	Province of British Columbia	Ministry of Energy, Mines Petroleum Re geological surve	s and sources ty Brianch	ASSESSMENT REPOR
Geoches	TITLE OF REPORT (type mical Assessment Clay Crai	of survey(s)] Report on the Wh g	inature(s) My	\$ 3705.50
NOTICE OF WO	RK PERMIT NUMBER(S)/DATE		vent 318451	YEAR OF WORK2002 D, Sept. 26 2002
PROPERTY NAM CLAIM NAME(S) (1),	15Whitin (an which work was clone) 18, Whit 19,	g Creek Whit 1, Whi Whit 20, W	+ 2, Whit 3, 6 hit 17fr.)kit 4, Whit 5,
COMMODITIES MINERAL INVEN MINING DIVISIO LATITUDE OWNER(S) 1)	sought <u>Cu</u> tory MINFILE NUMBER(S), IF N <u>OVAINECA</u> 53° 45 Kleberry Mir	M.C. AU KNOWNNT NT LONGITUDE NES_Ltdi:2	5 <u>093E11</u> 27° <u>13</u>	2/14 e. (at centre of work)
	3000 140	uston B.C.	VOJ 120	
OPERATOR(S) (1) Hucl	who paid for the work] <leberrymir< td=""><td>es Ltd. 2</td><td>·</td><td></td></leberrymir<>	es Ltd. 2	·	
	above		···· ··· ···	
PROPERTY GEC Haz Chat	elton Volca opyrite, Mol	age, stratigraphy, structure, alter nics, Bulkley ybdenite	ration, mineralization, size and L L $ruslor$	attitude):
REFERENCES T	OPREVIOUS ASSESSMENT W	ORK AND ASSESSMENT REPO	AT NUMBERS	
			27,00	22

.

ì

| | |

ŗ

- 100 C

•

i,

.

•

SUMMARY

The Whiting Creek claims were explored for areas where topography would yield favorable geochemical sampling conditions for the expression of a porphyry Cu-Mo orebody. This reconnaissance attempted to focus in areas where past prospectors may have shied away from, and also on possible eastern and northern extensions of the previously defined "Creek Zone".

Two contour soil lines, one silt line, and several rock samples were collected in 2002, for a total of 40 samples. Sample locations were selected largely on estimated thickness of soil horizons, as well as proximity to mineralization identified in the 2000 Creek Zone drilling.

The slightly elevated copper values in the silt line do not display anything unexpected, given the distribution of copper in old drillholes nearby. The soil lines to the northeast of the 2000 Creek Zone drilling do not display any elevated values, nor do the rock samples from various locations.

These results slightly downgrade the area to the north-northeast of the Creek Zone as a drill target. However, there are still other possibilities for extensions of the Creek Zone in other directions.

TABLE OF CONTENTS:

Page Number	Contents
1	Assessment report title page and summary
2	Summary
3	Table of contents
4	Introduction, physiography
5	B.C. location map
6	Claim map
7	Claim status, summary of work, property history
8	Regional geology
9	Regional geology map
11	Property geology
13	Prospecting
14	Conclusions and recommendations, sample descriptions
17	2002 Sample location map
18	Map of copper geochemistry in 2002 sampling
19	Analytical results certificate
20	Statement of expenditures
21	Statements of qualifications (2)

INTRODUCTION

This report describes prospecting and sampling carried out over the four days of September 9th to the 12th. 2002 on the WHIT copper/molybdenum property, located south of Houston B.C.

Location and Access

The Whit claims are located in the Thatsa Lake region, 115 kilometers south of Smithers, B.C. They cover part of the south slope of Sibola Mountain, from the peak down to within a kilometer of Sweeny Lake. Access to the property is via Highway 16, near Houston B.C., the Morice River, Morice Owen, Morice Nadina and the Morice Thatsa Foresty roads. From the junction of the Morice River road with Highway 16 to the property is a distance of 125 kilometers on good gravel roads. Final access into the property is by a four-wheel drive road that continues to above treeline. The road is in fairly good shape except for the crossing of Whiting Creek, where the creek must be forded as the bridge has been washed out.

Physiography

The property lies at the east end of the Sibola range, in a transition zone between the coast mountains and the Nechako Plateau. Topography is rugged, particularly on the north half of the claims. Elevations range from 2,190m on Sibola mountain to 940m at Sweeny Lake. Treeline occurs at 1,500 metres, below this elevation Alpine Fir, Lodgepole Pine, Balsam Fir and minor Spruce and Hemlock occur. The area above treeline is characterized by talus slopes with bright red and yellow gossen. Small icefields occupy cirques on the north side of Sibola mountain.

Claim Status

The Whit claims are 100% owned by Huckleberry Mines Ltd.

		•	· · ·	•	•	
	NAME		TENURE #	EXPIRY Y/M/D	UNITS	TAG#
•	Whit	1	238208	2003,11,03	20	49581
	Whit	2	238209	2003,11,03	20	49582
	Whit	3	238210	2003,11,03	1.5	49583
	Whit	4	238211	2003,11,03	15	49584
	Whit	5	238212	2003,11,03	6	49585
	Whit	18	328577	2003,11,03	10	203518
	Whit	19	365616	2003,11,03	20	218021
	Whit	20	380902	2004,09,28	20	238611
	Whit	17F:	r238469	2005,11,03	1	64320

Summary of Work

The 2002 program consisted of sampling and prospecting on the Whit33, 4, 19 and 20. 24 soil samples, 11 silt samples and 5 rock samples were taken.

Property History

The Whit property was first staked by Kennco Explorations Ltd. in 1963. In 1964 Kennco conducted bulldozer trenching (2,900 metres), chip sampling, geological mapping, soil geochemistry and geophysics (26.1 kilometres of Mag and I.P. 1965 saw Kennco do additional mapping, sampling, bulldozer trenching (2,800 metres) and 11 NQ diamond drill holes (630 metres). Optioned by Quintana Minerals in 1972, a rock geochemical survey was done (144 samples) and a 456 metre HQ diamond drill hole. In 1980 the property was again optioned to SMD Mining Co. who remapped the property. did a soil survey (464 samples), a geophysical survey (20km IP; 36.4 km Mag) and drilled 22 percussion holes (1,784 metres) and 8 diamond drill holes (2,412 metres). In 1981 SMD continued exploring the property with 16 percussion holes(1,021 metres), and 17 diamond drill holes (3,479 metres). In 1992 Kennecott Canada Inc. prospected and drilled 2 BQ diamond drill holes, (110.6 metres). Between 1998 and 2000 Huckleberry Mines Ltd. conducted a 13.6 kilometre IP grid and 4 diamond drill holes. 2

Regional Geology

The area around the Whit property is underlain by Jurassic and younger volcanic and sedimentary rocks which have been intruded by a number of different aged intrusions. The oldest rocks in the area are volcanic and lesser sedimentary rocks belonging to the mid to late Jurassic Hazelton Group. The Hazelton Group is comprised of island arc related sub aerial and subaqueous volcaniclastic and flow rocks and lesser fine to coarse grained sediments. Overlying the Hazelton are Mid Jurassic shales, siltstones and sandstones of the Bowser Lake Group. These are in turn overlain by generally coarser sediments of the late Cretaceous Skeena Group. Upper Cretaceous volcanics of the Kasalka Group occur through out the area, especially in a large fault bounded zone just south of the property. The Kasalka volcanics are mostly subaerial andesitic to rhyolitic flows, breccias, tuffs and lahars. Cretaceous to Tertiary rhyolite to andesite flows and lesser volcaniclastic of the Ootsa Lake Group are common east of the property.

The earliest intrusives in the area are Jurassic granites, monzonites and syenites of the Toply suite. These rocks are intrusive equivalents to the Hazelton volcanics. The most common intrusives in the area are Upper Cretaceous Bulkley intrusions. They range in composition from granodiorite to quart-diorite to monzonite. These intrusives and Late Cretaceous diorites, gabbros and syno-diorites are intrusive equivalents

	CARTOGRAPHY BY	J. ARMITAGE	4NU P. UN			
		SCALE 1:50 000	2	3	4	
kilometres			<u>.</u>		kilometres	
		LEGEND	1			
PLEISTOCENE AND RECENT			LOWER	TO UPPER KASALKA GF	CRETACEOUS (C ROUP (CONTINUED)	ONTINUED)
Qal GLACIAL TILL, ALLUVIUM, COLLUVIL	M		luKc	BASAL PEBBL	LE CONGLOMERATE CONGLOMERATE, M	UNIT: RED POLYMIC-
TERTIARY				(LOCALLY U	NIT IS GREENISH C	SRET)
EOCENE AND YOUNGER (MAY INCLUD DYKES, SILLS, AND PLUGS	E CRETACEOUS)		LOWER	CRETACEO	US (MAINLY AL	BIAN)
LAMPROPHYRE (Im), BASALT OR	ANDESITE (mf),			SKEENA GRO	OUP	
MAFIC-RICH TO MAFIC-POOR FELD (fp), PINK APLITE PORPHYRY (ap), I PORPHYRY (rh) AND BRECCIA PIPES	WHITE RHYOLITE	×	IKs	MARINE SEL	DIMENTARY UNIT: ICACEOUS LITHIC DMERATE (SUCCESS	INTERBEDDED ARGIL- WACKE, MINOR GRAN- OR BASIN TURBIDITES)
EOCENE NANIKA INTRUSIONS				AMYGDALOI SPILITIZED,	DAL BASALT UNIT	COLUMNAR-JOINTED, BASALT FLOWS, MINOR
IPOM PORPHYRITIC BIOTITE-QUARTZ MON	ZONITE			FLOW TOP E	BRECCIAS	
COAST INTRUSIONS			IKc.	BASAL BOU	LDER CONGLOMER	ATE?
Tqd BIOTITE-HORNBLENDE QUARTZ DIO	RITE		MIDDL	E JURASSIC	(UPPER BATHON	NIAN TO
PALEOCENE MOUNT BOLOM INTRUSION			LOW	BOWSER LA	/IAN) KE GROUP	
Tpgr PORPHYRITIC HORNBLENDE-BIOTIN	TE GRANOPHYRE		19:5	MARINE SE	DIMENTARY UNIT D FELDSPATHIC	(ASHMAN FORMATION): WACKE, PEBBLE AND
UPPER CRETACEOUS BULKLEY INTRUSIONS				GRANULE (LITE, ASH FORMATION	CONGLOMERATE, C TUFF, SHALE (MA OF HAZELTON GF	HERTY BLACK ARGIL- AY INCLUDE SMITHERS ROUP)
UKPOM PORPHYRITIC HORNBLENDE-BIOTIT	E QUARTZ MON-	-		וחחות א	E JUBASSIC (SIN	MURIAN TO
PORPHYRITIC HORNBLENDE-BIOTIT	E GRANODIORITE	8 9	MID	DLE BAJOC HAZELTON	GROUP	
uKgd BIOTITE-HORNBLENDE GRANODIOR	ITE		STR. WES	FELSIC VOI	LCANIC AND CHER	T UNIT (SMITHERS OR
NINTE-HORNBLENDE QUARTZ DIO	RITE AND DIORITE	E	- AW I SETAL	WHITESAIL GREY, MO	FORMATION ?):	INTERBEDDED LIGHT CHERT (EXHALITE ?),
RHYOLITIC INTRUSIONS				ASH FLOW	TUFF, DACITIC	TO RHYOLITIC WELDED
UKQP SERICITIC QUARTZ 'EYE' PORPHYRY SPAR-QUARTZ PORPHYRY (DAC LOCALLY BRECCIATED (UK _{bx})	Y, BIOTITE-FELD- TE PORPHYRY	-		AND NON- FELDSPATH TUFF	WELDED LAPILLI T IC WACKE, AND RE	UFF; MINOR ARGILLITE D TO GREEN ANDESITIC
LOWER TO UPPER CRETACEOUS KASALKA INTRUSIONS			IJf	ANDESITIC	FRAGMENTAL UNIT	(TELKWA FORMATION): ED TO GREEN LAPILLI
PORPHYRITIC AUGITE-HORNBLEND AND ANDESITE AS LACCOLITHS, D SMALL STOCKS	DE MICRODIORIT	E D		LITHIC, CF AGGLOMER PORPHYRIT	AYSTAL, AND ASH ATE, ACCRETION IC ANDESITE FLOV	IARY CHERTY TUFF
KASALKA GROUP (IN PART TERTIA	RY ?)				SYMBOLS	
BASALT UNIT: CCLUMNAR-JOINTE	D BASALT FLOW	S	BEDDI	NG: INCLINED), VERTICAL	
RHYOLITE UNIT: WHITE SERICIT	IC FLOW-BANDE	D	SYNCL	INE, ANTICLI	NE	* +
UKI LAHAR UNIT: STRATIFIED BOULD	DER AND PEBBL	E 	FAULT	EAR	OWNTHROWN SIDE	
CANIC SANDSTONE AND MUDSTO PHYRITIC ANDESITE FLOWS	NE, MINOR POR		GEOLO DEF	GICAL CONT	ACT: IED	
UKP PORPHYRITIC ANDESITE UNIT: CC	LUMNAR-JOINTE	D 	AREA	OF ABUNDAN	NT OUTCROP	i
PHYRITIC AUGITE-HORNBLENDE	ANDESITE FLOW	/S IS	MINER	AL OCCURRE	NCE AND TYPE	5 •c
OF SIMILAR LITHOLOGY)			FOSSI	LOCALITY		······································

luKf	FELS	SIC	FRA	GM	ENTA	L UNI	T: 1N1	TERB	DDE	RHY	OLITIC
영산, 성영	то	AN	DES	ITIC	LA	PILLI	TUF	F, A	SH P	LOW	TUFF,
	CRY	STA	L	TUF	F, BR	ECCI	A, PEI	BBLE	CON	GLOME	RATE,
	POR	PHY	RIT	IC	ANDE	SITE	AND	DAC	ITE F	LOWS	(MAY

PERVASIVELY ALTERED PYRITIC ZONE

ANTER CONTOUR (100 METRE INTERIVAL)

to the Kasalka volcanics. Later intrusions include Tertiary Nanika suite granites, quartz monzonite, quartz porphyries and Tertiary dykes of various composition. Tertiary Coast Plutons occur west of the property area.²

Property Geology

The Whit property is underlain by Jurassic Hazelton volcanic rocks which have been intuded by a number of different intrusions. The Hazelton rocks are comprised of green to purple volcanic breccias, lappilli tuffs and minor flows and grey to brown crystal tuffs. They generally strike north to north west and dip 50 to 80 degrees to the west.

Intrusive rocks can be divided into four main phases and a number of later dykes. The earliest intrusions are two stocks of granodiorite composition. The Whiting Creek stock underlies the south east part of the property. The Sibola stock touches the north west edge of the property, but mostly lies to the north west of the claims. Rock from these intrusions is medium grained and most commonly sub-porphyritic. One to six millimetre feldspar phenocrysts occur in a matrix of plagioclase, orthoclase and quartz. Biotite is common in one to three millimetre plates. Hornblende occurs in up to six millimetre euhedral crystals. The rock is weakly to moderatly magnetic due to disseminated magnetite. Some of the granodiorite contains considerable quartz and orthoclase and approaches a granite to quartz monzonite in composition.

The Whiting Creek stock contains copper and minor moly bdenum mineralization in the Creek zone along Whiting Creek. Aplitic quartz porphyry occurs along the north west margin of the Whiting Creek stock in a 900 metre north-south by 200 metre east-west plug. It is comprised of an aplitic buff to orange matrix of quartz-orthoclase-muscovite with 10% up to four millimetre rounded quartz phenocrysts and minor plagio clase phenocrysts. Fragments of granodiorite are common

along its contact with the Whiting Creek stock. The quartz porphyry is the main host for molybdenum mineralization in the Ridge zone.

Quartz monzonite porphyry occurs in a poorly defined, approximately one kilometre diameter, plug in the west central part of the property. It is light grey and contains 30% 2-5 millimetre plagioclase phenocrysts, 15% 1-3 millimetre quartz phenocrysts and lesser biotite phenocrysts in an aphanitic quartz-orthclase matrix. No quartz veining and only minor copper mineralization occures within this unit.

The fourth intrusive phase is monzonitic in composition and occurs in three different forms. A central plug of crowded monzonite porphyry occurs in a irregular zone in the center of the main gossen. It is comprised of 25% 1-3 millimetre plagioclase phenocrysts in an aphanitic pink to grey matrix with variable biotite and hornblende content. Related intrusion breccias occur in the central part of the property and around the aplitic quartz porphyry. They contain monzonite and variable amounts of quartz porphyry fragments in a quartz -muscovite matrix. The breccias are often vuggy and contain abundant limonite within vugs. Sulphides may have been re mobilized from surrounding rock and deposited within the vugs.

A monzonitic latite porphyry intrudes granodiorite along Whiting Creek. It consists of 1-9 millimetre plagioclase phenocrysts in an aphanitic pink matrix. There is no quartz veining within the monzonite intrusives. Some contain minor copper mineralization.

A number of north west trending dykes of varying composition and age occur on the property. Feldspar-hornblende-biotite porphyry dykes and related porphyritic andesite dykes contain phenocrysts in a medium grey, medium grained granular matrix. These dykes do not contain any quartz veining, but chalcopyrite

.

and pyrite veinlets are common. Pale grey to cream felsite dykes occur as a dyke swarm cutting north westerly across the north part of the gossen. They are aphanitic to porphyritic with variable 1 millimetre plagioclase phenocrysts. These dykes contain minor pyrite. Minor small andesite, diabase and lamprophyre dykes have been found on the property. 2

Prospecting

Myself and geological technician, Ben Matute, spent eight mandays on the Whit property prospecting and sampling rocks, soils and silts. All rock samples were grabs and represent the most sulphide rich rocks found. All soils and silts were placed in kraft paper bags and submited for i.c.p. analysis

Prospecting was concentrated within, North and East of the Creek Zone. A 1,000 metre traverse of Rusty Creek was done, with silt samples taken every 100 metres over 800 metres. Silts taken here are possibly contaminated, as two roads ford the creek and at least one diamond drill site is adjacent to the creek. All outcrop found in Rusty creek were strongly pyritic granodiorite. Two contour soil lines (CL 1440 and 1360) were done with samples taken every 100 metres over a total 2,000 metre length. These soil lines North and East of the Creek Zone show an enviroment favorable for geochemical sampling. The steeper slopes boast anguler colluvial float and well developed soil horizons. Lower slopes close to Whiting Creek are deeply covered with glacial till.

Little outcrop was found within, North or East of the Creek zone, however outcrop found shows no pyritic alteration in granodiorites east of the unnamed creek. Granodiorite was the only unit found in this area.

Prospecting South of Whiting Creek, along the access road and over the south extent of the Huckleberry IP grid revealed only unaltered granodiorites and one outcrop of andesite with slight pyrite stringers.

Conclusions and Recommendations

Previous work done on the Whit property indicate potential for an economic mineral deposit within the Creek Zone. The areas south of Whiting Creek and east of the unnamed creek appear to have little potential for a porphyry deposit.

Soil geochemistry could be used effectivly to identify areas of interest north and east of the Creek Zone.

	SARSAGEN?
Sample	Descriptions 505000
185601	silt 619831E 5958865N Whiting Creek-0+00N
185602	silt Rusty Creek -1+00N
185603	silt Rusty Creek -2+00N
185604	silt 618615E 5956263N Rusty Creek -3+00N
185605	silt Rusty Creek -4+00N
185606	silt Rusty Creek -5+00N
185607	silt Rusty Creek -6+00N
185608	silt 618388E 5956605N Rusty Creek -7+00N
185609	soil 618945E 5956125N orange, c horizon, old trench
185610	soil 618518E 5957270N CL 1440-0+00E
	B horizon, orange, 25cm depth, subanguler pebbles
185611	soil CL 1440-1+00E
	B horizon, orange, 20cm depth, subrounded pebbles
185612	silt 618458E 5957300N Unnamed Creek
	CL 1440-2+00E
185613	soil CL 1440-2+00E
-	C horizon, orange, 15cm depth, very sandy
185614	soil CL 1440-3+00E
	B horizon, brown, 15cm depth, very sandy
185615	SOI1 CL 1440-4+00E
	B horizon, brown, 25cm depth, sandy
185616	SOI1 CL 1440-5+00E
	B horizon, brown, 25cm depth, sandy with clay

5.

* All UTM coordinates are NAD 83

CL 1440-5+17E 185617 silt 185618 soil CL 1440-6+00E C horizon, brown, 20cm depth, subanguler pebbles CL 1440-7+00E 185619 soil B horizon, brown, 15cm depth, rounded pebbles 185620 soil CL 1440-8+00E B horizon, brown, 8cm depth, subanguler pebbles 185621 soi1 619271E 5956916N CL 1360-8+00E B horizon, brown, 10cm depth, subanguler pebbles CL 1360-7+00E 185622 soil B horizon, brown, 7cm depth, rounded pebbles 185623 soi1 CL 1360-6+00E B horizon, brown, 10cm depth, subanguler pebbles 185624 soil CL 1360-5+00E B horizon, brown, 25cm depth, anguler pebbles CL 1360-4+70E 185625 silt 185626 soil CL 1360-4+00E B horizon, brown, 12cm depth, subanguler pebbles 185627 CL 1360-3+00E soil B horizon, brown, 10cm depth, subanguler pebbles 185628 soi1 CL 1360-2+00E B horizon, brown, 10cm depth, subanguler pebbles 185629 silt CL 1360-1+50E Unnamed Creek 185630 soil CL 1360-1+00E B horizon, brown, 15cm depth, subanguler pebbles 185631 soil CL 1360-0+00E B horizon, brown, 20cm depth, subrounded pebbles 185632 soi1 CL 1360-1+00W B horizon, brown, 15cm depth, subanguler pebbles 185633 soi1 CL 1360-2+00W B horizon, brown, 10cm depth, subrounded pebbles

. .

185634	soil CL 1360-3+00W
	B horizon, brown, 25cm depth, subrounded pebbles
185635	soil 618110E 5957111N CL 1360-4+00W
185636	rock 618629E 5954733N
	dark gray andesite with 2-3% pyrite in stringers
185637	rock 618629E 5954733N
	dark grey andesite with 5% pyrite in stringers
185551	rock 618658E 5956263N
	5% pyrite diss and stringer, granodiorite
185552	rock 618945E 5956648N
	20x30cm anguler float boulder of granodiorite with
	8% pyrites and trace calcopyrite
185553	rock 618647E 5957279N Unnamed Creek
	12% pyrite in a strongly feldspar altered, silicious
	granodiorite. silt sample 185612 and soil 185613
	taken here.

. .

			#185636- 2ppm Cu #185637 - 32ppm Cu		_			
					0	250 metres	500	
						medes	i	1
					GEOLOGIC	AT STIDUE	XZ TATA A DA -	
Drawn by: Tindall/Blower/Craig	Fiłe: wc_2002.dwg	Scale: 1:12,000	HUCKLEBERRY MINES LTD.	Coppe	r Distribution (pphi) in?	2002 Geothemi	cal-Sampling	11

PIONEER LABORATORIES INC. #103-2691 VISCOUNT WAY RICHMOND, BC CANADA V6V2R5 TEL GEOCHEMICAL ANALYSIS CERTIFICATE

TELEPHONE (604) 231-8165

for HUCKLEBERRY MINES LTD. Project: Whiting Creek Report No. 2024173 Sample Type: Pulps; soils used a screen aperture of 19mm Date: October 7, 2002

Multi-element ICP Analysis - .500 gram sample is digested with 3 ml of aqua regia, diluted to 10 ml with Water. This leach is partial for Mn, Fe, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K and Al. Detection Limit for Au is 3 ppm. 'Au Analysis- 10 gram sample is digested with aqua regia, MIBK extracted, graphite furnace AA finished to 1 ppb detection.

FLEMENT	Cu	Ph	7n	An	Ni		Mo	Fe	Δς		Δ11	Th	Sr	Cd	Sh	Bi		<u>[a</u>	P		Cr	Ма	Ba	Ti	g	۵1	Na	ĸ	14/	SAMPLES	∧*
SAMPLE	nam	nom	0000	nom	nnm	nnm	nom	%	nom	nom	nom	nom	nom	nom	nom	Dnm	nnm	%	%	000	nom.	%	00	%	0000	~) %	%	%	0000	Group 10	nnh
185601	40	111	16	77	04	8	6	513	3 25	2	8	ND	4	26	0.5	3	3	61	0.24	0.05	4	35	0.56	<u>/1</u>	0.06	2	1 02	0.03	0.12	4	3
185602	81	157	5	68	0.4	9	4	526	5.17	2	8	ND	2	45	0.5	3	5	111	0.4	0.048	3	33	0.92	44	0.11	3	1 91	0.00	0.12	9	1
185603	144	199	11	69	0.7	9	4	506	10	2	8	ND	3	45	0.5	3	3	125	0.19	0.056	3	28	0.83	52	0.1	3	1.78	0.03	0.3	19	'
185604	104	141	9	67	0.6	9	5	484	6.98	2	8	ND	2	45	0.5	3	š	134	0.49	0.055	3	50	0.9	66	0.11	3	2.06	0.00	0.38	19	2
185605	209	297	11	76	0.8	9	6	654	11.26	2	8	ND	3	57	0.5	4	4	142	0.15	0.069	3	28	0.94	62	0.11	3	2.02	0.03	0.33	18	-
185606	115	177	9	64	0.5	8	6	533	6.12	2	8	ND	2	39	0.5	3	3	113	0.35	0.048	3	31	0.89	42	0.1	3	1.86	0.05	0.3	19	25
185607	162	227	9	63	0.7	8	4	463	14 34	2	8	ND	3	46	0.5	3	5	139	0.13	0.056	2	24	0.75	53	0.09	3	1.65	0.02	0.29	13	20
185608	206	246	13	70	0.7	10	7	590	11.56	2	8	ND	2	65	0.5	3	4	150	0.14	0.062	2	25	0.89	67	0.11	3	1.98	0.03	0.37	16	
185609	35	521	18	72	0.4	11	9	443	3.85	5	8	ND	4	20	0.5	3	3	71	0.08	0.058	6	22	0.65	79	0.08	3	2.26	0.01	0.13	5	
185610	12	120	9	112	0.4	17	11	587	4.49	7	8	ND	3	15	0.5	3	4	90	0.13	0.041	5	34	0.84	127	0.07	3	2.9	0.02	0.12	2	1
185611	5	142	4	109	0.8	19	11	671	5.79	4	8	ND	3	33	0.5	3	6	131	0.4	0.068	4	50	1.05	77	0.11	3	3.21	0.06	0.14	5	-
185612	15	195	10	72	0.3	12	13	649	3.46	2	8	ND	3	23	0.5	3	4	69	0.26	0.055	6	36	0.89	69	0.1	3	1.69	0.03	0.19	9	
185613	11	231	31	39	0.5	9	2	216	5.35	2	8	ND	8	56	0.5	3	19	84	0.07	0.105	9	49	0.71	142	0.13	3	1.99	0.04	0.37	18	
185614	13	217	20	115	0.8	15	10	592	4.18	7	8	ND	2	16	0.5	3	3	90	0.18	0.044	7	39	0.9	74	0.09	3	2.31	0.02	0.11	3	
185615	13	37	16	56	0.5	8	5	326	3.07	6	8	ND	2	14	0.5	3	3	89	0.19	0.022	5	39	0.39	51	0.08	3	1.23	0.02	0.07	2	
185616	25	598	15	60	0.9	9	5	311	3.27	5	8	ND	2	9	0.5	3	3	68	0,1	0.047	6	39	0.53	41	0.06	3	2.91	0.01	0.09	5	
185617	10	211	11	80	0.4	12	12	612	3.57	3	8	ND	2	13	0.5	3	3	72	0.23	0.045	4	34	0.84	41	0.08	3	1.82	0.03	0.11	9	6
185618	7	37	12	65	0.3	9	5	315	3.01	6	8	ND	2	9	0.5	3	3	72	0.1	0.033	4	42	0.45	35	0.07	3	1.19	0.01	0.06	3	
185619	36	227	15	85	0.6	11	8	417	3.89	7	8	ND	2	12	0.5	3	3	82	0.14	0.035	5	34	0.61	51	0.08	3	1.73	0.02	0.09	10	
185620	12	45	11	46	0.3	9	6	323	3.2	3	8	ND	2	12	0.5	3	3	89	0.16	0.024	4	43	0.46	42	0.09	3	1.29	0.02	0.07	2	1
185621	12	232	10	64	0.5	12	6	367	3.77	4	8	ND	3	21	0.5	3	3	73	0.14	0.075	9	52	0,7	77	0.08	3	2.17	0.02	0.13	2	
185622	14	167	13	71	0.6	13	7	404	3.99	5	8	ND	3	13	0.5	3	3	78	0.17	0.062	5	36	0.62	46	0.09	3	2.24	0.02	0.08	2	
185623	8	130	11	97	0.4	12	9	433	3.49	7	8	ND	3	12	0.5	3	3	70	0.17	0.038	5	41	0.64	47	0.08	3	1.62	0.02	0.08	6	
185624	16	408	8	62	0.7	11	10	388	2.82	3	9	ND	2	12	0.5	3	3	58	0.14	0.042	9	60	0.6	45	0.06	3	2.47	0.02	0.1	3	
185625	11	220	9	76	0.3	10	11	578	3.25	4	8	ND	2	12	0.5	3	3	66	0.17	0.038	4	28	0.81	52	0.07	3	1.68	0.02	0.13	3	
185626	7	35	12	64	0.4	9	6	494	3.54	2	8	ND	2	17	0.5	3	3	89	0.2	0.046	4	43	0.58	71	0.07	3	1.24	0.02	0.08	3	
185627	12	111	12	115	0.4	14	9	476	3.64	11	8	ND	2	26	0.5	3	3	75	0.25	0.032	5	37	0.77	126	0.06	3	1.87	0.03	0.1	12	
185628	7	57	11	94	0.7	12	8	586	3.32	7	8	ND	2	13	0.5	3	3	60	0.18	0.039	4	43	0.68	62	0.06	3	1.7	0.03	0.08	2	
185629	12	156	8	74	0.3	14	11	605	3.55	6	8	NÐ	3	21	0.5	3	4	72	0.32	0.054	5	41	0.92	53	0.09	3	1.59	0.04	0.18	7	
185630	6	56	14	56	0.6	8	5	310	3.66	5	8	NÐ	2	10	0.5	3	3	99	0.1	0.04	4	45	0.4	51	0.09	3	1.43	0.01	0.06	3	1
185631	6	37	17	89	0.4	11	11	680	3.99	6	8	ND	2	14	0.5	3	3	96	0.19	0.041	5	34	0.65	67	0.08	з	1.67	0.02	0.08	2	
185632	7	52	9	84	0.5	13	37	1346	3.41	6	8	ND	2	32	0.5	3	3	68	0.54	0.066	6	70	0.8	53	0.05	3	1.89	0.06	0.09	4	2
185633	12	47	12	85	0.6	10	10	698	4.01	7	8	ND	2	17	0.5	3	3	86	0.17	0.03	4	40	0.78	69	0.1	3	1.63	0.02	0.08	6	
185634	10	52	18	95	0.4	12	25	1208	3.95	10	8	ND	2	16	0.5	3	3	86	0.16	0.037	4	44	0.72	58	0.06	3	1.59	0.02	0.09	6	
185635	5	25	16	65	0.4	15	9	524	3.78	8	8	ND	2	8	0.5	з	3	95	0.11	0.029	5	45	0.51	49	0.06	3	1.38	0.02	0.06	2	
185636	2	243	3	93	0.4	13	25	766	6.87	2	8	ND	2	186	0.9	3	3	129	3.26	0.061	1	91	1.49	31	0.13	3	5.99	0.45	0.09	2	
185637	2	143	11	108	0.3	13	25	655	6.53	3	8	ND	2	101	0.5	3	3	157	2.45	0.063	1	85	1.37	6	0.14	3	4.16	0.15	0.03	2	
185551	6	300	3	29 [·]	0.3	16	6	234	2.78	2	8	ND	7	12	0.5	3	3	56	0.25	0.068	6	143	0.91	49	0.07	3	0.92	0.04	0.21	8	1
185552	25	175	18	31	0.4	12	1	137	4.35	2	8	ND	6	9	0.5	3	4	35	0.39	0.168	4	137	0.86	26	0.01	3	0.96	0.01	0.29	2	1
185553	6	305	16	38	0.8	14	4	460	3.83	2	8	ND	6	17	0.5	3	6	46	0.07	0.056	6	126	0.91	44	0.02	3	1.14	0.02	0.23	6	3

STATEMENT OF EXPENDITURES

Prospector - 5 days @ \$300/day	\$1500
Prospector's Assistant - 4 days @ \$225/day	\$900
Geological Engineer - 2 days @ \$300/day	\$600
Truck rental - 4 days @ \$75/day, plus 550km @ \$0.25/km	\$437.50
40 assays (30 element ICP) @\$6.70 per assay	\$268
•••	

- · · · ·

Total:

\$3705.50

Statement of Qualifications

I, Robert Bruce Anderson, P.O. Box 5092, Smithers B.C. VOJ-2NO, do certify that:

1. I have been working in the mineral exploration industry in British Columbia since 1973.

2. I was first employed as a prospector by Pamicon Developments Ltd. in 1989.

3. Since 1989 I have been employed as a prospector by
Kookaburra Gold (1989), Golden Rule Resources (1991),
Lac Minerals Inc. (1993-1994), Homestake Canada Inc. (1996-98),
and Mirimar Hope Bay Inc. (2001-2002).
4. I have based this report on feild work carried out by

B. Matute and myself in September 2002.

Dated this 18th day of September 2002.

R. Brun askin.

Robert Bruce Anderson, prospector

References

- 1 Geology of the Tahtsa Lake Mineral District Province of B.C. Ministry of Mines, D.G. Macintyre
- 2 EMPR ASS RPT 22109, H. Smit

STATEMENT OF QUALIFICATIONS

I, Clay Craig, of #5 3647 Alfred Ave., Smithers B.C., do certify that:

- 1. I graduated from the University of British Columbia in the faculty of Geological Engineering in 1994.
- 2. I am a registered Professional Engineer in British Columbia, in good standing.
- 3. I have been working in the mine development and mineral exploration industry in British Columbia since 1994.
- 4. I have worked in varying aspects of mineral exploration for Imperial Metals, and its partly-owned subsidiary Huckleberry Mines Ltd., from 1996 to 2002.
- 5. I have no ownership or interest in Imperial Metals aside from salaried employment by its subsidiary, Huckleberry Mines Ltd.

Dated this 13th day of November 2002.

Clay F. Craig, P. Eng

