

GEOLOGICAL AND GEOCHEMICAL REPORT ON THE STEWART PROPERTY

NELSON MINING DIVISION, BC MAPSHEETS: 082F/3 and 82F/6 LATITUDE 49°16'N LONGITUDE 117°18'E

for

EMGOLD MINING CORPORATION 1400 - 570 GRANVILLE STREET VANCOUVER, BC V6C 3P1

by

LINDA DANDY, P.Geo. Consulting Geologist

May 2002

GEOLOGICAL SURVEY BRANCH ASSESSMENT APPORT

SUMMARY

The Stewart Property, containing several gold, molybdenum, zinc and tungsten prospects, is located near the town of Salmo in southeastern British Columbia. The property lies predominantly within lower Jurassic Elise Formation (Rossland Group) mafic volcanics and associated mid Jurassic and younger intrusive rocks.

The Stewart Property was worked by a number of operators from 1974 to 1998. Emgold Mining Corporation acquired the Stewart Property in 2001. Previous work on the property includes geology, geochemistry, geophysics, trenching and drilling. The drilling was concentrated on the Stewart Moly Zone, with smaller programs carried out on the North and South Craigtown Grids (formerly known as the Minnova north and south grids).

This report presents the results of the 2001 exploration program consisting of soil geochemical surveys over five grid areas defining zones of anomalous gold, zinc, molybdenum and tungsten.

For 2002, the recommended work program consists of detailed geological mapping and rock chip sampling, expanded soil geochemical surveys, and excavator trenching. This program is budgeted at \$40,000.00.

TABLE OF CONTENTS

	Page
SUMMARY	1
1) INTRODUCTION	4
2) LOCATION AND ACCESS	4
3) PHYSIOGRAPHY	4
4) HISTORY	4
5) WORK DONE BY EMGOLD IN 2001	6
6) CLAIM INFORMATION	7
7) GEOLOGY	9
8) SOIL GEOCHEMISTRY	17
9) CONCLUSIONS AND RECOMMENDATIONS	31
10) REFERENCES	34
11) COST STATEMENT	35
12) QUALIFICATIONS	36
APPENDICES	37
APPENDIX I - ROCK CHIP SAMPLE RESULTS – CERTIFICATES OF ANALYSES	

APPENDIX II - SOIL SAMPLE RESULTS - CERTIFICATES OF ANALYSES

	Page
TABLE I – CLAIM INFORMATION	7
TABLE II – ROCK CHIP SAMPLE RESULTS	. 17
FIGURES	
FIGURE 1 – LOCATION MAP	. 5
FIGURE 2 – CLAIM AND GRID LOCATION MAP	8
FIGURE 3 – REGIONAL GEOLOGY MAP	. 10
FIGURE 4 – SOIL GEOCHEMISTRY – PO GRID - GOLD VALUES	19
FIGURE 5 – SOIL GEOCHEMISTRY – NORTH CRAIGTOWN GRID - GOLD AND ZINC VALUES	20
FIGURE 6 – SOIL GEOCHEMISTRY – SOUTH CRAIGTOWN GRID – GOLD VALUES	21
FIGURE 7 – SOIL GEOCHEMISTRY – SOUTH CRAIGTOWN GRID - ZINC VALUES	22
FIGURE 8 – SOIL GEOCHEMISTRY – SOUTH CRAIGTOWN GRID - MOLYBDENUM VALUES	23
FIGURE 9 – SOIL GEOCHEMISTRY – ARROW GRID – GOLD VALUES	24
FIGURE 10 – SOIL GEOCHEMISTRY – ARROW GRID – MOLYBDENDUM VALUES	25
FIGURE 11 - SOIL GEOCHEMISTRY - ARROW GRID - ARSENIC VALUES	26
FIGURE 12 – SOIL GEOCHEMISTRY – ARROW GRID – ZINC VALUES	27
FIGURE 13 – SOIL GEOCHEMISTRY – ARROW GRID – TUNGSTEN VALUES	28
FIGURE 14 – SOIL GEOCHEMISTRY – QUARTZ STOCKWORK GRID – GOLD VALUES	29
FIGURE 15 – SOIL GEOCHEMISTRY – QUARTZ STOCKWORK GRID – MOLYBDENUM VALUES	30

TABLES

2

•

Sec. . . .

1) INTRODUCTION

The Stewart Property contains a number of gold, molybdenum, tungsten and zinc prospects, located near Salmo in southeastern British Columbia. Emgold Mining Corporation acquired the property from vendors Jack and Eric Denny in mid 2001.

Work done by Emgold in 2001 consisted of soil sampling five grid areas, and the results from this program show the need for expanded geochemical surveys and follow up geological mapping on the property. This report covers the details and results of the 2001 work program.

2) LOCATION AND ACCESS

The Stewart Property is located 7 kilometres north of Salmo, and directly west of Ymir, in the Nelson Mining Division of southeastern British Columbia (Figure 1). The claims are centred at latitude 49°16'N and longitude 117°18'E within mapsheets 82F/3 and 82F/6.

Access to the Stewart Property is either via the Eric Creek Road, 4 kilometres west of Salmo on Highway 3, or by the Stewart Creek Road, 4 kilometres north of Ymir on Highway 6. A number of logging and old mining roads provide access throughout the claims. These roads are in various conditions, some being maintained and others being overgrown with brush and alder.

3) PHYSIOGRAPHY

The Stewart Property is located in an area of rugged terrain. Topography on the property is steep with elevations ranging from 750 metres to 1,950 metres. Outcrop exposure is generally limited, but ridge crest outcrops are fairly common. The lower slopes and valley bottoms have extensive deposits of till.

Several portions of the claim area have been recently logged, with the remainder being covered with first and second growth forest consisting of dominantly conifer stands, but also some deciduous stands and minor brush fields.

The climate is moderate. Precipitation can occur throughout the year, but is lightest during the summer months. Most of the property is snow covered during December to April, with the highest regions not melting off until June or July. Temperatures typically range from -15° to 20° C annually.

4) HISTORY

The Stewart Property is located in an area of much early mining activity, with the Ymir, Erie, Sheep Creek and Nelson districts being sites of extensive exploration and production for over 100 years.

Recorded work on the Stewart Property began with surface exploration and development of the Arrow Tungsten showing by Premier Gold Mining Co. in 1942. Tungsten mineralization was identified over a 1000 foot (300 metre) strike length, with samples up to a few feet wide of over 1% WO₃. In the late 1960s and early 1970s, the property was explored for copper by Quintana and Copper Horn. Prospectors Eric and Jack Denny staked the property in 1978, and Shell Canada, followed by Selco, explored the property for molybdenum. Most of this work (including extensive drilling) was focused on the Stewart Moly and Breccia Summit areas. Large areas of the property were also soil sampled on a wide grid, and covered by airborne magnetic and impulse EM surveys.

From the mid 1980s to the mid 1990s, several groups explored the property for gold. US Borax and Lacana conducted geochemical surveys, concentrating in the Rest Creek area. Minnova, followed by Cameco, explored the Craigtown Creek area with geochemistry and geophysics (induced polarization and magnetics). Cameco drilled four core holes into one of the targets identified by this work. The found extensive anomalous gold in altered andesite, diorite and feldspar porphyry (values in the low 10s to 100s of ppb, maximum 24,854 ppb over 1 metre in a quartz-sulphide vein). In 1996, Orvana Minerals conducted geologic mapping, rock, soil and moss mat sampling, and a ground magnetic and VLF-EM survey.

The most recent work done on the property prior to Emgold's option was in 1997 by Orvana Minerals. The Craigtown Creek grid area was extended and covered by soil geochemistry and geological mapping. Also road construction to the ridge between the south and main forks of Craigtown creek was completed in order to access drill target areas defined by previous work.

5) WORK DONE BY EMGOLD MINING CORPORATION IN 2001

In 2001, Emgold Mining Corporation conducted soil geochemical surveys in five grid areas – the Arrow, Po, North and South Craigtown and Quartz Stockwork Grids. The grid locations can be seen on Figure 2. Fieldwork was carried out between July 22 and October 31, 2001 by a five person crew working out of the town of Salmo. Fieldwork was supervised by the author.

ARROW GRID

During 2001, a small grid was centred over the historic (1940s) Arrow Tungsten workings. Six grid lines of 500 metres length were put in at 100 metre spacings with samples collected along the grid lines at 25 metres stations.

PO GRID

The PO Grid covers mapped areas of mid Jurassic Silver King intrusive on the east and west sides of Highway 6. 11 grid lines spaced 200 metres apart were sampled at 50 metres stations where the underlying rock was believed to be the intrusive.

NORTH AND SOUTH CRAIGTOWN GRIDS

Prior work, in the 1990s, shows good gold soil geochemical anomalies in the north and south Craigtown Creek areas (formerly called the Minnova North and South anomalies). In 2001, Emgold extended these two grid areas. The North Craigtown Grid consists of five 100 metre spaced grid lines with sample stations at 25 metres along the lines. This grid was designed to expand and close off previously defined gold soil geochemical anomalies located to the north.

The South Craigtown Grid consists of six 200 metre spaced lines with samples collected at 25 metres stations along these lines. This grid was designed to expand the gold soil geochemical anomalies located to the west of this grid, and to cover previously defined induced polarization chargeability highs.

QUARTZ STOCKWORK GRID

The Quartz Stockwork grid was put in over an area with limited outcrop exposure of altered intrusive rock containing abundant parallel and crosscutting quartz stockwork veinlets. Seven grid lines were put in at 100 metre spacings and samples were collected at 25 metre intervals along the lines. Also six rock chip samples were collected from outcrops exhibiting good quartz stockworking.

6) CLAIM INFORMATION

The Stewart Property is located within the Nelson Mining Division and consists of nine modified grid and six two post claims to total 127 units (Figure 2). Claim information is listed in Table I.

Claim Name	Units	Record No.	Anniversary (Expiry) Date
PORPH	15	384362	March 7 (2004)
PORPH 2	15	387884	July 6 (2004)
PORPH 3	12	387885	July 4 (2004)
PORPH 4	1	387886	July 3 (2004)
PORPH 5	1	387887	July 3 (2004)
PORPH 6	1	387888	July 10 (2004)
FAIRVIEW L2903	1	234612	March 15 (2004)
FREE SILVER L2902	2 1	232633	April 18 (2005)
ROYAL L5322	1	232634	April 18 (2005)
STEWART 1	20	232635	April 28 (2004)
STEWART 2	20	232636	April 28 (2004)
STEWART 3	8	232637	May 8 (2004)
STEWART 5	3	232697	November 28 (2004)
STEWART 6	16	232698	November 28 (2004)
STEWART 7	12	232699	November 28 (2004)

TABLE I CLAIM INFORMATION

7) GEOLOGY

Geology and mineralization of the Stewart Property is well described by Fredericks and Thomson (1998), and is summarized below:

REGIONAL GEOLOGY

The immediate region is underlain in the east by Paleozoic clastic and carbonate sedimentary rocks of the Kootenay Terrane, and in the west by Mesozoic volcanic rocks of the Quesnel Terrane. In this region, the stratigraphy of both the Kootenay and Quesnel Terranes have been folded and faulted along an east-west compressional axis. They are intruded by felsic volcanic rocks that range in age from Jurassic to Tertiary. Coeval dioritic intrusions are common in the mafic andesitic volcanic rocks of the Jurassic Rossland Group. These tend to be relatively small bodies. Extensive late Mesozoic intrusive activity produced the widely distributed Nelson Group of intrusives of granitic to dioritic compositions. Eocene age, typically potassic (monzonite) intrusive rocks of the Coryell Group are also widely distributed in the region. Young (Tertiary) dykes and sills of rhyolite and felsite are common, and some small, more mafic intrusives are present. Much older clastic sedimentary rocks of the Proterozoic Aldridge (Belt) Supergroup outcrop extensively to the east.

PROPERTY GEOLOGY

The Stewart Property is underlain by sedimentary and volcanic rocks of the Jurassic Rossland Group, and by intrusive rocks of various younger ages (Figure 3). The oldest rocks are of the Elise Formation, the volcanic component of the Rossland Group. The Archibald Formation, which is the basal unit of the Rossland Group and composed of fine clastic sediments, outcrops west of the Stewart Property. The volcanic rocks of the Elise Formation are basaltic to andesitic in composition, tend to porphyritic flows, breccias, pyroclastics and subvolcanic intrusives. A fairly significant component of this formation includes fine-grained, equigranular to porphyritic/aphanitic diorite/andesite. Phenocrysts of feldspar, augite and hornblende are common in some of the units.

Overlying the Elise Formation is the Hall Formation (also Jurassic Rossland Group). These rocks are mostly argillite, siltstone, fine-grained sandstone and minor conglomerate. They are rarely limy, but are commonly siliceous. Compositionally, the rocks are very heterolithic, with a variety of clasts, including a high percentage of volcanic fragments. The Elise and Hall Formations are folded into a broad north-south trending syncline (Hall Creek Syncline) that runs through the property and extends both north and south over a 20 kilometre strike length. This north-south structural feature is the strongest one on the property.

A variety of intrusive rock types and ages have intruded the older rocks. These belong to three major groups. The older group consists of coeval diorite intrusives in the andesite pile of the Elise Formation. These tend to be fine to medium-grained, equigranular and weakly porphyritic. They range from very weakly to moderately magnetic. They probably are not very large, occurring as dykes or sills a few metres thick. Flow lineation in feldspar or hornblende phenocrysts is seen near the intrusive contacts in drill core.

The next set of intrusive rocks is the Cretaceous Nelson intrusive suite, mostly quartz monzonite on the property, but also monzonite, granite and diorite. These tend to be large, in places composite, intrusive masses outcropping most extensively in the northern portion of the property, in the Stewart and Craigtown Creek drainages. Smaller stocks occur in the western portion of the property. Rocks of these intrusives are generally medium-grained, equigranular to porphyritic. They seem to range from weakly to fairly strongly magnetic. Porphyry molybdenum mineralization on the property is thought to be related to these intrusives.

Younger intrusives of the Coryell Suite (Eocene or later?) are also monzonitic, but tend to be a little more quartz-poor and alkaline than the Nelson rocks. They are typically biotitic. They may be equigranular or porphyritic. They occur in both the east central and west central portions of the property. What are probably the youngest intrusives are rhyolite, latite and minor basalt sills/dykes that intrude the older Rossland rocks and both Nelson and Coryell intrusives. These cross-cutting intrusives are aphanitic to weakly porphyritic (rhyolite and latite may have quartz eyes), generally strike north-south and are widely scattered on the property. The rhyolite intrusives commonly have distinct flow banding near their contacts with the country rock.

The dominant structural grain on the property is north-south. The Rossland Group stratigraphy generally strikes north-south, as does the Hall Creek Syncline. Northwest and northeast faults and shear zones are known on the property; they appear to be significant controls to mineralization. The common young rhyolite dykes and sills also strike north-south and dip steeply. All of these features indicate that the deformation occurred within a stress regime with an east-west compressional axis that was probably long lasting and contemporaneous with accretion onto the North American continent.

CRAIGTOWN CREEK AREA GEOLOGY

Orvana conducted mapping in 1996 and 1997 along road cuts and stream drainages in the Craigtown Creek area. The following geological summary is from Fredericks and Thomson, 1998, and is reproduced below as this area contains important gold mineralization.

The Elise (Jurassic age Rossland Group) Formation volcanics underlie a large portion of the Craigtown Creek area, and hosts a significant part of the known mineralization. They strike generally north-south and dip moderately to steeply east. Lithologies of the Elise Formation are texturally highly variable. The rocks constitute essentially an andesitic volcanic pile, but include flows, clastics and intrusives. Colour varies from light to dark grey, green or almost black. Most of the rocks are either porphyritic/aphanitic andesite flows or tuffs. Feldspar, hornblende and augite phenocrysts are common. The tuffs vary from ashes to lapilli or even cobble tuffs. Rarely, bedding is visible in ashy beds. Dioritic, porphyritic coeval dykes and/or sills are also common. These commonly have flow lineations preserved in the phenocrysts, near the contacts with the country rock. Compositionally, rocks of the Elise Formation are seen to vary from andesite to gabbro. Some of the rocks are basalt, containing up to 25% dark green to black augite phenocrysts. In the western portion of the area, a narrow belt of fine-grained tuffaceous volcanics is exposed in road cuts. These rocks lie between the granite and diorite intrusives, and are hornfelsed. They possibly represent a small sliver of the Archibald Formation (rather than the Elise Formation), otherwise not represented in the area, caught between two intrusives. Alteration in the Elise Formation is widespread and commonly consists of a propylitic assemblage, with less common potassic, carbonate and silicification.

Overlying the Elise Formation on the east are argillite, siltstone and tuffaceous rocks of the Hall Formation. These rocks also strike north-south and dip steeply. They are dark grey, tan to black and thinly bedded. They nave not been identified as calcareous in the Craigtown Creek area although they are in other areas of the property. They are often graphitic. Mineralization of these rocks in the study area seems to be restricted to the contact aureole around the "West Moly Intrusion", which is mostly further east. This mineralization is limited to disseminated pyrite/pyrrhotite and minor small quartzsulphide veins. Alteration in this aureole includes silicification and hornfels (possible potassium metasomatism or silica flooding).

In the western portion of the area a variety of intrusive rocks occur. These probably represent in part a lobe of Nelson (Cretaceous) granite, quartz monzonite and diorite and extend eastward from the Bonnington pluton up Craigtown Creek. The granite is light speckled grey, pink and tan, medium to coarse-grained and unaltered. The diorite is medium to dark grey, medium to fine-grained, and tends to be more mafic in the west. It is generally unaltered to weakly propylitically altered. The monzonite and quartz monzonite outcrop extensively in the western portion of the grid area. This rock is medium to dark grey, medium-grained and generally equigranular to weakly porphyritic. It tends to be more quartz-rich in the southern portion of its distribution. It is generally unaltered or only weakly propylitically altered, except near its contact with the country rocks, where propylitic alteration is stronger. This rock intrudes the volcanic rocks of the Elise Formation.

Small monzonitic feldspar porphyry intrusive plugs occur in the Craigtown Creek area. These rocks were originally thought to belong to the Nelson intrusive group (Cretaceous). However, Hoy and Dunne (1988) suggest that rocks similar to these, including the Silver King porphyry, may be synvolcanic. One of these porphyries outcrops east of the 1996 grid on Anomaly Ridge, where Cameco drilled four holes. Other bodies are certain to underlie other areas, and the float is very common. These rocks are porphyritic, with 10-30% feldspar phenocrysts ¼ to 1 cm long, set in fine-grained, tannish grey groundmass. In places, anhedral quartz eyes constitute a few modal percent. Petrographic study indicates that the feldspar crystals are plagioclase. They are cream coloured and euhedral. In places they demonstrate a flow lineation. Mafics are mostly hornblende and minor biotite, and constitute a minor portion of the mode. The rocks often contain disseminated pyrite and in places are cut by stockwork quartz veinlets.

Fine-grained, felsic monzonitic intrusives occur in several portions of the Craigtown Creek area. These rocks may be from the same magmatic event as the feldspar porphyry intrusive described above, as they are compositionally similar. These rocks are light tan

or grey, with pinkish hue in places, and contain only minor mafic minerals (generally 5% biotite). In places, especially near the ridge crest, brecciation is strong in these rocks. These appear to be intrusive breccias and show several cross-cutting relations. They are altered and mineralized, and are associated with anomalous Au and Cu geochemistry in both soils and rocks. Several percent magnetite is a common component, both as fine to medium-grained disseminations and as stockwork veinlets, with or without quartz. Potassium feldspar and quartz veining and flooding are present in places. These rocks probably represent elongate intrusives, perhaps 100 metres wide by 400 metres long, which were emplaced along the contact between the Elise Formation and the body of medium-grained monzonite. The strong northwest elongation implies structural control.

Latite and quartz latite dykes and small plugs occur in the Craigtown Creek area. They are probably Tertiary in age; they intrude the Rossland Group and the diorite and mozonite intrusives. The dykes are only a few metres in width and have strikes that range from northwest to northeast with steep dips. They are usually not altered or mineralized. However, a small plug of a trachytic latite and quartz latite porphyry with quartz veinlet stockwork and anomalous Au (>1 g/t) outcrops in the area. This plug was intruded along the same northwest striking zone of weakness that parallels the contact between the monzonite intrusives and the volcanics.

Rhyolite dykes are common on the Stewart Property, and a few of these traverse the Craigtown Creek area. They are also probably Tertiary, as they intrude the Rossland Group and the diorite and monzonite intrusives. They generally strike north-south and dip near vertically. They are a few metres in thickness. Texturally, the rhyolite is aphanitic, with minor quartz eyes in places. They have been mapped and logged as tuffs, flows or intrusives by other workers. Based on flow lineations, and chilled lower and upper contacts as seen in core, we believe that they are later intrusives. They are little altered except for some minor late quartz-carbonate veinlets. Some of them contain disseminated pyrite; in fact some earlier workers concluded that they are the source of the Au soil geochemical anomalies at Craigtown Creek. In our experience, they contain very little Au except where accompanied by quartz veinlet stockwork and pyrite.

Minor lamprophyre or porphyritic basaltic dykes, sills, and small plugs are present in the area. They are dark grayish brown, unaltered, not magnetic, and aphanitic, with minor biotite phenocrysts in places. They have distinct chill margins along both contacts in core. They also intrude the Rossland Group and the diorite and monzonite intrusives. They are probably late and unrelated to mineralization.

MINERALIZATION

The following mineralization summary is taken from Fredericks and Thomson (1998).

Mineralization on the property is widespread and varied. Included are porphyry Mo (and Cu?) with high grade breccia (Stewart Moly), contact/skarn related Mo and W (Arrow Tungsten), porphyry stockwork Au/Cu (Craigtown Creek), stratabound sediment hosted Au-rich sulphide (replacement manto or exhalative, i.e. Arlington Mine, Gold Hill?), quartz-pyrite-arsenopyrite stockwork in sediments (Trixi V), sediment hosted Ag-Zn-Pb

(Free Silver), and quartz-pyrite veins with gold (Craigtown Creek). Additionally, disseminated pyrite is common in several rock types, including andesite, argillite rhyolite and diorite/monzonite intrusives.

In the Craigtown Creek area, six types of mineralization are known. These include: 1) disseminated and fracture filling pyrite and/or pyrrhotite, +/- chalcopyrite, 2) quartz-magnetite veinlets, 3) quartz veinlet stockwork, 4) pyrite veinlets, 5) quartz-carbonate veins, and 6) quartz-sulphide veins. The first four types are associated with potentially economic, bulk tonnage style gold and copper mineralization. The last type could be associated with the same system that produced the former mineralization types, but is a distinctly different target type that also has economic potential.

Pyrite and pyrrhotite as disseminated grains and fracture fillings is common in the Craigtown Creek area. This type of mineralization is observed in all of the rock types mapped in the area, with the exception of the granite intrusive and basalt dykes. Traces of chalcopyrite are present in places with mineralization, where it occurs in intrusive or volcanic rocks, usually in association with shearing, brecciation or quartz veinlets. Propylitically altered quartz monzonite and diorite generally has only 0.5 to 2% sulphide. Andesite typically has more sulphide; 2-3% in propylitic rocks and 5-10% in silicified rocks, in relative proportion to the amount of alteration. Potassically altered intrusive and volcanic rocks have less sulphide, generally in the 0.5 to 4% range. This type of sulphide is also very common in feldspar porphyry. In one area of the grid, disseminated and fracture-filling pyrite and pyrrhotite in andesite tuff consistently yield 1-2 g/t gold in rock samples.

Quartz-magnetite veinlets are common in the north-northwest trending contact zone between the felsic monzonite intrusives and the Elise volcanics. This zone has strongly anomalous Au and Cu in soils. The host rocks are usually the intrusives and less commonly the volcanics. They are very rarely exposed in outcrop, mostly being seen in float or talus. The veinlets range from <1mm to 5mm in thickness, constitute 2-20% of the rocks and in places constitute a stockwork. Two or three stages of veining are visible in some hand samples; at least one stage is quartz only. Malachite stains are present in places, though the rocks rarely contain sulphide. Where sampled on the surface, rocks containing this type of mineralization contain anomalous Au (100 to 300 ppb range) and Cu (200 to 500ppm range).

Quartz and quartz-pyrite veinlet stockwork was observed in feldspar porphyry float in several places, and in the small latite plug mapped in the southern portion of the northwest striking zone of alteration and anomalous geochemistry that bisects the central portion of the grid. The rocks hosting this stockwork generally are moderately silicified, and contain several percent disseminated pyrite. Pyrite may also have been a component of the veinlets in some samples, but has been oxidized to limonite. This mineralization represents the potential for discovery of a large tonnage Au deposit, as several samples have returned Au values >1 g/t. This mineralization may represent more than one stage, as some rock samples contain high Au and low Cu; others have high Cu with high Au.

Pyrite veinlets in mafic andesite-basalt contain highly anomalous Au values in the central portion of Minnova's southern grid, east of Craigtown Creek. Dark green to black augite porphyritic mafic andesite or basalt is exposed in a few small outcrops, subcrop and float. Petrographic study indicates that this rock is propylitically altered and fragmental. It typically contains a few percent disseminated pyrite. In a couple of small outcrops, vague pyrite veinlets and clots are present. These vague veinlets have northeast orientations. Samples of this material have run in the 8 to10 g/t Au range.

Quartz-carbonate veinlets are present in both the Bonnington Pluton monzonite-diorite intrusive rocks and the Elise volcanics. They seem to occur in sheared, weakly altered (propylitic) outcrops. Shear directions are either northeast or north-south, with near vertical dips. Minor amounts of pyrite and or magnetite are present in the host rocks. Samples of these rocks have weakly anomalous Au and Cu.

Quartz-calcite-sulphide veins occurring in Elise volcanic rocks were intersected in one of the 1994 Cameco drill holes. They range from 10-30 cm wide and contain mostly white quartz and calcite, with 10-30% sulphide (pyrite, pyrrhotite and minor chalcopyrite). One of these veins contains 24,854 ppb Au. They appear to have high enough grade potential to be considered as targets, even in an underground mining situation. They are not known to outcrop anywhere. It is possible that the northeast striking Au in soil anomalies located on the grid north of Craigtown Creek are related to this type of mineralization. These anomalies are fairly narrow and linear appearing to be derived of relatively narrow veins or structures. Veins like this have been demonstrated to occur around porphyry type mineral systems in other important mining camps in British Columbia.

ALTERATION

The following alteration summary is taken from Fredericks and Thomson (1998).

Various types of alteration are known on the Stewart Property. In the area of the porphyry molybdenum occurrences phyllic and potassic alterations are reported by earlier workers. Silicification is common in various rock types. Propylitic alteration of intrusive and volcanic rocks is widespread on the property. In the Craigtown Creek area, the focus of work in 1996 and 1997, alteration types observed include propylitic, silicification, carbonate, potassic and skarn.

In the Craigtown Creek area propylitic alteration is common in andesitic volcanic rocks of the Elise Formation. Patchy, pervasive epidote and chlorite tint the rocks green. Fractures in the Elise volcanics have fillings, coatings or selvages of these minerals. Intrusive rocks, including monzonite and diorite, also commonly display pervasive to fracture-controlled propylitic alteration, where mafic crystals have altered to chlorite and/or epidote. This alteration is not as ubiquitous in the intrusive as it is in the volcanic rocks. The propylitic alteration may be related to the margins of the Bonnington intrusive rocks that invade from the west, and the later fine-grained monzonite plugs that intrude the Elise/Bonnington contacts. Silicification is intense within the Elise Formation andesite near Craigtown Creek. These rocks typically have a mottled, bleached colouration. Silicification is pervasive, and mafic minerals are entirely chloritized. The silicification is usually accompanied by disseminated pyrite or pyrrhotite. It is also coincident with anomalous soil and rock geochemistry (Au, Cu, As) in places, and therefore is assumed to be a function of the mineralization system. On the surface, these silicifed rocks tend for form small, iron-stained ridges and knobs with sparse vegetation. They appear to be associated primarily with northwest structures, also possibly intrusive contacts and northeast structures. On the ridge crest, silicified rocks appear to extend 100 metres east of the saddle where several northwest structures are mapped. This is also within 100 metres of an intrusive contact where potassic alteration is present.

Carbonate alteration is present in places in the andesite of the Elise Formation. This alteration can be either pervasive or veinlet/fracture controlled. Where pervasive, it tends to be apparent only when the rocks are subjected to HCl acid, or with petrography. Petrographic study indicates that most of the carbonate is ferroan dolomite and is generally a late alteration product. A few outcrops were located containing small veinlets of calcite, commonly associated with north-south or northeast shearing. In the north Minnova grid area, a northeast trending zone of carbonate alteration, bleaching and pervasive hematite/limonite traverses the hillside just downhill and east of the Cameco drill holes. This zone is approximately 20 metres wide.

Potassic alteration is present in places in brecciated and veined fine-grained felsic monzonite intrusive rocks along the Bonnington Pluton – Elise Formation contact. This alteration is fairly weak, and consists of pinkish to grayish flooding and veinlets of potassium feldspar. Quartz +/- magnetite veinlets are commonly associated with this alteration.

Skarn alteration was observed in two locations in the Craigtown Creek area. A small outcrop of green calc-silicate skarn was found just off the western end of the 1996 grid. This rock contains green pyroxene, brownish garnet, and black amphibole (+/- chlorite). Similar skarn was found in float near the east end of the old road running up the north side of the North Fork of Craigtown Creek. The protolith is probably andesitic fragmental volcanic rock.

ROCK SAMPLING TECHNIQUES

Chip samples were taken as continuous samples collected perpendicular to bedding or mineralizing structures wherever identifiable and consist of numerous 2 to 3 centimetre rock chips to total about 10 kilograms. Grab samples consist of 2 or 3 fist size pieces of rock representing a certain rock or mineralization type. All sample sites were marked with fluorescent flagging marked with the sample number.

Samples were placed in poly bags labelled with the corresponding sample number and were shipped to ACME Labs Ltd. in Vancouver for analyses. In the laboratory, samples were crushed to minus 200 mesh and fire assayed for gold, plus geochemically analyzed

for 30 additional elements by the ICP method. One sample was selected to be assayed for tungsten by sodium fusion.

ROCK SAMPLE RESULTS

Certificates of Analysis for the rock sample results can be found in Appendix I. Table II summarizes the results from the surface rock grab and chip sampling program.

TABLE II ROCK SAMPLE RESULTS

SAMPLE #	DESCRIPTION	Au	Mo	Zn	W
		(g/t)	(ppm)	(ppm)	(ppm)
STEWART MOLY	dump grab	0.04	10350	<1	4
ARROW W	dump grab	0.01	123	40245	12600
ST4+05S 3+00E	chip	0.01	238	14	11
ST4+05S 4+30E	chip	0.01	36	23	4
ST4+10S 6+60E	chip	0.01	95	10	5
ST7+00S 2+50E	chip	0.01	4	33	13
ST7+90S 6+40E	chip	0.01	4	16	5
ST8+00S 4+30E	chip	0.01	3	49	5

The two grab samples in the above table were collected from the old Stewart Moly workings and from a partially collapsed trench at the Arrow Tungsten workings. The six chip samples were collected from the Quartz Stockwork grid during the course of soil sampling in areas where intense quartz stockworking in the intrusive rock was observed. The sample number coordinates for these samples correspond with the grid location from which they were taken.

The most significant results from these few rock samples is from the one collected from the Arrow Tungsten workings that returned 4.02% zinc and 1.26% tungsten. The sample collected from the Stewart Moly workings returned expected high grade molybdenum of 1.03% Mo. None of the samples taken from the Quartz Stockwork grid returned assays of any significance.

8) SOIL GEOCHEMISTRY

During the 2001 exploration program, a total of 608 soil samples were collected from five grid areas. These soil grids are named the Arrow, Po, Quartz Stockwork and the North and South Craigtown Grids. On the Po and South Craigtown Grids soil lines were put in at 200 metre spacings with samples collected at 50 metre stations on the Po Grid and at 25 metre stations on the South Craigtown Grid. On the Arrow, North Craigtown and Quartz Stockwork Grids lines were put in at 100 metre spacings and samples collected at 25 metre intervals along the lines.

Samples were taken from the 'B' soil horizon whenever possible, and were collected using a mattock or shovel. Samples site were labelled with fluorescent flagging with the station number recorded on it, and soil was placed in correspondingly labelled Kraft soil bags. All soil samples were shipped to ACME Labs Ltd. in Vancouver for analyses. In the laboratory, samples were dried, sieved to -80 mesh and the fine fraction analyzed for gold by the wet geochemistry method and for 30 elements by the ICP method.

ACME Labs Ltd. Certificates of Analyses for the soil sample results can be seen in Appendix II. Figure 2 shows the location of the grids and Figures 4 to 15 show selected geochemical results for the various grids.

The Po Grid covers the southwestern extension of the mapped mid Jurassic Silver King intrusive unit which is known to contain porphyry style gold mineralization. The grid lies on either side of Highway 6 and the gold soil results are plotted on Figure 4. Scattered gold values can be seen on the west side of Highway 6, many of which represent single station anomalies. The highest gold value in this area is 313 ppb gold located at L28S, 28+50W. The northeast portion of the grid, on the east side of Highway 6 has a larger area of elevated gold values which appears to have a rough north-south trend. The best gold value in this area is 284 ppb located at L20S, 16+00W. This grid requires infill soil sampling of the anomalous areas at 100 metre spaced lines with 25 metre spaced stations. Geological mapping and chip sampling of outcrops in these anomalous areas is also recommended.

The North Craigtown Grid consists of five 100 metre spaced lines that extend to the southeast from the pre-existing Minnova north soil grid and was designed to follow the gold geochemistry anomaly found on that grid. Gold and zinc values for the North Craigtown Grid are plotted on Figure 5. Elevated gold values are predominantly confined to the northwest corner of the grid where the highest value of 84 ppb gold is located at L0S, 0+50E. Zinc values are fairly consistent throughout the grid area, with two stations returning greater than 300 ppm zinc at L2S, 3+50E and L3S, 1+50E. No follow up work in this grid area is recommended.

The South Craigtown Grid lies 600 metres south of the North Craigtown Grid and is an eastern extension of the pre-existing South Minnova soil grid. This grid covers an area of high geophysical (IP chargeability) responses. Gold, zinc and molybdenum soil values are plotted on Figures 6 to 8. All three soil maps show linear north-south trending anomalies running for the 1000 metre length of the grid. The gold anomaly is one to three stations in width and trends roughly along 3E. The highest gold value is 43 ppb gold located at L12S, 2+75E. The zinc soil anomaly roughly parallels the gold anomaly but widens out toward the east for the northern 400 metres of the grid. The best zinc soil value is 681 ppm located on L10S, 3+50E. The molybdenum soil values also roughly parallel the gold anomaly, but there appears to be a second, stronger anomaly trending along the eastern margin of the grid area. The best molybdenum value is 89 ppm located on L16S, 3+50E. Follow up work recommended for this area will consist of detailed mapping and outcrop sampling along the coincident gold, zinc and molybdenum trend running through the grid near 3E. If results of the surface mapping and sampling program are encouraging, excavator trenching will be done over the best target areas.

C

(

C

FIGURE 10

BY: PG DATE: APRIL 2002

C

(

The Arrow Grid covers the historic Arrow Tungsten workings from the 1940s. Figures 9 through 13 show the gold, molybdenum, arsenic, zinc and tungsten soil geochemistry results for this grid. Gold values appear to be low and erratic with the highest value of 19 ppb gold occurring at L5N, 10+50E. Molybdenum shows a roughly linear anomalous area trending north-south through the center of the grid and smaller anomalous areas on either side of this main trend. The best molybdenum value of 50 ppm is located near the west side of the grid at L6N, 7+75E. Arsenic values are higher on the northern half of the grid area, with two main areas of concentrated highs - one near the center of the grid and one near the northeast corner. The highest arsenic value of 273 ppm is located at L10N, 9+25E. Zinc values are scattered, with some slightly higher values in the northeast quarter of the grid area. The highest zinc value of 1327 ppm occurs near the center of the grid, in the location of the old workings, at L8N, 10+00E. Tungsten is confined to the central portion of the grid area and lies directly above the trace of the known workings. The highest tungsten value of 50 ppm occurs at two stations L10N, 9+25E and L9N, 9+75E. Detailed mapping and rock chip sampling, followed by excavator trenching is recommended for the best anomalous areas on the Arrow Grid.

The Quartz Stockwork grid was put in over an area of low outcrop exposure, where the few exposed outcrops consist of intrusive rock with a high density of parallel and crosscutting quartz veinlets. On the Quartz Stockwork Grid, gold and molybdenum soil values have been plotted as Figures 14 and 15 respectively. Gold values are spotty and generally low. The highest gold soil value of 108 ppb gold occurs at the extreme southeast station on the grid at L8S, 6+50E. From the nature of the gold values it is recommended that the grid be extended to the south and east for an additional 300 metres in 2002. The molybdenum values trend across the grid area in a northeast-southwest direction. The highest molybdenum value of 58 ppm is found in the extreme southwest station on the grid at L8S, 1+00E.

9) CONCLUSIONS AND RECOMMENDATIONS

The Stewart Property lies within very prospective geology and hosts a variety of mineral occurrences. Previous work on the property defined zones of significant molybdenum and gold (+/- copper) mineralization. Emgold optioned the property in order to evaluate and expand the known gold mineralization and to test additional areas for gold, as many of the better molybdenum and tungsten anomalous areas were not historically tested for gold.

Work done by Emgold Mining Corporation in 2001 has led to the following conclusions and recommendations:

PO GRID

The Po Grid lies along the southern most mapped extent of mid Jurassic Silver King intrusive with lobes on either side of Highway 6. Silver King intrusive is known to host porphyry style gold mineralization on the Kena Property to the north. Several scattered gold soil geochemical anomalies were found on the west side of the grid, and a larger area of elevated gold soil values was found on the east side of the grid. Follow up work consisting of infill soil sampling and geological mapping accompanied by rock chip sampling is recommended to follow up these gold soil anomalies.

NORTH AND SOUTH CRAIGTOWN GRIDS

The North and South Craigtown grids were designed to expand and close off gold soil anomalies found by previous exploration work. The north grid was successful in limiting the extent of the gold soil anomaly that was found on the previous north Minnova grid. The south grid found an interesting linear soil anomaly for gold, zinc and molybdenum that runs for the 1000 metre length of the grid. The anomaly overlays an induced polarization chargeability anomaly found by previous property operators. Infill soil sampling, geological mapping and rock chip sampling is required to determine the source of this anomaly.

ARROW GRID

The Arrow grid was put in over historic tungsten workings in order to determine the limit of the tungsten mineralization and to test for other elements, most notably gold and zinc. Gold values are low and scattered, but good anomalous zones of zinc, arsenic and molybdenum trend throughout the grid. The tungsten soil anomaly appears to generally be confined to the area of known workings. A grab rock sample collected from one of the historic trenches returned very high zinc and tungsten values, and additional rock chip sampling is recommended in order to fully evaluate the potential of the historic workings.

QUARTZ STOCKWORK GRID

The Quartz Stockwork grid was put in over an area with outcrops of altered intrusive rock which contains abundant quartz stockworking. Scattered elevated gold values were found in soil samples throughout the grid, with the best anomalous area being in the extreme southeast corner of the grid. It is recommended to expand the soil grid to the south and east in order to better define this anomalous gold area. Several rock chip samples collected during the soil sampling program did not return any significant gold assay values.

OTHER AREAS

The regional geology map shows two sub-parallel belts of lower Jurassic Upper Elise Formation volcanic rocks trending through the Stewart Property. Small bodies of intrusive rocks occur throughout the volcanic belts and are known to be mineralized in this region. The westernmost belt of volcanics hosts the old Minnova north and south grids and our extensions to these grids, the North and South Craigtown Grids. This belt shows good gold soil geochemical response as has been discussed above.

The easternmost belt of these volcanic rocks has only been soil sampled in the most northerly extent of the claim holdings on the Po Grid and shows good gold soil geochemistry. Mapping of this belt of prospective volcanic rocks shows numerous associated intrusive rocks including Silver King Porphyry, Nelson intrusions (granite), Eocene mafic Coryell intrusives and Tertiary rhyolites. The volcanic belt trends south through the claims from the Po grid for 5 kilometres and it is recommended that the entire length of prospective rock units be soil sampled in 2002.

RECOMMENDED WORK PROGRAM

For 2002, an exploration program of detailed geological mapping and rock chip sampling, expanded soil geochemistry and excavator trenching is planned for the Stewart Property. This exploration program is budgeted at \$40,000.00.

Respectfully submitted,

Linda Dandy, P.Geo.

10) REFERENCES

CARPENTER, T., and GRANT, B., 1985; Stewart Project (10138) Report on Activities and Results from 1984: BC Ministry of Energy and Mines Assessment Report.

FREDERICKS, ROBERT, T., and **THOMSON, I.**, 1997; Report of 1996 Geological, Geochemical and Geophysical Exploration Program, Stewart Property, BC: BC Ministry of Energy and Mines Assessment Report.

FREDERICKS, ROBERT, T. and **THOMSON, I.**, 1998; Report of 1997 Geological, Geochemical, and Physical Work Program, Stewart Property, BC: BC Ministry of Energy and Mines Assessment Report.

HOY, T. and ANDREW, K., 1989; Geology of the Nelson Map Area, Southeastern British Columbia: BC Ministry of Energy, Mines and Petroleum Resources, Open File 1989-11.

HOY, T. and ANDREW, K., 1989; The Rossland Group, Nelson Map Area, Southeastern British Columbia: BC Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1988, Paper 1989-1.

HUMPHREYS, N., 1992; Final Report on the Geology, Geochemistry and Trenching on the Denny Prospect, Cameco Corp.: BC Ministry of Energy and Mines Assessment Report #22829.

HUMPHREYS, N., 1993; Report on the Diamond Drilling on the Denny Prospect for Cameco Corp.: BC Ministry of Energy and Mines Assessment Report.

i.

11) COST STATEMENT - 31 December 2001

GEOCHEMICAL SURVEY COST

SALARIES & WAGES: 5 pers., 30 mdays @ \$214.33		\$ 6,400.00
BENEFITS @ 20%		1,280.00
FOOD & ACCOMMODATION: 5 pers., 30 mdays @ \$1	19.29	578.70
ASSAYS & ANALYSES – ACME LABS		
608 soils for Au & 32 element ICP @ \$12.19	\$7,409.87	
8 rocks for Au & 32 element ICP @ \$19.34	154.68	
14 pulps for W @ \$12.19	170.66	
	\$7,735.21	7,735.21
SUPPLIES:		492.23
FUEL:		57.78
SHIPMENTS:		152.00
FIELD OFFICE:		250.00
4WD TRUCKS: 12 days @ \$53.33		640.00
REPORT PREPARATION:		2,450.00
TOTAL GEOCHEMICAL SURVEY COST:		\$ 20,035.92

12) QUALIFICATIONS

I, Linda Dandy, hereby certify that:

- 1. I am an independent Consulting Geologist with P&L Geological Services having an office at 3728 Ridgemont Road, Lac Le Jeune, British Columbia, V1S 1Y8.
- 2. I am a graduate of the University of British Columbia with the degree of Bachelor of Science in Geology (1981).
- 3. I am a member of the Association of Professional Engineers and Geoscientists of British Columbia (Registration No. 19236) and a Fellow of the Geological Association of Canada (Membership No. F5201).
- 4. I have practiced my profession in North America since 1981, having worked as an employee and consultant for Major Mining Corporations and Junior Resource Companies.
- 5. This report is based upon a personal examination of all available company and government reports pertinent to the subject property, and upon fieldwork undertaken on the property between July 22 and October 31, 2001.

May 7, 2002 Lac Le Jeune, B.C.

Linda Dandy, P.Geo. Consulting Geologist

APPENDICES

APPENDIX I – ROCK CHIP SAMPLE RESULTS – CERTIFICATES OF ANALYSES **APPENDIX II** – SOIL SAMPLE RESULTS – CERTIFICATES OF ANALYSES

APPENDIX I

ROCK CHIP SAMPLE RESULTS

CERTIFICATES OF ANALYSES

ACME AN	IALYT.	L 2 Ac	LAB Cre	ORAT(dite		S L7 .) <u>En</u>	ים. ו <u>קסו</u> 1400	ا <u>ط M</u> 570	852 G <u>ini</u> Gran	E. EOC nq ville	HAST HEM <u>Cor</u> st.,	'ING: ICA D. Vanc	S ST L A <u>PRC</u> ouver	NAL	ANCC YSIS T <u>R(</u> /60 3P1	ER 5 CI <u>)ZAI</u> 51	BC SRTJ M Imitt	V6 FI 711 ed b	A 1F CAT e # y: Pe	E E Al rry G	P) 023(runent	HONE 30 20	(604) 25	3-31	58 1	? XX (604)	253		A
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppiñ	Mn ppin	Fe %	As ppol	U PPM	Ач ppm	Th ppm	Sr ppm	Ċd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	8 ppm	Al %	Na X	K %	W ppm	Au** gm/mt
STEWART MOLY ARROW W RE ARROW W STANDARD C3	10350 122 123 26	32 110 113 66	16 8 3 36	<1 39185 40245 169	<.3 <.3 <.3 5.6	5 23 22 37	8 20 21 11	194 1 3351 4 3450 4 782 3	1 74 4 60 4 74 3 46	<2 3 <2 57	<8 <8 11 19	<2 <2 <2 <2	8 2 2 21	28 44 46 28	<.2 837.6 864.2 23.7	<3 <3 <3 15	10 <3 <3 24	61 57 59 79	.15 4.84 5.21 .57	.056 .060 .063 .090	13 3 2 19	52 33 35 165	.26 .14 .14 .60	59 6 5 147	.06 .01 .01 .10	12 5 <3 24	.46 .99 1.02 1.84	.03 .01 .01 .04	.17 .01 <.01 .16	4 309 313 20	.04 .01 <_01

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK R150 60C AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUL 26 2001 DATE REPORT MAILED: Hog 7/01

Data

.

ACME ANALY. 'AL LABORATORIES LTD. 852 E. HASTINGS ST. VAN(V (ISO 9002 Accredited Co.) ASSAY CERTIFI(BR BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 25')716 CATE
Emgold Mining Corp. PROJECT ROZ. 1400 - 570 Granville St., Vancouver BC V6C 3P1	AN File # A102380R Submitted by: Perry Grunenberg
SAMPLE#	W B
ARROW W STANDARD W-4	1.26 .75

W BY NA2O2 FUSION, ANALYSIS BY ASSAY ICP. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK PULP

SIGNED BY.....D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS AUG 3 2001 DATE REPORT MAILED: Ang 13/01 DATE RECEIVED:

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data

ACME ANALY 'AL LAB (ISO 90.2 Accre	ORA1	ORI ad (ES Co E	LTI) mga	D.	M	852 G inin	E. H EOCI q Co	HEM	INGS ICA	SS LZ ROJ	r. v ANA JEC	yan LYS T S	VI IS TEW	R B CER ART	C Y TII	V6A FIC	1R6 ATE e #	A	P 103	HONE 794	(604	() 253	9-31	58	Fai	K (6(4)25	171 A	5
					14	400	570 0	ranvi	lle S	t., \	/anco	uver	BC 1	/6C 3P	1 ៖	Submi	tted	by:	Lind	a Dan	dy	در ۲۰ موجد ۲۰۰۰								
\$AMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag PPm	N i PPM	Co Mu ppm ppr	ר ו 10 א	As ppm	U ppm	Au ppm	Th Th	Sr Sprnp	Cd St pm ppr	⊳ Bi ⊧ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg B % pp	la Tí xm %	B	Al %	Na %	К %	W ppm	Au** gm/mt		<u></u>]
SI ST 4+05S 3+00E ST 4+05S 4+30E ST 4+10S 6+60E ST 7+00S 2+50E ST 7+90S 6+40E SI 8+00S 4+30E	<1 238 36 95 4 4	5 24 43 16 17 5 8	<3 8 5 8 4 8 5	4 14 23 10 33 16 49	<.3 <.3 <.3 <.3 <.3 <.3	1 2 2 3 2	<1 /1 244 1 15 <1 14 2 24 1 13 1 14	.04 1.30 1.09 1.19 7 1.25	<pre><2 22 22 22 22 22 22 22 22 22 22 22 22 2</pre>	<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8<8 </td <td>\$\$\$\$\$ \$\$ \$\$ \$\$ \$\$</td> <td><26565 44</td> <td>2 < 39 40 46 < 27 < 28 <</td> <td>.2 < <</td> <td><pre> <3 </pre> <pre> 4 </pre> <pre> </pre> 4 4 4 4 4 4 4 4 4 4</td> <td><1 20 14 18 18 18</td> <td>.08< .24 .13 .13 .10</td> <td>.001 .036 .028 .028 .014 .014</td> <td><1 14 12 12 8 8</td> <td>3<. 14 . 10 . 14 . 14 . 16 .</td> <td>01 13 8 12 7 07 3 06 3</td> <td>2<.01 16 .05 16 .05 18 .06 16 .01</td> <td><3 4 <3 3 4 <3</td> <td>.01 .36 .46 .28 .38 .38</td> <td>.35 .09 .07 .07 .03 .03</td> <td>.01 .10 .13 .09 .13 .12</td> <td><2 11 4 5 13 5</td> <td><.01 .01 .01 <.01 .01 .01</td> <td></td> <td></td>	\$\$\$\$\$ \$\$ \$\$ \$\$ \$\$	<26565 44	2 < 39 40 46 < 27 < 28 <	.2 < < < < < < < < < < < < < < < < < < <	<pre> <3 </pre> <pre> 4 </pre> <pre> </pre> 4 4 4 4 4 4 4 4 4 4	<1 20 14 18 18 18	.08< .24 .13 .13 .10	.001 .036 .028 .028 .014 .014	<1 14 12 12 8 8	3<. 14 . 10 . 14 . 14 . 16 .	01 13 8 12 7 07 3 06 3	2<.01 16 .05 16 .05 18 .06 16 .01	<3 4 <3 3 4 <3	.01 .36 .46 .28 .38 .38	.35 .09 .07 .07 .03 .03	.01 .10 .13 .09 .13 .12	<2 11 4 5 13 5	<.01 .01 .01 <.01 .01 .01		
RE ST 8+00S 4+30E STANDARD DS3/AU-1	3 10	9 130	5 36	61 163	<.3 <.3 <.3	4 36	1 13 12 83	5 3.28	2 3 3 1	<8 <8 <8	<2 <2 <2	4 4 4	38 28 5	.5 < .8	s <3 <3	12 12 80	.06	.012	9 18	15 14 184	06 4 06 4 62 14	5 .02 4 .02 7 .09	3 4 <3	.25 .24 1.73	.04 .04 .04	.13 .13 .17	5 4 4	<.01 <.01 3.37		

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK R150 60C AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: OCI 25 2001 DATE REPORT MAILED: NOV5/01

SIGNED BY.....D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

APPENDIX II

SOIL SAMPLE RESULTS

CERTIFICATES OF ANALYSES

P&L Geological Services, Box 5036, Lac Le Jeune, B.C., V1S 1Y8 Phone: 250-828-0522 Fax: 250-828-0512

ACME ANALY (ISO 9.	CA1	LA Accr	BORI	ATOR ted	IES Co.)	LTD		8	52 E	. HA	(STI)	NGS	ST.	VAI'	π	/ER 1	BC	V6A	1R6		PH	ONE (604)	253	-315	8 F	AX (6	04)2	77	L716	
AA				Em	gol	ЧR	ini	nσ	GE Cor	осн. р.	EMI PRO	CAL JEC	AN. TS	ALY TEW	SIS ART	CE:	RTI:	FIC #	ATE	374	5	Dai	70	1							
	<u> </u>		·				1400) - 5	70 Gr	anvill	e St.	, Vai	ncouv	er BC	V6C	3P1	Submi	tted	by:	Linda	Dandy		3~								
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au PPm	Th PPM	Sr ppm	Cd ppm	Sb ppm	8i ppm	V ppm	Ca %	Р %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	AL %	Na %	K %	N A	lu* ⊃pb
G-1 AR LION 8+00E AR LION 8+25E AR LION 8+50E AR LION 8+75E	2 4 6 13	3 47 43 65 97	3 11 14 16 14	38 80 146 146 156	<.3 .3 .4 .3 .4	7 9 16 20 26	4 16 23 31 45	479 889 1487 935 849	1.68 2.32 4.46 5.24 3.96	<2 26 15 138 198	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	4 <2 <2 2 2	69 11 16 15 28	<.5 1.0 .5 .5 1.0	⊲ ⊲ ⊲ ⊲ ⊲	<3 <3 <3 <3 <3	37 33 76 98 72	.52 .12 .14 .11 .24	.083 .117 .106 .150 .137	7 7 6 6 14	21 10 25 36 20	.51 .10 .24 .37 .34	205 57 112 97 58	.12 .10 .12 .13 .13	3 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	.94 3.47 2.99 3.21 4.56	. 12 .01 .01 .01 .01	.55 .03 .05 .07 .07	2 <2 1 2 3 13 2 4	.8 1.3 .5 3.4 4.6
AR L10N 9+00E AR L10N 9+25E AR L10N 9+50E RE AR L10N 9+50E AR L10N 9+75E	9 34 16 17 21	54 109 66 67 62	13 20 18 19 24	141 252 339 339 256	<.3 .5 .5 .5	21 37 23 23 25	26 70 32 31 14	498 2058 1574 1621 1216	3.62 6.78 5.26 5.23 3.74	45 273 55 56 55	<8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 <2 <2 <2 <2 <2	10 38 25 25 36	.7 2.8 2.6 2.7 2.8	८३ ८२ ८२ ८२ ८२ ८२	ব ব ব ব ব ব ব ব ব	67 77 97 100 82	.08 .67 .32 .32 .36	.099 .235 .105 .104 .131	7 9 5 7	21 21 18 17 36	.32 .35 .44 .43 .24	92 86 105 107 97	. 14 . 04 . 13 . 1 3 . 06	८३ ८३ ८३ ८३ ८३ ८३	4.30 2.99 2.28 2.30 2.18	.01 .01 .01 .01 .01	.05 .04 .04 .05 .05	<2 2 50 <i>č</i> 2 1 2 1 13 1	2.3 5.3 1.3 1.3 1.8
AR L10N 10+00E AR L10N 10+25E AR L10N 10+50E AR L10N 10+75E AR L10N 11+00E	6 7 9 4	39 29 45 54 40	38 28 27 18 20	288 235 344 255 213	.6 .6 .3 <.3	31 23 66 63 41	17 16 22 21 17	1492 631 564 617 2371	3.12 4.41 5.16 5.21 3.50	35 28 24 47 65	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 2 3 2	18 13 20 12 12	2.1 1.5 1.8 .8 .8	য় ব ব ব ব ব ব	<3 <3 <3 <3 <3	69 81 90 74 73	.21 .10 .19 .11 .10	.098 .154 .106 .090 .115	6 5 6 5 7	34 28 46 36 34	.33 .20 .43 .37 .33	121 112 112 98 140	.07 .11 .10 .10 .09	८३ ८३ ८३ ८३ ८३ ८३	2.99 2.92 3.40 3.37 2.67	.01 .02 .01 .01 .02	.04 .04 .04 .05 .06	4 2 3 5 1 5 3 2	2.9 .9 1.6 .5 2.1
AR L10N 11+25E AR L10N 11+50E AR L10N 11+75E AR L10N 12+00E AR L10N 12+25E	6 7 5 14 5	36 60 54 68 60	17 32 14 97 28	256 232 188 464 238	.6 .4 .6	50 49 57 71 42	19 18 21 18 15	482 983 1563 642 973	4.08 4.50 4.56 4.42 3.37	183 179 629 79 34	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	3 3 2 3 3	26 20 16 32 15	1.0 .9 .9 1.4 1.0	उ उ उ उ उ उ	उ उ उ उ उ उ	70 94 79 94 71	.21 .16 .14 .15 .16	.112 .084 .098 .127 .111	5 7 7 8	28 38 48 29 42	.28 .37 .63 .32 .65	163 125 122 85 143	.12 .07 .08 .08 .06	<3 <3 <3 <3 <3	3.57 2.99 2.45 2.98 2.48	.01 .01 .01 .01 .01	.05 .05 .05 .04 .06	2 3 2 2 2 2 2 2 2 2	.4 2.4 1.0 3.0 4.4
AR L10N 12+50E AR L9N 7+50E AR L9N 7+75E AR L9N 8+00E AR L9N 8+25E	6 5 4 3 5	87 115 50 52 60	15 34 14 17 25	311 127 135 181 127	.3 .4 <.3 <.3 .4	75 27 21 16 16	24 32 20 41 27	702 1111 436 2616 1356	5.17 3.90 4.18 4.38 4.83	97 30 21 15 38	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	3 2 2 2 2 2 2	20 12 13 14 17	1.4 .8 .5 .6	उ उ उ उ उ	<3 <3 <3 <3 <3	76 64 83 82 72	.22 .12 .10 .12 .13	.142 .202 .093 .136 .135	7 12 6 5	44 32 31 33 20	.54 .52 .41 .42 .23	103 78 110 89 117	.07 .09 .11 .08 .12	3 3 3 3 3 3	3.92 4.17 2.84 2.21 2.25	.01 .01 .02 .01 .01	.05 .08 .06 .07 .06	<2 2 <2 5 2 6 3 7	2.8 5.4 5.4 6.5 1.1
AR L9N 8+50E AR L9N 8+75E AR L9N 9+00E AR L9N 9+25E AR L9N 9+50E	18 18 7 11 22	172 120 75 41 52	15 21 13 14 15	150 201 119 174 187	.5 <.3 <.3 .8 .7	25 40 19 19 27	124 36 13 11 21	3531 988 462 1047 1524	6.81 5.81 4.82 3.13 3.51	27 40 56 32 68	<8 <8 <8 <8 <8	<> <> <> <> <> <> <> <> <> <> <> <> <> <	2 2 2 2 2	20 29 21 8 14	1.0 1.0 <.5 .6	८३ ८३ ८३ ८३ ८३ ८३	<3 <3 <3 <3 <3	75 72 81 60 66	.22 .24 .21 .08 .18	.205 .135 .173 .163 .125	8 5 5 5 5	24 19 25 22 26	.29 .43 .37 .29 .36	91 84 99 139 103	.07 .10 .10 .12 .08	<3 <3 <3 <3 <3	3.12 3.61 2.92 3.07 2.86	.01 .01 .01 .01 .01	.08 .06 .06 .04 .05	4 5 12 2 6 2 7 1 7 1	5.4 2.6 2.1 1.8 3.1
AR L9N 9+75E AR L9N 10+00E AR L9N 10+25E AR L9N 10+5DE Standard DS3	25 20 13 19 9	31 63 53 57 129	20 21 30 65 35	403 519 293 452 149	.6 1.0 .7 .4 .3	27 45 26 35 36	14 17 13 22 12	1399 1167 1168 1252 754	3.47 4.26 3.85 5.33 2.95	37 171 38 41 29	<8 <8 <8 <8 <8	< < < < < < < < < < < < < < < < < <><><><><><><><><><><><><><><><><><><><>	2 2 2 2 2 2 4	18 15 27 66 24	2.3 4.5 2.9 3.1 5.5	ও ও ও ও ১	<3 <3 <3 <3 <3 6	70 82 83 79 73	.18 .20 .30 .71 .52	.111 .156 .137 .138 .091	5 8 7 9 16	26 36 33 34 175	.30 .38 .31 .33 .57	88 128 160 171 145	.10 .06 .05 .05 .07	<	3.44 3.29 1.77 1.66 1.62	.01 .01 .01 .01 .03	.04 .05 .05 .07 .16	50 2 25 3 4 3 4 2'	2.4 5.6 <.2 3.1 1.4
	GRO UPP - S <u>Sam</u>	UP 1D ER L1 AMPLE ples) - O. MITS TYPE begir	.50 GM - AG, E: SOI	1 SAMP , AU, IL SS8 <u>(RE</u> 1	LE LE HG, V O 600 are A	EACHED } = 10 : teruns) WIT)O PPI AU* ; and	H 3 MU M; MO, By AC) <u>'RRE</u>	. 2-2- . CO, ID LEA . are	Z HCL CD, S CHED, Rejec	-HNO B, B) ANAL t Rej	S-H2O I, TH, LYZE E <u>runs.</u>	AT 95 U& IV ICF	5 DEG. B = 2 >-MS.	. C FO 2,000 (10 g	R ONE PPM; m)	HOUR CU, P	, DIL 18, ZM	UTED I, NI,	TO 10 MN,	ML, AS, V	ANALY , LA,	SED B CR =	Y ICP 10,0	-ES. 00 PP	м.				
DATE RECEI	VED:	oc	T 22	2001	DA'	re R	EPOI	RT M	AILI	D: (9 c	£ 3,	//0	(SIG	NED	вч.(-:!	· · · · ·		ο. τογ	E, C.	LEONG	, J.	WANG;	CÉRT	IFIED	B.C.	ASSA	YERS	
All results a	re con	sider	ed th	ne cor	nfider	tial	ргоре	erty (of the	clie	nt. A	cme a	assume	s the	liab	iliti.	es fo	r act	ual c	ost o	f the	analy	/sis (only.				Data	A	A	

Page 2

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Со ррп	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppn	Bi ppm	V ppm	Ca %	P X	La ppm	Cr ppm	Mg %	Ba	Ti %	B Al DDm %	Na %	K	W Dom	Au*
G-1 AR L9N 10+75E AR L9N 11+00E AR L9N 11+25E AR L9N 11+50E	1 14 11 6 7	2 96 43 19 93	<3 47 15 26 153	39 1005 426 654 592	<.3 1.2 .5 .4 2.1	4 99 46 66 69	4 19 22 15 31	461 965 895 416 1110	1.46 3.72 4.68 3.59 5.45	<2 104 35 65 187	<8 9 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	5 3 2 3 4	53 24 28 24 17	<.5 7.4 4.3 4.9 3.2	<3 <3 <3 <3 <3	ব্য ব্য ব্য ব্য ব্য	36 69 90 62 104	.49 .0 .23 .0 .32 .0 .32 .0 .14 .1	093 086 062 046 106	6 13 9 7 12	12 51 39 26 45	.42 .32 .28 .20 .54	184 84 48 90 117	.11 .11 .06 .15 .09	<3 .70 <3 3.92 <3 2.94 <3 3.68 <3 3.63	.05 .01 .01 .01 .01	.41 .05 .03 .04 .06	2 5 7 2 <2	.2 2.1 1.4 .8 2.8
AR L9N 11+75E AR L9N 12+00E AR L9N 12+25E AR L9N 12+50E AR L8N 7+50E	7 5 12 13 10	79 27 54 71 54	81 21 18 20 21	418 208 429 273 553	1.2 .4 .4 .5 .3	63 21 57 52 44	23 11 22 28 28	827 630 1170 983 1485	4.72 3.60 6.07 6.62 4.80	99 11 13 31 73	<8 <8 <8 <8 <8	< < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 <	3 <2 2 3 2	21 14 26 17 23	1.8 1.2 1.7 .8 4.0	८२ ८२ ८२ ८२ ८२	<3 <3 <3 <3 <3	94 76 112 112 95	.22 .1 .08 .0 .17 .1 .17 .1 .23 .0	105 081 107 155 084	7 7 6 10	35 26 32 40 46	.48 .26 .26 .45 .61	99 99 167 99 162	.08 .11 .11 .09 .14	<3 2.88 <3 2.00 <3 2.58 <3 2.95 <3 2.89	.01 .01 .01 .01 .01	.06 .05 .06 .06	<2 <2 2 2 4	3.0 1.2 .7 .8 1.0
AR L8N 7+75E AR L8N 8+00E AR L8N 8+25E AR L8N 8+25E AR L8N 8+50E AR L8N 8+75E	15 6 3 6 7	134 82 23 120 89	18 29 24 18 24	572 318 265 253 185	.5 <.3 .3 .4 .6	52 133 15 28 21	38 38 17 37 26	2041 847 582 1286 1381	5.28 4.94 3.51 6.84 7.35	89 45 33 129 46	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 3 2 2 2	53 42 22 36 26	5.2 1.4 2.1 1.5 1.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 3 3 3 3 3 3 3	115 104 71 126 110	.60 . .54 . .23 . .32 . .23 .	138 169 200 199 195	16 10 4 8 6	45 82 21 30 27	.77 2.37 .39 .59 .36	149 165 144 224 156	.12 .23 .17 .13 .11	<3 2.95 <3 3.72 <3 3.27 <3 3.40 <3 2.35	.02 .01 .01 .01 .01	.13 .12 .07 .14 .07	5 <2 2 3 3	3.8 1.6 .6 2.7 2.1
AR L&N 9+00E RE AR L&N 9+00E AR L&N 9+25E AR L&N 9+50E AR L&N 9+75E	6 6 9 19 13	54 53 32 66 31	26 26 21 16 26	147 145 167 144 119	<.3 <.3 .5 .3 .4	23 22 12 21 20	13 12 17 10 8	634 653 987 309 322	4.27 3.98 2.83 3.29 3.88	33 33 94 270 54	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 2 2 3 2	16 16 13 13 17	.6 .6 1.1 .5 .7	<3 <3 <3 <3 <3	3 3 3 3 3 3 3 3 3	83 77 51 62 88	.12 . .10 . .12 . .13 .2 .16 .0	130 128 108 204 085	7 7 4 10 7	38 37 12 28 38	.53 .55 .15 .43 .43	98 97 96 61 81	.09 .08 .15 .11 .08	<3 2.05 <3 2.08 <3 2.72 <3 4.09 <3 2.22	.01 .01 .01 .01 .01	.06 .06 .04 .06 .05	4 12 5 6	3.6 3.1 1.4 10.2 3.4
AR LBN 10+00E AR LBN 10+25E AR LBN 10+50E AR LBN 10+75E AR LBN 11+00E	29 5 6 13 13	55 40 55 65 63	27 26 18 36 39	1347 203 203 363 348	.5 .7 .5 .4 .6	81 25 27 43 45	17 12 15 19 20	2982 884 1272 1128 1052	3.44 3.43 3.85 4.24 4.22	157 36 29 71 71	<8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 3 2 2	74 19 16 29 36	15.6 1.8 1.6 1.6 1.6	उ उ उ उ उ	८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८	62 73 88 91 91	.80 . .17 . .14 . .26 . .30 .	134 107 169 132 138	13 9 9 14 12	41 40 42 48 47	.49 .45 .36 .62 .53	141 137 107 145 126	.07 .08 .06 .07 .07	<3 2.70 <3 2.73 <3 2.73 <3 2.97 <3 2.97 <3 3.04	.01 .01 .01 .01 .01	.07 .06 .06 .08 .06	10 3 2 5 5	1.5 3.1 2.1 6.5 4.6
AR LAN 11+25E AR LAN 11+50E AR LAN 11+75E AR LAN 12+00E AR LAN 12+25E	12 11 10 9 17	64 83 43 58 54	121 34 21 24 66	339 220 300 223 406	2.1 .5 .4 .6 1.3	45 56 36 36 39	22 27 24 22 21	1154 876 1761 1163 986	4.40 5.13 4.00 4.40 4.74	95 29 44 20 61	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	2 2 2 2 2 2 2 2 2 2 2 2 2	28 32 34 25 44	1.5 1.2 1.7 1.5 2.7	उ उ उ उ	उ उ उ उ उ	91 89 77 86 113	.26 .4 .24 .4 .39 .4 .20 .4 .39 .0	143 138 149 154 072	9 7 5 7 6	43 46 37 42 48	.52 .49 .34 .40 .46	104 96 195 153 132	.07 .06 .08 .09 .06	<3 2.99 <3 3.16 <3 2.70 <3 2.57 <3 2.38	.02 .02 .01 .01 .01	.06 .04 .06 .04 .04	4 8 4 3 3	14.5 2.1 .7 2.0 .9
AR L8N 12+50E AR L7N 7+50E AR L7N 7+55E AR L7N 7+75E AR L7N 8+00E STANDARD DS3	23 4 8 11 9	112 142 275 114 133	10 14 12 33 36	619 208 226 262 154	<.3 .6 .4 .3 .3	92 19 38 29 36	38 44 66 64 12	1160 1219 1437 1326 762	6.58 5.85 6.47 6.02 2.96	17 17 39 29 31	<8 <8 <8 <8 <8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 <2 2 3 4	43 37 38 34 26	1.7 1.2 1.4 1.7 5.8	<3 <3 <3 <3 <5	3 3 3 3 6	80 110 101 95 77	.52 .4 .36 .4 .31 .4 .33 .0	125 152 192 063 097	5 5 6 12 17	32 2 20 29 35 182	2.36 .37 .55 .41 .58	84 172 129 139 143	.06 .16 .11 .12 .08	<3 4.83 <3 2.62 <3 3.55 <3 2.39 <3 1.70	.01 .02 .01 .01	.04 .10 .13 .09 16	18 3 8 3 4	2.6 .5 2.2 2.0 21.7

Sample type: SOIL SS80 60C. Samples beginning (RE! are Reruns and (RRE! are Reject Reruns,

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

÷

÷

Emgold Mining Corp. PROJECT STEWART FILE # A103745

Page 3

SANDI C#	Ma	<u></u>	nL	7-			<u> </u>																						AL	.ME ANALY	TICAL
SAMP CER		- uu	FD	20	Aġ	N 1	Ļο	Mn	Fe	As	U	Au	Th	Sг	Cd	Sb	Bī	v	Ca	Р	La	Cr	Ma	B B	Ti	8 4	1 4	-	~		
	ppiii	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	PPM	ppm	bbm	DDM	(D)D(m)	DOM	2	*	000	000	y				ι π ν	9 N	N	W	AUn
	_	_																to to su		~		Ph.,	~	ppii	~	ppn	<u>^</u>	7.	74	ppm	bbp
G-1	1	2	<3	41	<.3	6	- 4	519	1.78	<2	<8	<2	5	63	< 5	κ٦	~2	40	14 0	00	0	4.7		100							
AR L7N 8+25E	5	48	20	269	.3	29	26	1754	4.22	35	<8	- Č	ź	28	1 1			70	.40.0	90 57	0	11	.51	199	-11	<5.7	4.0	6.4	-4	2	<.2
AR L7N 8+50E	4	38	18	195	٦	27	17	050	3 /1	12	-0		1	20		~ ~	10	(0	. 26 . 1	50	9	50	.55	158	.10	<32.3	6.0	۱.0	9	2	1.6
AR 17N 8+75F	10	00	17	771	7	37	7	1017	5.41	43	10	~~	4	19	1.1	<5	< S	67	.18 .1	40	8	45	.57	113	.07	<3 2.3	7.0	1.0	6	3	3.2
	4	57	15	244		<u> </u>	24	1213	2.12	21	<\$	<2	5	16	1.2	<3	<3	81	.13 .1	46	8	34	.40	113	- 10	<3 3 1	6 0	1 0	16	7	77
AK LIN YTUUE	0	52	15	211	.5	24	19	1436	3.92	42	<8	<2	- 3	11	.9	<3	<3	69	.08 .1	39	8	32	44	0.8	11	-3 2 8	0 0	1 0	4		2.1
																					-		• • •	70	• • • •	VJ 2.0	7 .0	1 .6	φ	0	2.2
AR L7N 9+25E	10	87	12	127	.4	14	14	777	6.66	41	<8>	<2	3	18	.8	۲.	~3	04	10 1	00	0	70	17				. .		_		
AR L7N 9+50E	34	50	24	425	.9	21	23	2178	4.47	162	< Ā	-2	2	22	25	-7		70	.10.1	70	0	20	.45	87	.10	<5 5.6	0.0	1 .0	9	5	5.0
AR L7N 9+75E	22	35	30	248	3	22	12	1073	7 77	32			5	20	2.5		~ 2	03	.23 .0	70	В	52	.39	139	.08	<3 2.2	2.0	1.0	6	24	4.8
AR L 7N 10+00F	6	31	20	201		26	10	1070	7 37	- JC - 17	-0	~ ~	4	20	1.4	<5	<5	70	.19.0	78	8	33	.43	104	.08	<3 2.2	0.0	1.0	6	24	3.1
AP 7N 10+25E	4	26	20	271	.4	20	10	1000	3.23	61	<8	<2	2	20	1.4	<3	<3	73	.19 .0	89	9	40	.51	126	.09	<3 2.3	7 .0	1 .0	17	R 1	3 0
AN LIN 10-235	0	20	εu	224	د.	24	12	1202	3.14	23	<8	-2	2	20	1.2	<3	<3	69	.20.1	15	7	33	.39	163	60	< 3 2 2	2 0	1 0	i E	5	4.7
48 1 71 40 505	_			• • •	_																					-9 E.E	L .V			4	1.2
AK LYN 10+5UE	9	- 55	28	210	.5	26	12	473	3.32	35	<8	<2	2	20	1.0	<3	<3	70	18 1	nn	0	7.0	11	120	07	-7 5 8	~ ~		-	-	
AR L7N 10+75E	6	31	25	219	.7	23	12	1309	2.98	30	<8	<2	2	15	1.2	-7		47	10 1	57	10	30	.44	120	.07	<5 2.8	/ .u	1.0	15	3	4.8
AR L7N 11+00E	4	30	32	253	1.5	26	12	1266	3 52	30	< 8		~	- 26	1.2				. 12 . 1	<u> </u>	10	21	.47	127	.08	<3 2.6	9.0	1.0	6	<2 ·	4.3
AR L7N 11+25E	7	44	32	206	9	25	11	1041	7 05	70	~0	-2	~~	44	1.2	<u></u>	<2	75	.29 .1	75	7	39	.50	149	.06	<3 2.0	Q. Q	1.0	7	<2	3.5
AR 17N 11+50F	R	28	23	174	6	22		724	7 45	20	50	~2	<2	19	1.1	<5	<\$	83	.15 .1	36	9	45	. 45	96	.06	<3 2.0	5.0	1.0	6	<2	6 R
	Ŭ	20	6.3	110	.7	"	0	301	2.02	22	<8	<2	2	- 14	.7	<3	<3	85	.10 .1	21	8	39	.40	98	.09	< 3 2 3	<u>د</u> آ	1 0	5	~ ~	36
	25	10	107		-					_																	0	1 .0		<u>، د</u>	2.3
AR LIN 11773E	22	40	107	230	.>	- 24	14	3589	2.85	50	<8	<2	<2	85	3.4	3	<3	64	.58.1	11	15	33	50	202	05	-7 2 4	د د	4 .	~	-	
AK L7N 12+00E	5	22	20	111	.5	15	8	1488	3.14	16	<8	<2	<2	11	<.5	<3	- दर्ग	73	07 1	04 	7	77		100	.05	5 2.1	.	1.0	9	ب	8./
AR L7N 12+25E	12	41	64	339	2.1	31	14	1683	3.72	34	<8	-	ō	16	1 2		12	07	47 4	70		22	- 27	109	.08	<3 1.5	5.0	1.0	15	<2 :	2.6
AR L7N 12+50E	7	39	63	269	2.0	27	11	847	3.60	28	~8	-2	2	17	1.6			97		[2	10	48	.51	113	.07	<32.9	4.0	1 .0	7	<2	4.0
AR LÓN 7+50E	9	129	12	184	6	74	रर	1751	5 5/	27	~0	22		14	1.0	< <u>5</u>	<3	88	.12 .2	04	10	44	•49	114	.08	<3 3.1	5.0	1.0	7	<2	4.6
	-							11.21	2.24	23	NO	×2	۷	20	• (<5	<5	98	.16 .1	89	7	31	.55	115	.12	<3 3.0	7.0	1_1	1	2	8.0
AR L6N 7+75E	50	244	2/	170	E	10	71	7747		-	~	_	_																		
AP 1 6N 8+00E	20	40	20	774	.,	74	- 21	2213	0.04	24	<8	<2	<2	29	.8	ব	<3	95	.25 .2	46	5	28	.22	122	.07	<311	5 0	1 n	7	0	•
	, ,	02	20	271	د.	25	24	1460	5.9Z	60	<8	<2	<2	24	1.6	<3	<3	82	.22 .1	33	8	36	47	142	11	-210	, .u	1.0	7		
AK LON 0+25E	4	22	14	231	,4	21	22	1291	4.91	28	<8>	<2	2	17	1.2	<3	<3	127	15 1	65	7	35	· ~ ·	151	10	-7 7 7	2.0		4	<2	1.7
AR LON 8+5UE	4	39	16	209	.4	25	15	566	3.74	33	<8	<2	3	19	1.3	<3	<3	74	17 1	.n	÷	70	- 04	121	. 19	<3 Z.7.	5.0	1.1	4	2 13	2.0
RE AR LON 8+50E	4	39	16	203	.4	24	15	524	3.53	32	<8	<2	3	18	1 2	~7		71	10 1	40 72	4	ענ	.21	115	.11	<5.3.1	2.0	1.0	7	3	2.4
											-	-	-		1.2	·	· · ·	E I	• 12 • 1.	20		39	.52	111	.11	<3 2.9	ə.c	1.0	7	3 8	8.0
AR 16N 8+75E	5	63	14	234	-9	19	20	1738	5.43	۲n	₹ R	~ >	7	10		.7		407				_	_								
AR L6N 9+00E	9	106	17	140	4	16	23	165/	8 71	27	-0	~~	2	19	1.1	<2	<5	105	.17 .1	78	8	29	.33	136	.11	<3 2.3	5.0	1.0	6	3	2 1
AR L6N 9+25F	7	57	21	208		20	14	2075	D.71 E 77	27	<u></u>	~~	2	20	.6	<3	<3	117	.12 .2	28	6	33	.35	99	.10	<3 2 3	5 0	1 0	6	7	2 0
AP LAN 0+50C	11	40	14	1/0	-4	20		2075	2.36	29	<8	<2	2	- 14	.8	<3	<3	100	.14 .19	93	7	33	.37	122	12	23 2 2	, 	1 0	4	2	4 7
		00	10	140	•4	17	19	1429	1.51	34	<8	<2	2	12	.5	<3	<3	98	.16 .19	53	6	32	32	70	00	-7 1 7			0	•	1.7
AR LON YT/DE	6	29	17	Z19	<.3	22	13	953	3.67	39	<8	<2	3	16	.6	<3	<3	75	.13 1	17	â	30		175	109	S 1./	U	O	2	6 2	2.5
10 1 11 10 10 10													-							. /	8	30	.40	122	1 0	<5 2.6	: .0	1.0	7	12 3	3.8
AK LON 10+00E	6	29	17	144	.3	23	7	290	3.62	19	<8	<2	٦	12	< 5	~7	1	20	11		-	70	.								
AR L6N 10+25E	34	43	21	276	.8	31	15	1045	3.54	25	~8	-7	~2	20	1 0			07		31	(30	.36	79	.11	<33.3	5.0	1.0	5	2 3	3.0
AR L6N 10+50E	32	101	15	145	4	17	11	802	7 3/	15	~0		14	20	1.7	<u>د</u>	د>	69	.23 .00	55	13	38	.51	95	.07	<3 2.0	0. 7	1 .0	6	2 1	4 7
AR L6N 10+75F	13	41	10	14.6		10		072	/ 00	12	50	< <u><</u>	4	23	1.1	<3	<3	138	.09 .2	16	7	44	.27	120	.06	<325	ើក	1 0	5		1 4
STANDARD DS3	0	177	75	162	•.3	19	A P	707	4.09	12	<8	<2	z	14	.5	<3	<3	106	.10 .19	70	7	47	.52	117	11	<3 2 M		, .u.	7	-2	
	7	53		120	د.	36	12	797	2.99	31	<8>	<2	4	28	5.7	5	6	74	.51 .09	21	18	193	54	146	09	21 23		ι	<i>'</i>	<2	1.5
														_		-								1 M Q	.00		U.	C	/	- 4 20	1 7

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data_/F

Emgold Mining Corp. PROJECT STEWART FILE # A103745

Page 4

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Со ррт	Mn ppm	Fe %	As ppm	U ppm	Au epm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi	V Maga	Ca X	P X	La	Cr DDm	Mg %	8a DOM	Ti %	B Al	Na %	K V	W	Au*
G-1 AR LGN 11+00E AR LGN 11+25E AR LGN 11+50E AR LGN 11+75E	1 3 8 9 23	2 15 65 25 31	< 3 22 17 26 49	40 65 269 92 177	<.3 .3 <.3 .3 .5	6 10 74 13 15	4 4 31 5 9	486 180 663 441 1296	1.64 2.70 5.29 3.02 3.14	<2 14 13 18 23	<8 <8 <8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2	4 2 9 2 2	54 7 432 12 38	<.5 <.5 .5 <.5 1.4	3 3 3 3 3 3	<3 <3 <3 <3 <3 <3	37 64 127 71 67	.46 .04 1.08 .09 .27	.087 .074 .481 .108 .075	5 4 87 7 14	17 27 120 32 27	.52 .27 2.42 .38 .36	216 64 1320 77 193	.11 .07 .15 .06 .07	<3 .71 <3 1.76 <3 3.47 <3 1.84 <3 2.10	.05 .01 .02 .01 .01	.44 .04 .43 .05 .06	2 <2 <2 <2 <2 2	2.4 2.4 2.6 3.0
AR L6N 12+00E AR L6N 12+25E AR L6N 12+50E AR L5N 7+50E AR L5N 7+75E	8 19 14 4 6	36 36 40 42 99	30 44 32 16 17	269 240 174 214 209	.6 .5 .9 .3 .7	24 24 25 16 20	16 13 10 18 34	1889 1082 487 2096 3455	4.04 3.60 3.67 4.33 6.13	22 26 25 29 17	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	3 2 3 2 2	19 17 13 18 19	1.1 1.1 .7 .7 1.1	ব ব ব ব ব ব ব	4 <3 <3 <3 <3	93 80 84 102 164	.23 .14 .10 .17 .16	.167 .101 .149 .149 .193	8 12 10 7 7	38 43 42 35 29	.49 .58 .52 .58 .94	185 164 87 158 207	.07 .07 .08 .12 .14	<3 2.53 <3 2.43 <3 2.98 <3 2.25 <3 2.69	.01 .01 .01 .01 .01	.07 .06 .06 .07 .10	2 2 2 2 2 2 2 2 2 2	15.7 5.7 6.1 2.2 1.8
AR L5N 8+00E AR L5N 8+25E AR L5N 8+50E AR L5N 8+75E AR L5N 9+00E	3 11 6 17 23	58 52 34 59 148	11 13 15 13 11	200 293 184 378 242	.3 .4 .3 .4 .5	12 19 16 19 18	22 23 15 23 26	1740 1292 1001 996 1159	6.23 4.29 4.11 4.58 5.35	8 54 44 49 57	<8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	13 17 14 25 19	.5 1.4 .9 2.2 1.2	८३ ८३ ८३ ८३ ८३	3 3 3 3 3 3	210 104 85 96 74	. 15 . 16 . 12 . 19 . 14	.200 .109 .193 .088 .156	5 8 7 11 8	26 34 36 33 30	1.11 .62 .41 .51 .42	218 141 102 121 86	.28 .14 .09 .12 .06	<3 2.91 <3 2.61 <3 2.13 <3 2.59 <3 2.64	.01 .01 .01 .01 .01	.27 .09 .06 .10 .06	2 2 3 4	.9 1.5 1.9 6.3 15.6
AR L5N 9+25E AR L5N 9+50E AR L5N 9+75E AR L5N 10+00E AR L5N 10+25E	15 20 12 22 19	60 60 40 41	14 14 13 16 17	311 282 156 211 68	.6 .4 .3 .4 .3	28 24 16 28 12	23 26 12 13 5	940 717 864 674 463	4.10 4.48 4.01 3.29 4.40	28 16 17 20 23	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 2 2 2 2 2 2 2	46 22 17 15 15	2.0 1.2 .5 .9 .6	2 2 2 2 3 2 3	<3 <3 <3 <3 <3	77 88 81 72 90	.41 .17 .14 .13 .09	.095 .101 .141 .069 .135	10 9 7 8 6	36 35 34 35 34	.63 .50 .40 .43 .30	143 136 126 92 73	.10 .11 .10 .10 .07	<3 2.48 <3 2.54 <3 2.56 <3 2.99 <3 1.43	.01 .01 .01 .01 .01	.08 .06 .05 .05 .05	4 3 2 3 2	1.6 6.7 2.1 4.2 17.5
AR L5N 10+50E AR L5N 10+75E RE AR L5N 10+75E AR L5N 11+00E AR L5N 11+25E	9 7 7 4 4	30 27 29 26 30	16 19 20 16 15	118 106 108 117 88	.3 .3 .3 .3	17 16 16 13 11	10 6 7 5 8	1448 240 260 333 380	3.15 3.86 3.99 2.78 3.55	23 29 31 16 12	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 3 3 2 2	14 14 14 9 10	.5 <.5 <.5 <.5 <.5	८३ ८३ ८३ ८३ ८३	<उ <उ <उ <उ	72 79 79 64 79	.12 .10 .11 .07 .06	.122 .136 .142 .125 .107	8 7 7 6 10	36 37 37 28 37	.43 .36 .36 .31 .38	88 93 99 70 80	.05 .11 .11 .09 .08	<3 1.92 <3 3.05 <3 3.40 <3 2.91 <3 2.83	.01 .01 .01 .01 .01	.05 .05 .05 .04 .05	2 2 2 2 2 2 2 2	19.3 2.2 3.2 1.1 16.3
AR L5N 11+50E CR LOS 0+25E CR LOS 0+50E CR LOS 0+75E CR LOS 1+00E	25 2 3 4 2	41 98 134 59 45	31 33 31 13 23	255 180 210 199 250	.3 .6 .6 .9	15 21 24 28 23	11 22 20 15 18	868 1635 1427 811 1477	3.74 4.52 3.77 3.27 3.55	25 37 35 14 16	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	3 ~2 ~2 ~2 ~2 ~2	26 53 40 30 41	1.4 2.2 2.2 1.9 1.5	उ उ उ उ उ	⊲ ⊲ ⊲ ⊲ ⊲ ⊲	76 89 86 86 87	.22 .60 .47 .36 .53	.075 .145 .177 .133 .254	14 10 11 10 5	34 40 38 56 53	.44 .91 .90 .81 .75	153 136 117 90 162	.06 .10 .08 .10 .07	<3 2.11 <3 2.43 <3 2.55 <3 3.02 <3 2.17	.01 .01 .01 .01 .01	.06 .17 .16 .08 .06	2 <2 <2 <2 <2 <2	5.5 56.8 83.5 2.2 1.9
CR LOS 1+25E CR LOS 1+50E CR LOS 1+75E CR LOS 2+00E STANDARO DS3	4 2 4 9	68 49 79 58 126	15 16 14 30 34	198 293 256 205 153	.6 .9 .8 .4 .3	28 32 48 25 34	15 20 22 18 12	978 1391 921 1263 724	3.61 3.47 4.08 3.31 2.94	13 14 18 11 30	<8 <8 <8 <8 <8 <8	< < < < < < < < < < < < < < < <> <> <> <	<2 <2 <2 <2 <2 <2 <2 <4	25 36 39 40 29	1.5 3.3 1.6 2.4 5.5	ও ও ও ১ ১ ১ ১ ১	3 3 5 5 5 5 5 5 5 6	81 75 90 74 75	.27 .33 .46 .44 .53	.130 .271 .302 .185 .087	8 8 10 10 17	51 51 65 48 193	.73 .79 1.12 .72 .56	95 205 124 106 151	.07 .09 .09 .06 .08	<3 2.80 <3 2.65 <3 2.43 <3 2.24 <3 1.64	.01 .01 .01 .01 .03	.08 .08 .12 .07 .16	<2 <2 <2 <2 <2	3.9 1.6 1.9 2.7 20.9

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA

Emgold Mining Corp. PROJECT STEWART FILE # A103745

Page 5

Data____FA

CAMPLE#	MA	C	Dh	7.5	4.4				5 -				-	•									ua					~		
SAME LEW	DOM:			500	ny		00	mri DDM	re v	AS		AU	1 n	Sr	Ca	SÞ	B1	v	Ca	P	La	Cr	Mg	Ba	Ti	B AL	Na	κ	W.	Au*
	ppin		PPil	мми	ppm	Phil	- Phu	Phil	~	(April)	ppii	Ph.	ppin	ppn	ppm	bbu	ppm	ppm	%	X	ppm	ppm		ppm	%	ppm %	%	%	ppm	ppb
G-1	1	2	3	42	<.3	6	4	487	1.68	<2	<8	0	5	65	< 5	~7	.7	61	57	007		47	F 3	227	40	.7			-	_
CR LOS 2+25E	4	63	24	193	-6	29	22	1632	3 01	10	<8	-2	-2	42	35	~7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		.24	157	17	17	.72	223	.12	<3.81	.06	.45	Z	<.2
CR LOS 2+50E	2	34	15	229	.8	24	15	815	3.26	14	<8	<2	2	31	1.8	~7	3	80	71	171	17	20	.00	10.5	.07	<3 2.29	.01	.07	<2	1.6
CR LOS 2+75E	3	37	18	195	.7	26	16	730	3.57	11	<8	<2	2	28	1 3	~~	-7	05		156	0	46	.00	143	- 1 1	<3 2.94	.01	-06	<2	.7
CR LOS 3+00E	4	68	15	241	.5	37	21	803	4.05	14	<8	<2	2	27	1.0	~3	~3	114	26	257	2	60	.01 .07	100	. 13	<j 2.00<="" td=""><td>.01</td><td>.08</td><td><2</td><td>1.0</td></j>	.01	.08	<2	1.0
											-	-	-					117	.20		0	07	.74	1¥0		NJ 2.30	-01	.08	<2	2.5
CR LOS 3+25E	7	72	14	209	.5	41	23	1441	4.00	9	<8	<2	<2	28	1.4	<3	<3	116	.25	125	10	57	87	178	11	×3 2 71	01	11	-7	
CR LOS 3+50E	4	59	16	224	.3	40	22	1538	4.40	12	<8	<2	2	29	1.2	<3	<3	123	.30	167	Â	67	1 05	200	10	27 2 55	01	12	~2	1.4
CR LOS 3+75E	- 4	50	16	217	.5	31	20	719	4.09	17	<8	<2	3	15	.9	<3	<3	110	.13	294	7	54	70	133	12	-3 3 38	01	- 15	~2	1.0
CR LOS 4+00E	3	46	17	202	.6	30	20	864	3.66	10	<8	<2	2	18	1.0	<3	<3	100	16	126	7	53	80	156	. 11	<3 2 52	01	.00	~2	1.7
CR L1S 0+25E	- 4	73	14	195	1.1	30	18	745	3.69	17	<8	<2	2	18	1.6	<3	<3	84	.17	289	B	49	.66	114	07	<3 2.60	-01	-00-	~2	2.9
																					•					13 2,00		.00	~6	2.0
CR L1S 0+50E	4	56	15	183	.6	28	16	1008	3.61	15	<8	<2	<2	20	1.7	<3	<3	97	.17	.236	9	50	.69	120	.08	<3 2.73	.01	.07	0	3 9
CR L1S 0+75E	6	79	27	278	.6	45	24	1261	4.90	18	<8	<2	<2	56	1.6	<3	<3	129	.60	.170	9	62	.96	195	.11	<3 2.67	.01	.12	~2	14.1
CR L1S 1+00E	4	68	14	213	.7	41	20	720	3.32	13	<8	<2	2	27	1.4	<3	<3	102	.30	. 182	9	57	.92	152	.11	<3 2.88	.01	.09	<2	3.5
CR L15 1+25E	4		18	299	-7	41	26	1268	4.39	16	<8	<2	2	43	1.3	<3	<3	122	.43	.227	8	71	1.15	173	.11	<3 2.65	.01	.08	<2	4.7
CK L15 1+50E	4	45	18	217	./	29	20	1406	3.55	10	<8	<2	2	26	2.1	<3	<3	96	.24	. 168	9	51	.65	164	.11	<3 2.58	.01	.07	<2	1.0
CD 115 14755		6 1.	14	255	4	74	27	1024			-0		•	20		-	-													
CR 115 2+00E	i i	52	14	2/3	.0	20	23	1775	4,04	10	<0 -0	<2	2	29	2.0	<5	<3	131	.25	.238	8	62	.87	199	. 13	<3 2.66	.01	. 12	<2	1.8
CR L15 2+25E	ž	63	16	277	.0	27	27	1407	J.47 6 16	11	~0	~~	4	20	2.0	< 5	< 3	91	.36	.158	2	49	.70	141	.13	<3 3.03	.01	.07	<2	1.0
CR L1S 2+50E	- Ă	46	18	169		24	17	875	7.18	10	~0	22	2	27	1.4	~7	< 3 - 7	120	.31	.152		- 67	.97	217	- 14	<3 2.89	.02	.10	<2	3.2
RE CR L1S 2+50E	i i	44	18	157	.4	24	17	824	3,10	0	~0	2	2	22	1.4	~~	<.) -7	00 05	.21	.158	10	44	.55	124	.13	<3 3.71	.01	. 09	<2	4.7
					• ·		••				~0	-6	-	24	1.7	~ >	13	00	.22	.120	IV	40	.54	122	. 12	<5 3,60	.01	.09	<2	1.9
CR L1S 2+75E	4	60	16	210	.5	36	19	916	3.70	12	<8	<2	2	25	1.5	<3	<3	0A	20	176	10	22	7/.	17/	11	.7771		00		<i>.</i> -
CR L1S 3+00E	3	49	23	208	.7	28	17	1539	3.54	11	<8	<2	<2	20	1.6	<3	<3	94	.17	117	ö	57	47	1/1	17	<13,30 <13,50	.01	.09	~2	4.0
CR L1S 3+25E	5	59	18	163	.5	28	19	1105	3.77	11	<8	<2	2	21	.9	<3	<3	107	20	113	ó	57	67	100	13	-3 2.52	.01	.07	~2	2.3
CR L1S 3+50E	4	46	14	162	.8	28	15	932	3.51	10	<8	<2	2	18	.7	<3	<3	95	.16	120	Ŕ	53	77	106	12	<3 2.04	.01	.07	~2	2.5
CR L1\$ 3+75E	5	54	18	179	.4	22	20	1028	3.73	12	<8	<2	2	14	.9	<3	<3	90	.11	239	7	39	.45	121	11	<7 7 0K	.01	.07	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5.7
00 140 4.00c	-				_																•	•7			• • •		.01	.00	~2	2.1
CR L1S 4+00E	5	41	15	145	.3	22	13	948	2.68	88	<8	<2	2	24	.8	<3	<3	73	.21	. 194	7	30	.39	108	.12	<3 3.57	.01	.05	<2	1.0
CR L25 U+UUE	8	93	20	268	<.5	59	24	964	4.67	21	<8	<2	2	29	2.0	3	<3	103	.29	.150	18	60	1.10	134	.09	<3 2.24	.01	.10	<2	3.6
CK L25 U+255	4	01	15	2/3	·2	45	21	785	5.78	14	<8	<2	2	19	2.1	<3	<3	92	. 18	. 175	13	52	.81	136	.12	<3 3.34	.01	.08	<2	2.0
CR L23 UT3UE	4	01	10	206	.5	29	17	/5/	5.74	11	<8	<2	2	40	1.6	<3	<3	109	.29	.382	10	53	.75	198	.11	<3 3.11	.01	09	<2	10.5
CK 125 UT/35	2	()	17	197	.9	28	23	1861	4.26	8	<8	<2	<2	40	2.2	<3	<3	112	.33	. 129	12	45	.65	149	.12	<32.58	.01	.09	<2	4.0
CR L2S 1+00F	7	84	15	101	.5	34	22	807	4 54	12	~\$	~7	7	20	1 7	-7	.7	4.45	74							_				
CR L2S 1+25E	3	50	14	200		27	16	1382	T. 21	12	~0	~2	د در	20	1.5	< 3 - 7	< S -7	115	.24	.145	11	48	.71	142	.13	<3 3.88	.01	.10	2	3.3
CR L2S 1+50E	9	110	31	206	<.3	46	27	1262	4.75	12	27 275	-2		24	1.0	<>	نې 7 ر	170	.24	.155	8	45	.59	143	.12	<3 2.66	.01	.08	<2	1.3
CR L2S 1+75E	4	68	24	265	.7	37	23	1245	4.03	11	<8	2	2	36	2 7	-7	د. ۲۰	109	.43	17/	14	27	.95	181	.14	3 2.95	.02	.25	3	4.2
STANDARD DS3	9	125	35	159	.3	35	12	775	2.96	30	<8	2	2	20	5 6	~>	د. ع	100	. 30	.1/0	40	54	. /5	164	.12	<3 2.91	.01	.09	<2	2.7
											- 4	-		67	0.0		د	Q I	. 21	1045	17	122	.55	150	.08	<3 1.72	.03	. 16	3	19.7

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Emgold Mining Corp. PROJECT STEWART FILE # A103745

Page 6

SAMDI F#	Ма	<u> </u>	th b	7-		117							•	·• · · ·															,	CHE ANALYT	IÇAL
SAULER	DOM		70 700		Ag	N1 DDm	Co	Mn	Fe	Aş	U	Au	Ťh	Sг	Cd	Sb	Βī	۷	Ca	Ρ	La	Cr	Mg	Ba	Ti	В	AL	Na	ĸ	د لا	
		- Inderin	ppin	Phu	ppin	- Phil	- Helio	ppiii	^	ppm	ppm	bbw	ppm	ppm	ppm	PPm	ppm	ppm	×	Χ	ppm	ppm	%	ррп	X	ppm	7	X	x		bob
G-1	1	2	<3	38	<.3	6	4	497	1.63	0	<8	~2	5	55	~ 5	.7	.7	70		n.,											r
CR L2S 2+00E	5	74	16	230	.3	49	22	884	4.67	17	-8	~2	2	75	1 1	< <u>-</u> 7	< 3	37	.44 .0	84	7	17	.50	203	. 11	<3	74	.05	.43	2 <	.2
CR L2S 2+25E	3	54	17	191	.6	33	20	996	4.29	13	<8	~2	5	24	1 1	~7	< <u>-</u>	121	.32 .2	50	8	76	- 89	131	.11	<33	.14	.01	. 12	<2 3	.4
CR L2S 2+50E	4	50	33	263	.4	29	19	5721	3.34		<8	~2	~2	24	3 0	-7	<> -7	111	. 24 . 21	V1	1	71	.84	117	.10	<32	.61	.01	.07	<2 1	.8
CR L2S 2+75E	7	104	14	216	.7	44	28	1142	4.75	12	<8	~~	5	20	17	-7	< S - 7	477	.25 .14	44	7	45	.57	299	.10	<31	.79	.01	.08	<2 4	.1
											- •	۰L	-	23	1.7	< <u>s</u>	د>	155	.20 .14	47	12	64	- 84	141	.12	<33	.30	.01	.11	2 10	.5
CR L2S 3+00E	8	64	19	220	.6	25	19	1034	4.40	12	<8	0	2	26	12	~7	~7	104	30 4	7/											
CR L2S 3+25E	7	77	28	227	.4	30	23	1406	4.05	11	<8	<2	~2	77	1 6		7	100	77 4	24	8	41	-61	117	.13	<3 2	.68	.01	.09	23	.2
CR L2S 3+50E	6	56	44	335	.5	28	25	2515	4.20	12	<8	<2	<2	38	1.8	~~~	-3	104		43 40	10	42	.6/	109	.11	<5 Z	.47	.01	.09	24	7
CR L2\$ 3+75E	10	131	15	269	.4	59	33	1183	6.08	13	<8	<2	3	31	1 4	~3	~~~	174	37 1	07 47	12	47	.04	1/8	.11	<3 2	.28	-01	.08	<2 2	.1
CR L2S 4+00E	7	81	20	253	.6	28	24	1436	5.18	9	<8	<2	2	21	15	्र	~7	137	20 1	45	12		1.05	212	.15	<33	.71	.01	.13	38	.7
													-	- ·			- 5	137	. cu . n	65	y	οŲ	.04	174	.15	<5 Z	.22	.01	.08	22	.3
CR L3S 0+00E	4	52	17	224	.4	32	23	1479	3.75	15	<8	<2	<2	71	2.3	<3	<3	83	R0 1	22	17	50	71	140	00	7 9					
CR L3S 0+25E	5	75	19	273	.5	34	26	1829	4 41	10	<8	<2	<2	43	3.1	<3	<3	100	42 1	55 57	12	50	- 71	140	.09	22	- 18	.01	-10	<2 1	-6
CR L3S 0+50E	5	64	17	234	.4	31	26	1781	4.18	11	<8	<2	2	35	2.7	-3	<3	108	37 1	57	11	51	.11	142	- 14	< <u>3</u> 2	-08	.01	.09	<z 1<="" td=""><td>.7</td></z>	.7
CR LSS 0+75E	6	84	14	194	.4	35	24	1081	4.30	11	<8	<2	2	26	1.3	<3	<3	110	25 1/	66 66	17	51	.07	100	- 1-3	2 2	- 22	.01	.10	22	-8
CR L3S 1+00E	5	73	14	218	.4	37	25	1444	3.97	10	<8	<2	2	21	2.6	<3	<3	117	22 1	36	12	5%	70	100	12	< <u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-11	.01	.11	24	.5
00 170 4:055	-															-	-		•== • •		12	22	.10	14	- 14	<> 2	-82	.01	.08	25	-0
CR L35 1+25E	5	70	20	250	-4	37	24	1436	4.15	14	<8	<2	2	52	2.8	<3	<3	117	.61 .2	31	9	50	69	182	12	~7.2	47	04	00		, ,
CR 170 1700	ຸ	48	14	306	.3	31	23	2682	3.72	10	<8	<2	2	43	2.7	<3	<3	100	.51 .2	40	ġ	51	.64	261	12	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	.07	.01	.07		•4
CR L35 1+73E	2	10	15	214	<.5	42	21	842	4.20	12	<8	<2	2	26	1.2	<3	<3	113	.30 .1	59	ģ	59	80	140	13	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	34	.01	10	SZ 4	-0
CR L33 2400E	4. C	40	21	234	-3	30	20	1682	3.87	11	<8	<2	2	46	2.5	<3	<3	95	.48 .10	61	7	48	.61	221	11		51	.01	.10	~ ~ ~ ~	-8
GR LJG EVEJE .	,	95	10	100	• >	22	23	1049	4.18	11	<8	<2	3	29	1.2	<3	<3	110	.31 .18	88	11	49	.70	131	.11	<33	.59	01	.03	7 /	0
CR L3S 2+50E	4	57	30	180	6	26	19	097	2 7/	10	-0		-			_	_													4 4	
CR L3S 2+75E	5	67	16	220		31	27	1910	6 07	44	×0 0	2	2	27	1.2	<3	<3	103	.29 .1	79	7	48	.57	140	.11	<32	.24	.01	.08	<2 3	.1
RE CR L3S 2+75E	5	67	15	231	Ż	30	24	1794	4.07	11	~0 ~2	~~	2	32	1.1	<3	<3	108	.31 .24	41	8	49	.67	172	.12	<32	.75	.01	.08	<2 2	.3
CR L3S 3+00E	5	60	19	211	3	30	23	1843	3 05		~0	~2	ŝ	22	1.1	<5	<2	107	.31 .24	45	8	49	.65	169	.12	<32	.67	.01	.09	<2 2	2
CR L3S 3+25E	4	64	15	180	.6	27	20	1274	3 68	10	~8	~2	5	20	1.1	< 5	< 3	106	.17 .19	59	7	54	.73	143	.10	<32	.35	.01	.08	<2 2	.9
						-	20		0.00	10	10	12	٤	22	1.0	0	<\$	96	.21 .22	20	8	50	.67	113	.12	<32	. 84	.01	.08	<2 2	.0
CR L3S 3+50E	5	53	13	233	.6	28	Z1	978	3.51	10	<8	<2	2	20	0	.7	~7	07	10 -	n r	-										
CR L3S 3+75E	6	74	14	198	.6	25	23	1343	3.84	9	<8	~	2	17	.7		-7	73	10.20	05	<u>(</u>	45	.67	117	.13	<33	.29	.01	.06	<2 1	.8
CR L3S 4+00E	10	72	66	153	.6	17	14	1475	4 11	14	<8	~2	÷	31	1 2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-7	74 01	-17 -20	20	1	38	.61	118	. 14	<32	.99	.01	.08	31	.8
CR 145 0+00E	3	51	16	217	.4	30	21	1396	3 39	10	<8	<2	2	70	1.7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-7	91	.40 .15	52	(29	-48	150	.10	<32	.21	.01	.08	82	.4
CR 145 0+25E	4	55	19	208	.5	32	20	1311	3.54	10	<8	<2	- 2	38	1 0	-7	-7	00	.47 .1;	<u>V</u>	.9	52	.64	169	.11	<32	.75	.01	.09	<2 2	.9
								· ·			-	•	-	50	1.7	5	~)	70	.40 .13	0Ó	10	47	.69	154	.12	<32	.69	.01	.10	<23	.1
CR L4S 0+50E	4	73	15	232	.4	37	24	1467	3.67	9	<8	<2	2	34	2.4	<3	۲۶	107	22 14	6	44	ΕA	<i>(</i> ^	740							
CK L4S 0+75E	6	71	18	198	.4	36	24	1281	4.06	14	<8	<2	2	31	1.2	-3	~7	100	27 45	אנ 77	•	50	. 69	212	.11	<33	.07	.01	.10	<2 4	.1
CR L4S 1+00E	3	42	18	187	.3	26	19	1619	3.42	12	<8	<2	2	21	1.8	3	~	01	17 17	(J) 25	y a	40	.12	161	.11	<33	.02	.01	.09	2 14	.4
CK L4S 1+25E	3	53	15	209	.5	28	19	1310	3.57	10	<8	<2	2	18	1.4	3	ζ.	96	16 12) 1 1	o p	44 55	. 29	128	.12	<3 2	.45	.01	.07	<2 1	.7
STANDARD DS5	. 9	130	35	158	.3	37	13	770	3.05	31	<8	<2	4	29	5.6	5	6	Âŋ	51 00	27	10	33 10/	./3	1/5	.12	<32	.47	-01	.07	<21	.2
		-																			17	174	.70	142	-07	< 5]	. 64	.03	- 17	4 20	.3

Sample type: SOIL SS80_60C. Samples beginning (RE) are Reruns and (RRE) are Reject Reruns.

Emgold Mining Corp. PROJECT STEWART FILE # A103745

Page 7

SAMPLE#	Mo	Cu	РЬ	7n	۸a	Ni	Co.	Ma									<u> </u>												A(ME ANALYT	(1CAL
	DDM	DDM	DDm	000	79 000	יוי	bom		re 4/	AS	U U	Au	Th	Sr	Cd	sь	Bi	v	Ća	Р	La	Cr	Mg	Ba	Тi	8	A I	Na	~		A +
	··· '				- PPin	PP40	ppan	phin	4	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	X	7	ppm	ppm	ž	PDM	7.	DOM	2	2	Ŷ	W	AU"
G-1 CR L4S 1+50E CR L4S 1+75E CR L4S 2+00E CR L4S 2+25E	1 3 5 5	2 56 73 73	<3 13 16 12	39 212 215 197	<.3 .8 .5 .8	6 31 34 36	4 20 25 21	510 1578 1744 775	1.65 3.77 3.68 4.23	<2 10 10 10	<8 <8 <8 <8	<2 <2 <2 <2	5 <2 <2 2	59 21 16 17	<.5 1.6 1.4 1.3	ও ও ও ও	<3 <3 <3 <3	39 98 101 111	.48 .17 .14	.098 .262 .162	7 8 10	17 66 61 67	.56 .77 .97	208 163 87	.12 .11 .10	<3 2 <3 2 <3 3	.83 .97 .39	.06 .01 .01	.44 .07 .07	2 <2 <2	<.2 4.1 5.7
	,		14	223	.4	55	21	983	\$.93	10	<8	<2	2	18	1.0	<3	3	113	. 16	280	7	63	.96	149	.11	<33.	.38 .38	.01	.07	<2 <2	2.9 4.3
CR L4S 2+75E CR L4S 2+75E CR L4S 3+00E CR L4S 3+25E CR L4S 3+50E	4 5 4 4	47 57 104 42 44	14 17 14 16 14	271 242 279 222 198	<.3 .3 .4 .5 .4	33 31 45 23 26	20 27 35 16 17	1063 2261 924 1021 960	3.94 3.91 4.58 3.33 3.18	12 11 17 11 10	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 2 2 2 2 2	20 21 29 21 13	1.3 1.2 1.1 .9 .7	८२ ८२ ८२ ८२	८३ ८३ ८३ ८३ ८३	103 111 124 88 91	. 18 . 19 . 32 . 23 . 12	.302 .223 .278 .234 .236	7 7 6 6	58 61 84 44 45	.85 .75 1.14 .58 .64	201 155 141 128 111	. 14 . 12 . 13 . 15 . 13	<3 3. <3 2. <3 3. <3 4. <3 4.	.52 .76 .93 .22 .33	.01 .01 .01 .01 .01	.08 .06 .07 .08 .07	<2 <2 <2 <2 <2 <2	4.5 1.3 4.2 1.4 3.7
CR L4S 3+75E CR L4S 4+00E CR L10S 0+00E CR L10S 0+25E CR L10S 0+50E	6 9 3 2 2	56 59 42 47 35	18 21 14 30 44	228 150 178 161 108	.3 .4 .5 .7 .6	29 17 21 26 18	22 15 17 14 13	1489 884 1112 926 1313	3.60 4.07 3.18 3.63 3.29	12 1 3 10 7 10	<8 <8 <8 <8 <8	<> <> <> <> <> <> <> <> <> <> <> <> <> <	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	14 13 12 19 12	.7 .6 .7 .5	उ उ उ उ उ	ও ও ও ও ও ও ও	95 97 83 91 92	. 12 .08 . 11 . 18 .08	.235 .126 .131 .132 .142	7 6 5 6	49 31 47 61 43	.74 .51 .55 .78 .61	126 95 132 95 121	. 13 . 13 . 13 . 14 . 13	<3 4. <3 3. <3 3. <3 2. <3 1.	10 .04 .87 .72 .84	.01 .01 .01 .01 .01	.07 .06 .05 .09	2 5 2 2 2	1.8 .9 1.3 3.3 4 1
CR L10S 0+75E CR L10S 1+00E CR L10S 1+25E CR L10S 1+50E CR L10S 1+50E CR L10S 1+75E	3 2 3 2	50 59 52 28 32	18 26 14 15 13	123 119 106 70 70	<.3 .3 .4 <.3 <.3	22 22 17 8 12	16 13 12 7 10	902 626 494 669 446	3.96 3.95 3.36 2.52 3.31	7 13 6 4 4	<8 <8 <8 <8 <8	< < < < < < < < < < < < < < < < < < < <	3 3 2 3	16 12 14 10 10	<.5 <.5 <.5 <.5 <.5	८२ ८२ ८२ ८२ ८२ ८२	ও ও ও ও ও ও	105 91 82 74 82	.11 .11 .09 .08 .08	.346 .193 .159 .094 .094	7 7 5 8	52 49 32 16 25	.86 .77 .65 .32 .44	133 76 86 69 61	13 14 14 14 14	<33. <33. <34. <33. <33. <33.	36 68 69 27 82	.01 .01 .01 .01 .01	.08 .08 .08 .08	<2 21 <2 <2	2.8 4.7 4.0 1.6
RE CR L10S 1+75E CR L10S 2+00E CR L10S 2+25E CR L10S 2+50E CR L10S 2+75E	2 2 2 2 2 2	29 28 22 36 14	13 16 20 76 56	69 78 82 93 91	<.3 <.3 <.3 <.3 .3	11 10 9 11 7	10 8 8 9 6	447 520 2709 421 666	3.16 3.02 2.81 3.14 2.83	4 5 4 17 5	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2	3 2 2 2 2 2 2	10 11 13 12 9	<.5 <.5 <.5 <.5 <.5	3 3 3 3 3 3	ব ব ব ব ব ব ব ব ব ব	79 73 66 67 71	.07 .08 .12 .10 .10	.094 .095 .099 .076 .053	8 6 5 6	25 21 19 20 16	.44 .40 .34 .40 .18	62 67 98 56 40	.15 .13 .12 .11 .11	<3 3. <3 3. <3 2. <3 2. <3 2. <3 1.	66 77 03 93 40	.01 .01 .01 .01 .01	.06 .06 .06 .06	<2 <2 <2 <2 <2	3.5 3.0 1.4 2.1
CR L10S 3+00E CR L10S 3+25E CR L10S 3+50E CR L10S 3+75E CR L10S 4+00E	12 15 23 22 31	49 59 63 43 89	22 19 22 26 26	170 342 681 346 359	.3 .4 .3 <.3 .3	18 26 52 19 39	12 13 22 19 28	676 3 701 3 1504 3 1571 3 1675 4	5.40 5.83 5.93 5.53 5.72	12 11 15 10 10	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	2 <2 <2 <2 <2	11 21 35 59 29	.5 1.1 3.2 4.5 2.2	<3 <3 <3 <3 <3	उ उ उ उ	87 89 93 86 108	.08 .14 .42 .54 .29	. 128 . 130 . 085 . 093 . 100	6 7 15 17 13	32 31 41 30 36	.53 .63 .61 .55 .70	61 138 51 83 88	.10 .10 .08 .10 .06	<3 3. <3 3. <3 2. <3 2. <3 2. <3 2.	66 67 45 28 57	.01 .01 .01 .01 .01	.05 .07 .06 .08 .08	<2 <2 1 4 <2	5.4 4.7 6.8 2.9 3.8
CR L12S 0+00E CR L12S 0+25E CR L12S 0+50E CR L12S 0+75E STANDARD DS3	2 2 10 3 9	56 50 74 68 128	20 16 16 19 34	130 107 137 154 154	.5 .3 <.3 .3 .3	20 15 19 26 36	18 14 14 20 13	1907 3 904 2 492 3 1113 3 769 3	.34 .88 .54 .55 .03	7 7 10 30	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2	2 3 4 4	21 13 12 9 28	.5 <.5 <.5 <.5 5.7	<3 <3 <3 <3 <6	3 3 3 3 6	86 68 74 84 77	.15 .11 .07 .06 .49	. 164 . 193 . 132 . 219 . 096	7 7 7 10 18	37 24 24 43 185	.72 .50 .55 .82 .62	115 85 68 83 141	.11 .15 .10 .14 .09	<3 3. <3 4. <3 3. <3 4. <3 4. <3 1.	02 19 79 22 71	.01 .01 .01 .01 .03	.10 .08 .08 .10 .17	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	9.1 1.3 8.2 4.3 0.9

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data A FA

Page 8

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	8i ppm	V PPm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	⊺i %	BAL ppm %	Na %	K %	W ppm	Au* ppb
G-1 CR L12S 1+00E CR L12S 1+25E CR L12S 1+50E CR L12S 1+75E	1 3 1 2 3	2 68 30 45 62	<3 17 21 17 12	42 133 69 98 122	<.3 .3 <.3 .7 <.3	6 20 8 10 15	4 16 9 10 18	514 1055 4409 976 861	1.67 3.50 2.54 2.70 4.19	<2 7 3 5 5	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	4 3 <2 3 3	56 10 12 8 15	<.5 <.5 <.5 <.5 <.5	ব্য ব্য ব্য ব্য	उ उ उ उ उ	38 91 68 61 120	.47 . .08 . .11 . .06 . .10 .	094 189 076 159 140	7 7 6 7 7	15 35 15 13 21	.51 .79 .27 .43 1.09	207 82 92 83 140	.12 .15 .10 .16 .17	<3 .80 <3 4.45 <3 1.72 <3 4.42 <3 4.56	.05 .01 .01 .01 .01	.47 .11 .07 .08 .45	2 <2 <2 <2 <2 <2 <2 <2	.2 2.6 .7 2.4 7.6
CR L12S 2+00E CR L12S 2+25E CR L12S 2+50E CR L12S 2+75E CR L12S 3+00E	4 2 10 14 28	44 46 70 56 80	27 16 34 22 13	122 123 200 195 107	<.3 .3 .3 .3 .3	16 17 30 30 10	12 15 15 16 8	836 958 1050 772 727	3.06 3.27 3.12 3.80 4.94	9 9 14 8 6	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	4 2 3 3 <2	11 15 9 10 37	<.5 <.5 .7 <.5 <.5	ব্য ব্য ব্য ব্য ব্য	८२ ८२ ८२ ८२ ८२	63 78 68 87 129	.11 . .15 . .08 . .08 . .16 .	175 234 201 119 258	6 6 8 7 8	20 28 29 31 20	.42 .59 .54 .43 1.07	62 116 56 72 167	. 15 . 14 . 14 . 13 . 14	<3 4.55 <3 4.02 <3 4.62 <3 3.35 <3 3.02	.01 .01 .01 .01 .01	.08 .08 .08 .06 .33	<2 <2 <2 <2 <2	6.3 2.4 39.6 42.9 11.4
CR L12S 3+25E CR L12S 3+50E CR L12S 3+75E CR L12S 3+75E CR L12S 4+00E CR L14S 0+00E	11 13 30 6 13	75 76 61 29 88	13 16 32 18 19	147 272 175 100 146	.4 .3 .6 <.3 .7	25 39 22 14 25	14 14 10 6 20	903 528 712 380 1755	3.67 3.85 4.89 4.38 4.03	7 9 10 8 7	<8 <8 <8 <8 <8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3 4 2 4 2	11 11 8 7 22	<.5 <.5 <.5 <.5	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	3 3 3 3 3 3 3 3	79 96 96 77 96	.10 . .09 . .06 . .06 . .15 .	194 149 203 117 117	7 10 8 7 13	35 38 34 38 29	.56 .57 .41 .43 .67	64 68 59 51 154	.11 .09 .03 .14 .11	<3 3.78 <3 4.00 <3 2.60 <3 3.54 <3 2.82	.01 .01 <.01 .01 .01	.07 .07 .09 .08 .09	<2 <2 <2 <2 <2 <2 <2	8.7 12.6 6.1 5.0 3.8
CR L14S 0+25E CR L14S 0+50E CR L14S 0+75E CR L14S 0+75E CR L14S 1+00E CR L14S 1+25E	19 17 14 20 6	87 97 132 139 72	28 17 77 72 13	161 162 214 209 122	.8 .7 .3 <.3	30 27 19 18 14	18 17 32 34 16	1484 1347 3634 3804 1223	4.13 3.64 4.29 3.91 3.59	11 8 12 10 5	<8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	22 18 58 51 18	1.0 .6 2.5 2.9 <.5	ব্য ব্য ব্য ব্য ব্য	उ उ उ उ उ उ उ	94 93 107 94 96	.17 . .16 . .48 . .49 . .23 .	221 121 193 200 163	9 11 7 7 7	28 28 22 18 18	.50 .59 .85 .65 .70	105 86 194 161 97	.06 .08 .10 .09 .11	<3 2.86 <3 3.47 <3 2.85 <3 2.75 <3 3.18	.01 .01 .01 .01 .01	.10 .09 .20 .14 .13	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.1 3.4 4.4 2.4 3.4
CR L14S 1+50E CR L14S 1+75E RE CR L14S 1+75E CR L14S 2+00E CR L14S 2+25E	4 4 5 8	45 52 53 52 65	29 12 12 14 13	155 132 129 138 177	.3 <.3 <.3 <.3 <.3	14 15 15 15 20	14 15 14 15 16	1358 1157 1108 1095 693	3.42 3.31 3.41 3.45 3.38	7 6 5 7	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 2 2 2 2 2 2 2 2	22 17 17 16 14	.8 <.5 <.5 .5 <.5	ও ও ও ও ও	3 3 3 3 3 3 3 3	88 87 88 93 88	.18 . .16 . .15 . .17 . .15 .	118 150 148 108 107	7 7 7 6 7	19 22 22 18 21	.54 .59 .61 .64 .66	108 86 85 78 69	.13 .14 .13 .11 .12	<3 2.69 <3 3.65 <3 3.58 <3 2.76 <3 3.60	.01 .01 .01 .01	.11 .10 .10 .11 .11	<2 <2 <2 <2 <2 <2	2.7 3.9 2.3 5.0 2.9
CR L14S 2+50E CR L14S 2+75E CR L14S 3+00E CR L14S 3+25E CR L14S 3+50E	7 11 28 25 35	57 46 117 166 121	22 21 30 25 37	199 198 376 488 623	<.3 .4 .7 .4	20 16 34 60 62	17 15 29 40 36	1179 1561 2425 2006 2470	3.37 3.70 4.17 4.54 4.76	9 6 10 8 10	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	15 15 25 29 37	.7 .8 2.6 2.9 3.7	ব্য ব্য ব্য ব্য ব্য	८३ ८३ ८३ ८३ ८३	83 79 79 90 92	.15 . .16 . .27 . .31 . .38 .	160 134 161 193 118	7 6 11 10 15	22 21 23 29 32	.54 .37 .51 .55 .54	88 93 114 202 172	.11 .09 .05 .08 .05	<3 3.22 <3 2.02 <3 2.94 <3 2.92 <3 2.69	.01 .01 .01 .01	.09 .08 .08 .11 .09	<2 <2 <2 2 2	4.3 18.7 2.3 4.5 7.1
CR L14S 3+75E CR L14S 4+00E CR L16S 0+00E CR L16S 0+25E STANDARD DS3	36 37 31 11 9	88 69 53 96 125	40 31 13 18 36	477 342 76 135 156	.7 .5 .3 .3	28 17 1 3 24 36	23 14 8 16 12	2282 2614 259 575 816	4.01 3.73 2.90 3.87 3.26	11 13 6 12 30	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 3 3 4	19 15 9 15 27	2.8 2.0 <.5 .5 5.8	ব ব ব ব ব ব ব ব ব ব ব ব ব ব ব	3 <3 <3 <3 6	71 65 67 86 79	.18 . .17 . .07 . .12 .	128 146 087 150 096	20 14 6 8 19	24 22 20 26 185	.51 .34 .46 .71 .64	162 203 76 94 149	.02 .02 .14 .13 .09	<3 2.59 <3 2.20 <3 4.32 <3 4.04 <3 1.74	.01 .01 .01 .01	.11 .12 .06 .08	2 <2 <2 2 2	5.9 16.8 1.3 2.2 21 6

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns,

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_A_FA

;

:

Page 9

ACME ANALYTICAI

SAMPLE#	Mo	Cu	Pb	Zn	PA	Ni	Co	Mn	Fe	As	U	Au	Th	S٢	Cd	\$b	Bi	v	Ca	P	La	Cr	Mg	Ba	Ti	B AL	Na	к	¥	Au*
	Phu	hhiii	ppii	ppiii	ppm	ppm	ppm	ppin		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	74	ppm	ppm	- %	ppm	%	ppm %	×.	*	ppm	ppb
G-1 CR L16S 0+50E CR L16S 0+75E CR L16S 1+00E CR L16S 1+25E	1 10 7 6 10	2 51 58 74 97	<3 13 15 15 15	43 115 128 127 158	<.3 <.3 <.3 <.3 .3	6 17 18 18 28	4 13 12 15 18	554 956 593 990 923	1.64 3.35 3.86 3.47 4.01	<2 7 12 12	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	5 2 2 2 2 2	65 15 14 16 19	<.5 <.5 <.5 <.5	3 3 3 3 3 3 3	८३ ८३ ८३ ८३ ८३	41 94 97 96 98	.51 .1 .13 .1 .13 .1 .15 .2 .18 .1	07 04 08 08 47	8 7 7 8	17 22 26 27 32	.62 .61 .66 .72 .71	223 82 79 72 91	.11 .13 .14 .11 .11	<3 .88 <3 2.84 <3 3.55 <3 3.38 <3 3.73	.06 .01 .01 .01 .01	.51 .10 .10 .11 .10	2 2 2 4	<.2 6.5 1.6 5.8 2.4
CR L16S 1+50E CR L16S 1+75E CR L16S 2+00E CR L16S 2+25E CR L16S 2+50E	19 21 52 23 39	114 83 97 113 130	17 24 16 23 28	142 224 135 202 127	.5 <.3 .4 .7 .8	23 38 27 25 15	14 15 29 21 12	1049 1314 1780 1004 995	4.64 3.44 3.65 4.07 4.10	16 13 7 13 11	<8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 3 2 2 2 2 2 2	17 17 21 10 9	<.5 .9 .7 <.5	<उ <उ <उ <उ	<3 <3 <3 <3 3	109 98 82 81 87	.16 .2 .17 .1 .18 .1 .08 .1 .07 .1	13 64 75 73 55	6 8 10 9 8	36 29 25 29 24	.74 .54 .47 .51 .55	74 74 80 65 47	.12 .12 .10 .10 .07	<3 3.90 <3 3.87 <3 3.02 <3 3.82 <3 3.11	.01 .01 .01 .01 .01	.09 .09 .11 .07 .07	8 4 5 5 6	2.5 24.4 2.1 5.0 8.5
CR L16S 2+75E CR L16S 3+00E CR L16S 3+25E CR L16S 3+50E CR L16S 3+75E	16 17 18 89 43	53 73 28 120 58	15 14 20 10 10	117 237 124 134 72	.3 .4 .3 .4 .5	16 31 11 25 11	8 15 8 13 4	1086 947 772 619 407	3.50 3.60 4.83 4.63 3.60	6 10 11 7 6	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	2 3 2 3 3 3	8 9 15 14 11	<.5 .5 <.5 <.5 <.5	ব্য ব্য ব্য ব্য ব্য	८३ ८३ ८३ ८३ ८३ ८३	89 112 99 89 76	.07 .1 .11 .1 .10 .2 .10 .1 .08 .1	06 47 38 82 75	8 10 9 10 6	27 42 33 37 24	.39 .44 .31 .39 .22	67 69 79 71 55	.11 .08 .11 .11 .12	<3 2.95 <3 3.86 <3 2.58 <3 4.72 <3 4.26	.01 .01 .01 .01 .01	.07 .06 .08 .07 .06	3 2 2 2 2 2 3	4.2 26.1 3.3 3.8 1.9
CR L165 4+00E CR L185 0+00E CR L185 0+25E RE CR L185 0+25E CR L185 0+50E	52 2 2 2 3	112 27 52 49 72	12 17 17 17 25	66 124 145 140 186	.3 .3 .4 .4 .6	13 11 13 13 16	6 11 15 14 15	299 760 602 635 639	5.28 3.28 3.17 3.05 3.48	6 11 10 10 15	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	4 2 3 3 3 3	10 11 15 14 17	<.5 <.5 <.5 <.5 .5	<3 <3 <3 <3 <3	3 3 3 3 3 3 3 3	103 72 81 84 93	.06 .1 .09 .1 .15 .1 .14 .1 .14 .1	54 61 43 42 72	9 7 7 7 7	39 18 19 19 20	.30 .53 .57 .55 .75	54 99 82 79 91	. 14 . 12 . 14 . 14 . 14	<3 4.01 <3 3.36 <3 4.03 <3 4.01 <3 4.34	.01 .01 .01 .01 .01	.07 .11 .10 .12 .14	2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	5.7 5.1 2.4 2.3 4.0
CR L185 0+75E CR L185 1+00E CR L185 1+25E CR L185 1+50E CR L185 1+75E	4 5 7 8 8	62 94 96 66 81	21 19 16 19 23	237 177 156 160 138	.3 .3 .3 .3 <.3	18 22 24 23 28	19 22 19 19 17	1011 1276 626 1054 736	3.32 3.61 3.51 3.63 3.57	16 20 14 21 15	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	3 2 3 2 3	17 16 14 17 19	1.1 .6 <.5 <.5 <.5	<3 <3 <3 <3	ও ও ও ও ও	82 87 80 84 82	.18 .1 .16 .2 .13 .1 .15 .1 .15 .2	160 136 140 199 218	11 10 9 8 13	20 23 23 27 30	.63 .68 .60 .55 .59	132 98 91 89 121	. 15 . 11 . 13 . 12 . 14	<3 3.99 <3 3.95 <3 3.91 <3 3.13 <3 3.75	.02 .01 .01 .01 .01	.12 .12 .11 .10 .13	3 5 7 5 6	1.9 5.1 5.1 3.2 3.2
CR L18\$ 2+00E CR L18\$ 2+25E CR L18\$ 2+50E CR L18\$ 2+75E CR L18\$ 3+00E	9 9 19 13 9	91 85 87 93 67	24 17 18 26 20	176 127 136 175 137	.3 .3 .3 .3 .4	24 22 23 31 22	17 17 16 21 12	1272 853 1152 1946 529	3.95 3.25 3.63 3.40 3.14	41 23 15 10 9	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 3 2 3	14 11 14 15 11	<.5 <.5 <.7 <.5	उ उ उ उ	3 3 3 3 3 3 3 3	83 67 75 77 76	.10 .1 .09 .1 .09 .1 .10 .1 .09 .1	149 190 184 195 121	11 8 10 11 7	26 21 26 28 24	.62 .46 .44 .53 .49	119 67 68 76 76	.09 .13 .12 .10 .12	<3 3.05 <3 4.03 <3 3.96 <3 3.61 <3 3.76	.01 .01 .01 .01 .01	. 10 . 08 . 08 . 09 . 07	6 3 4 3 3	2.0 4.8 3.9 3.4 4.8
CR L18S 3+25E CR L18S 3+50E CR L18S 3+75E CR L18S 3+75E CR L18S 4+00E STANDARD DS3	14 10 10 10 9	98 44 54 60 124	15 21 12 20 35	317 220 110 181 159	.3 .4 .3 .3 .3	38 23 18 21 36	29 10 10 11 11	1270 917 582 722 799	3.64 3.60 2.69 2.90 2.95	12 23 7 10 33	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	3 3 4 2 4	12 10 7 8 27	.9 .6 <.5 <.5 5.8	उ उ उ उ 5	3 3 3 3 5 6	91 100 67 60 75	.06 .1 .07 .1 .05 .2 .06 .1 .53 .1	166 147 206 159 100	10 8 8 13 18	28 31 19 20 171	.37 .42 .25 .39 .61	70 77 29 65 140	.13 .11 .15 .08 .08	<3 4.48 <3 2.85 <3 5.18 <3 3.27 <3 1.72	.01 .01 .01 .01	.07 .08 .06 .10 .16	5 2 3 4	3.1 10.1 5.6 7.4 19.7

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

Emgold Mining Corp. PROJECT STEWART FILE # A103745

Page 10

ł

Data A/FA

SAMPLE#	Мо ррт	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	Р %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	W ppm	Au* ppb
G-1 CR L20S 0+00E CR L20S 0+25E CR L20S 0+50E CR L20S 0+75E	1 5 7 3 3	2 69 75 39 56	<3 43 34 27 21	40 145 150 172 197	<.3 .3 <.3 <.3	6 12 13 12 15	4 21 24 17 20	501 2000 2522 1885 1561	1.67 3.58 3.54 3.29 3.40	<2 9 16 11 9	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	5 2 2 2 2 2 2	58 59 50 19 19	<.5 .6 .7 .7 1.1	उ उ उ उ	<3 <3 <3 <3 <3	38 101 87 81 90	.52 .83 .72 .20 .17	.090 .159 .138 .199 .175	7 9 8 6 8	16 16 16 16 18	.53 .95 .70 .48 .62	201 81 96 112 110	.12 .09 .07 .13 .13	उ उ उ उ र	.80 2.94 3.28 3.22 3.99	.06 .03 .02 .01 .01	.42 .19 .12 .09 .11	2 <2 2 <2 <2 <2 <2	.4 2.0 3.8 2.1 1.3
CR L20S 1+00E CR L20S 1+25E CR L20S 1+50E CR L20S 1+75E CR L20S 2+00E	5 7 12 9 13	62 66 71 69 79	23 17 24 42 22	264 280 273 304 411	.4 .3 <.3 <.3 .3	23 26 27 28 39	20 21 24 26 29	1638 1720 1758 2025 1022	3.68 3.39 3.64 3.46 4.34	10 14 19 22 25	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2	3 <2 <2 <2 3	17 32 25 50 35	.9 1.3 1.2 2.3 1.5	<3 <3 <3 <3	ব্য ব্য ব্য ব্য ব্য	98 88 95 89 103	. 15 . 36 . 33 . 80 . 49	.178 .188 .212 .158 .112	9 10 12 12 13	25 24 28 29 37	.72 .70 .71 .74 .80	121 108 58 75 83	.16 .11 .07 .08 .14	ব ব ব ব ব ব	4.01 3.53 3.40 2.45 3.50	.01 .01 .01 .02 .01	.11 .12 .13 .13 .09	<2 <2 <2 2 3	1.3 1.6 6.0 3.1 4.9
CR L20S 2+25E CR L20S 2+50E CR L20S 2+75E CR L20S 3+00E RE CR L20S 3+00E	10 14 12 5 5	66 75 91 63 63	47 19 24 14 14	326 435 237 237 235	<.3 .3 .3 .4 .4	31 35 31 28 28	30 22 21 13 13	1850 1362 1428 638 650	3.47 3.72 3.75 3.67 3.58	24 22 18 13 13	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 3 3	65 50 15 12 12	4.1 3.2 .7 .5	८३ ८३ ८३ ८३ ८३	ॐ उ उ उ	80 91 82 90 90	1.08 .76 .18 .12 .15	.195 .110 .214 .226 .229	10 12 10 10 10	35 44 29 29 29	.69 .67 .54 .55 .53	96 70 72 97 97	.05 .08 .07 .13 .12	3 <3 <3 <3 <3	2.21 2.43 3.13 3.55 3.48	.02 .02 .01 .01 .01	.10 .07 .07 .08 .08	3 3 2 2 2	24.6 5.0 9.0 3.5 3.8
CR L20S 3+25E CR L20S 3+50E CR L20S 3+75E CR L20S 4+00E PO L20S 26+00W	6 5 7 7 <1	80 102 135 96 38	14 33 22 17 15	153 180 130 161 91	.3 <.3 .3 .3 <.3	24 32 25 26 25	17 22 22 18 15	1034 1705 1096 761 693	3.39 3.50 4.14 3.82 2.71	10 11 9 6	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 2 2 3	13 17 14 16 37	<.5 .7 <.5 <.5 <.5	ও ও ও ও ও	ଏ ଏ ଏ ଏ ଏ ଓ	83 95 80 86 58	.14 .15 .10 .11 .38	. 195 . 180 . 211 . 187 . 235	10 11 9 10 8	29 35 24 28 41	.61 .73 .54 .60 .62	75 100 74 88 185	.11 .10 .11 .14 .16	3 3 3 3 3	3.56 3.36 3.55 3.91 3.43	.01 .01 .01 .01 .02	.11 .11 .09 .11 .09	2 2 11 5 <2	13.0 38.3 6.0 13.6 3.0
PO L20S 25+50W PO L20S 25+00W PO L20S 24+50W PO L20S 24+00W PO L20S 23+50W	<1 <1 1 1 <1	43 41 24 36 64	18 21 21 14 14	102 144 72 76 83	<.3 .3 <.3 <.3 <.3	28 25 19 22 26	15 13 12 12 15	845 567 1805 433 489	2.69 2.73 2.46 2.75 2.87	8 7 6 7	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	4 4 2 3 4	38 28 27 36 38	.6 <.5 <.5 <.5 <.5	८३ ८३ ८३ ८३ ८३	८३ ८३ ८३ ८३ ८३	60 54 48 54 60	.45 .29 .25 .33 .35	.223 .262 .158 .215 .102	13 9 8 11 10	49 42 37 40 46	.68 .59 .52 .54 .71	185 117 179 101 109	.14 .15 .13 .15 .16	2 2 2 2 2 3 2 3	3.23 4.10 2.24 3.30 3.17	.02 .01 .01 .01 .01	.10 .07 .07 .06 .07	<2 <2 <2 <2 <2 <2	2.8 15.3 2.4 4.4 12.0
PO L20S 23+00W PO L20S 22+50W PO L20S 22+00W PO L20S 21+50W PO L20S 21+00W	1 1 1 1	36 36 129 48 63	16 27 22 15 9	98 115 106 87 76	<.3 <.3 <.3 <.3 <.3	23 22 31 28 34	16 15 21 15 19	2432 4202 1661 1228 762	2.86 2.55 3.14 2.88 3.18	6 8 6 7 8	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	3 2 3 3 2	29 66 59 44 53	<.5 1.0 .6 <.5 <.5	८ ८ ८ ८ ८ ८ ८ ८ ८	3 3 3 3 3	55 49 71 61 67	.26 .54 .50 .33 .49	.254 .316 .142 .135 .118	8 7 10 7 9	36 30 53 41 41	.56 .53 1.14 .74 1.03	204 531 197 151 145	.13 .14 .16 .13 .11	उ उ उ उ उ	2.77 2.90 2.92 2.76 2.08	.01 .02 .01 .01 .01	.07 .11 .09 .09 .11	<2 <2 <2 <2 <2 <2	.8 2.7 3.7 7.8 10.1
PO L20S 20+50W PO L20S 20+00W PO L20S 19+50W PO L20S 19+00W STANDARD DS3	1 1 1 9	83 63 54 22 124	14 20 11 15 36	67 96 61 67 153	×.3 .3 .3 ×.3 .3	54 21 44 22 36	19 16 18 12 12	1455 3521 738 863 752	3.22 3.54 3.01 2.59 2.90	16 11 6 30	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2	3 4 2 3 4	51 41 45 35 26	<.5 .7 <.5 <.5 5.3	<3 <3 <3 <3 5	८३ ८३ ८३ ८३ ८३ ८३ ८३	63 50 69 46 77	.52 .51 .36 .26 .55	.243 .322 .058 .142 .096	9 16 9 7 18	49 28 62 26 174	.92 .59 .82 .41 .59	207 323 175 192 142	.12 .11 .14 .15 .09	3 3 3 3 3 3	2.86 3.16 2.48 2.75 1.76	.01 .01 .01 .01	.10 .09 .08 .08	<2 <2 <2 <2 <2 <4	5.8 114.7 17.0 7.1 20.5

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 11

Data A FA

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Nî ppm	Co ppm	Mn ppm	Fe %	As ppm	U PPM	Au ppm	Th ppm	Sr ppm	Cd ppm :	Sb ppm	Bi ppm	V PPM	Ca %	P %	La ppm	Cr ppm	Mg %	Ва ррп	Tj X	B PPM	Al %	Na %	K X	W	Au*	
G-1 PO L20S 18+50W PO L20S 18+00W PO L20S 17+50W PO L20S 17+00W	1 ≺1 1 1	2 37 26 34 106	<3 12 12 21 13	39 61 71 66 78	<.3 <.3 <.3 <.3 <.3	5 20 17 17 69	4 16 12 14 26	497 639 964 1210 1274	1.71 2.85 2.61 2.69 3.49	<2 10 8 9 24	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2	5 3 3 3 2	59 53 49 39 48	<.5 <.5 <.5 <.5	<3 <3 <3 <3 <3 <3	<3 <3 <3 <3 <3	37 56 46 53 70	.41 .37 .33 .30 .36	.102 .228 .343 .199 .135	8 9 9 11 11	17 32 27 29 70	.48 .54 .44 .47 .93	210 188 226 183 190	. 13 . 14 . 13 . 14 . 13	<3 <3 <3 <3 <3	.78 2.63 2.54 2.86 2.30	.06 .01 .01 .01 .01	.45 .09 .09 .09 .09 .14	2 <2 <2 <2 <2 <2 <2 <2 <2	<.2 97.0 14.2 9.5 28.0	
PO L2OS 16+50W PO L2OS 16+00W PO L2OS 15+50W PO L2OS 15+00W PO L2OS 21+50W	1 1 1 1 1	27 94 54 47 37	16 16 11 7 22	67 70 56 62 105	<.3 <.3 <.3 <.3 <.3	15 23 29 15 64	15 17 16 15 22	1219 653 623 525 2211	2.99 3.21 2.97 3.33 3.36	9 16 16 7 18	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	23222	47 43 59 55 47	<.5 <.5 <.5 <.5 .7	<3 <3 <3 <3 <3	<3 <3 <3 <3 <3 <3	58 61 61 66 67	.26 .34 .48 .35 .33	.269 .308 .143 .155 .196	7 10 11 7 8	32 31 51 33 72	.53 .74 .90 .92 .97	192 136 168 110 225	.11 .14 .10 .09 .15	ୟ 4 ସ ସ ସ ସ	1.81 3.43 2.07 1.78 2.44	.01 .01 .01 .01 .01	.07 .12 .10 .09 .13	<2 <2 <2 <2 <2 <2 <2 <2	27.7 284.0 22.3 27.3 43.9	
PO L22S 21+00W PO L22S 20+50W PO L22S 20+00W PO L22S 19+50W PO L22S 19+00W	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	29 30 26 27 36	31 16 13 19 13	107 80 89 124 79	<.3 <.3 <.3 <.3 <.3	29 21 21 21 23	13 13 13 13 15	1346 1207 1072 1795 622	2.74 2.77 2.59 2.82 3.16	22 10 7 10 13	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 3 3 3 3 3 3	42 30 36 33 42	1.1 <.5 <.5 <.5	⊲ ⊲ ⊲ ⊲ ⊲	⊲ ⊲ ⊲ ⊲ ⊲ ⊲	44 51 51 50 59	.36 .21 .34 .30 .32	.426 .278 .207 .303 .292	9 9 8 8	27 33 32 27 35	.33 .45 .46 .44 .56	190 191 275 275 182	.13 .15 .15 .17 .17	<3 <3 3 4 3	3.42 3.04 2.93 3.33 2.71	.01 .01 .01 .01 .01	.08 .08 .09 .09 .11	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	8.7 13.3 5.6 5.8 8.5	
PO L22S 18+50W PO L22S 18+00W PO L22S 17+50W PO L22S 17+00W RE PO L22S 17+00W	5 1 1 1	35 25 53 31 29	12 64 14 27 27	47 189 82 84 83	.3 <.3 <.3 <.3 <.3	39 20 28 19 19	19 15 19 19 18	1403 4186 1820 2493 2516	2.59 2.96 3.26 3.24 3.10	30 9 17 13 13	<8 <8 <8 <8 <8	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 3 2 2 2	86 43 48 67 67	<.5 2.1 .6 .7	3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3	40 50 60 54 53	.74 .33 .33 .53 .55	.056 .234 .288 .297 .299	15 10 9 8 7	63 30 44 34 32	.57 .32 .58 .43 .41	154 381 254 236 232	. 17 . 16 . 13 . 12 . 11	<3 <3 <3 <3 <3	3.77 2.36 2.89 1.99 1.93	.03 .01 .01 .01 .01	.08 .11 .09 .08 .08	<2 <2 <2 <2 <2 <2 <2	19.2 22.3 48.2 177.0 54.3	
PO L22S 16+50W PO L22S 16+00W PO L22S 15+50W PO L24S 22+00W PO L24S 21+50W	1 1 1 3	37 27 43 75 22	16 12 9 11 22	80 67 64 68 43	<.3 <.3 <.3 <.3 .3	26 14 20 33 39	18 13 14 18 12	1113 2097 732 335 386	3.06 2.67 2.94 3.02 2.88	14 8 7 12 11	<8 <8 <8 <8 <8	<2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	3 2 2 4 2	37 59 50 31 36	.5 <.5 <.5 <.5 <.5	ও ও ও ও ও ও	3 3 3 3 3 3 3 3 3 3 3 3	56 43 59 62 56	.24 .40 .34 .28 .32	.214 .367 .150 .103 .062	8 10 10 10 9	34 26 32 58 46	.51 .43 .66 .81 .35	177 338 138 90 104	.14 .10 .12 .13 .16	3 3 3 3 3 3 3	2.72 2.32 2.40 2.60 3.03	.01 .01 .01 .01 .01	.09 .10 .13 .09 .07	<2 <2 <2 <2 <2 <2	41.2 83.6 26.3 13.3 8.3	
PO L24S 21+00W PO L24S 20+50W PO L24S 20+00W PO L24S 19+50W PO L24S 19+00W	14	41 140 28 30 22	11 18 16 14 18	97 57 89 78 61	<.3 .4 <.3 <.3 <.3	30 30 24 23 21	19 15 16 13 12	822 1311 537 341 584	3.77 3.15 3.04 2.80 2.97	17 36 13 8 717	<8 10 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2	3 3 4 4 2	26 75 31 29 38	<.5 <.5 <.5 <.5 <.5	८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	108 50 53 46 56	.28 .79 .25 .23 .35	.295 .089 .340 .180 .098	7 13 8 7 7	47 54 34 31 42	1.26 .39 .39 .39 .39 .42	114 123 131 143 115	. 16 . 16 . 16 . 17 . 16	<3 <3 <3 ≤3 ≤3	4.13 3.45 3.70 4.08 2.65	.01 .02 .01 .01 .01	.13 .06 .07 .09 .08	<2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7.9 44.8 11.6 9.0 70.4	
PO L24S 18+50W PO L24S 18+00W PO L24S 17+50W PO L24S 17+00W STANDARD DS3	1 1 1 1 9	28 26 35 47 125	13 29 14 17 36	72 108 79 81 156	<.3 <.3 <.3 <.3 .3	17 40 38 50 35	13 18 19 26 13	493 3191 943 2462 798	2.63 3.03 3.44 3.79 3. 17	7 10 7 6 32	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	3 2 5 5 4	38 62 51 86 27	<.5 1.2 <.5 .7 5.8	300005	3 3 3 3 6	45 51 65 84 85	.31 .55 .50 .96 .53	.218 .349 .285 .253 .099	10 13 22 28 20	30 40 24 28 188	.43 .59 .85 1.27 .55	181 406 300 595 148	.12 .12 .20 .21 .09	3 33 4 3 4 3	2.48 2.63 4.44 3.72 1.71	.01 .02 .03 .03 .03	.07 .12 .15 .22 .18	<2 <2 <2 <2 <2 <4	24.7 226.9 7.0 24.0 22.1	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 12

SAMPLE#	Mo ppm	Си ррп	Pb ppr	Zn Ppr	Ag ippm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cdi ppm	Sb ppm	Bi opm	V mqq	Ca %	P %	La ppm :	Cr ppm	Mg %	Ba ppm	Ti %	ß ppm	AL %	Na %	к Х (W nqc	Au* ppb	÷ <u>-</u>
G-1 PO L245 16+50W PO L245 16+00W PO L245 15+50W PO L245 15+00W	1 1 1 1	2 34 45 43 80	 <3 14 10 10 10 	40 76 72 62	<pre> <.3 <.3 .3 .3 .3 <.3 <.3 <.3 </pre>	7 21 22 18 23	4 15 15 13 19	518 2388 753 1032 643	1.68 2.80 3.10 2.78 3.34	<2 8 8 6 13	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	5 2 2 3 3	60 37 39 33 43	<.5 .5 <.5 <.5 <.5	<3 <3 <3 <3	3 3 3 3 3 3	38 52 54 49 64	.48 .31 .35 .24 .35	.101 .253 .150 .159 .094	7 11 11 14 9	20 31 36 29 46	.51 .51 .72 .60 .92	210 227 145 192 103	.11 .11 .10 .12 .11	<3 <3 <3 <3 <3 <3	.80 2.88 2.45 3.06 2.11	.05 .01 .01 .01 .01	.55 .10 .12 .11 .16	2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2	.3 68.6 31.8 51.5 65.7	
P0 L26S 21+0DW P0 L26S 20+50W P0 L26S 20+00W P0 L26S 19+50W P0 L26S 19+00W	1 5 1 1	31 35 26 38 34	12 5 10 5 13 3 13 6 13	84 45 66 99	 <.3 <.3 <.3 <.3 <.3 <.3 	31 36 29 28 37	16 24 16 16 20	436 1333 296 865 1929	2.80 3.04 2.92 2.89 3.21	8 12 11 12 6	<8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 2 3 4 4	29 60 30 30 41	<.5 <.5 <.5 <.5 <.5	<3 <3 <3 <3 <3	<3 <3 <3 <3 <3 <3 <3 <3	51 60 59 53 64	.27 .51 .21 .25 .39	.148 .030 .055 .215 .239	9 10 10 10 18	45 62 48 40 34	.53 .75 .50 .66 .80	170 186 122 162 235	.13 .12 .14 .14 .14	<3 <3 <3 <3 <3	3.64 2.31 2.95 3.24 3.66	.01 .01 .01 .01 .01	. 10 . 11 . 08 . 11 . 13	<2 <2 <2 <2 <2 <2 <2	9.7 19.4 25.2 17.1 6.4	
PO L26S 18+00W PO L26S 17+50W PO L26S 17+00W PO L26S 16+50W PO L26S 16+00W	1 1 1 1	30 40 20 30	5 32) 14 3 21 5 30 5 13	2 115 87 92 88 5 63	5 <.3 7 <.3 2 <.3 3 <.3 5 <.3	20 21 20 16 20	22 15 14 10 14	4178 2131 2853 5152 1592	3.24 3.06 2.97 2.52 2.91	12 9 7 7	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2	3 2 2 2 3	55 49 40 48 32	1.3 <.5 .7 1.0 <.5	८३ ८३ ८३ ८३ ८३	3 3 3 3 3 3 3 3 3 3 3	46 52 53 40 56	.47 .35 .34 .44 .24	.359 .307 .211 .319 .172	17 13 13 12 12	27 34 33 22 30	.59 .57 .54 .40 .52	404 205 322 609 216	.12 .11 .12 .11 .14	3 3 3 3 3 3 3 3	3.42 2.76 2.79 3.13 2.94	.01 .01 .01 .02 .01	.17 .11 .11 .13 .09	<2 <2 <2 <2 <2 <2	78.4 29.6 27.7 12.9 21.9	
PO L26S 15+50W PO L26S 15+00W PO L28S 30+00W PO L28S 29+50W PO L28S 29+00W	1 1 1 1 1	3: 3: 2: 3:	3 12 1 19 2 19 1 10 3 10	2 66 5 81 5 185 5 121 5 111	5 <.3 1 <.3 5 .5 1 <.3 1 <.3	19 19 29 24 28	13 15 14 14 15	963 1729 901 940 699	2.61 2.89 2.98 2.98 3.07	8 9 7 6 5	<8 <8 <8 <8 <8	< < < < < < < < < < < < < < < < < < < <	3 3 2 2 2	24 38 22 27 36	<.5 .5 1.2 .5	3 3 3 3 3 3 3 3 3 3 3 3 3 3	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	48 53 61 65 84	.19 .29 .19 .19 .31	.237 .223 .224 .161 .093	12 9 10 7 7	26 28 39 37 56	.45 .52 .57 .52 .80	214 218 199 196 149	.14 .13 .13 .13 .13 .14	00000 00000	3.39 2.80 3.25 2.84 2.50	.01 .01 .01 .01 .01	.08 .10 .12 .10 .15	<2 <2 <2 <2 <2 <2 <2	31.0 11.1 2.4 5.2 10.4	
RE PO L28S 29+00W PO L28S 28+50W PO L28S 28+00W PO L28S 27+50W PO L28S 27+00W	1 1 1 2 1	3) 41 2: 71 31	2 11 0 11 5 11 0 21 9 11	5 100 5 107 1 145 5 173 5 80	6 <.3 7 <.3 5 .3 5 .3 5 .3 0 <.3	28 34 29 39 25	14 15 12 20 13	654 375 791 1019 520	2.97 2.98 2.43 3.60 2.87	5 6 5 23 7	<8 <8 <8 <8 <8	<2 <> <> <> <> <> <> <> <> <> <> <> <> <>	2 2 3 3 3 3	32 29 27 36 31	<.5 .5 .9 1.4 <.5	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ភ្លេកក្ ភ្លេកក្	77 81 56 95 76	-24 -22 -20 -41 -34	.087 .083 .262 .160 .102	6 6 7 12 12	51 55 40 75 51	.82 .75 .54 1.15 .80	142 148 142 157 113	.12 .15 .12 .12 .12	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.36 2.71 2.53 2.51 1.84	.01 .01 .02 .01 .01	. 14 . 14 . 14 . 21 . 21	<2 <2 <2 <2 <2 <2 <2	1.1 312.9 2.9 5.2 9.3	
PO L28S 26+50W PO L28S 26+00W PO L28S 25+50W PO L28S 25+00W PO L28S 20+00W	1 1 1 1	3 4 2 2 2 2	1 1: 5 1: 8 1: 7 1: 5 1:	2 166 4 103 7 153 5 116 3 8	6 .3 3 .3 2 <.3 6 .3 1 <.3	37 31 25 23 24	15 15 13 12 13	362 626 746 588 792	2.87 3.00 2.49 2.61 2.74	4 5 7 5 9	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2	3 2 3 3 3	25 39 24 21 15	1.2 .5 .8 .7 <.5	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	64 82 64 65 50	.22 .36 .23 .19 .10	. 176 . 104 . 316 . 225 . 235	8 13 9 8 5	48 65 43 45 39	.72 1.19 .68 .64 .46	168 150 161 128 171	. 15 . 14 . 13 . 11 . 17	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.35 2.19 2.73 2.51 4.17	.01 .01 .01 .01 .01	.14 .31 .15 .12 .06	<2 <2 <2 <2 <2 <2 <2 <2	6.0 4.2 3.7 2.1 27.5	
PO L28S 19+50W PO L28S 19+00W PO L28S 18+50W PO L28S 18+00W STANDARD DS3	1 1 <1 <1 5	3 1 2 3 12	7 1 6 1 2 1 0 1 0 3	2 44 5 104 7 21 5 105 5 105	4 <.3 B <.3 7 <.3 3 <.3 5 .3	24 16 23 19 36	12 10 11 13 12	231 1663 742 2172 770	2.66 2.50 2.59 2.80 3.12	71 13 6 5 30	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 3 4 3 4	78 24 71 35 27	<.5 <.5 .9 5.7	⊲ ⊲ ⊲ ⊲ 5	3 3 3 3 3 6	46 36 37 49 73	1.22 .20 .55 .28 .53	.064 .522 .702 .232 .099	27 8 11 14 18	132 20 31 25 186	.56 .23 .50 .44 .61	132 193 597 366 142	.13 .16 .13 .15 .08	3 3 3 3 3 3 3	3.46 4.16 3.21 3.66 1.68	.03 .01 .01 .01 .03	.07 .07 .21 .10 .17	<2 <2 <2 <2 <2 <2 <4	19.7 5.8 11.0 80.5 23.5	

Sample type: SOIL SS80 60C. Samples beginning (RE/ are Reruns and (RRE/ are Reject Reruns.

Data A-FA

Page 13

SAMPLE#	Mo H	Cu	РЪ	Zn	Aa	Ni	Co	Mn	Fe	4 e	11	Å	Th	¢r.	сa	Ch.	D;	1/	C •		• -	<u></u>		<u> </u>		-						
	DOM D	ביים ביוחבים	maa	maa	maa	nom	DOM	DDM	ž	יייי		- 10 10 10 10				30		¥	La w	۲ ۷	18	Ur.	Mg	Ba	11	в	AL	Na	ĸ	W	Au*	
		1					FF	PP 10		totan I	PP414	ppin p	Avii 1	длп	Hhin I	ppin	ppii (ahnu	<i>/</i> •		ppm	ppm	74	ppm	7.	ppm	74	7.	~ ~	ppm	ppb	
G-1	1	2	<3	41	<.3	7	4	491	1.49	<2	<8	<2	6	64	< 5	~7	23	37	50	107	•	10	FF	210	10			05		•		
PO L285 17+50W	1 1	29	14	61	<.3	20	12	1374	2 31	5	< R	2	ž	37	2.5		72	21 1.4	.20	477		77	. 22	210	- 12	<5	.80	.05	.44	2	<.2	
PD L285 17+004	1	28	15	80	< 3	16	11	2103	2 33	7	29	2	7	55		2	.7	40	.32	133		21	- 24	228	.14	<5	2.65	.01	.08	<2	19.8	
PO 1285 16+50W	1	22	16	88	- 3	17	11	1740	3 67	÷	20	2	2	22	2.2	5	5	40	.00	.287	14	23	.46	550	.12	3	3.32	.01	.10	<2	20.3	
PO 1285 16+000		Z/	17	71	2.5	25	47	1700	2.91	40	50	<u>~</u>	2	22	<.5	د>	<5	58	.57	. 555	11	26	.51	304	.10	- 3	2.88	.01	.13	<2	15.4	
PU 1283 18+00W		34	14	11	د.>	20	14	1204	2.94	10	<8	<2	2	48	<.5	<3	<3	44	.40	.242	11	34	.60	227	.08	<3	2.48	.01	.12	<2	19.7	
					-					_																						
PU L285 13+50W	1	28	10	62	د.>	18	12	822	2.44	7	<8	<2	2	35	<.5	<3	<3	38	.37	.189	9	25	.50	175	.08	<3	2.00	.01	.09	<2	21.1	
PO L28\$ 15+00W	1	19	11	78	<.5	19	12	1932	2.41	- 3	<8	<2	2	45	<.5	<3	<3	38	.45	.184	10	26	.42	313	.11	<3	2.59	.01	.09	<2	00	
PO L30\$ 30+00W	1	50	22	167	.3	26	15	666	3.20	11	<8	<2	3	25	1.3	<3	<3	64	.29	.273	10	46	.68	177	13	<3	3 15	01	12	~2	1 6	
PO L30\$ 29+50W	3	50	28	222	<.3	39	18	868	2.98	34	<8	<2	2	61	2.7	<3	<3	72	.93	.166	13	67	1 06	140	08	-3	1 85	01	1/	2	5.7	
PO L30S 29+00W	1	87	15	103	.3	25	16	1089	3.46	8	<8	<2	4	24	.5	<3	< <u>3</u>	54	.26	314	11	70	62	17/	11	~~	7 57	-01	. 14	-2	2.5	
												-			•••			24					.04	174	• • •	~	2.23	.01	.09	×2	2.2	
PO L30s 28+50W	1	30	15	93	<.3	22	12	571	2.56	6	<8	0	3	24	5	~7	-7	66	27	180	0	13	40	477	47	.7		~ *		~		
PO L30S 28+00W	1	17	13	89	<.3	19	12	560	2 55	5	<8	5	ž	25	~ 5			<u>د</u> م	·2.)	3/2	2	76	.02	122	. 12	5	2.33	.01	.09	<2	1.9	
PO L30S 27+50	1	22	18	155	< 3	27	14	534	7 70	10	20	22	ž	21	<u>, , , , , , , , , , , , , , , , , , , </u>	.7	.7	60 CC	.24	.140	ç	22	. 22	120	.13	<5	2.32	.01	.09	<2	1.3	
PO 1305 27+004	1	20	10	157	7	26	17	741	3 40	17	20	20	7	21	• '	5	- 2	22	• 17	.328		55	-49	137	.14	<3	3.54	.01	.09	<2	<.2	
PO 1305 24+50U		26	EC.	12.4		40	47	7224	2.04	14	10	<u>`</u>	2	23		<3	<5	22	.29	.176	7	32	.48	154	. 14	<3	3.36	.01	.08	<2	1.3	
FU 1303 20+30#	1	24	22	141	د.>	10	12	4221	2.42	8	<8	<2	2	57	1.3	<3	<3	51	.45	.115	9	32	.35	411	.12	<3	2.03	.01	.11	<2	1.1	
DO 1700 0(+00)			-		-	~~																										
PU LOUS 20+00W		22	25	145	د.>	22	14	597	3.42	12	<8	<2	- 4	24	.6	<3	<3	57	.25	.178	11	31	.47	174	.12	<3	3.23	.01	.09	<2	194.3	
PO LSUS 25+00W	1	59	20	111	<.3	24	15	992	2.88	14	<8	<2	3	31	<.5	<3	<3	61	.37	.152	8	37	.51	198	.14	<3	3.09	.01	.07	- 2	17	
PO LSUS 24+50W	1	30	19	108	<.3	22	12	1043	2.38	9	<8	<2	- 4	16	.5	<3	<3	51	.19	.217	12	28	.39	159	.17	<3	4.08	.01	07	<2	1 2	
PO L305 24+00W	1	49	20	130	.4	24	-14	466	2.60	13	<8	<2	4	17	.5	<3	<3	54	.14	.139	14	32	.54	155	18	<3	3 65	01	0.0	2	2/0 8	
PO L325 30+00W	1	26	26	90	<.3	18	12	1322	2.81	24	<8	<2	3	23	<.5	<3	<3	55	.20	.231	7	29	45	740	13	~3	2 70	01	08	~~	247.0	
																					•	_,				-2	2.10		.00	~2	• 1	
PO L32S 29+50W	3	40	24	128	.4	43	31	2058	4.67	46	<8	<2	2	10	.5	<3	3	65	.07	.202	7	41	47	154	12	-7	2 / 4	01	Π4	-2		
RE PO 1325 29+50W	3	41	24	121	.4	43	31	1964	4.13	46	<8	<2	Z	10	5	3	<3	ÃO	07	206	7	20		150	17	.7	2.41	-01	.00	~2	1.0	
PO L32S 29+00W	2	45	38	161	<.3	69	17	2670	2.99	71	<8	<2	Ā	38	.0	~3		43	34	172	17	110	- 40	770	. 12		2.4/	• V I	.00	~2	1.2	
PO L328 28+50W	2	Z4	18	91	<.3	17	15	1087	2.95	6	<8	-	2	12	~ 5	z		57	10	1/7	47	74	- 19	230	- <u>17</u>	<u></u>	3.44	-0Z	.11	~2	1.4	
PO L32S 28+00W	1	25	21	118	<.3	18	12	2803	2.83	ŝ	- 68	~2	7	14	5	7		51	1/	147	14	31	. 23	100	• 14	<2	2.30	•01	.09	<2	3.8	
-								2003		-		1	-	14		~ 2	~5	21	. 14	• 103	10	25	. 34	205	.17	<5	3.22	.01	.06	<2	3.7	
PO 1325 27+50W	1	25	22	98	< 3	18	12	032	2 7A	4	-9	~2	2	47	F	.7	.7	~ ~														
PO 1325 27+00U	1	30	2/	102	~ 7	21	12	1000	2.10	2	10	2	4	14		<2	<\$	20	.14	.180	8	32	.46	150	.13	<3	3.18	.01	.08	<2	1.7	
PO 1326 26+500		10	24	102		40	12	1772	3.03	<u></u>	<0	~2	4	29	-0	<3	<5	60	.30	.159	10	36	.61	213	. 13	<3	2.93	.01	.11	<2	3.1	
		17	21	90	<u>د</u> .>	10	12	1917	2.79	2	<8	<2	2	30	.5	<3	<3	53	.39	.140	8	29	.41	201	.16	<3	2.81	.01	.11	<2	.5	
PO 1325 20+00W	1	27	20	116	<.5	22	15	2527	2.68	6	<8	<2	3	25	.6	<3	<3	54	.33	.146	14	32	.51	198	.15	<3	3.40	.01	10	<2	23	
PU L328 25+50W	1	19	51	148	ډ.>	13	15	10081	4.04	7	<8	<2	3	55	1.6	<3	<3	43	.70	.129	26	17	.42	660	.10	<3	2.28	01	14	0	102.2	
					_																									~	192.2	
PO L328 25+00W	1	33	100	210	<.3	22	13	1199	2.87	7	<8	<2	7	50	.8	<3	<3	50	.51	.281	16	30	.51	272	13	<i>د</i> ۲	3 DA	01	17	~ 2	1 3	
PO L32S 24+50W	1	29	23	164	<.3	24	14	2770	3.05	7	<8	<2	3	34	.9	<3	<3	60	41	142	10	37	61	260	14	2	2.04	.01	17	22		
PO L32S 24+00₩	1	32	22	158	<.3	24	15	1677	2.98	11	<8	<2	3	22	.6	-3		73	10	25/	9	72	.01	100	. 14		2.03	.01	.12	<2	.7	
PO L32S 23+50W	1	40	12	119	<.3	27	16	656	3.11	7	<8	<2	2	30	< 5	~3		66	30	217	7	47	.03	104	. 12	< S	6.96	.01	.10	<2	-4	
STANDARD DS3	9 1	21	35	154	.3	37	13	834	2.92	30	<8	-2	2	24	5 0	5	~	77		.21/	+7	22	.00	100	. 10	<5	2.56	.01	.11	<2	4.1	
			<u> </u>									<u>``</u>	*	<u>د</u> و		2	0	12	. 74	.070	-17	190	. 59	143	.09	<3	1.71	.03	.17	4	21.3	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

÷.

Emgold Mining Corp. PROJECT STEWART FILE # A103745

Page 14

SAMDIE#	Mo		Db	7-												÷		_			·								AQ	He analytic	AL ,
			nom.	40	Ag	NI		MD	⊦e	AS	U	Au	Ťh	Sг	Cd	Sb	Bi	۷	Ca	Р	La	Сr	Mg	Ba	Ti	В	AL	Na	ĸ		1.u*
	F. P	- P Pill	PPm	- Marin	Phi	P.M.	ppii	ppin		ppm	ppm	ppm	PPm	ppm	ppm	ppm	ppm	ppm	7	*	ppm	ppm	X	ppm	%	ppm	X	%	2	DOM 0	bob
G-1	1	2	3	44	<.3	7	4	540	1 65	-2	-8	~2	4	4 E	- F	.7															
PO L32S 23+00W	5	180	42	161	.8	41	52	2897	6.13	30	<8	<2	2	20	`. 2 7	<>	< 3 - 7	40	.51	.092		21	.60	220	.12	<3	. 85	.06	.44	2	.4
PO L32\$ 22+50W	1	24	30	139	<.3	18	13	4875	3.13	12	<8	2	5	20	1 2	~7	~7	121	. 10	-140	12	48	1.73	176	. 16	<33	.57	.01	.30	<2 18	3.2
PO L345 30+00W	2	59	13	143	<.3	34	23	1220	4.65	20	<8	<2	2	10	5	~3	د. ح	44	.43	. 245	2	23	.43	361	. 13	<33	. 29	.01	.11	<2 5	7.8
PO L34S 29+50W	3	35	33	175	.3	24	20	2384	3.38	100	<8	<2	2	61	1 1	~7	~7	121	. 23	. 102	2	72	1.51	249	.21	<32	.98	.01	.13	<2	.9
											-		-		•••	·	·	42	.00	• 120	13	57	.58	265	. 15	<33	.39	.01	.07	<2	.7
PO 1345 29+00W	2	34	16	81	<.3	21	9	464	2.99	226	<8	<2	3	33	<.5	<3	<3	50	60	107	E	74	11	171	47	.7 /					
PO 1345 28+50W	2	41	24	136	<.3	106	23	814	3.67	57	<8	<2	5	29	<.5	<3	<3	71	.33	161	13	182	1 64	192	17	<34	.5/	.01	.07	<2 1	1.8
PO L345 28+00W	2	21	24	130	<.3	37	14	1377	3.49	52	<8	<5	3	27	.5	<3	<3	54	.28	.177	Å	50	50	171	- 17	~ ~ ~ ~ ~	. 30	.01	.12	<2	.8
PO L345 27+500	2	51	27	116	<.3	- 38	15	1405	3.50	81	<8	<2	4	74	.9	<3	<3	54	.91	.081	26	104	72	274	19	~~ ~ ~ ~	.00 40	.01	.07	< <u>4</u>	2.7
PU 1345 27400W	1	15	24	122	<.3	17	9	941	2.55	18	<8	<2	3	30	.5	<3	<3	40	.31	.297	10	27	.27	208	16	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	.00. A0	.03	12	<2 6	3.8
20 1365 26+50U	4	14	14	7/	. 7	34					-													200			.00	.02	.00	12 35	
PO 1345 26+000		14	16	77	×.3	17	11	212	3.02	1/	<8	<2	2	30	<.5	<3	<3	60	.29	.126	7	45	.55	136	. 14	<3 2	.31	-01	.08	•2 1	5
PO L345 25+50W	l i	23	16	110		71	11	070	3.05	10	<8	<2	3	27	<.5	<3	<3	53	.22	.112	10	30	.41	166	.13	<3 2	.76	.01	.09	<2 14	. 0
RE PO L34S 25+50W	1	24	17	125	~ 7	20	12	1021	2.91	20	<ð - 0	<2	5	33	.5	<3	<3	50	.36	.165	11	40	.43	167	. 16	<33	.74	.02	.09	<2 1	iź I
P0 L34S 25+00W	i	16	21	125	े.ज द र	20	11	700	2.73	17	<0 	<2	4	- 56	<.5	<3	<3	53	.38	.174	12	43	.42	184	.17	33	.80	.02	.08	-2 1	5
	· ·						••	100	2.12	17	~0	×2	د	\$1	<.5	<3	<3	62	.31	.109	8	40	.46	140	. 14	<3 2	.57	.01	.08	-2 1	.3
PO L34S 24+50W	1	28	31	116	<.3	18	11	963	2.76	0	<8	0	7	24	c	.7	-7	50			_										
PO L34S 24+00W	1	21	17	129	<.3	19	10	620	2.93	ģ	<8	<2	ž	32	25	~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	50	.28	.155	8	-54	-41	167	.13	<33	. 12	.01	.08	<2 4	.6
PO L34S 23+50W	1	23	28	187	<.3	21	12	470	2.95	17	<8	<2	ž	37	5	~~	~7	21	.30	. 109	2	57	.44	140	.15	<33	.62	.01	.07	<2 1	.1
PO L34S 23+00W	1	54	29	149	-6	33	15	929	3.28	16	8	<2	3	75	. õ	र्दे	<3	72	 70	105		27	- 44	124	. 18	<3 4	.69	.01	.06	<2	.9
PO L34S ZZ+50W	1	18	23	115	<.3	14	9	1150 .	2.64	9	<8	<2	3	23	<.5	<3	<3	47	22	220	1	26	. ()	100	.17	< <u>5</u> 5	. 24	.02	.07	<2 1	1.1
00 13/6 224000		17	. 7		-											-	-			LLU	1	20	+ 7 1	100	- 12	<> 2	. 62	.01	.07	<2 1	.0
PO 1343 224000 PO 1349 30±000	2	47	17	159	<.5	55	19	1208	4.06	18	<8	<2	3	27	.9	<3	<3	115	.24	. 159	6	50	.82	196	20	~7 7	/ 9	01	40		
PO 1365 29+504	7	32	17	140	<.S	30	18	1053	3.64	31	<8	<2	2	19	.6	<3	<3	83	. 19	.102	6	66	.69	203	.20	<3 2	77	01	14	-2 7	. 1
PO 1365 29+00W	ر ۲	28	16	100	~ 7	20	12	427	5.06	20	<8	<5	3	20	<.5	<3	<3	71	.20	.129	7	44	.59	105	.13	< 3 3	20	01	00	~2 14	2.5
PO L36S 28+50W	1	34	13	157	~ ~	72	14	504 J	2./1	42	<8	<2	2	21	<.5	<3	<3	62	.21	. 134	8	41	.53	121	.15	<3.2	97	01	.07	<2 52	5
				1		12	17	114.	3.09	10	<8	<2	5	19	<.5	<3	<3	69	.17	. 165	7	80	.76	159	.14	<3.3	10	.01	.10	<2 1	7
PO 1365 28+00w	1	28	15	83	<.3	22	13	574	2 05	o	~8	~2	7	14	. e	.7															
PO L365 27+50W	1	26	20	87	<.3	21	11	1225	2.62	7	28	~~	2	10	<.2 	<>	< 3	66	.12	.139	8	41	.50	140	.14	<3.3,	.11	.01	.06	<2 Z	.5
PO 1365 27+00W	1	21	24	94	<.3	18	13	1019	3.27	ó	<8	~2	7	20	N.D 2 E	<s .7</s 	<3	57	.24	.137	14	34	.51	194	. 16	<33.	30 .	.01	.10	<2 5	.7
PO 1365 26+50W	1	26	18	87	<.3	20	11	685	3.04	7	<r i<="" td=""><td>~2</td><td><u>د</u></td><td>20</td><td>2.5</td><td>~~</td><td><3 -7</td><td>60</td><td>.21</td><td>.185</td><td>9</td><td>47</td><td>.52</td><td>178</td><td>. 16</td><td><32.</td><td>.21 .</td><td>.01</td><td>.07</td><td><2 1</td><td>.1</td></r>	~2	<u>د</u>	20	2.5	~~	<3 -7	60	.21	.185	9	47	.52	178	. 16	<32.	.21 .	.01	.07	<2 1	.1
PO 1365 26+00¥	<1	32	14	45	<.3	11	6	189	1.97	6	<8	2	4	21	~ 5	~~	~7		.19	.132	9	34	.57	110	-14	<33.	. 80.	.01	.08	<2 2	.6
										-			-	L ,		<u>د</u> ر	10	22	.21	. 190	>	12	.14	95	.21	<35.	.83 .	.02	.04	<2 <	.2
PU L365 25+50V	1	63	18	166	.3	21	18 1	1071 :	3.72	11	<8	<2	3	24	.6	<3	<3	82	. 24	372	5	25	88	171	1 7	- 7 -	~ /	~~		_	
PU 1366 2/4500		45	19	234	.3	27	29	895 !	5.14	14	<8	<2	2	20	.5	<3	<3	146	18	. 196	Ĺ.	55 -	1 35	215	. 22	< <u>34</u> ,	.04 . 77	.02	.10	< <u>2</u> <	.2
PO 1365 24+20W	1	>6	15	231	<.3	22	20 1	1885 4	.06	6	<8	<2	7	39	.6	<3	<3	106	.39	. 154	10	37	1 08	208	.23	<25. -7.7	.4/. ຳ/	.01	.12	<2 <	.2
STANDARD DS3	10	407	y	81	<.3	101	25	541	3.66	8	<8	<2	2	33	<.5	<3	<3	102	.36	.066	7	217 1	1 74	160	16	<>>>. <	.64 . 70	.01	.16	<2	.8
	IU	(23	J4	IDÖ	. 5		12	732 2	2.95	31	<8	<2	4	28	5.4	5	6	79	.52	.098	19	191	.59	148	.09	2	40 . 76	.UI 03	19	<2 1	.4
																													. 10	- + ∠u	. .

Sample type: SOIL \$580 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data A FA

Page 15

Data & FA

CANDI C#	Ma	Cu	머니	70	4.0		<i>C</i> -			•				-						· · · · · · · · · · · · · · · · · · ·										
SAMPLE#	007	20	P.U	211	Ag	NI	ĻĢ	mn	re	AS	U	Au	Th	Şr	Cd	SĐ	Bi	v	Ca	Р	La	Сr	Mg	Ba	Τi	B AL	Na	ĸ	W	Au*
	ppin	PPil	- phil	Phu	Hhi	phu	ppm	ppm	76	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm %	%	%	ppm	ppb
G-1	1	2	<3	39	<.3	6	4	444	1.53	<2	<8	<2	5	52	~ 5	~7	.7	77	10	000	,	47								
PO 1365 23+50W	z	49	11	78	<.3	22	24	457	3 63	5	<8	~2	2	15	~ 5	-72	-7	55	.47	.002	ç	11	. 52	207	.10	<3 .74	.04	.43	z	.3
PO 1385 30+00W	2	34	12	127	3	26	16	601	3 / 1	11	~8	~5	5	77	`.J 7	-7	7	20	• • • •	- 152	0	- 22	.49	157	.08	<3 2.16	.01	.06	<2	.8
PO L385 29+50W	2	47	13	147	.3	27	16	568	3,41 3 13	74	~8	-2	7	21	• • 7	-7		/4	.28	.114		21	. 72	124	.09	<3 2.44	.01	.10	<2	6.9
PO 1385 29+00W	3	53	11	105	< 3	27	15	203	7 19	01	~0	~5	7	21	- 1	<u>د</u> ،	0	12	.18	.096	8	49	.70	116	.12	<3 2.99	.01	.08	<2	5.4
	-			105		L 1		405	J. 10	71	20	~2	3	29	. >	<>	<>	γu	. 34	.184	9	51	.84	105	. 10	<3 2.49	.01	.10	<2	9.3
PO 138\$ 28+50W	1	19	12	81	<.3	14	10	341	2.54	8	<8	<2	2	12	< 5	~7	-3	56	10	177	4	71	77	107	40				_	
PO L38S 28+00W	1	25	22	111	<.3	22	12	1071	2.86	8	<8	<2	3	21	5	<3	-3	57	. 10	137	9	20	. 31	224	. 12	<3 2.18	.01	.04	<2	2.8
PO L38S 27+50W	1	28	44	123	<.3	16	14	3531	3.30	10	<8	ā	<2	32	1 1			57	36	1/1	11	20	.40	220	. 13	<3 3.29	.01	.07	<2	1.2
PO L385 27+00W	1	35	41	127	<.3	19	15	2902	3.11	8	<8	~	<2	35	1 3	-7	-7	60		1/3	1/	21	. 22	210	.09	<3 1.80	.01	.08	<2	22.0
PO 138S 26+50W	1	28	20	80	<.3	24	14	1090	3.10	ŏ	<8	-2	<u>ר</u>	26	~ 5		-7	20 41		146	14	40	-27	1//	.08	<3 2.12	.01	.08	<2	8.7
									5.10		.0	-2	-	64	N . 2	5		01	. 25		8	34	-47	272	.14	<5 5.67	.01	.07	<2	3.2
PO L38S 26+00W	1	32	16	110	<.3	17	15	1138	2.82	5	<8	<2	2	24	~ 5	.7	~7	40	77	107		77	10	÷.,					_	
PO L385 25+50W	1	41	21	122	<.3	17	14	1327	2 85	Ŕ	<a ∠A</a 	2	2	21	2.5	71	~7	4/	. 2.3	- 107	ç	27	-00	240	.12	<5 2.36	.01	.07	<2	.7
PO 1385 25+00W	1	44	57	198	<.3	19	22	2819	4.04	ŏ	<8	-22	2	51	1 /		-7	444	. 15	.4/4	0	50	101	174	.12	<3 2.33	.01	.08	<2	.7
PO L385 24+50W	1	37	38	129	<.3	19	16	1018	3.61	15	<8	-2	2	30	2.5	~~	~3	00	.44	- 140		- 27	1.02	442	.17	<5 2.35	.01	- 14	<2	.9
PO L385 24+00W	1	99	54	130	.4	20	25	578	4 50	15	~8		7	20	~ 5	~7	-7	1/5	.44	.300	2	44	.98	360	- 19	<3 2.79	.01	.15	<2	1.0
					• •			210	1.30	12		72	2	64	N. 2	5	×2	142	.20	.077		41	1.97	300	.27	<3 3.64	.01	.51	<2	6.7
RE PO L38\$ 24+00W	1	94	57	129	.4	19	25	592	4.63	15	<8	<2	٦	24	< 5	.7	~7	17.1	70	07/	~		3 05	705	~~					
PO L405 30+00W	4	60	15	424	.6	29	16	1149	3.41	261	10	2	2	75	4 0		7	41	. 20	1074		41	2.05	202	.27	<5 5.67	.01	.52	<2	4.3
PO L40s 29+50W	3	56	20	490	.3	30	16	1138	3.23	412	10	0	7	42	4.0	27	~3	61	- 50	- 102 CTD	14	24	.02	104	.10	<\$ 2.46	.01	.07	<2	3.1
PO L40S 29+00W	1	27	12	196	<.3	23	13	727	2.89	62	<8	2	5	25	1 0	7	-7	47		.072	12	28	- []	104	.12	<3 2.88	.02	.10	<2	2.0
PO 140\$ 28+50W	1	18	31	122	<.3	14	9	482	2.87	17	<8	2	2	16	1.0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	50	.20	100	ç	40	. 55	178	.11	<5 2.48	.01	.07	<2	1.1
	ł								210/	••	-0		L	14			·)	20	• • • •	- 192	0	32	.57	128	.15	<3 1.97	.01	.05	<2	6.1
PO 1405 28+00W	z	28	53	132	<.3	18	18	4175	4.42	12	۲A	~>	2	55	1 2	~7	-7	44		445			-							
PO L40S 27+50W	1	35	31	130	<.3	22	15	1915	3 64	10		~2	5	2/	7	-7	~2	04	. 22	-115	15	46	54	393	.09	<3 2,32	.01	. 10	<2	10.2
PO L405 27+00W	1	38	16	83	<.3	22	14	1430	3.27	7	-0 < R	-2	5	41		~~	~2	00 4 1	.24	. 150	15	49	.00	207	.12	<3 2.57	.01	.10	<2	82.8
PO 1405 26+50W	1	54	12	97	3	21	18	1598	3 57	Å	28	-2	5	20	ر. عر	-7	2	27	.43	.080	14	39	.64	232	.13	<3 3.33	.01	.09	<2	3.3
PO L405 26+00W	1	42	15	80	< 3	23	14	018	2.87	Å	~8	25	7	27	2.2	50	<u></u>	(3	.37	.087	8	- 58	. 75	159	.14	<3 2.36	.01	.09	<2	2.9
									c.o/		-0	~2	د .	24	N. 9	< <u>></u>	< 5	63	.22	.142	8	38	.63	195	.12	<3 2.73	.01	.07	<2	20.4
PO L40S 25+50W	1	52	13	77	<.3	23	15	824	3.02	8	<8	<2	3	28	2 C	~7	~7	77	71	00/	~		77							
PO L40S 25+00W	1	92	104	366	.3	34	33	2249	5.90	67	<8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7	56	~,J 7 P	2		147	10.	.004		42	./5	155	.14	<3 2.77	.01	.08	<2	2.2
STANDARD DS3	9	124	35	164	.3	35	12	768	3.28	31	<8	2	2	76	57	-12	~ 2	70	.52	. 152	12	50	1.57	420	.20	<3 3.35	.01	.34	<2	1.1
												-2	-+	- 20			ð	14	.51	.090	17	181	.58	154	.09	<u><3</u> 1.66	.03	. 15	- 4	20.8

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACME ANALY: AL LABORATORIES LTD. 852 E. HASTINGS ST. VANC (ISO 90.4 Accredited Co.) GEOCHEMICAL ANALYSIS Emgold Mining Corp. PROJECT STEWA 1400 + 570 Granville St., Vancouver BC V6C 3P1	R BC V6A 1R6 PHONE(604)253-3158 FAX(604)25: 716 CERTIFICATE ART File # A103745R Submitted by: Linda Dandy
SAMPLE#	W ppm
AR L10N 9+25E AR L10N 9+75E AR L9N 8+75E AR L9N 9+75E AR L9N 9+75E AR L9N 10+00E	70 30 21 83 47
AR L8N 9+25E AR L8N 10+00E AR L8N 12+50E AR L7N 9+50E RE AR L7N 9+50E	18 30 29 57 53
AR L7N 9+75E AR L6N 7+75E AR L6N 9+75E CR L20S 3+75E STANDARD SO-17	41 22 23 23 10
GROUP 4B - REE - LIBOZ FUSION, ICP/	/MS_FINISHED_

- SAMPLE TYPE: SOIL PULP Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data 🛙

DATE RECEIVED: NOV 9 2001 DATE REPORT MAILED: $NO\sqrt{19/01}$

ACME ANAL	0 Cl 9 1	AL L Acc	ABOI	RATO ited	RIES I Co	; LT .)	D.		852	E. F	IAST)	INGS	ST	. VA	N	IVER	BC	V67	A IR	<i>ε</i> δ	E DI	IONE	:(604	4) 25	(3 - 3)	158	PAX	604	27	77	16
AA				10 m m			•		G)	EOCI	HEMJ	[CAI	L AI	NAL!	YSI	3 CI	IRTI	(FIC	CAT	B						Adamson Adamso				Â	A
				Ea		La_ı	<u>Min:</u> 14	ing 00	<u>Co</u> 570 G	rp. Iranvi	<u>PRC</u> lle S	<u>)JEC</u> t., y	<u>CT</u> ancou	STEN	NART C V6C	<u>r</u> i 3p1	?il∈ Subr	≥# nitte	Al d by;	0379 Lind)3 ª Dan	∕¦√ Pi	age	1						Ľ	
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Мл	Fe	As	<u> </u>	Au	Th	Sr	Cd	sb	Bi	<u>v</u>	Ca	P	La	Cr	<u></u> Mg	Ba	Ti	<u> </u>	<u></u>	Na	<u> </u>	<u> </u>	A . 18
r-1	<u>ры.</u> 1	<u>سطط</u> ۲	 <3		<u> </u>		ppni 4	 	<u>~</u>					ppm 	<u>рр</u> п -	ppm	ppm	ppm	<u>×</u>	%	ppm	ppm	×	ppm	×	ppm		%		ppm	ppb
ST L2S 4+00E	15	14 18	18 22	59 103	<.3	10 12	4	400 178 415	2.96	52 17	<o <8</o 	<2 <2	D 2 7	55 16	<.5 <.5	<3 <3	دع دع	37 92	.42 .11	.092 .076	8 7	13 26	.52 .29	202 54	.12 .11	<3 <3	.79 1.16	.05 .01	.41 .05	3 12	.6 3.5
ST L2S 4+50E	8	27 31	16	86 121	4	12	6 8	373	3.08	15 16 77	<o <8</o 	<2 <2	5 3	10 9	<.5 <.5	<\$ <3	<3 <3	77 70	.05 .06	.091 .092	6 8	28 31	.28 .37	90 69	- 14 - 09	<3 (<3	3.02	.01 .01	.05 05	3	2.2
ST 125 5+00E	7	30	18	97	< 3	<u>د م</u> 17	7	י ככ גפע	2.90 7 06	21 10	<¤ ~9	~~	4	15	.6	<3	<3	69	.11	. 152	9	36	.56	76	. 09	<3	2.14	.01	.08	3	7.0
ST L2S 5+25E ST L2S 5+50E	35 8	18 25	35 38	42 63	<.3 4	7	3 5	148 246	2.95	13	<0 <8 ∠8	<2 <2	2 -7	10 8 12	<.> .5	<5 <3	<3 <3	71 82	.06	.136 .060	8	35 18	.50 .16	64 49	.09 .10	<3 : <3	2.67 1.27	.01 <.01	.06 .04	2 2	3.9 3.2
ST L2S 5+75E ST L2S 6+00E	16 11	17 15	20 20	66 60	.3	10 10	- 5 4	212 230	2.53	11 17	<8 <8	<2	2	12 9 13	<.5	<> <3	<3 <3	75 61	.U7 .06	.125	10 11	23 22	. 29 . 24	60 77	.08 .11	<3 <3	1.88 2.34	.01 .01	.05 .04	<2 <2	4.0
ST L2S 6+25E	30	12	25	45	<.3	5	3	105	1.71	7	<8	<2	~2	د، 10	ر.> A	دی ۲۰	د> ۲-	50	.Ub 05	.072	8	28	.30	58	.09	<3	1.72	.01	.05	<2	9.4
ST L2S 6+50E ST L2S 6+75E	11 8	20 40	35 24	46 119	<.3 .5	6 19	2 7	127 284	1.61 3.14	9 26	<8 <8	<2 <2	<2 4	11 14	1.0	् उ उ	-3 -3	50 73	.05	.045 .040	י 9 יח	12 12 75	.10 .13	41 54	.09 .05	<3 <3	.71	.01 .01	.05 .05	<2 2	1.6 1.7
ST L2S 7+00E ST L2S 7+25E	6	16 21	28 20	55 75	<.3 .3	8 10	4 5	272 329	3.34 2.79	21 12	<8 <8	<2 <2	3 3	7 8	<.5 <.5	3 <3	ی۔ ح	83 69	.04	.142	8	24 25	.20 .20 27	52 76	.10 .14	থ্য ব্য	3.55	.01	.06 .05	2 <2	7.1
\$T L2S 7+50E	8	37	26	118	.3	15	16	1970	2.93	11	<8	<2	2	11	.7	<3	<3	67	.06	.170	- 14	26	- 37	93	. 10	्य. 	3.12 3.72	.Ur	.U4 04	<2 -2	1.9
ST L35 4+705 ST L3S 4+75E	39	ےد 32 30	23 18 27	72 57 50	.6	15 9	14 5	530 421	3.04	16 10	<8 <8	<2 <2	<2 4	11 11	1.0 <.5	ব ব	<3 <3	60 67	.07 .04	. 192 . 114	12 11	26 20	.29 .28	76 70	.09	3 3	2.35	.01	.06 .06	2	2.2
ST L3S 5+25E	11	33	20	53	<.5 .4	10 9	4	200 162	3.05 2.71	14 9	<8 <8	<2 <2	3 4	14 7	<.5 <.5	<3 <3	<3 <3	71 65	.06 .04	.073 .072	13 10	21 22	.25	74 64	.13	3	1.86	.01 .01	.07 .04	3 <2	2.3
ST L3S 5+50E ST L3S 5+75E	35 19	23 25	19 18	77 93	.3	12 18	5	235	3.73	14	<8 - 8	<2	3	10	<.5	<3	<3	86	.06	.070	9	29	.30	64	.12	<3	2.20	.01	.05	~~ <2	6.2
RE ST L3S 5+75E ST L3S 6+00E	18	24 29	17 18	87 81	.3	17 14	6 7	221 339	2.87	15 15 19	∿⊔ <8 <8	<2 <2	2	15 14 14	<.5 <.5	<) <3 -7	<3 <3	68 67	.09 .09	.072 .078	12 12	28 26	-41 -40	84 86	.12 .12	<3 / <3	2.45	.01 .01	. 05 . 05	<2 <2	1.9 12.1
ST L3S 6+25E	26	29	16	83	.5	20	11	791	2.69	11	<8	<2	<2	18	.6	<3	<3	76 61	.11	.115	10 19	32 34	.38 .46	73 129	.08 .09	<3 / <3 /	2.27 2.20	.01 .01	.05 .06	≺2 <2	3.4 3.4
ST L3S 6+50E ST L3S 6+75E	6 5	18 19	15 16	60 85	.5 <.3	8 13	4 5	203 284	2.96	12 15	<8 <8	<2 <2	2 3	9 16	<.5 < 5	<3 <3	<3 <3	65 72	. 06 ng	106	6	24	.23	61	.11	<3	3.28	.01	.04	<2	2.4
ST L3S 7+00E ST L3S 7+25E	3	23 21	18 19	88 123	.4 .8	13 10	6 5	362 2041	2.99 2.49	17 8	<8 <8	<2 <2	- 3 2	11 10	< 5 5	रें उ	<3 <3	74 63	.07	.121	8 7	29 31 20	.34 .37	69 58	.12	<3 / <3 /	2.89	.01 .01	.05 .05	2 <2	3.3 3.9
ST L3S 7+50E	4	24	16	75	.5	11	5	222	2.60	12	<8	<2	3	6	< 5	<3	<3	60	.04	.113	6	20 24	.26 .25	51	.15 .11	<s 2<br=""><3 2</s>	2.35 3.72	.01 .01	.06 .04	<2 <2	1.9 2.5
ST L3S (+(5E ST L3S 8+00E	4	24 26	35 22	110 101	.3	14 12	6 7	485 504	3.27 2.89	19 13	<8 <8	<2 <2	3 2	10 8	.7 <.5	<3 <3	<3 <3	81 74	.07 .06	.095 127	7 8	33 30	.37	75 81	.09	37	2.58	.01	.07	<2	4.7
ST L35 0+295 ST L35 8+50E STANDADD DS3	19	22 18 430	22	81 108 150	.5	11 12 75	7	298 222	3.00	15 12	<8 <8	<2 <2	3 2	7 15	<.5 .6	<3 <3	<3 <3	70 71	.04 .08	.134 050	8 9	26 27	.27	63 152	.00 .12 10	ा इ.स. इ.स.	1.85 3.20 1 BA	.01 .01	.05	<2 : <2	56.7
STANDAND 000	<u> </u>	120	00	159	<u>.</u>	35	12	829	3.07	31		<2		29	5.9	5	6	79	56	.100	18	190	.58	146	.09	<3 1	1.73	.03	.05	4 ;	2.2 22.1
	GR/ UP	OUP 1	D - 0	1.50 G	M SAM	PLE L	EACHE		TH 3 M	IL 2-2	2 HCI	L-HNO	3-н2о	AT 9	5 DEG	. C FC	OR ONE	e hour	R, DI	LUTED	то 1() ML,	ANAL	YSED I	BY IC!	P-ES.					
	- - Sa	SAMPL	E TYP begi	E: SO	/IL SS/ /IL SS/ / /RE/	нц, 80 60 аге	W = 1 C Perur	00 Pr AU* ≏ ∋n	'M; MU BY AC - / PP5	ID LE	CD, S ACHED	SB, BI , ANAI	I, TH, Lyze /	,ប្រុ BY 1C	B = 2 P-MS.	2,000 (10 g	PPM; Jm)	CU, P	²₿, ZI	N, NI,	, MN,	AS, V	/, LA,	, CR =	= 10,0	JOO PP	ΥМ.				
		<u></u>		<u></u>	<u></u>	<u> </u>	<u>NGI GI</u>	<u>3 616</u>	1 MRL	<u> </u>	<u></u> /	<u>:t kei</u>	<u>'uns.</u> /				/	01	P												
DATE RECE:	(VED :	: 00	CT 25	2001	DA	TE J	REPO	RT 1	MAIL	ED:	∿/٥	VŸ	; /0	'T	SIG	Ned	ву.;	- :	<u>.</u>	••••	э. то т	ίΕ, C	.LEON(G, J.	WANG	; CER [.]	TIFIE	D 8.C	. Ass/	AYERS	1
All results a	аге со	nside	red t	he co	ofide	ntial	- DE OF	actu	of th				+			• • •														•••	
		<u> </u>							<u> </u>		int. A	.cine a	ISSUME	25 The	ł liap	nliti	es fo	r act	.ual c	cost o	f the	anal	ysis	only.	,			Dat		FA	

Data A FA

Emgold Mining Corp. PROJECT STEWART FILE # A103793

Page 2

SAMPI F#	Mo	Cu	Ph	70	A.a.	ы.;																_							/	ICME ANALY	TICAL
	500	500	F D	20	Ag	N(1	ĻĢ	MD	Fe	As	U	Au	τh	Sr	Cd	Sb	Bi	v	Ca	P	La	Cr	Ma	Ba	Ti	R	61	Na	v		A
·		Phil	- ppm	ppn	ppm	ppm	_ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ррп	X	%	DOM	DDM	×	nnm	Ý	000	~~ *	- NG - V	*/	W	AU
C-1	-	2	.7			_								. <u>·</u>			<u> </u>				F Prost			Чна		- hhi	^	A	%	ppm	ppb
		- 2	< <u>></u>	41	<.5	5	4	528	1.72	<2	<8	<2	5	56	<.5	<3	<3	36	.46	103	7	12	57	210	11	.7	70	~ /	- 4	_	
ST L4S 3+00E	- 11	24	28	- 71	.3	9	6	438	3.08	13	<8	<2	2	9	<.5	<3	~3	61	07	042	172	20		219	• • •	< 3	- (7	.04	.51	3	.4
ST L4S 3+25E	8	24	17	65	<.3	10	4	167	3.41	23	<8	<2		12	~ 5	~7		40	10	.002	1.1	20	.23		.06	< 5 2	2.64	.01	.05	4	2.9
ST L4S 3+50E	28	31	19	51	.6	7	4	226	3.49	10	- <∄		~	7		-7	-C/	00	. 10	110	<u>o</u>	25	.25	46	.11	<34	.02	.01	.05	8	2.6
ST L4S 3+75E	8	22	17	24	4	À	ż	80	2 67	7	20	22	*	1	<.2	<2	<5	62	.04	. 140	7	16	.17	70	.08	<32	.92	.01	.05	2	23
			•••	- ·	•••		-	00	2.01	•	50	×2	2	•	۲.۶	<5	<5	50	.04	.117	9	- 14	.10	39	.13	<33	.67	.01	03	<2	
ST 14S 4+00F	17	34	22	64	7	11	,	275	7 0 7		_			_														•••		-	.0
ST 145 4+25E	7	74	17	40	. 7	17	-	233	5.02	14	<8	<2	4	7	<.5	<3	<3	50	_04	.125	10	21	.25	54	.09	<3 4	. 17	01	06	z	3 4
		71		07	×- 3	13	8	591	2.64	75	<8	<2	<2	10	<.5	<3	<3	56	.08	.161	10	27	35	70	07	-7.2	51	01	.00		<u> </u>
ST L45 47JUE	1.5	31	20	67	<. <u>></u>	14	6	530	3.06	17	<8	<2	3	- 14	.5	<3	<3	63	.09	.175	ġ.	27	11	80	08		50	- 01	.00	<u> </u>	4.2
SI L45 4+/JE	19	21	25	81	- 5	14	6	250	4.00	23	<8	<2	3	10	<.5	<3	<3	81	.06	180	11	30	-77	74	.00			S.01	.07	\$	2.2
ST L4S 5+00E	50	- 55	19	- 79	.3	13	7	457	3.49	19	<8	<2	2	10	.7	<3	-3	62	07	2/7		57		10	. 11	22	.98	.U1	.06	3	6.5
													-					ΨC	.07	* C.41	13	24	. 35	01	.08	<১ ১	.01	.01	.07	2	9.7
ST L4S 5+25E	25	36	18	60	<.3	10	6	267	3.18	15	<8	<2	~2	o	1 0	12	.7	50	07	000											
ST L4S 5+50E	5	25	33	64	.3	13	10	380	3.81	18	- 8	-2		, ,	1.0	7	53	27	.00	098	11	20	.21	57	.09	< 3 2	.28	.01	.04	<2	3.6
ST L4S 5+75E	6	25	25	66	3	15		2/ 8	7 5 2	20	20					<2	<3	24	.05	.111	8	21	.35	67	.14	<32	. 06	.01	.06	2	31
ST L4S 6+00E	11	23	21	50	~ 7	7	7	147	3.47	32	10	52	2	12	1.0	<5	<3	79	.08	.086	7	35	.40	58	.10	<32	.50	.01	.06	<2.2	1.9
ST 145 6+25F	7	76	19	00	,	47	2	102	2.07	11	<8	<2	2	9	.7	<3	<3	62	.04	.074	10	16	.18	67	.10	<3 1	41	01	06	2	λα
01 240 0.252	,	20	10	70	.4	2	2	284	3.15	12	<8	<2	- 4	10	<.5	<3	<3	60	.06	.109	8	22	.27	92	11	~ ~ ~ ~	67	01	.00		4.0
ST 1/6 4+505		~ /																			_		•=•		• • •		.01		.00	×4	3.0
51 L45 0TJUE	<u> </u>	30	15	100	<.5	19	7	274	3.00	15	<8	<2	5	9	<.5	<3	<3	59	.06	.110	0	31	45	66	10	-7 /	7/	~ 4		•	
SI L4S 6+75E	8	25	18	82	.3	10	5	864	2,92	6	<8	<2	3	7	<.5	<3	<3	60	04	125	ó	10	-4-2	00	. 10	 	. /6	.01	-07	2	1.2
ST L4S 7+00E	12	26	16	93	.3	16	6	444	3.10	12	<8	<2	3	13	< 5	-7	~7	44	09	090	40	17	.21	04	.10	< 5 5	.16	.01	.06	<2	2.2
ST L4S 7+25E	8	33	18	127	<.3	18	8	1185	3.28	18	<8	<2	ž	14	2.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		70	10	1/0	10	28	-47	79	.08	32	.43	.01	.07	3	3.2
ST L4S 7+50E	8	26	23	132	.4	14	8	831	3.48	17	< Ā	<2	, ,	14				70	. 10	. 149	. y	34	.54	111	.09	<32	.89	.01	.08	3	8.0 (
												- 14	-	10	.0	·)	13	74		. 185	10	51	-52	159	.08	<32	- 49	.01	. 08	2	3.5
ST L5S 2+00E	39	41	21	133	1.0	17	13	787	3 44	28	c۹	~7	~7	14		-7															
RE ST 155 2+00E	39	40	20	133	1.0	17	13	727	3 3/	20	~0	2		10	1.1	<3	<5	81	. 16	.090	11	25	.51	121	.09	<32	.11	.01	.08	3 1	37
ST L5S 2+25E	14	20	23	57	~ 7	9	1	727	2.24	20	10	54	< <u><</u>	17	1.1	<5	<3	76	.15	.099	12	26	.56	130	.08	<32	. 17	.01	08	7	g 7
ST 15S 2+50F	56	54	10	1/7	~ 7		10	561	3.40	20	<8	<2	5	7	<.5	<3	<3	77	.06	. 104	6	18	.26	61	.12	< 3 2	रेर	01	05	2	
ST 159 2+75E	0	77	75	141	~ 7	22	10	241	4.00	58	<8	<2	3	16	.5	<3	<3	85	. 13	.115	9	36	. 75	114	.11	<3 2	31	01	.05	2	4.0 c 7
01 210 21752	7	5	20	63	د.>	12	0	308	2.99	13	<8	<2	5	10	<.5	<3	<3	58	.08	.089	ģ	20	33	100	10	-7 2	47	.01	• 1 1	;	2.2
ST 158 3+00-	~	70			_		_																	100	. 10		.0/	.01	.07	4 (6.1
31 L33 3+00E	y y	32	16	64	د.>	11	5	244	3.34	17	<8	<2	3	11	<.5	<3	<3	61	na	102	o	27	7/	10	40			• •			
ST LDS 3+25E	15	18	27	53	<.3	8	4	520 J	2.52	20	<8	<2	<2	9	.6	<3		59	04	DPD	,	2.5	.34	DY	. 10	<\$ 5	.39	.01	.06	4	3.0
\$T L5S 3+50E	14	21	21	42	<.3	7	3	139	3.15	11	<8	-2	3	ó	2 5	.7	~7	27	.00	.060	0	10	-20	81	.08	<31	. 13	.01	.05	4 2	Z.9
ST L5\$ 3+75E	18	35	18	91	<.3	16	6	266	3 55	25	- 2	-22	1	11	2.2	7	10	07	.05	.080	8	19	.16	69	.12	<32	.67	.01	.04	2 1	1.2
ST L5S 4+00E	11	27	26	86	<.3	14		253	3 57	19	20	~~	4	11	5.2	<2	<3	81	.07	.132	10	31	.43	58	.12	< 33	.11	.01	.07	5 1	70
						, ,	Ų			10	10	~4	3	ΠŲ	۲.۶	<\$	<3	70	.06	. 141	9	25	.39	72	.09	<3 2	.34	01	07	ō į	4.9
ST L5S 4+25E	9	51	26	75	र	13	a	776 .	2 36	17	.0		-	_	_	_														, (
ST L5S 4+50F	14	28	27	72		12	¥	2/0 .	3.23	13	<8	<2	3	8	<.5	<3	<3	60	.05	.249	12	23	.33	97	. 12	~~ ~	4 Π	01	07	7	I
ST 155 4+75E	, P	27	7/	73		13	2	377	2.81	20	<8	<2	3	9	<.5	<3	<3	81	.05	.157	10	24	31	RQ	no		17	.01	.07	1 4	
ST 159 5+00c	07	23	24	27	<.3			295	2.85	15	<8	<2	<2	8	.7	<3	<3	50	.05	105	11	20	25	45	07	.7 2	. 17	.01	-07	19 22	4.5
STANDADD DOT		21	20	58	-4	10	5	253	2.50	13	<8	<2	Z	9	.5	<3	<3	50	05	700	10	10	-42	24	.07	<2 2	.42	.01	.06	2 3	5.1
STANDARD USS	9	135	57	156	.3	37	12	806 3	3.28	31	<8	<2	4	29	5.7	5	Ä	77	55	00/	10	100	- 21	01	.10	<5 2	.09	.01	.05	<2 2	2.4
	-												· ·					• •		. 074	17	179	.57	145	.08	<31.	.71	.03	.17	4 27	रर

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_____FA

Emgold Mining Corp. PROJECT STEWART FILE # A103793

Page 3

SAMPLE#	Mo	Cu	Pb	Zn.	۸a	Ni	t a	Ma	E																_					ALME ANAL	TICAL
	ppm	ppm	ppm	PPM	inog	DDM	DDD	DDM	7e 2	AS	0	Au	Th.	Sr	Cd	SP	8 î	V	Ca	Ρ	La	Cr	Mg	8a	Тí	B	AL	Na	ĸ	W	Au*
										Ppm	ppin	phin	ppm	ppm	ppm	ppm	ppm	PPm	×.	%	ppm	ppm	*	ррт	*	ррп	Х.	%	%	PPM	ppb
G-1	1	2	3	45	<.3	6	4	559 2	2.06	<2	<8	<2	6	63	<.5	<3	~	42	44	30/	•									<u> </u>	
ST L5S 5+25E	8	35	17	58	.5	11	6	179 ;	2.44	9	<8	<2	ž	7		~7	~7	42	101	.104		16	.56	227	.12	<3 1	.02	.06	.54	3	<.2
ST L5S 5+50E	3	32	24	54	.3	10	9	257	2.64	12	<8	<2	<2	ò	2.1	~3	7	40	.04	.047	10	21	.26	71	.11	<32	.40	.01	.05	<2	2.7
ST L5S 5+75E	2	17	15	60	.4	9	4	233 (2.75	14	<8	<2	ž	ź	< 5	-3	2	46	.04	.070	1.3	19	-2(/2	.06	<31	.75	.01	.07	<2	3.9
\$T L5S 6+00E	3	18	18	74	.3	12	5	260	3.31	15	<8	<2	3	8	< 5	75	~7	71	.04	.000	<u>è</u>	23	-24	48	-10	< 3 3	.34	.01	.05	<2	2.1
	_											-	-	-	-		1	()	.07	.062	5	50	.29	61	.09	<33	.16	.01	.06	<2	6.1
S1 L55 6+25E	2	15	11	45	.4	6	3	178 2	2.68	10	<8	<2	4	4	<.5	<3	<3	41	70	121		20	• /	77							
51 L55 6+50E	5	59	14	114	<.3	26	9	290 3	2.76	25	<8	<2	4	13	< 5	<3	<3	62	10	002	4	20	. 14	21	.12	<3 5	.62	.01	.03	<2	1.1
ST L5S 6+75E	4	24	14	71	.3	12	5	238	2.90	13	<8	<2	5	9	< 5	<3	~3	52	07	17/	¥	27	.00	60	.05	<3 2	.32	.01	.07	2	13.2
ST L5S 7+00E	6	35	18	121	<.3	19	7	410 3	3.17	17	<8	<2	5	10	<.5	3	<3	63	07	115	0	32	- 52	51	.10	<35	.40	.01	.06	<2	8.8
ST L5S 7+25E	- 4	26	22	109	.5	14	8	592 3	2.98	11	<8	<2	2	31	1.0	<3	रर	63	14	17/	11	22	.45	/5	.09	<34	.00	.01	.07	3	2.9
	-												_					01	• • •	. 124		29	. 30	420	.00	<51	.81	.01	.08	2	4.4
ST LOS 7+DUE	2	25	19	128	<.3	21	11	898 3	3.17	10	<8	<2	2	17	.7	<3	<3	68	. 10	0RN	11	30	51	717	~~	.7 0				_	
SI LOS (+/DE	2	29	25	122	.5	17	8	375 3	3.58	17	<8	<2	3	12	<.5	<3	<3	83	10	117		37		109	.00	<32	.01	.01	.07	2	1.7
ST LOS 8+00E	5	25	21	123	.6	15	8	437 3	5.39	16	<8	<2	3	11	.5	<3	<3	78	07	106	2	34	.47	100	.08	<5 2	. (9	.01	.07	<2	4.6
51 L03 07002 ST 146 4-255	4	22	24	83	<.3	14	6	270 2	2.61	14	<8	<2	4	12	.5	<3	<3	61	.08	.040	R R	27	. 37	71	.08	< <u>s</u> 2	.41	.01	.07	<2	3.2
31 LOS 0723E	2	21	٦ð	65	<.3	8	4	251 2	2.53	6	<8	<2	5	8	<.5	<3	<3	44	.04	.073	Ă	17	21	54	.00 04	< 3 Z	.49	.01	.07	<2	2.8
ST 1 6S 64505	z	15	47	57	. 7																•			54	.00	03	. 30	.01	.u/	5	1.3
ST 165 6+75E	2	14	10	23	<	10	4	550 2	2.33	10	<8	<2	2	9	<.5	<3	<3	76	.04	.080	8	17	. 16	68	13	-7 1	12	01	07	.0	
ST 165 7+00E	2	10	17	27	×.3 7	1	5	436 2	2.69	5	<8	<2	4	9	<.5	<3	<3	56	.03	.047	ÿ	15	.17	46	10	~7.7	20	.01	.07	~~	1.5
ST 1.6S 7+25E	5	12	10	49		8	4	238	2.21	7	<8	<2	4	6	<.5	<3	<3	42	.03	.079	6	14	15	52	14	-7.6	07	.01	.00		.8
ST L6S 7+50F	5	21	22	47	~ ~ ~	6	4	330 4	2.36	4	<8	<2	3	9	<.5	<3	<3	60	.04	.029	9	15	.16	76	.09	<31	. 7.5	.01	.05	~2	1.0
		L 1	~~	105	`. .	42	14	2122 6	2,90	4	<8	<2	3	19	<.5	<3	<3	56	.13	.066	8	40	.74	235	. 15	<32	.61	.01	100	~2	1.1
ST L6S 7+75E	4	35	18	137	<.3	23	9	286 7	3 07	17	~8	~ >	7	4.0			-												,	12	.7
ST 16S 8+00E	4	28	19	133	<.3	20	, ,	583 7	5 10	13	-8	-2	נצ	10	5.5	<s -7</s 	<5	63	.09	.150	9	36	.57	96	.08	<33	.33	.01	.07	<2	4.7
ST L6S 8+25E	4	29	21	125	.3	17	6	328 2	2 91	16	<8	<2	4	6	~	< <u>></u>	< <u>></u>	(3	.11	.130	12	38	.48	107	.07	<33	.05	-D1	.08	<2	9.2
RE ST L6S 8+25E	4	27	20	127	<.3	17	7	306 3	5.05	15	<8	<2	4	7 8	2.5	~7	< 3 - 7	01	.08	.15D	8	32	.39	86	.11	<34	.08	.01	.08	<2	7.5
ST L6S 8+50E	5	31	25	119	<.3	17	8	410 3	3.35	16	<8	<2	7	ŏ	2.5	~7	< <u>></u>	20	.07	.144	8	31	.38	79	.10	<33	.86	.01	.07	<2	3.9
07											_		-	'		~ 3	\$	70	.07	.099	9	55	.36	94	.09	<33	.08	-01	.07	<2	4.6
ST LOS 8+75E	4	21	20	99	.4	13	6	689 3	5.06	15	<8	<2	3	10	.5	<3	~7	76	00	105	7	75	• •								
ST L6S 9+00E	11	90	52	320	.8	52	20	1546 3	5.95	40	<8	<2	2	25	1 2	~3	~7	124	-07	177		25	. 26	98	.10	<32	.72	.01	.07	<2	1.2
\$1 L65 9+25E	10	69	29	221	.9	40	14	589 3	5.81	30	<8	<2	2	13	1.1	. 7	~~	117	-27	100	10	21	.65	226	.06	<32	. 65	.01	.14	3	5.1
ST LOS 9+50E	6	50	21	201	.4	27	14	1476 3	3.11	24	<8	<2	2	30	1 6	~7	גי ד	99	. 14	1/4	12	49	.55	124	.08	<32	.75	.01	.09	2	3.3
ST LOS 9+75E	7	62	23	211	.5	30	16	987 3	5.20	27	<8	<2	2	39	15	-3	2	00	.32	477	11	55	.50	223	.05	<31	94	.01	.09	2	2.7
ST 140 10.005	_	- /										-	-		•••			77	.40	. 174	13	45	.50	238	.05	<32	.05	.01	. 14	3	6.9
ai 105 i0≁00E €T 148 10+00E	8	56	22	229	.6	28	14 1	1507 3	.08	22	11	<2	<2	85	1.6	<3	<3	80	67	144	10	61	<i>(</i> 7		.						
91 LOB 10+25t	5	72	25	198	.4	33	19	1069 3	5.64	36	<8	<2	<2	46	1.1	<3	ž	101	44	180	12	41	.4/	015 057	.04	<3 1.	80	.01	.10	2	3.4
ST 170 34600		5/	24	146	.6	23	13	1092 3	5.30	24	<8	<2	<2	13	1.1	<3	ŝ	ίόη	11	007	0	43	.02	200	.05	<3 2.	18	.01	.17	3	6.6
STANDARD DOZ	6	27	14	74	<.3	10	5	264 2	2.59	11	<8	<2	4	10	< 5	<3	<3	40	08	105	7 0	32 17	. 22	114	.06	<3 2.	25	-01	.13	3	3.2
STARDARD D33	y	129	- 36	161	.3	36	13	802 3	.07	31	<8	<2	4	28	5.8	ŝ	6	78	54	08/	ע חוי	100	.23	60	.11	< 3 3.	36	.01	.06	4	4.9
																						100	. 20	148	.09	- <31.	72	.03	.17	4 2	2.6

Sample type: SOIL SSBO 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data /FA

:

١.

÷

 \sim

Emgold Mining Corp. PROJECT STEWART FILE # A103793

Page 4

SAMPLE#	Mo	Cu	Рb	Zn	Aq	Ni	Co	Min	Fo	A c																		/	ACHE ANALYTI	CAL
	ppm	ngg	mad	nom	000	nnm	00	DD0	re v	A5		AU	Th	Sr	Cd	Sb	Bī	V	Ca	Р	La	Cr	Ma	8a	ті					
· · · · ·	<u> </u>				F.F	- pp	PPin	- 1-1-11	^	phu	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	X	%	ppm	ppm	7	000	ž	DD00 9	N 61 9/	Ň	W A1	Ω ≖
G-1	1	2	<3	43	<.3	5	5	533	1 84	~7	-0	~ 3	,		-						<u> </u>					ppan /s			<u>ppm p</u>	P0
ST L7S 2+75E	4	23	21	49	<.3	Ā	4	204	7 87	7	~0	~2	ò	65	<.>	<3	<3	41	.56	.108	8	15	.61	216	. 11	<3 84	04	14	7	
ST L7S 3+00E	4	15	20	53	< 3	ä	ž	147	Z.UJ	15	50	< <u>2</u>	4	6	<.5	<3	<3	63	.04	.103	12	17	.22	58	15	-7 7 90	.00	.40		- 4
ST L7S 3+25E	4	25	17	96	~ 7	13	4	747	3.4/ 3.9/	14	<8	<2	- 4	8	<.5	<3	<3	65	.06	.151	6	21	.19	53	16	-7 7 15	- 01	.07	2 1.	.7
ST L7S 3+50E	6	31	16	60	·	15	0	202	2.00	10	<8	<2	- 4	10	.5	<3	-3	56	.08	.154	11	26	30	67	. 14	-7 7 87	.01	.05	2	-9
	-		10			1.5	0	270	3.17	19	<8	<2	3	12	.5	<3	<3	73	.09	.083	20	32	43	76	11		.01	.07	7 2,	.5
ST L7S 3+75E	5	25	14	87		17	F	27/		• •	-	_										~~	• • • •	10	• • • •	<> 2.00	.01	.06	64,	.9
ST L7S 4+00E	3	18	12	28	~ 3	2	2	2/0	2.00	20	<8	<2	Ş	8	.6	<3	<3	63	.06	.092	7	29	31	70	10	~7 7 33	~ 1			
ST L7S 4+25E	5	27	18	0/	~.5	15	0 7	203	2.00	15	~8	<2	2	6	.8	<3	<3	46	.05	.121	10	17	18	40	1/	-7 7 77	.01	.06	53.	.1
ST L7S 4+50E	2	17	10	74	`.J z	2	7	204	3.57	20	<8	. <s< td=""><td>- 4</td><td>9</td><td><.5</td><td><3</td><td><3</td><td>92</td><td>.07</td><td>.068</td><td>ō</td><td>35</td><td>43</td><td>40</td><td>- 14</td><td>12 2.21</td><td>.01</td><td>.04</td><td><2 1.</td><td>.4</td></s<>	- 4	9	<.5	<3	<3	92	.07	.068	ō	35	43	40	- 14	12 2.21	.01	.04	<2 1.	.4
RE ST 175 4+50F	5	18	11	70			2	140	2.16	8	<8	<2	3	4	<.5	<3	<3	38	.03	. 100	Á	15	15	76	- 14	<3 3.48 -7 5 7/ -7 5 7/	.01	.06	21.	.2
	-	.0		40	1.0		2	165	2.21	8	<8	<2	3	5	<.5	<3	<3	40	.04	.105	ž	15	15	33	- 15	<3 5.24	.01	.03	<2 1.	.2
ST L7S 4+75E	7	17	14	114	. 7		-																	00	- 14	<3 5.49	.01	.03	<21.	.3
ST L7S 5+00F	रॅ	17	16	71		10	5	389	2.69	10	<8	<2	3	12	<.5	<3	<3	54	-09	.116	R	22	72	70	40					
ST 175 5+25E	2	17	10	71	<.J	10	2	542	2.58	9	<8	<2	- 3	9	<.5	<3	<3	63	.06	074	8	20	- JC DO	70	. 10	<5 5.19	.01	.07	34.	.1
ST 178 5+50E	2	14	17	31	5.3	2	2	89	2.95	7	<8	<2	3	6	<.5	<3	-3	57	03	070	Å	14	10		.08	<3 1.61	.01	.06	21.	.1
ST 17S 5+75F	2	15	10	70 57	5.3	10	4	172	2.52	8	<8	<2	3	8	<.5	<3	<3	53	.04	046	9	20	- 10	24	. 10	<5 3.09	.01	.04	<2.	.7
	L	12	10	32	N .5	Ŷ	د	172	2.46	10	<8	<2	3	7	<.5	<3	<3	64	04	.072	7	20	-21	23	.09	<3 2.60	-01	.05	<2 2.	.4
ST 17S 6+00E	2	17	14	52		~	,										-				•	21	.23	50	.09	<5 2.41	.01	.05	<23.	. 1
ST L7S 6+25E	2	15	14	70		, Y	4	156	2.39	9	<8	<2	4	5	<.5	<3	<3	46	-04	077	5	10	22	77						
ST L75 6+50E	2	16	10	70	\$.3	10	2	438	2.66	7	<8	<2	4	7	<.5	<3	<3	54	.04	062	Ā	10	- 46	ז ב דל	- 12	<5 4.05	.01	- 04	<2.	.6
ST L85 1+00F	58	103	15	77	`. <u>`</u>	10	.4	182 .	2.26	6	<8	<2	5	7	<.5	<3	<3	48	.04	058	š	15	- 6 6	13	. 13	<3 4.05	.01	.06	<2 1.	0
ST L8S 1+25F	20	54	26	20	.7	11	11	791 -	4.74	18	<8	<2	2	11	<.5	<3	8	118	.09	.142	7	25		04 40	. 13	<3 3.89	-01	.06	<2.	.6
			20	đŲ	·	15	10	1072	.25	66	<8	<2	2	14	.7	3	<3	121	.12	.156	ó	32	50	7/	.09	<3 1.82	.01	-08	18 3.	2
ST L8S 1+50E	6	38	15	74	7	45	7	200				_										J.L		14	. 15	49 1.49	.01	.10	93.	1
ST L8S 1+75E	3	19	11	30	.5	16	<u>'</u>	270 .	0.08	21	<8	<2	2	10	<.5	<3	<3	82	.08	.099	7	28	.37	61	00					
ST L8S 2+00E	2	22	14	51		ó	2	706	2.43		<8	<2	3	4	<.5	<3	<3	44	.03	.174	4	17	12	27	17	13 2.50	.01	.07	2 11.	2
ST L8S 2+25E	3	27	27	75	·	10	,	17/ -	\$4/ 2 73	11	<8	<2	3	6	<.5	<3	<3	57	.05	.111	5	18	22	61	1/	-7 7 07	.01	.03	<2 ,	7
ST L8\$ 2+50E	3	18	35	46	.7	8	7	174 (2.72	16	<8	<2	5	7	<.5	<3	<3	55	.04	.131	7	29	30	51	14	S 3.07 Z 7 70 S	.01	.04	<2 1.	5
	-		••	40		0	4	101.3	0.29	18	<8	<2	3	6	<.5	<3	<3	71	.03	.091	10	15	18	52	19	<3 3.70 -7 3 65	.01	-06	23.	5
\$T L8S 2+75E	3	19	16	62	< 3	10	1	140 -				_													. 10	13 2.02	.01	.07	24,	2
ST L8S 3+00E	3	16	17	73		10	4	147 7	. /0	12	<8	<2	4	7	<.5	<3	<3	55	04	063	9	19	23	67	11	Z 3 0/	~ ~			
ST L8S 3+25E	4	24	17	61	7.7	8	4 E	103 2	1.03	11	<8	<2	5	7	<.5	<3	<3	60	.04	069	7	10	24	77	12	-3 2.00	.01	.05	4 6.	4
ST L8S 3+50E	3	21	20	81	 	11	, j	200 7	0.09	4	<8	<2	4	5	<.5	<3	<3	55	.03	.112	13	19	22	59	17	NJ 2.03	.01	.06	3.	8
ST L8S 3+75E	5	25	20	40	۲ ۲	12	د ء	200 2		13	<8	<2	4	8	< 5	<3	<3	72	.06	095	7	23	28	63	15	-3 4.72	.01	.05	2 1.	7
	_			07		14	o	247 3	.28	15	<\$	<2	3	8	<.5	<3	<3	74	.05	089	ò	27	27	<u>ده</u>	17	<2.3.19	.01	.06	42.	D,
ST L8S 4+00E	3	21	15	52	3	10	,	166 -	72	40		_							•					Q 4	• (3	5 2.84	.01	.06	2 1.9	9
ST L8S 4+25E	3	24	24	113	. ب ج ج	19	4	122 2	.14	12	<8	<2	4	6	<.5	<3	<3	54	.05 .	174	7	21	23	43	47	-7 / 75				
ST L8S 4+50E	5	25	22	90	~ 7	10	7	31/ 4 744 -		18	<8	<2	<2	14	.6	<3	<3	61	.10	166	8	20		4J 84	14 DE	<3 4.55	.01	.04	<2 1.0	Ċ (
\$ĭ L8S 4+75E	6	32	18	100	~ 7	גו חל	'	311 3 754 2	.20	17	<8	<2	2	9	<.5	<3	<3	75	.07	156	10	24	.40	71	10	<3 2.02	.01	.07	2 34.0	0
STANDARD DS3	9	128	35	161	ر ۲	37	10	370 d 010 0	.01	22	<8	<2	2	11	<.5	<3	<3	66	.07	133	12	35	52	54	· 12	<2.45	.01	.07	2 2.3	3
						<u> </u>	12		. 95	51	<8	<2	4	27	5.7	5	6	80	54	101	18	183	<u>، ۲۵</u>	1/2	.00	<> 2.51	.01	.07	2 16.7	7
											-													142	109	<3 1.68	.05	.16	4 20.3	3 (

Sample type: SOIL \$580 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

1

÷

Å Å	
ACHE ANALYTICAL	

Page 5

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As		Åı.	ть	¢ r	 C d	e L						·						<u> </u>		ACHE ANAL	
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	PPM	DDm	DDM	50 000	B1 DD70	V DOM	Ca	P I ₩	La	Ĉr	Mg	Ba	Ti	В	AL	Na	ĸ	W	Au*
G-1	1	2	<3	38	< 3	5		570 1					<u> </u>		<u></u>		PP**	- Phu		<u>* P</u>	ow.	ppm	- 7	ppm	%	ppm	*	%	%	ppm	ppp
ST L8S 5+00E	4	18	22	52	.3	9	5	275 2	2.54	<2 я	<8 78	-2	5	56	<.5	<3	<3	36	.52 .09	5	8	15	.55	204	.11	<3	.71	0 4	1.1.		
ST L8S 5+25E	4	28	24	63	.4	12	5	198 2	2.81	10	<8	<2	2	0 8	<.5 5	<s - T</s 	< S ~7	47	.07 .18	9 '	10	19	.22	68	.07	<3	1.75	.01	.05	<2	3.5
ST 185 5+75E	1	17	23	71	<.3	11	5	327 3	.04	13	<8	<2	3	, Š	<.5	<3	<3	20 61	06 11	יט ייט	11	25	.36	78	- 14	<u>ح</u>	2.35	.01	.07	<2	2.1
	,	Ŭ	17	50	5.3	Ş	2	239 1	.64	5	<8	<2	<2	8	<.5	<3	<3	52	.06 .03	1	8	12	. 13	64 64	-10	<3 / 3	2.32	.01	.06	<2	4.8
ST L8S 6+00E	1	16	15	45	<.3	7	4	286 2	2.46	6	<8	<2	τ	٥	~ 5	.7	.7	<i>.</i> .		_					100		.,0	.01	.04	×2	9.6
51 LOS 6+25E ST 185 6+50E	<u>ک</u>	15	24	72	<.3	10	5	406 2	.64	7	<8	<2	ž	8	<.5	<3	<3	48	.08 .06	1	6	18	. 14	65	.13	<3 2	3.40	.01	.04	<2	25.2
RE ST L8S 6+50E	3	22	21	100	<.3 < 3	13	7	536 2	2.33	13	<8	<2	3	9	<.5	<3	<3	46	.06 .11	i 1	10	23	. 20	65 50	.10	<37	2.06	.01	.07	<2	1.2
STANDARD DS3	9	122	36	154	.3	35	13	822 3		31	<8 <8	<2	3	9 70	<.5	<3	<3	46	.07 .11	6 1	10	23	.32	63	.08	3	2.49	.01	.07	<2 '	108.4
						· · · · ·						2		41	2.0	>	6	/5	.53 .10	0 1	8	190	.63	141	.09	<3	1.62	.03	.15	4	20.3

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA