PHYSICAL WORK

RECEIVED AUG 2 8 2002

Gold Commissioner's Office VANCOUVER, B.C.

REPORT

On The

HV Mineral Claim

Alberni Mining Division

NTS Map Sheet 92 F2E

Co-Ordinates:

North: 5,454,650 East:

374,200

For

Assessment Work

By

Paul Saulnier GEOLOGICAL SURVEY BRANCH ASSNOTT PET PEPORT

June 15, 2002 Port Alberni, B.C.

Table of Contents

Introduction	2
Land Tenure	2
Access and Location	2
Physiography	2
Previous Work	2
Technical Data and Interpretations	2
Recommendations	3
Itemized Cost Statement	4
Statement of Qualifications	5

Maps:

- ---

Mineral Claim Map	Exhibit A
Grid Layouts	Exhibit B
Assay Results	Exhibit C

1.0 INTRODUCTION

The HV mineral claim block was laid out and staked to encompass prospective ground over lying the Sicker Group geological formation. The objective of this physical work program is to locate a copper-gold bearing ore deposit, below the overburden, utilizing the geochemical soil sampling technique, on the present grid system. A total budget of \$1,864.98 was expended to soil sample and assay 48 grid stations and commence mapping the surface rock outcroppings.

2.0 LAND TENURE

The HV mineral claim group was staked by Mr. Paul Saulnier on January 24, 2001 and is presently in good standing. Ten mineral claims were staked by the two-post method and, since, grouped totaling 250 hectares (617 acres).

3.0 ACCESS AND LOCATION

The HV claim group is located, approximately, five kilometers east southeast of the city of Port Alberni on Vancouver Island, B.C. Access to this claim group is via the Egg Hill 105 logging road spur. The 105 Spur, in turn, is five kilometers north on the Cameron main logging road and five kilometers by provincial road east of Port Alberni.

4.0 PHYSIOGRAPHY AND CLIMATE

The Topography, covering the HV claim block, is sloped and rolling ground with a few rock outcroppings and heavy overburden. Sections of the claims have been logged off and seeded with second growth Douglas fir, hemlock and red cedar trees. The logging road system has now been reclaimed.

5.0 PREVIOUS WORK

There has been no previous work documented with the B.C. Ministry of Mines on this claimed area. Historic trenching was located at Grid Station 1 + 050 S - 0 + 305 W. The copper showing located on grid station 0 + 300 - 0 + 225 E appears to be a brand new discovery.

6.0 TECHNICAL DATA AND INTERPRETATION

This new copper discovery appears to be associated with the Sicker Group geological formation at or near the contact with the Karmutsen Formation. The Sicker formation is the host rock for the 30+ million tones copper, silver, lead, zinc mine, at Buttle Lake, located approximately 80 kilometers north westerly on trend.

The soil samples were collected at 25 meter intervals on the present grid system. All samples tested the 'B' horizon; soils contact below the humus and root system.

Most of the soil sampling procedures between the baseline and the old logging road were routine due to the rolling topography and light humus covering.

From the road down to the swamp, there is heavy tree slash, thicker vegetation growth and deeper humus covering with a matted tree root system.

The grid sampling lines can be extended through the swamps in the summer months. Although, the thicker humus and mud layer may hamper proper sampling techniques.

Grid Line	Number of Soil Samples
0 + 270 N	12
0 + 240 N	8
0 + 210 N	14
0 + 180 N	<u>14</u>
Total Samples	<u>48</u>

The rock surface showing on the logging road was mapped to correlate to the soil sample grid.

7.0 RECOMMENDATIONS

The results of the soil sample assays, for the grid segment, did not determine any anomalis halos for Cu, Pb, Zn or Gold.

The grid system should be extended and the soil sampling program expanded northward to encompass the Sicker – Karmutsen contacts.

The grid should be extended southward over the quartz diorite intrusive and a soil sampling program commenced.

ITEMIZED COST STATEMENT

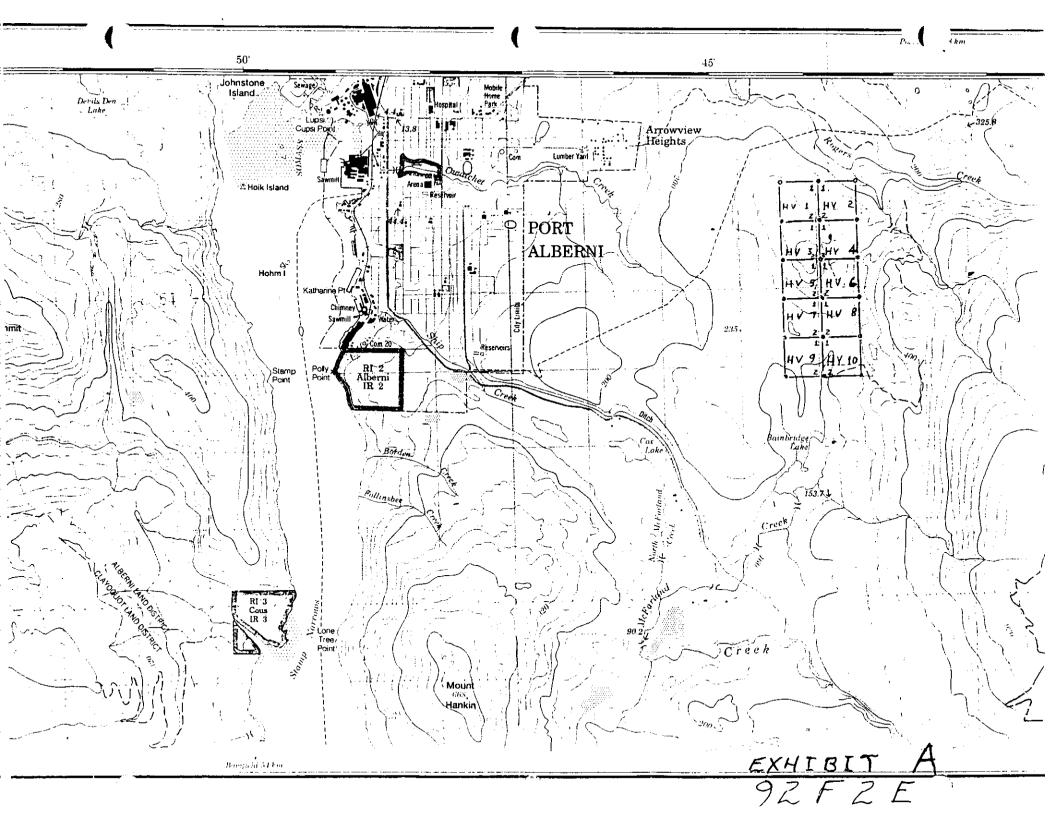
June 15, 2002

HV Mineral Claim Port Alberni Area, B.C.

1. Fees for Service	¢750.00
3 days @ \$250/day	\$750.00
Assays	\$579.41
Expenses	<u>\$535.57</u>
Total	<u>\$1864.98</u>

STATEMENT OF QUALIFICATIONS

I, Edward F. Skoda, do hereby certify that:


 I am a contract Mine Technologist with a business address at: Suite 320 – 1100 Melville Street, Vancouver, B.C. V6E 4A6 Telephone: (604) 688-3931 Fax: (604) 688-2921

- - - ----

- - - - -- --

- 2. My Qualifications are:
 - BCIT, Burnaby Campus 1974-1976
 - 2 year diploma in Business Administration
 - School of Mines, Haileybury, Ontario 1968-71
 - 3 Year diploma in Mining Technology
 - Free Miners Certificate No. 124862
 - Placer and Gravel Supervision No. 98-3396
 - Underground Shift Boss No. 940
- 3. I have been active in my mining career throughout Canada, U.S.A., Ireland, Australia and New Zealand since 1971.
- 4. I conducted the soils sampling program on the HV mineral claim for the physical work program May 28 June 1, 2002.

Edward F. Skoda June 15, 2002

			<u> </u>												<u> </u>		
						H	V	4									
) +300 N	2.4	49	18	39	 А ^Л	25	21	26	L.1	49	24 174	5"	35	32			
+ 240 N 1	6 F0	24 574	52 45	8	22 62	26	21	198	20	49 56	41 52	30 58	25 40				
- <u>180</u> N A				56 58							52 174 29 174			<u>-</u>			
]		<u>Gr</u>		<u>L[N</u>	JE		0+	00	0			<u> </u>				
						Н١	V	6			<u>24</u> 48		L Zr	<u>l</u> - 2 -	РРМ <i>РР</i> М		
													92	Fz	1: 2 E 81T	_	

To: HENLEY VENTURES INC.

320 - 1100 MELVILLE ST. VANCOUVER, BC V6E 446 Page Number : 1-A Total Pages :2 Certificate Date: 18-JUN-02 Invoice No. : 10217948 P.O. Number : Account : TRC

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Project :

Comments: ATTN: RICHARD HENLEY

CERTIFICATE OF ANALYSIS A021

. .

A0217948

SAMPLE	PREP CODE	Weight Kg	Ag ppm	Al %	As ppm	B Ppm	Ba ppm	Зе	Bi	Ca %	Cd ppn	Co ppm	Cr ppm	Cu	Fe %	Ga ppm	Ed Dada	X ł	La ppm	Mg %
BL 0+180N	94069407	0.26	< 0.2	3.22	14	< 10	90	< 0.5	8	0.29	< 0.5	15	50	47	4.35	< 10	< <u></u>	0.03	< 10	0.46
BL 0+180N-0-025E		0.24	2.0	2.78	12	< 10		<3,5	6	0.30	< Ū.5	14	47	40	4.17	< 10	<u>(1</u>	0.02	(10	0.41
BL 0+180N-0+050E		0.26	< 0.2	2.65	12	< 10		< 0.5	< 2	0.30	< 0.5	15	44	33	3.98	< 10	< 1	0.03	< 10	0.33
BL 0+180N-0-075E BL 0+180N-0-100E		0.24 0.18	< 0.2 < 0.2	$3.23 \\ 3.14$	14 14	$\langle 10 \\ \langle 10 \rangle$		< 0.5 < 0.5	6 (2		<0.5 <0.5	15 14	53 56	56	3.89 3.91	< 10 < 10		0.03 0.03	< 10 < 10	0.61 0.76
2F 0+1904-0-100F	94089407	0.10	V.Z	3.14	14	(10	120	· J.J	(2	0.33	(0.5	14	30	1 21	5.91	(10	ΥĻ	0.03	< 10	0.70
9L 0+180N-0-125E		0.18	< 0.2	1.51	6	< 10		6 0.5	< 2		(0.5	11	31	18	3.06	(10	< 1	0.02	< 10	0.28
BL 0+180N-0-150E		0.22	< 0.2	2.71	12	< 10		< 3.5	2		(0.5	14	43	32	3.69	< 10	< 1	0.03	< 10	0.47
BL 0+180N-0-175E		0.30	< 0.2	2.61	14	< 10		0.5	6		(0.5	13	41	36	3.36	< 10	(1	0.03	< 10	0.46
BL 0+180N-0-200E BL 0+180N-0-225E			< 0.2 < 0.2	2.00 3.17	12 24	< 10 < 10		<0.5 <0.5	2		< 0.5 < 0.5	11 14	35 51	21	3.45 3.98	< 10 < 10	<pre>< 1</pre> <pre>< 1</pre>	0.03 0.03	< 10 < 10	0.38
15 0+100B-0-223E	94009407	v.22	V 0.2	5.17		10	50	(0.1		0.20	(0.)	19	1		3.30	(10	· I	0.05	10	0.04
BL 0+180N-0+230E		0.20	< 0.2	2.32	12	< 10		(0.5	6		< 0.5	14	39	29	3.91	< 10	≤ 1	0.02	< 10	0.35
L 0+160N-0-275E		0.22	< 0.2	2.35	16	< 10		(0.5	2		< 0.5	15	40	<u>31</u> 54	3.76	< 10		0.04	< 10	0.28
HL 0+210N HL 0+210N-0-025E	94069407		< 0.2 < 0.2	3.86 2.88	16 12	< 10 < 10		< 0.5 < 0.5	6 (2		(0.5 (0.5	15 14	20 20	54 47	4.38 3.51	< 10 < 10	ϵ_1	0.03 0.03	< 10 < 10	0.61 0.52
L 0+210N-0-050E			< 0.2	2.23	12	< 10		(0.5	4		(0.5	13	42	26	3.95	< 10	$\langle 1$	0.03	< 10	0.32
			•••		~=								~				• •			••••
L 0+210N-0+175E		0.20	< 0.2	2.54	14	< 10		< 0.5	6		< 0.5	14	46	32	3.70	< 10	· 1	0.03	(10	0.43
L 0+210N-0-225E			< 0.2	3.21	18	< 10	120	0.5	6		(0.5	14	48	37	3.95	< 10	< 1	0.03	< 10	0.50
L 0+210N-0+250E			< 0.2	2.52	14	< 10		< 0.5	2		< 0.5	13	39	31 39	3.64	< 10		0.03	< 10	0.34
L 0+210N-0+275E L 0+210N-0+300E			< 0.2 < 0.2	3.31 2.56	12 14	< 10 < 10		< 0.5 < 0.5	8 2		< 0.5 < 0.5	13 14	47 44	30	3.62 4.67	< 10 < 10	$\begin{pmatrix} 1 \\ \langle 1 \end{pmatrix}$	0.01 0.02	< 10 < 10	0.41 0.30
I OVELOB-O-JOUN	4009407	0.10		2		<u> </u>		· • • • •	<u> </u>	0.25	. 0.5	14			9.07	10	· 1	0.02	10	0.10
	94069407		< 0.2	1.62	6	< 10		< 0.5	2		(0.5	8	29	16	2.77	< 10	< 1	0.02	< 10	0.25
L 0+240N-0-025E			< 0.2	2.43	10	< 10		< 9.5	6		(0.5	12	36	24	3.06	< 10	$\langle 1 \rangle$	0.03	< 10	0.37
IL 0+240N-0-050E IL 0+240N-0-075E			< 0.2 < 0.2	3.18 0.92	16 6	< 10 < 10		< 0.5 < 0.5	2		(0.5)	14 7	54 17	52 6	3.87 1.96	< 10 < 10	$\begin{pmatrix} 1 \\ \langle 1 \end{pmatrix}$	0.03 0.01	< 10 < 10	0.61 0.12
L 0+240N-0-100E			< 0.2	1.86	6	< 10		< 0.5	2		(0.5	13	36	22	3.26	< 10	<1	0.03	< 10	0.50
													•-		· · · ·					
L 0+240N-0-125E			< 0.2	2.41	б	< 10		< 3.5	2		< 0.5	15	36	26	3.15	< 10	(1	0.07	< 10	0.29
L 0+240N-0-150E			< 0.2	1.83	12	< 10		< 0.5	2		< 0.5	13	28		3.53	< 10	(1	0.03	< 10	0.23
L 0+240N-0+173E L 0+240N-0+20DE		0.16 0.20	< 0.2 0.2	2.22 1.89	L4 6	< 10 < 10	120 160	0.5 0.5	2	0.21 0.29	< 0.5	23 12	25 20		5.18	< 10 < 10		0.04	<10 <10	0.25 0.26
L 0+240N-0-225E		0.24	0.2	2.47	14	< 10		< 0.5	2 R		< 0.5	13	50	49	3.75	< 10	<1	0.04	< 10	0.81
			***			·							••	4		· ••	• •			
L 0+240N-0-250E		0.20	< 0.2	2.31	14	< 10		< 0.5	4		(0.5	13	46	41	3.58	(10	< 1	0.03	< 10	0.56
L 0+240N-0-275E			< 0 <u>-</u> 2	2.65	12	< 10		< 0.5	< 2		0.5	14	45	30	3.93	< 10	< 1	0.05	< 10	0.31
L 0+240N-0-300E L 0+240N-0-325E		0.20	< 0.2 0.6	1.97 2.38	8 10	< 10 < 10		< 0.5 < 0.5	2 < 2		<0.5 <0.5	11 12	37 50	25 57	3.56 2.95	< 10 < 10		0.03 0.01	< 10 < 10	0.26
	4069407		< 0.2	2.38	10	< 10 < 10		< 3.5	4		< 0.5	12	36		2.92	< 10		0.01	< 10	0.45
												÷					· ·	J. UI	. 14	
L 0+270N-0-025E			< 0.2	4.46	14	< 10		< J.5	< 2		< 0.5	15	58	49	3.75	< 10	< 1	0.02	< 10	0.39
L 0+2708-0-050E			• 0.2	2.01	10	< 10		< 0.5	2	0.22		10	27	18	2.92	< 10	< 1	0.03	< 10	0.22
L 0+270N-0+073E L 0+270N-0-100E			< 0.2 < 0.2	3.14 3.70	16 16	< 10 < 10		(0.3) (0.3)	2 10		(0.5 (0.5	14 15	47 49	39 47	3.71 4.28	<10 <10		0.02	< 10 < 10	0.49 0.42
L 0+270N-0+123E			< 0.2	3.20	10	< 10		< 0.5	< 2	0.21		13	49	25	4.20 3.35	< 10	< 1	0.02	< 10	0.35
					7.4					0.23	.	**					-		. 10	
	i											·		_ _						
																FV	LIT	· (2) 7		
													C	ERTIFIC/	ATION:_	<u> </u>	<u>רו ב</u>	OL	. I.	

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: HENLEY VENTURES INC.

320 - 1100 MELVILLE ST. VANCOUVER, BC V6E 4A6

Page Number 2-A Total Pages 2 Certificate Date: 18-JUN-02 Invoice No. : [0217948 P.O. Number : Account TRC

Project :

Comments: ATTN: RICHARD HENLEY

CERTIFICATE OF ANALYSIS

....

A0217948

SAMPLE	P B E P CODE	Weight Kg	Ag ppm	A1 %	As ppm	B Ppa	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppn	Со РРМ	CI P D M	Cu ppn	Fe %	Ga ppm	ĘĘ ∎egą	K z	La ppm	Mg
BL 0+270N-0+150E BL 0+270N-0+175E BL 0+270N-0+200E BL 0+270N-0+225E BL 0+270N-0+250E	94069407 94069407 94069407	0.16 0.18 0.22 0.20 0.20	0.2 0.2 0.2 0.2 < 0.2	3.23 3.19 2.42 3.52 2.59	8 4 6 14 8	< 10 < 10 < 10 < 10 < 10	70 140 190	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre> < 2 </pre>	0.23 0.34 0.51	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 12 18 14 10	31 28 20 48 36	27 26 17 49 29	3.98 4.15 4.53 3.72 3.53	<pre>< 10 < 10</pre>		0.03 0.03 0.03 0.04 0.03	<pre>< 10 < 10</pre>	0.31 0.25 0.33 0.60 0.37
BL 0+270N-0+275E BL 0+270N-0+300E BL 0+270N-0+325E BL 0+270N-0+325E	94069407	0.18	< 0.2 < 0.2 < 0.2	4.43 2.82 3.10	2 4 12	< 10 < 10 < 10	80	< 0.5 < 0.5 < 0.5	(2 (2 (2	0.29	< 0.5 < 0.5 < 0.5	15 11 16	34 37 38	57 35 32	4.34 3.47 4.69	< 10 < 10 < 10		0.04 0.03 0.03	<pre>{ 10 < 10 < 10 < 10</pre>	0.60 0.36 0.30
							-													
										-										

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.. North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: HENLEY VENTURES INC.

320 - 1100 MELVILLE ST. VANCOUVER, BC V6E 446 Page Number : 1-B Total Pages : 2 Certificate Date: 18-JUN-02 Invoice No. : 10217948 P.O. Number : Account : TRC

Project :

Comments: ATTN: RICHARD HENLEY

										CE	RTIFI	CATE	OF A	NAL	/SIS	A	Q21794	18
SAMPLE	PREP CODE	ррт mg	Mo ppm	Na L	Ni ppm	Бbи Б	65 madā	S L	Sb ppm	Sc ppm	Sr ppm	Ti %	Il ppm	U nqq	V mqq	R eqq	Zn ppm	
BL 0+180N BL 0+180N-0+025E BL 0+180N-0+050E BL 0+180N-0+075E BL 0+180N-0+100E	94069407 94069407	260 415 620 485 315	< 1 < 1 < 1 < 1 < 1	0.01 0.01 0.01 0.01 0.01 0.01	32 27 24 32 33	380 610 590 500 310	< 2 < < 2 < < 2 <	3.01	<pre> < 2 < 2</pre>	4 4 8 7	11 12 12 14 16	0.23 0.20 0.22 0.21 0.17	<pre>< 10 < 10</pre>	<pre>< 10 < 10</pre>	145 136 130 126 123	< 10 < 10 < 10 < 10 < 10 < 10	48 64 56 58 54	
BL 0+180N-0+125E BL 0+180N-0+150E BL 0+180N-0+175E BL 0+180N-0+200E BL 0+180N-0+225E	94069407 94069407 94069407	785 715 730 355 415	<pre>< 1 < 1</pre>	0.01 0.01 0.01 0.01 0.01 0.01	15 26 24 18 33	480 490 490 470 470	<pre>< 2 < < 3 < < 3 < < 3 < < 3 < < 4 < < 5 < <</pre>	2.01 2.01 2.01	<pre> < 2 < 2</pre>	3 4 5 3 6	9 10 14 11 10	0.13 0.15 0.16 0.16 0.20	<pre>< 10 < 10</pre>	<pre>< 10 < 10</pre>	96 113 110 105 119	<pre>< 10 < 10</pre>	42 62 54 52 62	
BL 0+180N-0+250E BL 0+180N-0+275E BL 0+210N BL 0+210N-0+025E BL 0+210N-0+025E	94069407 94069407 94069407	1000 1025 290 465 440	1 1 < 1 < 1 < 1	0.01 0.01 0.01 0.01 0.01	22 22 35 28 20	670 590 560 480 430	<pre></pre>).02).01).01	<pre> < 2 < 2</pre>	4 4 6 7 3	10 10 12 13 12	0.18 0.16 0.24 0.20 0.15	<pre>< 10 < 10</pre>	<pre>< 10 < 10</pre>	108 109 150 123 129	<pre>< 10 < 10</pre>	74 70 60 50 42	
BL 0+210N-0+175E BL 0+210N-0+225E BL 0+210N-0+250E BL 0+210N-0+275E BL 0+210N-0+275E BL 0+210N-0+300E	14069407 14069407 14069407	985 325 755 395 415	<pre>< 1 < 1</pre>	0.01 0.01 0.01 0.01 0.01 0.01	26 29 25 25 25 22	430 500 650 510 570	<pre></pre>).01).01).01	<pre></pre>	5 7 3 5 3	1.3 8 8 8 9	0.15 0.18 0.17 0.18 0.20	<pre>{ 10 { 10 { 10 { 10 { 10 { 10 { 10 { 10</pre>	<pre>< 10 < 10</pre>	115 118 105 104 140	< 10 < 10 < 10 < 10 < 10 < 10	58 58 74 44 64	
BL 0+240N BL 0+240N-0+025EB BL 0+240N-0+025EB BL 0+240N-0+075EB BL 0+240N-0+100EP	4069407	225 715 305 240 865	<pre>< 1 < 1</pre>	0.01 0.01 0.01 0.01 0.01 0.01	13 22 31 6 22	490 580 400 210 420	<pre></pre>).01 3.01 3.01	<pre>{ 2 { 2 { 2 } 2 { 2 } (2 { 2 } (2 < 2 <</pre>	1 3 9 1 4	6 9 10 8 11	0.12 0.16 0.23 0.10 0.08	<pre>{ 10 { 10 { 10 { 10 { 10 { 10 { 10 { 10</pre>	<pre>< 10 < 10</pre>	86 95 133 67 86	<pre>< 10 < 10</pre>	40 54 46 26 62	
BL 0+240N-0+125E9 BL 0+240N-0+150E9 BL 0+240N-0+175E9 BL 0+240N-0+200E9 BL 0+240N-0+225E9 BL 0+240N-0+225E9	4069407 4069407 4069407	2060 2320 2940 1505 490	< 1 < 1 < 1 < 1 < 1 < 1	0.01 0.01 0.01 0.01 0.01 0.01	21 13 11 12 30	1260 980 1450 1200 320	<pre></pre>).01].01].01	<pre>{ 2 { 2 { 2 { 2 { 2 { 2 { 2 { 2 { 2 { 2</pre>	4 4 3 13	13 12 13 12 21	0.11 0.21 0.29 0.03 0.13	<pre>< 10 < 10</pre>	< 10 < 10 < 10 < 10 < 10 < 10	91 119 122 114 110	<pre>< 10 < 10</pre>	90 64 98 106 56	
BL 0+240N-0+250EB BL 0+240N-0+275EB BL 0+240N-0+300EB BL 0+240N-0+325EB BL 0+240N-0+325EB BL 0+270N	4069407 4069407	515 030 920 1165 370	<pre>< 1 < 1</pre>	0.01 0.02 0.01 0.01 0.01	28 23 17 23 19	460 710 420 470 510	<pre>(2 <</pre>	7.01 7.01 3.03	<pre> < 2 < 2</pre>	6 4 1 7 3	19 12 10 19 7	0.16 0.20 0.14 0.11 0.16	<pre>< 10 < 10</pre>	< 10 < 10 < 10 < 10 < 10 < 10	110 129 113 95 91	<pre>< 10 < 10</pre>	52 56 40 32 46	
BL 0+270N-0+025E9 BL 0+270N-0+050E9 BL 0+270N-0+057E9 BL 0+270N-0+075E9 BL 0+270N-0-100E9 BL 0+270N-0+125E9	4069407 4069407 4069407	460 875 395 810 535	<pre>< 1 < 1</pre>	0.01 0.01 0.01 0.01 0.01	30 13 25 23 19	860 610 480 1000 1250	<pre> (2 < (2 <</pre>).01 7.01).01	<pre>{ 2 { 2 { 2 { 2 { 2 { 2 } 2 } 2 }</pre>	4 3 5 4 3	7 8 8 7 8	0.21 0.15 0.23 0.23 0.21	<pre>< 10 < 10</pre>	<pre>< 10 < 10</pre>	123 67 122 138 107	<pre>< 10 < 10</pre>	50 52 46 40 68	
L	1																├ 	

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: HENLEY VENTURES INC.

...

CERTIFICATION:

320 - 1100 MELVILLE ST. VANCOUVER, BC V6E 446 Page Number : 2-B Total Pages : 2 Certificate Date: 18-JUN-02 Invoice No. : (0217948 P.O. Number : Account : TRC

Project :

Comments: ATTN: RICHARD HENLEY

										CE	RTIF	CATE	OF A	NALY	/SIS	A	02179	48
SAMPLE	PREP CODE	мл Мл	Mo PPm	Na %	Ni ppm	P PPm	Pb ppm	S 1	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	nodd D	V ppm	W PPm	Zn ppm	
L 0+270N-0+150E L 0+270N-0+175E L 0+270N-0+200E L 0+270N-0+225E L 0+270N-0+250E	94069407 94069407 94069407	510 460 1085 620 335	<pre>< 1 < 1 < 1 < 1 < 1 < 1 < 1</pre>	0.01 0.01 0.01 0.01 0.01 0.01	16 13 11 35 19	860 940 780 530 640	10 6 10 2 6	0.01 0.01 0.01 0.01 0.01 0.01	6 (2 (2 (2 (2 (2	4 5 5 9 4	11 16 23 26 14	0.21 0.27 0.24 0.15 0.16	<pre>{ 10 { 10 { 10 { 10 { 10 { 10 { 10 { 10</pre>	< 10 < 10 < 10 < 10 < 10 < 10	126 133 152 113 109	<pre>< 10 < 10</pre>	50 50 66 52 54	
3L 0+270N-0+275E 3L 0+270N-0+300E 9L 0+270N-0+325E	94069407 94069407	285 725 940		0.01 0.01 0.01	34 21 20	470 1300 720	4	0.01 (0.01 0.01	< 2 < 2 < 2 < 2	7 5 5	13 12 11	0.21 0.17 0.15	< 10 < 10 < 10	<pre>< 10 < 10 < 10 < 10</pre>	139 107 124	< 10 < 10 < 10	56 56 62	

PAGE 005