

PROSPECTING AND GEOCHEMICAL REPORT
 EDDY 1-63 Mineral Claims
 Weaver Creek Area, Fort Steele Mining Division
 TRIM 82F/050, 82F/040
 (UTM; 5473000N, 569000E)

Owner: G.Rodgers \& G.Ewonus
P.O. Box 63,
Skookumchuck, B.C. VOB2E0

By : G.Rodgers, P.Eng., C. Kennedy and S. Kennedy

Nov.1, 2002
GEOLOGICAL SURVEY RRANCY
ASSFSCOTMT

(i)

Summary

Prospecting was carried out on the Eddy Claim Group during the summer of 2002. Bedrock samples totaling 51 were taken to complement the 55 bedrock samples taken in 2001. Bedrock is scarce overall comprising 5% of the claim block area. Rock samples were analyzed for 32 element ICP and gold (ppb) by ACME Laboratories Ltd.. Results show that there is anomalous gold in several large areas within the Eddy claim block. Several samples returned spectacular gold values as high as $1.18 \mathrm{oz} / \mathrm{t}$ from within the known sheared areas. Shear widths and persistent length suggest that economic zones of gold mineralization probably do occur within the Eddy claim block. A tourmalinized sedimentary-exhalative type of vent was discovered during this years prospecting on the Eddy claims. It contains the same accessory (indicator) minerals and alteration as that at the Sullivan Mine (located 35 km north) which produced \$20bil worth of lead, zinc and silver.

Geological mapping and diamond drilling are recommended for 2003.

TABLE OF CONTENTS

Page

Summary (i)
1.0 INTRODUCTION
1.1 Location And Access (1)
1.2 History (1)
1.3 Property (2)
1.4 Physiography (10)
2.0 GEOLOGY(11)
3.0 PROSPECTING (11)
4.0 GEOCHEMISTRY (14)
5.0 RESULTS and CONCLUSIONS (17)
6.0 RECOMMENDATIONS. (17)
7.0 STATEMENT of COSTS (18)
8.0 STATEMENT OF QUALIFICATIONS(18)
Fig. 1 .(Location Map, 1:500,000) (5)
Fig. 2 . (Regional Geology; (1:250,000)(6)
Fig. 3 (ELHNNATED)
Fig. 4 Property Map (1:20,000)(8)
Fig. 5 Sample locations(rock sample sites and general geology)(9)
APPENDIX I. ASSAY CERTIFICATES.

1.0 INTRODUCTION

1.10 LOCATION AND ACCESS

The EDDY property is located 25 km southwest of Cranbrook BC. The property covers Weaver creek, the headwaters of Ryder creek, Galway creek, and Claim creek. The property is accessed by the Lumerton FSR driven 9 km to the Moyie Main, then 12 km to North Moyie Creek road, then 1.5 km to Ryder Creek road, then 5.2 km to an unmarked road on the loft of the road. Most of the property is accessible by old logging and exploration roads.

1.20 HISTORY

During the late 1800 's and early 1900's placer gold was extracted from Weaver creek. Prospecting for the source of the placer gold was carried out but remained largely unsuccessful. In the early 1980's road building exposed a gold bearing quartz vein prompting Weaver creek to be staked.

To date, the largest resource of gold identified in the area is the "David" which is found at the headwaters of Kutlits Creek. The David contains at least 90,000 tonnes of shear hosted gold averaging less than $0,40 \mathrm{z} / \mathrm{t}$. It is steeply dipping, about $1-2 \mathrm{~m}$ wide and the gold is associated with pyrite and galena. There are no high arsenic levels although Acid-Rock Drainage may be a problem for future mining.

Throughout the 1980's an extensive program of prospecting, soil sampling, mapping, trenching, VLF-EM, magnetic geophysical surveying and drilling was conducted over the area now staked as the Eddy property, giving encouraging gold results throughout the property.

The following table lists the claims that comprise the Eddy Property.

Record\# NAME Map\# DATE of EXPIRY \#of units

387079, EDDY 1, 082F040, Good Standing 2003.07.15, 1 unit, 387080, EDDY 2 082F040,Good Standing 2003.07.15, 1 unit, 387081, EDDY 3, 082F040,Good Standing 2003.07.15, 1 unit, 387082, EDDY 4, 082F040,Good Standing 2003.07.15, 1 unit, 395303, EDDY 25, 082F050,Good Standing 2003.07.17, 1 unit, 395304, EDDY 26, 082F050,Good Standing 2003.07.17, 1 unit, 395305, EDDY 27, 082F050,Good Standing 2003.07.17, 1 unit, 395306, EDDY 28, 082F050,Good Standing 2003.07.17, 1 unit, 395311, EDDY 33, 082F050,Good Standing 2003.07.17, 1 unit, 395312, EDDY 34, 082F050,Good Standing 2003.07.17, 1 unit, 395313, EDDY 35, 082F050,Good Standing 2003.07.17, 1 unit, 395314, EDDY 36, 082F050,Good Standing 2003.07.17, 1 unit, 395319, EDDY 41, 082F050,Good Standing 2003.07.17, 1 unit, 395320, EDDY 42, 082F050,Good Standing 2003.07.17, 1 unit, 395321, EDDY 43, 082F050,Good Standing 2003.07.17, 1 unit, 395343, EDDY 44, 082F050,Good Standing 2003.07.17, 1 unit, 387078, EDDY, 082F050, Good Standing 2003.07.15, 1 unit, 387083, EDDY 5, 082F050, Good Standing 2003.07.15, 1 unit, 387084, EDDY 6, 082F050, Good Standing 2003.07.15, 1 unit, 387333, EDDY 9, 082F050, Good Standing 2003.07.15, 1, unit, 387334, EDDY 10, 082F050, Good Standing 2003.07.15, 1, unit, 387335, EDDY 11, 082F050, Good Standing 2003.07.15, 1, unit, 387336, EDDY 12, 082F050, Good Standing 2003.07.15, 1, unit, 387776, EDDY 7, 082F050, Good Standing 2003.07.15, 1, unit, 387777, EDDY 8, 082F050, Good Standing 2003.07.15, 1,unit, 387778, EDDY 13, 082F050, Good Standing 2003.07.15, 1, unit, 387779, EDDY 14, 082F050, Good Standing 2003.07.15, 1, unit, 393225, EDDY 15, 082F050, Good Standing 2004.07.15,20, unit, 395123, EDDY 15, 082F050, Good Standing 2003.07.05, 1, unit, 395124, EDDY 16, 082F050, Good Standing 2003.07.05, 1, unit, 395125, EDDY 17, 082F050, Good Standing 2003.07.05, 1,unit, 395126, EDDY 18, 082F050, Good Standing 2003.07.05, 1, unit,

395271, EDDY 20, 082F050, Good Standing 2003.07.10, 1, unit, 395272, EDDY 21, 082F050, Good Standing 2003.07.10, 1,unit, 395273, EDDY 22, 082F050, Good Standing 2003.07.10, 1, unit, 395274, EDDY 23, 082F050, Good Standing 2003.07.10, 1, unit, 395275, EDDY 24, 082F050, Good Standing 2003.07.10, 1, unit, 395276, EDDY 25, 082F050, Good Standing 2003.07.10, 1, unit, 395277, EDDY 26, 082F050, Good Standing 2003.07.10, 1, unit, 395294, EDDY 16, 082F050, Good Standing 2003.07.16, 1,unit, 395295, EDDY 17, 082F050, Good Standing 2003.07.16, 1,unit, 395296, EDDY 18, 082F050, Good Standing 2003.07.16, 1,unit, 395297, EDDY 19, 082F050, Good Standing 2003.07.16, 1, unit, 395298, EDDY 20, 082F050, Good Standing 2003.07.16, 1, unit, 395299, EDDY 21, 082F050, Good Standing 2003.07.16, 1, unit, 395300, EDDY 22, 082F050, Good Standing 2003.07.16, 1, unit, 395301, EDDY 23, 082F050, Good Standing 2003.07.16, 1, unit, 395302, EDDY 24, 082F050, Good Standing 2003.07.16, 1,unit, 395307, EDDY 29, 082F050, Good Standing 2003.07.16, 1, unit, 395308, EDDY 30, 082F050, Good Standing 2003.07.16, 1, unit, 395309, EDDY 31, 082F050, Good Standing 2003.07.16, 1, unit, 395310, EDDY 32, 082F050, ,Good Standing 2003.07.16, 1, unit 395315, EDDY 37, 082F050, Good Standing 2003.07.17, 1, unit, 395316, EDDY 38, 082F050, Good Standing 2003.07.17, 1, unit, 395317, EDDY 39, 082F050, Good Standing 2003.07.17, 1, unit, 395318, EDDY 40, 082F050, Good Standing 2003.07.17, 1, unit, 395322, EDDY 27, 082F050, Good Standing 2003.07.29, 1, unit, 395323, EDDY 28, 082F050, Good Standing 2003.07.29, 1, unit, 395324, EDDY 29, 082F050, Good Standing 2003.07.29, 1, unit, 395325, EDDY 30, 082F050, Good Standing 2003.07.29, 1, unit, 395326, EDDY 31, 082F050, Good Standing 2003.07.29, 1, unit, 395754, EDDY 32, 082F050, Good Standing 2003.07.30, 1, unit, 395755, EDDY 33, 082F050, Good Standing 2003.07.30, 1, unit, 395756, EDDY 34, 082F040, Good Standing 2003.08.01, 1, unit, 395757, EDDY 35, 082F040, Good Standing 2003.08.01, 1,unit, 395758, EDDY 36, 082F040, Good Standing 2003.08.01, 1, unit, 395759, EDDY 37, 082F040, Good Standing 2003.08.01, 1, unit, 395760, EDDY 38, 082F040, Good Standing 2003.08.01, 1, unit, 395761, EDDY 39, 082F040, Good Standing 2003.08.01, 1, unit, 395762, EDDY 40, 082F040, Good Standing 2003.08.01, 1,unit,

395763, EDDY 41, 082F040, Good Standing 2003.08.01, 1, unit, 396088, EDDY 42, 082F050, Good Standing 2003.08.10, 1, unit, 396089, EDDY 43, 082F050, Good Standing 2003.08.10, 1, unit, 396090, EDDY 44, 082F050, Good Standing 2003.08.12, 1, unit, 396091, EDDY 45, 082F050, Good Standing 2003.08.12, 1, unit, 396092, EDDY 46, 082F050, Good Standing 2003.08.12, 1, unit, 396093, EDDY 47, 082F050, Good Standing 2003.08.12, 1, unit, 396094, EDDY 48, 082F050, Good Standing 2003.08.12, 1, unit, 396095, EDDY 49, 082F050, Good Standing 2003.08.12, 1, unit, 396096, EDDY 50, 082F040, Good Standing 2003.08.15, 1, unit, 396097, EDDY 51, 082F040, Good Standing 2003.08.15, 1, unit, 396098, EDDY 52, 082F040, Good Standing 2003.08.15, 1, unit, 396099, EDDY 53, 082F040, Good Standing 2003.08.15, 1, unit, 396100, EDDY 54, 082F040, Good Standing 2003.08.15, 1, unit, 396101, EDDY 55, 082F040, Good Standing 2003.08.15, 1, unit, 396102, EDDY 56, 082F040, Good Standing 2003.08.15, 1, unit, 396103, EDDY 57, 082F040, Good Standing 2003.08.15, 1, unit, 396104, EDDY 58, 082F040, Good Standing 2003.08.17, 1, unit, 396105, EDDY 59, 082F040, Good Standing 2003.08.17, 1, unit, 396106, EDDY 60, 082F040, Good Standing 2003.08.17, 1, unit, 396107, EDDY 61, 082F040, Good Standing 2003.08.17, 1, unit, 396108, EDDY 62, 082F040, Good Standing 2003.08.17, 1, unit, 396109, EDDY 63, 082F040, Good Standing 2003.08.17, 1, unit, 387670, NELLY 1, 082F050, Good Standing 2003.07.15, 1, unit 387671, NELLY 2, 082F050, Good Standing 2003.07.15, 1. unit 387672, NELLY 3, 082F050, Good Standing 2003.07.15, 1. unit 387673, NELLY 4, 082F050, Good Standing 2003.07.15, 1. unit 210255, L3772A , 080F050, Good Standing 2004.07.15, 1, unit 210256, L3773 , 080F050, Good Standing 2004.07.15, 1, unit 210257, L3774 , 080F050, Good Standing 2004.07.15, 1, unit

LOcations
Figure 2.--Regional geology map of the Purcell Supergroup,
Southeastern British Columbia.

1.40 PHYSIOGRAPHY

The Eddy Property is located in the Purcell Mountain Range. Elevation ranges from 1400 to 2140 meters, topography varies from gentle and moderate wooded slopes to steep rocky slopes. The climate is moderate with temperature extremes ranging from 35 to -40 degrees Celsius. Snow coverage is from early November to early June. Forests on the property are composed of pine, fir, larch, and balsam. Areas of the claim block have been clear-cut logged and are in various stages of regeneration.

2.0 GEOLOGY

The EDDY property is underlain by rocks of the Middle and Upper Aldridge and Creston Formations of the Belt Purcell Supergroup. The Belt Purcell Supergroup is composed of mostly fine-grained clastic and carbonate rocks of up to 11 km in depth. The Middle Aldridge Formation consists predominantly of quartzites and siltstones with turbiditic characteristics. Beds are often 30 cm or more wide. Black argillite, thin bedded siltstones, fine to medium grained quartzites, are common. The Creston formation consists of thin to medium bedded purple, green, and blue siltstones and clean quartzites. Green and light coloured wavy beds with argillite, ripple marks, and mud cracks are dominant features in the lower part of the Creston Formation. The upper part of the Creston Formation is dominated by green siltstone, light and dark argillite and siltstone, and purple argillite. The property has a number of Pre-Cambrian intrusions in the form of gabbro dykes and sills.

The Baldy Fault system strikes NE across the western edge of the property. This fault system separates Aldridge sediments to the south from Creston sediments to the north. The David shear s south of the property and along a splay off of the Baldy Fault system. The "MC2 and Hill vein areas are part of one complex zone of faulting which has concentrated gold over several meters widths and over one kilometer in length.

3.0 PROSPECTING

Five areas of interest were prospected during the program:

1. Weaver Creek
2. Hill Vein
3. Ryder Creek
4. Galway Creek
5. Fast Eddy

1. Weaver Creek

The MC shear is located in the top of the Weaver creek drainage. The MC shear, which strikes across the length of the property, carries gold mineralization here. The MC shear is one of a series of NE to NNE oriented fault/shear zones on the property. It is located in the Middle Aldridge formation and varies in thickness across the property with widths of up to 20 meters. The MC is defined by phyllitic sediments with late quartz veins which cross-cut and parallel the shearing. Brecciation along the shear is common with fresh pyrite, silicification, chlorite, hematite, limonite, manganese and albite. Gabbro intrusions were noted in the MC shear in a number of areas. Quartz veins with abundant carbonate and calcite were present in both the sheared gabbro and sediments. Visible gold was noted in a number of locations in the MC shear. Most noteworthy was in an old trench which was previously thought to be barren. Narrow limonitic quartz veins containing galena, and carbonate alteration were discovered in the old trench. The veins were bedding parallel in phyllitic sediments and contained visible gold. West of these veins along the strike of the shear, outcrops of sheared phyllitic sediments were noted. The shear contained abundant pyrite, chlorite, and carbonate. Quartz veins with limonite containing visible gold were discovered. A gabbro sill was noted along the margin of the shear in this area. Further prospecting along strike to the west concluded that the MC shear continued with the same characteristics noted earlier. Near the top of the ridge between Weaver and Ryder creek to the south of the extension of the MC shear a narrow limonitic shear was noted striking $80^{\circ} \mathrm{NW}$ and dipping steeply to the SW. Near the south facing aspect of the east fork of the top end of Weaver creek a carbonate altered quartz vein near a gabbro intrusion was noted to carry galena.

Prospecting further east from this area extended the MC shear into the Noke creek drainage. The shear continued to exhibit similar characteristics. North of the MC in the top end of the Weaver creek drainage is located the AC shear. The AC shear offsets Aldridge with Creston Formation. The AC contains cleaved phyllitic sediments with carbonate and calcite. This shear had also been previously trenched. Located in this shear is the PK vein, a 30 cm wide bull quartz vein containing galena, chalcopyrite, limonite, and visible gold.

2. Hill Vein

The Hill Vein is a 0.5 to 1.0 meter thick bull quartz vein containing visible gold. It has a strike length of more than 500 meters and is trenched in numerous locations. The vein itself is striking to the north with a shallow dip tho the west. The Hill Vein is a clean milky quartz vein with iron staining, rare sulfide and limonite present. Southwest of the surface exposure of the vein in some recent logging an az 130° trending shear was noted. The shear contains crystalline quartz veins with limonite and a purplish oxide. It is striking 130° and dipping steeply to the SW. Visible gold was discovered in the shear. To the immediate west of this shear the sediments are quite silicified and contain abundant fresh pyrite. Limonite/pyrite rich crystalline quartz veins are present in the silicified sediments. Another shear zone was identified in the road cut to the west of the Hill Vein. This shear contained abundant fresh pyrite, limonite, manganese, albite and quartz. Visible gold was also discovered in this shear.

3. Ryder Creek

Prospecting in Ryder Creek was conducted in an effort to trace the MC shear west across the property. The MC was discovered in numerous spots where it contained strongly cleaved and brecciated phyllitic sediments. The shear contained chlorite, pyrite, minor carbonate and hematite. Quartz veins containing sulfide were less abundant here than at previous locations. North of the MC shear in the Creston formation a 60 cm wide shear was noted with quartz/carbonate veins and copper. It was striking 20° and dipping 65° to the NW. Along the ridge between Ryder and Claim creek an old hand trench was discovered. It contained limonite, pyrite, albite, and quartz in a brecciated zone. It had a strike of 50° and a dip of 35° to the NW with a width of 60 cm . South of the MC shear on the ridge between Ryder and Claim creek a 2 meter wide 60° trending shear was discovered. The shear had abundant limonite and pyrite, milky quartz, and argillite and was located in phyllitic sediments. Another shear possibly the western extension of the MC was noted to contain minor limonite, manganese and phyllitic sediments. The shear had a strike of 30° and a dip of 60° to the NW.

Page 13

4. Galway Creek

Galway creek is located over top of the headwaters of both Ryder and Weaver creeks. It is a north flowing tributary to Perry creek. The EDDY property located in Galway creek is underlain by Upper Aldridge and Creston Formations. Throughout the Upper Aldridge Formation narrow limonitic shears were discovered. The shears seem to pinch and swell when they encounter favourable lithologies. They are often pinkish, contain quartz and abundant pyrite and limonite. Numerous narrow structures were noted below the Galway/Claim creek ridge. These shears contained limonite, pyrite, albite and quartz. The shears had widths of up to 1 meter and were striking 15° and dipping 76° to the NW. Abundant magnetite/hematite matrix breccia float was noted in the talus above both Galway lakes. A narrow shear was noted below the upper lake containing limonite and specularite. Also of interest was a narrow breccia in the Creston formation. It contained abundant copper and limonite as well as azurite. A silicified breccia zone in the Creston Formation was also noted which contained zinc and copper. It had a width of 30 cm and a strike of 20° and a dip of 65° to the NW.

5. Fast Eddy

Sericite altered Middle Aldridge boulders were discovered on an old exploration road. Further prospecting found a tourmalized PreCambrian vent system on the property 50 m wide and at least 100 m long. It is striking 340° and dipping 70° to the SW. Outcrop consists of massive black tourmaline within chloritic, sericitic and actinolitic altered sediments that exibit soft deformation and fragmental characteristics. This is a new vent discovery (previously unknown). The Eddy property was held by local prospectors for gold mineralization and was never explored by Cominco in the 1970's and 1980's for Sullivan type mineralization. The Sullivan Horizon which lies underneath approximately 600 m of sediments in the Fast Eddy area has never been tested. This horizon produced the Sullivan ore deposit (160 million tonnes of $5 \% \mathrm{~Pb}, 7 \% \mathrm{Zn}$ and $2 \mathrm{oz} / \mathrm{t} \mathrm{Ag}$). Surface tourmalinized vents are an indication of an active Sullivan Horizon below. Float boulders of altered fragmental containing biotite, limonite, hematite, manganese and rare galena were found.

4.0 GEOCHEMISTRY

Figure 5 shows rock sample locations. All rock samples were of outcrop and were chipped using chisel and sledge-hammer. Samples were sent to ACME Laboratories in Vancouver for geochemical analysis. After drying, crushing and splitting, a 0.5 gram sample was leached by aqua-regia for one hour, then analyzed by ICP-ES. Gold was done "ignition by acid leached"and analyzed by ICP.

The following lists the rock sample numbers and a brief description. (les gang refers to the type of iron staining often seen in this area that is associated with gold)

WE-01 Les gang, crystalline quartz, limonite, Mn
WE-02 VG in quartz with sediments and limonite, les gang
WE-03 Same as WE-02
WE-04 $\quad 130^{\circ}$ trending shear, one foot wide, quartz and limonite
WE-05 Same as WE-04
WE-06 Rehabbed trench rubble, les gang, quartz veins, vuggy, limonite, pyrite
WE-07 Same as WE-06
WE-08 Sheared sediments, quartz, chlorite, limonite
WE-09 Same as WE-08, some carbonate
WE-10 Limonite rich quartz, feldspars, carbonate
WE-11 VG, carbonate, quartz veins, limonite, yellow feldspars, black "ribbons"
WE-12 Inside gabbro contact, pinkish coloured quartz veins, limonite
WE-13 Trench, phyllitic sediments, narrow quartz veins, some limonite
WE-14 "Klewchuck Vein", ten inches wide, galena, copper, limonite, bull quartz
WE-15 Sheared sediments, quartz veins, carbonate, lots of pyrite, limonite
WE-16 Narrow bedding parallel quartz veins in phyllitic sediments, galena, limonite, VG, in a trench
WE-17 Quartz vein, galena, pyrite, limonite, vugs, in a trench
WE-18 Les gang altered, quartz veins, limonite, yellow feldspars, purple oxide
WE-19 Green material, in a structure in the road cut
WE-20 Sheared silicified sediments, quartz veins, pyrite, pink colour
WE-21 Sheared phyllitic sediments, some silicification, pyrite, quartz veins, purple oxide
WE-22 Same as WE-21
WE-23 Same as WE-21

WE-24 Quartz vein float, limonite, carbonate
WE-25 Same as WE-24
WE-26 Les gang, brecciated, purple oxide, limonite
WE-27 Quartz vein, two inches wide, limonite, pyrite, VG
WE-28 Quartz vein float, purple oxide, limonite
WE-29 Sheared argillic sediments, quartz, limonite, pyromorphite?, purple oxide, les gang
WE-30 Sheared sediments, albitized, purple oxide, quartz veins, limonite, pyrite, les gang, one meter wide
WE-31 Sheared sediments, quartz veins, limonite, 190° trending
WE-32 Quartz rich zone in argillite top, some limonite, chlorite
WE-33 Two inch wide quartz vein, limonite, orange vugs
WE-34 Phyllitic sediments, les gang, quartz veins, some silicification, limonite, pyrite
WE-35 Same as WE-33, on a ten meter strike
WE-36 Quartz vein, limonite, black "ribbons"
WE-37 Narrow quartz veins with limonite, orange vugs, fresh pyrite
WE-38 Brecciated sediments, limonite, orange rusty vugs, fresh pyrite
WE-39 Quartz vein, limonite, pyrite
WE-40 Bedding parallel quartz vein, limonite, purple colour, argillite, punk
WE-41 Limonite rich quartz shear/breccia material
WE-42 $\quad 75^{\circ}$ trending quartz vein, chlorite, limonite
WE-43 Silicified podin sheared sediments, some crushed material, quartz, pyrite, limonite, purple oxide
WE-44 Shear zone subcrop, limonite, quartz veinlets, les gang
WE-45 Same as WE-44
WE-46 Pyrite rich quartzite, quartz veins with limonite, rubble in the road
WE-47 Crystalline quartz veins with limonite, in the structure striking into the Hill Vein
WE-48 Quartz veinlets, crystalline, some limonite, albitized fragments?
WE-49 Narrow slip, crystalline quartz, limonite, purple oxide, chlorite
WE-50 40° trending breccia, silicified, pyrite rich, purple colour, quartz veins
WE-51 Quartz vein, carbonate, limonite, black "ribbons"
WE-52 Same as 51
WE-53 White crystalline vein, some rusty zones with vugs and limonite
WE-54 Quartz vein, limonite
WE-55 Rusty altered fragmental, Mn, limonite

WE-56
WE-57
WE-58
WE-59
WE-60
WE-61
WE-62
WE-63
WE-64
WE-65
WE-66
WE-67
WE-68
WE-69
WE-70
WE-71
WE-72
WE-73

WE-74
WE-75
WE-76
WE-77
WE-78
WE-79
WE-80
WE-81
WE-82
WE-83
WE-84
WE-85
WE-86
WE-68

Sericite altered sediments, Mn, purple oxide
Fresh sericite breccia, some rusty material
Shear zone subcrop, les gang, purple oxide, milky quartz, greenish colour, albitized fragments

Same as WE-58

Phyllitic sediments, sheared, quartz veins, limonite, pink colour
Shear zone, les gang, limonite, purple oxide, pyrite, quartz
Quartz vein, limonite, milky quartz, yellow-green oxide around rotten quartz
314° trending quartz vein in the gabbro, 1.5 feet wide, lots of limonite, some chlorite
Narrow bedding parallel quartz vein, limonite, pyrite
Narrow bedding parallel structure, crystalline quartz, limonite, fresh pyrite
Same as WE-65
1.5 feet wide quartz vein, les gang, some brecciation on the margins, limonite, pyrite
Shear zone float in the road-cut, phyllitic, some quartz, limonite, pink colour
Same as WE-68
Fragmental, iron rot, Mn, biotite, carbonate veinlets
Quartz carbonate veins, brecciated, limonite, pyrite, hematite
Shear zone float, les gang, limonite, pink colour, quartz
Sheare zone, quartz, pyrite, limonite, les gang, green sheared sediments with fresh pyrite

Same as WE-73

Silicification, quartz, limonite, pyrite
Sheared phyllitic sediments, quartz, rotted pyrite, black "ribbons"
225° trending narrow shear, rotted pyrite, carbonate
Shear, quartz, carbonate, pyrite, limonite
"Galena Vein", gabbro contact, quartz, carbonate, pyrite, galena
3 inch wide bedding parallel shear, quartz, limonite, carbonate
350° trending silicified zone, quartz, pyrite
Narrow limonite, quartz, les gang, pyrite, iron wad
Breccia, limonite, pyrite, malachite, quartz, albite, chalco-pyrite
Narrow quartz veins, limonite, les gang
350° trending structure, quartz veins, limonite, bulls-eye weathering
Shear zone, quartz, limonite, albitic?

WE-87 Same as WE-86
WE-88 Same as WE-86
WE-89
200° trending structure, albitic, quartz veinlets, limonite, 1 meter wide, strong les gang
WE-90 Same as WE-89
WE-91 Same as WE-89
WE-92 Silicified shear zone, Zn ?, fresh pyrite, Cu
WE-93 Quartz vein limonite, pyrite, les gang
WE-94 Bedding parallel quartz vein, limonite
WE-95 Breccia subcrop, les gang, albite, quartz, rotten iron
WE-96 Phyllitic shear, quartz, rusty, limonite, chlorite, black "ribbons"
WE-97 Shear zone, quartz, carbonate veins, $\mathrm{Cu}, 2$ feet wide
WE-98 Flat quartz vein, limonite, albite fragments
WE-99 Shear zone float, les gang, limonite, quartz
WE-100 Shear zone, les gang, pyrite, limonite, quartz, albite?, in an old hand trench
WE-101
Same as WE-100
WE-102
Sheared phyllitic sediments, pyrite, limonite, quartz, purple oxide
WE-103 1 foot wide bedding parallel shear, quartz, albite, pyrite, limonite
WE-104 Shear zone, les gang, quartz, limonite, purple oxide
WE-105 $\quad 1.5$ foot wide phyllitic shear, quartz, limonite, albite, les gang
WE-106 Narrow shear, crystalline quartz, limonite
WE-107 $\quad 60^{\circ}$ trending 2 meter wide shear, quartz, les gang
WE-108 Phyllitic shear, limonite, pyrite, milky quartz, argillic
WE-109 Les gang shear zone, limonite, pyrite, albite, quartz
WE-110 Phyllitic shear, les gang, quartz limonite
WE-111 Bedding parallel shear, albite, quartz, limonite, specularite
WE-112 Silicified structure, limonite
WE-113 Float in talus, quartz, limonite, purple oxide
WE-114 Series of carbonate altered cross-cutting veins in the argillite, limonite
WE-115 Shear zone sub-crop, quartz, limonite, phyllitic

5.0 RESULTS AND CONCLUSIONS

A total of 51 rock chip samples were taken during 2002 from bedrock on the Eddy claims. Rock sample descriptions are given in section 4.0, geochemical results are included as appendix I and sample locations are shown in figure 5.

Several samples gave spectacular results for gold (Eg.we-14, we-16, we-05, we02, we-03, we-6, we-7, we-9,). WE-14 and WE-16 represent thin quartz veinlets (possibly part of a stockwork) that carry gold within the zone of alteration known as the "MC2 Vein" related to the PreCambrian Baldy fault. WE-02, 03, 05 represent samples from the Hill Vein Area that contain both quartz and limonitic sediments. WE-6,7,9 are typical of the sheared limonitic sediments with minor quartz veinlets that occupy the MC2 zone. There is enough gold in the system and there has been excellent ground preparation during PreCambrian and later tectonic events that conduits for gold mineralization are wide enough and persistent enough as to possibly be economic.

Possibly the most significant prospecting discovery made on the Eddy Claims is the presence of a Sullivan type of tourmalinized vent that comes to surface in the Fast Eddy area (further evidence of deep-seated PreCambrian structures in the area). This vent measures approximately $50 \mathrm{~m} \times 100 \mathrm{~m}$ and contains coarse tourmalinite framents, actinolite, albite, chlorite and sericite. The horizon is thought to be Sundown or Meadowbrook which would imply that a Sullivan test could be made approximately 1.5 km to the SE where the depth to the Sullivan Horizon is approximately 600 m .

6.0 RECOMMENDATIONS

Geological mapping at $1: 10,000$ scale should be done asap. Small soil sampling grids should be done over areas of interest with any gold value over 50 ppb to be followed up on by trenching. The Eddy Claims are 95% overburden covered and access is difficult to most of the property, therefore a large budget for excavator work is recommended. Detailed geological mapping of the five known gold bearing areas should be completed and a short-hole drill program carried out on each (except the Fast Eddy area over which detailed geological mapping may indicate that an active Sullivan Horizon lies within drill range beneath the central Eddy property).

Continued....

Previous drilling on the property was done haphazard and was largely ineffectual except that it proved that the gold grade does persist with depth. Due to the "nugget" effect, a bulk sample of the shear zone areas would provide a more effective evaluation of this property. One can easily imagine that (as with the David property 3 km south), drilling could easily identify 100,000 tonnes of 0.3 or better gold in two or three known locations on the Eddy property.

7.0 STATEMENT OF COSTS

Prospecting Services:
Craig Kennedy \& Sean Kennedy (14 man days @ \$300./day) .\$4200.
Supervision / mapping / sampling (Glen Rodgers,P.Eng.
$\ldots . .2$ days @ $\$ 400 . /$ day $\$ 800$.
4×4 truck (9 days @ \$50./day) \$ 450.
Assaying (Acme Labs) \$ 1350.
Report writing (G.Rodgers.... 1 day) \$ 400.
Office and Field supplies (bags, flagging, copying, etc.) . .\$ 150.

$$
\text { TOTAL }=\$ 7350
$$

Certified as a true approximation of costs incurred,

8.0 STATEMENT OF QUALIFICATIONS

Authors Qualifications

As co-author of this report, I Sean Kennedy certify that:

1. I am an independent prospector residing at \#208, $110823^{\text {rd }}$ Avenue North Cranbrook, BC.
2. I have been actively prospecting in the East Kootenay district of $B C$ for the past 7 years, and have made my living by prospecting for the past 4 years.
3. I have been employed as a professional prospector by junior mineral exploration companies.
4. I own and maintain mineral claims in BC , and have optioned claims to exploration companies.

As co-author of this report, I Glen Rodgers certify that;

1. I am a graduate (1977) of the University of Manitoba with a BBc. Degree in Geological Engineering.
2. I have practiced my profession continually since graduation by working for mining and mineral exploration companies throughout North America.
3. I have authored this report for myself and for Greg Ewonus and do not expect to receive shares in any mining company as a result of writing this report

APPENDIX I

(Assay Certificates)

ACME ANALYTICAL LABORATORIES LITD. (ISO 9002 Accredited Co.)								P.0. Box. 63 , Skookunchusk BC VOB 280 Submitted by: Glen Rodgers													PHONE (604$) 253-3158$					$\text { FAX (} 604 \text {) } 253-1716$				
SAMPLE\#	$\begin{gathered} \text { Mo } \\ \text { pprn } \end{gathered}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{ppm} \end{gathered}$	Pb ppm	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{ppm} \end{array}$	Ag pprn	Ni ppm	$\begin{array}{r} \mathrm{Co} \\ \mathrm{ppm} \end{array}$	$\begin{array}{cc} \text { Mn } & \mathrm{Fe} \\ \mathrm{ppm} & \% \end{array}$	As pprn	$\begin{array}{r} U \\ p p m \end{array}$	Au ppm	Th pPn	$\mathbf{S r}$ pprn	$\begin{array}{r} \mathrm{Cd} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Sb } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Bi} \\ \mathrm{ppm} \mathrm{~m} \end{array}$	$\begin{array}{r} V \\ \text { pprn } \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \% \end{gathered}$	$\begin{aligned} & P \\ & \% \end{aligned}$	$\begin{array}{r} \text { La } \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Cr} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Mg} \\ \% \end{gathered}$	Ba ppm	$\begin{gathered} \mathrm{Ti} \\ \% \end{gathered}$	$\begin{array}{r} \text { B } \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Al} \\ \% \end{gathered}$	$\begin{gathered} \mathrm{Na} \\ \% \end{gathered}$	$\begin{aligned} & K \\ & \% \end{aligned}$	$\begin{array}{r} W \\ \text { ppm } \end{array}$	$A U^{*}$ ppb
SI	<1	7	<3	1	<. 3	1	<1	7.07	<2	<8	<2	<2	4	<. 5	<3	<3	1	.19	. 001	<1	4	< 01	10	<. 01	<3	. 08	. 77	. 02	<2	<. 2
WE-20	1	8	7	3	<. 3	11	6	272.06	13	<8	<2	4	2	<. 5	<3	<3	5	. 01	. 007	3	15	. 94	25	<. 01	<3	. 90	. 01	. 11	2	. 6
WE-21	2	5	5	6	<. 3	16	6	202.24	31	<8	<2	3	2	<. 5	<3	<3	5	. 01	. 015	3	12	1.02		<. 01	<3	. 99	. 01	. 10	<2	1.8
WE-22	1	4	<3	10	. 3	12	2	494.07	17	11	<2	2	1	<. 5	<3	<3	12	. 01	. 008	23	13	1.90	22	<. 01	<3	1.89	<. 01	. 07	<2	. 7
WE-23	2	4	5	12	. 3	13	10	1464.97	13	<8	<2	3	2	$<.5$	<3	<3	13	. 01	. 019	1	18	1.16	14	<. 01	<3	1.71	. 01	. 06	<2	<. 2
WE-24	12	5	5	22	. 4	22	77	6214.86	4	<8	<2	<2	1	<. 5	<3	<3	10	<. 01	. 049	1	15	. 04		<. 01	<3	. 35	<. 01	. 01	5	1.2
WE-25	10	3	<3	17	. 4	26	54	34316.51	2	<8	<2	<2	2	< 5	<3	<3	7	. 01	. 038	3	12	. 03	88	<. 01	<3	. 38	. 01	. 07	<2	8.9
WE-26	2	8	6	11	<. 3	6	3	2812.58	5	10	<2	3	1	<. 5	<3	<3	4	. 01	. 038	11	14	. 01	13	<. 01	4	. 27	. 01	. 11	4	84.3
WE-27	3	5	5	5	<. 3	6	8	71.91	3	<8	<2	<2	2	<. 5	<3	<3	1	. 01	. 008	9	19	. 04	8	<. 01	<3	. 12	. 01	. 01	<2	5.7
WE-28	2	13	17	3	<. 3	15	15	551.58	47	<8	<2	<2	2	<. 5	<3	<3	1	. 02	. 012	1	16	. 02	5	<. 01	<3	. 06	. 01	. 01	5	5.0
WE-29	1	2	12	27	<. 3	11	8	794.08	57	10	<2	5	3	<. 5	<3	3	5	. 01	. 015	14	22	1.72		<. 01	<3	1.69	<. 01	. 08	<2	1.5
WE-30	1	4	<3	3	<. 3	4	3	461.09	4	10	<2	6	3	<. 5	<3	<3	3	<. 01	. 011	16	19	. 03	8	<. 01	3	. 23	. 04	. 02	<2	1.5
WE-31	4	3	<3	6	<. 3	7	7	1781.61	2	<8	<2	3	1	<. 5	<3	<3	2	<. 01	. 012	3	16	. 04		<. 01	<3	. 21	. 01	. 05	<2	1.9
UEA-32	2	5	3	11	<. 3	7	3	2351.21	2	<8	<2	7	1	<. 5	<3	<3	4	. 02	. 019	26	16	. 22		< 01	<3	. 48	. 02	. 07	<2	. 6
WEA-33	3	3	<3	15	<. 3	11	10	2313.01	<2	<8	<2	3	1	<. 5	<3	<3	2	<. 01	. 021	13	14	. 03	14	<. 01	<3	. 25	. 02	. 05	<2	26.2
WE-34	<1	2	<3	7	<. 3	8	9	311.33	2	<8	<2	3	1	< 5	<3	<3	,	< 01	. 007	2	10	2.07		<. 01	<3	1.58	. 01	. 06	<2	. 2
HEA-35	3	3	4	29	<. 3	23	12	4994.14	<2	8	<2	5	1	< 5	<3	<3	4	. 01	. 024	4	14	. 06	26	<. 01	<3	. 34	. 02	. 07	<2	25.4
WE-36	3	4	5	12	<. 3	19	6	1492.68	4	<8	<2	3	2	$<.5$	<3	<3	4	. 01	. 038		12	. 08		<. 01	3	. 24	. 01	. 08	3	3.6
WEA-37	3	4	4	3	<. 3	5	4	421.75	4	<8	<2	3	1	<. 5	<3	<3	2	<. 01	. 010	2	16	. 08	6	< 01	<3	. 23	. 01	. 05	<2	5.7
WEA-38	1	3	<3	4	<. 3	6	2	411.40	<2	<8	<2	3	1	<. 5	<3	<3		<. 01	. 016	4	11	. 01	5	<. 01	<3	. 29	. 03	. 01	2	34.8
WE-39	3	5	<3	5	<. 3	6	3	272.06	14	<8	<2	2	1	<. 5	<3	<3	3	< 01	. 016	1	20	. 13		$<.01$	<3	. 26	. 01	. 05	<2	2.9
WE-40	1	3	5	6	<. 3	13	14	1412.38	<2	<8	<2	<2	2	<. 5	<3	<3	4	<. 01	. 009	1	15	. 29	14	<. 01	<3	. 38	. 01	. 07	2	3.4
RE WE-40	1	3	3	6	<. 3	13	14	1382.33	<2	<8	<2	2	2	< 5	<3	<3	4	<. 01	. 008	2	13	. 28		<. 01	<3	. 40	. 01	. 07	2	<. 2
WE-41	2	6	8	6	<. 3	14	19	322.34	3	<8	<2	2	1	<. 5	<3	<3		<. 01	. 007	1	15	. 16		<. 01	<3	. 23	. 01	. 03	<2	21.8
WEA-42	3	10	5	7	<. 3	11	6	521.31	<2	10	<2	5	1	<. 5	<3	3	2	. 01	. 016	4	14	. 37	14	<. 01	<3	.43	. 01	. 07	3	8.3
WE-43	2	13	20	3	<. 3	5	3	172.09	35	<8	<2	5	5	< 5	<3	3		<. 01	. 015	8	14	. 01		<. 01	<3	. 18	. 07	. 03	<2	2.9
WE-44	10	40	78	14	. 6	2	1	221.58	<2	<8	<2	10	7	<. 5	<3	<3		<. 01	. 024	26	9	. 01		< 01	<3	. 31	. 01	. 13		493.0
WE-45	18	27	11	10	<. 3	3	1	182.16	<2	10	<2	14	3	<. 5	<3	<3		<. 01	. 021	42	5	. 01	49	<. 01	<3	. 49	. 01	. 15	<2	370.7
WE-46	3	19	29	44	<. 3	16	10	523.48	<2	8	<2	6	8	<. 5	<3	<3		<. 01	. 049	17	4	. 01		<. 01	<3	. 21	. 03	. 28	<2	99.5
WE-47	4	42	100	8	. 4	3	1	161.65	<2	<8	<2	16	6	<. 5	<3	<3		<. 01	. 014	48	12	. 02		<. 01	<3	. 23	. 01	. 17	<2	37.3
HE-48	2	14	40	6	<. 3	2	1	59.90	<2	<8	<2	6	12	< 5	<3	4	7	<. 01	. 014	21	9	. 01	24	<. 01	<3	. 16	. 01	. 14	<2	166.2
STANDARD DS3	9	128	30	158	. 3	39	12	7593.31	32	8	<2	2	28	5.0	6	6	73	. 55	. 088	16	177	. 57	142	. 08	<3	1.67	. 04	. 16	5	18.0

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, $W=100 \mathrm{PPM}$; $\mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH}, \mathrm{U} \& \mathrm{~B}=2,000 \mathrm{PPM}$; $\mathrm{CU}, \mathrm{PB}, \mathrm{ZN}, \mathrm{NI}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1\%, AG > 30 PPM \& AU > 1000 PPB

- SAMPLE TYPE: ROCK R150 60C AU* IGNITION BY ACID LEACHED, ANALYZE BY ICP-MS. (10 gm)

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

group 6 - precious metals by fire assay from 1 att. sample, analysis by icp-es.

- SAMPLE TYPE: ROCK PULP
dAte received: jul 182002 date report mailed: amply $25 / 02$ signed by. . h......d. tope, c.leong, j. hang; certified bic. assayers

group id - 0.50 GH Sample leached with 3 ML 2-2-2 hcl-hno3-h2o at 95 deg. C for one hour, diluted to 10 ml, analysed by icp-es.
UPPER LIMITS - AG, AU, HG, $W=100$ PPM; MO, $\mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH}, \mathrm{U} \& \mathrm{~B}=2,000 \mathrm{PPM} ; \mathrm{CU}, \mathrm{PB}, \mathrm{ZN}, \mathrm{NI}, \mathrm{MK}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$.
ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF' CU PB ZN AS > 1%, AG >30 PPM \& AU >1000 PPS
- SAMPLE TYPE: ROCK R150 60C AU* BY ACID LEACHED, ANALYZE BY ICP-MS. (10 gm)

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.
 Assay recommend bi Pb 25000 pom

$$
\mathrm{An}_{\mathrm{n}}>1000 \mathrm{pph} \text {. }
$$

ACME ANALYTIICAL LABORATORIES LID (ISO 9002 Accredited Co.)								P, O. Box 63, Skookunchusk BC VOB $2 B 0$, submitted by: 6 len Rodgers														$\text { PHONF (} 604 \text {) } 253-3158 \text { FAX (} 604) 253-1716$									
SAMPLE\#	$\begin{aligned} & \text { Mo } \\ & \text { ppm } \end{aligned}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{ppm} \end{array}$	$\underset{\text { pom }}{\mathrm{Ag}}$	$\begin{gathered} \mathrm{Ni} \\ \mathrm{ppmm} \end{gathered}$	Co ppm	$\begin{array}{r} \mathrm{Mn} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Fe} \\ \% \end{gathered}$	As pprn	$\begin{array}{r} U \\ \text { ppon } \end{array}$	Au ppm	Ih ppm	$\begin{array}{r} \mathbf{S r} \\ \mathrm{ppm} \end{array}$	Cd ppm	Sb ppm	$\begin{gathered} \mathrm{Bi} \\ \mathrm{pp} \end{gathered}$	$\begin{array}{r} v \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \% \end{gathered}$	$\begin{aligned} & P \\ & \% \end{aligned}$	$\begin{array}{r} \text { La } \\ \text { pprn } \end{array}$	$\begin{array}{r} \mathrm{Cr} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Mg} \\ \% \end{gathered}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Ti} \\ \% \end{gathered}$	$\begin{array}{r} \text { B } \\ \text { ppin } \end{array}$	$\begin{gathered} \text { Al } \\ \% \end{gathered}$	$\begin{gathered} \mathrm{Na} \\ \% \end{gathered}$	$\begin{aligned} & \text { K } \\ & \% \end{aligned}$	$\begin{array}{r} W \\ \mathrm{ppm} \\ \hline \end{array}$	$A u^{*}$ ppb
SI	1	<1	<3	4	<. 3	1	<1	9	. 04	<2	<8	<2	<2	2	$<.2$	<3	<3	<1	. $09<$. 001	<1	3	< 01	1	< 01	<3	. 01	. 42	<. 01	<2	. 2
WE-02-01	5	67	70	15	. 8	4	1	97	1.31	<2	<8	4	7	2	$<.2$	3	3	6	. 01	. 011	20	20	. 02	41	<. 01	<3	. 21	. 03	. 16	6	2868.5
WE-02-02	2	59	34	48	1.8	14	13	272	3.74	2	<8	25	5	5	. 3	6	<3		< 01	. 021	15	54	. 01	41	< 01	<3	. 33	. 04	. 11	<2	7053.6
WE-02-03	5	89	42	89	. 4	14	8	212	4.77	2	<8	3	6	3	. 4	8	<3		<. 01	. 030	13	23	. 01	30	< 01	<3	. 24	. 02	. 10	9	3324.6
WE-02-04	2	38	149	11	.5	4	2	217	1.01	<2	<8	<2	2	12	$<.2$	<3	<3	4	<. 01	. 009	6	66	<. 01	1659	$<.01$	<3	. 09	. 02	. 07	2	776.7
WE-02-05	3	71	500	9	4.8	5	<1	55	1.42	<2	<8	11	6	2	$<.2$	4	14	6	<. 01	. 013	22	27	. 01	264	<. 01	<3	. 15	. 02	. 20	8	10059.1
SD-02-23	2	10	12	21	<. 3	12	4	687	3.64	<2	<8	<2	4	105	<. 2	<3	<3	4	1.70	. 017	8	47	. 72	30	< 01	4	. 19	. 06	. 11	<2	25.0
SD-02-24	2	8	48	11	. 3	17	8	196	2.59	23	<8	<2	6	11	<. 2	4	<3	3	. 11	. 012	18	13	. 06	37	< 01	<3	. 27	. 08	. 14	3	144.0
SD-02-25	2	59	39	34	<. 3	20	9	673	4.23	16	<8	<2	4	6	<. 2	3	<3	4	. 02	. 019	10	56	. 03	8	<. 01	<3	. 18	. 12	. 01	2	17.0
SD-02-26	4	21	16	26	<. 3	17	6	540	3.01	13	<8	<2	7	7	<. 2	3	<3	5	. 05	. 019	17	20	. 03	14	<. 01	3	. 17	. 11	. 03	6	52.9
SD-02-27	2	75	67	124	. 3	28	13	1362	8.45	5	<8	<2	5	6	<. 2	3	<3	6	. 02	. 016	8	50	. 07	24	<. 01	<3	. 14	. 03	. 07	<2	9.4
SD-02-28	3	4	5	10	<. 3	10	3	629	2.26	6	<8	<2	4	10	<. 2	<3	<3	3	. 03	. 022	14	20	. 01	38	< 01	<3	. 20	. 11	. 02	7	146.2
SD-02-29	1	6	4	19	<. 3	7	4	457	1.85	<2	<8	<2	7	7	<. 2	<3	<3	4	. 02	. 016	19	47	. 01	39	<. 01	<3	. 20	. 08	. 06	<2	25.4
SD-02-30	3	14	4	13	<. 3	9	4	406	2.25	2	<8	<2	7	6	<. 2	<3	<3	1	. 04	. 025	16	22	. 02	26	<. 01	<3	. 16	. 07	. 05	8	1004.2
RE SD-02-30	4	16	5	14	<. 3	10	4	425	2.37	<2	<8	<2	7	6	<. 2	<3	<3	1	. 05	. 026	17	22	. 02	29	<. 01	<3	.17	. 07	. 05	8	858.4
SD-02-31	1	786	24	149	. 4	17	6	1753	5.69	11	<8	<2	2	69	. 4	<3	<3	3	. 74	. 012	3	80	. 38	30	<. 01	3	. 08	. 02	. 02	4	161.1
SD-02-32	3	5	7	19	<. 3	9	7	731	2.09	2	<8	<2	13	13	. 3	<3	<3	5	. 03	. 023	31	24	. 01	1799	<. 01	<3	. 22	. 05	. 10	8	1932.9
SD-02-33	1	53	7	46	<. 3	16	9	1021	2.02	3	<8	<2	7	8	<. 2	<3	<3	3	. 01	. 022	24	39	. 01		<. 01	<3	. 27	. 13	. 03	<2	130.0
SD-02-34	3	1290	<3	21	<. 3	8	3	1238	2.18	10	<8	<2	3	95	. 3	<3	<3	7	4.76	. 008	6	18	2.20	20	<. 01	<3	. 08	. 04	. 01	5	36.4
SD-02-35	21	466	186	17	7.5	7	2	89	1.99	5	<8	9	7	6	<. 2	<3	12	6	. 03	. 006	21	64	. 02	22	<. 01	3	. 18	. 07	. 08	2	10858.3
SD-02-36	5	20	4	25	<. 3	30	7	1023	4.88	<2	<8	<2	2	7	<. 2	3	<3	4	. 03	. 019	2	30	. 04	5	<. 01	<3	. 07	. 03	. 01	12	25.0
SD-02-37	1	5	3	12	<. 3	9	4	115	1.64	2	<8	<2	7	10	< 2	<3	<3	4	. 10	. 013	20	37	. 04	28	<. 01	<3	. 24	. 09	. 11	<2	25.8
SD-02-38	2	5	4	14	< 3	9	5	108	1.48	8	<8	<2	9	8	< 2	<3	<3	3	. 04	. 017	26	15	. 02	35	<. 01	<3	. 25	. 07	. 13	4	49.5
SD-02-39	1	4	<3	12	< 3	12	3	406	1.81	<2	<8	<2	5	25	<. 2	<3	<3	3	. 29	. 023	12	47	. 06	35	<. 01	<3	. 16	. 10	. 03	<2	344.9
SD-02-40	4	4	<3	15	<. 3	12	4	295	1.88	<2	<8	<2	7	5	<. 2	<3	<3	3	. 02	. 011	21	23	. 02	25	<. 01	<3	. 21	. 10	. 05	7	173.5
SD-02-41	1	8	13	9	<. 3	8	8	108	1.64	6	<8	<2	7.	5	< 2	<3	<3	5	. 03	. 019	28	23	. 03	58	<. 01	<3	. 36	. 06	. 22	<2	6.4
SD-02-42	5	14	5	11	<. 3	8	2	892	2.30	2	<8	<2	3	6	<. 2	<3	<3	3	.16	. 009	13	27	. 03	58	<. 01	<3	. 19	. 04	. 08	12	2.5
SD-02-43	2	4	32	20	< 3	19	11	260	3.75	4	<8	<2	3	14	<. 2	<3	<3	14	. 08	. 042	4	56	. 04	9	<. 01	<3	. 23	. 10	. 02	2	3.3
SD-02-44	4	7	15	25	<. 3	19	5	308	2.54	7	<8	<2	6	8	<. 2	<3	<3	3	. 04	. 024	21	23	. 02	24	<. 01	<3	. 24	. 09	. 05	8	9.5
STANDARD DS3	10	117	31	153	<. 3	34	11	799	2.99	30	<8	<2	4	27	5.1	6	6	70	. 52	. 086	16	174	. 56	146	. 08	<3	1.64	. 04	. 16	5	22.0

GROUP $10-0.50$ GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, $W=100 \mathrm{PPM}$; MO, CO, CD, SB, BI, TH, U \& B = $2,000 \mathrm{PPM}$; $C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 P P M$. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS $>1 \%$, AG >30 PPM \& AU >1000 PPB
SAMPLE TYPE: ROCK R150 AU* IGNITION BY ACID LEACHED, ANALYZE BY ICP-MS. (10 gm)
Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

