, 70	nish 0 - 85° to L	.CA typically 80	- 85°		From (m) 1.76 3 4 5	Interval To (m) 3 4 5 6	Pegmatite Cum. Total (0.04 0.10 0.49 0.20	S SA m)	4286 4287 4288 4289
INTEF FROM (m) 0	TO (m) 3	CODE	<u>CALC – SI</u> Light grey, t Weakly to n Medium coa	OVERBUR LICATE GI top of section noderately for arse to Mediu	DEN NEISS 1 pale greer 1 liated @ 70 um fine gra	hish 0 - 85° to L ined crysta	CA typically 80		racteristics	From (m) 1.76 3 4 5 6	Interval To (m) 3 4 5 6 7	Pegmatite Cum. Total (0.04 0.10 0.49 0.20 0.09	25 SA m) NU	4286 4287 4288 4289 4290
INTEF FROM (m) 0	TO (m) 3	CODE	<u>CALC – SI</u> Light grey, t Weakly to n Medium coa Trace of Sp.	OVERBUR LICATE GI top of section noderately for arse to Mediu inel (CS2) @	DEN NEISS n pale green bliated @ 70 um fine gra 2 ~ 2.80 onl	hish 0 - 85° to L ined crysta y, but over	CA typically 80 lline all section lacks	typical CS2 cha	racteristics on of section	From (m) 1.76 3 4 5	Interval To (m) 3 4 5 6	Pegmatite Cum. Total (0.04 0.10 0.49 0.20 0.09 0.18	25 SA m) NU	4286 4287 4288 4289
INTEF FROM (m) 0	TO (m) 3	CODE	<u>CALC – SI</u> Light grey, t Weakly to n Medium coa Trace of Sp < 1% dissen Abundant d	OVERBUR LICATE GI top of section noderately for arse to Mediu inel (CS2) @ ninated fine iopside top o	DEN NEISS n pale green bliated @ 70 um fine gra 2.80 onl grained pyr f section w	nish 0 - 85° to L ined crysta y, but over ite/pyrrhoti ith 1 - 1.5%	CA typically 80 lline all section lacks ite, blebs of pyri % disseminated	typical CS2 chat te in upper portion fine to medium g	on of section rained graphite	From (m) 1.76 3 4 5 6 7	Interval To (m) 3 4 5 6 7 8	Pegmatite Cum. Total (0.04 0.10 0.49 0.20 0.09 0.18 GAP	SA m)	4286 4287 4288 4289 4290 4291
INTEF FROM (m) 0	TO (m) 3	CODE	<u>CALC – SI</u> Light grey, t Weakly to n Medium coa Trace of Sp < 1% dissen Abundant d	OVERBUR LICATE GI top of section noderately for arse to Mediu inel (CS2) @ ninated fine iopside top o	DEN NEISS n pale green bliated @ 70 um fine gra 2.80 onl grained pyr f section w	nish 0 - 85° to L ined crysta y, but over ite/pyrrhoti ith 1 - 1.5%	CA typically 80 lline all section lacks ite, blebs of pyri % disseminated	typical CS2 chat te in upper portic	on of section rained graphite	From (m) 	Interval To (m) 3 4 5 6 7 8 10	Pegmatite Cum. Total (0.04 0.10 0.49 0.20 0.09 0.18 GAP 0.01	25 SA m)	4286 4287 4288 4289 4290 4291 4292
INTEF FROM (m) 0	TO (m) 3	CODE	<u>CALC – SI</u> Light grey, t Weakly to n Medium coa Trace of Sp < 1% dissen Abundant d	OVERBUR LICATE GI top of section noderately for arse to Mediu inel (CS2) @ ninated fine iopside top o	DEN NEISS n pale green bliated @ 70 um fine gra 2.80 onl grained pyr f section w	nish 0 - 85° to L ined crysta y, but over ite/pyrrhoti ith 1 - 1.5%	CA typically 80 lline all section lacks ite, blebs of pyri % disseminated	typical CS2 chat te in upper portion fine to medium g	on of section rained graphite	From (m) 1.76 3 4 5 6 7	Interval To (m) 3 4 5 6 7 8	Pegmatite Cum. Total (0.04 0.10 0.49 0.20 0.09 0.18 GAP	25 SA m)	4286 4287 4288 4289 4290 4291

-ID:	BC0136

Page 2 of 2

GEOLOGICAL	LITHO	LITHOLOGICAL DESCRIPTION		SA	MPLE LOG	
INTERVAL	CODE	LI I DUOGICAL DESCRIPTION	Sample I	Sample Interval		SAMPLE NUMBER
From (m) To (n	a)		From (m)	To (m)	Cum. Total (m)	NUMBER
		Calc – Silicate Gneiss cont'd graphite below 9.19 m Some limonite staining on fracture surfaces Pegmatite dyke 8.00 to 9.18 m's				
7.95 14.4	5 Q .	QUARTZ Typically rosy/pinkish Fractured/blocky Some biotite parings – local foliation which is typically 85° to LCA Locally vuggy Limonite on fracture surfaces See some pervasive skarn &/or calc – silicate mineralization @ around 13 m				

						SURVEY I	DATA						DRILLING D	АТА	
SURVEY		DEPTH		DIP	T	RUE AZIMUTH	ł		GR	1D		GRH	SYSTEM	M	IINE
	(ft.)	(m)	True	Frue Degrees Minutes		Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX.	NORTHING (m)		
Collar												APPROX	. EASTING (m)		
Down Hole	(ft.)	(m) Read	Тгие	Read	True						APPROX. I	ELEVATION (m)		
1		No	D Test										DRILLING ARTED	July	28, 2001
							-					DATE DR	ILLING ENDED	Juły	30,2001
<u> </u>							1							(ft.)	(m)
						ľ	1				÷.	TOT	AL DEPTH	70	21.34
							-					CASING DEPTH		8	2.44
							-					C	ASING		
												STEE	L IN HOLE	No	Ft.
				·		+	1					LO	GGED BY	T Lewis	
							-1					LOGO	GING DATE	August (15, 2001
[[_]	<u> </u>				· · · · · · · · · · · · · · · · · · ·										
GEO	GEOLOGICAL LITHO LITHOLOG					CICAL F	DESCRIPTION	ſ			SA	MPLE LOG			
	INTERVAL										Sample	nple Interval Pegmatit			AMPLE
FROM (n	n)	TO (m)									From (m) To (m)	Cum. Total (
0		2.44	CASE	CASING	OVERBUR	DEN									
<u> </u>				CASING-	OVERDON										
				PEGMAT	(T)F										
2.44		3.56	Р	<u>FEGMAII</u>							#				
		u		Ouartz/Feld	lspar/Biotite	Peomatite									······································
L				Coarse crys	talline. mass	ive compet	ent with fe	w patches of per	vasive (limonitio	c) oxidization &	ka				
				patch of per	rvasive green	ı (diopside)	skarn min	eralization @ 3.	20	/			+		
				Contact wit	h CS2 band	below @ 5	0° to LCA	with thin (~ 1 cn	n) of skarn miner	alization devel	oped				
				on contact											
L				Biotite occi	ars mainly as	s clusters or	books								· · ·
				1											
											ļ				
				l											

of 2

Page 1

_____ of ____2 2 Page

GEOLO	GICAL		LITHOLOGICAL DESCRIPTION	SAMPLE LOG						
INTER		LITHO CODE	LITHOLOGICAL DESCRIPTION	Sample I	nterval	Pegmatites	SAMPLE NUMBER			
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)				
3.56	8.45	CS2	CALC SILICATE GNEISS	3.56	5	0.07	4295			
		1	Durle group with local glight groupide tings	5	6	0.32	4296			
		•	Dark grey with local slight greenish tinge Moderately foliated @ 75° to LCA	6	7	0.05	4297			
			Lower contact with pegmatite @ 50° to LCA7 8.45 0.2 Slight oxidization @ ~ 4.80 meters $-$	0.21	4298					
			Solution cavern from 3.93 to 4.57 Cut by various small (up to 13cm) pegmatitic dykes/sweats Only decent CS mineralization in hole as rest is cut by dykes – probably Pegmatite swarm seen in holes BC0012 & BC0013 Section above solution cavern is more marbly, with lower graphite content, but does contain spinel Section immediately below solution cavern ($4.57 - \sim 4.90$) abundant phlogopite Overall graphite content $3 - 3.5\%$, and occurs as disseminated fine grained flakes < 1% disseminated fine grained pyrite/pyrrhotite, with pyrite patches in Pegmatites contained in section							
8.45	21.34	Р	PEGMATITE SWARM As seen in BC0012 & BC0013 Abundant Coarse Quartz/Feldspar/Biotite Pegmatites with intercalated CS2 & Skarn sections Majority of rock is Pegmatite (9 meters), followed by CS2 (2.20 meters), and finally 1.50 meters of skarn	yd .						

						SURVEY D	ATA						DRILLING Ð.	АТА			
SURVEY	DEF	тн		DIP	T	RUE AZIMUTH	[GR	ID		GRIE) SYSTEM	N	AINE		
	(ft.)	(m)		True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX.	NORTHING (m)				
Collar							1					APPROX.	EASTING (m)				
Down Hole	(ft.)	(m)	Read	True	Read	Тгие						APPROX. E	LEVATION (m)	1			
1	VERTICAL	HOLE NO		TEST			-						DRILLING ARTED	July	30, 2001		
														DATE DRI	LLING ENDED	July	30, 2001
														(ft.)	(m)		
											÷	TOT	AL DEPTH		13.11		
												CASING DEPTH			3.96		
							1					C.	ASING				
						1	1					STEE	L IN HOLE	No	Ft.		
												LOC	GGED BY	T Lewis			
						1	1					LOGG	ING DATE	August	06, 2001		
										SA	MPLE LOG						
	DLOGICAL TERVAL		LITHO CODE			LITHOLC)GICAL E	DESCRIPTION	ſ		Sample	Sample Interval Pegmatite					
FROM (1	n) TO	(m)									From (m)	To (m)	To (m) Cum. Total (UMBER		
0	3.9	3.96 CASE CASIN			OVERBUR	DEN							<u> </u>				
						<u></u>											
3.96	3.96 13.10 P			PEGMAII	PEGMATITE SWARM												
				As holes BC	C0012, BC00	013 & BC01	137. coarse	grained Feldsn	ar/Quartz/Biotite	&							
				Quartz/Feld					····· · · · · · · · · · · · · · · · ·								
									LCA) cut by Peg	matite		ļ					
					cts with Pegmatite sometimes sharp @ 75° to LCA												
				Local trace											······································		
				Total CS2 -													
				No samples													

Page 1

1

of

æ

					SURVEY I	DATA						DRILLING	АТА	
SURVEY	DEPTH		DIP	TI	RUE AZIMUTH	4		GR	Б		GRID SYSTEM		MINE	
	(ft.) (r	n)	True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX.	NORTHING (m)		
Collar											APPROX	EASTING (m)		
Down Hole	(ft.) (I	n) Read	True	Read	True	-					APPROX. I	ELEVATION (m)		
1	1 28.04			19	37.5							DRILLING	July	30, 2001
											DATE DR	ILLING ENDED	July	31, 2001
										i			(ft.)	(m)
] ·				÷	тот	AL DEPTH		33.53
						1					CASI	NG DEPTH		2.13
						1					C	ASING		
						1					STEE	L IN HOLE	Nu	Ft.
				-	-	1					LOG	GGED BY	T Lewis	
						-					LOGO	SING DATE	August	06, 2001
L <u></u>		1		·										
GEOLO	OGICAL	LITHO			UTHOLO	CICAL D	ESCRIPTION				SA	MPLE LOG	r	
	INTERVAL CODE										Interval Pegmatite		es SAMPLI NUMBEI	
FROM (m)	TO (m)							· · · - · · ·		From (n) To (m)	Cum. Total (UMBER
0	2.13	CASE	CASING	OVERBUE	DEN							1		
			<u>CASING</u> –	OVERDOF	DEN							1		
												· ·		
2.13	3.68	Р	PEGMATI	TE						98.s.				
			_									1		
				uartz/Biotite		rse crystall	ine							
			Local slight	oxidized py	rite									
	F 00		CALCENT	ICATE CN	FICO								-	
3.68	5.90	CS2	- CALC SIL	ICATE GN	<u>L155</u>							+		<u>.</u>
· · · · · · · · · · · · · · · · · · ·			Dark grey u	vith slight gr	eenish tino	e								
ļ			-	rui siigiit gi	eemon ung	~								
		1	1								1			

1 of

Page

CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID:

3C0139 Page

2 _{of} 3

GEOLOGICAL		LITHO	LITHOLOGICAL DESCRIPTION		SAMPLE LOG						
INTER		CODE	LITHOLOGICAL DESCRIPTION	Sample	nterval	Pegmatites	SAMPLI NUMBEI				
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)	HOMBE				
· · · · · · · · · · · · · · · · · · ·			Cs2 cont'd Weak to moderately foliated @ 85° to LCA Local oxidization (Limonite) on fracture surfaces Trace dark green spinel Local disseminated diopside Graphite fine to medium grade disseminated 2.5 – 3% < 1% disseminated fine grained Pyrite/pyrrhotite	j							
5.90	15.02	SK	SKARN ZONE Light greenish grey predominantly With local sections of CS1 & pegmatite Very weak to weakly foliated @ 75° to LCA Predominately Diopside/Tremolite/Acrinolite/Quartz/Feldspar/CACO3 Trace graphite – disseminated medium grained – Local up to .5%	9.52	10.97	0	4301				
			9.57 - 10.97 - CS1 Light grey weakly foliated @ 80° to LCA 1.5 - 2% fine to medium grained disseminated graphite < 1% disseminated pyrite/pyrrhotite – fine grained		15	0.12	4302				
		· · · · · · · · · · · · · · · · · · ·	<u>13.15 – 14.07 – PEGMATITE</u> Quartz/Feldspar/Biotite Pegmatites Coarse crystalline Contacts with Pegmatites Typical Skarp @ 60° or 80° to LCA Transition to CS1 below is gradual but 15 – 15.07 appears to be limit 14.07 – 15 – Marble/Skarn with < .5% disseminated graphite								

BC0139

Page 3 of 3

GEOLO	GICAL	LITHO	LITHOLOGICAL DESCRIPTION		SA	MPLE LOG		
INTER		CODE	LITHOEOGICAL DESCRIPTION	Sample I	nterval	Pegmatites	SAMPLE	
From (m)	To (m)			From (m) To (To (m)	1) Cum. Total (m)		
15.07	30.37	CS1	<u>CALC – SILICATE GNEISS</u>	15	16	0.13	4303 4304	
			Light grey greenish weakly foliated @ 85° to 90° to LCA Top of section – grades to graphitic Impure Marble	17	18	0.02	4305	
			Unidentified pale blue - green mineral @ 21.50 m's 24.90 - 27.00	18	19 20	0.00	4306 4307	
			Dark grey foliated increased graphite to approx- 2 -2.5% Oxidized fractures in this area	20 21	21 22	0.03	4308 4309	
			*Consists of impure marble developed adjacent to pegmatite in sample 4315	22	23	0.03	4310	
			[^] Feldspar in this Pegmatite has been altered to Clay/Sericite	23	24 25	0	4311 4312	
				25	26	0	4313	
	· · · ·			26 27	27 28	0 0.19*	4314 4315	
				28 29	29 30.37	0.18^	4316 4317	
30.37	33.53	1Z	INTERCALATED ZONE					
	· · · · · · · · · · · · · · · · · · ·		Zone of rapidly changing lithology Appears to be moderately silicified Only in 30cm of true footwall type rosy quartz – around 30 meters Zone ends in a strongly foliated Biotite/Phlogopite	÷.				
			N.B. This is footwall we see along the trench trail To the north- appears influence of whatever caused strong quartz footwall often noted in other holes is waning					

						SURVEY D	ATA						DRILLING D	АТА		
SURVEY		DEPTH		DIP	Т	RUE AZIMUTH	[GR	10		GRIE) SYSTEM	м	INE	
	()	ît.) (o	n)	True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX.	NORTHING (m)			
Collar												APPROX.	. EASTING (m)			
Down Hole	(f	t.) (n	n) Read	True	Read	True			<u>.</u>			APPROX. I	ELEVATION (m)			
1		E Contraction of the second se	NO	TEST									DRILLING 'ARTED	July 3	31, 2001	
· · · · · · · · · · · · · · · · · · ·							1					DATE DRI	ILLING ENDED	July 3	31, 2001	
							-							(ft.)	(m)	
											а.	тот	AL DEPTH		21.34	
							-					CASI	NG DEPTH		1.52	
							1					c	ASING		1	
							1					STEE	L IN HOLE	No	Ft.	
						1	1					LOC	GGED BY	T Lewis		
											1	LOGG	GING DATE	August 0	6, 2001	
							. .					SA	MPLE LOG			
	GEOLOGICAL LITHO INTERVAL CODE				LITHOLOGICAL DESCRIPTION Samp						Sample	Interval	Pegmatite	S SAMPLE		
FROM (n	n) -	TO (m)										To (m)	Cum. Total (
0		1.52	CASE	CASING -	OVERBUR	DEN									-	
1.36		16.60	CS1	CALC - SI	CALC – SILICATE GNEISS							3	0.20		4318	
· <u> </u>					Light grey with slight greenish tinge locally Weakly foliated, locally moderately foliated @ 85° to LCA							4	0.66		4319	
												5	0.08		4320	
				- weakly ion	ated, locally ninated pyrite	moderately	r Ioliated (e	1985" to LCA			5	6	0.05		4321	
				-1 - 1.5% di	sseminated f	ine to mediu	um arained	laranhite		~	6	7	0.03		4322	
				Abundant p	egmatites th	ne to mean roughout thi	is interval	i grapine			7	8	0.05		4323	
					-0											
				_												
			1	1								ļ				
1																

of 2

Page 1

GEOLO INTER		LITHO CODE	LITHOLOGICAL DESCRIPTION	
From (m)	Tə (m)			
			CS1 cont'd	
	· · ·			
			Major pegmatites:	
			$3.22 - 3.89 - \text{contact} @ 55^\circ \text{ to LCA}$	
			10.27 – 10.83 – contact @ 55° to LCA	
		-	11.08 – 12.19 – bottom contact @ 90° to LCA	
			~20 cm of foliated quartz/monzonite - top of section 12.19 – 13.60 marbly – impure with <.5% graphite	
			13.60 - 16.60 Darker grey CS1	
	· · · · · · · · · · · · · · · · · · ·			_
16.60	21.34	1Z	INTERCALATED ZONE	
			Zone of highly variable thinly intercalated lithologies Silicified	
			Typically creamy white spotted	
			Section 19.00 - 20.50 and some beyond of typical rosy pink footwall quartz	
			Some Phlogopite/Sericite locally	
		· • ·	Gneissic foliation developed @ 55° to LCA Local Blebs pyrrhotite	
	<u> </u>			
		-		

						SURVEY D	ATA							DRILLING D.	ата	
SURVEY	DE	ртн		DIP	Т	RUE AZIMUTH	[GR	D			GRID	SYSTEM		MINE
	(fL)	(m)		True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEV	ATION (m)	APPROX. N	ORTHING (m)		
Collar													APPROX.	EASTING (m)		
Down Hole	(ft.)	(m)	Read	True	Read	Тгие							APPROX. E	LEVATION (m)		
1		21.94	-55	-55	19.5	38								PRILLING ARTED	Ju	iy 31, 2001
													DATE ORI	LLING ENDED	Aug	rust 01, 2001
]					* .			(fL)	(m)
													TOTA	l depth		24.38
									·				CASIN	G DEPTH		2.44
													CA	SING		
												ſ	STEEL	. IN HOLE	No	FL
													LOG	GED BY	T Lew	/is
	-											_	LOGG	ING DATE	Augus	at 06, 2901
	LOGICAI TERVAL	L	LITHO CODE	- ;4		LITHOLO	OGICAL D	ESCRIPTION	T		-)			MPLE LOG		
			CODE	i i								Sample I	nterval	Pegmatite		SAMPLE NUMBER
FROM (m	ı) TO	(m)								· · · · ·		From (m)	To (m)	Cum. Total ()		NOMBER
0	2.	44	CASE	CASING -	OVERBUR	DEN										
	·															
2.44	19	.16	CS1	CALC - SI	LICATE G	NEISS						2.44	3	0		4331
												3	4	0.13*		4332
. ·					-Local slight							4	5	0.13		4333
								° - 85 ° to LCA				5	6	0.05		4334
	· · · ·							tz Monzonite d		C 1 50 1		6	7	0.05		4335
								isseminated Pyr	ite/Chalcopyrite	a 4.50 meters		7	8	0.04		4336
				proximal to	Quartz Mon	izonite dyke	5									

Page 1 of 2

l Page

GEOLO	GICAL	LITHO	LITHOLOGICAL DESCRIPTION		SA	SAMPLE LOG	
INTER	RVAL	CODE		Sample I	nterval	Pegmatites	SAMPLE NUMBER
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)	NONIDER
		-	CS1 Cont'd	8	9	0.01	4337
				9	10	0.44	4338
			<1% disseminated fine grain cubic Pyrite/Pyrrhotite	+ 10	11	0.84	4339
			1-1.5% disseminated fine to medium grained disseminated graphite	11	12	0.10	4340
			Becomes darker & more siliceous below 16.50 meters	12	13	0	4341
			17.50 – 17.90 – impure marble band – then returns to dark siliceous	13	14	0.03	4342
				14	15	0	4343
				15	16	0	4344
				16	17	0.06	4345
				17	18	0	4346
	-			18	19.16	0.35	4347
19.16	24.38	12	INTERCALATED ZONE				
			Zone of variable lithology Siliceous light grey – greenish – Local skarn				
			Odd Band of Pyrrhotite with trace Chalcopyrite				
	-		Local some rosy- Footwall Quartz developed				
			Limonite on fracture surfaces				
			Several coarse Feldspar/Quartz/Biotite Pegmatities				
		_					

2 _{of} 2

						SURVEY D	ATA						DRILLING DA	FA	
SURVEY]	DEPTH		DIP	T	RUE AZIMUTH			GR	D		GRID	SYSTEM	MI	INE
	(ft.)	(m)		True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX.	NORTHING (m)		
Collar												APPROX.	EASTING (m)		
Down Hole	(fL)	(m)	Rea	i True	Read	Тгие	`				· · · · · · · · · · · · · · · · · · ·	APPROX. E	LEVATION (m)		
1		25,0	0 -54	-54	5	23.5							DRILLING ARTED	August	01, 2001
						1	1					DATE DRI	LLING ENDED	August	02, 2001
		···· · · ····					1				4			(ft.)	(m)
							-				-	TOTA	L DEPTH		27.43
							- ·					CASI	NG DEPTH		5.49
							1					C.	ASING		
							-					STEE	L IN HOLE	No	Ft.
					•							LOC	GED BY	T Lewis	·····
							-					LOGG	ING DATE	August 07	7, 2001
	LOGIC. TERVAJ		LITHO CODE	-9		LITHOLO	DGICAL D	ESCRIPTIO	N		Sample	· · ·	MPLE LOG Pegmatites		AMPLE UMBER
FROM (m	ı) T	°O (m)									From (m)	To (m)	Cum. Total (m		OWIDER
				-	-										
0		5.49	CASE	CASING -	OVERBUR	DEN									
<u>F_40</u>		25.46	CS1	CALC - SI	LICATE G	NEISS					5.49	7	0.17		4348
5.49		23.40	051	-								8	0.17		4340
				Light grey -	-Locally gre	enish tinge					8	9		1	4349
					iated @ 80°					•	9	10	0.10		4350
							par/Biotite	overall section	n is fairly clean		10	10	0.10		4351 4352
					s noted at 7.7	75 meters -	very localiz	ed- texture &	minerals concentr	ate more in lin	$e \frac{10}{11}$	12	0		4353
				with CS1							11	12	0.03		4353
											12	1.5	+	<u>_</u>	

Page 1 of 2

2 of

2

GEOLO	GICAL	LITHO	LITHOLOGICAL DESCRIPTION		SA	MPLE LOG	
INTER	VAL	CODE		Sample I	nterval	Pegmatites	SAMPLE NUMBER
From (m)	To (m)	·		From (m)	To (m)	Cum. Total (m)	
		CS1	CS1 Cont'd				
			Pegmatites – 18.16 - 18.60 - Top contact at 40° to LCA- Bottom @ 60° to LCA	. 13	14	0.09	4355
			Pegmatites - 19 - 19.20 - also 22.69 - 23.10	14	15	0	4356
			Foliated Quartz Monzonite Dyke @ 15.90-16.01 Chloritic alteration	15	16	0.15	4357
			Bottom contact @ 50° to LCA	16	17	0.14	4358
			Foliated Quartz Monzonite Dyke @ 19.58 – 20.49 Chloritic alteration Top contact @60° to LCA Foliated Quartz Monzonite Dyke @ 21.61 – 22.52 Chloritic alteration Top contact @55° to LCA	17	18.16	0.05	4359
			Graphite $1.5\% - 2\%$ disseminated fine to medium grained Pyrite/Pyrrhotite <1% disseminated fine grained – local trace medium grained euhedral				
		-	N.B. No samples taken from $18.16 - 25.60$				
	····		As CS1 (Total of 160cm or 21.5% of material in this section) Is cut by numerous Pegmatites & Quartz Monzonite Dykes			· · · · · · · · · · · · · · · · · · ·	
	······		Bottom contact @24.50 irregular – but roughly @ 30° to LCA	L			
			and is marked by a peg which is markedly coarse white feldspar rich proximal to contact with				
·	<u> </u>		above unit and there is skarn mineralization below - adjacent to contact with below unit.				
25.46	27.13	Q	QUARTZ				
		1					
		-	Rosy Pink – Fracture-block – pronounced long fracture present Moderate Limonite stain				
			Local trace disseminated fine grained graphite				
			Trace disseminated fine grained (partially oxidized sulphides)		1		

Page

of 3

Page 1

						SURVEY I	DATA						DRILLING D	АТА	
SURVEY	DEP	ТН		DIP	т	RUE AZIMUTE	£		GR	ID		GRÍ	SYSTEM		MINE
	(fL)	(m)		True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX.	NORTHING (m)		
Collar								}				APPROX.	EASTING (m)		
Down Hole	(ft.)	(8)	Read	True	Read	True				1		APPROX. E	LEVATION (m)		
1			NO	TEST			-						DRILLING	Aug	1st 02, 2001
							-1					DATE DRI	LLING ENDED	Augu	ast 02, 2001
														(ft.)	(m)
											4	τοτ	AL DEPTH	50	15.24
•							7					CASI	NG DEPTH	19	4.88
							7					С	ASING		
												STEE	L IN HOLE	No	Ft.
							7					LOC	GGED BY	T Lewi	is
												LOGO	SING DATE	August	: 08, 2001
											· · · · · · · · · · · · · · · · · · ·			,	
GEOI	LOGICAL		LITHO			LITHOLO	OGICAL E	ESCRIPTIO	Ń			5A	MPLE LOG	r I	
INT	TERVAL		CODE								Sample	Interval	Pegmatite		SAMPLE NUMBER
FROM (m	1) TO ((m)					<u></u>				From (m)	To (m)	Cum. Total (UNDER
. 0	7.3	1	CÁSE	CASING -	OVERBIL	PDFN						1			
					OVERBOI		-								
7.31	13.:	55	OB	OVERBUI	<u>IDEN</u>										
				1255 :	C	-1- (-1-								
					first solid ro			waam bottom o	f casing @ 7.31 8	kuuharon @ 13	55			-	
									hough there are se						
					h survived i				hough more me se	volai mabie es	1				
				process man						-					
														-	
13.55	17.	55	CS1	$\frac{CALC - S}{S}$	LICATE C	NEISS									
] Light grey	with greenis	h _ weakly	foliated @	~ 65° to LCA							
	i.	_			mai Breellis	n weakiy	ionated @	05 WLCA							

3 2 Page of

LITHO	LITHOLOGICAL DESCRIPTION		SAI	MPLE LOG	
CODE		Sample I	nterval	Pegmatites	SAMPLE NUMBER
)		From (m)	To (m)	Cum. Total (m)	
	Some solution cavities present- quite oxidized/friable (poor recovery) ~15.50 -~16.90 Several small Feldspar/Quartz/Biotite Pegmatites noted	13.55 15.00 16.00	15.00 16.00 17.00	0.15 0.50 0.16	4360 4361 4362
	Some thin skarn bands noted proximal to pegmatities Graphite disseminated fine to medium grained - 1-1.5% Pyrite/Pyrrhotite fine grained disseminated <1%	17.00	18.00	0.12	4363
CS2	CALC SILICATE GNEISS Medium to dark grey – moderately foliated @ 80° to LCA Trace fine grain dark spinel	18.00 19.00 20	19.00 20.	0.10	4364 4365 4366
<u></u>	Disseminated fine grained graphite 2-2.5% Locally oxidized (Limonite)	21 22	22 22.75 GAP	0.04 0.01 PEGMATITE	4367
CS1	CALC SILICATE GNEISS Light grey – slight greenish tinge Weak to moderate foliated @ 70 - 75° to LCA Moderately oxidized throughout section – strongest between 31 & 33.5 Some cavities/ solution caving noted @ ~31 & 32 Oxidization disseminated fine grained Pyrite/Pyrrhotite <1%	24.10 25 26 27 28 29 30 31 31 32 33	25 26 27 28 29 30 31 32 33 34	0 0.2 0 0.05 0 0.09 0.03 0.38 0.14	4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
)	CS1 CONT'D Some solution cavities present- quite oxidized/friable (poor recovery) ~15.50 ~16.90 Several small Feldspar/Quartz/Biotite Pegmatites noted Some thin skarn bands noted proximal to pegmatities Graphite disseminated fine to medium grained - 1-1.5% Pyrite/Pyrrhotite fine grained disseminated <1%	CSI CONT'D From (m) 0 CSI CONT'D 13.55 Some solution cavities present- quite oxidized/friable (poor recovery) ~15.50 ~16.90 Several small Feldspar/Quartz/Biotite Pegmatites noted 16.00 Some thin skarn bands noted proximal to pegmatities 16.00 Graphite disseminated fine to medium grained - 1-1.5% 17.00 Pyrite/Pyrrhotite fine grained disseminated <1%	CSI CONT'DFrom (m)To (m)Some solution cavities present- quite oxidized/friable (poor recovery) ~15.50 ~16.90 13.55 15.00 Several small Feldspar/Quartz/Biotite Pegnatites noted 16.00 15.00 16.00 Some thin skarn bands noted proximal to pegnatities 17.00 18.00 17.00 Graphite disseminated fine to medium grained $< 1^{4}$. 12.5% 17.00 18.00 Pyrite/Pyrrhotite fine grained disseminated $<1\%$ 19.00 $20.$ $21.$ CS2CALC SILICATE GNEISS $20.$ $21.$ Disseminated fine grained graphite 2-2.5% $20.$ $21.$ Locally oxidized (Limonite) $22.$ $27.$ $22.$ CS1CALC SILICATE GNEISS $24.10.$ $25.$ Light grey – slight greenish tinge $22.$ $25.$ $26.$ Weak to moderate foliated @ 70 - 75° to LCAModerately oxidized throughout section – strongest between 31 & 33.5 $27.$ $28.$ Oxidization disseminated fine grained graphite 1 – 1.5% $30.$ $31.$ $31.$ Disseminated fine to medium grained graphite 1 – 1.5% $33.$ $33.$ $33.$	CSI CONT'D From (m) Compto liter (m) <

	BCC)143
--	-----	------

3 _{of} 3

Page

GEOLO	GICAL	LITHO	LITHOLOGICAL DESCRIPTION	-	SA	MPLE LOG	
INTER	VAL	CODE		Sample I	nterval	Pegmatites	SAMPLI NUMBE
rom (m)	To (m)			From (m)	To (m)	Cum. Total (m)	
			CALC SILICATE GNEISS CONT'D			-	
			~21.5 - 22.32 Pseudo CS2				
	<u> </u>		Pegmatities 22.75 – 24.10 Feldspar/Quartz/Biotite - Actinolite/Tremolite mineralization locally Bottom of section from ~33.50 down- impure marble light grey – medium coarse crystalline –				
			diopsidic with <.5% disseminated graphite				
			Grades to grey calc - silicate from $-34.90 - 35.65$				
							Ì
34.99	39.62	1Z	INTERCALATED ZONE	· · · · · · · · · · · · · · · · · · ·			
	<u>_</u>		Variable Lithologies				
			Rosy Quartz predominates which is vuggy, and fractured with limonitic stain				
			Fractures @ 50° to LCA				
			Some spotted Gneiss weakly contorted foliation				
	-				<u> </u>		
							+
		1					
	·						
	• ···						

CRYSTAL GRAPHITE

SURVEY

Collar Down Hole

1

DEPTH

(m)

(m)

40.23

LITHO

CODE

CASE

(ft.)

(ft.)

GEOLOGICAL

INTERVAL

FROM (m)

0

TO (m)

5.49

			SURVEY D	 АТА			······································			DRILLING	DATA		
	DIP	TR	RUE AZIMUTH			GR	1D		GRID	SYSTEM			
	True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX. N	NORTHING (m)			
									APPROX.	EASTING (m)			
Read	True	Read	True						APPROX. E	LEVATION (m	,		
-55	-55	12	30.5							DRILLING ARTED	Augu	st 02, 2001	
									DATE DRI	LLING ENDED		st 04, 2001	
								i.	TOTA	L DEPTH	(ft.)	(m) 42.67	
										IG DEPTH		6.1	
										ASING			
										L IN HOLE	Na	Ft	
				-					LOG	GED BY	T Lewis	 J	
	-		+	İ					LOGG	ING DATE	August	09, 2001	
[0]					ESCRIPTION				SA	MPLE LO	G		
Ē	- 9			GICALD	ESCAI HOI			Sample	Interval	Pegmati		SAMPLE NUMBER	
	· · · ·			·····				From (m)	To (m)	Cum. Tota		TOMOLER	
E	CASING -	OVERBUR	DEN										
			· · · · · · · · · · · · · · · · · · ·										
	DECMATI	TT								ļ			
	PEGMATI	<u>TE</u>											
	Feldspar/Qu	artz/Biotite	Pegmatite										
	Course arei	nad Minam	Pananally	acour as al	ote or samarati	one rather than as	-			L			

5.49 8.42 P Coarse grained – Mineral's usually occur as clots or segregations rather than as individual crystals Local slight oxidization Bottom contact @ 40° to LCA 6.92-7.33 partially digested Feldspar/Quartz/Biotite Gneiss which is coarse grained & somewhat "spotted"

2 Page of

GEOLO	GICAL	LITHO	LITHOLOGICAL DESCRIPTION		SA	MPLE LOG	
INTER	VAL	CODE		Sample I	nterval	Pegmatites	SAMPLE NUMBER
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)	
8.42	10.22	FQBG	FELDSPAR QUARTZ BIOTITE GNEISS				
	· · · · · · · · · · · · · · · · · · ·		Moderately foliated @ 40° to LCA Alternate light (feldspar/quartz) & dark (biotite) banding Thin Pegmatites/Pegmatitic sweats				
		-	Strongly oxidized /Friable Section from ~ 9.50 - 10.22 Quite broken- Limonite Overall moderate oxidization				
10.22	10.65	P	PEGMATITE			······································	
	· · · · · · · · · · · · · · · · · · ·		Feldspar/Quartz/Biotite Pegmatite Partial digest of above Lithology ?? - spotted medium coarse grained				
10.65	30.40	SK	SKARN				
	· · · · · · · · · · · · · · · · · · ·		Light green – diopsidic – fairly competent rock, occasionally very weakly foliated Local clots of Tremolite-Actinolite series mineralization Local thin pegmatites up to 30 cm, most typically 5 – 10 cm wide Several graphitic mineralized Cale – Silicate sections – all of which are fairly narrow (< 1 meter wide) & contain 3 – 4% disseminated fine grained graphite Overall normally the skarn mineralization contains only local traces of disseminated medium grained graphite				

3

Page 3

GEOLO	GICAL	LITHO	LITHOLOGICAL DESCRIPTION		SA	MPLE LOG	
INTER	RVAL	CODE		Sample I	interval	Pegmatites	SAMPLE NUMBER
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)	
30.40	37.11	CS1	CALC - SILICATE GNEISS				
			Light grey – very weakly foliated @ 80° to LCA	30.40	32	0.12	4380
			More siliceous than is typical elsewhere & overall diopside content is a bit lower than normal (1 -	*32	33	0.02	4381
			2%)	33	34	0.18	4382
			< 1% disseminated fine grained graphite & $< .5%$ disseminated fine grained pyrite/pyrrhotite	34	35	0.02	4383
			Local occasional to abundant disseminated phlogopite Local thin pegmatitic dykes/sweats	35	36	0	4384
			Local patches of impure marble	36	37.11	0	4385
37.11	40.57	QM	QUARTZ MONZONITE 				
			Grades to pegmatitic bottom 25 cm's – with conspicuous large feldspar formed at bottom contact Top 1.2 m's – siliceous/half digested contact zone – not dyke proper				
40.57	42.67	MBL	MARBLE				
	······································		Coarse grained, light grey – creamy with slight greenish tinge				
			Local thin sections of skam mineralization 30 cm's of spotted Biotite/Feldspar/Quartz Gneiss included in section				
			so chi sor sported Bioliter eldspan/Quariz Oneiss included in section				
		1			1		L

							SURVEY I	DATA							DRILLING D.	АТА	
SURVEY	l	DEPT	ГН		DIP	т	RUE AZIMUTE	I		GRI	D			GRID	SYSTEM	I	AINE
	(ft.)		(m)		True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION	m)	APPROX. N	ORTHING (m)		
Collar														APPROX.	EASTING (m)		
Down Hole	(ft.))	(m)	Read	True	Read	Тгие							APPROX. E	LEVATION (m)		
1			26.77	-56	-56	۱7	35.5								DRILLING ARTED -	Augu	st 04, 2001
														DATE DRII	LLING ENDED	Aagu	st 05, 2001
																(ft.)	(m)
						1						4		TOTA	L DEPTH		33.53
		-												CASIN	G DEPTH		17.07
													ſ	CA	SING		
	·							-					Γ	STEEL	IN HOLE	No	Ft.
						1								LOG	GED BY	T Lewi	6
														LOGG	ING DATE	August	13, 2001
	LOGI FERV.			LITHO CODE	* 3 4		LITHOLO	OGICAL D	DESCRIPTION	ſ		Sam	pie I	SA) nterval	MPLE LOG Pegmatite	s :	SAMPLE
FROM (1	n)	TO (m)									From	(m)	To (m)	Cum. Total (NUMBER
0		17.0)7	CASE													
				· · ·	CASING -	OVERBUR	<u>RDEN</u>										
17.07		22.3	34	FQBG	FELDSPA	R QUARTZ	<u>L BIOTITE</u>	E GNEISS									
															ľ		
										rtz biotite pegmat	tite						
	_					ion occurs n						4. 5					
						erately oxidi:	zeu (limomi	ie) - most p	ronouncea in m	ore well develop	eu gneissic ban						
					zone Local stron	g foliation @	0 70º to T C	٨									
				<u> </u>					e - moet notable	e from ~ 18. 5 – 1	87						
						section pegn			3 - 10051 1000000	- 10th ~ 10. J ~ I	0.7						
					Douom OI	section begin	iunio iaccu								T		
												!					

Page 1 of

2

CO145 Page

	LITHO	LITHOLOGICAL DESCRIPTION		SA	MPLE LOG	ŀ	
INTER	VAL	CODE		Sample I	nterval	Pegmatites	SAMPLE NUMBEI
From (m)	То (т)			From (m)	To (m)	Cum. Total (m)	
							ļ
22.34	33.53	SK	SKARN			· · · · · · · · · · · · · · · · · · ·	
			Light green diopsidic – cut by numerous CaC03 healed fractures – most typically @ 20 to 30° to LCA - secondary joint system roughly parallel to LCS	4			
	· · ·		Considerable Feldspar/Quartz/Biotite Pegmatite below ~29 meters – constitutes approximately				
			50% of zone				
			N.B. Hole lost due to problems with Casing/Overburden. Decision was made to move on to new				
			location rather than re – drill, in part due to the similarity of this hole to BC0144 in which only 7			·	
			meters of CS1 were encountered. It is anticipated that roughly only ~ 10 meters of CS1 would				
			have been intersected in BC0145				
				ļ		 	

Degrees

DIP

Тгие

SURVEY

Coilar

DEPTH

(m)

(fL)

SURVEY DATA

Seconds

TRUE AZIMUTH

Minutes

EASTING (m)

GRID

NORTHING (m)

BC0146	Page 1	of 3
	DRILLING DA	АТА
	GRID SYSTEM	MINE
ELEVATION (m)	APPROX. NORTHING (m)	
	APPROX. EASTING (m)	
	APPROX. ELEVATION (m)	
	DATE DRILLING	August 05, 2001

Down Hole	(ft.)	(m)	ead True	Read	True			APPROX, &	LEVATION (m)	· · · · · · · · · · · · · · · · · · ·
1		46.33	56° -56°	17°	35.5°				DRILLING ARTED	August 05, 2001
						~		DATE DRI	LING ENDED	August 07, 2001
						1	-	· · · · · ·		fL) (m)
					· · · · ·		4	тота	l Depth	48.77
								CASIN	IG DEPTH	1.83
								CA	SING	
						-		STEEL	. IN HOLE	No Ft
							-	LOG	GED BY T	Lewis
						~		LOGG	ING DATE Au	gust 16, 2001
GEOI	GEOLOGICAL LITHO				LITHOLO	DGICAL DESCRIPTION		SA	MPLE LOG	1
INT	ERVAL	COD	1				Sample I	Interval	Pegmatites	SAMPLE
FROM (m) ТО (т)					From (m)	To (m)	Cum. Total (m)	
0	1.83	CAS						-		<u> </u>
•		-	<u>CASIN</u>	G - OVERBUI	<u>KDEN</u>					
	15.10	CS		- SILICATE (INFISS		1.83	3	0.27	4386
1 83				DILITOTITIE (1.05	1 2		
1.83	15.10						3	4	0.36	4387
1.83	15.10			ey, slightly gre	enish, local	disseminated oxidized sulphides	3	4	0.36	4387
1.83	15.10		Light gro	foliated @ 75°	to LCA	disseminated oxidized sulphides		1	0.36 0.20 1.00	4387 4388 4389
1.83			Light gro Weakly 1 - 1.5%	foliated @ 75° disseminated	to LCA fine grained	graphite	4	5	0.20	4388
1.83			Light gro Weakly 1 - 1.5%	foliated @ 75° disseminated sseminated fin	to LCA fine grained e grained py	graphite rite/pyrrhotite	4	5	0.20 1.00	4388 4389
1.83			Light gro Weakly 1 - 1.5% < 1 % di Unit diss	foliated @ 75° disseminated sseminated fin sected by nume	to LCA fine grained e grained py rous small p	graphite		5 6 7	0.20 1.00 0.19	4388 4389 4390

SYSTEM

3 2 of Page

GEOLO	EOLOGICAL LITHO NTERVAL CODE	LITHO	LITHOLOGICAL DESCRIPTION	SAMPLE LOG				
INTER	VAL			Sample Interval		Pegmatites	SAMPLE NUMBER	
From (m)	<u>To (m)</u>			From (m) To (m	To (m)	Cum. Total (m)	TOMORE	
			CS1 cont'd Local sections strong haematitic stain	10	11	0.15	4394 4395	
~			Small solution cavern likely somewhere between 11 & 12 meters, and also between 12 & 13	-12	13	0	4396	
			CALC - SILICATE GNEISS	13	14	0	4397	
				14	15	0	4398	
15.1	25.23	CS2		15	16	0	4399	
				16	17	0	4400	
	-		Medium to dark grey	17	18	0.07	4401	
			Lightly to moderately foliated @ 65 - 75° to LCA	18	19	0.12	4402	
			Overall $2.5 - 3\%$ disseminated fine grained graphite – locally some medium grained Stronger $(3 - 4\%)$ mineralized sections around 19 meters depth & from 24 m's to 25.45 meters	19	20	0	4403	
	_		Trace fine grained dark green disseminated spinel	20	21	0	4404	
			Entire section is moderately oxidized, with disseminated oxides throughout, & sections with	21	22	0	4405	
			strong stain on fracture surfaces & pervasive also	22	23	0	4406	
			Rock is very friable & incompetent with exception of section 18.75 – 19.50, which section is also	23	24 ·	0	4407	
			darker, more finely laminated & strongly foliated.	24	25.23	0.02	4408	
25.23		QM	OUARTZ MONZONITE					
	<u>.</u>	QUARTZ MONZONITE			ļ	· · · · ·	ļ	
			Light grey/creamy – with matics forming discrete oriented bands @ roughly 80° to LCA		<u> </u>		ļ	

Page

3 _{of} 3

GEOLO	GEOLOGICAL INTERVAL CODI	I ITHO	LITHOLOGICAL DESCRIPTION		SA	MPLE LOG	
INTEI	RVAL	CODE	LITHOLOGICAL DESCRIPTION	Sample I	nterval	Pegmatites	SAMPLE NUMBER
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)	NUMBER
			Quartz Monzonite cont'd				
			~ 5 cm of green skarn is formed @ top contact with CS2 – contact @ 70° to LCA ~ 5 cm of lighter green skarn alteration formed on lower contact which is @ 45° to LCA CaC03 healed fracture @ 26.50 meters @ 20° to LCA			-	
			Cacos licated fracture (20.50 lifeters (20 to LCA	÷ .			
27.18	36.03	MBL	MARBLE				
			Light grey slightly greenish – very weakly foliated @ 70° to LCA Grades to Calc – Silicate locally – overall medium to coarse grained recrystallized				
			 <.5% disseminated fine grained graphite Competent with some local lateral fractures Couplé of sections of impure marble – phlogopite & slight oxidization 				· · · · · · · · · · · · · · · · · · ·
36.03	41.77	QM	QUARTZ MONZONITE				
			Foliated Quartz Monzonite – creamy white with mafics elongated & oriented @ 70 - 80° to LCA Locally slightly vuggy & locally small sections of pervasive oxidization				
41.77	48.79	IZ	INTERCALATED ZONE				
		Zone of rapid lithological changes. Typically the lithologies seen are: Graphitic Calc – Silicate Gneiss, Skarn, Quartz, Pegmatite, Feldspar/Quartz/Biotite Gneiss					
			Overall foliation is @ 60° to LCA				

2

1

of

Page

SURVEY DATA DRILLING DATA SURVEY DEPTH DIP TRUE AZIMUTH GRID GRID SYSTEM MINE (ft.) (m) Тгие Degrees Minutes Seconds SYSTEM NORTHING (m) EASTING (m) ELEVATION (m) APPROX, NORTHING (m) Collar APPROX, EASTING (m) Down Hoie (fL) (m) Read True Read Тгие APPROX. ELEVATION (m) DATE DRILLING 1 43.28 -55° -55° 18* 36.5° August 07, 2001 STARTED DATE DRILLING ENDED August 08, 2001 (ft.) (m) TOTAL DEPTH 45,72 CASING DEPTH 2.13 CASING STEEL IN HOLE No Ft. LOGGED BY T Lewis LOGGING DATE August 18, 2001 SAMPLE LOG GEOLOGICAL LITHO LITHOLOGICAL DESCRIPTION INTERVAL -* CODE Sample Interval Pegmatites SAMPLE NUMBER Cum. Total (m) TO (m) From (m) To (m) FROM (m) CASE 2.13 0 **CASING - OVERBURDEN** QUARTZ MONZONITE 2.13 30.50 OM Very weakly foliated @ 80° to LCA Medium grained leucocratic, local mottled appearance Upper section slightly more mafic than lower section Local slight oxidation, also some local thin pegmatitic sections Local intervals of skam/calc - silicate (with &/or without trace graphite) - most notable: 8.34 -13.80 - Upper contact of skarn zone @ 80° to LCA & lower contact @ 60° to LCA Also local thin partial digest zones associated with skarn mineralization

2 Page of 2

GEOLO	GEOLOGICAL LITH INTERVAL COD		LITHOLOGICAL DESCRIPTION			MPLE LOG	
INTER	VAL	CODE		Sample Interval		Pegmatites	SAMPLE NUMBER
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)	
				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
30.50	45.72	MBL	MARBLE				
			Light many allocative mountains and in a second many second sec	÷			
			Light grey – slightly greenish – medium to coarse grained recrystallized Local very weakly foliated @ 70° to LCA				
	<u> </u>		Local thin pegmatites & pegmatitic sweats – up to 50 cm width – typically 10 – 20 cm's wide Siliceous/skarn zone up to 1.5 meters below contact of Quartz Monzonite				
			Siliceous/skarn zone up to 1.5 meters below contact of Quartz Monzonite				
		· · ·	Local trace disseminated fine grained graphite		<u> </u>	1	
		+					
· · · · · · · · · · · · · · · · · · ·							
			-#		1		
	<u>·</u>				·		
					<u> </u>		
							<u>.</u>
	<u> </u>	-					
					_		
					-		
						<u> </u>	

					SURVEY DATA								DRILLING DATA		
SURVEY	α	DEPTH		DIP	TI	RUE AZIMUTH	[· · · · · · · · · · · · · · · · · · ·	GR	n		GRID	SYSTEM	M	INE
	(ft.)	(m))	True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX. N	ORTHING (m)		
Collar												APPROX.	EASTING (m)		
Down Hole	(fL)	(m)	Read	True	Read	Тгие		··· -·	· · · ·			APPROX. E	LEVATION (m)		
1		31.0	9 -55°	-55°	17 °	35.5°]						DRILLING ARTED	August	08, 2001
												DATE DRI	LLING ENDED	August	09, 2001
														(ft.)	(m)
											4	TOTA	L DEPTH		33.53
												CASIN	IG DEPTH		8.53
												Ca	ASING		
							7					STEEL	L IN HOLE	No	Ft.
		İ										LOG	GED BY	T Lewis	
		-				1	1					LOGG	ING DATE	August 2	1, 2001
	LOGICA TERVAL		LITHO CODE	-74		LITHOLO)GICAL I	DESCRIPTION	Ŧ		Sample		MPLE LOG Pegmatite	1 ~~	AMPLE UMBER
FROM (m	ı) T	^C O (m)						·		<u>.</u>	From (m)	To (m)	Cum. Total (UMBER
0		8.53	CASE	1											
				CASING -	OVERBUR	<u>DEN</u>									
8.53		18.55	CS1	$\int CALC - SI$	ILICATE G	NEISS					8.74	10	0		4409
											10	11	0.07		4410
			·		- weakly fol:				10	• • • •	11	12	0.12		4411
									seminated fine gr	amed graphite	12	13	0.20	1	4412
					pegmatites &						13	14	0.03		4413
					ed fine grain			m grained graph	nite 1 1 5%		14	15	0.08		4414
								ttom of section	1001 - 1.570		15	16	0.18		4415
					zea parentes	(million c) c	10 11 10 00				16	17	0.04		4416

of 2

Page 1

Page 2 of 2

GEOLOG	GEOLOGICAL LITHO INTERVAL CODE	LITHO	LITHOLOGICAL DESCRIPTION		SAI	MPLE LOG	
INTER	VAL	CODE		Sample I	nterval	Pegmatites	SAMPLE NUMBER
From (m)	To (m)		· · · · · · · · · · · · · · · · · · ·	From (m)	To (m)	Cum. Total (m)	NUMBER
			Calc – Silicate Gneiss (CS1) cont ² d Bottom contact @ 40° to LCA Overall very little diopside &/or skarn mineralization – hence lack of greenish tinge which is so common elsewhere in the deposit Trace of spinel @ 17.70	17	18.55	0.03	4417
18.55	25.64	Q	QUARTZ Predominately Rosy/Pinkish quartz Oxidization on fracture surfaces (limonite) Local sections with faint gneissic banding Overall fairly competent – not as blocky or fractured as is typically the case in the footwall as seen elsewhere locally				
25.64	33.53 IZ	INTERCALATED ZONE Zone of variable lithologies Feldspar/Quartz/Biotite Gneiss predominates					

Page 1

2

					SURVEY D	рата		•				DRILLING D	ATA	
SURVEY	DEPTH		DIP	П	RUE AZIMUTH	1		GR	ມ		GRID	SYSTEM	M	AINE
	(ft.)	(m)	Тгае	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX.	NORTHING (m)		
Collar						-					APPROX.	EASTING (m)		
Down Hole	(ft.)	(m) Rea	d True	Read	Тгие				·		APPROX. E	LEVATION (m)		
1		3.22 -55'	· -55°	21°	39.5°	1						DRILLING ARTED	Augus	st 09, 2001
				·····							DATE DRI	LLING ENDED	Augus	st 10, 2001
						1							(fL)	(m)
	· ··· · · · · · · · · · · · · · · · ·									i.	TOTA	AL DEPTH		35.67
						-					CASI	NG DEPTH		13.71
						-					C.	ASING		
						1					STEE	L IN HOLE	No	Ft,
											LOC	GED BY	T Lewis	i
											LOGG	SING DATE	August	26, 2001
	LUGIUAL	LITHO			LITHOLO	GICAL D	ESCRIPTION	N			SA	MPLE LOG	r 	
	LOGICAL TERVAL	LITHO CODE	-4		LITHOLO)GICAL D	DESCRIPTION	N		Sample		MPLE LOG Pegmatite	es s	SAMPLE
	[ERVAL				LITHOLO	OGICAL D	DESCRIPTION	N		Sample From (m)		<u> </u>	es s N	SAMPLE NUMBER
INT	TERVAL	CODE				OGICAL D	DESCRIPTION	N	·····-		Interval	Pegmatite	es s N	SAMPLE NUMBER
INT FROM (n	[ERVAL		<u>CASING -</u>			GICAL D	DESCRIPTION	N			Interval	Pegmatite	es s N	SAMPLE NUMBER
IN7 FROM (n 0	TERVAL n) TO (m) 13.71	CODE	<u>CASING -</u>	OVERBUR		GICAL D	DESCRIPTION	N			Interval	Pegmatite	es s N	SAMPLE NUMBER
INT FROM (n	TERVAL	CODE		OVERBUR		GICAL D	DESCRIPTION	N			Interval	Pegmatite	es s N	SAMPLE NUMBER
IN7 FROM (n 0	TERVAL n) TO (m) 13.71	CODE	<u>CASING -</u> <u>PEGMATI</u>	OVERBUR TE	<u>DEN</u>	ζ.		N			Interval	Pegmatite	es s N	SAMPLE NUMBER
IN7 FROM (n 0	TERVAL n) TO (m) 13.71	CODE	<u>CASING -</u> <u>PEGMATI</u> Feldspar/Qu	OVERBUR TE pertz pegmat	DEN tite – trace r	nafics only		N karn with pegmat	itic stringers		Interval	Pegmatite	es s N	SAMPLE
IN7 FROM (n 0 13.71	TERVAL n) TO (m) 13.71 14.60	CODE CASE	<u>CASING -</u> <u>PEGMATI</u> Feldspar/Qu Pegmatite p	OVERBUR TE partz pegmat roper is only	DEN tite – trace r y from 14.2	nafics only			itic stringers		Interval	Pegmatite	es s N	
IN7 FROM (n 0	TERVAL n) TO (m) 13.71 14.60	CODE	<u>CASING -</u> <u>PEGMATI</u> Feldspar/Qu Pegmatite p <u>CALC - SI</u>	OVERBUR TE partz pegmat roper is only LICATE G	DEN tite – trace r y from 14.2 NEISS	nafics only 3 - 14.60 -	above this is s	karn with pegmat	itic stringers		Interval	Pegmatite	es s N	
IN7 FROM (n 0 13.71	TERVAL n) TO (m) 13.71 14.60	CODE CASE	<u>CASING -</u> <u>PEGMATI</u> Feldspar/Qu Pegmatite p <u>CALC - SI</u>	OVERBUR TE partz pegmat roper is only LICATE G	DEN tite – trace r y from 14.2 NEISS	nafics only 3 - 14.60 -		karn with pegmat	itic stringers	From (m)	Interval To (m)	Pegmatite Cum. Total (es s N	

Page

	LITHO	LITHOLOGICAL DESCRIPTION		SA	MPLE LOG	
	CODE		Sample I	nterval	Pegmatites	SAMPLI NUMBE
From (m) To (m)			From (m)	To (m)	Cum. Total (m)	IN UNITED
		Cala Siliante Carrier (CS1) and the	17	18	0.08	4420
		<u>Calc – Silicate Gneiss (CS1) cont'd</u>	18	19	0	4421
		Pyrite/pyrrhotite < 1% fine grained disseminated	+ 19	20	0	4422
		1 - 1.5% disseminated fine grained graphite	20	21	0	4423
		Section includes an ~ 1 meter interval of CS2 mineralization from 16.5 to 17.4 which is darker &	21	22	0.04	4424
		has higher graphite content - trace fine grained disseminated spinel, etc.	22	23	0.47	4425
			23	24	0.40	4426
			24	25	0	4427
			25	26	0	4428
			26	27	0.08	4429
			27	28	0	4430
			28	29	0	4431
	-		29	30	0	4432
	1		30	31	0.01	4433
			31	32	0	4435
			32	33	0.02	4436
			33	34	0.03	4437
		·	34	34.62	0	4438
					-	+
34.62 36.61	Q	QUARTZ				
JU.01	<u> </u>					
	+	Pale creamy to rosy/pink – Fractured & somewhat blocky				
		Top .5 m's of section possibly syenite				_
1		Limonite on fracture surfaces				L

3 Page 1 of

	- <u>.</u>			SURVEY DATA								DRILLING			
SURVEY	DEPTH	<u> </u>		DIP	T	RUE AZIMUTI	ł		GR	ID		GRII) SYSTEM		MINE
	(ft.)	(m)		Тгие	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX.	NORTHING (m)		
Collar												APPROX	EASTING (m)		
Down Hole	(ft.)	(m)	Read	Тгце	Read	True						APPROX. I	ELEVATION (m)		
·I		43.28	-56°	-56°	17°	35.5°						DATE	DRILLING	Augu	st 10, 2001
												DATE DR	ILLING ENDED	Augu	st 12, 2001
					 		4				4			(ft.)	(m)
						<u></u>	_					тот,	AL DEPTH		45.72
							_					CASI	NG DEPTH		18.28
												C	ASING		
												STEE	L IN HOLE	No	FL
L												LO	GGED BY	T Lewi	5
	<u> </u>											LOGO	GING DATE	August	26, 2001
	OGICAL ERVAL	1	LITHO CODE	್ಷಣೆ		LITHOLO	DGICAL D	ESCRIPTION	Ĭ		Sample	SA Interval	Pegmatite	es g	SAMPLE
FROM (m)	TO (m))							· · · · · · · · · · · · · · · · · · ·		From (m	To (m)	Cum. Total		NUMBER
0	10.36		CASE										-		
				CASING -	OVERBUR	<u>IDEN</u>									
				Hole was la	ter re - casec	i to 18 20 m	notom duro te					- <u>-</u> .	1		<u> </u>
				THOSe was ta		1010.271									
			<u>.</u>												
10.36	14.75		Q	QUARTZ											
			·	Rosy nink a	wartz with a	ervecive lin	nonite stain	& moderate a	tain on fracture su	un fa a a a					
	-								@ ~ 14 meters	laces					
				Thin Graphi	itic section (@ 12.19 me	ters	unn pognunio							
								lt @ ~14.75 me	ters						
						-		~				<u> </u>			
1		<u>_</u>			<u> </u>					· · · · · · · · · ·					

2

of 3

GEOLO		LITHO	LITHOLOGICAL DESCRIPTION	SAMPLE LOG						
INTER	•	CODE	LIIHOLOGICAL DESCAI HON	Sample Interval		Pegmatites	SAMPLI NUMBEI			
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)				
14.75	22.56	CS2	CALC - SILICATE GNEISS	14.75	16	0.06	4438			
			Medium grey with local greenish tinge, moderately foliated @ 70° to LCA	16	17 18	0	4439 4440			
			Local friable sections with limonitic weathering (15.24, 18.29, & 21) Section ends in a pegmatite/skarn zone, which contact is $@ \sim 90^\circ$ to LCA	<u>18</u> 19	19 20	0.07	4441 4442			
			2.5 - 3% disseminated fine grained graphite Local marbly sections with $< 1\%$ disseminated graphite	20	21	0	4443			
			1% disseminated pyrite/pyrrhotite, mainly fine to very fine grained To 17 meters depth characteristics are more akin to CS1, but do also see trace spinel throughout Friable with poor recovery from 17 to 18.30 meters – re – cased to this point – possible solution	21 22	22 23	0.04 0.10	4444 4445			
			caving present also							
22.56	42.62	CS1	CALC – SILICATE GNEISS	23	24	0.70	4446			
			Light grey, locally slightly greenish	24	25	0.90	4447			
	-		Grades to impure marble locally	25 26	26 27	0.23	4448 4449			
			Foliated @ 70° to LCA Phlogopytic section around 28 meters depth	27	28	0.03	4450			
			Top of section to ~25 meters - mainly pegmatite/skam/marble with trace of graphite	28 29	29 30	0.05	4451			
	<u>_</u>		Pyrite/Pyrrhotite <1% fine grained disseminated Few darker sections with increased graphite, pyrite/pyrrhotite	30	31	0.05	4453			
			Pegmatite with clusters of unidentified green (possibly garnet) @ $\sim 24 - 24.5$ meters	31	32	0.24	4454			
				32	33 34	0	4455 4456			
			34	35	0.21	4457				

Page

Page

GEOLOG	GEOLOGICAL LITHO		LITHOLOGICAL DESCRIPTION	SAMPLE LOG					
INTERV		CODE		Sample Interval		Pegmatites	SAMPLI NUMBEI		
From (m)	To (m)	· · · · · · · · · · · · · · · · · · ·		From (m)	To (m)	Cum. Total (m)			
			Cale – Silicate Gneiss (CS1) cont'd	35	36	0.07	4458		
				36	37	0	4459		
				37	38	0.25	4460		
				38	39	0.14	4461		
<u>-</u>		-		39	40	0	4462		
				40	41	0	4463		
		-		41	42.62	0	4464		
42.62	45.72	Q	QUARTZ Zone of quartz flooding – pink/rosy with limonite stain pervasive & on fracture surfaces Top of zone transitional from above lithology – with thin pegmatite at the very top followed by skarned CS1 with phlogopite & trace graphite with increasing quartz Bottom of this interval (from 44.2 m's on) may possibly be the start of the Intercalated Zone (IZ), or may just be lithological variation within the quartz zone						

SURVEY DATA DRILLING DATA SURVEY DEPTH DIP TRUE AZIMUTH GRID GRID SYSTEM MINE (ft.) (m) True Seconds Degrees Minutes SYSTEM NORTHING (m) EASTING (m) ELEVATION (m) APPROX. NORTHING (m) Collar APPROX. EASTING (m) Down Hole (fiL.) (m) Read Тгие Read True APPROX. ELEVATION (m) 1 31.09 -56° -56° 08° 26.5° DATE DRILLING August 12, 2001 STARTED DATE DRILLING ENDED August 13, 2001 (ft.) ł. (m) TOTAL DEPTH 33.53 CASING DEPTH 5.18 CASING STEEL IN HOLE No Ft. LOGGED BY T Lewis LOGGING DATE August 27, 2001 SAMPLE LOG **GEOLOGICAL** LITHO LITHOLOGICAL DESCRIPTION INTERVAL CODE Sample Interval Pegmatites SAMPLE NUMBER FROM (m) TO (m) To (m) Cum. Total (m) From (m) 5.18 CASE 0 **CASING - OVERBURDEN** 5.18 16.1 CS2 CALC - SILICATE GNEISS 9 10 0,40 4465 10 11 0.25 4466 Poor recovery @ top of zone - possibly mostly friable CS2 Mostly thin sections of skarn 12 0.05 11 4467 mineralization &/or thin pegmatites recovered in the uppermost portions of the hole 12 13 0.01 4468 Grade probably higher than indicated due to low recovery of the softer (higher graphite grade) 13 14 0.12 4469 material, and exaggeration of the more durable lithologies 14 15 0.15 4470 Above 9 meters depth - no analyses as no graphite mineralization recovered

1 of

Page

3

2 _{of} 3 Page

GEOLO	GICAL	LITHO	LITHOLOGICAL DESCRIPTION		SA	MPLE LOG	
INTEF	RVAL	CODE		Sample I	Sample Interval		SAMPLE NUMBER
rom (m)	Tə (m)			From (m)	To (m)	Cum. Total (m)	NUNDER
			Calc – Silicate Gneiss (CS2) cont'd Medium Grey – moderately foliated @ 70° to LCA	<u>15</u>	16	0.02	4471
			2 – 2.5% disseminated fine grained graphite ~ 1% disseminated pyrite/pyrrhotite				
16.1	31.13	CSI	CALC - SILICATE GNEISS	16	17	0	4472
			Light to medium grey, local slight greenish tinge	17	18	0.02	4473
			Foliated $@ \sim 75^\circ$ to LCA	18	19	0	4474
			Top of zone to ~ 17.3 meters more akin to Marble	19	20	0.11	4475
			Overall 1 – 1.5% disseminated fine grained pyrite/pyrrhotite	20	21	0.26	4476
				21	22	0.21	4477
				22	23	0	4478
	<u> </u>			23	24	0	4479
				24	25	0	4480
				25	26	0	4481
				26	27	0.17	4482
				27	28	0.04	4483
			28	29	0.64	4484	
				29	30	0.24	4485
			30	31.13	0.07	4486	
					·		
[

of

3

GEOLO	GEOLOGICAL LITHO		LITHOLOGICAL DESCRIPTION	SAMPLE LOG			<u> </u>	
INTER	VAL	CODE		Sample Interval		Pegmatites	SAMPLE NUMBER	
From (m)	<u>To (m)</u>			From (m)	To (m)	Cum. Total (m)		
31.13	33.53	Q	<u>DUARTZ</u>			- <u></u>		
							· · · · ·	
			osy Pink – Limonitic stain pervasive & slight oxidation on fracture surfaces airly competent – not as fractured/blocky as normal					
			Couple of sections of biotite/feldspar/quartz gneiss	·				
			Possible (like BC0150) that the Footwall quartz unit is quite thin & gives way to the intercalated zone rapidly Thin pegmatite @ top of zone @ contact with CS 1					
	<u> </u>							
							ļ. <u>.</u>	
	·							
					<u> </u>			
						· ·		
	· · · · ·							
		+					1	
							<u> </u>	

Page 1 of

3

				SURVEY DATA									DRILLING D	ата	
SURVEY	DE	ртн		DIP	Т	RUE AZIMUTH	I.		GRI	D		GRID	SYSTEM	M	UNE
	(fL)	(m)		True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX.	NORTHING (m)		
Collar		1										APPROX.	EASTING (m)		
Down Hole	(ft.) [.]	(m)	Rea	i True	Read	True						APPROX. E	LEVATION (m)		
l		37.18	-57	-57°	14°	32.5°	-						DRILLING ARTED	Augus	t 13, 2001
												DATE DRI	LLING ENDED	Augus	t 14, 2061
						·								(ft.)	(m)
							_				4 .	TOTA	L DEPTH		39.62
_	-											CASI	NG DEPTH		8.22
												C.	ASING		
												STEE	l in hole	No	Ft.
		1					1					LOC	GED BY	T Lewis	
		1					1					LOGG	ING DATE	August	7, 2001
	LOGICA FERVAL	L	LITHO CODE			LITHOLO	OGICAL I	DESCRIPTION	Γ		Sample	Interval	MPLE LOG Pegmatite	es s	AMPLE
FROM (n	n) TC	(m)				~			· · · · · · · · · · · · · · · · · · ·		From (m) To (m)	Cum. Total (UMBER
0	8	.22	CASE	-1								•+			
				CASING -	OVERBUR	<u>DEN</u>									
	_														
8.22		15	IZ	<u>INTERCA</u>	LATED ZO	NE?									
				- Zono of she	ort lengths of	differing li	thelegies						L		
					rly blocky rea										
					ibly be a seri										
								a @ ~ 9.25 - 10	meters, then into						
ļ									nzonite 13 – 15 n						
				-l `	-	\sim							ļ		

2 Page

GEOLO			LITHOLOGICAL DESCRIPTION	SAMPLE LOG						
INTER	VAL	LITHO CODE		Sample Interval		Pegmatites	SAMPLE NUMBER			
From (m)	<u>To (m)</u>			From (m)	To (m)	Cum. Total (m)	NUMBER			
15	16.50	CS2	CALC – SILICATE GNEISS Medium grey, friable – moderately foliated @ 70° to LCA Limonite stain on fracture surfaces & inter-granular also Possible fault @ ~ 15.20 2 - 2.5% disseminated fine grained graphite ~1% disseminated pyrite/pyrrhotite	15 16 17 18 19 20	16 17 18 19 20 21	0 0.20 0.09 0 0 0 0.02	4487 4488 4489 4490 4491 4492			
				20 21 22	21 22 23	0	4493 4494			
16.50	33.70	CS1	CALČ – SILICATE GNEISS Light grey, with local greenish tinge, weakly foliated @ 70° to LCA Top of section quartz with local pegmatite/Skarn & marble down to ~ 20 meters depth ~ 1% graphite in this section, with overall 1.5 – 2% disseminated fine grained graphite Patches of oxidization to bottom of section < 1% disseminated pyrite/pyrrhotite	23 24 25 26 27 28 29 30 31 32 33	24 25 26 27 28 29 30 31 32 33 33.70	0.02 0.47 0 0.03 0.05 0 0 0 0 0 0 0 0 0	4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505			
							4303			

52 _{Page} 3

GEOLO	GEOLOGICAL		LITHOLOGICAL DESCRIPTION		SAMPLE LOG						
INTER	RVAL	CODE			Sample Interval		Pegmatites	SAMPLE NUMBER			
From (m)	To (m)			From (From (m)	To (m)	Cum. Total (m)	NUMBER			
				-							
33.70	36.02	P	PEGMATITE	-							
			Coarse grained, creamy white Feldspar/Quartz/Biotite pegmatite dyke	-	4	·····					
	,	+	Local sections of skarn/calc – silicate mineralization	-							
			Local slightly oxidized (Limonite)	F							
36.02	39.62	0.14	QUARTZ MONZONITE								
	39.02	QM	QUARIZMONZONIIL	-							
			Weakly foliated sub parallel (fluctuates) to LCA Locally spotted – typically mafics elongated in direction of foliation	-							
			Strong clay gouge/breccia filled fault at top of section – possibly up to 1 meter wide								
						<u></u>					
	·			-							
				-							
		 		F	· · · · · · · · · · · · · · · · · · ·						
		_									
	-			-							
				-			<u> </u>				
				ļ				ļ			
				-							
						l	l	I //			

Page 1

3

					_	SURVEY D	ATA						DRILLING DA	ATA	
SURVEY	Depth			DIP	Π	RUE AZIMUTH	[GR	D		GRIÐ	SYSTEM	м	ÍNE
	(ft.)	(m)		True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX.	NORTHING (m)		
Collar												APPROX.	EASTING (m)		
Down Hole	(fL)	(m)	Read	True	Read	True		·· ···				APPROX. E	LEVATION (m)		
1		49.37	-56°	-56°	8°	26.5°	1					DATE DRILLING STARTED		Åugust	t 14, 2001
												DATE DRI	LLING ENDED	August	t 16, 2001
														(fL)	(m)
											4	ТОТА	L DEPTH		51.81
]					CASI	ng depth		7.30
							1					C.	ASING		
			, ,			-						STEE	L IN HOLE	No	Ft.
					1							LOC	GED BY	T Lewis	
							-					LOGG	ING DATE	August 2	8, 2001
	OGICAL ERVAL		THO ODE	- 'yı		LITHOLC	OGICAL I	DESCRIPTION	I		Sample	Interval	MPLE LOG Pegmatite	s s.	AMPLE UMBER
FROM (m)	TO (m)										From (m)	To (m)	Cum. Total (UNIDER
0	20.73	С	ASE	CASING -	OVERBUR	DEN									
20.73	25.40		CS1	<u>CALC – S</u>	LICATE G	NEISS					21	22	0.08	1	4506
											22	23	0.04		4507
								 semi-pervasiv 	e oxidization		23	24	0		4508
					oderately fol						24	25	0.06		4509
								dized to limonite	9		25	26	0.60		4510
					disseminated d fault @~2		ed graphite	;							
·		_													
	1											1			

2 |of 3 Page

CTOI O	GEOLOGICAL		LOGICAL LITHO		LITHOLOGICAL DESCRIPTION	SAMPLE LOG						
INTER		CODE	LITHOLOGICAL DESCRIPTION	Sample Interval		Pegmatites	SAMPLE NUMBER					
From (m)	<u>To (m)</u>			From (m)	To (m)	Cum. Total (m)						
25.40	33.97	QM	QUARTZ MONZONITE	26	27	0.85	4511					
				27	28	1.00	4512					
			Light grey very weakly foliated (alignment of sparse mafics) @ 80° to LCA	.28	29	0.90	4513					
	- tras		Local sections of CS2 mineralization included – most notable of which is from $\sim 29.15 - 30.10$	29	30	0.05	4514					
			Pegmatite column reflects total QM in each sample	30	31	0.70	4515					
			Top contact fairly sharp @80° to LCA	31	32	0.80	4516					
			Bottom contact less well defined – skarn mineralization amidst QM & Pegmatite	32	33	0.62	4517					
				33	34	0.44	4518					
				34	35	0	4519					
33.97	51.42	CS1	CALC – SILICATE GNEISS	35	36	0.56	4520					
				36	37	0.16	4521					
		-	Light grey, with local greenish tinge	37	38	0	4522					
	_		Weakly to moderately foliated @ 70° to LCA	38	39	0.11	4523					
	·		< 1% disseminated fine grained pyrite/pyrrhotite	39	40	0.14	4524					
			1.5 - 2% disseminated fine grained graphite Local sections of moderately coarse graphitic mineralized diopsidic marble	40	41	0	4525					
	······································		Pegmatite @ 35.14 to 35.59 both contacts are sharp - @ 70° to LCA, but from converging	41	42	0	4526					
	·····	-	directions	42	43	0	4527					
			Biotite/Feldspar gneiss zone from 39.62 – 40.30	43	44	0.10	4528					
			Oxidization down to 46 meters	44	45	0.03	4529					
				45	46	0.28	4530					
	<u> </u>		- $@ ~ 42.50 -$ colour turns to a medium grey & graphite content increases locally to 2.5 - 3.0% -	46	47	0.08	4531					
			see odd similar thin patches down to \sim 50 meters depth	47	48	0.08	4532					
				48	49	0	4533					
				49	50	0.06	4534					
				50	51.42	0.20	4535					

GEOLOGI	ICAL	LITHO	LITHOLOGICAL DESCRIPTION	SAMPLE LOG					
INTERV	AL	CODE		Sample I	Sample Interval		SAMPLI NUMBEI		
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)			
51.42	51.81	Q	QUARTZ						
			Feldspar/Quartz/Biotite (rare) Pegmatite – anticipated that this is the pegmatite often seen immediately above the footwall Quartz Zone						
	n- r -								
	-								
			-#						
							+		

.

of 3

3

Page

						SURVEY D	ATA						DRILLING D	АТА	
SURVEY		DEPTH		DIP	т	RUE AZIMUTE	L		GR	D		GRI	D SYSTEM	N	AINE
	(ff.	.) (m)	True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (n) APPROX.	NORTHING (m)		
Coilar			·	<u> </u>								APPROX	. EASTING (m)		
Down Hole	(ft.	.) (m) Read	True	Read	Тгис			<u> </u>			APPROX.	ELEVATION (m)		
1		52.4	12 -55°	-55°	17.5°	36°	-						DRILLING	Augus	st 16, 2001
												DATE DR	ILLING ENDED	Augu	st 18, 2001
														(ft.)	(m)
												тот	AL DEPTH		54.86
							7					CAS	NG DEPTH		2.13
							1					(CASING		
						- ·	-				•:	STEI	L IN HOLE	No	Ft.
							-					LO	GGED BY	T Lewis	
					İ		-					LOG	GING DATE	August	28, 2001
GEO) INI	LOGI (ERV		LITHO CODE	-#		LITHOLO	OGICAL I	DESCRIPTION	ă		Sam	SA Die Interval	AMPLE LOG Pegmatite	es g	SAMPLE JUMBER
FROM (n	a)	TO (m)		İ							From	(m) To (m)	Cum. Total		UNDER
0	- -	2.13	CASE	4											
				<u>CASING -</u>	OVERBUR	<u>IDEN</u>									
·			<u> </u>	+							<u> </u>				
2.13	†	19.05	SK	SKARN								······································			
				1											
				Zone is con	nprised of Ca	alc – Silicat	e mineraliz	ation – often g	aphitic & may be	up to 1.5% lo	cally				
								ed fine grained	graphite						
				Numerous	small pegma	tites up to 7	0 cm wide							1	
					patches of M			e trace graphite							
			+ "		skam patche	s – ngm gre	enish with	trace graphite							
				1											

Page 1 of 3

Hole-ID:	BC0154

2 of 3

Page

GEOLOGICAL INTERVAL		LITHO	LITHOLOGICAL DESCRIPTION		SAMPLE LOG			
		CODE		Sample Interval		Pegmatites	SAMPLE	
rom (m)	To (m)			From (m)	To (m)	Cum. Total (m)		
			Skarn cont'd					
			CS1 patches – foliated weakly @ 80° to LCA – oxidized sulphides Local areas with biotite/phlogopite	ે. 				
			· · · · · · · · · · · · · · · · · · ·	19.05	20	0.06	4536	
19.05 26.70 CS1 CALC - SILICATE GNEISS	<u>CALC – SILICATE GNEISS</u>	20	21	0.14	4537			
			21	22	0.63	4538		
		Light grey with local slight greenish tinge	22	23	0.54	4539		
			Weakly to moderately foliated @ 80° to LCA	23	24	0.16	4540	
			< 1% disseminated pyrite/pyrrhotite – fine grained typically 1.5 – 2% disseminated fine grained graphite	24	25	0.40	4541	
			1.5 – 270 disseminarea inte granica graphice	25	26	0	4542	
26.70 31.85 C	CS2	CALC – SILICATE GNEISS	26	27	0.13	4543		
20.70				27	28	0	4544	
			Medium grey – weakly to moderately foliated @ 80° to LCA	28	29	0.25	4545	
			- Local trace fine grained dark green spinel	29	30	0.58	4546	
			1 - 1.5% disseminated fine grained pyrite/pyrrhotite	30	31	0.06	4547	
		2.5 – 3% disseminated fine grained graphite Pegmatites: 26.71 – 26.95, and 29.07 – 29.90	31	32	0.04	4548		
				32	33	0.07	4549	
31.85 36.11	36.11	CS1	CALC - SILICATE GNEISS	33	34	0.28	4550	
			34	35	1.00	4551		
			As 19.05 – 26.70 – Foliation increases to 70° to LCA – proximal to QM dyke	35	36	0.12	4552	

lole-ID:	BC0154	Page	
----------	--------	------	--

3 _{of} 3

GEOLO	Calc - Silicate Gneiss (CS1) cont'd Local dirty (impure) marble sections Pegmatite 33.40 - 33.62 Quartz Monzonite dyke 33.90 - 35.05 - contacts @ 90° to LCA 39.05 CS2 CALC - SILICATE GNEISS As above Foliation @ top of section @ 80° to LCA - angle shallows to 60° to LCA towards the bot where it contacts QM QUARTZ MONZONITE Dyke - Top contact @ 60° to LCA Bottom contact is gradational into Marble MARBLE Creamy white /cryptocrystalline	SAMPLE LOG					
				Sample I	Sample Interval Pegmatites SAM NUM From (m) To (m) Cum. Total (m) 36 37 0 37 38 0.06	SAMPLE NUMBER	
From (m)	To (m)	·		From (m)	To (m)	Pegmatites Cum. Total (m)	
			<u>Calc – Silicate Gneiss (CS1) cont'd</u>				
			 <u>al dirty (impure) marble sections natice 33.40 – 33.62</u> tz Monzonite dyke 33.90 – 35.05 – contacts @ 90° to LCA <u>CC – SILICATE GNEISS</u> bove ation @ top of section @ 80° to LCA – angle shallows to 60° to LCA towards the bottom re it contacts QM <u>ARTZ MONZONITE</u> e – Top contact @ 60° to LCA om contact is gradational into Marble <u>RBLE</u> mny white /cryptocrystalline al slightly greenish tinge & trace of skarn (other than diopside) mineralization lational/ragged contact 47 0 47.51 to Bluish Feldspar/Quartz Pegmatite – out again @ 49.73 rp contact @ 90° to LCA 			•	
			Pegmatite 33.40 – 33.62		<u> </u>		
			ODE Calc - Silicate Gaeiss (CS1) cont'd Local dirty (impure) marble sections Pegmatite 33.40 - 33.62 Quartz Monzonite dyke 33.90 - 35.05 - contacts @ 90° to LCA CS2 CALC - SILICATE GNEISS As above Foliation @ top of section @ 80° to LCA - angle shallows to 60° to LCA towards the bottom where it contacts QM QM QUARTZ MONZONITE Dyke - Top contact @ 60° to LCA Bottom contact is gradational into Marble MBL MARBLE Creamy white /cryptocrystalline Local slightly greenish tinge & trace of skarn (other than diopside) mineralization	*			
36.11	39.05	CS2	CALC – SILICATE GNEISS			-	4553
						1	4554
,				38	39.05	0.01	4555
		Foliation @ top of section @ 80° to LCA – angle shallows to 60° to LCA towards the bot where it contacts QM					<u> </u>
39.05	40.79	QM					
			Duize Top contact @ 60° to I C A				
-			Bottom contact is gradational into Marble			·	
40.79	54.86	MBL	MARBLE				
_					+		
			- Local slightly greenish tinge & trace of skarn (other than diopside) mineralization Gradational/ranged contact 47,0,47,51 to Bluish Feldsnar/Quartz Permatite - out again @ 49,73		<u> </u>		
					<u> </u>		
					L		· · ·

DRILLING DATA SURVEY DATA GRID SYSTEM TRUE AZIMUTH GRID MINE DEPTH DIP SURVEY NORTHING (m) EASTING (m) ELEVATION (m) APPROX. NORTHING (m) (ft.) True Degrees Minutes Seconds SYSTEM (m) APPROX, EASTING (m) Collar APPROX. ELEVATION (m) Read Down Hole (11.) (m) Read True Тле DATE DRILLING August 18, 2001 1 27.43 -58° -58° 17.5° 36° STARTED DATE DRILLING ENDED August 19, 2001 (ft.) (m) į. TOTAL DEPTH CASING DEPTH 30.48 CASING 3.05 STEEL IN HOLE No Ft. LOGGED BY T Lewis LOGGING DATE August 29, 2001 SAMPLE LOG **GEOLOGICAL** LITHOLOGICAL DESCRIPTION LITHO INTERVAL - -CODE Sample Interval **Pegmatites** SAMPLE NUMBER Cum. Total (m) From (m) To (m) TO (m) FROM (m) **CASING - OVERBURDEN** 0 3.05 CASE 19.30 CS1 CALC - SILICATE GNEISS 3.05 7.32 9 0.07 4556 Silicified 0 Light grey with local pale green - glossy - appears to be altered by local intrusive 9 0.01 4557 10.45 Foliated @ 80° to LCA GAP <.5% disseminated pyrite/pyrrhotite 12 0.01 4558 13 ~1% disseminated fine grained graphite 13 14 0 4559 Feldspar/quartz pegmatite ~ 10.45 - 12.00 vuggy - quartz crystal growth - local amorphous 14 15 0.01 4560 graphite

2 of

1

2 Page of

GEOLO	GICAL		LITHOLOGICAL DESCRIPTION		SA	MPLE LOG	
		LITHO CODE	LITHOLOGICAL DESCRIPTION	Sample I	om (m) To (m) Cum. Total (m)		
From (m)	<u>To (m)</u>			From (m)	To (m)	Cum. Total (m)	
	To (m)	PM	Calc - Silicate Gneiss cont'd Local zones of increased oxidization - most notable @ ~ 16.50 meters Sampled two best looking intervals in diamond drill hole PARTIAL MELT ZONE Dyke swarm or possible ragged edge of an intrusive i.e. zone of interdigitating fingers of varying phases of a central intrusive Section from top @ 19.30 meters: -* foliated Quartz Monzonite to ~ 20 m's - 1.5 meters of quartz & a bit of CS1 - very blocky - thin Feldspar/Quartz/Biotite dyke - 2 meters skarn/silica zone - Quartz - @ ~ 24 meters Feldspar/Quartz/Biotite - foliated intrusive - very weakly foliated -	_	To (m)		
			 gradational transition to foliated (strongly) feldspar/quartz rock – which appears to be feldspar flooded – local patchy green garnet (poorly developed retrograde) foliation @ ~35° to LCA 				

2

						SURVEY D	ATA						DRILLING DA	ТА	
SURVEY	D	ЕРТН		DIP	п	RUE AZIMUTH			GRI	D		GRID	SYSTEM	М	NE
	(ft.)	(m)		True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX. N	ORTHING (m)		
Collar												APPROX.	EASTING (m)		
Down Hole	(ft.)	(m)	Read	Тгие	Read	True						APPROX. E	LEVATION (m)		
1		37.1	8 -56°	-56°	14.5°	33°							DRILLING ARTED	August	19, 2001
												DATE DRI	LLING ENDED	August	20, 2001
											. [(ft.)	(国)
	•										-4 . _	TOTA	l depth		39.62
												CASIN	G DEPTH		18.29
												C/	ASING		
												STEEL	. IN HOLE	No	Ft.
											ſ	LOG	GED BY	T Lewis	
												LOGG	ING DATE	August 30), 2001
	.OGICA ERVAL		LITHO CODE	- 24		LITHOLC	OGICAL DI	ESCRIPTION			Sample		MPLE LOG Pegmatites	1 54	MPLE
FROM (m)) T	O (m)								· · · ·	From (m)	To (m)	Cum. Total (n		IMBER
0	ī	8.29	CASE	1										-	
				CASING -	OVERBUR	<u>DEN</u>									
				OUT O OT		NEVGG									
18.29	2	3.50	CS1	CALC – SI	LICATE G	<u>NE155</u>					19	20	0.06		4561
				Boulders to	10 meters						20	21	0.45		4562
				Medium gre		ly foliated (@ 75° to I C	' Δ			21	22	0.40		4563
				Physical app				-4 %			22	23	0		4564
					inated fine g			e				Ì			
				2 – 2.5% dis								.			
				Section quit	e blocky – o	xidized wit	h local stror	ig limonite stai							
				Dissected by	y several peg	gmatites up	to 45cm wie	de, most notabi	ly: 20.5 – 20.95 <i>&</i>	21.33 - 21.65	· · ·		·		
						· · · · · · · · · · · · · · · · · · ·						<u> </u>	l		

Page 1 of 3

Hole-ID:	BC0156

2 _{of} 3

GEOLO	1.50 31.19 CS2 CALC SILICATE GNEISS Dark grey -moderately foliated @ 80° to LCA 1-1.5% disseminated fine grained pyrite/pyrrhotite - 2.5-3% disseminated fine grained graphite Top of section - moderate limonite weathered - below 24m local trace limonite weathered Trace disseminated fine grained spiral Several small bands of marble Quartz/Feldspar/dyke (syrinite) 26.20 - 28.70 Several sections of higher grained graphite: @ ~ 29m 2x15cm bands, & @ 30.02 - 31.19 5-5.5% overall Image: Predematic		SA	PLE LOG			
			LIIROLOGICAL DESCRIPTION	Sample I	nterval	Pegmatites	SAMPLI NUMBEI
From (m)	To (m)			23 2 24 2 25 2 26 2 27 2 28 2 30 31 30 31 31 30 32.92 34 35 36 37 38 39 40	To (m)	Cum. Total (m)	HUMBRA
23.50	31.19	CS2	CALC SILICATE GNEISS				
				23	24	0	4565
				24	25	0	4566
			1-1.5% disseminated fine grained pyrite/pyrrhotite - 2.5-3% disseminated fine grained graphite	+25	26	0	4567
			Top of section – moderate limonite weathered – below 24m local trace limonite weathered	26	27	0.80	4568
				27	28	1.00	4569
		Image: Code Code Code Code Code Code Code Code		28	29	0.50	4570
				From (m) 23 24 25 26 27 28 29 30 30 31 32.92 34 35 36 37 38 39 40 41	30	0	4571
	Several small pegmatites Quartz/Feldspar/dyke (syrinite) 26.20 – 28.70 Several sections of higher grained graphite: @ ~ 29m 2x15cm bands, & @ 30.02 – 31.19 5-5.5% overall			30	31.19	0.10	4572
	$\textcircled{a} \sim 29 \text{ m } 2x15 \text{ cm bands}, \& \textcircled{a} 30.02 - 31.19 5-5.5\% \text{ overall}$						
31.19	32.92	PEG					1
	,		Permetite/Folioted Quartz Monzonite Duko				
	<u> </u>						
					34	0	4573
32.92	43.48	CS1	<u>CALC - SILICATE GNEISS</u>		35	0	4574
				35	36	0	4575
			Light grey slight greenish with local patches		37	0	4576
				37	38	0	4577
				38	39	0	4578
			1-1.5% disseminated fine grained graphite	39	40	0	4579
			bottom of section becomes siliceous towards contact with pegmatites	40	41	0.07	4580
				41	42	0.03	4581
				42	43.48	0.04	4582

GEOLOG	TCAL	LITHO	LITHOLOGICAL DESCRIPTION	SA	MPLE LOG	
	INTERVAL		LITHOLOGICAL DESCRIPTION	Sample Interval Pegn		SAMPLE NUMBER
rom (m)	To (m)			From (m) To (m)	Cum. Total (m)	
43.48	45.72	P	PEGMATITE			
			"Graphic" texture - Feldspar/Quartz Pegmatite Local trace oxidization – grades in & out of Quartz Unit	From (m) To (m) Cum. Totai (m	· · · · · · · · · · · · · · · · · · ·	
			Transitional @ bottom of interval			
			Top contact @ 50° to LCA			
					·	
	~					
						· · · · · · · · · · · · · · · · · · ·
			· · ·			

P					
			. i		
			- ·		
		<u> </u>			
		,			
		· · · · · · · · · · · · · · · · · · ·			
· · · · · · · · · · · · · · · · · · ·					
		L			1
		1			
		L			1
		<u> </u>			
					•
	1				•
			ł		
			···		· · · · · · · · · · · · · · · · · · ·
					1
		1		1	
1		1	1		1

3 of

· · · · · · · · · · · · · · · · · · ·						SURVEY D	ATA						DRILLING DA	TA	
SURVEY	DE	ртн		DIP	T	RUE AZIMUTH	. <u></u>		GR	1D		GRID	SYSTEM	M	INE
	(ft.) ⁻	(m)		True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX.	NORTHING (m)		
Collar										[APPROX.	EASTING (m)		
Down Hole	(fL)	(m)	Read	True	Read	True			· · · · · · · · · · · · · · · · · · ·			APPROX. E	LEVATION (81)		
1		37.18	BAD	TEST									DRILLING ARTED	Septembe	er 04, 2001
· · · · ·												DATE DRI	LLING ENDED	Septemb	er 85, 2001
							1							(fL)	(m)
		1									+	тота	L DEPTH		39.62
		1										CASI	NG DEPTH		11.62
		-				1				C,	ASING				
		1		-								STEE	L IN HOLE	Ne	Ft.
						-	1				· .	LOC	GED BY	T Lewis	-
				•			-					LOGG	ING DATE	Septemb	er 07, 2001
1 .	LOGICA	L	LITHO			LITHOLO	OGICAL I	DESCRIPTION	Ň			SA	MPLE LOG	<u> </u>	
	FERVAL		CODE	7							Sample	Interval	Pegmatite		AMPLE UMBER
FROM (II	1) T() (m)									From (m)	To (m)	Cum. Total (n)	
0	1	.62	CASE		OVERBUI			o 111 (111							
				Casing only	y to 3.05 – go	od recover	y of bould	er & pebble till							•
11.62	1:	5.15	QM		D/QUARTZ										
				Greyishcı	reamy – weal	kly foliated	mafics								
				Becomes pi	inkish Quartz	z unit towar	ds bottom	of interval							
				-											
15.15	2:	5.49	CS2		ILICATE G			1 0 000			15.15	16	0		4583
								ed @ 80° to LC	A		16	17	0.14		4584
					troughout int			y strong e graphite recov	varad		17	18	0.03		4585
				21 - 22 me	ters – extrem	iciy mables	sanu Itti	e grapinte recov	, ei cu						
	1			1											

of 2

of 2 2

GEOLO	CS2 CONT'D (Abundant Graphite annulus of hole – good returns throughout hole) No physical boundary @ bottom - i.e. abruptly passes into CS1 Marble sections 18.30 – 19, 20.30 – 20.50, 24.70 – 25.00 Coarsely crystalline with only trace graphite	SAMPLE LOG					
			LITHOLOGICAL DESCRIPTION	Sample I	SAMPLE LOG Sample Interval Pegmatites From (m) To (m) Cum. Total (m) 18 19 0.01 19 20 0.16 20 21 0 21 22 0 22 23 0.25 23 24 0.23 24 25 0.15 25 26 0 26 27 0.18 27 28 0.25 28 29 0.09 29 30 0 31 32 0.05 32 33 0 34 35 0.02 35 35.39 0	SAMPLE NUMBEI	
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)	NUMBER
			(Abundant Graphite annulus of hole – good returns throughout hole) No physical boundary @ bottom - i.e. abruptly passes into CS1 Marble sections 18.30–19, 20.30 – 20.50, 24.70 – 25.00	19 20 21 22 23	20 21 22 23 24	0.16 0 0.25 0.23	4586 4587 4588 4589 4590 4591 4592
25.49	35.39	CS1	Light grey local pale greenish Weakly foliated @ 85° to LCA 1.5 -2% disseminated fine grained graphite <1% disseminated fine grained pyrite/Pyrthotite- local blebs Bottom of section increasingly siliceous Local sections marbly with < .5% disseminated graphite	25 26 27 28 29 30 31 32 33 33 34	26 27 28 29 30 31 32 33 34 35	0 0.18 0.25 0.09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4392 4593 4594 4595 4596 4597 4598 4599 4600 4600 4601 4602 4603
35.39	39.62	Q	QUARTZ Rosy/Pink Quartz Local sections very weakly foliated – slightly schistose-sericitic				

Page	1	of	2
	L		L .

						SURVEY D	ATA						DRILLING DA	ТА	
SURVEY		(n) (n) Read True Read True (n.) (n) Read True Read True 32.31 -55° -55° BAD TEST					D		GRID	SYSTEM	MI	NE			
	(fi.)) (m)	True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX. N	ORTHING (m)		
Coilar							1					APPROX.	EASTING (m)		
Down Hole	(ft.)) (m) Read	True	Read	True	T	· · · · · ·				APPROX. E	LEVATION (m)		
1		32.3	1 -55°	-55°	BAD	TEST	-						DRILLING ARTED	Septembe	er 05, 2001
						-						DATE DRI	LLING ENDED	Septembe	er 06, 2001
							1							<u>(ft.)</u>	(m)
											÷.	TOTA	l depth		34.74
		-					1					CASIN	(G DEP TH		6.10
					· · · · ·							CA	ASING		
							-					STEEL	. IN HOLE	No	Ft.
				· · ·			-					LOG	GED BY	T Lewis	
												LOGG	September 08, 200		
				-*		LITHOLO	OGICAL I	DESCRIPTION	Ĭ				MPLE LOG		
			CODE								Sample	interval	Pegmatite		AMPLE UMBER
FROM (m	n)	TO (m)					-				From (m)	To (m)	Cum. Total (1		
0		14.00	CASE				• (t- 14.00 menter					
				Casing only	to 6.1 mete	rs but overt	ourden (ma	inly Quartz Moi	nzonite boulders)	to 14.00 meter	s				
14.00		22.05	CS2	 CALC – SI	LICATE G	NEISS					14	15	0		4604
11.00		22.00									15	16	0		4605
· · · · · ·				Medium gro	ey – weakly	foliated @7	0° to LCA				16	17	0.05		4606
				Top of secti	ion moderate	ely oxidized	-local sh	ort sections of w	veak oxidization		17	18	0		4607
										: @ 60° to LCA	18	19	0.08		4608
				25cm pegm	atite @ 20.5	55 - top cor	ntact @ 70°	' to LCA botton	$n \sim 35^{\circ}$ to LCA		19	20	0		4609
			·	Graphite -	2.5 – 3% dis	seminated f	tine grained	1			20	21	0.30		4610
					notite ~ 1% o		d fine grair	ied			21	22	0.01		4611
			+	Trace dark	green spinel										

2 2 Page of

GEOLOG	GICAL	LITHO	LITHOLOGICAL DESCRIPTION		SA	MPLE LOG	
INTER		CODE	LITHOLOGICAL DESCRIPTION	Sample I	nterval	Pegmatites	SAMPLE NUMBER
From (m)	To (m)	-		From (m)	To (m)	Cum. Total (m)	TUTIDER
22.05	33.88	CS1	CALC -SILICATE GNEISS				
				22	23	0.15	4612
			Light grey with local greenish tinge	23	24	0.05	4613
			Weakly foliated @ 70° to LCA	.24	25	0.09	4614
			Local sections (top & bottom of section) of weakly developed skarn mineralization	25	26	0.03	4615
			Section becomes more marbly @ bottom	26	27	0.07	4616
			Pegmatite 29.81 – 30.21 - Top contact @~80° to LCA Bottom ~ 1 meter siliceous	27	28	0	4617
	· · · ·		CS2	28	29	0	4618
			$\frac{CS2}{31.03 - 31.53}$ CS2 (because of the short length of this interval it was not broken out)	29	30	0.19	4619
	· · ·		As 14.00- 22.05	30	31	0.21	4620
	=		Oxidized - Foliated @70° to LCA	31	32	0	4621
			Bottom contact at ~40° to LCA	32	33	0	4622
			- 14 -	33	33.88	0.15	4623
33.88	34.75	Q	QUARTZ				
		<u> </u>				1	
			Pink/Rosy				
			Blocky with longitudinal fractures				
			Trace Graphite				
			Local Blebs Pyrite/Pyrrhotite				
							<u> </u>
		_			L	L	

						SURVEY L	DATA						DRILLING D	АТА	
SURVEY	DEP	TH		DIP	Т	RUE AZIMUTH	H		GR	ID		GRII	SYSTEM	ľ	MINE
	(ft.)	(m)		True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX.	NORTHING (m)		
Collar												APPROX	EASTING (m)		
Down Hole	(ft.)	(m)	Read	True	Read	True		1	· ·			APPROX.	ELEVATION (m)		
1		37.18	-56°	-56°	18°	36.5°	-						DRILLING ARTED	Septeml	ber 06, 2001
			_				-					DATE DRI	ILLING ENDED	Septem	ber 07, 2001
							_							(ft.)	(m)
											4	τοτ	AL DEPTH		39.62
					1							CASI	NG DEPTH		2.13
					<u> </u>							C	ASING		
					. <u> </u>		-					STEE	L IN HOLE	No	Ft.
			· ·									LO	GGED BY	T Lewis	8
							-					LOGO	GING DATE	Septem	ber 09, 2001
	LOGICAL TERVAL		LITHO CODE	q#		LITHOLO	OGICAL I	DESCRIPTIO	N		Sample	SA Interval	Pegmatite	es s	SAMPLE NUMBER
FROM (m	1) TO ((m)									From (m) To (m)	Cum. Total		
0	2.1	3	CASE	CASING -	OVERBUE	<u>RDEN</u>									
•· •															. .
2.13	7.0	16	QM	OUARTZ	MONZONI	TR.									
2.15	7.0		QIVI	<u>voimiz</u>											
				Creamy gre	ey – very we	akly foliate	d								
				Leucocratio	e- abundant o	quartz & fel	ldspar								
				Local weak	clay alteration	ion - local ti	race graphi	te							
				Patches loc	al weak lime	onite stain						-			
				-											
				4.											
		·· ·		1											
											·				

of 3

GEOLO	GICAL		LITHOLOGICAL DESCRIPTION				
INTERVAL		LITHO CODE		Sample I	Sample Interval Pegm		SAMPLE NUMBER
rom (m)	To (m)			From (m)	To (m)	Cum. Total (m)	I
7.06	26.04	CS1	CALC-SILICATE GNEISS	7	8	0.53	4624
				8	9	0.05	4625
			Light grey to greenish grey	9	10	0	4626
			Weakly foliated @ 80° to LCA	10	11	0.05	4627
			Local abundant diopside	11	12	0.04	4628
	<u> </u>	<u> </u> -	1% disseminated fine grained pyrite/pyrrhotite – local patches medium grained pyrite	12	13	0	4629
			1.5 – 2% disseminated fine grained graphite	13	14	0.14	4630

	Local thin pegmatites/ pegmatitic sweats Major pegmatite ~ 15.50-16.20cm – dark grey skarn @ bottom Major pegmatite ~ 18.30-20.20cm Above pegmatites possibly leucocratic granites with pegmatites intruding Major pegmatite ~ 20.80-21.50	$ \begin{array}{r} 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ \end{array} $	$ \begin{array}{r} 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ \end{array} $	0.14 0.20 0.52 0.60 0.74 0.70 1.00 0.29 0.48 0 0 0 0.20 0.15	4630 4631 4632 4633 4634 4634 4635 4636 4637 4638 4639 4639 4640 4641 4642
26.04 36.94 MBI	MARBLE White/grey impure with <1% disseminated graphite Coarse grained granular, local greenish skarn patches, local disseminated Phlogopite	25 26 27 28 29	26 27 28 29 30	0.15 0 0.16 0.15 0	4642 4643 4644 4645 4645 4646

3 3 of

GEOLO	GICAL		LITHOLOGICAL DESCRIPTION	SAMPLE LOG			
INTEI		LITHO CODE		Sample Interval		Pegmatites	SAMPLI NUMBE
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)	
			Marble cont'd	30	31	0	4647
			Local thin sections of graphite Calc - Silicate (CS1) mineralization below 35 meters depth	31	32	0.14	4648
				32.	33	0.12	4649
				*33	34	0.17	4650
				34	35	0.64	4651
				35	36	0.12	4652
				36	36.94	0	4653
36.94	39.62	Q	QUARTZ				
			Rosy/Pink – locally blocky / fractured				ļ
<u> </u>	<u> </u>		Limonite stain on fracture surface & some pervasive				
	4	1					
			4				
	+	+	4		<u> </u>		

						SURVEY I	DATA						DRILLING D	ATA	
SURVEY	DEPT	E HI		ÐIP	Т	RUE AZIMUTI	H		GR	ID		GRI) SYSTEM	1	MINE
	(ft.)	(m)		Ттие	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX.	NORTHING (m)		
Collar												APPROX	EASTING (m)		
Down Hole	(ft.)	(m)	Read	True	Read	True						APPROX. I	ELEVATION (m)		
1		27,4	3 -56°	-56°	02°	20.5°							DRILLING ARTED -	Septem	ber 07, 2001
												DATE DR	LLING ENDED	Septem	ber 08, 2001
														(ft.)	(m)
							_				4	тот	AL DEPTH		30.48
												CASI	NG DEPTH		2.13
												C	ASING		
		-										STEE	L IN HOLE	No	Ft.
												LOG	GGED BY	T Lewis	5
							-					LOGO	SING DATE	Septem	ber 12, 2001
	LOGICAL ERVAL		LITHO CODE	- 		LITHOL	OGICAL I	DESCRIPTION	ſ		Sampl	e Interval	MPLE LOG Pegmatite	es g	SAMPLE NUMBER
FROM (m)) TO (I	m)									From (n	l) To (m)	Cum. Total (UNDER
0	2.1	3	CASE	-											
				<u>CASING</u> _	OVERBUE	<u>IDEN</u>									
				DECMAT						<u>-</u>					
2.13	9.0	/	P	PEGMATI									. <u> </u>		
·				 Feldsnar/Oi	uartz/Biotite	Permatite					· · · · · · · · · · · · · · · · · · ·				
					ite, coarse gi										
[rfaces, loca	i pervasive stai	a						
								15-6.30 & 6.4			ļ				
				-									+		
				4									· · ·		
				-									· · · ·		
l		1											<u> </u>		

Page 1 of 3

) Page 2

of	3

GEOLO	GICAL	LITHO	LITHOLOGICAL DESCRIPTION		SA	MPLE LOG	
INTEF	RVAL	CODE		Sample Ir	Sample Interval		SAMPLE
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)	NUMBER
9.07	12.28	CSI	CALC – SILICATE GNEISS	9.07	10	0.56	4654
		- · · · · · · · · · · · · · · · · · · ·	Light grey, locally slightly greenish Weakly foliated @ 80° to LCA Local thin pegmatites & also thin patches of skarn mineralization 1-2 % disseminated fine grained graphite < 1% disseminated fine grained pyrite/pyrrhotite	10 11 	11 12.28	0.35 0.14	4655 4656
12.28	17.72	QM	QUARTZ MONZONITE Very weakly foliated – often foliation not particularly evident Local patches of porphyritic quartz/feldspar Not much in the line of biotite or other mafics throughout Local patches where sparse mafics have been altered to chlorite Some local skarn patches				
17.72	18.15	CS2	CALC - SILICATE GNEISS Medium grey	17.72	18	0.03	4657
			Moderately foliated @ 80° to LCA 2 – 2.5% disseminated fine grained graphite 1 – 1.5% disseminated fine grained pyrite/pyrrhotite Local blebs of pyrrhotite				

3 of

3

GEOLOG	TICAL	1 10000	TINTOLOGICLE DESCRIPTION	SAMPLE LOG						
INTER		LITHO CODE	LITHOLOGICAL DESCRIPTION	Sample Interval		Pegmatites	SAMPLI NUMBEI			
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)				
18.15	24.96	CS1	CALC - SILICATE GNEISS	18	19	0.10	4658			
			Light grey – locally greenish	19 420	20 21	0	4659 4660			
	· · · · · · · · · · · · · · · · · · ·		< 1% disseminated fine grained pyrite/pyrrhotite 1 - 1.5% disseminated fine grained graphite Bottom 1 meter of section – biotite garnet gneiss bands Local thin pegmatites – most notable is one @ ~24 meters which contains trace of graphite	\sim < 1% disseminated fine grained pyrite/pyrrhotite 1 - 1.5% disseminated fine grained graphite	21 22	22 23	0.20	4661 4662		
· · · · · · · · · · · · · · · · · · ·				23	24	0.40	4663			
				24	25	0.34	4664			
24.96	30.48	Q	QUARTZ							
			Pale grey, locally rosy/pinkish Numerous thin quartz healed fractures ~ .5% disseminated pyrite/pyrrhotite							
			Local "graphic" texture – oriented @ 70 - 80° to LCA							
							· · · · · · · · · · · · · · · · · · ·			
	· ·									
			1							

				SURVEY DATA									DRILLING D	ATA	
SURVEY	Di	ертң		DIP	Т	RUE AZIMUTH	L		GR	D		GRIE	SYSTEM		MINE
	(ft.)	(m)	True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX.	NORTHING (m)		
Collar				· · · ·								APPROX.	EASTING (m)		
Down Hole	(ft.)	(m) Read	True	Read	True		_				APPROX. E	LEVATION (m)		
I.		40.2	23 -56°	-56°	BAD	TEST]						DRILLING ARTED	Septen	nber 08, 2001
		-				-						DATE DRI	LLING ENDED	Septen	nber 09, 2001
														(ft.)	(m)
											* .	тотл	L DEPTH		42.67
							1					CASH	NG DEPTH		6.92
							1					с	ASING		
							-					STEE	L IN HOLE	No	Ft.
							-					LOC	GGED BY	T Lew	is
							-					LOGG	ING DATE	Septen	nber 12, 2001
	LOGICA ERVAL	L	LITHO CODE	-#		LITHOLO	OGICAL I	DESCRIPTION			Sample	SA Interval	MPLE LOG Pegmatite	28	SAMPLE NUMBER
FROM (m)) TC) (m)									From (m)	To (m)	Cum. Total (NUMBER
0	6	5.92	CASE	-											• • • • • • • • • • • • • • • • • • •
				CASING -	OVERBUR	DEN									
											· · ·			·	
6.92	12	2.80	BFQGG	BIOTITE	FELDSPAR	QUARTZ	GARNE'	I GNEISS							
				Bottom of s Several thin	ulated folia ection altera pegmatites	tion @~ 50 tion at cont – thickest ()° to LCA act – abun @ ~ 11 m's	dant chlorite (~ .5 m's wide) ined sub – euhed	ral, poorly forme	ed retrograde p	ink				

Page 1 of 3

. .

2 3 of

GEOLO	GICAL	LITHO	LITHOLOGICAL DESCRIPTION		SA	MPLE LOG	E LOG	
INTER	RVAL	CODE		Sample Interval		Pegmatites	SAMPLE NUMBER	
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)	NUMBER	
12.80	21.41	LG	LEUCOCRATIC GRANITE			······		
			Creamy white to light grey Quartz/Feldspar – local disseminated biotite Local patches of diopsidic skarn mineralization	4				
		· · · · · · · · · · · · · · · · · · ·	Zenoliths (up to 15 cm) of CS2 @ top of interval Numerous Quartz healed fractures – varying orientations Slight clay alteration of feldspars @ ~ 18 meters					
			Pegmatitic @ bottom (last 1.5 meters) of interval Local trace disseminated fine grained graphite					
21.41	23.91	CS2	CALC – SILICATE GNEISS					
			CALC - SILICATE GAELSS	21.41	22.44	0.02	4665	
			Medium grey, very weakly foliated $@ \sim 80^\circ$ to LCA Strong (4 – 5%) disseminated fine grained graphite 1 – 1.5% disseminated fine grained pyrite/pyrrhotite Pegmatite 22.44 – 23.15 top contact $@ 80^\circ$ to LCA – both top & bottom contacts ragged Bottom of interval becomes impure marble (phlogopytic), skarned also locally	22.44	23.91	0.08	4666	
23.91	39.05	CS1	CALC - SILICATE GNEISS	25.95	27	0.12	4667	
	<u> </u>		Light grey, weakly foliated @ 70 - 80° to LCA	27	28	0	4668	
			Local greenish tinge, often with segregations of graphite Top of section poorly mineralized, Abundant diopside skarn & abundant thin leucocratic Pegmatites	28 29	29 30	0.19 0.12	4669 4670	

6 3

Page

of 3 3

LITHOLOGICAL DESCRIPTION				
				SAMPLE NUMBER
	From (m)	To (m)	Cum. Total (m)	
	30	31	0.35	4671
	31	32	0.27	4672
itent in groups in	32	33	0.06	4673
concomitant increase in	+ 33	34	0.03	4674
	34	35	0	4675
	35	36	0.30	4676
	36	37	0	4677
	37	38	0.04	4678
	38	39.05	0.04	4679
		+	······	
		+		
		+		
				+
			+	

						SURVEY D	ATA						DRILLING D	ATA	
SURVEY	DEPT	ГН		DIP	TR	UE AZIMUTH			GR	1D		GRID	SYSTEM	м	IINE
	(ft.)	(m)		True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX.	NORTHING (m)		
Collar												APPROX.	EASTING (m)		
Down Hole	(ft.)	(m)	Read	True	Read	True						APPROX. E	LEVATION (m)		
1		49.37	-57°	-57°	19.5°	38°							DRILLING ARTED	Septemb	oer 09, 2001
												DATE DRI	LLING ENDED	Septemb	per 10, 2001
			·											(ft.)	(m)
											4	тота	L DEPTH		51.81
												CASH	NG DEPTH		10.97
							-					C	ASING		
												STEE	L IN HOLE	No	Ft.
							1					LOC	GED BY	T Lewis	
							-					LOGO	ING DATE	Septemb	er 15, 2001
	LOGICAL TERVAL		LITHO CODE	-#]	LITHOLO	GICAL I	DESCRIPTION	Ĩ		Sample		MPLE LOG Pegmatite	s s	AMPLE
FROM (n	a) TO (m)									From (m)	To (m)	Cum. Total (UNIDER
0	10.9	97	CASE												
				CASING -	OVERBUR	DEN									·
]											
10.97	31.2	28	BFQG	BIOTITE	FELDSPAR	QUARTZ	GNEISS								
					• . •		C 1 + 1 /		A				ļ		
					i, moderately re properly F			2) 70 – 80 ° to L Geneies	CA						
									n bands up to 50 o	cm's wide					
					- 15 cm's wi		oughout	nom oleos, i on	i ounus up to 50 v			-			
L				Local limo								. <u> </u>			
				1		roximal to.	or betwee	n pegmatite dyk	es						
				-		,									
				I									<u> </u>		

of 3

GEOLO	GICAL	LITHO	LITHOLOGICAL DESCRIPTION	ļ	SAMPLE LOG				
INTER	RVAL	CODE		Sample I	nterval	Pegmatites	SAMPLE NUMBER		
From (m)	To (m)		· · · · · · · · · · · · · · · · · · ·	From (m)	To (m)	Cum. Total (m)			
			Biotite Feldspar Quartz Gneiss cont'd Pale green siliceous skarn developed bottom 40 – 50 cm of section Local disseminated pyrite/pyrrhotite – often associated with dykes Local sericitic sections – typically in locales which are slightly schistose – typically with < . 5%						
						· · · · · · · · · · · · · · · · · · ·			
		 •							
31.28	34,25	CS2	CALC – SILICATE GNEISS			<u> </u>	 		
				31.28	32	0.21	4680		

		•	 Overall trace local disseminated fine grained graphite Dyke/skarn/Digest zone 21.10 - ~ 29.50 meters 			······································	
31.28	34.25	CS2	CALC – SILICATE GNEISS Medium grey, moderately foliated @ ~ 80° to LCA Siliceous – quartz flooded Occasional poorly developed fine grained disseminated dark green spinel ~ 1% disseminated fine grained pyrite/pyrrhotite Local sections (to 08 cm's) of impure crystalline marble	31.28 32 33	32 33 34.25	0.21 0.13 0.07	4680 4681 4682
34.25	39.72	P	PEGMATITE Whitish with local dark mafic clots (biotite) – predominately felsic Pale green skarn 38.50 – 38.90 Some digest/mixing @ contacts Top contact @ ~ 70° to LCA. Bottom @ 55°				

BC0162

of 3

3

GEOLO	GICAL	LITHO	LITHOLOGICAL DESCRIPTION	SAMPLE LOG			, <u> </u>
INTER		CODE	LIINOLOGICAL DESCRIPTION	Sample I	nterval	Pegmatites	SAMPLE
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)	
39.72	49.59	CS1	CALC – SILICATE GNEISS	39.72	41	0.	4683
				41	42	0.07	4684
			Light grey – locally greenish	42	43	0.20	4685
			Locally foliated @~80° to LCA	*43	44	0.06	4686
			p of section pale greenish, marbly skarn, transitional to CS1 ~ 60 to 70 cm's from top cal limonitic stain on fractures & local pervasive	44	45	0	4687
				45	46	0.59	4688
			Local sections slightly diopsidic marble < 1% disseminated fine grained pyrite/pyrrhotite	46	47	0.07	4689
	· · · · ·	•	-1.5% disseminated fine grained pyrite/pyritotite	47	48	0	4690
		-		48	49.59	0	4691
49.59	49.59 51.81	P	PEGMATITE				
			As 34.25 to 39.72 Mixed with pale greenish siliceous fine to medium crystalline skarn zone				
			-				
			-		-		+ · · ·

						SURVEY D	АТА						DRILLING D	ATA	
SURVEY		DEPTH		DIP	TF	RUE AZIMUTH			GR	ID	,	GRII) SYSTEM	N	1INE
	(fi	t.) (m)	True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m	APPROX.	NORTHING (m)		
Collar												APPROX	EASTING (m)		
Down Hole	(1	t.) (m) Read	l True	Read	True						APPROX. I	ELEVATION (m)		
ł		70.4	10 _64°	-64°	16°	34.5°]						DRILLING ARTED	Septemi	ber 10, 2001
												DATE DRI	ILLING ENDED	Septemi	ber 12, 2001
]							(ft.)	(m)
											-2	TOTA	AL DEPTH	1	72.84
												CASI	NG DEPTH		8.53
											,	С	ASING		
												STEE	L IN HOLE	No	Ft.
												LO	GGED BY	T Lewis	
												LOGO	SING DATE	Septemi	per 15, 2001
	DLOG TERV	ICAL ⁄AL	LITHO CODE			LITHOLO	GICAL I	DESCRIPTION			Samp	SA e Interval	MPLE LOG Pegmatite	es s	AMPLE
FROM (m)	TO (m)		1		<u> </u>					From (I	1) To (m)	Cum. Total (UNDER
0		8.53	CASE												
				- <u>CASING -</u>	OVERBUR	DEN									
8.53		15.86	BFQG	BIOTITE	FELDSPAR	QUARTZ	GNEISS								
		· · · · · · · · · · · · · · · · · · ·		-											
					1, Strongly fo										
				Local tine g	grained pink p	poorly form	ed garnet							1	
				Locally son	newhat fractu										
					possibly imm nitic stain on	fracture au	rfacco	ineters							
								itic dykes locally	7						
					Sweats contri	ion, nace u	ini poginai	are dynes totally	7						
													1		

4 Page 1 of

Page 2

of 4

GEOLO	GICAL	LITHO	LITHOLOGICAL DESCRIPTION		SA	MPLE LOG	
INTER		CODE	LITHOLOGICAL DESCRIPTION	Sample I	nterval	Pegmatites	SAMPLE NUMBER
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)	NOUDER
15.86	23.91	FQBG	FELDSPAR QUARTZ BIOTITE GNEISS				···· · · · · · · · · · ·
			Light grey – very weakly foliated @ 60 - 70° to LCA Local clots biotite	ġ.		· · · · · · · · · · · · · · · · · · ·	
			Trace disseminated fine to coarse grained pink poorly formed garnet				
23.91	26.82	BFQG	BIOTITE FELDSPAR QUARTZ GNEISS		- · · · ·		
 			As 8.53 – 15.86				
26.82	30.62	QM	QUAŖTZ MONZONITE				
	· · · · · · · · · · · · · · · · · · ·		Whitish, light grey, very weakly foliated with mafics forming faint bands Foliation @ 60 - 70° to LCA Local bands of BFQG				
			Local patches pink coarse grained poorly formed garnet			-	
30.62	33.20	BFQG	BIOTITE FELDSPAR QUARTZ GNEISS			· · · · · ·	
			As 8.53 – 15.86 & 23.91 – 26.82				
33.20	48.25	FQBG	FELDSPAR QUARTZ BIOTITE GNEISS				
		· · · · · · · · · · · · · · · · · · ·	Weakly foliated to locally strongly foliated (areas of increased biotite content) @ 65° to LCA				· · · · ·
	[<u> </u>				

Local patches of impure marble

< 1% disseminated fine grained pyrite/pyrthotite 1 - 1.5% disseminated fine grained graphite

GEOLO	GICAL	LITHO	LITHOLOGICAL DESCRIPTION		SAI	MPLE LOG	
INTER	-	CODE	LITHOLOGICAL DESCRIPTION	Sample I	nterval	Pegmatites	SAMPLE NUMBER
From (m)	To (m)		Feldspar Quartz Biotite Gneiss cont'd	From (m)	To (m)	Cum. Total (m)	
			Locally "spotted" Trace local pegmatites to of section – several larger (up to .5 m's) toward bottom of interval Local trace pervasive pale green skarn mineralization	* .	· · · · · · · · · · · · · · · · · · ·		
48.25	53.94	BFQG	BIOTITE FELDSPAR QUARTZ GNEISS				
		As 8.53 – 15.86 & 23.91 – 26.82 & 30.62 – 33.20 Several small pegmatites & pegmatitic sweats Foliated Quartz Monzonite dyke @ ~51.95 – 52.78					
53.94	63.78	SK	SKARN				
			Pale green – massive – pervasive skarn – with several dykes intruding 53.94 – 55.20 Coarse grained pegmatite dyke with clots of dark green Tremolite/Actinolite 58.58 – 59.14 Foliated quartz Monzonite dyke 61.08 – 63.78 " " " "				
63.78	66.28	ČS1	CALC – SILICATE GNEISS	63.78	65	0	46.92
			Light to dark grey, moderately foliated @ 80° to LCA	65 66	66 66.28	0	46.93 46.94

Local limonitic weathering on fractures (prominent fracture parallel to LCA @ top of interval)

3 of 4

4 of

4

GEOLO	GICAL	LITHO	LITHOLOGICAL DESCRIPTION		SA	MPLE LOG	<u> </u>
INTER		CODE	EITHOLOGICAL DESCRIPTION	Sample I	nterval	Pegmatites	SAMPLE NUMBEI
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)	
<u> </u>							
						_	
66.28	72.84	FQBG	FELDSPAR QUARTZ BIOTITE GNEISS				
	· _ · · · ·						
			As 33.20 – 48.25	\$			
			Light grey to creamy white - quite often spotted				
	·		Possibly may represent a partial melt/digestion by leucocratic intrusive				1
			< .25% disseminated fine to medium grained graphite locally		·		
			Becomes more foliated (@ 70° to LCA) towards bottom of interval				
						<u>.</u>	
			. **				
							1
	·····						
					1		1
	·				<u> </u>	-	
					+		1
					1	+	
		1			1		<u> </u>

						SURVEY I	DATA						DRILLING D	ATA	
SURVEY	DEP	тн		DIP	T	RUE AZIMUTH	E		GR	ш		GRII	SYSTEM	, r	MINE
	(ft.)	(m)		True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX.	NORTHING (m)		
Collar											_	APPROX	. EASTING (m)		
Down Hole	(ft.)	(m)	Read	True	Read	Тгце						APPROX. I	ELEVATION (m)		
]		28.04	-55°	-55°	21°	39.5°							DRILLING ARTED	Septem	ber 13, 2001
		•										DATE DRI	LLING ENDED	Septem	ber 14, 2001
											-			(ft.)	(m)
]							тота	AL DEPTH		30.48
												CASI	NG DEPTH		2.13
												С	ASING		
												STEE	L IN HOLE	No	Ft.
												LOC	GGED BY	T Lewis	5
												LOGO	GING DATE	Septem	ber 16, 2001
	LOGICAL TERVAL	,	LITHO CODE	-4		LITHOLO	OGICAL I	DESCRIPTION	i		Sample	SA Interval	MPLE LOG Pegmatite	es s	SAMPLE
FROM (m	n) TO ((m)							· ·		From (m)) To (m)	Cum. Total (UMBER
0	2.1	3	CASE	CASING -	OVERBUR	DEN		<u> </u>							
2.13	3.3	31	MBL	MARBLE											
				Impure – Lo	y – whitish – ocal trace dis · 2.50 – 3.00	sscminated									
3.31	7.7	19	QM	QUARTZ	MONZONI	TE	·			., , , <u>, ,</u> ,,					
				Light grey -	- very weakl	y foliated									

Page 1 of 3

3 Page 2 of

GEOLO	GICAL	LITHO	LITHOLOGICAL DESCRIPTION		SA	MPLE LOG	
INTER		CODE	LI I HOLOGICAL DESCRIPTION	Sample I	nterval	Pegmatites	SAMPLE NUMBER
From (m)	To (m)			From (m)	To (m)	Cum. Total (m)	HUMBER
			Quartz Monzonite cont'd				
		·	Bottom of interval – Quartz with some sections with increased mafics - which display crenulated foliation				
7.79	8.25	LM	LAMPROPHYRE DYKE				
			Blackish – Porphyritic (Black biotite groundmass – with white clayey/feldspar phenocrysts) Local greenish tinge (chlorite) which has permeated the feldspars to give them a pale green tinge Some folding/crenulation				
8.25	8.99	Q	QUARTZ				
			Pinkish/Rosy - massive, with local blocky fracturing, and local limonitic weathering Some light grey foliated sections - crenulated				
8.99	10.85	LM	LAMPROPHYRE DYKE				
			As Above - Local pronounced porphyritic texture				
10.85	13.85	Q	QUARTZ				
		Wi	Pinkish/Rosy - massive With local blocky fracturing Limonitic weathering				· · · ·
		1	-				

3 3 of

GEOLO	GICAL	LITHO	LITHOLOGICAL DESCRIPTION	SA	MPLE LOG	
INTER		CODE	LATHOLOGICAL DESCRIPTION	Sample Interval	Pegmatites	SAMPLE NUMBER
From (m)	To (m)			From (m) To (m)	Cum. Total (m)	
13.85	30.40	IZ	INTERCALATED ZONE		· · · · · · · · · · · · · · · · · · ·	
			Zone of varying lithologies Most typically light grey – very weakly foliated siliceous rock Several sections (short) of typical Quartz			
			Few sections of graphitic Calc – Silicate Gneiss Foliation @ ~ 80° to LCA			
·						
			n an an an an an an an an an an an an an			
	· · · · · · · · · · · · · · · · · · ·					
			· · · · · · · · · · · · · · · · · · ·			

TR#	FR	то	LITH	DESCRIPTION
28	0	0.2	ORG	black organic litter horizon
28	0.2	0.4	BHZ	dark brown B-horizon with heavy rootlet development; minor graphite in this layer
28	0,4	1	TILL	khaki-coloured silty-pubbly till with <0.5% disseminated graphite; includes minor rusty lenses of weathered CSI
28	1	1.45	CS1/MARBLE	weathered CS1/marble - includes 25-30% coarse partially weathered subcrop; less than 1.5% graphite
29	0	0.15	ORG	
29	0.15	1.1	TILL	thin poorly developed B-horizon grading into a yellow-brown sandy till with very little pebbles/cobbles; better than typical graphite at 0.7% with local high spots
29	1.1	2.05	CS2/CS1	beige to brown completely weathered CS2 +/- CS1; material reduces to a medium sand-like consistency; locally includes nodules of non-weathered pegmatites to 3-4%.
29	2.05	3.05	CS2/CS1	similar to above with 3.5 to 4% C; also includes 5% qtz/fsp nodules - pegmatite remnants.
29	3.05	4.8	CS2/CS1	similar to above grading into relatively hard but still somewhat weathered CS2; Excevator is having a hard time digging beyond this point. Bedrock is a light medium grey CS2.
30	0	0.2	ORG	
30	0.2	0.5	BHZ	no comments; B-horizon grades into till below
30	0.5	1.05	TILL	silty till; bedrock at 1.05 consists of <0.3% diss 'C'; looks like a biptite qtz monzonite with pegmatite.
31	Û	0.2	ORG	
31	0.2	1.65	TILL	poorly developed B-horizon on top of yellow-brown till with 15% +3/4" pebbles and cobbles; overall <0.3% graphite.
32	0	0.15	ORG	
32	0,15	0.3	BHZ	
32	0.3	0.75	TILL	sandy graphite-rich till with <0.5% graphite
32	0.75	3.3	CS2	well-weathered CS2 with variable +3/4" material varying from <0.5% to 10-15%. Graphite varies from <2.5% to 4%; get some lenses of a dark grey to khaki-coloured clay-rich material near the bottom; bedrock appears to be a qtz-fsp pegmatite
33	0	0.1	ORG	
33	0.1	0.5	BHZ	includes a distinctive white 5cm ash layer (may represent a historic volcanic ash?)
33	0.5	3.6	TILL/CS2	essentially a till horizon with sections of transported weathered clasts of CS2; overall graphite = 1%; 25% +3/4" material; bedrock is CS2.
34	Ð	0.15	ORG	
34	0,15	0.35	BHZ	
34	0.35	1.85	TILL	tight yellow-brown sandy-pebbly till with 10% +3/4" material; overall graphite≈<0.5%
34	1.85	2.85	CS1/CS2?	completely weathered CS1/CS2? Reduced to a fine to medium sand; 3.5-4% graphite.
34	2,85	3.65	C82	completely weathered CS2; 3.5-4% graphite. Bedrock is CS2
35	0	0.2	ORG	
35		0.7	BHZ	
35		1.7	TILL	mixture of sitty/pebbly till with some transported CS1 or CS2; overall graphite=<1%.
35		4.6	CS2	completely weathered CS relict laminations; 3-4% graphite; possible interlaminations of CS1; bedrock is CS2.
36		0.35	ORG	
36		0.65	BHZ	
36		1.65	TILL	silty pebbly bill with 10-15% +3/4"; <0.3% graphite.
36		2.65	TILL/CS1	mixture of silty/pebbly till and weathered CS1; overall graphite 1-1.5%.
36	2.65	3.85	C\$2	completely weathered CS2; 4% graphite.

37	0	0.2	ORG	
37	0.2	0.7	BHZ	
37	0.7	2.7	TILL	yellow sandy/pebbly to boulder till; 30% +3/4", <0.3% graphite;
37	2.7	3.7	CS1/CS2	predominantly weathered CS1 +/- CS2; 2.5 - 3.5% graphite; <0.5% +3/4"
37	3.7	4.7	CS2	weathered CS2 with 3.5 - 4% graphite; bedrock is CS2 with pegmatites.
38	0	0.25	ORG	
38	0.25	0.65	BHZ	
38	0.65	0.85	TILL	Bedrock at 85cm. Mostly pegmatite with intermittent CS1 bedrock. No significant unconsolidated material in this trench.
39	0	0.1	ORG	
39	0.1	0.3	BHZ	
39	0.3	4.1	TILL	sandy/pebbly till with <5% +3/4" material; variable graphite from <0.5 to 1.5% due to the scattered presence of transported clasts of weathered CS2.
40	0	0.1	ORG	
40	0.1	0.7	BHZ	heavy root development and some (<0.5%) graphite
40	0.7	1.3	CS1?	reddish brown sandy-textured weathered CS1; this is a discontinuous layer; 2.5 - 3% graphite.
40	1.3	2.4	TILL	sity clay/boulder pebble till with small pockets of weathered CS2/CS1; Overall graphite <0.5%; 15% +3/4"; bedrock is quartz and pegmatite.
41	0	0.2	ORG	
41	0.2	0.7	BHZ	
4 1	0.7	1.6	TILL	yellow brown silty/boulder till with pockets of weathered CS2; overall 'C' =<0.7%; +3/4" = 15%
4 1	1.6	2.2	CS2	completely weathered CS2 to an orange/brown colour and sandy consistency, 'C'=3-4%; bedrock is CS2 with pegmatitic sweats
42	0	0.2	ORG	
42	0.2	0.7	BHZ	<i>\$-</i>
42	0.7	1.3	TILL	yellow brown silty/boulder till with trace graphite
42	1.3	1.8	CS2	weathered CS2 to a reddisit/brown sandy textured material with 3-4% graphite; bedrock is CS2
43	0	0.3	ORG	
43	0.3	1.4	TILL	silty clay boulder till with +30% +3/4" material; minor narrow 20 cm weathered zone with graphite at bedrock interface; Overall 'C' = <0.3%; bedrock is a coarse graphitic marble with pegmatitic sweats.
44	0	0.3	ORG	
44	0.3	1.1	TILL	yellow/brown sandy/pebbly till with <0.7% graphite; 10% +3/4" material.
44	1.1	2	CS2	partially weathered CS2 with about 2% graphite.
45	0	0.2	ORG	
45	0.2	0,4	BHZ	
45	0.4	2.4	TILL	sandy pebbly till with 15% +3/4"; also sporadic patches of weathered CS1 and CS2 boulders; overali 'C=<0.2%;
45	2.4	3.4	TILL/CS1	similar to till unit above but includes about 65% transported weathered CS1 with 1.5 to 2% graphite.
45	3.4	4.5	CS1	more or less completely weathered CS1 with 10% hard nodules of same composition; bedrock is CS1; 2-2.5% graphite.
46	0	0.25	ORG	
46	0.25	0.5	BHZ	
46	0.5	1.5	TILL	sandy sitty till with <0.2% diss. Graphite; 10% +3/4".

f

ŧ		ľ	E	
46 46	1.5	2.5	TILL/CS1	similar to till above but also includes 35-40% transported boulders of weathered CS1; overall 'C'=1-1.2%
46	2.5	4.7	CS1	weathered CS1 with 1.5 to 2.0% graphite; 5% pegmatite sweats; bedrock shill weathered at 4.7 metres;
47 47	0 0.15	0.15 0.35	org Till	
47	0.35			partially weathered CS1 ; approximately 80cm of pretty hard rock and 30cm really weathered; 1.5 - 2% graphite.
48	0.35	1.25	CS1 ORG	рацану жеапетер ССТ, афрохлиану осни огрену начи оскало эсони теалу жеаногос, по ч до угарине.
48	0.15	0.15	BHZ	
48	0.15	0.4	TILL	orange pebbly sity clay till with <0.5% graphite; bedrock is a quartz monzonite, although immediately to the south bedrock changes to CS1; see picture #18 roll #1.
49	0.4	0.9 0.15	ORG	
49	0.15	0.45	BHZ	
49	0.45	1.75	TILL	mixture of glacial till and transported weathered CS2+/- CS1; till has a fine sandy texture with 15% +3/4" pebbles and cobbles; overall graphite <1%; bedrock is pegmatile with CS1
50	0	0.15	ORG	
50	0.15	0.85	BHZ	
50	0.85	1.45	TILL	silty pebbly till with 20% +3/4", <0.3% graphite.
50	1.45	4.45	CS1	completely to partially weathered CS1 with minor CS2; where completely weathered reduced to a sandy texture; overall graphite 2-3%; near bottom a 10cm clay seam; Note; weathering continues at depth but too dangerous to sample.
51	0	0.25	ORG	
51	0.25	0.6	BHZ	
51	0.6	2.6	TILL	yellowish brown silty till with 15-20% +3/4"; 0.3 to 0.7% graphite; section includes some pockets of weathed CS2/CS1;
51	2.6	3.6	CS1	predominantly weathered CS1 with 1.5 to 2% graphite; bedrock at 3.6m is relatively hard weathered CS1 which may be mineable; section cut by a broken up 40cm pegmatite.
52	0	0.25	ORG	
52	0.25	0.55	BHZ	· · · · · · · · · · · · · · · · · · ·
52	0.55	1.9	TILL	sandy boulder till with trace graphite
52	1.9	5.1	CS1	weathered CS1 with about 2% graphite; most is weathered to a coarse sand-like texture with some large slightly harder segments which would break up; gets harder downsection; 6-7% pegmatite nodules;
53	0	0.2	ORG	
53	0.2	0.9	BHZ	
53	0.9	1.9	TILL	mixture of poorly sorted sity pebbly till with pockets of weathered CS1/CS2?; overall graphite <1%;
53	1.9	2.7	CS1	mostly weathered CS1 with pockets of till; also small segments of pegmatite and narrow bands of feldspar qtz bioble garnet gneiss; overall 'C'=<1.5%; bedrock is CS1
54	0	0.3	ORG	
54	0.3	0.95	TILL	sandy pebbly till with trace graphite; weathered bedrock at 0.95.
54	0.95	3.75	CS1	weathered insitu CS1 with minor weathered marble and 20% pegmatites. Overall 'C' ≈ 1.5 to 2%
55	0	0.2	ORG	
55	0.2	0.5	BHZ	
55	0.5	1.5	TILL	yellow brown sandy boulder till with <0.3% graphite; also 20% +3/4".
55	1.5	3	CS1/SK/P	bedrock with weakly skarn and pematite lenses interspersed with completely weathered CS1 layers; overall graphite in you include resistant layers is <1%. Within weathered material only graphite = 1.5 to 1.7%. This sequence continues at depth but di
56	0	0.15	ORG	
56	0.15	0.4	BHZ	

56	0.4	1.9	TILL	yellow brown giving way to brown boulder/pebble till, <0.5% diss. Graphite; 25% +3/4".
56	i 1.9	3.1	CS1	weathered CS1 with an yellow/orange to deep red colour; very loose friable material; 1% fine to medium grained disseminated graphite.
56	3.1	3.3	CS1	Bedrock; friable CS1; light grey to reddish brown ; 1-1.5% disseminated fine to medium grained graphite. Includes sulphides.
57	' O	0.2	ORG	
57	0.2	0.45	BHZ	
57	0.45	2.4	TILL.	orange brown till with 40-60% +3/4"; <0.5% graphite with up 1% graphite in weathered boulder.
58	b 0	0.1	ORG	
58	8 0.1	0.13	ASH	
58	8 0.13	0.43	BHZ	yellow-brown with some organic content
58	0.43	1.8	TILL	medium brown to yellow orange boulder till; trace diss. Graphite (fine grained); 60% +3/4"; last 20cm graphite content of 0.5%; bedrock is a graphitic marble.
59	• •	0.05	ORG	
59	0.05	0.2	BHZ	
59	0.2	2.2	TILL	boulder till with 30% +3/4"; <0.5% diss. Graphite; local red patches with increased graphite; silt and pebble content increases downward; clayey gouge at bottom;
5	2.2	3.2	Р	pegmatite bedrock
6) 0	0.05	ORG	
6	0.05	0.35	BHZ	reddish brown with trace diss. Graphite
6	0.35	1,3	TILL	brown to yellowish brown boulder till with 40% +3/4" up to cobbie size.
6) 1.3	4.2	CS1	weathered CS1 now a motiled yellowish brown with local patches of reddish brown; uniform fiable material with 1 - 1.5% graphite; rare pebble and clay patch; thin pegmatifie at 3.8m.
6	l o	0.2	ORG	
6	0.2	0.6	BHZ	
6	1 0.6	3.2	TILL	orange brown to yellow brown sandy till with 10-25% +3/4" peobles and cobbles; rare patches of weathered CS1/CS2; overall 'C' = <0.5%.
6	2 0	0.25	ORG	
6	2 0.25	0.85	8HZ	
6	2 0.85	1.75	TILL	mixture of slity clay +/- pebble till with pockets of reddish-brown CS1; overall 'C'=<0.7%
6	3 0	0.1	ORG	
6	30.1	0.2	BHZ	
6	3 0.2	1.2	TILL	silty sandy till with 35% +3/4" ; <0.3% graphite.
6	3 1.2	2.2	TILL	till with a transported section of CS1; 1 - 1.5% graphite;
6	3 2.2	4.2	CS1	semi-consolidated, partially weathered CS1; at 2.7m becomes more competent but still can be mined with machine; at 3.8m material has a texture of silty clay with low graphite; overall graphite 1.5%.
6	4 O	0.25	ORG	
6	4 0.25	0.45	BHZ	
6	4 0.45	1.45	TILL	yellowish brown silty pebbly till with 5-7% +3/4".
6	4 1.45	2.25	CS1	weathered CS1 with lenses of unweathered pegmatite; 'C'= 1.5 - 2%.
6	5 0	0,3	ORG	
6	5 0.3	0.6	BHZ	
6	5 0.6	1.5	TILL	orange sandy/pebbly till; root penetrations to 1.5m; overall 'C'=<0.2%

E

E

ľ

t

X

.

E

ļ

1

E

Ĩ

Ĩ

65	1.5	2.3	CS1	weathered CS1 with a 35cm thick lens of qtz fsp pegmatite and weathered fsp-biotite gneiss, overall 'C'=2 -2.5%; bedrock is CS1 with 1.5% graphite
66	0	0.15	ORG	
66	0.15	0.35	BHZ	
66	0.35	1.85	TILL	yellowish brown fine sandy till with 20-25% +3/4" pebbles and boulders; <0.3% graphite overall
6 6	1.85	3.35	CS1	completely weathered CS1 to an orange yellow medium sand with 2 - 2.2% graphite
67	0	0.2	ORG	
67	0.2	0.45	BHZ	
67	0.45	1.55	TILL	yellow brown silty clay boulder till; trace graphite
67	1.55	2.55	C\$2	completely weathered CS2 with 3 - 3.5% graphite
67	2.55	3.45	CS1	completely weathered CS1 with 2-3% graphite; also 15% pegmatite sweats, sills and dikes; Note: weathering probably continues at depth but tough digging because of pegmatite layers
68	0	0.25	ORG	
68	0.25	0.55	BHZ	
68	0.55	2.15	TILL	yellow brown silty clay boulder fill; frace graphite; 15% +3/4"
68	2.15	4.85	CS2	completely to partiality weathered CS2 with 10-15% pegmatites; 3-3 5% graphite.
69	0	0.15	ORG	
69	0.15	0.9	BHZ	B horizon has <0.7% graphite (not sampled)
69	0.9	1.4	TILL/FAULT	50cm of till with fault gouge; below this point fault breccia and fault gouge; fault @ 354/55E
70	0	0.1	ORG	
70	0.1	0.7	BHZ	
70	0.7	0.95	TILL	boulder silty clay till with some intermixed transported weathered CS2; overall 'C'=<1%; 35-40% +3/4"
70	0.95	1.65	CS2	completely weathered reddish brown CS2 with 3-4% graphite; rootlets completely penetrate this horizon
70	1.65	2.45	Q/P	broken up qtz unit with some pegmatite and minor consolidated non-weathered CS2
70	2.45	3.45	CS2	variably weathered CS2 with 3-4% graphite surrounded by fault gouge; it is actually part of the fault zone.
71	0	0.15	ORG	
71	0.15	1.2	TILL	pretty much boulder till from base of the organics; there is a 1-2cm ash layer below organics; there is some transported CS material; overall 'C' = <0.5%; 30% +3/4"
71	1.2	2.2	CS2	weathered CS2 starts as a lighter coloured material and becomes darker near bottom of section; liace dark green spinel; 2-3% graphite; bottom 10cm of sample is a weathered pegmatite;
71	2.2	3.7	CS2	dark orange brown oxidized weathered CS2 with local pegmatite sweats and dikes to 2cm; 23% graphite; roots extend down to 3.2
72	0	0.2	ORG	
72	0.2	0.7	8HZ	
72	0.7	3.5	CS1/CS2	reddish brown completely weathered CS1 +/- CS2; overall graphite 2 - 3.5%; bedrock at 3.5 is skarned CS1/CS2?
73	0	0.15	ORG	
73	0.15	2.35	CS2	completely weathered CS2 with 4-5% graphite; overall colour recidish brown to orange brown due to oxidation of sulphides. Sequence cut by two 5-10cm pegmatite dikes. Pegmatike comprise 5% of rock mass; bedrock is CS2
74	0	0.15	ORG	
74	0.15	0.35	BHZ	
74	0.35	0.7	TILL	yellow brown silty pebbly till with 15% +3/4"
74	0.7	2.5	CS2	completely weathered CS2 with 4-4.5% graphite; prominent green spinels;

E E

74	2.5	3.5	CS2	partially weathered, somewhat hard CS2; still can be mined as a soft material; 3-4% graphite; zone may continue deeper but encountered some pegmatites which inhibit digging and sampling
75	0	0.1	ÓRG	
75	0.1	0.35	TILL	yellow brown boulder silt till; <0.5% graphite
75	0.35	2.85	CS2	weathered CS2 with first 80cm almost developing into a B-horizon soil; 3.5 - 4.5% graphite; major root development to 1.35.
76	0	0.15	ORG	
76	0.15	0.4	BHZ	
76	0.4	1.6	TILL	yellow/orange sandy pebbly till with 25% +3/4"; trace graphite; bedrock at 1.6 metres. Bedrock is a medium to coarse weathered marble with 1% graphite. This marble is intruded by several fsp-qtz pegmatite sweats (See sample #2132)
77	0	0.05	ORG	
77	0.05	0.35	BHZ	
77	0.35	3.35	TILL	variable till from yellowy sandy till with locally trace pebbles near top (+3/4") to boulder till with coarse grained sandy matrix 60% +3/4". Trace graphite in till. Pegmatite outcrop
78	0	0.05	ORG	
78	0.05	0.55	BHZ	
78	0.55	1.95	TILL	brown yellow silly to sandy till with trace +3/4". 0.5% graphite. See marble boulder? At bottom
79	0	0.05	ORG	
79	0.05	0.2	BHZ	
79	0.2	2.9	TILL	orange pebbly sandy till with +3/4". 0.5% disseminated graphite with increase to 1% near bottom.
79	2.9	4	CS1	orange weathered CS1 with 1.5 to 2% disseminated graphite. Bedrock is a pegmatite though.
80	0	0.05	ORG	
80	0.05	0.3	BHŻ	
80	0.3	2.3	TILL	orange yellow till with 25-45% +3/4". 0.5 to 1% graphite with increase near bottom. Pegmatite boulders increase near the bottom 50cm
80	2.3	3.1	CS1	orangy weathered CS1 with 1.5 to 2% disseminated graphite. Also abundant pegmatite.
81	0	0.05	ORG	
81 81	0.05	0.85	TILL	orange brown till with <0.5% disseminated graphite. 10% +3/4"
82	0.85 0	1.6	CS1	weathered CS1 with abundant pegmatite sweats. 1-1.5% disseminated graphite; 20% +3/4" below this point material is a dark grey clay with trace graphite
82	0.05	0.05	ORG TILL	device have by with showdard (SSW) asking satisfies (ANK) is search ASK 43(4). Transitional graphile
82	1.3	1.3 3.3	CS1	dark brown till with abundant (65%) peoples, cobbles (10%) in overall 25% +3/4". Trace disseminated graphite.
83	0	0.05	ORG	ngint orange sandy reacteded COV mith a re-disactininated graphice, rever pognance encade.
83	0.05	0.15	BHZ	
83	0.15	1.55	TILL	orange yellow pebble till with occasional boulder/cobble. 10% +3/4", 0.5% disseminated graphite. Roots to 1 metre depth.
83	1.55	2.35	TILL	25% +3/4". <0.5% disseminated graphite. Light grey brown till.
84	0	0.05	ORG	
84	0.05	0.15	BHZ	
84	0.15	1.5	TILL	light to darker brown, clayey with trace of disseminated graphite, 30% +3/4".
84	1.5	3.3	TILL	as above with an increase in the frequency of weathered CS1 boulders5% disseminated graphite. 30% +3/4"
85	0	0.15	ORG	

ŧ

Ĩ

Ē

E E E

Ē

E

E

Ē

E

Ē

85	15	0.45	BHZ	
85	0.45	1.85	TILL	pebble till - brown with less than .5% disseminated graphite. Slightly clayey towards bottom of sample. 10% +3/4*
85	1.85	3.25	TILL	boulder till - light brown with abundant clasts from pebble to boulder size. 60% +3/4". Clayey sandy matrix with <.5% disseminated graphite
86	i 0	0.15	ORG	
86	0.15	0.35	BHZ	
86	0.35	2.4	TILL	pebble till - sandy matrix with occasional boulder - grades to a boulder till below 150 with increase in clay. Ends in a pegmatite. Less than .5% disseminated graphite
87	0	0.1	ORG	
87	0.1	0.45	TILL	boulder till - brown clayey with abundant pegmatite pebbles/boulders. Ends in pegmatite. Graphite less than .5% disseminated
88	o	0.2	ORG	
88	0.2	0.8	TILL	
88	0.8	1.15	CS1	weathered CS1 - possibly in-situ. 1.5 - 2.0 % disseminated fine grained graphite
89	0	0.25	ORG	
89	0.25	0.5	BHZ	
89	0.5	1.15	CS1	weathered CS1 - orange becomes brownish ~ 30 cm into interval. Partially competant - clayey last 25cm. Ends in a MbI - graphite 1.5 - 2%. +3/4" = < 10%
90) 0	0.1	ORG	
90) 0.1	0.45	BHZ	
90) 0.45	2.75	TILL	orange/yellow. 25% +3/4". Trace disseminated graphite
90) 2.75	4.6	CS2	weathered CS2 - orange. Local trace disseminated spinel. 2.5 - 3% disseminated graphite. Trace pegmatite. < 5% + 3/4" trench did not "bottom" out - simply became too deep & unstable to safely sample
9 1	0	0.1	ORG	
9 1	0.1	5.1	TILL	orangey brown - abundant boulders - trace disseminated graphite. 50% +3/4"
91	5.1	5.8	CS2	weathered CS2 with trace spinel - dark orangey. 2.5 - 3.0% disseminated graphite. Trace pegmatite sweats. Trench "bottomed out" in competant CS2
92	2 0	0.1	ORG	
92	2 0.1	1.7	TILL	brownish with trace disseminated graphite. Abundant peobles, locat boulders. 30% +3/4"
92	2 1.7	3.3	TILL	as above
92	2 3.3	4.6	CS2	weathered, with 2.5 - 3% disseminated graphite. Trench "bottomed out" in competent CS2
93	30	0.05	ORG	
93	8 0.05	0.15	BHZ	
93	3 0.15	2.15	TILL	boulder till 60% +3/4" - trace disseminated graphite
93	3 2.15	4.15	TILL	pebbly with occasional boulder 15% +3/4" - trace disseminated graphite
93	3 4.15	5.45	CS2	weathered CS2 - dark brown/grey, locally oxidized ~2% disseminated graphite ~15% pegmatite/sweats. Trench bottomed out in competant C62
94	4 0	15	ORG	
94	i 15	35	BHZ	
94	4 35	135	TILL	boulder till with decomposed CS1 boulders. Graphite .5 - 1% disseminated. 30% +3/4" - overall orangey/reddish
94	1 135	235	TILL	as above
94	4 235	395	TILL	as above - increase in weathered pegmatite @ ~320
9	5 O	12	ORG	

t t

E

E E

l i

95	12	30	BHZ	
95	30	230	TILL.	orangey brown boulder till - trace disseminated graphite, 25 - 30% + 3/4"
95	230	430	TILL	as above
96	0	5	ORG	
96	5	25	BHZ	
96	25	155	TILL	pebble till, with occasional boulder, brownish with trace graphite. 10% +3/4"
96	155	355	TILL	as above, with an increase in CS1 boulders - 20% +3/4"
97	355	435	CS1	weathered or possible till with numerous CS1 boulders. Local pegmatitic boulders
98	0	10	ORG	
98	10	210	TILL	boulder till, trace graphite - clayey at bottom of sample interval. 20% +3/4"
98	210	440	TILL	as above. Increase in +3/4" faction to ~35%. Increase graphite to <.5%. Bottorn 30 cm Cs2 boulder or possibly bedrock
99	0	0.05	ORG	
99	0.05	0.2	BHZ	
99	0.2	3.2	TILL	boulder till/talus; blocks to 0.5 metre; 60% +3/4"; locally boulders of weathered CS1 and CS2; hard digging
100	0	0.05	ORG	
100	0.05	0.45	BHZ	
100	0.45	2.75	TILL	boulder till with occassional blocks to 20cm; 25% +3/4"; local weathered CS1 and CS2 boulders; overall <0.5% graphite.
100	2.75	3.75	CS1	weathered CS1; 1.5 - 2% dissemninated graphite; trench bottomed in CS1
101	0	0.1	ORG	
101	0.1	0.3	BHZ	
101	0.3	2.6	TILL	boulder till with pegmatite boulders locally, 20% +3/4"; <0.5% disseminated graphite
101	2.6	3.4	CS2	dark grey oxidized CS2 with trace spinel; 2-3% disseminated fine grained graphite; friable material;
102	0	0.05	ORG	
102	0.05	0.2	BHZ	
102	0.2	1.2	TILL	boulder till with 20% +3/4. <1% disseminated graphite
102	1.2	2.2	TILL	abundant weathered CS1 boulders; graphite locally to 2%; 30% +3/4";
103	0	0.1	ORG	
103	0.1	0.35	BHZ	
103	0.35	1.15	TILL.	boulder till with 20% +3/4" ; <0.5% disseminated graphite
103	1.15	2.5	CS1	weathered CS1 with 1-2% disseminated graphite; abundant (40%) weathered pegmatite
104	0	0.05	ORG	
104	0.05	0.25	BHZ	
104	0.25	0.85	CS2	weathered CS2, red with pegmatites and local grey clay
105	0	0.05	ORG	
105	0.05	0.85	CS1	1.5-2% disseminated graphite
106	0	0.05	ORG	

Å.-

106	0.05	0.2	BHZ	
106	0.2	1.7	TILL	boulder till with trace graphite; becomes clayey at 1 metre; trench bottomed in competent CS1
107	0	0.1	ORG	
107	0.1	0.25	BHZ	
107	0.25	1.55	TILL	boulder till with trace CS1 boulder, silty clayey, <0.5% disseminated graphite; 20% +3/4"
108	0	0.1	ÓRG	
108	0.1	0.25	BHZ	
108	0.25	1.3	TILL	boulder till; clayey; 30% +3/4" ; <0.5% disseminated graphite; bottom in foliated quartz monzonite.
109	0	0.2	ORG	
109	0.2	0.4	BHZ	
109	0.4	1.7	TILL	boulder till; clayey, 15% +3/4". Bottom in quartz
110	0	0.05	ORG	
110	0.05	0.25	BHZ	
110	0.25	4.25	TILL	boulder till; 60% +3/4", trace disseminated graphite
110	4.25	5.05	CS1	weathered CS1; 1.5% disseminated graphite
111	0	0.05	ORG	
111	0.05	0.2	BHZ	
111	0.2	4.2	TILL	yellow boulder till, 40% +3/4", trace disseminated graphite
112	0	0.1	ORG	
112	0.1	0.3	BHZ	
112	0.3	3.6	TILL	boulder till with trace to <0.5% disseminated graphite; 30% +3/4"; increase in weathered CS1 boulders between 1.8 and 3.6m; also increase in clay down trench.
113	0	0.05	ORG	
113	0.05	0.3	BHZ	well-developed
113	0.3	4.3	TILL	yellow orange boulder till with 40% +3/4", <0.5% disseminated graphite but increasing towards bottom of trench
114	0	0.1	ORG	
114	0,1	0.25	BHZ	
114	0.25	2.25	TILL	boulder till with 30% +3/4", 10% of boulders are CS1 and CS2,
114	2.25	4.5	TILL	boulder till with 40% +3/4"
114	4.5	5	CS1	light grey weathered CS1 with 1.5 - 2% graphite
115	0	0.05	ORG	
115	0.05	0.2	BHZ	
115	0.2	4.2	TILL	boulder till with 40% +3/4"; increase in weathered graphitic boulders towards 2.25 metre; from 2.25 to 4.2 graphite decreases
116	0	0.2	ORG	
116	0.2	0.3	BHZ	
116	0.3	4.1	TILL	boulder till with locally CS1 boulders; 30% +3/4"; <0.5% graphite
117	0	0.1	ORG	

A ...

117	0.1	0.2	BHZ	
117	0.2	3.3	TILL	boulder till with 30% +3/4", <0.5% graphite; first 20cm pebbly
118	0	0.1	ORG	
118	0.1	0.2	BHZ	
118	0.2	2.9	TILL	boulder till with abundant large boulders; 45% +3/4" ; <0.5% disseminated graphite; increase clay downwards
119	0	0.5	ORG	
119	0.5	0.15	BHZ	
119	0.15	2.05	TILL	boulder till; frequent large boulders; 30% +3/4"; trace graphite
119	2.05	3.95	TILL	pebble till; 10% +3/4"; trace graphite;
120	0	0.05	ORG	
120	0.05	0.6	TILL	55cm toad construction till???; originally 5cm organics and 15cm B-horizon
120	0.6	3.6	TILL	orange yellow till with boulders of CS1; 20% +3/4"; < 0.5% graphite; from 2.6 to 3.6 increase in graphite to <1% and increase in number of weathered CS boulders
120	3.6	4.5	CS2	dark orange red weathered CS2; 2.5 - 3 % disseminated graphite;
121	0	0.2	ORG	
121	0.2	0.45	BHZ	
121	0.45	1.55	SAND	brownish sand; <5% +3/4" ; <0.5% disseminated graphite
121	1.55	2.55	TILL	boulder till with 10% +3/4", <1% disseminate graphite; some weathered CS1 boulders
121	2.55	3.65	TILL	boulder till with abundant CS boulders; dark grey clay matrix;1-2% graphite; fault?? Somewhat of a nebulous zone.
122	0	0.1	ORG	
122	0.1	0.25	BHZ	
122	0.25	1.4	TILL	yellowish brown boulder till, trace graphite, trace +3/4"
122	1.4	2.4	TILL	boulder till; <0.5% graphite; 20% +3/4"
122	2.4	3.4	TILL	boulder till, clayey matrix, abundant CS boulders; <1% disseminated graphite as in TR #121
123	0	0.1	ORG	
123	0.1	0.3	BHZ	
123	0.3	0.7	TILL	brownish boulder till with 10% +3/4"; trace graphite;
123	0.7	1.6	CS2	weathered CS2; grey/reddish colour; sandy; slightly competent; 2-2.5% graphite
123	1.6	2.5	CS2	weathered CS2 as above with 25% pegmatite
123	2.5	3.4	CS2	weathered CS2 as above with 10% pegmatite; reddish oxidation; more competent than from 0.7 to 2.5
124	0	0.1	ORG	
124	0.1	0.3	BHZ	
124	0.3	2.3	TILL	light grey boulder till with 25% +3/4"; trace graphite
124	2.3	3.8	TILL	sandy boulder till with local clay; <1% disseminated graphite; pegmatite/quartz boulders; 20% +3/4"
124	3.8	4.8	CS2	reddish purple grey ; trace pegmatites; slightly competent.
125	0	0.1	ORG	
125	0.1	0.3	BHZ	

#--

	125	0.3	1.1	TILL	boulder till with 10% +3/4";
	125	1.1	3.1	CS2	grey sandy CS2 with 2-3% graphite; abundant pegmatites; 10% +3/4"
	125	3.1	3.9	CS2	purple/reddish to grey; more competent; 2-3% disseminated graphite.
	126	0	0.1	ORG	
	126	0.1	0.3	BHZ	
	126	0.3	1.4	TILL	boulder till with trace graphite; 15% +3/4"
	126	1.4	3.4	CS1	light brown sandy ; 1-1.5% disseminated pegmatites; locally thin pegmatites
	127	0	0.15	ORG	
	127	0.15	0.45	BHZ	
•	127	0.45	1.5	TILL	grey clayey boulder till, 20% +3/4", <0.5% graphite
	127	1.5	3.5	TILL	light brownish sandy till with 10% +3/4", trace graphite, locally cobbles
	128	0	0.1	ORG	
	128	0.1	0.3	BHZ	
	128	0.3	0.4	ORG	
	128	0.4	0.5	BHZ	
	128	0.5	2.5	TILL	moderately brown boulder till; 20% +3/4"; <0.5% graphite
	129	0	0.15	ORG	
	129	0.15	0.35	BHZ	
	129	0.35	2.35	TILL	dark brown bouldet till with trace disseminated graphite; 20% +3/4"
	129	2,35	3.45	CS2	dark grey purple ; 2-3% disseminated graphite
	130	0	0.2	ORG	
	130	0.2	0.5	BHZ	
	130	0.5	2.5	TILL	boulder till; 20% +3/4", medium brown colour; bottoms in quartz monzonite dike
	131	0	0.15	ORG	
	131	0.15	0.5	BHZ	
	131	0.5	2.6	TILL	boulder till with 15% +3/4"; medium brown colour; bottoms in hard CS1; towards bottom several CS boulders; graphite <1%
	132	0	0.1	ORG	
	132	0.1	0.4	BHZ	
	132	0.4	2	TILL	light to medium brown boulder till with sandy to locally clay matrix; <0.5% disseminated graphite; <0.5% +3/4"; CS boulders near base
	132	2	3.1	CS1	light brown, locally greyish CS1; 1-1.5% disseminated graphite; clay rich locally
	133	0	0.15	ORG	
	133	0.15	0.35	BHZ	
	133	0.35	1,45	TILL	iight brown, locally clayey, boulder tiil; 10% +3/4"; <0.5% graphite
	133	1.45	1.85	CS1	light brown CS1; 1-1.5% graphite; ends in pegmatite
	134	0	0.1	ORG	
	134	0.1	0.25	BHZ	

4.-

134	0.25	1.85	TILL	light brown boulder till, 0.5-1% disseminated graphite in upper 70cm; <0.5% below 0.95m, 20% +3/4";
134	1.85	2.35	CS1	light brown locally slightly grey; trace pegmatite; 1-1.5% disseminated graphite;
135	0	0.1	ORG	ngin blown iddeny signing grey, nado poginasilo, i rice e econimisto grephica,
135	0.1	0.25	BHZ	
135	0.25	1.05	TILL	light brown boulder till; 20% +3/4" ; <0.5% graphite
135	1.05	1.85	CS1	light brown CS1 with Irace pegmatile; 1 5% disseminated graphite
136	0	0.05	ORG	ngint prown CST with nace peginanie, 1.3% dissemmated graphine
136	0.05	0.05	BHZ	
136	0.05		TILL	nahla illiudh 1066 / 27/4, 20 50/ araabila
136		0.7		pebble till with 10% + 3/4", <0.5% graphite
130	0.7	2.7	TALUS	transported blocks of weathered CS2; graphite 2-3%; ends in pegmatite
137	0	0.1	ORG	
137	0.1	0.3	BHZ	
137	0.3	2.3	TILL	boulder till with 20% +3/4"; 1% graphite - content increases with depth
	2.3	4.3	TILL	takus boulder till; large blocks of transported CS; with boulders of pegmatite etc. 2-3% graphite; 20% +3/4"
138	0	0.05	ORG	
138	0.05	0.25	BHZ	
138 138	0.25	1.75	TILL	light brown boulder till with 15% +3/4*, <0.5% graphite
130	1.75	3.75	TILL	boulder talus till with large blocks of transported CS with blocks of pegmatite etc. 2-3% graphite; 15% +3/4"
139	0	0.1	ORG	
	0.1	0.3	BHZ	
139 139	0.3	1.1	TILL	sandy with locally boulder till; 0.5-1% graphite; 10% +3/4"
	1.1	3.2	TILL	boulder till - mostly pegmatite with locally blocks of weathered CS; 10% +3/4"
140 140	0	0.1	ORG	
	0.1	0.3	BHZ	
140	0.3	1.8	TILL	boulder till with 25% +3/4"; trace disseminated graphite
140	1.8	3.8	TILL	boulder till with 30% +3/4"; <0.5% disseminated graphite
141	0	0.1	ORG	
141	0.1	0.3	BHZ	
141	0.3	1.7	TILL	boulder till; 15% +3/4"; trace disseminated graphite
141	1.7	3.4	TILL	boulder till; 25% +3/4"; trace disseminated graphite
142	0	0.1	ORG	
142	0.1	0.25	BHZ	
142	0.25	2.05	TILL	boulder till with 20%+3/4", trace disseminated graphite; clay rich at bottom
142	2.05	4.05	TILL	boulder till with large boulder of weathered CS; <0.5% disseminated graphite; 30% +3/4"
143	0	0.1	ORG	
143	0.1	0.3	BHZ	

-ر 2م

143	0.3	1.4	TILL	grey clay-rich boulder till, trace graphite; 20% +3/4";
143	1.4	3.4	TILL	as above with <0.5% graphite; 20% +3/4";
1 44	0	0.1	ORG	
144	0.1	0.3	BHZ	
144	0.3	2.4	THLL	boulder till with 30% +3/4", clay-rich and reddish; <0.5% disseminated graphite
144	2.4	3	CS2	weathered CS2
145	0	0.05	ORG	
145	0.05	0.3	BHZ	
145	0.3	2.3	TILL	boulder till with 20% +3/4"; clay-rich; trace graphite;
145	2.3	3.3	TILL	boulder tiil; sandy; <0.5% graphite
146	0	0.1	ORG	
146	0.1	0.3	BHZ	
146	0.3	1.9	TILL	brown partly clay,sandy, boulder till with 15% +3/4", trace to <0.5% graphite at bottom;
146	1. 9	3.9	CS1	weathered CS1; very friable; trace green spinel; variable colour from grey/brown to limonitic; 2-2.5% graphite
147	Ŏ	0.1	ÖRG	
147	0.1	0.35	BHZ	
147	0.35	2.05	TILL	light brown, slightly clay-rich, boulder till; becomes sandy and increasing graphite to bottom; 20% +3/4"
147	2.05	3.65	CS2	medium brown to dark grey weathered CS2 with 2-2.5% disseminated graphite; slightly competent.
148	0	0.05	ORG	
148	0.05	0.2	BHZ	
148	0.2	2.4	TILL	grey brown boulder till with some clay content especially at surface; 20-25% +3/4"; <0.5% graphite;
148	2.4	3.1	CS2	weathered CS2 or possible large boulder; dark grey/purple; 2-2.5% disseminated graphite
149	0	0.05	ORG	
149	0.05	0.2	BHZ	
149	0.2	1.45	TILL.	medium brown/grey boulder till; clay; 30%+3/4"; trace graphite
149	1.45	2.75	TILL	as above; slightly less clay; <0.5% graphite; 20% +3/4"
150	0	0.05	ORG	
150	0.05	0.2	BHZ	
150	0.2	0.7	TILL	medium brown/grey boulder till with some clay, 30% +3/4"; trace graphite; bottoms in skarn
151	0	0.05	ORG	
151	0.05	0.15	BHZ	
151	0.15	1.45	CS1	light brown to yellow (limonitic) friable CS1; trace pegmatite; 5% +3/4"; 1-1.5% graphite; Note: slumped area with previous manimade disturbance
152	0	0.05	ORG	
152	0.05	0.25	BHZ	
152	0.25	1.75	CS1	light brown slightly limonitic friable CS1 with trace pegmatite; 1-1.5% graphite;
153	0	0.1	ORG	

.

.

.

.

.

153	0.1	0.3	ORG	
153	0.3	3	TILL	boulder till; skarn and quartz monzonite boulders; sandy matrix; trace graphite; 30-40% +3/4" and increasing with depth
154	0	0.1	ORG	
154	0.1	0.3	8HZ	
154	0.3	1.9	TILL	brownish boulder till with sandy matrix; locally minor clay; 30% +3/4"; trace disseminated graphite; bottom in skarn
155	0	0.1	ORG	
155	0.1	0.3	BHZ	
155	0.3	1.5	TILL	till similar to TR#154; bottoms in quartz monzonite;
156	0	0.15	ÓRG	
156	0.15	0.35	BHZ	
156	0.35	2.05	TILL	light brown sandy till with local clay, trace graphite; bottomed out in skarn
157	0	0.3	TILL	medium brown till ; 20% +3/4", <0.5% graphite; Note: surface previously stripped
157	0.3	2.2	CS1	friable; including competent blocks up to 30%; 1-1.5% graphite;
158	0	3.9	CS1	medium brownish pretty competent CS1; slightly oxidized; 1-1.5% disseminated graphite
159	0	0.1	ORG	
159	0.1	0.3	BHZ	
159	0.3	2.3	CS1	partiy weathered, light brown CS1 with local competent sections; 1% graphite; 40% +3/4"
160	0	0.1	ORG	
160	0.1	0.5	BHZ	
160	0.5	3.8	TILL	boulder till with clay matrix, locally sandy; 40% +3/4"; trace graphite;
161	0	0.1	ORG	
161	0.1	0.5	BHZ	
161	0,5	2.5	TILL	light brown sandy pebble till with <0.5% disseminated graphite;10% +3/4" increasing to 20% from 1.5 to 2.5m; also increasing clay content from 1.5 to 2.5m.
162	0	0.1	ORG	
162	0.1	0.3	BHZ	
162	0.3	1.8	TILL	light brown sandy pebble till; <0.5% disseminated graphite; 10% +3/4";
162	1.8	3.3	TALL	boulder till with 50% +3/4", <1% graphite
163	0	з	TILL	pebble/boulder till; ≺0.5% graphite; 20% +3/4"
164	0	10	ORG	
164	10	25	BHZ	
164	25	150	TILL	boulder till, sandy 1st 30cm, boulder size & clay content increase below 30cm, < 5% graphite, 30% +3/4"
165	0	10	ORG	
165	10	25	BHZ	
165	25	150	TILL	boulder till, light brown, sandy, <.5% graphite, 2-% +3/4"
165	150	300	CS1	psuedo cs2, darkish grey, oxidized, local purplish, 3-4% graphite
166	0	10	ORG	

*-

	166	10	110	THL	boulder till, sandy matrix, trace graphite, 40% +3/4"
	167	0	10	ORG	
	167	10	30	BHZ	
	167	30	110	TILL	boulder till, medium brown/orangey, sandy with graphite increasing downwards, 10% + 3/4"
1	167	110	260	TILL	CS1 boulder till? Doesn't appear to be in-situ CS1 10% +3/4", sandy matrix, 1 - 2% graphite
	168	0	10	ORG	
	168	10	25	BHZ	
	168	25	205	TILL	boulder till, medium to dark brown, 20% +3/4", graphite < 5% increasing proximal to contact with CS1
	168	205	260	C\$1	slightly competant - orangey, 1.5 - 2% graphite
	169	0	10	ORG	
	169	10	35	BHZ	
ï	169	35	145	TILL	boulder till, medium brown/slightly yellow, < 5% graphite increasing downwards, 15% +3/4"
	169	145	245	CS1	slightly competant - orangey, 2.5 - 3% graphite
	170	0	10	ORG	
	170	10	15	BHZ	
	170	15	165	TALUS	pegmatite/quarz monzonite with weathered CS1 & CS2 matrix boulder talus, 30% +3/4", 4 - 5% graphite
	170	165	315	C52	slightly competant - grey/purple, 4 - 5% graphite
	171	0	10		
	171	10	30		
	171	30	130	CS2	reddish, slightly competant, relic stratification starts @ ~80cm, 3 - 4% graphite
	171	130	230	CS2	orangey/purple/grey, 4 - 5% graphite
	171	230	380	CS2	as above
	172	0	10	ORG	
	172	10	30	BHZ	
	172	30	90	TILL	boulder till, sandy matrix with CS2 boulders, trace pegmatite, 25% +3/4", 2 - 3% graphite
	172	90	240	CS2	weakly indurated, bulk of material not friable, trace pegmatite, 2.5 - 3% graphite
	173	0	10	ORG	
	173	10	30	BHZ	
	173	30	200	TILL	boulder tijl, međium brown, 10% +3/4", <.5% graphite
	17 4	0	10	ORG	
	174	10	150	TILL	boulder till, sandy matrix to 50cm, then clayey - hardpan, brown, 10% +3/4", <.5% graphite
	174	150	310	CS2	brownish red, abundant pegmatites & pegmatitic sweats, 3 - 3.5% graphite
	175	0	10	ORG	
1	175	10	30	BHZ	
	175	30	180	TILL	boulder tiil, light brown, local slightly yellowy, pebbly towards bottorn, 15% +3/4", < 5% graphite
	176	0	10	ORG	

A-

176	10	25	BHZ	
176	25	175	TALL	boulder till, brownish, ≤ .5% grephite
176	175	290	CS2	grey/brown, friable, 3 - 4% graphite
151-A	0	15	ORG	
151-A	15	72	BHZ	7 B Horizon & Boulder till - medium to dark brown with 1% graphite, 20% +3/4"
151-A	72	105	CSI	CS1- yellow brown with whitish layers, sucrosic regolith 2 - 3% graphite
148-A	0	5	ORG	oor yelow wowii milit militen layera, awolak regollur z - o'n grepino
140-A 148-A	5	20	BHZ	
148-A				he ble 191 av 1 bill a subh also de anna da an d e a nna dhe
148-A	20	140	TILL	boulder till, grey - dark brown with clay rich zones, trace - 1% graphite
148-A	140	240	TILL	boulder till, grey - dark brown with clay rich zones, trace - 1% graphite, local Cs1 boulders
	240	310	TILL	boulder till, grey - dark brown with clay rich zones, Cs1 & Cs2 boulders, with 5 - 7% graphite in Cs2 boulders, spinel
146-A	0	20	ORG	
146-A	20	60	BHZ	
146-A	60	190	TILL	boulder till, predominately Cs1 & Cs2 boulders, minor clay, 5 - 10% +3/4"
1 46 -A	190	290	CS2	Cs2 completely weathered, < 10% +3/4"
146-A	290	370	CS2	Cs2 weathering decreasing to bedrock @3 70 m's, 60% +3/4"
127-A	0	15	ORG	
127-A	15	40	BHZ	
127-A	40	140	TILL	bouider till
127-A	140	240	TILL	bouider till
127-A	240	340	TILL	boulder till
127-A	340	440	CS2	Cs2 - weathered, approximately 40% +3/4" - friable
128-A	0	10	ORG	
128-A	10	50	BHZ	
128-A	50	250	TILL	boulder till on pegmatite, graphite @ contact
13 4 -A	0	10	ORG	
134-A	10	25	BHZ	
134-A	25	185	TILL	boulder till
13 4 -A	185	245	TILL	boulder till, pegmatite @ base
141-A	0	15	ORG	
141-A	15	30	BHZ	
141-A	30	170	TILL	boulder till
141-A	170	300	TILL	boulder till, overlying CS - < 1% graphite
117-A	o	10	ORG	
117-A	10	20	BHZ	
117-A	20	170	TILL	boulder till

117-A	170	330	TILL	boulder till
110-A	0	10	ORG	
110-A	10	25	BHZ	
110-A	25	225	TILL	boulder till
110-A	225	425	TILL	boulder till
103-A	0	10	ORG	
103-A	10	35	BHZ	
103-A	35	115	TILL	boulder till
103-A	115	250	TILL	boulder till - transitional to CS1
103-A	250	325	CS1	CS2 - 10% +3/4"
95-A	0	10	ORG	
95-A	10	30	BHZ	
95-A	30	230	TILL.	boulder till
95-A	230	430	TILL	boulder till
91-A	0	10	ORG	
91-A	10	260	TILL	boulder till, bottorn 30 cm Cs2
91-A	260	510	TILL	boulder till
91-A	510	580	CS2	bottomed in competent Cs2
29-A	0	15	ORG	
29-A	15	110	BHZ	with trace graphite
29-A	110	205	CS2	
29-A	205	305	CS3	
29-A	305	435	CS4	partially competent
32-A	0	15	ORG	
32-A	15	30	BHZ	
32-A	30	75	TILL	boulder till
32-A	75	175	CS2	weathered
32-A	175	250	CS2	weathered
32-A	250	330	C\$2	weathered Cs2 & pegmatite - bedrock @ bottom
4 1-A	0	20	ORG	
4 1-A	20	70	BHZ	
4 1-A	70	160	TILL	boulder till
4 1-A	160	220	CS2	Cs2 minor weathering on bedrock
62-A	0	25	ORG	
62-A	25	85	BHZ	
62-A	85	175	TILL	till with weathered Cs1 basal 10 cm

n² -

.

:

.

I

1

51-A	o	25	ORG	
51-A	25	60	BHZ	
51-A	60	160	TILL	till
51-A	160	260	TILL	till with Cs1 cabbles
51-A	260	320	CS1	weathered Cs1 with pegmatite @ base

*.

TRENCH # F	ROM TO		SAMP_NO	LENGTH C	%
28	0.2	0.4	2000	0.2	1.63
28	0.4	1	2001	0.6	1.29
28	1	1.45	2002	0.45	1.78
29	0.15	1.1	2003	0.95	5.95
29	1.1	2.05	2004	0.95	6.97
29	2.05	3.05	2005	1	3.63
29	3.05	4.8	2006	1 75	3.64
30	0.2	1.05	2007	0.85	1
31	0.2	1.65	2007	1.45	0.79
32	0.2	0.75	2009	0.45	7.26
32	0.75	1.75	2003	1	2.19
32	1.75	2.5	2010	0.75	7.1
32	2.5	3.3	2012	0.8	1.04
33	0.5	3.3 1.5	2012	0.0 1	2.15
33	1.5			1	
33		2.5	2014		1.2 2.14
	2.5	3.6	2015	1.1 1	
34	0,35	1.35	2016		1.87
34	1.35	1.85	2017	0.5	2
34	1.85	2.85	2018	1	2.96
34	2.85	3.85	2019	1	3.3
35	0.7	1.7	2020	1	2.14
35	1.7	2.7	2021	1	2.01
35	2.7	3.7	2022	1	2.59
35	3.7	4.6	2023	0.9	3.37
36	0.65	1.65	2024	1	1.3
36	1.65	2.65	2025	1	2.06
36	2.65	3.85	2026	1.2	2.58
37	0.7	1.7	2027	1	0.55
37	1.7	2.7	2028	1	0.84
37	2.7	3.7	2029	1	2.25
37	3.7	4.7	2030	1	3.81
	sample			#VALUE!	
39	0.3	1.3	2031	1	2.71
39	1.3	2.3	2032	1	2.51
39	2.3	3.3	2033	1	1.93
39	3.3	4.1	2034	0.8	2.18
40	0.7	1.3	2035	0.6	2.45
40	1.3	2.4	2036	1.1	1.43
4 1	0.7	1.6	2037	0.9	2.09
41	1.6	2.2	2038	0.6	6.14
42	0.7	1.3	2039	0,6	1.19
42	1.3	1.8	2040	0.5	6,13
43	0.3	1.4	2041	1.1	1.64
44	0.3	1.1	2042	0.8	2.52
44	1.1	2	2043	0.9	3.02
45	0.4	1.4	2044	1	0.35
45	1.4	2.4	2045	1	0.36
45	2.4	3.4	2046	1	0.78
45	3.4	4.5	2047	1.1	2.05

in i

Ľ

- --

46 46	0.5 1.5	1.5 2.5	2048 2049	1 1	0.57 2.03
46	2.5	3.5	2050	1	1.2
46	3.5	4.7	2051	1.2	1.69
47	0,35	1.25	2052	0.9	1.01
48	0.4	0.9	2053	0.5	1.11
49	0.45	1.75	2054	1.3	1.84
50	0.85	1.45	2055	0.6	1.18
50	1.45	2.45	2056	1	3.18
50 50	2.45 3.45	3.45 4.45	2057 2058	1 1	2.61
50 51	0.6	4.45	2058	1	3.02 2.11
51	1.6	2.6	2009	1	1.49
51	2.6	3.6	2061	1	2.37
52	0.55	1.55	2062	1	0.72
52	1.55	1.9	2063	0.35	0.81
52	1.9	2.9	2064	1	1.68
52	2.9	3.9	2065	1	1.32
52	3.9	5.1	2066	1.2	1.59
53	0.9	1.9	2067	1	1.24
53	1.9	2.7	2068	0.8	1.86
54	0.3	0.95	2069	0.65	0.76
54	0.95	1.95	2070	1	2.48
54	1.95	2.95	2071	1	3.91
54	2.95	3.75	2072	0.8	3.46
55	0.5	1.5	2073	1	1.09
55	1.5	3	2074	1.5	2.19
56	0.4	1.9	2075	1.5	1.23
56	1.9	3.1	2076	1.2	2.32
56	3.1	3.3	2077	0.2	1.19
57 67	0.2	1.2	2078	1	1.66
57 58	1.2 0.13	2.4 1.8	2079 2080	1.2 1.67	1.13
59	0.15	1.8	2080	1.67	1.15 0.72
59	1.2	2.7	2081	1.5	1.16
60	0.35	1.3	2083	0.95	0.57
60	1.3	2.3	2084	1	2.29
60	2.3	3.3	2085	1	1.61
60	3.3	4.2	2086	0.9	1.67
61	0.6	1.6	2087	1	1.13
61	1.6	2.6	2088	1	0.52
61	2.6	3.2	2089	0.6	0.38
61	3.2	3.7	2090	0.5	3.29
62	0.25	1.75	2091	1.5	1,38
63	0.2	1.2	2092	1	0.6
63	1.2	2.2	2093	1	2.07
63	2.2	3.2	2094	1	1.76
63	3.2	4.2	2095	1	0.87
64	0.45	1.45	2096	1	0.98
64	1.45	2.25	2097	0.8	2.76

 $\cdot \quad \cdot \quad \cdot \quad - \quad \cdot \quad \cdot \quad \cdot$

	• •		0000	• •	.
65	0.6	1.5	2098	0.9	0.44
65	1.5	2.3	2099	0.8	3.55
66	0.35	1.85	2100	1.5	1.33
66	1.85	2.85	2101	1	1.7
66	2.85	3.35	2102	0.5	2.1
67	0.45	1.55	2103	1.1	0.84
67	1.55	2.55	2104	1 .	4.06
67	2.55	3.45	2105	0.9	2.85
68	0.55	1.55	2106	1	0.38
68	1.55	2.15	2107	0.6	0.19
		3.15	2108	1	3.59
68	2.15				
68	3.15	4.15	2109	1	3.69
68	4.15	4.85	2110	0.7	2.78
69	0.9	1.4	2111	0.5	1.46
70	0.7	0.95	2112	0.25	1.02
70	0.95	1.65	2113	0.7	3.9
70	2.45	3.45	2114	1	3.98
71	0.15	1.2	2115	1.05	3.32
71	1.2	2.2	2116	1	3.74
71	2.2	3.7	2117	1.5	3.79
72	0.7	1.7	2118	1	2.45
72	1.7	2.7	2119	1	2.37
72	2.7	3.5	2120	0.8	2.73
73	0.15	1.15	2121	1	8.57
73	1.15	2.35	2122	1.2	9.03
74	0.35	0.7	2123	0.35	1.95
74	0.7	1.7	2124	1	5.99
74	1.7	2.5	2125	, 0.8	4
74	2,5	3.5	2126	1	3
75	0.1	0.35	2127	0.25	1.32
					5.36
75 75	0.35	1.35	2128	1	
75	1.35	2.35	2129	1	6.11
75	2.35	2.85	2130	0.5	5.09
76	0.4	1.6	2131	1.2	0.29
76	1.6	1.8	2132	0.2	0.41
77	0.35	1.4	2133	1.05	1.88
77	1.4	3.35	2134	1.95	1.28
78	0.55	1.95	2135	1.4	1.29
79	0.2	1.2	2136	1	0.92
79	1.2	2.9	2137	1.7	3.3
79	2.9	4	2138	1.1	3.38
80	0.3	1.3	2139	1	0.96
80	1.3	2.3	2140	1	1.07
80	2.3	3.1	2141	0.8	2.63
81	0.05	0.85	2142	0.8	1.76
81	0.85	1.6	2143	0.75	2.07
82	0.05	1.3	2144	1.25	1.16
82	1.3	2.3	2145	1	0.75
82	2.3	3.3	2146	1	1.01
83	0.15	1.55	2147	1.4	1.86
			_ · · ·		

.

•

.

_

-

-

83	1.55	2.35	2148	0.8	0.82
84	0.1	1.5	2149	1.4	1.04
84	1.5	3.3	2150	1.8	1.44
85	0.45	1.85	2151	1.4	0.93
85	1.85	3.25	2152	1.4	0.7
86	0.37	2.4	2153	2.03	1.02
87	0.55	1.35	2154	0.8	0.78
88	0.8	1.15	2155	0.35	1.28
89	0.8		2155	0.35	1.28
		1.15			
90	0.45	2.75	2157	2.3	0.31
90	2.75	4.6	2158	1.85	2.11
91	0.1	5.1	2159	5	0.39
91	5.1	5.8	2160	0.7	3.98
92	0.1	1.7	2161	1.6	0.33
92	1.7	3.3	2162	1.6	0.3
92	3.3	4.6	2163	1.3	3.62
93	0.15	2.15	2164	2	3.78
93	2.15	4.15	2165	2	0.24
93	4.15	5.45	2166	1.3	0.26
94	0.35	1.35	2167	1	0.8
94	1.35	2.35	2168	1	0.5 9
94	2.35	3.95	2169	1.6	0.47
95	0.3	2.3	2170	2	0.22
95	2.3	4.3	2171	2	0.42
96	0.25	1.55	2172	1.3	0.3
96	1.55	3,55	2173	2	0.9
96	3.55	4.35	2174	0.8	0.79
97	0.2	2.2	2175	2	0.68
97	2.2	4.2	2176	2	0.75
98	0.1	2.1	2177	2	0.25
98	2.1	4.4	2178	2.3	0.97
99	0.2	3.2	2179	2.3	0.37
100	0.2	2.75	2180	2.3	1.4
		3.75	2180		2.17
100	2.75			1	
101	0.3	2.6	2182	2.3	1.16
101	2.6	3.4	2183	0.8	6.51
102	0.2	1.2	2184	1	1.03
102	1.2	2.2	2185	1	1.16
103	0.35	1.15	2186	0.8	1.56
103	1.15	2.5	2187	1.35	2.25
104	0.25	0.85	2188	0.6	5.43
105	0.05	0.85	2189	0.8	2.96
106	0.2	1,7	2190	1.5	0.53
107	0.25	1.55	2191	1.3	0.71
108	0.3	1.3	2192	1	0.73
109	0.4	1.7	2193	1.3	0.71
110	0.25	4.25	2194	4	0.22
110	4.25	5.05	2195	0,8	0.74
111	0.2	2.2	2196	2	0.42
- 111	2.2	4.2	2197	2	0.21
		· · · · ·			· · ·

الكث

۲

· · · —

112	0.3	1.8	2198	1.5	1,82
112	1.8	3.6	2199	1.8	0.28
113	0.3	2.3	2200	2	0.4
	2.3	4.3	2201	2	1.09
113					
114	0.25	2.25	2202	2	1.68
114	2.25	4.5	2203	2.25	0.42
114	4.5	5	2204	0.5	2.05
115	0.25	2.25	2205	2	1.2
115	2.25	4.2	2206	1.95	0.32
116	0.3	2.2	2207	1.9	0.56
116	2.2	4.1	2208	1.9	0.35
117	0.2	1.7	2209	1.5	0.58
117	1.7	3.3	2210	1.6	0.62
118	0.2	1.55	2211	1.35	1.2
118	1.55	2.9	2212	1.35	0.88
		2.05	2212	1.9	
119	0.15				0.68
119	2.05	3.95	2214	1.9	0.68
120	0.6	2.6	2215	2	1.14
120	2.6	3.6	2216	1	2.9
120	3.6	4.5	2217	0.9	2.68
121	0.45	1.55	2218	1.1	2.84
121	1.55	2.55	2219	1	1.85
121	2.55	3.65	2220	1.1	2.64
122	0.25	1.4	2221	1.15	1.75
122	1.4	2.4	2222	1	1.61
122	2.4	3.4	2223	1	0.79
123	0.3	0.7	2224	0.4	0.96
123	0.7	1.6	2225	0.9	4.14
123	1.6	2.5	2226	0.9	2.44
123	2.5	3.4	2227	0.9	2.95
124	0.3	2.3	2228	2	0.85
124	2.3	3.8	2229	1.5	1.23
124	3.8	4.8	2230	1	5.3
125	0.4	1,1	2231	0.7	1.59
125	1.1	3.1	2232	2	2.12
125	3.1	3.9	2233	0.8	2.35
126	0.3	1.4	2234	1.1	0.9
126	1.4	2.4	2235	1	0,82
126	2.4	3.4	2236	1	0.61
127	0.45	1.5	2237	1.05	0.53
127	1.5	2.5	2238	1	0.57
127	2.5	3.5	2239	1	0.56
128	0.5	2.5	2240	2	0.47
129	0.35	2.35	2240	2	1.4
129	2.35		2241 2242	1.1	
		3.45			7.74
130	0.5	2.5	2243	2	0.93
131	0.5	2.6	2244	2.1	0.8
132	0.4	2	2245	1.6	1.5
132	2	3.1	2246	1.1	1.79
133	0.35	1.45	2247	1.1	1.75

133	1.45	1.85	2248	0.4	1.81
134	0.25	1.85	2249	1.6	2.24
134	1.85	2.35	2250	0.5	1.67
135	0.25	1.05	2251	0.8	0.84
135	1.05	1.85	2252	0.8	1.71
136	0.2	0.7	2253	0.5	1.61
136	0.7	2.7	2254	2	3.87
137	0.3	2.3	2255	2	2.86
137	2.3	4.3	2256	2	2.66
138	0.25	1.75	2257	1.5	2.86
138	1.75	3.75	2258	2	2.24
139	0.3	1.1	2259	0.8	2.21
139	1.1	3.2	2260	2.1	0.46
140	0.3	1.8	2261	1.5	0.34
140	1.8	3.8	2262	2	0.79
141	0.3	1.7	2263	1.4	0.41
			2264	1.7	0.31
141	1.7	3.4			
142	0.25	2.05	2265	1.8	0.85
142	2.05	4.05	2266	2	0.73
143	0.3	1.4	2267	1.1	0.23
143	1.4	3.4	2268	2	0.84
144	0.3	2.4	2269	2.1	0.78
144	2.4	3	2270	0.6	3.7
145	0.3	2.3	2271	2	0.25
145	2.3	3.3	2272	1	1.13
146	0.3	1.9	2273	1.6	2.13
146		2,9	2274	1.0	3.31
	1.9				
146	2.9	3.9	2275	1	4.6
147	0.35	2.05	2276	1.7	1.29
147	2.05	2.85	2277	0.8	6.74
147	2.85	3.65	2278	0.8	5.02
148	0.2	1.4	2279	1.2	0.59
148	1.4	2.4	2280	1	0.72
148	2.4	3.1	2281	0.7	4.42
149	0.2	1.45	2282	1.25	0.39
149	1,45	2.75	2283	1.3	1.81
150	0.2	0.7	2284	0.5	0.43
150	0.15	1.45	2285	1.3	2.04
	0.25	1.45	2285	1.5	2.36
152					
153	0.3	3	2287	2.7	0.65
154	0.3	1.9	2288	1.6	0.59
155	0.3	1.5	2289	1.2	0.98
156	0.35	2.05	2290	1.7	0.31
157	0	0.3	2291	0.3	3.2
157	0.3	2.2	2292	1.9	0.84
158	0	1.9	2293	1.9	3.15
158	1.9	3.9	2294	2	1.74
159	0.3	1.3	2295	1	0.6
159	1.3	2.3	2296	1	0.33
160			2290 2297	3.3	0.33
100	0.5	3.8	2231	3.3	0.20

	404	0.5	4 5	2200	4	0.00
	161	0.5	1.5	2298	1	3.02
	161	1.5	2.5	2299	1	1.1
	162	0.3	1.8	2300 2301	1,5 1.5	1.87
	162	1.8	3.3		1.5 3	0.25
	163 164	0	3 175	2302 2303	3 150	2.46 0.34
	164 165	25	175			
	165 165	125	150	2304 2305	25	0.62
	165	150 10	300	2305 2306	150 100	1.93
	166		110	2306	80	0.21 0.63
	167 167	30	110 260	2307	150	0.66
	167 169	110	260 205	2309	180	
	168	25		2309	45	0.44
	168	205	250	2310	45 110	0.56
	169 160	35	145	2312		0.6 1.84
	169	145	245	2312	100 150	
	170	15	165			4.83
	170	165	315	2314	150	3.73
	171	30	130	2315	100	6.02
	171	130	230	2316	100	4.83
	171	230	380	2317	150 60	5.87
	172	30	90	2318		5.21
	172 173	90 30	240 200	2319 2320	150 170	3.93 0.91
	174	10	200 150	2320	140	0.91
	174	150		2321	140	5.9
	174	30	310 180	2322	150	0.38
				2323	150	0.38
	176 176	25 175	175 290	2324	115	0.48
161 A	170			2325		
151-A		15	72 105		57	1,65
151-A		72 20	105 140	2327 2328	33 120	0.65 0.82
148-A 148-A		140		2328	100	1.28
146-A 148-A			240	2329	70	
146-A		240	310	2330		1.49
		60 100	190		130	2.92
146-A 146-A		190 290	290 370	2332 2333	100 80	2.34 2.47
140-A 122-A		290 40	370 140	2333	100	2.47 1.88
122-A 122-A		40 140	240	2335	100	3.44
122-A		240	240 340	2335	100	3.44 1.98
122-A 122-A		240 340	340 440	2330	100	2.12
128-A		50 50	440 250	2338	200	2.12 1.1
120-A 134-A		50 25	250 185	2338	200 160	2.88
134-A 134-A		185	245	2339	60	2.86
134-A 141-A		30		2340	140	
141-A 141-A		30 170	170 300	2341	140	1.02
141 -A 117-A		20	300 170	2342 2343	150	0.84 1.06
117-A 117-A				2343 2344		
		170	330 225	2344 2345	160 200	0.86
110-A		25 225	225 425	2345 2346	200 200	0.55
110-A		225 35	425 115	2340 2347	200 80	0.69 1.58
103-A		55	110	20 4 1	00	1.00

.

· · · · -

٣;

_

	103-A	115	250	2348	135	1.67
—	103-A	250	325	2349	75	1.83
	95-A	30	230	2350	200	0.57
اعتلأ	95-A	230	430	2351	200	0.54
	91-A	10	260	2352	250	0.28
	91-A	260	510	2353	250	1.71
18	91-A	510	580	2354	70	1.18
	29-A	15	110	2355	95	5.72
	29-A	110	205	2356	95	5.44
	29-A	205	305	2357	100	1.75
	29-A	305	435	2358	130	1.76
	32-A	30	75	2359	45	2.28
	32-A	75	175	2360	100	3.27
	32-A	175	250	2361	75	1.48
	32-A	250	330	2362	80	0.76
	41-A	70	160	2363	90	1.27
	41-A	160	220	2364	60	2
	62 - A	85	175	2365	90	1.86
	51-A	60	160	2366	100	1.25
	51 -A	160	260	2367	100	0.7
	51-A	260	320	2368	60	1.85

_

Appendix B: Analytical Results

.

ويول

CLIENT: CRYSTAL GRAPHITE CORPORATION

REPORT: V01-01397.0 (COMPLETE)

ال ت ا			
	SAMPLE	ELEMENT	C Org
	NUMBER	UNITS	5CL
14mm			· ·
	P4 CG4058		3.67
	P4 CG4059		3,51
	P4 CG4060		3.10
ilen -	P4 CC4061		2.30
	P4 CG4062		1.02
	D4 004063		1 40
	24 CG4063		1.19
-	P4 CG4064		1.60
	P4 CG4065		1.87
	24 CG4066		2.43
	P4 CC4067		2.27
			<u>.</u>
	24 CG4068		1,99
18-10-11	P4 cg4069		0.69
	P4 cc4070		0.11
	P4 CG4071		1,54
	P4 CG4072		1.56
_	P4 CG4073		2.45
	P4 CG4074		1,32
	P4 CG4075		0.32
لاربان	P4 CG4076		0.21
	P4 CG4077		0.35
Ĭbe-	P4 CG4078		0.26
	P4 CG4079		0.10
	P4 CG4080		0.20
	24 CG4081		0.28
تنتاز	P4 CG4082		0.10
	P4 CG4083		0.16
	P4 CG4084		0.23
i i i i i i i i i i i i i i i i i i i	P4 CG4085		0.41
	P4 CG4086		0.34
	P4 CG4087		0.14
الموال			
	P4 CG4088		0.22
	P4 CG4089		0.14
	14 004003		VI 2 3

DATE RECEIVED: 30-JUL-01

PROJECT: NONE GIVEN

DATE PRINTED: 1-AUG-01

PAGE 1 OF 1

0.29 P4 CG4091 0.09 P4 CG4092 0.14

0,29

P4 CG4093

24 CG4090

FAXSE: 604-985-1071 At 15-AUG-2001 10:17 Page 3

CLIENT: CRYSTAL GRAPHITE CORPORATION REPORT: V01-01517.0 (COMPLETE) DATE RECEIVED: 09-AUG-01 20

PROJECT: NONE GIVEN DATE PRINTED: 15-AUG-01 PAGE 1 OF 1

	SAMPLE NUMBER	ELEMENT C Org UNITS PCT	
	P4 4103	0.46	
	P4 4107	2.28	
	P4 4108	1.37	
-	P4 4109	1.67	
-	P4 4110	0,86	
	P4 4111	2.04	
	P4 4112	2.78	
	P4 4113	1.55	
	P4 4115	1.67	
	P4 4116	1.70	· · ·
	P4 4117	1.00	
	P4 4118	1.78	· · · · · · · · · · · · · · · · · · ·
	P4 4119	1.06	· · ·
	P4 4120	1.08	
	P4 4121	1.63	
-	P4 4122	2,62	
	P4 4124	1.65	
	P4 4125	2.19	
		3,79	
	P4 4128	1.28	
	P4 4129	1,13	
-	P4 4130	1.15	
	P4 4131	1.10	
	P4 4132	1.55	
	P4 4133	1.46	
	P4 4134	1,66	
النظ	P4 4135	1.67	
	P4 4136	1.95	
	P4 7500	1.62	
	P4 7501	1.60	
_	P4 7502	1.55	
	P4 7503	1.56	
	P4 7504	1,49	
_	P4 7505	1.51	
	P4 7506	1.54	
-	P4 7507	1.60	
	P4 7508	1.57	
	P4 7509	1.58	

.

_

FAKSR: 604-985-1071 At 22-AUG-2001 17:46 Page 2

.

		ENT: CRYSTAL GRAPHITE CORPORATION DRT: V01-01571.0 (COMPLETE)		DATE	RECEIVED	15-AUG-01	PROJECT: NONE GIVEN DATE PRINTED: 22-AUG-01			1 OF 1
	Sampli Number		C Org PCT							
	P4 413	7	2.21							
	P4 413		2.70							
	P4 413	9	2.24			ń				
	P4 414	0	1.45							
-	P4 414		1.48							
	\$0 41 4	2								
	\$0 414									
	P4 414		1.48							
	P4 414		1,47							
	P4 414		1.12							
	P4 414	7	1.67							
	P4 414		2.02							
	P4 414	9	6.72							
	P4 415		3.37							
	P4 415		0.30							
	P4 415		1.29							
	P4 415		1.38							
ر المنظ	P4 415		1.52							
-	P4 415		- 1.41							
	P4 415	6	1.12							

BONDAR CLEGG

	CLIENT: CRYSTAL GRAPHITE CORPORATION REPORT: V01-01567.0 (COMPLETE)		PROJECT: NONE GIVEN DATE RECEIVED: 15-AUG-01 DATE PRINTED: 21-AUG-01 PAGE 1 OF 3						
SAMPLE	ELEMENT C Org		SAMPLE	ELEMENT C Org					
NUMBER	UNITS PCT		NUMBER	UNITS PCT					
					· · · · · · · · · · · · · · · · · · ·				
P4 4157	1.27		P4 4197	1.15					
P4 4158	1.57		P4 4198	1.24					
P4 4159	1.25		- P4 4199	1.57					
P4 4160	0.27								
P4 4161	1.02		÷						
P4 4162	0.66								
P4 4163	• 1.37								
P4 4164	1.06								
P4 4165	1.90								
P4 4166	2.02								
	•								
P4 4167	1-84								
P4 4168	1.64								
P4 4169	1.47								
P4 4170	1.44								
P4 4171	0.15		·····•••••••••••••••••••••••••••••••••						
P4 4172	3.86								
P4 4173	0.42								
P4 4174	2.60								
P4 4175	1.58								
P4 4176	0.10								
P4 4177	0.56								
P4 4178	1.15								
P4 4179	1.02	·							
P4 4180	0.51								
P4 4181	1.05				·····				
P4 4182	1.30								
P4 4182 P4 4183	1.51								
P4 4183 P4 4184	1.79								
P4 4184 P4 4185	1.72								
P4 4186	1.56								
· · · · · · · · · · · · · · · · · · ·									
P4 4187	2.01								
P4 4188	2.24								
P4 4189	1.50								
P4 4190	1.43								
P4 4191	1.40								
	Δ <i>4</i> 7			······································					
P4 4192	0.63 0.34								
P4 4193	1.61								
P4 4194 P4 4195	2.42								
D7 / 3136	6.46								

Bondar Clegg Canada Limited 130 Pemberton Avenue, North Vancouver, BC, V7P 2R5, Canada Tel: (604) 985-0681, Fax: (604) 985-1071 FAMER: 604-985-1071 At 17 AUG-2001 16:04 Page 2

		CRYSTAL GRAPHITE V01-01568.0 (CON			DATE RECEIVED:	15_302_01	NONE GI	ven 17-aug-01	D 3 <i>C</i> 3	1 of 1	4
						84-UAA-A*	 entiten (11-1104-01	21432	T 45. 1	•
SA	MPLE	MEMENT	C Org			x					
NU	BER	UNITS	PCT								
₩ _{₽4}	4200		1.24			•					
24	4201		1,43								
	4202		1.39			÷.					
2 24	4203		1.47								
P4	4204		1.50								
	4205		1,57								
	4206		1.24								
	4207		2.36								
	4208		1.45								
40 24	4209		0.09								
P4	4210		0,99								
P4	4211		1.61								
P 4	4212		2.42								
P4	.4213		0.50								
P4	4214		0.72								
₽4	4215		1.23								
	4216		1.34								
	4217		0.43								
	4218		0.35								
	4219		0.85								
and P 4	4220	·	0.16								
	4221		0.24								
	4222	,	0.44								
	4223		1,06								
	4224		0.73								
₽4	4225		1.51								
	4226		1.72	1		-					
	4227		1.64								
	4228		1.05								
	4229		1.49								
	4230		0.65								
	4231		1.48								
	4232		1,30								
	1948										

•

FAXSF: 604-985-1071 At 21-AUG-2001 18:27 Fage 2

	STAL GRAPHITE CORPORAT: -01569:0 (COMPLETE)	TE RECEIVED:	15 -AUG- 01	PROJECT: NONE GI DATE PRINTED:	PAGE	1 0	F
SAMPLE	ELEMENT C Org						
NUMBER	UNITS PCT						
P4 4233	1.17						
P4 4234	1.35						
P4 4235	0.95		4				
P4 4236	1.54						
P4 4237	1.49						
P4 4238	2.53						
P4 4239	2,11						
P4 4240	1.95						
P4 4241	2,00						
P4 4242	1.57						
P4 4243	1.46						
P4 4244	1.88						
P4 4245	1.19						
P4 4246	1.23						
P4 4247	1.47						
P4 4248	2.08						
P4 4249	1.31						
P4 4250	2.92						
P4 4251	1,31						
P4 4252	1.03						
P4 4253	1.47						
P4 4254	1.80						
P4 4255	0.94						
P4 4256	1.49						
P4 4257	1.36						
P4 4258	1.57					-	
P4 4259	1.93						
P4 4260	2.27						
P4 4261	2.24						
P4 4262	1.50						

FAXSR: 604-985-1071 At 21-AUG-2001 18:24 Page 2

-		CRYSTAL GRAPHITE V01-01570.0 (CON		DATE RECEIVE	D: 15-AUG-01	PROJECT: NONE GIV DATE PRINTED:	PAGE	1 OF 1
-	SAMPLE	MEMENT	C Org					
	NUMBER	UNITS	PCI					
19	P4 4263		1.55					
	P4 4263		1.48					
	P4 4265		1.60		à			
N								
	P4 4266		1.37					
	P4 4267		2.10					
	P4 4268		1.16					
ine -	P4 4269		0.18					
	P4 4270		2.83					
	P4 4271		1,48					
	P4 42 72		1,47					
	DA TOD	1	4.29					
	P4 JGR 1							
	P4 JGR 4		1.63					
. –	P4 TAIL	ing pond	7.25					

-

-

.

.

.

FAXSR: 604-985-1071 At 30-AUG-2001 14:35 Page 2

	TAL GRAPHITE CORPORATION		PROJECT: NONE GIVEN	
REPORT: V01-	-01659,0 (COMPLETE)	DATE RECEIVED: 23-AUG-01	DATE PRINTED: 30-AUG-01	PAGE 1 OF 1
SAMPLE	ELEMENT C Org	SAMPLE	ELEMENT C Org	
NUMBER	ONITS PCT	NUMBER	UNITS PCT	
P4 4273	1.44	P4 4313	2.11	
P4 4274	1,97	P4 4314	2,61	
P4 4275	1.76	P4 4315	0.00	
P4 4276	1.19			
P4 4277	2,02			
P4 4 278	1,46			
P4 4279	1,53			
P4 4280	1.15			
P4 4281	1.56			
P4 4282	0,98			
•••••				
P4 4283	1.00			
P4 4284	1.74			
P4 4295	1.18			
P4 4286	1,66			
P4 4287	1.44			
P4 4288	1,52			
P4 4289	1.52			
P4 4290	1.81			
P4 4291	1.00			
P4 4292	1.59			
P4 4293	1,98			
P4 4294	0.46			
P4 4294 P4 4295	1,56			
P4 4295 P4 4296	1,58			
P4 4290 P4 4297	3.47		x	
19 9237	J. 3/			
P4 4298	2 . 98			
P4 4299	3.78			L.
P4 4300	0.47			
P4 4301	3.99			
P4 4302	1.33			
P4 4303	1.00			
P4 4304	1.38			
P4 4305	1,27			
P4 4306	1.28			
P4 4307	1.20			
P4 4308	1,88			
P4 4309	1,60			
P4 4310	1,58			
P4 4311	1.63			
	4.00			

· -

BONDAR CLEGG

		STAL GRAPHITE CORPORATION -01688.0 (COMPLETE)	DATE RECEIVED: 29-AUG-01	PROJECT: NONE GIVEN DATE PRINTED: 7-SEP-01	PAGE 1 OF 3
	SAMPLE NUMBER	ELEMENT COrg UNITS PCT			
	P4 4104	0.41	······································	······	
	P4 4105	0.24			
	P4 4106	0.16			
	P4 4114	0.22			
	P4 4123	0.65	4		
	P4 4127	0.36			1
	P4 4142	0.59			
	P4 414 3	0.17			
	P4 4331	1.25			
	P4 4332	0.80			
	P4 4333	0.23	·		
	P4 4334	0,86			
	P4 4335	1.92			
	P4 4336	1.50	•		
•••••	P4 4337	2.04			
	P4 4338	0.99			
	P4 4339	0.57			
	P4 4340	1.63			
	P4 4341	1.62			
	P4 4342	1.54			
	P4 4343	1.74		······	
		•		i -	
					,
					-
	-				
			Bondar Clegg Canada Limited		
		120 D	erton Avenue, North Vancouver, BC, V7F	2D5 Canada	

FAMSE: 604-985-1071 At 10-SEP-2001 16:48 Page 2

REPORT: V01-01755	RAPHITE CORPORATION .0 (COMPLETE)	DATE RECEIVED: 06		NONE GIVEN RINTED: 10-SEP-01	PAGE 1 O
SAMPLE E	LEMENT C Org				
NUMBER	UNITS PCT				
P4 4365	3.11				
P4 4366	2.15				
P4 4367	1.46		1 74		
P4 4368	2.25				
P4 4369	1.13				
P4 4370	1.50				
P4 4371	1.32				
P4 4372	1.11				
P4 4373	1.69				
P4 4374	1.66				
P4 43 75	2.48				
P4 4376	1.85				
P4 4377	0.39				
P4 4378	0.76				
P4 4379	0.26				
24 4380	1.47				
P4 4301	1.49		·		
P4 4382	1.07				
P4 4383	0.56				
P4 4384	0.54				
P4 4385	1.09				
P4 4386	0.63				
P4 4387	0.62				
P4 4388	0.63				
P4 4389	0.10				
P4 4390	0.86				
P4 4391	0.91				
P4 4392	0,75				
P4 4393	0.70				
P4 4394	0.94				
- 4 44.4					
P4 4395	1.00			_	
P4 4396	1.01				
P4 4397	0,86				
P4 4398	0.90				
P4 4399	2.15				
	A A /				
P4 4400	2.74				

CLIENT: CRYSTAL GRAPHITE CORPORATION

PROJECT; NONE GIVEN

BONDAR CLEGG

Geochemical Lab Report

DATE PRINTED: 7-SEP-01 REPORT: V01-01679.0 (COMPLETE) DATE RECEIVED: 27-AUG-01 PAGE 1 OF 3 C Org SAMPLE ELEMENT C Org SAMPLE ELEMENT NUMBER NUMBER UNITS PCT UNITS PCT P4 2156 1.84 P4 2196 0.42 P4 2157 0.31 P4 2197 0.21 P4 2158 2.11 P4 2198 1.82 P4 2159 0.39 P4 2199 0.28 P4 2200 0.40 P4 2160 3.98 1.09 0.33 P4 2201 P4 2161 P4 2202 1.68 P4 2162 0.30 P4 2163 3.62 P4 2203 0.42 P4 2204 2.05 3.78 P4 2164 P4 2205 1.20 0.24 P4_2165 P4 2166 0.26 P4 2206 0.32 P4 2207 0.56 P4 2167 0.80 0.35 P4 2208 P4 2168 0.59 P4 2169 0,47 P4 2209 0.58 P4 2210 0.62 0.22 P4 2170 P4 2211 1.20 P4 2171 0.42 0.88 0,30 P4 2212 P4 2172 0.68 0.90 P4 2213 P4 2173 0.79 P4 2214 0.68 P4 2174 1.32 0.68 P4 4316 P4 2175 P4 4317 1.81 P4 2176 0.75 1.16 P4 4318 0.25 P4 2177 0.97 P4 4319 1.15 P4 2178 P4 4320 1.21 0.29 P4 2179 1.25 P4 2180 P4 4321 1.40 1.42 P4 4322 P4 2181 2.17 P4 4323 1.54 P4 2182 1.16 P4 4324 1.73 6.51 P4 2183 0.87 P4 4325 1.03 P4 2184 2.41 P4 4326 P4 2185 1.16 1.73 P4 4327 1.56 P4 2186 P4 4328 1.88 2.25 P4 2187 5.43 P4 4329 2.40 P4 2188

1.97 P4 4330 P4 2189 2.96 P4 2190 0.53 0.71 P4 2191 0.73 P4 2192 0.71 P4 2193 0.22 P4 2194 0.74 P4 2195

Bondar Clegg Canada Limited

130 Pemberton Avenue, North Vancouver, BC, V7P 2R5, Canada

Tel: (604) 985-0681, Fax: (604) 985-1071

FAXSR: 604-985-1071 At 11-SEP-2001 11:23 Page 2

	TAL GRAPHITE CORPORATION 01774,0 (COMPLETE)	DATE RECEIVED: 07-SEP-01		ECT: NONE GIVEN ATE PRINTED: 11	PAGE 1
SAMPLE	ELEMENT C Org	SAMPLE	ELEMENT	C Org	
NUMBER	UNITS PCT	NUMBER	UNITS	PCT	
P4 CGC2303	0.34	P4 4421		0.46	
P4 CGC2304	0.62	P4 4422		1.00	
P4 CGC2305	1.93	P4 4423		1.36	
P4 CGC2306	0,21	P4 4424		1.52	
P4 CGC2307	0, 63				
P4 CGC2308	0.66				
P4 CGC2309	0.44				
P4 CGC2310	0.56				
P4 CGC2311	0,60				
P4 CGC2312	1.84				
P4 CGC2313	4,83				
P4 CGC2314	3.73				
P4 CGC2315	6.02				
P4 CGC2316	4.83				
P4 CGC2317	5.87				
P4 CGC2318	5,21				
P4 CGC2319	3.93				
P4 CGC2320	0.91				
P4 CGC2321	0.69				
P4 CGC2322	5.90				
P4 4401	4.07				
P4 4402	3.54				
P4 4403	3.45				
P4 4404	2.67				
P4 4405	3.29				
P4 4406	3,00				.1
P4 4407	3.25				
24 4408	6,60				
P4 4409	0.90				
P4 4410	1.09				
P4 4411	1.62				
P4 4412	0.92				
P4 4413	1.43				
P4 4414	1.68				
P4 4415	1.55		÷		
P4 4416	1.66				
P4 4417	1,75				
P4 4418	0,76				
P4 4419	2.09				
P4 4420	2.52				

- -

None

a de la companie de la companie de la companie de la companie de la companie de la companie de la companie de l

	STAL GRAPHITE CORPORATION -01803.0 (COMPLETE)	DATE RECEIVED: 13-SEP-01	PROJECT: NONE GIVEN DATE PRINTED: 19-SEP-01	PAGE 1 OF
SAMPLE	ELEMENT C Org	SAMPLE	ELEMENT C Org	
NUMBER	UNITS PCT	NUMBER	UNITS PCT	
D(/7/1)	A 44	n/ ///f	0 £7	
P4 4341	0.88	P4 4465	0.53	
P4 4342	1.86	P4 4466	0.67	
P4 4343	2.41	P4 4467	1.16	
P4 4344	·····································	P4 4468	3.96	
P4 4345	2.05	P4 4469	0.24	
P4 4346	0.16	P4 4470	0.69	
P4 4347	0.11	P4 4471	4-19	
P4 4348 /	0.57	P4 4472	0.72	
P4 4349	1.59	P4 4473	1.13	· .
P4 4350	2.14	P4 4474	1.67	
P4 4425	0.50		1.08	
P4 4426	1.06	P4 4476	0.89	
P4 4427	1.50	P4 4477	1.34	
P4 4428	1.54	P4 4478	1.66	
P4 4429	1.52	P4 4479	1.54	
F4 4467	·····			
P4 4430	1.59	P4 4480	1.85	
P4 4431	1.87	P4 4481	2.56	
P4 4432	2.11	P4 4482	1.29	
P4 4433	2.33	P4 4483	1.39	
P4 4434	1.32	P4 4484	0.62	
P4 4435	1.63	P4 4485	1.08	
P4 4436	1.46	P4 4486	1.77	
P4 4437	1.51	P4 4487	2.46	
P4 4438	1.36	P4 4488	1.44	
P4 4439	1.22	P4 4489	1.77	
P4 6640	CO C	P4 4490	0.90	
P4 4440 P4 4451	2.92	P4 4491	0.42	
P4 4451 P4 4452	· D.99	P4 4492	1.00	
P4 4452 P4 4453	1_61	P4 4493	1.51	
P4 4455 P4 4454	1.01	P4 4494	0.98	
·····			······	
P4 4455	1.29	P4 4495	1.37	
P4 4456	1.39	P4 4496	0.66	
P4 4457	1.31	P4 4497	1.42	
P4 4458	1.34	P4 4498	0.98	
P4 4459	1.54	P4 4499	1.25	
P4 4460	1.23	₽4 4500	1.54	
P4 4461	1_44			
P4 4462	2.11			
P4 4463	2.18			
P4 4464	1.70			

Bondar Clegg Canada Limited

130 Pemberton Avenue, North Vancouver, BC, V7P 2R5, Canada

Tel: (604) 985-0681, Fax: (604) 985-1071

. 20 200 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 199

BONDAR CLEGG

	RYSTAL GRAPHITE CORPORATION 01-01815.0 (COMPLETE)	DATE RECEIVED: 13-SEP-01	PROJECT: NONE GIVEN DATE PRINTED: 20-SEP-01	PAGE 1 OF 3
SAMPLE	ELEMENT C Org	SAMPLE	ELEMENT C Org	
NUMBER	UNITS PCT	NUMBER	UNITS PCT	
P4 4501	1,64	P4 4541	0.58	
P4 4502	1.89	P4 4542	0.94	
P4 4503	. 1.64	P4 4543	1.04	
P4 4504	1,44	P4 4544	2.66	
P4 4505	1.91	P <mark>4</mark> 4545	3.04	
P4 4506	1,42	P4 4546	1.78	
P4 4507	0.76			
P4 4508	1.73			
P4 4509	1.04			
P4 4510	0.87			
P4 4511	0,54			
P4 4512	0,08			
P4 4513	0.54			
P4 4514	2.10			
P4 4515	1,55			
P4 4516	0,89			
P4 4517	0.11			
P4 4518	0.16			
P4 4519	1.94			
P4 4520	0.88			
P4 4521	0.52			
P4 4522	1.23			
P4 4523	1.63			
P4 4524	0.56			
P4 4525	0.72			
P4 4526	1,35			
P4 4527	2.22			
P4 4528	2,18			
P4 4529	2.32			
P4 4530	0.84			·····
P4 4531	2.36			
P4 4532	1.96			
P4 4533	2.84			
P4 4534	2,42			
P4 4535	1.33			
P4 4536	0.65			
P4 4537	1.02			
P4 4538	0.47		x.	
P4 4539	0.50			
P4 4540	0.74			

Bondar Clegg Canada Limited 130 Pemberton Avenue, North Vancouver, BC, V7P 2R5, Canada Tel: (604) 985-0681, Fax: (604) 985-1071

BONDAR CLEGG

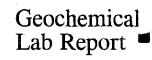
<u>e a construction a construction a construction a construction a construction a construction a construction a cons</u>

	STAL GRAPHITE CORPORATION -01834.0 (COMPLETE)	DATE RECEIVED: 19-SEP-01	PROJECT: NONE GIVEN DATE PRINTED: 28-SEP-01	PAGE 1 OF 4
 SAMPLE	ELEMENT C Org	SAMPLE	ELEMENT C Org	
 NUMBER	UNITS PCT	NUMBER	UNITS PCT	
 D2 4547	2.76	D2 4587	2.91	
D2 4548	2.17	D2 4588	1.71	
D2 4549	0.80	D2 4589	2.52	
D2 4550	0.57	D2 4590	2.29	
 D2 4551	0.04	b ₂ 4591	1.50	
 D2 4552	1.44	D2 4592	3.55	
D2 4553	2.06	D2 4593	2.44	
D2 4554	2.89	D2 4594	0.44	
D2 4555	5.15	D2 4595	0.80	
D2 4556	0.20	D2 4596	1.40	
 D2 4557	0.16	D2 4597	1.51	
D2 4558	0.46	D2 4598	1.37	
D2 4559	0.37	D2 4599	1.45	
D2 4560	0.28	D2 4600	1,68	
D2 4561	2.08	D2 4601	1.68	
 D2 4562	1.45	D2 4602	1.80	
D2 4362 D2 4563	0.67	D2 4602	0.60	
D2 4565	1.64	D2 4603	2.06	
02 4565	2.03	D2 4804 D2 4605	1.89	
	1.98	D2 4605	1.41	
 D2 4566	1.70	UZ 4800		
D2 4567	3.98	D2 4607	2.12	
D2 4568	0.67	D2 4608	1,35	
D2 4569	0.11	D2 4609	1.82	
D2 4570	2.54	D2 4610	1.71	
 D2 4571	2.90	D2 4611	4.28	
 D2 4572	4.49	D2 4612	0.94	
D2 4573	1.43	D2 4613	0.52	
D2 4574	1.48	D2 4614	1.05	
D2 4575	1.72	D2 4615	1.23	
 D2 4576	1.62	D2 4616	1.28	
 D2 4577	1.51	D2 4617	2.10	
D2-4578	1.46	D2 4618	1.60	
D2 4579	1_80	D2 4619	1.20	
D2 4580	1.56	D2 4620	1.42	
 D2 4581	1.03	D2 4621	2.21	
 D2 4582	1.46	D2 4622	0.84	•••••••
D2 4583	1.70	D2 4623	0.86	
D2 4584	1.05	D2 4624	0.86	
D2 4585	1.73	D2 4625	1.53	
D2 4586	1.32	D2 4626	1.43	

Bondar Clegg Canada Limited

130 Pemberton Avenue, North Vancouver, BC, V7P 2R5, Canada Tel: (604) 985-0681, Fax: (604) 985-1071

BONDAR CLEGG


SAMPLE	ELEMENT C Org	SAMPLE	ELEMENT	C Org	
NUMBER	UNITS PCT	 NUMBER	UNITS	PCT	
D2 4627	1.10	 			
D2 4628	1.26				
D2 4629	1.47				
D2 4630	0.89				
D2 4631	1.69	 4			
D2 4632	1.28				
D2 4633	0.17				
D2 4634	0.18				
D2 4635	0.12				
D2 4636	0.03	 			
D2 4637	0.18	 			
D2 4638	0.82				
D2 4639	0.84				
D2 4640	0.94				
D2 4641	0.94	 			
D2 4642	1.87	 			
D2 4643	0,43				
D2 4644	0.65				
D2 4645	0.44				
D2 4646	0.36	 	·····		
D2 4647	0.62	 			
D2 4648	0.56				
D2 4649	0.36				
D2 4650	0.47				
D2 4651	0.38	 			
D2 4652	1.15	 			
D2 4653	0.79				
D2 4654	1.25			-	
D2 4655	0.87				
D2 4656	1.99	 			
D2 4657	3.60	 			
D2 4658	1.39				
D2 4659	1.36				
D2 4660	1.36				
D2 4661	0.86	 			
D2 4662	0.57	 			

Bondar Clegg Canada Limited 130 Pemberton Avenue, North Vancouver, BC, V7P 2R5, Canada Tel: (604) 985-0681, Fax: (604) 985-1071

BONDAR CLEGG

REPORT: VO1	STAL GRAPHITE CORPORATION -01872.0 (COMPLETE)	DATE RECEIVED: 19-SEP-01	PROJECT: NONE GIVEN DATE PRINTED: 27-SEP-01 PAGE 1 C
SAMPLE	ELEMENT C Org		
NUMBER	UNITS PCT		
P4 4663	0.26		
P4 4664	0.24		
P4 4665	4.36		
P4 4666	3.37		
P4 4668	0.14	4	
P4 4669	0.25		
P4 4671	0,56		
P4 4672	1.01		
P4 4674	1_52	-#	
P4 4675	1.77		
P4 4677	1.03		
P4 4678	0.93		
P4 4680	2.76		
P4 4681	3.29		
P4 4683	0.43		
P4 4684	0.92		
P4 4686	0.76		
P4 4687	0.83		
P4 4689	0.91		
P4 4690	0.80		
P4 4692	1.93		
1,1,1,0,1	1_61		

 $\sqrt{}$

.

CLIENT: CRYSTAL GRAPHITE CORPORATION REPORT: V01-01904.0 (COMPLETE)		DATE RECEIVED		PROJECT: NONE G DATE PRINTED:	2-0CT-01	PAGE	1 OF 3	
SAMPLE NUMBER	ELEMENT	C Org PCT						
D2 4667		2.37						
D2 4670		0.84						
02 4673		1.41						
D2 4676		0.85						
D2 4679		1.15		4 9,				
D2 4682		4.59						
D2 4685		0.50						
D2 4688		0.39						
D2 4691		0.51	- #					
D2 4694		1.94						

Bondar Clegg Canada Limited 130 Pemberton Avenue, North Vancouver, BC, V7P 2R5, Canada Tel: (604) 985-0681, Fax: (604) 985-1071

.

	STAL GRAPHITE CORPORATION -01618.0 (COMPLETE)	DATE RECEIVED: 20-AUG-01	PROJECT: NONE GIVEN DATE PRINTED: 29-AUG-01	PAGE 1 OF
SAMPLE	ELEMENT C Org	SAMPLE	ELÉMENT C Org	
NUMBER	UNITS PCT	NUMBER	UNITS PCT	•••••••••••••••••••••••••••••••••••••••
P4 2000	1.63	P4 2040	6.13	
P4 2001	1.29	P4 2041	1.64	
P4 2002	1.78	P4 2042	2.52	
P4 2003	5.95	P4 2043	3.02	
P4 2004	6.97	P4 2044	0.35	
P4 2005	3.63	P4 2045	0.36	•••••••••••••••••••••••••••••••••••••••
P4 2006	3.64	P4 2046	0.78	
P4 2007	1.00	P4 2047	2.05	
P4 2008	0.79	P4 2048	0.57	
P4 2009	7.26	P4 2049	2.03	
P4 2010	2.19	P4 2050	1.20	
P4 2011	7`. 10	P4 2051	1.69	
P4 2012	1.04	P4 2052	1.01	
P4 2013	2.15	P4 2053	. 1.11	
P4 2014	1.20	P4 2054	1.84	
P4 2015	2.14	P4 2055	1.18	
P4 2016	1.87	P4 2056	3_18	
P4 2017	2.00	P4 2057	2.61	
P4 2018	2.96	P4 2058	3.02	
P4 2019	3.30	P4 2059	2.11	
P4 2020	2.14	P4 2060	1.49	
P4 2021	2.01	P4 2061	2.37	
P4 2022	2.59	P4 2062	0.72	
P4 2023	3.37	P4 2063	0_81	
P4 2024	1.30	P4 2064	1.68	·
P4 2025	2.06	P4 2065	1,32	
P4 2026	2.58	P4 2066	1.59	
P4 2027	0.55	P4 2067	1.24	
P4 2028	0.84	P4 2068	1.86	
P4 2029	2.25	P4 2069	0.76	
P4 2030	3.81	P4 2070	2.48	•••••
P4 2031	2.71	P4 2071	3.91	
P4 2032	2.51	P4 2072	3.46	
P4 2033	1.93	P4 2073	1.09	
P4 2034	2.18	P4 2074	2.19	
P4 2035	2.45	P4 2075	1.23	
P4 2036	1.43	P4 2076	2.32	
P4 2037	2.09	P4 2077	1.19	
P4 2038	6.14	P4 2078	1.66	
P4 2039	1.19	P4 2079	1.13	

Bondar Clegg Canada Limited

130 Pemberton Avenue, North Vancouver, BC, V7P 2R5, Canada

Tel: (604) 985-0681, Fax: (604) 985-1071

BONDAR CLEGG

	STAL GRAPHITE CORPORATION -01618.0 (COMPLETE)	DATE RECEIVED: 20-AUG-01	PROJECT: NONE GIVEN DATE PRINTED: 29-AUG-01	PAGE 2 OF 4
SAMPLE	ELEMENT C Org	SAMPLE	ELEMENT C Org	
NUMBER	UNITS PCT	NUMBER	UNITS PCT	
P4 2080	1.15	P4 2120	2.73	•••••••••••••••••••••••••••••••••••••••
P4 2081	0.72	P4 2121	8.57	
P4 2082	1.16	P4 2122	9.03	
P4 2083	0.57	P4 2123	1.95	
P4 2084	2.29	P442124	5.99	
P4 2085	1.61	P4 2125	4.00	
P4 2086	1.67	P4 2126	3.00	
P4 2087	1.13	P4 2127	1.32	
P4 2088	0.52	P4 2128	5.36	
P4 2089	0.38	P4 2129	6.11	
P4 2090	3.29	P4 2130	5.09	
P4 2091	1.38	P4 2131	0.29	
P4 2092	0.60	P4 2132	0.41	
P4 2093	2.07			
P4 2094	1.76			
P4 2095	0.87			
P4 2096	0.98			
P4 2097	2.76			
P4 2098	0.44			
P4 2099	3.55			
P4 2100	1.33			
P4 2101	1.70			
P4 2102	2.10			
P4 2103	0.84			
P4 2104	4.06			
P4 2105	2.85			·····
P4 2106	0.38			
P4 2107	0,19			
P4 2108	3.59			÷
P4 2109	3.69	· · · · · · · · · · · · · · · · · · ·		
P4 2110	2.78			
P4 2110 P4 2111	1.46			
P4 2112	1.02			
P4 2112 P4 2113	3.90			
P4 2115 P4 2114	3,98			
P4 2115	3.32			
P4 2116	3.74			
P4 2117	3.79			
P4 2117 P4 2118	2.45			· · ·
P4 2119	2.37			

Bondar Clegg Canada Limited

130 Pemberton Avenue, North Vancouver, BC, V7P 2R5, Canada

Tel: (604) 985-0681, Fax: (604) 985-1071

BONDAR CLEGG

REPORT: V01	STAL GRAPHITE CORPORATION -01658.0 (COMPLETE)	DATE RECEIVED: 23-AUG-01	PROJECT: NONE GIVEN DATE PRINTED: 31-AUG-01	PAGE 1 OF 3
SAMPLE	ELEMENT C Org			
NUMBER	UNITS PCT			
P4 2133	1.88		······································	·····
P4 2134	1.28			
P4 2135	1.29			
P4 2136	0,92			
P4 2137	3.30	÷.		
P4 2138	3.38			
P4 2139	0.96			
P4 2140	1.07			
P4 2141	2.63	·		
P4 2142	1.76			
. + 6,76				
P4 2143	2.07			
P4 2144	1.16			
P4 2145	0.75			
P4 2146	1.01			
P4 2147	1.86			·····
P4 2148	0.82			•
P4 2149	1.04			
P4 2150	1.44			
P4 2151	0.93			
P4 2152	0.70			
P4 2153	1.02			
P4 2154	0,78			
P4 2155	1.28			
	-			
	•			
			· .	
			1	

BONDAR CLEGG

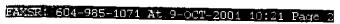
RT: V01-01689.0 (COMPLETE) LE ELEMENT C Org ER UNITS PCT 215 1.14	DATE RECEIVED: 29-AUG-01	DATE PRINTED: 7-SEP-01 PAGE 1 OF
ER UNITS PCT		
215 1.14		
217 1.14		
216 2.90		
217 2.68		
218 2.84		
219 1.85	ł	
	4	
220 2.64		
221 1.75		
222 1.61		
223 0.79		
224 0.96		· · · · ·
775 / 1/		
•		
229 1.23		
230 5.30		
231 1.59	· · · ·	
234 0.90		
235 0.82		
236 0.61		
237 0.53		
238 0.57		
239 0.56		
240 0.47	·······	
		•
	2211.75 222 1.61 223 0.79 224 0.96 225 4.14 226 2.44 227 2.95 228 0.85 229 1.23 230 5.30 231 1.59 232 2.12 233 2.35 234 0.90 235 0.82 236 0.61 237 0.53 238 0.57	221 1.75 222 1.61 223 0.79 224 0.96 225 4.14 226 2.44 227 2.95 228 0.85 229 1.23 230 5.30 231 1.59 232 2.12 233 2.35 234 0.90 235 0.82 236 0.61 237 0.53 238 0.57 239 0.56

......

BONDAR CLEGG

REPORT: VO1	STAL UKAPHITE	CORPORATION		PROJECT: NONE O	IVEN	
	-01959.0 (CO	MPLETE)	DATE RECEIVED: 03-OCT-01	DATE PRINTED:	5-0CT-01	PAGE 1 OF 3
SAMPLE	ELEMENT	-				
NUMBER	UNITS	PCT				
R2 3151		3.72				
P2 3152		3.93				
R2 3153	Jun Galanco -	3.78				
114 0 190	e la	3.94				
	SAMEL S	4.22				
R2 3156		3.50				
R2 3157		3.71				
R2 3158		3.97				
R2 3159		2.18	. 1			
R2 3160		2.72				
R2 3161		2.83				
R2 3162		2.13				
R2 3163		2.06 0.92				
R2 3164 R2 3165		0.92				
K2 5105		0.70				
R2 3170		0.20				
			······································	· · · · · · · · · · · · · · · · · · ·		
				· · · · ·		
				· · · · ·		
						-
						-

CLIENT: CRYS	STAL GRAPHITE	CORPORATION		PROJECT: NONE GIVEN	
	-01999.0 (COI		DATE RECEIVED: 05-OCT-	-01 DATE PRINTED: 12-OCT-01	
SAMPLE	ELEMENT	C Org			•••••••••••••••••••••••••••••••••••••••
NUMBER	UNITS	PCT		,	
R2 3167		4.64			
R2 3169		6.71			



Geochemica Lab Report

CLIENT: CRYSTAL GRAPHITE CORPORATION REPORT: V01-01999.0 (COMPLETE)		DATE RECEIVED: 05-0CT-01	PROJECT: NONE GIVEN DATE PRINTED: 12-OCT-01	PAGE 3 OF 3
SAMPLE NUMBER	ELEMENT C Org UNITS PCT			
3167	4.64			
Duplicate	4.63			
			v	

PHONE (604) 253-3158 PAX (604) 253-1716 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) GEOCHEMICAL ANALYSIS CERTIFICATE 02/02 Crystal Graphite Corporation File # A103506 P.O. Box 119, Little Sloc, Slocan Park BC VOG 2E0 Submitted by: Jim Chapman പ് SAMPLE# C/GRA o, <.02 4.11 6.64 6.57 1.59 SI 3166 3168 RE 3168 STANDARD CSB 6042531716 - GRA/C GROUP 2A - 600 DEG. C IGNITION, 15% HCL LEACHING, RESIDUE BY LECO. - SAMPLE TYPE: ROCK R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns, NO, 0 / SIGNED BY. . TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS REPORT MAILED: DATE RECEIVED: OCT 4 2001 DATE FAX LAB ACME ANALYTICAL М 241 WED 00T-17-2001 Data FA All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

SAMPLE ELEMENT C org D2 1001 TRTTS FCT D2 1002 1.48 D2 1003 1.05 D2 1003 1.00 D2 1004 0.94 D2 1005 1.50 D2 1006 0.96 D2 1007 1.38 D2 1008 2.04 D2 1010 3.16 D2 1011 1.65 D2 1012 2.01 D2 1013 1.42 D2 1014 0.96 D2 1015 0.48 D2 1016 2.42 D2 1015 0.48 D2 1016 2.42 D2 1013 1.34 D2 1014 0.96 D2 1015 0.48 D2 1014 0.96 D2 1015 0.48 D2 1016 2.42 D2 1017 1.40 D2 1020 0.42 D2 1021 1.30 D2 1023 0.42		(STAL GRAPHITE CORPORATION 1-01958,0 (COMPLETE)	DATE RECEIVED: 03-OCT-01	PROJECT: NONE GIVEN DATE PRINTED: 9-0CT-01	PAGE 1 OF 1
D2 1001 CMC 1.48 D2 1003 1.05 D2 1004 0.94 D2 1005 1.50 D2 1006 0.96 D2 1007 1.38 D2 1008 2.04 D2 1008 2.04 D2 1010 3.34 D2 1011 1.65 D2 1012 2.01 D2 1013 1.42 D2 1015 0.48 D2 1016 1.42 D2 1017 1.42 D2 1018 1.42 D2 1019 0.44 D2 1019 1.34 D2 1019 1.34 D2 1019 1.30 D2 1021 1.44		-			
D2 1002 $1,05$ D2 1003 $1,00$ D2 1004 0.94 D2 1005 1.50 D2 1006 0.96 D2 1007 1.38 D2 1008 2.04 D2 1010 3.34 D2 1012 2.01 D2 1012 2.01 D2 1013 1.42 D2 1015 0.48 D2 1016 2.22 D2 1018 2.22 D2 1019 1.34 D2 1012 0.42	norder	UNITS PCT			
D2 1002 $1,05$ D2 1003 $1,00$ D2 1004 0.94 D2 1005 1.50 D2 1006 0.96 D2 1007 1.38 D2 1008 2.04 D2 1010 3.34 D2 1011 1.65 D2 1012 2.01 D2 1013 1.42 D2 1014 0.96 D2 1015 0.48 D2 1016 1.42 D2 1018 2.22 D2 1019 1.34 D2 1012 0.42	D2 1001	1.48			
D2 1004 1.00 D2 1005 0.94 D2 1006 0.96 D2 1007 1.38 D2 1008 2.04 D2 1010 3.34 D2 1010 3.34 D2 1011 1.65 D2 1012 2.01 D2 1013 1.42 D2 1015 0.48 D2 1016 1.42 D2 1018 2.02 D2 1019 1.34 D2 1019 0.48 D2 1019 0.42 D2 1019 0.42	D2 1002				
D2 1005 1.50 D2 1006 0.96 D2 1007 1.38 D2 1008 2.04 D2 1009 1.16 D2 1010 3.34 D2 1011 1.65 D2 1012 2.01 D2 1013 1.42 D2 1015 0.48 D2 1016 1.42 D2 1018 2.22 D2 1018 2.22 D2 1019 1.34 D2 1021 1.30	D2 1003	1.00	ň		
D2 1006 0,96 D2 1007 1.38 D2 1008 2.04 02 1009 1.16 D2 1010 3.34 D2 1011 1.65 D2 1012 2.01 D2 1013 1.42 D2 1014 0.96 D2 1015 0.48 D2 1016 1.42 D2 1017 1.42 D2 1018 2.22 D2 1019 1.34 D2 1021 1.30 D2 1021 1.30 D2 1021 1.30 D2 1021 1.30	D2 1004	0 . 94			
D2 1007 1.38 D2 1008 2.04 02 1009 1.16 D2 1010 3.34 D2 1.010 D2 1012 2.01 D2 1013 1.42 D2 1014 0.96 D2 1015 0.48 D2 1016 1.42 D2 1017 1.42 D2 1018 2.22 D2 1019 1.34 D2 1020 0.42	D2 1005	1,50 L			
D2 1007 1.38 D2 1008 2.04 02 1009 1.16 D2 1010 3.34 D2 1012 2.01 D2 1013 1.42 D2 1014 0.96 D2 1015 0.48 D2 1016 1.42 D2 1017 1.42 D2 1018 2.22 D2 1019 1.34 D2 1020 0.42	D2 1006	0,96			
D2 1008 2.04 02 1009 1.16 D2 1010 3.34 D2 1.012 D2 1012 2.01 D2 1013 1.42 D2 1014 0.96 D2 1015 0.48 D2 1016 1.42 D2 1017 1.42 D2 1018 2.22 D2 1019 1.34 D2 1020 0.42	D2 1007				
02 1003 1.16 D2 1010 3.34 D2 1011 1.65 D2 1012 2.01 D2 1013 1.42 D2 1014 0.96 D2 1015 0.48 D2 1016 1.42 D2 1017 1.42 D2 1018 0.42 D2 1019 1.34 D2 1020 0.42	D2 1008				1
D2 1010 3.34 D2 1011 1.65 D2 1012 2.01 D2 1013 1.42 D2 1014 0.96 D2 1015 0.48 D2 1016 1.42 D2 1017 1.42 D2 1018 2.22 D2 1019 1.34 D2 1020 0.42	02 1009				
D2 1012 2.01 D2 1013 1.42 D2 1014 0.96 D2 1015 0.48 D2 1016 1.42 D2 1017 1.42 D2 1018 2.22 D2 1019 1.34 D2 1020 0.42	D2 1010				
D2 1012 2.01 D2 1013 1.42 D2 1014 0.96 D2 1015 0.48 D2 1016 1.42 D2 1017 1.42 D2 1018 2.22 D2 1019 1.34 D2 1020 0.42	D2 1011	1,65			
D2 1013 1.42 D2 1014 0.96 D2 1015 0.48 D2 1016 1.42 D2 1017 1.42 D2 1018 2.22 D2 1019 1.34 D2 1020 0.42	D2 1012				
D2 1015 0.48 D2 1016 1.42 D2 1017 1.42 D2 1018 2.22 D2 1019 1.34 D2 1020 0.42	D2 1013				
D2 1016 1.42 D2 1017 1.42 D2 1016 2.22 D2 1013 1.34 D2 1020 0.42 D2 1021 1.30 D2 3139 0.14	D2 1014	0,96			
D2 1017 1.42 D2 1018 2.22 D2 1019 1.34 D2 1020 0.42 D2 1021 1.30 D2 3139 0.14	D2 1015	0.48			
D2 1017 1.42 D2 1018 2.22 D2 1019 1.34 D2 1020 0.42 D2 1021 1.30 D2 3139 0.14	D2 1016	1.42			
D2 1018 2.22 D2 1019 1.34 D2 1020 0.42 D2 1021 1.30 D2 3139 0.14	D2 1017				-
D2 1019 1,34 D2 1020 0.42 D2 1021 1.30 D2 3139 0.14	D2 1018				
D2 1020 0.42 D2 1021 1.30 D2 3139 0.14	D2 1019				
D2 3139 0.14	D2 1020				
D2 3139 0.14	D2 1021	1.30			
	D2 3139				
	D2 3140	0.46			-

(ISO 9002 Accredited Co.)

GEOCHEMICAL ANALYSIS CERTIFICATE

Crystal Graphite Corporation File # A104264 P.O. Box 119. Little Sloc. Slocan Park BC VOG 2E0

0	
പ	SAMPLE# C/GRA
716	SI <.02 2369 1.57 2386 2.52 3186 .02 3245 1.52 3272 2.82 3283 3.26 STANDARD CSB 1.35
FAX NO. 6042531	

All results are considered the confidential property of the client. Acme assumes the Liabilities for actual cost of the analysis only.

Data 🏝 /FA

FAMSR: 604-985-1071 At 21-DEC-2001 11:34 Page 2

BONDAR CLEGG

	STAL GRAPHITE CORPORATION -02429.0 (COMPLETE)	DATE RECEIVED: 07-DEC-01	PROJECT: NONE GIVEN DATE PRINTED: 21-DEC-01	PAGE 1 OF 2
SAMPLE	ELEMENT C Org	SAMPLE		
NUMBER	UNITS PCT	NUMBER	ELEMENT C Org UNITS PCT	
T2 2369	1.70	T2 3186	0.11	
T2 2370	1,69	T2 3201 -	3,79	
T2 2371	2.91	T2 3202	3.56	
T2 2372	1.89	T2 3203	5,96	
T2 2373	2.45	т2 3204	2.44	•
T2 2374	2.23	T2 3205	8.88	
T2 2375	2.80	T2 3206	0.45	_
T2 2376	2.37	T2 3207	1.40	
T2 2377	3,53	T2 3208	0.90	
T2 2378	4,38	T2 3209	0,76	
T2 2379	7,98	T2 3210	4.47	-
12 2380	6.08	T 2 3211	7.06	
T2 2391	1.64	T 2 3212	6.71	-
T2 2382	3,02	T2 3213	4 , 93	-
T2 2383	2.24	T2 3214	3.71	
T2 2384	2.41	T2 3215	3.42	
T2 2385	3.45	T2 3216	4.07	
T2 2386	2.92	T2 3217	5.89	
12 2387	1,90	T2 3218	6,52	
T2 2388	3.26	T2 3219	3.48	-
T2 2389	2.05	т2 3220	3 . 73	
T2 2390	6.07	T2 3221	2.26	
T2 2391	2.55	T2 3222	2.79	
T2 2392	1.49	T2 3223	3,39	
T2 2393	1.59	T2 3224	4.02	
T2 2394	1,84	т2 3225	3.70	
T2 23 95	2.65	T2 3226	4.01	
T2 2396	2.71	T2 3227	3 88	
T2 2397	2.40	T2 3228	2.22	
T2 23 <i>98</i>	4.40	T2 3229	1.68	
T2 2399	3.47	T2 3230	1.57	
T2 2400	1.09	T2 3231	3.06	
T2 3178	1,23	T2 3232	5.57	
T2 3179	1.29	T2 3233	1.40	
T2 3180	1.42	T2 3234	4.73	
T2 3181	1.30	T2 3235	3.43	_
T2 3182	1.30	T2 3236	3.77	
T2 3183	1.31	T2 3237	3.02	
T2 3184	0.47	T 2 3238	3.01	
T2 3185	2,32	T2 3239	3 - 15	

FAMSR: 604 985-1071 At 21-DEC-2001 11:34 Page 3

CLIENT: CRYSTAL GRAPHITE CORPORATION REPORT: V01-02429.0 (COMPLETE)		PROJECT: NONE GIVEN				
		DATE RECEIVED: 07-DEC-01		PAGE 2 OF 2		
433/DT 8						
SAMPLE NUMBER	ELEMENT C Org UNITS PCT	Sample Number	ELEMENT C Org UNITS PCT	-		
NONDER	00110 101	NORDER	ONTES POT			
T2 3240	1.05	T2 3280	2.72			
T2 3241	1.62	T2 3281 4	3,50			
T2 3242	0.74	T 2 3282 *	3.99			
T2 3243	1.45	T2 3283	3.91			
т2 3244	1,66	T2 3284	3.19			
T2 3245	1,71	T2 3285	4,15			
T2 3246	1,80	T2 3286	4:18			
T2 3247	1.17	T2 3287	1.35			
T2 3248	1,43	T2 3288	2,97			
T2 3249	1,18	T2 3289	2,53			
			6 i UU			
T2 3250	1,73	T2 3290	2,59			
T2 3251	0.55	T2 3291	2.45	50 1		
T2 3252	1.89	T2 32 92	1,20			
T2 3253	0,79	T2 3293	1,54	-		
T2 3254	2.50	T2 3294	3.77			
T2 3255	1,39	T2 3295	4.38	a		
T2 3256	0,93	T2 3296	1.42	-		
T2 3257	3.37	T2 3297	1.61			
T2 3258	9,68	T2 3298	2:10	*		
T2 3259	3.47	T2 3299	3.90			
10 0000			3130			
т2 3260	7.83	T2 3300	2 - 78			
T2 3261	7.30	T2 3301	2.23	- 		
т2 3262	0 . 61	T2 3302	4,39			
T2 3263	1 . 65	T2 3303	3,59			
T2 3264	1.93	T 2 3304	3.49			
T2 3265	1,31	T2 3305	3,54			
T2 3266	2.18	T2 3306	3,53			
T2 3267	2.49	T2 3307	3.49	u		
T2 3268	3.39	T2 3308	2.10			
T2 3269	3.00	T2 3309	3.75			
T2 3270	3.53	T2 3310	4.50			
T2 3271	4,75	T2 3310 T2 3311	2.70			
T2 3272	3,07	T2 3312	2:98			
T2 3273	2,65	T2 3313	1.96			
T2 3274	3.91	T2 3313 T2 3314	2.20	-		
14 JE/3	v. 24	12 2314	4.20			
T2 3275	3.29	T2 3315	3.80	_		
T2 3276	7,05	T2 3316	1,78	-		
T2 3277	2.90	T2 3317	4.80			
T2 3278	3.48					
T2 3279	5,15					

002

Geochemicalu Lab Report

	AL GRAPHITE CORPORATION		PROJECT: NONE GIV	EN			
EPORT: V01-0)1726.0 (COMPLETE)	DATE RECEIVED: 31-AUG-01	DATE PRINTED:	7-sep-01	PAGE	1 OF	1
AMPLE	ELEMENT C Org		19294 (*4 1999 - 40 90 40 - 10 10 10 10 10 10 10 10 10 10 10 10 10				
UMBER	UNITS PCT						
4 CGC2285	2.04						
P4 CGC2286	2.36						
P4 CGC2287	0.65						
P4 CGC2288	0.59			· .			
P4 CGC2289	0.98	-i					
	~					•••••••	
P4 CGC2290	0.31						
P4 CGC2291	3.20						
P4 CGC2292	0,84						
P4 CGC2293	3.15						
P4 CGC2294	1.74			*** *****			
P4 CGC2295	0.60	•••••••••••••••••••••••••••••••••••••••					••••
P4 CGC2296	0.33						
P4 CGC2290 P4 CGC2297	0.28						
P4 CGC2297	3.02						
P4 CGC2299	1.10						
14 0000000							
P4 CGC2300	1.87						
P4 CGC2301	0.25						
P4 CGC2302	2.46						
P4 CGC4344	1.67						
P4 CGC4345	2.19						
							•••••
P4 CGC4346	2.00						
P4 CGC4347	1.25						
P4 CGC4348	1.70						
P4 CGC4349	1.64						
P4 CGC4350	1.66						
						•••••••••••••••	
P4 cGC4351	7.14						
P4 CGC4352	1.29						
P4 CGC4353	1,46						
P4 CGC4354	1.34			-			
P4 CGC4355	1.62						
		-1.21 - 1.774 - 1.744 - 1.744 - 1.747					
P4 CGC4356	1.62						
P4 CGC4357	1.33						
P4 CGC4358	1,39						
P4 CGC4359	1.26						
P4 CGC4360	0.52						
	1.02						**
P4 CGC4361 P4 CGC4362	1.10						
P4 CGC4362	1.83						
	2.18						
P4 CGC4364	2.10						

CLIENT: CRYSTAL GRAPHITE CORPORATION		PROJECT: NONE GIVEN				
REPORT: V01	-01835.0 (COMPLETE)	DATE RECEIVED: 18-SEP-01	DATE PRINTED: 20-SEP-01	PAGE 1 OF 1		
SAMPLE	ELEMENT C Org	SAMPLE	ELEMENT C Org			
NUMBER	UNITS PCT	NUMBER	UNITS PCT			
T1 2323	0.38	T1 2363	1.27			
T1 2324	0,46	Т1 2364	2,00			
T1 2325	2.00	T1 2365	1.86			
T1 2326	1.65	T1 2366	1,25			
т1 2327	Q , 65	T1 2367	0,70			
T1 2328	0,82	T1 2368	1,85			
T1 2329	1.28					
T1 2330	1.49					
T1 2331	2 . 92					
T1 2332	2,34					
T1 2333	2,47					
T1 2334	1.88					
T1 2335	3.44					
T1 2336	1,98					
T1 2337	2.12					
T1 2338	1,10					
T1 2339	2.88					
T1 2340	1.86					
т1 2341	1.02					
T1 2342	0.84					
m1 0040	1.07					
T1 2343	1,06					
T1 2344	0.86					
T1 2345	0,55					
T1 2346	0,69					
T1 2347	1.58					
т1 2348	1,67					
т1 2349	1.83		i			
T1 2350	0:57					
T1 2351	0.54					
T1 2352	0.28					
т1 2353	1.71					
T1 2354	1.18					
T1 2355	5,72					
T1 2356	5.44					
T1 2357	1.75					
T1 2358	1.76					
T1 2359	2,28					
T1 2360	3,27					
T1 2361	1.48					
T1 2362	0,76					