

An ASSESSMENT REPORT on DIAMOND DRILLING

on the

ANN 2 Mineral Claim (Harvey Zone) Clinton Mining Division

Longitude 121°19'E, Latitude 51°58'N UTM Coordinates 615250E, 5758500N NTS 92P/14W

Prepared for:

GWR Resources Inc. PO Box 545 Armstrong, BC V0E 1B0

Prepared by:

George E. Barker, B.Sc., P.Geo. Capstone Geological Services PO Box 299 150 Mile House, BC V0K 2G0

December 16 203 GICAL SURVEY BRANCH

TABLE OF CONTENTS

1. Summary	1
2. Introduction	3
3. Location and Access	3
4. Physiography and Climate	3
5. Property Status	7
6. Property History	7
7. Regional Geology	9
8. Property Geology	11
8.1 General	.,11
8.2 Structure	11
8.3 Alteration	12
8.4 Mineralization	12
9. Diamond Drill Program	13
9.1 General	13
9.2 Results	16
10. Statement of Expenditures	18
11. Conclusions and Recommendations	19
12. Bibliography	20

LIST OF TABLES

Table 1: Mineral claim data	7
Table 2: Diamond-drill hole data	13
Table 3: Diamond-drill hole significant grade intersections	16

LIST OF FIGURES

Figure 1: General location map of the ANN 2 mineral claim	4
Figure 2: Regional location map of the ANN 2 mineral claim	5
Figure 3: Claim map of the ANN 2 mineral claim	6
Figure 4: Regional geology map	10
Figure 5: Diamond-drill hole location map	14
Figure 6: Diamond-drill hole section showing copper zoning	15

LIST OF APPENDICES

- Appendix A: Statement of Qualifications
- Appendix B: Diamond Drill Hole Logs
- Appendix C: Diamond Drill Hole Assay Certificates

1. SUMMARY

Between June 15 and August 17, 2002, GWR Resources Inc. drilled five NQ diamond-drill holes (HAR-02-01 to 05, totaling 857.7meters) on their 100% owned ANN 2 mineral claim located 20 kilometers northeast of Lac La Hache, BC. The holes were drilled to test the extent of known outcrop mineralization (copper-gold) located in the north-central section of the claim (drilling area designated the Harvey Zone).

The ANN 2 mineral claim is situated within the Upper Triassic to Lower Jurassic Nicola Group, which forms part of the Quesnel Trough, a volcanic and sedimentary arc sequence affected by Upper Triassic to Jurassic intrusions, and by volcanic activity continuing into the Quaternary. The Quesnel Trough extends for over one thousand kilometers from northern Washington State to north-central British Columbia, and hosts several alkalic porphyry copper-gold deposits, gold-skams and numerous porphyry occurrences.

Modern exploration activity has been carried-out, more-or-less continuously, on or around the ANN 2 mineral claim since 1966. The Harvey zone diamond drilling has further added to a large body of exploration data by again confirming the presents of copper-gold mineralization in the area.

Hole HAR-02-01 was drilled to the northwest and intersected a mineralized zone between 35 and 120 meters with an average grade of 0.25% Copper, 0.12 g/t gold and 0.77 g/t silver. Holes HAR-02-02 and 03 where collared 50 meters northwest of HAR-02-01 collar and drilled to the northeast (HAR-02-02) and to the southwest (Har-02-03) to test the trend and size of the mineralized zone. Hole HAR-02-02 did not intersect any significant mineralization. Hole HAR-02-03 intersected a mineralized zone between 14 and 35 meters with an average grade of 0.34% copper, 0.13 g/t gold and 0.96 g/t silver. Geological modeling showed the original "discovery" was a relatively narrow zone (about 15 - 20 m wide), striking about 273° azimuth and dipping about 78° to the north and that HAR-02-01 had been drilled sub-parallel to the strike. A fourth-hole (HAR-02-04) was drilled 60 meters north-northeast of HAR-02-01 to test the original "discovery" zone at depth. This hole intersected the zone between 38 and 53 meters (average grade 0.14% copper, 0.06 g/t gold and 0.44 g/t silver) and a second deeper anomalous copper-gold zone between 92 and 183 meters (average grade 0.13% Cu, 0.09g/t Au and 0.23 g/t silver). The lower zone

was interpreted to possibly define an edge of an expanded part of the mineralized system. Hole HAR-02-05 was located 100 meters northeast of hole HAR-02-04 to test a second zone of outcrop mineralization and the extent of the deep anomalous zone encountered in hole HAR-02-04. Hole HAR-02-05 intersected mineralization between 9 and 33 meters with an average grade of 0.30% copper and 0.18 g/t gold; however, the remainder of the hole (33 to 153 meters) was barren.

The Harvey zone diamond drilling indicates that at least two steep dipping sub-parallel mineralized systems occur in the Harvey zone. The copper-gold mineralization is hosted by a variably altered (propylitic and potassic) fine-grained monzodiorite. The mineralization occurs as fine-grained sporadically disseminated pyrite and chalcopyrite (possibly related to protolith formation) and as pyrite and chalcopyrite in veins (fracture filling) and as blebs in K-feldspar-epidote alteration patches. Chalcopyrite is also found in secondary magnetite veins and patches. Pyrite occurs with both propylitic and potassic alteration, but chalcopyrite is more commonly associated with potassic alteration. There is some evidence to suggest the mineralized systems may be related to zoning of both lithology and alteration but more work is required to confirm and detail this.

The Harvey zone mineralized systems are open along strike and down dip and additional drilling (3 or 4 holes totaling about 700 meters) is warranted to further test the extent of the modeled copper-gold zones.

2. INTRODUCTION

In June 2002, GWR Resources Inc. initiated a diamond-drilling program to test the extent of known outcrop mineralization (copper-gold) located in the northwest section of their 100% owned ANN 2 mineral claim (see Figures1, 2 and 3). The zone (designated the Harvey Zone) is further defined by elevated copper values (100 - 800 ppm) in soil samples collected during a 1987-88 regional geochemical survey. The zone may also have some relationship to copper-gold mineralization intersected in drill holes located about 200 - 400 meters east of the Harvey Zone. GWR Resources Inc. drilled these holes in 1998 and 2000.

This report describes and evaluates a five hole diamond-drilling program carried out on the Harvey zone (see Figures 2 and 3) between June 15 and August 17, 2002. The five NQ-size holes (HAR 02-01 to 05) totaled 857.7 meters in length and were collared within 100 meters of each other. Drilling proceeded under the supervision of the author in consultation with GWR Resources Inc management. Fieldwork and core logging was carried-out by the author. The core was split by Mr. D. Fuller and stored on his private property in Lac La Hache, BC.

3. LOCATION AND ACCESS

The ANN 2 mineral claim is located in south-central British Columbia approximately 20 kilometers northeast of Lac La Hache, BC (see Figures 1 and 2). The approximate central coordinates are longitude 121°19' E and latitude 51°58' N; UTM Coordinates 5758700 N, 615260 E. The property is accessible from Lac La Hache by traveling 18.3 kilometers along the Timothy Mountain and Rail Lake Roads, east 7.7 kilometers along an all-weather mainline-logging road and northeast 2.8 kilometer along a secondary logging road to the drilling area. (see Figure 2).

4. PHYSIOGRAPHY AND CLIMATE

The ANN 2 mineral claim is located in the Central Plateau of the Cariboo region of southcentral British Columbia. Wide valleys and gentle hills ranging from 850 to 1600 meters in elevation characterize this area. Approximately 40% of the forests in the area have been

KILOMETRES

GWR Resources Inc. – ANN 2 Mineral Claim (Harvey Zone Diamond-Drill Program) Figure 1: General location map of the ANN 2 mineral claim

GWR Resources Inc. – ANN 2 Mineral Claim (Harvey Zone Diamond-Drill Program)

 LAC LA HACHE Map 92 P/NW
 Scale 1:100,000 km 2 0 2

 Figure 2: Regional location map of the ANN 2 mineral claim

GWR Resources Inc. – ANN 2 Mineral Claim (Harvey Zone Diamond-Drill Program) MINERAL TITLES REFERENCE MAP 92 14W+E UTM Zone 10 Figure 3: Claim map of the ANN 2 mineral claim

clear-cut and replanted. Roughly 500 to 1000 millimeters of precipitation falls on the region annually and snow cover averages 1 to 2 meters arriving in early November and generally melting by mid-April. Numerous creeks, marshes and lakes provide a year-round water supply. The Ann 2 mineral claim is situated on a moderate north-facing slope in an area containing extensive overburden (generally glacial till) and thick pine-spruce-fir forest cover. Much of the area has poor outcrop exposure, however considerable outcrop is found in the Harvey zone area.

5. PROPERTY STATUS

The Ann 2 mineral claim is located in the Clinton Mining Division of south-central British Columbia. GWR Resources Inc. owns the claim 100% (see Table 1).

CLAIM NAME	TENURE NUMBER	NUMBER OF UNITS	EXPIRY DATE
ANN 2	208271	20	Sept. 30, 2010*

*Pending assessment approval

Table 1: Mineral claim data

6. PROPERTY HISTORY

The earliest known exploration work in the Lac La Hache area (prospecting for placer gold) occurred in the 1890's during the Cariboo Gold Rush. Periodic minor work continued up to 1966 when the Coranex Syndicate initiated regional reconnaissance soil sampling, geological mapping and IP and magnetometer surveys; followed by trenching and some diamond drilling. This work resulted in the discovery of porphyry copper-gold mineralization on the Peach showings located in the southeast section of the ANN 2 claim.

In 1967 the federal government conducted an airborne magnetic survey of the region. This work resulted in the delineation of a large annular magnetic anomaly, which stimulated further exploration for porphyry and skarn mineralization throughout the late-1960's and early-1970's. The work resulted in the discovery of the Spout Lake copper-magnetite skarn, the Peach Lake-Peach Melba, Miracle and Tim copper-gold occurrences and other mineralized showings within the Nicola Group volcanic and intrusive rocks.

Between 1971 and 1985, Amax Exploration Ltd. and B.P Selco Inc. carried-out geological surveys, soil and rock sampling and percussion drilling across areas currently covered by the adjoining ANN #1 and ANN 2 mineral claims. In 1988, Hemingson Gold also conducted geochemical and geophysical surveys on these claims.

In 1991, Asarco Exploration Company of Canada performed further geological mapping, soil and rock sampling, trenching, percussion drilling (16 holes) and some geophysical (IP) surveys on and to the west of the ANN 2 claim. Percussion holes drilled on the ANN 2 claim intersected mafic-intermediate crystal tuffs and "syenodiorite" displaying propylitic and potassic alteration, and locally containing up to 1% chalcopyrite and 8% pyrite. Mineralization in these holes was mainly restricted to the contact zones between Nicola Group vocanics and coeval intrusive units. Copper-gold assays for these holes were generally low with the best average values given as 0.15% Cu, 0.05g/t Au over 27.4 meters and 0.13% Cu, 0.26 g/t Au over 6.1 meters (von Guttenberg, 1996).

Through the work of Coranex Syndicate Ltd., Amex Exploration Ltd., B.P. Selco Inc. and Asarco Exploration Company of Canada several mineralized zones were discovered on the ANN 2 claim between 1966 and 1991; these include the Peach 1 and 2 zones, Jody zone and the Peach 5 zone.

In 1993, Regional Resources Ltd., on behalf of GWR Resources Inc. did work on the adjacent ANN #1 claim. This work included line-cutting, IP and magnetometer surveys, geological mapping and prospecting and soil and rock sampling. The IP survey identified four main chargeability anomalies on the ANN #1 claim, of which three were proposed for drilling (von Guttenberg, 1994). Subsequent diamond drilling by Regional Resources Ltd./GWR Resources Inc. in 1994 and 1995 was focused on exploring the copper-gold mineral potential of two IP anomalies. One anomaly occurred in the southeast corner of the ANN #1 claim and the second along the southern part of the boundary between the ANN #1 and ANN 2 claims. Drilling on the first anomaly produced copper-gold values of up to 0.47% Cu and 11.4 g/t Au over 3.8 meters. This strong mineralization was generally confined to zones along the contact between a narrow (1 to 12 meters wide) quartz-hornblende-feldspar porphyry dyke of early-Jurassic age (Whiteaker, 1997) and its monzonite host rock. The best drill intersections in the second zone were 0.13% Cu and 0.06 g/t Au over 4.6 meters and 1.31% Cu and 0.07 g/t Au over 1.0 meters.

8

In 1998, GWR Resources Inc. carried-out a diamond drill program (4 holes) in the northeast section of the ANN 2 claim to test the copper-gold mineralization potential of a moderate to strong IP anomaly ("Zone 3" as identified by Lloyd Geophysics in 1991). Three of the four holes encountered zones (10 to 30 meters) of low grade copper-gold grading between 0.1 - 0.2 % Cu and 0.1 - 0.2 g/t Au, with a few shorter sections (3 to 6 meters) grading up to 1.12% Cu and 1.32 g/t Au. The work is reported in an Assessment Report by R.J. Whiteaker, 1999.

In 1999 and 2000, GWR Resources Inc. again conducted diamond drill programs in the central and northeast sections of the ANN 2 claim. Four holes were drilled in 1999 and 25 holes were drilled in 2000. Results were reasonably encouraging with anomalous coppergold intersections variously encountered in about 50% of the holes. The work is reported in an Assessment Report by D.E. Blann, 2001.

7. REGIONAL GEOLOGY

The ANN 2 mineral claim is situated within the Upper Triassic to Lower Jurassic Nicola Group, which forms part of the Quesnel Trough, a volcanic and sedimentary arc sequence affected by Upper Triassic to Jurassic intrusions, and by volcanic activity continuing into the Quaternary (see Figure 4). The Quesnel Trough extends for over one thousand kilometers from northern Washington State to north-central British Columbia, and hosts several alkalic porphyry copper-gold deposits (Mount Milligan, Mount Polly, Ingerbelle, Galore Creek, Afton) and gold-skams and numerous porphyry occurrences.

Northeast of Lac La Hache, Nicola Group sediments, basalts, andesites and breccias are intruded by coeval small stocks of syenitic to dioritic composition. A significant portion of the Nicola Group is covered by Tertiary flood basalt. The Takomkane Batholith, a monzonitic intrusion measuring about 50 km in diameter, is located, at its center, 35 km northeast of Lac La Hache, and borders the Nicola Group five kilometers to the east and three kilometers to the north of the ANN 2 claim.

The ANN 2 claim is located on the south side of a large annular aeromagnetic anomaly, which may have developed as the result of monzonite intruding Nicola Group to the north of Peach Lake and Spout Lake.

GWR Resources Inc. – ANN 2 Mineral Claim (Harvey Zone Diamond-Drill Program) Map modified after GSC Map 1712A, CIMM Sp. Vol. 15, Map B, Saleken & Simpson, 1984 Figure 4: Regional geology map

Hydrothermal alteration has affected Nicola Group intrusive and metavolcanic rocks and includes K-feldspar flooding, development of magnetite, hematite and propylitic alteration. Chalcopyrite and pyrite may be associated with these alteration zones.

Mineral occurrences in the area include alkalic porphyritic copper-gold showings such as the Peach, Miracle, Tim and Ann North and the chalcopyrite-magnetite skarn developed in the contact aureole of a monzonite intrusion along the south shore of Spout Lake.

8. PROPERTY GEOLOGY

8.1 General

The Nicola Group volcanic rocks that underlie the ANN 2 mineral claim include basalt flows and related breccia, feldspar and hornblende-phyric andesite and basalt and bedded mafic tuffs. Associated intrusive rocks consist of fine to medium-grained, equigranular syenite, monzodiorite and diorite, with minor pyroxenite and gabbro. Locally monzodiorite contains up to 5% medium to coarse-grained poikiolitic biotite (Whiteaker, 1997).

Although the ANN 2 claim is extensively covered by overburden (mainly glacial till) and outcrop is generally limited, outcrop is relatively abundant in the "Harvey Zone" area and copper mineralization (chalcopyrite, malachite) is present in most showings. Drilling on the Harvey Zone (holes HAR-02-01 to 05) show the immediate area is undertain by fine-grained, equigranular, variable porphyritic monzodiorite crosscut by small feldspar-hornblende porphyritic dykes of andesitic to basaltic composition. Significant medium to coarse-grained biotite (locally up to 15%) was found in hole HAR-02-04.

8.2 Structure

Structural features on the ANN 2 claim include distinctive east-southeast to west-northwest striking lineaments and southeast-northwest and southwest-northeast striking joint sets (von Guttenberg, 1994). Structural controls appear to have played a role in localizing intrusive bodies and hydrothermal brecciation as evidenced in a southwest-northeast striking quartz-homblende-feldspar porphyry dyke that cross-cuts diorite-monzonite on the eastern portion of the ANN #1 claim. West and southwest trending joint sets cut west

trending K-feldspar veins (locally carrying sulphide minerals), suggesting that some of the structures in the area post-date alteration and mineralization (Whiteaker, 1996).

Surface mapping on the Harvey Zone suggests the southeast northwest and southwestnortheast striking joint sets described above are dominant in the area. Evaluation of drill hole copper-gold assays suggests mineralization tends to strike in an east-southeast to west-northwest direction and dip steeply (70° to 80°) to the north. Post ore fault offsets were not evident from the current drilling, but should be expected in the tectonic setting.

8.3 Alteration

Pervasive and structurally controlled hydrothermal alteration has affected both the Nicola Group volcanic and intrusive rocks across the ANN 2 claim. Generally the rock shows weak to strong propylitic (epidote-chlorite-calcite+/-sericite) and potassic (K-feldsparmagnetite+/-biotite) alteration assemblages. Alteration appears to be strongest within moderate to highly fractured contact zones between diorite to syenite stocks and porphyry dykes and volcanic-volcaniclastic Nicola Group rocks. Alteration intensity grades progressively weaker outward from these contact zones into fresher country-rock. Quartz-epidote+/-albite veins occur locally in zones of strong propylitic alteration. In places, intense potassic "flooding" "of diorite to monzodiorite has obliterated primary rock textures and mineralogy. Fracture-controlled potassic alteration commonly overprints and crosscuts pervasive propylitic alteration assemblages (Whiteaker, 1999).

The Harvey zone diamond drilling generally confirms the existence of the alteration package described above with the addition of a late phase carbonate (calcite) stock-work system that crosscuts all other alteration.

8.4 Mineralization

Copper-gold mineralization is intimately associated with zones of strong potassic and propylitic alteration of intrusive rocks (diorite, monzodiorite and synite). It is also locally present within Nicola Group volcanic rocks adjacent to these intrusions. Sulphide mineralization occurs within veins and along fracture planes commonly containing epidote, chlorite, quartz, K-feldspar, magnetite and variable amounts of calcite, biotite and albite.

Sulphides also occur as fine to medium-grained disseminations and mafic replacements in areas of strong fracturing and intense alteration. The most common sulphide minerals are pyrite (1-5% average) and chalcopyrite (<0.1-1% average) with trace amounts of bornite, molybdenite, pyrrohtite and tetrahedrite occurring locally. Gold values generally correspond with strong pyrite-chalcopyrite mineralization and subsequent high copper values.

Common secondary minerals related to supergene alteration are limonite, malachite and to a lesser degree azurite, chalcocite and native copper. The abundance of these minerals is related to the water-table level, which is generally close to surface across most of the ANN 2 claim.

9. DIAMOND DRILL PROGRAM

9.1 General

Five drill holes (HAR-02-01 to HAR-02-05) were drilled on the Harvey zone by Al Harvey Diamond Drilling of Clinton, BC between June 15 and August 17, 2002. The drill core was transported to D. Fuller's private property in Lac La Hache, BC were it was logged (see Appendix B), cut and stored. Drill core, selected for sampling and assaying, was shipped to Eco-Teck Laboratories in Kamloops, BC and later to Assayers Canada in Vancouver, B. C. (see Appendix C).

Drill hole data is given in Table 2 and hole locations are shown on Figure 5. The holes are also shown on a compressed section displaying copper zoning (see Figure 6).

HOLE	LOCA	TION	ELEVATION	BEARING	DIP	LENGTH	CORE
NUMBER	UTM grid (N)	UTM grid (E)	meters	azimuth	deg	meters	SIZE
HAR02-01	5759025	615428	1200	310	-45	245.96	NQ
HAR02-02	5759065	615397	1189	020	-45	97.53	NQ
HAR02-03	5759065	615397	1189	220	-60	158.49	NQ
HAR02-04	5759082	615465	1186	209	-60	202.99	NQ
HAR02-05	5759147	615540	1170	180	-60	152.70	NQ
TOTAL	····	· · · · · · · · · · · · · · · · · · ·				857.67	

Note: Locations are from chain and compass survey, elevations from topographic map

Table 2: Diamond-drill hole data

GWR Resources Inc. – ANN 2 Mineral Claim (Harvey Zone Diamond-Drill Program) Figure 5: Diamond-drill hole location map

GWR Resources Inc. – ANN 2 Mineral Claim (Harvey Zone Diamond-Drill Program) Compressed Section A-A' Looking West (Range 100 m) Figure 6: Diamond-drill hole section showing copper zoning

Capstone Geological Services

15

9.1 Results

Hole HAR-02-01 was drilled to the northwest and intersected a mineralized zone between 35 and 120 meters with an average grade of 0.25% Copper, 0.12 g/t gold and 0.77 g/t silver. Holes HAR-02-02 and 03 where collared 50 meters northwest of HAR-02-01 collar and drilled to the northeast (HAR-02-02) and to the southwest (Har-02-03) to test the trend and size of the mineralized zone. Hole HAR-02-02 did not intersect any significant mineralization. Hole HAR-02-03 intersected a mineralized zone between 14 and 35 meters with an average grade of 0.34% copper, 0.13 g/t gold and 0.96 g/t silver. Geological modeling showed the original "discovery" was a relatively narrow zone (about 15 - 20 m wide), striking about 273° azimuth and dipping about 78° to the north and that HAR-02-01 had been drilled sub-parallel to the strike. A fourth-hole (HAR-02-04) was drilled 60 meters north-northeast of HAR-02-01 to test the original "discovery" zone at depth. This hole intersected the zone between 38 and 53 meters (average grade 0.14% copper, 0.06 g/t gold and 0.44 g/t silver) and a second deeper anomalous copper-gold zone between 92 and 183 meters (average grade 0.13% Cu, 0.09g/t Au and 0.23 g/t silver). The lower zone was interpreted to possibly define an edge of an expanded part of the mineralized system. Hole HAR-02-05 was located 100 meters northeast of hole HAR-02-04 to test a second zone of outcrop mineralization and the extent of the deep anomalous zone encountered in hole HAR-02-04. Hole HAR-02-05 intersected mineralization between 9 and 33 meters with an average grade of 0.30% copper and 0.18 g/t gold; however, the remainder of the hole (33 to 153 meters) was barren.

Table 3 provides a summary of significant intersections of anomalous copper grade (continuous intersections >6 meters with average grade >/=0.20% Cu) found in the drill holes. Gold and silver grades associated with the anomalous copper are also given.

HOLE	FROM	то	LENGTH	COPPER	GOLD	SILVER
NUMBER	meters	meters	meters	%	g/t	g/t
HAR-02-01	35.0	120.2	85.2	0.25	0.12	0.77
HAR-02-03	14.0	35.0	21.0	0.34	0.13	0.96
HAR-02-04	104.0	123.0	19.0	0.20	0.14	0.50
HAR-02-05	9.0	33.0	24.0	0.30	0.18	-

16

The Harvey zone diamond drilling indicates that at least two steep dipping sub-parallel mineralized systems occur in the Harvey zone. The copper-gold mineralization is hosted by a variably altered (propylitic and potassic) fine-grained monzodiorite. The mineralization occurs as fine-grained sporadically disseminated pyrite and chalcopyrite (possibly related to protolith formation) and as pyrite and chalcopyrite in veins (fracture filling) and as blebs in K-feldspar-epidote alteration patches. Chalcopyrite is also found in secondary magnetite veins and patches. Pyrite occurs with both propylitic and potassic alteration, but chalcopyrite is more commonly associated with potassic alteration. There is some evidence to suggest the mineralized systems may be related to zoning of both lithology and alteration but more work is required to confirm and detail this.

10. STATEMENT OF EXPENDITURES

GWR Resources Inc. management supplied the following all-inclusive cost figures for work done on the ANN 2 claim (Harvey Zone) between June 3, 2002 and September 27, 2002.

Al Harvey Diamond Drilling, Clinton	BC	
(Total meters drilled: 857.67)	All-inclusive diamond drilling cost	\$41,990.00
Capstone Geological Services, 150 G.E. Barker, 17 days (fieldwork and	Mile House, BC I core logging)	
Wildrock Resources Consulting and C.J. Wild, 2 days (core logging)	I Drafting, Williams Lake, BC	
All-inclusive fieldwork and core logo	ing costs	\$5,697.26
Eco-Teck Laboratories, Kamloops,	BC	
Assayers Canada, Vancouver, BC		
(Assays: Cu 242, Au 242, Ag 116,	Pd 29, Pt 29)	
All-inclusive assay costs		\$2,327.65
D. Fuller, (sample cutting and storag	ge), Lac La Hache, BC	
(Total number of samples: 242)	All-inclusive sample preparation costs	\$1,953.71
Miscellaneous all-inclusive costs:		
	Equipment rentals	\$1,272.81
	Geological Reports	\$1,040.00
	Transportation	\$440.22
	Supplies	\$253.70

TOTAL \$54,975.35

18

11. CONCLUSIONS AND RECOMMENDATIONS

- At least two relatively narrow and steep dipping sub-parallel mineralized systems occur in the Harvey zone.
- The Copper-gold mineralization in these systems is hosted by a variably altered (propylitic and potassic) fine-grained monzodiorite.
- The Harvey zone mineralization occurs as fine-grained sporadically disseminated pyrite and chalcopyrite (possibly related to protolith formation) and as pyrite and chalcopyrite in veins (fracture filling) and as blebs in K-feldspar-epidote alteration patches. Chalcopyrite is also found in secondary magnetite veins and patches. Pyrite occurs with both propylitic and potassic alteration, but chalcopyrite is more commonly associated with potassic alteration.
- There is some evidence to suggest the mineralized systems may be related to zoning of both lithology and alteration but more work is required to confirm and detail this.
- The Harvey zone copper-gold mineralized systems are open along strike and down dip and additional drilling is warranted to further test the extent of the modeled systems.
- It is recommended that additional diamond-drill holes (3 or 4 holes totaling about 700 meters) be drilled to further test the extent of the modeled copper-gold zones. Priority should be given to testing the down-dip extension to the north and the strike extension to the west.

ESSION PROVINCE G. E. BARKER

George E. Barker, B.Sc., P.Geo. Capstone Geological Services

12. BIBLIOGRAPHY

Blann, D.E., (2001): Diamond Drilling "Assessment" Report on the Ann Property, Ann 1 and Ann 2 claims, Clinton Mining Division, For GWR Resources Inc.

von Guttenberg, R., (1994): An Assessment Report for 1993 Field Work on the ANN 1 and ANN 2 claim, Clinton Mining Division, For Regional Resources Ltd./GWR Resources Inc.

Whiteaker, R.J., (1999): An Assessment Report for 1998 Field Work on the Ann 2 Property, ANN 2 claim, Clinton Mining Division, For *GWR Resources Inc.*

Whiteaker, R.J., (1996): The Geology, Geochronology and Mineralization of an Early Jurassic Porphyry System near Lac La Hache, BC. Unpublished B.Sc. Honours theses, *University of British Columbia*, Vancouver, BC.

Appendix A: Statement of Qualifications

I, George E. Barker, do certify that:

- I am Principle of Capstone Geological Services, PO Box 299, 150-Mile House, British Columbia, Canada, V0K 2G0.
- I am a Professional Geoscientist (Geology).
- I am a registered member of the Association of Professional Engineers and Geoscientists of the Province of British Columbia, registration number 19697.
- 1 am a graduate of the University of Waterloo, Waterloo, Ontario, receiving a Bachelor of Science Degree in General Science (Earth Science emphasis), 1985.
- I am a graduate of the British Columbia Institute of Technology, Burnaby, British Columbia, receiving a Diploma of Technology in Chemical and Metallurgical Extractive Metallurgy Option, 1969.
- I have worked in the Canadian Mining Industry for over 35 years. From 1978 to the present I have been engaged in mining and exploration geology in British Columbia.
- I personally supervised the work, evaluated the data and prepared the report.
- I have no direct or indirect interest in the ANN 2 mineral claim or GWR Resources Inc., nor do I expect to receive any such interest.

George E. Barker, B.Sc., P.Geo.

Appendix B: Diamond Drill Hole Logs

Diamond Drill Log

Hole No. HAR-02-01

Page 1 of 5

LOCATIO	DN: Harv	ey Zone		BEARING: 310 Az	10 Az LATITUDE (N): UTM grid 5759025 N* CORE SIZE: NQ													REMARKS: Test new mineralization						
DATE C	DLLARED	D: June 1	5, 2002	DIP: -45	LONGITUDE (E): UT	vi grid	61542	8 E*		LOG	GED E	BY: C.	J. Wild	d and (3. E. B	arker	ker west of Ann North							
DATE C	OMPLET	ED: June	25, 2002	LENGTH: 245.96 m	ELEVATION: 1200 m	*				DATE	E: Jun	e 20, 2	2002											
					*values from chain-com	pass s	urvay &	topo r	map				-											
DEPT	[H (m)	ROCK		DESCRIPTION		A	LTER/	ATION	(Seco	ondary	minera	als)	MINE	RALIZ	ATION		SA	AMPLE DA	TA					
		CODE				In	tensity	/ score	ə: 0(no	one) to	5(stro	ng)	Es	timate	d %	Inter	val (m)	Sample	Ase	says				
From	to					Kf	ері	chl	ser	carb	mag	(?)	ру	ср	(?)	from	to	Number	Cu %	Au g/t				
0	2.44	Casing	Mainly glacial til	II, not recovered															-					
						ļ				<u> </u>				<u> </u>			L							
2.44	30.8	MzDr	Monzodiorite: M	ledium to dark grey, fine to mediu	m-grained, equigranular	2	2	1	1	1-2	4	(cly)	0.3	0.5	-	2.44	5.0	22751	0.10	0.04				
		1	moderately to s	trongly magnetic due to 5-10% m	agnetite (mag).							1				5.0	8.0	22752	0.04	0.05				
			Weak potassic	alteration consists of stockwork o	f K-feldspar (Kf), epidote							(lim)				6.0	11.0	22753	0.07	0.04				
			(epi) and spots	and patches of a hard black mine	ral, possibly tourmaline.							2		1		11.0	14.0	22754	0.05	0.03				
			Cut by late calc	te veinlets and stringers, weakly	calcareous adjacent.											14.0	17.0	22765	0.03	< 0.03				
		1	Mineralization c	consists of fine-grained chalcopyri	te (cp) associated with				}							17.0	20.0	22756	0.09	0.03				
			mag, medium to	o coarse-grained cp, possibly trac	es of bornite (bn)					1	1					20.0	23.0	22757	0.07	<0.03				
			associated with	Kf-epi-tourmaline veinlets, conce	ntrated in selvages and									1		23.0	26.0	22758	0.08	0.03				
			alteration patch	tes. Pyrite (py) is associated with	epidote.									-		26.0	29.0	22759	0.02	<0.03				
			Core is weakly t	to moderately fractured and weak	ly sheared, hard with		1						1			29.0	32.0	22760	0.09	0.06				
			recoveries >959	%.						1	1		i i			ł								
		1	2.44 - 19.4: Oxi	idized zone, mainly orange limoni	e on fractures.		ł			-	1													
			8.2 - 8.3: Orang	ge mottled monzonite dyke, xenoli	ths of fine-grained						1													
			diorite, intrusive	e contacts at 75 to core axis (c.a.)	; patchy epidote.								ļ											
			11.5: Kf-epi vei	inlets at 25 and 45 to c.a., planar,	2-3 mm thick.	1				1														
			15.7: Kf veinlet	s, 1 cm selvage at 45 to c.a., (typ	ical).			Ì		1	1					1								
			19.9: Kf-epi-car	rb vnit, 2-3 mm thick, brick orange	at 45 to c.a.	i i										1	1							
			23.8: Calcite vn	nit, 10 mm thick, at 60 to c.a., wea	k carb stockwork in Kf-			1																
			altered zone be	alow vnlt.						-				1										
			21.9 - 22.2 : Go	ouge, possibly clay-altered and sh	ears dyke with Kf and						-													
			calcite veining.	Upper slip at 60 to c.a., irregular	1								1			ļ			ļ					
						<u> </u>			<u> </u>	<u> </u>	<u> </u>			+	<u> </u>			00704	0.44	0.00				
30.8	84.9	MzDr	Medium-grey, I	esser dark grey, medium-grained	to weakly porphyritic with	3	3	1	1	1	4	(Cly)	0.3	1.0	-	32	35	22/61	0.11	0.03				
			diffuse plagioch	lase phenocrysts weakly sausseril	ized). Moderately								-			35	38	22762	0.37	0.22				
			magnetic due to	o 5-10% fine-grained magnetite, a	is above.							1				38	41	22763	0.31	0.21				
			Marks sharp in	crease in frequency, size and inte	nsity of Kt-epi (tourm), in		ł					1				41	44	22/04	0.00	<0.03				
			stockworks and	d patches.												44	4/	22/00	0.17	0.07				
			Corresponding	increase in size and frequency of	cp mineralization. Begin						}		Ì			4/	50	22/00	0.18	0.05				
			to see sections	s of very splashy cp, possible trace	es of bo. Pyrite is							1			1	50	03	22/6/	0.31	0.18				
			associated with	n epi and cp.	• ·	1				1	1	1				53	50	22/68	0.22	0.07				
			Core continues	s to be weakly fractured, hard, rec	overy >95%						1						59	22/69	0.28	0.13				
			30.8: 1 cm Kf-e	epi-tourm vnlt at 60 to c.a., no sul	phides.	1	ł						1			59	62	22770	0.41	0.22				
		1	31.7: Patchy di	iffuse cp in pale green epidote-flo	oded monzonite.	1			1							62		22771	0.24	0.15				
	1		34.0 - 36.7: Mo	pre pervasive zone of mottled and	possibly brecclated Kf-epi							1	1			65	68	22772	0.17	0.09				
			alteration; fine-	-grained cp-py with epi.		ł						}	1			68		22773	0.24	0.15				
			37.7: 10 -12 mi	m Kf-epi vnlt, epi in center with bl	ebby to disseminated cp-py.	1					Ì					71	74	22774	0.18	0.05				
i -		1	Vein at 30 to c.	.a.					1				1			74	77	22775	0.11	0.06				
ł		1	38.1: 2-3 cm ve	ein of Kf-epl, more patchy, little fir	e-grained py-cp. Contact			1				1				77	80	22778	0.15	0.07				
1	1	1	lat 30 to c a			1	1	1	1	1			1	1	1	1 80	1 83	1 22777	0.26	0.09				

Diamond Drill Log

Hole No. HAR-02-01

Page 2 of 5

DEPT	H (m)	ROCK	DESCRIPTION	Ā	LTER/		l (Sec	ondar	ry min	erals)	MINE	RALIZ	ATION		SA	MPLE DA	TA	
		CODE		In	tensity	score	e: 0(n	one) t	to 5(6	rong)	E	stimate	d %	Interv	al (m)	Sample	Ass	ays
From	to	1		Kf	epi	chl	ser	car	rb ma	g (?)	py	ср	(?)	from	to	Number	Cu %	Au g/t
			44.9: 2 cm Kf-epi vnit, weak py-cp, more in mzdr host, guite magnetic.										1					
			46 1: Series of late calcite stringers at 65 to c.a.	1														
			47.2: 25 cm zone of intense Kf altn, wispy at either end with patchy to				†				<1	1.5						
		l	blebby co-py in epi, surrounded by Kf. Darker green may be actinolite.															
]	51.1.51.6 Series of Kf volts and patchy flooding associated epi and		+		1				- [†	1				
		1	blebby cp.nv															
			58.0: 0.5 cm patches of black tourmaline surrounded by Kf-eni and															
			associated with highly co-py and calcite													-		
			58.2 - 58.8: Intense Kf.eni alth. consnicuous black tourmaline natches				-	••••••		+-	10	20	+					
			throughout making up to 10, 15% of interval 2,3% blabby co.pv	1								2.0	Í	i				
			annongrid to the set and tourn. Upper contact at 60, louise at 15 to a a				1											
			Associated with epi and tourin. Opper contact at do, lower at 15 to c.a.		+	ł	+						• +					
			Contents of 50 to a c				ł	1										ĺ
						<u> </u>	- -				1 10	10	+	-				
			62.5: 2-3 cm Ki-epi vnit at 20-30 to c.a., minor cp-py				┼—					20	+	-				
			64.8: 3-4 cm zone of Kf-eni with ny-cn				·†·					50	·					
			70.1 - 70.3: Splashy co-ny associated with patchy mag in Kf-epi					- +			1.0	5.0	+	-				
			71.9 - 72.2: Patchy Kf-epi, intense, only miner py.		<u>† </u>		+				<1	<1	+	1				
			73.0 - 74.5: Zone of moderate Kf altn in stockwork, considerable bx,				+						1		,			
			especially 74.1 - 74.2 m. Non-magnetic black spots, minor vuggy calcite.										1			1		
		}	5% finely disseminated co in Kf-epi. Fine-orained py-co in mag-rich mzdr.															
			Strongly mineralized narrow (<1 cm) Kf-epi veinlets, spaced 30-50 cm.			-												
			Rare guartz stringers with cp, associated with Kf-epi.					Ì										ļ
			77.8 - 81.9: Weak mineralization, even in the fewer Kf-epi vnits.									1						1
			78.9: Splashy disseminated cp along Kf-epi vnits.															
	ļ		81.9: Disseminated cp in Kf-epi vnlt, 5 mm thick, at 50 to c.a.		1						1		-					
			82.0: Diss cp in Kf-flooded portion of vnlt, at 45 to c.a.										1					
			82.5 - 83.4: Well-mineralized section, diss cp throughout.															
			82.9: 4-5 cm KI-cp-act vein bx at 45 to c.a.; cp patches to 1 cm.					i										
			83.0 - 83.4; Cp in carb-rich vein, precciated toward bottom, decreasing											}				1
								1										
84.9	114.1	MzBx	Mottled matrix-supported breccia, pale grev to pink monzonitic clasts.	3	3	2	2	0	5 -		1.0	1.5	+ -	83.0	86.0	22778	0.35	0.1
0110			poorly sorted with wide variety of clast sizes and shapes. Local intense		-			1						86.0	89.0	22779	0.18	0.03
			Kf-epi but generally grey and magnetic. Cp-py disseminated preferentially	1			ł				1		1	89.0	92.0	22780	0.27	0.12
			through clasts with occasional patches. Zone of significantly greater											92.0	95.0	22781	0.34	0.18
			fracturing.		1									95.0	98.0	22782	0.26	0.09
			84.9: Cp on very dark chloritic fractures @ 55 to c.a.; and in Kf-epi vnlts.								1			98.0	101.0	22783	0.15	0.07
			86.2: Dark bx with diss cp in Kf-alth clasts; cut by later epi-cp-py vnlts.	1		ł					ļ		1	101.0	104.0	22784	0.30	0.17
]			88.3: Continue to see diss cp-py adjacent to Kf-epi.								1		1	104.0	107.0	22785	0.12	0.08
1			88.7: Clast or patch of Kf-epi, well-mineralized.										1	107.0	110.0	22786	0.37	0.19
			194.6 - 95.2: Patchy cp (>55) in orange Kf, blk tourm, epi, cal @ approx.							1				110.0	112.0	22787	0.08	80.0
i			45 to c.a. Not magnetic.		1									112.0	114.1	22/88	0.00	0.28
	1		195.2 - 95.7: Strong motiled Ki-epi, weaker cp-py				1					1			1		!	1
1]		103.6: 20 cm of pebbles in polymer		1			1									1	
			103.6 - 105.0: Very fine-grained Kf-epi hard weakly mineralized															
			reade road, ray inc-grained ready, inde, weakly initionalized.			ł	}				ļ		1	l				

Diamond Drill Log

Hole No. HAR-02-01

Page 3 of 5

DEPT	H (m)	ROCK	DESCRIPTION	A	LTER/	TION	(Seco	ondary	minera	\$)	MINE	RALIZ	ATION		SA	MPLE DA	TA	
		CODE		In	tensity	score	ə: 0(no	ne) to	5(stron	ng)	Est	limate	1%	Interv	al (m)	Sample	Ass	ays
From	to			Kf	epi	chl	ser	carb	mag	(?)	ру	ср	(?)	from	to	Number	Cu %	Au g/t
			105.0 - 106.7: Epi vnlt, fine-grained Kf selvage, patchy cp in epi, becomes darker green, mottled, patchy and diss cp-py. Decreased altn intensity, increased tourmaline often with fine-grained cp. Increased chlorite, esp on fractures.								1.0	2.0						
			 106.7 - 108.2: Continuing well-defined hydrothermal bx, locally spotted with black tourm. Green with pale pink Kf and epi stwk, weakening. 108.2: Decreasing Kf-epi, weakening bx textures, mineralization. 111.9: Epi-py-cp vnlts, 1-2 mm thick, @ 35 to c.a., fine-grained beige selvages 112.9: Strong Kf surrounding epi-cp-py vnlt @ 40 to c.a. Black chloritic fractures, post-mineral. Continues well-mineralized to 144.1 m. 								1.0	2.0						
114.1	116.4	Monz	Medium greenish-grey, locally fine-grained pinkish groundmass. Only weak Kf-epi stwk. Minor fine-grained diss py-cp, moderately magnetic. 114.2 - 115.2; Well-fractured.	1-2	1-2	2	0	2	3-4	-	<1	<1		<u>114.1</u>	116.4	22789	0.07	<0.01
116.4	118.1	MzBx	As before, esp 112.9 - 114.1 m, weak Kf-epi stwk bx, Good mineralization mainly fine-grained diss throughout, grey and pink and a few blebs with epi continuing into lower Monzonite. Moderately magnetic.	3	3	2	0	2	3-4	-	1.0	2.0	-	116.4	118.1	22790	0.52	0.19
118.1	120.2	Monz	Gradational contact into dark greenish-grey, fine-grained, mod magnetic Strong cp-py over top 40 cm, decreasing down hole. Lower contact @ 45 to c.a., locally bx with Kf-altered clasts supported in dark MxDr matrix. Weakly fractured. 96.62 - 99.67: 90% recovery, 99.67 - 102.72: 75 - 80% recovery.	2	2	3	0	2	4	-	1.0	1.0	-	118.1	120.2	22791	0.18	0.08
120.2	124.5	MzBx	Weakly brecciated, moderately fractured, along dark chloritic planes. Weak Kf-epi stwk. Mineralization consists of weaker fine-grained cp-py in Kf-epi and chlorite. 120.6 - 121.0: Moderate chloritic shear zone, brittle and rubbly.	3	3	3	0	2	3	-	<1	<1	-	120.2	123.0	22792	0.11	0.05
124.5	170.3	MzDr	 Dark grey, medium to fine-grained, variably porphyritic (plagicclase - mafics), decreasing Kf-epi stwk veining and weak brecciation. Continuing chi-epi-calcite on fractures and in patches in groundmass; still mod to strongly magnetic, minor Fe-carb. Mineralization is dominantly fine-grained py-cp, difficult to estimate quantity due to fine-grained nature. Sharp decrease in fracture density, hard, 100% recovery. 124.5 - 128.5: Moderately fractured, weak Kf-epi stwk diminishing. 135.3: Tournaline (?) spots associated with epi, very weak cp-py. 144.6 - 144.9: Kf-epi altered patch, mottled and bright green. Calcite with epi, only traces of sulphides. 145.0: Diss cp in 1 cm mag patch, otherwise continuing weak sulphides. Minor py on chloritic fractures. 146.9 - 146.2: Stockwork of vuggy calcite-epidote vnlts. 146.4: Patchy vnlt of Kf-epi-carb-tourm. Calcite not cp in tourm spots. Veinlet @ 45 to c.a. 148.0: 4-8 mm Kf-epi-carb-tourm veinlet @ 40 to c.a., 149.4: 1-2 mm mag-rich clast with fine diss cp. 153.6: 3 cm wide pale greenish Kf-carb veinlet @ 55 to c.a. 160.3 - 160.8: Weak epi-carb stwk, verging on Kf-epi flooding 	2	2	3	0	3	4	-	1.0	1.0		123.0 126.0 129.0 132.0 135.0 138.0 141.0 144.0 144.0 150.0 153.0 156.0 159.0 162.0 162.0 168.0	126.0 129.0 132.0 135.0 138.0 141.0 144.0 144.0 147.0 150.0 150.0 159.0 162.0 165.0 168.0 171.0	22793 22794 22795 22795 22796 22797 22798 22799 22800 22801 22802 22803 22804 22805 22804 22805 22806 22807 22808	0.09 0.02 0.04 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.01	0.05 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.04 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <

Diamond Drill Log

Hole No. HAR-02-01

Page 4 of 5

DEPT	H (m)	ROCK	DESCRIPTION	AI	LTER/	TION	(Seco	ndarv	minera	ls)	MINE	RALIŻA	TION		ΓΑ			
		CODE		In	tensity	score	a: 0(no	ne) to	5(stroi	ng)	Est	imated	1%	Interv	al (m)	Sample	Ass	ays
From	to			Kf	epi	chl	ser	carb	mag	(?)	ру	ср	(?)	from	to	Number	Cu %	Au g/t
			 160.8 - 161.2: Kf-epi-carb vein breccla; Kf-altered clasts in epi-chl-carb matrix cut by later epi-carb vnits. Zone @ 60 to c.a. 161.0: Blebby cp to 5 mm in epi-carb vnit. 162.3: Kf vnit followed by epi-chl-carb slip. Minor cp-py and traces of native Cu associated with Kf. 166.1 - 166.4: Weak wispy stwk of Kf-epi-carb @ 30 to c.a. 166.5 - 169.6: Conspicuous 2-3 mm plagioclase phenos. 168.1: 10 cm pale green epi-flooded with angular clasts or phenos. 															
170.3	189.0	MzDr	Same as above with increasing Kf-epi-tourm-carb stwk; local bx as	2	3-4	3	0	3	4	-	1.0	1.0		171.0	174.0	22809	0.03	<0.03
			before. Alteration still dominantly epi-chl-carb-Kf and earlier pervasive	Ì		t 1				ĺ	i	ļ		174.0	177.0	22810	0.04	<0.03
			magnetite. Chlorite on fractures, chl-epi-carb patches. Mineralization is					1		1				177.0	180.0	22811	80.0	0.05
			difficult to estimate, fine-grained cp and py associated with KI-epi.			1					ł	ļ		180.0	183.0	22812	< 0.01	<0.03
			Weak to mod fracturing, hard.					İ 🗌		-	1	ļ		183.0	186.0	22813	0.06	<0.03
			170.3 - 171.0; Bx; often faint matrix-supported Kf-altered clasts in strong chi-eni altered matrix, weak co-ny			ļ								186.0	189.0	22814	0.01	<0.03
			 170.8: Minor shear zone 2-3 cm thick @ 45 to c.a. 173.0 - 177.6: Increasing Kf vnlts, widespread epi-carb stwk. increased fracturing. Modest increase in fine-grained py-cp. 174.6: Fine-grained diss py in dark chl-rich section. 177.6: Kf-epi veinlet @ 45 to c.a. 177.6 - 189.0: Patchy epi-carb stockwork (10%) but weak Kf generally restricted to strong epi zones. Generally weakly fractured Beginning to see clasts and/or inclusions, looking like intrusion bx. 															
189	195.5	MzDr	Same as above with more intense Kf-epi stwk and patchy magnetite.	3	3	3	0	2	4-5	-	1.0	<1	-	189.0	192.0	22815	0.11	0.03
			 Veak intrusion bx texture, possibly caused by stwk development. Notable increase in coarse cp and py. Weak to moderately fractured. 189.0 - 189.6: Strong Kf over top 30 cm with patchy epi giving colourful mottled appearance. Blebby cp common in top 30 cm. Epi-carb over bottom 30 cm appears to postdate Kf. 189.7: Chalcedony vnlt with dark hematite(?), 103 mm thick @ 55 to c.a. hosts >5% cp blebs. 190.0: Coarse-grained py in vnlt, similar to above @ 60 to c.a. min cp. 190.1: Weak Kf-epi veinlet stwk. Fine-grained cp-py. 191.1: Weak Kf-epi patch, significant fine-grained cp-py surrounding in blk chl-rich host. 194.0: Speckled fine-grained cp-py, 2-5%. (Piece 638). 											192.0	193.0	22810	0.01	
195.5	201.1	And(?)	Ine-grained to porphyritic, grey to pink dyke; epi-carb altered phenos in	13	3	1	1	3	3	· ·	~1	<1	-	195.0	198.0	2201/	0.01	<0.03
1			variably pinkish groundmass. Cp-py associated with phenos, generally											190.0	201.1	22010	0.01	1 10.03
			 Weak. Chill margin at upper contact, 5 cm mick, sharp, @ 40 to c.a. 196.2 - 196.8: Cp in tourmaline spots (epi-carb-Kf-py), form a string running down core axis. Increasing Kf to 196.9 m. 196.8 - 199.0: Fine-grained, pale greenish grey, 2% tourm spots, wk cp-py. 199.0 - 199.5: Kf-epi-carb flooded, fine-grained mottled appearance. 199.5 - 200.8: Tourm spots, minor cp-py. 200.8 - 201.1: Pink, Kf-flooded. Lower contact has erratic 5 cm dark, fine-grained chill margin @ 40 to c.a. 															

(

Diamond Drill Log

Hole No. HAR-02-01

Page 5 of 5

DEPT	H (m)	ROCK	DESCRIPTION	ALTERATION (Secondary minerals)										ION SAMPLE DATA							
		CODE		In	ensity	score	e: 0(no	ne) to	5(stro	ng)	Est	imated	1%	Interv	al (m)	Sample	Ass	ays			
From	to			Kſ	epi	chl	ser	carb	mag	(?)	РУ	ср	(?)	from	to	Number	<u>Cu %</u>	Au g/t			
201.1	226.5	MzDr	Dark grey-green, fine-grained, equigranular to weakly variable porphyritic	2-3	3-4	1	0	2	3	-	0.5	0.5	-	201.1	203.1	22819	0.05	<0.03			
			texture. Some small weak zones of bx as indicated below. Mod stwk of											203.1	200.1	22820	0.20	0.00			
			epi-Kriveins 1 to 4 mm wide, Epi-Kri also occurs as 1 to 5 cm patches and								ļ			200.1	209.0	22021	0.10	0.00			
			streaks often with bik tourn(7). Dominant veins occur g about 30 to c.a.				·			[209.0	212.0	22022	0.05	0.00			
			(with a conjugate set (g) about 50 to c.a. weak to mod crosscutting carb			1					1			212.0	218.0	22023	0.13	0.00			
			is each value. Carb eccentially confined to value. Care is mod magnetic						}	l I				218.0	2210.0	22825	0.00	0.04			
			in carbid venis. Carbid essentially contined to venis. Core is mou magnetic,							1				2210	224.0	22826	0.01	0.02			
			Weak fine-grained co-by diss in core erratically. Weak to mod co-by also				}			ł	1			224.0	227.0	22827	0.02	0.03			
			lassociated with Kf-eni veins and patches.			1					1										
			Core is competent and hard, breaks often occur along carb veins, 99 -	1																	
[100% recovery.															·			
[}	203.1 - 206.1: Strong epi-Kf flooding, bx texture, increase in cp-py			<u> </u>	+		+	†·	1.0	0.7	-								
1 1			208.5: Blebs of cp-py (1 -2 cm) in Kf-epi patches.				1	1			1										
			212.0: vein of coarse-grained (to 3 mm) Kf-minor plag with min epi-tourm	•				1			1										
			3 cm wide @ 30 to c.a.				1				1										
		l				ļ	<u> </u>			<u> </u>	<u> </u>		ļ					0.07			
226.5	245.95	MzDr	Rock similar to 201.1 - 226.5 but a bit lighter in color. Significant increase	3-4	2-3	1	0	2	2-3	-	1.5	0.4	-	227.0	230.0	22828	0.10	0.07			
			in orange Kf associated with a decrease in epi. Also slight increase in carb		ļ	İ					1		1	230.0	233.0	22829	0.10	0.09			
		1	veins and decrease in diss mag. Stick of Kr-epi-tourm as before but more	·					1					233.0	230.0	22030	0.08	0.00			
			pronounced. Suiphides (mainly py) increase as noted. Small blebs and		ļ									230.0	242.0	22031	0.00	0.02			
			streaks of mag (up to 5 mm) occur heat boltom of note. Core is very			-						•		242 0	245.97	22833	0.00	0.03			
			recovery is about 65%. Recovery in remainder of zone 99 - 100%								1		1	-	210.01	22000		<u> </u>			
													ļ								
	245.95		END OF HOLE			ļ	<u> </u>														
			MEBartur-																		

Diamond Drill Log

Hole No. HAR-02-02

Page 1 of 1

LOCATIO	N: Harve	v Zone		BEARING: 020 Az	LATITUDE (N): UTM g	rid 57	59065	N*		CORE	E SIZE	: NQ					REMARK	S: Test ne	w minera	lization
DATE CO	DLLARED	June 27	, 2002	DIP: -45	LONGITUDE (E): UTM	grid (51539	7 E*		LOGO	SED B	Y: G.	E. Bar	ker			west of A	nn North.	Drilled ap	oprox.
DATE CO	MPLETE	D: July 1	2002	LENGTH: 97.53 m	ELEVATION: 1189 m					DATE	: June	9 29, 2	2002			_	50m @ 3	20 Az fron	Har-02-0	01
1					*values from chain-comp	855 BU	rvey &	topo r	nap											
DEPT	H (m)	ROCK		DESCRIPTION		AL	TERA	TION	(Seco	ndary I	Minera	IS)	MINE	RALIZ	ATION		SA	MPLE DA	TA	
		CODE				Int	ensitv	score); 0(no	ne) to	5(stror	<u>α</u>)	Ēŝ	timate	d %	Interv	al (m)	Sample	Ass	ays
From	to					Kf	epi	chl	ser	carb	mag	(?)	DV	ср	(?)	from	to	Number	Cu %	Au g/t
0	549	Casing	Mainly placial till not	t recovered			_													
	0.40	Cuoing	tituling glacial and the																	
5 49	34.0	MzDr	Medium to dark grey	-areen, fine-arained around	nass, perphyritic with	2-3	2-3	1	1	2	0*	(cly)	0.6	0.2	(mal)	5.49	9.0	22834	0.02	<0.03
UU	Ф П.С		random plag phenos	s 1-2 mm. Weak stockwork	of Kf-epi velns 1-2 mm wide.				-			1			tr.	9.0	12.0	22835	0.06	0.03
			dominant veins @ 20	0-30 to c.a. Core moderatel	v magnetic, fine-grained				l			(lim)			(Cu)	12.0	15.0	22836	0.15	0.07
1			magnetite nervasive	@ 4-6% Small zones (10)	o 20 cm) of strong Kf-epi				9			` 2 [′]	ĺ		tr.	15.0	18.0	22837	0.03	0.04
			as stringers and nate	ches occur every 40-50 cm f	rom 9 - 12.5 m. Small	+	Note	chanc	i ne in d	, Iefininc	, maai	netite.				18.0	21.0	22838	0.05	< 0.03
			splashes of black to	urmoline (?) occur mainly w	thin eni Core looks similar		Pervé	asive t	maane	tita wl	hich m	akes				21.0	24.0	22839	0.05	< 0.03
			to lower portion of H	AR-02-01 except for supera	ane alteration.		up 5 ·	- 10 %	of co	ne is n	low co	nside	red			24.0	27.0	22840	0.04	<0.03
			5 49 - 34' moderate '	to weak vellow to orange-bri	own calcareous limenite on		a prin	narv (accas	sorv) r	minera	d.				27.0	30.0	22841	0.13	0.17
			fractures Trace am	ounts of malachite and nat	Cu seen with lim from 9 - 14 m	I	Only	secon	darv i	magne	tite					30.0	33.0	22842	0.19	0.08
			Propylitic alteration ((chl-eoi-min_ser) becomes a	poarent @ 24 m this altr.	ł	(i.e. c	occurii	na in v	eins e	tc) is					33.0	36.0	22843	0.08	0.03
			continues to FOH	Minor thematite also seen @	24 m.		score	id una	ler alte	aration	,									
			Sulohida mineralizati	iion weak in zone. Some dis	s specks of py seen with								i				i			
			minor ov-co associat	ted with Kf-eni veins and pai	ches															
		ł	Zones of hadly broke	en core as follows:											1					
1			11 3 - 14 9: 10 cm o	st clav gouge (gg) @ 14 m F	ecovery 60 -70%					-										ĺ
			18 3 - 23 4: 20 cm o	foo 60 187 - 189 m Recov	(erv 60 -70%)										i i					
			25 1 . 26 2 . 26 6 . 28	8 2 28 7 - 29 5 and 30 0 - 3	1 8: Recovery 80 - 85%	ł									i i					
			31.3 - 31.8: miyed b	0.2, 20.1 - 22.0 Inte 50.0 - 5	1.0. TRECOVERY 00 - 00 %	t														
			Becovery outside br	roken zones 05 - 09%	70	1					ļ			1			}			
		l	t ate carb voine out l	Kf eni site but maybe synch:	onous with propylitic alta				[[1			
		1	Care tends to break	on each voice experine of	Bakes and calelte wafere				ļ.		1		1							
			Core tends to bleak	on carb vehis exposing chi	liakes and calcile waters.								1							
240	07.52	MaDr	Book is besidely the	a sama as aboue with variati	one as described below	1.2	3	2	1.2	1	1		1 O R	01	+	· · ·	<u></u>		1	<u></u>
34.0	91.05	IVIZL7	Rock is pasically the	s salid as above with variati	stightly more propylitic	1-2	1		1-1		· ·	1	0.0	0.1		48	51	22844	0.17	0.04
			NOCK IS EQUIVIAINUA	a with less polassic and and													<u> </u>			
		ł	Sulphide mineralizat	tion remains weak although	ov appears to increase	i			1		ļ					60	63	22845	0.03	<0.03
		(as noted. Sulphide	distribution is both diss and	in Kf.eni velos and patches			1	ł											
1		{	42.2 42.0: Oundars	monzonito duko (2), colmon	nink medium argined										[78	81	22846	0.02	<0.03
	i i		42.3 - 42.8. Quartz I	composed of 60 - 70% Kf - pl	an 20 about 1:1 ratio															
				$\frac{1000}{1000} + \frac{1000}{1000}	associated with hhid)	Į –	1					1	1			93	97 53	22847	0.04	<0.03
		ļ	ehorn upper and low	ver contacte @ 30 to c a Gr	ain eize 1-2 mm Minor	ł.	1										+			1
			barn oni orth ovin		ant size the man. Manor					1						i				
			Miner breken zenen	24 43 7 Core is faidy har	d and competent 43.7 EOH				ł				1				i i			
1			Recovery 08 . 100%	io≫r - +ro.r. Corc is idilly ⊓aa ∠	a and competent 43.7 - EOH.			1				1		1		ł		1		
		ł	100%	0		1						1								1
1]	1							1	1			1			}				
1				+	> /					1						1				
1				NG.C						1										
1	07.52			/ K1/0	itte									1		ľ	1			
L	01.00	1				I		L	<u>. i</u>			L	L							

ŧ

Diamond Drill Log

Hole No. HAR-02-03 Page 1 of 3

LOCAT	ON: Harve	y Zone	BEARING: 220 Az	LATITUDE (N): UTM g	rid 57	59065	<u>N</u> *		CORE	SIZE	: NQ					REMARK	S: Test ne	ew mineral	lization
DATE C	OLLARED): July 3, 2	2002 DIP: -60	LONGITUDE (E): UTM	grid (61530	<u>E*</u>		LOGG	ED B	Y: G.	E. Bar	(er			west of A	nn North.	Collared (no
DATE C	OMPLET	D: July 1	1, 2002 LENGTH: 158.49 m	ELEVATION: 1189 m*					DATE	: July	6,200)2				same site	as HAR-0	02-02	
				values from chain-comp	ass su	ILVBY &	topo n	nap										**	
DEP	TH (m)	ROCK	DESCRIPTION		AL		HON	(Secol	ndary r	ninera	(13)	MINE	(ALIZ/				Samala	<u> </u>	
<u>.</u>	T	CODE				ensity	score	: Uluoi	ne) to	ous)c	ng) (2)	ESI	matec	1% (2)	from	ai (m)	Sample	Cu 94	Au a/t
From	10	Casian	Mainly stanistill, not secured		N	ehi	<u>UII</u>	301	Carb	may		_ PX	<u></u>	- 112	1040		TAULISO	Ou A	-ru gr
U U	2.13	Casing	Mainty giaciar till, not recovered																
2 13	84	MzDr	Monzodiorite: Medium grey-green, fine-grained, equigran	ular texture	2	1-2	0	0	1	0	(clv)	0.3	0.1	(Cu)	2.13	5.0	22848	<0.01	< 0.03
	0.1		with 4 -7% disseminated fine-grained accessory magneti	e (mag).							1	i		tr	5.0	8.0	22849	0.02	< 0.03
		ļ	Moderate potassic/propylitic alteration consists of stockw	ork of							(lim)								
i		ĺ	K-feldspar (Kf), epidote (epi) veins (1 mm -1 cm) with do	minant veins about							1								
			70 to c.a. Also scattered patches of Kf-epi-tourmaline (?) (tourm).			:												
1			Weak crosscutting carbonate (carb) veins <1 mm to 2 m	m.							l								1
			Sulphide mineralization is weak some pyrite (py) with epi																
			Very weak limonite on fractures to about 8 m.								ļ								
			Core quality: Competent, no major broken zones, recove	ry 99 - 100%.															
L					<u>.</u>						ļ <u>-</u>								
8.4	11.8	MzDr	Monzodiorite breccia (?): Appears to be large angular cla	sts (up to 10 cm)	1-2	1	0	0	1	0	-	0.4	0.1	(Cu)	8.0	11.0	22850	0.05	<0.03
		Bx (?)	of dark MzDr in a fine-grained groundmass of lighter cold	ured MzDr. Zone is					1					tr					
1	Í		similar to (2.13 - 8.4 m) except for the contrasting dark a	nd light material.															
		1	Core quality: Competent, no major broken zones, recove	ry 99 - 100%.															
11.8	30.2	MzDr	Rock similar to (2,13 - 8.4) except there is an increase in	Kf-epi alteration.	2-3	1-2	0	0	1	0		0.6	0.3	(Cu)	11.0	14.0	22851	0.06	0.06
			also a significant increase in pyrite (py), chalcopyrite (cp)	and native				1	1					0.2	14.0	17.0	22852	0.17	0.08
			copper (Cu). Native copper occurs as thin smears on fra	ctures and is							1	ł		(CC)	17.0	20.0	22853	0.34	0.13
1		ļ	generally visible to the naked eye. Py-cp occurs in Kf-ep.	veins and as		•								tr	20.0	23.0	22854	0.38	0.10
			small blebs in Kf-epi patches												23.0	26.0	22855	0.40	0.13
		1	Trace amounts of chalcocite (cc) were also noted on frac	tures.				1							26.0	29.0	22856	0.40	0.15
			Core quality: Competent, no major broken zones, recove	ry 99 - 100%.				Į							29.0	32.0	22857	0.53	0.25
										<u> </u>					22.0	25.0	22950	0.19	0.00
30.2	33.5	MzDr	Rock similar to above MzDr zones but a darker grey-gree	en to black colour,	1	1	0	U	1	U	-	0.4	0.2	-	32.0	35.0	22000	0.10	0.08
ł			possibly due to a signt increase in time-grained dissemin	lated magnetite.		-													
			Care is compatent, no major broken zones, recovery 99	100%															
		1	Core is competent, no major broken zones, recovery se	- 100 %.															
33.5	47.0	MzDr	Basic rock similar to MzDr as above (30.2 - 33.5), except	t increase in	3	4	1	1	1	0	-	0.6	0.2	- 1	35.0	38.0	22859	0.07	0.05
00.0			potassic/propylitic alteration. Several flooded zones (0.5	- 1 m) consist	-						1				38.0	41.0	22860	0.03	0.03
			of aphanitic epi with minor Kf. Large streaks and patche	s of Kf-epi with											41.0	44.0	22861	0.03	< 0.03
		1	small blebs of tourm occur between strongly flooded zon	es.								1	1	1	44.0	47.0	22862	0.45	0.15
			Minor chlorite (chl) and sericite (ser) is also present espe	ecially on fractures			1									1		1	
			and in veins. Minor carb veins up to 1 mm crosscut othe	er alteration.	1								ŀ						
		ł	Small blebs of py-cp are associated with Kf-epi-tourm pa	itches and veins.						1									
		1	Alteration flooded zones are only weakly magnetic.				1		1		1	1							
1	1		Core quality: Competent, no major broken zones, recover	ery 99 - 100%.		ļ					ł		1			1			1
1																ł			ĺ

Page 2 of 3

DEPT	H (m)	ROCK	DESCRIPTION	A	TERA	TION	(Seco	ndary r	ninera	ls)	MINE	RALIZ/	ATION		SA	MPLE DA	TA	
		CODE		Int	lensity	score	: 0(no	ne) to	5(stro	ng)	Est	timated	1%	Interv	el (m)	Sample	Ass	ays
From	to			Kf	epi	chl	ser	carb	mag	(?)	ру	ср	(?)	from	to	Number	Cu %	Au g/t
47 0	79.0	MzDr	Monzodiorite: Medium to dark grev-green to black, fine-grained.	1-2	1-2	1	0	1	0	-	0.4	0.5	-	47.0	50.0	22863	0.10	0.05
47.0	10.0	inc.	equigrapular to weakly variable nornhyritic texture. Plag-feldsnar annears				-]				50.0	53.0	22864	0.13	0.06
			a ingranular to weakly variable polyrightic texture. I hag totable uppears									1	ļ	53.0	56.0	22885	0.05	0.02
			to increase (rock possibly closer to dibite composition). Sign increase in				Ì							56.0	60.0	22868	0.04	0.03
			quartz (still < 5% overall). Accessory matic minerals consist of 6 - 10% line-											80.0	00.0	22000	0.04	0.00
			grained diss magnetite, and small amounts of t-g blottle +/- hornblend.											00.0	02.8	22007	0.00	0.08
			Alteration (altn) is generally weak, consisting of minor stwk, streaks and patche	6										62.9	66.0	22868	0.04	0.02
			of Kf-epi. Zones of increased alteration noted below.								1			66.0	69.0	22869	0.02	0.06
			Mineralization consistes of weak, fine-grained, diss, py-cp, variable										1	69.0	72.0	22870	0.09	0.03
			throughout zone. Difficult to estimate copper grade and py-cp ratio.					1						72.0	75.0	22871	0.04	0.04
1	1		Additional (secondary) py-cp associated with Kf-epi altn occures as small				Į				l			75.0	78.0	22872	0.04	0.04
			blebs and in veins.								{							
			Minor late carb viens (<1 mm to 2 mm) crosscut Kf - epi altn.		1													
			60.0 - 62.9: Perphyritic texture, phenos of golden brown biotite and plag											1			1	1
		1	(2.3 mm) Small blobs of on annear to be associated with the highlite					1						1			1	
			162.9 - 79.0: Slight increase in Kf-eni alto with associated increase in sulphides							1		1					ĺ	
			Core quality: Competent no major broken zones, recovery 99 - 100%.										1					
							1]		1			
79.0	96.6	MzDr	Monzodiorite Breccia (?): Zone appears to consist of angular clasts of	2-3	2	2	1	1	0	-	0.7	0.4	-	78.0	81.0	22873	0.03	0.02
		Bx ?	syenitic composition in a matrix of fine grained monzodiorite.]						1		81.0	84.0	22874	0.06	0.03
		1	It is possible, however, that arrested flooding of the diorite by						1		1	1		84.0	87.0	22875	0.01	0.02
			K-feldspar alteration has created a "pseudo-breccia". Typically, the zone									ļ		87.0	90.0	22876	0.01	0.01
			containes stwk, sreaks and patches of Kf-epi, with associated minor py-cp.	i i				ĺ						90.0	93.0	22877	0.05	0.07
		ļ	Chlorite, sericite (?) and minor hemitite were also seen on fractures and in view	5.		İ		1				1		93.0	96.0	22878	0.10	0.10
			Minor late carb viens (<1 mm to 2 mm) crosscut Kf - epi alteration.				l				1							
		t	Core quality: Competent, no major broken zones, recovery 99 - 100%.								1		1	}]
						L	<u> </u>	ļ	<u> </u>			L		L				
96.6	158.49	MzDr	Monzodlorite: Basic lithology as per (47.0 - 79.0).	2-3	2-3	2	1	1	0	-	0.5	0.4	-	96.0	98.0	22879	0.16	0.10
			Alteration is generally moderate to strong consisting of Kf-epi as stwk,	1	1	1		ł						98.0	101.3	22880	0.13	0.10
			streaks, patches and flooded zones as noted below. A later? alth	Ì		1					1	1		101.3	103.3	22881	0.14	0.07
			phase consisting of chi-hem-minor cp variously fills fractures as noted below.		1	1		1			1			103.3	106.0	22882	0.11	0.05
		1	minor carb veins crosscut all other alteration phases											106.0	109.0	22863	0.05	0.06
		1	Mineralization appears to be mainly associated with alteration as small blebs								1			109.0	112.0	22884	0.14	0.04
			and in veins. Very little fine-grained diss py-cp observed.			+	+	+	+	· • • •		0.2	}	112.0	110.4	22999	0.10	0.10
			195.5 - TUD.U. KI-epi flooded zone. Core moderatiy fractured (shattered)	1	4					1	1 0.2	0.3		119.4	1210	22000	0.04	0.02
		!	fractures (1 - 2 mm wide) are filled with chi-nem-minor cp. Some blebs of			Í								110.0	121.0	22007	0.01	0.01
			py-cp, associated with Kf-epi patches, visible to the naked-eye.			1	-							121.0	124.0	22000	0.03	0.02
	ł		Some fractures have a black earthy coating (white streak) chl (?).						1	1				124.0	120.0	22009	0.02	0.02
	1	1	K1-epi flooded zones are weakly to none magnetic.	<u> </u>		+	· · ···	+	ł		tor	07	+	120.0	130.0	22080	0.02	+ 0.01
	1	1	111.2 - 115.4: Kr-epi flooded zone. Brecclated texture in places (pseudo-	4	4	[1		1	-	0.0	0.7	-	130.0	133.0	22001	0.03	1 0.03
			preccia r). Some good blebs of cp associated with Kf alth.	1 1 0	+	.	· · · · ·				1.00	0.4	+-	133.0	120.0	22902	0.05	0.03
			146.4 - 156.49: Kock slightly lighter in color. Kr-epi alth significantly	1 1-2	1-2	Ì	1	4			0.2	0.1	1 -	120.0	142 0	22003	0.01	0.02
			reduced, increase in carb veins. Some large vugs with minor crystal		1	1		1	ł					142.0	145.0	22084	0.04	0.04
			Quevelopment (calcite). Minor quartz associated with carb.		•	+	+			~		+	+	145.0	149.0	22808	0.02	0.02
			100 0 101 2: Stropply (ct) broken rock (bry) plus course (cc)	1					}	}				148.0	151.0	22897	0.04	1 0.03
			racovery (Dec) 80, 85%	1		ł	1							151.0	155.0	22808	0.04	1 0.00
			102 2 - 103 3' Str bry + or Recovery 85 -90%	1			1	1				1		155.0	158.49	22899	0.02	0.02
1		1	102.2 100.0. OIL DIX - 99, NO004019 00 100 /0			1		1									1	
			•															

1

ſ

Diamond Drill Log

DEPTH (m)	ROCK	DESCRIPTION	AI	TER/	TION	(Secon	idary m	ninerals	3)	MINEF	ALIZA	TION		SA	MPLE DA	TA	
From 1 4-	CODE		Int	tensity	score	: B(non	e) to 5	o(stron)	<u>0)</u>	Est	imated	%	Intervi from	al (m) to	Sample	Ass Cu %	ays Au n/t
FIOM 10		104.5 - 104.4: Str brx, Rec 85 -90% 111.4 - 112.0: Str brx, Rec 90 -95% 114.9 - 115.8: Str brx, Rec 90 -95% 118.1 - 122.5: Moderately (mod) brx, Rec 95 - 98% 126.5 - 126.6: fault plain, solid gg, cuts about 70 to c.a., Rec 95 - 98% 137.0 - 141.1: mod to str brx, Rec 85 - 95% 137.0 - 141.1: mod to str brx, minor gg, Rec 85 - 95% 151.1 - 154.7: Str brx, Rec 90 -95% 157.2 - 157.6: Str brx, Rec 90 -95% 158.1 - 158.49 (EOH): Str brx, Rec 90 -95%				<u> </u>			<u>, (r)</u>	- 1 7	<u>_₩</u>	<u></u>	1011	10			LO AL
158.49		END OF HOLE MET Jar Martin															

Dlamond Drill Log

Hole No. HAR-02-04 Pa

Page 1 of 3

LOCATIO	N: Harve	ey Zone		BEARING: 209 Az	LATITUDE (N): UTM g	rid 57	59082	2 N*		COR	E SIZE	: NQ					REMAR	(S: Test n	ew miner	alization
DATE CO	DLLARED): July 17,	2002	DIP: -60	LONGITUDE (E): UTM	grid	61546	5 E*]	LOG	SED E	3Y: G.	E. Bar	ker		<u> </u>	west of A	Ann North.	Hole loca	ted
DATE CO	MPLET	ED: July 2	5, 2002	LENGTH: 202.99 m	ELEVATION: 1186 m*					DATE	: July	20, 2	002				about 70	m @ 070	from site	s 2 & 3
					*values from chain-comp	858 5	urvey 8	topo r	nap											
DEPT	Ή (m)	ROCK		DESCRIPTION		A	LTER/	ATION	l (Seco	ndary	minere	als)	MINE	Raliz	ATION		SA	MPLE DA	TA	
1	• •	CODE				In	tensity	score	a: 0(no	ne) to	5(stro	ng)	Es	timate	1%	Interv	al (m)	Sample	As	says
From	to					Kf	epi	chl	ser	carb	mag	(?)	ру	ср	(?)	from	to	Number	Cu %	Au g/t
0	5.18	Casing	No material recov	vered											Ì					
													<u> </u>				<u> </u>	<u></u>		L
5.18	15	MzDr	Monzodiorite: Me	dium grey to grey-green, fine- gr	ained, equigranular,	2-3	2	1	1	1	0	(cly)	0.2	0.2	(mai)	5.18	8.0	22901	0.16	0.12
		ļ	modest brecciate	d texture, possibly "pseudo breco	ia" related to arrested							1			0.1	8.0	11.0	22902	0.08	0.04
			Kf alteration. Per	vasive fine-grained magnetite (5 -	- 10%) throughout zone.							(lim)	ļ			11.0	14.0	22903	0.12	0.05
			Alteration: Potas	sic/propylitic, moderate to strong	Kf-epi alteration as							2			1			1		
			veins and patche	s (5.18 - 9.7 m). Altn weaker and	more propylitic (epi with							(hem)			-				1	
			minor chl-ser-Kf)	below 9.7m. Minor clay alth due	to weathering in zone.			1				1-2				Į			ł	
			Oxide-supergene	altn ends at 15 m, associated se	condary minerals							(pyr)	ļ	1		1				
			described below	under mineralization.		1	1	l				1					1			
			Minor late carbor	nate (carb) veins (<1 mm - 1 mm)	cut other alth throughout zor	, ne.							1			ļ				
		Į	Mineralization: M	loderate yellow-brown limonite wit	h mod hemetite occurs as	ł					ļ			1		i				
			coatings on fract	ures down to 15 m. Weak to mod	malachite and black				Į –				[
		1	pyrolusite (pyr) a	iso observed on fractures. Minor	diss fine-grained py-cp occur	, S	1		İ	1						ļ				1
		i .	intermittently in z	one. Also minor blebs of py-cp at	sociated with Kf-epl altn.	1														
			Core quality: Sev	veral small zones of broken rock (brx) as noted below.	Į –					1	1							}	
			5.18 - 7.6; mod to	o strong brx. Rec. 70 -80 %		1						-				ļ		ĺ		
		ļ	8 2 - 8 5' mod br	x Rec. 75 -85 %						1						ļ				
			8.9 - 9.2' mod br	x Rec 80 - 90 %					1							ł		1		
			Remainder of zor	ne: Rec. 95 -98 %										1				ł		
						ł					1									
15.0	34.6	MzDr	Monzodiorite: Sir	milar to rock from (5.18 - 15.0 m)	except no bx texture.	1-2	2-3	1-2	1	1	0	- 1	0.3	0.2	- I	14.0	17.0	22904	0.07	0.03
			Alteration: Weak	propylitic/minor potassic (epi with	n minor chi-ser-Kf) as	1										17.0	20.0	22905	0.28	0.08
			veins and patche	s. Dominant veins 25 -30 to c.a.		1	1	1	1				1			20.0	23.0	22906	0.14	0.08
			Minor late carb v	eins (<1 mm - 1 mm) cut other al	tn throughout zone.						ļ		1		1	23.0	26.0	22907	0.09	0.04
			Mineralization: w	eak to mod py-cp, generally asso	ciated with Kf-epl altn											26.0	29.0	22908	0.07	0.03
			in veins and as	small blebs.		l	-				}					29.0	32.0	22909	0.05	0.04
			Core quality: On	e zone of brx with gouge (gg) as i	noted below.	ł										32.0	34.8	22910	0.03	0.05
			33.9 - 34.6: Faul	t zone, strong brx and gg , Rec. 7	/5 - 80 %	1										1				
			Remainder of zo	ne: Rec. 99 - 100 %									1				1			
		<u> </u>	0			<u> </u>	<u> </u>	+	-	-	-		<u> </u>	+_	<u> </u>	1 010	28.4	22044	201	01
34.6	38.4	Bas?	Basan' Dyke: M	oderate to dark grey-brown , porp	evenue texture, probably	0	0	0	0	1	U	-	⁰	U	-	34.0	- 38.4	22811	+01	×.01
		dyke	basaltic composi	ition. Core is relativly light weight	 Sparse dark phenos 							1	1					-	1	
		1	(1 - 2 mm) of pyr	roxene (?) ocurr in an aphenitic g	rey-brown groundmass.	1										1		i		
		1	Carb streaks (1)	mm - 1 cm) crosscut the rock abo	out 15 to c.a. and a number	1					1							1		
		1	of gash-like amy	gdales are filled with small calcite	e crystals.	í												1		i
		}	Rock is very wea	akly magnetic and barren of sulph	ide mineralization.														1	
			Upper and lower	contacts indeterminate due to fa	ult rubble, lower contact		1		1		l				l l	1				
		1	may be 70 to c.a	a.(possibly defined by sharp conta	ict with fault gouge).	1					İ			1						
			Core quality: Dyl	ke rock is generally competent, R	ec 98 - 99%.										1					
	1	1	1			1	1	1	1	1	1	1	1		1	1	1	1	ł	1

Page 2 of 3

DEPT	H (m)	ROCK	DESCRIPTION	AL	TERA	TION	(Secor	ndary n	nineral	ls) l	MINER	RALIZA	TION		SA	MPLE DAT	TA	·
	• •	CODE		Int	'ensity	score	1: 0(nor	ne) to :	5(stron	<u>19)</u>	Est	imated	1%	Interva	al (m)	Sample	Ass	ays
From	to	1 1		Kf	epi	chl	ser	carb	mag	(?)	РУ	ср	(?)	from	to	Number	Cu %	Au g/t
38.4	86.6	8MzDr	Biotite-Monzodiorite: Similar to rock from (15.0 - 34.6 m). Except fine-	1	2	1	1	1	0	•	0.3	0.4	-	38.4	41.2	22912	0.16	0.10
		1	grained accessory biotite observed in zone (5 - 10 %).	۱ I		۱ ^۱	1	t l	'	۱	'	I I	ſ	41.2	44.0	22913	0.17	0.07
		ŧ i	Alteration: Weak propylitic/potassic, minor stwk of Kf-epi-chl veins and	۱ I	1)	1 1	1	t I	' 1	1	'	t j	1	44.0	47.0	22914	0.08	0.03
		۱ I	small patches of Kf-epi-tourm throughout zone. Two dominant vein sets out	۱ I	1	I - 1	1	t l	'	' I	۱ I	1	1	47.0	50.0	22915	0.16	0.05
		ι,	core at 75 and 15, 20 to c a Veine are generally < 1 mm wide but have alth	ł,	l i	۱ I	1 1	;	:	' Ì	'	۱ I	1	50.0	53.0	22916	0.14	0.04
		ι,	holes (solvano) un to 5 mm wide	1,	1 1	۱ - I		1	1	۱ I	'	!	t i	53.0	56.0	22917	0.06	0.04
Ì	1	t i	Minor (ate carb veins (<1 mm = 2 mm) out other alth throughout zone	Į ,	}	۱ ۱		(· }	1 I	۱ I	1	۱	56.0	59.0	22918	0.04	0.03
		l i	Mineralization: Minor ny on cheanad in Kf_ani.cht vaine - Minor dies fina.	۱ I	1	1 1		(۱	· •	۱ ۱		1	59.0	62.0	22919	0.06	0.04
	1	Į ,	Intering the second sec	ł ,	1	1		1	1	t	۱ ۱	I i		62.0	65.0	22920	0.02	0.02
		ļ,	granicu op-py occurs sporauloally throughout 2016.		1	()		1	1	1	۱ ۱	1	t	65.0	68.0	22921	0.05	0.03
	1	Į .	Une undiny, one zone of bix with googe (gg) as noted below.	Į .	1	1			1	+]	۱.,	t j	۱ <u>۱</u>	- 68 n 1	71.0	22022	0.05	0.02
i 1	1	ł	100.4 - 41.3. Faux zone, strong bix, solid gg (38.4 - 38.7), Kec. 80 - 90 %	Į,		ļ,	1 1	1	t l	I 🕴	۱ ۱	L i		71 0	74.0	22022	0.03	0.02
	1	1	Tremainder of Zone: Rec. 99 - 100 %		<u> </u>	+	<u>+</u> +	łł	I	∤	L	0.0	<u>+</u>	74 0	770	22024	0.03	0.04
		1	remarks: 53.7 - 53.9: Zone of abundant diss fine-grained py-cp	Į	+ y			ŧ+	·	1 	1 <u>0.8</u>	- <u>0.0</u>	↓		PUD 1	22025	0.03	0.04
		0- 0	Bacall Dirke: Similar to each from (24.6 20.4) Freest that and the			-		<u> </u>	<u>↓</u> _	<u>├</u> }	ι	H	┝───┪	80.0	83.0	22026	0.02	0.01
86.6	91.7	Bas?	(2.5 cm) of fine-grained diorite occur distinctly in the aphonitic gray because	l u	U	U .	1 ^u 1	1 1]	۱ ۲ ۱]	83.0	88.6	22927	0.02	0.02
	ļ	чуке	aroundmass	1	.	ł		ļ i			I 1	[.			t			
	ļ i	1	Carb streaks (1 mm - 5 mm) crosscut the rock about 20 to c.a. Carb also		.	ļ		1 1	l j		I 1	ļ,		86.6	91.7	22928	0.03	0.03
1		1	occures as small blebs and "solashes" and as fracture filling.		.		1	1	t i		1		1 1	l	ţ			
ł		1	Rock is very weakly magnetic and barren of sulphide mineralization.					1	1		1	1	1	۱ ۱	l	1		
1	1		Upper and lower contacts are gradational over about 20 cm. Contact apple to	ł			1	1	1 1		Į ,			۱ ۱	l			
1	1	1	ic.a. is indeterminate.	1	.		.	1	l i	1	1			ŧ,	l			
1		1	Core quality: Dyke rock is fairly friable, competent looking core becomes	1	1	1	;		ļ i	1	ţ .			۱,	ł		l.	
1	ţ	1	rubbly when handled, Rec 95 - 99%	1		1		1	Į į	1				ļ,	Į		1	
					L	ļ	Ļ	L			L		<u> </u>	L	L			
91.7	202.99	BMzDr	Blotite-Monzodiorite: Similar to rock from (38.4 - 86.6 m). Generally rock is	2-3	3	2	1	2	1	(qtz)	0.3	0.6	- 1	91.7	95.0	22929	0.17	0.11
1		1	medium to dark grey-green, fine-grained, equigranular to weakly variable	1	ł		1	i	1	<u>1</u>				95.0	98.0	22930	0.12	0.09
1			porphyritic texture. Fine-grained diss magnetite (5 - 10%) and fine-grained	1			1	.		1			1	98.0	101.0	22931	0.06	0.04
1			aiss golden-brown blottle (10 - 15%) occurs pervasivly throughout zone.	1		l	1 .			1	1		1	101.0	107.0	22032	0.13	0.14
1		1	variations in texture and accessory mineral noted below under remarks.	1	1	!	,		.	1	1		1	107.0	110.0	22034	0.24	0.17
1	1	1	bottom) and quartz appears to increase down hole, with a significant increase	1]		1	1				1	1100	113.0	22935	0.29	0.14
1	1	1	from 160.7 m to end-of-hole (still <5% at hottom) Feldsnar is weakly						1	1		1	1	113.0	116.0	22936	0.12	0.07
1		1	to moderately sausseritized throughout zone, sausseritization appears to							1			1	116.0	120.2	22937	0.15	0.09
1			increase slightly with depth.	1	-					.			1	120.2	123.0	22938	0.21	0.15
1			Alteration: Moderate to strong propylitic/potassic, stwk of Kf-epi-minor chl-ser						}	.				123.0	126.0	22939	0.02	0.03
1	1		veins. A few zones of epi-Kf flooding with associate stringers and patches		1			1		1			.	126.0	129.0	22940	0.13	0.07
1	1	ł	of Kf-epi-minor tourm? occur within zone and are noted below.	ł		-			1	.		}		129.0	132.0	22941	0.14	0.07
1			Dominant veins tend to cut core at 10 - 20 to c.a. Veins are generally	1	ł				1	.	1		1 1	132.0	135.0	22942	0.05	0.04
1		1	< 1 mm to 2 mm wide but have alth halos up to 1 cm wide. Chl-ser makes sor	ne	1		1				i	1		135.0	138.0	22943	0.08	0.03
1		1	fractures feel greasy. A few minor secondary magnetite veins occur in the	1		i 1					}			138.0	141.0	4206	0.16	0.08
1		1	zone and are noted below under remarks.	ł							1	ł		141.0	144.0	22944	0.07	0.00
1			Minor late carb veins (<1 mm - 2 mm) cut other attn. throughout zone.	1					1		1			144.0	150.0	22040	0.14	0.20
1	1		Willeralization, weak to moderate py-cp observed in Ki-epi-chi veins and	1										150.0	153.0	22047	0.20	
1			Intropi patonos, strong diss ind-grained op-py occurs sporatically throughout zone (strong mineralized zones noted below). Meak diss	1	1		1		1		1			153.0	158.0	22948	0.18	0.11
1	1	ļ	mineralization is more difficult to define as it may be masked by fine-orained	1		}					1			156.0	159.0	22949	0.04	0.03
1		1	blotite. Moderate cp occurs with secondary mag veins.	1	1		1		1		1			159.0	162.0	22950	0.06	0.03

1

Diamond Drill Log

DEPT	H (m)	ROCK	DESCRIPTION	A	LTER/		(Seco	ndary r	ninera	ls)	MINEF	RALIZA	TION		SA	MPLE DA	ТА]
		CODE		In	tensity	score	: 0(no	ne) to	5(stror	(סי	Est	mated	%	Interv	al (m)	Sample	Ass	ays
From	to			Kf	epi	chi	ser	carb	mag	(?)	ру	ср	(?)	from	to	Number	Cu %	Au g/t
			Core guality: Several small zones of broken rock (brx) as noted below.										1	162.0	165.0	22951	0.11	0.04
			95.4 - 95.6; mod brx, gg, Rec. 90 -95 %									ļ		165.0	168.0	22952	0.12	0.05
			192.7 - 193.0: mod brx, gg Rec. 85 - 90 %										ł	168.0	171.0	22953	0.13	0.09
			199.2 - 199.4: mod brx, Rec. 95 - 98 %								1		(171.0	174.0	22954	0.12	0.11
1			Remainder of zone: Rec. 99 - 100% %		1							Ì	(174.0	177.0	22955	0.11	0.07
			Remarks: Details within the major zone are noted below.											177.0	180.0	22956	0.10	0.06
			91.7 - 97.2: Increase in small epi (minor Kf) flooded zones (to 20 cm) plus	3	3-4			2-3		(hem)				180.0	183.0	22957	0.28	0.15
			increase in streaks and natches of Kf-epi-tourm. Zone also contains "stringy"							1			1	183.0	186.0	22958	0.10	0.03
			carb veins (1 - 5 mm wide and about 10 to c.a.) with associated minor hem.	[1		1							186.0	189.0	22959	0.04	0.02
			97.2 - 102.7: Zone of porphyritic texture. Scattered plag phenos (1 -2 mm)			••• •		r			0.1	0.2	-	189.0	192.0	22960	0.08	0.05
			olus random biotite phonos (2 - 3 mm) in a matrix of fine-orained monodiorite											192.0	195.0	22961	0.01	0.03
			Accessory magnetite and biotite decreases slightly in this zone											195.0	199.0	22962	0.01	0.01
			Accessory magnetic and blone decreases signing in this 2016.	1				.						199.0	202.99	22963	0.01	0.03
			100.0 110 1: Zono of strong digs fine grained on py	i			+ ·			<u> </u>	0.5	12	-					
. 1			109.0 - 110.1. Zone of strong diss line-granied op-py	l			+	4 - - 4			<u></u>	<u>1:</u> ‡						ł
			120.4 - 191.5; Fine-grained diss blotte generally strong in this zone (about 15 A	<u>יי</u>			+				0.1	01						
		ļ	123 - 124.4: small samon pink synitic dyker (K-t with nornolend latins (5%)				}				0.1	0.1	-					
			and minor blebs of cp) byke cuts back and form across core in several	1		ļ		ļ		1 :								ſ
			places (15-20 cm wide) and parallels core (core hait synte and hait dionte)			1		1										
			for about 50 cm. Contact very sharp.	<u> </u>			·	<u> </u>				0.0						
			140.4 - 147.5: Increase in epi-Kf flooded zones (up to 30 cm) plus increase	3	3-4			· ·	2		0.2	0.6	-					
			in veins and patches of Kf-epi. Zone also contains several "stringy"				-	l.										
		}	veins of secondary magnetite (5 mm - 1 cm wide and about 25 to c.a.) with															ĺ
			moderate cp.			L	1						ļ					
1			160.7 - 166.8: Increase in epi-Kf flooded zones (up to 20 cm) plus increase	3	3-4													
		Į	in veins and patches of Kf-epi.								1							
			162.0 - 162.7: Zone of strong diss fine-grained cp-py			[0.5	1.5	-					
			187.3 - 189.2: Zone of strong qtz-carb-stringers (1 -2 cm wide at 5 -10 to c.a.)				[3	(hem)	(qtz)	1				1			
			with associated hem, minor chi-ser and small cp blebs.	Í			1	<u> </u>	1	1			L					
			191.5 - EOH: Core a lighter grey colour, f-g diss biotite decreases (= 5%)</td <td>1</td> <td>1-2</td> <td></td> <td>I.</td> <td></td> <td></td> <td></td> <td>0.1</td> <td>0.1</td> <td>- </td> <td></td> <td></td> <td></td> <td></td> <td></td>	1	1-2		I.				0.1	0.1	-					
			Kf -epi altn minimal, only trace amounts of sulphides observed.								4	1	1					
•										ł]	-					
	202.99	ĺ	END OF HOLE								İ.							
		1															ļ	
		}					1						ļ					
			1.15.57													ļ		
			10 ILI INI MY			1				-	1		Í	l .				1
í						1	1			-	1		ļ		1			ł
					1	1										1		
				1									1				1	
1				1						-		į –						
		1		1	·			1			1					-		Ì
									1		ł							
							1						Í					
		1		ł			1						1	Į			1	
				{						1	l		1	1	1		ł	
				1							1	1				1		
		1		1		1		1										
ļ		1		1		1	1	1	1		1		ĺ		1		1	
1		1		1		1	-		1		1			1	1	l		
1				1						1	1			1		1		

(

Diamond Drill Log

Hole No. HAR-02-05

	Pa	iae	1	of	3
--	----	-----	---	----	---

1

Т

÷

LOCATIO	DN: Harve	y Zone		BEARING: 180 Az	LATITUDE (N): UTM g	rid 57	59147	N*		COR	E SIZ	E: NQ					REMARI	KS: Test n	ew minera	lization
DATE CO	OLLARED	: August	13, 2002	DIP: -60	LONGITUDE (E): UTM	l grid	61554	<u>0 E*</u>		LOG	GED	<u>3Y: G.</u>	E. Ba	rker			west of A	Ann North.	Hole colla	ared
DATE CO	OMPLETE	D: Augus	t 17, 2002	LENGTH: 152.70 m	ELEVATION: 1170 m*					DAT	E: Aug	ust 16	<u>, 2002</u>	<u> </u>			about 10	0 m @ 04	5 from site	<u>∋ 02-4</u>
<u> </u>					*values from chain-co	mpass	s surve	ey & to	opo m	ар										
DEPT	H (m)	ROCK		DESCRIPTION		A	LTER/	TION	(Seco	ondary	minera	als)	MINE	RALIZ	ATION		S/	AMPLE DA	TA	
		CODE				l In	tensity	score	ə: 0(no	one) to	5(stro	ng)	Es	timate	d %	Inter	val (m)	Sample	Ass	ays
From	to					Kf	epi	chl	ser	carb	mag	(?)	ру	ср	(?)	from	to	Number	Cu %	Au g/t
0	244	Casing	Overburden no	t recovered			<u> </u>					-								
Ŭ	2					ł					1									
2.44	15.8	MzDr	Monzodiorite: M	ledium to dark grey - grey-green	to black, fine-grained,	1-2	2	1	0-1	1	1	(lim)	0.5	0.3	(Cu)	2.44	6.0	22964	0.11	0.05
			subhedral to an	hedral, equipranular to weakly va	ariable porphyritic with						•	1	}		0.1	6.0	9.0	22965	0.11	0.05
			random minor p	phenos of biotite and plag feldspa	ır (1 -3 mm).		-							ļ		9.0	12.0	22966	0.22	0.13
		1	Essential feldso	par is weakly sausseritized. Main	accessory minerals are	ł		ĺ		1			Í		Í	12.0	15.0	22967	0.61	0.25
			fine-grained dis	seminated magnetite (5 -8%) and	d fine-orained medium to									1	1					
	1	ļ	dark brown bioti	ite (4 - 7%)												[ł	ľ
			Alteration: Oxid	le-supergene zone to 15 8 m (we	ak limonite on fractures						1		1						1	
			olus minor nati	ive conner) Moderate pronvlitic	/ weak potassic alteration	1				1]
			/oni Kf. minor nut	bl atz) accurs as veins (minor st	ckwork) strasks natchas															
			lend amall flood	an-qtz) occurs as verits (minor site	10 to o a 1mm - 1cm wide					1				}						
	1		and small hood	eq zones. Dominant vents 55 - 4	to to c.a., mini - rom wide,														Ì	
			weak (fuzzy) alt	teration halos (1 - 5 mm) associa	ted with veins.			1			1									
			Minor secondar	ry magnetite as veins and streak	s occurs sporadically in zone.	1	i		1					1					1	
			Weak late-stage	je carbonate veins (<1 - 2 mm) ci	ut all other alteration								1							
			generally at 10	-20 to c.a.											1				ļ	
		1	Mineralization:	Weak to moderate disseminated	fine-grained cp-py variable			1		1				1					1	
			in zone. Minor	"flakes" of native copper on fract	ures and in veins. Weak to															
			moderate blebs	s of cp-py associated with Kf-epi-	mag-tourm(?) alteration.								{						Ì	
			Core Quality: Z	one is competent except as note	d below.								1			ł				
			4.3 - 5.5 : broke	en rock (brx), Recovery (Rec) 95	- 98 %								1							
			Remainder of z	tone, Rec 99 - 100 %		1		1												
			Remarks: Detai	ils within zone noted below.				1	ļ										2	
			7 0 - 7 1 Good	blebs of co associated with Kf-e	pi altn.											l				
			10.2 - 10.7 eni	i-minor Kf flooded zone	F1						-	1				{				
																í				-
15.8	116.4	MzDr	Monzodiorite: L	ithology similar to 2.44 - 15.8 m		1	2-3	1	0-1	1	1	-	0.4	0.3	-	15.0	18.0	22968	0.29	0.15
		1	Alteration: Gen	eral alteration package similar to	2.44 - 15.8 m except there	1					1		1	1		18.0	21.0	22969	0.07	0.05
		1	is no oxide-suo	ergene alteration. Also hematite	on fractures (see remarks).	1		1				1	1		1	21.0	24.0	22970	0.11	0.07
1			Mineraloov: Fr	ratic zones of disseminated fine-	arained cp-py as noted	1]	1				1		1	24.0	27.0	22971	0.55	0.47
1			under remarke	below A few minor blebs of co-	py associated with Kf-eni	1	ļ		1				1			27.0	30.0	22972	0.29	0.15
		1	alteration Ano	malous conner (>0.1% conner\ t	o about 67 m below 67 m						1					30.0	33.0	22973	0.30	0.18
	-	1	coro is rolativo	hi harron of culnhides	5 45541 67 m, 5610W 67 m	1					ļ		1	1		33.0	36.0	22974	0.03	0.02
			Core is relativel	iy barren bi suprisues.	a) as noted below	1							1		1	36.0	30.0	22975	0.03	0.02
1			Core cluality: S	several zones of bix +/- gouge (g	y) as noted below.							1				30.0	42.0	22070	0.00	0.10
[119.1 - 19.4: BD	x, minor gg, Rec. 75 - 80 %		1	[39.0	46.0	22077	0.11	0.18
ł	1		27.4 - 27.6: BD	x, minor gg, Rec. 75 - 80 %		1	1						1			42.0	45.0	22811	0.13	0.00
ļ			36.5 - 36.8: BD	x, Rec. 85 - 90 %		1	1	ł					1			45.0	48.0	229/8	0.02	0.03
]	+	i	39.6 - 40.5: Br	x, Rec. 85 - 90 %		1							1			48.0	51.0	22979	U.11	0.04
I			52.8 - 53.7; BD	x, gg, Rec. 75 - 80 %						1			1			51.0	54.0	22980	0.01	0.01
i i			60.1 - 60.4: Bn	x, gg, Rec. 75 - 80 %		1		1					1			54.0	57.0	22981	0.13	0.07
	1	1	180.6 - 81.4: BD	x. ag. Rec. 80 - 85 %		ł		1		1			1			57.0	60.0	22982	0.14	0.08

Diamond Drill Log

Page 2 of 3

DEPT	H (m)	ROCK	DESCRIPTION	A	TER/	TION	(Seco	ndary i	minera	ls)	MINE	RALIZ	ATION		SA	MPLE DA	TA	
	.,	CODE		In	tensity	score	e: 0(no	ne) to	5(stror	ng)	Es	imate	1%	Interv	al (m)	Sample	Ass	ays
From	to			Kt	ері	chi	ser	carb	mag	(?)	ру	ср	(?)	from	to	Number	Cu %	Au g/t
			81.4 - 84.7: Brx, core fractured and friable, Rec. 95 - 98 %											60.0	63.0	22983	0.02	0.02
			102.8 - 103.0: Brx, Rec. 95 - 98 %					· ·					•	63.0	66.0	22984	0.07	0.05
			112.2 - 112.4; Brx, (strong hematite on fractures), Rec. 97 - 99 %]			66.0	69.0	22985	0.19	0.08
			115.5 - 116.3; Brx. (moderate hematite on fractures), Rec. 97 - 99 %								1				[
			Remainder of zone, Rec 99 - 100 %				;								-			
			Remarks: Misc. details within zone.		1									}				
			25.4 - 25.8: Medium grained, equipranular monzonite dyke. Trace cp											78.0	81.0	23002	0.02	0.02
			29.0 - 29.2 magnetite veins (streaks), 30 to c.a., 1 -2 cm wide, no co.				1											
			31.8 - 32.3: eni flooded zone					ĺ			1		1					
			32.0 - 34.2: opi flooded zone, magnetite veins (streaks) 20 to c.a. 2 -3 cm		ì		ł				1			1				
			wide moderate co					;						90.0	93.0	23003	0.05	0.02
			47.5.54.7: increase in ani with minor Kf. as patches and shek	İ			1				Į				1			
		}	147.5 - 54.7. Increase in opi with historic, as patients and stark.															
			170.0 - 00.0, good op-py on epi non raciale, mod ing op-py diss in cole.	1														
			(19.7 - 04.0. Indease in epi with minor Ki, as patones and stwk. Also indease	1										102.0	105.0	23004	0.03	0.02
			90.2 - 93.0: weak porphyritic texture, sparse black hard "blotchy" phenos				1									1		
		1	(pyroxene ?) to 5 mm.									1					1	
			93.2 - 94.0: increase in epi with minor Kf.															
			97.3 - 100.6: increase in qtz, several small zones of massive (late vein) qtz to	5 cm.						(qtz)	2			114.0	116.3	23005	0.03	0.01
			111.4 - 116.3: increase in epi, mod to strong hematite on fractures, moderate	1			1			(hem)								
			qtz-carb veins and streaks.		ł					1			1	1				
										ļ						<u> </u>		L
116.3	125.9	Bas ?	Basalt ? Dyke: Grey-brown, porphyritic, plag, biotite and minor carb	0	0	0	0	0	0	-	0	0	-					
			phenos to 5 mm in aphanitic groundmass. contacts gradational over	}					İ									
			10 to 20 m. Minor carb veins crosscut about 40 to c.a., 1 - 3 mm wide.			1	1			-	1							
			No supplide mineralization observed. Core is competent Rec. 99 - 100 %				İ	1						1				
						1		İ						1				
125.9	132.0	MzDr	Monzodiorite: Lithology similar to 15.8 - 116.3 m except core lighter in	0-1	3	1	0-1	1	1	(hem	0.2	0.1	-	125.0	128.0	23006	0.03	0.02
12010		[colour due to reduced f-g magnetite and biotite and slight increase in qtz.]		1								1
			Alteration: General alteration package similar to 15.8 - 116.3 m except						1									
1			minor hematite on fractures throughout zone. Also epi increases, Kf decreases	\$	1				j	1								
			Mineralogy; Minor py associated with epi altn. Chalcopyrite in trace amounts w	vith py	rite.	ļ	1	ļ	1		1	1	1					
			Core Quality: Core is competent in zone, Rec 99 - 100 %			:	[1							
122.0	197.0	Bas 2	Basalt ? Dyke: Similar to 116.3 - 125.9 m except small (<1 - 1 mm) pyrite	1-0-	- n	0	1	<u></u>	0	<u> -</u>	101	0			-+			
132.0	131.0		crystals (cubes) seen sporadically in zone	ľ	Ĭ	1	`		1									
			Core is competent Rec. 99 - 100 %		Í							1						
					1												<u> </u>	<u> </u>
137.8	152.70	Dr	Diorite: Similar to 125.9 - 132.0 except lighter grey-green colour,	0	3-4	2	1	1	0	-	0.1	0	-	137.0	140.0	23007	0.01	0.01
			plag feldspar dominant essential mineral, fine-grained diss magnetite									ļ				1		
			reduced to 3 - 6 % and fine-grained biotite reduced to trace amounts.									Ì					1	
		1	Uteration: Mederate to excert a slightly silicitied (hard drilling reported).					}						140.0	152.7	23009	0.02	0.02
	1	1	<u>Americation</u> , moderate to strong propylatic alteration (epi-chi-minor set-qiz-carb)					l		1	1			140.0	102.7	23000	0.02	0.02
	1		zones. Dominant veins about 45 to $c = 1 - 5$ mm wide	1							1							1
1			Weak fate-stage carbonate veins (<1 - 2 mm) cut all other alteration			1		1								1		
1		1	renerally at 10 -15 to c a. Carb veins decrease near end of hole					1				1			1	-		

Diamond Drill Log

Hole No. HAR-02-05 Page

Page 3 of 3

DEPT	H (m)	ROCK	DESCRIPTION	A	TERA	TION	(Seco	ndarv	minera	ls)	MINE	RALIZ/	TION		SA	MPLE DA	TA	
		CODE		in	tensity	score	: 0(no	ne) to	5(stror	ng)	Es	timated	1%	Interv	al (m)	Sample	Ass	ays
From	to			Kf	epi	chl	ser	carb	mag	(?)	ру	ср	(?)	from	to	Number	Cu %	Au g/t
			Mineralization: Trace amounts of pyrite associated with propylititc (epi) alteration. <u>Core Quality:</u> Zone is competent except for a few minor zones (10-15 cm) of broken rock, Recovery 99 - 100 % <u>Remarks:</u> Details within zone noted below. 137.8 - 140.5: Hematite on fractures. Note: Association of dyke rock and hematite. Hematite occurs on fractures just before first basalt dyke, between first and second dyke and just after second dyke							(hem) 1								
	152.70		END OF HOLE								<u> </u>					L		
	152.70		At Antonio															

Appendix C: Diamond Drill Hole Assay Certificates

-

\bigcirc \bigcirc	To COTT	From	ASSAYING
	Co /Dept.	Co.	
	Phone #	Phone #	VTAL TESTING
Eco× lec	Fax#	Fax #	
d'h		and and a second second second second second second second second second second second second second second se	Fax (250) 573-4557 email: ecotech@direct.ca

CERTIFICATE OF ASSAY AK 2002-127

GWR RESOURCES INC. Box 545 Armstrong, BC V0E 1B0

ŧ

25-1-02

ATTENTION: Irvin Eisler

No, of samples received: 29 Sample Type: Core Project #: None Given Shipment #: None Given Samples submitted by: GWR

		Au	Au	Cu	Pd	Pd	Pt	Pt
ET #.	Tag #	(g/t)	(oz/t)	(%)	(g/t)	<u>(oz/t)</u>	<u>(g/t)</u>	(oz/t)
1	22751	0.04	0.001	0.10	<0.03	<0.001	<0.03	<0.001
2	22752	0.05	0.001	0.04	<0.03	<0.001	<0.03	<0.001
3	22753	0.04	0.001	0.07	<0.03	<0,001	<0.03	<0.001
4	22754	0.03	0.001	0.05	<0.03	<0.001	<0.03	<0.001
5	22755	<0.03	<0.001	0.03	<0.03	<0.001	<0.03	<0.001
ô	22756	0.03	0.001	0.09	<0.03	<0.001	<0.03	<0.001
7	22757	<0.03	<0.001	0.07	<0.03	< 0 ,001	<0.03	<0.001
8	22758	0.03	0.001	0.08	<0.03	<0.001	<0.03	<0.001
9	22759	<0.03	+0.001	0.02	<0.03	<0.001	<0.03	<0.001
10	22760	0.06	0.002	0.09	<0.03	<0.001	<0.03	<0.001
11	22761	0.03	0.004	0.11	*0.03	<0.001	<0.03	<0 001
12	22762	0.22.	0.005	a.3 7	<0.03	<0.001	<0.03	<0.001
13	22763	0.21	0.006	0.31	<0.03	<0.001	<0.03	<0.001
14	22764	<0,03	<0.001	0.08	<0.03	<0.001	<0.03	<0,001
15	22765	0,07	0.002	0.17	<0.03	<0.001	<0.03	<0.001
16	22766	0,05	0.001	0.18	<0.03	<0.001	<0.03	<0.001
17	22767	0.18	0.005	0 31	<0.03	<0.001	<0.03	<0.001
18	22768	0.07	0.002	0 22	<0.03	<0.001	<0.03	<0.001
19	22769	0.13	0.004	0.28	′<0.03	<0.001	<0.03	<0.001
20	22770	0.22	0.006	0.41	<0.03	<0.001	<0.03	<0.001
21	22771	0.15	0.004	0.24	<0.03	<0.001	<0.03	<0.001
22	22772	0.09	0.003	0.17	<0.03	<0.001	<0.03	<0.001
23	22773	0.15	0.004	0.24	<0.03	<0.001	<0,03	<0 001
24	22774							-
-			0.001	0.18	<0.03	<0.001	<0.03	<0,001

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

Page 1

			the second second second second second second second second second second second second second second second se
00 ca uz	10.02	SEZ 20 V0 / 34 55 /	WATER TEMPERATE ALL REPORTS
		—	COLICE WYR.

GWR RESOURCES INC. AK 2002-127

.

25-Jun-02

		Au	Au	Cu	Pd	Pd	Pt	Pt
ET #.	Tag #	(g/t)	(oz/t)	(%)	(<u>g/t</u>)	(oz/t)	(g/t)	(oz/t)
25	22775	0.08	0,002	0.11	<0.03	<0.001	<0.03	<0.001
28	22776	0.07	0.002	0.15	<0.03	<0.001	<0.03	<0.001
27	22777	0.09	0.003	0.26	<0.03	<0 001	<0.03	<0.001
28	22778	0.10	0.003	0.35	<0.03	<0.001	<0.03	<0.001
29	22779	0.03	5,001	0,18	<0.03	<0.001	<0.03	<0.001
QC DATA:								
Resplit:								
1	22751	0.03	0.001	0.10	<0.03	<0.001	<0.03	<0.001
Repeat:								
1	22751	0.03	0.001	0 .10	<0.03	<0.001	<0.03	<0.001
10	22760	0,05	0.001	0.09	<0.03	<0.001	<0,03	<0.001
19	22769	-	-	0. <u>2</u> 7	•	-	-	-
Standard;								
Sula		•	•	0.96	-	-	-	

JJ/kk XLS/02 CC. Scott Berkey

ECO TECH LABORATORY LTD. Julta Jealouse B.C. Certified Assayer

.

 V_{0001}

02 08:02 16:16 22505734557

ECO-TECH KAN.

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Galtas Drive, Kamicons, B.C. V3C 611 Phone (250) 573-5700 Fax (250) 573-4587 emet: eccled/#direction

CERTIFICATE OF ASSAY AK 2002-152

Tech LABORATORY LTD.

GWR RESOURCES INC. Box 545 Amistrong, BC V35 130

Eco

ATTENTION: Irvin Eisler

No. of samples received: 11 Sample Type: Core Project #: None Given Shipment #: None Given Samples submitted by: GWR

		Au	Au	Cu	
ET #.	Tag #	(g/t)	(0z/t)	(%)	
1	22780	0.12	0.003	0,27	
2	22781	0.18	0.005	0.34	
3	22782	0.09	0.003	0.28	
4	22783	0.07	0.002	0.15	
Ę	22784	0.17	0.005	0.30	
47	22785	0.08	0,002	0.12	
7	22786	0.19	0.006	0.37	
8	22787	0.08	0.002	0.08	
9	22788	J.29	0.005	0.66	
10	22789	<9.01	<0.003	0.07	
11	22790	0.19	0.006	0. 52	
QC DATA:					
Resplit:					
R'S 1	22780	0.11	0 003	0.27	
Repeat:					
21	22780	0.11	0.003	0.27	
Standard:					
STD-M		1.84	0.054	-	
SUIA		-	•	0 95	
ос/кк NL/S/ D2			Page 1	ECC Jun S C	A Jacobie A Jacobie Certified Assayer
			-age 1	\sim	\sim

8-Jul-02

GWR RESOURCES INC. Box 545 Armstrong, BC V0E 180

ATTENTION: Irvin Eisler

No. of samples received: 58 Sample Type: Core Project #: None Given Shipment #: None Given Samples submitted by: GWR

		Αυ	Au	Cu	
ET#.	Tag #	<u>(g/t)</u>	(oz/t)	(%)	and a state of the
	. 22791	D.08	0.002	0.18	
2	22792	0.05	0.001	0,11	
3	22793	0.05	0 001	0.09	
4	22794	<0.03	<0.001	0.02	
5	22795	<0.03	<0.001	0.04	
6	22795	<0.03	<0.001	0.02	
7	22797	<0.03	<0.001	0.01	
3	22798	<0.03	<0.001	0.01	
9	22799	<0.03	<0.001	0 02	
10	22800	<0.03	<0.001	0,01	
11	22801	<0.03	<0. 00 1	0.02	
12	22802	0.08	0.002	0.01	
13	22803	<0.03	<0.001	0,01	
-4	22804	< 0.03	<0.001	0.01	
15	22805	<0.03	<0.001	0.05	
15	22808	<0.03	<0,001	0.04	
37	22807	0,04	0.001	<0.01	
18	22608	<0.03	<0.001	0.01	
19	22809	<0.03	<0.001	0.03	
20	22810	<0.03	<0.001	0.04	
21	22811	0.05	0.001	0.08	
22	22812	<0.03	<0.001	<0.01	
23	22813	<0.03	<0.001	0.05	
24	22814	<0.03	<0.001	0.01	-

12 EROTECH LABORATORY LTD. Jutta Jealause B.C. Certified Assayer

16-Jul-02

GWR RESOURCES INC. AK 2002-174

07 17 02 14:30 22303734357

ياري المركز يسرد ما الروان ويتما المنطقين الروان منها من المراجع المراجع المراجع أست والارامية المراجع الروان ومراجع

ECO-TECH KAN.

and the second second second second second second second second second second second second second second second

.

16-Jul 02

and a second second second second second

P.02

.-

<u>2002</u>

A VEO		Au	Au	Cu
ET#.	Tag #	(g/t)	(oz/t)	(°′•)
25	22815	0.03	0.001	0.11
28	22816	<0.03	<0.001	0.01
27	22817	<0 03	<0.001	0.01
28	22618	<0.03	<0.001	0.01
29	22819	<0.03	<0.001	0.05
30	22820	0.04	0.001	0.21
34	22834	<0.03	<0.001	0.02
32	22835	0.03	0.001	0.06
32	22836	0.07	0.002	0.15
	22837	0.04	0.001	0.03
3.£	22838	<0.03	<0.001	0,05
36	22839	<0.03	<0.001	0.05
37	22840	<0.03	<0.001	0.04
38	22841	0 .17	0.005	0,13
38	22842	0.08	0,002	D.19
40	22843	0.03	0.001	0.08/
41	22844	0.04	0 001	0.17
42	22845	<0.03	<0.001	0.03
4.3	22846	<0.03	<0.001	0.02
44	22847	<u><0.63</u>	<0.001	Ç.04
45	22848	<0 03	<0.001	<0.01
46	22849	<0.03	<0.001	0.02
47	22850	<0.03	<0.001	0.05
48	22851	0.06	0 002	0.06
49	22852	80.0	0.002	0,17
50	22853	0.13	0.004	0.34
51	22854	0.10	0.003	0.38
52	22855	0.13	0.004	0.40
53	22856	0.15	0.004	C.40
54	22857	0.25	0,007	0.53
55	22858	0 Q9	0.003	0.18
56	22859	0.05	0.001	0.07
57	22860	0.03	0.001	0.03
58	22861	<0.03	<0.001	0.03
C 13478				

Transition of the

Resplit:				
1	22791	0.07	0.002	0.18
36	22839	<0.03	<0.001	0.05
Repeat:				
<u>م</u>	22791	C C8	0.002	0,17
10	22800	<0 03	<0.001	C 01
19	22809	0.09	0.063	£.03
35	22839	<0.03	<0.001	0.05
45	22348	<0.03	<0.001	<0,01
Stondard:				
SU1a		-	-	0.96
3J1a				0.96
STC-M		1.89	0 058	•

JU'kk XLS/02

Fax GYVR - 250-548 3535

"C. Scott Berry Fex - 250-457-6710

Eco Tech ABORATORY JE

ECO TECH LABORATORY L.TD. Juita Jealouse B.C. Gentified Assayer

I unlike Assuging for our 23 Yours

Assay Certificate

2V-0288-RA1

02

Aug-09-02

Company:	GWR Resources	Inc.
Projecti		

Ana: Irvin Eisler

We hereby certify the following assay of 24 drill core samples submitted Jul-31-02 by Irvin Eisler.

Sample Name	Au g/toune	Au g/tonce	Ag g/tonne	Cu %		
4706	0.08	0.06	0.6	0.160	-	
22820	0.09		1.5	0.179		
22821	0.06		0.1	0.146		
22822	0.03		0.5	0.032		
22823	0.06		0.9	6.154		·· ··
22824	0.04		0,1	0.083		
22825	0.06		0.2	0.136		
22826	0.02	0.01	0.1	0.612		
23827	0.03		0.1	0.023		
22828	0.07		0.3	0.099		
22829	0.09		0.2	0.162		
22830	0.05		0.3	0.096		
22831	0.02		0.2	0.053		
22832	0.02		0.1	0.652		
	<u>C.03</u>		0.1	0.093		
22862	0.15		0.3	0.455		
22863	0.05		0.1	0.102		
22864	C.06		0.1	0.126		i.
	0.02		0.3	0.046		
22300	0.03		0.1	0.042		
22867	0.09	0,08	G.1	0.081		
22368	0.02		0,2	0.035		
22859	0.06		0.1	0.024		
	0.03		<u>0.1</u>	0.092		
TDUP 4206	·		0.8	<u>0.161</u>		
*DVP 23828			0.2	0.099		
*DUR 22865			0.1	0.043		
· 변경 / ~ <u>/</u> · · · · · · · · · · · · · · · · · · ·	1.38					
- 1927-18 (1/3) + 517			13.9	0.291		
DLANK	<0.01		<0.1	<0.001	·····	۰.

Assay Certificate

2V-0288-RA2

Aug-09-02

Company: GWR Resources Inc. Project: Aan: Irvin Eisler

We hereby certify the following assay of 24 drill core samples submitted Jul-31-02 by Irvin Eisler.

Sample Name	Au g/tonne	Au g/tonne	Ag g/tonne	Cu %		
5/20/20	0.64		3.1	0.039		
57977 57972	C.04	0.05	0.S (0.042		
22072	0.02		0.6	0.030		
22874	0.03		0,2	0.055		
22375	0.02		0.1	0.014	·····	
59276 ·····	0.01		0.8	0.007		
22370 22977	0.07		0.6	0.049		
22878	0.10		0.1	0.097		
22879	0.10		0.3	0.161		
22880	0.10		0.2	0.127		
22881	0.07		0.2	0.145	•	
22882	0.05		0.3	0.113		
22883	0.06		4.3	0.052		
22884	0.04		0.1	0.140		
22885	0.15	0.13	0.8	0.155		
22885	<u>0.02</u>		0.2	0.042		
22887	0.01		0.1	0.00€		
22888	0.02		Q.1	0.026		
22889	0.02		C.2	0.625		
22890	0.01		0.1	0.016		
22891	0.03	0.04	0,3	0.033		
22892	0.03		0.2	0.053		
22893	0.02		0.1	0.012		
	0.04		0.1	0 <u>,03</u> 8		
*DUP 22671			2.8	0.040		
*DU2 22880			0.1	0.128		
-DUE 22890			0,1	0.016		
*97~2	1.4C					
*MP-la (1/5)			14.0	0.290		
*BLANK	<0.01		<0.1	_<2.031	. من محد	-

18/09/2002 14:11 5043273423 ASSAV	457 6710 ERS	
ASSAYERS C A N A D A	A584 8232 Var V52 Tel Fax	. A d 8 1951 - E - 29
Buality Susaging for over	<u>29 0/120</u>	• • • •
Assav Certificate	2V-0155	
CINP Decouvered Inc.	Aug	

Company: GWR Resources Inc. Project: Ann: Irvin Eisler

ı

We hereby certify the following assay of 24 drill core samples submitted Jul-31-02 by Irvin Eisler.

Sample Namo	Au g/to anc	Au g/tonue	Ag g/tonne	Cu %	
22895	0.02		0.2	0.018	_
22896	0.03		6.1	0.033	
22897	0.03		0.1	0.035	
22898	0.02		C.1	0.054	
22899	0.02		0.4	0.021	-
22914	C.03		0.1	0.081	
22915	C.D5		0,1	0.165	
22916	0.04		0.5	0.144	
22917	0.04		0.9	0.059	
22918	0.03	0.02	0.3	0.045	
22919	0.04		0.2	0.062	
22920	0.02	0.01	0.1	Q.022	
22921	0.03		0.3	0.050	
22922	0.02		0.1	0.054	
22923	0.02		0.1	0.032	
22924	0.04		9.2	0.028	
22925	0.01		0.1	0.019	
83936	0.02	0.01	0.2	0.015	
22927	0.02		0.3	0.019	
22923	0.03		0.1	0.028	
22929	0,11	a contracting these set of a court	0.1	0.170	
22930	0.09		0.2	0.121	
22931	0.04		0.2	0.058	
22932	0.14		0.1	0.129	
*DUP 22895			Č.I	0.018	
*OUP 22918		are the		0 045	• • • • • • • • • • • • •
*VUF 22928			0.1	0.028	
*97~2	1.35		~· L	0.010	
*MP-la (1/5)			14.2	0.291	
*BLANK	<0.01		<0.1	<0.001	

1.1

;

. **.**

87 26,1000 14:52 8848408041

NERVL SHITH

Assayers Canada 8282 Sheebrooks St. Vancouver, B C 13X 4R6 Tal: (604) 327-3406 Fax (604-527-3423 -----

2V-0277-RA1

Jul-26-02

.

Country I sugary for over 25 years

Assav Certificate

C-Hinparty: GWR Resources Inc. Project. Attri. Irvin Eisler

We hereby certify the following assay of 13 drill core samples submitted Jul-26-02 by Irvin Eisler.

Sample Natur	Au g/tonue	Ag g/tonse	Cu %	Nillian	A g/ton		Cu %
12902 12903 12903 12905 12905 12905 12903 12903 12903 12903 12903 12903 12903 12903 12903 12903 12905 12903 12905 12		0.4 0.25 0.5 0.5 0.5 0.7 0.4 0.7 10 0.4 0.7 10 0.4 0.7 10 0.4 0.7 10 0.4 0.7 10 0.4 0.7 10 0.4 0.7 10 0.4 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.160 0.079 0.116 0.069 0.279 0.137 0.070 0.070 0.070 0.049 0.028 0.001 0.159 0.291 0.291 C.001	22901 22902 22903 22904 22905 22906 22907 22908 22907 22908 22907 22910 22910 22911 22912 22913 *DUP 22901	0.12 0.04 0.05 0.03 0.03 0.04 0.04 0.04 0.05 <0.01 0.05 <0.01 0.07 0.11	0.5 0.4 0.2 0.5 0.3 0.3 0.1 0.7 0.1 0.3 1.4 0.7	0.160 0.079 0.118 0.069 0.279 0.137 0.093 0.025 0.025 0.025 0.025 0.162 0.169
		anna an Star an Star an Star an Star	·····	*DUP 22905 *DUP 22910 *97-2 *MP-1a *Blank	07 1. 39	0.1 13.9 <0.1	0.291 <0.001

Certified by

Assay Certificate

2V-0288-RA4

Company: GWR Resources Inc. Project: Adm: Irvin Eisler Aug-09-02

We hereby certify the following assay of 24 drill core samples submitted Jul-31-02 by Irvin Eisler.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sample Name	Au g/tonne	Au g/tonpe	Ag g/tonne	Cu %	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22933	0,22	1999 August 2017 August 2017	0.1	0.239	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22934	0,17		0,2	0.245	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22935	0.14		0.1	0.287	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22936	0.07	•	0.4	0.115	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22937	0.09	0.07	(1.5)	0.152	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22938	0.15		5.3	0.209	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22939	0,03		0.1	0.024	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22940	0.07		0.6	0.134	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22941	0.07		0.2	0.135	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22942	0.04		0.1	0.048	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22943	0.03		0.1	0.091	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22944	0.05		0.1	0.073	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22945	C.20		0.1	0.144	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22946	0.14		0.1	0.286	
22949 0.11 0.1 0.175 22949 0.03 0.1 0.036 22950 0.03 0.3 0.062 22951 0.04 0.2 0.10 22952 0.05 0.04 0.4 0.128 22953 0.09 0.1 0.130 0.16 22954 0.11 0.1 0.16 0.295 22956 0.07 0.2 0.113 22956 0.06 0.2 0.104 *DUP 22933 0.06 0.2 0.104 *DUP 22942 0.1 0.138 0.2 *DUP 22942 0.3 0.119 0.3 *DUP 22952 0.3 0.119 0.3 *MP-1a (1/5) 13.9 0.292 *BLANK <0.01	22947	0.06	0.07	0.1	0.117	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22949	0.11	···	0.1	0.175	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22949	0.03		0.1	0.036	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22950	0.03		0.3	0.062	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22951	0.04		0.2	0.110	
22953 0.09 0.1 0.130 22954 0.11 0.1 0.16 22955 0.07 0.2 0.113 22956 0.06 0.2 0.104 DUP 22933 0.06 0.2 0.104 DUP 22942 0.1 0.3 0.119 *DUP 22952 0.3 0.119 *MP-1a (1/5) 13.9 0.252 *DUNK <0.01	22952	0.05	0.04	0.4	0.118	
22954 0.11 0.1 0.16 22955 0.07 0.2 0.113 22956 0.06 0.2 0.104 DUP 22933 0.06 0.2 0.104 DUP 22942 0.1 0.3 0.119 DUP 22952 1.41 13.9 0.292 'MP-1a (1/5) 13.9 0.292 'BLANK <0.01	22953	0.09		0.1	0.130	
22955 0.07 0.2 0.113 22956 0.06 0.2 0.104 DUP 22933 0.2 0.104 DUP 22942 0.1 0.249 DUP 22952 0.3 0.119 MP-1a (1/5) 13.9 0.252 'BLANK <0.01	22954	0.11		0.1	0.116	
22956 0.06 0.2 0.104 *DUP 22933 0.2 0.138 *DUP 22942 0.1 0.349 *DUP 22952 0.3 0.119 *MP-1a (1/5) 1.41 13.9 0.292 *BLANK <0.01	22955	Ú.07		0.2	0.113	
OUP 22933 0.2 0.138 OUP 22942 0.1 0.049 OUP 22952 0.3 0.119 MP-1a (1/5) 1.41 13.9 0.292 'BLANK <0.01	22936	0.06		0.2	0.104	
*SUP 22942 0.1 0.249 *DUP 22952 0.3 0.119 *MP-1a (1/5) 13.9 0.292 *BLANK <0.01	DUP 22933			012	0.138	
*DUP 22952 0.1 0.349 *97-2 0.3 0.119 *MP-1a (1/5) 13.9 0.252 *BLANK <0.01	*JUP 22942			·····	0.240	and a second contract of the second
-97-2 *MP-1a (1/5) 1.41 13.9 0.292 *BLANK <0.01 0.1 0.001	*DUP 22952			0.1	0.049	
MP-1a (1/5) *BLANK	*97-2	1.41		0.3	0.119	
(0.01 (0.232	*MP-1a (1/5)	- • • •		13 0	0 350	
	BLANK	<0.01		<u>20.9</u>	20.232	

A

D

Assayore Canada 8252 Sherbrooke St Vancouver. B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Assay Certificate

.

2V-0288-RA5

Company: GWR Resources Inc. Project: Aux: Irvin Elster Aug-09-02

We hereby certify the following assay of 7 drill core samples submitted Jul-31-02 by Irvin Eisler.

Sample Name	Au g/ionne	Au g/tonne	Ag g/tonne	Cu %	
22957	0.15	·····	0.4	0.284	
22958	0,03	0.04	0.1	0.101	
22959	0.02		0.2	0.043	
22960	0.05		0.2	0.082	
22961	0.03		0.1	0.003	
22962	0.01		0.1	0.003	· · · · · · · · · · · · · · · · · · ·
2296 63	0.03		0.1	0.004	
*DUP 2295?			0.5	0.284	
* 97-2	1.37				
*MP-1a (1/5)			14.0	Q.283	
*ELANK	<0.01		<0.1	<0.001	· · · · · · · · · · · · · · · · · · ·

Prairie Assaying for over 22 Gours

Certified by

FAGE 06

Quality Many Deg for never 25 Junes

P.01

2V-0359-RA1

Uct-03-02

Assay Certificate

GWR Resources Inc. Company Project:

Scott Berkey Attn

1

We hereby certify the following assay	of 24 rock samples
submitted Sep-20-02 by Scott Berkey	

Sample Name	Au g/tonue	Au g/tonne	Cu %	Cu %	
3796A	0.05	0.04	0.107	0.108	
22965	0.05		0.113		
22986	0.13		0,221		
2220C	0.25		0.608		
22368	0.15		0.291		
22969	0.05		0.065		
22970	0.07		0.112		
22971	0.47		0.546		
22972	0.15		0.287		
22973	0,18		0.303	0.305	······································
22974	0.02		0,026		
22975	0.02		0.029		
22976	0.19		0.107		
22977	0.06		0.129		
22978	Ü.Ö3		0.020		
22979	0.04	0.05	0.108	••••	
22980	0.01		9.010		
22981	0.07		0.130		
22992	0.06		0.144		
22983	0.02	0.01	0.019	0.019	
22384	0.05		0.069		
22995	0.08		0.186		
23002	0.02		0.019		
23003	0.02		0.050		
*97-2	1.33	···			And a set of the set of the set of the set of the set of the set of the set of the set of the set of the set of
*MP-1a (1/5)		······································	0.287		
rBlank	<0.01		<0.001		

Certified by

10/03/2802 14:06 6843273423

ASSAYERS

PAGE 53

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3435 Fax: (604) 327-3423

Assav Certificate

2V-0359-RA2

Oct-03-02

Р

Company: GWR Resources Inc. Project: Attn: Scott Berkey

We hereby certify the following assay of 5 rock samples submitted Sep-20-02 by Scott Berkey.

.....

~~ .---

Sample Name	Au g/tonne	Au g/tonne	Cu %	Cu %	
23004	0.02	0.02	0.031	0.031	-
23005	0.01		0.028		
23006	0.02		0.031		
23007	0.01		0.008		
23008	0.02		0.015		
*97-2	1.40				-
*MP-1a (1/5)			0.286		
*Blank	<0.01		<0.001		

Certified by