REPORT ON GEOLOGICAL MAPPING AND DRILLING PROGRAM WARD GROUP

RECEIVED

NOV - 4 2002

Gold Commissioner's Office VANCOUVER, B.C.

GREENWOOD MINING DIVISION BRITISH COLUMBIA

BY

R.E. GALE - P.ENG.-PHD.

R.E. Gale and Associates Inc.

NTS 82E/7W

49 28 N 118 53 E

UTM 0362439E 5481264N

Work Paid For By JONPOL EXPLORATIONS LTD.

Report Dated October 22, 2002

GEOLOGICAL SURVEY BRANCH

26,979

TABLE OF CONTENTS

•	SUMMARY	PAGE 1
-	(1.0) LOCATION-TOPOGRAPHY	2
	(2.0) CLAIMS	2
	(3.0) HISTORY	2
-	(4.0) REGIONAL GEOLOGY	3
_	(4.1) Rock Types	3 、
_	(5.0) GEOLOGY-WARD GROUP	4
-	(5.1) Introduction	4
	(5.2) Detailed Geology – South Zone	5 7 9
	(5.3) Drilling Results – South Zone	/
	(5.4) Trenching and Sampling – South Zone (5.5) Soil and Rock Samples – South Zone	11
	(6.0) NORTH ZONE	14
	(6.1) Introduction	14
	(6.2) General Geology - North Zone	14
	(6.3) Drillholes	15
	(7.0) CONCLUSIONS AND RECOMMENDATIONS	15
	(8.0) COST STATEMENT	16
	(9.0) REFERENCES	17
	(10.0) CERTIFICATE	18
-	<u>TABLES</u>	
-	TABLE 1 Claims	2
-	TABLE 2 Trench Samples	10

_	TABLES	PAGE
_	TABLE 1 Claims	2
	TABLE 2 Trench Samples	10
-	TABLE 3A Rock Samples	12
_	TABLE 3B Rock Samples	13
_	<u>FIGURES</u>	SCALE
-	FIGURE 1 Location – Claims Map - In Report	1: 50,000
-	FIGURE 2 Regional Geology - In Report	1: 150,000
	FIGURE 3 Preliminary Geology Ward Group - In Report	1: 20,000
•	FIGURE 4 South Zone Geology and Drill Holes – In Pocket	1: 2,500
-	FIGURE 5 South Zone Sample Locations - In Pocket	1: 2,500
_	FIGURE 6 North Zone Drillholes - In Report	1: 2,500
_	FIGURE 7 Trenches 1,2,3 Geology – In Pocket	1: 250
-	FIGURE 8 Trenches 4,5,6 Geology – In Pocket	1:500
	FIGURE 9 Soil Geochemical Results – In Pocket	1:1,000
-	APPENDICES	
	APPENDIX A – DRILL LOGS	
	APPENDIX B – ASSAY CERTIFICATES	

SUMMARY

In Phase One of the 2002 program undertaken by Jonpol Explorations Ltd. Geological mapping and sampling in July 2002 was followed in August by trail building, trenching and drill site preparation utilizing a John Deere 790ELC track excavator. During September a drill contract for 1500 feet (460 metres) of NQ diamond drilling was negotiated with Bergeron Drilling of Greenwood.

Drilling began September 9th. and was completed September 26th. Lack of water near the drillsites meant that all water for drilling had to hauled by truck from Triple Lakes to the drill sites at the north and south ends of the property, a haul of up to 6 Kms. length.

Drill holes 1 through 6 were drilled in the South Zone on soil geochemical anomalies. The results of this drilling provided substantiation for the source of the gold and arsenic soil anomalies but proved that there was uneconomic grade mineralization at the sites drilled.

Holes 7 through 9 drilled in the North Zone on a VLF-EM anomaly and a surface showing of a gold-bearing vein and mineralized talus also failed to discover any gold mineralization of economic grade.

Some of the most promising targets for gold mineralization were tested in the Phase One drilling program with negative results but there remain several gold-bearing veins which have not been delineated at depth and along strike. These potential targets should be outlined by an IP survey and soil sampling to be followed by drilling if warranted.

The cost of this proposed Phase Two work is estimated to be \$150,000 with \$50,000 of the latter amount allotted to the IP work and soil sampling and \$100,000 to 700 metres of NQ diamond drilling. This program of work should be planned for the 2003 field season starting in May.

(1.0) LOCATION - TOPOGRAPHY

The Ward Group of 108 claims is located about 20 kms east of the village of Beaverdell and 50 kms. north of the town of Rock Creek along the west side of the Kettle River. The area is easily accessible by an excellent paved highway, Highway No. 3 running for 32 kms north of Westbridge. A 4 km long gravel Forestry road, the 4th of July Creek road runs uphill west from the end of pavement to the claims area.

The claims lie within the Greenwood Mining Division, NTS 82E/7W, at an elevation of about 1000 to 1500 metres above sea level. UTM coordinates for the center of the claims at the LCPs for the Ward 1,2,3 and 4 claims is 0362439E 5481264N. The claims are shown on Ministry of Mines map M082E046.

The claims area is made up of a relatively flat plateau with several NNE – trending ridges running across it. Fir, pine and cedar are the predominant types of trees and much of the area has been logged leaving large clearcuts and a tangle of windfall and second growth scrub which makes traversing the area very difficult.

(2.0) **CLAIMS**

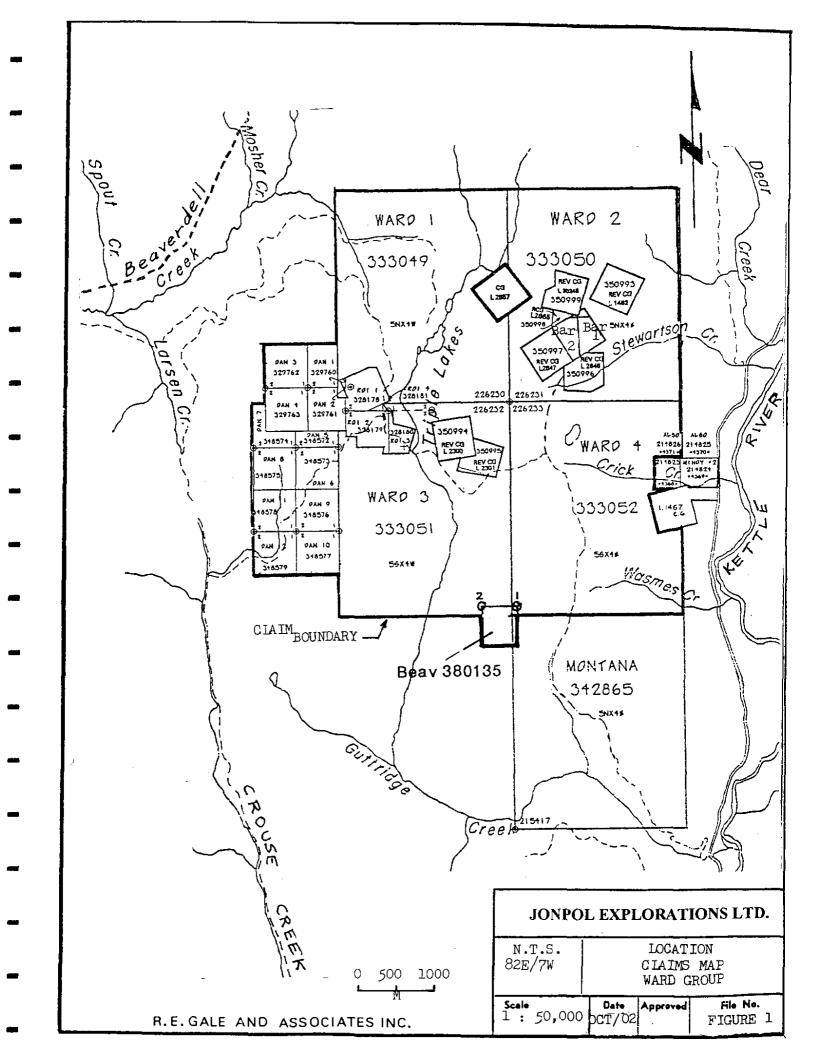

The owner of record of the ROI 1-4, Dan 1-12, Bar 1-2, Bea 1-2 and 7 Reverted Crown Grant claims is R.E. Gale. The owner of record of the Ward 1-4 claims is Phelps Dodge Corporation of Canada Ltd. The location of the claims is shown in Figure 1. Anniversary dates shown are after credit for the present work done in 2002.

Table 1

Claim Name	Units	Tenure No.	Anniversary Date
ROI 1-4	4	328178-81	July 18, 2005
Dan 1-4	4	329760-63	Aug. 9, 2005
Dan 5-8	4	348572-75	July 19,2005
Dan 9-12	4	348576-79	July 20,2005
Bar 1-2	2	356866-67	June 26,2006
Beav	1	380135	Aug. 29, 2006
Bea 1-2	2	394023-24	June 6, 2005
RCGs	3	350994-96	Sept. 30, 2005
RCGs	2	350998-99	Sept. 30, 2005
RCGs	2	350993&97	Sept. 30, 2006
Ward 1-4	80	333049-52	Dec. 8, 2005

(3.0) HISTORY

The Barnato, Mogul and several other old claims in the area were staked for gold in 1896-1898 and small gold ore shipments have been made over the years from a few claims including the Barnato in 1938, 84.9 tons grading 1.58 opt. and the Mogul, in the

1930's up to 1940. Up to 1940 212 tonnes carrying a total of 9580 grams of gold and 5193 grams of silver is reported to have been produced from the Mogul claim.

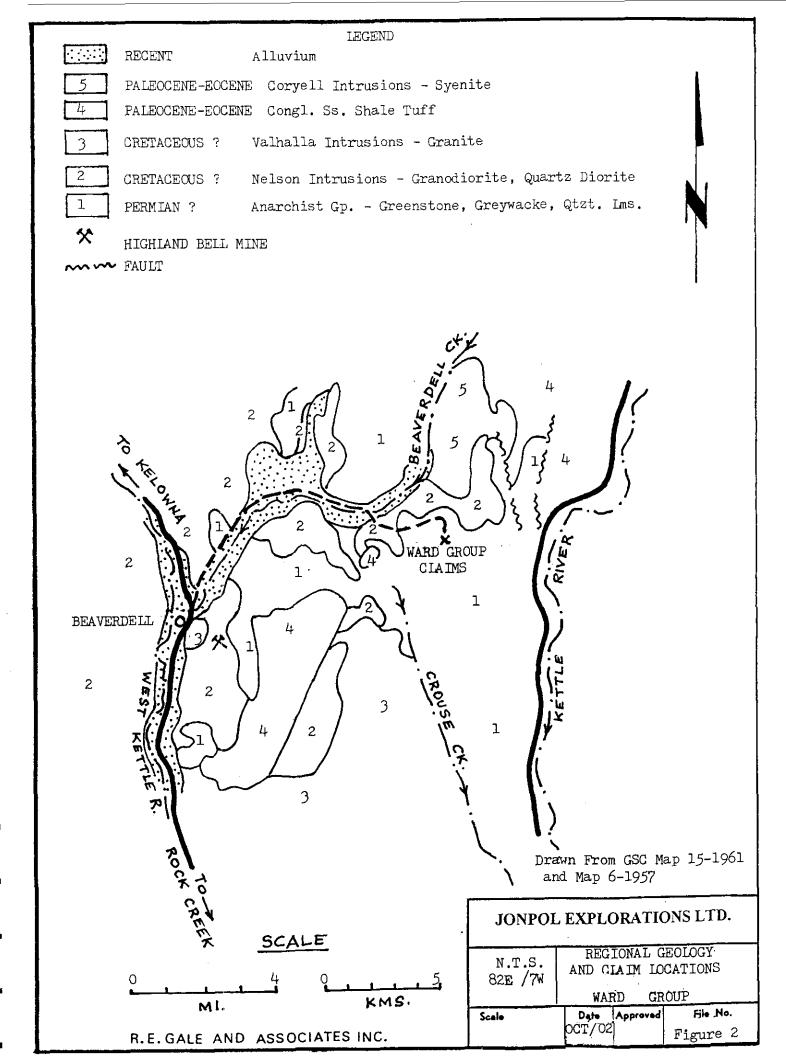
Cominco did a 12 hole drilling program on the Barnato in 1938 and Amcana Gold Mines drilled some short holes here in 1962-66. No information is published on either drilling program. Camnor Resources completed a 5 hole 300 metre program in 1977 for which no data is published and Carmac Resources after becoming Operator on the claims in 1979 optioned the ground to Golden Seal Resources which drilled 200 metres in 4 percussion holes in 1986, (Assessment Report 14,952).

In 1989, 1990 and 1992 Carmac Resources carried out geological, geochemical surveys(Assessment Reports 19524,20122 and 22396) but reported no drilling during the latter work. In 1970, Dekalb Mining found a Cu-Mo soil geochemical anomaly on part of what is now the Ward 4 claim and are reported to have drilled 2 holes which found low grade gold values, but no published data is available on this drilling.(Assessment Report 2951). Petroquin Resources working in the same area in 1983(Assessment Report 11375) did no soil or rock sampling and did not report any gold values present here but Lucky 7 Exploration in 1989 working in the same area as Dekalb and Petroquin outlined a significant gold-arsenic in soils anomaly with the best value being 1000 ppb Au, 990 ppm As. There is no published evidence that Lucky 7 followed up on their discovery.

In 1994-95, Phelps Dodge Corporation carried out a program of mapping, rock sampling, soil sampling, induced polarization survey and diamond drilling in 3 holes totaling 468 metres (Assessment Report 23835)

In 1997-2000 after Emjay Enterprises Ltd. optioned all of the claims, the author was in charge of geological mapping, rock and soil sampling, an I.P. survey and backhoe trenching which resulted in the discovery of gold in bedrock in the same area as that soil sampled by Lucky 7 in 1989.

After optioning the claims from Emjay, Jonpol Explorations Ltd. contracted the author to carry out further mapping and sampling, extend the trenching and do 500 metres of diamond drilling during the year 2002. The results of the latter program are the subject of this report.


(4.0) REGIONAL GEOLOGY

(4.1) Rock Types

Figure 2 shows the Regional Geology of the area as taken from GSC Maps 15-1961 and 6-1957 covering the Beaverdell area eastward to the Ward claims. The rock types noted on Figure 2 are as follows:

Unit 1

These are the oldest rocks in the map area and are part of what has been termed the Anarchist Group of probable Carboniferous-Permian age. They are the most common

rocks in the area of the Ward claims and include greenstone greywacke, quartzite and minor limestone which are often strongly folded, faulted and metamorphosed to hornfels. Although the use of the term Anarchist Group is presently not recommended, there is no recent regional mapping which allows correlation of the rocks in the map area to those to the east in the Greenwood area where newer subdivisions of these rocks have been made so that the old terminology still must be used here.

Unit 2

The Anarchist rocks are intruded by stocks, dykes and sills of the Nelson Batholith of Cretaceous age which are principally granodiorite and quartz diorite in the map area. Both types of intrusive rocks occur within the Ward claims area. The most common intrusive rocks on the claims, diorite may be of this age but some diorite could be older and part of the Anarchist Group rocks.

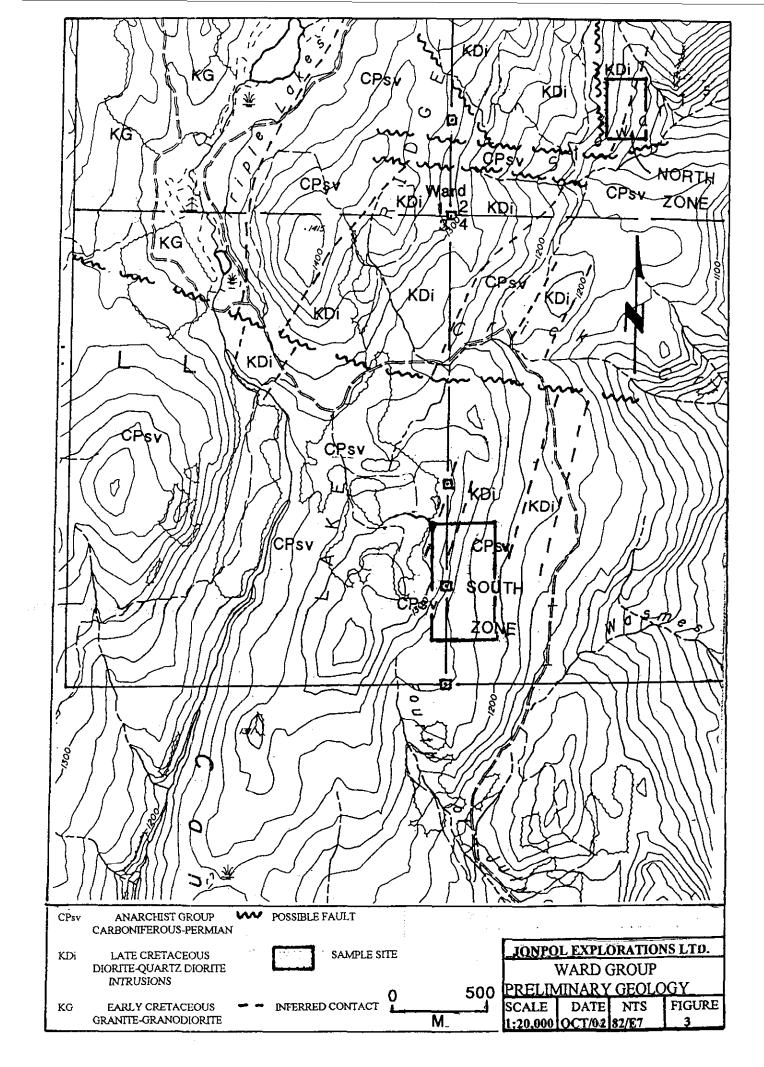
Unit 3

Valhalla granitic to syenitic intrusions which are younger than the Nelson intrusions but probably also of Cretaceous age occur in the southern part of the map shown in Figure 2 but do not apparently occur within or close to the Ward claims.

Unit 4

Tertiary rocks of Unit 4 consist of sedimentary and volcanic rocks and are in fault contact with older rocks, probably as down-faulted blocks, to the northeast of the Ward claims near the Kettle Valley. These rocks apparently do not occur on the Ward claims.

Unit 5


The Tertiary Coryell intrusions are mainly of syenitic composition and include stocks and dykes. In the area of the Ward claims numerous dykes of possible syenitic and andesitic composition cut all of the older rocks and appear to be mainly post-mineral in age.

(5.0) GEOLOGY - WARD GROUP

(5.1) INTRODUCTION

Figure 3 shows the Preliminary Geology of the Ward Group. The sample and drill work in 2002 was confined to two areas noted as the South Zone, near the southern boundary of the claims and the North Zone in the northeast corner of the map near the Barnato vein area about 2.5 kms. northeast of the South Zone.

The oldest rocks indicated in Figure 3 are part of the Anarchist Group (CPsv) of Carboniferous – Permian age. These rocks are mainly chert and minor greenstone and their metamorphosed equivalents. To the north of the east-west fault along Crick Creek,

attitudes in chert are relatively flat lying but to the south of the fault bedding in chert strikes NE and dips at 50 degrees or more to the south.

In the Northwest corner of the map area, a stock of Early Cretaceous Granodiorite (KG) intrudes the chert-greenstone and is cut off to the south by the Crick Creek fault. These rocks are mineralized by gold-bearing quartz veins at the OK showing west of Triple Lakes. The gold mineralization here differs from that in the dioritic intrusions to the east and south.

Late Cretaceous intrusions of diorite (Kdi) in irregularly-shaped bodies are the most common type of intrusive rocks seen in the map area. No contacts between the diorite and the granodiorite (KG) are seen and good contacts between chert and diorite are rare. Most diorite probably is younger than and intrusive into chert but in some outcrops the two rocks appear to have gradational contacts and fault contacts are also noted between the diorite and chert. The diorite is the best host for gold-arsenic mineralization.

Too small to be shown on Figure 3 are the numerous dykes of Tertiary age andesite porphyry which are unmineralized and cut through all other rocks. The dykes are up to 5 metres wide and are concentrated in and near zones of mineralization in diorite but do not appear to be directly related to the gold mineralization.

(5.2) DETAILED GEOLOGY – SOUTH ZONE

(5.2.1) General Geology

Figure 4 at a scale of 1:2,500 is a map showing outcrops and an interpretation of the geology of the South Zone on the Ward 3 and 4 claims. Also shown are the locations of diamond drillholes 1 through 6 drilled in this zone.

The most important feature of the geology is the relatively large area of diorite (Unit 3) in a stock-like body which occurs in the center of the map area. Smaller areas of dyke-like bodies of diorite occur at the east and west edges of the map where the intrusive rock is in fault contact with chert.

The remainder of the map area consists of chert (Unit 1) except for an area near the Northwest corner designated as pyrite-quartz rock (Unit 2) which is probably highly recrystallized and pyritized chert, although it is possible that it is partly diorite because it occurs on or near the contact between chert and diorite. Also noted are several outcrops of andesite porphyry dyke (Unit 4)up to 5 metres wide which are connected up to show their north-northwest to north-northeast alignments.

(5.2.2) Diorite – Unit 3

The diorite intrusive is the most important host for gold-arsenic mineralization and also contains anomalous amounts of copper in some outcrops and drill intercepts. The intrusion is interpreted to lense out as dyke-like bodies to the northwest and southwest

from the stock. At its southwest end it terminates across a fault contact with chert and to the west of the fault the diorite is present as north-south trending pods in chert. Trench No. 2 across the SW fault disclosed strong silicification and pyrite mineralization carrying gold-arsenic values associated with the diorite in contact with the chert. A similar northerly trending fault contact between chert and diorite in an old prospect pit about 300 metres NNW shows strong arsenopyrite mineralization with gold values in chert near the diorite contact.

It appears that diorite-chert contacts, especially where they are faulted and veined with quartz, are one of main controls on the gold-arsenopyrite mineralization.

The curved western contact of the diorite is partly mirrored in the curvature of the topography and is due to the more resistant nature of the chert forming the hillside at the west side of the area.

As noted in previous work the pattern of the main soil anomaly for arsenic also mirrors this crescent-shaped form of the diorite distribution again indicating the coincidence of gold-arsenic values with the distribution of diorite.

(5.2.3) Chert (Unit 1)

The chert is the oldest rock and also the most abundant rock in the area. Although it is extremely hard, where it is strongly fractured it must tend to break down readily and is recessive forming few outcrops.

As with the diorite, the chert in most outcrops is somewhat pyritic but it normally carries lesser amounts of arsenic and gold than diorite except at or near fault contacts with the diorite. The chert is host to small zones of arsenic-gold-copper mineralization in quartz-chlorite-pyrite-chalcopyrite lenses in pits near the SW and NW corners of the map area where it is in fault contact with diorite.

Although pyritic and rusty in most outcrops, as seen in drillholes some of of the chert is quite white, fresh-looking and well banded showing original bedding and quite barren of pyrite or any other mineralization.

(5.2.4) Pyrite-Quartz Rock (Unit 2)

This rock occurs west of the main diorite mass near the contact with chert and is interpreted to be a highly silicified and pyritized chert. Its position as a "cap rock" near the top of the hill on the west side of the map area suggests that it may be intensely altered chert overlying a flat-dipping contact with diorite. This could suggest that a blind target for mineralized diorite could exist beneath this cap but samples of the pyrite-quartz rock are almost barren assaying 10-20 ppb Au and 2-22 ppm As. If it is a cap rock over significant mineralization in diorite, it should show some fractures with better grade mineralization than that found to date.

(5.2.5) Andesite Porphyry (Unit 4)

Andesite dykes trending NNW and NNE extend discontinuously in outcrop for distances of 200-300 metres across the map area. These dykes are probably intruded in and along major shear zones which are also associated with mineralization. Although the dykes are noted in mineralized zones they appear to be post-mineral in age and not directly related to the mineralization. It is probably the association of the dykes with the shear zones which also control the location of mineralization that accounts for the dykes occurrence with mineralization.

No sills of andesite porphyry are noted in outcrop but in drilling several metres of the porphyry were encountered, particularly in hole 02-5 which is hard to explain unless the intersections represent sills and this is the favored interpretation for the area of this drillhole.

(5.3) DRILLING RESULTS - SOUTH ZONE

The location of drillholes 02-1 through 02-6 are noted on Figure 4 and the Logs for the holes are included as **Appendix A**.

(5.3.1) Holes 02-1 and 02-2

These 2 holes were drilled on an outcrop of diorite which showed thin fracture-controlled veins of pyrite-arsenopyrite carrying gold values. The outcrop is also at the uphill west edge of the largest As-Au-Cu soil anomaly in the South Zone and therefore was interpreted to be an excellent drill target for a possible large low grade gold deposit.

Hole 02-1 was drilled vertical for 223 feet, or approximately 69 metres, and cut fractured pyritized diorite for about 57 metres then went into a barren dense rock resembling chert. Sampling was done mainly at 3 metre intervals and most of the rock contained only 0.1 to 0.2 g/t Au except for a 0.8 metre interval from 14-14.8 metres which assayed 1.135 g/t Au and >10,000 ppm As.

Hole 02-2 was drilled S10 degrees West at an angle of -60 degrees for 223 feet, or approximately 69 metres. The hole was in pyritized diorite to 57 metres then went into a dense barren rock resembling chert or very fine grained monzonite. Samples were mainly taken at 2 metre intervals and results were slightly better than in the first hole. The 6 metre interval from 33.35 to 39.35 averaged 0.27 g/t Au, 1.8 metres from 39.35 to 41.15 assayed 2.12 g/t Au and 16 metres from 41.15 to 57.15 averaged 0.28 g/t Au and 720 ppm As. The assay results in these holes although sub-economic do substantiate the validity of the soil sample results and show that the anomalous soils are more or less in place over the mineralized rock and have not moved down slope to any great degree.

(5.3.2) Holes 02-3 and 02-4

Drillholes 02-3 and 02-4 are located at the site of Trench 4 which is the trench in which

in the year 2000 program a picked sample of pyrite-chalcopyrite from a 0.5 metre wide shear assayed 4800 ppm As, 14.49 g/t Au and 3420 ppm Cu.

Hole 02-3 was drilled south at -60 degrees in order to test this newly-discovered zone at depth. At 4.15 – 4.70 metres depth a 0.55 metre zone consisting of a 10 cm wide quartz-arsenopyrite veinlet and disseminated pyrite in diorite was intersected which assayed 10.76 g/t Au, >10,000 ppm As and 4713 ppm Cu over the 0.55M wide interval. The strike of this vein in the hole is unknown so that it is not clear if this is the same or a related zone to that noted in the trench in 2000.

At a depth of 8.70 metres to 18.70 metres hole 02-3 cut diorite with disseminated pyrite assaying an average of 0.45 g/t Au, 2226 ppm As, over the 10.0 metre interval. Below 18.70 the hole showed variable gold values before entering a barren andesite dyke and was terminated at 49.20 metres.

Hole 02-4 was drilled north at -60 degrees from the same setup as 02-3 in order to see if the mineralized zone in 02-3 could be extended to the north.

At 12.15 to 14.15 metres the 2 metre interval assayed 0.93 g/t Au and 3910 ppm As. This intercept is related to a 0.1 metre wide quartz-arsenopyrite veinlet in diorite which dips nearly parallel with the dip of the hole. Another 4 metre interval in diorite from 16.15 to 20.15 metres graded 0.525 g/t Au, 288 ppm As. The hole bottomed in barren chert at 32.15 metres.

(5.3-3) Holes 02-5 and 02-6

Hole 02-5 drilled south at -55 degrees was sited to intersect at depth a new showing found in Trench 2 this year. Two samples of an east-west trending replacement zone about 0.3 metres wide which dip 70 degrees northerly were found in the trench in chert adjoining a north-striking contact with diorite.

Hole 02-5 was drilled in chert with traces of arsenopyrite mineralization at several points but unfortunately intersected a number of wide zones of barren andesite porphyry dyke and/or sill and eventually bottomed in barren dyke at 65.25 metres without intersecting the mineralization in the trench.

The best result in hole 02-5 was the 4 metres from 22.15 to 26.15 metres which graded 0.375 g/t Au.

Hole 02-6 was sited about 15 metres southwest of 02-5 and drilled at -50 degrees on a bearing of S 40 degrees east to try to avoid the dykes which may be trending N-S here. Only 2 intercepts of dyke were encountered to a depth of 43.80 metres where the hole was bottomed in barren dyke. The drillhole was once again in chert with traces of mineralization for most of the hole. A silicified and brecciated contact between diorite and chert was encountered from 36.45 to 42.95 metres. This 6.5 metre zone graded only

0.34 g/t Au and it appears that the better grade massive pyrite mineralization seen in trench 2 is lensy and does not extend to depth in this area.

(5.4) TRENCHING AND SAMPLING – SOUTH ZONE

Figure 5, at a scale of 1:2,500, shows the location of outcrop and trench samples plus 3 lines of soil samples taken during this year's exploration program. A track equipped John Deere excavator with a 1 metre bucket was used to construct trails and drillsites plus dig 6 trenches during the period Aug. 12-21. Six trenches were dug for a total length of about 150 metres. Figures 7 and 8 show the geology mapped in trenches 1 through 6.

(5.4.1) Trench Samples

15 samples were collected from the trenches during the course of the program. In **Table 2** the type of sample and sample results for gold, arsenic and copper are listed. All assay results are included in **Appendix B.**

In **Trench One**, the best sample result was 453034, pyritized chert grading 0.371 ppm Au. On the basis of the sample results here drill testing of this area was not warranted.

Trench Two was excavated at the site of one of the highest Au-As soil anomalies and disclosed significant mineralization at shallow depth of less than one metre at a northerly-trending fault contact between diorite on the west and chert on the east. Two samples of quartz-chlorite-pyrite-chalcopyrite veining about 0.3 metres wide, samples 453031 and 453032 assayed 0.676 ppm Au and 7.44 ppm (0.22 opt Au) respectively. Drillholes 02-5 and 02-6 were drilled from the north to intersect this northerly dipping mineralization at depth.

Trench Three was excavated to the north of Trench two to look for possible continuations of the mineralization found in Trench two. Faulted, interbanded chert and diorite were exposed near the centre of Trench three but further east the overburden was to deep for the machine to reach bedrock. Two samples from Trench three showed no gold values of interest.

Trench Four was excavated at the same site as the trench dug in 2000 which found high grade gold in a quartz-bearing shear zone. The new trench was not able to duplicate the position of the 2000 trench exactly and intersected the shear in a different position which showed a faulted and offset lense of quartz-pyrite-chalcopyrite. A chip sample across 0.5 metres of this shear, sample 453037, assayed 1.825 ppm Au. This low result indicates that the high grade portion of the zone is not continuous along strike and is probably small in size.

Trench Six was dug about 15 metres south of Trench Four to investigate an anomalous soil result here and see if the mineralized shear in Trench Four continued to the south. Diorite and silicified diorite in Trench Six, sample 45308, did not show significant values in gold.

Table 2

TR	SAMPLE	DESCRIPTION	Au-ppm	As- ppm	Cu-ppm
One	453033	Picked sample chert w/ strong pyrite 10 metres east of west end of trench	0.044	21	450
	453034	Chert w/pyrite-0.3 metres wide 3M east of sample 033	0.371	131	757
	453035	Pyritic chert-0.3M wide-3M east-034	0.173	129	918
, ,	453036	Picked sample-silicified. Diorite with strong pyrite 3M east of sample 035	0.089	126	187
Two	453026	East end-picked qtz vein in chert	0.103	829	569
	453027	2M west of sample 026 Chert Bx w/ pyrite – 1M	0.374	1005	617
	453028	West end-picked silicif diorite-pyrite	0.072	102	181
	453029	5M east of sample 028 picked silicified diorite-pyrite	0.179	138	101
	453030	3M east of sample 029-1M wide quartz pyrite along fault in diorite	0.333	890	569
	453031	Strong pyrite 0.3M wide in chert at contact with diorite of sample 030.	0.676	682	1265
	453032	3.5M east of sample 031-0.3M wide strong pyrite in north wall bounded on east by 0.1M quartz-pyrite shear	7.44	720	1225
Three	453039	Grab sample silicified-pyritized diorite 10 metres from west end of trench	0.079	89	192
	453040	Grab sample chert 5M east of sample 039	0.122	231	303
Four	453037	Chip sample across 0.5 metres –Quartz- pyrite-chalcopyrite shear in diorite	1.825	279	424
Six	453038	Diorite and chert with pyrite	0.347	180	352

Trench Five was a north-south trench put in to investigate the SW side of the mineralized diorite exposed in Trench four and a gold-bearing outcrop to the east of Trench six (Sample 453038). The trench, about 20 metres long, exposed a very hard rounded and massive outcrop of white andesite porphyry or fresh diorite which was impossible to sample by hand. The rock appears to be barren of mineralization.

.(5.5) SOIL AND ROCK SAMPLES – SOUTH ZONE

Soil Samples

As noted on Figure 5 three lines of soil samples were taken prior to the start of trenching in 2002 along lines

80+25N-10,185E to 10,215E

80+00N-10,125E to 10,250E

79+50N-10,100E to 10,250E

These samples were taken to see if soil samples might indicate an extension of the high grade shear zone found in the 2000 trench to the south of that trench. No anomalous results for both As and Au contiguous with the trench area were found. One sample at 79+50N 10,175E is anomalous with 40ppb Au, 236 ppm As. Soil sample results are included in **Appendix B**. Soil geochemical results are plotted on Figure 9.

Rock Samples

Figure 5 shows the location of 27 outcrop and dump samples taken during the course of mapping in and around the area of the main As-Au-Cu soil anomalies in the South Zone.

Table 3A and **3B** list these rock samples with a description of the sample and the assay results for Au, As and Cu. Copies of assay results are included in **Appendix B**.

Assays of interest include sample 453012, a picked sample of a small quartz vein at the northern edge of a diorite outcrop located about 25 metres south of Trench 4. This veinlet appears to represent the southern limit of gold mineralization south of Trench 4 as diorite outcrop to the south and that in Trench 6 appears to be barren.

Samples 453014 and 453015 represent a picked dump sample of 4-5 cm quartz-arsenopyrite vein fragments and a grab sample of wallrock fragments from a 3x3 metre wide x 5 metre deep pit near the western side of the map area. The vein material carries good gold values, 8180 ppb Au or about 0.26 opt Au. The extent of the mineralization is unknown and a drillhole could be warranted to determine the size of the mineralized zone here during another program of work.

Similarly, samples 453019 and 453020 located on dumps about 250 metres south from sample site 453014 show the presence of high As and elevated Au values and could warrant further work in the future.

Sample 453042 was a picked sample of fracture mineralization in diorite outcrop exposed during site preparation for DDH 02-1 and is of interest because it is the first outcropping mineralization found in the main hill of diorite at the centre of the main As-Au soil anomaly. Followup drilling in holes 02-1 and 02-2 showed that this type of fracture-filling mineralization is too poorly developed to form large low grade gold deposits in the part of the anomaly drilled in these 2 holes.

Table 3A

No.	Description	Au-ppb	As-ppm	Cu-ppm
453001	1 metrechip sample-Diorite	95	48	141
453002	1 metre chip sample - Diorite	250	110	193
453003	1 metre chip sample - Diorte	60	92	206
453004	Float –Diorite breccia in area of soil anomaly	30	136	175
453005	Chips across 1 metre – Diorite outcrop	110	118	46
453006	Picked sample – diorite w/ disseminated pyrite	40	64	314
453007	Picked sample chert w/ magnetite veinlets	200	68	810
453008	Grab sample – pyritized Diorite outcrop	20	22	303
453009	Grab sample – pyritized chert outcrop	35	40	229
453010	Picked sample 0.3M wide magnetite vein	25	82	213
453011	Strong pyrite in quartz- altered chert ?	10	2	408
453012	Picked sample 1 cm quartz-pyrite vein-diorite	1665	1330	130
453013	Pyrite-quartz-rock altered chert ? outcrop	15	12	164

Table 3B

No.	Description	Au-ppb	As-ppm	Cu-ppm
453014	Picked dump sample quartz-arsenopyrite vein	8180	>10,000	75
453015	Grab wallrock material same dump as 453014	290	4590	351
453016	Small pit in Diorite – grab from dump	15	168	89
453017	Grab from dump-pyrite in chert in 2Mx2M pit	60	34	320
453018	Grab from dump-small pit in pyritized chert	270	228	157
453019	Picked dump sample 3 cm quartz-arsenopy vlt	9600	>10,000	419
453020	Picked dump sample-chert, Diorite, arsenopy	1195	4100	169
453021	Float pyritized Diorite in soil anomaly area	235	178	155
453022	2 Grab pyritized Diorite outcrop in soil anomaly area.		402	196
453023	Grab silicified pyritized Diorite - outcrop	107	82	273
453024	Grab white silicified Diorite – outcrop	18	11	298
453025	Grab silicified Diorite - outcrop	203	9	418
453041	Picked 4 cm quartz pyrite vlt in Diorite outcrop-Drillsite No. 02-1	164	805	513
453042	Picked 4 cm quartz pyrite arsenopyrite vlt in Diorite outcrop-Drillsite No. 02-1	3880	>10,000	256

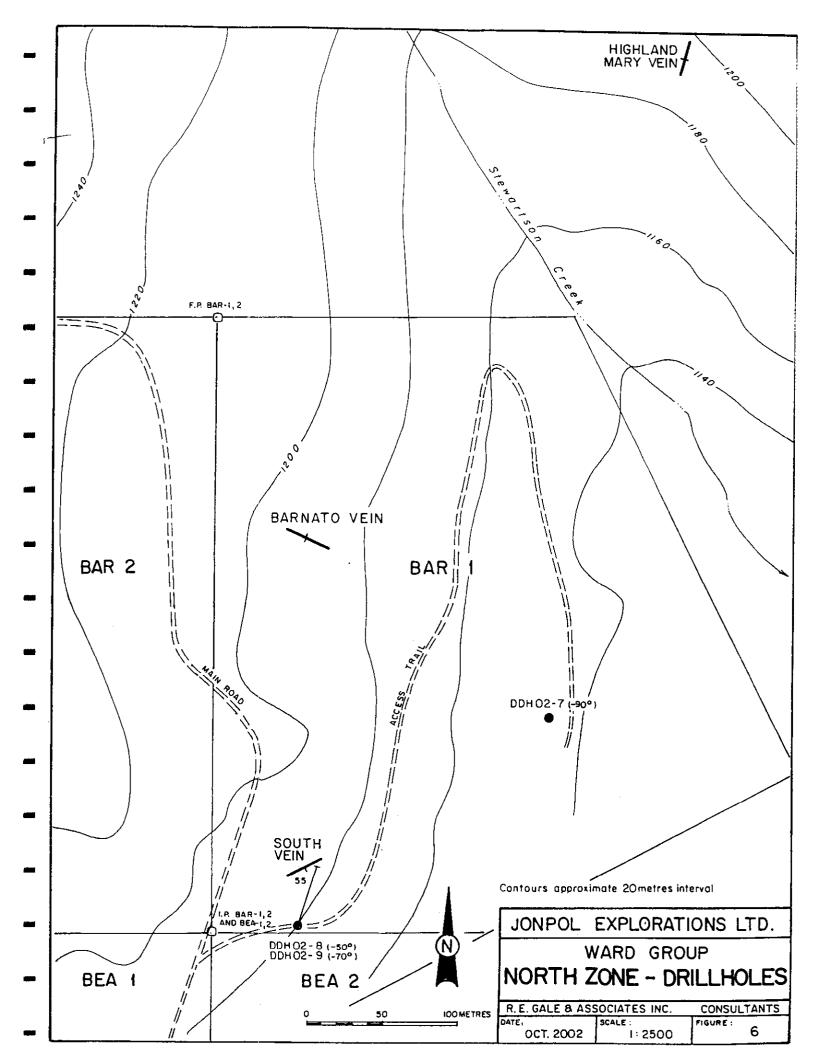
(6.0) NORTH ZONE

(6.1) Introduction

With reference to Figure 3 showing the Geology of the Ward claims, the North Zone is located about 3 kms. north of the South Zone and is centred near the old Barnato Mine, now covered by the Bar 1 and 2 claims.

The bulk of the work in 2002 was done in the South Zone with about 350 metres drilled in the latter area in holes 02-1 through 02-6 and only 135 metres in holes 02-7, 08 and 09 drilled in the northern area.

The area of drilling in the North Zone is shown in more detail in Figure 6.


(6.2) General Geology - North Zone

Most of the North Zone is underlain by diorite but quartzite and chert outcrop in the northeast corner of the area on the Highland Mary claim, one of the Reverted Crown Grants included in the Ward Group of claims.

As a result of the drilling this year it is evident that chert or quartzite is more widespread in the North Zone than previously realized and extends southerly into the area of drillholes 02-7, 8 and 9.

Shown in Figure 6 are the 3 best known veins in the North Zone. (1) The Barnato vein is a narrow WNW trending siliceous zone in diorite possibly 0.3 metres wide with at least one lense of massive arsenopyrite carrying gold values. A chip sample, 119872, collected in 1999 across 0.3 metres of the lense with arsenopyrite assayed 42.19 g/t Au. Cominco is reported to have drilled several holes in 1938 with negative results.

- (2) The Highland Mary vein includes 2 shear zones in chert in 1-2 metre wide zones. Two pods of arsenopyrite 5-10 cms wide occur in the shears. The best mineralization found in 1999 was a picked dump sample of arsenopyrite vein, sample 119881, which assayed 23.05 g/t Au. There is no published report of drilling on this showing.
- (3) The South vein is the name given to a NE trending, southeast dipping quartz-pyrite vein about 1 metre wide in diorite which outcrops at the south end of the North Zone as shown in Figure 6. Sample 119855 chips across 1 metre taken in 1999 assayed 2.69 g/t Au.

(6.3) Drill Holes 02-7, 02-8, 02-9

Hole 02-7 was drilled to test a VLF-EM anomaly which was interpreted to be associated with a possible southwesterly extension of the Highland Mary vein or a northeasterly projection of the South vein.

The rock drilled is a mixture of diorite and chert. Strong pyrite mineralization in diorite was intersected from 5.2 to 7.9 metres and near-massive pyrite in diorite was cut from 15.5 to 16.3 metres. This pyrite could account for the anomaly however no gold values and very little arsenopyrite is shown by the assays.

After passing through a flat fault from 36.5 to 38.25 metres very broken barren chert was intersected and the hole was terminated at 42.25 metres.

Hole 02-8 and 02-9

These two holes were spotted to test the possible down dip extension of the South vein in an area where talus samples taken in 1999 gave strongly anomalous values for Au and As in 4 samples, the best result being>10,000 As, 4490 ppb Au.

In **Hole 02-8** drilled N20 degrees E at -50 degrees, diorite was encountered to a depth of about 30 metres, then banded chert to 42.6 metres where a barren dyke continued to 52.3 metres, the bottom of the hole.

The best mineralization found was strong pyrite in quartz from 17.60 to 18.60 metres. Sample 064817 from 17.60 to 19.60, 2 metres assayed 0.60 g/t Au, 295 ppm As.

In Hole 02-9, drilled from the same setup as 02-8 but at an angle of -70 degrees the hole was in diorite for 22 metres then barren andesite dyke to the bottom of the hole at 37.5 metres.

From 13.80 to 14.80 metres, one metre, a quartz-pyrite-arsenopyrite vein was cut. Sample 064831 of this interval assayed 0.58 g/t Au, >10,000 ppm As.

It is possible that the vein intersected in 02-9 is the down dip extension of the South vein. The decrease in values at depth in hole 02-9 compared to the surface values does not encourage further exploration of this vein.

(7.0) CONCLUSIONS AND RECOMMENDATIONS

Some of the best soil anomalous zones for gold-arsenic in the South Zone were tested during this year's exploration program with only a few small zones of better values found, not sufficient to encourage testing the area further for large low grade zones of mineralization which could be mined by open pit. The degree of fracture-filling or disseminated mineralization is too weak in the areas drilled to form bulk mining targets.

The total claim group is large and there are numerous vein showings so that the possibility that one of the vein occurrences could develop into a sizeable deposit is still open. It is recommended that further geophysical work be done, including further IP work, to evaluate the known vein areas and further soil sampling also be done along known vein projections to see if extensions are possible.

After evaluation of the geophysical and geochemical results, drilling could be warranted and the numerous vein targets known could require a number of short holes totaling perhaps a drilling program of 700 metres. The cost of doing this program is estimated be approximately \$150,000

(8.0) COST STATEMENT – 2002 PROGRAM

Part One - May 1 - September 27

Consulting fees – R.E. Gale 45 days @ \$400 per day	\$ 19,260
A. Hall, assistant 25 days @ \$125/ day	3,125
Room and Board 70 man days	4,501
Truck rentals 3 months	4,843
J. Bosovich, Westbridge B.CExcavator work Aug 12-21	11,269
Bergeron Drilling, Greenwood -Drill charges	40,826
Fuel	565
Equipment, supplies and miscellaneous charges	2,268
Assays Chemex and Eco Tech Labs	<u>4,429</u>
Total Costs, including GST	\$ 91,086
Part Two – September 28 – October 22	
Consulting fees – Report - R.E. Gale 12 days @ \$400 per day	\$ 5,136
Drafting, printing, miscellaneous charges	260
J. Bosovich – Excavator work – reclamation, trenches etc.	<u>9,144</u>
Total Costs including GST	\$14,540
Grand Total Parts One & Two	\$105,626

-	(9.0) REFERENCES
	GSC Memoir 179, 1915
-	GSC Paper 79-29, 1983
-	B.C. Minister of Mines Report, 1902, page 1136-1138
	B.C. Minister of Mines Report, 1938, page D17-D23
-	Fox, Peter E., 1994, Assessment Report 23835
_	Fox, Peter E., 1995, Assessment Report 24307
	Gale, R.E., 1995, Assessment Report 23969
-	Gale, R.E., 1999, Assessment Report
	Gale, R.E., 2000, Assessment Report
-	Haman, P.J., 1970, Assessment Report 2951
-	Gewargis, W.A., 1983, Assessment Report 11375
	Gewargis, W.A., 1986, Assessment Report 14952

MacLeod, J.W., 1980, Assessment Report 8703

Mitchell, D.C.,1989, Assessment Report 19157

Vulumiri, M.R., 1989, Assessment Report 19524

Vulumiri, M.R., 1990, Assessment Report 19525

Visagie, D., 1990, Assessment Report 20122

Visagie, D., 1992, Assessment Report 22396

(10.0) CERTIFICATE

- I, Robert E. Gale do hereby certify that:
 - (1) I am a consulting geologist with R.E. Gale and Associates Inc. with my office at 107-2274 Folkestone Way, West Vancouver, B.C.
 - (2) I graduated from Stanford University with a PhD in Geology in 1965.
 - (3) I have been practicing my profession as Geologist for forty seven years.
 - (4) I have been a Member in good standing with the British Columbia Association of Professional Engineers and Geoscientists since 1966.
 - (5) This report is based on my personal work on The Ward Group of claims during May through September, 2002, and the review of all published data on the area.
 - (6) I am the owner of ROI 1-4, Dan 1-12, Bar 1-2, Beav, Bea 1-2 and 7 Reverted Crown Grant claims which are part of the Ward Group.

R. E. GALE

BRITISH

COLUMBIA

VGINEER

OF

R. SALE

RECOLUMBIA

R

R.E. Gale, P.Eng., PhD

REStale

October 22, 2002

APPENDIX A-DRILL LOGS

ABBREVIATIONS USED - DRILL LOGS

ALT-ALTERED AND-ANDESITE ASP-ARSENOPYRITE AU-GOLD BRN-BROWN BXD-BRECCIATED CA,C/A,C.A.-CORE AXIS(ANGLE TO) **CHL-CHLORITE CM-CENTIMETRE CNT-CONTACT CPY-CHALCOPYRITE DI-DIORITE DK-DARK EPID-EPIDOTE FLT-FAULT** FRAC,FRACS-FRACTURE,FRACTURES **GG-GOUGE HBL-HORNBLENDE** IRREG-IRREGULAR M-METRE **MAG-MAGNETITE MOD-MODERATELY NAT-NATIVE** OXD-OXIDIZED **PY-PYRITE PYRR-PYRRHOTITE QTZ-QUARTZ REL-RELATIVELY** SI02-QUARTZ SILICIF-SILICIFIED STRG-STRONG TR-TRACE **VLT-VEINLET VN-VEIN** W/-WITH

WHT-WHITE

PROPERTY_	WARD	GRO UP	
-----------	------	--------	--

HOLE No. 02 - /

	DIP TEST		
	Angle 900		
Footage	Reading	Corrected	
			
*		<u> </u>	
			
		L	

Hole No. 02-/ Sheet No. 10F/
Section
Date Begun SEPT 7,2002
Date Finished SEPT 9, 2002
Date Logged SEPT 9, 2002

Lat. Total Depth 223

Dep. Logged By R.E. GALE

Bearing Claim WARD

Elev. Collar Core Size NO

BERGERON DRILLING

GREENWOOD B.C.

DEPTH AS METRES WIDTH Cu DESCRIPTION SAMPLE No. FROM TO FROM TO OF SAMPLE DOM DOM NO 0 0-5 BROKEN-OXIDIZED PIORITE-REL. BARREN 5AMRE SMALL 20-30 FRACE. W/PY IN DIORITE 5-8 024051 5 60 3M 0.09 100 24 WEAKER FRAC. SOME @ 700-WEAKER PYRITE 02 4052 // 3M 0.14 510 101 42 11-14 024053 SIMILAR TO ABOVE 99 14 3M 0.16 305 42 43.8 14-14.8 1CM 60° ASP VLT AT 14M 80° VLT.AT 15. ZM(43') 024054 i4 14.8 0.8M 1.135 710,000 N.A. SAMPLE 43.8 49.5 14.8-16.5 DARK MAG-RICH DYKE-CALCITE VLTS, O'CHT. - 16.5M 14.8 16.5 1.7M No sample 49.5 6225 165-2075 WEAKLY PYRITIZED DIORITE-300-60 FRACS. 024055 16.5 20.75 4.25 M 0.14 55 75 2-25 640 20.5-21.75 DARK MAG. -RICH DYKE 45°CNT. Q 21.75 M SAMPLE 20.75 21.75 M No sample 6.40176.2521.75-24.75 WEAKLY PYRITIZED DIDRITE-FEW FRACE 024056 21.15 24.75 3M 0.09 35 35 76.2585.75124.75-27.75 SIMILAR TO ABOVE 024057 24.7527.75 3M 0.29 101 25 85:15 95.2527-75-30.75 MORE PYRITIC & OXD, PATENES @ 60° 3M 02405827.7530.75 0.161 528 N.A. 44 08.25 VOS.080.75-33.75 WOAKER PYRITE LESS FRACTURING 024059 30,7533.75 0.16 205 105.0 115 \$3.75-36.75 SIMILAR TO ABOVE 024060 33.7536,75 60 314 0.09 35 115 124.5 36.75-39.76 DARK DIORITE -RATHER FRESH - TRACE PYRITE 185 024061 36.7539.75 3M 0.10 89 24.5 134.25 39.75-42.76 SILICIFIED-BLEACHED DIORITE-MORE PY, TR. ASP. 02406239-15142-74 3M 0.122 1675 N.A. 134.25/43 42.75-45.75 BUFF TO PINKISH-BRN. - SOME OTZ VATS 45-60° 02406342.1545.75 30 3M 119 0.06 WB.5 A5.75-47.50 SIMILAR TO ABOVE BUT BXD W/STRONGER PY-TRASP. 02406445.75 47.50 642 N.A. 1.75M 10.066 LOWER CONTACT-SMALL SHUAR @ 450 148.5 158.75 47.50-50.50 WEAKLY ALT. DIORITE 20,70° FRACE W/ PYRITE 024065 47,50 50.50 3M 0.08 ZO 100 58:75169,05050-53,50 PORPHYRITIC TAN "NONZONITE", ALSO GREEN- WHITE 660 02406650505350 3M 0.12 97 19.0 53.50 St. SO CHERTY ROCK W/ 1-2 CM OTZ BX ZONES 02406753505650 0:11 285 61 3M "MONZONITIC" - TR PYRITE . SAME AS ABOVE - LITTLE PYRITE - CHERTY SAW MILTO 56.50 70.0

PROPERTY	WARD	GROUP	

HOLE No. 02 - 2

DIP TEST			
Angle 60 Reading Correcte			
	An		

Hole No. 02-2 Sheet No. 1 0F2	L.at	Total Depth 224
Section	Dep	Logged By R. E. GALE
Date Begun 52079, 2002	Bearing 5/0°W	Claim WARD GP.
Date Finished	Elev. Collar	Core Size NQ
Date Logged		7

FROM	PTH TO	METRES	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	ALL	AS PPM	CH	
	20		BROKEN - OXI DIZED -CASED						7,7	17,	
20	26.5	6.05-8,05	STRONGLY FRAC. DIORITE QTZ-PY VLTS 20-30°CA	024068	6,05	8.05	2M	0.07	30	3/	
26.5	33.0	8.05-9.05	SAME AS ABOVE	024069	205	9.05	1.81	0.13	1	29	
3 <u>3.0</u>	37.0	9.05-10.2	ANDESITE DYKE - CONTACTS - 90° COREAXIS	NO SAMPLE	9.05	10.25	1.2M	NO S	ample	2	
			NO SAMPLE - MAINLY ANDESITE DYKE						ample		*
			BLEACHED MOD. ALT. DIORITE VLTS-PY-ASP70/CA					0.168			PPM
47	56	13.05-15.8	6 SIMILAR TO ABOVE	024071	13.05	15.85	2.8M	0.14	90	88	
56	59	5.85-16.85	NO SAMPLE - ANDESITE DYKE CNTS 60°/CA					No Se	ample		
59	65.5	16.85-18.85	STEEP CNT WY DYKE AT 16.85-BLEACHED DIONITE	024072	16.85	18.85	ZM	0.30	890	45	
65.5	72	18.85-20.8	LESS ALTERED DIORITE POR. WEAKER PY	024673	18.65	20.89	2M	0.08	20	44	
72	78.5	20.85-22.82	MORE BLEACHED DI. W/ PY TR ARSENOPYPITE	024074.	20.85	22-89	2M	0.06	35	74	عد ا
78.5	85 :	22.85-24.85	<i>"</i>	024075	22.85	24.85	2M *	0.167	194	N.A.	(PPM)
85	93.5	4.85-27.35		024076	2485	77.35	2.5M	0.14	1465	107	
73.5	100	7-35-29-35	LESS BLEACHED DIURITE - NARROW PY VLTS.	024077.	27.35	29:35	2M	0.11	410	126	*
100	106.5	29.35-31.3	DIORITE-MORE WORKLY ALT PY, TR CPY	02.4078	29.35	31-35	2M*	0.104	251	N.A.	(ppm)
106.5	113	31.35-33. 3 5	· · · · · · · · · · · · · · · · · · ·	024019	31.35	33:39	- 2M	0.10	210	127	
1/3	119.5	3.35-35.3	<i>y</i>	024080	33. <i>35</i>	<i>35.3</i> 5	2M	0.42	40	85	
119.5	126	3 <i>5.35-37.3</i>	5 N°	024081	35,35	37.3	: 2M	0.26	20	53	
		3 <i>7.35-39,35</i>		024082	37.35	39.35	2M	0.14	390	103	*
			,	024083	39,35	41.15	1.8M*	2.12	10,000	N.A.	(ppm)
	45.5		BLEACHED WHT. DIORITE W/PY ON 45-70 CH FRACS.	024084	11.15	13.15	2M	0.26	350	94	

PROPERTY WARD GROUP

HOLE No. 02-2

	DIP TEST				
Footage	An Reading	gle 60 ° Corrected	Hole No. 02-2 Sheet No. 20FZ	Lat	Total Depth 224
			Section	Dep	Logged By R.E GALE
			Date Begun	Bearing	Claim
			Date Finished	Elev. Collar	Core Size
			Date Logged		

FROM	PTH TO	MEFRES	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	ALL	AS ppm	Cu ppm	
45.5	152	13.15-45-15	SIMILAR TO ABOVE 2 CMFLTBX WPY-44.45	024085	13.15	45.15	2M	0.13		100	
152	158.5	45.15-47.15	BLEACHED DIORITE-2CMFLTBX W/PYCO 46.45	024086	15.15	47.15	2M	0.23	980	141	
156.5	165	47.15-49-15	BLEACHOD DIORITE - SPARSE PY VUTS 70-45°CA.	024087	17.15	49.15	2M	0.48	565	71	
165	172	49.15-51.15	MORE ABUNDANT PYRITE-MORE ALT. PIORITE	024088.	79.15	51.15	2M	0.24	875	95	
			MORE WEAKLY ALT. "MONZONITE PORPHYRY"					0.29	385	86	
118.5	185	3.15-55.15	BLEACHED-MORE ALT 45º 80CM FLTBX @ 53.35M	024090	53.15	55.15	2M	0.24	1530	89	
185	192	55.15-57.15	"MONZONITIC"- 45 420 VTS QTZ-PYASPO 5.5.6 456-1	024091	55-15	57-15	2M	0.37	810	91	
			"MONTONITIC" - LITTLE PYRITE					0-11	110	94	
198.5	205	59.15-61-15	MONZONITIC"- TO - ATZ BX @ 60.15 TO 60.35-BARREN	024093	59.15	61:15	2M	0.11	95	63	
205	224	61.15-67.15	VERY FINE GRAINED, BARREN CHERTY DIORITE	SAMPLE	61-15	67.15	6M	No sa	mple		
							-	-			
				-							
										1	
											
				<u></u>	l						

PROPERTY_	WARD	GROV	ρ
· · · · · · · · · · · · · · · · · · ·			

HOLE No. 02-3

	DIP TEST	
	An	gle 60°S
Footage	Reading	Corrected
		<u> </u>
	 	_
L	L	

Hole No. 02-3 Sheet No.	Lat	Total Depth 159
Section	Dep	Logged By
Section	Bearing SOUTH @600	Claim
Date Finished SEPT 14 /02	Elev. Collar	Core Size.
Date Logged		

FROM	PTH TO	METRES	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au	A5 PPM	Cu	
6.5	12	2.45-4.15	MOD ALT DIORITE FRACE WY PYRITE 10-45°C.A.	024094	2.45			1 •		347	
			AT 4.35 - 70°-10 CM STRG. ASP. W/CPY.OR NAT AU.					10.76	70,000	47/3	
			AT 4.85 - 5 CM. 60° QTZ-PY-ASP VLT IN DIORITE	024096	4.70	6.70	2.0M	0.12	220	290	
	1	1		024097	6-70	8.70	2.0M	0.08	35	218	
			''-''	024098	8-70	10.70	2.0M	0.45	1830	403	
		1		024099	10.70	12.70	2-0M	0-17	55	387	
	1						210M			305	
			AT 15.20-0.6M BTZ VNBX-0CA+45 VLTG-ASP-CPY	17601	14.70	16.70	2-0M	1.00	9160	849	
	1	l .	0°-45° VLTS PY-SOME SILICIF. PATCHES	17602	16.70	18-70	2.0M	0.21	45	703	
58.5	65	18.70-20.70	SIMILAR TO ABOVE - DIONITE	17603	18.70	20.70	2.0/4	0.07	30	251	
65	71.5	20.10-22.70	SIMILAR TO ABONE-DIONITE	17604	20,70	22.70	2-0M	0.09	75	153	
71.5	78:	22.70-24.76	AT 22.90 = 0.3 M GTZ-BXW/PY-ASP? 450C.A.	176052	2.70.	24.70	2.0M	0.35	330	153	
			AT 24-10 & 24.40-1CM 600 QTZ-CPY-ASP-PYVLT.								_
78	84.5	24.70-267	AT 25-20-5CM SIL ZONE @ 45 CA W/ TR ASP.	17606	24.70	6.70	2-0M	0.17	170	124	
				17607	16.70	28.70	2.0M	0.09	30	125	
91	97.5	28.70-30.70	AT 28.85 -45 10 CM RTZ-PY BX 4 AT 30.5 2CM BX	17608	28.70	3070	2.0M	0.24	40	108	
97.5	104	30.70-32.60	AT 32,40-600/A-20 CM QTZ-PY ASP BX-CUTW/PYKE	17609	30.70	32.60	1-9M	0.17	855	195	
			BARREN ANDESITE DYRE	SAMPLE	1	- 1		NO S	amp	le	
L	<u> </u>	l			<u>,</u>		A				

PROPERTY	WARD	GROUP	
----------	------	-------	--

HOLE No. 02 -4

-	DIP TEST Angle 60°N						
Footage	Reading Corre						
	 						
		1					
<u> </u>	L						

Hole No. 02-4 Sheet No.	L.at	Total Depth 100
Section	Dep	Logged By
Section	Bearing	Claim
Date Finished SEPT 16/02	Elev. Collar	Core Size
Date Loaged_		

FROM	PTH TO	METRES	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au	AS PPM	CU	
0	7.0	0-2.15	CASING - BROKEN ROCK - NO SAMPLE				SAMPLE	312	7 7 7 7 7		
7.0	13.50	2-15-4.15	FAIRLY FRESH DIORITE - DISSPYGATZYLTS 20%A	17610	2.15	4.15	2.0M	0.03	180	216	
13.5	20	4.15-6.15	STRONGER PYRITE - FRACE 0-45°CA WPYRITE	17611	4.15	6.15	2.0M	(0.03	< 5	157	
			TRACE CPY IN CHIORITE PATCHES.								
20	26.5	6.15-8.15	TRACE CPY & PY YLTS @ 450 COREAXO		6.15	8.15	2.0M	0.06	< 5	148	
			PY VLTS @ 0- 45° C.A. TRACE GASENOPYPITE	17613	8.15	10.15	2.0M	(0.03	45	141	
33	39.51	0.15-12.15	DISS PY, PYRR. TRASP? I CM QTZ-ASP VLT-10-35	17614	10.15	12.15	2.0M	0.10	745	157	
39.5	46	1245-14.15	AT 13.30-10 CM QTZ-ASP VLT-20°C. A TRASPO.5M	17615	12.15	14.15					
-			AT 14M - ICH 45°C.A ARSENOPYETTE VLT.	·	12:15	14.15	2.0M	0.93	3910	/30	
			FAIRLY FRESH PIDRITE-PARK DI ATOND.				2.0M		5	143	
52.5	59	16.15-18.15	FRAC FAULTING - GG O° C.A. MOP. FY, TR CPY	17617	16-15	18-15	2.0M	0.07	< 5	335	
59	65-5	1845-20.15	1M-10°C-A. SHEAR ZONE-TR ASP. 19.15-20.15	17618	18.15	20.15	ZIOM	0.56	1015	240	
65.5	723	?0.15-22-13	BELOW 20-15 - ROCK CHERTY W/SOME STAGPY.	17619:	20.15	22.15	2.0M	0.49	245	356	
72	78.5	22.15-24.15	MORE DIDRITIC - DARK DIDRITE W/ STREE PY.	17620.	22.15	24.1	ZOM	0.20	<5	192	
185	842	4.15-26.15	DARK DIORITE-FEW O'C.A. GTZ-PY VLTS	17621	24.15	26:15	2.0M	0,10	10	168	
84	90.5	26.15-28-15	26.45-0° 972-PY VEIN-0.3M WIDE-DK. DI.	17622:	26.15	28.15	2.0M	0.10	50	119	
90.5	97	28. /5-31. L	29.95-00 QTZ-STAG PY SILICIF, ZONE-DK DI.	17623	28.15	3/ v 14	3.0M	0.35	220	222	
47	100	31.15-32.15	BARREN-BROKEN CHERT	SAMPLE	31.15	32.19	1.0 M	NO S	imple	>	
		ĺ	·								
NEVILL	E CROSE	Y IND:	· · · · · · · · · · · · · · · · · · ·					i	1		

PROPERTY WARD GROUP

HOLE No. 02-5

	DIP TEST An	gle ~55.05
Footage	Reading	Corrected

Hole No. 02-5 Sheet No.	Lat	Total Depth 221
Section	Dep	Logged By
Section	Bearing SOUTH	Claim
Date Finished		Core Size
Date Logged		

DE!		METRES	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au	AS PPM	CU
0	21	0-6-45	CASING TO BEDROCK - NO SAMPLE					0	, , _	
			CHERT-90° FRACS & PY-CHL YLTS@ 20-45-C.A.	17624	6.45	8.45	2.0M	0.45	960	225
27.5	33	8.45-10.45	SIMILAR TO ABOVE	17625	9.45	10.45	2.0M	0.14	1460	170
,			FAULT CHT. W/ BARREN DYKE @ 45°C.A 13.45	17626	10.45	13.45	3.0M	0.08	2815	199
		1 1					8-7 M		AMPL	e e
L			22.45 423-95-2CM-20°C.A. VLTS PYRR-PY-AGREANTED	ı						228
		ľ	24.95 AND 25.95 ZCM45 C-A-VLTS-ASP-PY-PYAR	17628	4.15	26.15	2.0 M	0.38	>10,000	370
F			BARREN DYKE-0,2M				0.2M			E
			CHEPT W/ PATCHES ASPCPY-26.4, 27. OM		1		2.0M			331
		1 1	BARREN? GREY CHERT				1-7M			236
			BARREN! GREY CHERT-CHLORITIC - GOUGY	4/-			1-7M			377
			BARREN DYKE	SAMPLE			1.3M		AMPL	E
			BXD CHERT - BARREN?	422	1 :		1.25 M		245	
	- 1		BARREN DYKE				8.0M		AMPO	
	1		CHERT AND BRECCIATED CHERT				2.0M			204
	ı	li i	CHERT & BANDED CHERT-BANDS 45 T.A. PYRITE-PYRA	,NO				0,21		361
1			BARREN DYKE	SAMPLE		_			AMPL	E
		- I	BROKEN CHERT-PYRITE ON RANDOM FRACS				2.0 M		440	220
1			BANDED CHEAT-450/C.A. TR ASP-PYRR @ 54M				2.0M		795	188
			SMALL DYKE AT START THEW CHERT-FLT.CHT,-56.4M				2-0M		130	157
			MOD. ALT. DIORITE-PYRITE ON FRACS.		السلا			0.06	235	194
			BRECCIATED-SILICIFIED-DIORITE & CHERT DYKE? DR SILL? - DENSEBLACK AND-END				2.5M 52.75M			209
14	241	02.70 47.43	WING . UK I COM - VENSE BANCK MY -END	28124		-,,,,,		770 3	ALTIPLE	<u> </u>

PROPERTY WARD PROPERTY	
------------------------	--

HOLE No. 02-6

	DIP TEST						
Footage	Reading	gle 50°54 Corrected	E	Hole No. 02-6	_ Sheet No. / OF/	Lat	Total Depth 142
				Section		Dep	Logged By
-				Date Begun <u>SEPT</u>	19/02	Bearing \$ 40°E	Claim
				Date Finished SEP	721/02	Elev. Collar	Core Size
L		·		Date Logged			

FROM		METRES	DESCRIPTION	SAMPLE No.		то	WIDTH OF SAMPLE	AU	As	Cy
0	17	0-5.20	CASING -OVERBURDEN -NO SAMPLES	SAMPLES	0	5.20		0	FF	
17	23.5	5.20-7.20	CHERT - FRACU PYRITE, FLTS, BX 6600 45°C.A.	17640	5.20	7.20	2.0M	0.23	1345	145
23.5	32	720-10.00	BANDED CHERT-SOME STRG. PY IN BANDS-45°C.A.	17641	7.20	10.00	2.8M	0.14	295	96
32	34.75	10,0010.70	BARREN DYKE	SAMPLE	10.00	10.70	0.7M	NO S	AMPL	f
39.25	40.50	10.70-12.70	BANDED CHERT-SOME STRG. PY-INIBANDS-45 C/A	17642	10.70	12.70	2.0M	0.41	170	396
40.5	47	12.70-14-70	RATHER BARREN CHERT - STRONG WHT. SIOZ	17643	12.70	14.70	2.0M	0,06	75	85
47	3.5	14.70-16.70	SIMILAR TO ABOVE	17644	14.70	16.7	2-0M	0.19	60	358
53,5	60	16.70-18.70	BANDED-BRECKATED CHERT PY & BANDS 458A	17645	16.70	18:10	20M	0.07	130	129
60	86 <u>:5</u>	18.70-20.70) // // // // // // // // // // // // //				2.0M		1	231
66.5	73 :	20.70-22.70	//	17647	20.70	22.7	2,04	0.22	240	114
73	19.5	22.70-24.70	//	17648	22.70	24,76	ZOM	0.46	350	262
79.5	86°	34.70-26.70	//	17649	24.70	26:70	2-0M	0,40	150	272
86	92.5	26.70-28.70	//	11650	26.70	2870	2.0M	0.09	665	162
92.5	99.8	28.70-30.95		064801	28.70	30,95	2,25M	0.13	1195	154
99.8	118:	30.95-36.45	DYKE - BARREN -NOT SAMPLED	SAMPLED	30.95.	36.49	5.50M	No 5	AMPL	<u>e</u>
118	1245	36:45-28.45	/ _ /	l	i .	1 1	-2.0M			369
124.5	132	38.45-40.45	BRECCIATED CHERT-PYRITEVITS, @45°C.A.							
132	140.8	40.4542.93	0° CNT, DIORITE & BX D. CHERT 41.45-42.25M	064804	10.45	42.95	2.5M	0.33	140	132
			BARREN DYKE	SAMPLED	42.95	438	0.85M	NO	SAMP	E
										1
		<u> </u>	- · · · · · · · · · · · · · · · · · · ·		L	i			il	

PROPERTY	WARD	GROUP	HOLE No. 02 - 7				
DIP TEST Ang Footage Reading	corrected	Hole No. <u>02-7</u> Sheet No. <u> 05</u> , Section Date Begun <u>SEPT22/02</u> Date Finished <u>SEPT23/02</u> Date Logged	Lat Dep Bearing Elev. Collar	Total Depth 142 Logged By R-E-GALE Claim WARD Core Size NQ			

DEF FROM		METRES	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au	AS	ppm	· <u></u>
0	17	0-5.2M	OVERBURDEN - CASED -NO SAMPLES					0			
/7	27	5.2-82	MAINLY DIORITE WISTRG. PY, CHERT STARTS-7.9M	064805	5.2	8.2	3.0M	10.03	<5	68	
27	37	8,2-11.2	WEAKLY MAINERALIZED BANDED CHERT-45 E.A.							117	
37	47	11.2.14.2	MIXTURE -DIONITE & CHONFSTRE PY-TR ASP.		1			1		63	
47	57	14.2-17.2	WOAKLY MIN. CHAIT, IRREG. PY VLTS	0.64808	14.2	17.2	3.0M	0.03	<5	173	
			ALMOST MASSING PYRITE 15.5-16-3-THEN DIOPITE.								
57	<i>63.5</i>	17.2-19.2	CHEAT & DIODITE -PATCHES EPID-PY-END IN DIODITE	064809	17.2	19.2	2-0M	<0.03	10	16	
			BARREN CHERT AND FRESH DIORITE	1-				·			
105	106.3	32-0-325	ALONG-A-10°C/A SHEAR - STRG PYRITE IN DIORITE	064810	32.0	32.5	0.5M	<0.03	45	70	
106-5	119.5	325-36.5	FIRST 3 M-BARREN DIORITE THEN BARREN CHER	SAMPLE	32.5	36-5	4.0M	NO SA	MPLE	-	
119.5	126	36.5-38.29	AT 36-5-200 GA SHEAR ZONE-FLAT FAULT?								
126	129	36.5 -38.2:		064811				(0.03	<i><5</i>	127	
129	142	38.25-42.2	S VERY BROKEN -BARREN CHERT	SAMPLE.	<i>88.25</i>	42.25	4.0 M				
			BOTTOM OF HOLE								
			·	-							-
					 		<u> </u>				_
			•								
											······································
			•	` <u> </u>		L					

PROPERTY_	WARD	GROUP	
-----------	------	-------	--

HOLE No. 02-8

	DIP TEST				
	An	910 50 2N 20°E			
Footage	Reading	Corrected	Hole No. 02-8 Sheet No. 10F1	Lat	Total Depth 170
			Section	Dep	Logged By R.E. GALE
			Date Begun 5EPT 23, 2002	Bearing N 20°E	Claim WARP GP
				Bearing 14 20 2	Claim_WARP GF.
			Date Finished SEPT 24, 2002	Elev. Collar	Core Size
			Date Logged		

m
7
3
3
,
1
5
6
i i
<u>-</u>
5
7
)
5
/
,
)
716

DIAMOND DRILL RECORD

PROPERTY	WARD	GROUP	HOLE No.	02-9

	DIP TEST		•			
	An	gle 70°N	20 E			102
Footage	Reading	Corrected		Hole No. 02 -9 Sheet No. 10F/	Lat	Total Depth 122
				Section	Dep	Logged By R.E. GALE
	ļ			Date Begun 5EPT 24, 2002	Bearing N20°E	Claim_ WARD GP.
				Date Finished SEPT 25, 2002	Elev. Collar	Core Size_ NQ
 		<u> </u>		Date Logged		

FROM	PTH TO	METRES	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	AU	AS PPM	CU	
0	24		BROKEN - CAVE - CASED NO SAMPLE					2 '	, ,]
24	34	7.30-1430	WEAKLY ALT. DI. FRACS OF 90°C/A-SOME OXIDES	064829	7.30	10.30	3.0M	0.05	<i><5</i>	35	
			PY ON FRACE - NAMEON QTZ VLTS-TR. ASP.								
34	45.5	0.30-13.80	SIMILAR TO ABOXE BUT LESS ASP.?	064830	10.30	13.80	3.5M	<0.03	< 5	76	
			PYRITE ALONG FRACS. @ 45° TO CORE AXIS								
45.5	40.75	3.80-14.80	•	064831	3.80	14.60	1.0M	0.58	710,000	117	
48.75	58.75	4.80-17.80	WEAKLY ALTERED AND PYRITIZED DIORITE.	064832	4.80	7.80	3.0M	K0.03	25	57	
58-75	68.75	7.80-20,80	"	064833	17.60	20.80	3.0M	K0.03	10	66	
8.5	73.45	20.90.22.25	ICM. 45°C/A PYRITE YEIN AT 21-10 INDIORITE	064834	20.60	2.25	1.45M	0.17	7180	90	
73.45	122	22.25-37.50	DYKE -BARREN -NOT SAMPLED	SAMPLED	22.25	37,50	15.25M	NOT	5.4MP	ED.	
			BOTTOM OF HOLE		ļ. <u>. </u>						
					<u> </u>						
								ļ			
Ь				<u>. </u>		L	L	L	لــــــا	LL	

APPENDIX B-ASSAY CERTIFICATES

ALS Chemex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GALE, R. E.

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7

CERTIFICATE OF ANALYSIS

Project:

Comments: ATTN: R.E. GALE

CC: R. POLLOCK

A0217868

Page Number :1-A
Total Pages :1
Certificate Date: 17-JUN-2002
Invoice No. :10217868
P.O. Number :

:CNF Account

ROCK

3001 3002 3003 3004	9413940 9413940						bbar	bbw	ppm	bbw	ppm	*	bbu	ppm	ppm	ppm	*	bbm	ppm	%	PP
3002 3003 300 4			1.64	95	0.4	1.06	48	< 10	90	< 0.5	< 2		< 0.5	10	30	141	2.37	< 10	< 1	0.19	< 1
3004	941394		6.62	250	0.6	1.43	110	< 10	60	< 0.5	< 2		< 0.5	10	33	193	2.97	< 10	< 1	0.11	< 1
	r r -		4.50	60	0.6	1.11	92	< 10	50	< 0.5	< 2		< 0.5	9	19	206	2.13	< 10	< 1	0.09	< :
3005	941394		2.74 1.70	30 110	0.6 < 0.2	1.63 1.63	136 118	< 10 < 10	40 80	< 0.5 < 0.5	2 6		< 0.5 < 0.5	5 7	66 15	175 46	4.09 3.11	< 10 < 10	< 1 < 1	0.11 0.18	< .
3006	941394	02	2.32	40	0.6	1.56	64	< 10	50	< 0.5	2	0.83	< 0.5	17	37	314	3.34	< 10	< 1	0.25	<u> </u>
3007	941394		1.58	200	1.4	0.87	68	< 10	40	< 0.5	< 2	0.70	< 0.5	36	47	810	5.70	< 10	< 1	0.08	<
3008	941394	02	2.18	20	1.6	0.61	22	< 10	< 10	< 0.5	< 2		< 0.5	8	129	303	2.94	< 10	< 1	0.09	<
3009	941394	02	1.56	35	0.6	1.23	40	< 10	40	< 0.5	< 2	1.04		11	40	229	2.37	< 10	< 1	0.08	< 1
3010	941394	02	2.00	25	< 0.2	1.04	82	< 10	40	< 0.5	< 2	1.08	3.5	38	47	213	>15.00	10	< 1	0.11	< :
3011	941394		1.00	10	1.6	0.84	2	< 10	26	< 0.5	6	0.43		18	70	408	3.87	< 10	< 1	0.05	<
3012	941394	02	1.04	1665	1.4	1.91	1330	< 10	100	< 0.5	< 2	0.40	< 0.5	12	18	130	4.21	< 10	< 1	0.17	< .
3013	941394		1.22	15	0.2	1.61	12	< 10	40	< 0.5	< 2	0.77	< 0.5	13	35	164	3.27	< 10	< 1	0.20	<
3014	941394		1.94	8180	1.6		>10000	< 10	30 30	< 0.5 < 0.5	46 6	2.33 1.11	1.5 < 0.5	23 15	38 53	75 351	8.85 4.28	< 10 < 10	< 1 < 1	0.17 0.11	< <
3015	941394	02	1.72	290	1.2	1.26	4590	< 10	30		•	1.11	. 0.3				<u> </u>				
3016	941394		0.38	15	< 0.2	0.95	168 34	< 10 < 10	80 30	< 0.5 < 0.5	2		< 0.5 < 0.5	6 21	73 27	89 320	2.21 3.60	< 10 < 10	< 1 < 1	0.16 0.06	< <
3017	941394	02	1.60	60 270	0.6	1.79	228	< 10	20	< 0.5	2	0.80	< 0.5	13	109	157	3.66	< 10	< 1	0.05	``
3018 3019	941394 941394	02	1.18	9600	13.6		>10000	< 10	20	< 0.5	18	0.34	0.5	82	63	419	6.14	< 10	< Î	0.10	<
3020	941394		5.70	1195	0.6	1.42	4100	< 10	50	< 0.5	2	1.35	< 0.5	10	57	169	4.03	< 10	< 1	0.08	<
3021	941394	02	2.18	235	0.2	1.36	178	< 10	70	< 0.5	6	0.44	< 0.5	10	71	155	2.98	< 10	< 1	0.13	<
3022	941394		2.26	130	0.6	0.90	402	< 10	40	< 0.5	2	0.80	< 0.5	13	87	196	2.68	< 10	< 1	0.07	<
	11																				
		1																			

CERTIFICATION:	 	

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GALE, R. E.

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7

Project : Comments: ATTN: R.E. GALE

CC: R. POLLOCK

Page Number :1-B Total Pages :1 Certificate Date: 17-JUN-2002 Invoice No. : I 0217868

P.O. Number : Account :CNF

ROCK										CE	RTIFIC	CATE	OF A	NAL	/SIS		10217	868	
Sample	PREP	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	ppm P	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	D I	DDur A	ppm W	Zn ppm	
33001	94139402	0.71	295	6	0.10	8	980	6	0.17	< 2	3	31	0.11	< 10	< 10	91	< 10	34	
3002	94139402	1.02	385	3	0.15	9	1020	< 2	0.33	< 2	6	37	0.10	< 10	< 10	101	< 10	42	
3003	94139402	0.74	260	3 15	0.11 0.05	5 17	790 610	< 2 < 2	0.37 0.03	< 2 2	4 7	35	0.06 0.01	< 10 < 10	< 10 < 10	53 75	< 10 < 10	32 30	
3004 3005	94139402 94139402	0.95 0.78	255 440	< 1	0.09	3	1010	< 2	0.17	< 2	7	13 60	0.03	< 10	< 10	69	< 10	44	
3006	94139402	0.78	245	9	0.14	18	760	< 2	0.65	< 2	5	51	0.09	< 10	< 10	70	< 10	32	
3007	94139402	0.52	275	15	0.07	79	880	< 2	0.37	< 2	6	25	0.05	< 10	< 10	54	< 10	32	
3008	94139402	0.40	180	2	0.04	15	410	10	1.18	< 2	2	. 7	0.05	< 10	< 10	32	< 10	30	
3009 3010	94139402 94139402	0.41 0.45	145 550	3 5	0.19 0.07	46 69	710 1370	< 2 14	0.97 0.26	< 2 < 2	3 5	44 26	0.08	< 10 < 10	< 10 < 10	39 1 42	< 10 30	20 42	
3011	94139402	0.52	155	3	0.09	48	670	2	1.82	< 2	4	16	0.08	< 10	< 10	52	< 10	22	
3012	94139402	0.89	330	3	0.11	4	930	< 2	0.14	< 2	7	45	0.02	< 10	< 10	82	< 10	38	
53013	94139402	0.63	125	3	0.20	5	840	< 2	1.23	< 2	4	55	0.09	< 10	< 10	54	< 10	16	
301 4 33015	94139402 94139402	0.17 0.55	145 170	3	0.01	12 21	440 660	26 2	5.88 2.16	290 16	< 1 4	36 ·	0.01	< 10 < 10	< 10 < 10	7 44	< 10 < 10	30 22	
3016	94139402	0.43	225	18	0.17	22	660	< 2	0.44	< 2	7	36	0.08	< 10	< 10	46	< 10	18	
3017	94139402 94139402	0.63	255	7	0.21	15 33	1040 570	< 2	1.51 1.43	< 2	7	64	0.07	< 10 < 10	< 10	87	< 10 < 10	28	
53018	94139402	0.56	225 275	1 < 1	0.13 0.02	36	690	< 2 2	2.58	< 2 22	9 2	29 12	0.07 0.02	< 10	< 10 < 10	69 31	< 10	28 58	
3019 3020	94139402	0.50 0.93	505	` 6	0.10	13	970	2	0.74	14	8	39	0.03	< 10	< 10	122	< 10	54	
53021 53022	94139402 94139402	1.14	415 320	40 15	0.05 0.07	33	710 500	< 2 < 2	0.24	< 2 < 2	5 4	18 22	0.05	< 10 < 10	< 10 < 10	128	< 10 < 10	40 32	
))}

CERTIFICATION:	•
CERTIFICATION	

LLS Cuelnes

EXCELLENCE IN ANALYTICAL CHEMISTRY

Aurora Laboratory Services Ltd.
212 Brooksbank Avenue
North Vancouver BC V7J 2C1 Canada

Phone: 604 984 0221 Fax: 604 984 0218

DER. LE AL ISSOL EINE 107-2274 FOLKSTONE WAY WEST VANCOUVER BC V7S 2X7

CERTIFICATE OF ANALYSIS

Total # of pages: 2 (A - C)
Date: 4-Sep-2002

VA02002868

Account: CNF

Project : Rock Creek

ROCK

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-1CP41 Fe % 0.01
453024		1.64	0.018	0.7	1.18	11	<10	140	<0.5	3	0.48	<0.5	11	59	298	3.65
453025		1.32	0.203	1.2	0.55	9	<10	50	<0.5	2	0.61	<0.5	8	91	418	3.53
453026		1.94	0.103	1.2	1.27	829	<10	60	0.6	6	1.58	0.8	9	149	717	9.95
453027		2.38	0.374	2.4	1.65	1005	<10	60	0.5	3	0.68	1.0	7	153	617	8.67
453028		1.50	0.072	0.3	1.55	102	<10	110	0.5	<2	1.55	<0.5	7	34	181	3.51
453029		2.56	0.179	<0.2	1.66	138	<10	80	0.5	8	1.87	<0.5	6	58	101	2.93
453030		1.86	0.333	1.6	2.38	890	<10	70	<0.5	<2	0.28	1.1	11	110	569	11.40
453031		2.34	0.676	4.9	2.00	682	<10	30	<0.5	13	0.25	2.9	<1	107	1265	>15.0
453032		4.16	7 44	7.4	2.12	720	<10	30	<0.5	8	0.16	3.5	85	79	1225	>15.0
453033		1.70	0.044	1.0	0.72	21	<10	40	<0.5	3	1.01	8.0	22	88	504	7.27
453034	***	1.90	0.371	2.3	1.47	131	<10	40	0.5	4	1.28	1.0	16	90	757	9.41
453035		3.42	0.173	1.9	1.88	129	<10	40	<0.5	8	1.43	1.2	16	102	918	10.95
453036		1.76	0.089	0.4	0.89	126	<10	50	<0.5	2	1.11	<0.5	9	25	187	3.11
453037		2.62	1.825	1.1	1.56	279	<10	40	<0.5	<2	0.76	<0.5	9	63	424	5.05
453038		1.48	0.347	1 1	1.60	180	<10	50	<0.5	<2	0.16	< 0.5	8	132	352	4.99
453039		2.22	0.079	0.3	2.10	89	<10	90	<0.5	4	1.75	<0.5	7	51	192	3.36
453040		3.30	0.122	0.9	0.56	231	<10	80	0.5	5	1.04	<0.5	3	85	303	4.78
453041		2.24	0.164	1.1	2.22	805	<10	20	<0.5	3	0.46	<0.5	3	163	513	7.80
453042		1.38	3.88	1.3	1.52	>10000	<10	60	0.6	<2	0.48	0.8	68	25	256	6.18

EXCELLENCE IN ANALYTICAL CHEMISTRY

Aurora Laboratory Services Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax. 604 984 0218 107- 2274 FOLKSTONE WAY WEST VANCOUVER BC V7S 2X7

Page #: 2 - B

Total # of pages: 2 (A - C) Date : 4-Sep-2002

Account: CNF

Project : Rock Creek

0	0	_	u
Y	c	C	K

ROCK									CER	TIFICA	TE OF A	NALYS	is v	/A02002	2868	
Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
453024		<10	<1	0.26	<10	0.88	267	3	0.04	54	740	3	0.69	<2	8	27
453025		<10	<1	0.09	10	0.24	134	3	0.05	53	2210	3	0.81	<2	5	24
453026		<10	<1	0.06	10	1.03	764	10	0.01	105	2040	4	5.50	2	7	40
453027		10	<1	0.07	10	0.97	687	9	0.01	76	1420	9	1.70	<2	/	41
453028		<10	<1	0.11	<10	0.85	324	1	0.16	7	1090	5	1.12	<2	8	96
453029		<10	<1	0.13	<10	0.84	327	2	0.20	10	1110	2	0.82	2	6	118
453030		10	<1	0.05	<10	1.66	622	2	0.01	45	1100	7	4.91	4	8	11
453031		10	<1	0.02	<10	0.90	203	2	0.01	81	1970	14	>10.0	<2	8	3
453032		10	<1	0.06	<10	1.09	390	3	0.01	67	1190	46	>10.0	<2	7	8
453033		<10	<1	0.05	<10	0.45	199	1	0.04	56	2760	7	5.09	<2	5	22
453034		10	<1	0.10	10	0.95	345	4	0.05	38	4440	8	4.67	<2	10	23
453035		10	<1	0.12	10	1.06	308	6	0.04	42	5890	4	5.59	<2	11	16
453036		<10	<1	0.09	<10	0.58	228	1	80.0	4	950	3	1.35	<2	4	39
453037		<10	<1	0.08	<10	0.92	333	1	0.07	8	730	2	1.68	<2	4	27
453038		<10	<1	0.14	10	1.15	282	6	0.02	26	520	6	0.94	<2	3	10
453039		10	1	0.11	<10	0.79	271	1	0.27	8	1070	6	1.26	<2	4	129
453040		<10	<1	0.07	<10	0.45	386	3	0.02	55	500	4	2.41	<2	10	43
453041		10	<1	0.09	<10	1.45	320	16	0.01	21	2300	3	2.64	4	7	10
453042		<10	<1	0.15	<10	0.72	355	2	0.07	15	980	14	1.03	14	7	36

'ALS Cheme'x

EXCELLENCE IN ANALYTICAL CHEMISTRY

Aurora Laboratory Services Ltd.

212 Brooksbank Avenue
North Vancouver BC V7J 2C1 Canada
Phone: 604 984 0221 Fax: 604 984 0218

10: R.E. GALE AND ASSOCIATE INC. 107- 2274 FOLKSTONE WAY WEST VANCOUVER BC V7S 2X7 Page #: 2 - C Total # of pages: 2 (A - C)

Date : 4-Sep-2002

Account: CNF

Project : Rock Creek

ROCK								CERTIFICATE OF ANALYSIS VA02002868
Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 Ti ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	
453024	-	0.04	<10	<10	75	<10	45	
453025		0.03	<10	<10	68	<10	22	
453026		0.02	<10	<10	119	10	61	
153027		0.02	<10	<10	115	10	55	
153028		0.07	<10	<10	85	<10	38	<u></u>
53029		0.07	<10	<10	73	<10	34	
53030		0.01	<10	<10	72	10	46	
53031		<0.01	<10	<10	60	10	24	
453032		0.01	<10	<10	55	<10	39	
453033		0.05	<10	<10	53	<10	35	
153034		0.06	<10	<10	113	<10	46	
453035		0.03	<10	<10	140	<10	46	
453036		0.07	<10	<10	53	<10	29	
453037		0.02	<10	<10	61	<10	36	
453038		0.01	<10	<10	147	<10	38	
453039		0.07	<10	<10	64	<10	35	
453040		0.09	<10	<10	93	<10	25	
453041		0.01	<10	<10	112	<10	24	
453042		<0.01	<10	<10	66	<10	74	
		Į						
		1						
		1						
		1						
								•
		1						
		1						
		1						
		1						
		l						

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

Aurora Laboratory Services Ltd.

212 Brooksbank Avenue
North Vancouver BC V7J 2C1 Canada
Phone: 604 984 0221 Fax: 604 984 0218

To: R.E. GALE AND ASSOCIATE INC. 107- 2274 FOLKSTONE WAY WEST VANCOUVER BC V7S 2X7

Page #: 2 - A
Total # of pages: 2 (A - C)

Date : 22-Aug-2002

Account: CNF

ROCK		,							CERT	IFICAT	E OF A	VALYSI	S V	A02002	761	 -
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt kg 0.02	Au-AA24 Au ppm 0.005	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 B/ ppm 2	ME-ICP41 C# % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	MÉ-ICP41 Cu ppm 1	ME-ICP41 F# % 0.01
453023	-	0.92	0.107	0.5	1.21	82	<10	80	<0.5	4	0.73	<0.5	22	24	273	3.62
Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P PPM 10	ME-ICP41 Pb ppm 2	ME-ICP41 \$ % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Se ppm 1	ME-ICP41 Sr ppm 1
453023		<10	<1	0.07	<10	0.62	241	1	0.12	20	1140	8	1.15	<2	6	50
Sample Description	Method Analyte Units LOR	ME-ICP41 TI % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	<u>, , , , , , , , , , , , , , , , , , , </u>								·
453023		0.05	<10	<10	75	<10	55		· · · · · · · · · · · · · · · · · · ·	···				·		

25-Sep-02

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2002-328

R.E. GALE & ASSOCIATES INC. 107 - 2274 Folkestone Way West Vancouver, BC V7S 2X7

ATTENTION: R. E. Gale

No. of samples received: 40 Sample Type: Core Project #: None given Shipment #: None given Samples submitted by:R.E. Gale

Values in ppm unless otherwise reported CORE

Et #.	Tag #	Ag	AI%	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Рb	Sb	Sn	Sr	Ti %	U	٧	w	Y	Zn
1	24051	<0.2	1.70	60	75	<5	2.25	<1	10	72	100	3.40	20	1.12	497	1	0.05	12	990	12	<5	<20	93	0.06	<10	64	<10	11	43
2	24052	0.2	1.45	510	45	<5	2.62	<1	13	89	101	3.07	20	1.03	492	3	0.06	12	970	14	<5	<20	93	0.05	<10	64	<10	10	47
3	24053	0.4	1.39	305	55	<5	2.14	<1	11	86	99	3.04	10	0.95	449	3	0.08	11	1010	12	<5	<20	90	0.08	<10	65	<10	10	47
4	24055	0.2	1.34	75	55	<5	2.51	<1	7	72	55	2.73	20	0.85	506	1	0.09	12	970	12	<5	<20	139	0.07	<10	61	<10	11	55
5	24056	0.2	1.61	35	80	<5	3.06	<1	7	79	35	2.93	20	0.92	544	3	0.11	13	1010	16	< 5	<20	181	0.07	<10	63	<10	11	52
6	24057	< 0.2	1.61	25	55	<5	2.98	<1	8	71	101	3.10	20	0.91	520	<1	0.09	12	930	10	<5	<20	203	0.06	<10	61	<10	11	43
7	24059	0.4	1.25	205	60	<5	2.29	<1	7	81	44	2.48	10	0.76	496	2	0.12	10	940	14	<5	<20	123	0.07	<10	63	<10	11	54
8	24060	<0.2	1,32	60	115	<5	1.38	<1	8	70	35	2.55	10	0.71	392	<1	0.14	8	950	10	<5	<20	74	0.10	<10	59	<10	8	39
9	24061	<0.2	1.57	185	50	<5	2.65	<1	8	74	89	3.30	20	1.02	541	2	0.09	12	960	12	<5	<20	147	0.06	<10	68	<10	12	46
10	24063	<0.2	1.52	30	50	<5	2.71	<1	7	63	119	3.00	20	1.01	448	1	0.07	12	960	12	<5	<20	183	0.05	<10	63	<10	11	42
11	24065	0.4	1.60	20	55	<5	3.27	<1	7	76	100	3.31	20	1.05	468	3	0.06	14	950	12	<5	<20	148	0.05	<10	61	<10	11	35
12	24066	0.2	1.61	660	40	<5	2.86	<1	12	64	97	2.96	20	1.09	467	1	0.06	13	970	12	<5	<20	165	0.05	<10	62	<10	10	44
13	24067	<0.2	2.07	285	50	<5	3.36	<1	10	75	67	3.21	20	1.27	485	2	0.07	15	960	14	<5	<20	294	0.05	<10	58	<10	11	38
14	24068	<0.2	2.18	30	65	<5	2.54	<1	10	62	31	3.91	30	1.29	530	2	0.04	14	1310	18	<5	<20	170	0.06	<10	71	<10	11	58
15	24069	<0.2	2.00	205	70	<5	3.15	<1	13	70	29	3.75	30	1.25	628	3	0.04	14	1120	16	<5	<20	298	0.06	<10	62	<10	10	56
16	24071	0.2	1.70	90	60	<5	4.60	<1	8	60	88	3,57	20	1.19	644	1	0.05	17	950	12	<5	<20	363	0.06	<10	55	<10	11	44
17	24072	<0.2	1.82	890	75	<5	2.50	<1	15	78	45	3.63	20	1.11	514	3	0.07	12	960	12	<5	<20	176	0.06	<10	68	<10	11	55
18	24073	<0.2	1.54	20	85	<5	2.51	<1	6	68	44	3.22	20	0.92	501	<1	0.07	11	910	10	<5	<20	194	0.06	<10	69	<10	12	46
19	24074	< 0.2	1.71	35	50	<5	2.67	<1	7	80	74	3.23	20	1,18	505	3	0.06	14	1010	12	<5	<20	152	0.05	<10	63	<10	10	44
20	24076	<0.2	1.87	1465	30	<5	3.01	<1	12	69	107	3.42	20	1.33	495	2	0.06	14	1170	14	<5	<20	176	0.05	<10	65	<10	9	42
21	24077	<0.2	1.42	410	40	<5	3.15	<1	10	76	126	2.79	10	0.88	455	3	0.07	13	970	12	· <5	<20	178	0.05	<10	66	<10	10	48
22	24079	0.2	1.56	210	50	<5	2.87	<1	10	73	127	3.24	20	0.99	349	1	0.08	13	990	10	<5	<20	187	0.07	<10	59	<10	10	32
23	24080	<0.2	1.67	40	50	<5	2.52	<1	7	92	85	3.31	20	1.04	462	3	0.08	14	990	12	<5	<20	149	0.06	<10	70	<10	12	41
24	24081	<0.2	1.67	20	50	<5	2.53	<1	7	79	53	3.29	20	1.03	478	<1	0.08	13	950	10	<5	<20	139	0.06	<10	73	<10	11	41
25	24082	0.2	1.44	390	35	<5	3.26	<1	7	77	103	2.94	20	1.00	433	3	0.06	14	950	10	<5	<20	94	0.05	<10	66	<10	9	40

R.E. GALE & ASSOCIATES INC. CORE

ICP CERTIFICATE OF ANALYSIS AK 2002-328

ECO TECH LABORATORY LTD.

Et #.	Tag #	Ag	A1 %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Рb	Sb	Sn	Sr	Ti %	U	V	W	Υ	Zn
26	24084	<0.2	1.57	350	35	<5	2.44	<1	13	70	94	3.35	20	1.07	449	<1	0.07	12	970	8	<5	<20	92	0.06	<10	69	<10	10	39
27	24085	0.2	1.56	270	40	<5	3,07	<1	11	75	100	3.08	20	1.22	445	3	0.06	14	990	8	<5	<20	103	0.05	<10	61	<10	10	32
28	24086	0.6	1.44	980	35	<5	3.02	<1	17	75	141	3.72	20	1.13	436	<1	0.06	14	890	10	<5	<20	130	0.06	<10	60	<10	10	32
29	24087	<0.2	1.48	565	40	< 5	2.95	<1	10	88	71	3.04	20	1.04	481	3	0.07	12	930	10	<5	<20	91	0.05	<10	66	<10	11	35
30	24088	<0.2	1.41	875	35	<5	2.45	<1	15	71	95	3.16	20	0,96	406	<1	0.07	11	940	10	<5	<20	127	0.06	<10	64	<10	11	36
55	2,1000		1. 11	0.0		-	,-	-																					
31	24089	0.4	1.68	385	65	<5	3,38	<1	12	66	86	3.07	20	1.06	468	2	0.07	14	960	12	<5	<20	245	0.05	<10	60	<10	11	40
32	24090	0.4	1.53	1530	35	<5	3.83	<1	14	63	89	2.94	20	1.00	524	1	0.07	14	910	12	<5	<20	229	0.05	<10	57	<10	11	40
33	24091	0.4	1.50	810	45	<5	2.45	<1	11	80	91	3.04	20	0.96	404	3	0.10	10	940	10	<5	<20	125	0.06	<10	69	<10	11	43
34	24092	0.2	1.62	110	45	<5	2.90	<1	9	73	94	3.33	20	1.02	470	2	0.08	13	980	10	<5	<20	144	0.06	<10	72	<10	11	43
35	24093	<0.2	1.60	95	40	<5	3.76	<1	7	65	63	3.02	20	1.01	554	2	0.06	15	910	12	<5	<20	181	0.05	<10	56	<10	11	41
30	24000	\U.Z	1.00	40	-10		0.,0		,																				
36	24094	1.0	1.17	90	25	<5	1.61	<1	13	69	347	2.21	<10	0.75	223	2	0.10	12	860	8	<5	<20	25	0.10	<10	50	<10	7	31
37	24095	20.2		>10000	15	<5	1,15	<1	135	92	4713	7.11	10	1.02	159	7	0.06	12	810	2	20	<20	16	0.19	<10	49	<10	5	185
38	24096	0.8	1.28	220	25	<5	1.62	<1	14	80	290	2.39	<10	0.75	230	6	0.15	11	850	8	<5	<20	45	0.10	<10	56	<10	8	27
39	24097	0.4	1.49	35	30	<5	2.62	<1	13	86	218	2.75	<10	1.09	367	4	0.14	15	890	10	<5	<20	54	0.09	<10	79	<10	10	29
40	24098	1.0	1.69	1830	35	<5	3.25	<1	16	70	403	3.55	10	1.33	447	2	0.10	16	890	10	<5	<20	73	0.08	<10	87	<10	12	44
40	24090	1.0	1.05	1000	33	~	0.20	- 1	,,,	, 0	400	0.00	,,,	1.00		_	•				-								
Q/C DATA	۸																												
Resplit:	04054	-n n	1.72	65	60	<5	2.14	<1	10	77	95	3.44	20	1.12	492	1	0.05	11	1000	12	<5	<20	88	0.06	<10	64	<10	11	45
1	24051 24094	<0.2 1.0	1.19	95	20	<5	1.64	<1	13	72	345	2.27	<10	0.75	216	2	0.10	12	880	10	<5	<20	24	0.11	<10	51	<10	8	31
36	24094	1.0	1.19	ອວ	20	-5	1.04	- 1	10	, 2	545	2.21	-10	0.10	2.0	-	0.10		-									-	
Repeats:																													
1	24051	<0.2	1.67	45	70	<5	2.19	<1	9	71	95	3.34	20	1.09	488	<1	0.05	12	970	12	<5	<20	88	0.05	<10	62	<10	11	43
10	24063	<0.2	1.50	35	50	<5	2.68	<1	8	92	116	3.00	10	1.00	443	1	0.07	13	950	12	<5	<20	179	0.05	<10	63	<10	12	43
19	24074	<0.2	1.68	40	50	<5	2.64	<1	7	80	74	3.21	20	1,18	505	3	0.05	12	1000	10	<5	<20	152	0.05	<10	63	<10	9	46
36	24094	1.0	1,12	90	20	<5	1.56	<1	12	66	328	2.10	<10	0.71	204	1	0.10	10	830	8	<5	<20	23	0.10	<10	48	<10	7	30
Standard	s																												
GEO '02		1.6	1.81	55	140	<5	1.65	<1	20	75	87	3.69	10	1.00	625	<1	0.04	33	660	26	<5	<20	47	0.15	<10	79	<10	11	73
GEO '02		1.6	1.82	55	140	<5	1.68	<1	20	76	87	3.74	10	1.00	632	<1	0.04	34	660	24	<5	<20	49	0.16	<10	81	<10	11	73

JJ/ejd df/326 XLS/02 ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

11-Oct-02

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2002-381

R.E. GALE & ASSOCIATES INC. 107-2274 Folkestone Way West Vancouver, BC V7S 2X7

ATTENTION: Robert Gale

No. of samples received: 86
Sample type: Core
Project #: None Given
Shipment #: None Given
Samples submitted by: Robert Gale

Values in ppm unless otherwise reported CORE

Et #.	Tag #	Ag	AI %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	РЬ	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	24099	0.8	1.49	55	25	<5	3.28	<1	11	51	387	3.80	<10	1,19	420	7	0,08	10	1110	14	<5	<20	63	0.07	<10	83	<10	12	47
2	24100	0.8	1.45	40	25	<5	3.56	<1	12	56	305	3.46	<10	1.21	427	6	0.09	11	1170	12	<5	<20	80	0.06	<10	86	<10	12	34
3	64801	0.6	1.52	1195	45	5	4.78	<1	18	101	154	5.94	20	1.50	817	6	0.04	70	1610	14	<5	<20	193	0.08	<10	108	<10	20	42
4	64802	1.2	1.16	310	35	<5	4.87	<1	17	113	369	6.32	20	1.15	772	5	0.07	66	2390	10	<5	<20	132	0.12	<10	81	<10	17	33
5	64803	0.4	1.25	230	30	15	5.57	<1	17	115	150	5,35	20	1.35	970	6	0.07	63	1470	10	<5	<20	137	0.12	<10	111	<10	15	38
6	64804	<0.2	1.57	140	65	<5	4.63	<1	15	86	132	5.34	10	1.33	911	B	0.06	52	1100	12	<5	<20	138	0.08	<10	98	<10	13	35
7	64805	<0.2	1.51	<5	15	5	2.88	<1	14	57	68	3,66	<10	1.16	307	2		18	1240	12	<5	<20	27	0.12	<10	71	<10	10	18
8	64806	<0.2	1.51	<5	50	<5	1.56	<1	21	83	117	5.20	<10	1.41	310	5	0.06	38	1030	10	<5	<20	13	0.16	<10	59	<10	20	25
9	64807	<0.2	1.25	<5	25	10	1.12	<1	16	105	63	3.89	<10	1.15	237	3	0.05	72	770	10	<5	<20	16	0.15	<10	83	<10	11	21
10	64808	<0.2	1.58	<5	15	<5	1.10	<1	27	73	173	7.52	10	1.34	260	3		56	1130	10	<5	<20	31	0.16	<10	76	<10	12	27
11	64809	<0.2	1.38	10	10	<5	1.56	<1	18	84	76	4.36	<10	1.14	376	3	0.06	53	1210	10	<5	<20	22	0.13	<10	70	<10	9	27
12	64810	<0.2	0.94	<5	15	5	5.31	<1	19	80	70	3.85	<10	0.84	770	4	0.03	44	840	8	<5	<20	36	0.11	<10	44	<10	8	56
13	64811	<0.2	1.51	<5	55	<5	0.49	<1	16	75	127	5.08	10	1.05	994	7	0.04	35	1310	12	<5	<20	10	0.08	<10	71	<10	21	49
14	64812	<0.2	1.59	<5	50	<5	2.34	<1	13	71	99	4.35	<10	0.93	189	8	0.09	22	1320	12	<5	<20	187	0.09	<10	43	10	8	13
15	64813	<0.2	1.55	<5	25	<5	2.88	<1	9	47	33	3.09	<10	1.11	385	25	0.08	16	1440	12	<5	<20	39	0.11	<10	61	<10	9	19
40	04044		4.50		a.				46							_	0.07		4545	4.5				0.44	.40	c 7	-40		00
16	64814	<0.2		<5	25	<5	3.58	<1	13	45	63	4.01	<10	1.00	515		0.07		1310	12	<5 -5	<20	50	0.11	<10	57	<10	8	26
17	64815	<0.2	1.66	<5	10	10	4.05	<1	16	43	71	5.15	10	1.14	569	2		12	1450	14	<5	<20	33	0.13	<10	64	<10	10 9	28 24
18	64816	<0.2	1.50	5	25	<5	2.68	<1	12	49	44	3.66	<10	0.94	466	3	0.09	9	1400	12	<5	<20	88	0.12	<10	59	<10	-	2 4 19
19	64817	<0.2	1.69	295	35	10	2.41	<1	24	68	135	5,62	10	1.00	269	19	0.09	12	1400	14	<5	<20	84	0.11	<10	54	<10	9	20
20	64818	<0.2	1,31	15	40	<5	3.94	<1	9	56	36	2.85	<10	0.95	401	4	0.08	12	1400	12	<5	<20	71	0.09	<10	58	<10	8	20
21	64819	<0.2	0.94	<5	30	<5	4.32	<1	4	71	14	1,54	<10	0.67	336	26	0.06	10	1320	10	<5	<20	34	0.05	<10	42	<10	8	15
22	64820	<0.2	1.14	10	30	<5	3.06	<1	10	63	42	2.61	<10	0.81	469	2		10		10	<5	<20	29	0.09	<10	54	<10	9	18
23	64821	<0.2	1.42	5	30	5	3.67	<1	11	63	65	3.57	10	0.96	502	4	0.07	11	1320	12	<5	<20	44	0.09	<10	61	<10	10	22
24	64822	<0.2	1,27	3850	45	10	3.23	<1	17	87	67	3.98	<10	0.91	401	11	0.04	35	910	12	<5	<20	48	0.08	<10	45	<10	12	23
25	64823	<0.2	1.26	35	65	<5	2.03	<1	13	102	50	3.51	<10	1.03	626	7	0.04	55	620	10	<5	<20	10	0.11	<10	62	<10	17	34
			5		~-	~		,	. •			0.01	.,0	,		,	0.0				-								

R.E. GAL	E & ASSO	CIATES	INC.	COR	E				10	CP CEI	RTIFIC	ATE O	F ANAL	YSIS	AK 200	2-381								E	CO TE	CH LA	BORAT	ORY L	TD.
Et #.	Tag #	Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La f	Mg %	Mn	Мо	Na %	Ni	Р	Рb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
26	64824	<0.2	1,08	5	155	<5	2.49	<1	11	80	65	3.22	10	0.86	556	6	0.05	32	1070	8	<5	<20	23	0.10	<10	56	<10	22	26
27	64825	<0.2	1.10	15	25	<5	1.54	<1	13	95	71	3.51	<10	0.96	445	6	0.05	53	570	10	<5	<20	11	0.09	<10	63	<10	17	32
28	64826	<0.2	1.33	10	35	5	1.53	<1	14	88	56	3.67	<10	1.17	490	16	0.05	58	530	12	<5	<20	30	0.10	<10	66	<10	17	35
29	64827	<0.2	1.34	<5	65	5	2.51	<1	15	88	70	3.53	<10	1.12	410	5	0.07	78	890	12	<5	<20	53	0.13	<10	73	<10	18	23
30	64828	<0.2	1.28	10	30	10	2.39	<1	14	90	76	3.32	<10	1.17	442	6	0.05	80	680	12	<5	<20	51	0.11	<10	84	<10	16	22
31	64829	<0.2	1.51	<5	35	<5	2.27	<1	10	62	35	2.98	20	1.03	339	7	0.10	7	1770	16	<5	<20	66	0.10	<10	63	<10	9	19
32	64830	<0.2	1.64	<5	25	<5	3.15	<1	14	56	76	3.96	<10	0.97	376	4	0.07	10	1290	16	<5	<20	81	0.10	<10	55	<10	9	22
33	64831	<0.2		>10000	15	15	1.77	<1	37	97	117	7.58	<10	0.41	65	54	0.03	17	720	8	<5	<20	8	0.08	<10	15	<10	7	15
34	64832	<0.2	1.51	25	20	<5	4.14	<1	13	46	57	3.96	10	1.04	599	5	0.06	10	1380	14	<5	<20	30	0.10	<10	65	<10	10	26
35	64833	<0.2	1.46	10	30	<5	4.61	<1	11	49	66	3.72	10	1.00	512	4	0.06	10	1340	14	<5	<20	48	0.09	<10	61	<10	10	24
30	04000	10.2	1.40	10	30		1.01	`''		,,			, ,								-							•	40
36	64834	<0.2	1.34	7180	40	<5	2.97	<1	21	64	90	5,39	10	0.89	313	6		15	1310	12	<5	<20	67	80.0	<10	47	<10	8	19
37	17601	4.2	1.35	9160	20	<5	2.48	<1	50	56	849	4.67	<10	1,01	312	3		10	920	12	<5	<20	44	0.08	<10	56	<10	9	60
38	17602	3.4	1.46	45	25	<5	3.36	<1	10	54	703	3.94	<10	1.14	400	3	0.08	10	1250	14	<5	<20	68	0.09	<10	75	<10	12	51
39	17603	0.4	1.63	30	30	<5	2.80	<1	15	69	251	4.48	<10	1.05	387	4		10	1290	16	<5	<20	72	0.10	<10	79	10	11	35
40	17604	0.2	1.52	75	25	<5	3.42	<1	10	68	153	3.65	<10	0.93	444	4	0.13	10	1270	16	<5	<20	81	0.08	<10	78	<10	11	38
41	17605	0.6	1.66	330	30	<5	3.05	<1	11	46	153	4.49	<10	1.17	454	5	0.08	8		18	<5	<20	108	0.07	<10	74	<10	11	39
42	17606	< 0.2	1.40	170	30	<5	2.39	<1	10	61	124	3.21	<10	1.04	363	8	0.10	9	1210	16	<5	<20	62	0.08	<10	69	<10	9	33
43	17607	< 0.2	1.35	30	25	<5	2.59	<1	10	52	125	3.31	<10	0.99	393	5	0.09	10	1270	16	<5	<20	84	0.06	<10	67	<10	10	31
44	17608	<0.2	1.47	40	25	<5	3.22	<1	9	52	108	3,63	<10	1.05	438	5	0.08	11	1240	16	<5	<20	118	0.05	<10	67	<10	11	35
45	17609	0.6	1.61	855	45	<5	2.96	<1	13	68	195	4.18	<10	1.06	479	6	0.07	11	1230	18	<5	<20	164	0.05	<10	59	<10	12	43
46	17610	0.4	1.55	180	25	<5	2.09	<1	17	60	216	4.06	<10	1.05	354	3	0.11	11	1250	18	<5	<20	39	0.11	<10	83	<10	10	36
47	17611	0.4	1.21	<5	20	<5	1.50	<1	12	67	157	3.14	<10	0.67	243	3	0.13	10	1260	14	<5	<20	50	0.12	<10	63	<10	7	31
48	17612	< 0.2	1.34	<5	20	<5	2.01	<1	14	53	148	3.73	<10	0.95	331	4	0.11	9	1280	16	<5	<20	52	0.12	<10	75	10	10	32
49	17613	<0.2	1.36	45	25	<5	2.35	<1	12	59	141	3.51	<10	0.90	339	2	0.11	11	1280	16	<5	<20	42	0.09	<10	71	<10	10	29
50	17614	<0.2		745	30	<5	1.77	<1	19	68	157	3.11	<10	0.70	252	4	0.11	13	1210	14	<5	<20	35	0.10	<10	60	<10	7	26
51	17615	0.6	0.95	3910	15	<5	1.93	<1	17	65	130	2.29	<10	0.56	246	4	0.11	9	1210	14	<5	<20	30	0.07	<10	48	<10	6	30
52	17616	<0.2		5	20	<5	2.67	<1	13	58	143	3,60	<10	0.97	416	2	0.09	13	1330	16	<5	<20	32	0.12	<10	92	<10	9	42
53	17617	0.4	2.09	<5	25	<5	3.97	<1	19	49	335	5.94	10	1,50	642	2	0.09	17	1540	22	<5	<20	46	0.14	<10	126	10	12	60
54	17618	0.6	1.89	1015	30	<5	4.71	<1	24	46	240	5.47	10	1.13	449	4	0.05	12	1460	20	<5	<20	41	0.08	<10	40	10	11	60
55	17619	<0.2		245	45	<5	2.92	<1	21	54	356	7.65	10	1.50	540	2			1400	34	<5	<20	82	0.16	<10	129	<10	12	72
33	17019	~0.2	3.34	243	40	~5	2.32	- 1	21	U-T	300	7.00	10	1.50	0,0	-	0.22			•	_								٠.
56	17620	< 0.2	1.67	<5	25	<5	3.19	<1	23	42	192	6.02	<10	1.29	540	<1	0.09	19	1340	18	<5	<20	71			147	<10	13	51
57	17621	<0.2	1.59	10	25	<5	3.94	<1	19	43	168	5.06	<10	1.18	593	<1	0.10		1570	18	<5	<20	68			144	<10	11	41
58	17622	<0.2		50	25	<5	3.01	<1	17	37	119	4.34	<10	0.98	477	<1	0.10	15	1290	14	<5	<20	55	0.15		109	<10	11	40
59	17623	0.4	1.08	220	10	<5	2.48	<1	20	44	222	4.69	<10	0.75	343	<1	0.08	15	1060	10	<5	<20	32	0.12	<10	65	<10	11	35
60	17624	0.8		960	65	<5	2.32	<1	15	81	225	4.16	<10	1.11	570	4	0.12	15	1560	20	<5	<20	95	0.10	<10	67	<10	7	54

•	1	ŧ	1	ı	ì	1	ı	ı	L	l	ŧ	1	1	•	ı	ŧ	ı	•

R.E. GAL	E & ASSO	CIATES	INC.	COR	Ē				ŀ	CP CE	RTIFIC	ATE O	FANA	LYSIS	AK 200	2-381								Е	CO TE	CH LA	BORAT	ORY L	.TD.
Et #.	Tag #_	Ag	Al %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %_	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
61	17625	0.4	1.72	1460	65	<5	2.87	<1	14	75	170	4.18	<10	1.22	602	5	0,09	23	1470	20	<5	<20	165	0.08	<10	78	<10	10	47
62	17626	0.6	1.73	2815	50	<5	2.45	<1	17	72	199	5.12	10	1.27	552	4	0.12	28	1490	20	<5	<20	138	0.09	<10	77	<10	9	50
63	17627	0.6	1.71	6665	35	<5	2.59	<1	22	97	228	5.79	10	1.15	498	5	0.16	33	1630	20	<5	<20	163	0.11	<10	79	<10	9	46
64	17628	0.8	1.54	>10000	35	<5	4.39	<1	22	114	370	8.91	20	1.35	978	5	0.05	68	1310	16	<5	<20	258	0.13	<10	101	<10	15	54
65	17629	0.8	1.16	8780	40	<5	3.74	<1	42	152	331	8.82	20	1.12	813	6	0.05	98	1170	12	<5	<20	131	0.15	<10	89	20	15	49
66	17630	0.6	1.42	2990	50	<5	4.55	<1	19	133	236	6.97	10	1.36	828	6	0.05		1580	16	<5	<20	55	0.14	<10	90	10	15	39
67	17631	1.0	2.33	1750	25	<5	5.73	<1	19	98	377	9,85	20	2.09	1071	4	0.04		1490	48	<5	<20	147	0.13	<10	99	20	16	90
68	17632	<0.2	2.21	245	60	<5	4.40	<1	21	84	193	6.77		1.80	780	5	0,06		1250	26	<5	<20	374	0.09	<10	114	10	16	47
69	17633	<0.2	1.40	335	65	<5	4.06	<1	14	103	204	5.09	10	1.30	730	8	0.07		1160	16	<5	<20	220	0.10	<10	94	<10	14	39
70	17634	0.4	1.04	305	20	<5	3.36	<1	28	142	361	8.92	10	1.01	477	13	0.07	84	2020	10	10	<20	89	0.16	<10	87	<10	17	35
71	17635	<0.2	1.34	440	50	<5	2.64	<1	14	100	220	4.10	20	1.08	463	6	0.06	56	910	6	<5	<20	136	0.07	<10	93	<10	11	22
72	17636	<0.2	1.17	795	60	<5	2.29	<1	15	124	188	3.77	20	1.04	447	7	0.06	78	1600	8	<5	<20	118	0.08	<10	114	<10	15	50
73	17637	<0.2	1.81	130	25	<5	3.95	<1	14	46	157	4.54	20	1.38	727	2	0.07	21	1410	12	<5	<20	355	0.06	<10	78	<10	13	28
74	17638	<0.2	1.47	235	20	<5	3.32	<1	14	54	194	4.04	20	1.31	738	3	0.09	_	1160	8	<5	<20	216	0.07	<10	107	<10	11	28
75	17639	<0.2	1.34	255	25	<5	3.63	<1	15	53	209	3.93	20	1,03	750	3	0.07	20	1060	8	<5	<20	243	0.06	<10	80	<10	12	28
																					_								
76	17640	0.6	1,19	1345	45	5	2.48	<1	18	75	145	3.17	10	0.97	371	6	0.03	30	770	8	<5	<20	120	0.04	<10	35	<10	11	26
77	17641	0.2	1.22	295	30	5	2.68	<1	20	101	98	2.85	10	1.07	434	4	0.03	53	560	8	<5	<20	135	0.04	<10	60	<10	9	23
78	17642	0.4	1.09	170	40	<5	3.15	<1	24	119	396	5.80	30	1.25	435	3	0.06	85	1510	4	<5	<20	140	0.12	<10	80	<10	17	26
79	17643	<0.2	1.15	75	60	<5	3.49	<1	11	127	85	3.11	20	1.17	521	4	0.05	69	890	6	<5	<20	183	0.06	<10	94	<10	16	25
80	17644	0.4	1,17	60	30	10	3.06	<1	15	106	358	5.69	20	1.20	470	3	0.07	58	900	6	<5	<20	158	0.10	<10	64	<10	12	26
81	17645	<0.2	1.26	130	70	5	2.96	<1	12	118	129	3.43	20	1.10	480	5		68	790	10	<5	<20	196	0.05	<10	73	<10	13	28
82	17646	<0.2	1.42	135	40	20	5.07	<1	13	117	231	4.75	30	1.43	885	4	0,06	82		8	<5	<20	214	0.08	<10	88	<10	21	33
83	17647	<0.2	1.25	240	50	20	3.69	<1	11	112	114	3.58	20	1.30	672	4	0.04	86	910	8	<5	<20	194	0.05	<10	87	<10	17	27
84	17648	0.4	1,32	350	45	25	4.47	<1	17	119	262	5.95	30	1.55	798	4	0.06	72	1480	8	<5	<20	250	0.10	<10	83	<10	15	31
85	17649	0.6	1.03	150	45	65	4.52	<1	13	113	272	5.33	20	1.07	824	5	0.08	57	1160	8	<5	<20	173	0.11	<10	62	<10	14	26
86	17650	0.4	1.13	665	40	<5	3,10	<1	12	120	162	4.07	20	1.13	663	5	0.04	73	930	12	<5	<20	130	0.06	<10	71	<10	15	28
Resplit:									40	4.5		2.07	.46	4.05	440	_	0.00		4040	4.4	,,	-20	64	0.07	-10	oe.	-10	12	41
1	24099	1.0	1.53	70	20	<5	3.41	<1	12	48	397	3.97	<10	1.22	440	6		<1		14	<5 	<20	61	0.07	<10	86 47	<10	13	41
36	64834	<0.2	1.34	7180	40	<5	2.97	<1	21	64	90	5.39	10	0.89	313	6	0.06		1310	12	<5 -:-	<20	67	0.08	<10	47	<10	8	19
71	17635	<0.2	1.30	445	50	<5	2.73	<1	14	96	218	4.18	20	1,05	466	5	0.06	58	950	8	<5	<20	125	0.07	<10	92	<10	11	23

R.E. GALE & ASSOCIATES INC. CORE

ICP CERTIFICATE OF ANALYSIS AK 2002-381

ECO TECH LABORATORY LTD.

Et #.	Tag #	Ag	AI %	As	Ва	Bi	Ca %	Cď	Co	Cr	Cu	Fe %	La Mg %	Mn	Мо	Na %	Ni	Р	РЬ	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
Repeat:	0.4000	4.0	4.50	22	20	45	2.22	-4	4.4	50	205	2.24	-40 404	406	c	0.00	40	4400	4.4		100	60	0.07	-10	0.4	-10	10	47
1	24099	1,0	1.53	60	20	<5	3.32	<1	11	52	385	3.84	<10 1.21	426	6		10	1130	14	<5	<20	62	0,07	<10	84	<10	12	47
10 19	64808 64817	<0.2 <0.2	1.60 1.69	<5 320	15 40	<5 10	1.12 2.44	<1 <1	27 24	73 67	173 136	7,59 5,65	10 1.34 10 1.00	263 264	2 18		56 12	1140 1380	12 14	<5 <5	<20 <20	31 87	0.17 0.11	<10 <10	54	<10 <10	13 9	28 19
36	64834	<0.2	1,29	7460	30	<5	2.98	<1	21	58	87	5.37	<10 0.88	313	6	0.05	13	1360	14	<5	<20	62	0.08	<10	46	10	9	20
45	17609	0.4	1.62	800	45	<5	3.01	<1	13	65	196	4.23	<10 1.07	485	5	0.07	10	1260	16	<5	<20	167	0.06	<10	59	<10	12	44
54	17618	1.0	1.85	965	30	<5	4.65	<1	23	44	238	5.39	10 1.11	447	3	0.05	12	1420	18	<5	<20	41	0.07	<10	39	<10	11	58
71	17635	0.2	1.35	450	50	<5	2.70	<1	14	103	219	4.22	20 - 1.10	474	6	0.06	57	970	8	<5	<20	134	0.07	<10	94	<10	11	23
Standard	f:																											
GEO '02		1.2	1.57	60	140	<5	1.62	<1	20	64	86	3,66	10 0.92	618	<1	0.04	31	780	12	<5	<20	35	0.12	<10	71	<10	10	69
GEO '02		1.4	1.61	50	140	<5	1.86	<1	23	66	86	3.78	10 0.93	673	<1	0.03	30	800	24	10	<20	33	0.15	<10	73	<10	12	72
GEO '02		1.4	1.59	55	145	<5	1.87	<1	24	67	86	3,69	<10 0.92	681	<1	0.03	31	820	24	10	<20	33	0.14	<10	73	<10	11	72

JJ/kk df/371/373 XLS/02

ECO TECH LABORATORY LTD.
Jutta Jeplouse
B.C. Certified Assayer

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

Aurora Laboratory Services Ltd.

212 Brooksbank Avenue
North Vancouver BC V7J 2C1 Canada
Phone: 604 984 0221 Fax: 604 984 0218

10: R.E. GALE AND ASSOCIATE INC. 107- 2274 FOLKSTONE WAY WEST VANCOUVER BC V7S 2X7

Total # of pages: 2 (A)
Date: 18-Sep-2002

Account: CNF

Project : ROCK CREEK

						1 10,000.1	ROOK CILLIN				
COR	E						CERTIFICAT	E OF ANALY	'SIS	VA020034	111
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt kg 0.02	Au-AA23 Au ppm 0.005	As-AA45 As ppm 1	As-AA46 As % 0.01						
024054 024058 024062 024064		1.72 6.42 5.38 3.78	1.135 0.161 0.122 0.066	>10000 528 1675 642	2.49						

'ALS Cheme'x

EXCELLENCE IN ANALYTICAL CHEMISTRY

Aurora Laboratory Services Ltd.

212 Brooksbank Avenue
North Vancouver BC V7J 2C1 Canada
Phone: 604 984 0221 Fax: 604 984 0218

o: R.E. GALE AND ASSOCIATE INC. 107- 2274 FOLKSTONE WAY WEST VANCOUVER BC V7S 2X7

Page #: 2 - A
Total # of pages: 2 (A)
Date: 24-Sep-2002

Account: CNF

Project : Rock Creek

CERTIFICATE OF ANALYSIS VA02003453

C.0	RE						OEITH TOATE OF AIREFOID VAULUUTUU
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt kg 0.02	Au-AA23 Au ppm 0.005	As-AA45 As ppm 1	Cu-AA45 Cu ppm 1	As-AA46 As % 0.01	
024070 024075 024078 024083		3.28 3.76 4.10 4.24	0.168 0.167 0.104 2.12	239 194 251 >10000	111	2.55	

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GALE, R. E.

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7

Project : Comments: ATTN: R.E. GALE CC:R.POLLOCK

Page Number :1-A Total Pages :1 Certificate Date: 17-JUN-2002 Invoice No. : 10217870

P.O. Number Account :CNF

** CORRECTE	COPY	5011	5							CE	RTIF	CATE	OF A	NALY	SIS	<i></i>	10217	870		
Sample	PREP CODE	Weight Kg	Au ppb FA+AA	Ag ppm	Al %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cq	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm
79+50N 10,100E 79+50N 10,125E 79+50N 10,150E 79+50N 10,175E 79+50N 10,200E	94069400 94069400 94069400 94069400 94069400	0.44 0.28	< 5 20 40	< 0.2 < 0.2 < 0.2 < 0.4 < 0.2	1.95 1.58 1.78 2.83 1.42	78 44 190 236 56	< 10 < 10 < 10 < 10 < 10	120 120 60 80 70	0.5 < 0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 2	0.09 0.17 0.51	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 4 4 5 5	8 7 10 7 9	18 7 22 51 23	1.50 1.50 2.21 1.73 1.65	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.04 0.04 0.04 0.05 0.05	< 10 < 10 < 10 < 10 < 10
79+50N 10,225E 79+50N 10,250E 80+00N 10,125E 80+00N 10,150E 80+00N 10,175E	94069400 94069400 94069400 94069400	0.34 0.32 0.42	10 15 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.92 1.42 2.93 1.80 2.32	154 74 30 36 68	< 10 < 10 < 10 < 10 < 10	90 40 110 80 120	0.5 < 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2	0.18 0.16	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 5 5 5	8 11 7 8 11	64 17 17 11 23	1.68 1.89 1.70 1.50 1.83	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.05 0.04 0.05 0.04 0.06	< 10 < 10 < 10 < 10 < 10
80+00N 10,200E 80+00N 10,225E 80+00N 10,250E 80+25N 10,185E 80+25N 10,195E	94069400 94069400 94069400 94069400	0.50 0.30 0.44	45 < 5 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.92 2.24 1.44 1.82 1.84	22 50 100 24 40	< 10 < 10 < 10 < 10 < 10	150 80 100 170 120	0.5 0.5 < 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.10 0.14 0.14	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 6 4 4	8 12 7 9 7	8 24 19 9	1.45 1.97 1.40 1.51 1.38	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.06 0.04 0.05 0.05 0.05	< 10 < 10 < 10 < 10 < 10
80+25N 10,205E 80+25N 10,215E	94069400			0.2	2.30 1.55	110 56	< 10 < 10	130	0.5 < 0.5	2 < 2		< 0.5 < 0.5	5 4	9 8	17 12	1.88	< 10 < 10	< 1 < 1	0.05	< 10 < 10

CERTIFICATION:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers

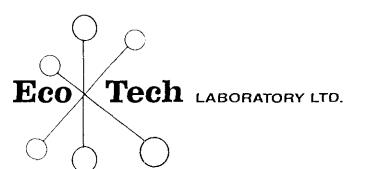
212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GALE, R. E.

Project :

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7

Comments: ATTN: R.E. GALE CC:R.POLLOCK


Page Number :1-B
Total Pages :1
Certificate Date: 17-JUN-2002
Invoice No. : I0217870
P.O. Number :

Account CNF

* CORRECTE	D COPY	5016	٠.১						CE	RTIFI	CATE	OF A	NAL'	YSIS		40217	870	
SAMPLE	PREP CODE	Mg %	Mn ppm	Mo	Na %	Ni ppm	ppm P	Pb s		Sc ppm	Sr ppm	Ti %	Tl ppm	D D	ppm V	mqq	Zn ppm	
+50N 10,100E	94069400	0.15	250	1	0.01	8	550	8 < 0.01		1	20	0.08	< 10	< 10	26	< 10	34	· - ·
9+50N 10,125E 9+50N 10,150E	94069400 94069400	0.11 0.19	465 175	1 < 1	0.01 0.01	6 6	1940 3250	8 < 0.01 6 0.01		< 1 1	18 17	0.07 0.07	< 10 < 10	< 10 < 10	26 34	< 10 < 10	56 54	
9+50N 10,175E	94069400	0.16	190	< 1	0.03	6	550	4 0.01	. < 2	3	53	0.10	< 10	< 10	26	< 10	44	
9+50N 10,200E	94069400	0.18	455	1	0.01	7	390	8 < 0.01	. < 2	1	49	0.05	< 10	< 10	28	< 10	100	
9+50N 10,225E	94069400	0.17	150	< 1	0.02	9	200	8 < 0.01		1	35	0.07	< 10	< 10	27	< 10	46	
9+50N 10,250E 0+00N 10,125E	94069400 94069400	0.19 0.12	95 630	1 < 1	0.01 0.02	8 7	150 1900	6 < 0.01 6 < 0.01		1	22 25	0.07	< 10	< 10	39	< 10	30	
0+00N 10,150E	94069400	0.12	395	₹1	0.01	ź	470	8 0.01		2 1	27	0.11 0.08	< 10 < 10	< 10 < 10	29 26	< 10 < 10	64 56	
0+00N 10,175E	14061400	0.19	210	1	0.01	7	1470	6 < 0.01		1	27	0.07	< 10	< 10	31	< 10	46	
0+00N 10,200E	94069400	0.13	375	1	0.01	7	1330	2 < 0.01		1	26	0.08	< 10	< 10	24	< 10	42	· · · · · · · · · · · · · · · · · · ·
0+00N 10,225E	4069400	0.19	175	1	0.01	10	1050	14 0.01		2	14	0.09	< 10	< 10	36	< 10	58	
0+00N 10,250E 0+25N 10,185E	94069400 94069400	0.10 0.14	650 280	1 1	0.01 0.01	6 7	1020 1780	8 0.02 6 < 0.03		< 1 1	16 21	0.06 0.07	< 10 < 10	< 10 < 10	24 25	< 10 < 10	46 42	
0+25N 10,195E	4069400	0.13	425	ī	0.01	8	1240	4 0.01		ĩ	16	0.08	< 10	< 10	23	< 10	48	
0+25N 10,205E 0+25N 10,215E	94069400 94069400	0.15 0.13	100 250	1	0.01	9 7	430 1200	6 0.01 2 < 0.01		1	19 24	0.08	< 10 < 10	< 10 < 10	33 28	< 10 < 10	40 44	
												•						
	1																	

CERTIFICATION:		

CORE

ASSAYING
GEOCHEMISTRY
ANALYTICAL CHEMISTRY
ENVIRONMENTAL TESTING

25-Sep-02

10041 Dallas Drive, Kamloops, B.C. V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
email: ecotech@direct.ca

CERTIFICATE OF ASSAY AK 2002-328

R.E. GALE & ASSOCIATES INC.

107 - 2274 Folkestone Way

West Vancouver, BC

V7S 2X7

ATTENTION: R.E. Gale

No. of samples received: 40

Sample type: Core

Project #: None given Shipment #: None given

Samples submitted by: R. E. Gale

			Au	Au	
_	ET#.	Tag #	(g/t)	(oz/t)	
÷	1	24051	0.09	0.003	
	2	24052	0.14	0.004	
	3	24053	0,16	0.005	
	4	24055	. 0.14	0.004	
	5	24056	0.09	0.003	
	6	24057	0.29	800.0	
	7	24059	0.16		
	8	24060	0.09		
	9	24061	0.10	0.003	
	10	24063	0.06	0.002	
	11	24065	80.0	0.002	
	12	24066	0.12	0.003	
	13	24067	0.11		
	14	24068	0.07		
	15	24069	0.13		
	16	24071	0.14		
	17	24072	0.30		
	18	24073	0.08		
	19	24074	0.06		
	20	24076	0.14		
	21	24077	0.11		
	22	24079	0.10		
	23	24080	0.42		_
	24	24081	0.26		
	25	24082	0.14	0.004	in a fair

ECO TECH LABORATORY LTD.

Jutta Jealouse 💹

B.C. Certified Assayer

R.E. GALE & ASSOCIATES INC.

			Au	Au	
	ET#.	Tag #	(g/t)	(oz/t)	
-	26	24084	0.26	0.008	
	27	24085	0.13	0.004	
	28	24086	0.23	0.007	
	29	24087	0.48	0.014	
	30	24088	0.24	0.007	
	31	24089	0.29	0.008	
_	32	24090	0.24	0.007	
•	33	24091	0.37	0.011	
	34	24092	0.11	0.003	
	35	24093	0.11	0.003	
		24094	0.09	0.003	
	36		7.53	0.220	
	37	24095	0.12	0.003	,
.	38	24096		0.003	
	39	24097	0.08		
	40	24098	0.45	0.013	
_					
	QC DATA:				
 .	Resplit:				
	1	24051	0.09	0.003	
	36	24094	0.09	0.003	
	Repeat:		•		
	1	24051	0.09	0.003	
	10	24063	1.45	0.042	
_	19	24074	80.0	0.002	
	Au Checks				
	10	24063	0.06	0.002	
	18	24073	80.0	0.002	
	19	24074	0.06	0.002	
-	20	24076	0.14	0.004	
_	37	24095	10.70	0.312	
-	Standard:				
	STD-M		1.85	0.054	
	STD-M		1.86	0.054	
	5,5,5				
					at a
_					14 h 11/1/24
					ECOTECH LABORATORY LTD.
	1.1764				Jutta lealouse

Jutta Jealouse

B.C. Certified Assayer

JJ/kk XLS/02

Eco Teclade Poratory IID

Eco Tech LABORATORY LTD.

CORE
ASSAYING
GEOCHEMISTRY
ANALYTICAL CHEMISTRY
ENVIRONMENTAL TESTING

8-Oct-02

10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

CERTIFICATE OF ASSAY AK 2002-381

Αu

R.E. GALE & ASSOCIATES INC.

107-2274 Folkestone Way West Vancouver, BC

V7S 2X7

ATTENTION: Robert Gale

No. of samples received: 86

Sample type: Core
Project #: None Given
Shipment #: None Given

Samples submitted by: Robert Gale

			Au	Au	
	ET#.	Tag #	(g/t)	(oz/t)	
	1	24099	0.17	0.005	
	2	24100	0.44	0.013	
	3	64801	0.13	0.004	
400	4	64802	0.28	0.008	
	5	64803	0.30	0.009	
	6	64804	0.33	0.010	
	7	64805	< 0.03	< 0.001	
	8	64806	< 0.03	<0.001	
	9	64807	< 0.03	<0.001	
-	10	64808	0.03	0.001	
	11	64809	< 0.03	<0.001	
	12	64810	<0.03	<0.001	
	13	64811	< 0.03	<0.001	
200	14	64812	< 0.03	<0.001	
	15	64813	< 0.03	<0.001	
	16	64814	0.05	0.001	
_	17	64815	0.06	0.002	
	18	64816	0.03	0.001	
	19	64817	0.60	0.017	
	20	64818	< 0.03	< 0.001	
	21	64819	< 0.03	< 0.001	
	22	64820	<0.03	< 0.001	
المبيد .	23	64821	< 0.03	<0.001	
	24	64822	0.11	0.003	
	25	64823	<0.03	<0.001	\sim
	26	64824	< 0.03	<0.001	$\langle \lambda \rho \rangle \langle \lambda \rangle$
					7 V/I ! [1/ I/

Αu

ECO TECH LABORATORY LTD.

dutta Jealouse

B.C. Certified Assayer

		_		
ET 4	To ~ #	Au (g/t)	Au (oz/t)	
ET#.	Tag #	<0.03	<0.001	
27	64825	<0.03	<0.001	
28	64826 64827	<0.03	<0.001	
29 30	64828	<0.03	<0.001	
30 31	64829	0.05	0.001	
31	64830	<0.03	<0.001	
33	64831	0.58	0.017	
34	64832	<0.03	<0.001	
35	64833	<0.03	<0.001	
36	64834	0.17	0.005	
37	17601	1.00	0.029	
38	17601	0.21	0.006	
39	17603	0.07	0.002	
40	17604	0.09	0.003	
41	17605	0.35	0.010	
42	17606	0.17	0.005	
43	17607	0.09	0.003	
44	17608	0.24	0.007	
45	17609	0.17	0.005	
46	17610	0.03	0.001	
47	17611	<0.03	<0.001	
48	17612	0.06	0.002	
49	17613	< 0.03	<0.001	
50	17614	. 0.10	0.003	
51	17615	0.93	0.027	
52	17616	0.06	0.002	
53	17617	0.07	0.002	
54	17618	0.56	0.016	
55	17619	0.49	0.014	
56	17620	0.20	0.006	
57	17621	0.10		
58	17622	0.10		
59	17623	0.35		
60	17624	0.45		
61	17625	0.14		
62	17626	0.08		
63	17627	0.37		
64	17628	0.38		
65 80	17629	0.45		
66 67	17630	0.13		
67 68	17631	0.17 0.06		
68 60	17632	0.06		
69 70	17633 17634	0.10		
70 71	17634	0.10		
72	17635	0.17		
12	1,000	0.17	0.000	The Silver

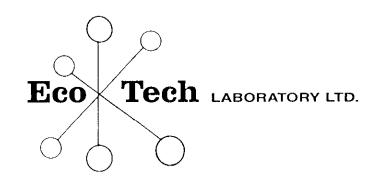
ECO TECH LABORATORY LTD.
Jutta Jealouse
B.C. Certified Assayer

Eco Tephgle poratory LTD

R.E. GALE & ASSOCIATES INC. AK 2002-381

		714	, , , ,		
ET#.	Tag #	(g/t)	(oz/t)	 	
73	17637	0.04	0.001	 	
74	17638	0.06	0.002		
75	17639	0.13	0.004		
76	17640	0.23	0.007		
77	17641	0.14	0.004		
78	17642	0.41	0.012		
79	17643	0.06	0.002		
80	17644	0.19	0.006		
81	17645	0.07	0.002		
82	17646	0.12	0.003		
83	17647	0.22	0.006		
84	17648	0.46	0.013		
85	17649	0.40	0.012		
86	17650	0.09	0.003		
QC DATA:					
Resplit:	•				
1	24099	0.16	0.005		
36	64834	0.18	0.005		
71	17635	0.10	0.003		
_					
Repeat:		<u>.</u>			
1	24099	- 0.16	0.005		
10	64808	0.03	0.001		
19	64817	0.67	0.020		
36	64834	0.19	0.006		
45	17609	0.17	0.005		
54	17618	0.53	0.015		
71	17635	0.11	0.003		
.					
Standard:		4.00	0.040		
PM171		1.38	0.040		
PM171		1.40	0.041		
PM171		1.40	0.041		

Αu


Αu

JJ/kk XLS/02

CC: Jonpol Explorations Ltd.

ECO TECH LABORATORY LTD.

Jutta Jealouse / B.C. Certified Assayer

CORE
ASSAYING
GEOCHEMISTRY
ANALYTICAL CHEMISTRY
ENVIRONMENTAL TESTING

1-Oct-02

10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

CERTIFICATE OF ASSAY AK 2002-328

R.E. GALE & ASSOCIATES INC. 107 - 2274 Folkestone Way

West Vancouver, BC

V7S 2X7

ATTENTION: R.E. Gale

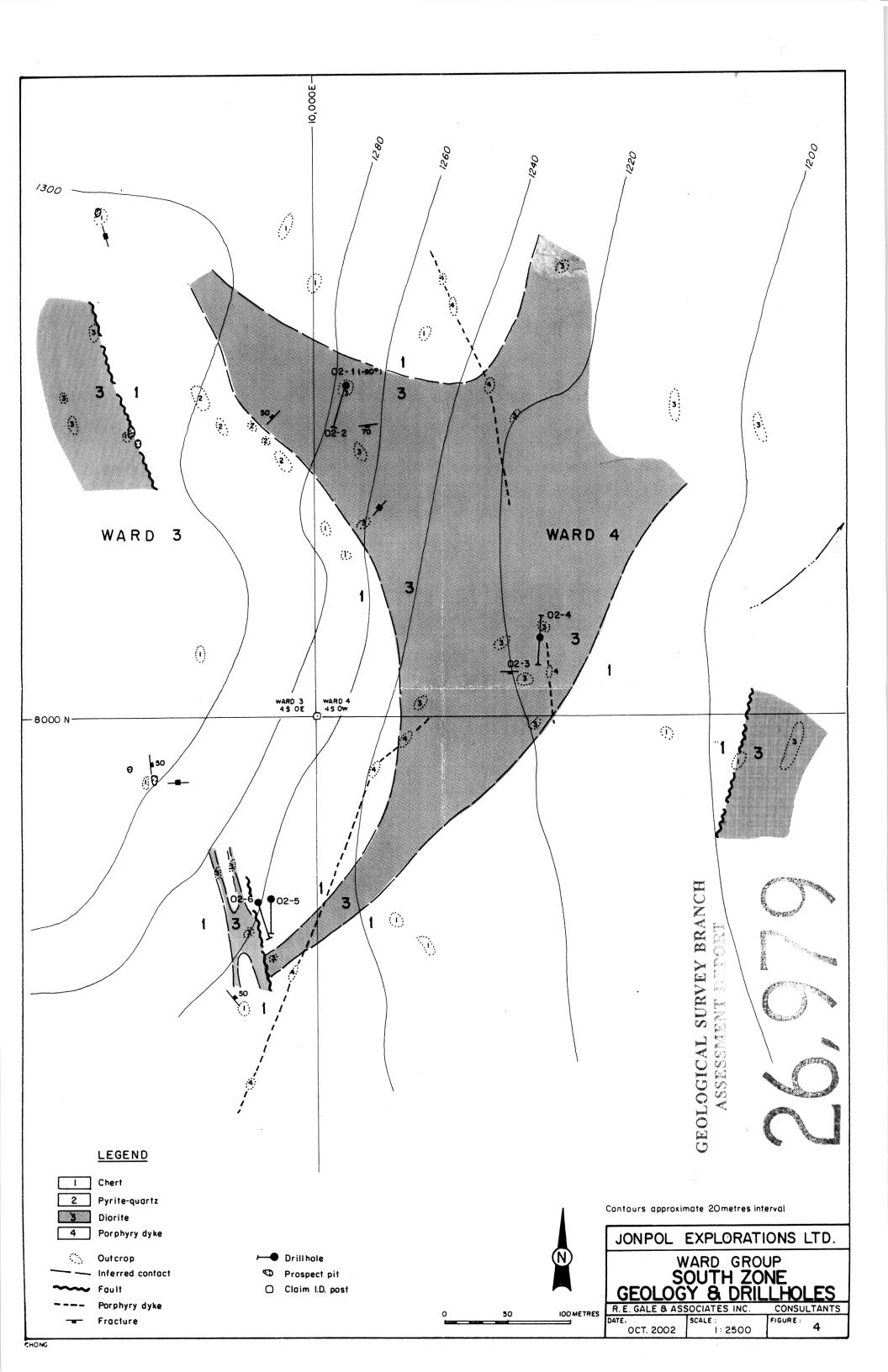
No. of samples received: 40

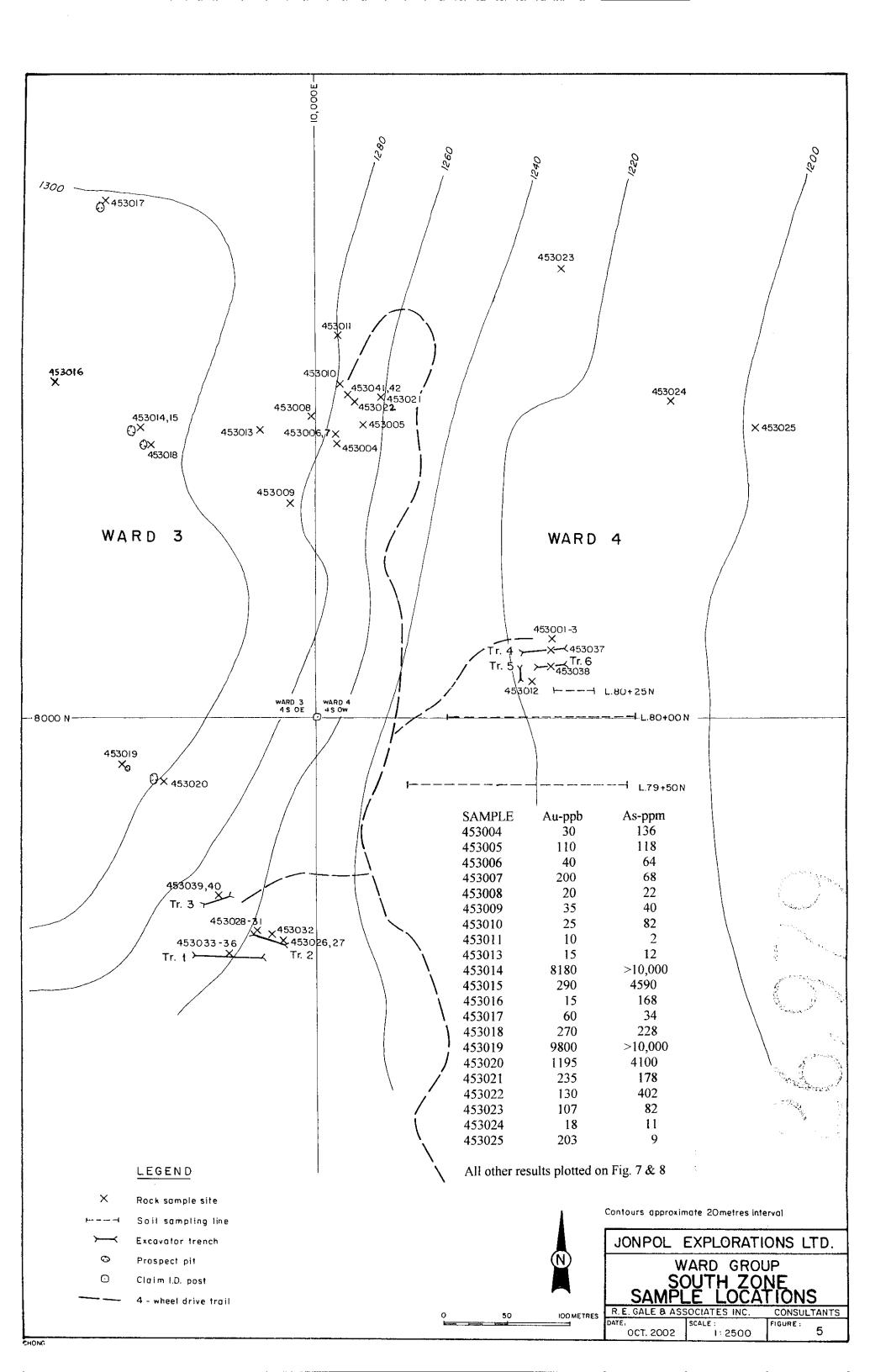
Sample type: Core

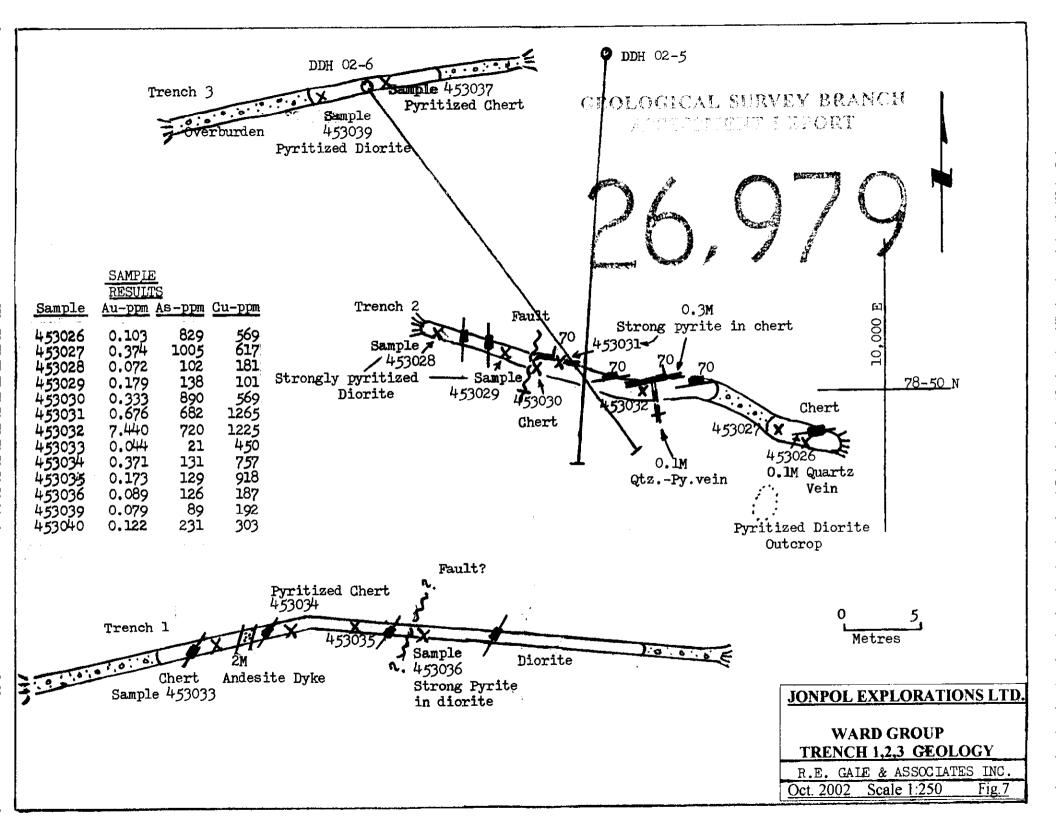
Project #: None given

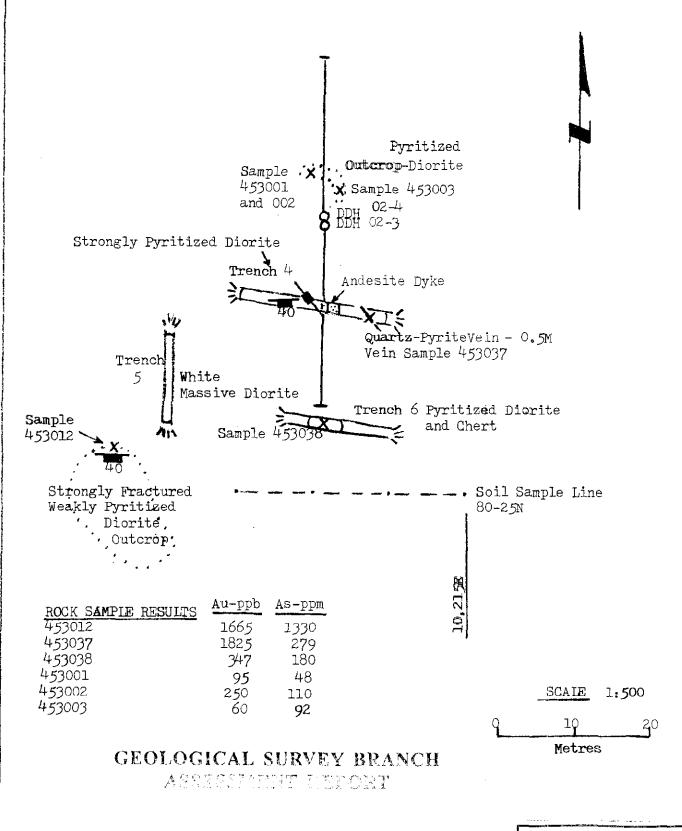
Shipment #: None given

Samples submitted by: R. E. Gale

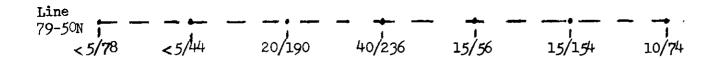

Metallic Assay


		Au	Au
ET#.	Tag #	(g/t)	(oz/t)
37	24095	10.76	0.314


JJ/kk XLS/02 ECO TECH LABORATORY LTD.


Jutta Jealouse

B.C. Certified Assayer



JONPOL EXPLORATIONS LTD.

WARD GROUP TRENCH 4,5,6 GEOLOGY

R.E. GALE & ASSOCIATES INC.
Oct. 2002 Scale 1:500 Fig.8

GEOLOGICAL SURVEY BRANCH ASSESTED TO THE ORT

10,100 E

SCAIE 1:1,000 <5/78 Au pbb /As-ppm

26,979

JONPOL EXPLORATIONS LTD.

WARD GROUP SOIL SAMPLE RESULTS

R.E. GALE & ASSOCIATES INC.

Oct. 2002 Scale 1:1000 Fig. 9