DIAMOND DRILLING, GEOCHEMICAL SOIL SAMPLING, INDUCED POLARIZATION GEOPHYSICS AND ROCK SAMPLING REPORT ON

A PORTION OF THE ISLAND MOUNTAIN GROUP OF MINERAL CLAIMS

Cariboo Mining Division British Columbia, Canada

N.T.S. Map Area 93H/03, 04 Lat. 53° 06' N Long. 121° 35' W

Optioned by Operators: International Wayside Gold Mines Ltd. 305-455 Granville Street Vancouver, British Columbia V6C 1T1

Island Mountain Gold Mines Ltd. 305-455 Granville Street Vancouver, British Columbia V6C 1T1

Author: J. Wayne Pickett, M.Sc., P.Geo. (NF, BC) 8256 McIntyre Street Mission, B.C. Canada V2V 6T3

> Date: GEOLOGICAL SURVEY BRANCH ASSESSMENT DEPORT

> > 26.88

TABLE OF CONTENTS

<u>.</u>

1

.

.

i.

•

L

1.0	Summary	1
2.0	Introduction	4
3.0	Location and Access	4
4.0	Previous Work	5
5.0	Regional Geology	7
6.0	Geomorphology	8
7.0	Local Geology	8
7.1	Local Structure	9
8.0	Gold Mineralization	10
8.1	Carbonate-hosted Semi-massive to Massive Pyrite Gold Mineralization	10
8.2	Quartz Vein Hosted Mineralization	11
8.3	Bonanza Ledge Zone	12
9.0	2001 Drilling Program	13
10.0	2001 Line Cutting and Soil Sampling Program	15
11.0	2001 IP geophysical Program	16
12.0	2001 Detailed rock sampling - Kutney zone	17
13.0	Statement of Expenditures	17
14.0	Recommendations	18
15.0	References	19
16.0	Certificate of Qualifications	24

LIST OF TABLES

-

b---

. .

P----

•

-

-

۲

. .

-

5

۳ .

٣

•

· .

• ··

-

۲

۲. . .

. .

Tabl	e	Page or after Page
I	List of Mineral Claims and Crown Grants	
Π	Summary of Production at Wells, B.C	6
III	2001 drill hole summary	
IV	2001 drill hole locations and gold intercepts of 1g/t or greater	
V	Gold mineralization - drill holes SD84-08 and SD84-09	
VI	Colour Code and Percentile Values Used to Generate Image Map	os 15
VII	Statement of Expenditures - Island Mountain Gold Mines Ltd., January - Dec	ember 2001 17

LIST OF ILLUSTRATIONS

Figu	re After Page
1	Island Mountain Group mineral claims and crown grantsin pocket
2	Mosquito Creek and Island Mountain crown-granted mineral claims
3	Geology of the Wells area
4	Regional Geology
5	Vertical longitudinal projection Aurum and Mosquito Creek Gold Mine
6	Local Geologyin pocket
7	Stratigraphy Mosquito Creek and Island Mountain mines
8	Idealized cross section – Mosquito Creek Gold Mine 10
9	Drill hole compilation – including 2001 drilling In pocket
10	Drill hole compilation - including 2001 drilling and 2000 Soil Sampling (gold) In pocket
11	Section 22+11W, Drill Holes IGM01-01, 02 - looking northwest In pocket
12	Section 12+00W, Drill Hole IGM01-03 - looking northwest In pocket
13	Section 2+06E, Drill Hole IGM01-04 - looking northwest In pocket
14	Section 0+92E, Drill Hole IGM01-05 - looking northwest In pocket
15	Section 0+00, Drill Hole IGM01-06 - looking northwest In pocket
16	Section 2+00W, Drill Hole IGM01-07 - looking northwest In pocket
17	Scatter plots of arsenic and bismuth vs. gold
18	Scatter plots of lead and tungsten vs. gold
19	Compilation with Au (ppb) in soils In pocket
20	Compilation with Hg (ppb) in soils In pocket
21	Compilation with Ti (%) in soils In pocket
22	Compilation with inverted chargeability (msec) 20 m below surface In pocket
23	Compilation with inverted resistivity (ohm x m) 20 m below surface In pocket
24	Compilation with inverted chargeability (msec) 60 m below surface In pocket
25	Rock sample locations and gold analyses – Kutney Zone area
26	Rock sample locations and gold analyses – Kutney Zone 17

- Appendix A Description of Analytical Methods
- Appendix B Drill Logs IGM01-01 to IGM01-07
- Appendix C Drill Core and Sludge Sample Analyses
- Appendix D Soil Sample Analyses

Ĺ.,

.

.....

Ŀ

L

È.

5

.

- Appendix E Preliminary Report on Induced Polarization Survey by SJ Geophysics
- Appendix F Rock Sample Descriptions Kutney Zone
- Appendix G Rock Sample Analyses
- Appendix H Statement of Work Event 3175107

1.0 SUMMARY

Between March 29, 2001 and October 22, 2001, Island Mountain Gold Mines Ltd. and International Wayside Gold Mines Ltd. carried out rock and soil sampling, induced polarization geophysical surveys and diamond drilling on Crown-Granted Mineral Claims included in the Island Mountain and Mosquito Creek Groups. The Mosquito Creek group of crown-granted mineral claims is located about 1.5 km northwest of Wells, British Columbia within NTS map area 93H/04E at latitude 53° 06' north and longitude 121° 35' west. The Island Mountain and Mosquito Creek Crown-Granted Mineral Claims are now part of the larger Island Mountain Claim Group.

Three past producing gold mines, the Island Mountain, Aurum, and Mosquito Creek Gold Mines occur on the property, which is included in the Cariboo gold belt, a world-class producer of gold that has had a history of mining dating from the 1860's.

Rocks underlying the property are included in the Kootenay (Barkerville) Terrane, one of four that make up the Omineca morphogeological belt of the Canadian Cordillera. The Barkerville Subterrane consists of a Late Proterozoic and Paleozoic sequence of continental shelf and slope deposits developed adjacent to the craton of Ancestral North America. The sequence includes siliceous clastic sedimentary rocks along with lesser amounts of volcanic rocks and carbonates.

Siliceous greywackes and grits, impure quartzite, black and green pelite, lesser limestone and volcaniclastic rocks in the Wells area have been included in the Snowshoe Group, which has been correlated with the Eagle Bay Formation near Adams Lake and the Lardeau Group near Kootenay Lake as well as with rocks of the Yukon-Tanana Terrane. Rocks of the Snowshoe Group in the Wells area have been metamorphosed to lower greenschist facies, generally of lower metamorphic grade than other sequences in the Barkerville Terrane.

Rocks of the Barkerville Terrane were subjected to an early period of ductile deformation that resulted in westward directed, asymmetrical folds plunging shallowly to the northwest. Post metamorphic open folds with upright cleavage are superposed on earlier structures. During Late Cretaceous to Early Tertiary time, the terrane was disrupted by northwest- and north-striking dextral strike-slip faults that also have an important normal component. The faults record extension probably associated with transcurrent movement. The north-striking cross-faults are an important control for the gold vein mineralization at Wells.

The Island Mountain and Mosquito Creek claim groups are underlain by a northwest striking, moderately northeast dipping sequence of rocks on the steep, overturned limb of a southwest-verging antiform, which is on the northeast flank of the Island Mountain Anticlinorium of Sutherland Brown (1957). Symmetry in the stratigraphy at Island Mountain and local variations noted in stratigraphic tops noted in drill core suggest that the sequence has been internally folded and is not a simple overturned monoclinal sequence. A prominent lineation, plunging 20-22 degrees to the northwest, is the most persistent fabric developed and corresponds to axes of asymmetrical fold structures and the intersections of cleavages.

Local stratigraphy consists of interlayered carbonate-rich rocks, mafic tuffs and dark grey silicic turbidites. The carbonate-rich rocks include white to grey sandy limestones, calcareous mudstones and dolomitic, micaceous siltstones. The calcareous rocks typically have graphitic partings and/or interlayered calcareous graphitic argillite. The volcanic rocks are medium to pale green and consist mostly of mafic tuff and tuffaceous epiclastic rocks. A few amygdaloidal volcanic flows are also present. The silicic turbidites comprise siliceous siltstone, silicic greywacke, quartz grit and silicic conglomerate interlayered with dark grey to black graphitic argillite. The turbidites are rhythmically bedded and exhibit partial Bouma sequences locally. The units are variably altered and bleached. Dolomitization, as represented by 1-3 mm dolomite porphyroblasts and by the presence of finer dolomite in the matrix, is widespread. Sericitization accompanies dolomitization in several places. Where intense, the combination of dolomitization and sericitization obscures the original lithology and results in a pale olive green to tan rock that may have been developed from alteration of dolomite-rich carbonate rocks, mafic tuff or finer grained turbidites. Less altered mafic tuffs typically contain abundant calcite veins and amygdules. Fine grained partial to pervasive silicification is present locally. In places, silicified zones within the mafic tuffs contain 5 to 10 % pyrite accompanied by lesser arsenopyrite. These zones are locally auriferous. Carbonate-rich hosts to semi-massive pyrite mineralization, are locally bleached, dolomitized and silicified.

Stratigraphic position, host rock lithologies and proximity to north-striking fault zones are important guides to the three styles of gold mineralization recognized in the Wells area. The mineralization

is stratabound in that each style is confined for the most part to a particular section of the local stratigraphy. Historical production has been from mesothermal pyrite-bearing quartz vein systems that cut siliceous turbiditic rocks and from semi-massive to massive pyrite bodies that occur in carbonate-rich rocks structurally higher but stratigraphically lower in the sequence. The recently discovered Bonanza Ledge Zone of International Wayside Gold Mines Ltd. occurs as discrete areas of massive, banded and stringer pyrite developed in strongly carbonate-muscovite-pyrite altered pelitic rocks structurally lower but stratigraphically higher than the siliceous turbiditic rocks hosting the mesothermal pyrite-bearing quartz veins.

During 1999, ten drill holes totalling 2960 feet (902.2 m) of BQ-sized core were completed to test for pyrite-type gold mineralization in the Main Band Limestone Unit in the footwall of the "West fault" near the Red Gulch drainage northwest of the Mosquito Creek Gold Mine shaft. The drilling overlapped the northwest end of the 4400 level of the Mosquito Creek Mine and extended from there about 700 feet (213 m) to the northwest. Pyrite-bearing quartz veins including some in splays of the "West fault" carried significant gold grades including 0.52 oz./ton (17.8 g/t) Au over 20 feet (6.1 m) in drill hole IMG-99-09. Sections of limestone and altered tuff show enrichments over background levels but no pyrite-type gold mineralization was found.

During 2000, ten diamond drill holes totaling 5743 ft (1750 m) were completed to test for pyritetype gold mineralization to the northwest of the Mosquito Creek gold mine. Significant mineralized intercepts include intersections of pyrite-type mineralization in drill hole IMG 2K 07, which returned an assay of 15.07 g/t gold (0.44 oz./ton) over 2 ft. (0.6m), and in IMG 2K 03, which returned 13.25 g/t gold (0.39 oz./ton) over 2 ft. (0.6m). The mineralization is typically associated with pyrite-bearing dolomitized or silicified zones within or proximal to limestone. A highly siliceous (possibly intensely silicified) unit interlayered with mafic tuff in drill hole IMG 2K 08 returned 2.62 g/t gold (0.08 oz./ton) over 8.5 ft. (2.6 m). Widths are approximately true. Dolomite/ankerite-bearing quartz veins typically containing some combination of pyrite, arsenopyrite and galena, returned assays of 4.5 to 6.7 g/t gold (0.13 to 0.20 oz./ton) in several of the drill holes over widths up to 7.6 ft. (2.6 m). True widths are estimated to be 50% of drill hole intercepts.

Also during 2000, part of a pre-existing grid was re-established. About 1.2 km of baseline and 18.6 km of crosslines spaced at 200 ft (61 m) were cleared and picketed. Extension of the crosslines to the south required about 4.7 km of cutting. Soil sampling was conducted over the re-established and newly cut lines. Analytical results from the soil sampling indicate a positive correlation between gold and arsenic. An area underlain by elevated to anomalous concentrations of these elements in the central and eastern parts of the area sampled outline a roughly wedge-shaped area. Highly anomalous gold was returned from two soil anomalies uphill to the west of the Mosquito Creek Mines Shaft (3170 ppb Au at 22+00W, 5+00S and 1009 ppb Au at 28+00W, 6+00S).

During 2001, seven drill holes totalling 4,015 ft (1,224 m) were completed by Island Mountain Gold Mines Ltd. on the Island Mountain Group. Two of the drill holes (IGM01-01 and 02) tested the gold-in-soil anomaly (3170 ppb Au) near 22+00W - 5+00S, one hole (IGM01-03) tested favourable stratigraphy about 1000 feet (305 m) to the southeast of the soil anomaly and the remaining 4 holes (IGM01-04 to 07) tested the northwesterly extension of gold mineralization previously discovered at the Kutney Zone.

Drill holes IGM01-01 and IGM01-02 intersected low grade gold mineralization (0.03 or 1.0 g/t Au) over two intervals, each 5 feet in length. One mineralized section occurs in calcareous arenite and the other in quartz-veined pelite. Low grade gold mineralization (0.047 oz./ton or 1.6 g/t Au over 10 feet or 3.05 m) is also present in faulted graphitic grit at the bottom of drill hole IGM01-01. Drill hole IGM01-03 intersected two sections of low-grade gold mineralization (maximum 0.05 oz./ton or 1.5 g/t over 4.9 ft. or 1.5 m) in quartz-veined dolomitized arenite of the Downey Succession. Drill holes IGM01-05 and 07 intersected low grade gold mineralization at four intervals. The higher grade intersections (maximum 0.08 oz./ton or 2.6 g/t over 7 feet or 2.1 m in drill hole IGM01-07) occur in quartz-veined dolomitized arenite containing up to 20% sulphides.

During 2001, part of a grid originally cut in 1983 was re-established on the Island Mountain Claim Group and on the eastern portion of the Mosquito Creek Claim Group. About 0.9 km of baseline and 6.8 km of crosslines spaced at 200 ft (61 m) were cleared and picketed. Soil sampling and induced polarization surveys were conducted over the re-established lines.

Soils overlying rocks of the "Mine Section" are strongly anomalous in gold (up to 25 g/t). A second west-northwesterly trending gold-in-soil anomaly about 400 feet (120 m) south-southwest of the Mine Section is underlain by structurally lower (stratigraphically higher) stratigraphy of the Downey or

Hardscrabble Mountain Successions. The anomaly overlies stratigraphy possibly equivalent to that hosting the Bonanza Ledge Deposit.

Moderately high chargeability and sporadic low resistivity are characteristic of rocks comprising the lower portion of the Mine Section. High chargeability and, in most areas, low resistivity also characterize rocks underlying the southwestern portion of the area surveyed. Pelitic rocks underlying the area contain abundant graphite in several sections providing a likely explanation for the chargeability highs and resistivity lows. Offsetting of the patterns produced from contouring the chargeability and resistivity results probably reflect offsetting of the stratigraphy along prominent north-trending faults in the area, particularly the steeply northeasterly dipping Burnett Fault.

A local resistivity high detected at the south end of Line 18+00 E is accompanied by high chargeability. Such combinations are typically characteristic of disseminated conductive material in a resistive host such as disseminated pyrite or graphite in a quartz vein. Soils in the area of the combined high chargeability and high resistivity are anomalous in Hg and Ti enhancing the area as target for further exploration.

During 2001, detailed rock sampling was done in the area immediately surrounding and to the east of the Kutney Zone, a previously explored gold-in pyrite replacement and auriferous quartz-vein mineralized area. Samples collected to the southeast of the Kutney Zone returned grades up to 8 g/t Au and those collected in the immediate area of the zone returned values up to 99 g/t Au.

Total expenditures for the 2001 work program amounted to \$312,406. A program of work compilation, geological mapping, prospecting, VLF-EM and magnetic geophysical surveys, as well as diamond drilling is recommended for 2002.

2.0 INTRODUCTION

١.

Between March 29, 2001 and October 22, 2001, Island Mountain Gold Mines Ltd. and International Wayside Gold Mines Ltd. carried out rock and soil sampling, induced polarization geophysical surveys and diamond drilling on Crown-Granted Mineral Claims included in the Island Mountain and Mosquito Creek Groups. Soil sampling and induced polarization surveys were conducted on the Aurum, Tenure Number (T.N.) 10517; Aurum West, T.N. 11066; Aurum South, T.N. 11067; Paystreak No. 1, T.N. 11070 and Mohawk No. 4, T.N. 11073 Crown-Granted Mineral Claims of the Island Mountain Group; on the Vancouver, T.N. 10356 Crown Granted Mineral Claim of the Mosquito Creek Group of Crown-Granted Mineral Claims; and on Tenure Number 28B (Table I, Figures 1 and 2). Diamond drilling was carried out on the Vancouver, T.N. 10356 and Port Hope, T.N. 10357 Crown-Granted Mineral Claims of the Mosquito Creek Group (Table I, Figures 1 and 2). The Island Mountain and Mosquito Creek Crown-Granted Mineral Claims are now part of the larger Island Mountain Claim Group (Table I, Figures 1 and 2). The Island Mountain Claim Group (Table I, Figures 1 and 2). The Island Mountain Claim Group (Table I, Figures 1 and 2).

Island Mountain Gold Mines Ltd. is, at the time of writing, earning a 50% interest from International Wayside Gold Mines Ltd. in the Island Mountain and Mosquito Creek claim groups, now part of the Island Mountain Group. Island Mountain Gold Mines Ltd. (IGM) is earning the 50% interest under an option agreement with International Wayside Gold Mines Ltd. (IWA) dated May 10, 1999 that required an initial payment of CDN \$150,000 and additional payments of CDN \$50,000 per year plus 500,000 shares of IGM (at a deemed price of \$0.20 per share) as well as incurring CDN \$4 million in exploration expenditures over the 5-year term of the option. The groups are subject further to an option to purchase agreement announced Dec. 16, 1998 between Mosquito Consolidated Gold Mines Limited and International Wayside Gold Mines Ltd. The Estate of Cameron J. McFeely retains a 10% net profits interest in the groups. Other mineral claims included in the Island Mountain Group are subject to various agreements. The reader is referred to the offices of Island Mountain Gold Mines Ltd. and International Wayside Gold Mines Ltd. for details of the various agreements.

The Mosquito Creek and Island Mountain claim groups comprise a total of 63 Crown-granted contiguous mineral claims and fractions consisting of 850 hectares (2100 acres) (Table I, Figure 2). The Island Mountain Claim group consists of 34 Crown-granted mineral claims and fractions comprising 446 hectares (1102 acres) on Island Mountain, northwest of Jack of Clubs Lake (Table I, Figure 2). The Mosquito Creek claim group comprises 29 Crown-granted mineral claims consisting of 404 hectares (998 acres) contiguous with and to the northwest of the Island Mountain group (Table I, Figure 2).

Three past producing gold mines, the Island Mountain, Aurum, and Mosquito Creek Gold Mines are included on the property (Figure 3).

3.0 LOCATION AND ACCESS

The Island Mountain Claim Group is located near Wells, British Columbia within NTS map areas 93H/03 and 93H/04 at latitude 53° 06' north and longitude 121° 35' west (Figures 1 and 2). The town of Wells, situated in the Quesnel Highlands on the edge of

Table I: Island Mountain Group - List of Mineral Claims

-

....

ſ

i,

-

P****

•

.

.

.

.

•

•

•---

• • •

i.

.

.

Mosquito Creek Group of Crown-granted Mineral Claims (now included in Island Mountain Group) NTS: 93H/04

	Grant			
Grant Name	No.	Acres	Hectares	Date Granted
OLIVER	20F	23.52	9.52	Sep 02, 1875
ALABAMA CO.	30F	5.00	2.02	May 16, 1875
FARMER CO.	38F	3.00	1.21	May 17, 1876
NEVER SWEAT CO.	39F	3.00	1.21	May 17, 1876
BROOKFORD NO.4	5901	42.37	17.15	Feb 01, 1936
BROOKFORD NO.5	5902	41.32	16.72	Feb 01, 1936
RED FRACTION	5924	9.52	3.85	Oct 30, 1939
BROOKFORD NO.6	10352	35.94	14.54	Feb 01, 1936
BROOKFORD NO.7	10353	43.95	17.79	Feb 01, 1936
MOSQUITO	10355	31.67	12.82	Feb 01, 1936
VANCOUVER	10356	51.65	20.90	Feb 01, 1936
PORT HOPE	10357	51.65	20.90	Feb 01, 1936
SEATTLE	10358	51.36	20.79	Feb 01, 1936
MOSQUITO FRACTION	10359	38.89	15.74	Jul 13, 1936
RED GULCH NO.1	10360	40.89	16.55	Oct 30, 1939
RED GULCH NO.2	10361	51.65	20.90	Oct 30, 1939
RED GULCH NO.3	10362	51.65	20.90	Oct 30, 1939
RED GULCH NO.4	10363	26.04	10.54	Nov 11, 1939
RED GULCH NO.5	10364	51.64	20.90	Oct 30, 1939
RED GULCH NO.6	10365	42.15	17.06	Oct 30, 1939
RED GULCH NO.7	10366	31.99	12.95	Oct 27, 1939
RED GULCH EXT. NO.1	10368	43.41	17.57	Oct 27, 1939
RED GULCH EXT. NO.2	10369	25.33	10.25	Oct 27, 1939
WILLOW NO.7	10717	38.07	15.41	Feb 19, 1951
WILLOW NO.8	10718	47.13	19.07	Feb 19, 1951
WILLOW NO.9	10719	19.38	7.84	Feb 19, 1951
WILLOW NO.10	10720	33.63	13.61	Feb 19, 1951
DAWNE NO.4 FRACTION	10722	27.08	10.96	Feb 19, 1951
MOHAWK NO.3	11072	35.14	14.22	Apr 30, 1935
	Totals	998.02	403.90	

 Table I: Island Mountain Group - List of Mineral Claims (continued)

-

. •

•

> ₽~....

۴

-

.

•

.

.

P -

•

Island Mountain Group of Crown-granted Mineral Claims (now included in Island Mountain Group) NTS: 93H/04

	Grant	
Grant Name	No.	Date Granted
BROOKFORD NO.3	5900	Feb 01, 1935
BROOKFORD FRACTION	5903	Feb 01, 1936
GOLDBRICK FRACTION	7807	May 29, 1935
AUSTIN FRACTION	9470	Dec 09, 1937
BROOKFORD NO.8	10354	Feb 01, 1936
AURUM	10517	Apr 30, 1935
AURUM N.E.	10518	Aug 20, 1935
PAYSTREAK NO.5	10586	Nov 02, 1935
PAYSTREAK NO.6	10587	Nov 02, 1935
PAYSTREAK NO.7	10588	Nov 02, 1935
PAYSTREAK NO.8	10589	Nov 02, 1935
AURUM WEST	11066	Apr 30, 1935
AURUM SOUTH	11067	Apr 30, 1935
MOHAWK NO.1	11068	Apr 30, 1935
MOHAWK NO.2	11069	Арг 30, 1935
PAYSTREAK NO.1	11070	Apr 30, 1935
TRIANGLE FRACTION	11071	Apr 30, 1935
MOHAWK NO.4	11073	Apr 30, 1935
V. FRACTION	11074	Apr 30, 1935
OKAY FRACTION	11081	Apr 30, 1935
MOHAWK NO.5	11082	Nov 02, 1935
MOHAWK NO.6	11083	Nov 04, 1935
NORTH STAR NO.1	11084	Nov 02, 1935
NORTH STAR NO.2	11085	Nov 02, 1935
NORTH STAR NO.3	11086	Nov 02, 1935
NORTH STAR NO.4	11087	Nov 02, 1935
NORTH STAR NO.9	11088	Nov 02, 1935
MOHAWK NO.8	11089	Nov 02, 1935
MOHAWK NO.7	11090	Nov 02, 1935
JIM FRACTION	11091	Nov 02, 1935
ART FRACTION	11092	Nov 02, 1935
IVAN FRACTION	11093	Nov 02, 1935
N.M. NO.9 FRACTION	11094	Nov 02, 1935
PAY FRACTION	11095	Nov 02, 1935

 Table I: Island Mountain Group - List of Mineral Claims (continued)

NTS: 93H/03,04

.....

.

۲ ۲

.

. .

.

-

.

.

р. . . њ

r :

Ł

e i

•

P 1

ы.

· ...

L

Claim Name	Tenure No.	Tag No.	Units	Ha	Expiry Date
8M	387955	240463	20	500	November 30, 2003
8M2	387956	237998	8	200	November 30, 2003
Boulder 1	377861	238032	20	500	November 30, 2003
Boulder 2	377862	238033	20	500	November 30, 2003
Boulder 3	378319	238035	20	500	November 30, 2003
Bro 1	376232	695519M	1	25	November 30, 2002
Bro 10	376241	695528M	1	25	November 30, 2002
Bro 11	376242	695529M	1	25	November 30, 2002
Bro 12	376243	695530M	1	25	November 30, 2002
Bro 13	376244	695531M	1	25	November 30, 2002
Bro 14	376245	695532M	1	25	November 30, 2002
Bro 15	376246	695533M	1	25	November 30, 2002
Bro 16	376247	695534M	1	25	November 30, 2002
Bro 17	376248	695535M	1	25	November 30, 2002
Bro 18	376249	695818M	1	25	November 30, 2002
Bro 19	376250	695819M	1	25	November 30, 2002
Bro 2	376233	695520M	1	25	November 30, 2002
Bro 20	376251	695820M	1	25	November 30, 2002
Bro 21	376253	695821M	1	25	November 30, 2002
Bro 22	376287	695822M	1	25	November 30, 2002
Bro 23	376288	695823M	1	25	November 30, 2002
Bro 24	376289	695824M	1	25	November 30, 2002
Bro 25	376290	695825M	1	25	November 30, 2002
Bro 26	376291	695826M	1	25	November 30, 2002
Bro 27	376292	695827M	1	25	November 30, 2002
Bro 28	376293	695828M	1	25	November 30, 2002
Bro 29	376294	695829M	1	25	November 30, 2002
Bro 3	376234	695521M	1	25	November 30, 2002
Bro 30	376300	695830M	1	25	November 30, 2002
Bro 31	376301	695831M	1	25	November 30, 2002
Bro 32	376302	695832M	1	25	November 30, 2002
Bro 33	376303	695833M	1	25	November 30, 2002
Bro 34	376304	695834M	1	25	November 30, 2002
Bro 35	376305	695835M	1	25	November 30, 2002
Bro 36	376306	695836M	1	25	November 30, 2002
Bro 37	376307	695837M	1	25	November 30, 2002
Bro 38	376308	695838M	1	25	November 30, 2002
Bro 4	376235	695522M	1	25	November 30, 2002
Bro 40	376310	695840M	1	25	November 30, 2002
Bro 41	376311	695841M	1	25	November 30, 2002
Bro 42	376312	695842M	1	25	November 30, 2002
Bro 43	376313	695843M	1	25	November 30, 2002
Bro 44	376314	695844M	1	25	November 30, 2002
Bro 45	376315	695845M	1	25	November 30, 2002
Bro 46	376316	695846M	1	25	November 30, 2002

Claim Name	Tenure No.	Tag No.	Units	На	Expiry Date
Bro 47	376317	695847M	1	25	November 30, 2002
Bro 5	376236	695523M	1	25	November 30, 2002
Bro 6	376237	695524M	1	25	November 30, 2002
Bro 7	376238	695525M	1	25	November 30, 2002
Bro 8	376239	695526M	1	25	November 30, 2002
Bro 9	376240	695527M	1	25	November 30, 2002
CORNISH	375101	231080	20	500	November 30, 2002
COULTER 1	337601	203601	20	500	November 30, 2004
COULTER 2	337602	203602	20	500	November 30, 2004
COULTER 3	337603	214699	20	500	November 30, 2004
COULTER 4	337604	214700	20	500	November 30, 2004
COULTER 5	337605	614935M	1	25	November 30, 2004
COULTER 6	337606	618459M	1	25	November 30, 2004
COULTER 7	337607	614704M	1	25	November 30, 2004
COULTER 8	337608	618458M	1	25	November 30, 2004
DAWSON	204931		1	25	November 30, 2004
DOWNEY	375274	237803	18	450	November 30, 2003
DOWNEY 2	375275	237804	20		November 30, 2002
Eagle	377674	237838	20	500	November 30, 2002
Eagle 2	385650	240318	15	375	November 30, 2002
Eagle 3	387387	240382	18	450	November 30, 2002
leff 18	384452	238036	10		November 30, 2003
leff 19	38//53	200000 607651M	12		November 30, 2002
MAREI	204030	0910311	1	25	November 30, 2002
MARTINS	375007	221021		20	November 30, 2003
MONSTER 1	376062	237030	20	223	November 30, 2002
MONSTER 2	376062	207009 607700M	20	25	November 30, 2002
MONSTER 3	376964	607720M		25	November 30, 2002
MONSTER A	276065	607720M		20	November 30, 2002
MONSTER 5	376965	607724M		25	November 30, 2002
MONSTER 5	276067	09//31W		25	November 30, 2002
MONSTER 0	3/090/	09773ZIVI		25	November 30, 2002
VIONSTER 7	376987	697719M	1	25	November 30, 2002
	368577	682891M	1	25	November 30, 2002
	368579	682893M	1	25	November 30, 2002
	376254	695848M	1	25	November 30, 2002
	376263	695857M	1	25	November 30, 2002
Pin 11	376264_	695858M	1	25	November 30, 2002
Pin 12	376265	695859M	1	25	November 30, 2002
Pin 13	376266	695860M	1	25	November 30, 2002
Pin 14	376267	697608M	1	25	November 30, 2002
Pin 15	376268	697609M	1	25	November 30, 2002
Pin 16	376269	697610M	1	25	November 30, 2002
Pin 17	376270	697611M	1	25	November 30, 2002
Pin 18	376271	697612M	1	25	November 30, 2002
	376370	607612M	1	25	November 30, 2002
Pin 19	310212	09/01214	•	20	
Pin 19 Pin 2	376255	695849M	1	25	November 30, 2002
Pin 19 Pin 2 Pin 20	376255 376273	695849M 697614M	1 1	25 25 25	November 30, 2002 November 30, 2002

 Table I: Island Mountain Group - List of Mineral Claims (continued)

5

.

.

-

-

•

.

•

*

•

•

.

.

•

۳. ۲

, -

2

е 1 1 с

۲. ۲ . ه

рин С. Б. -

Γ

....

Table I: Island	Mountain Gro	oup - List o	f Mineral	Claims (cont	inued)
Claim Name	Tenure No.	Tag No.	Units	На	Expiry Date
Pin 22	376275	697616M	1	25	November 30, 2002
Pin 23	376276	695628M	1	25	November 30, 2002
Pin 24	376277	695629M	1	25	November 30, 2002
Pin 25	376278	695630M	1	25	November 30, 2002
Pin 26	376279	695631M	1	25	November 30, 2002
Pin 27	376280	695632M	1	25	November 30, 2002
Pin 28	376281	695633M	1	25	November 30, 2002
Pin 29	376282	695634M	1	25	November 30, 2002
Pin 3	376256	695850M	1	25	November 30, 2002
Pin 30	376283	695635M	1	25	November 30, 2002
Pin 31	376284	695636M	1	25	November 30, 2002
Pin 33	376286	695638M	1	25	November 30, 2002
Pin 4	376257	695851M	1	25	November 30, 2002
Pin 5	376258	695852M	1	25	November 30, 2002
Pin 6	376259	695853M	1	25	November 30, 2002
Pin 7	376260	695854M	1	25	November 30, 2002
Pin 8	376261	695855M	1	25	November 30, 2002
Pin 9	376262	695856M	1	25	November 30, 2002
PROMISE 1	342687	665639M	1	25	November 30, 2004
PROMISE 2	342688	665640M	1	25	November 30, 2004
PROMISE 3	342689	665641M	1	25	November 30, 2004
PROMISE 4	342690	665642M	1	25	November 30, 2004
PROMISE 5	342691	665643M	1	25	November 30, 2004
PROMISE 6	342692	665644M	1	25	November 30, 2004
PROMISE 7	342693	665645M	1	25	November 30, 2004
PROMISE 8	342694	665646M	1	25	November 30, 2004
RIC1	376586	695661M	1	25	November 30, 2002
RIC 10	376595	695670M	1	25	November 30, 2002
RIC 11	376572	695671M	1	25	November 30, 2002
RIC 12	376573	695672M	1	25	November 30, 2002
RIC 13	376574	695673M	1	25	November 30, 2002
RIC 14	376575	695674M	1	25	November 30, 2002
RIC 15	376576	695675M	1	25	November 30, 2002
RIC 16	3/65/7	695676M	1	25	November 30, 2002
RIG 17	376578	695677M	1	25	November 30, 2002
RIC 18		695678M	. 1	25	November 30, 2002
RIC 19	376580	695679M	1	25	November 30, 2002
RIC2	376587	695662M	1	25	November 30, 2002
RTC 20	376581	695680M	1	25	November 30, 2002
RIC 21	3/6582	695681M	1	25	November 30, 2002
RTC 22	376583	695682M	1	25	November 30, 2002
RIC 23	376584	695683M	1	25	November 30, 2002
RIC 24	376585	695684M	1	25	November 30, 2002
RIC 25	376596	695701M	1	25	November 30, 2002
RIC 26	376597	695702M	1	25	November 30, 2002
RIC 27	376598	695703M	1	25	November 30, 2002
RTC 28	376599	695704M	1	25	November 30, 2002
KTC 29	376600	695705M	1	25	November 30, 2002

۳

.

.

.

-

.

. .

•

P - 1

.

.....

•

•

.....

.

.....

ы.

[|---

Table I: Island	Mountain Gro	bup - List d	of Mine	ral Claims (co	ontinued)
Claim Name	Tenure No.	Tag No.	Units	Ha	Expiry Date
<u>'RTC 3</u>	376588	695663M	i 1	25	November 30, 2002
RTC 30	376601	695706M	1	25	November 30, 2002
RTC 31	376602	695707M	1	25	November 30, 2002
RTC 32	376603	695708M	1	25	November 30, 2002
RTC 33	376604	695709M	1	25	November 30, 2002
RTC 34	376605	695710M	1	25	November 30, 2002
RTC 4	376589	695664M	1	25	November 30, 2002
RTC 5	376590	695665M	1	25	November 30, 2002
RTC 6	376591	695666M	1	25	November 30, 2002
RTC 7	376592	695667M	1	25	November 30, 2002
RTC 8	376593	695668M	1	25	November 30, 2002
RTC 9	376594	695669M	1	25	November 30, 2002
TOM 1	373358	207958	20	500	November 30, 2002
TOM 19	343838	203639	12	300	November 30, 2002
TOM 2	373359	675025M	1	25	November 30, 2002
TOM 35	375098	231082	20	500	November 30, 2002
TOM 48	375440	237810	15	375	November 30, 2002
TOM 5	343837	203699	20	500	November 30, 2002
TOM 6	343575	203640	20	500	November 30, 2002
TOM 60	343642	203642	20	500	November 30, 2002
TOM 66	343833	668944M	1	25	November 30, 2002
TOM 67	343834	668927M	1	25	November 30, 2002
TOM 70	375441	237805	20	500	November 30, 2002
TOM 72	375442	237806	20	500	November 30, 2002
WHIP 1	333038	213572	6	150	November 30, 2004
WHIP 2	333039	208192	3	75	November 30, 2004
Will 1	387386	240383	20	500	November 30, 2003
Will 2	387175	237959	20	500	November 30, 2002
Will 3	377678	237818	20	500	November 30, 2003
Will 4	377679	237819	20	500	November 30, 2003
Will 5	377680	238030	20	500	November 30, 2003
Will 6	377675	238031	12	300	November 30, 2003
Will 7	377681	238043	20	500	November 30, 2003
		Totals	766	19,150	

.

•

۰.

۲ ۲

e ---

.

~

•

L

•

. .

.

.....

-

the Interior Plateau, can be reached via Highway 26 that branches off Provincial Highway 97 at Quesnel, 85 km to the west. Gravel roads established during placer and lode mining activity in the area provide access to the property from Wells.

Access to the old mine workings is restricted below an elevation of 4,000 feet due to flooding and access to underground workings at higher elevations is limited (Hall, 1999a). The 4,000 level adit to the Island Mountain mine is caved at the portal. Access to the Mosquito Creek Gold mine is possible through manways in the shaft and the 4400 level adit. The main drift in the Jukes adit contains several small caves and the Jukes drift east is caved at the Burnett fault.

4.0 PREVIOUS WORK

6

L

The property is included within the Cariboo gold belt, a world-class producer of gold that has had a history of mining dating from the 1860's (Figure 4). Total production of placer gold from the Cariboo goldfields is estimated to be approximately 3 million ounces (93.3 tonnes), 90% of which was recovered from Tertiary and Quaternary preglacial and interglacial gravels in buried paleochannels of modern stream valleys (Hall, 1999a). Production from the Mosquito Creek drainage on Island Mountain is estimated to be in excess of 100,000 ounces (3.1 tonnes) of placer gold (Eyles and Kocsis, 1989). The creek was worked by drift miners as early as 1874 and was later hydraulicked to an elevation of 4,200 feet (Hall, 1999b).

Veins on Island Mountain were worked since the 1870's. Between 1925 and 1932, C.J. Seymour Baker established a property position on Island Mountain and worked vein structures in the Johns adits (Hall, 1999b). The 1932 discovery of pyrite-type ore on the 4480 Level (Lower Johns Adit) led Newmont Mining Corporation to acquire the properties in the area through a subsidiary called Island Mountain Mines Company Limited. The Island Mountain Mine was developed on 11 levels to a lower elevation of 2,500 feet (760 m) via an internal shaft collared on the 4000 Level. Development of the Island Mountain Mine to the northwest was limited to the boundary with the Mosquito Creek Group, held at the time by the Cariboo Gold Quartz Mining Limited (CGQM). As a result of the limitations, Newmont sold the Island Mountain Mine to CGQM in 1954.

Subsequent development by CGQM of extensions to the Island Mountain Mine into the Mosquito Creek Claim Group at depth was called the Aurum Mine (Figure 5). Five levels, between elevations of 3,250 and 2,700 feet (990 m and 823 m), and over a strike length of 1,000 feet (305 m) were developed between the Burnett and Mosquito faults (Hall, 1999a).

The Mosquito Creek Gold Mine was a small mine located 230 m (750 feet) above upper workings of the Aurum Mine (Figure 5). The mine was developed in the early 1980's by Mosquito Creek Gold Mines Ltd., which acquired the Mosquito Creek Claim Group in 1971. Underground development included a vertical shaft to a depth of 516 feet (157 m) and levels at elevations of 4400, 4300, 4200 and 4100 feet (Hall, 1999b) (Figure 5). Additional underground development and exploration were carried out through joint ventures of Mosquito Creek Gold Mines Ltd. with Hudson Bay Exploration and Development Company Limited (1984 second and third level programs), Hecla Mining Company of Canada Limited (1986 second and fourth level programs) and Lyon Lake Mines Limited (1983-89 fifth level, Jukes Adit and Island Mountain Adit programs)

(Hall, 1999b). The Hecla program found the 2-185 ore body (4,068 tons (3690 tonnes)) grading 0.62 ounces gold per ton (21.2 g/t), which was mined and milled as a salvage operation in 1986 and 1987 (Hall, 1999b).

The Island Mountain/Aurum Mine (1934-1967) and the Mosquito Creek Mine (1980-1983) produced 603,800 ounces (18.8 tonnes) of gold from approximately 1.35 million tons (1.22 million tonnes) of ore (Table II) (Hall, 1999c). Quartz-type ore with an average grade of 0.35 ounces of gold per ton (12.0 g/t) and pyrite-type ("replacement") ore with an average grade of 0.67 ounces of gold per ton (23.0 g/t) were mined. Pyrite-type ore was higher quality ore accounting for about 40% of tonnage mined and about 60% of the gold produced. The underground mines at Island Mountain together with the Cariboo Gold Quartz (No. 1) mine (1933-1959) to the southeast produced a total of 1.23 million ounces (38.2 tonnes) of gold along a strike length of 5.6 km (Table II) (Hall, 1999a).

Additional work on Island Mountain has included trenching, surface gridding, surface geophysics including magnetic, SP, VLF and IP surveys, soil geochemistry, and surface and underground drilling (Beacon Hill Consultants Ltd., 1987; Bolin, 1984; Campbell, 1966 and 1969; Cannon and Guiget, 1973; Cochrane, 1971; 1972; Eckman, 1986; Guiget, 1973a and b, 1975, 1978, 1979; Guiget and Cannon, 1972; Hayward, 1989; Hicks, 1973; Jukes, 1971; Kelley, 1983; Krom, 1988; Laird, 1988, 1990; Magee, 1981; Makinen, 1981; Mason, 1973; Mason and Guiget, 1980; McFeely, 1983; Mitchell, 1978; Smellie, 1962; Starck, 1983; and Sutherland, 1986, 1989). A detailed outline of the exploration and production history of Mosquito Creek Claim Group was presented by Hall, 1991 (reproduced as Appendix A in Pickett, 2001).

During 1999, ten drill holes totalling 2960 feet (902.2 m) of BQ-sized core were completed to test for pyrite-type gold mineralization in the Main Band Limestone Unit in the footwall of the "West fault" (see Figure 5) near the Red Gulch drainage northwest of the Mosquito Creek Gold Mine shaft (Figure 9). The drilling overlapped the northwest end of the 4400 level of the Mosquito Creek Mine and extended from there about 700 feet (213 m) to the northwest. Pyrite-bearing quartz veins including some in splays of the "West fault" carried significant gold grades including 0.52 oz./ton (17.8 g/t) Au over 20 feet (6.1 m) in drill hole IMG-99-09. Sections of limestone and altered tuff show enrichments over background levels but no pyrite-type gold mineralization was found.

During 2000, ten diamond drill holes totalling 5743 ft (1750 m) were completed to test for pyrite-type gold mineralization to the northwest of the Mosquito Creek gold mine (Pickett, 2001). The drill holes intersected a folded northeast dipping sequence of carbonate rocks and interlayered turbiditic sedimentary rocks and mafic tuff; all of which form part of the Downey Succession. Drill hole SK2K-02 intersected black graphitic argillite at the bottom of the hole probably marking the contact with structurally underlying pelitic rocks of the Hardscrabble Mountain Succession.

Significant mineralized intercepts include intersections of pyrite-type mineralization in drill hole IMG 2K 07, which returned an assay of 15.07 g/t gold (0.44 oz./ton) over 2 ft. (0.6m), and in IMG 2K 03, which returned 13.25 g/t gold (0.39 oz./ton) over 2 ft. (0.6m). The mineralization is typically associated with pyrite-bearing dolomitized or silicified zones within or proximal to limestone. A highly siliceous (possibly intensely silicified) unit interlayered with mafic tuff in drill hole IMG 2K 08 returned 2.62 g/t gold (0.08 oz./ton) over 8.5 ft. (2.6 m). Widths are approximately true. Dolomite/ankerite-bearing quartz veins typically containing some combination of pyrite,

Table II: Summary of Production at Wells, B.C. (1933-1987) (after Hall, 1999b)

Imperial Units

	Years Quartz Ore Pyrite Ore		Ore	Total Ore	Recovered	Total Recovered				
				Grade	-	Grade		Grade	Gold	Silver
Mine	From	То	Tons	oz./ton	Tons	oz. Ton	Tons	oz./ton	oz	oz
Island Mountain and Aurum Mines	1934	1967	761,646	0.35	483,649	0.67	1,245,295	0.46	569,528	81,658
Magguite Crook Cold Mine	1980	1983	7,969	0.14	78,279	0.45	86,248	0.32	27,384	7,747
Nosquito Creek Gold Mine	1984	1987			16,900	0.44	16,900	0.41	6,897	2,134
Totals - Island Mountain and Aurum Mines										
Total (tons) & Weighted Average (Grade)			769,615	0.35	578,828	0.63	1,348,443	0.45	603,809	91,539
Cariboo Gold Quartz Mine	1933	1959	1,626,699	0.39	55,252	0.60	1,681,951	0.37	626,755	56,092
Totala Jaland Mountain, Aurum and Caribou	- Cold		- Minoe							
Total (tons) & Weighted Average (Grade)	<u>5 60ia</u>	Quart	2,396,314	0.38	634,080	0.63	3,030,394	0.41	1,230,564	147,631

Metric Units

	Yea	ars	Quartz Ore		Pyrite Ore		Total Ore	Recovered	Total Recovere	
				Grade		Grade		Grade	Gold	Silver
Mine	From	То	tonnes	g/t	tonnes	g/t	tonnes	g/t	tonnes	tonnes
Island Mountain and Aurum Mines	1934	1967	690,954	12.0	438,759	23.0	1,129,713	15.7	17.7	2.5
	1980	1983	7,229	4.8	71,014	15.4	78,243	10.9	0.9	0.2
Nosquito Creek Gold Mine	1984	1987			15,331	15.1	15,331	14.0	0.2	0.1
Totals - Island Mountain and Aurum Mines						_				
Total (tonnes) Weighted Average (Grade)			698,183	11.9	525,104	21.7	1,223,287	15.3	18.8	2.8
Cariboo Gold Quartz Mine	1933	1959	1,475,717	13.37	50,124	20.57	1,525,840	12.79	19	2
Totals - Island Mountain, Aurum and Caribo	o Gold	Quart	z Mines							
Total (tonnes) Weighted Average (Grade)			2,173,899	12.9	575,228	21.6	2,749,127	13.9	38.3	4.6

arsenopyrite and galena, returned assays of 4.5 to 6.7 g/t gold (0.13 to 0.20 oz./ton) in several of the drill holes over widths up to 7.6 ft. (2.6 m). True widths are estimated to be 50% of drill hole intercepts.

During 2000, part of a pre-existing grid was re-established and some additional line cutting carried out in the Mosquito Creek area (Pickett, 2001). Soil sampling was conducted over the re-established and newly cut lines. Analytical results from the soil sampling indicate a positive correlation between gold and arsenic. Anomalous concentrations of gold and arsenic occur in soils taken from the central and eastern parts of the area sampled including two samples uphill to the west of the Mosquito Creek Mines Shaft (3170 ppb Au at 22+00W, 5+00S and 1009 ppb Au at 28+00W, 6+00S).

5.0 REGIONAL GEOLOGY

The geology of the Cariboo gold mining district has been presented in reports and maps by Bowman (1889, 1895), Johnston and Uglow (1926), Hanson (1935), Sutherland Brown (1957), Struik (1988) and Levson and Giles (1993).

Rocks underlying the property are included in the Kootenay (Barkerville) Terrane, one of four that make up the Omineca morphogeological belt of the Canadian Cordillera (cf. Struik, 1986; 1988) (Figure 4). The Barkerville Subterrane consists of a Late Proterozoic and Paleozoic sequence of continental shelf and slope deposits developed adjacent to the craton of Ancestral North America. The sequence includes siliceous clastic sedimentary rocks along with lesser amounts of volcanic rocks and carbonates. It is structurally the lowest exposed stratigraphic sequence in the area and is more deformed and metamorphosed than adjacent terranes. Late Proterozoic and Paleozoic continental shelf clastics and carbonates of the Cassiar (Cariboo) terrane have been structurally emplaced over rocks of the Barkerville Subterrane along the Pleasant Valley Thrust. The Cariboo and Barkerville subterranes were amalgamated by westwarddirected thrusting prior to the eastward-directed emplacement of the Slide Mountain Terrane along the Pundata Thrust in Post-Permian time. The Slide Mountain Terrane is a rift-related oceanic assemblage of submarine pillowed basalt, diorite and chert as well as some blueschist metamorphic remnants. Klippe of Island Mountain Amphibolite, similar to the Crooked Amphibolite of the Slide Mountain Terrane, cap Island Mountain at Wells (Figure 3). The Quesnel Terrane, an Early Mesozoic island arc assemblage of basaltic and andesitic pyroclastics, volcaniclastics, greywacke and other sedimentary rocks, is emplaced over the Barker Subterrane along the Eureka Thrust.

Siliceous greywackes and grits, impure quartzite, black and green pelite, lesser limestone and volcaniclastic rocks in the Wells area have been included in the Snowshoe Group, which has been correlated with the Eagle Bay Formation near Adams Lake and the Lardeau Group near Kootenay Lake as well as with rocks of the Yukon-Tanana Terrane (Sutherland Brown, 1957; Struik, 1986; Hall, 1999a). Rocks of the Snowshoe Group in the Wells area have been metamorphosed to lower greenschist facies, generally of lower metamorphic grade than other sequences in the Barkerville Terrane.

Rocks of the Barkerville Terrane were subjected to an early period of ductile deformation that resulted in westward directed, asymmetrical folds plunging shallowly to the northwest. Post metamorphic open folds with upright cleavage are superposed on earlier structures. During Late Cretaceous to Early Tertiary time, the terrane was disrupted by northwest trending dextral strike-slip faults such as the Willow Fault, a major strike-slip fault of unknown displacement that has been mapped through Mount Tom, Island Mountain, Cow Mountain and Richfield Mountain in the Wells area (Struik, 1988) (Figure 3). Northwest- and north-trending faults with an important normal component and generally apparent right lateral displacements record extension probably associated with transcurrent movement. The north-striking cross-faults are an important control for the gold vein mineralization at Wells (cf. Hall, 1999a).

6.0 GEOMORPHOLOGY

Deep erosion and weathering during Tertiary time contributed to extensive alluvial deposits in the Wells area. Glacial sediments deposited during two phases of advance of the Wisconsinan Cordilleran Ice Sheet include an older, brown-weathered till identified locally and a late widespread grey-coloured till associated with the late Wisconsinan glacial period. Near Wells, ice movement was generally to the northwest. Tertiary alluvium and gravels reworked during Pleistocene glaciation are both important sources of placer gold in the Wells area.

7.0 LOCAL GEOLOGY

The Island Mountain Claim Group is underlain by a northwest striking, moderately northeast dipping sequence of rocks on the steep, overturned limb of a southwest-verging antiform, which, is turn, is on the northeast flank of the Island Mountain Anticlinorium of Sutherland Brown (1957). Symmetry in the stratigraphy at Island Mountain (cf. Hall, 1991) and local variations in stratigraphic tops noted in drill core suggest that the sequence has been internally folded and is not a simple overturned monoclinal sequence. A prominent lineation, plunging 20-22 degrees to the northwest, is the most persistent fabric developed and corresponds to axes of asymmetrical fold structures and the intersections of cleavages (Hall, 1999a).

Stratigraphic nomenclature for the sequence of rocks at the Island Mountain, Aurum and Mosquito Mines has been modified several times. Hanson (1935) included the sequence in two members, a structurally upper carbonate-dominated sequence of lighter coloured rocks comprising the "Baker Member" and a lower sequence of darker coloured silicic metaturbiditic rocks he called the "Rainbow Member" or Rainbow quartzite. Sutherland Brown (1957) included the Baker Member and structurally upper portion of the Rainbow Member in the Snowshoe Formation, which, in turn, was subsequently included in the Downey Succession of Struik (1988). Structurally lower portions of the Rainbow Member were included in the Midas Formation of Sutherland Brown (1957) and subsequently in the Hardscrabble Mountain Succession of Struik (1988).

Rocks of the Downey Succession including portions of the Baker and Rainbow members underlie the northeastern portion of the property (Figures 3 and 6). These rocks are structurally underlain by thick sequences of graphitic argillite interlayered with lesser silicic greywacke rocks of the Hardscrabble Mountain succession. To the southwest of the Willow Fault, rocks of the Downey Succession are structurally overlain by the Island Mountain amphibolite, interpreted to be a klippe of Slide Mountain Terrane.

Local stratigraphy in which the Island Mountain, Aurum and Mosquito Creek Mines were developed has been called the "Mine Section" (cf. Hall, 1991) (Figures 6 and 7). The section, which is about 700 feet (213 m) thick, consists of interlayered carbonaterich rocks, mafic tuffs and dark grey silicic turbidites. The carbonate-rich rocks include white to grey sandy limestones, calcareous mudstones and dolomitic, micaceous siltstones. The calcareous rocks typically have graphitic partings and/or interlayered calcareous graphitic argillite. The volcanic rocks are medium to pale green and mostly consist of mafic tuff and epiclastic rocks with a major tuffaceous component. A few amygdaloidal volcanic flows are also present. The silicic turbidites comprise siliceous siltstone, silicic greywacke, quartz grit and silicic conglomerate interlayered with dark grey to black graphitic argillite. The turbidites are rhythmically bedded and exhibit partial Bouma sequences locally.

The units are variably altered and bleached. Dolomitization, as represented by 1-3 mm dolomite porphyroblasts and presence of finer dolomite in the matrix, is widespread. Sericitization accompanies dolomitization in several places. Where intense, the combination of dolomitization and sericitization obscures the original lithology and results in a pale olive green to tan rock that may have been developed from alteration of dolomite-rich carbonate rocks, mafic tuff or finer grained turbidites. Less altered mafic tuffs typically contain abundant calcite veins and amygdules. Fine grained, partial to pervasive silicification is present locally. In places, silicified zones within the mafic tuffs contain 5 to 10 % pyrite accompanied by lesser arsenopyrite. These zones are locally auriferous. Carbonate-rich hosts to semi-massive pyrite mineralization, are locally bleached, dolomitized and silicified.

7.1 LOCAL STRUCTURE

١.

Rocks underlying the claim groups are variably strained ranging from areas of low strain where primary features such as graded bedding are preserved to highly strained areas where layering is discontinuous, clasts in courser units have been highly elongated and earlier veins have been boudinaged.

Robert and Taylor (1989) and Rhys and Ross (2000) report that three deformation events affect lithologies in the Wells area. At Island Mountain, the earliest deformation, D₁ is associated with a bedding-parallel foliation (S₁) that strikes northwest/southeast and dips moderately to the northeast. The second deformation (D₂), the dominant deformation event in the area, is represented by a well-developed schistosity (S_2) , which strikes easterly and dips about 22 degrees to the north. It is axial planar to asymmetric, zshaped F₂ folds that plunge about 20 degrees to the northwest (average plunge 22 degrees toward 310 degrees) (Robert and Taylor, 1989). Bedding and the earlier foliation are transposed into the later S_2 foliation in several areas. A well-developed lineation (L_2), parallel to the plunge of the F_2 fold axes, is present in most rocks at the intersection of S_1 and S_2 . The third deformation event (D_3) is associated with a steeply dipping, northwest striking crenulation cleavage that is weakly developed in places. It is associated with open, upright folds of S1 and S2 (Rhys and Ross, 2000). An associated shallow westnorthwest plunging crenulation lineation (L₃) developed locally on S₂ surfaces trends 5-40° anticlockwise to L₂ (Rhys and Ross, 2000).

The mine section is repeatedly offset by a series of northerly striking and moderately east dipping fault zones that postdate the folding (Hall, 1991; Robert and Taylor, 1989). The faults have an important normal component and apparent right lateral

÷-----

.....

....

displacements that dextrally offset units of the Baker and Rainbow Members (including the contact between them) several hundred metres. The faults include from northwest to southeast the Mosquito, Burnett and Aurum faults (Hall, 1991). Minor apparent normal left lateral offsets of a few metres occur along a subsidiary network of shallow northwesterly dipping faults.

The Willow Fault, a major strike-slip fault of unknown displacement passes through the southern portion of the property (cf. Struik, 1988).

8.0 GOLD MINERALIZATION

G. Hanson (1935), P.C. Benedict (1945), A.C. Skerl (1948), F. Richards (1948), M.R. Keys (1954), M. Guiget (1961), D.D. Campbell (1966), E.E. Mason (1973) R.D. Hall (1991) and others have made significant contributions to the mine geology and description of gold deposits at Wells.

Stratigraphic position, host rock lithologies and proximity to north-striking fault zones are important guides to the three styles of gold mineralization recognized in the Wells area. The mineralization is stratabound in that each style is confined for the most part to a particular section of the local stratigraphy. Historical production has been from mesothermal pyrite-bearing quartz vein systems that cut siliceous turbiditic rocks and from semi-massive to massive pyrite bodies that occur in carbonate-rich rocks structurally higher but stratigraphically lower in the sequence. Gold mineralization in the recently discovered Bonanza Ledge Zone of International Wayside Gold Mines Ltd. occurs in discrete areas of massive, banded and stringer pyrite developed in strongly carbonate-muscovite-pyrite altered pelitic rocks structurally lower but stratigraphically higher than the siliceous turbiditic rocks hosting the mesothermal pyrite-bearing quartz veins. According to Rhys (2001), mineralization style, timing and associated alteration at Bonanza Ledge is broadly comparable to pyritic replacement style mineralization that was historically mined in the district, although the host rock differs, and the size of the Bonanza Ledge mineralized bodies is greater.

8.1 CARBONATE-HOSTED SEMI-MASSIVE TO MASSIVE PYRITE GOLD MINERALIZATION

Gold mineralization in semi-massive to massive pyrite is developed within calcareous and dolomitic rocks of the "Baker Member" proximal to its contact with structurally underlying siliceous meta-turbiditic rocks of the "Rainbow Member". In the Island Mountain and Aurum mines a bleached limestone unit called the Aurum or 339 Limestone marks the Baker/Rainbow contact and it is within or adjacent to this limestone unit that the pyrite-rich gold mineralization occurred (Figure 6). In the Mosquito Creek Mine, the pyrite-rich gold mineralization occurs close to the footwall or hangingwall of the "Main Band Limestone" that is structurally higher than the Aurum Limestone (Figure 8). The lower contact of the Main Band Limestone has been interpreted as an unconformity as it cuts structurally downward at an acute angle through stratigraphy to the northwest (Minspec Mining Specialists Ltd.; 1991) or alternatively as a foldrepetition of the Aurum Limestone (Hall, 1991). The Main Band Limestone is about 45 m thick and is bounded by units of green mafic tuff.

The pyrite-rich mineralization consists of fine grained semi-massive to massive individual or stacked pyrite lenses individually up to 50 cm thick that carry gold grades

often in excess of 50 g/t. Edges of the lenses are marked by very coarse-grained pyrite and/or arsenopyrite, very thin bands of disseminated pyrite and thin bands of mottled dolomite and fuchsite (Hall, 1999a). Lower grade gold mineralization is associated with the coarse-grained pyrite, some or all of which is probably porphyroblastic (Robert and Taylor, 1989).

The pyrite occurs in a matrix of calcite, mottled and bladed coarse-grained dolomite, and minor blue-grey silica (Hall, 1999a). Enrichments in manganese, silver, antimony and lead are indicated, and gold content of the pyrite-rich mineralization is positively correlated with pyrite content and inversely correlated with the grain size of the pyrite (Hall, 1999a). The gold occurs as individual grains along the boundaries of pyrite and in fractures in the pyrite (Hall, 1999a). Analyses of gold in pyrite-type ore suggest that the gold is 850-869 fine (Knight and McTaggart, 1989), enriched in silver relative to gold in vein-type ore.

The carbonate-hosted pyrite-type mineralization occurs mainly as northwestplunging pencil-like ore shoots parallel to L_2 in the F_2 fold hinges or as tabular bodies on the long limbs of the F_2 folds (Robert and Taylor, 1999; Hall, 1999b) (Figures 5 and 8). Faulting oblique to the ore shoots typically causes gaps and apparent discontinuities (Hall, 1991). The northwest-plunging pipes, thought to be fold mullion structures representing segmented hinges of minor folds, have a remarkable persistent plunge at minus 21 degrees and are slightly oblique to the strike of 300-310 degrees for the host unit (Hall, 1999b). Robert and Taylor (1989) note that, in some areas, the tabular pyrite lenses are parallel to bedding and along with bedding have been transposed by S_2 and folded. In other areas however they noted that the pyrite layers are parallel to the strongly developed S_2 foliation in the limestone.

8.2 QUARTZ VEIN HOSTED MINERALIZATION

Mineralized quartz-pyrite veins in the Island Mountain and Mosquito Creek area have been classified into four groups on the basis of spatial orientation. The earliest of the veins, the strike veins, strike parallel to bedding and dip 45-70° to the NE, generally more steeply than bedding (Richards, 1948; Robert and Taylor, 1989). The second group, the northerly veins, occupy north-striking faults. Locally, the veins have been crushed and brecciated by subsequent movement along the faults. The two other groups, diagonal (or oblique) and orthogonal (or transverse) veins, describe the orientation of vein sets with respect to compositional layering of strata (Hall, 1999a). Diagonal veins, which are oblique to L_2 (the regional lineation plunging -21 degrees), strike 70-90° and are subvertical. In the Island Mountain mine the diagonal veins are regularly spaced at intervals of approximately 30 m (Hall, 1999b). The orthogonal veins, which are perpendicular to L₂, strike 30-40° and dip 70° southeast. The diagonal and orthogonal veins are the most important hosts for vein-hosted gold mineralization near Wells. Both orthogonal and diagonal veins were mined in the Cariboo Gold Quartz mine but diagonal veins only were mined at Island Mountain (Hall, 1991). Hall (1999a) notes that the northerly and diagonal veins are a conjugate set possibly occupying brittle shear zones. Robert and Taylor (1989) suggest that the northerly, diagonal and orthogonal veins are "broadly contemporaneous and formed progressively during continued deformation (mostly extension along L_2) related to the F_2 folding".

Individual veins are arranged en echelon due to minor displacements across cleavages and flat faults in less competent beds and showed better continuity down dip than along strike (Hall, 1999a). Stopes developed on the quartz veins averaged 3 to 6 feet (0.9-1.8 m) in width, 100 to 125 feet (30-38 m) in length and about 100 feet (30 m) on the dip of the veins (Hall, 1999b).

The gold-bearing quartz-pyrite veins typically occur in siliceous turbiditic rocks of the Rainbow Member generally within 100 m of its contact with the structurally overlying Baker Member. Graphitic gouge typically occurs along contacts of the larger veins with the host rock. Proximity to north striking fault zones, density of quartz veining and pyrite content proved to be important guides to ore within the Rainbow sequence of strata (Hall, 1999a).

Higher grade veins i.e. those carrying 0.2 to 1 oz./ton gold (6.8-34.3 g/t Au) consist mainly of blocky-fractured white quartz containing 15-25% pyrite and variable amounts of dolomite, ankerite, sericite, clear crystalline quartz and minor mariposite (Hall, 1999a). Minor phases include arsenopyrite, galena, sphalerite and scheelite; accessory minerals include pyrrhotite, chalcopyrite, cosalite, bismuthinite and free gold (Hall, 1999a). The pyrite is irregularly distributed and can occur as coarse aggregates, seams in the selvages or central part of the veins and as disseminations in the alteration haloes. The gold occurs in association with pyrite and also as coarser free gold in fractures in the quartz (Hall, 1999a). Cosalite, (2(PbS).Bi₂S₃), and bismuthinite (Bi₂S₃) are reliable indicators of visible gold and high grade mineralization (Hall, 1999a). The gold is free milling, about 945 in fineness (Hall, 1999b).

The vein-gold mineralization at Wells is mesothermal in character. Potassiumargon dating of sericite from quartz veins in the Cariboo Gold Quartz mine, Mosquito Creek Gold mine and Cariboo Hudson mine cluster near the Jurassic/Cretaceous boundary at about 140 million years before present (Andrew et al., 1983; Hall, 1999b).

8.3 BONANZA LEDGE ZONE

The following description of the Bonanza Ledge Zone contains direct excerpts from and summarized portions of a report by D. Rhys and K. Ross (Rhys and Ross, 2000) and an abstract by D. Rhys (Rhys, 2001).

The Bonanza Ledge zone is located about 3 km southeast of Wells on the Cariboo Group of claims, which are under option by International Wayside Gold Mines Ltd. The zone, discovered in the spring of 2000, comprises gold-bearing massive, banded and stringer pyrite in the footwall of the B.C. vein/fault system, which is a northwest trending and steeply northeast-dipping quartz vein from which several pyritic ore shoots were historically mined from the Cariboo Gold quartz workings. The mineralization occurs near the stratigraphic base (structural top) of a northeast-dipping, overturned sequence of clastic metasedimentary rocks within the Paleozoic Hardscrabble Mountain Succession of Struik (1988). The zone is structurally lower (stratigraphically higher) than the quartz vein hosted mineralization of the Rainbow and pyrite-rich replacement mineralization of the Baker and Rainbow units, both included within the Downey Succession of Struik (1988). Local lithologies comprise: magnetite-bearing, pale green to tan sericite-chlorite phyllite, which occurs structurally above the B.C. vein; laminated, carbonaceous pelitic phyllite, which occurs structurally beneath the B.C. vein and is the main host to mineralization; and a sequence of psammitic metaturbiditic rocks dominated by metagreywacke and quartzite that structurally underlie the pelitic phyllite,...

Extensive carbonate-muscovite-pyrite alteration affects lithologies in the vicinity of the gold mineralization and imparts a tan to yellow colour to the units. Alteration is zoned from an upper area of intense muscovite alteration containing auriferous pyrite mineralization with grey-blue quartz-dolomite/ankerite stringers, to lower zone of mauvegrey, weak muscovite-chlorite-albite alteration with yellow siderite/magnesite stringers. Pyrite mineralization occurs in both zones, but is best developed in discrete areas locally more than 100 feet (30 m) thick in the upper alteration zone. The pyrite occurs as stringers, concordant laminations and massive bands that together comprise 10-70% of the rock. Muscovite, dolomite/ankerite and quartz form gangue to the pyrite. Gold occurs as $2.5-60 \mu m$ grains encapsulated within pyrite or along grain boundaries between pyrite and chalcopyrite, galena or other grains of pyrite. Grades range from 5 to 80 g/t Au. According to Rhys (2001), gold-bearing pyritic zones give way along strike and down dip to sets of pyrite-quartz-pyrrhotite-chlorite veinlets that contain trace gold concentrations. He indicates that veinlet mineralogy and pyrite abundance can thus together be used to vector exploration.

Rhys (2001) notes that veinlets and pyrite bands in the Bonanza Ledge zones were tightly folded during D2, and some pyritic bodies and veins are elongated parallel to D2 fold axes. Although folded, the mineralized zone and enveloping alteration are discordant to stratigraphy. The zone may reflect one or more folded vein-like bodies that formed early during, or prior to D2. The presence of both relict sedimentary textures in zones of pervasive pyritization and discrete pyrite veinlets in the zone indicates that mineralization formed by a combination of replacement and veining.

Comments by the author:

The Bonanza Ledge Zone represents a previously undiscovered style of mineralization in the Wells area, although the possible occurrence of a third style of mineralization was inferred from a study of placer gold grains in the Wells area by Knight and McTaggart (1989). The study distinguished the previously known varieties of lode gold based on the bimodal distribution of gold fineness and identified a third population showing enrichments in mercury content.

The discovery of the zone also has implications for future exploration on the Island Mountain and Mosquito Claims Groups. Stratigraphy similar to that hosting the Bonanza Ledge zone occurs structurally below the metaturbiditic Rainbow sequence on Island Mountain and represents a viable and previously unexplored exploration target.

9.0 2001 DRILLING PROGRAM

During 2001, seven drill holes totalling 4,015 ft (1,224 m) were completed by Island Mountain Gold Mines Ltd. on the Island Mountain Group (Table III). Two of the drill holes (IGM01-01 and 02) tested the gold-in-soil anomaly (3170 ppb Au) near 22+00W - 5+00S, one hole (IGM01-03) tested favourable stratigraphy about 1000 feet (305 m) to the southeast of the soil anomaly and the remaining 4 holes (IGM01-04 to 07) tested the northwesterly extension of gold mineralization previously discovered at the Kutney Zone (Figure 9 and 10).

Sludge samples were collected at 10 ft (3 m) intervals from drill Holes IGM01-05, 06 and 07. Sections of core thought to have potential for gold mineralization were split for analysis. Guidelines used to choose areas for sampling included the presence of pyrite-bearing quartz veins, sections containing heavily disseminated pyrite and/or arsenopyrite, and sections having favourable alteration. The 156 sludge samples and 205

 Table III: 2001 Drill hole summary

	Mine Grid C	oordinates	1983 Grid Coordinates		Elevation	Elevation	Azimuth	Angle	Le	ngth
Drill Hole	Northing (feet)	Easting (feet)	E/W	N/S	feet	metres	Deg.	Deg.	feet	metres
IGM01-01	17,999 N	9,996 E	22+11 W	5+028	4691.9	1430.1	220	-45	555	169.2
IGM01-02	17,999 N	9,996 E	22+11 W	5+035	4691.9	1430.1	222	-65	650	198.1
IGM01-03	17,394 N	10,822 E	11+88 W	4+53S	4531.3	1381.1	221	-43	603	183.8
IGM01-04	16,768 N	12,108 E	2+06 E	1+30S	4610.5	1405.3	n/a	-90	337	102.7
IGM01-05	16,898 N	12,068 E	0+92 E	0+54S	4595.7	1400.8	219	-57	565	172.2
IGM01-06	17,006 N	12,034 E	0+02 W	0+08N	4586.4	1397.9	219	-45	635	193.5
IGM01-07	17,151 N	11,897 E	2+00 W	0+35N	4569.5	1392.8	221	-45	670	204.2

.

Totals 4,015 ft 1,224 m

1 1

.

core samples collected were shipped to Acme labs of Vancouver, where, after preparation, they were assayed for gold. The sludge samples were assayed using Acme Analytical's GROUP 3B - PRECIOUS METALS BY FIRE GEOCHEM method and the drill core samples by their GROUP 3A - AU BY WET EXTRACTION method (Appendix A).

Drill logs for the seven drill holes, included as Appendix B, were constructed from information provided to the author by Island Mountain Gold Mines Ltd. personnel. The spreadsheets provided contain coded information for each of the drill holes indicating lithologies, alteration types, vein and fault locations as well as analytical results for sludge and core samples. Analytical results for the core samples are included on the drill logs. Copies of the assay certificates for the core and sludge samples are presented in Appendix C. The core is stored on the property.

Drill holes IGM01-01 and IGM01-02 intersected a sequence of grey to green to black arenite and lesser amounts of pelite, probably part of the Downey Succession. Graphitic grit and graphitic pelite, intersected beneath the arenite and pelite are possibly part of the structurally underlying Hardscrabble Mountain Succession (Figures 9 and 10, Appendix B). Rocks of the Downey Succession are locally calcareous, variably dolomitized and locally sericitized. Pyrite and pyrrhotite are present in trace quantities to 2% in most sections but reach up to 5% locally. Analytical results from IGM01-02 core sampling indicate low grade gold mineralization (0.03 or 1.0 g/t Au) over two intervals, each 5 feet in length (Table IV, Figure 11). One mineralized section occurs in calcareous arenite and the other in quartz-veined pelite. Low grade gold mineralization (0.047 oz./ton or 1.6 g/t Au over 10 feet or 3.05 m) is also present in faulted graphitic grit at the bottom of drill hole IGM01-01 (Table IV, Figure 11).

The lack of gold mineralization in rocks intersected at the top of drill holes IGM01-01 and 02 suggest that the anomalous soil has been transported. The local easterly downward slope of the hillside and the Wisconsinan northwesterly glacial ice flow suggest the source of the anomaly would probably be to the south. Drill holes 84-08 and 84-09, two of four drill holes drilled about 200 feet (60 m) south-southeast of the soil anomaly intersected gold mineralization near surface (Figures 6, 9 and 10; Table V).

	Gold				
HOLE	From	То	Length	(g/t)	(oz./ton)
SD84-08	21.5 ft (6.6m)	22.3 ft (6.8m)	0.8 ft (0.2m)	13.71	0.40
SD84-08	47.0 ft (14.3m)	49.5 ft (15.1m)	2.5 ft (0.8m)	7.54	0.22
SD84-08	59.0 ft (18.0m)	59.3 ft (18.1m)	0.3 ft (0.1m)	14.40	0.42
SD84-09	27.0 ft (8.2m)	27.2 ft (8.3m)	0.2 ft (0.1m)	31.54	0.92

 Table V: Gold mineralization – drill holes SD84-08 and SD84-09

(Data from table provided by R. Hall, 2000)

.

Drill hole IGM01-03 intersected calcareous and graphitic calcareous arenite of the Downey Succession above a fault zone - probably the southerly extension of the Mosquito Creek fault - intersected between 575 ft. (175.3m) and 590 ft. (179.8m) (Figures 9, 10 and 12, Appendix B). Graphitic pelite, probably part of the Hardscrabble Mountain Succession was intersected beneath the fault zone. Rocks of the Downey Succession are variably dolomitized and sericitized. They contain calcite stringers and trace to about 2% pyrite and pyrrhotite. Two sections of low-grade gold mineralization

Table IV: 2001 Drill hole locations and gold intercepts of 1g/t or greater

DDH IGM01-01	Northing 17999 ft.	Easting 9996 ft.	Elevation 4692 ft.	Azimuth 220 deg.	Incl. -45 deg.	Length 555 ft. (169.2m)		
From	Interval –				Go (=#\	old		
From 545.0.4 (166.1m)		555 0 H	(160.2m)	10.0 ft (3.0m)	(g/t)	(oz./ton)		
040.0 II	(100. m)	<u> </u>	(109.211)	10.0 n (0.0m)	1.02	0.00		
DDH	Northing	Easting	Elevation	Azimuth	Incl.	Length		
IGM01-02	17999 ft.	9996 ft.	4692 ft.	222 deg.	-65 deg.	650 ft. (198.1m)		
F	Inter	rval -	• .	Gold				
From	(40.4m)	100 0 8	0	Length	(g/t) (oz./ton)			
101.01L	(49.100) (154.200)	100.U Π 511.0 θ	(155.9m)	<u>5.0 π (1.5m)</u>	1.02	0.03		
500.0 It	(194.210)	511.0 H	. (100.0m)	5.0 It (1.5III)	1.01	0.03		
DDH	Northing	Easting	Elevation	Azimuth	Inci.	Length		
IGM01-03	17394 ft.	10822 ft.	4531 ft.	221 deg.	-43 deg.	603 ft. (183.8m)		
	Inter	val		Gold				
From		То		Length	<u>(g/t)</u>	(oz./ton)		
491.2 ft	(149.7m)	496.1 ft	(151.2m)	4.9 ft (1.5m)	1.55	0.05		
564.2 ft	(172.0m)	566.0 ft	: (1/2.5m)	1.8 ft (0.5m)	1.05	0.03		
DDH	Northing	Easting	Elevation	Azimuth	Incl.	Length		
IGM01-04	16768 ft.	12108 ft.	4610 ft.	n/a	-90 deg.	337 ft. (102.7m)		
No Assays (of Au 1 g/t o	r greater						
00/1		· · · · ·	····		-	l a u adh		
	bl a statute			A		I DAATA		
	Northing	Easting	Elevation	Azimuth	Inci.	565 # (170 0m)		
IGM01-05	Northing 16898 ft.	Easting 12068 ft.	Elevation 4596 ft.	Azimuth 219 deg.	Incl. -57 deg.	565 ft. (172.2m)		
IGM01-05	Northing 16898 ft. Inter	Easting 12068 ft. val	Elevation 4596 ft.	Azimuth 219 deg.	Inci. -57 deg. Go	565 ft. (172.2m) id		
IGM01-05 From	Northing 16898 ft. Inter	Easting 12068 ft. val 1 212.0 ft	Elevation 4596 ft.	Azimuth 219 deg. Length	Inci. -57 deg. Go (g/t)	565 ft. (172.2m) id (oz./ton)		
IGM01-05 From 207.3 ft	Northing 16898 ft. Inter (63.2m)	Easting 12068 ft. val T 	Elevation 4596 ft. [0 (64.6m)	Azimuth 219 deg. Length 4.7 ft (1.4m)	Incl. -57 deg. Go (g/t) 1.80	565 ft. (172.2m) Id (oz./ton) 0.05		
IGM01-05 From 207.3 ft	Northing 16898 ft. Inter (63.2m)	Easting 12068 ft. val 212.0 ft Easting	Elevation 4596 ft. (64.6m)	Azimuth 219 deg. Length 4.7 ft (1.4m)	Incl. -57 deg. Go (g/t) 1.80	565 ft. (172.2m) id (oz./ton) 0.05		
IGM01-05 From 207.3 ft DDH IGM01-06	Northing 16898 ft. Inter (63.2m) Northing 17006 ft	Easting 12068 ft. val 212.0 ft Easting 12034 ft	Elevation 4596 ft. (64.6m) Elevation 4586 ft	Azimuth 219 deg. Length 4.7 ft (1.4m) Azimuth 219 deg.	Incl. -57 deg. Go (g/t) 1.80 Incl. -45 deg.	565 ft. (172.2m) Id (oz./ton) 0.05 Length 635 ft. (193.5m)		
IGM01-05 From 207.3 ft DDH IGM01-06	Northing 16898 ft. Inter (63.2m) Northing 17006 ft.	Easting 12068 ft. val 212.0 ft Easting 12034 ft.	Elevation 4596 ft. (64.6m) Elevation 4586 ft.	Azimuth 219 deg. Length 4.7 ft (1.4m) Azimuth 219 deg.	Incl. -57 deg. Go (g/t) 1.80 1.80 Incl. -45 deg.	565 ft. (172.2m) id (oz./ton) 0.05 Length 635 ft. (193.5m)		
IGM01-05 From 207.3 ft DDH IGM01-06 No Assays (Northing 16898 ft. Inter (63.2m) Northing 17006 ft. of Au 1 g/t o	Easting 12068 ft. val 212.0 ft Easting 12034 ft. r greater	Elevation 4596 ft. (64.6m) Elevation 4586 ft.	Azimuth 219 deg. <u>Length</u> 4.7 ft (1.4m) Azimuth 219 deg.	Incl. -57 deg. Go (g/t) 1.80 1.80 Incl. -45 deg.	565 ft. (172.2m) id (oz./ton) 0.05 Length 635 ft. (193.5m)		
IGM01-05 From 207.3 ft DDH IGM01-06 No Assays o	Northing 16898 ft. Inter (63.2m) Northing 17006 ft. of Au 1 g/t o	Easting 12068 ft. val 212.0 ft Easting 12034 ft. r greater	Elevation 4596 ft. (64.6m) Elevation 4586 ft.	Azimuth 219 deg. <u>Length</u> 4.7 ft (1.4m) Azimuth 219 deg.	Incl. -57 deg. Go (g/t) 1.80 1.80 Incl. -45 deg.	565 ft. (172.2m) id (oz./ton) 0.05 Length 635 ft. (193.5m)		
DDH IGM01-05 From 207.3 ft DDH IGM01-06 No Assays o	Northing 16898 ft. Inter (63.2m) Northing 17006 ft. of Au 1 g/t o	Easting 12068 ft. val 212.0 ft Easting 12034 ft. r greater	Elevation 4596 ft. (64.6m) Elevation 4586 ft.	Azimuth 219 deg. <u>Length</u> 4.7 ft (1.4m) Azimuth 219 deg.	Incl. -57 deg. Go (g/t) 1.80 Incl. -45 deg.	565 ft. (172.2m) id (oz./ton) 0.05 Length 635 ft. (193.5m)		
DDH IGM01-05 From 207.3 ft DDH IGM01-06 No Assays of DDH IGM01-07	Northing 16898 ft. Inter (63.2m) Northing 17006 ft. of Au 1 g/t o Northing 17151 ft	Easting 12068 ft. rval 212.0 ft Easting 12034 ft. r greater Easting 11897 ft	Elevation 4596 ft. (64.6m) Elevation 4586 ft.	Azimuth 219 deg. <u>Length</u> 4.7 ft (1.4m) Azimuth 219 deg. Azimuth 221 deg	Incl. -57 deg. Go (g/t) 1.80 1.80 Incl. -45 deg.	Length 635 ft. (172.2m) id (oz./ton) 0.05 Length 635 ft. (193.5m) Length 670 ft. (204.2m)		
 DDH IGM01-05 From 207.3 ft DDH IGM01-06 No Assays of DDH IGM01-07	Northing 16898 ft. Inter (63.2m) Northing 17006 ft. of Au 1 g/t o Northing 17151 ft.	Easting 12068 ft. val 212.0 ft Easting 12034 ft. r greater Easting 11897 ft. val	Elevation 4596 ft. (64.6m) Elevation 4586 ft. Elevation 4569 ft.	Azimuth 219 deg. <u>Length</u> 4.7 ft (1.4m) Azimuth 219 deg. Azimuth 221 deg.	Incl. -57 deg. Go (g/t) 1.80 1.80 Incl. -45 deg. -45 deg.	565 ft. (172.2m) id (oz./ton) 0.05 Length 635 ft. (193.5m) Length 670 ft. (204.2m) id		
DDH IGM01-05 From 207.3 ft DDH IGM01-06 No Assays o DDH IGM01-07 From	Northing 16898 ft. Inter (63.2m) Northing 17006 ft. of Au 1 g/t o Northing 17151 ft. Inter	Easting 12068 ft. val 212.0 ft Easting 12034 ft. r greater Easting 11897 ft. val	Elevation 4596 ft. (64.6m) Elevation 4586 ft. Elevation 4569 ft.	Azimuth 219 deg. <u>Length</u> 4.7 ft (1.4m) Azimuth 219 deg. Azimuth 221 deg. Length	Incl. -57 deg. Go (g/t) 1.80 Incl. -45 deg. Incl. -45 deg. Go (g/t)	565 ft. (172.2m) id (oz./ton) 0.05 Length 635 ft. (193.5m) Length 670 ft. (204.2m) id (oz./ton)		
 IGM01-05 From 207.3 ft DDH IGM01-06 No Assays (DDH IGM01-07 From 414.0 ft	Northing 16898 ft. Inter (63.2m) Northing 17006 ft. of Au 1 g/t o Northing 17151 ft. Inter (126.2m)	Easting 12068 ft. rval 212.0 ft Easting 12034 ft. r greater Easting 11897 ft. rval 12010 ft	Elevation 4596 ft. (64.6m) Elevation 4586 ft. Elevation 4569 ft.	Azimuth 219 deg. <u>i.ength</u> 4.7 ft (1.4m) Azimuth 219 deg. Azimuth 221 deg. <u>Length</u> 7.0 ft (2.1m)	Incl. -57 deg. Go (g/t) 1.80 Incl. -45 deg. Go (g/t) 2.59 I	565 ft. (172.2m) id (oz./ton) 0.05 Length 635 ft. (193.5m) Length 670 ft. (204.2m) id (oz./ton) 0.08		
 IGM01-05 From 207.3 ft DDH IGM01-06 No Assays of DDH IGM01-07 From 414.0 ft 460.0 ft	Northing 16898 ft. Inter (63.2m) Northing 17006 ft. of Au 1 g/t o Northing 17151 ft. Inter (126.2m) (140.2m)	Easting 12068 ft. val 212.0 ft 212.0 ft 12034 ft. r greater Easting 11897 ft. val 1421.0 ft 465.2 ft	Elevation 4596 ft. (64.6m) Elevation 4586 ft. Elevation 4569 ft.	Azimuth 219 deg. <u>Length</u> 4.7 ft (1.4m) Azimuth 219 deg. Azimuth 221 deg. <u>Length</u> 7.0 ft (2.1m) 5.2 ft (1.6m)	Incl. -57 deg. Go (g/t) 1.80 Incl. -45 deg. Go (g/t) 2.59 1.69	565 ft. (172.2m) id (oz./ton) 0.05 Length 635 ft. (193.5m) Length 670 ft. (204.2m) id (oz./ton) 0.08 0.05		
IGM01-05 From 207.3 ft 207.3 ft DDH IGM01-06 No Assays of DDH IGM01-07 From 414.0 ft 460.0 ft 660.0 ft	Northing 16898 ft. Inter (63.2m) Northing 17006 ft. of Au 1 g/t o Northing 17151 ft. Inter (126.2m) (140.2m) (201.2m)	Easting 12068 ft. val 212.0 ft Easting 12034 ft. r greater Easting 11897 ft. val 121.0 ft 421.0 ft 465.2 ft 665.0 ft	Elevation 4596 ft. (64.6m) Elevation 4586 ft. Elevation 4569 ft. (128.3m) (141.8m) (202.7m)	Azimuth 219 deg. <u>Length</u> 4.7 ft (1.4m) Azimuth 219 deg. Azimuth 221 deg. <u>Length</u> 7.0 ft (2.1m) 5.2 ft (1.6m) 5.0 ft (1.5m)	Incl. -57 deg. Go (g/t) 1.80 Incl. -45 deg. Incl. -45 deg. Go (g/t) 2.59 1.69 1.39	565 ft. (172.2m) id (oz./ton) 0.05 Length 635 ft. (193.5m) id (oz./ton) 0.08 0.05 0.04		

i.

.

.

.

-

Ŀ

•

-

٠ Ĺ

(maximum 0.05 oz./ton or 1.5 g/t over 4.9 ft. or 1.5 m) were intersected in quartz-veined dolomitized arenite of the Downey Succession (Table IV and Figure 12).

Drill Holes IGM01-04 to 07 intersected calcareous arenite (including limestone) and dolomitic arenite interlayered with lesser chloritic arenite, pelite and minor amounts of coarser clastic sedimentary rocks, all of which are part of the Downey Succession (Figures 9, 13, 14, 15 and 16; Appendix B). The rocks are variably dolomitized, locally sericitized and in a few sections contain quartz veins and stringers. Trace to 3% pyrite and pyrrhotite occur throughout. Drill holes IGM01-05 and 07 intersected low grade gold mineralization at four intervals (Table IV; Figures 14 and 16; Appendix B). The higher grade intersections (maximum 0.08 oz./ton or 2.6 g/t over 7 feet or 2.1 m in drill hole IGM01-07) occur in quartz-veined dolomitized arenite containing up to 20% sulphides.

10.0 2001 LINE CUTTING AND SOIL SAMPLING PROGRAM

During 2001, part of a grid originally cut in 1983 was re-established on the Island Mountain Claim Group and on the eastern portion of the Mosquito Creek Claim Group. About 0.9 km of baseline and 6.8 km of crosslines spaced at 200 ft (61 m) were cleared and picketed. Soil sampling was conducted over the re-established lines. Where possible, soil samples of the B-horizon were collected from shallow pits at 50 ft (15.2 m) intervals along the crosslines. The 394 soil samples collected were sent to Acme Analytical Labs, Vancouver where, after drying and preparation, they were analyzed for gold by Acme Labs GROUP 3A - AU BY WET EXTRACTION method and for 34 additional elements by their GROUP 1DX - ICP ANALYSIS – AQUA REGIA method (Appendix A). Copies of the assay certificates for the soil samples are presented in Appendix D.

A statistical analysis of the soil data was carried out using the SPSS software statistical package and Microsoft Excel. A Pearson correlation matrix calculated from the log-normalized data indicates strong positive correlations of As and Bi with Au (Figure 17). In addition, Pb and W show a moderate correlation with Au (Figure 18). Utilizing the Kriging algorithm, grid files of data for the various elements were created using Surfer 7, a software package from Golden Software of Golden, Colorado, U.S.A. Analytical results for gold (ppb) accompanied by a colour-coded image created from the gridded data are presented on Figure 19. Percentiles and the corresponding colour codes used for the image files are presented in Table VI.

As shown on Figure 19, soils overlying rocks of the "Mine Section" are strongly anomalous in gold (up to 25 g/t). A second west-northwesterly trending gold-in-soil anomaly about 400 feet (120 m) south-southwest of the Mine Section is underlain by structurally lower (stratigraphically higher) rocks of the Downey or Hardscrabble Mountain Successions. The anomaly overlies stratigraphy possibly equivalent to that hosting the Bonanza Ledge Deposit.

Rocks hosting the Bonanza Ledge Deposit are enriched in Hg and Ti proximal to and locally within the auriferous zones (Ray et al., 2000). Such enrichment has not been demonstrated for the other gold deposits in the area and therefore may be used as a potential pathfinder for Bonanza Ledge Deposits elsewhere in the area.

Analytical results for Hg (ppb) and Ti (%) each accompanied by a colour-coded image created from gridded data are presented on Figures 20 and 21. As indicated on

Table VI: Colour Code and Percentile Values Used to Generate Image Maps

Percentile	Colour	Au pbb	Hg ppb	TI %	Chg -20 M	Res20 M	Chg -60 M
95th percentile		1964	103	0.14	70	5	43
90th percentile		888	85	0.12	60	16	39
80th percentile		426	65	0.10	49	73	34
75th percentile		243	60	0.09	45	116	31
70th percentile		193	55	0.09	42	144	29
50th percentile		78	40	0.06	32	271	24
25th percentile		32	30	0.03	19	571	18
20th percentile		26	25	0.02	17	643	16
10th percentile		13	20	0.02	12	948	12

Figure 20, Hg is locally enriched in soils overlying rocks of the "Mine Section". In addition, anomalous Hg occurs in soils underlain by rocks of the Hardscrabble Mountain Succession about 800 feet (240 m) south-southwest of the Mine Section. The anomalous zone extends in a west-northwesterly direction from Line 18E to Line 0. Titanium is also enriched in soils underlain by rocks to the south-southwest of the Mine Section (Figure 21). Both Hg and Ti are anomalous in soils collected near the south-southwesterly portions of Lines 16 and 18. Soils in that area would probably have developed from stratigraphy in the footwall to that from which the gold-in-soil anomaly (3368 ppb) about 200 feet (60 m) to the northeast was developed.

11.0 2001 IP GEOPHYSICAL PROGRAM

During 2001, about 26,600 feet (about 8.1 km) of induced polarization surveying was carried out by SJ Geophysics Ltd. across 16 lines from L0 E to L30 E of the reestablished grid. A preliminary report by SJ Geophysics Ltd. on the methodology used for the IP survey is included as Appendix E. The report also includes colour crosssectional images, both pseudo-sections and inverted resistivity and chargeability depth sections for each of the lines surveyed. From the interpreted (inverted) resistivity and chargeability data, plan maps can be generated at various depths. Inverted chargeability and resistivity values at 20 m below surface are shown on Figures 22 and 23; Figure 24 shows inverted chargeability values at 60 m below surface. The figures were constructed by the author from data provided by SJ Geophysics. Colour image maps of the chargeability and resistivity are also included on the figures produced from the data after gridding. On the chargeability maps the "hot" colours indicate higher chargeability, on the resistivity map the "hot" colours indicate higher conductivity (low resistivity). Percentiles and the corresponding colour codes used for the image files are presented in Table VI.

Moderately high chargeability and sporadic low resistivity are characteristic of rocks comprising the structurally lower portion of the Mine Section (Figures 22, 23 and 24). High chargeability and, in most areas, low resistivity also characterize rocks structurally underlying the Mine Section in the southwestern portion of the surveyed area. Pelitic rocks underlying the area contain abundant graphite in several sections providing a likely explanation for the chargeability highs and resistivity lows. Offsetting of the patterns produced from contouring the chargeability and resistivity data probably reflect offsetting of the stratigraphy along prominent north-trending faults in the area, particularly the steeply northeasterly dipping Burnett Fault that crosses southward from Line 0 near the bascline (Figures 22, 23 and 24).

A local resistivity high detected at the south end of Line 18+00 E is accompanied by high chargeability (Figures 22, 23 and 24). Such combinations are typically characteristic of disseminated conductive material in a resistive host such as disseminated pyrite or graphite in a quartz vein. Soils in the area of the combined high chargeability and high resistivity are anomalous in Hg and Ti enhancing the area as target for further exploration.

Figure 17: Scatter plots of soil analyses indicating correlation of arsenic and bismuth with gold.

Figure 18: Scatter plots of soil analyses indicating correlation of lead and tungsten with gold.

12.0 2001 DETAILED ROCK SAMPLING – KUTNEY ZONE

During 2001, detailed rock sampling was done in the area immediately surrounding and to the east of the Kutney Zone, a previously explored gold-in pyrite replacement and auriferous quartz-vein mineralized area (Figure 6). The sample locations and gold results are presented in Figures 25 and 26, sample descriptions for detailed sampling of the Kutney Zone are presented in Appendix F, assay results are presented in Appendix G.

The rock samples collected were shipped to Acme labs of Vancouver, where, after preparation, they were analyzed for gold utilizing their GROUP 3B - PRECIOUS METALS BY FIRE GEOCHEM method (Appendix A).

Samples collected to the southeast of the Kutney Zone returned grades up to 8 g/t Au (Figure 25) and those collected in the immediate area of the zone returned values up to 99 g/t Au (Figure 26).

13.0 STATEMENT OF EXPENDITURES

A statement of expenditures for the 2001 exploration program is presented in Table VII. Total expenditures amounted to \$312,406 of which \$69,600 were allotted to several claims included in the Island Mountain Group and the remaining \$242,806 credited to the portable assessment credit account of International Wayside Mines Ltd. (Statement of Work, Event No. 305107, attached as Appendix H).

Period	552	553	554	555	556	558	562	564	566	568	569	570
	Admin	Assess-	Assay	Geologic	Consult	Core	Equip	Equip.	1st Aid	Fuel	Insurance	Geophys
		ment		Surf Expl		Handling	Rent	Repair				
January	\$251.58							\$1,484.03	\$179.54	\$207.27		
February	\$83.76			\$2,000.00			\$7,625.00	\$1,799.70	+	\$140.00		· · · · · · · · · · · · · · · · · · ·
March 11			L				\$5,285.00					······
March 31	\$250.00						\$2,500.00	\$593.30	•	\$569.99		
April 11	\$765.62	\$200.00			\$1,070.00	\$23.51	\$2,500.00	\$1,260.97	\$26.87		\$1,741.00	
April 30							\$2,500.00	\$292.43			\$530.38	
May 11	\$327.83	\$800.00	\$528.92	\$276.93		\$33.56	\$2,937.50	\$1,550.70	\$34.00	\$383.65		
May 31	:			\$1,200.00			\$2,500.00	\$839.39		\$383.65	\$68.38	
June 11	\$350.00	_	\$2,303.43	\$5,903.75		\$565.25	\$3,027.50	\$810.21	\$108.50	\$5,579.18		
June 30	\$570.62		\$596.31	\$3,179.50		\$1,922.52	\$3,017.50	\$3,924.79	\$245.25	\$9,35		\$800,00
July 11				\$1,720.00		\$731.75	\$2,977.50	\$960.26	\$320.00			
July 30			\$1,036.34	\$4,140.00		\$1,172.75	\$2,930.00		-\$85.36			
August 11				\$4,500.00			\$2,672.50				;	
August 31					· · ·		\$2,850.00		•			
Sept 11				\$5,782.63			\$2,500.00					
Sept 30			\$1,183,10	\$7,175.00		\$91.00	\$2,675.00					\$49.50
October 11				\$275.00		\$295.00	\$2,500.00					\$21,665,00
October 31			\$686.89				\$2,675.00					\$9,319.48
November 11			\$1,183.10	\$8,025.00		\$91.00	\$2,500.00					\$49.50
November 30							\$2,500.00		····			
December 11		\$944.13		\$2,850.00			\$2,500.00		· · · · · · · · · · · · · · · · · · ·			
December 31		\$6,679.29	\$6,604.94	\$12,219.84			\$2,500.00					
TOTALS	\$2,599.41	\$8,623.42	\$14,123.03	\$59,247.65	\$1,070.00	\$4,926.34	\$63,672.50	\$13,515.78	\$828.80	\$7,273.09	\$2,339.76	\$31,883.48

Table VII: Statement of Expenditures - Island Mountain Gold Mines Ltd., January - December 2001

Table VII: Stat	tement of E	xpenditures -	Island Moun	tain Gold Mir	nes Ltd., Jan	uary - Decen	nber 2001 (c	ontinued)			
Period	573	574	576	577	578	579	580	581	583	586	
	Meals &	Mine Off &	Mobiliz	Permits	Road/Pad	Recording	Surf Expl	Reclama-	Salaries &	Site	
	Accom.	Supplies	Demobiliz			/Staking	& Drill	tion	Benefits	Maint,	TOTALS
January		\$105.40		\$5,000.00	\$280.00		\$1,376.10			\$415.00	\$9,298.92
February							\$2,121.14			\$265.00	\$14,034.60
March 11				\$509.60							\$5,794.60
March 31		\$72.07					\$741.40		\$125.60	\$2,410.00	\$7,262.36
April 11	\$515.00	\$62.56			\$350.00	1	\$5,254.54		\$255.70		\$14,025.77
April 30	\$154.93	1			1		\$7,088.90		\$476.31	\$103.83	\$11,146.78
May 11	\$98.12				1	\$48.00	\$9,862.92		\$234.33	\$167.50	\$17,283.96
May 31					\$743.75		\$4,098.51		\$1,008.88	\$102.00	\$10,944.56
June 11	\$101.09	\$223.41		\$690.00	\$1,015.00	[\$7,801.89	\$140.00	\$250,01		\$28,869.22
June 30	\$536.65	\$39.24			\$140.00	[]	\$8,687.75	\$300.00	\$901.33	\$958.50	\$25,829.31
July 11	\$332.40	\$204.58		\$18,000.00			\$8,032.25	\$200.00	\$1,616.91	\$560.00	\$35,655.65
July 30						[<u> </u>	\$817.50		\$670.15	\$226.50	\$10,907.88
August 11			-	\$40.02							\$7,212.52
August 31									\$583.33		\$3,433.33
Sept 11						[]				\$490.00	\$8,772.63
Sept 30	[\$40.02					\$588.95		\$11,802.57
October 11		[\$628.73		\$25,363.73
October 31			\$91.00		1				\$669.47	\$300.00	\$13,741.84
November 11				\$40.02					\$588.95		\$12,477.57
November 30									\$525.00		\$3,025.00
December 11									\$1,225.00		\$7,519.13
December 31										/	\$28,004.07
TOTALS	\$1,738.19	\$707.26	\$91.00	\$24,319.66	\$2,528.75	\$48.00	\$55,882.90	\$640.00	\$10,348.65	\$5,998.33	\$312,406.00

14.0 RECOMMENDATIONS

The potential for additional gold mineralization on the prospective Island Mountain and Mosquito Creek properties is excellent. Future exploration programs should further test the area of highly anomalous gold-in-soils overlying the Mine Section Stratigraphy and on targets for Bonanza Ledge style mineralization in structurally lower stratigraphy to the southwest. Anomalous gold in soils detected in stratigraphy potentially equivalent to that hosting the Bonanza Ledge Deposit and the area of high chargeability and high resistivity accompanied by anomalous mercury and titanium near the southern termination of Line 18+00E are high priority areas for further exploration as Bonanza Ledge style targets.

The following exploration program is recommended.

- Complete the compilation of previous work on the property and normalize all data for incorporation into a geographic information system database.
- Prepare an updated surface geological map of the property incorporating results of previous mapping and information from drill holes. Most of the work in the area has been concentrated on the host lithologies of the previous mines, which are structurally higher than the stratigraphy favourable for Bonanza Ledge style mineralization. As a result, additional surface mapping will be required to the southwest of the existing mine workings and the previous detailed drilling to help determine the geology of areas underlain by the structurally lower stratigraphy. In addition to geological mapping, prospecting should also be carried out in these areas.
- Conduct VLF and ground magnetic surveys on re-established portions of the 1983 grid to aid with geological interpretation.
- Carry out a diamond-drilling program to test targets indicated by results of the proposed geological compilation, geological mapping and prospecting; the recently conducted induced polarization and soil geochemical surveys; as well as from the compilation of other exploration and development work conducted previously. The program should focus on targets for potential Bonanza Ledge type mineralization and, in addition to specific target areas, may require a series of holes to provide a stratigraphic cross section through the Hardscrabble Succession.

15.0 REFERENCES

Andrew, A., Godwin, C.I. and Sinclair, A.J.

1983: Age and genesis of Cariboo gold mineralization determined by isotope methods (93H); in Geological Fieldwork 1982, British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1983-1, pp. 305-313.

Beacon Hill Consultants Ltd.

1987: Mosquito Creek Property, Wells, B.C., Mine evaluation. Unpublished report for City Resources (Canada) Ltd.

Benedict, P.C.

1945: Structure at Island Mountain Mine, Wells, B.C. Transactions of the Canadian Institute of Mining and Metallurgy, v. 58, p. 755-770

Bolin, D.S.

1984: Report to Wharf Resources Ltd. on the Cariboo Gold Quartz Mine, Wells, British Columbia, Canada; 17 p. Unpublished report by Golder Associates for Wharf Resources Ltd.

Bowman, A.

1889: Report on the geology of the mining district of Cariboo, British Columbia; Geological Survey of Canada, Annual Report for 1887-1888, v. 3, pt. 1, pp. 1-49c.

Bowman, A.

1895: Maps of the principal auriferous creeks in the Cariboo mining district, British Columbia; Geological Survey of Canada, Maps 364-372.

Campbell, D.D.

1966: Report on Potential of Ore Reserves and Production, Cariboo Gold Quartz Mine, Wells, British Columbia; 28 p. Unpublished report by Dolmage Campbell & Associates Ltd. for Cariboo Gold Quartz Mining Company Limited.

Campbell, D.D.

1969: Surface exploration and production potential of ore reserves and production, Cariboo Gold Quartz Mine, Wells, British Columbia; 28 p. Unpublished report by Dolmage Campbell & Associates Ltd. for Cariboo Gold Quartz Mining Company Limited.

Cameron, R. and Fox, P.E.

1995: Summary Report on the Welbar Gold Project, Cariboo Gold District, Wells, British Columbia; 17 p. Unpublished report by Fox Geological Consultants Ltd. for Gold City Mining Corporation.

Cannon, D.M. and Guiget, M.

1973: Progress report to October 18, 1973. Unpublished report for Mosquito Creek Gold Mining Limited.

Cochrane, D.R.

1971: Geophysical report on the Red Gulch No. 1, 2, 7, Willow No. 10, Port Hope, Seattle, Mosquito, Mosquito Fraction, Vancouver, and Brookford No. 6 and No. 7 mineral leases centered one mile east of Wells, Cariboo Mining Division, Central British Columbia. Unpublished report for Mosquito Creek Gold Mining Limited (N.P.L.)

Cochrane, D.R.

1972: Geophysical report on the Red Gulch No. 1, 2, 7, Willow No. 10, Port Hope, Seattle, Mosquito, Mosquito Fraction, Vancouver, and Brookford No. 6 and No. 7 mineral leases centered one mile east of Wells, Cariboo Mining Division, Central British Columbia. Unpublished report by Cochrane Consultants Limited for Mosquito Creek Gold Mining Limited (N.P.L.)

Dolmage, Campbell & Associates

1969: Summary report, surface exploration, 1968 and production potential of Cariboo Gold Quartz Mine, Wells, B.C. Unpublished report prepared for Cariboo Gold Quartz Mines Ltd.

Eckman, P.

1986: The Mosquito Creek Gold Mining Co. Limited Wells, British Columbia; 7 p. Unpublished report for Mosquito Creek Gold Mining Company Limited.

Eyles, N. and Kocsis, S.P.

1989: Sedimentological controls on gold distribution in Pleistocene placer deposits of the Cariboo mining district, British Columbia; British Columbia Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1988, Paper 1989-1, pp. 377-385.

Guiguet, M.

1961 : Cariboo Gold Quartz; Western Miner & Oil Review, v. 34, no. 7, pp. 37-44.

Guiget, M.

1973a: Report on the Mosquito Creek Property, Wells, B.C., Revised to Dec. 1, 1972. Unpublished report by Cannon Hicks Associates Ltd. for Mosquito Creek Gold Mining Limited.

Guiget, M.

1973b: Progress reports July 23 through to December 8, 1973. Unpublished report by Cannon Hicks Associates Ltd. for Mosquito Creek Gold Mining Company Limited.

Guiget, M.

1975: Summary report on the 1974-1975 development program, The Mosquito Creek Project, Wells, B.C. Unpublished report by Cannon Hicks Associates Ltd. for Home Oil Company Ltd.

Guiget, M.

1978: Summary report on the 1977-1978 development program at the property of the Mosquito Creek Gold Mining Co., Wells, B.C. Unpublished report by M.G. Engineering Ltd. for Mosquito Creek Gold Mining Company Limited.

Guiget, M.

•

1979: Report on the mining and milling procedures at the property of the Mosquito Creek Gold Mining Company Limited near Wells, B.C. Unpublished report for Mosquito Creek Gold Mining Company Limited.

Guiget, M. and Cannon, D.M.

1972: Progress report, July 1, 1973 to October 15, 1973. Unpublished report for Mosquito Creek Gold Mining Company Limited.

Hall, R.D.

1991: Report on past operations and exploration proposal for the Cariboo, Island Mountain and Mosquito Creek properties at Wells, British Columbia. Unpublished report for Mosquito Consolidated Gold Mines Limited.

Hall, R.D.

1999a: Cariboo Gold Project at Wells, British Columbia. Unpublished report prepared for International Wayside Gold Mines Ltd.

Hall, R.D.

1999b: Summary of gold properties on Island Mountain at Wells, British Columbia. Unpublished memoto F. Callaghan, president, Island Mountain Gold Mines Ltd.

Hall, R.D.

1999c: Gold potential on Island Mountain at Wells, British Columbia. Unpublished memo to F. Callaghan, president, Island Mountain Gold Mines Ltd.

Hall, R.D.

2000: Review of Surface Diamond Drill Hole Results IMG99-01 to 10. Unpublished memo to F. Callaghan, president, Island Mountain Gold Mines Ltd.

Hanson, G.

1935: Barkerville Gold Belt, Cariboo District, British Columbia. Geological Survey of Canada, Memoir 181, 42 p.

Hayward, T.

1989: Final report for the Mosquito-Lyon Lake Project. Unpublished report for Mosquito Creek Gold Mining Company Limited

Hicks, H.B.

1973: Report on the properties of the Mosquito Creek Gold Mining Company Limited, Wells, B.C. Unpublished report by Cannon Hicks Associates Ltd. for Mosquito Creek Gold Mining Company Limited.

Johnston, W.A. and Uglow, W.L.

1926: Placer and vein gold deposits of Barkerville, Cariboo District, British Columbia; Geological Survey of Canada, Memoir 149.

Jukes, A.H.

1971: Summary of current pertinent data, Barkerville-Wells Prospect, Cariboo District, British Columbia, Canada. Unpublished report for Mosquito Creek Gold Mining Company Limited.

Kelly, J.A.

1983: Summary report on the 1983 surface exploration programs, Mosquito Creek, Wharf and Bralorne properties. Unpublished report for Mosquito Creek Gold Mining Company Limited

Keys, M.R.

1954: The geology of Island Mountain Mine. Unpublished report for Island Mountain Mines Company Limited.

Knight, J. and McTaggart, K.C.

1989: Lode and placer gold of the Coquihalla and Wells areas, British Columbia (92H,93H); British Columbia Geological Survey Branch, Exploration in British Columbia 1989, pp. 105-118.

Krom, A.S.

1988: Exploration program for the Mosquito Project, Lyon Lake Mines Limited. Unpublished report for Lyon Lake Mines Limited.

Laird, A.

1988: Cariboo Gold Quartz Property, 1988 Work Program Summary Report; 35 p. Unpublished report for Pan Orvana Resources Inc

Laird, A.

1990: Cariboo Gold Quartz Property, 1989 Work Program Summary Report; 11 p. Unpublished report for Pan Orvana Resources Inc.

Levson, V.M., and Giles, T.R.

1993: Geology of Tertiary and Quaternary Gold-Bearing Placers in the Cariboo Region, British Columbia (93A, B, G, H); British Columbia Geological Survey Branch, Bulletin 89.

Magee, J.B.

1981: Report on Mosquito Creek Gold Mines for Perigrine Petroleum Limited. Unpublished report for Perigrine Petroleum Limited.

Makinen, R.

1981: The Mosquito Creek Gold Mining Company Limited decline study. Unpublished report for Mosquito Creek Gold Mining Company Limited.

Mason, E.E.

1973: Wharf Resources Limited Cariboo Gold Quartz Properties; 18 p. Unpublished report by Dolmage, Mason & Stewart Ltd. for Wharf Resources Ltd.

Mason, E.E. and Guiguet, M.

1980: Properties and Operations 1933-1967 of the Cariboo Gold Quartz Mining Company Limited., Wells, B.C. Unpublished report for Wharf Resources Ltd.

McFeely, C.J.

1983: Mosquito Creek Gold Mine, Wells, B.C. Unpublished report for Mosquito Creek Gold Mining Company Limited.

Mitchell, J.B.

1978: Mosquito Creek Project – Feasibility study. Unpublished report by Kilborn Engineering (B.C.) Ltd. for Mosquito Creek Gold Mining Company Limited.

Minspec Mining Specialists

1991: Mosquito Project Preliminary Report. Unpublished report for Mosquito Creek Gold Mining Company Limited and Lyon Lake Mines Ltd.

Pickett, J.W.

2001: Diamond drilling and geochemical soil sampling report on a portion of the IGM Group of mineral Claims, Cariboo Mining Division, British Columbia, Canada. Unpublished assessment report by for International Wayside Gold Mines Ltd. and Island Mountain Gold Mines Ltd.

Ray, G., Webster, I., Ross, K. and Hall, R.

2000: Geochemistry of Auriferous Pyrite Mineralization at the Bonanza Ledge, Mosquito Creek Mine and Other Properties in the Wells-Barkerville Area, British Columbia. British Columbia Ministry of Energy and Mines, Geological Fieldwork 2000, Paper 2001-1, p. 135-167.

Rhys, D.

2001: Lode gold in the Cariboo: the Bonanza Ledge discovery of International Wayside Gold Mines. 2001 Cordilleran Roundup Abstracts p. 20-21.

Rhys, D.A. and Ross, K.V.

2000: Report on Petrography, check sampling and geological interpretation of drill core at the Bonanza Ledge Zone, Cariboo Gold Quartz Property, British Columbia. Unpublished report by Panterra Geoservices Inc. for International Wayside Gold Mines Ltd.

Richards, F.

1948: Cariboo Gold Quartz mine. In Structural Geology of Canadian Ore Deposits, Canadian Institute of Mining and Metallurgy, p. 162-168

Robert, R. and Taylor, B.E.

1989: Structure and mineralization at the Mosquito Creek Gold Mine, Cariboo District, B.C. Unpublished paper by the Geological Survey of Canada

Skerl, A.C.

1948: Geology of the Cariboo Gold Quartz Mine, Wells, B.C. Economic Geology, v. 43, p. 571-597

Smellie, D.W.

1962: Preliminary report, underground drill-hole electromagnetic survey, Cariboo Gold Quartz Mine, Wells, B.C. Unpublished report for the Cariboo Gold Quartz Mining Company Limited.

Starck, L.P.

1983: Proposed exploration and development program for the Mosquito Creek Gold Mine, Cariboo Mining Division, Wells, B.C. Unpublished report by L.P. Starck & Associates Ltd. for the Mosquito Creek Gold Mining Company Limited and Perigrine Petroleum Limited.

Struik, L.C.

1986: Imbricated terranes of the Cariboo Gold belt with correlations and implications for tectonics in southeastern British Columbia; Canadian Journal of Earth Sciences, v. 23, pp.1047-1061.

Struik, L.C.

1988: Structural geology of the Cariboo Gold Mining District, East-Central British Columbia. Geological Survey of Canada, Memoir 421, 100 p.

Sutherland, W.D.

1986: The Mosquito Creek Project. Unpublished report for Hecla Mining Company.

Sutherland, W.D.

1989: The Mosquito Lyon Lake joint venture, Cariboo Mining Division, Wells, British Columbia. Unpublished report for Mosquito Creek Gold Mining Company Limited and Lyon Lake Mines Ltd.

Sutherland Brown, A.

1957: Geology of the Antler Creek area, Cariboo District, British Columbia. British Columbia Department of Mines, Bulletin No. 38, 105 p.

16.0 CERTIFICATE OF QUALIFICATIONS

I, J. Wayne Pickett, do hereby certify that:

- 1) I am a consulting geologist with a business office at 8256 McIntyre Street, Mission, British Columbia, V2V 6T3.
- 2) I have a B.Sc. degree in Geology from Memorial University of Newfoundland (1974) and a M.Sc. in Earth Sciences (Geology) from Memorial University of Newfoundland (1989).
- 3) I am a Registered Professional Geoscientist in good standing with the Association of Professional Engineers and Geoscientists of the Province of Newfoundland and Labrador, and the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 4) I have practiced my profession as a geologist for the past 25 years during which time I have been involved in exploration for and/or evaluation of several types of mineral deposits including epithermal and mesothermal gold deposits in Canada, Ghana, Peru, Colombia and Jamaica. From this experience, I have gained sufficient expertise in the style of mineralization under consideration to fairly report on its nature and distribution.
- 5) I own no direct, indirect or contingent interest in the shares or business of Island Mountain Gold Mines Ltd., International Wayside Gold Mines Ltd. or in the subject property.
- 6) I accept express responsibility for the conclusions and recommendations contained hereín.
- 7) The information, opinions, conclusions and recommendations contained herein are based on information made available to the author by Island Mountain Gold Mines Ltd. and International Wayside Gold Mines Ltd.; and on a review of available literature and previous records of work on the property and surrounding area. Literature reviewed comprises published articles in technical journals, reports and maps filed for assessment with the government of British Columbia, and reports supplied by the property owner. The author supervised and helped carry out work on the subject property during 2000.

Dated at Mission, B.C., this 6th day of June 2002.

J. Wayne Pickett, M.Sc., P.Geo.

Appendix A Description of Analytical Methods

,

.

-

.

.

.

.

.

•

*

-

•

852 East Hastings Street • Vancouver, British Columbia • CANADA • V6A 1R6 Telephone: (604) 253-3158 • Fax: (604) 253-1716 • Toll free: 1-800-990-ACME (2263) • e-mail: info@acmelab.com

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 3A - AU BY WET EXTRACTION

Comments

Sample Preparation

Soils and sediments are dried (60°C) and sieved to -80 mesh (-177 microns), rocks and drill core are crushed and pulverized to 95% -150 mesh (-100 microns). Plant samples are dried (60°C), pulverized or ashed (550°C). Sediment in moss mats is recovered by disaggregating and sieving to -80 mesh. Sample splits of 10 gm to 150 gm are weighed into glass beakers. Duplicate splits of crushed (reject duplicate) and pulverized (pulp duplicate) material included in every 34 drill core or trench samples define preparation (reject duplicate) and analytical precision (pulp duplicate). Duplicate pulp splits (only) are included in every batch of soil, sediment and routine rock samples. A blank and in-house standard reference material STD FA-100 are carried through all stages of the analytical methodical to monitor accuracy. STD FA-100 has been certified in-house against certified reference materials.

Sample Digestion and Extraction

Aqua Regia is a 2:2:2 mixture of ACS grade conc. HCl, conc. HNO₃ and distilled H₂O. Aqua Regia is added to each sample and to the empty reagent blank test tube in each batch of samples. Sample solutions are heated for 1 hr in a boiling hot water bath (95°C). For Graphite Furnace AA analysis, MIBK is added and the samples are shaken to extract Au into the MIBK phase.

Sample Analysis

ICP-MS (Perkin Elmer Elan 6000) analysis is conducted on the acid solution to determine Au \pm Pt. Graphite furnace AAS (Varian model SpectrAA 10Plus) is conducted on the MIBK extract to determine Au.

Data Evaluation

Raw and final data undergoes a final verification by a British Columbia Certified Assayer who must sign the analytical report before release to the client. Chief assayer is Clarence Leong, other certified assayers are Dean Toye and Jacky Wang..

Document: Methods and Specifications for New Group 3A.doc

Date: Feb 3, 2000

852 East Hastings Street • Vancouver, British Columbia • CANADA • V6A 1R6 Telephone: (604) 253-3158 • Fax: (604) 253-1716 • Toll free: 1-800-990-ACME (2263) • e-mail; info@acmelab.com

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 3B - PRECIOUS METALS BY FIRE GEOCHEM

Analytical Process

Comments

Sample Preparation

Soils and sediments are dried (60°C) and sieved to -80 mesh ASTM (-177 Im). Rocks and drill core are crushed and pulverized to 95% -150 mesh ASTM (-100 μ m). Splits of 30 gm (client may select 50 gm option) are weighed into fire assay crucibles. Quality control samples comprising blanks, duplicates and reference materials Au-S, Au-R, Au-1 or FA-100S (in-house standard reference materials) added to each batch of 34 samples monitor background, precision and accuracy, respectively.

Sample Digestion

A fire assay charge comprising fluxes, litharge and a Ag inquart is custom mixed for each sample. Fusing at 1050°C for 1 hour liberates Au, Ag, Pt and Pd. For Rh > 10 ppb, a Au inquart is used. After cooling, lead buttons are recovered and cupeled at 950°C to render Ag \pm Au \pm Pt \pm Pd or Au \pm Pt \pm Pd \pm Rh dore beads. Beads are weighed then leached in hot, conc. HNO₃ to dissolve Ag leaving Au (\pm PGE) sponges. Concentrated HCl is added to dissolve the sponges. Au inquart beads (Rh analysis) are dissolved in Aqua Regia.

Sample Analysis

Au, Pt, Pd and Rh are analysed in sample solutions by ICP-AES (Jarrel Ash AtomComp model 800 or 975). Rh can be determined quantifiably up to 10 ppb from a Ag inquart fusion digestion, however a Au inquart must be used to accurately determine higher concentrations.

Data Evaluation

Data is inspected by the Fire Assay Supervisor then undergoes final verification by a British Columbia Certified Assayer who signs the Analytical Report before release to the client. Chief Assayer is Clarence Leong, other certified assayers are Dean Toye and Jacky Wang.

Document: Methods and Specifications for Group 3B.doc

852 East Hastings Street • Vancouver, British Columbia • CANADA • V6A 1R6 Telephone: (604) 253-3158 • Fax: (604) 253-1716 • Toll free: 1-800-990-ACME (2263) • e-mail: info@acmelab.com

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 1D & 1DX - ICP ANALYSIS – AQUA REGIA

Comments

Sample Preparation

Soils and sediments are dried $(60^{\circ}C)$ and sieved to -80 mesh (-177 lm), rocks and drill core are crushed and pulverized to -150 mesh (-100 lm). Vegetation is dried $(60^{\circ}C)$ and pulverized or dry ashed $(550^{\circ}C)$. Moss-mat samples are dried $(60^{\circ}C)$, pounded then sieved to recover -80 mesh sediment or ashed at 550°C then sieved to -80 mesh with potential loss by volatilization of Hg, As, Sb, Bi and Cr. Aliquots of 0.5 g are weighed into test tubes. Duplicate aliquots are taken from two samples in each batch of 34 samples to measure precision. An aliquot of sample standard STD C3 is added to each batch to monitor accuracy.

Sample Digestion

Aqua Regia is a 2:2:2 mixture of ACS grade conc. HCl, conc. HNO₃ and demineralized H₂O. Aqua Regia is added to each sample and to two empty reagent blank test tubes in each batch of samples. Sample solutions are digested for 1 hr in a boiling hot water bath (95°C).

Sample Analysis

Group 1D: sample solutions are aspirated into a Jarrel Ash AtomComp 800 or 975 ICP emission spectrograph to determine 30 elements: Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, Ti, U, V, W, Zn.

Group 1DX: sample solutions are aspirated into a Perkin Elmer Optima 3300 Dual View ICP emission spectrograph to determine 35 elements: Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, *Tl*, Sr, Th, Ti, U, V, W, Zn.

Data Evaluation

Raw and final data from the ICP-ES undergoes a final verification by a British Columbia Certified Assayer who then signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other certified assayers are Dean Toye and Jacky Wang.

Document Method and Specifications for Group 1D&1DX.doc

Prepared By: J. Gravel

Appendix B Drill Logs IGM01-01 to IGM01-07

.

.

,

.

F

•

1

.

Page 1 of 4

Island Mountain Gold Mines Ltd.

Diamond Drill Log

D.D.H. IGM01-01

Property:	Mosquito Creek		Collar Grid Coordinates									
Drilling Contractor:	Standard Drilling & Engineering Ltd.		<u>Northing</u>	Easting	Elevation		Depth	Azimuth	Dip			
Date Started:	March 29, 2001	Mine Grid	17999.1 ft.	9996.2 ft.	4691.9 ft.		collar	220°	-45°			
Date Completed:	April 23, 2001	1983 Grid	5+02\$	22+11 W								
Final Depth:	555 feet (169.2 m)	Logged b	ıy:									

			%	Sample		From	То	Au	Au	Length
From-To (ft)	Description		sulph	No.	Туре	(ft)	(ft)	g/t	oz./ton	<u>ft.</u>
0.00-21.00	Overburden						:			
21.00-206.00	Pelite and Lesser Arenite				1				:	-
	green, very thin layering with lesser medium-layered sect	tions				· i				
		21.00-206.00	<1							
95.00-100.00	quartz stringers									1
116.00-117.5	0 quartz stringers						ĺ			1
195.50-206.0	0 white-tan, dolomitized									
206.00-213.00	Graphitic Pelite and Lesser Arenite									
	black, medium layering with lesser thin-layered sections									
		206.00-213.00	1.0		•					
213.00-220.00	Arenite and Lesser Pelite									
	grey, medium layering								i	
				1975	соге	220.00	225.00	0.01	0.000	5.0
220.00-237.00	Arenite		[
	grey, thin layering									
		220.00-237.00	1.0							
220.00-237.0	0 tan, dolomitized			 						
				1976	core	225.00	230.00	0.01	0.000	5.0
				1977	core	230.00	235.00	0.01	0.000	5.0
				1978	core	235.00	237.00	0.01	0.000	2.0
		237.00-243.50	trace							
237.00-252.00	Calcareous Arenite									
	green, thick layering									
				1979	core	243.50	245.00	0.01	0.000	1.5
243.50-252.0	0 quartz stringers									

1	Description of the second se		%	Sample	T	From	To	Au	Au	Length
From-10 (11)	242 50 252 00		suipn	110.	Туре	(n)	<u>(II)</u>	g/t	oz./ton	π.
243 50-252 00	243.50-252.00) tan dolomitized		3.0	1						
240.00 202.00				1980	core	245.00	250.00	0.01	0.000	5.0
250.00-252.00) fault									
		252.00-281.00	1.0							
252.00-285.00	Arenite and Lesser Pelite						i			
	grey, thin layering									
270.50-281.00) fault									
				1981	core	275.00	279.70	0.02	0.001	4.7
				1982	core	279.70	281.00	0.02	0.001	1.3
		281.00-285.00	3.0	1000						
201 00 206 0				1983	core	281.00	285.00	0.01	0.000	4.0
281.00-285.00	J tan, dolomitized			1094		285.00	200.00	0.01	<u></u>	5.0
195 00 101 50) fault			1904	core	265.00	290.00	0.01	0.000	5.0
285.00-292.50	Craphitic Pelite and Lesser Arenite									
200.00 000.00	black medium layering with lesser thin-layered sections									
	······································	285.00-303.00	1.0							
298.00-299.00) fault		1	1						
		303.00-324.50	1.0							
303.00-374.00	Arenite and Lesser Pelite									
	grey, thick layering with some very thin layers									
303.00-324.50) tan, dolomitized and sericitized									
				1985	core	324.50	330.00	0.01	0.000	5.5
		324.50-339.00	2.0	4		1				
324.50-339.00	tan, sericitized and dolomitized			1002		220.00	225.00	0.01	0.000	
				1983	core	330.00	335.00	0.01	0.000	5.0
				1907	core	339.00	345.00	0.01	0.000	4.0
		339 00-362 00	10	1700	010	557.00	545.00	0.01		0.0
339 00-362 00	n tan dolomitized	555100 502.00		-					:	
2227100 20210	• • • • • • • • • • • • • • • • • • • •			1989	core	345.00	350.00	0.01	0.000	5.0
				1990	core	350.00	355.00	0.01	0.000	5.0
				1991	core	355.00	362.00	0.01	0.000	7.0
362.00-369.00	0 green, dolomitized									
-		362.00-374.00	trace							

D.D.H. IGMG01-01

Page 3 of 4

	%	Sample		From	То	Au	Au	Length
From-To (ft) Description	sulph	No.	Туре	(ft)	(ft)	g/t	oz./ton	ft.
374.00-421.30 Arenite								
grey, medium layering								
374.	00-421.30 2.0						!	
375.50-385.00 quartz veins								
375.50-385.00 fault								
390.00-391.00 quartz veins								
413.00-419.40 quartz stringers							i	1
421.	30-432.00 trace							:
421.30-465.00 Arenite							i	
grey, thick layering								
421.30-465.00 tan-green, dolomitized and sericitized						!	İ	
425.00-426.80 quartz veins								
		1993	core	425.00	426.80	0.32	0.009	1.8
425.00-426.80 green, chloritized	1							
		1994	core	426.80	432.00	0.09	0.003	5.2
426.80-449.00 tan-grey, dolomitized and sericitized								
		1995	core	432.00	435.00	0.01	0.000	3.0
432.	00-449.00 5.0							
		1996	core	435.00	440.00	0.01	0.000	5.0
		1997	core	440.00	445.00	0.01	0.000	5.0
		1998	core	445.00	448.90	0.02	0.001	3.9
	:	1999	core	448.90	455.00	0.01	0.000	6.1
449.	00-465.00 3.0							
	!	2000	core	455.00	460.00	0.01	0.000	5.0
	1	1921	core	460.00	465.00	0.01	0.000	5.0
	i	1922	core	465.00	470.00	0.01	0.000	5.0
465.00-493.50 Arenite								
grey, very thin layering							-	
465.	00-493.50 1.00				:			
		1923	core	470.00	475.00	0.01	0.000	5.0
		1924	core	475.00	480.00	0.01	0.000	5.0
		1925	core	480.00	485.00	0.01	0.000	5.0
		1926	core	485.00	490.00	0.01	0.000	5.0
		1927	core	490.00	493.50	0.01	0.000	3.5
493.	50-511.50 trace							

D.D.H. IGMG01-01

Page 4 of 4

	%	Sample		From	То	Au	Au	Length
From-To (ft) Description	sulph	No.	Туре	(ft)	(ft)	g/t	oz./ton	ft.
493.50-519.50 Pelite			<u> </u>	į :				
green, thin layering								
493.50-532.50 green, dolomitized and sericitized				:				
496.50-497.10 quartz stringers								
504.50-505.30 quartz veins								i.
511.40-512.20 quartz stringers								1
511.50-519.5	0 2.0					ĺ		I.
519.50-532.50 Arenite								
green, thick layering								
519.50-532.5	0 trace							
		1928	core	532.50	535.00	0.07	0.002	2.5
532.50-555.00 Graphitic Grit					İ			
black, thin layering								
532.50-555.0	0 3.0							
532.50-555.00 fault								
533.50-535.00 quartz veins								
		1929	core	535.00	545.00	0.02	0.001	10.0
539.00-540.00 quartz veins								
545.00-550.00 quartz veins								
		1930	core	545.00	555.00	1.62	0.047	10.0
555.00 End of Hole								

-

the task of the ta

Page 1 of 4

Island Mountain Gold Mines Ltd.

Diamond Drill Log

D.D.H. IGM01-02

Property:	Mosquito Creek		Collar Grid Coordinates									
Drilling Contractor:	Standard Drilling & Engineering Ltd.		Northing	Easting	Elevation		Depth	Azimuth	Dip			
Date Started:	April 24, 2001	Mine Grid	17998.7 ft.	9995.8 ft.	4691.9 ft.		collar	222°	-65°			
Date Completed:	May 8, 2001	1983 Grid	5+03S	22+11 W								
Final Depth:	650 feet (198.1 m)	Logged b	y:									

			%	Sample		From	То	Au	Au	Length
From-To (ft)	Description		sulph	No.	Туре	(ft)	(ft)	g/t	oz./ton	ft.
0.00-22.00	Overburden									
22.00-278.00	Calcareous Arenite									
22.00-38.00	white, dolomitized									
22.00-61.00	pyrrhotite = pyrite		<1							
	green									
28.00-38.00	calcite stringers									
46.00-46.40	calcite veins									
61.00-96.00	calcite stringers									
		61.00-96.00	1.0							
95.20-96.00	calcite veins									
		96.00-161.00	<1				1	1		
121.50-143.5	0 white, dolomitized									
		160.00-278.00	1.0							
				5533	core	161.00	166.00	1.02	0.030	5.0
161.00-196.0	0 calcite stringers									
		161.00-196.00	1.0							
				5534	core	166.00	171.00	0.02	0.001	5.0
				5535	core	171.00	176.00	0.07	0.002	5.0
		196.00-260.00	<1							
202.50-210.0	0 white, dolomitized					Í	ł	i		
239.00-260.0	0 green, sericitized and dolomitized									
260.00-278.0	white, dolomitized and potassic metasomatised						I			
260.10-278.0	0 fault						İ	:	I	
				5536	core	261.00	266.00	0.01	0.000	5.0

D.D.H. IGMG01-02

Page 2 of 4

			%	Sample		From	То	Au	Au	Length
From-To (ft)	Description		sulph	No.	Туре	(ft)	(ft)	g/t	oz./ton	ft.
				5537	core	266.00	276.00	0.01	0.000	10.0
				5538	core	276.00	278.00	0.39	0.011	2.0
278.00-305.00	Calcareous Arenite								-	
	grey, very thin layering with lesser thin-layered sections									
278.00-305.00	1% sulphides - pyrite and lesser pyrrhotite		1.0							
283.30-333.00	fault			. 1						
305.00-333.00	Arcnite and Lesser Pelite								!	
	black, thick layering			1						
		305.00-333.00	1.0							
				5539	core	311.00	316.00	0.01	0.000	5.0
				5540	core	316.00	321.00	0.01	0.000	5.0
				5541	core	321.00	331.00	0.13	0.004	10.0
				5542	core	331.00	333.00	0.37	0.011	2.0
333.00-343.50	Pelite									
	grey, thick layering							l		
333.00-343.50	green, sericitized and dolomitized	222 00 242 50		ĺ				ĺ		
222 00 270 10		333.00-343.30	trace					:		1
333.00-379.10	quartz stringers							İ	ĺ	
343.50-308.00	Arenne and Lesser relife									
	grey, very thin layering with lesser thin-layered sections	242 50 269 00	1.0							i .
240.00.250.10	dolomito voina	343.30-308.00	1.0							
349.00-330.10	domine venis	269 00 494 00	tropa						;	
368.00 401.00	Aronito	308.00-484.00	uace							
506.00-471.00	arey thick lovering									
272 00 281 50	Calcareous Arenite								1	
00-100-001.00	arey thick layering								1	
381 50-397 50	auartz stringers									
434 00-455 50) quartz stringers									
438 50-441 50) green, sericitized								i	
150.50 111.50	E. e., Serielized			5543	core	441.00	446.00	0.01	0.00	5.0
				5544	core	446.00	451.00	0.01	0.000	5.0
				5545	core	451.00	456.00	0.01	0.000	5.0
				5546	core	470.50	476.00	0.02	0.001	5.5
470.60-475.00) quartz stringers			<u>├</u>						
				5547	core	481.00	486.00	0.08	0.002	5.0
484.00-486.00) quartz veins							i		!

D.D.H. IGMG01-02

Page 3 of 4

		%	Sample		From	То	Au	Au	Length
From-To (ft)	Description	sulph	No.	Туре	(ft)	(ft)	g/t	oz./ton	<u>ft.</u>
	484.00-486.00	2.0							
			5548	core	486.00	4 9 1.00	0.10	0.003	5.0
	486.00-500.60	1.0							
			5549	core	491.00	496.00	0.53	0.015	5.0
491.00-508.7	0 fault								
491.00-509.00	Graphitic Pelite								
	black, thin layering								
			5550	core	496.00	501.00	0.56	0.016	5.0
500.60-508.3	0 quartz veins					1			
	500.60-508.30	3.0						-	
			5551	core	501.00	506.00	0.60	0.018	5.0
			5552	core	506.00	511.00	1.01	0.029	5.0
	508.30-531.00	1.0							
509.00-531.00	Dolomitic Arenite								
	grey, thin layering								
510.00-533.0	0 grey, potassic metasomatised, dolomitized and sericitized								
			5553	core	511.00	516.00	0.06	0.002	5.0
			5554	core	516.00	521.00	0.31	0.009	5.0
			5555	core	521.00	526.00	0.22	0.006	5.0
			5556	core	526.00	531.00	0.05	0.001	5.0
			5557	core	531.00	536.00	0.17	0.005	5.0
531.00-574.00	Dolomitic Arenite								
	black, thin layering								:
	531.00-650.00	<1							
			5558	core	536.00	541.00	0.66	0.019	5.0
540.00-543.5	0 fault								
			5559	core	541.00	546.00	0.07	0.002	5.0
			5560	core	546.00	551.00	0.02	0.001	5.0
			5561	core	551.00	556.00	0.04	0.001	5.0
			5562	core	556.00	561.00	0.05	0.001	5.0
			5563	core	561.00	566.00	0.03	0.001	5.0
564.70-565.7	0 fault				566.00	671.00	0.001		
			2264	core	00.00	571.00	0.02	0.001	5.0
569.70-570.7	U fault		5565		671.00	694.00	0.01	0.000	<u> </u>
		1	2002	core	571.00	574.00	0.01	0.000	3.0
572.00-573.7			55//		574 00	601.00	0.01		
-		!	2200	core	574.00	281.00	10.0	0.000	7.0

Page 4 of 4

	%	Sample		From	То	Au	Au	Length
From-To (ft) Description	sulph	No.	Type	(ft)	(ft)	g/t	oz./ton	ft.
574.00-609.50 Arenite]						
grey, thin layering				:				
574.00-609.50 grey, potassic metasomatised, dolomitized and sericitized				i				:
591.00-602.50 fault								
609.50-650.00 Graphitic Pelite								
black								
611.50-612.00 fault								
621.00-621.80 fault								
650.00 End of Hole						[

Island Mountain Gold Mines Ltd.

Diamond Drill Log

D.D.H. IGM01-03

Property:	Mosquito Creek		Collar Grid Coordinates							
Drilling Contractor:	Standard Drilling & Engineering Ltd.		Northing	Easting	Elevation		Depth	Azimuth	Dip	
Date Started:	May 16, 2001	Mine Grid	17394.0 ft.	10822.0 ft.	4531.3 ft.		collar	221°	-43°	
Date Completed:	May 19, 2001	1983 Grid	4+53\$	11+88 W						
Final Depth:	603 feet (183.8 m)	Logged b	y:							

			%	Sample		From	To	Au	Au	Length
From-To (ft)	Description		sulph	<u>No.</u>	Туре	(ft)	<u>(ft)</u>	g/t	oz./ton	<u>ft.</u>
0.00-20.00	Overburden									
		20.00-27.00	1.0							
20.00-162.70	Calcarcous, Chloritic Arenite						:			
	green, thick layering with lesser medium-layered sections					l				
20.00-27.00	red-brown, oxidized									
				5501	core	27.00	35.00	0.01	0.000	8.0
		27.00-46.50	3.0							
27.00-46.50	grey, dolomitized									
				5502	core	35.00	40.00	0.01	0.000	5.0
				5503	core	40.00	46.50	0.01	0.000	6.5
		46.50-63.50	1.0							
60.00-75.50	green, dolomitized					(2.00	(2.00)		0.004	
				5504	core	62.00	65.00	0.15	0.004	3.0
				5531	1/4 core	62.00	65.00	0.09	0.003	3.0
63.50-69.00	5% pyrite		5.0			<u> </u>	(0.00	<u> </u>	0.000	
				5505	core	65.00	69.00	0.01	0.000	4.0
	•	** ** ** **		5506	core	69.00		0.18	0.005	6.0
	- ··· ···	69.00-97.50	1.0							
97.50-99.10	Graphitic Pelite					1				
	black, very thin layering		5.0				1			
97.50-99.10	5% pyrrhotite	00 10 170 70	5.0						j	
14 - 00 - ·		99.10-162.70	1.0							
135.00-162.7	(0 green, doiomitized and polassic melasofinatised		l							

Page 1 of 4

D

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~).I).H.	IGMG01-03
--	-----	------	------------------

	%	Sample		From	To	Au	Au	Length
From-To (ft) Description	sulph	No.	Туре	(ft)	(ft)	g/t	oz./ton	<u>ft.</u>
162.70-302.30 Calcareous, Graphitic Arenite								
grey, very thin layering						!	, i	
162.70	-302.30 <1				ļ	ļ		
171.50-176.00 calcite stringers					i	:		
184.00-201.40 green, sericitized								
	•	5507	core	215.00	220.00	0.01	0.000	5.0
		5508	core	220.00	225.00	0.02	0.001	5.0
		5509	core	225.00	230.00	0.01	0.000	5.0
		2210	core	230.00	235.00	0.01	0.000	0.0
234.50-248.00 calcite stringers							:	
255.00-280.00 grey, dolomitized		5511	core	265.00	270.00	0.16	0.005	5.0
		5512	COTE	203.00	275.00	0.10	0.001	5.0
		5512	core	275.00	280.00	0.02	0.001	5.0
270 00 201 00 calcite stringers		5515			200.00	0,04		
279.00-501.00 calence stringers		5514	core	280.00	285.00	0.02	0.001	5.0
285.00-288.50 fault			<u> </u>					
302.30-314.00 Archite and Lesser Pelite								
black, thin layering								
302.30	-398.00 <1							
307.00-380.50 green, sericitized					İ			:
309.30-309.80 fault								
314.00-362.50 Arenite								 -
grey, medium layering								
335.40-337.70 quartz veins				<u> </u>			<u> </u>	
		5515	core	335.40	337.70	0.01	0.000	2.3
362.50-398.00 Arenite and Lesser Pelite							l	
grey, medium layering								
390.00-394.00 Calcareous Arenite					ļ			e
grey, medium layering								
398.00-429.00 Dolomitic Arenite								
white, medium layering	420.00 1.0	-	1				:	
398.00	1-429.00 1.0	4				i	i	
398.00-429.00 grcy, dolomitized	i	1	1		1	i	i	

			%	Sample		From	To	Au	Au	Length
From-To (ft)	Description		sulph	No.	Туре	(ft)	(ft)	g/t	oz./ton	ft.
429.00-441.50	Pelite									
	grey, very thin layering									
		429.00-441.50	2.0							
429.00-432.00	0 quartz veins									
				5516	core	429.00	432.00	0.36	0.011	3.0
431.00-433.50	0 fault									
				5517	core	432.00	435.00	0.04	0.001	3.0
141 50 460 50	a			5518	core	435.00	442.50	0.01	0.000	7.5
441.50-462.50	Arenite					1				
	grey, medium layering			-						
449.00 442.00		441.50-462.50	trace	-						
448.00-463.50 463.60 477.50	Dulumitic Polite									
402.30-477.30	black constants									
	black, very thin layering	100 50 100 50								
162 20 162 50	D fault	462.30-477.30	2.0							
405.20-405.30				6510		476.00	470.50	0.01	0.000	
477 50-549 00	Arenite and Lesser Polite			5519	core	475.00	4/8.50	0.01	0.000	3.5
477,30-342.00	grey thin layering						ł			
	groy, init idyoning	477 50-549 00							1	
		111.50 5 19.00		5520	core	478 50	485.00	0.83	0.024	- 65
478.80-486.50	o quartz veins			0020	0010	-10.50	+05.00	0.05	0.024	0.5
	1			5521	core	485.00	491.20	0.01	0.000	62
491.20-491.70) fault							0101		0.2
491.20-496.10	0 quartz veins					1			i	
	-			5522	core	491.20	496.10	1.55	0.045	4.9
514.50-515.00	0 quartz veins									
514.50-515.00	0 fault								1	
517.50-517.90	0 fault									
532.00-533.80) fault									
549.00-563.50	Dolomitic Arenite							ļ		
	grey, very thin layering									
		549.00-573.00	1.0							
553.00-555.30	D fault									
	_		•	5523	core	553.90	555.30	0.05	0.001	1.4
554.10-555.00) quartz veins					T				

Page 3 of 4

lizem To (ft) Description	%	Sample	m	From	To	Au	Au	Length
rion-io (n) Description	suipn	<u></u>	<u>1 ype</u>	(11)	<u>(II)</u>	g/t	oz./ton	π.
		5524	core	555.30	560.00	0.03	0.001	4.7
		5525	core	560.00	564.20	0.03	0.001	4.2
563.50-573.00 Dolomitic Pelite								
black, very thin layering							-	
563.50-567.00 fault					:	;		
564.20-565.30 quartz veins								
·		5526	core	564.20	566.00	1.05	0.031	1.8
		5527	core	566.00	570.00	0.14	0.004	4.0
		5528	core	570.00	575.00	0.06	0.002	5.0
571.00-573.00 green, sericitized								
573.00-603.00 Graphitic Pelite					:			
black, very thin layering								
573.00-6	03.00 1.0							1
		5529	соте	575.00	585.00	0.02	0.001	10.0
575.00-590.00 fault				i I				
		5530	соте	585.00	590.00	0.08	0.002	5.0
603.00 End of Hole						ŀ		

-

Page 1 of 3

Island Mountain Gold Mines Ltd.

Diamond Drill Log

D.D.H. IGM01-04

Property:	Mosquito Creek		Collar (Grid Coord	linates						
Drilling Contractor:	Standard Drilling & Engineering Ltd.		Northing	Easting	Devation			Depth	Azimu	th Dip	
Date Started:	May 29, 2001	Mine Grid	16767.5 ft.	12108.4 ft.	4610.5 ft.			collar	n/a	-90°	
Date Completed:	June 4, 2001	1983 Grid	1+30S	2+06 E			L				
Final Depth:	337 feet (102.7 m)	Logged b	y:								
				%	Sample		From	То	Au	Au	Length
From-To (ft)	Description			sulph	No.	Туре	(ft)	(ft)	g/t	oz./ton	<u>ft.</u>
0.00-20.00	Overburden							_			
20.00-55.50	Arenite										
	grey										!
20.00-38.50	grey, dolomitized and chloritized								i		
			20.00-5	5.00 1.0			į				
38.00-40.00	quartz veins							<u></u>			
					5568	core	38.80	47.00	0.01	0.000	8.2
45.00-46.00	quartz veins						.			l	
55,30-55,50	quartz stringers			i							
55.50-64.00	Pelite						!				
	black				1						
55,50-56.00	fault										
64.00-81.10	Chloritic Arenite								•		
	grey										1
65.40-71.00	green, chloritized									1	
81.10-102.00	Pelite										
	black									Î	
			81.10-10	2.00 1.0						:	
102.00-128.10	Dolomitic Arenite and Lesser Pelite									,	
	grey))					1	
102.00-108.00) green, sericitized, carbonized and dolomi	itized							Í	1	
105.00-107.50) quartz veins										
					5569	core	127.00	128.10	0.01	0.000	1.1
127.50-128.10) quartz veins										

Page 2 of 3

From To (ft) Description	% sulab	Sample	Tuna	From	To (A)	Au ~/t	Au	Length
	supa	5570	Туре	128.10	(11)		02./101	π.
128.10-141.50 Calcareous Arenite		0166	core	128.10	154.90	0.01	0.000	0.8
white							1	
128.10-141.50 white, sericitized			:		ĺ		:	:
130.10-131.00	2.5							
131.00-141.50	1.5							i
		5571	core	134.90	141.50	0.01	0.000	6.6
141.50-154.90 Carbonaceous Arenite								
green								
141.50-154.90 green, chloritized					:			
141.50-154.90	1.0				i		1	:
151.00-154.90 fault	[:		
154.90-158.20 Calcareous Arenite								
white	ĺ							:
154.90-158.20 white, sericitized								
		5572	core	154.90	158.20	0.01	0.000	3.3
		5573	core	158.20	159.30	0.01	0.000	l.1
158.20-179.20 Carbonaceous Arenite					1			
green					1			
158.20-159.50 fault 158.20-170.20 groop oblasitized				-				
158.20-179.20 green, emonuzed		6671		150.20	166.60	0.01	0.000	
159 50, 160 50 quartz stringers		5574	core	139.30	100.00	0.01	0.000	1.5
157.50-100.50 quarte stringers		5575	core	166.60	172.40	0.01	0.000	6.0
		5576	0010	173.40	179.20	0.01	0.000	<u> </u>
179.20-188.40 Calcareous Arenite		2270	COLC	175.40		0.01	0.000	2.0
white							į	
179.20-188.40 white, sericitized			1					
		5577	соте	179.20	188 40	0.01	0.000	9.2
188.40-209.70 Chloritic Arenite							0.000	
green								
188.40-206.00 green, dolomitized					1	;		
209.70-337.00 Chloritic Arenite					i .	;		
black						1		
216.00-217.00 quartz veins							:	
227.00-245.00	1.5							
255.00-256.00 quartz veins				·		1		

Page 3 of 3

			%	Sample		From	To	Au	Au	Length
From-To (ft)	Description		sulph	No.	Туре	(ft)	(ft)	g/t	oz./ton	ft.
287.00-292.00	0 grey, sericitized									
				5579	core	288.50	289.90	0.04	0.001	1.4
288.80-289.70	0 quartz veins									
288.80-289.70	0 10% sulphides - pyrite and galena		10.0				ļ			
		310.00-318.00	3.0					:		
315.00-329.00	0 grey, sericitized									
316.50-328.00	0 quartz veins									
			:	5579	core	316.70	320.50	0.02	0.001	3.8
				5580	core	320.50	328.00	0.01	0.000	7.5
		326.00-327.00	2.0				_			
		332.00-337.00	1.0			1			!	
337.00	End of Hole									

THE TOTAL CONTRACTOR STRUCTURES FOR THE FOR THE FOR THE FOR THE FOR

Island Mountain Gold Mines Ltd.

Diamond Drill Log

D.D.H. IGM01-05

Property:	Mos quito Creek		Collar (
Drilling Contractor:	Standard Drilling & Engineering Ltd.		Northing	Easting	Elevation		Depth	Azimuth	Dip
Date Started:	June 4, 2001	Mine Grid	16898.4 ft.	12067.7 ft.	4595.7 ft.		collar	219°	-57°
Date Completed:	June 22, 2001	1983 Grid	0+54S	0+92 E					
Final Depth:	565 feet (172.2 m)	Logged b	y:						

		%	Sample		From	То	Au	Au	Length
From-To (ft)	Description	sulph	No.	Туре	(ft)	(ft)	g/t	oz./ton	ft.
0.00-20.00	Overburden								
20.00-87.00	Arenite and Lesser Pelite								1
	green, thick layering								
20.00-87.00	green, sericitized								
		20.00-87.00 1.0							
34.80-35.00	quartz veins								
			5582	core	45.30	46.30	0.01	0.000	1.0
46.00-46.10	quartz veins			ĺ					
		46.00-46.10 5.0						1	1
72.50-73.10	quartz stringers						ĺ		
78.20-78.50	fault								
81.50-83.00	quartz stringers								
87.00-105.00	Dolomitic Pelite								
	black, very thin layering			1					
		87.00-105.00 1.5							
94.00 - 94.30	quartz veins				I				
105.00-161.00	Dolomitic Arenite and Lesser Pelite	:							
	black, medium layering	:					1		
			195501	sludge	105.00	115.00	0.015	0.000	10
105.00-105.5	0 fault						-		
106.00-106.4	0 quartz veins					i		1	
		106.00-106.40 3.0						1	
			195502	sludge	115.00	125.00	0.004	0.000	10
_		115.00-132.00 1.5							

Page 1 of 5

Page 2 of 5

From-To (ft)	Description	% sulph	Sample No.	Туре	From (ft)	To (ft)	Au 2/t	Au oz./ton	Length ft.
117.20-117.6	0 quartz veins		1		<u> </u>				
	117.20-117.6	0 1.0							
			195503	sludge	125.00	135.00	0.041	0.001	10
132.50-135.5	0 grey, dolomitized								
			195504	sludge	135.00	145.00	0.009	0.000	10
144.50-145.0	0 fault								
			195505	sludge	145.00	155.00	0.022	0.001	10
145.50-150.0	0 tan-green, dolomitized and sericitized								
152.50-153.0	0 fault				:				
			5583	core	154.00	155.00	0.01	0.000	1.0
154.50-155.0	0 quartz veins								!
155.00-165.0	0 tan-green, dolomitized, potassic metasomatised and sericitized		·						
			195506	sludge	155.00	165.00	0.005	0.000	10
161.00-181.00	Calcareous Arcnite								
	white, thick layering				'				
165.00-171.4	u white, bleached		6504		165.00	171.70	0.01	0.000	
			105507	core	165.00	175.00	0.01	0.000	0.0
			5585	sindle	176.50	175.00	0.003	0.000	3.6
176 50,181 0	0 white bleached			COLE	170.30	160.10	0.01	0.000	
170.20*101.0	o winte, oleacheu		5586	core	180.10	187 70	0.01	0.000	7.6
181.00-193.50	Dolomitic Arenite				100.10	101.10	0.01	0.000	
101100 170100	white, very thin lavering	ļ			ļ				
181.00-189.5	0 grey, dolomitized and chloritized				i				
193.00-193.4	0 fault			1					i
193.50-201.0	0 green, sericitized, dolomitized and potassic metasomatised								
193.50-202.80	Arenite								
	grey, thick layering								
201.00-205.3	0 white, bleached			ļ	¦ [
202.80-205.30	Calcareous Arenite	1							I
	white, thick layering								
			5587	core	202.80	207.30	0.01	0.000	4,5
205.30-207.30	Calcareous Arenite								
	grey								
207.30-212.00	Calcareous Arenite			;					
	white				000.72			0.05-	
			5588	core	207.30	212.00	1.80	0.053	4.7
Page 3 of 5

			%	Sample		From	To	Au	Au	Length
From-To (ft)	Description		sulph	No.	Туре	(ft)	(ft)	g/t	oz./ton	<u>ft,</u>
212.00-215.00	Calcareous Arenite						į			
	grey							,		
				5589	core	212.00	215.00	0.01	0.000	3.0
212.20-212.80	quartz veins									
212.80-214.80	yellow, potassic metasomatised and dolomitized							:		
				195508	sludge	215.00	225.00	0.128	0.004	10
215.00-435.60	Dolomitic Arenite and Lesser Pelite								;	
004 50 505 00	black, thin layering						:		-	
224.50-225.00	fault				· · · · · · · · ·		** * 0.0			
				195510	sludge	225.00	235.00	0.053	0.002	10
225.20-225.50									ļ	
227.00-234.00	yellow, dolomitized and potassic metasomatised									
220.00.222.00				2220	core	227.00	235.00	0.03	0.001	8.0
229.00-233.00	quartz veins	000 00 000 00								
		229.00-233.00	3.0	105511		225.00	246.00	0.010	0.001	
241 50 252 00				195511	studge	235.00	245.00	0.019	0.001	10
241.30-232.00	quartz sumgers			105512	aludaa	245.00	255.00	0.000	0.001	10
				195512	sludge	245.00	255.00	0.029	0.001	10
				195514	sludge	255.00	203.00	0.015	0.000	
272 50-275 00	fault			195514	sinder	205.00	275.00	0.104	0.005	10
272.50-275.00	laun			105515	sludge	275.00	285.00	0.082	0.002	10
281.00-289.00	grey bleached			175515	sinder	275.00	205.001	0.062	0.002	10
201.00 207.00	groy, oronomia	281.00-289.00	10							
284 50-289 00	quartz stringers	201.00 209.00	1.0							
-0.000 -000100	4			195516	sludge	285.00	295.00	0.164	0.005	10
289.00-292.30	Chloritic, Dolomitic Arenite			170010	<u>undego</u>		270.00	0,101	0.005	
	green, thin layering									
291.00-292.00	fault									
				195517	sludge	295.00	305.00	0.192	0.006	10
		305.00-306.00	10.0							
305.00-306.00	fault									
				195518	sludge	305.00	315.00j	0.350	0.010	10
		311.00-313.70	1.0		<u>X</u>			(
311.50-313.50	white, bleached	P					-			
		313.70-321.00	3.0			:	İ	I		
313.70-321.00	fault							i		

Page 4 of 5

From-To (ft) Description sulph No. Type (ft) (gt) orthog ft. 324.20-125.20 fault 195510 sludge 315.00 325.00 0.246 0.007 10 330.00-332.30 fault 195520 sludge 325.00 0.246 0.007 10 330.00-332.30 fault 195522 sludge 325.00 0.616 0.018 10 361.00-385.00 quartz stringers 195522 sludge 335.00 0.032 0.001 10 362.30-385.00 guartz veins 364.00-365.00 1.0				%	Sample		From	То	Au	Au	Length
324 20-325 20 fault 330 40-332.30 fault 331 50-341.50 quartz stringers 340 40-385.00 quartz stringers 361 400-385.00 guartz stringers 362 30-385.00 grey, bleached quartz veins 364.400-365.00 364.400-365.00 guartz veins 364.400-365.00 guartz veins 364.400-365.00 guartz veins 365.400-385.00 guartz veins 364.400-365.00 10 395.40-395.90 guartz veins 395.40-395.90 quartz veins 407.00-411.60 white, bleached 407.00-411.60 white, bleached 407.00-411.60 white, bleached 407.00-411.60 white, bleached 407.00-411.60 fault 415.60-471.50 Graphitic Conglomerate black, thin layering with lesser medium-layered sections 435.60-471.50 Graphitic Conglomerate black, thin layering with lesser medium-layered sections 448.00-489.00 fault 418.00-489.00 fault	From-To (ft)	Description		sulph	No.	Туре	(ft)	(ft)	g/t	oz./ton	ft.
324.20-325.20 fault 330.00-332.30 fault 331.50-341.50 quartz stringers 361.00-385.00 quartz stringers 362.30-365.00 quartz stringers 362.30-365.00 grey, bleached quartz veins 364.00-365.00 364.00-365.00 quartz veins 364.00-365.00 quartz veins 364.00-365.00 quartz veins 364.00-365.00 quartz veins 364.00-365.00 guartz veins 364.00-365.00 guartz veins 364.00-365.00 10 195522 sludge 364.00-365.00 375.00 100 10 195526 sludge 364.00-365.00 385.00 377.00-378.00 quartz veins 395.40-395.90 quartz veins 395.40-395.90 quartz veins 395.40-395.90 quartz veins 424.50-425.00 fault 433.80-434.60 fault 433.80-434.60 fault 435.60-471.50 Graphitic Conglomerate black, thin layering with lesser mediumi-l					195519	sludge	315.00	325.00	0.246	0.007	10
330.00-332.30 fault 331.50-341.50 quartz stringers 331.50-341.50 quartz stringers 361.00-385.00 quartz stringers 362.30-385.00 grey, bleached 364.00-365.00 quartz veins 365.00-378.00 quartz veins 365.00-378.00 quartz veins 377.00-378.00 quartz veins 395.40-395.90 quartz veins 407.00-411.60 white, bleached 403.80-438.60 fault 424.50-425.00 fault 433.80-438.60 fault 435.60-471.50 fault 448.00-449.00 fault 435.60-471.50 fault 448.00-449.00 fault 435.60-471.50 fault 435.60-471.50 fault 435.60-471.50 <td>324.20-325.20</td> <td>fault</td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td>:</td> <td></td>	324.20-325.20	fault								:	
330.00.32.30 fault 331.50-341.50 quartz stringers 331.50-341.50 quartz stringers 361.00-385.00 quartz stringers 362.30-385.00 grey, bleached 964.00-365.00 grey, bleached quartz veins 365.00-385.00 377.00-378.00 quartz veins 395.40-395.90 quartz veins 407.00-411.60 white, bleached 408.30-408.80 quartz veins 424.50-425.00 fault 435.60-471.50 Graphitic Conglomerate black, thin layering with lesser medium-layered sections 435.60-471.50 448.00-449.00 fault 425.50-471.50 fault					195520	sludge	325.00	335.00	0.616	0.018	10
331.50-341.50 quartz stringers 195522 sludge 335.00 0.017 0.003 10 361.00-385.00 quartz stringers 362.30-364.00 1.0 195523 sludge 335.00 0.087 0.003 10 364.00-365.00 grey, bleached 364.00-365.00 1.0 10	330.00-332.30	fault fault					·····		I		
361.00-385.00 quartz stringers 362.30-364.00 195522 shudge 335.00 345.00 0.087 0.003 10 362.30-385.00 grey, bleached 364.00-365.00 10 195522 sludge 355.00 365.00 0.087 0.003 10 364.00-365.00 guartz veins 364.00-365.00 5.0 - </td <td>331.50-341.50</td> <td>quartz stringers</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>	331.50-341.50	quartz stringers									-
361.00-385.00 quartz stringers 362.30-385.00 355.00 355.00 0.087 0.003 10 362.30-385.00 grey, bleached 364.00-365.00 1.0<					195522	sludge	335.00	345.00	0.178	0.005	10
361.00-385.00 quartz stringers 362.30-385.00 grey, bleached 362.30-385.00 grey, bleached 10 10 10 10 10 364.00-365.00 guartz veins 364.00-365.00 5.0 10					195523	sludge	345.00	355.00	0.032	0.001	10
361.00-385.00 quartz stringers 362.30-364.00 1.0 1.0 1.0 1.0 362.30-385.00 grey, bleached quartz veins 364.00-365.00 5.0 195525 sludge 365.00 375.00 0.141 0.004 10 367.00-378.00 quartz veins 365.00-385.00 1.0 195525 sludge 375.00 385.00 0.001 10 377.00-378.00 quartz veins 195526 sludge 375.00 385.00 0.001 10 395.40-395.90 quartz veins 395.40-395.90 50.0 195528 sludge 395.00 0.049 0.001 10 195528 sludge 395.00 395.00 0.049 0.001 10 195529 sludge 395.00 395.00 0.499 0.016 10 407.00-411.60 white, bleached 407.00-411.60 3.0 195529 sludge 405.00 415.00 0.549 0.016 10 424.50-425.00 fault 195531 sludge 435.00 0.450 0.002 10 448.00-471.50					195524	sludge	355.00	365.00	0.087	0.003	10
362.30-385.00 grey, bleached 364.00-365.00 guartz veins 364.00-365.00 5.0 364.00-365.00 5.0 365.00-385.00 195525 state 195526 377.00-378.00 quartz veins 395.40-395.90 quartz veins 395.40-395.90 quartz veins 395.40-395.90 quartz veins 395.40-395.90 quartz veins 407.00-411.60 white, bleached 407.00-411.60 white, bleached 408.30-408.80 quartz veins 424.50-425.00 fault 435.60-471.50 Graphitic Conglomerate black, thin layering with lesser medium-layered section 448.00-449.00 10 448.00-449.00 fault 448.00-449.00 fault	361.00-385.00	quartz stringers									
362.30-385.00 grey, bleached 364.00-365.00 guartz veins 364.00-365.00 5.0 377.00-378.00 quartz veins 377.00-378.00 quartz veins 395.40-395.90 quartz veins 407.00-411.60 white, bleached 407.00-411.60 white, bleached 408.30-408.80 quartz veins 424.50-425.00 fault 435.60-471.50 Graphitic Conglomerate black, thin layering with lesser medium-layered sectiong 435.60-471.50 448.00-449.00 fault 448.00-449.00 fault			362.30-364.00	1.0		1					
364.00-365.00 quartz veins 364.00-365.00 5.0 195525 sludge 365.00 375.00 0.141 0.004 10 367.00-378.00 quartz veins 195526 sludge 375.00 385.00 0.031 0.001 10 377.00-378.00 quartz veins 195526 sludge 385.00 395.00 0.049 0.001 10 395.40-395.90 quartz veins 395.40-395.90 50.0 195528 sludge 395.00 0.495.00 2.171 0.063 10 407.00-411.60 white, bleached 407.00-411.60 3.0 195529 sludge 405.00 415.00 0.549 0.016 10 424.50-425.00 fault 195530 sludge 415.00 425.00 0.052 0.002 10 433.80-434.60 fault 435.60-471.50 Graphitic Conglomerate black, thin layering with lesser medium-layered sections 195533 sludge 445.00 455.00 0.161 0.005 10 448.00-449.00 fault 10 10 10 10 10 10 10 10	362.30-385.00	grey, bleached		5							
364.00-365.00 5.0 195525 sludge 365.00 375.00 0.141 0.004 10 100	364.00-365.00	quartz veins		l					1		
365.00-385.00 10 365.00 375.00 375.00 0.141 0.004 10 377.00-378.00 quartz veins 195526 shudge 375.00 385.00 0.001 10 395.40-395.90 quartz veins 195527 shudge 395.00 405.00 2.171 0.063 10 407.00-411.60 white, bleached 407.00-411.60 3.00 195529 shudge 405.00 415.00 0.549 0.016 10 408.30-408.80 quartz veins 195529 shudge 415.00 415.00 425.00 415.00 0.049 0.001 10 433.80-434.60 fault 195531 sludge 415.00 435.00 0.052 0.002 10 435.60-471.50 Graphitic Conglomerate black, thin layering with lesser medium-layered section 435.60-471.50 1.0 195533 sludge 435.00 445.00 0.161 0.003 10 448.00-449.00 fault 195534 sludge 445.00 455.00 0.161 0.005 10 448.00-449.00 fault 195534 sludge 4			364.00-365.00	5.0							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					195525	sludge	365.00	375.00	0.141	0.004	10
377.00-378.00 quartz veins 395.40-395.90 quartz veins 395.40-395.90 quartz veins 395.40-395.90 quartz veins 407.00-411.60 white, bleached 408.30-408.80 quartz veins 424.50-425.00 fault 435.60-471.50 Graphitic Conglomerate black, thin layering with lesser medium-layered sections 448.00-449.00 fault 435.60-471.50 fault 448.00-449.00 fault 415.00-452.50 fault 424.50-425.00 fault 415.00-452.50 fault			365.00-385.00	1.0							
377.00-378.00 quartz veins 195527 sludge 385.00 395.00 0.049 0.001 101 395.40-395.90 quartz veins 395.40-395.90 50.0 195528 sludge 395.00 405.00 2.171 0.063 101 407.00-411.60 white, bleached 407.00-411.60 3.0 195529 sludge 405.00 415.00 0.549 0.016 10 408.30-408.80 quartz veins 3.0 195530 sludge 415.00 425.00 0.104 0.003 10 424.50-425.00 fault 195531 sludge 425.00 435.00 0.104 0.003 10 435.60-471.50 Graphitic Conglomerate 195533 sludge 435.00 445.00 445.00 0.161 0.005 10 448.00-449.00 fault 10 10 10 10 10 10 10 10 448.00-449.00 fault 10 10 10 10 10 10 10 10 448.00-449.00 fault 10 10 10					195526	sludge	375.00	385.00	0.031	0.001	10.
395.40-395.90 quartz veins 395.40-395.90 quartz veins 407.00-411.60 white, bleached 408.30-408.80 quartz veins 424.50-425.00 fault 433.80-434.60 fault 435.60-471.50 Graphitic Conglomerate black, thin layering with lesser medium-layered section 435.60-471.50 448.00-449.00 fault 415.00-452.50 fault 415.00-452.50 fault 415.00-452.50 fault 415.00-452.50 fault 415.00-452.50 fault 415.00-452.50 fault	377.00-378.00	quartz veins							:		<u> </u>
395.40-395.90 quartz veins 395.40-395.90 50.0 195528 studge 395.00 405.00 2.171 0.063 101 407.00-411.60 white, bleached 407.00-411.60 3.0 195529 studge 405.00 415.00 0.549 0.016 10 408.30-408.80 quartz veins 407.00-411.60 3.0 195530 studge 415.00 425.00 0.104 0.003 10 424.50-425.00 fault 195531 studge 425.00 435.00 0.052 0.002 10 433.80-434.60 fault 195533 studge 435.00 445.00 0.003 10 448.00-449.00 fault 435.60-471.50 1.0 195534 studge 445.00 445.00 0.161 0.005 10 448.00-449.00 fault 195534 studge 445.00 455.00 0.161 0.005 10 10 105525 studge 445.00 455.00 0.161 0.005 10					195527	sludge	385.00	395.00	0.049	0.001	101
395.40-395.90 quartz veins 395.40-395.90 50.0 407.00-411.60 white, bleached 407.00-411.60 white, bleached 407.00-411.60 3.0 408.30-408.80 quartz veins 424.50-425.00 fault 433.80-434.60 fault 435.60-471.50 Graphitic Conglomerate black, thin layering with lesser medium-layered sectiona 448.00-449.00 fault 448.00-449.00 fault 448.00-449.00 fault 448.00-449.00 fault 415.60-471.50 Intervention of the sectiona 415.00-452.50 fault 415.00-452.50 fault					195528	sludge	395.00	405.00	2.171	0.063	10
395.40-395.90 50.0	395.40-395.90	quartz veins			-						
407.00-411.60 white, bleached 407.00-411.60 3.0 195529 shudge 405.00 415.00 0.549 0.016 10 408.30-408.80 quartz veins 3.0 195530 sludge 415.00 425.00 0.104 0.003 10 424.50-425.00 fault 195531 sludge 415.00 425.00 0.104 0.003 10 433.80-434.60 fault 195533 sludge 435.00 445.00 0.104 0.003 10 435.60-471.50 Graphitic Conglomerate black, thin layering with lesser medium-layered sections 435.60-471.50 1.0 195534 sludge 445.00 455.00 0.161 0.005 10 448.00-449.00 fault 195534 sludge 445.00 455.00 0.161 0.005 10 448.00-449.00 fault 105535 sludge 445.00 455.00 0.161 0.005 10 448.00-449.00 fault 195534 sludge 445.00 455.00 0.161 0.005 10			395.40-395.90	50.0							<u> </u>
407.00-411.60 3.0 407.00-411.60 3.0 408.30-408.80 quartz veins 424.50-425.00 fault 433.80-434.60 fault 435.60-471.50 Graphitic Conglomerate black, thin layering with lesser medium-layered sections 435.60-471.50 1.0 448.00-449.00 fault 435.60-471.50 1.0 195534 shudge 445.00 455.00 0 105535 105535 shudge 448.00-449.00 fault 415.00-452.50 fault					195529	sludge	405.00	415.00	0.549	0.016	10
407.00-411.60 3.0 -	407.00-411.60	white, bleached			-					1	
408.30-408.80 quartz veins 424.50-425.00 fault 433.80-434.60 fault 435.60-471.50 Graphitic Conglomerate black, thin layering with lesser medium-layered sections 195533 435.60-471.50 Graphitic Conglomerate black, thin layering with lesser medium-layered sections 195534 435.60-471.50 10 195534 sludge 448.00-449.00 fault 435.60-471.50 10 195534 sludge 448.00-449.00 fault 41955350 fault	400 20 400 00	· · · ·	407.00-411.60	3.0	-						
424.50-425.00 fault 433.80-434.60 fault 435.60-471.50 Graphitic Conglomerate black, thin layering with lesser medium-layered sections 435.60-471.50 Graphitic Conglomerate black, thin layering with lesser medium-layered sections 435.60-471.50 1.0 195534 sludge 445.00 455.00 0.161 0.005 10 448.00-449.00 fault 195534 sludge 445.00 455.00 0.161 0.005 10 195534 sludge 445.00 455.00 0.161 0.005 10	408.30-408.80	quartz veins			105500				<u> </u>		
424.50-425.00 rault 433.80-434.60 fault 435.60-471.50 Graphitic Conglomerate black, thin layering with lesser medium-layered sections 435.60-471.50 1.0 448.00-449.00 fault 448.00-449.00 fault 195534 sludge 445.00 0.161 0.005 10 10 10 10 10 10 10 10 10 10 10 10 10	121 50 125 00				195530	sludge	415.00	425.00	0.104	0.003	10
433.80-434.60 fault 433.80-434.60 fault 435.60-471.50 Graphitic Conglomerate black, thin layering with lesser medium-layered sections 435.60-471.50 1.0 435.60-471.50 1.0 435.60-471.50 1.0 195534 sludge 445.00 0.104 0.003 10 435.60-471.50 1.0 10 10 10 10 448.00-449.00 fault 10 10 10 10 448.00-452.50 fault 10 10 10 10	424.50-425.00	Taur			106621		102.00	125.00			
433.80-434.60 raunt 435.60-471.50 Graphitic Conglomerate black, thin layering with lesser medium-layered sectiona 435.60-471.50 1.0 435.60-471.50 1.0 435.60-471.50 1.0 435.60-471.50 1.0 435.60-471.50 1.0 195534 sludge 448.00-449.00 fault 451.00-452.50 fault	422 80 424 60	£]+			195531	sludge	425.00	435.00	0.052	0.002	10
435.60-471.50 Graphitic Conglomerate black, thin layering with lesser medium-layered sections 435.60-471.50 1.0 195534 sludge 445.00 455.00 0.161 0.005 10 448.00-449.00 fault 451.00-452.50 fault	433.80-434.00	Taun			105522	-1	425.00	110.00	0.104		<u> </u>
435.00-471.30 Graphitic Congromerate black, thin layering with lesser medium-layered sections 435.60-471.50 1.0 435.60-471.50 1.0 435.60-471.50 1.0 435.60-471.50 1.0 435.60-471.50 1.0 435.60-471.50 1.0 435.60-471.50 1.0 105534 sludge 448.00-449.00 fault 451.00-452.50 fault 105525 sludge 455.00 0.000	435 60 471 50	Constitutio Consiloneerste			195533	sludge	435.00	445.00	0.104	0.003	10
435.60-471.50 1.0 435.60-471.50 1.0 435.60-471.50 1.0 195534 sludge 445.00 455.00 0.161 0.005 10 448.00-452.50 fault	455.00-471.50	black, this lowering with losser medium lowered costions						i			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		black, him layering with lesser medium-layered section	126 60 171 60	1.0							
448.00-449.00 fault 451.00-452.50 fault			433.00-471.30	1.0	105524	aludaa	445.00	455.00	0.162	0.007	
451.00-452.50 fault	448 00-449 00	fault			173334	Sludge	443.00	455.00	0.101	0.005	10
		fault								i .	:
L Ι ΙΝΤΑΤΑΤΙ SUMOP Ι ΔΥΥΠΟΙ ΛΑΥΤΟ ΠΟΙ ΤΟ ΤΑΤΑΤΙΟΥ ΤΟ ΤΟ ΤΟ ΤΟ ΤΟ ΤΟ ΤΟ ΤΟ ΤΟ ΤΟ ΤΟ ΤΟ ΤΟ	101100 102.00				195535	sludge	455.00	465.00	0.080	0.002	10

Page 5 of 5

	%	Sample		From	To	Au	Au	Length
From-To (ft) Description	sulph	No.	Туре	(ft)	(ft)	g/t	oz./ton	<u>ft.</u>
		195536	sludge	465.00	475.00	0.089	0.003	10
471.50-545.00 Calcareous Arenite						I		
green, thin layering								
471.50-477.80 white, dolomitized								
	471.50-479.80 2.0				:			
		195537	sludge	475.00	485.00	0.248	0.007	10
479.80-545.00 white, dolomitized						-		
		195538	sludge	485.00	495.00	0.085	0.002	10
		195539	sludge	495.00	505.00	0.160	0.005	10
		195540	sludge	505.00	515.00	0.147	0.004	10
		195541	sludge	515.00	525.00	0.161	0.005	10
		195542	sludge	525.00	535.00	0.202	0.006	10
		195543	sludge	535.00	545.00	0.108	0.003	10
545.00-565.00 Calcarcous, Graphitic Arenite						1		
grey, very thin layering with lesser medium-laye	ered sections							
545.00-551.00 tan-grey, potassic metasomatised and dolomit	ized							
	545.00-551.00 5.0							
549.50-550.70 fault								
	551.00-565.00 trace							:
565.00 End of Hole		:						;

Page 1 of 7

Island Mountain Gold Mines Ltd.

Diamond Drill Log

D.D.H. IGM01-06

Property:	Mosquito Creek		Collar (
Drilling Contractor:	Standard Drilling & Engineering Ltd.		Northing	Easting	Elevation		Depth	Azimuth	Dip
Date Started:		Mine Grid	17006.1 ft.	12034.2 ft.	4586.4 ft.		collar	219°	-45°
Date Completed:		1983 Grid	0+08N	0+02 W					
Final Depth:	635 feet (193.5 m)	Logged b	y:						

			%	Sample		From	То	Au	Au	Length
From-To (ft)	Description		sulph	No.	Туре	(ft)	(ft)	g/t	oz./ton	<u>ft.</u>
0.00-30.00	Overburden									
				195050	sludge	0.00	35.00	0.031	0.001	35
30.00-63.00	Arenite									
	thick layering						i			
30.00-45.00	fault					i				
30.00-63.00	green, sericitized, dolomitized and potassic metasomatised	E L				1				
		30.00-63.00	trace							j
				195551	sludge	35.00	45.00	0.003	0.000	10
			[195544	sludge	45.00	55.00	0.010	0.000	10
47.90-49.00	quartz veins									
				5612	core	55.00	60.00	0.01	0.000	5.0
		ļ		195545	sludge	55.00	65.00	0.011	0.000	10
57.50-60.00	fault									
63.00-90.70	Dolomitic Arenite and Lesser Pelite		1							
	grey, thick layering							i		1
		63.00-90.70	<]					i		
				195546	sludge	65.00	75.00	0.002	0.000	10
68.50-70.50	fault									
				195547	sludge	75.00	85.00	0.106	0.003	10
79.00-79.50	quartz veins				-					
				195548	sludge	85.00	95.00	0.035	0.001	10
		88.00-90.70	1.0							
88.00-95.20	quartz stringers									

1 HE C 2 U/ /	Pag	e	2	of	7
---------------	-----	---	---	----	---

			%	Sample		From	То	Au	Au	Length
Fro <u>m-To (ft)</u> I	Description		sulph	No.	Туре	(ft)	(ft)	g/t	oz./ton	<u>ft.</u>
90.70-197.00	Dolomitic Arenite and Lesser Pelite									
	black, thick layering									
		90.70-197.00	1.0							;
91.40-92.00	fault									
				5613	core	92.00	96.00	0.00	0.000	4.0
				195549	sludge	95.00	105.00	0.057	0.002	10
				195550	sludge	105.00	115.00	0.016	0.000	10
				195001	sludge	115.00	125.00	0.101	0.003	10
116.40-117.80	quartz stringers									ļ
123.00-125.10	quartz stringers									
		123.00-125.10	3.0							
				5614	core	123.00	125,10	0.06	0.002	2.1
				195002	sludge	125.00	135.00	0.146	0.004	10
				5615	core	125.10	131.00	0.02	0.001	5.9
129.60-130.50	grey, bleached						ļ			
		129.60-136.20	2.0					1		
130.50-131.00	quartz veins									
				5616	core	131.00	135.00	0.00	0.000	4.0
132.00-136.20	grey, bleached									I
132.50-134.70	quartz veins			105000	<u> </u>	105.00	145.00	0.000	0.001	10
				195003	sludge	135.00	145.00	0.022	0.001	10
138.60-139.00	fault									
144.20-144.50	quartz veins			105004		145 00	155.00	0.000	0.001	10
				195004	sludge	145.00	155.00	0.028	0.001	10
			1	195005	sludge	155.00	165.00	0.450	0.013	10
162.60-163.10	quartz veins									
163.50-173.70	green, sericitized and dolomitized	1/2 60 100 00		4					i I	
		163.50-173.70	trace	105007	-1	1/6 00	175.00	0.000	A 000	
				195000	sludge	105.00	1/5.00	0.280	0.008	10
	A 1.			195007	sinage	175.00	183.00	0.002	0.000	10
176.00-182.00	fault			105008		195.00	105.00	0.426	0.012	10
	and the state			193006	siuuge	165.00	195.00	0.420	0.012	10
191.50-197.00	grey, dolomitized	101 50 107 00	20	-						
100 50 100 00	Calconous twonits and Larger Bality	191.30-197.00	2.0	4						
192,50-193.00	carcous Arenne and Cesser Felle				-				ļ	
104 00 107 00	grey, mick rayering									
194.00-197.00	Taun		<u> </u>	J		1				

•

Page 3 of 7

			%	Sample		From	То	Au	Au	Length
From-To (ft)	Description		sulph	No.	Type	(ft)	(ft)	g/t	oz./ton	ft.
				195009	sludge	195.00	202.00	0.004	0.000	7
197.00-253.20	Calcareous Arenite and Lesser Pelite									
	grey, thick layering									
197.00-199.30	Calcareous Arenite						1			
	white, thick layering						1	1		1
		197.00-253.20	trace							i
199.30-204.80) grey, dolomitized									
				195010	sludge	202.00	215.00	0.002	0.000	13
204.80-211.60	Calcareous Arenite									
	white, very thin layering									
211.10-211.50) fault									i.
211.60-214.50) grey, dolomitized						:			÷
212.60-213.60) fault						1	ĺ	i	
214.50-215.10	Calcareous Arenite						1		1	
	white, thick layering									
				195011	sludge	215.00	225.00	0.022	0.001	10
215.10-220.70) grey, dolomitized									
220.70-229.40) Calcareous Arenite									
	white, very thin layering									
				195012	sludge	225.00	235.00	0.003	0.000	10
229.40-241.40) grey, dolomitized, potassic metasomatised and sericitiz	zed								
229.40-245.00) Arenite								!	
	thick layering									
		229.40-245.00	trace							
				5617	core	231.50	235.00	0.00	0.000	3.5
				5618	1/4 core	231.50	235.00	0.00	0.000	<u></u>
				195013	sludge	235.00	245.00	0.002	0.000	10
241.40-245.00) green, sericitized and dolomitized									
		245.00-245.10	5.0							
245.00-245.50) Calcareous Arenite						!			
	white, thick layering									
245.00-247.00) grey, dolomitized			100014		245.02	255.00	0.004	0.000	
				192014	siudge	245.00	255.00	0.004	0.000	10
247.00-253.20) Calcareous Arenite								1	
	white, thick layering	1		1						

Page	4 o	f 7	,
------	-----	-----	---

From-To (ft)	Description		% sulnh	Sample No.	Type	From (作)	To (ft)	Au ø/t	Au oz /ton	Length ft
253.20-462.00	Dolomitic Arenite	· · · · · · · · · · · · · · · · · · ·			1				02,, ton	
	black, medium layering									
253.20-255.0	0 grey, dolomitized					-				
		253.20-462.00	<1				-			
				195015	sludge	255.00	265.00	0.029	0.001	10
				5619	core	260.30	269.00	0.05	0.001	8.7
260.30-275.0	0 quartz stringers									
		260.30-275.00	3.0							
				195016	sludge	265.00	275.00	4.117	0.120	10
268.60-281.0	0 fault									
				5620	core	269.00	275.00	0.70	0.020	6.0
269.00-286.0	0 grey, bleached				 ·			!		1
				195017	sludge	275.00	285.00	1.099	0.032	10
283.40-284.4	0 fault				 					·
				195018	sludge	285.00	295.00	0.154	0.004	10
286.00-289.5	0 green, sericitized									1
		286.00-289.50	1.0		· · · · · · · · · · · · · · · · · · ·					·
				5621	core	286.00	289.50	0.00	0.000	3.5
000 c0 00c c	o 11 1 1			5622	core	289.50	293.00	0.02	0.001	3.5
289.50-295.5	0 grey, bleached		0.0							
		289.50-295.50	3.0	106010		205.00	205.00	0.200	- 0.000	10
				195019	siuage	295.00	305.00	0.208	0.006	
		208 00 202 00	2.0	3023	core	297.00	297.00	0.05	0.001	0.0
208 50 202 0	0 averta stringere	298.00-302.00	5.0							
278.00-302.0	o quartz an ingers			5624	core	301.00	305.00	0.12	0.004	4.0
				105024	eludra	305.00	315.00	0.12	0.004	10.0
309 00-312 0	0 quartz stringers			193020	Since	505.00	515.00	0.20	0.000	10.0
507.00-512.0	o quintz sh ingers	309 00-312 00	10							:
				195021	sludge	315.00	325.00	0.03	0.001	10.0
				195022	sludge	325.00	335.00	0.00	0.000	10.0
325.40-334.3	0 white, dolomitized			172022	biddge	111.00			0.000	
	,	325.40-334.30	1.0				:		i	
		ļ.		5625	соте	325.40	334.30	0.00	0.000	8.9
				195023	sludge	335.00	345.00	0.03	0.001	10.0
		1		5626	core	343.00	345.00	0.05	0.001	2.0
343.00-351.0	0 white, bleached									

		%	6	Sample		From	То	Au	Au	Length
From-To (ft)	Description	sul	lph	No.	Туре	(ft)	<u>(#)</u>	g/t	oz./ton	
		343.00-351.00 2.	.0							
		1	Ļ	5627	core	345.00	351.00	0.00	0.000	6.0
				195024	sludge	345.00	365.00	0.01	0.000	20.0
		360.00-363.00	.0							
360.00-370.00	0 grey, bleached									
363.00-363.80) fault					<u> </u>			i	
				195025	sludge	365.00	375.00	0.01	0.000	10.0
				195026	sludge	375.00	385.00	0.00	0.000	10.0
			L	195027	sludge	385.00	<u>395.00</u>	0.02	0.001	10.0
393.00-416.00	0 grey, bleached	1								
				195028	sludge	395.00	405.00	0.01	0.000	10.0
395.00-421.50	0 quartz stringers				:				Ī	-
		401.00-416.00 2.	.0			!				
				195029	sludge	405.00 ₁	415.00	0.14	0.004	10.0
				195030	sludge	415.00	425.00	0.30	0.009	10.0
				195031	sludge	425.00	435.00	1.816	0.053	10
				5628	core	430.00	433.50	0.52	0.015	3.5
430.00-438.0	0 white, bleached									
		430.00-438.00 2.	.0						1	
				5629	core	433.50	438.00	0.06	0.002	4.5
			Γ	195032	sludge	435.00	445.00	0.28	0.008	10.0
				5630	core	444.40	449.50	0.50	0.015	5.1
				195033	sludge	445.00	455.00	0.24	0.007	10.0
446.50-449.50	0 quartz veins		Γ						1	
			Ī	195034	sludge	455.00	465.00	0.42	0.012	10.0
455,20-457.20	0 quartz veins		Γ							
460.50-462.0	0 quartz stringers								1	
462.00-545.00	Chloritic Arenite				Ì			i	1	
	green, thick layering									
462.00-465.0	0 fault					1			:	
462.00-474.00	0 fault	1						Í		
		462.00-545.00 tra	ace				1			
			i	5631	core	464.00	471,00	0.08	0.002	7.0
465.00-466.3	0 green, sericitized and dolomitized		F							
		ļ	- 1	195035	sludge	465.001	475.00	0.281	0.0081	10.0
466.00-467.5	0 fault		ſ							

white, potassic metasomatised and dolomitized

D.D.H. IGMG01-06

466.30-474.00

Page 6 of 7

F

°.¶

.

.

• • • • •

D T (6)			%	Sample		From	То	Au	Au	Length
From-10 (ft)	Description		sulph	No,	Туре	<u>(ft)</u>	(ft)	g/t	oz./ton	ſÌ.
		466.30-474.00	3.0							
170 60 171 0				5632	core	471.00	474.00	0.00	0.000	3.0
472.50-474.0	l) lault								· · · · · · · · · · · · · · · · · · ·	
474.00-485.0	u green, dolomitized					· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · ·	
				195036	sludge	475.00	485.00	0.33	0.010	10.0
				195037	sludge	485.00	495.00	0.09	0.003	10.0
501.00 514 0	0 known blanchad			195038	sludge	495.00	505.00	0.03	0.001	10.0
301.00-310.00	brown, bleached									1
	brown, bleached									
512 00 517 50				195039	sludge	505.00	515.00	0.10	0.003	10.0
515.00-515.50	guartz veins									
510 30 510 70				195040	sludge	515.00	525.00	0.16	0.005	10.0
.516.20-516.70	J calche veins									
				195041	sludge	525.00	535.00	0.08	0.002	10.0
539 00-545 00) gray potassic metacomatical and delemitized			195042	sludge	535.00	545.00	0.07	0.002	10.0
JJJ.00-545.00	grey, potassie metasomansed and dotomnized	570 00 E4E 00	2.0		:			Ì	İ	
		539.00-545.00	3.0	6624		600.00				
545.00-548.50	Graphitic Pelite			3634	core	539.00	545.00	0.00	0.000	6.0
	black very thin layering									
	sidek, very till løyering	545 00 548 50	1.0							
		545.00-546.50	1.0	5625		545.00	549.50	0.01		
				1050/2	cludge	545.00	555.00	0.01	0.000	3.5
		548 50-533 50	2.0	195045	Siduge	545.00		0.051	0.001	10.0
548.50-609.00	Calcareous Arenite and Pelife	040.00-000.00								1
	grey, very thin layering with lesser thin-layered sections		İ							
548.50-553.50	Calcareous, Graphitic Pelite and Lesser Arenite					1		1	1	1
	black, very thin layering							İ		
553.50-585.50) Calcareous Arenite				1	Ì				!
	grey, thick layering								!	
			ļ	195044	sludge	555.00	565.00	0.04	0.001	10.0
558.00-559.50) calcite veins		ł	175044	Judgo	555.00	505.00	0.04	0.001	10.0
564.10-565.00) green, sericitized									:
	-	564.10-572.80	trace		Į	ļ		i	i	!
				195045	sludge	565.00	575.00	0.19	0.005	10.0
568.70-572.80) green, sericitized)- 						0.000	10.0
572.80-580.00	grey, potassic metasomatised and dolomitized						I.			

Page 7 of 7

			%	Sample		From	To	Au	Au	Length
From-To (ft)	Description		sulph	No.	Туре	(ft)	_(ft)	g/t _	oz./ton	ft.
		572.80-580.00	2.0							
				195046	sludge	575.00	585.00	0.08	0.002	10.0
				195047	sludge	585.00	595.00	0.16	0.005	10.0
585.50-590.0	60 quartz stringers					1				
585.50-590.8	80 grey, potassic metasomatised and dolomitized								-	
		585.50-590.80	3.0			1				
				5636	core	585.50	590.80	0.00	0.000	5.3
585.50-609.0	00 Calcareous, Graphitic Pelite and Lesser Arenite									
	black, very thin layering				İ					
590.60-600.0	00 calcite stringers									
				5637	core	590.80	595.00	0.00	0.000	4.2
		590. 80-6 04.30	2.0							
				5638	core	595.00	600.00	0.00	0.000	5.0
			ĺ	195048	sludge	595.00	605.00	0.20	0.006	10.0
				5639	core	600.00	604.30	0.00	0.000	4.3
604.30-609.0	00 grey, potassic metasomatised and dolomitized									
		604.30-609.00	2.0							
				5640	core	604.30	609.00	0.00	0.000	4.7
				195049	sludge	605.00	615.00	0.17	0.005	10.0
609.00-635.00	Dolomitic Arenite and Lesser Pelite									
	green, medium layering with lesser thin-layered sections									
609.00-635.0	00 green, sericitized and dolomitized		-				1			1
		609.00-635.00	trace							
611.00-611.4	40 fault							ļ	1	:
627.70 - 629.5	50 quartz veins									
		627.70-629.50	<1		Ì				ļ	
627.70-632.8	80 quartz stringers									
				5641	core	627.70	632.80	0.03	0.001	5.1
632.30-632.8	80 quartz veins			1						
			İ			[į	į.	
635.00	End of Hole					_				

.

Island Mountain Gold Mines Ltd.

*

Diamond Drill Log

D.D.H. IGM01-07

7

Property:	Mosquito Creek	Collar Grid Coordinates							
Drilling Contractor:	Standard Drilling & Engineering Ltd.		Northing	Easting	Elevation		Depth	Azimuth	Dip
Date Started:		Mine Grid	17151.1 ft.	11896.7 ft,	4569.5 ft.		collar	221°	-45°
Date Completed:	July 14, 2001	1983 Grid	0+35N	2+00 W					
Final Depth:	670 feet (204.2 m)	Logged b	y:		iu		<u> </u>		ب

		%	Sample		From	Τσ	Au	Au	Length
From-To (ft)	Description	sulph	No.	Туре	_(ft)	(ft)	g/t	oz./ton	ft.
0.00-16.00	Overhurden					··		 ,	
	12.00-39.70	<1					1		
			5642	core	16.00	20.00	0.01	0.000	4.0
16.00-27,50	Calcarcous Arenite								
16.00-20.00	red-brown, oxidized								
			5643	core	20.00	27.50	0.04	0.001	7.5
			5644	core	27.50	30.00	0.01	0.000	2.5
27.50-74.50	Arenite and Lesser Pelite								
27.50-74.50	tan, dolomitized						ł		
29.00-29.20	quartz veins		L				ļ	ļ	
			5645	core	30.00	33.50	0.01	0.000	3.5
			5646	core	33.50	40.00	0.01	0.000	6.5
39.70-76.40	1% sulphides - pyrite and lesser galena	1.0							
43.50-65.00	Feldspathic Grit	i							i
43.50-65.00	green, sericitized, dolomitized and potassic metasomatised						-	:	;
			5647	core	50.00	55.00	0.01	0.000	5.0
			5648	1/4 core	50.00	55.00	0.01	0.000	5.0
50.70-51.50	quartz veins								
62.40-63.80	fault	ļ	i						
73.90-76.90	quartz stringers						I		;
74.50-190.50	Dolomitic Arenite		ļ		ļ	ĺ	i		
74.50-190.50	weak, sericitized					1			
76.40-98.20	3% sulphides - pyrite and minor pyrrhotite	3.0	!				I	Ì	
80.50-81.70	fault			i			i		

Page 1 of 6

7 1

· · · · · ·

٦

``

D.D.H. IGMG01-07

Page 2 of 6

			%	Sample		From	То	Au	Au	Length
From-To (ft) D	Description		sulph	No.	Туре	(ft)	(ft)	g/t	oz./ton	ft.
80.80-85.50	fault		:	ļ						
82.30-82.50	fault									
83.30-83.60	fault									
85.00-85.50	fault									
92.90-93.20	fault									
98.00-123.00	dolomitized and sericitized									
		98.20-124.50	trace							
				195552	sludge	110.00	120.00	0.01	0.000	10.0
				195553	sludge	120.00	130.00	0.01	0.000	10.0
		124.50-199.90	trace							
				195554	sludge	130.00	140.00	0.01	0.000	10.0
		132.40-157.10	1.0							
				195555	sludge	140.00	150.00	0.00	0.000	10.0
143.10-150.00	fault									
				195556	sludge	150.00	160.00	0.01	0.000	10.0
				195557	sludge	160.00	170.00	0.02	0.000	10.0
170.00-173.00	fault			-						
				195558	sludge	170.00	180.00	0.00	0.000	10.0
				195559	sludge	180.00	190.00	0.00	0.000	10.0
				195560	sludge	190.00	200.00	0.00	0.000	10.0
		190.40-191.40	3.0							
190.50-216.70 C	alcareous, Graphitic Arenite									
194.80-200.00	fault									
		199.20-218.20	1.0		:					
199.70-200.00	quartz stringers									
				5649	core	200.00	205.00	0.01	0.000	5.0
				195561	sludge	200.00	210.00	0.01	0.000	10.0
200.00-216.70	bleached									
				·····		201.30	204.10			
				5650	core	205.00	210.00	0.01	0.000	5.0
210.00-216.70	grey, white, dolomitized									
				5651	core	210.00	216.70	0.01	0.000	6.7
				195562	sludge	210.00	220.00	0.00	0.000	10.0
210.80-211.50	quartz veins						<u> </u>			
91/ #5 /#5 /s ~~				5652	core	216.70	220.80	0.02	0.001	4.1
216.70-478.40 D	Polomitic Arenite					-		:		
217.20-220.90	quartz veins							i	:	

D.D.	.H .	IGM	IG01-	-07
------	-------------	-----	-------	-----

Page 3 of 6

			%	Sample		From	To	Au	Au	Length
From-To (ft)	Description		sulph	No.	Туре	(ft)	(ft)	g/t	oz./ton	ft.
				195563	sludge	220.00	230.00	0.01	0.000	10.0
				5653	core	220.80	227.00	0.01	0.000	6.2
		220.90-230.00	5.0					-		
227.00-230.0	0 quartz veins									
				5654	core	227.00	230.00	0.01	0.000	3.0
230.00-240.0	0 grey-white, bleached					1				
230.00-241.3	0 quartz stringers									
		230.00-283.00	2.0							
				195565	sludge	240.00	250.00	0.03	0.001	10.0
244.00-251.0	0 quartz veins									
				5655	core	244.00	251.00	0.01	0.000	7.0
				195566	sludge	250.00	260.00	0.08	0.002	10.0
	6 C L			5656	core	251.00	254.50	0.04	0.001	3.5
252.20-253.8	0 fault									
252.30-252.8	0 quartz veins					:				:
256.00-287.0	0 grey-white, bleached									
				195567	sludge	260.00	270.00	0.05	0.001	10.0
14 J 00 201 A				5657	core	261.00	266.00	0.02	0.001	5.0
261.00-291.0	0 quartz stringers									
202.00-204.0	0 laun			5750		266.00	000.00			
		268 00 272 20	2.0	2028	core	266.00	270.00	0.16	0.005	4.0
		208.90-275.20	5.0	5450		270.00	225.00	0.10	0.004	
				105569	core	270.00	275.00	0.19	0.006	5.0
273 00-275 0	0 quartz veins			195506	sludge	270.00	280.00	0.62	0.018	10.0
210.00 270.0	· quare roms	•		5660	core	275.00	280.00	0.12	0.004	5.0
275 60-276 6	0 quartz veins			5000	COIC	275.00	200.001	0.13	0.004	5.0
277.70-281.6	0 5% sulphides - pyrrhotite and lesser pyrite	•	50				İ			
279.30-280.0	0 quartz veins	·								
	1			5661	соте	280.00	285.00	0.12	0.004	5.0
				195569	sludge	280.00	200.00	0.12	0.004	10.0
281.40-282.9	0 quartz veins					100.00			0.022	10.0
281.80-283.6	0 fault						1			
		283.00-476.00	1.0			İ		ļ		I
		Ì		5662	core	285.00	291.00	0.38	0.011	6.0
		286.90-288.00	4.0							
287.30-287.8	0 quartz veins									i

D.D.H. IGMG01-07

Page 4 of 6

		%	Sample		From	To	Au	Au	Length
From-To (ft)	Description	sulph	No.	Туре	(ft)	(ft)	g/t	oz./ton	ft.
		1	195570	sludge	290.00	300.00	0.15	0.004	10.0
			195571	sludge	300.00	310.00	0.11	0.003	10.0
	306.10-309.00	5.0							
			195572	sludge	310.00	320.00	0.15	0.004	10.0
			195573	sludge	320.00	330.00	0.03	0.001	10.0
323,50-324,50) quartz veins								
			195574	sludge	330.00	340.00	0.08	0.002	10.0
343.00-343.50) fault								
			195577	sludge	350.00	360.00	0.02	0.001	10.0
350.70-354.50) grey-tan, dolomitized and sericitized	1							
			5664	core	350.70	354.50	0.01	0.000	3.8
			195578	sludge	360.00	370.00	0.06	0.002	10.0
364.00-367.00) quartz stringers								
			195579	sludge	370.00	380.00	0.26	0.007	10.0
377,80-381.20	tan-green, dolomitized and sericitized								
			5665	core	377.80	381.20	0.17	0.005	3.4
			195580	sludge	380.00	390.00	0.20	0.006	10.0
101 DA 101 A			5666	core	381.20	385.30	0.13	0.004	4.1
301.20-421.00	a quartz stringers					!		}	
383.00-383.00									
			5667	core	385.30	390.00	0.03	0.001	4.7
			106681	core	390.00	396.00	0.01	0.000	6.0
301 00-301 50) guartz voins	Ì	190001	siuage	390.00	400.00	0.10	0.003	10.0
395.00-410.00) weak bleached notacsic metasometised and sericitized								
396 00-397 10) quartz veins								
			5660	0080	206.00	400.00	0.01	0.000	
398 40-399 40) quartz veins			COIC	390.00	400.00	0.01	0.000	4.0
400.00-401.00) fault								
			5670	core	400.00	405.00	0.01	0.000	5.0
			195582	shudae	400.00	410.00	0.01	0.000	5.0
400.00-422.00) fault		175502	sindge	400.00	410.00	0.22	0.000	10.0
401.00-406.50) quartz veins								
	. 402.80-418.20	3.0					ļ	:	
			5671	core	405.00	410.00	0.02	0.001	50
410.00-410.80) fault					110.00	0.02	0.001	5.0
			195583	sludge	410.00	420.00	0.29	0.008	10.0

Page 5 of 6

		%	Sample		From	То	Au	Au	Length
From-To (ft)	Description	sulph	No.	Туре	(ft)	(ft)	g/t	oz./ton	ft.
			5672	core	410.00	454.00	0.05	0.001	44.0
412.50-414.00) fault								
414.00-421.00) quartz veins								
			5673	core	414.00	421.00	2.59	0.076	7.0
	416.	90-417.60 20.0		i			I		!
417.00-422.00) fault							1	!
420.00 427.0		ļ	195584	sludge	420.00	430.00	1.204	0.035	10
430.00-437.00	quartz stringers	ĺ							
440 EO 470 E			195585	sludge	430.00	440.00	0.56	0.016	10.0
448.20-408.20	o quartz stringers								:
450.00-450.00	j raut			· · · · · · · · · · · · · · · · · · ·					
			195587	sludge	450.00	460.00	0.33	0.010	10.0
452 20 465 20			5674	core	452.30	460.00	0.49	0.014	7.7
452.50-405.20									
		1	5675	core	460.00	465.20	1.69	0.049	5.2
			195588	sludge	460.00	470.00	1.936	0.056	<u>10</u>
471.00-473.00	Craphitic Pelite		193389	sludge	470.00	480.00	0.64	0.019	10.0
473.00-476.00	Graphitic Conglomerate					Ì	ļ		
478.40-568.00	Chloritic, Calcareous Arenite								1
480.00-482.00	fault			:					
			195591	sludge	480.001	490.00	0.00	0.026	10.0
			195592	sludge	490.00	500.00	0.90	0.020	10.0
			195593	sludge	500.00	510.00	1 306	0.024	10.0
			195594	sludge	510.00	520.00	0.16	0.041	10 01
516.00-542.00	Biotitic Arenite					020100	0.10	0.003	10,0
		•	195595	sludge	520.00	530.00	0.23	0.007	10.0
		. Ì	195596	sludge	530.00	540.00	0.17	0.005	10.0
			195597	sludge	540.00	550.00	0.37	0.011	10.0
548.40-549.50	fault			:					
			195598	sludge	550.00	560.00	0.15	0.004	10.0
			5676	core	560.00	565.00	0.03	0.001	5.0
560.00-568.00	grey, dolomitized and potassic metasomatised								
			195599	sludge	560.00	570.00	0.16	0.005	10.0
			5677	core	565.00	568.00	0.02	0.001	3.0

D		%	Sample		From	То	Au	Au	Length
From-10 (It)	Description	<u>sulph</u>	No.	Туре	(ft)	(ft)	g/t	oz./ton	ft.
568.00-653.50	Calcareous Arenite								
568.00-572.00) Graphitic, Calcareous Pelite								
			5678	core	568.00	575.00	0.01	0.000	7.0
569.50-570.00) fault								
			195600	sludge	570.00	580.00	0.07	0.002	10.0
			5679	core	575.00	580.00	0.01	0.000	5.0
50 4 00 50 4 4		i i	195101	słudge	580.00	590.00	0.13	0.004	10.0
584.80-594.60) green, dolomitized, sericitized and potassic metasomatised								
			195102	sludge	590.00	600.00	0.33	0.010	10.0
			195103	sludge	600.00	610.00	0.13	0.004	10.0
605.00-608.00	grey, dolomitized								
<			195104	sludge	610.00	620.00	0.06	0.002	10.0
617.80-642.00	Calcareous, Graphitic Arenite and Lesser Pelite								
			195105	sludge	620.00	630.00	0.06	0.002	10.0
620.00-630.20	calcite stringers								
			195106	sludge	630.00	640.00	0.19	0.006	10.0
630.20-635.40	grey, dolomítized	1 (······································
			5680	core	630.20	635.40	0.01	0.000	5.2
			5681	core	635.40	640.00	0.01	0.000	4.6
			5682	core	640.00	645.00	0.02	0.001	5.0
			195107	sludge	640.00	650.00	0.07	0.002	10.0
642.00-653.50	Dolomitic								
642.00-653.50	grey, dolomitized and potassic metasomatised	4						!	
		[5683	core	645.00	650.00	0.01	0.000	5.0
			5685	core	650.00	653.70	0.01	0.000	3.7
			195108	sludge	650.00	660.00	0.05	0.001	10.0
650.00-665.00	quartz stringers							·	
653.50-670.00	Arenite and Lesser Pelite								
		ſ	5686	core	653.70	660.00	0.01	0.000	6.3
		[5687	соге	660.00	665.00	1.39	0.041	5.0
		[195109	sludge	660.00	670.00	0.51	0.015	10.0
662.00 - 663.50	quartz veins								
			5688	core	665.00	670.00	0.01	0.000	5.0
666,60-667,60	quartz veins		1						
670.00	End of Hole			1			1		

Appendix C Drill Core and Sludge Sample Analyses

.

۰.

÷---

s. ..

. Bern

-

--

,---

h. -

.....

- مع الم

ANALYTICAL LABORATORIES LTD. (ISO 9902 Accredited Co.) ALTER

UNE TALK ASSAV. STERUTARICATE

14 215

Island Mountain Gold Mines Ltd. File # A101171 1.1.1

SAMPLE#	Au** S gm/mt	ample gm	
1921 1922 1923 1924 1925	<.01 <.01 <.01 <.01 <.01 <.01	29.2 29.2 29.2 29.2 29.2 29.2	
1926 1927 1928 1929 1930	<.01 <.01 .07 .20 1.62	29.2 299.2 299.2 299.2 299.2 299.2 299.2	
RE 1930 RRE 1930 1931 PULP 1975 1976	1.63 1.63 1.65 <.01 .01	29.2 29.2 5.0 29.2 29.2	
1977 1978 1979 1980 1981	<.01 <.01 <.01 <.01 <.01 .02	29.2 29.2 29.2 29.2 29.2 29.2	
1982 1983 1984 1985 1985	.02 <.01 <.01 <.01 <.01 <.01	29.2 29.2 29.2 29.2 29.2 29.2 29.2	
RE 1986 RRE 1986 1987 1988 1989	<.01 <.01 <.01 <.01 <.01 <.01	29.2 29.2 29.2 29.2 29.2 29.2	
1990 1991 1992 PULP 1993 STANDARD AU-1	<.01 <.01 6.65 .32 3.40	29.2 29.2 7.3 29.2 29.2 29.2	

GROUP 6 - PRECIOUS METALS BY FIRE ASSAY FROM 1 A.T. SAMPLE, ANALYSIS BY ICP-ES.

MA 15/01 SIGNED BY

- SAMPLE TYPE: CORE R150 60C

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns

DATE REPORT MAILED: DATE RECEIVED: MAY 1 2001

D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

5.4

Page 1

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Dats 🖓 🖓 FA

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Recredited Co.)

852 8. HASTINGS BUIL VARIONVER AC. VGA 125 PHONE (604) 253-3158 FAX (604) 251-1718

ta ann an the second second second second second second second second second second second second second second

Island Mountain Gold Mines Ltd. PROJECT Island Mountain File # A101661 Box 247, Wells BC VOR 280 Submitted by: R. Hall

ASEAY CERTIFICATE

6

SAMPLE#	Au** gm/mt
 5501 5502 5503 5504 5504 5505	<.01 <.01 .01 .15 <.01
5506 5507 5508 5509 5510	.18 .01 .02 <.01 <.01
5511 5512 5513 5514 5515	.16 .02 .02 .02 <.01
RE 5515 RRE 5515 5516 5517 5518	<.01 <.01 .36 .04 .01
5519 5520 5521 5522 5523	<.01 .83 <.01 1.55 .05
5524 5525 5526 5527 5528	.03 .03 1.05 .14 .06
5529 5530 5531 5532 PULP 5532 PULP STANDARD AU-1	.02 .08 .09 1.66 3.40
GROUP 6 - PRECIOUS METALS BY FIRE ASSAY FROM 1 - SAMPLE TYPE: CORE R150 60C Samples beginning 'RE' are Reruns and 'RRE' are	A.T. SAMPLE, ANALYSIS BY 1CP-ES.
DATE RECEIVED: JUN 12 2001 DATE REPORT MAILED: JUN 27/01 SIG	NED BY.C.: J. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS
All results are considered the confidential property of the client. Acme assumes the lie	bilities for actual cost of the analysis only. Data A FA 1/1-9

			ā.
ACME ANALYTICAL LABORATORIES LTD. 852 E. HA (ISO 9002 Accredited Co.)	STINCS SIL CARLON		
	ASSAL CBRIDE	AA	
Island Mountain Gold Mines Box 244	Wells BC VOIC 2RO SLAM	nered by: Ken Lord	
	SAMPLE#	Au**	
	5568	01	
	5569		:
	5571	<.01 <.01	
	5573	<.01	
	5574 5575	<.01 <.01	
	5576 RE 5576	<.01 <.01	Ì
	<u>RRE</u> 5576	<.01	
	5577		
	5579	.01	
	5581 PULP STANDARD AU-1	1.71 3.36	
	TALS BY FIRE ASSAY FROM 1	A.T. SAMPLE, ANALYSIS BY ICP-ES.	
- SAMPLE TYPE: CORE R	150 60C / are Reruns and 'RRE' are	e Reject Reruns.	
	\wedge \cdot \cdot	C.T_	
DATE RECEIVED: JUN 15 2001 DATE REPORT MAILED:	June 26/01 SIG	INED BY	
C	/ /		
· ·			
and the state of t	int tom second the lis	abilities for actual cost of the analysis only. Data KAYAVS	

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysia only.

852 B. HASTEING ST. VANCOUVEN MC **b4)**1 E GL JE3 L JEA 1711 No XILLO ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) ASSAN TERMITECATE Ł Island Mountain Gold Mines Ltd. PROJECT Island Mountain File # A101751 Page 1 Box 247, Wells BC VOK 2RD Stront time by: Ken Lord SAMPLE# Au** gm/mt 1.02 5533 5534 .02 .07 5535 5536 5537 <.01 <.01 .39 5538 <.01 5539 <:01 5540 5541 .37 5542 5543 5544 <.01 <.01 RE 5544 <.01 RRE 5544 5545 <.01 <.01 5546 .02 .08 5547 .10 .53 .56 5548 5549 5550 .60 5551 5552 5553 5554 1.01 106 .31 .22 5555 .05 5556 ŘĚ 5556 RRE 5556 5557 .05 .05 .17 .66 **ŠŠŠ**8 .07 5559 5560 , ŎŹ .04 5561 .05 5562 3.45 STANDARD AU-1 GROUP 6 - PRECIOUS NETALS BY FIRE ASSAY FROM 1 A.T. SAMPLE, ANALYSIS BY ICP-ES. - SAMPLE TYPE: CORE R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED:	JUN 19 2001	DATE REPORT MAILED: July 28 /01	SIGNED BY C. J	IFIED B.C. ASSAYERS
		and the summer of the eldent from proceeds the	a lightlifter for actual cost of the analysis only.	Data AFA

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Γ PHONE (604) 253-3158 FAX (604) 253-1716 152 B HAETTINGE ST. VANCOUVE ST. V64 LES ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) ASEAN OFFICIER CAUSE Island Mountain Gold Mines Ltd. PROJECT Island Mountain File # A101752 Box 247, Hells BC VDK 2RD SLOPE Thed by: Ken Lord SAMPLE# Au** gm/mt .05 .09 .30 6134 6135 6136 6137 06 RE 6137 .04 GROUP 6 - PRECIOUS METALS BY FIRE ASSAY FROM 1 A.T. SAMPLE, ANALYSIS BY ICP-ES. - SAMPLE TYPE: CORE R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. JUN 19 2001 DATE REPORT MAILED: JUNE 26/01 SIGNED BY. C. L. D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS DATE RECEIVED: All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only. Data <u>//</u> FA

ACME ANALYTICAL LABORATORIES LTD. 852 E. HAL (180 9002 Accredited Co.)	ASSAY GERTIFIC	er BC V6A 126 Ate	PHONE (604) 253-3158 PAX (604) 253-1716
TT Island Mountain Gold Mines Box 247,	Ltd. PROJECT TH Wells BC VDK 2R0 Subm	trad Mountain	File # A101885
	SAMPLE#	Au** gm/mt	
	5592 5593 5594 5595 5595	<.01 <.01 .42 .01 .04	
	5597 5598 5599 5600 5601	.15 .13 1.76 <.01 <.01	
	5602 5603 5604 RE 5604 RRE 5604 RRE 5604	.01 <.01 <.01 <.01 <.01 <.01	
	5605 5606 5607 5608 5609	.01 .01 .01 <.01 <.01	
	5610 5611 PULP STANDARD AU-1	<.01 1.81 3.45	

IT FIRE ASSAT FROM 1 A.I. SAMPLE, ANALYSIS BY ICP-ES. - SAMPLE TYPE: CORE R150 60C

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED:

Data___ FA

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

All results are considered the confidential property of the client. Acme essures the liebilities for actual cost of the analysis only.

Data 1-FA Yus

ACME ANALYTICAL LABORATORIES LTD. 857 (ISO 9002 Accredited Co.)	SBAT CERTIF	IVER EC VOA DEE PHONE (604) 253-315 ICATE	8 PAR (604) 253-1716
Island Mountain Gold	Mines Ltd. PROTECT Box 247, Weijs BC VOK 280 Su	<u>Ieland Mountain</u> File # A102258 Emitted by: R. Hell	
	SAMPLE#	Au** gm/mt	
	5612 5613 5614 5615 5615 5616	.01 <.01 .06 .02 <.01	
	5617 5618 5619 5620 5621	<.01 <.01 .05 .70 <.01	
	5622 RE 5622 RRE 5622 5623 5624	.02 .07 <.01 .05 .12	
	5625 5626 5627 5628 5629	<.01 .05 <.01 .52 .06	
	5630 5631 5632 5633 PULP 5634	.50 .08 <.01 1.69 <.01	
	RE 5634 RRE 5634 5635 5636 5637	<.01 <.01 .01 <.01 <.01 <.01	
	5638 5639 5640 5641 STANDARD AU-:	<.01 <.01 <.01 .03 L 3.44	
GROUP 6 - PRE - SAMPLE TYPE Samples begin	CIQUS METALS BY FIRE ASSAY FROM CORE R150 60C Doing 'RE' are Recurs and 'RRE'	1 A.T. SAMPLE, ANALYSIS BY ICP-ES. are Reject Reruns.	
DATE RECEIVED: JUL 19 2001 DATE REPORT MA	AILED: July 26/0, 5	EGNED BY C. L. D. TOYE, C.LEONG, J. WANG	; CERTIFIED B.C. ASSAYER:
All results are considered the confidential property or	f the client. Acme assumes the l	iabilities for actual cost of the analysis only.	Data 📈 FA _

	SAMPLE#	Au** ppb	
	E 195101 E 195102 E 195103 E 195104 E 195105	134 326 125 59 55	
	E 195106 E 195107 E 195108 E 195109 E 195577	193 68 45 513 23	
	E 195578 E 195579 E 195580 RE E 195580 E 195581	57 255 203 201 98	
	E 195582 E 195583 E 195584 E 195585 E 195585 E 195587	221 289 1204 560 327	
	É 195588 E 195589 E 195590 PULE E 195591 E 195592	1936 638 6752 895 812	
	E 195593 E 195594 E 195595 E 195595 E 195596 E 195597	1396 163 234 170 367	
	E 195598 E 195599 E 195600 STANDARD AU-1	153 164 73 R 499	
GROUP 3B - FIRE GEOCHEM AU - SAMPLE TYPE: SLUDGE R150	- 30 GM SAMPLE FUSION, DORE DISSOLVED I 60C <u>Samples beginning 'RE' are Reru</u>	N AQUA - REGIA, ICP ANALYSIS. Ins and 'RRE' are Reject Reruns	JPPER LIMITS = 10 PPM.

ACHE ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

ABOAY CHRINTPLCANE

604 852 F. HASTINUS ST. VANCOUVER EC PHONE (604) 253-3158 762

Island Mountain Gold Mines Ltd. PROJECT Island Mountain File # A102455 Page 1 Box 247, Wells BC VDK 2R0 Submitted by: R. Hall

	SAMPLE#	Au** gm/mt	·····
	5642 5643 5644 5645 5646	<.01 .04 .10 <.01 <.01	
	5647 5648 5649 5650 5651	<.01 <.01 <.01 <.01 <.01	
	5652 RE 5652 RRE 5652 5653 5654	.02 .02 .02 <.01 <.01	
	5655 5656 5657 5658 5659	.01 .04 .02 .16 .19	
	5660 5661 5662 5663 PULP 5664	.13 .12 .38 1.69 <.01	
	5665 5666 RE 5666 RRE 5666 5667	.17 .12 .13 .13 .03	
	5668 5669 5670 5671 STANDARD AU-1	<.01 <.01 <.01 .02 3.37	
DATE RECEIVED: JUL 30 2001	GROUP 6 - PRECIOUS METALS BY FIRE ASSAY FROM 1 a - SAMPLE TYPE: CORE R150 60C Samples beginning 'RE' are Reputs and 'RRE' are DATE REPORT MAILED: Aug 9/01 SIGN	A.T. SAMPLE, ANALYSIS BY ICP-ES. Reject Reruns NED BY	CERTIFIED B.C. ASSAYERS
All results are considered the confi	dential property of the client. Acme assumes the lisb	<i>ilities for actual cost of the analysis only.</i>	Data AFA NN

ACC-ANALYFICAL LABORATORIES LTD. 852 S. HASTINGS ST. VANCOUVER ACT. A TL. ME(6 1534 B.F. 04) (ISO 9002 Accredited Co.) GEOCHEM PRECISIUS METALS ANALYSIS Island Mountain Gold Mines Ltd. PROVECT Toland Mountain File # A101818 Page 1 Box 247, Wells BC VDC 280 Sumitted by: 8.0. Main

SAMPLE#	Au** ppb
E 195501 E 195502 E 195503 E 195503 E 195504 E 195505	15 4 41 9 22
E 195506 E 195507 E 195508 E 195508 E 195509 PULP E 195510	5 3 6817 53
E 195511	19
E 195512	29
E 195513	15
E 195514	164
E 195515	82
RE E 195515	98
E 195516	164
E 195517	192
E 195518	350
E 195519	246
E 195520	616
E 195521 PULP	1698
E 195522	178
E 195523	32
E 195524	87
E 195525 E 195526 E 195527 E 195528 E 195528 E 195529	141 31 49 2171 549
E 195530	104
E 195531	52
E 195532 PULP	6822
E 195533	104
STANDARD AU-R	483
GROUP 3B - FIRE GEOCHEM AU - 30 GM SAMPLE FUSION, DORE DISSOLVED IN AU	QUA - REGIA, ICP ANALYSIS. UPPER LIMITS = 10 PPM.
- SAMPLE TYPE: SLUDGE P150 60C <u>Semples beginning (RE' are Reruns</u>	<u>Armd 'RRE' are Apject Rerung.</u>

DATE RECEIVED: JUN 25 2001 DATE REPORT MAILED:

Data KFA

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

PHONE (604) 253-3158 FAX (604) 253-1716 852 B. HASTINGS STA VANCOUVER BC. VOA 185 ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) GEOCHEM DRECIOUS METALS ANALYSIS Teland Mountain Gold Mines Ltd. File # A102061 Page 1 Box 247, Wells BC VDK 2RC Submitted by: R. Hall SAMPLE# Au** ppb 195001 101 Е 146 Ē 195002 22 $\overline{\mathbf{E}}$ 195003 $\overline{2}\overline{8}$ E 195004 450 E 195005 286 195006 Ε E E 195007 2 426 195008 Ε 195009 4 Ē 195010 <2 22 E 195011 32 195012 Έ 195013 Ë 195014 E 195015 4 29 18 RE E 195015 195016 4117 Ë 1099 E 195017 Ë 195018 E 195019 154 208 195020 201 Е 29 É 195021 8 Ē 195022 Ε 195023 28 14 E 195024 5 3 Ε 195025 195026 Ε 2Ĩ E 195027 10 E 195028 Ë 195029 138 295 E 195030 195031 1816 Ε 276 195032 Е 238 \mathbf{E} 195033 STANDARD AU-R 487 GROUP 38 - FIRE GEOCHEM AU - 30 GM SAMPLE FUSION, DORE DISSOLVED IN AQUA - REGIA, ICP ANALYSIS. UPPER LIMITS = 10 PPM. Samples beginning 'RE' are Reruns and 'RRE' are Acject Reruns. - SAMPLE TYPE: SLUDGE R150 60C YNLY 17/01 SIGNED BY. . TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS DATE REPORT MAILED: JUL 9 2001 DATE RECEIVED: All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only. Data FA YAN

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANGENUT [ISO 9002 Accredited Co.]	IN BC V6A 1R6 VHONE(604)253-3158 FAX(604)253-171
Leland Mountain Gold Mines Ltd. PROJECT ALS Box 247, Seile BC VOK 280 Submitt	Land Mountain File # A102101
SAMPLE#	Au** ppb
E 195552 E 195553 E 195554 E 195555 E 195555 E 195556	11 8 7 4 10
E 195557 E 195558 E 195559 E 195560 E 195561 E 195561	16 <2 3 <2 7
E 195562 E 195563 E 195565 E 195566 E 195566 E 195567	3 11 27 81 51
E 195568 E 195569 E 195570 RE E 195570 E 195571	622 761 152 111 107
E 195572 E 195573 E 195574 E 195574 E 195575 PULP STANDARD AU-R	145 30 76 1665 484
GROUP 38 - FIRE GEOCHEM AU - 30 GM SAMPLE FUSION, DORE DISSOLVED IN A - SAMPLE TYPE: SLUDGE R150 600 <u>Samples beginning 'RE' are Repuns</u> DATE RECEIVED: JUL 11 2001 DATE REPORT MAILED: July 24/01 SIGNE	QUA - REGIA, ICP ANALYSIS. UPPER LIMITS = 10 PPM. and 'RRE' are Reject Reruns. D BY
	J
	,
All results are considered the confidential property of the client. Acme assumes the liabil	ities for actual cost of the analysis only.

•

_

Appendix D Soil Sample Analyses

.

,

•

۳ د

۳ ۲

.

.

٠

.

•

.

5

.

		1			1			1		1			1]					1]			1.	1.				·					, 	J	<u> </u>	<u> </u>	1	les.es		<u> </u>
	A	CMB AN	TAL		ECA		AB	ORA	ror	THE	E I 1	D.	1		52	z.	fia:	a i	Xels	S7			(9) ()	786	E):		76 A	<u>I</u> R	6		PHOI	TE (6	04)2	253-	315	58	FAX	(604)	253	-171	б	
															G	EOC	HD	MÏ	CA	, 7	ц.	LYS	IS	C	ER.	616	ΡĪĊ	AT.	e,									- Angelen ander en Stand ander en son En de Stand ander en Stand angelen Stand angelen Stand angelen				
				Ĩ	<u>s1</u>	and	<u>d r</u>	<u>100</u>	<u>nt</u>	aiı	1 G	01	<u>d</u> 1	<u>Mir</u>	les Br	<u>Lt</u> x 24	.d. 7, 4	P Ætti	RQI I BC	FEC VOK	<u>T</u> 2R0	<u>181</u> รเ	<u>an</u> Ioni	d tted	MOI by:	<u>1111</u> A.	jur Jur	<u>11</u> 1.860	Fi n	le	#	A10	371	0	Ð	agi	∋ _1					
S/	AMPLE	#	P	10 2011	Cu ppm	96 mqq	Zn ppm	Ag ppm	Ni ррл	Co nppm	M pp	ก	Fe X	As pphi_i	U pm	An bbu t	Th prom	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V Michel	Ca X		Р Хр	La pm p	Cr pm	Mg %	Ba ppm	Ťi %	B ppm	Al %	Na %	K X	W	Hg ppm	Sc ppm	TL ppm	S Ga % ppr	a Au n pp	* Hg b ppt	3
0 0 0 0	- 1 +00E +00E +00E +00E	0+00\$ 0+70\$ 1+00\$ 1+50\$	1 1 1 1	.9 .4 .5 .0	1 63 53 38 54	2 69 26 43 21	40 68 70 68 108	<.1 .4 .2 .7	4 37 27 25 38	4 21 18 13 13	53 115 63 55 67	4 1. 2 4. 3 4. 2 3. 5 3.	.79 .30 .18 .27 .27	1 220 128 90 59	2 1 1 1 2	<2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	5 9 7 3 3	60 18 21 28 33	<.2 .2 <.2 .3 .5	<.5 1.2 1.1 1.0 .6	<.5 2.4 1.7 2.2 .8	36 32 41 33 42	.52 .31 .34 .47 .61	2 .09 .04 .04 .05 .04	59 55 55	7 28 25 19 17	12 22 24 26 47	.57 .47 .49 .40 .58	249 121 148 128 164	.116 .029 .030 .030 .030	1 1 <1 <1 1	.86 1.11 1.21 1.03 1.46	.056 .004 .003 .004 .006	.51 .06 .04 .04 .05	2 1 <1 1 <1	<1 <1 <1 <1 <1	1.5 3.1 2.7 2.1 3.6	<1<.0 <1<.0 <1<.0 <1 .0 <1 .0 <1<.0	2 1 2 2 2 2 2 2	5 <. 5 542. 5 224. 5 666. 5 28.	2 <1(7 2(3 2(2 3) 9 4()) 5 0
	+00E +00E +D0E +00E +00E	2+00S 2+50S 3+00S 3+50S 4+00S	1 2 1 1	.5 .2 .0 .9	28 61 32 143 104	25 27 37 33 28	48 61 59 84 72	.4 .2 .4 .3	22 30 25 40 37	2 9 2 21 1 11 3 38 7 28	32 116 45 134 134	92 94 75 55 40	.72 .30 .66 .50 .74	74 129 116 156 129	1 1 1 1	~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 7 2 9 8	15 17 27 21 17	<.2 .2 .2 .2	.8 1.1 .8 1.3 1.1	1.2 1.8 1.3 2.8 1.3	33 47 65 45 57	.27 .27 .36 .36 .27	7 .03 7 .07 8 .07 8 .09 7 .01	56 29 51 92 70	22 25 20 30 28	23 27 44 29 26	.36 .56 .37 .59 .87	98 167 159 152 144	.028 .021 .080 .046 .032	<1 <1 <1 1 <1	.93 1.45 1.32 1.43 1.59	.004 .004 .004 .004 .003	.03 .05 .05 .08 .05	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	1.8 2.9 1.9 4.0 4.2	<1<.0 <1<.0 <1 .0 <1<.0 <1<.0	2 2 2 2 2	5 50. 213. 5 55. 4 383. 5 85.	3 2: 2 2(1 5(7 2: 1 3	5 D 0 5 D
	+00E +00E +00E +00E +00E	4+50S 5+00\$ 5+50S 6+00S 6+50S	2 1 1 1	.1 .4 .8 .6	238 341 150 55 52	39 27 20 30 30	88 105 92 65 63	.3 .4 .1 .2	31 38 33 47 36	41 3 56 5 42 7 20 5 19	217 223 138 74 81	78 7 52 7 57 6 51 4 17 3	.12 .06 .54 .21 .86	127 51 141 221 128	1 1 1 1	<2 <2 <2 <2 <2 <2	8 9 7 8 7	33 29 17 24 16	.4 .3 <.2 <.2 <.2	1.2 .9 .9 1.4 1.3	.8 .5 2.6 5.9	51 108 110 41 26	.47 .44 .20 .33 .24	7 .1(.1(.0) .0) .0) .0) .0)	04 03 52 54 55	26 32 21 26 28	18 14 23 37 21	.75 2.00 2.04 .45 .27	164 112 115 227 148	.020 .010 .009 .053 .034	ব ব ব ব ব	1.68 2.69 3.31 1.24 .79	.003 .002 .003 .004 .003	.05 .03 .03 .08 .05	3 1 <1 <1 <1	<1 <1 <1 <1	4.1 6.2 4.8 4.3 3.2	<1<.0 <1<.0 <1<.0 <1<.0 <1<.0	12 12 12 12 12 12	5 100. 9 40. 0 59. 4 92. 2 114.	2 2 3 1 1 3 3 3 3 3	5 5 0 0
)+00E)+00E)+00E)+00E)+00E)+00E	7+00S 7+50S 8+00S 8+50S 9+00S	1 1 1 1	.2 .2 .6 .2	33 30 56 36 13	23 20 35 29 22	60 83 102 62 24	1 5 9 1.0	34 33 48 24 10	4 13 5 15 6 15 4 12 0 4	i 49 i 77 i 132 2 64 i 21	06 3 72 3 22 3 36 3 11 1	.00 .44 .65 .37 .69	64 40 89 117 27	1 2 1 <1	<2 <2 <2 <2 <2 <2	6 2 2 2 2 2 2	11 13 20 11 8	.2 .2 .3 .2 .2 <.2	.8 .6 .8 .9 <.5	1.1 .6 1.0 1.0 .8	45 66 52 40 37	. 26 . 40 . 39 . 20 . 19	3 .00 0 .00 7 .07 0 .07 5 .07	31 68 90 77 32	23 21 29 19 20	33 54 56 29 19	.48 .59 .52 .32 .11	129 119 226 168 120	.078 .103 .050 .031 .057	1 1 1 1	1.14 1.58 1.95 1.14 .66	.005 .005 .005 .002 .002	.04 .05 .07 .05 .03	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	2.8 3.0 5.7 1.7 .8	<1<.0 <1 .0 <1 .0 <1 .0 <1 .0)2)2)2)2)2	4 47. 6 92. 5 94. 4 206. 4 118.	.8 2 .0 4 .3 9 .8 6 .7 6	0 0 5 5
	RE 0+ 0+00E 0+00E 0+00E 0+00E	00E 9+00 9+50S 10+00S 10+50S 11+00S	95 1 1 2 1 2	.3 .3 .8 .1 .7	13 26 29 20 26	22 20 29 24 24	25 36 31 50 65	i 7 2.5 1.2 1.2	10 17 14 31 41	0 4 7 5 4 4 0 8 0 12	22 5 19 5 11 8 21 2 31	24 1 79 2 76 2 57 3 70 3	.75 .21 .33 .03 .80	28 26 41 49 55	<1 1 1 1 1	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 1 1 3 2	8 9 12 13	<.2 .3 .2 <.2 .2	<.5 .5 .7 .6	.8 .7 1.0 1.4 1.3	37 52 59 65 75	. 16 . 21 . 20 . 20 . 30	0.8 0.0 0.0 6.0 0.0	33 58 44 36 49	20 19 17 17 16	19 35 32 46 63	.12 .26 .19 .57 .64	122 162 158 224 365	.062 .053 .065 .113 .080	<1 <1 <1 1 <1	.68 1.43 .94 1.31 1.89	.004 .003 .003 .003 .003	.04 .04 .04 .05 .05	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	.8 1.3 1.2 2.0 2.7	<1 (<1 (<1 (<1<,0 <1<,0	02 03 02 02 02	4 101. 6 138. 6 212. 6 986 7 169	.0 7 .2 8 .8 4 .9 3 .1 4	0 5 5 0
	0+008 0+008 0+008 0+008 0+008	11+50\$ 12+00\$ 12+50\$ 13+00\$ 13+50\$	1	.3 .8 .9 .9	23 20 17 7 11	23 24 20 18 26	23 51 51 26 26	5 1.5 1 .6 1 .6 5 .3 5 1.5	5 1 5 2 5 2 5 1 5 1	1 2 2 2 0 2	3 2 8 2 7 2 3 1 3 1	88 1 55 3 37 4 49 1 05 2	.88 .20 .04 .83 2.32	30 51 51 23 42	1 1 <1 <1 1	<2 <2 <2 <2 <2 <2 <2	1 4 3 2 3	8 7 8 7 7	.3 2. 3.> 2.> 2.>	<.5 .5 <.5 .5	1.6 1.3 .8 .9 1.2	52 59 62 49 61	.1/ .1/ .1/ .1/	8.0 7.0 6.0 3.0 2.0	42 56 77 58 39	19 17 15 19 15	31 49 53 28 29	. 17 .45 .41 .19 .15	139 130 152 123 107	.059 .085 .089 .080 .080	1 <1 <1 <1 <1 <1	1.27 1.62 1.53 .85 .97	.003 .004 .004 .003 .002	.03 .04 .04 .03 .03	ং ং ং ং ং ং ং	<1 <1 <1 <1 <1	1.1 2.0 1.8 .9 1.1	<1 .1 <1<.1 <1 .1 <1<.1 <1<.1	02 02 02 02 02 02	6 893 6 759 6 198 6 244 5 413	.0 10 .4 6 .5 7 .0 4 .9 6	10 50 70 50
	0+000 0+000 0+000 12+00 STAN	14+005 14+505 15+005 DE 0+005 DARD 053	, , ,	.8 .0 .6 .7 9.1	14 5 1 66 121	16 13 16 27 32	42 10 87 141	2 3.7 0 .2 1 .9 5 1.0 8 .9	7 1 2 5 5 4 3 3 3	7 4 2 < 0 2 5 1	5 1 1 1 2 17 2 7	55 3 26 4 66 4 90 <u>1</u>	5.19 .49 .09 4.23 5.11	43 13 4 87 29	1 <1 <1 2 5	<2 <2 <2 <2 <2 <2 <2	3 1 3 1 4	5 5 11 59 26	.2 <.2 <.2 .4 5.6	.5 .5 .6 5.2	.6 .8 <.5 1.1 5.4	57 32 4 43 72	.1 .0 .0 1.0	4 .0 1 .0 1 .0 1 .0	45 14 11 30 88	13 21 23 14 16	56 11 6 35 190	.30 .02 .01 .52 .60	109 37 90 134 160	.104 .036 .006 .018	<pre><1 </pre>	2.19 .39 .08 1.42 1.70	.003 .002 .002 .006 .027	.02 .01 .02 .05 .16	<1 <1 <1 <1 4	<1 <1 <1 <1 <1	2.1 .3 .2 2.7 2.7	<1 . <1<. <1<. <1<. <1 . 1 .	02 02 02 06 02	5 158 6 161 1 348 4 45 6 20	.0 21 .1 1 .7 1 .4 9 .9 23	10 10 10 20 35
	Bing 6+005 1.6 55 30 65 .2 47 20 7×1 4.21 221 1 <2 8 24 <2 1.4 2.6 41 .33 .054 26 37 .45 227 .053 <1 1.24 .004 .08 <1 <1 4.3 <1.02 <4 92.3 0+005 6+005 1.7 52 30 63 .3 36 19 817 3.86 128 1 <2 7 16 <2 1.3 5.9 26 .26 .055 28 21 .27 148 .034 <1 .79 .003 .05 <1 <1 3.2 <1 <2.0 2 114.3 0+005 7+005 1.2 33 23 60 .1 34 13 406 3.00 64 1 <2 6 11 .2 .8 1.1 45 .28 .031 23 33 .48 129 .078 11.1(4 .005 .04 <1 <1 2.8 <1 <0.02 4 92.0 0+005 7+005 1.2 33 23 60 .1 34 13 406 3.00 64 1 <2 6 11 .2 .8 1.1 45 .28 .031 23 33 .48 129 .078 11.1(4 .005 .04 <1 <1 2.8 <1 <0.02 6 92.0 0+005 7+005 1.2 32 24 .7 10 4 21 4.166 87 2 <2 2 2 2 3 .8 1.0 52 .39 .000 29 56.5 22 26 .001 1.055 .000 .07 <1 <1 5.7 <1 .02 5 94.3 0+006 8+005 1.2 13 22 24 .7 10 4 21 1.69 27 <1 <2 2 8 <2 <5 .8 37 .16 .033 20 19 .11 22 .0507 1 .66 .004 .04 <1 <1 .8 (1 .02 4 118.7 0+006 9+005 1.3 13 22 25 .7 10 4 21 1.49 27 <1 <2 2 8 <2 <5 .8 37 .16 .033 20 19 .11 22 .0507 1 .66 .000 .05 <1 <1 .8 (1 .02 4 118.7 0+006 9+005 1.3 13 22 25 .7 10 4 224 1.75 28 <1 <2 2 8 <2 <5 .8 37 .16 .033 20 19 .12 122 .062 <1 .66 .004 .04 <1 <1 .8 (1 .02 4 118.7 0+006 9+005 1.3 13 22 25 .7 10 4 224 1.75 28 <1 <2 2 8 <2 <5 .8 37 .16 .033 20 19 .12 122 .062 <1 .66 .004 .04 <1 <1 .2 <1 .0 2 4 101.0 0+006 9+005 1.3 13 22 25 .7 10 4 224 1.75 28 <1 <2 2 8 <2 <5 .8 37 .16 .033 20 19 .12 122 .065 <1 .43 .003 .04 <1 <1 .2 <1 .0 2 4 103.7 0+006 9+005 1.3 13 22 25 .7 10 4 224 .175 28 <1 <2 2 8 <2 <5 .8 37 .16 .033 20 19 .12 122 .062 <1 .66 .004 .04 <1 <1 .2 <1 .0 2 4 103.7 0+006 9+005 1.3 13 22 45 5 .4 40 12 370 .308 55 1 .4 2 1 9 .2 5 .10 59 .2 .058 19 35 .26 162 .055 <1 .43 .003 .04 <1 <1 .2 .2 (1 .2 4 10.0 2 .418.7 0+006 12+005 1.8 72 24 .113 1 .131 .003 .05 <1 <2 .2 .7 1.4 2 .7 1.4 45 .7 224 .113 1 .131 .003 .05 <1 <1 .2 .2 .7 1.2 4 .10 2 .2 .10 .5 1 .4 .2 .7 1.4 .2 4 .10 .2 .7 1.4 .2 .7 1.4 .2 .7 1.4 .2 .7 1.4 .2 .7 1.4 .2 .7 1.4 .2 .7 1.4 .2 .7 1.2 .2 .1 .0 .5 .1 .2 .1 .0 .5 .1 .4 .2 .7 1.4 .2 .7 1.4 .2 .7 1.4 .2 .7 1.4 .2 .7 1.5 .1 .5 .0 .001 <1 .2 .1 .2 .7 1.2 .2 .1 .2 .1 .2 .1																																									
		DATE 1	REC	EI	VED	:	דסס	18	2001		ATE	R	8P0	RT	MAI	LED	n C)ι	t	31/	0	r	SIG	JNE)	DB	x.(:h	•••	.	TOYE	5, C.L	EONG,	, J.	WANG	6; CE	RTIF	1EO B.	с. А	SSAYER	2S	

All results are considered the confidential property of the client. Acme assumes the limbilities for actual cost of the analysis only.

Data<u>/</u>FA

Is Is	land Mountain Go	ld Mines Ltd.	PROJECT IS	and Mountain Fine # Arol716 .age _ !	ADHE ANALYTICAL
SAMPLE#	Mo Cu Pb Zn Ag Ni Co M ppm ppm ppm ppm ppm ppm ppm ppm	Mn Fe As U Au Th pm 2 ppm ppm ppm ppm	Sr Col Sb Bt V ppm ppm ppm ppm	Ca P La Cr Mg Ba Ti B Al Na K W Hg Sc Tl S Ga X X ppm ppm X ppm X ppm X X ppm ppm ppm	Au* Hg ppb ppb
G-1 L2+00E 0+50S L2+00E 1+00S L2+00S 1+50S L2+00E 2+00S	.8 2 2 40 <.1	55 1.68 <1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.38 .104 7 10 .54 210 .111 3 .90 .054 .51 2 <1	.3 <10 53.5 95 110.6 45 40.4 75 74.4 80
L2+00E 2+50S L2+00E 3+00S L2+00E 3+50S L2+00E 3+50S L2+00E 4+00S L2+00E 4+50S	1.2 64 24 77 1.0 38 15 9 1.6 210 25 91 .4 33 35 19 1.3 136 27 91 .6 35 32 19 1.1 35 18 102 .4 38 16 8 1.0 56 20 90 .9 44 16 6	997 3.27 80 1 <2	47 .2 .7 1.2 50 . 34 .3 1.4 1.0 59 . 47 .3 1.1 1.0 60 . 22 .3 .6 .8 55 . 36 .5 .6 .9 58 .	.62.0972442.46215.044<1	60.0 60 86.8 40 46.4 55 30.9 35 41.8 40
1.2+00E 5+00\$ L2+00E 5+50\$ L2+00E 6+00\$ L2+00F 6+50\$ L2+00E 7+00\$	1.4 80 24 59 1.3 38 14 5 1.1 32 23 47 .5 22 7 3 1.2 23 22 44 .2 21 8 3 1.4 53 26 74 .6 38 14 8 1.1 31 22 38 .6 19 5 2	561 3.29 81 2 <2	54 .4 .8 1.2 53 . B <.2	.64.0825347.44223.04711.76.003.07<1	32.4 60 51.4 35 49.9 35 20.0 55 74.7 25
L2+00E 7+50S L2+00E 8+00S L2+00E 9+00S L2+00E 9+50S L2+00E 9+50S L2+00E 10+00S	1.5 37 28 59 .3 32 10 5 .9 18 19 57 .3 32 14 7 .6 2/ 24 65 .6 39 9 2 1.0 24 16 48 .2 30 9 3 1.4 23 26 46 .2 25 7 2	517 4.21 100 1 <2	12 .2 .7 1.4 77 16 .2 <.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39.5 45 96.9 35 51.1 45 236.6 20 42.4 20
L2+00E 10+50S RE L2+00E 10+50S 1.2+00E 11+00S L2+00E 11+50S L2+00E 12+00S	2.3 73 41 76 .8 49 15 6 2.3 76 43 78 .9 53 16 5 2.0 29 27 50 .4 22 6 2 1.8 17 20 50 1.2 18 5 1 1.4 16 19 50 .4 20 6 5	686 4.17 159 2 <2	13 .3 1.0 3.3 70 14 .3 1.1 3.5 75 10 .2 .7 1.0 72 11 .2 .5 .6 56 10 .4 .5 .5 78	.18 .052 17 63 .54 366 .052 1 2.01 .007 .08 <1	44.3 60 48.3 50 47.5 65 34.1 75 28.5 50
L2+00E 12+505 L2+00E 13+005 L2+00E 13+505 L2+00E 14+005 L2+00E 14+505	.6 10 19 14 .4 4 1 1.7 19 20 57 .7 28 8 1 1.8 17 19 46 .6 21 6 1.4 12 19 35 1.4 15 4 J.3 14 17 57 2.6 20 7	41 .87 9 <1	7 < 2 < 5 .5 34 10 .2 .5 .5 79 11 .2 .6 .6 67 8 .2 < 5 .5 85 6 .3 < 5 < 5 98	.11 .080 22 17 .05 74 .040 1 .68 .004 .02 <1	42.1 25 88.5 85 274.8 75 36.3 65 82.2 140
L2+005 15+00S L4+005 0+00S L4+005 0+50S L4+005 1+00S STANDARD 0S3	2.9 10 23 22 1.0 8 2 1.5 67 118 99 .9 61 27 1 2.1 56 160 112 .8 76 29 2 6.3 81 402 203 1.7 111 37 2 9.4 129 32 157 .3 36 12	103 1.80 49 <1 <2 4 1912 5.01 344 2 <2 5 2118 4.77 317 1 <2 10 2542 5.97 327 1 <2 9 861 3.14 30 6 <2 4	4 6<:2	.08 .076 22 20 .08 48 .102 <1	176.4 30 534.7 35 1510.5 15 1893.6 15 23.1 240

Sample type: SOLL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data KFA

		1		···· •	, 		,	·	T		, ,	, r		7			r 3. 1. 1.]	T 1]	, 	<u>م</u>	r	1	•	<u>`</u> _	۲ <u>کنچمب</u>	L	۲ دک مقد			<u>.</u>]	a]	_]
ACRE AVALITICA]	[s]	and	. M	our	ita:	in	Gol	d M	iine	25	Lto	1.	PR	OJ	ECT	' I	sla	ind	Mo	unt	aiı	n	FII	E	# A	103	710	P	age	e 5			ACHE	AVALYTI	
SAMPLE#	Ma PPn) Ci	u Pt mppr	> Zn)ppr	Ag ppm	Ni ppm	Со ррт	Mn ppr	Fe N	As ppm	U motorij	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppn	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	AL %	Na %	К %	W	Hg ppm	Sc ppm	TL PPM	s (% p	Ga pm	Au* ppb	Hg ppb
G-1 L&+QOE 3+00\$ L&+QOE 3+50\$ L&+QOE 4+60\$ L&+QOE 4+50\$.6 .7 1.4 1.0	30 11 2 2	1 28 3 28 9 24 9 38 1 20	2 33 3 34 5 62 3 42 5 37	<.1 .4 .2 .2	3 45 19 10 11	4 18 9 7 5	462 875 517 292 400	1.44 2.48 4.46 3.05 2.94	<1 154 84 79 46	3 1 <1 <1 <1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 8 2 3	47 16 11 8 6	<.2 .2 .2 .2 .2	<.5 1.4 .5 <.5 <.5	<.5 1.2 .9 1.4 .8	33 12 62 57 45	.40 .16 .20 .16 .14	.075 .032 .042 .142 .108	6 32 17 21 21	11 23 44 20 25	.49 .20 .37 .32 .16	212 88 139 110 103	.110 .006 .077 .031 .045	1 <1 <1 <1	.75 1.07 1.37 1.13 .92	.047 .003 .004 .003 .003	-41 -04 -03 -04 -05	2 <1 <1 <1 <1	<1 <1 <1 <1 <1	1.1 2.1 1.2 1.2 1.1	<1< <1< <1 <1< <1<	02 02 02 02 02	4 1 1/ 6 1 5 1 4 3/	<.2 40.0 55.5 24.8 61.1	<10 55 45 35 50
L8+00E 5+00S L8+00E 5+50S L8+00E 6+0DS L8+00E 6+50S L8+00E 6+50S L8+00E 7+00S	1.4	5 2 2 2 1 2 3 4	1 13 4 9 0 24 8 14 5 33	5 67 9 87 5 50 8 48 6 45	.2 .3 .3 .3	10 15 24 18 49	10 27 9 7 22	480 1168 349 311 1146	4.67 7.19 3.62 3.48 5.4	39 35 122 146 192	<1 1 <1 <1	< < < < < < < < < < < < < < < < < < < <	1 4 3 4 6	5 9 7 9 13	<.2 .2 .2 .2	.7 <.5 1.0 .5 1.5	.5 <.5 1.4 1.5 5.2	81 72 46 54 33	.09 .12 .12 .18 .30	.086 .111 .044 .091 .055	17 15 21 19 23	16 15 40 37 28	.39 1.04 .31 .35 .28	86 108 122 105 92	.016 .006 .030 .060 .053	<1 <1 <1 <1 1	1.29 2.71 1.55 1.38 .86	.003 .003 .004 .003 .003	.03 .03 .05 .04 .05	<1 <1 <1 <1 7	<1 <1 <1 <1 <1	1.5 2.1 1.3 1.2 2.7	<1 . <1 . <1 . <1 .	.02 .04 .02 .02 .03	7 7 5 1 5 3 1	46.0 5.8 31.3 73.9 37.6	45 60 50 50 35
L8+D0E 7+50S L8+00E 8+00S RE L8+00E 8+00S L8+00E 8+50S L8+00E 9+00S	1	3 3 7 1 7 1 5 3 2 2	0 6 6 1 7 1 3 2 6 2	1 33 6 35 6 35 2 4' 4 29	6 9 9 2 3	5 19 7 19 9 20 9 21 5 14	9 8 9 6 1 6 1 7 5	391 363 364 404 231	3.48 3.61 3.7 4.64 4.2	3 350 3 165 168 168 87 118	<1 <1 <1 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 3 3 4 3	4 7 6 5	.2 <.2 <.2 <.2	1.3 1.0 1.0 .9	9.3 7.7 7.5 3.4 5.4	29 18 18 58 72	.08 .11 .11 .14 .17	.051 .064 .066 .079 .094	22 35 32 24 19	21 18 17 37 37	.14 .09 .09 .17 .13	55 110 111 73 62	.023 .013 .010 .072 .102	1 <1 <1 <1 <1	.69 .55 .55 1.05 .96	.002 .002 .002 .003 .003	.03 .04 .04 .04 .04	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	.8 .7 .7 1.4 1.0	<1 <1 <1 <1 <1	.03 .02 .02 .03 .03	3 2 1 2 1 5 7 2	91.2 29.2 42.3 46.4 59.8	60 60 60 80 85
L8+D0E 9+50\$ L8+00E 10+005 L8+00E 10+50S L8+00E 11+00S L8+00E 11+50S	1. 1. 1. 1.	2 1 2 2 1 2 1 3 8 2	7 2 6 3 0 7 0 2 3 2	6 4° 1 6' 2 37 4 53 1 6(· .5	i 20 36 13 13 13 29 2 36) 7 5 11 5 6 9 9 5 12	398 469 926 367 781	3 3.80 5 4.1 5 1.8 2 3.7 1 2.8) 117 2 113 7 103 4 193 9 176	<1 1 <1 1 1	<2 <2 <2 <2 <2 <2 <2	4 4 2 5 3	7 6 10 12	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	.6 .6 .8 .7	4.1 4.0 2.5 1.6 1.6	85 72 41 83 60	.18 .21 .14 .25 .33	.063 .047 .055 .072 .047	21 16 21 17 17	43 61 20 54 50	.24 .49 .11 .46 .57	141 105 77 114 153	. 130 . 124 .039 . 137 .070	<1 <1 1 <1	1.07 1.74 .56 1.49 1.38	.003 .004 .003 .002 .004	.04 .05 .03 .05 .05	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	1.5 1.9 .7 2.1 2.5	<1 <1 <1 <1 <1	.02 .03 .02 .02 .02	8 7 4 7 5	48.3 20.2 77.6 99.2 63.9	40 55 25 35 30
L8+00E 12+00S L8+00E 12+50S L8+00E 13+00S L8+00E 13+50S L8+00E 13+50S	1. 1. 1. 1.	2 1 6 2 0 2 8 1	18 2 27 2 26 1 20 1 19 2	8 31 1 6 7 6 9 4 4 5	7 .4	i 13 5 31 2 27 8 24 8 24	5 5 1 10 7 11 4 9 1 7	21 36 38 29 37	1 3.74 1 4.6 0 4.14 2 3.3 0 5.1	5 225 1 211 5 80 2 194 3 61	<1 1 <1 <1 1	<2 <2 <2 <2 <2	43634	5 8 5 7 6	.2	.7 .6 .5 .5	1.0 .7 .7 .8 .5	58 57 65 60 99	.15 .17 .18 .19 .18	.057 .095 .060 .055 .133	20 16 21 21 15	34 52 45 40 59	.20 .47 .57 .40 .34	86 114 110 133 74	.086 .055 .079 .067 .129	<1 1 <1 <1 <1	1.08 1.72 1.69 1.50 1.67	-002 -004 -004 -005 -003	.03 .04 .05 .04 .03	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	1.1 1.5 1.8 1.6 1.8	<1 <1 <1 <1 <1	.02 .03 .03 .02 .04	6 1 5 6 7 8	53.5 68.1 54.3 25.1 35.0	60 85 50 50 65
STANDARD DS3	8.	8 17	25 3	2 14	5.3	3 30	5 12	79	3 2.9	5 29	6	<2	4	27	5.7	4.8	5.5	74	.54	.090	17	189	.58	150	.088	<1	1.66	.026	.16	4	<1	2.5	1	.03	6	19.5	225

Sample type: SOLL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA

ACME ANALI	(TICA 0002	L LI Accz	BOR	TO	l RIE Co	8 L .)	<u>,</u> тр.	<u>}</u>	8	<u> </u> 52 1 Ge) Ias: Her	RIN IIC	29 AI.	air. An	Y Y	ns: Y8j	nuvi CS	ir Cei	IC RTT	vê. Fi	l II CAT	Kø B	. 1	, PH) ONB	60	4) 2	53-	{ 31!	78	FAX	(60	4)2	53		7
	lsl	and	Mo	un t	ai	<u>n</u> (<u>Gol</u>	<u>a</u> 1	Min	es Box	<u>Lt</u> 247	<u>d.</u> , We	PR Us	OJI BÇ V	DCT UK Z	<u>t</u> RO	<u>ela</u> Sub	<u>1710</u> mitt	M ed b	<u>วมท</u> พ:	ta Ju	in Stast	F	ile	¥ #	A	103	762	2	P	agi	é 1				Ĺ	
SAMPLE#	Мо ррпі	Cu ppin	Pb ריסק	Zn ppm	Ag ppm	Ni ppm	Co ppn	Mn pom	⊦e %a	As ppn	s U n pom	Au ppb	Th ppm	Sr ppm	Cd ppm (Sto ppm	Bi ppm	V ppm	Ca X	P %	La ppm	Cr ppm	Mg X	Ba ppm	Ti %	B ppm	A1 %	Na %	K X	W ppm (Hg ppin (Sc ppm p	רד חתי –	S G ≵pp	a m	Au*	Hg opb
G-1 L10+00E 0+00S L10+00F 0+50S L10+00E 1+00S L10+00E 1+50S	1.0 1.6 1.9 1.6	1.8 76.8 64.5 123.2 64.6	2.0 59.3 79.4 78.5 61.0	39 85 81 95 86	<.1 .5 5 .9 4 .6 7 .6 5	4.4 52.6 13.0 12.3 5.0	3.9 27.4 21.1 44.9 25.7	509 1184 822 1575 1070	1.54 4.72 4.15 5.50 4.72	.2 242.6 302.0 446.3 276.1	2.8 1.2 1.0 1.4 1.3	<.5 .6 3.0 .6 1.0	5.1 8.4 7.9 11.1 6.4	57 52 25 25 35	<_1 .3 .3 .5 .3	<.1 2.4 3.3 5.5 2.4	.2 3.4 2.7 3.4 2.9	36 50 40 26 59	.47 .87 .45 .33 .60	.100 .073 .072 .067 .073	7 26 22 27 27	13.0 45.0 35.6 30.8 56.0	.50 .60 .49 .36 .67	219 145 90 91 154	.113 .067 .071 .034 .072	1 <1 1 1 1	.75 1.41 1.04 .88 1.66	.045 .005 .002 .004 .005	.45 .07 .05 .06 .07	2.6< .6 .8 .4 .5	.01 .04 .03 .02 .05	1.3 4.1 < 3.1 < 3.1 4.1 <	.3<. 1 .1 .1 .1<.	02 02 03 03 02	5 63 3 298 3 59 5 95	.5 15.5 32.5 92.5 53.7	<10 35 25 20 45
L10+00E 2+005 L10-00E 2+505 L10+00E 3+00\$ L10+00E 3+505 L10+00E 4+005	1.5 1.3 1.2 1.8 1.0	50.6 44.7 30.2 77.5 47.8	60.0 42.3 33.4 55.0 31.6	87 67 46 70 91	.5 5 1.5 4 1.1 2 .6 4 .5 4	i6.5 3.4 2.3 4.5 3.3	24.7 22.4 9.4 26.2 22.3	1065 1286 438 1058 1414	4.69 4.24 3.16 4.50 4.14	265.2 199.8 148.0 534.2 108.2	3 1.2 3 1.8 3 .9 2 1.2 2 1.5	.6 <.5 <.5 .8 <.5	7.1 1.5 1.2 9.8 3.1	33 61 51 25 43	.4 .9 .3 .2	2.3 1.2 .7 6.9 1.3	3.1 1.8 1.5 3.3 1.1	59 61 76 29 56	.59 1.01 .84 .31 .84	.071 .086 .050 .060 .104	26 1B 19 25 21	57.3 60.6 43.8 25.8 49.4	. 69 . 39 . 24 . 36 . 73	161 159 133 84 138	.078 .048 .072 .032 .067	. 1 1 1 2	1.72 2.14 1.26 .91 1.53	.003 .005 .005 .002 .002	.07 .05 .03 .05 .05	.5 .3 .7 .3	.04 .09 .07 .03 .04	4.5 2.6 < 1.8 3.0 < 3.6 <	.1 . .1 . .1 . .1 .	02 04 02 03 03	5 57 5 22 7 5 3 80 5 4	79.8 26.5 53,7 39.3 46.3	40 8D 65 25 35
L10+00E 4+50S L10+00E 5+00S RE L10+00E 5+00 L10+00E 5+50S L10+00E 6+00S	1,2 1.1 1.5 1.6 1.1	79.0 36.8 36.6 53.3 30.2	29.5 23.3 23.2 22.9 21.5	80 89 88 69 63	.4 4 .7 3 .7 3 .2 2 .2 2	18.8 31.6 30.3 24.5 20.5	26.0 18.1 17.1 12.7 8.6	1338 663 638 423 381	4.67 4.62 4.39 5.30 3.72	223.0 57.9 57.5 100.4 54.8) 1 1 9 1.4 5 1.5 4 6 8 4	<.5 <.5 <.5 <.5 <.5	6.2 2.0 2.0 5.0 2.0	40 31 31 6 7	.3 .3 .1 .3	1.3 .5 .6 .4	1.2 .7 .9 .8	60 73 69 71 79	.71 .58 .57 .13 .22	.093 .050 .049 .059 .070	30 15 15 18 17	42.9 62.5 61.3 46.1 52.7	.79 .54 .54 .55 .40	149 180 176 107 97	.056 .084 .083 .050 .050	1 1 <1 1 1	1.72 1.76 1.75 2.10 1.73	.008 .006 .005 .004 .004	.07 .05 .05 .03 .03	.3 .1 .2 .1	.03 .06 .06 .05 .05	4.7 < 2.3 < 2.2 < 2.1 < 1.6 <	1 . 1 . 1 . 1 .	02 03 03 02 02	5 17 7 10 6 7 7 1	72.8 06.6 16.1 37.1 27.0	30 55 50 45 45
1.10+COE 5+50\$ L10+COE 7+00\$ L10+COE 7+50\$ L10+COE 8+00\$ L10+COE 8+50\$.9 1.1 1.0 1.2 1.0	25.7 21.0 22.6 25.7 16.4	31.3 43.3 63.3 38.5 21.3	70 61 48 70 40	1.8 3 .6 1 .3 2 .6 2 .2 1	13.4 19.6 20.1 26.6 15.5	13.1 8.3 7.6 13.3 5.7	499 513 452 724 447	3.41 3.74 3.81 5.01 2.83	71.7 72.1 113.(123.1 353.3	7 .6 L .5 D .5 L .6 3 .5	<.5 <.5 <.5).7 <.5	2.3 2.8 2.5 3.2 2.4	29 8 8 8 5	.4 .2 .3 .2	.5 .4 .6 .7	.8 2.0 20.1 2.9	67 67 71 85 62	.62 .23 .26 .24 .17	.057 .103 .180 .061 .067	16 16 19 17 23	58.2 51.8 48.7 63.5 37.3	. 48 . 36 . 32 . 40 . 20	102 111 83 121 138	. 104 . 108 . 103 . 142 . 085	1 1 1 1 1	1.55 1.23 1.15 1.57 .97	.003 .004 .005 .005 .003	.04 .04 .04 .04 .03	.2 .2 .2 .2 1.4	.07 .05 .05 .07 .04	1.9 < 1.3 < 1.3 < 1.8 < 1.3 <	<pre>.11111111 .</pre>	02 02 02 03 02	6 6 6 7 17 6	42.0 18.6 99.8 19.5 44.9	65 45 40 60 40
L10+00E 9+00\$ 0.10+00E 9+50\$ 0.10+00F 10+00\$ 0.10+00E 10+50\$ 0.10+00E 11+00\$	1.2 1.2 .7 .9	50.6 17.3 14.8 13.6 14.0	14.2 21.3 18.5 10.5 18.2	34 51 40 40 50	.3 5 .4 1 .2 7 .2 7	51.1 19.5 17.6 17.2 18.0	20.2 7.6 5.8 4.8 6.8	766 728 255 301 581	5.32 4.52 2.18 3.91 3.32	358.6 422.9 48.8 74.9 65.9	6.7 5.5 8.4 5.5 9.4	<.5 <.5 <.5 <.5 <.5	4.7 3.9 2.6 2.0 3.7	3 5 5 6	.1 .1 .2 .2	3.4 .7 .5 .5	5.9 1.3 .9 .7	28 77 47 50 80	.04 .16 .14 .16 .21	.135 .122 .097 .105 .137	25 21 30 22 18	14.7 42.2 20.8 32.1 49.1	.04 .24 .17 .15 .33	43 74 79 66 125	.017 .091 .053 .057 .110	2 1 1 1 1	.42 1.16 .78 .86 1.51	.002 .002 .002 .003 .006	.03 .04 .04 .05 .03	.2 .2 .1 .3	.03 .06 .02 .11 .07	.9 1.3 .8 .8 1.6	<.1<. <.1 <.1<. <.1 <.1	02 02 02 03 02	3 / 1 5 5 8	36.3 53.5 23.1 74.3 41.3	25 60 15 100 60
L10+00E 11+50S L10+00E 12+00S L10+00E 12+50S L10+00E 13+00S L10+00E 13+50S	1.1 .8 1.2 .9 1.5	21.0 25.6 23.2 30.1 23.0	13.4 16.1 15.2 17.4 22.7	87 64 47 71 66	.5 .7 .5 .4 1.2	30.9 29.3 18.2 45.9 28.2	11.4 10.8 6.8 16.4 11.1	484 410 264 474 370	3.92 3.50 3.38 4.26 5.18	252.4 57.3 140.3 58.7 72.9	4.7 3.6 7.6 7.6 9.7	<.5 <.5 <.5 <.5	5.0 4.2 4.6 5.6 2.9	7 7 8 7 7	.3 .4 .3 .9	.5 .8 .5 .9	1.8 .7 1.0 .8 .4	69 71 68 81 61	.24 .21 .22 .26 .17	.075 .065 .067 .053 .166	19 22 23 21 20	69.1 60.0 54.0 75.6 47.0	. 51 . 43 . 27 . 76 . 35	107 162 151 129 82	.115 .100 .098 .144 .069	1 1 1 <1 1	2.27 1.76 1.89 2.30 1.31	.007 .004 .004 .005 .005	.04 .05 .04 .05 .04	.3 .3 .8 .9 .2	.12 .08 .13 .05 .09	2.1 2.4 2.5 2.9 1.4	<.1 . <.1 . <.1 . <.1 .	. 02 . 02 . 02 . 02 . 02 . 03	6 1 7 1 7 4 7 5	91.4 31.8 43.7 66.8 54.4	110 75 115 45 80
L 70+00E 14+00S L 22+00E 0+00S L 72+00E 0+50S L 22+00E 1+00S STANDARD 053	1.3 1.1 1.2 .9 9.4	104.7 24.6 58 3 59.5 128.4	30.9 37.6 168.3 167.6 35.8	52 61 114 102 160	.9 .3 .7 .5 .3	17.5 23.8 48.2 48.6 36.8	7.3 9.7 28.6 28.9 12.4	221 413 2056 1816 804	4.40 3.35 4.83 4.26 3.03	495. 62. 709. 410. 30.	1 .7 4 .5 1 1.4 0 1.2 6 6.5	<.5 <.5 .9 .8	3.4 3.5 11.3 10.2 4.1	15 12 16 13 26	.1 .3 .8 .7 5.7	1.2 .5 1.6 1.4 5.5	1.7 .7 3.4 2.4 5.7	62 63 28 31 78	.03 .30 .25 .23 .51	.128 .041 .048 .052 .095	34 21 32 30 17	13.4 39.7 29.3 29.0 193.9	.03 .39 .36 .38	59 161 137 137 110 161	.013 .082 .036 .038 .081	2 2 1 1 1	,49 1.34 1.05 1.10 1.67	.005 .004 .002 .005 .032	.03 .04 .05 .05 .16	1.7 .3 1.0 1.3 4.3	.02 .05 .03 .03 .27	1 4 1.7 3.3 2.8 2.6	.1 <.1 <.1 <.1 1.1	. 04 . 02 . 02 . 02 . 02 . 03	6 1 5 1 3 8 3 7 6	.57.3 .59.6 .76.7 .98.9 .20.0	15 40 30 30 240
	ĠR UP - HQ	OUP 11 PER L SAMPL GROU	DX - (1mits E typi P 1c	0,50 - AC E: SC - AN/	GM S G, AU DIL S Alysi	AMPI J, HU SSBO LS B	LE LE G, W 60C Y FLA	ACHE = 10 Mele	D WET ID PPH AU* E ISS AF	TH 3 T N; MO BY AC A FRO	ML 2 , CO ID LI M A.I	-2-2 , CD Eachi R. Li	HCL , SB ED, / EACH	- HND) , B1 ANAL' , <u>S</u> 1	3-112 , TH YZE em <u>pl</u>	OAT , U BY I es b	95 & 0 CP-M xegin	0EG. = 2, IS. (nins	C F 000 10 g /RE	OR D PPM; m) / ar		OUR, PB,	DIL ZN, and	UTED N1, (RR	TO 1 MN, E' ar	OMI As, e Re	, AN V, L Diect	IALYS .A, C : <u>Rer</u>	ED B R = <u>uns</u> .	10,1	CP-E 000	S. PPM.					
DATE RECE	IVED	t 0	CT 23	2001	I I	DAT	E RI	EPOI	RT M	AIL	ED:	Ne	0√	,	0	1	S	IGN	RD	вч.(<u>h</u>		- 1 0	. TO'	ſE, I	Ċ.LE(DNG,	J. 1	JANG	; CE	RTIF	IED	B.C.	A55	AYER	S
All results	are co	ns i de	red t	he c	onfic	dent	ials	огоро	e <u>rty</u> (of th	e cl	ient	. Acı			as t	he l	iabi	liti	es f	or e	ctuml	co	st o	f the	ana	lysi	s on	ly.					Duta	A	/IA	. <u></u>

Island Mountain Gold Mines Ltd. PROJECT Island Mountain FILE # A103762 Page 2

samdi F#	Ma	C.,	DL	7.													_		-	_		_											UNE ANALTITUAL	•
Den di Licht		1.0	PD	Zn	Аg	NI	C¢	- Mn	ře	As	U	AU T	h Sr	Cd	Sb	Bi	V	Ca	₽	La	Ċr	Ma I	3a '	íi F	3 A1	Na	ĸ	ы	Ha S	с ТI	c	C 1	A.u.★⊔z	
		ррт	ppm	pbu	ppm	ppm	ррп	pper	x	ppm	ррт	ppb pp	m ppm	ppm	pom	DOM	DDM	2	8	DOM	0.000	3 DI	- ••• VIII:	3 nn	n 12		94 I		000.00	~ !!		01d 0.m	Aur ny	ł
<u></u>														<u> </u>		FF				P.P	PPII	~ 1		~ PP				- nu	<u>hiii h</u> bi	n ppm	<u>. to p</u>	PEN	obo bbr)
G-1 1 10:005 1 505	.9	1.9	1.9	37	<.1	4.4	3.5	485	1.63	.3	2.7	<.5 S.	1 53	<.1	<.1	1	35	47	ngg	6	13 1	10.10	11 30	17 1	מד ו	0.45	10	n .		~ -	~~			
L12+00E 1+50S	6	59.5	20.2	49	.3	23.2	30.9	1017	4.72	638.5	1.3	<.51	7 27	2	ĝ	1 4	12	40	097	10	17 7	11 0	10 .L(10 h)	, 17 17 - 17	1.73	.045	.45	2.4<.	01 1.2	>ي. 2	.02	4	.5 <1()
L12+00E 2+00S	1.0	33.3	- 24.4	108	7	41.8	19.8	1477	3.52	375.4	28	< 5.2	0 37	7	า่จั	1 1	11	71	070	17	50.0		22 .01	- OL		.003	.03	.4.,	UG 1.4	4 < 1	.04	1	186.9 60	.)
Li2+00E 2+50S	1.7	61.4	73.9	118	2.5	45.5	18.2	3718	3.62	684 0	6 1	51	0 60	2 0	2.0	2.0	44	1 24	.0/0	1/	52.2	.58 1.	14 .0	52 <	1.50	.005	.05	.5.	05 3.4	0 <.1	.03	4	86.5 50	J
L12+005 3+00S	1.2	27.4	57.8	53	1.0	23.0	8.7	297	1 21	298 0	7		0000 001	2.0	1.0	3.0	40	1.24	.105	11	59.9	.40 2.	LL .02	29 2	2 1.77	.004	. 08	.6.	13 2.1	7.1	.08	5	160.1 139	5
					1.0		0.1	207	0.04	200.0	. 1	2.	2 21	-7	1.8	2.2	66	. J_	.042	16	45.7	.22 1	13,00	54 - 3	1.44	.003	.04	.6.	05 2.1	0 < 1	.02	6	698.5 50)
L12+00E 3+50S	11	33 q	42.6	65	6	20 0	12.2	601	1 (1	228.3	,	ć o	r .																					
L12+00E 4+00S	1 0	จักับ	ר מר	70		14 D	17.1	501	3.00	230.2	.0	<.5 J.	6 8	.4	1.3	3.6	53	. 23	. 082	19	43.9	.37 10	21 .00	55 <)	1.35	. 003	. 04	.4 .	06 1.1	7 < .1<	02	5	167.8 60	n
112+00F 4+50S	10	16.3	14.4	70		12 0	1/.1	200	3./3	142.8	.5	<.53.	/ 9	.5	1.2	1.1	62	.32	.061	19	59.1	.64 1	1,09	97 1	1.82	.005	.05	.3 .	05 2.	1 < 1	02	5	66 3 44	Ś
L12+00E_5+005	1 0	44.1	10.0	50	.4	13.0	0.2	311	3.08	87.6	.4	<.5 2.	55	. 2	.7	. 9	55	. 19	.116	16	40.1	. 23	71 .07	79 :	1.14	005	.03	4	05 1	2 < 1	02	5	10 9 50	Ĺ
112+00E 5+60S	7	74.1	10.0	29	.8	17.0	9.2	459	4.96	905.4	.5	.δ.	88	.3	15.0	.8	54	.23	.120	16	44.0	.27 13	33 .04	17	1.22	017	04	3	06 1	2 < 1	02	č	560 7 60	ā
E14.00E 0.000	. /	20.0	19.0	70	.2	38.4	16.4	639	3.53	309.2	. 4	.73.	3 12	. 2	.7	3.0	61	.36	.065	21	56.8	.63 1	71 08	13	1 63	003	04	3	07 2	3 < 1	02	5	560 G G	2
112×005 6±005	1.0	00.0		~~		~ -																					,		00 2.0	2 ~.1	.02	5	000.2 31	,
112+00E 6+003	1.0	20.2	22.9	63	.2	25.3	8.6	313	3.67	95.7	.4	<.5.3	67	.2	.5	.9	66	. 20	.074	15	54.1	46 14	16 1 1	5 <'	1 51	004	04 -	1 1	n= 2 /	۱ <i>د</i> ۸	0.2	6	100 0 11	r
L12-00E 7-00E	.9	3[4	Z0.9	63	. 1	37.1	11.7	383	3.70	101.4	.5	<.5 2.	99	.3	.5	1.2	68	. 27	.052	19	67 7	์ คับ ไว	99 10	14 1	1 00	004	- 04 .	1.1	מב בני	0 ~.1 6 ~ 1	.02	0	130.5 4;	נ ר
L12+00E 7+00S	- 9	27.3	17.6	59	.2	29.7	10.0	365	3.86	108.1	.6	<.5 1.3	8 10	.3	.5	1.1	66	26	056	ĩá	60 1	49 19	50 .10	10 1	1 00	000	00.		00 Z.C	D 5.1	. UZ	b .	247.1 5	2 -
L12+00E 7+505	.7	29.Z	17.6	72	. 5	42.4	16.5	1263	3.39	188.6	.8	<.5 2.	2 13	.3	.6	1.8	59	34	070	10	68 7	56 11	10 .uc	י קנ א חל	1 1 74	.005	.05	.1.		2 5.1	.02	6	61.9 50	3
C12+00F 8+002	. 9	19.2	15.5	54	. 4	20.9	7.6	344	3.43	93.1	.4	<.5 2.	2 9	2	4	11	64	26	071	17	47 7	26 II	10 .00 12 .00	א של ה ביו	1.74	.005	.05	.Z .	04 2.7	/ <.1	.02	5	74.4 40	0
																	~		,0,1	11	•• <i>r</i>	.50 11	.z . n	13]	. 1.34	. ມບຸລ	-03	.1.	04 1.4	4 < 1	.02	6	140.8 40	0
L12+00E 8+505	. 9	21.4	14.6	50	.3	17.9	6.8	355	3.04	279.7	.5	< 5.2	16	2	7	20	46	20	146	17	20.0													
L12+00E 9+00S	. 9	20.4	29.3	24	.5	10.0	3.7	185	3.21	1401.6	4	51	0 7	5	1 0	34 0	20	17	-14J -210	1/	30.V	. <u>.</u>	4 .03	94 J	1.07	.001	.03	.4 .	05 1.3	1 <.1	.02	5	119.4 5	5
L12+00E 9+50S	. 8	13.5	12.9	32	.4	17.7	5.7	288	4.13	1079 6	5	277	Š Á		1.0	2.7	25	. 17	061	54	19.0	.00 8	SI .02	26 1	. 55	.003	.03	.2.	05 .6	5 <.1	03	4	520.6 51	D .
L12+00E 10+00S	.5	12.6	11.5	23.	.4	7.1	3.0	479	2 45	749 2		< 5 1 i	5 1	· 1	.0	1.0	20	.00	1001	32	24.3	.14 t	1. DA	14 1	77	.001	.03	.2.	04 1.0	0 <.1	.02	4	2694.5 3	5
112+00E 10+50S	. 5	9.2	7.3	15	1	9.4	4.0	171	1 56	108 4		~ 5 2	7 1	- <u>-</u> - T	.0	1.5	20	.09	.089	26	16.5	.05 8	6 .02	23 1	, 49	.001	.04	.1 .	04 .4	4 <.1<	.02	3	472.7 3	5
			-					1.1	1.00	100.4	. 4	~.JJ.	<i>,</i> 2	~.⊥	с.	1.4	24	.00	.055	39	10.0	04	31 .01	12 2	2.41	.002	.03	.1.	01 /	4 <. <u>1</u> <	.02	4	9.2 1	0
L12+00E 11+00S	.8	19.6	19.8	58	6	19.8	8.9	345	3 51	39 E		- 5 - 5		-		,	~ 1					_												
L12+00E 11+50S	. 9	28 B	15.7	92	ä	29 1	16.4	104.1	A 31	101 C		a.ş.	4		.4	.6	61	.15	.067	17	43.3	.36 8	17 .QE	53 <1	1,69	.003	.03	.9.	06 1.4	4 < 1	.02	6	82.9 5	Û
112+00E 12+005	ġ	20 5	18 9	17	. с Б	21 1	7 6	207	9.11	101.0	.5	5.5 / .	25	.3	.6	.8	46	. 12	.064	21	46.6	.45 9	17 .04	4]	2.03	. 0 04	. 04	.2.	05 1.9	9 <.1	02	5	228 1 6	ñ
RE 122+008 12+509	ģ	28 9	13 0	60		יע בב ריסר	11 0	302	3.00	30.4	.5	.5 2.	28	- , Z		.8	62	. 25	. 058	20	38.4	.40 11	.7 .07	נ וי	1.34	.005	.04	.1 .	03 1.(6 < 1	02	5	69.5 3	ñ
L12+00F 12+50S	ġ	20 1	14.7	70	. 2	20.3	11.7	305	4.13	41.7	.6	5.5 5.	/ 5	.2	.4	.3	51	.12	.058	23	45.7	.56 6	15 .04	18 <]	1.98	.006	.04	.1	06 2 (0 < 1	02	5	81.6	ń
	. 2	22.1	14.0	70	.ა.	27.0	12.0	3/3	4,20	28.6	.6	<.5 6	ι 5	.Z	.4	.3	53	.13	.061	23	47.2	.57 E	17 .04	18 1	2.02	.003	.04	1	07 2 r	6 < 1	02	ŝ	9.6.7	ń
12+00E 13+00S	٥	11.2	17.2	22	-	• •		100	D 70																					, <u>1</u>		~	3.0 7	5
112+00E 13+60S	. 7	10 6	17.2	კ კ იი	.3	9.4	3.2	136	2.73	27.7	. 4	<.5 4.	L 5	.2	.3	-4	68	.15	. 059	15	31.1	.16 6	i6 .07	'9 <1	1.19	002	02	2	05 1 :	2 10	02	2	ים בי	•
112+006 14+005	. 7	19.0	28.0	28	.4	1.5	2.3	70	1.48	26.0	.3	<.51.	2 7	<.1	.3	.4	50	. 80 .	. 057	18	15.2	.05 E	1.03	17 2	51	004	.02 <	:1	01	1 . 1~ 7 e 1e	02	é	24 0 1	5
1144005 04003	, o	3.5	14.5		.2	3.9	.9	22	.67	27.4	. 3	<.5.1.)	6	<.1	.3	.4	30	.02	.044	18	9.3	02 4	2 01	6 1	27	015	01	. 1 .	ייני ערות	· · · ·	. 02	0	24.0 L:	2
14+00C 0+005	1.5	60.I	297.7	/9 7	2.3	49.3	22.5	1394 .	5.49	816.8	1.4	6.9 5.7	/ 13	.6	4.8	28.7	19	.20	052	17	19 0	23 E	5 02	10 1		.013	04 5	·· 1 · •	יר גנ מיר גנ	+ ~. 1~	.02	4	1 6.00	р Г
CT4.0NE 04202	1.3	54.3	195.8	85 8	2.3	54.7	22.3	1592	5.56	579.9	1.6	4.0 4.7	15	.6	4.9	21.0	24	24	056	17	23 6	24 7	1 02	15 1	.73	- 002	.04 2	. 2.	34 Z.U	J < . I	.05	2	6864.8 34	3
Lid.Out a one													,		• • •						20.0		1.02	1	•00	.004	. 1/5		JF 2.4	+ ≺.⊥	.03	2 -	4038.8 7	Ś
1.14FUUE 1+UUS	1.5	55.4	194.6	92 🕽	1.7 6	54.5	27.4	2777	6.38	773.6	L.6	3.7 8.2	2 17	.8	4.4	18.0	15	21	052	20	15.6	20 0	1 01		<i>.</i>	000	· · ·	•						
E19+002 1+50S	.9	45.0	181.9	-82 (5.1 §	6.7	25.9	1732	6.50	678.9	1.6 2	5.7 7 7	20	8	3.6	32 7	16	35	151	2.V 1.A	10.0	20 D	1 .VI 0 00	4 <1	- 64	.003	.04]		21 2.6	ง<.l	.03	2 3	3/1/.5 20	5
L14+DDF 2+005	2.01	162.7	199.1	99 2	2.1 5	58.0	25.5	2483	7.78	289.8	1.5	7.774	31	7	2.3	12 0	5	. 60 . E.I	, 404 A32	24	10.U	40 5	0.02	1 I	.13	.003	.03 1	/ .!	J3 2.E	j <.1	.11	2 2	5667.3 30	a
L14-00E 2+50\$.6	31.7	110.0	69]	1.1.3	36.2	18.5	1221	5.01	358.2 1	5	3.27	17	 	2 1	17 0	10	21	063	0 00	0.Z.		7.00	1 ~1	1.34	.006	.02	.4.1	JZ 2.7	/ <.l	.10	4	7676.7 19	5
STANDARD DS3	9.01	.26.3	34.4	151	.3 3	35.6	11.6	781	3.15	30.1 6	ž	< 5.3 0	25	. 	51	E E	19	.01.	000	23	19.0	2/ b	8.01	5 1	. 91	.002	.04 3	.8.()2 2.Z	2 <.1	. 02	3 3	3166.7 1	5
			_		_		#						20	9.0	3.1	J.0	10	. 55	030	-17 I	5 9.6 .	5/ 14	4,08	32	1.71	.026	.16.4	.1.3	22 2 E	i 1 0	03	6	22 0 224	۶.

Sample type: SOIL SS80 60C, Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA
ACHE ANNI VTICAL

Island Mountain Gold Mines Ltd. PROJECT Island Mountain FILE # A103762 Page 3

SAMPIE#	Mo	<u>.</u>	0h		A -												_															ACHE AN	ALYTICAL
	112			20	Ag	N1	CO	Mn	Fe	As	U Au	Th	Sr	Cđ	Sb	Bi	٧	Ca	Р	La	Cr	Ma A	a Ti	A	Δ1	Na	¥ 1	W Ha	- Co. T	· ۲	<u></u>	A	
	_ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ĩ	ppm	ррт ррБ	ppm	DDM	DDIR (DOT	Dom	DOM	Ż	X	0000	100	2 on		000	ni v	110	r i	a ny	1 - 24	. <u>)</u>	68	Au*	нg
<i>C</i> 1															<u> </u>					P P		* 77		, hhui		*	* pp	<u>m ppm</u>	opm ppr	n %	эрт	ppp	pop
	. 9	1.6	1.7	37	<.1	4.6	3.5	469	1.48	.2	2.5 <.5	4.8	56	< 1.4	: 1	1	22	45	000	6	11 0	40.00	7 100					• • • •					
_14+00E 3+DOS	.2	44.1	58.2	56	.2	26.0	16.4	830	2.31	99 0	12<5	14 4	12		7	1 2	55	16	0.020	20	11.0	.48 20	/ .106	1	./4	. 046	.41 2.	2<.01	1.2 .3	3<.02	4	<.2	<10
L14+00E 3+50S	1.4	76.0	122.8	97	.9	31.9	19.9	1007	4 95	073 0	1 1 2 1	6 2	10	.0	· ' ·	1.0	2	. 10	.042	30	/.4	.10 2	9.002	: 1	. 47	004	.04 1.	5<.01	1.1 < .7	l<.02	1	365.7	<10
L14+00E 4+00S	1.0	38.8	92 7	69	12	25 A	14 3	820	3 LA	272 3	710	0.2	Zu	.01		10.0	<u>52</u>	. 3Z	.067	26	27.2	.30 9	5.032	<]	1.00	005	.04 2.1	9.05	2.3 <	L.02	3 2	2139.4	50
114+00E 4+50S	1.0	23.0	36.6	68	1.2	20.V	14.0	02Q	0.00	3/0.3	./ 1.8	3.0	14	.3	. 4	6.4	50	- 31	.065	18	35.6	.35 12	5.059	1	1.19	.003	.03 1	2.07	1.8 <	< 02	4 1	792 6	65
		20.9	50.0	υü		21.0	2.0	474	3.80	193.9	.5 <.5	3.7	7	.2	-8	1.3	65	. 23	. 101	17	47.9	.40 12	5.086	1	1.65	.004	03.2	2 08	17 <	< 02	6	147	00
[14+08E_5+005	1 1	24.0	40.0	70	-	~1 ~																		_				40	1.17	L Wr.	U	147.1	00
114+006 5+605	1.1	04.9	40.6	78	.5	21.9	11.2	977	4.12	311.3	.6 <.5	3.2	17	.21	1.1	1.6	57	. 41	.104	17	33.9	30 14	5 078	1	1 00	005	04	1 00	1 5	1 00		164.0	
114,000 6,000	.9	51.0	25.3	74	.4	40.1	19.4	1091	18.E	95.5	3.2 <.5	2.7	32	.4	.8	.8	61	.59	067	18	62 0	64 12	0 050	1	1 00	005	.04 .	7.00	1.0 4.1	1.03	5	154.9	80
L14+00E 5+00S	(29.8	18.3	72	.2	33.B	15.2	598	3.09	68.7	1.1 <.5	3.0	24	2	6	Ŕ	52	54	038	16	17 0		5 .030 6 .070	1	1.09	000	.04 .	2.09	3.5 .	L .G2	6	58.7	90
L14+00E 6+505	.6	26.9	22.7	64	.3	39.3	16.7	563	3.18	101.8	1.0 < 5	3.2	27	2	Ă	1 5	67	50	041	16	57.3 67.4	.00 0	0 .V/V 0 .DC	1	1.38	- 003	.04 .	3.04	2.2 </td <td>1<.07</td> <td>5</td> <td>117.8</td> <td>35</td>	1<.07	5	117.8	35
L14+00E 7+00S	. 8	30.8	19.5	56	1.0	22.7	10.2	444	3.48	61 2	5 5 5	1.6	13		Ā	1.0	74	. 35 . 30	0.071	14	J4.4	.02 10	2.080	· 1	1.51	.005	.04	2.04	2.7 < .)	1.02	5	150.8	45
												1.0	10	. •	. 4	./	/4	. 00	.020	14	91./	. 28 11	0.111	T	1.42	.004	.03 .	1.06	2.2 < 1	L.03	7	94.2	60
L14+00F 7+50S	.8	28.2	14.8	63	.6.	33.2	11.8	392	3 38	53.4	1 ~ 5	20	10	-			<i>c</i> 0	-															
L14+00E 8+00S	. 8	27.6	14.3	74	1	40 A	16.2	620	3 20	102.4	.4 ~.0	2.0	10	.4	.4	.0	62	.33	.049	17	51.5	.69 14	1 .082	1	1.65	.006	.04	2.04	2.0 <.1	l<.02	5	49.5	35
L14+00E 8+50S	6	18 1	10.4	60	- ĵ.	26 0	0.2	105	3.00	102.5	.5 5.5	3.5	Ч	.3	./	1.8	68	.31	.071	18	65.7	.64 13	3 .106	1	1.76	.004	04	3.05	2.3 <.	< 02	5	98.7	50
RE L14+00E 8+505	7	18.2	10.2	67	. 2	20.0	2.1	402	3.2/	36.0	.4 <.5	2.4	6	.3	.5	1.2	82	. 31	. 057	14	59.1	.50 16	7.142	1	1.70	.004	03	1 06	19<	< 12	7	0.7 07	<u>20</u>
114-006 9:005	. '	26.6	10.6	40		20.2	9.2	397	3.20	35.4	.4 <.5	2.3	6	.2	.4	1.2	61 .	. 30	. 055	14	59.5	.50 15	8.139	1	1.64	006	0.3	2 05	1.0	02	',	50.7	00
CT1 002 3.003	. 9	20.0	10.0	οŲ	. 4 .	33.9	12.0	434	3.30	187.9	.5 <.5	4.2	7	.3	.6	1.9	53	. 21	.072	21	46.9	.43 12	2 076	1	1 4R	005	0/	2 .00	102	1.02	<i>'</i>	1.00	40
114-005 0.505	~				_																			÷.	A - 70	.000	.u+	ε.υο	1.7 5.1	L~.UZ	2	143.1	50
L14+00C 3+303	.8	21.2	15.8	61	.23	38.BE	16.1	529	3.40	7B.6	.5 <.5	4.8	8	.2	.9	1.2	59	27	050	20	47 7	50 10	7 117	,	1 40	000	0.4	~ ~~			-		
114+00E 10+00S	./	21.0	18.0	36	.\$;	21.3	9.1	635	2.51	74.0	.5 <.5	4.7	8	.1	8	1 7	58	17	643	24	25.5	10 10	, 111 E 000	1	1.42	.002	.04 .	2.03	1.9 <.)	L<.02	5	158.1	30
L14+00E 10+50S	.9	16.1	13.4	53	.5	15.9	6.6	267	3.19	47.8	.5 < 5	4.5	Ř	3	١. ۲	- i i	64	10	040 053	10	40 C	.10 10	0 .090 1 107	1	. 14	.006	.04 .2	2.02	1.6 <.)	l<.02	5	37.1	25
L14+00E 11+00S	.9	24.4	11.6	72 0	1.9 ;	25.9	10.6	359	3.48	176 0	5 < 5	4 0	ă		÷.	.0	E0 .	-12. 00	100	10	40.0	. 22 10	1.107	1	1.66	.004	.03 .;	3.10	: 1.5 < .}	l 02	7	/3.7	100
L14+00E 11+50S	1.1	21.8	11.9	53	.4	19.9	10 3	323	3 52	332 5	6 5	6 6	ć		.0 c	1 0	- 28 . CE		.129	10	48.3	. 33 10	5.075	1	1.46	.001	.04	2.00	1.7 < ?	L.02	5	215.2	80
								~.~	U.UL	102.0	.0 ~.0	0.5	Ð	. 2	.0	1.0	65.	. 12 .	.061	22	41.5	.17 9	4 .081	<1	1.51	.004	.03 .;	3.06	1.7 <.!	L.02	7	260.7	65
114+00E 12+00S	1.1	15.0	15.0	39	3	13.5	5 4	217	2 34	136.0	A A F	4.0	-	_		_																	- 0
L14+00E 12+50S	1.4	39.4	17.8	Ai .	1 1 1	10.0	11 2	217	0,04 4 69	132.9	.4 5,3	4.8	2	.Z	.4	.7	77 .	.15.	.051	16	45.9	.20 6	8.085	<1	1.47	.004	.02 .2	2.05	1.5 < 1	02	А	199 6	65
L14+00E 13+00S	1 4	26.2	16.3	- 01 J	1.1.1	17 A	11.3	200	4.03	10.5	.9 < 5	4.8	13	.2	.5	.6	66 .	. 19 .	. 208	14	61.7	.43 14	7 .063	<1	2.30	.006	D4	3 09	30 <	D4	Ę.	160.7	0L
14+000 13+505	1.4	1.0.2	0.1	0.0 1	L.9.	17.0	5.6	148	4.26	88.5	1.0 <.5	4.5	8	.2	,4	.7	84.	. 18 .	. 297	13	66.2	.26 13	0.065	<1	2 69	D02	62	1 00	27 1	1 00 1 00	7	220.0	200
114+00E 14+00S	.0	16.3	12.2	40.1	.5	2.7	.8	32	.98	33.2	.3 <.5	1.9	6	.1	.1	.1	23 .	.04 .	103	16	12.2	.03 6	9 015	ī	33	001	0.7 - 1	1 02	1. 1.2 1. 2.2	L .UZ Le 0.2	, 1	330.8	200
114.001 (4.001	. 7	10.5	13.2	49]	1.5 2	24.4	8.0	190	3.18	15.8	.4 <.5	3.9	8	.2	.3	.3	93.	.31 .	108	15	53.9	42 23	125	ī	1 70	004	02 1	1 04	1.4 0.4	- 02 - 02	5	1.H	30
1 16+005 0+005	1.4	77.4																				, 12 28.		-	1.1.1	.004	.00 .1	1,00	2.7 5.1	S. 0Z	/	26.9	60 -
LIG-00C 0+005	1.4	33.4	227.9	77-1	23	30.6	20.7	731	5.34	395.0	.3 1.3	.6	7	.31	.2	9.7	33	12	159	17	12 /	16 A ⁻	7 000	-1	70	000		0					
LIG+UGE 0+505		23.8	141.2	87 4	1.2]	[4.0	5.5	207 -	3.32	197.5	.51.3	2.7	11	.5	9	A 2	31	05	112	17	22.4	-10 44 24 26	009	~1	./u	.002	.02 1.2	2.05	1.4 <.1	. ,04	31	263.8	50
L16+00E 1+005	1.0	26.8	41.9	59	.7	9.4	8.3	412	3.77	185.7	4 .5	T.4	5	2	7	1 6	01 .	n7 .	072	20	14.0	10 40	010	<1	.88	.003	.02 .4	1.04	.71	04	71	.316.8	45
L16+00F 2-005	1.6	46.9	115.7	99	.9.3	37.1	12.9	352	5.08	312.1	9 5	10	Ā	63	٠, د	3.U 3.E	70	07.	1072	20	14.0	.19 49	9 .027	<1	1.00	.002	.02 1.(J.02	1.3 .1	02	7	484.2	25
L16+00E 2+50S	1.3	27.8	31.0	43	.81	2.9	6.4	314	1 40	141 3	5 5	1 4	7	.uu 2	.u 0	3.0	20.	.07 .	103	20	32.6	.24 38	.031	<	.93	. 002	.03 1.8	3.07	1.1 < 3	03	J	461.4	70
									2. TV	171.J		T'#	4	. C	.0	1-4	37.	08.	091	21	20.6	.24 63	L .018	<l< td=""><td>1.09</td><td>.005</td><td>.02 .;</td><td>J.04</td><td>.8.1</td><td>. 02</td><td>S</td><td>518.1</td><td>45</td></l<>	1.09	.005	.02 .;	J.04	.8.1	. 02	S	518.1	45
L16+00E 3+00\$	1.4	46.4	43.5	66	.3.2	3.6	14 1	832	5 60	34 7 A	6 ~ 6		-	~ •	•																		
-16+00E 3+50S	1.2	59.2	32.9	73	6.3	กัจ	17 8	1043	1.00	1/C/ .U	.00	3.7	/	-21	•/	1.6	41 .	12 .	101	19	24.3	.36 110	023	<]	1.28	.002	,02 .7	60. /	1.2 1	.02	5	238 6	60
116+00E 4+00S	1.1	42 7	84 1	80	.00	16.2	47.0 Q.Nt	1066 -	2.00 67	440.1	.7 <.5	8.Z	9	.41	.6	1.7	33.	.14 ,	173	19	39.7	.44 100	.026	<1	2.55<	.001	03 1 3	3 . 15	23 < 1	03	Ā	138.0	145
L16+00E 4+50S	11	25.3	22 6	62.1		.u.z. /	10.0 0.0	1000 1	2.05.	1315.1	.a <.5	4.0	6	.3 2	.2	8.7	40.	13.	071	21	44.2	.46 86	5 .038	<1	2.03	.001	.03 3 1	10	17<1	02	č	174 1	105
STANDARD DS3	<u>0</u> 13	25.6	22.0 71 C	ປວ 1 160			3.3	592 4	1.04	92.7	.5 < 5	2.5	7	.4	.7	.9	68.	17.	110	16	44.8	37 125	5.073	<1	1 49	002	n4 9	1 na	16 ~ 1	. 02	с С	1/4.1 30 P	105
		29.0	JH.O.	100	.33	a./	12.0	/05 :	5.02	29.8	6.3 < 5	3.8	26 5	i.5 5	. 1	5.6	76.	52 .	096	17]	85.8	.57 155	.081	1	1 66	032	16/0	1 26	2610	. 02	6	20.0	32
								-												_				-		, out.	· zv – . U	/ .CU	1. U U U	.UÇ	0	ZU.9	∠nu

Sample type: SOLL SSB0 60C. Samples beginning 'RE' are Reguns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

Island Mountain Gold Mines Ltd. PROJECT Island Mountain FILE # A103762 Page 4

SAMPLE#	Mo	Сц	, Pt	> Zn	Aq	 Ni		Mn		Δs		<u> </u>						_		·												ACHE I	NALYTIC	۸L
	ppm	ρ _	ppn	n ppm	ppn	ppm	ppm	ррт	ž	ppm	ppm pp	ь рра	i an i ppm	ppm ppm	DDM	וש ססח	V Tradi	Ca X	Р Ул	La	Cr Opm	Mg B	∃ Ti	В	A1	Na	ĸ	W	Hg S	: Tî	SG	ia ,	Au* I	нg
G-1 U16+008_5+005	.9 i 1	1.9	2.0	37	<.1	4.0	3.8	495	1.55	.2	2.8 <.	5 5.5	58	<.1	<.1	.2	35	.47	.096	<u>مرمر</u> 7	12.1	49 19	"4 7 112	рря ~1	 75	- 3 041	 47	ppm p	ipm ppi		t pp	<u>m</u> p	ppb pj	<u>, p</u>
L15+00E 5+50S	.7	30.8	34.1	. 89	.5	24.5 20.5	8.5 12.6	304 2910	4.40	322.7	.5 <.	5 4.0 5 1 4	7	.3	.6	1.6	65	. 18	.048	17	52.0	48 11	5 .078	-11	.89	005	.03	2.3~.	$\frac{11}{11}$	۔ ا > د	.02 .02	4. 6.7	<.1 <. 1 0 1	10 15
L16+00E 6+00S	.6	26.2	16.0	64	.1	22,6	11.4	572	4.10	37.5	.8 <.	5 7.1	7	.3	2.4	8.3	42	- 26	.109	18	32.1	31 27	2.030	11.	.14 .	006	.05	1.8 .	06 1.	/ 1	.02	4 6	5.1 (65
FIG-005 0+302	.7	49.I	57.2	80	.4 .	38.8	21.9	2699	4.64	305.1	1.3 <.	5 6.2	61	.4	4.7	1.8	36	1.00	.093	40	28.5	59 11	1.040		.89 . .56 .	E00 003	.03 .04	.3.	04 2. 06 4	1< 2 < 1	. 02 ! . 02	5 <i>1</i> 4 5	8.3 4 1.7 :	15 70
L16+00E 7+00S	.7	42.3	15.2	57	.3	21.9	10.9	445	3.92	666.1	.6 <.	5 2.0	7	.2	2.6	1.2	59	13	070	24	72 5	45 10	000	-11	E 1	000	A2					_		-
L16+00E 8+00S	.8	13.5 39.9	15.5	53	.3	17.0 35 5	6.4	312	2.47	36.2	.3 <.	5 3.4	6	.2	.4	.7	78	28	.D79	18	37.0	27 13	.026 7.136	11.	. סו . 07 .	003	.03	.2.	04-2.1 03-1 4) .l 5 < 1e	.02 ! 02	5 78 7 3	8.5 ×	10
L16+00E 8+50S	. 9	47.8	29.2	82	.3 (61.6	23.2	1293	4.04	83.3	.s<, .6<.	5 6.1 5 4 9	20	.1	.5	.6 1 1	63 70	.40	.057	21	46.9	68 17	.111	11.	40 ,	005	.05	1	02 3.9	- I<	.02	5 16	4.0 5.0 (20
CI0+00E 9+002	.6	46.0	12.0	42	.2	46.8	24.3	922	4.64	1006.6	1.3 <.	5 11.6	ŷ	1	1.3	1.5	17	16	.036	39 39	23.4 .	86 21 24 - 88	5 .145 3 .020	22.	.04 .+ .75 .•	008 003	.09	.3.	05 5.1 03 3.1	I <.1 I <.1	.02	76.	7.5 !	50 70
L16+00£ 9+50S L16+00F 10+00S	1.2	32.2	126.7	68 67	.8 (39.0	14.2	487	3.63	406. 2	.7 <,	5 5.0	10	.2	.8	4.3	55	.27	.062	20	50. 4	47 100		21	E 0 1	002	04	-	ar a 1					
L16+00E 10+50S	.5	24.7	308.8	05 19	.3. 4.03	38.Z 31.3	17.9 14 Q	325	4.13	105.D	.8≺.: ววว	5 7.9	10	.2	1.1	7.0	39	.25	.061	26	37.9	44 72	2.072	<11.	13 .	003	.04	.2.	05 Z.1 03 2.3	: <.i / <.l<	.02 :	5 // 3 B	/.9 4 ⊺⊓ 1	45 20
L16+00E 11+00S	.5	52.4	20.2	107	.1 6	54.D	51.6	1162	5.51	57.9	.7 <.!	, 7.2 5 12.1	4	.2	14.8	/59.2	13 11	.06 n3	.024	24 12	17.3 .	13 82 12 01	2.007	<1	63 .1	D03	.05	.3.	06 2.9	1.3	.06	z 336	9.0 6	55
E10+00E 11+503	1.2	44.5	21.4	79	.2 5	52.6	17.5	579	3.67	134.9	.8 <.9	5 6.4	12	3	.7	2,2	53	29	.084	25	53.4 .	61 14().099	11.	.56 .1 54 .1	003 004 .	.05 .05	.4.	03 2.9 04 2.6	/ < .1 i < .1	.02 . .02	1 Z9 4 14/	9.0 (9.2 /	30 40
L16+00E 12+00S L16+00E 12+50S	14	24.8 11.5	31.0	63	.4]	19.6	5.8	199	3.87	35.7	.6 <.!	5 3.8	14	.3	.5	.6	102	.26	-213	16	39.0	25 113	. 111	11	17 (104	n£	,	04 1 6					
RE 1.16+00E 12+50S	1.3	11.2	17.3	43	.61	ເສ.4 ເ3.1	4.7	107	2.67 2.67	15.2	.4 < !	5 4.4	6	.3	.3	.4	79	.23	.142	18	39.9	21 10(.075	11.	66 .(002	.05	.1.	04 1.9 10 1.9	: .↓. ↓<.}<	.03 : .02	3 10 7 2	י 6.6 ונר ל	40 04
L16+00E 13+00S	1.9	28.8	33.3	80	1.2 3	36.0	11.2	248	4.54	67.5	.7 <.1	5 6.4	9	.2	.3	.4	81 71	.23	.137	19 · 21	40.0 . 65 0	21 98 40 176	.086	I 1.	68 .0	003	. 02	.2 .	10 2.0	1<	. 02	7 29	9.5 10)5)5
115 000 13+343	4.3	20.7	23.9	83	3.6.3	3.5	9.9	225	4.25	37.3	1.0 <.9	5.0	10	.2	9	.3	79	.29	.263	15	76.5	51 176	082	<1 2.	78 .(004 006	.04 .05	.3. .2.	08 3.0 14 3.0	⊧<.1. J<.1	.02 : .02	5 74 7 1!	4.8 8 5.3 14	35 45
L16+00E 14+00S 218+00E 0+00S	1.4	6.8 45 8	13.9	24	.4	4.7	1.5	40	. 96	28.0	.5 <.5	5 2.7	8	.1	.5	.3	38	.06	.030	24	12.6	05 70	023	ł	10 r	בחו	07	- 1	<u>.</u>					, a
118+00E 0+50\$	1.1	44.9	104.0	95	1.2 3	97.1. 1.8.:	10.5 22.5	708 - 1439 -	4.20 3.91	463.7 230 a	.82.8	8.5	7	.6	2.7	41.0	34	.12	059	25	32.8	35 90	.047	11.	16 .(. 201	.04	4.9	02 .7 05 2.3	.>L. >1.> (.02 : .02	o 37 4 284/	1.3	15 : 50 <i>i</i>
L18+00£ 1+00S	1.3	19.4	46.7	64	.61	9.6	9.0	375 :	3.64	127.9	.5 .8	4.4	6	.0	1.4	2.1	44	.12	.048	32 24	18.7 ,	25 87 21 04	.028	1.	66.0)03 .	.05 1	6.5 .	01 2.4	< 1<	.02 :	2 1829	5.3 1	15
210-00E 1+5D3	1.0	10.2	26.1	69	.61	9.3	8.9	346 3	3,49	74.2	.5 <.5	4.6	6	.4	.5	.9	44	.18	.056	19	45.4 .	31 62 31 62	.076	11.	51.U 80.O	103 . 101 .	.03 .03	1.0 . 1.0 I	07 1.4 18 1 6	<.I<. . < 1	.02 ! 02 !	5 822 5 301	2.28	30 10
18+00F 2+00S	1.l	11.0	83.7	73	1.3	9.1	3.5	205 ;	2.43	125.1	.4 1.3	2.1	3	.2	1.0	4.9	28	08	043	24	13 6	סכי לו	021	,			•••				V2 .	1 307	.4 3	
L18+00E 3+00S	$1.6 \\ 1.6$	14.0 36.5	29.5	- 48 126-1	.51 גרו	1.0	4.5 20 c /	173 2	2.33	186.6	.5 2.1	3.0	4	.1	.6	2.2	32	.06	056	26	11.7	17 20 17 37	.032		57.0 55.0	103 . 104	.03 03	.7.1)4.5 13.6	<.l<.	02 3	3 1323 3 2004	3.8 4	10
118+00E 3+505	1.2	28.5	134.4	67 j	L.O L	6.4 1	20.0 - 10.1	864 4	1.49	262.0	.4 < 5 6 1 4	.7	31	.6	.6	1.7	48 46	.48	. 199	17 4	46.0	42 163	027	Ĩ 1.	77 .0	07	05	.7	10 2.5	<.1	.07 .5	3 2096 5 131	.1 3 .810	iu)5
C18+00F 4+005	.3	5.8	14.3	18	.4	4.5	1.7	121	.76	44.1	.2 <.5	.5	5	<.1	.2	1.3	45 26	.08	.194 .024 ;	17 7 23 1	27.6 .) 11.2 .(14 61 05 34	.026	1 .	76.0 49. n	102 . 102	03	.9.(2.()5.9	<.1	02 5	5 1385	.2 5	jū
L18+00E 5+00S	1.1	30.5	20.2	70	.4 2	2.3 1	10.4	435-3	1.76	74.0	,5 < 5	3.9	9	.2	. я	٩	40	19	000	16	5a r	10 A-						.2.1	ы <u>с</u> ,4	~.1<.	vz t) TA9).3 2	.0
L18+00E 6+005	.9 A	20.4	23.3	80 46	12	1.11	0.3	399 4	.01	57.6	.5 < .5	6.0	7	.2	1.0	1.3	47	.15	.052	15 <i>i</i> 19 3	20.5 .4 38.8 .1	+2 88 36 152	031	<11.1 <11	17.0 75.0	03. היו	04	.2.1)51.4	<.I .	02 ±	> 24	.1 4	5
L18+00E 6+50S	.7	18.0	40.3	96	.1 3	9.5 1.8 1	4.9	451 2 295 4		32.0 34.8	.5<.5 7< ¤	3.5	8	.1	1.1	1.5	42	.15	039	17	19.4	28 150	038	<11.0	03 .Q	04 .	04		ют.9)4.9	-1<, <,1<,	vz E 02 f	5 Z1 5 T1	.4 6)D 10
STANDARD DS3	9.31	24.2	34.2	151	3 3	5.2 1	2.1	761 3	10	30.4 6	.2 < .5	3.9	27 5	5.4	1.3 5.D	.8 5.4	37 78	.16. .51	.054) .091 (21 3 17 10	17.6.2 13.6.4	29 156 38 160	.029	11.	56.0	02.	03	.3.(5 1.9	<.]<	02 2	1 9	.0 6	ið
													·	_									.009	<u> </u>	/ L . U	<u> </u>	17 .	3.7 .2	1 2.8	1.0.	02 7	<u>/ 23</u>	1.0 22	5

Sample type: SOIL SS80 600. Samples beginning [RE] are Reruns and [RRE] are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

T ... **T**

•

Island Mountain Gold Mines Ltd. PROJECT Island Mountain FILE # A103762 Page 5

के

International from plan part part part part part part part part	SAMPLE#	Mo	Cu	(CH	. 70						· · · · · · ·								_													ADRE ANALYTICAL	-
pin pin <th></th> <th></th> <th></th> <th>ru</th> <th><u>, 7</u>11</th> <th>νĝι</th> <th>41 CC</th> <th>ת אין כ</th> <th>Fe</th> <th>As</th> <th>Ü</th> <th>Au</th> <th>Th</th> <th>Sr</th> <th>Cd S</th> <th>b B</th> <th>i V</th> <th>Ća</th> <th>Р</th> <th>La</th> <th>Cr</th> <th>Mo</th> <th>Ba</th> <th>Τi</th> <th>P A1</th> <th>Ma</th> <th>~</th> <th>1.1 0</th> <th>la Ca</th> <th>T) r</th> <th><u> </u></th> <th></th> <th></th>				ru	<u>, 7</u> 11	νĝι	41 CC	ת אין כ	Fe	As	Ü	Au	Th	Sr	Cd S	b B	i V	Ća	Р	La	Cr	Mo	Ba	Τi	P A1	Ma	~	1.1 0	la Ca	T) r	<u> </u>		
$ \begin{array}{c} 1 \\ 118 + 061 + 106 \\ 118 + 061 \\ 118 + 061 + 106 \\ 118 + 061 \\ $		ppm	ppm	ppn	i pom	ppm p(חכס ולכ	n ppm	ž	ppm	ppm	pob	DDM	oom i	oom or	0 00	n nam	Ť	¥	 000	0.00	, ig	00			110	~	- W C	ig sç	11 5	Ga	Au* Hg	
1-1 2.3 2.0 4 1.3 4 1.0 c 5.5 66 c 1.4 0.6 1.0 86 522 1.2 c 1.6 4.4 4.2 5.3 1.6	0 1			_						·····			-	FF 1		- PP				P.P.III		-	hhui	• P	ipin a		*	ppm pp	m ppm	ppm X	ppm	ppb ppb	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	a-1	1.1	2.3	2.0	44	<.1 4.	9 4,1	613	1.80	. 4	3.0	< 5	55	66 .	- 1 -	1	הוג כ	E 1	100	•	17.0												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L18+00E 7+00S	. 4	20.3	21.8	66	.2 30.	0 16.0	997	3 94	21 1	7		7 9	10	·· · · ·	1 ·	2 40	.01	.105		12.8	.55	221 .	123	<1 84	. 054	.46	2.5<.(11.5	3<.02	5	.8 <10	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c $	118+DDE 7+50S	.5	37.0	37.4	39	3 31	0 17 2	700	2 74	70 1	.;	2.3	1.3	10		· ·	5 11	- 29	.058	36	12.4	.13	68 .	002	<1 .96	.002	.03	.3.0	4 1.3	<.1<.02	2	4.7 40	
$ \begin{array}{c} 11 + 001 = 9.005 \\ 3 & 10 & 10 & 11 & 11 & 5 & 34 & 57 & 16 & 15 & 14 & 42 & 45 & 13 & 54 & 44 & 14 & 5. \\ 11 + 001 & 9.005 \\ 12 & 14.0 & 11 & 15 & 10 & 34 & 75 & 16 & 15 & 14 & 42 & 45 & 13 & 54 & 44 & 14 & 5. \\ 11 + 001 & 9.005 \\ 12 & 14.0 & 16 & 9 & 75 & 15 & 15 & 15 & 43 & 42 & 46 & 13 & 5 & 44 & 14 & 5. \\ 11 + 001 & 100 & 16 & 7 & 7 & 15 & 16 & 7 & 7 & 15 & 10 & 7 & 7 & 15 & 10 & 7 & 7 & 15 & 10 & 7 & 7 & 15 & 15 & 56 & 10 \\ 11 + 001 & 100 & 11 & 10 & 10 & 7 & 15 & 10 & 2 & 15 & 6 & 9 & 25 & 6 & 6 & 6 & 67 & 4 & 6 & -5 & 7. & 3 & 4 & 1 & 9 & 94 & 23 & 663 & 15 & 61 & 9 & 30 & 14 & 150 & 11.7 & 403 & 03 & 3 & 05 & 19 & -16 & 28 & 248 & 55 \\ 11 + 001 & 11 + 00 & 11 & 2 & 96 & 20 & 7 & 4 & 11 & 2 & 36 & 7 & 6 & 1 & 4 & 12 & 56 & 110 & 60 & 11 & 10 & 03 & 03 & 0.0 & 10 & 10 & 10 & 8 & 24 & 8 & 55 \\ 11 + 001 & 11 + 001 & 11 & 2 & 96 & 20 & 7 & 4 & 11 & 2 & 36 & 24 & 6 & 103 & 22 & -5 & 43 & 11 & 14 & 12 & 56 & 110 & 60 & 11 & 10 & 03 & 03 & 0.0 & 10 & 10 & 08 & 04 & 10 & 1 & 7 & -100 & 3 & 12 & 1.4 & 03 \\ 11 + 001 & 11 + 001 & 11 & 10 & 10 & 11 & 10 & 03 & 10 & 11 & 11$	L18+00E 8+00S	9	60.6	34.0	36	2 /2		1 1470	0.74	100.1		<.5	4.2	40	.13.	0 I.	0 17	. 68	. 058	20	12.9	. 21	51.	015	1 .61	.002	.03	3 (31.9	< 1 03	2	14 8 26	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	118+00F 9+00S	Ŕ	10.1	101	110	0 42	.J 22.4	14/9	5.30	1100.1	ι.υ	<.5	8.1	8	.2.2.	04.	715	.13	.065	29	14.2	.14	66	020	1 51	004	03	1 1 1	4 2 4	-1 07	1	101 4 40	
114-000 9-56 1.6 21.7 113.6 79 215.6 9.2 560 6.40 657.4 6 57.3 4 1.9 9.4 41 0.0 1.0 1.0 0.0 1.1 1.0 0.0 1.1 0.0 0.0 1.1 0.0 0.0 1.1 0.0 0.0 1.1 0.0 0.0 1.1 0.0 0.0 1.1 0.0 0.0 1.1 0.0 0.0 1.1 0.0 0.0 1.1 0.0 0.0 1.1 0.0 0.0 1.1 0.0 0.0 1.1 0.0 0.0 1.1 0.0 0.0 1.1 0.0 0.0 1.1 0.0 0.0 1.1 0.0 0.0 1.1 0.0 0.0 0.1 1.1 0.0 0.0 1.1 0.0 0.0 1.1 0.0 0.0 1.1 0.0 0.1 0.0 0.1 1.1 0.0 0.1 1.1 0.0 0.1 1.1 0.0 0.1 1.1 0.0 0.1 1.1 0.0 0.1 1.1	220 / 000	.0	12.1	10.1	110	.0 45.	7 LD.8	5 15/4	3.42	246.9	1.3	<.5	4.4	14	.5 .	5.	8 65	. 38	.064	19	57.7	48	155	102	<1 2 02	005	03	1.0.0	0 2 6	1 00	2	101.4 40	
Librotic 19903 L.5 2.1,7 11.6,5 79,2 2.1 6.5 7.3 4 1.9 4.4 1.0 7.05 31 30.3 1.8 12 1.4 0.0 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.1 1.0 1.1 1.1 1.0 1.1 1.1 1.0 1.1 1.1 1.0 1.1 1.1 1.0 1.1 </td <td>110+006 0+500</td> <td></td> <td><u>.</u> -</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><i>\$</i>7.1</td> <td></td> <td>100 .</td> <td>IVE</td> <td>-1 2.02</td> <td>.000</td> <td>-03</td> <td>.1.1</td> <td>0.0</td> <td>.1<.02</td> <td>6</td> <td>15.5 80</td> <td></td>	110+006 0+500		<u>.</u> -																		<i>\$</i> 7.1		100 .	IVE	-1 2.02	.000	-03	.1.1	0.0	.1<.02	6	15.5 80	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L10+00E 10,000	1.0	21.7	113.6	79	.2 16.	6 9.2	2 560	6.40	567.4	.6	<.5	7.3	4	1	9 A	4 41	07	056	31	20.2	10	122	047	-1 04		~~						
Librob 1-40 1-2 9.6 20 27 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 1 6 1 9 1	C18+00F 10+002	1.2	14.9	16.9	- 75	.5 22.	θ 9.9	325	4.36	189.0	4	< 5	4 2	Ŕ	· ? ·	й т .		- 07	0.00	10	00.0	- 10	107 .	043	<1	- UQZ	. 03	.1.8	iЗ 1.1 ·	< 1<.02	4	252 .7 30	
$ \begin{array}{llllebel{lised} lised lised lised lised between lised lised between lised lised between lised lised between lised lised between lised lised between lised lised between lised lised between lised lised between lised lised between lised lised between lised$	L18+00F 11+002	12	9.6	20.7	45	.1 10.	2 3.5	238	2.21	95.7	3	- 5	4 7	e a		, . ·	7 74 7 CC	. 4.0	.000	13	01.9	- 39	164 .	150	11.74	.003	.03	.3.0	51.9	<.1<.02	8	24.8 55	
$ \begin{array}{c} 16 - 001 \ 12 - 005 \ 1.4 \ 25.6 \ 11.9 \ 93 \ 52.0 \ 6.1 \ 122 \ 4.59 \ 4.5 \ 4.5 \ 3.4 \ 17 \ 3.1 \ 4.6 \ 4.5 \ 3.4 \ 17 \ 3.1 \ 4.6 \ 4.5 \ 3.4 \ 17 \ 3.1 \ 4.6 \ 4.5 \ 3.4 \ 17 \ 3.1 \ 4.6 \ 4.5 \ 3.4 \ 17 \ 3.1 \ 4.6 \ 4.5 \ 3.4 \ 17 \ 3.1 \ 4.6 \ 4.5 \ 3.4 \ 17 \ 3.1 \ 4.6 \ 4.5 \ 3.4 \ 17 \ 3.1 \ 4.6 \ 4.5 \ 3.4 \ 17 \ 3.5 \ 4.6 \ 5.5 \ 5.2 \ 4.5 \ 4.5 \ 3.4 \ 17 \ 3.5 \ 4$	L18+00E 11+5DS	. 8	17.3	8.2	56	.5 16.	5 2 8	65	1 82	22 6		~ 5	1./ 3.C	40		4 I.	2 30	. 11	.050	23	15.8	-05	80.	077	1.58	.003	.03	.2.0	1.8	<.1<.02	5	92.5 10	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	118+00C 12+00S	1.4	25.6	11.9	93	5 20	9 6 1	102	1.00	32.0	.:) 	2.5	0.0	40	•1 .	4.	3 26	. 05	081	17	12.7	.09	110 .	021	1.31	. 008	.04	.1.0	11 .7 -	<.1.06	3	12.1 <10	
$ \begin{array}{c} 12+006 & 12-505 & 1.9 & 15.5 & 122 & .5 & 29.0 & 8.7 & 348 & 3.55 & 19.4 & .4 & <5 & 3.4 & 11 & .5 & .7 & .3 & 69 & .25 & .109 & 14 & 44.5 & .34 & 87 & .122 & <1 & 19 & .04 & .04 & .2 & .03 & 1.5 & <1.6 & 20 & .03 & .01 & .16 $					20	·• L0.	3 0.1	. 192	4.09	32.4	.0	<.5	3.4	\mathbf{M}	.3,	8.	3 63	.22	. 298	14	39.5	.30	150 .	080	1 1.10	.005	.05	2 (316	1< 02	č	17 2 35	
$ \begin{array}{c} 11a+00c & 13-00c & 1.5 & 1.0$	L18+00E 12+50S	1 9	15.6	16.6	100	E 20						_																			~	17.2 33	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	118+00F 13+00S	1 5	20.0	E0 4	126	.3 29.	0 0.7	348	3.55	19.4	. 4	< 5	3.4	11	.5.	7 _:	3 69	.25	.109	14	44.5	. 34	87	122	<1 1 19	004	04	2 0	210	- 1- 03	c	00 0 00	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 18-00E 17-ERE	1.0	30.0	30.4	1//	0.7 49,	/ 3/.5	1070	3.70	17.1	1.1	<.5	3.2	11	.8.	8.	386	.28	079	10	78 B	50	137	150	-1 7 26	004	. 0- -	・ <u>と</u> ・し クロ	0 1.0	· I~ UZ	0	28.0 30	
$ \begin{bmatrix} 16 + 005 \\ 120 + 005 \\ 12$	110-000 10-005	1.1	20.8	10.5	/6	U.6 29.	8 9.0	256	6.47	25.9	.6	<.5	3.6	8	.4 .	4	2 90	27	073	11	74 3	10	147	171	~1 2.20	.004	.03		63.3	15.UZ		30.5 180	
$ \begin{array}{c} 1.5 & 46.9 & 156.5 & 132 & 1.1 & 46.6 & 24.1 & 1463 & 4.53 & 301.0 & 1.0 & 3.7 & 11.0 & 7 & .9 & 1.7 & 8.0 & 24 & 13.6 & 153 & 27 & 270.3 & 7 & 91.0 & 119 & 11.83 & .002 & .05 & .3 & .19 & 2.8 & .3 & .02 & 4 & 22.8 & 190 \\ 1.000 & 1.005 & 1.6 & 33.9 & 96.5 & 119 & .5 & 31.7 & 14.0 & 445 & 4.09 & 251.0 & .7 & 8 & 6.9 & 5 & .7 & 1.3 & 2.2 & 40 & 12 & .067 & 23 & 40.8 & 40 & 71 & .051 & 1 & 1.38 & .003 & .05 & 2.5 & .5 & 2.2 & .3 & .1 & .02 & 4 & 22.8 & 190 \\ 1.000 & 1.005 & 1.6 & 33.9 & 96.5 & 119 & .5 & 31.7 & 14.0 & 445 & 4.09 & 251.0 & .7 & 8 & 6.9 & 5 & .7 & 1.3 & 2.2 & 40 & 12 & .067 & 23 & 40.8 & 40 & 71 & .051 & 1 & 1.38 & .003 & .05 & 2.5 & .9 & .42 & .1 & .40 & .24 & .20 & .23 & 42 & .40 & .21 & .5 & .25 & 1.4 & .20 & .23 & 42 & .25 & .20 & .15 & .8 & .20 & .25 & .21 & .23 & .21 & .23 & .21 & .23 & .21 & .23 & .21 & .23 & .21 & .23 & .21 & .23 & .21 & .23 & .21 & .23 & .21 & .23 & .21 & .23 & .21 & .23 & .21 & .23 & .21 & .23 & .21 & .23 & .21 & .23 & .21$	1107UVE 144005	4.7	138.8	34.3	- 77	7.0 26.	1 7.8	234	11,76	51.1	7.2	<.5	3.9	12	62	4	5 101	19	170	10	76 3		147 .	170	~1 Z.3L	-003	.UJ	1. 1.	0 Z.4	.1<.02	7	46.5 155	
L20+00E 0+505 11 44.1 88.6 107 .6 42.9 20.1 866 3.90 195.4 9 .7 8.6 7 .6 1.3 4.5 33 .13 .062 29 32.9 .38 79 .043 1 .82 .003 .05 2.5 .02 2.3 <.1<0.2 3 3680.6 20 L20+00E 1+005 1.6 33.9 96.5 119 .5 31.7 14.0 445 4.09 251.0 7 .8 6.9 7 .6 1.3 4.5 33 .13 .062 29 32.9 .38 79 .046 1 1.09 .002 .05 9 .04 2.1 <.1<0.2 4 728.1 40 RE L20+00E 1+005 1.6 34.7 98.3 121 .5 32.5 14.0 445 4.09 251.0 7 .8 6.9 7 .7 7.2 5 .7 1.1 2.2 41 .13 .070 24 42.5 .40 72 .056 1 1.40 .094 .03 .1.3 .071 L6 <.1<0.2 3 832.6 75 .22 .005 2.2 .3 $-1.5 -22$.2 $-1.5 -22$	CZ0+00£ 0+00S	1.5	46.9	156.5	132	1.1 40.	6 24.1	1463	4.53	301.0	7.0	37	11 0	7	a 1	7 0	1 24	12	.123	10	70.2	.32.	130 .	113	11.83	.002	.05	3.1	92.8	.3 .02	Ð	22.8 190	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$														'		, Q .	J <u>6</u> 4	.13	.000	2/	27.0	.35	79 .	033	1 .82	.003	.05 2	2.5.0	2.3	< 1< 02	3	3680.6 20	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L20+00E 0+50S	11	44.1	88.8	107	.6 42.	9 20.1	866	3.90	195 4	Q	7	96	7	C 1	a .		10															
RE L20+00L 1+00S 1.6 34.7 96 3 121 .5 22.5 14.0 45 25.1 .7 7 7.7	L20+00E 1+00S	1.6	33.9	96.5	119	.5.31	7 14 0	445	1 00	251 0		. '	6.0	÷	.01.	3 4.3	5 33	.13	.062	29	32.9	.38	79 .0	046	11.09	-002	.05	.9.0	4 2.1	<.1<.02	4	728.1 40	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	RE L20+00£ 1+00S	1.6	34.7	98.3	121	5 32	5 14 n	451	4 17	201.0	. /	.0	0.9	5	./ 1.	3 2.3	2 40	.12	.067	23	40.8	. 40	71.0	051	1138	.003	.03	1.3.0	81.6	<.1<.02	3	832 6 75	
L20+00E 2+005 2.2 118.3 37.2 160 15 2.4 160 15 2.6 1.5 2.5 20 0.6 0.51 29 22 0.2 38 2.0 16 1 .67 0.01 .66 6.0 2.0 2.3 82 0.15 1 .67 0.01 .66 6.0 2.0 2.1 1.6 7.00 1.6 6.0 2.0 1.2 2.0 2.3 82 0.15 1 .67 0.01 .66 6.0 2.0 1.2 2.0 2.3 82 0.15 1 .65 7.5 3.0 <5	L20+00E 1+50S	ģ	57 2	87 6	าตก	6 64	0 14,0 3 30 A	1400	4.17	203.1		./	7.Z	5	./ 1.	1 2.3	2 41	.13	.070	24	42.5	- 40	72 .1	056	1 1.40	.004	.03	130	716	1< 02	ä	662.0 75	
$ \begin{array}{c} 120 + 002 & 103 & 103 + 12 + 100 & 128 + 7 + 67 & 276 + 5 & 3.0 & < 5 + 15.4 & 4 & 3.2 & 2.0 & 7.8 & 7 & 0.1 & 0.08 & 26 & 7.9 & 0.4 & 33 & 0.05 & 1 & .44 & 0.02 & 0.3 & 9 & 0.2 & 3.3 & < 1.402 & 3 & 77.3 & 35 \\ 120 + 002 & 24505 & .9 & 13.1 & 86.9 & 44 & 1.8 & 13.7 & 5.4 & 481 & 2.99 & 173.1 & 4 & 1.0 & 5.5 & 7 & 2 & 8 & 2.3 & 38 & 15 & 148 & 24 & 23.6 & 20 & 43 & 0.042 & 1 & .71 & 0.01 & 40 & 3.6 & 0.0 & 7.9 & .43 & .002 & 1 & 1.55 & .003 & 0.3 & 7.1 & 1.4 & 2.0 & < 1 & .023 & 1.4 & 2.0 & 2.1 & 1.55 & .003 & 0.3 & 7.1 & 1.4 & 2.0 & < 1 & .023 & 1.4 & 2.0 & 2.1 & .023 & 3 & .14 & 2.0 & 2.1 & .014 & .013 & .5 & .05 & .9 & .14 & .02 & 1.4 & .023 & .14 & 2.0 & < 1 & .024 & 1.035 & .6 & .6 & 8.15 & 9.1 & .044 & 1.0 & .05 & .07 & 2.1 & .024 & 1.035 & .6 & .03 & .03 & .71 & .14 & 2.0 & < 1 & .024 & .033 & .03 & .71 & .14 & 2.0 & < 1 & .024 & .033 & .03 & .71 & .14 & 2.0 & < 1 & .024 & .033 & .03 & .03 & .03 & .71 & .14 & 2.0 & < 1 & .035 & .6 & .6 & .035 & .03 & .03 & .03 & .03 & .03 & .03 & .01 & .04 & .03 & .04 & .05 & .024 & 1.035 & .6 & .6 & .024 & .035 & .041 & .041 & .043 & .05 $	120+006 2+005	2.2	118 2	27 2	160	.0.04.	2 30.4	1409	4.55	245.U	1.5	.8	10.0	52	2.0 1.	5 2.9	5 20	.06	.051	29	22.0	. 23	82 .1	015	1 87	nai	06	6 0	420.	1 01	5	175 1 16	
L20+00E 2+505 3.2 48.8 461.4 102 3.8 7.8 12.3 709 5.05 592.8 1.1 13.1 9.2 5 .6 2.0 13.2 27 .06 .084 27 35.2 .19 50 .022 1 1.55 .003 .03 7.1 .14 2.0 .1 .02 .03 .03 7.1 .14 2.0 .1 .02 .03 .03 7.1 .14 2.0 .1 .02 .03 .03 7.1 .14 2.0 .1 .02 .05 .9 .1 .02 .5 .9 .1 .02 .5 .9 .1 .02 .9 .06 .02 .1 .10 .5 .9 .1 .02 .9 .1 .02 .9 .1 .02 .1 .02 .1 .14 .03 .1 .02 .1 .02 .1 .02 .1 .14 .0 .1 .102 .1 .10 .11 .14 .03 .14 .14 .03		C.2	110.0	37.2	100	.2 0/,	44L.U	1787	1.67	2/6.5	3.0	< 5	15.4	4 3	3.22.	0 2.1	37	.01	. 088	26	7.9	.04	33 1	005	1 44	002	03	0.0	223	- LUC	5	775.3 35	
12+00 3:2 40:8 40:14 102 3:2 709 50:5 52:8 1:1 13:1 9:2 5 .6 20:0 13:2 27 .06 .084 27 35:2 .19 50:0 .022 1 1:55 .003 .03 7.1 .14 2.0 <	120+00E 2+50S	2 2	40.0		100	<u> </u>																				.002	- 40	.3.0	23.3	- 1~ VZ	1	226.9 20	
$\begin{array}{c} 120+001 \ 3^{+}031 \ 3^{+}03 \ 4^{+}18 \ 13.7 \ 5.4 \ 481 \ 2.99 \ 17.3 \ 1.4 \ 1.0 \ 5.5 \ 7 \ .2 \ .8 \ 2.3 \ 38 \ .15 \ .148 \ 24 \ 23.6 \ .20 \ 43 \ .042 \ 1 \ .71 \ .014 \ .03 \ .50 \ .03 \ .1 \ .14 \ 2.0 \ .1 \ .22 \ .03 \ .03 \ .1 \ .14 \ 2.0 \ .1 \ .22 \ .03 \ .03 \ .1 \ .14 \ 2.0 \ .1 \ .22 \ .03 \ .03 \ .1 \ .14 \ 2.0 \ .1 \ .22 \ .03 \ .03 \ .1 \ .14 \ .04 \ .03 \ .03 \ .1 \ .14 \ 2.0 \ .1 \ .22 \ .1 \ .21 \ .14 \ .05 \ .5 \ .1 \ .23 \ .25 \ .29 \ .14 \ .23 \ .14 \ .24 \ .23 \ .23 \ .21 \ .21 \ .47 \ .027 \ .21$	1 20+00E 2+00C	3.2	40.0	401.4	102	3.8.27.	8 12.3	709	5.05	592.8	1.1]	13.1	9.2	5	.6 2.	0 13.2	2 27	.06	084	27	35.2	10	50 1	022	1 1 55	002	03.	- , ,		1 00			
122+002 349,5 64 8 15,8 9,1 498 3,41 198,2 6 8 3,8 5 13 16 13 104 103 105 101 101 101 101 103 105 101 101 101 101 101 101 101 10	120100E 31005	.9	13.1	86.9	44	1.8 13.	7 5.4	481	2.99	173.1	.4	0.1	5.5	7	.2	8 2 3	38	15	148	24	22.6	20	10 .1	NGC NAD	1 1.55	.003	.03.	/.1 .1	4 Z.Q ·	<1.02	3 1	3149.5 140	
L20+00E 4+00s 1.1 22.9 99.4 65 .6 25.6 1.9 741 5.00 253.6 .5 < 5.9 2.9 6 .4 .9 3.0 56 1.6 1.54 1.6 4.7 .027 < 1.94 .002 .03 3.1 .05 1.1 $< < 1.6$ < 0.9 .03 .05 1.1 < 0.97 < 0.93 .05 1.1 < 0.97 < 0.93 .05 1.1 < 0.97 < 0.93 .05 1.1 < 0.97 < 0.97 < 0.93 .05 1.1 < 0.97 < 0.97 < 0.93 0.55 < 0.97 < 0.97 < 0.97 < 0.97 < 0.97 < 0.97 < 0.97 < 0.97 < 0.97 < 0.97 < 0.97 < 0.97 < 0.97 < 0.97 < 0.97 < 0.97 < 0.97 < 0.97 < 0.97 < 0.97 < 0.97 < 0.97 < 0.97 < 0.97 < 0.97 < 0.97 < 0.97 < 0.97 < 0.97 < 0.97 < 0.97 < 0.97 < 0.97 < 0.97 < 0.97 $<$	L20+008 3+50S	1.4	28.8	49.5	64	815.	8 9.1	498	3.41	188.Z	.6	8	3.8	5	· - ·	a 2 '	1 76	00	140	64 22	20.0	. 20	43.1	042	1.1	.014	.03	.5.Q	5,9	- 1< .02	4	1035.6 45	
120+00E 4+505 5.0 41.3 764.7 166 1.8 16.1 9.0 481 9.42 3400.6 1.4 11.2 6.4 15 .7 2.0 25.2 33 .08 .085 15 6.5 .02 53 .023 .25 .002 .02 8.8 .01 .8 .1 .02 3 11199.6 10 L20+00E 5+005 .8 26.9 95.1 62 .8 1.2 6.4 15 .7 2.0 25.2 33 .08 .085 15 6.5 .02 53 .023 .25 .002 .02 8.8 .01 .8 .1 .02 .00 .8 .04 .04 .1 .25 .02 .04	L20+00E 4+00S	1.1	22.9	99.4	65	.6 25.	6 11.9	741	5.00	253.6	5	< 5	2 9	ň		0 2 0 3 1		.03	1000	23	21.0	. 21	4/ .	027	<1.94	.002	.03 (3.1.0	51.14	<.1<.02	. 4	818.6 50	
L20+00E 5+00S 1.6 151.8 70.9 109 .6 27.5 34.1 1544 6.46 261.5 1.3 .5 7.6 44 .2 1.9 3.8 43 .51 .113 36 15.5 .55 101 .009 1 1.50 .004 .04 1.1 .04 3.7 .1 $.02$ 3 11199.6 10 L20+00E 5+50S .8 26.9 95.1 62 .8 12.6 8.0 434 3.78 330.0 .4 .5 2.2 14 .2 1.4 7.2 68 .15 .065 19 14.9 .31 185 .015 1 1.26 .004 .03 1.0 .04 1.4 .4 1.02 5 5 174.0 45 L20+00E 6+50S .8 26.4 87.3 51 .4 26.2 16.8 882 4 26 1338.9 1.3 .5 2.6 56 .3 5.9 29.2 17 .57 .091 23 15.8 .10 104 .008 1 .81 .004 .03 1.8 .07 .2 .6 06 2.7 .1 .02 2 .99.4 70 L20+00E 7+60S 1.2 27.8 25.9 58 .3 13.0 /.7 536 5.13 262.7 .5 .5 3.9 11 .2 .9 2.1 59 .21 .065 17 24.7 .19 68 .059 1 1.16 .003 .02 .5 .03 1.9 .1 .02 6 34.6 25 L20+00E 7+50S .9 10.7 13.9 39 .2 12.3 4.8 191 2.84 107.2 .4 .5 4.3 5 .2 .4 .8 68 1.5 .032 21 34.4 .20 84 .092 11 1.19 .003 .02 .2 .03 1.3 <	170+00E 4+50S	5.0	41.3	764.7	166 .	1.8.16.	1 9.0	481	0.42	3400 6	1 4 1	1.2	6 1	τĒ	.7 .	0 75 9	1 30	. 10	-134	10	43.9	.39	ا. د¤	166	1 1.28	.003	. 02	.9.0	31.5 -	<.1<.02	6	144.8 35	
$ \begin{array}{c} L20+00E \ 5+005 \\ L20+00E \ 5+505 \\ L20+$										0.00.0			0.4	10	. e . e.	0 23.4	: 33	.00	.005	15	6.5	.02	53.(323	<l, 25<="" td=""><td>.002</td><td>.02 8</td><td>8.8.0</td><td>ι.8•</td><td>1.02</td><td>31</td><td>1199.6 10</td><td></td></l,>	.002	.02 8	8.8.0	ι.8•	1.02	31	1199.6 10	
$ \begin{array}{c} 120+00E 5+50S \\ 120+00E 6+00S \\ 120+00E 6+50S \\ 1.0 3/.0 70.2 97 \\ 9 35.8 17.4 721 \\ 4.9 33.8 19 1.3 \\ 7.7 536 5.13 \\ 262.7 \\ 1.2 27.8 \\ 29.9 58 \\ 3 13.0 \\ 7.7 \\ 536 \\ 1.1 19.1 \\ 10.7 \\ 66 \\ 3 30.3 \\ 24.3 \\ 626 \\ 5.8 \\ 5$	L20+00E 5+00\$	1.61	51.8	70.9	109	.6 27	5 34 2	1544	6 46	263 E	1 2	~ =	7 6																				
$ \begin{array}{c} 120 + 006 \ 6 + 005 \\ 120 - 00E \ 6 + 505 \\ 1.0 \ 3/.0 \ 70.2 \ 97 \ 9 \ 35.6 \ 1.7 \ 426.2 \ 16.8 \ 882 \ 4 \ 26 \ 1338.9 \ 1.3 \ <.5 \ 2.6 \ 56 \ .3 \ 5.9 \ 29.2 \ 17 \ .57 \ .091 \ 23 \ 15.8 \ .10 \ 104 \ .008 \ 1 \ .81 \ .004 \ .03 \ 1.0 \ .04 \ 1.4 \ <.1 \ .02 \ 6 \ 50.0 \ 40 \ .03 \ 1.0 \ .04 \ 1.4 \ <.1 \ <.02 \ 6 \ 50.0 \ 40 \ .03 \ 1.0 \ .04 \ 1.4 \ <.1 \ <.02 \ 6 \ 50.0 \ 40 \ .03 \ 1.0 \ .04 \ 1.4 \ <.1 \ <.02 \ 6 \ 50.0 \ 40 \ .03 \ 1.0 \ .04 \ 1.4 \ <.1 \ <.02 \ 6 \ 50.0 \ 40 \ .03 \ 1.0 \ .04 \ 1.4 \ <.1 \ <.02 \ 6 \ 50.0 \ 40 \ .03 \ 1.0 \ .04 \ 1.4 \ <.1 \ <.02 \ 6 \ 50.0 \ 40 \ .03 \ 1.0 \ .04 \ 1.4 \ <.1 \ <.02 \ 6 \ 50.0 \ 40 \ .03 \ 1.0 \ .04 \ 1.4 \ <.1 \ <.02 \ 6 \ 50.0 \ 40 \ .03 \ 1.0 \ .04 \ 1.4 \ <.1 \ <.02 \ 6 \ 50.0 \ 40 \ .03 \ 1.0 \ .04 \ 1.4 \ <.1 \ <.02 \ 6 \ 50.0 \ 40 \ .03 \ 1.0 \ .04 \ 1.4 \ <.1 \ <.02 \ 6 \ 50.0 \ 40 \ .03 \ 1.0 \ .04 \ 1.4 \ <.1 \ <.02 \ 6 \ 50.0 \ 40 \ .03 \ 1.0 \ .04 \ 1.4 \ <.1 \ <.02 \ 6 \ 50.0 \ 40 \ .03 \ 1.0 \ .04 \ 1.4 \ <.1 \ <.02 \ 6 \ 50.0 \ 40 \ .03 \ 1.0 \ .04 \ 1.4 \ <.1 \ <.02 \ 6 \ 50.0 \ 40 \ .03 \ 1.0 \ .04 \ 1.4 \ <.1 \ <.02 \ 6 \ 50.0 \ 40 \ .03 \ 1.0 \ .04 \ .03 \ 1.0 \ .04 \ 1.4 \ <.1 \ <.02 \ 6 \ 50.0 \ 40 \ .03 \ 1.0 \ .04 \ .03 \ 1.0 \ .04 \ .03 \ 1.0 \ .04 \ 1.4 \ <.1 \ <.02 \ 6 \ 50.0 \ 40 \ .03 \ 1.0 \ .04 \ .03 \ .04 \ .04 \ .03 \ .04 \ .0$	L20+00E 5+50S	.8	26.9	95.1	62	8 12	6 A O	434	2 70	201.0	÷-0	<.p	/.0	44	.21.	9 3 6	43	.51	.113	36	15.5	.55)	1010	209	1 1.50	.004	.04]	1.1.0	437	: 1< 02	5	174 0 45	
$\begin{array}{c} 120+00E \ 6+505 \\ 1.0 \ 3/.0 \ 70.2 \ 97 \ .535.8 \ 17.4 \ 721 \ 4.97 \ 308.0 \ 1.4 \ <.5 \ 4.0 \ 25 \ .3 \ .9 \ 2.9 \ 2.1 \ 7.57 \ .091 \ 23 \ 15.8 \ .10 \ 104 \ .008 \ 1 \ .81 \ .004 \ .03 \ 1.8 \ .07 \ 2.2 \ <.1 \ .02 \ 2 \ 199.4 \ 70 \ 1.2 \ 199.4 \ 110.4 \ 199.4 $	L20+00F 6+00S	.8	26.4	87 3	51	1 26	3 0.0 3 16 0	909	3.70	1000 0	.4	<.5	2.2	14	.21.	4 7.2	68	.15	. 065	19	14.9	.31 1	185 .0)15	1 1.26	.004	.03 1	1.0.0	414	: 1< 02	6	62 0 40	
L20+00F 7+60S 1.2 27.8 25.9 58 3 13.0 7.7 536 5.13 262.7 5 5.5 3.9 12 9 2.1 59 21 065 17 24.7 19 88 054 1 1.95 004 03 .6 62.7 <1.02	120+00E 6+505	1.0	37.0	70.2	07		117 4	702	4 20	1338.9	1.3	<.5	2.6	56	.3 5.	3 29.2	! 17	.57	.091	23	15.8	.10 1	LO4 .C	800	1 81	004	03 1	1 H N	7 2 2 .	1 02	5	100 4 70	
L20+00E 7+50S .9 10.7 13.9 39 .2 12.3 4.8 191 2.84 107.2 .4 .5 3.9 11 .2 .9 2.1 59 .21 .065 17 24.7 .19 68 .059 <1	L20:00E 7+005	1.2	77 0	20.0	57		5 17.4	/21	4.97	308.0	1.4	<,5	4.0	25	.3.	9 2.9	50	.40	.061	19	47.3	.49	98 . 0)54	1 1 95	004	03	6 D	627.	1 02	с Г	199.4 70	
L20+00E 7+505 .9 10.7 13.9 39 .2 12.3 4.8 191 2.84 107.2 .4 <.5 4.3 5 .2 .4 .8 68 .15 .032 21 34.4 .20 84 .092 1 1.19 .003 .02 .2 .03 1.3 <.1 < .02 7 26.2 30 1.20+00E 8+505 1.1 119.1 10.7 66 .3 30.3 24.3 626 5.85 434.5 .8 <.5 3.7 6 .1 2.6 2.6 20 .10 .090 29 11 2 16 67 .005 1 .75 .001 .02 .2 .03 .9 <.1 < .02 7 26.2 30 1.20+00E 8+505 1.1 119.1 10.7 66 .3 30.3 24.3 626 5.85 434.5 .8 <.5 3.7 6 .1 2.6 2.6 20 .10 .090 29 11 2 16 67 .005 1 .75 .001 .02 .2 .03 .9 <.1 < .02 3 36.8 35		x , z	27.0	29.9	26	3 13 1	1 7.7	536	5.13	262.7	.5	<.5	3.9	11	.2 .	3 2.1	59	.21	. 065	17	24 7	19	68 0	59 .	1 1 16	007	.00	.0.0	0 2 .7 •	.1.00	5	33.4 60	
120+00E 8+005 .7 24.5 13.4 48 .3 24.2 9.0 286 3.95 431.4 .4 <.5 4.3 5 .2 .4 .8 68 .15 .032 21 34.4 .20 84 .092 1 1.19 .003 .02 .2 .03 1.3 <.1<02 7 26.2 30 L20+00E 8+505 1.1 119.1 10.7 66 .3 30.3 24.3 626 5.85 434.5 .8 <.5 3.7 6 .1 2.6 2.6 20 .10 .090 29 11 2 16 67 .005 1 .75 .001 .02 .2 .03 .9 <.1<02 3 36.8 35 .20 .10 .005 1.2 .20 .005 1.2 .20 .001 .02 .2 .03 .9 <.1<02 3 36.8 35 .20 .10 .005 1.2 .20 .005 1.2 .20 .001 .02 .2 .03 .9 <.1<02 3 36.8 35 .20 .10 .005 1.2 .20 .005 1.2 .20 .001 .02 .2 .03 .9 <.1<02 3 36.8 35 .20 .10 .005 1.2 .20 .005 1.2 .20 .005 1.2 .20 .001 .02 .2 .03 .9 <.1<02 3 36.8 35 .20 .10 .001 .02 .2 .001 .02 .2 .03 .9 <.1<02 3 36.8 35 .20 .000 .000 .000 .000 .000 .000 .000	L20+00E 7.4≤05	0	10.7	10.0	20	0																	JU .U		-1 1.10	. 000	. VZ	.u ,V	9 I.A «	.1<.02	Ð	J4.6 25	
L20+00E 8+505 1.1 119.1 10.7 66 .3 30.3 24.3 626 5.85 434.5 .8 <.5 3.7 6 .1 2.6 2.6 20 10 090 291 2 16 67 005 1 .75 .001 .02 .2 .03 1.3 <.1<02 7 26.2 30 .20 1.20 1.02 .2 .03 1.3 <.1<02 7 26.2 30 .20 1.20 1.02 .2 .03 1.3 <.1<02 7 26.2 30 .20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	120+001 7+303 120+001 9+005	.7	10.7	14.9	39	2 12 .	3 4.8	191	2.84	107.2	.4	<.5	4.3	5	.2 .4	1 .F	68	.15	.032	21	34 4	20	84 0	162	1 1 10	042	60	n -			-		
L20100E 8+505 1.1 19.1 10.7 66 .3 30.3 24.3 626 5.85 434.5 .8 <.5 3.7 6 .1 2.6 2.6 20 10 990 25 22.0 14 60 1030 1 .75 .001 .02 .2 .03 .9 < 1<.02 3 36.8 35	1204005 04405		24.5	13.4	48	.3 24.2	2 9.0	286	3.95	431.4	.4	<.5	3.1	4	21	7 6 2	32	10	065	22	22.7	1/	£0 C	176	1 1.19	.003	· UZ	.2.0	31.3 -	: 1< .02	7	26.2 30	
	L20+00E 8+505	1.1 1	19.1	10.7	66	.3 30.3	3 24.3	626	5.85	434.5	.8	<.5	3.7	6	12	5 2 6	20	10	.003 .003	20	11 2	. 14	00 .L	130	1 ./5	.001	.02	.2.0	3 9 4	-1-02	3	36.8 35	
	1 ZU100E 9+005	1.2	13.4	24.9	115	.3 22.1	9.2	302	4.96	132.1	5	< 5	5.6	š	3 1	5 1 0	20	12	.090	77 10	11.2	. 10	0/.U	105	1,76	.007	. 03	.3.0	42.2 -	.1<.02	2	41.2 40	
SANDARE DS3 9.7 127.8 34.8 161 .3 35.5 12.4 831 3.20 32 6 6 8 5 4 0 27 5 7 5 2 5 7 5 3 6 30 13 .082 20 48.2 .35 102 .090 <1 1.54 .003 .03 .8 .04 1.7 < 1< 02 6 70.1 40	STANDARE DS3	9.7-1	27.8	34.8	16]	.3 35.5	5 12.4	831	3.20	32.6	6 B	< F	4 D	., 77 F	.u .: 7 c /	о д.Q с д с	20	.13	.082	20	48.Z	.35 1	.uz .0	190	=1 1,54	.003	. 03	.8.0	417 <	.1<.02	6	70.1 40	
					_							0	~.V	21 0	./ 3./	<u> </u>	19	.50	.093	18 1	.8/./	.59 1	.49 .0	86	2 1.71	.028	.16 3	3.8 ,2	32.71	.0<.02	6	21.2 235	

Sample type: SOIL SS80 60C. Samples beginning 'RF' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

P

Island Mountain Gold Mines Ltd. PROJECT Island Mountain FILE # A103762 Page 6

SAMPLE#	Мо	Ci	i P	t Zr.	Aq	Ni		Mn	 Fo	<u>۸</u> ۴													<u> </u>							AC	ME ANALYT	TCAL
	ррл	і ррл	pp	- т рр т	i ppm	Ppm	00	תם כי	12	85 000	0070		<u>۲۲</u>	Cd	Sb B	i ¥	Ca	P	La	Cr	Mg 6	la Ti	В	Al	Na	κ ι	√ Hg	Sc	<u>п 5</u>	Ga	Au*	<u> </u>
G-1		1.6	1.	9 36	 _ <]	39	2.2		1 47				phu p	- hu	ppm pp	a ppm	¥	X	ppm	ppm	¥ pp	m 2	ppm	*	*	х рр	1 ppm	ppin p	มก 2 (<u>س</u> رد	ppb	pob
120+00E 9+50S	.7	29.0	19.	9 72	Ż	38.0	14.7	485	3.07	77.3	2.3 <.5) 4.5 5 2 R	54 <	.1 2	<.1 .	1 33	. 45	.083	7	11.1	.43 18	2 107	<1	. 72	.045	.35 Z.3	l<.0)	1.2	2<.02	4	<.2	<10
120+00E 10+00S	11	7.0	10.	7 30	.2	7.4	Z.0	60	1.09	25.8	.3 < 5	4.0	5	.1	.4 .	4 42	. 32 08	.005	22	51.5	.53 14	4 .110 5 064	<] ~1	1.44	.006	.04	.03	2.5 <	1<.02	5	226.1	30
L20+00F 11+00S	1.9	28.6	40.	o 2/ 9 67	.2	0.0 18 0	1.3	38	.73	6.3	.3 <,5	2.7	6	.1	.3 .	2 27	.06	.034	23	10.1	.04 4	9.029	1	. 32	.012	.02 < `	10.	.6 < 5 <	1<.02 1<.02	4	26.7	10
20,005 33,500						10.2	4.5	122	2,94	20.0	/ < 5	4.2	9	. Z	.7 .	3 55	.18	.124	19	28.2	.18 9	0.070	<1	.85	.003	.03	2.03	1.] <	1<.02	5	23.4	25
L20+00E 11+50S	1./ 8.8	- 18.0 - 80.1	18.	1 101	.6	37.8	10.0	189	3.50	18.6	.6 <.5	4.1	9	.2	.5 .:	2 71	.18	.104	16	58.0	43 18	9 1.01	د ا	<u>י</u> בו כ	005	00 ·		3 n -	1	_		
L20+0DE 12+50S	7.8	24.7	- 4 0. 54.1	2 91	.5	20.9	5.J 64	118	5.10	99.6 61.0	1.7 < 5	4.1	17	.2	2.8 .	3 49	.08	.115	17	36.1	.15 9	7.046	<1	1.00	.000	.04	04	1.3	1≤.02 1≤.02	6 1	9.0	45 25
L20+00E 13+00S	2.4	34.3	12.3	3 723	1.5	138.1	201.0	3597	25.33	398.4	1.9 < 5	1.3	35.2	6	1.6 .3	3 66	.16	087	18	28.7	.12 12	8.087	<l< td=""><td>- 69</td><td>.003</td><td>.04 .2</td><td>: .03</td><td>1.0</td><td>1.02</td><td>6</td><td>5.6</td><td>25</td></l<>	- 69	.003	.04 .2	: .03	1.0	1.02	6	5.6	25
150,005 194902	.8	79.0	20.1	64	.5	36.6	10.0	319	7.09	16.1	4.1 < 5	3.6	8	.3	.5	2 88	.33	061	12	73.5	.20 14	9 .029 6 .207	<i 1</i 	1.43	.011 . 006	.04 .; 01 :	12 > ^L	4.8	8.07	3	21.7	115
L20+00E 14+005	.6	20.7	9.3	7 118	.5	48.6	14.2	318	3.16	13.6	4 < 5	3 9	8	A	.	2 70	20	000	16				-					2.5	1.04	0	74.2	50
L22+00E 0+00S	$1.4 \\ 1.3$	57.9 50.3	363.4 500 1	197	1.7	58.8	26.8	1889	5.03	412.1	1.0 3.6	12.4	111	7	3.3 9.2	7 18	. 18	.060	10 29	65.1 26.8	-61 15 -32 6	8.162 1 1162	1:	נ.97 לל	.007 .	.03 .1	04	2.4	1<.02	6	15.3	45
RE 122+00E 0+50S	1.2	47.8	480.5	5 273	1.8	67 8	31.2	2138	5.05	441.2	1.0 2.7	13.0	20 2	9	2.7 7.8	1 12	.48	061	24	19.2	.31 4	0 .000	~1 <1	.67	.003 .	05 9.3	· 02 · 02	2.6 <.	1.02	339	567.7 60 2 - 2	20
L22+00E 1+00S	1.0	58.9	377.9	9 100	. 5	60.1	22.5	5582	4.64	194.1	2.0 < .5	12.3	20 Z	.9 .A	2.5 / ., 1 7 2 2	/ 11 3 14	.48	.063	22	18,9	.32 3	8.007	<1	.66	.003 .	05 2.2	. 02	2.3 <.	1.09	23	475.8	15
L22+00E 1+50S	1.2	18.1	47 f	5.4	5	10 a	0.0	60 6	4 fc	500.0						, 14		. 120	37	17.0	-46 11	4 .UIŲ	<1.		.002 .	04 .5	. 08	6.3 <.	1<.02	3 :	205.8	85
122+00E 2+00S	1.0	60.0	41.5	63	.2	60.1	26.9	090 917	9.55	202.9	.5<.5 1125	6.9	8	1	.91.9	5 61	.15	202	24	35.1	.31 11	5.041	<i]<="" td=""><td>. 14</td><td>.004 .</td><td>05 .B</td><td>. 04</td><td>1.3 <.</td><td>1<.02</td><td>5</td><td>219.8</td><td>45</td></i>	. 14	.004 .	05 .B	. 04	1.3 <.	1<.02	5	219.8	45
L22+00E 2+50S L22+00E 3+00S	1.0	28.0	92.2	78	.6	20.1	7.7	319	3.08	229.4	.7 1.6	4.2	7	.5	1.2.3.0	31	11.	041	2/ 25	35.7	.37 81 היבר ברב	9.038	11	1.35	.016 .	04 .2	. 05	2.1 <,	1.02	3	197.4	50
L22+00E 4+005	1.0	37.6	- 3 3.0 311.7	93	2.0	67.8 19.1	19.7	12434	3.20	495.5	12.3 <.5	.9	BS 6.	4	1.2 2.6	39	1.24	185	18	42.1	.30 35	2.024	22	2.58	.003 .	04 .5 05 2	.04	1.2 <.	1.02	4 1! c	555.1	40
[22+1)05 A+506						-2-1	1.0	505	0.02	2/3.9	./ 5.5	6.7	Ь.	4 2	3.5 3.6	i 43	.13	.105	23	21.7	.14 5	3.046	<]	. 86	.005 ,	04 .2	.04	1.0 .	1<.02	5	166.7	45
L22+00E 5+005	1.1 .9	17.0	-12.2 -13.8	92 54	.4	25.8	9.6	335	3.80	15.6	.6 <.5	5.5	10	3	5 3	63	. 24	100	19	54.9	.46 10	5.090	1 2	25	008	П И 1	10	31.4	1.4 00	~	•••	
122+00E 5+50S	. 8	27.7	190.8	66	ź	49.2	24.3	262 710	3.25 3.48	16./ 24 1	.3 <.5	4.4	9.	2	.5.4	82	. 26	.074	22	42.2	.43 10	125	11	.36	.004 .	04 1	.03	2.1 <. 1.6 <.	1<.02 1< 02	ь 2	13.4	95 30
L22+00E 6+00S	.7	21.6	16.7	68	.2	43.7	17.4	256	3.65	37.1	.5 <.5	6.5	10	2	.6 .4	65	. 32 26	.075 n49	20	60.1 62 4	.68 108	105	12	.44	.005 .	03.2	80,	2.8 <.	1<.02	5	37.4	80
100 000 0.000	. /	40.Z	12.7	60	. 1	42.2	14.9	525	3.04	16.3	.5 <.5	4.9	17 .	1	.5.3	68	.46	065	21	56.2	.63 162	2.146	11	. 23	.003 . .004	03.1 04.1	.07	2.8 <.	1<.02 1<.02	6 (335.4	65
122+00E 7+00S	. 6	11.3	12.6	48	.2	20.7	6.8	243	3.07	11.9	.3 <.5	3.8	G	1	3 2	ac.	27	116	10	44 7							.07	0.51 ~.	1~.02	5	30.5	40
L22+00E 8+00S	.8 .8	11.2	10.6 14 B	44 40	.3	17.4	6.0	173	3.35	14.5	.3 <.5	4.0	7	2	.3 .3	92	25	.056	17	44./. 45.6	.39 162 .32 139	133		.30.	.004 .	05.1	.03	1.6 <.	1<.02	7	24.7	35
L22+00E 8+505	.a	19.5	14.4	6 0	. 2	20.8	10.5	197 245	3.03	23.4	.3 <,5	3.4	12 .	2	.4 .4	76	.42	045	17	41.1	33 143	,119	21	.30	002 .	04 .1 04 .1	.04	1.5 <. 1.6 <	1<.02 1<.02	7	18.5	45 4 D
L22+00E 9+00\$	1.7	39.5	54.7	· 93 :	1.2	33.1	12.4	182	4.59 4	174.5	.4 ~.5	4.4	10 .	2 31	5.4	68 18	.31.	.043	18 -	48.5. 16.0	45 176	.127	11	.51	004 .	03 .2	0.1	1.9 <.	1< 02	5	66.1	30
L22+00E 9+505	1.3	29.8	18.B	89	.3	30 T	qл	210	6 1A	21.0	-			- •		2 4	.00	.470	22	10,0.	10 70	.005	1	.91 .	004 .	04.4	.06	1.7 <,	L 02	2 53	819.4	60
L22+D0E 10+00S	1.3	22.4	16.3	66	.4	21.6	6.1	143	5.14 4.49	21.8	./ <.5	5.6	8. R	3 12 1	74	48	.16.	170	20 4	41.9	27 135	.059	21	.49.	. 603 .	03.4	.05	1.7 <.	l<.02	5	18.8	50
L22+00E 11+005	1.U 2 9	Z3.5 20.6	13.2	90 97	.6	48.8	13.7	258	3.71	20.7	.6 <.5	4.4	10	Ξ	.5 .2	70	.37	.123	18 4 16 6	40.2. 60.6	29 105 60 161	.105	<11	.27.	003 .1	1. 50	.02	1.6 <	l<.02	7	81.8	20
STANDARD DS3	9.11	26.1	35.1	97 155	.स .उ	29.4 35.0	5.5 11.0	113 780	3.62 3.04	38.5 20 J	.9 <.5	4.6	21	2 1	.0 .7	53	.22	242	10	30.0	21 181	.060	1	. 61. .97.	004 .0	JS .1]3 .2	.05 2	2.6 <. 1 4 < 1	< 02	5	12.4	60 30
				-	-			, 50	0.04	27.4	0.2 5.5	4.1	28 5.	4 5	2 5.5	77	.51 .	.086	18 18	36_1	55 149	.089	11	.71	032 .]	16 3.4	.24	2.7	<.02	6	2Z.0 2	240

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA

Island Mountain Gold Mines Ltd. PROJECT Island Mountain FILE # A103762 Page 7

SAMDIE#	Ma	~		7					-								_				_													MACTICAL
		L	u PD	žn	мg	N1	ιo	Mn	⊦e	As	U Au	ι Th	Sr	Cd	Sb	B1	٧	Ca	Ρ	La	Cr	Mo	Ba	Ti B	41	Na	ĸ	54	Hn (τ. 	<u>ج</u>	E.	Aut	
	ppm	pp	т ррл	ppm	pom	ppm	ppm	ppm	X	opm	ppm ppt) ppm	<u>p</u> pm	pom o)OM)	DDM 0	DDM	2	3	0000	ÚOM.	Ϋ́ρ	100	9 n.n.m.		- nu - 9	· ·	- 14 - 15 - 15 - 15 - 15 - 15 - 15 - 15 - 15	ng .	S⊂ 11		50	AUA	нg
																,			~	pp.		~ ^ }	- Pill	* ppm	^ A	*	- A -	ipin p	pm p	om ppr	า 36	ppm	ppb	ррб
G-1	.8	1.	81.9	35	< 1	3.7	3.4	464	1.49	.3	2.6 < 5	5.1	53	< 1 <	: 1	1	22	46	205	z	12.4		00 0											
L22+00E 11+50S	1.5	12.	7 19.7	65	.21	16.3	4.1	105	1 84	9 0	A <_ F		11				52	. 40	.055	0	12.4	.44]	183 .0	AR <i< td=""><td>.69</td><td>.042</td><td>.43 2</td><td>2.1<.</td><td>Q1</td><td>.82</td><td>2.02</td><td>4</td><td>< 2</td><td><10</td></i<>	.69	.042	.43 2	2.1<.	Q1	.82	2.02	4	< 2	<10
L22+00E 12+005	1.5	11.	3 20 2	69	4 1	IA Q	<u>د د</u>	120	2 00	10 6		· • • •	11			.4	23	. 31	1001	21	20.6	.14 1	106.1	05 1	. 66	.003	.04	.1 .	0 1	.7 <.1	< 02	5	9.2	10
124+00F 2+00S	7	20	6 26 5	20	2 2	22.0	0.0	201	2.70	10.0		L.L.		.4	.4	.5	/2	.23	-113	14	38.5	. 26]	105 .1	02 <1	1.02	.004	.03	.1 .	03 1	0 < 1	<.02	6	117	25
24+001 3+005		17	7 00 3	40		5.9	8.3	427	3.39	121.8	.5 <.5	5.8	- 5	.21	1.1	2.1	33	. 08	.063	20	29.2	. 26	61 .0	36 <1	.94	002	0.3	4	03	9 < 1	02	3.5	54 0	20
C141002 37003	.0	17.	/ 20.3	40	. 1 1	10.5	5.5	118	3.29	194.5	6 <.5	5 7.4	2	.11	6	1.4	22	.02	.112	23	10.4	.07	33 0	10 1	70	002	.0.2	2	02	1 - 1	L 02	27		23
																							50 ,0	10 1		.002	.05	. 4 .	U.J		L~. UZ	្រា	100.9	35
LZ4*00E 3+505	1.2	24,1	5 30.9	-52	.32	21.2	7.9	178	3.15	454.3	.7.6	5.4	5	.21	.3	3.2	32	ň¢	090	24	17.0	12	36 0		<i>c</i> .									
L24+00E 4+50S	1.4	8.3	27.1	19	. 1	5.8	1.9	112	1.22	44.4	.2 < 5	11	Ğ.	ī -	4	a.c	11	00	000	10	17.0	- 12	30 .0	2/ 1	.04	.002	.04	ا، کې،	03	.6 <.1	< 02	36	535.7	30
L24+00E 5+00S	.9	22.	5 18.8	46	.2 2	26.9	10.3	274	3.29	107 3	6 < 9	ΑĜ	š			• • • •	25	. 77	, VOZ	19	4.2	.03	36.0	03 3	34	.002	.11	.1.	02	.1 <.1	l<.02	3	73.0	20
L24+00E 5+50S	.5	21.9	9 15.8	42	.2.2	23.7	9.3	602	2 55	30 8	1 - 6	- J.J - E 1	10		.7	2.1	60	- 12	.08/	10	32.1	.28	// .Q.	33 I	1.07	.003	.04	.3.	051	.0 <.1	L<.02	31	.80.1	50
L24+00E 6+00S	4	29.8	10.3	47	1 3	14.2	14.2	216	2.00	E1 2		0.1	12	.1	.5	2.4	28	.31	. 048	27	17.5	.ZI 1	LD6 .0/	20 1	. 80	. DO 2	.03	.2.	04 1	8 < 1	<.02	31	49.1	35
						· · . L	19.6	K.10	5.20	51.2		0.4	3	· T	. 3	.7	1	.04	.033	28	11.3	.08	52 .00	06 <1	. 49	.001	.03	.1 .	03	7 <]	< . 02	1	4 6	25
124+00F 6+60S	7	15	1 12 1	64	3 4	7 2	16 6	547	4 6 9				_	_																		-		· •
1 24+00F 7+00S		10.1	+ 12.1 2 10 2		. 2 4	7.2	10.0	347	4.53	80.4	.5 <.5	5.5	- 7	.2	.7	4.8	55	.20	. 060	20	53.3	.62 1	16.0	89 1	1.51	.003	04	2	03-1	7 < 1	< 02	5	5 A	2 0
00 1 74,000 7,005	.0	10.	5 IU./	30	.1 4	.7.0	1.3	133	Z 82	74.5	.3 <.5	4.1	7	.2	.4	1.7	55	. 20	. 080	Ż1	25.1	.16 1	33 0	99 1	73	003	04	1	02	0 - 1	~ 02	ç	0.1	30
LOALOOF TUDE /TUDO	· ./	14.8	5 10.4	30	-11	5.7	6.5	189	2.74	72.2	.3 <.5	4.2	7	.1	.4	1.6	53	. 19	.076	21	24.1	15 1	24 0		70	000	04	1	02 63	0 - 1	~ 02	2	0Z.4	25
L24+UVE /+5US	.6	16.3	3 9.7	54	.23	12.5	11.2	250	3.00	10.9	.3 <.5	3.3	11	.2	.3	.4	68	35	088	16	61 1	57 1	161 10	12 vi	1 57	.004	.04		0Z		<. UZ	5	H_{1}	20
L24+00E 8+00S	.9	20.1	1 12.9	60	.23	8.7	12.5	264	4.95	25.2	.5 <.5	3.A	11	2	5		101	20	054	16	01 2	. 37 I 61 0	101 JU	10 ~1	1.57	.003	.03	1 I I	U4 I	5 <.1	<.0Z	6	8.7	35
																		.00	.034	10	01.0	.01 2	24 .1	94 1	1.95	.004	.Q4	.1.	04 1	9 <.1	l<.02	8	36.7	35
L24+DOE 8+505	.8	15.4	13.9	48	.1 2	5.2	9.4	239	3.55	20.6	3 < 9	3.3	17	2	Ŷ	2	62	41	651	14	c n a	~~ ~	··· ·											
L24+00E 9+00S	.9	21.9	11.2	53	23	A 3	12 4	263	4 00	16.4		3.3	10	. 4			33	.41	.051	10	60.0	39-2	251 .14	48 1	1.39	.005	. 04	.1.	02 1	6 <.1	<.02	7	5.7	25
L24+0DE 9+50\$	1.1	20.8	197	65	73	1 2	12 6	221	4.26	10.4	.4 ~.0	3.4	10	. 2	. 2	.4	88	4	.049	13	72.4	.55 2	241 .1	56 <1	1.74	.005	. D5	.1 .(05 1	9 < 1	< 02	6	9.0	50
124+00F 10+00S	14	22.0	5 16 6	74	6 2	C C	10.0	742	4.20	101.0		3.5	20	. 3	.5	.5	80	.41	. 062	16	57.5	34 1	.45 .10)I <l< td=""><td>1.62</td><td>.003</td><td>. 03</td><td>.Z ./</td><td>04 1</td><td>6 < 1</td><td>< 02</td><td>7</td><td>26 4</td><td>40</td></l<>	1.62	.003	. 03	.Z ./	04 1	6 < 1	< 02	7	26 4	40
124+00E 10+505	7	21 /	10.0	21	. U J	1 1	11.1	2.40	4.24	21.9	.5 - 5	3.5	11	-3	.7	.3	89	. 26	. 084	15	74.3	.45 1	.50 .1;	37 <1	1.88	.004	D4	1	08.2	l < 1	02	7	30.0	76
	.,	C1.4	F 7.1	Q1	.2 4	1.2	13.2	285	3.71	11.1	.4 <.5	3.8	9	-2	. 4	.3	84	.30	. 050	17	74.6	.72 1	52 .14	40 <1	1.85	006	03	1	03.2	0 < 1	< 02	6	L 0	20
1.24+00E 11+005		10.1		~																									00 E	· · · ·	.~. 02	0	2.0	20
124.000 11.000	.9	13.1	8.8	64	32	2.6	/.4	227	3.28	7.8	.3 <.5	3.0	9	. 2	.4	. 2	76	. 25	.105	16	46.8	33.2	A4 ns	R5 <1	1 26	005	05	1	07 T	2 - 1	- 07	~	4 -	0.0
L24TUUE 11TOUS	./	1.2	10.8	40	.1 1	3.4	4.6	124	1.72	6.2	.2 <,5	2.7	8	.2	.3	.2	56	.27	045	18	25.3	18	QR 11	16 21	67	000	.00	- 1 - 1	UJ	3 5.1	- 02	0	4.5	30
L24+00E 12+005	. (14.5	» 10.5	61	.2.3	0.9	10.2	259	3.01	7.4	.3 <.5	2.7	9	.2	.4	.3	72	29	084	15	5/ 5	17 1	60 . L)	LC -1	1 20	.004	.03			/ <.1	.<.uz	5	11.7	10
L24+00F 12+50S	. 8	9.2	10.5	58	.22	4.1	9.6	324	2.96	5.3	.2 <.5	2.6	11	.2	3	2	<u>я́п</u>	้าก	004	13	51.0	ו לדי. רדכי	-96 -11 -64 -14	10 -1	1.30	.003	.03	· 1 .	02 1.	3 < 1	<.02	6	8.5	20
L24+00E 13+00S	.7	25.5	11.4	68	.2.5	1.1	17.5	332	4.06	13.9	4 < 5	3.9	13	2	5	2	80	12	- 090	10	31.0 36 A	1 10.	.04 .13	SZ <1	1.10	.002	.07	. <u>i</u>	021.	2 < .1	< .02	/	54.3	25
												4.9	10			. 2	00	12	.091	12	/5.0	./3 2	ZU .13	92 <1	1.80	.005	.03	.2.0	02 1.	9 < 1	<.02	5	16.9	20
L24+00E 13+50S	.7	22.3	10.2	64	.1 4	3.9	14.8	252	3.50	10.1	4 c 5	37	12	2	4	-	c0	30	000		<i>.</i>													
124+00E 14+00S	.4	5.6	8.0	23	.1.1	0.2	3.8	ten	1 34	2 7	2 - 5	2.7	12	. 2	. 4	. 4	69	. 30	.083	15	b/./	.62 1	.72 .11	.4 <1	1.72	.005	.03	.1.1	031.	8 <.1	. 02	5	4.6	30
L26+00E 2+00\$	1.1	12.0	28.9	43	21	7 0	6.3	765	2.85	510 1	. <u>.</u>	2.0	3	- 1	. 4	. 2	60	. 22	.025	15	27.2	. 14 1	.07 .12	20 <1	. 68	.005	.03 <	:1.1	01 .	6 <.1	.02	5	. 6	15
L25+00F 4+00S	1 1	25.2	21.2	103	2 2	ή.Ψ ή.Ω	0.J	100	2.00	272 1	.51.0	2.5	4	-1	.6	3.1	36	. 06	. 042	28	12.1	. 05	36 .01	.9 <1	. 53	. 001	50.	.2.0	03.	5 < 1	02	4 9	52 7	25
1.26+00E 4+50S	7	19 0	21 6	£1	. 2 7	7 7	0.0	932	J. LL	3/3.1	-1 .1	5.2	13	.91	.4	2.2	33	. 06 .	.060	30	20.6	. 21	66 .01	5 <1	. 82	.001	.04	.3 4	54	9 < 1	02	47	16.8	25
	- '	10.7	21.0	51	. 2 1.	1.3	10,Z	296	3.90	30.9	.5.6	7.5	8.	<.1	.3	1.3	47	. 80 .	. 047	18	24.0	.55 1	43 .01	4 <1	1 95	002	03	2 1	14 1	3 1	- 02	7 6	77 E	20
1.26+002 6+006	5	20.0	14 5	<i>c</i> o		- •	.																	•					v7 1,	U .1	VZ	/ 0	C. 1	دد
196±000 07000 196±000	د.	30.8	10.5	bZ	.1.6	5.1 :	30.5	453	4.48	8.1	1.5 <.5	21.1	189 -	<.11	.8	.6	11 2	. 43 .	.048	82	27.6	95	20 DI	5 <1	1 65	002	04	1 /	11 7	· · ·	00		10.0	
L20700E 37303	.5	61.8	25.6	31	.2.75	5.7	22.7	675	3.33	40.2	.5 <.5	4.4	23	.11	.6	.9	91	. 17	.057	14	6.4	11	46 00	11 1- Al	1.00	Δ02 Δ02	.04	. 1 . 1	11 L.	6 5.1		5	10.9	15
1/0+00E 6+00S	.7	50.5	25.3	33	.3 36	5.2 🔅	l8.0	651 ·	4.69	393.4	.6 .7	5.3	6	.2 2	.1 3	1.3	25	14	065	17	22.6	20	-0.00 74 AD	1~ U	.47	.002	.03		JJ 1.	3 <.1	.03	Ł	22.9	35
L20+00E 6+505	.7	38.7	23.2	53	.2.51	1.6 (3Z.6	689 -	4.41	1196.1	.6 < 5	4.9	14	.21	2 1	21	50	22	069	10	52 E	. 20 22 T	714 .02 21 07	ויים. ייי מי	.72	.002	.03	.4 .(131.	¥ <.1	.02	27	20.6	30
STANDARD DS3	9.4	126.4	35.1	154	.3 39	5.7 1	2.1	781 ;	3.22	30.7	5.6 < 5	3.9	27 4	576	. <u> </u>	с. я	78		. 000 noo	10 1	02.0	- 22 I. E0 1	JI .07	<u>э</u> т	1.28	.006	.04 1	. 0 . (J3 2.	7 <.1	. 02	43	01.9	30
								'				0.5	<u> </u>		. u	J.a	10	. 00 .	ללט.	19 1	.91.8	.58 L	45.08	<u>u 1</u>	1.70	.027	.17 3	.9.2	25 2.	0 1.0	. 02	6	20.7 2	250

Sample type: SOLL SSB0 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data

ALHE ANALYTICAL

Island Mountain Gold Mines Ltd. PROJECT Island Mountain FILE # A103762 Page 8

<u>ند</u>

		ACHE ANALYTICAL
ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	TI S Ga	Au* Hg
	pm % ppm	ppb_ppb
L26+00E 7+005 .B 18.9 10.3 58 2 43.1 15.1 259 4.70 17.8 4 5 5 3 9 9 7 4 3 72 26 005 16 75 .046 .39 2.2<.01 1.2	.3<.02 4	<.2 <10
	,1.02 6	11.9 30
	1<.02 6	34.4 35
	.1<.02 5	7.7 25
	1 02 6	5 4 25
		0., 12
L26+00E 9+50S 5 32.0 14.4 63 2 43 6 17 0 690 3 29 79 7 8 5 5 3 9 2 7 2 5 46 19 036 25 57.6 48 165 040 <1 1.70 003 04 2 06 2.4 <	.1 .02 3	300 6 55
	1<.02 5	51 40
RE L26+00E 10+005 5 30.9 9.8 62 < 1 43 2 16 4 495 3 00 6 5 4 5 4 3 16 1 4 1 70 42 047 19 70.0 80 171 135 1 1.59 027 04 < 1 02 3.3 <	1< 02 5	4 7 20
LZB+00E 0+505 9 20 / 39 6 39 3 19 5 B 3 220 3 03 139 5 C 4 4 10 2 4 1 68 45 045 20 70 6 82 164 135 1 1 53 026 05 < 1 03 3.2 <	1<.02 5	3 4 25
	1<.02 4	459 2 25
		102.17. 20
	1.02 5	518 5 15
L28+00E 2+50S 1.1 20.7 33.5 35 4 22 5 8 8 235 3 24 1035 0 4 1 1.4 14.0 25 06 074 28 22.9 19 48 015 <1 .75 002 04 6 03 1.1 <	.1 02 21	1557 0 30
L28+00E 3+00S 2.1 27.9 26.0 48 1 0 31 3 12 1 373 4 15 376 1 1 4 10 3 5 .1 9 4.5 30 .05 .057 28 21.5 .19 51 .022 1 ./9 .003 .04 .4 .02 1.0 <	1< 02 3 1	705 4 25
L28+00E 3+505 .6 46.6 15.1 43 3 22 0 13 4 33 5 48 570 5 1 1 4.4 10.7 6 .3 .8 3.5 28 .04 .053 25 28.0 .27 55 .018 1 .94 .002 .04 .5 .051 6 <	1< 02 3/	16AE 2 50
	1<02 2	44 5 40
	I THE E	40
	l< 02 ₫	10 - 25
L28+00E 9+00S 6 18.2 11.4 52 3.27 4 9.0 238 2.87 17.0 5 4.5 3.7 17 .2 .4 .3 87 .43 .133 17 78.6 .67 234 .108 1 1.99 .005 .05 < 3 05 2.9 <	1 02 7	6 0 60
L28+00E 9+50S . 6 33.0 13.4 68 2 45 7 17 2 726 7 17 17 2 726 7 17 17 17 10 10 10 10 10 10 10 10 10 10 10 10 10	1<02 6	5 3 26
L28+00E 10+005 7 24.1 10 5 68 1 38 0 12 5 300 3 77 3 6 5 3 5 26 2 4 4 70 60 048 23 73.4 82 231 103 1 1.90 007 06 < 1 05 5 7 <	1< 02 5	J.J ZD // 7 ED
	1 02 5	4.7 DU 4 7 D0
	1V2 U	4.2 JU
STANDARD DS3 9.0 127.5 35.3 156 3 35 4 13 0 868 3 20 30 4 6 6 5 4 3 20 5 1.6 5 9 17 54 041 57 21.9 26 75 009 1 1.18 004 04 6 08 4.1 <	1 02 2	69.5 80
	1.03 6	20.3 245

Sample type: SOIL SS80 60C. Samples beginning [RE] are Reruns and [RRE] are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AA

Appendix E Preliminary Report on Induced Polarization Survey by SJ Geophysics

۲ ۲

> ۳ ۲

.

.

.

.

.

.

.

.

•

.

.

•

•

.

SJ Geophysics Ltd. S.J.V. Consultants Ltd.

11762-94th Avenue,Bus: (604) 582-1100Fax: (604) 589-7466Delta BC V4C 3R7 CANADA E-mail: trent@sjgeophysics.comwww.sjgeophysics.com

International Wayside Gold Mines Ltd. Island Mountain Gold Project Wells, B.C. Induced Polarization Survey

November 2, 2001

Dear Sirs:

During October, 2001, SJ Geophysics Ltd. conducted some 26,600 feet of Induced Polarization surveying across 16 lines (OE to 3000E) on the Island Mountain Gold Project, near Wells, B.C. The survey utilized an "expander-style" pole-dipole array, configured with 8 receiver dipoles. The first four receiving dipoles had a 50 foot spacing and the last four receiving dipoles had a spacing of 100 feet. The array was established with the current electrode consistently located to the south of the receiver array and the entire array moved 50 feet for each measurement.

The following pages contain preliminary colour cross-sectional images of the IP results gathered along 16 lines. Two sets of images are presented for each line: the first for the resistivity component and the second for the chargeability component.

In the first image of the set, the apparent resistivity or chargeability data is presented in a standard pseudosection format, with plotting locations adjusted for elevation and true electrode positioning. The remaining images present the interpreted (inverted) resistivity and chargeability data as coloured depth sections. The second image uses a standardized colour distribution: 1 to 10,000 ohm-feet for the resistivity and 0 to 72 milliseconds for the chargeability. These representations allows for the best line to line comparison of the results across the survey grid. The third image uses a customized colour distribution, calculated from the range of values noted along the

line. This representation most clearly displays the variations in the measured parameters along each line.

Processing and interpretation are currently ongoing. Plan maps can be generated, showing the interpreted resistivity and chargeability components for any required depth, and overlain on existing topography and base maps.

Sincerely

Per S.J.V. Consultants Ltd.

E. Trent Pezzot, B.Sc., P.Geo.

Geophysics, Geology

TABLE OF CONTENTS

1

Page

LINE OE - RESISTIVITY	4
LINE OE - CHARGEABILITY	5
LINE 200E - RESISTIVITY	6
LINE 200E - CHARGEABILITY	7
LINE 400E - RESISTIVITY	8
LINE 400E - CHARGEABILITY	9
LINE 600E - RESISTIVITY	. 10
LINE 600E - CHARGEABILITY	. 11
LINE 800E - RESISTIVITY	. 12
LINE 800E - CHARGEABILITY	. 13
LINE 1000E - RESISTIVITY	14
LINE 1000E - CHARGEABILITY	15
LINE 1200E - RESISTIVITY	16
LINE 1200E - CHARGEABILITY	17
LINE 1400E - RESISTIVITY	18
LINE 1400E ~ CHARGEABILITY	19
LINE 1600E - RESISTIVITY	20
LINE 1600E - CHARGEABILITY	21
LINE 1800E - RESISTIVITY	22
LINE 1800E - CHARGEABILITY	23
LINE 2000E - RESISTIVITY	24
LINE 2000E - CHARGEABILITY	25
LINE 2200E - RESISTIVITY	26
LINE 2200E - CHARGEABILITY	27
LINE 2400E - RESISTIVITY	28
LINE 2400E - CHARGEABILITY	29
LINE 2600E - RESISTIVITY	30
LINE 2600E - CHARGEABILITY	31
LINE 2800E - RESISTIVITY	32
LINE 2800E - CHARGEABILITY	33
LINE 3000E - RESISTIVITY	34
LINE 3000E - CHARGEABILITY	35

Line 0E - Resistivity

Pseudosection

_

Page 6

Line 200E - Resistivity

Pseudosection

Line 200E - Chargeability

Pseudosection

Line 400E - Resistivity

Pseudosection

Line 400E - Chargeability

Pseudosection

Line 600E - Resistivity

Pseudosection

Line 600E - Chargeability

102

0

204

Pseudosection

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada tel: (604) 582-1100 fax: (604) 589-7466 e-mail: sydv@sjgeophysics.com

306

X (m)

408

510

611

Line 800E - Resistivity

Pseudosection

Line 800E - Chargeability

Pseudosection

Line 1000E - Resistivity

Pseudosection

Line 1000E - Chargeability

Pseudosection

Line 1200E - Resistivity

Pseudosection

Line 1200E - Chargeability

Pseudosection

Line 1400E - Resistivity

Pseudosection

Line 1600E - Resistivity

Pseudosection

e

Line 1600E - Chargeability

80

0

160

Pseudosection

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada tel: (604) 582-1100 fax: (604) 589-7466 e-mail: sydv@sjgeophysics.com

321

401

481

241

X (m)

Line 1800E - Resistivity

Pseudosection

Line 1800E - Chargeability

Pseudosection

Line 2000E - Resistivity

Line 2000E - Chargeability

Line 2200E - Resistivity

Line 2400E - Resistivity

Pseudosection

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada tel: (604) 582-1100 fax: (604) 589-7466 e-mail: sydv@sjgeophysics.com

X (m)

Line 2400E - Chargeability

Pseudosection

Line 2600E - Resistivity

Pseudosection

Line 2600E - Chargeability

Pseudosection

Line 2800E - Resistivity

Pseudosection

Line 3000E - Resistivity

Pseudosection

Line 3000E - Chargeability

Pseudosection

Appendix F Rock Sample Descriptions – Kutney Zone .

1

;

È.

.

. .

t Na a

μ.

. .

ъ.

Балан

ы.

1

.

. Maria

Ì.,.

HOLE: KI	ORE SAN	APLE RE	CORD	2001 MOSQUITO PROJECT SHEET: OF:
SAMPLE #	INTE FROM	RVAL TO	GOLD (PPB)	SAMPLE DESCRIPTION
21014			0.10	In channel
015			2,34	et
016			35.56	۰۱ .
017			9.56	e)
018			0,24	• 1
019			>99.99	Grab sample
020			0,35	Grab sample
Oal			1.71	2 m channel at vienny
Daa			1.64	In channel gth viening
025	<u></u>		3.74	Grab of atz 100M SW of Kutney pit = 1st gu
024			2.53	fl an an an
		·····		
		··		
		<u> </u>		

[_____

. . .

È.

-

-

:

. . **b**.a

(3' cha	nnels) 15		NOUNTAIN	I GOLD MINES LTD.				
C HORE: Kut	ORE SAN	IPLE RE		2001 MOSQUITO PROJECT				
SAMPLE #	FROM	RVAL TO	GOLD P	SAMPLE DESCRIPTION				
121048			0.07					
049			0.30	Chil altered, oxidited pl with fractured tox gtz vien				
050			50.0	Chi attend - graphitic pl with 43cm wide common gib vicence and vicilly calend min cuiled				
05)			50.0	Bik graphite argulate introduced is fine gr. erenik.				
057			0.02	Same a last (121051)				
			- 0.00					
		·	,					
			÷					
			-	· · · · · · · · · · · · · · · · · · ·				
	:		-					
· _	· · · · · · · · · · · · · · · · · · ·	<u></u>						
				· · · · · · · · · · · · · · · · · · ·				
		±	<u> </u>					
				· · · · · · · · · · · · · · · · · · ·				

.

Ê

: •---

KUTNEY	PIT CI	AANNEL	SAMPLE	S A. JUSTAJOW
(3' channo	(_A) is	SLAND M	OUNTAIN	I GOLD MINES LTD.
C	ORE SAN	IPLE REC	CORD	2001 MOSQUITO PROJECT
SAMPLE	NEY PIT		UNE 13 0	ON SHEET: 1 OF: 7
#	FROM	то	(PPB)	SAMPLE DESCRIPTION
121025			0.04	·
121026			40.01	
121027			40.01	
Dab		·	40.0)	
029			0,02	
030			0.05	
031			0.01	
032			0.11	· · · · ·
033			40.0	
034			20.01	
035			0.03	
036		_	0.04	
037	-		2001	
039			20,01	
039			40,01	
040			40.01	
041			40.01	
042			40.01	
043			40.01	
044			40.01	
OYS			40.01	Grah
046			0.03	Grab
047			40.01	Grab

• . •

Appendix G Rock Sample Analyses

.

-

.

.

.

.

.

۰.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

	Box 247, Neti≤ BC VOK ZRO Submi	
		gm/mt
	C 121025 C 121026 C 121027 C 121028 C 121028 C 121029	.04 <.01 <.01 <.01 .02
	C 121030 C 121031 C 121032 C 121033 C 121033 C 121034	.05 .01 .11 <.01 <.01
	C 121035 C 121036 C 121037 C 121038 C 121039	.03 .04 <.01 <.01 <.01
	C 121040 RE C 121040 C 121041 C 121042 C 121042 C 121043	<.01 <.01 <.01 <.01 <.01
	C 121044 C 121045 C 121046 C 121047 STANDARD AU-1	<.01 <.01 .03 <.01 3.50
DATE RECEIVED: JUN 15 2001	GROUP 6 - PRECIOUS METALS BY FIRE ASSAY FROM 1 - SAMPLE TYPE: ROCK R150 60C Samples beginning 'RE' are Reruns and 'RRE' ar DATE REPORT MAILED: JUNE 26/01 SIG	A.T. SANPLE, ANALYSIS BY ICP-ES. <u>e Reject Reruns.</u> INED BY
	V	

~ ..

يبدين -----852 B. HASTINGS ST. VANCOUVER BC VOA IR6 PRONE (604) 251-3158 FAX (604) 253-1716 ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) ASSAY CERTIFICATE Island Mountain Gold Mines Ltd. PROJECT Island Mountain File # A101753 Box 247, Wells BC VOK 2RC Submitted by: A. Justason Au** SAMPLE# qm/mt .02 .30 $121048 \\ 121049$.07 121050 .02 121051 121052 .02 .03 3.45 RE C 121052 STANDARD AU-1 GROUP 6 - PRECIOUS METALS BY FIRE ASSAY FROM 1 A.T. SAMPLE, ANALYSIS BY ICP-ES. - SAMPLE TYPE: ROCK R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. June 26/01 SIGNED BY JUN 19 2001 DATE REPORT MAILED: . D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS DATE RECEIVED:

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA YAK

	<u>Island Mou</u> Bo	ntain Gold Mines x 247, Wells BC VOK 2R0	<u>a Ltd.</u> Eile # P Submitted by: 0. Polischu	101886 K	Ê
		SAMPLE#	Au** gm/mt		<u></u>
		C 121101 C 121102 C 121110 RE C 121110 STANDARD AU	2.08 5.03 47.58 48.11 J-1 3.45		
	GROUP 6 - PRECIO - SAMPLE TYPE: S Samples beginnin	DUS METALS BY FIRE ASSAY FI ROCK R150 60C ng <u>'RE' are Reruns and 'RR</u>	ROM 1 A.T. SAMPLE, ANALYS: E' are Reject Reruns.	IS BY ICP-ES.	
ATE RECEIVED: JUN 27 2001	DATE REPORT MAII	ED: July 4/01	SIGNED BY	D. TOYE, C.LEONG, J. W	ING; CERTIFIED B.C. ASSAYER

ACME ANALYTICAL LABORATORIES LTD. 852 (ISO 9002 Accredited Co.)	CAL RASTINGS ST. VANCOU	UVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716
Land Mon	untain Gold Mines L Box 247, Weits SC vOK 280 Sola	td. File # A101887
	SAMPLE#	Au** ppb
	C 121103 C 121104 C 121105 C 121105 C 121106 C 121107	77 219 3588 7249 8475
	C 121108 C 121109 RE C 121109	342 2186 2470
GROUP 38 - FIRE GEOCHEM AU - 30 GM	SAMPLE FUSION, DORE DISSOLVED 1	IN AQUA - REGIA, ICP ANALYSIS. UPPER LIMITS = 10 PPM.
	011	/

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

_

Data FA YINS

Island Mountain Gold Mines Ltd.

200 ft.

50m

- 4150 ft.

Draven by: J'W, Plokett, P.Deo Extransp. 2007

Figure 11

GEOLOGICAL SURVEY BRANCH

Drawn by: J.W. Presett, P.Gan. Pebruary, 3952

Island Mountain Gold Mines Ltd.

Section 2+06 E Looking Northwest

Figure 13

50 N

- 4600 ft.

- 4550 ft

- 4500 ft.

- 4450 ft.

- 4400 ft.

Elevation

- 4350 ft.

- 4300 ft.

- 4250 ft.

- 4200 ft.

- 4150 ft.

100 N

- 4600 ft. -06 GEOLOGICAL SURVEY BRANCH ASSESTMENT TO A

- 4500 ft.

4550 ft.

- 4450 ft.

- 4400 ft.

Elevation

- 4350 ft.

- 4300 ft.

- 4250 ft.

- 4200 ft.

- 4150 ft.

50 N 100 N

D.D.H. IGM01-07 - 4550 п.

- 4500 ft.

- 4450 ft.

- 4400 ft.

- 4350 ft.

Elevation

- 4300 ft. - 4250 ft. - 4250 ft. - 4250 ft. - 4200 ft. - 4150 ft. - 4100 ft. - 4100 ft.

	Mosquito Creek Claim Group	/			Aurum		\downarrow	A S		
Q		Island Mountain Claim Group						X Y		Island Mountai
83-43	V	~	/			0051		601	1	Mine
45	92.46	00.00	Kutney Zo	ne	1			X	Trench	
01-06	83-16	83-28	.94.04	84.05	F				Eault	SMI /
01-0	5	535 83-30	826	578	_616	160	6865	1264	2845 3681	3568
Burnett 2240	54	1511	1674	11751ag	2988	800	4039	19910		300
Fault 600		1899	2259	183.31	030	7699	8710	404	900	9 <u>20</u> 3
	1.04	000	(And C)	83-37	804		26000/	And A	1000 U	220 Mine Section
		200	1000	0/075	226	100	0077	600	20000 (20)	50 15 CF window
E	83-46 00	83.34 85 2	912	3 83/67	51	600	223	200	122 11	
392	493.42	83-32 83-2	83383-21	82.25	1939	169	2980	1 180	1975	
65	1 103-40 3123-39	- 60 63-2 SZ	502	25	46	A a	1793	1770	198	(5) (197
100	42	20	151	861	178	50	147	21	100	200 18
01-06 40	82	105	62	46	107	560	155	70	24	170
59	51	56	58	6	82	660	59	63	21	53 37 Auruni
92	50	189	100	181	27	137	110	8	12	199 333 to suit
100	20	66	120	74	42	247	151	52	9	33 31 db
48	73	80	46	183	19	62	94	79	7 5	85 25
. 02	40	48	62	01	100	74	50	85	15	26 19
93	97	237	25	129	1720	840		165	181	ST 27
207		27	47	46	45	110	51	68		41 66
110	51	30	31	250	36	521	1438	23	10	70 5319
120	237	23	40	48	154	2695	153	78	253	226 19
213	42	89	32	20	23	473	37	81	23	27 22 8
987	43	69	25	78			74	3368		18 12
+ 169	43	43	10	+ 99	40	83	215	29	03	28 18
- 893	83	132	08	64	191	2228	+ 261	148	12 F	9 9
759	29	82	41	154	1812	10	200	W	11/	พ 12
199	42	80		+ 60	4449	10	100	22	20	0
+ 244	69	~ W	N N	54	e e	19	1 con	16	EU (P)	223 6V
414	200	-	8	2220	69	10	6	+ 15	9	20
158	30			69	1.50	01	- 4	1 30	E	19
210	623	10	65		N/					
	1110	10	00			///	(1)	/////	1/1/ /	7775
-Roads and			-			/ 1_/	1/1/	1.1.1		
+ Trails		Contour	1	00		Feet		00	1 / 1	Metres
=	1830	Interval 10m	1	L8	0	200	400	/ \ <u>\</u>		0 50
/				1.1	1-1	1 1	TTT	7/	L	111/1/

		Mosquito C Claim Gr	Creek oup / Island Mountain	1		Aurum	H	$ \rightarrow $	A A			L	-
83-43	G		Claim Group		-	Th	0651				K	Mou	int
45	-	00.00	/	Kutney 7	ne			1	X	Trench	and the		5
0	01-06	83-16	83-28	04.04	94.05	T				Au Fa	um >	AL.	1
No.	0:03	V/	0.03 83-30	0.02 4-04	0.0415	0.07	0.08	0.02	0.01	0.05	0.03 X	0.02	
Burnett	0.03	0.03	0.01	0.02	0.04 -33	0.07	0.03	0.03	0.02	0.03	0.05	0.01	
Fault	0.03	0.03	0.01	0.02	0.03	0.03	0.04	0.01	0.03	0.05	0.05	0.01	
	0.06	0.02	0.03	0.00	0.02 83	37 0.07	0.01	0.02	-	0.03	0.01	0.04	the second
-	0.03 01	0 0.03	0.05	0.01	0.03 83	-39 0.03	0.05	0.00	0.03	0.02	0.01	0.04 Log	TC
	0.02 83	40.04	0.07	0.03	0.0235	0.05	0.03	0.01	0.02	0.03	0.02	0.04	urfa
	0.08	0.02	0,05	0.03 83-2	0.01	0.07	0.06	0.00	0.02	0.03	0.04	0.02 -	dip (ideg
-	0.05	0.03	0.03 83-	20 0.03 83-2	0.08	0.03 84	.06 0.07	0.03	0.03	0.03	0.03	1	NN
	0.03 01-05	.0.0383-3	8 0.07	0.04	0.03	0.07	0.00	0.06	0.04	0.01	0.07	0.05	
	0.02	0.0783-3	6 0.07	0.06	0.04	0.06	0.03	0.09	0.07		0.02	0.09	
01-0	10.01	0.05	60.0	0.06	0.02	0.03	0.05	0.03	0.03	0.03	0.01	0.13	
	0.01	0.07	0.05	0.04	0.01	0.05	0.08	0.00	0.03	0.04	0.01	0.11	210
1	0.05	0.07	0.14	0.05	0.03	0.09	0.12	0.07	0.01	0.03	0.01	0.10	0.5
	0.03	0.10	0.10	0.03	0.08	0.10	0.10	0.09	0.03	0.03	0.05	0.15	네
	0.03	0.09	0.07	0.02	0.05	0.11	0.09	0.11	0.03	0.00	0.06	0.13	
Y	0.10	0.08	0.07	0.07	0.02	0.10	0.08	0.08	0:13	0.01	0.09	0.13	
1	0.05	0.06	0.09	0.07	0.01	0.14	0.10	0.11	0.11	0.02	0.03	0.12	
×.	0.03		0.08	0.07	0.07	0.09	0.05	0.94	0.14		0.01	0.13	
	0.03	0.09	0,11	0.09	0.10	0.02	0.03	0.08	0.02	0.90	0.03	0.01	
	0.03	0.10	0.10	0.12	0.13	600	0.03	0.11	0.09	0.04	0.11	0.06	
	0.07	0.94	0.01	0.08	0.12	0.05	0.02	0.09	0.07	0.15	0.06	0.11	
	0.11	0.05	0.11	0.05	0.04	0.03	0.01	0.11	0.01	X	0.03	0.14	
-	0.08	0.11	0.10	0.08	0.14	0.11	0.08	0.05	0.01	0:08	0.07	0.08	
	0.06	0.07	0.05	0.02	0.07	0.12	0.03	0.08	0.10	0.02	0.10	0.11	
	0.09	0.13	0.04	0.09	0.09	0.10	0.07	0.09	0.11	0.08	0.05	0.10	
	0.09	0.04	0.10	0.02	0.05	0.10	0.05	0.06	1.0.07	0.12	0.09		
	0.08	0.10	0.02	0.02	0.08	0.14	0.03	0.07	0.08	0.15	0.03		
	0.09	0.11	//	0.02	0.07	-0.07	0.04	0.01	0.10	0.17	0.21		
	0.10	0.10	0.01	0.07	0.13	0.01	0.02	0.13	0.02	0.12	0.16	1	
9	0.04	0.15	0.13	0.07					1 / 1/ /	118	141	1	
	0.01	0.10	0.15	0.03				14/1	1 + 1	13111	111	A MAR	
1	1.	1						111	FILI	1/1/	NI	111	1
-	Roads and	/	_					- /1 /1	14/	114		/1	1
	Trails		Contour	1	8	/ /	Feet		00		/	metres	
-		91	Interval 10m		L8	0	200	400	19	1.1.1	0	50	
	/						1 1	111	1171	1. 1.	111	1	

