GEOLOGICAL and DIAMOND DRILLING REPORT

on the

APPLE BAY PROJECT

(Hushamu & High Silica Zones)
(PEM100 CHALKY GEYSERITE QUARRY)
Mining Lease Lot 2323 and
Apple Bay One to Seven Claims (108 Units)

Holberg Inlet Area, Wanokana Creek, Vancouver Island

Longitude 127°14'/Latitude 50°37'
NTS 92L/12E + W

Nanaimo M.D.

Owned by HOMEGOLD RESOURCES LTD.

#5-2330 Tyner St. Port Coquitlam, B.C. V3C 2Z1

Phone: 604-970-6402 Fax: 604-944-6102

E-mail: jo@HomegoldResources.com Website: www.HomegoldResources.com

Prepared by

J. T. SHEARER, M.ScGFOGOGICAL SURVEY BRANCH

Consulting Geologist ASSESSMENT NOT THE

Quarry Supervisor #98-3550

March 15, 2002

TABLE OF CONTENTS

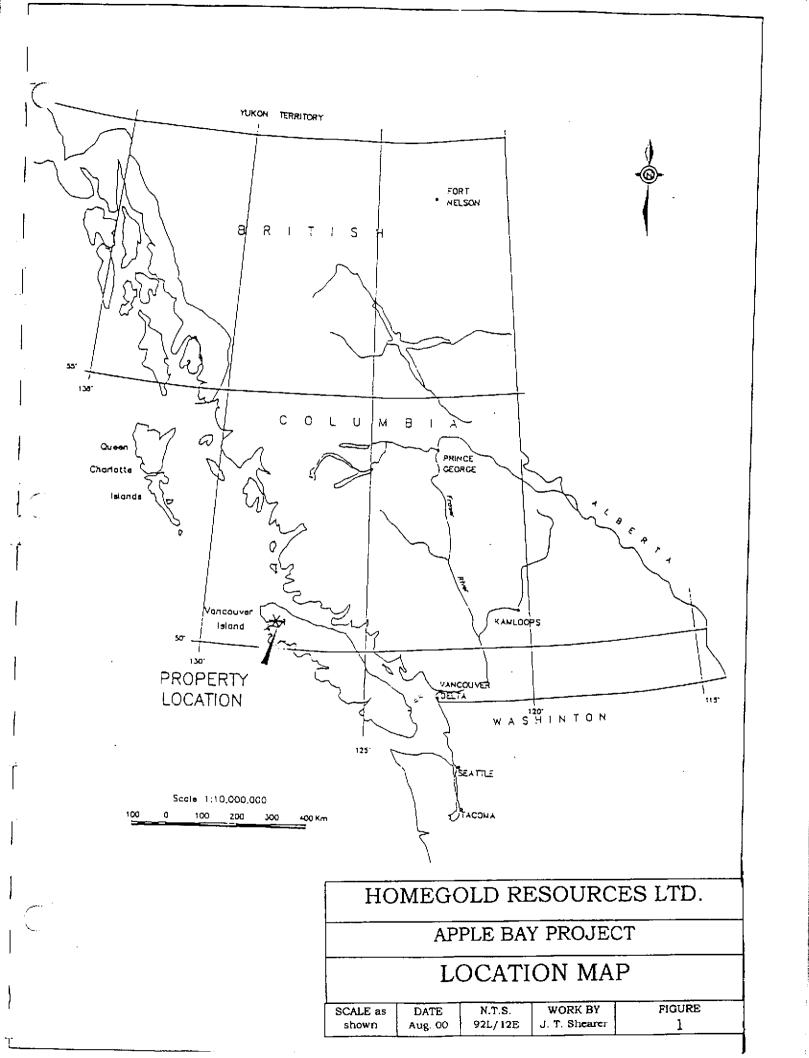
<u>Page</u>
. ii
ш
. 1
. 2
. 3
. 4
. 6
. 8
10
11
12
13
14
15

LIST OF ILLUSTRATIONS and TABLES

ILLUSTRATIONS

	122001141110112
	Following Page
FIGURE 1	Location Mapiii
FIGURE 1a	Detail Location Map 1
FIGURE 2	Access Map 2
FIGURE 3	Trim Map, 1:20,000 3
FIGURE 4	Claim Map, 1:50,000 4
FIGURE 5	Regional Geology, 1:250,0007
FIGURE 6	Detail Site and Geology Map, Hushamu Area Drillhole Locations 1:5,000
FIGURE 7	Detail Site and Geology Map, PEM100 Area Drillhole Locations, 1:5,000in pocket
FIGURE 8	Cross Section Southwest-Northeast, Hushamu Area, 1:250 in pocket
FIGURE 9	Cross Section North-South, Hushamu Area, 1:250 in pocket
FIGURE 10	Cross Section Projected Longitudinal Section, 1:250 in pocket
FIGURE 11	Cross Section 1N, PEM100, High Silica Zone, 1:1,000 in pocket
FIGURE 12	Cross Section 2N, PEM100, High Silica Zone, 1:1,000 in pocket

TABLES


	1	<u>Page</u>
TABLE I	List of Claims	. 3
Table II	Trace Element Content of Chalky Geyserite	7
TABLE III	Diamond Drill Data	8
	Follow	wing Page
TABLE IV	Hushamu – Stratigraphic Column	7

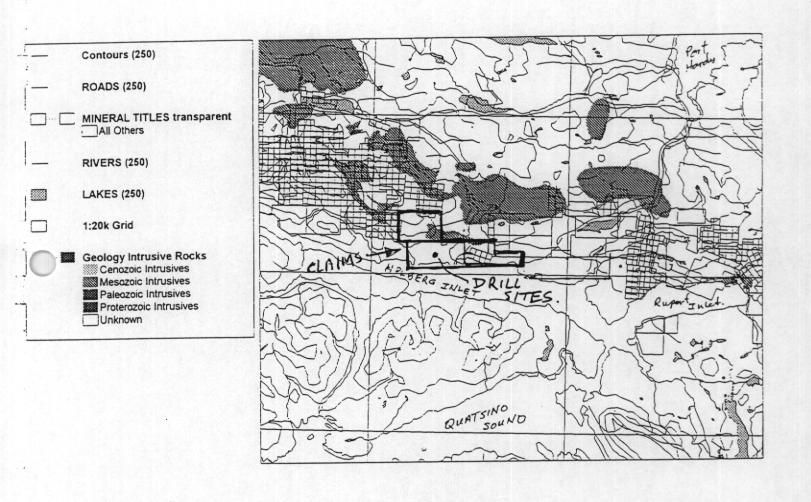
1.0 SUMMARY

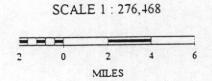
- Acquisition and a preliminary evaluation of the PEM100 Chalky Geyserite Quarry was undertaken between October 1999 and August 2000 for Homegold Resources Ltd and Lehigh Northwest Cement. The alumina and silica resource at PEM100 a source for the raw material requirements of the cement plant operated by Lehigh Northwest Cement Ltd. in Delta, British Columbia.
- 2. A 25-35 metre thick Lower Jurassic sequence of intensely silicified and clay altered rhyolite flows and pyroclastic units of the Bonanza Group outcrop along a northwest trend for more than 1200 metres from the PEM100 Quarry towards the Pemberton Hills.
- 3. The area is covered by the Apple Bay One to Seven and Mining Lease Lot 2323 totalling approximately 2500 hectares. The PEM100 geyserite quarry is located. Mining Lease, Lot 2323. The proposed quarry currently covers about 8 hectares. There are 9 other geyserite zones known on the property.
- 4. Total estimated tonnage produced from the Western Forest Products quarry is approximately 250,000 tons between the late 1970's to present. This quarry has most recently produced coarse stone for road construction.
- 5. The general geyserite section in the quarry area consists of an upper 20-35 metre thick rhyolite member exhibiting both flow banded and coarse pyroclastic units that have been intensely silicified and clay altered (silica and alumina). This sequence has then undergone intense acid sulphate and advanced argillic alteration. The upper sequence is underlain by a less altered lower sequence of pyritic rhyolitic tuff.
- 6. Two main sub areas of chalky geyserite have been outlined by drilling to date on the PEM100 zone. Area A covers a 60,000m² area around the PEM100 quarry. This 27.8m thick zone contains a rough resource of about 4 million tonnes of geyserite grading approximately 83.66% SiO2, 12.49% Al2O3 and 0.09% SO3. Area B is located approximately 150 metres northwest of Area A and it covers a 20,000m² area in a saddle between to Wann Knobs. The 21.34m thick Area B zone contains a rough resource of about 1.00 million tonnes of material grading approximately 81.84% SiO2, 14.33% Al2O3 and 0.05% SO3. The total rough resource and average grade of both Area A and B is 5 million tonnes grading 83.26% SiO2, 12.90% Al2O3 and 0.08% SO3.
- 7. The present program consisted of 6 diamond drillholes on the Hushamu Zone totalling 968' (295.05m) and 7 diamond drillholes on the PEM100 High Silica Zone totalling 897' (273.4m) plus deepening hole APBY-99-09 and hole APBY-01-33 on the Chalky Geyserite Zone (265').
- 8. The Hushamu shale-sandstone unit contains too much sulfur. The sulfur values in the high grade silica zone decreases from west to east.

Respectfully submitted,

J.T. Shearer, M.Sc., P.Geo. Consulting Geologist, Quarry Supervisor March 15, 2002

2.0 INTRODUCTION


The Apple Bay One to Seven mineral claims and Mining Lease Lot 2323 cover readily accessible silica and alumina resources within the PEM100 Quarry and 9 other altered zones to the northwest towards the Pemberton Hills. The general geyserite section within the quarry and adjacent areas consists of an approximately 20-35 metre thick Lower Jurassic intensely silicified and clay altered rhyolite unit (flow banded and pyroclastic) above a lower less altered rhyolitic breccia. Drilling in 1999 and 2000 and surface assays indicate that 2 sub areas (Area A and B) contain a rough resource of about 5 million tonnes of material grading an average of 83.26% SiO₂, 12.90% Al₂O₃ and 0.08% SO₃. A third area (Area C) lies between Areas A and B and may contain a rough resource of an additional 4 million tonnes of silica-rich geyserite but more detailed drilling is required to determine total tonnage and grades.


Throughout the property a further 9 geyserite zones have been identified by geological mapping. A 5000 tonne bulk sample was shipped in 1968 by Lafarge Inc. from a geyserite deposit in central Apple Bay, which is now covered by the Apple Bay One Mineral Claim. The PEM 100 Quarry is approximately 12 kilometres west of the village of Coal Harbour and is not directly drained by major streams. The company is committed to develop the deposit in a manner that does not cause significant environmental impact during operation or after mine closure.

A total of 627.29m of diamond drilling was completed in November and December 1999 and March 2000 in 24 holes. Two bulk samples were extracted from the PEM100 Quarry during 2000. A 5400 tonne sample was taken in April 2000. This sample was trucked to Port Hardy and then barged to Tilbury's Cement Plant in Delta B.C. for testing. A second 4000 tonne bulk sample was taken in July 2000. This sample was trucked to Port Hardy and stored for later shipment to the Tilbury Cement Plant in Delta, B.C.

This report documents the results of a follow-up diamond drill work program in 2001: (A) the high silica portion of the zone (between holes 99-07 and 99-10 and 99-16 and 99-17) and (B) 6 holes testing the shale-sandstone stratigraphy at the Hushamu log dump.

Homegold Resources Ltd Apple Bay Kaolinite/Silica

НО	HOMEGOLD RESOURCES LTD.										
	APPLE BAY PROJECT										
CLAIM MAP 1:50,000											
SCALE as	DATE	N.T.S.	WORK BY	FIGURE							
shown	Aug. 00	92L/12E	J. T. Shearer	4							

http://webmap.ei.gov.bc.ca/minpot/map/dep_find.mwf

3.0 LOCATION and ACCESS

The Apple Bay One to Seven mineral claims and Mining Lease Lot 2323 are situated on rolling terrain with elevations ranging between 0m and 210m. The PEM100 Quarry is at an elevation of approximately 115m. The three Wann Knobs at the PEM100 quarry area gradually rise to the west into the Pemberton Hills over a distance of 6 to 8 km.

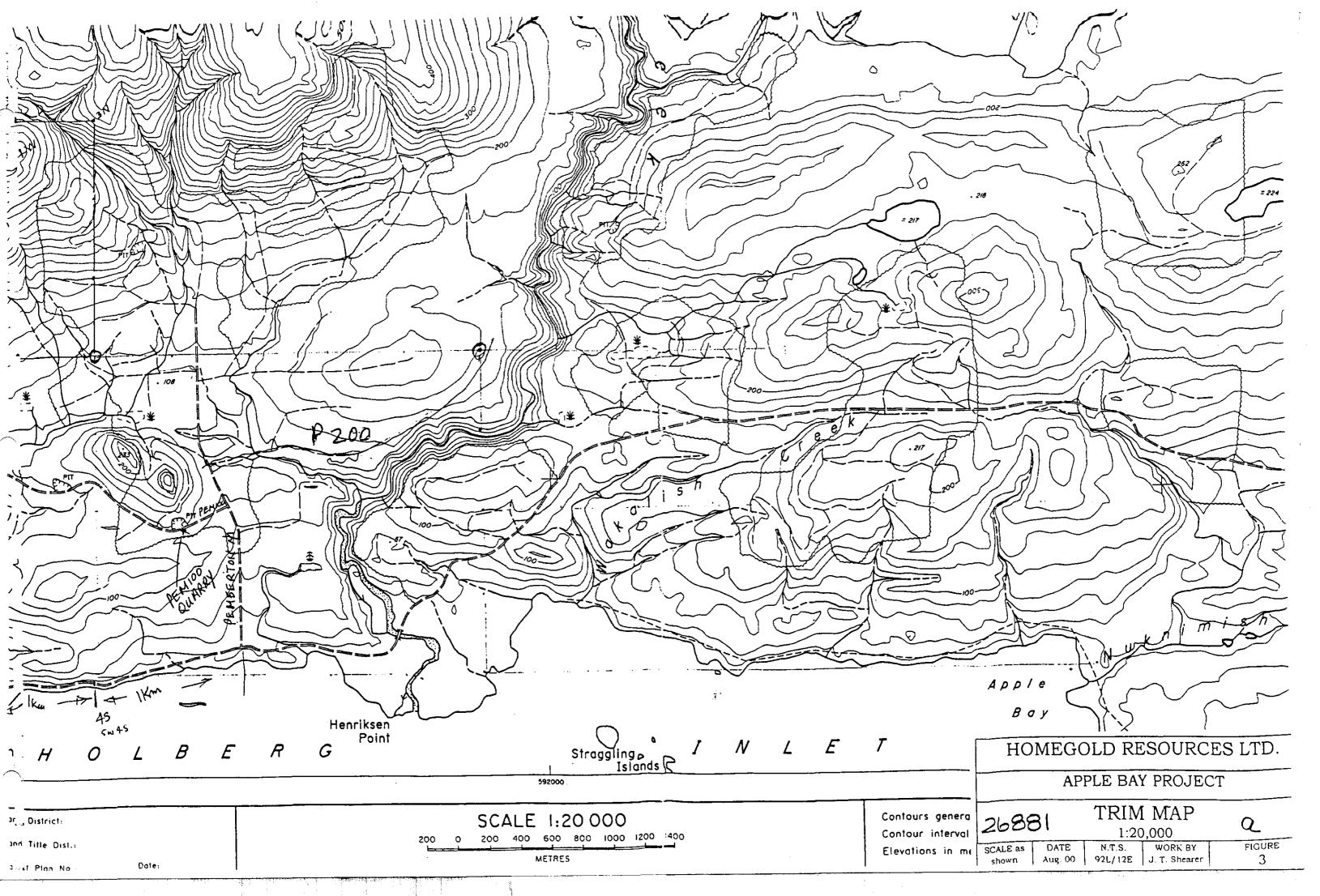
Most of the claims are covered by second growth forest, some of which has been thinned. Some of the claims have been logged recently. Most of the logging occurred in 1988. Minor logging was done from the shore in the 1920's.

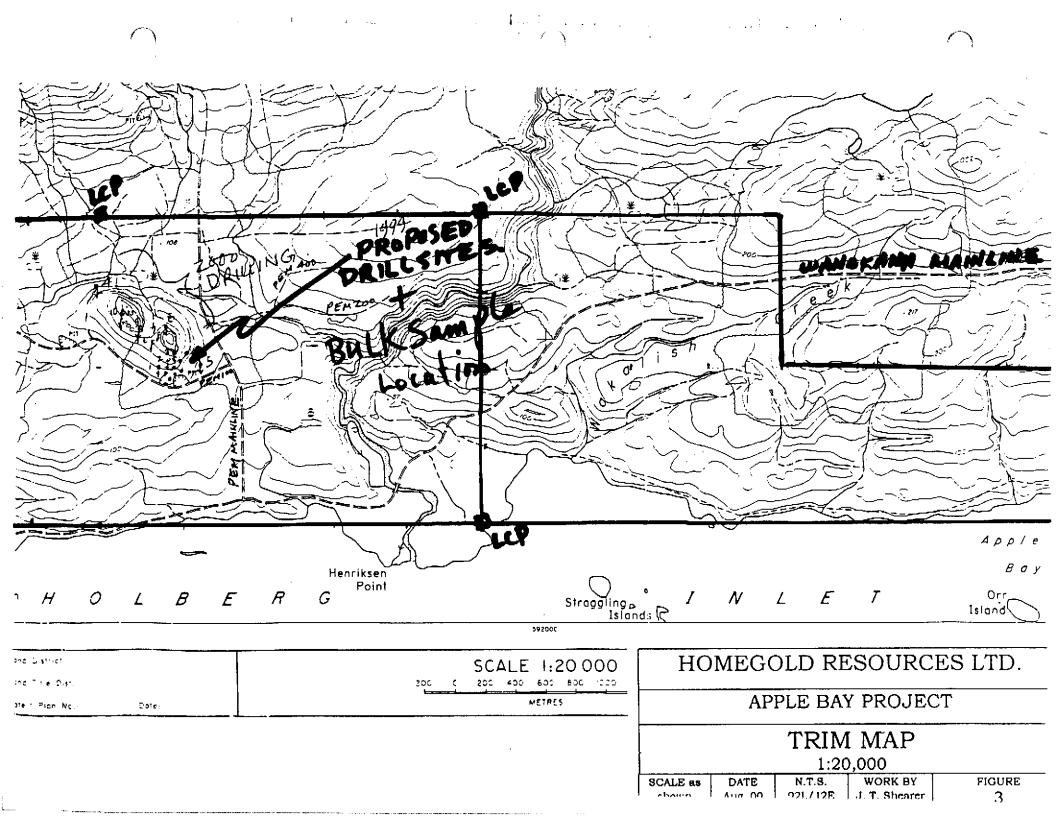
Access to the claims is gained by travelling south for 16 km from Port Hardy along a paved road to Coal Harbour. From Coal Harbour travel west for 12 km along the Wanokana Mainline logging road to the Pemberton Mainline logging road and travel 1km north along the Pemberton mainline and turn off onto the P100 branch road.

4.0 CLAIM STATUS

The principal area of interest is covered by the Apple Bay One to Seven Mineral Claims and Mining Lease staked under the two-post and Modified Grid Systems and registered in the name of J.T. Shearer and R. W. Howich.

TABLE I List of Claims


Claim Name	Tenure #	Size	Units	Date Located	* Current Anniversary Date	Owner
Apple Bay One	371775	8E2N	16	Sept. 16, 1999	Sept. 16, 2005	J. T. Shearer
Apple Bay Two	377240	5E4N	20	May 17, 2000	Sept. 16, 2005	J. T. Shearer
Apple Bay Three	371777	4E2N	8	Sept. 18, 2000	Sept. 16, 2005	J. T. Shearer
Apple Bay Four	374744	4N4W	16	March 11, 2000	Sept. 16, 2005	J. T. Shearer
Apple Bay Five	373854	3N4E	12	Dec. 5, 1999	Sept. 16, 2005	J. T. Shearer
Apple Bay Six	374738	4N5W	20	March 9, 2000	Sept. 16, 2005	J. T. Shearer
Apple Bay Seven	374739	4N4E	16	March 9, 2000	Sept. 16, 2005	J. T. Shearer
Mining Lease	379922		4		Surface Tax	R. W. Howich
Lot 2323			approx		Payable	


Total 108 units

Mineral title is acquired in British Columbia via the <u>Mineral Act</u> and regulations, which require approved assessment work to be filed each year in the amount of \$100 per unit per year for the first three years and then \$200 per unit per year thereafter to keep the claim in good standing.

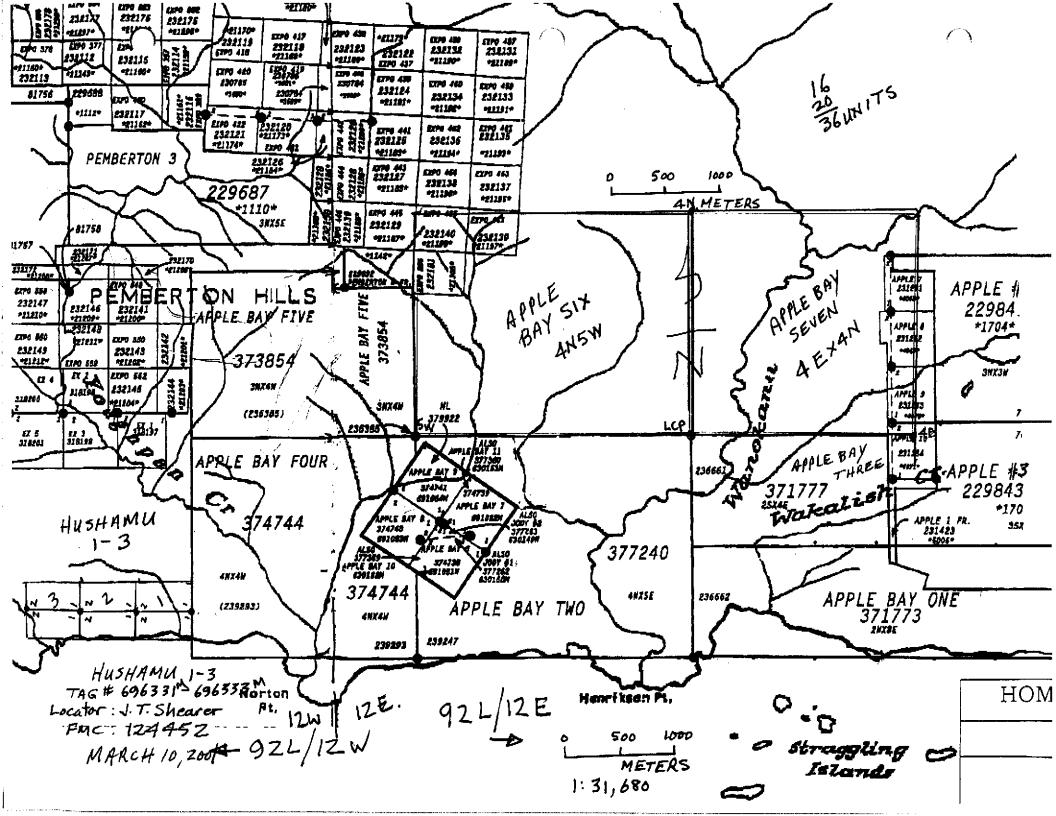
Under the present status of mineral claims in British Columbia, the consideration of industrial minerals requires careful designation of the products end use. An industrial mineral is a rock or naturally occurring substance that can be mined and processed for its unique qualities and used for industrial purposes (as defined in the *Mineral Tenure Act*). It does not include "Quarry Resources". Quarry Resources includes earth, soil, marl, peat, sand and gravel, and rock, rip-rap and stone products that are used for construction purposes (as defined in the *Land Act*). Construction means the use of rock or other natural substances for roads, buildings, berms, breakwaters, runways, rip-rap and fills and includes crushed rock. Dimension stone means any rock or stone product that is cut or split on two or more sides, but does not include crushed rock.

^{*} with application of Assessment work documented in this report.

5.0 GEOLOGY

The terrane upon which the rocks of northern Vancouver Island were laid down is probably of Middle to Upper Paleozoic Age (although these "basement" rocks are not exposed north of Buttle Lake). At the time of deposition, the landmass, which now makes up Vancouver Island, was located in the equatorial regions of the Pacific Ocean. It consisted of felsic to basic volcanics deposited in a submarine environment. The very important copper-zinc-gold-silver ore bodies at Western Mines' Buttle Lake operations were developed within this sequence.

In Upper Triassic time (about 200 million years ago), these basement rocks were covered by a series of pillow lavas and flows largely of basaltic composition. Total thicknesses extruded probably exceed 2400 metres. These rocks are known today as the Karmutsen Formation.


Following this period of basaltic volcanism, carbonate rocks (the Quatsino Limestone) accumulated to thicknesses of about 300 metres, although a much thinner section appears to be the rule north of Holberg Inlet. Of importance from an economic standpoint is the correlation between the Karmutsen – Quatsino section of Vancouver Island and the Nikolai Greenstone – Chitistone Limestone section of southeastern Alaska, both of which are part of the same Central Pacific terrane. The Nikolai, like the Karmutsen, is considerably enriched in copper as compared with the average basalt. The Chitistone Limestone was host to the very high-grade Kennecott Copper deposit, which was apparently derived by re-concentration of the much lower-grade copper disseminated through large volumes of Nikolai rock.

Above the Quatsino there is generally found a clastic section of which appears to be of slightly different age and of varying composition in different parts of northern Vancouver Island. Depending on age, composition and location, it is known as the Parson Bay Formation or the Harbledown Formation. The Parson Bay is somewhat calcareous and of upper-most Triassic age while the Harbledown is more argillitic and of lower-most Jurassic age. Above the sedimentary section are the Jurassic Bonanza Volcanics, an assemblage of flows, tuffs and fragmentals largely of andesitic composition, but with minor basaltic and rhyodacitic sections.

During and after eruption of the Bonanza Volcanics, granitic bodies were emplaced within the Karmutsen-Quatsino-Bonanza sequence. These bodies ranged in size from dykes and small plugs to masses of batholithic proportions. Some of these intrusives formed the underground reservoirs, which broke through to surface to deposit the Bonanza Volcanics.

Reaction between these very hot, high-level vent zones and circulating groundwater and seawater led to the development of numerous zones of highly altered rock, within or adjacent to which are copper-gold-molybdenum deposits. The alteration zones are generally characterized by the presence of large amounts of silica, clay minerals, pyrite, pyrophyllite and laumontite. Of the various alteration zones, perhaps 90% are located in the belt immediately north of Rupert and Holberg Inlets particularly in the vicinity of the PEM100 Quarry and Pemberton Hills, which are covered by the Apple Bay and Jody Claims.

At some time during the latter part of the Jurassic, following a long period of northward drift, the Vancouver Island – Queen Charlotte Islands – Southeast Alaska terrane, apparently somewhat fragmented, collided with and fused to the North American

Continent. Following this accretion, and a general elevation of the landscape probably caused related to the mechanics of collision, highland portions of the terrane were eroded into basinal areas, forming continental transgressive sandstones of Cretaceous age of which the Hushamu Sediments are an example and also included numerous coal measures, those of the Nanaimo basin being most notable. One of the small basins of sandstone extends from the western edge of the Island Copper Mill area to the vicinity of Apple Bay, which lies to the east of the claims. Since the deposition of these various sandstones, there has been minor volcanic and intrusive activity on the island.

Comprehensive geological mapping of Northern Vancouver Island was carried out during the late 1960's, the bulk of it by Dr. Jan Muller of the Geological Survey of Canada with major assistance by Dr. Kenneth Northcote of the B.C. Department of Mines. The results of their mapping are summarized on G.S.C. Map 1552A. More recently, mapping was carried out on map sheets NTS 97L/12 and 92L/11W by Hammock, J. L. et. al in the 1990's. The results of this work, which was produced by the Geological Survey Branch of the British Columbia government.

6.0 PROPERTY GEOLOGY

6.1 Geology

Geological mapping and diamond drilling on the Apple Bay Project indicates that the area extending northwest from the PEM100 Quarry to and including the Pemberton Hills is underlain by a series of large-scale extrusive rhyolite dome. These rhyolite domes are made up of both flow banded and coarse pyroclastic units containing differing Al_2O_3 contents. These units form steep bluffy knobs on the property and blocky talus fans occur at the base of the bluffs.

The introduction of intrusive granitic rocks into the Bonanza Volcanics created high level vent zones, which along with heated ground water, strongly altered the rhyolitic rocks with the introduction of silica and clay minerals. Late stage intense acid sulphide and advanced argillic alteration occurred throughout the entire system.

Geological mapping and drill core logging indicate that an intensely altered 20-35 metres thick section of rhyolite (identified as white chalky geyserite) overlies a unit of less altered rhyolitic breccia. the white chalky geyserite is of primary economic interest because of its silica and alumina content. The white chalky geyserite is made up of interbedded units of flow banded rhyolite and coarse pyroclastic (fragmented) rocks. These units are described below:

- 1) Flow Banded White Chalky Geyserite
 - · Fine-grained matrix with weak to pronounced flow banding.
 - · some flow folding is present as shown by convoluted bands.
 - flow banding often exhibits welded texture.
 - limonite staining is common and flow banded sections often appears to contain more kaolinite alteration than the more siliceous fragmented units.
 - · occasionally flow top brecciation is observed.
- Fragmental White Chalky Geyserite (Breccia)
 - often intensely silicified matrix with chalky clay (argillic) altered fragments.
 - More strongly silicified fragment appears to be found near flow-bonded units.
 Some fragments appear to be partially digested.
 - fragments can be >10 cm in diameter and can vary from rounded to angular in shape.
 - fragments sometimes appear to be flattened into elongated shapes.

The fragmented rhyolitic (breccia) that underlies the white chalky geyserite is described below:

- 1) Less Altered Fragmented Rhyolite
 - unit is medium green coloured.
 - fragments are fine grained, closely packed in a dark grey matrix
 - minor fine-grained pyrite along fractures possibly associated with some yellowish alunite alteration.
 - · some fragments are kaolinized but are not bleached out.

6.2 Geyserite Resource

Diamond drilling identified two areas that contained sufficient tonnage and grade projection to warrant a statistical analysis of reserves. This work is documented in

Section and Plan maps and data tables prepared using computer smoothing techniques by Nilsson (2000). A summary of the geyserite resources is approximated by rough manual method as outlined below:

Area A (Surrounding PEM100 Quarry)

Drill holes 1 - 6, 9, 13 and 19 used

The thicknesses of chalky geyserite in each hole were averaged to produce a minimum thickness of 25.06m.

Area B (150m NW of Area A)

Drill holes 15 and 17 used

The thicknesses of geyserite in each hole was averaged to produce a minimum thickness of 21.34m.

Using a specific gravity of 2.6 tonnes per cubic metre for chalky geyserite, the rough geological resource of chalky geyserite is estimated to be:

Area A 60,000 m² x 25.06m thickness x 2.6 tonne/m³

= about 4 million tonnes grading 83.66% SiO_2 , 12.49% Al_2O_3 and 0.09% SO_3

Area B 20,000 m² x 21.34m thickness x 2.6 tonne/m³

= about 1 million tonnes grading 81.89% SiO_2 , 14.33% Al_2O_3 and 0.05% SO_3

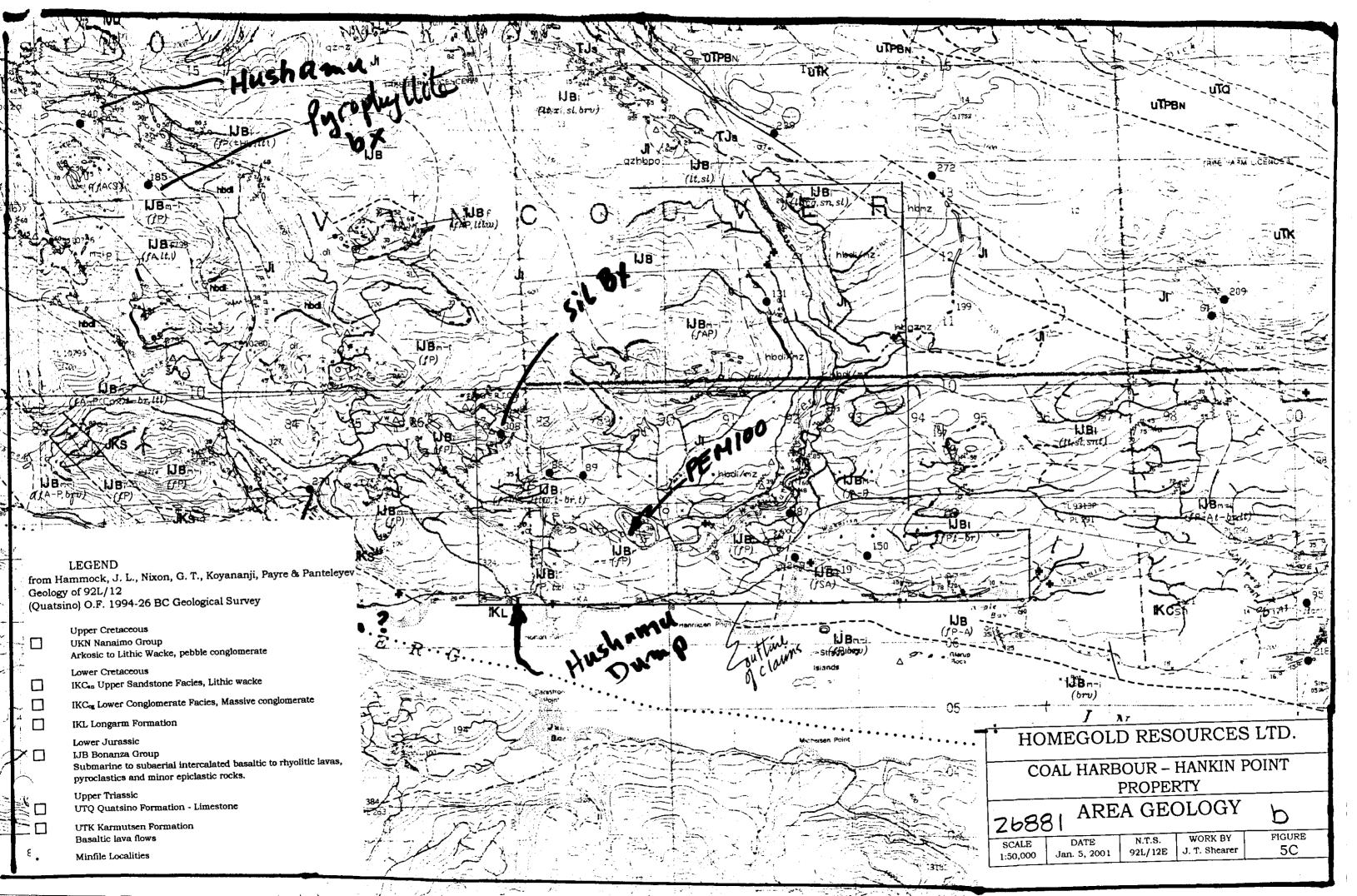
The total Chalky Geyserite geological resource is about:

5 million tonnes grading 83.26% SiO₂, 12.90% Al₂O₃ and 0.08% SO₃

The 150+ metre wide area between Area A and B was evaluated by the 7 drillholes documented in this report and this area is identified as Area C. Area C has the potential to contribute an additional 4.3 million tonnes to the "geyserite (high silica) resource.

A total of 24 diamond drillholes were previously completed on the property between late 1999 and March 2000. The other 9 geyserite zones have not been drilled to date. Preliminary surface sampling suggests that the other zones have similar distribution of primary rock chemistry.

A typical sample of Chalky geyserite has the following trace elements:


TABLE II

Trace Element Content of Chalky Geyserite

Мо	Na%	Ni	P	Pb	S%	Sb	Sc	Sr	Ti%	T1	U	V	W
2	<0.01	1	110	24	0.02	<2	<1	33	<0.01	<10	<10	3	<10

Zn	Ag	As	В	Ba	Be	Bi	Cd	Co	Cr	Cu	Ga	Hg	Mn
<2	0.2	6	<10	60	<0.5	<2	<0.5	<1	12	12	<10	<1	<5

ppm except where shown

7.0 DIAMOND DRILLING

The present program consisted of 6 diamond drillholes on the Hushamu Zone totalling 968' (295.05m) and 7 diamond drillholes on the PEM100 High Silica Zone totalling 897' (273.4m) plus deepening hole APBY-99-09 and hole APBY-01-33 on the Chalky Geyserite Zone (265').

The location data is shown in Table III below:

TABLE III

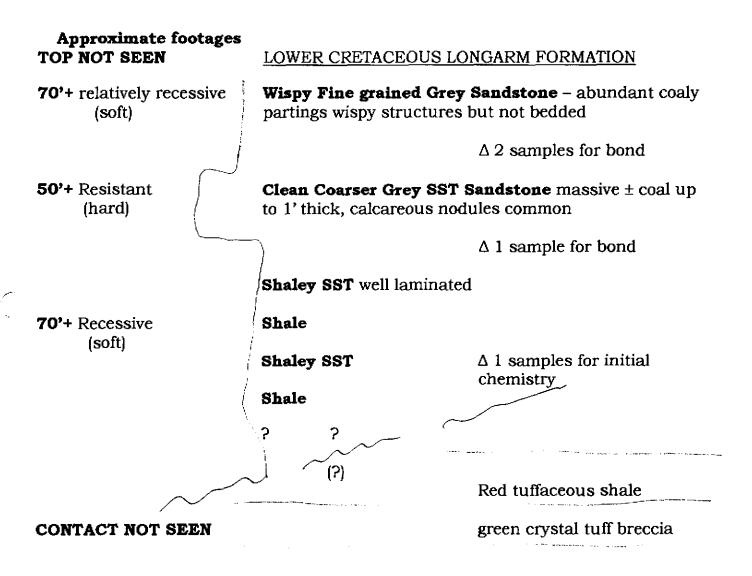
Diamond Drill Data

HOLE #	N.	E.	LENGTH	DIP	AZIMUTH	ELEVATION	REMARKS
HUSH-01-01	9506.30	7685.30	(120') 36.58	-75	030	20.0	
HUSH-01-02	9613.80	7731.40	(120') 36.58	-70	020	25.0	
HUSH-01-03	9589.10	7729.50	(220) 67.07	-70	030	2.0	near high tide mark
HUSH-01-04	9562.00	7723.00	(158') 48.16	-70	020	20.0	
HUSH-01-05	9601.40	7708.20	(200) 60.96	-90	35	28.0	
HUSH-01-06	9580.00	7700.00	(150') 46.63	-75	020	32.0	
		Su	ibtotal 968 ft.				
APBY-01-26	9417.10	8034.70	15.55 (51')	-90	000	156.80	between 7 & 10
APBY-01-27	9601.50	7804.00	13.41 (60')	-90	000	140.00	east of 10
APBY-01-28	9654.00	7890.00	15.25(50')	-90	000	150.00	on P100
APBY-01-29	9390.00	7974.00	12.20(75')	-90	000	168.00	upper tote road
APBY-01-30	9283.20	7964.20	30.79 (101)	-90	000	161.20	upper tote road
APBY-01-31	9415.5	7901.9	30.49 (100')	-90	000	157.50	upper tote road
APBY-01-32	9447.50	7846.80	30.79 (101)	-90	000	156.20	upper tote road
APBY-01-33	9526.0	7825.00	30.79 (101)	-90	000	159.70	road 100A
APBY-99-09	9222.30	7991.30	30.49 (100)	-90	000	167.64	deepening of 99-09
		Su	btotal 1,162 ft		<u> </u>		
		То	tal Footage = 2	,120 ft			

Diamond drill logs are contained in Appendix III in the back of this report.

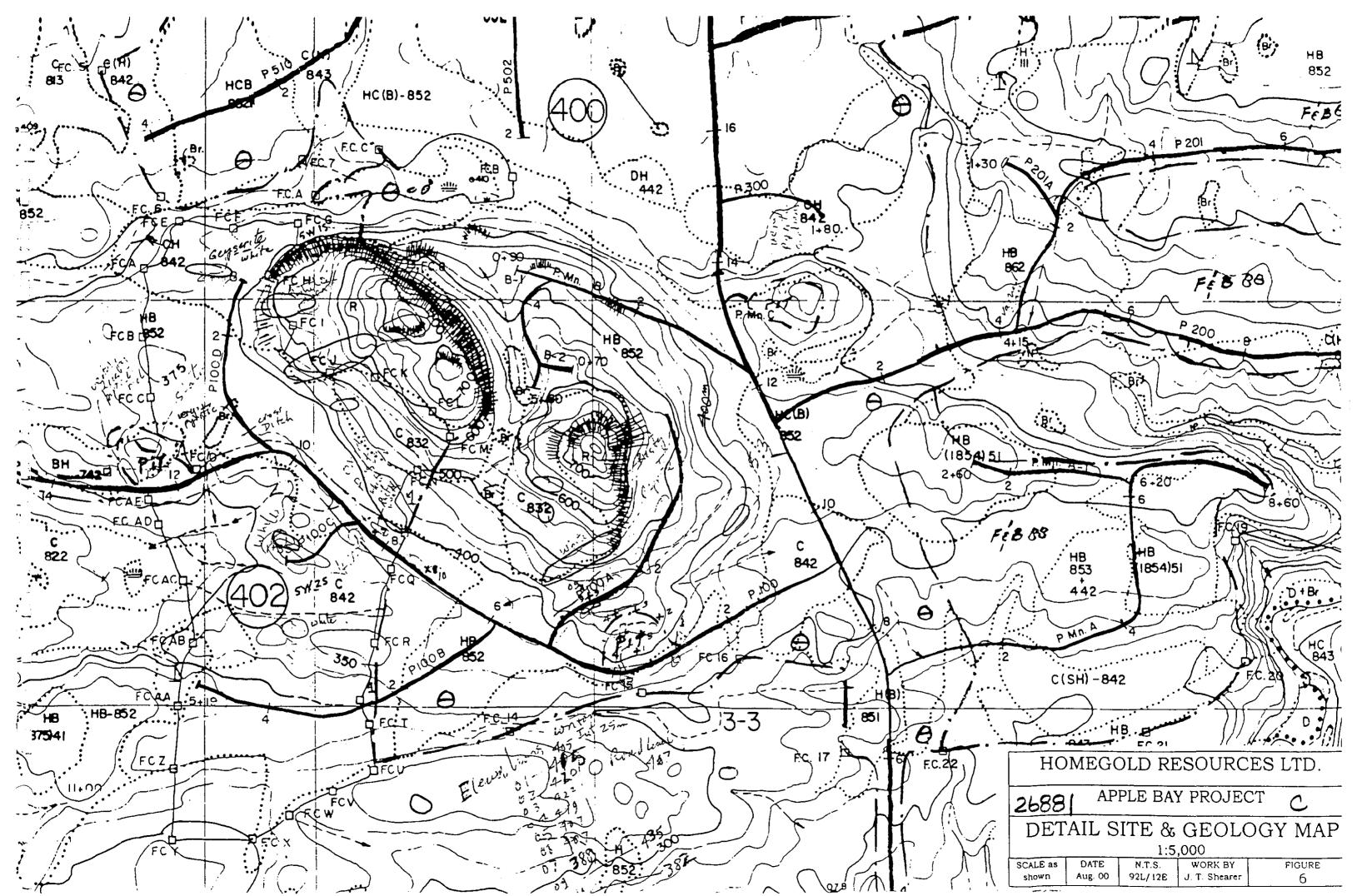
The 6 diamond drill holes completed on the Hushamu Area are plotted on Figure 6 (in pocket) and in cross section on Figures 8, 9 and 10 (in pocket). Each hole encountered a series of shaley sandstone, grey sandstone, coarse sandstone and coaly shale. The sandstone proved to have too high a sulfur content on assay of the fresh rock. Hole Hush-01-05 penetrated into the underlying volcanic tuff and green volcanic breccia.

The seven diamond drill holes completed in the Area "C" Zone of the high silica (geyserite) portion of the PEM100 deposit are plotted on Figure 7 (in pocket and in cross section on Figures 11 and 12 (in pocket). Each of the holes APBY-2001-25, 27, 28 (along the north side of the P-100 access road) encountered angular polymictic geyserite breccia (Figure 11), which returned uniformly high silica content. The sulfur content of these holes decreases from west to east with the previously drilled hole 99-07 being the highest sulfur geyserite found on the property. The northernmost fence of holes (APBY-2001-29, 30, 31 and 32) encountered high silica polymictic geyserite breccia in the uppermost part of the holes, then passed through a elevated Al2O3 (chalky geyserite)


HUSHAMU

				<u> </u>			_						
Date of submissi: 8-Feb-01 Project Name: Hushamu Tilbury ID - ID1	SiO2	Al2O3	Fe2O3	CaO	MgO	Na20	K20	SO3	, CI	P2O5	TiO2	Total	FALI
F01-1 (SST.W.SIDE.MID F01-2 (SSIDE.MID.TRIANGLE	56.00 51.20	16.71 15.83	10.92 15.02	1.20 1.20	1.51 1.97		1.00 0.67	-0.08 0.15	0.01	0.04 0.05 0.04	0.30 1.20 0.84	89.89 89.65 91.03	2.34 2.80 2.31
F01-4 SE.CORNER.TRIANGLE	59.10 68.40 58.18	18.57 18.92 17.51	7.72 4.21 9.47.	0.50 1.30 1.05	1.58 / 0.94 / ~1.50	1.34 0.55 1,48	1,48 0.60 0.94	-0.14 -0.15 -0.06	00,0 00.0 00.0	0.04	1.24	94.06 91.16	0.94 2.10
HOLBERGLET	Though		• Hus		۲								
5 d			\ .		why	n 1-	+ 3	W	ley ni	, † 1	+ 2	?	
5 *	A 3 3	255	Fhaly	indst	- nu	ব		/	U				
		٠.		1									
	16	,									,	7	
1/2	4	Hus	har	nu	Ma	inl	14	E	•	-			-
	- WE	ATHE	RES							-	-		
						-	,						

1


HUSHAMU

STRATIGRAPHIC SECTION - COLUMN -

Along Beach – distinctive unit \rightarrow crossbedded SST unit far above wispy SST unit

central zone of up to 6m in thickness and then back into high silica geyserite below. This chalky geyserite horizon is characterized by flow laminated rhyolite parent material. The central chalky geyserite zone appears to dip at a shallower angle than the hillside since the chalky geyserite was not encountered in the road drill fence of holes 99-7, 01-26, 99-10, 01-27 and 01-28.

8.0 CONCLUSIONS and RECOMMENDATIONS

Acquisition and preliminary evaluation of the PEM100 Chalky Geyserite Quarry was undertaken in October 1999 for Homegold Resources Ltd. The alumina and silica resource at PEM100 is a source for the raw material requirements of the cement plant operated by Tilbury Cement in Delta, B.C. A 25-35 metre thick Lower Jurassic sequence of intensely silicified and clay altered rhyolite flows and pyroclastic units of the Bonanza Group outcrop along a 320° trend for more than 800 metres from the PEM100 Quarry towards the Pemberton Hills.

Two main sub areas of chalky geyserite have been outlined by drilling to date on the PEM100 zone. Area A covers a 60,000m² area around the PEM100 quarry. This 27.77m thick zone contains about 4 million tonnes of chalky geyserite geological resource grading approximately 83.66% SiO₂, 12.49% Al₂O₃ and 0.09% SO₃. Area B is located approximately 150 metres northwest of Area A and it covers a 20,000m² area in a saddle between to Wann Knobs. The 21.34m thick Area B zone contains about 1 million tonnes of geological material grading approximately 81.84% SiO₂, 14.33% Al₂O₃ and 0.05% SO₃. The total geological resources and average grade of both Area A and B is 5 million tonnes grading 83.26% SiO₂, 12.90% Al₂O₃ and 0.08% SO₃.

An area of approximately 8 hectares will be required to be cleared for the initial quarry development. Environmental impacts are expected to be minimal. Several options for reclamation are proposed. The initial open cut of about 5 million tonnes is expected to be sufficient for the cement plant's requirements for about 30 years.

Approximately 9400 tonnes of chalky geyserite were drilled and blasted in 2000 on the initial pioneer bench at 100m elevation. This material was barged to the cement plant for an industrial trial. The results are ongoing.

The present program consisted of 6 diamond drillholes on the Hushamu Zone totalling 968' (295.05m) and 7 diamond drillholes on the PEM100 High Silica Zone totalling 897' (273.4m) plus deepening hole APBY-99-09 and hole APBY-01-33 on the Chalky Geyserite Zone (265').

The Hushamu shale-sandstone unit contains too much sulfur. The sulfur values in the high grade silica zone decrease from west to east.

Respectfully submitted

J.T. (Jo) Shearer, M.Sc., P.Geo.

Consulting Geologist

Quarry Supervisor #98-3550

March 15, 2002

9.0 REFERENCES

Ascencios, A., 1973:

Expo Group, B.C. Department of Mines Annual Report #4754.

Cargill, D. G., Lamb, J., Young, M. J. and Rugg, E. S., 1976:

Island Copper. In C.I.M. Special Volume 15, Porphyry deposits of the Canadian Cordillera, pp. 206-218.

Clouthier, G., 1971:

Expo Group, B.C. Department of Mines Annual Report #3402.

Hammack, J. L., Nixon, G. T., Koyan, V., Payie, G. J., Panteleyev, A., Massey, N. W. D., Hamilton, J. V. and Haggard J. W., 1994:

Preliminary Geology of the Quatsino-Port McNeill Area, Northern Vancouver Island. Open File 1994-26, Geological Survey Branch, B.C. Department of Mines.

Muller, J. E., Northcote, K. E., and Carlisle, D., 1974:

Geology and Mineral Deposits of Alert Bay-Cape Scott Map Area, Vancouver Island, B.C. G.S.C. Paper 74-8.

Nilsson, J., 2000:

PEM 100 Preliminary Plans and Sections.

2000:

PEM100 Statistical Calculations for Reserve Estimations to Accompany PEM100 Preliminary Plans and Sections.

Northcote, K. E., 1969:

Geology of the Port Hardy-Coal Harbour Area, B.C. Department of Mines Annual Report on Lode Metals, 1968, pp. 84-87.

1971:

Rupert Inlet-Cape Scott Map Area, B.C. Department of Mines Geology, Exploration and Mining, 1970, pp. 254-278.

Pearson, B. D., 1983:

Geology, Petrography, Silt and Rock Geochemistry, Wand Claims, Coal Harbour Area, Northern Vancouver Island, B.C. Department of Mines Assessment Report, (not yet numbered).

Wright, B., 2000:

Preliminary Environmental Assessment of a Proposed Quarry at Apple Bay on Holberg Inlet, B.C., Wright, B., July 28, 2000

2000:

Addendum to: Preliminary Environmental Assessment of a Proposed Quarry at Apple Bay on Holberg Inlet, B.C., Wright, B., July 28, 2000

Young, M., 1969:

Expo Group, B.C. Department of Mines Annual Report #2190.

APPENDIX I

STATEMENT of QUALIFICATIONS

J. T. Shearer, M.Sc., P.Geo.

March 15, 2002

Appendix I

STATEMENT OF QUALIFICATIONS

I, JOHAN T. SHEARER, of 1817 Greenmount Avenue, in the City of Port Coquitlam, in the Province of British Columbia, do hereby certify:

- 1. 1 am a graduate of the University of British Columbia (B.Sc., 1973) in Honours Geology, and the University of London, Imperial College (M.Sc., 1977).
- 2. I have over 25 years experience in exploration for base and precious metals and industrial mineral commodities in the Cordillera of Western North America with such companies as McIntyre Mines Ltd., J.C. Stephen Explorations Ltd., Carolin Mines Ltd. and TRM Engineering Ltd.
- 3. I am a fellow in good standing of the Geological Association of Canada (Fellow No. F439) and I am a member in good standing with the Association of Professional Engineers and Geoscientists of British Columbia (Member No. 19,279).
- 4. I am an independent consulting geologist employed since December 1986 by Homegold Resources Ltd. at #5-2330 Tyner St., Port Coquitlam, B.C.
- 5. I am the author of a report entitled "Geological and Diamond Drilling Report on the Apple Bay Project (PEM100 Chalky Geyserite Quarry Holberg Inlet Area, Wanokana Creek, Vancouver Island" dated March 15, 2002.
- 6. I have visited the property in September 1999, October 12, November 30 December 15, 1999, and throughout 2000 while development and bulk sampling occurred. I have carried out mapping and sample collection and am familiar with the regional geology and geology of nearby properties. I have become familiar with the previous work conducted on the Apple Bay claims by examining in detail the available reports and maps and have discussed previous work with persons knowledgeable of the area.
- 7. I have an Open Pit Supervisor Ticket (#98-3550) for daily supervision duties in the Geyserite Quarry.
- 8. I have own interest in the Apple Bay Claims and own Homegold Resources Ltd.

Dated at Port Coquitlam, British Columbia, this 15/1/day of March, 2002.

J.T. Shearer, M.Sc., F.G.A.C., P.Geo.

Quarry Supervisor

March 15, 2002

APPENDIX II STATEMENT of COSTS March 15, 2002

APPENDIX II

STATEMENT of EXPENDITURES APPLE BAY PROJECT Hushamu and High Silica Zone

Wages and Benefits J.T. Shearer, M.Sc., P.Geo., Quarry Supervisor 98-3550	\$ 10.850.00
31 days @ \$350	\$ 10,850.00
Core Splitting, Hushamu 4 days @ \$200	800.00
Core Splitting, High Silica 8 days @ \$200	1,600.00
, ,	\$ 13,250.00
	•
GST	927.50
Subtotal Wages	\$ 14,177.50
Transportation	
Truck Rental, Fully equipped 4x4	
31 days @ 53.50	1,658.50
Gas & Consumables	560.00
Hotel, Food and Meals	1,860.00
North Island Rockpro, Road Building	
Tracked Excavator, Moving Drill & Reclamation	4,282.00
Diamond Drilling	
High Silica - 1162 ft. in 8 holes & deepening 99-09	19,360.00
- Consumables & Field Time	1,645.00
Hushamu - 968 ft. in 6 holes	9,680.00
- Consumables & Field Time	1,160.00
Mob & demob Hushamu	1,500.00
Mob & demob High Silica	2,200.00
Nilsson Mine Services - AutoCad and Engineering	1,862.50
Analytical – High Silica, 42 x \$26.50	1,013.00
Analytical – Hushamu, 27 x \$26.50	615.50
Report Preparation	800.00
Word Processing and Reproduction	<u> 385.00</u>
Total	\$ 48,581.50
GRAND TOTAL	\$ 62,759.00

heaver

APPENDIX III

DRILL LOGS

Hushamu and High Silica Zone

March 15, 2002

HOMEGOLD RESOURCES LTD.

Unit #5 – 2330 Tyner St., Port Coquitlam, B.C. V3C 2Z1 APPLE BAY PROJECT – Hushamu Property

SECTION	f: <u>Hush</u> :	amu	Diamond	Drill Log			D	DH#: <u>Hus</u>	sh-01-01			
Northing: Easting:	:		Drill Hole : Method:			Proper NTS:	t y :	Apple Bay 92L/12W				
Elevation	.: <u> </u>	арргох. 20m	Azimuth	Dip	Depth	Claim:	-	Apple Bay				
Azimuth:	_	30	030	-75	Collar	Date S	tarted:	March 7, 2001				
Inclinatio	Inclination: -75°					Date C	ompleted:	ted: March 8, 2001				
Grid:	_	lo Grid				Logged	-	J.T. Sheare	r, M.Sc.,			
Length (n		6.58m (120 ft)	<u> </u>			1	_	P.Geo				
Core size		xW			-	Sample	_					
Contracto		Boisvenu				3'-10'	10'-15'		20'-25'			
Drill Type	e: <u>Pa</u>	ckdrill Hydrauli	<u>ıc</u>			1	30'-35'		40'-45'			
						ı	50'-55' 70'-75'		60'-65' 80'-85'			
							90'-95'					
							90-93 [0' 110'-:	-	'-120'			
						100-11	110	110	-120			
Purpose:	Test L	ongarm Formati	on at Hushamu.				 					
r urpoos.	. 050											
from	to	Code	Descri	ption		sample	from/to	width	. Au			
(m)	(\mathbf{m})					No.		(\mathbf{m})	(g/t)			
0.00	0.91		RBURDEN: No co	re, weather	ed shaley							
			stone.									
₩.91	1.45		THERED SHALE									
1.45	16.76		actures, orange-b									
1.45	10.76		Y SANDSTONE : li or dark grey lamin									
			axis at 4.39m. La									
			re axis at 6.45m,									
		8,20	· ·	inaioi iajo	4011110							
			ll sub-spherial cal	careous co	ncretions							
			non over short sec									
16.76	18.16	SHA	LEY SANDSTONE	: dark grey	7,							
		num	erous darker bedo	ling at 17.3	35m is 65°							
		to co	re axis.									
18.16	19.12	LIGH	it grey sandst	'ONE: med	ium							
			ic, relatively unifo									
19.12	21.61	SHA	LEY SANDSTONE	: bedding o	common							
21.61	23.95	LIGH	IT GREY SANDST	'ONE: relat	ively							
		unifo			•							
		FAUI	T zone 22.29-23.	95m about	: 45° to							
		core	axis is the main d	rection of	shearing							
23.95	25.11	DAR	K GREY SHALE:									
25.11	25.88	COA	rse sandstone):								
25.88	27.90	SHAI	LEY SANDSTONE	: somewha	t							
		grada	ational contact									
27.90	31.75		rse sandstone									
			w coal seam, whi	ch is 18mn	n wide.							
~ 75	32.25	COAL	LY SHALE:									
32.25	33.68	VER	Y COARSE SAND	STONE: mi	inor							

pebble conglomerate

HOMEGOLD RESOURCES LTD. Unit #5 – 2330 Tyner St., Port Coquitlam, B.C. V3C 2Z1 APPLE BAY PROJECT — Hushamu Property

SECTION: <u>Hushamu</u>			Page:2 of 2	Page: <u>2 of 2</u>				
from (m) 33.68	to (m) 36.58 E.O.H.	Code	Description SHALE: minor shaley sandstone 33.68-34.01m ending at narrow coal seam.	sample No.	from/to	width (m)	Au (g/t)	

END of HOLE 36.58m (120 ft.)

HOMEGOLD RESOURCES LTD. Unit #5 – 2330 Tyner St., Port Coquitlam, B.C. V3C 2Z1 APPLE BAY PROJECT – Hushamu Property

section: <u>H</u>	<u>ushamu</u>	Diamond 1	Drill Log		DDH#: <u>Hush-01-0</u>			
Northing: Easting: Elevation: Azimuth: Inclination: Grid: Length (m): Core size: Contractor:	Approx. 25m 020 -70° No Grid 36.58m (120 ft) AxW Boisvenu	Drill Hole s		Depth Collar	Property: Apple Bay NTS: 92L/12W Claim: Apple Bay Four Date Started: March 8, 2001 Date Completed: March 9, 2001 Logged by: J.T. Shearer, M.S P.Geo. Sample Split: 23'-30' 30'-35' 35'-40'			
Drill Type:	Packdrill Hydraulic				+ up to 120' in 5' intervals			

Purpose:	Move 35m to the North, Test Longarm Formation at Hushamu, North of Hole HUSH-01-01									
from (m)	to (m)	Code	Description	sample No.	from/to	width (m)	Au (g/t)			
0.00	7.01		OVERBURDEN : No core only rubble, volcanic clast-boulders, stony clay-till, rusty sand			, .				
7.01	7.36		clasts up to 3-4mm abundant coal partings up to 8mm in thickness at 75° to 85° to core axis, very friable. Soft sediment deformation at lower contact over 10cm.							
7.36	10.52		MEDIUM GREY SHALE : minor coaly lines, minor wispy bedding at 75° to core axis, very coaly 8.07-8.18m.							
10.52	13.54		coarse Light GREY SANDSTONE: slightly coarser grained, poorly bedded, minor irregular coaly partings up to 4mm wide at 12.38m, 12.49m at about 80° to core axis but also at angle as low as 40° to core axis.							
13.54	13.93		Thicker coaly layer at 13.16m-13.19m. SHALEY SANDSTONE: well bedded in places, bedding at top is 80°-90° to core axis. Minor wavy beds.							
13.93	15.34		COAL: black, vitric, minor nodular, clay rich.							
15.34	15.76		COARSE LIGHT GREY SANDSTONE:							
15.76	22.90		SHALE: dark grey, minor coaly lenses. Shear zone 16.48-16.64m in black shale.							
			Shearing appears to be at a high angle (±80°) to core axis. Calcite layers at 90° to core axis at 17.95m.							
22.90	23.11		COARSE GREY SANDSTONE: narrow layer, non-bedded, bedding on top and bottom contacts is at 80° to core axis.							

HOMEGOLD RESOURCES LTD. Unit #5 – 2330 Tyner St., Port Coquitlam, B.C. V3C 2Z1 APPLE BAY PROJECT — Hushamu Property

SECTION: Hushamu		hamu	Page: 2 of 2	DDH#: <u>HUSH-01-02</u>			
from (m)	to (m)	Code	Description	sample No.	from/to	width (m)	Au (g/t)
23.11	28.09		DARK GREY SHALE: minor gouge at 23.68m at 60° to core axis. Minor thin coal layers at 24.67m and 25.21m up to 12mm wide, grey gout at 25.48m and 25.74-25.92m at 90° to core axis.			()	VOI -1
28.09	28.42		FAULT GOUGE: developed in shale.				
28.42	30.51		DARK GREY SHALE				
30.51	33.92		LIGHT GREY FINE SANDSTONE: rubble zone 33.15-33.40m.				
33.92	36.58 E.O.H.		DARK GREY SHALE: shear zone 34.48-34.72m at 35° to core axis, 2 cm of grey gouge at bottom, Minor irregular coal seams 35.12m 8mm wide, 35.24-35.31m cut by regular calcite veinlets. Uniform shale at end of hole.				
· was			END of HOLE 35.58m (120 ft.)				

HOMEGOLD RESOURCES LTD. Unit #5 – 2330 Tyner St., Port Coquitlam, B.C. V3C 2Z1 APPLE BAY PROJECT – Hushamu Property

SECTION	i: <u>Hus</u>	hamu	Diamond	Drill Log			D	DH#: <u>Hush</u>	-01-03
Northing: Easting:	: -		Drill Hole Method:			Pro NT	perty: S:	Apple Bay 92L/12W	
Elevation	: _	Арргох. 2m	Azimuth	Dip	Depth	Cla	im:	Apple Bay I	Four
Azimuth:	_	030	030	-70	Collar	Da [·]	te Started:	March 9, 20	
Inclinatio	n: _	-70°				Da	te Completed	March 10, 2	2001
Grid:		No Grid	·				_	J.T. Shearer,	
Length (n	a):	67.07m (220 ft)				-		P.Geo.	
Core size		AxW			+	Sat	nple Taken:		
Contracto	_	Boisvenu			-		_	20-25,	
Drill Type	e: Ē	ackdrill Hydraulic			+		then every 5		at
• • •	_		ļ		ļ	E .	07m.		
						1	• • • • • • • • • • • • • • • • • • • •		
			_		<u> </u>	1			
Purpose:	On S	outh Part of Access R	load (near hig	h tide line),	, South of D	rillhole Hus	h-01-01		
from	to	Code	Descri	iption		sample	from/to	width	Au
(m)	(m)			•		No.	•	(m)	(g/t)
0.00	2.74	OVERBU	RDEN: Road	Fill, Large	volcanic			(VC37 -7
			, clay (till) and	-					
€ '4	21.49		GREY WISP		ONE:				
1			soft, medium						
			elatively uniform, darker grey wisps very						
			sporadically t						
			to reflect bedo						
			to be at high a		to core				
			ne wisps appe						
		nodules.	no wispo upp	A1 60 101100	,, ,				
			lcite hairlines	throughou	t calcite				
			t 9.52m at 35						
		_	filling small ca		iis, iiiiiio;				
		——————————————————————————————————————	clastic band 1		53				
			larker band a						
			35° to core axi		, 1211111				
			uniform thro						
			wispy zones is		age				
			coal patch at	_	ıgo,				
		_	coal paten at scentration of		riant				
			ses at 15.26n		пару				
			dules at 17.72 ded associated						
			ieu associalei	a with cares	ucous				
01.40	00.66	lenses.	AND. CORVE	4111 T 70311	G.				
21.49	23.66		ZONE: GREY FAULT ZONE -						
			ssociated with	minor cal	arte				
		selvages.							
02.66	07.40		h zone extend						
9.66 محم	27.43		ZONE: WISPY GREY SANDSTONE,						
<u></u>		calcite sto sections.	ockwork, shor	t argillaceo	us dark				
27.43	30.00		DEV CANDOT	ነገለጉ ፣ ፀሓፊት	u clastic				
21.43	32.02	32.02 WISPY GREY SANDSTONE : finely clasti irregular short darker grey wisps comme							
		— — — — — — — — — — — — — — — — — — —							
		_	atches intense	: Detween 3	-11116.10				
		31.42m.							

HOMEGOLD RESOURCES LTD. Unit #5 – 2330 Tyner St., Port Coquitlam, B.C. V3C 2Z1 APPLE BAY PROJECT — Hushamu Property

SECTION: Hushamu			Page: 2 of 2	DDH#: <u>HUSH-01-03</u>			
from (m) 32.02	to (m) 33.53	Code	Description GREY COARSE SANDSTONE: relatively short section without appreciable darker wisps, distinctly coarser grained.	sample No.	from/to	width (m)	Au (g/t)
33.53	35.16		Traces of disseminated pyrite. WISPY GREY SANDSTONE: wispy layers more regular forming bands 75° to 80° to core axis.				
35.16	39.74		COARSE GREY SANDSTONE: relatively massive, relatively uniform. minor disseminated pyrite over short sections 38.70-38.80m.				
39.74	49.81		WISPY GREY Fine Grained SANDSTONE: convoluted wispy layers at 45.32-45.48m.				
49.81	53.16		GREY MASSIVE SANDSTONE: very minor coal partings.				
53.16	53.34		DARK GREY COALY SANDSTONE:				
53.34	56.62		FREY MASSIVE SANDSTONE: relatively uniform.				
(.62	60.01		SHALEY SANDSTONE ; well bedded in places, darker grey mostly, short section of coarser sandstone 57.50-58.08m.				
60.01	63.06		GREY MASSIVE SANDSTONE: medium clastic, relatively uniform throughout. Minor coaly partings, especially 62.764m-62.82m.			·	
63.06	64.01		SHALEY SANDSTONE - COALY SHALE: mainly dark grey, vitrinite, some soft coaly zones.				
	67.06 E.O.H.		COARSE MASSIVE GREY SANDSTONE: minor to trace disseminated pyrite, relatively coarser grained. Coaly partings at 70d to core axis				
			throughout.				

END of HOLE 67.06m (220 ft.)

HOMEGOLD RESOURCES LTD. Unit #5 – 2330 Tyner St., Port Coquitlam, B.C. V3C 2Z1 APPLE BAY PROJECT — Hushamu Property

SECTION	: <u>Husha</u>	mu	Diamond	Drill Log			D	DH#: <u>Hush</u>	-01-04	
Northing: Easting: Elevation: Approx. 20m Azimuth: 020			Drill Hole : Method: Azimuth 020	_	Depth Collar	NTS Clai Date	m: e Started:			
Inclination Grid: Length (m Core size: Contractor Drill Type	N: 48 B or: B :: Pac	o Grid 3.16m (159 ft) TW bisvenu ckdrill Hydraulic	Page Page Page Page Page Page Page Page		utoon deille	Logg Sarr 11-3 in 5 130	ged by: nple Collecte 15, 15-20, ft. intervals -133, 133-1	20-25, ar up to 133 38	M.Sc.,	
Purpose:	10 1011	ineast corner of Ac			utcop urme	d to ked Sile	eared Donai.	iza Silaie.		
from (m) 0.00 3.35	to (m) 3.35 6.42	GREY S top 16 c	OVERBURDEN: Sand, Till, beside outcrop GREY SANDSTONE: coarse clastic section top 16 cm (could be boulder) rest of interval medium clastic, Rusty-weathered to 4.27m.				from/to	width (m)	Au (g/t)	
6.42	7.34	WISPY wispy le	one at lower cor SANDSTONE: « enses to coaly p	dark brown						
7.34	9.27	Lower c	SHALE: Faulted ontact gouge, c in gouge.	_	_					
9.27	10.76	SHALE sections coaly pa	Y SANDSTONE s intercalated w	rith sandsto						
10.76	15.24	GREY I uniform Abunda 20mm v Coarser pebble o 13,85m Abunda	MEDIUM SAND I down to 12.64 Int irregular con Vide from 12.64 Colastic below of Conglomerate 6 Int coal irregular Vide calcite hairling	STONE: relation. In all seams up 4-13.41m. It coaly section of to core a series.	o to n, minor ixis at					
15.24 15.56	15.56 18.82	GREY I	SHALE: finely MASSIVE SANI clastic, minor c	STONE: m	edium to					
18.82	22.84	GREY S	ontact Faulted, SHALE: bedding enses of coal at	g not well d	eveloped,					

Lower contact gouge development.

HOMEGOLD RESOURCES LTD. Unit #5 - 2330 Tyner St., Port Coquitlam, B.C. V3C 2Z1 APPLE BAY PROJECT - Hushamu Property

SECTION	: <u>Hust</u>	<u>iamu</u>	Page: <u>2 of 2</u>		DDH#	: HUS	H-01-04
from (m)	to (m)	Code	Description	sample No.	from/to	width (m)	Au (g/t)
22.84	23.47		GREY SANDSTONE : coal in upper part, some salt and pepper texture – clay alteration.				
23.47	24.63		SHALEY SANDSTONE: dark grey, well laminated, minor coaly sections, bedding at 24.38m at 85° to core axis.				
24.63	35.05		DARK GREY SHALE: coal section 24.86-24.92m and 25.08-25.11m. Rubbly fractured core below 26.52m. Faulting becoming very prominent 28.25m – gouge, shattering of section, main direction 45° to core axis at 28.53m. Less faulted shale below 28.58m to 34.44m. Highly sheared 34.44-35.05m – abundant gouge and slickensides.				
35.05	35.97		RED SHALE: highly sheared, abundant slickensides, very faulted, intensely slickensided at all directions.				
√, J.9 7	37.49		GREEN TUFFACEOUS SHALE: very altered, abundant slickensides, gouge				
37.49	48.16 E.O.H.		RED SHALE: some sections massive, short sections have abundant slickensides at 5° to 10° to core axis. Variegated green from 47.24-48.16m.				

END of HOLE 48.16m. (158 ft.)

HOMEGOLD RESOURCES LTD. Unit #5 – 2330 Tyner St., Port Coquitlam, B.C. V3C 2Z1 APPLE BAY PROJECT – Hushamu Property

orthing: _		Drill Hole s	urvey		Property:	Apple Bay Four
asting: _		Method: _	Brunton		NTS:	92L/12W
levation:	Approx.	Azimuth	Dip	Depth	Claim:	Apple Bay Four
zimuth: _	000	000	-90	Collar	Date Started:	March 13, 2001
clination:	-90°				Date Complete	ed: March 14, 2001
rid:	No Grid		† "		Logged by:	J.T. Shearer, M.S.
ngth (m):	60.96m (200 ft)					P.Geo.
re size:	BTW		<u> </u>		Sample Split:	
ontractor:	Boisvenu			 	22-40, 40-4	5 and then at 5'
ill Type: P	ackdrill Hydraulic		 		intervals down	to 130-133
_			+		133-138.	
			 			

from (m)	to (m)	Code	Description	sample No.	from/to	width (m)	Au (g/t)
0.00	10.06		OVERBURDEN: considerable road fill at			()	(B) 4
0.00	10.00		top, hole collared on downslope side of				
			Mainline, reddish Till common, pebbles and				
News,			boulders of dark green volcanics and				
			weathered diorite.				
10.06	12.19		SHALEY MEDIUM GREY SANDSTONE:				
•			darker grey layering common at 85° to core				
			axis at 11.89m.				
			Medium to fine clastic,				
			minor coaly layers at 11.58 at 70° to core				
			axis.				
12.19	14.95		GREY SHALE: minor dark grey sections,				
			minor coaly layers and coaly partings.				
14.95	14.96		FAULT ZONE: black gouge, abundant				
			slickensides at numerous orientations,				
			lower contact with coal.				
14.96	15.31		COAL: some dull but also abundant				
			vitrinite calcite hairlines common.				
15.31	17.22		SHALEY MEDIUM GREY SANDSTONE:				
			more shaley than usual, well layered in				
			places at 65° to core axis.				
			Gradational lower contact.				
17.22	22.38		DARKER GREY SHALE: relatively massive,				
			minor calcareous concretions at 17.83-				
			17.86m				
			Short dark grey sections reflecting increase				
			in carbonaceous material.				
			Coaly shale 22.34-22.38m.				
^~.38	25.34		SHALEY GREY SANDSTONE: poorly				
. .			bedded overall, bedding at 24.72 is at 64°				
***			to core axis, medium clastic mainly.				
25.34	27.43		GREY SHALE: relatively massive, minor				
			dark grey to black sections.				

HOMEGOLD RESOURCES LTD. Unit #5 - 2330 Tyner St., Port Coquitlam, B.C. V3C 2Z1 APPLE BAY PROJECT - Hushamu Property

SECTION: Hushamu			Page: 2 of 2	ge: 2 of 2 DDH#: <u>HUSH-0</u>				
from (m)	to (m)	Code	Description	sample No.	from/to	width (m)	Au (g/t)	
27.43	28.28		COAL and DULL SHALEY COAL : Pyrite films on surfaces parallel to core axis, some sections of vitrinite-lustrous coal contains a hairline network of calcite veinlets.	110.		()	V61 -1	
28.28	30.45		SHALEY GREY SANDSTONE: minor coaly lenses and coaly partings, bedding at end of interval is at 75° to core axis.					
30.45	31.92		COAL and FAULT GOUGE IN COAL : black, abundant slickensides throughout, core rubbly and granulated.					
31.92	34.31		SHALEY SANDSTONE: highly faulted throughout, gouge common, shearing appears to be at low angle <5° to core axis, very broken core. bedding at 33.83m at 60° to core axis.					
34.31	36.09		DARK GREY to BLACK FAULT GOUGE: gouge is 95% of section, traces of sheared black shale.					
(1.09	38.70		SHEARED BLACK SHALE: slickensides at a variety of low angles internal to core.					
38.70	40.54		COAL GOUGE: black gouge with short sections of less sheared coal. Minor short shaley sandstone sections 38.72-38.92m and 39.62-39.74m. Slickensides at lower contact are at 14° to core axis.					
40.54	44.26		VOLCANIC TUFF: medium grey, prominent flatten greenish fragments – Lapilli, rhyodacitic, minor glassy structures, which are much harder than enclosing fine grained matrix. Parts appear to be expandable rhyolite. Brecciation becoming more common gradually toward lower contact.					
	60.96 E.O.H.		GREEN VOLCANIC BRECCIA: dark green fragments within a light grey matrix. Light grey matrix becomes much more abundant below 52.56m. Fragments become more rounded toward bottom of hole with smaller, more angular fragments in the matrix occupying the interstitial space. Crystal-rich fragments prominent 49.00-52.56m.					
			Red staining pervasively 50.10-52.40m. Grey gouge 57.90-57.94m ≈ 80° to core axis.					

END of HOLE 60.96m. (200 ft.)

HOMEGOLD RESOURCES LTD. Unit #5 – 2330 Tyner St., Port Coquitlam, B.C. V3C 2Z1 APPLE BAY PROJECT – Hushamu Property

SECTION	: <u>Hush</u>	amu	Diamond I	Drill Log			DI	DH#: <u>Hush</u>	-01-06
Northing: Easting:			Drill Hole s Method:	Brunton		Prope NTS:	-	Apple Bay 92L/12W	
Elevation:		Approx.	Azimuth	Dip	Depth	Claim	ı; _	Apple Bay I	our
Azimuth:		020	020	-70	Collar	Date	Started: _	March 14,	2001
Inclination	n: -	70°			1	Date	March 16, 2		
Grid:		lo Grid			1	Logge	d by:	J.T. Shearer,	M.Sc.,
Length (m		6.63m (153 ft)	 	1		~		P.Geo.	
Core size:	. —	ATLO		ļ	 	Samn	les Collecte		
					ļ	_	3, 48-55		
Contracto		Boisvenu	<u> </u>		<u> </u>) down to 1	50	
Drill Type	: <u>P</u> a	ekdrill Hydraulic							
						rmai	Sample 150	J-153	
				 	1				
			L	<u> </u>					
Purpose:	30m I	North of Hole Hush-C	1-02, Northwe	est Corner	of "Triangle"	•			
	_	· ·							
from	to	Code	Descrip	ption		sample	from/to	width	Au
(m)	(m)		•	•		No.		(m)	(g/t)
0.00	12.80	OVERRI	RDEN: Mostly	no core S	Some			` ,	101
0.00	12.00		and, pebbles fr						
				om stoney	ciay, im				
		over bed							
12.80	17.68		andstone: R	-					
		poorly be	edded, gradatio	onal conta	ct between				
		17.68m	and 18.31m.						
		Narrow o	oal seam 18m	m wide at	17.68m.				
17.68	23.44		REY SHALE:						
17.00	20.11		core axis, min	_					
			at 85° to core	axis at 15	s.92m and				
		20.22m.							
		Gougey o	oal layers occi	ur 20.81-2	20.84m,				
		21.07-21	.18m.						
		Interval 1	becomes progr	essively da	arker				
		below 22	.25m.						
		Vitrinite	coal seam 23.0	06-23.26m	ı irregular				
		contact.							
			oal seam 23.3	8.23 44m	cheared				
					Sileated				
			ngle to core ax		11				
23.44	24.23		SANDSTONE						
			bedding throu						
		axis, min	or coal seam 2	23.73-23.7	75m.				
		Well deve	eloped grey gov	uge at low	er contact				
		at 38° to	core axis, Fau	lted.					
24.33	25.55		REY SHALE:		ded, minor				
27.00	20.00		tings 75-80° t						
			ntact Faulted.						
5- - -	07.00				bundent				
25.55	27.06		assive sand						
			airlines at 15-2	20° to core	axis				
. ,		througho	out section.						
		No beddi	ng apparent.						
27.06	30.38		REY SHALE:	numerous	black				
4,,00	55.00		rtings and frag						
		+ <u>-</u>	_						
		outune a	crude layering	R RECHOILL	IUL				

fractured or broken.

Minor calcite hairline tension gash veinlets

HOMEGOLD RESOURCES LTD. Unit #5 – 2330 Tyner St., Port Coquitlam, B.C. V3C 2Z1 APPLE BAY PROJECT — Hushamu Property

SECTION:	Husha	mu_	Page: 2 of 2	DDH#: <u>HUSH-01-06</u>			
from (m)	to (m)	Code	Description	sample No.	from/to	width (m)	Au (g/t)
30.38	32.39		SHALEY SANDSTONE: slightly lighter grey in colour, gradational contact above and below.				
			Minor rough bedding at 75° to core axis along minor shale interlaminations.				
32.39	34.38		DARK GREY SHALE : minor coaly partings at a high angle to core axis, Gouge on fractures throughout but more so below 33.50m.				
34.338	35.25		GREY SANDSTONE : massive, no bedding, medium clastic.				
35.25	45.03		shaley sandstone: well bedded alternating dark and light grey laminations mainly at 65° to core axis. Minor narrow coal seams 38.47-38.51m, gouge on fractures 38.91-38.95m, 39.01-39.12m.				
			Coal 39.23-39.29m within black interval. Folding and small scale offsets on bedding lamination convolutions 39.92-40.29m. Somewhat bleached 42.52-45.03m, gouge and broken core at end of section.				
45.03	45.81		DARK GREY to BLACK SHALE: very dark interval, abundance of carbonaceous material. Lower contact conformable at 65° to core axis, slickensides at 70° to core axis.				
45.81	46.49		COAL : black, solid, minor calcite veinlets, hard, well indurated, minor black shale. Lower contact sheared.				
46.49	46.63 E.O.H.		DARK GREY SHALE: bedding 85° to core axis, thicker beds than usual. Slickensides and broken core at end of hole.				

END of HOLE 46.63m (153 ft)

Unit #5 – 2330 Tyner St., Port Coquitlam, B.C. V3C 2Z1

APPLE BAY PROJECT HIGH SILICA GEYSERITE ZONE

SECTION:	: <u>PEM100</u>		Diamond D	rill Log			D	DH#: <u>APBY</u>	-2001-26
Northing: Easting: Elevation: Azimuth: Inclination Grid: Length (m Core size: Contractor Drill Type:	000 -90 PEM100 30.48m (1 BQ Boisvenu	001	Drill Hole so Method:	Brunton Dip -90	Depth collar	Prop NTS Clai Date Date Logg Sam	ining 001 01 M.Sc.,		
Purpose:	1	_				9-10	····		
from to Code (m)		yering at 48° yering evide 56° to core ite chalky letite lenses at aced interval aced interval at dominant sets at a line 1-2cm at thick alternates with potagments are coth darker greyon oxide stainen light greyis on abundance	ose ROC: to 9' (2.7' sreccia frage ght to dark breccia frage common to core a nt at irre axis at 6. nses. 7.01m a ls throug sections. own to 11 ngular frage nating with lymictic su mmonly li y margins. ing down sh white to	white to complete grey agments, axis at gular 40m at chout in Light .28m. agments a matrix ab-	sample No.	from/to	width (m)	Au (g/t)	
	Вох З	pyrite is re fragments. Subrounde subrounde throughout fragments	eminated pyriplacing some ed light and ded fragments of 15.00-21.00	matrix an ark grey crowded om, white	d chalky				

Unit #5 - 2330 Tyner St., Port Coquitlam, B.C. V3C 2Z1

APPLE BAY PROJECT HIGH SILICA GEYSERITE ZONE

Page: 2 of 2 DDH#: APBY-2001-26 SECTION: PEM 100 from/to width Au Code Description sample from to No. (m) (g/t)(m) [m] Suggestion of flow banded fragments at 19.45-19.54m Short sections of matrix dominant material, angular to ragged mainly dark fragments

> with light grey matrix Close packed breccia, rounded fragments 25.91-28.96m

floating in a creamy light grey groundmass Autobreccia textures 24.04m to 25.91m consisting of mainly darker grey fragments

Small vugs common throughout, generally all core is hard

Matrix dominant floating dark fragments zone 28.96 to E.O.H. (30.48m) Very yuggy 29.45-30.48m.

END of HOLE 30.48M (100 feet)

HOMEGOLD RESOURCES LTD.
Unit #5 – 2330 Tyner St., Port Coquitlam, B.C. V3C 2Z1

APPLE BAY PROJECT HIGH SILICA GEYSERITE ZONE

SECTION	: <u>PEM100</u>		Diamond l	Drill Log			D	DH#: <u>APBY</u> -	2001-27
Northing: Easting: Elevation: Azimuth: Inclination Grid: Length (m Core size: Contractor Drill Type	Approx 3 000 n: -90 PEM100 n): 38.10m BQ Boisven	(125')	Drill Hole s Method: Azimuth 000	Brunton Dip -90	Depth collar	Logg Sam 9'-1	Apple Bay 92L/12W Apple Bay M Lease July 19, 200 J.T. Shearer, P.Geo. 10'-25', 25'-3 tervals to E.C	01 01 M.Sc.,	
Purpose:					Hole APBY-1	999-10			
from to Code (m) (m) JO 2.74 NO CORE casing to 2.74 1067 COARSE grey, large lighter gre grey to wh is matrix of Fragment core axis, top of hole conspicuo usually 2- lenses alo subparalle High core core is qu Vugs up t Rough bar			Description of the process of the pr	and broke BRECCIA: gments wit i matrix ov ce Much of h floating f are at high ugh alignn 67, these a tes of irregi teter, Mino at low angle once broke	dark hin a verall light f top area fragments, n angles to nent from are ular pyrite es to en the ughout	sample No.	from/to	width (m)	Au (g/t)
10.67	18.08	grey, main axis at 10. Some fragge throughout higher alumnature of the material is Near botto becomes meaning the material is the secomes meaning the second meaning th	57° to core a MINATED GE ly will lamina 97m. mental textur t, section apprina content he interval, be relatively some of interval such thicker 61° to core a	res are obspears to had due to the out much of the flow land and grade.	to core erved ave a e softer of the mination				

HOMEGOLD RESOURCES LTD.
Unit #5 – 2330 Tyner St., Port Coquitlam, B.C. V3C 2Z1

APPLE BAY PROJECT HIGH SILICA GEYSERITE ZONE

SECTION:	PEM1	00	Page: 2 of 2		DDH#:	APBY-2001-27	
from	to	Code	Description	sample	from/to	width	Au
(m)	(m)			No.		(\mathbf{m})	(\mathbf{g}/t)
118.08	26.31		CHALKY WHITE FINE-GRAINED				
			fragmental GEYSERITE: creamy white				
			mainly very fine grained throughout very				
			much matrix dominant, fragment ghosting				
			core can be carved at 23.35 – soft but well indurated.				
			Does "softness" correlate with high Al ₂ O ₃ content?				
			Minor traces of orange iron oxide staining. Suggestion of devitrified bands at 70° to				
			core axis at 22.56m				
			Fractures at relatively low angles at <30° to				
			core axis.				
			Ghostly chalky white fragments floating				
			throughout some short sections.				
26.31	31.19		FRAGMENTAL CHALKY GEYSERITE:				
(variegated texture mottled with dark grey				
1			rounded "fragments" juxtaposed with				
			irregular chalky zones of matrix and				
			laminated fragment zones.				
			Somewhat more siliceous appearance, core				
			rubbly from 27.80-29.30m				
31.19	33.59		WHITE BLEACHED flow laminated				
			GEYSERITE: light iron oxide surface				
			staining from top of interval mainly				
			differing orientations of flow banding				
			0° (parallel to core axis) at 33.98m				
			Core rubbly toward lower contact.				
33.59	33.74		FAULT ZONE: clay rich gougy zone, dark				
			grey colour, fissile parallel to core axis, very				
			soft, "carveable"				
00.54			Rubbly core at bottom of interval				
	38.10		WHITE BLEACHED Flow Laminated				
	E.O.H		GEYSERITE: mainly very fine grained,				
			white, uniform, flow folding common with banding t low angles to core axis				
			Vuggy throughout				
			Layering toward bottom of hole averages				
			22° to core axis but at 38.00m lamination				
			is 63° to core axis				
			A few very large fragments were observed				

END of HOLE 38.10M (125 ft.)

Unit #5 - 2330 Tyner St., Port Coquitlam, B.C. V3C 2Z1

APPLE BAY PROJECT HIGH SILICA GEYSERITE ZONE

SECTION: _	PEM100	Diamond I	rill Log			DDH#: <u>APBY-2001-28</u>
Northing: Easting: Elevation: Azimuth: Inclination: Grid: Length (m): Core size: Contractor: Drill Type:	Approx 361'(110.03m) 000 -90 PEM100 31.09m (102') BQ Boisvenu Hydraulic Packdrill	Drill Hole s Method: Azimuth 000	Brunton Dip -90	Depth collar	Logged by: Sample Split:	Apple Bay 92L/12W Apple Bay Mining Lease July 20, 2001 ed: July 21, 2001 J.T. Shearer, M.Sc., P.Geo. mples Necessary
-	Fon investigate area of high Hole APBY-2001-28 is 100r			Hole APBY-19	999-10	

<i>_</i>	from (m)	to (m)	Code	Description	sample No.	from/to	width (m)	Au (g/t)
į L	JO	Approx.		OVERBURDEN: Till, boulders, triconed				
•		19.18		large boulders 0.5 to 1.0m in diameter				
				Casing driven to 15.85m, bedrock				
				encountered at about 19.18m (65)				

PYRITIC FAULT GOUGE of PYRITIC
TUFF BRECCIA: mainly dark green, highly
puritie with heavily disseminated finely

pyritic with heavily disseminated finely

divided pyrite

19.18

31.09

 $\mathbf{E.O.H.}$

Very soft and friable, minor angular fragments of medium green grey tuff

END of HOLE 31.09M (102 ft.)

Unit #5 - 2330 Tyner St., Port Coquitlam, B.C. V3C 2Z1

APPLE BAY PROJECT HIGH SILICA GEYSERITE ZONE

SECTION	: PEM100		Diamond :	Drill Log			D	DH#: _	APBY-2	2001-29
Northing: Easting: Elevation: Approx 410'(124.9) Azimuth: 000 Inclination: -90 Grid: PEM100 Length (m): 36.58m (120') Core size: BQ Contractor: Boisvenu Drill Type: Hydraulic Packdri		120)	Drill Hole s Method: Azimuth 000	_	Depth collar	NTS Clair Date Date Logs Sam 12'-2 27'-5	m: e Started: e Completed: ged by: uple Split: 22' poor reco 32', 37'-42', 4' 7', 57'-62', 6 at 5' interve	Lease July July J.T. Sh P.Geo. Overy, 42'-47	12W Bay Mi 21, 200 23, 200 hearer, 22'-2' 47'-52	7' 2',
Purpose:	_	_				999-10				
from (m) 0 3.66	to Code (m) 3.66 6.71 35.66	OVERBUR Casing to WHITE CH GEYSERIT Fine graine recovery < relatively li Core too re LIGHT GR BRECCIA: section at mostly very chalky frag	ALKY Flow E: white, pured core very 50%, relative ght abbly to pick EY COARSE some shear: 75° to core at y siliceous betweents	re, Tricone Banded Inky appear broken, com ely soft "cam accurate of GEYSER ing in uppear xis, very very very to a few room ut a few room	arance, ore rveable*, contact ITE er part of uggy, unded	sample No.	from/to	V	vidth (m)	Au (g/t)
	Box 3	fragments Traces of s "nodules", but some a Chalky frag Small pyrit rounded si 7mm long Hackly frag fragment b consequen Possible he to core axis Minor Darl Heterolithic	aled shearir	but recover long, isolatenses are displanger spularly spu	r >98% Ited pyrite rounded fractures baced 6m, n-17.41m, ge along r as a 5m at 32°					

alternating with "autobreccia" sections

Unit #5 - 2330 Tyner St., Port Coquitlam, B.C. V3C 2Z1

APPLE BAY PROJECT HIGH SILICA GEYSERITE ZONE

SECTION:	PEM10	00	Page: 2 of 2		DDH#:	APBY-2001-29		
from (m)	to (m)	Code	Description	sample No.	from/to	width (m)	Au (g/t)	
	, ,		Minor fracturing at low angles to core axis Very siliceous					
	Box 5		Core not so fractured 26.50m to 35.00m Distinctly more darker mottling zones					
35.66	36.58		WHITE FINE GRAINED CHALKY					
	E.O.H.		GEYSERITE : no fragments, uniform, core very fractured by fractures at low angles to parallel to core axis Ghost textures only just discernable Relatively light, perhaps Al ₂ O ₃ rich Relatively soft compared to upper zones					

END of HOLE 35.66m. (120 ft)

Unit #5 - 2330 Tyner St., Port Coquitlam, B.C. V3C 2Z1

APPLE BAY PROJECT HIGH SILICA GEYSERITE ZONE

SECTION	: <u>PEM100</u>		Diamond D	rill Log			I	DH#: _	APBY-2	2001-30				
Northing: Easting: Elevation: Azimuth: Inclination Grid: Length (m Core size: Contracto Drill Type	Approx 408 000 n: -90 PEM100 n): 45.72m (1 BQ Boisvenu	50)	Drill Hole su Method: <u>I</u> Azimuth 000	Brunton Dip -90	Depth collar	Date Started: July 23, 2001 Date Completed: July 23, 2001 Logged by: J.T. Shearer, M.S P.Geo. Sample Split:								
Purpose:	To investigate a Hole APBY-200				lole APBY-1	1999-10			, , .					
from (m) 0.00 7.62	to Code (m) 7.62 16.46 Box 1 23.62 Box 2	clay, 25 ft. o WHITE CO. quite oxidize pyrite nodu zone. Fragments a diffuse, enti fracturing p Very siliceor Fresher inte original rhy fragments. SOFT PUNH GEYSERITI soft, matrix	ARSE GEYSI ed 7.62m-8.8 les irregulari are commonit re section apparallel to cor us appearant erval 15.54m olitic texture KY-SHEAREI C: white to lig dominant, n	e, till, boulder, till, boulder, mind by rounder by rou	eccia: or small and eared, common. showing the	sample No.	from/to		vidth (m)	Au (g/t)				
intervals Box 3 Highly st 18.44m, to core a along sli Solid but 19.81m zone, slic relatively Small py diameter relatively 21 29.05 FINE GR Box 4 GEYSER vague su 24.90m			ft chalky sec in back into v nside paralle ft down to 23 nodules up 23.15m to 2 rk soft zone IED LIGHT (E: matrix done estion of flow	at 18.20m slickenside nute pyrittion 18.44 very slicke 1 to core a 3.62m to 3mm ir 3.21m with the sanding a banding a	to es at 40° ee grains Important to ensided exis, core end thin ALKY inor									

HOMEGOLD RESOURCES LTD.
Unit #5 – 2330 Tyner St., Port Coquitiam, B.C. V3C 2Z1

APPLE BAY PROJECT HIGH SILICA GEYSERITE ZONE

PEM 100	Page: 2 of 2		DDH#:	APBY-2	001-30
to Code (m) 03	Description RHYODACITE TUFF: primary texture very well preserved, probable airfall – welded	sample No.	from/to	width (m)	Au (g/t)
c 5	Not bleached, variegated appearance, small angular pyrite nodules at bottom of				
	CHALKY BLEACHED WELDED TUFF (Chalky Geyserite): white to light grey, matrix dominant Very well preserved welded lithophase fragments at 21.33m rough alignment- elongation of fragments at 53° to core axis, very minor angular "chert" fragments Entire interval is quite soft, Short section of darker matrix and				
	White chalky from 36.65m down to 39.37m lower contact core rubbly, recovery in				
72 .H.	COARSE GEYSERITE BRECCIA: mainly light grey siliceous appearance, large fragments, lighter matrix Sections of interlocking aphanatic fragments (autobrecciation) Minor short chalky matrix dominant				
	to Code m) 03 : 5 :37	RHYODACITE TUFF: primary texture very well preserved, probable airfall – welded textures common Not bleached, variegated appearance, small angular pyrite nodules at bottom of interval, largest nodule is 5mm square CHALKY BLEACHED WELDED TUFF (Chalky Geyserite): white to light grey, matrix dominant Very well preserved welded lithophase fragments at 21.33m rough alignment-elongation of fragments at 53° to core axis, very minor angular "chert" fragments Entire interval is quite soft, Short section of darker matrix and fragments 35.83m-36,31m White chalky from 36.65m down to 39.37m lower contact core rubbly, recovery in places is low, perhaps due to fault zone COARSE GEYSERITE BRECCIA: mainly light grey siliceous appearance, large fragments, lighter matrix Sections of interlocking aphanatic fragments (autobrecciation) Minor short chalky matrix dominant intervals, the larges is between 42.67m and	to Code Description sample m) RHYODACITE TUFF: primary texture very well preserved, probable airfall – welded textures common Not bleached, variegated appearance, small angular pyrite nodules at bottom of interval, largest nodule is 5mm square CHALKY BLEACHED WELDED TUFF (Chalky Geyserite): white to light grey, matrix dominant Very well preserved welded lithophase fragments at 21.33m rough alignment- elongation of fragments at 53° to core axis, very minor angular "chert" fragments Entire interval is quite soft, Short section of darker matrix and fragments 35.83m-36,31m White chalky from 36.65m down to 39.37m lower contact core rubbly, recovery in places is low, perhaps due to fault zone COARSE GEYSERITE BRECCIA: mainly light grey siliceous appearance, large fragments, lighter matrix Sections of interlocking aphanatic fragments (autobrecciation) Minor short chalky matrix dominant intervals, the larges is between 42.67m and	The Code Description sample from/to m) RHYODACITE TUFF: primary texture very well preserved, probable airfall – welded textures common Not bleached, variegated appearance, small angular pyrite nodules at bottom of interval, largest nodule is 5mm square CHALKY BLEACHED WELDED TUFF (Chalky Geyserite): white to light grey, matrix dominant Very well preserved welded lithophase fragments at 21.33m rough alignment-elongation of fragments at 53° to core axis, very minor angular "chert" fragments Entire interval is quite soft, Short section of darker matrix and fragments 35.83m-36,31m White chalky from 36.65m down to 39.37m lower contact core rubbly, recovery in places is low, perhaps due to fault zone COARSE GEYSERITE BRECCIA: mainly light grey siliceous appearance, large fragments, lighter matrix Sections of interlocking aphanatic fragments (autobrecciation) Minor short chalky matrix dominant intervals, the larges is between 42.67m and	to Code Description sample from/to width No. (m) RHYODACITE TUFF: primary texture very well preserved, probable airfall – welded textures common Not bleached, variegated appearance, small angular pyrite nodules at bottom of interval, largest nodule is 5mm square CHALKY BLEACHED WELDED TUFF (Chalky Geyserite): white to light grey, matrix dominant Very well preserved welded lithophase fragments at 21.33m rough alignment-elongation of fragments at 53° to core axis, very minor angular "chert" fragments Entire interval is quite soft, Short section of darker matrix and fragments 35.83m-36,31m White chalky from 36.65m down to 39.37m lower contact core rubbly, recovery in places is low, perhaps due to fault zone COARSE GEYSERITE BRECCIA: mainly light grey siliceous appearance, large fragments, lighter matrix Sections of interlocking aphanatic fragments (autobrecciation) Minor short chalky matrix dominant intervals, the larges is between 42.67m and

END of HOLE 45.72m (150 ft)

Unit #5 - 2330 Tyner St., Port Coquitlam, B.C. V3C 2Z1

APPLE BAY PROJECT HIGH SILICA GEYSERITE ZONE

SECTION	: PEM	100		Diamond l	Orill Log			1	DDH#: <u>APBY</u>	<u>2001-3</u>
Northing:				Drill Hole s	urvey		Prop	perty:	Apple Bay	
Easting:	_			Method:	Brunton		NTS	:	92L/12W	
Elevation:	A	pprox 405'	(123.44m)	Azimuth	Dip	 Depth	Clair	m:	Apple Bay M	ining
Azimuth:		000		000	-90	collar			Lease	
Inclination	n: _	-90					Date	e Started:	July 24, 20	01
Grid:		PEM100					Date	e Complete	d: July 24, 20	01
Length (m	ı): _	45.72m (15	<u> </u>				Logg	ged by:	J.T. Shearer,	M.Sc.,
Core size:		BQ				1	[P.Geo.	
Contracto	r: _	Boisvenu				1		ple Split:		
Drill Type	: <u>H</u>	lydraulic Pa	<u>ickdrill</u>				5'-10	0', 10'-15'	, 15'-20'	
							and	then at 5' i	ntervals down	to 150
						!				
				<u> </u>	1	<u> </u>	I			
_	-			***						
Purpose:				ilica geyserit			999-10			
	Hole .	APBY-2001	-31 is 50m	north and 50	om east of	Hole IU				
from	to	Code		Descri	otion		sample	from/to	width	Au
(m)	(m)						No.	,	(m)	(g/t)
ഹറ`്	1.52		OVERBUR	RDEN: No cor	e, soil, clay	7 rich			()	101 /
			boulders		,					
Ĭ.52	18.29		WHITE CO	DARSE GEYS	ERITE BE	RECCIA:				
	Box 1		slightly da	rker large fra	igments wi	thin				
			lighter ma	trix, fragmen	ts are mor	e vuggy				
			_	natrix areas.						
			Minor sma	ıll pyrite nodi	ules have v	veathered				
				esh structur						
			Very silice	ous througho	out, drusy	vugs				
			common	ŭ	•	-				

Minor small pyrite lenses, 1.10-9.11m quartz-pyrite nodule 4mmx9mm plus

FRAGMENTAL: distinctive darker partially

CHALKY GEYSERITE Fine Fragmental:

infilling crackle fractures

DARK GREY RHYODACITE

with sections of flow banded

reabsorbed fragments

Box 2

20.05

Box 4

23.77

Box 5

18.29

20.05

HOMEGOLD RESOURCES LTD.
Unit #5 – 2330 Tyner St., Port Coquitlam, B.C. V3C 2Z1

APPLE BAY PROJECT HIGH SILICA GEYSERITE ZONE

SECTION	: <u>PEM 1</u> 0	00	Page: 2 of 2	DDH#:	#: <u>APBY-2001-31</u>		
from (m) 23.77	to (m) 33.22	Code	Description COARSE GEYSERITE BRECCIA: mainly coarse fragments, minor contorted flow banded zones	sample No.	from/to	width (m)	Au (g/t)
	Box 6		Short flow banded 29.57-30.04, laminations at 75° to core axis				
33.22	38.25		Some sections very vuggy VERY CHALKY BLEACHED GEYSERITE: matrix dominant,				
			Minor coarse fragment zones 36.41m-36.95m.				
38.25	45.72 E.O.H.		COARSE GEYSERITE BRECCIA: very siliceous dark grey coarse angular fragments Some very vuggy intervals 39.62m-42.55m Short chalky section 44.30-44.58m, white, soft, powdery				

END of HOLE 45.72m (150 ft)

HOMEGOLD RESOURCES LTD.
Unit #5 - 2330 Tyner St., Port Coquitlam, B.C. V3C 2Z1

APPLE BAY PROJECT HIGH SILICA GEYSERITE ZONE

SECTION	: <u>PEM100</u>		Diamond I	Orill Log		DDH#: <u>APBY-2001-32</u>						
Northing: Easting: Elevation: Azimuth: Inclination Grid: Length (m Core size: Contracto Drill Type	: Appro 000 n: -90 PEM a): 45.7 BQ or: Bois	2m (150')	Drill Hole s Method: Azimuth 000	urvey Brunton Dip -90	ged by: nple Split: 0', 10'-15',	oleted: <u>July 25, 2001</u> <u>J.T. Shearer, M.Sc.</u> <u>P.Geo.</u>						
Purpose:		gate area of high s Y-2001-32 is 50m				.999-10						
from (m)	(\mathbf{m})	Code	Descrip			sample No.	from/to	width (m)	Au (g/t)			
ბ ეე	1.52	OVERBUR	DEN: No Cor	e, soil, bro	ken and			, ,				
1.52	10.06 Box 1	GEYSERIT indistinct t Abundant	D, CHALKY I E: elongate i bleached out 1 mm vugs, p	ragments								
	Box 2		ım wide pyri									
10.06	15.17	fragments, may not be appearance Minor 1mn Chalky inte	etyserite: minor flow be too chalky, to i wide pyrite ervals appear	anded sho very siliced veinlets at	ort zones, ous : 12.72m							
15.17	23.05	BRECCIA: preserved v fragments Flow bande rounded fra	ction CRED RHYO lower kaolin welded textur ed matrix con agments at 2 ed elongated	content, w es primary nmon arou 0.42m-20.	ell y psamite nd well 70m,							
	Box 4 35.94	23.05m FLOW BAN GEYSERIT core axis fr	DED BLEAC E: Rusty coa om 23.50m-2 e nodules imp	HED CHAI ted fractur 24.01m, m	LKY e at 8° to inor							
	Box 5	Parts of the fragments i Some section	interval hav n close pack ons are bleac esh appearin	ing hed contra	sting							

(25.91m-26.06m)

Unit #5 - 2330 Tyner St., Port Coquitlam, B.C. V3C 2Z1

APPLE BAY PROJECT HIGH SILICA GEYSERITE ZONE

SECTION:	PEM1	00	Page: 2 of 2		DDH#:	APBY-	2001-32
from (m)	to (m)	Code	Description The geyserite alteration is at 58° to core axis and is relatively sharp, check for	sample No.	from/to	width (m)	Au (g/t)
			Alunite presence				
	Box 6		Core broken into rounded potter shard shapes 32,60m-33,20m				
35.94	45.72 E.O.H. Box 7		VERY WHITE CHALKY BLEACHED GEYSERITE: "carveable", relatively high alumina content? Indistinct flow lamination discernable over short sections welded textures also common. Minor small shallow pyrite nodules Relatively intensely kaolinitic, chalky A few larger fragments below 41.15m, autobrecciation in the white bleached majority Minor FeO along fractures at 30° to core				
			axis, minor films along fractures becoming more common Poorly developed slickensides at 44.25m at 53° to core axis. Coarse fragments becoming more prominent at 45.35m to end of hole END of HOLE 45.72m (150 ft)				

Unit #5 - 2330 Tyner St., Port Coquitlam, B.C. V3C 2Z1

APPLE BAY PROJECT HIGH SILICA GEYSERITE ZONE

SECTION	i: <u>Pem</u>	100		Diamond l	Drill Log			DDH#: _A	<u> PBY-2001-3</u>	<u>3</u> _			
Northing: Easting: Elevation Azimuth: Inclinatio Grid: Length (n Core size: Contracto Drill Type	: _ m: _ n): _ i: _	000 -90 PEM100 BQ Boisvenu Iydraulic P	ackdrill	Drill Hole s Method: Azimuth 000	Brunton Dip -90	Depth collar	NTS: Clair Date Date Logg	n: Started: Completed ed by:	ted: <u>July 26, 2001</u> <u>J.T.Shearer, M.Sc</u> <u>P.Geo.</u>				
Purpose:	Infill	drilling sou	ith and wes	st of Hole APE	BY-1999-0	9, chalky sec	ction of depos	sit					
from (m) ,0.00	to (m) 10.67 30.18 Box 1	Code	and Grave FLOW BA unusual s crevasses	Description Description Description Description 3 to 3	n Rock, Ti 5' (10.67m KY GEYS) edrock and	n) ERITE: đ	sample No.	from/to	width (m)	Au (g/t)			
	Box 2		exis Possible recrushed leads and 13.50m leads sections described axis.	usty brown fa gusty brown fa ight brown ge sand 12.19-1 5.54-16.15m lown to 22.25 ge at 21.03m	ault 13.72 syserite ab 2.80m, 12 and short im (73 ft.)	m-14.63m, ove 2.95- : rubbly							
	Don 2		Variable a 24.38m Minor cha still in pre geyserite	angles of flow alky fragment edominantly f	lamination s below 24 low bande	ns to I.99m but d chalky							
30.18	34.75 E.O.H.		White frag	CHALKY GE's gments in dar dules and irre sociated with	ker grey n gular pate	natrix,							
			END of H	OLE 34.75M	(114 feet)							

APPENDIX IV

ASSAY RESULTS

March 15, 2002

AP: MAT 14-MAR-01 11:25

14-MAR-01 11:25

Sample: HUSHAMU RED SHALE Concentrations File: .\RESULTS\MAT.CFS

SIO2	AL203	FE2O3	CAO	MGO	NA20
53.4%	25.46%	4.80%	2.6%	0.62%	0,32%
K2O	SO3	Cl	P205	TIO2	SUM
0.66%	-0.15%	0.006%	0.016%	1.75%	89,5%
C3S	C2S	C3A	C4AF	S/R	A/F
-572.9	585.22	59.35	14.59	1.76	5.30
LIQ	LSF	BI	BF	TAL K	LOI FCT.
88.0	1.5	-7.75	14.9	0.76	1.12
\$102	AL2O3	FE203	CAO	MGO	NA20
59.5%	28.39%	5.35%	2.9%	0.69%	0.36%
K2O	SO3	Cl	P205	TIO2	TOTAL 99.8%
0.76%	-0.17%	0.006	0. 018 %	1.95%	
C3S	C2S	C3A	C4AF	S/R	A/F
-638.8	652.55	66.18	16.28	1.76	5.30
LIQ	LSF	BI	8F	TALK	
98.1	1.45	-7.75	14.5	0.85	

Outr of s	1 9-Mar-01													
Proposi Na	Hushamu													
Tilbiny (f)	Di	SiQ2	AI203	fe203	CaO	MgO	N#2O	K20	503	CI	P206	TiO2	Total	TALK
HO'-1	Hush 1 (3-10)	53.00	17.68	7.09	5.30	1.67	1.26	1.48	1.18	0.00	0.06	1 06	89.73	2.21
H07-2	Heshi (10-15)	52.60	18.52	7.65	4.20	1.00	0.95	1.61	0.96	0.00	0.04	1.13	59.79	2.01
H91-3	Hesh1 (15-20)	49.30	17.56	8.63	5.70	1.85	1.18	1.50	1.26	0.00	0.05	1.24	85.47	2.17
H01-4	Hushi (20-25)	52.10	18.20	9.91	2.60	2.05	1.28	1.47	0.79	0.00	0.05	1.22	99.66	2.26
HDI-5	Hush1 (25-30)	52.00	17.71	8.76	3.90	1.00	1.27	1.51	1.14	0.03	0.05	1.06	89.38	2.26
H01-6	Hush1 (30-35)	48.50	16.79	8.92	6.50	1.76	1.21	1.43	2.02	0.00	0.65	0.99	88.47	2.15
HOI-7	Hush1 (35-40)	46.20	17.35	8.36	7.00	1.66	1.18	1.60	3.12	0.00	0.05	0.95	89,37	2,17
H01-8	Husb1 (60-45)	52.90	17.66	7.95	4.60	1.63	1.30	1.44	2.86	0.00	0.05	0.81	91.19	2.25
HOI-8	 	66.20	17.64	7.15	3.30	1.77	1.41	1.31	1,83	0.00	0.04	0.79	91.45	2.27
HO2-10	Heek1 (59-55)	50.80	15.83	5.48	9.70	1.13	1.46	0.98	2.00	0.00	0.05	0.92	80.05	2.10
HOI-11	Hush1 (55-80)	53,40	18.23	7.97	4.00	1.57	1.00	1.22	2.34	0.00	0.04	0.87	90.64	1,60 1,64
HC1-12	Hush1 (89-05)	56.60	16.97	0.45	3.30	1.51	1.02	1.24	1.39 0.95	0.00	0.04	0.88	91.80 90.34	1.04
HCI-13	Hush1 (05-70)	55.00	16.66	7.08	3.80	1,63	0.91	1.14		0.00	0.05 0.03	1.00 1.11	92.33	1.80
HO-14	Hush1 (70-75)	60.B0	18.02	3.77	5.20	1.16	1.19	0.92 0.95	0.13 0.00	0.00	0.03 Q.12	1.02	88.98	1.20
HO1-15	Hush1 (75-80)	53.00	19.6R	6.50	5.70	1.34 1.32	0.57 0.43	0.92	0.00	0.01	0.12	1.12	88.42	1.04
FIO1-18	Hest (80-85)	52.20	19.20	7.55	5.80	1.32	0.44	0.87	2.20	0.00	0.05	0.96	90.52	1.01
HOI-17	Hask1 (85-80)	52.50	20.22 20.19	8,91 3,52	5.10 6.10	1.54	0.43	0.73	0.07	0.00	0.03	1.10	92.12	0.91
HQ1-18	Hash1 (90-95)	58.80 52.30	15.25	9.64	7.00	1.10	0.31	0.13	0.00	0.00	0.09	1.26	87.44	0.63
HOI-19	Hush1 (85-100)	61.80	17.84	2.39	6L10	0.86	0.30	0.58	0.00	0.00	0.06	1.07	82.60	0.68
HOI-20	Hushii (100-105) Hushii (105-110)	58.00	17.03	5.01	7.10	0.89	0.31	0.53	0.00	0.01	0.08	1.05	90.10	0.66
HC1-21 HC1-22	Hush1 (110-115)	53.60	20.52	7.04	4.10	1.15	0.30	0.60	1,47	0.00	0.06	1.02	89.94	0.75
HC1-23	Hugh1 (185-129)	52.90	19.88	7.12	5.40	1.18	0.28	0.63	0.35	0.00	0.13	1.02	88.90	0.69
HCI-24	Hush2 (23-30)	54.80	19.24	5.03	6.40	1.18	0.45	0.82	0.39	0.00	0.06	1.07	89.22	0.99
HC1-25	Hueh2 (30-35)	52.90	19.66	6.97	2.90	1.31	0.28	0.80	1.57	0.00	0.06	0.94	89.43	0.61
HC1-28	Hunh2 (35-40)	53.50	16.73	8.61	5,60	1.21	0.35	D.58	0.00	0.00	90.0	1.03	87.69	0.73
HC1-27	Hush2 (40-45)	56.60	16,83	5.41	7.10	1,04	0.29	0.66	0.14	0.00	0.07	1.08	89.32	0.72
HC1-28	Husth2 (45-80)	46.90	15,66	15.28	6.80	1.36	0.21	6.47	0.06	0.00	0.13	1.05	86.92	0.52
He1-29	Hush2 (50-55)	58.90	20.80	3.98	4.00	0.98	0.26	0.71	0.63	9.00	0.04	0.91	91.21	0.79
Het-30	Hush2 (55-80)	55.10	19.06	7.30	2.20	1.78	1,06	1.36	0.24	0.00	0.04	1.04	90.00	1.97
H46-31	Husb2 (46-70)	65.60	22.05	6.47	2.10	1.36	0.30	0.92	0.00	0.00	0.04	1.11	89.94	0.91
H44-32	Hush2 (70-75)	54.30	21.25	7.80	2.50	1.35	0.29	0.90	0.00	90.0	0.08	1.03	89.40	0.82
1:17-33	Hesh2 (15-80)	49.40	14.00	8.23	7.30	1.16	0.22	0.66	0.27	0.00	Ð 14	0.82	86.29	0.59
HP1-34	Hosto2 (80-65)	55.00	23.13	4,62	3.40	1.07	0.30	0.71	0.82	0.00	0.04	1.02	90.71	0.77
HW1-35	Hush2 (95-90)	57.00	21.34	6.66	2.00	1.22	0.27	0.72	0.00	0.00	0.03	1.01	90.25	0.74
HM1-36	Hueh2 (90-05)	53.60	22.81	6.29	3.20	1.20	0.29	0.66	0.03	0,00	0.08	1.13	80.30	0.74
H41-37	Hush2 (95-900)	54.80	22.46	7.15	1.80	1.27	0.27	0.80	0.00	90.0	0.04	1.06	89.47	0.80
Hf1-38	Hush2 (100-905)	49.50	19.01	9.00	5.70	1.21	0.20	0.86	0.00 0.00	90,0 90,0	0.08	1.24	86.74 86.65	0.72
H£11-39	Hesta2 (105-110)	53.40	19.50	6.79	5. 60 3. 2 0	1.09	0.26 0.27	0.60 0.65	0.90	920	0.10 0.05	1.12 1.12	00.00 89.54	9.65 9.70
HK1-40	Hed2 (110-115)	55.50	21.73	5.89	2.00	1.13		0.60	0.00	0.00	0.03	1.12	59.5 8	0.69
HK1-41	Hash2 (115-120)	55.30	23.79	5.35	2.50	1.11 2.06	0.30 0.79	1.64	0.86	0.00	0.04	0.26	89.44	1.67
HK1-42	Hush3 (9-15)	52.90	20.07	7.46 7.60	3.70	1.88	1.06	1.58	0.26	0.00	0.07	0.88	89.99	2.10
1461-43	Hunh3 (15-20-)	54.10 50.80	19.47 19.03	7.96	4.B0	1.80	1.12	1.50	0.36	0.00	0.06	0.91	86.38	2.11
H91-44	Hush3 (20-25)	50.00 61.70	19.14	8.85	3,30	1.97	9.98	1.54	0.59	0.00	0.05	1.00	89.13	1.99
HD1-45	Hush3 (25-30)	60,40	17.92	9.73	3.80	1.97	1.18	1.34	0.70	0.00	0.07	1.18	60.10	2.06
101-46	Head 3 (30-85)	47.80	15 20	9.73 8.98	8.3G	1.68	1.58	1.06	0.12	0.00	0.01	1.40	86.21	2.28
NB1-47 NB1-48	Heak3 (35-40) Heak3 (40-45)	52.70	17.23	10.91	2.30	1.69	1.45	1.24	0.12	0.00	0.05	1.30	89.29	2.27
H91-46	Husk\$ (45-80)	54.40	18.63	0.00	1.90	1.84	1.27	1.35	0.68	0.00	0.05	1.12	89.62	2.16
HB1-50	Hush3 (50-65)	55.70	16.03	8.10	1.80	1.81	1.13	1.36	0.11	0.00	0.05	1.06	90.11	2.02
HD1-51	Hush3 (55-60)	54.60	20.62	7.54	3.10	1.26	0.30	0.76	0.05	9.00	0.07	1.03	89.36	0.50
HD1 52	Hush3 (60-65)	52.90	17.84	7.70	4 80	1.76	1.17	1.28	0.40	0.00	0.11	0.83	86.90	2.01
i-01-53	Hush3 (65-70)	53.20	18.70	7.85	4.00	1.71	1.00	1.38	1.28	0.00	0.07	0.97	90.15	1.89
1.00	· ***** / *** 1 *)													

19-Mar-01

Dan in win																	
Black to Mande		المتراحة															
Tir day is	1491		somhol/	qeb	C	YSC:	Te2 ()3	نکت⊃	Nus	114	.00	ðúi	21	2508	7700	To'a:	TALK
Pi11-4	2) 1	1-10	:. 0 ;	G-24	3.C9	5.:,57	1,23	201	0.00	5,64		4 01	r.,q q	15.24	0.01
Pu1	2~~~		31	10-?-)	2.55	C 25	.05	5-5.	D.)**1	2.00	7.00	7.(:;)		::01	0.7	\$6.05	0.00
Pr. 1-3			31	20-30	0.00	0.18	0.04	55. 6 0	Q. 15	ú. 00	u.00	لنمارب	(ب).د		(35,98	0.00
P1	C .01		31	22 40	n _i on	0.15	u ወጵ	55.00	0.13	0.00	0.00	0.00	0.01	D. 71	(^^	<i>j</i> 5.91	0.00
PO III) 1	40-50	1.0_	0.15	2.0-	55.12	3.63	1.00	4),00	J.EC	7.0	6.C1	¢.00	15.64	0.00
P::1-1			21	-0-50	1.4	0.18	ે.6ક	5-1.50	3.47	∵ 0 0	9.09	1,6-	: 1:	0.02	99.	\$5,62	0.00
P 1-7	2001		31	25-70	0.00	0.15	5,65	53 3 :	1.6*	.01	9.00	0.69	3.0	C.02	C.00	66.20	0.01
PU1-2	2001		01	, 5•35	0.10	0.18	. 0	5 . 5	0.14	7.01	0.03	3.00	C.C.	0,03	(.0'	.6.62	0.81
P(1-			D1	÷0-≎0	4.6	¢ 17	0.05	\$2.8 J	2.03	· 0:	1).(3)	0.00	3.6	÷ 0.1	0 ^^	55.13	0.02
P01-10	2004		01	33-18C	0.60	[21	0.7	\$7.2	1.	. 0	4.00	3.6	9.01	.0.	C 00	55.26ز	0.01
001-11			31	17C-110	0.00	0.7	0.00	5.7.6	2 23	2.02	1,00	3.07	3.0	0.63	0 00	55.15	0.02
PA1-12	2001		D1	110 122	4.00	t id	C.0 n	51.2	2 44	1.02	(ج),ن	u.(e3	2.01	0.01	<i>ډ</i> .^.	56.02	0.02
	2001		02	28-10	1.10	C.18	0.05	5≿,3∪	0.23	2.0	3,00	0.63	2.69	5.01	Jű,ü	45.88	0.01
	200		02	-3-Z0	y.c::	0.15	0.05	#4.40	0.13	0.06	3,30	3.65	0.64	7.01	€,\$0	56.45	0.00
•.•			02	10.00	3,00	ŭ.19	0.0	\$2.90	1.52	2.0	0.00	J.bJ	0.01	0.01	6.74	\$\$,01	0.01
• .			02	3 0-4 0	10	5غ ٠)	0.12	£-:.10	J 3	J.0G	دن.0	3.05	0.01	9,03	Cut	55.35	0.00
			02	.0.0	٠.(۵	G.16	9.04	£4.70	0,41	17 0	0.60	1.65	2,01	1103	(65.5¢	0.0:
			02	£0-60	٠: ٢: ١	C 16	7.04	5 - 9.50	0.73	ં.0 ≎	0.(4)	3,00	J.01	9.02	(** 4)	0.00
			D2	10-73	0.20	(° 19	Ü.04	70 شا	0.11	5.01	0.00	3.60	0.C1	2.01	0 ^^	55.58	n.j1
٠.			D2	·0-±0	0.20	C.41	0.05	\$4.10	9.31	÷ Oi	0.00	2.60	J.01	0.01	₹ 01	15.48	0.01
			02	80-90	1.00	0.24	0.05	34.50	0.51	U.0 i	0.03	3,60	3.01	0.01	0.0^	56,12	0.01
			02	20-100	9.00	0.15	0.03	55.20	0,27	0.00	0.00	0.00	0.00	0.01	0.00	55.67	0.00
٠.,			02	00-110	0.50	1: 45	0.0%	54.60	0.26	6.00	0.00		0,42	0,01	0.7	56.65	0.00
-3			02	10-150	3.6 0	U.2C	S,Cf	£3.60	1.27	C.6:	3.09	3.00	0,01	C.01	0.0	55.14	0.01
•			02	2:-100	0.00	0.46	2.04	55.6	0.*7	^,00	0.00	0.W	0.11	ಲ,01	0.6	55.62	0.00
1 11-46	1521		02	130-101	0.041	1:16	7,04	52.00	0.55	, Ç.	0.::3	0,00	0.01	0,01	1.00	56.46	0.00
604.27			02	143,189	3.63	1. 14	7.04	54.6	0.29		0.00	0.03	0.71	9.01	1.11	55.28	0,00
. •	20°L .		02	180-16v	3.1*1	1: 20	9.63	54.79	9.50	5.01	1.00	0.00	0,01	·3.01	/ ***	75.28	0.01
	5.05		02	162173) M	0.13	3.03	64.50	0.29	0.01	0.00	ბ.≎ე	0.11		6 **	55.65	Ç, 0C
•			02	170-120	J.C7	C 1%	0.62	55.47	J. 19	9.0 1	0.00	0.70	0.21	0.01	00	65.77	0.01
	. 4		02	185-150	517)	U. 15	1.60	*1	0.24	G,C C	0.00	0.30	0.û 1	0.01	7 nA	5 6.72	0.00
•			02	3u-2(°-)	0.050	5. Jul	3.03	55.11	J.24	5.60	0,00	0.30	0.51	0.01	0,00	56.53	0.00
	•		02	207-211	9.30	. 2	4.05	34.6.	3.22	9.01	0.01	0.∓0	0.01	J.01	0.00	\$ \$,43	0.02
-	41		02	110-270	0.00	3.12	U. 63	33.1v	0.20	9.00	0.00	0.∂0	0.01	5.01		48	Q.00

P01-62 P01-63 P01-63 P01-63 P01-63 P01-65 P01-65 P01-65 P01-66 P01-66 P01-66 P01-65 P01-65 P01-65 P01-65 P01-65 P01-66

O01-60

Hush 5

33-40

53.90

20.11

7.53

4.10

0.16

1.14

0.58 0.00 0.00 0.07

1.08

88.63

0.53

1

O01-61	Hush 5	40-45	50.80	19.03	9,44	5.00	1.12	0.15	0.52	0.17	0.00	0.13	0.83	87.29	0.49
O01-62	Hush 5	45-50	51.60	17,67	11.03	4.40	0.72	0.16	0.39	0.73	0.00	0.19	0.71	87.50	0.42
O01-52	5 بلاديا:	£C-35	54.60	22.11	7.19	2.50	1.01	0.20	0.51	0.03	0.00	0.05	1.05	89.25	0,54
001-54	Hueti 5	55-ED	59.90	21.42	9 90	4 50	1,08	0,21	0.50	0.00	0.00	0.16	1.10	88.87	0.54
O01-65	Hush 5	60-65	58.40	24.20	6.13	2.50	0.93	0.25	0.45	0.36	0.00	0.09	1.12	89.43	0.55
O01-66	Hush 5	35-70	49,60	21.85	9.76	3.20	0.94	0.25	0.35	1.07	0.00	0.19	0.99	58.21	0.49
O01-67	Hush 5	7(1-75	54.80	24,50	5.28	2.10	0.90	0.26	0.41	1.00	0.00	0.05	0.99	90.29	0.53
Q01-68	Hust 5	75-80	40.20	16.77	13,03	10.60	0.87	0.18	0.37	0.02	0.00	0.23	0.86	83 .13	0.42
QQ1-69	Hus 17	at: 85	52.50	19.84	7.04	5.70	1.01	0,22	0.60	0,00	0.00	0.12	0.99	87.92	0.55
Q01-70	Huat 6	#6- 00	53,30	22.29	6.17	3.60	1.01	0.23	0.45	0.03	0.00	0.16	1.09	88.37	0.55
O01-71	Films, a	90 -95	54,10	23.95	3.30	4.10	0.88	0.23	0.33	0.48	0.00	0.04	0.93	88.13	0.45
O01-72	Hush 5	95-100	55.30	22.61	5.46	3.40	9.75	0.22	0.39	0.05	0.00	0.07	1.11	89.36	9.48
Q01-73	รีร์แล้ว 🖫	100-105	51.20	25.42	2.41	3.30	0.50	0.23	0.22	0.93	0.01	0.02	0.84	85.08	0.37
C)01-74	Hush 5	105-110	46.50	19.18	9.84	7.60	0.58	0.18	0.26	0.00	0.00	0.19	0.94	85.27	0.35
O01-75	Hush 5	116-118	46.40	17.90	11.25	7.50	0.54	0.16	0.20	0.11	0.00	0.09	0.85	85.00	0.29
O01-76	Hush 5	115-120	51.70	23.30	5.85	4.00	0.56	0.21	0.19	0.88	0.00	0.05	0.97	87.72	0.34
Q01-77	x		61.38	21.30	7.47			0.21	0.39						0.46
O01-78	×														
Q01-70	:														
001-60	Hush 6	42-48	52.20	20.25	5.10	4.00	1.23	0.19	0.71	0.00	0.00	0.06	1.25	87.99	0.66
O01-81	Hush 6	48-55	57.20	21.80	5.09	3.30	1.15	0.20	0.71	0.00	0.00	0.04	1.23	90.72	0.67

1

0

_

্

•

•

4

3

)

3

Ü

. . .

्र

()

()

(3

WER LOS DUMP HOUSERS (NIETT TILBURY CONENT LIMITED 16-001-99 13:09

Sample: N.P. AP: MAT 16-007-99 13:08

Concentrations

File: DISKNISER1:[X40.X46]MAT.CFS

MgO CaO 9102 AL203 Fe203 1.99% 2.03% 5.32% 15.71 9.74% \$0.24\$ SE \$83 TiO2 a PESS X20 87.580# 0.0965 1.313 0.015 0.0184 1.144 **A/**F CANE **\$/**R C3A C3S **C28** 1.61 1.97 505. 86 25.16 29.60 -479.63 TALA LOI FET. DI K LIQ LSF 2.74 1.140 3.23 **4.**% 8.67 73.06 A1203 Fe283 CaO SiO2 2.315 2,27% 17.901 11.094 6.061 57.25% TOTAL Ti**0**2 **C**]-P**20**5 K20 **SD3** 99.800# 1.491 0.1125 1.304 -0.0LX 150.0 A/F S/R **C3S** (28 C3A Ç4F 1.97 1.61 -546.55 576.45 26.47 33.76 TALL F LSF 110 H 3.12 6.68 83.26 3.23 -6.75

10 m		<u>.</u>			St. Day	375	45.77	4	7 87	6	4 4 2 %	34			Supra ett.
U01	1	9/100-110	84.01	14.57	0.53	1.39	0.08	.11	-0.02	0.70	1).()	11	0.10	0.14	99.38
U01	2	9/110-120	75.26	21.38	0.52	1.04	0.14	1.16	-0.01	0.11	0.(3)	7.17	0.16	0.14	99.38
U01	3	9/120-130	69.57	25.94	0.51	6.40	0.18	1.18	-0.03	0.01	9.60	372	0.17	0.14	99.38
UOI	4	9/130-140	70.26	25.82	0.45	0.75	0.16	1.19	-0.73	0.71	5.(U)	0.63	0.18	0.114	99.38
U01	5	30/25-35	97.92	1.54	0.71	0.53	-0.01).01	-0.16	6 48	3//1	5.77	-0.08	0.04	99.38
U01	6	30/35-45	96.50	1.24	0.60	0.57	-0.02	0.01	-0.10	-0.14	0.00	968	-0.07	0.14	99.38
U01	7	30/45-55	99.33	0.49	0.51	0.51	-0.03	0.03	-0 10	0.15	-3::1	9.86	-0.09	0.14	
UOI	8	30/55-65	87.13	14.34	0.19	0.53	0.07).10	-0:12	0.09	9.60	1.44	0.09	0.14	99.38
U01	9	30/65-75	77.10	24.07	0.01	0.67	0.13	1.19	-0.07	0.08	0.09	1.51	0.09	0.14	99.38
1001	10	30/75-85	94.85	6.84	0.24	0.60	0.02	1.04	-0.08	0.01	-DG1	1.31	-0.01	0.14	98.72
U01	11	30/85-95	85.97	0.87	0.39	0.22	-0.04	0.01	-0.00	0.14	0.41	0.52	-0.07		98.72
U01	12	30/95-105	90.31	11.55	0.41	0.51	0.05	0.07	-0.08	0.42	0.01	Po	0.02	0.14	98.72
U01	13	30/105-115	92.13	11.19	0.11	0.52	0.04	13.07	-0.18	0.02	3.01	1.45	0.02	0.14	98.72
UO1	14	30/115-125	90.35	0.83	0.24	0.27	-0.03	0.01	-0:19	-0.12	0.65	€.95	-0.05	0.14	98.72
U01	15	30/125-135	99.87	0.49	0.30	045	-0.02	3.61	-0.10	-0.08	0.69	1.64	-0.08	D.1M	98.72
U01	18	31/5-15	96.46	0.56	0.42	0.31	0.01	3.01	-0.06	0.14	1.01	0.5	-0.05	0//4	98.72
U01	16	30/135-145	101.90	0.50	0.22	0.45	-0.03).03	-0 10	-0.16	3.01	- 6	-0.10	0.4	95.51 95.72
U01	17	30/145-160	100.39	0.47	0.23	0.45	-0.03	2.03	-0. 0	0.6	2.01	0.82	-0.10	0.4	
U01	19	31/15-25	96.85	0.36	0.35	0.22	-0.03	2.03	-0.1D	-0.17	กเสม	0.79	-0.10	0.14	99.72
						•	1		·	. 71-1-		ili Yira i			96.51
	AVERAGE		90.12	8.58	0.37	9.60	0.03	0.05	-0 07	0.4.3	9.60	1.0₹	0.00	9/14	96.96
	MAX		101.90	25.94	0.71	1.39	0.18	0.19	-0.01	0.42	3.4:	1.85	6.17	02:4	99.35
	MIN		69.57	0.36	0.01	0.22	-0.04	·-).03	-0 10	-0.17	2.01	2.65	-0.10	0.14	97.5

Ų01

srolect #	entrole id		hole #	depth	9102	AL2O3	FE2O3	CAO	MGO	NA2O	K2O	SO1	CL	TIO2	TALK	P2O6	Total	\$03(LECO)
U01	1	PEN100	9	100-110	84.01	14.57	0.53	1.39	0.08	0.11	-0.02		0.01	1.14	0.10	0.04	99.38	0.22
UDI	2	PEM100	Ö	110-120	75 26	21.38	0.52	1.04	0.14	0.16	-0.01	0.11	0.00	1.11	0.16	0.04	29.38	5.40
UGI	3	PEM100	9	120-130	69.57	21.36 25.94	0.52	0.90	0.15	0.18 0.18	-0.03		0.00	0.72	0.17	0.04	99.38	0.27
UQI	4	PEM 100	9	130-140	70.26		0.45			-					0.17	3.04	99.38	
ÇÜ!	•	PENTOU	¥	130-140	/0.26	25.82	0.45	0.75	0.16	0.19	-0.03	-0.01	0.00	0.65	U, 16	3.04	AA 30	0.25
UOI	ē	PEM100	30	25-35	97.92	1.54	0.71	0.53	-0.01	-0.01			-0.C1	Q.77	-0.08	0.04	99.35	0.17
ŲĎ1	6	PEM100	30	35-45	98,50	1.24	0.60	0 57	-0.02	-0.01	-0.10	-0.14	0.00	0.68	-0.07	3.04	99.38	0.02
1001	7	PEM 100	30	45-55	99.33	0.49	0.51	0.51	-0.03	-0.03		-0.15	-0.01	0.86	-0.09	0.04	99.38	9.05
UDI	8	PEM 100	30	5 5-65	87.13	14.34	C.19	0.53	0.07	0.10	-0.02		0.00	1.44	0.09	0.04	99.38	0.60
LOI	9	PEM 100	30	85-75	77.10	24.07	0.01	0.67	0.13	0.19	-0.07		0.00	1.55	0.14	0.04	96.72	0.52
UO1	16	PEM100	30	7 5-85	94.85	6.84	0.24	0.60	0.02	0.04	- 3).06	-0.01	-0.01	1.31	-9.01	0,04	96,72	0.27
UDI	11	PEM 100	30	8 5-9 5	85.97	0.87	0.39	0.22	-0.04	-0.01	-0,09	-0 .14	-0,01	0.92	-0.07	0.04	96.72	0.10
UO1	12	PEM100	30	95-105	90.31	11.55	0.41	0.51	0.05	0.07	-0.06	0.42	-0.01	1.85	0.02	0.04	98.72	1.27
UOI	3	PEM100	30	105-115	92,13	11.19	0,11	0.52	0,04	0.07	-0.08	0.02	-0.01	1.45	0.02	0.04	98.72	0.35
UOI	14	PEM:00	30	115-125	90.35	0.83	C.24	0.27	-0.03	0.01	-0.09	-0.12	0.00	0.95	-0.05	0.04	96.72	0.15
UOI	15	PEM100	30	125-135	89 87	0.49	0.30	0.45	-0.02	-0.01	-0.10	-0.08	0.00	1.03	-0.08	0.04	96.72	0.22
Ų0†	16	PEM 100	30	135-145	101,90	0,50	G.22	0.45	-0.03	-0.03	-0.10	-0.18	-0.01	1.02	-0.10	0.04	98.72	<0,02
100	17	PEM 100	30	145-150	100.59	0.47	0.23	0.45	-0.03	-0.03	-0.10	-0.16	-0.01	0.62	-0.10	0.04	96.72	<0.02
UOI	18	PEM100	31	5-15	98.40	0,58	0.42	0.81	0.01	-0.01	-0.06	-0.14	0.01	0.91	-0.05	0.04	98.51	<0.02
UDI	18	PEM100	31	16-25	98.85	0.35	0.35	0.22	-0.03	-0.03	~0.10	-0.17	0.00	0.76	-0.10	0.04	96,51	<0.02
				Fuend be	ada fron	n here do	wn - note	803 f	used be		h with	LECO						
UDI	20	PEM 100	31	25-35														6.02
UOI	21	PEM100	31	35-45	101.88	0.43	0.23	0.37	-0.02	-0.09	0.02	0.16	0.39	0.71	-0.07	0.10	104,18	0.05
UOS	22	PEM 100	31	46-55	96.90	0.49	0.38	0.14	-0.07	-0.11	0.02	0.07	0.07	68,0	-0.10	80.0	96.64	0.10
UOI	23	PEM 100	31	55-65														0.17
Ų01	24	PEM100	31	85-75	94.75	0.28	0.44	0.03	-0.09	-0.07	0.03	0.13	0.36	0.77	•0,05	0.67	96.59	0.22
LIDS	25	PEN 100	31	75-85	96.21	0.57	0.36	0.04	-0.09	-0.16	0.03	0.04	0.04	0.80	-0.14	0.07	97.91	0.02
UDI	26	PEM 100	31	85-95	97.98	0.20	0.25	-0.07	-0.15	-0.15	0.02	0.11	0.03	0.82	-0.13	0.08	99.14	0.10
LIDI	27	PEM 100	31	95-105	98.15	0.21	0.13	-0.05	-0.14	-0.17	0,02	0.02	0.04	0.72	-0.16	0.09	98 99	<0.02
UOI	26	PEM 100	31	105-115	97.32	0.28	0.18	-0.06	-0.15	-0,19	0.02	0.02	0.03	0.62	-0.18	0.08	96.15	<0.02
ŲĐI	29	PEM100	31	115-125	95.79	0.25	0.31	-0.05	-0.17	-0.18	0.02	0.06	0.03	0.66	-0,17	0.06	95.50	2.05
UDI	30	PEM 100	31	125-135	96 79	0.21	0.46	-0.07	-0.16	-0.17	0.02	0.53	0.03	0.77	-0.16	0.08	98.50	0.55
UOI	31	PEM100	31	135-145	92 67	6.24	C.24	-0.10	-0.19	-0.24	0.02	0.30	0.02	0.66	-0.23	0.07	93.70	0.37
UDI	32	PEM100	31	145-150	96.93	0.33	0.55	-0.08	-0.13	-0.21	0.02	0.62	0.03	0.66	-0.20	90,0	96,78	D.60
UO1	33	PEM100	32	5-15	97.42	0.25	0.39	-0.06	-0.16	-0.21	0.01	0.04	0.03	0.76	-0.20	0,06	96.55	0.07
UO:	34	PEM 100	32	15-25	92.52	0.35	G.35	-0.06	-0.18	-0.22	0.01	0,63	0.02	C.69	-0.21	0.06	\$3.59	0.02
UDI	35	PEM 100	32	25-35	90.51	0.51	C,19	·Q.09	-0.22	-0.25	0.01	0.09	0.03	0.92	-0.24	0.07	91.77	0.10
UDI	36	PEM 100	32	35-45	94.19	1.56	0.43	-0.02	C 02	-0.21	0.02	0.34	0.05	0.90	-0.20	0.08	97.35	0.37
UQ1	37	PEM 100	32	45-65	94.91	1.26	0.80	-0.03	-0.05	-0.23	0.92	1.32	0.03	0,78	-0.21	0.08	90.92	1.32
UO:	38	PEM100	32	55-65	67.40	0.94	0.23	-0,08	-0,22	-0.24	0.62	0.31	0.02	0.60	-0.23	0.10	89.30	0.35
ŲÕ1	39	PEM100	32	85-75	85,1P	10.17	0.09	-0.04	0.04	-0.19	0.02	0.13	0.03	0.67	-0.18	0.13	94.23	0 20
Ų01	40	PEM100	32	75-88	71.88	17.64	0.46	0.01	0.06	-0.14	0.02	0.61	0.04	0.85	-0.13	0,17	91.78	0.67
UDI	41	PEM 100	32	65-95	69.02	21.68	0.21	-0.02	0.07	-0.21	0.02	0.39	0.03	0.44	-0.19	0.13	91.88	0.42
UDI	42	PEM 100	32	96-106	79.67	11.24	0.12	0.21	-0.12	-0.03	0.03	0.35	0.06	0.56	-0,01	0.14	92.11	0.35
Ų0:	43	PEM100	32	105-115	82.92	1,80	0,18	BQ,Q-	-0.22	-0.24	0.03	0.23	0.04	0.70	-0.22	0.11	94.87	0.30
UOI	44	PEM100	32	115-125	91.71	3.68	0.06	0.65	-0.04	-0.20	0.03	0.17	0.03	0.70	-0.18	0.17	96.86	0.20
na:	45	PEM 100	32	126-136	91.01	3.68	0.07	0 48	-0.04	-0.23	0.03	Q. 13	0.03	0.86	-0.21	0.19	96.18	0.75
UD1	46	PEM 100	32	135-145	82.68	2.11	0.33	0.56	-0.23	-0.26	0,03	0,35	0.03	0.75	-0.24	0.14	96.5C	0.47
UOF	47	PEM100	32	145-150	90.63	0.50	0.43	1 09	-0.10	-0.22	0,03	0,76	0.03	1.15	-0.20	0.11	94.41	0.85

TABLE - DRILLHOLE DATA

				ROCK	LECO S	SiO2	Al2O3	Fe2O3	CaO	MgO	Na2O	K20	SO3	Calculated SO3C	P2O5	TiO2
					70	%	%	%	%	%	%	%	%	%	%	%
AB99-01	9596.30	7685.30	115.00	0.00	-90.000	30.49										
AB99-01	2220.00		115.00	0.00	-50.000	30.43										
AB99-01	0.00	4.57	4.57	WCG	0.040	80.93	12.36	0.38	0.07	0.01	0.01	0.05	-1.00	0.10	0.12	0.92
AB99-01	4.57	6.10	1.53	WCG	0.170	86.92	7.23	1.27	0.03	0.01	0.01	0.03	-1.00	0.10	0.13 0.09	0.83 0.80
AB99-01	6.10	7.62	1.52	WCG	0.150	81.04	11.30	0.52	0.03	0.01	0.01	0.04	-1.00	0.42	0.09	0.80
AB99-01	7.62	10.67	3.05	WCG	0.230	70.09	19.96	0.43	0.05	0.01	0.01	0.05	-1.00	0.57	0.07	0.94
AB99-01	10.67	12.20	1.53	WCG	0.040	76.66	15.36	0.21	0.03	0.01	0.07	0.06	-1.00	0.10	0.07	0.67
AB99-01	12.20	13.57	1.37	GFR	0.100	73.72	17.52	0.91	0.05	0.01	0.01	0.05	-1.00	0.10	0.04	0.71
AB99-01	13.57	17.38	3.81	WCG	0.060	64.11	19.26	7.46	0.09	0.06	0.01	0.05	-1.00	0.25	0.08	
AB99-01	17.38	21.34	3.96	WCG	0.280	79.75	12.79	1.11	0.08	0.01	0.01	0.05	-1.00	0.13	0.13	0.81
AB99-01	21.34	23.17	1.83	WCG	0.100	73.13	17.61	0.77	0.06	0.01	0.01	0.05	-1.00	0.70	0.07	0.60 0.56
AB99-01	23.17	25.61	2.44	WCG	0.270	74.16	16.23	1.18	0.07	0.01	0.01	0.05	-1.00	0.23	0.10	0.50
AB99-01	25.61	28.51	2.90	WCG	0.070	61.11	23.97	4.00	0.11	0.08	0.01	0.07	-1.00	0.17	0.00	0.52
AB99-01	28.51	30.49	1.98	GRR	0.240	68.38	17.86	4.18	0.43	0.11	0.01	0.06	-1.00	0.60	0.17	0.56
											****	0.00	1.00	0.00	0.13	0.50
AB99-02	9613.80	7731.40	128.50	0.00	-90.000	26.77										
AB99-02																
AB99-02	0.00	3.05	3.05	WCG	0.070	85.16	8.53	1.20	0.07	0.01	0.01	0.06	-1.00	0.17	0.14	0.72
AB99-02	3.05	6.10	3.05	WCG	0.170	71.45	17.11	1.16	0.09	0.01	0.01	0.07	-1.00	0.42	0.14	1.14
AB99-02	6.10	6.71	0.61	WCG	0.180	81.09	11.26	0.55	0.08	0.01	0.01	0.05	-1.00	0.45	0.22	1.14
AB99-02	6.71	9.15	2.44	WCG	0.140	63.01	21.77	3.57	0.10	0.04	0.01	0.06	-1.00	0.35	0.24	1.25
AB99-02	9.15	12.20	3.05	WCG	0.130	81.68	9.33	2.45	0.11	0.01	0.01	0.07	-1.00	0.32	0.25	0.98
AB99-02	12.20	15.24	3.04	WCG	0.350	83.67	8.77	1.41	0.09	0.01	0.01	0.07	-1.00	0.87	0.23	0.99
AB99-02	15.24	16.40	1.16	GRD	0.380	74.99	14.01	2.42	0.12	0.01	0.01	0.06	-1.00	0.95	0.22	1.10
AB99-02	16.40	18.29	1.89	GRD	0.220	62.38	15.44	12.25	0.23	0.23	0.01	0.09	-1.00	0.55	0.30	1.10
AB99-02	18.29	21.34	3.05	GRD	0.370	59.86	16.02	14.94	0.30	0.31	0.01	0.07	-1.00	0.92	0.30	1.13
AB99-02	21.34	22.87	1.53	GRD	0.170	61.36	20.42	8.29	0.16	0.15	0.01	0.06	-1.00	0.42	0.19	0.78
AB99-02	22.87	24.39	1.52	GRD	0.150	59.60	21.44	7.55	0.16	0.13	0.01	0.07	-1.00	0.37	0.19	0.78
AB99-02	24.39	26.77	2.38	NA	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
AB99-03	9589 .10	7729.50	129.50	0.00	-90.000	29.45										
AB99-03																
AB99-03	0.00	3.05	3.05	WCG	0.380	58.28	13.50	9.38	5.01	3.48	2.32	0.90	-1.00	0.95	0.20	1.22
AB99-03	3.05	6.10	3.05	WCG	0.040	69.15	14.20	4.14	2.05	0.97	1.68	0.68	-1.00	0.10	0.15	0.99
AB99-03	6.10	9.15	3.05	WCG	0.050	84.42	8.26	1.67	0.04	0.01	0.01	0.07	-1.00	0.12	0.16	0.81
AB99-03	9.15	12.20		FBXWCG	0.010	92.62	2.08	2.20	0.05	0.05	0.01	0.07	-1.00	0.02	0.09	0.68
AB99-03	12.20	15.24	3.04	WCG	0.030	85.13	8.05	1.40	0.08	0.01	0.01	0.05	-1.00	0.07	0.14	1.17
AB99-03	15.24	17.53	2.29	WCG	0.060	73.85	16.72	0.33	0.07	0.01	0.01	0.06	-1.00	0.15	0.15	1.34
AB99-03	17.53	18.29	0.76	WCG	0.090	71.70	17.94	0.60	0.07	0.01	0.01	0.05	-1.00	0.22	0.16	0.98
AB99-03	18.29	19.82	1.53	WCG	0.130	68.96	18.91	1.32	0.14	0.01	0.01	0.07	-1.00	0.32	0.20	1.20
AB99-03	19.82	22.87	3.05	NA	-1.000	66.10	28.43	0.26	1.20	0.20	0.22	-0.03	0.31	0.31	0.19	1.14
AB99-03	22.87	25.91	3.04	NA	-1.000	62.50	30.42	0.20	1.00	0.24	0.24	-0.04	0.08	0.08	0.12	1.01
AB99-03	25.91	29.45	3.54	NA	-1.000	62.90	30.05	0.21	1.70	0.22	0.22	-0.05	1.53	1.53	0.09	0.89
															_	

TABLE - DRILLHOLE DATA

													Over-ride	Calculated		
				ROCK	LECO S	SiO2	A12O3	Fe2O3	CaO	MgO	Na2O	K2O	SO3	SO3C	P2O5	TiO2
					%	%	%	%	%	%	%	%	%	%	%	%
AB99-04	9562.00	7723.00	129.00	0.00	-90.000	36.59										
AB99-04																
AB99-04	0.00	0.91	0.91	NA	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
AB99-04	0.91	3.05	2.14	NA	-1.000	76.70	20.27	0.09	2.30	0.13	0.18	0.00	0.01	0.01	0.06	0.57
AB99-04	3.05	6.10	3.05	NA	-1.000	92.60	8.66	0.17	1.50	0.04	0.10	-0.04	0.09	0.09	0.12	0.56
AB99-04	6.10	9.15	3.05	NA	-1.000	95.90	7.04	0.16	0.80	0.02	0.06	-0.04	0.09	0.09	0.13	0.67
AB99-04	9.15	12.20	3.05	NA	-1.000	86.00	13.23	0.33	1.00	0.07	0.11	-0.04	0.07	0.07	0.13	0.78
AB99-04	12.20	15.24	3.04	NA	-1.000	94.90	4.73	1.56	0.70	0.03	0.04	-0.04	0.11	0.11	0.17	0.81
AB99-04	15.24	18.29	3.05	NA	-1.000	89.70	10.42	0.77	0.70	0.05	0.08	-0.05	0.04	0.04	0.11	0.67
AB99-04	18.29	21.34	3.05	NA	-1.000	52.24	12.33	22.90	0.98	0.37	0.12	-0.03	0.21	0.21	0.13	1.05
AB99-04	21.34	24.39	3.05	NA	-1.000	84.73	13.64	0.37	1.33	0.08	0.14	-0.06	0.03	0.03	0.08	0.78
AB99-04	24.39	27.13	2.74	NA	-1.000	· 78.8 0	17.71	0.92	0.80	0.12	0.14	-0.06	0.01	0.01	0.06	0.71
AB99-04	27.13	30.49	3.36	NA	-1.000	65.40	15.56	8.36	0.60	0.24	0.13	-0.05	0.02	0.02	0.08	0.57
AB99-04	30.49	33.54	3.05	NA	-1.000	65.44	16.75	6.68	1.11	0.26	0.15	-0.05	0.01	0.01	0.06	0.59
AB99-04	33.54	36.59	3.05	NA.	-1.000	73.10	16.58	4.04	1.10	0.20	0.13	-0.04	0.43	0.43	0.05	0.49
AB99-05	9601.40	7708.20	118.20	0.00	-90.000	18.29										
AB99-05																
AB99-05	0.00	0.91	0.91	NA	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
AB99-05	3.05	6.10	3.05	WCG	0.300	78.13	12.43	1.09	0.09	0.01	0.01	0.06	-1.00	0.75	0.21	0.97
AB99-05	6.10	9.15	3.05	GRD	0.130	64.77	22.34	1.36	0.12	0.01	0.01	0.08	-1.00	0.32	0.25	0.71
AB99-05	9.15	12.20	3.05	GRD	0.160	69.39	16.69	4.76	0.20	0.09	0.01	0.08	-1.00	0.40	0.32	0.79
AB99-05	12.20	15.24	3.04	NA	-1.000	77.80	11.53	4.64	0.80	0.16	0.10	-0.03	0.23	0.43	0.32	0.75
AB99-05	15.24	18.29	3.05	NA	-1.000	69.10	15.27	6.26	0.60	0.21	0.11	-0.04	0.14	0.14	0.15	0.72
AB99-06	9580.00	7700.00	116.00	0.00	-90,000	18.29										
AB99-06																
AB99-06	0.00	3.05	3.05	WCG	0.100	88.48	4.82	0.96	0.09	0.01	0.01	0.07	-1.00	0.25	0.25	0.75
AB99-06	3.05	6.10	3.05	WCG	0.100	89.18	4.31	0.82	0.12	0.01	0.01	0.08	-1.00	0.25	0.23	2.00
AB99-06	6.10	9.15	3.05	GRD	0.520	80.15	9.33	1.43	0.17	0.01	0.01	0.08	-1.00	1.30	0.45	1.78
AB99-06	9.15	12.20	3.05	GRD	0.240	65.70	21.14	1.89	0.13	0.01	0.01	0.07	-1.00	0.60	0.43	0.89
AB99-06	12.20	15.24	3.04	NA	-1.000	69.50	28.98	-0.10	2.60	0.18	0.23	-0.01	0.19	0.19	0.12	0.89
AB99-06	15.24	18.29	3.05	NA	-1.000	67.80	31.20	-0.29	1.80	0.20	0.24	-0.06	0.01	0.01	0.12	0.72
AB99-07	9145.20	7860.20	111.20	0.00	-90,000	21.34										
AB99-07																
AB99-07	0.00	3.05	3.05	NA	-1.000	96.20	0.44	3.69	0.60	0.01	-0.04	-0.09	1.98	1.00		0.00
AB99-07	3.05	6.10	3.05	NA	-1.000	99.10	0.37	2.61	0.60	-0.01	-0.04			1.98	0.01	0.80
AB99-07	6.10	9.15	3.05	NA.	-1.000	91.90	0.37	5.74	0.60	0.01	-0.04	-0.10	1.40	1.40	0.01	0.82
AB99-07	9.15	12.20	3.05	NA NA	-1.000	97.90	0.34	3.74	0.70	0.01		-0.09	3.00	3.00	0.10	0.83
AB99-07	12.20	15.24	3.04	NA NA	-1.000	99.60	0.34	2.20			-5.00	-0.10	1.68	1.68	0.01	0.80
AB99-07	15.24	18.29	3.04	NA NA					1.20	0.00	-0.04	-0.08	1.15	1.15	0.10	0.64
AB99-07	18.29	21.34	3.05	NA NA	-1.000	99.20	0.30	2.49	0.60	-0.01	-0.04	-0.10	1.30	1.30	0.01	0.65
AD77-0/	10.29	41.54	3.03	NA	-1.000	102.10	0.36	1.33	1.20	-0.01	-0.04	-0.07	0.65	0.65	0.01	0.77

TABLE - DRILLHOLE DATA

													Over-ride	Calculated		
				ROCK	LECO S	SiO2	Al2O3	Fe2O3	CaO	MgO	Na2O	K2O	SO3	SO3C	P2O5	TiO2
					%	%	%	%	%	%	%	%	%	%	%	%
AB99-09 AB99-09	9511.10	7758.70	127.20	0.00	-90.000	30.49										
AB99-09	0.00	3.05	3.05	NA	-1.000	99.30	10.46	0.14	0.00	0.05						
AB99-09	3.05	6.10	3.05	NA NA	-1.000	88.20 84.60	12.46	0.14	0.90	0.07	0.11	-0.05	0.02	0.02	0.07	0.57
AB99-09	6.10	9.15	3.05	NA.	-1.000	84.60	15.53 17.97	0.11 0.09	0.50	0.08	0.12	-0.06	0.01	0.01	0.05	0.62
AB99-09	9.15	12.20	3.05	NA NA	-1.000	73.80			0.60	0.10	0.15	-0.05	0.01	0.01	0.08	0.71
AB99-09	12.20	15.24	3.04	NA.	-1.000	70.50	28.82 30.51	-0.10 -0.18	0.60 0.60	0.17	0.21	-0.05	0.01	0.01	0.07	0.82
AB99-09	15.24	18.29	3.05	NA NA	-1.000	79.50	17.86	0.30	2.40	0.21	0.22	-0.04	0.01	0.01	0.05	0.99
AB99-09	18.29	21.34	3.05	NA.	-1.000	80.20	18.15	0.59		0.13	0.13	-0.05	0.01	0.01	0.05	0.59
AB99-09	21.34	24.39	3.05	NA NA	-1.000	89.30	10.57	0.39	0.80	0.11	0.13	-0.05	0.01	0.01	0.07	0.68
AB99-09	24.39	27.44	3.05	NA NA	-1.000	92.30	8.19	0.70	0.60 0.60	0.06 0.03	0.08	-0.05	0.05	0.05	0.12	0.77
AB99-09	27.44	30.49	3.05	NA NA	-1.000	77.50	17.19	0.28	0.60		0.05	-0.03	0.15	0.15	0.16	1.21
11333-03	27.44	30.49	3.03	MA	-1.000	11.50	17.19	0.24	0.60	0.10	0.13	-0.01	0.29	0.29	0.22	2.39
AB99-10 AB99-10	9234.20	7804.30	106.10	0.00	-90.000	29.60										
AB99-10	0.00	1.83	1.83	NA	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
AB99-10	1.83	3.05	1.22	SWB	0.200	94.27	1.80	0.55	0.02	0.01	0.01	0.03	-1.00	0.50	0.03	0.60
AB99-10	3.05	6.10	3.05	SWB	0.350	94.03	2.05	0.66	0.04	0.01	0.01	0.03	-1.00	0.87	0.03	0.64
AB99-10	6.10	9.15	3.05	SWB	0.280	96.09	0.77	0.65	0.04	0.01	0.01	0.04	-1.00	0.70	0.04	0.60
AB99-10	9.15	12.20	3.05	SWB	0.270	96.79	0.52	0.62	0.04	0.01	0.01	0.04	-1.00	0.67	0.03	0.70
AB99-10	12.20	15.24	3.04	SWB	0.250	97.03	0.67	0.53	0.03	0.01	0.01	0.03	-1.00	0.62	0.02	0.73
AB99-10	15.24	18.29	3.05	SWB	0.090	96.99	0.55	0.36	0.03	0.01	0.01	0.03	-1.00	0.22	0.01	0.73
AB99-10	18.29	21.34	3.05	SWB	0.030	97.11	0.44	0.20	0.03	0.01	0.01	0.03	-1.00	0.07	0.01	1.01
AB99-10	21.34	24.39	3.05	SWB	0.150	97.16	0.68	0.36	0.02	0.01	0.01	0.03	-1.00	0.37	0.03	1.01
AB99-10	24.39	27.44	3.05	NA	-1.000	98.30	0.17	0.53	0.90	-0.03	-0.02	-0.11	0.08	0.08	0.01	0.83
AB99-10	27.44	29.60	2.16	NA	-1.000	67.60	17.87	5.82	1.20	0.25	0.13	-0.04	0.29	0.29	0.15	0.90
AB00-12 AB00-12	9417.10	8034.70	156.80	0.00	-90.000	15.55										
AB00-12	0.00	7.62	7.62	NA	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	1.00	1.00				
AB00-12	7.62	10.37	2.75	NA	-1.000	53.50	16.46	6.95	4.00	3.68	-1.00 0.21	-1.00	-1.00	-1.00	-1.00	-1.00
AB00-12	10.37	12.50	2.13	NA	-1.000	48.20	14.94	6.36	6.50	2.85	0.21	1.56	3.58	3.58	0.08	0.79
AB00-12	12.50	15.55	3.05	NA	-1.000	48.60	15.73	6.83	5.60	3.07	0.21	1.77 2.11	8.44 7.44	8.44 7.44	0.09 0.09	0.67 0.68
AB00-13 AB00-13	9601.5	7804.0	140.0	0.0	-90.000	13.41										
AB00-13	0.00	0.91	0.91	NA	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	1.00	1.00	1.00		
AB00-13	0.91	3.96	3.05	NA	-1.000	77.70	4.11	9.05	0.80	0.28	0.17	-1.00	-1.00	-1.00	-1.00	-1.00
AB00-13	3.96	7.01	3.05	NA	-1.000	84.10	6.35	4.58	0.60	0.28	0.17	0.09 0.00	0.10	0.10	0.04	0.72
AB00-13	7.01	10.06	3.05	NA	-1.000	89.20	5.21	2.88	0.40	0.10	0.13		0.10	0.10	0.04	0.66
AB00-13	10.06	13.41	3.35	NA.	-1.000	90.30	4.62	2.69	0.40	0.07	0.04	0.00	0.10	0.10	0.05	0.61
	20,00	•••••	0.00	• ** •	1,000	70.50	4.02	2.03	0.40	0.05	0.04	0.00	0.10	0.10	0.04	0.67
AB00-14	9654.0	7890.0	150.0	0.0	-90.000	15.24										

TABLE - DRILLHOLE DATA

				ROCK	LECO S	SiO2	Al2O3	Fe2O3	CaO	MgO	Na2O	K2O	SO3	Calculated SO3C	P2O5	TiO2
					%	%	%	%	%	%	%	%	%	%	%	%
AB00-14																
AB00-14 AB00-14	0.00	10.67	10.67	NA	-1.000	-1.00	-1.00	-1.00	1.00	1.00	1.00					
AB00-14	10.67	15.24	4.57	NA.	-1.000	49.10	15.73	-1.00 8.77	-1.00 5.20	-1.00	-1.00	-1.00	-1.00		-1.00	-1.00
				****	2.000	45.10	15.75	0.77	3.20	3.28	0.14	1.12	2.09	2.09	0.09	0.82
AB00-15	9390.00	7974.00	168.00	0.00	-90.000	12.20										
AB00-15																
AB00-15	0.00	0.61	0.61	NA	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
AB00-15	0.61	3.05	2.44	NA	-1.000	95.50	2.08	0.86	0.50	0.06	0.03	0.00	0.10		0.07	0.97
AB00-15	3.05	6.13	3.08	NA	-1.000	61.80	18.02	7.73	0.40	0.15	0.13	0.01	0.10		0.14	1.46
AB00-15	6.13	9.15	3.02	NA	-1.000	71.80	21.44	1.10	0.50	0.26	0.17	0.00	0.10		0.13	0.97
AB00-15	9.15	12.20	3.05	NA	-1.000	59.20	27.39	1.76	0.40	0.31	0.20	0.00	1.02		0.12	1.11
1D00 16		****														
AB00-16 AB00-16	9283.2	7964.2	161.2	0.0	-90.000	30.79										
AB00-16 AB00-16	0.00	1.50	1.60	NTA	1 000	1.00										
AB00-16 AB00-16	1.52	1.52 3.05	1.52 1.53	NA SWB	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00		-1.00	-1.00
AB00-16	3.05	6.10	3.05	SWB	0.005 0.005	97.27 97.12	0.46	0.17	0.02	0.01	0.01	0.02	-1.00		0.03	1.34
AB00-16	6.10	6.86	0.76	SWB	0.005	97.12 97.74	0.56 0.52	0.47	0.03	0.01	0.01	0.04	-1.00		0.02	0.92
AB00-16	6.86	9.15	2,29	SWB	0.005	97.88	0.52	0.27 0.15	0.01 0.01	0.01 0.01	0.01	0.03	-1.00		0.03	0.75
AB00-16	9.15	12.20	3.05	SWB	0.005	97.30	0.59	0.15	0.01	0.01	0.01 0.01	0.03 0.04	-1.00		0.03	0.70
AB00-16	12.20	12.96	0.76	SWB	0.005	97.57	0.70	0.26	0.01	0.01	0.10	0.04	-1.00	0.01	0.01	0.80
AB00-16	12.96	15.24	2.28	SWB	0.005	97.87	0.61	0.23	0.01	0.01	0.10	0.04	-1.00 -1.00	0.01 0.01	0.02	0.51
AB00-16	15.24	18.29	3.05	SWB	0.005	96.84	0.64	0.15	0.02	0.01	0.01	0.04	-1.00	0.01	0.04 0.05	0.60
AB00-16	18.29	21.34	3.05	SWB	0.005	97.17	0.85	0.30	0.03	0.01	0.01	0.03	-1.00	0.01	0.05	0.67 0.64
AB00-16	21.34	23.63	2.29	SWB	0.005	97.52	0.69	0.28	0.03	0.01	0.01	0.05	-1.00	0.01	0.03	0.64
AB00-16	28.96	30.79	1.83	SWB	0.005	97.26	0.71	0.13	0.02	0.01	0.01	0.04	-1.00	0.01	0.01	0.60
AB00-17	9415.5	7 901.9	157.5	0.0	-90.000	30.49										
AB00-17				0.0	70.000	50.45										
AB00-17	0.00	0.61	0.61	NA	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	1.00	1.00	4.00
AB00-17	0.61	3.05	2.44	GRD	0.050	78.19		0.66	0.04	0.01	0.01	0.04	-1.00		-1.00 0.14	-1.00
AB00-17	3.05	6.10	3.05	GFR	0.320	65.92	22.31	0.51	0.03	0.01	0.01	0.04	-1.00	0.12	0.14	0.61 0.64
AB00-17	6.10	9.15	3.05	GFR	0.360	80.75	11.94	0.75	0.06	0.01	0.01	0.05	-1.00	0.90	0.13	0.56
AB00-17	9.15	12.20	3.05	GRDFBX	1.900	71.92	15.57	2.78	0.05	0.01	0.01	0.05	-1.00	4.74	0.18	0.58
AB00-17	12.20	15.24	3.04	FBX	1.240	74.63	14.28	2.72	0.04	0.01	0.01	0.05	-1.00	3.10	0.20	0.65
AB00-17	15.24	16.77	1.53	GFR	0.220	68.67	18.58	2.55	0.05	0.01	0.01	0.05	-1.00	0.55	0.20	0.63
AB00-17	16. 77	18.29	1.52	WCG	0.090	76.63	13.81	1.46	0.06	0.01	0.01	0.05	-1.00	0.22	0.14	0.61
AB00-17	18.29	21.34	3.05	GRD	0.820	79.10	12.06	1.74	0.16	0.01	0.01	0.05	-1.00	2.05	0.11	0.58
AB00-17	21.34	23.02	1.68	FBX	1.540	66.79	14.94	7.17	0.06	0.01	0.01	0.08	-1.00	3.85	0.14	0.85
AB00-17	23.02	24.39	1.37	FBX	1.470	66.79	17.08	5.74	0.04	0.01	0.01	0.06	-1.00	3.67	0.13	0.55
AB00-17	24.39	27.44	3.05	WCG	0.080	80.32	10.47	2.03	0.06	0.01	0.01	0.06	-1.00	0.20	0.18	0.88
AB00-17	27.44	30.49	3.05	GRD	0.200	73.51	11.01	7.24	0.08	0.01	0.01	0.11	-1.00	0.50	0.27	1.13
AB00-18	9447.50	7846.80	156.20	0.00	-90.000	30.79										

TABLE - DRILLHOLE DATA

				ROCK	LECO S	SiO2	A12O3	Fe2O3	CaO	MgO	Na2O	K2O	Over-ride SO3	Calculated SO3C	P2O5	TiO2
					%	%	%	%	%	%	%	%	%	%	%	%
AB00-18																
AB00-18 AB00-18	0.00	0.61	0.61	NA	-1.000	-1.00	-1.00	-1.00	-1.00	1.00	1.00	1.00	1.00			
AB00-18	0.61	3.05	2.44	WCG	0.040	96.34	1.07	0.22	0.04	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
AB00-18	3.05	6.10	3.05	WCG	0.040	96.02	1.48	0.22	0.04	0.01 0.01	0.01 0.01	0.04	-1.00	0.10	0.13	1.05
AB00-18	6.10	9.15	3.05	WCG	0.060	95.63	1.46	0.26	0.05	0.01		0.03	-1.00	0.20	0.17	0.77
AB00-18	9.15	12.20	3.05	WCG	0.170	95.03 95.21	1.11	0.43	0.03	0.01	0.01	0.06	-1.00	0.15	0.16	0.92
AB00-18	12.20	15.24	3.04	WCG	0.005	94.99	1.11	0.14	0.03	0.01	0.01 0.01	0.03	-1.00	0.42	0.14	1.15
AB00-18	15.24	18.29	3.05	WCG	0.005	95.72	1.20	0.19	0.01	0.01	0.01	0.03 0.03	-1.00	0.01	0.07	1.27
AB00-18	18.29	21.34	3.05	WCG	0.005	97.66	0.57	0.25	0.01	0.01	0.01	0.03	-1.00 -1.00	0.01	0.01	0.62
AB00-18	21.34	24.39	3.05	WCG	0.080	96.51	1.30	0.22	0.02	0.01	0.01	0.03	-1.00	0.01	0.04	0.78
AB00-18	24.39	27.44	3.05	WCG	0.005	97.26	0.80	0.37	0.02	0.01	0.01	0.03	-1.00	0.20	0.18	0.56
AB00-18	27.44	30.79	3.35	WCG	0.005	96.95	0.93	0.50	0.02	0.01	0.01	0.03	-1.00	0.01	0.04	0.68
			- 10 -		5.555	,,,,,	0.55	0.50	0.02	0.01	0.01	0.03	-1.00	0.01	0.06	0.72
AB00-19	9526.0	7825.0	159.7	0.0	-90.000	30.79										
AB00-19																
AB00-19	0.00	0.61	0.61	NA	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
AB00-19	0.61	3.05	2.44	WCG	0.070	78.26	11.34	2.17	0.08	0.01	0.01	0.07	-1.00	0.17	0.21	1.00
AB00-19	3.05	6.10	3.05	WCG	0.090	81.00	8.34	3.17	0.10	0.01	0.01	0.09	-1.00	0.22	0.25	1.00
AB00-19	6.10	9.15	3.05	WCG	0.200	84.93	6.21	2.55	0.09	0.01	0.01	0.09	-1.00	0.50	0.40	1.14
AB00-19	9.15	12.20	3.05	WCG	0.240	80.10	10.59	1.36	0.11	0.01	0.01	0.08	-1.00	0.60	0.37	1.19
AB00-19	12.20	15.24	3.04	WCG	0.290	87.53	6.36	1.37	0.06	0.01	0.01	0.07	-1.00	0.72	0.21	0.85
AB00-19	15.24	18.29	3.05	WCG	0.070	92.77	3.19	0.56	0.04	0.01	0.01	0.06	-1.00	0.17	0.15	0.58
AB00-19	18.29	21.34	3.05	WCG	0.020	95.58	1.37	0.99	0.06	0.01	0.01	0.03	-1.00	0.05	0.03	0.61
AB00-19	21.34	23.17	1.83	WCG	0.070	95.57	1.57	0.89	0.03	0.01	0.01	0.03	-1.00	0.17	0.05	0.48
AB00-19	23.17	24.39	1.22	WCG	0.020	93.16	2.81	1.49	0.03	0.01	0.01	0.05	-1.00	0.05	0.07	0.56
AB00-19	24.39	27.44	3.05	WCG	0.020	93.09	3.44	0.75	0.04	0.01	0.01	0.06	-1.00	0.05	0.07	0.49
AB00-19	27.44	30.79	3.35	WCG	0.130	79.67	12.69	1.14	0.05	0.01	0.01	0.06	-1.00	0.32	0.15	0.74
AB00-20	9222.30	7991.30	158.60	0.00	-90.000	30.49										
AB00-20				0.00	30.000	50.45										
AB00-20	0.00	0.91	0.91	NA	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	1.00	1.00		
AB00-20	0.91	3.05	2.14	NA	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00 -1.00	-1.00	-1.00	-1.00
AB00-20	3.05	6.10	3.05	NA	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
AB00-20	6.10	9.15	3.05	NA	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00 -1.00	-1.00	-1.00
AB00-20	9.15	12.20	3.05	NA	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00		-1.00	-1.00
AB00-20	12.20	15.24	3.04	NA	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00 -1.00	-1.00	-1.00	-1.00	-1.00
AB00-20	15.24	18.29	3.05	NA	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
AB00-20	18.29	21.34	3.05	NA	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00 -1.00	-1.00	-1.00
AB00-20	21.34	24.39	3.05	NA.	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00 -1.00	-1.00	-1.00
AB00-20	24.39	27.44	3.05	NA	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00 -1.00	-1.00	-1.00
AB00-20	27.44	30.49	3.05	NA	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00 -1.00	-1.00 -1.00	-1.00 -1.00
AD00 21	0161.20	9002.60	169.65	0.00	00.000								-			-1.00
AB00-21 AB00-21	9161.20	8093.50	168.60	0.00	-90.000	24.39										
AD00-21																

TABLE - DRILLHOLE DATA

·				ROCK	LECO S	SiO2	A12O3 %	Fe2O3	CaO %	MgO %	Na2O %	K2O %	Over-ride SO3	Calculated SO3C %	P2O5 %	TiO2
					/•	/ •	/4	70	/0	/0	/0	70	70	70	%	%
AB00-21	0.00	1.52	1.52	NA	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
AB00-21	1.52	3.05	1.53	NA	-1.000	85.50	1.44	4.90	0.70	0.00	0.01	0.00	1.53		0.14	0.88
AB00-21	3.05	6.10	3.05	NA	-1.000	87.90	1.28	4.04	0.70	0.00	0.02	0.00	0.77		0.14	0.80
AB00-21	6.10	9.15	3.05	NA	-1.000	81.90	7.78	4.00	0.80	0.03	0.07	0.00	1.95		0.18	0.58
AB00-21	9.15	12.20	3.05	NA	-1.000	74.00	10.86	6.74	0.70	0.05	0.09	0.00	3.16		0.12	0.48
AB00-21	12.20	15.24	3.04	NA	-1.000	77.00	12.54	4.33	0.80	0.05	0.11	0.00	2.40		0.11	0.41
AB00-21	15.24	18.29	3.05	NA	-1.000	80.10	12.77	2.84	0.90	0.05	0.10	0.00	1.72		0.12	0.48
AB00-21	18.29	21.34	3.05	NA	-1.000	86.60	8.28	2.26	0.90	0.01	0.06	0.00	1.12		0.09	0.47
AB00-21	21.34	24.39	3.05	NA	-1.000	84.20	11.30	1.75	0.90	0.04	0.10	0.00	1.10		0.13	0.53
AB00-24 AB00-24	9020.90	7815.80	107.40	0.00	-90.000	12.20										
AB00-24	0.00	1.52	1.52	NA	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
AB00-24	1.52	3.05	1.53	NA	-1.000	96.10	0.87	1.07	0.80	0.00	0.00	0.00	0.10		0.01	1.23
AB00-24	3.05	6.10	3.05	NA	-1.000	81.10	0.43	9.39	0.50	0.00	0.00	0.00	2.62		0.01	0.98
AB00-24	6.10	8.84	2.74	NA	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00		-1.00	-1.00
AB00-24	8.84	12.20	3.36	NA	-1.000	92.70	0.46	2.97	0.70	0.00	0.00	0.00	0.10		0.01	1.30
AB00-25 AB00-25	9367.0	7724.0	108.0	0.0	-90.000	30.49										
AB00-25	0.00	30.49	30.49	NA	-1.000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AB01-26 AB01-26	9192.10	7831.20	111.00	0.00	-90.000	30.49										
AB01-26	0.00	4.57	4.57	OVB	-1.000	-1.00	1.00	1.00	1.00	1.00						
AB01-26	4.57	7.62	3.05	G	0.060	97.88	-1.00 0.36	-1.00 0.49	-1.00	-1.00	-1.00	-1.00	-1.00		-1.00	-1.00
AB01-26	7.62	10.67	3.05	G	0.000	97.75	0.34	0.49	0.71 1.10	-0.04 -0.03	-0.03 -0.01	-0.10	0.10		0.03	0.81
AB01-26	10.67	13.72	3.05	G	0.220	97.62	0.48	0.57	2.20	-0.03 -0.01	-0.01 -0.02	-0.11 -0.09	0.10		0.03	0.54
AB01-26	13.72	16.77	3.05	Ğ	0.150	96.86	0.30	0.48	0.71	-0.01	-0.02		0.10		0.03	0.50
AB01-26	16.77	19.82	3.05	Ğ	0.050	99.12	0.39	0.24	1.39	-0.02	-0.03	-0.11 -0.10	0.10		0.03	0.61
AB01-26	19.82	22.87	3.05	Ğ	0.030	-1.00	-1.00	-1.00	-1.00	-1.00	-0.02	-0.10	0.10		0.03	0.70
AB01-26	22.87	25.91	3.04	Ğ	0.160	99.11	0.40	0.41	1.05	-0.02	-0.03	-0.10	-1.00		-1.00	-1.00
AB01-26	25.91	28.96	3.05	G	0.100	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	0.10		0.03	0.65
AB01-26	28.96	30.49	1.53	G	0.120	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00 -1.00	0.25 0.30	-1.00 -1.00	-1.00 -1.00
AB01-27	9276.4	7777.5	108.0	0.0	-90.000	38.11										
AB01-27																
AB01-27	0.00	2.74	2.74	OVB	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
AB01-27	2.74	6.10	3.36	G	0.250	97.99	1.06	0.68	1.08	-0.02	-0.01	-0.10	0.25	0.62	0.03	-1.00 0.71
AB01-27	6.10	9.15	3.05	G	0.030	98.82	0.71	0.27	1.05	-0.03	-0.03	-0.11	0.23	0.02	0.03	
AB01-27	9.15	12.20	3.05	G	0.120	98.34	0.97	0.48	1.10	-0.03	-0.03	-0.11	0.12		0.03	0.69 0.76
AB01-27	12.20	15.24	3.04	G	0.090	97.71	0.84	0.40	1.72	-0.03	-0.02	-0.11	0.12	0.30	0.03	0.76 0.78
AB01-27	15.24	18.29	3.05	G	0.090	97.74	1.51	0.34	1.10	-0.02	-0.04	-0.11	0.09	0.22	0.03	1.31
AB01-27	18.29	21.34	3.05	G	0.030	97.05	1.54	0.30	1.00	-0.03	-0.03	-0.11	0.03	0.22	0.03	1.82

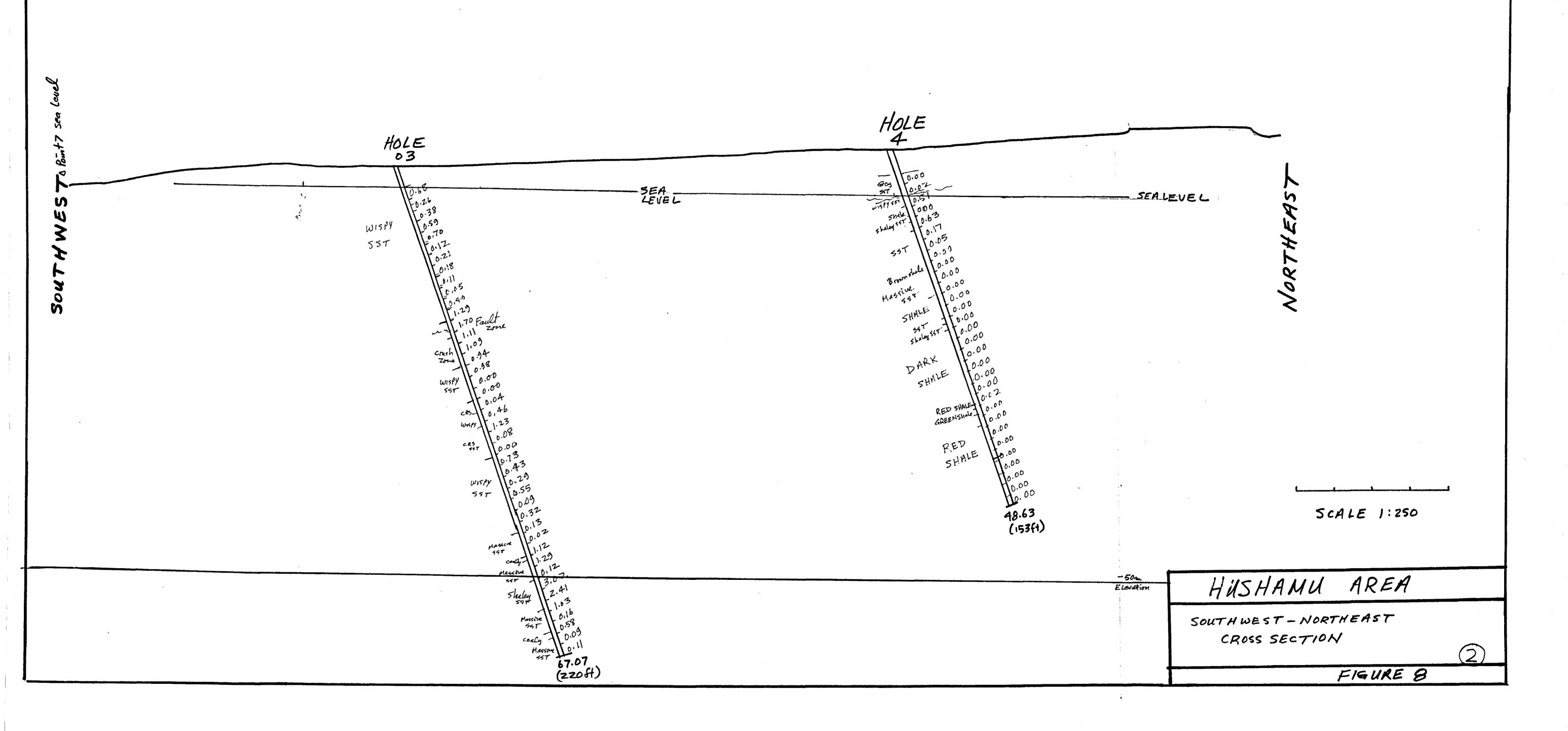
TABLE - DRILLHOLE DATA

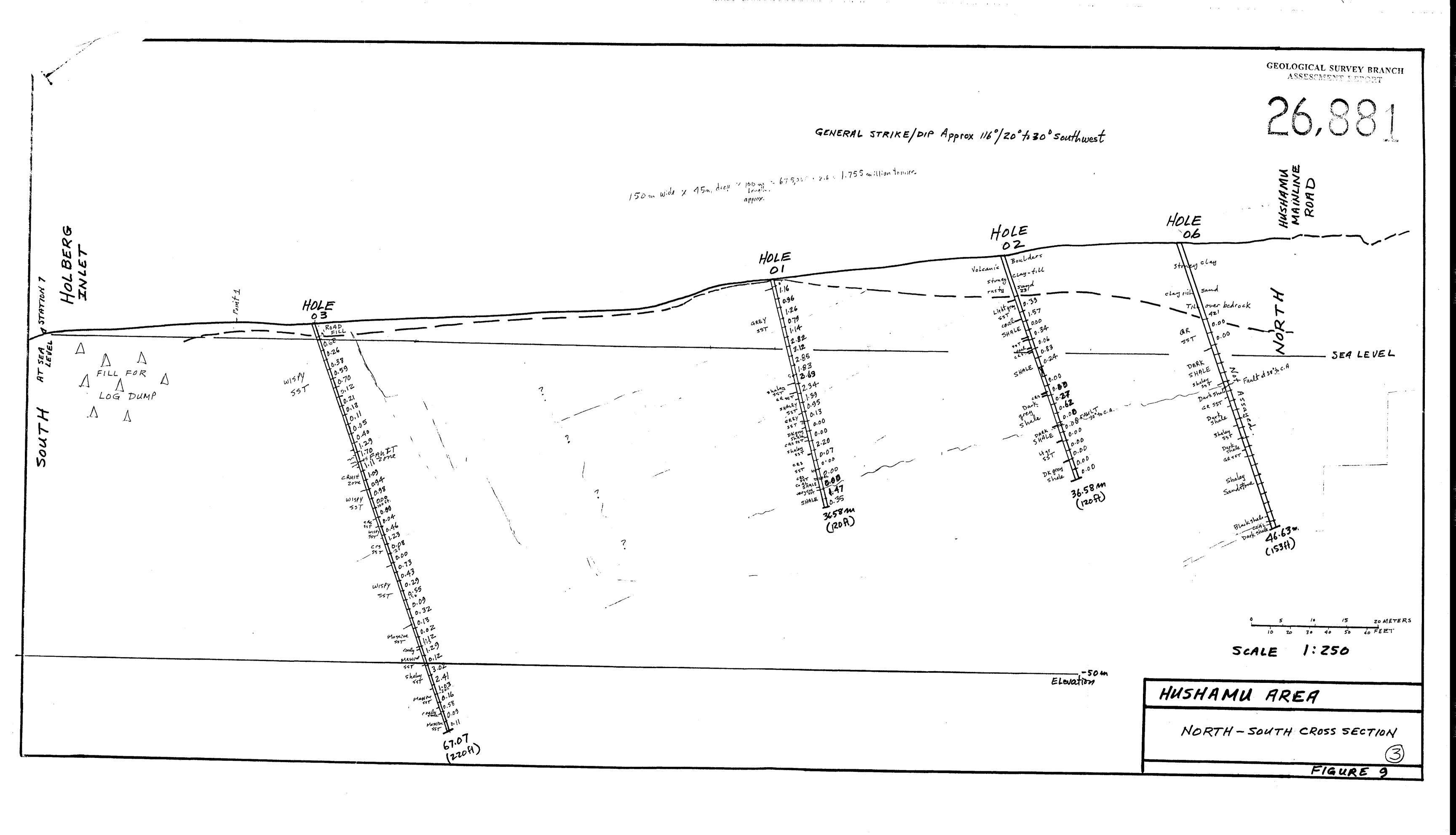
				ROCK	LECO S	SiO2	Al2O3	Fe2O3	CaO	MgO	Na2O	K2O	Over-ride SO3	Calculated SO3C	P2O5	TiO2
					%	%	%	%	%	%	%	%	%	%	%	%
AB01-27	21.34	24.39	3.05	G	0.005	99.30	0.83	0.18	0.98	-0.03	-0.05	-0.11	0.01	0.01	0.03	0.78
AB01-27	24.39	27.44	3.05	G	0.290	97.09	0.72	0.65	0.91	-0.03	-0.04	-0.10	0.29		0.03	0.75
AB01-27	27.44	30.49	3.05	G	0.080	97.95	0.96	0.35	1.57	-0.02	-0.04	-0.10	0.11	0.20	0.03	0.93
AB01-27	30.49	33.54	3.05	G	0.010	99.76	0.87	0.17	0.86	-0.03	-0.04	-0.11	0.01	0.02	0.03	0.86
AB01-27	33.54	36.59	3.05	G	0.080	98.24	2.05	0.29	0.88	-0.02	-0.02	-0.11	0.07		0.03	0.91
AB01-27	36.59	38.11	1.52	G	0.030	99.61	0.55	0.17	0.85	-0.04	-0.05	-0.12	0.02		0.03	0.78
AB01-28	9318.60	7750.60	108.00	0.00	-90.000	16.77										
AB01-28																
AB01-28	0.00	15.24	15.24	OVB	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
AB01-28	15.24	16.77	1.53	PYG	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00		-1.00	-1.00
AB01-29 AB01-29	9218.90	7873.40	123.00	0.00	-90.000	36.59										
AB01-29	0.00	3.66	3.66	OVB	-1.000	-1.00	-1.00	-1.00	1.00	1.00	1.00					
AB01-29	3.66	6.71	3.05	G	0.010	97.88	0.48	0.85	-1.00 0.83	-1.00 -0.04	-1.00	-1.00	-1.00		-1.00	-1.00
AB01-29	6.71	9.76	3.05	G	0.010	99.08	0.48	0.69	0.83	-0.04 -0.04	-0.04	-0.10	0.01	0.02	0.03	1.09
AB01-29	9.76	12.80	3.04	G	0.030	98.26	0.43	0.09	0.83	-0.04 -0.03	-0.04	-0.11	0.01	0.07	0.03	0.51
AB01-29	12.80	15.85	3.05	G	0.100	97.75	0.43	0.58	0.82	-0.03	-0.04	-0.11	0.02		0.03	0.64
AB01-29	15.85	18.90	3.05	G	0.010	-1.00	-1.00	-1.00	-1.00	-1.00	-0.03	-0.10	0.01	0.02	0.03	0.56
AB01-29	18.90	20.43	1.53	G	0.020	95.13	0.44	0.60	0.74	-0.04	-1.00 -0.02	-1.00	-1.00		-1.00	-1.00
AB01-29	20.43	23.48	3.05	G	0.025	97.79	0.45	0.60	0.74	-0.04		-0.10	0.01	0.05	0.04	0.42
AB01-29	23.48	26.52	3.04	G	0.005	97.96	0.43	0.00	0.70	-0.03	-0.02 -0.03	-0.10	0.01	0.01	0.04	0.39
AB01-29	26.52	28.05	1.53	G	0.030	99.68	0.41	0.70	0.80	-0.04		-0.11	0.01	0.01	0.04	0.60
AB01-29	28.05	29.57	1.52	G	0.030	97.14	0.40	0.53	0.86	-0.03	-0.01 -0.03	-0.10	0.01	0.07	0.04	0.41
AB01-29	29.57	31.10	1.53	G	0.030	98.98	0.48	0.33	0.80	-0.04	-0.03 -0.01	-0.11	0.01	0.07	0.04	0.39
AB01-29	31.10	32.62	1.52	G	0.025	99.19	0.40	0.48	0.74	-0.02	-0.01 -0.02	-0.10	0.01	0.05	0.04	0.46
AB01-29	32.62	34.15	1.53	G	0.140	96.15	0.41	0.46	0.71	-0.02		-0.10	0.01	0.01	0.04	0.38
AB01-29	34.15	35.67	1.52	G	0.010	97.55	0.41	0.40	0.69	-0.04	-0.02	-0.11	0.01	0.35	0.04	0.51
AB01-29	35.67	36.59	0.92	G	0.005	98.74	0.49	0.32	0.09	-0.04	-0.03 -0.02	-0.11 -0.11	0.01 0.01	0.02 0.01	0.04 0.04	0.54 0.66
AB01-30	9261.10	7846.50	121.00	0.00	-90.000	48.78										
AB01-30	2201110	70.70.50	121.00	0.00	-50.000	40.76										
AB01-30	0.00	7.62	7.62	OVB	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
AB01-30	7.62	10.67	3.05	G	0.068	97.92	1.64	0.71	0.63	-0.01	-0.01	-0.10	0.01	0.17	0.04	0.77
AB01-30	10.67	13.72	3.05	G	0.008	95.50	1.24	0.60	0.57	-0.02	-0.01	-0.01	0.01	0.17		
AB01-30	13.72	16.77	3.05	G	0.020	99.83	0.40	0.61	0.81	-0.03	-0.03	-0.10	0.01	_	0.04	0.68
AB01-30	16.77	19.82	3.05	G	0.240	87.13	14.34	0.19	0.63	0.07	0.10	-0.02	0.01	0.05	0.04	0.66
AB01-30	19.82	22.87	3.05	Ğ	0.328	77.10	24.07	0.01	0.67	0.07	0.10	-0.02	0.09	0.60	0.04	1.44
AB01-30	22.87	25.91	3.04	Ğ	0.148	94.85	9.84	0.24	0.80	0.02	0.19	-0.08		0.82	0.04	1.55
AB01-30	25.91	28.96	3.05	Ğ	0.076	89.97	0.87	0.39	0.33	-0.04	-0.01	-0.09	0.01	0.37	0.04	1.31
AB01-30	28.96	32.01	3.05	G	0.509	88.31	11.55	0.33	0.51	0.04	0.07		0.01	0.19	0.04	0.82
AB01-30	32.01	35.06	3.05	G	0.144	92.13	11.19	0.41	0.51	0.04		-0.08	0.42		0.04	1.95
AB01-30	35.06	38.11	3.05	G	0.060	90.86	0.53	0.11	0.32	-0.03	0.07 0.01	-0.08	0.02		0.04	1.45
	22.30		2.53	•	0.000	20.00	0.55	0.24	0.27	-0.03	0.01	-0.09	0.01	0.15	0.04	0.95

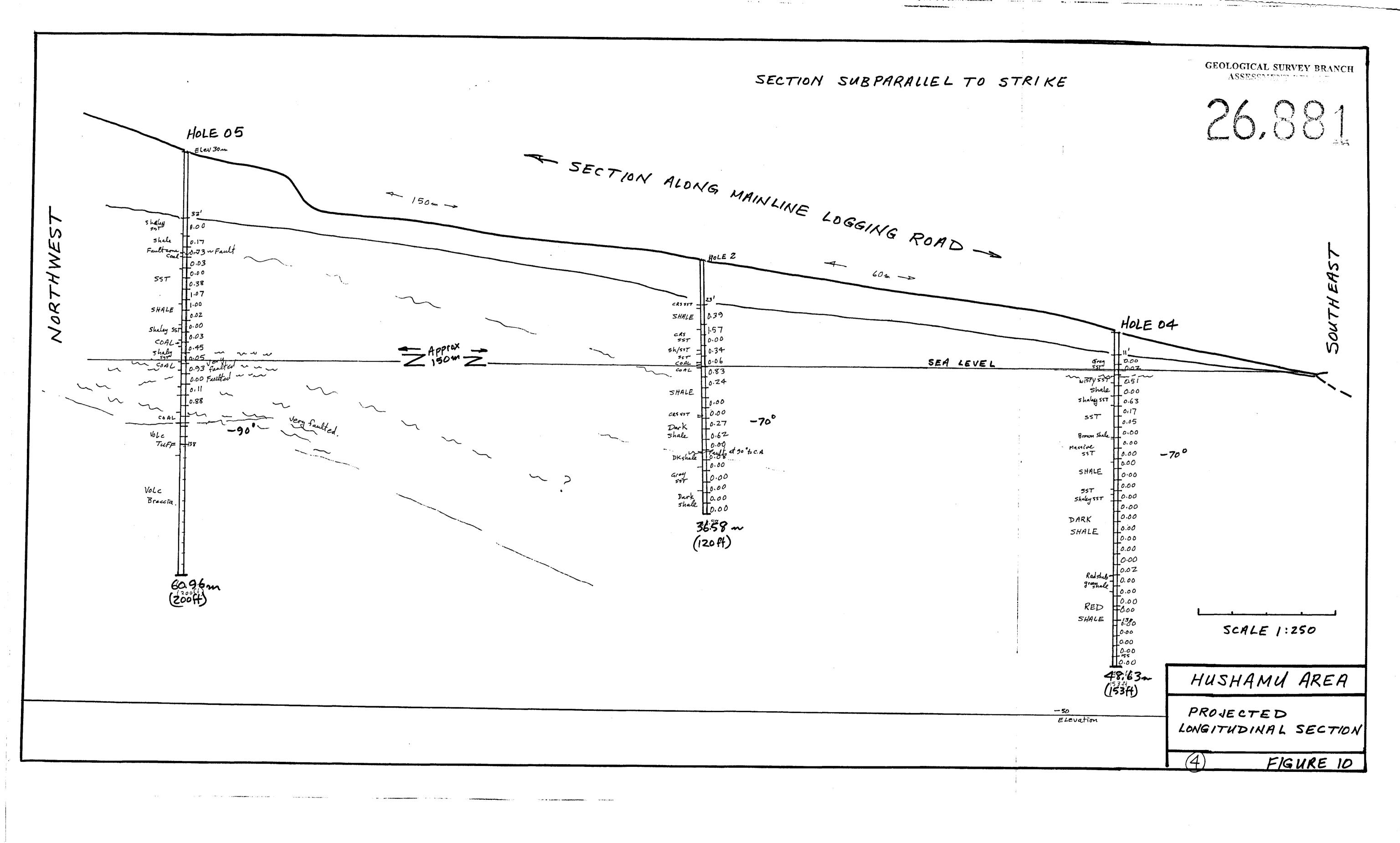
				ROCK	LECO S	SiO2	Al2O3	Fe2O3	CaO	MgO	Na2O	K2O	Over-ride SO3	Calculated SO3C	P2O5	TiO2
					%	%	%	%	%	%	%	%	%	%	%	%
AB01-30	38.11	41.16	3.05	G	0.088	99.87	0.49	0.30	0.46	-0.02	-0.01	-0.10	0.01	0.22	0.04	1.03
AB01-30	41.16	44.21	3.05	G	0.004	101.90	0.50	0.22	0.45	-0.03	-0.03	-0.10	0.01	0.01	0.04	1.02
AB01-30	44.21	48.78	4.57	G	0.004	100.38	0.47	0.23	0.45	-0.08	-0.08	-0.10	0.01	0.01	0.04	0.82
AB01-31	9303.30	7819.60	121.00	0.00	-90.000	7.62										
AB01-31																
AB01-31	0.00	1.83	1.83	OVB	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
AB01-31	1.83	4.57	2.74	G	0.004	98.48	0.56	0.42	0.81	0.01	-0.01	-0.06	0.01	0.01	0.04	0.91
AB01-31	4.57	7.62	3.05	G	0.004	98.83	0.36	0.36	0.22	-0.03	-0.02	-0.10	0.01	0.01	0.04	0.78
AB01-32	9345.40	7792.80	118.00	0.00	-90.000	45.72										
AB01-32																
AB01-32	0.00	1.52	1.52	OVB	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
AB01-32	1.52	45.72	44.20	G	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000
AB01-33	9468.0	7724.0	107.4	0.0	-90.000	28.96										
AB01-33																
AB01-33	0.00	10.67	10.67	OVB	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
AB01-33	10.67	13.72	3.05	WCG	0.010	75.57	23.14	0.06	3.06	0.16	0.17	-0.03	0.14	0.02	0.03	0.66
AB01-33 AB01-33	13.72 19. 8 2	19.82 22.87	6.10	WCG	0.070	70.27	27.91	-0.02	1.41	0.21	0.20	0.02	0.02	0.17	0.03	0.81
AB01-33 AB01-33	22.87	25.91	3.05 3.04	WCG WCG	0.090 0.070	74.57	25.60	-0.02	1.16	0.14	0.18	-0.05	0.13	0.22	0.03	1.07
AB01-33	25.91	28.96	3.04	WCG	0.070	82.73 85.98	19.29 16.76	0.03 0.03	1.09	0.09	0.13	-0.08	0.09	0.17	0.03	0.83
711501-55	23.71	20.90	3.03	wed	0.050	63.76	10.70	0.03	1.06	0.07	0.11	-0.08	0.07	0.12	0.03	0.81
AB02-35	9533.6	7769.6	138.0	0.0	-90.000	42.68										
AB02-35										·						
AB02-35	0.00	0.61	0.61	OVB	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
AB02-35	0.61	3.05	2.44	WCG	0.160	72.39	15.84	0.31	-0.04	-0.09	-0.10	0.05	0.44	0.40	0.25	0.53
AB02-35	3.05	6.10	3.05	WCG	0.090	67.79	19.65	0.65	-0.05	-0.06	-0.13	0.03	0.21	0.22	0.18	0.63
AB02-35	6.10	9.15	3.05	GRD	0.190	82.26	8.09	2.56	0.07	-0.02	-0.10	0.07	0.49	0.47	0.45	0.70
AB02-35 AB02-35	9.15 12.20	12.20 15.24	3.05 3.04	GRD GRD	0.160 0.070	73.50	12.65	1.13	0.06	-0.08	-0.18	0.07	0.34	0.40	0.31	0.58
AB02-35 AB02-35	15.24	18.29	3.04	GRD	0.070	75.05 78.85	14.53 12.22	1.90	-0.02	0.00	-0.13	0.05	0.20	0.17	0.19	0.61
AB02-35	18.29	21.34	3.05	GRD	0.090	85.63	6.10	2.34 3.54	0.01	0.01	-0.15	0.05	0.26	0.22	0.21	0.71
AB02-35	21.34	24.39	3.05	GRD	0.090	88.15	4.62	2.92	0.10 0.00	0.05	-0.10	0.06	0.28	0.22	0.29	0.66
AB02-35	24.39	27.44	3.05	GRD	0.180	76.32	12.12	1,66	0.00	-0.01 -0.01	-0.11 -0.13	0.05	0.27	0.22	0.23	0.69
AB02-35	27.44	30.49	3.05	GRD	0.170	66.20	22.02	2.11	0.01	0.05	-0.13 -0.09	0.06 0.07	0.47	0.45	0.34	0.66
AB02-35	30.49	33.54	3.05	GRD	0.120	58.20	25.69	2.92	-0.04	0.05	-0.09	0.07	0.48 0.30	0.42	0.38	0.76
AB02-35	33.54	36.59	3.05	STF	0.090	63.11	24.82	2.00	-0.04	0.03	-0.07 -0.10	0.03	0.30	0.30 0.22	0.24	0.68
AB02-35	36.59	39.63	3.04	FBX	0.120	60.89	24.57	2.87	-0.02	0.00	-0.10 -0.09	0.04	0.23	0.22	0.19	0.61
AB02-35	39.63	42.68	3.05	SWB	0.270	65.48	19.71	2.46	0.02	0.11	-0.08	0.09	0.32	0.30	0.23 0.18	0.88
								10	2,30	0.00	0.00	0.07	0.07	0.07	0.18	0.57
AB02-36	9555.90	7780.90	138.80	0.00	-90.000	42.68										
AB02-36																

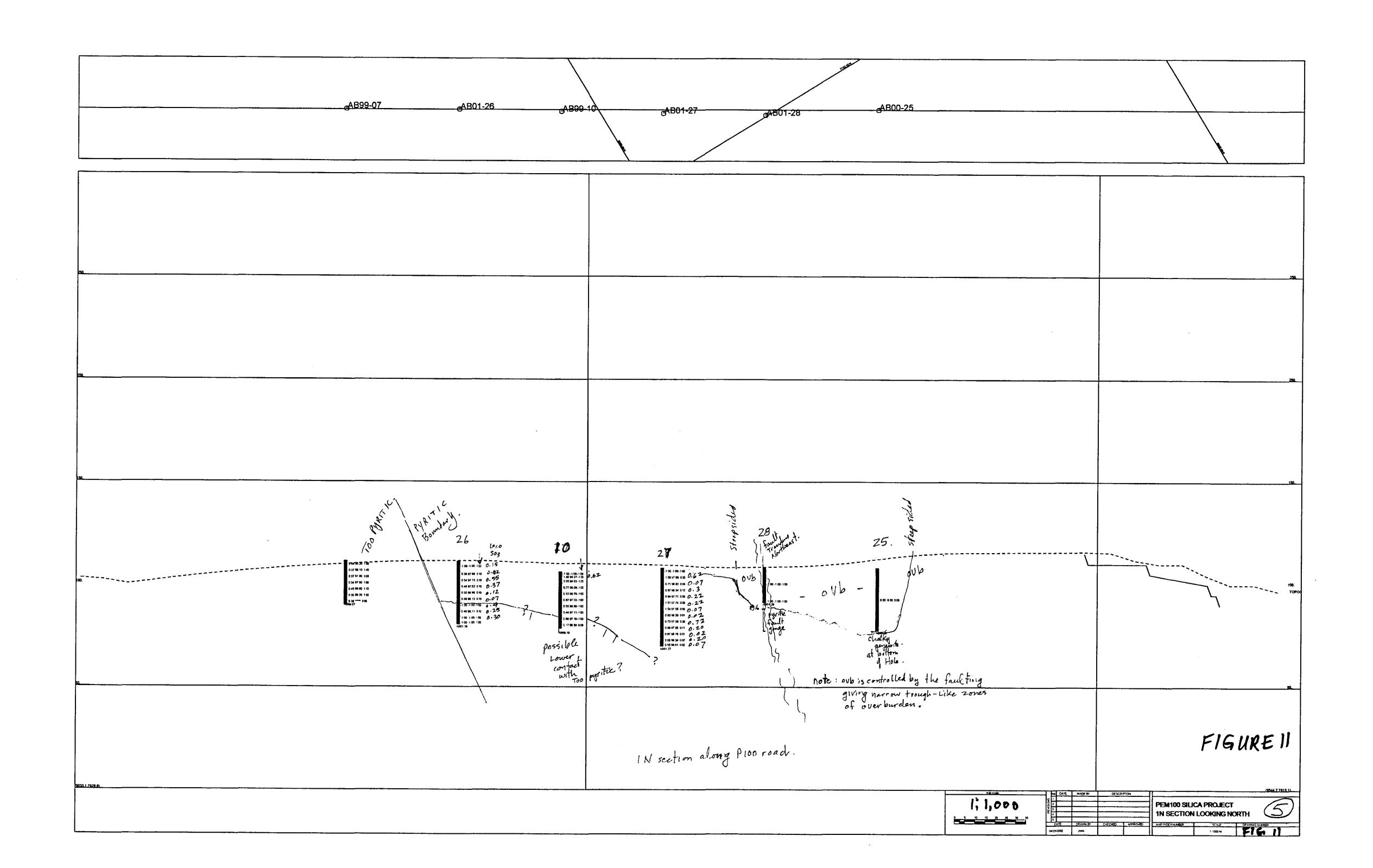
TABLE - DRILLHOLE DATA

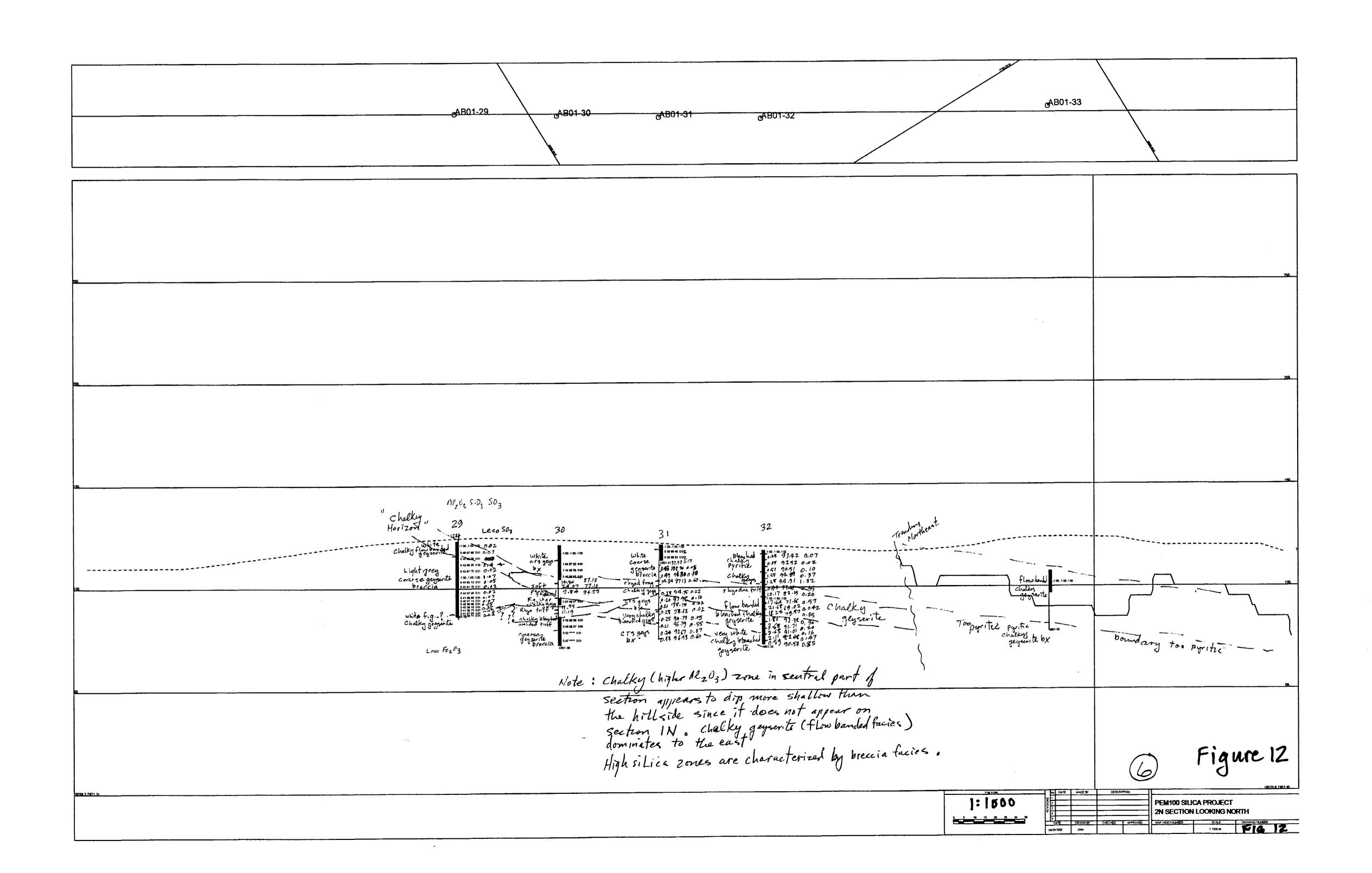
				DOCK.	LEGO S	0,00	41202	F. 202	2.0					Calculated		
				ROCK	LECO S %	SiO2 %	Al2O3 %	Fe2O3	CaO	MgO	Na2O	K2O	SO3	SO3C	P2O5	TiO2
					70	70	70	%	%	%	%	%	%	%	%	%
AB02-36	0.00	0.61	0.61	OVB	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
AB02-36	0.61	3.05	2.44	WCG	0.260	74.86	7.92	0.73	-0.06	-0.16	-0.18	0.08	0.51	0.65	0.40	0.63
AB02-36	3.05	6.10	3.05	GFR	0.190	85.00	6.56	1.32	-0.01	-0.06	-0.13	0.07	0.53	0.47	0.39	0.33
AB02-36	6.10	9.15	3.05	WCG	0.170	88.20	3.84	1.60	0.04	-0.07	-0.17	0.06	0.49	0.42	0.42	0.94
AB02-36	9.15	12.20	3.05	WCG	0.330	85.37	5.03	1.94	0.12	-0.04	-0.14	0.10	0.78	0.82	0.70	0.86
AB02-36	12.20	15.24	3.04	WCG	0.270	86.29	6.41	1.52	0.17	-0.01	-0.14	0.09	0.69	0.67	0.63	0.61
AB02-36	15.24	18.29	3.05	WCG	0.190	85.92	5.14	0.73	-0.02	-0.02	-0.07	0.07	0.50	0.47	0.42	1.01
AB02-36	18.29	21.34	3.05	WCG	0.100	84.36	7.54	1.00	-0.08	0.03	-0.09	0.05	0.25	0.25	0.25	1.15
AB02-36	21.34	24.39	3.05	GRR	0.110	65.87	10.64	1.20	-0.09	-0.15	0.00	0.05	0.24	0.27	0.21	0.98
AB02-36	24.39	27.44	3.05	GRR	0.090	75.77	14.69	1.31	-0.08	0.04	-0.10	0.05	0.26	0.22	0.23	0.71
AB02-36	27.44	30.49	3.05	GRD	0.120	69.15	18.08	2.00	-0.03	0.19	-0.06	0.06	0.20	0.30	0.28	0.81
AB02-36	30.49	33.54	3.05	GRD	0.060	65.39	20.80	2.61	-0.09	0.01	-0.09	0.04	0.82	0.15	0.16	0.66
AB02-36	33.54	36.59	3.05	GRD	0.320	53.82	30.06	2.99	-0.06	0.08	-0.06	0.05	0.20	0.80	0.21	0.77
AB02-36	36.59	39.63	3.04	GRD	0.230	72.82	16.89	1.64	-0.04	0.09	-0.06	0.07	0.60	0.57	0.20	0.59
AB02-36	39.63	42.68	3.05	LVOL	1.700	59.28	25.83	2.84	-0.12	0.07	-0.06	0.04	4.12	4.24	0.15	0.61
4D00.25	0550.0	7700 0														
AB02-37 AB02-37	9578.3	7792.2	139.7	0.0	-90.000	39.63										
AB02-37 AB02-37	0.00	4.57	4.67	374	1 000	1.00	1.00									
AB02-37 AB02-37	4.57	7.62	4.57 3.05	NA WCG	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
AB02-37 AB02-37	7.62	10.67	3.05	GRD	0.110 0.080	81.13	4.42	2.91	-0.07	-0.06	-0.09	0.03	0.28	0.27	0.19	0.50
AB02-37 AB02-37	10.67	13.72	3.05	GRD	0.080	84.74	5.18	2.77	-0.04	-0.01	0.02	0.04	0.22	0.20	0.20	0.65
AB02-37	13.72	16.77	3.05	GRD	0.030	84.08 72.82	3. 78 10.02	3.26	-0.05	-0.05	-0.10	0.04	0.15	0.12	0.17	0.65
AB02-37	16.77	19.82	3.05	GRD	0.100	86.77		1.31	0.02	-0.07	0.11	0.08	0.24	0.10	0.17	0.65
AB02-37	19.82	22.87	3.05	LVOL	3.640	70.59	5.86 15.02	1.81 6.55	-0.05	0.16	-0.04	0.04	0.13	0.25	0.14	0.61
AB02-37	22.87	25.91	3.03	WCG	0.260	70.39 54.79	15.02	4.03	0.05	0.21	-0.02	0.08	8.82	9.09	0.24	0.53
AB02-37	25.91	28.96	3.04	WCG	0.650	57.49	19.46	3.26	-0.14 0.00	-0.13	0.20	0.07	0.49	0.65	0.18	0.59
AB02-37	28.96	32.01	3.05	WCG	0.030	62.15	17.94	1.83	-0.04	-0.13	-0.03	0.04	1.46	1.62	0.15	0.52
AB02-37	32.01	35.06	3.05	WCG	0.070	62.78	17.95	0.81		-0.13	-0.22	0.04	0.19	0.17	0.15	0.52
AB02-37	35.06	38.11	3.05	WCG	0.040	66.57	19.52	1.06	-0.08	-0.17	-0.26	0.04	0.12	0.10	0.12	0.55
AB02-37	38.11	39.63	1.52	WCG	0.030	71.61	15.47	0.81	-0.07 -0.07	-0.09 -0.13	-0.22	0.05	0.13	0.10	0.13	0.53
.2025.	50.11	57.05	1.52	wcg	0.050	/1.01	13.47	0.01	-0.07	-0.13	-0.22	0.04	0.10	0.07	0.09	0.43
AB02-38	9500.0	7780.7	137.80	307.0	-50.000	27.44										
AB02-38																
AB02-38	0.00	1.52	1.52	NA	-1.000	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
AB02-38	1.52	3.05	1.53	WCG	0.120	73.36	13.45	0.28	-0.05	-0.08	-0.25	0.04	0.32	0.30	0.24	0.44
AB02-38	3.05	6.10	3.05	WCG	0.170	82.98	9.76	0.48	-0.03	-0.07	0.14	0.07	0.43	0.42	0.24	0.44
AB02-38	6.10	9.15	3.05	WCG	0.570	66.96	10.74	1.40	-0.02	-0.19	-0.26	0.05	1.17	1.42	0.38	0.00
AB02-38	9.15	12.20	3.05	WCG	0.130	82.63	9.61	0.69	0.00	-0.02	-0.21	0.04	0.32	0.32	0.33	0.77
AB02-38	12.20	15.24	3.04	WCG	0.170	84.03	9.19	0.03	-0.06	-0.08	-0.08	0.05	0.32	0.32	0.33	0.90
AB02-38	15.24	18.29	3.05	WCG	0.190	82.90	6.82	0.18	0.03	-0.17	-0.22	0.06	0.52	0.42	0.46	0.88
AB02-38	18.29	21.34	3.05	WCG	0.230	89.21	4.75	0.04	0.06	-0.02	-0.03	0.07	0.49	0.57	0.40	0.78
AB02-38	21.34	24.39	3.05	Tran	0.340	74.56	10.41	1.55	0.01	-0.11	-0.23	0.08	0.49	0.85	0.30	0.84
AB02-38	24.39	27.44	3.05	HCBX	0.270	66.09	16.16	7.62	-0.03	0.32	0.00	0.07	0.62	0.67	0.48	0.95
											0.00	0.07	0.02	0.07	0.42	0.03


TABLE - DRILLHOLE DATA


				ROCK	LECO S %	SiO2 %	Al2O3 %	Fe2O3	CaO %	MgO %	Na2O %	K2O %	Over-ride SO3 %	Calculated SO3C %	P2O5 %	TiO2
AB02-38	27.44	29.57	2.13	HCBX	0.420	60.98	10.49	21.02	0.22	0.59	-0.16	0.07	1.05	1.05	0.46	0.75




GEOLOGICAL SURVEY BRANCH


26,001

