DIAMOND DRILLING REPORT

RECEIVED on the JAN = 7 7003 TEX PROPERTY

Gold Commissioner **JON CLAIM - #360703)** VANCOUVER, B.C. **PEMBERTON-DARCY AREA -**

BIRKENHEAD RIVER BRITISH COLUMBIA

LATITUDE 50°29'53"N / LONGITUDE 122°44'30"W N.T.S. 92J/7E LILLOOET MINING DIVISION

Owned by

International Silver Ridge Resources Inc. 332 Harbour Ave., North Vancouver, B.C. Phone: 604-932-3282 / Fax: 604-980-1133

By

J. T. Shearer, M.Sc., P.Geo. #5-2330 Tyner St. Port Coquitlam, B.C. V3C 2Z1 Phone: 604-970-6402/From 604-944-501002Y BRANCH E-mail: jo@HomegoldResources.com REPORT

December 1	5 2002		01
Fieldwork completed between Septembe	r 23∦2002,	and Novemb	r 19, 2002
	A L		()
		()	
	Contraction of the last		A State of the second se

TABLE of CONTENTS

	Page

LIST of ILLUSTRATIONS and TABLES	ii
SUMMARY	iii
INTRODUCTION	1
LOCATION and ACCESS and FIELD PROCEDURES	2
CLAIM STATUS	3
HISTORY	4
REGIONAL GEOLOGY	5
PROPERTY GEOLOGY	6
DIAMOND DRILLING and DRILLHOLE LOCATIONS	7
CONCLUSIONS and RECOMMENDATIONS	9
COST ESTIMATE for FUTURE WORK	10
REFERENCES	11
APPENDICES	10
Appendix I Statement of Qualifications	12
Appendix II Statement of Costs	
Appendix III Assay Certificates	14
Appendix IV Drill Logs	15

LIST of ILLUSTRATIONS and TABLES

		Following <u>Page</u>
FIGURE 1	Location Map	îv
FIGURE 2	Detail Location Map, 1:50,000	B 1
FIGURE 3	Trim Map, 1:20,000	
FIGURE 4	Claim Map, 1:31,680	••••
FIGURE 5	Regional Geology	9 5
FIGURE 6	Local Geology & Drillhole Locations, 1:5,000	in pocket
FIGURE 7	Cross-section, Holes 1 & 2	126
FIGURE 8	Cross-section, Holes 3 & 4	147

TABLES

<u>Page</u>

TABLE IList of Claims3TABLE IIDiamond Drill Data7

SUMMARY

- The TEX Property is located northeast of Pemberton near the junction of Birkenhead River and Texas (or Tenas) Creek. Access is via the paved road to Darcy for 16.5 km, turning at Bramson Siding on B.C. Rail and then 7.3 km along the Birkenhead Forest Service Road to the drilling area.
- 2) The TEX Property consists of the 20 unit Jon Claim (5Nx4W) and the Eva Claim (5Sx4E). (Total 40 Units)
- 3) The area is underlain by volcanic rocks of the Upper Triassic Cadwallader Group consisting mainly of andesitic lapilli tuff, lithic tuff, interbedded andesite flows, argillite and rhyolite. Cadwallader Group rocks have been intruded by granodiorite of the Jurassic to Tertiary Coast Plutonic complex, which has produced variable thickness of skarn development.
- 4) Mineralization consists of massive to semi-massive zones of pyrite and pyrrhotite within the skarn zones and argillically and prophylitically altered intrusive rocks.
- 5) Diamond drilling was completed between September 23 and November 19, 2002, totaling 812 feet (243m.) in 4 holes.
- 6) The geological environment can be defined as a complex intrusive-skarn zone developed along the contact of the Spetch Creek Intrusive and Triassic Cadwallader Group Volcanics and sedimentary rocks. The primary skarn is compositionally zoned from zoisite-diopside-quartz skarn, through quartz-minor epidote skarn, siliceous quartz skarn and dark green chlorite-pyrite-pyrrhotite skarn. Brown garnet occurs irregularly in the zoisite and epidote zones. Significant amounts of disseminated pyrite and pyrrhotite are relatively constant throughout the area tested and can form semi massive to massive sections associated with the chlorite skarn and epidote skarn.
- 7) Zoning of the skarn assemblages appears from core logging to reflect the original composition of the host rocks coupled with the chemical (metamorphic and metasomatic) control of the intrusive body. Similar patterns elsewhere are ascribed to the random overlay of "oxide availabilities" in the diffusing fluids during dynamic metamorphism. Only one phase will be stable at the edge of a zone depending on pressure, temperature and coincidental overlap of oxide availabilities. At the overlap point the solubility product of a particular phase (mineral) is exceeded and precipitation occurs. Original carbonate composition often provides the minor irregularities on the superimposed metasomatic processes.
- 8) The Tex Property is along the northern continuation of the regionally important Harrison Lake Fault Zone.
- 9) Assay results indicate that several anomalous zones were encountered, which include 3.99g/tonne Au over 3m in Hole Tex-02-04 between 3.05 and 6.10m. The higher gold values are associated with geochemically elevated values of zinc, lead, silver and copper. Other intervals are: Tex-02-04; 0.61m-6.1m (5.5m) averaging 2.41 g/tonne Au and Tex-02-04; 54.86m-57.91m (3.05m) averaging 2.17 g/tonne Au.

10) The gold enriched zones occur at surface in hole Tex-02-04 and this zone warrants further work by surface trenching to define its surface extent. The gold enriched zones encountered at depth in Holes Tex-02-02 and Tex-02-04 occur in widely distributed rock types and further work is warranted to trace their distribution on surface.

Respectfully submitted, T. (Jo) Shearer, M.Sc., P.Geo. December 15, 2002

.

INTRODUCTION

This report was commissioned by Jon Perrett, President of International Silver Ridge Resources Inc. to summarize the 2002 diamond drill program and outline a future work program for the Tex Property.

Mineral exploration began in the Tenquille Lake area in 1916, during the construction of the Pacific Great Eastern Railway. Between 1923 and 1937, work was conducted on the Gold King (092JNE054), Dora May claims and the Li-Li-Kel (092JNE052) properties. Zinc-rich skarn, and shear-hosted vein type mineralization on the Gold King and Dora May were explored by several opencuts and diamond drilling. Little other work was conducted until the 1960's when Phelps Dodge Corp. carried out exploration work in the area. Various other companies have conducted limited exploration throughout the surrounding area since. However, in 1990, Teck Corp. staked the Apollo, Sun and God claims of the Sun God property covering the Gin showing and conducted a comprehensive multi-year program for volcanogenic massive sulfides and skarn deposits.

Regionally, the property lies in a northwest trending belt of Upper Triassic Cadwallader Group rocks, which represent a northwest trending, northeast dipping, calcalkaline, island arc, volcano-sedimentary assemblage intruded by granodiorite to quartz diorite of the Jurassic to Cretaceous Coast Plutonic Complex. The Cadwallader Group consists of andesitic breccias, tuffs, rhyolites, rhyolitic tuffs and agglomerates with phyllite, sandstone, minor limestone and conglomerates. The Harrison Lake fault is postulated to pass very close to the TEX showing, to the southwest.

Previous work on the Tex Claim area refers to the drilled zone as one of the Bank showings. The majority of outcrops in the vicinity of the Tex showing consist of medium to dark grey lithic tuff with minor andesitic flows. Minor limestone was found near the site of some old workings. The dominant fabric strikes north and dips 58 to 83 degrees to the east. The major fracture pattern strikes east and dips 58 to 75 degrees south. A 5 centimetre wide shear was located in one lithic tuff outcrop. Varying degrees of silicification is evident in most outcrops. Weak to moderate Argillic alteration is also present. Chloritization is strong at the old workings.

At the old workings and 300 metres to the south-southeast (near the 2002 drillholes), pyrite and chalcopyrite with minor arsenopyrite, sphalerite and galena were observed as disseminations. Malachite is present.

Six rock samples were taken in 1994; (see Terry, Assessment Report 23595) two from the old workings and four from the outcrop to the southeast. Sample Bank 2 from the old working yielded 0.13 % copper, 0.15% zinc and 1.4 grams per tonne silver (Assessment Report 23595). Sample Bank 1, also from the old workings, yielded 3.3 grams per tonne silver and 0.84 gram per tonne gold.

Sample Bank 4, from the 2002 Drilled zone, yielded 0.66% copper, 22.9 grams per tonne silver and 1.02 grams per tonne gold (Assessment Report 23595). Sample Bank 3 yielded 62.0 grams per tonne silver and 4.05 grams per tonne gold. Sample 523316 yielded 0.71% copper, 8.5 grams per tonne silver and 0.62 gram per tonne gold. Sample 523317 yielded 0.52% copper, 19.7 grams per tonne silver and 0.58 gram per tonne gold. Samples Bank 3 and 4 also yielded 0.20 and 0.13% arsenic.

LOCATION and ACCESS and FIELD PROCEDURES

The Tex Property (Jon & Eva Mineral Claims) is situated within the upper Birkenhead River Valley with elevations ranging between 580 and 1520m (figure 1 and 3).

Most of the claims are covered by a second growth selectively logged forest, some of which has been thinned. Some parts of the claim have been logged relatively recently.

Access to the claims is gained by travelling northeast for 6 km from Pemberton along a paved road to Mount Currie. From Mount Currie travel north for 16.5 km along the Pemberton-Darcy paved road to the old Bramson Siding on the B.C. Rail line. The Tex Property is accessible from logging roads on the east side of Birkenhead River 7.3 km from the railway. New roads are presently being built west up the Tenquille Creek drainage (Figure 2).

Field Procedures

Geological observations were conducted on a basemap obtained from the 1:20,000 Trim Map. The drillhole collar location was tied into the 1:20,000 map.

The drill program was accessed by 4x4 truck. The drillcore was carefully logged and split in a warehouse-shop facility in Port Coquitlam. The core is presently stored undercover in the warehouse at Unit 5-2330 Tyner St., in Port Coquitlam.

CLAIM STATUS

The principal area of interest is covered by the Jon and Eva Claims staked under the Modified Grid Systems and registered in the name of International Silver Ridge Resources Inc..

TABLE I

List of Claims

Claim Name	Tenure Number	Size	Units	Date Located	* Current Anniversary Date	Registered Owner
Jon	360703	5N4W	20	November 19, 1998	November 19, 2004	International Silver Ridge Resources Inc.
Eva	352786	5S4E	20	November 19, 1997	November 19, 2004	International Silver Ridge Resources Inc.

Total 40 Units

* using assessment work documented in this report.

Mineral title is acquired in British Columbia via the <u>Mineral Act</u> and regulations, which require approved assessment work to be filed each year in the amount of \$100 per unit per year for the first three years and then \$200 per unit per year thereafter to keep the claim in good standing.

Under the present status of mineral claims in British Columbia, the consideration of industrial minerals requires careful designation of the products end use. An industrial mineral is a rock or naturally occurring substance that can be mined and processed for its unique qualities and used for industrial purposes (as defined in the *Mineral Tenure Act*). It does not include "Quarry Resources". Quarry Resources includes earth, soil, marl, peat, sand and gravel, and rock, rip-rap and stone products that are used for construction purposes (as defined in the *Land Act*). Construction means the use of rock or other natural substances for roads, buildings, berms, breakwaters, runways, rip-rap and fills and includes crushed rock. Dimension stone means any rock or stone product that is cut or split on two or more sides, but does not include crushed rock.

The outside boundaries of the Jon and Eva claims have not been legally surveyed. As noted above, the claims were staked and mineral title acquired under the Modified Grid System outlined in the Mineral Act.

Immediately to the east of the Jon Claim is the Sylvan Claim at which some minor underground was completed about 10 years ago on a massive pyrrhotite pod.

HISTORY

Mineral Exploration began in the Tenquille Lake area in 1916, during the construction of the Pacific Great Eastern Railway. Between 1923 and 1937, work was conducted on the Gold King (092JNE054) and Dora May Claims, and the Li-Li-Kel (092JNE052) property. The zinc-rich skarn and shear hosted vein type Mineralization on the Gold King and Dora May were explored by several opencuts and diamond drilling. Little other work was conducted until the 1960s when Phelps Dodge Corp. carried out exploration work in the area. Various other companies have conducted limited exploration throughout the surrounding area since. In 1990 Teck Corp. staked the Apollo, Sun and God claims of the Sun God property covering the Gin showing.

The general TEX property and Fowl Creek area was investigated by Bralorne-Pioneer Mines Ltd. in 1963 (Nichollis, 1963) and Becket (1969) and Burton (1970 for Norse Explorations Ltd. Burton records that 1,412 recce samples were collected. More comprehensive exploration work was carried out in the early 1980's for Morgain Minerals (Howell, 1981, Richards, 1984 and Christopher, 1985) consisting of geological, geochemical and geophysical surveys. Howell collected 350 soils in 1981. The Bank 1 to 4 Claims were owned by J. M. Malcolm (Donegal Developments Ltd.) by staking in 1994. In 1994, M. Terry was hired to evaluate the mineral potential of the property (Assessment Report 23595).

The majority of outcrops in the vicinity of the Bank showing consist of medium to dark grey lithic tuff with minor andesite flows. Minor limestone was found near the site of some old workings. The dominant fabric strikes north and dips 58° to 83° to the east. The major fracture pattern strikes east and dips 58° to 78° south. A 5cm wide shear was located in one lithic tuff outcrop. Varying degrees of silicification is evident in most outcrops. Weak to moderate Argillic alteration is also present. Chloritization is strong at the old workings.

Six rock samples were taken in 1994; two from the old workings and four from the 2002 drilled area outcrop to the southeast. Sample Bank 2 from the old workings yielded 0.13 per cent copper, 0.15 percent zinc and 1.4 grams per tonne silver (Assessment report 23595). Sample Bank 1, also from the old working yielded 3.3 grams per tonne silver and 0.84 gram per tonne gold.

Sample Bank 4, from the 2002 drilled area outcrop yielded 0.66 percent copper, 22.9 grams per tonne silver and 1.02 grams per tonne gold (Assessment Report 23595). Sample Bank 3 yielded 62.0 grams per tonne silver and 4.05 grams per tonne gold, which is close to the surface zone in hole TEX-02-04 of the present program. Sample 523316 yielded 0.71 per cent copper 8.5 grams per tonne silver and 0.62 gram per tonne gold. Sample 523317 yielded 0.52 percent copper, 19.7 grams per tonne silver and 0.13 per cent arsenic.

Immediately east of they John Claim is the Sylvan Claim, which was the site of a small underground program about 10 years ago on a massive pyrrhotite pod.

REGIONAL GEOLOGY

The region is underlain by a large northwest trending, northeast dipping, right side up, "roof pendant" or septa consisting of volcanic and sedimentary rocks of the Upper Triassic Cadwallader Group. The septa is contained within intrusive rock, ranging from granite to granodiorite to quartz diorite, of the Jurassic to Cretaceous Coast Plutonic Complex. The Cadwallader Group is unconformably overlain by a relatively thin section of volcano-sedimentary rocks thought to be of Jurassic or Cretaceous age. The Spetch Creek pluton intrudes these two stratigraphic packages. Isolated exposures of Tertiary basalts overlie the above rock units.

At the Gin showing (Paulter, 1990 & 1991), just west of the Jon Claim, the Cadwallader Group has been subdivided into five units which from oldest to youngest are: 1) massive andesite, 2) mixed pyroclastic, 3) felsic volcanic, 4) mixed pyroclastic and 5) sedimentary. The massive andesite units consist of dark green massive basaltic andesite flows. The mixed pyroclastic unit consists of pale to dark green andesitic to dacitic fine tuffs, lithic tuffs, feldspar crystal tuffs and lapilli tuff with minor interbedded porphyritic flows. The felsic volcanic unit consists of light grey to pale green rhyolite and rhyodacite flows, commonly feldspar porphyritic. The mixed pyroclastic and sedimentary unit consists of well bedded andesite to dacite, lithic and lapilli tuffs with abundant limestone, limestone breccias, calcareous feldspar-rich wackes, black shale, siltstone and chert interbeds. The upper sedimentary unit consists of an upward fining sequence of cobble conglomerate, feldspar-rich greywackes and sandstones, black shale and chert. The Gin showing is hosted by limestone in an assemblage of andesite and dacite flows, breccia and tuff and sedimentary rocks (Paulter, 1991).

The Gin showing consists of massive pyrrhotite skarn, with sphalerite and chalcopyrite adjacent to the Spetch Creek pluton. Copper and zinc concentrations are patchy. The mineralized zone is 3 metres wide by 300 metres long. The adjacent granite is extremely oxidized and rusty, containing fine seams and clots of pyrite and chalcopyrite. Pyritic seams within the Spetch pluton contains up to 0.13% copper (sample 14206, Assessment Report 21274). Lenses of pyrrhotite, with occasional trace chalcopyrite and sphalerite are hosted in mudstones and cherty beds. Associated rocks are well bedded lithic tuffs and feldspar-rich wackes of the Cadwallader Group. Local patchy oxidized pyrrhotite clots occur throughout the host rocks. The Mineralization appears to be due to hornfelsing of more calcareous beds (Paulter, 1991). The Gin showing appears to be similar to the Sylvan pyrrhotite zone.

A major northwest trending fault, passing through the west end of Cerulean Lake is located to the west of the Claims (part of the Harrison Lake Fault System).

PROPERTY GEOLOGY

The majority of outcrops in the vicinity of the Bank showing consist of medium to dark grey lithic tuff with minor andesite flows (Terry, 1994). Minor limestone was found near the site of some old workings. The dominant fabric strikes north and dips 58° to 83° to the east. The major fracture pattern strikes east and dips 58° to 78° south. A 5cm wide shear was located in one lithic tuff outcrop. Varying degrees of silicification is evident in most outcrops. Weak to moderate Argillic alteration is also present. Chloritization is strong at the old workings (Terry, 1994).

At the old workings and 300 metres to the south-southeast, pyrite and chalcopyrite with minor arsenopyrite, sphalerite and galena were observed as disseminations. Malachite is present.

Six rock samples were taken in 1994 (Terry, 1994); two from the old workings and four from the outcrop to the southeast around where the 4 2002 diamond drillholes were situated. Sample Bank 2 from the old workings yielded 0.13 per cent copper, 0.15 percent zinc and 1.4 grams per tonne silver (Assessment report 23595). Sample Bank 1, also from the old working yielded 3.3 grams per tonne silver and 0.84 gram per tonne gold.

Sample Bank 4, from the outcrop yielded 0.66 percent copper, 22.9 grams per tonne silver and 1.02 grams per tonne gold (Terry, 1994, Assessment Report 23595). Sample Bank 3 yielded 62.0 grams per tonne silver and 4.05 grams per tonne gold, which is similar in gold content to the surface gold zone encountered in Hole TEX-02-04. Sample 523316 yielded 0.71 per cent copper 8.5 grams per tonne silver and 0.62 gram per tonne gold. Sample 523317 yielded 0.52 percent copper, 19.7 grams per tonne silver and 0.58 gram per tonne gold. Samples Bank 3 and 4 also yielded 0.20 and 0.13 per cent arsenic (Terry, 1994).

2.7

_

٠

10	Zo	30 M		
1:500	>			
ERNATIO	NAL SI	LVER RIL	OGE	
RESO	URCE	S INC.		
TEX	PROPE	RTY		
OSS-SECTION, HOLES 1 & 2				
DATE: Dec. 15, 2002	N.T.S. 92J/7E	WORK BY: J. T. Shearer	FIGURE: 7	

DIAMOND DRILLING and DRILLHOLE LOCATIONS

Diamond drilling on the Tex Property was completed in November 2002. A total of 4 holes (818 ft, 249.33m) tested the area that was trenched last year near the old mine shaft area.

The geological environment can be defined as a complex intrusive-skarn zone developed along the contact of the Spetch Creek Intrusive and Triassic Cadwallader Group Volcanics and sedimentary rocks. The primary skarn is compositionally zoned from zoisite-diopside-quartz skarn, through quartz-minor epidote skarn, siliceous quartz skarn and dark green chlorite-pyrite-pyrrhotite skarn. Brown garnet occurs irregularly in the zoisite and epidote zones. Significant amounts of disseminated pyrite and pyrrhotite are relatively constant throughout the area tested and can form semi massive to massive sections associated with the chlorite skarn and epidote skarn.

Zoning of the skarn assemblages appears from preliminary core logging to reflect the original composition of the host rocks coupled with the chemical (metamorphic and metasomatic) control of the intrusive body. Similar patterns elsewhere are ascribed to the random overlay of "oxide availabilities" in the diffusing fluids during dynamic metamorphism. Only one phase will be stable at the edge of a zone depending on pressure, temperature and coincidental overlap of oxide availabilities. At the overlap point the solubility product of a particular phase (mineral) is exceeded and precipitation occurs. Original carbonate composition often provides the minor irregularities on the superimposed metasomatic processes.

The Tex Property is along the northern continuation of the regionally important Harrison Lake Fault Zone.

TABLE II

Hole #	N.	E.	Length m. (ft)	Dip	Azimuth	Elevation	Remarks
Tex-02-01	No grid	established	61.57 (202')	-45	045	650	Above Shaft
Tex-02-02			61.57 (202')	-45	000	650	Above Shaft
Tex-02-03			64.62 (212')	-45	225	620	on lower road
Tex-02-04			61.57 (202')	-90	000	620	on lower road
	<u> </u>	Total Foo	tage = 818 ft. =	249.3	3m		

Diamond Drill Data

All drillholes have been completely assayed from the top of the hole to the bottom. Drill logging procedures, core splitting protocol and assaying have been reviewed and found to have been done to a high standard.

The extensive zoisite-diopside-quartz skarn zone and associated epidote-sericite-quartz altered (skarnified) intrusive rocks were recently investigated with a 4 hole diamond drill program. Several anomalous zones were encountered, which include 3.99g/tonne Au over 3 metres in Hole Tex-02-04 between 3.05m to 6.10m. This hole is vertical and is on the south side of the old shaft area. The higher gold values are associated with geochemically elevated values of zinc, lead silver and copper. Gold results are in Atomic Absorption by Chemex and the core was carefully split under the direct supervision of a qualified person. Interestingly the Tex-03-04: 3.05m to 6.10m interval has lower sulphur content but higher iron content suggesting that perhaps the elevated gold is not associated only with pyrite but perhaps magnetite as well.

5 10 15 ZØM
1:500
ERNATIONAL SILVER RIDGE
RESOURCES INC.
TEX PROPERTY
OSS-SECTION, HOLES 3 & 4
DATE: NTS WORK BY FIGURE
Dec. 15, 2002 92J/7E J. T. Shearer 8

Significant gold intervals are:

Tex-02-04	0.61m-6.1m (5.5 metre core intercept) average 2.41g/tonne Au
	Including 3.05m-6.1m of 3.99g/tonne Au
Tex-02-04	24.38m-27.43m (3.05m core intercept) average of 0.514g/tonne Au
Tex-02-04	54.86m-57.91m (3.05m core intercept) average of 2.17g/tonne Au
Tex-02-02	51.82m-57.91m (6.1m core intercept) average 0.565g/tonne Au

The interval at Tex-02-04: 54.86m-57.91m is contained in a faulted calcareous interval of banded, skarnified, metasediments and metavolcanics.

The gold enriched zones occur at surface in hole Tex-02-04 and this zone warrants further work by surface trenching to define its surface extent. The gold enriched zones encountered at depth in Holes Tex-02-02 and Tex-02-04 occur in widely distributed rock types and further work is warranted to trace their distribution on surface.

CONCLUSIONS and RECOMMENDATIONS

Diamond drilling on the Tex Property was recently completed. A total of 4 holes (818 ft, 249.33m) tested the area that was trenched last year near the old shaft area.

The geological environment can be defined as a complex intrusive-skarn zone developed along the contact of the Spetch Creek Intrusive and Triassic Cadwallader Group Volcanics and sedimentary rocks. The primary skarn is compositionally zoned from zoisite-diopside-quartz skarn, through quartz-minor epidote skarn, siliceous quartz skarn and dark green chlorite-pyrite-pyrrhotite skarn. Brown garnet occurs irregularly in the zoisite and epidote zones. Significant amounts of disseminated pyrite and pyrrhotite are relatively constant throughout the area tested and can form semi massive to massive sections associated with the chlorite skarn and epidote skarn.

Zoning of the skarn assemblages appears from preliminary core logging to reflect the original composition of the host rocks coupled with the chemical (metamorphic and metasomatic) control of the intrusive body. Similar patterns elsewhere are ascribed to the random overlay of "oxide availabilities" in the diffusing fluids during dynamic metamorphism. Only one phase will be stable at the edge of a zone depending on pressure, temperature and coincidental overlap of oxide availabilities. At the overlap point the solubility product of a particular phase (mineral) is exceeded and precipitation occurs. Original carbonate composition often provides the minor irregularities on the superimposed metasomatic processes.

The Tex Property is along the northern continuation of the regionally important Harrison Lake Fault Zone.

The entire length of core has been carefully split and a complete series of samples has been submitted for Assay.

Significant gold intervals are:

Tex-02-04	0.61m-6.1m (5.5 metre core intercept) average 2.41g/tonne Au
	Including 3.05m-6.1m of 3.99g/tonne Au
Tex-02-04	24.38m-27.43m (3.05m core intercept) average of 0.514g/tonne Au
Tex-02-04	54.86m-57.91m (3.05m core intercept) average of 2.17g/tonne Au
Tex-02-02	51.82m-57.91m (6.1m core intercept) average 0.565g/tonne Au

The interval at Tex-02-04: 54.86m-57.91m is contained in a faulted calcareous interval of banded, skarnified, metasediments and metavolcanics.

The gold enriched zones occur at surface in hole Tex-02-04 and this zone warrants further work by surface trenching to define its surface extent. The gold enriched zones encountered at depth in Holes Tex-02-02 and Tex-02-04 occur in widely distributed rock types and further work is warranted to trace their distribution on surface.

Respectfully submitted,

J. T. (Jo) Shearer, M.Sc., P.Geo. December 15, 2002

COST ESTIMATE for FUTURE WORK

<u>Phase II</u>

- - -

Continued Geological Mapping and Detail Sampling and Trenching

Geological Mapping		\$ 6,000.00
Transportation +		3,000.00
Analytical		5,000.00
Report Preparation		4,000.00
Trenching, Tex-02-04 Surface Gold Zone		 10,000.00
	Total Phase I	\$ 28,000.00

<u>Phase III</u> if Warranted by Phase II results Diamond Drilling for Fresh Samples, Geological Mapping

Geological mapping and property maintenance	\$ 10,000.00
Diamond drilling, 400m @ \$82.50 per metre	33,000.00
Supervision, mob & demob, core splitting	3,000.00
Analytical	6,000.00
Mapping, Report preparation, word processing	5,000.00
Transportation	5,000.00
Total Phase II	\$63,000.00

Total Phase I & II \$91,000.00

Respectfully submitted, J. T. (Jo) Shearer, M.Sc., P.Geo. Consulting Geologist December 15, 2002

REFERENCES

Annual Reports of the Minister of Mines 1923-1926. Becket, R. J. and Irwin, J. F., 1969: Report on Geology of Norse Explorations Ltd. Birkenhead Area Holdings for Norse Exploration, Assessment Report 2430, 8 pages, Trenching. Burton, J. F., 1970: Summary Report of Geochemical Survey, Birkenhead Holdings for Norse Exploration Ltd., June 4, 1970, 8 pages, Assessment Report 2431. Christopher, P., 1985: Geological, Geochemical and Geophysical Report on Tenas Creek Property, May 25, 1985, Morgain Minerals, Assessment Report 13770. Howell, W., 1981: Geochemical Survey Report on Tenas Creek Property (Horses Ass 1-4), Just West of Jon Claim, October 21, 1981. Morgain Minerals Assessment Report 11399 McLaren, G., 1989: Geology of the Tenquille Creek to Owl Mountain Area, E.M.P.R., O.F. 1989-26 Newman, P. and Yorston, 1988: Prospecting Report on the Aurum Claims, Tansy Resources, Assessment Report 17537, 34 pages. Nichollis, G. B., 1963: Report on a Ground Electromagnetic Survey, Birkenhead Lake Area, Assessment Report 485, 4 pages for Bralorne Pioneer Mines Ltd. Pautler, J., 1990: 1990 Assessment Report, Geological, Geochemical, Geophysical Report on the Avalanche Property for Teck Corp in Trust for Tuscana Resources Ltd., December 1990, Assessment Report 21,272, 134 pages. 1991: Geological, Geochemical and Geophysical Assessment Report on the Sun God Property for Teck Corp, 49 pages. Richards, G., 1984: Geological and Geochemical Survey Report on the Tenas Creek Property (Horses Ass Claims) for Moregain Minerals Inc., 12 pages, July 27, 1984, Assessment Report 12601 Riddell, J. M., 1990: Preliminary Report on the Lillooet Lake Mapping Project, Southwestern British Columbia (892J/1, 2, 7) EMPR Paper 1990-1. 1991: Stratigraphy of Mesozoic Rocks East of Pemberton, B.C. and the Setting of Mineral Showings, EMPR Paper 1991-1. Roddick, J. A. and Hutchinson, W.W., 1973: Pemberton (East Half) Map Area, B.C. GSC Paper 73-17 Terry, M., & Donaldson, V., 1994: Preliminary Assessment Report on the Bank 1-4 Mineral Claims, Assessment Report 23595, 22 pages, November 1994.

APPENDIX I

STATEMENT of QUALIFICATIONS

December 15, 2002

Appendix I

STATEMENT OF QUALIFICATIONS

I, JOHAN T. SHEARER, of 1817 Greenmount Avenue, in the City of Port Coquitlam, in the Province of British Columbia, do hereby certify:

- 1. I am a graduate of the University of British Columbia (B.Sc., 1973) in Honours Geology, and the University of London, Imperial College (M.Sc., 1977).
- 2. I have over 30 years experience in exploration for base and precious metals and industrial mineral commodities in the Cordillera of Western North America with such companies as McIntyre Mines Ltd., J. C. Stephen Explorations Ltd., Carolin Mines Ltd. and TRM Engineering Ltd.
- 3. I am a fellow in good standing of the Geological Association of Canada (Fellow No. F439) and I am a member in good standing with the Association of Professional Engineers and Geoscientists of British Columbia (Member No. 19,279) and a member of the CIMM and SEG (Society of Economic Geologists).
- 4. I am an independent consulting geologist employed since December 1986 by Homegold Resources Ltd. at #5-2330 Tyner St., Port Coquitlam, B.C.
- 5. I am the author of the present report entitled "Diamond Drilling Report on the Tex Property, Jon Claim, Pemberton-Birkenhead River Area, Lillooet Mining Division: December 15, 2002".
- 6. I have visited the property in 2001 and several times between September 23 to November 19, 2002. I have carried out sample collection and am familiar with the regional geology and geology of nearby properties. I have become familiar with the previous work conducted on the Tex Property by examining in detail the available reports and maps and have discussed previous work with persons knowledgeable of the area.
- 7. I have an Open Pit Supervisor Ticket (#98-3550) for daily supervision duties in any future Quarry work.
- 8. I have no interest in the securities of International Silver Ridge Resources Inc. or in the Tex Property.

Dated at Port Coquitlam, British Columbia, this 15th day of December, 2002.

J. T. Shearer, M.Sc., F.G.A.C., P.Geo. Quarry Supervisor #98-3550 December 15, 2002

APPENDIX II

Statement of Costs

December 15, 2002

Appendix II

STATEMENT of COSTS TEX PROPERTY Jon & Eva Claims

Wages and Benefits		
J. T. Shearer, M.Sc., P.Geo., Quarry Supervisor #	98-3550	
Sept. 23 - Nov. 19, 2002		
7.5 days @ \$400/day		\$ 3,000.00
D. Vegh, Coresplitter		
32 hr. @ \$14/hr		448,00
	GST	241.36
	Subtotal Wages	\$ 3,689.36
Transportation		
Truck Rental, Fully equipped 4x4		
3 days@\$53.50/day		160.50
Gas		117.01
Hotel & Meals		94.17
Contract Diamond Drilling, Boisvenu Drilling		
812 ft. @ \$20/ft.		16,240.00
Mob & demob		1,500.00
Moving & Materials (water line), Grease, GS550		1,200.00
Equipment Charges		2,100.00
Analytical (Chemex Labs) 82 samples @ \$31.50/s	ample	2,583.00
Core Splitter Rental		100.00
Report Preparation		1,200.00
Word Processing and Reproduction		131.00
	Subtotal	\$ 25,425.68

\$25,425.68 GRAND TOTAL \$29,115.04

Statement of Costs \$19,260.00 Work Applied \$16,000.00 for 2 years each on Jon & Eva

APPENDIX III

-

ASSAY CERTIFICATES

December 15, 2002

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 804 984 0221 Fax: 604 984 0218 To: INTERNATIONAL SILVER RIDGE RESOURCES INC. 332 HARBOUR AVE. NORTH VANCOUVER BC V7J 2E9

CERTIFICATE VA02006309		SAMPLE PREPARATION	
	ALS CODE	DESCRIPTION	
Project : P.O. No: This report is for 81 DRILL CORE samples submitted to our lab in North Vancouver, BC, Canada on 27-Nov-2002. The following have access to data associated with this certificate: JON PERRETT	WEI-21 LOG-22 CRU-31 SPL-21 PUL-31	Received Sample Weight Sample login - Rcd w/o BarCode Fine crushing - 70% <2mm Split sample - riffle splitter Puiverize split to 85% <75 um	
JOE SHEARER		ANALYTICAL PROCEDUR	ES
	ALS CODE	DESCRIPTION	INSTRUMENT
	ME-ICP41 Au-AA23	34 element aqua regia ICP-AES Au 30g FA-AA finish	ICP-AES AAS

To:	INTERNATIONAL SILVER RIDGE RESOURCES INC.
	ATTN: JOE SHEARER
	332 HARBOUR AVE.
	NORTH VANCOUVER BC V7J 2E9

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Plandlog

•

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada LM 212 Brooksbank Ävenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: INTERNATIONAL SILVER RIDGE RESOURCES INC. 332 HARBOUR AVE. NORTH VANCOUVER BC V7J 2E9 Page #: 2-A Total # of pages : 4 (A-C) Date : 11-Dec-2002 Account: SCW

Sample Description	Heibed Anstyte Units LCR	WEI-21 Recvd Wi Ng 0.02	MB4CP41 Ag jup 0.2	ME-(CP41 AJ % 0.01	ME-ICP41 As ppm 2	ME-ICP41 8 PPm 10	МЕ-СР41 Ва урт 10	ME-ICP41 Be ppni 0.5	ME-10P41 Bi pjm 2	NE-(GP4) Ca % G.Di	ME-ICP41 Cd ppm 0.5	NE-ICP41 Co Ppm 1	ME-ICP41 Cr ppns 1	NE-ICP41 Ca ppm 1	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10
TEX-02-01-7-12		1.20	0.5	1.60	22	<10	<10	~0 .5	<2	0.83	<0,5	6	110	373	2.93	<10
TEX-02-01-12-20		3.34	1.8	1.68	42	<10	<10	<0.5	<2	0.97	<0.5	11	133	1340	3.90	10
TEX-02-01-20-30		3.72	0.2	1.32	18	<10	70	<0.5	2	1.10	<0.5	7	101	197	3.24	<10
TEX-02-01-30-40		5.48	<0.2	1.93	35	<10	10	<0.5	5	2.66	1.4	25	98	193	7.89	10
TEX-02-01-40-50		6.60	0.2	1.27	16	<10	20	<0.5	<2	2.39	<0.5	9	60	70	4.47	<10
TEX-02-01-50-60		5.60	0.2	1.52	71	<10	10	<0.5	Э	1.99	0.6	31	91	28	11.15	10
TEX-02-01-60-70		5.54	<0.2	1.10	6	<10	<10	<0.5	<	1.70	1.1	7	70	14	3.04	<10
TEX-02-01-70-80		6.40	0.2	1.17	14	<10	<10	<0.5	<2	2.82	20.6	13	82	126	2.20	<10
TEX-02-01-80-90		5.40	0.3	1.70	44	<10	<10	<0.5	4	3.99	7.8	12	106	83	2.45	10
TEX-02-01-90-100		8.04	0.3	1.52	66	<10	<10	<0.5	<2	5.07	7.0	23	57	14	4.41	10
TEX-02-01-100-110		5.54	<0.2	2.66	38	<10	<10	<0,5	<2	8.34	2.2	8	65	11	4.33	10
TEX-02-01-110-120		4.94	<0.2	2.65	26	<10	10	<0.5	<2	7.32	4.9	17	56	21	4.68	10
TEX-02-01-120-130		3.88	<0.2	2.46	38	<10	20	<0.5	<2	3.70	1.5	13	64	22	3.73	10
TEX-02-01-130-140		4.64	<0.2	2.17	\$10	<10	10	⊲0.5	<2	1_21	<0.5	16	149	52	3.17	10
TEX-02-01-140-150		4.44	<0.2	2.97	244	<10	<10	<0.5	<2	2.07	<0.5	18	161	33	4.23	10
TEX-02-01-150-160		4.94	<0.2	3.04	72	<10	<10	<0.5	2	1.95	0.B	18	101	37	5.62	10
TEX-02-01-160-170		5.48	<0.2	3.01	19	<10	10	<0.5	4	1,65	<0.5	19	61	37	6.12	10
TEX-02-01-170-180		5.02	<0.2	2.97	17	<10	<10	<0.5	<2	1.78	0.7	18	59	34	5.84	10
TEX-02-01-180-190		5.36	<0.2	2.77	12	<10	<10	<0.5	4	2.17	<0.5	17	54	42	5.37	10
TEX-02-01-190-202		5.24	<0.2	2.70	18	<10	<10	<0.5	2	2.13	<0.5	17	52	41	5.27	10
TEX-02-02-0-10		4.58	0.6	1.17	16	<10	<10	<0.5	<2	1.72	1.0	5	70	574	1,96	<t0< td=""></t0<>
TEX-02-02-10-20		5.74	0.6	1.14	19	<10	<10	<0.5	<2	1.70	0.8	5	69	571	2.00	<10
TEX-02-02-20-30		5.18	0,3	1.04	7	<10	<10	⊴0,5	<2	1.12	1.3	3	142	178	1.56	<\$0
TEX-02-02-30-40		6.06	0.3	1.11	9	<10	<10	<0.5	<2	1.13	1.7	4	75	95	2.02	<10
TEX-02-02-40-50		4.46	0.4	1.09	9	<10	<10	<0.5	<2	1.12	2,1	4	75	95	2.01	<10
TEX-02-02-50-60		4.36	0.5	1.47	11	<10	<10	<0.5	<2	0.99	1.5	10	82	250	2.04	<10
TEX-02-02-60-70		5.16	0.4	1.42	15	<10	<10	<0.5	<2	0.97	0.6	10	79	245	1.09	<10
TEX-02-02-70-80		4.46	<0.2	1.09	6	<10	<10	<0.5	<2	1.20	0.6	3	124	25	1.31	<10
TEX-02-02-80-90		5.52	⊲0.2	1.09	4	<10	<10	<0.5	4	1.19	<0.5	3	121	25	1.30	<10
TEX-02-02-90-100		5.12	ം0.2	0.72	12	<10	20	<0.5		0.76	<0.5	8	125	31	3.07	<10
TEX-02-02-100-110		2,98	Q.2	0.68	32	<10	<10	<0.5	<2	1.08	<0.5	5	89	161	2.13	<10
TEX-02-02-110-120		4.66	0.2	0.69	32	<10	< t 0	<0,5	<2	1.09	<0,5	5	94	165	2.12	<10
TEX-02-02-120-130		4,86	<0.2	D,948	59	<10	<10	<0.5	<2	2.03	<0.5	30	298	- 11	4.54	<10
TEX-02-02-130-140		5.14	<0.2	1.76	10	<10	<10	<0.5	4	2.63	<0.5	15	63	B	2.74	<10
TEX-02-02-140-150		5,38	<0.2	1.82	11	<10	<10	<0.5	<2	2.87	<0.5	15	64	8	2.74	<10
TEX-02-02-150-160		5.50	<0.2	2.05	30	<10	<10	<0.5	<2	4.32	0.7	11	101	24	3.49	10
TEX-02-02-160-170		5.04	0.2	2.04	29	<10	<10	<0.5	<2	4.31	<0.5	12	100	25	3.47	10
TEX-02-02-170-180		4.60	0.3	2.52	257	<10	<10	<0.5	<2	3.16	1,9	14	63	27	4.37	10
TEX-02-02-180-190		5.68	0.4	2.50	269	<10	<10	<0.5	<2	3.12	2.1	15	63	26	4.34	10
TEX-02-02-190-202		7.36	⊲0.2	2.89	21	<10	<1Q	<0.5	6	1.84	0.7	13	119	15	5.22	10

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canade Ltd. 212 Brooksbaak Avenue North: Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To; INTERNATIONAL SILVER RIDGE RESOURCES INC. 332 HARBOUR AVE. NORTH VANCOUVER BC V7J 2E9 Page #: 3 - A Total # of pages : 4 (A - C) Date : 11-Dec-2002 Account: SCW

Sample Description	Mothed Analyte Units LOR	WEJ-21 flacvd Wt kg 0.02	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	MB-1CP41 B ppm 10	ME-ICP41 Ba ppm 10	M6-(CP41 Be ppm 0.5	비분-{GP41 원 ppm 2	ME-3CP41 Ca % 0.01	MiB-ICP41 Cd ppm 0.5	ME-16941 Ca ppm 1	ME-ICP41 Cr ppm 1	МБ-ІСР41 Сы ррпі 1	MR-ICP41 Fe % 0.01	MB-ICP41 Ga ppm 10
TEX-02-03-0-10		3.72	G.8	0.97	27	<10	<10	<0.5	<2	1.15	3.2	25	30	1295	3.41	<10
TEX-02-03-10-20		4.16	0.6	0.68	10	<10	<10	<0.5	<2	0.47	0.9	19	19	461	1.72	<10
TEX-02-03-20-30		5.02	0.7	1.2B	44	<10	<10	<0.5	<2	1.10	1,8	4D	10	197	5.14	<10
TEX-02-03-30-40		4.34	<0.2	1.60	3	<10	<10	<0.5	<2	0.86	<0.5	14	30	60	3.25	<10
TEX-02-03-40-50		4.94	<0.2	1.42	4	<10	<10	<0.5	<2	1.09	0.6	10	32	22	2.41	<10
TEX-02-03-50-60		4.72	<0.2	1.67	<2	<10	<10	<0.5	<2	1.48	<0.5	14	18	23	2.25	<10
TEX-02-03-60-70		4.64	<0.2	1.60	5	<10	10	<0.5	<2	2.20	<0.5	11	34	10	2.05	<10
TEX-02-03-70-80		5.24	<0.2	1.31	5	<10	<10	<0.5	<2	2.50	1.0	10	27	11	4.11	<10
TEX-02-03-80-90		5.04	<0.2	f.91	2	<10	<10	⊲0.5	<2	0.92	×0.5	5	26	5	2.50	10
TEX-02-03-90-100		4.80	<0.2	1.34	5	<10	<10	<0.5	~ ~	0.91	<0.5	11		12	2.99	<10
TEX-02-03-100-110		5.56	0.2	0.78	17	<10	<10	⊲0.5	<	1.55	0.5	1 8	36	9	2.88	<10
TEX-02-03-110-120		5.06	<0.2	0.65	26	<10	<10	<0.5	<2	2.06	<0.5	a	32	-6	2.57	<10
TEX-02-03-120-130		5.64	<0.2	0.54	25	<10	<10	<0.5	<2	1,32	<0,5	9	46	10	2.92	<10
TEX-02-03-130-140		4.44	<0.2	0.68	10	<10	20	<0.5	<2	0.85	<0.5	8	53	16	3.00	<10
TEX-02-03-140-150		4.06	<0.2	0.79	6	<10	20	<0.5	~	1.29	<0,5	3	31	4	1.72	<10
TEX-02-03-150-160		3.12	<0.2	0.91	8	<10	20	<0.5	<2	2.22	<0.5	3	16	13	1.40	<10
TEX-02-03-160-170		5.08	<0.2	0.93	5	<10	<10	<0.5	<2	1.90	<0.5	6	26	5	2.48	<10
TEX-02-03-170-180		5.26	<0.2	0.74	3	<10	<10	<0.5	4	2.56	<0.5	1	30	4	0.67	<10
TEX-02-03-100-190		4.90	<0.2	0.69	3	<10	<10	<0.5	~2	1.81	<0.5	6	38	4	2.19	<10
TEX-02-03-190-200		5.28	<0.2	0.78	8	<10	<10	<0.5	<2	1.27	<0.5	21	34	5	3.29	<10
TEX-02-03-200-212		0.36	<0.2	1.00	13	<10	<10	<0.5	<2	1.10	<0.5	54	40	6	5.99	<10
TEX-02-04-2-10		3.38	1.3	1,15	83	<10	<10	<0.5	6	1_35	2.7	10	43	603	10.25	<10
TEX-02-04-10-20		3.96	1.1	0.73	30	<10	<10	<0.5	<2	0.67	1.1	5	50	191	2.68	<10
TEX-02-04-20-30		4.12	0.2	0.69	B	<10	<10	<0.5	<2	0.91	0.8	5	34	29	2.72	<10
TEX-02-04-30-40		5.44	<0.2	0.64	3	<10	<10	<0.5	<2	1.12	<0.5	2	42	9	1,56	<10
TEX-02-04-40-50		4.98	<0.2	0.71	5	<10	<10	<0.5	<2	1.09	<0.5	3	40	7	1.93	<10
TEX-02-04-50-60		5.06	<0.2	0.86	3	<10	<10	<0.5	<2	1.67	<0.5	8	39	4	1.88	<10
TEX-02-04-60-70		5,16	<0.2	1.09	3	<10	<10	<0,5	<2	1.24	<0.5	8	34	4	1.61	<10
TEX-02-04-70-80		5.36	<0.2	1.26	6	<10	<10	<0.5	4	0.85	0.6	19	34	9	2.08	<10
TEX-02-04-80-80	_	5.76	0.7	1.88	59	<10	<10	<0.5	2	2.01	5,2	54	18	142	4.01	<10
TEX-02-04-90-100		5.50	<0.2	2.34	4	<10	<10	<0.5	4	1.56	<0.5	11	15	12	3.07	<10
TEX-02-04-100-110		5.70	<0.2	1.94	5	<10	10	<0.5	<	1.22	<0.5	13	21	85	3,49	<10
TEX-02-04-110-120		4.90	⊲0.2	0.48	18	<10	20	<0.5	4	0.63	<0.5	19	40	40	3.30	<10
TEX-02-04-120-130		4.72	<0.2	0.49	15	<10	40	<0,5	<2	0.74	<0.5	15	34	16	3.07	<10
TEX-02-04-130-140	_	3.88	<0.2	0,92	28	<10	10	<0.5	<2	1.29	<0,5	18	44	62	4.48	<10
TEX-02-04-140-150		2.82	0.3	1.04	97	<10	<10	<0.5	2	1.21	<0.5	41	48	277	6,36	<10
TEX-02-04-150-160		3.18	<0.2	ũ.68	137	<10	<10	<0.5	<2	0. 80	<0.5	68	50	314	6.16	<10
TEX-02-04-160-170		4.48	<0.2	1.59	99	<10	~1 0	<0.5	<2	1.73	0.5	27	54	299	4.68	<10
TEX-02-04-170-180		4.18	<0.2	1.50	26	<10	10	<0.5	<2	2.65	1.2	15	33	66	4.29	<10
TEX-02-04-180-180		3.56	1.5	2.01	131	<10	10	<0.5	<2	7.49	5.6	9	25	68	3.70	10

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd. 110 December 4. Austria

212 Brooksbank Avenue North Vencouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: INTERNATIONAL SILVER RIDGE RESOURCES INC. 332 HARBOUR AVE. NORTH VANCOUVER BC V7J 2E9

Page # : 4 - A Total # of pages : 4 (A - C) Date : 11-Dec-2002 Account: SCW

CERTIFICATE OF ANALYSIS VA02006309

Sample Description	Mathad Analyta Ualts LOR	WEI-21 Hecyd Wt kg 0.02	ME·ICP41 Åg ppm 0.2	ME-ICP41 AI % 0.01	ME-IGP41 As ppm 2	ME-JCP41 B Ppm 10	NE-ICP41 Ba ppm 10	ME-ICP41 Bo ppm 0.5	ME4CP41 Bi ppm 2	ME-LGP41 Ca % 9.01	NIE-ICP41 Cd pprs 0.5	ME-JCP41 Go ppm 1	NE-IGP41 Cr ppm 1	Н8-16741 Си ррт 1	ME-IGP41 F= % 0.01	ME-(CP41 G = ppm 10
TEX-02-04-190-202		7.58	0.2	2.50	81	<10	10	⊲0.5	<2	2.50	1.8	18	29	π	4.44	10
1																
			•													
		<u> </u>							·*·· •							

....

CHEMEX

ALS

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: INTERNATIONAL SILVER RIDGE RESOURCES INC. 332 HARBOUR AVE. NORTH VANCOUVER BC V7J 2E9 Page #: 2 - 8 Total # of pages : 4 (A - C) Date : 11-Dec-2002 Account: SCW

Sample Description	Mathad Analyin Ualta LOR	ME-(SP41 Hg ppm 1	ME-(CP41 K % 0.01	ME-ICP41 La ppm 10	M&-ICP41 Ma % 0.D1	MË-ICP41 Ma ppm S	ME-ICP41 Ma ppm 1	M6-JCP41 Na % 0.01	ME-SCP41 Ni ppm 1	ME·ICP41 P ppm 10	MB-ICP41 Pb ppm 2	KE-JCP41 5 75 0.01	ME-ICP41 312 ppm 2	ME-IGP41 Sc ppm 1	ME-JCP-41 Br ppm 1	MB-1CP41 TJ % 0.01
TEX-02-01-7-12		<1	0.02	<10	1.02	813	<1	0.01	4	380	5	0.77	<2	3	36	0.10
TEX-02-01-12-20		<1	0 .02	<10	1.03	902	<1	<0.01	6	380	5	1.94	2	3	42	0.10
TEX-02-01-20-30		1	0.12	<10	1.02	953	<1	0.03	4	450	<2	2.09	<2	2	19	0.07
TEX-02-01-30-40		1	0.12	<10	1.37	2320	<1	0.01	7	420	2	6.03	4	2	27	0.05
TEX-02-01-40-50	i	<1	0.17	<10	0.87	1035	1	0.02	4	490	6	3.66	2	2	19	0.06
TEX-02-01-50-60		1	0.13	<10	1.03	1125	1	0.02	7	470	3	>10.0	~	2	19	0.08
TEX-02-01-60-70		<1	0.1 0	<10	0.89	503	<1	0.05	4	500	4	2.36	2	2	17	0.05
TEX-02-01-70-80		1	0.09	<10	0.95	695	1	0.05	4	500	5	1.46	<2	3	24	0,08
TEX-02-01-80-90		<1	0.12	<10	1.44	813	2	0.10	4	380	3	1.63	4	4	39	0.12
TEX-02-01-00-100		1	0.10	<10	1.55	114D	2	0.05	7	430	128	4.01	<	\$	33	0.12
TEX-02-01-100-110		<1	0.20	<10	2.29	2230	1	0.01	7	370	28	1.99	3	5	47	0.09
TEX-02-01-110-120		<1	0.15	<10	2.16	1905	<1	0.01	8	340	4	1.67	4	4	52	0.09
TEX-02-01-120-130		<1	0,16	<10	2.02	1575	<1	0.01	6	340	45	0.47	5	3	33	0.10
TEX-02-01-130-140		<1	0.05	<10	1.49	834	<1	0.02	7	450	2	0.37	3	4	55	0.12
TEX-02-01-140-150		<1	0.06	<10	2.09	1210	<1	<0.01	9	580	5	0.17	Q	6	80	0.15
TEX-02-01-150-160		1	0.02	<10	2.04	1340	<1	0.03	7	860	3	0.19	Э	8	22	0.28
TEX-02-01-160-170		<1	0.Q2	<10	1.98	1370	1	0.02	- 5	900	3	0.22	<2	6	15	0.25
TEX-02-01-170-180		<1	0.02	<10	1.87	1310	<1	0.02	5	840	2	0.21	3	6	14	0.25
TEX-02-01-180-190		1.	0.04	<10	1.87	1185	<1	0.03	6	560	<2	0.13	3	5	16	0.19
TEX-02-01-190-202		<1	0.04	<10	1.82	1175	<1	0.03	5	580	<2	0.13	4	5	15	0.19
TEX-02-02-0-10		<1	0.08	<[0	0.85	642	<1	0.02	4	430	<2	0,61	<2	2	23	0.06
TEX-02-02-10-20		1	0.07	<10	0.84	636	2	0.02	4	430	<2	0.61	2	1	22	0.05
TEX-02-02-20-30		<1	0.07	<10	0.63	468	1	0.04	5	480	2	0.37	<2	2	22	0.08
TEX-02-02-30-40		4	0.03	<10	0.94	484	<1	0.04	3	490	13	0.97	<2	2	17	0.07
TEX-02-02-40-50		<1	D.03	<10	0.94	479	1	0.04	4	470	12	0.95	<2	2	17	0.07
TEX-02-02-50-60		<1	0.02	<10	1.49	483	<1	0.04	5	540	67	0.72	<2	3	18	0.09
TEX-02-02-60-70		<1	0.02	<10	1.45	478	1	0.04	4	530	65	0.71	3	3	17	0.09
TEX-02-02-70-60		<1	0.03	<10	0.93	363	<1	0.04	4	490	<2	D.29	2	2	22	0.08
TEX-02-02-80-90		<1	0,03	<10	0.91	356	<1	0.04	5	490	<2	0.29	<2	2	21	0.06
TEX-02-02-90-100		<1	0.07	<10	0.47	203	1	0.06	5	480	<2	2.74	~2	2	18	0.07
TEX-02-02-100-110		<1	0.04	<10	0.58	231	<1	0.05	3	410	<2	1,79	3	2	15	0.00
TEX-02-02-110-120		<1	0.04	<10	0.59	235	1	0.05	3	400	<2	1.76	<2	2	14	0.06
TEX-02-02-120-130		<1	0.04	<10	0.85	306	3	0.06	17	450	<2	4.25	<2	3	24	0.12
TEX-02-02-130-140		<1	0.04	<10	\$.78	825	<1	9.02	5	400	2	1.41	<2	2	24	0.08
TEX-02-02-140-150		<1	0.04	<10	1.78	846	1	0.03	5	390	<2	1.35	-2	2	24	80.0
TEX-02-02-150-160		<1	80.0	<10	1.84	1260	<1	0.01	6	440	54	1.67	<2	3	34	0.10
TEX-02-02-160-170		1	80.Q	<10	1.81	1260	<1	0.01	7	450	52	1,66	<2	3	34	0.09
TEX-02-02-170-180		1 1	0.05	<10	1.80	1315	<1	0.02	4	370	125	0.64	4	2	31	80.0
TEX-02-02-180-190		1	0.05	≺10	1.79	1305	<1	0.02	5	360	121	0.63	2	2	31	80,0
TEX-02-02-190-202		<1	0.02	<10	2.03	903	<1	0.03	6	760	-2	0.09	42	5	24	0.20

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: INTERNATIONAL SILVER RIDGE RESOURCES INC. 332 HARBOUR AVE. NORTH VANCOUVER BC V7J 2E9 Page #: 3 - B Total # of pages: 4 (A - C) Date: 11-Dec-2002 Account: SCW

Sample Description	Methed Analyte Units LOR	ME-ICP41 Hg ppn1 1	ME-ICP41 N % 0.51	MB-LCP41 La ppm 10	ME-ICP41 Mg % 0.01	NE-;CP41 Mn pam 5	ME-JCP45 No gpm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	MBLCP41 P ppm 10	NCE-LCP41 Pb ppm 2	MB-ICP41 8 % 0.01	ME-(CP41 Sh ppm 2	MI5-ICP41 Sc ppni 1	NIS-ICP41 S7 ppm 1	ME-IGP41 Ti % 0.61
TEX-02-03-0-10		<1	0.01	<10	0.63	523	1	<0.01	б	820	<2	2.34	2	3	18	0.09
TEX-02-03-10-20		1	0.04	<10	0.48	267	2	0.04	2	540	<2	1.08	4	2	9	0.05
TEX-02-03-20-30		<1	0.03	<10	1.04	315	1	0.06	4	390	4	4,29	3	2	14	0.06
TEX-02-03-30-40		<1	0.02	<10	1.44	416	1	0.05	5	340	<2	2.00	<2	2	15	0.06
TEX-02-03-40-60		<1	0.03	<10	1.30	340	<1	0.05	5	340	2	1.42	2	2	16	0.06
TEX-02-03-50-60		<1	0.01	<10	1.67	328	<1	0.04	6	390	<z< td=""><td>1.36</td><td>3</td><td>2</td><td>18</td><td>0.10</td></z<>	1.36	3	2	18	0.10
TEX-02-03-60-70		1	0.03	<10	1.75	401	1	0,09	3	650	~2	1.38	Э	3	20	D. 10
TEX-02-03-70-80		<1	0.02	<10	1.35	364	1	0.07	4	440	3	3.87	<2	4	23	D. 06
TEX-02-03-80-90		<1	0.03	<10	1.56	356	<1	0.06	2	530	<2	1.93	2	3	13	0.06
TEX-02-03-90-100		<1	0.04	<10	1.42	364	<1	0.07	2	550	2	2.40	4	3	14	D.07
TEX-02-03-100-110		1	0,03	<10	0.61	177	1	0.07	3	630	2	2.98	2	2	17	0.07
TEX-02-03-110-120		<1	0.06	<10	0.40	202	2	0.05	3	510	2	2.72	2	3	22	0.05
TEX-02-03-120-130		<1	0.05	<10	0.21	100	1	0.07	3	430	<2	3.13	4	2	16	0.05
TEX-02-03-130-140		<1	0.04	<10	0.43	122	1	0.08	3	440	<2	3.15	4	2	16	0.07
TEX-02-03-140-150		<1	9,03	<10	0.77	193	<1	0.08	2	420	⊲	1.76	3	2	18	0.08
TEX-02-03-150-160		<1	0.02	<10	0.91	206	<1	0.03	2	420	4	1.46	<2	2	16	0.08
TEX-02-03-160-170		1	0.03	<10	0,99	276	2	0.06	3	460	<2	2.43	~2	4	18	D.06
TEX-02-03-170-180		<1	0.01	<10	0.73	301	<1	0.08	2	430	2	0.72	<2	3	23	0.08
TEX-02-03-180-190		<1	0.02	<10	0.69	269	1	0.07	2	400	<2	2.19	<2	3	19	0. 07
TEX-02-03-190-200		1	0.04	<10	0.69	255	<1	0.08	4	410	4	3.33	~?	2	19	0.07
TEX-02-03-200-212		1	0.06	<10	Q. 0 1	297	1	0.05	5	480	4	5.86	~2	2	15	0.06
TEX-02-04-2-10		<1	0.04	<10	9.67	601	<1	0.01	4	950	420	3.01	3	B	21	0.22
TEX-02-04-10-20		<1	0.06	<10	0.59	459	2	0.05	3	530	289	0.91	2	3	10	0.0B
TEX-02-04-20-30		[1	0.04	<10	0.52	251	<1	0.08	3	500	25	2.63	<2	2	12	0.05
TEX-02-04-30-40		<1	0.03	<10	0.38	128	<1	0.08	3	460	4	1.52	<2	3	15	0.06
TEX-02-04-40-50		<1	0,06	<10	0.53	181	1	0.09	2	530	14	2.05	~2	3	13	0.06
TEX-02-04-50-60		<1	0.03	<10	1.02	250	1	0.08	3	600	3	1.76	3	3	16	0.06
TEX-02-04-60-70		<1	0.06	<10	1.15	202	<1	0.06	3	550	3	1.19	2	3	14	0.08
TEX-02-04-70-80		<1	0.04	<10	1.45	266	~1	0.05	2	540	12	1.55	<2	2	12	0.08
TEX-02-04-60-90		1	0.07	<10	1.97	392	<1	0.07	8	440	138	3.69	~2	3	24	0.10
TEX-02-04-80-100		<1	0.04	<10	2.14	478	1	0.03	9	420	2	0.93	3	3	20	0.10
TEX-02-04-100-110		<1 <1	Q.06	<10	1.81	314	<1	0.05	8	440	<2	2.18	<2	3	19	0.10
TEX-02-04-110-120		<1	0 .10	<10	0_21	39	1	0.05	3	450	з	3.66	<2	2	8	0.05
TEX-02-04-120-130		<1	0.11	<10	0.14	34	2	0,05	2	450	4	3.29	<2	2	10	0.05
TEX-02-04-130-140		<1	0.06	<10	0.98	164	<i< td=""><td>0.05</td><td>17</td><td>640</td><td>3</td><td>4.85</td><td>3</td><td>3</td><td>13</td><td>0.15</td></i<>	0.05	17	640	3	4.85	3	3	13	0.15
TEX-02-04-140-150		<1	0.06	<10	1_14	185	<t< td=""><td>0.06</td><td>29</td><td>800</td><td>8</td><td>6.84</td><td><2</td><td>6</td><td>13</td><td>0.24</td></t<>	0.06	29	800	8	6.84	<2	6	13	0.24
TEX-02-04 150-160		<1	0.06	<10	0_97	95	<1	0.05	20	960	4	6.76	5	6	9	0.23
TEX-02-04-160-170		<1	0.04	<10	1.93	407	<1	0.05	12	470	10	4.64	2	4	15	0.12
TEX-02-04-170-180		<1 <1	0.12	<10	1.39	684	<(0.06	5	430	13	4.00	<2	3	22	0.11
TEX-02-04-160-190		1	0.18	<10	1.70	3230	<1	D.01	5	320	682	1.72	2	3	44	0.09

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALB Canada Ltd. 212 Brooksbank Avenues North Vancouver BC V7J 2C1 Canade Phone: 604 984 0221 Fax: 604 984 0218 To: INTERNATIONAL SILVER RIDGE RESOURCES INC. 332 HARBOUR AVE. NORTH VANCOUVER BC V7J 2E9 Page #: 4 - B Total # of pages : 4 (A - C) Date : 11-Dec-2002 Account: SCW Ι

Sample Description	Niethod Analyte Unite LOR	MB4CP41 Hy ppm 1	ME-(CP41 K % 0.01	ME-ICP41 La ppm 10	ME-(CP41 My % 0.01	MB-ICP41 Na ppm d	ME-ICP41 Ma ppm 1	MB-ICP41 Na % 9.01	M&-SCP41 Ni Sem 1	NE-IGP41 P ppm 10	NE-ICP41 Pb ppm 2	ME-1CP41 \$ % 0.01	ME-ICP41 Sta ppm 2	ME-ICP41 Sc ppm 1	MB-LCP41 Sr Spm 1	MB-ICP41 Ti % 0.01
TEX-02-04-190-202		<1	0.08	<10	2.05	1570	1	0.01	6	520	37	1.40	4	4	27	0.15
																:
													·			

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Lid. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: INTERNATIONAL SILVER RIDGE RESOURCES INC. 332 HARBOUR AVE. NORTH VANCOUVER BC V7J 2E9 Page #: 2 - C Total # of pages: 4 (A-C) Date: 11-Dec-2002 Account: SCW

1

1

CERTIFICATE OF ANALYSIS VA02006309

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	~ Sample Description	Nethod Analyte Linite £OIL	NIS-(GP41 TI ppm 10	ME-1C741 U Ppm 10	МЕ-{СР41 V ррл 1	MB-ICP41 W ppm 10	ME-(C741 Zn ppm 2	Ац-АА23 Ац ррт 0.005
Exc2.021-220 <10 <10 27 10 118 0.119 Exc2.021-220 <10	EX-02-01-7-12		<10	<10	28	<10	106	0.059
E4262432.30 <10 <10 12 <10 128 0.035 E542043.404 <10	EX-02-01-12-20		<10	<10	27	10	118	0.119
FEA2021-30-40 <10 <10 16 10 131 0.032 FEA20216-050 <10	TEX-02-01-20-30		<10	<10	12	<10	128	0.035
EXACQ - 14.0-50 <10 <10 101 0.039 EX-02.01-50-60 <10	TEX-02-01-30-40		<10	<10	16	10	131	0.032
$\begin{aligned} FEV22016960 \\ FEV32016960 \\ \hline FEV3201696 $	EX-02-01-40-50		<10	<10	15	10	101	0.039
EX-220-17-06-00 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <11 <10 <10 <11 <10 <10 <11 <10 <10 <10 <11 <10 <10 <10 <10 <11 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	TEX-02-01-50-60		<10	<10	18	10-	52	0.074
EEX.02.04.70.400 <t0< th=""> <t0< th=""> 19 <t0< th=""> 27.00 0.013 EEX.02.04.80.500 <t0< td=""> <t0< td=""> 50 75 <t0< td=""> 1040 0.060 EEX.02.04.80.500 <t0< td=""> 50 75 <t0< td=""> 1040 0.060 EEX.02.04.10.010 <t0< td=""> <t0< td=""> 54 <t0< td=""> 27.7 0.154 EEX.02.04.10.120 <t0< td=""> <t0< td=""> 54 <t0< td=""> 27.7 0.154 EEX.02.04.10.120.120 <t0< td=""> <t0< td=""> 54 <t0< td=""> 27.7 0.154 EEX.02.04.10.120.120 <t0< td=""> <t0< td=""> 54 <t0< td=""> 27.7 0.154 EEX.02.04.10.120.120 <t0< td=""> <t0< td=""> 54 <t0< td=""> 0.17 <t0.17< td=""> EEX.02.04.10.120.120 <t0< td=""> <t0< td=""> 77 <t0< td=""> 124 <t0.005< td=""> EEX.02.04.10.120.120 <t0< td=""> <t0< td=""> 77 <t0< td=""> 110 <t0.005< td=""> EEX.02.04.10.120.120 <t0< td=""> <t0< td=""> 74 <t0< td=""> 110 <t0.005< td=""> <</t0.005<></t0<></t0<></t0<></t0.005<></t0<></t0<></t0<></t0.005<></t0<></t0<></t0<></t0.17<></t0<></t0<></t0<></t0<></t0<></t0<></t0<></t0<></t0<></t0<></t0<></t0<></t0<></t0<></t0<></t0<></t0<></t0<></t0<></t0<></t0<></t0<></t0<>	IEX-02-01-60-70		<10	<10	17	<10	176	0.013
TEX.02.04.80.90 <10	TEX-02-01-70-60		<10	<10	19	<10	2730	0.013
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TEX-02-01-80-90		<10	<10	69	<10	998	0.012
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TEX-02-01-90-100		<10	<10	75	<10	1040	0.080
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TEX-02-01-100-110		<10	10	64	<10	277	0.154
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TEX-02-01-110-120		<10	<10	54	<10	546	0.077
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TEX-02-01-120-130		<10	<10	35	<10	214	0.178
TEX.02.201-160 <10 <10 47 19 95 <0005 TEX.02.01-160-160 <10	TEX-02-01-130-140		<10 ³	<10	31	<10	86	0.010
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TEX-02-01-140-150		<10	<10	47	10	95	<0.005
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TEX-02-01-160-160		<10	<10	84	10	114	<0.005
TEX-02-01-170-180 <10 <10 <10 74 <10 118 <0.005 TEX-02-01-180-190 <10	TEX-02-01-160-170		<10	<10	77	<10	124	<0.005
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TEX-02-01-170-160		<10	<10	74	<10	118	<0.005
TEX-02-01-190-202<10<1073<10107<0.005TEX-02-02-10<10	TEX-02-01-180-190		<10	<10	74	<10	110	<0.005
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TEX-02-01-190-202		<10	<10	73	<10	107	<0.005
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TEX-02-02-0-10		<10	<10	13	<10	163	0.023
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TEX-02-02-10-20		<10	<10	12	<10	160	0.021
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TEX-02-02-20-30		<10	<10	16	~10	166	<0.005
TEX.02-02-40-50<10<10 210 295 0.052 TEX.02-02-50-50<10	TEX-02-02-30-40		<10	<10	20	<10	291	0.075
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	TEX-02-02-40-50		<10	<10	19	<10	295	0.052
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TEX-02-02-50-60		<10	<10	27	<10	215	0.017
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TEX-02-02-60-70		<10	<10	26	<10	214	0.016
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TEX-02-02-70-80		<10	<10	17	<10	61	0.006
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TEX-02-02-80-90		<10	<10	17	<10	60	<0.005
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TEX-02-02-90-100		<10	<10	15	<10	40	0.033
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TEX-02-02-100-110		<10	<10	11	<10	32	0.015
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TEX-02-02-110-120		<10	<10	11	<10	31	0.015
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TEX-02-02-120-130		<10	<10	32	<10	25	0.021
TEX.02-02-140-150 <10 <10 <11 <10	TEX-02-02-130-140		<10	<10	40	<10	48	0.019
TEX.02.02-160-160 <10 <10 38 <10 105 0.101 TEX.02-02-160-170 <10	TEX-02-02-140-150		<10	<10	41	<20	48	0.021
TEX-02-02-160-170 <10 <10 <10 105 0.105 TEX-02-02-170-180 <10	TEX-02-02-150-160		<10	<10	38	<10	105	0,101
TEX.02-02-170-180 <10 <10 74 <10 369 0.537 TEX.02-02-180-190 <10	TEX-02-02-160-170		<10	<10	38	<10	105	0.105
TEX.02-02-180-190 <10 <10 73 <10 368 0.592	TEX-02-02-170-180		<10	<10	74	<10	369	0.537
	TEX-02-02-180-190		<10	<10	73	<10	366	0.592
	TEX-02-02-190-202		<10	<10	78	<10	64	<0.005

. .

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada 114. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: INTERNATIONAL SILVER RIDGE RESOURCES INC. 332 HARBOUR AVE. NORTH VANCOUVER BC V7J 2E9 Page # ; 3 - C Total # of pages : 4 (A - C) Date : 11-Dec-2002 Account: SCW

	Melbod Analytu Unite	MB-3CP41 Ti ppm	ME-ICP45 V 99m	ME-ICF41 V ppm	мв-1СР41 ₩ ррт	NG-1CP41 Zn pym	Ан-АА23 Ан рут
Sample Description	LOR	10	10	1	10	2	0.005
TEX-02-03-0-10		<10	<10	19	<10	409	0.071
TEX-02-03-10-20		<10	<10	14	<10	117	0.034
TEX-02-03-20-30		<10	<10	45	<10	167	0.054
TEX-02-03-30-40		<10	<10	48	10	76	0.023
TEX-02-03-40-50		<10	<10	51	<10	80	0.023
TEX-02-03-60-60		<10	<10	66	<10	66	0.016
TEX-02-03-60-70		<10	<10	37	<10	45	800,0
TEX-02-03-70-80		<10	<10	42	<10	114	0.015
TEX-02-03-80-90		<10	<10	28	<10	50	0.009
TEX-02-03-90-100		<10	<10	25	<10	49	0.020
TEX-02-03-100-110		<10	<10	16	<10	21	0.022
TEX-02-03-110-120		<10	<10	13	<10	22	0.013
TEX-02-03-120-130		<10	<10	10	<10	13	0.017
TEX-02-03-130-140		<10	<10	15	<10	21	0.027
TEX-02-03-140-150		<10	<10	18	<10	30	0.011
TEX-02-03-150-160		<10	<10	16	<10	30	0.011
TEX-02-03-160-170		<10	<10	26	<10	35	0.013
TEX-02-03-170-180		<10	<10	21	<10	25	0.007
TEX-02-03-180-190		<10	<10	18	<10	26	0.016
TEX-02-03-190-200		<10	<10	21	10	27	0.024
TEX-02-03-200-212		<10	<10	26	<10	30	0.065
TFX-02-04-2-10		<10	<10	72	10	663	0.828
TEX-02-04-10-20		<10	<10	18	<10	197	3 99
TEX 02.04.20.30		210	< 10	14	<10	94	0.065
TEX-02-04-30-40		<10	<10	16	<10	aru 61	0.028
TEV 01 01 40 50		<10	<10	21	<10	17	0.030
154-04-01-40-50			~10	24	~10	21	0.064
124-02-09-00-00		10	< 1U	24	<10	3-3 77	0.000
1 EX-02-04-00-70			<10	2.3	< IU -40		0.048
1EX-02-04-70-60		<10	<10	23	<10	99	0.043
TEX-02-04-80-90		<10	<10	74	<10	796	0.514
TEX-02-04-90-100		<10	< 10	65	<10	60	D.038
TEX-02-04-100-110		<10	<10	60	<10	41	0.156
TEX-02-04-110-120		<10	<10	11	<10	11	0.026
TEX-02-04-120-130		<10	<10	10	<10	10	0.027
TEX-02-04-130-140		<10	<10	68	<10	20	0.047
TEX-02-04-140-150		<10	<10	127	<10	29	0.079
TEX-02-04-150-160		<10	<10	113	<10	33	0.063
TEX-02-04-160-170		<10	<10	84	<10	75	0.05 i
TEX-02-04-170-180		<10	<10	50	<10	144	0.071
TEX-02-04-180-190		<10	<10	40	<10	1100	2.17
			- • •				

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Lid. 212 Brooksbank Avenue North Vencouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: INTERNATIONAL SILVER RIDGE RESOURCES INC. 332 HARBOUR AVE. NORTH VANCOUVER BC V7J 2E9

.

Page #: 4 - C Total # of pages: 4 (A - C) Date: 11-Dec-2002 Account: SCW

Sample Description	Nethod Analyte Volta LOR	NE-ICP41 Ti ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP45 W spm 10	ME-ICP41 Zn ppm 2	Au-AA23 Au ppm 0.005	
TEX-02-04-190-202		<10	<10	66	<10	238	Q.091	
						·		
L					·····		·	

SECTION: <u>East of Old Shaft</u>

Diamond Drill Log

DDH#: <u>TEX-02-02</u>

Northing: Easting: Approx. 650m Elevation: Azimuth: 000° Inclination: -90° No Grid Grid: 202 ft. (61.57m) Length (m): BQTW Core size: Boisvenu Contractor: Packdrill Hydraulic Drill Type:

Drill Hole	survey	
Method:	Brunton_	
Azimuth	Dip	Depth
000°	-90°	Collar
L		

Property: NTS: Claim: Date Started:

TEX Property 92J/07 Jon Claim Nov., 2002 Date Completed: Nov. , 2002 Logged by: J.T. Shearer, M.Sc., P.Geo.

freares

Purpose:	Invest	igate Sulfide and Skarn Zone Near Old Shaft Area			
from (m)	to (m)	Description	from/to	width (m)	CaC %
0.00	0.61	OVERBURDEN: broken rock, no recovery			
0.61	14.63	EPIDOTE-(ZOISITE?)-DIOPSIDE-QUARTZ SKARN: bleached at			
		top, very fine grained, light greenish-yellow colour			
		Disseminated pyrite throughout, also disseminated pyrrhotite			
		Reddish garnet selvages along the edges of diopside zones, traces			
		of chalcopyrite are associated mainly with epidote layers, crudely			
		layered at 80° to core axis, layering consists of bands of more			
		intense development of epidote alternating with more lighter grey			
		quartz-rich layers			
		Traces of pink rhodonite at 14.33m			
14.63	27.43	EPIDOTE-QUARTZ SKARN: epidote is equigranular, very sparse			
		diopside, abundant quartz, replacing volcanoclastic sequence,			
		light grey sub-rounded fragments are common throughout			
		Very siliceous			
		Minor pyrite veinlets at 40° to core axis at 18.59m			
27.43	39.62	QUARTZ SKARN: light grey, disseminated pyrite and pyrrhotite,			
		several generations of quartz veining and metasomatism, epidote			1
		gradually decreasing, minor short zones of massive to semi-			
		massive pyrite at 36.45m-36.58m Abundant pyrite associated			
		with increase in epidote at 39.30m - 39.62m			
39.62	45.11	EPIDOTE-QUARTZ SKARN: epidote is pervasive to equigranular,			İ
		replacing fragments			
45.11	48.55	IRREGULAR QUARTZ-CHLORITE-EPIDOTE SKARN: highly	u		
		healed brecciated texture, abundant pyrite and pyrrhotite			

SECTION: <u>East of Old Shaft</u>

Page: <u>2 of 2</u>

DDH#: <u>TEX-02-02</u>

from (m)	to (m)	Description	from/to	width (m)	CaO %
45.11	48.55	Indistinct rounded "plastic flow" texture common, probably			
	cont.	bedded or laminated sequence which has undergone deformation			
48.55	51.36	EPIDOTE-QUARTZ (Chloritic) SKARN (Altered Voicanics):			
		epidote replacing volcanic fragments			
51.36	51.82	FAULT ZONE (Gouge Zone): light grey-white to chloritic gouge at			
		54° to core axis, lower contact calcareous			
51.82	61.57	EPIDOTE-QUARTZ (Chloritic) SKARN (Altered Volcanics) : spotted appearance, epidote replacing volcanic fragments and feldspar phenocrysts			
<u> </u>		End of Hole 202 ft. (61.57m)			

SECTION: <u>Near Old Shaft</u>

- -- -- --

Diamond Drill Log

DDH#: <u>TEX-02-01</u>

Northing:			Drill Hole su	urvey		Prop	erty:	Tex Property	
Easting:			Method:	<u>Brunton</u>		NTS:		_92J/07	
Elevation	: <u>a</u>	<u>pprox. 650m</u>	Azimuth	Dip	Depth	- Clair	n:	Jon Claim	
Azimuth:	_0	40°	045°	-45	Collar	Date	Started:	<u>Nov. 7, 2002</u>	<u> </u>
Inclinatio	n:	45°				Date	Completed	: <u>Nov. 9, 2002</u>	2
Grid:	<u>_N</u>	o Grid				Logg	ed by:	J. T. Snearei	<u>.</u>
Length (n	n): <u>20</u>	<u>)2 ft. (61.57m)</u>		<u> </u>		_		MI.5C., F.GEO.	
Core size:		<u>QTW</u>				- Sam	nles		
Deill Terms	or: <u>Bo</u>	ok Drill Hydraulie		ļ		12	12320	20-30	
Dimitype	с, <u>га</u>	CK DI III HYdraune				- (30-4)	o 70/1/		
			ļ				- (<i>1</i>)		
						1 $$	∇/h	Nur	
							XVe		
Purpose:	Investi	gate Sulfide Minerali	zations Near (Old Shaft A	Area		U		
		5							
						7			
from	to		Desc	ription			from/	to width	CaO
(m)	(m)					\sim		(m)	- %
0.00	2.13	OVERBURDEN - E	Iroken Rock, I	No recover	У	···· · · · · · · · · · · · · · · · · ·			
2.13	12.50	EPIDOTE - DIOPS	IDE - QUART	'Z SKARN	- Very fine	grained,			
		light greenish color	ır, minor redo	dish garne	t, abundan	t pyrite			
		throughout							
		Lenses of pyrite of	ude lavers at	75° to cor	e axis				
		Lonatite zone 9 8	m-10 366m i	massive n	vrite dark r	eddish			
				massive p	rico, aurier	oddion			
		brown		1	6. 10 F1	l			
		Semi-massive pyri	te – minor pyr	rnoute do	wn to 12.51	lm			
		Dark matrix – min	or calcareous	and green	chlorite				
12.50	24.99	SILICEOUS QUAR	TZ SKARN -	light grey,	minor disse	eminated			
		pyrite, very sparry	appearance a	at 14.33m,	med xline				
		Non-calcareous							
		Pyrite zone 16.31n	1-17.37m						
		Verv siliceous, mir	lor green epid	ote and tr	ace garnet				
24.00	30.78	LIGHT GREEN SK	ARN – verv fi	ne grained	 L concoidal	fracture.			
27.99	00.70	blatabas of opidate	very uniform		.,	,			
		Didiches di epidole	, very unnorn			orrita	:		
<u></u>	<u> </u>	Dark black pyrite :	zone 30.18m-	30.48m, v	ery coarse p	pyrite			
30.78	46.33	FELTED DARK G	REEN CHLOR	LITE RICH	SKARN - V	very			
		calcareous in place	es, highly faul	lted 34.14:	m-35.66m				
		(35.66m temporar	y stop)						
		start again Nov. 9,	2002						
		short banded secti	on 35.66m-3	5.78m, pir	nk rhodonite	e, very			
	1	broken core		-					
		major fault zone fr	om 38 10m-4	4.20m co	re verv brol	ken.			
		finajor laure zone in	mainly at 549	$\frac{1}{1}$	ie comate	actures are			
\checkmark		vermets of gouge	manny at 54	to core as	va, aune na	actures are			
		at U° to core axis			• • ·				
		contacted section	41/45m-43.2	8m, minor	rhodonite,	brown			
		gouge at 46.33m							

SECTION: <u>Near Old Shaft</u>

DDH#: <u>TEX-02-01</u>

from (m)	to (m)	Description	from / to	width (m)	Ca 0%
46.33	61.57	GREEN CHLORITIC SKARNIFIED VOLCANIC AGGLOMERATE-			
		TUFFACEOUS SANDSTONE: highly strained relict textures			
		Shearing at 56° to core axis			
		Heterolithic, mainly light grey fragments sub-rounded to			
		angular up to 15mm in length, average about 8mm,			
		occasionally black sub-rounded fragments		Í	(
		Very chlorite rich			
		Near end of Hole, elongated fragments in a feldspar		1	
		crystalline matrix			
		Shearing and mylonitic shears at 61.26m is at 35° to core			
		axis		[[
		End of Hole 202 ft (61.57m)			

SECTION: South of Old Shaft

Diamond Drill Log

DDH#: <u>TEX-02-03</u>

No Northing: Easting: Grid Elevation: Approx. 620m Azimuth: <u>335°</u> -45° Inclination: <u>No Grid</u> Grid: 212 ft (64.62m) Length (m): BQTW Core size: Contractor: Boisvenu Drill Type: Packdrill Hydraulic

Drill Hole s	urvey Baartoo	
Methoa:	Brunton	
Azimuth	Dip	Depth
335°	-45°	Collar
		1
		•

Property:	TEX Property
NTS:	_92J/07
Claim:	Jon
Date Started:	Nov. , 2002
Date Complete	d: Nov. , 2002
Logged by:	J.T. Shearer,

<u>, 2002</u> , 2002 hearer, M.Sc., P.Geo.

(hearer

Purpose:	South	of Old Shaft Area, Investigate Lateral Continuity of Skarn Zone			
from (m)	to (m)	Description	from/to	width (m)	CaO %
0.00	0.61	NO CORE: Overburden, roadfill, soil			
0.61	4.48	EPIDOTE-DIOPSIDE-QUARTZ SKARN: fine grained, yellowish green, roughly banded at 70° to core axis			
4.48	7.71	QUARTZ SKARN : very minor epidote, fracturing common sub- parallel to core axis, abundant pyrite (semi-massive) 7.40m-7.71 (lower contact), sharp lower contact at 68° to core axis, white and bleached			
7.71	19.75	PYRITIC, FINE GRAINED to PORPHYRITIC SKARNIFIED DIORITE: white to greenish feldspar phenocrysts throughout up to 2mm in length, relatively uniform in appearance throughout interval Relatively fractured between 13.1m – 18.90m, main fracture direction at 45° to core axis FeO coated, fracture direction changes to sub-parallel below about 18.30 and filled with calcite Lower contact pyrite zone 19.43m-19.75m			
19.75	50.29	EPIDOTE-QUARTZ SKARN : replacing fragmental volcanoclastic pyrite along fractures at 30° to core axis, wavy vague banding 23.00m-25.00m about 75° to core axis, very sparse diopside, calcite veinlets at 5° to core axis 26.52m minor lighter grey sections at 32.60 and down Core very broken starting at 39.62m-43.28m highly fractured core rubbly, uniform finely disseminated pyrite, sugary texture Core also very broken and gougy between 45.72m to 50.29m Very gradual change from relatively abundant epidote to a sugary rock hornfels without epidote, composed mainly of quartz			

SECTION: South of Old Shaft

Page: <u>2 of 2</u>

DDH#: <u>TEX-02-03</u>

from (m)	to (m)	Description	from/to	width (m)	CaO %
50.29	57.91	SILICEOUS HORNFELS: relict feldspars conspicuous			
57.91	64.62	QUARTZ-EPIDOTE SKARN: increase in epidote content mainly in			
		bands/veinlets at 5°-10° to core axis			
		Semi-massive pyrrhotite and pyrite 63.09m-63.42m			
		End of Hole 212 ft. (64.62m)			

DDH#: TEX-02-04 SECTION: South of Old Shaft Diamond Drill Log Northing: No Drill Hole survey Property: Tex Property NTS: 92J/07 Grid Method: Brunton Easting: Jon Elevation: approx. 620m Azimuth Dip Depth Claim: 2002 000° -90 Collar Date Started: Nov. Azimuth: Date Completed: Nov. 2002 -90° Inclination: J. T. Shearer, Logged by: No Grid Grid: M.Sc., P.Geo. 202 ft. (61.57m) Length (m): BOTW Core size: Samples ?? Boisvenu Drilling Contractor: 1/0-20 20-30 2-10 Drill Type: Pack Drill Hydraulic intervals up to 190-202. n 10 sare South of Old Shaft Area, Investigate Skarn Zone Purpose: width CaO Description from/to from to (m) % (m) (m) No Core, Overburden, soil, road fill, casing to 12 feet (3.66m) 0.00 2.0 ft (0.61m)EPIDOTE - DIOPSIDE - QUARTZ SKARN - Very fine grained .61 3.70 abundant pyrite, greenish-yellow green overall, rough banding 69° to core axis. Highly oxidized, orange-brown rusty zone, abundant pyrite lenses 1.42m-2.98m, some gouge also Light Grey Green QUARTZ-MINOR EPIDOTE SKARN - very fine 3.70 52.95 grained, highly fractured, very hard, About 5% disseminated pyrite throughout Rusty fractures down to 11.50m Some development of sericite, pyrite in rough bands at 58° to core axis Very highly fractured between 12.80m - 15.90m, mostly rubbly core Slightly darker green below 18.60m More disseminated pyrite in places over short intervals, glassy appearance, crumbly Pyrite & pyrrhotite fragment, with reaction rim at 25.66m, 41mm long. Relict feldspars apparent over short sections uniformly disseminated pyrite to 27.50m Core very fractured and rubbly between 32.61-43.287m 43.28-48.77, gouge common, 48.77-50.29 entire section is highly pyretic Some pyritic veinlets at 24.60m are at 0° (sub-parallel) to core axis Calcite fractures at 54.25m BANDED SKARNIFIED METASEDS AND METAVOLCANICS --53.95 52.95 banding at 54.05m is very pronounced, laminations at 54° to core axis Highly epidotized (veinlets & irregular blobs) dark green volcanic at 57.30m-60.05m

SECTION:	South	of Old	Shaft

Page: <u>2 of 2</u>

DDH#: <u>TEX-02-04</u>

from (m)	to (m)	Description	from/to	width (m)	CaO %
53.95	61.57	Highly contorted and laminated light green highly pyritic, endo skarn			
			1		

