

For The

FRAN PROPERTY OMINECA MINING DIVISION BRITISH COLUMBIA NTS 93K/16, 93N/1

For

Navasota Resources Ltd. # 207-141 Victoria St. Kamloops B.C. V2C 1Z5

Ву

Lorne M. Warner P.Geo. Brian G. Kay G.I.T.

June 14, 2002 ASSESSMENT LITEORT

26.86

Table of Contents

Page

1.0	Summary	1						
2.0	Introduction	2						
	2.1 Location and Access2.2 Physiography2.3 Exploration History2.4 Claim Data	2 2 2 4						
3.0	Geology	6						
	3.1 Regional Geology3.2 Property Geology3.3 Mineral Occurrences	6 6 6						
4.0	2001-2002 Drill Program	8						
	 4.1 Drill Hole Surveys, Core Logging Methodology and Sampling Procedures 4.1.1 Drill Hole Surveys 4.1.2 Core Logging Methodology 4.1.3 Sampling Procedures 4.2 Phase 1 - Hilltop and Roadside Areas 4.3 Phase 2 - Roadside and Mid Ridge Areas 4.4 Discussion of Results 	8 8 8 9 10						
5.0	Conclusions	12						
6.0	Recommendations	12						
7.0	References	13						
8.0	Statement of Costs	14						
9.0) Statement of Qualifications 1							

List of Figures and Tables

Figure 1	Location Map	3
Figure 2	Claim Map	5
Figure 3	Regional Geology Map	7
Table 1	Claim Data	4
Table 2	Drill Hole Composites	11

. . .

.

ſ

Ċ

List of Appendices

Appendix A: Graphic and Descriptive Drill Logs												
Appendix B: Assay Certificates with Analytical and Geochemical Procedures												
Appendix C: Drill hole Number, From, To, Assay Results												
Appendix D: Maps and Sections												
Plate 1:	Surface Plan Map with Drill Hole Traces 1:500 scale (in pocket)											
Plate 2:	Section 600E Hill Top Area DDH-FR-001 :500 scale (in pocket)	Viewing East										
Plate 3:	Section 800E Hill Top Area DDH-FR-002/003 1:500 scale (in pocket)	Viewing East										
Plate 4:	Section 600E Hill Top Are DDH-FR-004 1:500 scale (in pocket)	Viewing 140 Degrees										
Plate 5:	Section 1725E Road Side Area DDH-FR-005 1:500 scale (in pocket)	Viewing East										
Plate 6:	Section 1800E Road Side Area DDH-FR-006/007/008 1:500 scale (in pocket)	Viewing 052 Degrees										
Plate 7:	Section 1400E Mid Ridge Area DDH-FR-009 1:500 scale (in pocket)	Viewing 080 Degrees										
Plate 8:	Section 1450E Mid Ridge Area DDH-FR-010/011 1:500 scale (in pocket)	Viewing North										
Plate 9:	Section 1470E Mid Ridge Area DDH-FR-012 1:500 scale (in pocket)	Viewing 050 Degrees										

Ì

(

(

1.0 Summary

This report details a 2 phased, 12 diamond drill hole program totalling 2561.28 metres, conducted in October to November, 2001 and January to February, 2002 on the Fran property, Omineca Mining Division, British Columbia by Navasota Resources Ltd. Navasota has gained the right and option to acquire an undivided 100% interest in the property. The property consists of 8-20 unit claim blocks for a total of 160 units. The Fran property is located in north central British Columbia, 10 kilometres north of Inzana Lake, and 60 kilometres north of Fort St. James in NTS sheet 93K/16 and 93N/1. Recent (1996) forestry roads provide access from the Germansen North Road mainline to cut blocks on the property.

First recorded exploration work on the Fran property was in 1996. Prospector R. Haslinger followed logging activities onto the Fran and took samples which returned Au values of 3.27 g/t from gossans in altered diorite/monzodiorite. Hand trenching uncovered a quartz vein, which returned 41.7 g/t gold plus anomalous silver, lead, zinc and Arsenic. Homestake Canada Ltd. and later Placer Dome Exploration Inc. conducted grid placement, soil geochemistry, geological mapping and prospecting during 1998. These projects confirmed the presence of structurally controlled gold mineralization within the intrusive proximal to contacts with hornfelsed sediments. These programs suggested good potential for bulk tonnage, intrusion hosted gold zones and recommended further exploration by trenching. However, the property was returned to the owner the following spring.

Regionally the property is situated within the Takla Group volcanics and sediments within the Quesnel terrane (Quesnellia), part of the intermontaine belt, which includes the Takla - correlative Nicola Group in Southern British Columbia. The Takla Group is composed of late Triassic to early Jurassic volcanics and sediments with coeval plutons and reflects an island arc environment. Several intrusive bodies were noted throughout the region and are included in Takla Group nomenclature.

The claims overlay the Inzana Formation of the Takla Group, which consists of hornfelsed black siliceous argillite, green-grey crystal tuff, and minor lapilli tuffs. Tight folds with NW axes are noted west of the property, and the sediments strike accordingly northwest. A diorite/monzodiorite body intrudes on an elongated NW-SE axis and contains major northeast trending cross structures. The British Columbia Ministry of Energy and Mines MINFILE mineral occurrence database lists several showings in the vicinity of Fran with similar geological settings such as Mount Milligan and Tas. Just inside the northern boundary of the Fran property lies the KBE showing with one grab sample of 0.20 g/tonne gold, and 0.2% Cu.

All 12 diamond drill holes encountered auriferous quartz and sulphide mineralization in several discrete structures as well as broader intrusive hosted intercepts. Diamond drilling confirms the presence of intrusive hosted, high-grade gold, silver and copper mineralized structures within the diorite- monzodiorite intrusive near the sedimentary contact. Several more of these sub-parallel west-north-west and north-east trending zones have been identified across the property and provide high potential for further discoveries. Gold/copper porphyry mineralization was encountered in several holes and the presence of intrusion breccias indicates the additional potential for a large, bulk tonnage, gold/copper porphyry system.

Based on the positive results of the completed, two-phased diamond-drilling program further drilling should continue in areas of previous high-grade gold results such as the Hill Top Showing and DDH-FR-002 where it returned 14.7/1.3 m. Drill core specimens should be selected for whole rock and thin section work and during the summer months, re-establish Placer Dome's grid with additional infill lines at 100 metre spacing, soil sample and geologic map in detail areas of interest. Re-logging and selective re-sampling of existing core will be conducted to test hypotheses of mineral genesis.

2.0 Introduction

This report details fieldwork conducted in October to November, 2001 and January to February, 2002 on the Fran property, Omineca Mining Division, British Columbia. Work was supervised by the authors on behalf of Navasota Resources Ltd., in joint venture with owner Cassidy Gold Corp. of Kamloops British Columbia. Navasota has gained the right and option to acquire an undivided 100% interest in the property.

A total of 12 diamond drill holes, totalling 2561.28 metres were completed in two phases during the winter season.

2.1 Location and Access

The Fran property is located in north-central British Columbia, 10 kilometres north of Inzana Lake, and 60 kilometres north of Fort St. James in NTS sheets 93K/16 and 93N/1, Figure 1. The claims extend south from height of land north of Tezzeron Creek, 7 kilometres to south of Inzana Creek, and east from Benoit Lakes 6 kilometres. The property approximately centres on Latitude 55° 00'N and Longitude 124° 25'W.

Recent (1996) forestry roads provide access from the Germansen North Road mainline to cut blocks on the property. These roads are passable year-round by four wheel drive vehicles. The cutblocks and cut-and-fill road construction have provide substantially more outcrop for study than in pre-logging years.

2.2 Physiography

The property spans a steeply rolling hilly area with elevations ranging from 975-1400 meters, the highest of which comprises the divide between Arctic and Pacific drainages. This results in precipitation higher than the regional average. Valley bottoms contain thick glacial overburden, while hilltops and south facing slopes afford good outcrop. Low-lying areas not subject to logging are covered in thick stands of conifers and forest floor duff.

2.3 Exploration History

No exploration work was recorded on the Fran property before 1997, though speculative staking associated with the Zana and Tas properties to the south did impinge on the Fran ground. The Tas, 6 kilometres southeast, was explored during the mid 1980's by Noranda, Black Swan, and Gold Cap, and currently resides with the original staker, A.D. Halleran.

Ì

In 1996, prospector R. Haslinger followed logging activities onto the Fran and took samples which returned Au values of 3.27 g/t from gossans in altered diorite/monzodiorite. Hand trenching uncovered a quartz vein which returned 41.7 g/t Au plus anomalous Ag, Pb, Zn and As. Six 20 unit claims were staked to cover the showing and lateral extensions of the intrusive body.

Homestake Canada Ltd. conducted a property exam in early 1998. Small grids were placed over the main showings and 40 chip samples and 122 soil samples processed. No results were publicly released.

Placer Dome North America Ltd., under option agreement with the staker, conducted grid placement, soil geochemistry, geological mapping and prospecting during the fall of 1998. This project confirmed the presence of structurally controlled gold mineralization within the intrusive proximal to contacts with homfelsed sediments. Quartz veinlet stockworks and pyritic shears with north to east trend and potassic alteration returned assays up to 3 g/t Au and associated Ag. East trending quartz veins with wallrock veinlet stockworks, associated potassic alteration, and arsenopyrite returned assays up to 40 g/t Au plus Cu, Pb, and Zn. Three Au soil geochemical anomalies were also identified, including a 200 meter

学会なないとなどで、ななで、

by 1 kilometre zone. These soil anomalies were noted to coincide with intrusive rocks, intrusive - sedimentary contacts, and known showings. The program suggested good potential for bulk tonnage, intrusion hosted gold zones and recommended further exploration by trenching. However, the property was returned to the owner the following spring.

In April 2001 a Bill of Sale was completed transferring 100% ownership of Fran – Fran #6 to Cassidy Gold Corp. #220-141 Victoria St. Kamloops B.C. V2C 1Z5. Cassidy staked Fran #7 and Fran #8 adjoining to the north.

2.4 Claim Data

The Fran consists of eight contiguous 20-unit claims totalling 160 claims and 4000 hectares under Crown land, Figure # 2. The claims have not been legally surveyed. All are located within the Omineca Mining Division British Columbia and were owned by Cassidy Gold Corp. of Kamloops B.C. Navasota has earned a 50% interest by incurring the expenses detailed in this report and has agreed to purchase Cassidy Gold's remaining interest for Navasota shares. The original staker, R. Haslinger, retains a 2% Net of Smelter Royalty. Table #1 below outlines the claim names, record numbers, units and expiry date based on acceptance of this report

<u>Claim Name</u>	Record #	<u># of Units</u>	Expiry Date
Fran	356366	20	Apr. 4, 2005
Fran #2	363192	20	Apr. 4, 2005
Fran #3	363338	20	Арг. 4, 2005
Fran #4	363304	20	Apr. 4, 2005
Fran #5	363593	20	Apr. 4, 2005
Fran #6	364283	20	Apr. 4, 2005
Fran #7	384228	20	Apr. 4, 2005
Fran #8	384229	20	Apr. 4, 2005

Table # 1: FRAN CLAIMS

Total: 160 units

3.0 Geology

3.1 Regional Geology

Takla Group volcanics and sediments within the Quesnel terrane (Quesnellia), part of the intermontaine belt, which includes the Takla - correlative Nicola Group in Southern British Columbia, underlie the Fran property. Quesnellia is approximately 50 km wide at this point, bounded on the west by the Pinchi Fault and oceanic Cache Creek terrane. On the east, the Manson, McLeod and North Rocky Mountain Trench Faults exhume the Precambrian Wolverine Complex of basement gneiss between Quesnellia and the Paleozoic Slide Mountain terrane as illustrated in Figure # 3.

The Takla Group is composed of late Triassic to early Jurassic volcanics and sediments with coeval plutons and reflects an island arc environment. Mapping by Nelson et al. (1991) of the British Columbia Geological Survey subdivided the Takla Group into four members. The basal Rainbow Creek Formation of slates and siltstone, Inzana Lake Formation volcaniclastic sediments and tuffs, Witch Lake Formation volcanic flows, tuffs and agglomerates and uppermost Chuchi Lake flows and breccias.

Several intrusive bodies were noted throughout the region and are included in Takla Group nomenclature. Those are mainly multi-phase, granitic through dioritic in composition and of early Jurassic age. They form topographic highs and coincide well with elevated aeromag anomalies. Placer Dome's nearby Mount Milligan property, which consists of monzo-diorite and granite intrusions into Takla sediments, produces a bulk tonnage Au-Cu porphyry type deposit, for which the Fran may be an analogue.

3.2 Property Geology

The Takla Group Inzana Lake Formation within the claim area consists of hornfelsed black siliceous argillite, green-grey crystal tuff, and minor lapilli tuffs. Tight folds with NW axes are noted west of the property, and the sediments strike accordingly northwest. A diorite/monzodiorite body intrudes on an elongated NW-SE axis and contains major northeast trending cross structures, which are visible as linear topographical features on airphoto. These major structures also correspond to Au soil geochemical anomalies discovered by Homestake and Placer Dome's 1998 field programs. Three areas of interest have been defined around the original Upper and Lower showings. The Hilltop area lies in the southeast quadrant of the Fran claim where up to 1g/t Au in soil was reported in the vicinity of the Upper showing. The Roadside area is located over a broader area of geochemical anomalies north of the Lower showing in south central Fran #2. The Midridge area occupies the saddle and ridgeline between the two.

3.3 Mineral Occurrences

The British Columbia Ministry of Energy and Mines MINFILE mineral occurrence database lists several showings in the vicinity of Fran with similar geological settings.

Placer Dome's Mount Milligan discovery spurred exploration in the region when significant alkalic porphyry Au-Cu was encountered relative to the Southern Star and MBX monzodiorite intrusions into Witch Lake Formation volcanics. Resources have been calculated according to CIM guidelines at 299Mt @ 0.45 g/t Au, 0.22% Cu. Positive feasibility was received but development is on hold. This property is approximately 30 kilometres northeast of Fran.

The Tas developed prospect, 6 kilometres southeast of Fran contains gold mineralization in intrusion breccias and shears within a diorite stock intruded into Inzana Lake Formation. Several zones are noted including Freegold, an intense quartz-carbonate altered zone with trace visible gold, and East Zone north-northwest trending pyritic fracture zones. This area was trenched and returned a weighted average grade of 9.7 g.t Au over 3 meters true width, and 63 meters along strike.

1

Just inside the northern boundary of the Fran property lies the KBE showing, a hornblende granite-granodiorite with associated traces of malachite intruded into Inzana Lake Fm. epiclastics. A grab sample gave values of 196ppb Au, and 0.2% Cu.

4.0 Diamond Drilling

Due to heavy early season snows, it was decided to proceed with a winter drilling program. Sufficient targets were present in previous reports and groundwork was impossible. Significant intercepts are detailed in Table # 2. Plate 1 provides a surface location and trace of drill holes DDH-FR-001 to DDH-FR-012. Plates 2 to 9 are cross-sections of holes DDH-FR-001 to DDH-FR-012.

4.1 Drill Hole Surveys, Core Logging Methodology and Sampling Procedures

4.1.1 Drill Hole Surveys

Collar locations were surveyed prior to drilling using hip chain and Silva compass from the nearest grid station. Due to heavy snow conditions the nearest grid station was not always visible or could not be located by digging for holes DDH-FR-006 – DDH-FR-012. The closest, visible grid station was then used and a second grid station or point of reference was used to confirm location. These same points and stations were used again at the completion of drilling to reconfirm the collar location.

A Silva compass was used in determining the orientation of drilling with two back sights and one front sight placed for reference when the drill was setting up. The Silva compass, dip needle was used in determining the inclination of the drill head. Acid tests using test tubes with 5% HF solution were performed at the base of all completed holes and occasionally in the middle if the hole was over 250 metres. All drill hole survey data is contained in the title page of each drill log in Appendix I.

4.1.2 Core Logging Methodology

All core was delivered to the core logging shack were it was first washed and dried. Footage blocks placed by the drillers recorded the hole depth in feet. The distance in meters was added to all blocks and the core was then measured at one-metre intervals. Core loss of less than 95% and poor RQD was noted in the logs and/or in sample descriptions.

A graphic log recording rock type, structure, fractures, alteration, quartz veins and mineralization was created, with descriptive notes of intervals also completed (located in Appendix I). All sample intervals contain notes on location, rock type, mineralization and alteration and are contained at the end of each drill hole log.

4.1.3 Sampling Procedures

Selective sampling was performed on all holes based on the geologist's estimation of the interval's mineral potential, with bracket samples placed at both ends of a sampling interval. Samples were marked using a red lumber crayon with directional arrows, orientation lines and sample numbers for each sample. Sample lengths were determined by changes in the rock type, alteration or mineralization. When geologically consistent the sample length would typically be 1.0 or 2.0 metres. The core was manually split, and half of the core was returned to the box. The remainder was sealed in a plastic sample bag with a sample tag inserted and placed in 5-gallon plastic pails for transportation to Ecotech Laboratories in Kamloops. At the completion of each sample the splitting apparatus and trays were cleaned to prevent contamination. All core is currently stored on site next to the core-logging shack. Geochemical procedures and analysis accompany the assay certificates located in Appendix II.

4.2 Phase 1 - Hilltop and Roadside

The first phase of drilling began in late October of 2001. Holes DDH-FR-001 through DDH-FR-004 were initiated to test the location and importance of the intrusive - sedimentary contact where coincident with Au in soil anomalies and structures on the Hilltop area. Hole DDH-FR-005 explored a similar soil anomaly under the Roadside showing. A 44 – size drill owned by Beaupre Diamond Drilling of Princeton, B.C. drilled 990.04 meters of NQ core. Significant assay results are listed in Table # 2.

DDH-FR-001 started in hornblende porphyritic diorite then encountered equigranular dioritemonzodiorite to 232.7 meters. A very fine-grained black cherty mudstone continued to end of hole at 254.20 meters. An association between sulphide content and silicification was noted, with vein zones of pyrrhotite/pyrite, minor chalcopyrite, and traces of arsenopyrite and molybdenite.

DDH-FR-002 encountered locally brecciated and silicified granodiorite through to 208.35 meters where the sediment contact was crossed. Augite porphyritic dikes/flows were encountered in sediments near the end of hole. Pyrite is present throughout, with minor chalcopyrite between 75.00 and 90.00 meters. Pyrthotite appears deeper in the hole.

DDH-FR-003 chased the intrusive – sediment contact downdip to the south, alternatingly encountering short intercepts of both rock types. Intense alteration permeates the length of the hole as expected. Sediments are hornfelsed; while local potassic, chloritic and sausseratic alteration occurs in the intrusives. A plagioclase porphyritic intrusive phase was noted.

DDH-FR-004 drove southwest through hangingwall sediments toward an inferred structure. It encountered plagioclase porphyritic dykes and augite/homblende porphyry flows throughout, and intercepted the structure at $05^{\circ} - 25^{\circ}$ to core axis. Intense zones of potassium flooding were noted surrounding the plagioclase phases.

DDH-FR-005 alternated intrusives – sediments down to 106 meters, sediments continue to end of hole. A sulphide vein zone was encountered from 76.60 to 79.15 at 45° to core axis.

4.3 Phase 2 - Roadside and Mid Ridge

The second phase of drilling in February of 2002 was proposed to test soil anomalies in the Roadside and Mid Ridge areas. DDH-FR-006 through DDH-FR-012 were completed by L.D.S. Diamond Drilling of Kamloops, B.C., using a Super 38 and returned 1571.24 meters NQ. Holes DDH-FR-006 through DDH-FR-008 further tested the Roadside area, then DDH-FR-009 through DDH-FR-012 were drilled from higher elevations in the Mid Ridge area.

DDH-FR-006 was drilled on a northwest azimuth under the Roadside showing through sequences of diorite intrusive, volcaniclastic siltstone and horneblende/augite porphyry dikes. Visible gold was noted in a quartz vein associated with massive pyrrhotite/pyrite/chalcopyrite veins.

DDH-FR-007, a steeper twin of DDH-FR-006 intersected the same geology and mineralization, however visible gold was not noted.

DDH-FR-008 tested under the Roadside showing from the northwest, reflecting the geology of DDH-FR-006/7.

DDH-FR-009 intercepted several intrusive phases between casing and 67.30 meters followed by hornfelsed volcaniclastic sediments to end of hole. 42.0 to 48.0 contained silicified and potassic altered monzodiorite with quartz veinlets and minor pyrite/chalcopyrite. The intrusive – sediment contact was also mineralized over a 10 meter interval. An intrusion breccia occurs within the sediments between 139.25 and 175.95 meters.

DDH-FR-010 and **DDH-FR-011** are parallel west – plunging holes in multiphase intrusives to end of hole. Mineralization occurs mainly as high angle shears, but also disseminated chalcopyrite to .5% in monzodiorite.

DDH-FR-012 was drilled to the Northeast off the same pad as DDH-FR-010. Monzodiorite and plagioclase porphyry intrusive phases ran from casing to 116.75 meters. Hornfelsed sediments complete the hole, including a sulphide breccia between 150.0 and 154.0.

4.4 Discussion of Results

Auriferous quartz and sulphide mineralization were encountered in all holes in several discrete structures as well as broader intrusive hosted intercepts in all three areas of the Fran property.

Higher grade intercepts in holes DDH-FR-001/02/06/08 all occur along the southern monzodiorite/volcanoclastic contact, just within the intrusive. These intercepts are over 1.2 kilometres apart and are interpreted to be along the same structure.

DDH-FR-003 collared outside and away from the main intrusive body intercepted limited mineralization and low-grade gold values. The purpose of the hole was to test a gold soil geochemical anomaly. Being in close proximity to or within the main intrusive body may be important for economic gold concentrations.

Extensive mineralization consisting of pyrrhotite and chalcopyrite with quartz veining in the volcanoclastics and flows was encountered in DDH-FR-004, however gold concentrations were less then anticipated. The orientation of mineralization to the drill core axis indicates mineralization is probably related to a northeast trending, sub-vertical structure. Two theories why this hole does not contain higher-grade gold concentrations are either northeast structures are not well mineralized with gold and/or the fact that the entire hole is outside of the monzodiorite body which appears to be important for high-grade gold deposition.

DDH-FR-005 encountered extensive and high concentrations of pyrthotite with minor chalcopyrite and arsenopyrite; but as shown in Table # 2, gold values did not exceed 2.0 g/tonne gold. The objective of DDH-FR-005 was to test at depth the Roadside Showing where previous grab samples returned values of 227.00 g/tonne gold. Hole # 5 is the only hole to not return high grade gold values along the inferred west-north-west structure within the intrusive. This may be due to the lack of quartz associated with the mineralization or due to a large low angle structure situated just beneath the mineralization. The fault is also mineralized and may have channelled the mineralizing fluids away from the high angle structure.

DDH-FR-009 tested gold soil anomalies along the northern contact of the monzodiorite with the volcanoclastics in the Midridge Area. Significant concentrations of pyrrhotite with traces of chalcopyrite were encountered however; gold concentrations were generally less then 0.5 g/tonne. There are two possible reasons for the low gold values. First, quartz vein content and chalcopyrite concentrations were low. Second, mineralization in the volcanoclastics appears dispersed whereas in the intrusive the structure and mineralizing environment is restricted thereby providing a setting for higher-grade gold concentrations.

Holes DDH-FR-010 and 011 tested gold soil anomalies well within the intrusive body of the Mid Ridge area and did not return any significant gold values. DDH-FR-011 was abandoned before reaching the proposed target depth due to poor ground conditions.

Hole DDH-FR-012 encountered two zones with significant gold concentrations. The 52.00-58.30 metre (4.27m) interval of 4.27 g/tonne gold is hosted within the intrusive and appears to be related to a west north-west trending structure similar in orientation to the one in holes DDH-FR-001/002/005/006 and 008. From 150.00-154.00 metres contains 3.16 g/tonne gold hosted in the volcanoclastics and is interpreted to occur within a northeast trending structure.

Table # 2 contains all significant gold fire assay or ICP results for holes DDH-FR-001 to DDH-FR-012 including composites of continuous samples. Appendix III contains for each drill hole the from - to interval and analytical results.

Hole	Area	<u>From</u>	<u>To</u>	Length (m)	Fire Assay Au (g/t)
DDH-FR-001	Hilltop	46.00 102.75 190.40 229.00	47.00 103.30 192.75 234.00	1.00 0.55 2.35 5.00	1.08 12.10 1.00 1.51
DDH-FR-002	Hilltop including	44.00 53.50 75.00 75.00	44.65 54.00 91.00 82.00	0.65 0.50 16.00 7.00	1.45 1.26 1.98 1.88
	including	88.7 187.00 205.00 210.00	90.00 189.00 211.00 211.00	1.30 2.00 6.00 1.00	14.7 2.18 2.56 13.2
DDH-FR-003	Hilltop	58.00	59.00	1.00	0.57 (ICP)
DDH-FR-004	Hilltop	77.00 82.00 164.00	78.05 83.00 173.00	1.05 1.00 9.00	1.81 2.23 0.35
DDH-FR-005	Roadside including	69.19 76.60	109.27 79.15	40.08 2.55	0.55 1.17
DDH-FR-006	Roadside	40.30	41.20	0.90	16.10
DDH-FR-007	Roadside	14.50	15.50	1.00	0.31 (ICP)
DDH-FR-008	Roadside	18.75 21.75	23.30 23.30	4.55 1.55	6.43 18.00
DDH-FR-009	Mid Ridge	42.00 69.00	48.00 79.00	6.00 10.00	0.48 0.47
DDH-FR-010	Mid Ridge	9.00 88.00 211.00	23.00 94.00 213.25	14.00 6.00 2.25	0.17 0.93 0.38 (ICP)
DDH-FR-011	Mid Ridge	87.00	91.00	4.00	0.37
DDH-FR-012	Mid Ridge	52.75 150.00	58.30 154.00	5.55 4.00	4.27 3.16

C

(

C

Table # 2 SIGNIFICANT DRILL INTERCEPTS

5.0 Conclusions

Diamond drilling on the Fran property confirms the presence of intrusive hosted, high-grade gold, silver and copper mineralized structures within the diorite- monzodiorite intrusive near the sedimentary contact. Several more of these sub-parallel west-north-west and north-east trending zones have been identified across the property and provide high potential for further discoveries. Gold/copper porphyry mineralization was encountered in several holes and the presence of intrusion breccias indicates the additional potential for a large, bulk tonnage, gold/copper porphyry system.

6.0 Recommendations

The following recommendations are based on the positive results of the completed, two-phased diamond-drilling program:

- (i) Continue drill testing the Hill Top Area, focusing in areas of previous high-grade gold results such as the Hill Top Showing and DDH-FR-002 where it returned 14.7/1.3 m.
- (ii) Select drill core specimens for whole rock and thin section work.
- (iii) During summer months, re-establish Placer Dome's grid with additional infill lines at 100 metre spacing, soil sample and geologic map in detail areas of interest. Re-log and selectively re-sample core.
- (iv) Upon completion of above recommendations with positive results, further diamond drilling would be recommended.

7.0 References

- Mowat, U.G. 2000: Compilation and Sampling on the Fran Claims, Omineca Mining Division NTS 93K/16W and 93N/1W. Assessment Report.
- Nelson, J., Bellefontaine, K., Green, K., MacLean, M. 1991: Regional Geological Mapping Near the Mount Milligan Copper-Gold Deposit (93K/16,93N/1). In Geological Fieldwork 1990, British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1991-1.
- Warner, L., Sketchley, D.A. 1991: Mt. Milligan Property 1991 Summer Exploration Program Summary Report. Assessment Report.
- Wells, R.C. 1999: Geological Geochemical Assessment Report for the Fran Property, Omineca Mining Division NTS 93K/16W. Assessment Report.

8.0 Statement of Costs

Wages

C

 $\left\langle \cdot \right\rangle$

(

	Т	otal Cost	\$217,545.00
	Equipment Rentals, Camp an	nd Core Logging Supplies	\$ 2,290.00
Suppl	ies		
	Drafting by Wildrock Resou	rces and Renaissance Geoscience Service	\$ 7,920.00
Data (Compilation/Report Wr	iting/Drafting	
	Inzana Lake Lodge/New Cal	edonia Motel/ meals/ groceries	\$ 2,270.00
Food a	and Accommodations		
	Ecotech Laboratories D m	rill Core Gold Fire Assay + ulti-element ICP	\$ 19,725.00
Assay	/Geochem		
			\$ 11,885.00
	Sample shipment by courier		2,830.00 <u>985.00</u>
	Truck Rentals		\$ 8,050.00
Trans	portation		
	Grader (Edgey Road Service D5 Cat (Newland Enterprise	\$ 6,340.00	
Road/	Trail Construction/Sno	w removal	
	-		\$135,610.00
	Beaupre Diamond Drilling LDS Diamond Drilling		\$ 58,015.00 <u>77,595.00</u>
Drillin	ıg		
		,	\$ 31,505.00
	Brian Kay (Geologist Ian Simpson (Core Splia) Itter)	3,335.00 3,470.00
	Lorne M. Warner (Project G	eologist)	\$ 24,700.00

9.0 Statement of Qualifications

I, Lorne M. Warner of Kamloops B.C., hereby certify:

I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia since 2001.

I am a graduate of the University of Alberta with B.Sc. Geology (1985).

I am a Consulting Geologist and President of Geocon Enterprises and Navasota Resources Limited and have shares in Navasota.

I have practised continuously as a geologist since 1985 in/the employ of Noranda Inc. (1985-1988) and Placer Dome Exploration Limited. (1988-2000) with experience in North and South America.

I, Brian G. Kay of Chase B.C., hereby certify:

I am a member-in-training of the Association of Professional Engineers and Geoscientists of British Columbia.

I am a graduate of Simon Fraser University with B.Sc. Earth Sciences (2000).

Lorne M. Warner P.Geo, supervised my work on this project.

I have not nor do I anticipate receiving shares in Navasota Resources Limited.

Brian G. Kay, GIT

June 2002

Appendix A:

 $\int_{\mathbb{R}}$

 $\int_{-\infty}^{\infty}$

Graphic and Descriptive Drill Logs

litle tage		1
Project FRAN	Northing: 1740N	Page 1 of 14
Hole # DDH-FR-001	Easting: 595E	Surveyed:
Date Started: Oct 22/2001	Azimuth: 180°	Easing left in: No
Date Completed: Oct 27/2001	Inclination: -45°	Logged by : L.M. Worner
Summary of Hole. 3.05m Casing Acid Test @ 254 END OF HOLE @ 6 3.05m -> 232.70m 232.70 -> 254.20m	F. 20m indiates dip e 254.20m Diorite - Monzochorite Hornfelsed Vol conoclesitics	39°

	1.09		.0	51	ec.	ť					
	אמר	rype	ture	tures	dian		<u></u>		۲		Page 2 of 14
	Inter	Reck	った	Frac	Alter	Q13	R01F	CPY	Asp	Geology	Hole#DDH-FR-001
	2									0.00-3.05m CASing	
}05 -				VXXX +1-	10/ .					3.05-23.90m Diorite-Howzorliorite, Hornblende Porph 5-1070 sparce hornblendes in hornblende/play time-medium grained matrix, Pervasive alteration w/ fractore controlled clots & ep associated w/ gtz stringers containing Pr Py = .5-270 Po= .570 Tr = CPY EpidAte 1-370 ptz weinlets 190	rvry pioclese chlorfic pidste 1-3%
}390	-16 - -18 - -20 - -22 - -22 - -26 - -26 - -26 - -30 -			H 1-1 × + × -	- Ahitenshitt - Chi/erichte	XKR MBX				473 renders 17. 0+3/caleite vinlets 1-37. Slick@ 18.9 n @ 50° TCA END OF OXI dation@ 16.0 m. 23.90 - 45,95 m Diorite - Monzollio rite Same as above except 1655 of hornblandle g Significant increases in gtz/calche and pose veinlets. Upper Contact not sharp.	shenocrysts 5.24 AIbiz

a substanting and a substanting substanting and a substanting substanting substanting substanting substanting s

 $\langle \gamma \rangle$

 \bigcirc

the second second

 \cap

 \bigcirc

 \bigcirc

Shee Page 4 of 14 Reality Struct Franch Attend CPY ASP Geology Hole # DDH-FR-001 both PY/po mainly fracture controlled @ 35° Tica along wet and dry fractures. Qtz veining commonly containing sulphiles. 62 61-57.1-57.4m-Dreccrated/healed intrusine, clay altered with Silica . Softy pyrite. 400 --68-59.0m - hornblande phonocrysts observed but sparce -70 + F12 + + 74.70m - 1cm massive Py/po vin ŀ14 †₊ -16 -+1 18 180-1+ 82.5m - Breccinted/healed by 9t3 = pyrite c.91 RZ -06.5-87.00 Calbonatized envelope around high angle. Fracture @ 15. Ten. -64 80 k *6*9 90.

 \sim

10	<u>19.0</u>	0 5	<u> </u>	ect.					
אטרך.	γpe	ture	522	ction					Page 5 of 14
The	Recht	うち		Afer		101	CPY	Asp	Geology Hole #DDH-FR-001
-92-	+				16				
.ศนุ -	+			t, A					
.96 ·	+				4 -1				
98-	-+	Sick,		j v					
-1œ-	+			4	S -				
·10Z-	+			X	5%	, ,	``		
- 104	-				it [•			
-100-	+								
-100 Ho.		,	$\left \right $			1			
	<u>+</u>	2	Ţ.		+ ₂				111.75-112.78m Fault ZONE
-114	1 <u>7</u> 2	24	8		-	~			Highly broken, brittle detormation, based on tractures and reins fault is between 50-70°TCA. Brossy Pyrite to 27.
-116			*	원 {	4				fault zone.
નારુ	4				1				
Uzo.	+					ļ			

and the second second

 \bigcirc

 \frown

 \cap

Shee Page 6 of 14 THERVOL Ricktype Ro 1 P. CPY Asp Geology Hole #DDI+- FR-001 112.78-127.05 m Diorite - Monzodiorite Hornblende Torphyry 122 0 45 Nypicel SiP texture with 2% VeriliPho of matic rock. Up to 20% sparce hornblandle phenocrysts in areas, 124 mostly equipromular, trace - 0.5% py/po in fractores. -12weak choritic alteration. 17,05 -128-14 55, 127.05-131.00m Bleached Diorite - Monzodiorite ហ៊ី +130-1+ 31.00 Shime rocktype as above except extensively bleacked 132with Silicitication, well mineralized along fractures at 55-60"TCA. 2cm Saty priste vein @ 128.90m @ 65"TCA. Otg/Colcite Veining 127.3-127.4 m @ 45"TCA ± 134 -136-Arsenopyrite fr - 0.5 % . -138-131.00- 142.50m Diorite - Monzodiorite Same as 112.78-127.05 except No hornblander 140phenocrysts. Trace - 0.5% Polpy along fractures. 134-136- 1-29. polpy. -14z · 42.50 MΦ ·144 45 90 5 148 લુવ

Contract and an approximation of the second s Second se Second s Second se $\langle \gamma \rangle$

 \bigcirc

 \cap

	<u>Log</u>	فبعر	<u>.</u>	<u>Sh</u>	ect	÷,				
	נרצמך	itype	chine	chures	ration		Ργ	7	X	Page 8 of M
	Tute	Rec.	えあ	Э́ Ц	Ate	Q 1 3	19/	CP	Asi	Goology Hole #DDH-FR-001
	-182-	+ +	•			11	1111		vo	
	484-	-+				K				
	-186-	+		ļ	Chi	347	A 51	5 *		
	-168-	+ +			esk	Ar V ² ct ⁴	1 1	55*		
7 0.4	190-	+ - +			190.40-213.90m Deformation ZONE					
	-192-	Т		6	«	ь bne	1.11			Host Diorite-Monzodiovite, grey -> black Colour in
	494-	+	+ + +			a.		Subty pyrite with chirific alteration Follow		
	-196 -		L L	3		~	14			Youngest gt3/Souty pyrite @ Lo- 70"TCA, mylonitic textures
	-19 &-		ماليهم		ch/89	્ર		55.	6	gauge @ 193.60m locm thick @ 450 TCA.
	₽∞-	+	A ر م	م م				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Calcite common with qtz breceises and along frainline fractories.
	2.2		/Lev	2		Q _	1			unometiged le case of Unit for . 5-1.0 metries.
	204.		ک مرکز	s X		N.C.	S			
	Deto.	4	45.4							
	800	 	Ŕ							
	Dir.	<u> </u>					,			

 $\mathbb{Z}^{m_{X}} X$

 \bigcirc

Logging Sheet Attention Page 10 of 14 Stucture Interval Qt3 Pe/Py СРУ Азру Geology Hole # DDH- FR-001 V_c 2-12-F e IS 244 Vc れん 246 V_c 250 Acid Test@ 254.20m @ - 39° dip. 252 Vc hmad Ν. EOH 254.20m 5-4 256 258

 \bigcirc

	· · · ·
1	· ·
	1
- N	1

and a second second

4

1.090	3.0.	<u></u>	she	<u>c.t.</u>			.		
אסך	Ype	- June	2 2 7 7 2 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 9 7 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9						Page 11 of 14
THE	Recht	うた	Alless Alless	e de la compañía de	212	СРУ	ASP	Geology	Hole # DDH-FR-001
								Sample Descriptions	
								$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ionite-thenzodionite 1-370 py) po 2-4% py) po, 1% QC veinlets 1-3% py) po, 4% Qt3 @ 25°TCA 2-4% py) po, QC, Carbonatized 3-6% py) po, QC, Carbonatized 3-6% py) po, S-2% ASpy, 4% Qt3, Calbonatized 2% py) po, 5% Qt3 @ AS & BO°TCA, Calbonatized 2% py) po, 3% Qt3 @ AS & BO°TCA, Calbonatized 2% py) po, 3% Qt3 @ AS & TCA 3% py) po, 5% Qt3 @ 30°TCA 3% py) po, 5% Qt3 @ 35°TCA 1% py) po, 1% Qt3 @ 35°TCA 1% py) po, 1% Qt3 @ 35°TCA 1% py) po, 2-3% qt3 @ 35°TCA. 1% py) po, 2-2% pt3 [] 1% py) po, 2% pt3 []

 $\langle \gamma \rangle$

 \bigcirc

1

Lo	99.0	<u>a</u> (She	st.					
אפר	YPE	- ann	2725 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-						Page 12 of 14
Tuter	Rickt	Surg-			200	CPV	Asp	Geology	Hole #DDH-FR-001
								141.00-142.00 (1.0m) Nº 00023 Dothe-Howselionite bracket 142.00-143.00 (1.0m) 00024 "12.03 240TCA, 12 p 143.00-144.00 (1.0m) 00025 "152 Po/Py 144.00-145.00 (1.0m) 00026 "102.04 40"TCA, 12 145.00-146.00 (1.0m) 00028 "152.06 py, tr 146.00-180.00 (1.0m) 00029 "152.00 py, 12.043, 80 180.00-180.00 (1.0m) 00030 "270 py, 12.043, 80 180.00-182.00 (1.0m) 00030 "270 py, 12.043, 80 180.00-182.00 (1.0m) 00030 "270 py, 12.043, 80 181.00-182.00 (1.0m) 00031 "270 py, 270 ps, 276 043, 182.00-183.00 (1.0m) 00033 "200 py, 12.043, 80 182.00-183.00 (1.0m) 00033 "270 py, 270 ps, 276 043, 182.00-190.40 (400m) 00033 "270 py, 270 ps, 272 043, 190.0-190.40 (400m) 00033 "20-302 BX QC, 1070 fy 192.75-194.00 (1.25m) 00037 BX Intrustive, 370 py rite 192.00-198.00 (1.00m) 00037 BX Intrustive, 370 py rite 193.00-198.00 (1.00m) 00039 "200 fy if results for po 192.00-198.00 (1.00m) 00034 "470 BX OC, 570 py rite 193.00-198.00 (1.00m) 00037 "370 py rite 194.00-197.00 (1.00m) 00034 "470 BX OC, 570 py rite 194.00-198.00 (1.00m) 00040 "370 py rite 193.00-198.00 (1.00m) 00040 "370 py rite 193.00-198.00 (1.00m) 00044 "370 py rite 198.90-20000 (1.00m) 00044 "370 py rite 198.90-20000 (1.00m) 00044 "570 BX OC, 1070 py 20.00-20200 (1.00m) 00044 "570 BX OC, 2020" 20.00-20200 (1.00m) 00044 "570 BX OC, 1070 py 20.00-20200 (1.00m) 00044 "570 BX OC, 1070 py 20.00-20200 (1.00m) 00044 "570 BX OC, 1070 py 20.00-20200 (1.00m) 00044 "570 By rite 20.00-20200 (1.00m) 00044 "570 By rite	Sample c/py, tr cpy/MoSz hopo/py, tr MoSz Hosz e/py im Breccine tr MoSz pe/py 490 Breccatella pyrite, 390 Akenike? be pyrite rite

1	
	•
	1
1	· ·

The second second second second second second second

.

Lo	39.0	کے و	hee	<u></u>					
terral	cktype	ucture	teretion	13	1 Py	ΡΥ	SPY	Page	13 of 14
72 	Ŕ	ずu	17	13	Сŷ	J	Å	Hole#	DDH-FK-001
								204.00-205.05m (1.05m) 000477 BX Livitushe, 226.043 25.05-206.0 m (0.95n) 000471 " 29.043 20.00-207.0 m (1.00m) 00050 " 29.043 207.00-208.0 m (1.00m) 00050 " 29.00/py, 01.0 m (1.00m) 00052 Black Chart, 10 m prife 209.3 - 201.3 m (0.5 m) 00052 Black Chart, 10 m prife 209.3 - 201.3 m (0.5 m) 00052 Black Chart, 10 m prife 209.3 - 201.0 m (1.7m) 00053 " 290 pr/py, 02.0 m/pe 209.3 - 201.0 m (1.7m) 00053 " 290 pr/py, 02.0 m/pe 209.3 - 201.0 m (1.7m) 000553 " 290 pr/py, 02.0 m/pe 201.0 - 201.85 m (0.85m) 000554 " 290 pr/ps bx 43, k 201.0 - 201.0 m (1.10m) 000558 " 152 pr/, 532 bx 43, k 201.0 - 202.0 m (1.0m) 00057 BX Livitusive 470 pr/py 215.0 - 216.0 m (1.0m) 00057 " 19.0 pr/po, 17.0 q43, fr 1 223.0 - 223.0 m (1.0m) 00059 " 19.0 pr/po, 17.0 q43, fr 1 230 - 223.0 m (1.0m) 00059 " 29.0 pr/po 220 - 224.0 m (1.0m) 00059 " 29.0 pr/po 220 - 223.0 m (1.0m) 00054 " 29.0 pr/po, 17.0 q43, fr 1 230 - 223.0 m (1.0m) 00054 " 29.0 pr/po 220 - 224.0 m (1.0m) 00054 " 29.0 pr/po, 17.0 q43, fr 1 230 - 225.0 m (1.0m) 00054 " 29.0 pr/po 220 - 225.0 m (1.0m) 00054 " 29.0 pr/po 220 - 225.0 m (1.0m) 00055 " 39.0 pr/py, tr cpy 280 - 225.0 (1.0m) 00055 " 39.0 pr/py, tr cpy 280 - 232.0 (1.0m) 00056 " 19.0 q43, 59.0 po, 19.0 pr, tr 230 - 232.0 (1.0m) 00056 " 19.0 q43, 59.0 po, 19.0 pr, tr 231 - 232.0 (1.0m) 00056 " 19.0 q43, 59.0 po, 19.0 pr, tr 232.0 - 232.0 (1.0m) 00057 " 22.0 q3, 59.0 po/py, s 232.0 - 234.0 (1.0m) 00071 " 22.0 q3, 59.0 po/py, s 232.0 - 235.0 (1.0m) 00071 " 22.0 q3, 59.0 po/py	-, bistile Distile Distile Tosz Po/py Do Py/po pt3 Do Py/po pt3 Do Py/po pt3 Do py/po Py/po Py/po Py/po Py/po Py/po

 \cap

 \square

Lo	90.0	<u> </u>	5+	<u>) ९ ୯</u>	t					
יאטרך	type	Hure 1	tures	iction		<u>_</u> کر		Y		Page 14 of 14
Lute	Rich	ぎあ	Frac	Atter	Q 1 3	1919	CP)	Asp	Geology	Hole #DDH-FR-001
					;				235.0-236.0m (1.0m) 00073 Hornfels Ve, 290 Qtz, 590 236.0-237.0m (1.0m) 00074 11, 320 polpy	polpy, Silicitical
. .										
						-				
					- -					
⊾ . →										
- ••										
•				i						

and the second of the second second second second

 \sim

 \bigcirc

the second second second and an example of the second second second second second second second second second s

 \bigcirc

Title Paci

.

ł

.

Project: FRAN	Northing: 1595	Page 1 of 12
Hole # DDH-FR-002	Easting: 760	Surveyed:
Date Started: Oct 27/2001	Azimuth: 172	Easing left in: No
Date Completed: Nov 2/2001	Inclination: -45	Logged by : Lorne M. Warner
Summary of Hole. Casing to 18.30 EOH 22.9.91 M Acid Test 107.9 Acid Test 229	n iom - 45° 1.82m - 39°	

· · · ·

Project: FRAN Coordinates: 159 SN/760E Page No. 02 of 12 Hole No. : FR-002 Azimuth: 172° Acid Test 107.90m -450 Date Started: Oct 27/2001 Inclination: -45 Acid Test 229.82 - 39° Dote Completed: Nov-2/2001 Final Death: 229.91 M Logged by L.H. Worner Fractu Descriptive Geology Assay Po/P Alte PΥ Intervals Casing to 18.3m 10 1 Coredrock/uncontaminated starts @ 17.50m + above this point mack is angual to roundy ... upath to determine point & drippa. 12 All rock chips above 17. Som are of Duridel Grandin, its Sampos - 10. z is Oxidized fractures to 29'Sm 16 17.5-19.0 1830 19.0 - 20.0 17.50-39 00m 20.0. 21.0 20 C + 21.0-21.40 Brecciated Diorite Monzodiorite 21.40-23.0 - Cracle Fractured to almost a 23. - 24. 3 22 + 24.0-25.0 mosaic breache Lealed by Silice 25.0-26.0 - froctures consist of gtg verilets to verine 26.0-27 0 w/ both Sorty & brassy Pyrite. 24 27.0-28 0 28.0-21.0 -@ 22.501 intense breckintin including 21.0-30.0 the govertz, quarty vin @ 45. TCA 26 30.0-31.0 - No po, only Printed 31.0-32 0 Gouj 32.0-33.0 28 - Average consistent with Surty Bloss , 33,0-34 0 34. A. 18 . 5-27-340-350 30 Poor Cole recorder (75%) between 13 2-360 36.0.37 0 91-9462 32. -Gouge @ 28 on oricitation 37 0-35.0 35 3-30 0 between 45-55. TEA but nA 39 good specimons. (5 Host was probably @ Statite that has 35 been alterist to troke like Grand ... Re Areraz 2-107. Free quine - and humber is 35 have been altored to childrente or completely 39.00m

. 1										
	Project: FRI				AN)			Coordinates: 1595N/760E Page No. 3	of 12
	Hol		<u>).</u>	F	<u> 7</u>	∞_2	2		Azimuth: 172°	
	Dat	<u>c</u> 5	<u>iart</u> i	<u>ed :</u>	$\underline{\alpha}$	72	71	200	Inclination: -45	
	Dot		<u>mp</u>	leta	<u>ed:</u>	No	<u>72</u>	2/2	50 1 Final Depth: 229.91 M Logged by L	.H.Warner
	I Interval	Racktype	Structure	Atention	L'roctores	Poloc	CPY	OPEN	Descriptive Geology 39.00-44.65m	Assay Intervals
	42.	*+ +* +*		citin / Clar	Inder K/ -			Hus •	Diorite Hoizo / Hossive Sulphile Veins -Healed Gouge zone w/ massive Sorty/Brassy pyrite W/ gtz inclusions - @ 44.20m structure @ 25" TCA w/ late Catalite - @ to hoke Big counted by to may have malaced Interior	39.0-40.0 40.0-40.90 40.9-42.0 42.0-42.0 43.0-44.0
	44	+-+	$\langle \rangle$	n j					fragments.	• 44.0-44.65
44 10	4L 4	- + + +		Lact UR D	4				Dorite-Monzadioit#4.65-75.0m -Extensive chloritic alteration / trace cpilite in fractures - occassimed qt3 Vns w/ SEB pyrite or along Fractures	4465-46.0 460-47.0 47.0-48.0 480-48.0 480-50.0
	50	+ +		ム い 子 い 石 イ い		1 1 1 1			-Some of the brossy type pyrite is ANNedial crusty. -Where intrusine is less alterned it has	51.0 - 52.0 52.0 - 53.50 53.50 - 54.0 54.0 - 55.0
	SZ -	i te	ļ		2.2	1 1			typical Sit texture, vory Sparse humblende phanocrysts, although the planic case temains Rimed.	55.0-56.0 56.0-57.10 57.10-58.0
	56	Grandic	9766 74.5		55	1 3				
ł	56 -	· -+ +			44	N.				
┢	ю	+								┫ ┃
	6Z .	+ -+		+	\$ /&					
ŀ	69	+			たんや			H.		
t		† ,			45°					
ł	L9	' †				Ц				
	70	t I							·	
										<u>}</u>

С

С

C
J ;	Project: FRAN	Coordinates: 1592N/760E Page No. 4	t of 12
	Hole No. : FR-002	Azimuth: 1720	
\boldsymbol{c}	Date Started: Oct-27/2001	Indination: -45	
	Date Completed: Nov 2/200	[Final Depth: 229.15m] good by L	.M. Warner
. '	Interval Racktype Structure Alteration Fractures Veins PalPa CPY	Descriptive Geology	Assay Entervals
75.0	72 + + + + + + + + + + + + + + + + + + +	50-756 m 1120ne, Breach to & Gramodiante healer in 100 Ac and Plante 20% plante rimite time & structure of visible 160-88.70m 101 te - Monzodiorite Strong Fracture controlled calmitic	74,0-75,0 750-75,0 751-77,0 77.0-78-0 78.0-78-0 78.0-78-0 90.0-860
98.7* 90.0-	82 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.70-90.00m Dist accuriance of Poin this hole ince Cyny 1 Mol Zn	8 1.0-82.0 82.0-83.0 83.0-84 0 840-85.0 85.0-86.0 85.0-86.0 85.0-87.0 83.0-98.70 83.0-98.70 83.0-98.70 83.0-91.0 90.0-91.0
	 10 <	5-1070 Po / 2-570 Py 57. Oto Yain D-108.80 Ectomically Blecciated Grandlitrite Grandbiorite fragment un supported in histilic groundmade, hoistine calcite miny up to histilic groundmade, hoistine calcite miny up to biological groundmade, hoistine calcite miny up to intervent frage ore site fred generation intervent with Ecotors. Blossy pyrite bore General a Durite type to seen above is this hole. 200 Care recovery between 103 13-	91.0-92.0 92.0-93.0 93.0-940
-	International and a state	(40%)	E

	•											$\mathbf{x}_{\mathbf{x}}$
		Pr	sjeq	<u>t:</u>	Fr	<u>a</u>	<u>ມ</u>				Coordinates: 1592N760E Page No5	of 12
~		Hol	<u>e N</u>	2		<u>2</u> H	<u>- F</u>	<u>-</u> R-	<u>-0</u>	02	Azimuth: 172°	
C		Dat	<u>e 5</u> e G	<u>tar</u> Dmi	Ted Slet	ed		27 No	/ : V 2	20 2 /	of Indination: -45	Hickory
	1		له	2	d	ŝ					Logged by L	I L. WAVAR C
		Interva	Rocktyp	Structu	Alternti	Fracture	Veins	Palpy	CPY	DPEN	Descriptive Geology	Assay Intervals
		104	▲ +	X	Į	*11		1 1				
		• DC •	+ •	$\langle \chi \rangle \langle \chi \rangle$	1+Epi08	7774		•				
10	<i>в</i> . 5	108	4	Ž	5	X			_	2	108.85-119.50m	
		110	+		Conti			•			Diorite-Monzodiorite	
		112	+	9	1150 FC(1+		小	•	1	hr 16	108.65-112.0-weak rappylike 112.0-5 clupth thin Silici Firstin. Host of the granodiante above the detaineting	
<u>,</u>		114	diar.		Ch/+ 3;			•			unit is not.	
		116	+ Gam	- 24				;				
//~	1.50		+			*	-		_	-	, 119.50-145.00m	
		1/201	4	a		2					Bioken/Vussy Diorite-Monzadiorite	
		122.4	+	نوخ ه							Pervessive Silicification, unit was tractured on it healed by Silica, gauge zones healed by	
		124	ملا کردندا آنه در کو	ν - V	P.M.	*		•			- No contration - No contration - No contration	
		Eb .	t Georg	, , ,								
		170	-+	•								
	ł	1] O .	+	* 2	- •4	<u>k</u>					•	
	1	172 .	+-	Þ	Ĩ			•				
		134	+- +-	ر ۱			-	, ~, ~,				
	· •	136										

Project: FRAN Hole No. : FR-002	Coordinates: 1592N/760E Page No. (Azimuth: 172.	0 of 12
Date Started: Oct 27	2001 Indination: -45	
Interval Backtype Structure Alteration Fractures Palpy	Z Descriptive Geology	Assays Interva
$\frac{13}{14}$ $\frac{1}{14}$	1415.00-151.00 m Technically Breccisted Diorite Housedidite Extensive Chit Spirific alteration Wy minor Siter Fraction. Situified Frogments were breactand with the Epifical coming in latter in the Deformation object. (two deformed then the Sities). Most intense breactation occurs From 149-151.50m -20m Mussive Vussy Prince	

Hole No. : PR-002 Azimuthi. 172° Date Started: (127 20) Inclination: -45° Date Completed: Nor 20001 Final Depth: D2915 M logged by 6 M 6.00.00 The started in 2000 Final Depth: D2915 M logged by 6 M 6.00.00 The started in 2000 Final Depth: D2915 M logged by 6 M 6.00.00 The started in 2000 Final Depth: D2915 M logged by 6 M 6.00.00 The started in 2000 Final Depth: D2915 M logged by 6 M 6.00.00 The started in 2000 Final Depth: D2915 M logged by 6 M 6.00.00 The started in 2000 Final Depth: D2915 M logged by 6 M 6.00.00 The started in 2000 Final Depth: D2915 M final Depth		Pre	siec	t :	F	R	AN			Coordinates: 1592 N/760E Page No. 7	of 12			
Date Started: (Arth 2001 Indication: -460 Date Completed: Nor 2/2001 Final Depth: D2915 M Logod by L. M. Work To a start start start of the start		Hole	<u> N</u>	2:	٢	26	(-(20	2	Azimuth: 172.				
Hote Completed: Nov 242001 [Final Depth: 20991]Sm [Loged by L. M. Ward The state of a log of a general provided of the state of the st		Dat	<u>e</u> 9	tart	red	<u>:C</u>	<u>St</u>	21	2	2) Indination: -45°				
1 1		Dat	<u>e (</u>	2000	त्रि	ted	:N	۽ بر T	<u> </u>	001 Final Depth: 22915m Logged by L	M. Woiny			
$\frac{17}{12} + \frac{1}{12} + \frac{1}{12}$		Interval	Racktype	Structure	Attention	Fractures	Veins	101 17 10 10	DPEN	Descriptive Geology	Assays Enterval			
$\frac{113}{113}$		170	101, to +		945 JJ-115 -			-		151.00-161.50m Diorite-Monzadionike, Vussy, Silicitica Terrosine Silicitication .5-19- Py mainly along frontures	161-170 171-271 172-172 172-173			
$\frac{1161.5 \circ -169.00}{1161.5 \circ -169.00}$ $\frac{1161.5 \circ -169.00}{1161.161.5 \circ -169.00}$ $\frac{1163-174}{179-180}$ $\frac{1163-174}{179-180}$ $\frac{1163-174}{179-180}$ $\frac{1163-174}{179-180}$ $\frac{1163-174}{179-180}$ $\frac{1163-174}{179-180}$ $\frac{1163-174}{179-180}$ $\frac{1163-174}{180-161}$ 116			- Ganad	,5,		X*X		•			115-175 175-176 771-177 177-18			
$\frac{1}{12} + \frac{1}{12} $	~	176		Vu ^s		~ *	v, V			Brecciated Diorite-Monzadiorite	179-180 180-181			
$\frac{160}{100} + \frac{1}{100} + $	1	172	` ۲				لا د ا			Start of Intered Starter of Epidete / Chi ± 1 MS-151 Intered) Epidete / Chi ± 1 MS-151 Intered) Epidete / Chi ±	18 -182.50			
180 + Stand - Stand - The stan		(Bri	4	•	 ↓ ↓ 		7 7 1 1			5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	184-186			
194 192 192 192 192 192 192 192 192 192 192		182	.+- 	×	والمدرا والمح	**		-	1	Silicified Donte-Monzationite	-187-190 190-191			
186 2 2 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1/8¥4	+ *	ななな	المدهاد	XX XX XX	5.		Ч	Pervosire Silici Fication	191-192			
1938 (1) (1) 1938 (1) (1) 19		186	moditi	** ***	A heir	¢ ×	H			Degreed Silicification may be increation. While the Isi-161.5m Interview.	193-44 190-125			
1910 192. 191-192.50-191.00ml 192. 192. 192. 192. 192. 192.50-191.00ml Beached Diorite-Monzodiorite 540 King Street Biskin Willing Control Children 540 King Street 198. 198		/88	α ک⊤		ν. (S ,),			• • •		173-175-Fractured, possible fault (1935 Stance etag) (bit problem?)	1-2-13 1-3-13 1-3-135			
197. 197. Ch. 198. 200 1982. 50-191.00m/ Bleached Diorite-Monzodiorite 500 200 Provide Streat Biotran Willing Control Finction Filling CC CA Fin Front Private Front Control 500 200 Fin Front Private Front Control 500 200 Fin Front Private Front Control 500 200 198-200 200-20 200	101 -	17-0	۲-	5	Х Ч	81/ 1	5°			141-142.500 Yor Alt 5% Epine 11 11000	158-193			
1944 2 A A A A A A A A A A A A A A A A A A	141.0	jaz .	× ,'	N.	1		it		1	182.50-191.00ml Bleached Diorite-Monzodiorite) ² ి చిం - చింగా చిం - ప్రదామం			
1960 - Stran Elsobels area		1954-								- Franking Sitzen? Bostan without carety franking filling E - Franking Parise + Marine Propagate				
		196	/ ***	44	2 F 105					Silver Floobly area	Ē			
		1950 200	4		Υ Ν Ν									

Ċ

×.,

C

Project: FRAN	Coordinates: 1572N/760E Page No	8 of 12
Hole No. : FR-002	Azimuth: 172°	
Date Started: Oct27/20	U Indination: -45°	
Date Completed: Nov2	2001 Final Death: 229.15 m Logard	or L. M. Warne
Interval Racktype Structure Altention Froctures Veins PolPy CPY	z Descriptive Geology	Assay Interval
2^{2} 2	191.00-202.00 KSpol Fland - Zorvi Silvas Hoode & BO. 90+75 KSpre = Silvas Hote & B. 90+75 Kolewick / fractions W) PS P1. + CPY BX - Kspal W Strea healing OS and 60° TCA 20200-208 35ml Kspre Altered Solicitud Freegomes? (borker phase) Forto 10 W/ Semi massime P> 193 ± CP3 @ 55° 60° TCA (Sono Gig YM ing) Unit could be volcante 20835m-214.45 Highly Altered Selimit Could here been mullistime. Veryfiniscince beek of y Sono W or Lant Solication & Kispie Altered Selimit Solication & Kispie Altered (Where leo alt Solication & Kispie Altered Selimit Instanse Silva Flood @ 213.5 m W) three Solaritoms of Silvas Veryfinistimes of Silvas 20805 - Colling - This press of breakotherist Orld Here Solica Flood @ 213.5 m W) three Solaritoms of Silvas 20805 - Colling - Solicas Solaritoms of Silvas Phile (voined) chall grey Phile (voined) chall grey Phile (voined) chall grey Phile (voined) chall grey Phile Philes & Bisser Print Print 221-222.50 m Asca. 176 Eached W Bissery Phile	204-205 205-206 206-207 207-20635 209:35-209 209-210
Recharge and the second	EOH 229.91m	
		1

Ċ

C

()

.

<u>Ĺ</u> c	99.0	LQ	5+	<u>۱۹۲</u>	t					
ראמך	type	fue.	tures	ction		7		<u>~</u>		Page 9 of 12
Tute	Reck	ずあ	Frac	Atter	Q 1 3	Pe/F	CΡγ	ASP	Geology	Hole #DDH-FR-002
									17.50-19.00m (1.50m) N= 00075 D 19.00-20.00m (1.00m) 00076 20.00-21.00m (1.00m) 00077 21.00-21.40m (0.40m) 00078 21.40-23.00m (1.60m) 00079 23.00-24.00m (1.00m) 00080 24.00-25.00m (1.00m) 00085 25.00-26.00m (1.00m) 00085 26.00-27.00m (1.00m) 00085 29.00-27.00m (1.00m) 00085 29.00-27.00m (1.00m) 00085 29.00-30.00m (1.00m) 00085 29.00-30.00m (1.00m) 00085 29.00-35.00m (1.00m) 00085 20.00-35.00m (1.00m) 00085 20.00-35.00m (1.00m) 00085 20.00-35.00m (1.00m) 00085 21.00-35.00m (1.00m) 00085 25.00-35.00m (1.00m) 00087 36.00-35.00m (1.00m) 00091 36.00-35.00m (1.00m) 00091 36.00-35.00m (1.00m) 00091 36.00-37.00m (1.00m) 00094 36.00-38.00m (1.00m) 00094 36.00-40.90m (0.90m) 00097 40.00-40.90m (0.90m) 00097 40.00-40.90m (0.90m) 00097 40.00-40.90m (0.90m) 00097 40.00-40.90m (0.90m) 00097 40.00-40.90m (0.90m) 00097 43.00-45.00m (1.00m) 00098 42.00-45.00m (1.00m) 00097 43.00-45.00m (1.00m) 00097 40.00-40.90m (0.90m) 000	Twizediorite, 2% py, 2% Qtg, brecchicked. ,2% py, 29. Qtg, brecchicked. 2% py, Brecchick, gouge 2% py, Brecchick, gouge 2% py, Brecchick, gouge 2% py, 3% qtg, tr Mosz, S. Hickfiel Sheered, 1% py. 1% py, 1% qtg. 1% py, 1% qtg. 1% py, 1% qtg. 1% py, 1% qtg. 1% py, 1% qtg. 2% py, 2% qtg Yntt. 2% py, chi fractures 2% py, chi fractures 2% py, chi fractures 2% py, chi fractures 2% py, 2% qtg 800° TCA 4% py, 2% qtg 800° TCA 4% py, 2% qtg 45° TCA (healed) 2% py, 1% qtg 2% py, 1% qtg 2% py, 1% qtg 2% py, 1% qtg Vntts 2% py, 1% qtg Vntts 15% py, 6% qtg Vntts 15% py, 6% qtg Vntts 15% py, 6% qtg Vntts 15% py e 70° TCA, 4% qtg C25° TCA 2% py, 1% qtg 1% py gtg 1% py 1% qtg 1% py fy fy qtg 1% py 1% qtg 1% py fy fy qtg 1% py fy fy fy 1% py 1% py

()

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Logging Sheet		والمحافظ فنكاك المكاف المتعادين والمحافظ والمتعادين والمحافظ والمحاف والمحاف والمحاف
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ral ral		Pagelo of 12
91.00-92.00m (1.00m) N° 20132 Jurk Househork, 390 pr, Sitchief fragments 92.00-93.00m (1.00m) 20134 11	Act, P. C. P. C. P. C. P.	Geology	Hole #DDA-FR-002
- 1 198.00-197.00n (100n) 00/60 " 390 po, 170 py, 270 ptz, tr copy		91.00-92.00m (1.00m) N° 00132 Dirkt Muszelivike, 390 pr, S 92.00-93.00m (1.00m) 00133 11 93.00-170.00m (1.00m) 00134 11 13.00-170.00m (1.00m) 00135 170 pr, Z 169.00-170.00m (1.00m) 00135 170 pr 170.00m (1.00m) 00135 170 pr 170.00m (1.00m) 00135 170 pr 170.00m (1.00m) 00136 170 pr 171.00m (1.00m) 00137 170 pr 171.00m (1.00m) 00138 170 pr 173.00m (1.00m) 00137 170 pr 175.00m (1.00m) 00138 170 pr 175.00m (1.00m) 00139 100 pr 175.00m (1.00m) 00140 100 pr 175.00m (1.00m) 00142 280 pr 174.00-180.00m (1.00m) 00143 190 pr 179.00m (1.00m) 00143 190 pr 179.00m (1.00m) 00144 190 pr 180.00-181.00m (1.00m) 00145 190 pr 181.00-182.00m (1.00m) 00144 190 pr 184.00-184.00m (1.00m) 00151 270 pr 184.00-184.00m (1.00m) 00152 270 pr 184.00-184.00m (1.00m) 00152 270 pr 190.00m (1.00m) 00152 270 pr 190.00m (1.00m) 00152 270 pr <tr< td=""><td>ilicitied fragments 27. qtz breecia usiry, Silicitied, clay Alt. 9 9 13 13 13 13 13 13 13 13 13 13</td></tr<>	ilicitied fragments 27. qtz breecia usiry, Silicitied, clay Alt. 9 9 13 13 13 13 13 13 13 13 13 13
		170.00-1710ch (~~~) (0100 - 310 po, 100 py, 270 pt	, t <u>c c</u>

 \bigcirc

_ L <u>og</u>	1.0.0	51	Sec.	t:					
עניך	Ype .	0.005	tion		<u> </u>				Pagell of 12
Tuter	tyzy t	Fract	Alter	Q13	R01P	СРУ	ASPY	Geology	Hole #DDH-FR-002
├ ──†		4						4400-49 poin (1.00m) Nº 00105 Divite-Monzalionte 190px	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
								19 or -50.00 m (1.00m) 00106 " 17.00	
Г]								$5_{2} = 5100 \text{ m} (100 \text{ m}) 0007 \text{ m} 22 \text{ m}$,
								52 mm (100m) Or 108 m (2.2	
								$F_{1,00} = F_{2,50m} (1.50m) 0010^{9}$	7 •
-								$\frac{1}{100} = 5400 = (0.50m) 0 = 10$ " $4\% p_{T}$	245°TLA, 1270 973
								54.00-5500m (100m) 00/11 " 22.py,?	32 904 ge, 17= 9tz
				i				55.00-56.00m (1.00m) 00112 11 27.973,	27. Pre 50 TrA
								5000-57.00m (1.00m) 00113 " 5% Pri	4% 93 P7@45 TCA
F 1								57.00-58.00m (1.00m) 00114 " brocket 1% PY, 1	in gtz valt
								THE TECON (1,000) 00115 " 3% P/	
								1400-1500 m (0.60m) 00116 " breachted 1270py, 1	booker - gonge johl
+ +			1	ĺ				75.60-77.00 m (1.40m) 00117 " 1% PY	·
]			1		77.00-78.00m (1.00m) 00118 " 4% py	2
F +						1		78.00-79.00m (1.00m) 00119 " 37.045,4	the pr
								19.00- 80.00m (1.00m) 00120 " 21/0 py,1	1/2 9t3
<u>†</u> †								Bo,00-81.00m (1.00m) 00121 " 275 P1, 2	C_{2} q_{f_3}
			}					BLOO-BZ.OUM (1.00m) 00122 "	20 973
[]			ĺ					82.00-83.00m (1.00m) 00123 " 210pr, 2"	1+3
								18300-8400m (1.00m) 00124 11 140 PY	
							1	84.00-85.00m (1.00m) 00125 " " " PY 1	<i><i>л</i> ,</i>
\mathbf{F}								85.00-86.00m (1.00m) 00126 " 0.5% Pr)	60 9+3
					1			86.00-87.00m (1.00m) 00127 " blacked, 0.5% pr	
F 1						Ì		88.00- 88.00m (1.00m) 00/28' " Z2py	
					1		1	88.00-88.70m (0.70m) 00129 " 170 py	
[]								188.70-90.00m (1.30m) 00130 5% 9t3/10% po/5%	py, tr. Mosz, Cpy, Los
<u> </u>								90.00- 91.00m (1.00m) 00131 " 290 py, blenched,	Silicfiel, brecciated

1

į

 \bigcirc

ł

1

A second se

.....

60	GOLA	2.6	51	ንድሮ	ť					<u>- , , , , , , , , , , , , , , , , , , ,</u>	
رد <u>ا</u>	(pe	2	0000	dion		~				Page 12	ofla
Luter	Richt	ちっよ	Fract	Altera	Qt3	Polp.	СРУ	Aspy	Geology	Hole #JX	0H-FR-002
									199.00-200.00m (1.00m) N° 00161 Diorite Hausediorite 12 P 20.00-201.00m (1.00m) 00162 " +1070 Dyke 45% p 201.00-202.00m (1.00m) 00163 " 0.572 po 202.00-205.00m (1.00m) 00164 " 10% py, 0.572 po 203.00-205.00m (1.00m) 00165 " 19% py, 0.572 po 205.00-208.35m (1.00m) 00169 " 2% po, 12% py, 15 207.00-208.35m (1.00m) 00169 " 2% po, 12% py, 15 208.35-209.00m (0.65m) 00170 VC gauge, breach @ 58 208.35-209.00m (0.65m) 00171 " 1% py, 0.5% po, 208.00-210.00m (1.00m) 00172 " 320 qtg/calche, 2 209.00-210.00m (1.00m) 00172 " 320 qtg/calche, 2 201.00-213.00m (1.00m) 00172 " 320 qtg/calche, 2 201.00-213.00m (1.00m) 00173 " 1% py, 0.5% po, 3 201.00-213.00m (1.00m) 00174 " 1% py, 0.5% po 201.00-213.00m (1.00m) 00175 " 8% qtg@ 80° TCA, 201.00-213.00m (1.55m) 00176 1 Dracket Sample	5, 0.52 py, 19 7, 32 py, 19 170 qty vnl: 170 qty vnl: 170 qty vnl: 170 qty vnl: 170 qty vnl: 170 qty vnl: 170 qty vnl: 270 py, 170 pr 270 py, 170 pr 370 py, 170 pr	De 943 Sonica postr Mosz tezs-Botta t3 brocela. Popy, 18 po roken.

()

 \bigcirc

Title Page

 \bigcirc

(

by : Lome M. Warner

Project: FRAN	Northing: 1400 N	Page 1 of 8
Hole # DDH-FR-003	Easting: 775 E	Surveyed
Date Started: Nov 2, 2001	Azimuth: 180°	Easing left in: No
Date Completed: Nov 5, 2001	Inclination: -45°	Logged by : Lome M.
Summary of Hole Casing to 4.57m EON 176:75m Acid Test @ 176.4	8m -39.5°	

	Pre	ગેલ્ટ	t :	F	2	46	2			Coordinates: 1400N/775E Page No. 2	of 8
	Hol	e No	2.	F	R	-0	Ľ	\mathcal{S}	>	Azimuth: 180°	
	Dat	<u>c S</u>	tar	ted	: [yc	<u>V</u>	21	120	-1 Indination: -45° Acid Test 176.	48 - 39.5°
	Dot	<u>ť Cr</u>	Smi	olei	e	<u>i : </u>	þ/	5	2	De Final Depth: 176.75M Logged by LI	1Warner
	Interval	Interval Rocktype Structure Alteration Froctures Veins PolPu CPY								Descriptive Geology	Assoy. Intervals
OXd - END	H 2 4 6 8 10 12 14 16 18 20 22 24 26 28	$Six^{here} \mathbb{R}_{0} + \frac{1}{2} + $	BX 43	F & Albite (-Horatels> Silicat Albite +	1/1////XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	\\ \			I Kuth Fradres Not	Cosing to 4.57 Plastoc Case & Hundler R. & Augula Supering 25-400. Plastoc are 2-102. Hondlande 27. Antike -fg matrix grey - purple Colored possible Kasper in matrix K. @ 70° Ten (interprise C) tr py/po, No caleide Unit is mospit Cop 410 Albide Vening 1330-20.75m Hunfris mudstones/Siltstones -frontone filling Coleide @ 15.85m -lost 15-80 d care between 18.29-1950 20.75-35 30m Sparse Plancochae Purpland 15.0-15 do - 20% Postione for pland -lost 15-80 d care between 18.29-1950 20.75-35 30m Sparse Plancochae Purpland Interpret Albide Composition The field of Composition 10.5 porce Magine are in grey matrix I Interpret Albide Composition The field of Composition 24.8-25:40 i 26.45-310 proceeded Composition 24.8-25:40 @ 75 Te	
	30 32:	old to at .	a motion	Cby At	11 Mar 11 11 14		•			26.45-31.0,060'Tem. 33.5-35.30m Goge @60"Tem L/c@60'TCA fr Polpg almg flac'14-0	

Ţ

С

	Pro	ied	t:	F	RA	C_{V}			Coordiantes: 1400N/775E Page No. 3 of B	Ţ
	Hole	- 16	. :	Ŧ	R	<u>-C</u>	\cap	2	Azimuth: 1807	
	Date	- 51	art	<u>ed</u> :	No	<u>v 2</u>	2/4	20	- 1 Indination: -45°	
	Date	ر (د	סריג	let	ed;	N	<u> </u>	; /;	2001 Final Depth: 176.75 M logard by L.M. Warner	
	Interval	Rocktype	Structure	Alterntion	/Fractures Veine	Polpy	СРY	DPEN	Descriptive Geology Assay Intervals	
the West	34	House State + + +		KSA T	11111111111				13530-37.75M Hornfelsed Mud/Siltstone	
ۍ'	39 40	+ + +	•	Place				••••• <u>.</u> -	- fig polegneen > black, bont age 60°-65° TOA - minut calciec functure filling 1	
	41	romat	n	Sousco: ti zo 2					-353-36.5 m Dossible K-sprchBlechand 35.85 m clift & Sobry pyial chose py chological. 2016 Julphiles (Sobry) and braccially	
	46 •	t Schub R	8. * \$	H Sure		• • • •		5	Brorse Plagioclase Porphyry least atterno areas 10-30% playioclase 470-480	
	4с.	+ Plaa		Clay O				••••	grey in color. Numerous gauge gones	502
	50	+	14. 14.	Br. he. l.	Att				47.5-352.75m increase in 9t3 vn/vn/ts 51.0-52.0 w/deph. Barren 9t2 ms @ 40° TCA 520-5275 minure 2:2 V vn/vn/Hz @ 05-20° TCA 5775-540	5
	52.15	+		Ω,				5	w1 py = po= Aspy, tr c.py. 54.0-55.0	
	54		×.			,		5	52,75+6000 550-56.0 KSpir Altere & Siltstone? 550-56.0 KSpir Altere & Siltstone? 550-56.0	;
	56	15 m		5+5	40				fg. pale green & salmon colore b, bbrkebbran 59.0-590 Numerous Gtg vns/ stock work in first metre, mineral satur in Otzvas	>
	56	Sill sto	•	K-SPA		ľ		ĥi	C 05-15° TCA	
		لم مريد ال			al . A	الم الم	-	, , , , , ,	(6.00-85.50m) Interbilder Mulstme i Volcanic Silistine	
	62 44	Mud 1511							present. Strat. right is bler cherch right by Stating & Intinsine? Mixed blicks	

C C

С

 C^{1}

	Pre	iect	:: Ŧ	FR	AIA	}			Coordinates: 1400N 775E Page No. 4	of B
	Hole	<u>- No</u>	. 1	F¥	2-6	20	<u>B</u> _		Azimuth: 180°	
	Date	<u>: 9</u>	arte	<u>₹:</u> 1	oy	2/	2	<u>00</u>	1 Indination: -45°	
	Vote Completed: Nov 5/2001								DI Final Depth: 176.75 M logged by L	.M. Warner
	Interval	Racktype	Structure	Fractures	Veins	Polpy	CPY	DPEN	Descriptive Geology	Assay Tutervals
	194 199 198		15-80.7CA	1 2-12 %		1 mar 1				
	70 •	thru -	rading time	a t that the						
	14	spill	tatims bu	Dark Drug	- گ					
	16 18	are Siltst	2 black 13	X					A Octomes @ base VUSSY	
	80	Volca	Breccie tia			<i>.</i>			Vusse ADTCA	
.60	છ૮		Tethoic	The Maleria	و بو	-		A ,	Sporge Playis close Porphyry	
4 2.,	مري م	+ + + + + +				•			pale Grey, 10% play phonor in green from I maps (Instermed in - Citic Sauseristized Play	
and	90 ·	19761111		AK		•			HSper Flood-2 Mud/Siltstonus?	
	92.				:// §	1.1 · · · · · · · · · · · · · · · · · ·	-	ا من علي	Sula - to green to blood colour 175% K-Spor, Less Fran 170 Gtz Notter w/ Prips 11 Asps.	930-94.0 94.0-95.2
	ale.									

С

	Pre	»)ec	t:	F	R	'n	N			Coordinates: 40001775E Prope No. 5	of 8
	Hol	e No	2. :		ŀ	=1	R	- C	2	3 Azimuth: 180°	
	Dat	<u>ट ज</u> े	lar.	ted	1:	<u>1</u> 9	<u>א</u> :	<u>2</u> ,	2	Dol Indination: -45°	<u>, </u>
	Vat		201	d d	ec		0	\mathbf{Y}	51	2001 Final Depth: 176.75 M Logged by L	MUDIAN
	Interval	Racktype	Structure	Alterntia	Fractures	Veins	Dulpu	C P Y	DPEN	Descriptive Geology	Assay Enternals
	96	111	•	2 K See						95.00-116.85M	95.0-96.0 96.0-91.7
	ત્રક			Ĭ					2~S	Interbedde & Mudstone ?	97.0-98.0
							ŀ.			Volconic Siltstone.	99.0-100.0
	100 ·	E			$\hat{\otimes}$	17		Ι.	8	green and viacic contacts typically	100,0-1030
	102 (2 A 2 A	tig f	**		-			@75° to concaris.	103.0-104 0
			30	للماحي	×		i. S			-Sentral breching games some of which are	1040-1050
	104	E	Ś	î			·		1. 12 12	mine Jack - 1. La Grandine filling	105.0-106-0
		<u> </u> [11		.		5 4 .4	97.0 -> lepth both calcite inderive occur.	106-0-101.0
	• Co •	Î			111		. /			and pervasition patienes of privasine	
	80				11		114			Conformitize tim present.	
					11					Contacts typically CLS-to TCA	
	dio e				11	H					
				\$	\geq	P.	1.2			(116.85-123.40M)	
	112		*	Þ	11					Augide Korphying Volcanic and	
				4 • V •	/	ĘI	4			Mudstineo	
				Ŭ ,	4	P13.64				60% Volcanie/ 40% Madistine	
	416			۲ ۱		-	111			We interprise was to the a office	
16.85		\mathbb{N}_{\leq}	\vdash	¥	4	ie Ne				atzunitul pyre e 75.00	
	118 118	*+				\\\ \$ 					
	170	٨t				7	N		rue Site		
		=	4			<i>tur</i>			1143	123.40m-159.60m	
	12Z.	٦V ۲							2	Diorite-Monzalioiite	
127				┞┨		e S	N.	, -		F. OD Fourier consistion (
	124	┝┽ ╺╇			-	4				50% Plantice remainded most y hornbland	
	126	4			-					but some matic could be piproxemb.	
		-+ -+	71 92							well is love kensticks (4m).	
	128	+								First metre Mar Parphying Hen (redes into	

С

Project: FRAN	Coordinates: 400N 775E	Poor No. 6 of 8
Hole No. : FR-003	Azimuth: 180°	, , , , , , , , , , , , , , , , , , , ,
Date Started: Nov 2/2001	Indination: -45.	
Date Completed: Nov 5/200	LFinal Depth: 176.75N	ogged by L.M. Warner
Interval Racktype Structure Alterntion Fractures Veins Parpy CPY	Descriptive Geology	Assay. Intervals
H = U = 0 + 4 $1229 + 4$ $1300 + 4$ $1300 + 4$ $1310 + 4$ $1310 + 4$ $1310 + 4$ $140 + 4$ $140 + 4$ $140 + 4$ $140 + 4$ $140 + 4$	is in intrustive between 15 4-159 crossing in Size will keptin. atrastice also blocked booking a hindressine also blocked booking a lincrease in printe continue of an lugs.	60m Nguaret Mg

...

С

С

•				
k _	Project:	FRAN	Coordinates: 100N/275 E	Prot No. 7 of B
	Hole No. :	FR-DO3.	Azimuth: 180°	
~	Date Stort	ed: Nov2 20	Ol Trodination. 180°	
C	Date Comp	leted: Nov SI=	Engl Death: -45°	looped by - Milking
C	3 王 2 3 3 5 5 5 5 5 5 5 5 Therval 90	ached Chi + Hundric Alteration (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Descriptive Geology Descriptive Geology [15960 - 171.40m] Biocciator Huntelsed S.H/Mud mixtured green & black, extensive most of which is healed by QIC. Komprophyre Dyke U/c e to TCA Breecisted Contact 171.40 m - 176.40 m E014 Hornfelsed Volcanic S.Hstral pole green bleaded, fg, me possible medictuff atteration bendie 35-60°	Assay Intervals Stress brenciation
С	178		EOH 176.75M	

С

Lo	9910	<u> </u>	she	_ <u>t</u>								1
ר גיין	γpe	Fre	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		 >				Page	8	oF	8
Tuter	Rickt	うった	Alter	đ	191 P	СРУ	Asp	Geology Sample Descriptions	Hole #	F DDH	rfR-	εæ
								47.00-48.00m (1.00m) N° 00177 Pag Riphry, 1% off tr. 1 48.00-49.25m (1.25m) 00178 ", 5% off, 1% off 49.25-50.00m (1.00m) 00180 ", 1% off, 1% off 50.00-52.00m (1.00m) 00181 ", 4% off, 0.5% off 51.00-52.00m (1.00m) 00181 ", 4% off, 0.5% off 52.75-54.00m (1.25m) 00183 ", 8% off, 5% off 54.00-55.00m (1.00m) 00185 ", 3% off, 2% off 55.00-58.00m (1.00m) 00185 ", 3% off, 2% off 56.00-57.00m (1.00m) 00185 ", 3% off, 2% off 57.00-58.00m (1.00m) 00185 ", 1% off, 2% off 57.00-58.00m (1.00m) 00185 ", 1% off, 2% off, 5% off 57.00-58.00m (1.00m) 00185 ", 1% off, 2% off, 5% off, 2% off, 2% off, 2% off, 2% off, 5% off, 2% off, 2% off, 2% off, 5% off, 2% off,	20/py 20/py 20/py 20/py 20/20 20	the proposition of the state	cpy nsp. J. fr. J. fr. fr. J. fr. J. fr. fr. fr. J. fr. fr. J. fr. fr. J. fr. fr. J. f	Asp) SSP) SSP) SSP) SSP) PSP PSP PSP

 \bigcirc

<u>litle tage</u>		·····
Project: FRAN	Northing: 1665 N	Page 1 of 12
Hole # DDH-FR-00 4	Easting: 600E	Surveyed:
Date Started: Nov 5/2001	Azimuth: 230°	Easing left in: No
Date Completed: Nov 8,2001	Inclination: -450	Logged by : L.M. Werner
Summary of Hole. Casing to 9.14m Acid Tost @ 194 EOH 194.46	46m - 38° m	

Project: FRAN	Coordinates: 165N/ 600E	Page No. 2 of D
Hole No. : FR-004-	Azimuth: 230°	
Date Started: Nov 5/20	Indination: -45° dip	Acid Test 194.46m - 38
Vote Completed; Nov 8/200	tinal Depth: 194.46 M	Logged by L.M. Warner
Interval Backtype Structure Altention Fractures Veins DalPu CPY	Descriptive Geology	Assay. Intervals
KSPACKITT REVENTS REPORT OF A REVENTS	Bedrock estimated @ 5 m do distance. Bistance. Bistance. Bistance. Bistance. Bistance. Dark grey, fine grained, moss preceitated & BI-110 m, headed by le calciec, clots at epidote envelope off Labo Yns @ 70-80. The off Valle 350 The Off Valle 350 The Child 350 The K-Sparbords Elletime OSO The K-Sparbords Elletime OSO The K-Sparbords Elletime OSO The Child Star Charles Charles Child Star Charles Charles (Child Star Charles Charles (Child Charles Charles Charles (Child Charles Charles Charles (Child Charles Charles (Charles Charles (Child Charles Charles (Charles Charles (Charles Charles Charles (Child Charles Charles (Charles Charles (Charles Charles Charles (Charles Charles Charles Charles Charles (Charles Charles Charles Charles Charles Charles Charles (Charles Charles Cha	winhole Bio-10.0 10.0-11.0 11.0-12.0 12.0-13.0 13.0-14.0 14.0-15.0 15.0-16.0 16.95 16.95-18.0 16.95-18.0 16.95-18.0 19.0-20.0 20.0-21.0 21.0-21.8 21.8-23.0 23.0-24.0 24.0-25.0 25.0-26.0 25.0-26.0 24.0-25.0 25.0-26.0 25.0-27.0 25.0-26.0 25.0-27.0 25.0-26.0 26.0-30.15 30.15-31.0 30.0-36.0 35.0-36.0 36.0-36.0 36.0-36.0 36.0-36.0 36.0-36.0 36.0-36.0 26.0-26.0 2
32++ 4 38 1 1 1	Sparse Plajorius Phenos In 5. 1 m Filphides mistly along factories & 210	3760

С

I	Project: FRAN Coordingtes: 1665N 1600E Poor No. 3	of 12
	Hole No.: FR-004 Azimuth: 230°	
С	Date Started: Nov 5/2001 Indination: -45°	
	Date Completed: Nov 81209 Final Depth: 194,46M logged byL!	M.Warner
	Herrel HARREN HA	Assay. Intervals
36 37 (42 (42) (49)	$S_{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2$	3613 - 39.20 392 - 40.0 40.0 - 41.0 41.0 - 42.45 42.45 - 44.0 45.0 - 46.0 45.0 - 46.0 47.0 - 48.0 49.0 - 49.0 49.0 - 49.0 49.0 - 51.0 51.0 - 52.0 52.0 - 53.0 53.0 - 54.0 55.0 - 57.0 58.0 - 58.0 58.0 - 58.0 58

•			
	Project: FRAN	Coordinates: 1605N1600E	Page No. 4 of 12
	Hole No. : FR-004	Azimuth: 230	
	Date Started: Nov 5/2001	Indination: -43	
	Date Completed: Nov B12001	Final Depth: 194.46M	Logged by L.M. Warner
	Interval Rocktype Structure Alterntion Froctures Veins PolPu CPY	Descriptive Geology	Assay Luttervals
204	Left Hose -		710-720
<u>وي</u>	14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30-81.05 Ml Write/Homburg Parphyry	72.0-73.0 73.0-74.0 74.0-75.0
		J/c €40°	76.0-77.0
		pole green w/ K-spre tint to cole	-77.0-78.05
		hubben and Augites are ?	Enpedial 79.0-80.0
	72 0	Shedred phenx 17515 (20) + J	1-21/1 80.0 -8105
	74 - 1 - 1	ne gramed gren matrix -	87.05-85.0
	Ϋ́Τ ο 🛓 🖓 , κ, -k	spor Flooding 66-68 m	emainter (83.0-84.30
	74 - 2	Jissimirated Korvasire m	94.30- 55.0 86.0- 86 0
	78 0 A		03.0 86.0-87.0 87.0-88.0 88.0-89.05 89.0590.0 90.0-9800
-1 ⁻⁵	B	05M-> 85.00 FTT K.Spare F	=100,Rel) 940=22.45
6	BL. A. R.	eccided theread Unit	92.45-9400
		ealed by Silica + Sulphides	94.00-95.05 95.05-96.00
	⁸⁴ A 15 A	00 -> 92.45 M	
		Augite/Hornblanzie Korphyry	
		Ame Unit as 65.30-81.05	\sim
	89 A	xcept less K-spak colour, n	nay nit
		e attain!	
	re K K K	5XVAS @ 25-30 TRAWI 973	
	201119	245-102.50 MK-Space Alter	4 VAt
	9244	e granely gray -> Salam com	rees J
	oolor Allin on	merry massive matin	•
	ave N.	· · · · · · · · · · · · · · · · · · ·	

.

С

	Pro	ject	::_	F	Ŕſ	٦V)			Coordinates: 1605N 600 E Page No. 5	of 12
	Hole	No		F	-{	<u>~</u> (∞	4		Azimuth: 230°	
	Date	<i>- 3</i>	art	<u>ed</u>		No	V.	5/	2	× I Indination: -45°	
	Uato	<u>ع) خ</u>		e d	tec	<u>1:</u>	0		5/2	DOI Final Depth: MAY 46M logged by h.	M.Wainy
	Interval	Racktype	Structure	Altentio	Fractures	Veins	PolPu	CPY	OPEN	Descriptive Geology	Assay Intervals
	100 60 96				11-1-114	どくいて	¥				
Ceres Ceres	102		~	_	-	-	• •	-		Toz. 50-107.25 Mil Augite/Hoinblande Porphyry	10-11 110-11 111-112
	10 1	310 016	e.			8 - 8				Some os bolire .1/c @ 200 TCA - sulphile veins : g/c @ 200 TCA 107.25 - 110.2MI Volconic Siltstme? 107.25 - 110.2MI Volconic Siltstme?	112-1127 1128-114 114-115 12
10723	log	¥ √. √.	ł		-	•	, i	1	~	Approvis as mossive, the sugesting K-spok enviol- grey-solver colour sugesting K-spok enviol-	
-	NO 110. 2		20-1-	a 1	-	•	مر سرکر			110.2 - 112. OM Plagioclase Biphying - U/L@ 400 TCA	
	1172. 1172.8 1114. 4	+ + - - - -	1.	1 S.A.	-	ļ	11		. •	Attered - Silica + K-Spa, unit has formation Hoinblande forms 2-15 dissented - Spill Y well PVI po	
	-116 -	٧ _e		~			у [.]			TIZ & -122.00m Volcanic Siltstme	
	119	∨ر ``		K-Spar	/		-			Same on 107 25-110. Zo minterval Well miner Diget between 112.8-114m w/ CPM + Arow MDS2	121-122 121-5-122 122-123 123-124
	120	Vc V					- -				124-125 125-126
	122-	>∨ Via			Ì	2. 17 S	21 T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	ц.	+30% of Unit in this will for w/ State	
	łZ∳•	VC Cb VC		لي ان انت	,				<u>ъ</u>	Althis G 025-10-14	1
	126	Ch Ye	25	Cart	-	،۲ ۱۲	- i	-	-		

Ċ

Pr	<u>~ોલ્</u> લ	<u>t:</u>	Fr	<u>A N</u>	N				Coordinates: 165 NI 600 E Page No. 6	of 12
Ho	<u>le N</u>	2.	F	- 6	<u> </u>	<u>b</u>	-1		Azimuth: 230°	
Da	<u>te 9</u>	tar	ted	<u>1:</u>	10	15	51	2	DI Indination: -45	
	rte G	<u>oui</u>	ж Га	tea		5		7	1994 Final Deoth: 194.46 M logged by	MWAINI
Tuterval	Rocktype	Structure	Altentio	Fractures	Veins	Polpy	CPY	DPEN	Descriptive Geology	Assay: Internals
128	° VI₂			X					Intercolated Horober Re/Augite Porphyry	
130	, Va Ve			\approx					Dose Its on P Volcanic Siltstones Top 2.4 m Agglonsinte OR Flow Top BRECH	4
132	Vb			$\langle \rangle$		•			Through a trun 2 No calete in	
1/34	Vc Yb			1		•			pucity veins / veinlets ore typically	
•136	V			∕ ×		•			Veinley calsor, minoralized gray. Veinleys are translucent to gray.	
1738	VE							5	miley years may	
14.	VL	-23		7	Ŋ	ر. د		27	138.8-140M Bocciated Madstone?	
14	2 Vie			*		•			138.85 Att VAE ZO'TLA Pally to Mosz belie att va brecciated py fragments	
174	V			1 1		-				
146	٧Ļ	,		1-4						
-{ ^{6.0}	N.		5.	2114	5/5 3),)				
1 24	V.			KI II	14					
152				ł						
ाइन	V _c			\times	ŝ.					
156	V	-44		× ×	Ł	•			- Brenciated I most hooled.	
54				J		,				
۵ط ا	Vo			×		•				

С

C

Project: FRAN	Coordinates: 1605 N/600E Page No. 7	of 12
Hole No. : FR-004	Azimuth: 230	
Date Started: Nov 5/20	01 Indination: -45°	
Date Completed: Nov 8/20	01 Final Depth: 194.46 Logged by LA	1 Wornet
Interval Backtype Structure Fractures Veins Parpy CPY	Descriptive Geology	Assay. Intervals
160 VC 1120 VC VC	1480-171.50 Millolanie Silt/ Fludstones -pale (rey-black c-louis, intercolated) massive siltstores we mutistand. Braccinting mainly in mutistands. Fragments Dis Un-	163-164
IGH VC A TOP ST	Supported in Arganitione Fractures,	165-166
KGO VC CONTRACTOR	blocks of to Acm ± 90.	169-169
16BOVCA		סרו-169 ורו-טרו
170 VC CHER		201 - 111 77 - 211
		J-17-17
174-0	Bleached, Silicified V/c e25'TcA.	
	Attaration deer terp 15m.	
18.9	17630-192 DOM, Valcanic Siltering Multim	
ISCO VC A	+80% Siltstone, fragments of mulistice in Siltstone, Unit is birce in Est/Crockle	
52 Ve	Fracture U, WI MYCZ is on average. Atz vn & 181.90 & Bortca. Milky Otz appens Breckinty	
	Tranluce- Qty is also, but not as much. Overall Unit consists of +5%. Broken or barching	,
	973, most is milkying ain coleide more ,	
	We broken oppring to be Q 40° TER. Unit is beided. ml Silicities to 50 Sitterhuldstone frags in	
	Alternaine bolis 235°TCA	
192		

•

С

С

Project: FRAN	Condiantes: 1605 N/ 600 E	Page No & of 12
Hole No.: FR-004	Azimuth: 230	
Date Started: Nov 2001	Inclination: -45°	
Date Completed: Nov 8/200	Final Depth: 194 46 M	Logged by L. M. Warner
Interval Racktype Structure Hactures Veins Veins CPY OPEN	Descriptive Geology	Assays Titerval
	5 t 194.46 m	

С

 \cap

Loggian Speet	
The the the	Page 9 of 12
HARTER Calogy Sonde Descriptions	Hole #DDH-FR-004
NO 00261 66.00-67.00m (1.00m) Augite Korphyry Flow 425 10, 22 py, .	5%cpy tr. Mosz/aspy 1
DOV/2 Lam broom (1.00m) Volcatorlass 19000, 1900, tr. 0	
$\begin{bmatrix} 1 \\ 19909, 19909, 1700 \end{bmatrix}$	A. 2% 12 @ 25 TCA.
52080520011	COLITOS 7 MISSX @ 55 TA
5% Pr. 5% Pr. 1%	12 MOS, 57 ASP(2010)
popus 70.00-71.com (loon) " @ZorTCA.	
[] populy 7100-72.00m (1.00m) Auche Kochen Hau 2/2 Po, 1% pr stv. c	py, mosz, 10% 9+2 8 05-10"RA
190 pg77200-73.00m (1.00m) 11 190 py, 0.570 po	
170py, 0.520 po	
-1 -1 $-1500m$ $(100m)$ " $-220m$ $(200m)$ [200m]	3
$\frac{1}{2} \int \frac{1}{2} \int \frac{1}$	mos, aspy, 1229tze 05°TCA
190 Por 190 Por 190 Por 190 Por	
5200, 2200, tran	E25°TCA, 5% gtz @ 20°TCA.
$\int \frac{1}{2} \int $	- 13
5% 00, 5% 04	
5/200, 5/200, 1/2 at	
50,50,00-81,05m (1.05m)	
0.95m (0.95m) to KANOCHISTIC 5/0973, 5/000, 0	, 'spj
	P
	, 18 % cf3 (milky)
bo \$79 84.30-85.00m (0.70m) " 235pr, 1% po, broken	
[] podeo BS00-8600m (1.00m) Hull te to pury 22. py	
00261 80.00-87.00m (1.00m) "11 110 pr, 1% po	
1 pozer 87.00 (1.00m) 11 1/0 pr. 1/0 pr	
φο pres 88.00 - 87.05 (1.05) " .5% po	
$\frac{1}{200} \frac{1}{100} \frac{1}$	
2% pr3 1% po 1% po , 1% pr3	~~)
00000 12.45 - 94.00 (1.55~) 12/0 973 @ 05. TCA 3270	sarpy, tricpy, aspy
- poster 74.00-95,05 (1.05m) n 5% Pos 22 py tr cpy m	052, 15% 9tz
	and the second

 \bigcirc

 \bigcirc

 \bigcap

 \cap

Logging Sheet		
X store		Page 10 of 12
Inter Richt Franch Richt Franch Richt Richt Richt Richt Asp CPY CPY	Geology Sample Descriptions	Hole #DON-FR-00 4
	$\begin{array}{c} Sigg & Simple Descriptions \\ \hline 38:20-39.20m (1.0m) 00234 Phylaclese Poliphany 2/20p, 1/20p \\ \hline 31.20-40.00m (0.8m) 00235 & 2/20p, 1/20p \\ \hline 31.20-40.00m (1.0m) 00236 & 2/20p, 1/20p \\ \hline 41.00-42.45n (1.45m) 00237 & 3/20p, 1/20p \\ \hline 42.45-44.00m (1.55n) 00238 & 1/20p, 1/20p \\ \hline 41.00-44.00m (0.9m) 00239 & 1/20p, 1/20p \\ \hline 41.00-44.00m (1.1m) 00240 & 2/20p 1/20p \\ \hline 41.00-440.0m (1.1m) 00240 & 2/20p 1/20p \\ \hline 41.00-440.0m (1.0m) 002411 & 2/20p 1/20p \\ \hline 47.00-440.0m (1.0m) 002412 & 2/20p 1/20p \\ \hline 47.00-440.0m (1.0m) 002413 & 2/20p 1/20p \\ \hline 47.00-440.0m (1.0m) 002413 & 2/20p 1/20p \\ \hline 47.00-440.0m (1.0m) 002413 & 2/20p 1/20p \\ \hline 49.00-47.0m (1.0m) 002413 & 2/20p 1/20p \\ \hline 57.00-52.00m (1.0m) 00244 & 1/20p 1/20p \\ \hline 57.00-52.00m (1.0m) 00244 & 1/20p 1/20p \\ \hline 57.00-52.00m (1.0m) 002447 & 1/20p \\ \hline 57.00-55.00m (1.0m) 002447 & 1/20p \\ \hline 57.00-55.00m (1.0m) 002447 & 2/20p 1/20p \\ \hline 57.00-55.00m (1.0m) 002448 & 1/20p 1/20p \\ \hline 57.00-55.00m (1.0m) 002479 & 2/20p 1/20p 1/20p \\ \hline 57.00-55.00m (1.0m) 00250 & 1/20p 1/$	Поле # DAI-FR-00 4 e, tr cpy, 3% of 3@65 TCA,) tr cpy, 12 ft @ 30/75" TCA tr cpy, 4% of 3 @75" TCA tr cpy, 4% of 3 @75" TCA tr cpy, 4% of 3 @75" TCA tr cpy, 4% of 3 # alberts" TCA tr cpy, 4% of 3 # alberts" TCA tr cpy, 3% of 3@45" TCA % of 3 @15/45" TCA.
	57.00-58.00 (1.0m) 00252 " 7% Po, 1% Py 58.00-59.00 (1.0m) 00253 " 220Po, 29spj fro 59.00 (60.00 (1.0m) 00254 " Same co alona. 60.00 - 62.00 (1.0m) 00255 " 190 po, 190 py, tro 61.00 - 62.00 (1.0m) 00255 " 290 po, 190 py, tro 62.00 - 63.00 (1.0m) 00257 " 290 po, 190 py, tro 63.00 - 64.00 (1.0m) 00257 " 290 po, 190 py, tro 63.00 - 64.00 (1.0m) 00257 " 290 po, 190 py, tro 63.00 - 65.30 (1.0m) 00257 " 290 po, 190 py, tro 63.00 - 65.30 (1.0m) 00257 " 290 po, tro 65.30 - 65.30 (1.3m) 00259 " 290 py, 190 po, tro 65.30 - 65.30 (1.3m) 00259 " 390 py, 190 po, 270 65.30 - 65.30 (1.3m) 00250 Augite Poldry 190 py, tro	ру @40 Т.А., 19.943 -Ру Ру Ру Vn@25°T.А.

Ĺo	<u>99 - 0</u>	<u>0</u>	<u>Sr</u>	ec.	ť							
-אטרך	type	ture	tures	ction		~		λ				Page 11 of 12
H He	Rech.	ッカ	Free	Alter	933	Ю. 1	CPY	Asp	Geology SAMPLE	Descripti	ons	Hole #IDH-FR-004
									370-10.0 m (1.3m)	Nº OOZO5	7 Volo	anodastic bx-should @10°TCA, 1980, 128, tr Agica
						1			0.00 - 11.00 m (1.0m)	00206	4.4	22pr, 12pc, tr cpy/Aspy 29sots @US/SUTRA
ŗ						ļ			(0-12.00m (1.0m)	00207	41	, 120py, 12po, tr. cp1/ASP4, 29, ota/Ab 73/45 20
1		ĺ						1	200-13.00m (1.0m)	00208	24	12py 12po, tr car/Asar, 82 gts (late ast min-
ŀ	t i			i								@ 70 TCA, 4 90 9t3 WITE XOTCA+ 45720 TCA
1			ľ						300-1400m (1.0m)	00209	h	1-22 Vo/Py, tr Cpy asp1, 48912 @05/46/8071
r -	1			i					Han-15 mm (1.0m)	00210	13	1-2% Volky, tr cp3, 2% qt3 @ 05/80"
				,			1		6.00 - 16.00 m (10m)	00211	35	19 Folly, tr Cpy + ASPY, 3 301720 BOTCA
	1		1			ŀ	i		6.00- 16.95m (0.95m) 00212	11	Zyste, 120 Py, tr epy = Aspy
									6.95-18.00m (1.05m)	00213	**	21050, 21spy, tr cpy, bx, broken
ſ	Į								800- 19.00m (1.00m) 00214	0	27. 10, 27. py, tr epy, 32942 @ 20 TCA
]								9.00-20.00m (1.00m)	00215	n	170Po, dropy, Ch1, Ex + heated
	l				ļ				20.00 - 21.00m (1.00m) 00216	£1	12pr, O.ST. po, tr cpy 22stp@25/55 TLA
 .	1							1	1.00-21.80m (0.80m		н	60% Recovery, 12, pystr po
									71.80-23.00m (1.20m) 00218 Yk	rials	Rondyry 3204,19,00, 49, 912 @65°TCA
⊦ •	1								B.00- 27+.00m (1.00m) 0 0219 [°]	- · ·	19.04
									4.00-25.00m (1.00m	00220	tì	175py, 27, 9+3 @ 75-80" TCA
. .	ł								5.00-2600m (1.00m) 00221	n.	470 Ry, 19, po, tr coy appy, 32 ste stakwark
									600-27.00m Cloom) mazz	1.4	27. Prille Pester Coy adam H2 atmostici
+ •									7.00-28.00m (P.gom) 00223	н	87, p3, 0.5% po, 370 ato + alba
		{							17.90-29.00m (1.10m) 002Z4	۱	370pr, 180 po, tr cp1, 42 do @ 40/20-Tea
┝ ·	1						1		F1.00-30.15m (115m)) <u>oo</u> 225	N	220 Pr, 12. Po, 29. 9+3 @ 20. TCA
									5.15-31.00m (0.85m) @226	и	120PT, 10. P. 27. 9tz albite @ 65-70"TCA.
\mathbf{h}	4					1	1		31.00-32,00m (1.00m) 00227	IX.	32 pg, tr po, 32, 9t3 talb. te @ 25/65° TCA
						1			3200-330m (1.00n)	00228	14	270 py, tr po, cpy, Mosz, Aspy, epictate
F	1		1	Į				1	33.00-34.0cm (1.00m) 00229	R.	2% py, tr po, cpy, 1% atrialble ELS. TRA.
									34.00-35.00m (1.00m)	00230	1 1	170 PD, trps, Cay, 22 HR P 445 1650 TCA
	1								3500-3600m (1.00m	$) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	1) ()	2% M , 17, po, tr cpu, muss. asa. 4% ato 78 m
									$3_{0}00-3_{0}30$ (0.80 m (0.80 m	~ 257	1) 4	270 PJ, 10 Po, tr cp,
<u> </u>	1	J			1	1			26-70-20.20m \[.40	~, <u>, , , , , , , , , , , , , , , , , , </u>		210 Pri 21/000, 11 Car, man 4%912@ 25'TCA.

 \bigcirc

 \bigcirc

	age 12 of 12
Ho Ho	ole#DH-FR-004
$\begin{array}{c} 9505 - 960000 (0.95 m) N^{6} 00289 Volamachartic 0.570 PO (0.570 Pr) \\ 10700 - 1100000 (100m) 00291 Pry class Profering 2947, 190 Po, 1 \\ 1100 - 1120000 (100m) 00291 Pry class Profering 2947, 190 Po, 1 \\ 1100 - 1120000 (100m) 00291 Pry class Profering 2947, 190 Po, 1 \\ 11200 - 1120000 (12m) 00291 Pry class Profering 2947, 100 Po, 100 Pry 100 Pry 100 Po, 100 Pry 100 Po, 100 Pry 100 Po, 100 Pry 100 Po, 100 Pry 100 Pry 100 Pry 100 Po, 100 Pry 100$	tr. cpy y hystraspysmosz azt3 $p = 25^{o}T.A.$ $r_{y}, 122. aspystyllosz=Aspy .570cpystyllosz=AspyA, 1090pg @ 05^{o}TeA.py, 190po@ 05^{o}TeA..57^{o}F_{a}.57^{$

 \cap

Title Page	·	
Project: FRAN	Northing: 1088 N	Page 1 of 9
Hole # DDH-FR-005	Easting: 1725E	Surveyed
Date Started: Nov 3, 2001	Azimuth: 180°	Easing left in: No
Date Completed: Nov 13, 2001	Inclination: -450	Logged by : L.M. Warner
Summary of Hole Casing to 10.67m EOH-134.72m Acid Tost @ 106	.68m - 43°	

•		Pre	sjec	<u>t:</u>	Er	212	<u>IN</u>				Coordinates: 1088N/1725E Page No. 2	ofq
		Hole	<u>E No</u>	<u>).</u> :	۲.	<u>R-</u>	00	5	- .		Azimuth: 1800	
\mathbf{C}		Dat	e S	tar	ted:	No	X	72	α	<u>ו</u> כ	Indination: -45" Acid Test 10	6.68m -43°
		Vot		2-01	olet d	ed'		10,	71 T	<u>א</u> כ ר	200 Hinal Depth: 134.12 M logged by L.H	1. Warner
		Interval	Racktype	Structure	Alterntio	Fractures	Veins	Po/Pv	CPY L	OPEN	Descriptive Geology	Assey Interials
	∂2ℓ ₁₀₀₀ <€. Par	2417 8 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3	< × + + + + + + + + < < < < < < < < + + + + + + < < < < < < < < < < < < < < < < < < < <	Str	Alter Ckinger Fractioner I	THE TAX X X X X X X X X X X X X X X X X X X	Vein	Pole		DPEN DPEN	17.83-26.90M Gailgranule & Grandhard Divide SFP Traduce Grandhard Divide Valcanic Sitstone. - Fractures well oridiged. -tr. disseminated Sulphitus. -tr. disseminated Sulphitus. -tr. disseminated Sulphitus. -tr. disseminated Sulphitus. -tr. disseminated Sulphitus. -tr. disseminated Sulphitus. -tr. sulphidus - all fractures oxidiand. - wisper glylcalcule verdiens @ 10-35° TCA. -benetide in fractured 26.90-34.8 ort Houndente, Plagioc Lase Riphyn undis ovidiged. 10% Plagioc Lase Riphyn Undis ovidiged. - treated in fractored. - Hereited. - Hereited. - Some of 18.83-24.90 m	Ittriak
C		38 40	Vc Vc Vc					•			4	

*.

		Pro	jec	t:_	FR	AN				Coordinates: 1083N/1725E Page No. 3	ofq
		Hole	No	. :	F	<u>R-0</u>	∞	5		Azimuth: 1800	-
~		Date	- 9	tart	ied :	N	⊃∨⊂	9	12	x Indination: -45°	
C		Date	<u>.</u> C	ንባር	let	ed:1	No	N I	31	2001 Final Death: 134.72M 1000rd by	Mularorer
		Interval	Racktype	Structure	Alterntion	Vaine Vaine	Po/Pv	CPY	DPEN	Descriptive Geology	Assoy: Interrals
C	Et. 23 Sex- 558 E. 55.	44 44 44 50 52 54 55 56 56 57 57 57 57 57 57 57 57 57 57 57 57 57	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	b b b b Sheer Zne - Shorzal () NB, B	High Out real when to and a section to a for the section of the se			< "Stall ran-blode more all 2% the Ron C	<	141.45-44.60MM Plagioclase Horndande Parphyry - highly ox.dim Differences VCC 50°TEA - Gtzveins Q 43-43.4m Q 30-45°TEA Wither of Surphiles (most or in the - Limmelay Home like Comment for birs Contraction of pool 42,357=43.0-35% 43.0-43.594-490% 44.60-45.90M Volconic Siltstone Same as obser Siltstone Same as obser Siltstone - fractores one oxid 30 d - upto 502 Karalita J Siltstone - Contacts broken - Contacts broken - Contacts broken - Strong Home Siltstone Califfe - Strong Home Siltstone - Strong Home Siltstone - Strong Home Siltstone - Strong Home Siltstone - Too 43, GF3 brock it is the factor of the siltstone - too 43, GF3 brock it is the strong - too ff3, GF3 brock it is the strong of the stro	41.0 - 41.45 41.45 - 43.0 43.0 - 43.00 43.0 - 43.00 43.0 - 43.00 43.0 - 43.00 45.9 - 47.00 47.0 - 48.0 48.0 - 49.00 49.00 - 50.75 50.75 - 51.82 51.82 - 52.73 52.73 - 53.64 53.64 - 54.56 54.56 - 55.00 55.0 - 56.00 57.0 - 58.00 58.0 - 57.00 58.0 - 57.00 59.0 - 60.00 60.0 - 61.411 61.41 - 63.04 63.94 - 64.15 66.45 - 67.97 67.97 - 69.19 67.97 - 69.19 67.97 - 70.260 70.26 - 71.800
С		70	1 + CA-17	R.			Are in		•	61.41-64.62 million parties and the mosaic texture - crackle fractured to mosaic texture - highly oxi Eight - homeline (morganesic) 1 mm. Le alm; fracture	
		14	4			×					

٩.

Ċ

С

٠

Coordinates: 1083N/1725E Page No. 4 of 9 Project: FRAN Azimuth: 180 Hole No.: FR-005 Indination: Date Storted: NOV 9/2001 -45 Date Completed: Nov 13/2001 Final Death: 134.72 M ogged by L.M. Warner Ktype Interva Assay Descriptive Geology à Intervals ĝ Plasioclase + Hornblan Se Porphy 64.62-72.20M - Somi (pushed Plas 73:3-74.0 14 - Oxid : fie duit ري مريد ភ 10 74.0-75.40 - Froctores slightly mogantic 75.4-76.60 -1% cole the in hairline fractures 76.60 - 77.50 - Chitpy in fractures ~~^{.5} 77 50 - 79.15 . attend 2 phases of 9+3 w/ latust? 79 - 81.0 vory dack (smoking) possible due to sъ 81.0 - 82.0 Sulphilus. 0.28-058 - monginese : here this commendary 23.0- 84.0 82 finetures BH.0 - 85.0 71,80-73.30m No Recovery 150= (8-9%) 850-85.9 95.9-87.0 73.30-76-60 Mi Eq Granulae Grandinite ଝ୍ୟ చ 0.88-0.50 Medium grained, 2.1 Konolitha (doche colora) 92.0 -89.0 75.40 - 76.01 - Numerous chil Fractures up to Sp. 89.0-90.0 Icm in width w/ Py> po, tr cpy 76.60-79.15M Sulphide Vein Zone 90.0-91.0 91.0-92.35 Pervasive Chil Granodiorite w/ massive **1**5 92.35 94.0 sulprise vino - quertz e 40-50. TCA Sulphike veins up to 12 cm wike, main minuals Polpil coy/Mosz/Aspy Soft Green minual (lathe semetimes radiating) + 94.0-95.0 90 950-967 91.7-97 58 and epillie w/ Supplike veins 97.38-9936 92 74.15 - 85.90M | Eq Granado . Te, Rophritically Attend. q2.35 9931-9970x Vino Up to o.S cm. Rome 99.70-101.70 MY 101.70-102.55 Q13/ QC veis 102.55-103.33 0333-105 0 96 105.0-106 10 9670 106.1 - 107.27 85.90-92.35M Horabirric Menning L, playin mar 107 29 -10881 ч у ² Parphiling 108.81-109.27 09.75b 5-10% Hunderder ? (4 to 4 cm) in plagiochese por Physics 1/C@750TCA 109.27-11101 q9.10 <u>c</u> NO 111.01-112.17 00 Grandbarles . 5-1 Perfis & Free Low common lless 24/pm 112.17-115.52 Significant + ~ Priparishing From \$9.0-9235 92.35 - 96.70 M/ BO% chi Gren Volennic/ 201. blanch chist, mulistere -10Le 102.55 NW > FE. Appying py or out in chillepfiectures/ areas upto 5 cm with ^{روي} کر

•		P.	പ്ല	+:	FR	(AA			Coordiantes: 1088N/1725E Page No 5	of 9
		Hol	2 No	2.	FR	(-0	≥ 5	>	Azimuth: 180°	
\sim		Dat	e St	tart	ed:	Nor	97	20	Indination: -45°	
C		Dat		200	plete	<u>d:16</u>	13	120	1 Final Depth: 134.72 M Logged by L	MUDINEL
		Interval	Racktype	Stucture	Alterntion Fractures	Veins	rorr	OPEN	Descriptive Geology	Assay Intervals
C	129.64 129.64 134.92	100	「シャード 学業不下 たたたたたた たたたた たた た た Aller		1/ WN < 5. chu Gre / Hour Kecorred/Drithm inhure 2/74/24/24/1/1/1/ FM				9670-9938 (childreen (80)) Block Chuly Minudaria Adda again and Aprice First Marine 1 Children Adda again and Aprice First Marine Concentration but not only the provide the Di/pr Concentration but not only the associate P. 1938-99.701 No recovery 9970-102.55m Silice Floodo S Interine / Foull 1938-99.701 No recovery 9970-102.55m Silice Floodo S Interine / Foull 1938-99.701 No recovery 1970-102.55m Silice Floodo S Interine / Foull 1970-102.55m Silice Floodo S Interine / Foull 1050-105.0 M Poor Goi & Record Jane 107.75m House D Interine Januar Jane 1050-106.00M Hornburde Plagioclase Serie founded 1050-106.00M Hornburde Plagioclase Serie founded 1050-107 Hornburde Market Plagioclase Serie founded 1050-107 Hornburde Plagioclase Serie founded 107.35 M 107.35 M 129.80-107 Hornburde Streen Bobs w/ 107.35 M	Lotervals
		15	_							
			-				_			

Project: FRAN Coordinates: 1083N/1725E Page No. 6 of 9 Hole No. : FR-005 Azimuth: 180° Date Started: Nova 12001 Inclination: -45° Date Completed: Nov13/2001 Logard by L. H. Warner Final Depth: 13472 Racktype Structur Alteratio Interva |Fractur: Veins Assay Descriptive Geology Po/P OPEN Intervals 130.45-131.67 INterne Sicte Tuff Plagiocluse sharks in bounfilsof green-brown matrix (10-15%. Plas fings) pink-brown colors from binkible, No cerebonder, -5% froctore controlled Prite. 131.67-134.72 m Charty Mulstones finegrained - deck grey oblack, mossire, Silt size grains in some areas. tr. pyrite. EOH 134.72M

 \bigcirc

 \bigcirc

 \cap

Logging Sheet		
val Y tion	Paget of 9	
Inter The Richt Richt Richt Richt Richt Richt Richt Aspy CPY CPY	Geology Sample Descriptions Hole # DDH-FR-0	~5
	$\frac{1}{1026-71.20} \underbrace{1.5tm} N^2 arouz (1.5tm) N^$	rra VTCA
_	~	
----------	---	
1	1	
<u>ا</u>		

Logging Sheet	······································
La creation and the creation of the creation o	Page \$ of 9
HARTINE Geology Sample Descriptions	Hole #10+-FR-005
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	A- t3 A, rusty.tr.py porra, mosty fractures. Icaleite. 19t3 fractures. rusty matrix 5° TEA. euge, bx xokon taleite. t3/caleite. t3/caleite.

<u>. Lo</u>	<u>.</u>	_م	<u>Sr</u>	ec.	t				
אטך	γρe	nne.	520	tion		Υ			Page 9 of 9
Tuter	Richt	ちった	Fract	Alter	Qf3	R1P	СРУ	Asp	Geology SAMPLE DESCRIPTIONS Hole #10H-FR-005
									10170-10235m (0.25m) N° 00017 DoriteT. Breached groups 390pp, 22007 7280 (20 10255-10333 (0.78m) 00818 Velcandeduct? 852 (recovery 3th py) 1926, 53 her Flexbold 10333-105.00m (1.10m) 00800 Hegelrystic Hondonde 570 pp, 550 pp, 60% recovery 105.00-100.10m (1.10m) 00800 Hegelrystic Hondonde 570 pp, 550 pp, 60% recovery 105.00-107.20m (1.19m) 00800 Hegelrystic Hondonde 570 pp, 550 pp, 60% recovery 107.29-108.01 m (1.50m) 00800 Adv Hegelrystic Hondonde 570 pp, 1000, 410 offs 107.29-108.01 m (1.50m) 00800 Adv Hegelrystic Hondonde 570 pp, 1000, 50 A fry, 1000, 410 offs 107.29-108.01 m (1.50m) 00800 Adv Hegelrystic Hondonde 570 pp, 1000, 50 A fry, 1000, 410 offs 109.27-111.01 m (1.74m) 00823 ", ', ', 1200, 120, 120, 120, 120, 120, 120, 12
E_	1		1		1	1		1	

 \bigcirc

 \square

Title Page Northing: 905N Page 1 of В Project: FRAN Surveyed Easting : 1925E Hole # DDH-FR-006 Easing left in Dipost IN Date Started: JANUHRY 30 2002 (Azimuth: 322° Date Completed: Fabruary 2 2002 Inclination: -45 Logged by : Lorne Warner Summary of Hole 0-3.05 CASING 305-16.3 EQ Didite Volconic Siltstone 16.3-26.2 - Selectively Chibonatized 26.2 - 27.65 Hoinblande / Ausite Porphyry - Carbonatized 27.65-33.25 Volconic Siltstone 33.25-34.40 Hoinblande l'Ausite Porphyry - Carbonatized. ***** 47.70 Volcenic Siltstore -(40.30-41.20m) Laubonatized MSSX Veins /Otg Vns / Visible Gold * 4770-55.30 Hornblende / Augite Porphyry - CArbonatized 55.50-58.20 Diorite > Monzodiorite 55:0-58:00 Diorite -> FlowZodiorite 58:00-68:40 Volcanic Siltstone / Hoinbunke-Aurile Torphyry 1000-74:95 Diorite HowZodiorite Epi/chi/py/QC 68.10-74.95 Diorite - Monzodiorite 7495-8495 Volconic Siltstone 84 45 - 107.75 Darite - Honzodiarite - Propultic Alt Jur depth # 107.75-114.60 Volcanic Sittstme ± Mudstone (112.15 - 11310m) Qc Vuins w/ py/ps
107.75-114.60 Volcanic Sittstme ± Mudstone (112.15 - 11310m) Qc Vuins w/ py/ps
114.60-130.85 Volcanic Siltstme Hornblunde-Agite Porphyry (129.30 - 129.60m) MSJX Py/Po) Aspy
150.85-140.00 Diorite > Monzodiorite Silici Field? ~ 1.4. Po/py chilepi/Qtz/Qc Aspy @ Vc
144.00-154.00 Volcanic Siltstme / Mudstone (151.90-152.15m) Py/po ± cpy
144.00-137.00 Hornblande Augite Playioclase Porphyry
144.00-137.00 Hornblande Augite Playioclase Porphyry
144.00-137.00 Hornblande Augite Playioclase Porphyry 181.75-198.12 Volcomic Siltetones Mudstones Pyl Po t cpy. EOH 198.12M 198.12 m - 47.5° es Section and section of the

 $(\cap$

 \bigcirc

Loggian Sheet Page 4 of 8 Richtype Structur Fractur Alteratio Q13 R2/Py CPY ASPY Liter Geology Hole # DOH-FR-006 চি O یے)۔ C3.60 63.60-+68.40~1 4. Volcanic Siltetone fine grained, massive texture to faint banding @ 30 TCA مل) hair line calcula Fracture Filling, unit is not I carbonatized. tr. polpy, fractures still ox idized. 68 (8.40 68.40-74.95m fine grained, Eq granulux, Xenolth present along contacts, quarty = Callite vering, with 516 > Enhedred prite common with epiddle taktorie enveloped. Fractures antique to be rusty. Evidence of Solicitization, sulphicles or idiged out of some fractions. Most quarty vining @ 40-45' TCA. -7--72-- 74 -74.75 74.95- 82.95 2 .76 Volconic Siltstone 78 fine grained, dark greenish (rey, massine, both upper/lower contacts irregular, above intensive stoped into unit. Wispy quarty : Calcite veintets with chlo. Bedepicte / pyrite, < 170 pyr. The in unit, Fractures temain oxidizel. 82,95 1 82.95- 84 AS $\sigma_{\mathcal{A}}$ Hybrid Zne, Mening Volcanic Siltstma with 40-50% quarty + califet -84 Albite, tr + . 52 prvite, lower contact @ 25-30 TCA 84.95 -86 Dische - Monzodiarite Fine gramed, Eg granular, werke pervasive Prophyilitic Alteration especially F88-1 betwe' ao -91.4 In fracture gree.

.099ing Sheet Page 6 of 8 Racktype Structure Fracture Qt3 Re/Py CPy ASPY THERVOL Geology Hole # DDH-FR-COG 120 12,2. -124 --126 -128 -130. 130,85 - 149.00 M 28 ÷ Dorite - Monzadirate -132 Fine-medium grained, Eg granular to sparse hornblande porphyry. Looks Silicious, both disseminated and fracture controlled prypo with -134 -++ + & +70% I minerelization fractione controlled. -136 ++ Fractures contain evelopes of chloribe/epickte, wispy guarty & coline veinteds with Py> po. Average Py/po = 120, -138-Unit has pale colorration (bleached look) 140-Som wide semi mossive sulphicke view @ lower contacts with Pr>potAspy + epilifie + Actinolite or chloritic to Disting needles. NZ . - 144 - + 149,00 -154,00m Volconic Siltstone and Mudstone -NL -Fine grained green to black, mixture of Silt/Mulistine. - Strong chloratic envelopes around off vainlets and fractures figure 151.90-.148.1

152.15m well mineralized Pripo = cpy (vo?)

,

<u>)</u>

 \cap

Logano Sheet Page 8 of 8 Ricktype Structure Fractures Alteration Qt3 RJPy Tuterval CPY ASPY Geology Hole # DDH-FR-006 1890 61.79 182 181,75-198.12M EOH Intercolated Volcanic Sultatones /Mudstone 50% black mudstime 50% pale green Siltotones Contacts @ 45-760 TcA. Siltstones contain mineralization Pyllo = cpy 184 186 1 -÷., 188 190 192 148.12 M EOH 199 Acid Tost 198.12m -47.5° LC0 a X.

n Prost of 5

••	\cap)		$\cap \qquad \qquad \bigcirc$
	Hole # DDH- F	=R-006			Page 1 of 5
	Sample #	From	Τo	Length	Remarks
	01001	19.0	19.8	0.8	Brachet - Volcomic Siltistone
	01002	19.8	20.75	0.95	Volcanic Sillotone 2-5% Polly tropy 2-5% Silica Flood.
	0100 3	20.75	22.00	1,25	Volcanic Siltetone to Polpy
	01004	22.00	23,00	1.0	VSI can: c Siltotme tr Polpy
÷.,	01005	23.00	24.00	1.0	VSIcanic Siltstone 5-157. Qtg, breecenter / hunder 17. py. The
- 1	01006	24.00	25.00	1.0	Volcanic Siltetme - Brachart
	01007	35,5	36.5	1.0	Valcanic Siltetme - Rueclas-
	6003	36.5	37.5	1.0	Volcanic Siltstone Carbonatized Sections W/ 1-27. P/10, 1-27. Qts
• •	01009	37.5	39.0	1.5	Vilcanic Giltetas, tr or/00
.	01010	390	40.3	1.3	Volcania Sitetan, tr. py pu
	01011	40.3	41.2	0,9	Volcanic S. Histor, 170 Cpy/ 170 Arson / Visible Gold
	01012	41.2	42.0	0.8	Volomie Siltstime to py/po
	01013	42.0	43.0	1.0	Volanic S. Hotme Bracket
	01014	69.0	70.0	1.0	Dionite, tusty Finctures @ 45° TCA
÷ .	01015	70.0	71.25	1.25	Diorite large rusty QC vein Bx-shealed Q25"TCA. 5% Q
۲.	01016	71.25	72.0	0.75	Diorite, Fusty fractures.
			1		

l,

Hale # DDH - FR-006

Page 2 of 5

	lole #		ì		
	Sample #	From	T.	Length	Remarks
Ī	01017	72.0 .	73.0	1.0	Dorate, 120 atescarb, 120 R/Po
ہے۔ ا	01018	730	74.0	1.0	Dro, Da 1-320 Qt3= Carb 2-49. R. P.
	01019	74.0	74.95	0.95	Dorte, 1/c 1-37, Qtzt calls 1-3% Ry>90
•	01020	7495	76.0	1.05	Bracket Volcanic Siltstone.
	0102	\$2.0	82,95	0,95	Bradat Valcanic Siltetra
•	01022	92,95	84.10	1.05	Visicenic Siltstone with + 50% Qto = calcite = Allate Sim
Í	01023	84.10	84.95	୦.ଚ୍ଚ	80% VSIcenic Siltibu / 20% Qtg = calcite = Albile, She
	01024	34.95	86.0	1,95	Disvite, tray 1-270 Qt3
	01025	36.0	0.83	2.00	Divite to pr 1-27: Gtz
~	01026	0.88	90.0	2.00	Droube to py 1-27. Qtz
7- 7	01027	90.0	91.4	1.40	Diorite, Fracture Some Rusty, highly original
	01028	91.4	93.0	1.60	Diorle, Prop Alt. 2-5% Qtz, 1% py
	01029	93.0	94.0	1.0	Dorite, Prop AH. 2-37. Qts. 17. av
۰.	01030	94.0	95.0	1.0	Diorite Prop AH. 1-27. Qtz 12.
3	01031	950	96.0	1.0	Dorite, PropAH. 3-5% Qtz 1-2%
No	01032	96.0	97.0	10	Diorite Prop Alt 1-22 Qtz 12 pr
	•		,		· · · · · · · · · · · · · · · · · · ·

UNA # DDH - FR-C

 $\bigcap_{i=1}^{n}$

•

.

\sim				$\bigcap_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$
Hole # DDH - FI	Z~006			Passe 3 of 5
Sample #	From	Τc	<u>.</u> Length	Remarks
01033	110	tιį	1.0	Volcanic Siltistore Rusty Fractures 5-170 pr
0103	111	112.15	1.15	Volconic Siltetone Rusty Fractures 1-2% QC ventety 1-2% py
01035	112.15	113.10	0.95	Volconic Silletme 10-15 m QC veins 5-6% P>Po
01036	113.10	114.60	1.50	Volcanic Siltistone w/ gauge 1% QC veiduts . 5-17. P.
01037	126.00	127,50	1.50	Volcanic Si Hotme, bracket, 1-22. Ry/R. 17. Oty
01035	127,50	128,55	1,05	Wicamie Siltstone 12. Py Po. 212. Qty
01039	128.55	129,70	1.15	Volcanic Siltetine 5-15% Py>Po>Aray 2-5% Qte + Galette
21040	129.70	130.85	1.1 2	Vilconic Silteting 2-42 Ote/Carb 5-12 Pr>Po
01041	130.85	132.60	1.45 <	Dior Re, bolen rusty Fractury gours 85% receiver
01042	132.60	134.0	1.4 5	Doite 1-27. Pyp.
01043	134.0	135.5	1.5	Diorite " @10'TLA
01044	135.5	137,0	1.5	Diorite "
01045	137.0	138.50	1.5 .	Diorite "
01046	138.50	140.0	1.5 5	Day to "
01047	140.0	141.5	1.5	Dorte
01048	141.5	143	1.5	Divid "

 \bigcirc

 \cap

(

١

-

Hole # DDH - F	-R-006			Paper of 5
Sample #	From	Тъ	Length	Remarks
01049	143	144,5	1.5	Dioride 1-270 Rypo
01050	144.5	146.0	1.5 5	Diorite
01051	146.0	147.5	1.5	Dorite
01052	147.5	148.9	(,4 <	Diorite "
01053	148,9	150.0	1, (Volcanic Siltetone IMugatone 3-5% Ry>Po, Apa? 1-2% QC
01054	150.0	151.0	l.o	Valconic Siltetone Mudetine 2-37. R. P. P.
01055	151.0	15).9	0.9	Nolcanic Siltstme/Mudstme 5% QC 2-3% Rypo
01056	151.9	153.0	1. 1	Malcomic Siltatore 2-59. R. D. Po ticoy Intence Chi Alt / Silica
01057	153.0	154.0	1,0	Wilcomic Sitt/Mind stone 1370 RDR Bracket.
01058	184.0	185.50	1.5	
01059	185,50	187.0	1.5	
01060	187.0	188.10	1.10	
01061	188.10	189.90	1.80	
01062	189.90	191.50	1.60	Volcinic Siltstone 2-5% Rypp 2-3% Or Valta
01063	191.50	1930	1.50	Macanic Siltetime 22 QC Vally 12. 22 00
01064	1930	195.10	2.10	Brkn Manic Siltstone, Vugs, Qtz crystaks 1-29. pr>>po

\cap			and the second s	
Hale #DDH- F	R-00's		ł,	Prov 5 of 5
Sample #	Frem	Τ.	Length	Remarks
01005	195.10	196.50	1,4	Multime 2-32 Cubic Ryrite
01066	196.50	198.12	2,62	Vakanic Siltetime 12 9tz VILLE 40°TCA 2-42 R. SE EOH
				
		,		
		-		· · · · · · · · · · · · · · · · · · ·
		↓	<u></u>	

%

Title Page Northing: 905 N Project: FRAN Page 1 of 9 Surveyed: Hole # DDH-FR-007 Easting: 1825E Easing left in : ID Post Placed Date Started: February + 2002 (Azimuth: 3220 Date Completed: February 3202 Inclination: -650 Logged by : Lorne Warner Summary of Hole 0-2.13 Casing 2: 31.10 Diorite → Monzodiorite -48.90 Volonic Sillstone -57.40 Homblende-Aurite Porphyry/Volcanic Silbtone - Carbonatiged. * -71.85 Howzodiorite Py/Po = apy = malochite Silica/Kspace Altered ? -80.20 Volcanie Siltstone (Not Carbonatiged) * -97.00 Monzadiorite Py/Pot cpy @ 90.0m gt3/ch1/py/Aspy in Shear @ 20. TEA -113.00 Monzodiorite Ots / ChilEp Alt pr/py = cpy - 11 8.0 Law Angle Fault - Monzadiorite gouge 1 pr ? - 139.0 Low Angle Fault - Mudstone / Siltstone Vuggy 2ts = proite growths - 169.75 Divite - Monzodiorite clay Altered atg / Qc/py 21.10/ Mor: posite oc Fueste with Axenite Veins - 198.05 Mudstone / Volcomic Siltstone . DI4.05 Diorite + Alteration tr. py - 220,98 Mudstone = Volcanic Siltstone EOH 220,98 M Acid Test 220.98m -67° Acid Testel+8.13m -63° Mineralization - 57.40-71.85 m 80.20-169.75 -

Sheet LOGGIDO Page Z of 9 Ricktype Structure Fractures Alteration THTERVOL Qt3 Pa/Py ASP CPY Hole #DDH-FR-007-Geology N O 0.00 - Z 13m CASing 213-31.10 M Diorite - Monzo diorite Fine & medium grained, Equal granulare, matic Xenoliths up to 4 4 5% near lower contact. Lower contact irregular @ 36° TCA. 3. 6+ Fractures oxidiged. Quality veins @ 15-30" TOA rusty, Vussy with pobably pyritus removed. 8 -10 -12 -14 -15 \hat{f} - 16 -+ +18 +4 -20+ 20 1-221 -24-+ - 26 -1 ٤ -2% + 30

a Shara waxayi ya

Page 4 of 9 THTERYOL Rickty Struch Franch Alterid B/Py Asp Geology Hole # DDD-FR-007-52.00- 57.40m Volconic Siltstone 60 Same as 31.10-48.90m except matrix is weakly chibonalized 62 -1/2@45° TCA 64. 57.40->71.85M -66 Monzodiorite 65 Fine-smedium grainet, 40% matics in matrix, all being altered Unit has cithed secondary k-spor and/or Silica introduced. -70 Rove calcite vientet, on binables appear to be pushed awar. 71.85 .72 71.85-80.20 M Volconic Siltstone -74 Fine grained, dark gray - green, massive, breccia tail, horn fe's Not carbonatized. Calcite Stringers, hairline fra itores commun .76 Tr py/po as cuits us childring on Fracture controlled. 19 80.20 -80-80.20 - 97.00M MONZOCIOILE 182 Sime as 57.40-71.85m EXCEPT Shook@ 90.0m w/ Qt3/Ch//Ry/Aspy? @ ZoTLA **F**54 Very rusty gran 96

 \bigcirc

Page 5 of 9 THERVOL Richty Structuo Franctuo Alterictio Po/P1 CPY ASP Geology Hole #DDH-FR-007 92-94 ++ 77.0 96 9700- 113,00~ 98-4 Monorliorbe Propylitic Atteration. Chi/Ep in tractores Veins and -100envelopes. Chi pervosive in Unit. Bottom 2-3 m units 102-1 is weakly carbona fized -/~/~ 44 106+1 165 113.00-119.00m FAULT Zone (Low Angle) 4/10H Some rock type as above except deformed by familt, calbration) in most areas pure gouge 113-114, most angles @ 70-80. Texa. Quality ICALC. The reining / fracture filling common with bach Euhodral and Antactral pricho. Anhedral in pure gtg +112· 13.0_ Yound Stringers 118,00- 139:00M Broken Mudstones on & Volcanic Siltstones 118.0 1/2 + 50% Black, Fine grained, breactated and 50% takeded muditione healed by gty/+ Calcide Unit is Vuggywith gtz crystals = prite growths.

 \sim

.

 \cap

	Los	ain	0	Sh	eet	<u>-</u>				
ĺ	ر بر	be be	2	225	Lion .					Page 6 of 9
	Lutery	Rackty	ちった	Frach	Attered	043	P61Py	CPY	ASPY	Geology Hole #DDH-FR-007-
	- 122 - 122 - 124 - 126		۵ ۵	71/1/1/1		0				Small Hornblande/Augite Porphyry between 123.5-124.0m Contacts? No exidetion of fractures.
	-128- -130*			71114						
	-132-			4-11						
190 00	-136- -138-		3 2 2 2 4 2 4 3 4 4	1111						
<u>.</u>	-140-	+	ار اے	K	6/c//					Clay Altered, Diorite - Monzodiorite
	-142.	+ +	4		Park E	, , , , , ,				Stip Texture, Eg gronular, medium grained, Numerous fractures (NO OXIDATION of Fractures) with 9+31 Atglealeite
	-144	÷;{;		4	S. to Marie					Mariposite metter Fresht mostly as envelopes around Silice healed fractures.
	-146 - 150	+	V.,		1) 54		• • •	-		Py3192

 \bigcirc

 \sim

Ĺc	200		S	he	t				
-			260						Page 7 of 9
T. take				AHes.	fe	R P	CPY	ASPY	Geology Hole#DOH-FR-007
150			1-	f				╞╼╌┤	
-15	2	+ 1		alct		ŀ			
-154	4- 1			161	Anon Ve	م - الج			
-15	6	۷u 4 ح	1	43			-		
-15	8-+	V	2	E			-		
46	3 -	+	1	15	- Are				
صا ا	2-++	ŕ	•	7	ì				
-lia	4-	+ v	₩ ¹			<. p.			
- 16	6-1	4					•		
-4.6	8-	+ M	m S			~	,		16975->192,05m
6175				1	· ·		· -	+	Mudstone and Valcanic Siltstone
п-	2	<u>}</u>		Ş.					+50% black, fine grained mudstone, remainder Date freen freen chlorificelly. Altered Siltytone?
-m	۔ - - بر	7				1			@ 174 m bile 45-50" Ten.
	, [Magischese torphyny Dyke 171.25-172.60m
ļ			-	-			-		110 eto Tan
۲. بر	- م			1					
<u> </u>			- [

	ا م			< m	o . 1						_
	ور	e e	<u>ي</u>	<u>s</u> S S S S S S						Page 8 of 9	
	Lutery	Rickty	ちった	HUG H	Atered	043	Ro/Py	СРҮ	Aspy	Geology Hole#DOH-FR-007	
	160	, T				-	,		+		
	-182 -	; 		\mathbb{N}							
				N			,				
	484 -	<u>III</u>		N	í I			1			
	-186 -	III									
	1000			\setminus	<u>-</u>]						
	490 .			\setminus	G		,				
	490.	j I j		\mathbf{N}	۲°۲ 						
റിംഗ	-192 -		20		1		Ľ				
74.05		+	۱ ۱								
	Lievt .	1		/		}	,			Eneropium rained, Siliciation still occurring however	
	196	╡≁								Sinifiant decrease in Printe and quarty veining Stringers	
	125			~							
		4					.				
	200	┥╷				ļ					
	202										
		+	Ì								
	204	1									
	200	4-1		K							
	208	4					.				
	F	้ 1 ไ				1					

٠

.

 \bigcirc

 \bigcirc

1099100

TNTErval

2:0

21-

216

-z1&

.222

214.05 .214

220,70

Sheet

Richtype Structure Fracture: Alteration Q13 B1Py

-05

ᡃᠲ

CPY ASPY

Geology

214.05-220.95M +50% Mudstone

Bo. TCA.

EOH 220.98M

Acid Test 220.98 -67.

Increase in Kenuliths & Mudstone towards lower contact.

Fine grained, deck gray & black minor chluritic green (pale) Siltstme sections, contacts e

of 9

Hole #DDH-FR-007

Page 9

Hole # DDH - 1	FR-007	-	•	Page 1 of 4
Sample #	From	Τø	Length	Remarks
01067	4.0	5.5	1.5	Diorite tusty Fractures tr. Sul
01063	5,5	6.5	1.0	Double 5% 9th vein tusty 12/ Surphicken
01069	6.5	7.5	1.0	Dionte, vusty Fractures tr. Sul
01070	13.5	14.5	1.0	Dorfe musty Fractures tr, Sul
01071	14.5	15.5	1.0	Dorite 5% gtz veins tusty w/ Sulph. 400
01072	15.5	16.5	10	Dorite rusty Fractures tr. Sul
01073	20.0	21.5	1.5	Dorite tusty Fractures tr. Sul
01074	21.5	22.5	1.0	Diorite 5% atover rusty w/ Sulphides
01075	22.5	23.5	1.0	Dorite turty Fractures to sn)
01076	56.0	57.40	1:40	Nolcanie Siltatore brackt somde weakly carbonations!
01077	57:40	59.00	1.60	Monzodiarite 2-420 pt 1-77. pylpota
01078	5900	60,50	1.50	" 1-22 gtz 1-2% p//ps ispy
01079	60.50	6200	1.50	" 41.972 Piloolan /mal
2080	62.00	67.50	1.50	" 1-37. Qt2 1-32. 14/p. = p.
01581	63.50	65.0	150	" 2-47. qt2 1-32. R. P. P
01082	- 65.0	66.50	1.50	" 1-32 qtg 1-52 P./R = cp1

(

 \cap

	. ما د	кП.#	34-		2~	700	
--	--------	------	-----	--	----	-----	--

-

. .

 \bigcirc

ole # DDH-F	R-007	· •		Paper of 4
Sample #	From	Ψ.	Length	Remarks
01083	66.50	68.00	1.5m	Monzaliande 1-22 R/PS/Dig Stringeren-22
	69.00	70.0	2.0~	Monzodionite 1-22, R, IP, 19tz stringers 1-29.
01085	70,ô	71.85	1.85~	Mourodiante 2-6% Ry/Ro, traps mostly along contact 2420tz
ର ୫୦ ୦୦	71.85	73.00	1,15m	Bracket Sample Hounfelso & Volcomic Siltstone 2.5% Calibret Otr. 5% Sul.
01087	79.0	80.2	1.2m	Brackent Sample Horn Elsel Volconic Siltstone . 5-12 Sulphile
२१०२४	80.2	81,5	1.3~	Monzodiorite 1-22 P. R. 3-470 Qtz Stringers
01089	81.5	83.0	15~	Monzarliarite 1-270 R, 19, 1-27.
01090	83.0	84.50	1.5~	Monszodiarite 1-27. R, /Po 1-27. "
01091	84.50	86.0	1.5m	N N
01092	86.0	87.5	1.5m	" 2-47.7. Qt3-47. Qt3
01093	87.5	89.0	1.5m	" +27. R/P. 1-21), Otr Struct
01094	89.0	91.0	2.0m	" Rusty Sheared @ 025"TEN PyPo / to car Aspy?
01095	91.0	925	1.5m	" 1-27. R/Po 1-29. Ota Stringers
01096	92.5	94,0	1.5m	1) 11
01097	94.0	95,5	1.5~	" 1-22. Tyllo + fock Supprile."
01098	955	97.00	1.5m	" 1-22 Py /Po 1-22 Oby Stringers
		•		

· ∩

•

-

Hale # DDIA-FI	2-007			Passe 3 of 4/
a				F.
Jample #	From	10	Length	Kemarks
01099	97.00	78.50	1.5	Monzocherite (trop Altered) Chiller (Py/Vurs 12py
01100	98.SO	100.00	1.5	Monzalionite " No Vues "
01101	100.06	101,50	15	Monzodiovite "
01102	101.50	103.00	1.2	Monzodiorite "
01103	103.00	104.50	1.5	Monzalionte " "
01104	104.50	106.00	1.5	Monzoliorite " "
01105	106.00	107.50	1.5	Monzodiorite "
01106	107.50	02.801	1.0	Monzodiorite "
01107	02,801	110.0.	1.5	Monzodiorite Prop Altered "
01108	110.0:	111.50	1.5	Monzodiorite Calbratized (weak)
01109	111.50	113.0	1.5	Monzodiovite Carbonatiged
01110	113.00	1140	1.0	FAULT ZONE - MONZONIONTE Gouse W/ Cubic Prince) 27,
01111	11400	1160	20	"Carbonativel - 5% QC 2-32 Pyrile
01112	116.00	118.0	20	" Carbonatized + 5% QC + 4% Ryrite
01113	118.00	119.50	1.5	Fault Zone - Mudstone Otel Cal Veining / fracture filling 19. Pride
01114	149.50	151.00	1.5	Clay Alt Monizodiorite () Fuesile/ Moriposite Otg/cal/Py

C	7

Hole # DOH-FR-007

Sample #	From	T.	Length	Remarks
01115	151.00	15z.50	1,5	Chy Alt/Vuggy Diorite > Monzodiorite Epilchi ::
01116	152.50	15400	1.5	" Slightly higher Preside 1947
51117	154.00	156.00	2.0	" + Ax+nite Vering
01118	156.00	157.50	1.5	1)
01119	157.50	159.00	1.5	
01120	159.00	160.50	1.5	11 + Axen: the Vein
01121	160,50	162.00	1.5	
01122	162.00	163.00	1.0	"Etay Alt Diorite -> Minzoriorite Strong Spilch / Qtz leorbrock / fuesite / Qty Venis
01123	163.00	16400	1.0	• •
01124	164.00	165.20	1.2	• 31
01125	165.20	166,50	1.3	t)
01126	166,50	168.00	1.5	N
01127	168.00	169.75	1.75	1 contact with Seliments
		-	•	

\cdot \cap	\bigcirc	»
Title Page		(
Project: FRAN	Northing: 940 N	Page 1 of 8
Hole # DDH-FR-008	Easting: 1815E	Surveyed
Date. Started; February 3,2002	Azimuth: 142°	Easing left in: NO
Date Completed : February 5 200	Inclination: -65°	Logged by : home M. Warner.
Summary of Hole 0-3.35 Casing -15.60 Volcanico Situtione petchy po -15.90 Hornblencle Porphyry -47.50 Hornblencle Porphyry -62.50 Volcanico Situtione/Hornblench -76.00 Diorite - Monzo diorite -95.80 Silicified Diorite Manzod -101.65 Low Angle Family 507. -113.30 Diorite - Monzodiarite -125.50 Calonatized Hornblench -158.50 Hornblench - Augule Porp -158.50 Hornblench - Augule Porp -187.05 Hornblench - Augule Porp	1py igrd from 18.75-23.30m MSSX Polarici e-Augite Porphyry horite 2-520/Qtg 1-320 py/po Hudstone - Toutonically Brocciated/Lucked - Augite Porphyry Ugto 1020 polp tr-290 py200 hypy https:// polpy topy where -650	Epichi / Cail Py T Milmatized. Fold 190.50m

Logging Sheet Page 2 of 8 Ricktype Structure Fractures Alteration THErver Qt3 Pe/Py Aspy Hole # DDH- FR-008 CPγ Geology 0 1 2 CAS 3,35 0.00-335M CASing 4 3.35-15.60M 6 Fine grained, green-purple, py/po mineralized sections tusty fractures 5 ł \diamond 10 Homblande Porphyry 415 - 430M broken contacts ٠ 12 ``; 14 Hornblende Porphyry Contacts & 15. Tag 15.6 20 .16 20'

1590-32.50M Volcanic Siltstone mesx Po vin 22.0-22.30m @ 55-60. Too with 180 cpy Enveloping arounDAVE py | Aspy 19+3/020.8 - 23.30 m Qtg Bx 20.65-21.35 m Qtg porpylogy 18.75-19.80 Carbon-tiged 27.00- 72.50m

Zo.

27

-24

-76

28

.30

亿)

1

ישטייעיי

55'

Íos	0.00	She	. t·				
ې ا	er pe	Cress Cress					Page 3 of 8
Lutery	Struct	Fract	013	Ro / P,	СРУ	ASPY	Geology Hole#DDH-FR-008
30				,		-+	
-32 -							
-36 -				1			
-38 -							
-40 -		11.200					
- 42 -		VCArbon					
- 44 -		14					
- 7. 40	1.1.1		8				Hornblende-Ausite Porphyry, Luis 22 102 Auit in Finance
19.5.				·] ·			deck freming frey matrix. U/c @ 60° TCA. Plagioclube feldsparss
52.90	111	·N					49.50-52.90M Volcanic Siltstone Francis Siltstone
53,25		N					common to 3%. Trace pyspoto 190, Subledred as Enhadred
55.95 -56 56.90		1			1		Volcanic Siltstone/Hornblunde & Augite Korphyry +80% Siltstone, contacts with Porphyry range between 50-75" TCA
579,900 60.05 60		A H	auć.				Fraduced still rusty.

.

 \bigcirc

 \bigcirc

•

_	Log	4.0	0	<u>5</u> 5	ect_				
	رەر	pe	- e S	520	tion				Page 5 of 8
	Luter	Reckty	すった	Fract	Please 01-1	RIP.	СРУ	ASPY	Geology Hole#DOH-FR-008
	90	+		オ	21				
	- 92 -	+	ł		3/				
	0 .1	4	ł	\mathbf{n}	馮				
	ר די י 	ŧ		\ge	<u> 78</u>				Terental LET TOP OF "
95,80 4	-96 -	\sim	-	7	Ύ Ψ				Low Augle Fault Zowe
	-98-		4 4	8	5				+80% Black, fine grained Mudstone, remainder trayments of above
		2.0	▲ ▲		× ×				Slips@ 35-40. TCA. Hotion pre-post mineral gatim.
lojus		6.,	5		<u>يَّة</u>		_	 	+ 98,0-99,0m 30% care recovery
	102-	+		11	틯	L			*95.80-97.50 m Extensive Stillcalete to solutions into the states
4 <u>-</u> 5	- 107 -			a.	٦ ۲				1101.65-113.30M BASE OF " Low Aughe Fault
μ		4		\sum	Х Т	مرز ا	-		Thorite Thorzodiorite
2	-105-	4			, 1	Ń			P. avilibically Altored Poidra/Chlorite, epicite Stronger in
AN N ^S	- 108	+	-		CFIC				Fracture.
ר- 	-110+				1				*111.25-11330m Breachded Mealer, epicate later than Broccia in but is
					100	$\sum_{i=1}^{n}$			appear to be late > post Brecentin Stope -
115.30 <u>m</u>	-1.2.	125	<u>م</u>	\sim	ŝ	251		1	108-109 m 302 are trecovery
	104	6		X	1	1.4	-¥ 10-		113.30-125.50 My
	-116	1			Q	ې بې	3		Matrix reacts rapidly to 5% HCL. Most matics altored to chlorite.
		0		$\left[\right]$					Pylpo content as dissiminational fracture control up to 1000
	-156	5			4				VICE XOTICA, the drawing of clarge , the
	-120	1		\sum	2	$\frac{1}{2}$	<u>,</u>		

	Log	منو	<u>9</u>	<u>Sh</u>	ec t		;				
	אשך	۲Pe	25	520	ction.		7			1	Page 6 of 8
	Luter	Richt	ちった	Freict	Ateu	653	Polp.	CΡΥ	AsP	Geology	lole # DDH-FR-008
	120	10	4	7	100	مکر دومی					
	124 -	0	Vugs	X	Creat Page 1	•			١		
2550	-12.6 -				101	*	1			125.50 -> 157, OOM Mudstone Sitetine	
	- 128 -			Ń	A below					Finegrained, backgrey -> black, numerous g+3/alite	stingers/
	-130 -				4-2-4	5./;_ 1				microveins. Areas of breecletim healed by chilf	pr/califie
	-132-			1	And H						
	4754.			\bigotimes	S L		-				
	-134-		SX A	X	N + S						
	-128			1/1	I Ŧ						
	-140			11	د بح		15			140 - Colum change from mainly deck-grey -> block +	õ
	-142	<u>]] []</u>			S					Green/Schon Kell black - minera Pisch - Fernez by Chlaritic arrend/pe	teles and
	-144			X	2					Contains fracture controlled I discominuted py/p	b tr cpy? Aspy?
	-146	<u>Titi</u>			U ž					also tend to be Chibmatized.	
	-45	<u>mili</u>		$\left \right\rangle$	T						
	150	UIII						·			

 \bigcirc
1

\bigcirc				O O
Hole # DDH- FI	<- 008			.23455- mbh (1.5) Papel of
Sample #	From	Τo	Length	Remarks
01128	3.35	7.00	3.65	Volcanic Siltstone/Hornblande Biphyry 60% Conc recovery Cheaty to poloy
01129	7.00	9.00	2.00	Volcanic Sittstone Toto core recovery, chert 2-32 PolRy
01130	9.00	11.00	2.00	Volcanic S. Hetorie 857. core recovery, 27. Polpy
D1131	11.00	12.00	1.00	Astanic Sitteting tr S? Polpy braching Sningle
01132	17.00	18.75	1.75	Volcanic Siltstore Fusty Fractures tr S2 Polpy
01133	18.75	20.00	1.25	Volcanie Siltstone Otg van PolRy topy +37.PolRy
01134	20.00	2175	1.75	Volcanic Siltstme +1070 Aty bx 1-27. PolPy tapy
01135	2175	23.30	1.55	HOZOPO, 270 CPy, ASPY Otz. OC 55- 60" TCA
01136	23.30	25.00	1.70	Volcanic Siltstone 12. Qtz 17. Polly, +29. Qc stringers
01137	25.00	27.00	2.00	Volcenic Siltstone Bracket Snande tr po/py
01:38	61.00	62.50	1.5 ~	Volcen & S. Itstine Bracket Spanple
01139	62.50	64.00	1.5~	Diorite - Monzodiorite highly Oxidized, Oto/Ox Stringers 1-27.
01(40	64.00	65.50	1.5	Diorte-s Monzodiorite
01:41	65.50	67.00). 5m	Doribe -> Monzodiovic high he oxidized. Sanor Sections "
01142	67 00	68.50	1.5	Thickly Oxidiped SANDY Sections "
01143	68.50	70.00	1.5m	Didrite - Monzo dibride highly Oxidized. "

	\cap				$\cap \qquad \qquad \cap$
	Hole # DDH-F	=R-003	•		Passe 2 of
	Sample #	From	T.	Length	Remarks
).	01144	70.00	71.50	1.5~	Diorite > Monzodiorite
	01145	71.50	73.00	۱.5	
ł	01146	73.00	74.50	1.5m	
	01147	74.50	76.00	1.5m	
	01148	76.00	50.50	1.5m	Diorite > Monzodiorite 2-5% Qtz +3% Polpytopy Silicified Ote veins microveen minerelised Polpytopy
	01149	77.50	7900	1.5~	"minor rust only in some fractures.
	01150	79.00	80.50	1.5m	'n
	01151	8050	8200	1.5m	li li
1	01152	82.00	83.50	1.5~	4
	01153	83.50	85.00	1.5m	3
	01154	<i>S</i> (,00	86.50	1.5m	s) ¹¹
	01155	86.50	89.00	1.5m	•
	01156	89.00	89.50	1.5m	n
	01157	3 7.50	91.00	1. Sm	• • •

μ

11

92.50

94,00

1.5m

1.50

91.00

92.50

01158

01159

4

.

1

Hole # DDH- FR	-00-8			Page 3 of
Sample #	From	Τ°	Length	Remarks
01160	94,00	95.80	1.80	Diorite - Mouzadiorite Pro Altered, +29. 9tz, +21. Pype
01161	95.80	98.00	2.20	Low Angle Fault 30% mudstne +5+10% Pyrite, +5% Quartz/Calcite Veins/microveing
01162	98,00	100.00	2.00	Low Augle Fault 35% recores between 98.99 + 22 R/10
01163	100,00	101.65	1.65	Las Augle Familie HZV6 Py/Pb, Mudstened
01164	10165	103.00	1.35	Dorite-stronzactionite Pro Alterral 190 gtg + 270 Py / Po
01/65	103,00	104 50	1.50	Prop Attereblacken 19. gtg "
01166	104.50	106.00	1.50	Prop Attered 2-37 gtz "
01167	106 00	107.50	1.50	Roop Atterned broken up
01168	107.50	109.00	1.50	Diorite > How d'orite Prop Altered 65% Core recormen +36 (110 +2%)
01169	10900	110.50	1.50	Disride Monrolinite 65%. Core recorden 170sts
01170	110.50	111.25	0.75	Hop Attered + 3% Oto Kalcite 19. pr> po
01171	111,25	113.30	2.05	Prop Alter et +5% 9t3/Calcite, +27. P./ P.
01172	113.30	115.00	1.70	Carbonatized Hornbland Musik Torphyry Conse@ base, minor multime, breccinted + 22 R> Rs
01173	115.00	11650	15	Contentioned Hornthanse Musik Porphyry Receipted Some Vurs, extensive stated heling + 2 % Py/P
01174	11650	118.00	1.5	Onnonatized Hoinkland / Augilie Prophyry +570 Do Day 1-270 at 2/calette
01175	11800	119.50	1.S	Contratized Hornblenke / Augite torpary +5% poppy gtz stringer Q 25°TCA +2-39. Qtz/Calcite

Hole # DDH-F	2-008			Paved of 4
Sample #	From	Ψ°	Length	Remarks
01176	119.50	121.00	1.5m	Carbonatized Hornblande Augibe Porphyry +520 Pollo 2-320 atg/ Calcite
61177	121.00	122.50	1.5m	Carbon + 300 Hornblande Augite +61 phyry +51. Bola 2-37. Atg Calcite
01178	122.50	124.00	1.5m	Contonatized Hornblande Augite Porthyny - Boken Up 1-320 Py 70 220 Oth Catelle
01179	12400	125,50	1.5m	Enrounatized Homblande Negite Vorphyry +2070 Cale be very 320 9+2/ Calcine +220 0000
01180	125.50	127.00	1.5	Broce intel Mudotine +5% Gtalcite 1-21. P. P.P.
01181	163.00	164.30	1.3	Hornfelzed Mudstane 19. P. / Po
01182	164.30	166.00	1.7~	CC Vein 45-50: Ten 2-570 80/80
01183	166.00	167.50	1.5m	2-43 BYP2 to co-
01184	167.50	169.00	1.5m	2-4% Po>Pu, tr. 5% cou
01185	169.00	00,071	1.0m	1. 12. R/P.
01186	170.00	171.00	liom	10, "R, 1Ps
		·	1	

 $\left(\right)$

 \cap

Title Page Northing: 1470 N Project: FRAN Page 1 of 8 Surveyed: Hole # DDH-FR-009 Easting: 14.10 E Azimuth: 350-Date Started: Feb 5/62002 Lasing left in: No Inclination: -45 Date Completed : Feb 7 2002 Logged by : home M. Women Summary of Hole 0.00-4.57 CASING Eq Granulare Diorite + Monzochiovite, Propylitic Fractures fractures w/ Cr Micas Eq Granulare Diorite - Monzochiovite, 190 qty, Silicification of Fractures w/ Cr Micas Quarty Diorite + 5% qty veins/veintetr/Cr Micast/ Po/Py/magnetite 4-57-31.00 7/ 00 - 47, 40 ~ 7.4- 61.25 Plasiocher Porphyry 2-7% po/py t cpy Hornfelsod Sectments w/ Hornblandle and Playiochere Porphyry mineralization Po/pytepy concentrations 1-4,20 - Average 61.25-67.30 67.30 - 119.05 Hornfele of Sectiments and Hornblance and Plapice lase Porphyry some as above except po/pytapy concentrations decreasing w/ clepth. 119.05-139.25 Intrusive Breccia tr. Polpy 139.25-175.95 175.95-183.00 Hornblande Plajiochese Porphyny 183.00- 214 88 Hoin filed Sectiments tr. polpy/cpy EOH 214.88M Acid Test@ 187.45m dip - 410 and a start

	<u>, Í.o</u> g	مىم	بو	<u> </u>	est			, , ,	
	גטר גטר	γpe	22	520	tion				Page 2 of
	Luter	Richt	ちった	F rect	Aley	e P P	12/2/ 201/	Asp	Geology Hole #DDH- FR-009
	0								0.00-4.57 CASING
	-2 -	SNS							
.51	. 4 -	र्							
.JТ	-6 -	+	1	H.	19				H.57-> 31.00M D., ito -> Monzadiorite
	- 8 -	 -+ _		1	5 250				Medium Grained, Esp granular (m tiplied Py/po
I	- 10 -	+		$\overline{\mathbf{N}}$,		-Strong Chil Epidere alteration of weet fractures
	12-	4 +		\mathbb{N}	211				-strong Chi alteration of dry tractures.
	-14 -	+		Ň	Ś	_	, I		-Unit contains 5% Kenslips of fine-medium gramed
	-1% -	H +		\mathbb{N}	He C	; 7 ⁺ 5 125			- chiorAic Fractores an Silie Cicl, chierite is quite a
•	-18-	4 +		\mathbb{N}	A S	×17			also the name of veinlet has pinkish colour and could be
	20.	+ +			1-1-4-	t f¢	•		a reviste.
	-22	4 +			$\left \tilde{\mathcal{F}} \right $				
	24	+ +					-		
	26	+		$\left \right\rangle$,		
	-28	4+++		11					
	30	+					•		

 \bigcirc

 \cap

•

Shee L099,00 Page 3 of Ricktype Structura THERRO Alteretic Q13 Po1Py CPY Asp Geology Hole # DDH- FR-009 30 3100-+ 47.70M 1.00 -32-Dioxite-> Monzodiorite Same as above unit except synificant decrease in epidote childrite in tractules · 344 Average M. off reins premilits and increase in Silicification of Fractures as 45-50 well, fusite or mariporthe increasing with Sitic - 36 -14) -39 40 42. -44 4 Mica 5 S. A.S. miss Sen Pring -46~ ð 7.40 ~~ 1 48 ١s, -magnetite 47.70-61.25 - 50 -Quartz Diorite! $\langle \cdot \rangle$ 52 L Greensingrey - Shite Plagiocleaser much, rime of with altered hornblands in fine grained glassy matrix, unit contains +5% free quanty in vein Inicioveen with magnetite, polpy in both veins can't country noch. Cr mice common in areas with preater Fracturing w/ silice. Magnetite oppens to have some coincediat relationship. 54 56 Ŕ SSY 55

94 27

Hornfels

Buttle

S

Ť

Hora

Biolite

eqij

*

. .

· -

17

. 94

-96

- 78

100.

1.95 -1-2 +

-107

-106

108

-40

-112

- 114

-116

►/\4

12

19,05

6

3.10

-~

H

111

Hole # DDH- FR-009 \sim ٦.

Page 5 of

-- 119.05- 124.80-

 \bigcirc

	Los	aio	0	54	ect	L.				
	אטר	γpe	50	520	tion		~			Page 6 of
	Tuter	Reckt	Lough	Fract	Altere	Q43	P6/P	CPY	Asp	Geology Hole #DDH-FR-009
	120				3		$\langle \cdot \rangle$			Brooked Hamblende Brohn-g/HambelGed Sediments
	- 122-	1.1+					, ,			Same rocks as loped above Sulphide content & Signiliantly
ാപം	124-	+ + ^→	2.5	M						
~7,01	-12%-	5 0	4	/ /	$\left\{ \right\}$		×	•		124.80-3 131.00 M Hora Scheed Sectiments
	-129-	<u> </u>			2		'			Some as above except of the Sift for almosting
		E,		$\left \right $	rn1		'			- glassy maby colour moment - 100
	-130-				Ъ,					- rating ports to -by
31,1	-132-	+ + +		111						Homblender Porphyry Sparce nornblender Phenos (25%-30%) in finegrained, pale greenish (rey matrix Te porois
22,20	-134-	44	•	1			•			122 - 139 25 M
	136 -			1			•			Horn Felsed Sectiments months dask aver, miner green + creamy white
	178	; <u>,</u> ,					er)	•		- weakly mineralized controlled by chluring altern the w/ associated gty vements mostly by where veris are Re, gt3 = po/py
<u>}</u> 9,25		<u> </u>	<u> </u>			450				139.25-145.70 ~ _
	- 1400	ם +∆				5%	۲ <u>-</u>	ł		Intrusive Breacing Mosaic
	142	<u>ج</u> دا		$\left \right\rangle$			<u>^</u>			Boro Horntdende torphiring tragments 20% Horntelsed Sectionets in Chioritic
		┨≁╰┘ ╽╲╶┤		ert						motily, type 5-100, inter in callor mation
	- 144	<u> </u> _≏					Ĺ			
15.70	2		+	╞		┟─	- .		+	Instrusta Brechy Mosaic
17.Se	,	<u> ^</u>	 	E		<u></u>	-			147.50-17595 Intrustre.
	-1-44		ł	$\left \right $			1			Intrusi re Breacia
	_150		+				, ,			
•										

	Log	<u></u>	0	Sh	eet						
	י ר	'pe	une.	520	tion					1	Page 7 of
	Interv	Rechty	ちった	Fract	Altere	ef3	<u> 9</u> 9 9	CPY	ASPY	Geology	lole # ODH- FR-009
	152-	∆ +	3				,			Equipmeder divide tragnents (mosare tenture) 5-pporter fine grained matrix. In some areas (167-n) more of a lexture, and gives approximent of Intrusion Preces	d by chintic croclele breactie
	-154-	∆ + + ∆	5				, •				-
	-158 -	_+ ∆ +	5	/ //						154.10-163.0 m Higher dopres of Huntersad Sediment frymont	~ (5°2°)
	-162-	△ ↓ ↓	14	1 1			۰.			3/62-163 Strong Axende Veining + Cr Micros? and/on Chloride	
	- 167 - - 168 -	_ +	254	/		140.	.P.				
	-170		1			Φł,					
١٤٩٩	-174.	+	5						Cel /	175.25-183.00 M	
	-178	+ 		111	ached I		, , , , , ,		5	Hornblande Playsocher Horphyry - 5 Eg from tex, pele i fine grained motrix, Top 3.5 m Prop Alt with ge v Pyd. 7-	grey blocked, emility, minun
	- 130		4	/ //	181						

DDH-FE-009 . .

Hole # DDH-F	- <u>F</u> -039			Payel of
Sample #	From	To	Length	Remarks
01187	30.00	32.00	2.0	Propylitic Alt ENDS & Bloom 120 9to 12 polen
01188	32.000	3400	20	Dion the -> Monzoluse he 2-3209+2 170 polen for end
01189	3400	36.00	20	" 1-22 gtz 17. ps) ps
01190	36.00	38.00	2.0	" 5% po/pn 2-3% of 3
01191	38.00	40.00	2.0	" 220 gtz 190 polon
01192	40,00	42.00	20	" 12gh 12 poloy
01193	42 00	44.00	20	" 12 glz 2-42 po/py
01194	44.00	4600	20	" 6-8% polpy trapy 1-22 gtz
01195	46.00	48,00	2.0	Dioria = 943 Divide 47.40m area 1) 5-10 % 9+2 2-42 Do/or/marnetice
01196	48,00	50.00	20	" 10% at 2 24% po/py/manetike
01197	50.00	52.00	2.0	" 52 gtz 1-32 polpy I marne file
01195	52.00	5400	20	" 5-820 gtz 2-470 po/pu (mornetilie
01199	54.00	56.00	2.0	" 4-62 gtz 1-42 g-10-1mas
01200	56,00	58.00	2.0	" 1-42 172 47. Or 1-27. polariman
01201	58.00	60.00	2,0	1 1-320 gtz 120 po) pr, mag
01202	60,00	61.25	1.25	· 42 gty 1-22 p/on Ime

0.103 glt 16 m

 \bigcap

Hole # PDH-	FR-009		<u></u>	Page of
Sample #	From	To To	Length	Remarks
01203	61.25	63.00	1750	Plagloclase Rorphyry 1-32 Ps/py topy 22 912
01204	63.00	65.00	2.00	" 3-5 % R/py = py
01205	65.00	6730	2.30	" 3-520 Pulpo = cpy
0120.6	67.30	69.00	1.70	HornEls & Sal 12 gtg 12 Po/py
01207	69.00	71.00	2.00	" 3% P.>>P. 1-22 gb
01208	71.00	73.10	2.10	" 12. gtgl carb 120 Ps (py
01209	73.10	75.00	1.90	Hornblen Re Dyke / Hornte's Solo 5-67. Pazz Parcon 37. QC
020	75.00	77.00	2.00	4-52 Po>>Pylcpy 1-32Qc
01211	77 00	79,00	200	" 5-170 Polpy 1-290QC
01212	7900	81.00	2.00	" 47. QC 1-37. Py> Po
01213	81.00	53.00	2.00	" 2-34. QC 17. Py/Po
01214	83.au	85.00	2,0 %	" 5-72 QC/Qtz 3-42 678 top
01215	85.00	8700	2.00	" 2-32 QC/Qtg 2-42 Po>Py = cpy
01216	87.00	39.00	2.00	" 1-22 P.T.Py tropy 1-22 qc
71210	100.00	102.00	2.00	1 1-22 RJRy
01218	102,00	104.00	2,00	Hunfelsed Sad/hundler le duke 2.5% Poppy to goy

(

$\mathcal{P}_{av} \stackrel{2}{\rightarrow} \mathcal{A}$ Hole # DDH- F-R-009 Sample # Remarks From T_{o} Length Bistide Hornfelsed Sedmant Po/Py trapy 2.00 104.00 106.00 01219 " 2-42 Porpy trapy 2,00 01220 106.00 108.00 " 2-32Po>Py 2.00 01221 110.00 108,00 " 22 Ro>Py 2.0% 112.00 110,00 tr apy 01222 12 R>P-114.00 13 112,00 200 01223 5-72 Po>Py, . 5% Cpy 5 01227 114 0-116.00 2.00 2-32 Pork ti cpy ۱, 118.00 116.00 01225 200 1) + Epicate 3% 7, >> Po 01226 119.05 118 1.05 Hender Andre Roughy ... 119.05 01227 1.5 120.50

۰٦.

۰.

 \cap

 \cap

`}-

Title Page		
Project: FRAN	Northing : 1470 N	Page 1 of 9
Hole # DDH- FR-010	Easting: 1410 E	Surveyed:
Date Started: Feb 7 2002	Azimuth: 270°	Easing left in : No
Date Completed: Feb 9 2002	Inclination: -45	Logged by : Loine M. Wainer
Summary of Hole. 0.00-457 Casing 457-43.60 Plagioclase Porphyny 63.60-58.60 Diorite Prophyny 13.60-58.60 Diorite Proventie 70.15-124 00 Diorite 1-29. py 1200-132.60 Crowded Magiocla 13.60-139.90 Silicified Diorite 159.90-164.65 Sparce Propylifically 164.65-176.50 Silicified Diorite 176.50-191.00 Silicified Diorite 21.60-215.60 Silicified Diorite 21.500-242.32 Silicified Diorite 21.500-242.32 Silicified Diorite E0H 242.32 M	1-200 pv) po, tr cpr, magnetite tr po/py actured + 2% pv) po /po se Porphyry 2-5% mag, 5-2% pr - 1-4% pv/po/cpy Allt Mafic Porphyry tr pr - 2-4% pv/po/cpy . Hornblende tr Silicified Crowned Plagioclase Porphy 4-25% pv/po/cpy . 5-2% pv/po/cpy . 5-2% pv/po/cpy	,+52 q+3 Stringers my 2-420 py/po/cpy, mag
	<u>Ae</u>	1 Test 239.27m -40.

5₹

Shee Logging Page 2 of 9 Structure THErvel Ricktype Alteret Qt3 P2/P4 Aspy CPY Geology Hole # DDH. FR-010 0.00-4.57 CASing Ø 2 \$2 ¥ H.57 - 43.60 m Plagioclause Porphyry Ŧ 6 Crowded Plagioclase Phonos in five grained - med in grained matrix + 8 + 60% Play Phonos/ remainder matric minurals altimed to chluide mynet (be Average 1-22 py) po to cpy w/ veine/micro veins Mosz disseminated tr. -> rare amounty +10 ++ Aty veintite @ 60-65. Time, larger Atgiverns @ 15-250 Tim CPJ 12-T +14 +1 -16 Á 18 20-22. ŀ 24-10 26 Ł -26

Shee Logaina Page 4 of 9 THErra Rechtyl ちっち R, P, CPY Asp Hole # DDH- FR-010 Qt3 Geology 58.60 - 70.15 M 60 Dorte - 62 -Some as last except Crackle Fractured with Silicification and open Fracture filling. . 64 . Pyrites with Silica. -58.60-610 Strong Epilch Art w/ axente veising. -only Fractures not completely healed by 9tz contain any celette. 446 - 68 <u>-7</u> .15 70.15 -= 124.00m Dorite Same us 43,60-58.60m 72 -74 -Ch 73.00-76.00m Strong Epilch Alteration Enveloping fin fractions 1-16 <u>,</u>25° 18. -80-1 10 L 1-2% pulley dissum 82 atz (and Py veinlets to 5mm 18-30" •, Ì 84 86-58 clighty forergraphed darker წ. . `,\^{6.} 88.80- 40.20 heavily Fractured w/ device Py Qtz carb veins rusty 2912

•	1.09	فرو	9	<u>\$h</u>	ect	•			T	
	ر بر	pe	2	520						Page 5 of 9
	uter <	Rickty	けって	to U	シーナ	243	Ro 1 P.	CPY_	Aspy	Geology Hole # CDH-FR. DID
	90 70	(<u>1</u> +1	0,	<u>۳</u>		<u> </u>				9170 Den by dark remalite
~	-1 <u>-</u> -911 -	7 †					· · · · · · · · · · · · · · · · · · ·			are 70-95.0 metal large Epi Chi all pervasive, otherwise restricted to verific prox
	- 16 -	- 			(f: c t.) /m '4		۲.7 ارک			
	- 18 -	۲ ۱			<		N.			Diorite as above.
	102-									
	- 104 - - 106 -					20.	-3 			Quents Diorite Silicified member of above lithology
	-108									108 20- 109 Granite right LOT Sem vide St S-Dart Fr
	-0(2					~ ~ ~		₹±,	<u>د.</u>	11135 Open space Filling gtz vein
	- 11 A	¥ ↓				5.9	8			
7.50	- [18				<u> </u>					
,	-14	7			<u>+</u>	<u> </u>	1	t	1	

<u>, Lo</u>	99.1	_و	<u>Sh</u>	<u>es</u> t		<u> </u>			
ر ہ	pe	20	520	tion					Page 6 of 9
Luter	Rechty	ちった	Frach	Ater	Q13	718	CPY	ASPY	Geology Hole # DOH-FR-010
-12 -12 -12 -12 -12 -12 -12 -12 -12 -12	14xx + + + + + + + + + + + + + + + + + +	Shuc	1 3 1 1 1 - 1. 1 UHH 1/1 / 1 / Fract		12 12 (013	dred to the second se	CPY	Asp	Geology 124.00-132.60 Crowded Plepiochen Porphyry +50% Plepiochen Prophyry +50% Plepiochen Phonos in fine prained, gluose matrix, mostly silica (Primery (Secondery) 2-5% Disseminchall majnetice with matrix. Vassy Sections could by active fluids, most areas rehealed Cupper level prophyry = Epithermal I in appendence. +5% offs strongers/stockwocke .5-2% Prote -52% Prote -52% Prote -5100 dimetric alt w/ gtg stringers/silicitied fractures. 132.60 - 158.90M Silicitie Diorite Slead gray clar to matrix, Eq Grammer - Play Browing Colorite Alt Porcessie Fracture Controled off veinf off units comment, polog/coy concentration highert @ With flambo of unit. Prophylically altered in middle.
	sol.	<u></u>		ľ	-				

	Log	910	0	<u>Sh</u>	e t				
	לתר	rpe	<u>an</u>	520					Page 7 of 9
	Luter	Richt	ちった				CPY	Asp	Geology Hole#DDH-FR-010
	150	+	- ,	-	<u>-</u> - 			┥╴┦	
	-152	-4 L		\backslash		l,			
	154	-			ا ر ا ر		· ,		
	-/5%-	4		N	1101				
	-158	+ +	.55	4					17990-164650
9.90	150-	1	27		1				Sparce Propulitically Altered Matic Porphyry mal high altered (Harablande (Ausites 7) in Strong pervesive priche/
	1/62-	0	1		", ch				Chibite altered groundmans. Tr + absunt Pr
4.65	K oty -	1	125			-	+	+ -	144.65->176.50 m
	-166-	↓ ↓ ↓		\mathbb{N}					Silicified Diorite
	165	4 }4	10			4			Same as above unit of Silicitie Divribe cpy concentrations t w/ depth.
	-170	+	N A			25		·	matic dylke / Kenolith 170-172m area
	-172	4+			i ed				
	174	⊬ _^ _⊥			ر ازد ز و				176.50-191.05
% ,50	, 17 5				ت 1		\downarrow		Sporce Maynorystic Hornblancle in sum; trachytic ground mood. Struc Propyhitically afford matrix, calcide bairtime fractures.
	-174	V			/ch/				- Now-minimalized - to py - Matic Vend the 2-52
	Fut	45	<u>_ </u>	\mathbf{r}	Ð]	

Logang Sheet	······································	
tion to the the		Page 8 of 9
Inter Thurth	alas Geology	Hole # DDH- FR-010
$ \frac{180}{182} + \frac{11}{190} + \frac$	191,05-211 Silictred +50% J fine gra tr. cpy	1,00m Crudul Diorhe - Silic Kidt Plagioz Case Porphyry und Plagioclass and crowsked, rimed, matrix is med, glassy with altered modered to chierthe I maynelike in matrix. Silicification & w/ cleft.

Richtype

210

24-

1214

28-

222

1-2244

224

228.

230-

232

254

13.8

240

242

28012

ል

8

+

4

220 + 973

212-4

15.64

EOH 242, 32M

J	Hole # DDH-FI	2-010	······		Page 1 of
	Sample #	From	Το	Length	Remarks
Î	01228	5.0	1.0	2.0	Crowled Plagioclass Porphyry broken, rush Fractures
	01229	7.0	9.0	2.0	11 1-22 Pyllu
	01230	9.0	110	2.0	" Fusty 20' Ten Structure
	01231	11.0	(3.0	20	" 2-42 PyPo Qtyven 45tra
	01232	13.0	15.0	2.0	"+57. 912 veinlets 1-27. R. /Po
}	01233	15.0	17.0	20	" Fush Fracturest (2-32) 9tz venlets
	01234	17.0	19.0	2.0	" 3-5% P. trepy
	0:235	19.0	21.0	20	"His gty neinlets 1-22. Ry/R
	01236	21.0	,23.0	20	"2-37. Py>Po mosto 25. TCA.
2	01237	23.0	25.0'	2.0	" broken a writer rusty fractures 1-27. P. TPo
	01238	25.0	27.0	2.0	" 2-32Ry/Po to mosz
	01257	27.0	29.0	20	" 2-42 RDR @ 15°/45'65'TCA. 23% Havalt
	01240	29.0	31.0	Z. 0	" stated Epilite Trace 17. PVS Po 2-42 9/2 Valt
	01241	31.0	37.0	Z. 0	" 3-5% Qtz ValValts 1-5% R/Po
	61242	33.0	35.0	Z. 0	"1-32 Qtz Val Valts 1-2% PyPo
ر ر	01243	75.0	37,0	2.0	" 3-62 Qtz Vnlts/Bx Vn 1-22 R/P.

(

 \bigcirc

. .

 \bigcirc

مم ا

۲	ble # DD.H-F	R-Ob	· · · · · · · · · · · · · · · · · · ·		Payed of
	Sample #	From	Τ.	Length	Remarks
	01844	37.00	39,00	2.0	n 1-220 gtg valts 170 Ry 1Pu
	01245	39.00	41.00	2,0	" Axentre viening 29. 12 Ry 1Pm
	01246	41.00	43 00	2.0	" 1-270 Pylpo 1-270 7to Vults
	012-47	55.00	57.00	2.0	EQ Divite Situited Brocket Sample 18 py/00
	01248	57.00	59.00	2.0	". → By @love 30 cm, rush
Ī	01249	59.00	61.00	2.0	"Soken > Mosail Bx EpichilP.
Ī	01250	6100	63.00	2.0	" Would fractived = Musaic Bx Epichilly / ptg
-	01251	63.00	65.00	20	" brackle fractured 12. B) Ro, varty Fractures
	01252	65.00	67.00	Z.0	"+220 Atelvings / open Fries 12. R. XP. (Site La
•	01253	67,00	69.00	2:0	"+22. gtg/vurs/openfacs/1-27. Ry>B/S. licitics
	01254	69.00	71.00	2.0	"+529tal Vugs/open facs/2-49. Rippo/Side tich
	01255	71.00	13.00	2.0	" Bracket Sample
	01255	86.00	88.00	2.0	Siliched Donite 2-32 Pr72 @ 40'Ten 17ests
	01257	°0, 86	90,00	2.0	" 57. Ryppo Storpy Axing wind as later 15.424tz
	01253	90.00	92.00	2,0	" 2-37. Polly @ 55-15" Ten 1894
<u> </u>	01259	92.00	94.00	2. 0	" 1-22 Polly Rodent Sarrie 12 gtg

ł	tole # DOH-FR	2-010			Paper 3 of
	Sample #	From	Τ	Length	Remarks
Į	01260	107	109	2.0	Dorite ul refil dyle e 15. Ten April 2-32 C 75. TEA Stimp Chi Alt
	01261	109	413	2.0	" + Silicified portion gto Vn@ 15-20: 74/Poll, Shepy
	01262	111	113	2.0	Sticked Starle 342. At m@ 20-25"Tim 12. Py Provin chi
	01263	113	115	2, 0	" 2-72 pt, m @ 65" Tan tr- 120 Ry /P.
	01264	115	1(1.50	2.5	" 22 pterra is The . 5 To Pylly
-	01265	117.50	119.00	1.5	" Vurs/Silichied 12-37 Pr
	012.64	19.00	121.00	2.0	" 2-37- gtz valts 1-2 7. PUTT Po
:	01267	121,00	12300	2. •	" 2-470 gtg Valvalts 470 P. P. Vn@35 TCA
ŀ	01268	123.00	125.00	2.0	Contert Silier D Divide/ Play Porchyrn 4-67. Pypp. 3-57. 9th Vn / Vn Hi
	01269	125.00	127.00	2.0	Missy Plagioclese to physing strangcht alt +270 may 1+570 Ats valts (stockwordes. 5-27. py
	01270	127.00	129.00	2.0	()
	01271	127.00	131.00	2-0	μ, i,
,	01272	131.00	132,60	1.60	13
	01273	132.60	134,0	1.40	Silicified Divide 2-32 Tyllo 17. Evilte 1-29. Havalt
	01274	1340	136.00	2.0	" 3-67.9tz 1-32 Purpo tr. epy
; ;	01275	136.00	138,00	20	" 2-42 at valts12R/P.

· ·

 \cap

 \bigcirc

\cap				$\bigcirc \qquad \bigcirc \qquad \bigcirc$
Hole # DD H- F	FR -010			Page f of
Sample #	From	Тв	Length	Remarks
01276	138,0	140.0	2.0	Divite 1-22 P. 19, 17, gt, Wills +49. Ep:
01277	140.0	1420	Z. 0	" vues 1-3% atevalts 193 Py/Po +2% Epi
01278	142.0	144.0	2.0	" 1-370 qt? valts 12, P. P. + 57, Epi
01279	1440	146.0	2.0	" 3-5% qt vn/vn/+s +2%P>Po Vns@ 70150. Ton.
01280	146.0	148.0	20	" 17. At volts . S. 19. Py 12.
01281	148.0	150.0	2.0	" 12 gt valts KR/Do 57. Ep.
012 82	150.0	152.0	2.0	" + 5% aftin 1-27. P./po vne Zoita
01283	152.0	154.0	2.0	" 3-5% gtg vn/vnHs 2-4% Pv/Po t, com
01284	154.0	156.0	Z.0	" 2-470 gtg vilts 2-470 Py/po treen
01285	156.0	158.0	2.0	"+5% gtp QL 30, TCA 2-49, Rolph ticp
01286	158.0	159.0	1.0	1-27. gtz tr-19. P./p.
01287	159.0	161.0	2.0	(Hornblunder) Augite?) ch18p; Spots/ Patcher Non-minual: jul
01288	161.0	163.0	2.0	~
01289	1630	164.65	1.65	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
01290	164. LS	167:0	2.35	Silicified Divide + 5% Pyrros to con Solphida &
01291	167 0	169 0	2.0	1 220 Az Valt / 1-87. P.J.p. t. cp-
				1

	Hole # DDH- F	1-010			Page 5 of
	Sample #	From	Τ°	Length	Remarks
,	01292	1690	171.0	2.0	Silicifiel Diorite 2-37 Ap/QC 19. Ry/Po
	01293	1710	1730	2.0	" 1-37 Ry/Po, tropy (40% Trachytic Like)
	01294	173.0	175.0	2.0	" 3-52 R/Po, ti cpy +3% 9+2 (25-65" TCA)
	01295	175.0	176.50	1.50	" 3-57 Ry/Po, tiepy +490 gte/ Qc (45-50"Ton)
	01296	176.50	178.0	1.50	Propylitically Attered Tradivitic Dike Strong Epi, Nonminuclus
	01297	189.00	191.0	200	H and a start of the start of t
	01278	17100	193.0	200	Silicified Diovite 42 qtg + 32. Poley to can
	01299	193.00	195,00	2.00	" + 470 QC/Q+3 Valt 1-270 Polpy
÷.,	01300	195.0	197.0	Z.0	" 170 gtz valt . 57. p./py
	01301	197.0	197.0	2.0	
	01302	1990	201.0	2.0	
	01303	201.0	2080	20	4 23
	01304	203.0	2050	2.0	ly in
	01305	205 0	257,-	2.5	1, LI
	0 1306	207,	209.0	1.5	11 + 4% gtz VnH 1-2% po/ou
- , , -	01307	209 0	211.0	ZO	"+27. tout 2-37. plm
	Later and the second se		+		

 $(-) \in (-)$

Hole # DDH -	FR ~010			Pape 6 of
Sample #	From	Т	Length	Remarks
01308	211.0	213,25	2,25	Silicified Diorite +107sPolpy 110cpy 1+102 Otz @ 40'TCA
01309	213,25	215.65	2.40	"+470 poloy/tr cpy/+490 gtg
01310	215.65	217.00	1.35	" 1-37. Pylpo 12. qt, with Vursy
01311	217.0	219.0	2.0	" 1-3% p/po 1% gtz valt
01312	290	221.0	20	" gtz crystals, Avenite Vim (70'Th) 2% Py, minu po
0:313	221.2	2.73.0	2.0	" + 22 pv>> po + 22 gt val valts
01314	223.0	225.0	2.0	" + Propylitic Alt (Epilchi) 27. prz 29. gt. valt
01315	225,0	2217.0	2.0	" + Proditic All (Ep. (chi) 12. 00700 39. 912 Vn)+
		_		

Page 1 of 13 Northing: 1425 N Project: FRAN Surveyed: Hole # DDH- FR-01/ Easting: 1345E Date Started: Feb 9, 2002 Azimuth: 2700 Lasing left in : Yes Logged by : Lorne M. Warner Date Completed: Feb 12,2002 Inclination: - 45. Summary of Hole 0.00- 3.66m Casing 3.66 - 31.20m Diorife 31.20 - 82.50m Propylitic alt Diavite 82.50 TT.70m Diorite silie'd gtz: py/po uns 97.70 - 98.45m Hornblende Porphyry dike 98.45-102.65 m Propulitic alt Viorite 102.65-104.43m Hornblende Porphyry dike 104.43 - 135.90m Silicified Diovite atz pillooveins 135.93 141.00 m Hornbrend Porphyry dile 14.00 - 196.14m Silicid Diorite 196.14 - 220.50 M Labbro 220.50-226.30 msparse Feldspar Ppy 226.30 -268.22m Cabb-0 EOH 268.22

Shee Loggina Page 2 of 13 Richtype Interva Structur Fractur Alteratio Q13 B1Py Asp Hole #DDH-FR-011 CPY Geology 0.00-3.66 Casing 0 CA SING 21 ۔ ص 3.66-31.20 4 + Diorite 61+ Medium grained, Eg granular, +60% plagiochse -6.5-6.9 in quants/ Axenite vein 1/2 @ 40°TEA 8 + - pervasive chlorfic Alt - fracture controlled and enveloping epidote. - wispy gtz veinlets @ 40-50 + TCA -10 -- Tr. -. 57. PY/Po, PY/Po 12 -- 27. Venolitho (matic Intrusive?) -14 ++ - Fractures trusty - 21.70 Q+=14 FM. 08° TCA -16--21.85 Crowded Play dyke 22°TCH 2cm wide 70% Play 20% Of2 10% matrices - magnetitetr 18 -Epi/chl veins renvelopes 30.62.7cd. 20+ 25.90 - 1cm Py Cpy . 70'r. py 30'r. cpy -22-24 \mathbf{t} 26 B

Loggina Sheet Page 3 of 13 Structure Fractures Alteration Q43 Pe/Py Recktype Therral Hole # DD4 .FR-ON ASPY CPY Geology Diorite as above **∔**+ 5pi Chi 31.20 - 36.40 dense epicht veins re-velopes 35 Gerren 20% of section 32-Δ 34 35.50 Xerwliths to Sem F3 black sod? -36-1 \lor -lum ineqular qtz ribrons 42-435 mild Silira blonching 38-45-46 Otz rank py veins @10"FCA lem Чò. 5280-53 Of rail by Fractured rusty with 2% dissen -4 z-1[†] $\mathbf{\hat{v}}$ py 30 cm either side. -44 + 4 ¶₽ 464 48 t e₹ 50 1 t 52 HΔ .54. للورجة 56 t 59.30 Epi chi - py vein 15° 5mm will. \$ -5%.

Log	منع	<u>ن</u> و	<u>۲</u>	<u>e</u> t						
ابہ ا	اره	والع	S 2	ś						Page 4 of 13
ervo	Ktyp	-Fl		Er Ct	<u>رما</u>	신		202		Hole # DOH. FR-011
도 H	R	カ		Ł	ēΙ	2	J-	3	y Bology	
-62- -64- -66- -70- -7:-		2	ii I	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 0 0 0 0	28			Districte as above ferror wispy at veins more homogenous intensite - augular by black servelites 63-65 - 65.40 2 cm Qt2 epidote vein @ 500 7 cm entrolved - 78.90 - servelite 25 cm dark grey fg corrected - 14.5 - 86 sitis-fication + 1-2 it fg dissen proport Qt2 Veins 1-2 cm with open spaces	Esp trackyte r 2% py voins
-74 -76 -77 -77 -80 -82 -82 -82 -82 -82 -82 -82 -82 -82 -82			Les la	e	11/ B/ / B/	1	Crath			

Page 5 of 13 Shee Ricktype Alteratio Hole # POH-FR-ON Qt3 PalPy Luter Asp CPY Geology middle Silicitied Diorite Leavy ate carb veint to 2cm 255 TCA -92pleached 28.05-98.90 Fy black renolith silicitized + at wind 94 17.70-08.45- I ght grey hol poppyrite dike -96appa contact 450 TCA diffuse over Lem eji 98-Å lower comfact breaded 100 L 102 62 - 104.43 - same dyke as above upper contact 30 TCR 50% hold at and 20% about rel 1024 lower contact 250 TCA sharp -1044 province land of ribletons -10C-119-40 119-95 strongly silic'd some a permitte by very 75 -1084 -110 - The second 124 Δ 14 ۵ .«Հ ¥ H1 & L

Logging Sheet		Page 6 of 13
Intervo Rocktyn Rocktyn Dractu Dry CPY CPY	Geology	Hole # DOH - FR -011
$ \begin{array}{c} 1 \\ $	Silicified Dirite Patchy intense sticification dather, rlightly finer grained Com Servis	
-130 - 1 + 25 + 2 + 26 + 134 - 4 + 64 + 135 + 136 +	135.90-141.0 m Motic Hbl ppy clike folght grey metric propylitic alt contacts precisited	
14) 142-+ 142-+ 144-+ 144-+	- 1460-196.14 New py punded inclose dyke Silidd Diorite	
148 + / WE		

 \cap
\sim

Log	<u>ain</u>	9	<u>5</u> 5	<u>ec.</u> 1	<u>t_</u>		, .			
s.	pe	2	525							Page 7 of 13
Lutery	Richty	ちった	L'ACT	とりて	243	Ro / P.	202	ASPY	Geology	Hole # 0041- FR-011
-152- -152- -154- -154- -154- -160- -160- -164- -164- -164- -164- -164- -164- -164- -170- -170- -170- -170- -170-		ふ	< A F1) ()		3		A	Listed diovite 1.3mm wispy thigh angle gtz carbonate veins -> + powasive gtz carb Greater incidence (S-6%) xenoliths to Sche angleten (y V. eninor py in gtz carb veinlets particularly in brearing Trace cpy in py valts 176-178 Felsic altid diovite at bottom of section	net textures, 10/m black interine? rours @150

 \sim

Ĺ	094	مأنه	<u> </u>	<u>Sr</u>	ec.	t:				
	<u>ار</u>	ő	2	500	6					Page 8 of 13
	Nterro	ackty 1	Aruch (ractu	teret.	243	3124	СРY	Aspy	Geology Hole #1001-FR-011
	1 52- 84- 886- 888- 90-		V X V	1	V 2-54					Silicid Diorite 180-1815 strongly felsic alt. bloached zone in diorite irregular contacts mild prophytic Feltal texture to mate minerals 0.5-17. suphides, patchy - deshayed in felsic 2 one
6.14	1971- 196= 198- 202- 204: 204: 204: 204: 204: 204: 204: 204:					No.	D XX - V			196.14-220.50 Gubbro -dark grey m-for equigranular, rimmed play, greater mather - workly magnetic, - 1/m pr vointets - wispy afradivering as in above diverte ~ 5/m For dark dike, similar to above dike: but missing hblpps/ large atr carb voins 1-20m 1-27 py

 \bigcap

ī.

<u>1,00</u>	<u>u.a</u>	9.5	<u>5h</u>	ect	<u> </u>					
אמך	ype	fre e	520	tion		کر		X		Page 9 of 13
Luter	Reckt	J. Luc	E E	Ster 1	043	818	CPY	ASP	Geology	Hole#DCLI-FR-OIL
-212- -214- -216- -218 -222- -222- -222- -222- -222- -222- -222- -222- -222- -222- -222- -222- -222- -222- -223- -2323-		Str.	Enter the France	Ate	the the second s	18 81	CP	Asi	Coology Cobbro as above Clary alt in franturs + enveloppes 220.50 - 226.30 Sprise Feldsper Ppy irregular feldspers is then in dark grey - black materia relict matic textures. 226.30-258.20 Gabbro more interse of venting at low cruzple 5-20*	Flole # DU-1-FR-011
-24	0	<u>ــــــــــــــــــــــــــــــــــــ</u>	c) (XII						

·

<u>109</u>	منم	9,	<u> </u>	eet		1				
ا بـ	ي اي	2	5	6						tage 10 of 150
erta	Ktyf	-fi	Ef.	t i	сŋ	/P/	γc	PY A	Carles	Hole # ODH-FR-011
포	R	あ	2	¥	Ġ	3	C	¥	Geology	
	1			duy	V2.V				habbro	
-24Z-	ł	Ì			75				.*	
-244-	F F				1					
-246-			25		X					
- 148-	+ - +-		\ 	-	-				Front & Device	
	+	-						+ -	251 - Isani Axenite pink vein	
-250.	1 †	Δ	1.0			1				
-252-	, +			•	X					
<u>- 75</u> 4.	+							ł		
-256	+ +									
-258	<u> </u> + +						-		2 State Day	
	\int_{+}^{-}		- 12	-	-		ţ	- -	ol. (luce	
[] Ju o	+									
-167	1					ĺ				
-764	[] - - - -	4- 1-	ŀ	┢	+	-		~	T top Ppy at Ne	
- 26	16. +									
-26	ε, -								268-22 EOH	
	+				- -					
1	<u> </u>	_								

1	Hole # DDH	- FR - (211		Pagel / of 13
	Sample #	From	То	Length	Remarks
	01316	21.00	23.00	2.00	Diorite Bracket niver silini epicht.
I.	01317	23.00	25.00	2.0 m	Diovite 17, fg düssen ihr
۰L	01318	25.00	27.00	2.00	Divite 27 py to con veins 1 lissen
-	01319	27.00	29.00	2.00	" Brachet for play
	01320	42 00	44.30	2.0-	Prachet Divite
	01321	44.00	46.00	2.0-	Diorite 3% py vein 05m + 1% for disser py
	01322	46.00	48.00	2.0-	11 1.7. fa disser pro O.S. at weins
, 7	01323	48.00	50.00	2.0 m	11 1-27. dissen py + unlls
	01324	50.00	52.00	2.00	11 12. py mild silic.
	01325	52.00	54.00	2.0m	Bracket to py with Ot= rank veining
	01326	83.00	85.00	2.0-	Bracket Silied Diorite to py
	01327	85.00	\$7.00	2.0 -	Silied diorite Fratured 21. dissemply - veinlets
	01325	87.00	89.00	2.00	11 5% Py/Po veins to Icm
	01329	89.00	91.00	20m	" heavily fractured 2-3% veinlets + dissem
	01330	Q1.00	93.00	2.0 m	" Greaciated w/ py motion 5-9% por
	01331	93.00	95.00	20~	" Bracket sample minor py venicts

					Page/2 of 13
H.	1 Sample #	From	To	Length	Remarks
	01332	110-0	112.0	2.0 -	Silicified Diorite bracket sample tracedisser pr
	01333	(12.0	114.0	2.0-	" 2-3% py in fractures
	01334	114.0	116-0	2.0m	11 1-2% py veillets
T	01735	116.0	118-0	2.0m	" 27. Py voin + minor dissem
	01226	118.0	120.0	2.00	Intense silica all divite brached minor discuspy
	01337	120.0	122.0	2.0m	Viorite silicit 5% egy year starte disson
	01378	122.0	124.0	2.0m	Wispy py Volts 12 31
	K1339	1240	126.0	2.0 -	11 12tz carb py very land
	B1 740	126.0	12.8.0	2.0	to a bracket wind pr yolls
	N241	130.0	132.0	2. Om	and for 3-4% py veins to Icm
	01247	132.0.	134.0	2.0	et 11 2-37 by Bas + moor disson
ŀ	01276	174.0	136:0	2.0m	"I bracket sample to dose in the
	01344	+ 175.0	177.0	2.0 m	it bracket intense ate carb vening
-	01745		179.0	2 0 m	The Coy in Voy vertels
	01341	5 179.0	181 - 0	20	- Felsic altered zone bracket
	01347	245.0	247.0	0 2.00,	" Silicified Gubbro bracket clayoff ep. chi units trpy disco

 \bigcirc

 \bigcirc

 \cap

, . . .

olc #				Paort3 of3
Sample #	From	Ть	Length	Remarks
01348	247.0	249.0	2.0	Silic'd habbro? Fault 2018, buecein, gouye 231py wills
01349	249.0	251.0	2.0	Interse silie'd fractured 3-5% py dissem
01350	2510	253.0	2.0	11 1-27. p. dissen
61351	253.O	255.0	2.0	11 day alt in frees
01352	255.0	257.0	2.0	
01353	257.0	259.0	2.0	Brecciated Silicia habbreld ander The produces
01354	259.0	261.0	2.0	11 11 11 11 11 11 11 11 11 11 11 11 11
01355	261-0	263.0	2:0	Silved & diorite
01356	263.0	265.0	2.0	" 20% Qte years 31. pay
01357	2.05.0	266.70	1.70	11 60%, cove ve coverna
01358	266.70	268.22	1.52	671. Vecovery
		,		
1 N	1		1	

 \bigcirc

 \cap

A. ¹ O

1 2

ħ....

Title Page		
Project: FRAN	Northing: 1470 N	Page 1 of 9
Hole # DDH-FR-012	Easting: 1410E	Surveyed:
Date Started: Febiz 12002	Azimuth: 320	Easing left in: No
Date Completed: Feb14/2002	AcidTect @ 20574m - 540 Inclination: - 55	Logged by : Loine N. Warner
Summary of Hole. 0.00-4.00m Casing 4.58 - 52.75m Diorite - 517.00200 52.75 - 58.30m Seni massine Polp. 58.30 - 79.20m Divite - Minozodio. 79.20-116.75m Qualty Divite 16.75-150.05m Homfelsed Seliment 150.05 154.00m Mtential high gro 154.00 236.22m Homfelsed Seliment 236.22m. EOH Acid Test @ 205	iorite (kpy (5.55m) in Divite -> Huzodiovit k 17/po/cpy Pr/po/cpy (100-107m higher grade of s (First 33m p/py/cpy) Le (Polly/cpy/ZnS/Aspy) nts (polly = cpy) dISTIST THM - 540 (True Dip) EA = 62°	e ere polpylogylgtj)

	Los	منوه	6	<u>5</u> 5	ect	Ŀ	_			
	עיך	γpe	Sure.	520	tion					Page 2 of 9
	The	Reckt	ちった	Fract	Aler	Qf3	Pe/P	сру	Aspy	Geology Hole # DDH-FR-012
	0 - 2 -	97								0.00-4.88 Casing
100	- 4 -	CPSIN								USS-EZA PULL - South - South O - Charles - Soundal
7.00 - 5.50 -	-6.	55 + -		$\overline{\mathbb{X}}$	ç		· / ·			5.30->27.00
	8-	+ +		X						Diorite > Mon zodiorite France - Placinches Purphyry, medium grainel, S/P texture
•	-10-	4 →				、 、 、				Shire not altered. Chlorite/= Epidite and Sitientiation present
	- 12-	 -∔ _∔		×		•				quaetz veins Ivenlets. Average orientation 35-40° Tora, ranging
	-14- 	↓+ _+		11/	АÌ	. .	\` .			Most Fractures rusty.
	-18]_+ }		X	, L l		-			
	-20	→ +	,	XXX X	0:10					
	-22	4 		Σ	4			-		
	-z4	<i>+</i> 		X	1		,			27.00-> 42.50m
276	- 26		-		ý		-			Some as above except
	28		•							- higher concentrations of wispy gty 1 gc Veinlets & Alenide Veins
- 19	<u>- 30</u>	<u>1</u> +		$\overline{\Gamma}$	Ю;	<u>`</u>	·]	<u>.</u>		

Logaina Sheet Page 3 of 9 Ricktype Structures Fractures Alteration Qt3 RJPy Interval C.P.Y ASPY Geology Hole # DOH-FR-OIZ 30 32 - 34 -<u>ک</u> 2010 -36 + -38 Ξ 4 + lower Contact gradational 4**2-**1+ 1250 42.50-+ 52.75 M 44 Diorite -> Monzodiarite 44 Same as First unit. 46.95 - 47.25m meter Dyke? VIL @ 70 / 1/2@ 55. 48 -20--52-52.75-58.30m 52.75 Diorte -> Monzadiryte 54 Sent massue Polly Icpy with de veine (Strings S. 12hilds @ 15-500 Tha Average Hor T CA 947@ 15-35° Average '30" T CA. Good CPy with Polang 50 2.4 3830

 \bigcap

•.*

··· · · · ·

Sheet Page 4 of 9 Ricktype Structure Fractures Attendion Qt3 RJPY THErra CPY Asp, Geology Hole # DOH-FR-012 ض 5830-79.20M Dorite > Monzodidvite 62--looks like first unit, except 4 ہے. t in 9+3 verning) veinlets 6 + Pr/po/epy -68-4 5 1 1 1 70 4 172-4 + -74 --74 78 79.20->116.75m 19.70-100-1 Quarty Diorite UnA stopes into above lithology, contact based on majority of hist being -82. quartz chorite. Same unit as in DDH FR-009, pessed less magnetite but more traces & delcopyrite Phyonyhowt. \times 814 Queets vein @ 15-20° Tin cut by minoupped qlp Stringer/vein @35-90° Tin ut polpycoy. Atleast 2 gunets events. -% -65 Fabrics in hist overse 30-35"TCA 90 X4

1. C

 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$

 $\bigcap_{i=1}^{n}$

Logaing Sheet		
Y Rion Etion	F	age 5 of 9
Alter Alter	Geology	ole#DDH-FR-01Z
90 +		
94-+		
96-		
-98- +		
	4- 100-101 afe vein w/ Benimassive Py/po/cpy/ch) @ 15-20"7	τ.A
102 +	4^{-1}	
	Py/po/cpy minne gtg	
+ 4005 ()) - () () () () () () () ()	(skanny loik to it!)	
	Howfolsel(SKARNED) Sed.mets	
114-1	Brown/green/Greamy Shite / pale grey Hornfelsed Volcanoelectica Siltetman Mulistan	
WL.75	Pervasive to pathy poloy = cpy minereligation favors all gto Heb areas -boot oxists in all rock and here	rific and
	Veing typical @ 30-35 Two,	· .

 $\mathcal{L}_{\mathcal{L}} = \mathcal{L}_{\mathcal{L}} \cap \mathcal{L}$

 \bigcirc

Logging Sheet Richtype Structure Fractures Page 6 of 9 THErval Alteration Qt3 Pe/Py CPY Aspy Geology Hole# DOH-FR-012 1201 122 Fabrics @ 35. TCA . 24 А -120н ÷. /28_ H т. Х Pels Η - /30 -۰. 4 Hora /320 Ħ «-brokensminer gonze @ 134.40 (30cm) altered, Silicitied deke 134.60-135.0m Vic @ 30°TCA Sparce plag perphyry -/34 --/34 - H <u>~ 188</u> 4 \mathcal{F} 136 -> 137.50 host has red colour possible K-spar 4 Ċ, -138-, H 138,90- 139,20m Sparce play porphyry -7 4 -1404 Н -142 144 # 145.0-145.15m Sporce plag Horn Poiphirm) Green claved Hornfelsed areas be carring more calibrate rick -146with depth. -148**b**∼ 38 150

 $\sum_{i=1}^{n} \frac{1}{i} \sum_{i=1}^{n} \frac{1}{i} \sum_{i$

 \bigcirc

Logging Sheet		
V dion Vac	Ŧ	lage 7 of 9
Liter Richt Richt Richt Richt Richt Richt Richt Richt Alten CPY CPY	Geology H	ole#DOH-FR-012
150 H 152 H	← Po/Py/Cpy/ZrS 150.5→154.0m Very well miner ← Po/Py/Cpy/ZrS/Aspy beautiful Aspy @	nlized 152.70m
154- H	- PolPy/Cpy/ZnS/Mdsz Breech filled w/ qtg + Su/phides calcite in zone.	5
156.05+156+ + + + + + + + + + + + + + + + + + +	10% Hornblande? altered matic > Intermediate Dyke 10% Hornblandes? in biskle altered fine grained matri patchy \$16Ac alteration, Untacts @ 75180" to	x with Specticely.
	159.80-172.0m Hornfelsed Sediments	(
-164-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Mostly brown in colour from bibtle also preen/creany w summ colours	share - more
-168-H	163.25-163.55 Attared Sparce Plag Purphyry VIC@ 450 TCA, 1-27. Pot py	
170- 4		
	Homblende Porphyry Herblende 20-302 in fine prained green matrix where I Trow UCC25 / VC 0350	, chloritically
74.80 -nL H ()} H ()}	174.80 -> 221.00 m Hornfelsed Selments	
178 H H HBD 7555	Antiqueting above. Humblinde Parphyny 179.40-179.90m 1/C@ 40° TCA	

-

 \bigcirc

<u> </u>	<u> 9. a</u>	0	51	É.	<u>.</u>					
יאסר	Ype	L're	N 765	tion		7				Page 8 of 9
Hte	Reckt	ってよ	Fract	Afe	Q13	P6/P	СРУ	Asp	Geology	Hole # DDH-FR-012
182	H H		N	1		, ,				
-134-	# #		ł			۰ ۱			19895- 199.40M	
-186-									Feites Hornblende Perphary Dyke	
-1-5-	# [= [S						
- 192-	4 4		XX	SrnFe		120				
-194	H.		X X	¥ 		<i>,</i>			- D: seminated Pyrifies mostly Cubic	
-196	<i>#</i>		, ,						fractored controlled Annual	
-198	H 	5-11-5								
-202	H H					-				
-201	<u> </u> <u> </u> <u> </u>		×́							
-206	H									
-Zo1 210	HIN		X							

Loggino Sheet Page 9 of 9 Attenation Q43 B1Py Structure Fracture Tuterval Ricktype ASPY CPY Geology Hole # DDH-FR-012 210 н de. 212- H Ĥ 1 <u>م</u> H • 214 -÷. -214 H 1 -219-ہ جے 1 h\^{35''} 220 +) ١ 22100-221.80M Bloched Homblen Respheren Dake VICESSO 221.0 4 222-2218-226.0 M ħ 4 Harnfelsed Sediments Ĥ , Mainly Mudstoness 224 H 226.0-228.60 M Top 300 Placiocher Prophymulice 40-45 Top Romainder Somi Crowder Homblende : Angile Porphymu 10.0 226.0 226 228,60 - 229.20M Hora Felcal Salimits .28.60 01.10 29.50 227.20-229.50m Plastochese Porphyny UILE 30" Tong Vice 30" Tong 230-HI ¢c. H, 227.50 -> 236.22m 232 4 A Hornfelsed Septementos 1-27. Pr>>00 1. 231 B. 22 270 EOH 236.22M

ξ.

 $: \cdot \cap$

Hole # DDH- F	R-012	.		Page of
Sample #	Frem	Τo	Length	Remarks
01360	5.30	₿.∞	2,60	Diorite - Monzocliarla 75% renovery 1-2% py/po = a
01361	8,00	10.00	2,00	95% recovery 5-12 py/00
01362	10.00	12.00	2,00	1007. recovery 1-2% py/po + 2% gtz
01363	12.00	14.00	2.00	"
01364	14.00	16.00	2.00	12 pr/po
01365	16.00	18.00	2.00	12 0/00
01366	40,0	42.0	200	Divide Minzodinde tr-12 polon
01367	42.0	440	2.00	+49.9k/Qc 1-29. Po/M tices
01368	440	46.0	2.0	" +3% qt? 1-2% Py> po
01369	46.0	48.0	2.0	" +39. 5to 1-39. pizzo tr con
01370	43.0	50,25	2.25	11+290 gtz 1-290 pyrpo tu com
0137)	5025	52,75	250	"+1 Dogh 1-39. py/po tr con-3.59.
01372	52.75	54.0	1-25	"+25% Po/Ry/Cpg + 7% gtz
01373	54.0	56.0	Z.00	+37. Po/Py/Con +29. 9+3
01374	56.0	58.30	2.30	"+107. B/Pn/cpn +5% ata
01375	58.30	60.0	1.70	Dissibe -> Monzadivertin

:. · · · · ·

1

 \bigcirc

•	(

÷.

<u>109</u>	مناه	9	<u>Sh</u>	ect						
ړ	pe	2	52	505						Page Z of
where	rekty	t-ref	Lact.	ちじょう	243	21PY	срγ	Asey	Geology	Hole#
		5		4	Ø	2			$\begin{array}{c} 01376 \ 60.0 - 62.0 \ 2m \\ 01377 \ 62.0 - 64.0 \ 2m \\ 01378 \ 64.0 \ -66.0 \ 2m \\ 01378 \ 66.0 - 68.0 \ 2m \\ 01380 \ 68.0 - 70.0 \ 2m \\ 01380 \ 68.0 - 70.0 \ 2m \\ 01381 \ 70.0 - 72.0 \ 2m \\ 01382 \ 72.0 - 74.0 \ 2m \\ 01382 \ 74.0 - 76.0 \ 2m \\ 01383 \ 74.0 - 76.0 \ 2m \\ 01384 \ 76.0 \ -78.0 \ 2m \\ 01385 \ 78.0 - 79.70 \ 1.1 \\ 01385 \ 79.70 \ 82.0 \ 2.3 \\ 01381 \ 82.0 \ 84.0 \ 2m \\ 01389 \ 84.0 \ 84.0 \ 2m \\ 01389 \ 84.0 \ 84.0 \ 2m \\ 01389 \ 84.0 \ 96.0 \ 2m \\ 01389 \ 98.0 \ 90.0 \ 2m \\ 01380 \ 2m \\ 01389 \ 98.0 \ 90.0 \ 2m \\ 01380 \ 2m \\ 01389 \ 98.0 \ 90.0 \ 2m \\ 01380 \ 2m \\ 01389 \ 98.0 \ 90.0 \ 2m \\ 01380 \ 2m \\ 01380 \ 98.0 \ 90.0 \ 2m \\ 01380 \ 2m \\ 01380 \ 98.0 \ 90.0 \ 2m \\ 01380 \ 2m \\ 01380 \ 98.0 \ 90.0 \ 2m \\ 01380 \ 2m \\ 01380 \ 98.0 \ 90.0 \ 2m \\ 01380 \ 2m \\ 01380 \ 98.0 \ 90.0 \ 2m \\ 01380 \ 2m \\ 01380 \ 98.0 \ 90.0 \ 2m \\ 01380 \ 2m \\ 01380 \ 98.0 \ 90.0 \ 2m \\ 01380 \ 2m \\ 01380 \ 98.0 \ 90.0 \ 2m \\ 01380 \ 2m \\ 01380 \ 98.0 \ 90.0 \ 2m \\ 01380 \ 2m \\ 01380 \ 98.0 \ 90.0 \ 2m \\ 01380 \ 2m \\ 01380 \ 98.0 \ 2m \\ 01380 \ 2m \\ 01380 \ 98.0 \ 90.0 \ 2m \\ 01380 \ 2m \\ 01380 \ 98.0 \ 90.0 \ 2m \\ 01380 \ 2m \\ 01380 \ 98.0 \ 90.0 \ 2m \\ 01380 \ 2m \\ 01380 \ 98.0 \ 2m \\ 01380 \ 2m \ 2m \\ 01380 \ 2m \ 2m \\ 01380 \ 2m \ 2$	Dior Re- Three dior Re 1-270 pyl po 11 2-3 70 Pype, tr cpy 17. 9tz 2-32 Pype, tr cpy 17. 9tz 2-32 Pype, tr cpy 1-220 9tz 3-420 Pype, tr cpy 2-37. 9tz 190 1. 2-32 Poptr. cpy 1-27. 9tz 1. 2-32 Py/Po 1. 2-32 Py/Po, tr cpy 2/2, 9tz 1. 1-22 Py/Po, tr cpy 2/2, 9tz 1. 2-32 Py/Po, tr cpy 2/2, 9tz 1. 2-32 Py/Po, tr cpy 2/2, 9tz 1. 2-32 Py/Po, tr cpy 4520 9tz 1. 2-32 Py/Po, tr cpy +520 9tz 1. 1-32 Py/Po, tr cpy +720 9tz

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Logging Sheet		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Herval chtype chtype nuctures feration f3 Py	Sectors.	Page 3 of
$\begin{array}{c} 01391 \ 90-92 \ (2m) \ 90 \ 4 \ 2m \ 5 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7$	10256202		Hole#
61406 119-121 (2m) "+3% qt+7 e 30-75 Tea 1-3% po/p), tr cpy 01407 121-123 (2m) "+4% Po)Py, tr cpy +3% qt; 01408 123-125 (2m) "+4% Po)Py, tr cpy +4% qt; 01408 123-125 (2m) "+4% Po)Py, tr cpy +4% qt; 01409 125-127 (2m) "+3% Po)Py, tr cpy +3% qt; 01409 125-127 (2m) "+4% Po)Py, tr cpy +3% qt; 01409 127-129 (2m) "+4% Po)Py, tr cpy +2% qt; 01410 127-129 (2m) "+4% Po)Py, tr cpy +2% qt; 01410 127-131 (2m) "+4% Po)Py, tr cpy +2% qt; 01411 129-131 (2m) "+2% Propo 1-2% qt; (mulsiting e base]		01391 90-92 (2m) quan 01392 92-94 (2m) " 01393 94-96 (2m) " 01393 94-96 (2m) " 01394 96-98 (2m) " 01395 98-100 (2m) " 01396 100-101 (1m) " 01396 100-101 (1m) " 01397 101-103(2m) " 01398 103-105 (2m) " 01399 105-107 (2m) " 01400 107-109 (2m) " 01400 107-109 (2m) " 01402 111-113 (2m) " 01403 113-115 (2m) " 01403 113-115 (2m) " 01404 115-11675 (1.75) " 01405 11615-119 (2.25) Ho 01406 119-121 (2m) " 01406 119-121 (2m) " 01407 121-123 (2m) " 01408 123-125 (2m) " 01409 125-127 (2m) " 01409 125-127 (2m) " 01409 125-127 (2m) " 01401 127-129 (2m) "	ty Dionite 1-3% P/Po/tr coy + 8% glig 2-5% Po/Py, tr coy + 6% glig 2-3% Pr/Po, tr coy, + 4% glig 2-3% Pr/Po, tr coy, + 4% glig 1-22 P°/Py tr coy + 2 2 glig 1-22 P°/Py tr coy + 2 2 glig 1-22 P°/Py tr coy - 5% g Oty divide 3 Plug Porphyry -4% Po/Py tr coy - 5% g Oty divide 3 Plug Porphyry -5% Po/Py tr coy - 5% g Oty divide 3 Plug Porphyry -5% Po/Py tr coy - 5% apy + 2% glig -5% Po/Py . 5% apy + 2% glig -2% Po/Py . tr coy + 5% Porphyry (-2% Pr/Po, tr coy +2% 1-2% Po/Py . tr coy + 3% g dig tr constant of 5% Porphyry (-2% Pr/Po, tr coy +2% 1 t 3% glip g dig -4% Po/Py . tr coy + 3% g dig + 4% Po/Py . tr coy + 3% g dig + 4% Po/Py . tr coy + 2% glig + 4% Po/Py . tr coy + 2% glig + 2% Py pr . tr coy + 2% glig + % Py pr . tr c

 \cap

•

 \bigcirc

· · · •

Loggina Sheet Richtype Structure Fractures Alteration Page 4 of THErral 043 Pa1Py Aspy CPY Geology Hole # DDA-FR-02 01412 148.0-149.0m (Im) Hornfelded Sediment green - prey 1-20. Pully Ţ. +2% QC, 1-2% Q+3, 1-2% Polpy +5% PyPoxcpy>Zns, 2% QC, 2% Q+3 +27. CPY>Ry>P=>Zns + 2% QC/Q+3 01413 149.0-150.0-()-) 01414 150.0-151.0m (1m) ц 61415 1510-152.0m (m) •) +87. Po>Py> Cpy>ZnS> Aspy +4% &c/Q+2 +810 Py7Po>Cpy>ZnS, +10% Qc/Q+3/Braccia-sheefed 152.0 + 153.0m (Jm) R 61416 153.0-154.0m (1m) " **b**1417 1-270 8/Po, 12 QC/943 1-270 Ry/Po, 12 QC/943 154.0-155.0m (Im) " 61418 155.0 - 156.0m (1m) " 101419 61420 156.0- 157.0m (1m) Altered Motic Dyke

 $: . . . \cap$

 \bigcirc

Appendix B:

C

(

Assay Certificates with Analytical and Geochemical Procedures

10041 Dallas Drive, Kamioops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

Analytical Procedure Assessment Report

GEOCHEMICAL AU/PT/PD ANALYSIS

Samples are catalogued and dried. Soils are prepared by sieving through an 80 mesh screen to obtain a minus 80 mesh fraction. Samples unable to produce adequate minus 80 mesh material are screened at a coarser fraction. These samples are flagged with the relevant mesh. Rock samples are 2 stage crushed to minus 10 mesh and a 250 gram subsample is pulverized on a ring mill pulverizer to -140 mesh. The subsample is rolled, homogenized and bagged in a prenumbered bag.

The sample is weighed to 10/15/30 grams and fused along with proper fluxing materials. The bead is digested in aqua regia and analyzed on an atomic absorption instrument. Over-range values for rocks are re-analyzed using gold assay methods.

Appropriate reference materials accompany the samples through the process allowing for quality control assessment. Results are entered and printed along with quality control data (repeats and standards). The data is faxed and/or mailed to the client.

K:Methods/meaupdpt

10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

GEOCHEMICAL PROCEDURES

Sample Preparation

Samples are catalogued and dried. Soils are prepared by sieving through an 80 mesh screen to obtain a minus 80 mesh fraction. Samples unable to produce adequate minus 80 mesh material are screened at a coarser fraction. These samples are flagged with the relevant mesh. Rock samples are 2 stage crushed to minus 10 mesh and a 250 gram subsample is pulverized on a ring mill pulverizer to -140 mesh. The subsample is rolled, homogenized and bagged in a prenumbered bag.

<u>Analysis</u>

<u>Gold</u>

Gold is determined by conventional lead collection fire assay. A 30g sample is fused and cupelled. The resultant dore bead is dissolved in aqua regia prior to determination of gold by Atomic Absorption.

Multi-Element ICP

A 0.5g sample is digested with 3ml of a 3:1:2 (H CI:HN03:H20) solution for 90 minutes in a water bath at 95°C. The sample is then diluted to 10ml with water. Samples are analyzed by a Jarrel Ash 61E ICP.

K:Methods/geoauana

10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

3

CERTIFICATE OF ASSAY AK 2001-394

NAVASOTA RESOURCES #207 141 VICTORIA STREET KAMLOOPS, BC V2C 1Z5

7-Nov-01

ATTENTION: LORNE WARNER

No. of samples received: 73 Sample type: Core **Project #: None Given Shipment #: None Given** Samples submitted by: Lorne Warner

l

			Au	Au	
	<u>ET #.</u>	Tag #	(g/t)	<u>(oz/t)</u>	
	5	00006	1.08	0.031	
	15	00016*	12.10	0.353	
	34	00035	1.23	0.036	
	66	00067*	3.25	0.095	
	67	00068	2.27	0.066	
QC	DATA:	:			
R	epeat: 15	00016*	8.69	0.253	
Sta	andard:				,
S	STD-M		1.87	0.055	
NO	TE:	* = Metallic Scre	en Recommended		

XLS/01

Fax: 250-996-8061 (Rm 201) Attn: Lorne Warner

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

CERTIFICATE OF ASSAY AK 2001-394M

NAVASOTA RESOURCES

#207 141 VICTORIA STREET KAMLOOPS, BC V2C 1Z5 16-Nov-01

ATTENTION: LORNE WARNER

No. of samples received: 73 Sample type: Core **Project #: None Given Shipment #: None Given** Samples submitted by: Lorne Warner

(Metallic S	creen Assay	
			Au	Au	
	ET #.	Tag #	(g/t)	(oz/t)	
=	15	00016	8.98	0.262	
	66	00067	3.54	0.103	

QC DATA:

XLS/01

Resplit			
15	00016	9.45	0.276

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C./Certified Assayer

10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

CERTIFICATE OF ASSAY AK 2001-405

NAVASOTA RESOURCES

#207 141 VICTORIA STREET KAMLOOPS, BC V2C 1Z5 19-Nov-01

ATTENTION: LORNE WARNER

No. of samples received: 131 Sample type: Core **Project #: None Given Shipment #: None Given** Samples submitted by: Lorne Warner

$(\)$			A	A	
~~~			Au	Au	
	<u> </u>	Tag #	<u>(g/t)</u>	(oz/t)	
_	27	00101	1.45	0.042	
	36	00110	1.26	0.037	
	42	00116	4.16	0.121	
	45	00119	2.06	0.060	
	46	00120	1.36	0.040	
	47	00121	1.57	0.046	
	48	00122	2.34	0.068	
	56	00130	14.70	0.429	
	76	00150	2.18	0.064	
	94	00168	1.05	0.031	
	98	00172	13.20	0.385	

#### QC DATA:

Resplit:		
R98	00172	13.40

000 CH LABOR TORIES LTD. **IFC** Frank J. Pezzotti, A.Sc.T. Certified Assayer B.C.

XLS/01

0.391



10041 Datlas Drive, Kamioops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

### **CERTIFICATE OF ANALYSIS AK 2001-394**

NAVASOTA RESOURCES #207 141 VICTORIA STREET KAMLOOPS, BC V2C 1Z5

28-Nov-01

#### ATTENTION: LORNE WARNER

No. of samples received: 73 Sample type: Core **Project #: None Given Shipment #: None Given** Samples submitted by: Lorne Warner

		Pd	Pt	
ET #.	Tag #	(ppb)	(ppb)	
33	00034	<5	<5	
34	00035	<5	<5	
66	00067	<5	5	
67	86000	<5	<5	
68	00069	<5	5	
69	00070	<5	<5	

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

∧LS/01



10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

### CERTIFICATE OF ANALYSIS AK 2001-405

#### NAVASOTA RESOURCES

#207 141 VICTORIA STREET KAMLOOPS, BC V2C 1Z5 28-Nov-01

#### ATTENTION: LORNE WARNER

No. of samples received: 131 Sample type: Core **Project #: None Given Shipment #: None Given** Samples submitted by: Lorne Warner

~			Pd	Pt	
-	ET #.	Tag #	(ppb)	(ppb)	
	22	00096	<5	<5	
	27	00101	<5	<5	
	36	00110	<5	<5	
	42	00116	<5	<5	
	45	00119	<5	<5	
	46	00120	<5	<5	
	47	00121	<5	<5	
	48	00122	<5	<5	
	56	00130	<5	<5	
	76	00150	<5	<5	
	94	00168	<5	<5	
	98	00172	<5	<5	

ECO-TECHLABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/01



10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

### CERTIFICATE OF ANALYSIS AK 2001-415

NAVASOTA RESOURCES #207 141 VICTORIA STREET KAMLOOPS, BC V2C 1Z5 28-Nov-01

ATTENTION: LORNE WARNER

No. of samples received: 172 Sample type: Core **Project #: None Given Shipment #: None Given** Samples submitted by: Lorne Warner

-			Pd	Pt	
	ET #.	Tag #	(ppb)	(ppb)	
	61	00265	<5	<5	
	62	00266	<5	<5	
	68	00272	<5	<5	
	73	00277	<5	<5	
	103	00808	<5	<5	
	106	00811	<5	10	
	113	00818	<5	<5	
	118	00823	<5	<5	
	122	00827	<5	<5	
	125	24803	<5	<5	
	168	24846	<5	<5	
	171	24849	<5	<5	

CH LABORATORIES LTD. ECØ Prank J. Pezzotti, A.Sc.T. B.C./Certified Assayer

XLS/01

ſ



10041 Dallas Drive, Kamloops, B.C. V2C 674 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

### CERTIFICATE OF ASSAY AK 2001-415

#### NAVASOTA RESOURCES #207 141 VICTORIA STREET KAMLOOPS, BC V2C 1Z5

21-Nov-01

#### ATTENTION: LORNE WARNER

No. of samples received: 172 Sample type: Core **Project #: None Given Shipment #: None Given** Samples submitted by: Lorne Warner

		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
68	00272	1.81	0.053	
73	00277	2.23	0.065	
103	00808	2.22	0.065	
106	00811	1.42	0.041	
113	00818	6.26	0.183	
118	00823	2.07	0.060	
122	00827	1.00	0.029	
125	24803	1.08	0.031	
168	248 <b>4</b> 6	2.94	0.086	
171	24849	1.25	0.036	

#### QC DATA:

Standard:	
STD-M	

1.85 0.054

. P/kk XLS/01 Fax: 374-9296 Attn: Lorne Warner

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

### CERTIFICATE OF ASSAY AK 2002-013

#### NAVASOTA RESOURCES

#207 141 VICTORIA STREET KAMLOOPS, BC V2C 1Z5 12-Feb-02

#### ATTENTION: LORNE WARNER

No. of samples received: 127 Sample type: Core **Project #: None Given Shipment #: None Given** Samples submitted by: Lorne Warner

	Metallic Assay			
		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
11	01011	16.21	0.473	

ECO TECH LABORA ORY LTD. Jutta Jealouse

B.C. Certified Assayer

JJ/kk XLS/02



10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

### CERTIFICATE OF ASSAY AK 2002-015

#### NAVASOTA RESOURCES

#207 141 VICTORIA STREET KAMLOOPS, BC V2C 1Z5

13-Feb-02

#### ATTENTION: LORNE WARNER

No. of samples received: 75 Sample type: Core **Project #: None Given Shipment #: None Given** Samples submitted by: Lorne Warner

		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
8	01135	18.0	0.525	

#### QC DATA:

Standard: STD-M

1.85 0.054

JJ/kk XLS/02

LABORATORY EØÓ LTD. Jutta Jealouse B.C. Certified Assaver



10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

### CERTIFICATE OF ASSAY AK 2002-29

#### NAVASOTA RESOURCES

#207 141 VICTORIA STREET KAMLOOPS, BC V2C 1Z5 27-Mar-02

#### ATTENTION: LORNE WARNER

No. of samples received: 42 Sample type: Core **Project #: None Given** Shipment #: None Given Samples submitted by: Lorne Warner

		Metall	ic Assay	
		Au	Au	
ET #.	Tag #	( <u>g</u> /t)	<u>(</u> oz/t)	
27	01477	30.11	0.878	

ECO TECH LABORATORY LTD. kutta Jealouse

rutta Jealouse B.C. Certified Assayer

J/kk JLS/02



10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

### CERTIFICATE OF ASSAY AK 2002-031

#### NAVASOTA RESOURCES

#207 141 VICTORIA STREET KAMLOOPS, BC V2C 1Z5 28-Mar-02

#### ATTENTION: LORNE WARNER

No. of samples received: 159 Sample type: Core **Project #: None Given Shipment #: None Given** Samples submitted by: Lorne Warner

		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
94	01586	1.15	0.034	<u> </u>
95	01587	1.03	0.030	
97	01589	1.01	0.029	
108	01600	1.10	0.032	
151	01643	1.21	0.035	

JJ/kk XLS/02

ECØ TECHL ABORAT LTD. ORY lutta llealouse B.C./Centified Assayer



10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

### CERTIFICATE OF ANALYSIS AK 2002-031

# NAVASOTA RESOURCES

Eco

#207 141 VICTORIA STREET KAMLOOPS, BC V2C 1Z5

#### ATTENTION: LORNE WARNER

No. of samples received: 159 Sample type: Core **Project #: None Given Shipment #: None Given** Samples submitted by: Lorne Warner

			Au	
$\sim$	ET #.	Tag #	(ppb)	
	1	01493	10	
	2	01494	5	
	3	01495	10	
	4	01496	15	
	5	01497	25	
	6	01498	15	
	7	01499	10	
	8	01500	15	
	9	01501	35	
	10	01502	20	
	11	01503	130	
	12	01504	120	
	13	01505	75	
	14	01506	15	
	15	01507	30	
	16	01508	30	
	17	01509	15	
	18	01510	10	
	19	01511	10	
	20	01512	35	
	21	01513	45	
	22	01514	520	
_	23	01515	10	
(	24	01516	15	
~	25	01517	20	
	26	01518	·15	

Tech LABORATORY LTD.

28-Mar-02

# C VAVASOTA RESOURCES AK 2002-031

			Ац	
	ET #.	Tag #	(ppb)	
:	27	01519	65	
	28	01520	15	
	29	01521	30	
	30	01522	25	
	31	01523	15	
	32	01524	20	
	33	01525	40	
	34	01526	20	
	35	01527	10	
	36	01528	<5	
	37	01529	<5	
	38	01530	5	
	39	01531	5	
	40	01532	10	
	41	01533	10	
	42	01534	15	
	43	01535	10	
	44	01536	5	
	45	01537	35	
$\sim$	46	01538	5	
(	47	01539	30	
	48	01540	<5	
	49	01541	<5	
	50	01542	<5	
	51	01543	<5	
	52	01544	190	
	53	01545	75	
	54	01546	10	
	55	01547	35	
	56	01548	25	
	57	01549	5	
	58	01550	5	
	59	01551	<5	
	60	01552	<5	
	61	01553	5	
	62	01554	25	
	63	01555	80	
	64	01556	135	
	65	01557	20	
	66	01558	10	
	67	01559	10	
	68	01560	5	

28-Mar-02

_

.....
## C 'AVASOTA RESOURCES AK 2002-031

	, <u>ninv</u>	WILLING &		
-	FT#	Tao #	Au (daa)	
:		01566	20	
	74	01000	20	
	75	01567	10	
	76	01568	10	
	77	01569	10	
	78	01570	5	
	79	01571	10	
	80	01572	480	
	81	01573	345	
	82	01574	10	
	83	01575	10	
	84	01576	80	
	85	01577	220	
	86	01578	55	
	07	04570	20	

28-Mar-02

	75	01567	10
	76	01568	10
	77	01569	10
	78	01570	5
	79	01571	10
	80	01572	480
	81	01573	345
	82	01574	10
	83	01575	10
	84	01576	80
	85	01577	220
	86	01578	55
	87	01579	20
	88	01580	805
	89	01581	10
	90	01582	5
	91	01583	10
	92	01584	10
_	93	01585	10
(	94	01586	>1000
	95	01587	>1000
	96	01588	345
	97	01589	>1000
	98	01590	25
	99	01591	310
	100	01592	685
	101	01593	875
	102	01594	_775
	103	01595	80
	104	01596	25
	105	01597	10
	106	01598	15
. (	107	01599	20
د ہ 	_108	01600	960
t.	109	01601	20
• · · · ·	110	01602	5
	111	01603	5
	112	01604	10
	113	01605	5
	114	01606	5
	115	01607	10
	116	01608	5
$\bigcap$	117	01609	5
$\sim$	118	01610	10
	119	01611	10
	120	01612	20

# Eco Tech LABORATORY LTD. Page 3

# CIAVASOTA RESOURCES AK 2002-031

.

01650

01651

158

159

C

			Au	
-	ET #,	Tag #	(ppb)	
	121	01613	10	
	122	01614	110	
	123	01615	10	
	124	01616	20	
	125	01617	10	
	126	01618	10	
	127	01619	10	
	128	01620	5	
	129	01621	5	
	130	01622	10	
	131	01623	10	
	132	01624	10	
	133	01625	10	
	134	01626	15	
	135	01627	30	
	136	01628	35	
	137	01629	10	
	138	01630	10	
	139	01631	240	
$\sim$	140	01632	375	
(	141	01633	120	
	142	01634	15	
	143	01635	5	
	144	01636	5	
	145	01637	125	
	146	01638	285	
	147	01639	160	
	148	01640	10	
	149	01641	10	
	150	01642	30	
	151	01643	>10004.2	ŧ
	152	01644	15	
	153	01645	15	
	154	01646	85	
	155	01647	20	
	156	01648	15	
	157	01649	15	

## 28-Mar-02

____

Eco Tech LABORATORY LID. Page 4

20

15

## C IAVASOTA RESOURCES AK 2002-031

		Au	
ET #.	_Tag #	(ppb)	
QC DA	<u>TA:</u>		
Repeat	:		
1	01493	10	
10	01502	20	
19	01511	15	
22	01514	515	
36	01528	<5	
45	01537	5	
52	01544	160	
54	01546	10	
71	01563	10	
80	01572	470	
81	01573	290	
85	01577	250	
88	01580	790	
89	01581	10	
94	01586	340	
96	01588	340	
99	01591	340	
100	01592	690	
101	01593	940	
102	01594	940	
106	01598	15	
115	01607	10	
124	01616	15	
139	01631	240	
140	01632	450	
146	01638	290	
147	01639	200	

### Resplit:

1	01493	15
36	01528	5
71	01563	5
106	01598	20
141	01633	130

### Standard:

(

GEO'02	125
GEO'02	135
GEO'02	125
GEO'02	130

JJ/kk XLS/02 Fax: 374-9296 Attn: Lome Warner

ECO TECH LABORATORY LTD. Jutta Jeakuse B.C. Centified Assayer

28-Mar-02

......

Eco Tech LABORATORY LTD. Page 5



### ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

## CERTIFICATE OF ANALYSES AK 2002-65

NAVASOTA RESOURCES #207 141 VICTORIA STREET KAMLOOPS, BC V2C 1Z5

ATTENTION: LORNE WARNER

No. of samples received: 93 Sample type: Core **Project #: None Given Shipment #: None Given** Samples submitted by: Lorne Warner

			Pd	Pt	
	ET #.	Tag #	(ppb)	(ppb)	
-	1	01810	<5	<5	
~	2	01811	5	<5	•
_	3	01812	<5	<5	
	4	01813	<5	5	
	5	01814	<5	<5	
	6	01815	<5	5	
	7	01816	<5	<5	
	8	01817	<5	<5	
	9	01818	<5	<5	
	10	01819	5	<5	
	11	01820	15	<5	
	12	01821	<5	<5	
	13	01822	<5	5	
	14	01823	5	<5	
	15	01824	5	5	
	16	01825	<5	5	
	17	01826	<5	<5	
	18	01827	5	<5	
	19	01828	<5	<5	
	20	01829	<5	<5	
	21	01830	<5	5	
	22	01831	<5	<5	
	23	01832	<5	5	
	24	01833	<5	<5	
	25	01834	<5	<5	
	26	01835	<5	<5	
-	27	01836	<5	5	
-	28	01837	5	5	
	29	01838	5	<5	

Page 1

28-May-02

## VAVASOTA RESOURCES AK - 065

С

## 28-May-02

			Pd	Pt	
	ET #.	Tag #	(ppb)	(ppb)	
=	30	01839	<5	5	
	31	01840	<5	<5	
	32	01841	<5	<5	
	33	01842	<5	<5	
	34	01843	<5	<5	
	35	01844	<5	<5	
	36	01845	5	<5	
	37	01846	5	<5	
	38	01847	<5	<5	
	39	01848	5	<5	
	40	01849	<5	5	
	41	01850	5	<5	
	42	01851	<5	5	
	43	01852	<5	<5	
	44	01853	<5	<5	
	45	01854	<5	<5	
	46	01855	5	<5	
	47	01856	5	<5	
	48	01857	<5	5	
	49	01858	5	<5	
$\mathcal{C}$	50	01859	<5	<5	
5	51	01860	5	<5	
	52	01861	<5	<5	
	53	01862	<5	<5	
	54	01863	<5	<5	
	55	01864	<5	<5	
	56	01865	<5	<5	
	57	01866	<5	5	
	58	01867	<5	<5	
	59	01868	<5	<5	
	60	01869	<5	<5	
	61	01870	<5	<5	
	62	01871	<5	<5	
	63	01872	<5	<5	
	64	01873	<5	<5	
	65	01874	5	<5	
	66	01875	<5	<5	
	67	01876	<5	<5	
	68	01877	<5	<5	
	69	01878	<5	<5	
	70	01879	<5	<5	
	71	01880	<5	<5	
	72	01881	5	<5	
	73	01882	5	5	
~	74	01883	5	<5	
<u> </u>	75	01884	<5	<5	
-	76	01885	<5	<5	
	77	01886	<5	<5	

## ( JAVASOTA RESOURCES AK - 065

,

28-May-02

		Pd	Pt	
ET #.	Tag #	(ppb)	(ppb)	
78	01887	<5	<5	
79	01888	<5	<5	
80	01889	5	<5	
81	01890	<5	<5	
82	01891	5	<5	
83	01892	5	<5	
8 <b>4</b> «	01893	<5	<5	
85	01894	<5	<5	
86	01895	<5	<5	
87	01896	5	<5	
88	01897	5	<5	
89	01898	<5	<5	
90	01899	5	<5	
01	01900	<5	<5.	•
97	01901	<5	<5	
93	01902	5	<5	

JJ/kk XLS/02

 $\mathbb{C}$ 

(

٤ ک ECO TECH LABORATORY LTD. Jutta/Jealouse B.C/ Centified Assayer ί

8-Nov-01 ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Мп	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	u	v	w	Y	Zn
1	00002	5	<0.2	2,12	<5	30	<5	2.71	<1	15	34	195	3.72	<10	0.61	331	7	0.04	<1	1930	7	<5	<20	44	0.11	<10	50	<10	31	17
2	00003	5	<0.2	1.09	<5	30	<5	1.52	<1	14	44	187	2,67	<10	0.29	210	12	0.04	<1	1080	7	<5	<20	50	0.09	<10	21	<10	14	13
3	00004	5	<0.2	1.34	<5	25	<5	2.15	<1	10	43	77	2.34	<10	0.54	328	6	0.03	<1	1090	3	<5	<20	32	0.08	<10	37	<10	15	15
4	00005	10	<0.2	1.09	10	35	<5	5.04	<1	8	45	91	2.70	<10	0.60	707	1	0.03	<1	1130	4	<5	<20	170	<0.01	<10	40	<10	30	20
5	00006	>1000	<0.2	0.96	5830	40	10	5.49	21	14	40	98	4.38	<10	0.38	930	7	0.03	<1	1550	4	30	<20	162	<0.01	<10	25	<10	25	35
																													20	<b>Q</b>
6	00007	200	<0.2	1.63	1605	45	<5	6,12	3	13	19	98	4.46	<10	1.11	901	5	0.03	<1	1930	4	5	<20	311	<0.01	<10	69	<10	36	25
7	00008	25	<0.2	1.68	15	30	5	2.34	<1	12	36	94	2.94	<10	0.54	362	3	0.04	<1	1460	3	5	<20	39	0.09	<10	55	<10	14	18
8	00009	10	<0.2	1.03	<5	55	<5	1.68	<1	9	52	97	2.20	<10	0.27	245	3	0.04	<1	910	4	<5	<20	118	0.07	<10	34	<10	14	11
9	00010	5	<0.2	1.15	<5	35	<5	1.57	<1	13	54	176	3.00	<10	0.34	188	38	0.05	<1	1240	3	<5	<20	47	0.09	30	25	<10	18	11
10	00011	5	<0.2	0.96	<5	30	<5	1.26	<1	11	60	139	2.69	<10	0.22	200	16	0.04	<1	1160	4	<5	<20	37	0.08	10	60	<10	15	12
																						_		•	0.00		֥	-10	10	12
11	00012	≺5	<0.2	1.56	5	45	<5	2.09	<1	12	33	130	2.98	<10	0.26	241	10	0.06	<1	1800	з	<5	<20	62	0.10	<10	66	<10	24	17
12	00013	<5	<0.2	1.37	<5	40	10	1.94	<1	14	49	143	3.40	<10	0.31	244	13	0.08	<1	1650	3	<5	<20	63	0.12	10	49	<10	20	36
13	00014	5	<0.2	1.77	<5	40	<5	2.18	<1	12	41	122	3.38	<10	0.31	292	20	0.06	<1	1700	2	<5	<20	43	0.12	10	55	<10	16	16
14	00015	25	<0.2	1.68	<5	45	15	2.35	<1	11	38	49	2.71	<10	0.50	366	4	0.07	<1	1890	3	<5	<20	54	0.12	<10	51	~10	26	16
15	00016	>1000	11.3	1.69	235	30	<5	1.98	<1	45	70	1367	5.29	<10	0.79	597	4	0.05	<1	1520	6	<5	<20	32	0.08	20	106	-10	13	87
																						•			0.00	20	100	~10	13	01
16	00017	85	0.2	1.79	<5	115	15	2.40	<1	13	33	47	3.65	<10	0.63	506	1	0.09	<1	1900	2	5	<20	100	0.14	<10	102	<10	33	25
17	00018	45	<0.2	2.08	5	70	20	4,17	<1	15	24	24	3.98	<10	0.88	642	3	0.04	<1	1780	5	<5	<20	126	0.08	<10	113	<10	20	20
18	00019	30	<0.2	1.92	70	20	10	9.60	<1	14	26	48	3.87	<10	0.89	821	2	0.04	<1	1540	7	<5	<20	367	0.06	<10	68	<10 <10	20	10
19	00020	10	<0.2	2.18	10	55	15	3.04	<1	15	25	93	3.84	<10	0.69	500	2	0.04	<1	2040	5	<5	<20	95	0.00	c10	96	~10	22	20
20	00021	10	<0.2	1.73	10	25	<5	2.27	<1	19	29	151	3.24	<10	0.50	297	22	0.04	<1	2020	6	<5	<20	24	0.12	~10	34	10	30	40
																			•		•		-20	**	0.11	~ I <b>Q</b>	51	10	30	10
21	00022	15	<0.2	2.91	<5	35	20	3.14	<1	15	34	63	3.88	<10	0.66	463	2	0.05	<1	1960	7	<5	<20	23	0.13	<10	70	~10	26	22
22	00023	10	<0.2	2.07	5	70	20	2.39	<1	14	37	62	3.35	<10	0.50	364	<1	0.06	<1	2190	7	<5	<20	89	0.16	~10	69	~10	20	2.2
23	00024	5	0.2	2.21	10	60	5	3.01	<1	22	35	139	3,78	<10	0.66	466	1	0.07	3	2170	5	<5	<20	95	0.15	<10	50	~10	<u>∡4</u> 22	22
24	00025	20	0.2	1.96	5	65	10	2.53	<1	15	35	125	3.17	<10	0.49	381	<1	0.07	<1	2200	8	<5	<20	76	0.13	~10	54	~10	20	44 20
25	00026	5	0.3	2.13	10	35	<5	2.66	<1	22	35	129	3.14	<10	0.76	398	21	0.03	<1	1940	6	10	<20	33	0.10	c10	47	~10	47	10
																	- '				-			~~	0.10	~ 10		210		10

#### ICP CERTIFICATE OF ANALYSIS AK 2001-394

NAVASOTA RESOURCES #207 141 VICTORIA STREET KAMI COPS, BC

#### KAMLOOPS, BC V2C 1Z5

#### ATTENTION: LORNE WARNER

No. of samples received; 73 Sample type: Core **Project #: None Given** Shipment **#: None Given** Samples submitted by: Lorne Warner NAVASOTA RESOURCES

---

ICP CERTIFICATE OF ANALYSIS AK 2001-394

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	_Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Tì %	U	v	w	Y	Zn
26	00027	15	0.2	2.50	30	45	10	4.70	<1	77	· 41	248	7.49	<10	1.05	865	29	0.03	1	1690	7	5	<20	61	0.09	<10	84	<10		26
27	00028	. 10	<0.2	2.14	10	85	25	2.32	<1	17	31	41	4.11	<10	0.57	434	1	0.07	<1	2270	5	10	<20	141	0.14	-10	102	~10	21	20
28	00029	5	0.3	2.05	10	65	20	2.21	<1	21	30	79	4,39	<10	0.63	396	1	0.07	3	2080	4	<5	<20	86	0.17	-10	105	~10	44	20
29	00030	10	0.2	2.44	<5	40	15	2.87	<1	26	31	132	5.40	<10	0.93	511	5	0.06	<1	2280	, 8	<5	<20	120	0.17	~10	105	~10	14	27
30	00031	10	< 0.2	2.13	10	45	<5	2.29	<1	24	37	116	4.77	<10	0.67	378	11	0.08	<1	2200	Å	-5	~20	100	0.17	~10	00	510	11	29
									•		-				0.07	0,0		0.00	•••	1400	-	-0	~20	100	U. 10	×10	07	×10	18	27
31	00032	5	<0.2	2.24	15	70	15	2.23	<1	24	43	96	4 26	<10	0.60	374	R	0.07		2150	2	~5	~20	60	6 <b>4</b> 6		*00	46		
32	00033	75	<0.2	2.58	<5	50	15	3.47	<1	21	27	32	4.57	<10	0.00	558	ž	0.07	-1	2100	3	40	~20	00	0.19	510	120	10	25	28
33	00034	680	0.2	3.01	20	50	10	4 52	<1	32	22	199	8.65	<10	1.51	1009		0.05	1	1050	*	~5	~20	100	0.21	<10 -10	131	<10	6	28
34	00035	>1000	<0.2	2.93	60	45	<5	6.98	<1	28	10	381	5 60	-10	1.28	1150	, e	0.00		1000	10	~0	~20	103	0.14	<10	183	10	16	52
35	00036	70	14	3 22	20	35	20	4 55	e 1	20	28	001	5.00	~10	1.20	1100 050	2	0.00		1710	10	< <u>o</u>	<20	239	0.07	<10	160	<10	36	84
				0.22		54	~~	4,00	- 1	~~	20	UL	0.21	-10	1.40	009	3	0.05	~1	2030		5	<20	99	0.17	<10	134	<10	11	31
36	00037	80	<0.2	2.43	10	55	15	3.68	<1	16	21	88	3 89	<10	0.04	716	2	0.08	21	2480	2	-8	-00	004	o 40					
37	00038	85	0.2	2.22	15	40	10	2 99	<1	19	29	122	3.79	<10	0.77	532	18	0.00	1	2700	2	~5	~20	221	0.12	<10	86	<10	16	23
38	00039	40	<0.2	2.29	10	55	<5	2.98	<1	18	33	153	3.00	<10	0.72	679	10	0.00		2230	~2	~3	~20	450	0.11	<10	83	<10	18	22
39	00040	15	<0.2	2.31	5	80	10	2 98	<1	15	28	47	3 60	-10	0.59	630	~1	0.00	1	2200	~2	-0 ∠E	~20	159	0.13	<10	89	<10	16	26
40	00041	5	<0.2	1.68	10	20	20	3 79	- 1 <1	14	22	40	2 76	~10	0.00	410	~1	0.07	~1	2400	-	<0 ~E	<20 	352	0.14	<10	77	<10	17	24
-		-			10	20	20	0.70	- 1	, -		-0	2.15	10	0.04	410	~1	0.00	51	2160	2	-0	<20	166	0.13	<10	39	<10	22	21
41	00042	160	0.4	3.28	165	75	<5	5.64	<1	19	9	191	4.66	<10	1.11	1084	9	0.21	<1	2020	4	<5	<20	466	0.00	~10	Ó5	~10	24	20
42	00043	65	0.4	2.86	20	45	<5	3.56	<1	19	13	186	3.91	<10	0.92	778	å	0.22	<1	1820	4	-0 25	-20	346	D 11	~10	50	~10	31	39
43	00044	<5	0.2	2.37	10	70	5	2.73	<1	17	34	111	3.26	<10	0.59	570	ě	0.08	<1	2160	3	-0	~20	272	0.11	~10	67	~10	33	34
44	00045	25	<0.2	2.61	15	35	15	3.35	<1	21	37	121	3.92	<10	0.84	57B	5	0.08	e1	1840	ž	-5	~20	104	0.11	~10		~10	34	39
45	00046	5	<0.2	2.48	10	35	10	3.10	<1	21	25	139	3.88	<10	0.81	525	10	0.00	- 1	1780	é	~5	~20	161	0.10	510	54	20	25	25
									•	- /		100	0.00		0.01	010	10	0.00	- 1	1700	v	~0	~20	103	0.11	<10	44	<10	19	23
46	00047	5	0.3	2.44	30	45	10	3.63	<1	19	27	119	3.97	<10	0.79	743	5	0.06	<1	1850	4	5	<20	266	0.08	~10	78	10	24	
47	00048	5	0.3	2.08	30	40	10	6.28	<1	17	36	78	4.11	<10	0.83	924	۵.	0.04	<1	1750	R	~5	-20	105	0.00	~10	70	20	34	32
48	00049	<5	0.2	2.34	15	60	15	3.44	<1	15	50	47	3.47	<10	0.67	701	<1	0.06	et	1890	8		~20	145	0.00	~10	60	20	31	20
49	00050	<5	<0.2	2.65	20	40	10	3.66	<1	17	37	59	3.93	<10	0.88	844	2	0.06	<1	2030	4	5	~20	110	0.12	~10	09	10	21	20
50	00051	10	0.2	2.16	50	40	<5	3.21	<1	21	50	185	4 16	<10	1 1 1	752	12	0.00	12	1450	<del>ہ</del>	10	~20	460	0.11	510	04	10	35	33
							-				•••						10	0.00	12	1400	v	IV.	~20	100	0.04	510	121	<10	40	31
51	00052	5	0.2	1.44	25	20	5	1.83	<1	16	122	169	3.83	<10	1.02	491	7	0.04	32	600	5	5	~20	47	0.05	- 10	400	40		
52	00053	<5	<0.2	1.96	<5	40	15	2.08	<1	25	57	231	5 15	<10	0.04	1005	11	0.04	17	1610	5	-E	~20	4 <u>7</u>	0.05	510	123	10	56	27
53	00054	5	<0.2	1.30	10	30	<5	2.58	<1	16	87	142	3.87	<10	0.83	1083	12	0.00	47	900	2	~0	~20	45	0.17	<10	5/	<10	31	37
54	00055	5	0.4	1.85	40	65	20	4 71	<1	30	53	210	4 4 4	-10	0.00	600	0	0.05		1170	د د		-20	40	0.17	<10	42	10	37	32
55	00056	20	0.2	7 72	30	50	10	4 93	<1	34	30	280	A 25	~10	1 43	1042	14	0.00	20	1000	5	20	~20	117	0.08	<10	93	30	38	42
			0.2			Ç.		4.00	- 1	54	50	200	0.00	-10	1,40	1042	14	0.05	14	1090	D	10	<2Q	113	0.15	<10	158	20	20	41
56	00057	15	<0.2	2.29	10	15	20	2.19	<1	23	44	217	4.81	<10	1.24	593	6	0.05	4	1840	4	25	<70	۵	0.10	c10	<b>4</b> 2	20	34	
57	00058	5	<0.2	1.70	15	55	5	4.53	<1	19	30	149	4.80	<10	0.76	662	29	0.05	<1	2210	4	<5	<70	110	0.06	<10	67	30	21	29
58	00059	15	<0.2	2.24	195	50	10	2.65	<1	22	55	169	4 54	<10	0.84	608	12	0.05	<1	2280	5	10	~20	57	0.00	~10	0/ 72	20	20	\$/ 00
59	00060	10	<0.2	2.61	260	50	5	4.90	<1	21	46	141	4.12	<10	0.88	875	87	0.00	21	2060	3	20	-20	177	0.00	<10 10	13	20	21	30
60	00061	25	<0.2	1.74	625	60	10	4.40	<1	20	40	165	4.47	<10	0.83	810	17	0.04	-1	2300		20	~40	177	0.00	-10	73	20	14	35
															0.00	÷	• *	V.U-1	- 1	~~~~	-	40	~zv	<b>4</b> 4U	V, V4	510	62	40	29	- 34

NAVASOTA RESOURCES ICP CERTIFICATE OF ANALYSIS AK 2001-394 ECO-TECH LABORATORIES LTD. Et #. Tag # Au(ppb) Ag Al% Ba Bi Ca % Cd Co Cr As Cu Fe% La Mg % Mn Mo Na% NI Ρ Pb Sb Sn Sr TI% U v W Y Zn 61 00062 30 < 0.2 1.74 760 859 221 45 <5 4.44 <1 21 40 5.83 <10 0.97 7 0.04 <1 2190 <5 <20 30 3 193 0.04 69 10 13 35 62 00063 <5 < 0.2 2.16 10 45 <5 2.71 <1 19 45 145 3.60 <10 0.71 562 11 0.05 <1 1930 2 <5 <20 55 0.09 <10 50 <10 19 31 63 00064 5 <0.2 1.85 10 30 10 <1 1.83 24 59 211 4.63 <10 0.72 536 48 0.06 4 1760 2 5 <20 25 0.09 <10 69 10 19 31 64 00065 50 <0.2 1.75 10 35 <5 1.85 <1 32 57 311 5.91 <10 0.58 410 10 0.07 2 1740 З 10 25 <20 0.08 <10 37 20 7 24 65 00066 5 <0.2 1.92 10 35 <5 1.93 <1 21 59 174 4.29 <10 0.66 437 7 0.08 1700 <1 <2 <5 <20 44 0.08 <10 44 10 16 22 66 00067 >1000 0.2 1.98 <5 65 <5 1.28 109 <1 98 1000 >10 <10 1.03 586 51 0.03 23 920 2 30 <20 16 0.09 <10 192 310 <1 42 67 00068 >1000 0.2 2.15 50 15 <5 1.69 <1 66 64 717 >10 <10 1.08 658 25 0.03 13 1410 з 10 <20 21 0.08 <10 139 50 <1 32 68 00069 890 0.4 2.12 5 55 15 1.01 <1 38 158 7.80 328 <10 1.33 648 66 0.02 16 1040 2 <5 <20 7 0.16 <10 208 10 5 31 2.07 69 00070 830 0.2 5 50 <5 0.91 <1 51 163 658 8.95 <10 1.28 538 19 0.03 32 590 2 15 <20 7 0.19 <10 202 20 32 <1 70 00071 425 0.2 1.83 <5 50 <5 0.75 <1 41 205 351 7.39 <10 1.10 404 14 0.06 42 630 2 5 <20 17 0.17 <10 299 10 5 33 71 00072 15 <0.2 1.76 <5 50 <5 0.82 <1 30 191 271 5.53 <10 385 18 0.07 1.17 37 690 2 5 <20 23 0.20 <10 <10 181 19 25 72 00073 <0.2 1.83 10 40 <5 25 1.02 <1 38 163 293 6.16 <10 451 10 0.07 32 1.19 910 4 10 <20 16 0.19 <10 181 <10 22 28 73 00074 30 <0.2 1.65 <5 35 <5 0.95 <1 28 165 248 5.46 <10 1.15 407 7 0.05 34 800 3 15 <20 22 0.17 <10 170 <10 24 37 QC DATA: Resplit: 1 00002 5 <0.2 2.52 <5 25 <5 3.22 <1 18 39 204 4.17 <10 0.66 373 7 0.04 <1 2310 8 5 <20 48 0.12 10 <10 44 27 21 36 00037 2.62 15 55 5 <0.2 3.98 <1 17 90 90 20 4.20 <10 0.98 761 2 0.07 <1 2430 2 5 <20 232 0.13 <10 86 20 12 26 71 00072 < 0.2 1.74 <5 40 10 0.78 <1 29 172 262 10 5.44 <10 1.18 356 17 0.07 35 710 2 10 <20 14 0.19 <10 179 10 20 25 Repeat: 00002 2.25 1 5 <0.2 <5 25 <5 2.89 <1 16 36 200 3.89 <10 0.63 347 7 0.04 <1 2040 7 <5 <20 43 0.12 20 37 <10 30 19 00011 1.02 <5 40 <5 10 10 < 0.2 1.34 <1 13 143 2.85 0.23 210 20 0.05 64 <10 <1 1240 5 5 <20 0.08 44 <10 27 <10 17 13 19 00020 <0.2 2.25 10 70 10 10 3.12 <1 16 27 93 3.87 <10 0.69505 2 0.05 <1 2050 7 <5 <20 107 0.13 <10 78 10 32 20 36 00037 <0.2 2.63 10 55 15 3.90 <1 17 90 70 22 4.07 <10 750 2310 0.99 з 0.07 <1 2 <5 <20 226 0.14 <10 81 <10 18 25 45 00046 10 <0.2 2.60 15 25 20 3.27 <1 22 27 144 4.01 10 0.05 <10 0.84 546 <1 1920 5 <5 <20 158 0.12 <10 20 44 24 24 54 00055 <0.2 1.83 40 60 <5 <1 28 52 206 5 4.59 4.31 <10 0.87 956 0.05 18 1130 8 5 5 <20 109 0.08 <10 90 <10 29 40 68 00069 860 71 00072 <0.2 1.77 <5 45 <5 0.83 <1 30 193 271 <10 . 5.56 1.18 381 17 0.07 35 710 2 10 <20 15 0.18 <10 170 <10 20 25 Standard: GEO'01 125 1.5 1.68 60 150 15 1.53 <1 19 57 81 3.48 <10 0.89 671 <1 0.02 25 730 20 <5 <20 47 0.08 <10 69 <10 76 11 GEO'01 1.5 70 150 10 <1 60 82 125 1.76 1.62 21 3.68 <10 0.91 702 <1 0.02 27 740 18 <5 <20 48 0.10 <10 72 20 10 74 GEO'01 130 1.5 1.72 70 170 10 1.57 <1 22 62 84 3.57 <10 1.01 700 <1 0.02 24 720 21 <5 <20 59 0.11 <10 71 <10 11 76

FP/kk df/394as XLS/01

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti A.Sc.T. B.C. Certified Assayer

4

19-Nov-01

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. _ V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

23.

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	P	РЬ	Sb	Sn	Sr	Ti %	U	<u>v</u>	W	<u>Y.</u>	Zn
1	00075	10	<0.2	2.09	<5	75	<5	2.05	<1	15	40	79	3.57	20	0.64	364	5	0.04	11	1760	2	<5	<20	138	0.10	<10	66	<10	11	23
2	00076	15	<0.2	2.08	<5	50	<5	2.83	<1	16	38	61	3.71	20	0.78	437	14	0.04	14	1780	2	5	<20	90	0.15	<10	81	<10	9	23
3	00077	20	<0.2	2.10	<5	35	<5	4.21	<1	15	34	49	3.57	20	0.88	551	7	0.03	21	1700	2	5	<20	90	0.14	<10	70	<10	9	25
4	00078	15	<0.2	2.21	<5	45	<5	4.15	<1	15	28	62	4.10	20	1.02	686	2	0.03	20	1750	2	≺5	<20	106	0.10	<10	98	<10	11	27
5	00079	15	<0.2	2.07	<5	50	<5	5.04	<1	19	35	119	4.27	20	0.97	767	5	0.03	24	1600	3	5	<20	87	0.10	<10	100	<10	9	24
																	_					-			• • • •					
6	00080	20	<0.2	2.12	<5	70	<5	3.04	<1	16	26	68	3.60	20	0.63	537	3	0.04	16	1760	2	<5	<20	137	0.10	<10	92	<10	10	26
7	00081	15	<0.2	2.05	<5	40	<5	2.70	<1	15	46	81	3.28	20	0.72	545	3	0.04	15	1780	2	5	<20	40	0.12	<10	88	<10	10	22
8	00082	20	<0.2	1.93	<5	50	<5	2.62	<1	13	35	56	3.33	20	0.61	517	20	0.04	13	1760	2	5	<20	73	0.13	<10	93	<10	10	23
9	00083	20	<0.2	2.28	<5	65	<5	3.48	<1	12	32	27	3.36	20	0.63	539	2	0.05	18	1770	2	<5	<20	122	0.13	<10	99	<10	8	26
10	00084	20	<0.2	1.99	<5	30	<5	3.48	<1	12	32	31	3.14	20	0.75	515	4	0.04	17	1700	2	10	<20	54	0.13	<10	88	<10	9	23
					_		-						2 22	20	0.70	440		0.04	15	1700	~	c	~20	40	D 11	~10	04	-10	40	74
11	00085	20	< 0.2	2.17	<5	35	<5	2.92	<1	13	33	50	3.20	20	0.72	419	23	0.04	10	1040	-		~20	40	0.11	~10	01	S10 	10	21
12	00086	20	<0.2	2.06	<5	40	<5	2.56	<1	12	35	41	3.30	20	0.70	401	2	0.00	13	1010	2		~20	31 22	0.11	< 10	91	<10	12	22
13	00087	10	<0.2	2.09	<5	35	<5	2.77	<1	15	32	69	3.80	20	0.79	211	41	0.04	10	1700	ა ი	10	~20	دد 122	0.10	~10	100	<10	11	24
14	86000	5	<0.2	1.86	<5	90	<5	2.41	<1	12	32	27	3.21	20	0.49	390	2	0.00	14	1790	3	10	~20	133	0.11	<10 -10	100	<10	11	22
15	00089	15	<0.2	1.76	<5	65	<5	2.07	<1	13	25	. 07	3.10	20	0.44	343	4	Ų,Ų6	10	1820	ు	5	520	10	0.11	~10	60	<10	10	10
				2.00	~ F	80	~5	2.20	-1	4.4	20	70	3 30	20	0.50	347	10	0.07	17	1780	2	<5	<70	62	0.11	<10	74	c10	10	10
10	00090	20	<0.2	2.09	NO 25	00	~0	1.03	~1	40	21	24	3.40	20	0.37	300	17	0.06	10	1790	2	<5	<20	118	0.11	<10 <10	103	c10	10	20
1/	00091	10	<0.2	1.09	~0 ~E	50	~0	1.00	-1	12	70	42	3 70	20	0.76	441	11	0.05	18	1870	2	5	<20	82	0 11	<10	97	<10	8	22
10	00092	20	-0.2	2.43	~U ~E	150	~0	3.37	~1	10	20	33	2.76	20	0.30	321	5	0.00	13	1790	2	5	<20	347	0.07	<10	84	<10	ŏ	17
19	00093	30	<0.Z	2.24	~0	100	~5	2.40	~1	10	21	46	2.02	20	0.00	354	ă	0.00	11	1750	2	5	<20	77	0.07	<10	70	~10	44	10
20	00094	20	×0.2	1.00		00	~	2.14	~ 1	12					0.00	<del>0</del> 04	9	0.01	.,		0	v		••	0.00		<i>,</i> ,	-10		10
N. 21	00095	15	<0.2	173	<5	95	<5	2.27	<1	12	41	39	3.18	20	0.41	373	<1	0.06	11	1830	2	5	-20	160	0.09	<10	75	<10	11	20
469 22	00000	850	0.8	181	90	75	<5	3.07	<1	184	57	910	>10	40	0.99	566	33	0.03	15	1220	10	10	<20	46	0.06	<10	62	<10	8	27
23	00097	20	<0.2	1.69	<5	95	<5	2.05	<1	14	38	48	3.46	20	0.46	389	9	0.05	9	1710	2	<5	<20	162	0.07	<10	90	<10	13	22
× 24	00098	285	<0.2	2.69	<5	110	<5	2.07	<1	68	48	429	9.14	40	1.23	518	15	0.03	12	1480	5	10	<20	157	0.10	<10	105	<10	B	28
47 25	00099	25	<0.2	2.01	<5	125	<5	2.62	<1	13	34	46	3.25	20	0.58	452	2	0.06	12	1670	2	10	<20	227	0.07	<10	84	<10	11	21
., =-																														

ICP CERTIFICATE OF ANALYSIS AK 2001-405

#### NAVASOTA RESOURCES #207 141 VICTORIA STREET

#### KAMLOOPS, BC V2C 1Z5

#### ATTENTION: LORNE WARNER

No. of samples received: 131 Sample type: Core Project #: None Given Shipment #: None Given Samples submitted by: Lorne Warner

NAVASOTA RESOURCES ICP CERTIFICATE OF ANALYSIS AK 2001-405 19-Nov-01 Sr Ti% Y Р Pb SЪ Sn U v w Zn La Mg % Mn Mo Na% Ni Co Cu Fe % Bi Ca % Cd Cr Ag_AI% Ba Au(ppb) Å5 Et #. Tag # 19 <20 179 0.08 11 12 1680 10 <10 86 <10 20 415 0.07 2 13 32 65 2.92 0.43 4 4426 < 0.2 1.93 <5 100 <5 2.86 <1 40 00100 37 0.02 20 1100 6 15 <20 76 0.07 <10 61 <10 6 41 50 1.20 528 72 1032 >10 <5 3.89 <1 158 . >1000 0.5 1.87 <5 90 4 <u>च</u> ु27 00101 <20 191 0.09 70 <10 12 22 <5 <10 4 0.06 15 1710 2 35 65 3.30 20 0.53 410 90 <5 2.75 <1 14 55 <0.2 1.93 <5 **4% 28** 00102 25 19 1700 2 5 <20 49 0.09 <10 77 <10 12 550 3 0.05 43 3.32 20 0.63 <5 3.63 <1 14 41 35 <0.2 2.42 <5 35 00103 29 <20 270 0.08 <10 90 <10 10 20 2 <5 1 0.07 14 1630 12 35 37 3.07 20 0.46 430 <0.2 2.02 <5 115 <5 2.90 <1 00104 80 30 11 22 77 <10 17 1660 < 0.2 10 <20 142 0.11 <10 20 0.46 470 5 0.08 10 35 27 2.68 <5 75 <5 3.28 <1 120 <0.2 2.14 31 00105 <10 12 21 1 0.05 16 1710 2 5 <20 178 80.0 <10 71 38 2.80 20 0.50 498 11 33 85 <5 3.44 <1 25 < 0.2 1.94 <5 32 00106 23 10 ~20 231 0.07 <10 75 <10 11 20 0.55 425 2 0.08 16 1700 2 46 100 <5 2.97 <1 13 30 3.17 <5 00107 45 < 0.2 2.46 33 2 5 <20 290 0.07 <10 98 <10 10 21 20 0.33 335 <1 0.08 11 1650 10 2.85 2,33 <1 9 36 <5 145 <5 00108 10 <0.2 2.00 34 82 <10 9 22 14 1640 2 <5 <20 146 0.10 <10 20 381 2 0.09 37 23 2,88 0.39 <5 90 <5 2.75 <1 10 2.30 35 00109 15 <0.2 <20 51 0.06 <10 64 <10 10 20 30 0.72 542 <1 0.07 15 1390 <0.2 -5 49 46 441 7.57 >1000 < 0.2 2.48 75 <5 2.84 <1 <5 36 00110 2 <5 <20 389 0.06 <10 70 <10 11 18 14 1520 33 72 3.39 20 0.51 390 <1 0.09 <5 2.50 <1 14 <5 125 00111 75 <0.2 2.53 37 13 <1 0.06 13 1620 3 5 <20 183 0.09 <10 74 <10 24 0.78 567 82 4.00 20 2.77 <1 17 36 <0.2 2.26 <5 95 <5 38 00112 145 53 <10 12 21 18 1510 2 5 <20 64 0.09 <10 3 0.05 20 45 74 3.41 20 0.71 508 <1 140 <0.2 2.38 <5 40 <5 3.70 39 00113 283 0.08 <10 68 <10 12 17 20 0.53 398 1 0.08 14 1510 3 <5 <20 62 3.10 <5 2.65 <1 12 34 115 00114 35 <0.2 2.17 <5 40 33 690 4 0.04 17 1760 2 <5 <20 72 0.13 <10 105 <10 11 4.24 20 1.07 20 36 67 50 <5 2.75 <1 41 00115 55 <0.2 2.20 < 5 10 39 19 1410 6 5 <20 39 0.12 <10 111 <10 2 0.02 86 66 426 >10 40 1.71 821 2.19 <1 0.6 2.53 <5 75 <5 >1000 42 00116 28 90 90 <10 11 20 1.03 658 3 0.04 22 1790 3 5 <20 0.14 <10 23 34 54 4,04 <1 <5 40 <5 3.42 43 00117 160 < 0.2 2.41 101 0.13 <10 100 <10 14 23 17 1790 3 <5 <20 20 0.94 564 5 0.05 3.57 < 5 3.04 <1 19 38 36 140 < 0.2 2.11 <5 50 44 00118 <10 15 35 19 1770 3 5 <20 118 0.13 10 121 30 1.22 702 7 0.05 <5 2.73 218 6.25 <1 42 41 65 00119 >1000 <0.2 2.54 < 5 45 16 1820 3 <5 <20 206 0.13 <10 132 <10 12 45 6.63 30 1.38 885 2 0.05 33 45 124 <5 2.02 <1 <5 100 00120 >1000 <0.2 2.81 46 <5 <20 183 0.11 <10 90 <10 11 33 2 0.06 15 1790 3 30 1.04 755 145 5.98 <5 70 <5 2.34 <1 36 41 <0.2 2.67 47 00121 >1000 <20 291 0.12 91 36 16 1760 2 <5 <10 <10 11 244 7.12 30 1.25 838 1 0,09 <1 37 41 <5 2.48 0.2 3.36 <5 90 48 00122 >1000 <5 <20 199 0.12 78 <10 13 33 20 0.98 716 1 0.06 18 1860 3 <10 4.93 <1 28 40 80 <5 65 <5 2.98 300 < 0.2 2.50 49 00123 19 2010 3 10 <20 305 0.11 <10 93 <10 15 41 2 0.06 36 58 5.11 20 0.92 813 <5 3.03 <1 19 270 <0.2 2.79 <5 90 50 00124 18 1920 5 <20 353 0.11 <10 85 <10 14 32 2 0.05 З 22 36 47 4.69 20 1.00 788 <5 95 <5 2.92 <1 330 <0.2 2.42 51 00125 177 20 0.86 773 4 0.06 18 1890 2 5 <20 0.10 <10 74 <10 13 28 12 14 41 3.84 3.32 <1 165 < 0.2 2.22 <5 60 <5 52 00126 10 <20 203 0.08 <10 54 <10 13 27 17 1250 3 20 0.69 681 1 0.05 <1 13 52 216 3.75 0.2 1.89 65 <5 3.51 300 < 5 53 00127 66 29 2 0.08 24 1550 3 5 <20 510 0.08 <10 <10 14 3.85 20 0.79 802 17 36 81 135 <5 4.55 <1 54 355 <0.2 2.80 10 00128 19 2120 2 10 <20 405 0.11 <10 80 <10 11 32 6 0.07 33 32 5.25 20 0.98 792 < 5 3.26 <1 18 <0.2 2.90 5 125 320 55 00129 0.05 50 <10 15 1332 422 <20 40 <10 820 >10 0.93 <1 0.02 15 1030 5 40 1011 <5 2.62 6 116 98 >1000 10.2 1.92 200 65 _56 00130 40 10 <5 <20 100 0.03 <10 <10 18 249 190 2.78 20 0.56 636 <1 0.03 16 830 43 40 <5 3.89 <1 11 85 57 00131 440 ' 0.4 1.56 10 <20 178 0.10 <10 99 <10 19 38 26 3 37 4.11 20 0.99 824 2 0.05 1640 36 65 <5 4.64 <1 18 <0.2 2.62 85 58 65 00132 37 19 34 0.03 28 1960 3 10 <20 102 0.11 <10 91 <10 18 32 23 4.10 20 1.28 1045 <1 10 40 <5 5.24 59 20 <0.2 2.22 00133 22 41 20 1.41 1088 30 0.03 26 2030 6 10 <20 71 0.13 <10 91 <10 46 4.85 34 <5 4.35 <1 31 60 135 <0.2 2.26 15 35 00134

ICP CERTIFICATE OF ANALYSIS AK 2001-405 NAVASOTA RESOURCES 19-Nov-01 Sn Sb Sr Ti % Bi Ca % Çd Co Cr Cu Fe % La Mg % Mn Mo Na% NI P Pb U v w Y Zn Tag # Au(ppb) Ag AI% As Ba Et #. 607 1 0.08 18 2170 <10 66 32 2.74 17 47 69 4.00 20 0.70 4 5 <20 104 0.11 <10 17 61 00135 <0.2 5 55 <5 3,16 <1 35 15 <0.2 3.29 <5 100 <5 4.74 <1 16 43 70 4.13 20 0.75 703 2 0.06 28 2230 3 10 <20 318 0.12 <10 73 <10 22 55 62 00136 2 0.05 19 2250 2 5 <20 4.05 20 0.67 620 301 0.13 <10 90 <10 30 <0.2 2.59 <5 115 <5 3.62 <1 16 44 165 14 63 00137 15 <1 18 40 222 3.92 20 0.64 547 2 0.05 16 2180 2 5 <20 93 0.10 <10 88 <10 15 25 20 <0.2 2.33 <5 60 <5 2.84 00138 64 0.78 693 21 1850 3 10 <20 0.05 52 257 20 <1 0.04 146 <10 62 20 29 <5 <5 4.32 <1 21 4.50 <10 65 00139 20 <0.2 1.80 65 97 3.50 20 0.66 655 <1 0.05 21 1650 2 10 <20 247 0.10 <10 74 <10 15 25 00140 10 90 <5 4.20 <1 14 44 66 15 < 0.2 2.31 <5 3.26 <1 16 63 118 3.54 20 0.67 621 <1 0.05 19 1640 з <5 <20 90 0.08 <10 68 <10 17 28 <0.2 2.37 <5 45 67 00141 10 35 <5 3.19 <1 17 51 145 3.04 20 0.58 512 2 0.06 18 1900 2 10 <20 60 0.09 <10 54 <10 20 25 40 <0.2 2.25 5 68 00142 3 47 0.08 <0.2 2.22 10 30 <5 3.12 <1 24 51 184 3.13 20 0.63 507 3 0.06 18 2250 5 <20 <10 65 <10 22 25 69 00143 30 269 3.36 20 0.65 510 12 0.05 20 2400 3 5 <20 37 0.10 47 <10 22 26 30 <5 3.18 <1 33 48 <10 70 00144 205 <0.2 1.98 10 35 <5 3.07 <1 23 47 201 3.16 20 0.68 512 3 0.05 18 2260 2 10 <20 45 0.09 <10 53 <10 23 23 <0.2 2.22 5 71 00145 50 71 92 2.83 20 0.58 491 2 0.04 16 2000 3 10 <20 0.07 <10 46 10 23 72 00146 15 <0.2 1.64 10 35 <5 3.26 <1 14 45 35 21 43 139 4.65 20 0.96 1030 5 0.04 34 2220 5 5 <20 171 0.06 <10 114 35 60 <5 6.99 <1 <10 34 73 00147 135 0.2 1.61 15 22 68 229 4.82 20 1,20 1045 76 0.04 46 1710 6 10 <20 127 0.03 <10 162 <5 <1 <10 33 74 00148 20 0.3 1.31 30 35 6.80 41 00149 1.96 10 75 <5 2.28 <1 19 127 177 3.64 20 0.88 407 11 0.06 42 1170 3 5 <20 146 0.14 <10 101 <10 27 25 75 5 <0.2 >1000 0.2 2.68 60 5 1.88 <1 74 117 642 >10 30 1.68 806 202 0.03 36 1320 5 10 <20 20 0.14 10 153 10 11 50 76 00150 5 2.22 <1 26 86 352 5.31 20 0.65 768 13 0.07 46 970 3 10 <20 82 0.11 <10 56 <10 22 60 <5 43 77 00151 35 <0.2 2.28 5 75 2 78 00152 45 <0.2 1.88 <5 55 <5 1.47 <1 25 181 243 4.61 20 1.10 460 22 0.04 580 <5 <20 53 0.13 <10 103 <10 20 31 10 362 21 0.05 72 700 <2 <5 <20 426 19 143 162 3.19 1.04 0.17 <10 53 <10 23 29 <0.2 1.70 <5 155 <5 1.05 <1 79 00153 10 64 1950 2 <5 29 147 349 4.51 20 0.80 402 8 0.06 <20 139 0.16 <10 40 <10 34 34 00154 10 <0.2 1.59 <5 90 <5 1.89 <1 80 105 <5 1.26 <1 25 154 251 4.55 20 1.23 473 10 0.04 61 1150 2 5 <20 107 0.19 <10 47 <10 25 40 81 00155 5 < 0.2 1.69 <5 7 0.04 27 138 325 20 1.19 473 58 1010 2 <5 <20 40 0.20 <10 40 <10 23 43 <5 100 <5 1.14 <1 4.77 82 00156 10 <0.2 1.57 750 199 10 0.92 8 0.05 55 2 <5 <20 125 0.16 <10 33 <5 <5 1.38 <1 21 135 3.80 451 <10 20 35 83 00157 5 <0.2 1.62 115 <1 22 128 183 3.87 10 1.04 550 8 0.05 50 740 2 <5 <20 135 0.20 <10 39 18 39 00158 10 < 0.2 2.08 <5 105 <5 1.94 10 84 62 80 <5 2.25 <1 38 106 441 6.56 20 1.49 649 9 0.04 1240 2 15 <20 44 0.15 <10 60 10 21 44 <0.2 2.40 <5 85 00159 110 20 0.96 36 0.05 60 900 10 <20 93 0.17 75 <5 1.48 <1 49 131 442 6.07 419 2 <10 44 <10 16 37 86 00160 445 <0.2 1.73 -5 20 0.62 740 <0.2 1.26 <5 80 <5 1.21 <1 36 117 391 4.25 346 13 0.05 57 1030 2 5 <20 35 0.12 <10 30 <10 18 26 87 00161 <1 33 121 313 3.88 10 0.75 418 7 0.05 62 810 2 <5 <20 51 0.14 <10 34 <10 27 90 <5 1.29 13 88 00162 105 <0.2 1.47 <5 10 358 43 1004 2 <5 <0.2 1.53 1 35 <5 1.74 <1 22 84 313 3.05 0.66 5 0.04 <20 8 0.09 <10 25 <10 10 16 89 00163 50 <5 2.37 <1 25 56 370 3.46 10 0.71 420 4 0.04 24 1348 2 2 <20 23 0.05 <10 29 <10 10 13 30 19 90 00164 70 < 0.2 2.04 20 0.73 436 10 0.04 16 1560 2 5 <20 91 50 <5 2.61 <1 15 47 300 3.04 46 0.05 <10 38 <10 11 18 00165 15 <0.2 2.00 -5 433 20 0.87 505 12 0.04 17 1730 2 <5 <20 57 92 <0.2 2.19 <5 60 <5 2.74 <1 18 44 3.92 0.06 <10 49 <10 9 22 00166 30 475 0.03 13 1580 3 <5 334 5.43 20 8 <20 11 51 93 550 < 0.2 2.34 <5 50 <5 1,88 <1 24 51 1.14 0.06 <10 <10 7 23 00167 94 75 <5 2.49 <1 29 44 439 5.94 20 1.41 583 36 0.03 15 1650 3 10 <20 42 0.04 <10 71 <10 10 28 00168 >1000 <0.2 1.98 <5 274 4.73 20 1.50 659 6 0.03 17 1320 2 5 <20 26 0.04 76 17 28 95 10 95 <5 1.78 <1 20 48 <10 <10 00169 130 <0.2 1.68

## ( )

Sr TI% Y Zn Ρ Pb Sb Sn 11 v w Ni La Mg % Mn Mo Na% BI Ca % Cd Co Cr Cu Fe % Ag Al% As Ba Au(ppb) Et #. Tag # 28 -20 72 <10 96 <10 49 30 1659 5 0.02 49 1020 15 0.01 7.56 1.30 64 314 <5 5.06 < 30 565 0.3 2.14 30 95 00170 96 17 31 <20 18 < 0.01 <10 87 <10 67 530 10 0.67 610 21 0.02 4 <5 2.32 <1 24 92 244 5.20 20 90 0.6 1.28 20 25 97 00171 <10 10 17 0.04 43 1000 6 <5 <20 8 0.09 <10 26 85 313 3.05 10 0.66 358 5 22 <5 1.74 <1 >1000 3.0 1.53 <5 35 00172 98 271 83 < 0.01 <10 71 <10 21 9 0.01 53 890 4 15 <20 30 0.65 1581 <1 46 69 522 7.35 95 <5 6.17 4.2 1.36 255 00173 135 99 49 <10 17 30 <20 141 < 0.01 <10 20 0.46 1307 10 0.02 74 780 5 10 75 132 4.59 <5 7.56 <1 15 290 0.4 1.10 35 40 100 00174 23 37 <5 <20 191 < 0.01 <10 24 <10 20 0.92 1511 9 0.01 50 830 5 4.42 <1 15 67 298 50 <5 6.14 00175 125 1.0 0.84 50 101 <5 <20 166 0.19 <10 73 <10 12 42 9 0.04 58 680 3 101 4.03 10 1.32 885 <5 2.13 <1 18 100 1.80 <5 70 10 < 0.2 00176 102 23 <20 68 0.04 <10 36 <10 11 770 5 2.50 10 0.49 937 <1 0.04 14 4 60 14 40 <5 2.97 <1 3 1.66 15 103 00177 10 <0.2 750 < 5 <20 74 0.03 <10 32 <10 10 35 932 <1 0.04 16 8 0.43 12 60 215 2.85 10 270 45 <5 3.81 <1 1.61 00178 85 1.5 104 11 40 770 <5 <20 125 0.03 <10 43 <10 10 0.48 1136 18 6 46 293 2.44 <1 0.02 <5 4.39 <1 8 65 1,55 85 105 00179 60 1.8 12 20 185 0.01 44 <10 750 7 <5 <20 <10 <1 0.01 15 48 42 2.14 10 0.54 1013 85 <5 3.75 <1 4 15 0.2 1.65 65 106 00180 95 0.02 35 <10 9 19 <1 0.03 15 710 23 <5 <20 <10 0.39 934 4 53 44 1.82 <10 3.78 <1 0.4 1.36 290 45 <5 00181 45 107 <20 82 0.05 37 <10 10 18 5 <10 6 2.23 10 0.42 960 <1 0.02 13 810 3.27 <1 7 51 33 45 <5 100 20 <0.2 1.34 108 00182 8 <5 <20 91 0.05 <10 111 <10 11 17 1278 4 0.03 25 930 45 2.30 <10 0.51 3 79 <1 30 0.2 1.08 85 50 <5 4.45 00183 109 <5 <20 418 0.10 <10 150 <10 14 24 39 970 5 <1 0.07 63 23 3.09 10 0.781648 130 <5 5.93 <1 9 25 50 <0.2 2.04 110 00164 <5 <20 53 0.12 <10 51 <10 11 21 2 0.06 25 940 3 <10 0.50 835 19 2.02 <5 3,38 <1 7 51 <5 50 10 <0.2 1.23 111 00185 5 -20 32 0.08 <10 93 <10 11 66 36 950 10 89 2.84 <10 0.57 894 <1 0.05 19 49 2.93 <1 1.26 835 50 <5 90 0,5 112 00186 6 <5 <20 53 0.08 <10 124 <10 17 32 43 900 20 0.92 1681 <1 0.05 73 4.45 75 35 <5 4.84 <1 19 57 1.66 50 0.4 113 00187 73 365 0.09 <10 24 58 1110 8 <5 <20 <10 86 155 5.47 20 1.07 1212 <1 0.06 33 57 <5 5.46 <1 170 130 00188 565 0.8 2.49 114 44 720 3 <5 <20 456 0.16 <10 137 <10 9 36 1.22 1053 <1 0.08 10 57 25 4.85 255 <5 2.28 <1 18 3.31 25 00189 20 0.4 115 10 <20 217 0.10 <10 82 <10 8 36 <1 0.05 28 570 3 10 1.22 1043 19 75 49 5.39 15 185 <5 1.83 <1 15 <0.2 2.79 00190 116 <5 <20 302 97 <10 12 36 3 0.12 <10 28 35 4.16 10 1.00 944 <1 0.07 1140 17 54 165 <5 2.59 <1 2,69 5 117 00191 10 < 0.2 40 730 2 <5 <20 170 0.20 <10 97 <10 10 50 20 1.78 1155 2 0.06 44 5.96 23 79 10 210 <5 1.44 <1 35 <0.2 3.01 118 00192 <20 254 0.16 <10 95 <10 10 44 39 740 2 <5 2 0.08 19 70 4.63 10 1.43 902 <5 1.86 <1 80 35 180 <0.2 2.60 119 00193 25 62 <10 11 31 788 <1 0.06 23 850 2 <5 <20 139 0.13 <10 <10 0,99 13 42 28 3.25 <5 1.84 <1 <0.2 2.20 10 50 10 120 00194 <20 131 0.10 <10 67 <10 12 33 <1 0.05 27 860 з <5 38 2.60 <10 0.76 748 10 38 <5 2.72 10 <0.2 2.02 5 65 <1 121 00195 <10 7 <5 <20 91 0.14 <10 91 13 115 2 0.03 51 700 77 4.39 10 1.09 957 75 <5 3.15 <1 18 62 0.2 2.23 20 10 122 00196 239 110 <10 15 254 86 5.39 2071 <1 0.05 44 1010 5 <5 <20 0.11 <10 48 10 1.64 21 185 <5 6.05 <1 123 <0.2 2.76 10 00197 10 156 13 1757 75 580 6 <5 <20 0.09 <10 94 <10 937 <1 0.04 77 121 4.40 10 1.49 <5 2.34 10 16 15 90 0.5 2.37 124 00198 15 0.07 <10 11 48 500 2 <5 <20 5 <10 64 <10 1.01 451 3 0.04 54 13 110 87 3.56 <1 0.2 1.49 10 20 <5 1.34 125 00199 10 <20 51 0.11 <10 48 <10 17 23 760 3 <5 65 3.94 10 0.96 1284 2 0.05 46 <5 6.76 <1 12 61 15 126 00200 45 < 0.2 1.66 10 55 1140 4 <5 <20 47 0.14 <10 157 <10 9 27 2 0.07 20 1.77 546 73 103 4.92 45 <5 2.21 <1 21 2.64 15 127 00201 25 <0.2 42 <5 <20 33 0.11 <10 183 <10 16 68 1090 4 130 5.00 20 1.71 854 3 0.04 65 50 <5 3.84 <1 24 <0.2 2.68 50 128 00202 105 760 5 <5 <20 <1 0.15 <10 102 <10 14 42 1.64 536 6 0.04 51 10 <5 0.91 <1 19 107 101 5.45 < 0.2 2.21 10 25 129 10 00203 28 27 2150 2 <5 <20 16 0.10 <10 83 <10 8 20 0,98 656 2 0.05 <1 25 41 152 4.12 10 10 <5 3.78 <0.2 2,95 130 15 00204 15 24 10 <20 65 0.08 <10 53 <1D 3.77 20 0.62 433 9 0.04 25 2160 3 13 47 139 <6 4.64 <1 <0.2 2.59 <5 15 131 00001 5

ICP CERTIFICATE OF ANALYSIS AK 2001-405

19-Nov-01

 $\cap$ 

NAVASOTA RESOURCES

	19-Nov-01	I								ŀ	CP CE	RTIFIC	ATE OF		LYSIS	AK 20	01-405	;					I		SOTA R	ESOUR	RCES			
Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr	<u> </u>	Ų	v	w	Y	Zn
QC_DA1 Resoluti	A:	'n																												
1	00075	10	<0.2	2.08	<5	75	-5	2.27	<1	17	37	75	3.86	20	0.64	392	5	0.03	12	1800	3	<5	<20	136	0.12	<10	66	<10	11	26
71	00145	45	<0.2	2,14	<5	30	<5	3.97	<1	21	42	198	3.07	20	0.66	499	2	0.05	16	2189	3	<5	<20	29	0.07	<10	64	<10	17	18
106	00180	20	<0.2	1.72	70	90	<5	4.02	<1	4	44	38	2.26	10	0.56	1075	<1	0.01	17	830	3	<5	<20	203	<0.01	<10	44	<10	12	22
Repeat.	1																													
1	00075	10	<0.2	2.14	<5	70	<5	2.14	<1	16	41	80	3.66	20	0.65	373	7	0.04	12	1790	3	<5	<20	135	0.15	<10	73	<10	9	24
10	00084	25	<0.2	2.09	<5	35	<5	3.67	<1	13	34	31	3.24	20	0.77	535	3	0.04	19	1790	3	<5	<20	58	0.11	<10	85	<10	11	23
19	00093	30	<0.2	2.21	<5	150	<5	2.64	<1	10	34	31	2.87	20	0.38	333	5	0.09	14	1800	3	10	<20	324	0.08	<10	80	<10	9	19
36	00110	>1000	<0,2	2.55	<5	70	<5	3.06	<1	52	49	433	7.91	30	0.73	570	<1	0.07	15	1480	3	<5	<20	47	0.06	10	61	<10	10	22
45	00119	>1000	<0.2	2.55	<5	65	<5	2.83	<1	43	42	211	6.35	30	1.20	712	7	0.05	21	1820	3	<5	<20	118	0.13	<10	104	<10	14	37
54	00128	340	<0.2	2.94	10	140	<5	4,89	<1	18	42	81	4.09	20	0.82	847	2	0.08	26	1690	3	5	<20	526	0.11	<10	72	<10	15	33
71	00145	45	<0.2	2.10	5	30	<5	2.95	<1	23	47	195	3.15	20	0.67	504	4	0.04	19	2260	2	10	<20	39	0.08	<10	52	<10	22	24
80	00154	-	<0.2	1.55	<5	95	<5	1.88	<1	30	149	349	4.60	20	0.80	410	8	0.06	66	1990	2	5	<20	137	0.14	<10	39	<10	33	35
86	00160	505	-	-	-	-	-	•	•	•	•	-	•	-	-	•	-	-	-	-	-	•	•	-	-	•	-	-		-
89	00163	-	<0.2	1.53	<5	35	<5	1.74	<1	22	85	313	3.05	10	0.66	358	5	0.04	43	1000	2	<5	<20	8	0.09	<10	26	<10	10	17
95	00169	150		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-		-	-	-		-	-
104	00178	80	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	•	•	-	-		-	-	•		-
106	00180	-	0.2	1.69	65	80	<5	3.83	<1	4	50	46	2.19	10	0.55	1038	<1	0.01	17	770	7	<5	<20	180	0.01	<10	44	<10	12	21
115	00189	-	<0.2	3.33	25	255	<5	2.28	<1	18	56	28	4.87	10	1.23	1052	<1	0.08	45	720	3	<5	<20	453	0.15	<10	134	<10	9	37
121	00195	10	-	-	-	-	-	-	•	•	•	-	•	-	•	-	•	-	-	-	-	-	-	-	-	•	-	-	-	•
Standa	rd:																													
GEO'01		130	1.4	1.60	60	1 <b>60</b>	<5	1.68	<1	21	67	83	3.52	20	0.94	699	1	0.02	34	740	19	10	<20	55	0.12	<10	71	<10	13	71
GEO'01		120	1.3	1.74	50	160	<5	1.57	<1	20	64	88	3.55	20	0.98	677	<1	0.02	31	700	19	10	<20	60	0.09	<10	64	<10	14	77
GEO'01		115	1.4	1.73	55	155	<5	1.55	<1	17	63	85	3.57	10	0.97	672	<1	0.02	31	770	18	<5	<20	43	0.11	<10	83	<10	7	74
GEO'01		-	1.4	1.86	55	170	<5	1.68	<1	19	70	89	3.86	10	1.02	717	<1	0.02	34	820	20	<5	<20	55	0.09	<10	65	<10	9	79

ECO-TECH LABORATORIES LTD. Frank J. Pezzetti, A.S.C.T. B.C. Certified Assayler ے ہ

•

 $\cap$ 

 $\bigcirc$ 

6-Jun-02

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

#### Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	Al %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	Ų	v	w	Y	Zn
1	00205	15	0,3	2.47	<5	190	<5	1.47	<1	26	48	195	4.14	20	1.35	526	4	0.05	24	710	14	<\$	60	611	0.11	<10	84	<10	13	27
2	00206	15	0.2	1.07	<5	40	<5	1,94	<1	22	35	255	3.60	10	0.61	394	3	0.03	13	820	6	<5	40	37	0.08	<10	36	<10	11	16
3	00207	70	0.2	1.06	<5	30	<5	1.10	<1	17	36	178	3.36	10	0,55	398	1	0.04	9	1020	6	<5	40	18	0.09	<10	62	<10	9	18
4	00208	20	<0,2	1,08	<5	30	<5	1.08	<1	24	40	202	3.62	10	0.53	292	3	0.03	14	940	8	<5	40	11	0.10	<10	52	<10	10	15
5	00209	40	0.2	1.36	<5	30	<5	2,50	<1	23	39	183	4.55	20	0.59	433	3	0.03	20	880	6	<5	60	31	0.08	<10	79	<10	10	20
-								4 00		0.0	40	540	6.00		n ee	000	~	0.06		050		- 2	-	OF	~ ~~					
6	00210	15	0.2	1.48	- 5	50	<5	1,80	<1 -4	20	43	218	0.23	20	0.00	033		0.05	22	800	0	<0 -5	80	25	0,08	<10	65	<10	10	25
	00211	10	0,2	1,19	<5	30	<5	1.48	<1	18	48	109	3.45	10	0,61	432	Ì	0.04	24	830	6	<0 .7	40	20	0.09	<10	/9	<10	11	21
8	00212	10	0.2	1.29	<5	50	<5	1.24	<1	24	60	1/2	3.60	10	0.85	427	3	0.05	30	810	8	<5 	40	40	0.10	<10	63	<10	14	22
9	00213	40	1.4	2.20	10	60	<5	2.20	<1	30	63	183	5,64	20	1.73	889	10	0,03	34	720	12	<0 	80	40	0.12	<10	168	<10	10	33
10	00214	70	0.6	2.07	<5	60	<0	2,04	<1	38	64	309	6.27	20	1.00	719	5	0.03	28	690	10	<5	100	52	0,09	<10	155	<10	8	33
11	00215	35	0.2	1.93	470	65	<5	1.48	<1	29	48	296	4.75	20	1,29	419	5	0,04	25	790	12	<5	80	103	0.08	<10	78	<10	11	21
12	00216	25	0.2	1.74	370	50	<5	2.72	<1	27	46	401	4.15	20	1.05	431	4	0.04	24	1160	10	5	60	80	0.05	<10	80	<10	11	17
13	00217	15	0.5	2.34	20	60	<5	3,59	<1	33	43	601	4.95	20	1.77	684	39	0.03	25	1720	14	<5	80	118	0,09	<10	133	<10	11	28
14	00218	10	<0.2	1.94	15	60	<5	2.41	<1	19	37	176	3.89	20	0.94	574	3	0.05	12	1520	14	<5	60	77	0.10	<10	69	<10	14	23
15	00219	10	< 0.2	1,64	10	40	<5	2.51	<1	16	31	238	3.25	20	0.77	422	Э	0.04	6	1790	14	<5	40	52	0.04	<10	46	<10	15	17
							_												_			_								
16	00220	15	0.5	1,83	30	40	<5	2.57	<1	24	29	475	4.56	20	1.21	507	4	E0.0	7	1900	16	<5	80	45	0.04	<10	86	<10	13	24
17	00221	15	0.2	1.39	130	30	<5	4.31	<1	20	30	303	3.09	20	0.51	385	13	0.04	10	1700	10	<5	40	42	0,04	<10	32	<10	13	16
18	00222	15	<0.2	1.74	15	25	<5	3,73	<1	16	26	162	3.37	20	0.61	412	9	0.04	9	1770	18	5	60	55	0.04	<10	39	<10	16	20
19	00223	10	0,2	1.65	5	40	<5	1.92	<1	20	25	232	4.01	20	0.78	443	1	0.04	. 7	2080	16	<5	60	29	0.05	<10	46	10	18	25
20	00224	285	0.2	1.62	2005	75	<5	3,93	<1	27	40	352	5.27	20	1.02	570	10	0.03	25	1400	16	10	80	122	0.07	<10	85	<10	17	26
21	00006	10	0.2	1 89	15	35	<b>c</b> 5	2.01	<1	33	52	502	571	20	1 34	877	3	0.05	22	1090	22	<5	100	76	0.12	c10	118	10	44	20
22	00220	10	<0.2	1 20	3	35	<6	2.68	<1	18	34	189	3 47	20	0.66	532	3	0.04	R	1570	12	<5	40	38	0.08	<10	34	<10	15	24
23	00220	10	<0.2	1.61	<5	25	<5	2.66	<1	14	38	145	3.23	20	0.65	498	1	0.05	7	2040	16	<5	40	40	0.06	<10	46	<10	10	27
24	00228	10	0.2	1.53	<5	30	<5	2.32	<1	14	30	171	2.92	20	0.58	373	ż	0.04	5	1880	16	<5	40	39	0.05	<10	35	<10	19	4R
25	00220	40	0.2	1.81	<5	20	<5	2 38	<1	16	27	211	3.31	20	0.65	397	8	0.04	5	2100	16	5	60	29	0.05	<10	30	210	17	10
	AATTO	40			-0			1.00	••	. +	<b>—</b> ·			-*			-	÷1÷ 1	-			-			0.00	~ 14		~ 10	• •	10

ICP CERTIFICATE OF ANALYSIS AK 2001-415R

Page 1

NAVASOTA RESOURCES #207 141 VICTORIA STREET

#### ATTENTION: LORNE WARNER

No. of samples received: 172 Sample type: Core Project #: None Given Shipment #: None Given Samples submitted by: Lome Werner

## KAMLOOPS, BC V2C 1Z5

VAVAS	OTA RES	BOURCES						-		ļ0	CP CE	RTIFIC	CATE O	F ANA	LYSIS	AK 20	01-419	5R							ECO-TI	ECH LA	BORA	TORIES	S LTD.	
Et #.	Tag #	Au(ppb)	Ag	A1 %	As	Ba	Bi	Ca %	Cd	Со	Cr	Cម	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Ρ	РЬ	Sb	Sn	Sr	Tì %	U	v	w	Y.	Zn
26	00230	15	0.2	1.67	5	35	<5	2.14	<1	23	34	292	3.66	20	0.66	418	1	0.04	5	1970	18	<5	60	42	0.04	<10	31	<10	18	22
27	00231	25	0.3	1,51	5	35	<5	2,19	<1	26	38	464	3.86	20	0.56	373	15	0.05	6	2000	14	<5	60	35	0.05	<10	27	<10	18	30
28	00232	25	0.2	1.85	<5	45	<5	3.21	<1	24	37	308	3,98	20	0,71	532	3	0.05	9	2150	18	10	60	102	0,06	<10	36	<10	17	25
29	00233	20	0.2	1.71	5	90	<5	1,65	<1	26	78	231	3.75	10	0.83	336	8	0.06	25	760	22	<5	60	521	0.11	<10	52	<10	15	22
30	00234	25	0.2	1.50	25	35	<5	4.85	<1	26	30	358	3,33	20	0.50	479	10	0.04	12	1870	14	<5	60	87	0.06	<10	29	<10	17	14
31	00235	15	0.2	1.30	10	50	<5	1.06	<1	23	54	191	3.63	10	0.83	334	3	0.05	11	850	16	<5	60	102	0.13	<10	33	10	16	21
32	00236	15	4.0	0.94	25	30	<5	2.68	<1	28	40	371	2.92	10	0.47	296	12	0.04	13	1050	12	5	40	46	0.06	<10	35	20	17	16
33	00237	10	<0.2	1,68	5	40	<5	2.19	<1	22	37	229	4.11	20	0.75	475	3	0,05	13	1830	20	<5	60	55	0.07	<10	49	10	14	24
34	00238	10	<0.2	1.42	<5	30	<5	2.30	<1	18	30	168	3.35	20	0.53	378	<1	0.04	6	1870	16	<5	40	35	0.05	<10	27	<10	15	19
35	00239	30	<0.2	1.76	15	20	<5	2.97	<1	19	44	226	3.33	20	0.70	445	3	0.04	9	1900	20	5	40	42	0.05	<10	44	10	18	22
36	00240	15	0.3	2.07	20	25	<5	5.56	<1	21	34	267	3.43	20	0.76	537	9	0,03	15	1800	24	<5	60	69	0.07	<10	35	10	14	18
37	00241	15	0.2	1.97	5	20	<5	3.25	<1	18	28	244	3.31	20	0.65	437	11	0.04	9	1940	24	<5	40	37	0.05	<10	46	20	19	21
38	00242	15	0.3	2.11	10	25	<5	3.20	<1	25	31	498	3.45	20	0.76	544	<1	0.04	9	1870	22	<5	60	34	0.06	<10	41	10	17	26
39	00243	10	0.2	1.63	5	35	<5	3.44	<1	15	24	159	2,46	20	0.47	445	5	0.05	8	1800	20	<5	40	60	0.05	<10	28	10	15	17
40	00244	10	<0.2	1.70	<5	40	<5	2.48	<1	13	34	86	2.41	20	0.44	331	2	0.04	6	1790	22	<5	40	41	0.04	<10	20	10	17	21
41	00245	20	<0.2	0.78	<5	30	<5	1 35	<1	17	41	469	2 52	10	0.40	287	3	0.05	12	1180	10	<5	40	21	0.07	<10	17	20	18	17
47	00240	110	4 1	1 30	<5	35	<5	1.45	<1	71	50 -	10000	8 23	20	0.57	308	14	0.05	20	1220	14	<5	80	17	0.08	<10	27	20	14	182
42	00240	30	0.4	1 70	<5	85	<5	1.08	<1	28	70	1240	4 72	10	1 14	442	20	0.04	19	670	14	<5	60	139	0.11	<10	56	<10	15	36
40	00247	10	0.7	0.52	~5	50		0.71	<1	15	37	164	1.95	<10	0.27	200	<1	0.05	6	850	4	<5	20	33	0.05	<10	Å	<10	16	10
45	00248	20	<0.2	0.45	<5	30	<5	0.78	<1	9	34	138	1.34	<10	0,18	171	5	0.04	1	930	4	<5	<20	18	0,07	<10	3	<10	14	8
40	opoto			4.04	~5	20	~6	1 40	-1	34	33	1602	3.04	10	0.25	978	в	0.04	0	1050	10	<b>25</b>	40	49	0.07	e10	44	c10	12	
40	00200	40	0.0	1,01	~0 ~E	30	~0	1.40	~1	20	20	702	2.01	10	0.20	350	0	0.04		000	.0	25	60	20	0.07	~10		<10	10	40
4/	00251	40	<0.Z	0.63	<	40		1.20	~1	30	30	204	0.42	10	0.20	300	3	0.04	- U	000	à	~5	40	42	0.00	~10	9	~10	12	19
48	00252	20	<0.2	0.83	50	00	~0	1.04		19	48	304	2.07		0.20	SAD EAD		0.00	10	1020	12	~5	40	40	0.00	~10	- 24	~10	10	1.3
49 50	00253	/5	0.3	1.25	<0	30	<0 <5	2.34	<1	44 23	40	227	4,00	10	0.50	579	3	0.04	17	1030	14	<5	40	40	0.07	<10	≤ 1 55	10	13	22
00	00204	20	~V.Z	1.00	-•	00	-0	2.0.1		20			••		••••		-					_			•.••		00	10		20
51	00255	15	<0.2	1.33	5	85	<5	1.13	<1	17	66	108	2.85	20	0.74	415	4	0.06	11	780	14	<5	40	146	0.13	<10	Ð	<10	20	29
52	00256	15	<0.2	1.72	5	80	<5	0.82	<1	21	97	164	3.17	10	1.14	333	12	0.07	17	800	20	<5	60	61	0.14	<10	30	<10	21	19
53	00257	20	<0.2	1.76	10	55	<5	1,10	<1	21	71	178	3.88	10	1.25	456	2	0.05	16	850	18	<5	60	65	0.15	<10	119	<10	16	26
54	00258	70	0.3	1.80	5	65	<5	1,15	<1	40	68	521	4.54	20	1.13	404	15	0.07	18	1390	20	<5	80	99	0,13	<10	47	<10	18	31
55	00259	230	0.8	1.84	20	70	<5	0.85	<1	71	85	1027	5,44	20	1.29	434	67	0.05	18	850	18	<5	100	21	0.14	<10	67	<10	18	41
56	00260	25	0.4	2.58	15	75	<5	1.77	<1	73	39	720	7,57	30	1,77	561	23	0.11	12	2210	26	<5	140	68	0,14	<10	158	20	13	33
57	00261	530	0.9	2.23	115	85	<5	1.02	<1	103	61	885	7.55	30	1.56	500	30	0.07	12	1690	22	<5	140	45	0,17	<10	156	20	8	33
58	00282	150	07	1.76	115	90	<5	0.85	<1	129	68	449	5.48	20	1.23	618	38	0.04	18	740	20	<\$	100	23	0.17	<10	63	<10	18	45
59	00263	70	0.3	1 35	50	70	<5	0.91	<1	114	77	552	5,59	20	0.88	400	26	0.04	12	1200	16	5	100	17	0.10	<10	74	10	20	27
60	00264	70	0.6	2.04	45	75	<5	1.62	<1	131	95	924	7.97	30	1.51	524	88	0.02	16	1280	22	<5	140	17	0.12	<10	152	20	10	30
	~~LV7	1.0	<b>v</b> , <b>v</b>				-																							

 $( \ \ )$ 

 $\cap$ 

N

 $\bigcirc$ 

ECO-TECH LABORATORIES LTD. ICP CERTIFICATE OF ANALYSIS AK 2001-415R NAVASOTA RESOURCES Mo Na% Ni Р Ρb Sb Sn Sr TI% U v w Y Zn La Mg % Ag Al% Ba Bi Ca % Cd Co Cr Cu Fe% Mn Et #. Tag # Au(ppb) As <5 <10 130 10 10 60 108 67 1198 8.58 30 1.54 489 393 0.03 16 1590 22 140 41 0.08 0.7 1.81 35 55 -5 1.24 <1 00265 65 61 216 0.06 11 2050 20 <5 120 40 0.09 <10 142 <10 8 28 45 1099 7.72 30 1.57 415 0.8 2.06 5 60 <5 1.47 <1 97 62 00266 25 12 2230 18 <5 80 61 0.12 <10 <10 11 20 <5 2.60 <1 44 30 364 5.20 20 1.01 477 4 0.11 90 63 00267 15 <0.2 2.13 <5 50 1.16 572 2 0,13 13 2260 22 <5 80 75 0.13 <10 106 <10 14 25 292 20 <0.2 2.34 <5 55 <5 2.64 <1 36 37 5.11 00268 20 64 16 2680 4.82 20 1.24 578 1 0.10 24 <5 80 59 0.12 <10 104 <10 14 27 <5 2.67 <1 29 27 198 00269 15 0.2 2.34 <5 55 65 75 0.04 13 1930 18 <5 120 31 0.10 <10 139 40 12 35 829 7,03 30 1.35 510 00270 20 40 <5 1.90 <1 57 70 66 550 0.6 1.94 20 <5 80 80 19 50 40 506 5,54 30 1,00 454 3 0.08 11 2510 59 0.11 <10 <10 22 67 00271 80 0.2 2.14 <5 55 <5 2.30 <1 1.47 661 19 0.05 16 2230 20 <5 120 44 0.10 <10 143 20 14 62 10 45 <5 2.34 <1 55 41 1222 7.02 30 68 00272 >1000 2.1 2.19 <5 20 22 25 24 216 4.59 20 1.07 530 2 0,10 11 2410 24 80 65 0.13 <10 108 10 5 45 <5 2.57 <1 69 00273 40 0.2 2.21 787 <1 0.10 12 2460 26 <5 80 79 0.14 <10 125 <10 24 28 <5 60 <5 3.46 <1 24 28 115 5.09 30 1.38 70 00274 20 <0.2 2.58 23 2270 <5 157 0.19 32 140 182 10 26 39 <5 6,18 <1 33 29 186 6.66 30 2.24 1240 1 0,07 <10 71 00275 20 0.2 3.41 <5 60 20 2.07 10 0.06 15 1540 32 <5 120 39 0.16 <10 109 10 23 43 <5 29 53 312 5.79 928 72 00276 295 0.3 2.79 20 55 1.89 <1 42 0.07 15 910 32 <5 120 111 0.12 <10 141 10 27 48 36 89 540 6,39 20 2,08 860 35 <5 1.81 <1 73 00277 >1000 0.9 2.83 110 20 <5 22 87 266 665 6 0.04 18 840 80 69 0.12 <10 72 20 26 28 4.81 20 1.40 74 00278 45 <0.2 1.83 40 30 5 3.34 <1 22 212 5.40 22 0.07 15 1950 34 <5 100 90 0.15 20 55 <5 3.47 <1 29 44 20 1.50 721 <10 114 30 75 <0.2 2.20 105 00279 45 135 0.14 13 2530 24 5 100 <10 99 <10 20 30 28 40 212 5.29 30 1.26 760 4 0.11 76 00280 10 <0.2 2.35 10 90 <5 3.66 <1 30 30 28 275 5.56 30 1.37 708 5 0.09 14 2570 <5 100 89 0.12 <10 116 20 19 88 2.55 20 50 <5 3,58 <1 77 00281 20 0.2 1.62 678 28 <5 75 0.14 315 6.07 30 <1 0.09 15 2030 120 20 112 20 14 55 35 30 78 00282 140 0.3 2.53 15 65 <5 2.91 <1 5 0,06 13 1060 18 <5 80 13 0.15 20 12 21 405 <10 61 79 0,3 1.45 10 30 <5 1.05 <1 32 38 299 4,64 20 1.09 00283 110 28 27 238 4.42 20 1.05 436 7 0.08 10 1880 20 <5 80 44 0.13 <10 66 10 18 22 <5 2.02 <1 00284 0.2 1.75 <5 45 80 35 15 2560 <5 140 62 0.13 <10 138 50 19 55 <5 3,41 <1 68 45 748 7.54 30 1.62 620 9 0.08 34 38 0.5 2.86 10 81 00285 495 40 0.05 27 810 30 <5 120 63 0.14 <10 79 30 23 36 68 97 386 5.84 20 1.79 853 <5 2.03 <1 82 00287 315 0.9 2.34 185 80 <5 31 0.04 70 2.69 2176 163 0.02 30 740 68 220 <10 185 20 14 135 260 250 3.3 3.76 340 60 <5 3.00 <1 140 >10 40 83 00288 <1 26 77 109 5,12 20 1.96 636 4 0.06 20 1030 30 <5 100 48 0.21 <10 114 10 23 40 5 60 <5 1.26 00289 <0.2 2.44 84 15 15 1040 16 5 60 77 0,73 298 10 0.07 26 0.16 <10 20 10 17 18 32 247 3.79 20 <5 90 <5 0.99 <1 65 00290 40 0.2 1.20 49 611 5.89 30 0.77 325 8 0.08 13 2310 22 <5 100 35 0.14 <10 26 20 16 27 <5 2.08 64 86 00291 0.5 1,79 <5 60 <1 90 37 20 0.57 299 4 0.06 18 2740 28 <5 80 38 0.08 <10 33 10 15 22 50 588 4.61 <5 50 <5 2.99 <1 87 00292 25 0.2 2.17 13 2630 24 <5 80 0.07 20 17 22 35 <5 2.76 <1 36 24 406 3.94 20 0.61 351 12 0.06 35 <10 39 00293 0.2 1.99 <5 88 95 647 6.32 20 0.82 274 39 0,05 23 1080 18 <5 100 19 0.12 <10 29 60 22 22 <5 1.20 <1 102 76 40 89 00294 0.2 1.40 10 160 42 530 24 <5 80 39 32 92 198 4.47 20 1.36 483 11 0.06 0.17 <10 68 20 13 20 <5 1.12 <1 90 00295 25 0.2 1.89 30 35 17 1030 <5 20 2.25 807 3 0.06 34 140 16 0.25 <10 122 <10 16 44 67 6.26 5 45 <5 1.04 <1 32 66 91 00296 15 <0.2 2.69 17 1230 20 1.96 689 133 0,05 28 <5 120 26 0.21 <10 119 20 16 32 92 00297 35 0.2 2.39 5 55 <5 1.95 <1 33 66 153 5.99 286 30 2.24 982 177 0.04 33 1030 28 <5 160 229 0.04 <10 195 20 30 40 75 <5 5.27 <1 50 64 8.31 93 45 00298 75 0.5 2,80 0.05 28 1800 18 <5 656 43 52 300 6.79 30 1,89 1099 115 140 0.07 <10 123 10 28 34 <1 94 00299 105 0.6 2.13 1885 105 <5 7.38 26 16 0.03 17 1740 <5 140 26 0.14 <10 93 34 55 <5 2.18 <1 103 61 1266 7.92 30 1.39 591 <10 12 95 00300 20 1.0 2.39 85

NAVASOTA RESOURCES ICP CERTIFICATE OF ANALYSIS AK 2001-415R ECO-TECH LABORATORIES LTD. Bi Ca % Co Cr Cu Fe % La Mg % Mo Na% Ni Ρ Pb Sb Sn Sr Ti% Tag # Au(ppb) Ag Al% As Ba Ċđ Mn U v w Y Zn Et #. 00801 15 30 <5 12 24 80 2.08 20 0.52 311 4 0.05 6 1560 20 5 40 80 0.05 <10 20 17 96 90 0.2 1.52 3.04 <1 20 9 50 <5 25 31 225 3 63 30 0.93 503 63 0.03 8 1500 26 <5 60 73 0.05 97 00802 125 <0.2 2.02 10 3,40 <1 <10 54 10 11 31 <1 37 27 275 30 1,15 559 28 0.04 12 2270 28 <5 100 83 0.08 00803 0.2 2.36 10 50 <5 3.27 4.89 <10 88 30 15 30 98 220 00804 55 0.2 2.39 10 50 <5 3.10 <1 16 27 91 3.01 20 0.89 520 4 0.05 10 2060 32 <5 60 84 0.10 <10 39 10 14 25 99 37 3.70 1.24 682 2 0.07 17 2060 36 <5 60 75 <5 40 <5 14 36 20 0.12 <10 75 100 00805 150 0.2 2.99 4.04 <1 20 13 26 21 15 3,63 20 1.19 645 <1 0.04 14 1990 34 <5 60 78 0,10 00806 45 0.2 2.75 <5 35 <5 4.36 <1 11 <10 90 <10 11 24 101 40 32 242 4,61 30 558 5 0.06 17 2130 34 <5 80 57 0.14 0.2 2.73 20 50 3.81 1.14 25 102 00807 500 <5 <1 <10 59 20 12 2030 30 <5 103 00808 >1000 0.3 2.30 10 45 <5 2.49 <1 35 26 280 4.09 20 0.78 394 37 0.05 8 80 29 0.08 <10 34 10 12 24 22 21 174 2.79 20 0.62 371 3 0.05 12 2010 28 10 60 58 0,09 55 <5 2.85 <1 104 00809 80 0.2 2.14 5 <10 16 10 15 20 <1 39 237 218 4.58 60 1.49 474 161 0.05 82 1370 18 <5 60 51 0.08 00810 305 0.2 1.63 30 35 <5 3.32 <10 58 20 10 17 105 67 1420 5 45 <5 1,12 <1 33 218 142 4.36 30 1.38 331 41 0.06 6 5 <20 31 0.07 <10 70 <10 16 00811 >1000 0.2 1.58 4 106 32 77 378 3.30 20 0.80 234 89 0.02 47 1290 6 <5 <20 <5 <1 15 0.09 <10 107 00812 90 0.4 1.09 10 30 1.69 137 <10 13 15 <5 00813 40 0.2 1.86 10 40 <5 0.83 <1 20 87 98 3.15 10 1.57 250 11 0.06 33 710 8 20 30 0,09 <10 139 <10 4 13 108 17 42 2.99 20 1.36 25 1050 10 <5 20 56 15 55 <5 2.52 <1 63 466 4 0.04 0.09 <10 97 <10 00814 45 0,2 1,99 11 17 109 NO SAMPLE 110 00815 <5 4.75 <1 10 20 50 3.05 30 0.78 672 6 0.03 9 1290 <2 5 <20 234 < 0.01 530 0.6 0.47 <5 45 <10 83 <10 25 23 111 00816 159 20 16 2 10 <20 123 < 0.01 21 12 3.34 0.31 821 24 0.02 1180 112 00817 410 0.3 0.70 30 30 <5 8,06 <1 <10 38 <10 16 19 8.55 17 18 206 2.27 10 0.16 1199 13 <0.01 35 730 <2 10 <20 70 < 0.01 113 00818 >1000 2.2 0.48 65 20 <5 <1 <10 25 <10 14 23 57 55 1.60 <1 26 46 96 4.11 20 1.08 448 3 0.04 790 8 <5 <20 31 0.04 <10 27 75 0.8 1.85 115 <5 70 <10 14 114 00819 0.06 19 1950 10 <5 20 72 115 00820 100 0.3 2.40 <5 55 <5 2.94 <1 21 22 118 3.44 20 1.07 545 1 0.08 <10 88 <10 10 23 67 400 6 <5 <20 26 0.09 55 <5 1.57 28 88 105 2.54 10 0.92 497 3 0.05 <10 7 116 00821 35 0.2 1.27 65 <1 39 <10 18 175 65 <5 0.92 <1 53 116 223 3.60 20 0.95 325 6 0.04 115 740 6 <5 <20 20 0.09 20 00822 90 0,2 1.39 54 <10 13 18 117 <1 19 76 26 2.77 10 1.14 412 4 0.06 32 440 10 5 <20 25 0.12 <10 <0.2 1.55 45 120 5 0,85 61 <10 7 >1000 18 118 00823 92 400 <20 101 2.35 10 0.96 811 5 0.06 6 5 105 0.09 00824 40 <0.2 1.42 25 155 <5 1.14 <1 20 121 <10 53 <10 11 23 119 70 1.70 <1 22 94 154 2.93 10 0.96 1013 3 0.05 83 510 6 5 <20 43 0.06 <10 66 <10 <0.2 1.46 5 <5 12 40 120 00825 30 160 3.74 1.28 827 5 0,04 98 860 8 <5 <20 121 00826 25 <0.2 1.98 5 75 <5 1.67 <1 26 109 20 35 0.10 <10 89 <10 11 39 43 0.2 1.94 270 75 <5 2.21 <1 89 60 138 4.17 20 1.20 611 3 0.04 1640 8 5 20 29 0.12 <10 105 <10 7 24 00827 >1000 122 43 194 5.35 20 1.35 551 18 0.05 13 1110 8 <5 40 15 <5 <1 32 0.19 123 24801 25 <0.2 1,09 85 50 1.48 <10 62 <10 8 27 2.5 1.70 85 70 10 7.42 <1 21 23 63 6.15 30 1.83 2335 14 < 0.01 23 1790 4 5 40 432 < 0.01 <10 149 124 24802 75 <10 25 44 19 15 47 360 9.01 30 0.53 3190 11 <0.01 29 350 1538 15 40 352 <0.01 >1000 13.5 0.47 935 80 10 9.57 <10 26 10 16 2588 125 24803 <5 9.63 63 1.78 <10 0.54 3727 7 < 0.01 20 440 46 10 <20 357 < 0.01 0.39 30 35 14 5 41 <10 30 18 126 24804 1.9 <1Ū 2048 110 4.01 1.07 3040 4 < 0.01 19 1320 24 50 <5 <1 28 68 20 5 20 234 < 0.01 127 1.27 145 6.68 11 <10 116 24805 80 1.6 <10 16 304 132 3.42 56 < 0,01 128 5.5 0.63 80 50 <5 6,35 <1 10 29 10 0.99 2319 19 1160 96 15 20 291 < 0.01 <10 44 <10 18 55 24806 120 20 1.02 2225 15 < 0.01 18 2250 129 <6 16 34 36 5.30 290 10 40 467 < 0.01 24807 360 4.9 0.72 470 50 6.12 4 20 34 <10 25 844 130 26 30 41 124 >10 30 1.48 2173 9 < 0.01 19 1810 2152 <5 80 429 < 0.01 90 20 5.77 <10 28 24608 560 14.6 0.48 1085 20 30 3967

ECO-TECH LABORATORIES LTD. ICP CERTIFICATE OF ANALYSIS AK 2001-415R NAVASOTA RESOURCES NI Ρ Pb Sb Sr Ti% U v W Y Ag Al % La Mg % Mo Na % Sn Zn As: Ba BI Ca % Cd Со Cr Cu Fe % Mn Et #. Tag # Au(ppb) 3.2 0.59 18 19 69 6.23 20 1.50 2330 <1 <0.01 14 1840 180 <5 60 408 < 0.01 <10 38 <10 28 183 24809 210 80 5 5.97 <1 131 300 <5 60 364 < 0.01 25 139 6.93 30 1.63 2465 <1 0.02 17 1610 480 <10 82 <10 24 1569 430 2.5 0.97 85 95 <5 6.66 9 21 132 24610 125 60 5 7.24 <1 15 32 43 4.82 20 1.71 2257 <1 0.01 21 1650 14 10 40 529 < 0.01 <10 35 <10 27 46 133 24811 0.9 0.46 65 2.23 1758 22 1810 12 <5 60 346 < 0.01 23 30 40 6.55 30 <1 0.02 <10 151 26 38 24612 20 0.2 1.66 30 155 <5 4.67 <1 <10 134 7 25 33 1.51 10 0.38 294 2 0.04 6 1480 22 <5 <20 67 0.06 <10 19 <10 8 23 <5 40 <5 2.08 <1 135 24813 45 <0.2 1.66 5 1460 5 20 <5 1.77 92 20 0.46 309 5 0.03 22 167 0.04 <10 34 <10 9 17 24814 60 <0,2 1.77 5 55 <1 10 9 1.84 136 5 1.74 7 34 1,59 10 0.48 292 1 0.03 4 1340 20 5 <20 112 0.04 <10 23 <10 6 15 137 24815 30 < 0.2 1.65 <5 50 <1 14 22 57 20 1,69 1004 <1 0.03 26 1470 20 10 40 179 0.07 <10 196 <10 35 24816 <0.2 2.68 <5 90 <5 3.69 <1 46 5,24 12 138 20 20 5 45 <5 4.21 <1 23 18 138 4.30 20 1.26 902 4 0.02 13 1860 5 40 103 0.03 <10 147 <10 18 26 24817 75 0.2 2.34 139 22 20 1.23 1011 <1 0.02 17 1700 10 40 167 0.02 <10 158 20 32 24818 55 0.2 2.71 5 50 <5 5.61 <1 16 15 66 4.64 <10 140 20 0.73 3 0.05 <5 40 97 141 24819 15 < 0.2 2.40 <5 65 <5 3.09 <1 13 15 65 2.62 445 10 2140 6 0.07 <10 74 <10 11 17 27 2.62 20 0.89 437 1 0.03 23 1520 6 <5 40 122 0.07 <10 102 <0.2 2.71 <5 75 <5 3.68 <1 12 49 <10 11 15 142 24820 15 0.02 15 2080 6 <5 40 118 65 5 <1 16 17 42 4.51 20 1.32 895 <1 0.02 10 155 <10 20 27 143 24821 20 0.2 3,07 <5 4.41 1.35 927 <1 0.02 18 2010 2 <5 60 205 22 <5 90 <5 5.40 <1 14 15 33 4,36 20 0.02 <10 169 <10 27 144 24822 10 <0.2 2.99 0.2 2.80 10 35 <5 5.03 <1 12 14 26 3,58 20 0.89 714 <1 0.04 15 2190 6 10 40 55 0.07 <10 110 <10 15 21 145 24823 10 27 20 3.32 20 0.88 647 2 0.04 17 1980 4 10 40 65 0.08 <10 108 <10 14 21 146 24824 15 0.2 2.71 -5 30 <5 4.72 <1 10 <1 12 16 46 3.77 20 1.11 757 <1 0.02 18 1310 4 <5 40 131 < 0.01 <10 104 <10 24 23 24825 0.2 2.54 10 55 <5 5,16 147 15 18 1510 <2 230 < 0.01 <1 60 3.91 30 1.01 818 <1 0.02 10 40 103 27 25 148 24826 240 0.7 1.97 10 85 <5 6.63 14 15 <10 <10 149 24827 55 0.3 1.60 <5 25 <5 8.74 <1 12 10 68 3.34 30 0,43 873 <1 0.02 20 1950 <2 10 40 112 < 0.01 <10 94 <10 39 27 26 15 84 4.77 30 0.67 818 <1 0.01 17 1910 <2 <5 60 71 < 0.01 <10 118 30 34 30 <5 4.77 <1 <10 150 24828 55 0.6 2.21 10 24829 10 20 <5 6,16 <1 10 13 62 3.59 20 0.42 440 <1 0.02 18 2090 <2 10 40 85 < 0.01 <10 126 <10 28 30 151 35 0.3 1.69 <2 92 < 0.01 <5 8.03 <1 13 13 52 2.97 20 0.27 722 <1 0.02 21 1590 5 20 <10 85 <10 34 26 25 <5 15 152 24830 0,2 1.33 673 <1 0.02 14 1290 <2 10 <20 70 <0.01 1.70 20 0.16 <10 27 153 24831 40 0.2 0.87 5 10 <5 7.14 <1 9 8 46 39 <10 19 15 <5 7.95 <1 9 5 43 2,19 20 0.21 882 <1 0.02 15 1140 <2 15 <20 77 < 0.01 <10 35 <10 27 20 154 24832 0.2 1.03 <5 40 21 1460 4.90 20 0.38 429 <1 <0.01 <2 10 40 56 < 0.01 <10 22 28 20 <5 4.30 <1 15 24 13 107 <10 0.9 1.95 <5 155 24833 15 22 42 4.15 30 0.41 656 <1 0.01 28 1980 <2 5 40 82 < 0.01 <10 138 38 20 <5 6.43 <1 20 <10 32 156 24834 50 0.3 1.88 5 <1 21 1760 <2 40 3.67 30 0.43 915 0.01 5 20 135 < 0.01 27 157 <0.2 1,56 10 20 <5 9,41 <1 13 10 <10 80 <10 42 24835 25 5 20 <5 7.29 <1 11 10 57 2.83 20 0.36 772 <1 0.02 16 1110 <2 <5 20 104 < 0.01 <10 48 <10 29 21 158 24836 20 <0.2 1.29 23 1250 <2 5 5 20 <5 6.86 <1 9 20 24 3.41 20 0.82 837 <1 0.02 40 105 < 0.01 <10 109 <10 28 22 159 24837 350 0.2 1.98 3.90 20 1.35 0.03 8 1190 6 <\$ 60 90 0.2 2.59 <5 2.59 11 15 69 813 <1 0.03 10 95 160 24838 25 <5 45 <1 <10 9 29 620 <1 0.03 4 1290 73 3.21 20 0.90 6 5 40 0.02 161 0.2 1.68 <5 40 <5 2,42 <1 15 13 101 <10 71 <10 14 25 24839 40 0,03 5 1280 20 0.76 <1 8 10 40 61 0.02 162 24840 60 0.2 1.92 5 35 <5 1,01 <1 14 14 113 3.14 467 <10 68 <10 14 24 33 123 2.51 20 0.42 356 4 0.04 7 1230 6 <5 40 63 0.03 163 1.66 <5 40 <5 3.01 <1 13 <10 38 <10 13 20 24841 330 <0.2 88 < 0.01 35 <5 <1 16 26 127 3,56 30 0,83 498 3 0.02 8 1300 4 <5 40 <10 73 21 23 164 5 3,80 <10 24842 265 < 0.2 1,69 6 1310 6 <5 20 165 24843 <0.2 1.79 <5 80 <5 2.22 <1 9 51 66 2.26 20 0.68 371 <1 0.04 44 0.05 <10 31 <10 0 18 165

NAVAS	OTA RES	OURCES								ŀ	CP CE	RTIFIC	ATÉ O	F ANA	LYSIS	AK 20	01-415	R							ECO-TI	ECH LA	BORA	TORIES	LTD.	
Et #.	Tag #	Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
166	24844	90	<0.2	1.48	5	40	<5	2.38	<1	10	37	78	1.91	20	0.50	341	2	0.03	5	1270	6	<5	20	42	0,04	20	22	<10	7	17
167	24845	50	<0.2	1.41	<5	55	<5	1,88	<1	17	40	159	2,22	20	0.50	299	8	0.04	4	1280	6	<5	20	31	0,06	<10	21	<10	5	18
168	24846	170	5.4	1.18	<5	55	<5	0.97	<1	103	38	9184	9.70	40	0.63	288	16	0,03	19	1040	<2	10	100	7	0.03	20	35	<10	1	150
169	24847	60	0.9	2.11	<5	50	<5	1.78	<1	71	36	1587	9.12	40	1.28	396	26	0.02	13	1120	2	5	100	20	0.02	<10	86	10	7	27
170	24848	>1000	<0.2	1.60	10	55	<5	3,43	<1	16	21	127	2.84	20	0.71	449	3	0.03	8	1420	4	<5	40	130	0,04	<10	75	<10	13	22
171	24849	140	<0.2	2.26	5	40	<5	3,76	<1	27	25	220	4.12	20	1.02	545	9	0.03	12	1680	4	5	60	67	0.08	<10	89	<10	11	25
172	24850	25	<0.2	1.66	10	35	<5	2.18	<1	12	38	84	2.12	10	0,59	321	1	0.04	5	1260	8	<5	20	45	0.05	<10	26	<10	5	17
00.04	τ																													
Reneal	1 <del>0</del> 1																													
1	00205	15	02	2 48	<5	190	<5	1 48	<1	26	48	198	4 17	20	1.35	526	8	0.05	24	720	16	<5	80	621	0.14	<10	88	<10	10	77
10	00214	55	0.6	2 21	10	65	<5	2 20	<1	40	69	323	6 82	20	1.62	766	4	0.03	28	760	20	<5	100	56	0.09	<10	189	<10	à	37
19	00223	10	0.2	1.57	10	20	<5	1.82	<1	19	24	231	3 89	20	0.76	429	1	0.03	4	2010	16	<5	60	16	0.05	<10	48	<10	15	27
36	00240	15	0.2	1.82	20	20	<5	4.97	<1	19	28	258	3.18	20	0.71	495	6	0.03	13	1620	12	<5	60	59	0.04	<10	37	<10	13	16
45	00249	15	<02	0.45	<5	30	<5	0.79	<1	10	35	144	1.43	<10	0.19	168	5	0.04	2	990	4	<5	20	17	0.07	<10	12	<10	14	
54	00258	65	0.2	1.76	<5	65	<5	1.09	<1	39	67	530	4.51	20	1,13	395	17	0,06	17	1360	16	<5	80	100	0.16	<10	52	<10	16	31
71	00275	20	0.2	3,40	<5	50	<5	6.14	<1	33	29	184	6.65	30	2.23	1235	<1	0,07	24	2300	34	<5	140	154	0.18	<10	175	10	25	38
80	00284	45	0.2	1,74	10	45	<5	2.00	<1	28	29	236	4.47	20	1.04	460	8	0.08	10	1910	22	<5	80	43	0.12	<10	68	10	17	23
89	00294	180	0.3	1.38	15	35	<5	1.17	<1	106	78	651	6.54	20	0.82	389	39	0.05	25	1100	18	<5	100	18	0.16	<10	40	60	18	23
106	00811	>1000	0.2	1.55	5	40	<5	1.09	<1	33	213	142	4.27	30	1.35	323	41	0.06	65	1390	6	<5	<20	27	0.08	<10	77	<10	3	18
115	00820	90	0.4	2.40	<5	55	<5	2.95	<1	21	22	120	3.44	20	1.07	547	2	0.06	19	1980	12	10	20	74	0.09	<10	86	<10	9	24
124	24802	75	2.5	1.50	85	60	<5	6.81	<1	19	20	50	5.61	20	1,55	2093	12	<0.01	19	1620	16	10	40	388	<0.01	<10	133	<10	24	43
141	24819	15	<0.2	2,29	5	55	<5	2.93	<1	13	13	61	2.49	20	0.70	424	2	0.04	10	2050	6	<5	40	89	0.06	<10	63	<10	10	16
150	24828	50	0.6	2.20	15	30	<5	4.67	<1	25	14	83	4,71	30	0,67	808	<1	0.01	16	1900	4	10	60	66	<0,01	<10	117	<10	30	34
159	24837	>1000	0.2	2.02	<5	15	<5	6.97	<1	10	20	24	3.43	20	0.83	850	<1	0.02	23	1280	2	5	40	102	<0.01	<10	111	<10	30	23
Respli	t:																													
1	00205	20	0.2	2.70	5	205	<5	1.61	<1	30	54	218	4.68	20	1.43	572	5	0.05	28	830	32	<5	100	696	0.14	<10	98	20	12	32
36	00240	20	0,2	2.07	20	10	<5	5,86	<1	22	32	272	3.57	20	0.77	560	9	0.03	16	1900	22	10	60	61	0.05	<10	41	20	13	18
71	00275	35	0.2	3.53	<5	50	<5	6.28	<1	34	33	190	6.86	30	2.29	1270	2	0.07	24	2370	36	<5	160	157	0,25	<10	189	20	21	41
106	00811	>1000	0.2	1.60	10	45	<5	1,17	<1	35	231	141	4.43	30	1.36	339	40	0.06	69	1440	14	5	40	29	0.08	<10	74	<10	3	17
141	24819	15	0.2	2.22	5	55	<5	2.87	<1	13	12	60	2.38	10	0.67	416	2	0.04	9	1950	8	5	40	92	0.07	<10	65	<10	9	15

 $\bigcap$ 

 $\cap$ 

.

 $\bigcirc$ 

Page ð

NAVAS	OTA RES	OURCES								ŀ	CP CE	RTIFIC	ATE O	F ANA	LYSIS	AK 20	01-41	5R							ECO-T	ECH LA	BORA	TORIE	S LTD.	
Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Ρ	Pb	Sb	Sn	Sr	Tì %	Ų	V	W	Y	Zn
Standa GEO'01 GEO'01 GEO'01 GEO'01 GEO'01	nd:	115 115 120 125 125	1.2 1.4 1.2 1.2 1.4	1.85 1.84 1.99 1.71 1.74	70 60 65 55 55	165 175 175 160 150	<5 <5 <5 <5 <5 <5	1.77 1.77 1.86 1.59 1.58	<1 <1 <1 <1 <1	22 22 23 20 20	70 68 75 63 61	91 89 90 79 82	3.93 3,83 4.05 3.65 3.52	20 20 20 20 20	1.07 1,05 1.09 0,95 1.00	758 741 761 693 689	<1 <1 <1 1	0.02 0.02 0.02 0.02 0.02	30 31 33 28 27	860 840 880 760 740	38 38 42 24 20	<5 5 <5 10 10	80 60 60 40 40	57 62 67 48 45	0.08 0.07 0.09 0.09 0.11	<10 <10 <10 <10 10	64 61 65 64 70	20 20 <10 <10	13 15 14 9 8	80 77 81 71 69

JJ/kk df/415A/415D XLS/01 Fex: 374-9296 Attn: Lorne Werner

• ECO-VECH LABORATORIES LTD. Jutta dealoyse B.C/Certified Assayer

13-Feb-02

1

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La l	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	TI %	U	<u>v</u>	W	Y	Zn
1	01001	120	<0.2	2.14	<5	70	<5	2.62	<1	26	58	69	5.40	40	1.32	543	<1	0.10	25	1820	34	<5	<20	56	0.16	<10	169	<10	10	26
2	01002	215	<0.2	0.86	100	50	<5	2.84	<1	64	80	156	2.70	20	0.26	264	<1	0.07	57	1230	4	<5	<20	41	0.14	<10	66	<10	9	14
3	01003	80	<0.2	2.26	~5	75	<5	1.39	<1	17	105	12	3.86	30	1.35	564	<1	0.16	28	730	6	<5	<20	86	0.17	<10	113	<10	6	29
4	01004	60	<0.2	1.81	<5	30	<5	2.60	<1	15	88	15	2.28	20	0.66	329	<1	0.10	26	980	4	<5	<20	41	0.15	<10	82	<10	7	21
5	01005	90	<0.2	0.81	10	30	<5	2.56	<1	11	75	19	1.45	20	0.37	277	2	0.08	15	1270	<2	<5	<20	41	0.10	<10	47	<10	7	12
•																														
6	01006	15	<0.2	2.43	<5	60	<5	1.07	<1	16	95	10	4.29	30	1.81	514	<1	0.12	28	860	4	<5	<20	88	0.12	<10	121	<10	7	30
7	01007	5	<0.2	1.93	<5	60	<5	1.68	<1	22	40	192	3.52	30	1.49	396	<1	0.09	14	2150	4	<5	<20	58	0.15	<10	98	<10	9	24
, 8	01008	20	<0.2	2.71	<5	65	<5	2.82	<1	22	44	177	4,07	30	1.48	386	<1	0.07	19	2000	8	<5	<20	51	0.15	<10	127	<10	9	22
å	01009	35	<0.2	2.17	<5	55	≺5	1.78	<1	34	34	162	5,32	40	1.89	479	<1	0.09	17	2260	6	<5	<20	58	0.14	<10	122	<10	12	25
10	01010	40	<0.2	2.67	<5	75	<5	1.56	<1	35	44	265	7.61	50	2.18	533	<1	0.08	16	2130	4	<5	<20	36	0.19	<10	163	<10	12	30
			•••=																											
JDD 11	010111	71 <1000	0.B	1.19	<5	90	25	3.98	<1	88	40	1177	9.97	60	0.85	460	82	0.04	55	1540	8	<5	<20	43	0.08	<10	76	<10	14	30
12	01012	75	<0.2	3.02	<5	135	<5	1.50	<1	40	48	188	8.54	50	2.25	610	<1	0.07	19	1820	12	<5	<20	28	0.24	<10	238	<10	13	34
13	01013%	s 60	<0.2	2.97	<5	135	<5	1.45	<1	37	45	158	8.07	50	2.32	697	<1	0.07	18	1850	10	<5	<20	32	0.22	<10	228	<10	12	-34
- 70 - 14	01014	bo 60	<0.2	2.18	<5	70	<5	2.64	<1	16	31	40	3.18	30	0.83	495	<1	0.11	11	1890	6	<5	<20	87	0.12	<10	72	<10	9	24
5 JU 15	01015	30,2185	<0.2	2.12	<5	80	<5	4.66	<1	14	21	55	3.35	30	0.75	578	<1	0.08	14	1890	10	<5	<20	226	0.07	<10	70	<10	11	23
	0.010																													
-11.16	01016	120 °°	<0.2	1.96	<5	50	<5	3.09	<1	12	28	43	2.75	30	0.66	385	<1	0.09	13	2100	8	<5	<20	68	0.09	<10	65	<10	10	24
- 17 בר-	01017	75	<0.2	2.04	<5	40	<5	2.87	<1	13	25	45	2.60	30	0.72	395	<1	0.10	12	2150	6	<5	<20	49	0.10	<10	63	<10	8	23
-1-18	01018	200	<0.2	1.90	<5	35	<5	2.72	<1	15	19	65	2.70	30	0.76	342	1	0.09	9	2260	6	<5	<20	40	0.10	<10	63	<10	9	22
14149	01019	4×3 70	<0.2	2.07	<5	35	<5	3.13	<1	13	29	56	2.81	30	0.84	427	<1	0.09	14	2040	8	<5	<20	46	0.10	<10	68	<10	9	22
Les 20	01020	145	<0.2	2.77	<\$	85	<5	2.24	<1	20	36	21	6.23	40	1.88	575	<1	0.11	18	2330	8	<5	<20	66	0.19	<10	162	<10	13	- 31
			•																											
21	01021	50	<0.2	2.01	<5	85	<5	1.80	<1	17	56	85	4.05	30	1.53	583	<1	0.09	21	1500	8	<5	<20	85	0.15	<10	123	<10	9	27
22	01022	35	<0.2	1.55	<5	80	<5	4.39	<1	7	43	2	2.32	20	1.09	646	10	0.07	13	1430	6	<5	<20	194	0.13	<10	86	<10	9	25
23	01023	55	<0.2	1.54	<5	60	<5	3.86	<1	8	37	4	2.33	20	1.10	604	13	0.07	11	1870	e	<5	<20	123	0.10	<10	96	<10	9	24
24	01024	25	<0.2	1.64	<5	55	<5	3.55	<1	8	21	17	2.43	20	0.80	514	1	0.05	10	1530	6	<5	<20	94	0.08	<10	74	<10	8	25
25	01025	60	<0.2	1.93	<5	35	<5	3.27	<1	10	26	25	2.30	20_	0.62	487	<1	0.08	11	1500	6	<5	<20	38	0.08	<10	59	<10	8	27
														F	age 1															

ICP CERTIFICATE OF ANALYSIS AK 2002-013

NAVASOTA RESOURCES #207 141 VICTORIA STREET KAMLOOPS, BC V2C 125

#### ATTENTION: LORNE WARNER

No. of samples received: 127 Sample type: Core Project #: None Given Shipment #: None Given Samples submitted by: Lorne Warner

ECO TECH LABORATORY LTD. ICP CERTIFICATE OF ANALYSIS AK 2002-013 NAVASOTA RESOURCES Ρ Sr TI% Y Ni Pb Sb υ ۷ W Bi Ca % Cd Co Cr Cu Fe % La Mo % Mn Mo Na % Sn Zn Au(ppb) Ag Al% Aa Ba Et #. Tag # 0.07 <5 60 0.09 28 2,78 20 0.75 533 <1 9 1520 8 <20 <10 69 <10 8 50 2.64 10 25 15 <0.2 1.99 <5 <5 <1 26 01026 20 <1 0.03 11 1460 <5 <20 145 <0.01 51 <10 12 <5 70 <5 2.59 <1 11 22 38 3.07 30 0.63 415 8 <10 29 20 < 0.2 1.68 27 01027 21 14 2.42 20 0.66 414 <1 0.06 11 1530 8 <5 <20 39 0.08 <10 58 <10 8 27 <5 2.90 <1 9 <0.2 2.19 <5 35 28 01028 25 8 <5 <20 38 0.09 <5 2.97 <1 8 27 13 2.11 20 0.57 381 <1 0.07 11 1490 <10 56 <10 7 24 <0.2 2.00 <5 45 29 01029 30 10 38 12 2.28 20 0.58 416 <1 0.07 11 1440 <5 <20 40 0.08 <10 56 <10 7 26 3.11 <1 2.20 <5 30 <5 8 30 01030 75 <0.2 <1 0.05 12 1410 <5 <20 62 0.07 <10 65 <10 20 477 8 8 26 30 <5 3.53 <1 10 29 11 2.79 0.74 01031 65 <0.2 2.08 <5 31 35 0.08 30 1.11 567 <1 0.06 14 1560 8 <5 <20 <10 87 <10 10 39 <0.2 <5 35 <5 2.41 <1 13 41 15 4.28 32 01032 30 2.69 30 1.89 756 <1 0.08 24 1790 8 <5 <20 114 0.16 <10 155 <10 32 <5 2.72 23 40 84 5.09 11 15 <0.2 2.75 <5 65 <1 33 01033 26 59 134 4,95 30 1.37 658 <1 0.08 31 1570 168 <5 120 78 0.17 <10 172 <10 11 27 30 <0.2 2.15 <5 60 <5 3.20 <1 34 01034 20 0.96 479 19 0.06 23 1150 8 <5 <20 82 0.14 <10 85 <10 9 19 <5 2.81 <1 20 48 100 3.38 <0.2 1.62 <5 50 35 01035 20 30 1.78 866 <1 0.10 36 1000 8 <5 <20 218 0.15 <10 129 <10 10 46 <5 95 <5 1.52 <1 19 91 3 4.98 10 <0.2 2.61 36 01036 21 37 119 3.34 20 0.90 437 <1 0.06 26 1900 6 <5 <20 87 0.12 <10 85 <10 8 23 <5 2.61 <1 37 01037 20 <0.2 2.04 <5 50 49 46 2.73 20 0,96 451 <1 0.08 28 1190 6 <5 <20 148 0.14 <10 89 <10 8 21 <5 2.86 <1 14 20 <0.2 2.18 <5 55 38 01038 796 7.96 50 1.59 595 129 0.04 54 1290 10 <5 <20 115 0.12 <10 104 <10 12 33 70 75 39 01039 45 <0.2 2.57 10 70 15 4.25 <1 28 1510 50 <5 3.18 <1 16 54 70 3.26 30 1.22 449 <1 0.05 6 <5 <20 109 0.12 <10 95 <10 10 23 <0.2 2.09 <5 01040 15 40 17 22 84 3.65 30 1.08 616 <1 0.04 16 1600 8 <5 <20 120 0.07 <10 77 <10 12 27 65 <5 4.15 <1 41 01041 15 < 0.2 2.14 <5 2.22 20 0.56 383 <1 0.06 10 1750 6 <5 <20 51 0.08 <10 49 <10 12 21 59 8 23 1.76 <5 45 <5 2.97 <1 42 01042 10 <0.2 50 <5 3.27 <1 30 26 155 4.33 30 0.89 454 <1 0.05 17 1760 8 <5 <20 42 0.09 <10 71 <10 9 25 <0.2 1.99 <5 43 01043 10 14 1670 0,68 464 <1 0.06 10 <5 <20 37 0.08 <10 57 <10 8 25 <5 3.62 <1 14 38 77 2.73 20 <5 40 44 01044 5 <0.2 2.07 36 2.32 20 0.69 530 <1 0.05 14 1700 10 <5 <20 46 0.08 <10 57 <10 26 2.07 <5 30 <5 4,33 <1 10 32 8 <0.2 45 01045 5 28 2.34 20 0.81 678 <1 0.05 15 1750 8 <5 <20 65 0.08 <10 67 <10 9 33 <0,2 1.60 <5 40 <5 4.91 <1 11 24 46 01046 10 20 0.95 761 <1 0.05 17 1780 10 <5 <20 84 0.09 <10 83 <10 9 29 <5 5.49 <1 14 29 36 2.84 1.91 65 < 0.2 <5 47 01047 5 768 17 1710 10 <5 <20 131 0.08 <1 10 29 2.52 20 0.86 4 0.05 <10 72 <10 9 27 2.08 <5 135 <5 5.88 24 48 01048 5 < 0.2 20 999 <1 0.05 16 1820 10 <5 <20 83 0.09 87 70 <5 5.25 <1 13 27 42 3.24 1.11 <10 <10 10 30 <5 49 01049 5 <0.2 1.80 22 27 73 4.47 30 1.37 986 <1 0.04 16 1890 14 <5 <20 64 0.08 <10 93 <10 12 41 <5 4.84 <1 50 01050 5 < 0.2 2.22 <5 70 14 1730 12 <5 <20 <5 3.92 15 40 63 3.27 20 0.98 641 <1 0.06 35 0.08 <10 71 <10 9 30 <1 51 01051 15 <0.2 2.23 <5 100 20 523 0.06 12 1640 10 <5 <20 36 <5 70 <5 3.25 <1 16 38 89 3.17 0.86 <1 0.10 <10 65 <10 11 28 <0.2 1.77 52 01052 130 89 180 6.32 30 1.90 438 1 0.07 56 820 10 <5 <20 50 0.08 <10 128 <10 33 29 14 <5 70 <5 1.78 <1 53 01053 55 <0.2 1.91 30 1.23 364 115 0.05 105 1030 10 <5 <20 61 0.07 65 <5 2.75 <1 33 122 207 5.44 <10 337 <10 22 38 <0.2 1.42 <5 54 01054 15 204 107 1050 12 <5 43 108 186 5.03 30 1.27 395 0.05 <20 175 0.04 <10 446 <10 10 32 6.33 <1 55 01055 20 <0.2 1.39 95 70 <5 30 1.25 451 60 0.07 68 1090 14 <5 <20 61 0.12 <10 166 231 5.50 <10 15 29 40 60 <5 3.08 <1 38 129 56 30 < 0.2 1.38 01056 396 123 100 780 12 <20 35 153 128 4.33 30 1.48 0.06 <5 41 0.09 <10 297 <10 16 57 <0.2 1.63 55 70 <5 1.58 <1 28 01057 25 67 4.61 30 1.12 747 <1 0.10 27 2200 14 <5 <20 86 0.17 <10 111 29 47 <10 12 30 58 <0.2 2.27 <5 115 <5 3.31 <1 01058 5 0.76 <1 10 <5 75 95 <5 3.57 <1 22 72 74 3.46 20 633 0.04 29 1370 -20 0.13 <10 71 <10 9 26 59 01059 < 0.2 1.46 <5 6 22 75 64 3.49 20 0.98 507 <1 0.08 41 1450 12 <5 <20 193 0.17 <10 98 <10 10 28 60 -5 180 <5 2.28 <1 <5 <0.2 1.97 01060

NAVASOTA RESOURCES ICP CERTIFICATE OF ANALYSIS AK 2002-013 ECO TECH LABORATORY LTD. Ag Al% Bi Ca 🛠 Cd Et #. Tag # Au(ppb) Ba Co Çr Cu Fe % Aя La Mg % Mn Mo Na % Ni P Pb Sb Sn Sr TI% U ν W Y Żn 61 01061 10 <0.2 2.02 <5 120 <5 1.37 26 129 55 5.29 20 <1 1.40 588 <1 0.07 53 1400 12 <5 <20 0.12 117 173 <10 <10 13 35 62 01062 ,145 <0.2 1.90 <5 100 <5 6.36 <1 26 42 88 **5.21** 30 0.80 857 <1 0.05 37 1600 14 <5 <20 92 0.13 <10 78 <10 13 36 < 0.2 2.15 180 <5 5.79 22 63 01063 65 <5 <1 53 52 5.98 30 0.96 963 <1 0.07 30 1590 14 <5 <20 220 0.16 <10 84 <10 14 38 3.36 64 01064 15 <0.2 1.60 <5 180 <5 <1 20 52 67 20 0.67 3.26 518 <1 0.07 29 1530 12 <5 <20 158 0.17 <10 68 <10 12 25 65 01065 15 <0.2 1.54 <5 95 <5 1.30 <1 22 140 67 3.78 10 1.01 500 1 0.06 87 550 14 <5 <20 68 0.15 <10 98 <10 10 54 66 01066 15 <0.2 1.65 <5 90 <5 4.24 <1 22 64 79 3.28 20 0.58 534 <1 0.05 43 1480 16 <5 <20 57 0.17 <10 64 <10 14 25 67 01067 70 <0.2 1.30 <5 35 <5 2.29 9 40 23 <1 1.77 20 0.29 293 <1 0.04 8 1510 12 <5 <20 41 0.10 <10 38 <10 9 20 68 01068 85 <0.2 1.95 <5 40 <5 4.15 <1 17 43 21 2.43 20 0.46 416 <1 0.04 16 1450 16 <5 <20 39 0.09 <10 55 <10 10 25 <5 69 01069 15 <0.2 1.61 <5 40 3.19 <1 8 37 3 1.60 20 0.31 332 <1 0.04 10 1510 14 <5 <20 28 0.09 <10 39 <10 21 9 70 01070 10 <0.2 1.36 <5 45 <5 2.85 <1 7 32 4 1.90 20 0.34 434 <1 0.05 7 1520 14 <5 <20 41 0.09 <10 44 <10 10 27 71 01071 305 < 0.2 1.95 <5 55 <5 4.22 <1 10 52 8 3.41 20 0.85 666 <1 0.05 14 1330 16 <5 <20 44 0.07 <10 87 <10 11 34 72 01072 20 <0.2 2.50 <5 55 <5 5.52 10 49 7 <1 2.18 20 0.49 448 <1 0.04 18 1470 22 <5 <20 35 0.07 <10 66 <10 9 28 73 01073 10 <0.2 0.99 <5 35 <5 2.10 <1 6 25 9 1.17 20 0.21 243 <1 0.05 6 1490 10 <5 <20 28 0.07 <10 28 <10 8 21 74 01074 90 <0.2 1.37 <5 45 <5 2.66 <1 9 43 13 1.59 10 0.25 319 <1 0.08 9 1540 20 <5 <20 43 0.08 <10 34 <10 10 21 75 01075 10 <0.2 0.97 <5 40 <5 2.02 <1 8 24 7 1.19 10 0.24 245 <1 0.06 5 1340 8 <5 <20 27 0.07 <10 30 <10 8 16 76 01076 10 <0.2 2.07 <5 85 ≺5 1.60 35 47 98 30 1.72 <1 0.06 <1 6.26 754 20 1620 12 <5 <20 37 0.17 <10 195 <10 11 55 77 01077 80 <0.2 1.41 <5 50 <5 2.20 <1 13 28 44 2.82 20 0.56 381 <1 0.06 7 1360 10 <5 <20 60 0.07 <10 47 <10 7 22 78 01078 25 <0.2 1.80 2.81 <5 40 <5 <1 8 43 18 2.47 20 0.46 370 <1 0.06 9 1270 10 <5 <20 50 0.07 <10 43 7 <10 22 79 01079 330 <0.2 1.58 <5 55 <5 3.16 <1 11 32 94 2.83 20 0.62 478 <1 0.04 9 1270 12 <5 <20 40 0.06 <10 53 <10 8 29 80 01080 150 <0.2 1.24 <5 55 <5 1.95 <1 10 32 36 1.93 20 0.37 321 <1 0.05 6 1350 10 <5 <20 23 0.06 <10 34 <10 7 24 81 01081 100 <0.2 1.33 -5 40 <5 2.26 <1 11 27 37 2.35 20 0.49 381 0.05 <1 6 1320 8 <5 <20 27 0.06 <10 45 <10 8 26 82 <5 01082 40 <0.2 1.28 <5 40 2.28 <1 8 31 25 1.98 20 0.39 324 <1 0.06 6 1330 10 <5 <20 22 0.06 <10 37 7 <10 26 83 01083 <5 40 <0.2 1.34 <5 40 2.55 <1 8 29 18 2.00 20 0.42 354 <1 0.06 7 1330 10 <5 <20 25 0.07 <10 39 <10 7 28 01084 <0.2 1.27 < 5 40 <5 2.74 7 84 35 <1 36 14 1.74 20 0.36 339 <1 0.05 8 1290 10 <5 <20 35 0.06 <10 35 7 <10 25 85 01085 45 <0.2 1.37 <5 40 <5 3.31 10 35 50 <1 1.77 20 0.33 10 285 0.05 8 1310 12 <5 <20 27 0.07 <10 35 <10 7 21 86 01086 80 <0.2 3.18 <5 75 <5 3.60 <1 26 40 51 30 1.88 6.95 857 <1 0.09 20 2200 16 <5 <20 78 0.14 <10 178 <10 15 44 87 01087 <0.2 2.82 <5 <5 2.44 36 60 130 < 5 100 1 6.71 30 1.99 710 <1 0.12 26 2090 16 <5 <20 72 0.20 <10 170 <10 14 45 88 01088 15 <0.2 1.71 <5 30 <5 3.16 <1 18 31 106 2.29 20 0.35 315 <1 0.06 9 1370 12 <5 <20 35 0.07 <10 32 <10 8 21 70 89 01089 25 < 0.2 1.62 <5 40 <5 2,85 <1 15 49 2.62 20 0.46 407 <1 0.06 10 1370 12 <5 <20 41 0.07 <10 41 <10 8 24 90 01090 40 <0.2 1.30 <5 30 <5 2.68 <1 11 41 48 1.80 20 0.34 302 <1 0.06 8 1360 10 <5 <20 35 0.07 <10 30 <10 7 19 91 01091 25 <0.2 1.19 <5 50 <5 2.46 <1 10 54 41 1.42 10 0.30 248 <1 0.06 8 1320 10 <5 <20 43 0.07 <10 26 <10 8 20 92 01092 70 9 24 35 70 <0.2 1.48 <5 <5 4.08 <1 1.75 20 0.50 429 <1 0.04 12 1170 12 <5 <20 105 0.06 <10 32 <10 7 22 93 01093 20 <0.2 1.62 <5 75 <5 2.93 <1 10 35 40 2.09 20 0.44 384 <1 0.05 10 1150 14 <5 <20 107 0.04 <10 33 <10 9 28 94 01094 <5 <1 9 18 37 2.38 30 25 <0.2 1.16 <5 45 5.42 0.46 548 <1 0.02 14 1080 12 <5 <20 113 <0.01 <10 20 <10 13 29 95 01095 40 < 0.2 2.09 <5 50 <5 5.91 <1 6 27 10 2.40 20 0.64 560 <1 0.03 14 1060 18 <5 <20 58 0.02 <10 44 <10 10 25

NAVASOTA RESOURCES ICP CERTIFICATE OF ANALYSIS AK 2002-013 ECO TECH LABORATORY LTD. Et #. Tag # Au(ppb) Ag Al% As Ba Bi Ca % Cd Co Cr Cu Fe % La Mg % Mn Mo Na % Ni P Pb Sb Sn Sr Ti% v Zŋ u w Y 35 96 01096 30 < 0.2 1.79 <5 <5 4.01 38 22 2.02 20 0.44 <1 8 435 <1 0.06 12 1150 14 <5 <20 41 0.05 22 <10 34 <10 97 01097 <5 <0.2 1.49 <5 50 <5 2.50 27 2.22 <1 8 45 20 0.42 421 <1 0.06 8 1230 12 <5 <20 41 0.06 <10 34 <10 8 24 98 01098 35 <0.2 1.15 <5 60 <5 2.42 <1 9 38 33 2.13 20 0.36 361 <1 0.05 7 1170 12 <5 <20 62 0.05 <10 29 <10 9 23 99 01099 20 <0.2 2.18 <5 330 <5 2.26 <1 14 24 53 3.55 20 0.97 613 <1 0.04 8 1190 <5 14 <20 268 0.05 <10 44 <10 34 9 100 01100 30 <0.2 1.76 <5 215 <5 2.69 <1 10 26 19 3.30 20 0.87 661 <1 0.05 1170 10 10 <5 <20 211 0.05 <10 50 <10 10 32 101 01101 <0.2 1.98 35 <5 75 <5 4.08 <1 10 32 26 3.05 20 0.73 580 <1 0.05 11 1160 16 <5 <20 69 0.05 <10 46 <10 9 29 102 01102 30 <0.2 1.67 <5 200 <5 2.35 <1 10 20 21 2.60 20 0.68 510 <1 0.05 8 1280 14 <5 <20 87 0.08 <10 51 <10 9 26 01103 <0.2 1.89 <5 310 <5 103 10 3.31 <1 12 25 705 14 3.15 20 0.81 <1 0.05 12 1480 14 <5 <20 196 0.07 <10 65 <10 9 32 104 01104 35 <0.2 1.87 <5 245 <5 3.13 <1 14 27 16 3.44 20 0.84 699 <1 0.05 12 1520 16 <5 <20 153 0.08 <10 71 <10 10 33 01105 <0.2 1.74 105 10 <5 185 <5 3.48 <1 16 25 20 3.54 20 0.93 701 <1 0.05 14 1710 14 <5 <20 173 0.09 <10 75 <10 9 33 108 01106 100 <0.2 1.76 185 <5 3.55 22 <5 <1 18 40 3.78 20 0.94 706 <1 0.05 12 1610 14 <5 <20 160 0.08 <10 80 <10 11 32 107 01107 145 <0.2 1.81 <5 125 <5 4.24 <1 19 18 45 4.17 30 1.05 697 <1 0.04 15 1580 18 <5 <20 131 0.03 <10 72 <10 15 35 <0.2 108 01108 40 1.47 <5 60 <5 5.82 <1 14 17 18 4.16 20 0.85 718 <1 0.03 16 1600 12 <5 <20 113 < 0.01 <10 60 <10 17 40 109 01109 70 <0.2 1.09 <5 50 <5 8.67 <1 12 11 13 3.71 20 0.47 1090 <1 0.03 23 1630 12 <5 <20 71 < 0.01 <10 21 <10 15 39 110 01110 45 <0.2 1.46 10 50 <5 3.16 <1 17 27 39 5.81 20 0.88 385 21 < 0.01 23 1110 12 <5 <20 34 < 0.01 <10 21 <10 14 43 111 01111 45 <0.2 1.05 20 40 <5 7.42 <1 16 48 53 4.88 20 0.51 941 <1 0.03 32 910 12 <5 -20 40 < 0.01 <10 32 <10 16 56 112 01112 60 <0.2 1.09 10 55 <5 >10 <1 12 24 20 4.02 20 0.51 0.03 1143 1 29 2110 14 <5 <20 103 < 0.01 <10 42 <10 20 42 27 113 01113 25 <0.2 2.16 <5 160 <5 8.81 <1 113 104 5.75 20 1.77 1249 3 0.03 88 1070 18 <5 <20 136 0.02 <10 119 <10 18 60 01114 <5 40 114 <0.2 1.59 <5 3.62 <1 13 30 57 3.25 20 0.69 110 511 <1 0.03 12 1390 14 <5 <20 37 0.05 <10 54 <10 8 28 115 01115 110 <0.2 1.84 <5 50 <5 4.09 <1 17 28 37 3.47 20 0.92 638 <1 0.03 16 1520 16 <5 <20 64 0.06 <10 76 <10 10 37 116 01116 40 < 0.2 2.09 <5 50 <5 3.30 <1 12 53 11 3.38 20 0.67 660 <1 0.05 12 1550 18 <5 <20 61 0.07 <10 68 <10 10 42 117 01117 25 <0.2 1.63 <5 75 <5 2.86 9 2.37 20 <1 0.06 <1 11 43 0.45 453 10 1800 18 <5 <20 172 0.07 <10 51 <10 9 32 01118 1,58 60 <5 3.83 118 10 < 0.2 <5 <1 10 47 5 2.43 20 0.48 642 <1 0.05 13 1520 14 <5 <20 206 0.07 <10 51 <10 θ 32 119 01119 <0.2 1.75 <5 75 <5 3.52 <1 10 45 8 2.51 20 30 0.44 551 <1 0.06 12 1430 16 <5 <20 306 0.07 <10 49 <10 9 35 120 01120 90 <0.2 1.58 <5 65 <5 4.16 <1 10 49 9 2.43 20 0.45 576 <1 0.05 12 1430 14 <5 <20 248 0.08 <10 49 <10 9 31 121 01121 25 <0.2 1.57 <5 85 <5 3.54 <1 13 40 41 2.62 20 0.43 433 <1 0.06 13 1520 20 <5 <20 378 0.08 <10 43 <10 g 28 <5 45 122 01122 20 <0.2 1.60 <5 3.53 <1 17 44 34 4.21 20 0.85 617 <1 0.04 10 1460 18 <5 <20 123 0.07 <10 66 <10 10 45 123 01123 30 < 0.2 1.70 <5 55 <5 3.06 <1 17 33 49 4.24 20 0.84 580 <1 0.03 1490 20 10 <5 <20 111 0.06 <10 63 <10 10 46 124 <5 75 01124 15 < 0.2 1.39 <5 4.92 <1 15 45 31 3.18 20 0.74 615 <1 0.03 22 1330 16 <5 <20 300 0.07 <10 64 <10 8 36 125 01125 5 <0.2 1.50 <5 80 <5 3.06 <1 9 40 6 2.06 20 0.37 426 <1 0.05 10 1510 16 <5 <20 260 0.06 <10 41 <10 9 27 126 01126 <5 60 <5 2.69 9 37 18 2.07 5 <0.2 1.44 <1 10 0.39 406 <1 0.05 9 1500 20 <5 <20 0.06 124 <10 39 <10 9 31 127 01127 <0.2 1.53 <5 50 <5 3.18 <1 19 24 58 2.53 20 0.39 362 <1 0.06 10 10 1670 20 <5 <20 78 0.06 <10 38 <10 8 30

NAVAS	SOTA RESOURCES ICP CERTIFICATE OF ANALYSIS AK 2002-013 Tag # Au(ppb) Ag Al % As Ba Bi Ca % Cd Co Cr Cu Fe % La Mg % Mn Mo Na % Ni P Pb																	ECO TI	ECH LA	BORA	TORY L	.TD.								
Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	<u>Mg %</u>	Mn	Мо	Na %	NI	P	Pb	Sb	Şn	Sr	TI %	U	v	w	Y	Zn
QC DA	CA:																													
Resplit	;																													
1	01001	110	<0.2	1.95	<5	70	<5	2.69	<1	25	58	56	5.45	30	1,20	555	<1	0.10	24	1790	6	<5	<20	48	0.16	<10	165	<10	10	27
36	01036	10	<0.2	2.65	<5	95	<5	1.52	<1	21	98	2	5.48	30	1.70	952	<1	0.09	36	1000	10	<5	<20	167	0.16	<10	130	<10	12	45
71	01071	205	<0.2	2.01	<5	60	<5	4.33	<1	10	56	8	3.42	20	0.84	668	<1	0.06	12	1300	18	<5	<20	46	0.08	<10	87	<10	11	34
106	01106	130	<0.2	1.57	<5	50	<5	3.28	<1	19	23	59	2.64	20	0.40	373	1	0.06	12	1730	14	<5	<20	80	0.06	<10	37	<10	9	30
127	01127	15	-	-	-	-	-	•	-	-	-	-	-	-	-	-	•	•	•	-	-	-	-	-	-	-	-	-	-	-
Repeat	;																													
1	01001	120	<0.2	1.96	<5	65	<5	2.47	<1	26	56	62	5.21	40	1,22	522	<1	0.09	24	1730	6	<5	<20	48	0.14	<10	158	<10	10	26
2	01002	185	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	•	-	•	-	-	-	-	-	-	-
10	01010	35	<0.2	2.58	<5	70	<5	1.54	1	35	45	256	7.67	50	2.11	535	<1	0.08	18	2190	8	<5	<20	33	0.17	<10	161	<10	13	31
18	01018	220	-	•	-	-	-	-	-	•	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
19	01019	65	<0.2	1,94	<5	35	<5	2.93	<1	14	28	54	2.71	30	0.80	407	<1	0.09	12	2010	8	<5	<20	45	0.10	<10	65	<10	9	21
36	01036	10	<0.2	2.61	<5	95	<5	1.57	<1	20	94	2	5.12	30	1.74	889	<1	0.09	- 34	1010	8	<5	<20	203	0.15	<10	130	<10	11	49
45	01045	10	<0.2	1.96	<5	30	<\$	4.32	<1	11	33	35	2.35	20	0.67	531	<1	0.05	14	1690	10	<5	<20	43	0.08	<10	56	<10	8	26
52	01052	115	-	•	•	-	-	-	•	-	-	•	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
54	01054	15	<0.2	1.41	<5	65	<5	2.93	<1	34	128	203	5.77	30	1.23	381	124	0.05	109	1070	14	<5	<20	59	0.06	<10	346	<10	23	41
71	01071	300	<0.2	2.00	<5	55	<5	4.15	<1	9	50	8	3.32	20	0.86	655	<1	0.05	14	1260	14	<5	<20	45	0.08	<10	86	<10	11	32
79	01079	370	-	-	-		-	-	-	-	-	•	•	•	-	-	-	-	-	-	-	-	-	-	•	-	-	•	-	-
80	01080	100	<0.2	1.18	<5	45	<5	1.69	<1	9	31	35	1.86	20	0.35	314	<1	0.05	5	1300	10	<5	<20	21	0.06	<10	33	<10	7	23
89	01089	25	<0.2	1.66	<5	40	<5	2.89	<1	15	45	72	2.64	20	0.47	413	<1	0.07	10	1400	12	<5	<20	43	0.07	<10	41	<10	8	23
96	01096	35	-	•	-	-	-	-	-	•	-	-	-	-	-	-	-	•	-	•	-	•	-	•	-	-	-	-	-	-
100	01100	35	-		-	-	-	•	-	-	-	-	-	-	-	-	•	•	•	•	-	•	-	-	-	-	-	-	-	-
101	01101	20		-	-	-	•	-	-	-	-	-	-	•	-	•	-	•	-	-	-	-	-	-	•	-	-	-	-	-
102	01102	30	-	-	-	-	-	-	-	-	•	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-
103	01103	20	-	-	-	-	-	-	-	-	-	•	-	•	-	-	-	-	-	-	-	-	-	•	-	-	-	-	•	-
104	01104	50	-	-	-	•	-	-	-	-	-	-	•	-	-	-	-	-	-	•	-	•	-	-	•	-	•	-	•	-
105	01105	30	-	-	-	-	-	-	-	•	•	•	•	-	-	-	-	-	-	-	-	-	-	-	-	•	•	-	-	-
106	01106	100	<0.2	1.75	<5	185	<5	3.74	<1	18	23	40	3.98	20	0.96	744	<1	0.04	13	1680	14	<5	<20	158	0.06	<10	82	<10	11	- 34
107	01107	170	-		-	-	-	•	•	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-
115	01115	120	<0.2	1,77	<5	50	<5	4.14	<1	18	28	34	3.49	20	0.89	640	<1	0.03	15	1570	18	<5	<20	60	0.07	<10	75	<10	10	39
Standa	ırd:																													
GEO'0	2	125	1,2	1.70	55	165	<5	1.66	<1	19	59	83	3.81	20	0.94	684	<1	0.02	29	670	20	<5	<20	55	0.10	-10	75	<10	10	77
GEO'0	2	115	1.4	1.77	55	180	<5	1.98	<1	20	59	82	4.44	20	0.93	706	<1	0.02	30	770	30	<5	<20	50	0.10	<10	82	<10	11	79
GEO'0	2	120	1.2	1.65	60	165	5	1.91	<1	21	68	80	4.01	20	0.93	710	1	0.01	29	710	20	<5	<20	60	0.10	<10	81	<10	7	74

JJ/kk df/13/13a XLS/02 (

ECO TECH LABORATORY LTD. Juitz Jeslouse BC Certified Assayer

15-Feb-02

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4 Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	Ав	Ba	Bi	Ca 🔧	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
1	01128	20	<0.2	1.67	<5	140	<5	1.04	<1	13	90	80	2.80	20	0.95	289	<1	D.08	20	960	6	<5	<20	115	0.15	<10	83	<10	9	19
2	01129	10	<0.2	1.14	<5	45	<5	1.07	<1	19	98	101	3.28	20	0.82	326	5	0.07	21	1030	4	<5	<20	28	0.12	<10	76	<10	9	17
3	01130	10	<0.2	1.18	<5	45	<5	1.02	<1	13	94	45	2.34	20	0.72	282	1	0.11	16	1200	4	<5	<20	50	0.14	<10	62	<10	Ā	14
4	01131	5	<0.2	2.51	<5	85	<5	1.41	<1	26	71	101	4.79	20	1.72	347	<1	0.19	23	1530	6	<5	-20	140	0.20	<10	122	<10	8	23
5	01132	95	<0.2	2.16	<5	60	<5	1.68	<1	37	46	200	6.02	20	1.76	470	<1	0.09	17	1590	8	<5	<20	34	0.25	<10	188	<10	ā	27
6	01133	730	<0.2	1.51	15	60	<5	2.21	<1	88	58	302	5.92	20	1.15	436	<1	0.07	27	1350	6	<5	<20	37	0.18	<10	113	<10	9	21
7	01134	480	<0.2	1.60	<5	60	<5	4.08	<1	13	75	45	3.71	20	1.46	638	7	0.05	15	950	8	<5	<20	78	0.14	<10	118	<10	9	23
5-58	01135/8	o001< م.	2.0	1.13	<5	70	15	3.34	1	111	44	1367	>10	40	1.03	429	41	0.05	58	1440	4	<5	<20	39	0.11	<10	81	<10	17	43
9	01136	75	<0.2	1.86	<5	40	<5	1.70	<1	21	39	70	4.05	20	1.29	432	<1	0.08	16	1990	6	<5	<20	37	0.14	<10	107	<10	9	21
10	01137	40	<0.2	2.16	<5	50	<5	1.95	<1	23	38	159	4.23	20	1.71	483	<1	0.09	14	1980	8	<5	<20	46	0.15	<10	121	<10	9	25
																													•	
11	01138	35	<0.2	2.77	<5	85	<5	2.06	<1	26	40	110	5.89	30	2.29	993	<1	0.10	18	1990	8	<5	<20	70	0.18	<10	189	<10	13	43
12	01139	35	<0.2	2.47	<5	225	<5	2.41	<1	11	15	42	2.84	20	0.76	452	<1	0.07	8	1270	8	<5	<20	325	0.07	<10	55	<10	7	20
13	01140	25	<0.2	2.48	<5	440	<5	2.25	<1	10	21	30	3.04	20	0.81	482	<1	0.06	8	1250	8	<5	<20	574	0.07	<10	54	<10	7	21
14	01141	40	<0.2	2.53	<5	250	<5	2.89	<1	10	16	24	3.53	20	0.93	641	<1	0.06	7	1260	8	<5	<20	287	0.06	<10	65	<10	9	26
15	01142	25	<0.2	1.80	<5	265	<5	2.55	<1	9	15	26	2.39	20	0.68	463	<1	0.06	4	1250	8	<5	<20	285	0.05	<10	48	<10	8	20
																													•	
16	01143	20	<0.2	1.80	<5	125	<5	2.80	<1	10	14	40	2.55	20	0.73	465	<1	0.06	7	1240	8	<5	<20	139	0.06	<10	51	<10	8	23
17	01144	10	<0.2	1.94	<5	310	<5	2.60	<1	12	14	44	3.54	20	0.85	568	<1	0.05	6	1220	8	<5	<20	90	0.02	<10	56	<10	16	27
18	01145	5	<0.2	2 19	<5	170	<5	2.97	<1	9	24	33	2.79	20	0.76	514	<1	0.06	7	1250	10	<5	<20	175	0.06	<10	56	<10	R	22
19	01146	10	<0.2	2.12	<5	105	<5	3.26	<1	10	13	42	2.93	20	0.83	579	<1	0.06	7	1250	8	<5	<20	101	0.05	<10	59	<10	ģ	23
20	01147	10	<0.2	2.36	20	55	<5	4.11	<1	11	20	25	2.54	20	0.82	616	<1	0.04	10	1120	10	<5	<20	60	0.04	<10	48	<10	10	28
																										. –				~~
21	01148	10	<0.2	2.03	<5	55	<5	4.64	<1	9	24	22	2.39	20	0.79	523	<1	0.04	11	1190	8	-5	<20	67	0.08	<10	52	<10	A	18
22	01149	30	<0.2	1.58	<5	40	<5	4.08	<1	10	30	12	2.99	20	0.89	680	<1	0.04	7	1260	8	<5	<20	66	0.08	<10	52	<10	ğ	23
23	01150	60	<0.2	2.35	<5	35	<\$	3.05	<1	12	38	20	3.78	20	0.95	589	<1	0.05	8	1250	8	<5	<20	37	0.08	<10	55	<10	Ā	27
24	01151	15	<0.2	2.65	<5	45	<5	3.68	<1	10	43	15	3.70	20	0.91	761	<1	0.05	11	1260	8	<5	-20	45	0.07	<10	60	<10	ă	28
25	01152	15	<0.2	2.71	<5	35	<5	2.76	<1	10	- 44	15	3.60	20_	0.95	667	<1	0.06	8	1230	8	<b>~</b> 6	<20	23	0.08	<10	60	<10	8	26
														P	age 1												-		-	

ICP CERTIFICATE OF ANALYSIS AK 2002-015

NAVASOTA RESOURCES #207 141 VICTORIA STREET KAMLOOPS, BC V2C 125

#### ATTENTION: LORNE WARNER

No. of samples received: 75 Sample type: Core Project #: None Given Shipment #: None Given Samples submitted by: Lorne Warner NAVASOTA RESOURCES ICP CERTIFICATE OF ANALYSIS AK 2002-015 ECO TECH LABORATORY LTD. Et #. Tag # Au(ppb) Ag Al% As Ba Bi Ca % Cđ Co Ċr Cu Fe % La Mg % Mn NI Mo Na% P Pb Sr 11% \$b Sn U v W Y Zn 26 01153 15 < 0.2 2.26 <5 40 <5 <1 36 27 3,49 20 3.48 10 0.91 777 <1 0.05 <5 <20 8 1250 8 50 0.08 <10 60 <10 9 25 27 01154 5 <0.2 2.63 <5 85 <5 2.77 <1 10 41 27 3,77 20 0.93 694 <1 0.06 8 1260 10 <5 <20 75 0.08 <10 65 <10 8 26 28 01155 20 <0.2 2.61 <5 65 <5 2.89 <1 11 43 23 3.86 20 0.95 648 <1 0.05 1280 9 10 <5 <20 46 0.07 <10 62 <10 8 27 29 01156 10 <0.2 2.23 <5 100 <5 2,50 <1 10 50 29 2,68 20 0.60 403 <1 0.06 8 1270 8 <5 <20 71 0.08 <10 45 <10 6 19 30 01157 45 <0.2 1.79 <5 100 2.53 <5 <1 8 42 25 1,91 20 0.47 344 <1 0.07 7 1310 <5 8 <20 62 0.07 <10 37 <10 6 18 31 01158 10 < 0.2 1.93 <5 95 <5 2.45 <1 9 43 25 2.47 20 0.59 420 <1 0.07 6 1280 8 <5 <20 61 0.07 <10 44 <10 7 21 32 01159 20 <0.2 2.50 <5 80 <5 3.62 <1 10 45 26 3.26 20 0.96 697 <1 0.06 10 1230 10 <5 < 20 63 0.08 <10 61 <10 7 26 33 01160 10 <0.2 2.41 <5 95 <5 <1 10 27 4.10 46 3,28 20 0.87 684 <1 0.05 11 1260 8 <5 <20 90 0.07 <10 55 <10 8 29 34 01161 115 0.2 1.06 50 35 <5 6.37 <1 28 59 77 4.64 20 0.58 841 21 0.02 59 790 ≺5 84 < 0.01 14 <20 <10 24 <10 13 25 35 01162 <0.2 2.63 <5 85 65 <5 4.31 <1 42 52 320 6.05 20 1.31 599 11 0.04 37 1210 12 <5 <20 73 0.11 <10 109 <10 14 24 36 01163 20 <0.2 1.84 <5 115 <5 5.43 <1 17 80 72 3.09 20 1.55 1207 12 0.04 49 550 10 <5 <20 157 0.06 <10 79 <10 10 25 37 01164 15 <0.2 2.05 <5 115 <5 2.87 <1 9 45 25 3.00 20 0.76 604 <1 0.05 8 1090 10 <5 <20 113 0.06 <10 45 9 <10 22 38 01165 25 <0.2 2.38 <5 80 <5 3.43 <1 10 47 38 3.28 20 0.83 651 <1 0.05 9 1080 8 <5 <20 127 0.07 <10 50 <10 7 25 39 01166 <\$ 10 <0.2 2.16 95 <5 3.37 <1 15 46 46 2.92 20 0.77 561 <1 0.05 11 1100 10 <5 -20 152 0.08 <10 48 <10 22 8 40 01167 10 <0.2 2.11 <5 105 <5 2.89 <1 12 45 61 3,13 20 0.75 562 <1 0.06 8 1150 10 <5 <20 198 0.07 <10 48 <10 7 25 41 01168 20 <0.2 1.81 <5 80 <5 3.53 <1 18 38 66 2.92 20 0.69 487 <1 0.06 9 1100 10 <5 <20 247 0.07 <10 43 <10 7 23 42 01169 135 <0.2 2.75 <5 125 <5 4.75 <1 27 37 80 4.67 20 1.54 988 <1 0.05 24 1520 14 <5 <20 358 0.10 <10 121 <10 11 61 43 01170 20 <0.2 2.54 <5 95 <5 4.34 <1 12 38 14 3.92 20 1.14 809 <1 0.04 13 1410 14 <5 <20 125 0.08 <10 92 <10 10 30 44 01171 20 <0.2 2.13 <5 55 <5 4.78 1 12 27 20 3.47 20 1.06 <1 804 0.04 15 1350 12 <5 <20 94 0.08 <10 79 <10 10 25 45 01172 5 <0.2 2.35 <5 70 <5 3.42 <1 28 80 104 6.09 20 1.62 847 <1 0.04 63 970 14 <5 <20 77 0.15 <10 111 <10 11 32 46 01173 25 <0.2 3.76 <5 75 <5 6.83 <1 34 57 113 7.67 30 3.26 2165 <1 0.04 63 1640 12 <5 <20 94 0.12 <10 218 <10 15 56 47 01174 10 <0.2 2.77 <5 70 <5 5.18 1 36 48 135 6.09 20 1.82 807 <1 0.08 33 1840 16 <5 <20 99 0.16 <10 150 <10 9 30 48 01175 10 <0.2 3.19 <5 85 <5 6.16 1 40 54 176 7.84 30 2.52 1037 <1 0.05 1900 36 14 <5 <20 81 0.15 <10 218 <10 14 41 49 01176 5 <0.2 2.80 <5 85 <5 7.87 1 35 60 137 6.74 20 2.47 1159 <1 0.05 40 1710 14 <5 <20 218 0.06 <10 178 <10 18 39 50 01177 <5 5.06 10 <0.2 1.78 <5 55 <1 21 72 80 4.35 20 1.47 1019 <1 0.03 64 550 12 <5 <20 156 0.02 <10 79 <10 17 30 51 01178 5 <0.2 2.39 <5 50 <5 5.79 <1 12 69 5 4.11 20 2.20 1910 <1 0.01 43 1470 12 <5 <20 65 0.02 <10 127 <10 18 35 52 01179 2.63 <5 45 <5 40 0.4 >10 <1 20 29 29 30 2.19 4.99 4897 <1 0.02 56 2150 16 <5 20 181 0.04 <10 142 <10 16 33 53 <5 01180 20 <0.2 1.67 35 <5 4.30 <1 14 114 25 3.46 10 1.39 1248 <1 0.01 45 310 10 <5 <20 64 0.01 <10 49 <10 11 29 54 01181 <0.2 2.29 <5 115 <5 5 1,79 <1 19 92 81 3.66 10 1.50 638 <1 0.15 27 920 12 <5 <20 122 0.11 <10 112 <10 7 75 55 01182 <0.2 2.27 <5 90 <5 2.33 10 <1 19 108 83 3,42 10 1.23 587 <1 0.15 31 990 14 <5 <20 97 0.13 <10 109 <10 θ 55 58 01183 25 <0.2 1.97 <5 70 <5 2.10 <1 19 87 3.33 110 10 1.16 485 <1 0.12 37 1060 12 <5 <20 84 0.11 <10 99 <10 7 50 57 01184 5 <0.2 2.04 <5 60 <5 1.92 <1 20 96 162 3.28 565 10 1.23 <1 0.14 1060 33 12 <5 <20 77 0.11 <10 90 <10 7 69 58 01185 1.98 <5 45 <5 2.32 <1 10 < 0.2 14 87 88 3.58 10 1.39 872 3 0.09 24 940 12 <5 <20 57 7 0.08 <10 79 <10 41 59 01186 5 <0.2 1.63 <5 40 <5 4.14 <1 14 69 52 3.20 10 1.31 698 <1 0.07 29 930 12 <5 <20 67 0.10 79 <10 <10 8 42 60 01187 25 <0.2 1.47 <5 70 <5 2.69 <1 14 46 8 3.34 20 0.61 516 <1 0.07 8 1600 12 <5 <20 117 0.12 <10 104 <10 11 38

																1														
NAVAS	OTA RES	OURCES								10	CP CEI	RTIFIC		- ANAI	LYSIS	AK 20	02-015	5							ECO TE	CH LA	BORA	TORY L	TD.	
Ft #.	Tao #	(dag)uA	Aa	AI %	As	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La	Ma %	Mn	Мо	Na %	NĬ	Р	РЪ	SÞ	Sn	Sr	Ti %	U	v	w	Y	Zn
<u>Ê1</u>	01188	70	<0.2	1.45	<5	55	<5	274	<1	14	39	24	3.17	20	0.60	468	1	0.07	6	1570	12	<5	<20	86	0.10	<10	93	<10	11	26
62	01189	20	<0.2	1.49	<5	70	<5	2.35	<1	11	43	16	2.80	20	0.43	349	<1	0.09	6	1510	8	<5	<20	76	0.10	<10	101	<10	9	21
63	01190	140/	<0.2	1.39	<5	50	<5	1.98	<1	17	37	79	3.62	30	0.59	407	<1	0.05	4	1520	10	<5	<20	27	0.11	<10	77	<10	10	20
64	01191	15	<0.2	1.39	<5	55	-	2.31	<1	12	45	20	2.91	20	0.52	445	<1	0.07	5	1420	10	<5	<20	60	0.10	<10	89	<10	9	28
65	01192	10	<0.2	1.68	<5	45	<5	2.74	<1	10	41	13	2.37	10	0.42	394	<1	0.06	8	1450	14	<5	<20	50	0.09	<10	7 <b>6</b>	<10	8	28
66	01193	920	<0.2	1 34	<5	50	<5	2.10	<1	17	43	58	2.95	20	0,44	380	<1	0.07	4	1590	12	<5	<20	46	0.09	<10	75	<10	10	25
67	01194	440	<0.2	1.64	<5	40	<5	2.45	<1	24	41	58	4.23	30	0.69	528	<1	0.07	8	1520	14	<5	<20	33	0.09	<10	83	<10	12	29
68	01195	70	<0.2	1.36	<5	30	<5	2.52	<1	12	51	37	2.21	10	0.45	367	<1	0.08	7	1460	12	<5	<20	36	80.0	<10	53	<10	9	21
69	01196	10	<0.2	1.03	<5	35	<5	1.78	<1	8	60	26	1.99	10	0.34	253	<1	0.06	6	1120	10	<5	<20	35	0.07	<10	48	<10	8	18
70	01197	15	<0.2	1.39	<5	35	<5	2.27	<1	12	55	45	2.37	10	0.42	291	<1	0.06	7	1430	14	<5	<20	37	0.08	<10	54	<10	8	20
71	01198	20	<0.2	1.70	<5	40	<5	2.82	<1	12	55	51	2.63	10	0.55	355	1	0.06	10	1410	14	<5	<20	39	0.09	<10	59	<10	9	24
72	01199	10	<0.2	1.11	<5	40	<5	1.96	<1	8	55	25	1.56	<10	0.36	285	<1	0.06	6	890	12	<5	<20	54	0.07	<10	47	<10	7	20
73	01200	5	<0.2	1.41	<5	40	<5	5.45	<1	23	48	180	3.08	20	0.70	630	<1	0.06	25	1480	12	<5	<20	134	0.06	<10	54	<10	13	24
74	01201	5	<0.2	1.46	<5	35	<5	2.63	<1	15	43	105	2.20	20	0.57	327	1	0.07	13	1490	10	<5	<20	52	80.0	<10	51	<10	9	18
75	01202	10	<0.2	1.12	<5	30	<5	1.87	<1	18	64	145	2.46	20	0.40	231	<1	0.07	15	1440	10	<5	<20	28	0.09	<10	42	<10	11	20
	IA:																													
Respli	t																													
1	01128	30	<0.2	1.63	<5	190	<5	1.08	<1	14	107	75	2.93	20	0.94	297	<1	0.08	23	980	8	<5	<20	105	0.17	<10	84	<10	8	20
36	01163	15	<0.2	1.83	<5	125	<5	6.38	<1	20	88	68	3.57	20	1.54	1393	14	0.03	59	690	22	<5	<20	161	0.07	<10	83	<10	12	31
71	01198	20	<0.2	1.71	<5	40	<5	2.80	<1	12	56	49	2.68	10	0.55	349	<1	0.06	10	1460	14	<5	-20	36	0.09	<10	60	<10	10	24
Repea	t:																													
- i	01128	25	<0.2	1.65	<5	135	<5	1.07	<1	13	92	76	2.60	20	0.93	290	<1	0.08	22	970	6	<5	<20	108	0.16	<10	82	<10	8	18
6	01133	760	н	-	-	-	-	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-
7	01134	540	-	-	-	-	•	-	•	-	-	•	•	-	-	-	-		-		:	-		*	-	-	-	-	-	-
10	01137	30	<0.2	2.18	<5	50	<5	2.02	<1	23	38	154	4.29	20	1.71	494	<1	0.09	15	1950	8	<5	<20	46	0.15	<10	123	10	9	25
19	01146	15	<0.2	2.14	<5	110	<5	3.30	<1	10	14	41	2.93	20	0.82	578	<1	0.06	8	1260	8	<5	<20	99	0.06	<10	59	<10	9	23
36	01163	15	<0.2	1.89	<5	115	<5	5.86	<1	18	86	71	3.32	20	1.59	1296	14	0.03	53	610	14	<5	<20	158	0.07	<10	83	<10	11	28
45	01172	5	<0.2	2.35	<5	70	<5	3.45	<1	28	62	104	5.17	20	1.60	856	<1	0.04	63	970	14	<5	<20	76	0.15	<10	112	<10	11	32
54	01181	5	<0.2	2.28	<5	115	<5	1.82	<1	20	93	81	3.68	10	1.50	642	<1	0.15	26	920	14	<5	<20	123	0.11	<10	112	<10	7	77
63	01190	130	-		-	•	•	-	-	•	•	-	-	-	•	-	-	-	-	-	•	٠	•	•	-	-	-	-	•	•
66	01193	940	-	· -	•	•	•	-	-	•	•	•	-	-	-	-	•	-	-	-	-	-	•	-	-	-	-	-	•	-
67	01194	445	-		•	•	•	-	-	-	-	-	-	-	-	•	-	•	•	•	•	-		-	-	-	-	-	-	-

(

 $\Gamma$ 

 $\cap$ 

	( )												(	)												I	$\cap$	
·.																												·
NAVAŜOTA RES	SOURCES							1	ICP CE	RTIFIC	CATE O	FANAL	LYSIS	AK 20	02-015	5							ECO TE		BORA	TORY L	TD.	
Et#. Tag#	Au(ppb)	Ag	<u>AI %</u>	As	Ba	Bi Ca	% Cd	Co	Cr	Cu	Fe %	Lal	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	w	Y	Zn
Stendard:																												
GEO'02 GEO'02 GEO'02	125 130 125	1.4 1.4 1.4	1.78 1.65 1.66	45 50 50	160 170 165	<5 1.7 <5 1.9 <5 1.9	76 <1 92 <1 92 <1	21 23 23	70 75 76	84 82 82	4.01 4.27 4.28	20 20 20	1.02 0.96 0.97	719 770 763	<1 <1 <1	0.03 0.03 0.03	31 31 30	690 790 790	22 22 22	<5 <5 <5	<20 <20 <20	64 58 57	0.12 0.12 0.12	<10 <10 <10	82 81 81	<10 <10 <10	9 10 10	79 78 77

ſ

HAT ULCELS (ECO TECH LABORATORY LTD. Lutta Jealouse BC Certified Assaye مهاه

JJ/kk df/15/15b XLS/02

.

 $\cap$ 

21-Feb-02

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

#### Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	P	Pb	Sb	Sn	Sr	Ti %	υ	v	w	Y	Zr
1	01203	25	<0.2	1.44	<5	45	<5	1.55	<1	23	56	238	3.81	20	0.93	333	<1	0.07	15	1590	6	<5	<20	32	0.14	<10	89	<10	10	
2	01204	20	<0.2	2.31	<5	35	≺5	3.05	<1	27	33	224	4,53	20	1.20	541	<1	0.07	12	2600	8	<5	<20	46	0.16	<10	123	<10	12	20
3	01205	15	<0.2	1.81	<5	30	<5	2.90	<1	27	29	235	3.84	20	0.88	404	<1	0.07	11	2180	6	<5	<20	43	0.12	<10	101	<10	10	2
4	01206	45	<0.2	1.81	<5	75	<5	0.88	<1	29	50	169	6.65	20	1.48	442	<1	0.07	15	1120	6	<5	-20	17	0.23	<10	143	<10	â	20
5	01207	240	<0.2	1.61	<5	80	<5	0.68	<1	37	51	217	5.80	20	1.44	436	<1	0.05	20	690	8	<5	<20	10	0.25	<10	140	<10	7	20
																													•	0.
6	01208	15	<0.2	1.55	<5	60	<5	1.02	<1	26	44	124	4.72	20	1.33	572	<1	0.08	13	850	6	<5	<20	20	0.23	<10	131	<10	6	5/
7	01209	25	<0.2	1.98	5	60	<5	3.65	<1	64	51	724	8.36	60	1.71	760	5	0.09	18	1100	6	<5	40	157	0.14	<10	138	<10	15	36
8	01210	80	<0.2	2.61	<5	75	<5	3.75	<1	66	50	557	10.00	30	1.89	1354	1	0.07	18	1060	8	<5	60	182	0.08	<10	153	<10	19	5
9	01211 0	നൗ ≻1000	1.2	2.27	15	75	<5	2.39	<1	50	49	452	6.83	20	1.93	989	<1	0.12	16	990	10	<5	40	78	0.16	<10	156	<10	11	100
10	01212	15	<0.2	1.70	<5	65	<5	3.60	<1	28	47	88	6.21	20	2.20	1191	22	0.06	23	680	6	<5	20	220	0.11	<10	126	<10	13	61
11	01213	10	<0.2	2,43	-5	60	<5	2.33	<1	30	58	117	5.93	20	2.19	911	1	0.08	25	700	6	<5	<20	54	0.20	<10	180	<10	9	50
12	01214	20	<0.2	1.68	<5	95	<5	4,19	<1	29	51	159	5.96	20	1.63	1541	<1	0.09	21	1020	8	<5	20	215	0.08	<10	112	<10	16	70
13	01215	5	<0.2	1.97	<5	45	<5	1.99	<1	34	46	218	5.58	20	1.26	722	3	0.10	17	1200	8	<5	<20	38	0.18	<10	116	<10	10	57
14	01216	<5	<0.2	1.56	≺5	95	<5	0.83	<1	22	43	97	4.37	20	1.20	487	8	0.08	10	920	6	<5	<20	15	0.23	<10	108	<10	5	4
15	01217	<5	<0.2	1.07	<5	45	<5	1.25	<1	18	49	76	2.64	10	0.56	285	<1	0.08	11	860	4	<5	<20	21	0.15	<10	57	<10	5	12
																												-	-	
16	01218	40	<0.2	1 75	<5	80	<5	1.41	<1	33	41	137	5.53	20	1.05	486	<1	0.11	14	1250	4	<5	<20	31	0.22	<10	125	<10	8	26
17	01219	35	<0.2	1.00	<5	55	<5	1.68	<1	31	55	187	3.93	10	0.52	463	1	0.07	17	910	6	<5	<20	18	0.11	<10	73	<10	9	19
18	01220	15	<0.2	1.87	<5	40	<\$	1.36	<1	26	105	95	4.54	10	1.28	654	5	0.09	60	560	8	<5	<20	23	0.20	<10	118	<10	9	48
19	01221	45	<0.2	0.90	<5	50	<5	1.51	<1	21	78	96	2.63	10	0.55	295	1	0.09	22	670	6	<5	<20	20	0.12	<10	59	<10	8	21
20	01222	20	<0,2	1.53	<5	105	<5	1.27	<1	23	70	91	4.20	10	1.06	593	<1	0.07	40	640	6	<5	<20	22	0.17	<10	101	<10	9	40
																													•	
21	01223	10	<0.2	1.83	<5	125	<5	1.03	<1	27	<del>99</del>	120	4.31	10	1.04	698	1	0.14	43	610	10	<5	<20	39	0.19	<10	103	<10	9	61
22	01224	20	<0.2	1.43	<5	60	<5	0.93	1	36	67	207	5.74	20	0.80	533	3	0.09	47	820	10	<5	<20	23	0.14	<10	72	<10	11	42
23	01225	15	<0.2	0.95	<5	50	<5	1.73	<1	16	86	67	2.76	10	0.54	415	2	0.08	22	800	6	<5	<20	19	0.13	<10	50	<10	7	32
24	01226	5	<0.2	0.69	-5	35	<5	1.23	<1	13	81	67	1.78	<10	0.39	33 <del>8</del>	2	0.09	19	710	6	<5	<20	24	0.15	<10	47	<10	5	28
25	01227	5	<0.2	1.45	<5	55	<5	4.13	<1	19	67	52	3.06	10	1.25	731	<1	0.11	24	1260	10	<5	<20	137	0.14	<10	86	<10	7	41
														<b>r</b>	aña i															

ICP CERTIFICATE OF ANALYSIS AK 2002-016

NAVASOTA RESOURCES #207 141 VICTORIA STREET KAMLOOPS, BC V2C 125

#### ATTENTION: LORNE WARNER

No. of samples received; 120 Sample type: Core Project #: None Given Shipment #: None Given Samples submitted by: Lorne Warner

NAVASOTA RESOURCES ICP CERTIFICATE OF ANALYSIS AK 2002-016 ECO TECH LABORATORY LTD. Co Tag # Au(ppb) Bi Ca % Et #. Ag Al% Ba Cd Çr. Cu Fe % Mo Na % Aв La Mg % Mn Ni Р Pb Sb Sn Sr TI% U ٧ W Y Zn 26 01228 30 <0.2 1.82 <5 85 18 35 117 20 0.73 <5 1.16 <1 4.27 512 <1 4 1700 <5 0.06 8 <20 82 0.09 22 <10 96 <10 12 27 01229 40 <0.2 2.02 <5 80 <5 0.98 <1 23 37 104 4.89 20 1.00 649 <1 0.06 3 1710 8 <5 <20 61 0.09 <10 105 <10 12 27 28 01230 310 165 <0.2 1.86 <5 75 <5 0.91 <1 33 27 235 5.70 30 0.91 503 <1 0.05 2 1650 8 <5 20 59 0.08 <10 98 <10 13 27 29 01231 4* 20 <0.2 1.75 <5 75 <5 1,27 <1 19 27 200 4.38 20 0.75 543 <1 0.06 4 1710 8 <5 20 75 0.07 <10 93 <10 11 23 30 01232 260 130 <0.2 2.33 <5 70 <5 1.97 <1 15 27 84 20 0.89 4.26 761 <1 0.05 10 1620 10 <5 20 104 0.07 <10 91 <10 15 28 31 01233 6 30 < 0.2 2.02 <5 65 <5 1.68 <1 14 33 69 3.97 20 0.83 606 <1 0.05 5 1680 <5 8 20 76 0.07 <10 88 <10 14 27 01234 5 675 32 < 0.2 2.02 <5 55 <5 20 29 120 4.82 3 0.05 1.45 1 20 0.95 612 4 1630 8 -5 20 33 0.08 <10 91 <10 15 27 01235 49 33 20 <0.2 2.00 <5 55 <5 1.76 <1 14 41 29 3.77 20 0.81 651 <1 0.06 6 1670 10 <5 <20 41 0.09 <10 96 <10 15 27 ----34 01236 234 115 <0.2 1.66 65 45 <5 2 67 1.66 14 24 3.37 20 0.60 417 27 0.06 20 1720 8 70 <20 34 0.07 <10 70 <10 12 19 35 01237 85 <0.2 2.04 <5 50 <5 2.19 <1 12 38 28 3.38 20 0.61 550 6 0.06 8 1810 10 <5 <20 65 0.08 <10 80 <10 10 23 36 01238 30 <0.2 1.54 <5 55 <5 1.53 23 47 3.18 <1 11 20 0.46 391 1 0.06 4 1700 6 <5 <20 64 0.08 <10 85 <10 10 17 37 01239 75 <0.2 1.86 <5 55 <5 1.37 34 28 428 <1 4.92 20 0.76 611 11 0.05 5 1650 8 <5 <20 57 0.07 <10 91 <10 12 26 38 01240 15 <0.2 2.10 <5 30 <5 2.35 <1 13 38 51 3.39 20 0.63 458 <1 9 1670 0.06 8 <5 <20 29 0.08 <10 78 <10 10 21 39 01241 35 -0.2 2.01 <5 30 <5 2.74 <1 13 32 60 3.47 20 0.74 501 <1 0.06 7 1800 10 <5 <20 38 0.07 <10 85 9 22 <10 40 01242 15 <0.2 1.68 <5 30 <5 2.28 <1 13 37 86 3.03 10 0.52 396 <1 0.06 6 1680 16 <5 27 <20 0.07 <10 68 <10 9 21 01243 <0.2 1.94 41 15 <5 30 <5 1.59 <1 17 25 137 4.56 20 0.90 <1 0.04 559 4 1740 8 <5 -20 30 0.07 <10 97 27 <10 10 42 01244 10 <0.2 2.02 <5 25 <5 2.24 <1 13 33 12 4.07 20 0.81 558 60 6 1780 0.04 8 <5 -20 21 0.07 <10 95 <10 10 24 43 01245 315 <0.2 2.36 <5 20 <5 2.85 <1 13 58 12 3.86 20 0.90 534 6 0.06 11 1640 6 <5 <20 28 0.08 <10 86 <10 10 25 44 01246 100 <0.2 2.28 <5 50 <5 2.79 <1 16 57 33 4.05 20 0.88 490 3 0.06 11 1620 10 <5 <20 36 0.11 <10 99 <10 10 25 45 01247 <0.2 2.13 <5 45 <5 3.21 <1 23 31 10 41 5.65 20 1.45 797 <1 0.04 12 1650 16 <5 40 67 0.12 <10 152 <10 13 34 46 01248 <0.2 2.13 60 <5 5.52 15 <5 <1 19 31 68 4.64 20 1.10 883 <1 0.04 17 1490 10 <5 <20 110 0.12 <10 131 <10 10 27 47 01249 5 <0.2 2.23 <5 190 <5 5,68 <1 20 31 45 4.46 20 0.86 800 <1 0.05 17 1540 10 <5 <20 393 0.12 <10 124 <10 11 26 48 01250 <0.2 2.26 <5 <5 3.17 28 24 129 15 110 <1 5,86 20 1.14 674 0.05 11 1630 <1 12 < 5 40 179 0.14 <10 153 <10 12 35 49 01251 20 <0.2 2.46 <5 110 <5 4.15 <1 26 26 24 5.78 20 1.46 834 <1 0.04 14 1640 12 <5 40 88 0.16 <10 177 <10 10 34 01252 50 <5 75 3,23 25 110 <0.2 2.19 <5 <1 25 61 5.42 20 1.29 720 <1 0.05 13 1520 6 <5 40 0.16 79 <10 173 <10 11 33 01253 51 15 <0.2 2.06 <5 110 <5 2.98 <1 25 27 117 5.43 20 1.07 542 0.06 <1 11 1500 8 ≺5 40 112 0.16 <10 161 <10 9 27 52 01254 110 0.4 2.43 <5 85 <5 2.34 <1 36 34 284 6.76 20 1.29 681 <1 0.07 11 1430 8 <5 40 115 0.14 <10 179 <10 11 40 75 53 01255 10 <0.2 1.72 <5 80 <5 2.26 <1 23 29 4.87 20 0.94 407 <1 0.06 9 1480 8 <5 40 51 0.16 <10 146 <10 8 23 54 01256 <5 70 20 <0.2 2.12 <5 2.14 <1 31 32 178 6.16 20 1.34 577 6 <1 0.07 10 1510 <5 40 49 0.14 <10 170 <10 10 30 55 187 01257 2.41 >1000 4.0 2.78 125 50 <5 3.23 40 52 1008 20 <1 8.82 1.63 809 11 0.03 11 1210 10 <5 60 44 0.08 <10 151 <10 14 112 565 5+ 01258 275 <0.2 2.11 <5 40 <5 1.93 <1 21 29 103 5.97 20 1.26 622 18 0.04 11 1540 6 <5 40 27 0.10 <10 151 <10 11 43 57 4 50 01259 <0.2 1.64 <5 60 <5 2.00 <1 19 32 42 4.15 20 0.81 360 125 <1 0.06 8 1530 8 <5 20 42 0.15 <10 125 <10 7 23 58 01260 10 <0.2 1.16 <5 55 <5 1.61 <1 10 38 24 2.72 10 0.37 234 <1 0.07 3 1670 4 <5 <20 59 0.08 <10 82 <10 15 a 59 01261 25 0.8 1.43 <5 45 <5 1.88 <1 13 35 614 3.06 10 0.54 327 <1 0.05 6 1690 6 <5 <20 45 0.07 <10 71 <10 9 33 60 01262 <0.2 1.78 <5 35 <5 2.49 11 38 112 2.99 20 <1 10 0.84 418 <1 0.05 7 1640 8 <5 <20 47 0.07 <10 73 <10 20 9

ICP CERTIFICATE OF ANALYSIS AK 2002-016 ECO TECH LABORATORY LTD. Tag # Ba Bì Ca % Et #. Au(ppb) Ag Al% As Cd Co Cr Cu Fe % La Mg % Mn Mo Na % Ni Ρ Pb Sb Sn Sr Ti % v U w Y Zn 01263 <0.2 61 10 1.14 <5 45 <5 1.56 42 <1 9 40 2.36 10 0.34 234 <1 0.06 3 1590 6 <5 <20 48 0.08 <10 68 <10 7 15 62 01264 50 <0.2 1.30 <5 35 <5 1.74 <1 12 35 116 2.57 10 0.49 275 <1 0.06 4 1730 <5 6 <20 45 0.08 <10 62 <10 8 17 63 01265 25 <0.2 1.30 <5 80 <5 1.69 <1 14 32 82 3.14 10 0.53 283 <1 0.06 4 1700 6 <5 <20 100 0.07 <10 68 <10 8 18 64 01266 30 <0.2 1.75 <5 85 <5 1.97 <1 20 33 132 4.18 20 0.75 373 <1 0.05 6 1640 8 <5 20 121 0.07 <10 79 <10 10 18 01267 65 15 <0.2 1.64 <5 110 < 5 2.43 <1 14 29 64 3.77 20 0.71 423 <1 0.05 6 1720 8 <5 <20 179 0.07 <10 86 <10 10 18 01268 66 55 <0.2 1.64 <5 70 <5 2.14 29 <1 38 174 5.33 20 0.71 530 0.06 1 6 1460 8 <5 20 84 0.07 <10 92 <10 11 24 67 01269 5 <0.2 0.86 <5 65 <5 1.66 <1 7 54 9 1.91 <10 0.31 309 <1 0.06 720 1 6 <5 <20 110 0.05 <10 43 <10 5 16 68 01270 10 <0.2 1.26 <5 165 -5 1.72 <1 6 55 6 1.88 <10 0.36 290 <1 0.06 3 690 8 <5 <20 386 0.05 <10 39 <10 6 16 69 01271 10 <0.2 1.25 <5 185 <5 1.65 <1 7 56 9 1.86 <10 309 0.36 <1 0.06 2 680 6 <5 <20 510 0.05 <10 40 <10 5 16 70 01272 25 <0.2 1.96 -5 60 <5 2.26 <1 9 54 11 2.70 10 0.63 449 7 з 0.05 790 8 <5 <20 132 0.05 <10 50 <10 7 21 01273 71 <0.2 2.13 60 <5 35 <5 2.96 <1 11 40 16 3.46 20 0.88 529 4 0.05 9 1700 8 <5 <20 66 0.06 <10 75 <10 9 22 72 01274 <0.2 1.65 10 <5 50 <5 2.21 <1 11 35 33 3.22 20 0.56 372 <1 0.06 5 1740 6 <5 <20 80 0.06 <10 77 <10 9 17 73 01275 15 < 0.2 1.42 <5 75 <5 1.68 <1 15 37 61 3.62 20 0.61 367 <1 0.06 4 1480 6 <5 <20 110 0.07 <10 78 <10 9 18 74 01276 <0.2 1.35 <5 10 75 <5 2.16 <1 9 37 7 3.16 10 0.37 279 <1 0.07 4 1770 6 <5 <20 111 0.09 <10 87 <10 7 16 75 01277 <0.2 1.39 <5 2.29 5 <5 160 <1 11 33 13 3.15 10 0.41 307 <1 0.06 4 1730 8 <5 <20 301 0.09 <10 88 <10 7 18 76 01278 5 <0.2 1.52 <5 100 <5 2.29 <1 12 36 15 3,44 10 0.53 342 <1 0.06 4 1780 4 <5 <20 159 0,11 <10 64 <10 6 20 77 01279 10 <0.2 1.52 <5 105 <5 1.88 <1 17 34 85 4.13 10 0.52 316 <1 0.07 4 1790 8 <5 20 91 0.09 <10 93 <10 8 20 78 01280 10 <0.2 1.39 <5 60 <5 2.09 <1 10 33 13 2.86 10 0.50 330 <1 0.07 4 1680 6 <5 <20 67 0.08 <10 75 <10 7 16 79 01281 10 <0.2 1,13 -5 45 <5 1.64 <1 8 29 58 2.33 10 0.35 235 <1 0.07 2 1650 6 <5 <20 46 0.07 <10 69 <10 8 14 80 01282 <0.2 1.07 <5 5 65 ---5 1.75 <1 8 29 21 2.37 10 255 0.35 <1 0.07 2 1810 <5 6 <20 53 0.06 <10 70 <10 8 14 01283 81 15 <0.2 1.26 <5 1.76 <5 40 <1 10 28 37 2.86 10 0.48 314 0.06 <1 3 1590 6 <5 <20 34 0.07 <10 74 7 <10 15 82 01284 30 <0.2 1.38 <5 75 <5 1.71 <1 14 31 49 3.49 10 0.55 333 <1 0.07 4 1720 6 <5 -20 42 0.08 <10 84 <10 8 18 83 01285 <0.2 1.38 100 <5 50 <5 1.64 <1 25 39 448 4.00 20 0.72 366 4 0.05 3 1470 6 <5 <20 36 0.06 <10 63 <10 9 23 84 01286 <0.2 1.11 <5 15 40 < 5 1.80 <1 12 27 63 2.69 10 0.58 354 <1 0.06 5 1720 6 <5 <20 70 0.07 <10 62 <10 8 19 85 01287 <0.2 2.21 <5 <5 30 <5 2.32 32 <1 104 154 4.78 10 2.34 808 <1 0.03 60 2300 12 <5 <20 82 0.10 <10 92 <10 8 72 86 01288 <5 <0.2 2.12 <5 25 <5 1.54 <1 32 119 155 4.80 10 2.40 714 <1 0.03 76 2090 10 <5 <20 62 0.09 <10 97 <10 7 69 87 01289 <0.2 2.14 5 <5 40 <5 1.76 <1 31 77 152 2.00 4.88 20 736 <1 0.04 47 2490 16 <5 <20 88 0.11 <10 94 <10 8 76 88 01290 185 <0.2 1,48 - 5 40 <5 1.53 <1 27 31 123 4.24 20 0.83 409 <1 0.06 5 1670 8 <5 20 42 0.07 <10 76 <10 10 25 89 01291 15 <0.2 1.47 - 5 40 <5 2,10 <1 20 30 61 3.69 10 0.66 376 <1 0.06 5 1700 8 <5 <20 42 0.06 <10 71 <10 9 20 90 01292 90 <0.2 1.09 <5 45 <5 2.13 <1 39 14 60 2.82 10 0.61 408 <1 0.07 6 1440 14 <5 <20 64 0.08 <10 66 <10 7 30 91 01293 190 <0.2 1.25 <5 40 <5 2.30 <1 18 188 3.16 31 10 0,61 482 <1 0.08 5 1810 16 <5 <20 59 0.08 <10 60 <10 8 38 92 01294 25 < 0.2 1.57 <5 55 <5 <1 37 1.97 24 273 4.13 20 0.58 384 4 0.07 4 1710 8 <5 <20 58 0.07 <10 78 <10 10 24 93 01295 35 <0,2 1.99 <5 50 <5 2.96 <1 29 35 214 4.73 20 0.81 534 <1 0.05 8 1600 10 <5 20 62 0.07 <10 81 <10 10 28 94 01296 5 <0.2 1.17 <5 40 <5 2.07 <1 15 37 73 2.08 <10 0.58 413 <1 0.13 7 1510 16 <5 <20 89 0.13 <10 68 <10 40 4 95 01297 5 <0.2 1.32 <5 50 < 5 2.53 <1 17 36 69 2.39 <10 0.69 485 <1 0.12 12 1550 18 <5 · <20 108 0.14 <10 79 <10 47 4

NAVASOTA RESOURCES

ICP CERTIFICATE OF ANALYSIS AK 2002-016

ECO TECH LABORATORY LTD.

NAVASOTA RESOURCES

THE REAL PROPERTY AND ADDRESS OF THE PROPERTY OF THE PROPERTY

.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	BI	Ca %	Cd	Ċo	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	TI %	U	<u>v</u>	W	Y	Zn
96	01298	5	0.4	1.88	10	60	15	1.86	<1	64	45	1018	7.55	20	1.12	572	<1	0.04	6	1580	12	<5	40	36	0.06	<10	103	20	14	63
97	01299	<5	<0.2	1.47	<5	110	<5	2.97	<1	10	31	17	2.88	10	0.39	338	-1	0.07	6	1590	8	<5	<20	155	0.07	<10	82	<10	в	20
98	01300	35	<0.2	1.40	<5	85	<5	2.63	<1	12	39	29	2.98	10	0.47	362	4	0.06	7	1520	10	<5	<20	145	0.06	<10	79	<10	9	21
99	01301	<5	<0.2	0.89	<5	50	<5	1.55	<1	7	36	7	2.18	10	0.26	232	<1	0.07	1	1640	8	<5	<20	63	0.06	<10	74	<10	9	17
100	01302	25	<0.2	0.96	<5	45	<5	1.65	<1	7	36	6	1.96	10	0.31	237	<1	0.07	2	1520	8	<5	<20	53	0.07	<10	77	<10	7	17
101	01303	10	<0.2	1.04	<5	40	<5	1.63	<1	10	36	10	2.84	10	0.38	283	<1	0.06	4	1620	8	<5	<20	49	0.09	<10	124	<10	8	22
102	01304	20	<0.2	0.93	<5	50	<5	1.57	<1	9	41	5	2.62	10	0.30	245	<1	0.06	3	1710	6	<5	<20	58	0.07	<10	104	<10	8	19
103	01305	5	<0.2	1.22	<5	70	<5	1.80	<1	11	41	18	3.11	10	0.37	291	<1	0.07	5	1750	B	<5	<20	76	0.08	<10	118	<10	8	23
104	01306	15	<0.2	1.59	<5	50	<5	2.64	<1	9	38	17	2.71	10	0.49	374	<1	0.06	7	1650	12	<5	<20	65	0.08	<10	89	<10	8	22
105	01307	20	<0.2	1.98	<5	100	<5	3.65	1	25	38	120	4.78	20	0.64	583	<1	0.05	12	1660	14	<5	<20	117	0.07	<10	102	<10	12	30
														_								_								
106	01308	380	3.6	1.84	275	70	85	1.32	<1	262	92	1282	>10	40	1.29	636	19	0.01	8	680	16	<5	60	32	0.05	<10	87	320	24	64
107	01309	55	<0.2	1.83	110	60	<5	1.49	<1	60	44	221	7,69	20	1.33	773	<1	0.02	5	1510	10	<5	20	28	0.05	<10	132	<10	15	32
108	01310	100	<0.2	1.29	<5	35	<5	2.08	<1	13	26	86	3.04	10	0.57	352	<1	0.05	5	1640	8	<5	<20	30	0.07	<10	78	<10	8	17
109	01311	75	<0.2	1,71	<5	75	<5	2.37	<1	15	44	62	3.96	20	0.60	393	<1	0.06		1660	10	<\$ 	<20 	98	0.08	<10	95	<10	10	24
110	01312	105	<0.2	1.73	<5	35	<5	3.21	<1	15	34	51	3.53	10	0.66	448	<1	0.05	8	1680	10	<0	<20	36	0.08	<b>&lt;</b> 10	80	\$10	Я	22
		•					-												-	4040	40		-00	54	0.00	~**	145	~10		47
, 111	01313	375	<0.2	1.56	<5	75	<5	2.48	<1	19	45	77	4.25	10	0.61	411	<1	0.06		1810	10	<d - E</d 	<20	24	0.09	<10	115	<10		21
112	01314	10	<0.2	1.21	<5	55	<5	1.79	<1	11	39	4	3.16	10	0.42	307	<1	0.06	0	1790	10	~0	~20	50	0.10	<10	107	~10	7	24
113	01315	10	<0.2	1. <b>21</b>	<5	45	<5	2.15	<1	10	38	6	2.91	10	0.44	344	<1	0.08	2	1/00	•	<0 	~20	70	0.09	<10 	100	~10		20
114	01316	5	<0.2	1.29	<5	65	<5	1.95	<1	12	48	7	3,56	20	0.47	434	<1	0.06	9	1820	40	<0 	~20	7.0	0.09	~10	92	~10	10	20
115	01317	25	<0.2	1.33	<5	65	<5	1.89	<1	11	49	32	3,32	20	0.43	402	<1	0.08	ç	1880	10	<0	<zu< td=""><td>70</td><td>0.08</td><td>&lt;10</td><td>6.5</td><td>510</td><td>10</td><td>29</td></zu<>	70	0.08	<10	6.5	510	10	29
					_							000	0 70	20	0.52	470	-4	0.00		1900	10	-5	~20	68	0.08	~10	83	×10	10	30
116	01318	25	<0.2	1.58	<5	65	<0	2,44	1	15	40	202	3.70	20	0.52	470	~1	0.00	5	1900	12		~20	61	0.00	<10	70	-10	10	36
117	01319	35	<0.2	1.74	<5	55	<0 	2.45	<1	14	42	123	3.07	20	0.75	455	~ [	0.00	6	1950	10	-5	-20	58	0.00	<10 <10	87	<10	6	28
118	01320	20	~0.2	1.51	<5	50		2.35	<1	12	30	01	3.37	20	0.00	400	ن امر	0.05	8	1820	10	-5	20	GA	0.00	-10	108	<10	12	40
119	01321	35	0.2	1.53	<5	95	<5	2.17	<1	37	49	3/3	5.5Z	20	0.08	495	~1	0.00	e o	1860	12	~~~	<20	125	0.00	~10	00	-10	10	46
120	01322	25	<0.2	1.66	<5	105	<5	2.68	<1	20	40	140	4.10	20	0.00	400		0.00	0	1000	14	- 0	-20	12.9	0.03	-10	00	-10	10	ΥŲ
00.04	т																													
	1.03.																													
Respli	<del>1.</del>																													
1	01203	25	<0.2	1.43	<5	40	<5	1.57	<1	24	57	236	3.97	20	0.93	338	<1	0.06	15	1700	8	<5	<20	28	0.16	<10	91	<10	10	24
36	01238	40	<0.2	1.59	<5	55	<5	1.65	<1	12	30	47	3.33	20	0.48	419	2	0.06	5	1790	10	<5	<20	67	0.08	<10	88	<10	10	19
71	01273	55	<0 2	2.12	<5	35	<5	3.22	<1	12	41	18	3.72	20	0.68	567	4	0.05	11	1860	12	<5	<20	69	0.08	<10	77	<10	10	25
106	01308	395	3.2	1.71	225	70	80	1.39	<1	253	96	1262	>10	40	1,19	634	19	0.02	7	700	20	<5	60	30	0.05	<10	83	280	23	63

Page 4

------

Et #. Tag	g# Au(ppb)								•			AIEO		L 1 3 1 3	AN 20	02-010	0								ECO II		BURA	UKT	
		Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	_Sb	Sn	Sr	TI %	U	v	w	Y	Zr
QC DATA:																													
Repeat:																													
1 0120	.03 30	<0.2	1.49	<5	40	<5	1.65	<1	23	58	240	3.91	20	0.95	348	<1	0.07	15	1670	4	<5	<20	31	0.15	<10	02	~10	10	~
5 0120	.07 265	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	•	-	-	-		- 20	-	0.15	-10	93	10	10	2.
10 012 [.]	12 20	<0.2	1.71	<5	65	<5	3.67	<1	28	49	86	6.33	20	2.20	1212	23	0.06	21	710	6	<5	20	218	0.11	-10	128	-10	12	
19 0122	21 60	<0.2	0.90	<5	45	<5	1.53	<1	21	79	95	2.84	10	0.55	297	2	0.08	21	670	6	<5	<20	18	0.11	<10	60	<10	13	04
32 0123	34 640	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-		•					0.14	10	00	10	0	2
35 0123	37 100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	_	_	-	-	-	-	
36 0123	38 30	<0.2	1.54	<5	55	<5	1.63	<1	12	25	46	3.32	20	0.45	408	2	0.06	5	1790	8	<5	<20	63	0.08	<10	86	<10	10	40
43 0124	45 290	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•			-	-	00	10	10	15
45 012	47 15	<0.2	2.18	<5	40	<5	3.13	<1	23	30	41	5.48	20	1.48	780	<1	0.04	12	1600	10	<5	40	69	0.12	<10	151	<10	13	30
54 012	56 25	<0.2	2.13	<5	70	<5	2.20	1	32	33	176	6.29	20	1.33	587	<1	0.07	10	1580	10	<5	40	48	0.15	<10	172	<10	10	32
56 012	58 305	•	-	-	-	-	-	-	•	•	-	-	-	-	-	•	-	-	-	-	-	-		-	-		-	10	
71 012	73 45	<0.2	2.16	<5	35	<5	3.04	<1	12	42	16	3.54	20	0.89	541	4	0.06	8	1730	10	<5	<20	65	0.06	<10	76	<10	10	25
80 0128	82 <5	<0.2	1.05	<5	60	<5	1.73	<1	7	29	20	2.34	10	0.34	255	<1	0.06	1	1780	6	<5	<20	52	0.06	<10	69	<10	.0	14
88 0129	90 205	-		-	-	•	-	-	•	-	-	-	-	-	-	•	<del>.</del>	-	-	-	-	-	-	-	-				
89 0129	91 15	<0.2	1.48	<5	40	<5	2.22	<1	22	32	60	3.83	10	0.66	391	<1	0.05	6	1780	10	<5	<20	43	0.07	<10	73	<10	9	22
106 0130	08 360	3.8	1.87	285	70	80	1.37	<1	259	92	1251	>10	40	1.31	656	20	0.02	8	790	20	<5	80	32	0.05	<10	89	330	26	67
111 013	13 425	•	-	•	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	•	-	-	-	-	-	•		

JJ/kk df/16/16a/16b XLS/02

ECOTECH LABORATORY LTD. Juna Jealouse BC Certified Assays lse-

21-Feb-02

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

	E. #	Tag #	Au(oph)	۸a	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	Lal	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	<u> </u>	<u>v</u>	<u></u>	Y	Zn
, i	EL #.	1497		<u> </u>	1.92	<5	80	<5	2.31	<1	11	40	27	3.59	20	0.57	433	<1	0.07	9	1520	6	<5	<20	92	0.08	<10	88	<10	9	22
	1	01323	5	~0.2	1.00	-5	30	<5	3.45	<1	10	33	28	2.83	20	0.80	489	<1	0.06	12	1560	6	<5	<20	125	0.06	<10	68	<10	10	19
	2	01324	5	-0.2	1.02	-5	70	-5	2.65	<1	10	40	49	3.40	20	0.45	400	<1	0.07	6	1480	6	<5	<20	86	0.07	<10	90	<10	9	22
	3	01325	5	<0.2	1.41	-5	70	~5	2.00	-1	10	44	ß	3.02	20	0.37	326	<1	0.07	6	1500	6	<5	<20	80	0.06	<10	80	<10	8	20
	4	01326	25	<0.2	1.50	<0 	10	-5	2.02	-4	21	28	296	4.95	20	1.00	683	<1	0.06	9	1780	6	<5	<20	137	0.08	<10	111	<10	10	29
	5	01327	65	0.2	1.97	<5	85	<0	2.70	~1	21	20	200																		
							05	=0	4 70	-1	85	58	1980	>10	40	1.30	949	<1	0.03	11	1400	10	<5	<20	57	0.05	<10	111	<10	18	263
- 37	6	01328	460	4.6	2.48	3/5	85	50	1.70	-1	26	53	1528	7 69	30	1.36	1084	2	0.02	8	1350	8	<5	<20	17	0.04	<10	101	<10	15	90
- 11	. 7	01329	275	5.2	2.46	55	65	50	1.00	<   	20	25	799	6.33	30	1 24	1048	<1	0.04	11	1720	8	<5	<20	288	0.06	<10	123	<10	13	52
	8	01330	35	1.2	2.46	<5	145	15	3.86	<	22	20	25	2 02	20	0.70	534	<1	0.06	12	1780	6	<5	<20	120	0.07	<10	106	<10	9	19
	9	01331	15	<0.2	1.77	<5	70	<5	3.62	<1	12	29	30	4 22	20	0.70	702	<1	0.05	11	1830	8	<5	<20	100	0.07	<10	85	<10	10	24
	10	01332	30	<0.2	2.04	<5	55	<5	3.62	<1	14	33	74	4.32	20	0.88	102	••	0.00	••		•									
								_				~~	405	4.04	20	1 27	658	د1	0.05	12	1810	10	<5	<20	70	0.07	<10	90	<10	10	25
	11	01333	85	<0.2	2.44	<5	50	<5	3.34	<1	18	33	100	4.94	20	0.79	426	-1	0.00	10	1820	6	<5	<20	78	0.07	<10	79	<10	9	18
	12	01334	145	<0.2	2.06	<5	50	<5	2.76	<1	16	36	12/	3.04	20	0.70	430	-1	0.07	8	1580	6	<5	<20	65	0.08	<10	75	<10	9	15
	13	01335	80	<0.2	1.53	<5	60	<5	1.80	<1	15	38	79	3.53	20	0.52	000	-1	0.03	6	1520	Ř	<5	<20	133	0.07	<10	83	<10	9	16
	14	01336	70	<0.2	1.49	<5	105	<5	2.06	<1	12	44	69	3.53	20	0.55	330	1	0.07		1520	8	<5	<20	42	0.07	<10	61	<10	8	16
	15	01337	160	<0.2	1.39	<5	50	<5	1.78	<1	14	40	306	3.30	20	0.43	2/9	~1	0.07	0	1520	U	-0	-20	76	0.07		0.		Ũ	
																~ ~~		- 4	0.07	7	1540	9	<b>~</b> 5	<20	82	0.06	<10	83	<10	8	14
	16	01338	50	<0.2	1.52	<5	60	<5	2.22	<1	8	37	76	2.71	10	0.48	332	<1	0.07		1040	0	-5	~20	202	0.00	<10	60	<10	å	18
	17	01339	30	<0.2	1.80	<5	70	<5	2.50	<1	12	37	72	3.47	20	0.66	415	<1	0.07	40	1000	0	-5	~20	49	0.07	~10	72	<10	10	19
	18	01340	55	<0.2	1.57	<5	40	<5	2.79	<1	12	36	61	3.10	20	0.72	448	<1	0.06	10	1600	0	<0 -5	~20	40	0.00	<10	13	<10	10	10
	19	01341	20	<0.2	1.56	<5	40	<5	2.17	<1	9	34	42	2.90	20	0.50	354	<1	0.07	5	1550	8	<0	<20	35	0.00	< 10	57	<10	8	10
	20	01342	15	<0.2	1.40	<5	45	<5	2.11	<1	10	35	43	2.56	10	0.47	314	2	0.07	7	1570	8	<5	<20	51	0.06	<10	50	<10	9	10
	20	01342		•	• • • • •																	•		-00		0.07	-40		-10	•	40
	21	01243	50	<0.2	1.10	<5	35	<5	2.42	<1	11	- 34	59	2.19	10	0.56	333	4	0.06	8	1690	8	<5	<20	86	0.07	<10	41	<10	8	18
	22	01343	10	<02	1 27	<5	55	<5	1.86	<1	10	47	62	2.59	10	0.33	228	<1	0.07	8	1580	8	<5	<20	72	0.07	<10	67	<10	9	15
	23	01344	, C , C	< 0.2	2 1 20	<5	70	<5	1.73	<1	9	46	22	3.03	20	0.32	235	<1	0.06	6	1650	6	<5	<20	82	0.07	<10	85	<10	10	15
	23	01343		, <0,4 , <∩ (	0.01	<5	70	<5	1.51	<1	6	42	16	1.38	<10	0.18	162	<1	0.07	2	880	6	<5	<20	91	0.07	<10	34	<10	5	10
	27	01340		0.	2 173	<5	45	<5	2.28	<1	10	41	15	3.16	20	0.58	382	<1	0.06	7	1620	8	<5	<20	54	0.07	<10	69	<10	10	20
	20	01347		,	L 1.70					-					F	rage 1															

ICP CERTIFICATE OF ANALYSIS AK 2002-17

#### NAVASOTA RESOURCES #207 141 VICTORIA STREET KAMLOOPS, BC V2C 125

#### ATTENTION: LORNE WARNER

No. of samples received: 98 Sample type: Core Project #: None Given Shipment #: None Given Samples submitted by: Lome Warner
5 NAVASOTA RESOURCES ICP CERTIFICATE OF ANALYSIS AK 2002-17 ECO TECH LABORATORY LTD. Et #. Tag # Au(ppb) Ag Al% As Ba Bi Ca % Cd Co Cr Cu Fe % La Mg % Mn Mo Na % Ni Ρ Pb Sb Sn Sr Ti% 26 01348 35 <0.2 1.30 55 <5 4.49 <1 12 32 32 3.47 20 0.57 476 0.06 11 1520 <5 <20 70 <1 8 149 0.04 <10 27 01349 5 < 0.2 1.50 <5 70 <5 2.91 <1 17 33 140 3.67 20 0.72 465 <1 0.05 7 1650 10 <5 <20 133 0.06 <10 28 01350 10 <0.2 2.01 <5 85 <5 2.89 <1 24 31 336 4.41 20 0.90 427 7 0.05 9 1680 12 <5 <20 172 0.06 <10 0.59 29 01351 10 <0.2 1.71 <5 70 <5 2.81 <1 16 34 128 3.54 20 362 <1 0.06 8 1680 8 <5 <20 131 0.06 <10 30 01352 <0.2 1.32 <5 50 <5 2.47 <1 8 21 36 2.08 10 0.40 273 <1 0.07 5 1630 8 10 <5 <20 90 0.06 01353 <0.2 1.67 <5 <5 2.74 9 22 40 2.66 10 0.62 317 <1 0.08 8 1480 31 20 185 <1 10 <5 <20 502 0.07 <5 3.31 <1 19 30 2.08 10 0.62 373 32 01354 20 <0.2 1.83 <5 200 6 <1 0.06 10 1130 10 <5 <20 615 0.04 33 01355 30 <0.2 1.67 <5 170 <5 2.60 <1 8 27 21 2.92 20 0.51 341 <1 0.07 7 1600 10 <20 <5 474 0.05 34 01356 10 <0.2 1.46 <5 80 <5 2.29 <1 9 34 17 3.26 20 0.37 282 <1 0.06 7 1650 10 <5 <20 120 0.07 01357 <0.2 1.48 <5 50 <5 4.01 <1 11 35 44 3.34 20 0.60 465 <1 0.05 12 1610 12 35 20 <5 <20 82 0.06

70 <10 10 19 <10 56 <10 8 13 <10 62 <10 9 14 <10 42 <10 8 13 <10 69 <10 9 15 <10 75 <10 9 16 <10 67 <10 10 18 01358 75 < 0.2 1.96 <5 55 <5 1.41 50 47 264 7.69 20 1.09 728 <1 0.04 36 <1 8 1520 8 <5 <20 24 0.04 <10 90 <10 16 43 37 01359 NO SAMPLE 610 < 0.2 1.92 <5 60 55 1.19 38 36 865 6.55 30 0.62 452 <1 0.05 6 1610 38 01360 <1 8 <5 <20 33 0.06 <10 78 <10 13 32 <1 9 36 20 20 0.33 <1 39 01361 10 <0.2 1.39 <5 60 <5 1.61 3.14 309 0.07 6 1640 8 <5 <20 58 0.07 <10 83 <10 8 20 40 01362 <0.2 1.72 <5 50 <5 1.80 <1 11 35 45 3.34 20 0.53 415 <1 0.05 7 1640 8 <5 <20 15 49 0.07 <10 75 <10 9 21 01363 <5 44 1650 7.44 20 0.67 433 2 0.04 41 80 <0.2 1.87 65 30 0.96 <1 37 4 1460 8 <5 <20 61 0.07 <10 92 10 14 38 42 01364 155 <0.2 1.21 <5 55 <5 1.26 <1 15 31 110 3.45 20 0.35 266 <1 0.07 5 1640 8 <5 <20 45 0.07 <10 75 <10 8 15 43 <0.2 1.09 <5 60 <5 1.44 <1 10 39 27 2.88 20 0.25 214 <1 0.06 4 1680 8 <5 <20 01365 30 47 0.08 <10 80 <10 8 16 <5 1.80 <1 10 36 9 2.86 20 0.37 309 <1 0.07 6 1800 8 44 01366 10 <0.2 1.32 <5 70 <5 <20 55 0.07 <10 98 <10 11 17 <0.2 1.62 <5 45 <5 2.49 <1 12 30 21 3.44 20 0.71 484 <1 0.06 9 1840 10 <5 <20 45 01367 15 40 0.06 <10 93 <10 12 20 01368 5 <0.2 1.66 <5 60 <5 2.69 <1 11 29 18 3.09 20 0.66 412 <1 0.06 9 1810 10 <5 <20 66 0.07 46 <10 88 <10 12 19 37 208 <5 35 <5 4.21 <1 20 4.46 20 1.21 645 <1 0.05 17 1580 12 <5 <20 77 47 01369 30 <0.2 2.15 0.06 <10 116 <10 13 32 48 01370 <0.2 <5 70 <5 2.30 <1 16 34 67 4.18 20 0.64 467 <1 0.07 9 1580 10 <5 <20 10 1.49 48 0.07 <10 106 <10 12 24 1.66 <5 19 36 651 4.38 20 0.68 437 <1 12 <5 01371 <0.2 <5 40 1.95 <1 0.06 8 1660 <20 49 25 26 0.07 <10 88 <10 12 32 1438 50 01372 1.5 >1000 <0.2 1.29 <5 85 100 0.46 2 184 69 3655 >10 50 0.79 352 57 0.03 6 990 10 <5 60 11 0.05 <10 56 30 28 64 152 51 01373 2 2 -> 1000 <0.2 1.31 <5 60 <5 1.71 <1 41 38 218 5.16 20 0.59 394 4 0.06 6 1540 12 <5 <20 39 0.07 <10 77 <10 13 25 . 81 358 52 <5 10 84 50 616 8.70 30 0.90 10 0.05 8 1410 10 <5 01374 2.01 >1000 <0.2 1.72 55 1.39 1 20 24 0.06 <10 76 20 17 26 25 7 1610 53 01375 15 <0.2 1.50 <5 70 <5 2.00 <1 15 34 3.64 20 0.61 380 <1 0.07 10 <5 <20 46 0.09 <10 101 <10 11 26 54 <5 18 43 145 3.64 20 395 <1 0.07 01376 55 <0.2 1.30 100 <5 2.16 <1 0.51 8 1590 8 <5 <20 66 0.10 <10 105 <10 10 30 55 01377 <0.2 1.34 <5 90 <5 1.94 <1 16 38 181 3.43 20 0.52 397 <1 0.08 7 1590 10 <5 <20 70 61 0.09 <10 100 <10 9 30 6 1670 56 <5 39 34 2.87 20 0.40 355 <1 0.08 10 01378 10 < 0.2 1.21 <5 75 1.88 <1 14 <5 <20 49 0.08 <10 84 <10 9 25 57 12 2.69 <5 60 <5 1.86 <1 33 40 20 0.45 395 <1 0.07 6 1620 10 <5 <20 01379 10 <0.2 1.27 42 0.09 <10 80 <10 9 28 58 <5 20 36 230 3.20 20 0.48 369 <1 6 1650 10 <5 50 1.70 <1 0.07 <5 01380 70 <0.2 1.26 <20 33 0.07 <10 69 <10 9 30 59 01381 <5 50 <5 1.33 <1 7 40 11 1.69 10 0.27 273 <1 0.09 4 1510 8 <5 <20 10 <0.2 0.91 44 0.05 <10 65 <10 7 22

ย

v

65 <10

81

83

w

<10

<10

Y

12

12

12

Zn

22

19

26

366

<1 0.08

5 1560

10

<5 <20 43 0.06 <10

59

<10

7 23

10 0.41

<5 1.72 <1

10

37

19 2.05

60

01382

20

<0.2 1.22

<5

45

- 6.557/17 . 20% C

NAVASOTA RESOURCES

Jy 62%.

#### ICP CERTIFICATE OF ANALYSIS AK 2002-17

ECO TECH LABORATORY LTD.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	BIC	Ca %	Cd	Co	Cr	Cu	Fe %	La M	lg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	V	W	Y	Zn
61	01383	5	<0.2	1.21	<5	45	<5	1.71	<1	8	37	10	1.91	10	0.35	369	<1	0.09	6	1560	10	<5	<20	47	0.06	<10	65	<10	7	24
62	01384	5	<0.2	1.18	<5	50	<5	1.79	<1	8	37	17	2.09	10	0.39	410	<1	0.08	6	1470	10	<5	<20	50	0.06	<10	67	<10	7	25
63	01385	10	<0.2	1.12	<5	45	<5	1.71	<1	13	32	56	2.59	10	0.46	394	<1	0.07	5	1560	10	<5	<20	32	0.05	<10	62	<10	8	22
64	01386	> 20	<0.2	1.27	<5	50	<5	2.60	<1	12	36	59	2.76	20	0.62	501	<1	0.07	9	1580	10	<5	<20	80	0.05	<10	65	<10	11	22
65	01387	10	<0.2	1.96	<5	50	<5	1.44	<1	54	48	279	7.89	20	1.10	748	<1	0.03	6	1560	10	<5	40	24	0.03	<10	91	<10	16	44
05	01307	10	·U.L	1.00	•	•••																								
66	04200	5	<0.2	1.03	<5	45	<5	2.28	<1	11	37	73	2.14	10	0.44	339	<1	0.07	7	1550	8	<5	<20	62	0.05	<10	51	<10	10	17
00	01300	5	<0.2	1.32	<5	35	<5	2 36	<1	16	47	129	2.59	10	0.61	410	<1	0.06	10	1470	10	<5	<20	46	0.04	<10	49	<10	11	20
67	01309	. 115	<0.2	1.02	<5	30	<5	1.58	<1	10	43	82	1.78	10	0.34	230	<1	0.07	6	1530	8	<5	<20	33	0.04	<10	42	<10	9	15
68	01390	< 115 E	<0.2	1.01	-5	25	<5	1.96	<1	10	44	57	1.90	10	0.42	315	<1	0.07	7	1420	8	<5	<20	40	0.04	<10	47	<10	9	17
69	01391	5	-0.2	1.01	~5	25	<5	1.62	<1	15	45	116	2.03	10	0.34	220	<1	0.06	9	1450	8	<5	<20	37	0.04	<10	38	<10	8	16
70	01392	< 35	<b>NU.2</b>	1.00	~5	55	-0	1.02	.,																					
	04000	16	-0.2	1 16	<b>~</b> 5	50	<5	1 77	<1	10	43	58	2.20	10	0.43	282	2	0.07	8	1570	8	<5	<20	56	0.06	<10	54	<10	9	20
/1	01393	15	~0.2	0.00	~5	50	<5	1 49	<1	9	39	62	1.79	10	0.28	203	<1	0.06	6	1420	6	<5	<20	57	0.05	<10	43	<10	8	15
72	01394	30	~0.2	1 62	~5	30	-5	2.24	<1	16	42	103	3.08	20	0.68	394	<1	0.06	10	1620	8	<5	<20	33	0.05	<10	54	<10	11	21
73	01395	15	~U.Z	1.00	105	60	20	5.8A	<1	225	79	513	>10	30	0.81	732	6	0.03	30	880	16	<5	60	47	0.03	<10	44	20	23	66
/4	01395	- 915	-0.2	1.17	-6	25	<b>2</b> 5	2.06	<1	18	38	114	3.23	20	0.58	399	<1	0.06	10	1870	12	<5	<20	31	0.05	<10	51	<10	12	24
75	01397	-20	<0.2	1.12	<0	30	-0	2.00		10	00		0.20																	
		45	-0.0	4 20	-5	25	-5	2 65	<1	15	53	51	3.92	20	0.85	638	<1	0.05	13	1620	16	<5	<20	35	0.06	<10	71	<10	12	30
76	01398	15	<0.2	1.30	<5 <5	40	~5	1.81	<1	17	55	112	4.78	20	1.01	643	2	0.04	13	1640	16	<5	<20	26	0.05	<10	77	<10	13	38
77	01399	~ /5	<0.2	1.00	<5 -5	40	~5	2.09	-1	18	58	103	2.54	10	0.59	376	<1	0.06	17	1250	16	<5	<20	31	0.06	<10	46	<10	11	22
78	01400	15	<0.2	1.44	<0	10	~5	1.50	-1	7	62	18	1.66	<10	0.35	293	<1	0.06	7	770	12	<5	<20	40	0.04	<10	32	<10	6	20
79	01401	10	<0.2	0.99	<0	40	< <u>5</u>	1.00	-1	5	66	12	1.36	<10	0.26	246	2	0.06	4	730	10	<5	<20	30	0.04	<10	31	<10	5	19
80	01402	~ 25	<0.2	0.75	<5	30	<b>~</b> 5	1.03		5	00	12	1.00		0.20		-													
						40	~5	1 21	-1	8	63	24	1.35	<10	0.27	231	2	0.07	6	870	10	<5	<20	42	0.04	<10	31	<10	6	18
81	01403	10	<0.2	0.79	<0 -5	40	-5	1.21	-1	B	62	15	1 97	10	0.44	389	<1	0.06	10	730	12	<5	<20	45	0.05	<10	39	<10	7	25
82	01404	- 20	<0.2	1.08	<5	35	~0 ~5	2.33	~1	28	71	118	5.20	20	1.59	887	<1	0.10	43	1450	16	<5	<20	81	0.13	<10	129	<10	13	53
83	01405	15	<0.2	1.81	<0	00	<5	3.34	~1	17	76	114	3 45	10	0.92	905	8	0.04	61	640	10	15	<20	187	0.03	<10	50	<10	15	37
84	01406	- 35	<0.2	0.71	25	65	<0	0.44	-1	16	01	100	2 24	<10	0.39	201	5	0.06	70	740	6	<5	<20	20	0.10	<10	45	<10	7	25
85	01407	15	<0.2	0.58	<5	40	<0	0.69	~ 1	10	51	100	£.47		0.00		•													
						20	-5	0.00	-1	17	٥0	109	2 71	<10	0.55	301	17	0.05	40	620	10	<5	<20	17	0.12	<10	58	<10	6	30
86	01408	15	o <0.2	0.96	<5	30	<5	0.90	-1	20	50	215	4.87	10	0.00	505	<1	0.08	34	910	16	<5	<20	38	0.11	<10	55	<10	8	34
87	01409	- 50	) <0.2	1.32	<5	45	<0	1.92	~1	20	05	125	3 38	<10	0.61	372	5	0.08	32	660	8	<5	<20	33	0.13	<10	66	<10	5	34
88	01410	) 5	5 <0.2	0.93	<5	50	<0	0.80		20	140	133	4 4 2	10	1 10	708	ĥ	0.06	70	410	12	<5	<20	70	0.18	<10	113	<10	8	64
89	01411	10	) <0.2	1.35	<5	60	<5	1.17	<1	21	140	50	4.13	10	1.60	597	5	0.00	56	550	36	<5	40	34	0.09	<10	91	70	17	85
90	01412	2 15	5 <0.2	1.49	<5	90	<5	0.81	<1	20	110	94	4.37	10	1.50	557		0.00	00			•		•••			•.		••	
						400		0.40	-4	10	108	148	A 15	10	1 28	725	20	0.05	45	680	16	<5	<20	185	0.08	<10	79	<10	16	92
91	01413	3 15	5 < 0.2	1.52	<5	120	<5	2.40	~1	19	115	924	8 20	20	1.50	1144	<1	0.09	53	1380	82	<5	<20	88	0.06	<10	117	10	24	416
יכ 92	01414	\$ >1000	3.6	1.89	95	70	<5	3.18	2	40	110	704	0.40 8 1 2	20	1 42	1007	12	0.05	54	1120	30	<5	<20	60	0.08	<10	128	<10	18	111
93	0141	5 995	5 2.0	1.74	<5	80	<5	2.78	1	29	144	, /00 222#	510	20	1 19	1735	5	0.05	50	1540	330	<5	40	73	0.05	<10	91	<10	25	1272
52 94	01410	3 >100	0 7.8	1.33	270	5	<5	3.85	20	70	00	3063		20	1 10	1428	10	0.02	29	1220	788	<5	60	196	0.02	<10	22	<10	24	6107
.25 95	0141	7 >100	0 12.8	0.48	665	70	20	4.82	30	70	99	3032	10	20	1.10	1420		0.02				•							- •	2.51
												1411	,	F	Page 3															



 $\int$ 

NAVAS	OTA RES	SOURCES								ŀ	CP CE	RTIFIC		- ANAI	LYSIS	AK 20	02-17								ECO TI	ECH LA	BORA	TORY L	.TD.	
Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	РЬ	Sb	Sn	Sr	Ti %	υ	v	w	Y	Zn
96	01418	~ 75	<0.2	1.75	<5	100	<5	1.74	<1	32	119	187	6.31	20	1.28	695	<1	0.07	48	1200	24	<5	<20	54	0.14	<10	116	<10	13	104
97	01419	185	<0.2	1.28	<5	90	<5	1.13	<1	22	112	94	4.09	10	1.10	522	1	0.07	44	1070	14	<5	<20	75	0.13	<10	91	<10	11	42
98	01420	10	<0.2	1.87	<5	45	<5	1.70	<1	30	86	145	4.87	10	1.77	805	1	0.04	42	2640	22	<5	<20	97	0.09	<10	87	<10	10	86
	IA:																													
Resplit	:																													
1	01323	5	<0.2	1.70	<5	70	<5	2.36	<1	12	40	24	3.83	20	0.55	442	<1	0.05	9	1710	10	<5	<20	80	0.07	<10	89	<10	10	26
71	01393	10	<0.2	1.25	<5	50	<5	2.00	<1	12	51	55	2.41	10	0.45	310	2	0.08	9	1740	12	<5	<20	5 <del>9</del>	0.06	<10	58	<10	9	23
Repeat	t																													
1	01323	5	<0.2	1.82	<5	75	<5	2.37	<1	11	41	26	3.61	20	0.56	424	<1	0.06	8	1560	6	<5	<20	91	0.08	<10	89	<10	9	23
6	01328	420	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-
7	01329	340	-	-	-	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10	01332	30	<0.2	2.07	<5	55	<5	3.77	<1	15	33	74	4.44	20	0.99	722	<1	0.05	13	1880	10	<5	<20	101	0.07	<10	88	<10	10	25
19	01341	15	<0.2	1.57	<5	40	<5	2.26	<1	10	35	44	2.99	20	0.51	364	<1	0.06	8	1590	8	<5	<20	35	0.06	<10	59	<10	9	16
36	01358	75	<0.2	1.93	<5	50	<5	1.42	<1	50	47	258	7.65	20	1.07	726	<1	0.04	6	1560	12	<5	<20	22	0.04	<10	89	<10	15	44
38	01360	615	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-
45	01367	-	<0.2	1.64	<5	45	<5	2.52	<1	12	30	22	3.39	20	0.71	476	<1	0.06	8	1820	10	<5	<20	42	0.07	<10	94	<10	12	19
46	01368	5	-	-	-	-	•	-	-	-	-	-	•	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-
54	01376	-	<0.2	1.33	<5	105	<5	2.21	<1	18	45	144	3.67	20	0.51	399	<1	0.07	7	1620	10	<5	<20	69	0.10	<10	106	<10	10	30
55	01377	65	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
64	01386	15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-
71	01393	20	<0.2	1.19	<5	50	<5	1.94	<1	11	47	56	2.38	10	0.44	304	1	0.07	7	1740	14	<5	<20	55	0.06	<10	57	<10	9	23
80	01402	30	<0.2	0.77	<5	30	<5	1.04	<1	6	64	12	1.32	<10	0.26	230	1	0.07	5	710	8	<5	<20	30	0.05	<10	31	<10	5	19
89	01411	5	<0.2	1.35	<5	65	<5	1.19	<1	22	140	95	4.11	10	1.18	704	7	0.06	71	430	14	<5	<20	70	0.19	<10	114	<10	8	65
96	01418	60	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
97	01419	180		-	-	•	-	-	-	-	-	-	•	-	-	-	-	•	-	-	•	-	•	-	-	-	-	-	-	•
Standa	ard:																													
GEO'0	2	125	1.2	1.72	45	160	<5	1.68	<1	20	63	78	3.78	20	0.93	691	<1	0.03	31	710	26	<5	<20	54	0.09	<10	71	<10	10	79
GEO'0	2	130	1.2	1.72	50	165	<5	1.70	<1	20	63	78	3.80	10	0.92	710	<1	0.03	30	700	26	<5	<20	55	0.08	<10	71	<10	9	81
GEO'0	2	130	1.2	1.74	55	170	<5	1.79	<1	21	67	77	4.01	10	0.92	739	<1	0.03	34	760	32	<5	<20	54	0.09	<10	72	<10	10	81

 $\swarrow$ 

3.16 4.00,

ECOTECH LABORATORY LTD. Juita Jealouse BC Certified Assayer

JJ/kk df/17

XLS/02

Appendix C:

,

С

 $\left( \right)$ 

### Drill Hole Number, From, To, Assay Results

 $( \cap$ 

From

To

Longth

A., A., D. D. A.

	1.011		cengui	- 4	~	~		~u	• -	ppin u	A -	B-	130 11	0.00	~ ~	<b>~</b> -	<b>6</b> -	•	P							ъ	-	C.L	6	e.,	T: 0/		v	w \	<b>,</b> ,	7
Hole #	m	m	m	lag #	g/t	02/1	odd add	ppp	Ag	AI %	AS	88	ы		Ca	0	Gr	Cu	F8 %	La	Mg %	MI	MO	Na %		F		30	30	<u> </u>			<u> </u>			
DDH-FR-001	41.00	42.00	1.00	00001				5	<0.2	2.59	<5	15	<5	4.64	<1	13	47	139	3.77	20	0.62	433	9	0.04	25	2160	3	10	<20	65	0.08	<10	53	<10 1	5 2	24
	42.00	43.00	1.00	00002				5	<0.2	2.12	<5	30	<5	2.71	<1	15	34	195	3.72	<10	0.61	331	7	0.04	<1	1930		<5	<20	44	0.11	<10	50	<10 3	1 1	17
	43.00	44.00	1.00	00003				5	<0.2	1.09	<5	30	<5	1.52	<1	14	44	187	2.67	<10	0.29	210	12	0.04	<1	1080	7	<5	<20	50	0.09	<10	21	<10 1	4 1	13
	44.00	45.40	1.40	00004				5	<0.2	1.34	<5	25	<5	2.15	<1	10	43	77	2.34	<10	0.54	328	6	0.03	<1	1090	3	<5	<20	32	0.08	<10	37	<10 1	5 1	15
	45.40	46.00	0.60	00005				10	<0.2	1.09	10	35	<5	5.04	<1	8	45	91	2.70	<10	0.60	707	1	0.03	<1	1130	4	<5	<20	170	<0.01	<10	40	<10 3	0 2	20
	46.00	47.00	1.00	00006	1.08	0.031		>1000	<0.2	0.96	5830	40	10	5.49	21	14	40	98	4.38	<10	0.38	930	7	0.03	<1	1550	4	30	<20	162	<0.01	<10	25	<10 2	:5 3	35
	47.00	47.65	0.65	00007				200	<0.2	1.63	1605	45	<5	6.12	3	13	19	98	4.46	<10	1.11	901	5	0.03	<1	1930	4	5	<20	311	<0.01	<10	69	<10 3	6 2	25
	47.65	49.00	1.35	00008				25	<0.2	1.68	15	30	5	2.34	<1	12	36	94	2.94	<10	0.54	362	3	0.04	<1	1460	3	5	<20	39	0.09	<10	55	<10 1	4 1	16
	49.00	50.00	1.00	00009				10	<0.2	1.03	<5	55	<5	1.68	<1	9	52	97	2.20	<10	0.27	245	3	0.04	<1	910	4	<5	<20	118	0.07	<10	34	<10 1	.4 1	11
	50.00	51.00	1.00	00010				5	<0.2	1.15	<5	35	<5	1.57	<1	13	54	176	3.00	<10	0.34	188	38	0.05	<1	1240	3	<5	<20	47	0.09	30	25	<10 1	6 1	11
	51.00	52.00	1.00	00011				5	<0.2	0.96	<5	30	<5	1.26	<1	11	60	139	2.69	<10	0.22	200	16	0.04	<1	1160	4	<5	<20	37	0.08	10	60	<10 1	5 1	12
	52.00	53.00	1.00	00012				<5	<0.2	1.56	5	45	<5	2.09	<1	12	33	130	2.98	<10	0.26	241	10	0.06	<1	1800	3	<5	<20	62	0.10	<10	66	<10 2	<u>'4</u>	17
	53.00	54.00	1.00	00013				<5	<0.2	1.37	<5	40	10	1.94	<1	14	49	143	3.40	<10	0.31	244	13	0.08	<1	1650	3	<5	<20	63	0.12	10	49	<10 2	20 3	36
	54.00	55.00	1.00	00014				5	<0.2	1.77	<5	40	<5	2.18	<1	12	41	122	3.38	<10	0.31	292	20	0.06	<1	1700	2	<5	<20	43	0.12	10	55	<10 1	6	16
	102.50	102.75	0.25	00015				25	<0.2	1.68	<5	45	15	2.35	<1	11	38	49	2.71	<10	0.50	366	4	0.07	<1	1890	3	<5	<20	54	0.11	<10	51	<10 2	26	16
	102.75	103 30	0.55	00016	12.10	0.353		>1000	11.3	1.69	235	30	<5	1.98	<1	45	70	1367	5.29	<10	0.79	597	4	0.05	<1	1520	6	<5	<20	32	0.08	20	106	<10 1	13 (	67
	103.30	104.00	0.70	00017				85	0.2	1 79	<5	115	15	2.40	<1	13	33	47	3.65	<10	0.63	506	1	0.09	<1	1900	2	5	<20	100	0.14	<10	102	<10 3	33 :	25
	126.00	127.05	1.05	00018				45	<0.2	2.08	5	70	20	4 17	<1	15	24	24	3.98	<10	0.88	642	3	0.04	<1	1780	5	<5	<20	126	0.08	<10	113	<10 2	29	26
	127.05	128.00	0.95	00010				30	<0.2	1 92	70	20	10	9.60	<1	14	26	48	3.87	<10	0.89	821	2	0.04	<1	1540	7	<5	<20	367	0.06	<10	68	<10 2	30	19
	129.00	120.00	1.00	00013				10	-0.2	2.18	10	55	15	3.04	<b>e</b> 1	15	25	03	3.84	<10	0.69	500	2	0.04	<1	2040	5	<5	<20	95	0.12	<10	86	<10 7	12	20
	120.00	120.00	1.00	00020				10	~0.2	1 73	10	25	-5	2.04	-1	10	20	151	3.24	<10	0.50	207	22	0.04	e 1	2020	6	<5	<20	24	0.11	<10	31	10 0	χ <u>η</u>	16
	129.00	130.00	1.00	00021				10	<0.2	2.04	-5	25	~5	2.21	~1	15	23	63	3.24	~10	0.00	251	22	0.05	~1	1060	7	-5	~20	27	0.11	<10	70	<10 0	20	23
	130.00	131.00	1.00	00022				10	<0.2	2.91	- 5	33	20	3.14	-1	15	34	63	3.00	<10	0.00	403	~ ~ 1	0.00	~1	1300	7	~5	~20	23	0.15	<10	69	<10 2	10 / 24	20
	141.00	142.00	1.00	00023				10	<0.2	2.07	5	60	20	2.39	~	14	37	420	3.30	<10	0.50	466		0.00	2	2130	, E	~5	~20	00	0.10	<10	50	<10 2		22
	142.00	143.00	1.00	00024				5	0.2	2.21	10	60	5	3.01	<1	22	35	139	3./0	<10	0.66	466		0.07	3	2170	5	<5	<20	95	0.15	<10	29	<10 2	12 i	24
	143.00	144.00	1.00	00025				20	0.2	1.96	5	65	10	2.53	<1	15	35	125	3.17	<10	0.49	381	<1	0.07	<   	2200	8	<5	<20	76	0.14	<10	54	<10 2	20 . 47	20
	144.00	145.00	1.00	00026				5	0.3	2.13	10	35	<5	2.66	<1	22	35	129	3,14	<10	0.76	398	21	0.03	<1	1940	5	10	<20	33	0.10	<10	4/	<10 1	17	19
	145.00	146.00	1.00	00027				15	0.2	2.50	30	45	10	4.70	<1	11	41	248	/ 49	<10	1.05	865	29	0.03	1	1690	<i>′</i>	5	<20	61	0.09	<10	84	<10 <	، ۲۱ م	26
	146.00	147.00	1.00	00028				10	<0.2	2.14	10	85	25	2.32	<1	17	31	41	4.11	<10	0.57	434	1	0.07	<1	2270	5	10	<20	141	0.14	<10	103	<10 2	21 :	26
	179.00	180.00	1.00	00029				5	0.3	2.05	10	65	20	2.21	<1	21	30	/9	4.39	<10	0.63	396	1	0.07	3	2080	4	<5	<20	86	0.17	<10	105	<10 1	14 :	27
	180.00	181.00	1.00	00030				10	0.2	2.44	<5	40	15	2.87	<1	26	31	132	5.40	<10	0.93	511	5	0.06	<1	2280	8	<5	<20	120	0,17	<10	85	<10 1	11 :	29
	181.00	182.00	1.00	00031				10	<0.2	2.13	10	45	<5	2.29	<1	24	37	116	4.77	<10	0.67	378	11	0.08	<1	2200	4	<5	<20	108	0.18	<10	87	<10 1	18	27
	182.00	183.00	1.00	00032				5	<0.2	2.24	15	70	15	2.23	<1	24	43	96	4.26	<10	0.60	374	6	0.07	<1	2150	3	<5	<20	60	0.19	<10	120	10 2	25	28
	190.00	190.40	0.40	00033				75	<0.2	2.58	<5	50	15	3.47	<1	21	27	32	4.57	<10	0.88	558	2	0.05	<1	2130	4	10	<20	84	0.21	<10	131	<10	6	28
	190.40	191,40	1.00	00034			<5 <5	680	0.2	3.01	20	50	10	4.52	<1	32	22	199	6.65	<10	1.51	1098	1	0.05	<1	1950	7	<5	<20	183	0.14	<10	183	10 1	16	52
	191.40	192.75	1.35	00035	1.23	0.036	<5 <5	>1000	<0.2	2.93	60	45	<5	6.98	<1	26	10	381	5.60	<10	1.28	1150	6	0.06	<1	1710	10	<5	<20	239	0.07	<10	160	<10 3	36	84
	192.75	194.00	1.25	00036				70	1.4	3.22	20	35	20	4.55	<1	22	26	82	5.27	<10	1,45	859	з	0.05	<1	2030	7	5	<20	99	0.17	<10	134	<10 1	11	31
	194.00	195.00	1.00	00037				80	<0.2	2.43	10	55	15	3.68	<1	16	21	88	3.89	<10	0,94	715	2	0.06	<1	2180	2	<5	<20	221	0.12	<10	86	<10 1	16	23
	195.00	196.00	1.00	00038				85	0.2	2.22	15	40	10	2.99	<1	19	29	122	3.79	<10	0.72	532	18	0.05	<1	2290	2	<5	<20	90	0.11	<10	83	<10 1	18	22
	196.00	197.00	1.00	00039				40	<0.2	2.29	10	55	<5	2.98	<1	18	33	153	3.99	<10	0.70	578	11	0.06	<1	2250	<2	5	<20	159	0.13	<10	89	<10 1	16	26
	197.00	198.00	1.00	00040				15	<0.2	2.31	5	80	10	2.98	<1	15	28	47	3.6 <del>9</del>	<10	0.58	539	<1	0.07	<1	2230	2	<5	<20	352	0.14	<10	77	<10 1	17	24
	198.00	198.90	0.90	00041				5	<0.2	1.68	10	20	20	3.79	<1	14	33	40	2.75	<10	0.54	418	<1	0.05	<1	2180	2	<5	<20	166	0.13	<10	39	<10 2	22	21
	198.90	200.00	1.10	00042				160	0.4	3.28	165	75	<5	5.64	<1	19	9	191	4.66	<10	1.11	1084	9	0.21	<1	2020	4	<5	<20	466	0.09	<10	95	<10 3	31	39
	200.00	201.00	1.00	00043				65	0.4	2.86	20	45	<5	3.56	<1	19	13	186	3.91	<10	0.92	776	9	0.22	<1	1820	4	<5	<20	346	0.11	<10	67	<10 0	33	34
	201.00	202.00	1.00	00044				<5	0.2	2.37	10	70	5	2.73	<1	17	34	111	3.26	<10	0.59	570	6	0.08	<1	2160	3	5	<20	373	0.11	<10	57	<10 0	34	39
	202.00	203.00	1.00	00045				25	<0.2	2.61	15	35	15	3.35	<1	21	37	121	3.92	<10	0.84	576	5	0.06	<1	1840	3	<5	<20	181	0.10	<10	54	20 ;	25	25
	203.00	204.00	1.00	00046				5	<0.2	2.48	10	35	10	3.10	<1	21	25	139	3.88	<10	0.81	525	10	0.05	<1	1780	6	<5	<20	163	0.11	<10	44	<10	19	23
	204.00	205.05	1.05	00047				5	0.3	2.44	30	45	10	3.63	<1	19	27	119	3.97	<10	0.79	743	5	0.06	<1	1850	4	5	<20	266	0.08	<10	76	10 :	34	32
	205.05	206.00	0.95	00048				5	0.3	2.08	30	40	10	6.28	<1	17	36	78	4.11	<10	0.63	924	4	0.04	<1	1750	8	<5	<20	195	0.06	<10	81	20	31	28
	206.00	207.00	1.00	00049				<5	0.2	2.34	15	60	15	3.44	<1	15	50	47	3.47	<10	0.67	701	<1	0.06	<1	1890	6	5	<20	145	0.12	<10	69	10	27	26
	207.00	208.00	1.00	00050				<5	<0.2	2.65	20	40	10	3.66	<1	17	37	59	3,93	<10	0.88	844	2	0.06	<1	2030	4	5	<20	110	0.11	<10	84	10	35	33
	208.00	208.80	0.80	00051				10	0.2	2 16	50	40	<5	3.21	<1	21	50	185	4 16	<10	1 11	752	- 13	0.06	12	1450	6	10	<20	168	0.04	<10	121	<10	46	31
	208.00	200.00	0.00	00052				5	0.2	1 44	25	20	5	1 83	<1	16	122	169	3.83	<10	1 02	491	7	0.04	32	690	5	5	<20	42	0.05	<10	122	10	56	27
	200.00	208.30	1 70	00032				-5	10.2	1.04	25	40	16	2.09	-1	25	57	234	5.00	~10	0.04	1005	44	0.04	17	1510	5		~20	94 Q 1	0.00	~10	57	~10 1	21	37
	208.30	i⊈ i 1.00	1.70	000000					-0.2	1.00	-0	40		£.00		20	<b>.</b>	201	0.10	*10	0.04			0.00	.,			-0	-60	<b>U</b> 1	9.17	-10	<b>.</b> ,	0.		<b>.</b>

Page 1

 $\bigcirc$ 

(	7

	From	То	Length		Au	Au	Pd	Pt	Au		ppm u	inless	other	wise r	noted																						
Hole #	m		m	Tag #	g/t	oz/t	ppb	ppb	ppb	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Ρ	Pb	Sb	Sn	Sr	Ti %	υ	v	w	Y	Zn
	211.00	211.85	0.85	00054					5	<0.2	1.30	10	30	<5	2.58	<1	16	87	142	3.87	<10	0.83	1063	12	0.05	43	800	3	<5	<20	45	0.17	<10	42	10	37	32
	211.85	212.50	0.65	00055					5	0.4	1.85	40	65	20	4.71	<1	30	53	210	4.44	<10	0.88	980	9	0.05	20	1170	5	25	<20	117	0.08	<10	93	30	38	42
	212.50	213.90	1.40	00056					20	0.2	2.22	30	50	10	4.93	<1	34	30	289	6.85	<10	1.43	1042	14	0.05	14	1890	5	10	<20	113	0.15	<10	158	20	20	41
	213.90	215.00	1.10	00057					15	<0.2	2.29	10	15	20	2.19	<1	23	44	217	4.81	<10	1.24	593	6	0.05	4	1840	4	25	<20	9	0.10	<10	63	30	21	29
	215.00	216.00	1.00	00058					5	<0.2	1.70	15	55	5	4.53	<1	19	30	149	4.80	<10	0.76	662	29	0.05	<1	2210	4	<5	<20	110	0.06	<10	67	20	28	37
	221.00	222.00	1.00	00059					15	<0.2	2.24	195	50	10	2.65	<1	22	55	169	4.54	<10	0.84	608	12	0.05	<1	2260	5	10	<20	57	0.08	<10	73	20	21	30
	222.00	223.00	1.00	00060					10	<0.2	2.61	260	50	5	4.90	<1	21	46	141	4.12	<10	0.88	875	67	0.04	<1	2060	3	20	<20	177	0.06	<10	73	20	14	35
	223.00	224.00	1.00	00061					25	<0.2	1.74	625	60	10	4.40	<1	20	40	165	4.42	<10	0.83	810	17	0.04	<1	2300	4	20	<20	220	0.04	<10	62	40	29	34
	224.00	225.00	1.00	00062					30	<0.2	1.74	760	45	<5	4.44	<1	21	40	221	5.83	<10	0.97	859	7	0.04	<1	2190	3	<5	<20	193	0.04	30	69	10	13	35
	225.00	226.00	1.00	00063					<5	<0.2	2.16	10	45	<5	2.71	<1	19	45	145	3.60	<10	0.71	562	11	0.05	<1	1930	2	<5	<20	55	0.09	<10	50	<10	19	31
	226.00	227.00	1.00	00064					5	<0.2	1.85	10	30	10	1.83	<1	24	59	211	4.63	<10	0.72	536	48	0.06	4	1760	2	5	<20	25	0.09	<10	69	10	19	31
	227.00	228.00	1.00	00065					50	<0.2	1.75	10	35	<5	1.85	<1	32	57	311	5.91	<10	0.58	410	10	0.07	2	1740	3	10	<20	25	0.08	<10	37	20	7	24
	228.00	229.00	1.00	00066					5	<0.2	1.92	10	35	<5	1.93	<1	21	59	174	4.29	<10	0.66	437	7	0.08	<1	1700	<2	<5	<20	44	0.08	<10	44	10	16	22
	229.00	230.00	1.00	00067	3.25	0.095	<5	5	>1000	0.2	1.98	<5	65	<5	1.28	<1	98	109	1000	>10	<10	1.03	586	51	0.03	23	920	2	30	<20	16	0.09	<10	192	310	<1	42
	230.00	231.00	1.00	00068	2.27	0.066	<5	<5	>1000	0.2	2.15	15	50	<5	1.69	<1	66	64	717	>10	<10	1.08	658	25	0.03	13	1410	3	10	<20	21	0.08	<10	139	50	<1	32
	231.00	232.00	1.00	00069			<5	5	890	0.4	2.12	5	55	15	1.01	<1	38	158	328	7.80	<10	1.33	648	86	0.02	16	1040	2	<5	<20	7	0.16	<10	208	10	5	31
	232.00	232.70	0.70	00070			<5	<5	830	0.2	2.07	5	50	<5	0.91	<1	51	163	658	8.95	<10	1.28	538	19	0.03	32	590	2	15	<20	7	0.19	<10	202	20	<1	32
	232.70	234.00	1.30	00071					425	0.2	1.83	<5	50	<5	0.75	<1	41	205	351	7.39	<10	1.10	404	14	0.06	42	630	2	5	<20	17	0.17	<10	299	10	5	33
	234.00	235.00	1.00	00072					15	<0.2	1.76	<5	50	<5	0.82	<1	30	191	271	5.53	<10	1.17	385	18	0.07	37	690	2	5	<20	23	0.20	<10	181	<10	19	25
	235.00	236.00	1.00	00073					25	<0.2	1.83	10	40	<5	1.02	<1	38	163	293	6.16	<10	1.19	451	10	0.07	32	910	4	10	<20	16	0.19	<10	181	<10	22	28
	236.00	237.00	1.00	00074					30	<0.2	1.65	<5	35	<5	0.95	<1	28	165	248	5.46	<10	1.15	407	7	0.05	34	800	3	15	<20	22	0.17	<10	170	<10	24	37
																																					0.
DDH-FR-002	17.50	19.00	1.50	00075					10	<0.2	2.09	<5	75	<5	2.05	<1	15	40	79	3.57	20	0.64	364	5	0.04	11	1760	2	<5	<20	138	0.10	<10	66	<10	11	23
	19.00	20.00	1.00	00076					15	<0.2	2.08	<5	50	<5	2.83	<1	16	38	61	3.71	20	0.78	437	14	0.04	14	1780	2	5	<20	90	0.15	<10	81	<10	9	23
	20.00	21.00	1.00	00077					20	<0.2	2.10	<5	35	<5	4.21	<1	15	34	49	3.57	20	0.88	551	7	0.03	21	1700	2	5	<20	90	0.14	<10	70	<10	9	25
	21.00	21.40	0.40	00078					15	<0.2	2.21	<5	45	<5	4.15	<1	15	28	62	4.10	20	1.02	686	2	0.03	20	1750	2	<5	<20	106	0.10	<10	98	<10	11	27
	21.40	23.00	1.60	00079					15	<0.2	2.07	<5	50	<5	5.04	<1	19	35	119	4.27	20	0.97	767	5	0.03	24	1600	3	5	<20	87	0.10	<10	100	<10	9	24
	23.00	24.00	1.00	00080					20	<0.2	2.12	<5	70	<5	3.04	<1	16	26	68	3.60	20	0.63	537	3	0.04	16	1760	2	<5	<20	137	0.10	<10	92	<10	10	26
	24.00	25.00	1.00	00081					15	<0.2	2.05	<5	40	<5	2.70	<1	15	46	81	3.28	20	0.72	545	3	0.04	15	1780	2	5	<20	40	0.12	<10	88	<10	10	22
	25.00	26.00	1.00	00082					20	<0.2	1.93	<5	50	<5	2.62	<1	13	35	56	3.33	20	0.61	517	20	0.04	13	1760	2	5	<20	73	0.13	<10	93	<10	10	23
	26.00	27.00	1.00	00083					20	<0.2	2.28	<5	65	<5	3.48	<1	12	32	27	3.36	20	0.63	539	2	0.05	18	1770	2	<5	<20	122	0.13	<10	99	<10	8	26
	27.00	28.00	1.00	00084					20	<0.2	1.99	<5	30	<5	3.48	<1	12	32	31	3.14	20	0.75	515	4	0.04	17	1700	2	10	<20	54	0.13	<10	88	<10	9	23
	28.00	29.00	1.00	00085					20	<0.2	2.17	<5	35	<5	2.92	<1	13	33	50	3.20	20	0.72	419	23	0.04	15	1720	2	5	<20	46	0.11	<10	81	<10	10	21
	29.00	30.00	1.00	00086					20	<0.2	2.06	<5	40	<5	2.56	<1	12	35	41	3.35	20	0.61	451	5	0.05	13	1810	2	<5	<20	37	0.11	<10	91	<10	12	22
	30.00	31.00	1.00	00087					10	<0.2	2.09	<5	35	<5	2.77	<1	15	32	69	3.85	20	0.79	511	41	0.04	15	1750	3	<5	<20	33	0.10	<10	77	<10	11	24
	31.00	32.00	1.00	00088					5	<0.2	1.86	<5	90	<5	2.41	<1	12	32	27	3.21	20	0.49	396	2	0.06	12	1790	3	10	<20	133	0.11	<10	100	<10	11	22
	32.00	33.00	1.00	00089					15	<0.2	1.76	<5	65	<5	2.07	<1	13	25	67	3.10	20	0.44	343	4	0.06	10	1820	3	5	<20	76	0.11	<10	80	<10	10	18
	33.00	34.00	1.00	00090					20	<0.2	2.09	<5	60	<5	2.28	<1	14	30	79	3.39	20	0.50	347	19	0.07	12	1780	2	<5	<20	62	0.11	<10	74	<10	10	19
	34.00	35.00	1.00	00091					10	<0.2	1.69	<5	95	<5	1.83	<1	12	31	34	3.40	20	0.37	300	17	0.06	10	1790	2	<5	<20	118	0.11	<10	103	<10	10	20
	35.00	36.00	1.00	00092					20	<0.2	2.43	<5	50	<5	3.37	<1	13	29	42	3.70	20	0.76	441	11	0.05	18	1870	2	5	<20	62	0.11	<10	97	<10	8	22
	36.00	37.00	1.00	00093					30	<0.2	2.24	<5	150	<5	2.48	<1	10	34	33	2.76	20	0.39	321	5	0.09	13	1790	2	5	<20	347	0.07	<10	84	<10	9	17
	37.00	38.00	1.00	00094					20	<0.2	1.86	<5	60	<5	2.14	<1	12	31	45	2.92	20	0.39	354	3	0.07	11	1750	3	5	<20	77	0.08	<10	70	<10	11	19
	38.00	39.00	1.00	00095					15	<0.2	1.73	<5	95	<5	2.27	<1	12	41	39	3.18	20	0.41	373	<1	0.06	11	1830	2	5	<20	160	0.09	<10	75	<10	11	20
	39.00	40.00	1.00	00096			<5	<5	850	0.8	1.81	90	75	<5	3.07	<1	184	57	910	>10	40	0.99	566	33	0.03	15	1220	10	10	<20	46	0.06	<10	62	<10	8	27
	40.00	40.90	0.90	00097					20	<0.2	1.69	<5	95	<5	2.05	<1	14	38	48	3.46	20	0.46	389	9	0.05	9	1710	2	<5	<20	162	0.07	<10	90	<10	13	22
	40.90	42.00	1.10	00098					285	<0.2	2.59	<5	110	<5	2.07	<1	68	48	429	9.14	40	1.23	518	15	0.03	12	1480	5	10	<20	157	0.10	<10	105	<10	8	28
	42.00	43.00	1.00	00099					25	<0.2	2.01	<5	125	<5	2.62	<1	13	34	46	3.25	20	0.58	452	2	0.06	12	1670	2	10	<20	227	0.07	<10	84	<10	11	21
	43.00	44.00	1.00	00100					40	<0.2	1.93	<5	100	<5	2.86	<1	13	32	65	2.92	20	0.43	415	4	0.07	12	1680	2	10	<20	179	0.08	<10	86	<10	11	19
	44.00	44.65	0.65	00101	1.45	0.042	<5	<5	>1000	0.5	1.87	<5	90	<5	3.89	<1	158	72	1032	>10	50	1.20	528	37	0.02	20	1100	6	15	<20	76	0.07	<10	61	<10	6	41
	44.65	46.00	1.35	00102					55	<0.2	1.93	<5	90	<5	2.75	<1	14	35	65	3.30	20	0.53	410	4	0.06	15	1710	2	<5	<20	191	0.09	<10	70	<10	12	22
	46.00	47.00	1.00	00103					35	<0.2	2.42	<5	35	<5	3.63	<1	14	41	43	3.32	20	0.63	550	3	0.05	19	1700	2	5	<20	49	0.09	<10	77	<10	12	25
	47.00	48.00	1.00	00104					80	<0.2	2.02	<5	115	<5	2.90	<1	12	35	37	3.07	20	0.46	430	1	0.07	14	1630	2	<5	<20	270	0.08	<10	90	<10	10	20
	48.00	49.00	1.00	00105					120	<0.2	2.14	<5	75	<5	3.28	<1	10	35	27	2.68	20	0.46	470	5	0.0 <b>8</b>	17	1660	<0.2	10	<20	142	0.11	<10	77	<10	11	22

 $\int$ 

=

	From	То	Length		Au	Au	Pd	Pt	Au		ppm u	nless	othen	wise r	noted																						
Hole #	m	m	m	Tag #	g/t	oz/t	ppb	ppb	ppb	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	Ρ	Pb	Sb	Sn :	Sr T	i %	υ	v	w	Y	Zn
	49.00	50.00	1.00	00106					25	<0.2	1.94	<5	85	<5	3.44	<1	11	33	38	2.80	20	0.50	498	1	0.05	16	1710	2	5	<20_1	78 0	08	<10	71	<10	12	21
	50.00	51.00	1.00	00107					45	<0.2	2.46	<5	100	<5	2.97	<1	13	30	46	3,17	20	0.55	425	2	0.08	16	1700	2	10	<20 2	31 0	07	<10	75	<10	11	23
	51.00	52.00	1.00	00108					10	<0.2	2.00	<5	145	<5	2.33	<1	9	36	10	2.85	20	0.33	335	<1	0.08	11	1650	2	5	<20 2	90 0	07	<10	98	<10	10	21
	52.00	53.50	1.50	00109					15	<0.2	2.30	<5	90	<5	2.75	<1	10	37	23	2.88	20	0.39	381	2	0.09	14	1640	2	<5	<20 1	46 0	10	<10	82	<10	9	22
	53.50	54.00	0.50	00110	1.26	0.037	<5	<5	>1000	<0.2	2.48	<5	75	<5	2.84	<1	49	46	441	7.57	30	0.72	542	<1	0.07	15	1390	<0.2	<5	<20	51 0	06	<10	64	<10	10	20
	54.00	55.00	1.00	00111					75	<0.2	2.53	<5	125	<5	2.50	<1	14	33	72	3.39	20	0.51	390	<1	0.09	14	1520	2	<5	<20 3	89 0	06 -	<10	70	<10	11	18
	55.00	56.00	1.00	00112					145	<0.2	2.26	<5	95	<5	2.77	<1	17	36	82	4.00	20	0.78	567	<1	0.06	13	1620	3	5	<20 1	83 0	09 -	<10	74	<10	13	24
	56.00	57.00	1.00	00113					140	<0.2	2.38	<5	40	<5	3.70	<1	20	45	74	3.41	20	0.71	508	3	0.05	18	1510	2	5	<20 f	34 0	09	<10	53	<10	12	21
	57.00	58.00	1.00	00114					35	<0.2	2.17	<5	115	<5	2.65	<1	12	34	62	3.10	20	0.53	398	1	0.08	14	1510	3	<5	<20 2	83 0	08	~10	68	-10	12	17
	74.00	75.00	1.00	00115					55	<0.2	2.20	<5	50	<5	2.75	<1	20	36	67	4.24	20	1.07	690	4	0.04	17	1760	2	<5	<20	72 0	13 .	<10	105	~10	11	33
	75.00	75.60	0.60	00116	4.16	0.121	<5	<5	>1000	0.6	2.53	<5	75	<5	2.19	<1	86	66	426	>10	40	1.71	821	2	0.02	19	1410	6	5	<20	λα ∩	12	<10	111	<10	10	30
	75.60	77.00	1.40	00117					160	<0.2	2.41	<5	40	<5	3.42	<1	23	34	54	4 04	20	1.03	658	3	0.04	22	1790	ñ	5	<20 0	,00. 200.	14	~10	00	~10	11	22
	77.00	78.00	1.00	00118					140	<0.2	2.11	<5	50	<5	3.04	<1	19	38	36	3.57	20	0.94	564	5	0.05	17	1790	3	-5	<20 1	01 0	19	~10	100	~10	14	20
	78.00	79.00	1.00	00119	2.06	0.06	<5	<5	>1000	<0.2	2.54	<5	65	<5	2.73	<1	42	41	218	6 25	30	1 22	702	7	0.05	10	1770	3	5	~20 1	10 0	10 1	10	100	~10	14	23
	79.00	80.00	1.00	00120	1.36	0.04	<5	<5	>1000	<0.2	2.81	<5	100	<5	2.02	<1	77	45	124	6 63	30	1 39	885	2	0.05	16	1920	2	J ~E	~20 1	00 0.	.13	10	121	<10	15	35
	80.00	81.00	1.00	00121	1.57	0.046	<5	<5	>1000	<0.2	2.67	<5	70	<5	2 34	<1	36	41	145	5.09	30	1.00	755	2	0.05	10	1700	2	<5 -5	<20 Z	00 0.	.13 •	<10	132	<10	12	45
	81.00	82.00	1.00	00122	2.34	0.068	<5	<5	>1000	0.2	3.36	<5	90	<5	248	<1	37	41	244	7 12	30	1.04	020	4	0.00	10	1750	3	<5 -5	<20 1	83 0.	.11	<10	90	<10	11	33
	82.00	83.00	1.00	00123		0.000			300	<0.2	2 50	<5	65	<5	2.90	-1	28	40	244	1.12	20	1.20	716	1	0.09	10	1200	2	<5	<20 2	91 0.	12	<10	91	<10	11	36
	83.00	84.00	1.00	00124					270	<0.2	2.00	~5	<u>00</u>	~5	3.03	-1	10	40 26	50	4.93	20	0.98	110	1	0.06	18	1860	3	<5	<20 1	99 0.	.12 •	<10	78	<10	13	33
	84.00	85.00	1.00	00125					330	<0.2	242	<5	95	<5	2 92	-1	22	36	17	3.11	20	1.00	700	2	0.06	19	2010	3	10	<20 3	05 0.	.11 •	<10	93	<10	15	41
	85.00	86.00	1.00	00126					165	<0.2	2 22	<5	60	-5	3 3 2	-1	14	41	12	4.05	20	0.96	770	2	0.05	10	1920	3	5	<20 3	53 0.	.11 •	<10	85	<10	14	32
	86.00	87.00	1.00	00127					300	0.2	1.89	<5	65	<5	3.51	-1	13	52	216	3.04	20	0.60	691	4	0.05	10	1890	2	5	<20 1	// U.	10 <	<10	74	<10	13	28
	87.00	88.00	1.00	00128					355	<0.2	2.80	10	135	<5	4 55	~1	17	36	210	3.75	20	0.09	802	2	0.05	17	1250	3	10	<20 2	03 0.	08 <	<10	54	<10	13	27
	88.00	88.70	0.70	00129					320	<0.2	2.00	5	125	<5	3.26	<1 <1	18	30	32	5.00	20	0.79	702	2	0.08	24	1550	3	5	<20 5	10 0.	08 <	<10	66	<10	14	29
	88.70	90.00	1.30	00130	14.70	0 429	<5	<5	>1000	10.2	1.92	200	65	~5	2.62	6	116	09	920	5.25	20	0.98	1011	-1	0.07	19	2120	2	10	<20 4	J5 0.	11 <	<10	80	<10	11	32
	90.00	91.00	1.00	00131	0	0.720			440	04	1.56	85	40	<5	3.80	د ۲	11	43	100	2 78	40 20	0.93	676	~1	0.02	15	1030	422	5	<20 4	0 0.	05 <	<10	50	<10	15 1	1332
	91.00	92.00	1.00	00132					65	<0.2	2.62	85	65	<5	4 64		18	36	37	2.70	20	0.00	000	2	0.03	10	030	2	<5	<20 1	JU U.	03 <	<10	40	<10	18 :	249
	92.00	93.00	1.00	00133					20	<0.2	2 22	10	40	<5	5 24	<1	18	32	23	4 10	20	1.29	1046	24	0.03	20	1040	3	10	<20 1	78 U.	10 <	<10	99	<10	19	36
	93.00	94.00	1.00	00134					135	<0.2	2 26	15	35	<5	4 35	-1	31	34	46	4.10	20	1.20	1045	34	0.03	20	1900	3	10	<20 1	JZ 0.	11 <	<10	91	<10	19	37
	169.00	170.00	1.00	00135					35	<0.2	2 74	5	55	<5	3 16	e1	17	47	60	4.00	20	0.70	607	30	0.03	20	2030	•	5	<20 /	1 0.	13 <	<10	91	<10	22	41
	170.00	171.00	1.00	00136					15	<0.2	3 29	<5	100	<5	4 74	<1	16	43	70	4.00	20	0.70	702	2	0.06	10	2170	4	5	<20 1	J4 0.	11 <	<10	66	<10	17	32
	171.00	172.00	1.00	00137					15	<0.2	2.59	<5	115	<5	3.62	<1	16	44	165	4.05	20	0.75	620	2	0.00	10	2230	3	10	<20 3	18 0.	12 <	<10	/3	<10 :	22	55
	172.00	173.00	1.00	00138					20	<0.2	2.33	<5	60	<5	2.84	<1	18	40	222	3.00	20	0.64	547	2	0.05	19	2230	2	5	<20 3	J1 U.	13 <	<10	90	<10	14	30
	173.00	175.00	2.00	00139					20	<0.2	1.80	<5	65	<5	4.32	<1	21	52	257	4 50	20	0.78	603	~ 1	0.03	21	1950	2	5	<20 9	.3 U.	10 <	<10	88	<10	15	25
	175.00	176.00	1.00	00140					15	<0.2	2.31	10	90	<5	4 20	e1	14	44	07	3.50	20	0.70	655	-1	0.04	21	1050	3	10	<20 14	40 U.I	05 <	<10	62	<10	20	29
	176.00	177.00	1.00	00141					10	<0.2	2.37	<5	45	<5	3.26	<u>جا</u>	16	63	118	3.50	20	0.00	621	~1	0.05	21	1000	2	10	<20 24	47 U.	10 <	<10	74	<10	15	25
	177.00	178.00	1.00	00142					40	<0.2	2 25	5	35	-5	3 10	-1	17	51	145	3.04	20	0.67	540	2	0.05	19	1040	3	<5	<20 9	0 0.0	08 <	<10	68	<10	17	28
	178.00	179.00	1.00	00143					30	<0.2	2 22	10	30	<5	3.12	-1	24	51	194	3 1 3	20	0.50	507	2	0.00	10	1900	2	10	<20 6	0 0,0	)9 <	<10	54	<10 2	20	25
	179.00	180.00	1.00	00144					205	<0.2	1 98	10	30	<5	3.12	-1	27	48	260	3.13	20	0.65	507	10	0.05	10	2250	3	5	<20 4	7 0.0	98 <	<10	65	<10 2	22	25
	180.00	181.00	1.00	00145					50	<0.2	2 22	5	35	-5	3.07	-1	23	40	203	3.30	20	0.05	510	12	0.05	20	2400	3	5	<20 3	7 0.	10 <	<10	47	<10 2	22	26
	181.00	182.00	1.00	00146					15	<0.2	1.64	10	35	-5	3.26	-1	14	45	02	2.00	20	0.00	404	2	0.05	10	2260	2	10	<20 4	5 0.0	 	<10	53	<10 2	23	23
	182.00	184.00	2.00	00147					135	0.2	1.61	15	60	-5	5.20 6.00	~1	24	43	120	2.03	20	0.56	491	2	0.04	16	2000	3	10	<20 /	1 0.0	J7 <	<10	46	10 2	23	35
	184 00	186.00	2 00	00148					20	0.3	1 31	30	35	-5	6.80	~1	27		220	4.80	20	1.00	1030	5	0.04	34	2220	5	5	<20 1	/1 0.0	J6 <	<10	114	<10 3	34	35
	186.00	187.00	1.00	00149					5	<0.0	1.06	10	75	~5	2.20	~1	10	127	477	4.02	20	1.20	1045	10	0.04	46	1/10	6	10	<20 12	27 0.0	)3 <	<10	162	<10 4	41	33
	187 00	189.00	2 00	00150	2 18	0.064	<5	<5	>1000	0.2	2.68	5	60	5	1.99	-1	74	117	642	5.04	20	1.60	407	202	0.06	42	1170	3	5	<20 14	6 0.1	14 <	<10	101	<10 2	27	25
	189.00	190.00	1.00	00151	2	0.004			35	<0.2	2.00	5	60	-5	2.22	~1	26	96	252	5 34	30	1.00	700	202	0.03	36	1320	5	10	<20 2	0 0.1	14 1	10	153	10 1	11	50
	190.00	191.00	1.00	00152					45	<0.2	1.89	<5	55	~5	1 47	21	20	181	242	0.01	20	1 10	100	13	0.07	40	970	3	10	<20 8	2 0.1	11 <	<10	56	<10 2	22	43
	191.00	192.00	1.00	00153					10	<0.2	1 70	<5 <5	155	~5	1.47	24	10	143	167	4.01 3.10	20	1.10	400	22	0.04	/5	580	2	<5	<20 5	3 0.1	13 <	10	103	<10 2	20	31
	192.00	193.00	1.00	00154					10	<0.2	1.50	~5	00	-0	1.00	24	20	143	102	3.19	10	1.04	302	∠1 ¢	0.05	12	700	<2	<5	<20 42	26 0.1	17 <	10	53	<10 2	23	29
	193.00	194 00	1.00	00155					5	<0.2	1.60	<5	105	~5	1.09	21	25	154	254	4.01 A 66	20	1.00	402	8	0.06	64	1950	2	<5	<20 13	19 O.1	16 <	:10	40	<10 3	34	34
	194.00	195.00	1.00	00156					10	<0.2	1.57	<5	100	~5	1.20	21	27	139	375	7.55 4 77	20	1.23	473	7	0.04	01 60	1150	2	5	<20 10	1/ 0.1	19 <	10	47	<10 2	25	40
	195.00	196.00	1.00	00157					5	<0.2	1.62	<5	115	~5	1.14	21	21	136	100	3.00	20	1.19	4/3	'	0.04	38 55	1010	2	<5	<20 4	U 0.2	20 <	:10	40	<10 2	23	43
	196.00	197.00	1.00	00158					10	<0.2	2 02	-5	105	~0 2E	1.00	24	20	120	183	3.00 3.07	10	1.04	401	8	0.05	22	/50	2	<5	<20 12	?5 O.*	16 <	10	33	<10 2	20	35
										-0.2	2.00	-3	105	~0	1.34	~ 1	44	120	103	3.87	10	1.04	<b>350</b>	8	0.05	50	/40	2	<5	<20 13	15 0.2	20 <	:10	39	10 1	18	39

Page 3

	From	To	Length		Au	Au	Pd	Pt Au		ppm ı	Inless	othen	wise r	noted																						
Hole #	m	m	m	Tag #	g/t	oz/t	ppb	ррь ррь	Ag	AI %	As	Ba	Bi	Ca %	Cď	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	Р	Pb	Sb	Sn	Sr	τι %	U	v	w	Y	Zn
	197.00	198.00	1.00	00159				110	<0.2	2.40	<5	80	<5	2 25	<1	38	106	441	6 56	20	1 4 9	649	9	0.04	62	1240	2	15	<20	44	0.15	<10	60	10	21	44
	198.00	199.00	1.00	00160				445	<0.2	1 73	5	75	<5	1 48	<1	49	131	442	6.07	20	0.96	419	36	0.05	60	900	2	10	~20	03	0.17	~10	44	~10	16	37
	199.00	200.00	1.00	00161				740	<0.2	1 26	<5	80	<5	1 21	<1	36	117	301	4 25	20	0.62	346	13	0.05	57	1030	2	5	~20	35	0.17	<10	20	<10	10	26
	200.00	201.00	1.00	00162				105	<0.2	1 47	-5	00	-5	1 20	-1	33	121	343	3 00	10	0.02	410	7	0.05	60	940	2	ۍ د	~20	55	0.12	~10	30	<10	10	20
	201.00	202.00	1.00	00163				50	~0.2	1.53	1	36	~5	1.25	~1	22	121 04	313	3.00	10	0.75	410	, E	0.05	42	4004	2	<5 -5	<20	51	0.14	<10	34	<10	13	21
	201.00	202.00	1.00	00164				70	-0.2	1.55	12	30	-5	0.07		22	64 50	313	3.05	10	0.00	358	5	0.04	43	1004	2	<5	<20	8	0.09	<10	25	<10	10	16
	202.00	203.00	1.00	00104				70	<0.2	2.04	13	30	<0	2.3/	51	25	20	370	3.40	10	0.71	420	4	0.04	24	1348	2	2	<20	23	0.05	<10	29	<10	10	19
	203.00	204.00	1.00	00165				15	<0.2	2.00	5	50	<5	2.61	<1	15	4/	300	3.04	20	0.73	436	10	0.04	16	1560	2	5	<20	46	0.05	<10	38	<10	11	18
	204.00	205.00	1.00	00166				30	<0.2	2.19	<5	60	<5	2.74	<1	18	44	433	3.92	20	0.87	505	12	0.04	17	1730	2	<5	<20	57	0.06	<10	49	<10	9	22
	205.00	206.00	1.00	00167				550	<0.2	2.34	<5	50	<5	1.88	<1	24	51	334	5.43	20	1.14	475	8	0.03	13	1580	3	<5	<20	11	0.06	<10	51	<10	7	23
	206.00	207.00	1.00	00168	1.05	0.031	<5	<5 >1000	<0.2	1.98	<5	75	<5	2.49	<1	29	44	439	5.94	20	1.41	583	36	0.03	15	1650	3	10	<20	42	0.04	<10	71	<10	10	28
	207.00	208.35	1.35	00169				130	<0.2	1.68	10	95	<5	1.78	<1	20	48	274	4.73	20	1.50	659	6	0.03	17	1320	2	5	<20	26	0.04	<10	76	<10	17	26
	208.35	209.00	0.65	00170				565	0.3	2.14	30	95	<5	5.06	<1	30	64	314	7.56	30	1.30	1659	5	0.02	49	1020	7	15	<20	72	0.01	<10	96	<10	28	49
	209.00	210.00	1.00	00171				25	0.6	1.28	20	90	<5	2.32	<1	24	92	244	5.20	20	0.67	610	21	0.02	67	530	4	10	<20	18	<0.01	<10	87	<10	17	31
	210.00	211.00	1.00	00172	13.20	0.385	<5	<5 >1000	3.0	1.53	<5	35	<5	1.74	<1	22	85	313	3.05	10	0.66	358	5	0.04	43	1000	6	<5	<20	8	0.09	<10	26	<10	10	17
	211.00	212.00	1.00	00173				135	4.2	1.36	255	95	<5	6.17	<1	46	69	522	7.35	30	0.65	1581	9	0.01	53	890	4	15	<20	83	<0.01	<10	71	<10	21	271
	212.00	213.00	1.00	00174				290	0.4	1.10	35	40	<5	7.56	<1	15	75	132	4.59	20	0.46	1307	10	0.02	74	780	5	10	<20	141	<0.01	<10	49	<10	17	30
	213.00	214.45	1.45	00175				125	1.0	0.84	50	50	<5	6,14	<1	15	67	298	4.42	20	0.92	1511	9	0.01	50	830	5	<5	<20	191	<0.01	<10	24	<10	23	37
	214.45	216.00	1.55	00176				10	<0.2	1.80	<5	70	<5	2.13	<1	18	100	101	4.03	10	1.32	885	9	0.04	58	680	ã	<5	<20	166	0.19	<10	73	<10	12	42
																							•	0.04		000	Ŷ	-0	-20	100	0.10	-10	, 3	-10	12	42
DDH-FR-003	47.00	48.00	1.00	00177				10	<0.2	1.66	15	40	<5	2.97	<1	3	60	14	2 50	10	0.49	937	د1	0.04	14	770	4	5	<20	68	0.04	<10	26	~10	4.4	22
	48.00	49.25	1.25	00178				85	15	1.61	270	45	<5	3.81	<1	12	60	215	2.85	10	0.43	032	-1	0.04	16	750	-	-5	~20	74	0.04	<10	30	~10	10	25
	49 25	50.00	0.75	00179				60	1.8	1.55	85	65	<5	4 30	<1	8	46	203	2 4 4	10	0.49	1136	-1	0.04	19	770	6	~5	~20	175	0.03	~10	42	<10	10	33
	50.00	51.00	1.00	00180				15	0.2	1.65	65	85	-5	3 75	-1	4	48	42	2.77	10	0.54	1012	-1	0.02	10	750	7	<5 ~F	<20	120	0.03	<10	43	<10	11	40
	51.00	52.00	1.00	00181				45	0.2	1.00	200	45	~5	3.75	~1	7	40 50	42	4.14	-10	0.34	024	-1	0.01	15	750	~~~	<5	<20	185	0.01	<10	44	<10	12	20
	52.00	52.00	0.75	00182				20	<0.7	1.30	100	45	~5	3.70	~1	7	55	22	1.02	10	0.39	934	~1	0.03	15	710	23	<5	<20	95	0.02	<10	35	<10	9	19
	52.00	54.00	1 25	00102				30	~0.2	1.04	95	4J 60	~5	3.21	-1	2	70	33	2.23	-10	0.42	900		0.02	13	810	ь	5	<20	82	0.05	<10	37	<10	10	18
	54.00	55.00	1.00	00103				50	<0.2	2.04	25	120	~5 ~5	4.40	~1	3	67	40	2.30	10	0.51	12/8	4	0.03	25	930	8	<5	<20	91	0.06	<10	111	<10	11	17
	55.00	55.00	1.00	00104				10	<0.2	4.02	20	50	-0	5.93		9	63	23	3.09	10	0.78	1648	<1	0.07	39	970	5	<5	<20	418	0.10	<10	150	<10	14	24
	55.00	57.00	1.00	00100				10	~0.2	1.23	-005	50	-5	3.30		10	51	19	2.02	<10	0.50	835	2	0.06	25	940	3	<5	<20	53	0.12	<10	51	<10	11	21
	50.00	57.00	1.00	00100				90	0.5	1.20	835	50	<5	2.93	<1	19	49	89	2.84	<10	0.57	894	<1	0.05	36	950	10	5	<20	32	0.08	<10	93	<10	11	66
	57.00	50.00	1.00	00107				50	0.4	1.00	/5	35	<5 	4.84	<1	19	5/	/3	4.45	20	0.92	1681	<1	0.05	43	900	6	<5	<20	53	0.08	<10	124	<10	17	32
	50.00	59.00	1.00	00100				202	0.8	2.49	170	130	<5	5.46	<1	33	5/	155	5.47	20	1.07	1212	<1	0.06	58	1110	8	<5	<20	365	0.09	<10	86	<10	24	73
	59.00	60.00	1.00	00189				20	0.4	3.31	25	255	<5	2.28	<1	18	57	25	4.85	10	1.22	1053	<1	0.08	44	720	3	<5	<20	456	0.16	<10	137	<10	9	36
	60.00	61.00	1.00	00190				15	<0.2	2.79	15	185	<5	1.83	<1	19	75	49	5.39	10	1.22	1043	<1	0.05	28	570	3	10	<20	217	0.10	<10	82	<10	8	36
	61.00	62.00	1.00	00191				10	<0.2	2.69	5	165	<5	2.59	<1	17	54	35	4.16	10	1.00	944	<1	0.07	28	1140	3	<5	<20	302	0.12	<10	97	<10	12	36
	93.00	94.00	1.00	00192				35	<0.2	3.01	10	210	<5	1.44	<1	23	79	44	5.96	20	1.78	1155	2	0.06	40	730	2	<5	<20	170	0.20	<10	97	<10	10	50
	94.00	95.00	1.00	00193				25	<0.2	2.60	35	180	<5	1.86	<1	19	80	70	4.63	10	1.43	902	2	0.08	39	740	2	<5	<20	254	0.16	<10	95	<10	10	44
	95.00	96.00	1.00	00194				10	<0.2	2.20	10	50	<5	1.84	<1	13	42	28	3.25	<10	0.99	788	<1	0.06	23	850	2	<5	<20	139	0.13	<10	62	<10	11	31
	96.00	97.00	1.00	00195				10	<0.2	2.02	5	65	<5	2.72	<1	10	38	38	2.60	<10	0.76	748	<1	0.05	27	860	3	<5	<20	131	0.10	<10	67	<10	12	33
	97.00	98.00	1.00	00196				10	0.2	2.23	20	75	<5	3.15	<1	18	62	77	4.39	10	1.09	957	2	0.03	51	700	7	<5	<20	91	0.14	<10	91	<10	13	115
	98.00	99.00	1.00	00197				10	<0.2	2.76	10	185	<5	6.05	<1	21	48	86	5.39	10	1.64	2071	<1	0.05	44	1010	5	<5	<20	239	0.11	<10	110	<10	15	254
	99.00	100.00	1.00	00198				15	0.5	2.37	15	90	<5	2.34	10	16	77	121	4.40	10	1.49	937	<1	0.04	75	580	6	<5	<20	156	0.09	<10	94	<10	13 ·	1757
	100.00	102.00	2.00	00199				10	0.2	1.49	10	20	<5	1.34	<1	13	110	87	3.56	<10	1.01	451	3	0.04	54	500	2	<5	<20	5	0.07	<10	64	<10	11	48
	102.00	103.00	1.00	00200				45	<0.2	1.66	10	15	<5	6.76	<1	12	61	65	3.94	10	0.96	1284	2	0.05	46	760	3	<5	<20	51	0.11	<10	48	<10	17	23
	103.00	104.00	1.00	00201				25	<0.2	2.64	15	45	<5	2.21	<1	21	73	103	4.92	20	1.77	546	2	0.07	55	1140	4	<5	<20	47	0.14	<10	157	<10	9	27
	104.00	105.00	1.00	00202				105	<0.2	2.68	50	50	<5	3.84	<1	24	65	130	5.00	20	1.71	854	3	0.04	68	1090	4	<5	<20	33	0 11	<10	183	<10	16	42
	105.00	106.00	1.00	00203				10	<0.2	2.21	10	25	<5	0.91	<1	19	107	101	5.45	10	1.64	538	6	0.04	51	760	5	<5	<20	<1	0.15	<10	102	<10	14	42
	106.00	107.00	1.00	00204				15	<0.2	2.95	10	10	<5	3.78	<1	25	41	152	4.12	20	0.98	656	2	0.05	27	2150	2	<5	<20	16	0.10	<10	83	<10	8	28
													-								0.00		~	0.00		2100	•	-0	-20	10	0.10	10	05	\$10	0	20
DDH-FR-004	8.70	10.00	1.30	00205				15	0.3	2.47	<5	190	<5	1.47	<1	26	48	195	4.14	20	1.35	526	4	0.05	24	710	14	<5	<20	611	0.11	<10	84	<10	13	27
	10.00	11.00	1.00	00206				15	0.2	1.07	<5	40	<5	1,94	<1	22	35	255	3.60	10	0.61	394	3	0.03	13	820	6	<5	<20	37	0.08	<10	26	<10	11	16
	11.00	12.00	1.00	00207				70	0.2	1.06	<5	30	<5	1.10	<1	17	36	178	3,36	10	0.55	398	1	0.04	9	1020	6	<5	<20	18	0.00	<10	60	~10	۰ ۱ ۵	10
	12.00	13.00	1,00	00208				20	<0.2	1.08	<5	30	<5	1.08	<1	24	40	202	3.62	10	0.53	292	3	0.03	14	940	8	~~	-20	11	0.09	~10	52	<10	9 10	10
	13.00	14.00	1.00	00209				40	02	1.36	<5	30	<5	2.50	<1	23	39	183	4 55	20	0.50	433	2	0.03	20	880	6	~5	~20	34	0.10	~10	32	~10	10	15
														2.00	- 1				4.00	£.V	0.00	-00	ç	5.05	20	000	0	~5	~20	31	0.08	< 10	19	<10	10	2U

	From	То	Length		Au	Au	Pd Pt	Au		ppm	unless	othen	wise r	noted																						
Hole #	m	m	m	Tag #	g/t	oz/t	ррь ррь	ppb	Ag	AI %	As	Ba	Bł	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	РЬ	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
	14.00	15.00	1.00	00210				15	0.2	1.48	<5	50	<5	1.80	<1	28	43	218	5.23	20	0.66	633	9	0.05	22	950	8	<5	<20	25	0.08	<10	85	<10	10	25
	15.00	16.00	1.00	00211				10	0.2	1.19	<5	30	<5	1.48	<1	18	48	109	3.46	10	0.61	432	1	0.04	24	830	6	~5	<20	20	0.00	~10	70	~10	11	23
	16.00	16.95	0.95	00212				10	0.2	1.29	<5	50	<5	1.24	<1	24	60	172	3.60	10	0.85	427	3	0.05	36	810	Å	<5	<20	40	0.00	<10	63	<10	14	21
	16.95	18.00	1.05	00213				40	1.4	2.20	10	60	<5	2.20	<1	30	63	193	5 84	20	1 73	889	10	0.03	34	720	12	-5	<20	40	0.10	<10	169	<10	10	22
	18.00	19.00	1.00	00214				70	0.6	2.07	<5	60	<5	2.04	<1	38	64	309	6.27	20	1.55	719	5	0.00	28	690	10	-5	~20	50	0.12	<10	100	<10	0	33
	19.00	20.00	1.00	00215				35	0.2	1.93	470	65	<5	1 48	<1	29	48	296	4 75	20	1 29	410	5	0.00	26	700	12	~5	~20	102	0.09	<10	70	10	9	33
	20.00	21.00	1.00	00216				25	0.2	1.74	370	50	<5	2 72	<1	27	46	401	4.15	20	1.25	431	J 4	0.04	23	1160	10	-5 E	~20	103	0.06	< 10	/8	<10	11	21
	21.00	21.80	0.80	00217				15	0.5	2 34	20	60	<5	3 59	<1	33	43	601	1 05	20	1 77	401 604	20	0.04	24	1720	10	5	<20	80	0.05	<10	80	<10	11	17
	21.80	23.00	1.20	00218				10	<0.2	1 94	15	60	<5	2 4 1	-1	10	37	176	2 90	20	0.04	574	39	0.03	25	1720	14	<5	<20	116	0.09	<10	133	<10	11	28
	23.00	24.00	1.00	00219				10	<0.2	1.64	10	40	-5	2.41	~1	16	31	226	3.09	20	0.94	5/4	2	0.05	12	1520	14	<5	<20		0.10	<10	69	<10	14	23
	24.00	25.00	1 00	00220				15	0.5	1.83	30	40	~5	2.51	~1	24	20	230	3.20	20	0.77	422	3	0.04	5	1790	14	<5	<20	52	0.04	<10	46	<10	15	17
	25.00	26.00	1.00	00221				15	0.0	1 30	130	30	~5	4.21	-1	24	29	4/3	4.00	20	1.21	507	4	0.03		1900	16	<5	<20	45	0.04	<10	86	<10	13	24
	26.00	27.00	1.00	00222				15	-0.2	1.55	150	50	-5	9.31		20	30	303	3.09	20	0.51	385	13	0.04	10	1700	10	<5	<20	42	0.04	<10	32	<10	13	16
	27.00	27.90	0.90	00222				10	0.2	1.74	5	20	<5	3.73	<1	10	20	182	3.37	20	0.61	412	9	0.04	9	1770	18	5	<20	55	0.04	<10	39	<10	16	20
	27.90	29.00	1 10	00220				205	0.2	1.00	2005	40	<5	1.92	51	20	25	232	4.01	20	0.78	443	1	0.04	7	2080	16	<5	<20	29	0.05	<10	46	10	18	25
	29.00	20.00	1.16	00224				203	0.2	1.02	2005	75	<5 	3.93	<1	27	40	352	5.27	20	1.02	570	10	0.03	25	1400	16	10	<20	122	0.07	<10	85	<10	17	25
	20.15	31.00	0.95	00225				10	0.2	1.88	15	35	<5	2.01	<1	33	52	502	5.71	20	1.34	677	3	0.05	22	1090	22	<5	<20	26	0.12	<10	116	10	11	30
	30.15	31.00	1.00	00226				10	<0.2	1.29	5	35	<5	2.68	<1	18	34	189	3.47	20	0.66	532	3	0.04	6	1570	12	<5	<20	38	0.06	<10	36	<10	15	24
	31.00	32.00	1.00	00227				10	<0.2	1.61	<5	25	<5	2.66	<1	14	36	145	3.23	20	0.65	498	1	0.05	7	2040	16	<5	<20	40	0.06	<10	46	<10	19	22
	32.00	33.00	1.00	00228				10	0.2	1.53	<5	30	<5	2.32	<1	14	30	171	2.92	20	0.58	373	7	0.04	5	1880	16	<5	<20	39	0.05	<10	35	<10	18	16
	33.00	34.00	1.00	00229				40	0.2	1.61	<5	20	<5	2.36	<1	16	27	211	3.31	20	0.65	397	8	0.04	5	2100	16	5	<20	29	0.05	<10	39	<10	17	18
	34.00	35.00	1.00	00230				15	0.2	1.67	5	35	<5	2.14	<1	23	34	292	3.66	20	0.66	418	1	0.04	5	1970	18	<5	<20	42	0.04	<10	31	<10	18	22
	35.00	36.00	1.00	00231				25	0.3	1.51	5	35	<5	2.19	<1	26	38	464	3.86	20	0.56	373	15	0.05	6	2000	14	<5	<20	35	0.05	<10	27	<10	18	30
	36.00	36.80	0.80	00232				25	0.2	1.85	<5	45	<5	3.21	<1	24	37	308	3.98	20	0.71	532	3	0.05	9	2150	18	10	<20	102	0.06	<10	36	<10	17	25
	36.80	38.00	1.20	00233				20	0.2	1.71	5	90	<5	1.65	<1	26	78	231	3.75	10	0.83	336	8	0.06	25	760	22	<5	<20	521	0.11	<10	52	<10	15	22
	38.00	39.20	1.20	00234				25	0.2	1.50	25	35	<5	4.85	<1	26	30	358	3.33	20	0.50	479	10	0.04	12	1870	14	<5	<20	87	0.06	<10	29	<10	17	14
	39.20	40.00	0.80	00235				15	0.2	1.30	10	50	<5	1.06	<1	23	54	191	3.63	10	0.83	334	3	0.05	11	850	16	<5	<20	102	0.13	<10	33	10	16	21
	40.00	41.00	1.00	00236				15	4.0	0.94	25	30	<5	2.68	<1	28	40	371	2.92	10	0.47	296	12	0.04	13	1050	12	5	<20	46	0.06	<10	35	20	17	16
	41.00	42.45	1.45	00237				10	<0.2	1.68	5	40	<5	2.19	<1	22	37	229	4.11	20	0.75	475	3	0.05	13	1830	20	<5	<20	55	0.07	<10	49	10	14	24
	42.45	44.00	1.55	00238				10	<0.2	1.42	<5	30	<5	2.30	<1	18	30	168	3.35	20	0.53	378	<1	0.04	6	1870	16	<5	<20	35	0.05	<10	27	<10	15	19
	44.00	45.00	1.00	00239				30	<0.2	1.76	15	20	<5	2.97	<1	19	44	226	3.33	20	0.70	445	3	0.04	9	1900	20	5	<20	42	0.05	<10	44	10	18	22
	45.00	46.00	1.00	00240				15	0.3	2.07	20	25	<5	5.56	<1	21	34	267	3.43	20	0.76	537	9	0.03	15	1800	24	<5	<20	69	0.07	<10	35	10	14	18
	46.00	47.00	1.00	00241				15	0.2	1.97	5	20	<5	3.25	<1	18	28	244	3.31	20	0.65	437	11	0.04	9	1940	24	<5	<20	37	0.05	<10	46	20	19	21
	47.00	48.00	1.00	00242				15	0.3	2.11	10	25	<5	3.20	<1	25	31	498	3.45	20	0.76	544	<1	0.04	9	1870	22	<5	<20	34	0.06	<10	41	10	17	26
	48.00	49.00	1.00	00243				10	0.2	1.63	5	35	<5	3.44	<1	15	24	159	2.46	20	0.47	445	5	0.05	8	1800	20	<5	<20	60	0.05	<10	28	10	15	17
	49.00	49.90	0.90	00244				10	<0.2	1.70	<5	40	<5	2.48	<1	13	34	86	2.41	20	0.44	331	2	0.04	6	1790	22	<5	<20	41	0.04	<10	20	10	17	21
	49.90	51.00	1.10	00245				20	<0.2	0.78	<5	30	<5	1.35	<1	17	41	469	2.52	10	0.40	287	3	0.05	12	1180	10	<5	<20	21	0.07	<10	17	20	18	17
	51.00	52.00	1.00	00246				110	4.1	1.39	<5	35	<5	1.45	<1	71	50 ×	10000	6.23	20	0.57	308	14	0.05	20	1220	14	<5	<20	17	0.06	<10	27	20	14	162
	52.00	53.00	1.00	00247				30	0.4	1.70	<5	85	<5	1.08	<1	28	70	1240	4.22	10	1.14	442	20	0.04	19	670	14	<5	<20	139	0.11	<10	56	<10	15	35
	53.00	54.00	1.00	00248				10	0.3	0.52	<5	50	<5	0.71	<1	15	37	164	1.95	<10	0.27	200	<1	0.05	6	850	4	<5	<20	33	0.05	<10	90	<10	16	10
	54.00	55.00	1.00	00249				20	<0.2	0.45	<5	30	<5	0.78	<1	9	34	138	1.34	<10	0.18	171	5	0.04	1	930	4	<5	<20	18	0.07	<10	3	<10	14	D
	55.00	56.00	1.00	00250				40	0.3	1.01	<5	30	<5	1.48	<1	34	33	1602	3.01	10	0.25	278	6	0.04	9	1050	10	<5	<20	18	0.07	~10	11	<10	12	27
	56.00	57.00	1.00	00251				40	<0.2	0.83	<5	40	<5	1.26	<1	30	39	793	3.42	10	0.26	350	9	0.04	8	990	R	<5	<20	20	0.07	~10		~10	10	21
	57.00	58.00	1.00	00252				20	<0.2	0.83	<5	60	<5	1.34	<1	19	49	304	2.57	10	0.26	328	3	0.05	я я	960	8	-5	~20	42	0.00	<10	9	<10	12	19
	58.00	59.00	1.00	00253				75	0.3	1.25	<5	35	<5	1.77	<1	44	40	991	4.86	20	0.36	546	4	0.04	10	1030	12	-5	~20	40	0.00	<10	9	<10	15	13
	59.00	60.00	1.00	00254				25	<0.2	1.60	<5	30	<5	2.34	<1	23	59	227	3.79	10	0.51	579	2	0.05	17	1010	14	~5	~20	40	0.07	< 10	21	<10	13	22
	60.00	61.00	1.00	00255				15	<0.2	1.33	5	85	<5	1.13	<1	17	66	108	2.85	20	0.74	415	4	0.06	11	790	14	~5	~20	40	0.09	<10	55	10	16	26
	61.00	62.00	1.00	00256				15	<0.2	1.72	5	80	<5	0.82	<1	21	97	164	3 17	10	1 14	333	12	0.00	17	800	20	~5	~20	64	0.13	<10	9	<10	20	29
	62.00	63.00	1.00	00257				20	<0.2	1.76	10	55	<5	1,10	<1	21	71	178	3.88	10	1.25	456	2	0.05	16	850	20	-5	~20	01	0.14	<10	30	<10 2	21	19
	63.00	64.00	1.00	00258				70	0.3	1,80	5	65	<5	1,15	, <1	40	68	521	4.54	20	1 13	404	ے 15	0.05	10	1200	20	~0 ~r	~20	00	0.15	<10	119	<10 *	16	26
	64.00	65.30	1.30	00259				230	0.8	1.84	20	70	<5	0.85	<1	71	85	1027	5 44	20	1 20	434	67	0.07	10	950	20	<0 /5	~20	33	0.13	<10	4/	<10	18	31
	65.30	66.00	0.70	00260				25	0.4	2.58	15	75	<5	1.77	<1	73	39	720	7 57	30	1 77	561	27	0.05	10	2240	10	<0 ~5	~20	21	0.14	<10	67	<10 1	18	41
	66.00	67.00	1.00	00261				530	0.9	2.23	115	85	<5	1 02	<1	103	61	885	7 55	30	1.56	500	20	0.11	12	4600	20	<0	<20	68	0.14	<10	158	20 1	13	33
	67,00	68.00	1.00	00262				150	0.7	1 76	115	90	<5	0.85	-1 61	129	88	440	5.49	20	1.00	500	30 20	0.07	12	1090	22	<5	<20	45	0.17	<10	156	20	8	33
									<b>.</b> .,			50	-0	0.00	-1	120	00	440	0.40	20	1.23	010	38	0.04	18	740	20	<5	<20	23	0.17	<10	63	<10 (	18	45

	From	10	Length	1	Au	Au	Pd	Pt Au		ppm	unless	other	wise ı	noted																						
Hole #	m	m	m	Tag #	g/t	oz/t	ppt	оррь рръ	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Ma %	Mn	Мо	Na %	Ni	Р	Ph	Sh	Sn	Sr	Ti %		v	147	v	7-
	68.00	69.00	1.00	00263				70	0.3	1.35	50	70	<5	0.91	<1	114	77	552	5 59	20	0.86	400	26	0.04	40	1200	46		-00	47					<u> </u>	
	69.00	70.00	1.00	00264				70	0.6	2.04	45	75	<5	1.62	<1	131	95	024	7 07	20	1 5 1	400 504	20	0.04	12	1200	10	5	<20	17	0.10	<10	/4	10	20	27
	70.00	71.00	1.00	00265			<5	<5 65	0.7	1.81	35	55	<5	1 24	<1	108	67	1109	9.50	20	1.51	J24	200	0.02	10	1280	22	<5	<20	17	0.12	<10	152	20	10	30
	71.00	72.00	1.00	00266			<5	<5 25	0.8	2.06	5	60	<5	1 47	<1	97	45	1000	7 70	30	1.04	409	393	0.03	16	1590	22	<5	<20	41	0.08	<10	130	10	10	60
	72.00	73.00	1.00	00267				15	<0.2	2 13	-5	50	-5	2 60	-1		20	264	F 20	30	1.57	415	216	0.06	11	2050	20	<5	<20	40	0.09	<10	142	<10	8	28
	73.00	74.00	1.00	00268				20	<0.2	2.10	~5	55	~5	2.00			30	304	5.20	20	1.01	4//	4	0.11	12	2230	18	<5	<20	61	0.12	<10	90	<10	11	20
	74.00	75.00	1.00	00269				15	-0.2	2.04	~5	55	<0 ~5	2.04	~ 1	30	37	292	5,11	20	1.16	572	2	0.13	13	2260	22	<5	<20	75	0.13	<10	106	<10	14	25
	75.00	76.00	1.00	00270				550	0.2	2.04	~0	33	- 5	2.07	< I	29	21	198	4,82	20	1.24	578	1	0.10	16	2680	24	<5	<20	59	0.12	<10	104	<10	14	27
	76.00	77.00	1.00	00271				330	0.0	1.94	20	40	<5	1.90	<1	5/	/0	829	7.03	30	1.35	510	75	0.04	13	1930	18	<5	<20	31	0.10	<10	139	40	12	35
	77.00	79.05	1.00	00271	4.04	0.052			0.2	2.14	<5	55	<5	2.30	<1	50	40	506	5.54	30	1.00	454	3	0.08	11	2510	20	<5	<20	59	0.11	<10	80	<10	19	22
	78.05	70.00	0.05	00272	1.01	0.053	s <5	<5 >1000	2.1	2,19	10	45	<5	2.34	<1	55	41	1222	7.02	30	1.47	661	19	0.05	16	2230	20	<5	<20	44	0.10	<10	143	20	14	62
	70.00	79.00	0.95	00273				40	0.2	2.21	5	45	<5	2.57	<1	25	24	216	4.59	20	1.07	530	2	0.10	11	2410	24	<5	<20	65	0.13	<10	108	10	20	22
	79.00	80.00	1.00	00274				20	<0.2	2.58	<5	60	<5	3.46	<1	24	28	115	5.09	30	1.38	787	<1	0.10	12	2460	26	<5	<20	79	0.14	<10	125	<10	24	28
	80.00	81.05	1.05	00275				20	0.2	3.41	<5	60	<5	6.18	<1	33	29	186	6.66	30	2.24	1240	1	0.07	23	2270	32	<5	<20	157	0.19	<10	182	10	26	39
	81.05	82.00	0.95	00276				295	0.3	2.79	20	55	<5	1.89	<1	29	53	312	5.79	20	2.07	928	10	0.06	15	1540	32	<5	<20	39	0.16	<10	109	10	23	43
	82.00	83.00	1.00	00277	2.23	0.065	5 <5	<5 >1000	0.9	2.83	35	110	<5	1.81	<1	36	89	540	6.39	20	2.08	860	42	0.07	15	910	32	<5	<20	111	0.12	<10	141	10	27	48
	83.00	84.30	1.30	00278				45	<0.2	1.83	40	30	5	3.34	<1	28	87	266	4.81	20	1.40	665	6	0.04	18	840	20	<5	<20	69	0.12	<10	70	20	27	26
	84.30	85.00	0.70	00279				45	<0.2	2.20	105	55	<5	3.47	<1	29	44	212	5.40	20	1,50	721	22	0.07	15	1950	34	<5	<20	90	0.12	<10	114	20	22	20
	85.00	86.00	1.00	00280				10	<0.2	2.35	10	90	<5	3.66	<1	28	40	212	5.29	30	1 26	760	4	0.11	13	2530	24	5	~20	125	0.13	~10	00	20	22	30
	86.00	87.00	1.00	00281				20	0.2	2.55	20	50	<5	3.58	<1	30	28	275	5.56	30	1.37	708	5	0.09	14	2570	20	-5	~20	133	0.14	<10	99	<10	20	30
	87.00	88.00	1.00	00282				140	0.3	2.53	15	65	<5	2.91	<1	35	30	315	6.07	30	1.62	678	د ا	0.00	16	2020	26	~5	~20	75	0.12	<10	116	20	19	88
	88.00	89.05	1.05	00283				110	0.3	1,45	10	30	<5	1.05	<1	32	38	299	4 64	20	1.02	405	5	0.09	10	2030	20	<5 	<20	/5	0.14	20	112	20	14	55
	89.05	90.00	0.95	00284				35	0.2	1.75	<5	45	<5	2.02	<1	28	27	238	4 4 2	20	1.05	405	7	0.00	10	1000	18	<5	<20	13	0.15	<10	61	20	12	21
	90.00	91.00	1.00	00285				495	0.5	2.86	10	55	<5	3 4 1	<1	68	45	749	7.54	20	1.00	430	<i>.</i>	0.08	10	1880	20	<5	<20	44	0.13	<10	66	10	18	22
	91.00	92.45	1.45	combin	ed with	00285	5						-0	0.41	- ,	00	40	740	7.04	30	1.02	620	э	0.08	15	2560	34	<5	<20	62	0.13	<10	138	50	19	38
	92.45	94.00	1.55	00287			-	315	09	2 34	185	80	<b>~</b> 5	2 02	-1	60	07	200	5.04		4 70															
	94.00	95.05	1.05	00288				250	22	3.76	340	60	~5	2.00	-1	140	125	200	5.64	20	1.79	853	40	0.05	27	810	30	<5	<20	63	0.14	<10	79	30	23	36
	95.05	96.00	0.95	00289				15	<0.0	2 4 4	5	60	~5	1.00	~1	140	130	260	>10	40	2.69	21/6	163	0.02	30	740	68	<5	<20	31	0.04	<10	185	20	14	70
	109.00	110.00	1.00	00200				40	0.2	1.20		00	~5	1.20	<1	26		109	5.12	20	1.96	636	4	0.06	20	1030	30	<5	<20	48	0.21	<10	114	10	23	40
	110.00	111.00	1.00	00200				40	0.2	1.20	<0 <5	90	<5 .5	0.99	<1	32		247	3.79	20	0.73	298	10	0.07	15	1040	16	5	<20	26	0.16	<10	20	10	17	18
	111.00	112.00	1.00	00207				50	0.5	1.79	<0 	50	<5	2.08	<1	64	49	811	5.89	30	0.77	325	8	0.08	13	2310	22	<5	<20	35	0.14	<10	26	20	16	27
	112.00	112.00	0.80	00232				20	0.2	2.17	<5 .5	50	<5	2.99	<1	50	37	588	4.61	20	0.57	299	4	0.06	18	2740	28	<5	<20	36	0.08	<10	33	10	15	22
	112.00	114.00	1 20	00293				90	0.2	1.99	<5	35	<5	2.76	<1	36	24	406	3.94	20	0.61	351	12	0.06	13	2630	24	<5	<20	35	0.07	<10	39	20	17	22
	114.00	115.00	1.20	00294				160	0.2	1.40	10	40	<5	1.20	<1	102	76	647	6.32	20	0.82	274	39	0.05	23	1080	18	<5	<20	19	0.12	<10	29	60	22	22
	121.00	121 50	0.50	00295				25	0.2	1.89	30	35	<5	1.12	<1	32	92	198	4.47	20	1.36	483	11	0.06	42	530	24	<5	<20	39	0.17	<10	68	20	13	20
	121.00	121.00	0.50	00296				15	<0.2	2.69	5	45	<5	1.04	<1	32	66	67	6.26	20	2.25	807	3	0.06	17	1030	34	<5	<20	16	0.25	<10	122	<10	16	44
	121.50	122.00	0.50	00297				35	0.2	2.39	5	55	<5	1.95	<1	33	66	153	5.99	20	1.96	689	133	0.05	17	1230	28	<5	<20	26	0.21	<10	119	20	16	32
	122.00	123.00	1.00	00298				75	0.5	2.80	45	75	<5	5.27	<1	50	64	286	8.31	30	2.24	982	177	0.04	33	1030	28	<5	<20	229	0.04	<10	195	20	30	40
	123.00	124.00	1.00	00299				105	0.6	2.13	1885	105	<5	7.38	<1	43	52	300	6.79	30	1.89	1099	115	0.05	28	1800	18	<5	<20	656	0.07	<10	123	10	28	34
	124.00	125.00	1.00	00300				20	1.0	2.39	85	55	<5	2.18	<1	103	61	1266	7.92	30	1.39	591	16	0.03	17	1740	26	<5	<20	26	0.14	<10	93	<10	12	34
	125.00	126.00	1.00	24801				25	<0.2	1.99	85	50	<5	1.48	<1	32	43	194	5.35	20	1.35	551	18	0.05	13	1110	8	<5	<20	15	0.19	<10	62	<10	A .	27
	163.00	164.00	1.00	24802				75	2.5	1.70	85	70	10	7.42	<1	21	23	63	6.15	30	1.83	2335	14	<0.01	23	1790	4	5	<20	432	<0.01	<10	149	<10	25	11
	164.00	165.00	1.00	24803	1.08	0.031	<5	<5 >1000	13,5	0.47	935	80	10	9.57	19	15	47	360	9.01	30	0.53	3190	11	<0.01	29	350	1538	15	<20	352	<0.01	<10	26	10 2	<u>10</u> ,	44 600
	165.00	166.00	1.00	24804				110	1.9	0.39	30	35	<5	9.63	14	5	41	63	1.78	<10	0.54	3727	7	<0.01	20	440	46	10	<20	357	<0.01	~10	20	-10	10 2:	200
	166.00	167.00	1.00	24805				80	1.6	1.27	145	50	<5	6.68	<1	11	28	68	4.01	20	1.07	3040	4	<0.01	19	1320	24	5	<20	224	<0.01	~10	30 .	-10	10 21	048
	167.00	168.00	1.00	24806				120	5.5	0.63	80	50	<5	6.35	<1	10	29	132	3.42	10	0.99	2319	56	<0.01	19	1160	96	15	~20	204 .	-0.01	-10	116	<10 1	16 3	304
	168.00	169.00	1.00	24807				360	4.9	0.72	470	50	<5	6.12	4	16	34	36	5.30	20	1.02	2225	15	<0.01	18	2250	200	10	<20	291 -	<0.01	<10	44 .	<10 1	18 !	55
	169.00	170.00	1.00	24808				560	14.6	0.48	1085	90	20	5.77	26	30	41	124	>10	30	1 48	2173	9	<0.01	10	1910 1	230	10	<20	467 -	<0.01	20	34	<10 2	25 8	344
	170.00	171.00	1.00	24809				300	3.2	0.59	210	80	5	5.97	<1	18	19	89	6.23	20	1.50	2330	<1	<0.01	14	19/0	190	<0 -E	×20 ×	429 ·	<0.01 <	<10	28	20 3	30 39	967
	171.00	172.00	1.00	24810				430	2.5	0.97	85	95	<5	6.66	9	21	25	139	6.93	30	1.63	2465	-1	0.01	17	1610	100	<5 .5	<20 4	408	<0.01 <	<10	38	<10 2	28 1	.83
	172.00	173.00	1.00	24811				125	0.9	0.46	65	60	5	7.24	<1	15	32	43	4 82	20	1 71	2700	-1	0.02	24	1650	+00	<5	<20	364	<0.01 <	<10	82 •	<10 2	24 15	569
	173.00	174.00	1.00	24812				20	0.2	1.66	30	155	<5	4 67	<1	23	30	40	6 55	30	2 22	1759	~1	0.01	4 I 22	1000	14	10	<20 !	529	<0.01 <	<10	35 •	<10 2	27 4	46
													-		- •			-0	0.00	50	e.e.J	17 30	-1	0.02	"	1010	12	<5	<20 :	546 ·	<0.01 <	<10	151 •	<10 2	:6 3	38
DDH-FR-005	14.80	15.40	0.60	24813				45	<0 2	1.66	<5	40	<5	2.08	<1	7	25	22	1 64	10	0.29	204	~				~~	-	-							
	15.40	16.00	0.60	24814				60	<0.2	1 77	5	55	-5	1 77	-1	10	20	00	1.01	20	0.30	294	2	0.04	5	1480	22	<5	<20	67	0.06 <	<10	19	<10	8 2	23
									-0.2	1.77	5	55	-0	1.11	-1	10	9	92	1.84	20	0.46	308	5	0.03	5	1460	22	5	<20	167	0.04 <	<10	34 <	<10 !	9 '	17

	From	То	Lengt	r	Au	Au	P	d Pt	Au		ppm (	unless	other	wise	noted																						
Hole #	m		m	Tag #	g/t	oz/t	pp	b ppi	b ppb	Ag	AI %	As	Ba	Bi	Ca 🤊	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	Р	РЬ	Sb	Sn	Sr	TI %	U	v	w	v	Zn
	16.00	17.83	1.83	24815					30	<0.2	1.65	<5	50	5	1.74	<1	7	14	34	1.59	10	0.48	292	1	0.03	4	1340	20	5	<20	112	0.04	<10	23	<10	<u> </u>	15
	41.00	41.45	0.45	24816					20	<0.2	2.68	<5	90	<5	3.69	<1	22	46	57	5.24	20	1.69	1004	<1	0.03	26	1470	20	10	<20	179	0.07	<10	196	~10	1 12	15
	41.45	43.00	1.55	24817					75	0.2	2.34	5	45	<5	4.21	<1	23	18	138	4.30	20	1.26	902	4	0.02	13	1860	20	5	<20	103	0.07	<10	147	~10	14	35
	43.00	43.60	0.60	24818					55	0.2	2.71	5	50	<5	5.61	<1	16	15	66	4.64	20	1.23	1011	<1	0.02	17	1700	22	10	<20	167	0.03	<10	158	~10	) 20	20
	43.60	44.60	1.00	24819					15	<0.2	2.40	<5	65	<5	3.09	<1	13	15	65	2.62	20	0.73	445	3	0.05	10	2140	6	<5	<20	97	0.02	<10	74	<10	1 11	17
	44.60	45.90	1.30	24820					15	<0.2	2.71	<5	75	<5	3.68	<1	12	49	27	2.62	20	0.89	437	1	0.03	23	1520	6	-5	<20	122	0.07	<10	102	~10		15
	45.90	47.00	1.10	24821					20	0.2	3.07	<5	65	5	4.41	<1	16	17	42	4.51	20	1.32	895	<1	0.02	15	2080	6	<5	<20	118	0.07	10	165	~10	11	13
	47.00	48.00	1.00	24822					10	<0.2	2.99	<5	90	<5	5.40	<1	14	15	33	4.36	20	1.35	927	<1	0.02	18	2010	2	<5	<20	205	0.02	<10	160	<10	> 20 > 22	27
	48.00	49.00	1.00	24823					10	0.2	2.80	10	35	<5	5.03	<1	12	14	26	3.58	20	0.89	714	<1	0.04	15	2190	6	10	~20	55	0.02	<10	110	~10	· 22	21
	49.00	50.75	1.75	24824					15	0.2	2.71	5	30	<5	4.72	<1	10	27	20	3.32	20	0.88	647	2	0.04	17	1980	4	10	~20	65	0.07	<10	100	~10	15	21
	50.75	51.82	1.07	24825					15	0.2	2.54	10	55	<5	5.16	<1	12	16	46	3.77	20	1 1 1	757	<1	0.02	18	1310	4	-5	<20	131	<0.00	<10	100	~10	2 14	21
	51.82	52.73	0.91	24826					240	0.7	1.97	10	85	<5	6.53	<1	14	15	90	3.91	30	1.01	818	<1	0.02	18	1510	-2	10	~20	220	<0.01	<10	104	<10	+ 24	23
	52.73	53.64	0.91	24827					55	0.3	1.60	<5	25	<5	8.74	<1	12	10	68	3 34	30	0.43	873	-1	0.02	20	1050	~2	10	~20	230	-0.01	<10	103	<10	+ 27	25
	53.64	54.56	0.92	24828					55	0.6	2.21	10	30	<5	4.77	<1	26	15	84	4 77	30	0.40	919	-1	0.02	17	1010	~2	10	<20	74	<0.01	<10	94	<10	39	27
	54.56	55.00	0.44	24829					35	0.3	1.69	10	20	<5	6.16	<1	10	13	62	3 50	20	0.07	440	~1	0.01	10	2000	~2	< 5	<20	/1	<0.01	<10	118	<10	30	34
	55.00	56.00	1.00	24830					25	0.2	1.33	<5	15	<5	8.03	<1	13	13	52	2.05	20	0.42	700	~1	0.02	10	2090	<2	10	<20	85	<0.01	<10	126	<10	28	30
	56.00	57.00	1.00	24831					40	0.2	0.87	5	10	<5	7 14	<1	۰.5 ۵	0	16	4 70	20	0.27	672	<1 - 4	0.02	21	1590	<2	5	<20	92	<0.01	<10	85	<10	34	26
	57.00	58.00	1.00	24832					40	0.2	1.03	<5	15	<5	7 95	-1	2 0	5	40	1.70	20	0.16	6/3	<1	0.02	14	1290	<2	10	<20	70	<0.01	<10	39	<10	27	19
	58.00	59.00	1.00	24833					15	0.9	1.95	<5	20	-5	4 30	-1	15	24	40	2.19	20	0.21	882	<1	0.02	15	1140	<2	15	<20	77	<0.01	<10	35	<10	27	20
	59.00	60.00	1.00	24834					50	0.3	1.88	5	20	-5	4.30 6.43	~1	20	24	40	4.90	20	0.38	429	<1	<0.01	21	1460	<2	10	<20	56	<0.01	<10	107	<10	22	28
	60.00	61.41	1,41	24835					25	<0.0	1.56	10	20	-5	0.43	~1	12	10	42	4.15	30	0.41	656	<1	0.01	28	1980	<2	5	<20	82	<0.01	<10	138	<10	32	38
	61.41	63.04	1.63	24836					20	<0.2	1 29	5	20	~5	7 20	~1	11	10	40	3.67	30	0.43	915	<1	0.01	21	1760	<2	5	<20	135	<0.01	<10	80	<10	42	27
	63.04	64.62	1.58	24837					20	0.2	1 98	5	20	<5	6.86	-1	0	20	24	2.83	20	0.35	1/2	<1	0.02	16	1110	<2	<5	<20	104	<0.01	<10	48	<10	29	21
	64.62	66.45	1.83	24838					25	0.2	2 59	<5	45	<5	2.50	~1	11	15	24 60	3.41	20	0.82	837	<1	0.02	23	1250	<2	5	<20	105	<0.01	<10	109	<10	28	22
	66.45	67.97	1.52	24839					40	0.2	1 68	<5	40	<5	2.33	21	15	13	101	3.90	20	1.35	813	<1	0.03	8	1190	6	<5	<20	90	0.03	10	95	<10	9	29
	67.97	69.19	1.22	24840					60	0.2	1.92	5	35	~5	1 01	~1	14	14	112	3.21	20	0.90	620	<1	0.03	4	1290	6	5	<20	73	0.02	<10	71	<10	14	25
	69.19	70.26	1.07	24841					290	<0.2	1 66	<5	40	<5	3.01	<1 <1	13	33	173	3.14	20	0.76	407	<1	0.03	5	1280	8	10	<20	61	0.02	<10	68	<10	14	24
	70.26	71.80	1.54	24842					265	<0.2	1 69	5	35	<5	3.80	~1 ~1	16	25	123	2.01	20	0.42	355	4	0.04		1230	6	<5	<20	63	0.03	<10	38	<10	13	20
	71.80	74.00	2.20	24843					165	<0.2	1.79	<5	80	<5	2 22	21	9	51	66	3.00	20	0.65	498	3	0.02	8	1300	4	<5	<20	88	<0.01	<10	73	<10	21	23
	74.00	75.40	1.40	24844					90	<0.2	1.48	5	40	<5	2.38	<1	10	37	78	1 01	20	0.00	3/1	~	0.04	6	1310	6	<5	<20	44	0.05	<10	31	<10	6	18
	75.40	76.60	1.20	24845					50	<0.2	1 41	<5	55	<5	1.89	<1 <1	17	40	150	2.22	20	0.50	341	2	0.03	5	1270	6	<5	<20	42	0.04	20	22	<10	7	17
	76.60	77.50	0.90	24846	2.94	0.086	<5	<5	>1000	5.4	1 18	<5	55	<5	0.97	<1 <1	103	38	0184	0.70	40	0.50	799 799		0.04	4	1280	6	<5	<20	31	0.06	<10	21	<10	5	18
	77.50	79.15	1.65	24847				-	190	0.9	2 11	<5	50	<5	1 78	-1	71	36	1597	9.70	40	0.03	200	10	0.03	19	1040	<2	10	<20	7	0.03	20	35	<10	1	150
	79.15	81.00	1.85	24848					60	<0.2	1.60	10	55	<5	343	21	16	21	107	9.12	40	0.74	390	26	0.02	13	1120	2	5	<20	20	0.02	<10	86	10	7	27
	81.00	82.00	1.00	24849	1.25	0.036	<5	<5	>1000	<0.2	2.26	5	40	-5	3.76	-1	27	21	220	2.04	20	0.71	449	3	0.03	8	1420	4	<5	<20	130	0.04	<10	75	<10	13	22
	82.00	83.00	1.00	24850			-	-	180	<0.2	1.66	10	35	<5	2 19	~1	12	20	220	4.12	20	1.02	545	9	0.03	12	1880	4	5	<20	67	0.08	<10	89	<10	11	25
	83.00	84.00	1.00	00801					90	0.2	1.50	15	30	-5	2.10	~1	12	24	04	2.12	10	0.59	321	1	0.04	5	1260	8	<5	<20	45	0.05	<10	26	<10	5	17
	84.00	85.00	1.00	00802					125	<0.2	2.02	10	50	-5	3.40	~1	75	24	225	2.00	20	0.52	311	4	0.05	6	1560	20	5	<20	80	0.05	<10	20	20	9	17
	85.00	85.90	0.90	00803					220	0.2	2.02	10	50	~5	3.40	~1	20	31	223	3.03	30	0.93	503	63	0.03	8	1500	26	<5	<20	73	0.05	<10	54	10	11	31
	85.90	87.00	1.10	00804					55	0.2	2.00	10	50	~5	3.27	~1	10	27	2/5	4.69	30	1.15	559	28	0.04	12	2270	28	<5	<20	83	0.08	<10	88	30	15	30
	87.00	88.00	1.00	00805					150	0.2	2.00	-6	40	~5	3.10	~	10	21	91	3.01	20	0.89	520	4	0.05	10	2060	32	<5	<20	84	0.10	<10	39	10	14	25
	88.00	89.00	1 00	00806					45	0.2	2.33	~5	40	<5	4.04		14	30	37	3.70	20	1.24	682	2	0.07	17	2060	36	<5	<20	75	0.12	<10	75	20	13	26
	89.00	90.00	1.00	00807					500	0.2	2.10	20	50	5	4.30	~1	11	21	15	3.63	20	1.19	645	<1	0.04	14	1990	34	<5	<20	78	0.10	<10	90	<10	11	24
	90.00	91.00	1.00	00808	2 22	0.065	-5	<b>~</b> 5	>1000	0.2	2.73	10	50	<5 -6	3.01	51	40	32	242	4.61	30	1.14	558	5	0.06	17	2130	34	<5	<20	57	0.14	<10	59	20	12	25
	91.00	92 35	1 35	00809	C	0.000	~5	-5	-1000	0.3	2.30	5	40	<5	2.49	<1	35	26	280	4.09	20	0.78	394	37	0.05	8	2030	30	<5	<20	29	0.08	<10	34	10	12	24
	92.35	94.00	1.65	00810					305	0.2	2.14	30	20 25	<0	2.85	<1	22	21	174	2.79	20	0.62	371	3	0.05	12	2010	28	10	<20	58	0.09	<10	16	10	15	20
	94 00	95.00	1.00	00811	1 42	0.044	<b>~</b> 5	10	303	0.2	1.03	30 E	35	<5	3.32	<1	39	237	218	4.58	60	1.49	474	161	0.05	82	1370	18	<5	<20	51	0.08	<10	58	20	10	17
	95.00	96.70	1 70	00812	+. <b>→</b> ∠	0.041	-0	10	~1000	0.2	1.00	5	45	<5	1.12	<1	33	218	142	4.36	30	1.38	331	41	0.06	67	1420	6	5	<20	31	0.07	<10	70	<10	4	16
	96.70	97 38	0.69	00812					50	Ų.4	1.09	10	30	<5	1.69	<1	32	77	378	3.30	20	0.80	234	89	0.02	47	1290	6	<5	<20	15	0.09	<10	137	<10	13	15
	97 38	99.36	1 98	00814					40	0.2	1.00	10	40	<5	0.83	<1	20	87	98	3.15	10	1.57	250	11	0.06	33	710	8	<5	<20	30	0.09	<10	139	<10	4	13
	51.00	20.00	1.30	00815					40	0.2	1.99	15	55	<5	2.52	<1	17	63	42	2.99	20	1.36	466	4	0.04	25	1050	10	<5	<20	56	0.09	<10	97	<10	11	17
	99 70	101 70	2 00	00816					530	JAMP		-5	45					••																			
	101 70	102 55	0.85	00817					410	0.0	0.47	~0 20	40 20	<0 -/	4./5	<1	10	20	50	3.05	30	0.78	672	6	0.03	9	1290	<2	5	<20	234 •	40.01	<10	83	<10	25	23
	101.70	102.00	5.65	00017					410	0.3	0.70	30	30	<5	8.06	<1	21	12	159	3.34	20	0.31	821	24	0.02	16	1180	2	10	<20	123 •	<0.01	<10	38	<10	16	19

	From	То	Length		Au	Au	Pd	Pt Au		ppm i	Inless	othen	wise r	noted																						
Hole #	m	m	m	Tag #	g/t	oz/t	ppt	оррь ррь	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Мп	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
	102.55	103.33	0.78	00818	6.26	0.183	3 <5	<5 >100	2.2	0.48	65	20	<5	8.55	<1	17	18	206	2.27	10	0.16	1199	13	< 0.01	35	730	<2	10	<20	70	<0.01	<10	25	<10	14	23
	103.33	105.00	1.67	00819				75	0.8	1.85	55	115	<5	1.60	<1	26	46	96	4.11	20	1.08	448	3	0.04	57	790	8	<5	<20	31	0.04	<10	70	<10	14	27
	105.00	106.10	1.10	00820				100	0.3	2.40	<5	55	<5	2.94	<1	21	22	118	3.44	20	1.07	545	1	0.06	19	1950	10	<5	<20	72	0.08	<10	88	<10	10	23
	106.10	107.29	1.19	00821				35	0.2	1.27	65	55	<5	1.57	<1	28	88	105	2.54	10	0.92	497	3	0.05	67	400	6	<5	<20	26	0.09	<10	39	<10	7	18
	107.29	108.81	1.52	00822				90	0.2	1.39	175	65	<5	0.92	<1	53	116	223	3.60	20	0.95	325	8	0.04	115	740	6	<5	<20	20	0.09	20	54	<10	13	18
	108.81	109.27	0.46	00823	2.07	0.06	<5	<5 >1000	) <0.2	1.55	45	120	5	0.85	<1	19	76	26	2.77	10	1.14	412	4	0.06	32	440	10	5	<20	25	0.12	<10	61	<10	7	18
	109.27	111.01	1.74	00824				40	<0.2	1.42	25	155	<5	1.14	<1	20	121	101	2.35	10	0.96	811	5	0.06	92	400	6	5	<20	105	0.09	<10	53	<10	11	23
	111.01	112.17	1.16	00825				30	<0.2	1.46	5	70	<5	1.70	<1	22	94	154	2.93	10	0.96	1013	3	0.05	83	510	6	5	<20	43	0.06	<10	66	<10	12	40
	112.17	115.52	3.35	00826				25	<0.2	1.98	5	75	<5	1.67	<1	26	109	160	3.74	20	1.28	827	5	0.04	98	860	8	<5	<20	35	0.10	<10	89	<10	11	39
	126.50	129.24	2.74	00827	1.00	0.029	9 <5	<5 >1000	0.2	1.94	270	75	<5	2.21	<1	89	60	138	4.17	20	1.20	611	3	0.04	43	1640	8	5	<20	29	0.12	<10	105	<10	7	24
DDH-FR-006	19.00	19.80	0.80	01001				120	<0.2	2.14	<5	70	<5	2.62	<1	26	58	69	5.4	40	1.32	543	<1	0.1	25	1820	34	<5	<20	56	0.16	<10	169	<10	10	26
	19.80	20.75	0.95	01002				215	<0.2	0.86	100	50	<5	2.84	<1	64	80	156	2.7	20	0.26	264	<1	0.07	57	1230	4	<5	<20	41	0.14	<10	66	<10	9	14
	20.75	22.00	1.25	01003				80	<0.2	2.26	<5	75	<5	1.39	<1	17	105	12	3.86	30	1.35	564	<1	0.16	28	730	6	<5	<20	86	0.17	<10	113	<10	6	29
	22.00	23.00	1.00	01004				60	<0.2	1.81	<5	30	<5	2.6	<1	15	88	15	2.28	20	0.66	329	<1	0.1	26	980	4	<5	<20	41	0.15	<10	82	<10	7	21
	23.00	24.00	1.00	01005				90	<0.2	0.81	10	30	<5	2.56	<1	11	75	19	1.45	20	0.37	277	2	0.08	15	1270	<2	<5	<20	41	0.1	<10	47	<10	7	12
	24.00	25.00	1.00	01006				15	<0.2	2.43	<5	60	<5	1.07	<1	16	95	10	4.29	30	1.81	514	<1	0.12	28	860	4	<5	<20	88	0.12	<10	121	<10	7	30
	35.50	30.50	1.00	01007				5	<0.2	1.93	<5	60	<5	1.68	<1	22	40	192	3.52	30	1.49	396	<1	0.09	14	2150	4	<5	<20	58	0.15	<10	98	<10	9	24
	37.50	39.00	1.00	01008				20	<0.2	2./1	<5 ~5	65	<5	2.82	<1	22	44	177	4.07	30	1.48	386	<1	0.07	19	2000	8	<5	<20	51	0.15	<10	127	<10	9	22
	39.00	40.30	1.30	01009				35	<0.2	2.17	<0 -5	55 75	<5 -5	1.78	<1	34	34	162	5.32	40	1.89	479	<1	0.09	17	2260	6	<5	<20	56	0.14	<10	122	<10	12	25
	40.30	41.20	0.90	01010	16 21	0 473		¥U >1000	0.2	2.07	<5	75	<5 25	1.50	<1	35	44	265	7.61	50	2.18	533	<1	0.08	16	2130	4	<5	<20	36	0.19	<10	163	<10	12	30
	41.20	42.00	0.80	01012	10.21	0.470	•	- 1000	<0.0	3.02	-5	135	25	3.90	~1	40	40	100	9.9/	60 50	0.85	460	82	0.04	55	1540	8	<5	<20	43	0.08	<10	76	<10	14	30
	42.00	43.00	1.00	01013				60	<0.2	2 97	<5	135	~5	1.0	~1	40 37	40	100	0.04	50	2.20	610	<1	0.07	19	1820	12	<5	<20	28	0.24	<10	238	<10	13	34
	69.00	70.00	1.00	01014				60	<0.2	2 18	<5	70	<5	2.64	<1 <1	16	4J 31	40	3.18	30	2.32 0.83	495	~1	0.07	18	1850	10	<5 -5	<20	32	0.22	<10	228	<10	12	34
	70.00	71.25	1.25	01015				185	<0.2	2.12	<5	80	<5	4 66	<1	14	21	55	3 35	30	0.00	49J 578	~1	0.11	14	1890	10	<5 ~5	<20	300	0.12	<10	72	<10	9	24
	71.25	72.00	0.75	01016				120	<0.2	1.96	<5	50	<5	3.09	<1	12	28	43	2 75	30	0.66	385	<1	0.00	13	2100	B	<5 <5	<20	220 69	0.07	<10	70	<10	11	23
	72.00	73.00	1.00	01017				75	<0.2	2.04	<5	40	<5	2.87	<1	13	25	45	2.6	30	0.72	395	<1	0.00	12	2150	6	-5	~20	40	0.09	<10	60	<10	10	24
	73.00	74.00	1.00	01018				200	<0.2	1.9	<5	35	<5	2.72	<1	15	19	65	2.7	30	0.76	342	1	0.09	9	2260	6	<5	<20	40	0.1	<10	63	<10	0	23 22
	74.00	74.95	0.95	01019				70	<0.2	2.07	<5	35	<5	3.13	<1	13	29	56	2.81	30	0.84	427	<1	0.09	14	2040	Ř	<5	<20	46	0.1	<10	68	<10	9	22
	74.95	76.00	1.05	01020				145	<0.2	2.77	<5	85	<5	2.24	<1	20	36	21	6.23	40	1.88	575	<1	0.11	18	2330	8	<5	<20	66	0.19	<10	162	<10	12	31
	82.00	82.95	0.95	01021				50	<0.2	2.01	<5	85	<5	1.8	<1	17	56	65	4.05	30	1.53	583	<1	0.09	21	1500	8	<5	<20	85	0.15	<10	123	<10	9	27
	82.95	84.10	1.15	01022				35	<0.2	1.55	<5	80	<5	4.39	<1	7	43	2	2.32	20	1.09	645	10	0.07	13	1430	6	<5	<20	194	0.13	<10	88	<10	q	25
	84.10	84.95	0.85	01023				55	<0.2	1.54	<5	60	<5	3.86	<1	8	37	4	2.33	20	1.1	604	13	0.07	11	1870	6	<5	<20	123	0.1	<10	96	<10	9	24
	84.95	86.00	1.05	01024				25	<0.2	1.64	<5	55	<5	3.55	<1	8	21	17	2.43	20	0.8	514	1	0.05	10	1530	6	<5	<20	94	0.08	<10	74	<10	8	25
	86.00	88.00	2.00	01025				60	<0.2	1.93	<5	35	<5	3.27	<1	10	26	25	2.3	20	0.62	487	<1	0.06	11	1500	6	<5	<20	38	0.08	<10	59	<10	8	27
	88.00	90.00	2.00	01026				20	<0.2	1.99	<5	50	<5	2.64	<1	10	25	15	2.78	20	0.75	533	<1	0.07	9	1520	8	<5	<20	60	0.09	<10	69	<10	8	28
	90.00	91.40	1.40	01027				20	<0.2	1.68	<5	70	<5	2.59	<1	11	22	38	3.07	30	0.63	415	<1	0.03	11	1460	8	<5	<20	145	<0.01	<10	51	<10	12	29
	91.40	93.00	1.60	01028				25	<0.2	2.19	<5	35	<5	2.9	<1	9	21	14	2.42	20	0.66	414	<1	0.06	11	1530	8	<5	<20	39	0.08	<10	58	<10	8	27
	93.00	94.00	1.00	01029				30	<0.2	2	<5	45	<5	2.97	<1	8	27	13	2.11	20	0.57	381	<1	0.07	11	1490	8	<5	<20	38	0.09	<10	56	<10	7	24
	94.00	95.00	1.00	01030				75	<0.2	2.2	<5	30	<5	3.11	<1	8	38	12	2.28	20	0.58	416	<1	0.07	11	1440	10	<5	<20	40	0.08	<10	56	<10	7	26
	95.00	96.00	1.00	01031				65	<0.2	2.08	<5	30	<5	3.53	<1	10	29	11	2.79	20	0.74	477	<1	0.05	12	1410	8	<5	<20	62	0.07	<10	65	<10	8	26
	96.00	97.00	1.00	01032				30	<0.2	2.69	<5	35	<5	2.41	<1	13	41	15	4.28	30	1.11	567	<1	0.06	14	1560	8	<5	<20	35	0.08	<10	87	<10	10	39
	110.00	111.00	1.00	01033				15	<0.2	2.75	<5	65	<5	2.72	<1	23	40	84	5.09	30	1.89	756	<1	0.08	24	1790	8	<5	<20	114	0.16	<10	155	<10	11	32
	111.00	112.15	1.15	01034				30	<0.2	2.15	<5	60	<5	3.2	<1	26	59	134	4.95	30	1.37	658	<1	0.08	31	1570	168	<5	120	78	0.17	<10	172	<10	11	27
	112.15	113.10	0.95	01035				20	<0.2	1.62	<5	50	<5	2.81	<1	20	48	100	3.38	20	0.96	479	19	0.06	23	1150	8	<5	<20	82	0.14	<10	85	<10	9	19
	126.00	127 60	1.50	01036				10	<0.2	2.61	<5	95	<5	1.52	<1	19	91	3	4.98	30	1.78	866	<1	0.1	36	1000	8	<5	<20	218	0.15	<10	129	<10	10	46
	120.00	128.55	1.00	0103/				20	<0.2	2.04	<5 ~E	50	<5	2.61	<1	21	37	119	3.34	20	0.9	437	<1	0.06	26	1900	6	<5	<20	87	0.12	<10	85	<10	8	23
	128.55	120.00	1.05	01030				20	<0.2	2.18	<d 10</d 	55	<5 1.f	2.86	<1	14	49	46	2.73	20	0.96	451	<1	0.06	28	1190	6	<5	<20	148	0.14	<10	89	<10	8	21
	129.70	130.85	1.15	01040				40	~0.2	2.5/	10	/U	15	4.25	<1	10	15	796	7.96	50	1.59	595	129	0.04	54	1290	10	<5	<20	115	0.12	<10	104	<10	12	33
	130.85	132 60	1.75	01041				15	<0.2	2.08	~5	50	<0 /4	J.10	<1	10	04 22	70	3.26	30	1.22	449	<1	0.05	28	1510	6	<5	<20	109	0.12	<10	95	<10	10	23
	132.60	134.00	1 40	01042				10	<0.2	1 70	~5	45	<0 /5	4.10	<1 24	17	22	64 50	3.00	30	1.08	016	<1	0.04	16	1600	8	<5	<20	120	0.07	<10	77	<10	12	27
				01042				10	~0.2	1.70	-5	40	~5	2.9/	<b>S</b> 1	12	21	28	2.22	20	0.56	383	<1	0.06	10	1750	6	<5	<20	51	0.08	<10	49	<10	8	23

 $\bigcap$ 

	From	То	Length		Au	Au	Pd Pt	Au		ppm (	uniess	other	wise (	noted																						
Hole #	m	m	m	Tag #	g/t	oz/t	ppb ppb	ppb	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Ma %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	н	v	w	v	70
	134.00	135.50	1.50	01043				10	<0.2	1.99	<5	50	<5	3.27	<1	30	26	155	4 33	30	0.80	454	~1	0.05	17	1760	0	-E	<20	42			<u> </u>		÷	
	135.50	137.00	1.50	01044				5	<0.2	2.07	<5	40	<5	3.62	<1	14	36	77	2 73	20	0.03	404	-1	0.05	17	1670	-	<5 .5	~20	42	0.09	<10	/1	<10	9	25
	137.00	138.50	1.50	01045				5	<0.2	2 07	<5	30	<5	4.33	<1	10	32	36	2.10	20	0.00	404 620	-1	0.00	14	10/0	10	<5 .C	<20	37	0.08	<10	57	<10	8	25
	138,50	140.00	1.50	01046				10	<0.2	16	<5	40	<5	4 01	-1	11	24	20	2.52	20	0.09	030		0.05	14	1700	10	<5	<20	46	0.08	<10	57	<10	8	26
	140.00	141.50	1.50	01047				5	<0.2	1 01	-5	65	~5	4.91 6.40	~1	14	24	20	2.34	20	0.81	6/8	<1	0.05	15	1750	8	<5	<20	65	0.08	<10	67	<10	9	33
	141 50	143.00	1.50	01048				5	-0.2	2.00	~5	125	-5	5.49		14	29	30	2.84	20	0.95	/61	<1	0.05	17	1780	10	<5	<20	84	0.09	<10	83	<10	9	29
	143.00	144 50	1.50	01040				5	-0.2	2.00	<5 -5	135	<0 	5.66	51	10	24	29	2.52	20	0.86	768	4	0.05	17	1710	10	<5	<20	131	0.08	<10	72	<10	9	27
	144.50	146.00	1.50	01050				5	<0.2	1.8	<5	70	<5	5.25	<1	13	27	42	3.24	20	1.11	999	<1	0.05	16	1820	10	<5	<20	83	0.09	<10	87	<10	10	30
	146.00	140.00	1.50	01050				5	<0.2	2.22	<5	70	<5	4.84	<1	22	27	73	4.47	30	1.37	986	<1	0.04	16	1890	14	<5	<20	64	0.08	<10	93	<10	12	41
	146.00	147.50	1.50	01051				15	<0.2	2.23	<5	100	<5	3.92	<1	15	40	63	3.27	20	0.98	641	<1	0.06	14	1730	12	<5	<20	35	0.08	<10	71	<10	9	30
	147.50	148.90	1.40	01052				130	<0.2	1.77	<5	70	<5	3.25	<1	16	38	89	3.17	20	0.86	523	<1	0.06	12	1640	10	<5	<20	36	0.1	<10	65	<10	11	28
	148.90	150.00	1.10	01053				55	<0.2	1.91	<5	70	<5	1.78	<1	29	89	180	6.32	30	1.9	438	1	0.07	56	820	10	<5	<20	50	0.08	<10	128	<10	14	33
	150.00	151.00	1.00	01054				15	<0.2	1.42	<5	65	<5	2.75	<1	33	122	207	5.44	30	1.23	364	115	0.05	105	1030	10	<5	<20	61	0.07	<10	337	<10	22	38
	151.00	151.90	0.90	01055				20	<0.2	1.39	95	70	<5	6.33	<1	43	108	186	5.03	30	1.27	395	204	0.05	107	1050	12	<5	<20	175	0.04	<10	446	<10	19	32
	151.90	153.00	1.10	01056				30	<0.2	1.38	40	60	<5	3.08	<1	38	129	231	5.5	30	1.25	451	60	0.07	68	1090	14	<5	<20	61	0.12	<10	166	<10	15	29
	153.00	154.00	1.00	01057				25	<0.2	1.63	55	70	<5	1.56	<1	35	153	128	4.33	30	1.48	396	123	0.06	100	780	12	<5	<20	41	0.09	<10	207	~10	16	20
	184.00	185.50	1.50	01058				5	<0.2	2.27	<5	115	<5	3.31	<1	29	47	57	4.61	30	1 12	747	<1	0.1	27	2200	14	-5	~20	96	0.00	~10	231	-10	10	20
	185.50	187.00	1.5	01059				5	<0.2	1.46	<5	95	<5	3.57	<1	22	72	74	346	20	0.76	633	-1	0.04	20	1270	10	~5	~20	76	0.17	10		\$10	12	30
	187.00	188.10	1.1	01060				<5	<0.2	1.97	<5	180	<5	2.28	<1	22	75	54	3.40	20	0.70	507	-1	0.04	29	1370	10	5	<20	/5	0.13	<10	/1	<10	9	26
	188.10	189.90	1.8	01061				10	<0.2	2.02	<5	120	<5	1 37	e1	26	120	55	5.20	20	0.90	507		0.08	41	1450	12	<5	<20	193	0.17	<10	98	<10	10	28
	189.90	191.50	1.6	01062				145	<0.2	1 0	-5	100	-5	6.36	-1	20	40		5.25	20	1.4	000	~ 1	0.07	53	1400	12	<5	<20	117	0.12	<10	173	<10	13	35
	191.50	193.00	1.5	01063				65	<0.2	2 15	-5	180	~5	5 70	~1	20	42	60 50	5.21	30	0.8	857	<1	0.05	37	1600	14	<5	<20	92	0.13	<10	78	<10	13	36
	193.00	195.10	21	01064				15	~0.2	4.6	~5	100	<5 <5	3.79	< I 	22	53	52	5.98	30	0.96	963	<1	0.07	30	1590	14	<5	<20	220	0.16	<10	84	<10	14	38
	195.10	196 50	14	01065				15	~0.2	1.0	<0 -5	180	<5 -5	3.30	<1	20	52	67	3.26	20	0.67	518	<1	0.07	29	1530	12	<5	<20	158	0.17	<10	68	<10	12	25
	196 50	108.12	1.62	01065				15	<0.2	1.54	<5	95	<5	1.3	<1	22	140	67	3.78	10	1.01	500	1	0.06	87	550	14	<5	<20	68	0.15	<10	98	<10	10	54
	130.50	130.12	1.02	01000				15	<0.2	1.65	<5	90	<5	4.24	<1	22	64	79	3.26	20	0.58	534	<1	0.05	43	1480	16	<5	<20	57	0.17	<10	64	<10	14	25
	4 00	E E0	4.50	04007							_																									
DDII-FR-007	4.00	5.50	1.50	01067				70	<0.2	1.3	<5	35	<5	2.29	<1	9	40	23	1.77	20	0.29	293	<1	0.04	8	1510	12	<5	<20	41	0.1	<10	38	<10	9	20
	5.50	6.50	1.00	01068				85	<0.2	1.95	<5	40	<5	4.15	<1	17	43	21	2.43	20	0.46	416	<1	0.04	16	1450	16	<5	<20	39	0.09	<10	55	<10	10	25
	0.50	7.50	1.00	01069				15	<0.2	1.61	<5	40	<5	3.19	<1	8	37	3	1.6	20	0.31	332	<1	0.04	10	1510	14	<5	<20	28	0.09	<10	39	<10	9	21
	13.50	14,50	1.00	01070				10	<0.2	1.36	<5	45	<5	2.85	<1	7	32	4	1.9	20	0.34	434	<1	0.05	7	1520	14	<5	<20	41	0.09	<10	44	<10	10	27
	14.50	15.50	1.00	01071				305	<0.2	1.95	<5	55	<5	4.22	<1	10	52	8	3.41	20	0.85	666	<1	0.05	14	1330	16	<5	<20	44	0.07	<10	87	<10	11	34
	15.50	16.50	1.00	01072				20	<0.2	2.5	<5	55	<5	5.52	<1	10	49	7	2.18	20	0.49	448	<1	0.04	18	1470	22	<5	<20	35	0.07	<10	66	<10	q	28
	20.00	21.50	1.50	01073				10	<0.2	0.99	<5	35	<5	2.1	<1	6	25	9	1.17	20	0.21	243	<1	0.05	6	1490	10	<5	<20	28	0.07	<10	28	<10	8	21
	21.50	22.50	1.00	01074				90	<0.2	1.37	<5	45	<5	2.86	<1	9	43	13	1.59	10	0.25	319	<1	0.06	9	1540	20	<5	<20	43	0.08	<10	34	<10	10	24
	22.50	23.50	1.00	01075				10	<0.2	0.97	<5	40	<5	2.02	<1	6	24	7	1.19	10	0.24	245	<1	0.06	5	1340	8	<5	<20	27	0.07	<10	30	<10	10	16
	56.00	57.40	1.40	01076				10	<0.2	2.07	<5	85	<5	1.6	<1	35	47	98	6.26	30	1 72	754	<1	0.06	20	1620	12	-5	~20	27	0.07	<10	105	10	•	10
	57.40	59.00	1.60	01077				80	<0.2	1.41	<5	50	<5	2.2	<1	13	28	44	2.82	20	0.56	381	-1	0.06	7	1260	10	~5	~20	57	0.17	10	195	<10	11	55
	59.00	60.50	1.50	01078				25	<0.2	1.8	<5	40	<5	2.81	<1	8	43	18	2 47	20	0.00	370	~1	0.00	,	1300	10	×5	<20	60	0.07	<10	47	<10	2	22
	60.50	62.00	1.50	01079				330	<0.2	1.58	<5	55	<5	3 16	<1	11	32	94	2.83	20	0.40	476	-1	0.00	9	1270	10	<5 	<20	50	0.07	<10	43	<10	7	22
	62.00	63.50	1.50	01080				150	<0.2	1 24	<5	55	<5	1 05	-1	10	32	36	1.02	20	0.02	4/0	~	0.04	9	1270	12	<5	<20	40	0.06	<10	53	<10	8	29
	63.50	65.00	1.50	01081				100	<0.2	1 33	-5	40	~5	2.20	-1	14	32	30	1.93	20	0.37	321	<1	0.05	6	1350	10	<5	<20	23	0.06	<10	34	<10	7	24
	65.00	66.50	1.50	01082				40	<0.2	1.00	~5	40	~5	2.20	~		21	37	2.35	20	0.49	381	<1	0.05	6	1320	8	<5	<20	27	0.06	<10	45	<10	8	26
	66 50	68.00	1.50	01083				40	~0.2	1.20	-5	40	10	2.20	51	8	31	25	1.98	20	0.39	324	<1	0.06	6	1330	10	<5	<20	22	0.06	<10	37	<10	7	26
	68.00	70.00	2.00	01084				40	-0.2	1.04	<b>5</b>	40	5	2.55	<1	8	29	18	2	20	0.42	354	<1	0.06	7	1330	10	<5	<20	25	0.07	<10	39	<10	7	26
	70.00	74.95	1.95	01004				30	<0.2	1.27	<5	40	<5	2.74	<1	7	36	14	1.74	20	0.36	339	<1	0.05	8	1290	10	<5	<20	35	0.06	<10	35	<10	7	25
	71.95	71.00	1.00	01085				45	<0.2	1.37	<5	40	<5	3.31	<1	10	35	50	1.77	20	0.33	285	10	0.05	8	1310	12	<5	<20	27	0.07	<10	35	<10	7	21
	71.00	73.00	1.15	01086				80	<0.2	3.18	<5	75	<5	3.6	<1	26	40	51	6.95	30	1.88	857	<1	0.09	20	2200	16	<5	<20	78	0.14	<10	178	<10 4	15	44
	79.00	80.20	1.20	01087				<5	<0.2	2.62	<5	100	<5	2.44	1	36	60	130	6.71	30	1.99	710	<1	0.12	26	2090	16	<5	<20	72	0.2	<10	170	<10 '	14	45
	80.20	01.50	1.30	01088				15	<0.2	1.71	<5	30	<5	3.16	<1	18	31	106	2.29	20	0.35	315	<1	0.06	9	1370	12	<5	<20	35	0.07	<10	32	<10	8	21
	81.50	83.00	1.50	01089				25	<0.2	1.62	<5	40	<5	2.85	<1	15	49	70	2.62	20	0.46	407	<1	0.06	10	1370	12	<5	<20	41	0.07	<10	41	<10	8	24
	83.00	84.50	1.50	01090				40	<0.2	1.3	<5	30	<5	2.68	<1	11	41	48	1.8	20	0.34	302	<1	0.06	8	1360	10	<5	<20	35	0.07	<10	30	<10	7	19
	84.50	86.00	1.50	01091				25	<0.2	1.19	<5	50	<5	2.46	<1	10	54	41	1.42	10	0.3	248	<1	0.06	8	1320	10	<5	<20	43	0.07	<10	26	<10	6	20
	86.00	87.50	1.50	01092				70	<0.2	1.46	<5	70	<5	4.08	<1	9	24	35	1.75	20	0.5	429	<1	0.04	12	1170	12	<5	<20	105	0.06	<10	32	<10	7	20
	87.50	89.00	1.50	01093				20	<0.2	1.62	<5	75	<5	2.93	<1	10	35	40	2.09	20	0.44	384	<1	0.05	10	1150	14	<5	<20 ·	107	0.04	<10	33	~10	, , 0	44 20
	89.00	91.00	2.00	01094				25	<0.2	1.16	<5	45	<5	5.42	<1	9	18	37	2.38	30	0.46	548	<1	0.02	14	1080	12	<5	<20 ·	113 -	c0 01	~10	20	-10 1		20
																				-			•				-				·0.01	- 10	20	SIV 1	<i>i</i> 3 - 1	29

 $\bigcap$ 

	From	То	Length		Au	Au Pd Pt Au		ppm	uniess	s other	wise I	noted																						
Hole #	m	m	m	Tag #	g/t	oz/t ppb ppb ppt	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	РЬ	Sb	Sn	Sr	Ti %	u	v	w	Y	70
	91.00	92.50	1.50	01095		40	<0.2	2.09	<5	50	<5	5.91	<1	6	27	10	24	20	0.64	560	<1	0.03	14	1060	16	~5	<20		0.02	<10			10	
	92.50	94.00	1.50	01096		30	<0.2	1.79	<5	35	<5	4 01	<1	Ř	38	22	2.02	20	0.44	435	-1	0.03	12	1150	14	<5 <5	<20	50	0.02	<10	44	<10	10	25
	94.00	95.50	1.50	01097		<5	<0.2	1.49	<5	50	<5	2.5	<1	8	45	27	2.02	20	0.47	435	-1	0.00	.2	1000	14	< 5	<20	41	0.05	<10	34	<10	<i>′</i>	22
	95.50	97.00	1.50	01098		35	<0.2	1.15	<5	60	<5	2 42	e1	ă	38	33	2.22	20	0.92	921	-1	0.06	7	1230	12	<5	<20	41	0.06	<10	34	<10	8	24
	97.00	98.50	1.50	01099		20	<0.2	2 18	<5	330	~5	2.72	-1	14	24	50	2.13	20	0.30	301	51	0.05		1170	12	<5	<20	62	0.05	<10	29	<10	9	23
	98.50	100.00	1.50	01100		30	<0.2	1 76	-5	215	~5	2.20	~1	10	24	10	3.35	20	0.97	613	<1	0.04	8	1190	14	<5	<20	268	0.05	<10	44	<10	9	34
	100.00	101.50	1.50	01101		35	<0.2	1.70	~5	2 ( )	~5	2.09	-1	10	20	19	3.3	20	0.87	661	<1	0.05	10	1170	10	<5	<20	211	0.05	<10	50	<10	10	32
	101 50	103.00	1.50	01102		30	~0.2	1.50	-5	200	~5	4.00	~	10	32	20	3.05	20	0.73	580	<1	0.05	11	1160	16	<5	<20	69	0.05	<10	45	<10	9	29
	103.00	104 50	1.50	01102		30 10	<0.2	1.07	5	200	5	2.35	51	10	20	21	2.6	20	0.68	510	<1	0.05	8	1280	14	<5	<20	87	0.06	<10	51	<10	9	26
	104 50	106.00	1.50	01104		10	-0.2	1.07	~5	310	<5 -5	3.31	<1 	12	25	14	3,15	20	0.81	705	<1	0.05	12	1480	14	<5	<20	196	0.07	<10	65	<10	9	32
	106.00	107.50	1.50	01104		33	<0.2	1.0/	<5 -5	240	<5	3.13	<1	14	27	16	3.44	20	0.84	699	<1	0.05	12	1520	16	<5	<20	153	0.08	<10	71	<10	10	33
	107.50	108.50	1.00	01105		10	<0.2	1.74	5	185	<5	3.48	<1	16	25	20	3.54	20	0.93	701	<1	0.05	14	1710	14	<5	<20	173	0.09	<10	75	<10	9	33
	108.50	110.00	1.60	01100		100	<0.2	1.76	<5	185	<5	3.55	<1	18	22	40	3.78	20	0.94	706	<1	0.05	12	1610	14	<5	<20	160	0.06	<10	80	<10	11	32
	110.00	111 50	1.50	01107		143	<0.2	1.81	<5	125	<5	4.24	<1	19	18	45	4.17	30	1.05	697	<1	0.04	15	1580	18	<5	<20	131	0.03	<10	72	<10	15	35
	111 50	112.00	1.50	01108		40	<0.2	1.47	<5	60	<5	5.82	<1	14	17	18	4.16	20	0.85	718	<1	0.03	16	1600	12	<5	<20	113	<0.01	<10	60	<10	17	40
	112.00	113.00	1.50	01109		70	<0.2	1.09	<5	50	<5	8.67	<1	12	11	13	3.71	20	0.47	1090	<1	0.03	23	1630	12	<5	<20	71	<0.01	<10	21	<10	15	39
	113.00	114.00	1.00	01110		45	<0.2	1.46	10	50	<5	3.16	<1	17	27	39	5.81	20	0.88	385	21	<0.01	23	1110	12	<5	<20	34	<0.01	<10	21	<10	14	43
	114.00	116.00	2.00	01111		45	<0.2	1.05	20	40	<5	7.42	<1	16	48	53	4.88	20	0.51	941	<1	0.03	32	910	12	<5	<20	40	<0.01	<10	32	<10	16	56
	116.00	118.00	2.00	01112		60	<0.2	1.09	10	55	<5	>10	<1	12	24	20	4.02	20	0.51	1143	1	0.03	29	2110	14	<5	<20	103	<0.01	<10	42	<10	20	42
	118.00	119.50	1.50	01113		25	<0.2	2.16	<5	160	<5	8.81	<1	27	113	104	5.75	20	1.77	1249	3	0.03	88	1070	18	<5	<20	136	0.02	<10	119	<10	18	60
	149.50	151.00	1.50	01114		110	<0.2	1.59	<5	40	<5	3.62	<1	13	30	57	3.25	20	0.69	511	<1	0.03	12	1390	14	<5	<20	37	0.05	<10	54	<10	8	28
	151.00	152.50	1.50	01115		110	<0.2	1.84	<5	50	<5	4.09	<1	17	28	37	3.47	20	0.92	638	<1	0.03	16	1520	16	<5	<20	64	0.06	<10	76	<10	10	37
	152.50	154.00	1.50	01116		40	<0.2	2.09	<5	50	<5	3.3	<1	12	53	11	3.38	20	0.67	660	<1	0.05	12	1550	18	<5	<20	61	0.07	<10	68	<10	10	42
	154.00	156.00	2.00	01117		25	<0.2	1.63	<5	75	<5	2.86	<1	11	43	9	2.37	20	0.45	453	<1	0.06	10	1600	16	<5	<20	172	0.07	<10	51	<10	9	32
	156.00	157.50	1.50	01118		10	<0.2	1.58	<5	60	<5	3.83	<1	10	47	5	2.43	20	0.46	642	<1	0.05	13	1520	14	<5	<20	206	0.07	<10	51	<10	9	32
	157.50	159.00	1.50	01119		30	<0.2	1.75	<5	75	<5	3.52	<1	10	45	8	2.51	20	0.44	551	<1	0.06	12	1430	16	<5	<20	306	0.07	<10	49	<10	9	35
	159.00	160.50	1.50	01120		90	<0.2	1.58	<5	65	<5	4.16	<1	10	49	9	2.43	20	0.45	576	<1	0.05	12	1430	14	<5	<20	248	0.08	<10	49	<10	9	31
	160.50	162.00	1.50	01121		25	<0.2	1.57	<5	85	<5	3.54	<1	13	40	41	2.62	20	0.43	433	<1	0.06	13	1520	20	<5	<20	376	0.08	<10	43	<10	9	28
	162.00	163.00	1.00	01122		20	<0.2	1.6	<5	45	<5	3.53	<1	17	44	34	4.21	20	0.85	617	<1	0.04	10	1460	18	<5	<20	123	0.07	<10	66	<10	10	45
	163.00	164.00	1.00	01123		30	<0.2	1.7	<5	55	<5	3.06	<1	17	33	49	4.24	20	0.84	580	<1	0.03	10	1490	20	<5	<20	111	0.06	<10	63	<10	10	46
	164.00	165.20	1.20	01124		15	<0.2	1.39	<5	75	<5	4.92	<1	15	45	31	3.18	20	0.74	615	<1	0.03	22	1330	16	<5	<20	300	0.07	<10	64	<10	8	36
	165.20	166.50	1.30	01125		5	<0.2	1.5	<5	80	<5	3.06	<1	9	40	6	2.06	20	0.37	426	<1	0.05	10	1510	16	<5	<20	260	0.06	<10	41	<10	9	27
	166.50	168.00	1.50	01126		5	<0.2	1.44	<5	60	<5	2.69	<1	9	37	18	2.07	10	0.39	406	<1	0.05	9	1500	20	<5	<20	124	0.06	<10	39	<10	9	31
	168.00	169.75	1.75	01127		10	<0.2	1.53	<5	50	<5	3.16	<1	19	24	58	2.53	20	0.39	362	<1	0.06	10	1670	20	<5	<20	78	0.06	<10	36	<10	8	30
																																	U	00
DDH-FR-008	3.35	7.00	3.65	01128		20	<0.2	1.67	<5	140	<5	1.04	<1	13	90	80	2.8	20	0.95	289	<1	80.0	20	960	6	<5	<20	115	0.15	<10	83	<10	٩	10
	7.00	9.00	2.00	01129		10	<0.2	1.14	<5	45	<5	1.07	<1	19	98	101	3.28	20	0.82	326	5	0.07	21	1030	4	<5	<20	28	0.12	<10	76	<10	å	17
	9.00	11.00	2.00	01130		10	<0.2	1.18	<5	45	<5	1.02	<1	13	94	45	2.34	20	0.72	282	1	0.11	16	1200	4	<5	<20	50	0.14	<10	62	<10	6	14
	11.00	12.00	1.00	01131		5	<0.2	2.51	<5	85	<5	1.41	<1	26	71	101	4.79	20	1.72	347	<1	0.19	23	1530	6	<5	<20	140	0.74	<10	122	~10	0	22
	17.00	18.75	1.75	01132		95	<0.2	2.16	<5	60	<5	1.68	<1	37	46	200	6.02	20	1.76	470	<1	0.09	17	1590	8	<5	<20	34	0.25	<10	100	<10	•	23
	18.75	20.00	1.25	01133		730	<0.2	1.51	15	60	<5	2.21	<1	86	56	302	5.92	20	1.15	436	<1	0.07	27	1350	6	<5	~20	37	0.20	~10	142	<10	0	21
	20.00	21.75	1.75	01134		480	<0.2	1.6	<5	60	<5	4.08	<1	13	75	45	3.71	20	1 46	638	7	0.05	15	950	e.	~5	~20	79	0.10	~10	113	<10	9	21
	21.75	23.30	1.55	01135	18.00 0	.525 >1000	) 2	1.13	<5	70	15	3.34	1	111	44	1367	>10	40	1.03	429	41	0.05	56	1440	4	-5	~20	20	0.14	~10	110	< 10	9	23
	23.30	25.00	1.70	01136		75	<0.2	1.86	<5	40	<5	1.7	<1	21	39	70	4.05	20	1 29	432	<1	0.08	16	1990	-	~5	~20	37	0.11	<10	01	<10	17	43
	25.00	27.00	2.00	01137		40	<0.2	2.16	<5	50	<5	1.95	<1	23	38	159	4 23	20	1 71	483	<1	0.00	14	1090	•	~5	~20	3/	0.14	<10	107	<10	9	21
	61.00	62.50	1.50	01138		35	<0.2	2.77	<5	85	<5	2.06	<1	26	40	110	5.89	30	2 29	900	-1	0.05	10	1900	0	<5 -5	<20	40	0.15	<10	121	<10	9	25
	62.50	64.00	1.50	01139		35	<0.2	2.47	<5	225	<5	2.41	<1	11	15	42	2.84	20	0.76	452	-1	0.07	0	1990	0	<5	<20	70	0.18	<10	189	<10	13	43
	64.00	65.50	1.50	01140		25	<0.2	2.48	<5	440	<5	2 25	<1	10	21	30	3.04	20	0.81	482	-1	0.07	•	1270	•	5	<20	325	0.07	<10	55	<10	7	20
	65.50	67.00	1.50	01141		40	<0.2	2.53	<5	250	<5	2.89	<1	10	16	24	3 53	20	0.01	641	~1	0.00	0 7	1250	•	<5 	<20	5/4	0.07	<10	54	<10	7	21
	67.00	68.50	1.50	01142		25	<0.2	1.8	<5	265	<5	2.55	<1	9	15	26	2.39	20	0.68	463	21	0.00	4	1260	•	<0 <f< td=""><td>&lt;20 .</td><td>28/</td><td>0.06</td><td>&lt;10</td><td>65</td><td>&lt;10</td><td>9</td><td>26</td></f<>	<20 .	28/	0.06	<10	65	<10	9	26
	68.50	70.00	1.50	01143		20	<0.2	1.8	<5	125	<5	2.8	<1	10	14	40	2.55	20	0.73	465	21	0.00	4 7	1200	0	<0 -5	<20	285	0.05	<10	48	<10	8	20
	70.00	71.50	1.50	01144		10	<0.2	1,94	<5	310	<5	2.6	<1	12	14	44	3.54	20	0.75	560	24	0.00	/ E	1290	0	<0 -6	<20	139	0.06	<10	51	<10	8	23
	71.50	73.00	1.50	01145		5	<0.2	2.19	<5	170	<5	2.97	<1	9	24	32	2 70	20	0.00	514	~1	0.05	0 7	1220	8	<5 - C	<20	90	0.02	<10	56	<10 *	16	27
	73.00	74.50	1.50	01146		10	<0.2	2.12	<5	105	<5	3.26	<u>د</u> ا	10	12	42	2.10	20	0.70	570	~	0.00	'	1250	10	<5 	<20	175	0.06	<10	56	<10	8	22
						10			-0	.00	-0	3.20	~,	10	19	44	2.33	20	0.03	3/8	<1	0.06	1	1250	8	<5	<20	101	0.05	<10	59	<10	9	23

	From	То	Length	1	Au	Au	Pd	Pt A	u		ppm u	inless	other	wise	noted																						
Hole #	m	m	m	Tag #	g/t	oz/t	ppb	ppb pp	b	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	u	v	w	Y	Zn
	74.50	76.00	1.50	01147				1	0	<0.2	2.36	20	55	<5	4.11	<1	11	20	25	2.54	20	0.82	616	<1	0.04	10	1120	10	<5	<20	60	0.04	<10	18	<10	10	20
	76.00	77.50	1.50	01148				1	0	<0.2	2.03	<5	55	<5	4.64	<1	9	24	22	2.39	20	0.79	523	<1	0.04	11	1190	8	<5	<20	67	0.04	<10	52	<10	8	18
	77.50	79.00	1.50	01149				3	D	<0.2	1.58	<5	40	<5	4.08	<1	10	30	12	2.99	20	0.89	680	<1	0.04	7	1260	8	<5	<20	66	0.08	<10	52	<10	9	23
	79.00	80.50	1.50	01150				6	כ	<0.2	2.35	<5	35	<5	3.05	<1	12	38	20	3.78	20	0.95	589	<1	0.05	8	1250	8	<5	<20	37	0.08	<10	55	<10	8	27
	80.50	82.00	1.50	01151				1!	5	<0.2	2.65	<5	45	<5	3.68	<1	10	43	15	3.7	20	0.91	761	<1	0.05	11	1260	8	<5	<20	45	0.00	<10	60	<10	8	28
	82.00	83.50	1.50	01152				19	5	<0.2	2.71	<5	35	<5	2.76	<1	10	44	15	3.8	20	0.95	667	<1	0.06	8	1230	6	<5	<20	23	0.07	<10	60	<10	A	20
	83.50	85.00	1.50	01153				19	5	<0.2	2.26	<5	40	<5	3.48	<1	10	36	27	3.49	20	0.91	777	<1	0.05	8	1250	8	<5	<20	50	0.00	<10	60	<10	9	20
	85.00	86.50	1.50	01154				5		<0.2	2.63	<5	85	<5	2.77	<1	10	41	27	3.77	20	0.93	694	<1	0.06	8	1260	10	<5	<20	75	0.08	<10	65	<10	A	26
	86.50	88.00	1.50	01155				20	)	<0.2	2.61	<5	65	<5	2.89	<1	11	43	23	3.86	20	0.95	648	<1	0.05	ğ	1280	10	<5	<20	46	0.00	<10	62	<10	A	20
	88.00	89.50	1.50	01156				10	)	<0.2	2.23	<5	100	<5	2.5	<1	10	50	29	2.68	20	0.6	403	<1	0.06	8	1270	8	<5	<20	71	0.07	<10	45	<10	6	10
	89.50	91.00	1.50	01157				4	5	<0.2	1.79	<5	100	<5	2.53	<1	8	42	25	1.91	20	0.47	344	<1	0.07	7	1310	A	<5	<20	62	0.00	~10	37	<10	e o	10
	91.00	92.50	1.50	01158				10	)	<0.2	1.93	<5	95	<5	2.45	<1	9	43	25	2.47	20	0.59	420	<1	0.07	6	1280	a	<5	<20	61	0.07	<10	44	~10	7	24
	92.50	94.00	1.50	01159				20	)	<0.2	2.5	<5	80	<5	3.62	<1	10	45	26	3.26	20	0.96	697	<1	0.06	10	1230	10	<5	<20	63	0.07	<10	61 61	<10	7	21
	94.00	95.80	1.80	01160				10	)	<0.2	2.41	<5	95	<5	4.1	<1	10	46	27	3.28	20	0.87	684	<1	0.05	11	1260	8	~5	<20	00	0.00	~10	55	<10	, 0	20
	95.80	98.00	2.20	01161				11	5	0.2	1.06	50	35	<5	6.37	<1	28	59	77	4 64	20	0.58	841	21	0.00	50	700	14	~5	~20	90	<0.01	<10	22	<10	10	29
	98.00	100.00	2.00	01162				85	5	<0.2	2.63	<5	65	<5	4.31	<1	42	52	320	6.05	20	1.31	599	11	0.04	37	1210	12	~5	~20	72	0.11	<10	100	<10	13	25
	100.00	101.65	1.65	01163				20	)	<0.2	1.84	<5	115	<5	5.43	<1	17	80	72	3.09	20	1 55	1207	12	0.04	10	550	10	~5	~20	157	0.11	10	709	<10	14	24
	101.65	103.00	1.35	01164				15	5	<0.2	2.05	<5	115	<5	2.87	<1	9	45	25	3	20	0.76	604	-12	0.04	49	1000	10	~5	<20	117	0.06	<10	/9	<10	10	25
	103.00	104.50	1.50	01165				25	5	<0.2	2.38	<5	80	<5	3.43	<1	10	47	38	3 28	20	0.70	651	-1	0.05	٥ ۵	1090	-	<5	~20	107	0.00	< 10	45	<10	9	22
	104.50	106.00	1.50	01166				10	)	<0.2	2.16	<5	95	<5	3.37	<1	15	46	46	2 92	20	0.00	561	-1	0.05	11	1100	10	~5	~20	150	0.07	<10	50	<10	<i>′</i>	25
	106.00	107.50	1.50	01167				10	)	<0.2	2.11	<5	105	<5	2.89	<1	12	45	61	3 13	20	0.75	562	<1	0.05	9	1150	10	<5	<20	106	0.05	<10	48	<10	8	22
	107.50	109.00	1.50	01168				20	)	<0.2	1.81	<5	80	<5	3.53	<1	18	38	68	2.92	20	0.69	487	<1	0.00	0	1100	10	~5	~20	247	0.07	<10	40	<10	-	25
	109.00	110.50	1.50	01169				13	5	<0.2	2.75	<5	125	<5	4.75	<1	27	37	80	4.67	20	1.54	988	<1	0.05	24	1520	14	~5	~20	247	0.07	~10	43	<10		23
	110.50	111.25	0.75	01170				20	)	<0.2	2.54	<5	95	<5	4.34	<1	12	36	14	3.92	20	1 14	809	<1	0.03	13	1410	14	~5	~20	126	0.1	<10	121	<10	11	61
	111.25	113.30	2.05	01171				20	)	<0.2	2.13	<5	55	<5	4.78	1	12	27	20	3.47	20	1.06	804	<1	0.04	15	1350	12	~5	<20	120	0.08	<10	92	<10	10	30
	113.30	115.00	1.70	01172				5		<0.2	2.35	<5	70	<5	3.42	<1	28	80	104	5.09	20	1.62	847	<1	0.04	63	970	14	<5	<20	77	0.00	<10	19	<10	10	25
	115.00	116.50	1.50	01173				25	5	<0.2	3.76	<5	75	<5	6.83	<1	34	57	113	7.67	30	3.26	2165	<1	0.04	63	1640	12	<5	<20	04	0.13	<10	219	<10	16	52
	116.50	118.00	1.50	01174				10	)	<0.2	2.77	<5	70	<5	5.18	1	36	48	135	6.09	20	1.82	807	<1	0.08	33	1840	16	<5	<20	<u>00</u>	0.12	<10	150	~10	0	20
	118.00	119.50	1.50	01175				10	)	<0.2	3.19	<5	85	<5	6.16	1	40	54	176	7.84	30	2.52	1037	<1	0.05	36	1900	14	<5	<20	81	0.10	<10	219	<10	9 14	30
	119.50	121.00	1.50	01176				5		<0.2	2.8	<5	85	<5	7.87	1	35	50	137	6.74	20	2.47	1159	<1	0.05	40	1710	14	<5	<20	218	0.06	<10	178	<10	19	30
	121.00	122.50	1.50	01177				10		<0.2	1.78	<5	55	<5	5.06	<1	21	72	80	4.35	20	1.47	1019	<1	0.03	64	550	12	<5	<20	156	0.00	<10	70	~10	17	30
	122.50	124.00	1.50	01178				5		<0.2	2.39	<5	50	<5	5.79	<1	12	69	5	4.11	20	2.2	1910	<1	0.01	43	1470	12	<5	<20	65	0.02	<10	127	<10	10	30
	124.00	125.50	1.50	01179				40		0.4	2.63	<5	45	<5	>10	<1	20	29	29	4.99	30	2.19	4897	<1	0.02	56	2150	16	<5	20	181	0.04	<10	142	<10	16	33
	125.50	127.00	1.50	01180				20		<0.2	1.67	<5	35	<5	4.3	<1	14	114	25	3.46	10	1.39	1248	<1	0.01	45	310	10	<5	<20	64	0.01	<10	49	<10	11	20
	163.00	164.30	1.30	01181				5		<0.2	2.29	<5	115	<5	1.79	<1	19	92	81	3.66	10	1.5	638	<1	0.15	27	920	12	<5	<20	122	0.11	<10	112	~10	7	23 75
	164.30	166.00	1.70	01182				10		<0.2	2.27	<5	90	<5	2.33	<1	19	106	83	3.42	10	1.23	587	<1	0.15	31	990	14	<5	<20	97	0.13	<10	109	<10	, 6	55
	166.00	167.50	1.50	01183				25		<0.2	1.97	<5	70	<5	2.1	<1	19	110	87	3.33	10	1.16	485	<1	0.12	37	1060	12	<5	<20	84	0.11	<10	90	<10	7	50
	167.50	169.00	1.50	01184				5		<0.2	2.04	<5	60	<5	1.92	<1	20	96	162	3.28	10	1.23	565	<1	0.14	33	1060	12	<5	<20	77	0.11	<10	99	<10	,	50
	169.00	170.00	1.00	01185				10		<0.2	1.96	<5	45	<5	2.32	<1	14	87	88	3.58	10	1.39	672	3	0.09	24	940	12	<5	<20	57	0.08	<10	70	~10	7	41
	170.00	171.00	1.00	01186				5		<0.2	1.83	<5	40	<5	4.14	<1	14	69	52	3.2	10	1.31	698	<1	0.07	29	930	12	<5	<20	67	0.00	<10	70	<10	â	41
																													•	20	•	0.1	-10	, 3	-10	U	42
DDH-FR-009	30.00	32.00	2.00	01187				25		<0.2	1.47	<5	70	<5	2.69	<1	14	46	8	3.34	20	0.61	516	<1	0.07	8	1600	12	<5	<20	117	0.12	<10	104	<10	11	36
	32.00	34.00	2.00	01188				70		<0.2	1.45	<5	55	<5	2.74	<1	14	39	24	3.17	20	0.6	468	1	0.07	6	1570	12	<5	<20	86	0.12	<10	07	~10	11	20
	34.00	36.00	2.00	01189				20		<0.2	1.49	<5	70	<5	2.35	<1	11	43	16	2.8	20	0.43	349	<1	0.09	6	1510	8	<5	<20	76	0.1	<10	101	<10	9	20
	36.00	38.00	2.00	01190				140	)	<0.2	1.39	<5	50	<5	1.98	<1	17	37	79	3.62	30	0.59	407	<1	0.05	4	1520	10	<5	<20	27	0.11	<10	77	<10	10	20
	38.00	40.00	2.00	01191				15	•	<0.2	1.39	<5	55	<5	2.31	<1	12	45	20	2.91	20	0.52	445	<1	0.07	5	1420	10	<5	<20	60	0.1	<10	89	<10	9	28
	40.00	42.00	2.00	01192				10		<0.2	1.68	<5	45	<5	2.74	<1	10	41	13	2.37	10	0.42	394	<1	0.06	8	1450	14	<5	<20	50	0.09	<10	76	<10	Ř	28
	42.00	44.00	2.00	01193				920	) ·	<0.2	1.34	<5	50	<5	2.1	<1	17	43	58	2.95	20	0.44	380	<1	0.07	4	1590	12	<5	<20	46	0.09	<10	75	<10	10	25
	44.00	46.00	2.00	01194				440	) ·	<0.2	1.64	<5	40	<5	2.45	<1	24	41	58	4.23	30	0.69	528	<1	0.07	8	1520	14	<5	<20	33	0.09	<10	83	<10	12	29
	46.00	48.00	2.00	01195				70	•	<0.2	1.36	<5	30	<5	2.52	<1	12	51	37	2.21	10	0.45	367	<1	0.06	7	1460	12	<5	<20	36	0.08	<10	53	<10	9	21
	48.00	50.00	2.00	01196				10		<0.2	1.03	<5	35	<5	1.78	<1	8	60	26	1.99	10	0.34	253	<1	0.06	6	1120	10	<5	<20	35	0.07	<10	48	<10	8	18
	50.00	52.00	2.00	01197				15		<0.2	1.39	<5	35	<5	2.27	<1	12	55	45	2.37	10	0.42	291	<1	0.06	7	1430	14	<5	<20	37	0.08	<10	54	<10	9	20
	52.00	54.00	2.00	01198				20		<0.2	1.7	<5	40	<5	2.82	<1	12	55	51	2.63	10	0.55	355	1	0.06	10	1410	14	<5	<20	39	0.09	<10	59	<10	9	24

From То Length Au Pd Pt Au Au ppm unless otherwise noted Hole # m m m Tag # a/t oz/t ppb ppb ppb Ag Al% As Ba Bi Ca% Cd Co Cr Cu Fe% La Mg% Mn Mo Na% Ni P Pb Sb Sn Sr Ti% U V W Y Zn 54.00 56.00 2.00 01199 10 <0.2 1 1 1 <5 40 <5 1.96 <1 8 55 25 1.56 <10 0.36 285 <1 0.06 6 890 12 <5 <20 54 0.07 <10 47 <10 7 20 56.00 58.00 2.00 01200 5 < 0.2 1.41 <5 40 <5 5.45 <1 23 48 180 3.08 20 0.7 630 <1 0.06 25 1480 12 <5 <20 134 0.06 <10 54 <10 13 24 58.00 60.00 2.00 01201 5 < 0.2 1.46 <5 35 <5 2.63 <1 15 43 105 2.2 20 0.57 327 1 0.07 13 1490 10 <5 <20 52 0.08 <10 51 <10 9 18 60.00 61.25 1.25 01202 10 <0.2 1.12 <5 30 <5 1.87 <1 18 64 145 2.46 20 0.4 231 <1 0.07 15 1440 10 <5 <20 28 0.09 <10 42 20 <10 11 61.25 63.00 1.75 01203 25 <0.2 1 4 4 <5 45 <5 1.55 <1 23 56 238 3.81 20 0.93 333 <1 0.07 15 1590 6 <5 <20 32 0.14 <10 89 <10 10 22 63.00 65.00 2.00 01204 20 <0.2 2.31 <5 35 <5 3.05 <1 27 33 224 4.53 20 1.2 541 <1 0.07 12 2600 8 <5 <20 46 0.16 <10 123 <10 13 28 65.00 67.30 2.30 01205 15 <0.2 1.81 <5 30 <5 2.9 <1 27 29 235 3.84 20 0.88 404 <1 0.07 11 2180 6 <5 <20 43 0.12 <10 101 <10 12 22 67.30 69.00 1.70 01206 45 <0.2 1.81 <5 75 <5 0.88 <1 29 50 169 5.55 20 1 48 442 <1 0.07 15 1120 6 <5 <20 17 0.23 <10 143 <10 9 25 69.00 71.00 2.00 01207 240 <0.2 1.61 <5 80 <5 0.68 <1 37 51 217 5.8 20 1.44 436 <1 0.05 20 690 6 <5 <20 10 0.25 <10 140 <10 7 37 71.00 73 10 2.10 01208 15 <0.2 1.55 <5 60 <5 1.02 <1 26 44 124 4.72 20 1.33 572 <1 0.08 13 850 6 <5 <20 20 0.23 <10 131 <10 6 56 73.10 75.00 1.90 01209 25 <0.2 1.98 5 60 <5 3.65 <1 64 51 724 8.36 60 1.71 760 5 0.09 18 1100 6 <5 40 157 0.14 <10 138 <10 15 -36 75.00 77.00 2.00 01210 80 <0.2 2.61 <5 75 <5 3.75 <1 66 50 557 10 30 1 89 1354 1 0.07 18 1060 8 <5 60 182 0.08 <10 153 <10 19 56 77.00 79.00 2.00 01211 1.99 0.058 >1000 1.2 2.27 15 75 <5 2.39 <1 50 49 452 6.83 20 1.93 989 <1 0.12 16 990 10 <5 40 78 0.16 <10 156 <10 11 100 79.00 81.00 2.00 01212 15 <0.2 17 <5 65 <5 3.6 <1 28 47 88 6.21 20 2.2 1191 22 0.06 23 680 6 <5 20 220 0.11 <10 126 <10 13 61 81.00 83.00 2.00 01213 10 <0.2 2.43 <5 60 <5 2.33 <1 30 58 117 5.93 20 2.19 911 1 0.08 25 700 6 <5 <20 54 0.2 <10 180 <10 9 50 83.00 85.00 2.00 01214 20 <0.2 1.68 <5 95 <5 4.19 <1 29 51 159 5.96 20 1.63 1541 <1 0.09 21 1020 8 <5 20 215 0.08 <10 112 <10 16 70 85.00 87.00 2.00 01215 5 <0.2 1.97 <5 45 <5 1.99 <1 34 46 218 5.58 20 1.26 722 3 0.1 17 1200 8 <5 <20 38 0.18 <10 <10 10 52 116 87.00 89.00 2.00 01216 <5 <0.2 1.56 <5 95 <5 0.83 <1 22 43 97 4.37 20 1.2 487 8 0.08 10 920 6 <5 <20 15 0.23 <10 108 <10 5 45 100.00 102.00 2.00 01217 <5 <0.2 1.07 <5 45 <5 1.25 <1 18 49 76 2.64 10 0.56 285 <1 0.08 11 860 4 <5 <20 21 0.15 <10 57 <10 5 17 102.00 104.00 2.00 01218 40 <0.2 1.75 <5 80 <5 1.41 <1 33 41 137 5.53 20 1.05 486 <1 0.11 14 1250 4 <5 <20 31 0.22 <10 125 <10 8 26 104.00 106.00 2 00 01219 35 <0.2 1 <5 55 <5 1.68 <1 31 55 187 3.93 10 0.52 463 1 0.07 17 910 6 <5 <20 18 0.11 <10 73 <10 9 19 106.00 108.00 2.00 01220 15 <0.2 1.87 <5 40 <5 1.36 <1 26 105 95 4.54 10 1.28 654 5 0.09 60 560 8 <5 <20 23 0.2 <10 118 <10 9 48 108.00 110.00 2.00 01221 <0.2 0.9 45 <5 50 <5 1.51 <1 21 78 96 2.83 10 0.55 295 1 0.09 22 670 6 <5 <20 20 0.12 <10 59 <10 8 21 110.00 112.00 2.00 01222 20 <0.2 1.53 <5 105 <5 1.27 <1 23 70 91 4.2 10 1.06 593 <1 0.07 40 640 6 <5 <20 22 0.17 <10 101 <10 9 40 112.00 114.00 2.00 01223 10 <0.2 1.83 <5 125 <5 1.03 <1 27 99 120 4.31 10 1.04 698 1 0.14 43 610 10 <5 <20 39 0.19 <10 103 <10 9 114.00 116.00 61 2.00 01224 20 <0.2 1.43 <5 60 <5 0.93 1 36 67 207 5.74 20 0.8 533 3 0.09 47 820 10 <5 <20 23 0.14 <10 72 <10 11 42 116.00 118.00 2.00 01225 15 <0.2 0.95 <5 50 <5 1.73 <1 16 86 67 2.76 10 0.54 415 2 0.08 22 800 6 <5 <20 19 0.13 <10 50 <10 7 32 118.00 119.05 1.05 01226 5 <0.2 0.69 <5 35 <5 1.23 <1 13 81 67 1.78 <10 0.39 338 2 0.09 19 710 6 <5 <20 24 0.15 <10 47 <10 5 28 119.05 120.50 1.45 01227 5 <0.2 1.45 <5 55 <5 4.13 <1 19 67 52 3.06 10 1.25 731 <1 0.11 24 1260 10 <5 <20 137 0.14 <10 86 <10 7 41 DDH-FR-010 5.00 7.00 2.00 01228 30 <0.2 1.82 <5 85 <5 1.18 <1 18 35 117 4.27 20 0.73 512 <1 0.06 4 1700 8 <5 <20 82 0.09 <10 96 <10 12 22 7.00 9.00 2.00 01229 40 <0.2 2.02 <5 80 <5 0.98 <1 23 37 104 4.89 20 549 1 <1 0.06 3 1710 8 <5 <20 61 0.09 <10 105 <10 12 27 9.00 11.00 2.00 01230 165 <0.2 1.86 <5 75 <5 0.91 <1 33 27 235 5.7 30 0.91 503 <1 0.05 2 1650 8 <5 20 59 0.08 <10 98 <10 13 27 11.00 13.00 2.00 01231 20 <0.2 1.75 <5 75 <5 1.27 <1 19 27 200 4.38 20 0.75 543 <1 0.06 4 1710 8 <5 20 75 0.07 <10 93 <10 11 23 13.00 15.00 2 00 01232 130 <0.2 2.33 <5 70 <5 1.97 <1 15 27 4.26 84 20 0.89 761 <1 0.05 10 1620 10 <5 20 104 0.07 <10 91 <10 15 28 15.00 17.00 2.00 01233 30 <0.2 2.02 <5 65 <5 1.68 <1 14 33 69 3.97 20 0.83 606 <1 0.05 5 1680 8 <5 20 76 0.07 <10 17.00 88 <10 14 27 19.00 2.00 01234 675 <0.2 2.02 <5 55 <5 1.45 1 20 29 120 4 82 20 0.95 612 3 0.05 4 1630 8 <5 20 33 0.08 <10 91 <10 15 27 19.00 21.00 2.00 01235 20 <0.2 2 <5 55 <5 176 <1 14 41 29 3.77 20 0.81 651 <1 0.06 6 1670 10 <5 <20 41 0.09 21.00 <10 96 <10 15 27 23.00 2.00 01236 115 <0.2 1.66 65 45 <5 1.66 2 14 24 67 3.37 20 0.6 417 27 0.06 20 1720 8 70 <20 34 0.07 <10 70 <10 12 19 23.00 25.00 2.00 01237 85 <0.2 2.04 <5 50 <5 2 19 <1 12 38 28 3.38 20 0.61 550 6 0.06 8 1810 10 <5 <20 65 0.08 <10 80 25.00 <10 10 23 27.00 2.00 01238 30 <0.2 1.54 <5 55 <5 1.53 <1 11 23 47 3.18 20 0.46 391 1 0.06 4 1700 6 <5 <20 64 0.08 <10 85 <10 10 17 27.00 29.00 2.00 01239 75 <0.2 1.86 <5 55 <5 1.37 <1 28 34 428 4.92 20 0 76 611 11 0.05 5 1650 <20 57 0.07 <10 8 <5 91 <10 12 26 29.00 31.00 2.00 01240 15 <0.2 2.1 <5 30 <5 2.35 <1 13 38 51 3.39 20 0.63 458 <1 0.06 9 1670 8 <5 <20 29 0.08 <10 78 31.00 <10 10 21 33.00 2.00 01241 35 <0.2 2.01 <5 30 <5 2.74 <1 13 32 60 3.47 20 0.74 501 <1 0.06 7 1800 10 <5 38 0.07 <10 <20 85 <10 33.00 35.00 9 22 2.00 01242 15 < 0.2 1.68 <5 30 <5 2.28 <1 13 37 86 3.03 10 0.52 396 <1 0.06 6 1880 16 <20 27 0.07 <10 <5 68 <10 9 35.00 37.00 21 2.00 01243 15 <0.2 1.94 <5 30 <5 1.59 <1 17 25 137 4.56 20 0.9 559 <1 0.04 4 1740 8 <5 <20 30 0.07 <10 97 <10 10 27 37.00 39.00 2.00 01244 10 <0.2 2.02 <5 25 <5 2.24 <1 13 33 12 4.07 20 0.81 558 60 0.04 6 1780 8 <5 <20 21 0.07 <10 95 <10 10 24 39.00 41.00 2.00 01245 315 <0.2 2.36 <5 20 <5 2.85 <1 13 56 12 3.86 20 0.9 534 6 0.06 11 1640 6 <5 <20 28 0.08 <10 86 <10 10 25 41.00 43.00 2.00 01246 100 <0.2 2.28 <5 50 <5 2 79 <1 16 57 33 4.05 20 0.88 490 3 0.06 11 1620 10 <5 <20 36 0.11 <10 99 <10 10 55.00 57.00 25 2.00 01247 10 <0.2 2.13 <5 45 <5 3.21 <1 23 31 41 5.65 20 1.45 797 <1 0.04 12 1650 16 <5 40 67 0.12 <10 152 <10 13 34 57.00 59.00 2.00 01248 15 <0.2 2.13 <5 60 <5 5.52 <1 19 31 68 4.64 20 1,1 883 <1 0.04 17 1490 10 <5 <20 110 0.12 <10 131 <10 59.00 10 27 61.00 2.00 01249 5 <0.2 2.23 <5 190 <5 5.68 <1 20 31 45 4.46 20 <1 0.05 17 1540 0.86 800 10 <5 <20 393 0.12 <10 124 <10 11 26 61.00 63.00 2.00 01250 <0.2 2.26 <5 110 <5 3.17 <1 28 24 129

5.86 20 1.14 674 <1 0.05 11 1630 12 <5 40 179 0.14 <10 153 <10 12

35

15

 $\bigcap$ 

	From	To	Lengti	h	Au	Au	Pd Pt Au		ppm (	unless	other	wise	noted																						
Hole #	m	m	m	Tag #	g/t	oz/t	ррорророро	Ag	AI %	As	Ba	Bi	Ca 🤊	Cd	Co	Cr	Cu	Fe %	La	Ma V	Mn	Mc	Na %	NI	р	Ph	56	6-	e.,	<b>T</b> : 0/					_
	63.00	65.00	2.00	01251			20	<0.2	2.46	<5	110	<5	4.15	<1	26	26	24	5 78	20	1 46	924		0.04						3	11 76		<u> </u>		<u> </u>	<u>_2n</u>
	65.00	67.00	2.00	01252			110	<0.2	2.19	<5	75	<5	3.23	<1	25	25	61	5 42	20	1.40	720	~	0.04	14	1640	12	<5	40	88	0.16	<10	177	<10	10	34
	67.00	69.00	2.00	01253			15	<0.2	2.06	<5	110	<5	2.98	<1	25	27	117	5.42	20	1.23	720	~ 1	0.05	13	1520	6	<5	40	79	0.16	<10	173	<10	11	33
	69.00	71.00	2.00	01254			110	0.4	2.43	<5	85	<5	2.34	<1	36	34	284	6.76	20	1.07	542	<1	0.06	11	1500	8	<5	40	112	0.16	<10	161	<10	9	27
	71.00	73.00	2.00	01255			10	<0.2	1.72	<5	80	<5	2 26	<1	23	20	75	4 97	20	1.29	107	<1	0.07	11	1430	8	<5	40	115	0.14	<10	179	<10	11	40
	86.00	88.00	2.00	01256			20	<0.2	2.12	<5	70	<5	2 14	e1	20	23	170	4.07	20	0.94	407	<1	0.06	9	1480	8	<5	40	51	0.16	<10	146	<10	8	23
	88.00	90.00	2.00	01257	2.41	0.07	>1000	4	2 78	125	50	<5	3 23	-1	40	52	1009	0.10	20	1.34	5//	<1	0.07	10	1510	6	<5	40	49	0.14	<10	170	<10	10	30
	90.00	92.00	2.00	01258			275	<0.2	2 11	<5	40	-5	1 03	-1	21	20	1008	5.02	20	1.63	809	11	0.03	11	1210	10	<5	60	44	0.08	<10	151	<10	14	112
	92.00	94.00	2.00	01259			125	<0.2	1.64	<5	60	-5	1.30	~1	10	29	103	5.97	20	1.26	622	18	0.04	11	1540	6	<5	40	27	0.1	<10	151	<10	11	43
	107.00	109.00	2.00	01260			10	<0.2	1 16	-5	55	~5	1 6 1	-1	19	32	42	4.15	20	0.81	360	<1	0.06	8	1530	8	<5	20	42	0.15	<10	125	<10	7	23
	109.00	111.00	2.00	01261			25	0.8	1 43	-5	45	~5	1.01	-1	10	30	24	2.72	10	0.37	234	<1	0.07	3	1670	4	<5	<20	59	0.08	<10	82	<10	9	15
	111.00	113.00	2.00	01262			20	<0.0	1 78	-5		~5	1.00		13	35	614	3.06	10	0.54	327	<1	0.05	6	1690	6	<5	<20	45	0.07	<10	71	<10	9	33
	113.00	115.00	2.00	01263			10	<0.2	1 14	~5	35	<5 -E	2.49	<1	11	38	112	2.99	10	0.64	416	<1	0.05	7	1640	8	<5	<20	47	0.07	<10	73	<10	9	20
	115.00	117.50	2.50	01264			50	~0.2	4.2	~5	40	<b>N</b> 0	1.50	<1 	9	40	42	2.36	10	0.34	234	<1	0.06	3	1590	6	<5	<20	48	0.08	<10	68	<10	7	15
	117.50	119.00	1.50	01265			35	<0.2	1.3	<5 .5	35	<5	1.74	<1	12	35	116	2.57	10	0.49	275	<1	0.06	4	1730	6	<5	<20	45	0.08	<10	62	<10	8	17
	119.00	121.00	2.00	01266			20	<0.2	1.3	<5	80	<5	1.69	<1	14	32	82	3.14	10	0.53	283	<1	0.06	4	1700	6	<5	<20	100	0.07	<10	68	<10	8	18
	121.00	123.00	2 00	01267			30	NU.2	1.75	<5	85	<5	1.97	<1	20	33	132	4.18	20	0.75	373	<1	0.05	6	1640	8	<5	20	121	0.07	<10	79	<10	10	18
	123.00	125.00	2.00	01269			15	<0.2	1.64	<5	110	<5	2.43	<1	14	29	64	3.77	20	0.71	423	<1	0.05	6	1720	8	<5	<20	179	0.07	<10	86	<10	10	18
	125.00	127.00	2.00	01260			55	<0.2	1.64	<5	70	<5	2.14	<1	29	38	174	5.33	20	0.71	530	1	0.06	6	1460	8	<5	20	84	0.07	<10	92	<10	11	24
	127.00	129.00	2.00	01203			5	<0.2	0.86	<5	65	<5	1.66	<1	7	54	9	1.91	<10	0.31	309	<1	0.06	1	720	6	<5	<20	110	0.05	<10	43	<10	5	16
	129.00	131.00	2.00	01270			10	<0.2	1.26	<5	165	<5	1.72	<1	6	55	6	1.88	<10	0.36	290	<1	0.06	3	690	8	<5	<20	386	0.05	<10	39	<10	6	16
	131.00	132.60	1.60	01272			10	<0.2	1.25	<5	185	<5	1.65	<1	7	56	9	1.86	<10	0.36	309	<1	0.06	2	680	6	<5	<20	510	0.05	<10	40	<10	5	16
	132 60	134.00	1 40	01272			25	<0.2	1.96	<5	60	<5	2.26	<1	9	54	11	2.7	10	0.63	449	3	0.05	7	790	8	<5	<20	132	0.05	<10	50	<10	7	21
	134.00	136.00	2.00	01274			60	<0.2	2.13	<5	35	<5	2.96	<1	11	40	16	3.46	20	0.88	529	4	0.05	9	1700	8	<5	<20	66	0.06	<10	75	<10	9	22
	136.00	138.00	2.00	01275			10	<0.2	1.65	<5	50	<5	2.21	<1	11	35	33	3.22	20	0.56	372	<1	0.06	5	1740	6	<5	<20	80	0.06	<10	77	<10	9	17
	138.00	140.00	2.00	01276			15	<0.2	1.42	<5	75	<5	1.68	<1	15	37	61	3.62	20	0.61	367	<1	0.06	4	1480	6	<5	<20	110	0.07	<10	78	<10	9	18
	140.00	142.00	2.00	01270			10	<0.2	1.35	<5	75	<5	2.16	<1	9	37	7	3.16	10	0.37	279	<1	0.07	4	1770	6	<5	<20	111	0.09	<10	87	<10	7	16
	142.00	144.00	2.00	01278			5	<0.2	1.39	<5	160	<5	2.29	<1	11	33	13	3.15	10	0.41	307	<1	0.06	4	1730	8	<5	<20	301	0.09	<10	88	<10	7	18
	144 00	146.00	2.00	01270			5	<0.2	1.52	<5	100	<5	2.29	<1	12	36	15	3.44	10	0.53	342	<1	0.06	4	1780	4	<5	<20	159	0.11	<10	84	<10	6	20
	146.00	148.00	2.00	01280			10	<0.2	1.52	<5	105	<5	1.88	<1	17	34	85	4.13	10	0.52	316	<1	0.07	4	1790	8	<5	20	91	0.09	<10	93	<10	8	20
	148.00	150.00	2.00	01281			10	<0.2	1.39	<5	60	<5	2.09	<1	10	33	13	2.86	10	0.5	330	<1	0.07	4	1680	6	<5	<20	67	0.08	<10	75	<10	7	16
	150.00	152.00	2.00	01282			10	<0.2	1.13	<5	45	<5	1.64	<1	8	29	58	2.33	10	0.35	235	<1	0.07	2	1650	6	<5	<20	46	0.07	<10	69	<10	8	14
	152.00	154.00	2.00	01283			5	<0.2	1.07	<5	65	<5	1.75	<1	8	29	21	2.37	10	0.35	255	<1	0.07	2	1810	6	<5	<20	53	0.06	<10	70	<10	8	14
	154.00	156.00	2.00	01203			15	<0.2	1.26	<5	40	<5	1.76	<1	10	28	37	2.86	10	0.48	314	<1	0.06	3	1590	6	<5	<20	34	0.07	<10	74	<10	7	15
	156.00	158.00	2.00	01285			30	<0.2	1.36	<5	75	<5	1.71	<1	14	31	49	3.49	10	0.55	333	<1	0.07	4	1720	6	<5	<20	42	0.08	<10	84	<10	8	18
	158.00	159.00	1.00	01200			100	<0.2	1.38	<5	50	<5	1.64	<1	25	39	448	4	20	0.72	366	4	0.05	3	1470	6	<5	<20	36	0.06	<10	63	<10	9	23
	159.00	161.00	2.00	01297			15	<0.2	1.11	<5	40	<5	1.8	<1	12	27	63	2.69	10	0.58	354	<1	0.06	5	1720	6	<5	<20	70	0.07	<10	62	<10	8	19
	161.00	163.00	2.00	01288			<5	<0.2	2.21	<5	30	<5	2.32	<1	32	104	154	4.78	10	2.34	808	<1	0.03	60	2300	12	<5	<20	82	0.1	<10	92	<10	8	72
	163.00	164 65	1.65	01200			<5	<0.2	2.12	<5	25	<5	1.54	<1	32	119	155	4.8	10	2.4	714	<1	0.03	76	2090	10	<5	<20	62	0.09	<10	97	<10	7	69
	164 65	167.00	2 35	01209			5	<0.2	2.14	<5	40	<5	1.76	<1	31	77	152	4.88	20	2	736	<1	0.04	47	2490	16	<5	<20	88	0.11	<10	94	<10	9	76
	167.00	169.00	2.00	01201			185	<0.2	1.48	<5	40	<5	1.53	<1	27	31	123	4.24	20	0.83	409	<1	0.06	5	1670	8	<5	20	42	0.07	<10	76	<10 1	10	25
	169.00	171.00	2.00	01291			15	<0.2	1.47	<5	40	<5	2.1	<1	20	30	61	3.69	10	0.66	376	<1	0.06	5	1700	8	<5	<20	42	0.06	<10	71	<10	9	20
	171.00	173.00	2.00	01292			90	<0.2	1.09	<5	45	<5	2.13	<1	14	39	60	2.82	10	0.61	408	<1	0.07	6	1440	14	<5	<20	64	80.0	<10	66	<10	7	30
	173.00	175.00	2.00	01293			190	<0.2	1.25	<5	40	<5	2.3	<1	18	31	188	3.16	10	0.61	482	<1	80.0	5	1610	16	<5	<20	59	0.08	<10	60	<10	8 -	38
	175.00	176 50	1.50	01204			25	<0.2	1.57	<5	55	<5	1.97	<1	24	37 2	273	4.13	20	0.58	384	4	0.07	4	1710	8	<5	<20	56	0.07	<10	76	<10 1		24
	176 50 1	179.00	1.50	01295			35	<0.2	1.99	<5	50	<5	2.96	<1	29	35 2	214	4.73	20	0.81	534	<1	0.05	8	1600	10	<5	20	62	0.07	<10	81	<10 1	0	28
	189.00 1	191.00	2.00	01207			5	<0.2	1.17	<5	40	<5	2.07	<1	15	37	73	2.08	<10	0.5 <b>8</b>	413	<1	0.13	7	1510	16	<5	<20	89	0.13	<10	66	<10	4	40
	191.00 1	193.00	2.00	01200			5	<0.2	1.32	<5	50	<5	2.53	<1	17	36	69	2.39	<10	0.69	485	<1	0.12	12	1550	18	<5	<20	08	0.14	<10	79	<10	4 4	47
	193.00	195.00	2.00	01200			5	0.4	1.88	10	60	15	1.86	<1	64	45 1	018	7.55	20	1.12	572	<1	0.04	6	1580	12	<5	40	36	0.06	<10 ·	103	20 1	4 6	 63
	195.00 1	197.00	2.00	01200			<5	<0.2	1.47	<5	110	<5	2.97	<1	10	31	17	2.88	10	0.39	338	<1	0.07	6	1590	8	<5	<20 ·	55	0.07	<10	82	<10 #	8 3	20
	197.00 4	100 00	2.00	01300			35	<0.2	1.4	<5	85	<5	2.63	<1	12	39	29	2.98	10	0.47	362	4	0.06	7	1520	10	<5	<20 1	45	0.06	<10	79	<10 <	- 4 9 2	21
		01.00	2.00	01301			<5	<0.2 (	0.89	<5	50	<5	1.55	<1	7	36	7	2.18	10	0.26	232	<1	0.07	1	1640	8	<5 ·	<20	53 (	0.06	<10	74	<10 (	- 4 - 1	. ' 17
	201.00 2	01.00	2.00	01302			25	<0.2 (	0.96	<5	45	<5	1.65	<1	7	36	6	1.96	10	0.31	237	<1	0.07	2 ·	1520	8	<5	<20	53 (	0.07	<10	77	<10	7 1	17
4	201.00 2	203.00	2.00	01303			10	<0.2	1.04	<5	40	<5	1.63	<1	10	36	10	2.84	10	0.38	283	<1	0.06	4 1	1620	8	<5 4	<20	19 (	0.09	<10	24	<10 5		22
																																		- 4	

 $\bigcap$ 

(	

	From	То	Length		Au	Au	Pd Pt	Au		ppm i	unless	other	wise i	noted																						
Hole #	m	<u>m</u>	m	Tag #	g/t	oz/t	ppb ppb	ppb	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	РЬ	SЪ	Sn	Sr T	1%	U	v	w	Y	Zn
	203.00	205.00	2.00	01304				20	<0.2	0.93	<5	50	<5	1.57	<1	9	41	5	2.62	10	0.3	245	<1	0.06	٦	1710	6	<u> </u>	<20	58 0	07	<10	104	<10	-	10
	205.00	207.50	2.50	01305				5	<0.2	1.22	<5	70	<5	1.8	<1	11	41	18	3.11	10	0.37	291	<1	0.07	5	1750	8	-5	~20	76 0	.07 .	~10	110	<10	0	19
	207.50	209.00	1.50	01306				15	<0.2	1.59	<5	50	<5	2.64	<1	9	38	17	2.71	10	0.49	374	<1	0.06	7	1650	12	-5	<20	65 0	.00 .	~10	80	<10	0	20
	209.00	211.00	2.00	01307				20	<0.2	1.98	<5	100	<5	3.65	1	25	38	120	4.78	20	0.84	583	<1	0.05	12	1660	14	<5	<20	117 0	.00 •	<10	102	<10	12	22
	211.00	213.25	2.25	01308				380	3.6	1.84	275	70	85	1.32	<1	262	92	1262	>10	40	1.29	636	19	0.01	8	680	16	-5	60	32 0	.05	~10	07	220	24	50
	213.25	215.65	2.40	01309				55	<0.2	1.83	110	60	<5	1.49	<1	60	44	221	7.69	20	1.33	773	<1	0.02	5	1510	10	-5	20	22 0	.00 -	~10	122	520	45	20
	215.65	217.00	1.35	01310				100	<0.2	1.29	<5	35	<5	2.08	<1	13	26	86	3.04	10	0.57	352	<1	0.05	5	1640	8	~5	<20	30 0	.00	<10	79	<10	15	17
	217.00	219.00	2.00	01311				75	<0.2	1.71	<5	75	<5	2.37	<1	15	44	62	3.96	20	0.6	393	<1	0.06	7	1660	10	-5	<20	09 0	.07	~10	/0 05	<10	10	24
	219.00	221.00	2.00	01312				105	<0.2	1.73	<5	35	<5	3.21	<1	15	34	51	3.53	10	0.66	446	<1	0.05	, 8	1680	10	-5	~20	36 0	.00	~10	90	<10	0	24
	221.00	223.00	2.00	01313				375	<0.2	1.56	<5	75	<5	2.48	<1	19	45	77	4 25	10	0.61	411	ج ا	0.05	7	1810	10	~5	<20	50 0	.00 *	<10	90	<10	9	22
	223.00	225.00	2.00	01314				10	<0.2	1.21	<5	55	<5	1.79	<1	11	39	4	3 16	10	0.42	307	<1	0.06	6	1700	10	~5	~20	54 U. 63 (	.09 •	<10	107	< 10		21
	225.00	227.00	2.00	01315				10	<0.2	1.21	<5	45	<5	2.15	<1	10	38	6	2 91	10	0.44	344	- 1	0.00	5	1760	0	~5	<20	53 0		< 10	107	<10	8	24
												-	-		·			•	2.01	.0	0.44	044		0.00	J	1700	0	10	~20	59 0	.09 <	<10	108	<10	1	23
DDH-FR-011	21.00	23.00	2.00	01316				5	<0.2	1.29	<5	65	<5	1 95	<1	12	48	7	3 56	20	0.47	434	-1	0.06	E	1920		-5	-20	70 0	••		~~			
	23.00	25.00	2.00	01317				25	<0.2	1.33	<5	65	<5	1.89	<1	11	40	32	3 33	20	0.47	402	-1	0.00	5	1020	•	<5	<20	73 0.	.09 <	<10	92	<10	10	30
	25.00	27.00	2.00	01318				25	<0.2	1.58	<5	65	<5	2 44	1	15	40	282	3.76	20	0.43	402	-1	0.06	5	1880	10	<5	<20	70 0.	> 80.	<10	83	<10	10	29
	27.00	29.00	2.00	01319				35	<0.2	1 74	<5	55	<5	2.44	<1	14	42	122	3.70	20	0.52	4/0	~1	0.06	5	1890	10	<5	<20	58 0.	.08 <	<10	83	<10	10	39
	42.00	44.00	2.00	01320				20	<0.2	1.51	<5	50	<5	2 35	-1	12	30	12.0	3.07	20	0.75	394	~	0.06	5	1890	12	<5	<20	o1 0.	.08 <	<10	79	<10	10	35
	44.00	46.00	2.00	01321				35	0.2	1.53	<5	95	<5	2.00	-1	37	40	10 272	5.57	20	0.55	453	5	0.05	6	1850	10	<5	<20	58 0.	.08 <	<10	87	<10	9	28
	46.00	48.00	2.00	01322				25	<0.2	1.66	<5	105	-5	2.17	~1	20	49	146	2.52	20	0.69	532	<1	0.05	6	1820	14	<5	20	Э <b>6</b> 0.	08 <	<10	106	<10	12	40
	48.00	50.00	2.00	01323				5	<0.2	1.83	-5	80	-5	2.00	~1	11	40	27	4.73	20	0.6	485	<1	0.05	6	1860	12	<5	<20 1	25 0.	09 <	<10	99	<10	10	46
	50.00	52.00	2.00	01324				5	<0.2	1.52	<5	30	-5	3.45	-1	10	33	21	3.39	20	0.57	433	<1	0.07	9	1520	6	<5	<20	32 0.	08 <	<10	88	<10	9	22
	52.00	54.00	2.00	01325				5	<0.2	1 4 1	<5	70	-5	2.65	~1	10	40	20	2.03	20	0.8	489	<1	0.06	12	1560	6	<5	<20 1	25 0.	06 <	<10	68	<10	10	19
	83.00	85.00	2.00	01326				25	<0.2	15	<5	70	<5	2.00	~1	10	40	49	3.4	20	0.45	400	<1	0.07	6	1480	6	<5	<20 {	36 0.	07 <	<10	90	<10	9	22
	85.00	87.00	2.00	01327				65	0.2	1 97	<5	85	-5	2.02	~1	24	79 20	206	3.02	20	0.37	320	<1	0.07	6	1500	6	<5	<20 8	30 0.	06 <	<10	80	<10	8	20
	87.00	89.00	2.00	01328				460	4.6	2 48	375	85	50	1 79	-1	21 65	20	290	4.95	20	1	683	<1	0.06	9	1780	6	<5	<20 1	37 0.	08 <	<10	111	<10	10	29
	89.00	91.00	2.00	01329				275	5.2	2 46	55	65	50	1.66	~1	26	50	1500	7 60	40	1.3	949	<1	0.03	11	1400	10	<5	<20 \$	57 O.	05 <	<10	111	<10	18	263
	91.00	93.00	2.00	01330				35	12	2 46	<5	145	15	3.86	-1	20	35	700	1.09	30	1.30	1004	2	0.02	8	1350	8	<5	<20	17 0.	04 <	<10	101	<10	15	90
	93.00	95.00	2.00	01331				15	<0.2	1 77	<5	70	<5	3.62	<1 <1	12	20	26	2.02	30	0.7	1048	<1	0.04	11	1/20	8	<5	<20 2	88 0.	06 <	<10	123	<10	13	52
	110.00	112.00	2.00	01332				30	<0.2	2.04	<5	55	-5	3.62	~1	14	23	74	4 22	20	0.7	700	<1	0.06	12	1780	6	<5	<20 1	20 0.	07 <	<10	106	<10	9	19
	112.00	114.00	2.00	01333				85	<0.2	2 44	<5	50	<5	3 34	-1	19	33	195	4.52	20	0.99	702	51	0.05	11	1830	8	<5	<20 1	00 0.	07 <	<10	85	<10	10	24
	114.00	116.00	2.00	01334				145	<0.2	2.06	<5	50	<5	2 76	~1	16	35	100	4.34	20	0.79	436	<1	0.05	12	1810	10	<5	<20 7	'0 0.	07 <	<10	90	<10	10	25
	116.00	118.00	2.00	01335				80	<0.2	1.53	<5	60	<5	1.8	21	15	38	70	3.04	20	0.70	430	<1	0.07	10	1820	6	<5	<20 7	8 0.	07 <	<10	79	<10	9	18
	118.00	120.00	2.00	01336				70	<0.2	1 4 9	<5	105	<5	2.06	-1	12		60	3.33	20	0.52	200	<   	0.09	6	1580	6	<5	<20 €	5 0.0	08 <	<10	75	<10	9	15
	120.00	122.00	2.00	01337				160	<0.2	1.39	<5	50	-5	1 78	21	14	44	206	3.55	20	0.55	338	<1	0.07	6	1520	8	<5	<20 1	33 0.0	07 <	:10	83	<10	9	16
	122.00	124.00	2.00	01338				50	<0.2	1.52	<5	60	<5	2 22	-1	8	40 37	300	3.3	20	0.43	279	<1	0.07	8	1520	8	<5	<20 4	,2 0.0	07 <	:10	61	<10	8	16
	124.00	126.00	2.00	01339				30	<0.2	1.8	-5	70	-5	2.22	-1	12	37	70	2./1	10	0.48	332	<1	0.07	<i>'</i>	1540	8	<5	<20 E	2 0.0	J6 <	:10	63	<10	8	14
	126.00	128.00	2.00	01340				55	<0.2	1 57	-5	40	~5	2.5	~1	12	36	61	3.47	20	0.00	415	<1	0.07	8	1550	8	<5	<20 8	8 0.0	)7 <	:10	69 ·	<10	9	18
	130.00	132.00	2.00	01341				20	<0.2	1.56	~5	40	~5	2.13	~1	0	30	42	3.1	20	0.72	448	<1	0.06	10	1600	8	<5	<20 4	8 0.0	)6 <	10	73 ·	<10 1	10	18
	132.00	134.00	2.00	01342				15	<0.2	1.00	-5	45	~5	2.17	~1	9 10	34	42	2.9	20	0.5	354	<1	0.07	5	1550	8	<5	<20 3	<i>i</i> 5 0.0	)6 <	10	57 ·	<10	9	16
	134.00	136.00	2.00	01343				50	<0.2	1.4	~5	35	~5	2.11	~1	10	35	43	2.55	10	0.47	314	2	0.07	7	1570	8	<5	<20 5	/1 0.0	)6 <	10	50 ·	<10	9	15
	175.00	177.00	2.00	01344				10	<0.2	1.1	~5	55	~5	2.42	~1	10	34	59	2.19	10	0.56	333	4	0.06	8	1690	8	<5	<20 8	6 0.0	)7 <	10	41 .	<10	8	18
	177.00	179.00	2.00	01345				5	<0.2	1.27	-5	70	~5	1.00		0	47	62	2.59	10	0.33	228	<1	0.07	8	1580	8	<5	<20 7	2 0.0	)7 <'	10	57 ·	<10	9	15
	179.00	181 00	2.00	01346				5	~0.2	0.01	~5	70	~5	1.7.3	~	9	40	22	3.03	20	0.32	235	<1	0.06	6	1650	6	<5	<20 8	2 0.0	)7 <	10	85 ·	<10 1	10	15
	245.00	247.00	2.00	01347				-5	~0.2	1 72	~5	10	<5 <5	1.51	~1	0	42	16	1.36	<10	0.18	162	<1	0.07	2	880	6	<5	<20 9	1 0.0	)7 <'	10	34 ·	<10	5	10
	247.00	249.00	2.00	01348				35	<0.2	1.75	5	40	<5	2.20	<1	10	41	15	3.16	20	0.58	382	<1	0.06	7	1620	8	<5	<20 5	4 0.0	)7 <'	10	59 ·	<10 1	10	20
	249.00	251.00	2.00	01349				5	<0.2	1.5	-50 -6	70	~5	4.49 2.04	~1	12	32 33	32	3.4/	20	0.57	476	<1	0.06	11	1520	8	<5	<20 14	<b>19</b> 0.0	)4 <'	10	35 ·	<10 1	12	22
	251,00	253.00	2.00	01350				10	<0.2	2.04	-0	7 U 85	~5	2.31	~1	24	33	140	3.6/	20	0.72	465	<1	0.05	7	1650	10	<5	<20 13	33 0.0	)6 <'	10	91 ·	<10 1	12	19
	253.00	255.00	2.00	01351				10	<0.2	1 71	-3	70	~J	2.09	~	24 16	31	336	4.41	20	0.9	427	7	0.05	9	1680	12	<5	<20 17	/2 0.0	)6 <'	10 8	33 -	<10 1	12	26
	255,00	257.00	2.00	01352				10	<0.2	1.70	~5	50	~5	2.01	~1	0	34	128	3.54	20	0.59	362	<1	0.06	8	1680	8	<5	<20 1;	31 0.0	)6 <'	10	70 •	<10 1	0	19
	257.00	259.00	2.00	01353				20	<0.2	1.52	-5	195	~5	2.41	-1	0	21	30	2.08	10	0,4	273	<1	0.07	5	1630	8	<5	<20 9	0 0.0	)6 <'	10 :	56 ·	<10 /	8	13
	259.00	261.00	2.00	01354				20	<0.2	1.07	-3	200	~3 ~5	2./4	~1	9	42	40	2.66	10	0.62	317	<1	0.08	8	1480	10	<5	<20 50	J2 0.0	)7 <1	10 6	32 ·	<10 /	9	14
	261.00	263.00	2.00	01355				30	<0.2	1.03	~0 /F	170	~3 ~F	3.31 2.0		•	19	30	2.08	10	0.62	373	<1	0.06	10	1130	10	<5	<20 61	15 0.0	)4 <'	10 4	12	<10 /	8	13
			1.00					50	~v.z	1.07	- 3	170	-0	2.0	<b>S</b> 1	0	21	21	2.92	20	0.51	341	<1	0.07	7	1600	10	<5	<20 47	/4 0.0	)5 <'	10 e	39 🔹	<10 !	9	15

Hole #	m	m	m	Tag #	g/t	oz/t	pob pob pot	Ao	ALS	6 As	Ba	Bi	Ca V	6 04	Co	Cr.	<b>C</b>	En M	1.0	Ma N					-	-	<u>.</u>	~	_						
	263.00	265.00	2.00	01356			10	<0	2 1 46	2 /5		~5	2.20					10 /6	La	141g /6		INIC	) Na %		P	10	50	<u></u>	Sr	11%	<u> </u>	<u> </u>		<u> </u>	Zn
	265.00	266.70	1.70	01357			20	<0.	2 1 4 6	2 -5	50	-5	2.25	1	9	34		3.26	20	0.37	282	<1	0.06	7	1650	10	<5	<20	120	0.07	<10	75	<10	9	16
	266.70	268.22	1.52	01358			75	<0.	2 1.44	, -5 ; -5	55	~5	4.01	-1	50	35	44	3.34	20	0.6	465	<1	0.05	12	1610	12	<5	<20	82	0.06	<10	67	<10	10	18
				01359				NO SAN		, .,	55	-5	1.41	~ 1	50	47	204	1.09	20	1.09	728	<1	0.04	8	1520	8	<5	<20	24	0.04	<10	90	<10	16	43
DDH-FR-012	5.30	8.00	2.70	01360			610	<0 :	2 1 92	> <5	60	55	1 10	-1	38	26	965		20	0.00				_		_	_								
	8.00	10.00	2.00	01361			10	<0 3	0 1 30	 	60	<5	1.10		0	30	200	0.00	30	0.62	452	<1	0.05	6	1610	8	<5	<20	33	0.06	<10	78	<10	13	32
	10.00	12.00	2.00	01362			15	<0.2	2 1 72	<5	50	<5	1.0	-1	11	35	45	3.14	20	0.33	309	<1	0.07	6	1640	8	<5	<20	58	0.07	<10	83	<10	8	20
	12.00	14.00	2.00	01363			80	<0.2	187	· <5	65	30	0.96	<1 <1	37	44	1650	7 44	20	0.53	415	<1	0.05		1640	8	<5	<20	49	0.07	<10	75	<10	9	21
	14.00	16.00	2.00	01364			155	<0.2	2 1 21	<5	55	<5	1 26	21	15	31	110	2 46	20	0.07	433	2	0.04	4	1460	8	<5	<20	61	0.07	<10	92	10	14	38
	16.00	18.00	2.00	01365			30	<0.2	1.09	) <5	60	<5	1 44	<1	10	39	27	2.40	20	0.35	200	<1	0.07	5	1640	8	<5	<20	45	0.07	<10	75	<10	8	15
	40.00	42.00	2.00	01366			10	<0.2	1.32	<5	70	<5	1.44	e1	10	36	21	2.00	20	0.25	214	<1	0.05	4	1680	8	<5	<20	47	0.08	<10	80	<10	8	16
	42.00	44.00	2.00	01367			15	<0.2	1.62	<5	45	<5	2 4 9	<1	12	30	21	2.00	20	0.37	309	<1 -4	0.07	6	1800	8	<5	<20	55	0.07	<10	98	<10	11	17
	44.00	46.00	2.00	01368			5	<0.2	1.66	<5	60	<5	2.40	<1	11	20	18	3.44	20	0.71	484	<1	0.06	9	1840	10	<5	<20	40	0.06	<10	93	<10	12	20
	46.00	48.00	2.00	01369			30	<0.2	2 15	<5	35	<5	4 21	-1	20	23	209	3.09	20	0.00	412	<1	0.06	9	1810	10	<5	<20	66	0.07	<10	88	<10	12	19
	48.00	50.25	2.25	01370			10	<0.2	1 4 9	<5	70	<5	23	~1	16	34	200	4.40	20	1.21	645	<1	0.05	17	1580	12	<5	<20	77	0.06	<10	116	<10	13	32
	50.25	52.75	2.50	01371			25	<0.2	1.40	<5	40	~5	1.05	~1	10	34	0/	4.18	20	0.64	467	<1	0.07	9	1580	10	<5	<20	48	0.07	<10	106	<10	12	24
	52.75	54.00	1.25	01372	11.5	0.335	>100	) <0.2	1 29	<5	85	100	0.46	2	194	30	2021	4.38	20	0.68	437	<1	0.06	8	1660	12	<5	<20	26	0.07	<10	88	<10	12	32
	54.00	56.00	2.00	01373	2.26	0.066	>100	) <0.2	1 31	<5	60	<5	1 71	~ 1	104	20	210	>10	50	0.79	352	57	0.03	6	990	10	<5	60	11	0.05	<10	56	30	28	64
	56.00	58.30	2.30	01374	2.09	0.061	>100	) <0.2	1 72	<5	55	10	1 30	1	41 94	50	210	0.10	20	0.59	394	4	0.06	6	1540	12	<5	<20	39	0.07	<10	77	<10	13	25
	58.30	60.00	1.70	01375			15	<0.2	1.5	<5	70	<5	2	-1	15	34	26	264	30	0.9	358	10	0.05	8	1410	10	<5	20	24	0.06	<10	76	20	17	26
	60.00	62.00	2.00	01376			55	<0.2	1.3	<5	100	<5	2 16	<1 <1	18	43	145	3.04	20	0.61	380	<1	0.07		1610	10	<5	<20	46	0.09	<10	101	<10	11	26
	62.00	64.00	2.00	01377			70	<0.2	1.34	<5	90	<5	1 94	<1	16	38	191	3.04	20	0.51	395	<1	0.07	8	1590	8	<5	<20	66	0.1	<10	105	<10	10	30
	64.00	66.00	2.00	01378			10	<0.2	1.21	<5	75	<5	1.88	<1	14	3Q	34	2.43	20	0.52	39/	~1	0.08	2	1590	10	<5	<20	61	0.09	<10	100	<10	9	30
	66.00	68.00	2.00	01379			10	<0.2	1.27	<5	60	<5	1.86	<1	12	33	40	2.69	20	0.4	305	-1	0.08	6	1670	10	<5	<20	49	0.08	<10	84	<10	9	25
	68.00	70.00	2.00	01380			70	<0.2	1.26	<5	50	<5	1.7	<1	20	36	230	3.2	20	0.48	360	~1	0.07	6	1620	10	<5	<20	42	0.09	<10	80	<10	9	28
	70.00	72.00	2.00	01381			10	<0.2	0.91	<5	50	<5	1.33	<1	7	40	11	1 69	10	0.40	273	~1	0.07	4	1630	0	<5 -5	<20	33	0.07	<10	69	<10	9	30
	72.00	74.00	2.00	01382			20	<0.2	1.22	<5	45	<5	1.72	<1	10	37	19	2.05	10	0.41	366	<1	0.05	4	1560	10	<5	<20	44	0.05	<10	65	<10	7	22
	74.00	76.00	2.00	01383			5	<0.2	1.21	<5	45	<5	1.71	<1	8	37	10	1.91	10	0.35	369	<1	0.00	6	1560	10	~5	<20	43	0.06	<10	59	<10	7	23
	76.00	78.00	2.00	01384			5	<0.2	1.18	<5	50	<5	1.79	<1	8	37	17	2.09	10	0.39	410	<1	0.08	6	1470	10	-5	~20	47 50	0.06	<10	65	<10	<u>_</u>	24
	78.00	79.70	1.70	01385			10	<0.2	1.12	<5	45	<5	1.71	<1	13	32	56	2.59	10	0.46	394	<1	0.07	5	1560	10	~5	~20	20	0.06	<10	67	<10	<i>'</i>	25
	79.70	82.00	2.30	01386			20	<0.2	1.27	<5	50	<5	2.6	<1	12	36	59	2.76	20	0.62	501	<1	0.07	ğ	1580	10	<5	~20	90	0.05	<10	02 65	<10	8	22
	82.00	84.00	2.00	01387			10	<0.2	1.96	<5	50	<5	1.44	<1	54	48	279	7.89	20	1.1	748	<1	0.03	6	1560	10	<5	40	24	0.03	<10	03	<10	11	22
	84.00	86.00	2.00	01388			5	<0.2	1.03	<5	45	<5	2.28	<1	11	37	73	2.14	10	0.44	339	<1	0.07	7	1550	8	<5	<20	62	0.05	<10	91	<10	10	44
	86.00	88.00	2.00	01389			5	<0.2	1.32	<5	35	<5	2.36	<1	16	47	129	2.59	10	0.61	410	<1	0.06	10	1470	10	<5	<20	46	0.03	<10	40	<10	10	17
	88.00	90.00	2.00	01390			115	<0.2	1.01	<5	30	<5	1.58	<1	10	43	82	1.78	10	0.34	230	<1	0.07	6	1530	8	<5	<20	33	0.04	<10	49	<10	0	20
	90.00	92.00	2.00	01391			5	<0.2	1.01	<5	25	<5	1.96	<1	10	44	57	1.9	10	0.42	315	<1	0.07	7	1420	8	<5	<20	40	0.04	<10	42	<10	9 9	15
	92.00	94.00	2.00	01392			35	<0.2	1	<5	35	<5	1.62	<1	15	45	116	2.03	10	0.34	220	<1	0.06	9	1450	8	<5	<20	37	0.04	<10	38	<10	9	10
	94.00	96.00	2.00	01393			15	<0.2	1.16	<5	50	<5	1.77	<1	10	43	58	2.2	10	0.43	282	2	0.07	8	1570	8	<5	<20	56	0.04	<10	54	<10	0	20
	96.00	98.00	2.00	01394			30	<0.2	0.9	<5	50	<5	1.49	<1	9	39	62	1.79	10	0.28	203	<1	0.06	6	1420	6	<5	<20	57	0.05	<10	43	<10	9	20
	98.00	100.00	2.00	01395			15	<0.2	1.53	<5	30	<5	2.24	<1	16	42	103	3.08	20	0.68	394	<1	0.06	10	1620	8	<5	<20	33	0.05	<10	4J 54	<10	0 11	15
	100.00	101.00	1.00	01396			915	0.2	1.17	105	60	20	5.64	<1	225	79	513	>10	30	0.81	732	6	0.03	30	880	16	<5	60	47	0.03	<10	44	20	11 22	21
	101.00	103.00	2.00	01397			20	<0.2	1.12	<5	35	<5	2.06	<1	18	38	114	3.23	20	0.58	399	<1	0.06	10	1870	12	<5	<20	31	0.05	~10	44 61	20 ·	10	24
	103.00	105.00	2.00	01398			15	<0.2	1.36	<5	35	<5	2.65	<1	15	53	51	3.92	20	0.85	638	<1	0.05	13	1620	16	<5	<20	35	0.06	<10	71	<10	12	24
	105.00	107.00	2.00	01399			75	<0.2	1.6	<5	40	<5	1.81	<1	17	55	112	4.78	20	1.01	643	2	0.04	13	1640	16	<5	<20	26	0.05	<10	77	~10	12 13	30 20
	107.00	09.00	2.00	01400			15	<0.2	1.44	<5	15	<5	2.98	<1	16	58	103	2.54	10	0.59	376	<1	0.06	17	1250	16	<5	<20	31	0.06	<10	46	<10	11	20
	109.00 1	11.00	2.00	01401			10	<0.2	0.99	<5	40	<5	1.56	<1	7	62	16	1.66	<10	0.35	293	<1	0.06	7	770	12	<5	<20	40	0.04	<10	32	<10	6	44 20
	111.00	13.00	2.00	01402			25	<0.2	0.75	<5	30	<5	1.03	<1	5	66	12	1.36	<10	0.26	246	2	0.06	4	730	10	<5	<20	30	0.04	<10	31	<10	5	10
	113.00	15.00	2.00	01403			10	<0.2	0.79	<5	40	<5	1.21	<1	6	63	24	1.35	<10	0.27	231	2	0.07	6	870	10	<5	<20	42	0.04	<10	31	<10	6	19 19
	115.00 1	16.75	1.75	01404			20	<0.2	1.08	<5	35	<5	2.33	<1	8	62	15	1.97	10	0.44	389	<1	0.06	10	730	12	<5	<20	45	0.05	<10	39	<10	7	25
	116.75 1	19.00	2.25	01405			15	<0.2	1.81	<5	65	<5	3.34	<1	28	71	116	5.2	20	1.59	887	<1	0.1	43	1450	16	<5	<20	81	0.13	<10	129	<10	13	53
	119.00 1	21.00	2.00	01406			35	<0.2	0.71	25	85	<5	3.44	<1	17	76	114	3.45	10	0.92	905	8	0.04	61	640	10	15	<20	187	0.03	<10	50	<10	15	37
	121181 1	2.4 140	100	(11407			48	-0.0				-																				-			**

121.00 123.00 2.00 01407

15 <0.2 0.58 <5 40 <5 0.69 <1 16 91 109 2.24 <10 0.39 201 5 0.06 70 740 6 <5 <20 20 0.1 <10 45 <10 7 25

 $\bigcap$ 

 $\bigcap$ 

	From	То	Length	ı	Au	Au	Pd Pt	Au		ppm	unless	othen	wise r	noted																						
Hole #	m	<u>m</u>	m	Tag #	g/t	oz/t	ррь ррь	ppb	Ag	AI %	As	Ba	Ві	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Ph	Sh	Sn	Sr	T; %		v	147	~	7-
	123.00	125.00	2.00	01408				15	<0.2	0.96	<5	30	<5	0.98	<1	17	90	109	2.71	<10	0.55	301	17	0.05	40	620	10		<20	47			<u> </u>		<u> </u>	20
	125.00	127.00	2.00	01409				50	<0.2	1.32	<5	45	<5	1.92	<1	29	54	215	4 67	10	0.75	505	- 1	0.03	34	010	10	<5 -5	<20	17	0.12	<10	58	<10	6	30
	127.00	129.00	2.00	01410				5	<0.2	0.93	<5	50	<5	0.86	<1	20	95	135	3.38	<10	0.61	372	5	0.00	27	510	10	< 5	<20	38	0.11	<10	55	<10	8	34
	129.00	131.00	2.00	01411				10	<0.2	1.35	<5	60	<5	1.17	<1	21	140	96	4 13	10	1 19	709	6	0.00	32 70	440	0	<5	<20	33	0.13	<10	66	<10	5	34
	148.00	149.00	1.00	01412				15	<0.2	1.49	<5	90	<5	0.81	<1	20	118	94	4.70	10	1.15	507	5	0.00	70 EG	410	12	<5	<20	70	0.18	<10	113	<10	8	64
	149.00	150.00	1.00	01413				15	<0.2	1.52	<5	120	<5	2.4	<1	19	106	146	4.15	10	1.5	705	3	0.05	20	550	36	<5	40	34	0.09	<10	91	70	17	85
	150.00	151.00	1.00	01414	1.59	0.046		>1000	3.6	1.89	95	70	<5	3.18	2	45	115	821	8.70	20	1.20	120	20	0.05	45	680	16	<5	<20	185	0.08	<10	79	<10	16	92
	151.00	152.00	1.00	01415	0.88	0.026		995	2	1.74	<5	80	<5	2 78	1	20	125	769	6 16	20	1.0	1007	10	0.09	53	1380	82	<5	<20	88	0.06	<10	117	10	24	416
	152.00	153.00	1.00	01416	1.82	0.053		>1000	7.8	1.33	270	65	<5	3 95	, 6	78	114	2225	>10	20	1.43	1097	12	0.05	54	1120	30	<5	<20	60	0.08	<10	128	<10	18	111
	153.00	154.00	1.00	01417	8.25	0.241		>1000	12.8	0.48	665	70	20	4 92	26	70	00	3233	-10	30	1.10	1735	د	0.05	50	1540	330	<5	40	73	0.05	<10	91	<10	25	1272
	154.00	155.00	1.00	01418				75	<0.2	1 75	<5	100	20	4.02	-1	70	99	3052	>10	20	1.1	1426	10	0.02	29	1220	788	<5	60	196	0.02	<10	22	<10	24	6107
	155.00	156.00	1.00	01419				185	<0.2	1 28	-5	00	~5 ~5	1.74	-	32	119	187	6.31	20	1.28	695	<1	0.07	48	1200	24	<5	<20	54	0.14	<10	116	<10	13	104
	156.00	157.00	1.00	01420				10	-0.2	1.20	~5	30	~5 ~5	1.13	<1	22	112	94	4.09	10	1.1	522	1	0.07	44	1070	14	<5	<20	75	0.13	<10	91	<10	11	42
								.0	-v.z	1.07	~>	40	<5	1.7	<1	30	86	145	4.87	10	1.77	805	1	0.04	42	2640	22	<5	<20	97	0.09	<10	87	<10	10	86

Appendix D:

-----

(

 $\mathbf{C}$ 

### Maps and Sections





S

### LEGEND

О/В	Overburder	١
+ + + PP + +	Plagioclase Sparce to semi-c	e Porphyry rowded plagioclase, fine grained ground mass.
× × Dior × × ×	Diorite - Mo Equigranular, me (dior hid por), min	Dnzodiorite adium grained to hornblende porphyritic nor gabbro.
V/ V0 VC V0 Vc V0	Takla Grou	p - Inzana Formation es / mudstones, augite porphyry flows (APF).
aspy		Arsenopyrite
сру		Chalcopyrite
gal		Galena
mo		Molybdenite
ро		Pyrrhotite
ру		Pyrite
sph		Sphalerite
vg		Visible Gold
bx		Brecciated
carb		Carbonatized
fz		Fault
qtz		Quartz Vein
Э <b>—</b> — н	<del></del>	Diamond Drill Hole Trace with Sample Locations
	·	Contact: Defined. Inferred
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~	Fault: Defined. Inferred


USPORT

NCH

NAVASOTA RESOURCES LIMITED

SECTION 600E (VIEWING EAST)

20

30

40

 \mathcal{D}

50m

PLATE:

SCALE: 1:500

0 10

DATE: JUNE 2002 FILENAME: 600E-DDH-FR-01.DWG DRAWN BY: L.M. WARNER / WILDROCK RESOURCES

DATE: JUNE 2002 FILENAME: 800E-DDH-FR-02-03.DWG DRAWN BY: L.M. WARNER / WILDROCK RESOURCES

PLATE: 3

1

SW

LEGEND

0/В	Overburden
+ + + PP + +	Plagioclase Porphyry Sparce to semi-crowded plagioclase, fine grained ground mass.
$\begin{bmatrix} x \\ x \\ Dior \\ x \\ x \end{bmatrix}$	Diorite - Monzodiorite Equigranular, medium grained to hornblende porphyritic (dior hld por), minor gabbro.
Ve Ve Ve Ve	Takla Group - Inzana Formation Volcanic siltstones / mudstones, augite porphyry flows (APF).

cpy Chalcopyrite gal Galena mo Molybdenite po Pyrrhotite py Pyrrhotite sph Sphalerite vg Visible Gold bx Brecciated carb Carbonatized fz Fault qtz Diamond Drill Hole Trace with Sample Locations	aspy	Arsenopyrite
galGalenamoMolybdenitepoPyrrhotitepyPyritesphSphaleritevgVisible GoldbxBrecciatedcarbCarbonatizedfzFaultqtzDiamond Drill Hole Trace with Sample Locations	сру	Chalcopyrite
mo Molybdenite po Pyrrhotite py Pyrite sph Sphalerite vg Visible Gold bx Brecciated carb Carbonatized fz Fault qtz Diamond Drill Hole Trace with Sample Locations contact: Defined, Inferred	gal	Galena
poPyrrhotitepyPyritesphSphaleritevgVisible GoldbxBrecciatedcarbCarbonatizedfzFaultqtzQuartz VeinODiamond Drill Hole Trace with Sample LocationsContact: Defined, Inferred	mo	Molybdenite
pyPyritesphSphaleritevgVisible GoldbxBrecciatedcarbCarbonatizedfzFaultqtzQuartz VeinODiamond Drill Hole Trace with Sample LocationsContact: Defined, Inferred	ро	Pyrrhotite
sph Sphalerite vg Visible Gold bx Brecciated carb Carbonatized fz Fault qtz Quartz Vein O Diamond Drill Hole Trace with Sample Locations Contact: Defined, Inferred	ру	Pyrite
vgVisible GoldbxBrecciatedcarbCarbonatizedfzFaultqtzQuartz VeinODiamond Drill Hole Trace with Sample LocationsContact: Defined, Inferred	sph	Sphalerite
bx Brecciated carb Carbonatized fz Fault qtz Quartz Vein O Diamond Drill Hole Trace with Sample Locations Contact: Defined, Inferred	vg	VIsible Gold
bx Brecciated carb Carbonatized fz Fault qtz Quartz Vein O		-
carb Carbonatized fz Fault qtz Quartz Vein O Diamond Drill Hole Trace with Sample Locations Contact: Defined, Inferred	bx	Brecciated
fz Fault qtz Quartz Vein O Diamond Drill Hole Trace with Sample Locations Contact: Defined, Inferred	carb	Carbonatized
qtz Quartz Vein O Diamond Drill Hole Trace with Sample Locations Contact: Defined, Inferred	fz.	Fault
O Diamond Drill Hole Trace with Sample Locations Contact: Defined, Inferred	qtz	Quartz Vein
O Diamond Drill Hole Trace with Sample Locations Contact: Defined, Inferred		
Contact: Defined, Inferred	0	Diamond Drill Hole Trace with Sample Locations
		Contact: Defined, Inferred

Fault: Defined, Inferred

	SUBW	EY BR Groad	ANCH T
26.		6	0

NAVASOTA RESOURCES LIMITED

S	ECT	ION	600E	
	(VIEWING	SOUTH-FA	ST· 140°)	

50m

PLATE:

4

40

4

(VEWING SOUTH-EAST. 140)

SCALE:	1	:5	0	0
JOALL.	•	.0		0

20	30

DATE: JUNE 2002 FILENAME: 600E-DDH-FR-04.DWG DRAWN BY: L.M. WARNER / WILDROCK RESOURCES

11+00N

N

Ve

9+00N |

VC VC

VC Vc

S

.

LEGEND	
O/B Overburd	en
+ PP + Sparce to sem	se Porphyry i-crowded plagioclase, fine grained ground mass.
× Dior × × Dior × × × × (dior hld por),	Aonzodiorite medium grained to hornblende porphyritic minor gabbro.
Ve Ve Ve Ve Ve Ve Volcanic siltsto	Dup - Inzana Formation ones / mudstones, augite porphyry flows (APF).
aspy	Arsenopyrite
cpy	Chalcopyrite
gai	Galena
ро	Pyrrhotite
ру	Pyrite
sph	Sphalerite
vg	Visible Gold
bx	Brecciated
carb	Carbonatized
fz	Fault
qtz	Quartz Vein
0	Diamond Drill Hole Trace with Semple Lesstians
	Contact: Defined Inferred
	Fault: Defined. Inferred
GEOLO	
	GICAL SURVEY BRANCH
	MESSINES LINEDRY
A second	GICAL SURVEY BRANCH
	GICAL SURVEY BRANCH
NAVASOTA	RESOURCES LIMITED
NAVASOTA	RESOURCES LIMITED
NAVASOTA FR/	RESOURCES LIMITED
NAVASOTA FRA NTS	RESOURCES LIMITED
NAVASOTA FRA NTS SECTI	RESOURCES LIMITED AN PROJECT 5 093K/16, 093N/01 ION 1725E VIEWING EAST)
NAVASOTA RRA SECTI (V SCALE: 1:500	INCL SURVEY BRANCH
NAVASOTA RRA SECTI (V SCALE: 1:500 0 10	CICAL SURVEY BRANCH
NAVASOTA RRA SECTI (V SCALE: 1:500 0 10 DATE: JUNE 2002 FILENAME: 1725E-DDH-ER-OF DMAGE	RESOURCES LIMITED AN PROJECT 5 093K/16, 093N/01 ION 1725E VIEWING EAST) PLATE

SE

LEGEND	
Overbu	rden
+ PP + Plagioc + + + Sparce to s	lase Porphyry semi-crowded plagioclase, fine grained ground mass.
× × Dior × Equigranula × × (dior hld po	- Monzodiorite ar, medium grained to hornblende porphyritic r), minor gabbro.
Ve Ve Ve Volcanic si	Sroup - Inzana Formation tstones / mudstones, augite porphyry flows (APF).
aspy	Arsenopyrite
сру	Chalcopyrite
gal	Galena
mo Po	Pvrrhotite
py	Pyrite
sph	Sphalerite
vg	Visible Gold
bx	Brecciated
carb	Carbonatized
fz	Fault
qtz	Quartz Vein
0	Diamond Drill Hole Trace with Sample Locations
	Contact: Defined, Inferred
~~~~~~~~~~	Fault: Defined, Inferred
-	
D G	EOLOGICAL SURVEY BRANCH
4	
ĺ ú	
NAVASOTA	A RESOURCES LIMITED
FR N	AN PROJECT TS 093K/16, 093N/01
SECT	<b>ION 1800E</b>
(VIEWIN	IG NORTH EAST: 052°)
SCALE: 1:500 0 10	20 30 40 50m
DATE: JUNE 2002	PLATE:
FILENAME: 1800E-DDH-FR-06-0	7-08.DWG (6) 6





14+00N 1

-

S

LEGE	ND	
О/В	Overburden	
+ + + <b>PP</b> + +	Plagioclase Porphyry Sparce to semi-crowded plagioclase, fine grained ground mass.	
$\begin{bmatrix} \times & \times \\ Dior & \times \\ \times & \times \end{bmatrix}$	Diorite - Monzodiorite Equigranular, medium grained to hornblende porphyritic (dior hid por), minor gabbro.	
Ve Ve	Takla Group - Inzana Formation Volcanic siltstones / mudstones, augite porphyry flows (APF).	
aspy	Arsenopyrite	
сру	Chalcopyrite	
gal	Galena	
mo	Molybdenite	
ро	Pyrrhotite	
ру	Pyrite	
sph	Sphalerite	
vg	Visible Gold	
bx	Brecciated	
carb	Carbonatized	
fz	Fault	
qtz	Quartz Vein	
0	Diamond Drill Hole Trace with Sample Locations	
	Contact: Defined, Inferred	

Fault: Defined, Inferred

~~~~~~~~~~


.

| Ε | |
|---|--|

Х

×

X

×

LEGEND

| | aspy | Arsenopyrite |
|-----|--------|--|
| | сру | Chalcopyrite |
| | gal | Galena |
| | mo | Molybdenite |
| | ро | Pyrrhotite |
| | ру | Pyrite |
| | sph | Sphalerite |
| | vg | Visible Gold |
| | bx | Brecciated |
| | carb | Carbonatized |
| | fz | Fault |
| | qtz | Quartz Vein |
| o | | Diamond Drill Hole Trace with Sample Locations |
| | | Contact: Defined, Inferred |
| ~~~ | ~~~~~~ | Fault: Defined, Inferred |

50m

8

PLATE:

NAVASOTA RESOURCES LIMITED

FRAN PROJECT NTS 093K/16, 093N/01

SECTION 1450N

| | (VIEWING NORTH) |
|--------------|-----------------|
| SCALE: 1:500 | |

20 DATE: JUNE 2002

FILENAME: 1450N-DDH-FR-010-011.DWG DRAWN BY: L.M. WARNER / WILDROCK RESOURCES

NW

Vc Vс Vc Vc

Vc Vc Vc

Vc

Vc

SE

| LEGE | ND |
|--|---|
| O/B | Overburden |
| + + + + + + + + + + + + + + + + + + + | Plagioclase Porphyry
Sparce to semi-crowded plagioclase, fine grained ground mass. |
| $\begin{bmatrix} \times & \times \\ & \text{Dior} & \times \\ & \times & \times \end{bmatrix}$ | Diorite - Monzodiorite
Equigranular, medium grained to hornblende porphyritic
(dior hld por), minor gabbro. |
| Ve Vu
Vc Vc
Vc Ve | Takla Group - Inzana Formation
Volcanic siltstones / mudstones, augite porphyry flows (APF). |
| | |
| aspy | Arsenopyrite |
| сру | Chalcopyrite |
| gal
mo | Galena |
| po | Pyrrbotite |
| ру | Pyrite |
| sph | Sphalerite |
| vg | Visible Gold |
| bx | Brecciated |
| carb | Carbonatized |
| fz | Fault |
| qtz | Quartz Vein |
| 0 | Diamond Drill Hole Trace with Sample Locations |
| | Contact: Defined, Inferred |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Fault: Defined, Inferred |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | GEOLOGICAL SURVEY BRANCH |
| | ASSESCATEDIT DEPORT |
| | |
| | 26 01 0 I |
| | |
| ļ | |
| NAVA | SOTA RESOURCES LIMITED |
| | |
| | FRAN PROJECT |
| | NTS 093K/16, 093N/01 |
| | |
| SE | CTION 1470N |
| | |
| (\ | IEWING NORTH-EAST: 050°) |
| SCALE: 1:500 | 10 20 20 |
| | 10 20 30 40 50m |
| DATE: JUNE 2002 | -DDH-FR-012.DWG |
| FILENAME: 1470NE | |