

ASSESSMENT REPORT ON

THE 2002 DIAMOND DRILLING PROGRAM

ON THE

AXELGOLD PROPERTY

OMINECA MINING DIVISION

B.C.

NTS: 93N/13W

Latitude 55° 58' N

Longitude 125⁰ 58' W

For

Rubicon Minerals Corporation

And

Wheaton River Minerals Ltd.

By

Gordon J. Allen, P. Geo.

And

Michael J. Gray, S.S.Q.L.G.GICAL SURVEY BRANCH ASSESSMENT REPORT

>/ 11

November, 2002

Executive Summary

The Axelgold property is an alkalic to calc-alkalic syenite-hosted porphyry gold prospect located adjacent to the Pinchi Fault in north-central B.C.

The Pinchi Fault is a crustal-scale strike-slip tectonic break and postulated paleosubduction zone marking the terrane boundary between the Paleozoic to Mesozoic Cache Creek Complex and the Mesozoic Quesnellia Terrane. A syenite-monzonite-nepheline monzonite intrusive complex (Axel Intrusion) of possible Jurassic-Cretaceous age has intruded a sliver of Quesnellia Terrane sedimentary rocks on the southwest side of the Pinchi Fault. Rocks in the intrusive complex are strongly pyritized and weakly to strongly phyllic-altered (carbonate-sericite assemblage; potassic metasomatism). Poorly delineated quartz-carbonate-fluorite stockwork zones on the property are mineralized with chalcocite, pyrite, galena, sphalerite, and stibnite. These mineralized stockwork zones contain up to 3.12 g/t gold over 5.79m in drill core, and up to 12.6 g/t gold in grab samples from surface trenching.

The 2002 diamond drilling program consisted of 1364.29m in 8 holes, and was completed between August 7 and September 4th. The program targeted bulk-tonnage gold porphyry mineralization peripheral to the apparently narrow stockwork zones discovered in previous drilling and trenching. Drilling in this exploration program was focused on gold-soil anomalies in the south part of the grid area, and on a prominent colour anomaly with coincident gold-soil anomalies on Gossan Hill in the central part of the grid area.

In the south part of the grid area gold-in-soil anomalies were found to be related to a series of pyrite and arsenopyrite-bearing orthoclase-plagioclase-biotite monzonite porphyry dykes (AX02-09). These dykes occupy a north-northwest trending zone roughly 600m wide which cuts both sedimentary rocks and the syenite intrusive complex. This type of dyke material intersected in hole AX87-01 was unremarkable, with no obvious mineralization, and yet contained 0.65 g/tonne Au across 10.37m (including 3.390 g/tonne Au across 0.91m). In the Gossan Hill area drilling from the 2002 program intersected intervals over 200m wide with gold in the 100 to 300ppb range. Gold appears to be related to ubiquitous disseminated pyrite, and more restricted pyrite-fluorite-calcite stockwork zones. Mineralization is hosted both in crystalline phases of the intrusions, and in intrusion breccias (possibly diatremes).

Mapping conducted during this program shows that the syenite is much larger than previously interpreted, extending at least an additional 1km to the northeast and significantly expanding the area of potential syenite-hosted mineralization. The abundance of intrusion breccia on the property, much with pyrite-flooded matrix, indicates that the complex was structurally well prepared for subsequent mineralization.

The best mineralization observed on the property to date occurs in the valley bottom between holes AX87-03 and AX87-06 in a poorly defined stockwork zone approximately 650 metres long. This area was very loosely bracketed to the southeast and northwest by the 2002 drilling, but apart from hole AX87-05, the internal part of the mineralized zone remains untested. Attitude, continuity and dimensions of the zone are all unknown.

Prospecting, rock sampling, mapping and soil sampling within the newly-defined limits of the syenite body is warranted. Specific anomalous soil sample sites should be investigated and trenched. Much of this mineralized trend is below tree line and therefore poorly exposed. A systematic drilling program targeting the dyke-trend in areas with known mineralization (as in the AX87-03 to AX87-06 area) and anomalous soil geochemistry is warranted. It is estimated that a 2500 metre, 10-12 hole program would cost approximately \$650,000.

	- TABLE OF CONTENTS -	Davis
Sumi	mary	rage i
1.0	INTRODUCTION	1
2.0	LOCATION AND ACCESS	1
3.0	PROPERTY TENURE	1
4.0	ECONOMIC SETTING AND POTENTIAL 4.1 Economic Setting 4.2 Deposit Model and Economic Potential	2 4
5.0	EXPLORATION PROGRAMS 5.1 Exploration History 5.2 2002 Exploration Program	5 6
6.0	REGIONAL GEOLOGY	7
7.0	 LOCAL GEOLOGY 7.1 Local Geology 7.1.1 Rock Unit Descriptions 7.1.2 Alteration 7.1.3 Veins 7.1.4 Whole Rock and Rare Earth Geochemistry 7.2 Mineralization 7.3 Contended to the second se	8 10 12 12 13
	7.2.1 Surface Mineralization 7.2.2 Review of 1987 Core	14
8.0	 ROCK SAMPLING AND DIAMOND DRILLING 8.1 Surface Rock Chip Sampling 8.2.1 Discussion of Targets 8.2.2 Discussion of Results 	15 16 16
9.0	CONCLUSIONS	19
10.0	RECOMMENDATIONS	20
11.0	BIBLIOGRAPHY	21
STAT	EMENTS OF QUALIFICATIONS	

TABLES

Table No.		Page
1	Axelgold Property Mineral Claims	1
2	Resource Estimates for Selected Alkalic Syenite-Hosted Porphyry	
	Cu-Au-Ag Deposits in the Duckling Creek Syenite Complex (Hogem	
	Batholith)	3
3	1968 -1970 Lustdust Resource Estimate	3
4	Summary of Samples Collected During the 2002 Exploration	
	Program	7
5	Highlights From the 1987 Diamond Drilling Program	15
6	Diamond Drill Hole Survey Data Summary	16
7	Summary of Significant Intersections from the 2002 Diamond	
	Drilling Program	19

FIGURES

Figure No		Following Page
1	Location Map	1
2	Claim Map	1
3	Mineral Deposits in the Axelgold Area	2
4	Regional Geology Map	7
5	Property Geology and Drill Hole Locations	8
6	Drill Hole Vertical Cross Sections	In Pocket
- 6a	Section 1600S; AX02-09	14
6b	Section 1400S; AX87-01	14
6c	Section 1300S; AX87-02, 03, 04	"
6d	Section 1100S; AX87-05	"
6e	Section 600S; AX87-06	"
6f	Section 400S; AX02-10, 11	**
6g	Section 300S; AX02-14, 15	"
6ň	Section 100S; AX02-16	**
6i	Section 000N; AX02-12, 13	
6j	Section 400N; AX87-07	
6k	Section 500N; AX87-08	
7	Whole Rock Plots	13
7a	Alkalies-Silica Plot; alkalic – subalkalic fields	
7b	Alkalies-Silica (LeBas et al, 1986); all data, all rock types	
7c	Alkalies-Silica (LeBas et al, 1986); 2002 data only, all rock typ	es
7d	Alkalies-Silica (LeBas et al, 1986); all data, syenites only	
7e	Alkalies-Silica (LeBas et al, 1986); 2002 data only, syenites or	nly
7f	Conserved Constituent Plot (Zr/TiO ₂ vs Nb/Y); all data, all rock	< types
7g	Conserved Constituent Plot (Zr/TiO ₂ vs Nb/Y); 2002 data, sye	nites only
7h	Silica Enrichment / Depletion (SiO ₂ vs Zr/TiO ₂); all data, syenit	tes only
7 i	Potassium Alteration Plot (K ₂ O vs Zr/TiO ₂); all data, syenite or	nly
7 j	Potassium Alteration Plot (K ₂ O vs Zr/TiO ₂); 2002 data, syenite	only
8	Drill Hole Location Plan and Generalized Au-Soil Geochemis	try In Pocket

APPENDICES

Appendix No.

- Codes for Geologic Drill Logs 1
- 2
- Drill Logs Assay Data Checklist 3
- Certificates of Analyses 4
- 5
- Sample Ledgers QAQC Procedures, Sample Insert Tables, and Discussion of 6 Results
- Petrographic Report (Leitch, 2002) Rock Sample Descriptions Whole Rock Analyses 7
- 8
- 9
- Program Expenditures 10

The Axelgold property is an alkalic to calc-alkalic syenite-hosted porphyry gold prospect in northcentral B.C. Past exploration programs on the property identified structurally-controlled goldbearing mineralization within a pyritic feldspar porphyry syenite intrusion. Rubicon Minerals Corporation and Wheaton River Minerals Ltd. conducted a diamond drilling program on the property in August of 2002 in an attempt to identify both bulk mineable and structurally-controlled high-grade gold mineralization.

2.0 LOCATION AND ACCESS

The property is centered at 55° 58' N and 125° 58' W, approximately 150 kilometres northnortheast of Smithers, in the Axelgold range of north-central British Columbia (Figure 1). Access to the property is via roughly 200km of paved and gravel Canfor forest access roads out of Fort St. James to a staging area southwest of Mt. Ogden, approximately 20km south-southeast of the claims. Access to the property from the staging area is via helicopter.

Details of the road system from Fort St. James are as follows:

- North on the paved Tachie Highway to 68.5km
- North on the Leo Creek forest access road to 68km.
- North on the Driftwood forest access road to 91km
- East on Fall River forest access road to 23km

Table 1

 North on the Omineca (West Ogden?) road for approximately 12km (staying left) to the staging area.

Driving time from Fort St. James to the staging area is approximately 3.5 hours. Flying time from the staging area to the property is roughly 10 minutes.

3.0 PROPERTY TENURE

Axelgoid Property Mineral Claims							
Claim Name	Claim Number	No. Units	Expiry Date *				
AX952	340400	12	22 September, 2010				
AX953	340401	12	22 September, 2010				
AX963	343036	1	14 January, 2010				
AX964	343037	1	14 January, 2010				
AX965	343038	1	14 January, 2010				
AX966	343039	1	14 January, 2010				
AX967	343040	1	14 January, 2010				
AX968	343041	1	14 January, 2010				
AX969	343042	1	14 January, 2010				
AX9610	343043	1	14 January, 2010				
AX9611	343044	1	14 January, 2010				
AX9612	343045	1	14 January, 2010				
AX9613	343019	15	14 January, 2010				
AX9614	343020	15	14 January, 2010				
	Total	64					

1

* Expiry date after assessment credit for program described in this report applied Claims are shown in Figure 2.

4.0 ECONOMIC SETTING AND POTENTIAL

4.1 Economic Setting

A large number of mineral occurrences are recorded in the Axelgold area (Figure 3). Types of occurrences are diverse, and include:

- Placer gold
- Epithermal mercury
- Jade
- Alkalic porphyry Cu-Au-Ag
- Alkalic porphyry Au-Cu-Sb
- Orogenic gold
- Ti-Cu (+PGE potential) in layered mafic intrusions
- Mesothermal vein / skarn / manto
- Polymetallic veins
- Au-As Listwanite

To date only placer gold, mercury and jade have been mined in the Axelgold area. Placer gold has been extracted intermittently from several drainages in the area between 1869 and the present, although there has been no documented gold production from the property itself. Most placer operations were or are on creeks draining areas underlain by metasediments of the Paleozoic-Mesozoic Cache Creek Complex. Reported gold production from Vital Creek alone was in excess of 143,000 grams or 4,598 troy ounces (Minfile 093N 044).

Several Eocene mercury showings occur along the Pinchi Fault. During World War II mercury was a strategic mineral and exploration for the metal was part of the war effort. Many of the cinnabar occurrences in this area received underground exploration development, but only one was put into production. The **Bralorne Takia** mine, located roughly 55km SE of the Axelgold property, produced 59,914kg of mercury in 1943-1944. Limestone of the Cache Creek Complex hosts the deposit. Cinnabar occurs as veinlets and breccia filling in shattered limestone adjacent to the Pinchi Fault (Minfile 093N 008).

Jade occurs as large nephrite blocks within the Mississippian to Triassic Oceanic Ultramafites (formerly the Trembleur intrusions) of the Cache Creek Complex. Three small past producers are located on **Mount Ogden**, approximately 15 kilometres south-southeast of the Axelgold property. Nephrite boulders were discovered in the area in 1967, and in-situ nephrite was located in 1969. Discontinuous lenses, bands and veins of nephrite occur along serpentinite-metasediment and serpentinite-granodiorite sill contacts. Total jade production from the Mt. Ogden deposits is estimated to be 1441 tonnes (Minfile 093N 165).

A large number of porphyry Cu \pm Au \pm Ag prospects occur in the Duckling Creek alkalic syenite phase of the Late Triassic to Early Cretaceous Hogem Intrusive Complex, east of the Pinchi Fault and roughly 15 to 45 kilometres east and southeast of the Axelgold property. These intrusions are hosted in volcanic rocks of the Middle Triassic-Lower Jurassic Takla Group. Mineralization consists of disseminated and lesser amounts of stringer pyrite, chalcopyrite, bornite, malachite and magnetite in sheared/foliated, potassic-altered (biotite and secondary k-spar) syenite. Table 2 presents resource estimates for selected deposits in the Duckling Creek Complex.

Table 2

Resource Estimates for Selected Alkalic Syenite-Hosted Porphyry Cu-Au-Ag Deposits in the Duckling Creek Syenite Complex (Hogem Batholith)

Denesit	Resource Million			Minfile		
Deposit	Date	Tonnes	Cu (%)	Au (g/t) Ag (g/t		Number
Lorraine	1998	31	0.66	0.17	4.7	093N 002
Misty	1976	3	0.6			093N 001
Boundary (Tam, Cirque)	1974	7.2	0.55		4.11	093N 093

The **Hawk** showings (Minfile 093N 171 and others) were also porphyry Cu-Au-Ag targets in the Duckling Creek Syenite Complex. They have recently been re-assessed for their orogenic gold potential (shear-hosted, intrusion-related deposits such as Pogo, Alaska).

A **layered mafic intrusion** is located in the north part of the Axelgold Range, approximately 10km northwest of the Axelgold property. Disseminated and layered ilmentite with associated pyrrhotite, and minor chalcopyrite and pyrite are hosted in the Late Cretaceous layered gabbroic Axelgold Intrusion (Axelgold PGM; Minfile 094D 035. PGM; Minfile 094D 110).

Alpha Gold's **Lustdust** property is located roughly 55km SE of the Axelgold property, 1.5km west of the Bralorne Takla mercury mine. The property is underlain by highly deformed chert, phyllite, argillite, greywacke, and discontinuous limestone and volcanic members of the Cache Creek Complex which have been intruded by feldspar porphyry dykes and sills, and monzonite plugs. Mineralization, which appears to be related to the thermal aureole of a poorly exposed monzonite plug, occurs as skarns and mantos in limestone proximal to the monzonite, and in more distal north-northwest striking, steeply-dipping, foliation-parallel quartz-carbonate veins. Manto- and skarn-type mineralization consists primarily of lenses of massive sphalerite and pyrite. The predominant sulphide minerals in the veins are pyrite and arsenopyrite, with lesser amounts of sphalerite, chalcopyrite, galena, tetrahedrite, stibnite, realgar, jamesonite, and several other unusual antimony-bearing minerals. A rough resource estimate from 1968-1970 for the Lustdust property is presented below:

Table 3

 7000	Tonnes	Grade					
20116	Tonnes	Au (g/t)	Ag (g/t)	<u>P</u> b (%)	Zn (%)		
11	19684	4.45	802.15	2			
3	233124	2.4	63.1		1.5		
4	74110	3.2	27.7		6.6		

1968-1970 Lustdust Resource Estimate

(Minfile 093N 009)

The Indata deposit is hosted in Cache Creek Complex metasediments and ultramafites. Mineralization is of two types (Minfile 093N 192):

 Polymetallic veins hosting massive arsenopyrite and associated pyrrhotite, chalcopyrite, pyrite, stibnite, galena, tetrahedrite, sphalerite, pentlandite, scheelite, bismuthinite, and gold and silver values in a quartz-carbonate gangue. • Veinlet and disseminated sulphides (predominantly chalcopyrite and pyrite) in fractured volcanic rocks.

Mineralogy, setting, and possibly genesis at the Indata may be similar to the Lustdust deposit.

The **Snowbird** deposit, a past producer, is located well south of the Axelgold property, approximately 16km west of Fort St. James. It is hosted in sheared altered metasediments and ultramafites of the Cache Creek Complex. Silica and ankerite flooding have produced the classic listwanite assemblage of ankerite, quartz and mariposite. Quartz veins and stockwork within the altered rock host stibnite, arsenopyrite, and pyrite with associated gold. Unclassified reserves published in 1986 are: 4535 tonnes grading 6.86 g/t Au, and 3% antimony.

4.2 Deposit Model and Economic Potential

Alkalic igneous rocks, ranging from mafic to felsic, either host or are spatially-related to various types of precious metal deposits. They are recognized as a class of deposit with enormous tonnage potential. As outlined by Mutschler and Mooney (1993) deposit types within this class include:

- PGE ± Au in ultramafic/mafic complexes
- Porphyry Cu-Ag-Au ± PGE associated with shoshonitic plutons, or pyroxenite-syenitecarbonatite complexes
- Porphyry Au in felsic syenites
- Epithermal Au-only, or Au-Ag-base metals associated with various alkalic intrusions (eg. Cripple Creek, Colorado)
- Submarine exhalite Kuroko-type and Cyprus-type massive sulphides
- Olympic Dam Fe-Cu-U-Au (IOCG)
- Au in shear zones within Archean alkalic host rocks (e.g. Kirkland Lake, Ontario)

Regional-scale characteristics associated with these types of deposits include:

- Proximity to major crustal breaks
- Presence of alkalic rocks
- Pervasive potassium-metasomatic, carbonatic, and sulphidization alteration
- Low level Au ± Te rock geochemical anomalies

The Axelgold property appears to best fit the "porphyry Au in felsic syenite-type" of deposit in the first list above. Gold in these deposits is typically associated with pyrite in quartz-carbonate-fluorite stockworks, and with disseminated pyrite in high level intrusions, associated diatreme breccias, or host volcanic or sedimentary rocks (Schroeter and Cameron, 1996). Geochemically, the deposits have elevated levels of: Au, Ag, As, Sb, Pb, Zn, F, Ba, V, Te, and Bi. Chalcopyrite, galena, sphalerite, molybdenite and scheelite are common accessory minerals, but are not generally present in economic quantities. Alteration mineralogy includes widespread pyrite and carbonate in the intrusions, and quartz-clay-sericite (silicic-argillic) in the wallrocks.

An example of this type of deposit is the Young-Davidson – Matachewan in Ontario. Historic production and estimated reserves are roughly 8 million tonnes @ 2.6 g/t (0.076 oz/t) Au with a total of 55, 705 Kg (1.79 million ounces) of contained gold (Melling, 2000, and Royal Oak Mines press release, 1996).

In many cases epithermal Au deposits are spatially related to Au-bearing porphyry-type mineralization in alkalic plutons, and the two are thought to be related. Examples of where this association has been noted are Cripple Creek in Colorado (over 21 million ounces produced), and the Toodogone and Sulphurets camps to the north of the Axelgold property.

5.0 EXPLORATION PROGRAMS

5.1 Exploration History

The earliest documented geological mapping in the Axelgold area was conducted by Armstrong in 1949. His interpretation lumped all of the Axelgold range into the Cache Creek Group (current nomenclature is Cache Creek Complex). Subsequent mapping by Paterson in 1973, however, showed that the Axelgold Range was actually composed of a sequence of fault-bounded slices of Cache Creek Complex and Takla Group, intruded by a 264504 dic to Tertiary syenite.

The earliest available report documenting exploration activities on what is now the Axelgold property is from 1984. Claim posts on the property, however, date back to 1973.

The following summary of exploration activities is taken verbatim (in italics) from a report by K. McInnis (1998).

- 1984 <u>Equinox Resources</u> conducted regional prospecting, mapping, and silt (73), soil (19) and rock (51) sampling. All methods returned anomalous gold values (up to 660ppb in silt, 640 ppb in soil, and 585 ppb in rock) interpreted to be associated with a "syenitic" intrusion.
- 1985 <u>Imperial Metals</u> and JV partner <u>Equinox</u> established 6 grids (Recce, GAA, GAB, GAC, GAD, and GAX) and conducted detailed soil/silt (441) and rock (327) sampling, and petrographic studies (11 slides). Soil contour grid (GAA) over Gossan Hill outlined a 375 by 300m Au-Ag-Sb-As-Mo anomaly. Au-Cu-Mo soil anomalies were detected southeast of Gossan Hill. Rock sampling returned up to 690ppb Au.
- 1986 Imperial Metals established the Au grid (incorporating GAA, GAC, and GAD) and conducted extensive soil (2,235) and rock (143) sampling. A 7 metre trench and several small pits were excavated. Selected areas were mapped at 1:12,500 and 1:2,000 scale. Five major multi-element soil anomalies (up to 700 by 300m) were identified, including values up to 9050ppb Au. Nine rock samples, mainly from the syenite with associated stibnite-feldspathic veins, returned >1000ppb Au (up to 4820ppb) and one sample 26.2ppm Te. Samples from the trench returned 0.55 g/t. Au over 7m (not including grab samples with up to 12.62 g/t Au), and up to 320,000ppb Hg, 2.6% Ba and 2.0% F. Soils to the southeast returned spotty gold highs (up to 615ppb) thought to be associated with a serpentinized fault block. Mapping delineated a northwest-trending 3 by 1km syenite intrusion in contact with the Takla Group sediments and (locally) Cache Creek volcanics.
- 1987 Imperial Metals extended the Au grid and collected soil (247) and rock (30) samples, and conducted petrographic studies (14 slides). Local IP (9.75km) and ground VLF surveys were conducted. Eight DD holes were completed, totaling 726.9m. Six holes were drilled on the Au grid and two holes on the GAB grid. Four holes (AX87-03 through -06) were drilled in the syenite intrusion but not necessarily within soil anomalies. Holes AX87-03, -04, and -05 intersected pyrite±fluorite±stibnite±tetrahedrite with disseminated to stockwork mineralization. Significant intersections include: 3.12 g/t Au over 5.79m (AX87-03); 0.65g/t Au over 9.23m (AX87-05) and ; 8.56 g/t Au over 0.61m (AX87-06). The best mineralization in AX87-05 was found in thin massive pyrite bands with gold values up to 2030ppb Au. Four holes (AX87-01, -02,- 07, and -08), intended to test IP chargeability highs, failed to intersect the intrusive-sediment contact. cutting only narrow intervals of feldspar porphyry in Takla conglomerates.
- 1995 <u>Rubicon Minerals</u> and <u>Lorne Warren</u> collected soil (1), rock (43) and core (156) samples, and conducted petrographic studies (2 slides). Re-sampling of Imperial Metals' core confirmed anomalous gold values, including: 3.82 g/t over 3.05m and 0.37g/t over 39.2m (AX87-05); 1.92 g/t over 6.09m (AX87-03), and; 10.84 g/t over 0.47m (AX87-06). Gold appears to be associated with pyritic feldspar porphyry in: stockwork veinlets of feldspar porphyry±quartz+ fluorite±stibnite+ tetrahedrite(?); semi-massive fine-grained pyrite stringers, and ; disseminated tetrahedrite(?)-

stibnite-pyrite zones. Selected samples of conglomerate in AX87-01 and -08 returned values up to 110ppb Au. Whole rock geochemistry returned high K2O (up to 13.5%), Ba (up to 1.0%) and Sr (up to 2.4%). Subsequent analyses of drill core returned Te values up to 5.7ppm. Rock sampling included 21 chip samples within areas of anomalous soil geochemistry, returning values up to 1.06 g/t Au over 4.0m.

- 1996 <u>Cyprus Canada</u> excavated three trenches (361m) and 33 test pits (using a small heli-portable Kubota excavator). Soil (14) and rock (296) samples were collected and analyzed, in conjunction with mapping. Although the test pits failed to reach bedrock, 175 grab/chip samples from the trenches encountered anomalous gold (up to 294ppb over 17.0m). Surface outcrop samples returned up to 2.79g/t Au.
- 1997 **Rubicon Minerals** better delineated the extent and geochemistry of the intrusion with a program of 1:2000 mapping and rock sampling (22 rocks).

5.2 2002 Exploration Program

Preparatory work for the 2002 exploration program included a data synthesis prepared by iMAP Interactive Mapping Solutions Inc. of Vancouver, B.C. All previous data was digitized, reviewed and reinterpreted in an attempt to pick targets for the drilling program.

Fieldwork for the 2002 exploration program on the Axelgoid property was conducted between August 6th and September 5th. Two geologists, two field assistants / core cutters, and four diamond drillers (Britton Bros. Diamond Drilling) stayed in Lorne Warren's Kenny Creek camp, approximately 45 kilometres southeast of the property. Interior Helicopter's 206B was stationed at the camp and provided transportation to and from the property, as well as logistical support for the diamond drill.

Geochemical and geological drill targets were assessed and refined for the first few days of the program. Once firm targets were determined, topographic and geological profiles were created along the trace of the drill holes. During the surface evaluation of drill targets, 22 rock chips and 4 soil samples were collected.

The 1987 drill core was reviewed to understand the nature of the known mineralization.

Pad building was performed by four men from Britton Bros. between August 9th and August 13th. Drilling commenced August 14th. Core was slung by helicopter to a staging area on a logging road southeast of the property, and subsequently transported to camp daily by truck. The core was logged in camp. Halving of the core for sampling was done using either a diamond saw or a hydrautic splitter. All core was sampled and is currently stored at the Kenny Creek camp.

A total of 1364.29 metres (4476 feet) of NQ core was drilled in 8 holes, and 568 core samples collected. Standards (35), blanks (19), and duplicates (34) were inserted into the sample series at regular intervals (see Appendix 6 for QAQC procedures). A total of 682 samples were shipped by bus or truck from either Smithers or Fort Saint James to ALS Chemex Labs in Vancouver. All samples were analyzed for gold by fire assay and AAS using a 30g nominal sample weight. Every 5th sample was analyzed for 34 elements using an aqua-regia acid digestion and ICP-AES.

In addition to the regular analyses, 38 samples were submitted for whole rock geochemistry using Chemex procedure ME-XRF-06 for the major oxides and ME-XRF-05 for the minor elements (Rb, Nb, Y, and Zr). Five of these samples were also analyzed for rare earth elements using method ME-MS82. Eight hand specimens were submitted to Vancouver Petrographics for preparation of 2 polished thin sections and 6 regular thin sections. All sections were described by Craig Leitch. The thin section report is included as Appendix 7, and discussed in section 7.1.4.

Table 4

	Core	Standards	Duplicates	Blanks	Soil	Rock	Totals
Au	568	35	19	34	4	22	682
ІСР	129				4	22	155
WR	37					1	38
Thin Section	8						8

Summary of Samples Collected During the 2002 Exploration Program

As part of a "public-private" partnership, Joanne Nelson of the Ministry of Energy and Mines spent a few days on the property mapping. Her mandate was to get a better understanding of the stratigraphy of the Axelgold Range, and to collect a sample for age dating of the Axelgold syenite.

6.0 REGIONAL GEOLOGY

The Axelgold area lies between two major fault zones; the Pinchi Fault to the east and the Takla Fault to the west (Figure 4). The Pinchi Fault is a major crustal break. It is the boundary between the Quesnellia and Cache Creek Terranes. Quesnellia, on the east side of the Pinchi Fault, is a Mesozoic-aged accreted magmatic arc composed predominantly of Jurassic granodiorite of the Hogem Batholith, and Mesozoic volcanic and sedimentary rocks (Paterson, 1974; Monger, 1989).

Carbonaceous to Jurassic rocks of the Cache Creek Terrane consist of deep water oceanic basin sedimentary, volcanic (minor), and ultramafic rocks. They are a highly deformed assemblage of chert, phyllite, and greywacke, with discontinuous carbonate and pillowed basalt units. Some limestone lenses contain poorly preserved fossils of Permian age, but intense deformation and a lack of fossils make the ages of the other units in the group uncertain. They were in part subducted beneath, and in part accreted onto the coast of Mesozoic North America (Quesnellia) along the steeply east-dipping Pinchi Fault. Subduction probably started some time in the Permian to Triassic (Struik et al, 2001). Metamorphic grade is generally lower greenschist facies, locally transitional to lower blueschist facies. Metamorphism appears to be related to the first phase of ductile deformation, probably also Triassic or older in age. Metamorphic grade does not appear to be spatially related to the Pinchi Fault.

Mississippian to Triassic Oceanic Ultramafites (formerly Trembleur ultramafic intrusions) occur as fault-bounded sill-like bodies within the Cache Creek Complex. They form narrow, laterally extensive, north to northwest-trending steeply-dipping lenses and sub-planar units up to a few kilometers wide, most commonly occupying the contact zone between the Cache Creek Complex rocks on the northeast and the younger Upper Triassic to Jurassic Sitlika Assemblage rocks on the southwest. A belt of ultramafic rocks also occurs in the Axelgold Range along the northeast margin of the Cache Creek Complex rocks along their contact with younger Upper Triassic to Jurassic sedimentary rocks of the Takla Group. These ultramafic bodies are thought to be slivers of Permian oceanic crust incorporated into the overlying sedimentary rocks during intense deformation associated with terrane collision and subsequent subduction/obduction.

The Oceanic Ultramafites consist primarily of serpentinized harzburgite in a schistose serpentinite matrix. They are commonly strongly carbonatized to ankerite and talc, and weather to a light grey to orange colour. Nephrite also occurs as large blocks within the assemblage, such as at Mount Ogden where it has been quarried as jade.

Upper Triassic to Jurassic sedimentary rocks of the Sitlika Assemblage occur between the southwest flank of the Cache Creek Complex and the Takla Fault to the southwest. They consist of argillite, volcanic rocks, and greywacke. They are well foliated and have a closely-spaced penetrative cleavage, indicating that they have undergone dynamic metamorphism.

Sedimentary rocks in the Axelgold Range on the northeast flank of the Cache Creek Complex were mapped by Paterson (1974) as Takla Group. They are Upper Triassic to Jurassic in age as are the Sittika Assemblage rocks to the southwest, and consist of feldspathic wacke, siltstone, and tuff. They are differentiated from the Sitlika Assemblage rocks partly because of their lack of penetrating fabric.

The syenite on the Axelgold property, termed the Axel Intrusion, is hosted in sedimentary rocks northeast of the Cache Creek Complex. It is thought to be related to either the Late Triassic to Early Cretaceous Hogem Intrusive Complex, or to the Late Triassic to Early Jurassic Topley intrusions (Minfile 093N 196). Age dating of a sample collected during this program may help to make a definitive association.

This sedimentary/intrusion package of rocks forms a fault-bounded lens roughly 25 kilometres long by up to 4 kilometres wide exposed on the southwest side of the Omineca River valley. Other narrow lenses of Takla Group rocks occur elsewhere along the Pinchi Fault, such as along Silver Creek to the south of Axelgold (Figure 4), separating Cache Creek Complex rocks from the Hogem Batholith. At Silver Creek the Pinchi Fault is interpreted to be on the southwest side of the Takla Group rocks, putting them into the Quesnellia Terrane which includes the Hogem Batholith. The Axelgold Range is located on a significant kink in the Pinchi Fault, and it appears that the fault splays in this area have isolated a sliver of Quesnellia Terrane on the south side of the main structure. As part of Quesnellia, therefore, the Axel syenite could be related to the Jurassic Duckling Creek phase of syenites in the Hogem Batholith. One possible contradiction to this scenario, however, is the existence of a syenite body in the Cache Creek Complex in the Mt. Ogden area. The Hogem Batholith is presumed to have been emplaced during subduction of Cache Creek Complex rocks beneath Quesnellia. If the syenite in the Axelgold and Mt. Ogden areas are in fact related, they would unlikely be associated with the Hogem Batholith syenites.

7.0 LOCAL GEOLOGY

7.1 Local Geology

The Axelgold Range consists of Cache Creek Complex and Mississippian to Triassic oceanic ultramafites in contact with various sedimentary and intrusive units along a northwest-trending, steeply northeast-dipping thrust fault (Figure 5).

Cache Creek Complex rocks underlie the northwest-trending ridge of the Axelgold Range. The northeast flank of the Cache Creek Complex is delineated by a discontinuous series of serpentinite lenses up to a few hundred metres wide. These rocks are typically strongly sheared and altered to an assemblage of orange to green-weathering serpentine, taic, quartz and ankerite (listwanite). A northwest-trending, steeply northeast-dipping fault truncates the ultramafic rocks to the northeast. Previous mapping described this structure as a left lateral strike-slip fault, but recent observations suggest that it had dip-slip movement and is probably a thrust fault (Nelson et al, 2003).

In the south part of the Axelgold Range, to the south of the Axelgold property, ultramafic rocks are in fault contact with sedimentary rocks of the Upper Triassic Takla Group. These sediments are a well bedded, northwest-striking, steeply northeast-dipping tops-up sequence (Joanne Nelson, personal communication). Their base or southwest unit consists of mudstone, siltstone and greywacke, which grades upward (northeast) into thickly-bedded green volcanic sandstone with minor augite porphyry. These rocks are relatively massive and unfoliated. It is probable that this sequence continues to the northeast to the Pinchi Fault in the Omineca River valley.

Farther to the north on the Axelgold property the Cache Creek Complex-Oceanic Ultramafites are in fault contact with a sedimentary breccia unit (SDBX). It is a fragment-supported breccia with angular to sub-rounded pebble-sized fragments of siliceous argillite, siltstone, minor chert, and rare limestone. Minor green epiclastic to tuffaceous rocks are included within the sedimentary breccia unit. This assemblage is wedge- or lens-shaped and broadens to the northwest to over 1km wide. Paterson (1974) included this breccia unit in with the Takla Group sedimentary rocks. It has a closely-spaced penetrative cleavage, however, making it distinct from and probably older than the Takla Group rocks. They may be Paleozoic in age (Nelson et al, 2003).

The sedimentary breccia unit hosts the Axelgold syenite intrusive complex (Axel intrusion). The bulk of the syenite is characterized by a medium-grained orthoclase porphyry with a relatively fine-grained crystalline groundmass (SMGP unit). It appears to have been cut by later-stage megacrystic syenite (SYMC) with orthoclase phenocrysts to 5cm long, and also by an aphanitic to fine-grained crystalline syenite (SYAP). All of these units appear to have been sporadically brecciated by late-stage hydrothermal processes.

Breccia units are relatively diverse in texture. Most have subangular to rounded (milled?) porphyritic syenite fragments up to a few centimetres in diameter (average <1-3cm), and K-feldspar crystal fragments in a finer-grained breccia matrix (SYIB). Fine-grained breccias (SIMB; syenite intrusive microbreccia) have the appearance of arkoses, but have textures and compositions similar to the coarser-grained varieties. In thin section (Appendix 7) some breccias contain possible tuffaceous fragments (AX02-09 135.5, and 140.2). The matrix apparent in hand specimen is seen to be composed of fine-grained siliceous fragments and sericite in an ultimate matrix composed mainly of carbonate, sericite, quartz, pyrite, and possible bydrothermal matrix suggests that these rocks may have been near surface vent breccias, possibly diatremes. Textures in thin section, however, are "permissive but not conclusive of a diatreme origin" (Leitch, 2002, Appendix 7).

Greenish andesitic fragmental units (whole rock sample GA-6) observed on gossan hill in the north part of the syenite exposure appear to be completely surrounded by syenite and syenite breccia, suggesting that they are inclusions or pendants in the intrusion.

Late-stage orthoclase-plagioclase-biotite porphyritic dykes (KPBP and probably D/FB units) were observed cutting both the syenite and sedimentary breccia units. Mapping indicates that these dykes have widths of up to several tens of metres, and trend north-northwest to north. They contain minor amounts of fine-grained disseminated pyrite and rarely arsenopyrite, and appear to be related to several gold-in-soil anomalies in the south part of the grid. Anomalous gold values in holes AX87-01 and AX02-09 are associated with these dykes. Chemically they contain less silica and are less alkalic than the host syenites, and fall within the monzonite to monzosyenite composition fields. They are differentiated in hand specimen by the abundance of euhedral biotite. In drill hole AX87-02 these dykes contain prominent large calcite amygdules suggesting near surface emplacement. Age of theses intrusions is uncertain, but previous mapping programs have suggested they could be Eocene.

The youngest rock on the property is probably a quartz-eye rhyolite hypabyssal plug, exposed on the ridge northeast of drill hole AX02-09 in the south part of the Au grid. A thin section of this rock (WP-90; 1650S, 350E – Appendix 7) is described as a high-level quartz-trachyte intrusion

with some tuffaceous textures. It contains 35% K-feldspar phenocrysts to 3mm, 10% quartz phenocrysts to 3mm, and 5% plagioclase and relict mafic phenocrysts in an aphanitic groundmass composed of very fine-grained K-feldspar, quartz, and sericite.

Previous programs described the Axelgold syenite complex as an elongated lens-shaped body approximately 2 kilometres long northwest-southeast by up to 400m wide. Whereas the southwest limits of the syenite are fairly well constrained, the northeastern contact is not defined. Several traverses made by Joanne Nelson indicate that the hydrothermally brecciated syenite extends well down into the trees to the northeast, and that the northeast-southwest dimension of the syenite is at least 1.3 kilometres. The body now appears to have a more typical equidimensional plug shape.

7.1.1 Rock Unit Descriptions

The following rock units make up the bulk of the lithologies differentiated during the 2002 drilling program on the Axelgold property. The corresponding four letter codes were used for logging and on sections. A complete list of codes is presented in Appendix 1.

Igneous Rocks

Syenite; Medium-to Coarse-Grained Porphyry (SMGP)

This unit ranges from equigranular to porphyritic (more abundant) and appears to make up the bulk of the intrusive complex. The groundmass consists of a medium grey to blue-grey fine-grained equigranular crystalline aggregate probably composed predominantly of orthoclase with minor (5%?) sericite-carbonate altered plagioclase and mafic minerals. This groundmass typically hosts 15-25% 2mm – 1cm stubby, anhedral to subhedral light grey orthoclase prisms. Pyrite is ubiquitous in the groundmass, generally making up 2-5% of the rock.

Megacrystic Syenite Porphyry (SYMC)

This unit consists of 20 – 30% large orthoclase prisms in a fine to medium-grained crystalline syenite groundmass. Phenocrysts of orthoclase are generally grey to cream-coloured, prism-shaped, and euhedrai to subhedral with dimensions of up to 1cm by 5cm. They are commonly altered to pinkish-brown in irregular patches, possibly to a secondary potassic feldspar, and fractured at right angle to their 'C' axis. Fractures extend across the narrow dimension of the crystals but apparently do not extend into the crystalline groundmass, suggesting that they underwent strain during cooling or emplacement. The crystalline groundmass consists of an aggregate of <1 to 3mm crystals of predominantly orthoclase and probably minor amounts of plagioclase and biotite. Both the plagioclase and mafic minerals are altered to a light pinkish-grey aggregate of carbonate and probably sericite. Rarely biotite forms euhedral hexagonal books. The groundmass is typically very hard and probably consists largely of potassic feldspar. The rock is commonly overprinted by a weak late-stage sericite-carbonate alteration which occurs in irregular fine-grained patches and along hairline fractures.

The megacrystic syenite makes up less than 20% of the syenite complex and probably cuts the more abundant fine to medium-grained syenite. Intrusive relationships, however, are not clear.

Syenite; Aphanitic to Fine-Grained Equigranular Felsite (SYAP)

This is similar to the SMGP unit described above but is generally finer-grained with few or no orthoclase phenocrysts. As with the other units it is generally very hard, probably due to fine-grained potassic feldspar, and sporadically overprinted by sericite-carbonate alteration. Fine-grained disseminated pyrite typically makes up 2-5% of the rock.

Syenite Intrusive Breccia (SYIB)

This unit is an inhomogeneous clastic rock with a range of textures.

One variety is typically a greenish-grey heterolithic matrix-supported clastic with predominantly subrounded to subangular lithic fragments ranging up to over 20cm, but averaging <1-5cm in diameter. Fragments consist of:

- feldspar porphyry with a dark grey very hard groundmass and 25-30% stubby white anhedral orthoclase phenocrysts averaging 1-2mm (typical syenite porphyry)
- subangular to subrounded grey aphanitic clasts which may be orthoclase crystal fragments

The matrix to the larger fragments is a finer-grained clastic rock composed predominantly of grey orthoclase crystal fragments. The ultimate matrix appears to be a grey aphanitic aggregate of hydrothermal (?) quartz, carbonate and sericite.

In some cases these rocks appear sedimentary in nature, but the fact that few of the finer-grained fragments appear to touch suggests a hydrothermal or intrusion breccia mode of origin, possibly a diatreme.

Other less common intrusion breccias have an aphanitic hard grey matrix hosting distinct porphyritic fragments. The matrix may be a fine-grained late-stage intrusion, or possibly a fine-grained aggregate of hydrothermal minerals such as quartz, potassic feldspar, etc.

Some breccias have a medium-grained feldspar porphyry matrix hosting aphanitic intrusive xenoliths several centimeters across. Again, this type of breccia is not common.

Megacrystic Syenite Intrusive Breccia (SMCB)

This is similar to the SYIB unit, but has large anhedral to subhedral orthoclase crystal fragments in the finer-grained clastic matrix. It may be a diatreme breccia which formed within a megacrystic syenite. It is not a common lithology.

Syenite Intrusive Microbreccia (SIMB)

This unit is similar to the SYIB possible diatreme unit but lacks the large lithic fragments. The two units are commonly gradational to each other.

Brecciated Syenite (BXSY)

Unlike the intrusive breccias described above, this unit appears to be pseudobreccia in a weakly sheared syenite with subsequent sericite and carbonate alteration along fractures. It does not make up a significant volume in the Axelgold area.

Orthoclase-Plagioclase-Biotite Porphyry (KPBP)

This unit typically has a very hard orange-brown aphanitic groundmass with:

- 30% stubby blue-grey anhedral 2-5mm orthoclase phenocrysts
- 10-15% fine prisms and laths of subhedral to euhedral feldspar (probably plagioclase) altered to a mottled grey aggregate of sericite and carbonate.
- 5-8% euhedral to subhedral black to pinkish-grey altered biotite, commonly in <1-2mm hexagonal books
- traces to 3% fine-grained disseminated pyrite
- rare traces of arsenopyrite

The rock is typically weakly to moderately magnetic. It's magnetic nature and presence of abundant biotite differentiate it from the typical phases of syenite.

Dykes of similar mineralogy were observed cutting syenite in drill core and are, therefore, late stage intrusions. They appear to be associated with gold-in-soil anomalies in the AX87-01 and AX02-09 drill hole areas.

Sedimentary Rocks

Sedimentary Breccia (SDBX)

This unit is a fragment-supported heterolithic sedimentary breccia with predominantly angular fragments ranging from <1-5cm (average 1-2cm) in diameter. Fragments consist of:

- 30% dark grey to black relatively hard argillite of siliceous mudstone
- 30-40% medium grey, medium hard fine-grained siltstone
- 5% light to dark grey cherty fragments
- rare limestone clasts
- rare altered uitramafite

Fragments are commonly imbricated with their long axes at 30° to the core axis. Near its faultcontact with the syenite the rock is quite fissile, with fragments flattened and elongated.

The ultramafic clasts are altered to a bright green (probably mariposite). These clasts indicate that the unit was derived from eroded Cache Creek Complex rocks.

Metamorphic Rocks

Serpentinite (SERP)

This unit was intersected in only 1 hole; AX02-16. It is a dark to medium green aggregate of finegrained serpentine variably altered to talc and magnesite. The rock is generally moderately magnetic.

7.1.2 Alteration

In hand specimen (surface and core) the syenite is very hard and was presumed to be strongly altered with secondary K-feldspar. In logs, moderate to strong potassic alteration was generally recorded as the primary (penultimate) alteration type. This was overprinted by a weak to strong pervasive carbonate-sericite-pyrite alteration. Feldspar phenocrysts (plagioclase and K-feldspar) are typically variably altered to a very fine-grained grey, soft, crystalline assemblage of sericite and carbonate. This same alteration with the addition of fine-grained disseminated pyrite occurs as irregular patches in the syenite porphyry matrix, along fractures and in breccia matrices.

In thin section, Craig Leitch (Appendix 7) notes that the alteration in the suite of rocks studied is mainly phylic, with an alteration mineral assemblage of sericite, carbonate, pyrite and rutile. K-feldspar is abundant (commonly making up to 75% of the rock) as phenocrysts, replacement of plagioclase phenocrysts, and in the fine-grained groundmass. There are few textures in these rocks, such as K-feldspar veining, which are typical of strong hydrothermal-related secondary K-feldspar alteration. Although plagioclase is commonly replaced by K-feldspar, it may be a late-magmatic phenomenon rather than a hydrothermal event.

A plot of conserved constituents vs. K_2O (Section 7.1.4, Figures 7i and 7j) shows potassium smeared out, possibly due to potassic metasomatism. This may be caused by the addition of K-feldspar, or possibly sericite.

7.1.3 Veins

Historically, the best gold values from the Axelgold property were from mineralized veins in the syenite. Grab samples from Trench A in the south part of the Au grid contained up to 12.6 g/t Au. Megacrystic syenite in this area is cut by quartz-fluorite-calcite veins up to 7cm wide mineralized with stibnite, chalcocite, galena, sphalerite, and pyrite. A map of Trench 2 produced by Cyprus (Jiang and Hurley, 1996) shows a mineralized structure with an attitude of 295/60 NE, which may correlate with a mineralized structure intersected in holes AX87-03 and 04. In cross section the structure appears to dip at roughly 80° to the northeast (iMAP, 2002).

Mineralization in hole AX87-06, with gold grades up to 8.54g/t across 0.61m, is related to narrow pyrite veins cutting the syenite. A map of Trench 1 by Cyprus along the surface trace of the hole shows a possibly correlative gossanous mineralized shear zone with an attitude of 280/80NE.

Quartz stingers up to 2cm wide on the ridge northeast of the peak of gossan hill (iMAP anomaly 8 area) contain stibnite, galena, chalcopyrite, tetrahedrite and up to 2900pb Au (Taylor, 1986).

Very little veining was observed in core from the 2002 drill program. Veining generally consists of several cross-cutting sets of volumetrically minor hairline stringers. Generally, an early set of sub-millimetric sericite-carbonate ± pyrite stringers are cut by a later equally weak set of carbonate stringers. Veining typically makes up less than 1% of the rock. Other less abundant weak sets of early hairline stringers have mineral assemblages made up of combinations of sericite, carbonate, fluorite, pyrite, quartz and feldspar. A list of observed vein types is presented in the 'Codes for Geological Drill Logs' (Appendix 1).

In hole AX02-10, pyrite and pyrite-sericite stringers reached widths of several centimetres and in some intervals made up 3-5% of the rock.

7.1.4 Whole Rock and Rare Earth Geochemistry

A total of 38 core and surface specimens were submitted to ALS Chemex for whole rock analyses (major oxides and minor elements; Rb, Nb, Y, and Zr). Five of these samples were also analyzed for rare earth elements. With analyses from previous programs, the entire whole rock database consists of 107 samples (Appendix 9). Samples were separated into groups and given unique symbols for differentiation on data plots. Data was divided into subsets according to year and specific rock types to simplify the plots for interpretation.

Figure 7a is a plot of SiO₂ vs. $K_2O + Na_2O$ for all data sets and all rock types. The alkalic and subalkalic (calc-alkalic) fields are shown. Intrusive rocks have a scatter from calc-alkalic to alkalic. Most of the medium-grained syenites fall in the calc-alkalic field, whereas the late-stage megacrystic syenites are mostly alkalic. It should be noted, however, that most rocks analyzed had a high LOI, possibly due to hydrous alteration minerals, and any interpretation of the entire data set should be treated with caution. An inset in Figure 7b shows data with LOI <4%.

Alkalies-silica $(SiO_2 vs. K_2O + Na_2O; LeBas, 1986)$ plots of all the whole rock data (Figures 7b-e) show that the majority of the medium-grained syenite (SMGP) falls into the syenite rock field, although there is a range in composition from granite to monzonite. The brecciated syenite units (SYIB, SIMB, SYBX, and SMCB) are scattered through a similar range suggesting that they are the same rock having undergone different plutonic processes. Megacrystic syenite (SYMC) has a distinctly different chemical composition than the finer-grained syenites, with a higher alkali and lower silica content. The megacrystic syenite is typically a nepheline monzonite. Field relationships suggest that the megacrystic syenite is a late-stage intrusive event, which is supported by the geochemistry. As the magma evolved silica would have been largely depleted forming feldspar. Late-stage melts would not have had enough silica to form feldspar with all of the available potassium and sodium, and hence would have formed nepheline.

The late-stage orthoclase-plagioclase-biotite porphyry dykes (KPBP and D/FB) are monzonitic in composition. They are less alkalic than the megacrystic syenites, and are probably from a different parent melt.

A sample (GA-6) from the greenish fragmental unit on the peak of Gossan Hill plots in the trachyandesite field. It is clearly of different composition than the syenite, and is probably a tuff rather than an intrusive breccia. This unit may be a pendant (Takla Group?) within the syenite.

Conserved constituent plots are presented in Figures 7f and g ($Zr/TiO_2 vs Nb/Y$). These plots use elements that are relatively immobile, regardless of the alteration the rock may have undergone.

+ TUFF Axelg

Alkalies-Silica (LeBas et al 1986); 2002 data, sy

Conserved Constituent Plot (Zr/TiO2 vs Nb/Y); all da

Conserved Constituent Plot (Zr/TiO2 vs Nb/Y); 2002 c

Hence, ratios of immobile elements should stay constant for a given rock type. Most of the syenites fall within a tight cluster, but it appears that the megacrystic syenite may have a slightly different composition, possibly due to magmatic differentiation.

A plot of SiO2 vs Zr/TiO_2 (Figure 7h) is designed to show if the rock has undergone any silica enrichment or depletion. Silica values are smeared out with the majority of the megacrystic syenite on the depleted end. This is probably simply showing an evolution of the melt to a lower silica content through time. Similar plots using K₂O in place of silica (Figures 7i and 7j) show a smearing of K₂O values, with megacrystic syenite on the upper end. Again, this could be magma evolution. The other syenites are also smeared out through the entire range of K₂O values. This may be indicating the addition of potassium through potassic alteration, possibly sericite.

A rare earth plot prepared by Joanne Nelson (Nelson, 2002) shows that the Axelgold syenitic rocks are very similar to intrusions at the Lustdust deposit to the southeast, and dissimilar to syenite from the Ducking Creek complex in the Hogem Batholith to the north. There may be a previously unrecognized suite of mineralized alkalic intrusions south of the Pinchi Fault in this area.

7.2 Mineralization

7.2.1 Surface Mineralization

The Axelgold syenite typically contains 1-5% fine-grained disseminated pyrite throughout. Pyrite is generally restricted to the groundmass of the porphyry.

Mineralization in Trench A has been covered, but a few cobbles of float were stacked to one side of the reclaimed trench. The rock appears to be a light to medium grey aphanitic to fine-grained crystalline syenite. It is hard but can be scratched and is therefore probably sericite-carbonate altered. 1-2% fine-grained pyrite and 1% dark grey metallic mineral, probably chalcocite, are disseminated throughout. Closely-spaced (2-3cm) quartz-carbonate-fluorite stringers cut the syenite and appear to coalesce into a mass of vein carbonate hosting 4-5% black chalcocite in irregular bands to 5mm wide, as fine-grained disseminated specs, and as late-stage fracture-fillings cutting across the carbonate. Pyrite (1-2%) is associated with the disseminated chalcocite. Strong malachite and azurite staining has developed along fractures.

Traces of disseminated pyrite and arsenopyrite were observed in the orthoclase-plagioclasebiotite porphyry dyke in the AX02-09 area.

7.2.2 Review of 1987 Core

Core from the 1987 drilling program was reviewed to identify characteristics of the mineralized zones.

The interval 116'-119' (35.36-36.27m) in drill hole AX87-01 contained 3.39 g/t Au. It is an orthoclase-plagioclase-biotite dyke (KPBP or D/FB) similar in appearance and chemistry to rock intersected in AX02-09. A whole rock sample from 32.9m in AX87-01 is a monzonite with an almost identical chemical signature to rock from 100.87m in hole AX02-09. It is a very hard (silicified?) medium-grained porphyry with 15-20% medium blue-grey orthoclase phenocrysts and 10% euhedral biotite phenocrysts altered to a soft pinkish aggregate of sericite and carbonate. The rock also contains 10-15% rounded white carbonate amygdules to 5mm in diameter. A second interval in AX87-01 between 138 and 141' (42.06-42.98m) contained 2.62 g/t Au. It is similar to the rock described above. There is nothing distinctive about these intervals to explain the elevated gold content.

Very little core from holes AX87-03 and 05 remain and no observation of their mineralized zones was made.

14

In hole AX87-04, the interval 182.0-187.0' (55.47-57.0m) contained 0.740 g/t Au. The rock in this interval is an aphanitic to fine-grained very hard medium blue-grey syenite (?) with 2-4% disseminated and fracture-controlled pyrite, and a 5% white carbonate (dolomite/ankerite) stockwork. Again, there is nothing distinctive about this interval.

Hole AX87-06 intersected medium-grained porphyritic syenite cut by pyrite stringers and veins, generally at high angles to the core axis. An interval from 261-263' (79.55 to 80.16m) contained 8.55g/t Au. The gold is related to pyrite in stringers and a massive vein 10cm wide, hosted in syenite with 1% disseminated pyrite.

A good summary table of significant intersections from the 1987 drilling is presented in the iMAP (2002) report, and is re-presented here in Table 5 for reference.

DDH	From (m)	To (m)	Length (m)	Au (g/t)	Cu (ppm)	Mo (ppm)
AX87-01	32.62	42.99	10.37	0.65		
AX87-03	34.47	40.26	5.79	3.12	6022	48
including	37.52	38.43	0.91	5.89	7191	33
including	39.35	40.26	0.91	5.48	4803	31
AX87-03	52.46	75.30	22.84			115
AX87-04	55.49	57.01	1.52	0.74		
AX87-05	6.10	36.28	30.18	0.41	953	107
including	6.10	17.07	10.97	0.57	1873	122
AX87-05	61.89	78.35	16.46			564
AX87-06		41.16	3.05	0.56		41
AX87-06	79.57	89.02	9.45	0.87		58
including	79.57	80.18	0.61	8.54		79
including	85.37	87.50	2.13	0.82		61

Table 5

Highlights From 1987 Diamond Drilling (from iMAP, 2002)

8.0 ROCK SAMPLING AND DIAMOND DRILLING

8.1 Surface Rock Chip Sampling

During field evaluation of drill targets a total of 22 surface chips were collected. Sample descriptions with assays are presented in Appendix 8. Only one sample had a significant gold content. Sample 54001 (1.51g/t Au) was collected from an exposure of orthoclase-plagioclase-biotite porphyry southwest of the collar of AX87-01. It is the same rock type which hosted anomalous gold up to 3.39g/t in AX87-01 and 0.827g/t in hole AX02-09. The surface exposure was cut by a few apparently unmineralized quartz veins, but was generally unremarkable.

8.2 Diamond Drilling

8.2.1 Discussion of Targets

The targets of the 2002 exploration program were structurally-controlled high-grade gold mineralization, and large-tonnage bulk mineable gold porphyry-type mineralization within the Axelgold syenite. Previous trenching and drilling had identified gold-bearing structures in the syenite along a northwest-trending zone near what was thought to be the intrusion's northeast margin.

A review of digital soil geochemical plots (iMAP, 2002) revealed that gold anomalies formed several roughly east-west zones up to 1.5 kilometres long by 200m wide which cut obliquely across the syenite (Figure 8). It was thought that these may have been related to a series of splay faults extending between the main Pinchi Fault on the northeast, and the fault along the Cache Creek Complex-sediment contact on the southwest. Mineralized veins are rarely observed on surface but two weak structures exposed in trenches excavated by Cyprus (Jiang and Hurley, 1996) are possibly correlative with mineralization intersected in drilling. These structures strike west-northwest and dip steeply to the northeast, roughly parallel with soil geochemical trends.

Drilling was proposed to cut the interpreted mineralized northeast margin of the syenite within the east-west gold-in-soil anomalies.

8.2.2 Discussion of Results

A total of 1364.29m of drilling was completed in 8 holes between August 14th and 29th. Hole locations are shown in Figures 5 and 8, and drill cross sections in Figures 6a through 6k. Survey data are presented in Table 6. Drill hole collars were surveyed using a Garmin 12XL handheld GPS unit. Coordinates are thought to be accurate to within 10m horizontal.

Number	Easting (NAD 83)	Northing (NAD 83)	Elevation	Azimuth	Dip	Length (m)	Length by Year
AX87-01	315130	6205817	1612	215	-45	101.19	
AX87-02	315134	6206010	1564	233	-42	107.29	
AX87-03	315232	6206162	1540	185	-45	102.72	
AX87-04	315232	6206162	1540	185	-70	79.86	
AX87-05	315156	6206256	1532	220	-45	98.15	
AX87-06	314768	6206631	1555	235	-45	101.19	
AX87-07	314454	6207712	1515	238	-46	73.46	1987
AX87-08	314219	6207635	1522	230	-46	<u>63.09</u>	726.95
AX02-09	315603	6206043	1685	200	-45	158.50	
AX02-10	314621	6206708	1572	008	-45	225.55	
AX02-11	314619	6206705	1572	226	-45	134.11	
AX02-12	314339	6206985	1844	027	-45	201.17	
AX02-13	314338	6206981	1844	185	-61	155.45	
AX02-14	314372	6206662	1653	009	-45	289.56	
AX02-15	314373	6206658	1653	225	-45	75.59	2002
AX02-16	314269	6206795	1767	226	-61	124.36	1364.29
					Total		2091.24m

Table 6

Diamond Drill Hole Survey Data Summary

Summaries of drill holes are presented below:

AX02-09

This hole is located in the southern part of the Au grid area, near line 1600S. It targeted a series of soil geochemical anomalies which define a roughly east-west trending zone approximately 100m wide by over 1 km long (Figure 8). Soil samples in the vicinity of the hole contained up to 2.3 g/tonne Au. The area is underlain by a fine to medium-grained orthoclase-biotite-plagioclase porphyritic dyke (KPBP) cutting syenite and syenite intrusion breccia. The dyke is very hard (silicified?, K-feldspar altered?) and mineralized with 1-5% (average 1-2%) fine-grained disseminated pyrite, and traces of arsenopyrite. It is exposed in a series of strongly gossanous ribs and cliffs.

The drill hole intersected a few metres of medium-grained syenite porphyry near the top of the hole, and then passed into 95m of the orthoclase-biotite-plagioclase porphyry. As on surface, the dyke contained 1-2% fine-grained disseminated pyrite and traces on arsenopyrite. The last part of the hole consisted of intercalated fine to coarse-grained clastic rock, probably a syenite intrusive breccia with a finely milled groundmass.

The highest gold grade from the 2002 program came from the (KPBP) unit in hole AX02-09. The average grade in one KPBP unit was 0.164g/t Au across 90.44m, with values up to 0.827g Au and 0.486% As across 0.65m.

The main KPBP dyke in this hole is similar visually and chemically to the dykes containing up to 3.1 g/t Au in hole AX87-01.

AX02-10

This hole was drilled on Au Grid line 400S near the baseline. It was targeting an east-westtrending zone of soil geochemical anomalies, as well as the mapped northeast margin of the syenite body.

The hole intersected medium-grained syenite orthoclase porphyry and intrusion breccia for much of the top of the hole, and megacrystic syenite for the lower part. The entire hole was well mineralized with 1-10% (average 3-5%) disseminated and stringer / fracture-filling pyrite, and ubiquitous traces of a very fine-grained blue-grey metallic mineral which occurs both disseminated and along hairline fractures. Even after a polished thin section study this mineral has not been positively identified. In his petrographic report (Appendix 7) Leitch suggests that it could be chalcocite, but that an SEM study would be required to be sure. Copper values in this hole range up to 493ppm, indicating that it could contain traces of chalcocite. Fluorite occurs sporadically throughout, generally with carbonate stingers. The rock has undergone sporadic weak to moderate phyllic alteration with fine-grained sericite and carbonate forming haloes around fractures, and irregular masses in the porphyry matrix.

AX02-11

This drill hole was twinned from the same pad as AX02-10. It intersected intercalated mediumgrained syenite porphyry (SMGP) and syenite breccia for its entire length. The rock was weakly mineralized with roughly 1% disseminated pyrite throughout. Gold grades were low, reaching a maximum of 372ppb across 0.99m.

AX02-12

Holes AX02-12 and 13 were drilled from the ridge on gossan hill. Hole 12 intersected moderately to strongly sericite-altered megacrystic syenite at the top and then medium-grained syenite at depth. Pyrite content averaged 1% or less. Gold grades were low.

17
AX02-13

Intercalated megacrystic syenite and medium-grained syenite porphyry was intersected for much of the upper part of the hole. Syenite intrusion breccia predominates toward the end of the hole. The rock has been moderately sericite-altered throughout. Pyrite content averages 3-4%. The best gold grade of 0.439 g/t across 2.25m is associated with a biotite-feldspar porphyritic dyke (D/FB); probably related to similar gold-bearing rock intersected in holes AX87-01 and AX02-09.

AX02-14

This hole intersected long intervals of syenite intrusion breccia (SYIB) intercalated with lesser amounts of medium-grained syenite porphyry (SMGP). Rocks are moderately sericite altered and contain an average of 3-4% pyrite throughout. Gold grades were generally low, reaching 0.303g/t across 1.5m.

AX02-15

Hole AX02-15 was drilled from the same pad as AX02-14 to test the syenite-sedimentary breccia contact zone. The top of the hole was predominated by intercalated syenite intrusion breccia with lesser amounts of medium-grained and aphanitic syenite. The bottom of the hole was in foliated sedimentary breccia (SDBX). The contact between the syenite and the sediment is abrupt along a crush minor zone. Syenite at the contact is a fine-grained microbreccia. It is unclear if this is a brecciated chill margin, or simply a finely ground intrusive breccia. The sedimentary breccia shows little alteration, but lithic fragments are more flattened near the contact. Gold grades are generally at or below background levels for the entire hole.

AX02-16

This site was picked by Stan Keith based on his interpretation of metal zonation and plutonic vectoring. An intercalated sequence of medium-grained porphyritic syenite, megacrystic syenite, and syenite intrusion breccia was intersected in the upper part of the hole. The syenites are in contact with sedimentary breccia along a significant (10m wide) fault zone. Faulting appears to have been focused predominantly in the syenite. Contact with the sedimentary breccia is sharp. With depth the sedimentary breccia unit becomes more sheared and eventually contacts highly deformed and sheared serpentinite. It is unclear if the sediment-serpentine contact is along a fault. Serpentine was noted within the sedimentary breccia unit within 2 metres of the contact. The age of this sedimentary breccia is still obscure. Its serpentine content suggests that it may have been deposited onto the deformed Cache Creek Complex.

No significant gold grades were intersected in the hole.

A summary of significant anomalous intersections from the 2002 program is presented in Table 7.

i abie /	Т	a	b	۱	e	7	
----------	---	---	---	---	---	---	--

Summary of Significant Intersections from the 2002 Drilling Program

DDH	From (m)	To (m)	Length (m)	Au (g/t)	As (ppm)*	Cu (ppm)*	Mo (ppm)*
AX02-09	36.58	112.98	76.40	0.182	1291	54	2
Including	73.15	73.80	0.65	0.827	4860	58	1
AX02-10	10.67	225.55	214.88	0.162	144	175	79
Including	15.24	18.29	3.05	0.772			
AX02-11	9.14	18.29	9.15	0.217	75	32	23
AX02-11	84.53	116.75	32.22	0.176	63	17	16
AX02-12			No s	significant res	ults		
AX02-13	135.10	152.41	17.31	0.260	166	52	68
AX02-14	193.52	228.60	35.08	0.150	160	73	7
AX02-15	20.00	20.15	0.15	0.402			
AX02-15	45.40	48.77	3.37	0.306			<u> </u>
AX02-16			No s	significant res	ults		

*Note: Not all samples have ICP results. As, Cu, and Mo values shown are a simple average of analyses in the interval.

9.0 CONCLUSIONS

The Axelgold property is partly underlain by a syenite-monzonite-nepheline monzonite intrusive complex of calc-alkaline to alkaline composition. Rocks in the complex are strongly pyritized and weakly to moderately phyllic-altered (carbonate-sericite assemblage; potassic metasomatism). Broad zones within the intrusion contain anomalous levels of gold (0.26 g/t Au across 17.31m, 0.162 g/t Au across 214.88m, etc.) associated with disseminated and stringer-related pyrite and fluorite-carbonate stringers and breccia filling. Other more restricted zones on the property contain quartz-carbonate-fluorite stockwork zones mineralized with up to 3.12 g/t Au across 5.79m (AX87-03) and up to 12.6 g/t Au in grab samples on surface (Trench A). These mineralized stockwork zones contain chalcocite, pyrite, galena, sphalerite, and stibnite. All of these characteristics are consistent with an 'alkalic syenite-hosted gold porphyry' model.

From the review of 1987 core it appears that the best gold mineralization on the Axelgold property is associated with quartz-calcite-fluorite-pyrite veins containing chalcocite, galena and possibly stibnite in holes AX87-03, 04 and 05. In hole AX87-06 significant gold values are associated with pyrite stringers. No mineralized quartz-carbonate-fluorite stockwork was intersected in the 2002 drilling. Pyrite stringer mineralization intersected in AX02-10 was similar to rock in hole AX87-06, but in AX02-10 gold grades were only elevated to the 100-300 ppb range.

The best mineralization observed to date occurs in the valley bottom between holes AX87-03 and AX87-06, a distance of 650m. This area was very loosely bracketed to the southeast and northwest by the 2002 drilling, but apart from hole AX87-05 the internal part of the mineralized

zone remains untested. Mapping conducted during this program indicates that the syenite is much larger than previously thought, extending at least an additional 1km to the northeast, and significantly expanding the area of potential syenite-hosted mineralization. The abundance of intrusion breccia (possibly diatremes) on the property, much with pyrite-flooded matrix, indicates that the complex was structurally well prepared for subsequent mineralization.

Elevated gold values are consistently associated with the late-stage north to north-northwest trending orthoclase-plagioclase-biotite porphyry dykes (KPBP). These dykes are observed as a loose swarm cutting sedimentary breccia to the south of the syenite, and appear to trend into the holes AX87-03 to 06 area (Figure 5). North of this drilling the dykes project into an area with sporadic gold-in-soil anomalies, including iMAP Anomalies B, C and D.

Anomaly B is located on the ridge running northeast from the peak of Gossan Hill. It has stibniteand tetrahedrite-bearing stringers cutting syenite near KPBP dykes, roughly 1.4 kilometres along trend from the gold-bearing dykes intersected in AX87-01. An unexplained gold-in-soil anomaly of 9050ppb is located in anomaly C in the extreme northwest part of the grid area. The area appears to be underlain by syenite intrusion breccia, and is on trend with the KPBP dykes approximately 2 kilometres north-northwest of AX87-01.

In summary, the northwest-trending AX87-03 to AX87-06 mineralized zone appears to be cut by the swarm of late-stage gold-bearing dykes and is the best exploration target on the property. These dykes have spatially-related gold anomalies along a 2km(+) trend both within and peripheral to the syenitic intrusion. This trend constitutes a larger secondary exploration target.

10.0 RECOMMENDATIONS

Prospecting, rock sampling, and mapping along the 600m(+) wide by 2km(+) long trend of latestage dykes is warranted (Figure 9). Specific anomalous soil sample sites in anomalies B, C, and D as defined by iMAP should be investigated. Sites with extremely elevated gold values, such as at 300N, 1075E on the Gab grid with 9050ppb Au require trenching.

Much of this mineralized trend is below tree line and therefore poorly exposed. A systematic drilling program targeting the dyke-trend in areas with known mineralization (as in the AX87-03 to AX87-06 area) and anomalous soil geochemistry is warranted. All-in cost per metre for drilling (including administration) for the 2002 program was approximately \$257. It is estimated that a 2500 metre, 8-10 hole program would cost approximately \$650,000.

11.0 BIBLIOGRAPHY

Armstrong, J.E., 1949, Fort St. James map-area, Cassiar and Coast districts, British Columbia; Geol. Surv. Can., Mem. 252.

Casadevall, T., Ohmoto, H., 1977, Sunnyside Mine, Eureka Mining District, San Juan County, Colorado: Geochemsitry of gold and base metal ore deposition in a volcanic environment. Economic Geology, Vol. 72, 1977, pp. 1285-1320.

Cocker, M.D., 1993, Primary element dispersion patterns in a carbonate-hosted, epithermal, highgrade, Au-Ag telluride system: Mayflower mine, Madison County, Montana, U.S.A. Journal of Geochemical Exploration, 47 (1993) 377-390. Elsevier Science Publishers B.V., Amsterdam.

DeLong, R.C., Godwin, C.I., Harris, M.W., Caira, N.M., Rebagliati, C.M., 1990, Geology and alteration at the Mount Milligan gold-copper porphyry deposit, central British Columbia (93N/1E). University of British Columbia, Continental Gold Corp., and Rebagliati Geological Consulting, Geological Fieldwork 1990, Paper 1991-1.

Dickin, A.P., Rice, C.M., and Harmon, R.S., 1986, A strontium and oxygen isotope study of Laramide magmatic and hydrothermal activity near Central City, Colorado. Economic Geology, Vol. 81, 1986, pp. 904-914.

Foster, F., Geology and general overview of the Golden Sunlight Mine, Jefferson County, Montana.

Garnett, J.A., Duckling Creek area, Hogem Batholith

Gorc, D., 1991, Summary Report, Axelgold Property. Unpublished internal report produced for Cathedral Gold Corporation and Equinox Resources, March, 1991.

Irvine, T.N., Studies of Cordilleran Gabbroic and ultramafic intrusions, British Columbia; Part 1: Axelgold Gabbro intrusion, McConnell Creek map-area. Geological Survey of Canada, Paper 76-1A.

Jiang, X.D., and Hurley, T.D., 1996, Axelgold Project; Report on the 1996 Exploration Program, AXD 1-6, AXEL 1-4, AX 952-953, AX 963-969, AX9610-9614. Unpublished internal report prepared by Cyprus Canada Inc., November, 1996.

Kaip, A., and Childe, F., 2002, Exploration Memo and Data Synthesis: Axelgold Property, north central British Columbia. Unpublished internal report prepared for Rubicon Minerals Corporation by iMAP Interactive Mapping Solutions Inc., April 30, 2002.

Keith, S.B., 1990, Economic viability and exploration success in western U.S. gold occurrences as a function of their magma series affinity. MagmaChem.

Mansy, J.L., and Dodds, C.J., 1976, Stratigraphy, structure, and metamorphism in northern and central Swannell ranges. Geological Survey of Canada, Paper 76-1A.

McInnis, K, 1998, Geological and Lithogeochemical Report on the Axelgold Project; AX 952, 953, 9613; AXD 1-6; AXEL 1-3. Unpublished internal report for Rubicon Minerals Corporation, April, 1998.

Melling, D., 2000. Qualifying Report on the Argyle Property, for Phoenix Matachewan Mines Inc., by David Melling, November, 2000.

Monger, J.W.H., 1974, The Takla Group near Dewar Peak, McConnell Creek map-area (94D). British Columbia. Geological Survey of Canada, Paper 74-1, Part B.

Monger, J.W.H., 1976, Lower Mesozoic rocks in the McConnell Creek map-area (94E), British Columbia. Geological Survey of Canada, Paper 76-1A.

Monger, J.W.H., 1989, Overview of Cordilleran Geology. In: Western Canada sedimentary basin: a case history. B.D. Ricketts, ed., Canadian Society of Petroleum Geologists

Morton, J., 1985, A geochemical soil survey "A" grid, on the Axel 5-8 claims. Unpublished internal report produced for Imperial Metals Corporation, October, 1985.

Mutschler, F.E. and Mooney, T.C., 1993, Precious-metal deposits related to alkalic igneous rocks: Provisional classification, grade-tonnage data and exploration frontiers, in Kirkham, R.V., Sinclair, W.D., Thorpe, R.I. and Duke, J.M., eds., Mineral Deposit Modeling; Geological Association of Canada, Special Paper 40, p. 479-520.

Nelson, J.L., Gray, M., and Carmichael, R., 2003, Innovation gold targets in the Pinchi Fault/Hogem Batholith area: the Hawk and Axelgold properties, central British Columbia. B.C. Ministry of Energy and Mines, Geological Fieldwork 2002, Paper 2003-1, in press.

Page, J.W., and Culbert, R.R., 1984, Report on a geochemical survey on the Axel property, Axelgold Range. Internal report for Equinox Resources Ltd., August 10, 1984. Assessment report 12784.

Paterson, I. A., 1974, Geology of Cache Creek Group and Mesozoic rocks at the northern end of the Stuart Lake Belt, central British Columbia. In: report of activities, Geological Survey of Canada 74-1, Part B, pp. 31-42.

Rice, C.M., Harmon, R.S., and Shepherd, T.J., 1985, Central City, Colorado: The upper part of an alkaline porphyry molybdenum system. Economic geology, Vol. 80, 1985, 1769-1796.

Rice, C.M., Lux, D.R., and Macintyre, 1991, Timing of mineralization and related intrusive activity near Central City, Colorado. Economic geology, Volume 77, 1982, pp. 1655-1666.

Richards, T.A., 1976, Takla Project (Reports 10-16): McConnell Creek map-area (94D, east half). British Columbia. Geological Survey of Canada, Paper 76-1A.

Richards, J.P., 1990, Petrology and geochemistry of alkalic intrusives at the Porgera gold deposit. Papua New Guinea. Journal of Geochemical Exploration, 35 (1990) 141-199, Elsevier Science Publishers B.V., Amsterdam.

Richards, J.P., 1992, Magmatic-epithermal transitions in alkalic systems: Porgera gold deposit, Papua New Guinea. Geology, V. 20, pp. 547-550, June 1992.

Richards, J.P., 1995(?), Alkalic-type epithermal gold deposits-a review. MAC Short Course 23, Chapter 17.

Richards, J.P., 1997, Controls in scale of Porgera-type porphyry/epithermal gold deposits associated with mafic, alkalic magmatism. Transactions of the Institution of Mining and Metallurgy, Vol. 106, B1-58.

Richards, J.P., 2000, Lineaments Revisited. SEG Newsletter, No. 42.

Schroeter, T.G., and Cameron, R, 1996. Alkalic Intrusion-Associated Au-Ag. In: B.C. Mineral Deposit Profiles, Open File 1996-13.

Scott, A., 1987, Logistical Report, Induced Polarization Survey, Takla Rainbow South and Axelgold Grids, Takla Area, B.C. Internal geophysical report prepared for Imperial Metals Corporation, August 3, 1987.

Struik, L.C., Schiarizza, P., Orchard, M.J., Corday, F., Sano, H., Macintyre, D.G., Lapierre, H., and Tardy, M., 2001, Imbricated architecture of the upper Paleozoic to Jurassic oceanic Cache Creek Terrane, central British Columbia. Canadian Journal of Earth Sciences, Volume 38, pp. 495-514.

Taylor, A. B., 1986, Geology of the central Axelgold Range. Unpublished internal report for Imperial Metals Corporation, November, 1986.

Taylor, A. B., 1987, Geology of the Central Axelgold Range. Unpublished internal report for Imperial Metals Corporation, July, 1987.

Taylor, A. B., 1986, 1986 Year End Report to Imperial Metals Corporation and Equinox Resources Concerning Exploration Activities Completed on the Axelgold Joint Venture. Unpublished internal report produced by Imperial Metals Corporation, December, 1986.

Taylor, A. B., 1988, 1987 Year End Report, Axelgold Joint Venture Between Imperial Metals Corporation and Equinox Resources Ltd. Unpublished internal report produced by Imperial Metals Corporation, May, 1988.

Tesfaye, G., 1992, Ore-microscopic and geochemical characteristics of gold-telluride-sulfide mineralization in the Macassa Gold Mine, Abitibi Belt, Canada. Mineral Deposita 27, 66-71 (1992).

Thompson, T.B., Trippel, A.D., and Dwelley, P.C., 1985, Mineralized veins and breccias of the Cripple Creek District, Colorado. Economic Geology, Vol. 80, pp. 1669-1688.

Tosdal, R.M., and Richards, J.P., 2001, Magmatic and structural controls on the development of porphyry Cu±Mo±Au Deposits. Society of Economic Geologists. Reviews v. 14, 2001, p. 157-181.

Vila, T., Sillitoe, D.H., Betzhold, J., and Viteri, E., 1991, The Porphyry Gold Deposit at Marte. Northern Chile. Economic Geology, Vol. 86, 1991, pp. 1271-1286.

Woodsworth, G.J., 1976, Plutonic rocks of McConnel Creek (94D west half) and Aiken Lake (94C east half) map-areas, British Columbia. Geological Survey of Canada, Paper 76-1A.

Zhang, Xiaomao, and Spry, Paul, 1994, Petrological, mineralogical, fluid inclusion, and stable isotope studies of the Gies gold-silver telluride deposit, Judith Mountains, Montana. Economic geology, Volume 89, 1994, pp. 602-627.

STATEMENT OF QUALIFICATIONS

I, GORDON J. ALLEN, DO HEREBY CERTIFY THAT:

- 1. I am a consulting geologist with a business office at 2479 Jackson Valley Road, Duncan, British Columbia, Canada.
- 2. I am a graduate from the University of British Columbia with a Bachelor of Science, Honours Geology degree (1975).
- 3. I am a member in good standing of the Association of Professional Engineers and Geoscientists of the Province of British Columbia (19692).
- 4. I have practiced my profession in mineral exploration for twenty-seven years with numerous multinational mining corporations, junior mining companies, geological consulting companies and as an independent consultant.
- 5. I have personally performed or observed exploration activities on the subject property between August 6th and September 5th, 2002.
- 6. I am not an officer or director of Rubicon Minerals Corporation or of Wheaton River Minerals Ltd. I have not received any direct or indirect interest in the properties of Rubicon Minerals Corporation or of Wheaton River Minerals Ltd., nor in any affiliates or in any property within a radius of ten kilometres of the subject property.
- 7. I do not own, directly or indirectly, any securities of the companies.
- 8. I hereby authorize Rubicon Minerals Corporation and Wheaton River Minerals Ltd. to use this report or excerpts of this report for any news release, prospectus, or Statement of Material Facts related to the Axelgold group of claims, provided that no excerpts are used out of context with the whole.

Gordon J.JAllen, P. Geo Consulting Geologist

Dated at Vancouver, British Columbia, this 29th Day of November, 2002.

STATEMENT OF QUALIFICATIONS

I, MICHAEL J. GRAY, of 1516 Frederick Street, North Vancouver, do hereby certify that:

- 1. I am a geologist, registered with the Association of Professional Engineers and Geoscientists of British Columbia since 1993, and employed ab Rubicon Mineral Corporation as Vice President of Exploration.
- 2. I am a graduate of the University of British Columbia with a B.Sc. (Geology 1985), and Laurentian University of Ontario with an M.Sc. (Mineral Deposits Geology, 1995).
- I have practiced my profession throughout Canada and the United States continuously since 1985.
- 4. I was involved in the design of the exploration program, oversaw exploration activities. and was personally on the subject property between August 24th and August 27th, 2002.
- 5. I hereby authorize Rubicon Minerals Corporation and Wheaton River Minerals Ltd. to use this report or excerpts of this report for any news release, prospectus, or Statement of Material Facts related to the Axelgold group of claims, provided that no excerpts are used out of context with the whole.
- 6. I own shares and have stock options in Rubicon Minerals Corporation.

Grav, P. Geo., M.Sc. Michael

V.P. Exploration Rubicon Minerals Corporation

Dated at Vancouver, British Columbia, this 29th Day of November, 2002.

CODES FOR GEOLOGIC DRILL LOGS

-- -

1

HEADER DATA

--- -

_

~

. ._...

The upper part of page 1 of the log contains general information, survey data, and sample information.

General Information:

Drill Hole Number Drilled By Logged By Date	number of drill hole (property, year, and number in total sequence (ie. AX02-09) name of drilling company name of geologist who logged hole date(s) hole logged
UTM Northing (m)	northing; NAD 83
UTM Easting (m)	easting: NAD 83
Elevation (m)	elevation in metres
Total Length (m)	total length of the hole
Collar Core Size	core size at collar before reduction (ie. NTW)
Reduction Depth/To (size)	record reduction depth and size reduced to
Proposed Hole Number	no. from proposed hole sequence, site, or grid location
Date Started	date drilling started
Date Completed	date drilling finished
Data Entry	name of person entering data into database (with date)
Checked By	name of person who checked the entered data (with date)
Casing Depth	depth of casing in metres
Casing In/Out	indicate if casing left in hole or removed
Recovery	indicate general recovery throughout hole (qualitative)

Downhole Survey:

Survey	survey type (ie. Tropari, Sperry Sun, Acid)
Depth (m)	down hole survey depth in metres
Azimuth (reading / true)	azimuth (record reading and converted true azimuth)
Dip (reading / true)	dip angle reading (record reading and corrected dip)

Sample Information:

Sample Series	sample numbers used
Assay Certificate No.	assay certificate number(s) from lab

MAIN BODY OF LOG

INTERVALS

Start and end of interval being described.

- -

ROCK CODES

This column will define the rock type of the interval being described. The lithology noted will generally be the protolith (if recognizable) of an altered zone, or the host of a mineralized zone. It will also include non-lithologic units such as casing, no recovery, etc.

GENERAL CODES

CASING	CASN
OVERBURDEN	OVBR

IGNEOUS ROCKS

Intrusive

MEGACRYSTIC SYENITE (K-spar phenos ≥ 1cm)	SYMC
SYENITE; MEDIUM TO COARSE-GRAINED PPY	SMGP
SYENITE; APHANITIC TO FINE-GRAINED	
EQUIGRANULAR (FELSITE)	SYAP
SYENITE INTRUSIVE BRECCIA	SYIB
MEGACRYSTIC SYENITE INTRUSIVE BRECCIA	SMCB
SYENITE INTRUSIVE MICROBRECCIA	SIMB
BRECCIATED SYENITE (alteration along fractures)	BXSY
ORTHOCLASE-PLAGIOCLASE-BIOTITE PORPHYRY	KPBP

Dykes or Sills

AUGITE-FELDSPAR PORPHYRY	D/AF
FELSIC DYKE	D/FE
APLITE DYKE	D/AP
SYENITE; FELDSPAR-BIOTITE PORPHYRY	D/FB
MAFIC DYKE	D/MA
ORTHOCLASE-PLAGIOCLASE PORPHYRY	D/KP

Extrusive (volcaniclastic)

ANDESITE TUFF	ANTF
ANDESITE LAPILLI TUFF	ANLT
ANDESITE TUFF BRECCIA (matrix support >64mm)	ATBX

SEDIMENTARY ROCKS

SHALE	SHAL
SHALE WITH SILTSTONE	SHSL
MUDSTONE	MDST
SILTSTONE	STST
CONGLOMERATE	CONG
SEDIMENTARY BRECCIA	SDBX

METAMORPHIC ROCKS

SERICITIC PHYLLITI SERPENTINITE ARGILLITE GRAPHITIC ARGILLI	E ITE	PHSE SERP ARGL ARGP
TECTONIZED ROCK (no red FAULT ZONE	cognizable lithology)	FAUL
PYRITE	VEINS	VNPY

SULPHIDE CODE

The sulphide code defines the general habit of the sulphides. A more exact definition of textures and habit is defined in the "mineralization type" column.

DISSEMINATED SULPHIDES	DSSX
FRACTURE FILLING SULPHIDES	FRSX
STRINGER SULPHIDES (can be over 20% sulphides)	STSX
SULPHIDES IN BRECCIA MATRIX(+/- stringers)	BXSX

STRUCTURE CODES

Structure codes have their own "from – to" intervals noted in metres. These data will be imported into a separate structure table for plotting.

Stockwork:

Ev-U Mineralogy of the stringers or breccia fillings of the **ultimate significant** mineralizing event. Stringer and breccia matrix mineralogy codes are listed below.

- **Int** Intensity of the stringer or breccia event based on percent volume of the rock. Intensity criteria are listed below.
- **A-1, A-2** Angle to core axis of the predominant structure set (ie. in a vertical drill hole a horizontal structure would have an angle of 90°).
- **Ev-P** Mineralogy of the stringers or breccia fillings of the **penultimate significant** mineralizing event. Stringer and breccia matrix mineralogy codes are listed below.

Stockwork stringer and breccia matrix mineralogy codes:

	Stringers	Breccia Matrix
QUARTZ	VNQZ	BXQZ
CARBONATE	VNCB	BXCB
CHLORITE	VNCL	BXCL
PYRITE	VNPY	BXPY
SERICITE	VNSE	BXSE
CARBONATE-LIMONITE	VCBL	BCBL
CARBONATE-FELDSPAR	VCBF	BCBF
CARBONATE-PYRITE	VCBP	BCBP
CARBONATE-SERICITE	VCBS	BCBS
CHLORITE-PYRITE	VCLP	BCLP
FLUORITE FLUORITE-CARBONATE FELDSPAR-FLUORITE-CALCITE-	VFLR VFLC	BFLR BFLC
K- FELDSPAR	VNKF	BXKF
K-FELDSPAR+ CARBONATE	KFCB	KFCB
QUARTZ-CARBONATE	VQCB	BQCB
QUARTZ-CARBONATE-CHLORITE	QCBC	QCBC
QUARTZ-CARBONATE-HEMATITE	QCBH	QCBH
QUARTZ-CARBONATE-FELDSPAR	VQCF	BQCF
QUARTZ-FELDSPAR	VQZF	BQZF
QUARTZ-PYRITE	VQPY	BQPY
QUARTZ-PYRITE-CARBONATE	QPCB	QPCB
SERICITE-PYRITE	VSPY	BSPY
SERICITE-PYRITE-CARBONATE	VSPC	BSPC
Stockwork and breccia intensity (In 1 < 1%	t) is quantified fi stringers of stringers of	

1 - 5% stringers or breccia matrix
5 - 15% stringers or breccia matrix
15 - 30% stringers or breccia matrix
> 30% stringers or breccia matrix

Other structural features will be entered in the **option** (**Opn**) column and their angles to core axis in the **Angle 1** and **Angle 2** columns. *Note: Two angles listed with bedding (BED) indicate a range of bedding orientations. Two angles for all other features indicate a set of structures (eg. conjugate set):*

BED
BRX
CTC
FLT
FBX
FOL
FLB
FRC
GGE
SLK
SHR
TRA
IMB
BKY
CSH

Note: Individual veins (see vein codes in rock code section) can be entered in the option (Opn) column if not already entered as a separate lithologic unit.

ALTERATION:

Two columns are available for alteration assemblages: **Ultim.** (ultimate or last significant alteration event overprinting all previous alteration assemblages) and **Penult.** (penultimate or overprinted significant alteration assemblage). Alteration minerals are noted in the 4-letter codes in order of abundance. Volume percent estimates for each mineral are made in the mineralogy section.

Alteration Mineral Assemblage Codes

CARBONATE (probably ankerite)	CARB
CARBONATE (probably ankerite) - SERICITE	CBSE
CHLORITE	CHLR
CHLORITE-BIOTITE	CHBI
CHLORITE-EPIDOTE	CHEP
CHLORITE-CARBONATE	CHCB
CLAY	CLAY
EPIDOTE	EPID
EPIDOTE-CARBONATE	EPCB
HEMATITE	HEMT
K-FELDSPAR	KSPR
K-SPAR-CARBONATE (ankerite)	KSCB
K-SPAR-CARBONATE (ankerite)-SERICITE	KCBS
K-SPAR – QUARTZ	KSQZ
K-SPAR – SERICITE	KSSE

K-SPAR-SERICITE-QUARTZ	KSSQ
K-SPAR-CARBONATE-QUARTZ-SERICITE	KCQS
QUARTZ (silicification)	SILI
QUARTZ-CARB0NATE	QZCB
QUARTZ-SERICITE	QZSE
QUARTZ - K-FELDSPAR	QZKS
QUARTZ-CARB0NATE-SERICITE	QCBS
SERICITE	SRCT
FUCHSITE	FUCH

Intensity Of Alteration:

trace	1
weak	2
moderate	3
strong	4
intense	5

MINERALIZATION

How mineralization occurs will be described in the **Type** column. This mode of occurrence will apply to the most abundant or significant mineral in the interval. If more than one type of mineralization occurs (eg. Breccia matrix filling as well as disseminated mineralization in the host or breccia fragments) the long-hand description of the interval will clarify the complexity.

Mineralization Type:

Code 100 Vein-hosted (can be over 20% sulphides) Veins average < 1mm 120 Veins average 1mm - 1cm 121 Veins average 1 – 5cm 122 Veins average 5 - 10cm 124 Veins average 10 - 100cm 126 Veins average > 100cm 128 Fracture-fill (fracture coating) 200 300 Breccia or Conglomerate Matrix Very fine-grained (crystals not visible) < 0.05 mm 302 Fine-grained (crystals visible) 0.05mm - 0.5mm 304 Medium-grained 0.5mm – 2mm 306 308 Coarse-grained >2mm Disseminated (if sulphides, <20%) 400 Very fine-grained (crystals not visible) < 0.05 mm 402 Fine-grained (crystals visible) 0.05mm – 0.5mm 404 0.5mm – 2mm 406 Medium-grained Coarse-grained >2mm 408

Semi-massive sulphides (20-50%)			800
Very fine-grained (crystals not visible)	< 0.05 mm	802	
Fine-grained (crystals visible)	0.05mm – 0.5mm	804	
Medium-grained	0.5mm – 2mm	806	
Coarse-grained	>2mm	808	
Massive sulphides (>50%)			900
Very fine-grained (crystals not visible)	< 0.05 mm	902	
Fine-grained (crystals visible)	0.05mm – 0.5mm	904	
Medium-grained	0.5mm – 2mm	906	
Coarse-grained	>2mm	908	

One field has a pre-defined two letter mineral codes:

Pyrite

Ру

A percent will be entered in the pyrite column if it is present. An estimate of less than 1% will be entered as 0.5%. An observation of trace amounts of any mineral except gold will be given a value of 0.1%.

Any other minerals will be entered in the options (**Opn**) column, along with their percentage. As noted above, an estimate of less than 1% will be entered as 0.5%. An observation of trace amounts of any mineral except gold will be given a value of 0.1%.

Minerals will be given the following two letter codes:

Arsenopyrite	As
Azurite	Az
Barite	Ва
Bornite	Bn
Chalcocite	Сс
Chalcopyrite	Ср
Chromite	Ċr
Covelite	Cv
Fluorite	FI
Fuchsite	Fu
Galena	Gl
Garnet	Gr
Goethite	Go
Hematite	He
Jarosite	Ja
Limonite	Ĺm
Magnetite	Mt
Malachite	Mc
Manganese oxide	Mn
Native copper	Cu
Pyrrhotite	Po
Siderite	Sd
Sphalerite	Sp
Stibnite	Sb
Tetrahedrite	Tt

CORE SIZES

HQ	6.3 cm
NTW	5.6 cm
NQ	4.6 cm
BQ	3.6 cm

Please note the core size and reduction depth(s) on page one of the geological logs.

Core Weight:

- At a density of 2.6, NQ core should weigh 4.3 Kg/m (2.9lb/foot)
- 1000lb load (454kg) max for a 206 = approximately 106m (345')
- 3 row boxes = 14' or 4.27m approx.
- 40.6lb core plus box weight = 45 lb/box or about 20kg
- Therefore 1000 lb = 22 boxes

APPENDIX 2

DRILL LOGS

t

ŧ

ŧ.

Hole	Inter-	(m) (m)	Rock	Sulph		Alle	ration														Mir	ieraliza	lion					
Number	from	To	Code	Code	Туре	Ints	Type	Inis	Туре	Ру	As	Az	Ba	8n	Cc	Ср	Cr	Cv	Fu	FL	GI	Gr	Go	He	Ja	Lm	Mt	м
AX87-01	0.00	5.18	CASN										ļ					ļ'_				I						
AX87-01	5.18	32.50	SDBX	BXSX	CARB	2	SRCT	2	304	0,1											İ			1				
AX87-01	32.50	36.65	0/FB	DSSX	SILI	4			404	Z			L			L							1				L	L
AX87-01	36.65	42.30	\$DBX	D\$\$X				[404	0.1		<u> </u>									<u> </u>							
AX87-01	42.30	43.48	D/FB	STSX				L	121	3		L	İ															
AX87-01	43.48	58.75	SDBX	DSSX	l	l		<u> </u>	404	0.1					1	<u> </u>]
AX87-01	58.75	60.35	D/FB	DSSX	CLAY	3	CBSE	3	402	0.1																		
AX87-01	60.35	77.85	SDBX	BX\$X			ļ		308	0.5																		[
AX87-01	77.85	79.66	D/F8	DSSX					402	0.5							1										1	[
AX87-01	79.66	83.07	D/AF	DSSX	CLAY	2			404	0.1																	1	
AX87-01	83.07	101.19	SDBX	BX\$X					308	0.1																		
		E.O.H.]	I										[T			1	[

1

ŧ.

Ĩ

h

Ł

t

.

ł

Hole	Interv	(a) (m)	Rock	Sulph	T T	Alle	ration														Mb	eraliza	llon					-
Number	From	Τo	Code	Code	Туре	ints	Туре	inte	Туре	Py	As	A2	Ba	Bn	Ce	Cp	Çı	Cv	Fu	ri -	Gł	0	0o	He	Ja	Lm	Mt	Γ
AX87-02	0.00	3,26	CASN		ľ														ļ									
AX87-02	3.26	84.63	SDBX	DSSX		I			404	0.5											<u> </u>	l						ļ.,
AX87-02	81.63	91.10	D/FB	DSSX	CBSE	3			404	1	ļ						.		ļ			ļ						
AX87-02	91,10	94.25	SDBX	DSSX		1			101	0.1		ļ							<u> </u>	L						ļ	<u> </u>	1
AX87-02	94.25	100.90	D/AF	DSSX	CARB	3			404	1	L		L				<u> </u>			ļ			L .	l	l	1		
AX87-02	100.90	102.27	SDBX	DSSX	GLAY	3			401	3			1.						L				<u> </u>		<u> </u>	ļ		1
AX67-02	102.27	105,12	D/FE	FRSX	CBSE	3			121	2													L	L	ļ	ļ		
AX87-02	105 12	107.29	SDBX	DSSX					121	3		ļ														.		
		E.O.H.			I						<u> </u>	L					<u> </u>	L		L					1	ļ	ļ	
							L		I								L								<u> </u>	L		

Ĩ.

1

.

\$

t

ŧ

1

.

ŧ.

1

Hole	hilery	(#) (PD)	Rock	Sulph	r	Alfe	ration														Min	eraliza	tion					-
Normber	From	To	Code	Code	Тури	Inte	Туре	Inis	Тура	Py	As	Az	8=	Bn	Cc	Ср	Cr	Cv	Fu	FI	GI	Gr	00	He	Ja	4.m	Mt	Ι
AX87-03	0.00	6.07	OVBR							_		l															<u> </u>	
AX87-03	6.07	18.53	SMGP	DSSX	KSPR	3			404	5			l			ļ			0.1	0.5							↓	1
AX87-03	18.53	22.25	SMGP	DSSX	KSPR	3		l	404	5						<u> </u>	L			1.5								1
AX87-03	22.25	37.34	SMGP	DSSX	KSPR	3		1	404	5					0.1	1												
AX87-03	37.34	37.36	VNPY	STSX					122	90					L	L		ļ					ļ				ļ	-
AX87-03	37.36	38,13	SMGP	DSSX	KSPR	3		<u> </u>	404	5	L				0.1			<u> </u>				L						
AX87-03	38.13	38.15	VNPY	STSX	I	L			_122	90	ļ											ļ	L					4
AX87-03	38.15	42.67	SMGP	DSSX	KSPR				404	5				ļ	0.1			L			l	ļ		ļ	· · · ·			
AX87-03	42.67	82.78	SMGP	DSSX	I			L	404	4							<u> </u>	ļ		0.1			<u> </u>	ļ			I	4
AX87-03	82.78	89.00	SYMC	DSSX	KSPR	3	L		404										0.1	0.1		L		L				1
AX87-03	89.00	102.72	SMGP	DSSX	KSPR	3	Ļ		404	4		ļ								0.1	<u> </u>		ļ					ļ
EC EC	н	1																										

8

.

.

ĥ

.

1

â

1

h

8

.

1

1

ŧ

Hole	inters	rat (m)	Rock	Sulph		Alle	ration														Mir	neraliza	lion					
Nomber	From	Te	Code	Code	Туре	INIS	Type	Unte	туре	Py	Aş	Az	Ba	Bn	50	Cp	Cr	Cv	fu	FI	<u>(</u>)	G,	60	He	J∎	Lm	Mt	I
AX87-04	0.00	5.20	CASN			[L	ļ
AX87-04	5.20	63.09	SMGP	DSSX	CBSE	4	KSPR	3	404	1			L							1			ļ				ļ	ļ
AX87-04	63.09	70.10	SYMC	DSSX	касв	4			404	2																		1
AX87-04	70.10	73,76	SMGP	DSSX	касв	4			404	5						1					ļ	1				<u> </u>	<u> </u>	
AX87-04	73.76	79.86	SYMC	DSSX	ксвѕ	3			404	3			[L					1	1
		E.O.H.		T]																						
1						1	1							I												1		

1

.

8

ł.

ŧ

Ł

.

ŝ

.

8

8

1

.

Hole	Interv	val (m)	Rock	Sulph		Alte	ration		l												Min	eraliza	lion				
Nurohør	Irom	10	Code	Code	Туре	(n)a	Type	inte	Type	Py	_ A s	Az	Ba	Bn	Ce	Cp	Çr	Cv	fu	FI	. 61	Gr	Go	Ho	Jø	Lm	MI
AX87-05	0.00	6.00	CASN	I														[
AX87-05	6.00	19.45	SMGP	DSSX					404	6							0.1			0.1	0.1						
AX87-05	19.45	23.04	SMGP	DSSX		L			404	2										0.1			L				
AX87-05	23.04	45.02	SMGP	DSSX				L	404	6						L	0.1			0.1	0.1						
AX87-05	45.02	53.92	SYMC	DSSX		L			404	5																	
AX87-05	53.92	55.99	SMGP	DSSX					404	6					1			<u> </u>							1		
AX87-05	55.99	58.67	SYMC	DSSX					I				<u> </u>							0.1							
AX87-05	58 67	73 15	SMGP	DSSX			1		404	5					0.1					0.1							
AX87-05	73.15	83.21	SMGP	DSSX					404	2.5															[
AX87-05	83.21	91.14	SMGP	DSSX					404	3.5									0.1								
AX87-05	91,14	98.15	SYMC	DSSX	<u> </u>		ļ		404	4										0.1							
EC	ЭН																										

ł

t

1

ł

Hole	Inter	/al (m)	Rosk	Sulph		Älli	eration														Mir	ieraliza	tion							·						r
Number	From	Τσ	Code	Code	Туре	Inla	Type	Inte	Туре	Py	As	Az	Ba	Bn	C٥	Ср	C,	Cv	Fu	FI	GI	Gr	Go	He	J∎	Lm	MI	Mc	Mo	Cu	Po	5d	5p	Sb	11	Recov.
AX87-06	0.00	2.10	CASN]									J									r				
AX87-06	2.10	23.40	SMGP	DSSX	CLAY	2	KSCB	4	404	2													[f	f				1
AX87-06	23.40	23.50	SMGP	STSX	касв	3			121	5		Γ														t						i				Ĺ
AX87-06	23.50	31.20	SMGP	DSSX				1	404	1													1	1		İ						t			·	1
AX87-06	31.20		SMGP	STSX	касв	3			121	15													1					1			1				[+	
AX87-06	31.30	79.55	SMGP	STSX	кааг	3		}	121	3]									0.1		1	1]		0.1		<u> </u>	ţ			0.1	
AX87-06	79.55	79.65	VNPY	STSX					902	85																						[
AX87-06	79.65	79.85	SMGP_	DSSX					404	1	[
AX87-06	79.85	80.50	VNPY	STSX					902	50]										1											l	[]	
AX87-06	80.50	85.55	SMGP	DSSX					404	1															<u> </u>			1				†			·	
AX87-06	85.55	85.57	VNPY	STSX					90Z	70	[[[1	1				1
AX87-06	85.57	93.90	SMGP	ossx	KSQZ	3	CLAY	3	404	2																								[]		1
AX87-06	93.90	94.25	VNPY	STSX	KSQZ	3	CLAY	3	902	50																		1				· · · · ·				1
AX87-06	94.25	101.19	SMGP	DSSX	KSQZ	3			404	3																		1						[]		1
		E.O.H.																					[1		1								1
							1					[f	[[]	i f		1

.

£.

1

Hole	Interv	ul (m)	Rock	Sulph	F	Ålte	ration		[Mir	eraliza	ition					
Number	From	Ta	Code	Code	Туре	In la	Туре	Ints	Type	۲y	As	Az	8.	Bn	Ce	Ср	Cr	Ċv	Fu	FI	6)	Gr	Go	lle	Ja	Lm	MI	Me
AX87-07	0.00	2.44	OVBR		[ļ												
AX87-07	2.44	16.37	ANTE		CARB	2							1			[l				L		. .					i
AX87-07	16.37	17,25	ANTE	DSSX	CBSE	3		.	404	3	ļ				ļ	I	L				1				. .			
AX87-07	17.25	19,05	ANTE		<u> </u>									<u> </u>			ļ			I		ļ		1	l	ļ		
AX87-07	19.05	23.77	ANTE	DSSX	CBSE	3			404	5				ļ		ļ	ļ				L	ļ	l					L
AX87-07	23.77	26.15	ANTE													ļ		1				1			l			ļ
AX87-07	26.15	29.26	ANTE		CBSE	3	<u>-</u>		<u> </u>													ļ	Ļ					
AX87-07	29.25	39.93	ANTE	DSSX	CRSF	4			404	0.5	L			ļ		1	ļ	ļ							ļ			Ĺ
AX87-07	39.93	44.26	ANTE	DSSX					404	0,1		ļ			<u> </u>	ļ	<u> </u>				ļ	ļ	L	ļ				
AX87-07	44,26	73.46	GRAP	DSSX	ļ				404	0.1	L		l		L	ļ							Ļ	ļ				
EC	ж			1																					L			

ŧ

4

.

ĥ

Ĩ.

ĥ

h

1

Î.

Ł

Hole	Inter	val (m)	Rock	Sulph		Ålte	ration														Mii	neraliza	ntion				
Number	From	To	Çodu	Code	Type	Inis	Туре	Ints	Туре	Py	As	Az	84	Bn	Cc	Ср	Çı	Çv	Fu	F)	GI	Gr	Go	He	Ja	Lm	MI
AX87-08	0.00		OVBR																							-	
AX87-08	1 83	51.82	SDBX	DSSX_	I				404	0.1	ł		L	L	Į			ļ			Ļ	L					· •
AX87-08	51.82	57.00	SDBX					<u> </u>		I							<u> </u>	ļ	<u> </u>						L		
AX87-08	57.00	63.09	GRAP					L			ļ	L	ļ	L	I						ļ						
E	ЭН													1.	1						<u> </u>	<u> </u>		L			

Ť.

h

.

ŝ

h

8

Hole	Interv	al (m)	Rock	Sulph	F	Alle	eration		<u>r</u>												M	inerali	talion												
Number	from	10	Code	Corte	Туря	1iste.	Туре	Inte	Type	Py	An	Az	8.	Bn	Cć	Co	6	L Cv	۶ı	0	G.	Tigo	2.1001		1 1		- ie-		- <u>-</u>	-				<u> </u>	
AX02-09	0.00	18.29	CASN					<u> </u>	1							<u> </u>										106	мс	MIN		100	Sd	Sp	<u>S</u> ь	- 11	<u> </u>
AX02-09	18.29	22.40	SMGP	DSSX	KSPR	3	1		404	0.5			!			+	•	+ ·			ł		·				ł								. . .
AX02-09	22.40	42.80	KPBP	DSSX	ксвя	3	KSPR	3	404	1.5	1 1 1	† ·					<u>∤</u>			·	ł				0.5			·		ŧ	ł		<u> </u>	┢	ł
AX02-09	42.80	45.40	KPBP	BXSX	KCBS	3		1	304	2	01						<u> -</u>	1							0.5		}		· • •		<u> </u>		{		
AX02-09	45.40	86.55	KPBP	DSSX	KCBS	3	KSPR	3	404	1.5	0.1						`	!					n 7		†	0.1					<u> </u>				
AX02-09	86.55	88.35	D/MA	1 1	CBSE	2												·†				1			+								[]		·
AX02-09	88.35	91.92	KPBP	DSSX	ксвз	1			404	0.5	1			1				1			1	†		†	+			<u> </u>		1					
AX02-09	91.92	95.20	KPBP	DSSX	ксвз	3		Ì	404	1.5	0,1	Ì		1			·		·		i	į	<u> </u>	1			· ·	<u> </u>	i				$ \rightarrow$	<u> </u>	ł
AX02-09	95.20	99.30	KPBP	DSSX	ксвѕ	1			404	0.5	1					<u> -</u>					· •	1		<u> </u>	1								 		·
AX02-09	99.30	112.98	KPBP	DSSX	KCBS	4			404	2												t	01	1						1	<u> </u>			<u> </u>	
AX02-09	112.98	115.10	SIMB	DSSX	KSSQ	3		1	404	0.5		† 					t —		• •			<u> </u>	0.1	+									\rightarrow		
AX02-09	115.10	117.68	FAUL	STSX					120	0.5	f											<u> </u>	t	1	,					<u> </u>			$ \rightarrow$		
AX02-09	117.68	135.80	SYIB	DSSX	1	_			404	1											····		+ -												
AX02-09	135.80	140.30	SIMB	ossx					404	0.5									·											-				 	
AX02-09	140.30	140.50	D/KP	DSSX	KCBS	3			404	0.5												t								1				├	
AX02-09	140.50	141.40	SYIB	DSSX					404	1												· •												F	
AX02-09	141.40	141.92	D/KP	DSSX	KCBS	3			404	0.1				-										t						1				<u> </u>	
AX02-09	141.92	143.20	SYIB	DSSX					404	1														<u> </u>											
AX02-09	143,20	143.60	D/KP		KCBS	3											-							1						1					
AX02-09	143.60	147.90	SYIB	D\$SX					404	1												[
AX02-09	147.90	150.10	KPBP	DSSX	ксвз	3			404	0.1													• • • • • • •											i	·····
AX02-09	150,10	152.50	КРВР	DSSX	ксвз	3	L		404	0.1															'									í – –	
AX02-09	152.50	153.45	КРВР	DSSX	ксвз	3			404	1.5														[
AX02-09	153.45	157.65	KPBP	DSSX	KCBS	1			404	0,1																0.2								í	
AX02-09	157.65	158.50	крвр						404	0.5														Ι											
		E.O.H.																																	

ħ

.

Hole	Interv	et (m)	Rock	Sulph		Alte	ration		r												Min	eraliza	tion				
Number	From	τa	Code	Code	Туре	Inte	Туре	Ints	type	Ру	A1	Az	8.	Øn	Co	Ср	Cr	Cv	Fu	FI	QI	Gr	Ge	He	j,	Lm	MI
AX02-10	0.00	10.67	CASN	<u> </u>					I																	L	
AX02-10	10.67	19.50	SMGP	ossx	ксвя	4	KSPR	1	404	1																	L
AX02-10	19,50	28.53	SYIB	DSSX	KSPR	4	SRCT	3	404	3			L	L							0.1						L
AX02-10	28.53	38.63	SYIB	DSSX	CBSE	4	KSPR	2	402	3											0.1				[]		l
AX02-10	38.63	48.12	SYIB	DSSX	KSPR	4	SRCT	2	404	3		L									0.1						ļ
AX02-10	48.12	51.62	SMGP	STSX	SRCT	з	KSPR	3	121	10														L			
AX02+10	51.62	54,96	SYMC	STSX	SRCT	3	KSPR	3	121	4																	
AX02-10	54.96	68.16	SMGP	STSX	SRCT	4	KSPR	3	121	5			1				L				0.1			l			
AX02-10	68,16	70.75	SYMC	STSX	SRCT	4	KSPR	3	121	3		L	1	1	1		L				0.1		L				
AX02-10	70.75	76.85	SMGP	STSX	SRCT	4	KSPR	3	121	6							1				0.1		L		L		
AX02-10	76.85	80.85	SMGP	DSSX	SRCT	3	KSPR	2	404	2.5				ļ				L		0.1	0.1						
AX02-10	80.65	91.44	SMGP	STSX	SRCT	4	KSPR	3	121	5		 					L	L		0,1	0.1		L				
AX02-10	91.44	94.37	SYMC	STSX	SRCT	4	KSPR	2	121	5	<u> </u>										l	<u> </u>		<u> </u>			ļ
AX02+10	94.37	97.67	SMGP	DSSX	SRCT	4	KSPR	1	404	2						Ì			L		0.1				l		
AX02-10	97.67	98.24	FAUL		ÇLAY	5						L	L	L					L	l			L	L		ļ	1
AX02-10	98.24	100.70	D/SFB	DSSX	SRCT	3	KSPR	3	404	1,5					L					L							
AX02-10	100,70	106.68	SMGP	STSX	SRCT	4	KSPR	2	121	3				<u> </u>					0.1		0.1						
AX02-10	106.68	108.75	SMGP	DSSX	SRCT	3	KSPR	2	404	5	ļ	L	L			ļ	L	l							<u> </u>	<u> </u>	L
AX02-10	108,75	109.64	SYMC	DSSX	SRCT	2			404	1					L	ļ					0.1			ļ	L	ļ	
AX02-10	109.64	114.63	SMGP	STSX	SRCT	4	KSPR	3	121	7			L					<u>.</u>			0.1			<u> </u>		ļ,	
AX02-10	114.63	114.95	SMGP	DSSX	SRCT	3	KSPR	2	404	5					<u> </u>	1		ļ	0,1							L	L_
AX02-10	114.95	115.36	SMGP	STSX	SRCT	3	KSPR	2	121	5			L			L					0.1						ļ
AX02-10	115.36	116.79	SMGP	DSSX	SRCT	2	KSPR	1	404	4						<u> </u>			<u> </u>					ļ	<u> </u>	<u> </u>	
AX02-10	116.79	117,90	SMGP	DSSX	SRCT	3	FUCH	1	404	5	L		<u> </u>		L					ļ	0.1			ļ			<u> </u>
AX02-10	117,90	119.70	SMGP	STSX	KSPR	3	SRCT	3	121	10				L	ļ			<u> </u>		0.1	0.1		1	<u> </u>	I	_	
AX02-10	\$19.70	123.87	SYAP	DSSX	SRCT	4	FUCH	1	404	4				L	L					L	0,1	ļ			ĺ		i
AX02-10	123.87	140.21	SMGP	STSX	SRCT	4	FUCH	<u> _1</u>	121	10				L	ļ			L	0.1	0.1	0.1	ļ	L	ļ	<u> </u>	<u> </u>	ļ
AX02-10	140.21	144.35	SYIB	DSSX	SRCT	4	KSPR	3	404	i 3				ļ	<u> </u>		ļ	Į		0.2	0.3			0.1	L	ļ	ļ
AX02-10	144.35	182,88	SYMC	DSSX	SRCT	4	KSPR	3	404	4					<u> </u>					0.3	0.2			0.1	ļ	<u> </u>	ļ
AX02-10	182.86	188.95	SYMC_	DSSX	SRCT	5	CHLR	1	404	2			1	<u> </u>				L	ļ	ļ	ļ		Ļ	<u> </u>	ļ	_	ļ
AX02-10	188.98	216.30	SYMC	DSSX	SRCT	4	KSPR	2	404	4					 	ļ	T	-	0.1	2	0.1	<u> </u>	\vdash	0.1	ļ	<u> </u>	<u> </u>
AX02-10	216.30	221.30	SMGP	DSSX	касв	4	SRCT	4	404	2			L			I		-···		0.1	.	.		0.1	<u> </u>	_	<u> </u>
AX02-10	221.30	225.55	SYMC	STSX	SRCT	4	KSPR	3	121	4				L				L		0.2	0.1	L	— -	I	L		
		E.O.H.						<u> </u>					1		1		ļ	<u> </u>	L	ļ <i>.</i>					<u> </u>	1	ļ
	1	ł				L			J		<u> </u>	<u> </u>			<u> </u>		<u> </u>	<u> </u>	L	L	<u> </u>	L		<u> </u>		<u> </u>	.l

٠

ł.

ħ.

ħ.

ħ.

.

h

ł.

1

Hole	Interv	(m) let	Rock	5 olph	1	Aile	ration			Mineralization Type Py As Az Ba Bn Cc Cp Cr Cv Fu Fi Ol Or Oo He Ja Lm													_					
Number	F) om	Ta	Code	Code	Туре	Inla	Type	tats	Туре	Py	A1	Az	Ba	Ba	CE	Cp	Cr	Cv	Fu	FI	81	Or	G٥	144	Ja	t.m	MI	Ň
AX02-11	0.00	6.10	CASN		[[[_
AX02-11	6.10	41.60	SMGP	DSSX	ксвя	3			404	0.5			ļ			L									ļ		i	
AX02-11	41.60	45.20	BXSY	DSSX	SRCT	3	ксвѕ	3	404	1	L	[Ļ			ļ									ļ		[]	Ļ
AX02-11	45.20	46.60	SMGP	DSSX	ксвя	3	L		404	0.5		<u> </u>			Í	L—					المور ي				l			L
AX02-11	46.60	47.40	BXSY	DSSX	SRCT	3	KCBS	3	404	1					—		ļ							Į			<u> </u>	Ļ.
AX02-11	47.40	\$1.35	SMGP	DSSX	ксвѕ	3	<u> </u>	<u> </u>	404	0.5		<u> </u>				L			<u> </u>					ļ				<u> </u>
AX02-11	51.35	52.60	SMGP	STSX	SRCT	4	KCBS	3	121	1	ļ		<u> </u>		 .									ļ	ļ		ļ	\vdash
AX02-11	52.60	54.43	SMGP	DSSX	ксвя	3	ĺ	l	404	0.5	Ļ	Ì	1		Ì	Ì	Ì	ļ	\	 	<u> </u>		Ì	 	<u> </u>	1	<u> </u>	}
AX02-11	54.43	62.30	BXSY	BXSX	SRG1	3	ксвѕ	3	304	1.5			<u> </u>			ļ		·	 	ļ				_			<u> </u>	L
AX02-11	62.30	75.87	SMGP	DSSX	ксвѕ	3		I	404	1	I	L			<u> </u>				L		0.1	<u> </u>		ļ	ļ		<u> </u>	L
AX02-11	75.87	79,85	SMGP	DSSX	SRCT	3	ксвѕ	3	404	1	L					L				L		Į			ļ		L	L
AX02-11	79.85	80.00	DISY	DSSX	KCBS	3			404	1	ļ	<u> </u>					<u> </u>	<u> </u>	 	ļ		ļ	L	ļ		L	\downarrow	Ļ
AX02-11	80.00	86.95	BXSY	DSSX	SRCT	3	ксвѕ	3	404	1	L	ļ			İ		Į						L	ļ	1			
AX02-11	86,95	96.35	SMGP	DSSX	KCBS	3			404	1.5	L_	L					<u> </u>					L			L			
AX02-11	96.35	110,60	SMGP	DSSX	SRCT	3	ксвѕ	3	404	1.5			ļ			L		L			L							L
AX02-11	110.60	115.05	BXSY	ossx	SRCT	3	ксвѕ	3	404	1	1	L				\				ļ	I			L	<u> </u>		ļ	4_
AX02-11	115.05	116.75	SMGP	DSSX	ксвя	3		ļ	404	1	.							<u> </u>			L			_	 	L	<u> </u>	\perp
AX02-11	116.75	125.10	SMGP	DSSX	KSPR	4	ксвѕ	3	404	1			L				L		1			I		ļ	ļ	L	<u> </u>	\downarrow
AX02-11	125.10	134.11	SMGP	DSSX	ксвѕ	3			404	1						L_										L		

f.

ŧ.

.

Ł

Ł

Ł

h

ĥ

ŧ.

1

Hole	Intern	vel (m)	Rock	Suiph		Alte	ration														Mir	neraliza	ition					
Number	From	To	Code	Code	Туре	Ints	Туре	Inis	Type	Py	As	Az	Ba	Bn	Cc	Cp	Cr	Cv	Fu	F)	GI	Gr	Go	fle	Ja	Lm	MI	Mc
AX02-12	0.00	3.05	CASN	<u> </u>				l]					1						[
AX02-12	3.05	16.37	SYMC	DSSX	CLAY	4			404	1												1	2			10		
AX02-12	16.37	20.10	SYMC	DSSX	CBSE	4	KSPR	2	404	2		I	ļ		Ĺ		1	ļ				L	2			5	ļ	
AX02-12	20.10	33.53	SYMC	DS5X	CLAY	3	CBSE	4	404	1													1			10		
AX02-12	33.53	39.62	SYMC	DSSX	CBSE	4	KSPR	3	404	1.5						I						L	1	0.1		3		
AX02-12	39.62	49.05	SYMC	DSSX	CLAY	3	ксвѕ	3	404	1	1		L						1				2		0.5	5	L	
AX02-12	49.05	64.01	SMGP	DSSX	CBSE	4	KSPR	2	404	1.5									0.1				0.5			1		
AX02-12	64.01	111.58	SMGP	DSSX	SRCT	5	CARB	2	404	0.5						<u> </u>			0.1				1		0.3	7		
AX02-12	111,58	116.15	SMGP	DSSX	CBSE	4			404	1									0.1				0.1			0.5		
AX02-12	116,15	121.92	SMGP	ossx	CBSE	4	CLAY	3	404	0.5				I					0.1						0.5	2		
AX02-12	121.92	162.18	SMGP	DSSX	CBSE	4	CHLR	2	404	1									0.1							1		
AX02-12	162.18	170.69	SMGP	STSX	CBSE	4	KSPR	2	121	1.5																0.2	Ĺ'	
AX02-12	170,69	182.68	O/FB	STSX	снсв	4	SRCT	з	121	4	[0.2				0,1			0.3		
AX02-12	182.88	201.17	SMCP	DSSX	SRCT	4	CHLR	4	404	1									0.1		l		0.1			0.5		
		E.O.H					 	<u> </u>								ļ			ļ								<u> </u>	
L			l		1	1					I						L	_				1	$\downarrow_{}$	L			L	

ł

×.

h

1

ŝ

ł

.

Rubicon Millerials Corporation Axelgoid Property Summary Geology Log

Ł

t

C:\Axelgold\Database\Individual Database\Geology

ł

ł.

L

h

1

ł.

1

Hole	interval (m) Rock Sulph Alteratio									· · ·											Min	eraliza	lion				
Number	From	To	Code	Code	Туре	Ints	Туре	ints	Туре	Py	As	Az	B.	Bn	Cc	Cp	Cr	Cγ	Fu	FI	GI	Gr	Go	He	Ja	Lm	м
AX02-14	0.00	3.05	CASN													_	[ļ				Ļ	
AX02-14	3.05	6.10	SMGP	DSSX	KSPR	4	SRCT	3	404	1.5																Ð,2	I
AX02-14	6.10	12.27	SYIB	DSSX	CBSE	4	KSPR	3	404	3		L							0.3						L		Ļ
AX02-14	12.27	16.00	SMGP	DSSX	KSPR	4	SRCT	3	404	1.5]			ļ	
AX02-14	16.00	32.82	SYIB	DSSX	SRCT	4	KSPR	3	404	2							Ĺ		0.1							0.1	
AX02-14	32.82	33,70	SMGP	DSSX	SRCT	4	KSPR	3	404	1																0.1	
AX02-14	33.70	38.27	SYIB	DSSX	SRCT	4	KSPR	2	404	2.5	ļ						ļ		0.1			ļ	ļ	ļ		0.1	
AX02-14	38.27	44.90	SMGP	DSSX	KSPR	4	SRCT	3	404	1.5				ļ								ļ					<u> </u>
AX02-14	44.90	78.10	SYIB	DSSX	SRCT	4	KSPR	2	404	2									0.5			ļ	ļ				
AX02-14	78.10	83.54	SMGP	DSSX	KSPR	4	SRCT	3	404	1,5									0.1				ļ				L
AX02-14	83.54	87.15	SYIB	DSSX	SRCT	4	KSPR	2	404	3					ļ			 	0.2		ļ	1	ļ	ļ			
AX02-14	87.15	89.29	D/KP	STSX	SRCT	3	KSPR	2	121	4			ļ		L				0.1			ļ	 			ļ	
AX02-14	89.29	94.40	SYIB	DSSX_	SRCT	4	KSPR	3	404	3				l							L					L	ļ
AX02-14	94.40	95.32	D/KP	STSX	SRCT	3	KSPR	3	121	3						L			0.1		I	<u> </u>	ļ	L			
AX02-14	95.32	102.22	SYIB	DSSX	SRCT	4	KSPR	4	404	3				ļ		L			0.3			<u> </u>	 		l		_
AX02-14	102.22	102.53	SIMB	DSSX	KSPR	3	SRCT	2	404	4				ļ				<u> </u>	0.1			 	ļ	l		ļ	
AX02-14	102.53	104.38	SYI8	DSSX	SRCT	3	KSPR	3	404	4				<u> </u>				I	0.1			 	. .				ļ
AX02-14	104.38	137.00	SYIB	DSSX	SRCT	4	KSPR	3	404	3		-	ļ	 	<u> </u>		ļ		0.1		Į	<u> </u>	<u> </u>			<u> </u>	-
AX02-14	137.00	137.70	D/KP	DSSX	SRCT	3	KSPR	1 3	404	4					ļ				0,5		L	-		I			i
AX02-14	137.70	147.87	SYIB	DSSX	SRCT	4	KSPR	3	404	3		ļ			1	ļ			0.1			L	ļ		ļ	<u> </u>	
AX02-14	147.87	154.35	SMGP	D\$SX	SRCT	4	KSPR	1	404	2					i				0.1		L		 		_	 	
AX02-14	154.35	161.00	SYIB	DSSX	SRCT	4	KSPR	3	404	4	L	Ļ						 	0.1		ļ	1		I		<u> </u>	
AX02-14	161.00	181,13	SMGP	DSSX	KSPR	4	SRCT	2	404	3	<u> </u>		<u> </u>	ļ	ļ	<u> </u>			0.1		l		ļ				
AX02-14	181.13	214,84	SYIB	DSSX	SRCT	4	KSPR		404		·		<u> </u>			ļ			0.1					<u> </u>			<u> </u>
AX02-14	214.84	222.50	SYIB	DSSX	CBSE	4	KSPR		404	1.5	i		<u> </u>	ļ			1	ļ			<u> </u>			<u> </u>	ļ	. 	—
AX02-14	222.50	224.05	SYIB	STSX	KCBS	4	CHLR	1 1	121	4			<u> </u>	L	↓			1	0.1		<u> </u>				-		
AX02-14	224.05	234.80	SYIB	DSSX	KCBS	4	CHLR		404	4	ų			Ļ	ļ	<u> </u>			0.1								
AX02-14	234.80	258.38	SMGP	DSSX	KSPR		SRCT		404	<u> </u> ;	<u>!</u>	ļ	ļ	ļ		- ·	. 		0.1	L	l	+	<u> </u>	<u> </u>	i	<u> </u>	—
AX02-14	258.38	266.38	SYIB	STSX	CBSE		KSPR	:	121	1 :	5		ļ	ļ		L	ļ		0.5	0.3	 	-	↓	-	<u> </u>	. <u> </u>	–
AX02-14	266.38	269.50	SYIB	DSSX	KSPR	4	CBSE	<u> </u>	404		<u> </u>		-	ļ	1	<u> </u>	1		0.2	0.1	<u> </u>		-				<u> </u>
AX02-14	269.50	289,56	SYIB	OSSX	CBSE		KSPR	1 :	404	· · · · ·	•		<u> </u>	I					0.3	0.3					Į		+
		E.O.H.		<u> </u>			1	1			<u> </u>		L	J	L			L	l	L	L		<u> </u>	L	I	1	L

.

2

8

ĥ

ł

L

ł

ŧ.

1

Hole	holes	ral (m)	Rock	Sulph		Alle	ration		M Type Py As Az Ha F An Co Co Co Cy Fu Fi Of											Min	eraliza	lion						
Nuisbei	from	to	Code	Code	Type	latu	1 ype	Inte	Туре	۴y	A1	٨r	B.	Bn	Co	Ср	Cr	C۲	Fu	ŧ١.	Q í	Or.	Gn	He	Ja	1.m	HAT	Mc
AX02-15	0.00	1.83	CASN																									
AX02-15	1.83	6.70	SMGP	DSSX	SRCT	2	KSPR	4	404	1.5				L	<u> </u>	L	L									ļ		
AX02-15	6.70	10,10	SYAP	DSSX	SRCT	4			404	4	L								0.1	ļ								L
AX02-15	10.10	13,85	SYIB	DSSX	SRCT	3	KSPR	3	404	3	l		ļ				L							ļ				
AX02-15	13.85	17.45	SMCB	DSSX	SRCT	3	KSPR	2	404	2.5	·	<u> </u>															<u> </u>	
AX02-15	17.45	20.00	SYIB	STSX	SRCT	3		<u> </u>	120	4			i	L														I
AX02-15	20.00	21,00	SYAP	ossx	SRCT	3	L	\vdash	404	4	·	ļ	ļ				ļ	L		<u>.</u>					İ			
AX02-15	21.00	22,30	SMGP	DSSX	SRCT	3	KSPR	3	404	1.5	i	.		ļ	l	 		 					 	 		L		L
AX02-15	22.30	23.26	\$YIB	DSSX	SRCT	3			404	4	l I	L	<u> </u>	<u> </u>	L				<u> </u>	ļ			ļ					L.
AX02-15	23.26	23.50	SMGP	DSSX	SRCT	3	KSPR	2	404	Ż	2	l	Ļ				<u> </u>		I	I								<u> </u>
AX02-15	23.50	23.65	SYAP	DSSX	SRÇT	3	L	<u> </u>	404	1		l		ļ			L					L		ļ				
AX02-15	23.65	24.20	SMGP	DSSX	SRCT	1	KSPR	4	404	1.5	5	 	ļ	ļ	ļ			Ļ		1							<u> </u>	ļ
AX02-15	24.20	24.30	FAUL	DSSX	l		ļ	Ļ	404	1	L		I							L					I		<u> </u>	
AX02-15	Z4.30	26.50	SMGP	DSSX	SRCT	3	KSPR	2	404	1		ļ	ļ	ļ	L		ļ		<u> </u>	L	L		1		L			
AX02-15	26.50	29,70	SMGP	DSSX	SRCT	2	KSPR	3	404	3	5	-	ļ					-	ļ	L			Ļ	ļ			<u> </u>	
AX02-15	29.70	34.40	SYIB	DSSX	SRCT	3	KSPR	2	404	4	·	ļ	ļ			ļ			ļ								L	L
AX02+15	34.40	34.60	D/FE	DSSX					404	0.5	;								0,1	ļ	I		I		L		<u> </u>	
AX02-15	34,60	41,00	SIMB	DSSX	SRCT	3	K\$PR	2	404	2	!		Ļ					ļ	ļ	1	ļ		└──	L	I	L	<u> </u>	<u> </u>
AX02-15	41.00	43.85	SDBX	DSSX	ļ				404	0.5	5		ļ		ļ		<u> </u>						ļ		1		<u> </u>	\vdash
AX02-15	43,85	45.40	D/FE	L	CBSE	4			<u> </u>		+		ļ	ļ	ļ			[L	L	L	ļ	ļ		I	<u> </u>		L
AX02-15	45.40	75.59	5DBX	DSSX	SILI	2	L		404	0.1							L		L	1	L	L		1		1		1_

.

ŧ.

l

ŧ.

1

t

.

.

.

.

A

Hole	interv	al (m)	Rock	Sulph		Alle	ration		Mineralization																			
Number	From	1a	Code	Code	type	le in	Туре	Inte	Туре	Ру	A3	Az	8.	Bn	Cc	Cp	C)	Cv	Fu	FI	GI	Gi	Ge	He	Ja	Lm	MI	Mo
AX02-16	0.00	3.05	CASN																			I						
AX02-16	3.05	35,32	SMGP	DSSX	CLAY	3	KSPR	3	404	1		<u> </u>													0.5	0.5		
AX02-16	35.32	59.90	SYMC	STSX	CBSE	4	KSPR	3	121	2		1							0.1				0.2		0,1	0.2		<u> </u>
AX02-16	59.90	63.30	SMGP	STSX	SRCT	3	KSPR	4	121	3		L	1												0.1	0.1		
AX02-16	63.30	70.55	SIMB	STSX	CLAY	3	KSPR	3	121	2		L		L					0,1				0.5			3	L	I
AX02-16	70.55	80.25	FAUL	STSX	CLAY	3	KSPR	2	121	1		1	ļ										0.5			3		
AX02-16	80.25	91,03	SDBX	STSX	l				121	0.5			ļ					L								0.5	L	L
AX02-16	91.03	91.23	D/KP	DSSX	KSPR	3	CARB	3	404	0.1																	L	L
AX02-16	91.23	106.25	SOBX	DSSX			L		404	1			<u> </u>							L		L				0,1		6
AX02-16	106.25	109.73	SERP	STSX	QZCB	5		<u> </u>	121							0.1	0.1	[[- -					
AX02-16	109.73	124.36	SERP	ossx	CARB	3			404	0.2	L					2	0.1											1
		E.O.H.					<u> </u>															1	ļ					1
														L						L								L

.

.

2

Ł

.

L

.

ł

.

.

RUBICON MINERALS CORPORATION - DRILL LOG

- DRILL LOG Start_date: 14/08/02

End_date 15/08/02

I

AX02-009 Length(m)	158.5	Northing (UTM15 NAD83) Local co-ord North	6206043	Easting (UTM15 N/ Local Co-ord East	\D83)	315603	Elev(ASL) Claim	1685
TES TS :	Depth	Туре		Dip	Az			
	0			-45	200			
	91.44	Acid test		-43.5	200			
	158.5	Acid test		42.5	200			

November 9, 2002

Proje	ect: Axelgold											
AX02	AX02-009											
Depri Al	rocktype	g_from	g_tc	Cescript								
-5 -10	Casing	a	:8.29	7								
-20	Syenite	18.29	22.4	M to C.gr ppy; Mottled med to dark grey princolase bby. Very hard grey groundmass, probably k-spar altered. Stubby med grey subhedral to anhedral (« very weak carb » att « dissem v.f.g py » « dissem v.f.gr py along discontinuous f1 ». « limonite f1 » [log illeg. "surfaces"?]. « 1-5% carb stringers 20 Moderate k-spar ultim, att. « Dissem sx ». « f.gr by 0.50%»								
- 25			- - -	Mottled dark to light grey bimodal feaspar and bt ppy. ~20% stubby blue grey subhedral orthoclase phenocrysts, to 4mm, finer grained laths of euhedra plagioclase up to 3 mm in length (avg 1-2mm). Dark grey parts are generally hard and probably k-spar alt. In some dark parts bt is black and fresh. Ligh darker parts.								
- 30	Ortho-piag-bt porphyry	22.4	42.3	 Some py along f1 × « tr dissem asoy » assoc with « carb and qtz blebs and stringers ». <1% qtz stringers ». « 1-5% carb stringers 30.00-60.00°» Moderate k-spar « carb » (arkente) « ser » uitim, alt. Moderate k-spar penult alt. « Dissem sx »: « f.gr py 1.50%». « f.gr aspy 0.10%». « f.gr im 0.50%» « Hairline carb stringers 30.00-70.00° 1.00-3.00mm (avg 1-2mm) » Possibly arseno assoc with carb-strs. « Later qy [? qtz?] stringers » ~1mm cuts cart salong « f1 » Biotite 5-7%. Euhedral with cistinctive hexagonal section on C axis. In lighter grey parts biotite altered to pinkish grey « carb »« ser » 0.5- 1.0mm. Plagioclase laths altered to sencite*carbonate (ankente?) « 210- 25 10, aspy 1.00%» assoc with « carb stringers » 								
40 Scale	1:250			« 36.50- 39.85 f1 » « Strong Im » alteration along fracture. « 39.85- 42.80 <1% qtz stringers 0 deg to CA» « 1-5% carb stringers 30.00-60.00*» [11/09/02] [11/09/02] [15.09:19]								
1	1	1	1	1	1	1	1	t	4	L	1	L
---	---	---	---	---	---	---	---	---	---	---	---	---

10]				· · · · · · · · · · · · · · · · · · ·
X0:	2-009			
	d_geol			
ion At	rocktype	g_from	g_tc	
	Ortho-plag-ot porphyry	22.4	42.3	Mottles dark to light gray pimpoal feisspar and bt ppy. ~20% studby blue grey subhedral orthoclase phenocrysts, to 4mm, finer grained laths of euhe plagloclase up to 3 mm in length lavg *-2mm). Dark grey parts are generally hard and probably k-spar alt. In some dark parts bt is black and fresh. U darker parts.
5	Ortho-plag-ot porphyry	42.3	45 4	« Some py along f1 », « tr dissem asoy » assoc with « carb and qtz blebs and stringers ». <1% qtz stringers » « 1-5% carb stringers 30,00-60,00°» Moderate k-spar « carb » (ancente) « sef » utim, alt. Moderate k-spar penult alt.
				« Dissem sx », « f.gr ey 1.50%», « f.gr aspy 0.10%», « f.gr Im 0.50%» « Hainline care stringers 30.00-70.00° 1.00-3.30mm (avg 1-2mm) » Possibly arseno assoc with care-strs, « Later qy [? qtz?] stringers » ~1mm cuts o »along « f1 »
60				Biotite 5-7%, Euhedrai with distinctive hexagonal section on Claxis. In lighter grey parts biotite altered to pinkish grey « carb »« ser » 0.5-1.0mm. Plagioclase laths altered to sericeteramonate (ankerite?) « 24.10-25.10 aspy 1.00%» assoc with « carb stringers » « 35.50-39.35 ff » « Stong im » atteration along fracture.
				« 39.85- 42.30 <1% gz stringers 3 deg to CA» « 1-3% carb stringers 30.00-60.00*» Much as above but appears < bx ». Egit host rock proken and with dark matrix ~ 25%. Darker parts still have porphyritic texture but « pervasive py Both are hard. Dark matrix has a crushed/milded accearance with subhedral phenos in a dark matrix [log iileg, "at"?] 3-4%. « dissem py » and « py al dissem aspy » in lighter grey fragments. Moderate k-spar < carb » (arkentie) < ser » utim, alt.
				« sx in bx matrix (+/- stringers)»: « 1-5% py stringers 40.00°».« f.gr py 2.00%» « f.gr aspy 0.10%» « 45.20- 45.50 shear 10.00°» « LCT along limenite shr or frac at 10.00°»
10	Ortho-plag-bt			(light in areas) by k-spar.
5	porphyry			stringers 45.00°», « 1-5% carp stringers 30.00-45.00°» Moderate k-spar « carb » (ankente) « ser » utim, ad. Moderate k-spar penult, alt, « Dissem sx »: « f.gr py 1.50%», « f.gr mt 0.10%», « f.gr he 0.20%», « f.gr aspy 0.10%»
0		45 4	86.55	ox 2.00-3.00%» « 53.55- 54.30 <1% qtz stringers 45.00°», « 1-5% carb stringers 30.00-45.00°» 54.3- 54.55 Crush zone 20-30°, along « 54.55- 54.35 snear 30.00°», « Strongy Im » « 54.55- 78.40 <1% qtz stringers 45.00°», « 1-5% carb stringers 30.00-45.00°»
5				 55.40- 57.55 Darx gray-brown relatively fresh K-P-8 porphyry. Moderately magnetic. « 55.40- 57.55 very little py », indicating that pyrite came in with CB-ser alt. Whole rock/Thin section at 55.2 « 73.00- 75.00 cark gray to black hairline stringers 20.00-45.00°». Very hard. Looks like it contains something metallic. Probably « qtz » and « f carb-stringers. 78.40- 79.40 Strong im » staining. « 79.40- 79.40 Strong im » staining. « 79.40- 86.55 <1% qtz stringers 45.00°» « 1-5% carb stringers 30.00-45.00°»
0	1:250			15,09:19

Proj	ect: Axelgold		_								
X0	2-009										
	d_geoi										
eoin Ai	rocktype	gtom	g_to	descript							
85	Ortho-plag-bt porpnyry	45.4	86.55	stringers 45.00*», « 1-5% carb stringers 30.0 Moderate k-spar « carb » (ankerite) « ser » u « Dissem sx »: « f.gr py 1.50%», « f.gr mt 0. bx)0-45.00°» Iltim. alt. Moderate k-spar penuit. alt. 10%», « f.gr he 0.20%», « f.gr aspy 0.10%»	,					
	Mafic dyke	35 .55	88.35	2.00-3.00%» « 53.55- 54.30 <1% qtz stringers 45.00 54.3- 54.65 Crush zone 20-30°, along « 54.30- 54.65 shear 30.00°, « Strong	*», « 1-5% carb stringers 30.00-45.00*» ly lm »						
90	Ortho-plag-bt porphyry	88.35	91.92	 ≪ 54.65- 78.40 <1% qtz stringers 45.00 55.40- 57.55 Dark grey-brown relatively fresi ≤ 5.40- 57.55 very little py >, indicating Whole rock/Thin section at 56.2 Control at 56.2 	**, « 1-5% carb stringers 30.00-45.00* h K-P-B porphyry. Moderately magnetic, g that pyrite came in with CB-ser all. (a stringers 20.00 45.00*). Voc berging a stringer (a stringers 20.00 45.00*).	e like it eesteine eessetkine metellie. Breke	bly water a pod wif				
95	Опho-siag-bt рогрпугу	91.92	95.2	(* (3,00-75,00 dark grey to lack nation (august her her her her her her her her her her	te stringers 2004-25:00 , very hard cook symsv variably appantite to 1 gredspar porp mm, 20% = 1mm stubby barrel-shaped m<br red by alteration. itim, att.	afics (alt) probably augite. Mafic and feldsp	but aphanitic parts ar phenos altered i				
	Ortho-plag-bt porphyry	95.2	99.3	stringers 2.00-3.00% 1.00mm» cut by rare « « <1% vn » - [log calls them VNQF] K-feldsr « 1-5% carb stringers 45.00-60.00° » Trace k-sonar « carb » (ankerite) « ser » ultim	qtz » « feldspar vnlets subparallel CA » bar? « qtz ? »						
100				weak carbonate stockwork as usual, related 45.00-80.00*». Modarste 5-85-2 workbord darkstiller, of fich of 5 Usserunger workbor workburg had a stock of the stock	to k-spar-carb-(ankerite)-ser alteration. « di- iterations: altered than above and « distinctly Kshar771 <1% at 45 deg to CA.	ssem py » and « py along hairline f1 ». « Po Lless py ».	ossible tr. aspy ». «				
105	Оппо-ріад-bt рограуту	99.3	.98	« 1.5% carb stringers 40.00-70.00 * The stringers 40.00-70.00 * The stringers 40.00-70.00 * The stringers and stringers and average of the strong k-spar « carb » (ankente) « ser » atte « Dissem sx »: « f.gr py 2.00%», « f.gr ho 1. 15% stubby euhedral orthoclase pnenos to 5 pseudomorphs of « carb » and « ser ». < 1mr stringers up to 5mm 0.00 deg to CA» (avera ObjectionentBlocensingswith the strong strong mediat09530het01et05parspanit/w.clocky carb	alteration. Med to pale greenish grey m.gr attaration. ration. 10%» imm. 15-20% subhedral to euhedral plag pr n. « dissem f.gr crystalline py 1.00-3.00%». ge 2.3mm) Strongest stockwork noted in ht istone with round to subangular (average su e.ranges from-<1mm to-2 cm but averages	ppy. Aphanitic 'cherty' grey hard groundmas «<1% carb stringers 45:00-70:00 [±] » isms generally altered to « carb » and « ser « Some py along f1 » as well. « Stockwork ble to date. cuts « hairline carb stringers » a ibrdd-sunangular) frags of grey hard aphnith 2-3mm (c.gr sandstone). Rock is relatively i	 ». Biotite 5-7% eu ». Biotite 5-7% eu s of qtz 70 deg to (t 45.00-70.00°. « tr t material (sedimer hard but has green 				
110	Sandstone	.98	115.1	ser ». Could be « ser »-« qtz » or « ser »-«5 « 112.98- 114.65 <1% VNQF vn 20.00"» Moderate k-spar « ser » « qtz » ultim. alt. « Dissem sx »: « f.gr py 0.50%». Westl 14.55- 112.07 50.55 -00% Attraction stripp Westl 14.57- 012.07 50.55 -00% Attraction stripp Westl 14.57- 012.07 50.55 -00%	par. «<1% carb stringers 45.00*» «stafting close to being vertically below so sem our some-along « hariline 11 ».	il anomaly. Host rock is a c.gr sediment as	above.				
115	E. Hanne	ł		 « 115.10- 115.80 shear 10.00-40.00°» Li weak strs. 	monitic clay on shear surfaces. « py 1.00-2.	00%» along shear-parallel lenses and string	gers. Overall pyrite				
	Fault zone 115 t 68 (*Stringer sx »: « veins of py avg 0.50% 0.10-1.00cm» « veins of im 2.00% avg 0.10-1.00cm». Crush zone (<1 cm pieces) (+/-sed5)80x) to 7:00 sanstatioe: Outwall (to cm pieces) (+/-sed5)80x) to 7:00 sanstatioe: Subang to rdd fragments of m.gr feldspar porphyry and grey aphanitic to 3cm in a c.gr sandstone groundmass. C.gr sandstone grains 3-4mm predom aphanitic material. « Some qtz ? ». « <1% carb stringers 30.00-60.00* « Dissent sx »: « (or ov 1.00%)».										
120		.68	135.8	dark grey aphanitic (log unclear'gm c' (circi	a?)] 30% and stubby white subhedral to euh	edral phenocrysts averaging 1-2mm. Ortho	clase? C.gr sand p				
Cale	1:250		·ł		11/09/02		15:09:20				

.

Project: Axelgold Page No 4													4	
AX02	2-009								·					<u>.</u>
	d_3901							D_SA	MP					
Ceon At	rocktype	mert_p	g_to	cescript				S_FROM	s_to	SAMPLE	بە د د ()م	4 <u>6</u> .224	:	WC_2014
								.73	.92	54256	Q.2	0.21	9	1
125				(+/- sed brxx) to c.gr sandstone. Med bluish-grey to 3cm in a c.gr sandstone groundmass. C.gr sar « Dissem sx »: « f.gr py 1.00%».	r conglomerate, c.gr sandstone. Subang t ndstone grains 3-4mm predom aphanitic	io rdd fragments of m.gr feldspar porphyry material. « Some qtz ? ». « <1% carb stri	r and grey aphanitic material (sed? volc?) ingers 30.00-60.00°».	.92	.97	54257	?	7	7	7
	Conglomerate			dark grey aphanitic [log unclear'gm c' (circa?)] dark grey aphanitic, probably volcanic fragments	30% and stubby white subhedral to euhe also. Whole unit could be volcanic sands	dral phenocrysts averaging 1-2mm. Ortho stone.	clase? C.gr sand particles predom light to	.97	.02	54258	?	?	7	?
-130		.68	135.8					.02	.06	54259	7	7	2	7
	Similar to unit above with a few large fragments. Medium blue grey, msv homogenous. Poorly bedded 60-70 deg to CA. Hard. Possibly potassic altered (silicified?). « Dissem sx ». « f.gr py 0.50%». Medium grey glassy hard aphanitic gm (k-spar altered?). 10% stubby anhedral light brn-grey orthoclase to 4mm. 20% = 1mm euhedral plag laths and prisms typically a<br « carb » and « ser ». « dissem f.gr py 1.00%». « Qtz stringers 30.00° 4.00mm» cutting « hairline carb stringers ». « 135								.11	54260	?	?	,	7
135 « Caro » and « ser » « dissemingers 30.00°», « City stringers 30.00° 4.00mm» cutting « namine caro stringers » 11 85 Moderate k-spar « caro » (arkerite) « ser » ultim. alt.									54261	0.2	0.2	10	2	
	C.gr sandstone	135.8	140.3	« dissem sx »: « f.gr py 0.50%» « LCT 50.00» Much as above dyke. Slightly coarser-grained. « Dissem sx »: « f.gr py 1.00%»	stringers 30.00°», « <1% carb stringers 30.00°» -spar « carb »(ankerite) « ser » ultim. alt. x »« f.gr py 0.50%» « LCT 50.00» sove dyke. Slightly coarser-grained. x.» « f.gr py 1.00%»								7	2
140	Ortho-olag corphyritic dyke	140.3	140.5	As dyke above. May have biotite but not recogni carb stringers 30.00°».	ized. Similar texture to k-spar-bt-plag por	phyry unit but without biotite. Related? « 1	-5% qtz stringers 30.00-50.00°» « <1%	139	141,4	54263		~ ?	,	,
	Conglomerate Ortho-plag	140.5 141.4	141.4 .92	« Dissem sx »: « f.gr py 0.10%» = 1 CT 70 00:	dil.			141.4	<u>9</u> 2	54264	?	2	~ 7	2
-145	porphyntic dyke Conglomerate Ortho-plag porphyry	.92 143.2	143.2	« 1-5% qtz stringers 45.00°». « <1% carb stringe « Dissem sx » : « f.gr py 1.00%» Moderate k-spar « carb » (ankente) « ser » ultim. a « Dissem sx » : « f.gr py 1.00%»	ers 20.00° »	· · ·		.92 143.2	143.2	54266 54267	0.2 ?	0.16 ?	11 2	1 7
	Conglomerate	143.0	147.9	med, grey. Very hard aphanitic groundmass (k-sp	par?) with ~10% annedral stubby orthocia	ise 2-3mm and 15-20% euhedral laths and	d prisms of « carb - ser » altered	146.1	147.9	54268	,	?	2	?
150				 « 147.90- 150.10 1-5% carb stringers 20.00-4 Moderate k-spar « carb » (ankerite) « ser »uitim. « Dissem sx » i « f.gr py 0.10%» 	45.00*» alt.			147.9	150.1	54269	,	?	?	?
ļ	Ortho-plag-bt			150.1-152.5 Greenish grey. Similar to above but « 150.10-152.50 tr py ». « Very weak carb »	it few amygdules. » stockwork - « hairline stringers ».			150.1	152.5	54270	7	7	2	7
	porphyry	147 9	67	Moderate k-spar « carb » (ankerite) « ser »ultim. « 152.50- 153.45 <1% qtz stringers 45.00°».	alt. « <1% carb stringers 10.00-45.00°»			152.5	.45	54271	0.2	0.19	65	1
155				Moderate K-spar « carb » (ankerite) « ser »ultim. 153.45- 157.65 Alteration weaker than above. So « 153.45- 157.65 carb stringers ». Weakly ma	ait. ome dark brown parts away from agnetic. « mt specks 4.00%»			.45	.45	54272	?	?	7	7
	Ortho-plag-bt			« <1% qtz stringers 45.00°», « <1% carb stringer Moderate k-spar « carb »(ankerite) « ser » ultim.	rs 20.00-45.00°» alt.			.45	.65	54273	?	?	?	7
160	porphyry End of hole	578.5-	158:5	C Dissem sx »: « f.gr py 0.10%», « f.gr mt 0.20%; (fresh) Dark brown relatively unaltered intrusion. Euhedral. « dissem mt 0.50%» « <1% carb stringers 20.00-45.00°», « f.gr py 0.5 2	» Greenish orthoclase-stubby anhedral phe 0%»	nos to 3mm. Plag laths to 1mm at 15%. 5	-8% black unaltered biotite up to 1 mm.	.65	158.5	54274	?	?	?	?
Scale	L 1:250			11/0	J9/02		15.09:20	1	i	1	1	1	l	

* * * * * * * * * * * * * * * * * * * *

RUBICON MINERALS CORPORATION - DRILL LOG

Start_date 17/08/02

End_date 20/08/02

Logged_by D. Daoud

AX02-010		Northing (UTM15 NAD83) 62067	708 Easting (UTM15 NAD83)	314621	Elev(ASL) 1572	CoreSize - NQ
Length(m) 2	25.55	Local co-ord North	Local Co-ord East		Claim	Contractor: Britton Bros
						Re-logged_by/date
TESTS:	Depth	Туре	Dip Az			Comments
	0		-45 8			
	91.44	Acid test	-41 8			
	152.4	Acid test	-41 8			
	225.55	Acid test	-40 8			

November 9, 2002

ŧ

Proje	roject: Axelgold Page No. 1 X02-010													
AX02	2-010													
	d_geol							D_SA	MP					
Depth At	rocktype	g_from	g_to	descript				S_FROM	S_TO	ء حس ده (ALI_2014	ະວີ ະຍາ	c:	40_204
-D2.5														
-5	Casing	0	10.67	?										
5 -10														
12.5 15	Syenite	10.67	19.5	size 4mm across. Fine dissem « py » in th er « >30% carb stringers 70.00-80.00° » « 1.5% Strong K-spar-« carb » (ankerite)-« ser » ultir Trace K-spar penult, alt. « dissem, f.gr py 1.0	natrix seems to be assoc with olive green pa "QB" - qtz?/carb? stringers 40.00-50.00*»« n. alt. 10%»	atches (« ? ser ») and to less-extent a gree f1 30.00-40.00°»	n min., prob. « fuch »	10.67	15.24 18.29	54276	?	?	,	? ?
Scale	1:100	00 11/09/02 15:11:00												

Project: Axelgold Page No.: 2												.: 2		
AX02	2-010													
<u> </u>	d_geoi							D_SA	MP					
Cesti Al	rocktype	o_from	g_to	descript				S_FROM	S_TC	SAMPLE	40_204	AG_2994	си_ррм	wo_2004
17.5	Syenite	10.67	19.5	size 4mm across. Fine dissem « py » in th e « >30% carb stringers 70.00-80.00° » « 1-5% Strong K-spar-« carb » (ankerite)-« ser » ulti Trace K-spar penult. alt. « dissem, f.gr py 1.	matrix seems to be assoc with olive green p 5 "QB" - qtz?/carb? stringers 40.00-50.00*»« m. alt. 00%»	atches (« [?] ser ») and to less-extent a gree f1 30.00-40.00°»	n min., prob. « fuch »	15.24	18.29	54277	?	?	?	3
20				.	····· ·			18.29	19.5 21.34	54279 54280	? 1.2	? 0.57	? 312	? 95
· 22.5 25	Syenite	19.5	28.53	M to c.gr ppy; potassic altered, fragmental p feldspar. Altered, dark grey porphythicsyenit alteration) The frags are subangular to subro α 1.5% qtz-carb stringers 40.00-50.00° × α 1 Strong K-spar ultim alt. Moderate « ser » per Increase of pyrite content from previous (dis 2nd generation of veins is qtz/carb/ga and/or vns 1.00-2.00 mm thick»	b c.gr ppy; potassic altered, fragmental porphyritic M.grey, m. to c. gr, fragmental (brxx) porphyritic syenite, the fragments are up to 8 cm across comprised ain spar. Altered, dark grey porphyriticsyenite, their borders are sometimes diffused within the main matrix. The rock is extensively altered (potassic and « ser »/ « ration) The frags are subangular to subrounded. 5% qtz-carb stringers 40.00-50.00° × >1% carb-py stringers 30.00-40.00° × « f1 30.00-40.00° » « f.gr, dissem ga 0.10% », « f.gr, dissem sb 0.10% ». ease of pyrite content from previous (dissem veins) These py-veins are 2-4mm thick and represent the early generation of veins (assoc in some cases w. ser generation of veins is qtz/carb/ga and/or sb/hematite and they are up to 1 cm (40 to 50 degrees to CA) The last generation of veins is rpresented by a few « f1 1.00-2.00 mm thick »						?	7	?	,
r 27.5				-				24 38	28.53	54282	?	7	?	7
30	Syenite	28.53	38.63	« ga » are present (1-2mm thick) an are 10- « >1% py stringers 20.00-30.00"» « 1-5% qt: Strong « carb » (prob ankerite)- « ser » ultim Weak K-spar penuit. alt. « Dissem, v.f.gr py 3.00%», « Dissem, v.f.gr	15 deg to CA. z-carb stringers 40.00-50.00°», « f1 30.00-40 alt. ga 0.10%», « Dissem, v.f.gr sb 0.10%»	0.00°»		28.53 30.48	30.48 33.53	54284 54285	7 0.9	? 0.54	? 481	7 95
Scale	1:100	L.,	L	<u></u>	11/09/02		15:11:00	<u> </u>					1	

Project: Axelgold Page N													age No - 3				
AX02	2-010																
	d_geoi							D_SA	MP								
Depth At	rocktype	g_from	g_to	descript			· · · · · · · · · · · · · · · · · · ·	S_FRCM	S_TO	simer≞	AU	હુ≫પ	ເບ ຼາວາ	MO_3014			
								30.48	33 53	54235	0.9	0.54	481	95			
35	Syenite	28.53	38.63	« ga » are present (1-2mm thick) an are 10-1 « >1% py stringers 20.00-30.00'» « 1-5% qtz Strong « carb » (prob ankerite)- « ser » ultim Weak K-spar penult. alt. « Dissem, v.f.gr py 3.00%», « Dissem, v.f.gr	re present (1-2mm thick) an are 10-15 deg to CA. y stringers 20.00-30.00*» « 1-5% qtz-carb stringers 40.00-50.00*». « f1 30.00-40.00*» carb » (prob ankerite)- « ser » ultim alt. spar penult, alt. n, v.f.gr py 3.00%», « Dissem, v.f.gr ga 0.10%», « Dissem, v.f.gr sb 0.10%»							?	7	7			
·37.5														?			
40								38.63	40.63	54289	?	?	7	3			
42.5				Fine, grey to dk. grey metal mineral noted (« /calcite vns noted at 70°» « 38.63- 44.80 f1 30.00-40.00°» « 44.80- 45.72 shear 50.00°»	: Assoc. w/ py »), probably « sb? » « Numerous	s qtz-carb vns are present., 40.00-50.00°	'» w/ « ga » and hematite. A few « flourite	40.63	42.67	54290	0.5	0 55	493	157			
45	Syenite	38.63	48.12	« 45.72- 48.12 f1 70.00°» Strong K-spar ultim. alt. Weak « ser »penult « dissem, f.gr py 3.00%», « dissem. f.gr ga 0	, alt ,10%». « dissem, f.gr sb 0.10%»			42.67	45.72	54291	7	7	?	?			
47.5	Question	40.10	51 63	volume are set in f. to m.gr grey to greenish i More py is present, avg 10.00%» seems to b « stringer sx » « f1 35.00-40.00°».	<i>t</i> to greenish matrix (K-spar and « ser ») Size of the phenocrysts vary from 2-10mm (avg 4 mm). A few megacrysts are present (1-2cm long) « sw seems to be mainly controlled by « anastamosing vns » and « vnlets » assoc with « ser », in some places « carb » « fluor »are assoc, too. D* ». Harta K spar partially all « ov vns 10.00% 0.10-1.00cm»							? ?	?				
Scale	1:100	140.12	1.02	Mouerate « ser » unint alt Mouerate K-Spar	11/09/02		15:11:01	•					t	-			

Proje	oject: Axelgold Page No.: 4													
AX02	2-010								-					
	d_geol							D_SA	MP					
Depth At	rocktype	g_from	g_to	descript				S_FROM	s_to	SAMPLE	AU_PP4	KG_≫M	ະບຼາວາມ	*0 ×~
50	Syenite	48.12	51.62	volume are set in f. to m.gr grey to greenish n More py is present, avg 10.00%» seems to b « stringer sx » «1 35.00-40.00°», Moderate « ser » ultim. alt. Moderate K-spar	natrix (K-spar and « ser ») Size of the pheno e mainly controlled by « anastamosing vns » pentult. alt. « py vns 10.00% 0.10-1.00cm»	perysts vary from 2-10mm (avg 4 mm). A fe and « vnlets » assoc with « ser », in some	w megacrysts are present (1-2cm long) « places « carb » « fluor »are assoc, too.	48.12	51.62	54293	2	7	?	?
52.5	Syenite	51.62	54.96	Megacrystic (K-spar phenos >/= 1cm). Grey t comprising 40-50% of total rock volume and a and up to 0.5 cm thick. Moderate « ser » ultim alt. Moderate K-feldspar penult alt. « stringer sx » « sx hosted by vns 0.10-1.000 53.22- 53.91 Broken core	o greyish, megacrystic, porphyritic, altered (are up to 3 cm long, Gradual contact w/ m to cm» « py 4.00%»	potassic/ « ser ») syenite. Euhedral to subb o c.gr porphyritic syenite. « Anastamosing p	nedral megacrysts of felds phenocrysts y vns and veinlets » and 70 deg to CA	51.62	54.96	54294	?	?	?	?
57.5							54.96	57.91	54295	0.2	0 61	104	72	
60	Syenite	Syenite M to c.gr ppy; Med grey to greyish, m. to c Anastamosing py vns and vniets » and « fi « f1 30.00-60.00° » Strong « ser » ultim. alt. Moderate K-spar « py vns 5.00% 0.10-1.00cm» « ga 0.10%		M to c.gr ppy: Med grey to greyish, m. to c.gr Anastamosing py vns and vniets » and « fine « f1 30.00-60.00° » Strong « ser » ultim, alt. Moderate K-spar pe « py vns 5.00% 0.10-1.00cm» « ga 0.10%»	: porphyritic, altered (K-spar/ « ser »), syenii ły dissem py » are noted throughout. « Carb mult. alt.	te partially broken. A few megacrysts of felc /fluor vns » and « tr of ga »	Ispar phenocrysts are present. «	57.91	60.96	54296	7	2	?	?
62.5								60.96	64 01	54297	?	2	?	?
								64.01	67.06	54299	7	?	?	?
Scale	1:100		•		11/09/02		15:11:01							

.

1

Project: Axelgoid Page													Page No. 5				
AX02	2-010																
	d_geol			· · · · · · · · · · · · · · · · · · ·				D_SA	MP		_						
Depth At	rocktype	g_from	g_to	descript				S_≓POM	s_tc	SAMPLE	~_~~	G_ >~u	cu rer u	wc_>~ч			
-65	Svenite			M to c.gr ppy; Med grey to greyish, m. to c.g Anastamosing py vns and vnlets » and « find « f1 30 0-60 00" »	r, porphyritic, altered (K-spar/ « ser »), syenil ly dissem py » are noted throughout. « Carb	te partially broken. A few megacrysts of fe /fluor vns » and « tr of ga »	ldspar phenocrysts are present. «	64.01	67.06	54299	?	ç	?	?			
-67.5		54.96	68.16	Strong « ser » ultim. alt. Moderate K-spar p « py vns 5.00% 0.10-1.00cm» « ga 0.10%»	enuit. ait.			67 06	68 16	54300	0,4	0.65	279	166			
-70	Syenite	68.16	70. 75	M to c.gr ppy; Megacrystic (K=spar phenos : cm long. Amount of « py » decreases from p carb and ga vns 60.00° » are present (fine g « sx stringers » « f1 70.00° » Strong « ser » ultim. alt. Moderate K-spar pe « py vns 3.00% 0.10-1.00cm», « ga 0.10% i	b c.gr.ppy; Megacrystic (K=spar phenos >/= 1cm) Greyish-grey, porphyritic, altered (« ser » and potassic) megacrystic syenite. Megacrysts of feldspar phenocrysts up to 4 long. Amount of « py » decreases from previous, mainly in « fine stringers » (« vnlets ») in some places, a dark grey metallic mineral assoc with (« sb? ») A few « qtz, o and ga vns 60.00° » are present (fine grains of galena). cstringers » 70.00° » ong « ser » ultim, alt. Moderate K-spar penult. alt, y vns 3.00% 0.10-1.00cm», « ga 0.10% in veins 0.10-1.00cm»												
-72.5	5										?	?	?	7			
- 75	Syenite	70.75	76.85	length. « A network of py vns vnlets » throud « up to 20% sx in stringers » « f1 30.00-60.0 Strong « ser » ultim. alt. Moderate K-spar pv « py vns 6.00% 0.10-1.00cm», « ga 0.10%»,	phout, (stockwork) and « finely dissem py ». o*» enult. alt. « sb 0.10%»	« A few qtz-carb and fluor vns are present	t 1.00-3.00mm».	73 15	75	54303	7	?	?	,			
75 76 85 54304 ? ?								?	7								
77.5	Syenite N to c.gr ppy: Porphyritic syenite, same as above w/ fresher and larger feldspar phenocrysts up to 1.3 cm long. « Mainly finely dissem py » throughout. « fluor, qtz and carb f1-filling » are present. « A few fine grains ga » as inclusions in « qtz-carb vns which are up to 4.00cm» « dissem sx » « 1-5% qtz-carb stringers 30.00-50.00° » « f1 70.00° » Moderate « ser »ultim. alt. Moderate K-sapr penult. alt. « f.gr py 2.50% », « f.gr ga 0.10% », « f.gr fluor 0.10% » Nainly finely dissem py » throughout. « fluor, qtz and carb f1 - filling » are present. « A few fine grains ga » as inclusions in « qtz-carb vns which are up to 4.00cm » « dissem sx » « 1-5% qtz-carb stringers 30.00-50.00° » « f1 70.00° » Moderate « ser »ultim. alt. Moderate K-sapr penult. alt. « f.gr py 2.50% », « f.gr ga 0.10% », « f.gr fluor 0.10% » Nainly finely dissem py » throughout. « fluor, qtz and carb f1 - filling » are present. « A few fine grains ga » as inclusions in « qtz-carb vns which are up to 4.00cm »								41	25							
-80								79.25	80.85	54306	7	?	7	7			
Scale	L	L	<u> </u>		11/09/02		15:11:01	L			d,			\neg			

Project: Axelgold												
AX02	2-010											
	d_geol						D_SA	MP			·	
Cepth At	rocktype	g_from	g_to	escript			S_FROM	S_TO	SAMPE	L. 204 43.	P4 CU_2	*** ***
-82.5	Syenite		00.05	M to c.gr ppy, Porphyritic syenite, same as above wi fresher and large f1-filling » are present. « A few fine grains ga » as inclusions in « qtz-o « dissem sx » « 1-5% qtz-carb stringers 30.00-50.00*» « f1 70.00*» Moderate « ser »ultim, alt. Moderate K-sapr penult, alt. « f.gr.py.2.50%	r feldspar phenocrysts up to 1.3 cm long, « Mainly finely diss arb vns - which are up to 4.00cm» », « f.gr ga 0.10%», « f.gr fluor 0.10%»	em py » throughout. « fluor. qtz and carb	80.85	82.3	54307	?	, ,	?
-85	-85 Syenite Syenite Anastamosing fine py vns and vniets * throughout. « Tr of ga » and « sph » in « qtz and carb vns 60.00° 1.00-5.00mm». « tr fluor » present along « f1										?	
-87.5	Syenite	80.85	91.44	 a dta a service and a service and a service and a service and a service and a service and a service and a service a s	», « fluor 0.10%»	onnna. « « nuor a present along « m	85.34	88.39	54310	0,8 0.	13 10	ý 58
-90							88.39	91.44	54311	2	2	?
-92.5	Syenite 91 44 94.37 Storage ser: within: alt. Weak K-spar penult. alt. Strong eser: within: alt. Weak K-spar penult. alt. (« ser » mainly), porphyritic megacrystic syenite w/ « anastamosing py », « tr of fine ga » is noted. « sx stringers ». « f1 60.00°». Storage ser: within: alt. Weak K-spar penult. alt. « sx in vns 0.10-1.00cm»: « py 5.00%», « ga 0.10%»							7	7			
95	Syenite	94.37	97.67	M to c.gr ppy: Altered porphyritic syenite. Broken rock w/ « finely disse Strong s« ser » ultim. alt., trace K-spar penuit. alt.« F.gr py 2.00%», «	m py » throughout. Tr. of « finely dissem ga » noted. « Disser f.gr ga 0.10%»	m sx », « f1 40.00-60.00°».	94.37	97.67	54313	į s	?	?
Scale	1:100			11/09/02		15:11:01						

.

1

ŧ.

L

1

8

.

١

1

1

1

.

1

1

.

.

Project: Axelgold Page No 7												
AX02	2-010											
	d_geol				D_SAMP							
Depr Al	rocktype	g_from	g_to	lescript	S_ 1704 S_TO SUMPLE AU	,204 AG_224	K 204	an: 204				
97.5	Syenite Fault Zone	94.37 97 67	97.67 98.24	M to c.gr ppy; Altered porphyntic syenite. Broken rock w/ « finely Strong s« ser » ultim. alt., trace K-spar penult. alt. « F gr py 2.00% (Contact with a dyke) « shear 5.00° » Intense clay ultim alt.	lissem py » throughout. Tr. of « finely dissem ga » noted. « Dissem sx », « f1 40.00-60.00°», 94 37 97 67 54313 97 67 98 24 54314	; ; ; ;	2 2	7 7				
100	Syenite; feld-bt porphyry dyke	98.24	100.7	up to 5% of rock volume. The amount of finely dissem decreases « dissem sx » « f1 40.00°». Moderate « ser » ultim, alt. Moderate K-spar penuit, alt. « f.gr py	dramatically from teh fault-zone to the end of the interval. 1.50%»	0.2 0.61	59	23				
-102.	Syenite			and « tr of fine ga » are present, « Minor fuch » assoc. w/ « ser » « f1 20.00-70.00°» Strong « ser » utim alt Weak K-spar penult alt.	<pre>< py » in the matrix. « sx stringers » « 1-5% qtz-carb stringers 50.00-70.00*»</pre>	??		7				
-105		100.7	.68	« vns 0.10-1.00cm»; « py 3.00%», « ga 0.10%», « fuch 0.10%»	53 68 54318 ·	??	?	7				
107.	Syenite	.68	.75	py » throughout. The cove (???) is sheared w/ « carb » coating. « Dissem sx ». « shear 15.00-50.00°» Moderate « ser » ultim alt., Weak K-spar penult. alt. « f.gr py 5.00%» Menacrystic (K-spar phenos >/= 1cm)	58 .75 54319	, ,	2	7				
Syenite 75 64 Fresh and competent (partially aftered and « ser ») megacrystic syenite w/ felds. phenocrysts up to 4 cm long (euhedral). 75 64 54320 0.2 0.33 -110 -110 -15% of transmission of transmissin of transmission of transmission of transmiss							57	25				
- 112.	Syenite	.54	.63	and « stockwork of vnlets »« A few qtz and carb vns 7.00* 1.00-4. « sx stringers » « f1 70.00*» Strong « ser » ultim. alt, Moderate K-spar penult. alt. « sx in vns 0.10-1.00cm»: « py 7.00%», « ga 0.10%»	00mm» (« w/ a trace of ga »)	? ? ? ?	? ?	7				
Scale	≥ 1:100 11/09/02 15:11:01											

Proje	ct: Axelgold								Pa	ge No.	.: 8
AX02	-010										
	d_geoi				D_SA	MP					
Depan At	rocktype	g_from	g_to	descript	S_FROM	S_TC	SAMPLE	هن_ع≈vيا	4G_2014	c~~u	₩0_ ≫° ¥
	Syenite	.64	.63	and « stockwork of vnlets »« A few qtz and carb vns 7.00° 1.00-4.00mm» (« w/ a trace of ga ») « sx stringers » « f1 70.00°» Strong « ser » ultim, alt, Moderate K-soar penult, alt,	.04	.63	54323	?	?	?	,
115	Syenite Syenite	.63 .95	.95 .36	« sx in vns 0.10-1.00cm»: « py 7.00%», « ga 0.10%» M to c.gr ppy; Dark grey to med-grey, f.gr, fresh feldspar, biotite or oxyde porphyritic dyke w/ « finely dissem py » throughout. Possibly 2ndary biotite? « Dissem sx »	.63 .95	.95 .36	54324 54325	2 0.9	? 0.36	? 103	? 74
	Syenite	.36	.79	Moderate « ser » often, att weak K-spar pendit att « tigr by 5.00 %», « tigr foch <u>or to %»</u> M to c.gr ppy; Altered porphyritic syenite. Med. grey to greyish, m to c.gr, porphyritic alt. (« ser »/K-spar) syenite with « finely dissem and veins of py ». « tr of ga » are prese in « qtz and carb (dolomite) thin vns 1.00-3.00mm». « sx stringers »« 1-5% py stringers 50.00*» « >1% qtz-carb stringers 40.00-50.00*»	n .36	.79	54326	7	?	?	,
-117,	Syenite	.79	117.9	Moderate « ser » ultim, alt. Weak K-spar penult, alt. « sx in vns 0.10-1.00cm»: « py 5.00%», « ga 0.10%»	.79	117,9	54328	7	?	?	?
	Syenite	117.9	119.7	biotite? are 1-2mm across and represent 3-4% of rock volume. « Py finely dissem and w/ vnlets, about 4.00% throughout » « Dissem sx » « ser » ultim alt, strength illegible. Trace K-spar penult, alt. « f.gr py 4.00%»	117.9	119.7	54329	,	?	?	?
-120	Syenite	110.7	27	 Clissem sx * Plassem i>	119.7	121.8	54330	17	0.54	344	155
122.		113.7	.97	« 118.02- 118.05 >30% py stringers 10.00°» « 119.12- 119.13 >30% qtz-carb stringers 40.00°» An altered, whitish rounded xenolith is noted at 123.03 m, about 5 cm across w/ « dissem py » and « grey sx » (fine) (« ga? »). (probably represents a chill margin for the next rock type.)	121.8	.87	54331	?	?	?	2
125				« dissem sx » « >1% qtz-carb stringers 40.00°» Trachytic texture, 40.00°, Strong « ser » ultim, alt. Trace « fuch » penult, alt. « f.gr.py 4.00%», « f.gr.ga 0.10%»	.87	.97	54332	2	?	7	7
127.	Syenite	.87	.21	Feldspars are up to 1.5 cm long and euhedral to sub-euhedral biotite? 2ndary oxyde are 1-2mm across and represent 3-4% of rock volume. « Anastamosing py » throughout. « 133.30- 133.34 Msv py in vn » « 123.87- 140.21 Tr of ga » and « fluor »are present, assoc w/ « qtz-carb vn 50.00* 1.00-5.00mm». Extenisve « ser » alteration assoc w/ « py vns ». « sx stringers »« sx in vns 0.10-1.00cm»: « py 10.00%», « ga 0.10%», « fluor 0.10%», « fuch 0.10%» Trachytic texture	.97	.02	54333	?	?	2	?
				Strong « ser » uftim, alt. « 133.30- 133.34 >30% py stringers 40.00*»	.02	.06	54334	?	?	7	,
Scale	1:100			11/09/02 15:11:01							

Proje	ect: Axelgoid									<u></u>	-	Pa	ge No	9
AX02	2-010													
	d_geol							D_S/	MP			_		
Depth At	rocktype	g_from	g_to	descript				S_FROM	s_to	SAMPLE	AU_2014	G_3¢N	co , »• •	MU 2004
130								.02	06	54334	?	7	7	?
-132.				Feldsnars are up to 1.5 cm long and euhedr	al to sub-euhedral biotite? 2ndary oxyde are	1-2mm across and represent 3-4% of rock	s volume, « Anastamosing by » throughout	.06	.11	54335	?	?	7	?
Syenite Feldspars are up to 1.5 cm long and euhedral to sub-euhedral biotite? 2ndary oxyde are 1-2mm across and represent 3-4% of rock volume. « Anastamosing py » throughout. Image: Comparison of the com											170	57		
-137.								. 16	.21	54338	?	2	2	?
140														
140 type probably represents the contact with megacrystic syenite. type probably represents the contact with megacrystic syenite. « Dissem sx » « if 1 30.00-50.000*» Strong « ser » ultim. alt. Moderate K-spar penult alt « F.gr py 3.00%», «f.gr ga 0.30%», «f.gr fluor 0.20%» « F.gr py 3.00%», «f.gr ga 0.30%», «f.gr fluor 0.20%»												165	60	
142. 21 35 Megacrystic (K-spar phenos >/= 1cm) Med grey to It, grey, very altered (« ser »and potassic), megacrystic porphyritic syenite w/ megacrysts of feldspar up to 4 cm long, euhedral to subhedral, comprising 40% of total rock volume, and fractured (« fine py » along « f1 » and rarely as inclusions). « Pervasive ser » -potassic alteration of the matrix. « Finely dissem and anastamosing py » present throughout the interval, but it seems the amount of « py » slightly decreased with depth> 2-3%. « Very fine grains of grey sx.», probably « ga », is assoc with « py » and also as coating of « latestage f1 at 40 deg to CA ». « Tr of he » noted along « qtz and carb vns ». 26 .35 54340 0.2 0.48 108 36 « 144.11 - 146.30 f1 10.00-65.00"» w/ « fluor »													36	
145	Syenite	.35	.88	« 174.50- 176.78 f1 25.00-60.00°» « 144.35- 182.88 Strong ser » ultim alt Mod	derate K-spar penult alt. « f.gr py 4.00%». « f	.gr ga 0.20%», « f.gr he 0.10%», « f.gr fluo	or 0.30%»	35	146.3	54341	?	'	?	?
Scale	1:100				11/09/02		15:11:02							

Proj	ect: Axelgold					<u></u>						Pac	e No.:	10
AX0:	2-010								<u> </u>					
	d geol			· · · · · · · · · · · · · · · · · · ·				D_SA	MP					<u> </u>
Depth At	rocktype	g_from	g_to	descript			······	S_FROM	s_tc	SAMPLE	AU_PPM	AG_3014	C1_39M	w0_204
								.35	146.3	54341	?	?	?	?
147.								146.3	.35	54342	0.3	0.21	192	110
- 150								.35	152.4	54343	0.3	0.26	191	74
152.	Syenite			Megacrystic (K-spar phenos >/= 1cm) Med g euhedral to subhedral, comprising 40% of to matrix, « Finely dissem and anastamosing p grey sx », probably « ga », is assoc with « p 153.4m- « Fluor » is present as « f1-filing » « 144.11- 146.30 f1 10.00-65.00°» « 171.88- 171.90 > 30% Qtz-carb stringe « 174.50- 176.78 f1 25.00-60.00°»	prey to it, grey, very altered (« ser » and pota tal rock volume, and fractured (« fine py » a y » present throughout the interval, but it set y » and also as coating of « latestage f1 at and in « qtz carb (dolomite) vns » rs 50.00° w/ « fluor »	issic), megacrystic porphyritic syenite w/ m long « f1 » and rarely as inclusions). « Pen ams the amount of « py » slightly decrease 40 deg to CA ». « Tr of he » noted along « «	egacrysts of feldspar up to 4 cm long, vasive ser » -potassic alteration of the d with depth> 2-3%. « Very fine grains o qtz and carb vns ».	f 152.4	.45	54344	0.7	0.38	129	49
155		.35	.88	« 144.35- 182.88 Strong ser » ultim. alt Moc	lerate K-spar ρenult alt. « f.gr py 4.00%», «	f.gr ga 0.20%», « f.gr he 0.10%», « f.gr fluo	r 0.30%»							
157.								.45	158.5	54345	2	2	7	7
160								158.5	.54	54346	?	?	2	?
Scale	1:100	L	L	I	11/09/02		15:11:02	54	69	54348	02	0 31	179	42

Proj	ect: Axelgoid				<u></u>	<u></u>						Pag	e No.:	11
AX0	2-010													
	d_geol							D_SA	MP					
Cert Al	rocktype	6_*m	⊊_to	Cescript				\$_==0M	S_TC	SAMPLE	بهدد ٍ∪م	NG_PPV	C:J_ >94	NG ⁻ 290
162.														
155													179 ?	42
-167.														
170	Syenite			Megacrystic (K-spar phenos >/= 1cm) Med g euhedral to subhedral, comprising 40% of to matrix. « Finely dissem and anastamosing p grey sx », propably « ga », is assoc with « p 153.4m- « Fluor » is present as « f1-filing » « 144.11- 146.30 ft 10.00-65.00*» « 174.50- 175.73 ft 25.00-60.00*» « 144.35- 182.88 Strong ser » ultim, ait Mod	gray to It. grey, very altered (« ser » and pota tal rock volume, and fractured (« fine py » a y » present throughout the interval, but it see y » and also as coating of « latestage f1 at « and in « qtz carb (dolomite) vns » rs 50.00°» w/ « fluor » derate K-spar penult alt. « f.gr py 4.00%», « f	issic), megacrystic porphyritic syenite w/ n long « f1 » and rarely as inclusions). « Pe ems the amount of « py » slightly decrease t0 deg to CA ». « Tr of he » noted along « 	negacrysts of feldspar up to 4 cm long, rvasive ser » -potassic alteration of the ed with depth -> 2-3%. « Very fine grains o qtz and carb vns ».	.69	.69	54350	?	?	?	?
172.		.35	38					.69	.74	54351	7	?	?	7
-175	74 78 54352 7 7 7 7 7												7	
177.								.78	.83	54353	0.2	0.38	171	94
Scale	1:100				11/09/02		15:11:02							

.

.

Ł

L

1

ĥ

ŧ

ŧ

ł

ŧ.

Proje	ect: Axelgold											Pag	e No.	12
AX02	2-010													
	d_geol							D_SA	MP					
Depth Al	rocktype	g_from	g_to	descript				S_FROM	S_TC	SAMPLE	AU_PPM	AG_PPM	CU_PPM	uo_2014
120	Syenite	.35	38	Megacrystic (K-spar phenos >/= 1cm) Med g euhedral to subhedral, comprising 40% of to matrix. « Finely dissem and anastamosing p grey sx », probably « ga », is assoc with « p 153.4m- « Fluor » is present as « f1-filling » « 144.11- 146.30 ft 10.00-65.00°» « 144.35- 176.78 ft 25.00-60.00°» « 144.35- 182.88 Strong ser » ultim. alt Moc	rey to It. grey, very altered (« ser »and potas al rock volume. and fractured (« fine py » alt y » present throughout the interval, but it seer y » and also as coating of « latestage f1 at 44 and in « qtz carb (dolomite) vns » 's 50.00°» w/ « fluor » erate K-spar penult alt. « f.gr py 4.00%», « f.	ssic), megacrystic porphyritic syenite w/ n ong « f1 » and rarely as inclusions). « Per ms the amount of « py » slightly decrease 0 deg to CA », « Tr of he » noted along « gr ga 0.20%», « f.gr he 0.10%», « f.gr fluo	hegacrysts of feldspar up to 4 cm long, vasive ser » -potassic alteration of the d with depth \rightarrow 2-3%. « Very tine grains o qtz and carb vns ».	.78	.83	54353	0.2	0.38	171	94
182.														
182 185 Syenite Megacrystic (K-spar phenos are >/= 1cm) Very altered megacrystic syenite w/ « f.gr mt » assoc w/ dark green mineral (« chl »). Finely dissem (« interstitial py »). Intense « ser » ultim. alt. Tr « chl » penult ait « Dissem sx »:« f.gr py 2.00%», « f.gr fluor 1.00%»												?	?	
187.		.88	.98					.93	.98	54356	?	?	?	7
190 Megacrystic (K-spar phenos >/= 1cm). Light grey to greenish grey, megacrystic, very alt (« ser »and potassic) mainly « ser », porphyritic syenite w/ « finely dissem and anastamosing py 4.00%», « minor fine ? ga » noted and « very minor sph » assoc w/ « fluor/he/calcite in a small vn »« Ptches of fuch » are present w/ « py »and « ser ». Some small phenocrysts (laths 1-2mm long) pinkish to light brown. probably 2ndary K-spar or plag? comprising <1% of rock volume.											?	2		
Syenite * Dissent Sx *: (1) by 4::00%, *: (1) by 1:00%, *: (1) bit 0::00%, *: (1) bit 0::00\%, *: (1)													71	
Scale	1:100				11/09/02		15:11:02							

Proje	ect: Axelgold		<u></u>								T	Pag	e No :	13
AX02	2-010													
	d_geol		-		<u></u>			D_SA	MP					
Depti Al	rocktype	G_+m	g_to	descript				S_FROM	S_TC	SAUPE	AU_2004	6_ 20 4 (:u_>94	10_2P4
195								.02	.07	54359	0.2	0.4	135	71
-197.								.07	.12	54360	?	?	2	?
-200				Megacrystic (K-spar pnenos >/≂ 1cm). Light anastamosing py 4.00%, « minor fine ? ga	grey to greenish grey, megacrystic, very alt » noted and « very minor spn » assoc w/ « f	(« ser »and potassic) mainly « ser », porph uor/he/calcite in a small vn »« Ptches of fu	nyritic syenite w/ « finely dissem and ich » are present w/ « ρy »and « ser ».	.12	.17	54361	?	?	?	?
-252.	Syenite	.98	216.3	Some small phenoCrysts (laths 1-zmm long « Dissem sx »: « f.gr py 4 00%», « f.gr ga 0. « 15-30% qtz-carb-chi stringers 30.00°», « > Strong « ser » ultim ait. Weak K-spar penult. « 196.05-196.25 >30% py stringers 30.0 199.85-201.17 Blocky Core 0 deg to CA. « 204.42-204.92 shear 30.00°») pinkish to light provin, probably 2ndary K-S 10%», « f.gr he 0.10%», « f.gr he 0.10%», 1% fluor-carb stringers 40.00°» , alt. 20°up to 2.00cm in one place» assoc with cla	aar or plag ? combinsing < 1% of rock volum « f.gr fluor 2.00%», « f.gr fuch 0.10%» Iy and « carb ».	le.	.17	.22	54363	?	?	?	7
205								.22	.26	54364	0.2	0.25	98	26
207.								.26	31	54365	?	?	?	?
210														
Scale	1:100		<u></u>		11/09/02		15:11:02							

Proje	ect: Axelgoid											Pag	e No.	14
AX02	2-010					······································								
	d_geol					<u></u>		D_SA	MP					
Death At	rocktype	ç_⁺om	g_to	descript				S_FRCM	S_TC	SUPLE	au_~~ }	.∵.≫u	C	uo_>>u
212. 215	Syenite	.98	215.3	Megacrystic (K-spar phenos >/= 1cm). Light anastamosing py 4.00%, « minor fine ? ga Some small phenocrysts (laths 1-2mm iong « Dissem sx »: « f.gr py 4.00%, « f.gr ga 3. « 15-30% qtz-carb-chl stmgers 30.00°, « > Strong « ser » ultim alt. Weak K-spar penut. « 196.05- 196.25 >30% py stmgers 30.0 199.85- 201.17 Blocky Core 0 deg to CA. « 204.42- 204.92 shear 30.00°,»	grey to greenish grey, megacrystic, very alt » noted and « very minor sph » assoc w/ « fl pinkish to light brown, probably 2ndary K-sj 10%», « f.gr sph 0.10%», « f.gr he 0.10%», 1% fluor-carb stringers 40.00°» alt. 0°up to 2.00cm in one place» assoc with cla	(« ser »and potassic) mainly « ser », porpl uor/he/calcite in a smail vn »« Ptches of fu sar or plag? comprising <1% of rock volum « f.gr fluor 2.00%», « f.gr fuch 0.10%» iy and « carb ».	tyritic syenite w/ « finely dissem and ch » are present w/ « py »and « ser ». le.	.31	.36	54366	7	7	; ;	· ' ? ? ?
·217. 220	Syenite	216.3	221.3	M to c.gr ppy: porphyritic. Med gray. med to matrix is strongly to intensely alteresd (« ser « 217.21-218.85 1-5% gtz-caro stringers « 218.85-219.00 >30% gtz-caro stringer « 219.55-221.30 1-5% gtz-caro-he string	c.gr, attared, porphyritic syenite w/ feldspar- » around the « f1 » zones probably w some 60.00° » 570.00° µp to 8.00cm thick » w/ « fluor ». jers 50.00° »	ohenocrysts averaging 4 mm across and c « chi »).	omprising 45% of total rock volume. The	216.3	.46 221.3	54369	02	0 45	53	164
222.	Syenite	221.3	.55	Megacrystic (K-spar phenos >/= 1 cm). Lt gr 223.95 to 224.40 (« py 20.00%») average 4% « 223.75- 223.95 ř1 40 00°». Muddy « 223.95- 224.40 >30% qtz-py-carb string	ay to graenish grey, megacrystic, very alt. po 6. « Tr of ga » in « thin carb/qtz vns (late sta gers 40.00°» w/ some « fluor »	orphyritic syenite w/ « finely dissem and an ge)»	astamosing py » throughout, richer at	221.3	222.5	54371	2	?	?	?
225	End of hole	-55	-55-	/?								-		
Scale	1:100				11/09/02		15:11:03							

RUBICON MINERALS CORPORATION - DRILL LOG Start_date: 18/08/02 End_date 19/08/02 Logged_by G. Allen AX02-011 Elev(ASL) 1572 Northing (UTM15 NAD83) 6206705 Easting (UTM15 NAD83) 314619 CoreSize - NQ Local Co-ord East Length(m) 134.11 Local co-ord North Claim Contractor: Britton Bros Re-logged_by/date Dip Az Comments TESTS: Depth Type 226 0 -45 226 76.2 Acid test -41

-39

226

1

1

November 9, 2002

134.11

Acid test

Proj	ect: Axelgold									*a	T	Pa	ge No.	: 1
AX0	2-011													
	d_geol	_			<u> </u>			D_SA	MP					
Depin At	rocktype	g_from	g_to	descript				S_FROM	s_to	SAMPLE	AU_2214	АG_РРМ	ເບຼຸຼຸ	40_204
-5	Casing	0	6.1	?			• · · · • •							
-10								6.1 	9.14 12.19	54372 54373	? ?	? ?	? ?	?
-15								12.19	15.24	54374	?	?	?	?
-20	Megacrystic Syenite			K-spar phenos >/= 1cm. M.gr orthoclase por K-spar altered, 30-40%. Stubby grey orthocl [log illegible ('bucoxene'? !wcoxene'? 'hucox see which first, qtz-carb-fsp stgs to 5mm, ge « 1-5% qtz-carb-feld stringers 30.00° » « > 1 Moderate K-spar « carb » (ankerite) - « ser » « Dissem sx »: « f.gr py 0.50%»	phyritic syenite. Msv, homogenous m.gr, grey ase phenos have soft white patches to 1mm of ene'?] - after some type of mañc. n. < 2mm, ~1%. % carb stringers 30.00*» .ultim. alt.	orthoclase porphyry. Glassy hard grey cr « ser » and « carb ». 5% = 1 mm subt</td <td>ystocrystalline 'cherty' matrix, probably iedral lath - probably plagioclase. < 1% f-g</td> <td>15.24 18.29</td> <td>18.29 21.34</td> <td>54376 54377</td> <td>0.9</td> <td>0.2 ?</td> <td>32</td> <td>23</td>	ystocrystalline 'cherty' matrix, probably iedral lath - probably plagioclase. < 1% f-g	15.24 18.29	18.29 21.34	54376 54377	0.9	0.2 ?	32	23
25		6.1	41.6					21.34	24.38	54378	? ?	?	7	?
-30								27.43	30.48	54381	0.2	0.54	6	1
Scale	1:200	L		<u></u>	11/09/02		15:14:00	JU. +0			<u> </u>			-

Proje	ect: Axelgold					·				Pag	je No	. 2
AX02	2-011											
	d geoi					D_SAM	MP					
Ceptr At	rocktype	g_from	g_to	escript		S_FROM	S_TO	SAMPLE	AU_224	4G_2PP4	сл ^ъ ъм	າດັາກາ
				K-spar phenos >/= tem. witgr prinoclase porphyriud sy K-spar altered, 30-40%. Stubby grey orthoclase pheno [log illegible ('bucoxene'? !wccxene'? 'hucoxene'?] - aft	enite. Misy, nomogenous in.gr, grey ofthociase porphyry. Glassy hard grey crystocrystalline "cherty" matrix, probably is have soft white patches to 1mm of « ser » and « carb ». 5% = 1 mm subhedral lath - probably plagioclase. < 1% f-g<br ter some type of mafic.	30.48	33.53	54382	?	?	?	?
35	Magapustic			see which first, qtz-carb-fsp stgs to 5mm, gen. < 2mm, « 1-5% qtz-carb-feld stringers 30.00° » « > 1% carb stri Moderate K-spar « carb » (arkerite) - « ser » ultim. alt.	~1%. ingers 30.00*»	33.53 	36 57	54383	?	?	7	,
40	Syenite	6.1	41.5	 a Dissentisk *. a Ligh by 0.3053* bx *. Looks like a zone of « weak bx * and fluid mover that it is an alteration of the rock above and below. Bot « 41.80- 45.00 >1% gtz-carb stringers 30.00°». 41.50- 45.20 Contact at 40 deg to CA. 45.00- 45.30 Contact at 20 deg to CA. Moderate « ser * ultim. alt. Moderate K-spar « carb »(a 	ment causing « ser ». Slight increase in « py » from above. Some interval of meto CG orthoclase porphyry indicating th « dissem py » and « along hairline stringers py ». ankerite) « ser » penult. alt.	36.57 39.62	39.62 41.6	54384 54386	? 	? 0.16	?	? 2
	Brxx syenite	41,5	45.2	 <u>w cissem sx. * (fgr.py.1.00%)</u> <u>M to C.gr ppy:</u> M to cgr orthoctase porphyritic syenite. <u>w 45.30-46.60 >1% qz-carb stringers 0.00-30.00</u> Moderate K-spar « carb » (ankerite) « ser » ultim. alt. <u>w Dissem sx. * (fgr.py.0.50%)</u> <u>carteration along fractures</u>) As 41.6-45.2. Med grey to 	As above brxxd unit. Orthoclase to 1 cm, average 3-5 mm. 0"» greenish grey t-g syenite (phenos obscured by alteration?) with « irreg. patches greenish-grey f-g ser »	41.6	43.55	54387	?	?	?	7
-45		 		Moderate « ser » ultim alt. Moderate K-spar « carb »(a « Dissem sx »: « fgr ov 1.00%»	inkerite) « ser » penult alt.	43.55	45.2	54388				
	Syenite	45.2	46.6	M to C.gr ppy; Ornociase porphyntic syenite. Med. gre blue grey metallic mineral. Cut by « few qtz-carb string	ey, in to duit polphyly with some as study officials phenos to rent, average womm. Not rentegenees. Haces they jers 30.00° » « <1% qtz-carb stringers 30.00° »	45.2	40.0	54389	$-\frac{i}{2}$,	?
	Syenite	47,4	51.35	Constant A - Spar & Cars % (anterne) * Ser % uturn, and <u> « Dissem sx » « f.gr. py 0.50%</u> ». Some « chi ? » sharp contacts suggest alt along weak « 51.35- 51.37 <1% cars-py stringers 60.00°» 51.35- 51.37 Contact at 50 deg to CA.	structure. « Dissem py » and « along hairline to 3mm stringers py »	47.4	48.77	54391	0.4	0.16	20	10
50	Syenite	51.35	52.6	Strong « ser » ultim alt. Moderate K-spar « carb » (ank « Dissem sx »: « 1% py in vns avg 0.10-1.00cm» « 51.37- 52.60 <1% carb-py stringers 30.00°» 2 00 62.65 context at 70 days to CA	kerite) « ser» penult. alt.	51.35	52.6	54392	?	,	?	?
	Syenite	52.5	54 43	"TVFt8"C.gr 87th86889 pBy, 54.54 5 2m zone « strong se «54.00- 54.05 >30% ser-oy stringers 50.00°» « 52.60- 52.65 >1% qtz-carb stringers 60.00°»	er » alf with « 5-7% py 50.00°»	52.6	54.43 -	54394	?	,	?	?
55				« 54.05- 54.45 < 1/8 dt2-carb stillingers 30.00 # Moderate K-spar « carb » (ankente) « ser » ultim alt. « diseard star « carb » (50% » (anteration 30 gradutes). Weakly brecciated and altered syenite prphyry. fragm alteration. Most phenos alt to « dark green ser ». « py	ents grey hard syenit in matrix of « greenish ser ». « Weak bx » zone. Sericite in matrix overprinting ultim. potassic » predom dissem in sericitic matrix but also in frags and strs.	54.43	57.57	54396	0.2	0.19	10	4
60	Brxx syenite	54.43	62.3	Moderate « ser »ultim. alt. Moderate K-spar « carb »(a « sx » in « bx » matrx (+/- « stringers »): py« f gr py 1. 60.0-61.5 Blocky core (< 3 cm pieces) M to CQ. Of the classe Block val on spara 10,00-20 00****	inkerite)« ser » penuit, alt. 50%» altered matrix with 30% 3-5mm (max 1 cm) stubby subhedral orthoclase phenocrysts, « dissem py 0.50-1.00%» and «	57.57	60	54397	,	?	?	?
		-		py along natrine stringers » Doesn't look like galena, but « could be ga ». « <1% ser-py stringers 40.00-60.00°», « <1% qtz-carb	stringers 30.00°»	60	62.3	54398	?	?	?	?
	Syenite	62.3	75.87	Moderate K-spar « carb » (ankerite) « ser » ultim. alt. « Dissem sx »: « f.gr py 1.00%», « f.gr sph 0.10%». « « 74 45- 74 50 >30% otz-ov-carb stringers 10.00	f.gr ga 0.10%» » « gtz + white carb. 5-7% oy vn 10.00° 2.00cm».	62.3	65.45	54399	?	?	?	?
Scale	1:200			11/09/02	15:14:00			_		_		

Proje	ect: Axelgold											Paç	je No.	3
AX02	2-011													
┝	d_geol				· · · · · · · · · · · · · · · · · · ·			D_SA	vР					
Deon Al	rocktype	s_tam	g_to	cescript				S_FROM	s_to	SAMPLE	AU_2014	•G_≫ч (ະບ_ຈ ອບ	ม ว_294
				Mite a griophopiase pay. Very bast med ar	sufficence altered matrix with 30% 3-5mm (max 1	cm) stubby subhedral orthoclase phene	ocrysts, « dissem by 0.50-1.00%» and «	62.3 65.45	65.45 68.35	54399 54400	2	? ?	? ?	? ?
70	Syenite	62.3	75.87	py along hairline stringers » Doesn't look like galena, but « could be ga » « <1% ser-py stringers 4C.00-60.00°». « <1% Moderate K-soar « carb » (ankerite) « ser » t « Dissem sx »: « f.gr py 1.00%», « f.gr sph 0	, qtz-carb stringers 30.00°» itim. alt. 10%». « f.gr.ga.0.10%»	1* 2 00cm»		68.35	71.35	54401	0.2	0.2	16	1
71.35 74.5 54402 ? ? ? 74.5 75.87 54403 ? ? ?											?	?		
75		[74.5	75.87	54403	_ ?	?	?	?
	Syenite			M to C.gr orthoclase ppy - « ser » alt. Sporad Moderate « ser » ultim. art. Moderate K-spar « Dissem sx »: « f.gr py 1.00%»	ic to pervasive « ser » alt. of matrix giving a « w « carb » (ankerite) « ser »penult alt.	weak bx » appearance « <1% hairline ca	arb stringers 10.00-30.00°»	75.87	77.75	54404	?	?	?	?
80	Syenite dyke/ortho porph	75.87 .79.85	.79.85 80 -	<1% chl-py stringers 30.00-60.00°» Contact Moderate K-spar « carb » (ankerite) « ser » (« dissem sx » : « f.gr py 1.00%»	at 85°. litim. alt.		an an an an an an an an an an an an an a	77.75	82	54406	0.5	0.21	53	2
	Brxx syenite	30	86.95	(alteration along fractures), « ser » altered sy »Possible structure in hot intrusion, « <1% s Moderate « ser » ultim, alt. Moderate K-spar « Dissem sx »: « ř.gr py 1.00%»	enite orthoclase ppy. Med-greenish grey « ser » er-py-carb stringers 30.00-60.00°» « <1% carb « carb » (ankerite) « ser » penult. alt.	 alt « weakly bx » syenite ppy. Groundr stringers 10.00-40.00° » 	nass looks ground. « Weak fault zone?	82	84.53	54407	7	?	?	?
85								84.53	86.95	54408	?	?	7	?
90				M to c.gr orthoclase ppy; Subhedral to euhec groundmass. Phenos sporadic « ser » and « « <1% qtz-carb stringers 45.00°», « <1% car Trachytic texture. 45° Moderate K-spar « carb » (ankerite) « ser » t « Dissem sx »; « f.gr py 1.50%»	iral orthoclase phenocrysts up to 1cm, average 5 carb » alt. b stringers 30.00-70.00°» iltim, alt.	5-7 mm. Coarser grained than uphole. V	Neakly trachytic, Very hard grey	86.95	89 95	54409	,	?	?	?
	Syenite	86.95	96.35	M to C.gr « ser » alt ppy; Inhomogenous text 30.00-50.00"» Moderate « ser » ultim alt. Moderate K-spar	ure. « Vaguely bx ». « Pseudo- bx » « Hairline c « carb »(ankerite) « ser » penult. alt.	arb stringers »,« V.f.gr dissem py » in g	roundmass. « <1% carb stringers	89.95	93.5	54410	?	?	?	?
05				 Clissem sx »: «f.gr py 1.50%» 99.05-99.5 Blocky core (pieces <3 cm) 45-9 « 99.50-105.12 <1% carb stringers 30.0 	0° 0-50.00°»	0.45*		93.5	94.49	54411	?	7	?	?
32				« 105.12- 105.90 <1% carb stringers 30.0 « 105.90- 106.50 5-15% qtz-carb stringer	30-50.00" » Blocky core (pieces less than 3cm) 1 is 30.00-50.00° »	10-45		94.49	96.35	54412	?	?	?	7
	Syenite	96.35	110.6	« 106 50- 110 60 <1% carb stringers 30	00-50.00°» Blocky core (pieces less than 3cm)			96.35	99.05	54413	_?]	2	?	
Scale	1:200				11/09/02	1	15:14:00							

Ĭ.

Proje	ect: Axelgoid											Pag	je Nc	4
AX02	2-011													
	d_ceoi							D_SA	MP					
Dean Al	rocxtyp e	g_fr⊃m	g_ta	descript				s_=9CM	s_to	SAMPLE	w_>~u	vo_≫• ¢	:	ис , жи
								96.35	99.05	54413 -	?	?	7	7
100				M to C.gr « ser » alt ppy; Inhomogenous text	re. « Vaguely bx ». « Pseudo- bx » « Hairli	ine carb stringers »,« V.f.gr dissem py » in g	groundmass. « <1% carb stringers	99.05	.55	54414	,	?	7	7
	Syenite			30.00-50.00* Moderate « ser » ultim alt. Moderate K-spar « Dissem sx »: « f.gr py 1.50% 99.05-99.5 Blocky core (pieces <3 cm) 45-5 « 99.50-105.12 <1% carb stringers 30.0	carb »(ankerite) « ser » penuit, alt. 0° 0-50.00°»			.55	.55	54416	0.2	0.28	25	20
-105		96.35	110 5	 « 105.12- 105.90 <1% carb stringers 30.0 « 105.90- 106.50 5-15% qtz-carb stringers « 106.50- 110.50 <1% carb stringers 30.0 	0-50.00*» Blocky core (pieces less than 3c s 30.00-50.00*» (0-50.00*» Blocky core (pieces less than 3c	m) 10-45° m)		.55	.15	54417	,	?	,	?
110		= _	-			.		.15	110.6	54418	?	?	?	?
	Brxx syenite	1.0.5	05	texture not apparent. « <1% carb stringer 10. Moderate « ser » ultim. ait. Moderate K-spar « disease av »: « for av 1.00%»	00°» « carb »(ankerite) « ser » penult, alt.			110.6	113.2	54419	?	?	?	?
-115			03	113.2-115.05 Blocky core (pieces < 3 cm) 5	- 60° mostringers 30.00-70.00°»			113.2	.05	54421	0.2	0.21	13	. 11
	Syenite	.05	.75	Strong k-spar ultim. alt. Moderate k-spar « c « Dissem sx »: « f.gr py 1.00%»	arb » (ankerite) « ser » penult, alt.			.05	.75	54422	?	?	?	?
								.75	.87	54423	?	7	?	,
-120	Syenite	.75	125 1	<1% carb stringers 10.00- 45.00°» Strong k-spar ultim. alt. Moderate k-spar « ca « Dissem sx »: « f.gr py 1.00%»	rð » (ankerite) « ser » penult alt.			.87	.92	54424	?	,	?	7
								.92	125.1	54426	0.8	0.24	42	22
125	Svenite			M to c.gr orthoclase ppy: Dark blue grey hard Moderate k-spar « carb » (ankerite) « ser » u	grained porphyry. « <1% qtz-carb stringers tım. alt.	s 30.00°», « <1% carb stringers 30.00-70.00)* »	125.1	.02	54427	?	?	7	2
	Gyonne	125.1	.11	« Dissem sx »: « f.gr py 1.00%»		<u></u>		.02	.06	54428	?	?	?	?
Scale	1:200				11/09/02		15:14:00							

.

L

.

Proj	ect: Axeigoid						····		· · · ·			Page	e No	5
AX0	2-011													
	d_geol						· · · · · · · · · · · · · · · · · · ·	D_SA	MP			_		·····
Depth At	rocktype	<u>سر</u> ب ⁷ 5	g_to	descript				s_≓R0M	s_to	SAMPLE	w		J_PPM	10_20U
130	Syenite	125.1	.11	M to digriorthodase poy; Dark blue grey har Moderate k-spar « caro » (ankerite) « ser » i « Dissem sx »: « figr py 1.00%»	rc grained porphyry. « <1% qtz-caro stringer uitim. alt.	s 30.00°». « <1% carb stringers 30.00-70.0	0°»	.02	.06	54428	?	?	?	?
-135		.1:	- 11	?										
-145														
150														
155														
Scale	1:200	I	I	L	11/09/02		15:14:00							

RUBICON MINERALS	CORPORATION -	DRILL LI	JG
------------------	----------------------	----------	----

L

ĥ

.

Start_date: 20/08/02

ł

ŧ.

t

End_date 22/08/02

L

ł

Logged_by D. Daoud

۱

L

AX02-012 Length(m) 201.	.7	Northing (UTM15 NAD83) 6206985 Local co-ord North	Easting (UTM15 NAD8 Local Co-ord East	3] 314339	Elev(ASL) 1844 Claim	CoreSize - NQ Contractor: Britton Bros Re-logged_by/date
TESTS:	Depth	Туре	Dip	Az		Comments
	С		-45	27		
	76.2	Acid test	-40	27		
	201.17	Acid test	39.5	27		

Ĩ

Ĩ.

ĥ

November 9, 2002

L

.

Proje	ect: Axelgoid								Pa	ge No	. 1
AX02	2-012										
	d_geol				D_S/	AMP					
Desn Al	rocktype	G_†om	g_to_	descript	S_FROM	S_TO	SAMPLE	10,204	4G_2994	CU_224	WC_201
	Casing	o	3.05	2							
5	Megacrystic syenite	3.05	16.37	(K-spar phenos >/= 1 cm) weathered megacrystic porphyritic syenite. Rusty, whitish to greyish, broken, vuggy (pitted) caused by the removal of pyrite (weathering) . Abundant iron oxides througnout (limonite) assoc, with clay. « Minor finely dissem py in the freshest pieces = 1.00%» Bad recovery. Manganese oxide noted assoc w<br limonite. Probably the vuggs are caused also by the removal of fine to med. grains of 2ndary K-spars. BLK (=blocky??) 50 deg. and 10 deg. CA. Clay alteration, strong. « f py 1.00%» « Im 10.00%» « go 2.00%» mn. oxide 1.00%. Bad recovery.	3.05 gr 12.16	12.19	54431	3	?	? ?	?
	· · · · · · ·			(K-spar openos >/= 1 cm) Altered megacrystic porphyritic svenite. Lt grey, altered (« carb »/« ser »/ k-spar), with « finely dissem and along fracs by 1.00-2.00%», « small			54422	2			
1	Megacrystic	16 37	20.1	euhedral to subnedral caro » alteration minerals (and K-spar or plag) comprising 1.0 -1.5% of rock volume and up to 3mm long. Feldspar megacrysts are up to 3 cm long.	10.37	10.23	54455				
	Sycince	10.01	20.1	penultimate alteration. « Dissem sx »: « f.gr py 2.00%», « f.gr im 5.00%», « f.gr go 2.00%» « <1.00% carb stringers 20.00-50.00°»	18.29	20.1	54435	0.2	0.27	56	12
20		Ī			20.1	21.34	54436	>	?	?	?
					21.34	24.38	54437	?	7	?	?
25	Megacrystic syenite	20.1	33.53	K-spar which are replaced by calcite are partially removed (vugs). (calcite alteration followed by clay alt. and removal of py + plag on K-spar 2nd generation) « Abundant f1 40.00-50.00° coated by calcite, lim, « go » and clay ». Blocky core (<3cm pieces) Mod. clay ultim alt. Strong carb (prob ank)-ser penult. alt.« dissem, f.gr py 1.00%», « dissem, f.gr Im 10.00%», « dissem, f.gr go 1.00%» « 5.00- 15.00% carb-lim stringers 40.00-50.00°» « <1.00% py stringers 25.00°» « <1.00% qtz-carb-hem stringers 20.00-70.00°» « f1 10.00-60.00°»	24.38	27.43	54438	?	?	?	?
-30					27.43	30.48	54440	0.2	0.26	49	23
					30.48	33.53	54441	?	?	?	?
Scale	1:200			11/09/02 15:15:34							

• • • • • • • • • • • • • • • • • • •

Proje	ect: Axelgoid	_										Pa	ge No	. 2
AX02	2-012	-		• • • • • • • • • • • • • • • • • • •										
<u> </u>	d_geoi			······································				D_SA	MP					
Desth At	rocktype	g_trom	g_to	descript				SFROM	s_to	SAMPLE	AU_ ³⁰ 4	Noc_20	c	40,204
35	Megacrystic syenite	20.1	33 53	K-spar which are replaced by calcite are par 40,00-50.00° coated by calcite, lim, « go » a dissem, f.gr Im 10.00%», « dissem, f.gr go 7 20,00-70.00°» « f1 10,00-60.00°»	tially removed (vugs). (calcite alteration follow nd clay ». Blocky core (<3cm pieces) Mod. c .00%» « 5.00- 15.00% carb-lim stringers 40.0	ved by clay alt. and removal of py + plag or lay ultim. alt. Strong carb (prob ank)-ser pe 30-50.00°» « <1.00% py stringers 25.00°» «	n K-spar 2nd generation) « Abundant f1 enult. alt.« dissem, f.gr py 1.00%», « « <1.00% qtz-carb-hern stringers	30.48 33.53	33.53 36.58	54441 54442	?	?	7 ?	?
	Megacrystic syenite	33.53	39.62	(K-spar phenos >/= 1 cm) Altered megacryst total of all py 1.50%». Small laths 1-3mm for megacrysts are partially alt. (replaced) by ca ank)-ser alt. Mod. K-spar alt. « f.gr py 1.50%	tic porphyritic syenite. Med grey, altered (« ca ig are completely replaced by calcite/dolomit licite. « <1.00% py stringers 25.00°» « <1.00° » « f.gr lm 3.00%» « f.gr go 1.00%» mn. oxid	arb »/« ser »/K-spar), partially wx, wtih « fin e (formerly plag or 2nd K-spar) Comprising % qtz-carb-hern stringers 20.00-70.00°» « f de 0.1%.	ely dissem py » and « py vnlets » -> « 2-3% of total rock volume. The feldspar f 10.00-60.00°» Strong carb(prob	36.58	39 62	54443	?	2	7	?
-40								39.62	42.67	54445	0.4	0.34	60	342
-45	Megacrystic syenite	39.62	49.05	(K-spar phenos >/= 1 cm) Weathered megac by the « small lath of carb> vuggy or pitted 40.20- 42.67 Blocky core <3cm pieces. 10' « 42.67- 45.34 f1 10.00-60.00'» 45.34- 49.06 Blocky core <3cm pieces. 10' « 49.04- 49.05 LCT 40.00'»	crystic porphyritic syenite. Lt grey, rusty, yello ») - 60° to CA. Mod clay ultim, alt, mod k-spar-c - 60° to CA	wish in some places, altered. broken w « fi carb(ank)-ser penuit, alt.	inely dissem py 1.00%» (partially removed	42.67	45.72	54446	?	~ - ?	2	?
								45.72	49.04	54447	?	?	?	?
-50								49.04	51.82	54448	? 	7	?	?
-55				4mm, are partially replaced w. « carb » (ca: Abundant f1 coated w lm, go, and psilomeia 5.00-10.00%» assoc w. « ser at 50.00°».	cite/dolomite). Comprising around 50% of tota ne (mn oxides)», « Trace of fuch present », «	al rock volume: « Pervasive carb/ser » alter vns and finely dissem py and ser » up to 8	ration on matrix and phenocrysts. « 3cm thick. (at 63.05m depth) w « py	51 82	54.86	54449	7	2	2	?
	Syenite	49.05	64.01	« 1.00- 5.00% py stringers 20.00-50.00"» « f1 25.00-60.00"» Strong carb (prob. ank)-s « dissem sx »: « f.gr py 1.50%», « Im 1.00%	er ultim. alt. Weak k-spar penult. alt. », « go 0.50%», mn oxide 0.1%, « fuch 0.10%	6»		54.86	57.91	54450	0.2	0.45	7	5
60								57.91	60.96 -	54451	?	?	?	?
	Syenite	64 01	.58	go », psilomelane, and « ja » (+ clay). « tr of Blocky core <3cm pieces at 40° - 30°, « fol 4 «dissem sx »:« f.gr py 0.50%», « f.gr Im 7.00	fuch » noted when it's very wx, gets whitish v 0.00-30.00°». « Intense ser ultim. alt », « We 0%». « f.gr go 1.00%» « f.gr ja 0.30%», f.gr m	v. hardly any « py (leached)». « <1% ser st eak carb penult. alt.». In oxide 0.1%, « f.gr fuch »	tringers 20.00-10.00°».	60.96 64.01	64.01 67.06	54452 54453	? ?	? ?	? ?	? ?
Scale	1:200				11/09/02		15:15:34							

Proj	ect: Axelgold											Pa	ige No	- 3
AX0	2-012													
	d_geol							D_SA	MP				-	
Cepri Al	rocktype	חכיי_ם	g_to	descript				S_FROM	S_TO	SAMPLE	AU_334	AG_374	ເມຼະ⊳ພ	MO_2994
								64.01	67.06	54453	7	?	?	?
-70								67.06	.70.01	54455	02	0.34	8	2
								70.01	73.15	54456	?	?	?	?
-75								73.15	76.2	54457	?	?	?	?
								76.2	79.25	54458	?	?	2	?
- 80	Syenite			go », psilomelane, and « ja » (+ clay), « tr of Blocky core <3cm pieces at 40° - 30°, « fol 4 «dissem sx »,« f.gr py 0.50%», « f.gr im 7.00	fuch » noted when it's very wx, gets whitish 10:00-30:00°». « Intense ser ultim, alt », « W 3%», « f.gr go 1.00%» « f.gr ja 0.30%», f.gr r	w. hardly any « py (leached)». « <1% ser /eak carb penult. alt.». nn oxide 0.1%, « f.gr fuch »	stringers 20.00-10.00°».	79.25	82.3	54459	7	?	?	7
- 85		64.01	.58					82.3	85.34	54460	0.2	0.38	21	3
								85.34	88.39	54461	2	?	2	?
- 90								.88.39 	91.44	54462	?	?	?	?
								91.44	94.49	54463	?	2	?	?
95								94.49	97.54	54465	02	0.36	8	4
Scale	1:200				11/09/02		15:15:34							

Proje	ect: Axelgold										_	Pa	ge No	. 4
AX02	2-012													
	d_geol		<u> </u>					D_SA	MP		_			
Oecat Al	rocktype	g_from	g_to	descript				S_FROM	S_TC	SAMPLE	ي رود_ن	-C_294	C≫¥	າວຸວາ
100								94.49	.58	54465	02 7	0.36 2	3	7
	Questita			go », psilomelane, and « ja » (+ clay). « tr of	fuch » noted when it's very wx, gets whitish	w. hardly any « py (leached)». « <1% ser s	tringers 20.00-10.00°».	.58	.63	54467	?	?	?	?
105	Syenite go x, paintificane, and ya x (carby, a coup), a fol 40,00-30.00°». « Intense ser ultim. alt », « Weak carb penult. alt.». 105 Blocky core <3cm pieces at 40° - 30°, « fol 40,00-30.00°». « Intense ser ultim. alt », « Weak carb penult. alt.».								.68	54468	?	?	?	?
			1					.68	.73	54469	?	?	?	?
-110		 	-					.73	.58 .78	54470 54471	0.2 - -	0.32 7	21	5
115	Syenite	.58	15	m.gr to c.gr. ppy; Altered, porphyritic. M. gre fuch » noted. « >1% carb vns 50.00°». « >1 « Dissem sx »: « f.gr py 1.00%», « f.gr im 0.3	y to blowish-greyish, m to c.gr, alt (« pervasi % ser stringers 50.00°», « f1 60.00-40.00°», 50%», « f.gr go 0.10%», « f.gr fuch 0.10%»	ive carb »/ « ser »), porphyritic, « slightly fo Strong carb (prob ank)-ser ultim. alt.	l », w finely dissem throughout. (~1%). « t	.78	.15	54472	2	2	?	7
	Syenite	.15	92	Abundant f1 » following the « fol 40.00-50.00 « >1% carb stringers 80.00*», Blocky core <	*». These fractures are coated by « Im », ps 3cm pieces, 50° 45°. Strong carb (prob ank) 0%	silomelane, « ja » and clay. « tr fuch » notec -ser uitim, alt, mod clay penult, alt, uch 0.10%	i .	.15	.87	54473	?	7	7	7
- 120	<u>-</u>			≪ aissem sx »: « t.gr py 0.50%», « t.gr im 2.0	076%, « i.gi ja 0.007%, hili 0x10e i.d076, « it	aun 0. 1076#		.87	.92	54475	0.2	0.35	13	3
125	Syenite			m.gr to c.gr, ppy; Altered, porhyritic. Lt grey t 1 to 3mm thick, and « sporadic patches up to by calcite/dolomite. « Few patches fuch » pre- euhedralisolated cubes and into small patche	o whitish, m. to c.gr, altered (« ser », « carb 3 mm across py » present. « Im », mn oxide esent in some areas where there is a « perva es sometimes following the « fol »planes.	», « chl ») « partially fol », « w. fine dissem e, and calcite coating « f1 ». Feldspar pheno asive carb alt.» Py looks like recrystallized i pe.	. py ». « a few py vns (assoc w carb/ser)» pcrysts are partially to completely replaced nto m.gr, 'xx' (log illegible)	.92	.99	54476	?	7	?	?
		.92	.18	I « >1% ser-py-carb stringers 40.00°» « >1% c Strong « carb » (prob ank)-« ser » ultim. alt. « dissem sx »: « f.gr py 1.00%», « f.gr Im 1.0	aro sringers 80.00-20.001» « r1 60.00-40.00 Weak « chi » penult. alt. 10%», f.gr mn onxide 0.1%, « f.gr fuch 0.10%	, » 6»		.99 .02	.02 .06	54477 54478	?	? 7	? ?	?
Scale	1:200	L	1	L	11/09/02		15:15:35		d					

Proje	ect: Axelgold					·····		<u></u>				Pa	ge No	5
AX02	2-012													
	d_geol							D_SA	MP					
Depth At	rocktype	g_fram	g_to	descript				S_FROM	S_TO	SAMPLE	AU_2994	AG_994	ເງ ັນທາ	ພດີງອອກ
-130								.02	.06	54478	?	?	ŗ	?
								.06	.11	54480	0.2	0.36	17	2
-135								.11	.16	54481	?	?	?	?
-140								.16	.21	54482	?	?	?	?
								.21	.26	54483	?	?	?	?
-145	Syenite			m.gr to c.gr. ppy; Altered, porhyritic. Lt grey t 1 to 3mm thick, and « sporadic patches up to by calcite/dolomite. « Few patches fuch » pre euhedralisolated cubes and into small patche « >1% ser-py-carb stringers 40.00°»« >1% c	o whitish, m. to c.gr, altered (« ser », « carb) 3mm across py » present. « Im », mn oxidé esent in some areas where there is a « perva es sometimes following the « fol »planes. arb stringers 80.00-20.00°» « f1 60.00-40.00	», « chl ») « partially fol », « w. fine disser e, and calcite coating « f1 ». Feldspar pher asive carb alt.» Py looks like recrystallized) ⁹ »	m py » « a few py vns (assoc w carb/ser)» hocrysts are partially to completely replaced into m.gr, 'xx' (log illegible)	.26	146.3	54485	0.2	0.51	30	2
		.92	.18	Strong « carb » (prob ank)-« ser » ultim. alt. « dissem sx »: « f.gr py 1.00%», « f.gr lm 1.0	Weak « chł » penult, alt, 10%», f.gr mn onxide 0.1%, « f.gr fuch 0.10%	6»		146.3	.35	54486	?	?	?	?
-150								.35	.24	54487	,	?	?	?
- 155								.24	.45	54488	?	?	?	7
					.45 158.5 54489 ?							?	?	?
160								158.5	.54	54490	0.2	0.39	14	2
Scale	1:200	L	نــــــا	<u></u>	11/09/02		15:15:35	54	59	54491	<u></u>	<u>,</u>	21	

Proje	ct: Axelgoid								Pa	ge No.	6
AX02	2-012										
	d_geol			· · · · · · · · · · · · · · · · · · ·	D_SA	MP					-1
Cent At	rocktype	הכיל_ם	c_to	cescript	S_FRCM	S_TC	SAMPLE	w_~~,	4G_2004	ເປຼອອນ	40_204
-165	Syenite	32 13	. 1 8 59	m.gr to c.gr, ppy, Altered, pomyntic, Li grey to whitish, m. to c.gr, altered (« ser », « carb », « chl ») « partially fol », « w. fine dissem py ». « a few py vns (assoc w carb/ser 1 to 3mm thick, and « sportacic patches up to 3mm across py » present. « Im », mn oxide, and calcite coating « f1 ». Feldspar phenocrysts are partially to completely replace or gate/colomice. « Few patches fuch » present in some areas where there is a « pervasive carb alt.» Py looks like recrystallized into m.gr. 'xx' (log illegible) auhedralisolated cubes and into smal patches sometimes following the « fol »planes. « >1% ser-py-carb stringers 40.00*« >1% carb stringers 80.00-20.00° « (f1 60.00-40.00° » Strong « carb » (for bark/~ ser » uttim, alt. Weak « chl » penult, alt. « dissem sx »: « f.gr py 1.00%», « f.gr mn 1.00%», f.gr mn onxide 0.1%, « f.gr fuch 0.10%» m.gr to c.gr, ppy; Altered porphyride. Greenish grey to greyish, m to c.gr, alt (« ser »« carb », « chl » and a little K-spar), « fol », « w. dissem and anastamosing py » « 162.16-163.50 1-5% carb-oy stringers 40.00° »)» ed 54	.59 .64	54491 54492	, ,	, ,	7 ?	?
170 								?	7	?	?
					.69	.74	54495	0.2	1	36	26
-175	Syenite; Feldspar-bt			4mm thick (~4%). Small chenocrysts of biotite completely alt. (pinkish to whitish colour product) w size avgs from 1-2mm across. Feldspar phenocrysts comprise about Some f1 & are coated by < Im >, < go > and day minerals.	.74	.78	54496	?	?	?	?
	рогра суке	59	.88	Strong « chl »« carb » ultim. alt, mod « ser » penult. alt. « stringer sx, avg 1mm- 1cm»: « py 4.00%». « im 0.30%», « go 0.10%» « fuch 0.20%»	.78	179.2	54497	?	7	?	?
-180					179.2	.58	54498	?	?	?	?
					.58	.88	54499	,	?	7	7
185				removed (partially vuggy), « Finely dissem by » and « a few vns 50.00-35.00° up to 3.00mm». « 182.88- 187.15 <1% py stringers 35.00-50.00°» « 187.15- 188.40 15-30% chi stringers 30.00°»	.88	.93	54500	0.2	0.54	9	6
	Syenite	88	17	<pre>« 196.20- 196.90 15-30% chl-py stringers 60.00*» « 196.90- 197.40 >30% carb-im stringers 20.00*» « 182.88- 187.15 f1 15.00-40.00*» « 183.40- fol 35.00-40.00*» « 188.40- 196.20 f1 30.00-40.00*»</pre>	.93	.98	54501	?	?	?	?
190 « 196_20-195.90 fol 35.00-40.00* « 196.90-197.40 fol 35.00-40.00* « 196.90-197.40 fol 35.00-40.00* « 197.40-201.17 fil 30.00-50.00* « 197.40-201.17 fil 30.00-50.00* « 182.88-201.17 strong ser ultim. alt » « Strong chl penult. alt ». « Dissem sx »: « f.gr py 1.00%», « f.gr go 0.10%», « f.gr fuch 0.10%» .98 .02 54502 ? ? ?						?	?				
					.02	.07	54503	?	?	?	?
Scale	1:200		_	11/09/02 15:15:35							

Braid	act: Avaigald													
						<u></u>						Pag	je No	7
	2-012 T							T			<u> </u>			
	d_geol				·····			D_SA	MP					
	rocktype	مدن _ع	v Ç_:0	descript				S_FROM	s_to	SAUPLE	4U_2944	-C_264	su_anu	40,204
195	Syenite Ena of hole	82 17	:7	removed (partially vuggy), « Finery dissemip « 182.88-137.15 <1% by stringers 35.00 « 187.15-138.40 15-30% philosy stringers 3 « 196.90-137.40 >30% card-im stringers « 182.83-137.15 11.5.00-40.00*» « 187.15-138.40 for 35.00-40.00*» « 188.40-196.20 11.3.0.00-40.00*» « 196.90-137.40 for 35.00-40.00*» « 196.90-137.40 for 35.00-40.00*» « 197.40-201.17 11.30.00-50.00*» « 197.40-201.17 11.30.00-50.00*» « 192.83-201.17 strong ser utim, alt + « « Dissem sx » « digr py 1.00*%», « digr im 0.	y	mm».		.02	.07	54503 54505 54506	? 0.2 ?	? 0.24 ?	2 25 ?	? 16 ?
- 205				<u> </u>										
210														
215														
220														
225					T	····								
Scale	1:200				11/09/02		15:15.35							

* * * * * * * * * * * * * * * * * * *

1

Start_date: 25/08/02

End_date 25/08/02

Logged_by D. Daoud

1

AX02-014		Northing (UTM15 NAD83) 6208662	2 Easting (UTM15 NAD	83] 314372	Elev(ASL) 1653	CoreSize - NQ
Length(m) 239	9.56	Local co-ord North	Local Co-ord East		Claim	Contractor: Britton Bros
						Re-logged_by/date
TESTS:	Depth	Туре	Dip	Az		Comments
	د		-45	9		
	91. 44	Acid test	-41.5	9		
	182.88	Acid test	-41	9		
	274.33	Acid test	-41	9		

2

November 9, 2002

Proje	ct: Axelgoid											Paç	je No	: 1
AX02	-014									_				
	a_geol							D_SA	MP					
Dept: Al	rocktype	g_irom	c_to	descript				S_FROM	s_то	SAMPLE	AU_204 A	KG_₽®¥I	เกาะเกา	MO_201
	Casirg	G	3 05	?								-		
-5	Syente	3.C5	51	50% of total rock volume w/ euhedral to sub- « ff 40.00-70.00*» Strong k-spar ultim alt. Moderate « ser » pen « Dissem f.gr sx »; « ⊵y 1.50%», « sb 0.10%	euhedral shape and 3-6mm across. « Numer ult alt. • « Im 0.20%»	ous f1 » coated with « Im » (beginning of	the drill hole).	3.05	6.1	54579	?	?	?	?
10	Syenite intrusive orxx	6,1	*2.27	caro » alterated dominate. « fuch » is presen « 1-5% qtz-carb stringers 60.00-80.00°» « <1 « f1 40.00°» Strong « carb » (probably ankerite) « ser » ui « Dissem f.gr sx »: « py 3.00%», « fuch 0.30	t througnout the interval assoc, mainly with a % k-fexd stringers 20.00*» tim ait. Moderate k-spar penult, alt. %»	It f.gr syenite fragments.		6.1 9.14	9.14 12.27	54580 54581	?	?	?	? ?
-15	Syenite	12.27	16	across (4mm avg). A few xenoliths (fragment « <1% carb stringers 40.00-50.00°» « f1 30.00-70.00°» Strong k-spar ultim alt. Moderate « ser » pen « Dissem f.gr sx »: « oy 1.50%», « so? 0.303	s) of syenite intrusive breccia up to 15cm ac ult. alt	ross are present (3).		12.27 13.95	13.95 16.8	54583 54584	0.2	0.17	10 ?	5 ?
-20								16.8 18.29	18.29 21.34	54585 54586	7 	?	?	7
25	Syenite intrusive brxx	16	32.32	throughout the interval. A few small fragment « <1% qtz-carb stringers 50.00-60.00*» « f1 50.00-70.00*» Strong « ser » ultim. ait. Moderate k-spar per « Dissem f.gr sx »: « py 2.00%», « Im 0.10%	s (= 3cm) are « fuch » rich. « Qtz-carb vns<br hult alt. », « fuch 0.10%»	up to 0.50cm» are present.		21.34 24.38	24.38 27,43	54588 54589	0.2	0.21	60 ?	10 ?
30								27.43 30.48	30.48 32.82	54590 54591	? ?	?	?	?
Scale	1:200				11/09/02		15:21:17							

Project: Axelgold								Pa	Page No. 2					
AX02-014														
	d_geol							D_SA	MP					
Deon At	rocktype	g_irom	g_to	descript				S_FROM	S_TO	SAMPLE	يەتە رىد	43_ 224	c	As:,≫v
	Syenite intrusive brxx Syenite	16 32.32	<u>32.82</u> 33.7	throughout the interval. A few small fragments « <1% oz-caro stringers 50 00-60 00*>	; (<'= 3cm) are « fuch » rich. « Qtz-carb vn:	s up to 0.50cm» are present.		30.48 32.82	32.82 33.7	54591 54593	2 0 2	 0.15	? 23	7 7
35	Syenite intrusive brxx	33.7	38.27	« f1 50.00-70.00° » Strong « ser » ultim, at. Moderate k-spar per « Dissem f.gr sx »: « by 2.00% ». « Im 3.10%» M to C.gr ppy:	ud alt. . « fuch 0.10%»			33.7	36.58	54594	?	? 	?	2
			· · = -	Large xenolith of light grey to whitish, m to 0.5 « f1 35.00°» Strong « ser » ultim, alt, Moderate k-spar per Planet for any and 1 20% and 2 10%	r corphyritic syenite. uit alt.			36.58 38.27	38.27 39.62	54595 54596	? ?	?	?	7 .7
40	Syenite	38.27	44.9	 Closeff 1.gl x * .e y 1. J 2 3*, 4 5t 3.10/3* Similar to above with < finely dissen by 2.50* Strong « ser » ultim alt. Weak k-spar per: « 33.70- 34.15 f* 50.00*> 34.15-35.30 Blocky Core / peces <3cm) 50.1 « 35.30-38.27 f* 35.30-0.00*> 	54 st sit sit			39.62	42.69	54597	?	?	?	?
				M to C.gr ppy: sulphide (« sb ? »:. Feldscar phenocrysts icc	norising about 65% of rock volume.			42.69	44.9	54598	0.2	0.18	21	5
45				« <1% qtz-caro stringers 50.00°» « f1 20.00-40.00°» Strong k-spar ultim at. Moderate « ser » penu at. Moderate « ser » penu	sit alt.			44.9	45.72	54599	?	?	?	?
50				« <u>Dissem t.gr sx »: « عن</u> 1.و. ۵۳ « sz ، 30% «		·	- ·	45.72 48.77	48.77 51.82	54600 54601	, ,	? ?	?	7 7
55	Syenite			Dark grey to med grey, altered (« ser ») syenita intrusive braccia (diatreme style) with « finely dissem py » throughout the interval (~2%), « anastamosing py » and a « few » alt.) and are subangular to rounded . some with reaction nm (1-2mm thick) and there are 50°. The groundmass is « strongly ser » and the fragments, especially the porphyritic syenite, are mainty k-spar altered. The « ox » is slightly porphyritic (probably a combination of xenocrysts and phenocrysts). « <1% py stringers 40.00°», « 1-5% qtz-care stringers 60.00-70.00°» « f1 20.00-40.00°». Strong « ser » ultim, alt. Weak k-spar penult alt. « Dissem f.gr x », « oy 2.00%», « fuch 0.50%»	51.82	54.86	54603	0.2	0 25	5 4	7			
		44.9	78.1		54.86	57.91	54604	2	?	?	?			
60								57.91	60.96	54605	?	?	?	?
								60.96	64.01	54606	?	?	?	?
Scale	1:200	L			1/09/02	<u> </u>	15:21:17	64.01	67.06	54607	?	7	2]	~

Project: Axelgold									Pa	Page No. 3				
AX02-014														
	d_geol													
Cest 4	rocktype	\$_tro⊷	ç_to	descript			SAMPLE	AU_≫VI	4G_2994	CU_PPM	MO_39M			
				Dark grey to med grey altered (« ser ») syence intrusive preccia (diatreme style) with « finely dissem by » throughout the interval (~2%), « anastamosing by » and a « few	64 01	67.06	54607	2	7	Ş	?			
70 Sye intruse				> alt.) and are subangular to rounced, some with reaction rim (1-2mm thick) and there are 50°. The groundmass is « strongly ser » and the fragments, especially the porphyritic syenite, are mamply k-spar altered. The « tx » is slightly porphyritic (probably a combination of xenocrysts and phenocrysts). « <1% opt stringers 40.00°», « 1-5% gtz-carb stringers 50.00-70.00°» « (1 20.00-40.00°» Strong « ser » ultim, ait. Weak k-spar penult alt. « Since a ser » ultim, ait. Weak k-spar penult alt. « Since a ser » ultim, ait. Weak k-spar penult alt.				0.2	0.18	70	7			
	Syenitə Intrusive DXX	£4.3	M to Ta.t Light oher	M to C.gr ppy; Light grey m to c.gr, attered (K-spar and K ser *) porchyritic syenite, wik finely dissem py 1.50% win the matrix, throughout the interval, sunhedral to euhedral k-spar phenocrysts comprise about 50% of core volume and up to 0.5cm long fine violated grain of grey metallic mineral (k sb w) is noted. The rock is partially broken.	70.1	7 3 .15	54609	?	?	?	?			
- 75					« <1% ctz-carb stringers 40.00-50.00*» « f1 20.00-50.00*» Strong k-spar utim ait. Moderate ≪ ser » penult ait. (Dissem f.gr sx ») ≪ cy 1.50% », ≪ sp 0.10% ».	73.15	76.2	54610	?	?	?	?		
				(fragmental) same as the prectia described before, very altered, mainly « ser » and « chl » with « finely dissem (anastamosing) py averaging 3.00%». The fragments are the matrix (xenocrysts) up to 0.5cm and as fine grains in some of the fragments. Small flog unclear: "redish"?] silicates are noted as inclusions in the f.gr. palg feldso.	76.2	78.1	54611	?	?	?	?			
	Syenite			porphyritic syenite (< probably gar »?) the rock is < sheared » and broken. < 83.53-84.19 shear 15.30-50.00*» < 84.19-88.02 1.5% cfz-app strongers 50.00-80.00*» < f1.30.00-70.00*»	78.1	79.25	54613	0.2	0.21	12	4			
80		78 -	78 -	78 -	33 54	33 54	« 83.54- 87.15 Dissem. fgr sx » « by 3.00%». « sb 0.20%». « gar 0.10%?» Dark grey to med grey, fgr, partially at t « ser ») with gradual contact with the « intrusive bx » (a few small syenite fragments are noted) porphyritic, small (1-2mm) Dark grey to med grey, fgr, partially at t « ser ») with gradual contact with the « intrusive bx » (a few small syenite fragments are noted) porphyritic, small (1-2mm)			54614	?	?	?	?
		10.		and a standard standard standard subjects of the solution of the volume (both) a Anastand sing by a and a vis a up to whith they are present. a 1-5% by stringers 30.00-30.20° at a stringers 70.00° at a 15.00-70.00° at a 15.00° at a 15.00-70.00° at a 15.00° at a 15.00-70.00° at a 15.00° at a 15.00° at a 15.00-70.00° at a 15.00° 81 82.3	82.3 83.54	54615 54616	?	?	, , ,	?				
	Syenite intrusive prxx Ortho-piag	33.54		Moderate « ser »uitim, alt. Weak k-spar penuit, alt. <u> </u>	83.54	84 8	54617	?	?	?	,			
-85			37.15	the interval fragments represent about 50% of rock volume. « Thin quartz and carbonate (dolomite) vns 1.00- 2.00mm » are noted as late stage. « <1% qtz-carb stringers 30.03-80.00*»	84.8	86.2	54618	0.2	0.21	71	25			
				Strong « ser » ultim. alt. Moderate k-spar penult alt. « issem f.gr sx »: « py 3.00%»	87.15	88.39	54620	?	?	?	?			
90	Syenite	87.15	39.29	metallic mineral is assoc with « py stringers » in « very fine vitet », probably tetrahedrite. Both phenocrysis comprise about 15% of total rock volume. One small fragments	88.39	89.7	54621	?	?	?	?			
				(2cm) subrounded of biotite-orthoclase porphyry and present (« with dissem by »). « 1-5% chl-py stringers 0.00-10.00*» « <1% carb stringers 50.00*»	89.7	91.44	54623	0.2	0.18	106	9			
		89.29	94,4	Moderate « ser » ultim. alt. Moderate k-spar penult. alt. « sx in stringers »: « py 3.00%», « fuch 0.10%», 0.2% tetranedrite	91.44 92.4	92.4 93.32	54624 54625	? ?	? ?	?	? ?			
95	Ortho-plag	94.4	4 95 32	to c.gr syenite and f.gr orthoctase-plag porphyritic syenite. few fragments are angular and alt. probably feldspar megacrysts of « fuch » are present. « py vnlets 1.00-10.00mm» assoc with « ser »are crosscutting « carbonate vns ».			54626	?	?	?	?			
	Syenite	95.32	.22	« <1% carb stringers 70.00*». « <1% qtz-carb stringers 50.00-60.00*» Strong « ser » ultim. alt. Strong k-spar penult. alt. « Dissen f or ss » (or y 3.0%)». « first 0.30%» « sp 0.10%»	94.49 96	96 97.54	54628 54629	0.2 ?	0.2 ?	69 ?	6 ?			
Scale 1:200 11/09/02 15:21:18						I								

Ł
Proje	ect: Axelgold											Pa	ge Nc	. 4
AX0	2-014													
	d_geol					· · · · · · · · · · · · · · · · · · ·		D_SA	MP					
Dept: At	rocktype	g_from	g_to	descript				S_FROM	S_TC	SAMPLE	AU_2014	4G_2974	ເສັ້າຄາ	140_9914
100	Syenite intrusive brxx	95.32	.22	to c.gr syanite and f.gr orthobase-blag porpr 1.00-10.0Cmm» assoc with « ser »are cross: « <1% carb stringers 70.00°», « <1% ciz-car Strong « ser » ulbm, alt. Strong k-spar cenul « Dissem f.gr sx », « py 3.00%», « fuch 0.30	ymbo syenite, few fragments are angular an utting « carbonate vns ». c stringers 50.00-60.00°» . a.t. %»« sb 0.10%»	d alt. probably felospar megacrysts of « fuc	h » are present. « py vnlets	96 97.54 99.04	97.54 99.04 .58	54629 54630 54631	? ? ?	?	? ? ?	?
	Syenite intrusive brectia Intrusive brectia (svenite)	.22 53	-53 38	 F to migr intrusive preccia (syenite?) about 4% of « finely dissem by ». Alteration Moderate k-spar ultim, alt. Weak « ser » per « Dissem figr sx »: « by 4 00%», « filon 0.10 	s assoc with more pyrite. Thefragments rep art, alt.	resent ~25% of volume (sample taken for T	S and WR).	.58 .22 .53	.22 .53 .38	54633 54634 54635	0.2 ? ?	0.18 	87 	11 2 2 2
- 105				after « fuch » grains, « Finew dissem by » th volume, « f1 60.00°» Moderate « ser » ultim, art. Moderate k-spar « <u>Dissem f.gr sx »; « py 4.00%», « fuch 0.10</u>	roughout the interval (in the matrix assoc wi conult, alt.	th « ser » and with the fragments.) These fr	agments comprise about 35% of rock	.38 .68	.58	54636 54637	? ?	? ?	?	? ?
-110								.18 .73 .28	.73 .28 .78	54638 54639 54640	02 ? ? ?	0.22 ? ?	53 ? ? ?	17 ? ? ?
115						undument and size waring from from up to to	an access. These fragments are from	.78 114.2	114.2 82	54641 54643	7 0.2	? 0.21	? 57	? 9
	Syenite intrusive breccia			Dark to med grey, attered (« ser »), with appendix the interval. The rock (ooks « 130,85-137.00 A small dissem py vn 5 « 104,38-107.50 ft 15:03-70.90*» « 107.50-107.56 >3C% (arb-ov stingers)	comphyritic, probably becuase of xenocrysts 0.00° 2.00cm» with « ser » and « chl ». 50.00-50.00°»	s (felds). Few grains of tetrahedrite are pres	ent in « qtz-Cârb vns ».	.82 .32	.32 .42	54644 54645	?	7	? ?	? ?
-120 38 137 ^(a) 107.56 > 30% starb-ys stringers 50.00 ⁻ » (100-s0.00 ⁻ » ^(a) (107.56 + 122.23 < 1% carb stringers 50.00 ⁻ » (100 carb stringers 40.00 ⁻ », (110.00-70.00 ⁻ » ^(a) (122.23 + 127.82 carb stringers 50.00 ⁻ » (100.50.00 ⁻ » ^(a) (122.23 + 127.82 carb stringers 50.00 ⁻ » (110.00-50.00 ⁻ » ^(a) (122.82 + 137.00 c1% graders 50.00 ⁻ » (110.00-50.00 ⁻ » ^(a) (127.82 + 137.00 c1% graders 50.00 ⁻ » (110.00-50.00 ⁻ » ^(a) (127.82 + 137.00 c1% graders 50.00 ⁻ » (110.00 ⁻ » ^(a) (104.38 + 137.00 c1% graders 50.00 ⁻ » (110.00 ⁻ » ^(a) (104.38 + 137.00 c1% graders 50.00 ⁻ » ^(a) (104.38 + 137.00 c1% graders 50.00 ⁻ » ^(a) (104.38 + 137.00 c1% graders 50.00 ⁻ » ^(a) (104.38 + 137.00 c1% graders 50.00 ⁻ » ^(a) (104.38 + 137.00 c1% graders 50.00 ⁻ » ^(a) (104.38 + 137.00 c1% graders 50.00 ⁻ » ^(a) (104.38 + 137.00 c1% graders 50.00 ⁻ » ^(a) (104.38 + 137.00 c1% graders 50.00 ⁻ » ^(a) (104.38 + 137.00 c1% graders 50.00 ⁻ » ^(a) (104.38 + 137.00 c1% graders 50.00 ⁻ » ^(a) (104.38 + 137.00 c1% graders 50.00 ⁻ » ^(a) (104.38 + 137.00 c1% graders 50.00 ⁻ » ^(a) (104.38 + 137.00 c1% graders 50.00 ⁻ » ^(a) (104.38 + 137.00 c1% graders 50.00 ⁻ » ^(a) (104.38 + 137.00 c1% graders 50.00 ⁻ » ^(a) (104.38 + 137.00 c1% graders 50.00 ⁻ » ^(a) (104.38 + 137.00 c1% (104.38 + 137.00 c1% (104.38 + 137.00 c1% (104.38 + 137.00 c1% (104.38 + 137.00 c1% (104.38 + 137.00 c1% (104.38 + 137.00 c1% (104.38 + 137.00 c1% (104.38 + 137.00 c1% (104.38 + 137.00 c1% (104.38 + 137.00 c1% (104.38 + 137.00 c1% (104.38 + 137.00 c1% (104.38 + 137.00 c1% (104.38 + 137.00 c1% (104.38 + 137.00 c1% (104.38 + 137.00 c1% (104.38 + 137.00 c1% (104.38 + 137.00 c1% (104.38 + 137.08 + 137.08 + 138.38 + 137.08 + 138.38 + 138.38 + 138.38 + 138.38 + 138.38 + 138.38									? ?	? ?	?			
								.92	.37	54648	0.3	0.14	55	20
125								.37	.97	54649	2	?	?	?
								.97 .45	.45	54650 54651	?	?	?	2
								02	52	54653	02	0.17	52	8
Scale	1:200		•	4 ·····	11/09/02		15:21:18							

* * * * * * * * * * * * * * * * * *

ŧ.

Project: Axelgold												5
AX02	2-014											
	d_geol					D_SA	MP					
Deptn ⊰t	rocktype	9_'ram	g_to	descript		S_FROM	s_to	SAMPLE	w_≫v	AG_PPN	ວນຼອອນ	มดูวอม
130				Dark to med grey, altered (< ser *), with abundant fragments (about 60-70% of total rock volume) and size varies from 1mm up to 2 noted throughout the interval. The rock looks porphyritic, probably becase of xenocrysts (felds). Few grains of tetrahedrite are presented and a set of the	t cm across. These fragments are from ent in « qtz-carb vns ».	.02 52	06	54654	2	9.17 7	?	2
	Syenite intrusive breccia	12	137	 ▲ 133,35-137,00 A small diseased by Vn 30.00 2,000ms with « ser » and « Ght ». ▲ 104,38-107,55 ft 15:00-70.00° × ▲ 107,55-107,55 >30% carb-py sungers 50.00-60.00° × ▲ 107,55-122,23 <1% carb stringers 50.00° × « <1% carb stringers 40.00° ×. « ft 40.00-70.00° × ▲ 107,55-122,23 <1% carb stringers 50.00° × « <1% carb stringers 40.00° ×. 		.06 .66	.66 .11	54655 54656	7 ?	?	? ?	?
135		10				.11	.61	54657	?	?	?	?
	Ortho-plag syenite? dyke	137	- 37.7	2.5cm in length and plagioclase altered into light yellowish (« ser ? ») with size range from 0.5mm up to 2mm long (about 2% of rock phenocrysts oriented at 40 deg to CA.) Numerous grains (phenocrysts? or xenocrysts or alt. product of « fuch ») are present. « Diss < 1% data stingers 40.00* are transitioned at 40.00*	 volume). Nice trachytic texture sem py » throughout. 	.61 137	137 137.7	54658 54859	0.2	0.17	59 7	8
-140				Moderate « ser » uitim, alt, Moderate <-spar penult ait. « Dissem f.gr sx »: « py 4.00%», « fuon 0.50%»		137.7	140.2	54660	?	?	7	?
Syenite Dark to med grey, altered imatrix alt. to « ser » and the fragments to k-spar) Syenite intrusive breccia with sunrounded to subangular fragments up to 21cm across and have 140.2 76 544 Syenite tifferetin origins (mainty from the different types of syenities or related rocks) These fragments comprise about 55-60% of total rock volume. « F to m.gr py » dissem in the 76 54									?	?	?	?
	intrusive breccia	137.7	.37	matrix and the fragments (mainly in the matrix assoc with « ser » altered zones) A few grains of tetrahedrite ? are assoc with « 147.35-147.37 large k-soar/calcte/ser/oy vns up to 4.00cm» « 137.70-147.35 <1% etc-carb stimeers 40.00° » « (1 50.00-40.00° »		.26	.26	54664	?	0.19 ?	52 ?	?
-145				« 147.35-147.37 15-30% k-feldspar + caro stringers 30.00*» Strong « 137.70- 147.37 ser ≽ ultim ait. Moderate k-spar penult, alt. « Dissem f.gr sx »: « by 3.00%», 0.1% tetrahedrite, « fuch 0.10%»		.75	- 146.3	54665	 ?	··· · ·	?	?
	-			- · · · · · · · · · · · · · · · · · · ·		146 3	87	54667	7	?	?	?
150				m to e.gr; Light grey, m to e.gr. altered (« ser »/k-spar) porphyritic syenites, feidspar phenocrysts are pink colour and comprise about across, « Dissem by 2.00%»throughout with « tr of sb » and/or tetrahedrite.	t 70% of rock volume and avg 4mm	.87 .35	.35 .85	54668 54669	0.2	0.17	15 ?	2
	Alt porphyritic syenite	.87	.35	∝ <1% qtz-carb stringers 50.00*» ∝ f1 50.00-70.00*» Strong ∝ ser » ultim alt. Moderate k-spar penult alt. ≪ Dissem f.gr sx » ≪ py 2.00%», 0.1% tetrahedrite, « fuch 0.10%». « sb 0.10%»		.85	152.4	54670	?	?	?	?
	-					152.4	.35	54672	7	?	?	?
155	155 Similar to the symme and sive directa above with < to migrit disert py with dealing in the matrix where it's associated with								0.22	78 ?	7	
	Syenite intrusive breccia	.35	161	« f1 10.00-50.00°» Strong se« ser » ultim, alt. Moderate k-spar penult alt. « Dissem f.gr sx »: « py 4.00%», « sb 0.10%», « fuch 0.10%»		.95	158.5	54675	?	?	?	?
160	Altered porph			Spoardic carb »/dolomite alteration noted in a few places. « The thin carb vns » are the earliest cut by k-spar/carb. « 1-5% k-feldspar + carb stringers 60.00° » « <1% carb stringers 70.00° » « í1 50.00-60.00° » Strong k-spar ultim. alt. Weak « ser » penult. alt.		158.5	161	54676	?	?	?	?
<u> </u>	syenite	161	.13	« Dissem f.gr sx »: « by 3.00%», « sb 0.20%», 0.1% tetrahedrite, « fuch 0.10%»	15:21:18	161	99	54677	?	?	?	-
Scale	1:200			T T T T T T T T T T T T T T T T T T T	13.21.10							1

8

L

Proje	ect: Axelgold										Pa	ge No	: 6	
AX02	2-014													
	d_geol						D_SA	MP						
Depth At	rocktype	g_from	g_to	descript		······································	S_FROM	S_TC	SAMPLE	AU_2994	AG_PPM	CU_30M	MO_2014	
							161	.99	54677	?	?	?	?	
-165							.99 69	.69 19	54678 54679	0.2	0.2	17	1	
							.19	.69	54680	· - ·· ?	?	,	?	
}							.69	.19	54682	?	?	?	?	
-170				Spoardic carb »/dolomite alteration noted in a few places.	The thin carb vns » are the earliest cut by k-spar/carb.		.19	.69	54683 	0.2	0.28	14	6	
	Altered porph syenite			1-5% k-feldspar + carb stringers 60.00°» « <1% carb stringers 70.00°» « f1 50.00-60.00°»										
		161	.13				.19 	.94	54685	?	?	?	?	
175							.94	.44	54686	?	?	?	- ?	
							.44	.74	54687	?	?	?	"	
							,74	.24	54688	0.2	0.22	19	4	
180							.24	.83	54689	?	?	7 2	?	
							13	. 13	54692	2	,	2	,	
							.88	.38	54693	0.2	0.34	72	6	
185				Dark to med grey, altered (« ser »/k-spar and « minor carb »	 calcite)Syenite intrusive breccia simialr to syenite described before 	with « dissem and anastamosing py »	.38	.93	54694	?	?	?	?	
	Syenite			noted locally (from digested megacrystic syenite.) «181.13- 204.70 <1% k-feldspar and carb stringers 50.00-	.93	.43	54695	?	?	,	?			
	intrusive breccia	13	84	 « 181.13- 204.70 <1% carb stringers 60.00-70.00° » « 11 204.70- 205.40 Blocky core (<3cm pieces) 10.00- 30.00° « 205.40- 214.84 <1% carb stringers 80.00° » « f1 30.00 	« 181.13-204.70 <1% carb stringers 50.00-70.00 » « 11 40.00-70.00 » 04.70- 205.40. Blocky core (<3cm pieces) 10.00- 30.00° « 205.40- 214.84. <1% carb stringers 80.00°» « f1 30.00-60.00°»							?	?	
190		. (3	.04	Strong « 181,13-214,84 ser » ultim, alt Moderate k-spar penult, alt, « Dissem for sx » « nv 4 00%» « sh 0 10%» « fuch 0 10%	5 M		.98	190.5	54697	?	?	?	?	
							190.5	.02	54698	0.2	0.22	49	10	
							.02 .52	.52 .07	54699 54700	? _?	? ?	? ?	?	
Scale	1:200			11/09/02		15:21:18								

.

Proje	ect: Axelgold											Pa	ge No.	.: 7	
AX02	2-014														
	a_geoi							D_SA	MP					1	
Deptr 4	rocktype	c_from	Ç_:0	descript			·····	S_FROM	S_TC	SAMPLE	~u_~u	AG_304	ເບຼ≫ຟ	MO_2004	
195								.52	.07	54700 	?	2	?	?	
ļ								.07	.62	54702	?	,	?	?	
								.62	.12	54703	0.2	0.21	60	15	
200								.12	.62	54/04	• _	7	7	?	
				Dark to med grey, altered (« ser »/k-spar and	rk to med grey, altered (« ser »/k-spar and « minor carb »: calcite)Syenite intrusive breccia simialr to syenite described before with « dissem and anastamosing py »										
				noted locally (from digested megacrystic sye	ed locally (from digested megacrystic syenite.) 11.13- 204.70 <1% k-feldspar and carb stringers 50.00-60.00*» 72 22 54708 0.2 0.3										
205	Syenite intrusive			 «181,13-204,70 <179 k-erdspar and carb s «181,13-204,70 <1% carb stringers 60. 204,70-205,40 Blocky core (<3cm pieces) 	.13: 204.70 <1% k-feldspar and carb stringers 50.00-50.00*»										
203	Ulistica			 « 205.40- 214.84 <1% caro stringers 30. Strong « 181.13- 214.84 ser » uttim. alt Medante k and apprix att 	225.40 Blocky core (Schildeces) (0.00-30.00 205.40-214.84 stry caro suringers 30.00° » «f1 30.00-60.00°» g « 131.13-214.84 ser » utim. alt 77 26 54710 2 2										
		.13	.34	« Dissem f.gr sx »: « py 4.00%», « sb 0.10%	», « fuca 0.10%»			26	76	54712	- ,	,			
								76	31	54713	0.2	0.21	68	6	
210								31	01	54714	2	,		2	
								.91	.36	54715	2	,	?	2	
								.36	- .84	54716	2	?	?	?	
215		ţ		throughout (f to m.gr) K-spar xenocrysts com fractured mainly along (log illeg:"divage"?"di	pose the bulk of the fragments there are pin vage"?) class filled with dolomite, this pabse	kish to grey, subhedral to broken, resorped of fracturation happened before the brecci.	(w/ reaction rims ~ 0.5-1mm thick) a event. The size of these k-soar	.84	.41	54717	2	,	,	?	
				xenocrysts vary from 0.5mm to 4cm long. At	the start of the interval, these xenocrysts are	e showing a trachytic texture at 40°. the cla	sts are made of f.gr dark grey seynite	.41	.91	54718	0.2	0 58	75	1	
	Syenite intrusive breccia			areas, the xenocrysts are more abundant (do	ominant the clasts) and [log illeg;" ins versa" 30°» Trachytic texture, 35-40° *- 80°	y with the syenitic fragments.		.91	.48	54719	,	,	7	7	
220	orcould	.84	222.5	<pre></pre>								?	?	?	
				Strong « carb » (probably ankente) « ser » ultim, all. Weak k-spar penduit all. cut by « large qtz/carb/ser/muscovite vns up to 7cm thick». These large veins are cross-cutting another set of « carb vns up to 2.00mm thick» « Tr to minor sb », « sph », tetrahedrite are dissem in the large veins. « A few grains of fuch » are noted, p« Finely dissem py » and « py forming vniets » assoc, with the « large stringers 3.00%».								,	?	?	
	Syenite intrusive breccia	222.5	.05	Similar to the syenite intrusive breccia described previously, except has more « py heavily dissem in some areas». « carb » are replacing the k-spar xenocrysts and partially the matrix (very local). The core is broken towards the end of interval with « some shear » filled with « chl ». « Tr fuch » noted								0.33	88	6	
225	Syenite	05	774 B	« <1% carb stringers 50,00-90,00°», « <1%; « f1 60,00-70,00°» Strong k-spar « carb » (agkarite) « sec » ultimation (agkarite) » (agkarite) (agka	by stringers 20.00°»			.05	.55	54724	?	?	?	?	
	breccia		2.34.0	« Dissem f.gr sx »: « oy 4.00%», « fuch 0.10	%»			.55	.05	54725	2	?	?	2	
Scale	1:200				11/09/02		15:21:19								

Proje	ct: Axelgold											Pa	çe No	8
AX02	2-014						· · · · · · · · · · · · · · · · · · ·							
<u> </u>	d_geol				,,,,,,,,,,,,,,,			D_SA	MP					
Depin At	rocktype	g_from	g_to	descript				S_FRCM	S_TC	SAMPLE	4 ^{.00} ,11	40 ^{,204}	c:_≫v	vc,>>u
								.55	.05	54725	?	2	?	?
								.05	228.6	54726	?	,	7	?
230	Syenite			Similar to the syenite intrusive breccia descrite the matrix (very local) The core is broken to < <1% carb stringers 60.00-90.00** « <1% (ibed previously, except has more « py heavil wards the end of interval with « some shear » by stringers 20.00°»	y dissem in some areas». « carb » are rep » filled with « chi ». « Tr fuch » noted.	placing the k-spar xenocrysts and partially	228.6	230.1	54727	?	?	?	?
	breccia		124.0	« f1 60.00-70.00°» Strong k-spar « carb » (ankerite) « ser » ultin	n alt Weak « chi »penult alt			230. t	.65	54728	0.4	0.31	57	9
		.05	234 0	« Dissem f.gr sx »: « py 4.00%», « fuch 0.10	%»			.65	.15	54729	?	?	?	?
225				-	,		· · · · · · · · · · · ·	.15	234.8	54730	?	?	?	?
235		ĺ	1					234.8	236.2	54732	?	?	?	?
								236.2	.74	54733	0.2	0.29	29	7
								.74	.24	54734	?	?	2	?
240								.24	.79	54735	?	?	7	?
	}							.79	.29	54736	?	?	?	?
				volume with size range from 1 to 10mm long (more abundant) in sericite zone. « Tr of sb »	, euhedral to subhedral. The matrix is comple and/or tetrahedrite are present as finely dis:	etely k-spar and « ser » altered. « py » is fi sem asn as « vnlets », assoc with « ser »a	inely dissem throughout but it gets richer altered zones (with « fuch ») ([log	.29	.84	54737	?	?	7	?
245	Altered			(sample taken) just before the contact with s « 234.80- 238.84 chl stringers 0.00- 30.0 « 238 84- 258 38 <1 carb stringers 30.00	yenite intrusive breccia. 0°»Blocky core (pieces <3cm) at 30°. I-60.00°»			.84	.34	54738	0.2	0.21	12	5
	porphyritic syenite			(log unclear: "CBSE" listed as stockwork, but Strong k-spar ultim alt. Moderate	t acronym not in translation-notes. Probably «	« carb » « ser » « stringers »? <1%. 20-50	°] « f1 15.00-70.00°»	.34	.89	54740	,	?	?	?
]			« 234.00° 256.36 Ser » pendit alt. « Dissem f.gr sx »: « py 2.00%», 0.1% tetrah	edrite, « sph 0.10%», « fuch 0.10%»			.89	.39	54741	?	'	?	2
250		234.8	.38					.39	.94	54742	?	?	?	?
.94 .44 54743 0.									0.2	0.26	12	32		
		44 98 54								54745	?	2	,	?
								.98	.53	54746	?	?	?	?
255				« Finely dissem py » throughout. « Few calci « 1-5% set-carb-py stripgers 50.00°» « <1%	te and fluorite vns 80.00°» fluorite-carb stringers 80.00°»			.53	.03	54747	?	?	?	?
	A.H			« shear 15.00-20.00*»				.03	.38	54748	0.3	0.4	21	21
	Alt syenite intrusive brxx	38	.38	« sx in stringers 0.10-1.00cm»; « by 5.00%»	, « fuch 0.50%», « fluor 0.30%»		· · · · · · · · · · · · · · · · · · ·	.38	58	54750	,	,	2	2
Scale	1:200				11/09/02		15:21:19							

Strolect: Strolect: <t< th=""><th></th><th>·····</th><th></th><th></th><th></th><th></th><th>·······</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>		·····					·······							
All point D_SAMP All syonite intrusive brix, 33 a. 19 Second All syonite intrusive brix, 34 a. 19 Second a. 19 Second a. 19	roje	ct: Axelgoid				T				<u>.</u>			Page	3 No.: 9
Mark Borkhom Low Dubban Borkhom e Findle dissem by a throughout, a few calcite and fuorite vis 80.00° + a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or a the set is 100.00 or		d ceol					<u></u>							
280 All syenite intrusive brx 38 38 59 50.01% < 1% functionation singers 80.00%	pin At	rocktype	g_irom	g_to	descript	······································			S_FROM	IS TO	SAMPLE	U_2PM	3_20 M CL	, >>u 140
intrusive Drx 38 38 • • • • • • • • • • • • • • • • • • •	260	Alt syenite			« Finely dissem py » throughout. « Few calcite « 1-5% ser-carb-py stringers 50.00"» « <1% flu « shear 15.00-20.00"» Intense « carb » (probably ankerite) « ser » ultir	and fluorite vns 80.00°» prite-carb stringers 80.00°» n. alt. Weak k-spar penult alt			.38 .58	.58	54750 54751	? ? ?	, , ,	2
Synthe intrusive braccia 38 22 54.75 7 7 270 2 299.5 54756 7 7 7 270 2 299.5 54756 7 7 7 270 2 299.5 54756 7 7 7 270 2 299.5 54756 7 7 7 270 2 299.5 54756 7 7 7 270 2 2 299.5 27 54757 7 7 270 2 2 299.5 27 54757 7 7 7 275 3 4 4 4 4 4 4 4 4 4 5 7 7 7 275 3 4 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 <td< td=""><td>265</td><td>intrusive brxx</td><td>.38</td><td>.38</td><td>« sx in stringers 0.10-1.00cm»: « py 5.00%», «</td><td>fuch 0.50%», « fluor 0.30%»</td><td>, a « tr of sb » and tetrahedrite, « fuch »</td><td>and « small grains of fluor » are noted</td><td>.13 .63 .18</td><td>.63 .18 .38</td><td>54752 54753 54754</td><td>? 0.7 0 ?</td><td>?).34 ?</td><td>? 1 81 9 ?</td></td<>	265	intrusive brxx	.38	.38	« sx in stringers 0.10-1.00cm»: « py 5.00%», «	fuch 0.50%», « fluor 0.30%»	, a « tr of sb » and tetrahedrite, « fuch »	and « small grains of fluor » are noted	.13 .63 .18	.63 .18 .38	54752 54753 54754	? 0.7 0 ?	?).34 ?	? 1 81 9 ?
270 289 5 27 5475 7 <td< td=""><td></td><td>Syenite intrusive breccia</td><td>.38</td><td>269.5</td><td>throughout. « <1% carb stringers 85.00°» « f1 40.00-60.00°» Strong k-spar ultim alt. Strong « carb » (probabl « Dissem f.gr <u>sx »: « py 3.00%», « sb 0.10%»,</u> (</td><td>y ankerite) « ser » penult. alt). 1% tetranedrite, « fuch 0.20%», « fluor 0</td><td>.10%»</td><td>-</td><td>.38 .22</td><td>.22 269.5</td><td>54755 54756</td><td>?</td><td>?</td><td>? ?</td></td<>		Syenite intrusive breccia	.38	269.5	throughout. « <1% carb stringers 85.00°» « f1 40.00-60.00°» Strong k-spar ultim alt. Strong « carb » (probabl « Dissem f.gr <u>sx »: « py 3.00%», « sb 0.10%»,</u> (y ankerite) « ser » penult. alt). 1% tetranedrite, « fuch 0.20%», « fluor 0	.10%»	-	.38 .22	.22 269.5	54755 54756	?	?	? ?
275 Aird syenife intrusive brxx 5 <t< td=""><td>.70</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>269,5 .27</td><td>.27 </td><td>54757 54758</td><td>?</td><td>?</td><td>? ? ? ?</td></t<>	.70								269,5 .27	.27 	54757 54758	?	?	? ? ? ?
Altd syenite intrusive brxx 37 54761 7	75								.32	.82	54760	,	?	, , ,
$\frac{1}{100 \text{ syeme}} = \frac{1}{100 \text{ syeme}} + \frac{1}{100 \text{ symme}} $		Alte avagita			Similar to the syenite intrusive breccia descrived	f before with « extensive ser »/ « carb » all	teration, fragments with reaction rims, sub	angular to subrounded, from different	.82 .37	.37 .87	54761 54762	?	?	, , , ,
289.5 56 289.6 56 92 46 5476 7 7 7 92 46 96 5476 7 7 7 7 93 56 56 56 56 56 56 56 56 57 7 <td>80</td> <td>intrusive brxx</td> <td></td> <td></td> <td>types of syenite (megacrystic orthoclaseplag po interval (increasing in the matrix) « Few fine py</td> <td>rphyry, m to c.gr porphyritic xenocrysts of stringers 35-40 deg to CA, 1.00- 2.00mm»</td> <td>k-spar, and « fuch »-altered small fragme assoc with « carb » and « ser »/ « chl » a</td> <td>nts) « Finely dissem py » throughout the re noted> « anastamosing py »</td> <td>.87</td> <td>.42</td> <td>54763</td> <td>?</td> <td>,</td> <td>? ?</td>	80	intrusive brxx			types of syenite (megacrystic orthoclaseplag po interval (increasing in the matrix) « Few fine py	rphyry, m to c.gr porphyritic xenocrysts of stringers 35-40 deg to CA, 1.00- 2.00mm»	k-spar, and « fuch »-altered small fragme assoc with « carb » and « ser »/ « chl » a	nts) « Finely dissem py » throughout the re noted> « anastamosing py »	.87	.42	54763	?	,	? ?
285 .46 .96 .54766 .7 .7 .7 .96 .51 .54767 .7 .7 .7 .7 .51 0.1 .54768 .7 .7 .7			269.5	.56					.42 .92	.92	64764 64765	0.2 0. 2	23 9 ?	°C 37
96 51 54767 7 7 7 51 01 54768 7 7 7	85								.46	.96	4766	?	, .	, ,
51 01 54768 ? ? ?									.96	.51 5	4767	?	, , ,	?
									.96 .51	.01 5	4767	?	,	, ,

RUBICON	MINERALS	CORPORATION	- DRILL	LOG
---------	-----------------	-------------	---------	-----

Start_date: 22/08/02

End_date 23/08/02 Logged_by G. Allen

L

ł

ß

•

ŧ.

l

AX02-013		Northing (UTM15 NAD83) 6206981	Easting (UTM15 NAD83)	314338	Elev(ASL) 1844	CoreSize - NQ
Length(m)	155.45	Local co-ord North	Local Co-ord East		Claim	Contractor: Britton Bros
						Re-logged_by/date
TESTS:	Depth	Туре	Dip Az			Comments
	0		-61 185			
	91.4-	Acid test	58.5 185			
	155.45	Acid test	-58.5 185			

ĥ

November 9, 2002

Ł

Proje	ect: Axelgold			<u> </u>		<u></u>	<u></u>					Pa	ge No.	: 1
AX0:	2-013						<u></u>							
	c_geol							D_S/	MP					
Cept At	rocktype	s_from	g_to	descript				S_FRON	S_TC	sume	<u>۱۳۵</u> ۵	LG_PPM	ເບ_≫າ	MQ_PPN
2.5														
-7.5	Casing	a	-2.19	?										
-10												-		
12.5	Megacrystic Syenite	12.19	19.4	K-spar phenos >/= 1cm. Medium blue grey to greenish grey f.gr groundmass hosting 30% + cream to orange brown coloured stubby subhedral orthoclase crystals to 2cm fracture surfaces. Vague prism-shaped phenos or pseudo-morphs of phenos to 0.1mm in groundmass. <5% probably altered plagioclase phenos. « Sporadic dissem py generally much less than 0.50% Traces to 0.5% [log illeg. "Pg"?] blue grey metallic (?) Could be [log unclear: "lwcoxene?" Blocky core (<3cm pieces) 30-70*. Weak « ser » uitim alt. Weak k-spar penult. alt. « Dissem sx »: « f.gr py 0.50%», « f.gr Im 1.00%»								?	?	? ?
Scale	1:100				11/09/02		15:21.32							

.

L

Proj	ect: Axelgold									Pa	ge No	. 2
AX0	2-013											
	d_geol					D_SA	MP					
Depin A	rocktype	g_from	g_to	descript		S_FROM	S_TC	SAMPLE	AU_2994	AG_PP4	c:,	40_224
17.5	Megacrystic Syenite	12.19	19.4	K-spar phenos >/= 1cm. Medium blue grey to greenish grey f.gr groundmass hosting 30% + cream to orange brown coloured stubl fracture surfaces. Vague prism-shaped phenos or pseudo-morphs of phenos to 0.1mm in groundmass. <5% probably altered plagi generally much less than 0.50%». Traces to 0.5% [log illeg: "Pg"?] blue grey metallic (?) Could be (log unclear: "twcoxene?" Blocky core (<3cm pieces) 30-70*. Weak « ser » ultim alt. Weak k-spar penult, alt. « Dissem sx »: « f.gr py 0.50%», « f.gr Im 1.00%».	oy subhedral orthoclase crystals to 2cm loclase phenos. « Sporadic dissem py	15.24	18.29 19.24	54509 54510	?	Ş	?	?
-20						19.24	21.34	54511	0.2	0.18	55	20
-22.5						21.34	24.38	54512	?	?	?	?
25	Megacrystic Syenite			M to C.gr ppyK-spar phenos >/= 1cm. Much as above. [log illeg] blocky and « more py » in start of interval. « Strongly Im » along a [log illeg: "works:"? "Wials"?] « carb » alt of plagioclase phenos. « 19.40- 21.90 ft 10.00-40.00°» Weak « ser » ultim. alt. Weak k-spar « carb »(ankerite) « ser »penult alt. « Dissem sx »: « f.gr py 1.50%», « f.gr Im 1.00%» 21.9- 33.53 Blocky core (<3 cm pieces) 20.00- 60.00°	nd adjacent to « f1 ». Surface weathering	24.38	27,43	54514	2	7	?	?
27.5		19.4	33.53			27.43	30.48	54515	?	?	?	?
- 30						30.48	33.53	54516	0.2	0.31	43	19
Scale	1:100	L		11/09/02	15:21:32							

Proje	ect: Axelgold											Pag	je No	3
AX 02	2-013													
	d_geoi							D_SA	MP					
Clepst At	rocktype	سد"ث	g_to	fescript				S_ROM	S_TC	SAMPLE	AU_PPU	NG_PPN	ເບຼຂອງ	MC_294
	Megacrystic Syenite	:34	33.53	M to C.gr cpyK-spar phenos >/= 1 cm. Much as [log illeg: "works."? "Wals '?] * caro > alt of plag * 19:40- 21:96 f1 10:20-40:00"> Weak * ser > utim. alt. Weak k-spar < carb >+a < Dissem sx > < f gr py 1:50%>, < f.gr Im 1:00 21:9-33:53 Blocky core (<3 cm preces) 20:00-	adove. [log illeg] blocky and « more py » jioclase phenos. nkente) « ser »penult alt. %» 60.00°	in start of interval « Strongly Im » along ar	nd adjacent to « f1 ». Surface weathering	30,48	33.53	54516	0.2	0.31	43	19
35	Syenite	33 53	37. t	M to C.gr orthoclase ppy; Sporadic blue grey to * and as attractive haloes around fracture, asso greenish aggregate, « caro * and « ep (?)». Cvi « <1% caro stringers 30.00* » « <1% baro-py si Weak « ser » ultim, alt, Moderate K-scar « caro « sx in stringers » veins average 9 1-1.0cm; «	Im a prange-brown surface weathered to with dendritic MnO2 (pyrolusite). Hard of erprinted by a softer ser and the additional straining solution of the ser and the series solution of the series solution of the series of the	syenite. Orthoclase prisms to 1cm but aver cryptocrystalline blue grey groundmass pro arb-py stringers » cut by « carb stringers ». s 1.00-3.00% » «Im 0.10% » « mn 0.10%»	rage 3-4mm, stubby ~20%, « Im » on « f1 ibably mostly k-spar orthoclase altered to . Both weak.	33.53	36.1	54517	?	?	?	?
								36.1	37.1	54519	?	?	?	?
				· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · ·	• • • • •			f		
37.5	Syenite	37.1	40.25	M to c.gr orthoclase ppy; Mottled bale grey to d Blocky core (<3 cm pieces) C-40 deg to CA. Moderate < ser » citim alt, Weak k-spar < carb : « Dissem sx »: « f.gr py 0, 10%», « f.gr Im 0.50%	ark blue grey ppy. « Stronger ser » overpi » (ankerite) « ser » penult. alt. %», « f.gr fuch 0.10%» ent and crushed rubble. Lower limit of « st	rint than above. « very little py » rong im surface effect»		37.1	40.45	54520	?	?	?	?
40	Fault zone	20 25	40 45	« fault 70.00°» « Im 2.00%»										
42.5	Syenite	40 45	42.2	v.f.gr biue grey metallic. Galena? Stibnite? DO 1-5% « carb bx matrix.» 30-60 deg to CA « <1% Moderate <-scar ultim. alt. « f.gr. dissem sx »: « <u>by 5.00%</u> », <u>« so 0.10%</u> »	ICP. 6 caro-py stringers 20.00*»	······		40.45	42.2	54521	0.8	0.34	113	912
45	Syenite	42.2	49.65	M to C.gr ppy: Bluish to greenish grey moderate surfaces. Contact abrupt but not sharp. Gracual « <1% carb stringers 20.00-60.00*», « <1% cart Moderate « ser » ultim, alt. Weak k-spar penult « F.gr dissem sx »« py 3.00%», « Im 0.10%». «	e soit ppy with phenos to 1cm, average 3- ted over ∼10 cm, DO ICP, b-py stringers » , alt isb 0,10%», « fuch 0,10%»	4mm. Commonly « ser » altered. « Dissen	n py and py along f1, 3.00- 4.00% »	44,4	47.3	54523	0.2	1.13	110	84
47.5				······································				47.3	49.65	54524	0.3	1.36	134	32
Scale	1:100			11.	/09/02		15:21:32							- 1

Proje	ct: Axeigold									Pa	ge No	4
AX02	2-013											
	d_geol					D_S/	MP					
Cessi Al	госктуре	g_from	g_to	descript		S_FROM	s_to	SAMPLE	w~_;ww	AG_PP4	ເບຼ≫ບ	๚๛ู๛๛
50	Syenite	42.2	49.65	M to C.gr ppy: Bluish is greenish grey mode surfaces. Cpntact abrupt but not sharp. Grad « <1% caro stringers 20.00-60.00*», < <% i Moderate « ser » ultim. alt. Weak k-spar per « F.gr dissem sx »« py 3.00%», « im 0.10%)	ate soft ppy with phenos to 1cm, average 3-4mm. Commonly « ser » altered. « Dissem py and py along f1, 3.00- 4.00% » uated over ~10 cm. DO ICP. carb-py stringers » nult, alt, <u>v</u> « sb 0.10%», « fuch 0.10%»	47 3 49 65	49 65 50.7	54524 54525	0.3 ?	1.36 	134 ?	32 ?
-52.5						50.7	51.8	54526 54527	02	0.4 ?	29	31
55 57.5	Megacrystic syenite	49.65	50.96	49.65- 59.50 Glassy hard medium grey K-sr « 49.65- 59.50 f.gr dissem py 3.00%» n « <1% carb-py stringers 30.00°», Moderate k-spar « carb » (ankerite) « ser »u « Dissem f.gr sx » c py 3.00%», « lm 0.10% 59.5- 60.96 Blocky core (<3cm pieces), 0-60	nar alt. groundmass with stubby to prism-shaped subhedral to euhedral orthoclase phenos to 2cm, averaging 1-2cm, nostly in groundmass. « Some py with stringers » tim, alt. ;») deg to CA, « limonite on f1 surfaces.»	7	 ?	?				
-60						57.91	60.96	54530	?	?	?	2
62.5	Megacrystic syenite	60.96	64.8	M.gr syenite porphyry. Medium blue-grey « » alteration, « Mostly dissem, f.gr py 2.00-3. « f1 30.00-80.00°» Moderate « ser » ultim. alt. Moderate k-spar « Dissem f.gr sx »: « py 2.00%», « Im 0.20%	edium blue-grey « tr Im » stained syenite ppy with vague whitish orthoclase phenos to 4mm (average 1-3mm) Softer than unit above. Hard parts em, f.gr py 2.00- 3.00%». t. Moderate k-spar « carb » (ankerite) « ser » penuit, alt. .00%», « Im 0.20%», « fuch 0.10%», « mn 0.10%»						53	72
Scale	1:100				11/09/02 15:21:33		_		_	-		

Project: Axelgold Page Page P												
-013												
d_geol				D_SA	MP							
rocktype	g_from	g_to	descript	S_FROM	s_tc	SAMPLE	AU_0014	AG_PP4	CU_PPA	4C_2014		
Megacrystic syenite	20.50	. 24.3	M.gr syenite porpriyry. Medium blue-grey « tr im » stained syenite ppy with vague whitish orthoclase phenos to 4mm (average 1-3mm) Softer than unit above. Hard parts » afteration. « Mostly dissem, f.gr py 2.30- 3.00%». « f1 30.00-30.00°» Moderate « ser » uttim, alt, Moderate k-spar « carb » (ankerite) « ser » penult, alt. « "Dissem f.gr sx. » « py 2.305%», « fm 3.20%», « fuch 0.10%»	00.30	94.0	,3453 i	د.ب	0.43	53	12		
Megacrystic syenite	64 3	58.9	py and py along foi » parallel ["liners'? "lines"?] Some harder parts probably remissant k-spar alt. « Minor py stringers 30.00°». « <1% caro-py stringers 30.00°» « fol 60.00°» Moderate « ser » Litim, alt. Moderate <-spar « carb » (ankerite) « ser » penult, alt. « Dissem f. gr.sx »: « oy 2.50%» [Type 2) K-spar prenos >/= Tcm.	64.8	68.9	54532	?	?	,	7		
Megacrystic Syenite 63 9 70 Megacrystic svenite 70.1 70.7 Type 2. As above but glossy nard, « Less ser » overprinting. Traces dark blue grey metallic. « f.gr dissem py 3.00-4.00%» Hard gm. White <1mm plagioclase phenos « carb »						54533	?	?	?	2		
Megacrystic syenite Syenite	70.1	70.7	Type 2. As above but glossy hard, « Less ser » overprinting. Traces dark blue grey metallic, « f.gr dissem py 3.00-4.00%» Hard gm. White <1mm plagioclase phenos « carb » « ser » altered. « <1% carb stringers 70.00°» Trace « ser » ultim, alt. Moderate k-scar « carb » (ankerite) « ser » penult, alt. « Dissem f.gr sx »: « py 3.00%» Medium blue grey orthoclase cpy with annedral white orthoclase phenos to 2mm (stubby) Relatively hard. K-spar overprinted by « ser ». « Dissem py » and « py along fol 30.00°». « Patchy ser » alteration gives the rock a vague « bx »appearance. Matrix of « ser » alteration is f.gr. 'Fragments' rounded, up to 15cm with stubby anhedral 1-3mm whitish orthoclase phenos preserved. 'Fragments' are hard. k-spar alteration. « <1% carb stringers 40.00-60.00°» " fol 30.00°». Weak « ser » ultim, ait. Moderate k-scar « carb » (ankerite) « ser » penuit, alt. « Dissem f.gr. sc. « The carb stringers 40.00-60.00°»	70.7	73.15	54534	?	?	?	7		
 70.7 76.9 76.9 Medium hard. Looks like initial k-spar att overprinted by « ser ». « Dissem, stringer and discontinuous lenses py » parallel to foliation. x 1-5% carb-py stringers 30.00-70.00" « fol 40.00" « cut by later , « <1% hainine carb stringers » Moderate « ser »uitim. att. Moderate k-spar penult. att. * WR/TS at 78.4. Check for ID on blue grey mineral Tr blue grey metallic sulphide along foliation with pyrite. Poss. stibnite. « Dissem f.gr sx »: « py 4.00% «, « sb 0.10% » Prostile_system f.gr sx »: « py 4.00% «, « sb 0.10% » Prostile_system f.gr sx »: « py 4.00% « sb 0.10% » Prostile_system f.gr sx »: « py 4.00% « sb 0.10% » Prostile_system f.gr sx »: « py 4.00% « sb 0.10% » Prostile_system f.gr sx »: « py 4.00% « sb 0.10% » Prostile_system f.gr sx »: « py 4.00% « sb 0.10% » Prostile_system f.gr sx »: « py 4.00% « sb 0.10% » Prostile_system f.gr sx »: « py 4.00% « sb 0.10% » Prostile_system f.gr sx »: « py 4.00% « sb 0.10% » Prostile_system f.gr sx »: « py 4.00% « sb 0.10% » Prostile_system f.gr sx »: « py 4.00% « sb 0.10% » Prostile_system f.gr sx »: « py 4.00% « sb 0.10% » Prostile_system f.gr sx »: « py 4.00% « sb 0.10% » Prostile_system f.gr sx »: « py 4.00% « sb 0.10% » Prostile_system f.gr sx »: « py 4.00% « sb 0.10% » Prostile_system f.gr sx »: « py 4.00% « sb 0.10% » Prostile_system f.gr sx »: « py 4.00% « sb 0.10% » Prostile_system f.gr sx »: « py 4.00% « sb 0.10% » Prostile_system f.gr sx »: « py 4.00% « sb 0.10% » Prostile_system f.gr sx »: « py 4.00% « sb 0.10% » Prostile_system f.gr sx % (black for f.gr sx % (black f.g					76.9	54535	?	?	2	?		
77.5 Syenite 10 cm.				14	0.28	125	88					
2			+ plag. Traces dark blue grey metallic («sb ?»)	80.5	82.3	54530	,	,	,	,		
Syenite	80.5	90.07		00.3	د.عن		_ 1			-1		
	Ct: Axeigoid 013 1_geol ock:ype Megacrystic syenite Megacrystic Syenite Megacrystic Syenite Syenite Syenite	Syenite 70.7 Syenite 70.7 Syenite 70.7 Syenite 70.7 Syenite 70.1	Strengold 013 1_geol Sfrem S10 Megacrystic 30.57 34.3 Megacrystic 68.9 70.1 70.7 Megacrystic 68.9 70.1 70.7 Megacrystic 68.9 70.1 70.7 Syenite 70.7 76.9 30.5 30.5 Syenite 76.9 80.5 30.07 30.5 Syenite 80.5 30.07 100	Str. Axelogical 013 Ippol Deckyper 1/10 Regacystic 1/10 Symite 1/10 Symit	Set Axelogical 0.3 Igent 0.5A Megacoysic -1* Address to post-first post-f	Sector Unit Description Description Description Description Import Mail Present Export Mail Present Export Mail Present Export MediatoryLine Import Mail Present Export Mail Present Export Mail Present Export MediatoryLine Import Mail Present Export Mail Present Export Mail Present Export MediatoryLine Import Mail Present Export Mail Present Export Mail Present Export MediatoryLine Import Mail Present Export Mail Present Export Mail Present Export MediatoryLine Import Present Export Mail Present Export Mail Present Export MediatoryLine Import Present Export Mail Present Export Mail Present Export MediatoryLine Import Present Export Mail Present Export Mail Present Export MediatoryLine Import Present Export Mail Present Export Mail Present Export MediatoryLine Import Present Export Mail Present Export Mail Present Export MediatoryLine Import Present Export Mail Present Export Mail Present Export MediatoryLine Import Present Present Export Mail Present Export Mail Present Present Export <tr< td=""><td>Str. X. Septon 0.3 Update: 0.5 Deckings k.mm b_usic peace/set peace/set Systemic k.mm b_usic peace/set set = set = set min. mm bit peace/set set = set min. mm bit peace/set set = set min. mm bit peace/set set = set min. mm bit peace/set set = set min. mm bit peace/set set = set min. mm bit peace/set set = set min. mm bit peace/set set = set min. mm bit peace/set set = peaket set = set min. mm bit peace/set set = set min. mm bit peace/set set = set min. mm bit peace/set set = peaket set = set min. mm bit peace/set set = set min. mm bit peace/set set = set min. mm bit peace/set set = peaket set = set min. mm bit peace/set set peak</td><td>System O _ DAMP Update D_ DAMP Description Active puid <td>Sector Sector Sector<</td><td>Set Marganyle Display Processor Used Display <tddisplay< td=""> <tdd< td=""></tdd<></tddisplay<></td></tr<>	Str. X. Septon 0.3 Update: 0.5 Deckings k.mm b_usic peace/set peace/set Systemic k.mm b_usic peace/set set = set = set min. mm bit peace/set set = set min. mm bit peace/set set = set min. mm bit peace/set set = set min. mm bit peace/set set = set min. mm bit peace/set set = set min. mm bit peace/set set = set min. mm bit peace/set set = set min. mm bit peace/set set = peaket set = set min. mm bit peace/set set = set min. mm bit peace/set set = set min. mm bit peace/set set = peaket set = set min. mm bit peace/set set = set min. mm bit peace/set set = set min. mm bit peace/set set = peaket set = set min. mm bit peace/set set peak	System O _ DAMP Update D_ DAMP Description Active puid ctor Sector Sector<	Set Marganyle Display Processor Used Display Display <tddisplay< td=""> <tdd< td=""></tdd<></tddisplay<>			

Proje	ect: Axelgold								Pa	ge No	÷
AX0	2-013										
	d_geoi				D_S/	MP					
Ceor At	госктуре	s_from	g_to	descript	S_*ROM	S_TC	SAMPLE	AU_9994	Ncc ² DM	ເຼຸຸຸຸຸ	wc_ssu
					80.5	82.3	54539	?	7	2	7
82.5	Syenite			 10 cm. « 80.50- 84.50 Sporadic ser » alteration gives rock a « pseudo bx » texture. Phenocrysts obscure [1.5 lines: log illeg] k-spar alt15-20% subyy light grey 1-2mm orthoclase. Anhedral to subnedral. « <1% carb stringers 60.00*», « <1% carb-py stringers 60.00*» « f1 10.00*» Weak « ser » ultim. alt. Moderate k-spar penult. alt. « Dissem f.gr sx »: « py 3.00%», « sp 0.10%» 85.3- 86.8 Rock has a banded texture at 45*. Interbanded f.gr + plag. Traces dark blue grey metallic («sb ?») « 84.50- 36.00 Dissem by and by along lenses and stringers » in « sericitic fol » parts. « fol 45.00*» 	82.3	85.34	54540	?	7	?	?
87.5	 7.5 80.5 90.07 Aphanitic f.gr to equigranular (felsite: Dark blue grey f.gr agg of [log unclear:"fep"?] and « ser ». Medium-hard. « ser »- altered overprint of syenite ppy? No larger phenos apparent. « Dissem py and py along lenses and stringers » (no possite relationship noteds in unit above) 						54541	0.3	0.43	62	51
90	Syenite	90.07	90.9	 « Hairline carb stringers » cut by « carb-py stringers ». Opposite relationship noteds in unit above. « <1% Carb bx » matrix. « <1% carb-py stringers 30.00° » Moderate « ser » ultim alt. Moderate <-spar penult. alt. « Dissem f.gr sx »: « gy 4.00% » M to c.gr orthoclase ppy; M dd grey very hard m-g orthoclase coy. Vaguely bounded 1-3mm white stubby anhedral to subhedral orthoclase ~25% + strongly K-spar alt groundmass. « Dissem and lesser f1-related py 3.00-5.00%». Some parts have 5-7% subhedral pink pseudomorphs of « ser » and « carb »after biotite. 	88.39 90.07	90.07 90.9	54542 54543	7	?	7	7 7
92.5	Syenite	90.9	93.45	 <u>Aphanitic to figrequigranular (felsite</u>) <u>Aphanitic to figrequigranular (felsite</u>) <u>Dark blue grey f-g aphanitic mix of k-spar and (?) Vague onhoctase phenos in some parts. Looks like a « pseudo-bx ». Very hard. Looks like k-spar alt. « v.f.gr dissem py 2.00%». Abrupt but not share contacts</u> <u>Abrupt but not share contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contacts</u> <u>Clower and Contactand</u> <u>Clower and Contactand</u> <u>Clower</u>	90.9	93.45	54544	?	2	?	2
	Syenite	93.45	94.25	« 1-5% carb stringers 0.00-40.00*» Strong k-spar ultim. alt. « Dissem f.gr sx »: « py 4.00%» (log indicates start point is 97.5m, but probably dyslexic-type error)	97.45	95.7	54545	2	2	2	7
95	Syenite	94.25	95.7	Aphanitic to f.gr equigranular (felsite) - possibly a dyke Med blue to greenish grey aphanitic rock. Abrupt but not sharp contact with above. Probably a f-g aggregate of « ser »and k-spar. No obvious phenos in most parts. Some f-q alt plag: « Dissem py » and « py along lenses and stringers » parallel to « fol ». « <1% carb stringers », « carb-py stringers » « fol 30 00° »	33.45	30.1	54545				
	Syenite	95.7	99.63	Woderate « ser »ultim alt. Moderate k-spar penult alt. « Dissem f.gr sx »: « py 5.00%»	95.7	97.54	54546	0.5	0.34	205	17
Scale	1:100			11/09/02 15:21:33							

• • |

Proje	ect: Axelgold											Pag	je Nc.	7
AX0	2-013								<u></u>					<u> </u>
	d_geoi							D_SA	MP					
Cepti At	rocktype	5_iron	g_to	cescript				S_FROM	S_TC	SAMPLE	AU_234	برود_ ()	≫v	Nige DM
97.5	Syente	35.7	9 9.63	log incicates start point is 97.5m, but probat Apriantic to figr equigramular (felsiter - possi Med blue to greentsh grey apriantic tock. Ab alt glag is a Dissem by a and « py along lense « <1% carb stringers », « carb-py stringers » « foi 30.00" » Woderate « ser »ultim alt. Moderate k-spar p « Dissem figr sx » « py 5.00%»	biy dyslexic-type error) biy a dyke inupt but not sharp contact with above. Prob s and stringers » parallel to « fol ». enult alt.	ably a f-g aggregate of « ser »and k-spar. N	ło obvious phenos in most parts. Some f-ς	95 7 97.54	97 54 99.63	54546 54547	05	034	205	17
100								99.63	.58	54549	?	7	2	?
-102.									.63	54550	?	7	?	?
107.	Syente	99.63	114.3	M to C gr ppy; Mottled med to dark clue grey ser » alt overprint. Weakly calcareous, « Pro fracs 2.30- 4.00% ». Some « ser » alt gives / "WR/TS 110.3. « 1-5% carb bx ». « <1% carb-py stringers 0 Weak « ser » ultim, alt, Moderate k-spar pen « Dissem f.gr sx »: « py 3.00%»	r orthoclase ppy with 25-30% stubby subhed sably carb » -ait orthoclase. 5% FG (<1mm) ock a « pseudo-bx » appearance. « Very we 0.00- 30.00°» ult. alt.	ral to anhedral orthoclase 1-3mm. General euhedral pinkisn pseudomorphs after the p sak carb » « bx » atong « hairline f1 ».	ly very hard. Probably k-spar alt. « Patche: plag and biotite. « Py dissem and along	S.63	.73	54551	?	?	?	?
110								.73	.78	54554	7	?	2	?
112.								78	.51	54555	0.2	0.47	97	329
Scale	1:100	L	L		11/09/02		15:21:33	ى						

.

• • • •

Proje	ect: Axelgold												Pa	ge No.	.: 8
AX02	2-013							<u></u>							_
	d_geol								D_SA	MP					
Deon At	rocktype	g_from	g_to	descript					S_FROM	S_TC	SAMPLE	AU_39M	×≎°عه	cu_2014	MO_PPM
	Syenite VC8P	99.53 11 <u>4.3</u>	114.3 [45	M to C.gr ppy; Mottled med to dark blue grey ser » alt overprint. Weakly calcareous. « Pro fracs 2.00-4.00%». Some « ser » alt gives ("WR/TS 110.3. « 1.5% carb bx », « <1% carb-py stringers (orthoclase ppy with 25-30% stubby subhec bably carb » -alt orthoclase. 5% FG (<1mm) rock a « pseudo-bx » appearance. « Very we 0.00- 30.00° »	ral to anhedral orth euhedral pinkish p eak carb » « bx » al	oclase 1-3mm. Generall seudomorphs after the p ong « hairline f1 ».	y very hard. Probably k-spar ait. « Patche lag and biotite. « Py dissem and along	.78	.51	54555	0.2	0.47	97	329
115	Syenite	.45	.25	 veak « ser » utim, alt. Moderate k-spar performance (sparse) « Dissem f.gr sx »: « py 3.00%» « msv py and light grey carb vn 30.00° 5.00cn M to C.gr ppy; K-spar phenos >/= 1cm 	uut au. 1≫			· · · · ·	.51	.25	54556	?	?	?	?
	Megacrystic syenite VCBP	Medium blue-grey aphanitic g-m (groundmass) with 25-30% prism to studoby grey to brown orthoclase phenos to 2cm. « py » in 2-3mm and 5-10mm lenses in groun With carb py 5.00%». Indistinct contacts. Trace « ser » ultim. alt. Strong k-spar penult alt. « Dissem f.gr sx »: « py 5.00%» M.gr orthoclase ppy						nm and 5-10mm lenses in groundmass. «	.25	.12	54557	?	7	?	?
117.	7. (a) Syenite (b) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite (c) Syenite <li li="" syenite<=""> <li li="" syenite<="">							« pseudo-bx » texture. « f.gr dissem py :	.12	.87	54559	?	?	?	?
-120		.12	.65	Weak « ser »ultim, alt. Moderate k-spar pent « Dissem f.gr sx »; « py 3.00%», « sb 0.10% M to C.gr ppy; « <1% qtz-carb stringers 70.00°», « 1-5% ca	uit. alt. 			- ·· · ·	.87	.65	54560	0.2	0.39	40	98
									.65	.92	54561	7	7	?	?
122.	Syenite intrusive brxx			Mottled med to dark blue grey « bx ». ANgul due to alteration, but sharp fragment bounda « fol 40.00°» Moderate « ser » ultim. alt. Moderate k-spar « Dissem f.gr sx »:« py 4.00%». « sb 0.10%:	ar to rounded fragments of dark grey k-spar ries. « f.gr dissem py 3.00-5.00%» both diss pentult alt. »	alt porphyry to 5cm and along « fol ». «	in a « ser » greenish-gr : Ser » gm (vague) at 40	ay groundmass. May be a « pseudo-bx » I deg to CA. Tr blue grey metallic,	.92	97	54562	2	2	2	?
127.		.65	129.3	Aphanitic to f.gr.equigranular (felsite) f.gr.to aphanitic dyke Looks like f.gr.crystalline agg.of.orthoclase in	n a «ser » matrix. Not hard, 4-5%, « f.gr dis	sem py »			.97	.02	54563	?	?	?	?
	, Syenite	129.3	03	« <1% py stringers 30.00-40.00°», « <1% ca « f1 50.00°» Strong « ser » ultim. alt. Weak k-spar penult. « Dissem f.gr sx »: « py 4.00%»	rb-py stringers 30.00°». alt.				.02 129 3	129.3 03	54564 54565	7	? 0 45	?	?
Scale	1:100				11/09/02			15:21:33							

.

8

1 1

à.

٠

4

						_					
Proje	ct: Axelgold								Pa	ge No	9
AX02	-013										
	c_çeol				O_SA	MP					
Cecilin Al	rocktype	a_irom	g_ta	cescripr	S_FROM	S_TC	SAMPLE	N ^{.cc} _UA	43_294	c:_ >>v	u o_29u
130	Syenite	125.3	23	Aphanitic to f.gr equigranular (felsite) f.gr to aphanitic dyke Looks like f.gr crystalline agg of orthodase in all ser » matrix. Not hard, 4-5%, « f.gr dissem py » « <1% by stringers 30,00–40,00°», « <1% carb-by stringers 30,00°» « f1 50,00°» Strong « ser » ultim, alt. Weak k-spar penult, at, « Dissem f.gr sx »: « py 4,00%»	129.3	.03	54565	0.2	0 45	81	23
132.	Syenite intrusive prxx	Syence 02 135 1 Wegacrystic syenite 125.1 125.1 25 125.1 25							?	?	?
- 135	Megacrystic syenite	 legacrystic syenite 135.1 135 135.1 135.1 135.1 135.1 135.1 135.1 135.1 135.1 136.1 136.1 136.1 137.1 137.1 138.2 138.2 138.2 139.2 139.2 139.2 130.00* × (<1% pyrite stringers 40.00* × 130.00* × (<1% pyrite stringers 40.00* × 131.1 135.1 /ul>						?	 ? 	?	?
137.	Syenite	.95	138.9	Aphanitic to f.gr equigranular (felsite) clots to[log illeg] « Possible foi »« with caro »dark blue greywith « py ». « fol 40.00°» Moderate « ser » ultim alt « Dissem f.gr sx »: « py 4.00%»	.95	138,9	54569	?	7	2	?
140					138.9	.21	54570	1	0.4	29	80
- 142.	Syenite M to digright orthoclase ppy; Med blue-grey figricrystalline groundmass composed predom of orthoclase plus minor laths and possibilitie. Sericite appears to be forming interstitally * orthoclase as figright orthoclase as					26	54571	7	2	?	2
145					20	. 40,0					
Scale	1:100		-	11/09/02 15:21:34							

Proje	ect: Axelgoid								Pag	e No	10
AX02	2-013										
<u> </u>	d_geol				D_SA	MP					
Ceor At	госктуре	s_tom	g_tc	cescript	S_FROM	S_TC	SAMPLE	aij_204	AG_2944	C'_ 224	WC_224
	Syenite	133.9	145.3	M to c.gr onhociase pay; Mea blue-grey figr crystalline groundmass composed predom of orthoclase blus minor laths and possibiolite. Sericite appears to be forming interstitally * orthoclase as figr	.26	145.8	54572	?	?	?	7
147.	Megacrystic syenite	145.8	148	stringers » and « carb » to 0.5mm. Most « py » dissem in matrix with « ser ». Traces blue-grey metallic. « <1% carb-py stringers 30.00°», « <1% carb stringers 30.00-70.00°» Weak « ser » ultim. at. Moderate k-soar cenuit. alt. « Dissem f.gr sx »: « cy 4.00%», « so 0.10%»	145.8	148	54573	?	?	?	7
150	Syenite; feld-bt porphyry dyke	Syenite; feld-bt 148 25 Syenite; feld-bt 148 25 Trachytic texture 30 ceg to CA. Moderate k-spar penult ait. Absuit 148 Absuit 148						?	?	?	?
- 152.	Syenite intrusive breccia	.25	.61	Med blue grey i gr agg of orthoclase and « sar » 20% vague orthoclase prents to 2nint, 10-15% eutred a prix grey at blotte to 2nint, 1002ably some creatisty (++) as synchronic some creatisty (++) as synchronic some creatisty (++) as a construction of the solution of the creatisty (++) as a construction of the solution of the creatisty (++) as a construction of the solution of the solution of the creatisty (++) as a construction of the solution .25	.41	54575	0.2	0.77	74	55	
155	Megacrystic syenite End of nole	.61	.45	Moderate « carb » (probably ankerite) « ser » ultim. alt. VVeak K-spar penult alt. « f.gr dissem py 4.00%» trachytic Dark blue grey matrix with 3C% 0.5 * 4 cm brownish orthoclase phenos aligned ~30 deg to CA. Very hard groundmass. Trachytic texture – 30 deg to CA Strong k-spar ultim alt. « Dissem f.gr py 2.00%» ?	.61	.45	54577	?	?	7	7
157.											
160											
Scale	1:100			11/09/02 15:21:34							

.

ŧ

Ł

Ł

4

8

.

6

.

.

.

RUBICON MINERALS CORPORATION - DRILL LOG Start_date: ^{25/08/02} End_date 26/08/02 Logged_by G. Allen Elev(ASL) 1653 AX02-015 Northing (UTM15 NAD83) 6206658 Easting (UTM15 NAD83) 314373 CoreSize - NQ Local Co-ord East Local co-ord North Claim Length(m) 75.59 Contractor: Britton Bros Re-logged_by/date Comments Dip Az TESTS: Depth Type 225 -45 0 -39 225 75.59 Acid test

.

November 9, 2002

Proje	ect: Axelgold						······································				\top	Page	No., 1
AX02	2-015					<u></u>							
	d_geol							D_SA	MP				
Depth At	rocktype	g_from	g_ta	descript				S_FRCM	s_то	sama_=	בא גיככ נא	2214 5-	יאבר כאי אבר
	Casing	0	1.83	?									
2.5	Syenite porphyry	1.83	6.7	M gr Med blue grey f.gr groundmass hosting 30-40% stut carb stringers » « 1 83- 5.70 <1% carb stringers 20.00-60 00*1 Weak « ser » ultim. att. Strong k-spar penuit alt. « Dissem f.gr sx «, e yu 1.50%», « s 0.010%» « 5.72- 5.77 >30% qtz stringers 30.00*»- Whit « 5.77- 6.70 >1% qtz stringers 60.00*», « >1%	s hosting 30-40% stubby [log illeg] to prismatic white subhedral to anhedral orthoclase phenocrysts up to 7mm long (avg 4-5mm). Groundmass generally very hard tringers 20.00-60.00*> k-spar penult alt. », « sb 0.10%> tringers 30.00*»- White quartz vein. Barren ingers 60.00*», « >1% carb stringers 30.00*>						? 0.2 0	37	2 ?
-7.5	Syenite	Syenite * and « later qtz-carb stringers generally 50-70°, 4mm» « 6.70 - 8.90 - 15% carb stringers 60.00°», « <1% carb stringers 70.00°» Blocky core (pieces <3cm) Strong « ser » ultim alt. « clissem f gr sx »: « py 4.00%», « fuch 0.10%» « slope - 10.30 - 1-5% carb stringers 60.00°», « 1% carb stringers 70.00°»					6.7	10.1	54822	7	2	7 7	
12.5	Syenite intrusive breccia	Syenite ntrusive breccia 10.1 13.85 Similar to unit above but with vague clastic texture. Some orthoctase crystal frags to 1cm + rare vague porphyntic frags to 0-5cm. Sporadic hard to soft. « dissem f.gr py 3.00-4.00% » and traces blue-grey metallic mineral. « 1-5% carb stringers 80.00° », « <1% carb stringers 30.00° » Moderate « ser » ultim alt. Moderate k-spar penult. alt. « Dissem f.gr sx », « py 3.00% », « sb 0.10% »				10.1	12.7	54823	2	7	, , , ,		
15	Megacrystic syenite breccia 13.85 17.45 17						52 7	0 40					
Scale	1:100				11/09/02		15:22:40]

.

Proje	ect: Axelgoid								Ра	ge No	. 2
AX02	2-015							-			
	d_geci				D_SA	MP					
೦≘ಯಗ ∹	rocktype	g_"rom	q to	descript	S_FROM	s_то	SAMPLE	AU_2014	AG_PPM	CU_PPM	MO_2004
17.5	Megacrystic syenite breccia	13 85	17 45	Medium oue-grey generally « ser » groundmass with orthoclase phenos to 3mm * 2cm (up to 20%, avg 5%) and vaguely bounded figriorithoclase porphyly. Fragments to 1cm. Texture vague. « py 2:30-3:00%» generally in more (log unclear "smand"?) « ser » gm. « dissem by 2:30-3:00%». Trace fig blue grey metallic. « qtz-carb stringers 1:00-2.00% 1:00mm» « 1:5% caro stringers 70:00*» « for 40:00*» Moderate « ser »ultim ait. Weak K-spar penult att « Dissem figrisx »: « py 2:5 <u>0%», « so 0:10%</u> »	13 85	17.45	54826	0.5	0.52	70	40
20	Megacrystic syenite brxx	17.45	20	 and « fol 40.00*» > > < > > < > > < > < < < > < < > < < > < < < < < < < < < < < < < <	17.45	20 20.15	54827 54828	?	?	?	?
	Aphanitic	20	21	Moderate « ser » ultm, alt	20.15	21	54830	,	?	?	2
	M.gr orthoclase porphyry	21	22.3	« 20,00- 20,05 by and carb vn 45,00° 5 00cm > Cuts foliation/banding in host. « 10.00- 20,05 by and carb vn 45,00° 5 00cm > Integular. « 15% white grav stingers 10,00-30,00° 5.30 mm > Integular. Med blue grav f.gr groundmass. Very hard k-scar att in parts and then sporadically overprinted by « ser » alt. ~30-40% light grey to white stubby sub-rdd anhedral orthoclase to 5mm, avg 3-4mm. « cissem py 1.00-2.00% generally with « ser » Moderate ser » utim, alt. Moderate k-spar penuit. alt. Moderate ser » utim, alt. Moderate k-spar penuit. alt.	21	22.3	54831	0.2	0.4	9	23
-22.5	Syenite	t		A Disseming sx * (by 1.50%) Med to dark blue grey i.gr « ser » groundmass with « vague bx » texture. Some orthoclase crystal frags to 5mm and irreg light and dark patches which may be altered lithic fragments. « f.gr dissem py							
	breccia	22.3	2.3 23.26 3.00-5.00% in « set »{log unclear: "apn"?} Cut by « carb and qtz-carb stringers » minor < 1% qtz-carb stringers » < 1% carb stringers »				54832				
	M.gr orthodase corphyry Aphanitic	23.25 23.55 23.65 24-2	23.5 23.65 24.2 24.3	 Moderate « ser » ultim alt. « Dissem f.gr sx »: « gy 4.00%». Crowded porphyry 30-40% stubby sunhedral orboclase to 7mm (avg 3-5mm) Moderate « ser » ultim alt. Weak k-spar penutt alt. 	23.26	24.2	54833	?	?	7	?
25	Syenite M.gr orthoclase 2orphyry Fault M.gr syenite 2orphyry	24.3	26.5	 c Dissem figr sx = < py 2.00%. Med to dark blue grey ser = alt_abranitic syenite. « UCT 30.00» « LCT 60.00» Dyke? Alteration? « Minor dissem py 1.00%». Moderate v Dissem figr sx = < py 1.00%. Dark blue grey apnanitic groundmass. Very hard, K-scar att. « Weak ser » overprint in irreginations and « along ff 40.00°». « Cut by qtz-feld stringers 40.00° 4.00mm» « Dissem py 1.00-2.00%» t -5% qtz-carb-feldspar stingers 40.00° 4.00mm» « Dissem py 1.00-2.00%» t -5% qtz-carb-feldspar stingers 40.00° 4.00mm» « Dissem py 1.00-2.00%» t -5% qtz-carb-feldspar stingers 40.00° 4.00mm» « Dissem py 1.00-2.00%» t -5% qtz-carb-feldspar stingers 40.00° 4.00mm» « Dissem py 1.00-2.00%» t -5% qtz-carb-feldspar stingers 40.00° 4.00mm» « Dissem py 1.00-2.00%» t -5% qtz-carb-feldspar stingers 40.00° 4.00mm» « Dissem py 1.00-2.00%» t -5% qtz-carb-feldspar stingers 40.00° 4.00mm» « Dissem py 1.00-2.00%» t -5% qtz-carb-feldspar stingers 40.00° 4.00mm» « Dissem py 1.00-2.00%» t -5% qtz-carb-feldspar stingers 40.00° 4.00mm» « Dissem py 1.00-2.00%» t -5% qtz-carb-feldspar stingers 40.00° 4.00mm» « Dissem py 1.00-2.00%» t -5% qtz-carb-feldspar stingers 40.00° 4.00mm» « Dissem py 1.00-2.00%» t -5% qtz-carb-feldspar stingers 40.00° 4.00mm» « Dissem py 1.00-2.00%» t -5% qtz-carb-feldspar stingers 40.00° 4.00mm» « Dissem py 1.00-2.00%» t -5% qtz-carb-feldspar stingers 40.00° 4.00mm» « Dissem py 1.00-2.00%» t -5% qtz-carb-feldspar stingers 40.00° 4.00mm» « Dissem py 1.00-2.00%» t -5% qtz-carb-feldspar stingers 40.00° 4.00mm» « Dissem py 1.00-2.00%» t -5% qtz-carb-feldspar stingers 40.00° 4.00mm» « Dissem py 1.00-2.00%» t -5% qtz-carb-feldspar stingers 40.00° 4.00mm» « Dissem py 1.00-2.00%» t -5% qtz-carb-feldspar stingers 4.00mm	24.2	26.5	54835	?	7	?	?
27.5	M.gr orthociase porphyry	26.5	29.7	 biocky core (pieces <3cm) =0-30.00° biocky core (pieces <3cm) =0-30.00° Moderate < ser » ultim alt. Weak k-spar penuit alt. c) Dissem figrisx » < cy 1.00%» < 24.30 - 25.50 limonito-clay coated f1 » < <25.50 - 26.50 limonito-clay coated f1 » < <25.50 - 26.50 limonito-clay coated f1 » < <25.50 - 26.50 limonito-clay coated f1 » < <25.50 - 26.50 limonito-clay coated f1 » < <25.50 - 26.50 limonito-clay coated f1 » < <25.50 - 26.50 limonito-clay coated f1 » < < <25.50 - 26.50 limonito-clay coated f1 » < <	26.5	29 7	54836	?	?	?	?
30	F.gr intrusive breccia	29.7	34,4	above. above. above. <1-5% qtz-carb stnigers 40.00-70.00** Weak « ser » ultim alt. Mocerate k-soar penult alt. < Dissem f gr sx » « oy 3.00%». Sporadic zone of shattered orthoclase porphyry. Angular to subrounded orthoclase crystal fragments in a « ser » and « py » matrix. Rare lithic fragments. Average grain size <1mm. but up to 5mm. « Dissem by 3.00-5.00%» in sende matrix. Some « for »/ « snear 60.00* » parallel « py bands 60.00* to 5.00mm» < shear 60.00*0 Moderate « ser » ultim alt. Weak k-soar penuit alt. < Dissem f gr sx » « oy 4.00%»	29.7 30.57	30.57 32.7	54837 54838	?	? ?	? ?	?
	<u> </u>			TS-29.75 Same zones m to c ar svenite opv							
Scale	1:100			11/09/02 15:22:40							

Proje	ct: Axelgoid											Pag	je No	3
AX02	2-015													
	d_geol							D_SA	MP					
Cepih Al	rocktype	g_from	g_to	descript				S_FRCM	s_to	sure	AU_2004	s_≫w c	ંઝ્સ	wo_≫•
	F gr intrusive breccia Felsic dyke	29.7 34.4	34.4 34.6	Sporadic zone of shattered orthoclase porphyry. An Dissem py 3.00-5.00% in sencite matrix. Some « fc « shear 60.00% Moderate « ser »ultim alt. Weak k-spar penuit alt. « Dissem f.gr sx »: « py 4.00%» TS-29.75 Some zones m to c.gr syenite ppy Pale yellow-grey aphantic felsic dyke. « dissem py « Dissem f.gr sx »: « py 0.50%». « fuch 0.10%»	Jular to subrounded onthoclase crystal fragments in of w/ « shear 60.00° » parallel « py bands 60.00° to 9 <1.00% » Contains silvers of host syenite. « shear 6	a « ser » and « py » matrix. Rare lithic fragments 5.00mm»	. Average grain size <1mm, but up to 5mm. «	30.57 32.7	32.7	54838 54839	? 0.7	2 38	? 55	? 19
-35 -37.5 40	Syenite intrusive microbrxx	34.6	41	syenite, later « bx » by venting gases (diatreme?) « Moderate « ser »ultim alt. Weak k-spar penuit alt. « Dissem f grs x » « py 2 00%» « 36.00- 36.50 fol 45.00°» 36.5- 41.0 Blocky core (pieces <3cm) 20-60°	dissem py 1.00-3.00% along « fol wand « ser »			34.4 37.45	37 45	54840	?	7	7	?
-42.5	Sedimentary breccia	41	43.85	2cm, but generally <5mm. Some rounded hard calca milistone and arguilite. « <1% carb stringers 30.00*» « fol 60.00-70.00*» « Dissem f.gr sx »: « py 0.50%»	areous fragments to 2cm. « Dissem py » but also co	oncentrated in fragments. « fol ranges from 60.00-	70.00°». Frags medium hard. Siliceous	41	43.8	54842	?	7	7	?
45	Felsic dyke	43.85	45.4	 Sharp undulating UCT 45.00 Medium greenish to 1.00mm». « Sharp LCT 70.00». Strong « carb » (probably ankente) « ser » ultim alt. « 43.86- 45.39 1-5% carb stnngers 20.00-90.00 Frag-supported breccia with <1-5cm (avg 1-2cm) an 40-50% medium blue-grey siliceous silistone (?) 	yellowish grey aphanitic felsic dyke. FG agg of « se)*• gular to subangular (avg subangular) pebbles of:	er » οπhoclase and « carb ». Cut by « weak carb :	stockwork in stringers 1 00-2 00% to	43.8	45.4	54843	?	,	7	2
47.5	 47.5 Sedimentary breccia 45.4 45.4 45.4 45.4 45.4 46.77 54845 Weak flattened if heapments / (a for 0.00° x) Weak flattened fragments / (a for 0.00° x) Weak flattened fragments / (a for 0.00° x) Winor « py » on « f1 » surfaces. Minor « py » with « carb stringers » rarely 					54845	?	2	2	?				
Scale	cale 1:100 11/09/02 15:22:41													

.

Proj	ect: Axelgold										- 1	Pa	ge No	: 4
AXO	2-015					, , , , , , , , , , , , , , , , , , ,								
	c_geoi							D_S/	MP					
Dept -	rocktype	سرب ت	g_to	descript				S_FRCM	S_TC	SAMPLE	AU_2334	AG_2004	ເບຼ≫າ	MO_224
-50								45.4	48.77	54845	?	?	ĩ	2
50								48.77	51.82	54846	?	?	?	?
-52.5								51.82	54.86	54847	?	?	?	?
55	Sedimentary breccia			Frag-subported breccia with <1-5cm (avg 1-2cm) at -40-50% medium blue-grey suiceous sutstone (?) -20-30% black siliceous argilifice or onert -15% brown grey mud soft sectiment or poss voican Most fragments appear sectimentary Fragments become less flatcened with dectt, therei Dissem figris x = < py 0,10% = generally in fragmen Weak flattened fragments < foi 60 20% Minor < by > on < ft = surfaces. Minor < py = with <	ngular to subangular (avg subangular) peoples of: ic? She looks like some tectonic component of contact, is carb stringers # rarely.	although not a fault-contact. Cut by « 1-5% weak i	carb (stockwork) stringers 30.00* 1.00mm×. «	54,86	57.91	54848	?	?	2	?
60		45.4	75.59					57.91	50.9 6	54849	0.2	1 27	62	1
62.5								60.96	64.01	54850	?	7	,	7
Scale	1:100	<u> </u>		L	11/09/02		15.22:41	64.01	67.05	54851	?	?	?	?

Proje	ect: Axelgold										T	Pag	e No.	5
AX02	2-015													
<u>├</u> ──	c_geot							D_SA	MP					
Ceptr 40	rocktype	g_from	g_to	descript				S_FRCM	S_TO	SAMPLE	ي. يי≈د_∪ھ	5_00 V	>PN	10_2 24
65								64.01	67.05	54851	2	?	7	?
67.5	Sedimentary breccia			Frag-supported brecce with <1-5cm (avg 1-2cm; ar =0.50% mecium olue-grey sinceous sustone (?) =20-30% black siliceous argillite or mer; =15% brown grey muc soft sectment or poss volcan Wost fragments appear sectmentary =rancments become lass faitheed with centh therei	ngular to subangular (avg subangular) peoples of: ic?	although nor a fault-confact. Cut by a 1-5% weak	carb (stockwork) stringers 30.00° 1.00mms «	67.05	70.1	54852	?	?	,	?
72.5		45.4	75.59	Tragments deconteness rationed with reput, are en Dissent figs sx × ε op 0, 13%s generally in fragmen Weak flatened fragments ε fol 50.00*s Minor « py » on « f1 » surfaces. Minor « py » with «	s sources inte source component of contact, is carb stringers » rarely.		and (sickwork) stimgers solidi - joininne, a	70.1	73.15	54853	?	?	?	?
75	End of hole	75,59	-75.65	,				73.15	75.59	54855	?	,	2	?
77.5														
80 Scale	1:100				1/09/02		15.22:41							_

RUBICO	N MINERAL	S CORPORATION - DI	RILL LOG s	tart_date: 29/08/02	End_date 30/08/02	Logged_by D. Daoud
AXO2-016 Length(m) 12	24.26	Northing (UTM15 NAD83) 6206795 Local co-ord North	Easting (UTM15 NA083) Local Co-ord East	314269 Elev(ASL) Claim	1767	CoreSize - NQ Contractor: Britton Bros Re-logged_by/date
TESTS:	Depth	Type	Dip Az		Co	mments
	0		-61 226			
	124.26	Acid test	-58.5 226			

ł

Ł

Ł

4

ŧ

1

ł

Ł

Ł

1

Ł

1 1

1

Ł

1

November 9, 2002

ŧ

.

ł

Proj	ect: Axelgold			·					·	P	aga No	1 1
AXU:	2-016				······································	<u> </u>					·	
Cepton At	rocktype	g_from	g_to	lescript		U_S	AMP	Same	201_201	40 204	k	142 22
	Casing	0	3 05	?								
5						3.05	5 6.1	:54771	?	?	7	7
10										0.31	-6	2
		Altered and weathered. Light grey to rusty yellowish, altered (kspar) weathered (clay, « Im » and jarosite) partially vuggy. Porphyritic syenite. The rock is very broken and leached (« lacking py »). A few grains tetrahedrite assoc with v« k-spar vns »							?	?	2	?
15									?	?	7	7
20	Porbhyrtic syenite (1-5% chi stringers 60.00-70.00* x <1% k-spar stringers 60.00*) Blocky core (pieces <3cm) 30-60* Moderate clay ultim alt. Moderate k-scar penult alt. « Dissem f.gr sx »: « py 1.00%». « Im 0.50%», « ja 0.50%», 0.1% tetrahedrite						21.34	54777	0.2	0.27	10	4
		3 05	35.32			21.34	24.38	54778	?	2	7	2
25								54779	2	?	7	7

roje	ct: Axelgold				·					- aç	39 NO				
X02	-016				D S/	AMP			·						
ion At		a tram	a to k		S_ FROM S TO SAMPLE A _ FRU AG - FRU CU PRU							M2_20			
-		<u></u>	3	Altered and weathered. Light grey to rushy yellowish, altered (kspar) weathered (clay, « Im » and jarosite) partially vuggy. Porphyritic syenite. The rock is very broken and jacober (v lacking by w). A few oraling terrahedrite assoc with v« k-spar vids »	30.48	3 33.5	j 3 5 47	782	0.2	0 29	14	3			
	Porphyritic syenite	3.05	35.32	a 1-5% chi stringers 60.00-70.00° * « <1% k-spar stringers 60.00° * Blocky core (pieces <3cm) 30-60°	33.53	3 35.3	32 54	783	2	?	7	,			
35				Moderate clay ultim alt. Moderate k-scar penuit alt. « Dissem f.gr.sx »: « py 1.00%», « Im 0.50%», « ja 0.50%», 0.1% tetrahedrite	35.32	2 36.5	38 547	784	7	7	?	- 7 -			
					36.58	3 39.6	12 54	786	?	7	?	,			
40					39.62	2 42.6	37 54:	787	02	0.58	99	2			
							These megacrysts of k-spar comprise about 15-20% of total rock volume. « Five py stringers 30.00-50.00* 0.50-2.00mm thick » are noted throughout but get more abundant towards the end of the interval. « Finery dissem py » is present throughout. Limenite, « go » and « ja » as weathered product along « f1 » and in fracture zones. « A few grains of fuch » noted as dissem, and along fractures. Sharp contact with syenite ppy.	42.67	7 45.7	72 54	788	?	?	?	,
45	Megacrystic syenite			 « 35.32- 43.20 <1% py stringers 30.00-40.00°», « <1% k-spar carb (ankente) stringers 50.00°» Blocky core (<3cm pieces) 50-60° « 43.20- 50.70 <1% py stringers 40.00°», « 1-5% carb stringers 10.00-40.00°» « f1 40.00-60.00°» « 50.70- 59.90 5-15% "KSCB" ≈ <-spar carb ? stringers 50.00°», « 1-5% py stringers 40.00-50.00°» Blocky core (pieces <3cm) 20-60°. Strong k-spar « 35.32- 59.90 carb » (ankerite) « ser » ultim alt. Moderate k-spar penult alt. « Dissem f.gr sx »: « py 2.00%», « im 0.20%», « ja 0.10%», « fuch 0.10%», « go 0.20%» 	45.72	2 48.7	7 547	789	2	?	?	?			
50		35.32	39.9		48 77	7 51 8	12 547	'90	0.2	03	46	;			
					51.82	2 54.8	36 547	/91	,	?	2	2			
55				Finely dissem py » is noted throughout. Feldscar phenocrysts are partially weathered (around fracture zones) and removed (replaced by « Im »). These phenocrysts comprise about 80% of rock volume. Sub-euhedral, broken and partially alt. A few fractures are coated with « ja » and « Im » – « Tr of sb » and/or tetrahedrite (f.gr) in « carb/k-spar vns ». The rock gets « foi » towards the end. « 1-5% py stringers 40.00-50.00°». « <1% carb-feldspar stringers 40.00°» Blocky core (<3cm pieces) 50-70° Moderate « ser » ultim alt. Strong k-spar penult alt.	54.86	3 57 9	11 547	'92	2	?	?	2			
50				« f.gr sx in stringers »: «.py 3.00%», 0.1% tetrahedrite, « sb 0.10%». « Im 0.10%», « ja 0.10%» recognizable (weathering and « fol ») but med to fine subangular fragments are noted, these fragments are mainly composed of feldspars. But a few large altered (whitish)	57.91	59.9	3 547	'93	"	?	?	2			
	Altered porphyritic syenite	59.9	63.3	coating these fractures and replacing practically the microbreccia) Where the rock is not weathered, small (0.5-1.0mm across), altered (whitish) plagioclase phenocrysts are present and represent about 2-3% of core volume. solution of the stringers 40.00-60.00°», < <1% carb-feldspar stringers 40.00-50.00°»	59.9	63.4	4 547	94	7	7	?	7			
	Syenite intrusive	63.3	70 55	Blocky core (pieces < 3cm) 60.00° Moderate clay ultim alt. Moderate k-soar penult alt.	63.4	67.0	06 547	796	,	?	?	?			

Project: Axelgold Page No										3					
AX02	-016														
	d_geol							D_SA	MP						
Depth At	rocktype	g_from	g_ to	descript				s_FRC∨	S_TO	รมมุระ	au_~~u	-::,:** 4	c., >>v	NC_304	
				recognizable (weathering and « fol ») but me	d to fine subangular fragments are noted, these fragments a	are mainly composed of fel	dspars. But a few large altered (whitish)	63.4	57 06	54796	?	,	,	7	
	Syenite intrusive microbrxx	63.3	70.55	recognizable (weathering and « fol ») but med to fine subangular fragments are noted, these fragments are mainly composed of feldspars. But a few large altered (whitish) 63 coating these fractures and replacing practically the microbreccia) Where the rock is not weathered, small (0.5-1 0mm across), altered (whitish) plagioclase phenocrysts are present and represent about 2-3% of core volume. 67 x = 515% byrite stingers 40.00-50.00*, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspar stringers 20.00%, x <1% carb-feldspa		67 06	70.1	54797	,	7	7	2			
70				« P.gr sx in stringers ». « py 2.00%», « in 3.00%», « iden 0.10%», « go 0.50%»						54798	?	7	2	2	
-75	Fault zone	70.55	80.25	Sharp contact with the country rock (« sedimentary bx »). « <1% carb-py stringers 60.00° » Blocky core (pieces <3cm) 50-60° Moderate clay ultim alt. Weak k-spar penult alt. « sx in for stringers : « ou 1.00% » « go 0.50% »					76.2	54799	?	?	?	?	
-80				« sx in t.gr stringers », « py 1.00%», « in 3.0 « 80.24- 80.25 LCT » - the contact is fo	lowing the foliation plane (in the sedimentary) breccia.			76.2	80.25	54800	0.2	0.29	57	4	
				Acmilona, of varied origin (siltstone, black m	idstone « carb » and « occasionally ov »). Two generation	s of « carb veins and volets	ware noted are parallel to foliation	80.25	82.3	54801	7	?	,	7	
-85	Sedimentary breccia	4cm long, of varied origin (siltstone, black mudstone. « carb », and « occasionally py »). Two generations of « carb veins and vnlets » are noted, are parallel to foliation crosscut by the second one. Both generations are at 40-50° and may carry pyrite. Late stage « carb and feldspar vns » are present near the contact with the intrusion. The amount of clasts decreases with depth and the rock unit becomes matrix supported breccia, and an increase of « carb vns » (1st generation). « <15 carb-py stringers 40.00-50.00°», « carb-feldspar stringers 20.00°» FLO (probably means «? fol 40.00-50.00°») « F.g.r sx in stringers »: « py 0.50%», « Im 0.50%»				near the contact with the intrusion. The neration).	82 3	85.39	54802	?	?	7	2		
		80.25	91.03	M.gr aphanitic to f.gr altered (k-spar or « carr 40.00-50.00°» and the contact (40°). 1-2% of « <1% carb stringers 60.00°», « 1-5% k-felds	ο ») orthoclase and plag porphyritic dyke (dykelet). orthoclas agioclase phenocrysts (whitisn) alt are present (0.5- 1.0mm ipar stringers 50.00°»	se are 1-5mm long (laths) se long). « Tr of finely dissem	ome are oriented parallel to « foi py » is noted.	85.39	88.38	54803	,	2	,	7	
-90	Ortho-plag	91_03	:91.23	Trachytis texture 40° Moderate k-spar ultim alt. Moderate « carb » « Dissem f.gr stringers »: « py 0.10%»	penult alt,			88.38 91.03	91.03 91.23	54804 54806	? 2 ;	7	7	7 ?	
-95	Sedimentary breccia	91.23	.25	Constraint of stingers with the py of 10% with a line of the py					94.49 97.54	54807	7	?	,	7	
Scale 1	Scale 1:200 11/09/02 15:23:19									1					

Project: Axelgold								ge No.	: 4							
AX02	2-016															
	d_geol							D_SA	MP							
Depth At	rocktype	g_from	g_to	descript				S_FROM	S_TO	SHAPLE .	يە≈د __ ن⊾	AG_2014	CU_374	NG ³⁸⁴		
100	Sedimentary breccia	91.23	.25	Same as the one described before with more 106.25m the core is « sheared » and broken deformation (microfolds) probably we are in a 1.00cm» with « py » and malachite is affecte « 91.23- 97.54 - 15% carb stringers 40.0 « 97.54 - 106.25 15-30% carb stringers 4 « 91.23- 106.25 Dissem f.gr sx »: « py 1	t « py » as finely dissem in « carb »and blac with « Im » coating (blocky), becomes (at a a « fauit » zone. In the last couple meters so d by a microfault parallel to the « fol » at 96 10-50.00°, « <1% carb-py stringers 40.00° 0,00-50.00°, « shear 40.00-50.00°» .00%», « Im 0.10%», (written as ma but pro	k mudstone fragments, along « vnlets », ar round 100 58m) very deformed along « fol » ome serpentine is noted along the « fol » bu .5m depth. • « f1 40.00-50.00*» bably means) « mn 0.10%»	nd as fragments (small). From 97.54m to • even the « carb vns » are affected by t deformed as well. One « calcite vn	9 <u>4,49</u> 97.54 	.58	54808 54809 54810	° °	? ? 0.32	?	2		
105				Completely altered and deformed (microfolds) med grey, f.gr serpentinite or used to be ultramafic rock. Alteration products: ankerite (« qtz »/ serpentine). Trace of « cpy »		.25	54811	2	?	?	?					
	Serpentinite	.25	.73	Completely altered and deformed (microfolds and « one grain of sph » are found in « qtz vi « 11% carb stringers 60.00° » « 1-5% qtz-car (Option ≈ FLO, probably meant) « fol 40.00° Intense « qtz » « carb » alteration. « Dissem sx ». ("Cp" not in code, but probab	s) med grey, f.gr serpentinite or used to be uns and « vnlets ». The rock turns into serp b stringers 10.00-70.00*» »))))))))))))))))))	ultramatic rock. Alteration products: ankerite sentine and ultramafic lithology. Suspected snown, but probably) 0.1% chromite	(« qtz »/ serpentine). Trace of « cpy » chromite grains finely dissem.	.25	.63	54812	7	?	?	, ,		
-110								.63	.78	54814	?	?	?	?		
115			and f to m.gr dissem chromite throughout the in « 110.85-124.26 large dolomite vn 15.000 r 109.72 124.26 larg strage vn econiging s		e interval. 0cm» some « f1 ». The drillhole ends in serpentin	ite at 124.26m.		.78	.82	54815	0.2	0.33	10	1		
	Serpentinite	.73	.26	« 5% carb stringers 20.00-60.00°» « shear 20.00-70.00°» Moderate « carb » ultim alt. « Dissem sx »: « py 0.20%», « po 0.30%», «	cpy 0.10%», 2% chromite.			.82	.87	54816	?	7	?	2		
120								.87	.92	54817	7	?	7	7		
125	End of hole	.26	.26	?				.92	.26	54819	,	?	7	?		
Scale	1:200	<u> </u>	<u> </u>	L	11/09/02	<u></u>	15:23:20	L	نا		1		<u> </u>			

.

A A