

ASSESSMENT REPORT

including

Diamond Drilling

on the

WOODJAM PROPERTY

Woodjam 5 (367190) Claim Woodjam 6-12 (367883-89) Claims (Claims owned by WILDROSE RESOURCES LTD.)

> CARIBOO MINING DIVISION, British Columbia NTS: 93A/3, 93A/6 W Latitude 52°16' N, Longitude 125°00' W

> > Prepared for Operator:

FJORDLAND EXPLORATION INC. 1550 - 409 Granville Street Vancouver, B.C., Canada V6C 1T2

By:

L.J. PETERS, B.Sc., P.Geo. (B.C.)

December 30, 2002 Vancouver, B.C.

> GEOLOGICAL SURVEY BRANCH ASSESSMENT TEPORT

SHELL HAR 1. 2. 2. 2. 10. 1

1. Summary 1 2. Property Location, Access and Physiography 3 3. History 5 4. Geological Setting 7 Property Geology 9 Mineralization 10 a) Megabuck Zone 12 c) Spellbound Zone 12 c) Spellbound Zone 12 Diamond Drill Results 14 6. Interpretation and Conclusions 17 7. Recommendations 18 Budget 18 8. Statement of Expenditures 19 9. References 22 L. John Peters 22 Rudoff Durfeld 23 List of Tables 15 1. Claim Summary 3 2. Historic Exploration Chronology 5 3. Drill Summary 14 4. Drill Grade Composites 15 5. Sample Preparation and Analyses 15 6. Check Analytical 15 7. Exploration Budget 18 8. Statement of Expenditures 19 List of Figures 15 1. Location Map 4 <t< th=""><th></th><th> Property Location, Access and Physiography History Geological Setting Property Geology Mineralization </th><th>page</th></t<>		 Property Location, Access and Physiography History Geological Setting Property Geology Mineralization 	page	
2. Property Location, Access and Physiography 3 3. History 5 4. Geological Setting 7 Property Geology 9 Mineralization 10 a) Megabuck Zone 10 b) Takom Zone 12 c) Spellbound Zone 12 Dipedrives 12 Dipedrives 12 Dipedrives 12 Dipedrives 12 Diamond Drill Results 14 6. Interpretation and Conclusions 17 7. Recommendations 18 Budget 18 18 8. Statement of Expenditures 19 9. References 20 10. Authors Statement of Qualifications 222 L. John Peters 22 Rudolf Durfeld 23 List of Tables 1. Claim Summary 3 2. Historic Exploration Chronology 5 3. Drill Grade Composites 15 5. <th></th> <th>1.</th> <th>Summary</th> <th>1</th>		1.	Summary	1
3. History 5 4. Geological Setting 7 Property Geology 9 Mineralization 10 a) Megabuck Zone 12 c) Spellbound Zone 12 Diatom Zone 12 c) Spellbound Zone 12 Diatom Drogram 12 Statement of Expenditures 19 List of Tables 15 1. Claim Summary 14 Drill Summary 14 4. Drill Grade Composites 15	•			3
4. Geological Setting 7 Property Geology 9 Mineralization 10 a) Megabuck Zone 12 c) Spellbound Zone 12 Di Takom Zone 12 c) Spellbound Zone 12 Diamond Drill Results 14 6. Interpretation Program 12 Diamond Drill Results 14 6. Interpretation and Conclusions 17 7. Recommendations 18 Budget 18 8. Statement of Expenditures 19 9. References 20 10. Authors Statement of Qualifications 22 L. John Peters 22 Rudolf Durfeld 23 List of Tables 1. Claim Summary 3 2. Historic Exploration Chronology 5 3. Drill Summary 14 4. Drill Grade Composites 15 5. Sample Preparation and Analyses 15 6. Check Analytical 15 7. Exploration Budget 18 8. Statement of Expenditures 19 List of Figures 12				
Property Geology9Mineralization10a) Megabuck Zone12b) Takom Zone12c) Spellbound Zone12Diamond Drill Results146. Interpretation Program12Diamond Drill Results146. Interpretation and Conclusions177. Recommendations18Budget188. Statement of Expenditures199. References2010. Authors Statement of Qualifications22L. John Peters22Rudolf Durfeid23List of Tables1. Claim Summary32. Historic Exploration Chronology53. Drill Summary144. Drill Grade Composites155. Sample Preparation and Analyses156. Check Analytical157. Exploration Budget188. Statement of Expenditures19List of Figures1. Location Map22. Woodjam Property Claim Map43. Property Geology Map84. Mineralization105. Drill Compilation Map - Megabuck Zone136. Drill Plan Map139. Drill Plan Map14				
Mineralization10a) Megabuck Zone10b) Takom Zone12c) Spellbound Zone12Diamond Drill Results146. Interpretation and Conclusions177. Recommendations18Budget188. Statement of Expenditures2010. Authors Statement of Qualifications22L. John Peters22Rudolf Durfeld23List of Tables1. Claim Summary32. Historic Exploration Chronology53. Drill Summary144. Drill Grade Composites155. Sample Preparation and Analyses156. Check Analytical188. Statement of Expenditures19List of Figures1. Location Map22. Woodjam Property Claim Map43. Property Geology Map84. Mineralization105. Drill Compilation Map - Megabuck Zone136. Drill Plan Map149. Drill Plan Map10				
b) Takem Zone 12 c) Spellbound Zone 12 Dbjectives 12 Dbjectives 12 Dbjectives 12 Diamond Drill Results 14 6. Interpretation and Conclusions 17 7. Recommendations 18 Budget 18 8. Statement of Expenditures 20 10. Authors Statement of Qualifications 22 L. John Peters 22 Rudolf Durfeld 23 List of Tables 15 5. Sample Preparation and Analyses 15 6. Check Analytical 15 5. Sample Preparation and Analyses 15 6. Check Analytical 15 7. Exploration Budget 18 8. Statement of Expenditures 19 List of Figures 29 1. Location Map 2 2. Woodjam Property Claim Map 4 3. Property Geology Map 8 4. Mineralization 10 5. Drill Compilation Map - Megabuck Zone 13 6. Drill Compilation Map - Megabuck Zone 13 6. Drill Compilation Map - Megabuck Zone 13 6. Drill Plan Map 10 1. Docetion Map 10 1. Drill Compilation Map - Megabuck Zone 13 3. Drill Compilation Map - Megabuck Zone 13 4. Drill Compilation Map - Megabuck Zone 13 5. Drill Plan Map 19 5. D				
c) Spellbound Zone 12 5. 2001 Exploration Program 12 Objectives 12 Diamond Drill Results 14 6. Interpretation and Conclusions 17 7. Recommendations 18 Budget 18 8. Statement of Expenditures 19 9. References 20 10. Authors Statement of Qualifications 22 L. John Peters 222 Rudolf Durfeld 23 List of Tables 15 1. Claim Summary 3 2. Historic Exploration Chronology 5 3. Drill Summary 14 4. Drill Grade Composites 15 5. Sample Preparation and Analyses 15 5. Check Analytical 15 7. Exploration Budget 18 8. Statement of Expenditures 19 List of Figures 2 1. Location Map 2 2. Woodjam Property Claim Map 3 4. Mineralization 2 5. Drill Compilation Map - Megabuck Zone 13 6. Drill Compilation Map - Megabuck Zone 13 6. Drill Plan Map in pocket			a) Megabuck Zone	
5. 2001 Exploration Program 12 Objectives 12 Diamond Drill Results 14 6. Interpretation and Conclusions 17 7. Recommendations 18 Budget 18 8. Statement of Expenditures 19 9. References 20 10. Authors Statement of Qualifications 22 L. John Peters 22 Rudolf Durfeld 23 List of Tables 1. Claim Summary 3 2. Historic Exploration Chronology 5 3. Drill Summary 14 4. Drill Grade Composites 15 5. Sample Preparation and Analyses 15 6. Check Analytical 15 7. Exploration Budget 18 8. Statement of Expenditures 19 List of Figures 1. Location Map 2 2. Woodjam Property Claim Map 4 3. Property Geology Map 8 4. Mineralization 10 5. Drill Compilation Map - Megabuck Zone 13 6. Drill Plan Map in pocket			b) Takom Zone	
Correctives 12 Diamond Drill Results 14 6. Interpretation and Conclusions 17 7. Recommendations 18 Budget 18 8. Statement of Expenditures 19 9. References 20 10. Authors Statement of Qualifications 22 L. John Peters 22 Rudolf Durfeld 23 List of Tables 1. Claim Summary 3 2. Historic Exploration Chronology 5 3. Drill Summary 14 4. Drill Grade Composites 15 5. Sample Preparation and Analyses 15 6. Check Analytical 15 7. Exploration Budget 18 8. Statement of Expenditures 19 List of Figures 1. Location Map 2 2. Woodjam Property Claim Map 4 3. Property Geology Map 8 4. Mineralization 10 5. Drill Compilation Map - Megabuck Zone 13 6. Drill Plan Map in pocket				
Diamond Drill Results146. Interpretation and Conclusions177. Recommendations18Budget188. Statement of Expenditures199. References2010. Authors Statement of Qualifications22L. John Peters22Rudolf Durfeld23List of Tables1. Claim Summary32. Historic Exploration Chronology53. Drill Summary144. Drill Grade Composites155. Sample Preparation and Analyses156. Check Analytical157. Exploration Budget188. Statement of Expenditures19List of Figures19List of Figures101. Location Map22. Woodjam Property Claim Map83. Property Geology Map84. Mineralization105. Drill Compilation Map - Megabuck Zone136. Drill Plan Mapin pocket		5.		
6. Interpretation and Conclusions 17 7. Recommendations 18 Budget 18 8. Statement of Expenditures 19 9. References 20 10. Authors Statement of Qualifications 22 L. John Peters 22 Rudolf Durfeld 23 List of Tables 1. Claim Summary 3 2. Historic Exploration Chronology 5 3. Drill Summary 14 4. Drill Grade Composites 15 5. Sample Preparation and Analyses 15 6. Check Analytical 15 7. Exploration Budget 18 8. Statement of Expenditures 19 List of Figures 19 1 1. Location Map 2 2. Woodjam Property Claim Map 8 3. Property Geology Map 8 4. Mineralization 10 5. Drill Compilation Map - Megabuck Zone 13			•	
7. Recommendations 18 Budget 18 8. Statement of Expenditures 19 9. References 20 10. Authors Statement of Qualifications 22 L. John Peters 22 Rudolf Durfeld 23 List of Tables 1. Claim Summary 3 2. Historic Exploration Chronology 5 3. Drill Summary 14 4. Drill Grade Composites 15 5. Sample Preparation and Analyses 15 6. Check Analytical 15 7. Exploration Budget 18 8. Statement of Expenditures 19 List of Figures 19 List of Figures 19 1. Location Map 2 2. Woodjam Property Claim Map 4 3. Property Geology Map 8 4. Mineralization 10 5. Drill Compilation Map - Megabuck Zone 13 6. Drill Pian Map in pocket				
1 Location Map 18 8 Statement of Expenditures 19 9 References 20 10. Authors Statement of Qualifications 22 L. John Peters 22 Rudolf Durfeld 23 List of Tables 23 List of Tables 3 2. Historic Exploration Chronology 5 3. Drill Summary 14 4. Drill Grade Composites 15 5. Sample Preparation and Analyses 15 6. Check Analytical 15 7. Exploration Budget 18 8. Statement of Expenditures 19 List of Figures 19 List of Figures 2 1. Location Map 2 2. Woodjam Property Claim Map 4 3. Property Geology Map 8 4. Mineralization 10 5. Drill Compilation Map - Megabuck Zone 13 6. Drill Pian Map in pocket				
8. Statement of Expenditures 19 9. References 20 10. Authors Statement of Qualifications 22 L. John Peters 22 Rudolf Durfeld 23 List of Tables 1. Claim Summary 3 2. Historic Exploration Chronology 5 3. Drill Summary 14 4. Drill Grade Composites 15 5. Sample Preparation and Analyses 15 6. Check Analytical 15 7. Exploration Budget 18 8. Statement of Expenditures 19 List of Figures 1. Location Map 2 2. Woodjam Property Claim Map 4 3. Property Geology Map 8 4. Mineralization 10 5. Drill Compilation Map - Megabuck Zone 13 6. Drill Pian Map in pocket		7.		
9. References 20 10. Authors Statement of Qualifications 22 L. John Peters 22 Rudolf Durfeld 23 List of Tables 3 1. Claim Summary 3 2. Historic Exploration Chronology 5 3. Drill Summary 14 4. Drill Grade Composites 15 5. Sample Preparation and Analyses 15 6. Check Analytical 15 7. Exploration Budget 18 8. Statement of Expenditures 19 List of Figures 2 1. Location Map 2 2. Woodjam Property Claim Map 3 4. Mineralization 2 5. Drill Compilation Map - Megabuck Zone 13 6. Drill Plan Map 10 2. Viocete 10 3. Drill Plan Map 10 3. Drill Plan Map 10 3. Drill Plan Map 10 3. Drill Plan Map 15 3. Drill Compilation Map - Megabuck Zone 10 3. Drill Plan Map 15 3. Drill Plan Map 10 3. Drill Plan Map 15 3. Drill Plan Map 10 3. Drill Compilation Map - Megabuck Zone 10 3. Drill Plan Map 18 3. Statement of Expenditures 19 3. Drill Plan Map 10 3. Drill Plan Map 10 3. Drill Plan Map 10 3. Drill Compilement of Expenditures 10 3. Drill Plan Map 10 3. Drill Plan Map 10 3. Drill Plan Map 10 3. Drill Compilement of Expenditures 10 3. Drill Plan Map 10 3. Drill Plan Map 10 3. Drill Compilement of Expenditures 10 3. Drill Plan Map 10 3. Drill Compilement of Expenditures 10 3. Drill Plan Map 10 3. Drill Compilement of Expenditures 10 3. Drill Plan Map 10 3. Drill Plan Map 10 3. Drill Compilement of Expenditures 10 3. Drill Compilement of Expenditures 10 3. Drill Plan Map 10 3. Drill Compilement of Expenditures 10 3. Drill Compilement of Expenditures 10 3. Drill Plan Map 10 3. Drill Compilement of Expenditures 10 3. Drill Plan Map 10 3. Drill Compilement of Expenditures 10 3. Drill Compilement of Expenditures 10 3. Drill Plan Map 10 3. Drill Compilement of Expenditures 10 3. Drill Compilement of Expend				
10. Authors Statement of Qualifications22L. John Peters22Rudolf Durfeld23List of Tables31. Claim Summary32. Historic Exploration Chronology53. Drill Summary144. Drill Grade Composites155. Sample Preparation and Analyses156. Check Analytical157. Exploration Budget188. Statement of Expenditures19List of Figures21. Location Map43. Property Geology Map84. Mineralization105. Drill Compilation Map - Megabuck Zone136. Drill Plan Map11				
L. John Peters22Rudolf Durfeld23List of Tables31. Claim Summary32. Historic Exploration Chronology53. Drill Summary144. Drill Grade Composites155. Sample Preparation and Analyses156. Check Analytical157. Exploration Budget188. Statement of Expenditures19List of Figures191. Location Map22. Woodjam Property Claim Map43. Property Geology Map84. Mineralization105. Drill Compilation Map - Megabuck Zone136. Drill Plan Mapin pocket				
Rudolf Durfeld23List of Tables31. Claim Summary32. Historic Exploration Chronology53. Drill Summary144. Drill Grade Composites155. Sample Preparation and Analyses156. Check Analytical157. Exploration Budget188. Statement of Expenditures19List of Figures11. Location Map22. Woodjam Property Claim Map43. Property Geology Map84. Mineralization105. Drill Compilation Map - Megabuck Zone136. Drill Plan Mapin pocket		10		
List of Tables 1. Claim Summary 3 2. Historic Exploration Chronology 5 3. Drill Summary 14 4. Drill Grade Composites 15 5. Sample Preparation and Analyses 15 6. Check Analytical 15 7. Exploration Budget 18 8. Statement of Expenditures 19 List of Figures 1 1. Location Map 2 2. Woodjam Property Claim Map 4 3. Property Geology Map 8 4. Mineralization 10 5. Drill Compilation Map - Megabuck Zone 13 6. Drill Pian Map in pocket				
1. Claim Summary32. Historic Exploration Chronology53. Drill Summary144. Drill Grade Composites155. Sample Preparation and Analyses156. Check Analytical157. Exploration Budget188. Statement of Expenditures19List of Figures1. Location Map22. Woodjam Property Claim Map43. Property Geology Map84. Mineralization105. Drill Compilation Map - Megabuck Zone136. Drill Plan Mapin pocket			Rudolf Duriela	23
1. Ordini Gummary52. Historic Exploration Chronology53. Drill Summary144. Drill Grade Composites155. Sample Preparation and Analyses156. Check Analytical157. Exploration Budget188. Statement of Expenditures19List of Figures1. Location Map22. Woodjam Property Claim Map43. Property Geology Map84. Mineralization105. Drill Compilation Map - Megabuck Zone136. Drill Plan Mapin pocket		Lis	st of Tables	
2. Historic Exploration Chronology53. Drill Summary144. Drill Grade Composites155. Sample Preparation and Analyses156. Check Analytical157. Exploration Budget188. Statement of Expenditures19List of Figures1. Location Map22. Woodjam Property Claim Map43. Property Geology Map84. Mineralization105. Drill Compilation Map - Megabuck Zone136. Drill Plan Mapin pocket		1.	Claim Summary	3
3. Drill Summary144. Drill Grade Composites155. Sample Preparation and Analyses156. Check Analytical157. Exploration Budget188. Statement of Expenditures19List of Figures1. Location Map22. Woodjam Property Claim Map43. Property Geology Map84. Mineralization105. Drill Compilation Map - Megabuck Zone136. Drill Plan Mapin pocket				5
4. Drill Grade Composites155. Sample Preparation and Analyses156. Check Analytical157. Exploration Budget188. Statement of Expenditures19List of Figures1. Location Map22. Woodjam Property Claim Map43. Property Geology Map84. Mineralization105. Drill Compilation Map136. Drill Plan Map13				
5. Sample Preparation and Analyses156. Check Analytical157. Exploration Budget188. Statement of Expenditures19List of Figures1. Location Map22. Woodjam Property Claim Map43. Property Geology Map84. Mineralization105. Drill Compilation Map136. Drill Plan Map13				
5. Onect rule float187. Exploration Budget188. Statement of Expenditures19List of Figures1. Location Map22. Woodjam Property Claim Map43. Property Geology Map84. Mineralization105. Drill Compilation Map136. Drill Plan Mapin pocket		5,	Sample Preparation and Analyses	
1. Experiation Dataget 19 List of Figures 19 1. Location Map 2 2. Woodjam Property Claim Map 4 3. Property Geology Map 8 4. Mineralization 10 5. Drill Compilation Map 13 6. Drill Plan Map in pocket		6.	Check Analytical	
List of Figures1. Location Map2. Woodjam Property Claim Map3. Property Geology Map4. Mineralization5. Drill Compilation Map - Megabuck Zone6. Drill Plan Map		7.	Exploration Budget	
1. Location Map22. Woodjam Property Claim Map43. Property Geology Map84. Mineralization105. Drill Compilation Map - Megabuck Zone136. Drill Plan Mapin pocket		8.	Statement of Expenditures	19
2. Woodjam Property Claim Map43. Property Geology Map84. Mineralization105. Drill Compilation Map - Megabuck Zone136. Drill Plan Mapin pocket		Lis	st of Figures	
2. Woodjam Property Claim Map43. Property Geology Map84. Mineralization105. Drill Compilation Map - Megabuck Zone136. Drill Plan Mapin pocket		1	Location Man	2
3. Property Geology Map84. Mineralization105. Drill Compilation Map - Megabuck Zone136. Drill Plan Mapin pocket				4
4. Mineralization105. Drill Compilation Map - Megabuck Zone136. Drill Plan Mapin pocket				
5. Drill Compilation Map - Megabuck Zone136. Drill Plan Mapin pocket				
6. Drill Plan Map in pocket				
				in pocket
7. Drill Sections Map in pocket				in pocket

i

7. Drill Sections Map

Appendices

ì

- A. Drill LogsB. Analytical Certificates

1. Summary

Located 50 kilometres east of Williams Lake, B.C. in the Cariboo Mining District, the Woodjam Property consists of 8-4 post claims totaling 142 units. Fjordland Minerals Ltd optioned the property from Wildrose Resources Ltd. in August 2001 and proceeded with a geophysical program during August and September 2001. A follow-up diamond drilling program was completed in October 2002.

The Woodjam claims cover several copper-gold, copper only and gold only occurrences hosted by subvolcanic alkalic intrusives in the Cariboo region of BC. The significance of this property is that potentially economic gold grades have been intersected by diamond drilling over considerable widths in an area of the Property referred to as the Megabuck Zone. In this Zone mineralized monzonite porphyry and related volcaniclastic sediments have returned a number of drill intercepts in excess of 50 metres with grades exceeding 1.20 grams per tonne (g/t) gold associated with copper mineralization typically grading 0.1% to 0.2%.

Between 1974 and 1999 a total of 23 holes totaling 2,437 metres were drilled into the Megabuck Zone by Exploram Minerals Ltd, Placer Development Company, and Phelps Dodge Corporation of Canada Limited focusing on potential mineralization extending to the south. A confirmatory drill test completed by Phelps Dodge in 1999 returned a drill intercept of 144 metres grading 0.72 g/t gold and 0.12% copper including 34.0 metres grading 1.01 g/t gold and 0.14% copper.

A glacial dispersion train located to the northwest of the Megabuck Zone contains boulders grading up to 6 g/t gold and 0.4% copper. Many of the float samples are higher grade than are explained by known mineralization suggesting that considerable potential exists to expand the Megabuck Zone.

The 2001 geophysical program consisting of induced polarization (IP) chargeability and resistivity surveys as well as an accompanying ground magnetometer survey was completed in September 2001 by Scott Geophysics Ltd under contract to Fjordland Minerals Ltd. The survey defined a large, 1650 x 780 metre, chargeability anomaly extending northeast from the Megabuck Zone. A second chargeability anomaly, located 300 metres to the northeast across a small lake, measures 700 x 500 metres (and extends off the grid area to the east).

A total of 5 holes totaling 1,009.4 metres were drilled in the Megabuck Zone from 7th-28th August and 1st-23rd October 2002. Drilling was focused on possible extensions of gold mineralization as suggested by the 2001 IP Survey. Gold mineralized intervals were observed from all of the holes, however, analyzed intervals showed generally lower than historical reported intervals. Additional drilling is required to properly evaluate the potential for gold mineralization in the vicinity of the large geophysical anomalies outlined in 2001.

The next phase of exploration includes additional diamond drilling to the northeast of present drilling in the vicinity of the IP anomaly. It is estimated that work could commence on the Woodjam Property in 2003. The estimated cost of this program is \$200,000 and work will commence when financing is in place.

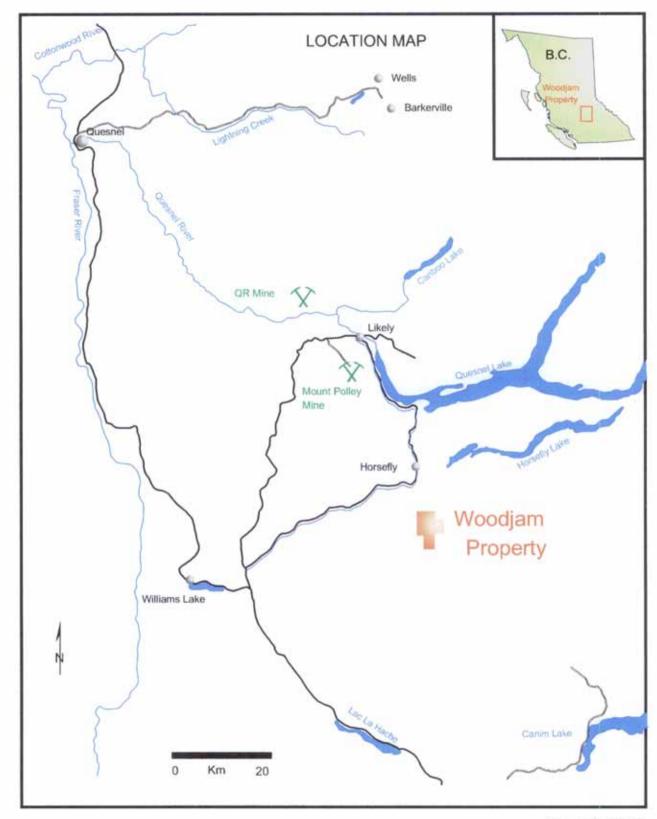


Figure 1: Location Map

....

1

1

16 December 2002

2. Property Location, Access and Physiography

The Woodjam Property, located in the Cariboo Mining Division of central British Columbia, lies approximately 50 kilometres east of the City of Williams Lake and 10 kilometres south of the village of Horsefly. The Property is located on NTS map sheet 93A/3 and 93A/6 at geographic coordinates; latitude 52°16' N, longitude 125°00' W.

The Woodjam property is composed of eight contiguous 4-post mineral claims totaling 142 units. The claims (Figure 2) are all located on government (crown) land and encompass approximately 3,550 hectares (8,800 acres). The claims were staked using compass and chain and have not been legally surveyed.

The claims are currently wholly owned by Wildrose Resources Ltd. (Wildrose) located at 110 -325 Howe Street, Vancouver, B.C.. On 1 August 2001 Fjordland Minerals Ltd. (Fjordland) entered into an agreement to earn a 100% interest in the Woodjam Property.

Claim Name	Tenure #	#units	Recording Date	Expiny Date
Woodjam 5	367190	20	November 23, 1998	February 19, 2003
Woodjam 6	367883	20	February 17, 1999	February 19, 2003
Woodjam 7	367884	20	February 19, 1999	February 19, 2003
Woodjam 8	367885	18	February 17, 1999	February 19, 2003
Woodjam 9	367886	20	February 18, 1999	February 19, 2003
Woodjam 10	367887	20	February 19, 1999	February 19, 2004
Woodjam 11	367888	20	February 19, 1999	February 19, 2004
Woodjam 12	367889	4	February 18, 1999	February 19, 2003
· · · · · · · · · · · · · · · · · · ·	Total	142		

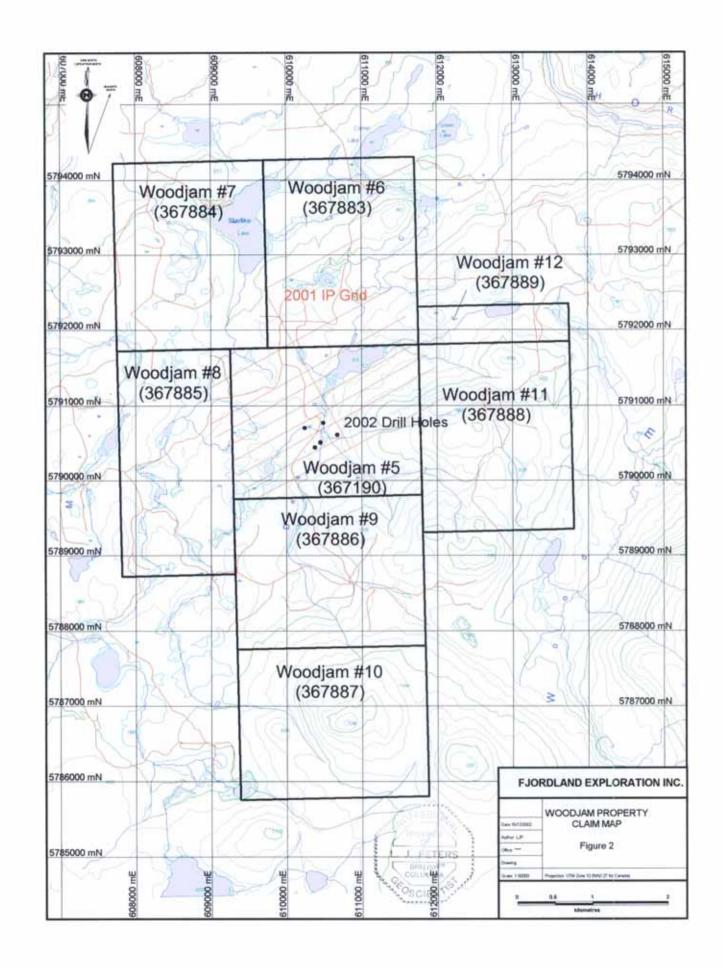

Claim information is as follows:

Table 1: Claim Summary

Year round access by road via Horsefly is gained by travelling south on the Starlike Lake - Woodjam Creek logging road. Logging roads access most of the property and new logging access roads are currently being developed into the area to the east of the Megabuck Zone (an area which until recently has been difficult to access).

The property area is flat to moderately rolling with extensive overburden. It is largely vegetated by first and second growth fir/pine forests that have been partly clear-cut and selectively logged. The entire property lies below treeline. Elevations vary from low marshy areas at approximately 850 metres above sea level (asl) to rolling hills at 1240 metres asl. Numerous small lakes, many beaver dammed, dot the property and streams tend to be of low gradient and do not cut to bedrock. Exposure of bedrock is limited to steeper hillsides, ridgetops and roadcuts. Lower areas are usually covered by extensive glacial till and alluvium. The last glacial movement appears to have been toward the northwest.

Climatic conditions are typical of the central interior of British Columbia. Average minimum low temperatures for January are -18°C and average maximum highs for July are +24 °C. Frost free days last on average from mid-May to mid-August. Between May and September precipitation at a low-elevation station is about 400 millimetres, almost

twice that of Williams Lake 50 kilometres to the west. During April snow depths in the Quesnel Plateau (approx. 700 metres asl) are typically one to two metres.

3. History

A Chronology of exploration activities on the Woodjam Property is as follows:

Year	Owner	Survey Type	Quantity	Area Covered
1966-1967	Helicon Exploration Ltd & Magnum Consolidated Mining Company	Geology & I. P. surveys	Unknown	Megabuck
1973-1974	Exploram Minerals Ltd	I.P. Survey Magnetometer Soils Geochemistry	24.1line-km 34.3 line-km 228 samples	Megabuck/Takom
1974-1977	Exploram Minerals Ltd	Diamond Drilling	5 holes -1056 m	Megabuck/Takom
1983	Archer Cathro and Assoc's	Geology Mapping Soil Geochemistry	2,100 samples	Peripheral Claims
1983-1984	Placer Development Co Ltd	Diamond Drilling Soil Geochemistry Mag/VLF-EM Seismic	15 holes -1266 m 910 samples 53.6 line-km 6 locations	Megabuck
1984	Archer Cathro and Assoc's	Soil Geochemistry	3,644 Samples	Peripheral Claims
1986	Big Rock Gold Ltd	Trenching	692 m	Megabuck/Takom
1987	Archer Cathro and Assoc's	I.P., Mag, & VLF-EM	70 lin e k m	Megabuck
1990	Auspex Gold Ltd	Soil Geochemistry	58 samples	Takom
1991-1992	Noranda Exploration Co	Airborne Mag/EM Soil Geochemistry Test Pitting	222 km 22 samples 44 pits	Megabuck/Takom/ Spellbound
1999	Phelps Dodge Corporation	Diamond Drilling	4 holes -198 m	Megabuck
2001	Fjordland Minerals Ltd	I.P. Survey	23 km IP	Megabuck

Table 2: Historic Exploration Chronology

The first gold found in the Cariboo was along the Horsefly River in 1859. A second gold rush period hit the Horsefly area in 1887. Placer gold operations were common throughout the Quesnel Belt during the early 1900's, however, records of activity in the property area are non-existent. The earliest recorded work in the area occurred in the 1960's prompted by the wave of exploration for porphyry copper deposits.

The history of the original discovery of the Megabuck Zone on the Woodjam claims is uncertain but presumably the area attracted initial attention due to a prospecting find. A small hand trench on the northern slope of the small knoll hosting the Megabuck Zone is the earliest testament to work in the area covered by the current claims. This work appears to predate the earliest documented work on the property that started in 1966.

From 1966 to 1967 Helicon Exploration Ltd & Magnum Consolidated Mining Company conducted geology and induced polarization surveys on the Megabuck Zone (B.C. MMAR 1967). No assessment reports were filed and the details of exploration is unknown.

In the period 1973 to 1977 Exploram Minerals Ltd (Exploram) completed induced polarization and magnetometer surveys, soil sampling, and 1,056 metres of diamond

drilling in parts of the current property referred to as the Megabuck and Takom zones.

In 1983, Placer Development Company (Placer) took an option on a claim covering the Megabuck Zone, the core area of the current property. After completing surface geological, geochemical and geophysical surveys, Placer drilled 1,266 metres in 15 holes (some of them very shallow and never reached bedrock). Concurrently, Archer Cathro and Associates Ltd (AC&A) staked the Ravioli Claims, peripheral to claims covering the Megabuck and Takom Zones, and completed a program of soil sampling to the west and south of the Megabuck showing.

In 1984, following Placer's withdrawal from the project, AC&A optioned their Ravioli Claims to Rockridge Mining Corporation (Rockridge). Records are incomplete with respect to further endeavors by Rockridge, however Rockridge did retain AC&A to complete a soil and rock sampling program.

In 1986 Big Rock Gold Ltd (Big Rock) optioned the claims previously held by Rockridge as well as the ground in the Takom Zone with excluded ground in the vicinity of the southem portion of the Megabuck Zone. Big Rock contracted AC&A to excavate and sample 692 metres of overburden to bedrock in two trenches in the Megabuck Zone and 3 trenches in the Takom Zone. The two Megabuck trenches, situated approximately 50 metres apart, returning widths in excess of 57 metres of greater than 1.0 g/t gold mineralization (Figure 6). The three trenches in the Takom Zone returned one interval of 0.96 g/t gold over a two metre interval. No further work is known to have been done by Big Rock Gold.

In 1990 Auspex Gold Ltd completed a limited soil geochemistry program over the Takom Zone anomaly on their 2-claim property. The survey area duplicated previous soil sampling results and no new mineralization was discovered.

In 1991 Noranda Exploration Company Ltd. (Noranda) reassembled the claims via several option agreements. In 1992 Noranda completed an airborne geophysical survey, reconnaissance mapping and excavator test pitting in the area including and extending between the Megabuck and Takom zones. Later that year Noranda closed its BC office and the claim options were terminated.

In 1998 Wildrose Resources Ltd. (Wildrose) re-staked ground as the prior claims (originating in the 1970's and 1980's) began to expire. The final claim to complete the consolidation of the core area was staked in November 1998. In 1999 Wildrose optioned the now Woodjam claims to Phelps Dodge Corporation of Canada, Limited (Phelps Dodge). In February 1999 Phelps Dodge undertook additional staking to produce the current claim group and initiated a field program including reconnaissance mapping and prospecting and the drilling of 4 diamond drill holes totaling 198 metres. Despite significant gold mineralization (34 metres of 1.01 g/t gold) in their most northerly drill hole (DDH99-20), Phelps Dodge withdrew from the Woodjarn project for corporate reasons (personal communication, R. Cameron, Phelps Dodge).

A total of 23 line kilometres of IP and mag surveys were completed on the Woodjam Property by Fjordland in 2001. The IP survey encompassed the area north, east and west of the Megabuck Zone. The survey defined a large, 1650 x 780 metre, chargeability anomaly extending northeast from the Megabuck Zone. Known areas of mineralization at the Megabuck Zone occur on the edge (gradient) of the anomaly southwest of the chargeability high. The chargeability high corresponds with a moderate to low resistivity feature.

4. Geological Setting

The Quesnel Trough, a large regional depositional feature extending 2000 kilometres from the U.S. border in the south to the Stikine River in the north, forms a portion of the dominantly alkalic and sub-alkalic volcanic and sedimentary assemblage. The Quesnel Trough assemblage hosts numerous deposits of porphyry gold-copper style mineralization generally related to dioritic or monzonitic sub-volcanic intrusive bodies (Barr, et al., 1976) including the Maud Lake, Mount Polley (Cariboo Bell), Kwun Lake, Lemon Lake and Quesnel River (QR) deposits.

The Quesnel Trough alkali-porphyry deposits occur in basalts and andesitic flows, fragmental rocks and alkalic intrusive complexes. They are generally gold-copper deposits consisting of chalcopyrite-pyrite and minor bornite sulphide mineralization. The sulphide zones are developed adjacent to concentrically-zoned alkaline plutons which are themselves seldom sulphide bearing.

The Quesnel Trough assemblage is made up of rocks of the Nicola (south), Takla (central) and Stuhini (north) Groups consisting of a series of volcanic islands characterized by generally alkalic to sub-alkalic basalts and andesites, related sub-volcanic intrusive rocks, and derived clastic and pyroclastic sedimentary rocks.

The basalts and andesites are subaqueous fissure eruptions associated with regional faults. At a late stage in the volcanic cycle large sub-aerial volcanic centres developed. These features consist largely of pyroclastic and epiclastic rocks, complex intrusive breccias, and small plutons or necks of diorite, monzonite and syenite. Commonly associated with the plutons is a late fumarolic or hydrothermal stage when large volumes of volcanic rocks were extensively altered to albite, K-feldspar, biotite, chlorite, epidote and various sulphides. The late metasomatic period involves introduction of volatiles and various metals in the vent areas and is a typical and important feature of the final stages of the volcanic cycle.

The Woodjam property is underlain by a succession of Triassic-Jurassic Takla Group volcanic and related sedimentary rocks intruded by the Jurassic aged Takomkane Batholith to the south. The claims include the northern contact with the batholith, several monzonite to syenite plugs of unknown affinity and two granodiorite plugs possibly related to the Takomkane Batholith. Younger Miocene aged basalts overlap these older units on the western side of the property and as isolated islands further to the east (Wetherup, 2000).

The Takla Group is typified by its preponderance of basalt to trachy-andesitic infill and its co-magmatic alkalic centres. Detailed work by Archer Cathro (Carne, 1984) has shown the Takla rocks on the property to be a complex succession of maroon and green augite and feldspar porphyries, with related tuffs, pyroclastic breccias and related sedimentary rocks. Some altered and brecciated rocks interpreted as sub-volcanic intrusive complexes occur, especially in the Megabuck Zone.

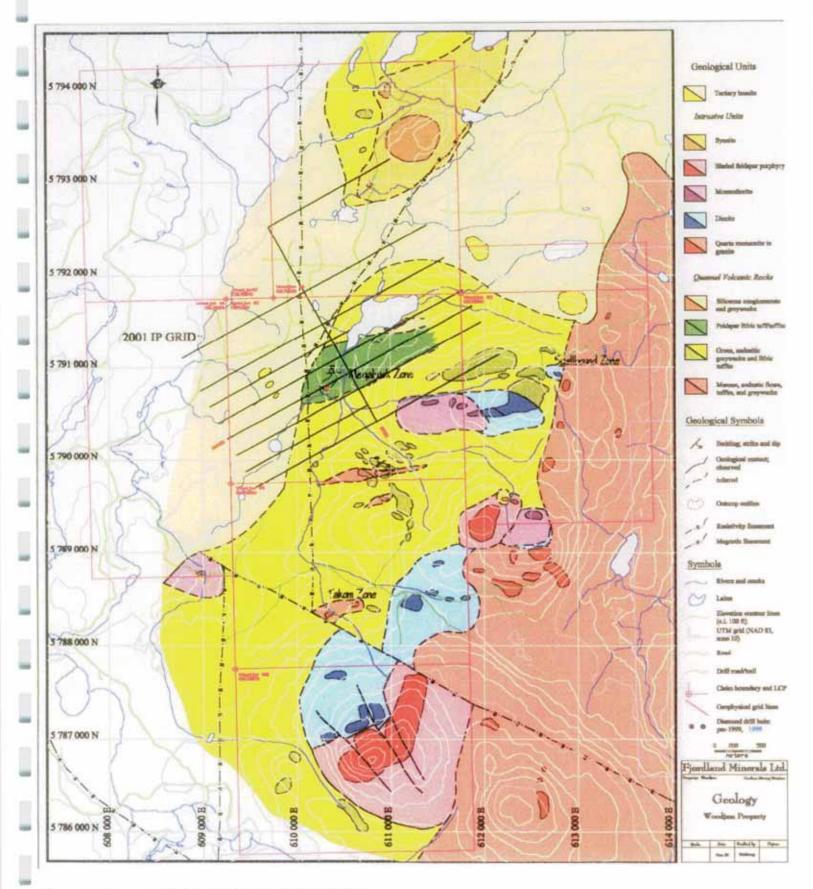


Figure 3: Property Geology (after Wetherup, 1999)

The Takomkane Batholith, on the other hand, is a large predominantly calc-alkalic intrusive with a surface expression of approximately 40 by 50 kilometres. It comprises one of a series of at least six large coeval bodies including the Guichon Batholith (hosting the Highland Valley deposits) and Granite Mountain Batholith (hosting the Gibraltar deposit). In the region of the Woodjam property the Takomkane Batholith is typically an equigranular granite to quartz-monzonite. Regional magnetic trends (GSC Aeromagnetic Maps 7221 G, 5239G and Exploram ground magnetics) show a distinct northeasterly strike in the area of the Megabuck and Takom Zones as opposed to the northwesterly grain evident elsewhere in the Quesnel Trough. This apparently represents an edge effect of the Takomkane Batholith, the magnetic patterns suggesting that the Takomkane may underlie the Takla rocks at no great depth over much of the property (Peatfield, 1986).

Property Geology

The most recent geological interpretation of the Woodjam Property was made by Phelps Dodge Corporation of Canada, Limited (Wetherup, 2000) as follows (Figure 3):

"The east side of the Woodjam Property is underlain by quartz monzonite to granite of the Takomkane Batholith. The remainder of the property contains exposures of andesitic tuff; tuffite, flows, greywacke, and minor conglomerate, which are intruded by small syenite, guartz monzonite, or monzodiorite bodies. Overlying all of these rocks are tertiary basalts that appear on the western and northern portions of the property. The Takomkane Batholith on the property is homogenous in both texture and composition. It is generally a medium to coarse grained, equigranular, white, quartz monzonite to granite, with 5 to 15% homblende, and rare biotite. A number of border phases occur adjacent to the batholith. These include several diorite and monzodiorite plugs and dykes as well as a distinctive bladed feldspar granodiorite porphyry. The diorite and monzodiorite phases can grade into one another through a number of discrete transitional phases over a few hundred metres. Diorite and monzodiorite rocks are medium grained, and contain 10-20% hornblende as the dominant mafic mineral. However, euhedral pyroxene phenocrysts are obscured locally, in the absence of homblende, and comprise 5-20% of the rock. Two bladed feldspar granodiorite bodies occur at the south end of the property, and are characterized by 10-25%, 5-10 mm long feldspar laths in a light grey fine grained matrix. Epidote alteration of the feldspars is common and specular hematite is also locally found within the feldspar grains.

Volcanic units on the property are comprised mostly of monotonous fine grained, green, andesitic tuffite/tuff/greywacke. Mauve andesite flows and tuffite beds, as well as siliceous conglomerate layers occur but are rare. In the Megabuck area, the volcanic units are more variable and coarser grained often containing broken 3-4 mm feldspar crystals. Bedding measurements throughout the property trend west to west-southwest dipping moderately to the north. The crystal tuff/tuffite units appear to continue to the northeast of the Megabuck Zone and are overlain by a pyritic, siliceous conglomerate. Andesitic volcanic breccias are also seen in the drill core from the Megabuck Zone.

Hornfels and epidote alteration is prevalent within the volcanic units and increases in intensity with proximity to the Takomkane Batholith and its satellite phases. Weak epidote alteration takes the form of epidote rich pods (1-3%) which occur predominantly along bedding planes. Moderate alteration is typified by numerous epidote pods (5% to

15% of the rock) and pervasive epidotization of the remainder of the rocks mass (5-15%). Finally, intensely altered volcanic rocks are highly magnetic and contain abundant epidote throughout (15-20%). Locally, magnetite- epidote alteration can grade into magnetite-biotite (potassic) alteration. East of the Takom Zone, podiform epidote alteration occurs along east-west oriented fractures within diorite and is associated with tourmaline veining and rare chalcopyrite. Tourmaline veining also occurs within homfelsed volcanic rocks in the Spellbound Zone. "

Mineralization

Exploration by Exploram in the 1970's and Noranda in 1992 uncovered three zones of mineralization on the Woodjam Property namely:

- a) The Megabuck Zone.
- b) The Takom Zone (located 2.5 kilometres south of the Megabuck Zone).
- c) The Spellbound Zone (located 2.0 kilometres east of the Megabuck Zone).

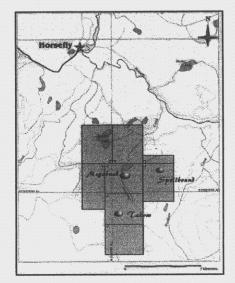


Figure 4: Mineralization

a) Megabuck Zone

Interest in the Woodjam property is presently largely related to bulk tonnage gold-copper mineralization occurring in a complex pile of brecciated monzonite intrusives and potassic- sericitic altered volcanics and subvolcanics. Monzonite intrudes highly altered, fractured and brecciated volcanics, containing numerous irregular monzonite lenses and fragments. Although gold and copper content of the volcanics is markedly less than that of the monzonite, it still contains up to 1.85 g/t gold. Alteration of the monzonite consists of potash feldspar, chlorite-carbonate with epidote, and magnetite (Cruz, 1974).

Alteration of the volcanic rocks consists of patchy silicification and chloritization, with local development of epidote, magnetite and pyrite, and rare chalcopyrite. Homfelsing is prevalent within the volcanic units in increasing intensity towards the intrusives. Homfels is manifested by disseminated and replacement concentrations of epidote and tourmaline.

Sulphide mineralization occurs as chalcopyrite and lesser bornite within quartz veinlets, fractures and as disseminations outside of quartz veinlets (Morten, 2001). Pyrite is relatively common as disseminations, especially peripheral to the zones of copper-gold rrineralization and in apparently younger zones of argillic alteration (Main, 1986). Gold is believed to occur as tiny blebs within the chalcopyrite (Pryce, 1983). Magnetite is usually present in concentrations of 1-3% throughout the rock, and calcite veinlets are common.

In 1985 Archer Cathro & Assoc. (Wilson, 1985) compared gold and copper distribution from drilling results in probability and Cu-Au x-y plots. A bimodal distribution of gold

became evident. Mode A, an earlier and more extensive variety; is associated with potassic flooding and with chalcopyrite that occurs as disseminations and in thin quartz veinlets. This is probably porphyry-copper" type mineralization, similar to the nearby Cariboo Bell deposit. Mode B is related to an epithermal system that has introduced quartz veining, brecciation, bleaching, and silicification accompanied by sericitic and argillic alteration. These features are particularly intense in two or three intervals of drill core, indication that this system is probably localized along structural breaks or permeable channels." Mode B mineralization appears to have a higher gold content.

On the NE side of the hill hosting the Megabuck showing the intrusive complex appears to pass abruptly into a 700 to 800 striking pile of felspathic tuff and fragmental rocks indicating a possible fault. A prominent gully here mimics this trend.

Known areas of mineralization at the Megabuck showing fall on the edge (gradient) of an open-ended induced polarization chargeability anomaly that measures approximately 500 metres by 1,000 metres. The overburden covered area north and east of this hole remains a prime target area.

A total of 23 holes totaling 2,437 metres (ranging in depth from 12 metres to 200 metres) were drilled in the Megabuck Zone (several abandoned in overburden) prior to Fjordland's exploration activities. Drilling has constrained mineralization to the south, however, the zone is open to the north, east and west. Two trenches were excavated in the north end of the Megabuck Zone with mineralization being open in this direction.

Noranda Exploration Company identified a glacial dispersion train, consisting of angular boulders (float), to the northwest of the Megabuck Zone in 1992 (shortly before closing the Vancouver office). A quotation from Noranda's last report (Walker, 1992) concerning the dispersion train reads as follows: "The strongest copper and gold responses from the rock samples came from the Megabuck float train where values of 0.1 -0.4% copper and 1-6 gpt (g/t) gold were recorded. This float train with this range of values is traceable for at least 2 kilometres west-north-west of the showing". Many of the float samples are higher grade than are explained by known mineralization suggesting that considerable potential exists to expand the Megabuck zone.

The primary objective on the Woodjam Property is expanding the area of known mineralization in the Megabuck Zone. The final paragraph of the May 19, 2000 Phelps Dodge report (Wetherup, 2000) reads: "Work to date was successful in extending the depth extent of the Megabuck Zone, however holes drilled south and southeast of the zone were barren. The zone is partially open to further drill extensions to the northeast and northwest. This would be aided by additional magnetic, induced polarization and soil geochemical surveying.". Previous induced polarization surveys completed in this area were done in the early 1970's (Exploram, 1974) or using a low- powered transmitter (AC&A, 1987). As a result Fjordland Minerals Ltd completed a new, deeper, higher-powered IP survey over the Megabuck Zone extending to the north, east and west in September 2001.

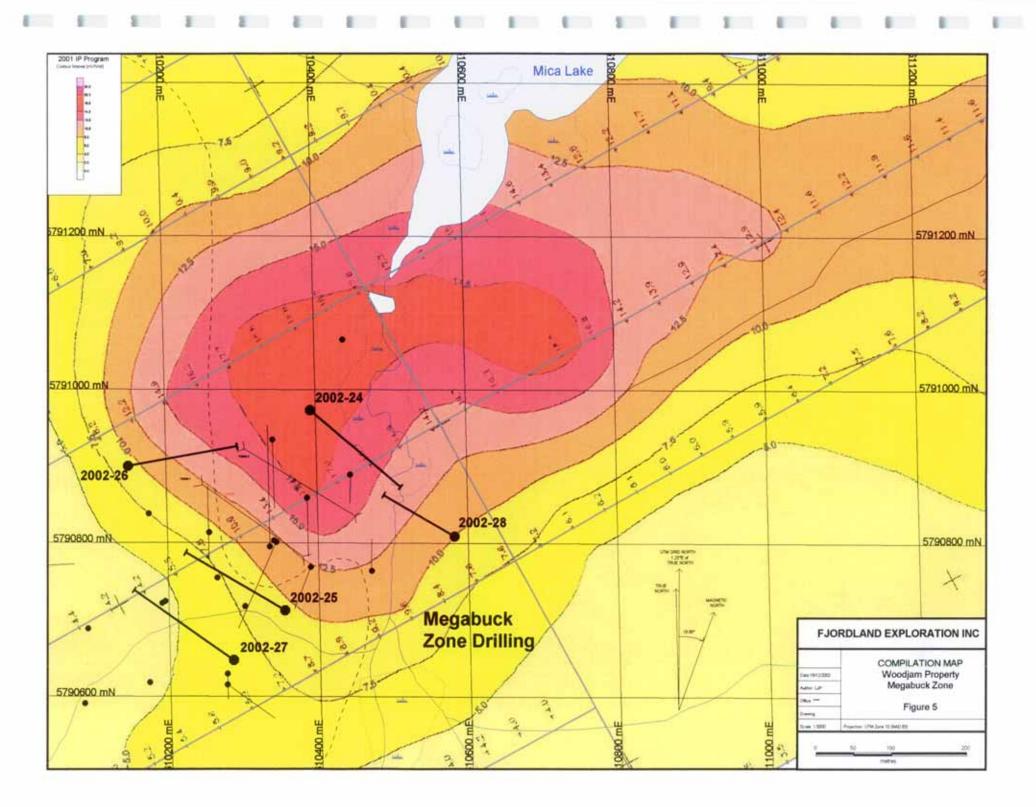
The 2002 diamond drill program was focused exclusively on a large, 1650 x 780 metre, chargeability anomaly extending northeast from the Megabuck Zone.

b) Takom Zone

Outcrop in the Takom Zone is sparse aside from three trenches established by Archer Cathro and Associates in 1986 and recent road cuts resulting from logging. The zone occurs within partly brecciated augite and feldspar porphyry flows and volcaniclastics containing patchy chlorite and argillic alteration, cut by quartz-carbonate veins. Granodiorite, biotite-quartz diorite and monzodiorite here intrude Mesozoic aged volcanics. Volcanic units are invariably homfelsed and in one location, southeast of the showings, tourmaline has locally replaced up to 75% of the rock.

Significant shearing is evidenced in the vicinity of known mineralization exposed by the 1996 trenches. A large coherent soil copper anomaly (~500m x 1200m) has been outlined in surface till. The anomaly extends approximately 1 kilometre up-ice (to the east) from known areas of mineralization and cannot be adequately explained by the showings. A horseshoe-shaped induced polarization chargeability anomaly measuring 1 by 2 kilometres extends to the south, east and west of areas of known mineralization. Four holes totaling 663 metres were drilled in the Takom Zone from 1973 to 1977. A 10.6 metre intercept grading 1.27 g/t gold and 0.13% copper was obtained from Exploram's hole 74-3 where granodiorite and homblende quartz-diorite intrude the volcanics.

The large IP zone located here may indicate that a substantial pyritizing event has happened. Diamond drilling and trenching identified only narrow zones of mineralization and attempts to use the IP anomaly to target significant copper-gold mineralization have not yet been successful. While it is acknowledged that there are lots of good ingredients in this area, the Takom Zone should be relegated to a lessor priority until significant exploration budgets are available. In the short term, additional prospecting and rock sampling of new road-cuts could be considered.


c) Spellbound Zone

Very little additional work has been completed at the Spellbound Zone subsequent to its 1992 identification by Noranda. Exposure here along a road-cut consists of pervasive epidote and tourmaline replacement in hornfelsed volcanics adjacent to a quartz diorite intrusion. A weak quartz stockwork here contains minor quantities of chalcopyrite. A very small soil sampling program completed by Noranda in 1992 returned anomalous values to the edge of the survey approximately 150 metres east of the road-cut with the most easterly soil sample returning 803 ppm Cu. The true size of the Spellbound Zone remains unknown.

5. 2002 Exploration Program

Objectives

In 1986 Archer Cathro and Associates (on behalf of Big Rock Gold Ltd) excavated and sampled 2 trenches in Megabuck Zone. Situated approximately 50 metres apart, the trenches returned significant widths of gold mineralization greater than 1.0 g/t gold. From 1974 to 1999 a total of 23 diamond drill holes, totaling 2,437 metres and ranging in depth from 12 metres to 200 metres, were drilled in the Megabuck Zone by Exploram Minerals

Ltd, Placer Development Company, and Phelps Dodge Corporation of Canada, Limited. Drill locations can be found in Figure 6.

A number of historic geophysical surveys, including magnetometer, I.P., VLF-EM, aerial magnetics, and seismic, have been conducted on the Woodjam property. Magnetometer surveys conducted in the 1980's by Archer Cathro concentrated on the peripheral areas north and south of the Megabuck Zone and the two IP surveys previously conducted were insufficient for targeting drill holes. As a result, in 2001 Fjordland initiated a program of geophysical surveys including IP and magnetometer on possible eastern extensions of mineralization (Figure 5). The survey defined a large, 1650 x 780 metre, chargeability anomaly extending northeast from the Megabuck Zone.

A diamond drilling program, consisting of 5 holes totaling 1,009.4 m, was conducted on the property between 8th August - 21st October 2002. The objective of the 2002 drilling program was to test the IP anomaly defined by the 2001 exploration program as well as delineate potential extensions from known mineralization outlined by previous drilling in the Megabuck Zone.

Diamond Drilling Results

Drilling was conducted between August 7-28 and October 1-23, 2002 by LeClerk Drilling Ltd of Cranbrook, B.C.. A Longyear Super 38 diamond drill was used to drill NQ (47 mm) sized core. An International TD-15 Dozer owned by was used to construct drill pads and a John Deere Articulated Skidder was used for drill moves. Drilling was conducted under the supervision of Rudy Durfeld, PGeo. of Durfeld Geological, Williams Lake, B.C.. Dip tests were done using an acid bottle that was corrected to true dip using a chart.

The drill core was moved to secure facilities at Williams Lake for logging, splitting and sampling. Core was logged by R. Durfeld and split and sampled by Tony Bains of Williams Lake. Core was split using a hydraulic core splitter and placed into plastic sample bags and shipped to Acme Analytical Laboratories Ltd. (Acme) for analyses. The remaining drill core was then relocated on-site for storage. Drill logs are located in Appendix A. Analytical sheets for sampled intervals are located in Appendix B.

summary of drilling follows: Hole ID: Easting: Northing: Azimuth Dip Dip Test & Total Depth 02-24 610393.0 5790973.0 130° 45° 45° 130m 219.5 m

Drill collar locations were measured by GPS on UTM Nad83 projection, Zone 10. A

HoleID	Easting*	*Northing *	Azimuth	Dip	DipTest	Total Depth
02-24	610393.0	5790973.0	130°	-45°	-45°@130m	219.5 m
02-25	610354.0	5790712.0	300°	-43°	-42°@206m	205.7 m
02-26	610149.0	5790900.0	80°	-45°	-45°@209m	209.1 m
02-27	610284.2	5790647.2	305°	-44.5°	-43°@223m	223.1 m
02-28	610582.0	5790809.0	300°	-45°	-45°@153m	152.0 m
	• · · · • • • • • • • • • • • • • • • •				TOTAL	1,009.4

Table 3: Drill Summary

A plan map showing drill hole locations relative to previous drilling is presented on Figure 6. Cross sections of drilling showing geology and Au-Cu grade distributions (presented as histograms) are presented on Figure 7.

Analytical composites from all holes drilled in 2002 are presented on Table 4. Due to the complexity of the geology, no attempt has been made to correct for true thicknesses.

to sole to	50 000		mervak(m).	AURIN	Cines,
DH-02-24	137.00	219.45	82.45	0.154	0.024
	159.00	219.45	60.45	0.199	0.031
	164.00	213.00	49.00	0.236	0.033
	185.00	205.00	20.00	0.418	0.042
	179.00	191.00	12.00	0.555	0.051
DH-02-25	9.75	182.00	172.25	0.333	0.068
	9.75	156.00	146.25	0.376	0.076
	38.00	90.00	52.00	0.520	0.106
	52.00	88.00	36.00	0.616	0.122
DH-02-26	119.00	121.00	2.00	8.160	0.011
DH-02-27	30.00	168.00	138.00	0.141	0.025
	102.00	158.00	56.00	0.193	0.029
	102.00	114.00	12.00	0.422	0.055
DH-02-28	30.48	153.10	122.62	0.015	0.007
	98.00	153.10	55.10	0.024	0.006
	98.00	130.00	32.00	0.030	0.006
	142.00	153.10	11.10	0.028	0.007

Table 4: Drill Grade Composites

A total of 429 intervals were sampled and sent to Acme for analyses. Acme, fully accredited under ISO 9002, is located at 852 East Hastings St., Vancouver, BC, V6A 1R6. Preparation and analyses of samples at the lab consisted of the following:

Method Code	Procedure
R150	crush (4 kg to -10 mesh (70%), split, pulverize 250 g to -150 mesh (95%).
1DA	10 g sample split leached with 60 ml 2-2-2 HCI-HNO3-H2O at 95°C for 1 hour, diluted to 200 ml, analyzed by ICP-MS for 35 element suite.

Table 5: Sample Preparation and Analyses

Six samples taken from Acme's sample rejects were sent to Assayers Canada located at 8282 Sherbrooke Street, Vancouver, B.C. for check analyses as follows:

Section	Acine Li		Assayers C	anada 🖉
isampieve.	*Aŭ (ppb) * *C	iu (ppm) i :	Au (ppb) 🔥 C	u (ppm)
178029	53	166	71	171
17/8043	1,681	403	8,184	462
178152	5	46	9	52
250093	1,427	3,079	1,665	2,950
250664	2,384	666	4,191	765
4250675	102	120	106	123

Table 6: Check Analytical

As can be seen from Table 6 comparisons of samples from both labs were overall on the same order of magnitude. Differences in gold content were much higher at the > 1,000

Fjordland Minerals Ltd

ppb due to qualitative uncertainties in the analytical method at these higher grades and possibly due to a "nugget effect".

The 2002 drill program crosscut a layered sequence of fine pyroclastic rocks and their reworked or sedimentary equivalents. The layered sequence varies from dominantly tuff, crystal lapilli tuff, and volcanic breccia. Shearing and faulting occurring throughout the layered sequence hampers correlation of the geological sequences.

Rock units encountered during drilling show various types and degrees of alteration. Significant bleaching of rock units occurs in and around fault zones. Propylytic, potassic, and sericitic alteration is evident with feldspars and mafic minerals having been altered to epidote and chlorite. Magnetite-hematite aggregates appear to be a relatively late feature occurring throughout the drill core.

Quartz \pm carbonate stringers, veinlets and few larger sized veins are pervasive throughout the layered sequence. Visible gold was not encountered in any of the drill core, however, it is believed to be associated with chalcopyrite in quartz veins. The best gold values show good correlation with sections of core containing numerous chalcopyrite-bearing quartz veinlets.

DH-02-24 was drilled to the northeast of previous drilling and trenching to test the continuity of gold distribution. The hole drilled through an assemblage of feldspar porphyry - felsic intrusive - andesite porphyry - volcanic breccia/clastics. Alteration consisted of sericitic near surface and propylytic through the volcanics in the remainder of the hole. Hematitic alteration occurred between 90-110 metres downhole (mdh). Gold mineralization occurred in fine grained volcanic breccias and clastics located in the lower part of the hole from 137 mdh to the end with pyrite mineralization throughout. The high gold mineralization occurred on the flanks of an intensely brecciated fault zone located at 192 mdh.

DH-02-25 was drilled to the southwest of previous drilling. The hole intersected mainly feldspar porphyries with fine grained altered felsics from 160 mdh to the end. The first third and last portions of the hole displayed sericitic alteration and the central portion of the hold displayed potassic alteration. Mineralization occurred mainly in the feldspar porphyry previously logged as volcanic breccias.

DH-02-26 was drilled to the north of previous drilling. The hole drilled through an assemblage of feldspar porphyry - granodiorite - monzonite - andesite porphyry - laminated felsics - volcanic breccia. Pyrite and chalcopyrite mineralization was mostly constrained to the volcanics. Gold mineralization was poor except at 120 mdh where a narrow fault zone graded 8.2 g/t Au over 2.00 metres.

DH-02-27 was drilled approximately parallel to and 100 metres southwest of DH-02-25. An assemblage of banded volcanics and breccias intermixed with monzonite and granodiorite intrusives were encountered. Pyrite and chalcopyrite were present throughout most of the hole, however, gold distribution was minor and scattered.

DH-02-28 was drilled to the northeast of previous drilling and trenching parallel and on the same section as DH-02-24. The hole intersected mainly fine grained volcanics / volcaniclastics and quartz feldspar porphyries. Disseminated pyrite was prevalent throughout the hole, however, gold mineralization was weak. Drilling ended prematurely due to bad ground conditions.

A property visit was conducted by the author between 21st to 22nd November 2002. All drill setups were visited and all core from the 2002 program was examined where it was stored on-site.

6. Interpretation and Conclusions

The Woodjam Property is situated in the Intermontane Belt of the Quesnel Trough hosting numerous alkaline porphyry deposits. The Woodjam Property encompasses several copper-gold, copper only and gold only occurrences hosted by subvolcanic alkalic intrusives. Economic gold grades have been intersected by previous diamond drilling and trenching over considerable widths in the Megabuck Zone.

An IP survey, completed in 2001, defined a large, 1650 x 780 metre, chargeability anomaly extending northeast from the Megabuck Zone analogous to historical IP surveys (Figure 5). The chargeability high corresponds with a moderate to low resistivity feature. A second chargeability anomaly, located 300 metres to the northeast across a small lake, measures 700 x 500 metres (and extends off the grid area to the east), may be a part of the first anomaly and additional surveying is required to determine this. This corresponds with a low to moderate resistivity feature. Both geophysical anomalies encompass previously untested targets.

The chargeability highs likely define the pyritic halo associated with and adjacent to the gold-copper mineralization evident in the Megabuck Zone. The propylitic zone of the QR deposit, for example, gives a strong persistent chargeability anomaly (maximum 60 m/s). As demonstrated in the portion of the survey covering the Megabuck Zone, gold mineralization occurs on the periphery of the strong chargeability highs.

The 2002 diamond drill program tested possible extensions of gold mineralization to the north, northeast and southwest of the Megabuck Zone. Gold-copper mineralization, related to disseminated chalcopyrite in quartz veinlets, cuts across a layered sequence of fine to coarse pyroclastic and volcano-sedimentary rocks. Faulting of the layered sequences restricts correlation between drill holes. Host rocks are propylitized exhibiting sericitic and potassic alteration near mineralized zones.

The mode of occurrence, presence of a gold deficient pyritic halo, and alteration features suggests gold mineralization of the Megabuck Zone occurs as a "porphyry-copper" type deposit. Additional testing by Placer (Pentland, W., 1983) suggests a bimodal gold source, an earlier porphyry-type locally overprinted by higher grade "epithermal systems" probably localized along structural breaks or permeable channels. A high grade example of a narrow, higher gold grading fault controlled interval was intersected in DH-02-26.

1

7. Recommendations

The objective of the proposed exploration program outlined below is to allow evaluation of additional gold mineralization in the area defined by the 2001 IP survey. The following work should be completed:

- Check road construction associated with logging activity for new bedrock exposures.
- Conduct a program of surface soil geochemistry over the IP anomalies.
- Diamond drill in a fence pattern across the geophysically and geochemically defined targets keeping in mind that, in the case of the high-grade Ridgeway deposit in Australia, that discovery occurred after persistent drilling was initiated outbound and at depth from the lower grade adjacent Cadia deposit.
- Re-examine drill core from all previous holes for compilation

Should results from the next phase of exploration be encouraging, additional diamond drilling should be considered to increase the size potential of the deposit. It is estimated that the next phase of exploration will cost approximately \$200,000.

Budget

Geological Support	18,000
Food & Accommodation @ \$120/manday	8,000
Truck Rental & Fuel	4,500
Field Supplies	2,100
Analytical 700 core samples @ \$22/ea, 500 soil samples @ \$16/ea	23,400
Dozer	3,000
Drilling 1500 m @ \$75/m	112,500
Mob/demob	4,000
Report Writing	5,000
Contingencies (~11%)	19,500
TOTAL	\$200,000

Table 7: Exploration Budget

8. Statement of Expenditures

nem Karlenska v	Dates of the second second	raceste	রাওটেরি
FIELD PERSONNEL			
Supervision-B.Morton	Aug 2,5,7, Sep 28,30; 5 days	@\$450/diem	\$ 2,250.00
Project Geologist-R.Durfeld	Aug 5-Oct 19, Nov 21-22; 345.6 hours	@\$50/hour	\$ 17,280.00
Core Splitter-T.Bains	Aug 9-31, Oct 1-15, Nov 1-2; 40 days	@\$260/diem	\$ 10,400.00
Labour-J.Schmising	Nov 21; 1 day	@\$100/diem	\$ 100.00
Labour-L.Durfeld			\$ 418.00
Report Writing-L.Peters	Dec 17-Jan 7; 8 days	@\$225/diem	\$ 1,800.00
Diamond Drilling	Aug 7-28, Oct 1-23; 1009.4 m (5 holes)		\$ 76,796.77
Drill mob/demob			\$ 3,200.00
Dozer	Oct 2-12; 41.25 hours	@\$95/hour	\$ 3,918.75
Dozer Mob/demob			\$ 361.25
Vehicle Rental			\$ 2,628.65
Fuel			\$ 1,466.47
Food + Accommodation	(exclusive of diamond drillers)		\$ 604.42
Supplies			\$ 339.58
Equipment Rental-Splitter	2.9 month rental	@\$100/month	\$ 290.00
Telephone			\$ 101.77
Analytical	429 samples-analyzed 35 element suite	@\$16.04 ea	\$ 6,880.23
Courier/Freight	Sample shipping to Acme Labs		\$ 660.77
TOTAL			\$ 129,496.66

Table 8: Statement of Costs

i.

÷

9. References

Barr, D.A., Fox, P.E., Northcote, K.E. and Preto, V.A. (1976): The Alkaline Suite Porphyry Deposits -A Summary; in Porphyry Deposits of the Canadian Cordillera, Sutherland Brown, A. Editor, Canadian Institute of Mining and Metallurgy, Special Volume 15, pages 359-367.

Bull, 1997: (BCDM) Geology and Mineral Deposits of the Quesnel River. Horsefly Area.

- Campbell, S. and Pentland, W., 1983: (Placer Development Ltd), A Diamond Drilling Report on HorseflyProperty. Assessment Report 12,522.
- Campbell, S., 1984: (Placer Development Ltd), A Diamond Drilling Report on Horsefly Property LS1, AB3 Mineral Claims. Assessment Report 12,301
- Cannon, R. and Pentland, W.S., 1983: Geological, Geophysical & Geochemical Report on the Horsefly Property.
- Carne, J.F., 1984: (Rockridge Mining Corporation), Geological and Geochemical Report on the Ravioli 85-1 to 3 Group. Assessment Report #13,741.
- Cruz, E., 1975: (Exploram Minerals Ltd), Geochemical Survey on the HS-D Mineral Claim Group. Assessment Report 5548.
- Cruz, E., 1977: (Exploram Minerals Ltd), Assessment Work #6315 on the WL Claims. Imperial M'3tals Corporation 2000 Annual Report
- Hallam Knight Piesold Ltd., 1993: Kemess South Gold-Copper Project, Application Report, Volume 1 Executive Summary.
- Lang, J.R., Stanley, C.R. and Thompson, H.F.H. (1993): A Subdivision of Alkalic Porphyry Cu- Au Deposits into Silica-saturated and Silica- undersaturated Subtypes; in Porphyry Copper-Gold Systems of British Columbia, Mineral Deposit Research Unit, University of British Columbia, Annual Technical Report -Year 2, pages 3.2-3.14.
- M.E.G., 2001: Vancouver Mining Exploration Group (Short Course), Iron Oxide Copper-Gold Deposits.
- Main, C.A. and Came, J.F., 1984: (Archer, Cathro & Asoc.), Geological and Geochemical Report on the Rav 1-4 Group. Assessment Report 12,268.
- Main, C.A., 1986: (Rockridge Mining Corporation), Trenching Program on Megabuck Mineral Property by Archer Cathro & Assoc.
- Main, C.A., 1987: (Archer, Cathro & Asoc.), Geophysical Report on Megabucks Property, by Delta Geoscience Ltd.
- McMillan, W.J. (1991): Porphyry Deposits in the Canadian Cordillera; in Ore Deposits, Tectonics and Metallogeny in the Canadian Cordillera, B. C. Ministry of Energy, Mines and Petroleum Resources, Paper 1991-4, pages 253-276.
- McMillan, W.J. and Panteleyev, A. (1988): Porphyry Copper Deposits; in Ore Deposit Models, Roberts, R.G. and Sheahan, P.A, Editors, Geoscience Canada, Reprint Series 3, pages 45-58.
- Morton, J.W., 2001: (Wildrose Resources Ltd.), Summary Report on the Woodjam Property. In- house Report.
- Mutschler, F.E. and Mooney, T.C. (1993): Precious Metal Deposits Related to Alkaline Igneous Rocks -Provisional Classification, Grade-Tonnage Data, and Exploration Frontiers; IUGS/UNESCO Conference on Deposit Modeling, Ottawa, 1990, Proceedings Volume, Geological Association of Canada, Special Paper 40, pages 479-520.
- Panteleyev, A. 1995: Porphyry Cu-Au: Alkalic, in Selected British Columbia Mineral Deposit Profiles, Volume 1 -Metallics and Coal, Lefebure, D.V. and Ray, G.E., Editors, British Columbia Ministry of Energy of Employment and Investment, Open File 1995-20, pages 83-86.

Peatfield, G.R., 1986: (Big Rock Gold. Ltd), Megabuck Mineral Property, by MinQuest Exploration Associates Ltd. Inclusion in Prospectus.

- Pentland, W., 1983: (Placer Development Ltd), A Geochemical Report on the Horsefly Property. Rebagliati, C., 1983: (Rebagliati Geological Consulting Ltd.), MEGABUCK -A Synvolcanic Alkaline Intrusive Associated Gold Prospect. Summary Report.
- Scott, A., 2001: (Fjordland Minerals Ltd), Logistical Report -Induced Polarization and Magnetometer Surveys by Scott Geophysics Ltd,.
- Stevenson, D., 1991: (Auspex Gold Ltd.), Geology and Geochemical Report on the Takom 1-2 Claims. Assessment Report 21,221.

Sutherland Brown, A., (1976): Porphyry Deposits of the Canadian Cordillera; Canadian Institute of Mining and Metallurgy, Special Volume 15, 510 pages.

- Walker, T., 1992: (Noranda Exploration Company Limited), Summary Report of 1992 Exploration Activities on the Megabuck Property.
- Watson, I.M., 1984: (Rockridge Mining Corporation), Report on the Starlike Property, Inclusion in prospectus.
- Wetherup, S. and Kulla, G. 2000: (Phelps Dodge Corporation of Canada, limited), Diamond Drilling Report on the Woodjam Property.
- White, G. and Cruz, E.D., 1974: (Exploram Minerals Ltd), Geophysical Report on Magnetometer and I nduced Polarization Surveys. Assessment Report 5411.

White, G. and Cruz, E.D., 1974: (Exploram Minerals Ltd), Geophysical Report on HS Mineral Claims. Assessment Report 5311.

White, G. and Cruz, E.D., 1974: (Exploram Minerals Ltd), Geophysical Report on Magnetometer and Induced Polarization Surveys, Ray Mineral Claims. Assessment Report 5299.

White, G. and Cruz, E.D., 1914: (Exploram Minerals Ltd), Geophysical Report on HS 1-46 Mineral Claims. Assessment Report 4766.

Wilson, B, 1985: (Archer, Cathro & Assoc Ltd), Column Cyanide leaching of Megabuck Ore, Horsefly, B.C.. Unpublished Report.

10. Author's Statement of Qualifications - L. John Peters

As author of this report, I, Lawrence John Peters of 88-6700 Rumble Street, Burnaby, B.C., CANADA, V5E 4H7 certify that:

- 1. I am a consulting geologist employed by Fjordland Minerals Ltd, 1550-409 Granville Street, Vancouver, B.C. V6C 1T2.
- 2. I have been involved in mineral exploration and production domestically and abroad since 1985. I graduated with a Bachelor of Science degree from the University of Western Ontario in 1984. I am a member in good standing with the Association of Professional Engineers and Geoscientists of British Columbia (License # 19010).
- Relevant experience includes working on numerous gold and base metal exploration projects in British Columbia and Yukon Territory (1985-present). Exploration highlights include reporting on the Jo claims for inclusion in prospectus for listing of Tyme Resources Ltd (1988), production geologist for North American Metals Ltd's Golden Bear Mine (1989-93), exploration geologist defining placer mining reserves in Yukon (1994), exploration manager for International Tournigan Ltd's gold properties in Mali and Ghana, West Africa (1994-1997), and diamond exploration in Greenland (1998).
- 4. The principal sources of information and data used in the preparation of this report, and acknowledged throughout the report, are assessment reports listed in the References section of the report as well as the results of a recent exploration program conducted by Scott Geophysical Ltd for Fjordland Minerals Ltd in 2001.
- 5. I was not involved in any of the previously reported work programs on the Woodjam Property, however, a property visit was conducted by the author between 27 August to 29 August 2001.
- 6. I am not aware of any material fact or material change which is not reflected in this report.
- 7. I am not a shareholder of Fjordland Minerals Ltd, however, I hold incentive stock options in the Company.
- 8. I have had no involvement with the Woodjam Property prior to the 2001 property visit.

Dated at Vancouver, British Columbia, this 29th day of December, 2002.

FESSION PROVINCE PETERS

L. John Peters, PGeo

Statement of Qualifications - Rudolf Durfeld

I, Rudolf M. Durfeld, do hereby certify:

1. That I am a consulting geologist with offices at 2029 South Lakeside Drive, Williams Lake, BC.

2. That I am a graduate of the University of British Columbia, B.Sc. Geology 1972, and have practiced my profession with various mining and/or exploration companies and as an independent geologist since graduation.

3. That I am a member of the British Columbia and Yukon Chamber of Mines.

4. That I am registered as a Professional Geoscientist by the Association of Engineers and Geoscientists of British Columbia (No. 18241)

5. That the core descriptions are based on my drill supervision and core logging for the Woodjam property from August 8th to October 26th, 2002.

Dated at Williams Lake, British Columbia this 20th day of December 2002.

R.M. Durfeld, B.Sc., P.Geo. (Geologist)

i []

.

-

i I

-

. .

i

;

;

1

ł

; } [

APPENDIX A

DRILL LOGS

. . . .

:

- ----

.....

1

	Hole	2002-24			·	Northing Easting	Elev.			[
				-		5790973 610393	923		1							
	Depth	Azimuth	Dip						1							
	0	130	-45						1							
	219.45	130	-45						1							
 						· · · · · · · · · · · · · · · · · · ·		_	<u> </u>							
From	То	Sample #	Litholog	Cu %	Au g/T	Geology Characteristics	Ру	Сру	Mag	Cal	Epi	Chl	Ser	Saus	qtz	hem
0	3.7	1	OB			OVERBURDEN										
3	6	250601	9	0.004		3.65-23 M Pyritic silicious Fine Crowded Feldspar Porphyry	5	tr	n				S			
6	9	250602		0.002	0.004	- oxidized and poor core recovery to 8M	1									
						- relic white milky feldspar grains - euhedral to rounded up to 2mm in a fine										
9	12	250603		0.003		felsic silicious matrix										
12	15	250604		0.001	0.004	- no matics - destroyed by alteration					Ĺ					
						- mineralization - dots of fine pyrite irregular shaped but intergrown in a fine]									
	İ					felsic matrix 4 to 5mm comprising 5 to 10 % sulphide throughout - some			1			1				
15	18	250605		0.003	0.004	minor fine cpy intergrown with the py.	}									
						- core looks sugary - seem soft, but at closer inspection much of the matirx										
						is quartz - the lack of matics and altertion of feldspars may be due to				1						
18	21	250606		0.003	0.001	sericitization.		1	ŀ							
21	24	250607		0.002	0.003	- 14.2 m late 1cm wide clay, qtz,py, cpy vein @ 60 to core axis										
						- locally included relic irregular shaped fragments / crystals? Up to 3 cm										
						- non magnetic										
								1								
24	27	250608	9	0.002	0.005	23 - 40.5 M Same as above except more green in colour.	5	tr	n			m		W		·
27	30	250609		0.003	0.003	- fsp and matrix more green - saussertization										
30				0.002	0.003	- relic mafics			[
33		250611		0.003	0.004	- sulphide less intense but may be higher cpy ratio.			1	[1					
36				0.003	0.002											
39	42			0.002	0.006			1	1							
42	45	250614	3	0.008	0.007	40.5 - 50 M Fine grained brown green felsic	5	tr	n				1			
45				0.010		- consisting of felsic and matic grains to 1mm in a fine felsic matrix					1		1			
48		250616		0.009		- 5 to 10% very fine dis py with tr cpy intergrowth			1		-					
						- 45.3 qtz vein @ 20 to CA rare hairline fractures containing fg			1	1						
51	53	250617		0.011	0.005	pyrite.42:43										
53		250618		0.009					1			1		1		
56				0.005		50 - 72.5 M Fine Grained yellow green grey granodiorite		1		<u> </u>	1	1		1		
59				0.004		- felsic XI and mafic xI to 2mm intergrown in a fine felsic matrix							1			
62				0.004		- st chlorite on matics			1		[1			
65				0.007		- included 3cm fine grained clasts / fragments.							1	1		
							† · · ·		1				1			
68	71	250623		0.016	0.009	- weak magnetic - note magnetite grain rimmed by py and lesser cpy, bn		-								
· ·				1		- locally mottled green due to stronger epidote. locally grades into fine			1				T	T		
1	1			1		feldspar porphyry with epidote alteraiton providing fine green mottled								1		
71	74	250624		0.011	0.009	texture.	1			Ì						

From	То	Sample #	Litholog	Cu %	Au g/T	Geology Characteristics	Py	Сру	Mag	Cal	Epi	Chi	Ser	Saus	qtz	hem
			¥_			- texture suggests high level										
						- minor late qtz-carb- epi veins 2 to 3 mm thick at assorted angles to CA				ļ						
74	77	250625	9	0.009	0.004	72.5 - 79 M Light grey fine grained feldspar porphyry	5	t	n	m	t	n	m	n	1	
t						- fresh euhedral to sub rounded feldspar xls 1 to 2 mm in a fine felsic wk			1				1			
77	80	250626		0.006	0.006	carbonatized mtx.		1	<u> </u>	w		w	w			
						- some rounded dark specs, wk magnetite with py.		ļ		<u> </u>		ļ				
						- no epidote	<u> </u>		<u> </u>	ļ		<u> </u>	<u> </u>			
ŀ						- 2 to 5% sulphides, uniformly disseminated as fine grained specs and blebs, some containing tr cpy.	1									
<u>+</u>						- no mafic clasts or fragments.			1		-		ļ			
						- 76.8 - 77.2 calcareous gouge zone	+		+			<u> </u>				
80	83	250627		0.012	0.006				+			+			_``	·····
83	86		9	0.003		79 - 95 M CrowdedFeldspar Porphyry - (contact transition zone)	+	<u> </u>		†		+	† 			
		LUUULU		0.000	0.001	- milky to pink feldspar up to 5mm euhedral and crowded in a fine felsic				<u> </u>						·
86	89	250629		0.004	0.005	silicious matrix.					t	-			ĺ	
89	92			0.002		- wk seritization	1	1		<u>† </u>	n					
92	95			0.004		- increase of matic with depth - altered to chlorite		t	+	<u> </u>		<u>+</u>				t
	~~					- feldspar and chlorite porphyry in matrix with fragments varying from fine			1		1	1				
		-				grained felsic to fine prophyry (1 to 10 cm frags)										
						- 5 to 10% pyrite dis and as clots - cpy upto 2% and trace bn.							1			
95	98	250632	1	0.005	0.002	95 - 110 M Andesite Porphyry / fragmental							W			
98	101	250633		0.006	0.003	- subrounded fp and fine felsic fragments to 15cm in a finer felsic matrix.		t		w			n		1	t
101	104	250634		0.004	0.002	- very fine hematite banding @ 70 to CA.		1		m					5	w
104	107	250635		0.004	0.001	- selective replacement of some fragments with py and late py veins with trace cpy.									ľ	
107	110			0.006		stronger overall sulphide mineralization			1							
101		200000		0.000			+	1	n	m	n	w	n	n	5	w
110	113	250637	6	0.007		110 - 120 M Fine Grained Banded Andesite	<u> </u>	'	<u>.</u>		1		1.			
		200001	- - -	0,001	0.002	- grey green fine grained volcanic with included feldspar porphyry			1	f			†			
113	116	250638		0.007	0.002	fragments, finely laminated @ 80 to CA						Ì				
116	119			0.004		- matrix is weakly silicious	1	İ		<u> </u>						
119	122			0.002		- 5 to 10% py with trace cpy and bn sections with 1% cpy.	1			1						
							1									
					······	120-135.5 M Flow Breccia medium green, fine grained, light green to			1							
122	125	250641	5	0.002	0.002	reddish brown possibly hematitic lomuations at 76 to CA.										
						-chlaritic throughout										
												1				
						123.9-135.5 M Fragments become more pronounced, varying in size 1/4						_				
						cm to 5 cm, angular to sub rounded commonly rimmed and are replaced by	1	1					1			
						sulfied mainly Py. Most frags have underground Chlorite and epidote										
125	128	250642		0.002	0.026	alteration weak to moderate.										

.

- -

- -4

From	То	Sample #	Litholog	Cu %	Au g/T	Geology Characteristics	Py	Сру	Mag	Cal	Epi	Chi	Ser	Saus	qtz	hem
128	131	250643		0.002	0.019	-very weak carbonatzation throughout										
131	134	250644		0.002		-non magnetic										
						-2 to 5% net sulfide content. Mostly very fine grained pyrite as blebs and	ŀ				1					
						clasts up to 2 to 3 cm uniformly distributed throughout with trace to 1 %						[
134	137	250645		0.004	0.005	сру.							L			
									<u> </u>							
137	140	250646	1	0.003	0.009	135.5 - 159 FINE GRAINED VOLCANIC with local variations.										
						- medium grey - green fine grained bolcanic varying from fine massive										
140	143	250647		0.008	0.017	textrue to zones up to .4 to 1 metre of coarser grained (included FP?)			ļ	L						
						- finer sections show laminations of light green and reddish brown	1									
						(hematite) at 60 to 70 to CA with hairline to 2cm qtz carbonate veinlets @		1	1	İ						
143	146	250648		0.008	0.018	70 to and sub parallel to CA.		<u> </u>		ļ						
						- up to 5% disseminated sulphides fine grained containing up to 1% cpy as		l.	1							
146	149	250649		0.003	0.062	uniformly distributed specs and blebs.	· · · ·									
149	152	250650		0.007		- very weak carbonatized	1	 				·				
152	155	250651		0.002		-138.5 - 140.1 coarse grained breccia, carbonate broken up core.		<u> </u>		+						
155	158	250652		0.006		- 148 - 148.5 qtz, carb, chi shear parallel to core axis.		<u> </u>			<u> </u>					
158	159	250653		0.002		- non magnetic				<u> </u>				· ·		
159	159.5	250654		0.041	0.026	- 140-146 pyrite 5% 149 - 152, 153-155 tr cpy										
				0.000	0.044								-			
159.5	161	250655	5	0.006	0,041	159 - 162.34 FLOW BRECCIA						-				
						medium and any first emission unable laminated flow brancis participing					ł					
404	404	DEDEÉÉ		0.049	0.020	- medium green grey fine grained weakly laminated flow breccia containing felsic and matic fragments to 2 cm in a finer chloritic calcareous matrix.				i i						
161	164	250656		0.012	0.030	- 159 - 159.5 included zone of stronger brecciation as angular fragments		+		+						
						supported by strongly altered chloritic and calcareous matrix - slightly					·					
						stronger cpy apparent.										
						- 5% net sulphides mainly fine grained dis py as specs and blebs with										
						associated trace to 1% cpy.strong cpy 159-159.5m										
						- 159.5 - 162 fine py 5%		· · · · · ·	+							
				<u></u>					+						· ·	
164	167	250657	4	0.012	0.052	162.43 - 170.2 FINE GRAINED LAMINATED VOLCANIC	+	<u>†</u>		1	1					
	101	200001				-brown grey fine grained volcanic characterized by light reddish brown finer			1				1			
167	170	250658	ļ	0.019	0.082	grained hematitic laminations up to 4mm @ 70 to CA										
						- 163.37-163.9 coarser grained seciton - FP with a 1 cm vein of	+	1		+						
						atz.carb.chl								ļ		
						- 5% py and dis cpy througout										
							1	1		-						
170	173	250659		0.023	0.083	170.2 189.6 FINE LAMINATED VOLCANIC										
						- medium to dark green fine grained laminated volcanic characterized by a		1			1					
						strong quartz carbonate stockwork, still hematite laminations but wearker					1					
173	176	250660	1	0.018	0.045	than previous sections, wk pyrite	Ì									
176	179		<u>† </u>	0.031		- average 2-3 cm qtz carb veinlets at various angles to CA.	1	1				1		1		

-

- -

. _ .

A. A. .

From	То	Sample #	Litholog	Cu %	Au g/T	Geology Characteristics		Сру	Mag	Cal	Epl	Chl	Ser	Saus	qtz	hem
						- containing localized propylitic alteration as light green zones rich in chl and										
179	182	250662		0.052	0.208					ļ						
						- 181 - 187 Brecciated zone comprised of sub angular andesitic fragments,										
182	185	250663		0.050	0.224	some hematilitic in an epi-carb-chl matrix. Stronger blotchy cpy in this zone.										
						- up to 5% net sulphide mainly py and up to 1% cpy as diss, blebs and			1							
185	187	250664		0.067	2,384	occasional stringers. Cpy appears stronger overall.			1							
187	189	250665		0.035												
			5			189.6 - 191.6 DARK GREEN CHLORITIC VOLCANIC BRECCIA										
189	191	250666		0.048	0.140	-contains chloritized felsic fragments in a finer chloritic matrix					1					
191	191.6	250667		0.158		-fragments contain specularite and pyrite intergrowths - mod calcareous										
						-trace fine										
						-191 - 191.6 coarse blebby cpy in chl-qtz-carb veinlet			ľ	1						
	· · · · · · ·]								
						191.6 - 197 INTENSE BRECCIATED FAULT GOUGE SOFT SERICITE			1	1						
			3			AND CLAY	-									
191.6	193	250668		0.005	0.016	- dis 5% py		1								
						- It green grey strongly altered volcanic bx, angular and subrounded			1							
						fragments wk chloritic and calcareous matrix. Dark brown hematitic stains						1				
193	195	250669		0.002		on breaks			1							
197	197	250670		0.003		- distinct upper and lower contacts to this fault zones										
						- @ lower contact 20cm hematitic band.		1		1						
						9		†			<u> </u>					
			5			197 - 219.45 VOLCANIC FLOW BRECCIA	1		1	1						-
						- medium to dark green and reddish brown medium to coarser grained	1		1	1						
						volcanic and flow breccia, comprised of angular felsic fragments (FP) .5 to						ĺ				
	1					15cm supported by a fine grained moderate to strongly altered chloritic			i i							
197	199	250671		0.035	0.350	matrix that is weakly calcareous.]				i.					
						- green chloritic sections contain prevasive specularite which gives a			+	1		· · ·				
199	201	250672		0.063	0 339	reddish tinge to the core and cuttings.		ł								
100		200012		01000	0.000	-2 to5% sulphides with tra cpy throughout. Cpy occurs as coarse blebs in				1	1		1			
201	203	250673		0.051	0.197	lower chloritic zones.								1		
203	205	250674		0.064		-201 - 203 , 213-219.45 visible cpy as fine dis and coarser blebs.	<u>+</u>		1							
205	207	250675		0.012			···-	1	1				†			-,
203	209	250676	· · · · · · · · · · · · · · · · · · ·	0.012			<u> </u>	<u>†</u> -	1	1	1	····-	1			
207	209	250677		0.017		· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>	1	1	+	<u> · · · · </u>	1			
211	213			0.027			<u>†</u>	†	1	1						
213	215			0.021							+					
215	215		l	0.000				<u> </u>	1		1	<u> </u>	+			
	219.45		EOH	0.010		219.45 END OF HOLE (720 feet)				1	+		1			
<u> </u>	213.40	#30001		0.010	0.030	Acid test done @ 720' - angle read 54d corrected angle 45 d.	 	<u> </u>	+	+	<u> </u>		<u> </u>			

*****· •

- -

- - - -

- •

1

	Hole	2002-25	i			Northing Easting	Elev.									
						5790712 610354	910									
	Depth	Azimuth	Dip					1								
	0	300	-43					··				<u> </u>				
	205.74	300	-42				+					· · · ·				
	400.14				L		_	+	+			+		<u> </u> -	• • • • • • • •	
From	То	Sample #	Lithology	Cu %	Au o/T	Geology Characteristics	Pv	Cnv	Mag	Cal	Eni	Chi	Ser	Saus	qtz	hem
0	9.75	1	OB			OVERBURDEN - case overburden and bedrock										-
					<u> </u>							1	<u></u> ∙	· · · ·	· · ·	
9.75	11.75	250682	9	0.031	0 287	9.75 -13.5 FELDSPAR PORPHYRY	1	n	n	w	w	m	n	w	2	
3.10		LOUGOL		0.001	01201	- light beige to milky green anhedral to euhedral to 2 mm and light green		 	† ``			1			·	+
						relic mafic grains and black hematite clots (2 %) to 1 mm in a fine felsic										
44 75	49.75	250683		0.043	0 338	matrix.								1		
11.75	13.75	250665		0.043	0.000	- less than 1% dis sulphides		+	· ·	·				<u> </u>		
					 	- alteration as apple green of fsp (epi) and chi of mafics						+				
				L	<u> </u> =	- מונטיפטטה פס מאוים צוסטו טרוסף נסאו מווט טוו טרוומווטס		+	<u> </u>			-		1		
40 70	45 75	250684	9	0.021	0.240	13.5 - 26.5 ? INTENSE SERICITE AND CLAY ALT'D, SILICIOUS						+		+	·	-
13.75	15.75	200084	- 	0.021	0.249	13.3 * 20.3 THATENOS OFRIGHE AND GLAT ALT D, SILICIOUS			 	<u> </u>		1	<u>↓</u> ·	<u> </u>	<u> </u>	
	477.7-	050005		0.007	0.004	the light holes any inh ones fine an ined fairly with fire of our survival			_			-	-		1_	m- 5%
15.75	17.75	250685		0.027		 fine light beige gravish green fine grained felsic with fine <1mm quartz xi 	5. [1]	μ <u> </u>	n	W	w	n	S	w	8	111- 576
17.75	19.75	250686		0.027	0.102	- the fine dark mottling is due to fine hematite		<u> </u>	<u> </u>			+				
19.75	21.75	250687		0.028		- alteration sericite, silicification		<u> </u>	<u> </u>							
21.75	23.75	250688		0.020	0.294	- trace cpy								1		
						- Intense altered section where the primary texture is generally erased -										
23.75	25.75	250689		0.046	0.255	20.12 short section of relic fine feldspar porphyry			ļ							
								ļ. <u>.</u> .								
						26.5 - 36.6 SHEAR ZONE OF INTENSE SERICITE AND CLAY ALTD,										
25.75	27.75	250690	9	0.051	0.218	SILICIOUS	n	n	n	W	n	n	8	W	8	m
27.75		250691		0.044		- looks similar to above but strongly sheared and gouge.							<u>.</u>	ļ		
29.75	32	250692		0.086	5	- weak pyrite - weak calcareous										
32	34	250693		0.058										1		
34	36	250694	9	0.023	0.148	36.6 - 88.6 INTENSE SERICITE AND CLAY ALTERED FINE QFP										
										1						
36	38	250695		0.026		 anhedral and hombiende crystals to 2 mm in a fine silicious fetsic matris 										
38	40	250696		0.074		- 3% dis hem throughout										
40	42	250697		0.077		- mafics altered to chlorite								{		
42	44	250698		0.051		- fsp to epidote										
44	46	250699				- fine laminations due to hematite banding.		1								
46	48	250700		0.079		- 46M - 49.75 minor qtz cpy vein					1					
48	50			0.090	0.368	- strong sericite, chloirte, epi and hematite alteration.		1		}						
50	52			0.062			tr	n	n	w	n	w	ß	n	n	W
52	54			0.110	0.596			1				1		<u> </u>		
54	56		+ · · · · · ·		0.524			1	1	t				1		
56	58			0.080				1	1		1	1	t		<u> </u>	
58			<u>+</u>	0.105				1.	1	<u> </u>	<u>†</u>			t		
			<u> </u>		1	63-65 M more silicious and QV and sulphide instead of hem, tr cpy -qv /	+	1	†	t		+		<u> </u>	<u>+</u>	1
60	62	250088		0.092	0 462	stockworks some with epi and felsic setvages.	tr	n	n	w	n	w	n	n	n	w
			<u> </u>	0.006		- to 88.39 M section predominantly a FP with finer felsic sections maybe		+ '' ···	<u> </u>			+		+	<u> </u>	+
62	64	250089		0.121	0.541	alteration	tr	n	w	m	n	w	m	m	m	n
		1 200009	1	1.0.16.1	; v, um I		1.11	114	1 44					1010		10

.

· -

÷ · · ·

From	To	Sample #	Lithology	Cu %	Au g/T	Geology Characteristics	Py	Сру	Mag	Cal	Epi	Chi		Saus		hem
66	68	250091		0.188	0.890	< 68 to 70 coarse cpy as blebs and vein selvages	tr	tr	n	m	m	m	m	W	W	n
68	70	294234		0.146	0.661	-84 note BX with silica and felsic mbx.			1			1				
70	72	250092		0.098	0.766	- 78 some cpy with hem - check magnetic		-								
72	74	250093		0.308				-					1			1
74	76	250094		0.205	0.880		[··					1 · · ·				
76	78	250095		0.136	0.592		<u>†</u>			[1	<u> </u>		1		1
78	80	250096		0.093	0.546		1				<u> </u>	<u> </u>		1		
80	82	250097		0.059	0.311		tr	tr	п	m	m	m	m	w	w	n
82	84	250097		0.045	0.250	· · · · · · · · · · · · · · · ·	1							·····		
84		250099		0.121	0.541		n	n	n	8	w	w	w	m	n	w
				0.121		88.6 - 134 Fine Granodionite - (crowded QFP)			 "		1	+	"	<u> </u>		
86	88	250100	9	0.124	0.571	- anhedral feldpsar grains 3 to 4mm and strong altered homblende grains	··-·-	+	<u> </u>		· ·					
						- anneoral relicionary grains 3 to 4min and suring altered nonlinence grains and quartz eyes crowded in a fine silicious felsic matrix, ntense alt	tr	tr	tr	_	m	_		-	m	w
88	90	294201	· · ·	0.079	0.316	and quartz eyes crowded in a mie silicious tessic matrix, mense all		ur	(r	n	<u></u>	m	m	m	m	
						< matrix light pink / brown throughout due to K-spar / hematite. Apple green						1				
						crystals as chlorite / epidote after homblende. chlorite and epidote on								-		
90	92	294202		0.038	0.158	shears also	ļ				ļ		<u> </u>	_	.	
						< fine vein stockwork up to 3 mm thick of qtz mag cpy or k spar mag cpy.										
						The stockwork shows variable random angles. On all veins there seems to										
						be an alteration selvage of kspar, epidote and/or quartz. The dis cpy								1		
92	94	294203		0.045	0.198	mineralization is stronger near the vain structures.	tr	0.5	n	W	W	w	m	m	W	w
						< mineralization occurs in order of abundance as magnetite 5% and					-					
ļ						chalcopyrite up to 1% and in short sections up to 2%, on quartz and fine	1		1				ł			
						veinlets and disseminated. Tr Bn was noted. Mineralization is uniform			1					1		
94	96	294204]	0.054	0.203	throughout section.	1		1			-		1		
96	98	294205		0.091		< 82 to 84 strong qtz carb flooding with vuggy zones.					-	1		1		
98	100	294206		0.048		-89.4 note cpy with hem vn	1		+	<u> </u>			+	+	+····	
100	102			0.088	0 408	<92-94 lensoid and clotty epidote with cpy in qtz carb veinlets	tr	2	m	w	w	w	w	w	w	w
100	102	204201		0.000	0.400	<96 fine gtz-hem-cpy vn - 94 to 100 stronger coarser blebby cpy up to .5%			1	<u></u>	<u> </u>		<u> </u> -			
400	104	004000		0.059	0 225	copper						1				
102	104	294208		0.059	0.235	-103.5 whole section has fine veinlets of cpy with k-spar epi selvages - also		+		<u> </u>			<u> </u>	+	i	+
	400			0.000			tr	tr	m	w	w	w	w	w	w	w
104	106	294209	1	0.062		dis cpy.	u	u	111	W		W		17	n	
106	108	294210	1	0.058	0.216	- homogeneous section	+			──	–−-		–−	-		
108	110			0.082		< 100 to 106 1 to 2% cpy as vein setvages and fine dis.				 	····	+	ļ			
110	112			0.047		< 106 to 110 clay mush				ļ			ļ			
112	114	294213		0.056		< 112 - 128 cpy on vns and dis. Tr py	tr	2%	W	W	W	m	m	W	W	m
114	116			0.105			Ļ	ļ	L	ļ	·	ļ		ļ	<u> </u>	
116	118			0.062	0.241						1		<u> </u>	<u> </u>		
118	120	294216		0.065	0.317								<u> </u>			
120	122	294217	1	0.057	0.240		1	T								T
122	124			0.080		121.5 some sections will have better cpy on fn frac and dis.	1	1		1	1	1	1		1	
124	126			0.108			1	-	1	1	1	1	1			
126	120			0.106			1	+	1		+	+	<u> </u>	+	1	1
				0.062			+	+	1	1	+	1	1	+	+	
128	130	1		1				+	+			+	+			
130	132			0.095		Contact from 133 to 136 gradational.	<u> </u>	+	+	+	+	+	+			
132	134			0.085							+	+	+	+	<u> </u>	-+
134	136	294224	9	0.092	0.418	134 - 161.5 Strong Altered Fine Crowded QFP (K-spar, ser, epi, chi)	n	tr	n	W	m	W	m	m	m	m

-

-

۰.

From	To	Sample #	Lithology	Cu %	Au g/T	Geology Characteristics	Py	Сру	Mag	Cal	Epi	Chi	Ser	Saus	qtz	hem
						< distinct anhedral grains to 3 mm all a gree beige colour in a green beige	1					-	1	1		
						matrix. Primary lithology still mainly a fine QFP as above but change in	1			1			1	1		
136	138	294225		0.121	0.423	style of alteration.						i	1			
						Alteration is a prevasive ligh green beige (chl - epi - ser) mottled with	+	1	1		† – –		1	1.		
138	140	294226		0.087	0.289	pinky brown (k-spar)	tr	n	n	s	w	s	m	m	w	n
140	142	294227		0.057		< section shows fine brittle fracturing		<u></u>			<u> </u>					
			·			< mineralization - trace pyrite in lower section (147 - 161), non magnetic,		+			1			+		
						hematite fine dis 2% throughout with local veins with cpy @ 140m, 142.5,					i i					
142	144	294228		0.069	0.330	144. Copper very minor trace dis.					-		ļ			
144	146	294229		0.033			f		+				†			
146	148	294230		0.058				····	+		-	+	+			
148	150	294231		0.054			<u>† – – – – – – – – – – – – – – – – – – –</u>	+	†				<u> </u>	+		+
150	152	294232		0.055			<u>+</u>				<u>+</u>	<u> </u>	+			
152	154	294233		0.036			<u> </u>	+	+	+	+	t	+	1	·	1
154	156	294235		0.041			ł	n	л	8	w	S	m	m	w	n
156	158	294236		0.044			1	1				1		+	·····	+
158	160	294237		0.036			<u> </u>	+		<u> </u>		<u>†</u>	+			
160	162	294238	8	0.026		161.5 - 178 Fine Grained Massive Granodionite	t	m	m	w	m	m	w	w	w	n
		20 1200		0.010	01040	< Fine grained intergrowth of feldspar and homblende grains to 1 mm in a	<u> </u>			<u> </u>	<u> </u>	<u> </u>				+
162	164	294239		0.029	0 129	fine felsic matrix.	j	İ	Í							
102	104	20-12.00		0.010	0.120	In or epidote on matrix and stringers and veinlets, Wk chlorite on mafics,	+	· · · · ·		<u> </u>		<u> </u>	<u> </u>	+·		+
164	166	294240		0.020	0 070	minor epidote on fracture and veins as setvages.										
	100	237270		0.020	0.013	< whole section moderately magnetic.as disseminated magnetited, toward	┼───				┿			+		
						lower contact get hematite as bands / veins.Cpy noted as disseminated and				Ì						
						fine stockworks, may give sections of up to .1% copper no pyrite in				ĺ						
166	168	294241		0.020		section.							[
168	170	294242		0.020		< qtz carbonate veining @ 70 to 80 to CA 3 to 4 mm.	<u> </u>	·····		<u> </u>	<u> </u>	·····	<u> </u>	<u> </u>		
170	172	294243		0.022			┼──				<u> </u>					<u>+</u>
172	174	294244		0.022		Lower contact gradational.		+	+		+					
174	176	294245		0.028			──					<u> </u>		·		+
176	178	294246		0.029			<u> </u>							+		+
178	180	294243	3	0.028		178 - 205.74 Inense altered felsic	n	n	n	m	8	s	8	n	2	S
1/0	100	294241		0.004	0.000		<u> "</u>			111	9	3	8	11	f	3
						< fine grained amorphous beige to light green felsic with purple brown	1									
180	182	294248		0.002	0.060	mottling due to specular hematite - 187 to 190 limonite instead of hematite.							-			
182	184	294249		0.002		< no sulphide mineralization noted	<u>├</u>				÷					
184	186	294250		0.007		< 196 - 199 qtz carbonate healed bx of angular fragments up to 3cm.	┿────				+	<u>-</u>	+ • • • • •	· 	· · · · ·	
186	188	294250		0.007		read - read of the readed of the readed of the read	<u> </u>	+	+		<u> </u>		+	+		<u> </u>
	100	293829		0.012				+		<u> </u>		├	<u> </u>			
188		293829						-				<u> </u>	ļ	+		
190 192	192 194	293830		0.004			<u> </u>	├			<u> </u>	<u> </u>		+		
	194			0.007	1		<u> </u>	+			+	<u> </u>	<u> </u>			+
194				0.005				+			–	─	───			
196	198						ļ			ļ	<u> </u>					+
198	200		L	0.005			-		+			<u> </u>	<u> </u>		<u> </u>	
200	202	293835		0.000			<u> </u>	+	<u> </u>	<u> </u>	+	↓	┨	 	ļ	+
202	204	293836		0.000			Į	 			<u> </u>	ļ	<u> </u>	 	<u> </u>	·
204	205.74	293837	EOH	0.000	0.004	205.74 END OF HOLE (675 FEET)	[1		1	1			

. .

- - -

.....

	Hole	2002-26				Northing Easting	Elev.										
						5790900 610149	939										
	Depth	Azimuth	Dip									1				1	1
	0	80	-45						1			1			1		T
	209.1	80	-45					1		1	1						1
										1		1		[1	1
From		Sample #	Litholog	Cu %		Geology Characteristics	Py	Сру	Mag	Hem	Cal	Epi	Chi	Ser	Saua	qtz	Ks
0	21.33	1	OB			OVERBURDEN - case overburden and bedrock											
																	-
21.33	23	250201	9	0.018		21.33 - 42 M Intense Altered Fine Quartz Feldspar Porphyry	n	n	n	S	m	n	S	S	n	w	n
23	25	250202		0.002	0.013	- poor core recovery to 30 M	1				1						
25	27	250203		0.003	0.004	- strong oxidation to on fractures to 31M		1				1					1
27	29	250204		0.003	0.006	- light green grey to beige fine grained mottled			1	1		1					1
29	31	250205		0.006	0.006	- intense sericite alteration throughout, ie. Felsic	<u> </u>			1		1					
31	33	250206		0.017	0.008	- 5 to 10% hematite as black specs to 3mm.	-					1					-
33	35	250207	··································	0.011	0.037	- qtz eyes in matrix	2%	n	n	m	m	n	m	m	n	w	n
35	37	250208		0.006		- trace cpy with hematite.	t	n	n	m	m	n	n	m	n	w	n
						- 33 to 35 M several banded gtz-hem-cpy veins @ 30 to CA with weak	1	-		1							+
37	39	250209		0.007	0.010	calcite.									1		
39	41	250210	······································	0.012			1	n	n	<u>†</u>		1					+
41	43		8	0.012		42 - 48.3 M Fine Grained Granodiorite Dyke	1	w	w	m	í	†——	n	m			+
						- comprised of milky, stubby feldspar grains and relic homblende grains to	<u> </u>	<u> </u>	<u> </u>							†	+
43	45	250212		0.003	0.018	3mm in a fine felsic light brown matrix.		n	m	w	w		w	n			
45	47	250213		0.003	0.016	- strong magnetic up to 3% dis with hematite throughout	t		<u> </u>			n	w			· · · ·	1
47	49	250214		0.006	0.029	- 45 - 47 some wk altered 2 to 3 mm bladed homblende	<u> </u>		m	n	m	m	m				+
49	51		······	0.006		48.3 - 51.5 Transition Zone	n	·	n	m	1	<u> </u>		m	<u> </u>		+
						- 49 - 51 bright orange alteration mineral on quartz fracture.	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		m			·····	+
													w		ŀ		
51	53	250216	7	0.008	0.023	51.5 - 80 M Fine Grained Granodiorite - potassic attered	m	n		┼───	<u> </u>	m					
							<u> </u>								<u> </u>		+-
						- mottled as greeny beige - beige - pinky sub-rounded to stubby feldspar									-		
53	55	250217		0.006	0.060	grains to 3mm crowded in a fine light green silicious felsic matrix.		ł				w			İ		
55	57			0.007		- faint orange colour due to weak k-spar	<u> </u>						· · · ·	·			
00		200210		0.001	0.000	- coarse specs of specularite with intergrown pyrite - also up to 2% dis	+					<u> </u>		·			+
57	59	250219		0.010	0.019	pyrite with trace chalcopyrite.		+		m							
59		250220		0.006			m	n	n	m	m	w	w	m	n	w	In
61	63		<u></u>	0.005			<u> </u>							s		m m	m
63	65	250222		0.005	0.003		m	n	n	m	m	w		3	m	m	s
65		250222		0.005			<u> </u>	• •		111	641			3	<u> </u>	131	+
67	69			0.005					<u>├</u>		+		·		<u> </u>	┼───	+
69		250224		0.003						+		+					+
71	73	250225		0.004			+	+	<u> </u>		<u> </u>			<u> </u>		<u> </u>	s m
73		250220		0.007								<u> </u>		•	<u></u>	-	+
75				0.003			<u> </u>				L	ļ	W	9	W	m	W

- 4

-

rom	To	Sample #	Litholog	Cu %	Au g/T	Geology Characteristics	Py	Сру	Mag	Hem	Cal	Epi	Chl	Ser	Saua	qtz	Кара
77	79	250229	8	0.007		80 - 119 Fine Grained Quartz Monzonite		1						<u> </u>		W	
79	81	250230		0.010	0.005	- 3mm stubby feldspar grains crowded in a fine felsic matrix.		t				n	m	m	W	m	W
	1					- throughout contains fine grained sub-rounded volcanic fragments up to 4										ł	
		1				cm comprising up to 15% of the rock - may in part be a volcanic breccia or										1	
81	83	250231		0.011	0.002	flow?		n						[m
83	85	250232		0.008	0.002	- bleached bands as strong sericite throughout											
85	87	250233		0.005	0.002	- more pinky brown bands as potassic											
87	89	250234		0.006	0.002	- 5% sulphide, sections showing stronger cpy up to 25								1			
89	91	250235	·······	0.002	0.002	- 80 - 92 note weak epidote.								S		1	T
91	93	250236		0.002	0.004	- 92 - 98 strong altered with weak sulphide stockwork.											
93	95	250237		0.003	0.006	- 106 - 109 Intense sericite alteration.										1	
95	97	250238		0.003	0.003		1	1						1		1	1
97	99	250239		0.012	0.005		<u> </u>		-			1		1		1	
99	101	250240		0.002			<u>† </u>		1				1	1	1	1	
101	103	250241		0.001	0.009		1	1					1	m			1
103	105	250242	·····	0.002	0.007		1		1				†	<u>† </u>	1	1	†
105	107	250243		0.001	0.014		<u>+</u>								1		W
107	109	250244		0.003	0.019		<u> </u>						+	8		1	-
109	111	250245		0.002	0.026		m	t		w	9	<u> </u>	s	S	m	m	w
111	113	250246		0.003	0.016		···-					1		1		1	
113	115	250247		0.002	0.007		m	w	n	w	w	8	S	n	m	m	8
115	117	250248		0.002			<u> </u>	<u> </u>		<u></u>	··· ···	-	1		1	1	
117	119	250249		0.002		119 - 121 M Altered Contact Zone	+		-						†	†	+
119	121	250250		0.011	8.160	a free construction of the second second second second second second second second second second second second					w	m	-				+
121	123	250250	1	0.002		121 - 155 M Andesite Porphyry - Flow Breccia		+	+		8	m	·····	8		<u> </u>	m
	120	200201	1	0.002	0.012	- grey to green sections of fine grained laminated flows containing sub-	+	·			-			<u> </u>		<u>+</u>	+
1						rounded heterolithic fragments or rip up clasts of FP up to 10 cm in a											ł
						felsic, silicicus partly calcareous matrix. Some fragments are strongly			1								
		:				hematitic while others are replaced with up to 80% pyrite with occasional								1			1
	Í					intermixed chalcopyrite. In places fragments tend to be very fine grainded						ł		ļ			
400	405	050050		0.000	0.000	and silicious - cherty.	w	n	}			n				}	-
123	125	250252		0.003	0.005	- 5% sulphide throughout, mainly disseminated pyrite on mafics with trace		in .	. 	·	W	<u></u>	·	<u> </u>			m
405	407	050050		0.005	0.002	intermixed chalcopyrite.					w						
125	127	250253		0.005	0.003				+		w						
407	400	070054		0.000	0.000	- late qtz - carbonate veining @ 30 to 40 to CA as hairline to 3/4 inch,										1	
127	129	250254		0.002		whole section weak calcareous.			+		W	n			-	+	+
129	131	250255		0.003	0.001	- non magnetic	w	n	n	w	w	w	w	w	w	m	w
						- generally the fine grained silicious laminated zones are weakly											
131	133			0.004		mineralized.	m				<u> </u>	<u> </u>	+	W			
133	135	250257		0.005	0.004	- overall the alteration can be classed as weak propylitic	····		. 			n				ļ	
						- 147 - 149 appearance of sulphide replaced fragments and stronger			}		1						1
135	137	250258		0.005		propylitic and k-spar alteration.		<u> </u>			ļ	n	<u> </u>	m		<u> </u>	
137	139	250259		0.002						<u> </u>	ļ	n		m		 	
139	141	250260		0.005	0.003							n		W			

_ -

-- -

From	To	Sample #	Litholog	Cu %	Au g/T	Geology Characteristics	<u>Py</u>	Сру	Mag	Hem	Cal	Epi	Chi	Ser	Saus	qtz	Kspa
141	143	250261		0.004	0.003		m	t						<u> </u>		L	
143	145	250262		0.003	0.002			t									W
145	147	250263		0.004	0.002			n						W			m
147	149	250264		0.003	0.002			n				n					m
149	151	250265		0.007	0.003		m	t	n	W	w	W	m	W	W	m	w
151	153	250266		0.005	0.003									m			m
153	155	250267		0.006	0.004												
155	157	250268	4	0.005	0.002	155 - 173 M Fine Laminated Silicious Felsic					m						m
157	159	250269		0.005	0.004	- fine sulphide dis and as bands throughout 5%	w	n				n	W	W		W	
159	161	250270		0.007	0.002	- 157.6 - 158.3 GGBX ?										n	
161	163	250271		0.006	0.002	- 4 to 6 cm hematitic bands @ 50 to CA throughout			ſ		W			n	n		
163	165	250272		0.005	0.002									W	W	m	
165	167	250273		0.004	0.002							W			m		
167	169	250274		0.003	0.004							m	m				
169	171	250275		0.003	0.003									n	n		
171	173	250276	······································	0.002	0.003			n						W		W	
173	175	250277	5	0.001	0.004	173 - 178 M Calcareous Healed Andesite Crackle Breccia	m	t						n	m		
175	177	250278		0.002	0.003	- strong bx clay and calcite healed with pyrite on fractures.	w	n			m		8	W		n	
177	179	250279	5	0.002	0.002	178 - 194 M Heterolithic Fine Grained Andesite Breccia	w	n	n		w		S	W			
179	181	250280		0.001		- 1 to 2% sulphide			W	n	w	n	m	n	m	n	n
181	183	250281		0.001	0.001	- magnetite variable from weak to moderate					[W	1			
183	185	250282		0.002		- fragments up to 2 cm replaced by pyrite and trace chalcopyrite	m	m	m			W				m	
185	187	250283		0.002	0.002	- some fragments strongly chloritic and hematitic.		t					n				n
187	189	250284	· · · · · · · · · · · · · · · · · · ·	0.002	0.004												W
189	191	250285		0.002	0.002				1			m			1		n
191	193	250286		0.003	0.001				m			w	1	1			
193	195	250287	4	0.003	0.001	194 - 209.1 M Fine Laminated, Banded, to Massive Volcaniclastic						n	1				
195	197	250288		0.005		- variable pyrite, hematite and magnetite throughout		n			1	1	1	W	m	m	
197	199	250289		0.007		- may in part be fine grained dyke	m	t	W					1	1	m	
199	201	250290		0.006		- pyrite as disseminations, also coarse clots, also replacing fragments	m		1	m		T	1				T
201	203	250291		0.005		- note hematite clots containing fresh pyrite.	1	1	1			1					
			, , ,			- 199 - 209.1 this bottom section is strongly pyritic not unlike 121 - 155,		-		<u> </u>	<u> </u>	1		1	1	1	T
203	205	250292		0.006	0.002	although the brecciation and propylitic alteration are weaker.		1									
205	207	250293		0.007	0.003		m	n	w	w	w	n	w	n	m	m	n
207	209.1	250294	EOH	0.007		209.1 M End of Hole (686 feet)		· ···		+	w	n	w	n	m	m	n

 \supset

-	Hole	2002-27				Northing Easting	Elev.	•								
						5790647.24 610284.17	923									
	Depth	Azimuth	Dip					1			1	1		1	1	
	0	305	-44.5													
	223.11	305	-43													
											ļ			1		
From	То	Sample #	Lithology	Cu %	Au g/T	Geology Characteristics	Ру	Сру	Mag	hem	Epl	Chi	Ser	Saus	qtz	cal
						s - as alteration is silica flooding, v - vein, mtx - matrix					-					
0	28.5	1	OB			Overburden										
28.25	30	178001	5	0.010	0.070	28.25 - 38 M VOLCANIC FLOW BRECCIA	t	t	W	t	m	m	m	m	S	
						- comprised of fragments up to 6 cm in diameter, as fragments of feldspar										
						prophyry in a finer felsic and prophyry matirx, also fine grained and										
30	32	178002		0.033		heterolithic fragments.										
32	34	178003		0.029	0.166	- strong sericite on fractures, shears and matrix.G13			n							
34	36	178004		0.030						m						mv
36	38	178005	8	0.020	0.237	38 - 50.5 M FINE GRAINED GRANODIORITE			n							
38	40			0.017		- fine clear to milky feldspar grains to 2mm In a fine darker felsic matrix.			n	m-f	m	W	m	m	S	
40	42	178007		0.012		- magnetic througout			S		n	m	n	n		mv
42	44	178008		0.009		- calcite on fractures and matrix			w							S
44	46			0.013		- minor fine quartz on fractures			m							
46	48			0.015		- trace dis py and less cpy		<u> </u>	S	L						S
48	50	178011		0.022		- 44 m minor brown biotite	t	t	m		n	m	n	n	S	m
				0.000					S		m					
50	52	178012	3	0.014	0.070	50.5 - 61.5 M INTRUSIVE / VOLCANIC CONTACT ZONE	t	t	W	m-f						
						 Intrusive contact that seems to run into as series of altered shears and 	ļ									
52	54	178013		0.018	0.133	dykes @ 30 to CA.		L	n	t	1			L		
						- shear zones @ 53.8 - 54.7M, 55.4 - 55.7M , shears healed by quartz					1					
54				0.038		carbonate veining.		t		W						
56	1			0.052		- trace pyrite and minor epidote.	·	m	ļ							
58				0.032		- 55.3 - 61.5 m more volcanic in nature until short sections of intrusive		m	m	L	1	<u> </u>	<u> </u>	ļ		m
60	62	178017		0.018		- 55 -57 m note vesicules filled with calcite	t	m	W		m	m	n		S	W
				0.000	0.000	- 50.5 - 61.5 m cpy as fine stringers with quartz and disseminated.								ļ		
	<u> </u>			0.000		- 55, and 59 - 61 m quartz cabonate healed bx with strong cpy		ļ		ļ	<u> </u>		<u> </u>	ļ	<u> </u>	<u> </u>
				0.000	A	- epidote in clots and veins.		ļ	ļ	ļ	<u> </u>			ļ	·	
				0.000				L			<u> </u>		L	ļ	ļ	
62	64	178018	1	0.020	0.117	61.5 - 90 M FINE GRAINED ANDESITE	t	t	W	W	<u> </u>			ļ	S	<u> </u>
•			-			- massive fine grained comprised of <2mm mafic fragements in a fine				-		1				
	1					feisic and silicious matrix. Matrix seems to have a high silicious										
64	66	178019		0.019	0.075	component.	<u> </u>		m							

Durfield Geological

12/17/2002

From	To	Sample #	Lithology	Cu %	Au g/T	Geology Characteristics	Py	Сру	Mag	hem	Epl	Chl	Ser	Saus	qtz	cal
66	68	178020		0.012	0.045	- 71- 73 m fine grained granodiorite dyke.			W							
68	70	178021		0.013		- 73 - 84 m massive fine volcanic										W
70	72	178022		0.029	0.190	- alteration as calcite - chlorite - epidote on fine fractures			m							m
72	74	178023		0.019	0.117	 k-spar and epidote as fine selavages on qtz fractures. 										W
74	76	178024		0.025	0.121	- quartz carbonate healed bx 76 - 78 m, 78 - 81m			W							
76	78	178025		0.025	0.105		<u> </u>		m		L				ļ	
						- sulphides are as fine disseminated py and cpy, some stronger cpy on									1	
78	80	178026		0.024		fine fractures.			m		n					
80	82	178027		0.026	0.103	- 89 m fine qtz magnetite healed fracture with k-spar selvages.			W	.		·			<u> </u>	
						- 86.6 - 88 m some coarse blebby cpy, wk py massive silicious, massive					l				Í	1
82	84	178028		0.021	0.092	fine dark grey, green chloritic - soft to 88	t	t	W		<u> </u>				S	w
84	86	178029		0.017			<u>t</u>		<u> </u>	W	L	n			S	wv
86	88	178030		0.020	0.073		t	n				S	W	W	VS	w
88	90	178031		0.018	0.069		t	n		W	<u> </u>				VS	
						90 - 105 M FINE GRAINED MONZONITE - PARTIAL FELDSPAR									l	
90	92	178032	8	0.028	0.108	PORPHYRY	m				<u> </u>	S			L	
92	94	178033		0.014	0.091	- dis magnetite throughout, overall weak pyrite	t	n	W			m			L	
94	96	178034		0.019	0.138	- k-spar on fine fractures			m			m			L	
96	98	178035		0.018	0.127	- 90 - 91.6 strong dis py in soft green chloritic material					<u> </u>	W			L	
98	100	178036		0.015	0.103	- 94 - 102 soft shear zone	t		m	W						
100	102	178037		0.049	0.103	- 102.4 - 10 cm qtz-carb vein with coarse py, blebby cpy and hem	m	n	n	n	n				L	
102	104	178038	Í	0.049	0.521	- sub hedral mafic grains altered to apple green - chlorite	m	m	L						L	<u> </u>
				0.000	0.000	- 5% py and trace cpy to lower contact			1	<u> </u>	l				L	
				0.000	0.000						1		<u> </u>			I
			1			105 - 108 CONTACT ZONE FINE LAMINATED VOLCANICS AND			1	i i						
104	106	178039	3	0.035			S	m	n	n	ļ					л
106	108	178040		0.040	0.043	- 107 - 108 m monzonite dyke	m	n	W	w	<u> </u>	W	S			n
						- 105 - 107 strong altered fault bx @ 30 to CA with strong dis py and cpy,									1	
				0.000	0.000	rounded bx fragments, overall strong sericite altered			<u> </u>		ļ				<u> </u>	wv
				0.000		- 106 - 108 first occurrence of velned hematite					ļ				ļ	
				0.000	0.000						ļ				L	
						108 - 127.2 M PREDOMINANTLY FINE GRAINED BANDED OR										
108	110	178041	4	0.058	0.058	LAMINATED VOLCANIC WITH SHORT MORE INTRUSIVE SECTIONS.			m		ļ	S	S			mv
											ļ			ĺ		
110	112			0.108		- dis py and hematite veins in a strong propylitically altered rock, trace cpy	/m	n		W	ļ	S		L	L	mv
112	114			0.040		 111.5 - 116 m section of bx as 105 with strong dis py, 	t	t	m	m	Ļ	m			ļ	WV
114	116			0.011		- 111.5 - 113 strong hematite with cpy			n		ļ	m			ļ	- <u> </u>
116	118			0.017		- 116.5 - 122 predominantly volcanic.	<u> </u>	4	<u> </u>	m	ļ	W			<u> </u>	
118	120			0.015		- 116.5 hem / cpy veins	<u> t</u>	t	n	W	n	W				ļ
120	122	178047		0.015	0.048	- 122 - 124 more monzonitic? With dis py and tr cpy and hem - epi alt'd		1		ת					<u> </u>	

From	To	Sample #	Lithology	Cu %	Au g/T	Geology Characteristics	Ру	Сру	Mag	hem	Epl	Chi	Ser	Saus	qtz	cai
122	124	178048		0.026		- 124 dis py and trace cpy with brown blotite?										
				1		- 108 - 110 1cm hem vein @ 30 to CA, dis py and coarser cpy throughout,										
124	126	178049		0.014	0.033	prevasive calcite veining.	L		w							
126	128	178050		0.018	0.049	- 114 - 116 chloritic shear parallel to core axis	m		W							WV
				0.000	0.000	- 116 - 120 dis pyrite										
				0.000												
128	130	178051	4	0.012		128 - 132 M FINE BANDED VOLCANIC HORNFELS			n							mv
130	132	178052		0.033		- dis pyh and hem to 5% throughout	៣		W							
				0.000		- banded core may in part be intrusive sections of fine biotite hornfels										
				0.000		- 131.5 cpy on fine qtz vein @ 40 to CA										
				0.000		- dis magnetite		ļ								
				0.000				ļ								
132	134	178053	8	0.042		132 - 137.5 M FINE GRAINED MONZONITE - (dykes - sills)	W	<u>n</u>	m							
134	136	178054		0.023	0.115	-133m qtz-hem-py vein @ 30 to CA	W	W								
136	138	178055		0.030	0.157	- dis magnetite, weak sulphide - very fine dis trace cpy	t	t								
				0.000		- alt as sausseritization of fsp and strong chl on mafics										
				0.000	0.000	- 134m fine cpy veins										
				0.000												
138	140	178056	4	0.026	0.125	137.5 - 144 M FINE BANDED VOLCANIC HORNFELS	W	n	m							mv
140	142	178057		0.014	0.035	- banding @ 30 to CA, upper contact @ 50 to CA	t		S							wv
142	144	178058		0.008		- 7% dis hem and trace cpy throughout, some on fine qtz fractures										mv
				0.000		- strong chlorite and sericite alteration										
				0.000	0.000	- matrix is silicious				:						
				0.000	0.000											
144	146	178059	8	0.016	0.088	144 - 150 M FINE GRAINED MONZONITE (dyke - sill)			S							
146	148	178060		0.025	0.194	- up to 5% magnetite and hem			W							
					[- strong chlorite and sericite altered - fine vein selvages show k-spar										
148	150	178061		0.032		flooding			n							
				0.000	0.000	- fine trace dis cpy throughout										
				0.000	0.000											
150	152	178062	4	0.021	0.118	150 - 153 M FINE BANDED VOLCANIC HORNFELS			W							
152	154	178063		0.026		- fine dis py-hem-cpy]		S							
			· · · · ·	0.000		- strong sericite - chlorite altered										
				0.000	0.000	- lower contact @ 40 to CA										
				0.000												
154	156	178064	8	0.034		153 - 171 M FINE GRAINED MONZONITE										
156	158			0.035		- 3 to 5% dis hem throughout			8							mv
158	160	178066		0.010		- trace cpy on fine fractures	t		m							
160	162	178067	· · · · · · · · · · · · · · · · · · ·	0.019		- intrusive contact appears sub-parallel to the core axis.	W									
162	164	178068		0.015	0.084	- 156 - 158 included section of fine hornfels, more chloritic, pyritic.	n									

C	T	Sample #	Lithology	Cu 9/	Au alt	Geology Characteristics	Pv	Cov	Маα	hem	Epl	Chl	Ser	Saus	atz	cal
From 164	<u>То</u> 166	178069	Linology	0.019	0.077	- 166 - 169 included fine grained volcanic	n	UPJ						<u>ouno</u>		
164	168	178070		0.013		- 169 - 172 more chloritic with dis py and trace cpy on fractures.	+	n								
168	170	178070		0.037	0.075		t	t								
170	172	178072	4	0.014		171 - 191 M MASSIVE FINE GRAINED VOLCANIC	m									
170	174	178072		0.011		- moderate magnetic throughout, dis pyrite, minor cpy	S	t								
174	176	178073		0.007		- quartz carbonate veining @ 40 to CA - weak epidote.	m	n								
174	178	178074		0.007		- 172 - 174 more blebby chalcopyrite on fractures										
178	1/8			0.007	0.021		m									
178	182	178077		0.005	0.018		t	<u> </u>	<u> </u>		• •			[
182	184	178078		0.003	0.009		•									
184	186			0.004	0.003											
186	188	178080		0.005			+									
188	190			0.005			m		m							
100	190	1/0001		0.000	0.010	191 - 201M VARIABLY ALTERED GRANODIORITE TO QUARTZ	<u> </u>		 							
190	192	178082	8	0.015	0.025	MONZONITE			s						1	
190	192	170002	0	0.015	0,020	- mafic and felsic phenocrysts in a finer felsic, chloritic, silicious matrix.			<u> </u>							
						Feldspars are anhedral to sub-rounded up to 3mm and occasional tabular										_ }
400	404	178083		0.005	0.027	homblende to 4mm.			m			1				
192	<u>194</u> 196	178083		0.005		- dis py and specularite throughout, moderately magnetic.		n								
194	190	1/0004		0.005	0.030	- 193 -197 light grey-green zone due to epidote flooding, primary texture										
						destroyed except for relic feldspar. Strongly magnetic, dis py and hem.										. 1
400	400	470005		0.000	0.079	Minor calcite veining. Trace chalcopyrite.					l				w	w
196	198	178085		0.008	0.073	- 197 - 201 contains sections of strong altered beige coloured zones 197.1	<u></u>								**	**
						197.4, 198.1-198.5, 199-199.3, 199.5-200.1- weaker epidote, beige due to	1		1							, I
		470000		0.000	0.074				-							.
198	200	178086	ļ	0.006		sericite and calcite. Dis py and sparse hematite.	· ·		m				· _ · ·		m	m
		470007		0.000		201 - 204 M ALTERED SHEAR ZONE			w	m						m
200	202	178087	3	0.004	0.026	201 - 204 M ALTERED SHEAR ZONE		ļ	<u>w</u>	m					m	
		•				- strong quartz calcite veining centred on a brecclated zone 202 - 203.5M,			1						•	
						contains strong dis py 5% as matrix and breccia fragments. Matrix is										
				0.000	0.007	quartz carbonate and contains quartz fragments. Trace bornite and			-							
202	204	178088		0.002		chalcopyrite.			·							
				0.000		- 203M framboidal cpy and hem on qtz frag.	m		<u> </u>							i
				0.000		- 204 m 10cm qtz carb vein with dis py and hem.	<u>τ</u>	n	W	m						
			<u> </u>	0.000			+	t								├───┤
204	206	178089	8	0.004	0.080	204 - 223.11 M QUARTZ MONZONITE			m	m						
		1	1		1	- equigranular, displaying weak banding as light and dark bands @ 60 to										
						CA. Comprised of 2mm anhedral, sometimes zoned feidspars, and		1								(
						elongate 2mm homblende grains altered to chlorite in a fine silicious felsic										
206	208			0.004		matrix. Note distinct quartz grains.	 		ļ	ļ						
208	210	178091		0.006	0.044	- moderate to strong magnetic due to dis magnetite.		<u> </u>		<u> </u>	ļ		<u> </u>			

									D	H-02-:	27	
Cu %	Au g/T	Geology Characteristics	Ру	Сру	Mag	hem	Epi	Chi	Ser	Saus	qtz	
0.009	0.078	- minor calcite on joints	t									
0.005	0.038	- fine cpy overprint on hem throughout as trace, py is gererally absent	m	t								

From	То	Sample #	Lithology	Cu %	Au g/T	Geology Characteristics	Ру	Сру	Mag	hem	Epi	Chi	Ser	Saus	qtz	cai
210	212	178092		0.009	0.078	- minor calcite on joints	t									
212	214	178093		0.005	0.038	- fine cpy overprint on hem throughout as trace, py is gererally absent	m	t	1							
214	216	178094		0.006	0.044	fine epl-kpsar selvages on fine fractures.	m	W								
216	218	178095		0.003	0.022	- zones of stronger epidote give core a mottled green appearance.	t	W	m	m						
218	220	178096		0.005	0.030											
220	222	178097		0.004	0.039											
222	223.11	178098	EOH	0.003	0.022	223.11 END OF HOLE (732 feet)										

.

- - -

---·

- - -

	Hole	2002-28				Northing Easting Elevation
						5790809 610582 932m
	Depth	Azimuth	Dip			
	0		-45			
	153.1	300	-45		ř	
			,			
From	То	Sample#	Lithology	Cu%	Au g/t	Geology Characteristics
0		1				0 -30.48 M OVERBURDEN (100 feet of cased overburden and bedrock)
30.48	33	178101	4	0.016	0.014	30.48 - 36.6 M FINE LAMINATED VOLCANIC WITH INTERFINGERED QUARTZ FELDSPAR PORPHYRY
33		178102		0.010	0.011	-weak calcite as matrix
36	38			0.005	0.021	36.6 -37M Definite included section of FP, < 2 mm feldspar, qtz and hblnd crystals, some biotite, dis py, trace cpy.
						-matrix siliceous and weakly calcitic. Entire section is magnetic.
38	40	178104	4	0.010	0.019	37 - 43M VERY FINE GRAINED VOLCANIC/ CLASTIC
40	42					-mottled grey green appearance
42	44					- 3 to 5% fine disseminated sulphide, pyrite and trace chalcopyrite.
				0.000	01011	-weakly magnetic
44	46	178107	9	0.005	0.015	43 - 46.5 M QUARTZ FELDSPAR PORPHYRY
	40	170107	- 	0.000	0.0.0	- similar to 36.6 - 37 m, but contains more fine grained felsic sections.
46	48	178108	5	0.001	0.006	46.5 - 62.3 M VOLCANIC BRECCIA / ANDESITE
40						-andesite breccia with fragments up to 5 cm
<u>40</u> 50						-well mineralized with up to 3% very fine disseminated sulphide, with intermixed chalcopyrite
						-epidote replacement as fine lenses
52				0.002	0.004	-sheared core @ 54.5, 56.58, 59, 62-63 M
54 56				0.003	0.000	-upper portion contains largely sub rounded andesitic fragments in a felsic and siliceous matrix. Fragments vary
 58				0.133	0.004	in size from 0.25 to 4 cm and are heterolithic. Many fragments have been partially replaced by fine grained pyrite
						with trace chalcopyrite.
60	62	178115	·	0.005	0.003	-entire section is generally non to very weakly magnetic, wk carb in matrix.
	[<u> </u>		-entire section is generally non to very weakly magnetic, which are in maark.
		470440		0.000	0.000	62.3 -82M VOLCANIC BRECCIA AS ABOVE PLUS K-SPAR FRAGMENTS
62				0.006	0.003	02.3 -02M VULCANIC DRECCIA AS ADOVE FLUS NOVAN RANGING Nova 13
64	66	178117	<u></u>	0.001	0.003	-angular and subrounded fragments of QFP displaying a weak potassic attered tinge ?, and more common
		L		ļ	<u> </u>	medium green, very fine grained fragments of a more mafic nature being partially and sometimes entirely being
~		ļ	<u> </u>	ļ		replaced by fine pyrite and very weak intermixed chalcopyrite.
		<u> </u>	·		<u> </u>	-section probably contains upto 10 % sulphide, mainly pyrite as disseminations, replacement of fragments, and
		L				as fine grained framboidal/colloform accretions upto 0.5 cm dia along late calcitic fractures.
						-weakly magnetic and calcitic. Matrix is moderately siliceous.
66	1					-weakly magnetic, disseminated and framboidal pyrite and trace cpy
68	70	178119	1	0.001	0.006	-matrix appears more chloritic. up to 10 - 15% net sulphide, mainly silvery pyrite with some intermixed cpy.
						-sulphide mineralization is very pervasive as coarse 4 - 5mm disseminations and as some strong replacement of
		1		}		heterolithic fragments 3 - 4cm in size. Very weak quartz ad no calcite. Moderately chloritic in matrix and weakly
	1					magnetic.
70	72	178120)			-same as above, strong pyrite
72						-10 - 15% pyrite as disseminations and as replacement of fragments. Some 1 - 2mm blebby chalcopyrite.
74						-0.5 - 1cm, angular and subrounded fragments displaying K-spar alth more prominent and are commonly rimmed

- - - -

From	To	Sample#	Lithology	Cu%	Au a/t	Geology Characteristics
						and replaced by pyrite.
76	78	178123		0.002	0.002	-same as above with perhaps slightly heavier sulphide content.
78	80	178124				-weak pinkish K-spar? altered bands.Strong sulphides. Non magnetic.
80	82	178125			0.002	
82	84	178126	4	0.006	0.003	82 - 95.4M FINE LAMINATED VOLCANIC
84	86	178127		0.010	0.005	-medium grey - green, fine grained, almost homogenous. Fine disseminated and fracture controlled pyrite and
						trace cpy. Sulphide is not as strong as in the VBX.
86	88	178128		0.009	0.005	-lam volcanic containing some felsic fragments. some hematite on fractures. disseminated pyrite, weak calcite
						and non magnetic.
88	90	178129		0.006	0.004	-some included fragments of FP up to 4 - 5cm K-spar altered. Disseminated and fracture fill framboidal pyrite
						with trace chalcopyrite.
90	92	178130		0.005	0.006	-same
92	94	178131		0.003	0.009	-pervasive pyrite and trace intermixed chalcopyrite
94	96	178132	7	0.006	0.014	-95.4 -106M HORNBLENDE PORPHYRY (DYKE?)
						-medium grey - green, fine to medium grained containing acicular and blade like 2mm to 0.5cm homblende
						phenocrysts in a finer felsic, weakly siliceous and chloritic matrix. Felsic grains up to 2 - 4mm are sometimes
						moderately epidotized. Some clotty epidote up to 0.5cm. Matics sometimes replaced by pyrite. Disseminated
						and hematitic fracture controlled pyrite throughout, with some trace intermixed chalcopyrite. Very weakly
						calcitic and non to weakly magnetic.
96	98	178133		0.003		-dark red to crimson hematite on fractures
98	100	178134		0.009	0.014	-strong pyrite, disseminated and framboidal with trace chalcopyrite. Weakly magnetic.
100	102	178135		0.008	0.022	
102	104	178136		0.007	0.058	-strong hematite on fractures
104	106	178137		0.006	0.017	-fine disseminated and hairline fracture fill pyrite. Weak cal, mag, ep and qtz. Lower contact @ 30 deg CA
		[
106	108	178138	4	0.005	0.012	106 - 146.2M FINE LAMINATED VOLCANIC/CLASTIC
						-medium grey, fine grained, homogenous appearing, weakly laminated at 30 and 45 deg to CA. Contains
						scattered 2 - 3 cm rip up clasts of weakly propylitized FP. Weak to moderate guartz in matrix. Minor gtz-carb
						veining up to 2 - 4mm at 30, 45 and 80 deg to CA. Moderate disseminated and hainine fracture fill pyrite. Weakly
						magnetic.
108	110			0.008		
110	112	178140			0.029	
112	114				0.125	
114	116				0.035	
116	118				0.047	
118	120				0.024	
120	122				0.017	
122	124				0.017	
124	126				0.010	
126	128				0.016	
128	130	178149	1	0.006	0.014	

- • •

From	Τo	Sample#	Lithology	Cu%	Au g/t	Geology Characteristics
130	132	178150		0.003	0.006	
132	134	178151		0.010	0.011	-sulphides weaker, trace disseminated pyrite
134	136	178152		0.005	0.005	
136	138	178153		0.006	0.008	-lam volcanic/clastic sheared/gouged from 136.9 - 137.8M. upper contact laminated steeply @20 deg CA
138	140	178154		0.006	0.006	141.2 - 142.3 Medium green coarse grained clastic? characterized by mainly angular quartz fragments, and
140	142	178155		0.007	0.005	mafic (probably # 4), suspended in a largely chloritiic matrix. Some felsic grains are mildly epidotized.
						-moderate silica in matrix, weak carb, ep.
						-most laminations are weakly hematitic, sporadic (mainly calcite) veining, hairline to 2mm at random angles
						-fine pyrite as disseminations, and hairline fracture fill. over all weak sulphides.
142	144	178156		0.009	0.012	
144	146	178157		0:007	0.016	
146	148	178158		0.005	0.017	-146.2 - 153.1M ALTERED PORPHYRITIC DYKE?
148	150	178159		0.008	0.041	
150		178160		0.006	0.047	
152	153.1	178161		0.005	0.043	
		·				-EOH 153.1M

_ -- --

ł

APPENDIX B

ANALYTICAL CERTIFICATES

. .

.

.

. .

GEOCHEMICAL ANALYSZES CERTIFICATE PIAC PIAC PIAC PIAC PIAC PIAC PIAC SAMPLE# No CL PIAC	
ppm ppm <th>AA</th>	AA
$\begin{array}{c} 178001 \\ 0.78001 \\ 78002 \\ 0.78003 \\ 0.78004 \\ 29.1 290.4 210.4 8, 7.3 247 \\ .6 \\ .17 \\ .18 \\ .17 \\ .17 \\ .18 \\ .17 \\ .17 \\ .18 \\ .17 \\ .17 \\ .18 \\ .17 \\ .$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7 .1<.05 0 .1 .06 2 .1 .50
$\begin{array}{c} 0.78011\\ 0.78012\\ 0.78014\\ 0.78012\\ 0.78014\\ 0.78012\\ 0.78014\\ 0.78012\\ 0.78014\\ 0.78012\\ 0.78014\\ 0.78012\\ 0.78014\\ 0.78012\\ 0.78014\\ 0.78012\\ 0.78014\\ 0.78012\\ 0.78014\\ 0.78012\\ 0.78014\\ 0.78012\\ 0.78014\\ 0.78012\\ 0.78014\\ 0.78012\\ 0.78014\\ 0.78012\\ 0.78014\\ 0.78012\\ 0.78014\\ 0.78012\\ 0.78014\\ 0.78014\\ 0.78012\\ 0.78014\\ 0.78024\\ 0.78024\\ 0.78024\\ 0.78024\\ 0.78024\\ 0.78024\\ 0.78025\\ 0.6766004\\ 0.78014\\ 0.78024\\ 0.78025\\ 0.6766004\\ 0.78014\\ 0.78025\\ 0.78014\\ 0.78014\\ 0.78025\\ 0.78014\\ 0.78014\\ 0.78014\\ 0.78014\\ 0.78014\\ 0.78014\\ 0.78014\\ 0.78014\\ 0.78014\\ 0.78014\\ 0.78014\\ 0.78014\\ 0$	8 <.1 .06 1 .1 .20 7 <.1 .10
$\begin{array}{c} 4.0 \ 319.1 \ 6.1 \ 120 \ .6 \ .9 \ 10.6 \ 1528 \ 4.03 \ 20.1 \ .6 \ 134.9 \ 1.4 \ 83 \ .3 \ .4 \ .2 \ 99 \ 4.25 \ .131 \ 8 \ 4.6 \ .67 \ 55 \ .004 \ 7 \ 1.13 \ .079 \ .14 \ .5x.01 \ 6. \ 0.7 \ 18017 \ 4.6 \ 183.1 \ 11.5 \ 205 \ .3 \ 1.7 \ 10.7 \ 2739 \ 4.13 \ 7.4 \ .8 \ 81.7 \ 1.1 \ 92 \ 1.0 \ .1 \ .1 \ 76 \ 7.35 \ .088 \ 8 \ 9.3 \ .98 \ 219 \ .003 \ 7 \ .84 \ .061 \ .15 \ .1<01 \ 5. \ .016 \ .15 \ .1<01 \ 5. \ .016 \ .15 \ .1<01 \ 5. \ .016 \ .15 \ .1<01 \ 5. \ .016 \ .1 \ .1 \ .01 \ .2.01 \ 8. \ .1 \ .1 \ .016 \ .2.7 \ .016 \ .1 \ .1 \ .02 \ .2.4 \ .72 \ 50 \ .010 \ 6 \ .15 \ .004 \ 7 \ .13 \ .079 \ .14 \ .5x.01 \ 6. \ .1 \ .1 \ .01 \ .2.01 \ 8. \ .1 \ .1 \ .016 \ .2.7 \ .1 \ .016 \ .1 \ .1 \ .01 \ .2.01 \ .01 \ .01 \ .016 \$	5 .1 .22 7 .1 .07 8 .1 .99
RE D 178020 5.6 117.1 10.3 169 .3 $<.1$ 9.2 1636 3.57 6.5 .4 44.2 1.5 124 .5 .2 $<.1$ 91 4.54 .107 8 1.7 .67 86 .004 7 1.22 .106 .08 .1	7 <.1 .16 9 <.1 .07 8 <.1 .16
0 178024 7.5 245.0 47.6 156 .5 .1 11.0 1407 3.78 6.5 .3 120.9 1.4 97 .5 .3 <.1	1 <.1<.05 1 <.1 .07 0 <.1<.05
	7 <.1 .06 0 <.1 .10 3 <.1 .11
0 178028 6.8 210.0 10.5 148 .4 13.6 906 4.25 6.1 .5 91.7 1.5 150 .5 .1 .1 14 6 12.7 .91 94 .110 8 2.57 .365 .13 .5 .01 5. 0 178029 5.9 166.1 12.8 134 .3 <.1	6 .1 .30 0 <.1 .23 8 <.1 .11
STANDARD DS4 6.4 121.7 29.5 160 .3 35.1 12.5 805 3.14 22.5 6.0 27.1 3.5 26 5.3 4.7 4.9 74 .55 .092 17 166.3 .59 144 .082 2 1.74 .030 .16 3.9 .28 3.	9 1.1<.05
GROUP 1DA – 10.0 GM SAMPLE LEACHED WITH 60 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 200 ML, ANALYSED BY ICP-MS. UPPER LIMITS – AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. – SAMPLE TYPE: CORE R150 60C <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Beruns.</u>	
DATE RECEIVED: OCT 16 2002 DATE REPORT MAILED: Oct 31/02 SIGNED BY	ASSAYERS
	<u>k</u> fa

- -

- -

-- ·

-

				• •		-	-																			-	-		·				
		C	כ כ		2	C]				C		C		Ĩ		Ľ	כ	L]			L;	T		I	J	Ľ]
									Fjo	ord	La	nd 1	<i>l</i> ine	era	ls	ł	FIL	Е#	A20	450'	7						Pag	je 2	2			Ĉ	
ACHE ANALYTIC SAMPLE#	Mo		₽b		Ag		Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi			, La				Ti) Na	ĸ	Ŵ	Hg	Sc	ACME ANALY	S Ga	ļ
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ррт	X	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	*	K ppm	ррп	1 %	ppm	X	ppm	t 1	z	ppm	ppm	ррт	ppm	% ppm	_
D 178033 D 178034		138.1 194.3				1.5 1.5	9.2 1 8.8 1			5.3 7.0	.6 .4	137.8	1.9 1.8	98	.5 .4	.6 .4	.1 <.1	116 4.0 92 3.9						.018 .004		1.144 9.057					<.1 <.0 <.1 <.0		
D 178035 D 178036		175.4 150.8				1.5 1.7	9.1 1 8.4 1			5.0 7.0		127.4 102.7		127 107	.3 .8	.2 2.2		97 6.2 100 4.0					219 1069			1 .049 0 .053					<.1 <.0 <.1 .1	-	
D 178037	8.0	493.0	13.9	140			21.0 1				.4	103.3	1.6	90		1.1	.1	74 4.9				.55	304	.002		5 .025					<.1 .3		
D 178038 D 178039	9.0 9.8						10.0 2 13.0 1					521.2 162.4		89 75		2.0 1.9	.1 .1	92 5.2 61 4.2					271 101			0 .027 8 .018			.01 .01		.1 .4 .1 1.2		
D 178040 D 178041	6.1		18.0	164	1.1	1.3	15.5 1 50.5 1	884	6.18	32.9	.4	43,4 57.6	1.7	83	.4	2.9	.1	95 3.1 116 2.9	76 .11	59	3.3	.85	31	.005	7 1.1	9 .029 5 .033	. 27	.7 1.1	.01	6.7	.1 .3	55	
D 178042							167.5 3					67.6			.2		1.5	187 5.	59.15	i 11		1.19			21 4.1				.02 1		.2 2.3		
D 178043 D 178044		402.7 113.9					37.0 1 38.8 1					1681.2 62.3		65 75		1.1	.3		96.07	-			106			7.012			.01		.1 1.9		
D 178045	12.8	167.2	24.3	144	.5	4.1	33.3 1	625 -	4.95	36.9	.6	131.8	1.3	70	.3	.4 .4	.5 .3	66 4.0 97 3.0	52 .08	16	8.3	.92	113	.009	10 1.6		.22	.7	.01 .01	7.3	.1 1.1	575	
D 178046 D 178047		151.7 149.0					22.2 1 18.3 1			59.0 7.9	.9 .6	66.7 48.0		92 83	1.1 .6	.9 .5		135 4.0 118 3.0			11.3	1.21				3 .112 0 .113		1.0 .6 <			.1 2.1 <.1 1.0		1 1
D 178048							18.1 1				.4	41.6		80	.6	.2	.1						111			2.095					<.1 1.0		1
D 178049 D 178050	20.5	178.2	84.2	409	1.2	3.6	21.4 1 19.6 1	520	3.94	64.4	.6 .5		1.2	90 89	$1.3 \\ 2.6$			101 3.9	52.08	35	13.5	.80		.008 .014	10 1.2 8 1.3	4.036 7.093			.04 .01		.1 1.3 .1 1.2		
RE D 178050 RRE D 178050	18.9 20.7	176.9 173.7	88.1 88.0	410 441	1.1 1.2	3.8 3.8	19.5 1 21.0 1	488 570	3.79 4.02	62.5 71.1	.5 .5	42.2 58.6			2.7 2.8	1.9 1.6	.1 .1	93 3.3 98 3.9			12.0 7.5					9.088 9.082			.01 .02		.1 1.2 .1 1.2		
D 178051		122.6					30.6 1				.6	50.5		77	.5	.4	.3	84 2.8	39.08	56	8.7	.97	135	.018	8 1.9	4 .090	.21	.1	.02	8.4	.1 1.1	.6 5	
D 178052 D 178053		329.0 417.5			.4	2.5	18.1 2 12.9 1	823 -	4.54	8.7	.3 .3	73.3 135.6	1.2 1.1	61 67		1.1 4.4	.1 .1	83 2.8 103 3.1			5.1 10.6		89 202	.003		8 .028 9 .035			.01 .01		.1 .2 <.1 .0		
D 178054 D 178055		227.2 302.3			.3 .8	2.2 2.3	12.8 1 15.3 1	776 659	4.21 3.76	13.2 5.2		115.3 157.1		73 79	.2 1.0	2.8 .7		112 3.9 120 3.1				.79 .72				9.037 4.070		.2	.01	8.3	<.1 <.0 <.1 <.0	5 5	
D 178056	8.9	255.5	17.0	261	.9	.7	14.8 2	140	5.17	17.8		125.2		71	1.1	1.1	<.1	128 2.0	53 .11			1.02		.053	8 1.3	0.073	.13				<.1 .1		,
D 178057 D 178058		141.9 77.8			.6 .4		18.6 2			6.7 7.6	.2 .3	35.4	.6	84 91	1.6 .4			152 2.1 165 2.1			4.0	1.23	46	.092	91.6	9.124 6.146	.12	.3	.01	6.0	<.1 .0 <.1 <.0	6 8	
D 178059 D 178060	10.9	163.3 248.1	4.9	215	.4	1.3	15.2 1 13.2 2	582	5.15	6.0	.4	87.6 193.6	.8	96	.5 .6	.2	<.1	160 2.0 127 5.1	08 .12	<u>5</u> 4	4.3	1.03	59	.075	7 1.4	1 .125 0 .078	.11	.2	.02	6.0	<.1 <.0 <.1 <.0	56	
D 178061		319.9					13.9 1					947.4		92	.0			104 3.0						.013		9.077					<.1 .3		
D 178062 D 178063	7.0	206.7	10.9	240	.9	4.1	16.6 1 14.8 1	137 -	4.04	3.7	.4	118.2 121.0	1.1	94	1.0 1.4	.4	<.1	130 1.8	38 .09	2 5	6.5	.90 .88	79	.048		2.123	.04	.2	.02	6.0	<.1 <.0	5 5	.
D 178064 STANDARD DS4	5.8	335.9	15.8	286	1.6	3.3	15.4 1	104 -	4.32	5.6	.4	108.5	.9	96	1.6	.4	<.1	173 1.8	33 .09) 5	9.7	1.04	139		91.3	6.131	.05	.6	.02	5.1	<.1 <.0	56	
STANUARD 054	0.9	129.8	32.4	103	.3	აუ.0	12.2	516	3.21	23.4	5.9	20.7	4.1	30	5.5	5.2	5.0	79 .!	09. 09	. 18	1/1.2	.60	148	.087	1 1./	8.033	.10	4.U	.21	3.9	1.2 <.0	56	-

. . .

-

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

ACHE AVALYTICAL]						}		[Fjo:	rd	Lan	 d M	ine	era	ls]	; FII	E	_ # A	L 204	.507	7)		•			J Pag	e 3	<u>,</u>	1		
SAMPLE#	Mo ppm	Cu ppm		Zn. ippm	-	Ni ppm	Co ppm			As ppm						SP Bburk			Ca %		La ppm	Cr ppm		8a ppm		B Al				-	Sc 1 Spm pp		6 Ga 6 ppm
D 178066 D 178067 D 178068	5.3 7.0 9.7	347.8 95.0 193.6 150.1 185.5	41.7 49.3 28.3	402 423 304	.4 .9 .7	.8 2.4 3.4	10.5 13.2 14.5	916 822 937	3.78 4.02 4.10	5.7 8.7 6.1	.4 .4 .4	125.7 85.5 100.7 84.3 76.6	1.1 .8 .9	114 86 92	1.8 2.2 1.1	• 7. 1.1 • 3.	<.1 [/] .1 [/] <.1 [/]	15 2 37 1 41 2	2.02	. 124 . 099 . 090	-		.95 1.03 1.10		.056 .068 .077	10 1.53 7 1.17 8 1.24 8 1.52 7 1.42	.112 .113 .177	.06 .05 .06	.4 .5 .4	.02 4 .01 4 .01 4	.2 < .3 < .6 <	1 1 1 < 0 1 < 0 1 < 0 1 0	5 5 5 5 5 6
	3.1 2.1 2.0	366.7 155.8 143.4 109.1 69.1	8.4 5.5 7.5	139 84 95	.4 .2 .2	3.0 4.1 4.3	13.8 17.7 18.6	887 766 615	4.02 3.49	4.5 12.9 9.3	.3 .4 .5	144.2 74.7 35.3 32.0 26.7	1.0 1.1 1.0	87 90 82	.3 .2 .3	.4 • .6 • .2 •	<.1 ' <.1 ' <.1 '	130 1 108 1 128 1	.70 .87 .74 .23 .46	.083 .086 .078	4 4 3	12.8 9.2 13.9 10.5 16.3	1.00 .84 .95		.058 .068 .117	8 1.55 7 1.45 6 1.53 3 1.62 2 1.67	.159 .192 .224	.05 .17 .13	.4 .2 .6<	.01 5 .03 5 .01 5	5.2 < 5.3		
D 178076 D 178077 D 178078	1.4 1.5 1.4	71.7 31.1 53.9 35.3 76.1	3.6 5.4 4.9	68 75 82	.1 .1 .1	2.9 3.8 4.1	12.1 14.5 15.2	485 554 619	3.28 3.89 3.78	2.1 2.5 2.6	.5 .4 .7	21.3 16.0 17.9 8.7 23.4	1.2 .9 1.2	102 134 126	.1 .2 .2	.1 • .1 •	<.1 ' <.1 ' <.1 '	18 1 45 1 47 1		.085 .083 .086	3 4 4	11.4 16.3 11.7 15.9 9.8	1.02 1.19 1.09	124 . 105 . 152 .	.093 .101 .125	3 1.81 4 1.80 4 1.71 3 1.90 6 1.57	282 226 275	- 10 - 08 - 22	.4< .7< .6<	.01 4 .01 4 .01 5	8 < 5 <	1 <.0	
RE D 178080	2.0 2.4 2.3	49.1 46.3 45.6 61.5 153.6	10.1 9.6 15.0	142 141 151	.3 .3 .4	4.5 4.0 3.7	14.1 14.4 16.2	883 901 869	4.04 4.13 3.77	10.1 10.4 78.4	.6 .6 .6	16.9 13.5 14.9 16.0 25.0	1.2 1.2 1.1	93 97 104	.5 .5 .6	.4 • .4 • 1.1 •	<.1 ' <.1 ' <.1 '	47 2 51 2 26 2	2.18 2.07 2.02 2.18 1.70	. 086 . 084 . 085	4 4 4	17.0 16.7 11.8 15.1 19.9	. 93 . 94 . 95		.099 .101 .090	4 1.77 6 1.72 5 1.71 5 1.75 4 1.75	211 219 240	.09 .10 .10	.4 .5 .4	.01 5 .01 5 .01 5	5.6 < 5.8 <	1 .3 1 .3 3 .3	5 6 5 6 3 5
D 178084	4.3 5.3 4.2	48.1 53.2 83.2 64.7 35.7	8.0 9.7 14.0	225 165 145	.3 .3	.3 .5 <.1	10.4 10.3 7.0	845 1665 2409	3.89 3.69 3.06	3.2 14.4 12.6	.5 .4 .3	26.8 30.0 72.9 74.3 26.3	1.2 1.3 1.4	88 95 78	1.0 .7 .5	.7 • 2.2 • 5.8 •	<.1 ' <.1 <.1	13 2 89 4 77 6	2.10	. 124 . 129 . 124	5 5 9 9	5.5 3.8 2.1 2.8 3.0	.68 .53 .37	154 . 102 . 68 . 191 . 66 .	.068 .008 .004	5 1.20 9 1.02 10 1.00 10 .70 8 .60	2 .111) .074) .027	.06 .08 .09	.7 .1 .1	.01 4 .02 7	.1 <. 7.1 <. 7.8 <	1 1 1 < 0 1 < 0 1 < 0 1 < 0	5 5 4
D 178088 D 178089 D 178090 D 178091 D 178092	2.5 3.3 3.1	18.1 35.6 43.8 60.6 90.0	14.9 11.0 19.2	141 202 266	.2 .2 .4	.5 .4 1.5	7.1 11.1 14.4	3239 1507 1207	2.71 3.90	21.8 11.1 12.3	.5 .6 .4	36.8 79.6 32.5 43.9 77.7	1.3 1.4 1.2	105 107 93	.7 .7 .8	4.2 · 2.5 · 5.9 ·	<.1 <.1 <.1 '	55 9 94 3 114 2	2.11	.120 .112	10 7 5	2.3	.41 .70 1.19	76 . 290 .	.004 .024 .033	11 .59 11 .60 8 1.02 10 1.52 8 1.29	.031 .095 .077	.18 .10 .06	.1<. .1 . .1 .	.01 6 .02 6 .01 8	5.1 5.5 3.1 <.	1 .54 1 .31 1 .01 1 .01 1 .13	
D 178094 D 178095 D 178096	7.5 2.6 3.1	49.5 60.8 31.7 45.6 123.1	10.2 7.6 9.2	114 119 143	.1 .1 .1	<.1 <.1 <.1	10.4 10.6 14.0	1322 1382 1218	3.77 4.09 5.39	11.4 6.8 5.4	.5 .5 .6	38.2 43.9 21.8 30.0 24.9	1.7 1.5 1.5	125 110 122	.2 .3 .4	2.0 • • 5 • • 5 •	<.1 ′ <.1 ′ <.1 ′	110 3 114 3 134 2	5.49 5.69 2.71	. 138 . 134 . 141	7 7 6	3.5 4.7 7.8 3.0 163.5	.68 .72 .82	49 . 69 . 97 .	.015 .028 .049	11 1.25 12 1.26 9 1.36 8 1.84 2 1.65	.149 .146 .180	.08 .15 .13	<.1 . .2 . .8 .	.02 7 .01 5 .01 5	7.6 <. 5.4 <. 5.3 <.	1 .10	2 5 0 5 5 7

- -

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA

······																				<u> </u>					-					
				\Box				3 1) (C		E) [E		C	\square			\mathbf{k}
		-						Fjc	ord	Lan	d 1	Mine	eral	Ls	F	LE	# 2	1204	450	7					Pa	ige .	4			L YTICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn pprnp	Ag xpm	Ni ppm	Co l ppm p	in F xm	e %p	As U pan ppan	Ai Ai	u Th bppm	Sr ppm p	Cd xpm p	Sb B pm ppr	i V nppm	Ca %	P %	La ppm	Cr ppm	Mg B % pp	a Ti m %	B/	AL N %	la K % %	. W Sippin	Hg ppm p	Sc Tl ppm ppm	s 1 % p	Ga opm
D 178097 D 178098 Standard DS4	3.1 2.6 6.5	40.9 29.7 121.3	13.4 7.3 30.1	169 169 152	.2 .2 .3 3	1 2 1 8 1 3 8 1	11.0 92 10.6 68 12.4 8'	22 4.1 31 3.8 18 3.2	3 2 3 2 0 22	.8 .4 .3 .5 .8 6.1	38. 21. 30.	6 1.4 B 1.7 D 3.5	115 95 28 5	.4 .5 5.3 4	.2 <.* .1 <.* .9 5.2	1 136 1 124 2 74			6 5 15	7.4 3.3 162.0	.66 7 .65 6 .58 14	2 .050 5 .061 4 .085								
							/pe: C(
-												•																		
																														1
																			÷											
																												1	,	

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data KFA

- •

Im Im<	Cr Mg Ba Ti B Al Na K W Hg Sc Tl S ppm % ppm % % % ppm ppm % % % ppm ppm % % % % % ppm ppm % % % % % ppm ppm %
ppm ppm <th>ppm % ppm % % ppm ppm % % ppm ppm ppm % % ppm ppm ppm % % % % ppm ppm ppm % % % % ppm ppm % % % % ppm ppm %</th>	ppm % ppm % % ppm ppm % % ppm ppm ppm % % ppm ppm ppm % % % % ppm ppm ppm % % % % ppm ppm % % % % ppm ppm %
D 178101 1.1 161.8 4.0 83 .1 6.9 27.6 1502 4.10 10.7 .4 13.6 .9 59 < .1 .6 .3 70 2.20 .122 3 5.1 D 178102 .8 96.8 2.7 67 .1 3.8 14.5 1224 3.99 29.2 .3 11.4 .9 88 .1 .8 .4 83 2.27 .116 4 5.8 D 178103 1.1 50.3 6.2 70 .1 1.3 10.6 421 28.8 .3 21.1 .7 138 <1 10.0 .7 97 3.06 .114 5 2.8 D 178104 1.4 96.5 5.6 66 .1 1.3 10.0 824 4.44 7.5 .5 19.4 1.2 108 <.1 .6 .2 131 1.81 .111 5 5.2 D 178105 2.7 49.1 2.8 58 <.1 1.0 12.1 899 4.22 7.6	5.1 1.31 100 .009 8 1.80 .076 .18 .6 .01 4.7 .1 1.28 5.8 1.29 101 .020 7 2.07 .126 .21 .3<<.01 4.9 .1 .49 2.8 1.09 95 .067 5 2.00 .094 .21 .4<<.01 4.1 .1 .21 3.2 1.26 69 .107 4 2.15 .222 .06 .3 .01 4.5 <.1 .39 3.8 1.11 60 .116 4 2.18 .222 .06 .5<<.01 4.3 <.1 1.67 5.5 1.46 51 .006 5 2.03 .060 .12 .1<<.01 6.5 <.1 .92 2.0 1.38 85 .073 6 2.23 .127 .12 .6< .01 6.5 <.1 1.50
D 178106 2.0 51.8 3.5 65 .1 3.0 12.8 1370 4.69 13.5 .3 11.0 .9 146 <.1 .3 .2 103 3.83 .099 6 5.5	5.5 1.46 51 .006 5 2.03 .060 .12 .1 .01 6.5 <.1
D 178108 1.4 14.8 4.8 76 .1 .8 12.8 1062 4.80 7.3 .3 6.1 .9 117 .1 .4 .1 140 1.85 .104 4 4.3	1.8 1.60 87 .121 6 2.01 .096 .06 .6<.01 5.2 <.1 .51
D 178111 1.4 17.3 2.0 99 .1 <.1	3.3 1.60 38 .043 6 2.01 .038 .14 .1<.01
D 178116 1.4 61.8 1.3 70 .1 <1.1	1.1 1.50 76 .019 5 1.70 .050 .15 .2<.01
D 178121 5.4 40.1 10.9 103 .1 1.9 11.5 1584 3.99 4.5 .2 4.9 .8 93 <.1	.1 1.63 39 .047 6 2.12 .132 .07 .4<.01
D 178125 .9 43.8 8.5 141 .2 3.2 14.4 2366 4.04 4.4 .2 2.4 .6 100 .1 .3 .1 115 1.39 .089 3 9.3 D 178126 1.5 63.6 9.7 120 .1 3.2 13.3 1899 4.03 3.2 .2 3.4 .7 106 .1 .2 .1 103 1.43 .083 3 7.8	7.8 1.73 57 .084 5 2.26 .137 .05 .2<.01
D 178131 3.4 34.4 12.3 491 .2 3.1 15.0 1522 3.72 5.8 .5 8.5 .9 87 2.8 .2 .3 91 1.26 .095 4 8.3	
STANDARD DS4 6.6 120.7 29.2 160 .3 34.1 12.0 800 3.12 22.9 6.3 29.0 3.7 29 5.4 4.9 5.0 78 .54 .088 17 166.0	.0 .61 146 .098 2 1.70 .031 .16 3.7 .28 3.7 1.2 .06
GROUP 1DA - 10.0 GM SAMPLE LEACHED WITH 60 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DIL UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, - SAMPLE TYPE: CORE R150 60C <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>	I, NI, MN, AS, V, LA, CR = 10,000 PPM.
DATE RECEIVED: OCT 31 2002 DATE REPORT MAILED: $\sqrt{0\sqrt{14}/02}$ signed by	D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS
All results are considered the confidential property of the client. Acme assumes the liabilities for actual cos	cost of the analysis only. Data FA

and the second second second second second second second second second second second second second second second

•

]	E	2	Ē	2		2 . 1		! 1		ĺ	[2	C	<u>,</u>	C		Ľ	<u> </u>	С	Ξ.	C	<u> </u>		. (ſ			
ACME ANALYTICAL		. <u> </u>							Fjc	ord	Laı	nd 1	<u> </u>		<u> </u>					A204	181	.8		<u></u>				Pa	ge 2		ACM	E ANALYTI	CAL 🖌
SAMPLE#	Mo ppm	Cu ppm		Zn ppm		й и ррт	Co .ppm	Mn ppm		As ppm	U ppm		Th ppm						Ca %		La ppm	Cr ppm		Ba ppm	Ti % p				N Hg ppm ppm		Tl ppm	-	Ga ppm
D 178134 D 178135 D 178136	1.5 1.3 1.1	94.8 83.6	8.4 9.6 7.9	62 63 55	.1 .1 .1	2.0 1.3 1.1	13.4 13.3 12.7	818 850 845	3.47 4.11 4.31	10.3 3.9 5.4	.6 .3 .3	14.4 22.1 58.0	.8 .7 .7	148 130 169	1 1 1	.4 .2 .2	.2 .4 .5	93 75 72	1.83 1.74 1.83	.113 .119 .118	4 4 3	14.1 16.8 6.3 11.5 6.2	.95 1.01 .93	146 118 102	.120 .112 .097	6 1.8 7 1.8 6 1.8	7 25 4 22 8 29	3 .09 4 .08 6 .08	1.7 .01 .5<.01 1.4<.01 .6<.01 1.5 .01	6.2 5.8 5.1	< 1 < 1 < 1	1.62 2.28 3.13	7 7 7 7 7
D 178139 D 178140 D 178141	1.2 1.0 2.4	83.0 71.2 106.8	40.1 11.8 8.6	116 123 89	.2 .1 .1	2.0 4.0 3.0	16.6 17.9 15.0	837 1155 1169	4.44 4.89 4.44	4.8 4.8 5.2	.4 .4 .3	18.5 29.4 124.9	1.0 1.0 1.0	139 94 107	.3 .2 .1	.1 .2 .2	.5 .7 .3	117 191 148	2.46 1.92 2.10	.114 .098 .106	3 3 3	12.6 6.2 17.8 8.9 15.3	1.42 1.53 1.54	99 85 80	.126 .133 .117	72.7 62.1 72.3	2.27 8.18 0.16	0 .07 6 .06 6 .10	.7<.01 .7<.01 .3<.01 .8<.01 .5<.01	7.7 8.8 7.7	<.1 <.1 <.1	2.93 3.32 2.26	7 8 9 8
D 178144 D 178145 D 178146	1.6 1.5 1.4	79.2 33.8 15.7 54.2 40.9	7.9 11.4 14.5	90 103 122	.1 .1 .1	3.1 3.5 3.7	15.8 14.7 13.7	958 1185 1225	4.33 4.49 4.07	5.3 9.2 7.6	.4 .4 .5	23.5 17.0 17.0	.9 1.0 1.2	107 124 92	.1 .2 .1	.1 .4 .3	.6 .5 .4	141 137 120	1.91 2.10 2.02	.100 .094 .099	2 3 4	7.3 13.4 10.0 18.9 8.8	1.45 1.63 1.63	125 134 95	.113 .120 .116	6 2.0 8 2.5 6 2.1	9.18 0.20 4.19	3.08 9.06 8.07	1.0<.01 .5<.01 1.3<.01 .6<.01 1.2<.01	8.3 8.9 8.6	<.1 <.1 <.1	2.90 1.96 2.16	8 8 9 8 8
D 178149 D 178150	1.1 1.0 1.4	63.6 32.8 101.1	18.8 6.5 5.6	123 92 94	.2 .1 .2	4.1 3.7 4.1	16.0 14.4 18.1	1081 1122 1186	4.12 3.88 4.10	4.6 17.3 14.3	-4 -4 -4	13.5 5.6 11.2	.8 8. 1.0	106 116 102	.3 .1 .1	.2 .3 .6	.3 .1 .1	118 131 111	1.78 1.94 1.72	.080 .080 .087	2 3 3	16.7 9.4 14.0 10.2 10.5	1.46 1.27 1.21	100 67 114	.131 .119 .085	7 2.2 7 1.8 9 1.9	5.24 6.15	7 .06 1 .04 7 .07	5<.01 1.3<.01 .4<.01 .8<.01 .8<.01	8.1 6.4 8.3	<.1 <.1 <.1	1.70 .55 .69	7 8 8 8 9
D 178153 D 178154	1.1 .9 1.3		4.8 8.1 8.2	108 131 167	.1 .1 .1	2.9 3.3 3.4	13.1 13.6 15.0	1208 1226 1393	3.98 3.62 3.87	11.7 14.4 6.7	.5 .4 .4	4.5 7.5 6.4	1.0 1.1 .9	126 168 163	<.1 .1 .3	.4 .3 .1	<.1 <.1 .1	111 83 114	2.01 1.87 1.97	.093 .103	3 4 4	7.9 10.6	1.36 1.29 1.21	87 87 108	.109 .055 .076	11 2.2 11 2.2 10 2.4 10 2.2 9 2.1	0 .10 4 .22 6 .20	9.08 9.08 9.08	.6<.01 .2 .01 .6<.01	7.5 6.5 8.7	< 1 < 1 < 1	.27 .44 .42	8 8 8 9
D 178156 D 178157 D 178158 D 178159 D 178160	-8 -5 2.2	87.0 72.2 48.8 76.7 64.4	8.3 4.8 5.4	106 131 126	.2 .1 .2	2.5 2.0 .4	17.0 16.5 18.6	1168 1270 1442	3.76 4.74	4.5 4.5 5.0	.3 .2 .2	15.9 16.8 40.7	1.0 .8 .6	108 141 115	<.1 <.1 <.1	_1 _1 _2	.1 .2 .3	93 149 167	2.10 2.06 2.77	.099 .113	4 4 3	10.5 6.3 6.4 5.6 2.9	1.33 1.76 1.98	68 54 50	.044 .025 .046	92.2 92.8 82.8	9 .19 17 .19 18 .14	2 .12 1 .08 6 .10	1<.01 2<.01 3<.1<.01 1<.01 1<.01 1<.01	7.0 7.9 9.0) <.1) <.1) <.1	.95 1.01 2.41	
D 178161 STANDARD DS4																						2.1 166.2							.9<.01 3.8.27				

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Date

)	<u> </u>])) []	[))					E _		L					
	LYT 90	ICAI 02 A	LA) CCT	BOR/ edi:	ATOI Led	CO.	3 LA)		: <u>ord</u>	G	EOCI nd I	HEM Min	ICA era	L / 18	ana F	LYS ile	SIS ≥ #	C; A	ERT 203	V6 IFI 607 V6C	CA'I				'NE ((.04)	200	- 31:	58.	CAA I	004	6) 2 3			\ •
AMPLE#	Mo ppm		Pb ppm		-	Ni ppm		Mr. ppm		As ppm			Th ppm						Ca %	. P %	La ppm				Ti %			Na %		W ppm	_			S % p	
50201 50202 50203	2.9 2.7	.6 83.9 19.0 29.7 31.5	5.4 4.4	78 61 43 -	.3 .1 <.1	1.0	13.1	756 997 875	3.01	4.7 6.5 13.9	.2 1 .4 .3	13.6 13.4 4.1	1.2 1.0 1.1	27 16 33	.3 .1 .1	.1 < .1 .1 <	<.1 .1 <.1	57 1 43 49 2	.92 .98 2.11	.079 .079 .077	<1 8 7 8	4.0 2.5 1.9	.22 .10 .15	171 124< 332	.001 .004 .001 .001 .001	4 3 3	.49 .45 .39	.400 .020 .016 .021 .023	.17 .19 .18	.2< .4< .3<	.01 2 .01 2 .01 2	2.2 < 2.1 < 1.8 <	.1 <. .1 .1 <	05 08 05	<1 2 1 2 2
50206 50207 50208	1.4 1 9.5 1 1.7	57.5 73.3 12.2 56.2 68.0	9.0 27.2 4.7	102 113 59	.2 1.1 .1	.9 1.6 .9	8.3 31.1 8.0	1361 1364 700	3.37 3.51 2.57	35.4 39.9 5.2	2 1.4 .1	8.1 36.5 14.2	1.1 .9 1.1	30 35 33	.2 .3 .1	.2 < .6 .1 <	<.1 .9 <.1	40 2 17 2 41 2	2.04 2.17 1.56	.070 .068 .078		3.9 3.1 3.8	.92 .95 .34	139 46< 367	.001	3 3 3	.44 .32 .38	.022 .021 .020 .020 .020 .019	.23 .21 .21	.6< 1.1 .3<	.01 .01 .01	1.5 1.0 1.4	.1 .1 1	. 13 . 46 . 05	1 1 1 1
50211 50212 50213	1.2 ' 1.3 1.0	24.2 24.6 33.4 31.0 60.9	6.5 1.7 1.6	68 59 69	.1 .1 .2	1.1 < 1	7.8 7.2 8.1	1078 1026 1145	2.86 3.12 3.45	19.2 4.9 5.8	4	28.3 18.4 16.1	8. 8- 9-	60 69 89	.1 .1 .1	.5 •	<.1 <.1 <.1	63 : 74 : 87 :	3.33 2.66 2.45	.098 .106 .112	777	2.6 2.7	-57 -75 -78	175 255 160	.001 .003 .024 .057 .008	8 6 ⁻ 5 ⁻	.74 1.12 1.25	.014 .049 .091 .134 .069	.12 .12 .08	.1< .1< .3<	.01 .01 .01	3.9 • 4.5 • 4.2 •	:.1 :.1 < :.1 <	.07 .05 .05	1 3 4 5 4
50216 50217 50218	1.4 1.3 1.7	61.1 80.1 64.3 67.0 103.2	12.6 8.1 8.0	123 180 93	.4 .3 .1	1.4 2.7 1.4	11.0 23.3 16.7	1647 2228 1262	3.50 5.64 3.77	26.8 17.4 6.5	.6 .2 .6	23.3 59.9 9.3	.9 1.0 1.0	25 16 26	.2 .2 .1	.5 .3 .2	.3 .3 .2	29 (49 60 (2.39 .82 1.74	.080 .088 .087	7 8	3.3 2.5 3.9	.71 .62 .49	60< 45 50	002 001 001 001 001	5 5 4	-41 -47 -52	.010 .009 .008 .023 .028	.27 .31 .21	.4< .9< .4<	.01 .01 .01	2.0 3.0 3.4	.1 .1 .1 1	.71 .98 .28	2 1 1 2 1
RE 250219 50220 50221	.9 1.3 2.6	96.1 102.5 56.3 54.1 49.6	3.5 6.6 25.2	39 57 97	.1 .1 .2	.7 1.3 1.1	8.9 10.4 10.3	772 929 1015	2.97	5.3 7.3 10.5	.2 .2 .7	17.6 12.3 3.5	1.1 1.0 1.0	31 28 45	.1 .1 .5	.1 • .3 1.1	<.1 .1 .1	32 31 33	2.04 2.30 2.79	.077 .081 .077	5 6 7	2.4 3.7 2.8 3.8 2.4	.25 .33 .61	92 [.] 101 57	.001 .001 .001	3 3 3	.36 .42 .51	.026 .028 .025 .032 .027	.16 .22 .20	,2< ,7< ,5	.01 .01 .01	2.9 1.6 2.1	.11 .11 .11	.21 .09 .26	1 1 2 1
50224 50225 50226	2.6 3.1 3.3	50.7 49.1 40.8 65.5 48.4	5.0 3.3 1.6	42 32 43	.1 .1 <.1	.9 .6 1.5	10.5	764 882 1055	2.35 2.52 2.98	6.5 10.9 4.6	9 5 2	1.8 1.6 1.4	.9 .9 1.0	41 37 33	.1 _1 <.1	.5 .4 .1	.1 .1 .2	24 26 31	3.03 2.87 2.95	.073 .073 .077	6 6 7		.27 .23 .31	46 40 81	c.001	3 3 5	.34 .34 .42	.025 .021 .023 .026 .033	.16 .19 .20	.6< .5< .8<	.01 .01 .01	1.6 1.7 1.9	.11 .11 .11	.41 .52 .08	1 1 1 2
50229 50230 50231	3.0 3.7 2.7	33.4 65.2 101.8 113.6 82.5	3.4 29.6 6.8	47 95 56	.1 .2 .1	.7 3.0 1.8	10.5 12.6 10.3	1191 1349 1208	2.86 3.25 3.11	12.0 17.0 9.8	.3 .5 .6	1.5 4.9 2.0	1.0	33 33 39	<.1 .4 .1	.4 1.1 .3 ·	.2 .3 <.1	32 28 36	2.76 2.97 2.66	.081 .080	7 6 7	3.3 4.3 3.4 4.9 4.1	.22 .26 .44	79 89 30	.001 .001 .001	2 5 3	.44 .50 .71	.027 .025 .020 .035 .035	.23 .22 .17	.3 .8< .4<	_01 _01 _01	2.4 2.2 3.7	.1 1 .1 1 .1 1	. 18 . 27 . 84	1 2 3 3
STANDARD DS4	6.7	123.1	33.0	162	.3	38.1	13.9	800	3.25	25.5	6.4	27.1	4.1	28	5.6	5,4 9	5.1	83	.58	.094	18	162.6	.62	152	.099	1	1.85	.034	. 19	3.9	.28	3.8	1.1 <	.05	6
		UPPE	IP 1D/ ER LIN MPLE	1115	- AG	, AU	, HG,	₩ =	100 P	PM; MI	o, co	, CD,	SB,	BI,	ТН,∣	U & I	B = 2	2,00	O PPM	1; CU,	, PB,	ZN, ZN, runs.	UTED NI, P	TO 2 4N, 4	200 ML As, V,	., AN. LA,	ALYS! CR =	ED BY = 10,1	ICP 000 I	-MS. PPM.					
DATE R	ECEI	VED	: Si	EP 5	2002	2 D	ATE	REP	ORT	MAI	LED :	S	eM	ti	9/	, 02	SIG	NEI	DBY	C.	.h.		7·D.	тоу	Έ,C.	LEON	G, J.	. WANG	G; C8	ERTIF	IED	B.C.	ASSA	YERS	
All result	s ar	e cons	idere	ed th	e co	nfid	entia	l pro	perty	of t	ne cl	ient.	/ Acme	ass	umes	the	liat	bili	ties	for a	actua	l cos	t of	the	analy	sis	only.	•				Data	<u><u></u> ⊢ F</u>	A	

-

- - -

44

Fjord Land Minerals FILE # A203607

ACHE ANALYTICAL						.																											ANALYTI	
SAMPLE#	Mo .ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Са ррл	Min ppm		As ppm	U ppm	Au ppb		Sr ppm	Cd ppm	Sb ppm	Bi ppm		Ca I \$	P La S ppm		-	Ba ppm	T1 X	B ppm	A1 %	Na X	K %	W ppm	Hg ppm	Sc ppm	T] ppm	-	Ga ppm
250233 250234 250235 250236 250236 250237	2.8	59.4 24.1 21.1	9.4 8.1 8.3 11.1 22.6	56	<.1 <.1 <.1	2.1 1.9 1.9	10.6 11.0 12.3	1170 1039 1216	3.41 3.54 3.36 3.51 2.82	9.2 9.7 8.4	.4 .4 .5 1.0	2.2 2.3 2.3 4.3 5.6	.8 .8 .7 .8 .8	48 44 44 47 41	.1		.1 .1 .1 <.1	40 3. 39 2. 34 3.	00 .08 11 .07 95 .08 11 .08 11 .08	37 38 28	6.6 4.0 5.2 5.4 4.2	.53 .44 .36	58 61 39	.001 .001 .001 .001 .001	4 4	.75 .69 .62	.037 .028 .032 .037 .028	. 14 . 11 . 12 . 13 . 14	1.1	.01 <.01 .01 <.01 .01	4.0 3.6	.1 1 .1	1.74 1.76 1.94	4 3 2 1
250238 250239 250240 250241 250242	1.5 1 1.3 1.2	15.8 24.2	14.7 11.6 7.0 6.1 8.1	76 56 51	.1 .1 <.1	1.9 2.2 1.6	12.6 11.7 11.2	1348 1097 1043	3.22 3.66 3.34 3.21 3.29	4.4 11.8 3.0	1.7 .7 .2 .4 .4	3.4 5.1 7.6 9.0 7.4	.8 .8 .8 .8	47 58 68 62 65		.2 15.1 .1		39 3. 37 2. 37 2.	44 .07 28 .08 96 .08 90 .07 87 .08	58 46 36	3.4 3.4 4.4	.39 .56 .50	53 41 60	.001 .001 .001 .001 .001	5 5 5	.68 1.03 .93	.028 .034 .035 .036 .035	.16 .11 .11 .13 .13	.3 .1	.01 <.01 <.01 <.01 <.01 <.01	3.1 3.5 2.8	.1 .1 .1 .1 .1 .	1.70 1.76 1.73 1.59 1.68	2 2 4 4
RE 250242 RRE 250242 250243 250244 250244 250245	1.2 1.2	14.2 27.7	8.3 8.8 6.0 12.5 9.1	53 46 85	<.1 <.1	2.1 .9 2.5	11.6 9.8 12.4	1110 928 1583	2.93 3.47 2.88 4.12 3.34	2.7 3.2 3.7	.3 .4 .2 .5 .3	7.8 7.7 14.2 19.1 26.4	. 8 . 8 . 8 . 8	63 68 50 51 50	.1 .1 .1 .2	.1 .1 .1	<.1 <.1 .1 .1	41 3. 29 2. 35 3.	83 .08 16 .08 64 .07 28 .07 82 .08	57 676 78	3.7 4.5 3.7	.57 .33 .25	60 52 52	.001 .001 .001 .001 .001	6 6 5	1.05 .73 .42	.035 .037 .034 .031 .036	.14 .15 .15 .12 .13	.2 .2 .2	< 01 01 < 01 < 01 < 01	3.2 3.0 3.1	.1 .1 .1	1.65 1.79 1.75 1.77 2.08	3 4 3 1 3
250246 250247 250248 250249 250250	1.7	20.8 18.4 18.5	7.2 10.8 7.3 50.2 141.4	64 69	<.1 .1 .2	2.6 2.0 1.8	13.5 11.7 10.2	1267 1159 1091	3.29 3.58 3.61 2.76 2.09	3.1 5.1 7.3	2.1 2.3	8.2 8.2	1.0 .7	47 47 41 38 38	.1 .5 .3 .8 1.6	.2 .3 .7	.1 .1	463. 363.	39 .08 98 .08 13 .08 68 .07 47 .07	98 38 56	5.1 3.8	.32 .47 .33	31 37 69	.001 .001 .001 .001 .001	6 5 3 5	.56 .71 .58	.028 .026 .026 .018 .008	.14 .16 .14 .17 .19	.9 .5	.01	4.7 5.3	.1	1.94	2 2 3 2 1
250251 250252 250253 250254 250254 250255	1.5 .9 1.5	24.2	14.4 15.9	97 70 75 199 134	.1 .1 .1	3.3 3.7 4.4	13.1 13.5 15.9	1103 1242 1219	3.56 3.58 3.91 3.98 4.27	4.4 4.8 3.0	.8 .8 .4 .6	11.6 5.9 3.3 2.2 1.3	.9	49 65 58 57 63	.1 .1 1.1	.5 .2 .2	.1 .1 .1 .1	64 3. 81 2. 78 2.	39 .08 20 .08 80 .08 70 .07 70 .08	67 878 97	8.4 7.2 11.3	.77 .90 .85	62 56 54	.001 .001 .002 .002 .001	7 6 6	1.13 1.20 1.31	.020 .040 .042 .047 .050	.14 .10 .07 .08 .07	.3 .4 .3	<.01	5.6 6.4 6.4		2.14	3 4 5 5 5
250256 250257 250258 250259 250260	9 1.1	49.9 47.0	15.0 22.3	74 83 70 73 94	.1 .1 .1	4.8 4.6 3.8	17.3 17.2 14.6	1227 1143 1042	3.38 4.32 3.97 3.90 4.32	2.8 2.9 2.5	.4 .2 .1 .2 .2	3.7 2.9 1.5	.9	70 61 58 53 63	.2 .1 .1	.1 .1 .1	.1	78 2. 89 2.	65 .08 35 .09 40 .09 20 .08 48 .09	37 17 47	10.9		54 72 65	.004 .004 .004 .005 .005	6 6 5	.88 1.25 1.42	.058 .060 .058 .068 .067	.07 .06 .05 .06 .05	.2 .2 .3	< 01 < 01 < 01	7.1 7.7 6.2	<.1 <.1 <.1 <.1 <.1	2.32 2.04 2.01	3 4 5 7
250261 250262 250263 250264 STANDARD DS4	1.1 .6 .9	37.6 29.2		79 72 68 102 142	.1 .1 .1	2.7 2.5 4.0	13.6 10.5 13.7	1388 1185 1478	3.45 3.66 3.24 3.71 3.03	3.4 4.0 3.0	.3 .4 .2 .2 6.4	1.7 2.3		54 62 54 85 26	.3 1.0 .1	.1 .1	.2 .1 .1	61 2. 72 2. 99 2.	41 .09 94 .08 19 .08 29 .09 53 .09	3 8 4 7 5 6	8.2 6.5	1.42	73 94 141	.005 .004 .005 .004 .089	5 4 7	1.07 1.25 1.93	.054 .058 .055 .072 .030	.05 .06 .05 .03 .16	.4 .2 .1	<.01 <.01 <.01	5.6 5.8 7.7	<.1 <.1 <.1 <.1 1.1	1.81 1.49 .96	6 5 5 8 6

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data

Page 2

££

Fjord Land Minerals FILE # A203607

ACME ANALYTICAL																															ACHE ANA	
SAMPLE#	Mo	Cu ppm	•	Zn ppm		Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppb p						Ca %		La ppm	Cr ppm		Ba ppm	ті % р		AL X	Na X		yi W nga mga			S Ga %ippm
250265 250266 250267 250268 250268 250269	.8 .8 1.2	70.1 50.3 55.8 48.1 48.4	11.6 13.0 9.1	100 90 141	.1 .1 .1	3.0 3.4 2.3	13.9 15.2 12.0	1495 1650 1452 2147	3.87 4.29	3.6 2.9 2.5	.1 .1 .1	2.7 1 2.5 1 4.0 1 1.6 1 3.9 1	.2 6 .2 6 .2 8	4 .2 1 .2 19 .2	2 .1 2 .1 2 .1		2 80 2 69 1 84	2.33 2.06 2.91	.089	6 7 7 9 7	6.3 5.6 5.5	1.10 .81 .75 1.16 1.03	51 58 33	.004	4 1 4 5 1	1.44 1.02 .90 1.41 1.17	.063 .060 .073	.05 .04 .07	.3<.01	7.2 < 6.5 < 8.9 <	.1 2.1 .1 2.1 .1 1.0	54 44 85
250270 250271 250272 250273 250273 250274	.9 1.2 .8		5.7 6.3 4.4	105 138 153	.1 .1 <.1	2.1 1.6 2.1	11.2 11.6 11.2	1511 2087 2060	2.93	3.6 4.2 2.9	.1 .1 .1	2.0 1 2.0 1 1.9 1 2.4 1 3.6 1	.3 6 .2 7 .2 7	4 . 4 . 10 .	1 .1 1 .5 1 .1	5 . 5 .	1 57 1 74 1 68	1.56 1.87 1.73	.092 .095 .090 .092 .090	7 8 9 8 8	3.9 5.5 4.1	1.31 .94 1.05 1.20 1.02	153 194 118	.003 .003 .002	3 1 4 1 3 1	1.77 1.32 1.64 1.70 1.43	.075 .085 .073	.07 .07 .06	.1<.0 .1<.0 .1<.0	5.9 7.3 6.0	<.1 .€	57 5 10 6 17 6
250275 250276 250277 250278 250278 250279	1.6 12.3 2:9	33.5 17.2 11.6 24.3 21.9	4.2 19.9 5.6	83 90 105	<.1 .2 .1	.1 <.1 <.1	11.0 10.2 13.9	1548 2344 1753	3.57 3.99 4.26	4.5 2.7 3.1	.5 1.0 .3	3.0 1 3.2 1 3.7 2.8 1.8	.1 5 .7 12 .9 9	6 . 20 .2 21 <.2	1 . 2 .4 1 .4	3.	2 57 2 56 3 71	2.62 6.25 2.93	.098 .084	8	2.8 1.2 3.0	1.17 .98 1.55 1.26 1.41	55 73 60	.002 .001 .001	7 ⁶ 8	1.28 .99 1.60	.057 .042 .077	. 14 . 13 . 07	.2<.0 .2<.0 .5 .0 .1<.0 .1<.0	47 45 66	1 2.1 1 2.0 1 1.8	13 5 19 4 33 6
250280 250281 250282 250283 250283 250284	1.7 1.5 1.7 2.1 1.4	9.5 16.5	3.3 2.9 2.6	107 91 103	<.1 <.1 <.1	<.1 <.1 <.1	9.9 10.2 13.9	1507 1337 1297	3.97 3.66 4.17	2.4 2.5 3.1	.1 .1 .1	2.2 1 1.2 1 1.2 2.0 1 3.6 1	.0 .9 .0	74 . 99 . 75 .	1 . 1 . 1 .	1. 1.	1 77 1 80 1 93	3.70 3.11 2.36	.101 .098 .100	9 7 7 6 7	1.3 2.1 2.0	1.41 1.46 1.40 1.48 1.47	98 137 107	.002 .002 .003	6 5 4	1.86 1.89 2.10	.066 .080 .089	.13 .12 .08	.1 .0 .1<.0 .1<.0 .1<.0 .1<.0	17.5 18.2 18.5	1.1.4 2.1.2 2.1.2	4777 546 707
250285 250286 250287 250288 RE_250288	1.1	29.2 30.2 45.5	2.9 2.1 2.8	78 83 78	<.1 <.1 <.1	.4 2.0 2.1	13.5 12.8 16.4	1265 1246 1228	4.11 4.01 4.61	2.8 2.7 3.5	.1 .1 .1		.9 .8 .8	31. 77. 36.	1 . 1 . 1 .	1. 1. 1.	1 92 1 106 1 114	1.98 1.81 1.87	.098 .091 .094	4 4 4	3.7 5.6 5.7	1.50 1.48 1.48 1.49 1.51	109 65 90	.003 .003 .004	4 : 5 : 6 :	2.16 2.07 2.13	.099 .088 .094	.05 .04 .04	.1<.0 <.1<.0 .1<.0 <.1<.0 <.1<.0	17.8 17.4 17.9	<.1 .9 <.1 .4 <.1 1.0	997 478 008
RRE 250288 250289 250290 250291 250291 250292	1.0 .8 1.0	70.4 61.1 54.9	4.5	75 72 73	< 1 < 1 < 1	1.4 2.9 2.3	10.9 17.6 14.9	1252 1216 1313	3.96 4.35 4.48	3.4 3.6 3.2	.1 .2 .1	2.2 1.6 2.7 2.5 2.4	.8 (.7 1) .7 1)	89 . 12 . 05 .	1. 1. 1.	1. 1. 1.	1 104 2 107 1 118	1.90 2.33 2.24	.094 .088 .100	4 3 4 3 3	5.0 6.3 7.0	1.50 1.61 1.51 1.71 1.38	96 91 100	.003 .003 .004	6 5 6	2.17 2.08 2.42	.099 .090 .103	.04 .03 .03	<.1<.0 <.1<.0 <.1<.0 <.1<.0 <.1<.0 .1<.0	17.4 18.2 18.8	<.1 <.1 1.4 <.1	688 38 748
250293 250294 STANDARD DS4	.8	66.5	2.2	55	<.1	2.7	14.0	1088	3.36	3.3	1	2.7 1.9 27.6 3	.8	72 <.	1.	1 <.	1 76	1.60	.087	3	7.2 4.9 162.4	1.25	78	.004	6	1.78	.092	. 05	<.1<.0 .1<.0 4.0 .2	1 6.2	<.1 .0	62 7

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data___

Page 3

NONE ANALYTICAL

(1	NAL SO 9	002	a L Accr		AT ted		s 1 .)		-	1	-2 GI					T L ANZ		ICOL SI		. BC		A 1 CA'				.TE (6	L eave	253	.	8 F	L	04) 			
44								J	710	<u>rd</u>		nd	Min	er	als	I	7il	е	# P	203	3200 : v60	5		je :	L.											•
SAMPLE#	Mo ppm	Си ррп		o Zn nppm	-								Au ppb								P %		Cr ppm						Na X						s % r	
SI 250601 250602 250603 250604	1.2 4.1 1.3	1.2 37.5 18.9 27.1 13.4	11.4 15.6 18.1	56 566 178	.1 .2 .1	2. 2. 2.	76 49 410	.0 .7 .8	468 648 663	3.34 3.74 3.52	4.6 5.8 5.3	.8 .7 .6	3.1 4.0 3.6	1.4 1.2 1.3	13 15 31	.2 .3 .6	.3 .3 .2	.3 .4 .2	42 28 25	.12. 67. 1.33	.073 .079	5 7 .7	6.9 5.2	.40 .34 .28	74 35 35	.001 .003 .002 .002 .002	4 5 5	.77 .70 .60	.601 .056 .041 .052 .050	.08 .13 .11	1.0<. .6<. .9	01 3 01 2 01 2	8.1 < 2.2 2.0 <	.11 .13 .13	.97 .22 .95	
250605 250606 250607 250608 250608 250609	1.9 1.3 1.4	28.2 25.4 20.9 22.8 25.5	8.4 4.9 5.0	4 66 7 79 0 91	1. ا s.1 / ا s.1 / ا	2. 2. 1.	1 10 4 10 8 10	.6 .9 1 .7 1	840 123 175	3.49 3.55 3.56	4.9 4.7 6.2	.7 .3 .2	1.3 2.6 4.6	1.3 1.3 1.3	44 46 44	.2 1. <.1	.2 .2 .2	.2 .1 .1	34 40 49	1.45 1.73 1.66	.078 .080 .077 .077 .078	6 7 7	5.1 7.4 5.4 6.4 4.5	.34 .41 .60	36 49 69	.003 .004	6 6 7	.68 .75 .99	.050 .054 .048 .060 .049	.07 .07 .09	.4<. .5<. .2<.	01 2 01 3 01 4	2.6 < 3.1 <	:.13 :.12 :.12	.53 .95 .38	
250610 250611 250612 250613 250614	1.2 1.7 1.4	22.3 29.6 29.3 20.0 79.4	3.3 4.(7.(583 77 95	<.1 <.1 .1	2. 1. 1.	2 10 6 11 3 11	.7 1 .8 .7	057 976 991	3.46 3.40 3.20	4.6 11.8 5.9	.2 .4 1.7	4.2 2.4 5.9	1.1 1.3 1.1	42 42 39	<.1 .1 .1	.2 .1 .2	.1 .1 .2	44 38 38	1.77 2.03 2.59	.083 .081 .079 .078 .085	7 8 7	5.9 4.6 5.6 4.1 5.6	.63 .47 .61	68 46 48	.002	5 6 5	.99 .80 .90	.057 .046 .047 .031 .039	.10 .13 .16	1.2<. .6<. .8	01 3 01 4 01 3	3.9 < 4.1 3.7	1 2 1 2 1 2	.06 .41 .32	
250615 250616 250617 250618 250618 250619	2.3 2.6 1.2	103.4 86.2 105.7 87.2 48.4	10.0 14.0 12.0	0 90 0 91 6 110	.1 .1 .1	1. 3. 2.	6 10 0 11 2 9	.0 .5 .7 1	739 775 089	3.54 3.61 3.68	6.3 5.5 7.5	2.2	3.1 4.5 3.9	1.0 .9	43 38 41	.1 .2 .3	.3 .2 .2	.2 .2 .1	56 58 64	3.29 2.45 2.17	.078	7 6 8	7.6 6.6 6.5	.79 .85 .94	55 50 61	.002 .001 .002 .002 .004	6 8 7	.98. .97 1.22	.036 .041 .048 .051 .069	.18 .14 .12	.8< 1.7<. .8	01 4 01 3 01 4	4.0 8.8 4.7 <	.13 .13 .12	.48 .28 .24	5 5 6 6
250620 RE 250620 RRE 250620 250621 250622	.5 .8 .8	37.2 40.4 35.7 41.9 69.8	4.1 4.2 3.7	3 74 2 71 7 94	×.1 <.1 <.1	1. 2.	29 39 99	.1 .1 .6 1	978 923 033	3.67 3.59 3.65	6.9 6.6 6.6	.3 .3 .3	1.9 7.8 3.8	1.2 1.2 1.0	110 117 123	.1 .2 .5	.2 .2 .3	<.1 <.1 <.1	85 82 79	1.69 1.61 1.87	.102 .112 .100 .111 .076	6 6 6	8.0	.82 .74 .86	118 120 130	.019 .021 .043	8 9 10	1.33 1.31 1.52	.089 .100 .100 .094 .093	.04 .04 .03	.2<. .4<. .5	01 5 01 4 01 4	5.0 < 4.8 <	:.1 < :.1 < :.1	.05 .05 .19	6
250623 250624 250625 250626 250626 250627	1.7 6.1 5.9	156.6 112.9 90.8 57.8 115.4	90.7 132.9 85.7	7 325 7 491 2 341	.2 .6 .3	3. 3. 2.	9 13 0 11 2 10	.0 1 .5 1 .9 1	049 051 223	3.89 3.76 3.57	10.0 11.2 6.7	.6 1.7 3.4	8.8 3.9 5.6	1.0 1.0 .8	69 69 70	1.9 5.4 2.4	.3 1.1 .8	.3 .4 .3	56 41 37	1.74 2.96 3.54	.078 .080 .082	778	8.4 7.9 6.3	.98 .86 .97	45 40 39	.003 .001 .001	8 11 17	1.40 1.11 1.01	.034	.11 .18 .25	.7<. 1.2 . 2.1 .	01 3 01 3 01 3	5.5 5.2 5.9	.13.13.13	.15 .92 .71	64
250628 250629 250630 250631 250632	1.9 2.0 2.2	30.6 39.0 19.8 41.9 53.1	10.5 13.6 17.4	5 97 5 112 4 114	2. 2. 2.	4. 4. 4.	5 16 9 16 9 14	.31 .01 .61	400 617 468	4.65 5.20 4.37	4.5 4.4 5.7	.4 .4 .5	5.4 4.2 5.3	1.1 1.1 1.0	53 58 59	<.1 .1	.2 .2 .1	.1 .1 .1	92 110 90	1.96 1.46 2.26	.093 .096	8 7 7	11.5 13.4 13.2	1.29	41 49 59	.004 .005	8 7 6	1.71 1.92 1.80	.048 .060 .077 .072 .088	.16 .10 .12	.4<. .1<. .4	01 5 01 8 01 8	5.6 5.3 5.0	.13 .12 .12	.14 .77 .48	6 7 8 8 8
STANDARD DS3	8.9	126.7	33.5	i 162	.3	35.	9 12	.2	757	3.18	30.7	6.0	19.1	4.0	29	6.5	5.6	6.1	72	. 56	.087	18	173.3	.58	145	.088	2	1.79	.033	.16	3.9.	23 3	5.7 1	.1 <	.05	(
,		UPPE	IP 104 R LIN MPLE	IITS	- AG	, AU	, KG	, W	= 10	O PPM	I; MO	, CO,	CD,	SB,	B1,	ΤH,	U & I	B≓	2,00	IO PPH	R ONE	. PB.	, DILL ZN, N runs.	JTED II, MI	TO 20 1, As	Ю ML, 3, V,	ANAI La, (LYSED CR =	вү 1 10,00	CP-M 10 PPI	S. M.					
DATE RE	CEI	/ED:	AUG	21 :	200 2	D.	ATE	RE	POR	T M	AILI	ZD :	Sef	H	3/	02	-	SIG	gnei) BY	<u> </u>	:h		· y .	TOYE	, c.L	EONG,	J. I	WANG;	CERT	IFIEC) В.	C. A!	SSAYE	RS	
All resul	ts ar	e cons	idere	d th	e co	nfid	enti	alp	rope	rty c	of the	e cli	ent.	Acme	i ass	umes	the	lia	bili	ties	for a	ctual	cost	df 1	he a	nalys	is or	nly.				Da	ita_	LFA		_1

ACHE ANALYTICAL									F	ore	1 L	and	Mi	ıer	als	ļ	FI	LE	# 2	420 :	320	0						P	ag	je 2				YTICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	N1 ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	B1 ppm	V ppm	Ca X		La ppm	Cr ppm	Mg Xa	Ba ppm	Ti X	B / ppm				W Hg pm ppm				Ga ppm
250633 250634 250635 250636 250637	1.4 .9 1.3	38.7 41.0	55.4 20.7 8.6 17.3 7.7	119 88 79 119 75	.3 .3 .3	3.9 3.5 3.7	16.2 16.4 16.6	1255 1375 1263 1118 847	4.89 4.80 4.69	5.5 5.2 5.4	.7 .4 .4 .5	2.3 1.1 1.0	1.0 1.1 .9 .9 1.0	71 71 70 62 65	.2 <.1 .1 .4 .1	.3 .2 .2 .2 .2	.2	114 114 87	2.21 2.10 2.49 2.96 2.52	.093 .086 .093	6 5 4 5 6	9.0 9.4 7.2 7.1 6.2	1.68 1.56 1.40	57 45 41	.006 .009 .011 .008 .009	72. 51. 51.	82 .0 13 .1 87 .0 71 .0 76 .1	.07 .07 192 .07	7 7 2	.3 <.01 .1 <.01 .4 <.01 .4 <.01 .2 .01	7.3 6.7 6.2	<.] <.] <.]	2.53 2.66 2.66	·8 8 7
250638 250639 250640 250641 250642	1.8 2.1 1.5	68.3 39.4 22.1 19.7 18.7	7.5 5.8 18.4	76 63 81 74 79	.2	2.2 <.1 .6	11.9 13.8 12.4	722 945 1333 1157 1085	4.22 5.31 4.53	4.2 4.2	.6 .5 .3 .4 .6	1.5 .5 1.0 2.0 25.6	1.1 1.0 .7 .8 .8	61 69 76 72 67	.1 .1 .1 .1	.2 .2 .2 .2	.2 .2 .1 .1	60 87 81	2.16 2.05 2.50 2.56 2.55	.089 .099 .097	5 5 4 5 6	4.4 3.3 4.3	1.65	64 58 60	.004 .006 .017 .009 .004	31. 52. 51.	60 .0 74 .1 17 .1 94 .1 87 .0	.07 .12 17 .11 100 .14	2 1 4	.3 <.01 .3 <.01 .2 <.01 .4 <.01 .4 .01	4.6 6.7	<.	l 2.52	7 8 7
250643 250644 250645 250646 250647	1.0 1.1 1.3	20.1 21.4 35.5 32.6 82.0	11.9	82 74 69 72 59	.2 .2 .2 .2	<.1 .5 2.0	11.9 12.7 14.3	1121 1046 866 824 671	4.83 4.54 4.69	4.1 5.8 4.5	.5 .2 .2 .2	18.7 5.3 4.6 8.6 17.0	.8 .8 .7 .6	63 66 69 76 58	.2 .1 .2 .1 <.1	.7 .2 .3 .1 .2	.1 .1 .2 .3	76 71 84	2.88 3.01 2.85 2.98 2.12	.095 .093 .088	6 4 4 4	2.4 4.1 6.1	1.35 1.43 1.41 1.47 1.44	60 50 37	.008 .014 .030 .011 .019	71. 71. 61.	82 .0 80 .0 82 .0 78 .0 73 .0)58 .1()79 .1)65 .13	6 7 3	.4 .01 .7 <.01	6.1 6.5	<. <.	L 2.77 L 2.76 L 2.64 L 3.07 L 3.29	7 7 7
250648 250649 250650 RE 250650 RRE 250650	2.5	79.2 25.1 66.0 63.5 61.7	5.1 26.4 4.9 5.0 4.9	59 119 46 45 46	.3 .2 .1	2.8 4.3 3.3	23.3 17.0 16.0	596 697 622 640 579	6.04 4.83 4.69	5.3 5.0 4.9	.2 .2 .3 .3 .3	17.8 61.5 41.9 42.4 44.3	.5 .7 .7 .7 .7	49 46 64 65 61	.1 .5 .1 .1 .1	.2 .2 .2 .4 .3	.6 .8 .4 .5 .5	71 71 70	2.07 2.00 2.27 2.33 2.38	.084 .085 .087	3 7 5 5 5	4.9 9.0	1.20	24 46 48	.018 .009 .015 .014 .014	71. 81. 71.	39 .0 70 .0 51 .0 52 .0 54 .0)58 .19)77 .19)81 .1	9 8 7 1	.2 <.01 .6 <.01 .8 .01 .0 <.01 .7 <.01	4.2 4.4 4.2	<.	L 4.70 L 3.55 L 3.57	7 6
250651 250652 250653 250654 250655	4.5 2.0 56.8	18.7 57.9 16.9 412.2 55.9	2.3 2.4 3.3 47.2 9.9	38 41 38 99 96	.1 .1 1.6	1.9 1.9 2.6	18.2 13.8 82.4	662 817 541 1265 975	5.88 4.68 8.50	4.8 4.3 21.2	.2 .2 .2 .2 .2	32.5 37.2 24.1 25.8 41.3	.6 .5 .7 .5 .7	62 65 62 29 23	<.1 <.1 .3 .2	.2 .2 .4 2.1 .5	.6 .8 .6 1.6 1.3	96 64 56	2.15 2.81 2.48 1.67 1.14	.103 .107 .074	5 4 4 4 6	4.6		36 43 49	.019 .030 .025 .004 .004	71. 81. 82.	68 .0 71 .0 55 .0 36 .0 03 .0)81 .14)96 .14)24 .24	4 4 4 1	.3 <.01 .4 <.01 .7 <.01 .2 <.01 .7 <.01	5.4 4.3	<.	i 4.44 l 4.83 l 4.02 l 4.08 l 4.34	6 6 8
250656 250657 250658 250659 250660	.9 1.1 12.1		3.7		.4 .7 1.0	3.1 4.2 .4	13.6 13.1 27.4	695 536 678 1197 1177	4.00 4.30 6.06	7.0 6.3 78.6	.3 .3 .2 .1	38.4 51.8 82.0 82.5 44.7	.7 .8 .5 .4	50 88 77 96 97	.4 <.1 .1 10.1 1.3	.7 .4 .5 1.2 1.0		61 69 121	2.10 1.97 2.13 3.16 3.79	.085 .086 .114	5		1.14	35 33 39	.003 .017 .021 .014 .036	51. 51. 72.	50 .0 55 .1 50 .1 05 .1 05 .1	129 .01 122 .01 106 .01	9 8 1 8	.8 .01 .6 <.01 1.4 <.01 .2 .04 .6 <.01	4.8 4.9 7.6	<. <. <.		6 6 9
250661 250662 250663 250664 STANDARD DS3	22.7 1.3 6.4			101 149	.5 2.1	4.2 7.2 3.0	30.8 18.5 27.5	1369 1628 1412 1556 790	6.29 5.59 6.24	30.2 6.1 28.5	.3 .3 :	88.7 207.8 223.6 2383.7 18.8	.7	96 107 132 83 28	.9 .1 .5	1.1 2.3	.6 1.7	105 137 61	4.06 4.28 3.90 4.45 .52	.119 .124 .088	4 6 6 16 1	1.2 3.7 4.3 6.3 180.5	.91 .97 .72	35 100 25	.002	61. 51. 41.	82 .0 66 .0 70 .1 15 .0 73 .0)75 .19 105 .10 143 .22	5 0 2 1	.4 <.01 .4 .02 .4 <.01 .5 .01 3.7 .22	2 8.5 9.8 6.0	<	4.22	6 7 4

- 5 -01- 2003 Beça/Beceiaeo

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA

			-C	=	C		[=			[=					<u> </u>]]—	E		1]	-				-E_			=	E	
ACHE ANALYTICAL									Fjc	ord	La	nđ	Min	era	als		FII		# A	203	3200)							Pag	ge	3		ACHE	AKALYTE	CAL
SAMPLE#	Мо	Cu	Pb	Zn	Ag	N1	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	Р	La	Cr	Mg	Ba	Ti	В	A1	Na	K	W	Hg	Sc	T1	S	Ga
	ppm	ppm	ppm	ppm	ррп	ppm	ppm	ppm	¥	ррп	ppm	ppb	ppm	ppm	ppm	ррп	ppm	ppm	*	*	ppm	ррт	<u>x</u>	ppm	2	ppm	*	<u> </u>	*	ppm	ppm	ppm	ррті	*	ppm
250665 250666		345.3 483.3	4.5	95 110		3.7 3.1		1201 1429				157.1 140.0	.9 .9	113 98	.1	.2	.5	100 104	3.03 3.44		7 7	5.8 5.6	1.04	251 105	-	51. 51.	90 . 75 .		.14 .17		<.01 <.01		< 1 .1	.67 .21	8 7
250667		1579.4	2.7	188			139.6					25.9	.6	31	.4	.3	1.0	33	1.55	.09 9	4	4.0	.91		.004	42.		012		7.1		2.5		2.39	8
250668	1.6		8.9	148								16.0	.7	85	.3	.7	1.0		4.77		8	3.5	.86		.001		58.			2.3		4.9		1.68	1
- 250669	2.4	24.7	7.4	131	.2	2.9	18.4	1770	4.43	8.7	.3	28.6	.8	84	.3	.3	.5	59	4.60	.087	7	5.4	.94	70	.001	6.	60.	023	. 32	1.4	<.01	5.8	.1]	1.14	2
250672 250673	51.3	349.0 625.6 513.8	8.4 7.3 4.8 5.5 6.5	148 151 112 147 184	.7 .3 .3		31.8 14.2 23.4	1742 1691 1237 1354 1382	5.21 3.80 5.10	8.5 5.3 6.4	.5 .2 .3	108.6 350.3 338.6 196.5 461.5	1.3 1.1 1.1	68 75 66 59 66	.2 <.1 <.1 .2 .5	.2 .3 .2 .4 .3	.8 .5 .1 .2 .1	73 76 73	3.72 3.45 2.93 2.40 2.65	.089 .071 .071	7 8 8 7 7	5.6 6.1 5.1 6.4 5.6	.89 .88 .86 .84 .85	140 175 304	.003	4 1. 4 1. 4 1.	72 . 30 . 19 . 34 . 29 ,	036 042 045	.24 .19	1.9 1.3 .9 3.6 .6	.04 .02	5.3 4.3		1.48 1.00 .11 .17 .08	2 5 6 6
250675	58.0	115.3	4.4	135	.1	3.5	12.2	1381	3.85	4.6	.3	102.0	1.2	60	.1	.2	.1	81	2.70	.075	8	5.3	.88	260	.004	31.	28.	050	.15	1.0	<.01	4.4	<.1	<.05	6
250676		138.4	4.2			3.0		1615				91.2		63	.3	.2			2.84		8		1.09	131			40.		.11				<.1 •		6
RE 250676		143.3	4.4	168		2.6		1625				87.0		64	.3	.1	<.1		2.85		8		1.11	130			.36 .		.11				< 1		6
RRE 250676 250677		133.4 265.2	4.5	167		3.8 3.5		1590		4.1 5.3		84.6 67.6		64 49	.3	.3 .2	<.1		2.85 1.23		8	5.5 4.6	1.07	135	.007	41. <11.	40.		.11				<.1 <.1		6
230077	20.2	200.2	9.1	123	.1	5.5	10.4	110/	0.00	0.0	.0	07.0	1.2	43	• •	. 2	.1	00	1.23	.073	0	4.0	.00	443	.004	~1 1.	.44 .	.044	. 10	1.1	~.UI	3.7	1	~.05	U
250678		272.9	5.0	143	.1	3.1	14.5	1450	4.19	5.3	.4	159.4	1.2	68	.2	.2	<.1	82	3.00	.078	8	4.9	. 80	371	.003	5	98.	044	.16	1.0	<.01	3.7	<.1	.06	4
		882.2	2.8	139	-	3.6		1558		7.5		14.7		54	<.1	.2	.1		2.15		8	3.2			.004		44 .			2.3		3.1	.1	.13	4
250680			2.9	108		3.0		1346				27.7		66	.1	.1	<.1		2.43		9	4.4		574			30 .			2.0		3.1	.1		5
250681 STANDARD DS3	23.0 9.3	98.1 126.7	3.0 34.1	91 162		5.0 35.2	14.8	1691 743				89.7 22.0		81 32	.1 5.9	.2 5.9	<.1 6.0		3.50 .54		9 18 :	4.9 178.7	1.24 .57		.003	41. <11.	.70. .80.		.17 .15	.2 3.5			1.2	<.05 <.05	ნ 6

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

	ИЦА 9 08	002	L A	t i cor	ed:	LATC	Cc	3)	-	<u>'101</u>		and	CHEI Min 150	ler	AL als		aly Fil	e #	CI A2	203	IFI 382				F.		5 8. .,	-53	-L		* A .	4	<u>) 2</u>	A A		 K
sample#	Мо ррт			Pb ppm	Zn ppm							U mqq		Th ppm				B1 ppm		Ca %	P X	La ppm	Cr ppm	Mg X			B ppm	A1 لا	Na X	K X	W ppm			T1 ppm	-	Ga ppm
SI 250082 250083 250084 250085	.2 18.7 21.9 26.8 16.7	900. 623. 1102.	7 30 4 32	4.0 0.6 2.0	489 457 331	.8 1.2	5.0 7.0 4.0	14.2 18.0 13.8	2 2924 0 3038 8 2500	5.69	37.4	.2 .2	<.5 367.7 315.7 596.0 524.4	1.1 1.4	51 44 47	2.4 2.2 1.5	3.9 2.7 7.9	<.1 .1 <.1	117 102 113	.71 .96 1.26	.083	8 5 6		.37 .49	35 357 56	<.001 .002 .002 .002 .002 .002	12	.59 .56 .65	.560 .041 .031 .032 .032		.2	.03 .05 .06	11.1 6.6	.1 .1 .1	<.05 .14 .15 .11 .09	<1 3 2 3 3
250086 250087 250088 250089 250090	18.4 20.3 15.2 13.2 13.8	1053. 922. 1207.	4 22 2 21 4 47	2.6 1.7 7.3	176 179 254	.9 1.0 2.5	3.2 3.2 4.2	10.0 9.9	0 1869 5 1612 1 2078	3.66 3.79 4.66	20.8 25.9 11.8 159.2 71.4	.2 .2 .6	536.1 434.6 462.2 541.2 558.4	1.4 1.3 1.3	47 55 41	7. 6. 2.0	8.4	<.1 <.1 <.1 .1	91 99 99	.61 .76 1.29	.093 .105 .100 .090 .102	7 7 7 6 9	7.0 6.2 5.9 5.9 4.7	.32 .36 .44	24 652 114	.003 .003 .003 .002 .001	3	.53 .58 .56	.043 .040 .039 .016 .015	.09 .07 .07 .16 .21	.2	.02 .02 .10	7.7	<.1 .1	.06	4 3 2 2
250091 250092 250093 250094 250095	10.6 11.3 13.3	980. 3078. 2049.	1 21 7 27 2 24	1.0 7.5 4.1	255 277 313	1.0 2.6 1.8	2.5 1.7 2.3	8.9 7.0 8.0	5 1507 5 1152 0 1344	3.81 2.98 3.26	172.8 30.2 238.2 162.7 22.6	.2 .3 .2	890.0 765.5 1427.2 880.0 591.7	1.7 1.5 1.4	36 28 28	1.1 1.5 1.6	15.8 7.0 33.3 11.0 4.5	<.1 .1 .1	80 63 66	.86 .70 .66	.103 .136 .127 .126 .117	12 9 13	4.0 3.2	.37 .32	27 29 34	.002 .001 .001 .001 .001	6 4 3	.53 .48 .43	.037 .013 .016 .017 .015	.10 .13	.4 .5 .4 .8	.07 .15 .15	11.0 5.4 3.9 5.2 5.4	.1	.13 .07 .14 .12 .07	3 2 2 2 2
250096 250097 250098 250099 250100	9.4 7.6 10.2	585. 447. 1211.	1 26 8 22 5 27	5.1 2.5 7.0	260 237 272	1.0 .8 1.8	.5 .5 .2	8.0 7.6 8.7) 4895 5 4866 7 3755	3.53 3.51 3.63	89.3 -15.3 20.1 69.0 205.4	.1 .2 .1	545.8 310.5 250.3 540.5 571.0	1.6 1.6 1.4	38 40 37	2.4 2.0 1.8	8.6 20.0	.1 <.1 <.1 <.1 <.1	75 74 70	4.16 4.27 3.16	.096 .120 .126 .119 .117	10 11 11 10 10	2.8 3.5 2.2 3.1 2.9	.96 .96 .84	13 55 22	.001 .002 .002 .002 .002	7	. 54 . 57 . 59	.011 .010 .009 .024 .032	.09 .11 .12 .12 .11	.3 .4 .3	.09 .11	6.5 6.4 5.5	<.1 <.1 <.1 <.1	.06 .08 .10	2222222
	9.0 8.9 124.8 132.2 52.3	1231. 306. 434.	2 37 8 24 2 21	.2 .3 .5	273 377 311	2.3 .5 .7	.8 4.3 1.3	12.7 14.7 10.9	7 3256 7 1798 9 2050	4.50 3.85 3.38	200.8 204.1 10.3 46.7 31.4	2 .3 .3	555.2 589.1 287.4 337.6 249.4	1.6 1.4 1.2	40 52 41	$1.8 \\ 1.0 \\ 1.1$	19.7 1.5 2.4	<.1 <.1 <.1 .1	74 75 67	2.95 3.39 3.68	.120 .116 .085 .082 .099	10 10 7 7 8	2.9 3.1 6.8 4.8 3.8	.50	21 128	.003	7 4 6	.54 .74 .55	.031 .032 .046 .022 .007	.11 .12 .12 .17 .24	.4	. 13	6.1 5.7		.12. 05.> 09.	2 3 4 3 1
250685 250686 250687 250688 250689	50.4 25.7 103.4 91.3 67.4	272. 276. 204.	0 20 2 18 6 20).2).7).4	198 207 245	.8 .7 .9 .5 .9	.6 7 1.3	7.9 9.7 14.0) 4028 / 3429) 4673	2.87 3.13 3.72	91.0 36.1 10.9 7.1 16.6	.2 .2 .2	203.7 101.9 284.3 294.0 254.7	1.2 1.1 1.1	44 36 37	.8 1.0 1.1	1.5	.1 <.1	73 63	5.78 5.67 3.30 3.39 4.12	.104 .088 .087	10 9 7 8 8	2.0 1.9 3.1 2.8 3.0	.60 .80 1.20	. 86 80	.001 .002 .001 .001 .001	8 10	.52 .52 .55	.004 .005 .006 .008 .009	.28 .17 .16 .24 .29	.4 .5 .5 .6	.10 .08 .04	4.2 5.5 5.9 5.3 4.5	.1 .1	<.05 <.05	1 2 1 1 1
250690 250691 250692 250693 250694	77.0 62.9 24.6 20.8 14.2	440. 863. 579.	9 18 8 27 2 33	.5 .0 .1	249 275 319	1.0 1.8 1.0	1.0 2.1 3.3	19.1 14.5 16.7	4075 3778 3811	4.43 4.63 5.03	34.6 41.2 114.3 7.8 5.7	.4 .6 .3	218.4 213.4 374.0 263.8 148.4	$1.1 \\ 1.1 \\ 1.1$	42 86 104	1.0 1.7 1.9	6.5 .7	.1 .3 .2 .1 <.1	38 77 98	4.84 4.79	.084 .097 .087	7 6 7 9 8	2.1 1.6 1.8 3.9 4.7	1.12 1.79 1.40	92 20 84	.001 .001 .001 .001 .001	5 6 3	.41 .83 .84	.007 .010 .017 .017 .022	.27 .26 .13 .09 .08	.5 .2	.06 .04 .10 .04 .02	3.6 7.8 11.0	.1 .1 <.1 <.1	.48 .13	1 1 2 3 4
STANDARD DS4	6.9	126.0	J 32	.0	151	.3	37.8	12.1	760	3.12	21.0	5.9	29.0	4.0	29	4.9	5.3	5.1	78	.55	.093	17 1	161.7	. 59	144	.091	1	1.74	.030	.16	4.0					7
		Uri	FER	CIN	- 1 ITS TYPE	- AQ	, AU	, nu	, w =	100	PPM; i	MU, C	2-2-2 0, CD, nning	SB,	ΒΙ,	TH,	U & E	3 = 2	.000.	PPM:	CU.	PB. 2	ZN. N1	TEÙ T (, mn	O 20 I, AS	0 ML, , V,	ANAI La, (LYSEI Cr =	D BY 10,0	1CP-W 00 PF	IS. M.					
DATE RE	ICEIN	7ED :	:	AUG	27	2002	D	ATE	RE	PORT	MAI	LED	S	got	<i>ţ</i> , ,	2 /0)2 :	SIGN	ED .	BY.	<u> </u>	<u>h</u>	1	.D. 1	roye,	C.LI	EONG,	J.	WANG;	CER	TIFIE	DB.	C. A:	SSAYE	RS	
All resul	ts ar	e cor	nsid	lered	d th	e col	nfide	enti	al pr	opert	y of t	the c									ог ас	tual	cost	of t	he ar	nalys	is or	ıly.				De	nta	FA		M

) 		•)		<u>.</u>	E		[Fjo	rd	Lar	 Id I	(in	 era	ls		FI	LE		203) 382	2]	·]	. 1] Pag	le 2			ACHE AN		
SAMPLE#	Мо ррп	Cu ppm			n Ag 1 ppm		i (n pp		Mn ppm	Fe %	As ppm	U Inqq		וז ג סקקיכ						Ca %		La ppm	Cr ppm		Ba ppm	Ti %	в ppm	Al X	Na %	K %	k M		Sc ppm		s (%p	
250698	15.1 39.0 32.7	258.6 736.4 772.9 508.7 470.8	24.2	5 189 5 182 1 193	2 1.4 2 1.2 5 .9	3.(3.7 3.4) 10. 7 16. 4 15.	.4 1 .7 1 .4 1	439 258 156	3.94 3.94 3.30	36.4 71.9 49.7	.2 .2 .2	313.0 351.1 229.4	3 1.3 1.3 1.2	63 64	9. 8. 1.2	2.7 2.4 2.2	<.1 <.1 <.1	132 123 94	.98 .88 1.35	.100 .102 .095	6 6 7 5 4	4.8 9.7 7.6 5.6 6.4	.28 .33 .39	97 144 40	.006	6 4 5	.81 .68 .67	.075 .049	.09 .08 .07	.1	.01 1 .01 1 .01	1.2 1.6 9.0	<.1 . .1<.	06 05 06	4 4 4
250700 293828 293829 293830 293831	3.2 1.5	788.9 115.5 15.0 43.8 173.7	5.4 5.6 4.7	4 61 5 79 7 88	.4 .1 .1	1.4 2.7 2.4	4 11. 7 12. 4 14.	.7 .0 1 .1 1	882 088 723	2.96 3.43 3.64	87.7 13.6 19.1 53.7 62.8	.1 .1 .1	15.0 24.0 24.3) 1.2) 1.0 5 1.0	: 60 57 50	.1 .1 .1	.4 8. 6.0	.1	62 87 54	1.20 2.00 1.60 2.84 3.89	.113 .102 .098	5 6 7 7	3.9 5.7 4.7		197 151 84	.002 .001 .001		.76 .75 .56	.036 .026 .015	.18 .23 .29	.2<	.01 .01 .01	6.1 7.1 4.4		05 05 08	4 2 2 1 1
293832 293833 293834 293835 293836		53.2 49.8 4.2	9.9 8,4 6.1	2 84 4 89 1 85	.2 .3 .1	2.9 2.0 2.0	7 13. 5 12. 0 12.	.21 .61 .31	776 824 789	3.29 3.55 3.29	28.8 21.6 68.6 67.7 42.1	.3 .3 .2	19.9	5.7 1.7 2.9	50 59 66	.1 .2 .1	2.2 4.8 1.7	.1 <.1	48 70 51	4.02 5.22 4.42 5.29 4.90	.087 .089 .090	6 6 7 7	528.	.68 .89 1.07	158 136 104	.001 .001 .002 .002 .002	6 5 5	.47 .58 .62		.28 .35 .34	.3< .4< .2<	.01 .01 .01	4.7 4.1	.1.	13 31 14	1 1 2 1 2
293837 294201 294202 294203 294204	9.8 8.0	4.7 786.9 375.7 454.6 538.5	13.5 11.2 10.0	5 133 2 96 3 98	1.0 .5	-3 -4 -1	59. 8.	.8 1 .4 1 .6 1	820 648 469	3.90 3.41 3.54	42.3 117.9 56.9 51.5 75.6	.3 .6 .4	157.5	2 1.3 5 1.6 5 1.6	67 78 81	.6 .7 .6	3.0 1.6	.1 <.1	72 70 75	4.18 3.10 3.48 2.88 3.37	.111 .117 .115	5 8 9 9	6.2 3.6 3.1 3.4 3.9	.33 .46 .38	31 75 82	.003 .004 .006 .010 .008	5 7 8	.61 .57 .64	.076	.12 .08 .08		.14 .09 .05	5.0 5.2 5.5	<.1 .	12 09 07	2 3 3 2
RE 294205 RRE 294205	11.8 12.4 10.7	909.0 895.3 907.3 477.5 879.9	15.9 16.6 7.5	7 143 5 147 5 92	1.2	<.1 .1	8. 9. 2. 7.	.7 1 2 1 5 1	473 🕻	3.85 4.05 5.51	30.8 31.2 7.2	-4 -4 -4	344.5	2 1.1 5 1.2 7 1.1	73 79 78	1.2 1.2 .6	1.8 1.8 .5	<.1 <.1	75 86 91	3.23 3.11 3.36 2.23 1.76	.117 .126 .127	8 8 9 7 6	3.8 4.7	.43 .46 .40	105 107 108	.032 .034 .037 .052 .062	4 6 7	.63 .68 .82	.079 .104	.10 .11 .08	.4 .5 .6 1.0	.03 .02 .01	4.4 4.5 2.7	<.1 . <.1 .	15 15 08	3 4 3 4 4
294208 294209 294210 294211 294212	6.3 6.2 6.9	585.0 619.1 579.1 820.4 470.0	9.2 4.5 5.5	2 169 106 123	.6 .5 1.2	<.1 <.1	10, 9, 9,	6 1 2 9 1	137 4	.68 .48 .48	7.1 12.2 7.7 9.6 9.8	.3 .3 .3	213.5 216.2 299.7	.7 .8 .9	107 112 134	.8 .6 .7	.3 .2 .5	<.1 <.1 <.1	131 134 126	2.06	.136 .127 .117	5 6 6 6	3.9 3.6	.66 .47 .45	183 105 130	.078 .078 .071 .058 .053	14 1 12 1 10 1	.23	.135 .150 .145	.09 .09 .09	.6.	.01 .01 .01	3.4 · 2.5 · 2.7 ·	<.1 . <.1 .(<.1 .	12 07 15	5 5 5 5 5 5 5
294213 294214 294215 294216 STANDARD D	6.4 4.9 5.5	557.7 1054.7 616.8 648.2 125.5	5.2 12.6 7.6	127 156 127	1.1 .8 .7	1.> 1.> 1.	9. 8. 9.	6 1 7 1 6 1	896 4 041 4 056 4	.56 .18 .36	13.3 7.7 8.9 7.3 21.6	.4 .4 .4	327.2 241.0 316.6	9. 9 .8 .9	128 145 134	.8 1.1 .7	.2	<.1 <.1 <.1	140 119 130	1.98 2.65 2.28	.128 .119 .121	6 6 6	4.8 3.6 4.2	.39 .38 .38	86 133 89	.057	61 81 81	.62 .51 .44	. 199 . 203 . 196	.09 .08 .08	1.1 .7<. 1.0<. .5<. 3.8	01 01 01	2.0 · 2.8 · 2.7 ·	<.1 . <.1 .(<.1 .	14 08 10	5 6 5 5 6

Standard is STANDARD DS4. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data___ FA

.

ACHE AMALYTICAL		t	;			L			F	jora	1 I	and	Mi	l	als	3	FI	LE	# 1	120	338:	2				- C	······	F	ag	Je 3			ACHE		
SAMPLE#	Mo ppm	Cu ppm				N Ppr	1 С трр				-			Sr ppm			Bi ppm	V ppm	Ca X		La ppm	Cr ppm	Mg %	Ba ppm	Ti X		A1 N X .			W H pm pp	•	Sc opm	T1 ppm		Ga ppm
294217 294218 294219 294220 294220 294221	8.0 6.4 5.5	571.7 804.4 1081.0 1061.0 618.4	9.5 6.8 3.7	179 153 120	.9	2.9 1.3 .1	9 11 <i>.</i> 3 18. 8 17.	6 138 2 132 3 127	3 4.59 8 5.12 1 5.14	11.6 8.9 14.4 19.6 11.7	.3 .3 .3	240.0 320.4 456.4 637.7 347.8	.8 .9 .9 .8 .8	145 66 79 75 98	.8 1.1 .8 .6 .3	.3 .5	<.1 <.1 <.1	142 140 145 164 170	1.58 1.69 1.73	.095 .123 .131	7 4 4 4	8.7 4.4	.89 .90	85 102 190 113 115	.072 .123 .125	91.3 121.4	85 .12 27 .15	2 .07 3 .22 2 .15	7 1 2 5	.3 .0	1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	3.1 3.3 3.1	<.1 <.1 <.1 <.1 <.1	.13 .21 .16	6 5 7 7
294222 294223 294224 294225 294225 294226	8.9 10.6 11.0	945.9 853.3 917.4 1213.6 868.1	15.3 43.3 32.2	193 274 238	.9 1.6 1.1	2.: 2.! 1.!	3 14. 5 12. 9 12.	9 148 7 214 3 178	3 4.18 0 4.10 7 4.33	12.5 20.8 122.9 101.2 117.9	.4 .4 .4	554.2 366.9 417.8 423.4 289.1	1.1 1.3 1.5	77	1.1	.3 5.4 1.4	<.1 <.1	102	2.62 3.66	.089 .089 .091	4 5 7 6 6		.59 .71 .52	79 57	.136 .056 .003 .015 .002	10 (9 (35 .16 34 .10 32 .06 35 .11 79 .06	0.08 5.12 4.08	3 2 3	.7 .0 .2 .0 .5 .0	2 ! 7 (1	5.5 6.9 8.4	<.1 <.1 <.1 <.1	.12 .13	7 5 3. 4 3
294227 294228 294229 294230 RE 294230	5.6 6.2 6.4	572.0 685.1 331.0 576.6 557.8	22.0 16.3 20.5	228 157 155	.6 1.9	1.: .(1.:	2 26. 6 17. 1 16.	0 309 4 190 3 245	0 6.96 9 5.44 7 4.67		.3	2 378.0 3 329.5 2 166.9 194.6 289.5	.7 .9 .9	65 71 67 63 63	.3 .5 .4 .8	.6 9	.1 <.1 <.1	135	4.65 3.20 5.04	.119 .144 .119	6 6 7 7	3.1	.65 1.24 .56 .76 .76	144 39 52	.002 .001 .007 .002 .002	9 .1 12 1.0 7 .0	91 .03 89 .02 03 .04 63 .02 54 .02	7.21 9.21 3.21	7) 3	.1 .0	$ 1 \\ 1 \\ 1 \\ 1 $	5.8 8.8 6.2	.1	.14 .48 .24 .52 .54	3 3 4 2 2
RRE 294230 294231 294232 294233 294233 294234	9.6 8.1	544.3 535.8 547.5 358.0 1462.1	30.1 24.7 10.9	159 134 122	1.7 1.8 .6	1. 1.9	715. 915. 88.	6 190 0 206 7 154	6 3.96 2 4.04 5 3.84	78.1 210.7 34.3	.7 ,8 ,2	266.9 286.3 443.8 180.0 660.7	1.3 1.2 1.4	62 63 61 63 34	.3	.9 3.0		91 54 102	5.39 4.71 4.07 3.49 1.34	.087 .099 .115	7 7 8 7 12	3.7	.75 .72 .67 .46 .60	344 45 27	.002 .002 .001 .003 .002	10 .: 9 .: 13 .:	68 .02 87 .02 59 .01 85 .03 52 .02	6.24 9.33 8.21	4 3 1	.2 .0 .7 .0	2 1	6.2 4.1	.1 .1 1 .1		3 3 2 3 3
294235 294236 294237 294238 294239	5.0 7.3 11.1	405.4 437.3 361.5 261.2 291.3	17.1 19.9 9.0	202 225 195	1.0 .7 .5	1. 2. 2.	721. 516. 714.	9 206 7 205 6 246	5 5.34 8 4.64 4 4.56		.2	490.1 112.2 143.1 98.2 129.0	.8 1.1 1.1	73 107 92	.7 8. 1.1	.4	.1 <.1 <.1	97 133 118 102 127	5.07 5.46	.136 .088 .090	7 6 7 5	6.3	.89 .73 .75	54 45	.002 .003 .007 .002 .026	13 . 11 .	70.04	1.18 5.18 5.2!	3	.1 .0 .2 <.0	1 (2) 1 (7.9 5.8	<.1 <.1	.28 .35 .33 .13 .09	3 4 5 3 5
294240 294241 294242 294243 294243 294244	25.2 23.8	204.5 201.8 179.1 218.8 283.8	10.3 9.7 10.0	218 302 324	.7 .5 .7	2.1 3.1 2.8	1 14. 7 17. B 17.	6 180 4 145 0 180	7 4.30 2 4.70 7 4.24 5 4.54 8 4.21	8.6 8.5	.4 .4 .4	79.0 30.0 52.0 114.6 149.8	.9 1.2 1.1	69	.5 .5 1.1 .8 1.9	.6	.1 <.1 .1	127 104 141 104 131	3.19 3.21 3.82	.082 .096 .095	5 6 6 6	7.8 1 7.1 1 8.1 1 8.4 1 7.9	L.28 L.00 L.00	309 70 215	.026 .010	10 1.4 9 1.3 13 1.3	30.09	0 .21 0 .11 1 .24	L L 1	.2 .0 .2 .0 .2 .0	1 7 2 8 2 6	7.0 8.9 6.8	<.1 <.1	.10 .10	6 6 5 6
294245 294246 294247 294248 STANDARD DS4	11.2 13.9 .7	285.4 279.8 42.1 20.9 125.8	5.9 4.6 3.9	237 171 100	.4 .1 .1	3.7 3.3 1.5	7 15. 3 15. 5 9 <i>:</i>	7 152 4 143 9 117	34.16 32.66	19.8 7.6 5.0	.3 .2 .1	121.4 86.5 68.4 59.7 30.0	.9 .9 1.0	77 82 73	.4 .2 .1	4.4	.1 <.1 <.1		3.87	.089 .091 .107	6 8 7	7.5	.90 .77 .50	94 173 230 184 144	.002 .002 .001	71.0 9.9	98 .06 03 .04 96 .03 91 .03 74 .03	$ \begin{array}{c} 3 & .11 \\ 3 & .14 \\ 3 & .15 \\ 3 & .15 \end{array} $	L J 5	.1 .0 .2 .0 .1 .0 .1 <.0 .8 .2	1 $i1$ $i1$ j	7.0 5.1 5.7	<.1 <.1 < <.1	.18 .05 .06	4 4 3 6

.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data

FA

ACHE ANALYTICAL	I		Ľ		Ľ		Ĩ		Fjo	rd :	Lan	 .d 1	l (in	era	als		FI	LE	 #	A20	338	32				T			Pag	ge	_		/ 		
SAMPLE#	Mo ppm	Cu ppm	Pb ppn	Zn ppm		Ni ppm	Со ррп		Fe X	As ppm	U ppm	Au ppb		Sr ppm	Cd ppm	Sb ppm	Bi ppm	۷ ppm	Ca %	Р %	La ppm	Cr ppm	Mg X	8a ppm	Ti X	B ppm	Al %	Na %	K %		Hg ppm	Sc ppm		-	Ga ppni
294250	.9	169.6 72.0 121.2	4.7	74	.2	.1	10.9	1420 882 752	3.46	5.9	.1	40.0	.9	85 62 28	.1		< 1	82	2.48	.095 .107 .094	7	5.2 6.2 163.3	.49	535 84 151	.001	6	.83	.034 .037 .030	. 14	.1	<.01		<.1<		2 2 5

Sample type: CORE R150 60C.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data

FA

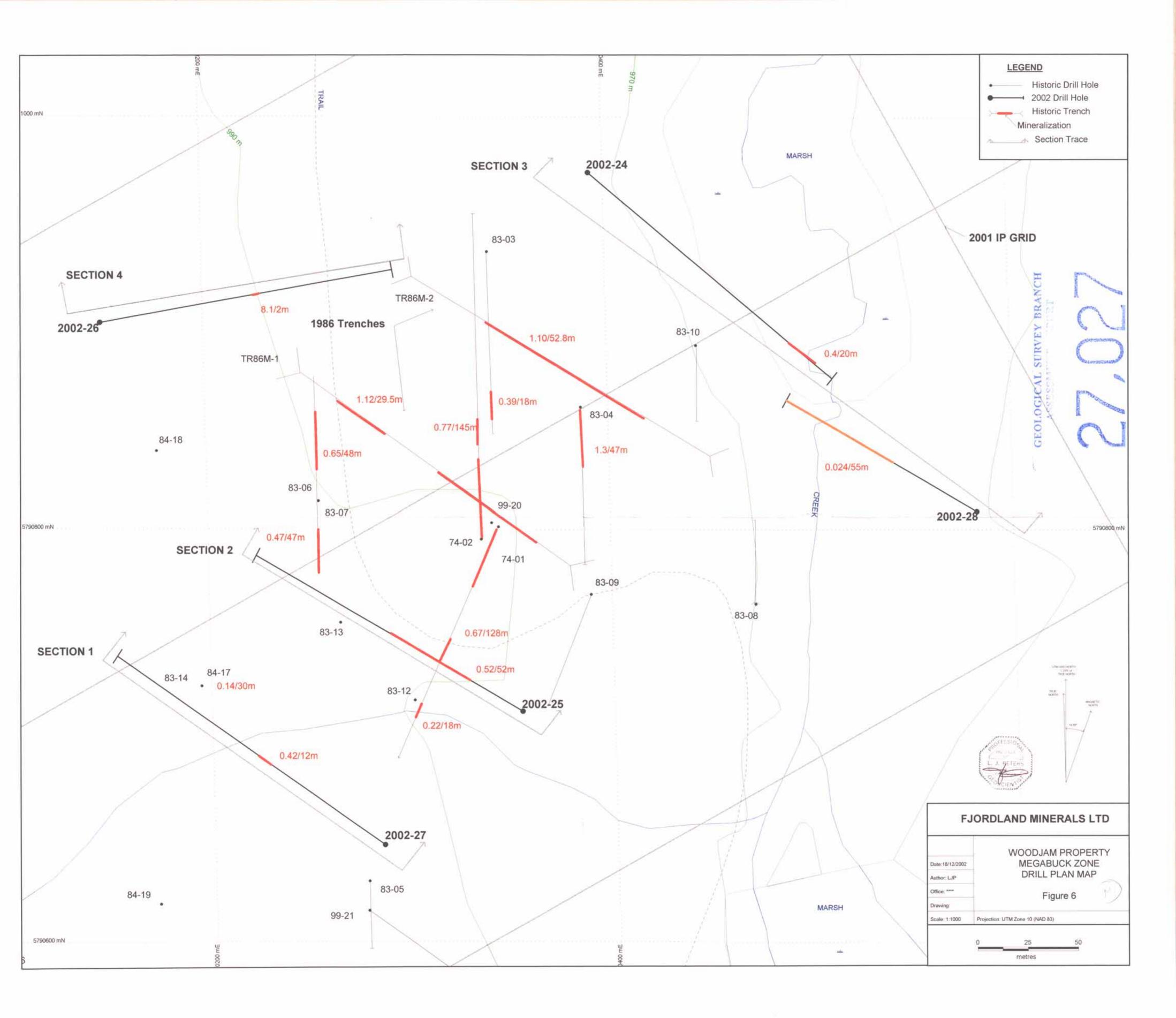
<u> </u>				saying for ove	e zs geu			
Geod	<u>chemical An</u>	2V-	0432-RG1					
Company: Project: Attn:	Fjordland Ex John Peters	ploratio	Nov	Nov-29-02				
We <i>hereby</i> submitted	<i>certify</i> the follo Nov-26-02 by A	wing geo cme Lab	s.	analysis of 6 ro	ck sample	S		•
Sample Name	, , , , , , , , , , , , , , , , , , ,		Au ppb	Cu PPM				
178029 178043 178152 250093 250664 250675			71 8184 9 1665 4191 106	171 462 52 2950 765 123				
200070								
				·				
` .	-							·
								•
				·				e .
			·				•	
				Certified b	v		the	

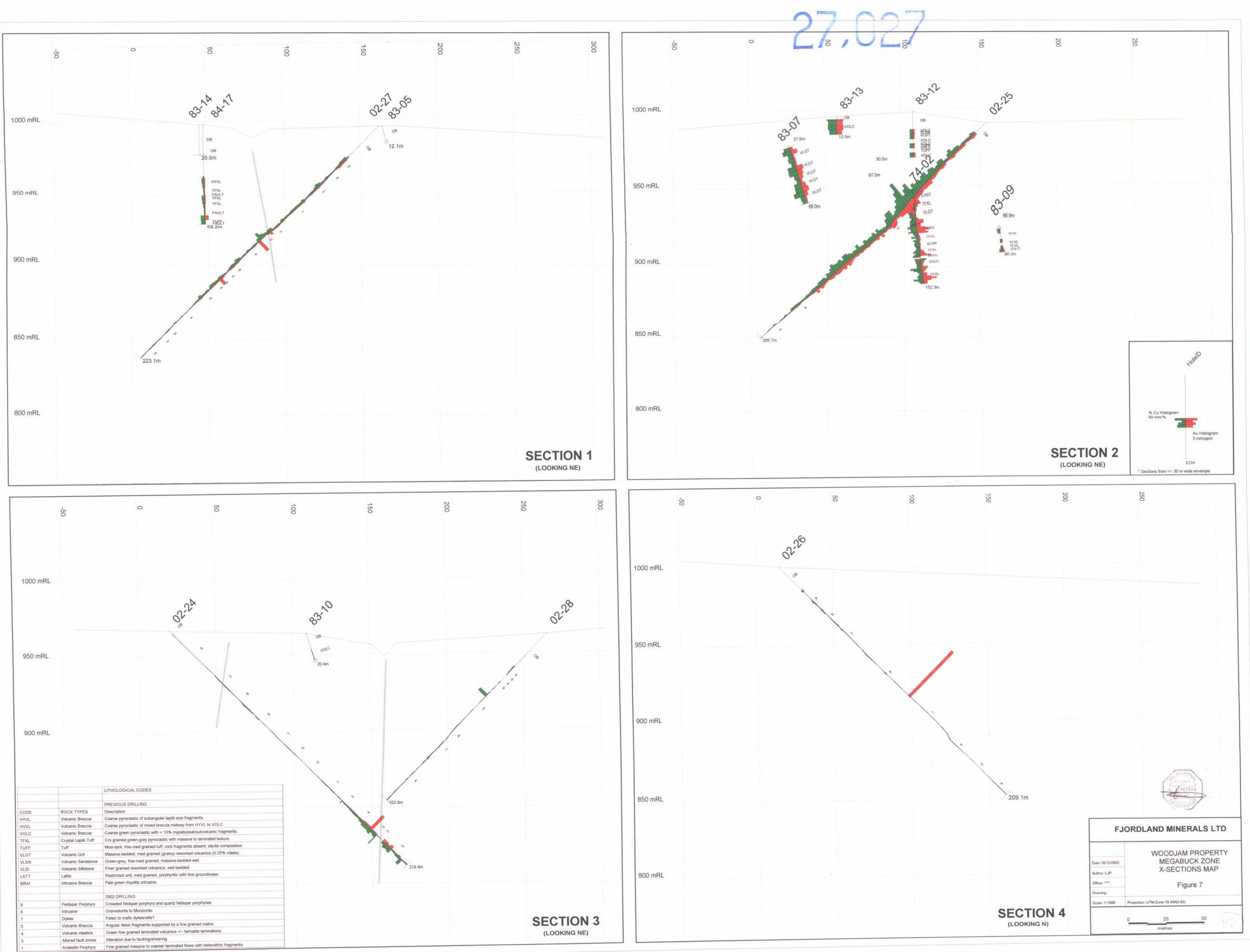
Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

ĩ

Au ppb	Cu PPM			
71	171			
8184	462		•	
9	52			
1665	2950			
4191	765			
106	123			
	ppb 71 8184 9 1665 4191	ppb PPM 71 171 8184 462 9 52 1665 2950 4191 765	ppb PPM 71 171 8184 462 9 52 1665 2950 4191 765	ppb PPM 71 171 8184 462 9 52 1665 2950 4191 765

SSAYERS


N


A

D

A

A

KING NE)

GEOLOGICAL SURVEY BRANCH

ASSESSMENT 1 "PORT