

2001 DIAMOND DRILLING PROGRAM on the LORRAINE-JAJAY PROPERTY

OMINECA MINING DIVISION, BC.

NTS: 93N14W

Latitude 55° 55' N, Longitude 125° 27' W

for EASTFIELD RESOURCES LTD.

by

J.W. MORTON, P.Geo.

September 17, 2002

GEOLOGICAL SURVEY BRANKIH ASSHADAHENE I TOROLAT

Mincord Exploration Consultants Ltd.

TABLE OF CONTENTS

	PAGE
SUMMARY	1
ACCESSIBILITY, CLIMATE, LOCAL RESOURCES AND PHYSIOGRA	PHY 1
LOGISTICS MAP	2
LOCATION MAP	3
PROPERTY DESCRIPTON AND LOCATION	4
HISTORY	7
SAMPLE PREPARATION, ANALYSIS AND SECURITY	10
GEOLOGY	11
MINERAL RESOURCES	12
MINERALIZATION	13
DEPOSIT TYPES	14
DISCUSSION	14
RECOMMENDATIONS	15
COST STATEMENT (fold out)	17
AUTHOR QUALIFICATIONS	18
DRILL LOGS 2001-48 THROUGH 60 A	ppendix
ANALYTICAL CERTIFICATES A	ppendix
LOCATION MAP N	1ap folder

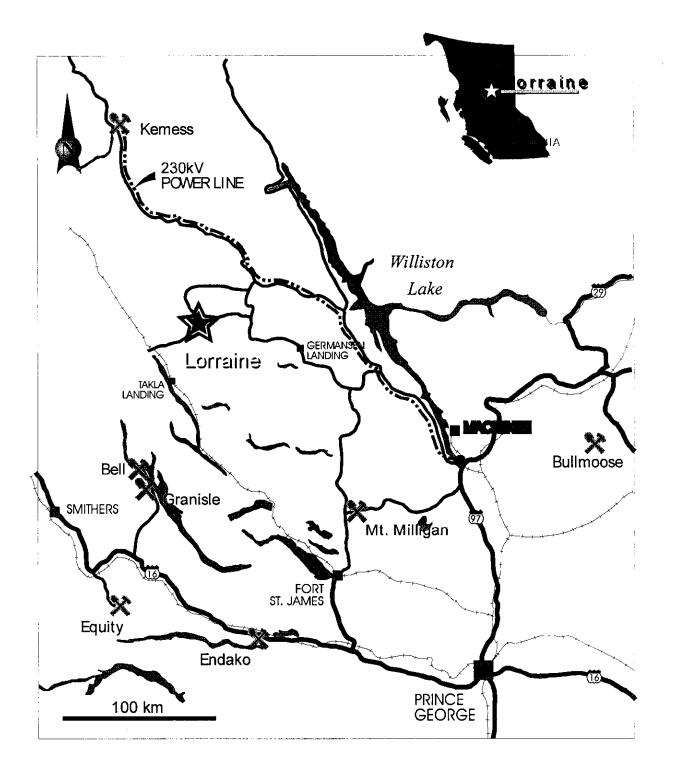
SUMMARY

The Lorraine-Jajay claims cover several significant copper-gold-PGM mineral occurrences located approximately 280 kilometres northwest of Prince George, BC. The project is situated in predominantly intrusive rocks belonging to the Triassic-Jurassic Quesnel Terrane. The large claim block currently stands at 1,082 claim units. Central to the property is a previously defined resource of 32 million tons grading 0.66 % Cu and 0.17 g/t Au. This resource is the aggregate of three historic zones.

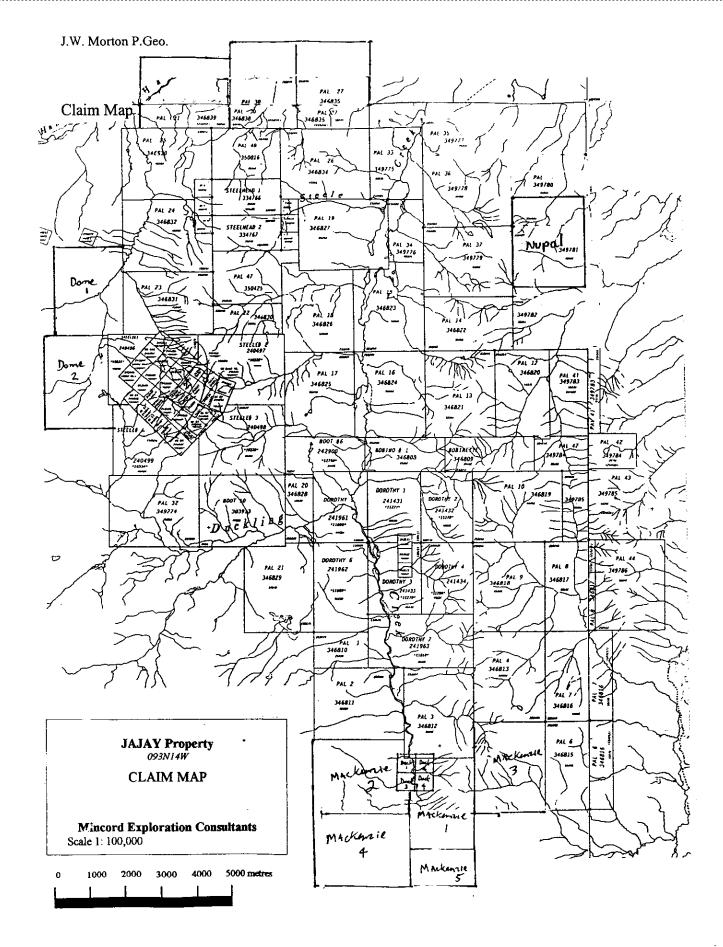
In 2001, Eastfield initiated the most recent exploration program at the property. The program, which commenced in June, ran until the middle of October and entailed 2,508 metres of diamond drilling in 13 holes, 16.5 kilometres of induced polarization and magnetometer survey and the reconstruction of Upper Camp. Some of the highlights of the drill program include 2001-48 with 52.9m @ 0.84% Cu and 0.36 g/t Au, 2001-58 with 69.8 m @ 0.59% Cu and 0.11 g/t Au and 2001-60 with 113.2m @ 0.76% Cu and 0.49 g/t Au. Hole 2001-58 established an open direction to mineralization on the eastern boundary of the Bishop Zone while hole 2001-60 established an open direction to mineralization on the southern boundary of the Lower Main Zone. Holes 2001-58 and 2001-60 are approximately 1,400 metres distant from each other.

Economic factors in favour of a successful mining operation at the Lorraine-Jajay property include:

1) recently developed access to arterial road, rail and BC Hydro facilities;


2)excellent results obtained from preliminary metallurgical work indicating that good recoveries can be expected in the production of a very high grade (bornite dominant) concentrate;

3) a low environmental consequence to development owing to the low pyrite content of the ore and abundant secondary carbonate available to mitigate acid rock drainage; and4) the polymetallic character of the mineralization includes copper, gold, silver, platinum and palladium that will afford protection from turbulent commodity price swings.


In addition to copper and gold mineralization, the Lorraine-Jajay property has potential to host significant palladium and platinum mineralization. This potential was first recognized by BP Minerals Canada in 1991 and has recently become a second major focus of Eastfield's activities. Sampling completed at the PGM rich "BM" breccia in 2000 returned analyses as high as 3.46 g/t Pd, 0.58 g/t Pt, 12.44 g/t Au and 26.32 % Cu.

ACCESSIBILITY, CLIMATE, LOCAL RESOURCES AND PHYSIOGRAPHY

The Lorraine-Jajay property is located in the Omineca Mountains near the headwaters of Duckling Creek. This location is approximately 280 km northwest of Prince George, British Columbia. Road access to the Lorraine claims, which form the heart of the Lorraine-Jajay property, is most commonly via Fort St. James and Germansen Landing using a bush road off the Omineca Mining Road. Recent logging activity in the area has pushed industrial logging roads to within a few kilometres of the property from the

Lorraine-Jajay Logistics Figure 2

Mincord Exploration Consultants Ltd., 110-325 Howe St., Vancouver, BC, V6C 1Z7

southeast (via Germansen Landing), from the southwest (via the BC rail loading facilities at Takla Lake) and from the north (via MacKenzie and the Kemess Access Corridor). One of the newly constructed roads approaches the property from the southwest using a new bridge on the Omineca River. It provides access to the BC Rail at Lovell Cove on Takla Lake where logs are shipped to Prince George. This road and bridge will be an important component to the necessary infrastructure if and when a mine is constructed on the property. A second road accesses the extreme southeastern region of the property using a new logging road branching from the Omineca Mining Road. This road extends to within a few hundred metres of the east bank of Duckling creek and was used for most of the access in the 2000 program. The property is located in a section of the interior which is truncated to the north and south by the broad, subdued river valleys of the Osilinka and Omineca Rivers, respectively. Elevations on the property range from approximately 1,000 metres (3,200 feet) on Duckling Creek to around 2,100 metres (6,900 feet) on the highest ridge tops. Pleistocene glaciation has incised a number of north and east-facing circues, which interrupt the general north-south lineation of the topography. Circue floors are generally found at 1,550 to 1,600 metres (5,000 to 5,200 feet) elevation. Talus development is extensive on the northern and eastern slopes, while the southern and westerly slopes are commonly vegetated. Glacial till and fluvioglacial outwash blanket the valley bottoms, limiting most outcrop exposures to streambeds below tree line. A thick growth of mature spruce, pine and balsam covers much of the lower elevation areas extending up to tree line at approximately 1,650 metres (5,400 feet) elevation.

The climate of this region of BC is typically cool and moderate with warm moist summers and cold winters. The lower elevation regions of the claims are snow free from the end of April until the beginning of November. In the highest elevation regions of the claims, winter snow may linger until the end of June and occur again any time after the middle of September. Total snowfall is not excessive.

PROPERTY DESCRIPTON AND LOCATION

The Lorraine-Jajay property covers 1,082 claim units located in the Omineca Mining Division of central BC. The claims, listed below, are all located on government (crown) land and encompass approximately 27,000 hectares (67,000 acres).

Claim Name	Record #	# units	Expiry Date	Expiry Year
Pal 1	346810	6	11-Aug	2003
Pal 2	346811	20	28-Sep	2002
Pal 3	346812	20	16-Dec	2002
Pal 4	346813	20	11-Aug	2003
Pal 6	346815	20	11-Aug	2003
Pal 7	346816	20	11-Aug	2003
Pal 8	346817	15	11-Aug	2003
Pal 9	346818	20	11-Aug	2003

Claim Name	Record #	# units	Expiry Date	Expiry Year
Pal 10	346819	20	11-Aug	2003
Pal 12	346820	15	11-Aug	2003
Pal 13	346821	20	28-Sep	2002
Pal 14	346822	15	28-Sep	2002
Pal 15	346823	20	28-Sep	2002
Pal 16	346824	20	11-Aug	2003
Pal 17	346825	20	11-Aug	2003
Pal 18	346826	20	11-Aug	2003
Pal 19	346827	20	11-Aug	2003
Pal 20	346828	8	11-Aug	2003
Pal 21	346829	20	11-Aug	2003
Pal 22	346830	8	11-Aug	2003
Pal 23	346831	20	11-Aug	2003
Pal 24	346832	20	11-Aug	2003
Pal 25	346833	20	11-Aug	2003
Pal 26	346834	20	11-Aug	2003
Pal 27	346835	20	11-Aug	2003
Pal 30	346838	20	11-Aug	2003
Pal 31	346839	20	11-Aug	2003
Pal 32	349774	20	11-Aug	2003
Pal 33	349775	12	28-Sep	2002
Pal 34	349776	8	28-Sep	2002
Pal 37	349779	20	28-Sep	2002
Pal 41	349783	15	20-Aug	2003
Pal 42	349784	12	18-Aug	2003
Pal 44	349786	20	20-Aug	2003
Pal 47	350425	15	24-Aug	2003
Pal 48	350016	12	11-Aug	2003
Bobino #1	346808	10	11 Aug	2003
Bobinette	346809	10	11-Aug	2003
Fiona	352235	1	11-Aug	2003
Isabelle	352236	1	11-Aug	2003
Suzanne	352237	1	11-Aug	2003
Steelhead 1	334766	8	11-Aug	2003
Steelhead 2	334767	8	11-Aug	2003
Sh 8	334773	1	11-Aug	2003
Sh 9	334774	1	11-Aug	2003
Sh 10	334775	1	11-Aug	2003
Lorraine 1	243499	1	17-Sep	2005
Lorraine 2	243499	1	17-Sep 17-Sep	2006
Lorraine 3	243500	1	17-Sep 17-Sep	2006
Lorraine 4	243501	1	•	
Lorraine 5			17-Sep	2006
Lorraine 5 Lorraine 6	243503	1	17-Sep	2006
	243504	1	17-Sep	2006
Lorraine 7	243505	1	17-Sep	2006
Lorraine 8	243506	1	17-Sep	2006
Lorraine 9	243507	1	22-Jun	2006
Lorraine 10	243508	1	22-Jun	2006

Claim Name	Record #	# units	Expiry Date	Expiry Year
Lorraine 11	243509	1	22-Jun	2006
Lorraine 12	243510	1	22-Jun	2006
Lorraine 1FR	245449	1	31-May	2006
Lorraine 2FR	245450	1	31-May	2006
Lorraine 3FR	245451	1	31-May	2006
Lorrex 1	243646	1	4-Sep	2006
Lorrex 2	243647	1	4-Sep	2006
GK 1	245043	1	3-Jul	2006
GK 2	245044	1	3-Jul	2006
GK 3	245045	1	3-Jul	2006
GK 4	245046	1	3-Jul	2006
GK 5	245047	1	3-Jul	2006
GK 6	245048	1	3-Jul	2006
GK 7	245049	1	3-Jul	2006
GK 8	245050	1	3-Jul	2006
GK 9	245051	1	3-Jul	2006
GK 10	245052	1	3-Jul	2006
GK 11	245053	1	3-Jul	2006
GK 18	245054	1	3-Jul	2006
GK 19	245055	, 1	3-Jul	2006
GK 20	245056	1	3-Jul	2006
GK 20 GK 21	245057	1	3-Jul	2006
GK 109 FR	245452	1	31-May	2006
GK 110 FR	245530	1	25-Jul	2006
GK 111 FR	245350	1	31-May	2006
GK 112 FR	245531	1	25-Jul	2006
Dorothy 1	243331	12	23-3ui 11 Aug	2003
Dorothy 2	241431	12	28-Sep	2003
Dorothy 3	241432	12	28-Sep	2002
•	241433	12	•	2002
Dorothy 4	241454	12	28-Sep 11-Aug	2002
Dorothy 5 Dorothy 6	241961	12	11-Aug	2003
Dorothy 6	241962	18	-	2003
Dorothy 7 Dorothy #1		10	28-Sep	
2	243511	1	11-Aug	2003 2003
Dorothy #3 Elizabeth #1	243512	1	11-Aug	
	243513		27-Aug	2003
Steele #1	240496	20	29-Apr	2003
Steele #2	240497	20	29-Apr	2003
Steele #3	240498	20	29-Apr	2003
Steele #4	240499	20	29-Apr	2003
Boot 6	242900	15	30-Oct	2002
Boot 10	303913	20	5-Sep	2003
Duck 1	371543	1	28-Sep	2002
Duck 2	371544	1	28-Sep	2002
Duck 3	371545	1	28-Sep	2002
Duck 4	371 546	1	28-Sep	2002
Mackenzie 1	372404	20	28-Sep	2002
Mackenzie 2	372405	20	28-Sep	2002

Claim Name	Record #	# units	Expiry Date	Expiry Year
Mackenzie 3	372406	20	28-Sep	2002
Mackenzie 4	372407	20	28-Sep	2002
Mackenzie 5	372408	8	28-Sep	2002
Dome 1	384003	20	13 Feb	2003
Dome 2	384004	20	13 Feb	2003
Nupal	388797	12	31 July	2003
Total		1,074		

Eastfield may earn up to a 75% interest in the Lorraine-Jajay property from Lysander Minerals Corporation and certain individuals. By completing \$4,000,000 in exploration and making \$550,000 in payments before December 31, 2005, Eastfield earns 65% and, by completing a positive feasibility study increases its interest to 75%.

There are no known environmental or aboriginal issues specific to the Lorraine-Jajay claims known to the author other than those that relate to British Columbia in its generality.

HISTORY

In the early 1900's, prospectors noted the malachite-stained bluffs of Lorraine Mountain, but it was not until 1931 that the property was first staked. The Consolidated Mining and Smelting Company Limited (later named Cominco) acquired the Lorraine property in 1943 and held it until 1947.

Kennex (a subsidiary of the Kennecott Corporation) acquired the Lorraine property in late 1947 and, in 1948, under the name of Northwestern Explorations Limited, they mapped and surface sampled the property. In 1949, five widely-spaced AX diamond drill-holes were completed on the Lorraine claims in the vicinity of the copper stained cliffs. Results from this drilling were mixed.

Regional prospecting, undertaken during the 1948 program, located copper-mineralized float on the East Side of Duckling Creek (approximately 8 kilometres distant) in what soon became the Dorothy and Elizabeth showings. Several boulders, described as being up to 4 cubic feet in volume and consisting of approximately 90% sulfide, were discovered on the Elizabeth claims. These boulders returned assays varying from 24.20% to 31.25% copper. In 1949, Northwestern followed-up this prospecting with a program of mapping, line-cutting, hand trenching and diamond-drilling. Four AX diamond-drill holes, totalling 442 metres, were drilled at the Dorothy showing. The best intersection from this program assayed 0.48% copper over 109 metres (357 feet).

Limited exploration was carried out in the area during the 1950's and early 1960's. In 1951, H. Warren and D. Barr carried out a biogeochemical survey in the Dorothy Elizabeth area. In the early 1960's Kennco Explorations (Western) Limited carried out a program of mapping, silt and soil sampling, and geophysical (IP and magnetometer)

surveys in the area, and in 1963, they drilled 2 AX diamond-drill holes (DDH DY-1, 2). Sufficient assessment work was generated by this work to hold the Dorothy 2-post claims until 1972, after which cash in lieu of work was paid to hold the property.

The Lorraine property then lay dormant until it was joint ventured with Granby Mining Company Limited in 1970. During the period 1970-73, Granby enlarged the property and carried out a major exploration program of geological mapping, rock and soil sampling, trenching and drilling. A total of 3,992 metres of diamond drilling and 2,470 metres of percussion drilling were completed on the Main Zone. By 1973, the Main zone had been sub-divided into two zones and a preliminary estimate of reserves calculated. The Lower Main zone was inferred to contain 5,500,000 tons grading 0.6% copper and 0.1 grams per tonne gold, and the Upper Main Zone was inferred to contain 4,500,000 tons grading 0.75% copper and 0.34 grams per tonne gold. A cut off grade of 0.4% copper was used in the calculations. A large area surrounding the Granby-Kennecott holdings was acquired or staked by a large group of junior and senior resource companies. Senior companies conducting exploration in the early 1970's on the site of the present Lorraine-Jajay claims peripheral to the Kennecott holdings included Noranda, Cominco, Falconbridge and Amoco Canada.

The Lorraine properties were inactive during the later years of the 1970's and through most of the 1980's. In 1989, Kennecott Canada Inc. began a reassessment of the gold-copper potential of the Lorraine and Dorothy properties. The property was expanded, and an initial orientation program was contracted to C.E.C. Engineering Ltd. in 1990. This included road rehabilitation, establishing grids, geological mapping, soil sampling, and geophysical (IP and magnetometer) surveys.

In 1991, Kennecott resumed management of the property and embarked on a twelve-hole (2,392 metres) diamond-drill program in the Lorraine area, with nine holes drilled in the Lorraine Extension (later called the Bishop) Zone. Two holes drilled were also drilled in the Webber zone and one hole drilled in the North Cirque Zone. Detailed geological mapping and petrographic studies were begun during this program. The exploration program also extended to the Dorothy / Elizabeth areas. Work consisted of road construction (from the Dorothy Duckling Creek access road to the Elizabeth Breccia area), test pitting, rock sampling, IP surveys and the diamond drilling of 6 NQ holes for a total of 961.6 metres. The first three holes were drilled at the Dorothy showing in the vicinity of Northwestern's 1949 drill-holes, the remaining three holes were drilled along the Dorothy Duckling Creek road south of Dorel Creek. The most significant intersection was in hole D91-1 which averaged 0.34% copper and 0.12 grams per tonne gold over 121 metres.

In 1993, Kennecott drilled another 2 holes (the 3rd hole was lost in overburden) in the Lorraine claims, along with detailed rock chip sampling of the Main and Extension (Bishop) zones.

In 1990, BP Resources Canada optioned several claims surrounding the Lorraine claims. This option was negotiated following the discovery of platinum and palladium mineralized float by an area prospector in 1990. In 1991, BP located the source of the mineralization in a breccia outcropping from a cliff face. In 1991, BP completed geochemical, induced polarization and minor diamond drilling northeast of the Bishop Zone as well as completing a detailed airborne geophysical survey. An expanded program was proposed for 1992 but was not completed owing to the decision of BP's parent oil company to wind down BP Resources Canada.

In 1994, Lysander Gold Corporation (now Lysander Minerals Corporation) optioned the Lorraine property from Kennecott and carried out a 10-hole diamond-drill program (1,221.4 metres), which was focussed on the western part of the Upper Main (3 holes) and Bishop (7 holes) zones. The success of this program led to the optioning of the adjacent Boot-Steele claims to protect a possible southeastern extension of the Bishop zone.

Lysander continued drilling in 1995 with a 26-hole, 3,843.53 metre program. A total of 23 holes (2,903 metres) were drilled on the Upper Main Zone proving that mineralization occurs with greater potential at depth than earlier work had suggested. Two holes were drilled in the Bishop zone in 1995 with both failing to intersect significant mineralization, suggesting that faulting is an important feature in this area. A single "wildcat" hole drilled on Jeno Ridge (above the "BM" Breccia) also failed to intersect economic mineralization. This program also successfully established the existence of a potential oxide copper resource in the weathered talus apron below the Upper Main Zone.

In 1996, Lysander optioned the Dorothy and Steelhead properties and staked the Pal claims. Initial work in 1996 on the expanded Jajay property included a geochemical program of sampling soils, talus fines, seepage sediments and rocks over the western third of the expanded property. A 10-hole diamond-drill program in 1996 probed extensions of the Upper Main Zone and reestablished extensions to mineralization in the Bishop zone. Significant intersections included hole 96-44 which cut 32.2 metres (106 feet) of 1.49% copper in this zone.

Lysander continued drilling in 1997 with an 8-hole (1,146.3 metres) program. 4 holes were drilled in the Dorothy showing, 3 holes in the Bishop zone and 1 hole in the Ato area (Bobinette claim). In the Bishop zone, hole 97-47 intersected 64 metres of 0.58 % copper and 0.24 grams per tonne gold. The geochemical (talus fines and seepage sampling) program was continued in 1997, and a limited amount of follow-up sampling was carried out. Numerous copper and gold anomalies were identified in both of the 1996 and 1997 geochemical surveys. Subsequent reanalysis of some of these samples resulted in the identification of several PGE anomalies.

In 1999, Lysander completed 3 fly-camp scale reconnaissance-prospecting surveys of three of the more obvious targets originating from the geochemical reconnaissance completed in 1996 and 1997. The most significant result of this work was the

identification of "Lorraine style" mineralization in an alpine drainage 1,000 metres south of the Bishop Zone. Evaluation here led to the discovery of several new outcrops containing significant copper and gold mineralization in potassic altered syenite and syenite-magnetite breccia. The importance of this discovery is enhanced by the fact that these exposures bear a striking similarity to mineralization that occurs at the Lorraine Upper Main Zone. Five outcrop (and rubble) samples at this discovery (named the Page Zone) averaged 0.86% copper and 0.47 gm/t gold. The Page Zone currently constitutes a prime target.

Eastfield Resources Ltd. optioned the Lorraine-Jajay property from Lysander Minerals Corporation in October, 2000. Shortly thereafter Eastfield initiated a program in the southeastern region of the claim block (the Mackenzie Zone). The program which ran until early November, 2000 entailed drilling 5 short holes totalling 378 metres and completing a 91 sample soil survey. While the drilling was unsuccessful, the soil survey outlined a significant new copper-gold anomaly which remains open-ended and which warrants additional work. In retrospect, it can be surmised that it was premature to initiate diamond drilling in this area ahead of completing soil and geophysical surveys.

In 2001, Eastfield initiated the most recent exploration program at the Lorraine-Jajay property. The program, which commenced in June, ran until the middle of October and entailed 2,508 metres of diamond drilling in 13 holes, 16.5 kilometres of induced polarization and magnetometer survey and the reconstruction of Upper Camp. A summary of significant drill intercepts is included as appendix 2 of this report. Hole 2001-58 establishes an open direction to mineralization on the southern boundary of the Bishop Zone while hole 2001-60 establishes an open direction to mineralization on the southern boundary of the Lower Main Zone. Holes 2001-58 and 2001-60 are approximately 1,400 metres distant from each other.

SAMPLE PREPARATION, ANALYSIS AND SECURITY

Drill core is taken by helicopter from the drill to the sample preparation and processing facility where it is quickly examined by a qualified geologist and marked into sample intervals. The core is then split using a mechanical splitter with half of the sample put into sample bags with a multi-digit sample number and the other half placed back in the core box in preparation for permanent on-site storage. Individual bags of core samples, generally weighing \pm 5 kilograms, are collected into larger shipment bags weighing \pm 30 kilograms and closed with wire or a zip lock fastener. The sample bags are then delivered to a bonded freight company in Fort St. James for shipment to the facilities of Acme Analytical Laboratories in Vancouver (samples are not accompanied with information concerning hole number or meterage). At Acme Analytical Laboratories, the samples are assayed (or analyzed) using the procedures indicated in appendix 3. Internal standards provided by Acme Analytical Laboratories are introduced into the sample stream at a rate of approximately one internal standard for every ten samples. At the conclusion of the splitting and sampling the core is examined in detail and logged by the geologist before permanent storage.

Soil and surface rock samples are handled in a similar manner excepting that no replicate sample is kept and samples are often directly indexed with a grid or descriptive location.

Sample shipments out of camp generally occur once or twice a week according to specific logistical circumstances under the supervision of camp personnel who endeavor not to leave the samples unattended until delivered to the bonded freight company.

GEOLOGY

The Lorraine-Jajay property occurs within a large intrusive complex which is itself located within a northwest-southeast trending Mesozoic depositional basin formerly referred to as the Quesnel Trough and more recently referred to as the Quesnel Terrane. The origin of this basin has been ascribed both to a rift basin and an island arc model. In the section including the Lorraine-Jajay property, the rift basin model is the most compelling. Here, the basin is approximately 40 kilometres wide and is discretely bounded by the Pinchi Fault on the west and the Manson Fault on the east. Mafic volcanic rocks including basalt and andesite (mapped as the Takla Group), commonly crosscut by pyroxenite dykes, dominate the basin infill.

The intrusive complex (The Hogem Batholith) that dominates the Lorraine-Jajay property is at least partially comagmatic with the Takla Group volcanic rocks and is comparable in age (Middle to Upper Jurassic). With the exception of the extreme eastern region of the Lorraine-Jajay property, all volcanic rocks have eroded off the edifice which is considered to now represent a deeper level of the intrusion. The complex is divided into three major phases that grade from an earliest basic phase in the northeast to a syenite middle phase in the centre and a younger granitic phase in the southwest. Opinions differ with respect to whether or not the earlier basic phase and the middle syenite phase have cross cutting relationships, implying a significant variance in ages. Opinion is consistent that the youngest granitic phase (granite to granodiorite) crosscuts both the syenite and basic phases.

The Duckling Creek Syenitic Suite is the most significant unit in the region for the occurrence of copper, gold and PGM mineralization. The Duckling Creek Syenitic Suite forms an oblate northwest trending unit approximately 35 kilometres long and averaging 8 kilometres wide. Approximately 50% of the Lorraine-Jajay property is underlain by this suite while most of the remainder of the property is underlain by the older basic phase. The youngest phase, consisting of granite to granodiorite, is restricted to cross-cutting dykes and to a small area on the southwest side of the property.

A number of unusual aspects present in the rocks of the Duckling Creek Syenitic Suite have caused some workers to predict a large alkaline intrusive body with carbonatite characteristics at depth. A discrete magnetic ring approximately 12 kilometres in diameter is associated with Lorraine and several other known areas of significant coppergold \pm PGM mineralization. The ring was an important consideration in assembling the present property holdings. The centre of the ring, which occurs under an overburden filled valley, remains an intriguing target.

Another unusual aspect in the vicinity of mineralization is an often-foliated character to the rocks and an often-pervasive potassium-sodium metasomatism in them. On a detailed scale, rocks resembling pyroxenite can be observed essentially changing back and forth to rocks resembling syenite over distances less than a metre (sometimes over a few centimeters). Petrographic studies of the Lorraine mineralized zones indicate that potassium metasomatism in all units is typically manifested by pervasive replacement to orthoclase, microcline and biotite while sodium metasomatism is manifested by plagioclase replacement to albite and augite pyroxene conversion to aegirine pyroxene (i.e. calcium replacement by sodium). The most comprehensive petrographic study at Lorraine (Koo, M.Sc., UBC 1968) concludes that the parent rocks within the resource area were primarily dioritic and that the current "syenite" units are predominantly secondary. This hypothesis goes on to speculate that a blind, alkali enriched, intrusive responsible for the pervasive metasomatism at Lorraine (termed fenitization by Koo) is also the likely candidate for the source of the copper and gold mineralization.

Some workers have attributed this variability more to migmitization arising from emplacement of the complex at great depth within a regime fostering ductile deformation than to metasomatism.

MINERAL RESOURCES

In 1998, G.R. Peatfield, Ph.D., P. Eng. computed a then-current resource for Lysander Gold Corporation (now Lysander Minerals Corporation). Mr. Peatfield's methodology consisted of using a series of level plans constructed on 10 metre increments to compute new resources present within the Upper Main and Bishop Zones. The smaller Lower Main Zone, with a published resource originating from earlier Granby Mining and Kennco work, was added to his new calculations. The sum of these resources, excerpted from the Peatfield report in the 1997 annual report for Lysander Gold Corporation (published ahead of the annual meeting dated May 28, 1998) is as follows:

MM Tonnes	Cu (%)	Au (g/t)
11.89	0.71	0.26
3.96	0.70	0.25
7.72	0.64	0.07
2.87	0.62	0.05
5.50	0.60	0.10 *(gold analysis
		incomplete)
31.94	0.66	0.17
	MM Tonnes 11.89 3.96 7.72 2.87 5.50	MM TonnesCu (%)11.890.713.960.707.720.642.870.625.500.60

31.94 0.66 0.26 (adjusting to reflect population with Au and Cu determinations)

Peatfield noted in his 1998 report that the three zones in his resource calculation are all open for expansion (in at least one direction). A recent review of drilling by this author indicates that several holes in the Upper Main and Bishop Zones are not effectively cut off at depth, offering a further opportunity to expand the mineral resource. It is also noted that a significant area between the Upper and Lower Main zones remains untested. No resources have been attributed to several additional potentially economic drill intercepts in other mineralized areas that occur on the larger claim group (example: Dorothy drill hole 49-D-2 that intersected 357 feet grading 0.48% copper).

MINERALIZATION

The Duckling Syenitic Suite is by far the most significant unit for economic metal mineralization (copper-gold and PGM) on the Lorraine-Jajay property. The greatest concentrations of copper minerals, dominantly bornite and chalcopyrite with lesser chalcocite and covellite, occur in "svenitic" rocks and to a lesser extent in pyroxenite and diorite. Pyrite is generally rare or absent while magnetite is usually ubiquitous. Gold content shows a positive correlation with "syenitic"-hosted copper mineralization while PGM mineralization is positively correlated with pyroxenite. Mineralization is dominantly disseminated versus fracture controlled, and the mineralizing event shows evidence of having been long-lived and dynamic and, at least in part, magmatic. Evidence for the long-lived character of the mineralizing event is offered by the range of ductile and brittle deformation zones with which it is associated and fault effects which both control and truncate mineralization. Evidence for the magmatic origin of mineralization is offered by its character of occurrence as blebs and "net textured" semi-massive sulfide in pyroxenite. Mineralization in the Lower Main Zone is sometimes hosted by an unusual syenite migmatite in which anastomosing arrays of pink potassium feldspar rich bands and dyklets encompass and envelop a biotite-pyroxene mafic phase. This style of mineralized rock gives an impression that mafic rock was brecciated, invaded with a younger "syenitic" differentiate and then subjected to ductile deformation.

On Jeno Ridge, 1,200 metres south of the Bishop Zone, a clast-supported breccia with a matrix dominated by bornite and chalcocite occurs on a 50-metre exposure of cliff face (the "BM Breccia"). This mineralization (matrix to the breccia) is extremely high grade and often is in excess of 10% copper with 10 to 18 g/t gold and 1.0 to 3.5 g/t palladium. On a hand specimen scale, mineralized rock here is divided into bands of potassium feldspar plus albite which are gradational to bands dominated by mafic minerals. Included in the mafic minerals are diopside, biotite, apatite and garnet. Opaque minerals (copper sulfides) and magnetite are intergrown with and form a matrix to the mafic minerals. Minor bismuth telluride occurs within bornite. Pyrite is notably absent, implying a low sulfur system. The petrology here suggests that the mineralization is hosted within the mafic portion of a

compositionally banded intrusion and is primary in part and replacement in part. The major significance of this mineralization will be realized when the larger source of the magma represented in the breccia is located.

Mineralization occurring in the younger granitic rocks of the Hogem Batholith is generally of lesser importance. Two exceptions from this generalization are worth commenting on. Firstly, an area of copper-molybdenum mineralization was located in 1999 immediately to the north of the Steelhead claims. This mineralization, which is relatively low grade at the discovery outcrop, was found while following up several strong copper in talus fines and seepage samples. The full significance of this mineralization has not yet been determined. Secondly, and possibly of greater importance, is the gold analysis obtained from a granitic dyke occupying the last 2.6 m of hole 95-27 drilled in the Upper Main Zone. The dyke (which extends to the bottom of the hole and may have a greater width) graded 4.79 g/t gold. It may be indicative of a gold mineralizing event associated with this phase.

DEPOSIT TYPES

The setting of the Lorraine-Jajay property within a probable rift basin dominated by intrusive materials of mantle derivation lends itself to analogies with many world class deposits containing large resources of copper-gold and platinum group metals. Additional comparisons can also be made to other deposits containing mantle-derived accumulations of copper-gold mineralization in association with large volumes of iron oxide. A brief list of possible analogies is as follows:

Galore Creek, BC. Ernest Henry, Australia. Phalaborwa, South Africa.

284 million tons @ 0.67 % Cu and 0.44 g/t Au 122 million tons @ 1.1 % Cu and 0.6 g/t Au ~ one billion tons @ 0.65 % Cu (plus Au &Pd) Afton, BC. (now DRC Resources Ltd.) 31 million tons @ 1.10 % Cu and 0.58 g/t Au

DISCUSSION

Previous to the 2001 program mineralization at Lorraine was envisioned as three discreet mineralized zones (example: Upper Main Zone) each grading into unmineralized material as the strength of the zone weakened. The zones were thought of as independent from each other. Work completed in 2001 has resulted in a somewhat different concept in which the existing zones of mineralization can be envisioned as areas within a single mineralized system where post-mineral intrusion or faulting has not reduced the cohesiveness of mineralized blocks. At the edges of the existing zones mineralization does not weaken but becomes dislocated or disrupted. Mineralization can often be reestablished by moving across or underneath post mineral intrusive or across offsetting faults. The largely unexplored areas separating the historic zones are now interpreted to offer greater potential than previous interpretation would have. Likewise open boundaries of the historic zones such as the open eastern edge of the Bishop Zone and the open southern edge of the Lower Main Zone offer greater opportunities for expansion.

Most of the 2001 drill holes were either vertical holes or -45° to -50° inclined holes drilled on an azimuth of 045°. While the inclined drill holes drilled at 045° have generally worked well (particularly in the Bishop Zone) this azimuth may not work well in areas where the structural bias defining the zones is not orthogonal to this attitude. One other problem, which has resulted from azimuth 045° drill holes, is convergence with a prominent unmineralized dyke set which trends at 20° (± 5°).

Work is in progress to define the geometry of the most cohesive blocks of mineralization.

RECOMMENDATIONS

At the beginning of the 2001 program, the predominant objective of the project was to push the edges of the published resource of 32 million tonnes towards a target of + 50 million tonnes. As the 2001 program evolved, it became apparent that the three zones constituting the resource: Upper Main; Lower Main; and Bishop, showed evidence of coalescing (example: hole 2001-57). At the same time, holes 2001-58 and 2001-60 established open vectors of mineralization along the eastern boundary of the Bishop Zone and southern boundary of the Lower Main Zone. It was obvious that the overall boundaries of the mineralized system were unknown. Given that a much larger prize might be at hand, it was prudent to re-focus efforts towards confirming the overall limits of the mineralized system in a more broad-based approach rather than committing the bulk of the budget resources to detailed stepout drilling. Continuing work should focus on attempting to quantify the overall limits to a much larger system. Key components of ongoing copper-gold exploration should include:

1.) The access road to the camp from the Omineca Mining Road should be repaired. Use of this road in 2001 aggravated some of the problem areas where wet or rocky conditions repeatedly damaged the camp $\frac{3}{4}$ ton truck. In order to fix this problem it is recommended that a small bulldozer with a backhoe and a bucket (i.e. John Deere 450) working for a few days with a small dump truck, fill the worst areas with coarse gravel excavated in the pine flats north of Lower Camp. While this equipment is available, some trenching should be completed at the Eckland Zone.

2.) In 2001, induced polarization and magnetometer surveys were suspended on All Alone Dome due to thick bush without cut lines. Late in the 2001 program, after the geophysical contractor had vacated the property, these lines were cut. This area should now be surveyed (\pm 5km). Several lines of induced polarization and magnetometer survey (\pm 5km) should be completed orthogonal to the (apparent) surface trend of the mineralization intersected in holes 2001-48 and 60 (i.e. orient IP lines 085°). Three more lines of IP (\pm 2 km) should be completed east of line 700 W in the Bishop Zone.

3.) Diamond drilling should reconvene to explore the limits of the mineralized system and to add to the current resource estimate. Cost efficiencies will occur as a consequence of having kept a drill on site. Seven drill platforms constructed in 2001 remain to be used. The drill is presently sitting on the platform built for hole 2001-60, an area where four to six holes could be completed in a winter program.

Time constraints in 2001 prevented much effort from being directed towards PGM exploration. A small soil sampling program and two lines of induced polarization survey

were completed to the south of the BM Breccia. Two hand dug soil pits were established in this area without exposing bedrock. In 2002, a comprehensive program should be initiated that will more succinctly establish the higher priority PGM target areas on the large property. As an example, private information obtained from a previous operator in the area conducting regional exploration in the late 1980's indicates that Wasi Creek, which drains the claim group to the northeast, produced a very high PGM result. Wasi Creek is not a watershed draining any of the currently known PGM occurrences or anomalies on the property. Key components of ongoing copper-gold exploration should include:

4.) Assemble all of the 1996, 1997 and 1999 talus fines results in one database and complete the analysis of PGM values for samples for which determination has yet to be completed. The results for all talus fines should also be reviewed in detail noting anomalous concentrations of PGM pathfinder elements such as nickel and chromite in addition to palladium and platinum.

5.) Complete a heavy mineral sampling program at strategic locations within the watersheds of the claims either using conventional heavy mineral techniques or producing concentrates from large samples in a placer gold cleanup jig.

6.) Expand the soil and induced polarization grid and survey started in 2001 on the (extensive) southeast facing tableland southeast of the "BM" Breccia cliff face. This area should also be subjected to diligent prospecting and hand trenching.

7.) Explore and prospect in detail the PGM talus fines anomalies that presently exist. One strong anomaly exists upslope in a northeasterly direction from above the Page Zone around the topographic nose to the Bishop Zone (below Copper Peak). Another anomaly exists in the talus fines line extending northeasterly on the north side of the valley where the Bishop Zone is located.

(

COST STATEMENT

Period	Personnel (see code)	Number people in camp	# Days	Field Assistant(s) & Cook costs	Geologist(s) costs	Food & Supplies		Generator Rental	Equipment Rental	Truck Costs	ATV Rental GC	ATV Rental Mincord	Freight	Sat Phone	Helicopter	Scheduled Air	Drill Daily (Include Total Assay) Dollars	Cumulative Total Dollars
Prepratory June 15-June 28 Assemble Equipment Plan Drill Sites	Freight (To Ft. St. James) Gological	·			\$4,000								\$3,000				\$3,000 \$4,000	\$3,000 \$7,000 \$7,000 \$7,000
Initiate Field	Freight to camp Fuel purchase Lumber ourchase												\$3,000				\$3,000 \$10,000 \$4,140 \$1,670	\$10,000
June 27, 2001 June 28-July 2 July 3-July 6 Erect camp Start Drill sites	FL, GC, JC, (Richard C),BM FL,GC,JC,DH,JP FL,GC,JC,DH,JP	5 5	1 5 4	\$1,100 \$5,375 \$4,300	\$450 \$2,250 \$1,800	\$1,918 \$520	\$1,375 \$1,100	\$250 \$200	\$500 \$400	\$120 \$600 \$480	\$500 \$400			\$200 \$160	\$ 8,897	\$600 \$600	\$13,560 \$13,560 \$18,855	\$39,378
July 7-July 15	FL,GC,JC,DH,TF, JP,BM	7	9	\$12,375	\$8,100	\$1,638	\$ 2,475	\$4 50	\$900	\$ 1,080	\$900			\$360	\$8 ,535		\$36,81 \$29,00	\$58,234 \$58,234 \$58,234 \$95,047 \$95,047 \$95,047
																	\$29,00 \$0 \$0 \$0	\$124,047 \$124,047 \$124,047 \$124,047 \$124,047 \$124,047 \$124,047
Drilling (pad construction) Aug 1-2	FL,GC,JC,DH, RN,TF,JP	7	2	\$3,250	\$900	\$364	\$550	\$ 100	\$200	\$ 240	\$200	\$100		\$80	\$5,100			\$124,047 34 \$135,131 \$135,131 0 \$141,131
Don Sharp Soil contract	t																	\$141,131 \$141,131
Drilling Aug 3- Aug 12 Aug 13-Aug 15 Aug 16-Aug 18 Aug 19-Aug 22 Aug 23-Aug 24 Aug 25-Aug 29	FL,GC,JC,DH,TF, RN,JP(4Drill) FL,GC,JC,DH,TF, RN, JP,GG FL,GC,JC,TF,RN,JP,GG FL,GC,JC,TF,JP, RN, BM FL,GC,JC,TF, RN, JP, BM, (4 drill) FL,GC,JC,TF, RN, JP, (4 drill)	12 8 7 7 11 10	3 3 4 2	\$4,875 \$5,475 \$4,776 \$2,388	\$4,500 \$2,700 \$1,350 \$3,600 \$1,800 \$2,250	\$3,120 \$624 \$546 \$728 \$572 \$1,300	\$2,750 \$825 \$825 \$1,100 \$550 \$1,375	\$500 \$150 \$150 \$200 \$100 \$250	\$1,000 \$300 \$300 \$400 \$200 \$500	\$1,200 \$360 \$360 \$480 \$240 \$600	\$1,000 \$300 \$300 \$400 \$200 \$500	\$500 \$150 \$150 \$200 \$100 \$250	\$4,000	\$400 \$120 \$120 \$160 \$80 \$200	\$6,800 \$2,550 \$2,550 \$3,400 \$1,700 \$4,250	\$600	\$12,1 \$15,4	54 \$263,905 26 \$276,031 44 \$291,475 3 \$299,418

Personnel and Co	ost Code	
Field Assistant	Larocque (FL)	\$275
Field Assistant	Charbonneau(JP)	\$275
Field Assistant	Charbonneau (GC)	\$275
Field Assistant	Hjerpe (DH)	\$250
Cook firstaid attendant	Fuhre (TF)	\$300
Geologist	Page (JP)	\$450
Geologist	Morton (BM)	\$450
Geologist	Garratt (GG)	\$450
	Peatfield (GP)	\$500
Geologist Field Assistant	Richard Ney (RN)	\$250

.

Mincord Exploration Consultants Ltd., 110-325 Howe St., Vancouver, BC, V6C 1Z7

AUTHOR QUALIFICATIONS

I, J.W. (Bill) Morton am a graduate of Carleton University Ottawa with a B.Sc. (1972) in Geology and a graduate of the University of British Columbia with a M. Sc. (1976) in Graduate Studies.

I, J.W. (Bill) Morton have been a member of the Association of Professional Engineers and Geoscientists of the Province of BC (P.Geo.) since 1991.

I, J.W. (Bill) Morton have practiced my profession since graduation throughout Western Canada, the Western USA and Mexico.

I, J.W. (Bill) Morton supervised the work outlined in this report.

Signed this 15 day of September, 2002

J.W Morton P.Geo

Lorraine Project Diamond Drill Log DDH: 2001-48

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 1 of 10

			T 1 11 005 10		1	DIP TESTS								
1	: Lorraine		Total Length: 205.13		Footage (m)	Dip Measured	Dip Corrected	'n		te: August				<u> </u>
Grid Cor			Core Size: BQTW		Failed			4	· · · ·	ion: Augus				
Elevatio	n: 1631 m		Azimuth: 47° (GPS corrected)					4	Logged	By: Jay W	Page			
Section:			Inclination: ~45°						Date log	ged: Augu	st 6-13, 20	001		
NOTES:	Lower Main Are	ea. GPS Location	(corrected): UTM 347332.8 E 6200596.1 N (N	AD 83) PA	D: "R"									
FOO	TAGE (metres)		LITHOLOGICAL DESCRIPTION	••		SAMPL			Rec.			ASSAYS		
From (r	n) <u>To(m)</u>				Sample #	From (m)	T0 (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
0	3.35	CASING			1	4 / 1	·······							
3.35	21.64	MESOCRATIC S	YENITE - pink-grey syenite with several biotite m	agnetite	h							+		
0.00	21.01		ble with gradation between pink, pink-grey and c	-		2		+		1				
			ons. Mafics appear to have been pervasively rep			1						↑		
		-	bric, defined by thin layers and migmatite wisps					ļ						
i		- 45° to core axis.	Most of interval is grey-pink syenite formed of	medium to										
		coarse grained k	-feldspar with cloudy sections of finer grained b	iotite and				+		+				·
		grey k-feldspar											<u> </u>	
			oken but largely complete interval of pink to grey		C 117001	3.35	6.40	3.05	95	3064	163	1.9) 4	5
		,	nostly fine flakes of biotite forming clots and irreg	-	-			ļ		ļ			<u> </u>	
		1.	lorite, some patches to 2 cm. In migmatite-rich s up to 60% of core. Traces of limonite on some	•	·									
			is very magnetic. Malachite very common on m	-	· · · · · · · · · · · · · · · · · · ·							· · ·		
· · · · · · · · · · · · · · · · · · ·			cicular patches of radiating needles, and as small							┫ ·			-	
			ted through core. Many grain boundaries appea											
			s several small patches of tiny disseminated pin-											
			ots may be chalcopyrite.							+		l		
			terval broken in spots but with good recovery. P		C 117002	6.40	9.45	3.05	99	2641	103	1.4	< 2	
			gmatite-rich parts. Foliation defined by biotite-ri					· ·						
			and layers is at 45° to core axis but ranges 30° to		-			<u>+</u>						
			e of the k-feldspar is orange-red coloured. Mafic					[
			i in size, larger patches often chlorite-rich also. If oated with malachite and minor limonite. Tiny d											
			ite very common, perhaps 1/2% and probably of					ļ				ļ		
			rey coloured areas contain 1-2% magnetite. Also					+		┣───				
			coloured small spots probably minor clay. Also r					-		+				+
		epidote as small	l irregular spots. Traces of pyrite in mafic centre	s.										
		9.45 - 12.50 R	Run begins with several small 4-6 cm intervals of	biotite-	C 117003	9.45	12.50	3.05	99	1199	39	0.5	5 < 2	4
		chlorite altered	pyroxenite. Contacts with coarse pink syenite ar	e sharp but										
		- • • •	ge about 60°, no sulphides seen in pyroxenite. S	, ,	·			L	ļ			<u> </u>		<u> </u>
			e of patches of grey syenite in orange-colored sy			-		÷				}		
			alized with 0.5 to 1% disseminated chalcopyrite,		ļ			+			<u> </u>			+
		· · · · · ·	/ little sulphide. Both contain 1-2% magnetite. I it 11.00 is malachite coated.	rign angle	ļ:			+	1	t			+	1
		2	it 11.00 is malachite coated. Grey-pink varying to orange-grey syenite, run b	eains with	C 117004	12.50	16,15	3.65	92	1121	170	1.0	4	i
			with good recovery but becomes more mafic (fir			T		ļ	· · -	1	•			
1			man good recording that becomes more mane (m	- granica	1			1	1	1			1	1

Page: 2 of 10

Lorraine Project Diamond Drill Log DDH: 2001-48

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

FOOTAGE	(metres)	LITHOLOGICAL DESCRIPTION	SAMPLES				Rec.	[ASSAYS		<u> </u>
From (m)	To (m)	ETHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		biotite) rich and broken towards bottom of run, also has more irregular small patches of orange syenite. A low angle (10-15° to core axis) fracture										·
		contains malachite and a speck of specular hematite. A few broken pieces									· · · · · · · · ·	<u> </u>
		of core contain small specks of malachite. Otherwise no sulphide mineralization seen. Continuing magnetite-rich (1-3%).								∔		
		16.15-19.51 Banded pinkish-orange and grey syenite. Grey bands are defined by fine to medium grained biotite and mostly grey feldspar while	C 117005	16.15	19.51	3,36	99	1437	49	1.1	2	2 3
		pinkish-orange areas are dominated by coarse-grained k-feldspar with less (10-20%) grey feldspar and biotite. Magnetite common throughout. Minor										
		amounts (0.1-0.2%) chalcopyrite is found as disseminated tiny specks more										+
		commonly in areas / bands dominated by biotite and grey feldspar. Some specks are green coloured malachite larger patches of mafics (to 1 cm) are										
		largely altered to chlorite. All of the mafics, magnetite, and sulphides are interstitial to coarse k-feldspar. Mafic-grey feldspar banding is at 45-60° to										
	-	core axis.							· · · · ·			
		19.51-21.64 As above, but with more irregular patches and veining of orange k-feldspar. Amount of chlorite has increased, both as small spots	C 117006	19.51	21.64	2.13	98	527	50	< .3	3	6
		and as larger (about 0.5 cm) mafic alteration centres. Overall, core has become more dominated by grey-mafic rich area. Minor disseminations of										+
		chalcopyrite and pyrite. Magnetite continuing common.										
						 						<u></u>
21.64 2	29.67	BIOTITE PYROXENITE - several sections of pyroxenite separated by up to 2 metre intervals of grey-pink mafic rich (biotite-chlorite) syenite: 22.16-				++						+
		24.06, 25.08-26.18. Grey-pink syenitic sections are as described above.										
	_	Remaining bi-"pyroxenite" rich areas are largely chlorite with 20-30% aggregates of fine to medium grained biotite filling interstitial positions.										
		There is a variable amount of grey to pink-coloured medium-coarse grained feldspar (5 to 30%). In some short (30-40 cm) intervals the coarse feldspar										
	-	crystals are prominent enough to give an okiocrystic appearance. A banded or layered fabric is defined by concentrations of biotite cutting core axis at										
		45° to 60°, approximately the same as the above syenite body.	C 117007	21.64	24.06	2.42	98	1241	94	0.5		7
		21.64 - 24.06 As described above. Run begins with 0.52 m of biotite- pyroxenite, followed by 1.90 m of pink-grey syenite. Pyroxenite does not	C 117007	21.04	24.00	2.42	90	1241	94	0.5		
		have any sulphide mineralization, however, the pink-grey syenite interval comes locally up to 1% fine, disseminated pyrite and chalcopyrite, although										
		average amount is much less. Mineralized intervals about 10-20 cm long				$\left \right $						<u> </u>
		contains malachite specks. 24.06 - 26.21 A section of bi-pyroxenite with blotchy coarse k-feldspar	C 117008	24.06	26.21	2.15	100	22	2	< .3		5 < 2
		patches, and an interval from 25.80 to 26.18 of pink syenite has large (to 8 cm) patches of epidote-chlorite - with minor biotite. Appear to be								ļ	ļ	
		replacements of mafic-rich spots. Trace pyrite, magnetite common. 26.21 - 29.67 Biotite-pyroxenite as described above, most of pyroxene is									····	+
		altered to fine grained felted masses / aggregates of biotite-chlorite.	C 117009	26.21	29.67	3.46	98	652	20	< .3	7	2

Page: 3 of 10

FOOTAGE (metres)		SAMPLES							ASSAYS		
FOOTAGE (metres) From (m) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	Rec. %	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (pp
	Patches of pink, grey and orange k-feldspar to 2 cm wide are common but are not uniformly distributed. Continuing highly magnetic. Minor amounts of very fine-grained stringers of carbonate are common, perhaps 1% or less. No sulphides seen in bi-pyroxenite.							······································			
9.67 74.00	 MESOCRATIC SYENITE - grey syenite with medium-grey equigranular pink-red-brown k-feldspar, grey k-feldspar, which combined comprise about 65% of mode. 2-5% plagioclase is cloudy and partly clay altered. Mafic component is of variable grain size, 15-25% of core, and composed almost entirely of biotite and chlorite. Biotite is very common as finely disseminated individual flakes and as small clusters. Large irregular shaped mafic centres are generally elongate, often give sense of biotite-chlorite pseudomorphs after a coarse-grained interstitial pyroxene / amphibole. Mafic centres commonly have core of fine-medium-grained biotite with variable alteration to / surrounded by green chlorite. Minor epidote and calcite also associated with mafic patches. Bornite occurs in altered mafic centres, in amounts to 1%, generally as very irregular shaped blebs within mafic centres. Chalcopyrite is found as tiny fine-grained disseminated blebs within k-feldspar rich areas, often associated with epidote spots. Covellite noted as trace amounts associated with bornite. Core is very magnetic as tiny disseminated blebs, occasionally as stringers. 29.67 - 33.26 Grey syenite as described above. Some orange k-feldspar bands / streaks appear as alteration envelopes along low angle (10-20°) irregular fractures now marked by thin (< 1 mm) threads of calcite. Little, if any sulphide mineralization associated with orange k-feldspar patches / envelopes. Coarse-grained k-feldspar sections in general poorty 	C 117010	29.67	33.26	3.59	100	8348	195	5.5		
	 mineralized. Finer-grained sections of grey syenite are well mineralized with 1-2% fine disseminated chalcopyrite, about 0.25% bornite with altered mafics and / or chalcopyrite blebs. Dark cloudiness of grey syenite in due to very fine-grained magnetite and biotite. In places the biotite appears to form vague patterns, bands (usually at steep angles 60-90° to core axis). 33.26 - 36.88 Grey to grey-pink syenite as described above. Continuing well mineralized 1-15% chalcopyrite, bornite has increased to average 1/2%, locally to 1%. Grey-biotite rich areas are slightly more distinct as wispy areas with pink syenite between. From 33.83 to 34.95 there is a magnetite breccia with mineralized grey syenite as clasts to 5 cm and a matrix of coarse (?) grained magnetite matrix forms up to 75% core in some spots. 36.88 - 39.93 Grey syenite as described above. Well mineralized with up to 5% chalcopyrite evenly distributed as disseminated blebs in both felsic and mafic fractions. Bornite to 1% is mainly within the larger mafic patches. The mafics are mixtures of biotite and chlorite. Chalcopyrite also 	C 117011	33.26			99					2

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 4 of 10

FOOTAGE (metres)			SAMPLE	S		Rec			ASSAYS		
From (m) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	- Ta (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
	1-2% calcite, minor amounts of covellite associated with bornite. 2-4%										
	magnetite evenly distributed through interval gives strong magnetic										<u> </u>
	character to core.										
	39.93 - 42.98 Grey syenite as described above. Interval is cut by some			40.00	2.05		14000		9.6		
	low angle (10° to core axis) irregular fractures with chlorite partings. Tenor	C 117013	39.93	42.98	3.05	96	11086	778	8.6		+.
	of mineralization decreases toward bottom of run. Chalcopyrite is 1/2 - 1%,						· · -				
	bornite to 0.1 to 0.25% . Blebs of sulphide are also smaller (fewer large										1
	blebs) than above. Trace covellite.					•					
· · ·	42.98 - 46.33 As described above, but more broken up with low angle	C 117014	42.98	46.33	3.35	95	6449	249	3.7	4	
	chloritic fractures. Darker appearance. Mineralization continues to							•	ļ		
	decrease to <1% combined chalcopyrite and bornite, ratio of chalcopyrite to										
	bornite increasing in favor of chalcopyrite. Amount of magnetite has also	· ·									
	decreased significantly - parts of this interval are not magnetic.	0 447045	40.30	48.27	1.94	90	6706		3.7	< 2	
	46.33 - 48.27 As above, interval is quite broken and reduced to rubble in	C 117015	46.33	40.27	1.94	90	0700	313	3.1	~ 2	
	spots. Rubble is limonitic. Competent sections continuing grey syenite with	-			<u> </u>						+
	above 1 - 1 1/2% combined chalcopyrite and bornite. Chlorite-rich low (5-										
	15° to core axis) angle fractures through most of interval.	C 117016	48.27	50.29	2.02	90	6881	215	5.0	< 2	!
	48.27 - 50.29 As above, but more broken chlorite-rich rubble.										
	Chalcopyrite noted on some chloritic fracture faces. Grey-pink syenite is										
	well mineralized in competent bits of core between fractures. 1-2%]				
	chalcopyrite and 1/2% bornite. 50.29 - 53.34 As above, interval grades from chlorite-rich rubble to	A 117017		53.34	2.05	99	7364	139	4.4	< 2	
	competent grey-pink syenite over 1.5 metres. Syenite is mineralized with 1-	C 117017	50.29	53.34	3.05	99	7304	139	4.4		
	3% chalcopyrite 0.25% bornite. Several fine-grained envelopes surround 1	· •			+						1
	mm k-feldspar veinlets at 45-60° to core axis. These do not appear to have						t				1
	either more or less chalcopyrite. No bornite noted.									· · · · · · · · · · · · · · · · · · ·	
	53.34 - 56.08 Biotite syenite as above, with a darker grey tone, dark	C 117018	53.34	56.08	2.74	99	4797	152	3.2	2	2
	greenish colour due to chlorite coatings on fracture faces which core has									<u> </u>	
	split along. Less chalcopyrite than above 1/2-1%.										
	56.08 - 59.53 As above, interval begins with 1.5 metres of chlorite-rich	C 117019	56.08	59.53	3.45	99	9421	235	8.2	< 2	2
											+
	described several runs above. Chalcopyrite noted on some fracture										
	surfaces with powdery coatings of chlorite, otherwise up to 1% as					• .	+			+ ··	
	disseminated blebs. Local concentrations reach 5% over 2 cm. Pyrite also										
	as disseminated blebs to locally 1%. Lower part of interval contains 0.25 to								1		1
	0.5% bornite and 1% chalcopyrite.										
	59.53 - 62.96 Pink syenite with slightly coarser grain size than above.	C 117020	59.53	62.96	3.43	98	4688	247	2.9		3
	Includes several grey syenitic sections. Core is cut by a number of 1-2 mm			· · · · ·	ļ		L		-	1	
	calcite veinlets at 45° to core axis which carry blebs of chalcopyrite. Dark	l								+	
	chlorite-rich sections (25-35%) have little if any magnetite, poor grey	— _ . _			+ .						+
	section have 3-5% magnetite. Run ends with a bleached-looking section.	0 117021	<u></u>	65.00	2 73	95	9669	339	9.1	+	,⊢
·· <u>-</u> ·· ·· ·· ·· ·· ··	62.96 - 65.69 As above, run begins with bleached-looking fracture	C 117021	62.96	65.69	2.73	95	9009		, 3 .1	+ '	<u> </u>
+· · · -	surfaces then chlorite rich, ending with grey-pink syenite. Chlorite-rich	···················			+				· · · ·	+	1
· - ·····	section produced about 20 cm of rubble. Grey syenite contains about 1%		i		+			1		1	
		n l			1			1		1	

Page: 5 of 10

FOOTAGE (metres)			SAMPLE	\$		Rec.			ASSAYS		
From (m) To (m)		Sample #	From (m)	- To <u>(m)</u>	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb
	chalcopyrite and traces of bornite. Bottom of interval (last 30 cm) is more mafic rich with about 20% chlorite and biotite, most k-feldspar is grey coloured a few 45° to core axis fractures have thin coatings of blebs of										
	chalcopyrite. 1-3% carbonate plus occasional low angle 10-20° to core axis 1 mm carbonate veinlets.										
	65.69 - 70.41 Grey meso-cratic biotite syenite varying to grey-pink syenite in a few short intervals. Disseminated blebs of chalcopyrite to 2%, minor bornite associated with blebs of chalcopyrite. Chlorite-carbonate coated fractures common on low angles about 10° to core axis. Several 1-2 mm k-	C 117022 C 117023	65.69 67.36	67.36 70.41		100					-
	 feldspar (pink) veinlets at 45 to 90° to core axis. 70.41 - 74.00 Grey-pink syenite as described above. Disseminated chalcopyrite varies from 1-3%, minor bornite forms minor amounts to 1/2%. Several percent magnetite gives strong magnetic character. 1-2% carbonate as fine-grained interstitial fillings. 	C 117024	70.41	74.00	3.59	100	6996	214	5.2	4	
4.00 74.75	BIOTITE PYROXENITE - pyroxene completely altered to mixture of chloritie										
	 and biotite (both as very fine grained, and as coarse grained flakes). 74.00 - 74.75 First 26 cm are in 50% mixture of bi-pyroxenite and 50% syenite last 49 cm are bi-pyroxenite. Syenitic fraction is equigranular and coarse-grained. Chalcopyrite as disseminated irregular blebs forms 1-5% of interval. More chalcopyrite in pyroxenite than in syenite. No bornite seen in pyroxenite, minor amount in syenite. Both very magnetic, magnetite 2-5%, local concentrations to 10%. Relatively high amount of carbonate about 2- 	C 117025	74.00	74.75	0.75	100	6945	259	4.7	<u> </u>	3
·											
4.75 149.77	MESOCRATIC SYENITE - greyish-pink syenite with variable grey colour tone due to variable amounts of magnetite, fine grained biotite and chlorite- altered (pervasive) unidentified mafics, and grey-coloured k-feldspar. Well mineralized with disseminated irregular blebs of chalcopyrite in amounts of 1 3%, many blebs are large, very irregular and give appearance of several blebs in contact with each other. Bornite to 1/2% is also very irregular in shape, almost always in contact with chalcopyrite. Traces of covellite in contact with bornite. Variable magnetism due to magnetite forming wisps and patches. Trace amounts of carbonate. Pyrite forms local concentrations at 1/2%. Carbonate generally in trace amounts except in 45°					· · · · · · · · · · · · · · · · · · ·					
	to core axis stringers with chalcopyrite. K-feldspar forms orange-colored envelopes 1-2 mm wide along fractures now marked by carbonate veinlets. 74.75 - 77.17 Grey-pink syenite as described above, with 2 or 3 quartz	C 117026	74.75	77.17	2.42	100	4771	505	55.1	<u>ا</u>	B
	veins to 4 cm thick and at 60° to core axis. Minor carbonate with quartz. No mineralization associated with quartz vein. 77.17 - 79.55 Continuing grey-pink syenite with up to 2-3% chałcopyrite and 0.25-0.5% bornite; both as disseminated blebs. Larger blebs	C 117027		79.55	5 2.38	100	4841	277	7 3.2	2	5

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 6 of 10

FOOTAGE (metres)			SAMPLE	S		Rec.			ASSAYS		
rom (m) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (pp
	associated with degraded mafic centres and magnetite rich areas.										
	79.55 - 82.60 As described above. Continuing about 1% chalcopyrite	C 117028	79.55	82.60	3.05	100	9274	519	6.6	7	
	1/2% bornite. Small, 1 mm thick fractures 45 - 90° to core axis carry										· ·
	chalcopyrite and hematite.						ł				
	82.60 - 85.65 As above, but with several low angle (0-15° to core axis)	C 117029	82.60	85,65	3.05		5147	98	3.6	Э	
	carbonate filled fractures. Grey syenite contains less sulphide mineralization	0117023	02.00		0.00	100					
	than above, 1/2% chalcopyrite, minor bornite.										
	85.65 - 88.70 Grey-pink syenite as above. Variable sulphide mineralization	C 117030	85.65	88.70	3.05	100	3315	123	1.7	2	
	averages between 0.5 and 1% chalcopyrite with possibly some pyrite.										
	Cloudy-chalky looking grey feldspars suggest clay-altered plagioclase in										
	amounts about 10%, greater than previously thought.										
	88.70 - 91.74 Pink and grey syenite as described above, pink tones	C 117031	88.70	91.74	3.04	100	3014	82	2.0	< 2	
	becoming dominant with somewhat less chalcopyrite than above, about										
	1/2% . Grain size has increased, some k-feldspar to 2 cm. Fine-grained										
	biotite forms vague lineations at 20 to 30° to core axis. Small amount of fine										
	grained muscovite, Chalcopyrite with minor bornite occurs as disseminations										
<u> </u>	to 1/2%. Magnetite forms streaks and patches of up to 20% magnetite.										
	91.74 - 94.79 As above, with powdery carbonate on some low angles 10-	C 117032	91.74	94,79	3.05	100	2565	57	2.1	3	
	15° to core axis fractures. Chalcopyrite averages about 1%, bornite almost	0 11/032	51.74	34.13	0.00	- 100	2000				
	always associated with chalcopyrite blebs, is about 0.25%.										†
	94.79 - 97.84 As above with an increase in carbonate coated fracture	C 117033	94.79	97,84	3.05	99	3568	145	2.7	4	
	toward bottom of run. Syenite becoming very pink-coloured and coarser-		0		0.00						1
	grained than several runs above.										
	97.84 - 99.21 Sudden change to rubble and clay rich powder. Core	C 117034	97.84	99.21	1.37	95	3647	45	2,9	6	
	appears bleached and cream coloured, with extensive low angle fractures										
	and thin carbonate fillings. Section of chalky-chlorite-biotite alteration is										
	about 30 cm long, then back into grey-pink syenite. Minor sulphide				ļ						İ
	mineralization through here.										
	99.21 - 101.15 As above, variable unit with an initial 30 cm of chalky-	C 1170 <u>35</u>	99.21	101.15	1.94	96	3829	128	2.8	< 2	1
	carbonate-chlorite alteration that is broken and fractured, followed by 60 cm										
	of pinkish syenite 60 cm of grey syenite then 50 cm of chalky-chlorite-biotite										+
	altered mafic-rich rock. The grey and pink syenite sections are mineralized										-
	with 1% chalcopyrite and 1/2% bornite as disseminated blebs.				-		·				-
	101.15 - 103.94 Pink syenite with some grey patches of grey k-feldspar	C 117036	101.15	103.94	2,79	100	4036	89	2.0	4	
	and magnetite and chlorite-biotite. Pink section weakly magnetic and	0 11/000		100.04	2.75	100	1000		2.0		†
	slightly coarser grained. The grey section appears to have more								1		
	mineralization - approximately 1/2-1% chalcopyrite, 0.25 to 0.5% bornite,									1	1
	above 1/2 to 1/3 less in pink sections.										1
	103.94 - 106.98 As described above. Run is mostly pink-syenite with	C 117037	103. 9 4	106.98	3.04	100	3623	125	1.8	< 2	
	1/2% chalcopyrite, 0.25% bornite.										
	106.98 - 110.03 As above, pink syenite, with grey wisps of magnetite and	C 117038	106.98	110.03	3.05	100	5015	110	2.7	< 2	
	fine-grained biotite flakes. Chalcopyrite running at 0.75 to 1%, minor				1. 1		ļ		Ļ		<u> </u>
	bornite, both as disseminated irregular blebs.				Ļ				ļ		Ļ.
	110.03 - 113.08 Pink syenite as described above.	C 117039	110.03	113.08	3.05	100	5992	198	4.5	< 2	<u> </u>
					1		1		1		i i

Page: 7 of 10

FOOTAGE	E (metres)	LITHOLOGICAL DESCRIPTION		SAMPLE	5		Rec.			ASSAYS		
From (m)	To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		113.08 - 116.13 Run begins as described above in pink syenite but within	C 117040	113.08	116.13	3.05	100	4098	110	2.0	< 2	
		1 m grades into medium-dark grey, mafic / magnetic rich syenite in spots										l
		alternating branching and streaking between grey and pink syenite is at 70-										
		80° to core axis could be described as a syenite migmatite here. Grey										
		syenite is mineralized with 1-1 1/2% chalcopyrite, 0.25-0.5% bornite less in										 -
		pink sections, very little in mafic rich sections.										───
		116.13 - 119.18 Run begins with 1.5 m of grey mafic-rich syenite, up to	0.1170.11	440.40	440.49	3.05	100	3292	74	1.1	2	.
		5% magnetite in spots. Mafics are fine-grained biotite and masses of	C 117041	116.13	119.18	3.05	100		14	<u>, , , , , , , , , , , , , , , , , , , </u>	2	
	· · · ·	chlorite. Run slowly grades into pink syenite with regular grey patches.						· · ·				
		Tenor of sulphide mineralization with the upper grey magnetite-rich section					·· =					
		is much less than the pink or grey syenite. Short section of migmatite										
		around 117.70 is mineralized with about 1.5% chalcopyrite minor bornite.						.				t
		119.18 - 122.22 As described above pink syenite grades into and out of	C 117042	119.18	122.22	3.04	100	4048	108	2.0	2	
		short, magnetite-rich grey syenite, becoming melanocratic by bottom of										1
		hole. As above, the pink-grey intervals show the best mineralization, about										
		1/2% chalcopyrite, trace bornite. The dark grey areas, composed of grey										
		feldspar, magnetite and a mixture of chlorite-biotite and poorly mineralized										
		with minor to trace of chalcopyrite.										<u> </u>
		122.22 - 125.27 As described in run above. Grades in and out and	C 117043	122.22	125.27	3.05	100	4222	143	1.9	2	·
		-between pink-grey syenite with minor migmatite. Grey areas very										_
		magnetite-rich. Sulphides vary from 1/2% to 1%, mostly chalcopyrites,			···•							ļ
		possibly minor pyrite low angle chlorite fractures.										<u> </u>
	[125.27 - 129.36 As described above. Dark grey interval for top 1.5										
		metres, very fine-grained magnetite-rich, then grades into coarse-grained	C 117044	125.27	129.36	4.09	100	2212	86	1.0	3	·
		pink-syenite, finally settles down to a grey-pink syenite for last metre. Dark										
		grey interval has 0.5% pyrite, 0.5% chalcopyrite, very little sulphide in the										+
		coarse pink k-feldspar-rich syenite. About average 1% chalcopyrite plus						÷			· · · · ·	-
		minor pyrite with grey-pink syenite. Rock contains about 1% carbonate,										+
		generally more than noted above. Low angle fractures are carbonate				<u>∔</u>			· · ·			-
		coated.										-
-		129.36 - 131.37 Beginning of pink-syenite as opposed to grey magnetite	C 117045	129.36	131.37	2.01	100	457	85	0.8	< 2	2 <
		rich rock in previous several intervals. Increase in grain size to 2 cm,	0111040		101.01							1
		average 0.3-0.5 cm of k-feldspar. About 0.5% irregular blebs of				-						1
		chalcopyrite, somewhat more, 0.5 to 1.0%, in more equigranular grey-pink			•···-		· ·					1
		syenite above. Some patches of k-feldspar are orange-red coloured in this										
		interval. They appear to be associated with high angle fractures at 70-90°				1						
~	÷.	Interval. They appear to be associated with high angle fractules at 70-90				ľ						
		to core axis which are now marked by 1 mm calcite veinlets. Most of										
	<u> </u>	-sulphide is pyrite in these orange colored zones. Minor amounts of										
	÷.	-chalcopyrite.		1		1]		L	ļ			
		- 131.37 - 134.42 Pink, medium to coarse grained syenite, 10% grey	C 117046	131.37	134.42	3.05	100	871	30	0.5	2	2
		medium-coarse grained feldspar, 5% chlorite in degraded mafic centres.				L						l
		Chalcopyrite as tiny disseminated blebs to about 0.5%. Dirty-grey coatings									l	·
	<u> </u>	on low angle fractures (10-20° to core axis) are carbonate rich. Moderately		İ		•		ļ	L		<u> </u>	
	1	magnetic, estimate 0.5 to 1% magnetite in degraded mafic centres.			· ·	1			 	<u> </u>	<u> </u>	
	1	134.42 - 137.46 Pink syenite as described above. Run begins with 60 cm	C 117047	134.42	137.46	3,04	100	888	16	0,3	<u> </u>	2

Lorraine Project Diamond Drill Log DDH: 2001-48

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 8 of 10

·····	:		·····				Rec			ASSAYS		
	GE (metres)	LITHOLOGICAL DESCRIPTION	Sample #	SAMPLE From (m)	S TO(m)	Metres	Rec %	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
From (m)	To (m)	of grey syenite that is more mafic and magnetite rich. Combined sulphides	Campio #					(()	[
	1	are about 1% with more chalcopyrite than pyrite in the pink syenite but							L			
		more pyrite in the grey areas. White carbonate coatings are low angle (10-										
		20° to core axis) fractures. Overall sulphide contact has decreased with past										+
		several runs. Near bottom of this run the amount of chalcopyrite has								Ì	·	
		decreased to 0.25-0.5%.	C 117048	137,46	140.51	3.05	100	496	8	<.3	< 2	< 2
		137.46 - 140.51 Pink syenite as above. Low angle fractures at 139.0 have	C 117048	137,40	140.31	3.05	100	450				
		dark green chlorite-rich coatings on low angle (0-15° to core axis) fractures.				+						
		140.51 - 142.05 Pink syenite as described above. Powdery dark-green	C 117049	140.51	142.05	1.54	100	334	8	0.3	< 2	< 2
		coatings on irregular fractures. Strong reaction to HCl, suggests 2-3%			-							
		carbonate. Very little sulphide.					1					
		142.05 - 144.74 As above, but with 25-30% thin mafic lamellae made up	C 117050	142.05	144.74	2.69	100	275	10	< .3	< 2	
		of biotite-chlorite-muscovite and magnetite which form a moderately well						·	·			
	_	developed foliation at about 45° to core axis, feldspars appear a bit chalky				++		-				
		looking in places suggesting some sericite and / or clay alterations. Sulphide				+ +						1
		content has dropped about 0.25%, becoming a minor component.	C 117051	144.74	146.49	1.75	100	1482	37	< .3	4	Ę
· · ·		144.74 - 146.49 Grey fine-grained syenite with occasional patches of coarser-grained pink k-feldspar. Overall this run would be described as							_			
		fillings and to 1 cm envelopes generally at 30-45° to core axis. The grey								I		ļ
		syenite which is full of fine-grained biotite and magnetite contains about 1%				ļ[
		Tchalcopyrite.					-					+
		146.49 - 149.77 Light pink syenite with 45° to core axis fractures carrying	C 117052	146.49	149.77	3.28	100	1528	94	1.5	< 2	<
		orange k-feldspar and pyrite. Irregular grey patches include 20-30° fine-	0 117032			5.20	100					
	+	grained biotite and 1% chalcopyrite.				1						
						<u> </u>			<u> </u>			<u> </u>
149.77	205.13	BIOTITE PYROXENITE - with occasional intervals of fine-grained grey										
		syenite. Pyroxenite fraction is largely altered to chlorite. Coarse-grained				+ • • • • •						
	-	biotite flakes to 0.5 cm comprise about 20-30% of core near top, and						· · · ·				+
		increase to 30-40% within several metres. 40-50% chlorite. 10-20% k-										+
		feldspar, fine-grained magnetite to 5% low angle (0-15°) to core axis								+		· •
		- fracture faces are coated with chlorite and carbonate. Fine-grained grey				1 1			1			
	-+-	ections are made up of 30-40% grey or pink k-feldspar, 35-45% small (1										
	1	mm) pyroxene crystals, +/- fine grained biotite and up to 5% chalcopyrite.							1	<u> </u>		Ļ
		The chalcopyrite shows cumulate textures, completely enclosing unaltered						-				
		pyroxene crystals. 149.77 - 152.70 As described above, biotite-pyroxenite partly altered to							40			2
		chlorite. Magnetic.	C 117053	149.77	152.70	2.93	100	2978	107	/ 1.4	H 1	<u>) 2</u>
		152.70 - 155.75 As above, bi-pyroxenite, white feldspar interstitial to	C 117054	152.70	155.75	3.05	100	1089	1	3 < 3	3 1·	1
	+	pyroxene is mostly k-feldspar. At 155.55, several bands of 10% pyrite and	0 117034	132.70			100		··			·+ · · · ·
		chalcopyrite cut core at 60° to core axis.						1	+	<u> </u>	+	1
	+	155.75 - 158.80 Bi-pyroxenite largely altered to bi-chlorite. Continuing	C 117055	155.75	158.80	3,05	100	1690) 52	2 0.8	3 14	4 1
	+ · · · · · · · · · · · · · · · · · · ·	magnetic at 158.52 there is a 1 cm band of interstitial 5-10° bornite with 1%									: -1	
·	+	- The state of the state is a tem band of interbadde of to bothice that the				1		1		i	i	

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 9 of 10

FOOTAGE (metres)			SAMPLE	S		Rec			ASSAYS		
From (m) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	<u>To (m)</u>	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
	covellite. Band cuts core at 90°.										
	158.80 - 161.85 Bi-pyroxenite altered to biotite-chlorite-epidote. First		150.00			400		41	< .3	7	
	significant appearance of epidote, locally to 5% this interval has several	C 117056	158.80	161.85	3.05	100	999	41	×.3		
	sections of 50% coarse k-feldspar, but they don't carry mineralization.									-	
	161.85 - 164.90 Bi-pyroxenite largely altered to biotite-chlorite in a felted	C 117057	161.85	164.90	3.05	100	2460	65	1.2	7	1.
	mass. From 163.82 to 164.55 there is a k-feldspar rich section, fine to	0 111001				,					
	medium grained pyroxenite in grey interstitial feldspar is mixed in with k-										
	feldspar rich intervals and carries up to 4% fine grained chalcopyrite. Last								'		
	15 cm of run (164.75 - 164.90) has several 1 mm discontinuous bands of		· · · · · · · · · · · · · · · · · · ·								
	chalcopyrite at 90° to core axis.										
	164.90 - 166.93 Biotite pyroxenite with variable alteration to chlorite.	C 117058	164.90	166,93	2.03	100	1646	51	1.0	14	1.
	Blebs to 0.5 cm of cumulate / interstitial chalcopyrite are common through										
	this run. Best mineralization occurs where k-feldspar is 15-25%, biotite is					• ~					
	less at 15-20% and pyroxene is 55-60%, such as between 165.65 and						·				
	165.85 where chalcopyrite is 3-4%.	··· — —			-						
	166.93 - 169.20 This is a more felsic section similar to that described in	C 117059	166.93	169.20	2.27	100	10167	423	9.6	5	1
	the run above. Sections k-feldspar-rich weakly altered pyroxenite such as between 166.93 to 167.94 are mineralized with up to 5% chalcopyrite; less										
	Felsic, although magnetite-rich sections, such as that following 167.94							<u> </u>			
	contain 10-15% chalcopyrite and 20-30% magnetite. After 168.35 the run										
	becomes more felsic again and the tenor of the mineralization more closely						<u> </u>				
	matches the early part of the run.			••	-						+
	169.20 - 171.65 Heavily mineralized biotite-magnetite-pyroxenite as	C 117060	169.20	171.65	2.45	100	11558	378	10.1	6	1
	described above. Magnetite to 30% chalcopyrite to 15% locally, bornite	0 111000	10010-								<u> </u>
	possibly to 1/2%. At 170.15 a 5 mm band of 80% chalcopyrite cuts core										
	rregularly at 45-60° to core axis. Between 170.15 and 171.65 chalcopyrite								l	ļ	
	distribution is more irregular but locally reaches 20%.						=				
	171.65 - 174.04 Mineralization drops off to nothing for most of this run	C 117061	171.65	174.04	2.39	100	1686	53	1.4	15	3
	where chlorite alteration has destroyed pre-existing pyroxene / textures. A				+	-					
	few short intervals which match the runs above are mineralized with 2-5%				1					-	
	chalcopyrite.	C 117062	174.04	177.09	3.05	100	5181	134	4.4	6	3
	174.04 - 177.09 As above. A few short mineralized spots in biotite-k-	0 111002									
·····					1						
	- 177.09 - 180.14 Biotite and chlorite altered pyroxenite, little visible	C 117063	177.09	180.14	3.05	100	36	7	' < .3	13	
	sulphide mineralization.				· · · · · ·	ļ					
	180.14 - 183.53 Biotite-chlorite altered pyroxenite chlorite pseudo-	C 117064	180.14	183.53	3.39	100	18		s < .3	<u> </u>	1
	morphing pyroxene crystals enclosed in k-feldspar. 183.53 - 184.82 Epidote alteration zone with several short intervals of						4040	69	1.1		
	coarse-grained k-feldspar. 10-20% epidote, 30-40% chlorite after pyroxene,	C 117065	183.53	184.82	1.29	100	1810	<u>65</u>	<u>n 1.1</u>		<u> </u>
	40-50% k-feldspar, no sulphides.							+··	+		+
	184.82 - 188.67 As described several runs above. Biotite-chlorite altered	C 117066	184.82	188.67	3 85	100	186	i 11	< .3	s	2
·····	pyroxenite, 10-20% k-feldspar.		107.02	100.01			1		<u> </u>	1	
	188.67 - 192.02 As above, gypsum coats some 45° to core axis fractures,	C 117067	188.67	192.02	3.35	100	1518	10	0.9	3	3 2
······	several blebs of chalcopyrite and bornite in coarse-grained biotite rich spots.				+		1		j'	+	
					1		1		1		1

Lorraine Project Diamond Drill Log DDH: 2001-48

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 10 of 10

FOOTAGE (metr			SAMPLE	s		Rec.			ASSAYS		
From (m) To		Sample #		To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
	192.02 - 196.39 As above, more epidote alteration.	C 117068	192.02	196.39	4.37	100	177	8	< .3	12	8
	196.39 - 199.10 Interval includes several spots with coarse-grained k-	C 117069	196.39	199.10	2.71	100	2301	110	1.6	9	23
	feldspar and generally more k-feldspar than above, 40% to 90%. Variable				!					·	
	199.10 - 202.02 Biotite-pyroxenite.										
		C 117070	199.10	202.02	2.92	100	52	4	< .3	9	6
	= 202.02 - 203.13 bi-pyroxenite as above.	C 117071	202.02	205.13	3.11	100	390	6	< .3	3	5
205.13											L
····											
								0.0			

Lorraine Project Diamond Drill Log DDH: 2001-49

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

DIP TESTS Start Date: August 5, 2001 Total Length: 152.40 m Footage (m) Dip Measured Dip Corrected Property: Lorraine 152 m -54 ° -45 ° Completion: August 6, 2001 Core Size: BQTW Grid Cord: Logged By: Jay W. Page Azimuth: 43.9° (GPS corrected) Elevation: 1588 m Date logged: August 6-13, 2001 Inclination: -50° Section: NOTES: Lower Main Area. GPS Location (corrected): UTM 347101.2 E 6200603.5 N (NAD 83) PAD: "Q" ASSAYS SAMPLES Rec. FOOTAGE (metres) LITHOLOGICAL DESCRIPTION To (m) Metres % Au (ppb) Ag(ppm) Pt (ppb) Pd (ppb) From (m) Cu (ppm) Sample # To (m) From (m) 15.24 CASING (50 feet) BIOTITE PYROXENITE - showing variable biotite-chlorite alteration. Grain 15.24 28.84 size varies from fine-grained at top to medium / coarse-grained at bottom of interval. Amount of biotite increases to 20-30% in areas with intense / texture destructive chlorite alteration of pyroxene, which occurs in several short intervals but is most pronounced toward the bottom of the interval. 0.6 2 0.87 28 244 6 C 117101 17.42 18.29 15.24 - 18.29 Fine-grained pyroxenite with 5-10% fine grained biotite, along with random 4-5 mm biotite books every 1-2 cm. Thin 1-2 mm white / pink veinlets of k-feldspar and calcite cut the core at 60° to 80° to core axis. 3-5% magnetite gives a strong magnetic character. Occasional irregularshaped blebs of chalcopyrite in association with chlorite-biotite rich spots. Total chalcopyrite less than 0.5%. 18.29 - 21.34 As above, with last metre displaying intense biotite-chlorite < .3 C 117102 18.29 21.34 3.05 96 261 7 4 13 alteration. Epidote reaches 20-30% in a few spots biotite 40-60%. 21.34 - 24.38 As above, but most of run is fine-grained. Chlorite-epidote 426 10 < .3 C 117103 21.34 24.38 3.04 98 altered pyroxenite. Last 70 cm of run is intensely biotite altered. A 1 cm wide k-feldspar-calcite veinlet cuts core at 70°, strongly magnetic. 4.46 95 24 3 < .3 5 C 117104 24.38 28.84 24.38 - 28.84 As above, intensely chlorite and epidote altered, leaving a 40 cm section of core soft and crumbly. Interval includes a 10 cm section of monzonite. Lower metre of run is very intensely biotite altered. MAFIC RICH SYENITE - contact zone between biotite-chlorite altered 28.84 33.65 pyroxenite and syenite below. Includes a short section of bleached and weakly clay-altered feldspar-rich pyroxenite. Also sections of bi-pyroxenite displaying intense epidote alteration, and biotite-epidote-chlorite alteration in another spot. Balance of interval is grey syenite. 100 < .3 C 117105 28.84 31.37 2.53 121 3 2 28.84 - 31.37 Bleached interval of clay altered feldspar-rich (to 50%). Fine-grained biotite pyroxenite. Lower 30 cm of run is coarser-grained and biotite-rich. 128 6 < .3 < 2 C 117106 31.37 33,65 2.28 90 31.37 - 33.65 Biotite pyroxenite showing variable but locally intense epidote and biotite-chlorite alteration. Some fracture surfaces are limonitic, generally at 70-80° to core axis. Much of run is soft and crumbly. MESOCRATIC SYENITE - grey-pink syenite. Generally fine to medium 126.27 33.65 grained, with grey tones dominant, several percent magnetite yield a strong

Page: 1 of 5

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 2 of 5

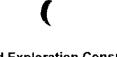
.

÷

FOOTAGE	(metres)	LITHOLOGICAL DESCRIPTION		SAMPLES			Rec.			ASSAYS		
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag(ppm)	Pt (ppb)	Pd (ppl
		magnetic character. Many intervals show some degrees of bleaching and										
		clay alteration.										
		33.65 - 36.58 Fine-grained syenite with several percent magnetite, about	C 117107	33.65	36.58	2.93	98	2836	84	2.1	< 2	
	-	1% very fine-grained pyrite and chalcopyrite; occasional large to 5 mm										
		blebs of chalcopyrite in coarser-grained spots. Several malachite spots				~						
		noted.							+			,
		36.58 - 39.62 As above, short mafic rich intervals and 1 cm centres are	0.117100	36.58	39.62	3.04	100	2520	384	2.0	5	
		altered to biotite-chlorite-epidote. Continuing fine-grained disseminated	C 117108		39.02	3.04		2520	304	2.0	5	
		chalcopyrite +/- pyrite to about 1/2% combined.										
		39.62 - 42.67 As above with more pink, coarse-grained k-feldspar than	C 117109	39.62	42.67	3.05	100	1662	178	1.0	- 2	
		above. Small mafic patch altered to biotite-chlorite-epidote. Continuing		39.02	42.07	3.05	100	1002	170	1.0	2	(
		mineralized with fine grained disseminated chalcopyrite (possibly minor	· ·									<u> </u>
		pyrite) in amounts of 1/2 to 1%.										
{		42.67 - 45.72 As above, core is more broken, many irregular broken faces	C 117110	42.67	45.72	3.05	96	1282	74	0,9	3	
		have a powdery chlorite coating, continuing minor disseminated chalcopyrite.										
		Magnetite 2-3%.										
		45.72 - 48.77 As above, grey-pink syenite with several percent magnetite	C 117111	45.72	48.77	3.05	99	1293	53	0.9	< 2	1
		and occasional coarse-grained k-feldspar sections. Continuing minor										
		disseminated chalcopyrite <u>+</u> pyrite as tiny blebs.										
		48.77 - 51.82 As described above, trace of sulphides as tiny disseminated	C 117112	48.77	51.82	3.05	100	973	66	0.8	2	
		specks. Continuing magnetic, low angle fractures 0-15° to core axis, are										
		coated with chlorite and carbonate. Patches of chlorite-epidote mark pre-										
		alteration mafic centres.										
		51.82 - 54.86 Much of run is ground into gravel, with extensive carbonate	C 117113	51.82	54.86	3.04	90	497	35	< .3	< 2	
		coatings on all gravel and fracture surfaces. Most lumps of competent rock										
		are of pink-grey svenite.	_									
		54.86 - 57.91 A variable run with coarse and fine-grained sections.	C 117114	54.86	57,91	3.05	96	286	10	< .3	20	
		Limonitic and hematitic coatings on many fracture surfaces of various										ļ
		orientation. Run is quite broken. Highly magnetitic.										
		57.91 - 60.35 Broken syenite with many light-coloured carbonate-coated	C 117115	57.91	60.35	2.44	100	216	13	< .3	< 2	
		45 - 60° to core axis fractures. Grey syenite with fine-grained mafic (chlorite										
		+ epidote) sections. Fine-grained disseminated sulphides are chalcopyrite +				,		·····				
		pyrite. Continuing magnetic.										
		60.35 - 64.33 As above, much of sections is ground into gravel. Broken	C 117116	60.35	64.33	3.98	90	296	4	< .3	< 2	<u> </u>
		pink-grey syenite with carbonate coatings on most surfaces. Locally,			· · · <u> </u>			L				+ · ·
		chalcopyrite reaches 2-3%, average about 1/2 - 1% chalcopyrite. Some					;					
		bleaching and clay alteration of feldspars. Continuing magnetic.										<u> </u>
	· • • • • • • • • • • • • • • • •	64.33 - 67.67 As described above, variable sulphide content, disseminated	C 117117	64.33	67.67	3.34	90	1229	51	0.5	< 2	──`
ł		blebs of chalcopyrite locally reach 1% and generally more common than			74.00		05	070	7			<u> </u>
\ 		pyrite. Much of this run is ground into rubble.	C 117118	67.67	71.02	3.35	95	273		3	< 2	<u> </u>
		67.67 - 71.02 As described above, grey, medium-grained syenite,	.				· · -					<u> </u>
		magnetite rich. Fine-grained biotite-chlorite alteration of mafics, occasional										
····		coarse-grained brownish-pink k-feldspar. Trace of pyrite.	C 117119	71.02	73.15	2.13	96	286	2	< .3	5	
		71.02 - 73.15 As described above, grey medium grained syenite with		/1.02	13.15	2.13	90	200			3	
·····		coarser grained pinkish brown k-feldspar sections. Continuing magnetic.				·						i
		Tiny calcite and epidote veinlets cut core at a whole variety of orientations.				i						<u>—</u> —

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 3 of 5


FOOTAGE	(metres)		J	SAMPLES	5		Rec.			ASSAYS		<u></u>
From (m)	To (m)		_Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag(ppm)	Pt (ppb)	Pd (ppt
		No sulphides seen.				<u> </u>				·		
		73.15 - 76.20 As described above, grey, fine to medium grained syenite.					400	407				
		Up to 5% magnetite gives a strong magnetic character. Traces of	<u>C 117120</u>	73.15	76.20	3.05	100	467	33	< .3	< 2	
		chalcopyrite and bornite (?). Core breaks very poorly, possibly due to										
		internal fractures. Many areas of fine-grained, dark green chlorite-epidote			· ·		· · ·	· ·				
		altered matics.				·						
		76.20 - 79.25 As above, continuing very magnetic, pervasive chlorite	C 117121	76.20	79.25	3.05	100	850	36	< .3	< 2	
		alteration of mafics. Intermediate fractures are carbonate coated (45 - 60°	- 011121	10.20	,0.20	0.00		000				·····
	· · · ·	to core axis). Trace to minor chalcopyrite and bornite.	·····									
		79.25 - 82.30 As above, greyish pink syenite with very magnetic character.	C 117122	79,25	82.30	3.05	100	4169	447	2.4	5	
		Minor disseminated blebs of chalcopyrite and bornite (very fine grained).										
		Pink areas tend to be coarser-grained k-feldspar.										
		82.30 - 85.34 As described above, continuing grey, medium-grained	C 117123	82.30	85.34	3,04	100	778	52	0.5	4	
		syenite. Pervasive alteration of mafics to fine-grained chlorite and epidote.										
		Calcite fracture fillings at 45 to 60° are 1 mm thick. Traces of sulphides										
										· · · · · · · · · · · · · · · · · · ·		
	. <u> </u>	seen. 85,34 - 88,39 As described above. Grey-pink syenite with pink tones										
		beginning to dominate, becoming coarser-grained, minor sulphides that	C 117124	85.34	88.39	3.05	100	751	<u>17</u>	0.3	2	
		locally over short sections (5-10 cm) reach 1-2% chalcopyrite.										
		88.39 - 91.44 As described above, medium-grained pink-syenite with grey				2.05	100	237	4	< .3	< 2	<u> </u>
		magnetite-rich areas. Pervasive fine-grained biotite-chlorite alteration of	C 117125	88.39	91.44	3.05	100	237		<u> </u>	~ 2	-
		magnetice-rich aleas. Pervasive nine-granied pictue-chlorice aleradori of mafics. Trace of chalcopyrite.		<u> </u>								
		91.44 - 94.49 Pinkish-grey magnetite rich syenite with pervasive altered	C 117126	91.44	94,49	3.05	100	919	68	< .3	5	
		matics to chlorite \pm biotite and epidote. Traces of pyrite.	0111120	51,44		9.00						
		94.49 - 97.54 First metre of run is soft, light grey gravel, competent core	C 117127	94.49	97.54	3.05	90	454	15	<.3	3	
		and hard bits in gravel are grey-pink syenite. Pervasive fine-grained chlorite										
		epidote alteration of mafics. No sulphides seen. Calcite coatings on										
			[[······································							
	<u> </u>	- fractures at 0° to 30° are common.										
		97.54 - 100.58 As described above, medium-grained grey-pink syenite with pervasive chlorite-epidote alteration of mafics comprising 20-25% of the	C 117128	97.54	100.58	3.04	96	469	4	< .3	< 2	
		core. No sulphides seen. Weak to no magnetism. Core has very irregular										
		breakage through a large number of runs here, most fracture surfaces are									L	
			I		<u> </u>	Ļ						÷
		coated with carbonate.										
		100.58 - 103.63 As described above. Pink-grey syenite that has been broken into gravel through about 1/3 of run. Broken areas are cemented	C 117129	100.58	103.63	3.05	90	513	56	0.6	< 2	
		(poorly) with carbonate plus there may be some degree of weak clay				<u> </u>		i		<u>-</u>		<u> </u>
		alteration. Pervasive texture destructive chlorite <u>+</u> epidote + very fine-	<u>-</u>			╄───・						<u> </u>
		grained biotite alteration of all original mafics. Mafic patches display			.			·				+ · ·
!		moderate magnetism. Carbonate-rich sections are not magnetic.			···							ł
		103.63 - 106.68 As above, but more broken and carbonate altered than	C 117130	103,63	106.68	3.05	90	420	13	< .3	< 2	
	<u>⊢</u>	previous run. Much of core has a bleached appearance, largely from		103,03	100.00						<u> </u>	† "
<i> </i>		carbonate, unclear how much clay alteration exists. These sections,	t	<u> </u>		(1		†	· · · · · · · · · · · · · · · · · · ·	<u> </u>
		including feldspars in fragments are very chalky and soft. Hydrothermal	· ·	<u>+</u> ── ─┤		ł		<u> </u>			<u> </u>	+
	· -· · · ·	alteration? No magnetism, no sulphides seen, no iron oxides on fractures.	F	t		+		<u> </u>		t · ·		1
		106.68 - 109.73 As above, but not as broken. Carbonate coatings /	C 117131	106.68	109.73	3.05	98	539	23	, - - ,3	2	
	r ·	Transing - Transing We apply out not as prokent. Carbonate toatings /	F			1		· · · · · · · · · · · · · · · · · · ·		1	1	1

Page: 4 of 5

.

FOOTAG	GE (metres)	LITHOLOGICAL DESCRIPTION		SAMPLES	; ;		Rec			ASSAYS		
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag(ppm)	Pt (ppb)	Pd (ppb)
		alteration continuing pronounced. Competent pieces of core seem to be										
		mainly coarse-grained pink k-feldspar. Minor amount of magnetite in these										
		sections, also chlorite + epidote alteration of mafics. No sulphides seen.						405				
	<u></u>	109.73 - 112.65 As above, with continuing carbonate alteration / addition	C 117132	109.73	112.65	2.92	98	165	63	< .3	3	< 2
	·	as fracture coatings. Competent sections of core are grey syenite, becoming							·			
		more grey with depth; grey colour due to increase in grey feldspar at					·					
		expense of pink, fine-grained. Magnetite (giving a return to magnetism) and					·		·			
		fine-grained biotite. Minor to 1/2% fine disseminated pyrite, often in										
		degraded mafic centres with epidote.							·			
		112.65 - 115.82 Grey syenite as was developing above with continuing	C 117133	112.65	115.82	3.17	98	215	24	< .3	3	
		carbonate alteration / introduction along fractures. Much of core still	0 11/100	112.00	110.02		00	2.10				
	+	breaking in an irregular fashion. Generally fairly dark tone to fresh surfaces			·							<u> </u>
· · · ·		on split core, due to grey k-feldspar, magnetite (strongly magnetic) and fine-										· · · ·
<u> </u>		grained biotite, clay with chlorite alteration of pre-existing mafics. No										
		sulphides seen, except near pink k-feldspar veinlets and alteration envelopes					1.01.0					
	-	(total width $1/2$ cm) that cut core axis at 30° to 90° .	—— —			+						
		115.82 - 118.87 As above, but with more pink tones in competent sections	C 117134	115.82	118,87	3.05	98	136	15	< .3	< 2	< 2
		of core (although grey syenite still dominates). Moderately magnetic, weakly		· · · · · · · · · · · · · · · · · · ·		T						
		mineralized with disseminated pyrite. Trace chalcopyrite. Carbonate										
	-	coatings on 10° to 30° fracture surfaces.										· · · · ·
		118.87 - 123.30 As above, containing grey-pink mesocratic syenite with 10	C 117135	118.87	123,30	4.43	100	867	49	0.3	2	< 2
		45° to core axis fractures coated with carbonate. 2-3% magnetite, minor										· · · -
		chalcopyrite, although locally it reaches 1%. Pervasive texture destruction										
		chlorite-epidote-biotite alteration of mafics.										
		123.30 - 126.27 Grey syenite as described above. 2-4% magnetite, locally	C 117136	123.30	126.27	2.97	100	197	18	< .3	< 2	
		more (4-6%) very magnetic. Pervasive mafic alteraton to 50% biotite, 50%										
		chlorite, <u>+</u> 5-10% epidote (mafic centres only). Most of rock 60-80% is grey				<u> </u>	·					
		equigranular idiomorphic k-feldspar. 10% biotite as tiny disseminated flakes		·								
~		unrelated to mafic centres. Mafics comprise 10-30% of core. Variable	-m., <u> </u>		<u></u>							
		_ sulphide content, average 0.25-0.5% pyrite, minor chalcopyrite.				+		· · · · · ·				
<u> </u>	+					4						
100.07	134.35	MONZOSYENITE - foliated with 20-30% elongate mafic centres composed		<u>├───</u>	• • ••••••••••••••••••••••••••••••••••				·			
126.27	134.35	mainly of biotite. Foliation which is weak to moderately developed in most of		} †				+				
<u> </u>	<u> </u>	this interval is vague to non-existent where pink k-feldspar is dominant.			· ·,		* ****					
	- <u> </u>	Fairly well developed in areas dominated by grey k-feldspar. Overall grey										
··	- 1	colour tone due to grey feldspar 50-75%, grey plagioclase 10-35%, mafics										
		(mostly biotite \pm chlorite \pm epidote) 20-30%, magnetite 2-4% low angle				+					_	
						1						
		-fractures 0-10° are common with 1 mm carbonate coatings.				1		1				I
		126.27 - 129.37 Grey monzo-syenite, weakly foliated as described above.	C 117137	126.27	129.37	3.1	100	304	14	< .3	4	
	+	Magnetic, contains about 1% fine grained disseminated bleb of pyrite.				1						
	+	129.37 - 132.08 As above, weak to moderately foliated at angles of 30° to	C 117138	129.37	132,08	2.71	100	116	72	< .3	< 2	
		80° to core axis continuing magnetic. Biotite 15-20%. 2-4% continued						L			L	ļ ···-
	+	chlorite and epidote. Trace pyrite.								ļ · · ·		ļ
<u></u>		-]				1	· · · · · · · · · · · · · · · · · · ·		L	L	<u>+</u>	1
				1							i	

Page: 5 of 5

Lorraine Project Diamond Drill Log DDH: 2001-49

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

FOOTAC	E (metres)			SAMPLES	5		Rec.			ASSAYS		
From (m)	To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag(ppm)	Pt (ppb)	Pd (ppb)
Tion <u>Mig</u>	1	132.08 - 134.35 As described above with a weak to moderate variable	C 117139	132.08	134.35	2.27	100	66	3	< .3	6	3
		foliation defined by biotite clusters in a monzosyenite. Very difficult to										
		identify plagioclase but believe it is there. Trace sulphide (pyrite?) carbonate						L				
	1	coatings on low angle (0 to 30° to core axis) fractures.	-			1						
	<u> </u>						_					
42.4.25	152.40	GREY SYENITE - strongly magnetic with 2-4% magnetite. Generally fairly										
134.35	152.40	fine-medium grained with coarser pink sections. Fine-grained biotite										
	+	replaces mafics and helps to define grey colour tone. Sulphides as fine-										
	· · ·	grained clusters with epidote in degraded mafic centres. Most of sulphide is										
		pyrite.										
	+	134.35 - 137.16 As described above minor to 1% disseminated pyrite	C 117140	134.35	137.16	2.81	100	669	38	0.4	4	4
		associated with epidote spots.										
		137.16 - 139.80 As described above with more k-feldspar rich (orange)	C 117141	137.16	139.80	2.64	100	460	74	0.3	< 2	6
		sections in centre of run. Coarse grained k-feldspar-rich sections also										
		include large patches of chlorite. Low angle fractures (0-30°) are filled with										
		1 mm thick calcite coatings. Minor chalcopyrite in pink / orange k-spar rich										
									l			
		139.80 - 143.26 Interval begins with a weakly foliated syenite-		100.00		2.40	100	345	96	< .3	< 2	< 2
		monzosyenite that is very similar to that described above, but with more k-	C 117142	139.80	143.26	3.46	100	345	90	<u>, s</u>		
		feldspar and lighter pink colour tones. Overall through the lower 20-25		_							· · ·	
		metres of this hole the k-feldspar content varies. Pyrite is about 1/2%						<u> </u>	· · ·	_		
	_	associated with epidote spots. Moderately magnetic.										
		143.26 - 146.80 As described above, but with a slightly more pink tone.	C 117143	143.26	146.80	3.54	100	170	19	< .3	2	2
·	- 	Mafics are largely biotite wisps, 2-3% epidote, 1% pyrite mostly associated										
	·	with epidote spots.								-		
		146.80 - 149.35 As described above, with a weakly defined biotite foliation										
		at 45° to core axis through lower part of run. Continuing moderate	C 117144	146.80	149.35	2.55	100	179	15	< .3	3	[:
		magnetism. Disseminated blebs and cubes of pyrite. Chlorite-biotite <u>+</u>										<u> </u>
		pidote alteration of mafics. Some pyrite associated with epidote, overall										
		1% pyrite. 149.35 - 152.40 As described above. Pinkish-grey syenite magnetic,										
	+		C 117145	149.35	152.4	3.05	100	305	16	< .3	4	
-		about 10% quartz?						l				
						<u> </u>		l			·····	
				↓								+
152.40		END OF HOLE.										
						ļ						
							<u>-</u>					i
					↓ · · ·			·	-			
	1		l		· 			1		l	<u> </u>	•

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Property:	Lorraine	Total Length: 167.64 m	Footage (m)	DIP TESTS Dip Measured	Dip Corrected		Start Da	ate: Augu	st 8, 2001			
Grid Cord:		Core Size: BQTW	167 m	-53	-45 °		Comple	tion: Aug	just 9, 200)1		
Elevation:		Azimuth: 36.4° (GPS corrected)					Logged	By: Jay	W. Page			
Section:		Inclination: -45°					Date lo	gged: Au		9, 2001		
		rea. GPS Location (corrected): UTM 347631.6 E 6200549.8 N (NAD 83) F	עבביים ארוי "אוו"				·'					
NUTES: U	pper main A	ea. GFS Eduation (contexted). Only 347031.0 2 320043.014 (trib 00) 1	7.05. 1141									
FOOTA	GE (metres)	LITHOLOGICAL DESCRIPTION		SAMPLE	s		Rec.			ASSAYS		
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
			_				+					
0	0,00	NO CASING]							!		
		MESOCRATIC SYENITE - greyish pink syenite that varies in colour but most	i				+			t:		
0.00	132.46	commonly appears as grey with pink k-feldspar overprints, alteration		:			† · · ·			•		
		envelopes, etc. Black magnetite varies from 2-6% generally giving a strong	• •				·	·		-		
		magnetic character. Sulphides are highly variable with 0 to 1% pyrite,		!						<u>_</u> .		
		chalcopyrite and bornite. Most common mafic is biotite.		+			+			•		
l		0.00 - 3.05 Grey syenite with pink k-feldspar-rich sections and as 0.5 mm	C 117151	0.00	3.05	3.05	100	2314		1.3	4	5
			011/101		0.00	0.00	100			· ··· <u>·</u>		
		wide envelopes along some 30° fractures. Magnetite rich, up to 4%. Core is medium-grained, k-feldspar is generally equigranular and very crystalline		• • • • • •			· · · · ·		<u></u>	•		
				• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·			• 	• · · · · -	• • • • •		
		looking. Low angle $(0.10^{\circ} \text{ to core axis})$ fractures are malachite coated.		• • • • • • • • • • • • • • • • • • • •			<u>∔</u> ·	-	; ·			
 		Also malachite specks are common, maybe up to 0.25% in places. Trace					+		+ 1	· · · · · · · · · · · · · · · · · · ·		1
		pyrite. Most common mafic is fine-grained biotite as randomly oriented	······	••••••••••••••••••••••••••••••••••••••			· - · · · · · · · · · · · · · · · · · ·		ŀ	†		†
		flakes. 1-5% epidote, occasionally associated with patches of chlorite.									• • • •	+
· · ·	·	Some carbonate coatings on fracture surfaces.	C 117152	3.05	6.10	3.05	100	2111	58	1.0	4	5
		3.05 - 6.10 As above, although with pink tones more dominant with an	0 11/132	0.00	0.10	0.00		t	,		·	+
	···	increase in pink k-feldspar and in grain size. Biotite, generally as fine-										.
		grained discrete flakes, forms a weak foliation at 80° to core axis. Pink k-			 					!		
	-+	feldspar rich sections have little, if any magnetite. A few rust spots and					<u>+</u>			· · · · ·		
· ·· ··		malachite spots betray former sulphides, total less than 0.25%.	C 117153		9.14	3.04	98	2822	145	1.9	3	ι ···-
		6.10 - 9.14 As described above, grey pink syenite displaying very little	011/100			0.04				····	<u>.</u>	
	+	magnetism except at obvious magnetite clots every few centimetres.			<u> </u>		+-			:		÷ ·
		Prominent malachite staining on every fracture between 0-45° to core axis.		:	<u>↓</u> ···-				-		÷	der er
· ·		Fine grained biotite remains the most common mafic.	C 117154	9.14	12.19	3.05	5 100	2098	57	1.6	< 2	4
·		9.14 - 12.19 Pinkish-grey syenite as described above. Malachite staining	· ···· - ·				+	1		• ••	↓	
·	· .	and rare limonite on low angle fracture faces. Fine-grained biotite and grey			÷	:		1				T
	1	k-feldspar form many dark grey areas. Little to no magnetite. Some		T	İ		• • • • • •					T
		malachite specks but no sulphides seen.	C 117155	12.19	15.24	3.05	5 100	1874	52	2 1.1	4	-i 6
		12.19 - 15.24 Pink medium-grained syenite, vague dark grey areas and		÷		1 · · ·	1			1		
		bands are composed of grey feldspar and fine-grained biotite. Very little		14 1	• • • • • • • • •	1 .	1				• • • • • • • •	- F · · · ·
		magnetism. Fractures are coated with malachite, minor limonite and		- ···		1		Ţ				
·		jarosite, and carbonate. Disseminated specks of malachite to 1/2% identify	1			r						
		pre-existing copper sulphides.]				
	н н. Н		[
1		Continued next page:										
1			l .									
1			-					1				

Page: 1 of 8

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 2 of 8

			SAMPLES			Rec.			ASSAYS		
FOOTAGE (metres) rom (m) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (pp
								10			
	15.24 - 18.29 Pink and grey syenite as described above. Malachite specks	C 117156	15.24	18.29	3.05	100	2068	48	1.1	4	
-	have increased slightly to about 0.75%, dark coatings on some fractures				· · · ·						
	may be chalcocite along with limonite / jarosite and malachite. Weakly						·				
•• - ••	magnetic, except where rust staining and concentrations of medium-grained				; <u></u> ;						
	biotite are associated with 1-2% magnetite. Finer-grained grey areas have										
	2-3% chalcopyrite, possible minor pyrite, minor bornite associated with		-		1						1.
	chalcopyrite blebs. Pink syenite areas are weakly mineralized.	-									
	18.29 - 21.34 As described above, but with slightly more pink syenite, and	C 117157	18.29	21.34	3.05	100	2797	73	2.5	. 5	
	less mineralization than above run. Interval shows weak to moderate				I.						
i <u></u>	magnetism.				1						.
	21.34 - 24.38 As described above, about 1% malachite spots, often	C 117158	21.34	24.38	3.04	100	4046	164	2.3	4	
	associated with small patches of orange-coloured k-feldspar. Continuing	0 111 200							•		1
	extensive malachite staining on fracture faces of all orientations. Pink		+	•••	· · ·				+ ,		
	sections are made up of almost entirely k-feldspar, about 1/2% pyrite and	· - ·	- •		<u>+</u>					• ••	1
· ···	about 1/2% chalcopyrite, both as disseminated blebs.				i		···-		↓		• • • • • • •
	about 1/2% Chalcopyrite, bour as disserilinated blobs.	-			2.05	100	2401	62	1.0	2	,
	24.38 - 27.43 Pink syenite as described above. Pinkish-orange k-feldspar	C 117159	24.38	27.43	3.05	100	2401	02		<u> </u>	
	alteration envelopes 2-4 mm wide follow 30-45° to core axis fractures, and			·			· ·		÷	÷	+
	have associated with them strings of chalcopyrite blebs + malachite.								ļ		<u>+</u>
	Continuing very little magnetite. Numerous small rust spots appear to be									· •	·
· · · · ·	degraded biotite. No carbonate alteration.									ļ	
	27.43 - 30.48 As above, pink syenite composed of 90% + equigranular,	C 117160	27.43	30.48	3.05	100	3110	60	1.3	3	<u> </u>
	hypidiomorphic, medium-grained k-feldspar. About 1% malachite spots,						L				
· ·	about 10% degraded maric / biotite spots. Extensive limonite-jarosite and						1			· ·	·
	malachite staining on fractures, especially low angle fractures at 0-15° to				:		1.			: +	
	core axis. Weakly magnetic.		· · · -							<u> </u>	
·	30.48 - 33.53 As described above, pink syenite, but with more biotite-rich	C 117161	30.48	33.53	3.05	100	2299	43	0.8	5	5
	spots toward bottom of run. Malachite spots enclose relic chalcopyrite		· · · · · · · · · · · · · · · · · · ·								
	grains in some spots. Extensive malachite, limonite-jarosite, + chalcocite on				+ +		İ	•	ţ	1	1
·							1			1	-+
	low angle (0-15°) to core axis fractures.	C 117162	33.53	36.58	3.05	100	2318	. 34	1.4	ļ g	3
	33.53 - 36.58 As above, continuing pink syenite, but with many orange k-	0 11/102					2010	-	-		
	feldspar alteration envelopes 5 mm wide at 45-90° to core axis. A 30 cm		+				4		+ · · ·	<u>, </u>	
	zone at 35.00 includes coarse-grained (to 2 cm) orange k-feldspar with 2%				·				•		1
	large malachite blebs.						2200	40	i		2
	36.58 - 39.62 Pink syenite as described above, with several coarse-	C 117163	36.58	39.62	2 3.04	100	2268	40	'i!• !	· · · · · · · · · · · · · · · · · · ·	~
	grained orangish k-feldspar sections and a biotite-rich section from 38.40 to				-				t n	÷ …	
	38.83. Here, biotite comprises about 50% of the rock, about 10% pink k-		· · · · · · · · · · · ·		· · · · ·				• • • • •	+	+
	feldspar and about 40% grey feldspar. It does not appear to be				÷						-
· · ·	mineralized. 2-3% magnetite yields a strong magnetic character. Pink				·						
· — · · · · · · ·	syenite is only weakly magnetic. Continuing malachite stains on fracture										
and the second	surfaces and occasional malachite spots in the syenite.	5			-		1				
- /		1		-	•						
-	Continued next page:										
							1				

Т

Page: 3 of 8

FOOTAGE	(metres)			SAMPLES			Rec.			ASSAYS		
From (m)	To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	T0 (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (pp
· .											:	
		39.62 - 42.67 Pink syenite as described above but with dark brown	C 117164	39.62	42.67	3.05	100	4144	65	1.9	2	
		goethite-limonite + malachite coatings on low angle fractures (0 to 10° to	Q 111104	00.02	42.01	0.00	. 100		00			
1		core axis). Dark spotty coatings on fractures may be chalcocite, associated		·		i +					•	
		with malachite which has a radial acicular habit. Generally non-magnetic		•		• ·····						
		occasional specks of pyrite disseminated through pink syenite, locally				· · · ·					:	
• •• •		reaching 1% with minor chalcopyrite. Grey syenite patches are more						1			1	
		heavily mineralized with 1-2% chalcopyrite with traces of bornite attached				• • • • • • •		+ .			ţ	
		to blebs of chalcopyrite, also minor to 1% pyrite.		· · ·		• • • •					Ī	
		42.67 - 45.72 As described above. Fracture coatings of limonite,	C 117165	42.67	45.72	3.05	100	10399	222	4.5	3	·· ·
		malachite and chalcocite become very pronounced toward bottom of run.		42.07		0.00		10000				
+.		Minor amounts of disseminated pyrite and chalcopyrite. Little to no		· · · !		· · · · · · ·					. 1	
····		magnetite.		· · · ·		†		· ·			·;	
		45.72 - 48.77 As described above, but more broken, and reduced to	C 117166	45.72	48.77	3.05	98	17024	669	18.7	7	·
		rubble with a few spots. Continuing extensive coatings of malachite, and	C 11/100	45.72	40.77	3.05	20	1 11024				
+		limonite - jarosite. Split core has numerous fracture orientations; low						+ <i>'</i>		,		
		angle fractures (0-20° to core axis) have most of the chalcocite-malachite		• • •				<u>+ :</u>				
						ł			d			
		mineralization, fractures around 45° to core axis have thick, earthy coatings				} ·+		+	· · · · · · · · · · · · · · · · · · ·			
		of limonite + jarosite. Very little (traces) of primary sulphide mineralization				÷		<u></u> +-				
	· · -	seen within syenite.	C 117167	48.77	51 82	3.05	100	9198	562	80	4	·
	· · ··-	48.77 - 51.82 As described above, with extensive coatings of chalcocite	C 11/10/	40.77	51.02	3.00		3130		0.0		
		and malachite on fracture faces that are visible on almost every piece of				i				,		
		split core. Syenite host for fractures has changed to a grey syenite in this		·		<u> </u>		+		• • • • • • • •	;	
		run. The grey syenite contains small patches and bands at steep angles				+	•	+		• • • • • • • • • •		· · ·
+		(70 - 90° to core axis) of pink k-feldspar. The grey syenite is moderately				+ !		+ · ·		····· †		
		magnetic (2-3% magnetite, locally 4-5%) and is mostly made up of grey k-					• • • • • • • •	+·· ·				
		feldspar, 60-80% and biotite 15-25%.	C 117168	51.82	54.86	3.04	96	3601	184	2.5	4	
		51.82 - 54.86 As above, but more broken with 2 short (20-30 cm)	<u> </u>	01.02		3.04	50	1 3001	104	2.0		
. +		sections of gravel. Chalcocite and malachite plus limonite - jarosite		·							·	
		coatings on fracture faces are extensive. Chalcocite as dark powdery	• ••					1		· · · · · ·	· · ·	·
		coatings reaches a maximum in the hole at the bottom of this run. Minor		+-		1 1						
		disseminated chalcopyrite + pyrite disseminated through host syenite.	C 117169	54.86	57.91	3.05	98	2943	74	1.6	3	
		54.86 - 57.91 As described above for just 1.52 metres (to 56.38), broken	C 11/109				30	2040				
		with extensive coatings of chalcocite, malachite and limonite. After 56.38	·			1		· ·				
		the core becomes much more competent as grey syenite, and although				+ i		- ·		: 1		
	··	fractures are still coated with chalcocite, malachite and limonite, there are		1		+-··· •				4		+ ·
		fewer fractures and less coatings on each fracture. Within the grey syenite,		· · · · · ·						, - ·+	· · · · · · · · · · · · · · · · · · ·	
		there are a few malachite specks scattered throughout. Magnetic.	C 117170	57.91	60.96	3.05	100	2381		1.2	5	
	-	57.91 - 60.96 Grey syenite as described above. Chalcocite and minor			00.90	- 3,03	100	2001				
		malachite on one 10° to core axis fracture face at bottom of run.	ł					1				
;		Disseminated as small blebs an 0.25% chalcopyrite in the grey syenite.				• •				•	. ,	•
		Magnetic.										
				·							•	
		Continued next page:						1				
			-					1				

DDH: 2001-50

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 4 of 8

FOOTAGE (metres)			SAMPLES			Rec.			ASSAYS		
From (m) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	T0 (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (pp
					· · · · · ·						•
										_	
	60.96 - 64.01 Grey syenite as described above. Fractures at 30-45° are	C 117171	60.96	64.01	3.05	100	2071	133	1.6	5	-
	coated with limonite. Occasional small pink patches carry most sulphide				·	-					1 ·
	mineralization up to 2-3% chalcopyrite. Continuing magnetic.										-
· · · · ·	64.01 - 67.10 Grey syenite as described above. Core through a couple of	C 117172	64.01	67.06	3.05	100	1538	80	1.0	. 5	h
·	runs here has a "sugary-look", breaks with sharp edges, possibly some		. ;								···
	hornfelsing has occurred. Continuing magnetic. Trace amounts of sulphide				-+-					• •	
	noted in a few pieces of core. Several fracture faces carry small amounts of				., †						
	chalcocite and malachite. Minor amounts of malachite as tiny specks are				1 +						· • · · ·
	disseminated through the syenite.			70.40			2697	164	2 1		
	67.10 - 70.10 A broken run with a mix between pink and grey syenite.	C 117173	67.06	70.10	3,04	98	3687	164	3.1	4	
	Many fracture faces are visible with spots of chalcocite and malachite		. <u>I</u> .				-				+
	exposed. Fractures range from 0 to 90° to core axis and there does not	!	• ·· -		<u> </u>						÷
	appear to be a preferred orientation. Minor disseminated chalcopyrite.		· · ·						-		÷
	Moderately to strongly magnetic.	C 447474	70.10	73.15	3.05	100	2337	77	1.9	5	÷
	70.10 - 73.15 A mixture of pink and grey syenite but less broken than	C 117174	70.10	73.10	3.05		2337	· ·''-		······································	
	above. Minor amounts of malachite and chalcocite spots noted on low		· · · · · ·		<u>.</u>				· · -		ł
	angle fractures (0-10° to core axis). Mixture of pink and grey syenite										+
	creates a weak to moderate banded appearance at roughly 65-90° to core						ł				+
	axis. Continuing magnetic. A 1 cm thick barren quartz vein cuts the core at				ł+		4		;	<u>↓</u>	-
· · · · · · · · · · · · · · · · · · ·	90° to core axis at 71.15.		i								
	73.15 - 76.20 Pink syenite with some grey tones. Minor amounts of	C 117175	73.15	76,20	3.05	100	2438	82	2.0	·	·† ···
	malachite and chalcocite spots are noted on low angle (0-20° to core axis)	<u>e niño</u>	<u> </u>		. 0.00					•È	
	fracture face. Continuing magnetic, trace amounts of sulphide (pin-heads				<u>+</u>				· · ·	∔	
·	of chalcopyrite?) also bornite. Sulphide locally reaches 1/2%. Malachite						÷ .				
	spots also common.				† '						1
···	76.20 - 79.25 Grey syenite with pink k-feldspar rich patches. Very	C 117176	76.20	79.25	3.05	100	2699	76	1.6	2	2
	magnetic with locally 4-5% magnetite. Grey areas due to grey k-feldspar,	0 111 10									†
· · ·	magnetite and fine-grained biotite. Very fine-grained disseminated		ļ		• •			• •	• • • •	+	
· ·····	chalcopyrite with minor bornite often reaches 2%.		• • • •		: '		t i	1			1
· · · · · · · · · · · · · · · · · · ·	79.25 - 82.30 As above, with a more grey colour tone, magnetic and with	C 117177	79.25	82.30	3.05	100	5947	185	4.2	4	ŀ
	an increase in sulphide mineralization. Chalcopyrite locally reaches 3-4%,	•	• • • • • • • • • • • • • • • • • • • •		4			÷	+	÷	1
	average 1-2%, bornite also very common as small blebs associated with		- · · · · · · · · · · · · · · · · · · ·		÷		-	•			
	chalcopyrite in degraded (biotite rich) mafic centres. Limonitic stain with				÷			-			1
	malachite + minor chalcocite on fractures, especially fractures less than 30°		+ ·- ··+·		• • •		1	:			1
	to core axis.	C 117178	82.30	85.34	3.04	100	3207	118	2.4	2	2
	82.30 - 85.34 Grey syenite as described above. Very fine-grained specks	. • • .: · · · · ·						÷ · ·		1	
···· · · · ·	of chalcopyrite and bornite are common, locally reach 2%, average 1/2 to				:						1
	1%. Continuing strongly magnetic with magnetite locally reaching 4%. No						1	•			1
	reaction to HCI.						1	•			÷
			• :					-	-		-
	Continued next page:							÷		•	
			· · ·		-		1		1	*	

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 5 of 8

			SAMPLES	-	·	Rec.			ASSAYS		
FOOTAGE (metres) From (m) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
								199	3.5	6	• • • • • • • • • • • • • • • • • • • •
	85.34 - 88.79 As above, but more variation between pink and grey areas,	C 117179	85.34	88.79	3.45	100	4118	199	3.0	U	
	also variation in grain size with pink k-feldspar rich areas being coarser-				4						• •• ••
	grained. Continuing mineralized with fine-grained chalcopyrite and bornite,										
	averaging about 1%. Grey syenite areas appear to be more heavily		•-		:		. .				
	mineralized. A coarse-grained magnetite rich section at 85.62 includes 1		· •								
	cm blebs of chalcopyrite and large books of biotite. Epidote alteration also				<u>+ i</u>						• • • • • • •
	prominent in this 4 cm long section. Some degraded mafics, altered to										
· · · · · · · · · · · · · · · · · · ·	biotite are heavily mineralized with chalcopyrite and bornite. More biotite		· · · · · · · · · · · · · · · · · · ·		-						÷
	rich toward bottom of interval.				ļ		ļ			· · · <u>-</u>	+
	88.79 - 91.06 A coarser grained section of orange-coloured k-feldspar	C 117180	88.79	91.06	2.27	100	274	. 2	< .3	2	↓ <
	rich syenite, composed of 60-70% orange k-feldspar, 10-15% grey feldspar,				!				. 1		:
······	15-25% biotite. Moderately to strongly magnetic with 2-3% magnetite, no				1				: i		;
	sulphides noted.							•		·	i
· · · · · · · · · · · · · · · · ·	91.06 - 94.49 Grey syenite with disseminated chalcopyrite mineralization	C 117181	91.06	94.49	3.43	100	3609	80	2.2	< 2	<
	to 2%, average about 1%, 1/2% bornite as tiny pin-leads and as larger										
— — i —— ·	blebs attached to chalcopyrite blebs. 10-15% fine-grained biotite, 2-3%						I	.		L	<u> </u>
	magnetite pinkish patches and bands cutting core at 80-90° to core axis are										·
	less well mineralized than grey syenite.							L	L		÷
	94.49 - 97.54 Grey syenite with some pink tones, similar to above but	C 117182	94.49	97.54	3.05	100	4432	94	2.7	2	< <
	with less sulphide mineralization. Fine disseminated blebs of chalcopyrite										
	appear more concentrated in those sections with the most apparent mixing					· ·	1	+ · ·			
· · ·	between pink and grey phases (essentially areas of pink and grey k-				4 ······		1	· · · · ·			
	feldspar). Radiating acicular needles of malachite plus minor amounts of				• • • • • • •				†-· · · · · · · · · · · · · · · · · · ·		
	covellite + chalcocite. Covellite forms rims on dark indistinct minerals,				1		<u>†</u>		†· · ·		
	possibly bornite with biotite? About 1% epidote, mafic component is almost		; +		+		† ·			÷	
	entirely biotite. Variable amount of magnetite, grey syenite areas include 2						- ·	;			+
	3% magnetite as tiny specks. There is a minor amount of bornite as				÷ !		†	•••••		1	1
					÷		1	. .			.
	disseminated tiny specks.	0 447400	97.54	100.58	3.04	100	9843	514	÷		
	97.54 - 100.58 As described above, with about 1% disseminated blebs of chalcopyrite and 0.25 to 0.5% tiny specks of bornite. Amount of mineral-	C 1171 <u>83</u>	97.04	100.50	- 3.04	100	3040			• • • • • • • • • • • •	[· · ·
······································	chalcopyrite and 0.25 to 0.5% thy specks of bornite. Amount of mineral-		+		÷		ł		i		
	ization increases toward the bottom of run to 2-3% chalcopyrite, 1/2 to 1%		<u>↓</u> ↓	· ···	÷		+ ·	•	4 ·	+	+
· · · · ·	bornite; local small spots even richer. Moderately to strongly magnetic.		·				1	344	6.1	<u> </u>	<u></u>
	100.58 - 103.63 As described above. Most of this run is well mineralized	C 117184	100.58	103.63	3.05	100	8182		0.1		
	pinkish grey syenite carrying on average about 1-1 1/2% chalcopyrite and					. .		<u>+</u>	· ·		i
	1/2 to 1% bornite. Of note is a small inclusion of pyroxenite 2 cm x 4 cm		+		:	•			÷	·	- · ··
	with 10-20% chalcopyrite showing "NET" cumulate textures and enclosing	[÷		:				+		-+-
······	pyroxene crystals. There is also considerable bornite and covellite with this		L						·+ ·		- - -
	pyroxenite xenolith. The grey syenite around this piece of pyroxenite is								<u> </u>		-
	also heavily mineralized with up to 10% chalcopyrite and 1-2% bornite +								·	• · · · · · · · · · · ·	
<u></u>	covellite. Pyroxenite occurs at 100.58. The light pink syenite is weakly	ļ							1	1.	:
	mineralized, the grey section and vague bands are well mineralized and the	1									1
	biotite-rich section (20 cm) at bottom of run has almost none. Malachite	1							:		
 	spots are still seen in the pink syenite.										
4.		1					1				
	Continued next page:	j					1				

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 6 of 8

FOOTAGE ((metres)			SAMPLES			Rec.			ASSAYS		_
	To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (pp
			-	-								ļ
									00		- 2	
		103.63 - 106.68 Similar to above, but with more variability in	C 117185	103.63	106.68	3.05	98	2602	99	1.6	< 2	
·-···		composition and mineralization. There is a wide range of variation between		-		i						<u>.</u>
		grey and pink syenite but in general this run has more biotite and less		1				l .				
		sulphide mineralization than above. Several short sections (about 10 cm)								. ;		
		include 50-60% biotite and 2-4% epidote. Run includes a section of rusty								4		į
		gravel.					·· ·					
-		106.68 - 109.73 As above, grey-pink syenite with the grey k-spar and	C 117186	106.68	109.73	3.05	100	2998	192	1.5	. 2	1 1 ·
- +		biotite often forming vague lineations at 75° to core axis. Mineralization has					-					L
		decreased to about 1/2% chalcopyrite and <0.25% bornite but interval is		. <u>L</u>			-	l				
		still consistently mineralized. Higher grade mineralization occurs in small		İ.		ii						÷
	· - · ·	mafic centres (about 1 cm in size) that have been altered to biotite and	-	1				L .				
		chlorite, and carry up to 10% chalcopyrite and bornite within the mafic	-									.
		centre. Continuing magnetic.										
	·	109.73 - 112.78 As above, top 1.5 metres of run is greyish-pink syenite	C 117187	109.73	112.78	3.05	98	2400	66	1.8	< 2	
		with 1% chalcopyrite and 0.25% bornite as tiny disseminated blebs										
	· · ·	associated most often with grey syenite and mafic-rich spots (but not just		1						["		
· _ +-		biotite). Lower half of run is broken pink syenite with numerous fracture										
		faces stained with limonite-jarosite, minor malachite + chalcocite. Overall		····		1						
	· · · - ·	there appears to be a decrease in mineralization through this run.		· /·								
+		112.78 - 115.83 Similar to lower half of above run, grey mafic-rich	C 117188	112.78	115.83	3.05	98	2896	109	1.6	2	
		syenite broken by numerous fractures which are limonite-jarosite stained.	0 111 100			<u> </u>						 i
	· · ···· - ·	Weak to moderate malachite + chalcocite coatings on most fracture faces.						1		1		1 "
		Sulphide mineralization has decreased to 1/2% chalcopyrite, strongly				+ i		- · · · !		· · · ·	!	
	·	magnetic.									 I	1
		115.83 - 118.87 Grey-pink syenite with 15-25% fine to medium-grained	C 117189	115.83	118.87	3.04	96	4559	150	2.3	< 2	•
		biotite. Sulphide mineralization is variable, from small mafic centres in pink	0111100	110.00						†		T
i-		syenite to disseminated without any pattern or association in the grey			·	:		+ I		l	+	+
ļ.		syenite areas. Continuing magnetic. Core is fairly broken in spots with		, <u>+</u>		• •		1			+ ··	+
!		malachite staining on fracture faces. In some spots chalcopyrite forms lines		· - ·							<u>-</u> · · · ·	
		of blebs, suggesting fracture control although no preferred orientation is		· · · · · · · · · · · · · · · · · · ·						÷		
,		indicated other than it tends to cross cut rather than parallel the core axis.				:				+	· · ·	+
		118.87 - 121.92 As described above, pink and grey syenite with many	C 447400	410.07	121.02	3.05	. 98	3219	72	1.7	< 2	,
: بد		irregular broken and fracture faces. Coatings on fractures include	C 117190	118.87	121.92	. 3.05		0210			·····	-
		carbonate, malachite + chalcocite, and limonite-hematite at 120.00,			·			- -		÷		i
		Caliborate, malachite + chalcocke, and innovince hernadice at 120.007						+				
		slickensides on chlorite-hematite-limonite coated 10° to core axis fracture		+						· · ····		+
		rake at 64°. Grey syenite for lower metre of run is mineralized with about							· -·	÷		ł
		1% disseminated chalcopyrite and 0.25% bornite, but locally reaches 3%	-	+ +				1		•	•	•
		chalcopyrite.						ł		·4 ··· ·	•	-
				. +								
											ŧ.	
		Continued next page:										
		1						1				

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 7 of 8

FOOTAGE (metres)			SAMPLES			Rec.			ASSAYS		
from (m) To (m)		Sample #	From (m)	To (m)	Metres	%	Сы (рртт)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pđ (ppl
	····			· · · ·	<u>+</u>					-	
· · ·	121.92 - 124.97 Grey syenite as described above containing 1-3%	C 117191	121.92	124.97	3.05	100	5448	79	2.5	3	:
	chalcopyrite and 0.25% bornite. A fracture face at 124.90 has a 1 mm thick				+- · · · · · · · · · ·						:
	seam of chalcopyrite at 5° to core axis, but is only 3 cm long. Low angle										; ; ;
	fracture faces (0 to 10° to core axis) commonly have coatings of limonite				1						
	and malachite.										
	124.97 - 128.02 As described above, grey syenite for just 1 1/2 metres	C 117192	124.97	128.02	3.05	100	3389	107	1.4	- 2	i t -
	with about 1% chalcopyrite and 0.25% bornite. Lower half of run is more	-									
· • · ·	biotite and mafic-rich but includes many patches and bands of pink and		- ·								
	orange k-feldspar. These areas are on average, mineralized about the same				<u> </u>						
	as the grey syenite but the mineralization is more variable and spotty.				+ · · ·					· ·	L
······	Lower half is non-magnetic. 128.02 - 130.51 Similar to above run, but more broken with limonitic	C 117193	128.02	130.51	2,49	100	1885	43	1.2	< 2	
	stains on many low angle (0-15° to core axis) fracture faces. Strongly				++· i						
	mineralized with 2-3% chalcopyrite for first metre, the lower part of run is										<u> </u>
	poorly mineralized and pink k-feldspar rich.				l						
	130.51 - 132.46 Run begins with 1 metre of medium-grained grey k-	C 117194	130.51	132.46	1.95	100	1935	70	1.3	<2	
	feldspar with 1/2-1% chalcopyrite then more mafic pink syenite with coarse-				·						+
	grained pink k-spar. Less chalcopyrite in lower pink section, 0.25 to 0.5%.			·	ļ i						-
					+ ;		~				
		 	·····		+ + +						
46 148.51	MELANOCRATIC SYENITE - dark grey, fine-grained pyroxene-rich syenite.				4				i i		+
: <u>-</u>	Well mineralized with up to 3% combined pyrite and chalcopyrite.				. :				· _		<u></u>
·	Composed of approximately 50% fine 1 mm long pyroxene laths with 50%				į i		· ··· ·		· · · · · · · · · · · · · · · · · · ·		
	interstitial grey k-feldspar. Irregular patches, wisps, and bands of pink k- feldspar give magmatite texture in places where orientated bands cut at 65										
	to 90° to core axis. One 30° fracture has 1-2 mm k-feldspar alteration				1				<u> </u>		
	envelope while the fracture is filled with 1 mm of chlorite. Non-magnetic.		+-								1
÷	132.46 - 134.11 Melanocratic syenite with 2-3% pyrite and chalcopyrite	C 117195	132.46	134.11	1.65	100	4594	160	2.2	< 2	
	as described above. Approximately 0.25% bornite also. All sulphides as								·		
	fine-grained disseminated blebs.		· T								:
	134.11 - 137.16 As above, 2-3% pyrite which often forms lines of	C 117196	134.11	137.16	3.05	100	5562	122	2.3	< 2	2
	discontinuous tiny blebs which indicate fracture control. Various		· · · · · · · · · · · · · · · · · · ·		· .			<u> </u>		·	÷ .
	orientations are indicated but 90° to core axis is dominant. Minor to 1%						· · · ·	· · · · · · · · · · · · · · · · · ·	;	··· <u></u> ·	
	chalcopyrite as disseminated blebs. Pyrite often as striated cubes. Not							•	÷		•
	magnetic.		107.10			100	1005	38	0.3	< 2	,
	137.16 - 140.21 As described above but chalcopyrite has increased to 2-	C 117197	137.16	140.21	1 3.05	100	1685				
	3% while pyrite is about 1%. Run includes several short sections of		<u> </u>						i		•
	unmineralized grey syenite and ends with one metre of it.	C 117198	140.21	143.26	3 05	100	5669	126	3.3	2	2
	140.21 - 143.26 As described above, several repeats of mineralized melanocratic syenite (1-2% chalcopyrite, 1-2% pyrite) and a weakly	0 11/190		140.20		,00					-
	mineralized pink syenite (0.25-0.5% chalcopyrite).		. :				P 1				
		0.447400		440.00		100	2799	39	1.2	. 2	
	143.26 - 146.30 Identical to that described above.	C 117199	143.26	146.30	0 3.04	100	2199	39	1.4	. 4	-

Page: 8 of 8

	GE (metres)			SAMPLES			Rec.			ASSAYS		
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
	· · · · · · · · · · · · · · · · · · ·	146.30 - 148.51 As described above, largely melanocratic syenite with perhaps more chalcopyrite (2-4%) and less pyrite (1-2%).	C 117200	146.30	148.51	2.21	100	2913	55	1.2	< 2	
						. i 4						
148.51	166.63	MESOCRATIC SYENITE - grey pink coloured, medium-grained syenite with 10-15% medium and fine-grained biotite. 0.5 to 1% chalcopyrite and minor bornite as disseminated interstitial blebs. Some blebs are up to 5 mm in size in first run.		• • •					······	· · ·	- - -	•
	·	148.51 - 150.00 As described above with occasional knots of coarse- grained biotite.	C 117201	148.51	150.00	1.49	100	2715	82	1.7	3	
	· · · · · · · · · · · · · · · · · · ·	150.00 - 152.40 As described above but chalcopyrite decreases to a trace by the end of the run. Minor pyrite as tiny cubes.	C 117202	150.00	152.40	2.40	100	1728	45	0.9	< 2	
		152.40 - 155.45 Light coloured pink-grey syenite as described above. Frequent coarse-grained sections. Orange k-feldspar envelopes cut core	C 117203	152.40	155.45	3.05	100	653	20	0.4	2	· · · · · · · · · · · · · · · · · · ·
	···	around 45-60° to core axis and are up to 1 cm wide. Traces of sulphide seen. 155.45 - 158.50 As described above, chalcopyrite, bornite and covellite	C 117204	155.45	158.50	3.05	100	394		0.4	< 2	
		have re-appeared but are spotty and overall comprise only about 0.25% of core combined.	0 11/204		100.00	0.00						
	· · · · · · · · · · · · · · · · · · ·	158.50 - 161.54 As described above, variations between percent grey and pink k-feldspar providing only action in this run. Traces of chalcopyrite noted.	C 117205	158.50	161.54	3.04	100	443	18	0.4	2	
	······································	161.54 - 164.59 As above, largely grey syenite with minor pyrite blebs.	C 117206	161.54	164.59	•	100	520		÷	< 2 < 2	
		164.59 - 166.63 As above, with several thin irregular white feldspar veinlets, a coarse-grained, reddish-brown k-feldspar section of 35 cm, and several coarse-grained biotite-rich spots with the biotite oriented at 45° to	<u>C</u> 117207	164.59	167.64	3.05	100	159	17	< .3	<2	
· ·		core axis.		······································				-				
				· · · ·	· · ·	i						+ · ·
166.63	167.64	BIOTITE PYROXENITE 166.63 - 167.64 Displaying pervasive, texture-destructive and complete alteration to chlorite and biotite. Two populations of biotite. Large 5 mm knots, and fine-grained mixtures with chlorite (?). No evidence of chlorite alteration of biotite, visible with hand-lens. 10-20% grey k-feldspar. No sulphides seen.								• •	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
167.64		END OF HOLE.		· ·		<u> </u>	-		.			† ·

DDH: 2001-51

Section:

0.00

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

DIP TESTS Start Date: August 9, 2001 Total Length: 101.50 m Dip Measured Dip Corrected Property: Lorraine Footage (m) Completion: August 10, 2001 Core Size: BQTW No Test Grid Cord: Logged By: Jay W. Page Azimuth: Elevation: 1780 m Date logged: August 20-21, 2001 Inclination: -90° NOTES: Upper Main Area. GPS Location (corrected): UTM 347632.0 E 6200548.0 N (NAD 83) PAD: "H/I" SAMPLES Rec. ASSAYS FOOTAGE (metres) LITHOLOGICAL DESCRIPTION % Cu (ppm) Au (ppb) Ag (ppm) Pt (ppb) Pd (ppb) Sample # To (m) Metres From (m) From (m) To (m) No Casing MESOCRATIC SYENITE - grey syenite grading into pink syenite by 25.0 47.70 metres. Oxidation, leaching and deposition of limonite, malachite and chalcocite on fractures throughout interval. Magnetism varies from weak to strong. Primary sulphides includes chalcopyrite, bornite and minor amounts of pyrite, generally as small disseminated blebs in amounts that locally reach 1-2%. 0.00 - 2.13 Grey syenite with cross-cutting 2 mm wide, pink k-feldspar 2 13 2.13 100 1352 33 0.7 3 C 117251 0.00 alteration envelopes along tiny fractures with no dominant orientation. Magnetic. Very fine-grained traces of unidentified primary sulphide. Malachite + chalcocite stains on low angle fractures. 2.13 - 5.18 Grey syenite as described above, but more variability in grain-1.7 5 3.05 98 3156 96 C 117252 2.13 5.18 size and colour. Traces of fine-grained chalcopyrite. Malachite spots common, betraying locations of pre-existing copper sulphides. Small maficrich sections are almost entirely altered to chlorite and fine-grained biotite. Malachite + chalcocite commonly coat most fracture faces. 5.18 - 8.23 Grey, varying to pink syenite, with an increase in grain size in 2482 50 C 117253 8 23 3.05 100 1.3 5 < 2 5 18 the pink areas. Fine-grained biotite comprises up to 30-40% of grey syenitic areas, pink syenite often has only 0-5% biotite + chlorite. Grey areas are highly magnetic with up to 4-5% magnetite, pink syenite often has no magnetite. No primary sulphides seen. Malachite ± chalcocite coat fracture faces, especially low angle (0-20° to core axis) fracture faces. 100 3293 100 2.1 < 2 C 117254 8.23 11.28 3.05 8.23 - 11.28 Grey syenite as described above. Some of the core has a bit of a sugary appearance, suggesting hornfelsing. Grey syenite is equigranular, hypidiomorphic, and the primary mafic is fine to medium grained knots of biotite. Very little if any magnetite. Minor traces of chalcopyrite specks disseminated through core. 100 2880 1.5 C 117255 11.28 14.32 3.04 69 2 11.28 - 14.32 As described above, grey syenite with disseminated specks of malachite plus occasional tiny blebs of chalcopyrite in biotite altered mafic centres. Malachite, plus limonite <u>+</u> chalcocite common on low angle fracture faces (0-10° to core axis). Weakly magnetic. 14.32 - 17.37 Grey syenite with minor pink tones as described above. C 117256 14.32 17.37 3.05 100 3001 83 2.0 2 < 2 Parts of this interval have a fine-grained recrystallized appearance. Weak to no magnetism. Minor chalcopyrite noted as very fine-grained, disseminated

specks. Extensive coatings of limonite - malachite + chalcocite on low angle

(0-10° to core axis) fracture faces.

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 2 of 5

FOOTAGE (metres)			SAMPLES			Rec.			ASSAYS		
rom (m) <u>To (m</u>)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppt
	17.37 - 20,42 Grey syenite as described above. Minor amounts of fine-	C 117257	17.37	20.42	3.05	100	3772	155	2.3	5	L
	grained disseminated chalcopyrite and malachite spots. Continuing										<u> </u>
	extensive malachite, limonite + chalcocite coatings on low angle fracture		[·				
	-faces. Weakly magnetic in spots. Several 1 mm carbonate fracture fillings								_		L
	cut core at 45 to 30° to core axis. Disseminated chalcopyrite blebs increase										I
	to 0.5% toward bottom on run.										
	20.42 - 23.47 Grey syenite with pink k-feldspar envelopes to 2 cm wide	0.447070								,	ł
	becoming prominent near bottom of run. Upper grey syenite section is	C 117258	20.42	23.47	3,05	100	4177	111	2.5	4	<u> </u>
	mineralized with 1% small blebs of disseminated chalcopyrite. Initial grey					-					ļ
	section is magnetic, pink k-feldspar sections are not. Fractures are coated										
	with malachite \pm chalcocite, especially fractures parallel to core axis.							-			
	23.47 - 26.52 Grey synite as described above, but with more	C 117259	23.47	26,52	3.05	100	4688	136	3.2	3	
	chalcopyrite mineralization, fine disseminated blebs reaches 1% over much	C 111239	2,3,47	20,32	5.05	100	4000				
		L									
	of the run. Malachite and chalcocite coatings on 0° to 10° fracture surfaces	· • • • • •									·
	are common. Tiny veinlets with pink k-feldspar envelopes have epidote									···-	[
·	selvages / fillings 1 mm wide and cut core at 20° to core axis.										
	26.52 - 29.57 Beginning of mesocratic pink syenite with some grey tones	C 117260	26.52	29.57	3,05	100	3290	137	1.8	2	
	and a number of coarse-grained strongly pink sections / patches / alteration									•	
	envelopes. Non-magnetic. Variable mafic content is often less than 10%,		· · · · · · · · · · · · · · · · · · ·					_			
	almost entirely biotite with minor chlorite. Traces to locally minor amounts										1
	of chalcopyrite as tiny blebs. Continuing malachite as disseminated spots										
	and as low angle fracture coatings with chalcocite spots.										1
	29.57 - 32.61 As described above, pink and grey syenite with strongly	C 117261	29.57	32.61	3.04	100	2427	72	1.0	5	
	pink / orange coloured k-feldspar patches and alteration envelopes. Grey										
	syenitic sections are more heavily mineralized than the pink sections, locally										
	reaching 1% chalcopyrite. Several large blebs of chalcopyrite are in a										L
	calcite veinlet at 40° to core axis. Several tiny calcite veinlets cut core at 30°										I
	to core axis and carry chalcopyrite in vague, poorly developed envelopes.										
	Continuing malachite, limonite and chalcocite spots on 0° to 10° fracture										
	-faces.										<u> </u>
	32.61 - 35.67 As described above, pink syenite with up to 15% biotite, but										I
	often less than 10%; up to 1% disseminated tiny specks of chalcopyrite,	C 117262	32.61	35.67	3.06	100	2776	102	0.6	2	
	averaging about 0.5%. Non-magnetic, Continuing malachite and chalcocite										
	spots on broken core and fracture surfaces, especially low angle fractures.										
	35.67 - 38.71 As described above, pink syenite. Syenite is very								— ·· —		ł
	equigranular, contains about 10% biotite, but local concentrations reach	C 117263	35.67	38,71	3.04	100	3300	163	1.5	4	i —
	30% (rare). Malachite spots on freshly broken core are common, along with about 0.5% chalcopyrite blebs. Much of this run has been split along										ł
	.,					-					<u> </u>
	fracture surfaces coated with malachite, chalcocite and limonite.	0.447004		44.70	2.05	100		202	20	3	<u> </u>
	38.71 - 41.76 Run begins as described above, but becomes more limonitic	C 117264		41.76	3.05	100	3835	227	2.0	3	j
	/ limonite stained and finer grained with more chlorite and grey k-feldspar.	<u>├</u> · · · ·	· i					+			h
	Some of this interval appears hornfelsed. Disseminated 1/2% chalcopyrite	┝	<u> </u>				·		· ···		
	with minor bornite appear in pink section, increasing to 3-5% chalcopyrite							· · · - · -	+		
	and 0.5% bornite with the darker, finer-grained greenish sections. Run			· · ·			· · · ·				
1	probably averages 1-2% chalcopyrite and 0.25 bornite. Continuing non-							1	!		1

DDH: 2001-51

Page: 3 of 5

1

Т

							De-		<u> </u>	ASSAYS		
FOOTAGE (• •	LITHOLOGICAL DESCRIPTION	Sample #	SAMPLES From (m)	S To(m)	Metres	Rec. %	Cu (ppm)	Au (ppb)	ASSATS Ag (ppm)	Pt (ppb)	Pd (ppb)
From (m)	To (m)		Sample #		10 (10)	IVICII C3	70		, m (bho)	<u></u>		· - (P <u>P-)</u>
		magnetic. Malachite <u>+</u> chalcocite found on low angle fracture faces, clay										
		with limonite.	C 117265	41.76	44.81	3.05	100	4382	358	2.1	< 2	2
		41.76 - 44.81 As described above, greyish and pink syenite grade into and					-					
	•	out of each other. Chalcopyrite mineralization has increased significantly to										
		about 3-5% and bornite to 0.5%. Non-magnetic. Most chalcopyrite occurs										···-
		as small disseminated interstitial specks. Bornite associated with			· ··							
		chalcopyrite. Chalcocite and limonite stains are extreme on 0° to 20° to core						w				
		axis fractures.				0.04		405.4		3.0		
		44.81 - 47.85 A contact zone with intrusive dyke below. Grey syenite is	C 117266	44,81	47.85	3.04	100	4954	252	3.0	- 4	
		slightly hornfelsed, finer-grained with equigranular, idiomorphic texture,										
		dark grey-green areas are fine-grained, chlorite \pm fine-grained biotite,							·			··· ··
		minor magnetite. Through the upper part of run chalcopyrite as										<u>.</u>
		disseminated blebs reaches 3-4%; along healed irregular fractures there is several percent more. Traces of covellite on some blebs of chalcopyrite.										
		The last 1.5 metres of run is limonite stained plus malachite-chalcocite	-									
		coatings, and shows weak to moderate clay \pm sericite alteration. Tiny,										
		degraded-oxidized specks in core are pyrite or chalcopyrite. Run includes										
		15 cm of white dyke. Contact is irregular over several cm. Lots of coarse										
		pink k-feldspar in first 10 cm of dyke.					-	· · · · ·				
							-			· · ·	-	
		OLIADTZ CVENITE DVVE a huff coloured medium to correctioned									· ·	
47.70 7	3.64	QUARTZ SYENITE DYKE - a buff-coloured, medium to coarse-grained, guartz-rich syenite. Composed of 15-20% guartz, 75-85% k-feldspar										
		(mostly white), 5-10% mafics - mostly altered to hematite \pm chlorite \pm very								[+. ··
		fine-grained biotite, all in 2-4 mm blebs, 1% plagioclase in perthite. Quartz								· ·		
		is interstitial to k-feldspar and as poorly formed - indistinct quartz eyes. A										
		few pin-heads of sulphide (pyrite?) seen near upper contact. Limonitic										L.
		-staining on all fracture surfaces, generally less than 45° to core axis.										
		47.85 - 50.90 As described above.	C 117267	47.85	50.90		100					
		50.90 - 53.95 As described above.	C 117268	50.90	53,95		100	· · · · · · · · · · · · · · · · · · ·				
		53.95 - 57.00 As described above, beginning of a weakly developed, cross	C 117269	53.95	57,00	3.05	100	41	26	< .3	2	
		cutting quartz-stockwork. 1 mm wide grey quartz veinlets cut at 70 to 90°										
		to core axis. Soft (?) silver metallic (hematite?) carried in veinlets. Density							<u> </u>	-		
·		is one every few cm for 30-40 cm, repeat after several metres.		· · · · · · · · · · · · · · · · · · ·								
		57.00 - 60.05 As described above, with weak quartz-stockwork / veinlets,	C 117270	57.00	60.05	3.05	100	116	18	< .3	4	<
		5-10% pink k-feldspar showing up.	0 11/2/10	01.00		0.00						-
+		60.05 - 63.09 As above, run contains several small quartz veinlets.	C 117271	60.05	63.09	3.04	100	142	19	< .3	< 2	<
┠╾╌────┼╸		Hematite and limonite spots more prominent than above. Small pieces of									1	
┨ <u>───</u> ┼		syenite about 1 cm diameter, are heavily mineralized with chalcopyrite (+		<u> </u>						r I		
		pyrite?).								i		
		- 63.09 - 66.14 As above, with continuing 1/2 mm quartz-veinlets at 90° to	C 117272	63,09	66.14	3.05	100	24	14	< .3	< 2	<
		core axis and prominent hematite spots.		L				L	ļ	<u> </u>		
		66.14 - 69.19 As above, run very broken extensive malachite deposits \pm	C 117273	66.14	69.19	3.05	90	266	21	5, >	< 2	: < ;
L		Tchalcocite on 0-10° fracture surfaces with limonite.	· · ·	<u> </u>				 	+			+
			L						+	+		
1				۱ İ		1	1	1	1	1		

Page: 4 of 5

FOOTAG	E (metres)			SAMPLES	5	······································	Rec.	<u></u>		ASSAYS		
FOOTAG	To (m)		Sample #	From (m)		Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		69.19 - 73.64 As above but with more grey quartz stockwork veinlets, including some at 30° plus 70° to core axis. Also includes several tiny fractures, roughly at 90° to core axis with 1-2 mm pink k-feldspar envelopes. Fractures are filled with 0.1 to 0.5 mm wide grey quartz veinlets carrying small amounts of pyrite.	C 117274	69.19	73.64	4.45	96	68	40	<.3	< 2	<
3.64	84.50	BIOTITE PYROXENITE - with the pyroxene showing variable but pervasive alteration to chlorite <u>+</u> fine grained biotite. Biotite comprises 30-50% or rock. Contact with above syenite is irregular over several cm. Pyroxene comprises 50-60% of this rock with variable alteration to chlorite and epidote. Epidote is about 10% + interstitial k-feldspar is 15-20% of rock. 73.64 - 75.09 Run includes contact zone with some variation in k-feldspar content of the pyroxenite. Initial section of 30-40 cm is fine grained unaltered pyroxenite with minor amounts of cubic pyrite. Then into several	C 117276	73.64	75.09	1.45	98	488	19	0.4	2	
		broken sections which include medium-coarse grained syenite pieces and fracture faces (generally <30° to core axis) coated with limonite and hematite. Some sections include up to 60% coarse pink k-feldspar. Thin grey 1 mm wide quartz-stockwork veinlets cut through pyroxenitic sections at 80-90° to core axis. 75.09 - 79.17 Green biotite pyroxenite showing variable chlorite alteration	C 117277	75.09	79.17	4.08	100	121		<.3	7	
		of pyroxenes, as described above. Continuing cross-cutting thin quartz veinlets / stockwork, although limited to a few veinlets now coarse-grained k-feldspar segregations (or veins?) to 2 cm thick cut through core at irregular orientations. Biotite-rich for last metre. Magnetic. 79.17 - 81.05 Fine grained epidote-chlorite altered pyroxenite. Numerous k-feldspar veinlets ranging from 1 mm to 1 cm in size and oriented from 45	C 117278	79.17	81.05	1.88	100	200		0.3	< 2	
		 to 90° to core axis cut through several runs here. Veinlets thicker than 3 mm often carry large concentrations of biotite, and minor amounts of magnetite. 81.05 - 82.84 As described above, epidote <u>+</u> chlorite altered pyroxenite with k-feldspar-biotite veining. Very epidote rich toward bottom of run. 	C 117279	81.05	82.84	1.79	100	457		3 0.5		2
		82.84 - 84.50 Grey syenite for first 90 cm with 20% very fine-grained biotite and 2-3% fine magnetite. Continuing cross cutting pink k-feldspar veinlets 2-6 mm wide and cutting core at 60-80° to core axis. Toward bottom of run (last 40 cm) core becomes very pyroxene and biotite rich (80% combined). Includes interstitial k-feldspar to 1 cm forming weak oikocrystic texture. Each k-feldspar includes numerous pyroxene crystals. Highly magnetic toward bottom of run.	C 117280	82.84	84.50		100	568	55) < .3)
1.50	92.99	QUARTZ SYENITE - as described from 47.70 to 73.64 above. Contact above is abrupt, curved at 30-45° to core axis. Contact cuts / truncates k-feldspar veinlets in biotite pyroxenite.	 						· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 5 of 5

FOOTO	E (motroe)			SAMPLES		·····	Rec	····		ASSAYS		· · · · ·
FOOTAG	E (metres) To (<u>m)</u>	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	T0 (m)	Metres	Rec	Cu (ppm)	Au (ppb)	ASSATS Ag (ppm)	Pt (ppb)	Pd (ppb)
		84.50 - 87.48 First 20 cm by contact contain some medium-grained pyrite and 20% coarse-grained pink k-feldspar. A fine, weakly developed quartz-stockwork has 1-2 mm pink k-feldspar alteration. Envelopes on veinlets 1	C 117281	84.50	87.48	2.98	100	37	16	< .3	< 2	< 2
		mm wide filled with quartz and chalcopyrite blebs. Limonitic halos around degraded mafic centres. 87.48 - 90.53 Quartz syenite as described above, continuing veinlets with k-feldspar alteration envelopes.	C 117282	87.48	90.53	3.05	100	61	16	0.3	< 2	< 2
		90.53 - 92.99 As described above. Last few centimetres, above contact has 1% disseminated blebs of chalcopyrite.	C 117283	90.53	92.99	2.46	100	80	15	0.4	< 2	< 2
92.99	101.29	BIOTITE PYROXENITE, and MAFIC-RICH SYENITE. A 8.30 m interval showing a wide variation in composition and grain size. 92.99 - 93.48 Biotite-rich, weakly chlorite altered pyroxenite. 93.48 - 94.39 Fine to medium grained grey syenite with 10-15% very fine- grained biotite. Chalcopyrite is disseminated as small, irregular, interstitial to k-feldspar, blebs locally reaching 2-3%, average 1% with minor amounts	C 117284	92.99	96.50	3.51	100	1155	47	<u>0.7</u>	5	7
		of bornite, locally reaching 1%. 94.39 - 99.81 Coarse-grained pink syenite with 20-40% fine to medium grained biotite, chlorite-epidote altered pyroxene. Grades into and out of mafic patches of biotite pyroxenite. Sulphides are variable, locally reach 10% combined over a few centimetres (5% pyrite, 5% chalcopyrite) but a short distance away there are only traces of sulphide. Epidote alteration dominates over chlorite toward bottom of interval. Malachite staining is	<u>C 117285</u>	96.50	99.81	3,31	100	971	58	0.3	3	9
		noted on some fracture surfaces. This descriptive interval includes a 20 cm section of quartz syenite cut by tiny quartz veinlets carrying pyrite and chalcopyrite as described above. The chlorite-altered, mafic rich pink syenite is very magnetic. The intensely epidote altered sections are not magnetic.										
		99.81 - 101.29 Biotite pyroxenite with variable chlorite alteration and irregular patches / veins of coarse pink k-feldspar.	C 117286	99.81	101.50	1.69	100	1286	20	0.5	6	23
101.29	101.50	QUARTZ SYENITE as described above.							······			
101.50										·		

Page: 1 of 7

Property	: Lorraine	Total Length: 152.40 m	Footage (m)	DIP TESTS Dip Measured	Dip Corrected		Start D	ate: Augu	st 10, 200	1		
Grid Cor		Core Size: NQTW	152	-54°	-45 [•]		Comple	tion: Aug	just 11 <u>, 20</u>	01		
	n: 1757 m	Azimuth: 35.5° (GPS Corrected)					Logged	By: Jay \	N. Page			L
Section:		Inclination: -45°					Date lo	gged: Au	gust 21-25	5, 2001		
		GPS Location (corrected): UTM 348362.1 E 6200066.3 N (NAD 83) PAD: "/	۹"			1						
NOTES.	Distilup Area. C					· <u>·</u>		*			·	
F00'	TAGE (metres)	LITHOLOGICAL DESCRIPTION	Sample #	SAMPL From (m)	.ES To(m)	Metres	Rec.	Cu (ppm)	Au (ppb)	ASSAYS Ag (ppm)	Pt (ppb)	Pd (ppb)
From (r	<u>m) To(m)</u>		Sample #	i ton (n)	1000	NCGC		Cu (pp.i.)				
0	3.05	CASING (10 FEET)	· · · ·		-+							
í							ļ	I	 _			
2.25	18.75	MESOCRATIC SYENITE - grey coloured medium-grained, idiomorphic with		·							· · · · · · · · · · · · · · · · · · ·	
		70-80% grey k-feldspar, 15-20% mafic (made up of very fine-grained biotite										+
		+ chlorite / epidote) 5% magnetite giving strong magnetic character.	C 117301	2.2	5 6.10	3.85	5 100	61	2	< .3	6	5 2
		2.25 - 6.10 Grey syenite as described above, run includes several irregular	0 111001									
• •		pink-grey k-feldspar "veins" cutting core at 30 to 45° to core axis and about 1 cm wide. No sulphides seen.										
		-1 cm wide. No sulphides seen. -6.10 - 9.14 As described above, somewhat more broken than above.						<u> </u>			2	
		Chlorite-epidote on some 30° to core axis fracture faces.	C 117302	6.1	0 9.14	3.04	4 90	179	11	< .3		<u> </u>
L		9.14 - 12.19 As above. A rubbly section at 10.50 looks like a broken up	C 117303	9,1	4 12.19	3.05	5 98	721	281	< .3	8	3 1
		breccia that was cemented with chlorite and epidote.	0111303		1						_	
		12.19 - 15.24 As above, large magnetite blebs to 1 cm give an extremely	C 117304	12.1	9 15.24	3.05	5 100) 678	58	0.5	2	2
		strong magnetic character to core. No sulphides seen.				ļ				·		
		15.24 - 18.75 Grey syenite as above. At 16.75 there are several very thin	C 117305	15.2	4 18.70	3.46	5 100	347	20	< .3	< 2	2
		quartz veinlets cutting at 45° to core axis and varying from 2-8 mm wide										┼───
ļ		(including k-feldspar alteration envelopes). A string of tiny striated pyrite										-
		blebs within the veinlet (as a selvage?). Chalcopyrite is found as tiny		+.								
		disseminated blebs, locally reaches 0.5%, but average is much less.					Ţ					
·								<u> </u>			+	+
				ļ								
18.75	26.22	MELANOCRATIC SYENITE - dark grey magnetite and mafic rich syenite. Colour tone is only a bit greyer than above mesocratic syenite, but		+					+			
		magnetite has increased substantially.	-	+				-			-	
		18.75 - 21.34 Dark grey syenite as above, includes some sections of	C 117306	18.7	0 21.34	1 2.6	4 100	1327	7 122	2 0.6	5 4	4
<u>├</u>		lighter grey (mesocratic) syenite. Massive, but irregular coalescing veins of										
		magnetite suggest a breccia although fragments are indistinct. Some k-										
		feldspar rich patches include blebs of chalcopyrite and bornite. Some "very				-			-	+		
ļ		average" looking pieces of dark syenite carry up to 1% chalcopyrite, 0.25%										
		bornite but average for run is much less. Dominant mafic is variably biotite-										
		chlorite altered pyroxene. 21.34 - 24.38 Dark grey syenite as above. Continuing magnetite rich, 5-	<u> </u>	-t·						1	ļ	
		10% disseminated small specks of magnetite, plus sections in which	C 11730	7 21.3	24.38	3 3.0	4 10	0 209	7 17	5 1.1	1 <u> </u>	4
		magnetite forms a matrix to a weakly developed syenite breccia.						- 		- +	+	
		Chalcopyrite occurs as small disseminated blebs up to 0.5% to 1.0% but	┣	<u> </u>				+	+		+	
		very patchy, usually associated with a few blebs of bornite. Average is		•	·	+	+			· • · · · · · · · · · · · · · · · · · ·		
		probably 0.1-0.2%.		-†	-+	··	-				Τ	

DDH: 2001-52

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 2 of 7

÷.

ļ

FOOTAG	GE (metres)			SAMPLES			Rec.			ASSAYS		
From (m)	To (m)		Sample #	From (m)		Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
<u>.</u>		24.38 - 26.22 Dark grey syenite as above. Patchy chalcopyrite as	C 117308	24.38	26.00	1.62	100	1803	336	0,9	3	
		disseminated blebs, average is only a minor amount.										
5.22	30.48	MESOCRATIC SYENITE - grey syenite, slightly lighter colour than above due to higher percentage of k-feldspar and an increase in grain size, but very gradational. Magnetite content varies from 1% to 6%. Includes some										
		mafic rich sections.	C 117309	26.00	30,48	4.48	100	873	31	0.6	86	
		26.22 - 30.48 Grey syenite as above. K-feldspar rich sections show more epidote alteration, mafic rich sections have more biotite-chlorite alteration. Pyrite and chalcopyrite blebs are noted in cross-cutting k-feldspar bands		20.00						0,0		
		that cut core axis at 80-90°. This run shows a wide range of variability with	_									l
·		a number of biotite-chlorite rich sections of 10-20 cm long plus magnetite- rich sections and there is little to distinguish it from the melanocratic										
<u>. </u>		sections.										
0.48	74.74	MELANOCRATIC SYENITE - with magnetite breccia and minor amounts of mesocratic syenite. Felsic sections, in close contact with the mafic / magnetite rich parts, often have up to 1% chalcopyrite and minor bornite,										
		traces elsewhere.	C 117310	30,48	33.53	3.05	100	693	11	< ,3	3	
		30.48 - 33.53 As above, a mixture of light and dark grey syenite, becoming more mafic with depth. Mafics reach 50-60% of core through	011/010			0,00	100					
		most of lower half of run, mainly composed of fine-grained biotite, chlorite altered pyroxene and minor epidote. Coarse-grained irregular masses of		······							·	
		magnetite yield an impression of a weakly developed breccia; Magnetite										
		forms the matrix to large and small fragments of syenite. Some mafic-rich spots that are cut by magnetite seams are mineralized with blebs of									· · · · · · · · · ·	
		chalcopyrite, bornite, and rarely coated with covellite.										
		33.53 - 36.58 Mafic and magnetite-rich syenite for first 80 cm then becoming more mesocratic to a pink-grey syenite for next 85 cm, including a short pink, coarse-grained section. Pink-grey syenite is mineralized with	C 117311	33.53	36.58	3.05	100	618	. 17	0.4	3	·
··· 		0.25% chalcopyrite, traces of bornite. Lower half of run is finer-grained								·		
		grey syenite cut with many 10° to 40° fractures filled with 0.2 to 1 mm wide chlorite deposits. Mineralized with up to 2% chalcopyrite over 2-3 cm. Most										[· · ·
		of run has only traces of chalcopyrite. Larger chlorite-filled fractures, 5 mm										
		wide, at 30° to core axis carry cubes of pyrite. 36,58 - 39.62 Mafic rich syenite with magnetite breccia. The magnetite is	C 117312	36.58	39.62	3.04	100	174	23	< .3	10	
		often very coarse grained, but still essentially forms the matrix in the breccia / stockwork. Several k-feldspar-rich sections also show pronounced epidote										
		alteration, along with pervasive chlorite alteration. Run is poorly mineralized with only a trace of chalcopyrite in the more felsic parts.										
		39.62 - 42.67 Mafic rich syenite with magnetite breccia as above. Run	C 117313	39.62	42.67	3,05	100	93	8	< .3	3	
		shows considerable variety between pink and grey syenite, and also variety in amount of alteration and grain size. Much of the core shows pervasive,				<u> </u>				· ····	•	-

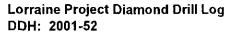
Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 3 of 7

FOOTAGE (metres) om (m) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	SAMPLES From (m)	To (m)	Metres	Rec. %	Cu (ppm)	Au (ppb)	ASSAYS Ag (ppm)	Pt (ppb)	Pd (p
<u>(m) 10 (m)</u>		Sample #		10 (m)	Weites	<u></u>		Au (ppp)	và (bbu)		- Fulp
	but weak chlorite alteration of pyroxenes. K-feldspar rich sections show the										
	most epidote alteration, including as k-feldspar vein selvages (an irregular 1			·				-			
	cm thick vein at 41.80). Minor / traces of pyrite and chalcopyrite noted.										
	42.67 - 45.72 Magnetite breccia in a mafic-rich syenite as described	C 117314	42.67	45.72	3.05	100	128	10	< .3	< 2	
	above.										
	Extensive chlorite-epidote alteration. Mafics comprise 30-50% core. No		·····								
	sulphides seen.							-			
	45.72 - 48.77 As described above, epidote alteration extensive in k-	C 117315	45.72	51.82	6.1	100	62	3	< .3	2	
	feldspar rich areas. Purplish tinge on some magnetite suggests that some										
	bornite may be mixed in with magnetite.										
	48.77 - 51.82 As described above. Very fine pin points of sulphide noted							-			
	in svenitic parts of core.										
	51.82 - 54.86 As described above. Magnetite breccia is present but not	C 117316	51.82	54.86	3.04	100	85	1	< .3	3	
	as pronounced as previous runs. Very fine-grained pyrite, often as tiny									<u>.</u>	<u> </u>
	-striated cubes, is found disseminated in the rock, and associated with	L									
	magnetite rich spots. Brown tarnished spots in the magnetite are coated			·····-							
	with indigo blue spots (covellite?) and suggesting that the underlying				. <u> </u>						
	mineral may be bornite. Hematite coatings on low angle fractures (0-10° to										
	core axis) are common. At 52.30 a 1.5 cm wide calcite vein cross-cuts core										
	at 90° with a k-feldspar envelope and discontinuous pyrite selvage.					<u>`</u>					
	54.86 - 57.91 Strongly developed magnetite breccia, otherwise as	C 117317	54.86	57.91	3.05	100	80	3	< .3	5	
	described above. Fine-grained, pyroxene-rich grey syenite. Coarse-		34.00	57.8	3.03		00		~ .3		
	grained, pink-feldspar patches and cross-cutting bands (80-90° to core axis)							·			
	have irregular epidote-rich patches. Variable chlorite alteration of pyroxene,										<i>"</i>
	ranging from complete replacement to unaltered. Minor disseminated										
	- pyrite,										
	57.91 - 60.96 As described above but with more k-feldspar and epidote-		.=								
	rich patches. Chlorite-rich fracture fillings cut core at 30° to core axis.	C 117318	57.91	60.96	3.05	100	23	2	< .3		
	Magnetite breccia becomes dominant toward bottom of run, occupies about										
	50% of core, in places has k-feldspar interstitial to magnetite.										
	60.96 - 64.01 As described above. Magnetite breccia veins less common										
	but thicker, to 3-4 cm and often as mixtures of magnetite, hematite and	C 117319	60.96	64.01	3.05	100	28	6	< .3	< 2	
	chlorite. In a few spots biotite forms a vague selvage to the magnetite										
	veins and pyrite is noted along the contact between the magnetite and										
	some fragments.										
	64.01 - 67.06 As above, but more k-feldspar and epidote-rich than										l
	previous holes. Magnetite less intensely developed in upper part of run, but	C 117320	64 <u>.</u> 01	67.06	3.05	100	44	2	< .3	3	
	becomes very strong towards the bottom of this and the next run. Very										
	-lepidote-rich and there is a powdery chlorite coating on a 5° to core axis										
	-fracture. Minor amounts of pyrite noted on some fracture surfaces. Most of										
	the k-feldspar is pink.				_						L
	67.06 - 70.10 Magnetite-brecciated grey, mafic-rich syenite. Patchy								· · ·		<u> </u>
	chlorite-epidote alteration. Coarse biotite books within the magnetite.	└── <u> </u>						- ··	<u> </u>	<u>-</u>	
	Minor amounts of pyrite associated with the magnetite. Small pyroxene	C 117321	67.06	70.10	3.04	100	.38	10	< .3	2	<u> </u>
	crystals are the primary mafic mineral in the syenite with interstitial	L							i		

.

i.


Page: 4 of 7

FOOTAG	GE (metres)	LITHOLOGICAL DESCRIPTION		SAMPLES			Rec.			ASSAYS	_	
From (m)	<u>Το (m)</u>		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)_	Ag (ppm)	Pt (ppb)	Pd (ppb
		k-feldspar. The pyroxene shows variable alteration to chlorite.									<u> </u>	
~	· · · · · · · · · · · · · · · · · · ·	70.10 - 73.15 As above. Continuing intense chlorite and epidote	C 117322	70.10	73,15	3.05	100		6	< 3	2	
		alteration. End of magnetite breccia.			- 13,15	3.05	100	29		`. <u>ə</u>	4	
		73.15 - 74.74 As above but without magnetite. Continuing mafic-rich and	C 117323	73.15	74.74	1,59	100	71	. 1	< .3	< 2	
		with pervasive chlorite epidote alteration.	0111023		(4.14	1.55		······································			~	
						~						
4.74	128.41	MESOCRATIC SYENITE - pink and grey syenite with local mafic-rich sections.										
<u>.</u>		74.74 - 77.76 Initial part of run is chlorite-altered mafic-rich. At 75.10 a		· · · ····								
		1.5 cm wide quartz vein cuts core at 40-45° to core axis, carries a small								L		
	·	amount of cubic pyrite. Core than becomes very pink coloured k-feldspar										
		_ rich. Chalcopyrite and pyrite are formed as disseminated small blebs in a	C 117324	74.74	78.00	3.26	100	586	10	< .3	4	l
		_number of spots, including grey syenite patches. Both locally reach 1%, but								+		
		on average are only minor amounts. Very little magnetite except in finer-						-				
	·	grained grey syenite areas, which are magnetic. As noted above, pyrite is						· · · · · · · · · · · · · · · · · · ·		-		
·		found in upper part of interval, most commonly as cubes. Bornite is found				~			· · · ·			
		as rare small blebs in lower part of run with chalcopyrite in pink syenite.								<u> </u>		
		77.76 - 78.00 A short, 24 cm of biotite pyroxenite, contacts irregular.						,				
		Magnetic pyroxene is pervasively altered to chlorite.								· · • · · · · · · · · · · · · · · · · ·		
	+	78.00 - 83.29 Grey and pink syenite, medium-grained with 10-15%	C 117325	78.00	83.29	5.29	100	338	5	< .3	3	
		biotite, minor chlorite, 2% magnetite, in general this run has a fairly light										
		colour tone. Chalcopyrite noted with some degraded, biotite-rich mafic										
		centres.										
		83.29 - 83.45 A short, 16 cm section of biotite pyroxenite, moderate but	C 117326	83.29	86.50	3.21	100	4697	372	3.8	4	
		pervasive chlorite alteration of pyroxenes magnetic.										
		83.45 - 86.50 Grey syenite, finer-grained than above. Magnetic, 2-4%								Į		
		fine-grained specks of magnetite. Well mineralized with 2-3% chalcopyrite								1		
		and 0.5 to 1.0% bornite. All as disseminated small blebs. A few patches of							ļ			
		coarser-grained pink k-feldspar are weakly mineralized, as is the lower part										
		of run which in addition to the k-feldspar is chlorite-epidote altered.	0 447307	86.50		1.89	100	1279	120	0.7	6	
		86.50 - 88.39 A coarser-grained section of mafic rich syenite, mafics	C 117327	00.00	88.39	1.69	100	1279	120	0.7		
		comprise about 50% of the core, 15-20% coarse biotite, 30-40% pyroxene								+		
		_showing various degrees of chlorite alteration. Sulphide mineralization										
		continues but is coarser-grained and sparser. Average may be 1%						·····				
		chalcopyrite, 0.5% bornite.	C 117328	88.39	91,44	3.05	100	4645	449	4.5	8	<u> </u>
• -		88.39 - 91.44 Grey "dirty" syenite as described above. At 83.45-86.50										
		well mineralized with up to 2-3% bornite 3% chalcopyrite in places, average								-		
		-0.5 to 1% for both. Small amounts of chalcopyrite and pyrite are found in										
		tiny 1 mm wide fractures (generally 0-20° to core axis) that are otherwise										
		filled with chlorite.										
		91.44 - 95.17 As described above, but slightly more coarser grained.	C 117329	91.44	95.17	3.73	100	4578	586	4.4	9	
		Continuing well mineralized, in many places bornite exceeds chalcopyrite,								L		l
		both locally reach 3-4% but average is closer to 1/2%. Magnetic. At 94.10							: 			L
		a 9-10 cm thick, white quartz vein cuts core at 45° to core axis, coarse-				L			l t	¦		
		grained, has cavities, vugs, non-mineralized.							L			L

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 5 of 7

FOOTAG	E (metres)	LITHOLOGICAL DESCRIPTION		SAMPLES			Rec.			ASSAYS		
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		95.17 - 96.40 A coarser-grained and more mafic rich section than above.										
		Mafics comprise 50-70% of interval of which 40-50% is biotite 15-20% is	C 117330	95.17	97.54	2.37	100	166	5	< .3	3	
		chlorite, magnetic. Mineralization is weaker than above, chalcopyrite										
		averages 0.5%, traces bornite.										
		96.40 - 98.57 Medium-grained, grey-pink syenite with 15% biotite. Minor										
		disseminated, fine-grained pyrite is associated with biotite rich centres,										
		often found as cubes. Minor chalcopyrite is disseminated in patches. 2%	C 117331	07.54	100 59	3.04	100	133	7		< 2	<
		magnetite.		97.54	100.58	3.04	100	133	1	< .3	< <u>2</u>	
		98.57 - 99.50 Medium grained, mafic-rich syenite is described between										
		95.17 and 96.40 composed of 30-40% biotite, 20-30% chlorite, 20-30% grey								+		•••••••
		feldspar, 20-30% pink k-feldspar, 2% magnetite. Minor disseminated										
		specks of sulphide.										
		99.50 - 100.19 Grey syenite with fine-grained irregular blebs of altered										
		mafics (altered to biotite-chlorite + ?). Trace chalcopyrite disseminated and								-		
		fracture controlled pyrite. Fractures are thin, with <1 mm thick quartz veins										
		and oriented at 5-15° to core axis. Disseminated pyrite is often near a										
		visible fracture.										
		100.19 - 101.67 Medium grained section of mafic-rich syenite as										
		described above at 98.57-99.50.	C 117332	100.58	103.63	3.05	100	153	5	< .3	3	
		101.67 - 102.00 Pink, fine-grained syenite, 10% fine-grained pin points of										
		sulphide.										
		102.00 - 102.87 Biotite pyroxenite with irregular k-feldspar vein 1-2 cm										
		thick, becoming more pink k-feldspar rich with depth. Minor-traces of										
		pyrite.										
		102.87 - 103.70 Mafic rich syenite with 30-60% mafics composed largely										
		of biotite, chlorite altered pyroxene, chlorite \pm epidote. Moderately	0.447000		400.00	0.05						
		magnetic. Traces of sulphide noted.	C 117333	103.63	106.68	3.05	95	85	9	< .3	< 2	
		103.70 - 104.22 Pink coarse to medium grained syenite. Traces of cubic										
		pyrite. Weakly magnetic.										
		104.22 - 106.68 Mafic rich syenite. Mafics vary from 30% to 90% (over										
		short intervals). Composed dominantly of chlorite altered pyroxene, biotite										
		+ minor epidote. Weakly magnetic core is broken toward bottom of run,										
		has hematite on fracture surfaces.										
		106.68 - 108.42 Mafic rich syenite as described above.	C 117334	106.68	109.73	3.05	100	74	5	< .3	3	
		108.42 - 110.27 Mafic rich syenite but with a medium-grained idiomorphic						. ,				
		equigranular texture. Slightly trachytic in spots with poorly developed flow	C 117335	109.73	112.78	3.05	100	393	7	< .3	4	
		banding. More epidote than observed in most runs, about 10% epidote.	~									
		Mafics comprise about 50% of rock. Largely biotite and pyroxene +										
		chlorite. Minor chalcopyrite, moderately magnetic. Pyrite on a 30° fracture										
		to core axis.]					
		110.27 - 111.10 Pink, medium-grained syenite with patches of grey										
		syenite. Disseminated pyrite and chalcopyrite blebs associated with mafic										
		centres and with grey syenite patches.										
		111.10 - 111.92 Idiomorphic, equigranular mafic rich syenite as described										
		between 108.42 to 110.27. Mafics interstitial to k-feldspar,										
1		111.92 - 112.29 Pink syenite as described above at 110. 27 - 111.10.					Í					

Page: 6 of 7

1

FOOTA	GE (metres)			SAMPLES			Rec.			ASSAYS		
From (m)	T <u>o (m)</u>		Sample #	From (m)	To (m)	Metres	кес. %	Cu (ppm)	Au (ppb)	ASSATS Ag (ppm)	Pt (ppb)	Pd (ppb)
		112.29 - 112.95 Idiomorphic k-feldspar in mafic-rich syenite, similar to										
	+	above described intervals but more mafic rich. K-feldspar laths floating in			.							
		biotite-pyroxene-chlorite matrix.	C 117336	112.78	115.82	3.04	100	557	121	3.2	3	6
		112.95 - 115.82 Mafic rich syenite showing much of the variability										
		described above but more gradational and for shorter intervals. Mafic-rich										
		intervals are pyrite (often as striated cubes) rich to 4%. Trace chalcopyrite.								L		
		115.82 - 118.87 As described above, mafic syenite which in this run	C 117337	115.82	118.87	3.05	100	250	36	< .3	2	3
		shows considerable variability in mafic content from 10% to 90%. Mafic-rich										
		parts contain up to 1% fine-grained disseminated chalcopyrite. Pyrite noted										
		on some 45° to core axis fractures. Includes a few, very minor quartz veins,										
•• –		about 1 mm thick, at 10° to core axis.			·····							
		118.87 - 121.92 Mafic rich syenite grading into pyroxenite near top of	C 117338	118.87	121,92	3.05	100	599	131	1.0	< 2	10
		run. Entire run shows a moderately well developed quartz stockwork with			· - · <u>·</u>							
		many veinlets 1-2 mm wide and at all orientation, larger grey quartz veins										
		are very irregular. All veining contains several percent pyrite as cubes,										
		coalescence of vein envelopes has resulted in pyrite disseminated through					-					
		much of the core. Only minor amounts of chalcopyrite usually as larger			<u>, </u>	ļ						
		blebs with pyrite. Veinlets with pink part of k-feldspar envelopes appear to										
		have more chalcopyrite blebs associated with them. 121.92 - 124.97 Mafic rich syenite showing rapid / gradational variations	C 117339	121.92	124,97	3.05	100	454	33	< .3	3	
		in mafic content as described above. Only a few quartz veinlets as	0 111000	121,32	124.51	3.05						`
		described in run above. Much of run has about 50% mafics (biotite -										
		pyroxene - chlorite). Mafic sections have 1-2% pyrite, minor chalcopyrite.										
		124.97 - 127.50 Mafic-rich melanocratic svenite showing frequently										
		grading into pyroxenite and back into syenite. Dominant mafic is fine-				1						
		grained pyroxene showing variable chlorite alteration plus fine-grained	C 117340	124.97	128,41	3.44	100	148	23	<.3	3	7
		biotite. Syenitic sections show alignment below banding of k-feldspar laths										
		with mafic matrix. Disseminated fine-grained pyrite in mafic-rich sections.										
······································		127.50 - 128.41 Medium-grained pink syenite. Chalcopyrite found as 2										
·		mm blebs in fractures at 5° to core axis. None seen away from fractures.										
		Pyrite noted as disseminated cubes to 1%.										
							_					
409.44	400.40		0 117241	100 44	120.40	0.00	99		4	< ,3	_ 3	
128.41	129.40	BIOTITE PYROXENITE (128.41 - 129.40) - showing pervasive chlorite alteration of pyroxene. 10-15% k-feldspar, 5% epidote. Minor	C 117341	128.41	129.40	0.99	99	14	1	< .3	3	<2
		disseminated pyrite. Core broken into gravel at end of run.										
		disserimated pyrite. Core bloken into graver at end of run.										
		MESOCRATIC SYENITE - pink and grey syenite with numerous mafic rich				ļ						
129.40	152.40	sections. Chlorite and epidote alteration common. Moderately magnetic.				[<u>↓</u>		<u> </u>
		129.40 - 132.62 Pink syenite with many mafic rich sections, mafics range	C 117342	129.40	132,62	3.22	100	38		< .3	7	28
		from 30% to 80%, and are commonly altered to chlorite. Epidote comprises	0 11/342	129.40	132,02	3.22	100		0	×.3	<u> </u>	20
	+	up to 30% of rock in some places, often associated with magnetite rich										
		spots. Trace of sulphide noted as tiny pink points.				tt				<u> </u>	· ·	

Page: 7 of 7

.

FOOTAGE (metres)	LITHOLOGICAL DESCRIPTION		SAMPLES			Rec.			ASSAYS	-	
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		132.62 - 136.82 Mafic rich pink syenite. A few sections display weak to	C 117343	132.62	136.82	4.2	100	300	7	< .3	2	1
		moderately well developed flow banding and sub-parallel alignment of k-								ļ !		
		feldspar (3-5 mm) laths. From 135.83 to 136.23 large k-feldspar laths /			_ ~ · · · · · · · · · · · · · · · · · ·							
		crystals to 2 cm float in a matrix of medium grained (2 mm) mafic rich		· · · · · · · · · · · · ·								
		syenite. 1-2% magnetite; pyrite blebs noted on a 15-20° fracture surface.										
		136.82 - 140.21 Mesocratic pink syenite in grey patches. Mafic rich in a	C 117344	136.82	140.21	3.39	100	84	1	< .3	2	1
		few short intervals. K-feldspar (pink) displays crystal alignment in several	0]		
		locations (near flow banding?); these spots also have 2-3 times more							····	<u> </u>		· · · · · · · · · · · · · · · · · · ·
	·	epidote than other areas (up to 10%). Minor chalcopyrite is noted as 2-3										
		mm blebs on some fracture faces. Pyrite, both as cubes and as blebs, is										
		found on numerous annealed fractures. The fractures have a whole variety			,							l
		of orientations, mineralization appears to be most common on fractures less								Į		
		than 45° to core axis. Magnetite 2-3%.										
		140.21 - 143.26 As described above. Hematite, limonite and pyrite noted									3	1
		on a 45° to core axis fracture face. A few dark areas are very magnetite	C 117345	140.21	143.26	3.05	100	143	13	< .3		
		rich.	C 117346	143.26	146,30	3.04	100	178	7	< .3		
		143.26 - 146.36 Grey mesocratic syenite as described above, with most of	011/340	143.20	140.50	3.04		110				
	····	the run displaying a trachytic texture from sub-parallel alignment of k-										·
		feldspar laths.										
		146.36 - 149.35 As described above, run ends in an epidote-rich section	C 117347	146.30	149.35	3.05	100	190	4	< .3	6	1
		where epidote reaches 30-40%.										
		149.35 - 152.40 As described above, flow banded grey syenite, more	C 117348	149.35	152.40	3.05	100	126	5	< .3	6	11
		epidote-rich at beginning of run, more mafic-rich at end of run. Low angle										
i		(5-10° to core axis), 8 mm k-feldspar and epidote veinlet. Powdery chlorite										
		and carbonate coat fractures at 0-10° to core axis.										
		4								-		
52.40		END OF HOLE.								· · ·		
<u> </u>								···-		·		
····	··· — _	l						~~~~			<u> </u>	

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

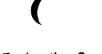
Property:	Lorraine	Total Length: 202.69 m	Footage (m)	DIP TESTS Dip Measured	Dip Corrected		Start Da	te: Augu	st 11, 200	1		
Grid Cord		Core Size: BQTW	202	-56	-48 °		Comple	tion: Aug	ust 13, 20	01		
Elevation	: 1808 m	Azimuth: 39.6° (GPS Corrected)					Logged	By: Jay	W. Page			
Section:		Inclination: -48°					Date log	ged: Aug	gust 25-30	, 2001		
	Bishop Area.	GPS Location (corrected): UTM 348220.6 E 6200010.1 N (NAD 83) PAD:	"G"				·					
										ASSAYS		
FOOT/ From (m)	AGE (metres) To (m)		Sample #	SAMPLES From (m)	S To (m)	Metres	Rec. %	Cu (ppm)	Au (ppb)	ASSAYS Ag (ppm)	Pt (ppb)	Pd (ppb)
0	21.34	CASING (70 feet, of which 34 feet [sic] / 10.36 m is above the collar).			·							
10.27	36.04	MESOCRATIC SYENITE - grey, medium to coarse grained syenite with short mafic-rich intervals. Mafics (pyroxene) altered to chlorite <u>+</u> biotite.				· ·						
		Alteration is variable, being intense and texture distinctive in upper mafic										
		centres, while individual / small clusters of pyroxene crystals are weak to										
	.	non-altered. Core is non-magnetic.		· •								ļ
		Note: measurements are from surface, not from drill pad level.					+					
		10.27 - 13.46 Grey syenite as described above. No sulphides seen.	C 117351	10.27	13.46	3.19	100	378	16	< .3	3	1
		13.46 - 16.76 As described above, mafic (chlorite) rich spots often form	C 117352	13.46	16.76	- · · · · · · · · · · · · · · · · · · ·	-	1028	86	0.3	6	2
		band like features, cutting core at 45° to 90° to core axis.										
		16.76 - 19.81 As described above, but slightly more pink coloured. Cut	C 117353	16.76	19.81	3.05	100	1238	64	1.0	6	1
		by a 2 cm k-feldspar vein at 19.40. Epidote patches at 19.70. 19.81 - 23.86 As described above. Grey syenite with irregular grey	C 117354	19.81	23.86	4.05	100	329	16	< .3	7	1
		patches of fine-grained pyroxene, and fine-grained biotite. Core is weakly	0111004	10.01								
		mineralized with fine-grained chalcopyrite and bornite as disseminated										
		specks.										
	÷	23.86 - 26.85 Mafic-rich, melanocratic syenite - mafics comprise up to 75% of the rock, composed mainly of pyroxene, masses of chlorite (often	C 117355	23.86	26.85	2.99	100	273	16	< .3	2	1
		pyroxene) and biotite. Continuing non-magnetic. Coarse-grained k-feldspar		· ·		 	-				- 1	
	-	bands to 2-3 cm wide cut core at 45° to core axis. No sulphide				∔···· • · · · ·					·	
	·	mineralization seen.		1								ļ
		26.85 - 28.56 Change to pinkish grey mesocratic syenite. Weakly	C 117356	26.85	28.56	1.71	98	4532	602	3.8	11	2
		mineralized with disseminated specks of chalcopyrite, amount is probably		·		•						·
	·····	less than 0.25%. However, there are extensive coatings of malachite \pm azurite on low angle (0-15° to core axis) fracture faces. A few pieces of				•						
		core are stained throughout. Thick, 2-3 mm, deposits of carbonate are	· · ·			• ···						+ !
		$_{\rm m}$ found on some 30° fractures toward bottom of run.										
		28.56 - 32.00 As described above, but with some chlorite and epidote rich	C 117357	28.56	32.00	3.44	98	798	44	0.8	9	3
		spots that have crumbled to sand / gravel sized pieces. Mafic rich spots are		+			<u>. </u>		-			ļ
	- · · ·	pyroxene-rich showing variable alteration to chlorite. A hematite and	F			:						· · · ·
	i in the second	carbonate rich part fills a fracture at 20° to core axis at 30.30 metres.	C 117358	32.00	36.04	4.04	100	526	25	< .3		
		32.00 - 36.04 Pink, mesocratic syenite with a variable mafic content, ranging from 10-40%, and composed of chlorite altered pyroxene and fine	0 11 000		00,04		1			. · · :	Ξ.	
		grained biotite. Traces of sulphide specks.		· · · ·								•

Page: 1 of 8

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 2 of 8

	GE (metres)			SAMPLES			Rec.			ASSAYS		
From (m)	GE (metres) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To <u>(</u> m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
			·									
36.04	48.37	MELANOCRATIC SYENITE - several runs of chlorite-altered, mafic-rich rock.		· · ·				···				
		Epidote patches common. Contact is gradational with lots of coarse-grained							·			· · ·
		k-feldspar with first 0.5 metres. Many dark areas are largely composed of				<u>⊦-</u>		· · ·	· ·			· · · · · · · · · · · · · · · · · · ·
		unaltered pyroxene.										
		36.04 - 39.84 As described above, much of run is composed of 40% pink	C 117359	36.04	39.84	3.80	100	199	8	0.4	10	10
		k-feldspar and 60% mafics, including some small intervals of biotite										
		pyroxenite. Magnetic.				: 		L	 			
		39.84 - 41.44 As described above, but broken into a rubble with	C 117360	39.84	41.44	1.60	100	114	5	< .3	8	/
	1	numerous hematite coated fracture surfaces. Pervasive chlorite alteration of						L			·	
		mafics.						1			· ·	
		41.44 - 44.20 As above, but with an increase in mafic content, sections of	C 117361	41.44	44.20	2.76	100		< 2	< .3	5	5
		this run grade into and out of biotite pyroxenite, although the pyroxene is							• •			
		completely altered to chlorite. Poorly developed k-feldspar oikocrysts to 1.5				<u> </u>						· · · · -
		cm, the oikocrysts (or patches of k-feldspar) contain about 60-80% chlorite										
		altered pyroxene and biotite. Much of this run has a sheared appearance										
		and is broken into gravel and sand sized pieces.										
		44.20 - 48.37 As described above, with the centre half of run essentially	C 117362	44.20	47.99	3.79	100	89	< 2	0.4	9	20
		biotite and chlorite altered pyroxenite. K-feldspar increases to 30-40% by										
		bottom of run. Moderately to strongly magnetic.										l +
· · ·		_										
											L	
48.37	64.66	MESOCRATIC SYENITE - pink syenite with a variable amount of mafics,							-			
-0.01		becoming mafic-rich in places. Occasional short intervals of chlorite -										L
	_	altered pyroxenite. Large blebs of magnetite common.								 		↓
		48.37 - 50.29 Pink syenite as described above, with a very broken section	C 117363	47.99	50.29	2.30	95	748	56	0.9	3	13
		of chlorite and massive magnetite. In the mafic-rich section, k-feldspar is		ļ ļ		1						
		medium-grained, euhedral with a mafic matrix.								L		-
· · · · · · · · · · · · · · · · · · ·	· · ·	50.29 - 52.98 Medium to coarse grained k-feldspar rich syenite with	C 117364	50.29	52.98	2.69	100	971	99	0.9	6	3 (
		variable fine-grained euhedral clusters of pyroxene. Variable chlorite and				1						
· · ·	·	epidote alteration. Large blebs of magnetite to 1-2 cm in size are common		· · ·			t					
·	·	in several locations, forming bands that cut the core at 45 to 90° to core		<u>}</u> ∤			_ ·		,			1
		axis. Malachite spots and patches are common through middle part of run.		· · ·		···						
· ·	ł	52.98 - 55.15 As described above, pink medium grained syenite becoming	C 117365	52.98	55.15	2.17	100	667	2	3 0.5	1	2
		more fine-grained with depth. Toward the bottom of run, the finer-grained					·					
		svenite carries minor amounts of chalcopyrite, associated with degraded		+	· ·	+			}·			
		mafics. Moderately magnetic.		<u></u> + +		+						
		55.15 - 57.06 Finer-grained syenite as described at bottom of run.	C 117366	55,15	57.00	i 1.91	100	1070) 2	3 1.0	·; <:	2 <
		Greyish colour imparted by 15-25% fine-grained euhedral-subeuhedral							+ <u> </u>	+	<u> </u>	
		pyroxene, evenly distributed. Cutting the core at 45-60° to core axis are	·	+		i	·	1	+	t		·
		several 1 mm wide k-feldspar bands (alteration envelopes?). Trace to minor	 	+ · · · +			<u>+</u>	· †	• • • • • • • • • • • • • • • • • • • •	-	+ ···	• ···
		amounts of chalcopyrite as disseminated specks.	· ·	÷								1
		57.06 - 60.02 A mixture of medium grained mesocratic syenite with finer-	C 117367	57.06	- 59.85	5 2.79	100	409	al (5 0.6	· ·	3
	· · · · -	grained grey syenite as described above. Traces of disseminated specks of	- C11/36/	37.00	59.60	2.19			1			'
		chalcopyrite. Most of run contains 15-20% fine-grained euhedral pyroxene				•		·	<u></u>		:	•
						1	÷	+	•	÷-		
		lcrystals.	1	i			1	1	:	1		



Page: 3 of 8

Lorraine Project Diamond Drill Log DDH: 2001-53

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

FOOTAG	GE (metres)			SAMPLES			Rec.	[ASSAYS		
From (m)	a⊨ (metres) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	T0 (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
· · · · · · · · · · · · · · · · · · ·		60.02 - 62.32 Medium to coarse grained, mafic-rich syenite mafics comprise 60% of core, mainly pyroxene, some of which is weakly chlorite-altered, and 4 mm books of biotite. Feldspar is very white coloured. No sulphides seen.	C 117368	59.85	62.48		100			< .3	4	7
		62.32 - 64.66 Grey syenite as above, but finer-grained. Primary mafics are very fine-grained pyroxene (10-15%) and fine-grained biotite (10-15%). Chlorite alteration is limited to larger mafic centres. Disseminated chalcopyrite as small blebs is found to 0.5% average, local concentrations reach 3% plus minor bornite and covellite.	C 117369	62.48	65.53 	3.05	100	1811	46	1.3	3	8
64.66	70.22	 MELANOCRATIC SYENITE - coarse-grained syenite with 4 mm books of biotite. Mafics comprise 40-75% of rock with 20% biotite, 30-40% chlorite-altered pyroxene. Very magnetite-rich, locally reaching 10-15%. 64.66 - 66.62 Melanocratic syenite as above. Mineralized with up to 1-2% chalcopyrite plus malachite stains. Average is less, about 0.5% ichalcopyrite. Traces of bornite. 	<u> </u>	65.53	68.94	3.41	100	5008	499	3.9	8	13
		 66.62 - 68.94 Medium-grained, grey syenite with 20-40% mafics (biotite and chlorite-altered pyroxene). Malachite spots associated with larger mafic centres. Minor disseminated chalcopyrite. 68.94 - 70.22 Melanocratic syenite, mafic-rich with up to 80% chlorite-altered pyroxene and biotite. Massive magnetite patches to 1-2 cm in the upper part of run. Malachite plus minor covellite is associated with some magnetite blebs. Lower 90 cm of this interval is coarser-grained, with white and pink feldspars, randomly distributed biotite flakes, and chlorite-altered pyroxene, much of which is euhedral. No sulphides seen in this section. 	C 117371	68.94	71.15	2.21	100	1887	130	1.4	4	10
70.22	71.15	BIOTITE PYROXENITE - showing variable amounts of chlorite-epidote alteration. Contains approximately 10-15% interstitial feldspars. 70.22 - 71.15 No sulphides seen.			·······					· · · · · · · · · · · · · · · · · · ·		
71.15	103.46	MESOCRATIC SYENITE - medium to coarse grained, greyish-pink syenite with minor variations to melanocratic and mafic-rich syenite. 71.15 - 74.62 As above, but with patchy epidote and chlorite alterations. Original textures largely destroyed in chlorite-rich sections. White feldspars are soft and chalky, probably clay altered. Weakly magnetic. 74.62 - 77.24 Melanocratic syenite with many gradations into and out of	C 117372		74.62	1	100		+		·····	9
		 74.62 - 77.24 Melanocratic syenite with many graduous into and out of grey mesocratic syenite. Pyroxene crystals commonly show little or no chlorite alteration. In short intervals, including the bottom of this interval, pyroxene comprises 70% of rock. Minor blebs of disseminated bornite. 77.24 - 77.72 Pinkish-grey mesocratic syenite. Moderately magnetic, mineralized with fine-grained blebs of bornite about 1% plus minor amounts of chalcopyrite. 	··								· · · · · · · · · · · · · · · · · · ·	· · · · ·

Page: 4 of 8

Lorraine Project Diamond Drill Log DDH: 2001-53

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

			SAMPLES			Rec.			ASSAYS		
FOOTAGE (metres) From (m) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)		Metres	<u>%</u>	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb
										ļ	·····
	77.72 - 80.77 As described above, grey mesocratic syenite, medium-	C 117374	77.72	80.77	3.05	100	5932	271	3.7	4 4	•
	grained with irregular patches of fine-grained pyroxenite, 5-10% small 1				<u> </u>					- ··	i
	mm flakes of biotite. Interval is well mineralized with up to 3% bornite plus		;		İ				·	ļ	<u> </u>
	1% chalcopyrite. Minor covellite is associated with bornite which is best									÷	
	developed in mafic centres.		;					142	1.9		_ · · ·
	80.77 - 83.82 As described above, but with more epidote + chlorite	C 117375	80.77	83.82	3.05	100	3190	142	1.9		· · · · · · · · · · · · · · · · · · ·
	alteration patches of pink-orange k-feldspar associated with the epidote $< 0.5\%$						<u> </u>			+ -	·+
	suggest late potassic alteration. Amount of bornite has decreased, <0.5% now. Chalcopyrite remains about the same at minor amount. One 6 mm		ł ·								
	now. Chalcopyrite remains about the same at minor amount. One o min				ł			· · _		+-	
	band of k-feldspar cuts the core at 85° to core axis.	0.447070		00.07	2.05	100	4168	160	3.1		4
	83.82 - 86.87 Grey syenite as described above. Patchy epidote and k-	C 117376	83.82	86.87	3.05	100	4100	100			·
	feldspar forms vague bands which cut the core at 45° to 90° to core axis.						···-		<u> </u>	+	1
	Only traces of sulphide mineralization remain disseminated in the rock,		· · · · · · · ·						<u> </u>		
	some 45° fractures with k-feldspar alteration envelopes contain a string of		·	· ·		o	-			<u> </u>	
	blebs of chalcopyrite along the fracture and within the alteration envelope.	· · · · · · · · · · · · · · · · · · ·						<u></u>			+
	Chlorite alteration of the pyroxenes is locally intense but variable.									<u> </u>	
	Continuing magnetic.	C 117377	86.87	89.92	3.05	100	3142	134	2.1		3
	86.87 - 89.92 Grey syenite as described above. Many feldspars have a	CHISH						-			1
	white chalky appearance, suggesting some degrees of clay alteration. Continuing strongly magnetic, approximately 5% magnetite. Disseminated				· · · · · · · · · · · · · · · · · · ·		<u> </u>				
					1					<u>+-</u>	1
	blebs of chalcopyrite 1%. 89.92 - 92.96 As described above, grey, slightly chalky syenite carrying	C 117378	89.92	92.96	3.04	100	1765	29	1.4	۱ · · · ·	3
	approximately 1% chalcopyrite for the first metre. Middle section of run is	0 111010									
	full of pink k-feldspar, much of which forms bands and coalescing alteration		†:			· · · ·			T.		
	envelopes at many angles to core axis. Strongly magnetic. Mineralized with				†		1		Ì		
	1-2% chalcopyrite as disseminated blebs is most often associated with	· · · · · · · · · · · · · · · · · · ·			+			1			
	mafics. K-feldspar altered section is more highly mineralized than the grey				1				ļ		
+	syenite. Lower part of run, approximately one metre, is finer-grained,					<u> </u>				· 	
	equigranular and appears slightly hornfelsed (?) 1/2% chalcopyrite.	·	· · ·· · · · · · · · · · · · · · · · ·							· · ••	· · ·
·	92.96 - 96.01 A run showing a wide range of alteration types (epidote, k-	C 117379	92.96	96.01	3.05	100	2227	158	3 1.4	4	2
	feldspar and magnetite) and intensity. Grevish-pink syenite to begin with				T	L		! 		+- · …	
······································	but within 30 cm intense chlorite and epidote alteration obscures primary									<u> </u>	· · + ·
	textures. Large pink k-feldspar crystals enclose patches of epidote. Most of										
	run is overwhelmed by very strong epidote and magnetite alteration. Some				ļ	ļ		· 		··	·
	for these sections are very fine-grained and hard, suggesting replacement or				. i		ļ	<u> </u>			
	"flooding" by a silicate. Magnetite forms a coarse, irregular bleb to 2 cm.		÷		L		·		÷	<u> </u>	
· · · · · · · · · · · · · · · · · · ·	Small pyrite cubes along a 45° to core axis fracture. A weak stockwork of				⊥ —	↓	ļ ·	+		<u>+</u> -	
	hairline carbonate veinlets cut core at low angles to c. a., typically 5-20°.					+	. <u> </u> =		<u> </u>	<u> </u>	e
	96.01 - 99.30 As described above, patchy and variable epidote and k-	<u>C 117380</u>	96.01	99.30	3.29	9	6 44	5 28	<u></u> <u>0.</u>	5	ວ
	feldspar alteration + magnetite. Short (10-20 cm) intervals of dark green		· ·			↓		+		+	
	chlorite alteration suggest parts of this run were originally pyroxenite.	L	ļ		!	1	<u> </u>		_+	•	•
	Continuing magnetic. Traces of sulphide pin-heads in a few spots. Core		ļ		;		÷	ļ	1	•	•
	broken to gravel through part of interval.				÷	ļ		· · · · - ·	÷	4	

Page: 5 of 8

Т

FOOT	AGE (metres)			SAMPLES			Rec.			ASSAYS		
From (m)			Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		99.30 - 103.46 As above, run is highly altered by epidote and k-feldspar alteration. Initial 1.5 metres is extensively fractured into gravel sized pieces. Lower half of run displays the range of alteration described above. Intensity of alteration decreases toward bottom of interval. Pink k-feldspar veinlets \pm alteration envelopes are oriented at 45-90° to core axis, and in places cross-cut each other. Chalcopyrite found as disseminated blebs to 0.25 to 0.5%. Core is very equigranular, idiomorphic towards bottom of run.	C 117381	99.30	<u>103.46</u>	4.16	96	339	7	<.3	3	
103.46	105.63	BIOTITE PYROXENITE - showing intense chlorite alteration grading into massive chlorite and magnetite toward the bottom of the interval. 103.46 - 105.63 Biotite pyroxenite as described above, with the upper part of this interval showing variable, but generally weak alteration of feldspar to epidote <u>+</u> clay and alteration of pyroxene to chlorite. A k- feldspar veinlet at 45° to core axis is 5 mm wide. No sulphides seen.	C 117382	103.46	105.63	2.17	100	189	7	< .3	3	<
105.63	112.32	 MESOCRATIC SYENITE - pink syenite with mafic rich sections. 105.63 - 106.23 - Mafic rich syenite mineralized with about 1% chalcopyrite and minor bornite. 106.23 - 108.20 Pink syenite, with minor chalcopyrite and bornite. Several fractures at 30-60° to core axis carry blebs of chalcopyrite. 108.20 - 112.32 Pink syenite as above, with several small chlorite-epidote rich patches. Weakly mineralized with tiny chalcopyrite blebs, several 30° to 45° to core axis fractures carry some blebs in a weak alteration envelope. 	C 117383	105.63	108.20		100		103 			
112.32	113.63	 POTASSIUM-FELDSPAR, BIOTITE PYROXENITE - pyroxenite with mafic-rich syenite sections. Weak patchy alteration of pyroxene to chlorite. 112.32 - 113.63 Biotite pyroxenite with an initial 20 cm of mafic rich syenite. Upper contact is gradational, irregular but abrupt contact below. Pyroxene crystals are euhedral and show weak chlorite alteration. Interstitial k-feldspar shows weak olkocrystic development with 1-2 cm k-feldspar crystals which include up to 80% pyroxene crystals. 	C 117385	112.32	113.60	1.31	100	103	7	< .3	ξ 	
113.63	179.90	 MESOCRATIC SYENITE - medium-grained pinkish-grey syenite. Fine-grained biotite ± pyroxene comprise 20-25% of core. 113.63 - 117.35 Moderately magnetic, no sulphides seen. 117.35 - 120.40 Grey syenite as described above, cut by a "stockwork" of hairlines of fine pyroxene crystals (± chlorite alteration), most commonly oriented at 0-10° and 45-60°. No sulphide mineralization appears to be associated with it. Run also includes patches of pink k-feldspar and epidoterich spots. 	C 117386 C 117387		117.35 120.4(1			+ · · ·) < 3 1 < 3		2

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 6 of 8

			SAMPLES			Rec.			ASSAYS		
FOOTAGE (metres) From (m) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Αυ (ρρο)	Ag (ppm)	Pt (ppb)	Pd (ppb)
	120.40 - 123.44 Grey syenite as described above, continuing weakly	C 117388	120.40	123.44	3.04	100	150	10	0.3	< 2	< 2
	developed stockwork, fractures marked by paper thin layers of chlorite										
	altered pyroxene, traces of quartz and carbonate. Continuing magnetic, k-	·			i						ļ
	feldspar veinlets 5 mm thick cut core at 30-90° to core axis. No alteration									;	
	envelopes or mineralization associated with veinlets.	- ··									
	123.44 - 126.49 As above, but with more chlorite-epidote alteration. A	C 117389	123.44	126.49	3.05	100	130	4	0.5	< 2	< 2
	good part of this run is finer-grained and pyroxene-rich (35-50%).										
					<u> </u>				F		
	Hypidiomorphic with euhedral pyroxene. A 1 mm carbonate veinlet at 90°				- +						
	to core axis has pyrite cubes in a weakly developed alteration (pyrite-							¦			
	carbonate) envelope. Biotite common toward bottom of run.	C 117390	126,49	129.54	3.05	100	161	4	0.6	2	2
	126.49 - 129.54 As described above. Grey syenite with 35-50% fine-	_ 0							1		
	grained pyroxene and biotite. Continuing strongly magnetic, including a				+					-	
	moderately well developed stockwork / in-situ breccia with coarse-grained	•									
	magnetite matrix. Several k-feldspar veinlets to 1 cm thick cut core at many				+ +					-	1
	angles. Carbonate deposits in several fractures at moderate angles 30-60°										
	to core axis.	C 117391	129.54	131,70	2.16	100	97	2	<.3	< 2	
	129.54 - 131.70 As described above, strongly magnetic grey syenite.	C 117392	131.70	132.77	·	100	31	4	<.3	< 2	<
	131.70 - 132.77 Coarse grained grey syenite, grey feldspar crystals to 3	0 111002									
	_cm long. White feldspar matrix to grey feldspar and biotite flakes				<u> </u>						
	gradational contacts.	C 117393	132.77	135.63	2.86	100	356	12	0.4	< 2	2 8
	132.77 - 135.63 Grey syenite as described several runs above. Mafic	0 111000							1		
	content varies from 25-60%, largely biotite, more mafic-rich sections have										
	large amounts of chlorite altered pyroxene. Continuing magnetic, up to 5%									-	
	_magnetite includes one short section of pegmatitic k-feldspar, magnetite	C 117394	135.63	137.85	2.22	100	142	7	< .3	5	5 4
· · ·	and pyroxene. 135.63 - 137.85 As described above, grey syenite, with mafic and	0 11001			† †				1		
	magnetite rich sections. Includes several, short, irregular very coarse-				<u>!</u>		·				
	magnetite rich sections. Includes several, short, in egular very coarse-		·							i	
	grained k-feldspar patches. 137.85 - 140.93 An epidote-rich interval with up to 60% epidote in spots.	C 117395	137.85	140.93	3.08	100	201	7	/ <.3	s <2	2
	Pink k-feldspar makes up the balance of the core. Includes a 1-2 cm seam										
· · · · · · · · · · · · · · · · ·	of coarse-grained magnetite. About half the run includes mafic-rich syenite				+ t						
	that is only weakly epidote altered. Biotite most common mafic, followed by				+						
			· · · · · · · · · · · · · · · · · · ·		i i						
	pyroxene. Several low angle fractures 10-30° to core axis carry 1 mm		· · · · · · · · · · · · · · · · · · ·	·				· ·			
	carbonate fillings. A short section of 10 cm is cut by multiple hairline										
	fractures and the zone is full of 5% cubic pyrite.	C 117396	140.93	144.78	3.85	100	127		3 < .3	3 <2	2
	140.93 - 144.78 As described above over several intervals, grey mafic-							1			
	rich syenite with a 40 cm section of epidote-magnetite-rich core in the		ļ		;			1			
· · · · · · · · · · · · · · · · ·	centre. Entire interval is very magnetic. Some low angle fractures (0-10° to		• +				t				
	core axis) are filled with very thin <0.5 mm deposits of chlorite.	C 117397	144.78	147.83	3.05	100	1002	2 14	3 0.4	\$ ¹ <:	2 <
	144.78 - 147.83 Grey syenite as described above. Continuing very		·····		1		Ť		·		
	magnetic. No sulphides seen.	C 117398	147.83	150.09	2.26	100	1326	30	3 1.3	3	5
: .	147.83 - 150.09 As described above, grey syenite, but with about 50% of	· · · · · · · · · · · · · · · · · · ·	+				†				
·	interval showing weak to moderate epidote alteration. Trace of sulphides as		÷ ł				1	• • • • • • • • • • • • • • • • • • • •			
	tiny pin-points disseminated through core.		i		+		1	•	;		

Page: 7 of 8

FOOTAGE (metres)			SAMPLES	;		Rec.			ASSAYS		
rom (m) To (m)		Sample #	From (m)	T0 (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (p
		C 117399	150.09	153.92	3.83	100	826	183	0.7	< 2	
	150.09 - 153.92 As described above, grey syenite with several very	Q 11/333	100.00	100.02	0.00						
	coarse-grained patches of k-feldspar. Chalcopyrite is found as very fine-										
	grained blebs disseminated through core. Found in amounts of 0.25 to				+				·		<u></u>
	0.5%, locally reaches 1%. Also small intervals of epidote and chlorite			·							<u> </u>
	alteration.	0.447400	459.00	450.07		100	1902	300	1.6	3	
	153.92 - 156.97 Similar to that described above, grey syenite with fine-	C 117400	153.92	156.97	3.05		1902	300	1.0	<u> </u>	
	grained mafic-rich sections. Mafic content varies from 30-60%, and varies				┝──── ┤ ·						+
	between mesocratic and melanocratic. Patchy epidote and k-feldspar				↓ ↓.					· ·	
	alteration. Traces of disseminated chalcopyrite near top of interval, grows				↓ ↓.						
<u>_</u>	to about 1% chalcopyrite and minor bornite by end of run.				ļ						
į	156.97 - 160.02 An interval of variable grey syenite, with the majority	C 117401	156.97	160.02	3.05	100	4427	363	3.1	5	
	being fine-grained, chlorite altered mafic-rich melanocratic syenite.				L						
	Sulphide mineralization highly variable from patches of 1-2% bornite over 5										ļ
	cm to 1-2% chalcopyrite over 10 cm, very patchy. Also includes several								···		1
	short intervals of mesocratic syenite and coarse-grained k-feldspar rich				i						<u> </u>
	spots.										
	160.02 - 163.07 As described above, grey syenite. Several short sections	C 117402	160.02	163.07	3.05	100	4511	244	2.7	3	
	are mineralized with up to 1% very fine grained bornite, average is much]		
	less. One k-feldspar veinlet is heavily mineralized with chalcopyrite over 1										
	cm. Veinlet cuts core at 90° to core axis. Continuing patchy chlorite-										
	epidote alteration.										
+	163.07 - 166.12 As described above, grey syenite. Epidote alteration	C 117403	163.07	166.12	3.05	100	2494	74	1.7	< 2	!
	becoming pronounced and locally intense toward bottom of run. Continuing				++- :						
	magnetic, trace of bornite and chalcopyrite seen.				+ · · · · · · · · ·				•••• •		+
· ·	166.12 - 169.16 Run begins as above, with epidote altered grey syenite	C 117404	166.12	169.16	3.04	100	2750	81	1.7	4	
	and grading into fine-grained mafic rich syenite (melanocratic). Thin strings	0 111 40 4	100.12	100.10	0.01						
	of pyroxene \pm chlorite fill fractures at 0-10° and 90° to core axis. Several of								<u> </u>	†	
					<u>├</u> ───						
· · · · · · · · · · · · · · · · · · ·	these fracture faces are exposed by splitting and are well mineralized by				<u> </u> -						
	_chalcopyrite and epidote, especially fractures at 0-10° to core axis. Blebs of		·			-					
	bornite are found in weakly defined mineralized envelopes. Chalcopyrite	·	 -		+			;			<u>.</u>
	appears dominant in the fracture fillings, while bornite is dominant in the	·						<u> </u>			-
	envelopes. Magnetite is also prominent in the fractures.							450			:
	169.16 - 172.21 Grey syenite as described above. Continuing weakly	C 117405	169.16	172.21	3.05	100	9388	159	6,5	4	
	developed stockwork of fractures marked by chlorite-pyroxene, and on				÷ •						
	some, low angle (0-10° to core axis) fractures (but not all) also fillings of				Ļ., .				<u> </u>		
	chalcopyrite and bornite. Balance of interval is weakly mineralized with				į						
	disseminated chalcopyrite and bornite blebs. Many pieces of core are								<u>_</u>		<u> </u>
	mineralized in this run, average about 0.75% bornite, 1 1/2% chalcopyrite.							ļ		 	<u>;</u>
	172.21 - 174.28 Identical to run described above, chalcopyrite and	C 117406	172.21	174.28	2.07	100	15526	275	10.3	3	3
	bornite fracture controlled and in alteration envelopes.								ļ	<u> </u>	<u> </u>
	174.28 - 174.56 Coarse-grained syenite with very white feldspars, patchy							+ ···	I		
	chlorite and 10% medium-grained biotite.				: '			i	:		.]
± .	174.56 - 178.31 Grey syenite showing variable mafic content from 10%	C 117407	174.28	178.31	4.03	100	687	23	0.4	2	2[

DDH: 2001-53

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 8 of 8

FOOTA	GE (metres)			SAMPLES	S		Rec.			ASSAYS		
From (m)	To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb
·		variable, increasing in intensity toward bottom of run. Also several short										l
		intervals of mafic rich syenite. K-feldspar veinlets cut core at 60-80° to core							İ			
		axis and carry pyrite, which is often cubic. Syenite becomes more pink-			·						i	
		coloured through this interval.										1
	-	178.31 - 179.90 Pink k-feldspar-rich syenite with patchy but locally	C 117408	178.31	179.90	1.59	99	103	<u> </u>	< .3	3	1
		intense epidote alteration. The epidote alteration appears to be fracture								i I		i
		controlled, forming alteration envelopes. Coarse-grained, orangish coloured								1		
		k-feldspar veins cut the core at 60-80° to core axis and carry cubic pyrite										.L
		and minor small blebs of chalcopyrite. Balance of this run is unmineralized.										
		The run ends with a fairly extensive low angle (10° to core axis) fracture							<u> </u>			
		filled with 1 cm of gravel rock and carbonate.										
						ļ			ļ			
79.90	202.69	MAFIC RICH SYENITE - with numerous local variations to pyroxenite and										
		melanocratic / mesocratic syenite.									5	; ,
		179.90 - 183.93 An interval that begins with chlorite-altered pyroxenite	C 117409	179.90	183.93	4.03	100	190	5	i < .3	5	· · ·
		and grades through melanocratic mafic-rich syenite to mesocratic syenite.				Ļ						
		Weakly developed k-feldspar oikocrysts to 3 cm in the pyroxenite. Epidote alteration increases with amount of feldspar toward bottom of run. Last				i						+
		metre of interval displays some day alteration of feldspars leaving them				<u>.</u>						.+
						÷						
		bleached and chalky looking. 183.93 - 187.45 Grey syenite as described in numerous runs above. A		400.00	407.45	0.50	100	400	2	<.3	7	,
		magnetite stockwork develops through the last metre of run. Magnetite	C 117410	183.93	187.45	3.52	100	109				
		accompanied by pyroxene \pm chlorite. No sulphides seen.									1	-
		187.45 - 190.50 Grey syenite as described above. Magnetite-pyroxene	C 117411	187.45	190.50	3.05	100	139	<2	0.3	6	
		stockwork is best developed at top of run, becomes weaker with depth.	C 11/411	107.49	190.00	3.05	100	138	~ ~ ~	. 0.5		
		190.50 - 193.55 As described above, but displaying more epidote	C 117412	190.50	193.55	3.05	100	92	< 2	<.3	5	
		alteration than previously. Much of the epidote appears to be in weakly	0111412	190.00	185.55	5.05	100	52			°	
		developed alteration envelopes. Weakly developed magnetite stockwork /							· · · · · · · · · · · · · · · · ·			
	· _ ·	veins continues through parts of the interval, cuts the epidote alteration.				+						
		193.55 - 196.60 Run begins as above for 1.5 metres then develops into a	C 117413	193.55	196.60	3.05	100	88		2 <.3	< 2	
		short section of coarse-grained intergrown k-feldspar, then into 30 cm of	0111413	185.55	100.00	0.00	100		·•			
	· · ·	pyroxenite and then grades into pinkish grey syenite again which is mafic				<u>i</u>				-		• • • • • • • • • • • • • • • • • • • •
		rich in spots. Variable epidote-chlorite alteration.							!	· · · · · · · · · · · · · · · · · · ·		
		196.60 - 198.64 Coarser-grained syenite than above, chalky, clay-altered	C 117414	196.60	198.64	2.04	100	20	< 2	2 < .3	2	2 <
		feldspars give bleached appearance to core. Continuing magnetic, overall	0111414			2.04	100					-
		becoming more mafic rich through interval.				• • • •				<u> </u>		
	+	198.64 - 201.34 Above interval of mafic-rich syenite grades into biotite	C 117415	198.64	201.34	2.70	100	6	<2	2i < .3	4	<u>ا</u>
		pyroxenite. Showing variable patchy chlorite alteration, some feldspars are			201.01			· *				·
		bleached, weakly clay altered strongly magnetic. A 9 cm thick k-feldspar		<u>!</u>		• • • •		· · ·	1	İ		
	Ļ	vein cut core at 80° to core axis at 199.55. No sulphides seen.		· ·			····				<u> </u>	·
		201.34 - 202.69 Fine-grained mafic-rich grey syenite as described	C 117416	201,34	202 69	1.35	100	46	< 2	2 < .3	2	2
	•	previously above. Magnetite and biotite rich.		LVIOT				<u> </u>	<u> </u>		÷	
									<u> </u>	4 · · · ·		
.02.69		END OF HOLE.				• •			+- · ···	+		
02.03	-		L					· · · · · · · · · ·	+	1	• • • • • • •	+

Property:	Lorraine	Total Length: 167.64 m	Footage (m)	DIP TESTS Dip Measured	Dip Corrected	 	Start Da	ite: Augu	st 21, 200	1		
Grid Cord:		Core Size: BQTW	167	-55ຶ	-46°		Comple	tion: Aug	just 23, 2	001		
Elevation:		Azimuth: 49.3° (GPS Corrected)					Logged	By: Jay	W. Page			
Section:		Inclination: -45°					Date log	ged: Se	ptember 9	-10, 2001		
	loper Main Ar	ea. GPS Location (corrected): UTM 347720.9 E 6200479.9 N (NAD 83)	PAD: "K"			3						
	GE (metres)	LITHOLOGICAL DESCRIPTION	Sample #	SAMPLI From (m)	ES To(m)	Metres	Rec.	Cu (ppm)	Au (opb)	ASSAYS Ag (ppm)	Pt (ppb)	Pd (ppb)
From (m)	To (m)		Jampie #			Miçu Ce		00 (ppin)	/10 (000)		· <u>- (FF-7</u>	
	3.05	CASING (10 FEET)					+					
×							Ţ				×	
3.05	6.10	MELANOCRATIC SYENITE - a mixed interval of mostly dark, mafic-rich					l		·			
		syenite which is truncated by a quartz-syenite dyke.					i 100	3479	151	1.9	3	3
		3.05 - 6.10 Run begins with pink, k-feldspar-rich syenite for 40 cm then becomes more fine-grained (hornfelsed?), dark grey-coloured, and	C 117451	3.05	5 6.10	3.05				1.5	J	
·	· · · ·	containing 20-25% fine-grained biotite. Extensive malachite coatings on		·	-+·	-						
· · · ·	· · - ·	fracture faces (5 and 45° to core axis) and as disseminated spots. Weakly		· · ·			<u> </u>					
		magnetic.					; 		1			
							+				3	< 2
6.10	9.68	QUARTZ SYENITE DYKES. (6.10 - 9.68) - a leucocratic medium to coarse-	C 117452	6.10	9.68	3.58	100	209	38	< .3	<u>_</u>	~ 2
		grained quartz syenite dyke with k-feldspar alteration zones in the host syenite above and below contacts. Each zone is approximately 50 cm wide					·	· · · · · · · · · · · · · · · · · · ·				
		and dominated by pinkish-orange k-feldspar. Chlorite-altered pyroxene							<u> </u>			
·		forms 15-20% of alteration zones and is medium / coarse grained,	<u> </u>	- a-	+							
		suggesting it is altered host syenite rather than contact / alteration zone of										
		dyke. Quartz syenite dyke from 6.60 to 9.18 is medium / coarse grained,								<u> </u>	<u> </u>	
		very white coloured, with 5-10% hematite-biotite spots. Fracture in contact					+			-		
		zone are limonitic. Non-magnetic, contacts at 30° to core axis.					+				+	
· · · · ·				+			· · · · ·	÷—	· -		†	
9,68	167.64	MESOCRATIC SYENITE - grey (light bluish-grey on dry, split surface) syenite				<u> </u>		+		-		
3.00		with weakly developed fabric defined by 10-15% medium-grained biotite					1			<u> </u>		
		and 10% pyroxene laths (+ weak chlorite alteration). Small patches of pink								+	<u> </u>	
		k-feldspar are 2-6 mm wide alteration envelopes around closed fractures.			· ·				1	<u> </u>		
L		Epidote (\pm chlorite alteration of mafics) is associated with pink k-feldspar		· .						·		
· · ·		alteration. Moderately magnetic. 9.68 - 12.20 As described above, no sulphides seen.	C 117453	9.6	8 12.20	2.5	2 100	547	44	0.3	9	11
		12.20 - 14.83 As above, but lower 56 cm have very coarse grained k-	C 117454	- ·				·			11	8
	·	feldspar to 3-4 cm long, oriented at 70-90° to core axis with finer-grained		1			L					
		interstitial matics including 3-4% magnetite. In last 15 cm, there is		1	÷ · · ·	T			· 			<u></u>
		malachite \pm chalcocite and limonite coating 5° to core axis fracture.	L									<u>+-</u>
		14.83 - 18.28 A run of broken core, much of it made up of pink and grey	C 117455	5 14.8	3 18.2	3.4	5 100	4147	604	1 2.3	<u> 2</u>	+·*
		syenite. Fractures at 0° and 45° to 90° are coated with malachite and		+		+			-+	+	· ··	· - ·
	<u> </u>	chalcocite, lower part of run very limonite stained. An idiomorphic, pale			+ ·	+	+		-i	+		
	1 .	bluish-white interstitial mineral to k-feldspar maybe nepheline, reaches 5% in a few spots; may also be altered / stained k-feldspar. Orange k-feldspar		+	· · · · · · · · · · · · · · · · · · ·	+	- -	1		!	ļ	
··	-+	In a rew sputs, may also be altered / standed k-reidspar. Orange k reidspar					•	I			:	

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 2 of 7

metres) To (m)	LITHOLOGICAL DESCRIPTION alteration envelopes at 45-60° to core axis, 2-4 mm thick are common. Biotite is most common mafic, 10-15%, much less pyroxene pyrite reaches	Sample #	SAMPLES From (m)	To (m)	Metres	Rec. %	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	B 44.000
										11(000)	Pd (ppb)
							L				
	1-2% in lower 50 cm of run.										
	18.28 - 21.34 As above, grading over 1.8 metres into grey syenite. Grey	C 117456	18.28	21.34	3.06	100	1581	124	0.6	4	
	syenite contains about 1% very fine grained sulphide. Some larger blebs		· -· ·					·			
_	identified as chalcopyrite, many of the very fine-grained specks look like										·
	pyrite. Mineralization maybe in 3-4 cm wide weakly developed alteration						<u>-</u>				
	envelopes. Continuing magnetic.										
	21.34 - 23.65 Coarse-grained pink k-feldspar-rich syenite for first 1.18	C 117457	21.34	23.65	2.31	100	3001	177	2.1	8	
	metres with superimposed orange-pink 1 cm wide k-feldspar alteration										
	envelopes at 45-60° to core axis. Remaining balance of run is grey syenite,										
	mineralized with 0.5% fine, disseminated chalcopyrite. Locally reaching 2-										
	4% over a few cm. Malachite and chalcocite deposits are common on 5-10°								u		
											<u> </u>
		C 117458	23.65	26.63	2.98	100	3164	135	2.0	3	
								_,			
										·	
							_				
	26.63 - 30.48 As described above but with more variations, orange k-	C 117459	26.63	30.48	3.85	100	2432	276	1.6	< 2	
						<u> </u>					
	cm) with associated chalcopyrite blebs. Many low angle fractures are										
			·								
	through the core, and is moderately well developed over 50 cm, fractures										
	are marked by lines of biotite and cut core at 80-90° to core axis. Pyrite			· ·							
									1		
		C 117460	30.48	33.53	3.05	100	21/6	131	1.2	D	·
			· · · · · · · · · · · · · · · · · · ·		ł						
											.
									·		
			00 50		2.05		4560	01			
		C 11/461			3.95		1000	<u>a</u> i	0,0	3	<u> </u>
· · · · _			- ·		+-	·					÷
		· · · · · · · · · · · · · · · · · · ·			┝──			<u> </u>	i	ļ	<u> </u>
						· · · · ·					
		C 447400	27 40	20.62	214		425	26	< 2	Q	-
		U 11/462	37.40	39.62	2.14		- 423	20		°	
···· · ·-				··	↓		· ·			<u>L</u>	+ - · · ·
	(after pyroxene) and 40-50% grey k-feldspar. Magnetic k-feldspar laths					··		┝	+	i	<u>+</u> −
					· · -	•••					
	small patches of pink-orange k-feldspar and epidote.				• • • • • • •			<u> </u>		↓	
					t- ·				• · · · · · · · · · · ·	÷	į
		 to core axis fractures. Short intervals of chalcopyrite-rich core appear associated with 60° to core axis fractures. 23.65 - 26.63 As described above but with several limonite stained sections to 30 cm long. These sections have lots of tiny rust spots (after pyrite). Remaining sulphides appear to be chalcopyrite. Balance of run is grey syenite with 0.5 to 1.0% tiny specks of pyrite and chalcopyrite. Much of the sulphide appears to be in weakly developed alteration envelopes (sulphide ± k-feldspar) of annealed fractures. Orange k-feldspar-rich spots also include malachite, epidote ± sericite alteration as irregular patches. 26.63 - 30.48 As described above but with more variations, orange k-feldspar patches ± epidote, magnetite rich spots (75% magnetite over 10 cm) with associated chalcopyrite blebs. Many low angle fractures are limonite-coated ± malachite and chalcocite. A stockwork of fractures cuts through the core, and is moderately well developed over 50 cm, fractures are are marked by lines of biotite and cut core at 80-90° to core axis. Pyrite blebs associated with fractures, minor chalcopyrite. 30.48 - 33.53 Pink, medium-grained mesocratic syenite. Chalcocite and malachite staining on fracture faces common, fractures at 0-10°, 45°, 60° and 85° to core axis. Occasional malachite spots in core. 5% disseminated biotite. Weakly magnetic. No sulphides seen. 33.53 - 37.48 Pink syenite as described above. Gradually becoming more mafic-rich over last 2 metres. Last 60 cm are dark grey syenite with 20-25% biotite and cut by orange k-feldspar alteration envelopes / fractures at 45-60° to core axis. These fractures carry 1-2 mm cubic pyrite and irregular blebs of pyrite to 3 mm. 37.48 - 39.62 Grey syenite as described above, but with an initial 50 cm of orange-pink k-feldspar and epidote altered core. Balance, from 37.98 to 40.18 is melanocratic grey syenite with 20-30% biotite, z5-35% chlorite (after pyroxene) and 40-50% grey k-feldspar. Magnetic k-feldspar lat	to core axis fractures. Short intervals of chalcopyrite-rich core appear associated with 60° to core axis fractures. 23.65 - 26.63 As described above but with several limonite stained sections to 30 cm long. These sections have lots of tiny rust spots (after pyrite). Remaining sulphides appear to be chalcopyrite. Balance of run is grey syenite with 0.5 to 1.0% tiny specks of pyrite and chalcopyrite. Much of the sulphide appears to be in weakly developed alteration envelopes (sulphide ± k-feldspar) of annealed fractures. Orange k-feldspar-rich spots also include malachite, epidote ± sericite alteration as irregular patches. 26.63 - 30.48 As described above but with more variations, orange k- feldspar patches ± epidote, magnetite rich spots (75% magnetite over 10 cm) with associated chalcopyrite blebs. Many low angle fractures are limonite-coated ± malachite and chalcocite. A stockwork of fractures cuts through the core, and is moderately well developed over 50 cm, fractures are marked by lines of biotite and cut core at 80-90° to core axis. Pyrite blebs associated with fractures, minor chalcopyrite. 30.48 - 33.53 Pink, medium-grained mesocratic syenite. Chalcocite and malachite staining on fracture faces common, fractures at 0-10°, 45°, 60° and 85° to core axis. Occasional malachite spots in core. 5% disseminated biotite. Weakly magnetic. No sulphides seen. 33.53 - 37.48 Pink syenite as described above. Gradually becoming more C 117461 mafic-rich over last 2 metres. Last 60 cm are dark grey syenite with 20- 25% biotite and cut by orange k-feldspar alteration envelopes / fractures at 45-60° to core axis. These fractures carry 1-2 mm cubic pyrite and irregular blebs of pyrite to 3 mm. 37.48 - 39.62 Grey syenite as described above, but with an initial 50 cm of orange-pink k-feldspar and epidote altered core. Balance, from 37.98 to 40.18 is melanocratic grey syenite with 20-30% biotite, 25-35% chlorite (after pyroxene) and 40-50% grey k-feldspar. Magnetic k-feldspar laths show sub-parallel alignment perpen	to core axis fractures. Short intervals of chalcopyrite-rich core appear associated with 60° to core axis fractures. 23.65 - 26.63 As described above but with several limonite stained sections to 30 cm long. These sections have lots of tiny rust spots (after pyrite). Remaining sulphides appear to be chalcopyrite. Balance of run is grey syenite with 0.5 to 1.0% tiny specks of pyrite and chalcopyrite. Much of the sulphide appears to be in weakly developed alteration envelopes (sulphide ± k-feldspar) of annealed fractures. Orange k-feldspar-rich spots also include malachite, epidote ± sericite alteration as irregular patches. 26.63 - 30.48 As described above but with more variations, orange k- feldspar patches ± epidote, magnetite rich spots (75% magnetite over 10 cm) with associated chalcopyrite blebs. Many low angle fractures are limonite-coated ± malachite and chalcopyrite. 30.48 - 33.53 Pink, medium-grained mesocratic syenite. Chalcocite and malachite staining on fractures, minor chalcopyrite. 30.48 - 33.53 Pink, medium-grained mesocratic syenite. Chalcocite and malachite staining on fractures common, fractures at 0-10°, 45°, 60° and 85° to core axis. Occasional malachite spots in core. 5% disseminated biotite. Weakly magnetic. No sulphides seen. 33.53 - 37.48 Pink syenite as described above. Gradually becoming more mafic-rich over last 2 metres. Last 60 cm are dark grey syenite with 20- 25% biotite and cut by orange k-feldspar alteration envelopes / fractures at 45-60° to core axis. These fractures carry 1-2 mm cubic pyrite and irregular blebs of pyrite to 3 mm. 37.48 - 39.62 Grey syenite as described above, but with an initial 50 cm of orange-pink k-feldspar and epidote altered core. Balance, from 37.98 to 40.18 is melanocratic grey syenite with 20-30% biotite, 25-35% chlorite (after pyroxene) and 40-50% ery k-feldspar. Magnetic k-feldspar laths show sub-parallel alignment perpendicular to core axis. Core includes many	to core axis fractures. Short intervals of chalcopyrite-rich core appear associated with 60° to core axis fractures. 23.65 - 26.63 As described above but with several limonite stained sections to 30 cm long. These sections have lots of tiny rust spots (after pyrite). Remaining sulphides appear to be chalcopyrite. Balance of run is grey syenite with 0.5 to 1.0% tiny specks of pyrite and chalcopyrite. Much of the sulphide appears to be in weakly developed alteration envelopes (sulphide ± k-feldspar) of annealed fractures. Orange k-feldspar rich spots also include malachite, epidote ± sericite alteration as irregular patches. 26.63 - 30.48 As described above but with more variations, orange k- feldspar patches ± epidote, magnetite rich spots (75% magnetite over 10 cm) with associated chalcopyrite blebs. Many low angle fractures are limonite-coated ± malachite and chalcocite. A stockwork of fractures cuts through the core, and is moderately well developed over 50 cm, fractures are marked by lines of biotite and cut core at 80-90° to core axis. Pyrite blebs associated with fractures, minor chalcopyrite. 30.48 - 33.53 Pink, medium-grained mesocratic syenite. Chalcocite and malachite staining on fracture faces common, fractures at 0-10°, 45°, 60° and 85° to core axis. Occasional malachite spots in core. 5% disseminated biotite. Weakly magnetic. No sulphides seen. 33.53 - 37.48 Pink syenite as described above. Gradually becoming more mafic-rich over last 2 metres. Last 60 cm are dark grey syenite with 20- 25% biotite and cut by orange k-feldspar alteration envelopes / fractures at 45-60° to core axis. These fractures carry 1-2 mm cubic pyrite and irregular blebs of pyrite to 3 mm. 37.48 - 39.62 Grey syenite as described above, but with an initial 50 cm of orange-pink k-feldspar and epidote altered core. Balance, from 37.98 to 40.18 is melanocratic grey syenite with 20- 25% biotite and and topy orange k-feldspar. Magnetic k-feldspar laths show sub-parallel alignment perpendicular to core axis. Core includes ma	to core axis fractures. Short intervals of chalcopyrite-rich core appear associated with 60° to core axis fractures. 23.65 - 26.63 26.63 26.63 27.65 - 26.63 28.65 26.63 - 26.63 29.8 29.8 21.745 22.63 - 26.63 29.8 21.745 21.745 22.65 26.63 29.8 20.65 - 26.63 29.8 20.98 20.98 21.745 22.65 26.63 20.98 21.745 22.663 20.48 22.663 20.48 22.663 20.48 22.663 20.48 22.663 20.48 22.663 20.48 22.663 20.48 22.663 20.48 22.663 20.48 22.663 20.48 22.663 20.48 22.663 20.48 22.663 20.48 22.663 20.48 22.663 20.48 22.663 20.48 22.663 20.48 22.663 20.48 22.663 20.48 22.663 20.48 22.663 20.48	to core axis fractures. Short intervals of chalcopyrite-rich core appear associated with 60° to core axis fractures. 23.65 - 26.63 26.63 As described above but with several limonite stained sections to 30 cm long. These sections have lots of tiny rust spots (after pyrite). Remaining sulphides appear to be chalcopyrite. Balance of run is grey syenite with 0.5 to 1.0% tiny specks of pyrite and chalcopyrite. Much of the sulphide appears to be in weakly developed alteration envelopes (sulphide ± k-feldspar) of annealed fractures. Orange k-feldspar-rich spots also include malachite, epidote ± sericite alteration as irregular patches. 26.63 - 30.48 As described above but with more variations, orange k- feldspar patches ± epidote, magnetite rich spots (75% magnetite over 10 cm) with associated chalcopyrite blebs. Many low angle fractures are limonite-coated ± malachite and chalcocite. A stockwork of fractures cuts through the core, and is moderately well developed over 50 cm, fractures are marked by lines of biotite and cut core at 80-90° to core axis. Pyrite blebs associated with fractures, minor chalcopyrite. C 117460 30.48 - 33.53 Pink, medium-grained mesocratic syenite. Chalcocite and malachite staining on fracture faces common, fractures at 0-10°, 45°, 60° and 85° to core axis. Occasional malachite spots in core. 5% disseminated biotite. Weakly magnetic. No sulphides ean lateration envelopes fractures at 45-60° to core axis. These fractures carry 1-2 mm cubic pyrite and irregular blebs of pyrite to 3 mm. 37.48 - 39.62 Crey syenite with 20-30% biotite, 25-35% chlorite (after pyroxene) and 40-50% grey k-feldspar. Magnetic k-feldspar laters C 117462 37.48 39.62 2.14 100 C 117462 37.48 39.62 2.14 100 C 117462 37.48 39.62 2.14 100 C	to core axis fractures. Short intervals of chalcopyrite-rich core appear associated with 60° to core axis fractures. 23.65 - 26.63 As described above but with several limonite stained sections to 30 cm long. These sections have lots of tiny rust spots (after pyrite). Remaining sulphides appear to be chalcopyrite. Balance of run is grey syenite with 0.5 to 1.0% tiny specks of pyrite and chalcopyrite. Much of the sulphide appears to be in weakly developed alteration envelopes (sulphide ± k-feldspar) of annealed fractures. Orange k-feldspar-rich spots also include malachite, epidote ± sericite alteration as irregular patches. 26.63 - 30.48 As described above but with more variations, orange k- feldspar patches ± epidote, magnetite rich spots (75% magnetite over 10 cm) with associated chalcopyrite. Balance of run is are marked by lines of biotite and cut core at 80-90° to core axis. Pyrite blebs associated with fractures, minor chalcopyrite. As tockwork of fractures cuts through the core, and is moderately well developed over 50 cm, fractures are marked by lines of biotite and cut core at 80-90° to core axis. Pyrite blebs associated with fractures, minor chalcopyrite. 33.53 - 37.48 Pink, syenite as described above. Gradually becoming more mafc-rich over last 2 metres. Last 60 cm are dark grey syenite with 20- 25% biotite and cut by orang k-feldspar alteration envelopes / fractures at 45-60° to core axis. These fractures carry 1-2 mm cubic pyrite and irregular blebs of pyrite to 3 mm. 37.48 - 39.62 Grey syenite as described above, but with an initial 50 cm of orange-pink k-feldspar and epidote altered core. Balance, from 37.98 to 40.18 is melanceratic grey syenite with 20-30% biotite, 25-33% chlorite (after pyroxene) and 40-50% grey k-feldspar. Magnetic k-feldspar lafts show sub-parallel alignment perpendicular to core axis. Core includes many	bo core axis fractures. Short intervals of chalcopyrite-rich core appear associated with 60° to core axis fractures. 23,65 - 26,63 2.98 100 3164 135 23,65 - 26,63 3.0 + 8 As described above but with several limonite stained sections to 30 cm long. These sections have lots of tiny rust spots (after pyrite). Remaining sulphides appear to be chalcopyrite. Balance of run is grey syenite with 0.5 to 1.0% tiny specks of pyrite and chalcopyrite. May be object atteration as integular patches. 26,63 - 30,48 As described above but with more variations, orange k- feldspar patches ± epidote, magnetite rich spots (75% magnetite rover 10 0 0 2432 276 1 monite-coated ± malachite epidote, magnetite rich spots are marked by lines of biotite and cut core at 80-90° to core axis. Pyrite blebs associated with fractures, minor chalcopyrite. Nath coater at 80-90° to core axis. Pyrite blebs associated with fracture factors on the advert of the supplices and malachite spots in core. 5% disseminated biotite. Weakly magnetic. No sulphides seen. 0 117460 30.48 3.53 100 2176 131 30.48 - 33.53 Pink synelite as described above. Gradually becoming more mafe-rich over last 2 meres. Last 60 cm are dark grey synelite with 20- 25% biotite and cut by orange k-feldspar alteration envelopes / fractures at d5-60° to core axis. These fractures cary 1-2 mm cubic pyrite and irregular biets of pyrite to 3 mm. 37.48 39.62 2.14 100 425 26 0 orange pink k-feldspar altered ore. Balance, from 37.98 to d0.18 is me	to core axis fractures. Short intervals of chalcopyrite-rich core appear associated with 60° to core axis fractures. 23,65 • 26,63 • 20,68 • 20,68 • 20,68 • 20,80 • 100 • 3164 • 135 • 20, 20,65 • 26,63 • 20,68 • 20,80 • 100 • 3164 • 135 • 20, 20,80 • 100, These sections have lots of tiny rust spots (after pyrite). Remaining sulphides appear to be chalcopyrite. Balance of run is grey syente with 0.5 to 1.0% timy specks of pyrite and chalcopyrite. Much of the sulphide ± keridate alteration as irregular patches. 26,63 • 30.48 • As described above but with more variations, orange k- feldspar patches ± epidote, magnetite rich spots (75% magnetite over 10 cm) with associated chalcopyrite. Solor (75% magnetite over 10 cm) with associated chalcopyrite. Solor (75% magnetite over 10 cm) with associated chalcopyrite blebs. Many low angle fractures are limonite-coated ± malachite and chalcocate. A stockwork of fractures cuts through the core, and is moderately well developed over 50 cm, fractures are marked by lines of blotite and cut core at 80-90° to core axis. Pyrite blebs associated with fractures at 0-10°, 45°, 60° and 85° to core axis. Creasioned analachite spots in core. 5% disseminated blotite. Weakly magnetic. No sulphides seen. 33,53 - 37.48 Pink synelite as described above, but with an initial 50 cm of orange-pink k-feldspar and tarder core. Balance, from 37,98 to 45° to core axis. These fractures cary 1-2 mm cubic pyrite and inegular blebs of pyrite to 3 mm. 37,48 - 39.52 Grey synelite as described above, but with an initial 50 cm of orange-pink k-feldspar and epidote altered core. Balance, from 37,98 to 40.18 is melanocratic grey synelite with 20-30% biotite, 25-35% chlorite (after pyroxene) and 40-50% grey k-feldspar. Magnetic k-feldspar laths show sub-parallel alignment prependicular to core axis. Core includes many	to core axis fractures. Short intervals of chalcopyrite-rich core appear associated with 60° to core axis fractures. 23.65° 26.63 2.98 100 3164 135 2.0 23.65° 26.63 2.98 100 3164 135 2.0 3 exctions to 30 cm long. These sections have lots of timy rust spots (after pyrite). Remaining sulphides appears to be chalcopyrite. Balance of run is grey syntie with 0.5 to 1.0% timy specks of pyrite and chalcopyrte. Much 1 <

Page: 3 of 7

Lorraine Project Diamond Drill Log DDH: 2001-54

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

FOOTAG	E (metres)			SAMPLES	3		Rec.			ASSAYS		
rom (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Αυ (ρρb)	Ag (ppm)	Pt (ppb)	Pd (pp
		39.62 - 42.67 As described above, but grades into grey syenite with	0 447462	20.62	42.67	3.05	100	440	47	< .3	22	<u> </u>
		numerous coarse-grained pink sections. Limonite stained fracture surfaces.	C 117463	39.62	42.07	3.05		440		×.5		
		Run ends with some broken and limonite-stained core.					·					
		42.67 - 45.72 Grey syenite with small irregular patches of coarse-grained	C 117464	42.67	45.72	3.05	100	1016	49	0.6	4	
	<u> </u>	pink k-feldspar and associated epidote. Continuing magnetic. Finer-grained	C 11/404	42.07	45.72	0.00						
		section at bottom of run is amorphous, (k-feldspar replacement ?) [and] is										
		mineralized with 2-3% chalcopyrite over 10 cm.			<u> </u>							
		45.72 - 48.76 As above, grey syenite is mineralized with very fine-grained	C 117465	45.72	48.76	3.04	100	1020	73	0.5	24	
		pin-points of sulphide. Some is pyrite (cubic) but some may be	• • • • • •									
		chalcopyrite. Cross-cutting k-feldspar (pink) alteration envelopes to 1 cm	+			· · ·						
	· · · · · · · · · · · · · · · · · · ·	wide are oriented at 15-30° and 45° to core axis. Two 6 mm quartz veins				· · •						
	+	cut core at 65 and 85° to core axis. Grey syenite is mineralized with very-										
		fine grained specks of pyrite, average maybe 0.1% pyrite.										
		48.76 - 51.82 As above, some of very fine-grained sulphide may be	C 117466	48.76	51.82	3.06	100	1159	71	0.5	3	į
-		chalcopyrite. Core is in general finer grained and darker. Fractures at 10-				j						L
		45° to core axis commonly carry malachite, chalcocite and limonite.	-									ļ
_		51.82 - 54.86 As above, but with more variation in grey colour tone,	C 117467	51.82	54.86	3.04	100	1299	72	0.9	4	I
		generally darker in colour, and finer-grained. Some magnetite clots. K-										
_		feldspar-rich pink patches are irregular over 10-15 cm of core in several										
		spots. Also as 80-90° to core axis. Alteration envelopes. Much of the grey				L .						
		syenite contains traces to minor amounts of tiny pin-points of sulphide,										
		some of which appears to be chalcopyrite. Fracture surfaces at 0-20° to				ļ						
		core axis are covered with chalcocite stains.									4	<u> </u>
		54.86 - 57.91 A more broken and more limonitic run which grades into	C 117468	54.86	57.91	3.05	100	915	49	0.5	4	4—
		grey syenite as described above. Fracture surfaces (0-60° to core axis) are							+	ļ		+
	· ···-	coated with limonite, malachite and chalcocite. Amount of magnetite is								1 	<u> </u>	
		increasing to 3-5%. Cubic pyrite found on some fracture surfaces.	0.447490	57.91	60.08	3.05	100	864	20	<.3	16	
	· · · · · · · · · · · · · · · · ·	57.91 - 60.96 Greyish pink syenite with extensive coatings of limonite,	C 117469	57.91	60.96	3.05	100	004	20			,
		goethite \pm chalcocite on 5-10° fracture surfaces (to core axis).	C 117470	60.96	64.01	3.05	100	1997	66	< .3	4	↓ □
		60.96 - 64.01 As above, but with more extensive coatings of limonite-	0117470	00.90	04.01	3.00		1001				·
		goethite with cubic pyrite on both low angle 0-15° to core axis and 60-90° to				++			+			
		core axis fractures. At 63.00 there is a series of fractures (0-90° to core	·				··					+
		axis) with extensive coatings of malachite and chalcocite (only). Fractures			· ·	+i		·	+ ·	· · · · · · · · · · · · · · · · · · ·		·
		are often marked by concentrations of biotite. Last 23 cm of run is							1			<u> </u>
		magnetite-rich (>60%) with epidote and limonite. Traces of tiny specks of									i	1
		- chalcopyrite disseminated in grey syenite.				+- +				1		Τ.
		64.01 - 67.06 As described above, grey mesocratic syenite. A weakly	C 117471	64.01	67.06	3.05	100	924	47	0.5	10)
	; ····	developed stockwork of fractures, now marked by lines (<0.1 mm to 1.0										·
	•	mm wide) of biotite cut the core at all angles. Moderately magnetic.										
		67.06 - 69.20 Grey syenite as above, but with decreasing grain size through last two runs, appears to be a hornfelsing effect. Weakly developed	C 117472	67.06	70.10	3.04	100	1078	43	0.9	<2	2
	T				······································						Ļ	
	÷	-60° to core axis. Envelopes of k-feldspar (grey) \pm pink k-feldspar, very fine grained biotite and magnetite cut the core. A few are also oriented at 30-								÷	ļ	<u> </u>
												
		45° to core axis. Epidote forms weak selvages and fracture fillings. Minor						1		1	1	

Page: 4 of 7

FOOTAGE (metres)			SAMPLE	s		Rec.			ASSAYS		
From (m) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	- To <u>(m)</u>	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pđ (ppb)
	amounts of malachite on 45-60° to core axis fracture faces.									··=	
	69.20 - 70.10 Grey syenite but with 65% pink k-feldspar envelopes that						···-	-		· · · · · ·	
	coalesce to form continuous pink syenite oriented at about 45° to core axis									<u></u>	·
	coalesce to form continuous plink syenite onenied at about 45 to core axis			·	<u>+</u> +		-				
· · · ·	but highly variable. Low angle fractures 0-15° are coated with malachite				<u> </u>					· · ·	
	and chalcocite.	0.447470	70.40	73.15	3.05	100	1522	56	0.8	2	
	70.10 - 73.15 First 50 cm is as described above, but with increasing	C 117473	70.10	73.15	3.05		1,522		0.0		1
	amounts of epidote and chlorite. Several 2-4 mm wide fractures at 80-90°			<u>-</u>							
	to core axis are filled with biotite and blebs of chalcopyrite. Balance of run							<u>.</u>			
	is grey syenite as described above. Tiny specks of sulphide noted at top of run, mineralization becoming stronger through run, reaching 0.50-1.0%						<u> </u>	/			<u> </u>
	chalcopyrite plus minor bornite. Some phlogopite mica noted in better							+			· · ·
	mineralized parts. Possibly a potassic alteration of biotite mica.						<u> </u>				·
	Mineralization patchy. Weakly magnetic.										1
	73.15 - 76.20 A more variable run than above, with rapid variations	C 117474	73.15	76.20	3.05	100	1808	58	1.0	< 2	!
	between pink, grey and dark grey syenite. Cross cutting k-feldspar	0 11111	10.10	10.20	0.00				-		
	alteration envelopes at 30-45° to core axis. Fine disseminated chalcopyrite				··+						
	and bornite found through entire run, but perhaps a bit more strongly	L V**			•+					-	
	mineralized in dark grey syenite.				l			1			— …
	76.20 - 79.25 A highly variable run with a metre of light buff-grey syenite	C 117475	76.20	80.47	4.27	100	2534	123	1.8	4	L
	with occasional malachite spots which grades into a hypidiomorphic medium										1
	grained grey syenite with euhedral to sub-euhedral 1 mm pyroxene crystals.										
	Weak chlorite alteration. Sulphide mineralization has died out.										
	79.25 - 80.47 Medium grey syenite as described above with irregular buff-				/						
······	light grey section sometimes cutting through core at 45° to core axis										
	fracture surfaces.										
	80.47 - 82.30 A buff-grey syenite grading into a limonitic-rusty sections of	C 117476	80,47	82.30	1.83	100	6445	439	6.0	17	·
· _	syenite with an abrupt contact at 45° to core axis from grey syenite above.										
	Extensive and heavy coatings of malachite on both irregular fracture faces									ļ	
	and these at 45 to 60° to core axis. Rusty spots (after pyrite?) in limonitic							L			
_	sections.							<u> </u>			
							L		ļ	ļ	
	Contined:									L	
					+				↓		
									L		
									L		I
	82.30 - 85.34 Light pinkish-grey syenite with numerous 30-60° to core	C 117477	82.30	85.34	3.04	98	3 7728	310	6.6		2
	axis fractures coated with limonite, malachite and chalcocite. Patches and	<u> </u>			Ļ				<u> </u>		
	streaks of grey syenite are well mineralized with 1-2% very fine specks and				!				i		
	blebs of chalcopyrite along with 0.25 to 0.5% bornite. Very little										. .
	mineralization in pink syenite. Grey syenite is magnetic, and finer grained									+	i ·· ·
	than the pink syenite or the mineralized grey syenite above. Lower 1/2			 	+· • · 4		i	<u> </u>	_		ļ
	metre is broken.			; •			<u> </u>		<u> </u> .		
	85.34 - 88.39 A run of very broken core and numerous fracture faces,	C 117478	85.34	88.39	3.05	96	3 2977	7 232	2.3	3 17	/
	including some with hematite coatings, also malachite and chalcocite spots,			†						+	.
	minor carbonate.				1		1				

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

ASSAYS SAMPLES Rec. FOOTAGE (metres) LITHOLOGICAL DESCRIPTION Pd (ppb) Pt (ppb) Sample # From (m) To (m) Metres % Cu (ppm) Au (ppb) Ag (ppm) From (m) To (m) 1637 100 0.8 < 2 91.44 3.05 100 C 117479 88.39 88.39 - 91.44 Pinkish-brown / orange syenite. Run begins with an irregular magnetite vein to 1 cm thick. Lower 30 cm of run includes a weak stockwork of 1-3 mm thick veinlets oriented at 60° to core axis and carrying magnetite, + biotite, calcite and chalcopyrite blebs, also grey k-feldspar. A few dark grey feldspar patches (small, 5-10 cm) are well mineralized with chalcopyrite and bornite. Minor amount of chalcopyrite in the pink syenite appears to be associated with fractures (about 45° to core axis). 2767 3.8 100 163 C 117480 91.44 95.50 4.06 91.44 - 95.50 A highly variable section which includes several gradations between grey and pink syenite in general, the grey and pink syenite in general, the grey syenite is mineralized with about 0.5 to 1.0% disseminated chalcopyrite and minor bornite, while the pink syenite contains only minor traces of chalcopyrite that is disseminated but is mineralized by chalcopyrite blebs in 60° to core axis fractures. These fractures cross-cut magnetite veinlets. The grey syenite is also mineralized by fracture controlled chalcopyrite at 45°, 60° and 0° to core axis. 0.7 C 117481 95.50 97.54 2.04 100 1679 91 4 95.50 - 97.54 "Grey" syenite that is overwhelmed by 90% pink k-feldspar alteration envelopes which often contain epidote. Most of these envelopes cut the core at about 80° to core axis. Chalcocite spots on some fracture surfaces. < 2 100 2449 96 1.3 C 117482 97.54 100.58 3.04 97.54 - 100.58 As described above, with possibly more epidote, especially on most fracture faces. Grey sections are magnetic. C 117483 100.58 103.63 3.05 100 4526 157 3.6 2 100.58 - 103.63 An interval which includes dark melanocratic syenite and grey with pink alteration envelopes. A moderately well developed stockwork of thin, 1 mm wide, magnetite veinlets of all directions includes blebs to 3 mm of chalcopyrite plus minor pyrite. Veinlet alteration envelopes containing chalcopyrite are in general weakly developed but are strong in a few spots. 3.05 100 4116 106 3.3 < 2 C 117484 103.63 106.68 103.63 - 106.68 As described above, but with more variation between pink, grey and mafic-rich grey syenite. Fracture-controlled chalcopyrite is most commonly found in 30-60° to core axis range. Disseminated bornite and chalcopyrite common but best developed in dark grey syenite mineralization is patchy but locally reaches 1% combined. Continuing magnetic. Many fracture surfaces are coated with limonite and malachite. 4065 69 3.4 5 100 C 117485 109.73 3.05 106.68 **106.68 - 109.73** Grey syenite with indistinct bands and wisps of pinker svenite at 80° to core axis. 15-20% fine biotite. In a few spots pink kfeldspar becomes sub-porphyritic with crystals to 4 mm. Minor disseminated chalcopyrite and bornite but patchy. No fracture controlled primary sulphide mineralization. Malachite and chalcocite on some 45° to core axis fractures. C 117486 112,78 3.05 100 2455 116 1.5 109.73 109.73 - 112.78 Grey syenite as described above, includes a few irregular magnetite veinlets to 1 cm wide. Minor patches of disseminated chalcopyrite and bornite. 1755 86 0.5 < 2 C 117487 112.78 3.04 100 115.82 112.78 - 115.82 Grey syenite as described above. Minor amounts of chalcopyrite seen near a fracture (45° to core axis) malachite coating some moderate fracture faces (30-45° to core axis).

DDH: 2001-54

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 6 of 7

FOOTAGE (metres)			SAMPLES	1		Rec.			ASSAYS		
From (m) To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (pp
	115.82 - 117.86 Grey syenite as described above with several pink	C 117488	115.82	119.90	4.08	100	981	52	< .3	5	
	sections. Several mafic-rich / chlorite bands, 1 cm wide, cut the core at 75	C 117400	110.02		4.00						
	to 80° to core axis. Several patches of mafic-rich syenite are composed of										
	50% chlorite, 15-20% biotite, 30-40% k-feldspar. Minor malachite on										
	fracture surface.										
	117.86 - 119.90 Mafic rich syenite composed of 50-75% chlorite, 15-20%	_									
	coarse-grained biotite, 20-40% pink k-feldspar. Very rubbly and ground up										
	toward 118.87, then limonitic, with jarosite and a 40 cm zone of extensive										
	epidote alteration, followed by 30 cm of 90% plus pyroxene (fine-grained)						
	pyroxenite). The last 20 cm of the interval is limonite stained.										
	119.90 - 120.66 Mottled patches of fine-grained pyroxene (60%) and	C 117489	119.90	121.92	2.02	100	922	27	< .3	6	
	patches of buff / white medium-grained k-feldspar.										
	120.66 - 121.92 Pale grey syenite with the first 60 cm being a transition /										
	gradation from the above pyroxene-rich syenite. Mineralized with										
	disseminated chalcopyrite and trace bornite. A poorly developed banding										
	gives a weak gneissic appearance at 65 to 80° to core axis.										
	121.92 - 124.97 Light-grey syenite as described above with a weakly	C 117490	121.92	124.97	3.05	100	1733	104	0.7	4	
	developed gneissic texture at 85° to core axis continuing disseminated				·						
	chalcopyrite mineralization to 0.5% with minor bornite. Strongly magnetic.										
	124.97 - 127.55 Light grey syenite as described above.	C 117491	124.97	127.55	+ \	100		29			-
· · · · · · · · · · · · · · · · · · ·	127.55 - 131.06 Pink syenite with numerous grey streaks and patches, and displaying considerable variability in grain size. A fine-grained k-	C 117492	127.55	131.06	3.51	100	599	69	0.4	4	
	feldspar and magnetite rich "flooded" section at 129.50, 6 cm long, cuts			·							
	core at 45 to 60° to core axis and carries cubic pyrite. From 128.40 to										
	128.79 is a very coarse-grained interval of pink and grey, mafic-poor										+
	syenite. Epidote increases to 5-10% through last metre of run.										+
	131.06 - 134.11 As described above, but more fractured with limonitic +	C 117493	131.06	134.11	3.05	100	836	26	0,4	< 2	<u> </u>
· · ·	jarosite coatings on fractures. Traces of chalcopyrite, especially in grey	0 111400	101.00		0.00		000				
	syenite patches.				t						
	134.11 - 137.16 As described above, mostly pink syenite with grey	C 117494	134.11	137.16	3.05	100	766	36	< .3	3	
	streaks giving a weakly developed gneissic texture but not mafic enough to										
	be described as migmatitic. Traces of pyrite and chalcopyrite. Grey streaks					v . 					1
	generally at 75-90° to core axis.		- · · · · · · · · · · · · · · · · · · ·								ļ
	137.16 - 140.21 As described above but with more variation between	C 117495	137.16	140.21	3.05	100	577	35	<.3	4	1
	grey and pink syenite. Pink sections generally coarser grained and are										
+ ·	accompanied by patches of epidote. Grey areas contain minor amounts of										
· · ·	pyrite and chalcopyrite while the pink syenite is unmineralized.				l T						
	140.21 - 143.26 Grey and pink syenite as described above. More pink	C 117496	140.21	143.26	3.05	100	647	22	< .3	2	Γ
	and coarser-grained for first metre, grey for balance of run. Overall				ļ						<u> </u>
·	becoming more dominated by grey syenite than the above several runs.								L		L
	Trace pyrite.										
· · · · · · · · · · · · · · · · · · ·	143.26 - 146.30 As above but cut by pink k-feldspar veinlets / alteration	C 117497	143.26	146.30	3.04	100	849	27	0.6	2	ļ
	envelopes to 5 mm wide at 30 to 45° to core axis. A few malachite spots										
	noted near by. A weakly developed fabric is defined by elongate, flat lenses						1	1	1	1	

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

FOOTAGE (metres)		<u> </u>	SAMPLES			Rec.			ASSAYS		
From (m) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb
	of chlorite + biotite at 60-70° to core axis. In pink k-feldspar-rich parts the					-					
	fabric relies more on streaks of epidote with chlorite spots for definition.										
	146.30 - 149.35 As described above, pink and grey syenite with grey	C 117498	146.30	149.35	3.05	100	358	10	< .3	3	
	syenite becoming dominant by the last metre of the run. A finer-grained										
	section of grey syenite appears hornfelsed, and carries minor amounts of		+		1						
	chalcopyrite. Grey syenite is magnetic, contains 10-20% fine biotite.				↓ <u>-</u>						
	149.35 - 152.40 Grey syenite as described above. Contains small clusters					100	630	35	0.3	4	.
	of fine biotite as well as larger (3-4 mm) flakes of biotite. Sub-parallel	C 117499	149.35	152.40	3.05	100	530	30	0.3		
	alignment of biotite helps to define a weak foliation in core of 65-90° to core				+ · +						· · ·
	axis. Core is more pink coloured toward bottom of run.	0 117500	452.40	155.45	3.05	100	1525	45	0.3	3	<
	152.40 - 155.45 Pinkish-grey syenite with a well developed gneissic	C 117500	152.40	100.40	3.05	100	1323		0.5		
	_ texture toward bottom of run, which is caused by dark grey streaks (at 75 to										
		w			•		·			· · · · ·	
	mineralized with up to 1% fine disseminated chalcopyrite.	C 117501	155.45	157.90	2.45	100	225	10	<.3	< 2	
	155.45 - 157.90 Coarser grained pink syenite with foliation at 65-75° to	C 11/301	155.45	101.00	2.45	100	225				
· · · · · · · · · · · · · · · · ·	core axis defined by lens-like clots of chlorite-biotite. This interval includes										
	 several sections of leucocratic syenite (5% mafics). 	C 117502	157.90	160.00	2.10	100	57	22	<.3	< 2	
	157.90 - 160.00 Leucocratic syenite grading from medium-grained at the	0111302	101.00	100,00	2.10						
	top to coarse-grained at the bottom. Lower 50 cm of run is coarse-grained						•				i
	orange syenite which terminates with a 1-2 cm quartz-vein and k-feldspar										
	breccia. No sulphides seen.	C 117503	160.00	161.54	1.54	100	1971	102	0.9	4	
· · · · · · · · · · · · · · · · ·	160.00 - 161.54 Pinkish grey syenite becoming more grey and fine-										t
	grained magnetite-rich with depth. Minor chalcopyrite noted in the grey	-			<u> </u>						
	areas. Highly magnetic. Also up to 0.5% chalcopyrite noted on fracture /										
	– foliation surfaces (defined largely by biotite). Some 60° fracture faces are										
	coated with limonite, malachite and chalcocite.	C 117504	161.54	164.59	3.05	100	430	32	< .3	< 2	
	161.54 - 164.59 Grey and pink syenite in an variable mixture of pink and										
	grey with magnetite and biotite. Epidote blebs in areas of pink k-feldspars.										
	Minor chalcopyrite found with degraded mafic centres and on 50° to core										: ***
	axis fractures.	C 117505	164.59	167.64	3.05	100	286	20) <.3	6	L
	-164.59 - 167.64 As described above.							<u></u>			·
67.64					·				+	+	
					i —			<u> </u>		+	
			· · · · ·		+				1	<u> </u>	
	-				+		<u> </u>		1		
			·								l
			I								

Page: 7 of 7

Property: I	Lorraine	Total Length: 207.26 m	Footage (m)	DIP TESTS Dip Measured	Dip Corrected	_	Start Da	i te: Augu	st 23, 200	1		
Grid Cord:		Core Size: BQTW	158	-50°	-42°		Comple	tion: Aug	gus <u>t</u> 25, 20	001		
Elevation:	1759 m	Azimuth: 58.1° (GPS Corrected)					Logged	By: Jay	W. Page			
Section:	170511	Inclination: -45°		1		1	Date log	iged: Se	ptember 1	0-13, 2001	I	
	anar Main (GPS Location (corrected): UTM 347658.4 E 6200453.5 N (NAD 83) PAD: 5	Smokey Mou	ntain		4			<u> </u>			
NUTES: U	pper Main. C	5PS Eddalloff (confected). 0111 347038.4 E 0200433.3 1 (1465 33) 176.4										
FOOTAC	GE (metres)	LITHOLOGICAL DESCRIPTION		SAMPLE			Rec.			ASSAYS		Del (seb)
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (pob)	Ag (ppm)	Pt (ppb)	Pd (ppb)
-		CASTALC (10 Foot)					L					
	3.05	CASING (10 feet).	·				1					a
3.05	19.34	LEUCOCRATIC QUARTZ SYENITE - medium - grained, light buff coloured										
0.00		syenite containing 15-20% quartz, 80-85% k-feldspar, 3-5% interstitial								! !		
		mafic (chlorite, biotite + pyroxene).								I		
		3.05 - 5.79 Quartz syenite as described above. Some low angle fracture	C 117551	3.05	5.79	2.74	100	555	9	< .3	< 2	< 2
		surfaces (<30° to core axis) contain coatings of malachite and limonite.				3.35	100	362	2	<.3	2	< 2
-1-2		5.79 - 9.14 As above, some mafics have degraded to limonite spots,	C 117552	5.79	9.14	3.30	100	302	<u> </u>		2	~ 2
		leaving boxworks in a few spots. Non-magnetic. 9.14 - 12.19 As described above. Includes 2 mm fracture fillings of fine-	C 117553	9.14	12,19	3.05	100	216	< 2	< .3	4	< 2
		grained quartz syenite displaying myrmekitic textures. Fractures are at 20°	0111000			-						
		to core axis.					1-					
	-	12.19 - 15.24 Quartz syenite as described above.	C 117554	12.19	15.24	3.05	100	143		-	< 2	< 2
		15.24 - 18.28 As described above, but with some limonitic and orange k-	C 117555	15.24	18.28	3.04	100	165	30	< .3	< 2	< 2
		feldspar patches.							+		< 2	<2
		18.28 - 19.34 Quartz syenite as described above, but with a weakly	C 117556	18.28	19. <u>34</u>	1.06	100	251	96	0.3	< 2	< <u>-</u>
		developed 60° to core axis fracture set filled with hair-line dark quartz veins.										
		_		·			+		<u>}</u>	+ ·		
	-				· ·	· ·	-		<u>.</u>			
19.34	106.68	MESOCRATIC SYENITE - pink syenite which is locally mafic-rich. Mafics							ļ			
		consist of chlorite-biotite mixtures which are generally fine-grained and tend										
		to be elongate or lens shaped. Rock is composed of 60-70% k-feldspar, 25-										
		35% mafics. Low angle fractures (10-30° to core axis) are coated with							<u> </u>			
		limonite, malachite and chalcocite.	C 117557	19.34	21.24	1.90	100	2512	122	1.7	4	1(
		19.34 - 21.24 As described above, becoming mafic-rich toward bottom of interval (60-70%). Magnetite reaches 5%. Traces of chalcopyrite in some	C 11/55/	19.34	21.24	1.50		2012		<u></u>		
i		magnetite reaches 5%. Traces of chalcopyrite in some mafic centres.		·					· ·	1		
		21.24 - 22.63 Leucocratic syenite - 95% K-feldspar, beginning medium-	C 117558	21.24	22.63	1.39	9 100	93	3 < 2	< .3	2	<:
		grained and grading into very coarse grained to pegmatitic. Abrupt contact									L	
		above at 60° to core axis. Minor interstitial chlorite and biotite.								:		
		22.63 - 24.38 A highly variable interval which includes pink syenite,	C 117559	22.63	24.38	3 1.75	5 100	212	2 11	< .3	< 2	
	· · · · · · · · · · · · · · · · · · ·	pegmatitic syenite and massive coarse-grained biotite. Mafics in syenite		· ····· ·			· ·	ł ·		;	· ·	<u>}_</u>
		largely altered to chlorite and / or biotite. Weakly magnetic. Cross-cutting				-	+		-	i		
·····		k-feldspar (pink) and epidote alteration envelopes are at low angles (5-10°	·		· ··	÷		+			<u>. </u>	
		to core axis).						† ·		• ·····	 	
·· ·					L	T		1				

Page: 2 of 12

Lorraine Project Diamond Drill Log DDH: 2001-55

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

FOOTAGE (metres)			SAMPLES			Rec.			ASSAYS		
From (m) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	T0 (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb
	24.38 - 27.43 Grey mesocratic syenite with pink k-feldspar. Rich patches	C 117560	24.38	27.43	3.05	100	333	17	3	3	
	and short intervals. Where measurable, the pink parts cross-cut the grey				.			· · •			
	syenite at 70-80° to core axis. Mafics 15-20% fine chlorite + biotite +				<u> </u> +			i			
	pyroxene. Moderately magnetic.						i	·			
	27.43 - 30.48 As described above. A number of fracture surfaces (10°,		+							5	
	-30° , 45° to core axis) are coated with limonite, malachite and chalcocite.	C 117561	27.43	30.48	3.05	100	1219	293	< .3		
	Disseminated chalcopyrite and traces of bornite are noted in weak										
	envelopes along these fractures and associated with mafic centres in the										
	core.										
	30.48 - 33.53 As described above. Several 20-30° fractures are filled with					400	4047	275	< .3	5	
	2-3 mm of coarse biotite with extensive malachite staining.	C 117562	30.48	33.53	3.05	100	1217	2/3			
	33.53 - 36.57 A mixture of grey and pink syenite with some pinkish-						1004	440	0.4	4	
	orange k-feldspar rich sections, dark grey magnetite rich spots and some 45	C 117563	33.53	36.57	3.04	100	1921	116			
	- 60° fractures filled with an earthy brownish-black material to 1 cm thick,										
	plus chlorite and biotite. Where pink or grey syenite cuts through the other,					•					
	plus chionte and bloute. Where pink of gley syenite cuts unough the other,			<u> </u>							
	the gneissic texture cuts the core at 65 to 90° to core axis. Pink k-feldspar										
	rich spots also include epidote streaks with the mafic banding. Traces of							·-·		<u> </u>	
	pyrite noted with some mafics.									- 3	
	36.57 - 39.33 Very similar to that described above but with more pink	C 117564	36.57	39.33	2.76	100	1070		< .3	3	
	k-feldspar rich syenite and epidote coated 5-10° fractures (to core axis) a				-						
	few mafic-rich spots are mostly biotite.		_								
	39.33 - 42.50 Continuing pink syenite with minor grey patches. Small 2-3	C 117565	39.33	42.50	3.17	100	178	22	< .3	5	-
	mm wide grey k-feldspar and magnetite veinlets carry small amounts of										! ↓
	cubic pyrite and cut the core at 45° to core axis. Low angle fractures carry						<u> </u>	<u> </u>			<u> </u>
	epidote and chlorite coatings, fractures oriented at 10-15° to core axis.										
	42.50 - 42.80 Greyish pink syenite as described above.	C 117566	42.50	44.46	1.96	100	159	17	< .3	< 2	
	42.80 - 44.46 Very coarse-grained to pegmatic pink to rusty orange								ļ		<u> </u>
	k-feldspar. Contains 3-5% magnetite blebs to 5 mm.			.		·	1	÷			
	44.46 - 45.72 Run begins with an irregular hornfelsic contact zone in	C 117567	44.46	45.72	1.26	100	1899	171	0.7	8	
	which there are rapid changes between fine and coarse-grained mafic rich								<u> </u>		ł
	(magnetite and biotite) and rusty zones. Broken up by many irregular								ļ		_─
	fractures. Dark, fine-grained patches are mineralized with several percent							·	ļ ·	·	
	cubic pyrite, trace chalcopyrite. Balance of run (after 45.00) is grey-pink							. ·	<i></i>		
	syenite with 30-40% chlorite and biotite mafic spots. Low angle (0-10° to										
	core axis) are slightly limonitic and carry small spots of chalcocite.							L	+		
	4572 - 48.77 Grevish-pink syenite as described above after 40 cm of	C 117568	45.72	48.77	3.05	100	459	35	< .3	2	
	finer-grained mafic rich melanocratic syenite. This initial section is rusty									Ļ	
	coloured but only traces of pyrite are noted. Balance of run is grey-pink										· •
	syenite cut in several places at 90° to core axis by bands of epidote and fine				· ·						
· ·	grained biotite and magnetite.								:	ļ	
	48.77 - 51.82 Greyish pink syenite as noted above. Traces of	C 117569	48.77	51.82	2 3.05	100	1405	82	< .3	4	<u>ا</u>
	disseminated chalcopyrite. Low angle fractures (0-10° to core axis) are									L	<u>.</u>
	$_{}$ disseminated charcopyrite. Low angle fractures (0-10 to core axis) are coated with limonite and minor malachite \pm chalcocite.							T			1 <u> </u>
			• •• •••••		•			1		<u> </u>	
		1- ·			• • • • • • • •	I	1	1			1

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 3 of 12

FOOTAGE (metres)			SAMPLES			Rec.			ASSAYS		
ronn (m) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	T0 (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (p
	51.82 - 54.86 Greyish pink syenite. As described above, becoming more	C 117570	51.82	54.86	3.04	100	2394	77	1.3	< 2	
	finer grained and idiomorphic. Magnetite content increasing to 2-3% with				<u> </u>				i		
	depth. Disseminated tiny specks of chalcopyrite to 0.5%, malachite, \pm										
	chalcocite and limonite stains common on low angle fractures, about 5-10°	i			•						
	to core axis. More mafic-rich toward bottom of run.			-	I						
	54.86 - 57.91 Grey syenite, varying to pink syenite as described above.	C 117571	54.86	57.91	3.05	100	1821	74	0.9	< 2	
	Minor to 0.25% specks of disseminated chalcopyrite. Malachite and minor							·	· · · f		
· · · ·											
	- chalcocite on 0-30° to core axis fracture surfaces.		+		·						
	57.91 - 60.00 Grey syenite as described above with a 50 cm section of				}·						
	coarser pinkish-orange syenite at the bottom of run. 2-4% epidote through	C 117572	57.91	60.00	2.09	100	4531	226	2.0	13	
· ·	most of run. Minor tiny disseminated specks of chalcopyrite, but less than										
	above. Malachite and minor limonite on 30° to core axis fracture surfaces.										
	60.00 - 64.08 Grey syenite with pink patches, similar to above but more	C 117573	60.00	63.64	3.64	100	2173	127	1.0	2	
	- mafic-rich, darker grey tone, more fine disseminated magnetite, and a finer -	C 117574	63.64	64.08		100	2194	47	0.8	2	
	commonly in the dark grey syenitic phase. Locally reaches 2-3%, average				<u> </u>						
	for run closer to 0.5-1.0%.				i						
	64.08 - 67.06 Pink syenite becoming more grey toward bottom of run,	C 117575	64.08	67.06	2.98	100	1932	61	0.7	10	
	also finer-grained, and idiomorphic. Strongly magnetic with grey areas.										
	 Patchy disseminated chalcopyrite mineralization. Locally reaches 2%, trace 				<u>}-</u> —						
·	- pyrite.	C 117576	67.06	70.10	3.04	100	1239	25	0.5	< 2	
	67.06 - 70.10 Pink and grey syenite. Very similar to that described										
	above. Patchy disseminated mineralization, largely chalcopyrite with minor						_		- ·		
	-amounts of pyrite, is concentrated in the grey magnetite-rich syenite, which										
· · · · · · · · · · · · · · · ·	is most common toward the bottom of the run. Chalcopyrite locally reaches										
	2-3%. Mafic-rich section (15 cm) at bottom of run is mineralized with larger			· · · - · · · · · · · · · · · · · · · ·					·		
	—blebs of chalcopyrite which appears to be fracture controlled (45 to 60 $^{\circ}$ to	——			++						
· · · · · · · · · · · · · · · · · · ·	-core axis).				2						-
	70.10 - 73.15 Grey syenite with coarse-grained pinkish-orange k-feldspar	C 117577	70.10	73.15	3.05	100	1941	29	1.2	< 2	
	patches and overprints. Initial grey section of 30 cm contains 2-3%	0 11/3//	<u> </u>	10.10	0.00		1041				
	- chalcopyrite, mostly in 45-90° to core axis fractures, minor fracture				t						
	controlled pyrite and minor disseminated chalcopyrite. Irregular k-feldspar			-							
	$-(\pm$ quartz) veinlets to 50 mm contain blebs of magnetite and chalcopyrite,				<u>├</u> ─- +						
	and separate the grey from pink syenite. Pink syenite contains 1-2%	ļ			<u>. </u>						
			+								
·	alternates between pink and grey syenite both of which are mineralized with	· · · · · ·					··			·	
	disseminated and fracture controlled chalcopyrite to 1%. Minor pyrite,										
· · · · · · · · · · · · · · · · · · ·	mostly associated with steep fractures.	——— I			+						
··· + ·	73.15 - 76.99 Similar to that described above but with more contrast	C 117578	73.15	76.99	3.84	100	1580	73	1.3	< 2	
- <u>+</u>	-between orangish-pink and grey syenite sections. Almost entire run is	0 1110/0	13.13	10.00	0.04			····· · · ·			⊨
	-broken up by irregular and both high and low angle fractures marked by		· _		i			· · ·-			
· · · · · · · · · · · · · · · · · · ·	thin seams of chlorite, calcite <u>+</u> quartz. Blebs of chalcopyrite and lesser	———			ff				{		•
	pyrite are controlled by the fractures with the mineralization forming		• •	•	<u>+</u> ··─−						
· · · · · · · · · · · · · · · · · · ·	selvages within the veins or within weak envelopes. On average, run	·			<u>+</u> +		·				
	contains about 1-2% chalcopyrite and 0.5 to 1.0% pyrite. Sections of dark										

Page: 4 of 12

Lorraine Project Diamond Drill Log DDH: 2001-55

FOOTAGE (metres)			SAMPLES			Rec.			ASSAYS		
om (m) To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppl
	syenite contain about 1% disseminated chalcopyrite.	0.447570	70.00	79.25	2.26	95	1976	151	2.6	2	
	76.99 - 79.25 Interval of limonitic pink syenite terminating in a broken up	C 117579	76.99	79.25	2.20	80	1910	151		2	·
	earthy, limonite-rich section at the bottom of the run (a fault?). Many	+									
	irregular fractures, steeper ones tend to carry blebs of chalcopyrite.									"	
	Terminal zone at bottom includes bleaching, weak clay alteration and minor									······································	
	silicification. Disseminated blebs of chalcopyrite still present, however most										
	blebs are larger than in above runs, and are associated with mafic centres.				. į						
	79.25 - 82.39 As described above, especially lower section of last run	C 117580	79.25	82.39	3.14	99	2461	105	1.3	4	
	above. Strongly limonitic and fractured with bleaching + clay alteration.										
	Extensive limonite and minor malachite on low angle fractures $(0-20^{\circ} \text{ to})$										·- ·
	core axis) parts of the last 1.5 metres are grey and pink syenite showing			·	ļ						·
	less alteration and containing disseminated and fracture controlled										
	- 82.39 - 85.34 Pink and grey syenite showing many irregular breakage and	C 117581	82.39	85.34	2.95	100	2488	125	1.9	2	
								,	- <u>-</u>		
	fractures. A 5 mm 45° to core axis k-feldspar vein near top of run carries										
	blebs of chalcopyrite. Weak disseminated chalcopyrite continues but										
	strongly mineralized near steep fractures (60-80° to core axis) and irregular					-	-				
	coarse magnetite. Fractures, 0-30° to core axis, commonly carry limonite										
	and malachite <u>+</u> chalcocite.										
	85.34 - 88.39 Grey, fine to medium grained idiomorphic syenite showing	C 117582	85.34	88.39	3.05	100	1921	96	0.8	< 2	
471.1	extensive epidote alteration both on fractures and as small patches. Run										
	appears hornfelsed. Small malachite specks suggest prior copper sulphide										i
	mineralization. Low angle fractures (0-30° to core axis) are coated with										
	limonite, hematite and malachite. From 86.32 to 86.86 is a coarse to										
	pegmatitic k-feldspar dyke.										ĺ
	88.39 - 90.00 As described above; grey, epidote altered syenite.										
	90.00 - 90.59 Mafic-rich, biotite syenite. Biotite comprises 65% to 80%	C 117583	88.39	91.44	3.05	100	1205	66	<.3	3	
	of core, generally 2-4 mm in size. Trace chalcopyrite. 10-15% chlorite.									1	
	90.59 - 91.44 Pink and grey, epidote altered syenite as described above.	-									
	91.44 - 94.49 An interval of pink and grey syenite showing considerable	C 117584	91.44	94,49	3.05	100	1309	87	0.5	< 2	
	variation in grain size, and epidote alteration. Coarse magnetite veining and										
	clumps are common, do not appear to be related to mineralization.		+-	· ·· <u></u>				•			
_	Malachite staining visible on many fracture surfaces, some of which include								ł	· · ·	
	magnetite as a fracture filling. Most fractures are high angle > 60° to core								t		i
	axis.							•	<u> </u>		
	94.49 - 97.22 Pink k-feldspar-rich syenite showing variable epidote	C 117585	94.49	97.22	2.73	100	1726	81	1.2	3	
·	alteration which is often truncated by 45-60° to core axis fractures and is in	C 117303	34.43		2.75					-	
			· · ··			· ···		<u>├</u> · <u>-</u> -			
	turn cut by k-feldspar veinlets at 45° to core axis. Fracture surfaces			······ ·				<u></u>		; -	
	commonly coated with limonite, hematite and minor malachite.	0.447500	07.00	400 50	2.25	100	2500	137	1.4		+
	97.22 - 97.78 A short interval of biotite-pyroxenite which contains 15-	C 117586	97.22	100.58	3.36	100	2580	13/	· ^{1,4}		+
· · · · · · · · · · · · · · · · · · ·	20% grey k-feldspar. Interval not considered significant enough to break				┥∔		 ···	+	<u> </u> · · ·	+	
	out as a separate unit. Very similar to mafic-rich syenite at 90.00 to 90.59.		;		. ! }	·	ł		÷	+	ļ
	Again biotite rich but contains 40-60% unaltered pyroxene and little chlorite						L		ļ	£	
	alteration. Mineralized with 1-2% blebs of chalcopyrite and 0.5 to 1% of				· ·				1		

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 5 of 12

				SAMPLES			Rec.			ASSAYS		
FOOTAGE (r		LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
From (m)	To (m)	bornite. Contact with syenite above at 70° to core axis. Low angle fractures at bottom of unit are coated with limonite, hematite and small amounts of malachite. Magnetite veinlets near irregular lower contact. 97.78 - 100.58 Epidote altered syenite as described above. A large amount of variability between pink and grey phases of syenite. 100.58 - 103.63 Grey and pink syenite showing variation between grain sizes and pink and grey phases. Distinct from epidote altered syenite above, contact is from 100.30 to 100.50 with low angle fractures coated with hematite forming the contact. This run is not epidote altered, but contains small lenses and wisps of pyroxenite (sub-migmatitic?) containing blebs of chalcopyrite and bornite. Irregular magnetite veinlets cut through this interval to 1 cm wide, sometimes with pyroxenite / biotite chlorite selvages which are mineralized with chalcopyrite and bornite. Weak	C 117587	100.58	103.63			2872	247	1.8	11	
		servages which are mineralized with chalcopyrite and bornite. Weak mineralized envelopes also exist of disseminated chalcopyrite and bornite. 103.63 - 106.68 Grey syenite varying to mafic-rich syenite over short intervals, includes a short section of pink syenite showing epidote alteration at the bottom of run. Grey syenite has large angular patches (fragments?) of magnetite to 4 cm. Small patches of pyroxenite in contact with the magnetite patches / veins are mineralized with disseminated chalcopyrite and minor bornite. In a couple of spots small bits of pyroxenite display net- textured chalcopyrite enclosing pyroxene grains. Disseminated specks of chalcopyrite are common in some spots but overall patchy. Some magnetite veinlets cut the core at 60-70° to core axis. Weakly developed pink k- feldspar alteration envelopes cut the core at 20-30°, and 45 to 60° and are unmineralized.	C 117588		106.68	3.05	100	2031	103	1.1	4	
	25.09	MELANOCRATIC SYENITE and PYROXENITE - mafic-rich with gradations to and from pyroxenite interval includes sections of grey syenite and pyroxenite but in overall more mafic than the mesocratic intervals above. 106.68 - 109.72 Mafic-rich syenite verging on pyroxenite. K-feldspar content varies from 20% to 50%, pyroxene 40-80%, generally as euhedral prisms. Coarse-grained biotite 5-10%. Core in general has a hypidiomorphic texture with k-feldspar interstitial to pyroxene. In grey syenitic sections pyroxene is often chlorite altered. Mafic-rich (60 to 80%) sections are mineralized with disseminated clusters of chalcopyrite and	C 117589	106.68	109.7	2 3.04	100	2166	3 121 	3 0.5	2 11	
		 bornite blebs, running at about 1-2% chalcopyrite and 0.5 to 1.0% bornite. Coarse-grained masses of magnetite (to 4 cm) have associated along their margins masses of chlorite <u>+</u> chalcopyrite and bornite. Moderately to intensely magnetic. 109.72 - 111.43 Very similar to above. Mafic-rich idiomorphic syenite grading into hypidiomorphic pyroxene-rich syenite and feldspar rich pyroxenite. Continuing to be well mineralized with chalcopyrite which is more disseminated and fine-grained in the grey syenite. Mafic centres are more strongly mineralized with larger blebs of chalcopyrite. Some of the 	C 117590	109.72	 111.4	3 1.71	100	2093	3 7.	B 0.1		4

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 6 of 12

FOOTAGE (metres)			SAMPLES	: :		Rec.			ASSAYS		
From (m) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
	mafic centres appear to be partly assimilated bits of chlorite-altered										
	pyroxenite. These "pyroxenitic" pieces have sulphide blebs (50-80%							· ·		· · · · · · · · · · · · · · · · · · ·	<u>. </u>
	chalcopyrite, 20-50% bornite) that displays weak "net" cumulate textures.			······································					·	+	<u> </u>
	In the syenite itself (outside the pyroxenite / mafic centres) there are only									<u>↓</u> ··	·
	traces of bomite.										
	111.43 - 112.78 Mafic (pyroxene and biotite) rich syenite as described					400		165	1.9	12	34
	above, but more mafic. Hypidiomorphic texture with euhedral 0.5-1.0 mm	C 117591	111.43	112.78	1.35	100	2469	100	1.9	12	
	pyroxene, 10-15% coarse biotite and interstitial feldspar. Patchy weak		·							₋	
	chlorite alteration of pyroxene. 1% chalcopyrite and 1% bornite, both as										
	disseminated blebs, some of which show net-textures.								l	·	•
	112.78 - 114.32 Pink and grey syenite showing variable epidote					400	4010	81	0.8	5	
	alteration, especially in first 50 cm, although patches exist throughout.	C 117592	112.78	116.27	3.49	100	1819	01	0.0		
	Minor amounts of sulphide present as tiny disseminated specks, mostly								·	· ····	
	pyrite. Orange k-feldspar veinlets, 1-2 mm wide, oriented at 35-45° to core								····	+	
	Taxis, have associated pyrite, some of which is cubic.			~	-						
	114.32 - 114.70 Mafic-rich syenite very similar to that between 111.43 to				-						•
	112.78. Pervasive chlorite alteration but not texture destructive. Well										
	mineralized with 1-2% of both chalcopyrite and bornite.										-
	114.70 - 116.27 Pink and grey syenite with some variation between grain								÷		
	size and magnetite content. A 4 mm wide, 60° to core axis k-feldspar vein				<u> </u>		·	~··		· ·	
	contain large blebs of chalcopyrite. Patchy disseminated chalcopyrite in										
	minor amounts. Includes a few mafic rich spots and patches of pyroxenite									· ····	
	which are mineralized with chalcopyrite and bornite as above.				ł		 				
	116.27 - 117.88 Pyroxenite and magnetite-rich interval which shows										1
	patchy weak chlorite alteration and variations between hypidiomorphic	C 117593	116.27	117.88	1.61	100	739	36	< .3	3	
	pyroxenite and massive idiomorphic pyroxenite. Mineralized as above with	C 11/593	110.27	117.00	1.01	100	/00				
	small disseminated patches of chalcopyrite and bornite, except with most	··				~	·		+ • • • • • • • • • • • • • • • • • • •		1
	mafic parts where chalcopyrite reaches 5% and displays primary net-		· · · · · ·								+
	textures. Some tiny 1 mm quartz stringers cut core at 80° to core axis and										-
	have associated cubic pyrite.							-	· · · · · · · · · · · · · · · · · · ·	<u>+</u> · ··-	· · ·
	117.88 - 119.26 Pinkish grey syenite showing pervasive chlorite-epidote		·		<u>i</u>	•					
	alteration. Originally quite mafic (pyroxene) rich in spots. Moderately	C 117594	117.88	119.26	1.38	100	4472	200	3.4	14	. 4
	magnetic, hematite stain on many low angle surfaces.	011/354	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	110.20	1.00						
· · · · · · · · · · · · · · · · ·	119.26 - 122.12 Grey mafic rich syenite showing weak patchy chlorite					· · · · · · · · · · · · · · · · · · ·			· ·	•··	+
	alteration and numerous magnetite veinlets and patches. Minor epidote	C 117595	119.26	122.12	2.86	100	2518	109	0.8		3
	alteration. Low angle (0-10° to core axis) fractures are very limonitic and						•			+	
	contain minor malachite spots.	·_···						†	<u> </u>		
- · · · · · · · · · · · · · · · · · · ·	122.12 - 125.09 Biotite pyroxenite with minor variations to mafic-rich							· · · · ·			
	syenite and magnetite-rich pyroxenite. Run begins with 15 cm of magnetite	C 117596	122.12	125.09	2.97	100	4434	411	2.8	s [±]	3
	(fine-grained) rich pyroxenite with up to 5% chalcopyrite. Followed by	÷ 111000			+- - · · ·		†	<u> </u>	1		1
	pyroxenite grading in and out of mafic rich syenite several times, essentially		} ·∔·					· · · · ·	· · · · · · · · · · · · · · · · · · ·		1
	variations in feldspar content from 5-10% to 15-20%. More mafic parts are	L · · ·			1		· [· ·	+			
	mineralized with 1-2% chalcopyrite, 2-3% bornite. While mafic rich syenite		<u></u>		+		t	·	1		+
	runs at 0.5-1.0% chalcopyrite and minor to traces of bornite. Net textures		······					1	-+	• • • • • • •	
	-	·	• •	·	+		+		1	t	·

Page: 7 of 12

ł

Lorraine Project Diamond Drill Log DDH: 2001-55

FOOTA	GE (metres)			SAMPLES	;		Rec.			ASSAYS		
From (m)	To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		common with sulphide-rich parts. Magnetite is quite variable, mafic-rich syenite is only weakly magnetic. Small pink syenite zones and veinlets cut across core at 70 to 90° to core axis.								· · · · · · · · · · · · · · · · · · ·		
125.09	131.06	LEUCOCRATIC SYENITE - medium-coarse grained white syenite with up to 10% quartz. Contact with biotite-pyroxenite above in abrupt, but somewhat irregular at an average of about 5° to core axis. 125.09 - 128.02 Run includes low angle contact to 125.20 and light grey zone to 126.30, light limonitic tone to 126.50. The pyroxenite is mineralized	C 117597	125.09	128.02	2.93	100	928	56	0.3	< 2	
		with chalcopyrite and bornite blebs as noted above. The contact zone or grey syenite is weakly mineralized with disseminated chalcopyrite and the leucocratic syenite is not mineralized.	· · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·							
		128.02 - 131.06 Leucocratic syenite as described above. Non-magnetic. Some degraded mafic centres (5%) of chlorite <u>+</u> pyroxene <u>+</u> biotite have hematite oxidation rims. Run includes a 4 cm piece of biotite-pyroxenite.	C 117598	128.02	131.06	3.04	100	54		< .3	< 2	<u>-</u>
131.06	141.28	BIOTITE PYROXENITE - includes several intervals of leucocratic syenite. Contact with leucocratic syenite above is sharp but low angle, about 5° to core axis. Pyroxenite shows little alteration, only weak and discontinuous						· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
		chlorite alteration of pyroxene. 131.06 - 134.12 Biotite pyroxenite with low angle contact extending to 131.50 and with additional leucocratic syenite at 133.28 to 133.28 which is a narrow, low angle interval. Pyroxenite is well mineralized for first metre and decreasing to about 132.50. Mineralization consists of blebs of chalcopyrite and bornite as above, some of which displays net textures, decreases to minor disseminated chalcopyrite specks. Magnetic, especially	C 117599	131.06	134.12	3.06	100	3130		5 1.5 		
		 magnetite rich at beginning of run. A few low angle (0-5° to core axis) fractures carry chalcopyrite. 134.12 - 135.90 Biotite pyroxenite as described above, patchy small blebs of chalcopyrite and bornite mineralization overall yields a low average mineralization. 135.90 - 136.75 Leucocratic syenite as described above. Contains a few 	C 117600	134.12	137.16	3.04	100) 1925	5 12:	2 1.0		
		 blebs of interstitial chalcopyrite. 136.75 - 137.16 Biotite pyroxenite. Well mineralized with 2-3% combined bornite and chalcopyrite as disseminated blebs. 137.16 - 138.00 Biotite pyroxenite. Well mineralized with 4-6% chalcopyrite, bornite and covellite for first approximately 10 cm then drops off to just a trace where the pyroxenite becomes biotite rich. A low angle (0-5° to core axis) k-feldspar vein 3-8 mm wide carries chalcopyrite and minor blebs of chalcopyrite in a weakly developed envelope. 	C 117601	137.16	139.97	2.81	100	0 3668	<u>B</u> 17	9 2.7	1 11	0

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 8 of 12

FOOTAG	E (metres)			SAMPLES	;		Rec.			ASSAYS		
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		138.00 - 139.19 Leucocratic syenite as described above, both top and bottom contacts are at low angles (about 5° to core axis). Quartz content (often as sub-euhedral eyes) has increased to about 20% = quartz syenite. Lower contact is quite chloritic. Traces of chalcopyrite as tiny specks, in what may actually be weak sulphide envelopes along a 30° to core axis										
		fracture. 139.19 - 139.97 Biotite pyroxenite mineralized with large blebs of net- textures sulphide-mixture of chalcopyrite and bornite. Run terminates with 6 cm of leucocratic syenite. Well mineralized parts of the biotite-pyroxenite are magnetite rich (fine-grained about 5%?).	C 117602	139.97	141.28	1.31	100	5604	303	4.1	17	5
		139.97 - 141.28 Biotite pyroxenite which is well mineralized with chalcopyrite and bornite blebs, often showing net-textures. Bornite is often associated with chalcopyrite but not always. Patchy weak chlorite alteration of pyroxene.			· · · · · · · · · · · · · · · · · · ·							······································
41.28	155.63	MESOCRATIC SYENITE - pink and grey medium-grained syenite with										
		several short intervals and patches of biotite-pyroxenite. 141.28 - 143.26 Greyish-pink syenite showing variable epidote and chlorite alteration. Disseminated chalcopyrite specks, especially in grey areas, average about 0.5%. Low angle (about 10° to core axis) fracture	C 117603	141.28	143.26	1.98	100	2620	265	1.6	2	
·		surfaces are coated with limonite. Pyrite associated with some 45° to core axis fractures. Minor sericite with epidote alteration. 143.26 - 146.30 Greyish pink syenite as described above. Weakly mineralized with chalcopyrite, especially in grey coloured, more mafic-rich	C 117604	143.26		3.04	100	2076	119	1.3	3	
·····		and magnetite-rich sections. Orangish-pink patches, weakly defined alteration envelopes at 45° to core axis (?) are not mineralized. Lower part of run has chalky-white feldspars, possibly some clay alteration. Weak							+ - 		·····	
· · · · · · · · · · · · · · · · · · ·		gneissic texture at 45° to core axis. 146.30 - 147.56 Variable grey and pink syenite as described above. Weakly mineralized with disseminated chalcopyrite and bornite. Both in								 		
		 weakly mineralized with disseminated chalcopyrite and bornite. Both in minor amounts. 147.56 - 148.04 Biotite pyroxenite. Well mineralized with 2-3% blebs of chalcopyrite, 1-2% bornite, traces of covellite. Although blebs are disseminated, some are large enough to coalesce into patches. Magnetite rich. 	C 117605			3.47	100	3863	262	2.5	7	1
		 148.04 - 149.26 Grey and pink syenite as described above, weakly mineralized with disseminated specks of chalcopyrite. 149.26 - 149.55 Biotite pyroxenite with disseminated 1-2% chalcopyrite and 1% bornite. Fine-grained magnetite rich. 149.55 - 149.77 Grey syenite massive epidote and biotite pyroxenite as 						· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·	
	-+	described above. 149.77 - 152.40 Pinkish grey syenite. As described above. Initial metre of run is broken, limonitic and includes fragments of completely chloritized	C 117606	149.77	152.40	2.63	100	3494	331	2.9	4	

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 9 of 12

FOOTAC	E (motroe)			SAMPLES	s		Rec.			ASSAYS	·	
FOOTAG	E (metres) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		pyroxenite (with chalcopyrite-bornite mineralization). Syenite is mineralized with patchy but moderate to strongly chalcopyrite-bornite mineralization. Locally reaches 3-4% but overall probably closer to 0.5%. Bornite						···	· · ·		- · ·	
		associated with magnetite. 152.40 - 155.63 Pinkish-grey syenite with small patches of mafic-rich syenite / pyroxenite that are altered to chlorite-epidote and partly assimilated. No sulphides noted here. In the syenite sulphide mineralization is patchy and overall weak, especially in epidote altered areas. Pyrite is associated with some vague fractures or weak alteration cutting core at 80-90° to core axis. Some clay (pervasive, weak over short interval) alteration noted in feldspars.	<u>C 117607</u>	152.40	155.63	3.23		918	62		<2	7
155.63	158.68	 BIOTITE PYROXENITE - with some mesocratic grey syenite and mafic-rich syenite intervals. 155.63 - 156.15 Biotite pyroxenite patches begin this interval of variable syenite to mafic syenite. Pervasive chlorite alteration of pyroxene. No sulphides seen. 156.15 - 158.68 Biotite pyroxenite showing pervasive chlorite alteration of pyroxene. Biotite varies in grain size 1-6 mm. Initial contact zone is intensely chlorite altered and includes irregular patches of pink k-feldspar. Core is broken / ground to gravel in centre with hematite on fracture surfaces. Brecciated over a few cm with coarse pink k-feldspar as matrix (showing epidote alteration). 	C 117608		158.68	3.05	100	154	< 2	<.3	7	3
158.68	167.07	MESOCRATIC SYENITE - with sections of mafic-rich syenite and patches of chlorite-altered pyroxenite. 158.68 - 161.54 A highly variable run which includes 70 cm of chlorite altered pyroxenite with k-feldspar patches (mafic-rich syenite), a 60 cm section of orangish-pink k-feldspar, chlorite and epidote altered syenite. These essentially form a contact zone, which is followed by grey syenite. Patchy disseminated chalcopyrite is locally intense in the syenite but is overall weak. Pyrite is associated with cross-cutting fractures and weak	<u>C 117609</u>	158.68	161.54	2.86	100	1924	73	1.1	2	10
		alteration zones at 90° to core axis. 161.54 - 164.59 Grey syenite with some mafic-rich patches. Mafics are pervasively chlorite altered and patches are magnetite and chalcopyrite rich; magnetite to about 5% and chalcopyrite to about 3% in these patches of mafic rich syenite. Balance of syenite is weakly to moderately mineralized with about 0.5 to 1.0% chalcopyrite.	C 117610	161.54	164.59		100			· · · · ·		
		164.59 - 167.07 Grey syenite as described above, includes patches of pyroxenite in last 50 cm. Mineralized with disseminated tiny blebs of chalcopyrite to about 1%.	<u>C 1</u> 17611	164.59	<u> 167.07</u>	<u>2.46</u>				· · · · · · · · · · · · · · · · · · ·	+ 4	

DDH: 2001-55

Lorraine Project Diamond Drill Log

Page: 10 of 12

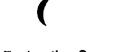
ASSAYS SAMPLES Rec. FOOTAGE (metres) LITHOLOGICAL DESCRIPTION Cu (ppm) Au (ppb) Ag (ppm) Pt (ppb) Pd (ppb) Metres % Sample # From (m) To (m) To (m) From (m) BIOTITE PYROXENITE - with local variations to mafic-rich svenite. 169.59 167.07 100 160 7 <.3 3 167.07 - 169.59 Biotite-pyroxenite showing pervasive chlorite alteration C 117612 167.07 169.59 2.52 of pyroxene. Magnetic, pyrite associated with 90° fractures to core axis. <.3 2 100 619 45 C 117613 169.59 170.73 1.14 LEUCOCRATIC QUARTZ SYENITE (169.59 - 170.73) - mafics vary 10-20% 169.59 170.73 and are pervasively chlorite altered. K-feldspars are bleached white coloured and weakly clay altered. 15-25% quartz as sub-euhedral to anhedral "eyes". 170.73 182.94 BIOTITE PYROXENITE - includes several short sections of leucocratic svenite. Pyroxenes show pervasive but weak chlorite alteration. 3.01 100 11 7 <.3 4 < 2 C 117614 170.73 173.74 170.73 - 173.74 Biotite pyroxenite as above, no sulphides seen. 7 <.3 3.04 100 10 < 2 C 117615 173.74 176.78 173.74 - 176.78 Biotite pyroxenite as above. No sulphides seen. Run includes two 15-20 cm sections of unmineralized pink-k-feldspar rich syenite. 47 <.3 7 C 117616 176.78 179.83 3.05 100 3 176.78 - 179.83 Bi-pyroxenite as described above. A 2-4 cm thick pink k-feldspar rich syenite (epidote altered) cuts core at 10-15° to core axis. <.3 6 < 2 182.94 3.11 98 113 2 C 117617 179.83 179.83 - 182.94 Biotite pyroxenite with coarse biotite as described above Broken and ground core at 182.80 along with a "weathered-looking" surface suggest a fault. Biotite pyroxenite below "fault" is finer grained, contains about 1% disseminated chalcopyrite. MESOCRATIC SYENITE - with some short sections of biotite pyroxenite and 182.94 199.86 mafic rich syenite. Pink and grey medium grained syenite showing variable, patchy epidote and chlorite alteration and variable magnetite content. 0.8 < 2 100 1205 44 C 117618 182.94 185.93 2.99 **182.94 - 185.93** Grey syenite with mafic rich and pyroxenite sections along with orange k-feldspar alteration cross cutting at 60° to core axis. Patchy disseminated chalcopyrite locally reaches 1-2% but average is much less. 100 1093 52 <.3 2 3.05 C 117619 185.93 188.98 185.93 - 188.98 Grey syenite with pink patches and cross cutting bands (alteration envelopes around annealed fractures?). At 40-70° to core axis sub-parallel alignment of mafics streaks (chlorite altered pyroxene, biotite and magnetite) gives a gneissic or migmatitic appearance, although this is not continuous or consistent over more than a metre. Disseminated small blebs of chalcopyrite are common throughout run but rarely exceed 1% and overall averages less than 0.5%. 100 278 13 < .3 C 117620 3.04 188.98 192.02 188.98 - 192.02 Grevish pink to pink syenite with a weakly developed gneissic texture in a few spots. Weakly mineralized with some small specks of chalcopyrite. Moderately magnetic. Minor patches of epidote and chlorite also clay alteration along some 30° to core axis fractures and minor carbonate.

Page: 11 of 12

Lorraine Project Diamond Drill Log DDH: 2001-55

FOOTA	GE (metres)	LITHOLOGICAL DESCRIPTION		SAMPLES			Rec.			ASSAYS		
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (opb)	Pd (ppb)
	· · · · · · · · · · · · · · · · · · ·	192.02 - 192.87 Greyish pink syenite cross-cutting pinkish-orange	0.447004	400.00	405.07	2.05	100	624	42	0.3	6	
		k-feldspar, and epidote-chlorite bands are oriented at 65° to core axis.	C 117621	192.02	195.07	3.05	100	024	42	. 0.5	0	<u> </u>
		Disseminated specks of chalcopyrite locally reach 1-2% but are only of				·{				· ·		
		minor importance overall.			·				<u> </u>			<u>-</u> .
		192.87 - 193.03 Biotite-k-feldspar pyroxenite (mafic rich syenite?) a short										<u>+-</u>
		interval showing pervasive chlorite alteration. No sulphides.				.i+		<u> </u>	· · · -			
		193.03 - 195.07 Pink syenite with grey gneissic streaks at 30-45° to core		+		÷+						
		axis small blebs of chalcopyrite associated with grey patches and mafic				÷ +		<u> </u>				
		centres. Patchy epidote alteration becoming more common toward bottom				4 4				+		<u> </u>
		-of run.				+						· · ·
<u></u>	.]	195.07 - 195.89 Pink syenite with several mafic-rich patches				+ +				0.4	< 2	
		(pyroxenite). Patchy epidote alteration even through mafic rich sections.	C 117622	195.07	198.12	3,05	100	348	21	0.4	~ 2	
		Pyroxene is pervasively chlorite altered.						ļ				
		195.89 - 196.38 Biotite pyroxenite showing pervasive but non-texture				<u> </u>						
		destructive chlorite alteration of pyroxenes. Very biotite-rich. Epidote				-						
		alteration of k-feldspar. No sulphides.						·		+		
		196.38 - 198.12 Pinkish grey syenite with patchy epidote alteration.				<u> </u>						
		Mineralized with patches of disseminated chalcopyrite, most commonly	_			·		<u> </u>		1		
		associated with grey magnetite rich spots and not associated with epidote				<u>∔</u> ··+						
		altered spots.		100.10	400.00		100	388	107	1.0	3	
		198.12 - 199.86 Grey syenite with pink patches, weak disseminated	C 117623	198.12	199.86	1.74	100	300	107	1.0	3	
		specks of chalcopyrite in a few spots. Cubic pyrite associated with pink k-				+ ·+	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					+ ·
		-feldspar zones that cut core at 45-60° to core axis. Also with an irregular						1	+			·
		white quartz-feldspar veinlet that averages about 10° to core axis. Pyrite in			·	+ +				+		Ì
		-this veinlet averages about 5%.				+ +						
		_				+					· · · ·	
		-			·	+ ł		·				
						+ +						
199.86	201.56	BIOTITE PYROXENITE - similar to that described above.	C 117624	199.86	201.56	š <u>1.70</u>	100	30		2 <.3	8	
		199.86 - 201.56 Biotite pyroxenite showing pervasive chlorite alteration of pyroxene. Some k-feldspar-rich zones cross-cut core at high angles (70-		100.00		. 1.10		<u> </u>			⊨	· ·
					· · · · _ ·				·			· ·
	:	90° to core axis). No sulphides seen.			·	++						
												1 ···
201.56	207.56	MAFIC RICH SYENITE - mafic-rich (pyroxenite) syenite with variations to									ļ	<u> </u>
	+	pink mesocratic syenite over short intervals.							ļ		-	<u> </u>
		201.56 - 202.77 Pink mesocratic syenite which includes several mafic-rich	C 117625	201.56	204.22	2 2.66	100	386	8 20) < ,3	2	2
		patches and pieces of pyroxenite. This section is idiomorphic, but some of	l									1
		the k-feldspars are up to 2 cm long. Near the bottom of this interval are				i						1
		blebs of chalcopyrite near the contact between the pink syenite and a						\perp $-$			L	; ; ···
		potassic-feldspar biotite rich pyroxene.						L		ļ	• •	
		202.77 - 204.22 Mafic-rich, coarse-grained syenite which has been							_ · · · ·		i -	
·		subjected to pervasive and intense chlorite alteration of pyroxene.										. .
		Composed of 30-50% k-feldspar, 15-20% biotite, and 30-50% chlorite after						1				

(



Page: 12 of 12

Lorraine Project Diamond Drill Log DDH: 2001-55

FOOTAGE (metres)	LITHOLOGICAL DESCRIPTION	Sample #	SAMPLES From (m)	; To(m)	Metres	Rec. %	Cu (ppm)	Au (ppb)	ASSAYS Ag (ppm)	Pt (ppb)	Pd (ppb)
	pyroxene. K-feldspars are generally pink, and some show moderate clay alteration. No sulphides seen. Biotite is unaltered, found as randomly oriented flakes 2-6 mm wide. 204.22 - 207.26 Mafic rich syenite as described above. Mafic content decreasing toward bottom of run (chlorite). Biotite content remains about the same. END OF HOLE.	C 117626	204.22	207.26		<u>100</u>		11	<.3	3	

Property:	Lorraine	Total Length: 298.70 m	Footage (m)	DIP TESTS Dip Measured	Dip Corrected		Start D	ate: Augu	st 25, 200	1		
Grid Cord:		Core Size: BQTW	192	-57°	_49°	i i	<u>}</u>	tion: Augu				•
Elevation:		Azimuth: 45° (GPS Corrected)	298.00		-45°	1	<u> </u>	By: Jay	· · ·			<u>+</u>
Section:	1040	Inclination: -51°		-00		1				4-19, 200	 1	<u> </u>
		2001-48. Lower Main Area. GPS Location (corrected): UTM 347334.7 E	6200652 4 N									<u></u>
	•	s deflection to right.	0200055.4 11	NAU 03) P	AD: LM-3, r	NOLE LE I	acio test	ai 298 m i	аерип, екс	ning oi wo	e	
	GE (metres)			SAMPLE		<u> </u>	Rec.	T		ASSAYS		
From (m)	To <u>(m)</u>		Sample #	From (m)		Metres		Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
0	3.05	CASING (10 feet)		· · ·		<u> </u>						
3.05	12.19	MESOCRATIC SYENITE - pink syenite showing extensive weathering, oxidation, and leaching. Limonite coats all pieces of core and all fracture: The initial "fresh" section is probably a boulder.										
		3.05 - 6.10 An altered mafic-rich grey syenite showing pervasive and intense, texture destructive chlorite-epidote alteration. Biotite unaffected Rusty contacts / rind. Probably a boulder. O/C is very limonitic, broken a limonite stained. Some surfaces appear bleached suggesting minor clay weathering.		3.05	6.10	3.05	65	726	15	0.3	2	
		6.10 - 9.14 As above, very limonitic with minor malachite and chalcocite on some surfaces. Parts of interval are reduced to soil and gravel. Competent pieces of pink syenite show limonite alteration envelopes 2 mi wide along fractures at 30° to core axis. Occasional spot of malachite. N sulphides seen.	m	6.10	9.14	3.04	90	1926	31	0.9	2	
		9.14 - 12.19 Limonite stained and in spots bleached pink syenite. Parts run are just soil and gravel. No sulphides seen. Minor malachite staining on fracture surfaces, generally all broken surfaces are covered with limon		9.14	12.19	3.05	90	1187	8	0.5	2	
12.19	21.34	MELANOCRATIC SYENITE - varying to mesocratic grey syenite. Upper pai of interval is very limonitic. 12.19 - 15.24 Much of run, especially first 1.5 metres is very limonitic,		·			·					
		both as fracture fillings and as a stain on broken surfaces. Relatively unaltered rock where seen on broken surfaces is a dark grey syenite, becoming lighter grey with depth. Limonite fracture fillings 1-2 mm thick are common on low angle fractures, 0-15° to core axis. Minor malachite of some fracture faces. Patchy disseminated sulphide through parts of the	on	12.19	15.24	3.05	96	1767		0.5	< 2	
		core, some of which is chalcopyrite. Most of core has a crumbly appearar on broken surfaces. 1% chalcopyrite toward bottom of run. 15.24 - 18.29 Grey melanocratic syenite with an intergrown idiomorphic texture mineralized with 1-2% disseminated tiny blebs of chalcopyrite. Apparent concentration near fractures marked with thin lines of biotite an or chlorite suggest some of the chalcopyrite occurs in weakly developed sulphide alteration envelopes. Lower part of run is quite broken, sulphide decreases toward bottom of run.	c 117655	15.24	18.29	3.05	100	2421	45	0.8	3	<

Page: 2 of 17

Lorraine Project Diamond Drill Log DDH: 2001-56

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

FOOTA	GE (metres)			SAMPLES			Rec.			ASSAYS		
From (m)	To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	_%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppt
		18.29 - 21.34 Grey syenite with irregular pink patches / k-feldspar	C 117656	18.29	21.34	3.05	100	2243	28	1.2	< 2	
		alteration. Grey syenite contains 25-40% fine-grained biotite. Minor										
		disseminated chalcopyrite, preferentially in the grey parts in the top of the										
		run. Lower part of run is very broken and limonitic.							<u>-</u>			
				_						· ·		
34	63.18	MESOCRATIC SYENITE	0.447067			3.04	100	1961	21	0.6	2	
		21.34 - 24.38 Pink syenite with mesocratic syenite. Numerous grey	C 117657	21.34	24.38	3.04		1901	21	0.0	E	
		patches and a few short sections of mafic rich syenite. These mafic patches				+				ł		ļ. —
		appear to be pieces of pyroxenite that have been completely overwhelmed								+		÷
		by chlorite alteration of pyroxenes. Biotite is unaffected. There is little if							·			
		any sulphide in matic spots that have been subject to massive alteration but					_			·		·
		there is some disseminated chalcopyrite in the syenite. Where the mafic										
		patches are only weakly altered they are well mineralized with disseminated							L			
		chalcopyrite. Mafic rich patches comprise about 50% of the core for about										<u> </u>
		60 cm. Most of balance of core is very broken and limonite stained.		· · ·								
		Disseminated chalcopyrite in the pink syenite is most commonly associated								1		
		with mafic centres and mafic wisps.				<u>+</u>						
		24.38 - 27.43 Pink syenite with indistinct greyish areas. Much of run is	C 117658	24.38	27.43	3.05	98	2419	32	2 0.9	< 2	
		broken and very limonitic. Low angle fractures, especially have 1-2 mm								<u>+</u>		
		Droken and very innomitic. Low angle fractures, especially have 1 2 min										+
		thick deposits of limonite (\pm jarosite?), on fractures at 0-10° to core axis.			<u>.</u>					+		1
		Pink / greyish syenite is mineralized with disseminated chalcopyrite, locally					•					1
	1	to 1-2% over few cm, average less than 0.5%.							19	0.6		1
		27.43 - 30.48 Mesocratic pink syenite as above, but developing a darker	C 117659	27.43	30.48	3.05	100	2045	18			
	1	grey tone with depth. Bright pink patches may be an alteration feature,				$ \rightarrow $			<u> </u>	-+		
		area fairly irregular in shape but seems to trend / cut core at a lower angle				} 						
		about 10-20° to core axis. Patchy disseminated sulphide to about 1%,									L ·	∔- —
		roughly 60% chalcopyrite 40% pyrite.										
		30.48 - 33.53 Grey syenite, with a very intergrown, idiomorphic texture.	C 117660	30.48	33.53	3.05	100	430	<u> </u>	5; <u> </u>	< 2	2
		Medium grained, looks slightly hornfelsed. Mineralized with disseminated										
		minor amounts of pyrite and chalcopyrite. Strongly magnetic. Mafics are	· · ·									T.
		biotite and chlorite blebs.							1		+	
		33.53 - 36.58 Greyish pink syenite as described above. Magnetic,	C 117661	33.53	36.58	3.05	100	372		9; <.3	4	t i
		33.53 - 36.58 Greyish plink syenite as described above. Hagheuc,								+		
		mineralized with minor (about 0.25%) cubic pyrite and small amounts of						·		+		-
		chalcopyrite, one patch 2-3 cm long runs 2% chalcopyrite.		36.58	39.62	3.04	100	898	3	2 0.5	<	,
		36.58 - 39.62 As described above, with a gradual increase in	C 117662	30.56	39.02	3.04		030	· · · · · · · · · · · · · · · · · · ·	<u> </u>		-
		disseminated chalcopyrite to 0.5-1.0%. Minor amounts of pyrite still		⊧	· ·						·	
		present. Continuing magnetic.	· ·						<u> </u>		<u> </u>	,i
		39.62 - 42.67 Greyish pink syenite with grey patches, which are usually	C 117663	39.62	42.67	3.05	100	1476	i 2	8 0.6	<u> <</u> :	<u>د</u>
	·	finer-grained, and contain a higher percentage of fine-grained biotite and		↓				_ −	+ ·		÷ •	
	_	magnetite. The fine grained magnetite adds to the slightly re-crystallized		i					<u> </u>		<u> </u>	
		lustre of the core. Grey areas are better mineralized than pinkish areas.		1							<u> </u>	
		Disseminated chalcopyrite reaches about 1%. Minor continuing pyrite.										
	·	Cross-cutting pink zones appear to be alteration envelopes and although		:		1		1				
	· · _ · _ · _ · · _ · / · · / · · / · · / _ / / _	boundaries are vague, they seem to trend at about 20-30° to core axis.		· ·								Ţ
		poundanes are vague, mey seem to trend at about 20 50 to core axis.	·			i · · ·	· ····	+	†	•	÷	*

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 3 of 17

FOOTAGE (metres)			SAMPLES			Rec.			ASSAYS		
From (m) To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (pom)	Pt (ppb)	Pd (ppb)
	42.57 . 47.42 Due basies on above but offer 50 are becomes sigh										
	42.67 - 45.13 Run begins as above but after 50 cm becomes pink coloured for most of balance of run. Mineralization is sporadic and varies	<u>C 117664</u>	42.67	45.13	2.46	100	1067	20	< .3	< 2	<
	from 2% chalcopyrite over short intervals to nil in others. The chalcopyrite			<u> </u>	+						
	is disseminated and tends to favor areas with a grey tone. There does not							L	·		
· · ·	appear to be any fracture control on the mineralization. Pink areas are very			·	i	· ·		· ·			
	pale coloured.					~		· · · · · · · · · · · · · · · · · · ·			
	45.13 - 46.87 Grey syenite with many mafic rich spots, some of which	C 117665	45.13	46.87	1.74	100	812	12	0.3	3	
	appear to be altered / assimilated fragments of biotite pyroxenite. Greyish		40.10	+0.07	1.1 4			<u>'</u>		_	· · · · · · · · · · · · · · · · · · ·
	areas have a higher percentage of grey k-feldspar, fine-grained biotite and		· ···		-	·		· 	i		
	magnetite. Also are often mineralized with 2-3% fine disseminated					·					
	chalcopyrite and pyrite. Groups of biotite form "lamellae" which help define										
	a gneissic texture, although there is no consistent direction. Part of the										
<u>_</u>	interval is not mineralized so average is about 0.5 to 1% chalcopyrite. Much										
	of the core through here has a purplish tinge on split surfaces in bright								+.·		
	sunlight. Highly magnetic.				+···		· ·				
	46.87 - 50.91 Pink syenite. Mesocratic but verging on leucocratic syenite.	C 117666	46.87	50.91	4.04	100	2387	31	1.6	< 2	<
	Very pale pink with few (about 5%) small mafics, mainly biotite. Patchy but							~			
	overall weak chalcopyrite mineralization tends to be found as disseminated										
	blebs associated with mafic-rich spots, but locally reaches 2%. Non to										
	weakly magnetic. Lower part of run is broken up, sheared with carbonate	·									
	coatings on low angle fractures (<20° to core axis) and showing some clay										
	alteration.										
	50.91 - 54.56 A highly altered interval with a variety of rock types. From	C 117667	50.91	55.81	4.90	100	5461	39	1.6	< 2	<
	50.91 to 52.33 the core is extensively sheared and broken. Low angle (0-										
	10° to core axis) fractures have thick coatings of carbonate and chlorite.		<u>.</u>								· · · · -
	The core through to 54.56 including more competent core often 52.33 has								L		
	been subjected to pervasive and moderately strong chlorite-sericite-				Ļ.			 ⊷	Ĺ		
	carbonate and pyrite alteration. Disseminated chalcopyrite is present in				Ļ ,				ļ		
	amounts to 1% but is much less than pyrite which is present in amounts up										i
	to 3-4%, Rock type appears to vary from pink syenite to mafic syenite to				İ						
	minor pyroxenite (now altered largely to chlorite). Mafic rich parts are	· ·									
	sulphide rich: 1-2% chalcopyrite, and 2-4% pyrite. Amount of chalcopyrite				· · ·			·			ļ
	appears to increase toward the bottom of interval. Also a gneissic texture is				i					-	-
	weakly evident toward the bottom. Biotite is altered to phlogopite mica in								<u> </u>		
	^a spots. Non-magnetic. 54.56 - 55.81 Syenite migmatite - which actually begins at 54.30 but first	· · ·			·					·	
	15-20 cm are sericite carbonate altered. Fabric defined by grey wisps and				ļ ;					·	
	streaks is only moderately well developed over a short interval. This effect				<u> </u>					~	
	is enhanced by lamellae of biotite. Grey wisps are made of grey k-feldspar	·			i				<u> </u>		
	and biotite, non to very weak magnetism. Heavily mineralized with 2-5%					·		ļ —	<u> </u>		L
· · · · · · · · · · · · · · · ·	disseminated blebs of chalcopyrite, minor pyrite. Migmatite oriented at 45-		·	····-		······					
4	60° to core axis. NOTE: Long sample due to missing sample break ribbon.				.1			<u>├</u>	<u>+-</u>		
	55.81 - 57.91 Pink and grey syenite with minor amounts of migmatite and										<
	- passar - assar - nik and grey systeme with minor amounts of mightable and	C 117668	55.81	57.91	2.10	100	6768	207	3.6	< 2	<
	mafic rich syenite. Much of run is heavily mineralized with 2-4%				t I						

Page: 4 of 17

Lorraine Project Diamond Drill Log DDH: 2001-56

FOOTAG	E (metres)			SAMPLES	5		Rec.	· · ·		ASSAYS		
From (m)	To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	TO (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		k-feldspar with chlorite patches have little or no chalcopyrite. A several cm wide [zone] of chlorite-altered biotite pyroxenite contain net textured chalcopyrite and bornite migmatite where oriented has a 45° to core axis direction but often it is as non-directional patches of swirls. Bornite is also found in grey syenite adjacent to mafic patches and is in contact with chalcopyrite blebs. In places where mineralization is only moderate, the			· ·		· ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
		chalcopyrite is concentrated in the grey streaks. 57.91 - 60.96 As described above, pinkish grey syenite, with a weakly developed migmatite in a few spots. Mineralization runs at about 0.5 to	C 117669	57.91	60.96	3.05	100	1930	56	<u>i</u> 1.0	3	
		1.0% chalcopyrite but is less in coarse grained sections. 60.96 - 63.18 Pink syenite as described above, but with more pinkish- orange and coarser-grained k-feldspar through lower metre or so,	C 117670	60.96	63.18	2.22	100	2523	96) 1.3	2	<:
		somewhat less chalcopyrite through this area also. Most of run is mineralized with up to 2-3% chalcopyrite and 1% bornite as disseminated blebs. Average is probably closer to 0.5 to 1.0% combined. Well mineralized sections are magnetic.										
63.18	76.20	MELANOCRATIC SYENITE - migmatitic syenite with local gradations to /		·	· · · · · · · · · · · · · · · · · · ·						+ <u> </u>	
		from pink and grey syenite, often mafic rich. 63.18 - 63.61 A very dark, fine-grained section made up of 25-35% grey k-feldspar and 65-75% fine biotite. Weakly magnetic. Very well mineralized with very fine grained disseminated 1-3% chalcopyrite and about 1%	<u>C</u> 117671	63.18	67.06	3.88	100	7627	177	7 3.3	3	
		bornite. A few pink k-feldspar bands cut through at 80-90° to core axis. 63.61 - 63.80 Pink k-feldspar band cuts through at 35-40°, somewhat irregular, only migmatite on edges is mineralized as above.								······	+	
_	· · · · · · · · · · · · · · · · · · ·	 63.80 - 64.27 Dark, biotite rich migmatite as described above. Continuing mineralized with fine-grained disseminated chalcopyrite and bornite. 64.27 - 67.06 Well developed migmatite which varies from about 65% 								+ · · + · · ·	+ ·	·
	·	pink syenite / 35% dark biotite-rich migmatite streaks to 35% pink syenite and 65% dark migmatite with occasional short intervals of 80-90% dark migmatite. Amount of mineralization is related to amount of dark								· · ·		
		migmatite, occurs as very fine disseminated blebs of chalcopyrite and bornite, usually with the biotite rich parts. Although larger blebs often appear to occur in the felsic fraction. Run averages about 1-2%									 	<u>↓</u> <u>↓</u>
·····	·	chalcopyrite, 1% bornite, minor covellite. Migmatite orientation is quite variable, often as swirls or arcs but on average cuts core at about 45° to core axis. Weakly magnetic		67.06	70.10	0 3.04	100	5079) 7	2 1.7	7	
 	· · · · · · · · · · · · · · · · · · ·	67.06 - 70.10 A darker run than above, dark migmatite comprises about 80-85% of rock. Mineralization is less consistent overall and a bit weaker to begin with. Run averages about 1% chalcopyrite, 0.5% bornite. Beginning of disseminated pyrite near bottom of run. Patchy epidote alteration	C 117672	67.06		, 3.04					· · · · · · · · · · · · · · · · · · ·	
		throughout run. 70.10 - 70.52 Dark, 90% migmatite as described above.				+			· · · · · · · ·		· · · ·	+

Page: 5 of 17

Lorraine Project Diamond Drill Log DDH: 2001-56

FOOTA	GE (metres)			SAMPLES	3		Rec.			ASSAYS		
From (m)	GE (metres) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	, To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
T IOIII (IN)					<u> </u>							
		70.52 - 70.86 Pink syenite with 10-15% migmatite oriented at about 35°	C 117673	70.10	73.15	3.05	100	6013	126	2.6	< 2	7
·		to core axis. Weakly mineralized with a few medium sized blebs of				; ;						
		chalcopyrite.							· · · · · · · · · · · · · · · · · · ·			
		70.86 - 73.15 Dark migmatite as described above, migmatite content										
		ranges from 65 to 100%, continuing well mineralized with 1-2%									=	
		disseminated blebs of chalcopyrite and 0.5% bornite. Bornite is patchy and										
		there is less of it than in runs above. This run is perhaps slightly more										
		magnetic. Traces of covellite associated with bornite.								1		
		73.15 - 75.76 Dark migmatite as described above, approximately 90%	C 117674	73.15	76.20	3.05	100	3258	42	0.9	4	2
		migmatite, the few pink patches are irregular in shape and orientation and										
		often carry coarse biotite. Continuing well mineralized with fine										
	-	disseminated chalcopyrite. Bornite more common (or more visible) when							ļ			ļ
		part of larger blebs of sulphide. Pink bands of syenite often oriented at 70				i						
		to 90° to core axis or large and meandering. Weak to moderate magnetism.									·	
		Estimate 2-3% chalcopyrite, 0.5% bornite.										
		75.76 - 76.03 Pink syenite, 5-10% biotite. Not mineralized.										
		76.03 - 76.20 Dark, 100% migmatite as described above, but more										
		weakly mineralized. About 1% chalcopyrite blebs. Trace bornite.									! 1	
											·	
76.20	88.13	MESOCRATIC SYENITE - pink and grey syenite with mixtures of the two							-	ļ		
		giving weakly developed migmatite over short intervals.										
_		76.20 - 79.25 Pink and grey syenite - Initial part of run changes from dark	C 117675	76.20	79.25	3.05	100	430	12	<.3	< 2	< 2
		migmatite to pink syenite and back again then a sheared section with							··			
		slickensides raking at 60° on a 10-20° fracture face. All in approximately 40										<u>+</u>
		cm then a change to pink syenite with a 30° foliation defined by biotite								·		
		lamellae (migmatite?). Moderately magnetic run grades several times										
		between pink and grey syenite. Minor epidote alteration as small patches.				·						
		Weakly mineralized - minor amount of disseminated chalcopyrite.							40		< 2	<2
		79.25 - 82.30 Mesocratic syenite - pink and grey syenite as described	C 117676	79.25	82.30	3.05	100	469	12	< .3		~
		above. Minor amounts of disseminated specks of pyrite and chalcopyrite.					400		3	<.3	< 2	< 2
		82.30 - 85.34 Pink and grey syenite as described above. Slight increase	C 117677	82.30	85.34	3.04	100	297	3	<u> </u>		
		in magnetite to around 0.5-1.0%, traces of sulphide. Last 40 cm of run is										1=0
		pink syenite with only 5-10% biotite.				0.70		(0)			2	<
		85.34 - 88.13 Pink syenite with a weakly developed biotite foliation in a	C 117678	85.34	88.13	2.79	100	498	21	< .3		
		few sections, usually at low angles to core axis. Sulphide mineralization has							·	•		
		increased but is patchy. Toward bottom of interval most of sulphide is								+		<u>+</u>
		chalcopyrite (0.5%) followed by minor amounts of pyrite. Last 4 cm of		·								
L		interval is mineralized dark migmatite.		<u> </u>		1 1	·	·	+	+		+
					·· ·			↓		+		· ·
								<u></u> +	· · · ·	l .		+
88.13	111.75	MELANOCRATIC SYENITE - dark grey. Biotite-rich, mostly 100% migmatite	·	- +		+ i			+		-	÷
		with small amounts of pink k-feldspar.	C 117670	00 40	91.44	3.31	100	5990	192	2.5		: >
1	!	88.13 - 91.44 Melanocratic syenite as described above. Several small	C 117679	88.13	91.44	i 3,3⊺	100		132	. <u> </u>		·, · · · · · · · · · ·

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 6 of 17

FOOTAGE (metres)	LITHOLOGICAL DESCRIPTION		SAMPLES			Rec.			ASSAYS		
rom (m) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (pp
	pink k-feldspar zones cut core at 45° and 60° but are also quite irregular.										ļ
	Interval is mineralized with 1-2% chalcopyrite and locally up to 3-4% pyrite										ļ
	as tiny disseminated specks. Overall run shows quite a bit of variation in										l
	sulphide content. Some of the chalcopyrite has been introduced /										
	remobilized along this fracture at 65 - 80° to core axis. They are marked by										
· · · · · · · · · · · · · · · · · · ·	thin lines of grey k-feldspar. The pink k-feldspar rich spots are only weakly				· · · · · · · · · · · · · · · · · · ·						1
	mineralized, and mostly with pyrite.										
	91.44 - 94.49 Melanocratic syenite (solid 100% migmatite?) as described	C 117680	91.44	94.49	3.05	100	2305	36	1.0	4	
	above but with more pink cross-cutting zones including one orange									1	
	k-feldspar rich zone. Contacts with zones are irregular. More fine-grained				+ +						
	pyrite (often as very small <0.2 mm cubes). Disseminated and as blebs										
	along fractures, chalcopyrite locally reaches 2% average closer to 0.5 to	· _ · · ·		· ·			······································			-	
	1.0%. Pyrite also partly controlled by fractures (70-80° to core axis). Lower		·					1			
	part of run (last metre) has several low angle fractures at 0-10° to core axis								<u> </u>		
	which are coated with chlorite and carbonate. Run ends with 18 cm of		+						+		+
	orange k-feldspar rich core with many small patches of mafic-rich (biotite)										
	syenite (migmatite). Possibly partly assimilated breccia fragments.	C 117681	94,49	97.54	3.05	100	4532	124	3.6	4	
	94.49 - 97.54 Run begins with about 30 cm of orange k-feldspar and grey	C 11/001	94,49	97.04	3.05	100	4002	124	5.0	7	
	syenite breccia which is broken up by a quartz-k-feldspar vein and fracture				++						1
	marked by biotite and magnetite. Fragments are mineralized with fine				+·+						1
	chalcopyrite, vein contains large blebs of chalcopyrite. Carbonate rich.										
	Purple mineral may be fluorite. Breccia degrades into broken chips of core										+·
	and then into 30 cm of chlorite-rich clay / paste. Solid core regained at										+
	95.50 in pink syenite fragments in a chlorite cement matrix, several low										
	angle fractures separate it from solid grey k-feldspar biotite migmatite. This				┝── ┼			ļ			-
	continues to 97.20 and is sulphide rich (4-6%) with about 75% of the				<u>↓</u>						ì
	sulphide being pyrite. The lower part is cut by a number of sub-parallel 20-				i						
	40° to core axis, 1 mm thick carbonate veins carrying blebs of chalcopyrite.				;						
	The last 37 cm of run is orange k-feldspar rich core cut by several 1 cm								<u> </u>	! 	
	thick quartz-carbonate-fluorite veinlets at 45° to core axis. They carry large								÷	÷	
	blebs of chalcopyrite. K-feldspar rich rock is very pyrite-rich up to 10% as										<u> </u>
	fine cubes. Chlorite alteration common on fractures.		L						ļ		
	97.54 - 100.58 Melanocratic Syenite - Mafic (biotite) rich syenite as		L					ļ			
	described above. Initial 20 cm of run has several pink-orange coloured k-	C 117682	97.54	100.58	3.04	100	6412	603	10.9	3	3
	feldspar rich zones with a quartz carbonate-chalcopyrite veinlet cutting core										
	-at 10° and 45° to core axis. The 1 cm wide k-feldspar zone appears at this										
	1 cm long. At 98.06 a 12 cm wide quartz vein cuts the core at 45° and has				1						
· · · · · · · · · · · · · · · · ·	a chalcopyrite selvage. This mafic / biotite-rich rock is very pyrite rich										
	through this run, often reaching 6-8%, much of which is as disseminated							T	į		
···	cubes. About 1% disseminated blebby chalcopyrite is mixed through this				1		1		1		1
	pyritic rock. Where thin fracture sets cut the core (at 75 to 80° to core		· .		<u> </u>			•	1	+	1
·	axis), they carry both pyrite and chalcopyrite. Lower / centre part of run is		• • • • •		† · · · †		<u> </u>	•	!		
<u>-</u>	broken with many green chlorite-filled fractures at 0-10° to core axis. Last		· · · · · · · · · · · · · · · · · · ·		† "†		<u> </u>	• • • •	••••••••••••••••••••••••••••••••••••••	• • • • •	
	30 cm of run is pink syenite carrying large blebs of chalcopyrite.		· ··· ··		1		t			• •	+ -

Page: 7 of 17

Lorraine Project Diamond Drill Log DDH: 2001-56

FOOTAG	E (metres)			SAMPLE			Rec.			ASSAYS		
From (m)	To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	5 T0 (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
1 Ion (iii)						T		(PP)				<u></u>
	•	100.58 - 103.10 A run of mostly pink syenite but with many patches of	C 117683	100.58	103.63	3.05	100	4592	53	3.1	< 2	2
		mafic-rich rock as described above. This is essentially the same as the										
	···	migmatitic sections described above except instead of the dark biotite-rich										=
	•	migmatite forming streaks, here it is in patches (fragments?). The dark	··									
	l	areas are always heavily mineralized with disseminated fine cubes and blebs										
		of pyrite and fine blebs of chalcopyrite. The pink syenite is coarser grained		····· · · · +								
		and carries larger (but fewer) blebs of chalcopyrite. There is only a minor										
		amount of pyrite in the pink syenite. In a couple of spots the chalcopyrite										
	1	mineralization appears to have a net-texture, suggesting that this biotite-										
		rich "migmatite" is an intensely and completely potassic altered pyroxenite.										
		Some of the k-feldspar rich sections are very coarse, up to 2-3 cm. Some of						· · · · · · · · · · · · · · · · · · ·				
		these sections have large irregular books of black mica to 1 cm. Pink										
		syenite averages about 1-2% chalcopyrite. Minor pyrite, dark migmatite										
	• · · · · · · · · · · · · · · · · · · ·	averages 2-3% chalcopyrite, 2-3% pyrite.										
		103.10 - 103.63 Dark migmatite (100%) sliced lengthwise by a 0-5°	••			1						
		angle fracture with a thick dark coating of chlorite. Patchy mineralization										
		from 3-4% chalcopyrite to 0%.										
		103.63 - 106.68 A mixture of pale pink syenite, pink syenite with	C 117684	103.63	106.68	3.05	100	3918	63	2.4	5	5
		migmatite patches, and intervals of 100% migmatite. Short sections of										
		syenite, e.g. 105.45 to 106.68 are not significant enough to break out as										
		separate lithology, e.g. mesocratic pink syenite, and they still contain some										
		migmatite. Initial section from 103.63 to 105.45 is 60% to 100%, average								L		
		85% migmatite. It is well mineralized with sulphides, chalcopyrite 1-2%				I						
		disseminated blebs and some in steep (80-90° to core axis) fractures. Pyrite								ļ		
		is 2-3%, evenly distributed as tiny blebs and cubes, often striated. Weakly										
		magnetic. Minor carbonate, some biotite is bronze coloured, phlogopite(?)										
		cross cutting 1-2 mm k-feldspar veinlets are oriented at 45° to core axis.										-
		Where patches of migmatite exist in pink syenite, the syenite is well										ļ
		mineralized with chalcopyrite and the migmatite contains less / little pyrite								ļ		
		as compared to the massive migmatite.										
		106.68 - 109.73 Massive migmatite (100%), pyrite rich 2-4%, including	C 117685	106.68	109.73	3.05	100	2905	40	1.0	4	5
		fractures. Chalcopyrite blebs about 1%. In cross-cutting grey k-feldspar veinlets the sulphides form coarse mixtures and are interstitial to the k-										
		•										<u> </u>
		feldspar. 109.73 - 111.75 Mafic rich syenite migmatite as described above.										
		Essentially grev k-feldspar and biotite with 2-4% pyrite and 0.5-1.0%	C 117686	109.73	111.75	2.02	100	2399	35	0.8	7	. 9
		- Ichalcopyrite, Sulphides as fine disseminated blebs and cubic pyrite, also								<u> </u>	1 ·· ··	
 		some sulphide remobilization along tiny steep fractures.								<u> </u>		
			· · · · ·									
				· ·		+				<u> </u>		├ ───
111.75	116.60	MESOCRATIC SYENITE- pink and grey syenite with short intervals of		+						+•••	ł	
		gneissic / migmatitic texture developed at a variety of orientations.		· · · · · · · · · · · · · · · · · · ·					<u> </u>		ļ	
		111.75 - 114.15 Pink syenite with streaks of biotite <u>+</u> grey k-feldspar	0 4 4 7 4 9 7	4 4 4 7 -			400			در ا	3	<2
· - ·		giving a gneissic / migmatitic texture at 45° to core axis. 1-3%	C 117687	111.75	114.15	2.40	100	667	23	5, < .3		+
· · · · · · · · · · · · · · · · · · ·		disseminated pyrite often as small cubes, minor to 0.5% chalcopyrite.				I				+	ł	
	1			:				l	i	<u></u>	!	

Page: 8 of 17

Lorraine Project Diamond Drill Log DDH: 2001-56

FOOTAC	GE (metres)			SAMPLES			Rec.			ASSAYS		 n
From (m)	To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	, TO (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
<u></u>												
		114.15 - 116.60 Pink syenite with thin biotite-rich migmatite streaks at	C 117688	114.15	116.60	2.45	100	2877	59	1.0	7	8
		45° to core axis, becoming more mafic-rich toward bottom of interval,										
		including several chlorite-altered pieces of pyroxenite. 2-4% pyrite in										ļ
		syenite, minor chalcopyrite. Pyroxenite bits carry more chalcopyrite than										
		pyrite				L						
						L.,						
												· · ·
116.60	131.43	BIOTITE PYROXENITE and MAFIC-RICH SYENITE - pervasively chlorite				ļ						
		altered and blotite rich pyroxenite with patches of k-feldspar and minor										
		epidote plus short intervals of pink syenite displaying weak migmatite				+ +			·			
		streaks. Less chlorite alteration and more magnetite with depth.										<u>↓</u>
		Chalcopyrite dominates over pyrite, and often has net-textured habit.							İ			
		116.60 - 117.73 Intense and pervasive chlorite altered and biotite-rich	C 117689	116.60	118.87	2.27	100	3120	93	1.6	8	18
		pyroxenite and mafic-rich syenite. Weakly magnetic. Mineralized with 1-										
		3% chalcopyrite often showing net-textures and 0.5 to 1.0% pyrite. Pink										i,
		k-feldspars to 1 cm.										
		117.73 - 118.35 Pink syenite with migmatite streaks at 20-45° to core										
		axis and composed largely of biotite. 1-2% sulphide in a roughly 50/50										
		ratio of pyrite to chalcopyrite, all of which is as small, disseminated blebs.										
		118.35 - 118.87 Gradation from syenite to pyroxenite. Initially				ļ						
		pyroxenite is intensely chlorite altered but grades to weak-unaltered over 40							L			
		cm. K-feldspar spots are epidote rich, minor chalcopyrite and pyrite.										
		118.87 - 121.92 Chlorite altered biotite pyroxenite grading into mafic rich	C 117690	118.87	121.92	3.05	100	3645	48	2.9	5	1
	` 	syenite as described above. Interval is more chlorite-rich near the top,										
		more biotite rich toward the bottom. K-feldspar rich section through the										
		centre part (mafic-rich syenite). Mineralization is a bit patchy but runs 2-							· · · · · · · · · · · · · · · · · · ·			
		3% chalcopyrite, locally 3-5%, often as net-textured or as stringers. Pyrite				Ļ;			L			.
		as disseminated cubes or stringers to about 1%.				Ļ			<u>.</u>			
		121.92 - 124.97 Mafic-rich syenite, much of which is in the form of	C 117691	121.92	124.97	3.05	100	3837	31	1.7	3	
		migmatite. Biotite altered pyroxenite (intense potassic alteration) with the				L						· · ···
		parts of the core being almost entirely altered to biotite, grey k-feldspar and										
		pyrite. Chalcopyrite as disseminated and net textured blebs runs about 2-										
	1	3% blebs larger in migmatite rich section. Pyrite more common in										
		migmatite rich sections running up to 3%. Low angle (15-30° to core axis)										
		fractures carry gypsum migmatite rich sections oriented at 5-35° to core axis	• ·									ļ
		and composed about entirely of biotite.										1 4
		124.97 - 126.42 Mafic-rich (biotite migmatite) syenite with patches of	C 117692	124.97	128.02	3.05	100	2722	82	1.3	6	i, 1 [.]
		migmatite / biotite altered pyroxenite. Most of the migmatite and biotite					·		ļ.		1	1
		altered pyroxenite is heavily mineralized with up to 4-6% chalcopyrite.										
		Large blebs showing good net textures are very common. Pyrite at about							 			l
		1% is more common in migmatite sections than in altered biotite								L	L	ļ
		pyroxenite. In all cases, biotite is very common, often comprising 50% of						L			L	+
		the rock.							L		L	l
		126.42 - 128.02 Biotite pyroxenite with an abrupt contact above with				: 		l	Ļ	L	. .	
		migmatite at 60° to core axis. This interval has been subject to intense										

DDH: 2001-56

FOOTA	GE (metres)			SAMPLE	S		Rec.			ASSAYS		
From (m)		LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (pp
	·······	biotite alteration and in places the core is almost a solid mass of felted										L
	I	biotite. Where it includes about 20% k-feldspar_+ epidote alteration, the										
		biotite has a wide range of sizes, but mostly 2 populations: big flakes and										
		finer-grained biotite. Very little sulphide seen. Minor amounts of										
	-	chalcopyrite and pyrite toward the lower part of the run, the pyroxenitic										
	1	character gives way to pure biotite-rich migmatite, being made up of										<u>, </u>
`		essentially just biotite and grey k-feldspar. Weak to moderately magnetic.									L	-
		128.02 - 131.43 Mafic-rich (biotite-rich migmatite) syenite and biotite	C 117693	128.02	131.43	3.41	100	4042	117	1.9	8	si
		pyroxenite. Run begins with fine-grained biotite migmatite with a 45° to										
		core axis fabric and then is cut by some meandering 1-4 mm wide light grey										
		k-feldspar veinlets. Massive fine-grained biotite migmatite contains up to							<u> </u>			
		4% fine-grained pyrite, often as cubes, with about 1% chalcopyrite. This										
		grades gradually into chlorite altered pyroxenite, with the chlorite alteration										
		decreasing with depth. The amount of chalcopyrite increases to 2-3% in				1						
		the pyroxenite and pyrite decreases to 0.5 to 1.0%. Locally chalcopyrite										
		reaches 5% with numerous examples of net-textures.										
												·
	440.50	MESOCRATIC SYENITE - grey syenite with a well defined gneissic fabric that										1
31.43	140.52	becomes weaker with depth and disappears after 5 metres. Fabric is a					~					
		foliation created by streaks of parallel biotite flakes (migmatite) at roughly										
						ļ	<u> </u>					
		$_{30^{\circ}}$ to core axis but becoming irregular with depth.	C 117694	131.43	134,11	2.68	100	1563	19	<.3	3	3
		131.43 - 134.11 Grey syenite with a fairly well defined biotite foliation	011/034	101.40	10-1.11	2.00					-	
		through most of the run. In the centre, from 132.68 to 132.87 is a piece of										+
		chlorite altered (intense) biotite pyroxenite. Chalcopyrite is found as blebs, most commonly associated with the biotite lamellae, of the order of about			· ·	4			·			1
·		0.5% for the interval pyrite, often cubic, is found throughout the interval,					·				<u> </u>	-
		mostly in the syenitic fraction and in amounts of about 2-3%. By 132.50									<u>+-</u>	1
	-	the biotite foliation (weak migmatite) has weakened and patches of orange				·					+	
											+ -· · •———	
	·	k-feldspar have appeared. 134.11 - 137.16 Grey mesocratic syenite with a weakly developed	C 117695	134.11		3.05	100	650	7	<.3		5
	·		0 11/030	104.11		0.00					+	
		foliation, core is cut through by low angle (0-10° to core axis) coarse										
		grained sections of the same composition. Core is chalky, carbonate			· ·						· · · ·	
		altered, \pm day alteration in a few spots. Lower part of run (last 50 cm)				++					<u> </u>	
	·	contains about 30% chlorite <u>+</u> biotite and is mafic rich. Mineralized by 1- 2% disseminated pyrite and minor amounts of chalcopyrite.				+			• · · ·	1		
· · ··		137.16 - 140.52 Grey syenite as described above. Cut by several low	C 117696	137.16	140.52	3.36	100	1625	62	0.9	6	3
				107.10		0.00				-		
		angle 5-10° to core axis fractures coated with chlorite and carbonate. These				+						
-		fractures separate grey syenite from above run and after about 85 cm there				+		<u>├</u> ── ──		.		
		is another section with the same chlorite \pm epidote alteration seen in the		·		+		<u> </u>		1	1	1
	····· · ····	above run. At 139.07 a 1 cm wide zone of chlorite-epidote cuts the core at		· · · · ·	·	.						
		30° to core axis and separates weakly mineralized core above from more						╆┈ ┈──				+
		strongly mineralized core (1-2% chalcopyrite) below (grey syenite). This				• •+			+	÷	+	-
		lower section has less alteration and more mineralized grey streaks and						-	+		ł	•
		patches of biotite pyroxenite. The amount of pyrite has decreased				÷		1	ļ	÷.	+ - ·	

Page: 10 of 17

Lorraine Project Diamond Drill Log DDH: 2001-56

FOOTA	GE (metres)			SAMPLES			Rec.			ASSAYS		
From (m)	To (m)		Sample #	From (m)	, TO (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		significantly to a minor amount. The last 8 cm of run includes a piece of										
		biotite pyroxenite with net-textured chalcopyrite. The lower grey syenite is								i		
		magnetic, as is the altered rock above.						<u></u>				
								L				
						•						
40.52	146.02	BIOTITE PYROXENITE - which includes and grades into mafic-rich syenite				•• • 						
		and migmatite, some of which is massive. This interval is heavily	/			· /			·····		· ·	
		mineralized in places with 4-6% net textured blebs of chalcopyrite. 140.52 - 143.26 This interval grades through biotite pyroxenite into	C 117697	140.52	143,26	2.74	100	5364	127	2.9	3	1
		chlorite-epidote altered mafic-rich syenite and finally into migmatitic syenite	C 11/09/	140.52	143.20	2.14	100			2.3		•
		to massive migmatite. All phases are mineralized, with the most mafic						·				
<i></i>		parts, e.g. pyroxenite and migmatite carrying up to 6% chalcopyrite as large				++						
		net textured blebs.				+ · · -+						
	·	143.26 - 146.02 Biotite pyroxenite as described above. Very biotite rich.	C 117698	143.26	146.02	2.76	100	1666	69	1.2	7	1
		The pyroxenite is interrupted from 143.39 to 144.46 by a mafic-rich syenite	0 111000	110.20								
		which shows extensive chlorite-epidote alteration. The run ends in similar									1	
		mafic-rich syenite. The interval is weakly mineralized except from 145.02 to										+
		145.25 which has 3-4% net textured and disseminated chalcopyrite. At										
		145.65 there are a few blebs of chalcopyrite and bornite in biotite										
		pyroxenite.										
						ľ						
146.02	148.04	MESOCRATIC SYENITE - chlorite-epidote altered grey syenite.										
		146.02 - 148.04 Grey mesocratic syenite displaying pervasive chlorite-	C 117699	146.02	148.04	2.02	100	167	9	< .3	2	ļ <u>— </u>
		epidote alteration. No sulphides seen.									·	•
148.04	187.30	BIOTITE PYROXENITE - displaying weak chlorite alteration but becoming										
	101.00	very biotite rich.				+		· · · · · ·				
		148.04 - 151.63 Biotite pyroxenite displaying weak chlorite alteration and	C 117700	148.04	151.63	3.59	100	457	15	0.4	9	1
		becoming very biotite-rich. Weakly mineralized, only a few blebs of				+						
		chalcopyrite with bornite. Run includes about a metre of fine-grained										i
		biotite-pyroxenite										
		151.63 - 155.45 Biotite-pyroxenite as described above. Very biotite-rich.	C 117701	151.63	155.45	3.82	100	500	8	< .3	8	
		The biotite forms clumps giving a spotted look from 153.30 to 154.63. A		1								
		short syenitic section from 154.63 to 154.86 was very coarse-grained k-										
		feldspar and 1-2% blebs of chalcopyrite.										
		155.45 - 158.50 Biotite pyroxenite with numerous small patches of	C 117702	155.45	158.50	3.05	100	3963	54	2.3	16	3
						11						
		disseminated and net-textured chalcopyrite. Very biotite rich. From 156.43				i i				 		
		disseminated and net-textured chalcopyrite. Very biotite rich. From 156.43 to 156.71 there are several 30-45° to core axis fractures with chlorite				+ +				+ 		: +
·	· · · · · · · · · · · · · · · · · · ·	disseminated and net-textured chalcopyrite. Very biotite rich. From 156.43 to 156.71 there are several 30-45° to core axis fractures with chlorite coatings and 45° rake slickensides. A more felsic section from 156.86 to		· · · · · · · · · · · · · · · · · · ·						+		:
· · · · · · · · · · · · · · · · · · ·	T	disseminated and net-textured chalcopyrite. Very biotite rich. From 156.43 to 156.71 there are several 30-45° to core axis fractures with chlorite coatings and 45° rake slickensides. A more felsic section from 156.86 to about 157.80 has 10-15% grey k-spar and 3-5% disseminated blebs of			····					+ 		:
	T	disseminated and net-textured chalcopyrite. Very biotite rich. From 156.43 to 156.71 there are several 30-45° to core axis fractures with chlorite coatings and 45° rake slickensides. A more felsic section from 156.86 to about 157.80 has 10-15% grey k-spar and 3-5% disseminated blebs of chalcopyrite, many of which display net-textures.						· · · · · · · · · · · · · · · · · · ·				:
· ·		disseminated and net-textured chalcopyrite. Very biotite rich. From 156.43 to 156.71 there are several 30-45° to core axis fractures with chlorite coatings and 45° rake slickensides. A more felsic section from 156.86 to about 157.80 has 10-15% grey k-spar and 3-5% disseminated blebs of	C 117703	158.50	161.54	3.04	100	164		<.3	13	:

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 11 of 17

FOOTAC	GE (metres)			SAMPLES			Rec.			ASSAYS		
From (m)	To (m)		Sample #	From (m)	T0 (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pđ (ppb)
· - ·		161.54 - 164.59 Biotite pyroxenite as above, mineralized with 3-5%										
		disseminated blebs of chalcopyrite and bornite between 161.54 and 161.88,	C 117704	161.54	164.59	3.05	100	1011	24	0.4	9	1
· - · · ·		then barely a trace. Thick chlorite deposits (1-2 mm) on 20-30° fracture										
		face at 164.45.										
		164.59 - 167.69 Biotite pyroxenite as above. No sulphides seen.										
		Continuing magnetic.	C 117705	164.59	167.69	3.10	100	743	24	0.3	8	
		167.69 - 170.69 Biotite pyroxenite. As described above. No sulphides										
		seen.	C 117706	167.69	170,69	3.00	100	321	8	< .3	7	
		170.69 - 173.74 As described above. No sulphides seen. Weak to										
		moderate chlorite alteration.	C 117707	170.69	173,74	3.05	100	1067	80	0.3	10	:
		173.74 - 176.78 Biotite pyroxenite as described above. From 176.26 to		-								
		176.60 there is 1-2% disseminated bornite in a section of very coarse biotite	C 117708	173.74	176.78	3,04	100	935	25	0.4	7	
		rich pyroxenite. Also a few specks of chalcopyrite.	-			1						
		176.78 - 179.83 Biotite pyroxenite as described above. Minor								· ·		
	1	disseminated blebs of chalcopyrite and bornite in a few spots.	C 117709	176.78	179.83	3.05	100	80	< 2	< .3	13	
		179.83 - 182.88 Biotite pyroxenite as described above, well mineralized				1						
		with chalcopyrite and bornite. Beginning at 180.90, first with 2-3%										
		disseminated blebs of net-textured chalcopyrite, then followed by	C 117710	179.83	182.88	3.05	100	6463	354	5.2	10	
		chalcopyrite and bornite blebs and then mainly with bornite (1-2%) to end										
		of run. The chalcopyrite only section is separated from the bornite section	•									
		by a short chlorite zone with a 45° to core axis fracture with a 65° rake on										
		slickensides. Bornite is often accompanied by minor covellite. Mineralized										
		zone separated from barren core below by a 1 cm zone of coarse biotite.										
		182.88 - 185.50 Biotite pyroxenite as above, biotite in clumps gives a						-* ^^		·		
			C 117711	182.88	185,50	2.62	100	61	4	< 3	5	
		dalmation effect (black spots). Minor disseminated chalcopyrite.	<u> </u>	102.00	165,50	2.02		01	4	< .3	5	<u> </u>
	1	185.50 - 187.30 Biotite pyroxenite as above, with locally intense chlorite	C 117710	485.50	497.00	1 80	400	4404	440	47	40	
		_alteration and a mineralized section at the end of the run. The upper part	C 117712	185.50	187.30	1.80	100	4424	140	1.7	10	
		of this interval is soft and broken and is intensely chlorite altered.										
		Beginning at 186.38 with disseminated blebs of chalcopyrite and bornite and										
		within 20 cm it has graded into 4-5% chalcopyrite and then into 2-3%										
		combined pyrite and chalcopyrite by the end of the interval.									,	
	<u> </u>						(1	
	1											
87.30	188.87	MESOCRATIC SYENITE - grey syenite with a weak to moderately developed								· ·		
	÷	biotite foliation, and cut by numerous pink alteration zones and patches.								i		
		187.30 - 188.87 Grey syenite with cross cutting (70° to 80° to core axis)	C 117713	187.30	188,87	1.57	100	614	28	< .3	3	
		zones of biotite rich migmatite and small patches of biotite pyroxenite.			_							
		Mafic parts are often mineralized with several percent of chalcopyrite, but										
		overall, mineralization is weak. Low angle fractures (5-15° to core axis) are										
		coated with carbonate. Grades into massive biotite-rich migmatite at	ſ				I					
		bottom of run.										
88.87	195.14	MELANOCRATIC SYENITE - mafic-rich syenite and massive biotite-rich		• • • •				_				
	,	migmatite.	1			·					•	
		188.87 - 190.85 Massive biotite-rich migmatite / mafic-rich syenite.	C 117714	188.87	190.85	1.98	100	2872	71	0.5	3	
		Initially chalcopyrite rich (about 2%) with less pyrite. Grading fairly quickly								· · · · - · - •		

.

1

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 12 of 17

1

												-
FOOT	GE (metres)	LITHOLOGICAL DESCRIPTION		SAMPLES			Rec.			ASSAYS	B1 / 1 1	Del (com)
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		into 0.5% chalcopyrite and 3-5% pyrite. All of the sulphide is disseminated,	ł		·							
		the pyrite is often as tiny cubes. This interval is mostly composed of biotite				· · ·						
		and grey k-feldspar. Non-magnetic.	ł					0070				
		190.85 - 192.90 Grey and pink syenite migmatite, along with sections of	C 117715	190.85	192.90	2.05	100	3076	83	1.4	4	
		massive migmatite. Felsic component is coarse-grained along with biotite										
		lamellae. Migmatite, especially massive component is very fine grained.										· · ·
		Syenite migmatite is mineralized with 2% chalcopyrite in the mafic streaks				ł						· -
		and patches. The massive biotite-rich migmatite is pyrite rich (4-5%), while				+-··+				+		
		only carrying minor chalcopyrite.				<u>↓</u>						
		192.90 - 193.98 Massive biotite migmatite as described above. Pyrite	0.447740		405.44	- 0.04	400	2574	64	1.4	6	11
-	L	rich (2-4%) and carrying 1% chalcopyrite. Cut by many irregular white k-	C 117716	192.90	195.14	2.24	100	3574		1.4		<u> </u>
		feldspar and pink k-feldspar veinlets and alteration envelopes.				├ ──┤						· · · · · · · · · · · · · · · · · · ·
<u></u>		193.98 - 195.14 Mafic rich syenite cut by irregular bands of biotite rich					·					
		migmatite and several patches of massive migmatite and biotite pyroxenite.				-						· · · · · · · · · · · · · · · · ·
		The migmatite is pyrite rich when massive, chalcopyrite rich when cutting										<u> </u>
		the syenite in streaks and bands. Patches of pyroxenite carry about 2%										1
		chalcopyrite. The run averages about 1-2% chalcopyrite.									, 	ł ———
						++		<u> </u>				
		The second second second second second second second second second second second second second second second se				·		<u>-</u>				
195.14	207.30	BIOTITE PYROXENITE - showing variable chlorite alteration and is heavily							<u> </u>			
		mineralized in several places with chalcopyrite.	C 117717	195.14	198.12	2.98	100	920	43	0,5	10	10
		195.14 - 198.12 Biotite pyroxenite as described previously, chalcopyrite	C 11/11/	195.14	190.12	2.30	100	920		0.0		
~		mineralization from 196.74 to 197.23 as disseminated blebs with net- textures to about 2%.										
		198.12 - 201.17 Biotite pyroxenite as described above. Mineralization is	C 117718	198.12	201.17	3.05	100	5042	132	3.3	14	18
		weak to 198.38 then becomes more strongly mineralized once below a 45°		190.12	201.17	0.00	100					
	+ · ·	to core axis fracture. Bornite and chalcopyrite are found together for the	<u>-</u>			<u></u> + · · · · · · · · · · · · · · · · · · ·		<u>+</u>				
		first 20-30 cm until the bornite dies out and the chalcopyrite picks up to				††			<u> </u>			
		about 2-3% for the next metre with two 5-10 cm intervals which carry up to			·	<u> </u>						•
		20% chalcopyrite. Weakly mineralized after 199.72 metres. Magnetic.							<u> </u>	<u> </u>	i	İ
·		201.17 - 204.22 Biotite pyroxenite as described above. Chalcopyrite	C 117719	201.17	204.22	3.05	100	519	30) <.3	3	6
		mineralization from 201.69 to 202.13 as disseminated blebs. One 3 cm wide	- 0 11110		201.22							· · ·
	· · · · · · · · · · · · · · · · · · ·	patch is 30% chalcopyrite.				+		+			+	
		204.22 - 207.30 Biotite pyroxenite as described above. Weakly	C 117720	204.22	207.30	3.08	100	5950	211	4.1	12	24
		mineralized, only traces up to 205.94. After which the remainder of the	0 11.120	204.22		0.00			·			1
		interval (205.94 - 207.30) is very heavily mineralized with chalcopyrite,				1				-4		1
		never less than about 4% and with many patches of 30-40% chalcopyrite,								+		1
		displaying primary net-textures. Minor pyrite as cubes present. The division				1			1	+ · · · -	-	
	· + · · ·	with unmineralized rock above is marked by a 2 mm grey k-feldspar veinlet.		··· ·-·+		+		- · · · · · · · · · · · · · · · · · · ·	- · ·	+		•
		Below is abrupt contact at 45° to core axis with mesocratic syenite. Initial		····		+… ・—-+		1		1	†	···
		unmineralized section is "spotted" with biotite clusters.						· †	+		+	1
									1	<u> </u>		
	·			1		+		t · · ·	·			1
207.30	209.30	MESOCRATIC SYENITE - light grey syenite with a weakly developed		-		••••		t			Ť	
201.30	208.50	foliation, generally at steeper than 45° to core axis. Mafics about 20%									1	
		composed of chlorite-altered, sub-euhedral pyroxene and fine grained						1	t			·
				L				4			·	

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 13 of 17

FOOTA	GE (metres)			SAMPLES	3		Rec.			ASSAYS		
From (m)	To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		biotite forming small lamellae. 207.30 - 209.30 Light grey syenite as described above. Patchy epidote alteration. About 1% disseminated cubic pyrite, minor chalcopyrite.	C 117721	207.30	209.30	2.00	100	490	21	< .3	6	
	· · · · · · · · · · · · · · · · · · ·			÷								
09.30	215.80	BIOTITE PYROXENITE - much of which has a spotted appearance. 209.30 - 213.36 Biotite pyroxenite as described above. Net textured chalcopyrite from 209.30 to 209.60 to 2-3%, chalcopyrite dies out by	C 117722	209.30	213.36	4.06	100	858	8	0.4	6	
		209.85, along with a few bornite blebs. Cut at 45° to core axis at 212 by coarse k-feldspar-biotite veinlets, 2 cm wide. Biotite in clumps forming spots.		· · · · ·						· ·		
		213.36 - 215.80 Biotite pyroxenite with biotite spots as described above. Most of run is barren, occasional specks of chalcopyrite except between	C 117723	213.36	215.96	2.60	100	707	24	0.4	4	
		215.40 and 215.80 which is weakly mineralized. At 215.50 there is a 2 cm band of net-textured chalcopyrite at 45° to core axis										
215.80	220.00	MAFIC-RICH SYENITE - with massive biotite rich migmatite and sections of biotite pyroxenite.										
		215.80 - 216.10 Massive migmatite contact above marked by coarse biotite and fine-grained k-feldspar with 3% cubic pyrite and 1-2% blebs of chalcopyrite over 2 cm. Migmatite is biotite and sulphide rich, 2-3% cubic pyrite, 2-3% chalcopyrite.	C 117724	215.96	218.31	2.35	100	1409	55	0.9	< 2	
		216.10 - 218.31 Mafic-rich syenite - coarse grained pink and grey syenite with many streaks and patches of biotite rich migmatite and pyroxenite. A few patches of pyroxenite are well mineralized with net-textured	,	· · · · · · · · · · · · · · · · · · ·					/ ·			
		 chalcopyrite but overall the run is only weakly mineralized. 218.31 - 220.00 Mafic-rich syenite migmatite and biotite pyroxenite. Moderately well mineralized with chalcopyrite through most sections. Run begins with massive biotite-rich fine grained migmatite (218.31 to 218.43). 	C 117725	218.31	220.41	2.10	100	3012	56	1.6	10	2
· · · · · · · · · · · · · · · · · · ·		1-2% fine blebs of chalcopyrite, 1-2% pyrite, weak foliations at 60° to core axis. Followed by coarse biotite rich syenite with 2-4% chalcopyrite blebs (218.43 to 218.51). Then biotite pyroxenite with 15-20% grey k-feldspar	·		··· _ · ··	·						· · · · · · · · · · · · · · · · · · ·
		and patchy 1-2% net-textured chalcopyrite (218.51 to 219.34). Followed by mafic-rich syenite with 50% biotite-rich migmatite at 45 to 90° to core axis and carrying 1-2% chalcopyrite blebs.										
]		
20.00	233.31	BIOTITE PYROXENITE - biotite-rich and weak to moderate chlorite altered. Heavily mineralized with up to 6-8% net-textured chalcopyrite in several spots.		· · · · ·			· · · · · · · · · · · · · · · · · · ·					
	! 	220.00 - 220.41 Biotite pyroxenite with 2-3% chalcopyrite blebs, some of which display net-textures. Poor sample break results in this section being included with mafic-rich syenite above (sample no. 117725).				 ·						;

DDH: 2001-56

FOOTAGE (metres)			SAMPLES			Rec.			ASSAYS		
From (m) To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
	220.41 - 222.50 Biotite pyroxenite displaying weak chlorite alteration. Heavily mineralized from 220.41 to 220.74 with 6-8% net-textured	C 117726	220.41	222.50	2.09	100	2257	48	1.2	13	3
	chalcopyrite. Weak patchy mineralization below 220.74. Cut by several low angle fractures 10-15° to core axis, also one at 45° to core axis. All have fracture coatings of red hematite.						·	•			
	222.50 - 225.55 Biotite pyroxenite as described above. Patchy net- textured chalcopyrite mineralization exists between 223.46 - 223.61 and 224.62 - 224.84. Each section runs about 4-6% chalcopyrite. Balance of	C 117727	222.50	225.55	3.05	100	1634	28	0.6	13	2
	run is weakly mineralized. 225.55 - 228.60 Biotite pyroxenite as described above. Moderately well mineralized by net-textured and disseminated blebs of chalcopyrite and in a few spots by bornite as well. About 60% of the interval is mineralized, approximately 2% for run average. Strongest mineralization is between	C 117728	225.55	228.60	3.05	100	2778	156	1.3	10	1
	225.55 and 226.85. 228.60 - 230.82 Biotite pyroxenite as describe above. Moderately well mineralized over entire length of run, although better mineralization is patchy net-textured chalcopyrite and minor bornite with chalcopyrite disseminated blebs. Much of this run is broken by low angle fractures (0 -	C 117729	228.60	230.82	2.22	100	2885	132	1.6	19	3
· · · · · · · · · · · · · · · · · · ·	10° to core axis) which are coated by deposits of light green carbonate and chlorite. Average for the run is about 2% chalcopyrite and minor bornite. 230.82 - 233.31 Biotite pyroxenite as described above. Perhaps slightly	C 117730	230.82	233.31	2.49	100	2993	93	1.0	11	3
	more chlorite altertaion than above. Weak to moderate patchy chalcopyrite mineralization, both as disseminated specks and as net-textured blebs. The strongest mineralization occurs in the last 50 cm. Highly magnetic to the end.										
33.31 241.38	MESOCRATIC SYENITE - a light pinkish grey syenite with about 20% mafic	·		· · · ·							
······································	centres. Moderately magnetic. 233.31 - 237.74 Grey syenite with a medium-grained idiomorphic texture. Contact with pyroxenite above is very low angle, perhaps 5° to core axis, so samples above and below include some of each. This interval is weakly	C 117731	233.31	237.74	4.43	100	428	22	0.3	4	
	mineralized, but first 50 cm has 0.5-10.0% disseminated blebs of chalcopyrite. Mafics are grey clumps of very fine-grained biotite. Magnetite and perhaps pyroxene.	/ · · · · ·						·			
· · · · · · · · · · · · · · · · · · ·	 237.74 - 241.38 Grey-pink syenite as described above. Becoming more mafic (± chlorite) with depth. Epidote alteration spots, and k-feldspar (pink, coarse-grained) cut through the core at 45° to core axis. Trace pyrite and chalcopyrite. 	C 117732	237.74	241.38	3.64	100	499	18	0.5	2	
41.38 241.89	BIOTITE PYROXENITE (241.38 - 241.89) with a few spots that reach 20% k-feldspar, no sulphides.	C 117733	241.38	241.89	0.51	100	24	< 2	<u> </u>	6	

DDH: 2001-56

I.

÷.

1

Ţ.

1

FOOTAC	GE (metres)			SAMPLES			Rec.			ASSAYS	•	
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
241.89	254.59									ļ		
241.89	254.59	MESOCRATIC SYENITE - grey syenite with a fine-grained, idiomorphic,				-						
		hornfelsed appearance. Includes a few mafic rich spots. Light green, subtle									ļ	
	+	epidote patches. Splits with an irregular surface. Cross cut by some coarse								l		
		grained, orange k-feldspar patches at 45-60° to core axis. Cubic pyrite										
		accompanies k-feldspar rich patches.										
		241.89 - 243.84 Grey syenite as described above. Minor pyrite	C 117734	241.89	243.84	1.95	100	21	< 2	< .3	2	< 2
		associated with orange k-feldspar patches.									·	
		243.84 - 246.89 Grey syenite as described above. Mottled grey, reddish-	C 117735	243.84	246.89	3.05	100	50	27	0.3	< 2	< 2
		pink, and greenish coloUrs suggest both potassic and epidote alteration plus										
		a reduction in grain size due to homfelsing.										
	+	246.89 - 249.94 Grey syenite shot through with orangish-pink k-feldspar	C 117736	246.89	249.94	3.05	100	55	26	0.3	3	2
		alteration zones. Trace of chalcopyrite associated with 30° fractures. Pyrite										
		to 0.5% in spots, overall minor and often associated with fractures 30° to										
		60° to core axis magnetic.										
		249.94 - 252.98 As described above. Patchy grey and orange-pink										
		syenite about 20% grey mafic patches. A 3 cm wide k-feldspar vein (grey)	C 117737	249.94	252.98	3.04	100	133	77	0.5	3	2
		with an orange k-feldspar alteration envelope at 250.10 carried lots of cubic									~~~~	
		pyrite. Pyrite elsewhere associated with 30-40° fractures.										
		252.98 - 254.59 Grey and pink syenite as described above. More										
		granular and no longer has hornfelsed appearance. This run is more mafic	C 117738	252.98	254.59	1.61	100	183	3	< .3	< 2	6
		rich and is gradational to next sections. Biotite becoming coarse-grained					_					
·		toward bottom of run.										
254.59	263.61											
204.09	203.01	MELANOCRATIC SYENITE - mafic rich syenite with many patches of biotite							·····			
	+	pyroxenite.	0 44770.0	054.50		0.04						
		254.59 - 257.20 Mafic rich syenite as described above. Cut by a weakly	C 117739	254.59	257.20	2.61	100	261	12	0.4	4	11
		developed carbonate-filled fracture set at 30-45° to core axis. Most						·				
		prominent mafic is biotite. Grey chlorite-rich patches contain minor	·						_	+-· ——		
		chalcopyrite.	C (17710	057.00		0.00		070				
		257.20 - 261.00 As described above. Grey syenite with numerous orange	C 117740	257.20	261.00	3.80	100	373	8	0.3	2	11
		pink k-feldspar patches and containing an increasing amount of biotite									·	
		pyroxenite (chlorite altered) with depth. Minor disseminated chalcopyrite			_	<u> </u>	<u>-</u>					_
		through the interval.	C 117741	261.00	000.40	4.40	- 100			0.4		
	+	261.00 - 261.26 Biotite pyroxenite showing weak chlorite alteration of	C 11//41	201.00	262.13	1.13	100	297	16	0.4	<i>1</i>	17
	· · · · · · · · · · · · · · · · · · ·	pyroxene.				, ·						
		261.26 - 262.13 Mafic rich syenite gradational from biotite pyroxenite and includes many patches of pyroxenite. Minor chalcopyrite in more mafic	· · · ·		·				· ·	<u> </u>		
	;				· · —		· ·			,	·	
		spots. 262.13 - 263.61 Mafic rich syenite as described above. Includes sections	C 117742	262.13	265,18	2.05		100				
<u> </u>	·	of pyroxenite up to 15 cm long. Some of the pyroxenite carries patches of	0 11//42		200.18	3.05	100	199	< 2	< .3	4	· <u> </u>
		net-textured sulphide, most of which is pyrite or pyrrhotite, only 10 to 20%					ł				·	
· ·		is chalcopyrite.	· · · ·				· -{			⊢	·	
	-									{· ··}	,	
			+		· +	+		. +				
	1											

Page: 16 of 17

Lorraine Project Diamond Drill Log DDH: 2001-56

FOOTAC	GE (metres)			SAMPLE	s		Rec.			ASSAYS		
From (m)	To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	- To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (opm)	Pt (ppb)	Pd (ppb)
											-	
263.61	280.68	MESOCRATIC SYENITE - grey and pink syenite with many patches and short										
		sections of mafic rich syenite.										
		263.61 - 265.18 Grey syenite as described above. Cut by mafic rich				ļ ļ.						
		patches / zones. Orange k-feldspar and epidote alteration at 30 to 60° to				L						
		core axis. Continuing magnetic. Minor blebs of pyrite in some mafic						_				
		centers. Trace of bornite in one piece of pyroxenite. This is a gradational										
		interval between more mafic above and the syenite below.	0 4 4 7 7 4 0		000.00	1.42	400	450	5		2	
		265.18 - 268.22 Grey syenite cut by k-feldspar (orange) veinlet at 60° to	C 117743	265.18	266.60		100 100	150 159				
· · ·		core axis. Has several mafic-rich patches toward bottom of run. Biotite, the	C 117744	200.00	200.22	1.02	- 100	108		<u>,,</u>	5	
		primary mafic component, increases to 30% and increases in grain size to								+		
		2-3 mm.	C 117745	268.22	270.44	2.22	100	16	A	< .3	< 2	
		268.22 - 270.44 Grey syenite with a prominent foliation defined by 30%	C 11/745	200.22	210.44	2.26	0	10		×.5	~~~~	•
		coarse biotite at 45° to core axis. Foliation is indistinct through some parts				<u></u> +∔		·····	<u>+</u>			
ar		of the run.	C 117746	270.44	274.32	3.88	100	377	4	< .3	2	6
		270.44 - 274.32 Grey syenite with an "on again, off again" foliation	0111140	210.11	214.04	0.00	100		•			
		defined by 20-25% biotite lamellae. Cross-cutting orange k-feldspar										
		alteration envelopes, 2-3 mm wide, cut core at 45 to 85° to core axis and					"'					
		also often cut foliation. Epidote patches common and when they cut across								+		
	+	core they parallel foliation at about 45° to core axis. Minor pyrite and traces					····· · ·					
		of chalcopyrite, especially in mafic centres.	C 117747	274.32	277.37	3.05	100	154	< 2	<.3	4	4
~-	·	274.32 - 277.37 Grey syenite, non foliated. Continuing epidote spots and	•									
		k-feldspar alteration envelopes.	C 117748	277.37	280.68	3.31	100	533	4	< .3	6	1.
		277.37 - 280.68 Grey syenite as above but with patches of orange	• • • • • •									
		k-feldspar alteration carrying several percent cubic pyrite and blebs of										
		chalcopyrite. Largest patch is 20-30 cm long. Contact irregular but appears										
		steep. Epidote patches also common in this run. Fractures at 70° to core										
		axis. Commonly have k-feldspar (orange coloured) and pyrite alteration				1	-			F		
1		envelopes 1-2 mm wide. Some mafic patches are well mineralized with								<u> </u>		t
		blebs of pyrite <u>+</u> pyrrhotite (?) and lesser chalcopyrite.					•					
280.68	281.92	BIOTITE PYROXENITE - very biotite-rich and coarse-grained (biotite).										
		Pervasive chlorite / alteration of pyroxene.										
		280.68 - 281.92 No sulphides seen.	C 117749	280.68	281.92	1.24	100	10	< 2	< .3	4	< :
· · · ·	Τ											
281.92	282.95	MESOCRATIC SYENITE - grey syenite with mafic rich patches of pyroxenite.										ļ
		281.92 - 282.95 Grey syenite with minor small disseminated blebs of	C 117750	281.92	282.95	1.03	100	203	11	< .3	2	1
		chalcopyrite in both syenite and pyroxenite.				ļ;					! +	; i
						ļ			I		<u> </u>	
						· ·				L		
282.95	283.46	BIOTITE PYROXENITE (282.95 - 283.46) - chlorite altered but not as	C 117751	282.95	283.46	0.51	100	105	6	0.3	4	1:
		biotite-rich as above. Contains one section of 2-3 cm of net-textured				1					-	
	•	chalcopyrite and bornite.					-		ļ	: 		ļ
								1				

Page: 17 of 17

Lorraine Project Diamond Drill Log DDH: 2001-56

FOOTA	GE (metres)			SAMPLES	5		Rec.			ASSAYS		
From (m)	To (m)		Sample #	From (m)	TO (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
283.46	298.70	MESOCRATIC SYENITE - grey syenite with a gradational contact with above	C 117752	283.46	286.51	3.05	100	289	5	<.3	< 2	
:03.40	290.70	pyroxenite over 30 cm. No sulphides seen in this section or in balance of	011/132	200.40	200.01	3.00	100	203				
		the run.				<u> </u>						
		286.51 - 289.56 Grey syenite as described above, with several 1-10 mm	C 117753	286.51	289.56	3.05	100	200	15	< .3	< 2	<
		wide magnetite veinlets cutting core at 45 to 90° to core axis. Core										= .=
		developing a pinker colour tone with depth.										
		289.56 - 292.61 Grey syenite as described above with continuing	C 117754	289.56	292.61	3.05	100	272	20	0.3	< 2	
		magnetite veinlets. from 291.26 to 291.66 there is a finer grained brownish										
		pink										
		k-feldspar section in which fractures carry minor pyrite and chalcopyrite at										
		30° to core axis.										
		292.61 - 295.66 Grey syenite with continuing magnetite blebs and	C 117755	292.61	295.66	3.05	100	289	15	< .3	< 2	
		veinlets at generally steep angles to core veins.	0 447750	005.00	298.70	3.04	100	683	56	0.5		
		295.66 - 298.70 Grey syenite as described above. Traces of	C 117756	295.66	298.70	3.04	100	003	90	0.5	4	
		disseminated chalcopyrite. Cubic pyrite with mafic spots.				<u> </u>			• •			
		-				ł						
298.70		END OF HOLE.										
												-

Property:	: Lorraine		Total Length: 152.40 Core Size: BQTW	Fo	ootage (m)	DIP TESTS Dip Measured	Dip Corrected	***********	Start Da	ate: Augu	st 28, 200	1	arean an ann an an an an an an an an an an	(1) (11) (1) (1) (1) (1) (1) (1) (1) (1)
Grid Core	d:		Core Size: BQTW		152	-57 °	-59		Comple	tion: Aug	ust 29, 20	001		
	n: 1971 m		Azimuth: 58°						Logged	By: Jay V	N. Page			
Section:			Inclination: -60°									0-22, 2001		
			o of Lorraine Mountain. 348077.9 E; 6200493.2 N (-	· · · · ·					···· · ···		
NOTES:	PAD Tanks W	on hoge near top	5 6 Lorraine Modultain. 548077.9 E, 6200495.2 N ((NAD 03)							THE OWNER AND A REAL AND A	NOT THE OWNER	A250 8: 2400495470.18: 15	
FOOT	AGE (metres)		LITHOLOGICAL DESCRIPTION			SAMPL	.ES		Rec.			ASSAYS		
From (m	• •				Sample #	From (m)	Το (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
0	3.05	CASING (10 Feet).	·					• ···			-			
2.05	64.45	MESOCRATIC SVE	NITE - pink medium-grained, idiomorphic syenite wit											
3.05	64,45		es. Weak epidote patches and bands that cross core				·							
			irregular mafic patches of biotite and pyroxene show										-	
			nent in a few places.											
			syenite as described above. Some patches of orang	iish-	C 117801	3.05	6.10	3.05	100	451	21	< .3	< 2	
			spar moderately magnetic. No sulphides seen. Minor											
			n 30° to core axis fracture faces.											
			syenite as described above, many orangish-pink pate	tches.	C 117802	6.10	9,14	3.04	100	2201	97	1.1	5	
			alachite on many fracture faces.		C 11/602	0,10	9.14	3,04	- 100	. 2201	37			
	9.14 - 12.19 Pink svenite as described above, more grey tones and more		more	C 117803	9.14	12.19	3.05	100	3335	67	2.0	3		
		mafic-rich in a few	spots. Dark patches are mineralized with dissemina	ated										
			rite and pyrite. Patchy but extensive epidote alterat											
			halcopyrite associated with steep fractures filled with											
			d magnetite. Fracture oriented at 70-90° to core axis										2	
			range k-feldspar and epidote altered syenite, by the		C 117804	12.19	15.24	3.05	100	746	29	<u>< .3</u>	2	<
			ast 70 cm being unaltered grey syenite with some ma	afic				· ·						
			blebs of chalcopyrite.		C 117805	15.24	18.29	3.05	100	293	11	< .3	2	
			rey syenite with mafic content increasing to 20-25%											
			magnetite and pyroxene (<u>+</u> chlorite). Weakly miner copyrite, mainly in mafic centres. Some sections of c											
														ļ
		snow the matters a	ligned at 45° to core axis defining a weak foliation. ink syenite showing numerous patches and short inte		. <u> </u>			<u> </u>	-			. <u> </u>		
			par and epidote. Epidote is especially prominent on k											
			a and epidole. Epidole is especially prominent on k	-										···· —·
			-feldspar and epidote altered syenite. Alteration is ve	en/	C 117806	18.29	21.34	3.05	100	975	28	0.4	3	
			lar, with the epidote often overprinting the k-feldspar		0 111,000									
			is 1 cm wide alteration envelopes around fractures a											
			angle fractures are very limonitic, oriented at 5-10° t											
		axis.	angle macules are very informacy offended at 5-10 to					L						ļ
			rey syenite with many patches of pink-reddish k-feld	lspar –	0 4 4 - 0							< .3	< 2	
			rregular breakage to core when split. Low angle (-	C 117807	21.34	24.38	3.04	98	664	27	¢, >	< 2	+
			ures are coated with thick limonitic and carbonate.											
			roken up pink syenite with many patches of overprint	nting	C 117808	24.38	27.43	3.05	98	1143	44	< .3	< 2	
			k-feldspar and epidote. Fracture faces from 45° to											
						-		1						

Ť.

	าสาราสาราสาราสาร	การการการการการการการการการการการการการก	1993 (1993) - 1993 (1994) - 1993	TATION CONTRACTOR OF STOLEN	1911.4.341.022	111-1-147-1529-Yu		1998-19982-097-1752-174-174-	100000 000000	option in the services	NUMBER OF STREET	rta a caracteria
FOOTAGE (• •	LITHOLOGICAL DESCRIPTION		SAMPL			Rec.		A., (b.)	ASSAYS	De (Del (anto)
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (p¢m)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		coated with limonitic and hematite, and on some, carbonate, chlorite and										
		malachite.	C 117809	27.43	30.48	3.05	100	1146	46	0.6	5	
<u> </u>		27.43 - 30.48 Pink syenite as described above. From 28.93 to 29.90 is a										
		section that begins with coarse pink k-feldspar with coarse biotite that										
		appears to grade into mafic rich syenite and then into a pyroxenite. (Is this										
		a potassic altered pyroxenite?) Increase in magnetism through section.	C 117810	30.48	33.53	3.05	100	8199	382	6.8	5	
		30.48 - 33.53 Broken pink and grey syenite. Numerous small patches of k-										
		feldspar and epidote alteration, also some areas showing weak clay										
		alteration. Disseminated blebs of chalcopyrite plus traces of bornite are fracture controlled, usually with biotite-chlorite marking the fracture,										
		oriented at 45-60° to core axis. Most low angles (0 to 20° to core axis)										
-		fracture faces are coated with limonite and malachite \pm chalcocite. Core										
		breaks with a irregular surface.				0.05	- 400	5004	40.6			
		33.53 - 36.58 Pink syenite as described above. Patchy k-feldspar and	C 117811	33,53	36.58	3.05	100	5634	124	2.9		
		epidote alteration, often cuts core as streaks and bands at 70-90° to core										
		axis. Traces of chalcopyrite.	C 117812	36.58	39.62	3.04	100	8473	235	5.5	4	
		36.58 - 39.62 Pink and grey syenite as described above. Numerous	011/012	50.50	33.02	0.04		04/0	200	0.0		
		streaks and bands of epidote alteration cut the core at 75 to 90° to core axis.					-					
		Traces of disseminated chalcopyrite. Low angle fractures (10-30° to core										
		axis) are coated with limonite, carbonate and malachite.										
		39.62 - 42.67 Grey syenite subjected to intense epidote alteration in	C 117813	39.62	42.67	3.05	100	2738	58	1.7	3	
		several spots, also numerous patches. Intensely altered spots also show										
		some carbonate alteration.										
		42.67 - 45.72 Grey syenite with numerous small patches and streaks of	C 117814	42.67	45.72	3.05	100	6276	156	3.3	4	
		epidote. Many k-feldspar alteration envelopes, 1 cm wide, follow fractures at				·-		· · · · ·		ļ		L
		45° to core axis. Fractures are often marked by thin lines of biotite. At			-							
		45.20 to 45.72 a grey syenite is mineralized with disseminated chalcopyrite										
		and bornite to 1%.	0 147945	45.72	48.77	3.05	100	11149	285	6.4	3	
		45.72 - 48.77 Grey syenite with patchy weak epidote alteration. Malachite	C 117815	45.72	48.77	3.05	100	11149	200	0.4		
		coats fractures from 10° to 45° to core axis. From 47.12 to 47.62 there is		+								<u> </u>
		disseminated chalcopyrite and bornite to 1% combined.								· · · · · ·		
		48.77 - 51.82 Grey syenite with many earthy-epidote-rich spots cutting at	C 117816	48.77	51.82	3.05	100	1461	29	0.4	4	
		moderate angles, roughly 45° to core axis. Patches of chlorite-epidote										
		alteration common. Malachite specks noted on a couple of 30° to core axis										
		fracture faces.										
		51.82 - 54.86 Grey syenite with intense and pervasive epidote alteration,										
		many sections are broken and earthy. Core crumbles easily through lower	C 117817	51.82	54.86	3.04	95	1488	36	0.5	< 2	
		half of run. Bleached feldspars suggest clay alteration. No sulphides.								 	ļ	
		Weakly magnetic.							L			
		54.86 - 57.91 Grey syenite with patchy and locally intense epidote						L				<u> </u>
		alteration. Low angle fractures (10-30° to core axis) core intensely limonitic,	C 117818	54.86	57.91	3,05	100	1045	27	< .3	2	-
		deposits are 1-2 mm thick. A few cross-cutting 45° to 60° to core axis				-						
		fractures have thin 1-2 mm orange k-feldspar alteration envelopes and carry		I	•			· -		+		
		mactures have than 1-2 mm brange k-relispon alteration envelopes and carry				1						1

FOOTA	GE (metres)			SAMPL	ES		Rec.			ASSAYS		
From (m)	<u>To (m)</u>		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		blebs of pyrite. Other irregular fractures are marked by meandering lines of										
		fine biotite. 57.91 - 60.96 Grey syenite as described above with patchy epidote	C 117819	57.91	60.96	3,05	100	2574	77	1.2	4	5
		alteration. Cut by irregular zones of k-feldspar, some low angle fractures	0 11/019	51.31	00.30	5,05		2014				
		(0 - 20° to core axis) are filled with biotite and / or chlorite altered pyroxene.										
		60.96 - 64.01 Grey syenite as described above contains two patches of	C 117820	60.96	64.01	3.05	100	3190	184	3.2	4	3
		limonitic leucocratic syenite (essentially light brown-coloured k-feldspar) from										
		61.52 to 61.68, and from 62.27 to 62.52. The lower one carries minor										
		amounts of pyrite, as disseminated cubes and fracture fillings. A number of fractures in the syenite. Both irregular / low angle and moderate around 45°										
		to core axis, carry blebs of pyrite and chalcopyrite, otherwise syenite is										
		weakly mineralized, just a few patches of fine disseminated sulphide, mostly										
		pyrite, a minor amount is chalcopyrite.										
		64.01 - 64.45 Grey syenite becoming very dark grey and mafic-rich	C 117821	64.01	67.56	3,55	100	385	117	0.6	6	3
		towards the contact with leucocratic syenite below. Contact is irregular and				-	5				·	
		low angle (about 10-20° to core axis). Pyrite (cubic) alteration is weakly developed, but forms a 1-2 cm wide envelope along the contact in the										
		svenite. A poor sample break groups this syenite with the leucocratic quartz										
		syenite below.										<u> </u>
		-	_									
· · ·												
64.45	66.10	LEUCOCRATIC QUARTZ SYENITE		· ·								
		64.45 - 66.10 Medium grained , buff-coloured and k-feldspar rich, with 2- 3% tiny rust specks. Cut by a weakly developed quartz stockwork, < 1 mm										
		wide and oriented at 75-90° to core axis. Perhaps 15-20% quartz, as	_							· · · · ·		
		-idiomorphic grains. Contacts, top and bottom are pyritic.										
66.10	67.56	MESOCRATIC SYENITE										_
		66.10 - 67.56 Grey syenite with several mafic-rich intervals and cut by										
		irregular orange-pink k-feldspar alteration zones. Cross-cutting zones at										
		roughly 45-60° to core axis have sulphide alteration envelopes 1 cm wide around chlorite seams filling fractures. Sulphides are dominantly pyrite								+		
		(> 75%) with lesser chalcopyrite. Weak chlorite epidote alteration.										
				-				<u> </u>		ļ	1	
67.56	68.55	LEUCOCRATIC QUARTZ SYENITE (67.56 - 68.55) - light grey syenite,	C 117822	67,56	68.55	0.99	100	249	7	3, >	<2	< 2
		largely composed of grey k-feldspar and quartz. This interval is fresher										
		(unaltered) than the leucocratic syenite between 64.45 - 66.10, which is										+
		more granular and is weakly clay altered. Cut by thin fractures at 10-20°										
		and 45° which carry minor pyrite. Interval is weakly porphyritic with coarse										
		1 cm long white k-feldspar crystals intergrown with finer-grained k-feldspar and guartz. Quartz contact is about 10-15%. Contacts are broken,										
		irregular.								<u> </u>	+	
1								I	1	I		1

FOOTA	GE (metres)		and The Content of Con	SAMPL	ES		Rec.			ASSAYS		
From (m)	To (m)		Sample #	From (m)		Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
·····												
8.55	118.44	MESOCRATIC SYENITE - greyish-pink syenite showing pervasive and intense										
		epidote alteration.										
		68.55 - 70.10 Epidote altered pink syenite as described above. Most of	C 117823	68.55	70.10	1.55	100	841	25	< .3	< 2	
		interval is broken and crumbly. Areas of epidote alteration have an earthy,										
		granular quality, and carbonate-clay alteration is moderately well developed										
		in these areas as well. Orange-k-feldspar alteration envelopes are									- ·	
	· · ·	associated with 30° and 90° to core axis fractures.	C 117824	70,10	73.15	3.05	100	5238	188	2.9	2	
		70.10 - 73.15 Grey syenite with many fine-grained dark grey mafic-rich	G 11/624	70.10	10.10	_ 0.00	100	0200	100	2.0		
		patches, often carrying 2-3% disseminated specks of chalcopyrite and up to				-						
		1% bornite. Overall weak to moderate chlorite-epidote alteration. Much of										
		the epidote appears as streaks cross cutting core at steep (about 90° to core										
		axis) angles. Epidote-rich areas are <u>NQT</u> mineralized. Mineralized dark										
		areas amount to about 10-20% of the interval. Balance of core is weakly										
		mineralized with minor amounts of disseminated chalcopyrite and pyrite. A										
		short (10 cm) very limonitic zone cuts through at 90° to core axis at 72.80.										
		73.15 - 74.60 Mesocratic syenite displaying pervasive and intense epidote	C 117825	73.15	76.20	3.05	100	1824	89	0.9	6	ļ
		alteration, along with weak clay and carbonate alteration. Chlorite-epidote								ļ	i	
		rich fractures cut core at 45 and 60° to core axis.										
		74.60 - 74.90 Biotite pyroxenite - no sulphides. Very little, if any,										
		alteration. Contact above is very limonitic for 7 cm. Contact below is very								 		<u> </u>
	_	epidote-rich.									<u> </u>	···
		74.90 - 76.20 Mesocratic grey syenite subject to locally intense epidote										
	·	alteration and is mafic-rich in a few sections. Several dark grey, finer-							<u> </u>			
		grained [sections] carry minor amounts of chalcopyrite and pyrite blebs.	C 117826	76.20	79.25	3.05	100	2319	119	0.8	3	
		76.20 - 79.25 Epidote-altered grey syenite, but with malachite specks.	0111020		10.20	0.00						
		Pyritic and limonitic fractures cut the core at 55-60° to core axis. Grey		· ·								
		patches are large clumps of chlorite <u>+</u> biotite are weakly mineralized with	•									
		disseminated chalcopyrite. Weak clay alteration toward bottom of run.										
		79.25 - 82.30 Grey syenite showing weak patchy epidote alteration, much	C 117827	79.25	82.30	3.05	100	1010	48	0.5	2	
		less than above. Dark-grey hypidiomorphic medium-grained, with 20%								ļ		
		weak chlorite-altered sub-euhedral pyroxene crystals. Run contains very										
		fine-grained disseminated specks of chalcopyrite and bornite. Minor pyrite										
		also mainly associated with fractures. Orange / brownish-red k-feldspar							m			<u> </u>
		forms 1-10 mm wide alteration envelopes along 45° fractures. Low angle				-		ļ	<u> </u>			<u> </u>
		carbonate veinlets, 1-2 mm wide, cut core at 10° to core axis.									<u> </u>	
		82.30 - 85.34 Grey syenite showing patchy but locally intense epidote				- 2.64	400	40.10			; e	
		alteration to 84.00. Fresh grey syenite, for balance of run, is mineralized	C 117828	82.30	85.34	3.04	100	1643	44	0.6	-	<u>'</u>
		with 0.5% disseminated blebs of chalcopyrite and minor bornite.					· · · · · · · · · · · · · · · · · · ·				 	1
		85.34 - 88.39 Grey syenite as described above. Traces of disseminated	C 117829	85.34	88.39	3.05	100	1390	41	0.3		
		specks of chalcopyrite and bornite at 87.72 a 10 cm zone of intense epidote	0 11/629	05.34	00,39	9.00	100	1030	+	1 0.0		·+
		alteration marks the beginning of another zone of patchy epidote altered								+	1	<u> </u>
		grey syenite.				1			<u> </u>	†	1	
		88.39 - 91.44 As described above. Patchy epidote alteration extends to	C 117830	88.39	91.44	3.05	100	1442	36	i 0,3	s < 2	2
		90.09. Sudden change into fresh grey syenite which extends to bottom of				+		1	+	1	1	1

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 5 of 8

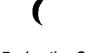
FOOTAGE (metres)	nn e na dennar denn a la frashir a kazara kazara kana kana kana kana kara kara kara k		SAMPLI	56 56	NAMES AND ADDRESS OF STREET	Rec.	in the state of the state of the state of the state of the state of the state of the state of the state of the	en de la management de la companya de la companya de la companya de la companya de la companya de la companya La companya de la companya de la companya de la companya de la companya de la companya de la companya de la comp	ASSAYS	A CONTRACTOR OF A DESCRIPTION	2 Mail 1997 1997
From (m) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	ES To(m)	Metres	%	Cu (pom)	Au (ppb)	Ag (ppm)	Pt (pob)	Pd (ppb)
	run. Disseminated fine blebs of chalcopyrite to 0.5-1.0%, minor bornite.	ecilipio #	, ristin (tit)					··- (_F -)	· .g (++···/		
	Also up to 1% pyrite in several spots.										
	91.44 - 94.49 Grey syenite as above, grades guickly into lighter,	C 117831	91.44	94.49	3.05	100	1612	30	0.6	< 2	
	unmineralized grey syenite, which is cut by several 10 cm wide granular										
	epidote alteration zones. Dark grey zone at top of run carries 1%					_					
	disseminated fine-grained blebs of chalcopyrite and minor bornite. Syenite										
	in lower half of run begins to develop a pink tone. Continuing magnetic,										
	although the dark syenite appears more magnetic than the pink syenite.										
	94.49 - 97.54 Pink and grey syenite with several melanocratic mafic-rich										
	sections, up to 50 cm in length which are cut by dark bands and streaks of	C 117832	94.49	97.54	3.05	100	1330	45	0.4	2	
	biotite, chlorite and grey orthoclase. This is not the fine-grained biotite										
	migmatite seen elsewhere on property. Dark bands form a poorly developed	· ·									
	gneissic texture in spots. Patchy disseminated chalcopyrite, locally reaches										
	1% but average is much less. Trace of bornite in dark areas. Run ends										<u> </u>
	with a metre of epidote and orange k-feldspar altered pink syenite.										
	97.54 - 100.58 Grey syenite developing pink tones toward the bottom of	C 117833	97,54	100.58	3.04	100	2990	58	1.8	6	
	run. Patchy, but fairly continuous epidote alteration many cross-cutting pink	0 11/655	97.54	100,30	3.04	100	2350	50	1.0		<u> </u>
	to orange k-feldspar rich zones cut the core at steep angles (70-90° to core										
								· · ·			
	axis). Several 30° fracture faces have malachite stains. Dark grey patches			· · ·							
	toward bottom of run carry 1% disseminated chalcopyrite and 0.5% bornite.										
	Pink areas carry little mineralization.	C 117834	100.58	103.63	3.05	100	3184	78	1.3	2	
	100.58 - 103.63 Epidote altered grey syenite with many mafic-rich										
	patches. Mafic content (biotite and pyroxene) in dark grey areas is										
	approximately 40% and more concentrated in the lower half of the run.										
	Cross-cutting streaks of epidote and orange k-feldspar cut the core at 80 -										
	90° to core axis and are most common in upper half of run. Last 20 cm of										
	run is a mass of green epidote and pink k-feldspar alteration.										
	103.63 - 106.19 Pervasive and intense epidote alteration, interrupted only	C 117835	103.63	106.68	3.05	100	2971	106	1.5	6	
	by patches of pink k-feldspar. Original rock appears to be grey syenite but										ļ
	alteration has been overwhelming and has destroyed many textures.										l
	106.19 - 106.68 Biotite pyroxenite. Spotted with k-feldspar crystals										ļ
	(subhedral to 1 cm) but is full of epidote spots, mainly unaltered interstitial										<u> </u>
	k-feldspar. Strongly magnetic. Weak chlorite alteration of pyroxene.		· · · · · · · · · · · · · · · · · · ·								
	106.68 - 109.73 Epidote and pink k-feldspar altered pink / grey syenite.	C 117836	106.68	109.73	3.05	100	1035	42	0.3	5	├───
	In places the epidote and k-feldspar cut the core at steep angles (70 - 90 $^\circ$ to										
	core axis) and form alteration envelopes around fractures. There are										
	several medium to coarse grained intervals to 30 cm with pink k-feldspar,										+
	fine epidote and medium-grained (1-2 mm) biotite that is very reminiscent of				•						
	an altered biotite pyroxenite. A dark grey fine grained (or idiomorphic										+
	medium-grained), somewhat hornfelsed looking section has weak limonite										
	stains, bordered by orange k-feldspar and carries disseminated specks of		· · · · · · · · · · · · · · · · · · ·								<u> </u>
	chalcopyrite and bornite to about 1% combined. A 30° to 45° fracture set										
	has 1 mm orange k-feldspar alteration envelopes and carries blebs of pyrite.								-		1
	109.73 - 112.78 Grey syenite as described above. Run begins with a dark	C 117837	109.73	112.78	3.05	100	4587	193	1.9	4	, †
	grey, weakly limonitic section of 30 cm as described above. Contains								+	¦'	t

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

1

FOOTAGE	(matres)			SAMPL	ng a chuinn an shine E C		Rec.	No. of No. of No.		ASSAYS		
From (m)	To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	ES TO (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		disseminated chalcopyrite specks. Separated by a granular, earthy epidote										
		and pink k-feldspar altered section for 30 cm. Followed by grey syenite with										
		many irregular brownish pink patches and bands. These appear to cross at										
		steep angles, 45° to 90° to core axis. Grey syenite is mineralized with										-
		disseminated specks and blebs of chalcopyrite and bornite locally to 1-2%,										
		average much less, about 0.5 to 1.0% chalcopyrite and 0.25% bornite. A										
		45° to core axis fracture is very limonitic.										
		112.78 - 115.10 Grey syenite cut by high angle epidote and orangish-pink	0.447000	440.70	445.40	0.00	100	5085	117	2.1	4	
			C 117838	112.78	115.10	2.32	100	5065		2.1		
		k-feldspar alteration, generally in the range of 60 - 90° to core axis continuing mineralized with disseminated specks of chalcopyrite and bornite				-						
		to a combined average of about 1%.										
		115.10 - 116.39 Melanocratic syenite - dark grey syenite with cross-	C 117839	115,10	118.44	3,34	100	1017	65	0.4	3	<u> </u>
			0 111000									
1		cutting (at 90 ⁰⁾ foliation defined by mafic streaks, biotite and magnetite.										
		Mineralized by disseminated fine grained chalcopyrite and bornite as above,										
		but the concentration declines and is discontinuous with depth.										
		116.39 - 118.44 Grey syenite as described above, many dark grey										
		sections, dark streaks perpendicular to core axis gives a weak gneissic						_				
		appearance. Continuing copper sulphide mineralization of 0.5 - 1%										
		chalcopyrite and 0.25% bornite, both as disseminated specks.								ļ		<u> </u>
18.44 1	120.65	BIOTITE PYROXENITE along with MAFIC-RICH SYENITE contact zones				-						
		above and below.	C 117840	118.44	120.65	2.21	100	769	44	< .3	5	
		118.44 - 119.11 Mafic rich syenite with gneissic textures from cross-	C 11/640	110.44	120.05	2.21	100	103				
		cutting bands of pyroxenite. Patchy epidote alteration. No sulphides seen.										
		119.11 - 120.29 Biotite pyroxenite with up to 30% grey syenite in places. Magnetic, no sulphides seen.	· · · · -									
				1		<u> </u>						1
		120.29 - 120.65 Grey epidote altered syenite weakly sheared at 65° to										1
		core axis.										
20.65	126.29	MESOCRATIC SYENITE - dark grey syenite with 20-30% mafic spots, mainly										
		biotite and pyroxenite.	C 117841	120.65	121.92	1.27	100	586	63	<.3	2	<u>+</u> -
	•	120.65 - 121.92 Grey syenite with mafic-rich spots. Mafic centres are	C 11/041	120.05	121.92	1.21	100	300	00	~	<u> </u>	
		mineralized with net-textured chalcopyrite, after assimilated pyroxenite(?)										
		Disseminated chalcopyrite to 1% and minor bornite in the syenite through						·				
	-	the run.	C 117842	121.92	126.29	4.37	100	972	80	< .3	2	
		121.92 - 126.29 Grey syenite as described above, with a 20-30% mafic							1			
		- content - mainly as streaks and clusters forming a weak gneissic texture at				-						
		90° to core axis. Weakly mineralized through entire extent of run, small							ļ	L		
		blebs of chalcopyrite and bornite are associated with mafic centres,						. ·		1		
		mineralization becoming more sparse with depth. Magnetic.				 						
25.00	407.00	PIOTITE DVDOVENITE includes notables of group ovenite. Description work						<u> </u>				
126.29	127.38	BIOTITE PYROXENITE - includes patches of grey syenite. Pervasive weak chlorite alteration. Magnetic.							+			1
		126.29 - 127.38 As described above. No sulphides seen.	C 117843	126,29	127.62	1.33	100	57	15	< .3	< 2	
1												

	SILL OF SUCCESSION OF SUCCESSION		naan ah ang ang ang ang a	raine destaurant articles and a		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		(p. 1947, 1949) (c. 1953) (p. 1948)	CONTRACTOR OF THE CONTRACT OF		arean manage	1997 (S. C. S. S. S. S. S. S. S. S. S. S. S. S. S.
	GE (metres)	LITHOLOGICAL DESCRIPTION	Camal- 44	SAMPL	ES To(m)	Metres	Rec. %	Cu (ppm)	Au (ppb)	ASSAYS Ag (ppm)	Pt (ppb)	Pđ (ppb)
From (m)	<u>To (m)</u>		Sample #	From (m)	10 (m)	Metres	70		Au (ppb)	Ag (ppm)		
127.38	129.07	MESOCRATIC SYENITE										
		127.38 - 127.62 Grey syenite, as described above, this 22 cm section is										
		the mafic rich contact zone with pyroxenite above. Included with sample										
		interval for pyroxenite.										
		127.62 - 129.07 Grey syenite with many mafic-rich patches, mostly cross-	C 117844	127.62	129.07	1.45	100	132	10	< ,3	< 2	6
		cutting core at steep angles. More felsic and epidote altered toward bottom									ļ	
- ·		of interval. No sulphides seen.										
									_			
129.07	133.11	BIOTITE PYROXENITE - pervasive moderately chlorite alteration.										
123.07	100.11	129.07 - 131.06 As described above. No subhides seen.	C 117845	129.07	131.06	1.99	100	51	6	< .3	10	2
		131.06 - 133.11 As described above. No subplides seen.	C 117846	131.06	133.11		100		7	< .3		+
133.11	137.97	MESOCRATIC SYENITE - includes a few mafic-rich patches of syenite.								-		
		Contacts above and below are irregular.	C 117847	133.11	137.97	4.86	100	642	38	< ,3	< 2	5
		133.11 - 137.97 Pinkish-grey syenite with mafic-rich (pyroxenite) section at top, bottom and at 134.65 which are moderately chlorite-epidote altered.	C 11/04/	133.11		4.00	100		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0		`
		All which are not at 154.05 which are model ately chonce epidoce altered.										
		Platachice spots on some mane centres out no suprides seen.					-					
137.97	143.64	BIOTITE PYROXENITE - with coarse biotite flakes.	C 117848	137.97	140.21	2.24	100	49	68	< .3	9	< 2
		137.97 - 140.21 Biotite pyroxenite as above. First 30 cm displays	C 11/040	137.97	140.21	2.24	100	43				
		extensive epidote alteration envelope 1 cm wide each side of 2-4 mm wide pink k-feldspar veinlet. Moderately biotite-rich. Balance of run is moderately										
		altered spots are broken up and crumbly. A 6 cm wide cross-cutting k-		-					 		1	
	_	-feldspar zone (grey) cuts core at 60-80° to core axis and carries pyrite.			-							
		Traces of chalcopyrite disseminated in pyroxenite.										
		140.21 - 143.64 Biotite pyroxenite as described above. Cut by several	C 117849	140.21	143.64	3.43	100	60	39	<.3	8	
		2-3 mm k-feldspar veinlets, alteration envelopes at 30 to 80° to core axis.	0111040		1.0.01	0.70						
		Chlorite alteration becoming more pronounced toward bottom of run.										
												<u> </u>
143,64	152.40	BIOTITE POTASSIUM FELDSPAR PYROXENITE - this interval has 1 cm										
143,04	132.40	oikocrystic k-feldspar subhedral crystals in a biotite-chlorite-altered									+	+
		pyroxenite matrix. Oikocrysts have pink centres with grey / buff reaction		·						1		1
		rims, especially toward bottom, mostly grey oikocrysts near top.										
		143.64 - 146.30 As described above, pervasive and intense chlorite	C 117850	143.64	146.30	2.66	100	16	< 2	< .3	< 2	
`		-alteration of pyroxenite. No sulphides.		_						ļ		L
		- 146.30 - 149.35 As described above.	C 117851		149.35	i					-	
_	-	149.35 - 152.40 As described above but beginning with 1.5 metres of soft	C 117852	149.35	152.40	3.05	90	96	6	i < .3	4	6
		broken, earthy core showing extensive chlorite and epidote alteration.										· · · ·
·		Oikocrystic pyroxenite grades into 50 cm of biotite pyroxenite then changes						<u> </u>			+	
		······································						1	1	1		<u> </u>


Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 8 of 8

	E (metres)			SAMPL			Rec.			ASSAYS		
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		abruptly into 30 cm of limonite stained light coloured k-feldspar rich syenite, pink k-feldspar alteration gives blotchy appearance.										
152.40		END OF HOLE.										

12 Sept. 2002

MERCENT & CONTRACTOR STREET	and a mark that the set of the second second		n an an an an an an an an an an an an an			DIP TESTS	terin dan terinakan	en. 2000	Γ.	ne yn de hydraffen		194099 - 121 BART	0.00039003.20083	evend of a second
Property:	Lorraine		Total Length: 213.36		Footage (m)		Dip Corrected	1		ate: Septe	·			
Grid Cord	<u> </u>		Core Size: BQTW		213	-48 [°]	-40°		Comple	tion: Sep	tember 2	5, 2001		
Elevation:	1698 m		Azimuth: 45.2°				:		Logged	By: Jay V	N. Page			
Section:			Inclination: -45°						Date lo	gged: Se	ot 24-Oct	1, 2001		
NOTES: E	Bishop Area, PA	D: B' GPS Location	on (corrected): UTM 348508.8 E; 6199831.7 N (NAD 83)					<u> </u>					
FOOTA	GE (metres)		LITHOLOGICAL DESCRIPTION			SAMPI	LES	arna na ser constitu	Rec.			ASSAYS	and the second	
From (m)	<u>To (m)</u>				Sample #	From (m)	<u>To (m)</u>	Metres	<u>%</u>	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
0	6.10	CASING (20 feet)]									
6.10	33.53	that it is almost u magnetite-pyrite- in complete textu boundaries.	ENITE - mafic-rich syenite which is so pervasively inrecognizable as syenite. Chlorite-epidote-hemat carbonate alteration. This intense alteration has ire destruction with indistinct crystal and alteration	ite- resulted	► 									
		disseminated pyri locally as fine-gra disseminated spe- orange-red k-feld thick at 75° to cor mineralization is z	red dark grey syenite as described above. Very p ite runs about 3-5%, also very magnetic rich, up t sined dark-grey masses. Possible trace chalcopyrii cks with pyrite. Many patches and spots of epido lspar alteration. A veinlet of red k-feldspar at 6.60 re axis carries cubic pyrite. Heaviest sulphide associated with masses of magnetite, epidote and	o 30% æ as fine æ and), 1 cm	C 117853	6.10	9.14	3.04	94	7179	16	8.4	2	< 2
		patches. Many in with magnetite co in epidote-magne rare blebs of chal with pyrite is four associated with re has mafic-rich sys	very broken. tered mesocratic syenite, magnetite-rich as fine-gindistinct patches of epidote and red k-feldspar, whomprise most of the core. Very pyritic, about 3% atter rich parts. Red k-feldspar patches sometimes loopyrite and bornite. Also a minor amount of chain of in chlorite-biotite patches, which are more comed k-feldspar. The original unaltered rock in these enite or syenite with patches of biotite pyroxenite. t 11.69, 19 cm wide cuts core at 60° to core axis.	ich along especially carry lcopyrite monly spots		9.14	13.37	4.23	98	4771	27	5.6	< 2	< 2
		13.37 - 16.26 S magnetite alterat Epidote alteration chlorite-biotite so carbonate veinlet	Syenite showing pervasive and intense epidote-k-ficion, as described above. Dark grey colour tone commore pronounced toward bottom of interval. Paymetimes carry chalcopyrite \pm bornite blebs. These is, 1-2 mm thick cut the core at 30° and 45° to core an orange-red k-feldspar rich interval in which roc	ontinuing. Iches of e e axis.		13.37	16.26	2.89	98	3078	36	4.0	3	2
		and alteration bour red k-feldspar is of patches (pieces of bornite. All is over 3 mm) is coarse k	undaries are more recognizable than above. Muc coarse-grained, to 6 mm crystal size. Chlorite-bio of pyroxenite?) carry small blebs of chalcopyrite pl erprinted with pyrite. Some coarse blebs of chalco k-feldspar sections. Epidote alteration still pronou s are more distinct.	n of the ite Is rare opyrite (to	C 117856	16.26	18.29	2.03	100	1619		1.6	< 2	< 2

Т

Lorraine Project Diamond Drill Logs DDH: 2001-58

astatu - antara bearannatan	A THE REPORT OF A DESCRIPTION OF A DESCRIPANTA DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTIO	аналания заканования именьских разловималистору и сорта со составляется со составляется составляется и составляется и П		SAMPLE		tigan research	Rec.		1997 - C. W. C. W. S. W. S. W. S. W. S. W. S. W. S. W. S. W. S. W. S. W. S. W. S. W. S. W. S. W. S. W. S. W. S	ASSAYS	Guidenausse Gauriaus	5,551,111,112,155,155,164 1.111,112,112,114
From (m)	GE (metres) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)		Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
From (my			C 117857	18.29	21.34		100	2406	23		2	2
		18.29 - 21.34 Syenite displaying epidote and red k-feldspar alteration as										
	-	described above. Alteration is very patchy but there is continuous alteration										
	-	of one type or another. Many darker chlorite \pm biotite patches often carry										
		disseminated blebs of chalcopyrite and lesser bornite. Continuing pyrite										
···· ·= · ·		overprint, much of fine-grained pyrite is cubic. Chalcopyrite in this run										
		maybe as high as 1%, bornite to 0.5%. Some chalcopyrite is associated										
		with vague fractures, although most appears to be of intermediate angles										
		(30-60° to core axis).										
		21.34 - 24.38 Grey syenite showing extensive red k-feldspar alteration	C 117858	21.34	24.38	3.04	100	2417	24	0.9	3	4
		along with chlorite alteration of all mafics (except biotite) and minor epidote										
		spots. Patchy chalcopyrite. Mineralization is strong with large blebs where										
		associated with chlorite alterated (+ biotite) mafic patches. Average for run										
		is about 1%. Containing pyrite mineralization, about 1%, less than above.										
		Non magnetic.										
		24.38 - 27.43 Grey syenite showing several intervals of irregular-shaped,	C 117859	24.38	27.43	3.05	100	4694	52	2.6	- 6	< 2
		vague zones of k-feldspar and epidote alteration. Chalcopyrite is present as										<u> </u>
		fine disseminated blebs in the grey syenite and as blebs in chlorite-altered								ļ		
		pyroxenite pieces in which the biotite is preserved. Occasional net-textured							.			·
		chalcopyrite is noted in the pyroxenite. Chalcopyrite is also associated with							·	· · · · · · · · · · · · · · · · · · ·		
		grey-brown k-feldspar veinlets, most of which are irregular shaped.						· · ·				
		Containing 1% pyrite, chalcopyrite runs about 2-3%, minor bornite epidote										
		altered sections are not magnetic, remainder of interval is highly magnetic.									·	
	<u> </u>	27.43 - 30.48 Grey syenite as described above. Becoming more k-feldspar	C 117860	27.43	30.48	3,05	100	3540	48	2.5	6	<u> </u>
		altered toward bottom of run. Where k-feldspar alteration or veinlets cross-	C 117860	21.43	30.40	3,05	100					
		cut core, it is usually at a moderate to strong angle, about 60° to core axis.										<u> </u>
		Fine, disseminated pyrite is present in the grey syenite but chalcopyrite is						i				
		usually found as larger blebs, and in several places has associated bornite.						· · · -		<u> </u>		
·	<u>-</u>	Chalcopyrite averages about 1-2% for run,					-		· · ·			
	+	30.48 - 33.53 Potassium altered (red k-feldspar) syenite with epidote	C 117861	30,48	33.53	3.05	100	4631	54	3.7	< 2	: .
		becoming more prominent toward the bottom of run. Fine disseminated	0 111001			0.00						
				·					1			1
		chalcopyrite through much of run 1-2% plus minor disseminated bornite and		· · · ·					·			
		perhaps 1/2% as large blebs of chalcopyrite. Patchy pyrite mineralization in							<u> </u>			
		a few spots. Most of core has a very "dirty" indistinct appearance. Weak to		-								
	-	moderate magnetism. Red k-feldspar veinlets 1-3 cm wide with biotite and			· · · ·							
		disseminated chalcopyrite cut core at 75 to 90° to core axis. Strongest										
		mineralization associated with relic patches of mafic rock (pyroxenite) that is										
·	+	largely assimilated; magnetite, biotite and chalcopyrite remain, k-spar										
		altered to red k-spar or epidote.										
										ļ	Ļ	
33. 53	34.24	LEUCOCRATIC SYENITE - medium-grained, buff-coloured syenite with								<u> </u>	ļ	
		prominent 1-2 mm cubic pyrite.								L		
	_	33.53 - 34.24 As above with 2-4% cubic pyrite. Cut by several 1-2 mm	C 117862	33.53	36.58	3.05	100	5686	130	5.2	·	3
		-quartz veins which also carry cubic pyrite, oriented at 45 and 90° to core								·		-
		axis. Small interval is grouped with syenite below. Contact above is						_		<u> </u>	l	

Page: 3 of 15

Lorraine Project Diamond Drill Logs DDH: 2001-58

FOOTAC	GE (metres)			SAMPL	.ES		Rec.			ASSAYS		
From (m)	To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		the state of the second of the second s										
		indistinct and low angle (about 15-25° to core axis). Contact below is abrupt										
		at 45° to core axis.										
				· -··					·			
34.24	41.02	MESOCRATIC SYENITE - displaying intense k-feldspar and chlorite alteration.										·
		34.24 - 36.58 Red-k-feldspar and chlorite altered syenite. Most of run is										
		"dirty" looking-indistinct red-brown k-feldspar with irregular patches of								· · · · · · · · · · · · · · · · · · ·		
		chlorite-altered mafic (pyroxenite). Grey k-feldspar in chlorite patches is					· · ·					
		very indistinct and shows moderate sericite alteration. Chalcopyrite noted in						· ·	· · · · · · · · · · · · · · · · · · ·			<u> </u>
		many of these patches, but is more common as disseminated blebs in red										
		k-feldspar. In a coarse-grained section irregular patches of grey k-feldspar										1
		carry both pyrite and chalcopyrite among coarse 0.5 to 10 mm red k-										
	-	feldspar crystals. Epidote is common within chlorite patches. The lower				-						
		part of this interval, about last 50 cm, is very chlorite rich, probably on								· ·		
	1	altered sections of pyroxenite, composed of 50-60% chlorite, 10-15% fine							-			
		biotite, 25-30% sericite, \pm epidote altered k-feldspar. Contains about 3%										
		fine disseminated chalcopyrite.										
		36.58 - 41.02 Altered syenite as described above, patchy chlorite - altered	C 117863	36,58	41.02	4.44	100	6988	82	5.1	< 2	ļ!
		mafics carry some chalcopyrite blebs. Most of mineralization as										
		disseminated blebs in red-brown syenite, often associated with epidote						- <u>-</u>				<u> </u>
		spots. Also minor bornite with some chalcopyrite blebs. Lower 50 cm has										
	_	low angle fracture with 1 mm thick chlorite coating. Slickensides are parallel										<u> </u>
		to core axis. Fractures are oriented at 0-5° to core axis. K-feldspar in this										
		section is brown-coloured and shot through with hairline veinlets of										
		carbonate in all directions.					,					
						· · ·						
41.02	46.18	BIOTITE PYROXENITE - showing pervasive and intensive chlorite alteration										
41.02	40.10	of pyroxene. Composition varies to biotite potassium feldspar pyroxenite.										
		Variable alteration of k-feldspar to epidote. Magnetic.			·· · -							
		41.02 - 43.40 Biotite pyroxenite showing pervasive and intense chlorite	C 117864	41.02	43.40	2.38	100	524	54	< .3	7	' <u>'</u>
		alteration and increasing epidote alteration of k-feldspar toward bottom of										
		interval 10-15% red-brown k-feidspar is unaltered - perhaps a later										
		k-feldspar alteration. Biotite is about 20% and is aligned giving a gneissic								l		
		texture in a few spots. Biotite is coarse, to 6 mm, and is unaltered. Epidote										
		alteration begins weakly, develops to about 10-15% of core by end of										<u> </u>
		interval. No sulphides seen.				ļ			╡───	<u> </u>		<u> </u>
		43.40 - 46.18 Biotite pyroxenite as described above. K-feldspar content								<u> </u>	<u>_</u>	+
		has increased by 45,40 to over 50% and is much coarser than the chlorite	C 117865	43.40	46,18	2.78	100	54	<u>ا ع</u>	. < .3	ee	°
		"matrix". Biotite not as prominent, maybe 10% and finer grained. No			<u> </u>							
		sulphides seen. Epidote alteration is more patchy now.							+	+		-
										+		
40.40	FC 65	MESOCRATIC SYENITE - reddish-brown to pink syenite with grey tones.				+						+
46.18	56 <u>.65</u>	Numerous thin mafic lenses show some alignment giving a weakly developed						+	+	+		
						+ · · · · ·		ł		+	<u> </u>	1 -
		gneissic texture oriented at 80-90° to core axis. Moderately magnetic.				1 1		1			ł	

Page: 4 of 15

Lorraine Project Diamond Drill Logs DDH: 2001-58

FOOTAG	E (metres)			SAMPL	ES		Rec.			ASSAYS		
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		46.18 - 48.77 Greyish pink syenite as described above. Weak chlorite and epidote alteration except where k-feldspar has a reddish brown colour and fine-grained epidote is common. Chlorite is found as a fracture coating with	C 117866	46.18	48.77	2.59	100	329	42	< .3	5	1,
		carbonate on 30 to 45° to core axis fractures. K-feldspars alteration envelopes show parallel alignment to gneissic foliation where developed.	C 117867	48.77	51.82	3.05	100	453	90	£, >	4	1
		48.77 - 51.82 Greyish pink syenite as described above. Trace pyrite carbonate veinlets 1-2 mm thick are common at 45° to core axis. Chlorite alteration of mafic lamellae is common. Last metre is coarse reddish-brown										
		k-feldspar. 51.82 - 54.86 Reddish-brown syenite with mafic rich patches and bands	C 117868	51.82	54.86	3.04	98	206	36	< ,3	4	1
		cutting core axis at 80°. Several small shears cut the core at approximately 30 to 45° to core axis. Core in these sections is broken and chlorite and										
		carbonate rich. Pyrite is common in cross cutting features both as disseminated blebs and as fine cubic pyrite. Most of core is coarse grained reddish-brown k-feldspar.										
		54.86 - 56.65 Coarse reddish-brown and pink syenite. Becoming very coarse grained toward bottom of interval, 1-2 cm. Chlorite alteration of mafics, minor carbonate. Continuing magnetic. Intense sericitic alteration	C 117869	54.86	_57.91	3.05	100	272	60	< .3	5	1
		of feldspars in mafic patches. K-feldspar (rusty orange colour) alteration very intense along 35-45° fractures, leaving 2-4 mm wide alteration envelopes.										
6.65	60.22	MESOCRATIC MAFIC-RICH SYENITE - pink syenite containing several short intervals of chlorite-epidote altered pyroxenite plus numerous large patches. Because of the high degree of alteration there is not a big difference between the colour tone of the above syenite and this section. 56.65 - 57.81 Grey chlorite-altered pyroxenite and magnetite feature less to begin with, but develops pyroxenite-like textures within 30-50 cm, e.g. randomly distributed flakes of biotite, sericite altered spotted patches of										
		- feldspars. Followed by patches of intensely chlorite and epidote altered pyroxenite in coarse reddish-brown k-feldspar. No sulphides seen. 57.81 - 60.22 Mafic-rich syenite as described at the end of the above interval. Very irregular patches of intensely altered pyroxenite, with just chlorite, epidote, minor sericite, biotite and magnetite remaining, all hosted by very coarse grained reddish-brown k-feldspar (1-3 cm crystal length). Possible trace of bornite in one mafic centre.	C 117870	57.91	60.96	3.05	100	1044	139	< .3		3 2
60.22	63.61	MESOCRATIC SYENITE - pink and reddish brown syenite that is relatively mafic poor compared to above interval, but both have similar colour tone.										
		This interval still has a few highly mafic (pyroxenite) patches. 60.22 - 63.61 Mesocratic (pink) syenite as described above. Contains very large, distinctive, buff-brown coloured k-feldspar crystals to 8 cm, but many smaller to 1 cm. Broken surfaces of split core has powdery coating of	C 117871	60.96	64.01	3.05	100	586	43	0.5		3
		sericite, minor carbonate. Trace pyrite.				┿───-┤			<u> </u>			

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 5 of 15

FOOTAC	SE (metres)			SAMPL			Rec.			ASSAYS		
From (m)	To(m) ⊒c	LITHOLOGICAL DESCRIPTION	Sample #	From (m)		Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
	• •	MESOCRATIC MAFIC-RICH SYENITE - pink mafic-rich syenite that is very similar in tone to the mesocratic syenite above because of its coarse grain size and the intense chlorite. Epidote alteration of mafics. 63.61 - 64.01 Mafic-rich (chlorite-biotite) syenite, slightly more mafic than above, and included with the above sample. Bands and streaks of chlorite between coarse and aligned k-feldspar crystals gives a fabric oriented at 45° to core axis. 64.01 - 67.06 Mafic / chlorite-rich syenite as described above. Includes some brown k-feldspar crystals to 3-4 cm. Most mafics and mafic pebbles very amorphous, featureless, and comprise 50-60% of core. Very light colour tone because of alteration. Disseminated chalcopyrite and bornite in some mafic spots. At 66.50 to 66.70 there is a broken sheared zone at a low angle (0-10° to core axis) which is extensively chlorite and carbonate coated. Broken rock fragments are cemented with carbonate. 67.06 - 69.53 Syenite as described above, with many partly assimilated, chlorite altered mafic patches. Syenite is mostly very coarse-grained, to 6 cm reddish-brown k-feldspar. Includes several large blebs (to 5 mm) of chalcopyrite. Minor carbonate. A thin hairline quartz stockwork is weakly developed and cuts the core axis mostly at high angles (>60°). Small blebs of pyrite and chalcopyrite are noted in minor amounts near quartz veinlets.	Sample #	From (m)	To (m)	3.05	<u>%</u> 100	958		0.4	Pt (ppb)	
69.53	71.53	BIOTITE POTASSIC FELDSPAR PYROXENITE - showing intense chlorite alteration, and interrupted by several syenite sections. 69.53 - 71.53 Interval begins with mafic rich syenite with coarse-grained k-feldspar crystals to 2-3 cm then grades into intensely chlorite altered biotite potassic-feldspar pyroxenite. Chlorite alteration has been pervasive and intense, resembling in the complete destruction of pyroxene textures. Rock is carbonate rich. Lower angles (0-20° to core axis) quartz veinlets, 1-4 mm thick, meander through sections of core. Bright orange-red alteration envelopes are 2 mm wide and carry minor pyrite. Other 0.2-2 mm wide quartz veinlets cut the core at 45° to core axis. This pyroxenite interval was not broken out separately [for analysis] due to intensity of alteration and similarity of syenite above and below.										
71.53	73.09	MESOCRATIC MAFIC-RICH SYENITE (71.53 - 73.09) - intense sericite and chlorite alteration of mafic patches has resulted in a mesocratic rather than a darker melanocratic tone. Sericitic and pyritic alteration has dominated over chlorite in some large mafic patches in this interval. Red-orange-brown k-feldspar is prominent, occurring up to 3 cm in crystal size. Where measurable, mafic streaks and bands and quartz veins cut the core axis at 80-90°. Sericitic altered sections (\pm pyrite) are associated with a fracture stockwork of hairline quartz veinlets oriented at 20-70° to core axis. Relic	C 117874	70.10	73.09	2.99	100	281	151	<.3		5 11

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 6 of 15

E00742	E (metres)			SAMPL	EC	ten enne redi ⁿ el	Rec.			ASSAYS		
FOOTAG	To (m)		Sample #	From (m)	ES To(m)	Metres		Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		biotite (unaltered) is all that remains of original pyroxenite. Mafic patches in lower half of interval are chlorite altered. A low angle (0-5° to core axis) fracture is filled with 1 mm of chlorite and carbonate.										
73.09	74.25	BIOTITE POTASSIC FELDSPAR PYROXENITE - displaying intense chlorite- epidote alteration. Contains less biotite than is usual for this rock type (about 5-10%). Magnetite 1-2% appears unaffected by alteration. 73.09 - 74.25 Two sections of biotite pyroxenite separated by a 15 cm section of coarse k-feldspar. Altered pyroxenite as described above. Cut by hairline quartz veins at 75 to 90° to core axis.	C 117875	73.09	73.29	0.20	100	265	11	0.4	2	13
74.25	76.47	MESOCRATIC MAFIC-RICH SYENITE - large bands, streaks and elongate patches of chlorite-epidote altered mafic form a gneissic texture at 60-70° to core axis. 74.25 - 76.47 Gneissic syenite as described above. Very coarse-grained pinkish-brown k-feldspar to several cm are sub-aligned with gneissic texture. Mafic patches and streaks are strongly epidote-chlorite altered through upper part of interval. Epidote decreases toward bottom, leaving just chlorite, along with relic biotite. Small amount of fine carbonate throughout interval.	C 117876	73.29	76.47	3.18	100	511	26	< .3	5	11
76.47	78,06	MELANOCRATIC MAFIC-RICH SYENITE - a mixture of coarser grained syenite, chlorite altered mafic syenite and chlorite altered pyroxenite. Interval shows frequent variation between the above rock types. 76.47 - 78.06 As above low angle shearing (0 to 10° to core axis) through most of interval. Hematite and chlorite coatings common on broken rubble surfaces	C 117877	76.47	78.06	1.59	98	270	6	0.6	4	12
78.06	81.80	 BIOTITE PYROXENITE - with several 10-15 cm sections of coarse orangishbrown k-feldspar. 78.06 - 79.78 Biotite pyroxenite as described above showing complete alteration of pyroxene to chlorite with a complete loss of original textures. Biotite, about 15% as 4-6 mm randomly distributed flakes. Run includes 3 sections, 10-15 cm long of coarse k-feldspar. This run could have included bottom 30 cm of last run above. 79.78 - 81.80 Biotite pyroxenite as described above. 	C 117878	78.06	79.78		100	246				
81.80	88.31	MESOCRATIC MAFIC-RICH SYENITE - showing intense chlorite and sericite alteration of mafic patches hosted by pinkish-red syenite. 81.80 - 85.34 Mafic patches comprise 40-60% of the rock and are altered as noted above. Fine carbonate found disseminated throughout rock and is hairline fracture fillings, mostly in the 30-60° to core axis range.	C 117880	81.80	85.34	3.54	100	3104	15	1.2	4	l <u> </u>

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 7 of 15

FOOT	AGE (metres)		a de la calega de la calega de la calega de la calega de la calega de la calega de la calega de la calega de la	SAMPL	FS		Rec.		2240.4490.2797.275.171	ASSAYS		
From (m)			Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pol (ppb)
		Disseminated cubic pyrite and small blebs of chalcopyrite with minor bornite. 85.34 - 88.31 Mafic rich syenite as described above. Much of the syenite is finer grained than seen higher in hole. Streaks of magnetite give strong magnetic character. Continuing minor blebs of pyrite and chalcopyrite.	C 117881	85.34	88.31	2.97	100	2852	80	1.4	3	
		 BIOTITE PYROXENITE - beginning fine grained, becoming coarser grained with depth. Intense and complete texture destruction of pyroxene by chlorite alteration. Upper part has more k-feldspar than below. 88.31 - 91.44 Biotite pyroxenite as described above. Well mineralized with 2% chalcopyrite at 89.60 for 50 cm, then a blank section separates it from a lower bornite-rich section from 90.76 to the end of the run. 91.44 - 94.49 As above, bornite-rich (1-2%) mineralization continues to 91.95. The lower part includes patchy epidote and sericite alteration of feldspars. Epidote alteration is strongly developed after 94.00. Small blebs of bornite are associated with / intergrown with blebs of magnetite over a short distance (about 20 cm) near 94.00. Chlorite alteration of pyroxenes has decreased remarkably and by the lower half of this run is only weakly evident and is NOT texture destructive. 94.49 - 96.50 Biotite pyroxenite as described above. Several small bornite blebs noted with magnetite. Patchy chlorite and epidote alteration, after 95.53 core becomes very biotite rich, surprisingly well mineralized with 2-3% disseminated blebs of bornite, minor specks of chalcopyrite. This section (95.53 - 96.50) contains 60-80% fine-grained biotite grades smoothly into biotite pyroxenite is essentially the same rock type but with 40-60% k-feldspar instead of 10-20%. Continuing mineralized with chalcopyrite and bornite blebs, the bornite is sometimes found separately, but more commonly forms a composite bleb with chalcopyrite. Averages about 1-2% combined. 97.73 - 101.01 Biotite pyroxenite as described above 96.50. Weak chlorite alteration of feldspars becomes very pronounced toward bottom of run. K-feldspar varies from 15% to 40% and variation tends to be abrupt rather than graded. Sulphides have died out, only a trace. 	C 117882 C 117883 C 117883 C 117884 C 117884 C 117885 C 117886	91.44 91.44 94.49 94.49 96.50	91.44 94.49 96.50 96.50 97.73 97.73	2.01	100	2605	45 53 17 4 4 4	0.8	4 5 5	14
101.01	108.14	SYENITE - showing variations in mafic content, alteration and mineralization. The mafic in this case is largely biotite which defines gneissic texture of bands and streaks at 60-80° to core axis, most commonly about 70°. Small irregular blebs of sulphide are interstitial to biotite in the mafic parts. Sulphide is about 60-70% pyrite, 30-40% chalcopyrite. Total sulphide is 1-2% of rock.										

Page: 8 of 15

Lorraine Project Diamond Drill Logs DDH: 2001-58

			9727), 21219952499997 (2002) (2013		9147471929223944444	CONTRACTOR OF T		1 DA MARTIN SUCCEMBRID	1999 22 AN 1997 1997 1997 1997 1997 1997 1997 199		والمرد بمقتلين ومقرامي	an an an an an an an an an an an an an a
FOOTAG From (m)	E (metres) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	SAMPLI From (m)	ES To(m)	Metres	Rec. %	Cu (ppm)	Au (ppb)	ASSAYS Ag (ppm)	Pt (ppb)	Pd (ppb)
	10 (m)				10 (00)	IVICUOS		ou (ppili)	- / is (ppc)	r ig (ppin)		
		101.01 - 103.63 Mesocratic grey syenite with 10% fine-grained biotite at	C 117887	101.01	103.63	2.62	100	279	< 2	< .3	3	< 2
		the top, becoming more mafic rich toward bottom (about 40%) upper 2										
		metres of interval has many pink k-feldspar alteration envelopes in the form										
		of circular patches or envelopes paralleling fractures, range from 3 mm to 2										
		cm in size, commonly have epidote centres. No sulphide associated with										
		these alteration centres. Pyroxene altered to chlorite nearby.										
		103.63 - 106.68 Mafic-rich syenite as described above. Gneissic texture	C 117888	103.63	106.68	3.05	100	2836	109	2.2	6	5
		only weakly developed in a few spots. Mafics found mostly as irregular										
		patches. Cross-cutting k-feldspar rich bands and sections show pink k-										
		feldspar and epidote alteration, oriented at 60 to 90° to core axis. Last 40										
		cm of interval is k-feldspar rich and displays intense chlorite-epidote		_								
		alteration of mafic patches. Well mineralized with net-textures chalcopyrite										
		and bornite on last 9 cm, 10-15% chalcopyrite 10% bornite, trace pyrite (?)										
		all sulphides interstitial to pyroxene in a mafic patch (of pyroxenite?). Most										
		of interval (103.63 - 106.28) is grey melanocratic syenite with many mafic										
		patches and streaks. Sulphides mostly associated with mafic / biotite rich										
		patches, found as irregular blebs interstitial to biotite. 1-2% sulphide with										
		60-80% pyrite, 20-40% chalcopyrite. More pyrite rich at top. Chalcopyrite										
		rich at bottom. Biotite-rich sections in last metre include 0.5% bornite with										
		chalcopyrite.										
		106.68 - 108.14 Mesocratic grey syenite with several biotite rich mafic	0.447000	106.68	108.14	1.46	100	24665	367	28.0	< 2	5
		patches. This run could have been started at 106.00. 5-10% biotite except	C 117889	100.00	100.14	1.40	10	24000	307	20.0		`
		for some short intervals where it reaches 40%. Several patches of pinkish-										
		orange k-feldspar with associated epidote. Very heavily mineralized with up										
		to 10-15% chalcopyrite and 10% bornite which form net-like textures										
		interstitial to biotite and k-feldspar. Average for run closer to 3-5%										
		chalcopyrite and bornite (each). Bornite shows net textures in almost										
		assimilated patches of pyroxenite (both with and without chalcopyrite). Very					•••					
		magnetic,							· · · · · ·			
		inagricue.										
108,14	108.88	LEUCOCRATIC SYENITE - medium grained light buff coloured mafic-poor										
		syenite. Grades into unit below.										
		108.14 - 108.88 As above, cut by thin fractures with 1 mm pink alteration	C 117890	108.14	108.88	0.74	100	4849	92	4.5	< 2	< 2
		envelopes at 0 to 60° to core axis which carry minor chalcopyrite. Tiny										
		specks of chlorite altered mafics, some of which has pyroxene, overall mafics										
	=	are about 5% and fine grained. Non-magnetic.										····
										<u> </u>		
400.00	140.45		C 447004	108.88	110.45	1.57	100	41832	352	47.6	< 2	
108.88	110.45	MESOCRATIC MAFIC-RICH SYENITE (108.88 - 110.45) - grades from	C 117891	100.00	110.45	1.57	100	41032	332			· <u> </u>
	<u>+</u> · · ·	leucocratic syenite above through several patches of altered pyroxenite and									<u> </u>	
		then progressively more mafic (biotite) and darker into the pyroxenite								<u> </u>		+
	+	below. Two sections are very heavily mineralized with up to 10%	h _								<u> </u>	
	+	chalcopyrite and 25% bornite, (109.04 to 109.34, and 110.22 to 110.40),								<u> </u> .		<u> </u>
		plus several other patches of chalcopyrite and bornite rich mineralization.	-									
	1							1		L	1	L

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 9 of 15

			200000050000520020275-0.450.0			1. S. 19167 HELD, 191	Dec.			ASSAYS	9011-3-000 (Control Total)	CLAD A DISCOUT
From (m)	GE (metres) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	SAMPL From (m)	£5 To(m)	Metres	Rec. %	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
T tom (ny			ouripio #		10 (0)		,,,	<u> </u>				<u> </u>
		Some of the stronger mineralization appears to be associated with other			•				İ.			
		mafics, especially pyroxene.										
110.45	113.12	BIOTITE PYROXENITE - varying to biotite potassium-feldspar pyroxenite and									ļ	
		showing variable, but generally weak chlorite alteration. Contacts show										
	_	stronger chlorite alteration and coarse biotite to 50%. Biotite generally						ļ	· · · ·			
		about 15% as coarse random flakes. Contacts abrupt but irregular oriented									<u> </u>	
		45-90° to core axis.					-					
		110.45 - 113.12 Disseminated bornite blebs in coarse biotite rich upper	0.447000	- 440.45	440.40	2.67	100	371	11	0.5	3	
		- contact.	C 117892	110.45	113.12	2.07	100	3/1	11	0.5	_	· · · ·
										=		· · · ·
113.12	114.35	SYENITE - a contact zone where the syenite grades from very light							<u>+</u>			+
	111111	mesocratic (almost leucocratic) to pyroxenite. Mafic content varies from 5%										
		fine-grained biotite to pieces of chlorite altered pyroxenite, to massive fine to										
		medium grained biotite (biotite alteration of pyroxene). Patchy epidote										
		alteration which is accompanied by chlorite alteration of pyroxenes. Mafic										
		content near end of interval is 10% biotite, 45% pyroxene.										
		113,12 - 113.74 Mesocratic syenite.										
		113.74 - 114.35 Mafic rich syenite.	C 117893	113.12	115.82	2.70	100	904	46	< .3	< 2	2
_											ļ	
	100.40	BIOTITE PYROXENITE - varying in several sections to biotite potassium-										
114.35	123.16	feldspar pyroxenite. Patches of chlorite-epidote alteration are common but										
		not continuous, Patches of pinkish-brown k-feldspar are noted but are more								<u> </u>		
	_											<u> </u>
		common as veinlets / alteration envelopes at 45° to core axis.										
		114.35 - 115.82 Biotite pyroxenite as described above, includes several							ť.			
	-[k-feldspar-rich sections, including one which is 32 cm long and is							1			
•	1	indistinguishable from above syenite and in included in the same sample.										
		Disseminated and net textured chalcopyrite and bornite noted in the										
		pyroxenite-rich sections, especially toward the bottom of the interval.					-					
		115.82 - 118.87 Fine-grained biotite pyroxenite showing generally weak	C 117894	115.82	118.87	3.05	100	316	25	0.8	5	2
		chlorite alteration, biotite-rich also much of it is very fine grained, possibly					. <u></u>					
		an alteration product of pyroxene. Patchy epidote alteration. Includes										
		several k-feldspar rich patches and 1 cm veinlets cutting core at 20° to core							ļ			
		axis. Weakly mineralized with disseminated blebs of chalcopyrite with minor							<u> </u>			ļ
		bornite.								ļ	·	
		118.87 - 121.83 Biotite pyroxenite as described above, but showing more										
		variation in grain size of the biotite, ranging from very fine-grained to coarse	C 117895	118.87	121.92	3.05	100	592	27	0.5	5	i 2
		grained (and >50% biotite). Patchy epidote alteration appears to cut core						ł		+	+	
		at high angles (about 90° to core axis). This interval appears to be									+	+
	·	mineralized a bit more strongly than above, about 0.5 to 1.0% chalcopyrite						<u> </u>		+	· · ·	
· · · ·		with minor bornite. A few spots show net-textured sulphides but is mostly									+	+
		pyrite (>80%). This interval becomes more k-feldspar-rich with depth,				· · · · · ·			+	+·	<u> </u>	+
		increasing to 30-40%.				i i		<u>ــــــــــــــــــــــــــــــــــــ</u>	+	ļ	+	+

Page: 10 of 15

Lorraine Project Diamond Drill Logs DDH: 2001-58

NAMES OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF	-17 - 27 - 189 - 1 - 75 - 1 - PRODUCT	angga manangga katasan uptakan ang sarata kanangkan katasan katasan katasan katasan katasan katasan katasan kat		Terreptory on the arc	a an an an an an an an an an an an an an		enniou o Parola Citti	201722700000103-020-1912	an Jacob (1992) Milliona	na na sianaana	RATE REPORT	a - 1774, -1775
FOOTA	GE (metres)	LITHOLOGICAL DESCRIPTION		SAMPLI			Rec.		_	ASSAYS		
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		121.83 - 123.16 Potassium-feldspar biotite pyroxenite. K-feldspar content has increased to as high as 60% average about 40%. Most of run is not mineralized; a few spots carry chalcopyrite blebs with bornite. Patchy epidote alteration. Some short sections of pyroxenite carry chalcopyrite	C 117896	121.92	123.16	1.24	100	1036	31	0.6	3	16
		blebs, and are cut by 90° to core axis fractures carrying cubic pyrite.										
123.16	123.52	LEUCOCRATIC SYENITE DYKE - medium grained light grey syenite. 123.16 - 123.52 As above. Syenite carries minor pyrite. Cut by several hairline quartz veinlets at 30° to core axis.	C 117897	123.16	123.52	0.36	100	17	< 2	< .3	< 2	< 2
123.52	133.81	POTASSIUM FELDSPAR BIOTITE PYROXENITE - with many variations in k- feldspar content and biotite. Includes many sections of biotite pyroxenite. Grain size varies widely also, from fine grained potassium feldspar pyroxenite (50% pyroxene, 45% k-feldspar, 5% biotite) to coarse-grained biotite pyroxenite (25% biotite, 60% pyroxene, 15% k-feldspar). Fairly wide-spread weak chlorite alteration and patchy epidote alteration. Finer-grained sections appear to have been exposed to less alteration.										
		123.52 - 124.97 Biotite pyroxenite as described above. Biotite-rich to 124.49, then k-feldspar rich for balance of run. Weakly mineralized - minor disseminated blebs of chalcopyite with bornite.	C 117898	123.52	124.97	1.45	100	583	14	0.4	2	10
		124.97 - 128.02 As described above, but with more variation in grain size and composition. Chlorite and epidote alteration more frequent than above. Trace chalcopyrite.	C 117899	124.97	128.02	3.05	100	988	19	0.8	4	13
		128.02 - 131.06 Biotite pyroxenite as described above, showing a wide variation in grain size and biotite content. Weakly mineralized with minor blebs of chalcopyrite and traces of bornite.	C 117900	128.02	131.06	3.04	100	1963	25	1.1	7	20
		131.06 - 133.81 Fine-grained biotie pyroxenite grading into coarse grained potassium-feldspar biotite pyroxenite with weakly developed oikocrysts of k-feldspar.	C 117901	131.06	133.81	2.75	100	456	19		9	9 16
133.81	137.32	MESOCRATIC SYENITE - grey syenite that is mafic rich in spots. 133.81 - 137.32 Run includes several large patches of pinkish-orange k-feldspar alteration with epidote centres. 5-10% biotite flakes to 6 mm plus dark grey mafic wisps that are largely altered to biotite. Run also includes several patches of partly assimilated / altered pyroxenite. Weakly mineralized with a few blebs of chalcopyrite and minor bornite.	C 117902	133.81	137.16	3.35	100	1026	21	<.3		2 8
137.32	139.09	BIOTITE PYROXENITE - with variable k-feldspar content grading into potassium-feldspar biotite pyroxenite. Weak to moderate chlorite alteration of pyroxenes patchy epidote alteration of feldspars, often surrounded by halo of pink k-feldspar alteration.										

	THE RECEIPTING THE PROPERTY	NI I THING I I THING I THING I THE PERSON WE DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A		CONTRACTOR OF STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, S		77X7445.44287:29285		CONTRACTOR OF A	u ne menorane a	en ser run	17 - a u an an 50-30.	Sarias Stadenter (1688
	GE (metres)	LITHOLOGICAL DESCRIPTION		SAMPLE			Rec.		• • • •	ASSAYS		
From (m)	<u> </u>		Sample #	From (m)	То (т)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pol(ppb)
		137.32 - 139.09 Sample interval includes 16 cm of above syenite plus	C 117903	137.16	139.09	1.93	100	8923	206	6.7	5	21
		-interval of biotite pyroxenite. Heavily mineralized with up to 6% chalcopyrite	C 11/903	137.10	139.09	1.33	100	0923	200	0.7	J	
		and 1% bornite, average closer to 1-2% chalcopyrite, minor bornite.										
		-								-		
139.09	155.07	MESOCRATIC SYENITE - medium grained grey syenite, biotite mostly over										
		2 mm and 5%. Includes a few short sections, 5-10 cm long of mafic-rich										
		syenite. Mafic content appears to increase with depth, but is only fine-				 						ļ
.		grained biotite clusters replacing pre-existing mafic (pyroxene?). Magnetic.				0.00		40447		70	5	
·		139.09 - 143.05 Grey syenite as described above. Well mineralized with	C 117904	139.09	143.05	3.96	100	10117	223	7.0	<u> </u>	4
	· ·	disseminated specks and blebs of chalcopyrite (about 2%) which often						<u> </u>				
		includes bornite (about 0.5%),										
		143.05 - 146.30 Grey syenite as above with a medium dark tone,	C 117905	143.05	146.30	3.25	100	980	40	0.3	3	2
		becoming mafic-rich (30-40%) composed of fine networks and clusters of	0 11/303	145.05	140.00	0.10	100		10	0.0		_
	-	fine biotite. Minor patchy epidote alteration. Some blocky pink k-feldspar										
		alteration toward bottom of run. Mineralization has mostly died out, just										
		very fine disseminations and some larger blebs that are fracture controlled										
		(60° to core axis). Trace bornite.										
		146.30 - 148.23 As described above with minor blebs of chalcopyrite.	C 117906	146.30	148.23	1.93	100	350	34	< .3		3
		148.23 - 150.10 As above, mineralized with very fine grained chalcopyrite	C 117907	148.23	150.10	1.87	100	6689	134	3.4	2	3
		and bornite disseminated as tiny specks. About 2% chalcopyrite, trace										<u> </u>
		bornite. Trace pyrite? Continuing magnetic.						ļ				
		150.10 - 152.40 As above, approximately 1-2% fine disseminated	C 117908	150.10	152.40	2.30	100	5809	91	3.9	4	2
		chalcopyrite with a few large blebs. Trace to minor bornite.		150.40		4 60		0005	05		5	
		152.40 - 154.02 Grey syenite as described above. Continuing well	C 117909	152.40	154.02	1.62	100	6065	95	4.1	5	< 2
		mineralized with 1-2% disseminated tiny blebs of chalcopyrite, minor		••••							i	
		bornite. Fracture controlled chalcopyrite form lines of blebs at 45 - 60° to								· -		
		core axis. A patch of altered pyroxenite about 1 cm x 2 cm is heavily										
		mineralized with 10% bornite and 15% chalcopyrite.	C 117910	154.02	155.07	1.05	100	1347	28	1.1	< 2	14
		154.02 - 155.07 Grey syenite with slightly more biotite about 10-15%,										
		includes pieces of chlorite-epidote altered pyroxenite toward bottom of run.			-							
		-Small mafic patches carry a surprising amount of bornite as tiny specks.										
		These mafic patches, net-like features are composed of mainly fine biotite										
		(after pyroxene?) with chlorite. Cross-cutting k-feldspar zones 1-2 cm wide										
		are at 45-60° to core axis.							· · -			
	-	Note:										
		From 155.07 to 171.53 there is a 16.46 m section of alternating bands of								+	+	+
		biotite pyroxenite and mafic-rich / mesocratic syenite.	′			<u> </u>		·				
155.07	<u>1</u> 61.34	BIOTITE PYROXENITE - showing locally intense chlorite alterations. 15-20%	_					ļ	<u> </u>	ļ		
		coarse biotite to 6 mm are often sub-aligned giving a weakly developed							+ · -	<u> </u>		
		_gneissic texture overall, but a texture that is well developed at 45 to 80° to				<u>↓ </u>			<u> </u>		<u> </u>	
_								l			1	1

Page: 12 of 15

Lorraine Project Diamond Drill Logs DDH: 2001-58

FOOTAC	E (metres)			SAMPL		CCC VARIANT RATE OF	Rec.	865 FF 37 1 ' J	al destantes à contra	ASSAYS	-05 09 35 97 A	ing the strength
From (m)	To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	.55 To(m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		core axis in some sections. Amount of biotite and chlorite alteration appears to be greater near upper contact. Contact is irregular but overall is at about										
· · · · · ·		45° to core axis. 155.07 - 158.50 Biotite pyroxenite as above contact with syenite is very	C 117911	155.07	158.50	3.43	100	25	4	0.5	< 2	< 2
		carbonate rich. At 155.60 there is a chlorite altered fracture below which the biotite pyroxenite has a pronounced foliation, first at 80° to core axis,										
		then gradually reclining to 60° to core axis. 158.50 - 161.21 As above.	C 117912	158.50	161.21	2.71	100	10	< 2	< .3	< 2	< 2
161.34	163.30	MESOCRATIC SYENITE -grey syenite as described between 139.09 to 155.07 includes patches of biotite pyroxenite, particularly near the end of the interval. Mineralized with disseminated chalcopyrite (1%) and a trace of bornite.										
		161.21 - 163.30 As described above. Bornite common in some patches of biotite altered mafic.	C 117913	161.21	164.59	3.38	100	1864	78	1.2	3	11
163.30	163.82	BIOTITE PYROXENITE (163.30 - 163.82) - showing weak to moderate chlorite alteration. Magnetic.			····							
163.82	164.70	MESOCRATIC SYENITE - Grey syenite as described above, grading through mafic-rich syenite. Very magnetic. Very small mafic wisps are biotite altered. 163.82 - 164.70 As above, weakly mineralized with minor to 0.5% chalcopyrite which increases toward bottom of interval. Well mineralized near clumps of biotite.										
164.70	165.82	MAFIC-RICH SYENITE - Pink k-feldspar altered grey syenite containing numerous pieces of chlorite-epidote-sericite altered biotite pyroxenite, and										
		grading into the biotite pyroxenite below. 164.70 - 165.82 Syenitic sections are mineralized as above, many small pyroxenite pieces are strongly mineralized with large irregular blebs of chalcopyrite. Sections of massive pyroxenite with coarse k-feldspar-epidote patches is not mineralized.	C 117914	164.59	165.84	1.25	100	3343	175	2.2	3	20
165.82	168.90	BIOTITE PYROXENITE - As described previously, 10-15% coarse biotite clusters gives a "spotted appearance" pervasive weak to moderate chlorite alteration of pyroxene.										
		165.82 - 168.90 Biotite pyroxenite as above contains some weakly developed oikocrysts, which show some epidote-sericite alteration pervasive moderate to intense chlorite alteration of pyroxene. No sulphides seen.	C 117915	165.84	168,90	3.06	100	36	< 2		< 2	3
								[

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 13 of 15

FOOTAG	E (metres)			SAMPL	ES	aart41668.756[133]	Rec.			ASSAYS		
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
68.90	171.53	MAFIC-RICH SYENITE - coarse-grained pinkish-orange coloured syenite showing intense chlorite alteration of pyroxenitic sections, patchy irregular zones of epidote with associated moderate sericite-clay alteration of feldspars. Interval contains many patches of pyroxenite including between										
		169.55 - 170.04. 168.90 - 171.53 Mafic-rich sections in lower part of interval contain, over short sections, up to 6% chalcopyrite and 2% pyrite. Patchy epidote and chlorite alteration very prominent in lower part of run.	C 117916	168.90	171.53	2.63	100	1839	23	0.4	4	1
71.53	207.00	MELANOCRATIC SYENITE - mafic-rich grey syenite grading into migmatitic syenite. Includes patches and short intervals of biotite pyroxenite showing intense and pervasive biotite and chlorite alteration of the pyroxene. Large biotite flakes unaffected. Lightly magnetic.							·			
		171.53 - 173.74 As described above. Pervasive pyrite \pm sericite alteration. Most of pyrite is in cubes, probably 4% pyrite, minor chalcopyrite in mafic centres. Small patches of mafic show intense chlorite-biotite alteration. Some chalcopyrite and pyrite blebs are fracture controlled (at 45° to core	C 117917	171.53	173.74	2.21	100	6184	81	3.1	4	1
		axis). 173.74 - 176.78 Initial part of run is as described above, but with most pyrite being fracture controlled (45-60° to core axis). After 173.85 core becomes very mafic rich for about 40 cm, and pyroxenite is almost entirely altered to biotite (probably originally a biotite pyroxenite). Coarse 4 mm	C 117918	173.74	176.78	3.04	100	2618	13	0.3	< 2	
		biotite unaffected. 20% grey feldspar shows weak sericite alteration. See chlorite (after pyroxene). Balance of run is grey syenite showing pink k-feldspar alteration and several biotite-rich mafic parts. Mafic sections carry 1-2% pyrite and chalcopyrite, minor disseminated sulphide in the syenite.										
		176.78 - 179.83 Grey syenite as described above. Numerous 1-2 cm patches of biotite and strongly mineralized with blebs of pyrite and chalcopyrite. Larger blebs are recognizable as biotite pyroxenite, strongly mineralized and biotite-chlorite altered. Some low angle (10° to core axis) 1 mm feldspar veinlets are barren.	C 117919	176.78	179.83	3.05	100	4706	21	0.9	< 2	
		179.83 - 182.88 Grey syenite with biotite altered matics as described above but with more chlorite alteration of matics and pyrite-sericite alteration of k-feldspars. Matic patches especially those with coarse biotite are strongly sulphide mineralized with blebs of chalcopyrite among the	C 117920	179.83	182.88	3.05	100	6459	45	2.7	4	
		biotite flakes and pyrite interstitial to feldspars. Fine disseminated pyrite to several percent through syenitic fraction. Chalcopyrite on 45° to core axis fractures. A weakly-defined foliation at 35-45° to core axis is evident in a few spots, a result of parallel alignment of biotite.	C 117921	182.88	185.93	3.05	100	2780	17	0.8	2	
		182.88 - 185.93 Grey syenite as described above with fine disseminated biotite along with coarse patches of biotite. Cross cutting pink k-feldspar alteration envelopes (3-12 mm wide) cut the core at 30-40° to core axis, roughly parallel to foliation (as defined by biotite) at these locations. Interval										

FOOTAGE (metres)			SAMPL	ES		Rec.			ASSAYS		
From (m) To (n	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (pp
	is mineralized through entire extent by fine-grained disseminated pyrite										
	(often as cubes) and small blebs of chalcopyrite. Mainly just pyrite in									<u> </u>	
	k-feldspar alteration centres. Weakly developed foliation as defined by						i				
	biotite in a variety of orientations (migmatite).										<u> </u>
	185.93 - 188.98 Grey syenite as described above, with an increase in pink	0.447000	185.93	188.98	3.05	100	12015	193	9.0	2	
	colour tone perhaps reflecting an increase in k-feldspar alteration. Weakly	C 117922	165,93	100.90	3.05	100	12013	193	9,0	4	
	developed foliation as defined by biotite. Large clots of coarse biotite to 1						· · ·				
											-
	cm. Strongly mineralized as described above, disseminated pyrite to 4%,										<u> ·</u>
	1-2% chalcopyrite, with large blebs associated with coarse-grained biotite										
	clumps.										+ •
	188.98 - 192.02 Grevish pink syenite as described above. Large flakes of	C 117923	188.98	192.02	3.04	100	10966	263	7.5	< 2	
	biotite (about 5%) form random clumps often with large blebs of	0 11/923	106.90	192.02	3.04		10300	<u> </u>	1.0		+
	chalcopyrite. 10-15% fine biotie in syenite. Disseminated 2-3% pyrite, 1-										
	2% chalcopyrite, locally to 4%.										†
	192.02 - 195.07 Grey syenite as described above. Includes several	C 117924	192.02	195.07	3.05	100	11494	216	7.4	< 2	
	sections of mafic-rich syenite, and very coarse-grained k-feldspar and biotite.	0 11/324	132.32	133.01	0,00		1.1304	210			+
	Very coarse-grained section contains 4-5% large blebs of chalcopyrite. Also										
	patches of cubic pyrite. Most of run is mineralized with 2-3% large blebs of						<u> </u>				
	chalcopyrite. Chlorite altered mafic spots contain fine blebs of chalcopyrite					-					
	and pyrite.										
	195.07 - 198.12 Grey syenite as described above. Continuing coarse	C 117925	195,07	198.12	3.05	100	10525	282	6,9	< 2	
	flakes of random biotite. Strongly mineralized with 2-3% disseminated	0 11/320	100,01	130.12	0.00	100	,0010				1
	chalcopyrite plus large blebs with clusters of biotite. Minor bornite in some								1		
	chalcopyrite blebs, and rimming some grey syenite patches.							ł			1
<u></u>	198.12 - 201.17 Grey syenite as described above, but with more variability	C 117926	198.12	201.17	3.05	100	10331	345	8.3	5	
	in grain size and biotite content. The amount of bornite and the ratio	0									1
	between bornite : chalcopyrite steadily increases downward through this							-			
	interval. Bornite increases from 0.5% at the top of the interval to 1.5 - 2.0%										
	near the bottom. Chalcopyrite remains in the range of about 1% through						<u> </u>				
	interval. Sulphides no longer part of large biotite aggregates. Continuing 2 -								· -		1
	3% disseminated magnetite.										1
	201.17 - 204.22 Grey syenite. Bornite all but dies out after pink k-feldspar	C 117927	201.17	204.22	3.05	100	11500	215	7.2	5	5
	alteration zone at top of interval. 1 - 3% disseminated chalcopyrite and 1%										-
					· · · ·						T
	large blebs associated with large biotite aggregates. Lower part of run										
	strongly mineralized with disseminated large blebs of chalcopyrite. A large										
	patch of mafic-rich (chlorite-biotite) syenite carries small blebs of							† í		_	
	chalcopyrite. A large low angle fracture (0-5° to core axis) cuts the core and							<u> </u>			
	has a hematite coating.		i i i i i i i i i i i i i i i i i i i								
	204.22 - 206.08 Grey syenite, becoming darker and more mafic with	C 117928	204.22	207.00	2.78	100	12166	90	8.5	2	2
	depth. Strongly mineralized with fine disseminated chalcopyrite as blebs						1				
	interstitial to feldspar. Many parts of run are biotite-rich, becoming										
	melanocratic syenite. Chlorite-biotite patches are sulphide-rich, often	·							[
	containing large blebs of chalcopyrite. Sections of coarse-grained k-feldspar				1		1				
							1		I		

Page: 15 of 15

Lorraine Project Diamond Drill Logs DDH: 2001-58

100 100 100 100 100 100 100 100 100 100	n age anna is anna an	urte seven men andre and free all severe a let and the anomaly and the transmerter of the second dependence of t	websto contento o conte	יון, גיעיעריין און גערערייטיער.	i n;	*****	arren a metrica		ARRENT CONTRACTOR	i 11 14	1.1.1.1.15	wiji stranada
	E (metres)	LITHOLOGICAL DESCRIPTION		SAMPL			Rec.			ASSAYS	D L ())	B 14 - 45
From (m)	<u>To (m)</u>		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		206.08 - 207.00 Mafic rich syenite. Most of interval consists of large									· · ·	
		pieces of biotite-chlorite. Sericite altered pyroxenite. Orangish-red k-										
		–feldspar patches and cross-cutting bands at 70-80° to core axis indicated k-								· · · · · · · · · · · · · · · · · · ·		
		feldspar alteration. Many of the altered pyroxenite patches are heavily										
		- mineralized with chalcopyrite and minor pyrite.		<u>-</u>		1						
		Note:										
		From 207.13 to the end of the hole at 213.36 there are several bands of										
		biotite pyroxenite separated by mafic-rich syenites which in turn also include										
		short sevtions of biotite pyroxenite.										
							•					
207.00	207.13	BIOTITE PYROXENITE - showing pervasive chlorite alteration.										
201.00	201110	207.00 - 207.13 No sulphides seen.	C 117929	207.00	210.31	3.31	100	412	4	< .3	7	11
207.13	208.21	MAFIC-RICH SYENITE - varying to potassium feldspar biotite pyroxenite -					-					
207.13	200.21	gradational unit showing wide range of composition.						ł				
		207.13 - 208.21 No sulphides seen. Pervasive chlorite alteration.							4			
						1						
	-											
208.21	208.61	BIOTITE PYROXENITE - pervasive and intense chlorite alteration as above.										
		208.21 - 208.61 No sulphides seen.								_		
208.61	209.65	MAFIC-RICH SYENITE - with coarser grained pinkish-orange k-feldspar										
		sections and many patches of intensely chlorite altered pyroxenite.										
		208.61 - 209.65 No sulphides seen.	r									
209.65	211.24	MESOCRATIC SYENITE - grey syenite with chlorite-epidote altered pieces of										
209.00	211.24	pyroxenite and cut by coarse-grained pink k-feldspar sections.										
		209.65 - 210.31 No sulphides seen.										1
		210.31 - 211.24 No sulphides seen.	C 117930	210.31	213.36	3.05	100	185	< 2	< ,3	6	2
										-		
211.24	212.06	BIOTITE PYROXENITE - as previously described. Cut by and includes				. —		<u> </u>				
		several short sections of mafic rich syenite and coarse pink k-feldspar rich						1		1		
	•	syenite.				1		1				
		211.24 - 212.06 As described above, no sulphides seen.			-							
									<u> </u>	<u> </u>		<u> </u>
212.06	213.36	MAFIC-RICH SYENITE - Showing a wide range of composition and grain size.					·		-	·		+
212.00	210.00	Coarse pink k-feldspar contains patches of finer-grained biotite pyroxenite.								·		
		Contacts between the above two are often epidote-rich.						···	†			1
	<u>+</u> ·	217.06 - 213.36 No sulphides seen.								Ĩ		L
								ļ		-		
213.36				1					1			

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Property	: Lorraine		Total Length: 252.98	Footage (m)		TESTS	Dip Corrected		Start Da	ite: Septe	mber 25.	2001		
Grid Co			Core Size: BQTW	252		7	-49°			tion: Sep				
			Azimuth: 40.2°			' 				By: Jay \				
	n: 1659 m													
Section:			Inclination: -50°						Date log	ged: Oc	2-0, 200			
NOTES:	Lower main Are	a, PAD: LM-4, GP	S Location (corrected): UTM 347325.7 E; 6200714	.1 N (NAD 83)										
				A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF		SAMPL	EC	(X4.85526.225 b%)#	Rec.	and a same to can estimate	00 X200 X X X X X X X X X X X X X X X X	ASSAYS	19 YO	AND TANKS A SPECIF
FOO From (r	TAGE (metres) n) To (m)		LITHOLOGICAL DESCRIPTION	Sample			To (m)	Metres		Cu (ppm)	Au (pob)	Ag (ppm)	Pt (ppb)	Pd (ppb)
	<u>nj 10 (mj</u>		· · · · · · · · · · · · · · · · · · ·											
0	2.13	CASING (7 feet)		1										
-														
2.13	33.64		NITE - pink syenite medium-grained and idiomorph											
		Run consists of m	ostly broken pieces and gravel. Broken surfaces an	d				ļ						
			eavily stained by limonite.							220			< 2	÷
			syenite as described above, no sulphides seen.	C 117		2.13	<u>5.18</u> 8.23					< .3	· · ·	
ļ			syenite as described above. Minor blebs of dissemi	inated C 117	32	5.18	8.23	3.05	90	919		0.4	- 2	
			pyrite. Core very broken and limonitic.						·	-				
			k syenite as above. Traces of pyrite. Core is broke	n and C 117	33	8.23	11.28	3.05	96	401	13	< ,3	< 2	
			ed with limonite and hematite.			0.20	11.20	0.00						
		11.28 - 14.33 P	ink syenite as above. Much of core is very broken a	ind C 117	34	11.28	14.33	3.05	90	524	24	0.4	< 2	
			ite and hematite. Minor disseminated pyrite and											
		chalcopyrite.			-									
			roken chips and gravel of pink syenite. Very limonit		35	14.33	17.37	3.04	80	380	16			
· · · ·			ery broken and limonitic core. Syenite appears to b	e more C 117	936	17.37	20.42	3.05	90	145	14	< .3	< 2	
		mafic-rich than al												
			roken, limonitic core as above. Very little texture	C 117	937	20.42	23.47	3.05	i 92	328	14	< .3	< 2	
			in the pieces of syenite. No sulphides seen.										4	
			eginning of more competent core, although still bro		938	23.47	26.52	3.05	100	356	9	0.4	- 4	
			diomorphic pink syenite with some dark grey amorp		_		_ .		<u> </u>					
			o of grey k-feldspar, biotite, trace pyrite. Several m						+					
			tite and chlorite cut the core at 45° to core axis. Re								· · · ·			
		orange k-feldspar	alteration forms a variety of patches. Weakly mag	netic. C 117	39	26.52	29.57	3.05	90	723	27	0.3	5	;
			imonitic stained pink syenite. Cut by low angle 1 cm			20.02								
		1	0-5° to core axis. Small amount of breccia fragmer	nts.										
			eration. No sulphides.		- <u> </u>									
			lelanocratic Mafic-Rich Syenite. Dark grey sections				-							
			featureless reddish-orange k-feldspar forms alterat											
			ide around 1 mm carbonate veinlets at generally lo									· · · · —		
			eldspars alteration carries minor cubic pyrite, 1 bleb										l	
			es elsewhere. Minor disseminated pyrite in dark gre							Į		<u> </u>	<u> </u>	
			pproximately 28.20 and below, interval is broken an	N					<u> </u>	<u> </u>				
		-1	sides rake at 35°, coated with chlorite, hematite and	l				 		 		<u> </u>		
		carbonate.		ļ						· · ·			+	
			Broken and limonitic gravel.			20.57	24.04	2.2	7 100	506	124	0.5	<u> </u> ,	2 1
			nterval of largely pink syenite, much of which is bro	ken and C 117	940	29.57	31.84	2.21	100	506	124	0,5	4	·
L		limonite stained.	Minor specks of pyrite visible, trace chalcopyrite.					+				<u> </u>		

1

1

ł

Lorraine Project Diamond Drill Log DDH: 2001-59

	er produktion and en statistication de la second					44 B 56 56 T 22 ST	Dee	derena a da cidad	ander all all all and a state of a second second second second second second second second second second second	ASSAYS	a niziwe con avres	an ny ara-hadra
FOOTAG	E (metres) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	SAMPL From (m)		Metres	Rec. %	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		31.84 - 33.64 Broken, sheared and limonite stained interval of mafic rich syenite. Sheared section is chlorite and carbonate rich. Slickensides rake at 0°, extend from 31.84 to 32.32 weak k-feldspar alteration envelopes cut core	C 117941		33.64		100		38			
		at 30-35° to core axis carry traces of pyrite and chalcopyrite. Lower part of interval is greyish tan coloured. Syenite carrying minor pyrite.										
33.64	34.88	MELANOCRATIC SYENITE - MAFIC-RICH SYENITE - 30-50% fine-grained biotite (massive migmatite), locally may go as high as 65%. Sulphide rich with dominantly fine disseminated pyrite to 4%, less chalcopyrite, about 1- 2% but difficult to identify because of tiny pin-point size. Carbonate-rich, several percent, also carbonate stringers with some fracture controlled blebs of pyrite and chalcopyrite. Weak to non-magnetic. Unit is overall very fine grained but towards bottom of interval there are some coarser-grained - k-feldspar. 33.64 - 34.88 Fine-grained sulphide mineralization as described above.	C 117942	33.64	34.88	1.24	100	9657	242	4.9	6	
34.88	37.07	 POTASSIC-FELDSPAR BIOTITE PYROXENITE - grades from pinkish-red k-feldspar rich at top to biotite-pyroxenite(chlorite) rich at bottom. Intense and pervasive chlorite alteration of pyroxene resulting in complete destruction of textures. Coarse-grained in contrast to fine-grained unit above, [contact] is abrupt. Fractures at 45 and 70° to core axis have chlorite-hematite coatings. 34.88 - 37.07 Pyroxenite as described above. Pinkish-brown k-feldspar varies from 40-60% at top of interval to 5-10% (plus 10-20% grey feldspar) at bottom of interval. Biotite 15-20% at top 25-35% at bottom. No sulphides seen. Moderately magnetic. 	C 117943	34.88	37.07	2.19	100	31	3	< .3	6	6
37.07	39.60	MESOCRATIC SYENITE - pink and grey syenite with many mafic-rich sections. 37.07 - 37.89 Pink, coarse-grained mafic-rich syenite. Contains many small patches of chlorite-sericite altered pyroxenite. Cut by thin low angle carbonate veinlets, entire interval is carbonate rich. Trace pyrite. 37.89 - 39.40 Grey syenite with irregular and indistinct pink patches, some of which appear to be weakly developed alteration (k-feldspar) envelopes on strongly oriented fractures (70-90° to core axis). Interval ends in a broken sheared section between 39.40 - 49.60.	C 117944 C 117945	37.07	37.89 41.91	4.02	100		33	< .3	3	
39.60	43.48	MELANOCRATIC SYENITE - mafic rich grey syenite showing considerable variation between fine-grained biotite-rich syenite and coarse-grained pink and grey syenite continuing patches of chlorite-altered biotite pyroxenite. 39.60 - 41.91 Biotite Syenite - Very fine grained biotite to 30-40% and										

DDH: 2001-59

FOOTAG	GE (metres)			SAMPI	.ES		Rec.	and the second of a	200 D002200 229810 299	ASSAYS		
From (m)	To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		minor / 1% of sulphide, mostly pyrite. Interval includes few random flakes										
		of coarse-grained biotite.										
		41.91 - 43.48 Mafic-rich, medium to coarse grained syenite. Pinkish-grey	C 117946	41.91	43.48	1.57	100	615	19	< .3	6	8
		coloured, but includes many patches of chlorite altered biotite pyroxenite.										h
		Chlorite alteration is very pervasive and intense, all traces of pyroxenite are										
		gone. Mafic patches contain irregular blebs of pyrite and chalcopyite.										
	· · · · -	Interval cut by several low angle (0-5° to core axis) fractures, filled with 1										
		mm of carbonate, chlorite coatings on fracture surfaces.										· · ·
					_							
43.48	44.47	BIOTITE PYROXENITE - intensely chlorite altered. Shearing through most of										
		interval on low angle fractures (0-10° to core axis) has left earthy-friable										
		coatings of chlorite and carbonate on most fracture surfaces. Interval										
		includes a few small patches of coarse-grained pink syenite.										
		43.48 - 44.47 Minor interstitial pyrite and chalcopyrite	C 117947	43.48	44.47	0,99	100	491	12	< .3	3	5
44.47	48.86	MAFIC-RICH SYENITE - interval includes a wide range of grain-sizes and										
		mafic content. Includes several sections of mesocratic pink syenite, fine-										
		grained biotite-rich syenite and sheared and broken up chlorite and biotite										ļ
		altered rock (after pyroxenite).									;	
		44.47 - 45.95 Interval includes several alternating sections of fine-grained	C 117948	44.47	45.95	1.48	100	2249	100	1.7	4	10
		biotite syenite and coarser grained buff-pink syenite. The biotite syenite										
		carries several percent fine blebs and cubes of pyrite, possible minor										
		chalcopyrite. A few cross cutting carbonate veinlets, 1 mm wide, cut the					· · · · _ -					
		core at 45° to core axis.						-				
		45.95 - 48.86 As above but with many sections of massive, earthy chlorite	C 117949	45.95	48.86	2.91	100	2615	102	1.6	2	11
· ·· ·		that has been sheared and broken. 10-15% random biotite suggests it is										
		altered pyroxenite. Some pieces still recognizable as biotite pyroxenite carry										
		1-2% pyrite (50%) and chalcopyrite (50%). Intense and complete										
		alteration of mafics (except biotite) to green chlorite has resulted in										
		destruction of all rock textures. Lower metre of interval is more syenitic and								_		
		is mostly biotite-pyrite syenite, minor chalcopyrite								ļ		ļ
										<u> </u>		ļ
48,86	55,56	MESOCRATIC SYENITE - pink syenite with several patches and sections of								<u> </u>		
		biotite syenite. Pink syenite is moderately magnetic, grey sections are										
		strongly magnetic.										
		48.86 - 50.90 Pinkish-grey syenite as above with thin (1-2 mm) cross-	C 117950	48.86	50.90	2.04	100	1044	42	0.4	< 2	2 < 2
		cutting orange k-feldspar alteration envelopes along hairline fractures,	-						L	. <u> </u>	1	
		oriented at 80-85°. Thin lines of biotite define a weak foliation at 45° to core						l		<u> </u>		
		axis. 1% disseminated chalcopyrite, trace bornite.				ļ				 _		
		50.90 - 53.95 Pinkish-grey syenite with many patches of very fine-grained						L		+ -=	<u> </u>	
	_	biotite and chlorite (after pyroxene?). These dark grey patches are	C 117951	50.90	53 <u>.95</u>	3.05	100	1289	89	1.2	< 2	4
				-						 		+
		magnetite rich and carry blebs of chalcopyrite and traces of bornite. Large										

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 4 of 14

FOOTAG		an photo parama an ann an an an an an an an an an an a		SAMPL	E¢	0011179-90765140	Rec.	Device Comparison (Protect	MENT 0010000000000000000000000000000000000	ASSAYS	- 149-45-957 SQL	6 70 87 C/9 C/9 C/9 m/746
From (m)	E (metres) To (m)		Sample #	From (m)	 	Metres		Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		relic feldspars partly visible in a few spots. Up to 2-3% pyrite in a few spots. 53.95 - 55.10 Mafic rich syenite with mafic patches of fine-grained biotite- rich rock and coarse grained chlorite altered biotite pyroxenite.	C 117952	53,95	55.56	1.61	100	1155	41	0.6	< 2	7
· · · · · · · · · · · · · · · · · · ·		55.10 - 55.56 Pink syenite with cross-cutting orangish pink k-feldspar alteration envelopes cross-cutting at 90° to core axis. Minor pyrite blebs noted.										
55.56	56.33	BIOTITE PYROXENITE - biotite-rich to 40%, pervasive weak chlorite alteration of pyroxenes. Cross cutting k-feldspar veinlets to 6 mm are oriented at 45° to core axis. Also 2 mm at 80° to core axis. 55,56 - 56.33 No sulphides seen.	C 117953	55.56	56.33	0.77	100	175	6	< .3	6	13
56.33	59.90	MAFIC-RICH SYENITE - pinkish-grey syenite with irregular biotite lamellae and patches of biotite pyroxenite. Indeterminate dark patches consist of chlorite and sericite.										
··· ·		56.33 - 59.90 Minor blebs of chałcopyrite interstitiał to k-feldspar in pink syenite.	C 117954	56.33	59.90	3.57	100	966	24	0.5	< 2	5
59.90	62.43	BIOTITE PYROXENITE - biotite-rich pyroxenite with many patches and alteration envelopes of coarse-grained brownish k-feldspar. Minor patchy epidote alteration is fracture controlled, found in low angle fractures (0-20° to core axis). K-feldspar alteration envelopes / veinlets oriented at 60° to core axis. Pervasive weak to moderate chlorite alteration of pyroxene. 59.90 - 62.43 Pyroxene is mineralized with blebs of bornite and									7	
		chalcopyrite.	C 117955	59.90	62.43	2.53	100	2511	132	1.4		21
62.43	63.52	MESOCRATIC SYENITE - light brownish grey syenite, very coarse-grained, 5% large random flakes of biotite. Non-magnetic. 62.43 - 63.52 No sulphides seen.	C 117956	62.43	63.52	1.09	100	268	32	< .3	< 2	3
63.52	65.26	BIOTITE PYROXENITE - intensely chlorite and sericite altered biotite pyroxenite and / or biotite syenite in which the end result is a dark green, fine-grained rock in which only biotite is recognizable, all other textures having been destroyed. Faulting, shearing and brecciation are common in first metre of run. Sericitic altered feldspars are pyrite-rich (often found as										
		cubes). Magnetic. 63.52 - 65.26 Minor disseminated pyrite and chalcopyrite.	C 117957	63.52	65.26	1.74	100	847	23	< ,3	4	
65.26	66.83	MELANOCRATIC SYENITE - biotite syenite with 20-25% fine to medium grained biotite. Irregular white quartz \pm feldspar veinlets have associated	· · · · · · · · · · · · · · · · · · ·	· · · · ·								+

			THE PROPERTY AND ADDRESS	SAMPL		rs. Pasic Solin 11. Al	Rec.	 	1999 (Marine 1997) 1997 (Marine 1997) 1997 (Marine 1997)	ASSAYS	<u>e entre se s</u>	delanda in transitionale
FOOTAC From (m)	GE (metres) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)		Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		minor carbonate and sericitic alteration in weakly developed envelope. Low								· · · · ·	- <u>-</u>	<u> </u>
		angle fractures (0-10° to core axis) are coated with thin layers of carbonate. 65.26 - 66.83 Minor pyrite associated with sericitic altered feldspar.	C 117958	65.26	66.83	1.57	100	116	2	< .3	2	2
66.83	68.44	BIOTITE PYROXENITE - as described above between 63.52 and 65.26. Intense chlorite and sericite alteration has obliterated all textures, leaving only 10-15% biotite unaltered, and some large (to 1 cm) k-feldspar patches.										
		 66.83 - 66.97 Initial section of interval is intensely altered biotite syenite resulting in a rock composed of biotite 20-25%, orange k-feldspar 20-25% (cross cutting alteration envelopes and patches), sericite (after feldspar) 35-45% and 5-10% fine cubic pyrite. 66.97 - 68.44 Biotite pyroxenite as described above, with patches of coarse, tan coloured k-feldspar. Cut by tiny quartz veinlets to 1 mm thick and at 0-30° to core axis. Magnetic-rich minor disseminated pyrite, trace chalcopyrite. 	C 117959	66.83	68.44	1.61	100	730	27	< .3	3	
68.44	71.95	MAFIC-RICH SYENITE - initial part is mesocratic syenite to 69.19, then rock is sheared and broken, and intensely sericitic altered, with fine disseminated pyrite.										
		68.44 - 69.19 Pinkish grey mesocratic syenite with patches of coarse- grained tan k-feldspar and pyrite rich spots. 69.19 - 71.95 Dark green featureless rock is disseminated pyrite. Section is the result of intense chlorite and sericite alteration of what may have been originally a biotite-rich syenite. Cut by several orangish brown k-feldspar alteration zones / veinlets to 3 cm at 45° to core axis. Much of run has been ground to gravel.	C 117960	68.44	71.95	3.51	85	658	63	0.8	<	
71.95	90.80	BIOTITE PYROXENITE - intense chlorite and sericite altered pyroxenite in which the original textures have been destroyed. Amount of alteration decreases with depth. Only biotite is unaffected by this alteration. This interval includes several patches of coarse-grained orange k-feldspar.										
		71.95 - 75.29 Biotite pyroxenite as described above, intense chlorite and sericite <u>+</u> clay alteration. Several small patches of disseminated pyrite and	C 117961	71.95	75.29	3.34	98		90) 1.8		4 1
		chalcopyrIte 75.29 - 78.33 As above, weakly mineralized except in a biotite rich spot in a syenitic section, contains 5% sulphide as blebs of pyrite and chalcopyrite	C 117962	75.29	78.33	3.04	100	1386	5 53	3 1.0		6 1
		over 1-2 cm. 78.33 - 81.38 As described above. Coarse pink k-feldspar rich veinlets to 2 cm cut core at steep angles (70-90° to core axis). Intense chlorite	C 117963	78.33	81.38	3.05	100	28	32	2 < .3	1	0 1
		alteration patchy epidote alteration. 81.38 - 84.43 As above, intense chlorite-sericite alteration. Minor coarse pink k-feldspar. Numerous fracture faces with waxy chlorite coatings and slickensides at 45 to 80°.	C 117964	81.38	84.43	3.05	100) < '	1 <2	2 < .3		6

Page: 6 of 14

2

Lorraine Project Diamond Drill Log DDH: 2001-59

FOOTAC	GE (metres)		and an an an an Article (Article)	SAMPL		- 40 H (14 H (14	Rec.		(AP3093) (1985)	ASSAYS		
From (m)	To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		84.43 - 87.48 As above, but with more coarse k-feldspar sections. Broken	C 117965	84.43	87.48		100				6	9
		and sheared fracture faces are coated with waxy chlorite-hematite deposits. Slickensides rake at 80-90°.										
		87.48 - 90.80 As above. Containing intense chlorite alteration. Frequent	C 117966	87.48	90.80	3.32	100	292	11	< .3	3	< 2
		fracture faces with chlorite-carbonate-hematite coatings. Slickensides rake at 80-90°.										<u> </u>
90.80	93.80	MESOCRATIC SYENITE - broken and sheared pink syenite with mafic										
		patches. Extensive carbonate and clay coatings on broken surfaces. Slickensides at 70°. Fault zone.										
		90.80 - 91.56 No sulphides seen.	C 117967	90.80	91.56	0.76	90	553	25	0.5	17	41
		91.56 - 91.86 Light grey syenite with irregular dark-grey, fine grained mafic breccia fragments. Syenite almost entirely composed of very coarse-				-						
		grained k-feldspar. 91.86 - 93.80 Sheared and broken mafic-rich and pink syenite. Most of	C 117968	91,56	93.80	2.24	100	351	14	< .3	< 2	15
		interval is sheared (with 60° to 90° slickensides) chlorite-carbonate and hematite. Patchy sericite-clay alteration. Minor pyrite.										
93.80	95.10	LEUCOCRATIC SYENITE - white k-feldspar dyke, coarse-grained and idiomorphic. Includes some small, angular fragments of grey, fine-grained mafic-rich rock.										
		93.80 - 95.10 No sulphides seen.	C 117969	93.80	95.10	1.30	100	17	2	< .3	< 2	< 2
95.10	98.95	POTASSIUM-FELDSPAR BIOTITE PYROXENITE - showing intense chlorite- sericite alteration which has resulted in a very dark grey rock with no										
		original texture visible except for random large (to 6 mm) biotite flakes. Extremely large crystal faces (k-feldspar?) to 4 cm are revealed on split										<u> </u>
		surfaces of core, which include and are interstitial to biotite. Part of interval is sheared and broken. Very magnetic. Large crystals suggest some degree										+
		of recrystallization. Interval includes patches of coarse k-feldspar (reddish- -,brown) which are unaltered and are found toward bottom of interval, and is										<u> </u>
		common in next run. 95.10 - 98.95 No sulphides seen.	C 117970	95.10	98.95	3.85	95	62	4	<.3	7	
98.95	102.72	MAFIC-RICH SYENITE - a transitional unit between the altered mafic above										<u> </u>
		and the mesocratic syenite below. Tan coloured syenite is cut by several k-feldspar (orangish-red colored) alteration patches or envelopes			·							<u> </u>
		surrounding 1 mm, 80° to core axis. Carbonate veinlets. Pyrite accompanies potassic alteration. Carbonate commonly coats many low-										+
		angle fractures (0-10° to core axis). Also earthy chlorite, slickensides and broken core indicate faulting / shearing. Many indeterminate grey patches										+
		similar to above unit, 98.95 - 102.72 Minor disseminated pyrite.	C 117971	98.95	102.72	3.77	90	185	29	< .3		5 (

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 7 of 14

EDOTAC	3E (metres)	มหมองพระสารสมบัตรีเป็นหมองของ การสร้างการสารสารสารสารสารสารสารสารสารสารสารสารสา					Dee				1978 A. J. A. B. A. B. A. B. A. B. A. B. A. B. A. B. B. A. B. B. B. B. B. B. B. B. B. B. B. B. B.	ويعادد بالقال ومنازلا
From (m)	JE (metres) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	SAMP From (m)	LES To(m)	Metres	Rec. %	Cu (ppm)	Au (ppb)	ASSAYS Ag (ppm)	Pt (ppb)	Pd (ppb)
THURLEY			Cumpio #		10 (11)	HICI CS) (a (ppo)	7 (g (ppm)	((),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10 (1990)
02.72	117.86	MESOCRATIC SYENITE - pinkish grey syenite with reddish-brown k-feldspar										
		alteration common near top of interval and patchy epidote alteration lower										
		down. Epidote is commonly associated with pinkish orange k-feldspar										
		alteration centres. Chlorite alteration of mafics common.										
		102.72 - 105.77 Dark patches are mafic-rich. Low angle fractures (0-10°	C 117972	102.72	105.77	3.05	100	213	24	< .3	2	
		to core axis) are coated with carbonate. No sulphides seen. Continuing										
		- magnetic.										
• •		105.71 - 108.81 As above, extensive coatings of carbonate and hematite.	C 117973	105.77	108.81	3.04	100	336	29	<.3	< 2	
	· · ·	Slickensides at 75°. Weak epidote alteration common.	C 11/3/3	103.77	100.01	3.04	100	330	23	<u> </u>	~ 2	
		108.81 - 111.86 As above, carbonate coatings on low angle fractures	C 117974	108.81	111.86	3.05	100	594	51	0.7	< 2	
		common, also beginning on 45° to core axis fractures. Epidote and orange				0.00				······································	_	
		k-feldspar alteration cut the core at 90° to core axis in several spots. Minor										
		disseminated pyrite and chalcopyrite.										
		111.86 - 114.91 As above. Potassic and epidote alteration commonly	C 117975	111.86	114.91	3.05	100	491	32	0.4	< 2	
		form streaks and bands at 90° to core axis. Biotite wisps and mafic centres										
	-	help define a weak foliation perpendicular to core axis. Dark grey areas										
		carry minor disseminated pyrite. Small patches of pyroxenite show	1									
		extensive chlorite-epidote alteration. Carbonate coatings are mainly on 30-	· · ·	·····								
		45° to core axis fracture faces. Irregular pink k-feldspar alteration follows							·			
		veinlets with sericitic altered feldspar cores. Epidote is often associated with						• • • • •				
		the potassic alteration which usually forms irregular patches. Biotite forms a										
		weak foliation at 45° to core axis near bottom of interval.										
		114.91 - 117.86 As above description.	C 117976	114.91	117.86	2.95	100	1057	84	1.0	2	
17.86	142.02	BIOTITE PYROXENITE - showing intensive chlorite alteration and pink										
11.00	142.02	k-feldspar rich sections near the top. Highly magnetic.			· · ·-							
		117.86 - 121.01 Epidote alteration pervasive but only moderate in upper	C 117977	117.86	121.01	3,15	100	44	5	< .3	4	
	1	section. Both chlorite and epidote alteration weakens with depth. No										
		sulphides seen.										
. <u>.</u> .		121.01 - 124.05 As above. Weak pervasive chlorite alteration. Cut by	C 117978	121.01	124.05	3.04	100	10	23	< .3	2	
		many hairline veinlets (< 1 mm) of carbonate which are generally at 45° or										
	· · · · · · · · · · · · · · · · · · ·	20° to core axis. Carbonate coatings are common on many fracture faces.										
	+	Very magnetic, no sulphides.										
		124.05 - 127.10 As above, coarser grained than above run. Weak chlorite.	0 447070	404.05	407.40	2.05	100	3	< 2	<.3	3	
· · ·		± epidote alteration. K-feldspar sections cut core at steep angles (65-90° to	C 117979	124.05	127.10	3.05	100	3	< 2	< .3	3	
		core axis). More biotite-rich than above. Foliation is weakly defined by										
	<u> </u>	biotite at 80° to core axis.										1
	1	127.10 - 130.15 As above. Continuing weak chlorite alteration, and	C 117980	127.10	130.15	3.05	100	1	< 2	< .3	6	
		strong magnetism. Biotite-rich.									_	
		130.15 - 130.75 As above.										
		130.75 - 132.57 Shear in biotite pyroxenite. Very broken; most pieces	C 117981	130.15	132.57	2.42	100	713	19	0.5	6	
	4	show hematite coatings and slickensidesat 70°. No sulphides seen.										
	<u> </u>	show hermane coddings and ancientatioesat /o . No sulprives seen.		ļ								

DDH: 2001-59

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 8 of 14

1

ΓΟΟΤΔ	GE (metres)			SAMPL	ES		Rec.			ASSAYS	-	
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
-		132.57 - 133.68 As above but with fault breccia fragments cemented with	C 117982	132.57	133.68	1.11	100	1206	93	1.2	4	
<u> </u>		carbonate. Fragments are intensely chlorite altered (+ sericite), sheared	0 111302	102.31	100.00	1.11	100					
		and lens-like in shape. Carbonate is fractured and re-cemented indicating										
		more than one faulting event. Fine-grained pyrite associated with sericite-	——— · · ·									<u> </u>
		rich section (15 cm) at bottom of interval.										
		133.68 - 136.76 Biotite pyroxenite as described above. Biotite and	C 117983	133.68	136.76	3.08	100	16	3	< .3	3	< :
		magnetite-rich. Pervasive weak to moderate chlorite alteration. K-feldspar										<u> </u>
		bands, 1 cm wide, cut core at 85° to core axis.					400	3863	37	1.0	3	1
		136.76 - 137.67 A short interval of fine-grained, biotite-rich rock. Possibly	<u>C 117984</u>	136.76	137.67	0.91	100	3003	31	1.0		· · ·
		an alteration product of pyroxenite. Contact above is abrupt, a 20° fracture.								<u> </u>		
		Very similar to massive migmatite (syenite). Very pyrite-rich, fine grained,										
-		locally reaches 5%, includes minor amounts of chalcopyrite, which appear to			·				<u> </u>			
·· ·		be enclosing pyroxene grains (net-texture). Foliation defined by biotite is										
		well developed at 90° to core axis. Weakly magnetic. Slickensides on										
		sheared contact between rake at 30°.										
		137.67 - 139.29 Biotite pyroxenite as described several runs above.	C 117985	137.67	139.29	1.62	100	397	18	0.5		<u>}</u>
		Minor blebs of chalcopyrite have net-textures, trace of bornite.	C 117986	139.29	142.02	2.73	100	825	31	0.5		
		139.29 - 142.02 As described above. Chalcopyrite as disseminated blebs,	011/966	133.23	142.02	2.75	100	020			· · · · ·	· · · · · · · · · · · · · · · · · · ·
		some of which show net-textures reaches about 1%. Trace bornite										
		mineralization tends to align parallel to foliation at 90° to core axis (as										
		defined by biotite).										
										· · · · · · · · · · · · · · · · · · ·	<u> </u>	
	452.00	MIGMATITIC SYENITE - grey syenite with fine-grained biotite migmatite										
142.02	152.20									<u> </u>		
		defining a foliation at 80-90° to core axis. Coarser pink k-feldspar forms streaks, bands and sections which are most commonly aligned with foliation,										
		or at 45° to core axis when the k-feldspar forms an alteration envelope								ļ		
-		along a fracture. Small epidote patches are sometimes associated with pink / orange k-feldspar alteration.		i							ļ	
		142.02 - 142.85 Initial contact zone is from 142.02 to 142.85 and consists	0 147007	4 42 02	145.39	3.37	100	2438	925	11.9		2 10
		of 10 cm of very pyrite- and chalcopyrite-rich syenite then numerous bands	C 117987	142.02	145.39	3.37	100	2430	32.	11.9	+	
		of orange k-feldspar and carbonate alteration \pm minor clay alteration, plus										
		sheared bits of mafic / chlorite-rich rock (pyroxenite from about). A 9 cm					i				_	
		wide calcite vein cuts core at 60° to core axis.		1 1								
		142.85 - 145.39 Migmatitic syenite with migmatite consisting of fine-									l	
		grained biotite, grey orthoclase and magmatite. Run includes some cross				ļ				ļ	<u> </u>	· · · ·
-		cutting pink k-feldspar bands.										3
		145.39 - 148.44 Syenite migmatite as described above. Much of run is	C 117988	145.39	148.44	3.05	100	1824	51	1.0	' -	2
		_ darker, almost massive migmatite in several sections, cut only by thin		·								
		pinkish-orange k-feldspar bands with associated minor pyrite. Toward		<u>├</u>				-	+	+	+	
		bottom of run core is more broken with slickensides at 60° on chlorite-								1		
		carbonate-hematite coated fracture surfaces. Also many patches of orange		<u>+</u>								
		k-feldspar alteration. Minor disseminated pyrite and chalcopyrite.					1		1			1

Page: 9 of 14

Lorraine Project Diamond Drill Log DDH: 2001-59

FOOTA	GE (metres)	๚๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	n an an an an an an an an an an an an an	SAMPL	ES.	0000000000	Rec.		94 - SALARIS AND AND AND AND AND AND AND AND AND AND	ASSAYS	30 - 84 ^{- 1}	n a murjane sev
From (m)	To (m)		Sample #	From (m)	T0 (m)	Metres	%	Cu (ppm)	Au (ppb)		Pt (ppb)	Pd (ppb)
		148.44 - 152.20 Syenite migmatite as described above. This interval includes a large amount of irregular and blocky orange k-feldspar alteration along with some quartz-k-feldspar-pyrite veinlets at 45° to core axis. Minor disseminated blebs of pyrite and chalcopyrite associated with k-feldspar rich sections. A few mafic rich sections show chlorite <u>+</u> sericite alteration.	C 117989	148.44	152.20	3.76	100	1337	68	1.4	< 2	2
152.20	155.88	MESOCRATIC SYENITE - coarse-grained pink syenite showing extensive and intense k-feldspar and chlorite-epidote alteration along with patchy sericite										
		<u>+</u> minor clay alteration. Orangish k-feldspar crystals to 3 cm. Mafic patches altered to chlorite-epidote plus biotite. 152.20 - 153.70 As above. 153.70 - 155.88 As above.	C 117990 C 117991	152.20 153.70	153.70 155.88	1.50 2.18	100 100		78		< 2 < 2	· · · · · · · · · · · · · · · · ·
155.88	159.24	BIOTITE PYROXENITE - biotite-rich pyroxenite in which there is pervasive and intense chlorite alteration of pyroxene. Intense epidote alteration of feldspar in upper part of interval. Pinkish-orange k-feldspar forms a section in centre of interval for 20 cm.										
		155.88 - 159.24 As above.	C 117992	155.88	159.24	3.36	100	708	20	0.4	6	
159.24	160.56	MASSIVE MIGMATITE - biotite-rich syenite in which fine-grained biotite comprises 50-75% of rock, balance is grey feldspar. Weakly magnetic. Thin carbonate veinlets cut the core at 45° to core axis. Contacts sheared at 45°										
		to core axis. 159.24 - 160.56 As above, disseminated blebs of 1% pyrite and 0.5% chalcopyrite tend to follow foliation plane which is weakly defined by biotite at 80-90° to core axis.	C 117993	159.24	160.56	1.32	100	1254	18	0.8	< 2	13
160.56	176.59	BIOTITE PYROXENITE - chlorite altered biotite pyroxenite with short intervals of mafic-rich syenite and biotite-rich syenite (migmatite). Disseminated and net-textured chalcopyrite and minor bornite found through part of interval.										
		160.56 - 161.48 Mafic-rich syenite mafics are patches of chlorite altered and sheared pyroxenite. Sheared contacts. 161.48 - 162.00 Massive migmatite with 80° to core axis foliation. Calcite	C 117994	160.56	163.68	3.12	100	1704	101	1.6	_5	27
		veinlets at low angles (0-25° to core axis) carry minor blebs of chalcopyrite and bornite. Minor disseminated chalcopyrite . 162.00 - 163.68 Chlorite-altered biotite pyroxenite, numerous sheared									· · · · · · · · · · · · · · · · · · ·	
		fracture surfaces with slickensides at 80-85° on low angle fracture surfaces (0-15° to core axis). Fine disseminated blebs of chalcopyrite and bornite form vague bands parallel to foliation which is weakly defined by biotite at					· · · · · · · · · · · · · · · · · · ·					
		-80-85° to core axis.				<u> </u>						

Mincord Exploration Consultants Ltd.

Page: 10 of 14

Lorraine Project Diamond Drill Log DDH: 2001-59

micore	- Explorer		Sultunto
for	Eastfield	Resour	ces Ltd.

FOOTA	GE (metres)			SAMPL		er ar saintean	Rec.	gerenzier - Laksier v	nanne in darmin	ASSAYS	ar na 1920	terning el.
From (m)	GE (metres) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	SAMPL From (m)	εs Το (m)	Metres	Rec. %	Cu (ppm)	Au (ppb)	ASSATS Ag (ppm)	Pt (ppb)	Pd (ppb)
		163.68 - 166.72 Biotite pyroxenite as described above. Pervasive chlorite										
		alteration. One vague band of chalcopyrite and bornite blebs follows	C 117995	163.68	166.72	3.04	100	3360	170	3.3	13	43
		foliation, 1 cm wide. Last metre of interval includes 3-5% disseminated and										
	-	net-textured sulphide of which approximately 50% is chalcopyrite, 50%			<u> </u>							
		pyrite, minor bornite.	C 117996	166.72	169.77	3,05	100	4097	326	4.4	10	19
		166.72 - 169.77 As above, includes several small sections of disseminated		100.72	100.71	0,00						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		and net-textured chalcopyrite and bornite plus minor pyrite as described										
· ·		above.										
		169.77 - 172.82 As above, interval includes extensive shearing which has	C 117997	169.77	172.82	3,05	96	3939	239	3.2	17	24
		reduced the core to rubble in places. Section of competent core has more										
		biotite than above and about 1-2% disseminated bornite, minor										
	-	disseminated chalcopyrite. Shearing is on 0° to 30° to core axis fractures.	C 117009	172.82	176.59	3,77	99	13216	323	8,9	11	30
		172.82 - 175.87 Biotite pyroxenite as described above. Very strongly	C 117998	172.02	170.39	3.11	99	13210	323	0.5		30
	-	mineralized with net-textured sulphides for most of interval except where										
		sheared on low angle fractures (about 10° to core axis). Sulphide, most of										
		which is chalcopyrite with minor pyrite / pyrrhotite locally reaches 10 - 15										
		%, average closer to 4 - 5 %. Variable chlorite and biotite alteration. The										
		sulphide-rich sections also appear biotite-rich. Very magnetic. 175.87 - 176.59 As above, continuing heavily mineralized in a biotite-rich										
		pyroxenite, locally to 20 %, average about 4 %. Sulphides mostly										
		chalcopyrite, lesser pyrite / pyrrhotite.										
176.59	197.39	MAFIC RICH SYENITE - including intervals of syenite migmatite and										
		numerous patches / sections of pinkish-orange k-feldspar. Mafic patches										
		are intensely chlorite altered.										
		176.59 - 177.06 Syenite migmatite with fine-grained biotite defining a	C 117999	176.59	178.91	2.32	100	3869	217	2.9	5	9
		weak foliation at about 80° to core axis. Weak pyrite mineralization.										
		Magnetic.										
		177.06 - 178.91 Pink and grey syenite with mafic patches showing intense										
		chlorite-biotite alteration and strongly mineralized with blebs of chalcopyrite.				~						
		Low angle (0-10° to core axis) fractures and 45° fractures (to core axis) are										
		all coated with hematite.										
		178.91 - 181.97 As above, pink syenite with numerous small maric	C 118000	178.91	181.97	3.06	100	5388	307	2.8	2	8
		patches, which show intense chlorite alteration and are biotite-rich. Many										
		are mineralized with large blebs of and disseminations of chalcopyrite. Low										
	_	angle and 45° fractures to core axis are coated with hematite.	E 4 424 27	404.07	185.01	3.04	100	4866	174	2.2	2	6
		181.97 - 185.01 As above, pink syenite, which may be an alteration	E 143107	181.97	185,01	3.04	100	4800	1/4	۷.۷	2	0
		feature itself, with numerous pieces / patches to 10 cm of mafic material. Amount of mafic patches has increased since above run, all are intensely									[
		chlorite altered + sericites, biotite-rich and many contain blebs of	·							+		
	1	chalcopyrite. Epidote appears more related to low angle fractures than to	-									
		mafics. Low angle fractures are exposed along the full length of the										
		interval, all are coated with hematite. Disseminated chalcopyrite in the pink									· · · ·	
 	_	syenite.										
1		1'										

DDH: 2001-59

Lorraine Project Diamond Drill Log

FOOTAG	E (metres)		n den statie viter in ten in eine s	SAMPL		10211294012694865	Rec.			ASSAYS		
_From (m)	To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	<u>To (m)</u>	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		185.01 - 188.06 Pink and grey syenite with fine-grained blotite-rich patches (of migmatite) and chlorite altered patches of mafics (after pyroxene). Weak foliation as defined by streaks of mafics and biotite.	E 143108	185.01	188.06	3.05	99	1577	55	0.8	< 2	4
		Chlorite-biotite mafic patches continuing to be magnetite and chalcopyrite- rich. Fine-grained biotite migmatite section strongly mineralized with pyrite and minor chalcopyrite. Irregular pink k-feldspar alteration, some with										
		epidote centres. 188.06 - 191.11 Pink syenite as above, with chlorite rich mafic patches and biotite-rich patches of migmatite, the latter becoming dominant toward bottom of run. Chlorite-mafic patches now carry little or no sulphide mineralization. Migmatite carries much more chalcopyrite and lesser pyrite. Pink syenite carries lots of fine disseminated and blebs of chalcopyrite. Also	E 143109	188.06	191.11	3.05	99	4514	267	2.5	4	7
		some fracture controlled blebs at 20-25° to core axis with feldspar veinlets. Trace bornite in syenite. 191.11 - 194.16 As above, but more weakly mineralized, with low angle (0-10° to core axis) hematite coated fracture faces exposed along most of length of run. Mafic patches show extensive chlorite-sericite alteration. Sections of biotite-rich syenite (migmatite) are mostly mineralized with	E 143110	191.11	194.16	3.05	99	4329	149	2.3	3	6
		pyrite. 194.16 - 197.39 Pink syenite as above. First 2 metres are almost continuously split by low angle (0-5° to core axis) fractures coated with thick (to 1 mm) hematite and chlorite, with minor carbonate. Weakly developed slickensides at 85-90°. From 195.90 to end of interval core is composed of coarse-grained pink k-feldspar, fine-grained biotite migmatite bands at 60° to core axis chlorite altered mafic patches and large irregular patches of epidote \pm sericite (replacing feldspars in patches of pyroxenite).	E 143111	194.16	197.39	3.23	100	1166	60	0.7	4	
197.39	199.52	BIOTITE PYROXENITE - a chlorite-altered pyroxenite with a highly variable biotite content, (10-60%) and cut by numerous patches and bands of reddish-pink k-feldspar veinlets / alteration. Patchy epidote \pm sericite alteration of feldspars in pyroxenite. 197.39 - 199.52 No sulphides seen.	E 143112	197.39	199.52	2.13	100	153		. >	7	
199.52	214.59	MESOCRATIC SYENITE - pink syenite with mafic patches and short intervals of biotite pyroxenite and biotite migmatite patches and cross-cutting bands										
		of reddish orange k-feldspar alteration are common. 199.52 - 203.30 As described above. Intense and pervasive chlorite and weaker epidote alteration of mafic patches. Disseminated blebs of chalcopyrite near (10 cm) of abrupt 45° to core axis fracture contact with	E 143113	199.52	203.30	3.78	100	561	15	5 0.4	< 2	2
		biotite pyroxenite above. 203.30 - 206.35 As described above but with a section of potassium- feldspar biotite pyroxenite from 203.40 - 203.98 (biotite rich) and numerous irregular patches of reddish-orange k-feldspar accompanied with weak	E 143114	203.30	206.35	3.05	100	662	21			8

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 12 of 14

1

FOOTAG	E (metres)			SAMP	ES	71 W F172 7637 14 16 W	Rec.	anaar Webran nas Career II		ASSAYS		
From (m)	To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		epidote alteration. Bands of reddish-orange k-feldspar cut the core at 70- 80° to core axis. Large patches of epidote are associated with this section of										
		pyroxenite. Minor chalcopyrite blebs. 206.35 - 209.40 Greyish pink syenite as described above. Numerous cross-cutting reddish-orange, 2-4 mm wide, alteration envelopes carry minor	E 143115	206.35	209.40	3.05	100	1069	25	0.4	8	8
		pyrite and cut core at 30 to 70° to core axis. 209.40 - 212.45 Pink syenite as described above. Many large patches of orangish k-feldspar alteration, minor epidote associated with some. Several small (1-6 mm thick) quartz veins cut core at 65° to core axis. Mafics mostly	E 143116	209.40	212.45	3.05	100	294	53	0.4	< 2	2
		altered to biotite, patchy epidote and sericite alteration. 212.45 - 214.59 As above. Pink syenite with biotite-rich mafic patches showing intense chlorite alteration.	E 143117	212.45	214.59	2.14	100	395	12	0.3	< 2	2
214.59	217.10	BIOTITE PYROXENITE - biotite-rich chlorite altered pyroxenite with several syenitic sections. Sulphide-rich in first couple of metres. 214.59 - 217.10 Biotite pyroxenite as above description. Heavy chalcopyrite and minor pyrite mineralization from 214.59 to 215.09 with blebs and net-textured chalcopyrite to 6%, average about 4%, 1% pyrite /	E 143118	214.59	217.10	2.51	100	3891	53	1.9		18
		pyrrhotite, Balance of run is about 1/2% chalcopyrite, with most mineralization in a few patches of blebs. Initial part is grey k-feldspar-rich (about 40%), chlorite alteration is pervasive and intense. Most of interval is biotite-rich and these areas do not carry much mineralization			· · · · · · · · · · · · · · · · · · ·							
217.10	219.58	MAFIC RICH SYENITE - includes several patches and short sections of biotite rich pyroxenite and syenite, with some parts verging on migmatite. 217.10 - 219.58 Small amount of chalcopyrite and bornite blebs	E 143119	217.10	219.58	2.48	100	2596	50	1.2	4	16
· · · · · · · · · · · · · · · · · · · ·		associated with some patches of biotite pyroxenite. A few blebs of chalcopyrite are associated with 45° to core axis fractures. K-feldspar (orangish-red coloured) forms veinlet / alteration envelopes at 45° to core axis with associated pyrite - much of which is cubic.										
219.58	221.68	BIOTITE PYROXENITE - very biotite rich with chlorite altered pyroxene. Net textured chalcopyrite association with patches of grey k-feldspar-rich biotite pyroxenite. Most of interval is very biotite-rich, up to 80% biotite. 20 cm broken chloritic shear in center of interval.										
		219.58 - 220.40 As above. 220.40 - 221.68 As above.	E 143120 E 143121	219.58 220.40	220.40 221.68		98 100					
221.68	222.32	MESOCRATIC SYENITE - pinkish grey syenite with 10-15% biotite and small patches of biotite-rich mafic rock (above pyroxenite?).					-					
	-	221.68 - 222.32 As described above. Disseminated blebs of chalcopyrite	E 143135	221.68	222.32	2 0.64	100	2878	49	1.9	4	18

Page: 13 of 14

ł

Lorraine Project Diamond Drill Log DDH: 2001-59

FOOTA		лууны түрдү баймалдагын түрүүнү каласар байлай бартан түрүүлүүнүн түрүлүүнүн тараалан калар калар калар калар к Түрүүнүнүн түрүүнүн калар калар калар түрүүүнүн түрүүлүүнүн түрүүлүүнүн түрүүлүүнүн калар түрүүнүн калар калар т	and a the second second	SAMPL	ES		Rec.			ASSAYS		
From (m)	GE (metres) To (m)		Sample #	From (m)		Metres	%	Cu (ppm)	Au (pob)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		to 1% plus traces of bornite, along with blebs of chalcopyrite and bornite in altered biotite pyroxenite patches, also minor pyrite.				-						
222.32	226.72	BIOTITE PYROXENITE - extremely biotite-rich pyroxenite. Shearing evident on low angle (0 - 5° to core axis) chlorite fracture surfaces. Several patches of net-textured sulphides with up to 5% sulphides over 20 cm. Non- magnetic. 222.32 - 224.64 As described above. Slickensides on sheared low angle fractures at 65-80° most of run very biotite-rich. 224.64 - 226.72 As described above includes several patches of net- textured chalcopyrite and minor pyrite / pyrrhotite. Pyroxene is largely altered to biotite, including in the net-textured parts.	E 143122 E 143123	222.32 224.64	224.64		100	318 2641	21			
226.72	231.73	BIOTITE MIGMATITE SYENITE - with most of the interval being massive migmatite. Occasional random flakes of larger biotite (to 3 mm). 226.72 - 229.50 As above, contains 1-2% fine disseminated pyrite. Trace chalcopyrite. 229.50 - 231.73 Massive fine-grained biotite migmatite as described above. Several cross-cutting k-feldspar veinlets at 45° to core axis.	E 143124 E 143125		229.50		100		8		<2	
231.73	235.13	 MESOCRATIC SYENITE - grey syenite with two - 30 cm long biotite-rich mafic sections. 231.73 - 232.79 Grey syenite with minor disseminated pyrite and minor fracture controlled chalcopyrite blebs oriented at 45° to core axis. 232.79 - 233.07 Mafic rich syenite with 50% biotite-rich pyroxenite patches with blebs of chalcopyrite and magnetite. Chlorite alteration of pyroxene. 233.07 - 234.28 Grey syenite as described above, but with more k-feldspar, sericite and epidote alteration. Minor disseminated blebs of pyrite and chalcopyrite. 234.28 - 235.13 Mafic rich syenite as above, several patches of coarse biotite and patches of chloritized pyroxenite. Coarse-biotite associated with 15 cm of coarse-grained reddish orange k-feldspar. Minor fracture controlled (30° to core axis) chalcopyrite. 	E 143126	231.73	233.07		100					3 1
235.13	236.55	BIOTITE PYROXENITE - biotite-rich and carrying disseminated blebs of chalcopyrite, some of which show net-textures. Hematite coated fracture face at 45° to core axis. Upper contact brecciated; epidote-calcite rich. 235.13 - 236.55 As above description, average chalcopyrite 2-4% minor pyrite.	E 143128	235.13	236.55	5 1.42	100	5333	157	/ 3.4	\$ <u>1</u>	7 2

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 14 of 14

(I o 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	LITHOLOGICAL DESCRIPTION MESOCRATIC SYENITE - grey syenite with several mafic-rich sections (biotite pyroxenite) in the first two runs. Numerous patches and bands of orangish k-feldspar and epidote alteration. 236.55 - 239.88 Grey syenite as described above. Interval is mafic rich to 238.52 with biotite-rich pyroxenite pieces, some of which carry net-texture pyrite / pyrrhotite and lesser chalcopyrite. Balance of interval is a grey pyroxene syenite with patchy k-feldspar, epidote and sericite alteration. Carbonate on fracture surface. 239.88 - 242.93 Mafic rich to 241.60, includes patches of biotite-rich and magnetite-rich syenite and chlorite altered biotite pyroxenite. Mafic-rich section moderately well mineralized with pyrite, minor chalcopyrite. Below 241.60 grey syenite is melanocratic in sections due to high magnetite / biotite content. Vague patchy zones of k-feldspar and epidote alteration. 242.93 - 245.97 Grey syenite with numerous patches of potassic k- feldspar and epidote alteration, some of which forms bands (alteration envelopes) of pink k-feldspar with an epidote core, (closest to fracture at 45 60° to core axis). Between 245.25 and 245.81 there are several patches of k	Sample # E 143129 E 143130 E 143130 E 143131	From (m)	To (m) 239.88 242.93 242.93 245.97	Metres	% 100 100	Cu (ppm) 759 578	Au (ppb)		Pt (ppb) 3 4	Pd (pp
(I o 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(biotite pyroxenite) in the first two runs. Numerous patches and bands of orangish k-feldspar and epidote alteration. 236.55 - 239.88 Grey syenite as described above. Interval is mafic rich to 238.52 with biotite-rich pyroxenite pieces, some of which carry net-texture pyrite / pyrrhotite and lesser chalcopyrite. Balance of interval is a grey pyroxene syenite with patchy k-feldspar, epidote and sericite alteration. Carbonate on fracture surface. 239.88 - 242.93 Mafic rich to 241.60, includes patches of biotite-rich and magnetite-rich syenite and chlorite altered biotite pyroxenite. Mafic-rich section moderately well mineralized with pyrite, minor chalcopyrite. Below 241.60 grey syenite is melanocratic in sections due to high magnetite / biotite content. Vague patchy zones of k-feldspar and epidote alteration. 242.93 - 245.97 Grey syenite with numerous patches of potassic k- feldspar and epidote alteration, some of which forms bands (alteration envelopes) of pink k-feldspar with an epidote core, (closest to fracture at 45 60° to core axis). Between 245.25 and 245.81 there are several patches of k	E 143130	239.88	242.93	3.05					3	
(I o 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(biotite pyroxenite) in the first two runs. Numerous patches and bands of orangish k-feldspar and epidote alteration. 236.55 - 239.88 Grey syenite as described above. Interval is mafic rich to 238.52 with biotite-rich pyroxenite pieces, some of which carry net-texture pyrite / pyrrhotite and lesser chalcopyrite. Balance of interval is a grey pyroxene syenite with patchy k-feldspar, epidote and sericite alteration. Carbonate on fracture surface. 239.88 - 242.93 Mafic rich to 241.60, includes patches of biotite-rich and magnetite-rich syenite and chlorite altered biotite pyroxenite. Mafic-rich section moderately well mineralized with pyrite, minor chalcopyrite. Below 241.60 grey syenite is melanocratic in sections due to high magnetite / biotite content. Vague patchy zones of k-feldspar and epidote alteration. 242.93 - 245.97 Grey syenite with numerous patches of potassic k- feldspar and epidote alteration, some of which forms bands (alteration envelopes) of pink k-feldspar with an epidote core, (closest to fracture at 45 60° to core axis). Between 245.25 and 245.81 there are several patches of k	E 143130	239.88	242.93	3.05					3	
o 22 22 22 22 22 22 22 22 22 22 22 22 22	brangish k-feldspar and epidote alteration. 236.55 - 239.88 Grey syenite as described above. Interval is mafic rich to 238.52 with biotite-rich pyroxenite pieces, some of which carry net-texture pyrite / pyrrhotite and lesser chalcopyrite. Balance of interval is a grey pyroxene syenite with patchy k-feldspar, epidote and sericite alteration. Carbonate on fracture surface. 239.88 - 242.93 Mafic rich to 241.60, includes patches of biotite-rich and magnetite-rich syenite and chlorite altered biotite pyroxenite. Mafic-rich section moderately well mineralized with pyrite, minor chalcopyrite. Below 241.60 grey syenite is melanocratic in sections due to high magnetite / biotite content. Vague patchy zones of k-feldspar and epidote alteration. 242.93 - 245.97 Grey syenite with numerous patches of potassic k- feldspar and epidote alteration, some of which forms bands (alteration envelopes) of pink k-feldspar with an epidote core, (closest to fracture at 45 60° to core axis). Between 245.25 and 245.81 there are several patches of k	E 143130	239.88	242.93	3.05					3	
2 2 2 2 2 2 2 2 2 2 2 2 2 5 5 2 5 5 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	 236.55 - 239.88 Grey syenite as described above. Interval is mafic rich to 238.52 with biotite-rich pyroxenite pieces, some of which carry net-texture pyrite / pyrrhotite and lesser chalcopyrite. Balance of interval is a grey pyroxene syenite with patchy k-feldspar, epidote and sericite alteration. Carbonate on fracture surface. 239.88 - 242.93 Mafic rich to 241.60, includes patches of biotite-rich and magnetite-rich syenite and chlorite altered biotite pyroxenite. Mafic-rich section moderately well mineralized with pyrite, minor chalcopyrite. Below 241.60 grey syenite is melanocratic in sections due to high magnetite / biotite content. Vague patchy zones of k-feldspar and epidote alteration. 242.93 - 245.97 Grey syenite with numerous patches of potassic k-feldspar and epidote alteration, some of which forms bands (alteration envelopes) of pink k-feldspar with an epidote core, (closest to fracture at 45 60° to core axis). Between 245.25 and 245.81 there are several patches of k 	E 143130	239.88	242.93	3.05					3	
2	238.52 with biotite-rich pyroxenite pieces, some of which carry net-texture pyrite / pyrrhotite and lesser chalcopyrite. Balance of interval is a grey pyroxene syenite with patchy k-feldspar, epidote and sericite alteration. Carbonate on fracture surface. 239.88 - 242.93 Mafic rich to 241.60, includes patches of biotite-rich and magnetite-rich syenite and chlorite altered biotite pyroxenite. Mafic-rich section moderately well mineralized with pyrite, minor chalcopyrite. Below 241.60 grey syenite is melanocratic in sections due to high magnetite / biotite content. Vague patchy zones of k-feldspar and epidote alteration. 242.93 - 245.97 Grey syenite with numerous patches of potassic k- feldspar and epidote alteration, some of which forms bands (alteration envelopes) of pink k-feldspar with an epidote core, (closest to fracture at 45 60° to core axis). Between 245.25 and 245.81 there are several patches of k	E 143130	239.88	242.93	3.05					4	
P P C C C C C C C C C C C C C C C C C C	pyrite / pyrrhotite and lesser chalcopyrite. Balance of interval is a grey pyroxene syenite with patchy k-feldspar, epidote and sericite alteration. Carbonate on fracture surface. 239.88 - 242.93 Mafic rich to 241.60, includes patches of biotite-rich and magnetite-rich syenite and chlorite altered biotite pyroxenite. Mafic-rich section moderately well mineralized with pyrite, minor chalcopyrite. Below 241.60 grey syenite is melanocratic in sections due to high magnetite / biotite content. Vague patchy zones of k-feldspar and epidote alteration. 242.93 - 245.97 Grey syenite with numerous patches of potassic k- feldspar and epidote alteration, some of which forms bands (alteration envelopes) of pink k-feldspar with an epidote core, (closest to fracture at 45 60° to core axis). Between 245.25 and 245.81 there are several patches of k					_100	578	11		4	
P C C C C C C C C C C C C C C C C C C C	pyroxene syenite with patchy k-feldspar, epidote and sericite alteration. Carbonate on fracture surface. 239.88 - 242.93 Mafic rich to 241.60, includes patches of biotite-rich and magnetite-rich syenite and chlorite altered biotite pyroxenite. Mafic-rich section moderately well mineralized with pyrite, minor chalcopyrite. Below 241.60 grey syenite is melanocratic in sections due to high magnetite / biotite content. Vague patchy zones of k-feldspar and epidote alteration. 242.93 - 245.97 Grey syenite with numerous patches of potassic k- feldspar and epidote alteration, some of which forms bands (alteration envelopes) of pink k-feldspar with an epidote core, (closest to fracture at 45 60° to core axis). Between 245.25 and 245.81 there are several patches of k					100	578	11	< .3	4	
C C C C C C C C C C C C C C C C C C C	Carbonate on fracture surface. 239.88 - 242.93 Mafic rich to 241.60, includes patches of biotite-rich and magnetite-rich syenite and chlorite altered biotite pyroxenite. Mafic-rich section moderately well mineralized with pyrite, minor chalcopyrite. Below 241.60 grey syenite is melanocratic in sections due to high magnetite / biotite content. Vague patchy zones of k-feldspar and epidote alteration. 242.93 - 245.97 Grey syenite with numerous patches of potassic k- feldspar and epidote alteration, some of which forms bands (alteration envelopes) of pink k-feldspar with an epidote core, (closest to fracture at 45 60° to core axis). Between 245.25 and 245.81 there are several patches of k					100	578	11	< .3	4	
2 2 2 2 2 2 2 5 5 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5	239.88 - 242.93 Mafic rich to 241.60, includes patches of biotite-rich and magnetite-rich syenite and chlorite altered biotite pyroxenite. Mafic-rich section moderately well mineralized with pyrite, minor chalcopyrite. Below 241.60 grey syenite is melanocratic in sections due to high magnetite / biotite content. Vague patchy zones of k-feldspar and epidote alteration. 242.93 - 245.97 Grey syenite with numerous patches of potassic k-feldspar and epidote alteration, some of which forms bands (alteration envelopes) of pink k-feldspar with an epidote core, (closest to fracture at 45 60° to core axis). Between 245.25 and 245.81 there are several patches of k					100	578	11	< .3	4	
n ss 22 22 22 22 22 22 22 22 22 22 22 22 2	magnetite-rich syenite and chlorite altered biotite pyroxenite. Mafic-rich section moderately well mineralized with pyrite, minor chalcopyrite. Below 241.60 grey syenite is melanocratic in sections due to high magnetite / biotite content. Vague patchy zones of k-feldspar and epidote alteration. 242.93 - 245.97 Grey syenite with numerous patches of potassic k- feldspar and epidote alteration, some of which forms bands (alteration envelopes) of pink k-feldspar with an epidote core, (closest to fracture at 45 60° to core axis). Between 245.25 and 245.81 there are several patches of k					100	578	11	<.3	4	
s	section moderately well mineralized with pyrite, minor chalcopyrite. Below 241.60 grey syenite is melanocratic in sections due to high magnetite / biotite content. Vague patchy zones of k-feldspar and epidote alteration. 242.93 - 245.97 Grey syenite with numerous patches of potassic k-feldspar and epidote alteration, some of which forms bands (alteration envelopes) of pink k-feldspar with an epidote core, (closest to fracture at 45 60° to core axis). Between 245.25 and 245.81 there are several patches of k k-feldspar and epidote of k k-feldspar with an epidote core, axis).										
2 2 2 5 5 5 5 6 5 6 6 6 6 7 6 7 7 7 7 7 7 7 7	241.60 grey syenite is melanocratic in sections due to high magnetite / biotite content. Vague patchy zones of k-feldspar and epidote alteration. 242.93 - 245.97 Grey syenite with numerous patches of potassic k- feldspar and epidote alteration, some of which forms bands (alteration envelopes) of pink k-feldspar with an epidote core, (closest to fracture at 45 60° to core axis). Between 245.25 and 245.81 there are several patches of k	E 143131	242.93	245.97	2.04						
2 7 7 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	biotite content. Vague patchy zones of k-feldspar and epidote alteration. 242.93 - 245.97 Grey syenite with numerous patches of potassic k- feldspar and epidote alteration, some of which forms bands (alteration envelopes) of pink k-feldspar with an epidote core, (closest to fracture at 45 60° to core axis). Between 245.25 and 245.81 there are several patches of k	E 143131	242.93	245.97	2.04						
2 fr e 6 fr a 2 P	242.93 - 245.97 Grey syenite with numerous patches of potassic k- feldspar and epidote alteration, some of which forms bands (alteration envelopes) of pink k-feldspar with an epidote core, (closest to fracture at 45 60° to core axis). Between 245.25 and 245.81 there are several patches of k	E 143131	242.93	245.97	2.04						
6 6 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	feldspar and epidote alteration, some of which forms bands (alteration envelopes) of pink k-feldspar with an epidote core, (closest to fracture at 45 60° to core axis). Between 245.25 and 245.81 there are several patches of k	E 143131	242.93	245.97	2.04						
e 6 6 7 7 8 8 8 8 8 9 8 9 9 9 9 9	envelopes) of pink k-feldspar with an epidote core, (closest to fracture at 45 60° to core axis). Between 245.25 and 245.81 there are several patches of k				3.04	100	250	5	< .3	7	'
6 	60° to core axis). Between 245.25 and 245.81 there are several patches of k										1
fi a 2											
a	and a second to the second and all all and the second and the seco										
2	feldspar (pinkish-orange), biotite and pyroxenite. All showing multiple										
P	alteration (chlorite, biotite, epidote) and carrying minor sulphides.										
	245.97 - 249.02 Grey syenite as above, but with almost continuous	E 143132	245.97	249.02	3.05	100	204	< 2	< .3	< 2	
e	pervasive, moderate pink k-feldspar, and chlorite alteration. Patchy weak										
	epidote alteration, and strong sericite alteration envelopes to 1 cm wide with										
s	several 45 to 70° to core axis fractures. A mafic-rich section exists at 246.66										
t	to 247.05 and consists of fine biotite migmatite with associated k-feldspar										
a	alteration at 45° to core axis, and several chlorite-altered pyroxenite				· -						
	patches. Many low angle fracture.										1
	249.02 - 251.30 As above, grey syenite showing k-feldspar, epidote and	E 143133	249.02	251.30	2.28	98	642	5	<.3	2	2
	chlorite alteration. Interval broken by weakly chloritic and hematitic coated										
	0-10° to core axis fractures. No sulphides seen.										
	251.30 - 252.98 As above, very broken, and displaying weak patchy	E 143134	251.30	252.98	1.68	100	150	< 2	< .3	< 2	2
	potassic and epidote alteration.										
52.98 E											+
27,30	END OF HOLE.								1		

12 Sept. 2002

Total Length: 234.39 Core Size: BQTW Azimuth: 49.2° (GPS Corrected) Inclination: -45° , PAD: Ronnie's Luck, GPS Location (corrected): UTM 347306.5 E; 620052: LITHOLOGICAL DESCRIPTION CASING (29 Feet). MAFIC-RICH SYENITE - upper part of hole is very broken and limonitic. 8.84 - 11.89 Broken limonitic core, fragments show intense chlorite	Footage (m) 234 2.0 N (NAD 8 Sample #	-51 °		-	Complet Logged Date log	ate: Septer tion: Octo By: Jay W gged: Oct	ober 1, 200 N. Page	01		
Azimuth: 49.2° (GPS Corrected) Inclination: -45° , PAD: Ronnie's Luck, GPS Location (corrected): UTM 347306.5 E; 620052: LITHOLOGICAL DESCRIPTION CASING (29 Feet). MAFIC-RICH SYENITE - upper part of hole is very broken and limonitic. 8.84 - 11.89 Broken limonitic core, fragments show intense chlorite	2.0 N (NAD 8	3) SAMP			Logged Date log	By: Jay W	N. Page			
Inclination: -45° , PAD: Ronnie's Luck, GPS Location (corrected): UTM 347306.5 E; 620052: LITHOLOGICAL DESCRIPTION CASING (29 Feet). MAFIC-RICH SYENITE - upper part of hole is very broken and limonitic. 8.84 - 11.89 Broken limonitic core, fragments show intense chlorite		SAMP			Date log			l		
, PAD: Ronnie's Luck, GPS Location (corrected): UTM 347306.5 E; 620052: LITHOLOGICAL DESCRIPTION CASING (29 Feet). MAFIC-RICH SYENITE - upper part of hole is very broken and limonitic. 8.84 - 11.89 Broken limonitic core, fragments show intense chlorite		SAMP					,			
LITHOLOGICAL DESCRIPTION CASING (29 Feet). MAFIC-RICH SYENITE - upper part of hole is very broken and limonitic. 8.84 - 11.89 Broken limonitic core, fragments show intense chlorite		SAMP				ALTER CALLER WANTED IN THE	07/08/CA10/0641 TO 1 - 10/0			i
CASING (29 Feet). MAFIC-RICH SYENITE - upper part of hole is very broken and limonitic. 8.84 - 11.89 Broken limonitic core, fragments show intense chlorite	Sample #				_			were to the second		
MAFIC-RICH SYENITE - upper part of hole is very broken and limonitic. 8.84 - 11.89 Broken limonitic core, fragments show intense chlorite			· - 1	Metres	Rec. %	Cu (ppm)	Au (ppb)	ASSAYS Ag (ppm)	Pt (ppb)	Pd (ppb)
8.84 - 11.89 Broken limonitic core, fragments show intense chlorite				+ +						
· -										
	A 201001	8.84	11.89	3.05	60	183	100	0.5	5	ŀ
alteration, much of run subjected to weathering \pm clay alteration.	A 201002	11.89	14.94	3.05	85	102	12	< .3	2	
11.89 - 14.94 As above, broken and limonitic core - lots of variation, carbonate fracture fillings and veinlets. Lower 1 1/2 metres of run is fine-	A 201002	11.07	14.54	5.05		102	12			
grained biotite migmatite rich which is sericitic altered and contains minor						í l				·
pyrite.										
14.94 - 17.50 Broken limonitic core showing intense chlorite alteration,	A 201003	14.94	17.50	2.56	90	244	415	0.7	< 2	
plus sericite alteration of feldspars in biotite migmatite - rich sections.	A 201003	14.94	17.50	2.50			413	0.7		·
Broken fracture faces are very hematitic toward bottom of run.	· · · · · · · · · · · · · · · · · · ·					·				
17.50 - 20.63 Broken up earthy gravel from fault zone. Clay rich and hematitic. Fragments show chlorite alteration.	A 201004	17.50	20.63	3.13	75	323	41	0.5	4	ļ
20.63 - 24.08 Fine-grained biotite migmatite with a moderate to strongly									<u> </u>	l
• • •	A 201005	20.63	24.08	3.45	100	852	220	1.3	5	
of rock, pink k-feldspar 25 - 45% . Migmatite shows sericite alteration of										
feldspar component, pink k-feldspars unaffected. Minor pyrite. Carbonate										l
veinlets, most of which are irregular, some at 30° and 80° to core axis.				J			ļļ			ļ
Intense chlorite alteration toward bottom of run.	A 204000	24.00	25.05	4.57	100	280	202	1.0		
· •	A 201006	24.08	20.00	1.57	100	209	203	1.2	- 4	
• • •							i – I			
and with informate and carbonate coatings on most surfaces.										
MESOCRATIC SYENITE - pink syenite with occasional darker more mafic rich						<u> </u>				ļ
sections.										
25.65 - 29.98 Pink syenite with fragments, weakly altered patches of pink	A 201007	25.65	29,98	4.33	100	108	90	0,3	4	
				ł		 +	┝ ── ──┤			<u> </u>
-	A 201008	29.98	32.82	2.84	100	1030	41	0.6	6	
				, <u> </u>				 		
rich with 8 cm of biotite migmatite and disseminated chalcopyrite and				r ł				<u> </u>	┝╼╍─┦	
				• 1	1		1	1 1		
bornite. Patchy k-feldspar alteration also near end of interval. Limonitic low				1		 	└─── ┤		-	
dofevil2(ia Nsi2ac2ah	 developed foliation at 75 to 80° to core axis. Migmatite comprises 55 - 75% of rock, pink k-feldspar 25 - 45%. Migmatite shows sericite alteration of eldspar component, pink k-feldspars unaffected. Minor pyrite. Carbonate veinlets, most of which are irregular, some at 30° and 80° to core axis. Intense chlorite alteration toward bottom of run. 24.08 - 25.65 As described above, showing variations between chlorite mafic-rich) sections and biotite migmatite-rich sections. Continuing broken and with limonitic and carbonate coatings on most surfaces. MESOCRATIC SYENITE - pink syenite with occasional darker more mafic rich sections. 25.65 - 29.98 Pink syenite with fragments, weakly altered patches of pink and orangish-red k-feldspar and epidote. Limonite, hematite and carbonate coatings on fracture surfaces still common. 29.98 - 32.82 Pinkish grey syenite with weak patchy orangish k-feldspar and epidote. Latt 32° core axis. Carbonate ± mematite coatings on most fracture surfaces. Last 32 cm of interval is mafic ich with 8 cm of biotite migmatite and disseminated chalcopyrite and 	Aeveloped foliation at 75 to 80° to core axis. Migmatite comprises 55 - 75% of rock, pink k-feldspar 25 - 45% . Migmatite shows sericite alteration of ieldspar component, pink k-feldspars unaffected. Minor pyrite. Carbonate veinlets, most of which are irregular, some at 30° and 80° to core axis. ntense chlorite alteration toward bottom of run. 24.08 - 25.65 As described above, showing variations between chlorite mafic-rich) sections and biotite migmatite-rich sections. Continuing broken and with limonitic and carbonate coatings on most surfaces. MESOCRATIC SYENITE - pink syenite with occasional darker more mafic rich ections. 25.65 - 29.98 Pink syenite with fragments, weakly altered patches of pink and orangish-red k-feldspar and epidote. Limonite, hematite and carbonate coatings on fracture surfaces still common. 29.98 - 32.82 Pinkish grey syenite with weak patchy orangish k-feldspar alteration, and also as alteration envelopes at 85° to core axis. Carbonate <u>+</u> mematite coatings on most fracture surfaces. Last 32 cm of interval is mafic ich with 8 cm of biotite migmatite and disseminated chalcopyrite and	A 201003 20.03 A 201003 20.03 A 201003 20.03 A 201003 20.03 A 201003 20.03 A 201003 20.03 A 201003 20.03 A 201003 20.03 A 201004 20.03 A 201005 24.08 A 201006 24.08 A 201006 24.08 A 201006 24.08 A 201006 24.08 A 201006 24.08 A 201006 24.08 A 201006 24.08 A 201006 24.08 A 201006 24.08 A 201006 24.08 A 201006 24.08 A 201006 24.08 A 201006 24.08 A 201006 24.08 A 201007 25.65 A 201007 25.65 A 201007 25.65 A 201007 25.65 A 201007 25.65 A 201008 29.98 A 201008 29.98 A 201008 29.98 </td <td>A 201003 20.03 24.00 A 201003 20.03 24.00 A 201003 20.03 24.00 A 201003 20.03 24.00 A 201003 20.03 24.00 A 201003 20.03 24.00 A 201003 20.03 24.00 A 201003 20.03 24.00 A 201004 25.65 45% A 201006 24.08 25.65 A 201006 24.08 25.65 A 201006 24.08 25.65 A 201006 24.08 25.65 A 201006 24.08 25.65 A 201006 24.08 25.65 A 201006 24.08 25.65 A 201006 24.08 25.65 A 201006 24.08 25.65 A 201006 24.08 25.65 A 201006 24.08 25.65 A 201007 25.65 29.98 A 201007 25.65 29.98 A 201007 25.65 29.98 A 201008 29.98 32.82 <!--</td--><td>A 201003 20.03 24.08 3.43 A 201003 20.03 24.08 3.43 A 201004 20.03 24.08 3.43 A 201005 20.03 24.08 3.43 A 201005 20.03 24.08 3.43 A 201006 24.08 25.65 1.57 A 201006 24.08 25.65 1.57 A 201006 24.08 25.65 1.57 A 201006 24.08 25.65 1.57 A 201006 24.08 25.65 1.57 A 201006 24.08 25.65 1.57 A 201006 24.08 25.65 1.57 A 201006 24.08 25.65 1.57 A 201006 24.08 25.65 1.57 A 201007 25.65 29.98 4.33 A 201007 25.65 29.98 4.33 A 201008 29.98 32.82 2.84 A 201008 29.98 32.82 2.84 A 201008 29.98 32.82 2.84 A 201008</td><td>A 201003 20.03 24.08 3.43 100 A 201003 20.03 24.08 3.43 100 A 201005 20.03 24.08 3.43 100 A 201006 24.08 25.65 1.57 100 A 201006 24.08 25.65 1.57 100 A 201006 24.08 25.65 1.57 100 A 201006 24.08 25.65 1.57 100 A 201006 24.08 25.65 1.57 100 A 201006 24.08 25.65 1.57 100 A 201006 24.08 25.65 1.57 100 A 201006 24.08 25.65 1.57 100 MESOCRATIC SYENITE - pink syenite with occasional darker more mafic rich sections. 4201007 25.65 29.98 4.33 100 Mesocratic surfaces still common. 29.98 32.82 2.84 100 29.98 32.82 2.84 100 Mesotings on most fracture surfaces. Limonite, hematite and carbonate + inematite coatings on most fracture surfaces. 4201008 29.98 32.82<td>A 201003 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 25.65 1.57 100 289 A 201006 24.08 25.65 1.57 100 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 2</td><td>developed foliation at 75 to 80° to core axis. Migmatite comprises 55 - 75% A 201003 24.08 3.43 100 632 220 of rock, pink k-feldspar 25 - 45% Migmatite shows sericite alteration of eldspar component, pink k-feldspars unaffected. Minor pyrite. Carbonate reinlets, most of which are irregular, some at 30° and 80° to core axis. Intense chlorite alteration toward bottom of run. A 201006 24.08 25.65 1.57 100 289 203 realeds are component, pink k-feldspars unaffected. Minor pyrite. Carbonate reinlets, most of which are irregular, some at 30° and 80° to core axis. Intense chlorite alteration toward bottom of run. A 201006 24.08 25.65 1.57 100 289 203 realeds are component, pink k-feldspar and epidote. Limonite, hematite and carbonate coatings on fracture surfaces still common. A 201007 25.65 29.98 4.33 100 108 90 A 201008 29.98 32.82 2.84 100 1030 41 Metaration, and also as alteration envelopes at 85° to core axis. Carbonate ± A 201008 29.98 32.82 2.84 100 1030 41</td><td>A 201005 20.05 24.06 3.43 100 002 220 1.5 A 201005 20.05 24.06 3.43 100 002 220 1.5 A 201005 20.05 24.06 3.43 100 002 220 1.5 A 201006 24.08 25.65 1.57 100 289 203 1.2 A 201006 24.08 25.65 1.57 100 289 203 1.2 A 201006 24.08 25.65 1.57 100 289 203 1.2 A 201006 24.08 25.65 1.57 100 289 203 1.2 Marcinchine A 201006 24.08 25.65 1.57 100 289 203 1.2 Marcinchine A 201006 24.08 25.65 1.57 100 289 203 1.2 Marcinchine A 201006 24.08 25.65 1.57 100 289 203 1.2 Marcinchine A 201007 25.65 29.98 4.33 100</td><td>A 201005 20.03 24.06 3.40 100 602 220 1.2 0 of rock, pink k-feldspar 25 - 45% Migmatite shows sericite alteration of eldspar component, pink k-feldspars unaffected. Minor pyrite. Carbonate reinlets, most of which are irregular, some at 30° and 80° to core axis. Image: Carbonate reinlets, most of which are irregular, some at 30° and 80° to core axis. Image: Carbonate reinlets, most of which are irregular, some at 30° and 80° to core axis. Image: Carbonate reinlets, most of which are irregular, some at 30° and 80° to core axis. At 01006 24.08 25.65 1.57 100 289 203 1.2 4 At 01006 24.08 25.65 1.57 100 289 203 1.2 4 At 01006 24.08 25.65 1.57 100 289 203 1.2 4 At 01006 24.08 25.65 1.57 100 289 203 1.2 4 At 01006 24.08 25.65 1.57 100 289 203 1.2 4 At 01007 25.65 29.98 4.33 100 108 90 0.3 4 At 201007 25.65 29</td></td></td>	A 201003 20.03 24.00 A 201003 20.03 24.00 A 201003 20.03 24.00 A 201003 20.03 24.00 A 201003 20.03 24.00 A 201003 20.03 24.00 A 201003 20.03 24.00 A 201003 20.03 24.00 A 201004 25.65 45% A 201006 24.08 25.65 A 201006 24.08 25.65 A 201006 24.08 25.65 A 201006 24.08 25.65 A 201006 24.08 25.65 A 201006 24.08 25.65 A 201006 24.08 25.65 A 201006 24.08 25.65 A 201006 24.08 25.65 A 201006 24.08 25.65 A 201006 24.08 25.65 A 201007 25.65 29.98 A 201007 25.65 29.98 A 201007 25.65 29.98 A 201008 29.98 32.82 </td <td>A 201003 20.03 24.08 3.43 A 201003 20.03 24.08 3.43 A 201004 20.03 24.08 3.43 A 201005 20.03 24.08 3.43 A 201005 20.03 24.08 3.43 A 201006 24.08 25.65 1.57 A 201006 24.08 25.65 1.57 A 201006 24.08 25.65 1.57 A 201006 24.08 25.65 1.57 A 201006 24.08 25.65 1.57 A 201006 24.08 25.65 1.57 A 201006 24.08 25.65 1.57 A 201006 24.08 25.65 1.57 A 201006 24.08 25.65 1.57 A 201007 25.65 29.98 4.33 A 201007 25.65 29.98 4.33 A 201008 29.98 32.82 2.84 A 201008 29.98 32.82 2.84 A 201008 29.98 32.82 2.84 A 201008</td> <td>A 201003 20.03 24.08 3.43 100 A 201003 20.03 24.08 3.43 100 A 201005 20.03 24.08 3.43 100 A 201006 24.08 25.65 1.57 100 A 201006 24.08 25.65 1.57 100 A 201006 24.08 25.65 1.57 100 A 201006 24.08 25.65 1.57 100 A 201006 24.08 25.65 1.57 100 A 201006 24.08 25.65 1.57 100 A 201006 24.08 25.65 1.57 100 A 201006 24.08 25.65 1.57 100 MESOCRATIC SYENITE - pink syenite with occasional darker more mafic rich sections. 4201007 25.65 29.98 4.33 100 Mesocratic surfaces still common. 29.98 32.82 2.84 100 29.98 32.82 2.84 100 Mesotings on most fracture surfaces. Limonite, hematite and carbonate + inematite coatings on most fracture surfaces. 4201008 29.98 32.82<td>A 201003 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 25.65 1.57 100 289 A 201006 24.08 25.65 1.57 100 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 2</td><td>developed foliation at 75 to 80° to core axis. Migmatite comprises 55 - 75% A 201003 24.08 3.43 100 632 220 of rock, pink k-feldspar 25 - 45% Migmatite shows sericite alteration of eldspar component, pink k-feldspars unaffected. Minor pyrite. Carbonate reinlets, most of which are irregular, some at 30° and 80° to core axis. Intense chlorite alteration toward bottom of run. A 201006 24.08 25.65 1.57 100 289 203 realeds are component, pink k-feldspars unaffected. Minor pyrite. Carbonate reinlets, most of which are irregular, some at 30° and 80° to core axis. Intense chlorite alteration toward bottom of run. A 201006 24.08 25.65 1.57 100 289 203 realeds are component, pink k-feldspar and epidote. Limonite, hematite and carbonate coatings on fracture surfaces still common. A 201007 25.65 29.98 4.33 100 108 90 A 201008 29.98 32.82 2.84 100 1030 41 Metaration, and also as alteration envelopes at 85° to core axis. Carbonate ± A 201008 29.98 32.82 2.84 100 1030 41</td><td>A 201005 20.05 24.06 3.43 100 002 220 1.5 A 201005 20.05 24.06 3.43 100 002 220 1.5 A 201005 20.05 24.06 3.43 100 002 220 1.5 A 201006 24.08 25.65 1.57 100 289 203 1.2 A 201006 24.08 25.65 1.57 100 289 203 1.2 A 201006 24.08 25.65 1.57 100 289 203 1.2 A 201006 24.08 25.65 1.57 100 289 203 1.2 Marcinchine A 201006 24.08 25.65 1.57 100 289 203 1.2 Marcinchine A 201006 24.08 25.65 1.57 100 289 203 1.2 Marcinchine A 201006 24.08 25.65 1.57 100 289 203 1.2 Marcinchine A 201007 25.65 29.98 4.33 100</td><td>A 201005 20.03 24.06 3.40 100 602 220 1.2 0 of rock, pink k-feldspar 25 - 45% Migmatite shows sericite alteration of eldspar component, pink k-feldspars unaffected. Minor pyrite. Carbonate reinlets, most of which are irregular, some at 30° and 80° to core axis. Image: Carbonate reinlets, most of which are irregular, some at 30° and 80° to core axis. Image: Carbonate reinlets, most of which are irregular, some at 30° and 80° to core axis. Image: Carbonate reinlets, most of which are irregular, some at 30° and 80° to core axis. At 01006 24.08 25.65 1.57 100 289 203 1.2 4 At 01006 24.08 25.65 1.57 100 289 203 1.2 4 At 01006 24.08 25.65 1.57 100 289 203 1.2 4 At 01006 24.08 25.65 1.57 100 289 203 1.2 4 At 01006 24.08 25.65 1.57 100 289 203 1.2 4 At 01007 25.65 29.98 4.33 100 108 90 0.3 4 At 201007 25.65 29</td></td>	A 201003 20.03 24.08 3.43 A 201003 20.03 24.08 3.43 A 201004 20.03 24.08 3.43 A 201005 20.03 24.08 3.43 A 201005 20.03 24.08 3.43 A 201006 24.08 25.65 1.57 A 201006 24.08 25.65 1.57 A 201006 24.08 25.65 1.57 A 201006 24.08 25.65 1.57 A 201006 24.08 25.65 1.57 A 201006 24.08 25.65 1.57 A 201006 24.08 25.65 1.57 A 201006 24.08 25.65 1.57 A 201006 24.08 25.65 1.57 A 201007 25.65 29.98 4.33 A 201007 25.65 29.98 4.33 A 201008 29.98 32.82 2.84 A 201008 29.98 32.82 2.84 A 201008 29.98 32.82 2.84 A 201008	A 201003 20.03 24.08 3.43 100 A 201003 20.03 24.08 3.43 100 A 201005 20.03 24.08 3.43 100 A 201006 24.08 25.65 1.57 100 A 201006 24.08 25.65 1.57 100 A 201006 24.08 25.65 1.57 100 A 201006 24.08 25.65 1.57 100 A 201006 24.08 25.65 1.57 100 A 201006 24.08 25.65 1.57 100 A 201006 24.08 25.65 1.57 100 A 201006 24.08 25.65 1.57 100 MESOCRATIC SYENITE - pink syenite with occasional darker more mafic rich sections. 4201007 25.65 29.98 4.33 100 Mesocratic surfaces still common. 29.98 32.82 2.84 100 29.98 32.82 2.84 100 Mesotings on most fracture surfaces. Limonite, hematite and carbonate + inematite coatings on most fracture surfaces. 4201008 29.98 32.82 <td>A 201003 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 25.65 1.57 100 289 A 201006 24.08 25.65 1.57 100 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 2</td> <td>developed foliation at 75 to 80° to core axis. Migmatite comprises 55 - 75% A 201003 24.08 3.43 100 632 220 of rock, pink k-feldspar 25 - 45% Migmatite shows sericite alteration of eldspar component, pink k-feldspars unaffected. Minor pyrite. Carbonate reinlets, most of which are irregular, some at 30° and 80° to core axis. Intense chlorite alteration toward bottom of run. A 201006 24.08 25.65 1.57 100 289 203 realeds are component, pink k-feldspars unaffected. Minor pyrite. Carbonate reinlets, most of which are irregular, some at 30° and 80° to core axis. Intense chlorite alteration toward bottom of run. A 201006 24.08 25.65 1.57 100 289 203 realeds are component, pink k-feldspar and epidote. Limonite, hematite and carbonate coatings on fracture surfaces still common. A 201007 25.65 29.98 4.33 100 108 90 A 201008 29.98 32.82 2.84 100 1030 41 Metaration, and also as alteration envelopes at 85° to core axis. Carbonate ± A 201008 29.98 32.82 2.84 100 1030 41</td> <td>A 201005 20.05 24.06 3.43 100 002 220 1.5 A 201005 20.05 24.06 3.43 100 002 220 1.5 A 201005 20.05 24.06 3.43 100 002 220 1.5 A 201006 24.08 25.65 1.57 100 289 203 1.2 A 201006 24.08 25.65 1.57 100 289 203 1.2 A 201006 24.08 25.65 1.57 100 289 203 1.2 A 201006 24.08 25.65 1.57 100 289 203 1.2 Marcinchine A 201006 24.08 25.65 1.57 100 289 203 1.2 Marcinchine A 201006 24.08 25.65 1.57 100 289 203 1.2 Marcinchine A 201006 24.08 25.65 1.57 100 289 203 1.2 Marcinchine A 201007 25.65 29.98 4.33 100</td> <td>A 201005 20.03 24.06 3.40 100 602 220 1.2 0 of rock, pink k-feldspar 25 - 45% Migmatite shows sericite alteration of eldspar component, pink k-feldspars unaffected. Minor pyrite. Carbonate reinlets, most of which are irregular, some at 30° and 80° to core axis. Image: Carbonate reinlets, most of which are irregular, some at 30° and 80° to core axis. Image: Carbonate reinlets, most of which are irregular, some at 30° and 80° to core axis. Image: Carbonate reinlets, most of which are irregular, some at 30° and 80° to core axis. At 01006 24.08 25.65 1.57 100 289 203 1.2 4 At 01006 24.08 25.65 1.57 100 289 203 1.2 4 At 01006 24.08 25.65 1.57 100 289 203 1.2 4 At 01006 24.08 25.65 1.57 100 289 203 1.2 4 At 01006 24.08 25.65 1.57 100 289 203 1.2 4 At 01007 25.65 29.98 4.33 100 108 90 0.3 4 At 201007 25.65 29</td>	A 201003 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 25.65 1.57 100 289 A 201006 24.08 25.65 1.57 100 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 2	developed foliation at 75 to 80° to core axis. Migmatite comprises 55 - 75% A 201003 24.08 3.43 100 632 220 of rock, pink k-feldspar 25 - 45% Migmatite shows sericite alteration of eldspar component, pink k-feldspars unaffected. Minor pyrite. Carbonate reinlets, most of which are irregular, some at 30° and 80° to core axis. Intense chlorite alteration toward bottom of run. A 201006 24.08 25.65 1.57 100 289 203 realeds are component, pink k-feldspars unaffected. Minor pyrite. Carbonate reinlets, most of which are irregular, some at 30° and 80° to core axis. Intense chlorite alteration toward bottom of run. A 201006 24.08 25.65 1.57 100 289 203 realeds are component, pink k-feldspar and epidote. Limonite, hematite and carbonate coatings on fracture surfaces still common. A 201007 25.65 29.98 4.33 100 108 90 A 201008 29.98 32.82 2.84 100 1030 41 Metaration, and also as alteration envelopes at 85° to core axis. Carbonate ± A 201008 29.98 32.82 2.84 100 1030 41	A 201005 20.05 24.06 3.43 100 002 220 1.5 A 201005 20.05 24.06 3.43 100 002 220 1.5 A 201005 20.05 24.06 3.43 100 002 220 1.5 A 201006 24.08 25.65 1.57 100 289 203 1.2 A 201006 24.08 25.65 1.57 100 289 203 1.2 A 201006 24.08 25.65 1.57 100 289 203 1.2 A 201006 24.08 25.65 1.57 100 289 203 1.2 Marcinchine A 201006 24.08 25.65 1.57 100 289 203 1.2 Marcinchine A 201006 24.08 25.65 1.57 100 289 203 1.2 Marcinchine A 201006 24.08 25.65 1.57 100 289 203 1.2 Marcinchine A 201007 25.65 29.98 4.33 100	A 201005 20.03 24.06 3.40 100 602 220 1.2 0 of rock, pink k-feldspar 25 - 45% Migmatite shows sericite alteration of eldspar component, pink k-feldspars unaffected. Minor pyrite. Carbonate reinlets, most of which are irregular, some at 30° and 80° to core axis. Image: Carbonate reinlets, most of which are irregular, some at 30° and 80° to core axis. Image: Carbonate reinlets, most of which are irregular, some at 30° and 80° to core axis. Image: Carbonate reinlets, most of which are irregular, some at 30° and 80° to core axis. At 01006 24.08 25.65 1.57 100 289 203 1.2 4 At 01006 24.08 25.65 1.57 100 289 203 1.2 4 At 01006 24.08 25.65 1.57 100 289 203 1.2 4 At 01006 24.08 25.65 1.57 100 289 203 1.2 4 At 01006 24.08 25.65 1.57 100 289 203 1.2 4 At 01007 25.65 29.98 4.33 100 108 90 0.3 4 At 201007 25.65 29

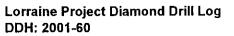
Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 2 of 12

1

		าย เอา อาการอาศารณฑรรรมหมวยเห็นของผลสมออกกรรมสายสมมายรายสุดที่มีการจากสายสายสายสายสายสายสายสายสายสาย สาย สายสาย การการการการการการสายสาย	AND REAL AND AND A DAMAGE AND A DAMAGE AND A DAMAGE AND A DAMAGE AND A DAMAGE AND A DAMAGE AND A DAMAGE AND A D	SAMP		1912/2021 10:2019 14	Rec.	en beze zota -kont -an-azz	ar shirth and an	ASSAYS		
FOOT/ From (m)	AGE (metres)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)		Metres	кес. %	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
32.82	36.60	 MAFIC-RICH SYENITE - as described above from 32.50 to 32.82. Grey syenite with patches of biotite rich migmatite and other dark patches of biotite, magnetite and sericite. Several of these dark patches are mineralized with blebs of chalcopyrite and bornite. Minor pyrite in the grey syenite. 32.82 - 34.30 As above, medium grained biotite rich syenite to 32.50, then k-feldspar and epidote-chlorite altered rock showing considerable variation in intensity and area. Dark patches are magnetic. 34.30 - 36.60 As above, minor disseminated chalcopyrite and bornite 	A 201009	32.82	34.30		100	6587				
		associated with mafic rich sections between 36.06 and 36.44. Magnetic.	A 201010	34.30	36.60	2.30	100	8998	934	5.0		44
36.60	45.00	CHLORITE ALTERED MAFIC SYENITE - pervasive and intense chlorite alteration plus sericite-epidote and to lesser extent, k-feldspar alteration. Rock is so thoroughly altered that no original textures are recognizable and there is little to distinguish between mafic rich, including biotite-rich migmatite, and grey syenite. Medium to dark green colour with some fine-										
		grained dark brownish tones. 36.60 - 39.32 As above, hairline carbonate stringers common at generally low angles (0 - 30° to core axis). Tiny disseminated blebs of bornite	A 201011	36.60	39.32	2.72	98	11192	1398	6.5	11	121
		associated with / intergrown with blebs of magnetite. 39.32 - 42.37 As above, very broken and sheared. Continuing mineralized with blebs of bornite with magnetite.	A 201012	39.32	42.37	3.05	90	12381	758	9.3	4	4 8
		42.37 - 45.00 Extremely broken up core, continuing fine-grained biotite- rich as with above run. Continuing strong chlorite alteration. This interval is more recognizable as syenite than above runs. Bornite mineralization as disseminated blebs, not all of which is associated with magnetite. Minor disseminated chalcopyrite.	A 201013	42.37	45.00	2.63	60	14146	948	11.7	E	5 12
45.00	152.10	MELANOCRATIC SYENITE - mafic-rich pink and grey syenite showing extensive k-feldspar, chlorite and sericite alteration. Recognizable as										<u> </u>
		syenite, as opposed to chlorite altered rock above. 45.00 - 48.46 As above, highly fractured core, extensive coatings of carbonate - hematite and minor chlorite. Chalcopyrite occurs as disseminated blebs in pink syenite and in patches / fragments of intensely chlorite - altered, biotite-rich mafic rock. Disseminated bornite occurs in	A 201014	45.00	48.46	i 3. <u>46</u>	92	9033	3 362	2 5.8		
		 mafic centres and the above described mafic rock. Sections of syenite are chlorite-epidote-sericite altered - pervasively but not texturally destructively. 48.46 - 51.51 As above, low angle fractures carry extensive coatings of hematite and on a few fracture faces (0-5° to core axis) blebs of chalcopyrite. Magnetic. 	A 201015	48,46	51.51	3.05	92	7514	4 329	9 5.4	<	2
		51.51 - 54.56 As above, but in general with a fairly dark grey tone and more fine-grained biotite-rich than above. Disseminated blebs of chalcopyrite carry associated bornite. Perhaps in the range of 1%	A 201016	51.51	54.56	3.05	100	6288	3 75	1 15.2	2 < ;	2

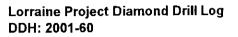
DDH: 2001-60


Lorraine Project Diamond Drill Log

Page: 3 of 12

ł

FOOTAGE (metres)			SAMPL	ES		Rec.		-	ASSAYS	_ :	
From (m) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
	combined. Most of core has a very murky look because of chlorite-sericite										
	alteration. A 1-2 cm seam of magnetite has associated pyrite / marcasite [?]										
	plus minor chalcopyrite. No bornite with magnetite numerous patches of										
	orangish-red k-feldspar cut the core at 60-80° to core axis.										
	54.56 - 57.61 As above, but more broken and limonite-hematite stained.									5	·
	Minor malachite with limonite on some fracture surfaces. Sections of	A 201017	54.56	57.61	3.05	95	7211	300	4.3	5	- · · ·
	competent core, with tan or dark grey (biotite-magnetite-rich) syenite are										
	strongly mineralized with 2-3% chalcopyrite and 1-2% bornite, all as	· · ·									
	disseminated blebs. Competent core begins continuously at 56.42 m.										-
	57.61 - 60.66 As described above. Dark grey / tan coloured melanocratic	A 201018	57.61	60,66	3.05	96	4686	189	3.2	< 2	
	syenite. Strongly mineralized with small blebs of disseminated chalcopyrite	A 201010	07.01	00,00	0.00						
	and bornite. Also contains fair amount of fine biotite (15-25%).										
	Mineralization decreases toward bottom of run. Last 75 cm are quite										
	broken, and chlorite altered. Highly magnetic.										
	60.66 - 63.70 First metre of interval is more broken up than above, also										
	chlorite-sericite altered, although textures remain visible. Low angle (0 - 5°	A 201019	60.66	63.70	3.04	92	11144	379	7.7	< 2	
	to core axis) extend through first 2 metres of interval. Carbonate coatings										
	on fracture surfaces are extensive. Core continues to be strongly										
	mineralized with disseminated blebs of chalcopyrite and bornite, particularly										
	in dark areas. Lower part of run is more k-feldspar altered with patches and		<u> </u>								
	streaks at 30-45° to core axis. K-feldspar altered areas are poorly							<u> </u>		<u> </u>	ļ
	mineralized compared to rest of run.			_							
	- 63.70 - 66.75 Grey syenite as described above. Pervasive chlorite and					100	6126	176	4.7	< 2	
	sericite alteration but not intense / texture destructive. Continuing to be	A 201020	63.70	66.75	3.05	100	0120	1/0	4./	~ 2	·
	strongly mineralized with chalcopyrite and bornite. Fracture controlled										
	chalcopyrite are some 60° to core axis fractures. Mineralization has become										
	a bit patchy toward bottom of run. Minor pyrite in some 45° to core axis										1
	k-feldspar alteration envelopes.				<u> </u>						
	66.75 - 69.80 Grey syenite, but with numerous patches of orangish-	A 201021	66.75	69.80	3.05	100	2078	60	1.5	2	2
	coloured k-feldspar alteration, overall generally lighter colour tone than										
	above. Mineralization is weak and patchy, about 0.25 - 0.5% chalcopyrite,										
	minor pyrite, trace bornite.										
	69.80 - 72.85 As above, most of interval consists of patches of k-feldspar										ļ
	-alterations along with weaker but also patchy epidote and chlorite alteration.	A 201022	69,80	72.85	3.05	96	673	33	0.4	< 2	2
	Continuing weakly mineralized as above.		l		_			· · · · · · · · -			
	72.85 - 75.90 Run begins with 60 cm of rubble followed by 60 cm of										+
	greyish pink syenite that is strongly mineralized. Followed by weakly	A 201023	72.85	75.90	3.05	96	2068	99	1.3	< 2	2 <
	mineralized grey syenite with patchy k-feldspar-epidote alteration.		└── ─						<u> </u>	ł	
	Mineralization consists of disseminated chalcopyrite with a trace of bornite.						· ·				
	Continuing pervasive sericite alteration.		<u>├</u>		+						
	75.90 - 78.95 Grey syenite with numerous orange-feldspar patches and	A 201024	75,90	78.95	3.05	100	1732	60	0.8	< 2	,
	alteration envelopes at generally steep angles (60-80° to core axis).	A 201024	13.90	10.95	, 3,05	100	1132		0.0	*	
	Pervasive weak sericitic alteration. Overall weakly mineralized.							+		1	
	78.95 - 81.99 Melanocratic syenite is described above. Many variations	A 201083	78.95	81.99	3.04	100	1213	78	0.7		3
	between dark grey and lighter orangish sections of k-feldspar alteration.				+	· · · · · ·	+	1		1	



Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 4 of 12

.

Bandahatan sering ang ang ang ang ang ang ang ang ang a		a nama a na mangang kanang kanang kanang kanang kanang kanang kanang kanang kanang kanang kanang kanang kanang			130.4100 to 17 D I		u v rođu monost	avent soccito and	ASSAYS		i e construir e construir e
FOOTAGE (metres)	LITHOLOGICAL DESCRIPTION	Sample #	SAMP From (m)	LES To(m)	Metres	Rec. %	Cu (ppm)	Au (ppb)	ASSAYS Ag (ppm)	Pt (ppb)	Pd (ppb)
From (m) To (m)	Chlorite and epidote alteration is patchy and locally intense, along with weak	Sample #		to (ui)	Metres	/0	Ou (ppin)		7.9 (14/11)		• • (ppo)
						··					
	sericitic alteration. Weak sulphide mineralization. 81.99 - 85.04 Greyish green syenite as above, but with pervasive and	A 201025	81.99	85.04	3.05	100	7162	327	4.5	< 2	e
	intense chlorite alteration along with sericite-clay alteration leaving a dirty										
	earthy deposit / coating exposed on broken surfaces. Highly altered										
	sections have little mineralization but the more weakly altered last metre of		· · · ·								
	the interval is strongly mineralized with chalcopyrite and bornite. Many										
	fracture faces have heavy coatings of hematite.										
	85.04 - 88.09 Syenite as above but with extensive k-feldspar alteration	A 201026	85.04	88.09	3.05	100	1210	67	0.9	2	1
	giving a very mottled orangish - pink and dark black / grey (biotite-rich)										
	pattern. Low angle fracture faces at 0 - 10° to core axis persist for about 50										
	cm and have slickensides that rake at 85°. The upper metre of this interval										
	shows intensive potassic alteration, the last metre is intensely chlorite										
	altered. Patchy mineralization is overall weak.										
	88.09 - 91.14 As above. Most of first metre of run is intensely chlorite	A 201027	88.09	91.14	3.05	100	466	13	0.4	< 2	< 2
	altered with a low angle sheer zone at 88.60 with thick chlorite-carbonate			-							
	fracture fillings. Balance of run is a dark grey chlorite-sericite altered rock										
	with many dark areas which may contain very fine-grained biotite. Weak										
	k-feldspar alteration through much of the interval allows the interval to be					_					
	recognizable as a syenite. Hematite on irregular fracture surfaces. Weakly										
	mineralized. Non magnetic.										
· · · · · · · · · · · · · · · · · · ·	91.14 - 94.38 Dark grey syenite as described above. Dark cloudy										
	- appearance, murkiness due to sericite alteration, perhaps also due to	A 201028	91.14	94.38	3.24	100	1831	52	1.7	< 2	
	development of very fine-grained biotite. Weakly mineralized with 0.25 -										
	0.5% blebs of chalcopyrite. Continuing several percent magnetite. Minor							. <u> </u>			
	pyrite. Weak patchy k-feldspar alteration.									ļ	
	94.38 - 97.23 Continuing melanocratic syenite. Medium grey colour. Fine	A 201029	94.38	97.23	2.85	100	20411	1343	12.7	5	1:
	grained with an earthy / ground lustre, murky due to biotite-sericite chlorite	-						.	┨		<u> </u>
	alteration. Beginning of strong disseminated chalcopyrite and bornite										
	mineralization. This interval is shot through with white quartz \pm feldspar									+	
	veinlets at 0-10° to core axis, most are irregular along the long axis of the				ļ		1				
	core from 95.65 to 96.40. Core is broken, ground into gravel and displaying						· · · ·				
	_intense chlorite alteration. Mineralization seems to continue through the							<u> </u>			
	_broken zone and the bornite appears to increase to 2-4%.		· ···-							·	
	97.23 - 100.28 As described above. Pink and grey syenite shot through				2.05	100	4767	240	2.8		
	with white quartz + feldspar veinlets along with some very black highly	A 201030	97.23	100.28	3.05	100	4/6/	240	2.0		
	altered sections (biotite and sericite?). Core broken and sheared through										<u> </u>
	- much of interval and extremely chlorite \pm sericite altered. Nothing	· · · · ·							i		
	-recognizable through these sections, but mineralization seems to persist				<u> </u>		<u> </u>		 -	<u> </u>	<u>+</u> - · − −
	below in less altered rocks. Less altered sections are still heavily altered									<u> -</u> .	
	(biotite-chlorite-sericite) but textures still visible, plus patchy weak to						I		+		
	moderate k-feldspar alteration.	-	400.00	103.33	3.05	100	8711	241	6.0	2	,
	100.28 - 103.33 Pinkish grey syenite with some dark altered sections as	A 201031	100.28	103.33	3.05	100	0/11	241	0.0	1 4	`
	described above, patchy k-feldspar alteration and irregular cross-cutting										+
	1-3 mm wide guartz veins. Continuing strongly mineralized with				<u> </u>		<u> </u>	+		1	+
	I shan mac quarte vents. Continuing scongly materiated with		1		1		1	1	1	1	I

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 5 of 12

ł

			SAMP	t FS		Rec.	and a share to far		ASSAYS		
FOOTAGE (metres) From (m) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
	disseminated chalcopyrite and bornite.										
	103.33 - 106.38 Pinkish grey syenite as described above. Continuing	A 201032	103.33	106.38	3.05	100	7951	156	5.7	< 2	<
	strong mineralization, in places bornite is dominant at 2-3%.										_
	106.38 - 109.42 As above, grey syenite, somewhat darker than above,	A 201033	106.38	109.42	3.04	100	16426	831	12.1	3	
	and includes some fine-grained biotite sections similar in composition to										
	migmatite but as patches, not streaks / bands. Weak k-feldspar alteration										
	forming vague patches of 10-20%. Reddish brown k-feldspar. Continuing						·				
	strongly mineralized with bornite and chalcopyrite including chalcopyrite										
	selvages in 2-3 mm quartz veins oriented at 50 and 55° to core axis.										
	Irregular white quartz veining. Weak to non-magnetic.	A 201034	109.42	112.47	3.05	100	21319	2266	13.4	11	1
	109.42 - 112.47 Pinkish grey syenite as described above, with many	A 201034	109,42	112.47	3.05	100			10.4	· · ·	•
	vague darker areas of fine biotite and small 1 cm patches of chlorite (very										
	dark green). Toward the bottom of the run. Vague, barely distinct banding										
	and cross-cutting streaks at 90° to core axis has begun to develop a slight							·			
	pink component (k-feldspar alteration?) along with biotite rich grey streaks										
	suggests incipient migmatite banding beginning to develop. Continuing										
	strong fine-grained chalcopyrite and bornite disseminated mineralization.	A 201035	112.47	115.52	3.05	100	12895	1212	12.8	4	1
	112.47 - 115.52 As described above. Dark fine-grained biotite rich areas										
	tend to carry mostly chalcopyrite. Overall amount of bornite has dropped off										
	to about 0.5%. Chalcopyrite also fracture controlled, mostly steeper										ļ
	fractures around 60-80° to core axis, some with 2-4 mm quartz veins.								L	ļ	<u> </u>
	115.52 - 118.57 As described above. Continuing to be strongly	A 201036	115.52	118.57	3.05	100	11326	478	8.2	4	۱ <u>.</u>
	mineralized with fine-grained disseminated chalcopyrite and bornite. Part of										+
	interval cut by low angle (0-5° to core axis) 2 mm wide, white quartz (\pm				ļ						<u> </u>
	feldspar) veinlets. They are barren of sulphide mineralization.							· · ·	<u> </u>		
	118.57 - 121.62 Syenite as described above. Medium-dark grey tone with	A 201037	118.57	121.62	3.05	100	8127	299	6.2	< 2	,
	a slight brownish-purple tinge due to fine-grained biotite and possibly weak	A 201037	110.57	121.92	0.00	100	0127	200		•	· · ·
	k-feldspar (potassic alteration). Continuing to be strongly mineralized, most										
	subhide, especially bornite, is very fine grained.										
	121.62 - 124.66 As described above, but more broken than above,	A 201038	121.62	124.66	3.04	98	15407	1220	10.7	1 3	3 1
	includes some low angle fractures with 1-2 mm of chlorite (+ epidote) paste				1						
	as a filling continuing well mineralized but very fine grained, perhaps not as	·									
	strong as above.										
	124.66 - 127.71 As above, the first 15 cm are massive chlorite (pale	A 201039	124.66	127.71	3.05	92	7214	558	5.3	5 5) 1
	green) (+ sericite?) with irregular magnetite veins carrying numerous blebs										
	of bornite. Followed by tan / pinkish grey syenite with a heavy load of										
	chalcopyrite - bornite. From about 124.95 to 126.26 the core is extremely								<u> </u>	l	
	chlorite altered and most is broken / sheared to a pasty gravel - nothing							· · · · · · · · · · · · · · · · · · ·		<u> </u>	
	recognizable in it. Latter part of run is not broken but remains heavily			<u> </u>	<u> </u>	···	<u> </u>		ļ <u> </u>		
	altered (chlorite + sericite).					<u> </u>	i		<u> </u>		
	127.71 - 130.76 As described above, pinkish - tan / grey syenite with) <;	,
	average 10-20% very fine-grained biotite. K-feldspar alteration (orangish-	A 201040	127.71	130,76	3.05	100	4334	259	3.0	' `	2
	red k-feldspar) becoming more distinct with biotite rich parts forming more]		·	<u> </u>						
	distinct patches with irregular edges or as migmatitic streaks which cut the	· · · · ·							ł	+	

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 6 of 12

;

MANUTATION OF A STATE			CAND		9894411395 () 9747 () 3	Rec.	ends hids - GOUDINE		ASSAYS		Y 1.2
FOOTAGE (metres)	LITHOLOGICAL DESCRIPTION	Sample #	SAMP: From (m)	LES To(m)	Metres	кес. %	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
From (m) To (m)	most sulphide, especially bornite fracture controlled (at low angles about 10°	Gample #		TO (iiiy			Q1 (-p)		<u> </u>		
	to core axis).										
	130.76 - 133.81 As described above. Most of run is migmatitic pinkish	A 201041	130,76	133.81	3.05	100	5268	362	4.2	3	
	syenite. Continuing to be well mineralized, although perhaps not as strongly										<u> </u>
	as some intervals above. Some fracture controlled chalcopyrite at 45° and										ļ
	-85° to core axis. Magnetic.				L		<u> </u>				
	133.81 - 136.86 As above, numerous dark patches which are very fine-			···							.
	grained biotite-rich (migmatite?) syenite. Amount of mineralization has	A 201042	133.81	136.86	3.05	100	6565	341	5.8	5	<u> </u>
	decreased with depth, although patches rich in both chalcopyrite and						· · ·				
	bornite are still present. Pyrite present on some low angle fracture surface				-						
	· · · ·						·				+
	(0 - 10° to core axis). Syenite migmatite is much more patchy than banded.										
	136.86 - 139.90 As above. Amount of pink k-feldspar has become	A 201043	136.86	139.90	3.04	100	3559	148	2.8	5	5
	dominant and is cut by many k-feldspar reddish orange alteration envelopes	A 201043	130.00	133.30	0.04	100	0000	140			1
	at 45 to 60° to core axis. Bornite still found in dark biotite rich patches with						·				
	_ chalcopyrite, but in pink syenite the sulphides are chalcopyrite and pyrite.			.							
	Blebs of chalcopyrite and pyrite are also noted on fractures (generally in the										
	-45 to 60° to core axis range).										
	139.90 - 142.95 As above, very blotchy dark areas in pink syenite patchy-	A 201044	139.90	142.95	3.05	100	4506	516	3.0	8	3
	chlorite and k-feldspar alteration. Mineralization is patchy, varying from										
	weak chalcopyrite to strong chalcopyrite plus bornite. Overall mineralization										
	appears to be weaker except in short strongly mineralized sections.										
	142.95 - 146.00 As described above. Numerous dark patches with	A 201045	142.95	146.00	3.05	100	7058	532	5.8	5	5 2
	contrasting reddish-orange k-feldspar patches and streaks. Dark areas tend								ļ		<u> </u>
	to be biotite rich and do not carry much mineralization any more, 1-2%				<u> </u>						
	magnetite. Disseminated and fracture controlled chalcopyrite and pyrite in						I		<u> </u>		
	the pink syenite. Fractures tend to be oriented in the range of 15-30° to						 	ļ		ļ	
	core axis, often carrying quartz and k-feldspar. One 3 cm weak quartz vein						l		·		
	- cuts the core at 75° to core axis and carries pyrite, chalcopyrite and possibly								<u>+</u>		
	a tiny flake of molybdenite. [There is, however, no marked increase in Mo										
	content for this interval.]	A 201046	146.00	149.05	3.05	100	2993	196	2.2	4	4 1
	146.00 - 149.05 As above with many dark patches and migmatite streaks	<u>A 2010-10</u>	140.00								
	at 55-65° to core axis. Many of dark patches are becoming magnetite rich										
	(5-10%). Patchy chalcopyrite mineralization is often weak. Minor epidote								1		
	alteration.	A 201047	149.05	152.10	3.05	100	1028	73	0.8		3
	149.05 - 152.10 As above, but with large irregular patches of black mafics									<u> </u>	
	and massive magnetite. No sulphides noted in these patches. Some										
	patches may be chlorite-epidote altered pyroxenite. Core has become										
	magnetite-rich and carries only minor chalcopyrite, trace bornite.			<u> </u>			·		ļ	ļ	
								· · · · · · · · · · · · · · · · · · ·		<u> </u>	+
152.10 189.77	MESOCRATIC SYENITE - a gradational change over several runs to a lighter-							+		<u> </u>	
	_coloured syenite <u>+</u> migmatite.			455.4		400	1057	26	5 0.8	s < ;	
	152.10 - 155.14 Orangish-red syenite with dark streaks of fine biotite-rich	A 201048	152.10	155.14	4 3.04	100	105/	26	0.8	°	-
	migmatite. Patchy, weak to moderate disseminated mineralization of						1	· ·	+	+	+
	chalcopyrite with minor bornite.	······				· ·					-
	155.14 - 158.19 As described above, orange syenite with a weak to		1	1	,	1		1	1	1	· · · · · · · · · · · · · · · · · · ·

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 7 of 12

1

FOOTAG	E (metres)	LITHOLOGICAL DESCRIPTION		SAMPL	ES		Rec.			ASSAYS		
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		moderately well developed biotite migmatite. Most of core / interval appears										
		to be strongly potassic altered (up to 80% bright orangish-red				-						
		k-feldspar). Strongly mineralized in streaks parallel to foliation defined by										
		migmatite. Some strongly k-feldspar altered sections are poorly mineralized.								-		
		158.19 - 161.24 As described above. Orange-grey syenite with numerous	A 201050	158.19	161.24	3.05	100	2567	152	1.8	< 2	<
		thin lines, blebs and patches of mostly fine biotite. Numerous patches and	A 201050	150.19	101,24	3.05	100	2307	152	1.0		
		cross-cutting bands of orangish k-feldspar. Many grey areas with wispy dark	· · · · ·									
		biotite-rich areas are strongly mineralized by chalcopyrite and bornite.										
		Orangish k-feldspar rich areas are mineralized with chalcopyrite.									· · · ·	
		161.24 - 164.29 Pinkish grey syenite as described above with numerous	A 201051	161.24	164.29	3.05	100	1978	62	1.6	< 2	<
		orange k-feldspar alteration zones. Strongly to moderately well mineralized										-
		with disseminated blebs of chalcopyrite and pyrite. Orange k-feldspar										
		alteration envelopes cut the core at 60 - 80° to core axis.										
		164.29 - 167.34 Pinkish-grey syenite as described above, numerous										
		k-feldspar alteration zones. This run appears to be slightly coarser grained	A 201052	164.29	167.34	3.05	100	1640	66	1.3	< 2	
		than above and the k-feldspar slightly less altered. Grey patches (grey										
		orthoclase and biotite + magnetite) contain better mineralization										
		(chalcopyrite plus minor bornite) as opposed to pink syenite (chalcopyrite +									· · · ·	
		pyrite) some of which is fracture controlled, at 45 - 60° to core axis. Run										
<u> </u>		contains small patches of chlorite altered mafic, also chlorite coatings on								·		
		some low angle (0 - 10° to core axis) fracture faces.										
		167.34 - 170.38 Pink / grey syenite with a number of orangish-red	A 201053	167.34	170.38	3.04	100	1526	40	1.4	2	
		patches as described above. Some variation in grain size with the pink-	A 201000	107.04		0.04	100					
		orangish red sections being coarser grained. Sections with migmatitic blebs								· · ·	1	
		and streaks are mineralized the best with chalcopyrite and minor bornite in										
	·	the mafic bits (fine biotite and magnetite) while just chalcopyrite (aligned								1		
		with foliation) is found in the k-feldspar between migmatite blebs. Overall										
		run is weakly mineralized. There is an increase in chlorite-epidote alteration										
		toward bottom of run. Pyrite is associated with orange k-feldspar alteration										
		envelopes at 80-85° to core axis.										
		170.38 - 173.43 As above, pink / grey syenite with many grey patches										
		and vague weakly developed k-feldspar alteration zones beginning of weak	A 201054	170.38	173.43	3.05	100	878	18	0.5	5	·
		epidote alteration but pervasive over much of core. Overall fairly light colour		·		ļ						
		tone. Most of the epidote appears to be associated with the potassic				4				<u> </u>		
		k-feldspar alteration. Minor pyrite mineralization. The alteration gives a				1				<u> </u>		
		cloudy indistinct appearance to most of interval.							····-			•
		173.43 - 176.48 Grey / pink syenite as described above. Patchy pink	A 201055	173.43	176.48	3.05	100	1812	16	1.6		;
		k-feldspar alteration with epidote centres common. Alteration has a weakly	A 201055	173.43	170.40	3.03	100	1012			·	,
		developed banding, most commonly about 60° but ranging as low as 30° to		├·····					·····	<u>+</u>	<u> </u>	1
		core axis. Weakly mineralized with minor chalcopyrite disseminated specks.							+	† —	<u> </u>	1
		176.48 - 179.53 Grey syenite with many irregular veinlets of white milky	A 201056	176.48	179.53	3.05	100	726	12	0.4	< 2	! <
	<u> </u>	quartz and carbonate, also includes areas of fine-grained chlorite and							1			
		patches of foliated chlorite - sericite altered rock (pieces of partly assimilated			· ·							
		other rock type). No sulphides seen. Continuing magnetic.		T								
		water reak apey. No sulphices seen. Concinaing magnetic.										

Page: 8 of 12

1

Lorraine Project Diamond Drill Log DDH: 2001-60

FOOTAGE (metres)		арари области и мааниянияти и поличинализирации и применяния и рофо, на риссо во стор о орносом порти и кланата Такат	SAMPLES				Rec. ASSAYS					
From (m)	To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
	1	179.53 - 182.58 A transitional interval from pink syenite to highly sericite -										
		chlorite altered syenite (?). Several white 'milky' quartz veins disrupt the	A 201057	179.53	182.58	3.05	100	748	13	0.6	2	3
		interval and surround angular fragments of the altered host. Pinkish red /										
		orange k-feldspar alteration also common as patches. Small irregular quartz										
		veinlets carry pyrite and display colliform structures.			·							
		182.58 - 185.62 Highly altered (sericite and chlorite) rock with numerous	A 201058	182.58	185.62	3,04	100	298	11	< .3	< 2	< 2
		patches of orangish-red k-feldspar alteration cut by irregular veins of milky	A 201056	162.36	103.02	3,04		230				
	+······	quartz much of core has a very fine grained blotchy appearance due to										
		variable intensity of alteration. Light green colour in places as above run.				+ +						
		Bright orange k-feldspar alteration envelopes 1-2 cm surround 102 mm										
		quartz veins and carry minor cubic pyrite, oriented at 45° to core axis. Non-			• · ·							
		magnetic.										
		185.62 - 188.67 Grey syenite with almost continuous patches of orange	A 201059	185.62	188.67	3.05	100	517	20	0,4	3	5
		k-feldspar alteration, most of run is medium to coarse grained and carries										
		20% fairly coarse (6-8 mm) books of biotite. Most of run is disrupted by low										
		angle (about 10° to core axis) and 45° to core axis quartz veins. Mostly										
		white milky quartz with weak colliform structures and later stage clear										
		quartz filling centres. They range from 1 mm to 1 cm is size. Minor cubic				[
		pyrite associated with veins.										
·		188.67 - 189.77 Pink syenite as above, increasing mafic / chlorite	A 201060	188.67	191.72	3.05	100	873	103	1.4	2	
		alteration with depth.	A 201000	100.07	191.12	0.00		0.0	100		=	
								i				
189.77	194.27	MAFIC-RICH SYENITE - increases in mafic-biotite (chlorite content is gradual										· •
		but is enough to push balance of this syenitic interval into mafic-rich										
		melanocratic syenite. Most of this gradual change takes place in this run	_ .			·						<u> </u>
		(from 188.67 to 191.72). The mafic rich portion also shows an increase in										
		alteration and more chlorite \pm epidote on fracture surfaces. Also an										
		apparent decrease in grain size (?) as textures become obscured by										
		alteration. Contact between potassic altered (orange k-feldspar alteration										
	-	envelopes at 0° to 45° to core axis) rock and the host is more apparent,										
	1	along with associated pyrite.							· · · ·			
		189.77 - 191.72 As above, quartz veinlets common, mostly in the range of	"		·							
		30° to 45° to core axis.										
		191.72 - 194.27 As above but becoming more mafic rich and more altered	A 201061	191.72	194.27	2.55	100	1764	102	1.9	5	1
		(chlorite-sericite) textures obscure / destroyed by bottom of interval.									-	
		Includes a 20 cm patch of intensely chlorite altered biotite pyroxenite.							L <u> </u>			
		Numerous irregular quartz veinlets, a 6-8 mm quartz vein at 45°, patchy			_				ļ			
		orange k-feldspar plus pyrite alteration plus weak epidote alteration noted at				+		l				
		contact with pyroxenite below. Between 194.27 and the EOH at 234.39 is				++						
		an alternating sequence of narrow bands of biotite pyroxenite and syenite.			- · · · ·	┼──── {						
		4						<u> </u>	 .			
				· · ·		┼───┤		ł				
	+					+			+			

Lorraine Project Diamond Drill Log DDH: 2001-60

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 9 of 12

Ì.

1

÷.

FOOTA	SE (metres)			SAMPI			Rec.			ASSAYS		
From (m)	Το (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
194.27	197.18	BIOTITE PYROXENITE - Biotite-rich (40-60%) moderate but pervasive chlorite alteration of pyroxene. Biotite (alteration) increases toward bottom of interval.										
		No sulphides seen.	A 201062	194.27	197.18	2.91	100	86	3	< .3	7	< 2
197.18	204.61	MELANOCRATIC SYENITE - a mafic rich syenite with locally well developed syenite migmatite. Fairly high content of fine-grained biotite along with magnetite form patches and streaks of migmatite, generally at steep angles 70-90° to core axis. Orange k-feldspar alteration becomes very pronounced										
		with depth. 197.18 - 200.04 As described above, moderately well mineralized with disseminated chalcopyrite in syenite fraction, migmatitic fraction includes disseminated pyrite with chalcopyrite.	A 201063	197.18	200.04	2.86	100	3343	52	2.2	3	8
		200.04 - 204.61 As described above. Migmatite decreases with depth through the interval, there only being patches left after 201.50. Amount of orange k-feldspar alteration increases gradually with depth and is dominant after 201.50. Run is moderately well mineralized with chalcopyrite (in range of 0.5 to 1.5%) but becomes patchy in the lower half of run. A 1 cm wide magnetite vein (75° to core axis) at 203.66 carries blebs of bornite and chalcopyrite. Also, some disseminated blebs of both in host syenite. Traces specular hematite and bornite elsewhere.	A 201064	200.04	204.61	4.57	100	1333	23	0.9	< 2	7
204.61	207.31	BIOTITE PYROXENITE - showing pervasive moderate to intense chlorite										
		alteration except between 205.20 to 205.70 where it has been subjected to intense chlorite-sericite-carbonate and pyrite alteration. 204.61 - 205.20 As described above, no sulphides noted.	A 201065	204.61	205.20	0.59	100	27	< 2	<.3	8	<2
		205.20 - 205.70 Intensely altered biotite pyroxenite, almost unrecognizable except for some 15-20% random large biotite flakes. Interval is a multitude of 30°, 45° and 70° carbonate veinlets. Grey colour due to intense sericite-carbonate-pyrite alteration of feldspars, along with chlorite alteration of pyroxene. Contains 1-2% pyrite. An orange-colored k-feldspar patch is at the bottom of the interval.	A 201066	205.20	205.70	0.50	100	47	54	0.5	9	< 2
		205.70 - 207.31 Biotite pyroxenite as described above between 204.61 - 205.20 pervasive and intense chlorite alteration. Minor pyrite noted.	A 201067	205.70	207.31	1 <u>.61</u>	100	44	< 2	< .3	7	< 2
207.31	208.55	MELANOCRATIC SYENITE - mafic (biotite) rich syenite with a weakly developed migmatitic foliation.										
		207.31 - 208.59 Biotite-rich (fine-grained) syenite with a dark, fairly indistinct appearance. Very similar to much of the weakly developed syenite	A 201068	207.31	208.59	1.28	100	576	7	0.4	6	10

Page: 10 of 12

ł

Lorraine Project Diamond Drill Log DDH: 2001-60

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Righter States and the State	erang un sin un memor	nan ananan kanan kanan kanan salah kanan kanan kanan ang salah kanan kanan kanan kanan kanan kanan kanan kanan		CAR		9101 PART 101	0		1949955112 - March 19	ASSAYS	na se se no tra Al 201	and the second second
FOOTAG	E (metres) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	SAMPL From (m)	LES To(m)	Metres	Rec. %	Cu (ppm)	Au (ppb)	ASSATS Ag (ppm)	Pt (ppb)	Pd (ppb)
		migmatite describe higher in the section. Has a slight purplish-pink tinge to grey colour. Minor to locally 1% disseminated chalcopyrite through upper part of interval, dies out toward the bottom where there are sericite- carbonate-altered patches of pyroxenite, and irregular quartz-carbonate veining.										
208.59	210.01	BIOTITE PYROXENITE - as described above. Intense chlorite alteration of pyroxene along with a large patch (12 cm) of coarse tan-coloured k-feldspar. 208.59 - 210.01 Biotite pyroxenite as above, but toward the bottom of interval (last 50 cm) it is sericite (± carbonate) altered and has a grey colour, similar to 205.20 to 205.70 above, although not as intense. Probably due in part to higher original feldspar content in this section of pyroxenite.	A 201069	208.59	210.01	1.42	100	24	< 2	< .3	6	2
210.01	218.65	MELANOCRATIC SYENITE MIGMATITE - mafic-rich with variable, weak to strongly developed migmatite texture at 80-90° to core axis. 210.01 - 213.06 As described above, syenite with fine grained biotite migmatite cut by irregular milky white quartz veinlets to 5 mm at low angles, generally less than 30° to core axis. Mineralized with 1% disseminated blebs of chalcopyrite and variable 0.5 to 2.0% cubic pyrite. 213.06 - 216.10 As above, but with many small patches of intensely chlorite altered pyroxenite (also carbonate rich). Migmatitic fabric not present through most of run. Core quite broken with chlorite-sericite	A 201070		213.06		100	1501 			4	6 2
		common on fracture surfaces. Mineralized with fine disseminated chalcopyrite and pyrite through syenite migmatite sections locally reach 1% continued patches of pyroxenite carry minor blebs of chalcopyrite and pyrite. 216.10 - 218.65 As described above mineralized with disseminated chalcopyrite to 1% with minor bornite, pyrite locally to 2% but patchy. Interval becomes coarser grained toward bottom of run.	A 201072	216.10	218.65	2.55	100	741	46	0.8	2	4
218.65	219.68	BIOTITE PYROXENITE (218.65 - 219.68) - showing intense pervasive chlorite alteration. Below 219.00 it is cut by many 1-3 cm wide coarse- grained syenitic 'veins' between 45-90° to core axis which show weak to moderate sericitic alteration.	A 201073	218.65	219.68	1.03	100	213	6	0.3	2	2
219.68	223.63	MESOCRATIC SYENITE - with sections of weakly developed syenite migmatite and a 24 cm section of potassic feldspar biotite pyroxenite. 219.68 - 222.20 As above, with several sections of migmatite at 80° to core axis. Mineralized with disseminated chalcopyrite to locally 1%, average 0.25 to 0.5% minor pyrite. Pyroxenitic section between 221.52 to 221.76 is unmineralized.	A 201074	219.68	222.20	2.52	100	1005	16	0.5	<2	2

1

ł

Lorraine Project Diamond Drill Log DDH: 2001-60

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

			COMPANY SOLUTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESC			110 (F12) 110 (F13)		SPERIOR STREET	DATE ADDRESS STREET	ASSAYS		4.1.1.11
FOOTA From (m)	GE (metres) To (m)		Sample #	SAMP From (m)	LES To(m)	Metres	Rec. %	Cu (ppm)	Au (ppb)	ASSATS Ag (ppm)	Pt (ppb)	Pd (ppb)
		222.20 - 223.63 As above. Mineralized with up to 1% chalcopyrite but average is closer to 0.5% with minor bornite.	A 201075	222.20	224.81	2.61	100	699	35	< .3	3	4
223.63	224.81	MELANOCRATIC MAFIC-RICH SYENITE - a transitional unit to pyroxenite below. Includes several short sections of pyroxenite and mafic rich syenite. 223.63 - 224.81 As above, coarse grained, chlorite and epidote alteration patches. Section of pyroxenite is very biotite rich (65%). Moderate chlorite alteration, no sulphides seen. Magnetic.										
224.81	225.25	BIOTITE PYROXENITE - showing pervasive and intense chlorite alteration. 224.81 - 225.25 As above, minor disseminated blebs of chalcopyrite.	A 201076	224.81	225.25	0.44	100	153	8	< .3	3	2
225.25	227.02	MESOCRATIC SYENITE - identical to syenite above between 219.68 to 223.63. Initial 30 cm and lower 20 cm are coarse-grained, minor epidote. 225.25 - 227.02 As above, mineralized with disseminated small blebs of chalcopyrite to 1% and tiny specks of bornite to 0.25 - 0.5%, bornite is usually associated with larger blebs of chalcopyrite. Magnetic.	A 201077	225.25	227.02	2 1.77	100	1063	32	0.9	3	5
227.02	228.37	BIOTITE PYROXENITE - showing intense and pervasive chlorite alteration of pyroxene. Magnetic. 227.02 - 228.09 Biotite pyroxenite as described above. No sulphides seen. 228.09 - 228.37 Potassium feldspar biotite pyroxenite, gradational between pyroxenite above and the syenite below.	A 201078 A 201079	227.02	228.37		100	152 754	<2 74			
228.37	229.00	MESOCRATIC SYENITE - coarse-grained greyish-pink syenite (a coarse- grained analogue of the syenite above). 1-2% blebs of magnetite. Contains a few small patches of disaggregated, chlorite altered pyroxenite. Sericite alteration of feldspars in weakly developed alteration envelopes along 45° fractures (to core axis). Fractures are coated with carbonate.										
229.00	233.50	POTASSIUM-FELDSPAR BIOTITE PYROXENITE - showing moderate to intense, pervasive chlorite alteration. 229.00 - 229.94 Biotite pyroxenite with 30-40% irregular masses of k-feldspar. Moderate to intense chlorite alteration of pyroxenes. 229.94 - 231.34 Potassium-feldspar biotite pyroxenite as above but with increase in k-feldspar to 65%. Most of which is as oikocrysts of k-feldspar to 1 cm. Some variation in colour between grey and pink oikocrysts, but no zoning apparent. Some carbonate coated fractures at 45° to core axis.	A 201080	229.00	231.34	1 2.34	100	121	3			

Page: 12 of 12

1

Lorraine Project Diamond Drill Log DDH: 2001-60

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

FOOTA	GE (metres)	LITHOLOGICAL DESCRIPTION		SAMPL	.ES		Rec.			ASSAYS		
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	P <u>d (ppb)</u>
······		231.34 - 233.50 As above, but with a few patches to 3-4 cm of coarse- grained k-feldspar. Intense chlorite alteration plus a few specks of epidote alteration.	A 201081	231.34	233.50	2.16	100	13	4	< .3	5	
233.50	234.39	MELANOCRATIC SYENITE (233.50 - 234.39) - greenish grey syenite with chlorite-sericite alteration giving a green tinge to colour. Medium-grained with more green sericite alteration (pervasive-moderately strong) than seen	A 201082	233.50	234.39	0.89	100	926	13	0.7	2	
234.39		before in this hole. Several percent fine grained magnetite. Trace pyrite.										
234.39		END OF HOLE.										

					Ľ	ast	, I 1 11	e1d 0 - 1	. Ке 525 на	SO1	11C St.,	es Vanc	Lt ouve	:d. er BC	F V6C	11¢ 127	≩ # S⊔	A. bmit	102 ted b	955 y: Ja	ıy ₩.	Pa Pag	ge e	1										
SAMPLE#	Mo ppm	Cu ppm			Ag ppm				Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %												Pt** ppb		
C 117151 C 117152 C 117153 C 117153 C 117154 C 117155	3 1 3	2314 2111 2822 2098 1874	8 3 5	67 54 59	1.3 1.0 1.9 1.6 1.1	11 8	7 5	547 392 445	1.91 1.59 1.24 1.56 1.49	2 2 2	<8 <8 <8 <8 <8	<2 <2 <2	2 2 3	73 75 131	.2 .5 .2	<3 <3 <3	থ্য থ্য থ্য	85 73 90	.53 .88 1.05	.094 .077 .070 .086 .068	7 9 9	35 30 32	.77 .53 .53	87 59 70	.18 .15 .14	<3 <3 5	.84 .83 .83	.04 .04 .05	.51 .33 .31	3	145 57	4 4 3 <2 4	5 5 4 6	4
C 117156 C 117157 C 117158 C 117159 C 117160	2 3 5	2068 2797 4046 2401 3110	<3 4 4	54 60	1.1 2.5 2.3 1.0 1.3	6		359 322 141	1.34 1.25 1.57 .81 .78	2 3 2	<8 <8 <8 <8 <8	<2 <2 <2	3 5 2	83 100 153	.3 .4 .2	≺3 ≺3 ≺3	<3 3 <3	70 60 32	.90 .67 .23	.080 .087 .155 .026 .100	10 16 9	24 33 41	.53 .45 .11	249 96 165	.15 .11 .12	3 5 <3	.68 .29	.06 .04 .04	.34 .39 .28	2 2 3 2 2 2 2	73 164 62	4 5 4 2 3	6 7 6 3 4	:
RE C 117160 RRE C 117160 C 117161 C 117162 C 117163	5 3 3	3090 3007 2299 2318 2268	4 3 3	29 27 44 28 41		45546	5	145 291 197	.77 .75 1.08 .82 1.81	3 <2 <2	<8 <8 <8 <8 <8	<2 <2 <2	3 2 3	76	.3 <.2 <.2	≺उ ≺उ ≺उ	ব্য ব্য ব্য	32 58 34	.41 .42 .39	.101 .114 .071 .028 .086	12 10 12	33 38 36	.14 .51 .11	320 191 100	.10 .16 .07	3	.31 .32 .60 .36 .52	.05 .05 .04	.32 .51 .28	2 2 2 2 2 2 2 2 2	62 43 34	<2 2 5 3 2	4 3 4 4 4	
C 117164 C 117165 C 117166 C 117167 C 117168	15 11 2	4144 10399 17024 9198 3601	5 3 4	53 149 114	1.9 4.5 18.7 8.0 2.5	11 9	5 10 10	361 686 642	1.07 1.48 3.53 3.42 4.42	9 15 3	<8	<2 <2 <2	4 5 3	39	.4 1.5 .4	3 21 <3	<3 7 4	42 166 169	.31 .48 1.03	.065 .097 .122 .132 .130	17 23 12	28 38 35	.23 .33 .59	77 65 73	.01 .06 .14	<3 <3 <3	.58 .84 .96	.02 .03 .04	.22 .28 .25	<2 <2	65 222 669 562 184	2 3 7 4 4	2 4 8 5	
C 117169 C 117170 C 117171 C 117172 RE C 117172	2 2 1	2943 2381 2071 1538 1535	6 6 5	120 172 103	1.6	10 10 10	10 16 10	683 790 734	3.78 3.57 4.28 3.60 3.59	9 3 4	<8 <8	<2 <2 <2	10 3 4	123 1 33 144	<.2 2.8 <.2	<3 <3 <3	<3 <3 <3	184 210 161	1.66 1.86 1.96	.098 .294 .115 .178 .177	24 10 15	29 28 27	.67 .74 .69	53 53	.11 .15 .14	3 3 <3		.05 .05 .06	.26 .38 .29	4 3 5 3 4	133 80	3 5 5 5 4	4 5 5 5 4	
RRE C 117172 C 117173 C 117174 C 117175 C 117176	2 3 2	1451 3687 2337 2438 2699	8 5 7	112 119	.9 3.1 1.9 2.0 1.6	9 8	9 11	761 1020 927	3.51 2.76 3.18 3.31 3.32	8 6 3	<8 <8 <8 <8 <8	<2 <2	7 5 5	154 195 153	.2 .3 .2	ও ও ও	ব ব ব	128 150 173	2.00 2.68 2.16	.164 .262 .219 .150 .080	26 21 16	30 30 30	.78 .84 .75	55 116 66	.12 .12 .13	ব্য ব্য	1.02 1.04 .97	.05 .05 .06	.36 .50 .42	4 3 4 4 4	164 77	3 2 5 7 2	3 4 5 6 3	
C 117177 C 117178 C 117179 C 117180 STANDARD C3/FA-10R	4	5947 3207 4118 274 68	4 14 6	104 77 60	2.4 3.5 <.3	6 13 3	7 11 11	673 757 668	2.86 3.34 3.16	2 <2 3	<8 <8	<2 <2 <2	3 2 3	105 180 562	.4 .3 <.2	ব্য ব্য ব্য	<3 3 <3	150 148 120	1.41 2.07 1.87	.153	8 13 12	33 34 26	.31 .59 .77	57 116 553	.12 .12 .13	5 4 5	.53 .75 1.10	.04	.22 .46 .77	3 2 2	2	4 2 6 2 484	5 2 8 <2 500	
UPPI ASS: - Si	ER LI AY RE Ample		5 OGM AG, IDED COR	42 ISAM AU, FOR E R1	<.3 PLE L HG, ROCK 50 60	8 EACH W = AND	4 ED W 100 I CORE AU	533 ITH 3 PPM; SAMP ** PT	2.01 ML 2 MO, C LES I ** PD	<2 -2-2 0, 0 F CU	<8 HCL D, S PB	<2 - HNO B, B ZN A 3B	3 3-H2 I, T S > BY F	70 0 AT H, U 1%, IRE	<.2 95 c & B AG >	<3 EG. = 2, 30 P	<3 C FO 000 PM &	40 R ON PPM;	.64 E HOU CU, > 100	.094 IR, DI PB, Z	8 LUTE N, N	76 D TO I, M	.61 10 N, A	222 ML .	.15 ANAL	<3 YSED	.91 BY I	.07	.45 Es.	4		-)

Page 2

ACHE ANALYTICAL

ACHE ANALYTICAL	1																																
SAMPLE#								Mn ppm					Th S pprnpp						Ca %		La ppm			Ва ррп				Na %				Pt** ppb	
C 117181 C 117182 C 117183 C 117183 C 117184 C 117185	2 3 3	3609 4432 9843 8182 2602	<3 9 8	124 122 79	2.7 7.1 6.1	15 11	11 10 8	520 657 638 420 832	3.96 3.29 2.30	4 4 3	<8 <8	<2 <2 <2	2 12 2 8 3 7 2 11 2 17	3 71 0	.7 .3 .9	<3 <3 <3	<3 : ⊲ : ⊲3 :	239 200 114	.61 .69 .67	.074	7 8 10	35 31 37	.53 .50 .44	64 94	.21 .19 .17	<3 3 <3	.67 .57	.05 .06 .05	.55 .50 .49	4 5 3	80 94 514 344 99	<2 2 5 3 <2	<2 7
C 117186 C 117187 C 117188 C 117188 C 117189 C 117190	3 3 2		6 6 <3	105 159 99	2.3	8 12 12	10 15 13	732 661 886 761 1019	3.29 5.23 3.96	5 5 4	<8 <8 <8	<2 <2	2 15 5 10 5 11 3 8 4 12	1 4 < 4		<3 <3 <3	<3 4 1 5 1	178 302 224	1.20 1.42 .79	.113 .180 .203 .148 .189	18 20 14	37 45 36	.51 .55 .71	67 51 82	.15 .15 .19	3 <3 <3	1.04 .75 .87 .86 1.05	.05 .05 .05	.43 .33 .63	4 5 5	192 66 109 150 72	2	<2 3
RE C 117190 RRE C 117190 C 117191 C 117192 C 117193	2 3 7	3248 3172 5448 3389 1885	6 7 7	138 120 92	2.5	13 13 11	15 15 12	1026 993 994 624 375	4.75 4.77 3.09	3 3 3	<8 <8 <8		3 12 4 12 3 15 2 18 2 16	6 4 7	.6 .7	<3 <3 <3	<3 3 3	261 261 157	1.89 1.65 1.39	.188 .185 .145 .123 .072	16 13 14	40 43 32	.94 1.03 .72	63 115 202	.16 .19 .16	<उ <उ <उ		.05 .05 .05	.41 .64 .60	5 4) 3	91 75 79 107 43	_	.4 3 2
C 117194 C 117195 C 117196 C 117197 C 117198	5 12 5	1935 4594 5562 1685 5669	<3 5 3	101 87 108	2.2	12 24	16 27 17	462 769 506 706 631	2.98 5.01 4.61	<2 2 3	<8 <8 <8			2 1 6	.6 .9 .4	<3 <3 <3	<3 <3 4	136 197 233	1.65 1.18 1.35	.093 .105	7 8 8	39 52 44	1.95 3.02 2.05	181 106 163 110 180	.27 .42 .33	3 <3 7	1.69	.10 .13 .09	1.24 2.17 1.48	4 7 4 3 4		<2	2 4
C 117199 C 117200 C 117201 C 117202 RE C 117202	5 3 3	2799 2913 2715 1728 1691	8 9 9	123 74 71	1.2	11	29 10 10	677 914 470 496 485	4.06 2.51 2.30	<2 2 <2	<8 <8 <8	<2 <2	2 22 3 15 3 14 3 18 3 17	3 1 10	.6 .2	<3 <3 <3	<3 <3 <3	197 119 102	1.72 .92 .90	.115 .106 .076 .098 .096	7 8 8	53 37	2.93 .56 .76	85 95	.37 .16	3 <3 3	1.59 2.27 .77 .99 .95	.08 .07 .08	2.14 .54 .67	4 2 7 3	55 82		5
RRE C 117202 C 117203 C 117204 C 117205 C 117206	3 3 5	1687 653 394 443 520	3 5 5	67 34 57	.4	3	6 3 6		2.21	<2 <2 <2	<8 <8 <8		3 17 2 23 2 25 2 32 2 44	1 < 0 < 3	.2 .2	<3 <3 <3	<3 <3 <3	97 48 94	1.08 .84 1.04		8 5 7	33	.45		.15	<3 <3	.85 .53	.07 .06 .09	.37 .50	2 3 7 2 0 3	18 18	2 <2 2	3 2 2
C 117207 C 117276 C 117277 C 117278 C 117278 C 117279	6 5 4	488 121 200	15 <3 4	92 125 96	.4 <.3 .3	22 38 67	32 48 30	1761	5.78 7.75 3.31	4 <2 5	<8 <8 <8	<2 <2	2 43 2 35 2 31 2 25 2 30	i0 2 < 7	.4 .2 .9	<3 <3 <3	<3 4 <3	206 279 113	6.67 3.55 3.88	.344	17 28 14	43 55 133	1.79 3.17 2.88	1270 1615 566	.15 .08 .16	<3 <3 <3	1.72 2.67 2.33	.04 .05 .05	.75 1.90 1.38	555) 534	17 19 7 9 3	2 7 <2	6 7
STANDARD C3/FA-10R	26												19 3 3 6																		486	472	478

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data___FA

Page 3

SAMPLE#	Mo ppm							Mn ppm					Th pprng		Cd ppm	-	Bi pprnp		Ca %		La ppm				Ti %						Au** ppb		
	<u> </u>		•••	•••												<u> </u>	<u></u>															_	23
C 117280		568			<.3				3.92											.283												9	
C 117281	2	37	3	- 7	<.3	2	1	165	.58	2	<8	<2	2	51	<.2	<3	<3	23	.48	.004	2	48	.02	193	.01	<u>ح</u>	.16	.07	.13	- 3	16	<2	<2
c 117301	8	61	<3	76	<.3	6	8	545	2.98	4	<8	<2	8 2	267	<.2	<3	31	33	1.86	.244	25	26	.25	36	.05	<3	2.44	.81	.24	- 4	2	6	2
C 117302	3	179	5	93	<.3	7	9	779	3.46	<2	<8	<2	32	228	<.2	<3	<31	68	1.17	.122	12	40	.36	66	.10	<3	1.36	.38	.37	4	11	2	- 4
C 117303	3	721	<3	180	<.3	9	17	1371	5.66	4	<8	<2	83	319	<.2	<3	<32	87	1.50	.201	23	38	.54	80	.11	7	1.25	.21	.44	<2	281	8	11
c 117304	6	678	5	115	.5	6	12	1110	4.73	2	<8	~2	4 3	\$25	~ >	a	~7 2	47	1 68	.115	13	र 5	37	44	11	5	2.03	56	32	4	58	2	2
c 117305	<1								2.78																	-					20	<2	2
c 117306									5.53				12 3							.330											122		7
C 117307		097							5.21											.262											175	7	ż
			-																												336	3	8
C 117308	4 1	803	(143	.9		11	1041	4.01	<2	<8	<2	0	175	.2	<3	<5 1	87	1.30	.119	10	57	.22	42	.10	د	1.12	. 34	+ 4 1	4	220	د	0
C 11 7309		873							3.28																								9
C 117310	2	693	18	156	<.3	10	15	1054	5.87	2	<8	<2	12 '	169													.88					- 3	3
RE C 117310	2	686	18	156	.5	10	16	1048	5.83				12 '							.365							.86	.05	.46	4		5	3
RRE C 117310	<1	679	22	160	.3	11	16	1083	6.08	- 4	<8	<2	13	174	<.2	<3	43	53	2.39	.382	35	33	.75	60	.09	7	. 89	.05	.47	4	11	2	3
C 117311	3	618	6	96	.4	6	8	740	2.16	2	8	<2	4	170	.5	<3	<3	91	1.97	.121	12	33	.54	162	.06	<3	.63	.04	.38	3	17	3	2
: 117312	1	174	5	225	<.3	15	23	2052	8.85	3	<8	<2	14	182	<.2	<3	<3 4	94	3.87	.400	42	25	.91	117	.08	13	1.11	.05	.33	<2	23	10	14
C 117313									11.95											.383											8	3	2
C 117314		128							10.81	7	<8	0	13	177	< 2	~₹	<3.6	88	2.12	.392	39	26	56	38	10	13	.98	.06	.27	<2	10	<2	5
c 117315	2								9.98											.594											3		7
c 117316	4	85	-						7.54											.468											<2	3	3
c 117317	2	90	-7	201	. 7	10	77	1771	12.49	20	-0	~2	12.	204		-7	4 0	15	7 07	1.076	07	22		27	07	•	1.15	06	10	~2	3	5	5
C 117318	-																						.44								2	5	5
	2		-				-		12.41											.653											6	<2	ž
C 117319	4								15.43											.226											-	3	د 9
C 117320	2								14.87											.293											2	-	4
C 117321	3	38	<3	233	<.3	23	32	1625	15.16	5	<8	<2	1	154	<.2	<5	<58	57	1.40	.204	21	24	.48	27	.14	11	.92	.05	.17	<2	10	2	4
117322	1	59	4	319	<.3	23	26	1463	12.19	<2	<8	<2	2	149	<.2	<3	<3 6	646	1.27	.053	7		.69								6	2	2
RE C 117322	2	60	<3	320	<.3	22	26	1473	12.07	<2	8	<2	2	148	<.2	<3	<3 6	538	1.26	.053	7	22	.68	32	.19	14	.99	.05	.29	<2	4	3	- 3
RRE C 117322	4								12.14											.055		23								<2	<2	3	2
C 117323	5	71							1.15													21	.85	39	.07	3	1.10	.06	.35	4	<2	<2	3
c 117324	. 9	586							2.90											.136				266	.08	<3	.84	.06	.56	2	10	4	11
c 117325	1	338	10	<i>1</i> ,5	. 7	12	7	<u>/57</u>	1.96	~7	22	~2	,	157		~7	~7	70	1 21	067	7	37	61	130	N7	5	.47	AD	30	- z	5	τ	2
C 117326	1								5.37	_		_	4							.254											372	.	11
																																- 4	14
C 117327	_								4.46											.246							1.19				120	-	28
C 117328	-	645							4.04											.242											449	8	
C 117329	11 4	578	12	158	4.4	11	12	91 0	4.11	4	<8	<2	5	166	.6	<3	<3 2	:02	1.95	.265	22	43	.54	110	.10	5	.73	.05	. 58	4	586	9	20
STANDARD C3/FA-10R	26	67	34	166	5.9	37			3.40																							465	493
STANDARD G-2	2	4	<3	41	<.3	8	4	551	2.03	<2	<8	<2	3	71	<.2	<3	<3	39	.66	.095	7	82	.63	228	. 15	3	.93	.07	.47	3	-	-	-

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_____FA

Data /... FA

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th S	r Co	l Sł	b Bi	V	Ca	Р	La	Cr	Mg	Ba	Тi	В	AL	Na	κ	W	Au**	Pt**	Pd**	
	ppm	ppm	ppm	ррт	ppm	ppm	ppm	ррт	%	ррт	ppm	ppm	ррт рр	m ppr	і ррп	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ррп	%	%	%	ppm	ppb	ppb	ppb	
C 117330	7	166	8	75	~ 7	50	10	799	3 85	2	<8	~2	5 17	7 6		< 3	130	1 37	165	13	132	1 60	174	21	6 1	1 47	07	1.21	2	5	र	2	
c 117331	-	133	-										4 22																2	7	<2	<2	
C 117332	-	153	-								_		3 26			_									-				2	Ś	3	7	
C 117333	-	85											3 21																~2	õ	<2	ż	
C 117334	-	74	•										3 21			_									_					ś	7	8	
	د ا	14	5	04	1.5		10	101	4./J	2	10	~6	5 21	0			201	1.72	. 107		45	1.12	641	• • •	<u>ل</u> ،	1.10	.00	.01	12		5	Ŭ	
C 117335	4	393	<3	60	<.3	15	14	685	4.62	<2	<8	<2	3 22	9 <.2	<	<3	225	2.32	.245	12	70	.84	183	.13	<3	1.02	.05	.68	<2	7	4	7	
C 117336	4	557	15	89	3.2	21	19	848	4.96	<2	<8	<2	3 19	4.!	i <	i <3	224	2.39	.179	10	63	1.58	197	.22	3 '	1.53	.06	1.15	2	121	3	6	
C 117337	3	250	3	62	<.3	14	17	841	5.67	<2	8	<2	3 17	4 <.;	<	<3	282	2.19	. 192	10	49	1.55	190	.22	4 [•]	1.42	.06	1.12	<2	36	2	8	
C 117338	4	599	- 7	- 73	1.0	22	26	1106	6.69	<2	<8	<2	2 33	8.4	< <	- ≺3	300	4.41	.176	10	71	1.56	159	.16	<3 ^	1.25	.05	.94	<2	131	<2	10	
C 117339	5	454	5	57	<.3	12	14	747	4.24	<2	<8	<2	2 18	9 <.:	2 <	i <3	181	2.56	.177	11	41	1.21	161	.17	<3 ´	1.18	.05	.78	<2	33	3	5	
C 117340	9	148	6	76	<.3	11	14	867	4.15	<2	<8	<2	3 21	5.	s <3	্ৰ	163	3.01	. 128	8	35	1.28	145	. 15	<3	1.28	. 04	.91	2	23	3	7	
c 117341			_									-	3 14		-	_				_					_				_		3	<2	
c 117342		38											2 19																		7	28	
c 117343	4	300											2 20																2	7	2	11	
C 117344	2	84											3 40																2	<2	2	10	
RE C 117344	र	81	6	56	< 3	13	12	643	4 13	~2	<8	~2	3 39	0 < 3) <i>e</i>	< ~ 3	197	1 64	189	12	43	95	104	15	<3 '	1 41	12	70	<2	2	2	11	
RRE C 117344	4 -		-								-	_	3 38		-																<2	8	
C 117345	-	143	-			. –				-	-	-	2 38					•••••													3	10	
c 117346	-	178	•								-	-	2 53					- +							-				- Z	3	3	9	
C 117347		190											3 37																3	4	6	12	
÷			-	- •						-		-		_ •		-									-				_		5		
C 117348	2	126	4	90	<.3	20	21	1140	5.22	<2	8	<2	2 37	3 <.:	2 <	S <3	230	3.25	.269	14	61	1.55	227	.16	<3 '	1.79	.14	.77	2	5	6	19	
STANDARD C3/FA-10R	26	66	37	167	5.9	- 38	11	792	3.44	54	19	3	20 3	0 23.9	2 15	5 23	83	.60	.092	20	172	.65	156	.10	17 1	1.95	.04	. 16	19	490	478	479	
STANDARD G-2	2	4	- 4	- 44	.3	9	4	550	2.04	<2	<8	<2	47	2 <	2 <3	5 <3	43	.68	.099	8	83	.65	235	.15	4	.96	.07	.48	3	-	-	-	

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Construction for the second process of th	L LAB Accre	1	e nan beran nanan jada anan a	.)		£10		SEO Rei	CHE BOU	MI rc	CAI 98	, A Lt	NA d.	S F	IS ile	CI e ŧ	RT A	IFI 103	iA 1 CAT 069 by:	:e)	Pa . Pa	ıqe		(604	4)25	3-:	3158	FA	<u>č (6</u>	ſ	¹³⁻¹	716	
SAMPLE#	Mo ppm		Pb Zn pm ppm		Ni ppm		Mn ppm	Fe %										Ca %		La ppm				Ti %	B ppm		Na %	К %			Pt** ppb		
C 117001 C 117002 C 117003 C 117004 C 117005	3 2	641 199 121	12 82 14 94 11 106 4 100 3 69	1.4 .5 1.0	12 14 8	17 19 8	681 3 837 4 918 4 507 2 595 2	4.08 4.40 2.77	4 <2 <2	<8 <8 <8	<2 <2 <2	3 1 3 1 2 1	46 46 44	.4 .4 .4	ও ও ও	4 ; <3 ; <3 ;	224 226 146	.69 .65 .26	.170 .155 .025	10 10 6	24 22 25	.77 .82 .20	177 196 259	.14 .14 .07	<3 1 6 <3	.03 .94 .47	.06 .05	.66 .63 .66 .38 .86	_		4 <2 <2 4 2	5 4 4 3 3	Å
C 117006 C 117007 C 117008 C 117009 C 117010	2 1 2 1	241 22 652	7 70 6 78 3 79 <3 79 19 72	.5 <.3 <.3	53 110 124	24 34 36	902 3 862 4 922 4	3.67 4.32 4.57	2 <2 3	<8 <8 <8	<2 <2 <2	2 2 2 1 2 1	210 174 < 176	.3 :.2 .2	ও ও ও	<3 <3 <3	33 39 39	-64 -12 -48	.170 .127 .144	11 9 10	125 261 296	1.68 2.80 3.03	181 262 328	.19 .27 .25	ও 1 ব্য 2 ব্য 2	1.48 2.01 2.10	.06 .06	1.18 1.94 2.06	2 3 2 2 3	50 94 2 20 195	3 4 6 7 3	6 7 2 2 3	· · · · · · · · · · · · · · · · · · ·
RE C 117010 RRE C 117010 C 117011 C 117012 C 117013	2 8 1 15 <1 15	446 410 631	19 71 21 71 11 157 10 125 10 112	5.8 10.0 11.5	13 18 16	14 36 17	476 2 901 0 726 3	2.44 6.23 3.77	3 3 2	<8 <8 <8	<2 <2 <2	2 1 8 4	105 95 1 80 1	8. 8.	ও ও ও	3 6 4	117 1 140 2 211 1	.02 .23 .36	.207 .558 .247	11 43 15	16 16 19	.67 .62 .58	73 60 69	.16 .06 .14	<3 <3 4	.79 .73 .68	.05 .04 .04	.62	3 7 6	192 202 364 1114 778	<2 <2 <2 7 7	3 3 4 11 7	200
C 117014 C 117015 C 117016 C 117017 C 117018	2 6 1 6 2 6 1 7 2 4	706 881 364	4 82 3 87 8 87 3 81 4 96	3.7 5.0 4.4	10 8 9	14 14 12	312 2 222 2 382 2	2.54 2.67 2.35	90 95 24	<8 8 8	<2 <2 <2	4 1 5 1 4 1	44 84 48 1	.7 .9 .0	ও ও ও	<3 ' <3 ' 4	34 03 94	.44 .63 .92	.159 .244 .147	9 14 8	14 17 17	.49 .42 .51	61 67 230	.08 .06 .10	<3 <3 4	.76 .77 .79	.03 .03 .04	.49 .61	3 4 4	249 313 215 139 152	4 <2 <2 <2 2	3 2 3 3 3	01 - 48 -
C 117019 C 117020 C 117021 C 117022 RE C 117022	2 9 3 4 4 9 1 9 2 8	688 669 269	8 112 <3 101 7 103 6 124 8 121	2.9 9.1 7.2	6 9 11	12 14 19	573 ² 680 2 747 2	1.60 2.26 2.81	4 13 26	<8 9 <8	<2 <2 <2	3 1 4 1 3 1	98 73 1 38 1	.8 .5 .3	<3 <3 <3	ଏ ଏ ଏ	05 2 12 1 57 1	.27 .89 .12	.134	11 9 8	17 16 15	.56 .54 1.26	176 115 90	.08 .07 .19	3 1 <3 <3 1	.04 .85 .28	.03 .03 .04	.49 .62	4 4	235 247 339 707 704	<2 3 2 <2 4	3 5 3 4	
RRE C 117022 C 117023 C 117024 C 117025 C 117026	27	098 996 945	<3 120 6 171 13 87 15 143 22 121	4.4 5.2 4.7	8 13 61	20 18 40 1	759 2 665 2 1358 8	2.83 2.76 8.78	6 5	<8 <8 <8	<2 <2 <2	2 1 3 1 4 2	21 1 97 205 1	.4 .7 .1	⊲3 ⊲3 ⊲3	ଏ : ଏ : ଏ :	68 1 47 1 13 1	.06 .73 .85	.111	7 12 9	19 25 110	.85 .75 2.02	112 163 238	.16 .12 .36	<3 1 <3 1 4 1	1.16 1.02	.04 .04 .07	.84 .53	4 3	667 173 214 259 505	2 2 4 9 8	3 4 4 22 9	
C 117027 C 117028 C 117029 STANDARD DS3/FA-10R	25	274 147	6 128 6 107 9 93 34 157	6.6 3.6	14 10	11 9	532 2 526 2	2.84	3 3	<8 <8	<2 <2	31 <21	10 1 32	.2 .6	<3 <3	4 [·] 6 [·]	64 26 1	.90 .07	.085	6 6	21 17	.40 .42	87 75	.14 .10	3 <3	.67	.05	.37 .43	3 2	277 519 98 486	5 7 3 491	5 7 3 481	
UPPi ASSJ - Sj	JP 1D - ER LIMI AY RECO AMPLE T Dles be	TS - / MMENDI YPE:	AG, AU, ED FOR CORE R1	, HG, ROCK 150 60	W = ' And ()C	100 F CORE AU	PPM; I SAMPI	40, C LES I ** PD	0, CC F CU ** GR	PB 2 ROUP	, BI In As 3b e	:, T⊨ S > 1 BY FI	I, U 1%, A 188 A	& B IG > ISSAY	= 2, 30 p & A	000 PM	PPM; AU SIS	CU, > 10 BY I	PB, 00 PP CP-ES	ZN, B . (3	NI, Ogm	MN, A D	IS, V	', LA	, CR	= 10	0,000	PPM.					
DATE RECEIVED	SEP	7 20	01 D.	ATE	REP	ORT	MAI	LED	Ş	Sep	ot	19	/0	ſS	IGN	ED	вч.	/) :.	h.		- D.	точ	E, C	.LEOI	NG, J	. WA	NG; (CERTI	• I E D	8.C.	ASSAI	'ERS	

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data L FA

ł

ACME A

C 117059

STANDARD DS3/FA-10R

]	Eas	stf	iel	d R	esc	our	ce	s I	Ltd	•	F	IL	E #	A1	.030	69				<u></u>			Pag	ge	2	`			
SAMPLE#	Mo ppm				Ag ppm			Mn ppm							Cd ppm				Ca %		La ppm			Ba ppm	Ti % į		Al %	Na %			Au** (ppb			r
C 117030 C 117031 C 117032 C 117033 C 117034	1 2 2 2 1	3315 3014 2565 3568 3647	11 8 7	86 58 72	2.1	11 7 9	9 7 9	498 419 690	2.45 1.63 2.05	2 3 20	<8 <8 <8	<2 <2 <2	<2 <2 <2	138 146 213	.4 .4 .6	<3 <3 <3	<3 <3 4	133 72 89	.88 1.05 1.58	.071	5 5 8	30 20 24	.54 .56 .43 .45 .62	87 212 123	.13 .10 .07	5 <3 <3	.72 .77 .60 .63 .75	.04 .04 .04	.40 .44 .46 .42 .60	<2	123 82 57 145 45	2 <2 3 4 6	4 3 5 19	
C 117035 C 117036 C 117037 C 117038 C 117039	1	3829 4036 3623 5015 5992	5 9 4	81 64 57		10	9 6 4	1164 674 413 272 425	1.71	6 3 4	<8 <8	<2 <2 <2	2 2 3	162 115	.4 .3	থ থ থ	<3 <3 <3	126 97 44	1.34 .87	.056 .054	8 7 11	51 34 30	.46 .30	96 89 107	.10 .08 .04	<3 <3	1.33 .63 .43 .32 .46	.03 .04 .04	.44	3 <2 2	128 89 125 110 19 8	<2 4 2 2 2 2 2	7 3 2 5 <2	
C 117040 RE C 117040 RRE C 117040 C 117041 C 117042	2 2 1	4098 4121 4077 3292 4048	5 4 7	100 103 124	1.9 1.7	10 11 11	12 13 17		3.72	3 2 3	<8 <8	<2	2 2 2	103 108	.7	<3 <3 <3	4 <3 5	158 159 183	1.24 1.25 1.25 1.26 1.26 1.24	.051 .054 .107	5 6 6	29 19 16	.97 1.00 1.31	114 123 114	. 17 . 18 . 24	4 <3 <3	-89 -90 -95 1.18 -91	.04 .05 .06	.86 .91 1.14	3	110 112 102 74 108	<2 2 5 2 2	3 3 3 4 4	- 2001
C 117043 C 117044 C 117045 C 117046 C 117047	1 1 2 3	4222 2212 457 871 888	14	65	1.0 .8 .5	7	14 7 7	634 743 472 412 280	3.10 2.19	4 2 2	<8 <8	<2 <2 <2	3 4 2	106	.8 .2 .2	⊲ ⊲ ⊲	3 <3 <3	155 104 126	1.11 1.29 .99 .94 .59	.091 .076 .052	5 5 4	19 15 17	.97 .39	113 346 104	.18 .08 .10	6 <3	.93 .97 .54 .55 .46	.05 .04 .04	.94 .86 .49 .42 .40	3 4 2 2 2 2	143 86 85 30 16	2 3 <2 2 2	5 3 <2 4 8	48
C 117048 C 117049 C 117050 C 117051 C 117052	13 1 <1 <1 1	496 334 275 1482 1528	4 4 5	35 70	<.3 <.3		4 10 13	497 552 583	.85 1.04 2.72 3.57 1.23	<2 2 3	<8 <8 <8	<2 <2 <2	2 <2 2	102 126 99	<.2 <.2 .4	<3 <3 <3	<3 <3 4	50 136 228	1.34 1.11 .49	.061 .120	3 4 4	24 38 22	.35 .72 1.12	118 89 173	.08 .12 .29	उ उ उ	.33 .42 .85 1.24 .47	.04 .05 .06	.38 .59		8 8 10 37 94	<2 <2 <2 4 <2	<2 <2 3 5 <2	
RE C 117052 RRE C 117052 C 117053 C 117054 C 117055	1 1 1 2	1434 1567 2978 1089 1690	4 6 <3	22 77	<.3	143	6 42 47	198 763 750	1.13 1.20 4.86 4.96 4.78	<2 3 <2	9 <8 <8	<2 <2 <2	2 <2 <2	132 193	<.2 .4 .3	<3 <3	<3 <3 4	50 151 160	.41	.161 .123	4 9 7	21 299 322	.34 3.27 3.30	276 415 408	.12 .37 .34	<3 <3 4	.44 .46 2.24 2.25 2.58	.06 .06 .06	.50 2.38 2.41		90 91 107 13 52	4 <2 9 11 14	2 2 23 6 15	
C 117056 C 117057 C 117058	1 1 1	999 2460 1646	35	110 128	1.0	103 148	42 39	979 1026	5.60 5.38 4.75	3 2	<8	<2 <2	<2 <2	138 56	.9 .9	<3 <3	<3 3	224 209	1.54 .86	.274 .229 .182	14 8	254 343	3.04 3.30	755 522	.28 .42	<3 5	2.32 2.36 2.52	.06 .06	2.45 2.63	3 3 2	51	7 7 14	9 14 14	

1 10167 9 192 9.6 92 31 541 4.00 2 <8 <2 <2 94 4.2 <3 4 136 .92 .210 9 137 .64 149 .11 4 .57 .06 .49

9 121 37 153 <.3 37 12 808 3.12 31 <8 <2 3 27 5.8 4 8 77 .53 .093 17 195 .59 151 .09 <3 1.71 .04 .17 6 496 480 496

2 423

5 10

Data ^LFA

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Page 3

Data_____FA

ACME ANALYTICAL																																ACME /	ANALYTICAL	ι
SAMPLE#	Mo				-			Mn		As												Cr	Mg		Ti	_		Na				Pt**		
C 117060 C 117061 C 117062 C 117063 C 117064		11558 1686	9 6 8 <3	301 101 95 66	1.4 4.4 <.3	76 99 115 103	61 47 53	ppm 1542 823 800 677 758	8.48 6.73 6.30 5.40	<2 <2 <2	<8 <8 <8 <8	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2	186 188 141 138	4.1 .5 .8 <.2	ব ব ব ব ব ব ব ব	<3 <3 <3 <3	482 271 265 183	2.46 1.75 1.71	2 .376 .349 .335 .274 .281	20 20 19 14	239 235 262	3.64 2.74 3.11 2.76	952 1034 787	.08 .17 .12	5 <3 <3 3	3.11 1.94 2.38 1.94	.08 .08 .06	2.93 1.91 2.38 2.05	2 3 3 <2 <2	378 53 134 7 3	ppb 6 15 5 13 9	19 36 37 8 3	
C 117065 C 117066 C 117067 C 117068 RE C 117068	1	1810 186 1518 177	4 <3 <3 <3	95 81 82 72	1.1 <.3 .9 <.3	19 62 59 55	25 39 41 33	897 797	3.94 6.38 6.42 5.79	4 2 3 <2	<8 <8 <8 <8	<2 <2 <2 <2 <2	2 <2 <2 <2 <2	574 139 252 146	.2 .2 .5	ও ও ও ও	<3 <3 <3 <3 <3	146 275 265 237	1.90 1.84 3.35 1.80	.246 .338 .271 .287	12 17 16 13	23 166 151 124	1.39 1.92 2.47 1.60	1762 385 735 461	.13 .09 .11 .14	<3 <3 <3 <3	1.29 1.43 1.78	.07 .06 .06 .06	.69 1.41 1.86 1.09	3 2 2 2 2 2 2	69 11 10 8 7	4 9 8 12 7	12 20 21 8 5	2001-4
RRE C 117068 C 117069 C 117070 C 117071 C 117101	1 3 2 1 8	2301 52 390	-7 <3	47 65 72	1.6	41 62 58	25 31 36	779 560 677 730 467	2.80 5.15 6.37	4 2 <2		<2 <2	<2 <2 <2	219 82 158	.2 <.2 <.2	<3 <3 <3	<3 <3 <3	102 191 264	1.73 1.12 1.14	.286 .290 .140 .217 .172	14 6 9	110 186 127	1.65 1.52 1.55	446 398 228 297 723	.18 .22 .21	থ থ থ	1.39 1.11 1.18	.07 .06 .05	1.24 1.06 1.17	2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 110 4 6 6	5 9 9 3 2	4 23 6 5_	
C 117102 C 117103 C 117104 C 117105 C 117106	3 1 <1 2 2	426 24 121	3 5 12	69 99 79	<.3	74 56 31	35 49 20	800 841 1191 700 1221	5.29 7.90 4.01	2 <2 5	<8	<2 <2	<2 <2 <2	151	<.2 .4 .2	<3 <3 <3	3 <3 <3	210 330 163	2.24 3.27 2.24	.361 .296 .418 .292 .373	13 21 14	152 105 79	1.87 2.64 .91	582 1840 376	.14 .07 .12	<3 <3 <3	1.45	.06 .07 .20	1.35 1.63 .61	2 2 3 3 3	7 10 3 6	4 5 2 <2	13 3 4 3 3	
C 117107 C 117108 C 117109 C 117110 C 117111	2 1 1 2 1		13	71 72	2.1 2.0 1.0 .9 .9	8 7 8 6 6	8	596 523 652 647 427	2.05 2.84 2.07	4 3 2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	3	88 131	.5 .3 .3	<3 <3 <3	<3 <3 <3	108 163 114	.92 1.31 1.26 1.63 .99	.264	17 13 13		.48 .56 .70 .66 .53	93 73 63	.12 .13 .13 .12 .13	<3 <3 <3	.65 .76 .78 .77 .68	.05 .05 .04	.30 .42 .43 .30 .34	2 2 2 2 2 2 2 2 2	84 384 178 74 53	<2 5 2 3 <2	ž.	2001
C 117112 RE C 117112 RRE C 117112 C 117113 C 117114	2 3 3 2 2	954 497		55 54 74	.8 .8 .6 <.3 <.3	-5 7	9 8 11	740 743 722 878 1435	1.67 1.65 2.51	2 2 2 3 7	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 2	121 123 119 157 217	.2 .3 .2	ଏ ସ ସ	<3 <3 <3	68 67 128	2.61 2.54 2.56 2.56 2.40	.059 .057 .116	9 9 8 8 19	23 20	.48 .48 .46 .50 .59	67 64 68	.07 .07 .06 .06 .10	<3 <3	.75 .76 .73 .79 .98	.04 .04	.27 .27 .26 .22 .29	2 3 2 3 3	66 61 64 35 10	2 2 <2 <2 20	2 <2 2 6 5	- 40
C 117115 C 117116 C 117117 C 117118 STANDARD DS3/FA-10R	2 2 2 2 8	296 1229 273	<3 6 <3	72 93	<.3 <.3 .5 <.3 .3	6 8 9	10 13 15	1140 678 794 931 807	2.75 3.74 4.31	2 <2 2	<8 <8 <8	<2 <2 <2 <2 <2 <2 <2	4 4 6	291 173 165	<.2 .2 .2	ও ও ও	<3 <3 <3	143 203 220	1.44 1.53 1.69	.196	9 10 13	23 21	.46 .24 .62 .51 .59	69 86 80	.08 .06 .12 .11 .09	ব্য ব্য ব্য		.04 .05 .06	.25 .22 .41 .29 .17	3 <2 2 2 6	13 4 51 7 484	<2 <2 <2 <2 480	4 <2 8 3 478	

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 4

ACME ANALYTICAL																																	ACME ANAL	TICAL
SAMPLE#					•	Ni ppm		Mn ppm		As ppm									Ca %		La ppm		•			_		Na %			Au** ppb			
C 117119 C 117120 C 117121 C 117122 C 117123	1	286 467 850 4169 778	3 7 7	133 133 58	<.3 <.3 2.4	10 11 6	20 18 10	1558 1284	5.99 5.54 2.69	3 4 6	<8 12 <8	<2 <2 <2	4 6 8	145 165 136	.3 .3 .4	ও ও ও	ব্য ব্য ব্য	283 254 129	3.30 2.76 2.95	.232 .207 .433 .362 .135	15 25 30	23 22 23	.74 .50 .43	76 58 67	.03 .05 .02	<3 1 <3 3	.12 .97 .74	.03 .05 .04	.28 .27 .26	2 4 4 2 2	2 33 36 447 52	5 <2 <2 5 4	6 4 2 20 5	A
C 117124 C 117125 C 117126 C 117127 C 117128	2 3 2	751 237 919 454 469	5 9 10	64 45 48	.3 <.3 <.3 <.3 <.3	6 4 5	10 9 10	501 594	3.24 2.33 2.17	<2 <2 <2	<8 <8 <8	<2 <2 <2	2 <2 <2	213 145 290	2. 2. 2.>	<3 <3 <3	<3 <3 <3	127 87 70	1.85 1.07 1.02 1.92 1.90	.021 .025	6 5 5	24 33 12	.48 .30 .53	77 117 47	.12 .08 .08		.85 .48 .85	.07 .06 .05	.22 .22 .14	2 3 2 2 2 2 2	17 4 68 15 4	2 <2 5 3 <2	<2 2 4 <2	
C 117129 C 117130 RE C 117130 RRE C 117130 C 117131	4	513 420 435 438 539	3 6 4	26 26 27	.6 <.3 <.3 <.3 <.3	4 4	6	613 625 630	1.16 1.19 1.18	<2 <2 <2	<8 <8 <8	<2 <2 <2	3 3 2	520 531 545	.2 .2 .2	<3 <3 <3	ব্য ব্য ব্য	29 30 28	2.37 2.78 2.84 2.86 2.13	.032 .033 .033	8 8 8	14 10 14	.44 .45 .45	95 98 97	.02 .02 .02	<3	.89 .92 .89	.05 .05 .04	.20 .21 .20	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	56 13 8 11 23	<2 <2 2 2 2	2 2 4 3 <2	-2001-
C 117132 C 117133 C 117134 C 117135 C 117136	2	165 215 136 867 197	9 4 7	55 34 36	 <.3 <.3 <.3 .3 <.3 <.3 	8 4 5	11 7 8	526 382 386	3.36 1.93 2.23	2 <2 <2	<8 <8 <8	<2 <2 <2	3 3 4	173 215 199	.2 <.2 <.2	য ও ও	থ থ থ	143 71 91	1.19 .90 1.14 .89 .87	.059 .042	5 6 4	17 10 19	.49 .37 .41	73 66 66	.15 .09 .09	<3 <3	.76 .70 .68	.07 .06 .06	.29 .22 .30		63 24 15 49 18	3 3 2 2 2 2	<2 3 <2 2 2	49
C 117137 C 117138 C 117139 C 117140 C 117141	2 1 2	304 116 66 669 460	6 3 7	44 49 62	<.3 <.3 <.3 .4 .3	13 11 8	9 8 14	549 562 651	2.62 2.66 3.64	2 <2 <2	<8 <8 <8	<2 <2 <2	2 3 3	180 151 259	<.2 <.2 <.2	<3 <3 <3	<3 <3 <3	91 96 149	1.29 .89 .70 1.21 1.49	.074 .071 .130	8 6 8	40 35 24	.69 .58 .77	47 46 64	.12 .13 .15	<3 1 3 1 3 3 3 1 3 1 3 1	.00 .84 .08	.07 .07 .07	.59 .57 .49	2 2 2 2 2 2 2	14 72 3 38 74	4 <2 6 4 <2	5 4 3 4 6	
C 117142 RE C 117142 RRE C 117142 C 117143 C 117144	3 3 3	345 348 348 170 179	11 10 5	34 33 35	<.3 <.3 .4 <.3 <.3	13 13 14	9 9	444	2.46 2.46 2.51	2 <2 <2	<8 <8 <8	<2 <2 <2	2 2 3	172 172 206	.3 .2 <.2	<3 <3 <3	<3 <3 <3	82 81 92	.89 .90 .88 .93 1.02	.059 .059 .062	7 8 9	34 28 30	.58 .58 .62	50	.13 .12 .14	⊲ ⊲ ⊲	.74 .71 .74	.08 .07 .09	.47	<2 <2 2	96 99 104 19 15	<2 2 3 2 3	<2 <2 <2 2 3	
C 117145 C 117251 C 117252 C 117253 STANDARD DS3/FA-10R	1 <1 1	305 1352 3156 2482 123	4 5 5	80 52 51	.7 1.7 1.3	9 9 9	11 6 7		3.28 1.50 1.31	3 3 <2	<8 <8 <8	<2 <2 <2	2 2 <2	115 50 66	.2 .3 .2	<3 <3 <3	থ্য স থ	185 98 87	.91 .52 .44		12 7 6	48 39 36	.45 .41 .57	56 95	.10 .10 .16	ও ও ও	.81 .47 .63	.05 .04	.28 .32 .54	2 2 3 2 6	16 33 96 50 498	4 3 5 5 479	2 <2	1 22 0 - 1- 0

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA

Eastfield Resources Ltd. FILE # A103069

Page 5

ACME ANALYTICAL	ACHE ANALYTICAL] ^p
SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W Au** Pt** Pd** ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	
C 117254 C 117255 C 117256 C 117257 C 117258	3 3293 6 54 2.1 9 6 390 1.12 3 <8 <2	
C 117259 C 117260 C 117261 C 117262 C 117263	1 4688 4 83 3.2 6 7 492 1.37 3 <8	
C 117264 RE C 117264 RRE C 117264 C 117265 C 117266	2 3835 4 32 2.0 4 5 448 1.20 2 <8 <2	
C 117267 C 117268 C 117269 C 117270 C 117271	1 69 6 5 3 5 1 143 .42 <2	1
C 117272 C 117273 C 117274 RE C 117274 RRE C 117274	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
C 117282 C 117283 C 117284 C 117285 C 117286	3 61 4 12 .3 1 1 169 .54 <2	
C 117351 C 117352 C 117353 C 117354 STANDARD DS3/FA-10R	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data KFA

ACME ANA

ACME ANALYTICAL																														<u></u>		AUME	ANALYTIC	<u> </u>
SAMPLE#		Cu																	Ca %		La						Al X					•t**	_	
	ppm	bbu b	phu b	sbii t	ibili k	yon p	pin	ppiii	~	ppii	hhiii	phia	ppiii	- III-	ppm 1	shiir -	phu	ppiii	4	/6	ppm	ppn	~	ppm	~ ~			~~~~~	~	ppm	ppp	ppb	ppo	
C 117355 C 117356 C 117357 C 117358 C 117359	34 3 3	532 798 526	8 3 3	57 3 61 56 <	.8 .8 .3	3 3 3	6 6 6	521 740 687	.81 .96 .95	3 <2 <2	<8 <8 <8	<2 <2 <2	4 : 2 : 2 :	316 454 425	.5 .3 .2	3 <3 <3	ও ও ও	26 33 34	2.54 3.07 2.30	.048 .059 .028 .058 .242	10 6 10	5 5 10	.39 .53 .57	50 91 87	.02 .03 .03	<3 <3 <3	2.82	.81 1.00 .85	.16 .16 .20	<2 <2		2 11 9 2 10	14 24 35 27 10	4
C 117360 C 117361 C 117362 C 117363 C 117364	2 1	36 89 748	4 4 1	72 < 12 15	.3 .4 .9	33 40 21	38 38 1 25 1	906 079 501	6.75 6.02 5.70	<2 2 5	10 9 8	<2 <2 <2	<2 <2 7	245 220 378	<.2 <.2 .2	<3 <3 <3	<3 <3 3	281 238 319	2.61 2.73 2.52	.315 .351 .372 .405 .152	22 25 38	47 69 39	1.38 2.15 1.18	98 276 203	.11 .13 .11	3 3 <3	1.11 1.42 1.80	.13 .10 .41	.65 1.16 .62	2 2	5 <2 56 99	8 5 3 6	7 5 20 13 9	
RE C 117364 RRE C 117364 C 117365 C 117366 C 117367	4 1 3 1 1	012 060 667 070 409	<3 10 15	75 55	.7 .5 .0	8 4 4	14 7 3	891 414 169	3.02 3.12 1.85 .65 .70	4 2 <2	<8 <8	<2 <2 <2	3 2 3	820 246 96	.3 .3 .4	<3 <3 <3	<3 <3 <3	138 88 26	2.04 .94 .32	.157 .160 .103 .011 .022		13 8 6	.60 .21	193 79 62	.07 .05 .05	<3 3 <3	2.43 1.09 .28		.45 .26 .31	3 2 2	104 91 23 23 6	4 5 2 <2 3	6	20
C 117368 C 117369 C 117370 C 117371 C 117372	3 1 6 5 2 1	811	10 9 7 1	54 1 87 3 60 1	.3 .9 .4	12 21 37	16 16 33 1	622 749 241	3.47 3.26 3.45 7.55 2.49	4 3 7	<8 <8 <8	<2 <2 <2	2 5 6	442 429 587	.4 .5 .2	⊲ ⊲ ⊲	ব্য ব্য ব্য	145 147 361	1.76 2.31 3.04	.227 .277 .372 .565 .451	18 29 40	25 27 69	.56 .64 1.32	272 110 248	.07 .09 .12	3 <3 <3	1.05	.21 .64 .37	.53 .51		46 499	4 3 8 4 4	8 13	01-53-
C 117373 C 117374 C 117375 C 117376 C 117377	75 43 44	010 932 190 168 142	9 41 111	69 3 30 1 75 3	.7 .9 .1	5 6 10	4 81 111	970 528 723	2.66	4 7 5	<8 8	<2 <2 <2	7 10 6	403 322 142	.6 .5 .8	<3 <3 <3	3 4 4	141 175 239	2.64 2.96 2.08	.327 .222 .327 .188 .309	30 45 21	22 16 23	.26 .55 .48	56 45 119	.12 .08 .09	3 <3 <3	1.51 1.20 .83	.16 .06	.33 .37	3 2	55 271 142 160 134	<2 4 3 4 3	7 5 5 5 5	
C 117378 RE C 117378 RRE C 117378 C 117379 C 117380	41		18 2 22 2 10 3	203 1 213 1 209 1	.3 .3 .4	10 8 16	15 1 15 1 29 3	579 649 053	4.84 5.02 9.04	6 5 7	<8 <8 <8	<2 <2 <2	9 9 5	456 481 194	.7 .7 .6	<3 <3 <3	4 <3 <3	305 318 542	2.03 2.13 4.37	.310 .300 .327 .211 .177	31 34 24	19 19 18	.52 .54 1.02	89 88 307	.08 .08 .04	3 <3 <3	1.18 1.23 .98	.28 .29 .05	.60	<2	27	3 <2 <2 2 5	5 3 2 10 5	
C 117381 C 117382 C 117383 C 117384 STANDARD DS3/FA-10R	2 63 31	129	4 1 16 1 6 1	34 ∢ 39 2 41	.3 .4 .5	37 13 10	32 1 15 1 16 1	108 327 298	6.61 3.94 3.16	<2 7 3	<8 <8 <8	<2 <2 <2	3 4 3	259 158 218	<.2 .7 <.2	<3 <3 <3	ব্য ব্য ব্য	339 196 148	1.53 2.22 1.85	.110 .276 .123 .103 .094	17 11 11	51 23 19	1.08 .59 .57	79 160 333	.11 .08 .08	<3 3 <3	.96 .75 .80	.06 .06 .06	.69 .52	4	7 7 103 36 494	3 3 5 3 474	5 <2 17 4 485	¥

Sample type: CORE R150 60C. Samples beginning (RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

ACME ANALYTICAL							<u>.</u>																										ANALYTICA	AL.
SAMPLE#	Mo ppm				Ag ppm				Fe %		U ppm								Ca %		La ppm				⊺i %			Na %			Au** ppb			
C 117385 C 117386 C 117387 C 117388 C 117389	15 5 11 6 12	103 197 40 150 130	5 10 <3	84	<.3 <.3 <.3 .3 .5	6 7 7	9 10 11	769 850 982	5.89 2.32 2.69 2.72 3.54	2 4 4	<8 <8	<2 <2 <2	3 5 6	262 290 288	<.2 .2 <.2	ও ও	<3 <3 <3	100 122 126	1.93 1.47 1.96 1.87 2.74	.122 .146 .152	11 15 15	13 13 15	.49 .47 .61	76 69 62	.07 .07 .07	3 5 3	1.03 1.69 1.65	.06 .16 .36 .47 .73	.35 .30 .38	4 3 5 4 4	7 9 4 10 4	5 3 2 <2 <2	7 2 <2 <2 <2 <2	4
C 117390 C 117391 C 117392 C 117393 C 117394	10 5 7 8 5	161 97 31 356 142	7 11 8	79 41 62	.4	7 4 6		631 385 634	2.78 2.80 1.73 2.42 1.85	4 3 6	<8	<2 <2 <2	3 3 12	246 261 268	<.2 <.2 2.	থ থ থ	<3 <3 <3	147 88 127	1.99 1.50 1.17 2.13 1.32	.123 .040 .244	12 7 29	18 8	.27 .16 .14 .21 .24	42 22 38	.07 .05 .05	4 : 5 : 4 :	2.00 2.18 2.27	.75 .57 .88 .70 .64	.24 .24 .20	4 4 3 4 2	4 2 4 12 7	2 ~2 ~2 ~2 ~2 ~2 ~2 ~5	2 4 <2 8 8	
RE C 117394 RRE C 117394 C 117395 C 117396 C 117397	4 5 9 7 16	139 133 201 127 1002	4 <3 5	53 187	<.3 <.3	5 9	6 20 15	559 1578	4.31	2 5 <2	<8	<2 <2 <2	<2 2 <2	247 133 245	<.2 2. 2.	<3 <3 <3	<3 <3 <3	93 165 234	1.33 1.27 2.37 1.91 1.69	.015 .053 .010	5 8 5	11 15 16	.25 .23 1.23 .63 .72	32 119 40	.06 .11 .11	5 <3 3	1.57 1.43 2.52	.91	.21 .69 .45	4	8 4 7 3 148	3 <2 <2 <2 <2	6 9 5 3 <2	2
C 117398 C 117399 C 117400 C 117401 C 117402	5 6 22	1326 826 1902 4427 4511	5 4 14	111 106 191	1.6	7 8 10	10 10 15	938 873	4.83	5 4 24	<8 9	<2 <2 <2	3 4 3	230 234 147	.3 .4 .7	⊲ ⊲ 5	ব্য ব্য ব্য	195 194 251	2.15 1.70 1.45 1.82 2.31	.106 .124 .120	11 13 13	11 16 16	.32 .26 .62	33 35 92	.08 .07 .08	3 ℃ ℃	1.82 1.65 .99	.62 .55 .08	.26 .25 .51	3 <2	303 183 300 363 244	5 <2 3 5 3	2 (<2 (<2 - 2 (0 0 - - -
C 117403 C 117404 C 117405 C 117406 RE C 117406	4 4 6	2494 2750 9388 15526 15515	8 11 18	162 113 164		9 9 10	13 11 13	1218 779 956	5.54 4.05 4.31	2 5 5	<8 <8 <8 <8 <8	<2 <2 <2	5 9 11	193 121 118	.6 1.3 2.2	ব ব ব	<3 7 8	309 219 230	2.29 1.72 1.35 1.56 1.57	.174 .226 .276	26 23 30	17 17 20	.29 .18 .37	30 38 35	.08 .08 .08	<3 3 <3	1.85 1.39 1.45	.46 .48	.27 .27 .37	4 5 4	74 81 159 275 273	<2 4 3 3	<2 2 5 3 5	
RRE C 117406 C 117407 C 117408 C 117409 C 117410	7 6 3 2 6	15518 687 103 190 109	5 7 7	79 190	10.1 .4 <.3 <.3 <.3	8 11 28	11 18 21	737	3.99	5 4 5	<8	<2 <2	6 11 4	233 160 261	.2 .2 .2	ও ও ও ও ও	3 <3 <3	120 116 162	1.64 1.94 3.35 2.11 1.40	.234 .250 .143	20 28 11	15 15 80	.56 1.36 1.08	134 193 71	.06 .08 .12	ও ও ও	1.56 1.39 1.34	.55 .07 .24	.49 .92 .80	6324 244	271 23 8 5 2	<2 2 3 5 7	6 9 12 17 3	
C 117411 C 117412 C 117413 C 117414 STANDARD DS3/FA-10R	6 5 5 20 9	139 92 88 20 122	6 3 6	118 62	<.3 <.3	13 10	13 15 13	1111 1021 725	3.18	4 5 4	<8 <8 <8 <8 9	<2 <2 <2	8 5 5	301 328 421	<.2 <.2 <.2	থ থ থ	ও ও ও	100 128 127	1.75 1.95 2.13 2.37 .53	.226 .219 .227	22 15 17	16 36 22	.81 .58	88 188 233	.08 .09 .07	ଏ : ସ ସ	1.53 1.41 2.45	.29	.52 .61 .52	3 5 3 4 5	<2 <2 <2 <2 <2 478	6 5 <2 2 481	3 4 4 <2 465	57

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🚣 FA

Page 7

Page 8

																															ACM	E ANALYTIC	AL
SAMPLE#	Mo Cu ppm ppm			-			Mn							Cd ppm				Ca %			Cr		Ba	Ti	В	AL	Na				Pt**		J
			i bhu	Phil	ppin	ppii	Phu		Phu -	hhiii	ppin	hhim	ppa	Phil.	Phil	hhiii	ppii		/0	ppin	ppm	~	ppm	*	pbw.	%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ppm	ppp	ppb	ppb	L
C 117415	3 6	5 6	83	<.3	20	16	685	3 02	7	<8	<2	2	130	< 2	~7	23	107	1 78	.127	Q	107	1 00	57	17	10	1 74	2/	01	-		,	- 3	18
C 117416	7 46	5 <3	36	<.3	8	ίφ.	418	2 52	ž	<8	<2	3	370	< 2	~3	~3	104	2 12	.153	12	21	30	05	- 15		3.25			2	<2 <2	4	<2 c 2 c	70
C 117451	1 3479				10	12	973	2 00	2	<8	~2	2	00	6	~3	- Z	108	86	.109			.30				1.02			-	151	2		
C 117452	2 209		23							<8	~2	3	57	< 2	~3	~7	61	.00	.034	5	40	.14	70	. 1.J 07		.36					3	3	1
C 117453	2 547						574		2	<8	~2	<2	150	5	-7	~3	205	1 22	.119	õ	13					.92		.20	5 2	38 44	9 9	<2 11	Ē
					-		214	2101	-		-6	•		••			205	1.24		7	13	.41	01	• • • •	0	.92	.09	.31	2	44	У	11	
C 117454	2 646	57	59	<.3	7	0	526	3.10	2	<8	0	2	182	< 2	~3	~7	208	1 28	.140	11	14	71	41	10	7	1 00	10	20	7	10		•	
C 117455	2 4147								ž	28	~2	7	112	`.Ľ 7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	117	05	.120	11	20	. 51	50	. 10	10	1.00	. 10	.29	3	•••	11	8	
C 117456	2 1581			.6	Ř	10	580	2.50	2	- 28	~2	~2	1/0	- ' '	~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	142	. 73	.102		10	.43	20	- 11						604	4	8	
C 117457	3 3001				-		488		2	28	~2	5	123		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	120	.70	.110	10	17	.37	14	. 10	2	1.10	. 11	- 24		124	4	4	
C 117458	2 3164						416		7	<8	~2	2	91		~7	-77	07	.73	.125	40	45	.25	40	.07						177	8	13	
0 11/450	2 5104	• • •	.,,	£.0	0	0	410	1.00	4	~0	~~	2	01	.4	13	13	71	.0/	. 125	12	15	.45	92	.15	د	.79	.08	.46	5	135	5	4	
C 117459	2 2432	> 11	102	1 6	٥	12	820	1. 20	7	-9	~2	7	125	2	12	-7	247	0/	.122	40	40	77	70		7	07	~7	70	_				
C 117460	2 2176		35		5	3	235	1 02	-2	~0	~2	2	70	- 2	~7	7	55	.04	07/			.10				.83	.07			276	<2	4	
RE C 117460	1 2148		34		á	ž	226	09	~	-9	2	~~	47		7	-7	54	.23	.033			.09				.35				131	5	2	
RRE C 117460	2 2205		36		3		237												.035							.32			_	140	<2	<2	
C 117461	2 1560		33		6										~7	~~	22	. 23	.035			.10				.35				144	4	<2	
e 117401	2 1500	, ,		.0	0		270	+ • 17	14	10	~2	2	135	.4	5	13	44	. ()	.049	0	17	.20	110	.00	ు	.41	.07	.43	2	91	5	2	λ
C 117462	1 425	3	67	< 3	21	27	899	4 50	2	<8	0	2	254	< 2	~7	~7	18/	1 70	.279	16	70	1 77	27/	17		1 70	04	1 01	2	26		17	· ·
C 117463	2 440						871		7	-8	~	Ē	261	~ 2	~~	7	179	1 95	.247	10	27	70	2/4	12					2		8		Õ
C 117464	2 1016		153		7		794		2	-8	~2	ž	130	~.2	~~~	z	247	1 7/	1/7			.32				.95			4	47	22 4	30	U
C 117465	1 1020	-	145				744		2	-9	~2	7	132	- /	~7	-7	207	1.04	.145			.32			4		.07		4	49		13	
C 117466	2 1159		185		-		1017		<u>ک</u>	28	2	2	108	.,	~~~	~7	223	2 14	.257	15	15	.39	00 E E	.10			.07		4	73	24	34	-
2 111400			102			1.0	1017		5	-0	16	Ū	100	• *	~ 5	-0	534	2.10	.231	15	10	.40	22	. 10	8	.85	.05	.26	<2	71	2		СП
C 117467	3 1299	> 3	166	. 9	10	14	728	5 22	3	<8	<2	8	125	4	~3	~7	3/1	1 4 1	.289	18	16	34	61	10	•	.93	.08	.32	5	72	,	, .	Ŧ
C 117468	1 915	-	192				968					7	118		~~~	~~	785	1 62	.301	19	17	. 34	54	10	11	.73	.00	.32	<2	49	7	4	1
C 117469	2 864									-8	~2	Ś	125		~~~		275	1 36	207	12	10	.37	41	10		.86		.20	4	20	16	8 8	
C 117470	2 1997	6	148	<.3	14	27	972	6 47	10	<8	~2	20	176	.5	~3	~~~	345	3 21	.963	62	10	.40	D4 7.1	- 10	12	1 00	.00	. 29	4	20 66	10	-	
C 117471	2 924		91	.5	8	8	537	2 75	14	-8	2	ž	193	. 2	~~	ž	161	1 26	.145	11	14		41	10	14	1.00		.25	4	47	10	8 19	
•					÷	Ŭ			-	-0		-	105	• •			101				10		07	. 10	7	1.02	.11	.51	4	47	10	13	
C 117472	2 1078	7	72	.9	6	8	446	1.68	2	<8	<2	2	147	2	∠۲	~7	80	1 12	.143	10	17	45	76	10	8	.94	. 09	.35	2	17	-7		
RE C 117472	2 1113		72		-					<8	<2	~2	151	.5	~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	01	1 15	.146	10	14	.45	70	10	~7	. 74	.09	.35	2	43 49	<2 3	6 8	
RRE C 117472	1 1027		68			7	436	1 62	2	<8	<2	2	146	2	23	7	85	1 11	.137	10	17	.40	7/	10		.92			3	49	2	5	
C 117473	2 1522	_	50		Š	6	321	1.26	ō	<8	~2	5	112	5	~~~	-7	65	81	.112	10	17	.45	79	11	9						2	2	
C 117474	1 1808		48		7	6	350	1 38	2	<8	~2	2	124	~ 2	~~~	~~	78	.00	.158	12	15	.35					.08	.39	2	56	2 <2	ć	
					•		550		5	-0	~	6	124	1.6	~	5	10	.77	120	14	12	. 30	00	.07	9	.72	.08	.40	3	58	<2	o	
c 117475	2 2534	. 4	56	1.8	10	7	384	1.57	3	<8	<2	2	111	.4	<3	<3	85	84	.167	12	25	51	115	11	10	.73	.07	52	~	177		5	
C 117476	2 6445		29								<2	Ā	110	.7	~~	4	07	1 75	.797	80	19	11	121	05		.42	.07		2	123 439	17	5 41	
c 117477	2 7728	-	60		5	5	330	1 37	2	<8	~2	2	75	۰- ۶	~~~~	5	44	72	.192	14	1/	25	04	.05	Ż	.42	.07	.40			17	41	ļ
C 117478	1 2977		100		8	ş	837	2 12	ž	~8	~2	7	77	.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7	117	2 34	.242	21	17	.23	70	.00	0	.43	.00	.32		310	47	70	
STANDARD DS3/FA-10R	10 121					12	803	3 02	71	8	~2	7	27	5 5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7	76	2.30	- 242	17	107	.02	1/0	.04	-7	.00	.us	.29	_	232	17		
STANDARD DOJ/TA TOK	1 10 121		175	1.2	50	16		0.00	31	0	14		21	5.5	Q	1	10		.093	17	101	.00	147	.00	5	1.00	.04	. 10	<u> </u>	472	470	4/1	L

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🚣 FA

1

Page 9

ACHE ANALYTICAL																																/	ACME ANAL	YTICAL
SAMPLE#	Mo ppm							Mn ppm							Cd ppm				Ca %		La ppm			Ba ppm								Pt** ppb		
C 117479 C 117480 C 117481 C 117482 C 117483	3 1 2		134 3 5	105 104 138	3.8 .7 1.3	11 8 11	12 11 13	472 883 731 976 1036	3.66 2.32 3.69	3 <2 <2	<8 <8 8	<2 <2 <2	2 2 <2	147 148 132	.9 .3 .3	ব্য ব্য ব্য	<3 <3 <3	213 116 210	2.19 1.13 1.01	.210 .058 .075	16 6 7	17 15 19	.50 .69 .74	247 74 83	.07 .12 .14	6 5		.06 .06 .06	.56 .47 .52	25		<2 3 4 <2 2	4 9 5 6	
C 117484 C 117485 C 117486 C 117487 C 117488	3 1 2		7 <3 <3	122 152 130	3.4 1.5 .5	5 13	11 17 14	730 716 985 848 829	3.56 6.32 4.67	2 2 <2	<8 <8 <8	<2 <2 <2	2 <2 <2	139 374 250	.6 .4 .2	<3 <3 <3	<3 4 <3	198 385 317		.097 .042 .082	8 5 6	13 16 12	.49 .77	84 87 125	. 15 . 17 . 17	6 3 6	.85 .86 .83 .88 1.38	.05 .06 .06	.47 .45 .75	4 5 3 3	106 69 116 86 52	<2 5 4 2 5	3 4 5 3 6	
RE C 117488 RRE C 117488 C 117489 C 117490 C 117491	3 6 5	981 1008 922 1733 660	6 3 7	79 65 88	.6 <.3	45 40 5	22 15 11	827 852 556 794 782	3.75 3.13 3.96	4 3 5	<8 <8 <8	<2 <2 <2	3 <2 <2	180 542 231	.3 .2 .4	<3 <3 <3	<3 <3 <3	160 131 186	1.80 1.14 1.22	.138 .084 .061	12 9 9	87 88 1	1.44 .69 .25	141 88 41	.15 .13 .10	9 ⁻ 5 - 4 -	1.39 1.41 1.88 1.81 .78	.07 .32 .56	.65 .30	' 3 3 4 4 4		2 4 6 4 <2	7 6 3 4 2	2001
C 117492 C 117493 C 117494 C 117495 C 117495	8 2 2	599 836 766 577 647	4 5 7	67 103 90	<.3 <.3	6 6 8	8 10 10	705 565 653 732 613	2.87 3.74 3.07	3 <2 2	<8 <8	<2 <2 <2	<2 <2 <2	462 154 159	.3 .3 .4	⊲ ⊲ ⊲	3 <3 <3	139 194 135	.83 1.38	.080 .027 .060	8 4 6	6 6 11	.24 .36 .47	50 65 151	.09 .12 .10	7 5	1.68	.42 .06 .05	.30 .30 .42	3 4 3 4 3	69 26 36 35 22	4 <2 3 4 2	2 2 6 4 6	- 54
C 117497 C 117498 C 117499 C 117500 RE C 117500	2 6 1	849 358 630 1525 1505	3 5 4	75 62 62	<.3 .3 .3	10	9 8 9	747 623 515 443 442	2.81 2.92 2.35	2 2 <2	<8 <8 <8	<2 <2 <2	2 3 2	390 577 84	.2 .2 .2	<3 <3 <3	ব্য ব্য ব্য	133 150 120	1.28 1.07	.055 .087 .075	6 8 6	22 23 23	.52 .44 .32 .54 .54	90 68 68	.10 .11 .13	7		.12 .25 .06	.39 .39 .54	4 3 4 2 2	27 10 35 45 45	2 3 4 3 <2	4 5 2 ~2 4	
RRE C 117500 C 117501 C 117502 C 117503 C 117504	1 3 2	1453 225 57 1971 4 3 0	5 4 5	39 11 85	<.3 <.3 .9	9 8 8	4 1 11	454 321 122 625 716	1.46 .58 3.10	<2 <2 <2	<8 <8 12	<2 <2 <2	3 3 3	80 22 91	<.2 <.2 .2	থ থ থ	ও ও ও	64 9 189	.53 .15	.021 .003 .101	5 7 7	27 17 20	.29 .07	67 27 83	.09 .01 .13	11	.20	.06 .07 .06	.29 .15 .58		39 10 22 102 32	2 <2 <2 4 <2	2 <2 <2 6 4	
C 117505 C 117551 C 117552 C 117553 STANDARD DS3/FA-10R	2 2 2	555 362 216	3 <3 4	110 28 22	<.3 <.3 <.3	8 3 8	2 1 1	602 271 215 172 840	.68 .53 .53	<2 <2 <2	<8 <8 <8	<2 <2 <2	4 3 3	38 36 59	.5 .4 .3	ও ও ও ও	<3 3 <3	20 18 12	.26 .20	.008 .005 .002	6 6 3	20 11 16	.04 .03 .02	131 133 132	.02 .03 .01	7 9 6	.22	.07 .07 .07	.16 .16	3 8 2 7 4	20 9 2 <2 486	6 <2 2 4 482	<2 <2	- 55

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

ACHE ANALYTICAL

Eastfield Resources Ltd. FILE # A103069

		(Δ
Page	10		Ľ

ACM

ACHE ANALYTICAL	ACME ANA	ALYTICAL
SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W Au** Pt** Pd** ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	
C 117554 C 117555 C 117556 C 117557 C 117558	2 143 6 22 .3 3 1 191 .58 2 <8	
C 117559 C 117560 C 117561 C 117562 C 117563	1 212 4 100 <.3	
C 117564 RE C 117564 RRE C 117564 C 117565 C 117566	1 1070 <3	2
C 117567 C 117568 C 117569 C 117570 C 117571	1 1899 3 85 .7 13 19 775 4.20 <2	บ - ภ
C 117572 C 117573 C 117574 C 117575 C 117576	2 4531 6 73 2.0 6 10 523 3.02 2 <8 <2	
RE C 117576 RRE C 117576 C 117577 C 117578 C 117579	19 1296 4 37 .3 5 7 452 1.90 2 <8	
C 117580 C 117581 C 117582 C 117583 Standard DS3/FA-10R	4 2461 6 124 1.3 7 16 871 4.93 2 8 <2	

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🗡 FA

Page 11

ACME ANALYTICAL									·																							ACM	E ANALYTI	CAL
SAMPLE#	Mo ppm		Pb ppm p												Cd ppm :				Ca %		La ppm				Ti %		Al %					Pt** ppb		
C 117584 C 117585 C 117586 C 117587 C 117588	1 1 2 1 2 2 2 2	309 726 580	4 1 3 <3 1 3	10 49 1 04 1 71 1	.5 .2 .4 .8	11 5 17 11	16 7 16 12	920 440 810	4.80 1.55 4.38 3.19	2 <2 2 2	<8 <8 9 <8	<2 <2 <2 <2 <2	3 2 3 2	139 105 175 140	.4 .3 .4 .3	<3 <3 <3 <3	<3 <3 <3 3	281 77 248 178	.91 1.48 1.00	.190 .167	6 16 11	24 44 32	.43 .81	79 81 136	.09 .12 .11	6	.88 .54 .92 .63 .85	.06 .08 .08	.41 .34 .41 .44	2 <2 2	87 81 137 247	<2 3 5 11 4	3 4 9 12 10	
C 117589 C 117590 C 117591 C 117592 C 117593	2 2 1 2 3 1	166 093 469 819 739	6 3	28 73 1 81	.7 .9 .8	24 45 19	24 16 14	688	6.67 3.03 3.24	3 4 <2	<8 <8 <8	<2 <2 <2	2 5 2	125 78 211	.4 .2 .4	থ থ থ	<3 <3 <3	395 135 157	1.00 1.76 2.14	.156 .146 .293 .149 .172	8 17 9	55 126 40	.95	92 91 192	.16 .14 .11	5 7 5	.84 .91	.07 .07 .06	.72 .63	2 2 2		11 4 12 5 3	18 11 30 9 4	
C 117594 RE C 117594 RRE C 117594 C 117595 C 117596	34 24 12	472 465 526 518 4 3 4	81 91 61	100-3 101-3	5.0 5.3 .8	50 49 13	17 17 20	1086 1085 1091 1261 718	3.61 3.65 5.93	93 106 3	<8 <8 <8	<2 <2 <2	4 4 3	183 183 161	.7 .8 .7	34 40 <3	<3 <3 <3	170 169 342	4.36 4.38 1.75	.293 .294 .293 .183 .375	18 18 16	100 98 23	1.28 1.29 .78	90 89 69	.11 .11 .13	7 6 4	1.03	.07 .07 .08	.59 .60	3 2 <2		3	8	20
C 117597 C 117598 C 117599 C 117600 C 117601	3 13 21	928 54 130 925 668	43	35 1	.3 .5	46 42	1 14	328 179 489 396 648	.54 2.96 2.62	2 2 2	<8 <8 <8		4 3 3	35 82 69	<.2 .2 .2	<3 <3 <3	ব্য ব্য ব্য	18 145 124	.39 1.80 1.21	.056 .006 .207 .115 .140	6 13 8	11 124 131	.03 1.06	46 84 99	.01 .12 .11	8 8	.16 .71 .69	.06 .08 .08		2 <2 <2	5 225 122	<2 18 11	43	\underline{O}
C 117602 C 117603 C 117604 C 117605 C 117606	3 2 4 2 2 3	620 1076	<31	75 1 99 1	1.6 1.3 2.5	6 7	11 11 18	597 628 766 790 652	2.98 3.59 5.02	2 3 2	<8 <8 <8	<2 <2	<2 <2 2	226 331 649	.3 .4 .4	<3 <3 <3	<3 <3 <3	131 174 265	1.82 2.19 1.65	.207	8 8 13	14 8 82	.42	202 171 137	.07 .07 .15	7 5 7	.74 .82	.04 .05 .15	.41 .35 .49	2 2 3	303 265 119 262 331	17 2 3 7 4	58 7 8 18 9	
RE C 117606 RRE C 117606 C 117607 C 117608 C 117609	2 3 4 1	409 368 918 154 924	8 3	81 3 62 74 <	5.1 .9 :.3	9 12 120	10 13 35	644 645 679 814 921	2.86 2.55 4.47	<2 <2 2	<8 <8 9	<2	2 2 2	217 364 234	.2 <.2	<3 <3 3	<3 <3 <3	133 106 123	1.70 1.88 1.37	. 161 . 157 . 159 . 124 . 160	11 12 10	32 38 293	.76 2.65	167 197 196	.06 .08 .20	8 7 6	.70 .86 1.91	.05 .05 .10	.34 .34 .45 1.49 .47	2 2 2	_	<2 7	10 15 7 3 10	
C 117610 C 117611 C 117612 C 117613 STANDARD DS3/FA-10R	74 <1 4	131 160 619	5	24 2 86 < 32 <	2.9 (.3 (.3	16 113 13	17 39 9	997 858 407	4.01 5.66 2.07	3 <2 <2	<8 <8 <8	<2 <2 <2	2 <2 <2	1591 237 1396	.8 .2 .2	<3 <3 <3	<3 4 <3	165 196 75	2.13 1.55 1.60	.153 .134 .212 .068 .095	12 14 5	33 233 26	.97 2.51 .56	219 217 189	.12 .28 .07	4 5 4	1.64 1.86 1.69	.20 .08 .27	23. 51. 1.88 51. .17	4 2 3		2 3 2	7 12 3 6 473	

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data KFA

C 117621

C 117622

C 117623

C 117624

C 117625

C 117626

STANDARD DS3/FA-10R

11 624

5 348

5 388

5 386

1

3

30

6

Eastfield Resources Ltd. FILE # A103069 Page 12 ACHE ANALYTICAL Fe As U Au Th Sr Cd Sb Bi Cu Pb Zn Ag Ni Co Mn P la Cr Mg Ba Ti U Au** D+** Dd** Mo v Са R AL Na ĸ SAMPLE# NON MOD MOD MOD MOD MOD DDM M DOM DOM DOM DOM DOM DOM DOM DOM * % DOM DOM X DDM % DD@ % % dag dag maa % noo C 117614 <1 11 <3 82 <.3 142 44 849 5.71 <2 13 <2 <2 155 <.2 <3 <3 187 1.47 .209 16 306 2.95 442 .29 <3 2.04 .09 2.16</p> 2 8 <2 <2 338 <.2 <3 C 117615 2 10 <3 66 <.3 136 39 732 4.46 <2 4 127 1.07 .157 11 310 2.83 298 .25 5 2.00 .12 2.03 <2 8 64 < 3 143 40 661 4 38 2 <8 <2 <2 191 <.2 <3 4 101 .98 .115 10 354 2.89 188 .21 <3 1.81 .08 1.95 2 C 117616 3 47 1 113 89 <.3 137 39 1051 4.56 <2 <8 2 171 .2 <3 <3 150 2.18 .086 C 117617 6 <2 7 354 3.02 186 .24 5 1.95 .06 1.91 2 2 313 .3 <3 <3 154 2.54 .141 9 23 .57 414 .07 <3 .80 .05 .57 C 117618 7 1205 5 70 .8 12 14 741 3.68 <2 <8 <2 <2 4 221 2.38 .186 11 8 .96 .05 C 117619 5 1093 6 85 <.3 6 16 889 4.51 2 <8 <2 2 469 .2 <3 .73 483 .11 <3 .85 2 7 278 6 74 < 3 5 11 756 3.27 <2 <8 <2 <2 337 <.2 <3 3 151 2.10 .099 8 12 .53 267 .10 <3 .77 .06 .53 2 C 117620 7 280 4 75 < 3 5 11 762 3.30 <2 <8 <2 <2 338 < 2 <3 4 153 2.12 .100 8 11 .54 268 .10 <3 .78 .06 .54 <2 RE C 117620 5 74 <.3 4 11 759 3.41 <2 <8 <2 2 344 .2 <3 <3 158 2.09 .096 2 8 9 .53 264 .10 5 .80 .06 .53 RRE C 117620 7 269

3 82 .4 29 16 863 3.04 <2 <8 <2 <2 529 .3 <3 <3 115 2.21 .091

6 79 <.3 145 41 853 4.67 <2 <8 <2 2 177 <.2 <3 <3 109 1.12 .085

5 87 .3 15 13 751 3.11 <2 <8 <2 <2 339 .2 <3 <3 134 1.53 .055 5 32 .67 365 .12 <3 .83 .07

10 122 37 156 .4 37 12 823 3.18 29 12 <2 4 29 5.7 5 7 80 .55 .095 18 193 .61 157 .09 <3 1.75 .04 .17 6 493 476 483

<2 <8 <2 2 469 .3 <3 <3 131 2.69 .066

6 63 <.3 61 25 919 3.08 <2 <8 <2 3 326 <.2 <3 <3 90 2.56 .114 10 129 1.97 111 .14

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

5 66 <.3 50 19 841 2.63

3 87 1.0 13

15 985 3.64

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACHE ANALYTICAL

daa

<2

2

2

<2

4

5

3

3

4 _

7 1 \mathcal{J}_{1}

3 Э

9

2

3

<2

 \mathcal{N}

S.

 \bigcirc

4

7

7

6

<2

2

2

<2

2

6

<2

3

8

2

3

7

<2

3

2

44

52

13

15

21

21

<2

20

107

2 42

3

2

2 11

.57

4 1.03 .06 .87 2

<3 .76 .07 .62

4 2.05 .06 2.29

5 1.45 .09 1.44

7 76 1.08 420 .12

5 22 .67 433 .08

8 352 3.11 216 .20

2 <8 <2 3 373 <.2 <3 <3 76 2.68 .094 9 123 1.45 207 .14 <3 1.21 .10 1.17 <2

SAMPLE#		Cu ppm			-					As ppm									Ca %		La ppm				Ti %	B ppm		Na %				Pt** ppb	
SI C 117651 C 117652 C 117653 C 117654	2 2	4 726 1926 1187 1767	4	69 30 83	.3 .9 .5	7 5 6	11 5 12	592 154 439	1.85 .94	10 30 29	<8 <8 <8	<2 <2 <2	<2 5 <2	73 129 75	.3 .2 .4	<3 <3 3	ও ও ও	81 33 96	1.20 .22 .90	.065 .074 .094	6 11 6	21 24 19	.61 .11 .24	108 190 101	.06 .02 .02	⊲3 ⊲3 ⊲3	.79 .58 .64	.05 .08 .02	.01 .66 .58 .35 .77	2	15	<2 2 2 2 2 2 2 2 2 2 2 2 2	<2 <2 2 3 2
C 117655 C 117656 C 117657 C 117658 C 117659	1 4 1	2421 2243 1961 2419 2045	5 7 6	67 62 43	1.2 .6 .9	7 6 6	11 18 11	464 383 276	1.92 1.73 1.57	2 2 <2	<8 <8 <8	<2 <2 <2	2 <2 2	110 122 142	.2 .3 <.2	<3 <3 <3	<3 <3 <3	105 83 75	.30 .70 .61	.066 .064 .096	5 7 8	23 18 20	.73 .52 .47	183 162 138	.12 .10 .08	5 <3 <3	1.02 98. 80.	.11 .10 .09	1.43 1.17 .69 .61 .71	2 <2 <2	21	3 <2 2 <2 4	<2 2 2 2 2 2 2 2 2 2 2 2
C 117660 RE C 117660 RRE C 117660 C 117661 C 117662	1 2 1	430 414 418 372 898	8 8	65 66 56	<.3	6 5 5	9 9 9	613 621 506	3.36 3.37 2.80	<2 <2 <2	<8 <8 <8	<2 <2 <2	<2 <2 <2	147 142 149	<.2 <.2 <.2	<3 <3 <3	<3 <3 <3	144 146 116	1.49 1.51 1.34	.107 .110 .135	6 6 6	20 18 20	.76 .77 .57	104 91 100	.12 .12 .12	<3 <3 <3	.89 .85 .80	.11 .09 .12	.60 .58 .52 .61 .95	<2 <2 <2	5 5 9 32	<2 3 4 2	<2 <2 <2 <2 <2 <2
C 117663 C 117664 C 117665 C 117666 C 117667	2 2 8		<3 6 . 11	42 68 35	.3 1.6	5 5 5	7 10 6	333 541 239	2.86 1.11	<2 <2 <2	<8 <8 <8	<2 <2 <2	<2 <2 2	170 162 127	<.2 <.2 .5	<3 <3 <3	<3 <3 <3	86 145 51	.64 .67 .68	.066 .089 .050	5 5 6	9 9 9	.37 .84 .21	238 216 208	.13 .17 .08	4 5 <3	.81 1.18 .50	.14 .15 .07	1.07 .93 1.40 .51 .59	<2 <2 <2	20 12	<2 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2
C 117668 C 117669 C 117670 C 117671 C 117672	1 2 2	6768 1930 2523 7627 5079	5 10 7	56 62 139	1.3 3.3	8 9 21	8 10 26	414 408 745	2.20 2.65 3.69	<2 2 2	<8 <8 <8	<2 <2 <2	2 4 4	229 226 113	_2 _4 .8	<3 <3 <3	े उ उ	117 143 206	.62 .73 1.13	.058 .123 .270	4 6 20	27 24 26	.36 .40 1.92	130 149 124	.10 .10 .16	থ থ থ	.71 .73 1.40	.11 .10 .06	.71 .75 .77 1.77 2.07	<2 2 3	56 96	<2 3 2 3 2	<2 2 2 6 6
RE C 117672 RRE C 117672 C 117673 C 117674 C 117675	4 2 2	4930 5125 6013 3258 430	<3 5 6	146 145 114	2.0 2.6 .9	24 21 32	31 28 22	776 802 760	3.92 4.04	2 3 <2	<8 <8	<2 <2 <2	2 5 2	167 154 163	.7 1.1 .5	ব্য ব্য ব্য	ব্য ব্য ব্য	231 234 174	1.24 1.83 1.00	.224	12 26 10	41 43 89	2.21 1.97 2.10	204 112 162	.22 .12 .24	ব ব ব	1.81 1.45 1.60	.12 .09 .13	2.07 2.12 1.72 1.98 1.00	2 3 <2	68	3 3 <2 4 <2	5 6 7 2 <2
C 117676 C 117677 C 117678 C 117678 C 117679 STANDARD DS3/FA-10R	4 2 2	297	5 4 8	84 73 134	<.3 <.3 2.5	6 6 19	11 11 31	543 481 685	3.27 2.48 3.85	2 <2 <2	<8 <8 <8	<2 <2 <2	<2 2 <2	242 194 140	.2 <.2 1.0	<3 <3 <3	⊲ ⊲ ⊲	161 120 167	1.01 .73 .78	.099 .078 .077	7 5 4	18 13 27	.73 .84 2.57	125 232 209	.14 .16 .28	<3 <3 4	1.09 1.09 1.97	.12 .12 .15	.97 .70 1.14 2.51 .19	2 <2 2	3 21 192	<2 2 <2	<2 <2 3
UPPE ASSA - SA	R LIM Y REC MPLE	- 0.5 HITS - COMMEN TYPE: xeginr	· AG, IDED : COR	AU, FOR E R1	HG, ROCK	W = AND 50C	100 COR A) PPM (E SA (U**	I; MO, MPLES PT**	, CO, S IF PD**	CD, CU P GRO	SB, BZN UP 3	BI, AS B BY	TH, > 1% FIR	U& 5, AG	B = > 3 SAY	2,0 0 PP & AN	00 P M & Alys	PM; (AU > IS BY	U, PI 1000 (ICP (B, ZN PPB -ES.	(30	(, MN gm)	, AS	, v,	LA,	CR =	10,0	-ES. 000 PF ; CER				

.--...

Page 2

ACHE ANALYTICAL	ACHE ANALYTICAL	
SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W Au** Pt** Pd** ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	
C 117680 C 117681 C 117682 C 117683 C 117683	2 2305 5 95 1.0 21 24 535 3.60 2 <8	
C 117685 C 117686 C 117687 C 117688 C 117688 C 117689	11 2905 <3	
C 117690 RE C 117690 RRE C 117690 C 117691 C 117692		20
C 117693 C 117694 C 117695 C 117696 C 117697	1 4042 <3 147 1.9 41 40 991 6.01 <2 <8 <2 <2 167 1.1 <3 <3 282 1.47 .218 10 77 3.20 411 .42 3 2.71 .10 2.42 <2 117 8 16 (4 1563 11 167 <.3 6 25 1063 4.58 <2 <8 <2 <2 189 .4 <3 <3 162 1.31 .093 5 17 1.35 177 .31 5 1.82 .11 1.03 3 19 3 7 - 14 650 4 150 <.3 11 21 987 3.80 4 <8 <2 3 769 .4 <3 <3 160 2.07 .248 14 24 .66 88 .13 3 1.59 .17 .42 2 7 5 5 8 1625 17 115 .9 15 21 936 4.18 3 <8 <2 <2 246 .7 <3 <3 174 1.94 .192 9 36 .86 175 .14 5 1.22 .11 .59 2 62 6 7	21-100
C 117698 C 117699 C 117700 C 117701 C 117702	2 1666 4 98 1.2 60 42 995 7.14 2 <8 <2 <2 286 .7 <3 <3 329 2.18 .355 19 113 2.29 844 .10 <3 1.97 .07 1.56 <2 69 7 19 4 167 4 45 <.3 11 10 490 2.37 2 <8 <2 <2 274 .2 <3 <3 96 1.65 .158 10 42 .65 228 .08 <3 .78 .08 .43 <2 9 2 2 1 457 <3 101 .4 101 48 1138 7.58 3 <8 <2 <2 781 .5 <3 <3 300 3.05 .333 20 233 3.12 980 .09 5 2.35 .08 2.22 <2 15 9 14 <1 500 3 96 <.3 81 42 917 7.30 4 <8 <2 <2 155 .5 <3 <3 286 2.20 .381 19 182 2.23 476 .10 <3 1.65 .06 1.67 <2 8 8 9 1 3963 5 127 2.3 83 51 1065 7.16 <2 <8 <2 <2 127 1.1 <3 <3 288 2.25 .313 20 172 2.57 605 .11 <3 2.04 .06 2.05 <2 54 16 35	
RE C 117702 RRE C 117702 C 117703 C 117704 C 117705	<1 4009 7 126 2.0 84 51 1066 7.13 3 <8 <2 <2 128 .9 <3 <3 <3 289 2.25 .312 20 174 2.57 609 .11 <3 2.05 .06 2.06 <2 50 14 36 <3 <3 84 50 1068 7.27 <2 <8 <2 <2 126 .8 <3 <3 <3 297 2.26 .311 19 177 2.57 615 .12 <3 2.04 .06 2.05 <2 49 9 36 1 164 399 <3 88 43 940 6.50 2 <8 <2 22 126 .311 19 177 2.57 615 .12 <3 2.04 .06 2.05 <2 49 9 36 1 164 399 <3 88 43 940 6.50 2 <8 <2 22 126 .311 19 177 2.57 615 .12 <3 2.04 .06 2.05 <2 49 9 36 1 164 399 <3 88 43 940 6.50 2 8 <2 22 135 .4 <3 <23 243 2.12 .347 17 228 2.58 639 .14 <3 1.92 .05 1.95 <2 4 13 8 104 780 5.71 <2 <8 <2 22 124 .5 <3 <3 23 243 2.12 .347 17 228 2.58 639 .14 <3 1.92 .05 1.95 <2 4 36 .1 .1 .25 .66 .12 .26 .16 .26 .26 .26 .26 .26 .26 .26 .26 .27	
C 117706 C 117707 C 117708 C 117709 STANDARD DS3/FA-10R	<1	Y

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

Page 3

CHE ANAL YTICAL

ACHE ANALTTICAL																																	
SAMPLE#	Mo	Cu			-												Bi ppm pp				a Cr mippon			Ti % I			Na %				Pt** ppb		
C 117710 C 117711 C 117712 C 117713 C 117714	1 (<1 2 (4	6463 61 4424 614 2872	5 <3 5 4	86 ! 87 115 106 ·	5.2 <.3 1.7 <.3	82 54 103 12	47 44 57 17	913 977 1107 806	7.31 9.09 8.53 5.03	<2 <2 2 <2	<8 <8 <8 <8	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2	138 129 133 189	.6 <.2 .7 <.2	<3 <3 <3 <3	<pre><3 31 <3 39 <3 34 <3 24 <3 32</pre>	6 2.3 8 2.1 1 2.3 8 1.0	3.38 4.42 2.25 3.13	31 2 26 1 10 1	2 111 8 89 5 182 5 34	2.33 1.58 3.02 1.55	532 284 429 212	.08 .08 .15 .28	3 <3 <3 3	1.76 1.13 2.28 1.67	.07 .07 .06 .12	1.58 1.02 2.08 1.48	<2 <2 <2 <2 <2 <2	354 4	10 5 10 3 3	31 3 42	
C 117715 C 117716 C 117717 C 117718 C 117719	7 : <1 2 :	3076 3574 920 5042 519	8 <3 6	102 68 82	1.4 .5 3.3	20 75 98	34 37 51	794 ! 731 (782 (5.07 5.39 5.81	<2 <2 <2	<8 <8 <8	<2 <2 <2	<2 <2 <2	188 123 123	.3 .2 .5	ব্য ব্য ব্য	<3 25 <3 19 <3 22 <3 25 <3 30	0 1.6 7 1.8 0 2.1	2 .15 2 .31 3 .32	56 14 1 24 1	8 34 2 209 5 190	2.93	5 249 5 453 5 415	.36 .17 .12	3 4 5		.12 .06 .06	2.23 1.41 1.50	<2 <2 <2	64 43 132	4 6 10 14 3	9 11 10 18 6	
C 117720 RE C 117720 RRE C 117720 C 117721 C 117722	2 ! 1 ! 4	5950 5972 5876 490 858	3 3 6	85 89 58	4.4 4.2 <.3	124 124 6	52 52 16	832	6.61 7.03 3.58	5 4 <2	<8 <8 <8	<2 <2 <2	<2 <2 <2	118 121 485	.8 7. <.2	<3 <3 <3	<3 24 3 24 <3 25 <3 13 <3 39	8 2.1 7 2.2 7 1.5	7.34 8.34 4.19	19 1 17 1 173	17 151 16 159 9 17	1.89 1.94 1.68	236 238 189	.10 .10 .12	<3 <3 4	1.42 1.41 1.31	.06 .06 .17	1.34 1.34 .33	<2 <2 <2	223 226	12 13 12 6 6	24 19 21 7 9	ζ
C 117723 C 117724 C 117725 C 117726 C 117726 C 117727	1 2 <1	1409 3012 2257	8 20 9	68 84 67	.9 1.6 1.2	29 42 71	18 41 47	677 829 693	3.50 5.33 7.70	<2 <2 <2	<8 <8 <8	<2 <2 <2	<2 <2 <2	202 176 155	.2 .2 .2	ও ও ও	<3 39 <3 17 <3 24 <3 32 <3 31	6 1.5 5 1.4 2 2.2	8.14 0.18 4.29	44 37 24 1	6 115 8 60 14 166	2.05	i 185 477 506	.26 .37 .08	<3 4 4	1.68 2.51 1.40	.14 .11 .07	1.70 2.42 1.32	<2 <2 <2	55	10 13	22 31	001-5
C 117728 C 117729 C 117730 C 117731 C 117732	1 <1 2	2778 2885 2993 428 499	11	77 81 58	1.6 1.0 .3	72 71 15	41 45 12	848 885 511	6.53 7.35 3.35	<2 3 <2	<8 <8 <8	<2 <2 <2	<2 <2 <2	145 240 359	.4 .5 .2	থ্য থ্য থ্য	<3 26 <3 23 <3 28 <3 14 <3 11	326 030	3.33 6.38 5.17	35 1 38 1 75 1	15 179 15 140 11 39	2.5	1 404 5 672) 95	.10 .09 .10	5 3 <3	1.51 1.54 .97	.05 .06 .12	1.31 1.26 .29	<2 <2 <2	132 93	19 11		6
RE C 117732 RRE C 117732 C 117733 C 117734 C 117735		524 500 24 21 50	10 <3 4	75 93 66	.5 <.3 <.3	11 36 13	12 29 12	764 1176 848	3.01 5.10 2.80	2 <2 9	<8 <8 <8	<2 <2 <2	<2 2 <2	273 144 588	<.2 <.2 <.2	ও ও ও	<3 12 3 12 <3 21 <3 3 <3 4	24 2.8 12 2.7 15 1.7	7.15 7.29 9.10	58 ^{- 4} 56 - ⁴ 51 - ⁴	12 40 17 98 14 26	91.60 1.60	5 66 5 97 0 138	.08 .16 .09	4 <3 <3	.90 1.23 1.14	.07 .07 .10	.28 .95 .74	<2 2 2	25 <2	<2 6	3 7 <2	
C 117736 C 117737 C 117738 C 117739 STANDARD DS3/FA-10R	2 1 <1	261	5 <3 7	74 45 57	.5 <.3 .4	26 20 41	19 18 32	899 596 1042	3.81 3.57 5.33	3 2 <2	<8 <8 <8	<2 <2 <2	<2 <2 <2	1046 543 328	<.2 <.2 <.2	ও ও ও	<3 12 <3 14 <3 14 <3 22 6 8	02.5 22.3 84.7	3.2' 2.19 7.24	15 ° 96 °	12 59 10 52 16 114	1.30 1.20 2.4	5 480 5 319 5 560	.16 .17 .14	<3 5 <3	1.32 1.11 1.60	.12 .13 .06	.98 .78 1.23	<2 <2 <2	3 12	3 ~2 4 475	2 2 6 11 473	

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA

Eastfield Resources Ltd.

FILE # A103251

Page 4

ACHE ANALYTICAL								<u> </u>	<u> </u>	<u> </u>	<u> </u>																					АСЛІ	ANALYIII	
SAMPLE#	Mo ppm				-	Ni ppm		Mn ppm	Fe %	As ppm	U ppm	-	Th ppm	Sr ppm	Cd ppm j		Bi ppm	V ppm	Ca %	P %		Cr ppm	Mg %	Ba ppm	Ti %	в ррп	Al %		K %		Au** ppb	Pt** ppb		
C 117740	2	373	3	61	.3	38	26	1232	5.04	2	<8	<2	<2	219	.5	<3	<3	195	6.06	.290	13	86	2.43	455	.18	3	1.63	.06	.74	<2	8	2	11	l
C 117741	2	297	3	52	.4	45	23	604	5.23	2	<8	<2	<2	120	.3	<3	<3	225	1.85	.237	13	140	1.88	274	.17	<3	1.19	.08	1.14	<2	16	7	17	"
C 117742	2	199	<3	33	<.3	21	18	450	4.02	<2	<8	<2	<2	298	<.2	<3	<3	167	1.72	.227	11	53	1,02	295	.17	<3	1.07	.12	.58	<2	<2	4	7	
C 117743	2	150	3	37	<.3	21	19	389	3.35	<2	<8	<2	2	133	<.2	<3	<3	128	1.55	.184	9	59	1.22	253	.19	<3	1.36	.12	.70	<2	5	2	5	!
C 117744	4	159	<3	58	<.3	42	18	790	4.11	<2	<8	<2	<2	1239	<.2	<3	<3	150	2.77	.200	12	98	1.53	282	.19	<3	1.40	.11	1.00	<2	4	5	9	
C 117745	3	16	4	61	<.3	59	20	768	4.15	3	<8	<2	<2	231	<.2	<3	<3	140	1.93	.210	11	123	2.06	268	.26	3	1.55	.11	1.32	<2	4	<2	2	
C 117746	3	377	6	54	<.3	21	21	597	4.70	3	<8	<2	<2	186	.3	<3	<3	191	1.89	.217	10	50	1.27	231	.24	<3	1.41	.10	.70	<2	4	2	6	
C 117747	3	154	5	29	<.3	10	11	411	3.78	<2	<8	<2	<2	180	<.2	<3	<3	175	1.70	.172	9	37	.70	109	.14	<3	.93	.13	.38	<2	<2	4	4	70
C 117748	3	533	6	50	<.3	19	19	571	3.99	2	<8	<2	2	464	<.2	<3	<3	169	2.33	.178	9	37	.79	198	.13	<3	1.10	.11	.42	<2	4	6	11	\sim
RE C 117748	3	543	7	49	<.3	19	20	580	4.07	2	<8	<2	2	476	<.2	<3	<3	171	2.36	. 182	9	38	.80	206	.14	<3	1.12	.12	.43	<2	7	4	10	$\dot{\phi}$
RRE C 117748	4	549	10	49	<.3	19	20	580	4.12	2	<8	<2	2	442	<.2	<3	<3	174	2.34	. 185	10	42	.80	195	.14	<3	1.11	.10	.42	<2	6	4	8	1
C 117749	<1	10	3	95	<.3	88	47	882	4.88	3	<8	<2	2	288	<.2	<3	<3	209	2.70	.330	28	155	4.42	1458	.13	- 4	3.12	.09	3.13	<2	<2	4	<u>ع</u> ر	21
C 117750	6	203	6	70	<.3	- 16	13	526	3.57	2	8	<2	2	434	<.2	<3	<3	167	1.47	.176	9	50	.66	220	.13	<3	.86	.11	.45	<2	11	2	•	Ch.
C 117751	1	105	6	94	.3	65	30	925	4.13	<2	<8	<2	2	188	<.2	<3	<3	171	2.25	.291	22	141	3.04	571	.14	<3	1.93	,08	2.09	<2	6	4	12	i
C 117752	3	289	14	54	<.3	12	10	486	2.90	2	<8	<2	2	188	<.2	<3	<3	131	1.23	. 163	9	33	.45	126	.11	5	.57	.11	.41	<2	5	<2	2	ļ
C 117753	2	200	7	81	<.3	10	9	672	3.31	<2	<8	<2	<2	219	<.2	<3	<3	157	1.02	.087	6	29	.40	103	.13	<3	.62	.11	.39	2	15	<2	<2	
C 117754	4	272	10	104	.3	12	11	794	4.77	<2	<8	<2	<2	163	.3	<3	<3	234	.84	.058	- 4	24	.28	92	.13	4	.57	.09	.36	<2	20	<2	3	
C 117755	4	289	6	109	<.3	12	10	726	4.58	<2	<8	<2	<2	160	<.2	<3	<3	209	.79	.044	- 4	39	.24	75	.15	<3	.52	.08	.30	<2	15	<2	3	
C 117756	4	683	15	75	.5	10	8	522	2.95	<2	<8	<2	<2		.3	<3	<3	126	.90	.064	5	25	.24	64	.11	<3	.52	.08	.27	2	56	4	5	ų.
STANDARD DS3/FA-10R	10	126	37	161	<.3	37	13	842	3.25	30	11	<2	5	29	5.7	6	5	80	.56	.096	18	181	.62	162	.09	3	1.81	.04	. 18	- 4	453	461	452	

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

SAMPLE#	Mo ppm	Cu ppm			-			Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm p	Sr pm p	Cd ppm p	Sp Spm p	Bi xpm p	V pm	Ca %	Р %	La ppm	Cr ppm										Pt** ppb	
SI C 117801 C 117802 C 117803 C 117804	2	4 451 2201 3335 746	8 9	1 76 108 147 72	<.3 1.1	8 8	11 10 12 1	810 3 957 2 273 3	3.04 2.74 3.24	3 2 3	<8 <8 <8	<2 <2 <2	<pre><2 2 2 2 4 1 3 2 2 2</pre>	:06 59 :21 1	.4 .6 1.0	<3 <3 <3	<3 1 <3 1 <3 1	28 24 45	1.53 1.54 1.98	.145 .108 .101	11 13 13	27 28 30	.54 .54 .71	90 125 155	.09 .11 .11	<3 3 3	.97 .85 1.03	.09 .08 .09	.36 .33 .40	<2	21 97 67	2 <2 5 3 2	<2 4 6 4 <2
C 117805 C 117806 C 117807 C 117808 C 117808 C 117809	2	293 975 664 1143 1146	5 6 7	96 97	.4 <.3 <.3	8 6 7	13 1 9 9	717 2	2.79 2.64 2.42	2 <2 2	<8 <8 <8	<2 <2 <2	3 3 2 3 4 2 4 1 2 2	10 23 57	.4 .4 .3	<3 <3 <3	<3 1 <3 1 <3 1	10 21 04	2.88 2.27 .98	.064 .121 .097	11 15 14	23 24 24	.53 .36 .36	159 269 143	.10 .08 .09	3 <3 <3	.89 .70 .65	.07 .08 .06	.35 .31	2	27 44	2 3 2 2 5	5 3 2 3 4
C 117810 RE C 117810 RRE C 117810 C 117811 C 117812	3 2 3	8199 8054 8318 5634 8473	5 5 7	107 135	7.0 6.9 2.9	8 8 10	12 12 13 1	966 2 952 2 970 2 169 3 118 2	2.87 2.91 3.32	3 3 3	<8 <8 <8	<2 <2 <2	2 2 2 2 3 2 3 2 3 2 3 2	50 1 46 1 93	1.1 1.0 .7	<3 <3 <3	<3 1 <3 1 <3 1	110 112 156	2.02 2.05 1.59	.115 .117 .117	14 15 13	28 26 34	.73 .74 .85	263 264	.08 .08 .12	उ उ उ	.95 1.21	.06 .05 .07	.64 .61 .52	2 2 2	382 414 400 124 235	5 4 ~2 2 4	3 5 5 4 6
C 117813 C 117814 C 117815 C 117816 C 117817	4 9 2	2738 6276 11149 1461 1488	3 10 <3	126 106 91	3.3 6.4 .4	9 9 9	13 1 12 11	120 3 982 2 930 2	3.58 2.97 2.37	2 <2 2	<8 <8 <8	<2 <2 <2	34 34	41 11 53	.9 .7 .2	ব্য ব্য ব্য	4 1 <3 1 <3 1	160 139 107	1.80 1.56 1.59	.116 .127 .099	15 16 11	29 34 27	.72 .78 .70	200 90 253	.12 .11 .10	<3 3 4	1.39 1.36 1.25	.11 .11 .09	.53 .46 .53	2		3 4 3 4 <2	3 4 6 3 6
C 117818 C 117819 C 117820 C 117821 C 117822	3 3 4	1045 2574 3190 385 249	5 62 3	95 147 62	1.2 3.2 .6	8 9 6	10 9 6	736 2 701 2 554 2	2.03 2.09 1.73	2 <2 <2	<8 <8 <8	<2 <2 <2	2 2 3 1 5 1 3 1 5	85 39 09	.5 1.7 .4	<3 <3 <3	<3 1 <3 1 <3	102 101 70	1.11 1.96 1.48	.105 .107 .085	12 12 8	20 27 29	.51 .36 .29	121 117 82	.10 .06 .05	<3 3 <3	.57 .53	.06 .05 .04	.40 .41	3	27 77 184 117 7	2 4 4 5 2	2 5 3 3 <2
RE C 117822 RRE C 117822 C 117823 C 117824 C 117825	2 2 . 7	257 254 841 5238 1824	<3 4 7	14 100 112	<.3 <.3 2.9	2 8 9	2 13 14	146 981 2 976 3	.45 2.11 3.58	<2 3 <2	<8 <8 <8	<2 <2 <2	5	35 · 20 81	<.2 .2 .6	<3 <3 <3	<3 <3 <3 1	17 96 169	.29 1.56 1.35	.015 .149 .112	4 15 13	37 30 29	.05 .81 .65	78 142 133	.02 .11 .11	3 3 <3	21. 1.08 1.03	.06 .07 .08	.23 .47 .41	<2 2	12 12 25 188 89	<2 2 2 2 2 6	<2 2 7 4 8
C 117826 C 117827 C 117828 C 117829 STANDARD DS3/FA-108	2 4 5	2319 1010 1643 1390 126	3 <3 3	66 90 70	.5 .6 .3	6 8 7	8 13 9	900 a 639 a	2.00 2.92 2.54	<2 <2 <2	<8 <8 <8	<2 <2 <2	24	46 45 79 -	.2 .2 .2	<3 <3 <3	<3 <3 1 <3 1	91 144 132	1.94 1.64 1.60	.057 .090 .131	9 10 14	25 28 25	.37 .64 .39	100 63 67	.08 .10 .09	<3 <3 <3	.56 1.33 1.55	.06 .18 .30	.34 .39 .38	2 2 2	41	3 2 6 2 480	2 2 2 2 474
UPF ASS	DUP 1D PER LIM SAY REC SAMPLE	ITS -	AG, ED F	AU, OR R	HG, I OCK /	J = ' AND (100 F CORE	PPM; P Sampi	MO, C LES I	ю, с Г СU	D, S PB	SB, B ZN A	и, тн s > 1	I, U 1%, J	& B AG >	= 2, 30 F	,000 PPM 8	PPM & AU	; CU,	РВ, 00 рг	ZN, B	NI, I	4N, <i>A</i>							۹.			

Page 2

ACHE ANALYTICAL

Data / FA

																																	TE ANALTI	ICAL
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	Р	La	Cr	Mg	Ba	Ti	В	AL	Na	ĸ	W	Au**	Pt**	Pd**	
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb	ppb	ppb	
C 117830 C 117831 C 117832 C 117833 C 117833 C 117834	4 3 2	1442 1612 1330 2990 3184	5 4 7	94 100 152	.6 .4 1.8	5 9 10	11 11 17	798 717 696 1020 995	3.05 3.61 4.37	<2 <2 <2	<8 <8 <8	<2 <2 <2	2 <2 <2	480 301 587	.3 <.2 .2	<3 <3 <3	<3 <3 <3	151 169 205	1.27 .99 1.31	.109 .038 .106	10 5 10	24 34 32	.44 .33 .78	176 285 168	.10 .11 .14	<3 <3 <3	1.21 .92 1.37	.17 .13 .11	.69 .68 .71	2 <2 2	30 45		<2 2 4 5	
C 117835 C 117836 C 117837 C 117838 C 117839	3 5 4	1035	3 <3 6	60 102 114	.3 1.9 2.1	13 9 10	16 14 15	1106 804 796 750 510	2.70 3.91 4.39	<2 2 2	<8 <8 <8	<2 <2 <2	2 3 3	182 175 605	.2 .4 .2	<3 <3 <3	<3 <3 <3	107 199 230	2.52 1.99 1.46	.176 .176 .211	13 14 17	31 23 28	.93 .54 .46	209 207 172	.11 .09 .12	<3 <3 <3	1.18 .94 1.17	.09 .10 .15	.80 .63 .52	2 2 2	193	5	9 17 4 9 5	
C 117840 RE C 117840 RRE C 117840 C 117841 C 117842	1 2 1	769 794 743 586 972	8 6 4	73 72 38	.4 <.3 <.3	47 44 6	24 23 6	683 702 683 378 308	4.19 4.13 1.49	2 <2 <2	<8 <8 <8	<2 <2 <2	2 2 3	520 520 127	.2 .2 .2>	<3 <3 <3	<3 <3 <3	147 143 50	1.96 1.92 .91	.250 .250 .084	16 16 10	137 131 21	1.43 1.40 .23	170 159 104	.17 .16 .06	3 <3 <3	1.73 1.69 .55	.17 .16 .12	.93 .89 .52	<2 <2 <2	39 43 63	3	8 10 9 6 11	2001-5
C 117843 C 117844 C 117845 C 117846 C 117847	3 <1 1	132 51 188	<3 3 <3	50 68 81	<.3 <.3 <.3	14 126 108	11 39 35	740 512 771 868 468	2.64 5.04 4.64	3 <2 3	<8 <8 <8	<2 <2 <2	3 <2 2	423 156 207	<.2 <.2 .2	<3 <3 <3	<3 <3 <3	98 124 130	1.52 1.27 1.69	.209 .171 .207	13 13 16	37 315 246	.55 2.85 2.46	142 286 208	.08 .23 .21	4 3 6	1.12 1.83 1.67	.20 .10 .10	.43 1.87 1.63	<2 <2 <2		<2	14 6 2 4 5	· · · ·
C 117848 C 117849 C 117850 C 117851 C 117852	<1	60 16 12	5 <3 <3	69 51 55	<.3 <.3 <.3	145 69 59	42 29 27	972 5 943 4 845 5 928 5 1297 4	4.71 3.23 3.66	<2 4 4	<8 <8 <8	<2 <2 <2	2 2 2	190 436 229	<.2 <.2 <.2	<3 <3 <3	<3 <3 3	109 98 117	1.78 1.84 2.59	.084 .102 .114	8 8 11	352 156 144	3.35 2.22 2.23	311 211 201	. 19 . 15 . 17	8 9 7	1.92	.10 .24 .17	1.84 1.63 1.67	<2 <2 <2	68 39 <2 <2 6	8	-	
STANDARD DS3/FA-10R	9	120	36	152	<.3	36	12	827	3.13	31	9	<2	4	28	5.4	6	6	76	.53	.093	17	181	.59	162	.09	3	1.70	.04	.17	4	480	467	468	

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

					1	las													103 tted					1									
SAMPLE#	1	Cu ppm			_														Ca %	P %	La ppm		-		Ti X			Na %				Pt** ppb	
GI 117853 117854 117855 117856	5 9 7	<1 7179 4771 3078 1619	28 22 12	518 411 345	8.4 5.6 4.0	9 7 6	21 16 14	1991 2027 2086	5.20 3.23 2.71	12 6 4	<8 <8 <8	<2 <2 <2	16 8 5	194 169 148	5.6 4.7 2.6	ও ও ও	3 3 <3	324 155 131	3.94	.653 .303 .217	58 29 21	20 12 18	.87 .99 1.10	46 39 45	.08 .08 .11	6 <3 <3	1.20	.08 .05 .05	.20 .26	8	<2 16 27 36 10	<2 2 2 2 3 2 2 3 2	<2 <2 <2 2 2 <2
2 117857 2 117858 2 117859 2 117860 2 117861	4 6 5	3540	18 16 29	174 224 181	.9 2.6 2.5	5 8 7	11 12 10	751 574 645	1.38 1.44 2.11	4 5 <2	<8 <8 <8	<2 <2 <2	4 5 <2	340 434 384	2.0 3.7 2.1	<3 <3 <3	ব্য ব্য ব্য	57 52 107	2.25 1.96 1.68 1.09 2.20	.152 .153 .017	16 16 4	13 14 18	.53 .34 .31	48 66 54	.08 .08 .09	<3 <3 <3	1.34 1.27 1.08	.38 .33 .27	.21 .20 .21	4 3 4 3 4	24	2 3 6 <2	2 4 <2 3 5
: 117862 HE C 117862 HRE C 117862 : 117863 : 117864	12 12 8	5642	33 32 76	307 304 185	5.2 6.0 5.1	9 9 12	16 16 18	1185 1197 862	2.46 2.50 2.14	<2 <2 3	<8 <8 <8	<2 <2 <2	<2 <2 <2	180 184 293	3.3 3.2 4.5	ব্য ব্য ব্য	<3 3 6	106 105 57	2.48 2.47 2.47 2.90 3.30	.024 .025 .072	6 6 8	10 14 17	.64 .64 .64	49 52 96	.09 .09 .05	<3 <3 <3	.85 .87 1.06	.04 .05 .15	.23 .26	5		3 4 3 <2 7	2 6 4 5 9
2 117865 2 117866 2 117867 2 117868 2 117868 2 117869	3 3 17	54 329 453 206 272	7 8 6	63 63 61	<.3 <.3 <.3	11 8 8	16 14 14	983 917 958	3.63 3.39 2.80	2 <2 <2	<8 <8 <8	<2 <2 <2	<2 <2 <2	439 504 414	<.2 <.2 <.2	থ থ থ	<3 <3 <3	200 198 131		.200 .186 .136	12 13 10	29 24 11	1.05 1.10 1.02	209 148 340	.13 .10 .03	5 3 <3	1.08 1.07 1.01	.10 .09 .04	1.27 .60 .38 .35 .97	2 2 <2	9 42 90 36 60	6 5 4 5	9 14 10 14 12
2 117870 2 117871 2 117872 2 117873 2 117873 2 117874	3 2 6	1044 586 958 682 281	6 7 5	65 65 75	.5 .4 1.0	8 10 16	15 16 22	942 1043 1379	3.00 3.62 4.72	2 <2 <2	<8 <8 <8	<2 <2 <2	3 <2 <2	1194 444 386	<.2 <.2 <.2	ব্য ব্য ব্য	<3 <3 3	143 175 230	3,57	. 180 . 191 . 231	13 12 13	20 24 34	.86 .85 1.29	352 420 388	.07 .06 .08	<3 <3 <3	.74 .64 .91	.05 .06 .04	.52 .53 .47	2 2	43 29	8 6 4 5	25 9 23 9 11
RE C 117874 RRE C 117874 C 117875 C 117876 C 117876	6 4 4	276 296 265 511 270	13 5 7	77 128 73	<.3 .4 <.3	23 32 12	22 29 18	1414 1519 957	4.04 4.83 3.32	3 3 <2	<8 <8 <8	<2 <2 <2	<2 2 <2	388 462 330	<.2 <.2 .2	য য য	<3 3 3	184 205 160	5.08 5.09 5.93 3.47 9.16	.199 .403 .198	12 23 12	56 80 2 27	1.73 2.52 1.39	142 310 195	.11 .10 .07	<3 3 3	1.01 1.46 .97	.04 .04 .04	.51	3	63 11	3 4 2 5 4	10 11 13 11 12
2 117878 2 117879 2 117880 2 117881 3 117881 3 TANDARD DS3/FA-10R	2 2 3	3104 2852	<3 15 12	91 170 177	.4 1.2 1.4	44 8 8	38 31 32	1390 891 802	7.26 2.34 3.18	4 2 4	<8 <8 <8	<2 <2 <2	<2 2 3	377 440 259	<.2 2.1 2.0	ব্য ব্য ব্য	<3 <3 <3	248 69 109	6.04 3.56 2.14	.420 .247 .109	22 15 8	72 1 18 18	2.36 .87 .60	98 419 406	.10 .07 .04	7 <3 <3	1.51 .69 .47	.04 .06 .04	.99 1.13 .52 .30 .17	<2 3 4	19 80	3 4 3	9 8
GROUF UPPER ASSA - SAN <u>Samp</u> DATE RECEIVED:	R LIM Y REC MPLE Les b	IITS COMMEN TYPE:	AG, IDED COR	AU FOR	, HG, ROCI	W =	100 COR	PPM; E SAM	MO, IPLES	CO, IF C	CD, CD PB	SB, ZN	BI, AS >	TH, 1 1%,	U&E AG>	3 = 2 > 30	,000 PPM	PPM	; CU, > 10	PB, 00 PP	ZN, B	NI, 1	MN, A	ls, v	, LA	, CR	= 10	,000		-1ED	в.с.	ASSA	YERS

Page 2

SAMPLE#	Mo ppm		Pb ppm		_			Mn ppm						Sr ppm					Ca %		La ppm	Cr		Ba ppm			Al X	Na X			Au** F ppb			
C 117882 C 117883 C 117884 C 117885 C 117885 C 117886	4	2837 1383 2605 974	6 <3 <3 <3	95 92 122 95	2.5 1.8 1.9 .8	41 59 32 8	29 34 54 45	1214 936	2.99 5.81 8.39 7.76	3 3 <2 2	<8 <8 <8 8	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	443 160 156 389	.5 ,3 ,6 ,4	ব্য ব্য ব্য ব্য	<3 <3 2 <3 3 3 3	90 222 553 517	4.77 2.00 2.20 1.98	.328 .363 .379 .317	17 18 24 18	91 : 143 67 : 10	2.01 1.96 2.67 1.93	454 789 1507 1765	.12 .10 .08 .11	<3 <3 <3 5	1.48 2.34 1.82	.06 .08 .06	1.51 2.33 1.69	<2 <2 2		8 4 5 <2 3	30 14 18 3 4)
C 117887 C 117888 C 117889 C 117890 C 117891	<1 <1 4	279 2836 24665 4849 41832	<3 8 5	112 142 19	2.2 28.0 4.5	9 23 5	39 35 6	723 166	6.92 7.94 1.02	2 5 <2	<8 <8 <8	<2 <2 <2	<2 9 3	240 306 110	.5 4.6 .9	ও ও ও	<33 104 3	303 472 40	1.54 2.52 .68	.330 .808 .095	19 49 7	15 36 13	1.42 .60 .08	584 156 458	.11 .04 .03	3 9 <3	1.49 .75 .20	.07 .06 .04	.62 .20	2 3 2	<2 109 367 92 352	3 <2 <2 <2	<2 5 5 2 7	
C 117892 RE C 117892 RRE C 117892 C 117893 C 117894	1 2 1 2 <1	904	6 8	54 56 58	<.3 .3 <.3	34 35 25	20 20 22	523 519 535 683 803	2.82 2.90 4.66	<2 <2 <2	<8 <8 <8	<2 <2 <2	<2 <2 <2	129 139 339	<.2 <.2 <.2	<3 <3 <3	ব্য ব্য ব্য 2	98 99 201	1.14 1.20 1.49	.109 .107 .296	5 5 13	160 165 63	1.37 1.40 1.21	218 227 549	.21 .21 .16	<3 <3 <3	1.12 1.13 1.28	.08 .08 .08	1.10 1.11 1.07	2 <2 2	8 4	3 2 10 <2 5	3 2 2 20 21	 ح
C 117895 C 117896 C 117897 C 117898 C 117898 C 117899	1 3 5 1 2	1036 17 583	<3 3	95 8 87	.6 <.3 .4	40 4 77	35 2 36	989 1054 109 916 931	6.18 .34 6.29	<2 2 <2	<8 <8 <8	<2 <2 <2	<2 4 <2	2469 85 235	<.2 <.2 .2	ব্য ব্য ব্য	<3 2 <3 2 <3 2	273 6 263	2.07 .37 1.43	.353 .011 .286	20 3 16	87 12 158	1.98 .06 2.50	895 499 971	.13 .02 .20	<3 <3 <3	2.62 .17 2.32	.31 .05 .08	1.77 .20 2.25	2 2 <2	31	<2	23 16 <2 10 13	 ل
C 117900 C 117901 C 117902 C 117903 C 117904	3 4 3	1963 456 1026 8923 10117	4 <3 6	63 71 134	<.3 <.3 6.7	75 15 41	33 15 40	638 1026	4 48 3 32 8 33	2 <2 3	<8 <8 <8	<2 <2 <2	<2 <2 3	481 977 157	<.2 .2 1.9	⊲ ⊲ ⊲	<31 <31 <33	178 142 391	1.45 1.31 2.55	.188 .518	16 9 27	155 45 92	2.39 .64 1.51	573 273 288	.21 .14 .06	<3 <3 4	2.04 1.33 1.27	.09 .26 .06	.55	<2 2 2		7 9 2 5 5	20 16 8 21 4	
RE C 117904 RRE C 117904 C 117905 C 117906 C 117907	3 13 11	9972 10220 980 350 6689	18 4 3	220 149 93	6.7 .3 <.3	14 14 9	21 11 9	743 814 621	4.15 2.75 2.62	<2 3 2	10 9 12	<2 <2 <2	<2 <2 <2	204 972 509	4.6 .5 .2	<3 <3 <3	ব্য 2 ব্য 1 ব্য 1	212 115 117	.87 1.60 1.49	.075 .122 .116	5 8 8	32 42 28	.28 .48 .26	86 52 35	.12 .11 .09	4 <3 <3	.73 1.42 1.89	.18 .26 .51	.31 .40	3 3 3	231 240 40 34 134	6 2 3 4 2	7 4 2 3 3	
C 117908 C 117909 C 117910 C 117911 STANDARD DS3/FA-10R	5 3 2	5809 6065 1347 25 125	9 8 4	174 104 75	4.1 1.1 .5	11 16 68	17 14 37		4.34 3.28 6.81	6 3 5	<8 <8 <8	<2 <2 <2	8 4 2	138 229 153	2.1 .4 <.2	<3 <3 4	<3 2 <3 1 <3 2	272 152 229	1.81 1.76 2.04	.431 .249	30 13 24	31 63 123	.29 .59 1.76	73 63 246	.09 .11 .07	<3 4 5	.60 1.09 1.28	.08 .09 .07	.32 .37 .47 1.31 .17	3 <2 <2	28 4	<2	2 <2 14 <2 470	

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_____FA

Page 3

ALME ANALYTILAL																																ACH		<u> </u>
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V C	Ca	Р	La	Cr	Mg	8a	ті	В	AL	Na	k	: พ	Au**	Pt**	Pd**	
	ppm	ppm	ppm	ppm	ppm	ppm		ррт		ppm	ppm	ppm	ppm	ppm	ррт	ppm	ppm pp	m	%	%	ppm	ppm	%	ррп	%	ppm	%	%	;	i ppm	ppb	ppb	ppb	
C 117912	2	10	<3	93	<.3	56	30	788	5.65	3	<8	<2	<2	132	<.2	3	3 22	9 1.4	42.	219	13	216	1.52	9 5	.21	6	1.02	.09	1.02	2 2	<2	<2	<2	h l
C 117913	5	1864		121				851		_	_	_	_			-	<3 23						.74				1.18	.20	.54	2	78	3	11	Ĩ
C 117914	3	3343	• •	198			25	994	5.36	<2	<8	<2	<2	214	1.2	<3	<3 27	8 1.6	50.	132	7	72	1.15	104	. 19	5	1.24	.06	.77	' 3	175	3	20	
C 117915	2	36	3	161	<.3	43	29	1011	6.64	2	<8	<2	3	132	<.2	<3	<3 30	4 2.2	26.	455	20	147	1.46	113	.13	7	1.09	.06	1.00) 3	<2	<2	3	
C 117916	4	1839	19	218	.4	33	28	1091	6.27								3 34										1.24	.06	.86	5 4	23	4	19	
C 117917	5	6184	10	229	3.1	43	82	858	8.43	41	<8	<2	<2	96	.7	3	<3 28	8.6	59.	025	3	44	.46	66	.14	8	.75	.05	.42	2 3	81	4	12	
C 117918		2618		353				1173			_	_	_			-	<3 30				_		1.28				1.38				13	<2	6	
C 117919	16	4706	9	403	.9	11	64	1377	6.69	4	<8	<2	2	111	.9	<3	<3 29	1 1.0	00.	076	6	44	1.34	133	.37	4	1.31	.06	1.3	5	21	<2	3	
C 117920	5	6459	60	414	2.7	14	60	1538	6.95	3	<8	<2	<2	91	2.2	<3	<3 34	8 .	74.	015	3	43	1.60	137	.40	9	1.50	.06	1.55	i 7	45	4	4	
RE C 117920	5	6497	67	415	2.8	14	61	1545	6.99	2	<8	<2	<2	91	2.1	<3	<3 35	0 .	74.	.015	3	45	1.60	137	.40	5	1.51	.06	1.50	57	47	3	2	20
RRE C 117920	7	6663	60	428	2.9	13	59	1566	7.13	4	<8	<2	<2	89	2.3	<3	3 36	0.1	76.	015	3	48	1.62	135	.40	9	1.53	.06	1.5	7 6	49	<2	4	Û
C 117921	8	2780	27	239	.8	14	34	1017	4.26	12	<8	<2	<2	128	1.0	<3	<3 19	5.	51.	028	4	46	.87	112	.22	<3	.99	.07	.94	3	17	2	5	
C 117922	4	12015	18	382	9.0	13	27	696	4.29	2	<8	<2	<2	98	5.9	<3	<3 17	4	39.	034	2	45	1.08	124	.27	<3	1.12	.06	1.1	5	193	2	3	ا ت
C 117923	3	10966	24	398	7.5	14	19	907	6.02	2	<8	<2	<2	103	4.7	<3	<3 34	7 .!	56,	.050	3	43	.70	113	.21	- 5	.82	.07				<2	4	\odot
C 117924	9	11494	14	386	7.4	12	19	1024	4.83	14	<8	<2	3	116	4.7	<3	5 25	6 1.4	45.	.070	5	37	.97	87	.17	3	.99	.05	.7	76	216	<2	4	
C 117925	3	10525	8	285	6.9	16	17	693	5.86	2	<8	<2	<2	106	3.3	<3	<3 37	0.0	63.	.014	2	43	.48	139	.13	9	.65	.06	.6	54	282	<2	3	
C 117926	2	10331	9	167	8.3	19	18	646	5.43	3	8	<2	<2	102	1.4	<3	4 32	3.4	44 .	.016	3	47	.68	135	.19	9	.78	.06	.8	53	345	5	7	
C 117927	3	11500	14	343	7.2	15	21	698	4.75	2	<8	<2	3	388	4.5	<3	5 26	60 .0	67.	064	4	40	.63	84	.16	4	.76	.06	.7) 5	215	5	6	1
C 117928	3	12166	25	423	8.5	14	31	879	5.45	8	8	<2	22	222	5.2	<3	<3 27	7 1.0	67.	409	21	42	.47	52	-11	7	.72	.06	.4	16	90	2	4	
C 117929	2	412	8	130	<.3	57	29	835	4.70	<2	8	<2	5	256	.2	<3	<3 19	6 1.3	31.	.242	11	180	1.81	184	.26	6	1.49	.08	1.4	33	4	7	11	Ì
. C 117930	3	185	5	107	<.3	44	19	721	3.82	<2	<8	<2	6	459	<.2	<3	<3 17	3 1.3	39.	. 153	8	136	1.40	114	.19	4	1.32	.08	1.1	5 2	<2	6	2	W I
STANDARD DS3/FA-10R	10	129	35	164	<.3	35	13	836	3.28	32	<8	<2	3	29	5.8	5	78	32 .!	56 .	098	20	187	.63	149	.09	3	1.84	.04	. 11	35	473	479	486	

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

					Ē				1 Re 325 H														age age											
SAMPLE#		Cu ppm							fe %												La ppm		_		⊺i %	8 ppm		Na %	K %			Pt** I ppb		
SI c 117931 c 117932 c 117933 c 117934	Ž	5 336 979 401 524	4 9	68 47	<.3 .4 <.3	10 6 6	9 8 8	538 368 272	.04 2.40 1.55 1.46 1.94	3 2 <2	<8 <8 <8	<2 <2 <2	<2 2 <2	155 88 157	.3 .2 .2	<3 <3 <3	<3 <3 <3	128 61 55	.66 .28 .20	.065 .021 .016	5 5 4	46 44 39	.75 .49	143 109 196	.11 .05 .04	<3 <3 3	1.03 69. 62.	.06 .05	<.01 .66 .50 .48 .40	<2	<2 9 50 13 24	2 <2 <2 <2 <2 <2	<2 3 2 2 4	
2 117935 2 117936 2 117937 2 117938 2 117939	3 2 2	380 145 328 356 723	6 5 7	62 38 96	<.3 .4	6 5 14	8 6 13	410 295 686	1.38	2 3 2	<8 <8 <8	<2 <2 <2	3 3 2	107 147 205	<.2 2.> <.2	<3 <3 <3	<3 <3 <3	102 45 164	.90 .70 1.44		6 4 8	26 26 42	.29 .29 .82	92 98 129	.02 .03 .15	<3 <3 <3	.83 .65 1.11	.02 .05 .06	.32 .34 .37 .70 1.03			<2 <2 <2 4 5	5 4 3 5	
C 117940 RE C 117940 RRE C 117940 C 117941 C 117942	4 3 5	506 506 514 651 9657	10 8 7	44 46 31	.6 .4 .3	7 10	6 6 10	535 545 599	1.72 1.70 1.74 1.50 4.21	3 3 7	<8 <8 <8	<2 <2 <2	3 4 3	246 250 270	.2 .2 .3	<3 <3 <3	<3 <3 <3	72 76 49	2.18 2.19 2.73	.135 .134 .137 .117 .131	10 10 9	23 21 23	.53 .54 .42	114 115 68	.04 .05 <.01	<3 3 4	.74 .76 .69	.04 .05 .04	.41	<2 2 2	124 132 141 38 242	2 2 <2 3 6	15 14 15 7 11	
2 117943 2 117944 2 117945 2 117946 2 117947	2 4 2	31 39 772 615 491	4 6 4	88 96 111	<.3 <.3 <.3	21 14 22	13 18 20	858 1002	4.18	7 5 <2	<8 <8 <8	<2 <2 <2	4 2 <2	337 247 300	.4 <.2 .3	<3 <3 <3	<3 <3 4	96 86 175	2.50 1.70 2.75	.266 .137 .145	18 12 9	44 35 81	1.20 .90 1.58	134 82 186	11 12 24	4 <3 <3	1.36 1.05 1.52	.06 .06 .05	1.97 .95 .72 1.37 .50	2 <2 <2	3 33 19 12	6 2 3 6 3	6 4 8 5	
C 117948 C 117949 C 117950 C 117951 C 117952	10 4 3	2249 2615 1044 1289 1155	9 5 5	120 102 128	1.6 .4 1.2	23 11 25	28 21 22	1056 977 1148	3.77 4.43 3.92 4.99 4.61	<2 <2 <2	<8 <8 <8	<2 <2 <2	2 <2 <2	343 246 261	.9 <.2 .4	<3 <3 <3	<3 <3 3	192 161 252	2.30 1.68 2.25	.157 .098 .063	10 7 5	57 30 68	2.16 .80 .93	253 160 99	.26 .11 .14	<3 3 <3	1.93 92. 91.	.06 .06 .05	1.74 1.69 .56 .55 .73	<2	102 42 89	4 22 22 22 22	10 11 <2 4 7	
RE C 117952 RRE C 117952 C 117953 C 117954 C 117955	3 2 2	1204 1133 175 966 2511	4 5 4	64 187 56	.6 <.3 .5	19 112 20	19 46 17	623 1052 520	4.63	<2 <2 2	<8 <8 <8	<2 <2 <2	<2 2 <2	405 202 247	<.2 .3 .3	<3 <3 <3	<3 <3 <3	238 186 129	1.20 1.53 .84	.070 .265 .127	5 20 7	42 290 58	1.13 4.28 1.20	186 844 357	.32 .16	<3 <3 3	1.03 2.95 .97	.06 .07 .07	.76 .74 3.21 .92 1.84	<2 <2 <2	35 6 24	4 2 6 2 7	7 7 13 5 21	
117956 117957 117958 117959 TANDARD DS3/FA-10R	3 2 2	116 730	5 5 <3	126 77 135	<,3 <,3 <,3	50 18 59	39 14 42	1767 844 1311	6.07 3.47 8.07	9 2 <2	8 <8 11	<2 <2 <2	2 3 2	481 319 432	.5 .2 .2	<3 <3 <3	<3 <3 4	243 93 315	8.49 2.66 3.96	.261 .193 .238	15 13 15	122 38 158	1.79 .96 2.36	169 347 650	.15 .08 .11	3 3 3	1.66 1.10 1.66	.03 .06 .05	.43 1.07 .63 1.64 .18	<2 <2 <2	23 2 27	<2 4 2 3 463	3 6 2 10 476	
UPPE Assa - Sa	R LIM Y REC MPLE les b	ITS - OMMEN TYPE:	AG, IDED COR <u>ning</u>	AU, FOR E R1 <u>'RE</u>	HG, ROCK 50 & are	W = AND OC Rer	100 COR A uns	PPM; E SAM U** P and /	3 ML MO, PLES T** 8 RRE'	CO, IF C PD* are	CD, U PB * GR <u>Reje</u>	SB, ZN OUP	BI, AS > 3B B erun	TH, 1%, Y FI <u>S.</u>	U&I AG REAS	B = > 30 SSAY	2,00 PPM & A	0 PPI & A NALY	M; CL U > ' SIS I ()	J, PB 1000 1 3Y 10	, ZN, PPB P-ES.	NI, (30	, MN,) gm)	AS,	ν,ι	.A, CI	R = '	10,00	00 PPM			. ASSA		

STANDARD DS3/FA-10R

Eastfield Resources Ltd. FILE # A103609

K W Au** Pt** Pd** SAMPLE# Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Ba Ti В Al Na Mg % pom pom pom pom pom pom pom pom pom % % ppm ppm % ppm maa maa maa maa maa maa maa x % % daa daa daa maa % C 117960 2 658 6 85 .8 25 863 4.42 <2 <2 <2 259 .3 <3 <3 224 2.46 .088 6 61 .89 101 .08 <3 .94 .03 <2 18 <8 .46 <2 63 3 C 117961 <2 2 1 2169 <3 123 1.8 68 41 1079 7.15 <8 <2 518 <.2 3 3 262 3.30 .304 15 150 2.93 279 .21 <3 1.81 .04 1.48 <2 90 4 14 C 117962 8 99 2 2 1386 1.0 61 39 892 5.83 <2 <8 <2 478 < .2 <3 <3 207 2.29 .300 14 152 3.06 716 .18 <3 1.89 .04 1.72 <2 53 6 17 C 117963 28 <3 70 791 5.53 <2 <8 2 1 <.3 84 42 <2 795 <.2 <3 <3 172 2.56 .333 16 208 3.73 1187 .17 <3 2.17 .05 2.02 <2 2 10 16 C 117964 <.3 88 3 2 749 <.2 <3 1 <1 3 64 43 665 5.39 <8 <2 3 167 1.91 .332 16 210 4.04 834 .20 <3 2.08 .05 1.92 <2 <2 6 6 C 117965 5 2 78 83 <.3 65 4۵ 848 5.87 3 <8 <2 2 707 .2 <3 <3 203 2.70 .384 18 146 3.43 673 .13 <3 1.74 .04 1.52 <2 0 6 6 C 117966 1 292 4 88 <.3 59 35 890 6.24 <2 <8 <2 <2 449 <.2 <3 <3 212 2.68 .329 13 120 2.54 365 .16 <3 1.25 .04 .98 <2 11 3 <2 C 117967 10 553 7 45 .5 19 22 849 2.54 <8 <2 <2 290 .2 <3 <3 70 4.03 .109 4 6 22 1.40 183 .07 3 1.43 .03 .59 2 25 17 41 C 117968 1 351 5 75 <2 <2 399 <.3 28 26 1685 4.15 4 <8 .6 <3 <3 128 11.63 .176 9 83 1.78 134 .01 3 1.58<.01 .13 2 14 <2 15 C 117969 1 17 13 129 <.3 22 21 4026 3.71 2 <8 <2 <2 246 .8 3 <3 112 18.59 .037 7 19 4.08 2 <2 46<.01 <3 .30 .01 .03 <2 <2 C 117970 2 62 5 91 <.3 65 41 1446 6.32 <2 <8 <2 <2 506 .4 <3 <3 200 8.96 .116 9 139 1.76 154 .11 <3 1.40 .02 7 3 .72 2 1. C 117971 2 <8 5 185 4 54 < 3 6 10 911 2.55 <2 <2 326 <.2 <3 <3 100 3.12 .103 11 21 .50 122 .03 <3 .79 .04 .24 <2 29 5 5 C 117972 2 213 8 65 9 3 <8 <.3 Q 914 2.68 <2 <2 448 <.2 <3 <3 124 1.97 .098 10 30 .57 165 .10 <3 .98 .07 .23 2 <2 24 4 5 68 RE C 117972 1 217 <.3 9 10 933 2.78 3 <8 <2 <2 461 <.2 <3 3 126 2.01 .100 10 31 .59 168 .09 <3 1.00 .08 25 2 5 入 .24 <2 2 20 RRE C 117972 2 209 5 67 <.3 7 933 2.66 <8 <2 <2 455 .2 <3 <3 121 2.01 .098 10 10 28 .59 165 .09 <3 .98 .07 .23 23 <2 4 C 117973 2 79 10 12 1136 3.54 <3 168 2.12 .117 11 336 6 <.3 3 <8 <2 <2 717 .2 <3 .80 174 .10 <2 31 3 1.18 .11 .25 6 29 C 117974 594 79 .7 9 10 900 2.95 6 <8 <2 <2 1437 .3 <3 34 ٨ 12 <3 138 1.61 .124 11 .72 193.08 3 1.50 .21 .23 <2 51 <2 4 \mathcal{J}_{1} C 117975 5 491 10 73 .4 11 10 886 2.95 <2 <8 <2 <2 785 <.2 <3 <3 142 1.29 .103 9 34 .61 103 .12 <3 .96 .09 .29 <2 32 <2 6 šΰ C 117976 9 1057 75 1.0 12 13 944 3.32 <2 <8 <2 <2 307 .3 <3 <3 147 2.08 .161 12 33 .89 138 .11 <3 .95 .05</p> 2 16 .37 <2 84 C 117977 3 87 < 3 50 34 884 6.74 <2 <8 <2 2 3025 .2 <3 <3 233 2.57 .353 14 135 2.18 414 .15 <3 1.41 .05 1.28 4 44 <2 5 4 5 C 117978 3 10 <3 67 <.3 56 36 890 6.73 <2 <8 <2 2 1970 <.2 5 <3 226 3.60 282 12 177 2.17 309 13 <3 1.16 03 1.15 2 <2 23 2 C 117979 1 3 4 72 <.3 92 43 646 5.71 <2 <8 <2 <2 769 <.2 <3 3 176 2.05 .235 11 249 3.37 872 .14 4 1.91 .05 2.00 <2 <2 3 2 C 117980 1 1 4 57 <.3 102 45 602 5.38 2 <8 <2 <2 349 <.2 4 <3 168 1.80 .223 10 284 3.91 876 .19 <3 2.10 .05 2.07 <2 <2 3 6 C 117981 1 713 3 <8 <2 2 260 .4 <3 <3 182 2.39 .239 7 61 .5 108 47 679 5.73 10 318 5.45 736 .23 <3 2.43 .05 2.00 <2 19 6 8 C 117982 1 1206 8 64 1.2 81 39 1272 4.56 3 8 <2 <2 804 .7 3 4 162 9.52 .201 9 269 4.07 910 .15 <3 1.97 .01 .63 93 0 <2 C 117983 3 <3 171 1.91 .245 1 16 4 57 <.3 100 41 610 5.14 2 < 8 <2 <2 540 <.2 11 291 3.65 746 .24 <3 2.02 .07 2.07 <2 3 3 <2 C 117984 2 3863 <3 73 1.0 98 46 596 5.63 <2 <8 <2 <2 171 .2 <3 3 220 1.51 .155 5 239 5.37 146 .44 <3 2.85 .06 3.48 <2 37 3 17 RE C 117984 3 4088 76 7 <2 <2 181 <.2 4 1.3 104 48 608 5.91 <8 3 <3 228 1.60 .163 6 250 5.57 150 .46 <3 2.96 .07 3.62 <2 42 2 17 RRE C 117984 2 3973 <3 76 1.5 104 48 609 5.91 3 <8 <2 <2 177 .2 <3 3 228 1.61 .162 5 251 5.59 123 .46 <3 2.97 .06 3.64 <2 47 5 17 C 117985 2 < 8 2 473 3 397 6 62 .5 105 43 619 5.24 <2 .2 3 3 176 1.76 .247 11 320 3.62 800 .25 <3 2.21 .06 2.34 5 <2 18 3 C 117986 2 825 6 68 .5 90 729 4.90 2 40 <2 <8 <2 636 < 2 <3 3 171 2.15 .201 11 305 3.47 608 .22 <3 2.07 .06 2.14 <2 5 3 31 C 117987 13 2438 87 11.9 32 8 <8 2 198 1 5 22 <3 135 1 36 159 41 29 530 3.63 <2 8 22 1.06 212 .16 <3 1.01 .04 .73 2 2 925 108 C 117988 6 1824 10 58 1.0 8 15 557 2.78 3 <8 <2 2 154 2 <3 <3 146 1 11 134 7 16 1.59 110 .27 3 1.25 .06 1.26 <2 51 3 6 C 117989 3 1337 12 66 1.4 13 11 2 <8 <2 2 182 .6 <3 <3 118 1.24 .109 612 2.82 9 25 .91 110 .17 <3 .82 .08 .57 <2 68 <2 2

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

10 126 35 159 <.3 35 13 826 3.25 29 <8 <2 4 29 5.9 5 5 79

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

496 498 490

4

.54 .098 18 184 .62 156 .08 <3 1.80 .04 .17

Page 2

Page 3

Data A FA

ACHE ANALYTICAL	ACME AVALYTI
SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn. Fe As U Au Th. Sr Cd Sb Bi V Ca. P La Cr. Mg. Ba Ti B. Al Na. K. W Au** Pt** Pd** ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm
C 117990 C 117991 C 117992 C 117993 C 117994	4 535 6 51 .4 13 14 687 2.79 7 <8
C 117995 C 117996 C 117997 C 117998 C 117999	1 3360 18 86 3.3 77 50 793 7.89 <2
C 118000 RE C 118000 RRE C 118000 E 143107 E 143108	2 5388 10 121 2.8 13 24 796 6.12 2 <8
E 143109 E 143110 E 143111 E 143112 E 143113	3 4514 5 95 2.5 8 18 693 3.55 2 <8
E 143114 E 143115 E 143116 E 143117 E 143118	4 662 3 75 <.3
RE E 143118 RRE E 143118 E 143119 E 143120 E 143121	2 3732 7 124 1.8 62 45 947 7.27 <2
E 143122 E 143123 E 143124 E 143125 STANDARD DS3/FA-10R	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

A103609

Page 4

ACHE ANALYTICAL

Data K FA VIA

SAMPLE#	Mo ppm		Pb ppm		Ag ppm	Ni ppm								Sr ppm				-	Ca %		La ppm				ті %			Na %			Au** ppb			_
E 143126 E 143127 E 143128 E 143128 E 143129 E 143130	2 2 1 2 2	5333 759	10 4 5	121 60	.7 3.4 <.3	25 70 20	19 41 25	672 892 539	4.13 6.86 4.27	<2 <2 <2	<8 <8 <8	<2 <2 <2	<2 2 <2	223 170 178	<.2 .6 <.2	<3 <3 <3	<3 3 <3	192 292 178	.93 1.05 2.34 1.28 1.17	.146 .123 .221 .166	6 6 10 6	48 69 110 33	1.01 2.02 .85	181 328 188	.22 .16 .19	<3 <3 4	1.14 1.42 1.14	.08 .05 .07	.75 1.29	3 <2 <2	100 26 157 5 11	3 4 17 3 4	11 7 28 7 7	
E 143131 E 143132 E 143133 E 143133 E 143134 E 143135	4 3 4 2 2	642	5 7 13	74 70 43	<.3 <.3 <.3	10 11 11	12 20 10	569 468 354	2.73 3.22 2.94	<2 <2 <2	<8 <8 <8	<2 <2 <2	<2 2 <2	379 202 379	<.2 <.2 <.2	<3 <3 <3	<3 <3 4	116 116 137	1.52 1.28 1.36 1.24 .73	.124 .175 .179	8 11 10	31 29 31	.60 .41 .32	87 63 91	.13 .11 .08	<3 <3 <3	.95 .79 .83	.09 .08	.49 .39 .24 .20 .81	<2 <2 2	5	7 <2 2 <2 4	8 4 5 5 18	
RE E 143135 <u>RRE E 143135</u> A 201001 A 201002 A 201003	2 2 1 1 17	3050 2908 183 102 244	10 8 3	32 74	1.9 .5 <.3	24 34 47	16 20 25	323 1310 1200	1.81 4.10	<2 4 <2	<8 <8 <8	<2 <2 <2	<2 2 <2	1534 193 188	.4 .4 .4	<3 6 <3	ব্য ব্য ব্য	69 109 151	.76 .73 4.80 4.50 4.08	.152 .229 .227	7 12 15	24 54 82	.99 1.38 1.87	499 414 162	.17 .01 .08	<3 3 <3	.84 1.48 1.52	.06 .02 .04	.78	<2 2 <2	51 100 12	2 5 2 2 2	16 14 5 5 6	1
A 201004 A 201005 A 201006 A 201007 A 201007	9 5 12 2 4	323 852 289 108 1030	14 4 4	129	1.3 1.2 .3	25 6 6	35 14 14	1621 832	5.56 3.13 2.81	2 <2 2	<8 <8 <8	<2 <2 <2	2 2 <2	337 180 208	.7 .2 .2	6 उ उ	<3 <3 <3	219 95 135	7.37 6.73 2.63 2.02 2.52	.368 .122 .167	20 9 11	35 : 8 11	2.11 .58 .98	536 124 187	.08 .02 .10	<3 3 <3	1.74 1.11 1.09	.02 .02 .04	.42	<2 <2 <2	220 203 90	4 5 4 6	7 14 6 5 4	
A 201009 A 201010 A 201011 A 201012 A 201013	4 9 17	6587 8998 11192 12381 14146	16 5 12	68 108 163	5.0 6.5	9 7 7	10 12 12	734 1112 1014	2.96 2.43	4 20 47	14 <8 <8	<2 <2 <2	4 4 2	141 159 167	.8 .9 1.9	<3 82 280	<3 3 <3	156 88 81	2.40 1.81 3.24 3.09 3.52	.229 .217 .123	15 14 8	15 7 7	.69 .63 .36	135 82 82<	.11 .01 .01	<3 4 3	.80 1.00	.05 .01 .01	.40	<2 6 5	822 934 1398 758 948	11 14 11 4 5	29 42 21 8 12	
A 201014 RE A 201014 RRE A 201014 A 201015 A 201016	4	9033 9033 9065 7514 6288	7 4 10	77 76 102	5.4	6 10	9 9 13	662 957	2.44 2.34	<2 <2 6	<8 <8	<2 <2 <2	2 2 3	163 160 149	.5 .5 .8	<3 <3 <3	ব্য ব্য ব্য	117 113 167	1.55 1.53 1.55 2.23 1.50	.118 .118 .246	10 10 16	11 12 20	.58 .58 .92	99 95 103	.10 .10 .11	3 <3	.71 .69 .96	.05 .05	. 26	<2 <2 4	362 469 368 329 751	4 2 2 <2 <2	6 4 5 3	6
A 201017 A 201018 A 201019 A 201020 STANDARD DS3/FA-10R	2 3 2	7211 4686 11144 6126 127	9 15 12	86 84 88	7.7 4.7	8 8 6	10 10 10	576 653	3.00 2.51 2.68	2 4 5	<8 9	<2 <2 <2	2 3 3	150 141 429	.4 .8 .7	ব্য ব্য ব্য	<3 <3 3	169 128 144	1.05	.141 .148 .255	10 11 17	15 14 13	.43 .51 .58	69 97 71	.12 .13 .11	<3 <3 <3	.75 .75 .75	.05 .06 .05	.46 .44	<2 5 3	300 189 379 176 503	<2 <2	3 3 2 5 487	N.

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACHE ANALYTICAL

Eastfield Resources Ltd. FILE # A103609

A	A
 L	

Page 5

ACHE ANALYTICAL																																ACME	ANALYTICA	٤
SAMPLE#	Mo ppm	Cu ppm	Pb ppm		Ag ppm	Ni ppm		Mn ppm		As ppm				Sr ppm		sb ppm			Ca %		La ppm				Ti %			Na %				Pt** ppb		
A 201021 A 201022 A 201023 A 201024 A 201025	2 2 2	2078 673 2068 1732 7162	4 · 5 · 4 ·	143 119 104	1.5 .4 1.3 .8 4.5	7 7	15 14 17	1063 947 891	2.83 4.88 4.43 3.97 3.20	2 <2 <2	<8	<2 <2 <2	7 2 <2	160 133 150	.8 .7 .8	<3 <3 <3	<3 4 <3	2 36 205 171	2.18 1.02 1.40	.194 .411 .077 .070 .095	24 6 6	26 25 22	.49 .48 .68	72 69 78	.14 .13	<3 <3 3	.74 .68	.05 .04 .04	.27 .41	<2 <2 <2	60 33 99 60 327	2 2 2 2 2 2 2 2	4 5 <2 4 6	Å
A 201026 A 201027 A 201028 A 201029 A 201030	5 5 82	1210 466 1831 0411 4767	5 · 5 6	100 79 56	.9 .4 1.7 12.7 2.8	7	16 11 8	1235 881 980	4.44 4.33 2.90 1.93 1.68	6 14 83	<8	<2 <2 <2	5 4 2	180	.7 .5	≺3 ≺3 ≺3	<3 <3 3	196 148 56	2.77	.064 .632 .404 .177 .183	24 12	15 20 19	.40 .37 .32 .37 .22	91 172 182<	.02 .03 .01	<3 3 <3	.81 .98 .81 .58 .74<	.02 .03 .01	.37 .21	<2 <2 4	67 13 52 1343 240	2 <2 <2 5 4	2 <2 7 15 7	
A 201031 A 201032 RE A 201032 RRE A 201032 A 201033	2 3 4	8711 7951 8313 8650 6426	5 5 6	44 46 48	6.0 5.7 6.0 6.3 12.1	4 6 5 10	6 6	346 498 520 529 625	1.59	4	<8 <8 <8 <8 <8	<2 <2	2 3 2	82 100 105 107 104	.5 .7 .6	3 3 3	<3 <3 4	81 86 87	1.18 1.24 1.28	.056 .041 .043 .043 .043	9 9 10	26 28 31	.10 .30 .32 .33 .37	110 119 120	.04 .04 .04	4 <3	.46 .41 .44 .44 .61	.03 .03 .03	.34 .35 .35	5 4 4	241 156 153 165 831	2 <2 3 <2 3	8 2	200
A 201034 A 201035 A 201036 A 201037 A 201038	5 1 3 1 2	1319 2895 1326 8127 5407	4 5 <3	76 65 48	13.4 12.8 8.2 6.2 10.7	9 6 9	11 8 7	581 726	2.52 1.71 1.29					74	1.0	4 <3 <3	<3 <3 3	102 67 56	1.55 1.44 .76		11 7 16	23 24 32		135 184 164	.02 .04 .06	ও ও ও ও	.90 .72 .57 .65 .51	.02 .02 .03	.39 .40 .57	6 <2 5	2266 1212 478 299 1220	11 4 4 <2 3	15 · 12 5 (07-10
A 201039 A 201040 A 201041 A 201042 A 201043	3 5 4	7214 4334 5268 6565 3559	5 3 4	76 108 79	5.8	10 11 9	13 14 11	833 1059 796		14 2 8	<8 <8 <8	<2	<2 <2 <2	128	.5 .8 1.0	<3 <3 <3	3 <3 <3	135 172 133	1.72	.116 .055	10 12 7	19		177 206 177	.05 .07 .08		.69 .73 .89 .70 .66	.04 .03 .03	.58 .58 .54	<2 <2	362 341	9 <2 3 5 5	11 3 7 5 6	
A 201044 RE A 201044 RRE A 201044 A 201045 A 201046	4 5 6	4506 4467 4765 7058 2993	3 1 <3 1 4 1	101 110 119	2.8 3.2 5.8	11 10 11	13 14 16	988 1058 1085	3.15 3.07 3.14 4.60 3.88	<2 <2 <2	<8 <8 <8	<2 <2	<2 2 <2	633 714 175	.5 .7 1.3	<3 <3 <3	<3 3 <3	145 147 231	2.13 2.11 2.26 2.32 1.89	.085 .091 .083	7 9 7	17 16	.77 .77 .82 .69 .96	84 90 162	.07 .07 .07	-3 <3 <3	.81 .78 .84 .84 .92	.03 .04 .05	.37 .40 .50		415 402 532	8 5 5 4	9 10 11 21 12	
A 201047 A 201048 A 201049 A 201050 STANDARD DS3/FA-10R	6 5 3	1028 1057 2407 2567 126	4 1	123 91 108	.8 .8 1.6 1.8 <.3	8 8 5	12 10 10	1244 766 722	3.51	<2 2 <2	<8 <8 <8	<2	2 2 <2	190 166 161	.5 .5 .7	ও ও ও	<3 5 <3	148 135 179	2.73 1.52 1.35	.064	9 7 6	12 11 8	.92 .50 .30	102 107 187	.06 .06 .04	उ उ उ	.98 .98 .77 .55 1.72	.03 .04 .03	.41 .35 .35	<2 <2 <2		3 <2 <2 <2 479	7 3 2 <2 472	

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA

Page 6

ACHE ANALYTICAL

ACME ANALYTICAL				ACHE ANALYTICAL
SAMPLE#		As U Au Th Sr Cd Sb		• • • • • • • • • • • • • • • • • • • •
	ppm ppm ppm ppm ppm ppm ppm ppm % pp	om pom pom pom pom pom pom	pm ppm ppm % % ppm ppm	% ppm % ppm % % % ppm ppb ppb
A 201051 A 201052 A 201053 A 201054 A 201055	1640 6 101 1.3 6 13 956 4.04 < 1526 3 94 1.4 6 13 839 3.80 < 878 3 107 .5 5 12 916 3.30		<3 <3 186 2.18 .083 7 8 <3 <3 162 2.08 .108 8 7 <3 <3 147 1.61 .103 8 9	.65 161 .11 <3 .82 .05 .64 <2 66 <2 4 .56 314 .08 4 .80 .04 .64 <2 40 2 5 .73 102 .13 <3 .96 .04 .58 2 18 5 6
A 201056 A 201057 A 201058 A 201059 A 201060	748 4 85 .6 5 9 1580 2.64 <	10 <8 <2 2 201 .2 <3	<3 <3 98 3.45 .055 7 6 <3 <3 86 2.57 .136 12 8 <3 3 97 3.14 .103 9 7	.82 224 .04 <3
RE A 201060 RRE A 201060 A 201061 A 201062 A 201063	884 4 124 1.2 6 12 1276 3.40 3 1764 4 109 1.9 16 15 1303 3.40 2 86 <3	<2 <8 <2 <2 410 .5 <3	<pre><3 <3 123 2.37 .078 8 4 <3 <3 131 2.91 .066 6 22 <3 <3 167 3.34 .125 9 326 3</pre>	.73 264 .01 <3
A 201064 A 201065 A 201066 A 201067 A 201068	1333 6 47 .9 14 10 567 1.75 <	2 <8 <2 2 182 .5 <3 <2 <8 <2 <2 463 .7 <3 <2 <8 <2 <2 395 .7 <3	<3 <3 139 1.93 .176 11 367 : <3 <3 147 7.43 .111 6 390 <3 <3 134 1.56 .126 8 418	.92 245 .16 5 .79 .05 .72 <2 23 <2 7 3.87 492 .22 <3 2.07 .04 2.22 <2 <2 8 <2 4.32 540 .18 <3 1.77 .02 1.86 <2 54 9 <2 4.21 510 .21 <3 2.09 .04 2.00 <2 <2 7 <2
A 201069 A 201070 A 201071 A 201072 A 201073	1501 <3 86 .7 16 21 716 3.91 < 512 <3 102 .4 13 14 868 3.68 <	<pre><2 <8 <2 <2 97 <.2 <3 2 <8 <2 <2 230 .4 <3</pre>	<pre><3 <3 180 1.43 .089 6 30 <3 <3 169 1.60 .067 6 32 <3 <3 190 1.58 .133 8 33</pre>	3.01 213 .21 <3
A 201074 RE A 201074 RRE A 201074 A 201075 A 201076	1018 10 47 .5 20 12 501 2.29 1018 9 48 .6 19 12 494 2.25		<pre><3 <3 93 1.15 .064 5 43 <3 <3 91 1.16 .064 5 43 <3 <3 91 1.16 .064 5 43 <3 <3 111 1.63 .188 11 34</pre>	.72 329 .12 <3
A 201077 A 201078 A 201079 A 201080 STANDARD DS3/FA-10R		<pre><2 <8 <2 <2 138 .9 <3 5 <8 <2 3 320 <.2 <3 2 <8 <2 <2 123 .3 <3</pre>	<pre><3 <3 190 1.88 .118 7 321 : <3 <3 128 1.56 .254 13 40 <3 <3 127 1.78 .109 7 237 ;</pre>	.46 385 .05 <3

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

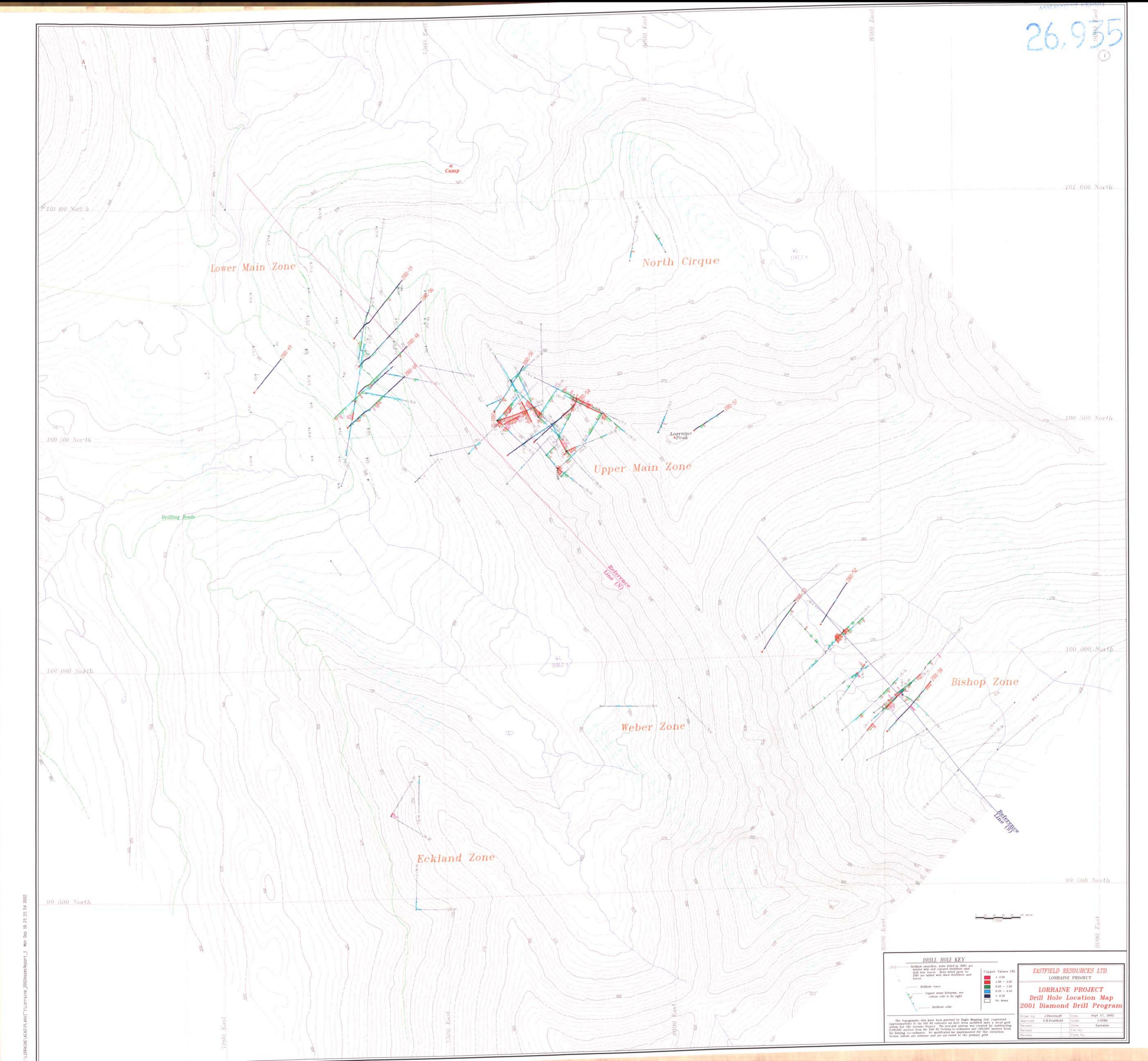
All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA

•	ACHE ANALYTICAL
	ACME ANALITICAL

ACHE ANALYTICAL SAMPLE# K W Au** Pt** Pd** Mo Cu Pb Zn Ag Ní Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti В Al Na % % % maa maa maa maa maa maa maa maa maa maa maa maa maa maa maa maa maa % % pom pom % ppm % ppm dag dag dag mag % A 201081 <3 69 <.3 64 26 967 3.86 9 <2 <2 587 <.2 <3 <3 126 3.26 .103 6 169 2.26 257 .17 3 7 9 2 13 3 3 1.99 .13 1.50 <2 5 4 00% 100% 5 <8 <2 <2 1398 <.2 <3 3 132 2.25 .110 6 <8 <2 <2 153 <.2 <3 <3 160 2.06 .051 3 132 2.25 .110 6 9 .83 412 .03 3 1.78 .14 .36 6 12 .68 60 .08 <3 .72 .04 .29 6 926 <3 40 .7 9 14 599 3.49 3 2 A 201082 13 A 201083 3 1213 <3 86 .7 8 12 1065 3.58 <2 78 3 3 1254 <3 89 .7 8 12 1097 3.68 9 <8 <2 <2 155 .2 <3 <3 164 2.15 .053 7 12 .71 65 .08 <3 .74 .04 .30 <2 3 10 RE A 201083 80 9 121 32 155 <.3 36 12 815 3.15 31 <8 <2 4 27 5.6 3 4 75 .53 .093 17 194 .60 165 .08 <3 1.71 .03 .18 STANDARD DS3 2 ---

FILE # A103609


Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Eastfield Resources Ltd.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA VIA

Page 7

