RECEIVED

JAN 3 0 2003

Gold Commissioner's Office VANCOUVER, B.C. Assessment Report on the VANCOUVER B.C. Assessment Report on the VANCOUVER B.C. Assessment Report on the VANCOUVER B.C. Assessment Report on the On the ATTY Property

Mining District: Omineca

NTS Map Sheet: 094E/2E

Latitude: 57⁰ 08' N Longitude: 126⁰ 43' E

Owner of Claims: Electrum Resources Corporation

Project Operator: Finlay Minerals Ltd.

Report by: Robert F. Brown, P. Eng.

Date of Report: November 10, 2002

GEOLOGICAL SURVEY BRANCH ASSESSMENT DEPORT

27,056

Table of Contents Page # Summary Introduction 2 Location 3 History 3 Work Done 3 Costs 4 Geology Rock Geochemistry 4 Discussion of Results 5 Conclusions 5 Recommendations 6 References 7 **Tables** List of Atty Mineral Claims Table #1 **Appendices** Cost Statement Appendix #1 Author's Qualifications Appendix #2 **Rock Sample Descriptions** Appendix #3 **Analytical Results** Appendix #4 **Figures** Location Map Figure #1 Claim Map Figure #2 Sample Site Map Figure #3 Atty north area Geology Map Figure #4 Atty north area Geochemistry Map; Gold (ppb), Silver (ppm) Figure #5 Atty north area Geochemistry Map; Copper, Zinc (ppm) Figure #6 Awesome Trench Geology and Geochemistry Figure #7

Summary:

Costs involved in the Atty claims exploration amounted to \$9,726.94 and will be used for assessment. Within the Atty claims exploration took place at the Awesome epithermal target, and in the far northern claim portion. Work on the Atty claims was conducted on, August 6th through 8th 2002. It included hand trenching, blasting, rock sampling and geological mapping at the Awesome target, and rock sampling in the far north portion of the claim block. The Awesome target work was conducted over an area of known gold-silver geochemistry and coincident epithermal type silica zone on the Atty #5 mineral claim. The far north work was conducted over an area associated with the Wrich fault, and south east of an area being actively explored on the northern contiguous mineral claims optioned by Stealth Minerals, on the A3, A4, & A5 mineral claims.

Introduction:

The Atty mineral claims (Table #1) were the site of a short concerted exploration effort. Work on the Atty claims was conducted on August 6th through 8th 2002. It included hand trenching, blasting, rock sampling and geological mapping at the Awesome target, and rock sampling in the far north portion of the claim block.

The Atty camp was not used this year, instead personnel were helicopter-transported daily to and from Finlay Mineral's Pil North camp site 30 km to the NNW.

A statement of work was filed on November 7th 2002 on the Atty claim group.

TABLE #1
List of Mineral Claims from the Atty Project

Tenure Number	Claim Name	Issue Date	Good Standing To	Units
338121	A1	17-JUL-95	31-Jan-10	1
338123	A2	17-JUL-95	31-Jan-10	1
338124	A3	17-JUL-95	31-Jan-10	1
338125	A4	26-JUL-95	31-Jan-10	1
338126	A5	26-JUL-95	31-Jan-10	1
338127	A6	26-JUL-95	31-Jan-10	1
338128	A7	26-JUL-95	31-Jan-10	1
368386	AT991	9-APR-99	31-Jan-10	12
368395	AT9910	9-APR-99	31-Jan-10	1
368396	AT9911	9-APR-99	31-Jan-10	1
368397	AT9912	9-APR-99	31-Jan-10	1
368387	AT992	9-APR-99	31-Jan-10	1
368388	AT993	9-APR-99	31-Jan-10	1
368389	AT994	9-APR-99	31-Jan-10	1
368390	AT995	9-APR-99	31-Jan-10	1
368391	AT996	9-APR-99	31-Jan-10	1
368392	AT997	9-APR-99	31-Jan-10	1
368393	AT998	9-APR-99	31-Jan-10	1
368394	AT999	9-APR-99	31-Jan-10	1
241922	ATTY 3	17-APR-90	31-Jan-10	6
241938	ATTY 4	17-APR-90	31-Jan-10	12
311160	ATTY 5	10-JUL-92	31-Jan-10	20
330410	ATTY 7	25-AUG-94	31-Jan-10	6
395867	Tom 1	04-AUG-02	04-AUG-09	1
395868	Tom 2	04-AUG-02	04-AUG-09	1
395869	Tom 3	04-AUG-02	04-AUG-09	1
395870	Tom 4	04-AUG-02	04-AUG-09	1
395871	Tom 5	04-AUG-02	04-AUG-09	1

		<u> </u>	TOTAL UNITS	87
396116	Tom 11	29-AUG-02	29-AUG-03	1
396115	Tom 10	29-AUG-02	29-AUG-03	1
396114	Tom 9	29-AUG-02	29-AUG-03	1
396113	Tom 8	29-AUG-02	29-AUG-03	1
395873	Tom 7	06-AUG-02	06-AUG-09	3
395872	Tom 6	04-AUG-02	04-AUG-09	1

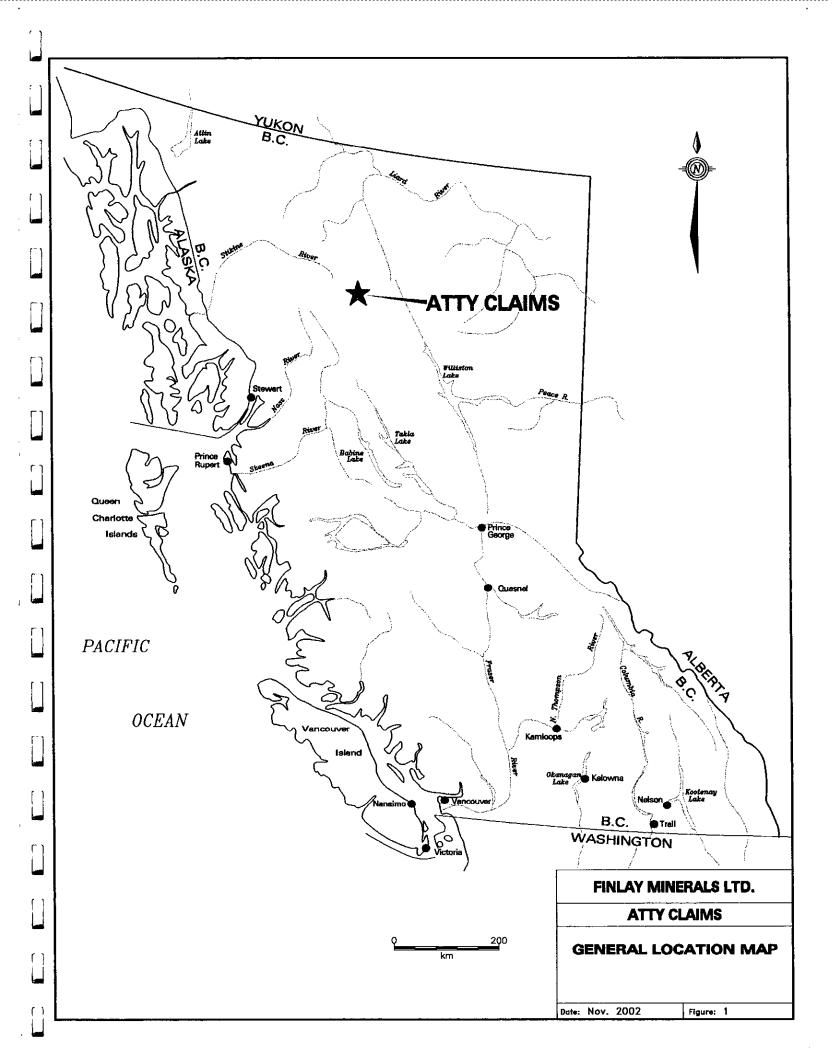
Note: the "good standing to" date includes acceptance of the work described in this report.

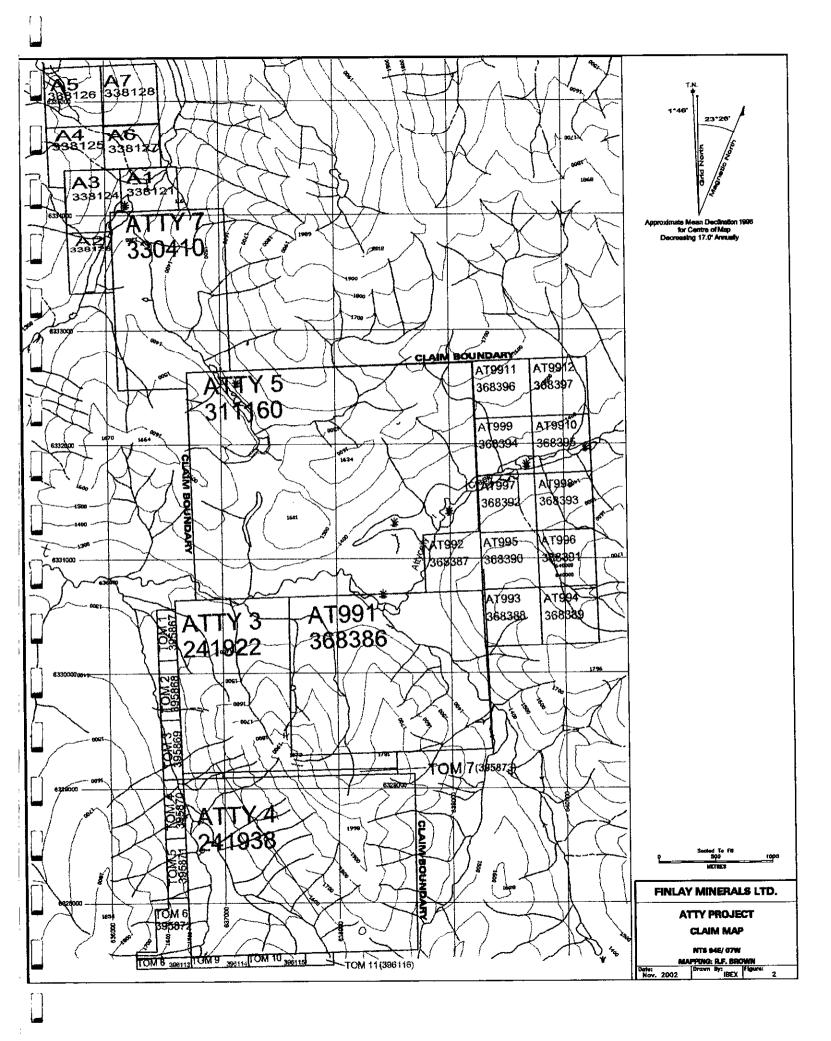
Location:

The Atty claims (Figures #1 & #2) straddle the west flowing Attycelly Creek, south of the Finlay River, in central north British Columbia. The claims are in the Omineca Mining District, NTS map sheet 094E/2E, located at latitude 57° 08'N and longitude 126° 43'N. Access is only by helicopter, which at the time was based at the Kemess Mine. The Kemess North deposit lies 1km to the southeast of the Atty claims, while the Kemess Mine lies ~7km to the SSE.

History:

The Atty claims are within a broad region of prospects and mines known as the Toodoggone mining camp. Exploration in this area commenced in earnest in the late 1960's, by Cominco and Kennco Exploration (Western) on numerous large gossanous zones within the camp. Exploration activity peaked through the late 1970's and the 1980's. Little exploration took place in the 1990's excepting at several of the mines and more advanced prospects.


Epithermal precious metal deposits in the camp include the Baker Mine, former mines at the Lawyers, Cliff Creek, and Shasta properties, and numerous prospects (see Figure #1). Porphyry copper-gold deposits include the Kemess Mine (Kemess South deposit), Kemess Central, Kemess North, and Pine deposits. Porphyry prospects of note include the Atty, Pil South, and Pil North of Finlay Minerals, as well as a number of others.


On the Atty claims there has been successive exploration campaigns starting with Kennco in 1969, through Bishop Mines Ltd., ABM Mining, Inca Resources Inc., Texasgulf Canada Ltd., Kidd Creek Mines Ltd., and Canadian Ventures. Most of this work was focused on mesothermal and epithermal vein showings on the Atty 5, AT991 and Atty 3 mineral claims, and to a small extent the northern portion of Atty 4. Through the early part of the 1990's exploration by the current vendor, Electrum Resources Corporation focused on geochemistry anomalies north of the Attycelly Creek, and only in 1997 started the evaluation of the porphyry copper-gold potential on the Atty 4 claim. Reconnaissance style sampling of streams, soils and rock was done in 1997 (Zastavnikovich et al.), and 1998, 1999 (Ronning,). This work culminated in 2000 with detailed geological and geochemical surveys (Brown), and geophysical surveys (Hendrickson) covering parts of the Atty #3, Atty #4, and Att #991 mineral claims. The 2000 work outlined a coincident copper-gold-zinc geochemical, magnetic, and induced polarization anomaly, namely the Atty Gossan, >200m ENE-WSW and >1,600m NNW-SSE in area, open to the SSE. In 2001, exploration consisted of minor rock sampling in the area of the Atty Gossan plus a program of line cutting, induced polarization geophysics, soil geochemistry, and rock sampling at the Awesome showing (Brown, 2001).

Work Done:

Work on the Atty claims was conducted on August 6th through 8th 2002. It included hand trenching, blasting, rock sampling and geological mapping at the Awesome target, and rock sampling in the far north portion of the claim block.

Crews were helicopter (Canadian Western Helicopters) transported to and from the Atty claims. Personnel of GLJ Enterprises hand trenched, and blasted along the southwestern side of the Awesome target (Figure #3). The author conducted detailed mapping of the trench, and rock chip sampling. The author and John Barakso spent one day in the northern portion of the claim block geological mapping and rock sampling along the trace of the Wrich fault. Others are actively exploring Wrich fault associated mineralization on claims contiguous and north of the A5 mineral claim.

The trench, and rock sample sites have been digitized which allows for easy plotting of the data.

Costs:

Costs for the program are estimated at \$9,726.94. A detailed break down is given in Appendix #1. Invoices for all the listed costs are available at the offices of Finlay Minerals Ltd.

Geology:

The author's geological mapping is incorporated with the regional geology as presented by Diakow et al. (1993). Regionally the Toodoggone area lies within the Intermontane Belt, between the east end of the Stikine Arch in the north and the Skeena Arch in the south. Geology along the east-northeast margin of the Stikine Terrane is dominated by successive volcano-plutonic arcs, which were constructed from Permian time but most importantly during the late Triassic and early Jurassic. The Toodoggone area lies within a north-northwest trending corridor of Mesozoic island-arc magmatism.

Two supracrustal units are important hosts of mineralization in the Toodoggone mining camp. Volcanics of the Takla Group host the Kemess Mine (Kemess South deposit), and numerous porphyry prospects. The Toodoggone Formation of the Hazelton Group is the most important stratigraphic unit in terms of epithermal precious metal deposits (Figure #4).

Geologically, from the Awesome target north to the northern Atty claim group boundary is a complex juxtaposition of normal and thrust faulted basement Permian age Asitka Group sediments and Triassic age Takla Group volcanics with Jurassic age Toodoggone Formation Saunders and Attycelly Members volcanics (Figure #4).

The Asitka Group sediments are comprised of coralline limestone with chert and argillite interbeds. They are noted on the far western side of the Atty north area claims on the upper plate side of a thrust fault overlying Toodoggone Formation Attycelly Member volcanics.

The Takla Group rocks can be divided into mafic volcanics and clastic sediments. The volcanics are dominantly augite phyric basalt flows and heterolithic basalt breccia. The sedimentary portion is a mixed package of well-bedded siltstone, massive greywacke and intercalated mafic volcanics. In the Awesome showing area the Takla Group are in fault (Wrich fault) contact with Toodoggone Formation Attycelly Member volcanics.

The Toodoggone Formation Attycelly Member and Saunders Member volcanics display both stratigraphic contacts and fault related contacts. The Attycelly Member is described as crudely layered lithic-crystal tuff, lapilli tuff and local pyroclastics breccia with minor volcanic siltstone and rare limestone lenses. The Saunders Member is described as a high-potassium dacite ash-flow tuff, grey-green, incipiently to intensely welded; containing diagnostic juvenile crystal-vitric and locally abundant accidental granodiorite fragments.

In the northern portion of the Atty claims the author observed

Geological observations made at the Awesome trench are that the NNW trending 10-20m wide silica flooded and argillic altered epithermal type mineralization and alteration is within Toodoggone Formation Attycelly Member tuffs (Figure #7). The extension of the Awesome trench to the southwest exposed more fractured to sheared tuff. As such the exposed Awesome epithermal system is likely on a splay fault to the Wrich fault or within the eastern portion of the Wrich Fault system.

Rock Geochemistry:

The rock samples (11) were collected from the extended Awesome trench target and from altered and mineralized float in the northern portion of the Atty claims. The samples are either composite grabs ("grab") consisting of numerous pieces collected from an outcrop or area, or oriented chips ("chip") consisting of chips collected perpendicular to the strike of specific structural features such as veins or

shears. Oriented chip samples were taken as a reasonably accurate representation of the specific feature sampled. Descriptions of all outcrops examined and rock samples taken for analysis are compiled in Appendix #3. Rock samples taken for analysis are located on Figure #3 and #7. Geochemical values are displayed on Figures #4 and #5.

The rock samples were shipped to Assayers Canada in Vancouver for analysis. Assayers Canada's procedure for the two rock samples included gold fire assays (1 assay ton sample size) with an atomic absorption finish, initial assay values >500ppb were re-assayed and reported in g/t. The rock samples also underwent multi-element ICP analysis using aqua regia digestion of a 0.5g sample (Appendix #3).

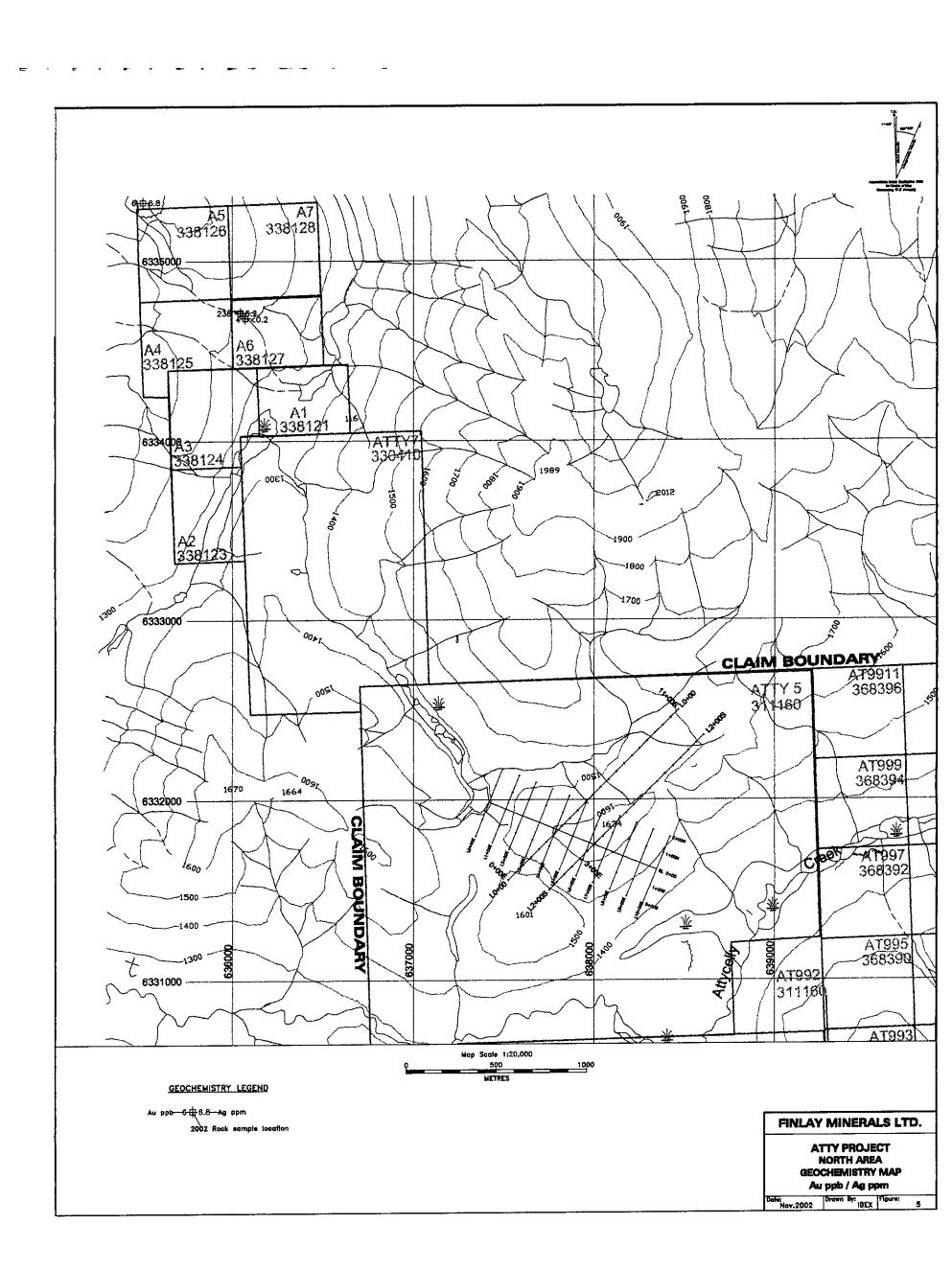
Discussion of Results:

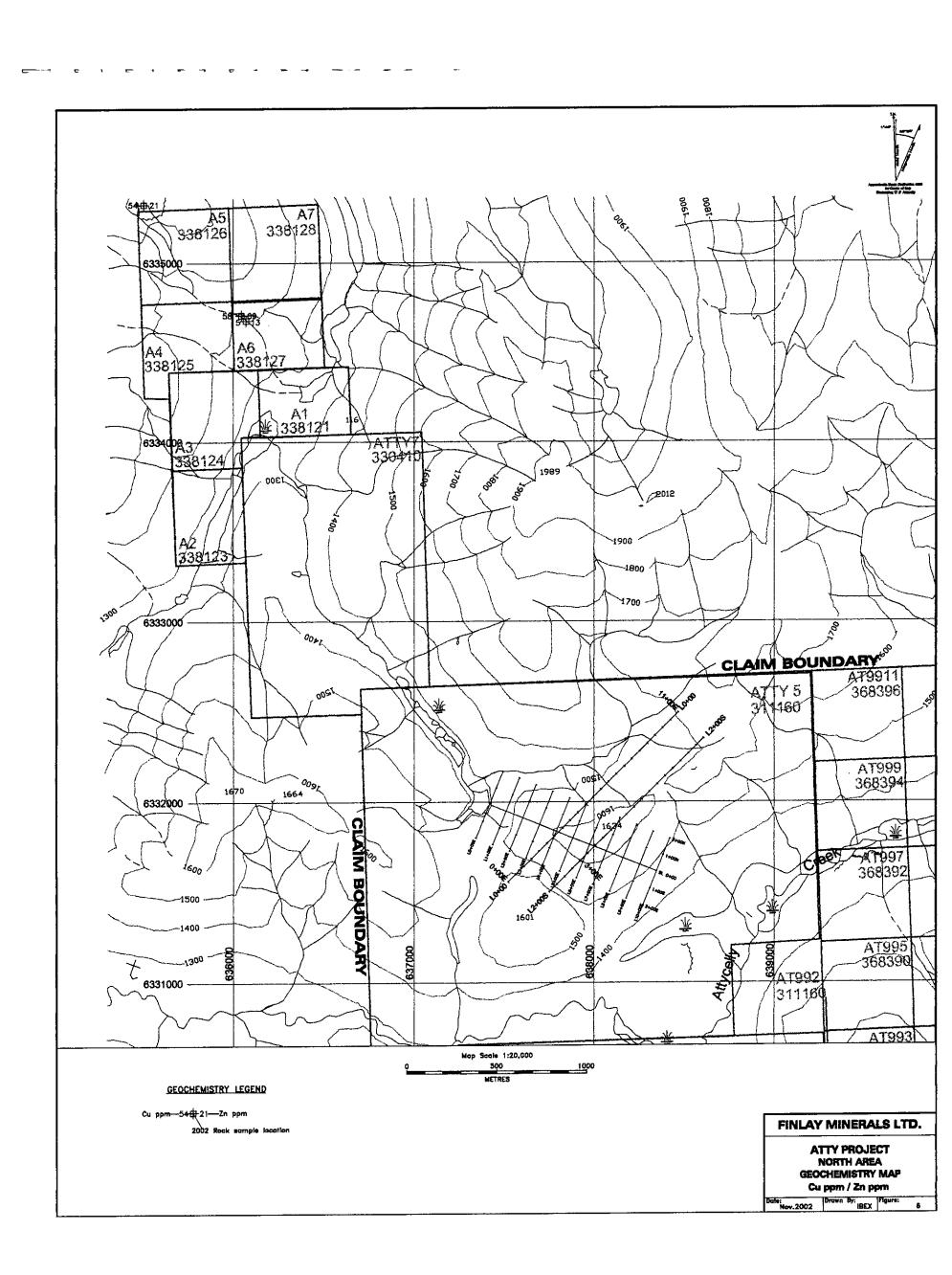
Robert Brown and John Barakso collected three (3) rock samples, one from outcrop and two from float from a creek draining the northwest corner of the Atty claims (Figure #3). Outcrops at the top of the bowl are on properties bordering the Atty claims. A large outcrop area immediately west of several small lakes, is unaltered, unmineralized intermediate volcanic tuffs. The float samples were collected between the two outcrop areas in an area largely devoid of outcrops. The far north work was conducted over an area associated with the Wrich fault on the A3, A4, & A5 mineral claims and south east of an area being actively explored on the northern contiguous mineral claims optioned by Stealth Minerals Limited (Jones, 2002).

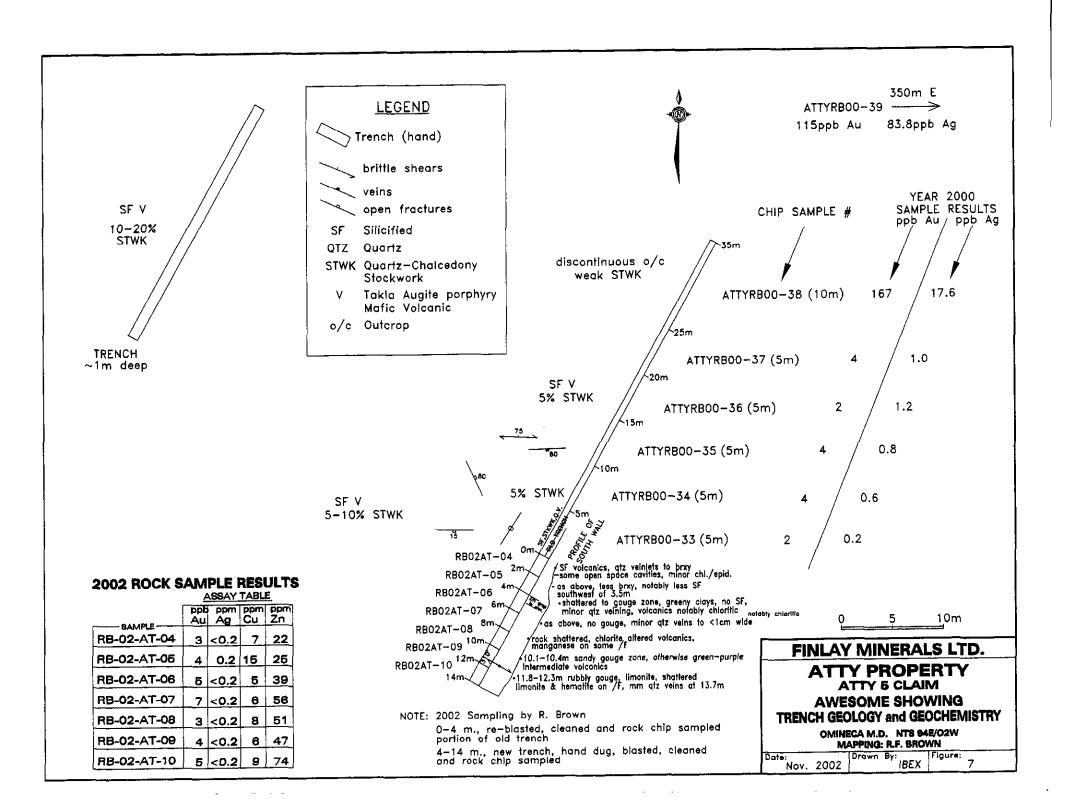
Sample RB02AT01 was a grab sample of shattered and argillic altered, iron oxidized, crystal tuff to intermediate pyroclastics volcanics. It assayed 6.8ppm silver, 6ppb gold, 20ppm arsenic, 2,060ppm barium, and 25ppm antimony. Sample RB02AT02 was a composite sample of creek float, generally intermediate volcanics with disseminated pyrite, argillic alteration and silicification. It assayed 5.2ppm silver, 238ppb gold, 20ppm arsenic, and 5ppm antimony. Sample RB02AT03 was a composite sample of float made up of finely banded barite and pink rhodochrosite. It assayed <0.2ppm silver, 4ppb gold, 45ppm arsenic, and 15ppm antimony. The mapping in the northwestern corner of the Atty claims is hampered by lack of outcrop. Encouraging alteration, mineralogy, and analytical results of an epithermal type gold-silver system are evident.

The Awesome trench extension was mapped and chip sampled by the author (Figure #7). The trench is oriented at 222° and overlaps of old Texas Gulf trenching by four meters on the southwest end (Staargaard, 1982). Rock chip samples RB02AT04 through RB02AT10 were taken in sequence, each being two meters long. The northeast 3.5 meters is highly silicified, brecciated, quartz veined volcanics. There are manganese lined open space drusy cavities, and minor chlorite and epidote. At 3.5 meters there is a 2 meter ledge marking a shattered edge of purple green chloritized andesite volcanics. From 3.5 meters to the trench end at 14 meters the volcanics are chloritic, shattered to sheared (310° orientation), with minor quartz veinlets, carbonate veinlets, and manganese on slips. Geochemically all the samples have extremely low values with gold values between 3 to 7ppb, silver values of <0.2ppm, arsenic values all at <5ppm, and antimony values at 5ppm. Although these samples have all the geological and mineralogical attributes of an epithermal type gold-silver system, they lack the geochemical expression. Historical sampling and analysis from the silica flooded outcrops, float and trenches identify the Awesome target as an epithermal type system. Geologically it is well positioned along or immediately adjacent to the prospective Wrich Fault.

Conclusions:


Rock sampling from the northwest corner of the Atty claims, in an area of complex structures associated with the Wrich Fault, turned up evidence of an epithermal type gold-silver system. Further detailed mapping within the drainage basin will be necessary to understand the tenor and extent of this alteration and mineralization.


The southwest extension of the more southerly Texas Gulf trench at the Awesome target exposed the southwest host volcanics to the silica flooded and brecciated epithermal system. These volcanics are likely the Attycelly Member of the Toodoggone Formation as marked on the geology map.


vuy IJTs i 338126 338/128 235000 JJT6 IJT5 A4 338<u>125</u> 338721 6334dbg 3 338124 υΤτ **Z** 2012 IJT6 338123 -1800 1700 6333000 IJT5 001 CLAIM BOUNDARY A79911 ATTY 5 3/1160 00<u>5</u>1 368396 AWESOME VEIN AT999 368394 1664 6332000 ᠸᡮᠯᡯᢌ CLAIM BOI ∑楽 IJJ5 **X1997** 368392 Awesome Veln 2002 Trench #2 SW Extension RB-02AT04-10 UNDARY 乘 -1400 AT992 AT995 Attoo 368390 6331000 311160 AT993 LEGEND VOLCANIC & SEDIMENTARY ROCKS INTRUSIONS LOWER JURASSIC HAZELTON GROUP JURASSIC INTRUSIONS(?) bedding Syenite velns open fractures FINLAY MINERALS LTD. M Monzontie SAUNDERS MEMBER high potessium docte TTS ATTYCELLEY MEMBER crudely layered lithic crystal tuff ATTY PROJECT UPPER TRIASSIC TAKLA GROUP

TTY

Augilte perphyry baselt/andestte lava flows, some augilte-feldspar phyric matio flows **NORTH AREA** Map Scale 1:20,000 **GEOLOGY MAP** 500 1000 Drawn By: Figure: METRES

checetated and a compatible

The Wrich Fault zone and associated structural breaks play host to numerous altered and mineralized precious and base metal showings. In particular, to the immediate north of the Atty claims on ground held by Stealth Minerals, considerable success has been had from recent trenching and sampling programs. Rock sampling by the author in the northern Atty claims has located outcrop and float with both geochemical, and geological attributes of an epithermal type gold-silver system. The Awesome target is, as well, an epithermal type system, also related to the Wrich Fault.

Recommendations:

It is recommended that further detailed evaluation of the Wrich Fault and associated structural breaks be considered. A program of detailed geological mapping, and rock sampling would be appropriate.

R. F. BROWN

MGINE

Robert F. Brown, P. Eng. November 10, 2002

References

Brown, R.F.,

2000 Assessment Report on the Geological Mapping, Soil and Rock Sampling Program on the ATTY Property, Internal report for Finlay Minerals Ltd., filed for assessment credit.

Brown, R.F.,

2001 Assessment Report on the Soil and Rock Sampling Program on the ATTY Property, Internal report for Finlay Minerals Ltd., filed for assessment credit.

Chavez, W.A.,

2000 Supergene Oxidation of Copper Deposits: Zoning and Distribution of Copper Oxide Minerals, SEG Newsletter, Number 41, pages 1& 10-21.

Diakow, L.J., Panteleyev, A., & Schroeder, T.G.

1993 Geology of the Early Jurassic Toodoggone Formation and Gold-Silver Deposits in the Toodoggone River Map Area, Northern British Columbia. Mineral Resource Division, Geological Survey Branch, Bulletin 86.

Hendrickson, G.,

1999 Report on the Induced Polarization and Magnetic Surveys on the Atty Gossan grid, internal Finlay Minerals Ltd. report filed for assessment credit.

Jones, B.L.,

2002 Various news releases on the Wrich Hill zone by Stealth Minerals Ltd.

Lloyd, J,

2001 Induced Polarization lines across the Awesome zone, Atty property, BC. Psuedo-sections of the two lines completed for Finlay Minerals Ltd., private internal maps of Finlay Minerals Ltd.

Ronning, P.A.

1994 Exploration Program on the Atty Property. Internal report for Electrum Resources Corp., filed for assessment credit.

1998 Exploration Program on the Atty Property. Internal report for Electrum Resources Corp., filed for assessment credit.

1999 Exploration Program on the Atty Property. Internal report for Electrum Resources Corp., filed for assessment credit.

Staargaard, C.F.

1982 Geological and Geochemical Report on the Awesome Claim. BCGS Assessment Report 11,174; 8p.

1992 Preliminary Geochemical and Geological Assessment of the Atty 5 and Atty 6 claims. Internal report for Electrum Resources Corp., filed for assessment credit.

Zastavnikovich, S. and Rockel, E.R.

1998 Geochemical & Geophysical Assessment Report on the Atty Group Mineral Claims. Internal report for Electrum Resource Corporation, filed for assessment credit.

COST STATEMENT

ATTY Mineral Claims 2002

	Cost \$
Field Work	
R. F. Brown field work; 2 days @ \$400/day	800.00
J. Barakso field work; 1 day @ \$600/day	600.00
CJL Enterprises crew field work; 7 man days @ \$260/day/man	1,820.00
Expediting, Camp Costs	
CJL Enterprises, August 6 th , 7 th and 8 th 2002	
Camp Costs 10 man days @ \$65/man	650.00
Mobilization / De-Mobilization (pro-rated)	1,820.99
<u>Helicopter</u>	
Canadian Helicopters; August 6 th 2002 (60%)	1,857.95
August 7 th 2002 (60%)	839.08
August 8th 2002 (50%)	299.67
<u>Analysis</u>	
Assayers Canada, 11 rocks (all of certificates 1V-0352-SG1 and SG2)	239.25
Drafting	
IBEX Drafting Services (estimate)	500.00
Report Writing	
R. F. Brown 1 days @ \$400/day	400.00
TOTAL EXPENDITURES	\$9,726.94

Author's Qualifications

- I, Robert F. Brown, P. Eng., of 3977 Westridge Avenue, West Vancouver, B.C. hereby certify that:
- 1. I am a consulting geological engineer, doing business under the registered name of R.F.B. Geological. My business address is 3977 Westridge Avenue, West Vancouver, B.C., V7V 3H6.
- 2. I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia.
- 3. I am a graduate of Queen's University in Kingston, Ontario, with a B.Sc. geological engineering granted in 1975.
- 4. I have worked as a geological engineer in the field of mineral exploration continuously for the last 25 years in Canada, Mexico, Indonesia, Peru, Ecuador, Argentina, and Ukraine.
- 5. I am the author of the report entitled "2002 Assessment Report on the Trenching and Rock Sampling Program on the ATTY Property" and dated November 10, 2002.
- 6. The conclusions expressed in this report are professional opinions, based upon my own work in the subject area in 2000 to 2002 and on sources acknowledged in the text. Having undertaken reasonable due diligence and believing the information I have used to be correct, I nevertheless accept no responsibility for the accuracy of information that I did not personally originate.
- 7. I neither own nor control a beneficial interest in the mineral property that is the subject of this report. I am though, President of Finlay Minerals Ltd.
- 8. Finlay Minerals Ltd. may use this report for any lawful purpose for which it is suitable. Should it be necessary to use abridgements of or excerpts from the report, these must be made in such a way as to retain their original meaning and context. All reasonable efforts must be made to obtain my approval prior to any use of such abridgements or excerpts.

R. F. BROWN

Marin

Dated: November 10, 2002 Robert F. Brown, P. Eng.

Rock Sample Descriptions

FINLAY MINERALS LTD.

ROCK SAMPLE DETAILS ATTY CLAIMS

Sample	Property	Location	(Nad 83)	Type	Length/	Description
No.	Name	Easting	Northing	(Chip, Grab, Etc.)	Area	
RB02AT-001	Atty	635514	6335332	Grabs, rocks	2 m	Shattered, argillic altered pyroclastics, HE, LI
RB02AT-002	Atty	636028	6334706	Grabs, float		Altered rocks from creek float, HE
RB02AT-003	Atty	636028	6334706	Grabs, float		30 m downhill, banded barite, pink, white
WG02AT-001	Atty	636051	6327397	Grab	10 m	Float train of very limonitic magnetite bearing float.

Analytical Results

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Quality Assaying for over 25 Years

Geochemical Analysis Certificate

2V-0313-RG8

Company:

Finlay Minerals Ltd

Sep-09-02

Project: Attn:

Warner Gruenwald

We hereby certify the following geochemical analysis of 24 rock samples submitted Aug-16-02 by Warner Gruenwald.

Sample Name	Au ppb	Au g/tonne	Cu %	·	
		B. conne			
RB02SP-03	6 7				
RB02SP~05					
RB02SP-06	9				
RB02SP-07	45				
RB02SP-08	16				
RB02SP-09	10				÷
RB02SP-10	44				•
RB02PS-10	13				
WG02SP-01	1657	1.88			
WG02SP-05	11				
WG02SP-06	45				
WG02SP-07	7				
TRH02PS-02	8				
TRH02PS-03	27				
TRH02PS-04	13				
TRH02PS-05	17				
TRHO2PS-06	12				
TRH02PS-07	8				•
RM02PS-27	18		0.584		
RB02AT-01	6				
RB02AT-02 ATT	238				
RB02AT-03	4				•
WG02PN-32	6		•		
WG02PN-33	1242	1.22			

Certified by

the

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Quality Assaying for over 25 Years

Geochemical Analysis Certificate

2V-0313-RG10

Company:

Finlay Minerals Ltd

Sep-09-02

Project: Attn:

Warner Gruenwald

We hereby certify the following geochemical analysis of 24 rock samples submitted Aug-16-02 by Warner Gruenwald.

Sample Name	Au ppb		
SW02PN-175F	10		
TRF02PN-01	14		
TRF02PN-02	12		
TRF02PN-03	23		*-
TRF02PN-04	20		
TRF02	21		
RB02AT-04	3		
RB02AT-05	3 4 5	•	
RB02AT-06 ATTY	5		
RB02AT-07	7		
RB02AT-08	3		
RB02AT-09	4		
RB02AT-10	4 5 6 2		
TB02SP-01	6	•	
TB02SP-02	2		
TB02SP-03	83		
TB02SP-04	33		
TB02SP-05	28		
TB02Pil-010	10		
TB02Pil-011	. 7		
TB02Pi1-012	7	•	
TB02Pil-013	25		
TB02Pi1-014	4		
TB02Pi1-015	7		

Certified by _____

Assayers Canada

lay Minerals Ltd

ition: Warner Gruenwald

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No

: 2V0313 RJ

Date : Sep-09-02

ct:

ile: Rock

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

ole per	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu. ppm	Fe %	K %	Mg %	Mn ppm	Mc ppm	Na %	Ni ppm	P PPm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	TI %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
!PS-02	0.6	3.07	<5	230	0.5	<5	1.09	3	6	43	258	6.10	0.19	1.23	990	42	0.03	6	1120	32	<5	4	<10	240	0.17	80	<10	1	192	9
!PS-03	1.8	3.80	<5	150	0.5	15	0.47	2	18	182	333	9.40	0.16	3.00	4045	26	0.03	43	1280	390	5	12	<10	132	0.28	171	10	1	473	11
!PS-04	1.2	3.25	<5	160	0.5	<5	1.03	3	10	60	225	6.07	0.08	1.97	1940	2	0.06	12	1580	650	<5	6	<10	229	0.19	109	<10	4	323	8
:PS-05	0.2	3.85	<5	170	0.5	<5	1.73	2	13	103	129	5.06	0.07	1.73	1415	<2	0.15	33	1440	36	<5	5	<10	261	0.16	108	<10	4	266	7
:PS-06	0.4	3.33	<5	120	0.5	<5	1.17	1	7	59	77	4.16	0.11	1.39	1600	8	0.03	9	1330	32	<5	5	<10	111	0.08	86	<10	2	238	5
:PS-07		3.42	<5	100	0.5	<5	0.83	1	8	40	74	4.62	0.14	1.78	2115	8	0.04	6	1340	40	<5	5	<10	78	0.16	101	<10	4	310	7
·5-27	8.6	0.22	<5	<10	<0.5	25	0.01	16	5	216	6641	2.32	0.01	0.15	185	106	0.01	12	260	102	5	1	<10	<1	0.01	10	80	<1	3428	3
T-01	6.8	0.47	20	2060	<0.5	S	<0.01	<1	1	70	54	1.92	0.03	0.01	10	2	0.01	4	300	92	25	2	<10	17	<0.01	114	<10	3	21	7
IT-02 477	5.2	1.57	20	290	0.5	<5	0.98	<1	10	92	56	4.15	0.07	0.95	355	4	0.04	18	480	28	5	5	<10	116	0.10	99	<10	5	69	10
iT-03	<0.2	0.81	45	300	<0.5	5	0.01	<1	1	5	5	0.85	0.06	<0.01	50	<2	0.07	1	70	4	15	1	<10	95	< 0.01	57	10	<1	13	1
PN-32	<0.2		<5			<5	0.40	<1	5	56	7		0.09	0.87	470	_	0.07	4		4	<5	6	<10	28	0.16	66	<10	10	47	22
PN-33	37.6		<5	100		<5	0.07	29	1	126	559		0.13	0.01	40	48	0.01	4	190	>10000	<5	<1	<10	393	0.01	3	140	2	6532	5
PN-34		0.37	<5	120		<5	0.10	2	5	132	53		0.30	0.06	80		0.01	7	610	766	<5	1	<10	36	0.01	8	10	4	345	13
PN-35		0.75	<5			10	0.09	<1	3	79	71	-	0.33	0.16	340	<2	0.02	5	640	26	<5	<1	<10	<1	<0.01	14	<10	3	83	9
PN-36	0.2	1.04	<5	1440	<0.5	<5	0.10	<1	2	49	11	2.81	0.26	0.62	325	8	0.02	3	820	24	<5	1	<10	14	<0.01	35	<10	4	42	12
						.=			_												_									
PN-37		0.40	-	1590		<5	0.09	<1		113	15		0.26	0.10	150		0.01	4	510	498	<5	_	<10		<0.01	7		2	30	6
PN-38		0.43	5		,	<5	0.04	<1	2		. 19	1.88		0.10	135	•	0.01	8		150	5	<1			<0.01	A	<10	2	31	7
PN-39		0.33	_	2660		<5	0.04	<1	3	304	19	1.02		0.07	150		0.01	9		38	5	<1			0.01	6	<10	1	29	7
PN-40	19.2		<5	60		10	0.09	>100	3	160	1024		0.15	0.01	65		0.01	4	200	>10000	<5	<1	<10	259	0.01	2	910	1	>10000	5
PN-41	86.0	0.51	<5	200	<0.5	<5	0.82	40	6	170	98	1.87	0.26	0.16	1240	10	0.01	6	490	>10000	<5	1	<10	229	0.02	11	200	6	9603	9
•				455							22	4						_			_	_								
<u>l</u>	_	1.63	5		0.5	<5	0.36	<1	11	78	32		0.12	1.61	690		0.04	5		86	<5		<10		0.22	112		10	158	16
2	<0.2		5	-	0.5	<5	0.62	<1	4	91	39	_	0.16	0.74	830		0.09		1380	26	<5	3	<10	30	0.14	59	<10	7	92	19
3		0.39	10	530	<0.5	5	0.30	<1	2	94	. 11		0.26	0.16	150		D.02	3	260	682	<5	. 1			<0.01	15		3	30	16
		0.28	<5	130	<0.5	< 5	0.01	<1	<1	79	20	1.15		0.01	10	_	0.01	2		8	<5	<1	<10	_	<0.01	2	<10	1	4	18
,	1.0	0.97	<5	110	0.5	<5	0.72	<1	9	111	753	9.11	0.16	0.57	410	14	0.03	7	540	14	<5	2	<10	39	0.07	64	<10	5	50	12
	-A 3		F	000	0 5	- E	1.12		8	72	1121	3 60		4.00	4875	.=	0.04	_		_				45		=-				
; >N-135R	<0.2	0.92	<5 <5	900 730	0.5 <0.5	<5 <\$	0.07	<1 <1	- 5 - < 1	73 76	1131 43		0.15	1.09	1055	_	0.04	_	960	8	<5	4		69	0.11	71	<10	15	98	15
	<0.2			150	€U.5							3.48		0.55	325		0.05	_	2380	10	<5	3			<0.01	38	<10	4	58	18
N-173F			<5			<5	0.66	<1	11.	71	41	3.91		1.26	605		0.06	_	1060	6	<5	7		52	0.24	96	<10	11	210	13
7N-174F	<0.2		40	30	<0.5	10	0.09	<1	8	108	58	9.27		0.13	220		0.01	8	660	16	<5	<1	<10	_	<0.01	16	<10	2	26	9
>N-176F	<0.2	1.50	30	100	0.5	<5	1.12	<1	2	\$9	12	2.67	0.11	0.99	2265	<2	0.13	7	1140	16	<5	2	<10	44	0.08	43	<10	10	249	6

A .5 gm sample is digested with 5 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signed:_____

Assayers Canada

lay Minerals Ltd

tion: Warner Gruenwald

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No

: 2V0313 RJ

Date

: Sep-09-02

ct: ble: Rock

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

xie xer	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ce %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
nu 4 770			10	1250	0.5	<5	0.59	<1	,	61	4519	1 84	0.24	0.23	645		0.01	4	620	12	<5	1	<10	125	<0.01	11	<10	5	100	10
PN-177F PN-178F	0.8 <0.2		<5		0.5		1.80	<1	, 4	94	23	1.89		0.61	855			7		2		_			0.07	22	<10	5	82	4
PN-123R		0.62	_		0.5		0.69	<1	5	54			0.09	0.23	205		0.05			12		-			0.10	80	<10	5	33	6
PN-125RF		0.72			0.5		0.32	_	11	61	57		0.05	0.47	390		0.04		370	4					0.09	37	<10	7	45	15
PN-126F		1.15	_			_	0.54	<1	10	56	106		0.13	0.90	1015		0.04		730	6	<5	4	<10	38	0.22	60	<10	14	84	29
719-44W	70.2	****																												
PN-127F	<0.2	1.51	<5	540	1.0	<5	0.55	<1	11	48	62	4.09	0.11	1.44	1215	<2	0.05	7	1030	8	<5	7	<10	30	0.24	101	<10	14	87	26
PN-175F		1.42		240			0.61	<1	15	83	77	6.15	0.06	0.87	770	6	0.03	7	510	16	<5	1	<10	148	0.06	40	<10	5	67	7
:PN-01	<0.2	0.84	<5	370	<0.5	5	0.06	<1	1 1	62	5	5.83	0.41	0.40	235	2	0.04	4	2560	36	<5	1	<10	229	<0.01	25	<10	3	65	20
:PN-02	<0.2	0.78	<5	290	<0.5	5	0.05	<1	. 1	44	2	4.75	0.40	0.34	165	2	0.03	3	2280	42	<5	1	<10	315	<0.01	19	<10	4	52	17
:PN-03	0.4	0.74	<5	160	<0.5	5	0.06	<1	3	46	5	4.33	0.41	0.25	160	6	0.03	3	1810	116	<5	1	<10	311	<0.01	17	<10	5	63	19
:PN-04	0.6	0.89	<5	160	<0.5	<5	0.11	<1	5		9		0.38	0.49	390		0.02		1720	228			<10		0.01	23	<10		134	19
1	8.0	1.07	<5				0,19		11	37	26		0.31	0.72	535		0.02		1750	652	-				0.01	37	10		581	19
iT-04	<0.2	0.22	<5	40	<0.5		0.69	<1	2		7		0.15	0.05	530	_	0.01	6		6	_	-			0.01	27	<10		22	3
\T-05	-	0.23		70			0.77	<1	3.		15		0.19	0.04	575	_	0.01	_		6		_	-		0.02	34	<10		25	4
UT-06 /777	<0.2	0.31	<5	80	<0.5	<5	5.40	<1	3	72	5	1.80	0.17	0.13	1855	<2	0.01	4	500	6	5	1	<10	45	0.01	32	<10	8	39	4
IT-07	40.2	0.55	<5	110	0.5	<5	2.48	<1	4	101	6	2.56	0.26	0.28	1300	<2	0.01	5	700	8	5	2	<10	21	0.02	48	<10	7	56	5
IT-08	-	0.49					0.22		4	62		2.40		0.20	675	<2	0.01	4	730	8	5	2	<10	2	0.02	49	<10	5	51	3
LT-09		0.45	_			_	0.51		4	122	6	2.10	0.24	0.10	1130	<2	0.01	5	610	8	5	2	<10	4	0.01	39	<10	9	47	2
1T-10		0.76	-				0.21	<1	6	59	9	3.15	0.27	0.26	1080	<2	0.01	5	830	8	5	2	<10	2	0.02	55	<10	8	74	3
iP-01		2.24	-				0.68	<1	16	45	15	6.25	0.07	2.09	335	<2	0.04	9	1010	8	<5	5	<10	40	0.45	134	<10	4	42	16
									_	_					44				1180	22	5		<10	190	0.14	115	<10	<1	19	12
iP-02		1,02		1180			0.06		3	-	68	12.01	0.15	0.08	10 25		0.04		180	170	_	_				113			167	10
iP-03		0.27	<5				0.01	1 4	1	115 86	6 42		0.12	0.02	. 15		0.02		150	>10000					<0.01	1			59	3
iP-04		0.10					0.03	11	2		2	0.17		0.01	260		0.01			4156	-	_				1		_	178	8
;P-05		0.16	-	2470			0.09	<1	1	28	45		0.15	0.02	10		0.01			100	_	_	<10			14			13	11
୩ ⊦ 010	1.0	0.32	<5	950	<0.5	. 3	0.01	<1	•	20	43	3.20	0.13	0.02	10	•	0.41	•	300	100	-3	•	720	<i></i>	-0.01		~	•	÷-	 .
41-011	0.2	0.68	5	1440	<0.5	<5	0.01	<1	1	25	10	1.76	0.14	0.39	190	<2	0.02	2	340	6	<5	2	<10	363	0.01	31	<10	1	50	7
41-012	2.4	0.84	<5	2450	0.5	<5	1.68	<1	6	64	279	2.63	0.18	0.59	825	<2	0.02	. 4	720	40	<5	1	<10	143	0.01	44	<10	8	171	В
4I-013	0.6	1.06	5	3580	0.5	<5	2.28	<1	6	86	10	3.02	0.27	0.52	895		0.03			38					0.01	40	<10	_	197	10
41-014	<0.2	1.55	<5	110	0.5	<5	0.37	<1	6	27			0.14	1.44	940	2	0.05	3	1090	22	<5	3	<10	21	0.23	69	<10		129	12
4I-015	1.6	1.57	<5	1260	0.5	<5	0.86	5	9	86	1469	2.82	0.14	1.06	1300	2	0.03	6	840	6	<5	2	<10	126	0.11	37	20	6	971	12
											•																			

A .5 gm sample is digested with 5 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signed:_____