|      | RAL TITLES BRAN                                                                                                            | <u> </u> |
|------|----------------------------------------------------------------------------------------------------------------------------|----------|
| Rec  | ÷,                                                                                                                         |          |
|      | JAN 3 1 2003                                                                                                               |          |
| · 14 | ىرىنى <del>بىرىكى بىرىكى بىرىكى بىرىكى ب</del> ىرىكى بىرىكى |          |
|      |                                                                                                                            |          |

ASSESSMENT Work REPORT on a SOIL GEOCHEMICAL SURVEY on the CK Group Kamloops Mining Division

NTS 83M/13 West Raft River Latitude 51° 52' North Longitude 119° 34' West Map No. 082M/13E

Owner: PENTECO RESOURCES LIMITED 131, Egnatoff Way Saskatoon, Saskatchewan S7J 7R9

Newson Management & Consulting Limited Geological Consultants since 1980

3142 Eastview, Saskatoon, Saskatchewan, S7J 3J4 Tel/Fax: 306-477-1308 Email: newsonmc@shaw.ca

Author: N. Ralph Newson, M.Sc. P Eng. P.Geo. NT DEPORT

December 8, 2002

## Table of Contents

Page

 $r \rightarrow$ 

1

r 1

511

r 1

r 1

1

| 1.0 Introduction                                    | 1  |
|-----------------------------------------------------|----|
| 1.1 Location and accessibility                      | 1  |
| 1.2 History of the CK Mineral Property              | 1  |
| 1.3 Economic and General Assessment of the Property | 3  |
| 1.3.1 Geology and Mineralization                    | 3  |
| 1.3.2 Mineral Resource                              | 4  |
| 1.4 Summary of New Work                             | 4  |
| 2.0 New Work: Geochemical Survey                    | 5  |
| 2.1 Purpose                                         | 5  |
| 2.2 Method                                          | 5  |
| 2.3 Results                                         | 6  |
| 3.0 Conclusions and Recommendations                 | 7  |
| 4.0 References and Bibliography                     | 8  |
| 5.0 Itemized Cost Statement                         | 9  |
| Certificate of Author                               | 10 |

## List of Figures

|                                           | Following page |
|-------------------------------------------|----------------|
| Fig. 1: General Location Map              | 1              |
| Fig. 2: Detailed location Map             | 1              |
| Fig. 3: Sample Site Locations and Numbers | 6              |
| Fig. 4: Zinc Analyses                     | 6              |
| Fig. 5: Lead Analyses                     | 6              |
| Fig. 6: Copper Analyses                   | 6              |

## List of Appendices

Appendix A: Spreadsheet of Sample Numbers, UTM Coordinates, Field Notes Appendix B: Laboratory Analytical Reports

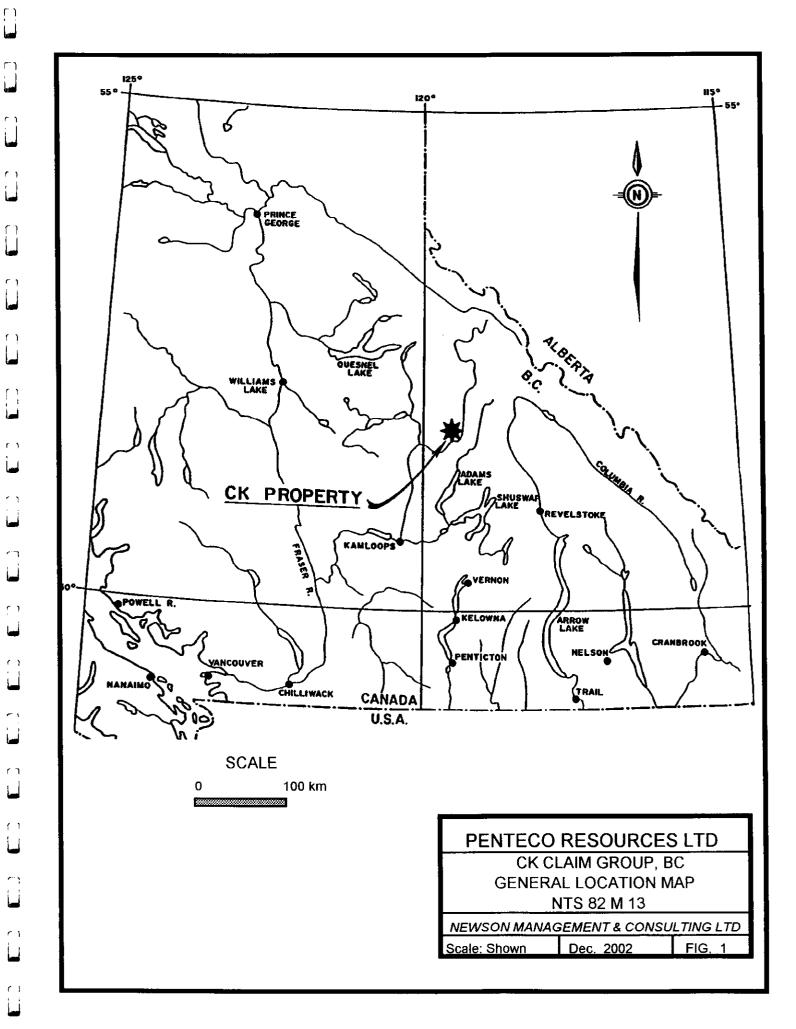
## 1.0 Introduction.

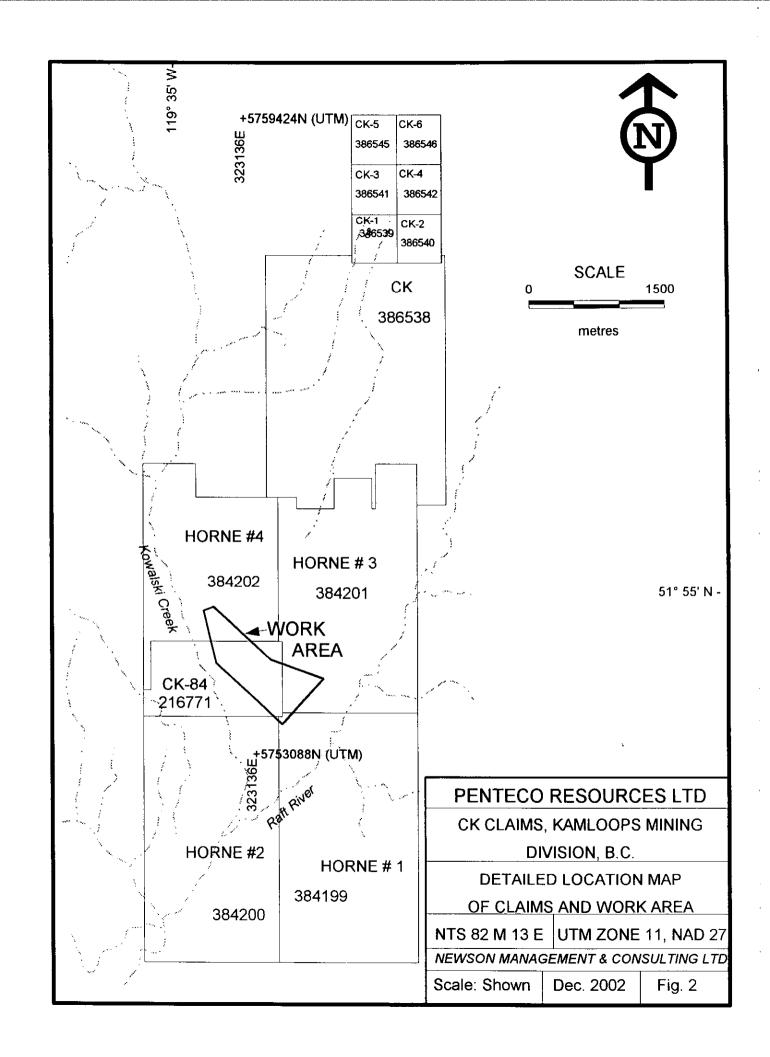
This report was prepared at the request of Mr. Ron Burko, of Penteco Resources Limited, of Saskatoon, Saskatchewan (client number 142386), the registered owner of the property. Its purpose is to discuss a work program on the CK claim group. The work consists of geochemical soil sampling. A total of 116 samples was taken and analysed for base and precious metals, as well as a suite of other metals.

## 1.1 Location and Accessibility

The CK claim group is in the Kamloops Mining District, and is centred at 51° 52' north latitude and 119° 34' west longitude, in NTS area 82 M/13, known as the West Raft River sheet (Figs. 1, 2). Access is via approximately 54 kilometres on Forestry Road #9, north of the town Clearwater. The CK claim group consists of 12 claims (92 units) named CK, CK1 to CK6 inclusive, CK84, and Horne 1 to Horne 4 inclusive. The corresponding claim numbers are 386538, 386539 to 386542 inclusive, 386545, 386546, 216771, and 348199 to 384202 inclusive. The claims have been grouped to have a common anniversary date of Feb. 4, with the next work due in 2003.

## 1.2 History of CK Group Mineral Property.


In 1937, claims covering the known showing and some of the surrounding area now covered by the present claim group were staked by Mr. Andy Horne. Large high-grade mineralized boulders were found in a creek valley by Horne. Several hand trenches were dug in trying to locate their source.


In 1974, the property was dealt to Sicinitine minerals, who optioned it to Rio Tinto. Rio Tinto carried our an air borne EM. and magnetic survey, geochemistry, prospecting and a four hole diamond drill program.

In 1975, Rio Tinto conducted an extensive program of regional grid geochemistry. Prospecting located a stratiform Zn/Pb showing about 3 km Northeast of the original boulders, which was thought to represent the source. A limited program of mapping, magnetometer and IP surveying was followed by three drill holes in this area. Two of the holes intersected relatively thin stratiform Zn/Pb mineralization. The option was terminated and returned to Sicinitine.

In 1976, Sicinitine conducted a small program of backhoe trenching in the main boulder area. The bedrock source of the boulders was not found, and the property was returned to Andy Horne.

In 1977, Cominco optioned the claims from Horne, and in 1978 drilled 2114 metres of core holes. From 1978-81, Cominco drilled an additional 1,277 metres of core holes.





r j

In 1978, Cominco carried out prospecting, geochemistry (600 samples), geological mapping, cat trenching, IP surveying (38 km), magnetic surveying (30 km), VLF-EM16 surveying (22 km), diamond drilling (20 widely spaced holes totaling 2114 m) resulting in the discovery of the "New Showing".

In 1979, Cominco mapped the property, carried out geochemistry (8000 samples), did a small IP survey (4 km), and drilled 18 holes, totaling 2768 metres.

In 1980, Cominco carried out local detailed geological mapping, prospecting, geochemistry (2000 samples), IP (12 km), and diamond drilling (15 holes totaling 1277 metres).

Cominco's work indicated that the mineralization is of the typically extensive sedimentary exhalative type (or "sedex"), typically hosted in bedded metasediments/ granodiorite gneiss, consisting of massive bedded sphalerite and galena, rusty in exposed outcrops, vertical to steeply dipping, with repeated dip reversals indicative of displacements by faulting.

In 1985 Cominco terminated the option.

In 1986, the property was optioned by Rea Gold Corporation, who, with their jointventure partner Verdstone Gold Corporation, re-established the central control grid, carried out prospecting, a geochemical survey in the southern half of property, built access roads, and did some trenching. They also drilled 114 diamond drill holes totaling 12,103 metres.

In 1986, J.M. Ashton prepared a preliminary economic evaluation of the property.

In 1987 and '88 Rea and Verdstone drilled 51 diamond drill holes along a 1250 metre strike length of the "New Showing". Within this mineralized zone they inferred a resource of 1,643,000 tons of rock grading 8.6% Zinc, 1.4% Lead and 0.25 ounces per ton of silver (Canadian Mines Handbook, 1987-88 edition) in a steeply dipping mineralized zone 600 metres in length by 4 metres wide by 60 metres deep. The presence of gallium was also reported. Drilling was also done on other parts of the property, as were geochemical surveys, an IP/resistivity survey (20 km), a magnetic survey (11 km), some trenching, and some geological mapping of the southern showings.

In 1988, Dolmage Campbell Ltd. reviewed and compiled all available data for Rea Gold./Verdstone (Rotzien et al, 1988).

In 1998 J.M. Ashton and Assoc. Ltd. prepared an evaluation report on the feasibility of putting the deposit into production at1,000 tons per day, (Ashton, 1998).

In 1999 the property was sold to BWI Resources Ltd., the predecessor company to the present owner, Penteco Resources Ltd.

In 2000, D. H. Green, P.Eng., assessed the economic potential of the property. He suggested that because of the probable sedimentary exhalative nature of the mineralization, it is possible that the ore zone is open to the north and south, and may extend to great depths. His preliminary study indicates that if the mineralization in the known zone "can be placed into the proven and probable category and placed into production at a processing rate of 1,000 tons per day using a 350 day operating year, a mine dilution factor of 10%, and recovery factor of 92% for both lead and zinc, the following metals might be recovered annually:

Zinc: 45,000 tons per year of zinc concentrate containing 55% zinc. Lead: 6,750 tons per year of lead concentrate containing 60% lead. About 90,000 ounces of silver may report to the lead concentrate", and 13 to 21ppm of gallium are also reported in assay of some samples from the CK claims.

In 2001, H. K. P. Yanwgwhe, P. Geol., carried out prospecting, rock sampling, and magnetic surveys on and near the known zone, on a small line grid established by cutting and blazing, and marked with flagging. The magnetic survey was designed to find out whether the known zone is magnetic. He found that the zone is magnetic, but early snow in the mountains in the area of the CK claims hampered work, and the magnetic survey could not be continued to find new mineralization. The geological and sampling work was also curtailed before completion of the planned program. The assays of samples in the rusty mineralized outcrop showing in claim CK-84, confirmed previous findings. ICP assays ranged from 2180-4710 ppm lead, 19200->20000 ppm zinc, and one grab sample assayed 22.4% zinc and 3.91% lead. The mineral assemblage is indicative of a sedex or sedimentary exhalative type. The strike of the mineralized zones is generally north-south but the dip attitudes changed abruptly from locality to locality, varying from vertical to steep (45° to 60°) east to west. These rapid reversals of dips indicate perhaps much lateral east-west faulting, though without appreciable lateral displacements. The magnetic profiles plots reflect this.

1.3 Economic and General Assessment of the Property

1.3.1 Geology and Mineralization.

The country rock, where exposed, consists of the Shuswap Metamorphic Complex that is equivalent to the Monashee Group of the Vernon map-area. They seem to be older than Carboniferous and they may be partly equivalent to the Proterozoic Kaza Group and the lower Paleozoic Cariboo Group which trend towards the map-area from the northwest. Direct evidence of the age of this Complex or of the metamorphism has so far not been found.

The Shuswap Metamorphic Complex consists of strongly foliated and lineated assemblage of metasedimentary gneisses intruded by numerous dykes, sills and irregular intrusions of granites. Rock types include strongly foliated granitic gneiss, quartz-feldspar-biotite gneiss, quartz-feldspar-hornblende gneiss, amphibolite, minor quartz mica schist, quartzite,

3

marble and skarn, abundant and locally dominant pegmatite, muscovite granite and biotite granodiorite, garnetiferous quartz-mica schistose gneiss.

In the area of CK-84, the rocks are well-foliated, fine-grained granitic gneiss with a massive galena-sphalerite mineralized interbed striking more or less north-south. The outcrop trace of the zone trends more northwest-southeast due to the intersection of the zone with the topographic surface.

The showing on CK-84 has been stripped and exposed, and the massive, rusty, oxidized mineralized zone is at least 4-5 metres wide at this location. Sampling assays (ICP) of this stripped exposure returned 19200- >20000 Zn and 2180-4500ppm Lead and a 50 lb grab sample of the massive ore from about sample locality (#909 in the report by Yawngwhe, 2001) returned an assay, using the standard procedure, of 22.4% zinc and 3.91% lead, giving a zinc ratio, (Zn x 100)/ (Zn+Pb), of 69.33. The zinc ratio as determined from Cominco's drilling results (1977-81) in the vicinity of the "New Showing" is 86. Rea's drilling in 1987-88 gave a zinc ratio of 80, and Don Green's assessment gave a value of 84.96. These zinc ratios ranging from 69 to 86 are significant, since most deposits of the Sedex type plot between 40-70. This deposit seems to have a better zinc ratio than many similar ones.

#### 1.3.2 Mineral Resource

Green (2000) has estimated a resource of 492,400 tonnes grading 11.3% zinc, 1.97% lead, or, using a cut-off grade of 10% combined lead plus zinc, 373,000 tonnes grading 13.6% zinc, 2.46% lead. He assumes that the average thickness of 1.5 metres is mineable, and includes only that resource above 70 metres depth.

Annual production in pounds of metal is estimated to be as described above, in section 1.2.

1.4. Summary of New Work

Work, consisting of geochemical soil sampling more detailed and focused than any carried out on the property to date, was requested by Ron Burko, President of Penteco Recources Ltd, under the overall supervision of Mr. D.H. Green, P.Eng. (B.C.). A total of 116 samples was taken, some for orientation purposes, to see if the known zone is detectable by geochemical methods, and the rest to investigate the area immediately up-slope from the known zone. The samples were analysed by TSL laboratories in Saskatoon, Saskatchewan, for the metals known to be present in potentially economic concentrations (zinc, lead, and silver), and for gold and a suite of other metals. The work was carried out on claims CK 84, Horne #3, and Horne #4.

## 2.0 New Work: Geochemical Soil Survey

## 2.1 Purpose and Scope

The purpose of the survey was to do an orientation survey below the known zone to see if it can be detected by geochemical techniques, and to test the area above the main showing to see if there might be a parallel mineralized zone. Outcrop is poor on the hillside, so it was believed that geochemical surveying might be an appropriate method to look for new mineralization.

#### 2.2 Method

The "b" soil horizon was used as the sample medium. It was present at most of the sample sites, and, because it is enriched, is easier to analyse accurately. Samples were initially taken with a soil auger. The auger was made by welding a 1" wood auger to one end of, and in line with, a steel rod about a metre long, and a shorter piece of rod at right angles at the other end, to form a t-shaped handle. The "b" horizon occurs here at a shallow depth, usually beginning a few cm below surface. The most common sampling depth was about 25 cm. Therefore, after the first day, a mattock was used for most of the samples, but the auger was carried too, and was used occasionally where conditions dictated.

Location was by means of a GPS unit and a map of previous work. Selective availability (whereby the US military scrambles the signals from the GPS satellites so that civilian models of GPS units cannot attain sufficient accuracy to be used for military purposes) was apparently turned off for the entire period of the work. Locations are therefore likely to be accurate within the intrinsic limits of the instrument, a Magellan 2000 XL. In the bush, virtually every site was located with the GPS instrument. In easier bush, some sites were located by pace and compass, with their coordinates determined by interpolation from more widely separated points. Sample locations along straight sections of roads were located by GPS every 4<sup>th</sup> or 5<sup>th</sup> site, and intervening site coordinates were interpolated from these sites. The intrinsic positioning error of the GPS instrument is likely to be a significant percentage of the sample interval, and in easy going, where sample intervals can be accurately paced, interpolation from a few carefully taken readings is probably at least as accurate as measuring each station location with the GPS instrument.

GPS readings are UTM coordinates based on the NAD 27 geoid.. Nad 27 coordinates were used because the field map used to guide the work used NAD 27 coordinates, and it was important to carry out the new work in a fairly precise geographical relationship to the previous work.

Samples were taken along five lines. One line was run along a convenient road below the known zone. All samples taken along this (and all other roads encountered) were from sites well above the road, out of the area of disturbance caused by road construction. The

sample spacing was 100 m measured along the road, and samples taken here were to see if the known zone shows up geochemically.

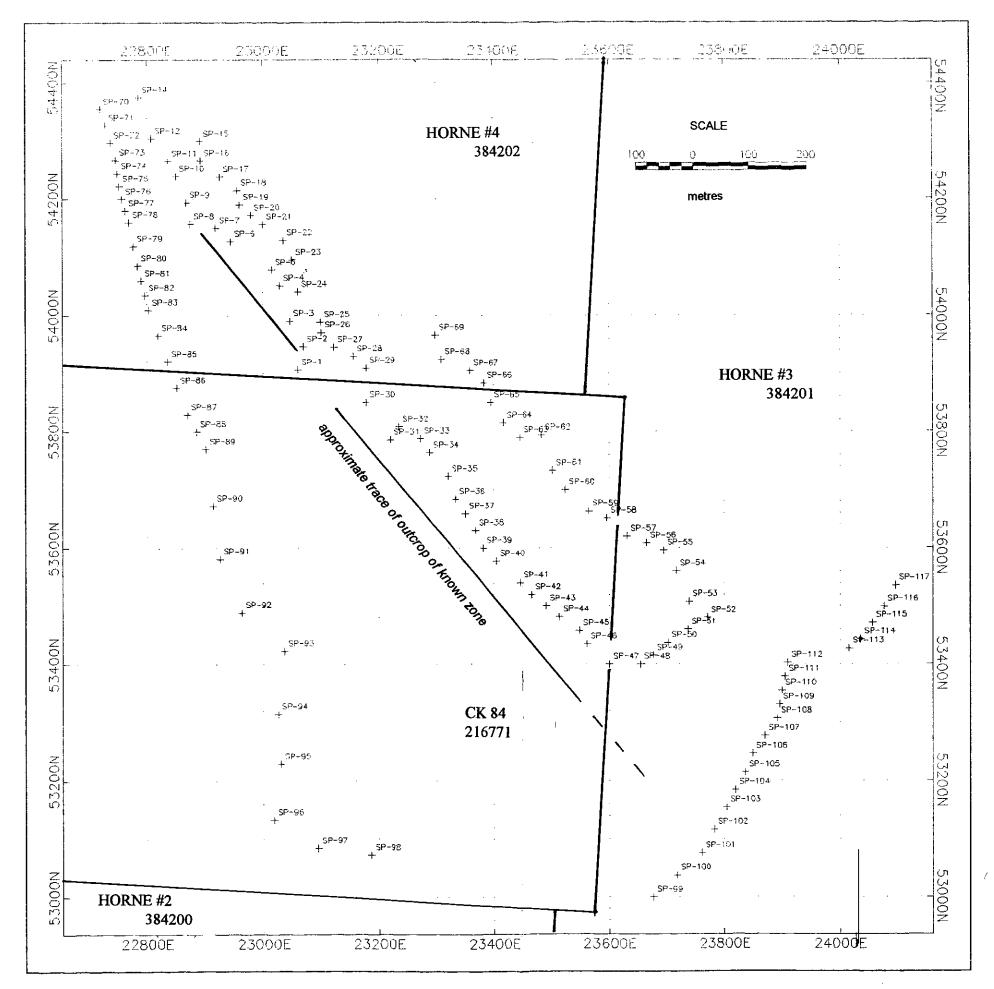
One line was run from the northwestern end of the main part of the zone to the northwest, approximately along the outcrop trend direction of the known zone. This was to cover a zone of low grade mineralization, and to extend the coverage beyond the limit of drilling.

A line was run along the hillside about a hundred metres above the known zone, and another line was run above that line, and approximately parallel to it. The samples taken along these lines were designed to test the rocks above the zone for mineralization.

The fifth line was run more or less across strike to test a hillside that slopes at right angles to the slope tested by the other lines.

Samples were analysed by TSL Laboratories, in Saskatoon. Twenty-nine elements were analysed in a standard geochemical package. Extraction of metals from the -80 mesh fraction of each sample aliquot was by aqua regia at 95°C for 1 hour, and analysis was by ICP. Gold was analysed by fire assay of a 15 gram sample aliquot, with an atomic absorption finish.

### 2.3 Results


Results are tabulated in a spreadsheet, Appendix A. The version included with this report is abbreviated in that only the analytical values for zinc, lead, copper, gold and silver are shown, but it contains the UTM coordinates of each sample site, and the field notes. The mean and standard deviation of the values of each element were calculated by the formulae used by the spreadsheet. Original analytical report sheets from TSL Laboratories are included in Appendix B, and include all of the results, and descriptions of the analytical procedures. Maps of sample locations (with sample numbers), zinc, lead and copper values are shown as figures 3, 4, 5, and 6 respectively. Claim boundaries on these maps have been transferred from the government claim maps.

The closest thing to a zinc anomaly is the sequence of samples SP-92 to SP-95. Samples SP-93 and -94 are greater than the mean plus two standard deviations, and the flanking samples, SP-92 and -95 are greater than the mean plus one standard deviation. The mean value of the zinc assays is 108 ppm and the standard deviation is 53 ppm. These values are in and flanking a gully which drains the known zone. This indicates that the sampling technique used here is capable of detecting the type of mineralization to be expected, although these numbers are not particularly high, given the proximity to the zone.

Samples SP-99 and -100 are the next most exciting zinc values, and are also downslope from the main zone, in and near an ephemeral drainage channel. This channel would carry run-off in spring, or following a heavy rain.

The only copper value more than 2 standard deviations greater than the mean is in sample

L



L

L

L

L

L

L

L

L

L

L

L

L

L

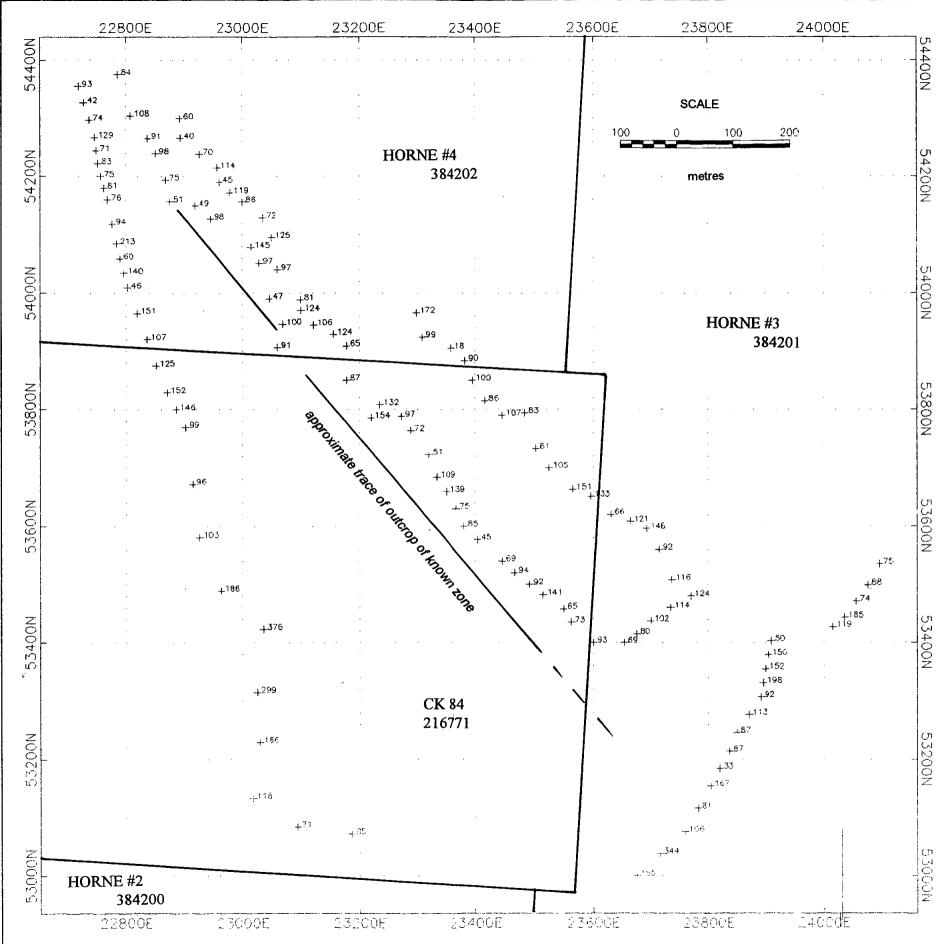
L

L

L

. .-

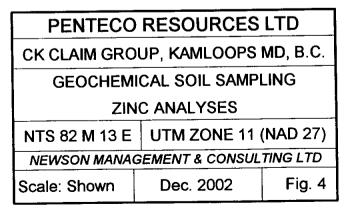


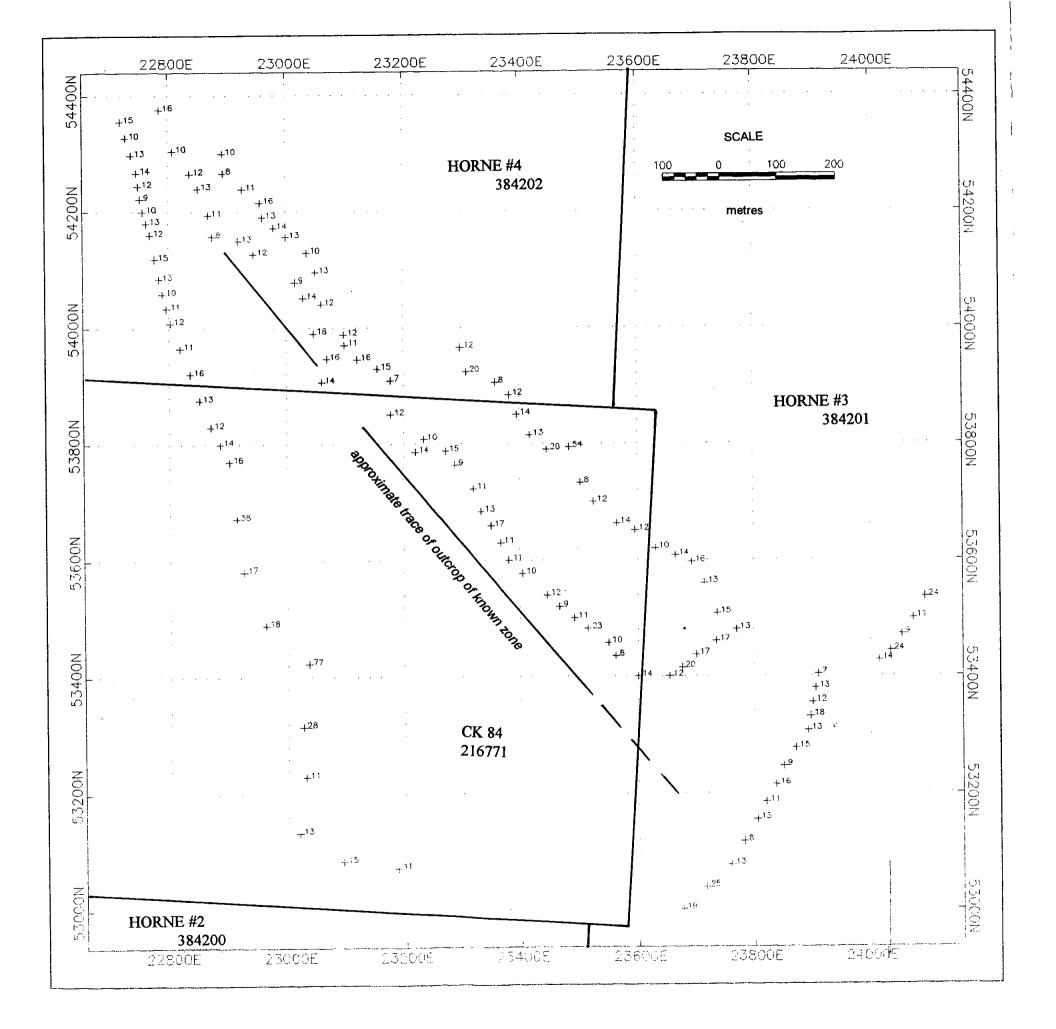

# LEGEND

SP-21

+

Sample location and number


| PENTECO RESOURCES LTD              |                                                                                    |  |  |  |  |  |  |  |  |
|------------------------------------|------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| CK CLAIM GROUP, KAMLOOPS MD, B.C.  |                                                                                    |  |  |  |  |  |  |  |  |
| GEOCHEMICAL SOIL SAMPLING          |                                                                                    |  |  |  |  |  |  |  |  |
| SAMPLE SITE LOCATIONS & NUMBERS    |                                                                                    |  |  |  |  |  |  |  |  |
| NTS 82 M 13 E UTM ZONE 11(NAD27)   |                                                                                    |  |  |  |  |  |  |  |  |
| NEWSON MANAGEMENT & CONSULTING LTD |                                                                                    |  |  |  |  |  |  |  |  |
| Dec. 2002                          | Fig. 3                                                                             |  |  |  |  |  |  |  |  |
|                                    | UP, KAMLOOPS<br>ICAL SOIL SAMP<br>LOCATIONS & NU<br>UTM ZONE 11<br>GEMENT & CONSUL |  |  |  |  |  |  |  |  |






## LEGEND

102 + Sample location and ppm zinc





CK NTS NE Sca



## LEGEND

45

.

+

Sample location and ppm lead

|                                   | and the second |          |  |  |  |  |  |  |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------|----------|--|--|--|--|--|--|
| PENTECO RESOURCES LTD             |                                                                                                                  |          |  |  |  |  |  |  |
| CLAIM GROUP, KAMLOOPS MD, B.C.    |                                                                                                                  |          |  |  |  |  |  |  |
| GEOCHEMICAL SOIL SAMPLING         |                                                                                                                  |          |  |  |  |  |  |  |
| LEAD ANALYSES                     |                                                                                                                  |          |  |  |  |  |  |  |
| S 82 M 13 E                       | UTM ZONE 11                                                                                                      | (NAD 27) |  |  |  |  |  |  |
| EWSON MANAGEMENT & CONSULTING LTD |                                                                                                                  |          |  |  |  |  |  |  |
| ale: Shown                        | Dec. 2002                                                                                                        | Fig. 5   |  |  |  |  |  |  |
|                                   |                                                                                                                  |          |  |  |  |  |  |  |



64 +





LEGEND

Sample location and ppm copper

| PENTECO RESOURCES LTD              |             |          |  |  |  |  |  |  |
|------------------------------------|-------------|----------|--|--|--|--|--|--|
| K CLAIM GROUP, KAMLOOPS MD, B.C.   |             |          |  |  |  |  |  |  |
| GEOCHEMICAL SOIL SAMPLING          |             |          |  |  |  |  |  |  |
| COPPER ANALYSES                    |             |          |  |  |  |  |  |  |
| TS 82 M 13 E                       | UTM ZONE 11 | (NAD 27) |  |  |  |  |  |  |
| NEWSON MANAGEMENT & CONSULTING LTD |             |          |  |  |  |  |  |  |
| cale: Shown Dec. 2002 Fig. 6       |             |          |  |  |  |  |  |  |
|                                    |             |          |  |  |  |  |  |  |

SP-6, which is more or less over the known zone, where it is weak. Both samples SP-99 and -100 contain values of copper greater than the mean plus 1 standard deviation, tending to increase the significance of that anomaly.

It was not really expected to find gold in these samples, but for the extra cost of the assays it was thought worthwhile to check. Gold values are so uniformly low that it in not meaningful to speak of anomalous values. The highest gold value was found in sample SP-42. That was part of the line immediately above the known zone, and the sample site is on the hillside near an old road, presumably a drill road. No significance can be attached to this value.

Values of silver are not as uniformly low as those of gold, but statistical parameters calculated for silver are not very meaningful either. A string of consecutive values above detection limit roughly corresponds to the zinc anomaly discussed above. They tend to confirm the zinc anomaly.

The other elements do not show any significant values, either as possible economic targets themselves, or as indicator elements for some other element.

### **3.0 Conclusions and Recommendations**

- 1. The mineralized zone does show up in samples taken along the line below the zone, but does not show up strongly. Further programs of geochemical sampling are therefore warranted, integrated with other types of work program as discussed below. No new zone was indicated by this work program.
- 2. Anomalous samples are from major drainage channels, or gullies. The next phase of work should consist of sampling major drainage channels along traverses which follow the channels up and down the slope. The sample medium does not appear to be important here- fine-grained silt from the active channel and sandy material from the bank seem to give values from the same population. If anomalies are found in this phase, the upslope cut-off of the anomalous readings should be investigated by prospecting, magnetic surveying, and geological check work (formal mapping may or may not be required at this stage).

3. Recommendations made by Yawnghwe, 2001, should be followed up. The program of geochemical sampling recommended above should be carried out along with Yawnghwe's recommendations. In addition, small, detailed soil geochemical sampling surveys should be carried out to provide more information to use in interpreting any anomalous conditions outlined by following Yawnghwe's recommendations.

### 4.0 References and Bibliography

Ashton, J.M., J.M. Ashton & Associates, July 1998, Preliminary Evaluation on Placing the CK Zinc Deposit into Production at 1,000 tons per day.

Blanchflower, J.D.B., 1987. Minorex Consulting Ltd., Exploration Report on the CK Property, April 24, 1987.

Green, D.H., 1998, Assessment Report Geological Work on CK Group, Vols. 1 & 2

2000. Estimate of Lead-Zinc Mineral Resources Report, New Showing Zone, CK Mineral Property, Raft River Project, April 18, 2000, Don Green, P.Eng., Green Resources Ltd.

Oliver, J.S., 1988. Drilling and Geological Report on the 1987 Exploration of the CK Property, Feb. 26, 1988, 54 p plus appendices

Rotzien, J.L., Macfadyen. M.A., Chamberlain, J.A., 1988. Dolmage Campbell Ltd., Compilation Report CK Property, September, 1988

Rotzien, J.L., Macfadyen. M.A., 1989. Dolmage Campbell Ltd., Geophysical, Geochemical, Diamond Drilling and Geological Report on the 1988 Exploration of the SYN Claims, CK Property, Vol 1, February 28, 1989.

Drill logs: Cominco & Minorex; Minorex Geological Sections (1978 to 1987)

# 5.0 Itemized Cost Statement

•

| Assaying - TSL Laboratories Inc. 116 samples for Ag, Al, As, Ba, Be, Bi, Ca, Cd,     |            |          |
|--------------------------------------------------------------------------------------|------------|----------|
| Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sn, Sr, Ti, V, W, Y, Zn, Zr @\$8.0 | 00         |          |
| 116 gold FA/AA @ \$10.00, 116 sample prep. @ \$2.50, plus GST                        | \$         | 2544.46  |
| Oct. 15-19: Labour – Maurice Lessard, 4 days @ \$300/diem                            | \$         | 1200.00  |
| Oct. 15- 19: Ralph Newson, P.Eng. P.Geo., 5 days @ \$ 500/diem + GST                 | \$         | 2675.00  |
| Oct. 16-18: Ron Burko, expediting & consulting, 3 days @ \$ 300/diem                 | \$         | 900.00   |
| Feild supplies: sample bags, flagging + GST                                          | \$         | 93.89    |
| Oct. 16- 18:GPS Unit Rental, 3 days @ \$ 10.00/diem + GST                            | \$         | 32.10    |
| Oct. 15-19: Hotel & Food/Meals - paid by Ron Burko, + PST, GST                       | \$         | 954.27   |
| Oct. 15- 19:PChev. 4x4 Rental, 5 days @ \$50                                         | \$         | 250.00   |
| Fuel, Gasoline + GST                                                                 | \$         | 334,59   |
| Travel Mileage within BC: 4x4, 2690 km@ \$0.40 /km                                   | \$         | 1076.00  |
| Airfare: Ron Burko to Kamloops                                                       | \$         | 609.31   |
| Postage & office supplies                                                            | \$         | 10.27    |
| Misc. telephone calls/faxes pertaining to CK Claims                                  | \$         | 20.00    |
| Report: Fixed price: \$500 + GST                                                     | \$         | 535.00   |
| TOTAL                                                                                | <u>\$1</u> | 1,234.89 |

## Certificate of Author

I, Norman Ralph Newson, of 3142 Eastview, Saskatoon, Saskatchewan, do hereby certify as follows:

1. That I am a graduate geologist, with B.Sc. and M.Sc. degrees from Queen's University at Kingston, Ontario, received in 1964 and 1970 respectively. I have practised my profession continuously since receiving my undergraduate degree, except for the time spent on course and thesis work for my graduate degree.

2. That my qualifications to write a report of this nature derive not only from my academic qualifications, but from increasingly responsible positions in the mining industry, including middle and senior management. I have investigated sedex-type deposits in Ontario, Québec, the Northwest Territories, Nunavut. I have visited mines in Austria, Italy, and Slovenia exploiting such deposits. I have a chemistry minor for my undergraduate degree, and successfully completed a graduate course in geochemistry related to mineral exploration beyond the work for my graduate degree. I have conducted, interpreted and or supervised soil geochemical, biogeochemical and lithogeochemical surveys for base and precious metals in Newfoundland, Québec, Ontario, Manitoba, Saskatchewan, and British Columbia.

3. That I am a Member of the Association of Professional Engineers & Geoscientists of Saskatchewan (with Permission to Consult), and a Member of the Association of Professional Engineers & Geoscientists of Manitoba.

4. That I believe I am a "qualified person" as defined in National Instrument 43-101.

5. That I carried out or supervised all of the new work discussed herein, and was on the property for the entire time of the work program.

The effective date of this report is Dec. 8, 2002. Signed at Saskatoon, Saskatchewan, January 20, 2003.

N. Ralph Newson. Sc. P.Engl Geo. δ 66.00

## APPENDIX A

1

{ }

ŗ,

r٦

٢ j

Ì.

# SPREADSHEET OF SAMPLE NUMBERS, UTM COORDINATES, FIELD NOTES

and

ANALYSES OF ZINC, LEAD, COPPER, GOLD, SILVER

Penteco Resources Ltd., CK claim group, NTS 82 M 13. Geochemical soil survey results. October, 2002.

| ELEMENT  | NAD 27         | NAD 27  | Soil  | Depth of | Drainage | Soil       | Soil     | Remarks            | Zn  | Pb  | Cu  | Au  | Ag   |
|----------|----------------|---------|-------|----------|----------|------------|----------|--------------------|-----|-----|-----|-----|------|
| SAMPLES  | Northing       | Easting |       |          | Azimuth  | Туре       | Colour   |                    | ppm | ppm | ppm | ppb | ppm  |
| SP-1     | 53906          |         |       |          |          | sand       | red/brn  | blds, some orgs    |     | 14  | 17  | <5  | < .3 |
| SP-2     | 53946          |         |       |          | 220      |            |          |                    | 100 | 16  | 17  | <5  | < .3 |
| SP-3     | 53990          |         |       |          | 210      | sand       |          | near old ddh?      | 47  | 18  | 11  | 5   | < .3 |
| SP-4     | 54051          | 23029   | b     | 40       | 225      | sand       |          |                    | 97  | 14  | 10  | <5  | < .3 |
| SP-5     | 54078          |         | b     | 30       | 220      | sand       |          |                    | 145 | 9   | 10  | <5  | < .3 |
| SP-6     | 54127          | 22945   | b     | surf     | 200      | sand       |          |                    | 98  | 12  | 65  | <5  | < .3 |
| SP-7     | 54150          |         | b     | - 30     | 200      | sand       |          |                    | 49  | 13  | 10  | <5  | < .3 |
| SP-8     | 54157          | 22875   | b     | 20       | 230      | sand       |          |                    | 51  | 8   | 13  | <5  | < .3 |
| SP-9     | 54194          | 22868   | b     | 20       | 240      | sand       |          |                    | 75  | 11  | 12  | <5  | < .3 |
| SP-10    | 54239          | 22850   | b     | 35       | 250      | sand       |          |                    | 98  | 13  | 11  | <5  | < .3 |
| SP-11    | 54265          | 22837   | b     | 20       | 210      | sand       |          | elev. 1176m        | 91  | 12  | 8   | <5  | < .3 |
| SP-12    | 54304          | 22808   | b     | 15       | 200      | sand       |          |                    | 108 | 10  | 7   | <5  | < .3 |
| SP-14    | 54375          | 22786   | b     | surf     | 230      | sand       |          | near rusty gn oc   | 84  | 16  | 39  | <5  | < .3 |
| SP-15    | 54269          | 22892   | A, b  | 15       | 230      | sand       |          | poor sample        | 60  | 10  | 5   | <5  | < .3 |
| SP-16    | 54266          | 22863   | silt  |          | 230      | silt,sand  |          | eph stream bank    | 40  | 8   | 10  | <5  | < .3 |
| SP-17    | 54238          | 22886   | b(+A) | 15- 20   | 230      | sand       |          | poor sample, bldrs | 70  | 11  | 7   | <5  | < .3 |
| SP-18    | 54205          | 22900   | b     | surf- 10 | 220      | sand       |          |                    | 114 | 16  | 13  | <5  | < .3 |
| SP-19    | 54190          | 22960   | silt? |          | 350      | silt, sand | grey/red | eph str.           | 45  | 13  | 8   | <5  | < .3 |
| SP-20    | 54172          | 22979   | b     | 10       | 200      | sand, silt |          |                    | 119 | 14  | 7   | <5  | < .3 |
| SP-21    | 54156          | 23000   | b     | 15       |          | sand. Silt |          | eph. dr.; bank     | 86  | 13  | 7   | <5  | < .3 |
| SP-22    | 54129          | 23035   | b??   | 20       | 190      | sand       | lt red   | poor b             | 72  | 10  | 8   | <5  | 3, > |
| SP-23    | 54095          | 23050   | b     | 10       | 210      | sand       |          |                    | 125 | 13  | 8   | <5  | < .3 |
| SP-24    | 54040          | 23060   | b     | 20       | 210      | sand       |          | eph. dr.           | 97  | 12  | 8   | <5  | < .3 |
| SP-24 Re |                |         |       |          |          |            |          |                    | 98  | 10  | 9   | <5  | 0.4  |
| SP-25    | 53978          | 23069   | b     | 25       | 180      | sand/silt  | lt. red  | in eph. dr.        | 81  | 12  | 18  | <5  | < .3 |
| SP-26    | 53970          | 23100   | b     | 25       | 220      | sand/silt  | red/brn  |                    | 124 | 11  | 14  | <5  | < .3 |
| SP-27    | 53945          | 23122   | silt  | 10       | 190      | str. silt  | grey/blk | in eph. str.       | 106 | 16  | 30  | <5  | < .3 |
| SP-28    | 53929          | 23156   | b     | 30       | 190      | sand/silt  | red      |                    | 124 | 15  | 14  | <5  | < .3 |
| SP-29    | 53909          | 23178   | b     | 30       | 210      | silt/sand  | grey     | outwash area       | 65  | 7   | 17  | <5  | < .3 |
| SP-30    | 53850          | 23178   | ?     | 30       | 240      | silt/sand  | red      | in dr. area        | 87  | 12  | 9   | <5  | < .3 |
| SP-31    | 537 <b>8</b> 6 | 23220   | b     | 10       | 230      | sand/silt  | red      | poor gps           | 154 | 14  | 13  | <5  | < .3 |
| SP-32    | 53808          | 23235   | b     | 25       | 240      | sand/silt  | red      |                    | 132 | 10  | 9   | <5  | < .3 |

1

· ••

e.

| SP-33    | 53788 | 23272 | b    | 15   | 250 | sand/silt | red         |                     | 97  | 15 | 11  | <5 | < .3 |
|----------|-------|-------|------|------|-----|-----------|-------------|---------------------|-----|----|-----|----|------|
| SP-34    | 53764 | 23288 | b    | 15   | 260 | sand/silt | red         |                     | 72  | 9  | 12  | <5 | < .3 |
| Std DS4  |       |       |      |      |     |           |             |                     | 154 | 30 | 118 | <5 | 0.4  |
| SP-35    | 53723 | 23320 | b    | 20   | 210 | sand/silt | red         |                     | 51  | 11 | 8   | <5 | < .3 |
| SP-36    | 53684 | 23333 | b    | 15   | 260 | sand/silt | red         |                     | 109 | 13 | 6   | <5 | < .3 |
| SP-37    | 53644 | 23350 | b    | 15   | 270 | sand/silt | red         |                     | 139 | 17 | 7   | <5 | 0.3  |
| SP-38    | 53638 | 23347 | silt | surf | 220 | silt      | grey        | active ch. eph.crk. | 75  | 11 | 19  | <5 | < .3 |
| SP-39    | 53600 | 23381 | b    | 10   | 220 | sand/silt | red         |                     | 85  | 11 | 6   | <5 | 0.4  |
| SP-40    | 53577 | 23404 | silt | 10   | 220 | silt?     | red         | outwash-no prof.    | 45  | 10 | 13  | <5 | < .3 |
| SP-41    | 53540 | 23446 | b    | 10   | 190 | sand/silt | red         | crossed rd slp      | 69  | 12 | 9   | <5 | < .3 |
| SP-42    | 53520 | 23467 | b    | 10   | 180 | sand/silt | ređ         |                     | 94  | 9  | 9   | 35 | < .3 |
| SP-43    | 53500 | 23492 | b    | 10   | 190 | sand/silt | red         |                     | 92  | 11 | 6   | <5 | 0.3  |
| SP-44    | 53482 | 23515 | b    | 20   | 150 | sand/silt | red         |                     | 141 | 23 | 18  | <5 | 0.3  |
| SP-44 Re |       |       |      |      |     |           |             |                     | 143 | 24 | 18  | <5 | < .3 |
| SP-45    | 53458 | 23549 | b    | 10   | 160 | sand/silt | red         | rd ahead & on SW    | 65  | 10 | 4   | <5 | < .3 |
| SP-46    | 53435 | 23562 | b    | 20   | 140 | sand/silt | red         |                     | 73  | 8  | 14  | 5  | < .3 |
| SP-47    | 53400 | 23600 | b    | 15   | 200 | sand/silt | red         | rd. slp, & on SW    | 93  | 14 | 13  | <5 | < .3 |
| SP-48    | 53400 | 23653 | b    | 20   | 160 | sand/silt | light red   | Az 045 deg.         | 69  | 12 | 18  | <5 | < .3 |
| SP-49    | 53415 | 23675 | b    | 20   | 170 | sand/silt | red         |                     | 80  | 20 | 9   | <5 | < .3 |
| SP-50    | 53437 | 23700 | b    | 20   | 180 | sand/silt | red         |                     | 102 | 17 | 17  | <5 | < .3 |
| SP-51    | 53460 | 23735 | b    | 20   | 180 | sand/silt | red         |                     | 114 | 17 | 13  | <5 | 0.3  |
| SP-52    | 53480 | 23770 | b    | 20   | 190 | sand/silt | red         | under tree root     |     |    |     |    |      |
| SP-53    | 53508 | 23737 | b    | 10   | 200 | sand/silt | red         | oc here. Az.135 deg | 116 | 15 | 14  | <5 | 0.3  |
| SP-54    | 53560 | 23715 | b    | 25   | 220 | sand/silt | red         | some A contam       | 92  | 13 | 17  | <5 | < .3 |
| SP-55    | 53596 | 23693 | b    | 20   | 180 | sand/silt | red         |                     | 146 | 16 | 9   | <5 | < .3 |
| SP-56    | 53608 | 23664 | b    | 15   | 170 | sand/silt | red         |                     | 121 | 14 | 13  | <5 | < .3 |
| SP-57    | 53620 | 23630 | b    | 20   | 160 | sand/silt | red         |                     | 66  | 10 | 7   | <5 | < .3 |
| SP-58    | 53651 | 23596 | b    | 10   | 160 | sand/silt | light red   |                     | 133 | 12 | 7   | <5 | < .3 |
| SP-59    | 53663 | 23565 | b    | 10   |     | sand/silt |             |                     | 151 | 14 | 12  | <5 | 0.3  |
| SP-60    | 53700 | 23525 | b    | 10   | 210 | sand/silt | red         | rd                  | 105 | 12 | 9   | <5 | 0.3  |
| SP-61    | 53733 | 23503 | b    | 10   | 240 | sand/silt | red         |                     | 81  | 8  | 10  | <5 | < .3 |
| SP-62    | 53794 | 23484 | b?   | 15   | 260 | sand/siit | reddish/brn | gully & rd slp      | 83  | 54 | 11  | <5 | < .3 |
| SP-63    | 53790 | 23446 | b?   | 20   | 260 | sand/silt | red/brn     | gully sip           | 107 | 20 | 13  | <5 | < .3 |
| SP-64    | 53815 | 23417 | b?   | 20   | 220 | sand/silt | grey        | •                   | 86  | 13 | 9   | <5 | < .3 |
| SP-65    | 53850 | 23395 | b?   | 25   | 260 | sand/silt | red         |                     | 100 | 14 | 7   | <5 | 0.3  |
| SP-66    | 53884 | 23382 | b    | 25   | 280 | sand/silt | red         |                     | 90  | 12 | 8   | <5 | < .3 |
| SP-67    | 53905 | 23358 | silt | 20   | 220 | silt/sand | grey        | in eph. dr. ch.     | 18  | 8  | 2   | <5 | < .3 |
|          |       |       |      |      |     |           |             |                     |     |    |     |    |      |

| SP-68    | 53924 | 23308 | b     | 20 | 250 | sand/silt |          |                     | 99  | 20 | 7   | <5 | < .3 |
|----------|-------|-------|-------|----|-----|-----------|----------|---------------------|-----|----|-----|----|------|
| Std DS4  |       |       |       |    |     |           |          |                     | 152 | 30 | 120 | <5 | 0,3  |
| SP-69    | 53966 | 23298 | b?    | 15 | 250 | sand/silt | grey/brn |                     | 172 | 12 | 10  | <5 | 0.4  |
| SP-70    | 54355 | 22720 | b?    | 10 | 260 | sand/silt | dk red   |                     | 93  | 15 | 12  | <5 | 0.5  |
| SP-71    | 54327 | 22729 | b     | 10 | 260 | sand/silt | dk ređ   | rusty bldrs here    | 42  | 10 | 7   | <5 | < .3 |
| SP-72    | 54297 | 22738 | b?    | 10 | 260 | sand/silt | dk brn   |                     | 74  | 13 | 40  | <5 | 0.3  |
| SP-73    | 54267 | 22747 | b     | 15 | 240 | sand/silt | dk red   |                     | 129 | 14 | 14  | <5 | 0,3  |
| SP-74    | 54244 | 22750 | b     | 20 | 240 | sand/silt | dk red   |                     | 71  | 12 | 13  | <5 | 0.3  |
| SP-75    | 54222 | 22753 | b     | 20 | 240 | sand/silt | dk red   |                     | 83  | 9  | 27  | <5 | 0.3  |
| SP-76    | 54200 | 22757 | b?    | 25 | 240 | sand/silt | red/brn  |                     | 75  | 10 | 16  | <5 | < .3 |
| SP-77    | 54180 | 22763 | silt? | 20 | 260 | silt?     | red/brn  | in eph. cr.         | 81  | 13 | 16  | <5 | 0.3  |
| SP-78    | 54160 | 22769 | b?    | 20 |     | sand/silt | red/brn  |                     | 76  | 12 | 10  | <5 | < .3 |
| SP-79    | 54119 | 22777 | b     | 25 | 240 | sand/silt | red      |                     | 94  | 15 | 10  | <5 | < .3 |
| SP-80    | 54085 | 22784 | b     | 20 | 250 | sand/silt | red      |                     | 213 | 13 | 9   | 5  | 0.3  |
| SP-81    | 54059 | 22790 | b     | 15 | 250 | sand/silt | red      |                     | 60  | 10 | 16  | <5 | 0.3  |
| SP-82    | 54034 | 22797 | b     | 15 | 250 | sand/silt | red      |                     | 140 | 11 | 13  | <5 | 0.3  |
| SP-83    | 54009 | 22803 | silt  | 20 | 240 | silt      | grey     | in eph. cr.         | 46  | 12 | 10  | <5 | < .3 |
| SP-83 Re |       |       |       |    |     |           |          |                     | 47  | 11 | 11  | <5 | < .3 |
| SP-84    | 53965 | 22819 | b     | 8  |     | sand/silt | ređ      |                     | 151 | 11 | 13  | <5 | 0.3  |
| SP-85    | 53920 | 22836 | b     | 15 | 230 | sand/silt | red      |                     | 107 | 16 | 11  | <5 | 0.4  |
| SP-86    | 53875 | 22851 | b     | 12 | 230 | sand/silt | red      |                     | 125 | 13 | 12  | <5 | < .3 |
| SP-87    | 53829 | 22870 | b     | 12 | 230 | sand/silt | red      |                     | 152 | 12 | 14  | <5 | 0.5  |
| SP-88    | 53800 | 22886 | b     | 15 | 230 | sand/silt | red      |                     | 146 | 14 | 18  | <5 | 0.3  |
| SP-89    | 53770 | 22902 | b     | 10 | 230 | sand/silt | red/'brn |                     | 99  | 16 | 49  | <5 | 0.6  |
| SP-90    | 53672 | 22914 | b     | 15 | 240 | sand/silt | red      |                     | 96  | 38 | 16  | <5 | 0.3  |
| SP-91    | 53581 | 22926 | b     | 10 | 230 | sand/silt | red      |                     | 103 | 17 | 10  | <5 | 0.3  |
| SP-92    | 53489 | 22963 | b     | 10 | 230 | sand/silt | red      |                     | 186 | 18 | 15  | <5 | 0.3  |
| SP-93    | 53423 | 23036 | b     | 15 | 190 | sand/silt | red      |                     | 376 | 77 | 13  | <5 | 0.3  |
| SP-94    | 53315 | 23025 | b     | 15 | 300 | sand/silt | red      |                     | 299 | 28 | 11  | <5 | 0.4  |
| SP-95    | 53229 | 23030 | b     | 10 | 250 | sand/silt | red      |                     | 166 | 11 | 14  | <5 | 0.5  |
| SP-96    | 53133 | 23018 | b     | 25 | 240 | sand/silt | red      |                     | 118 | 13 | 7   | <5 | < .3 |
| SP-97    | 53084 | 23094 | b     | 10 | 180 | sand/silt | ređ      |                     | 71  | 15 | 4   | <5 | 0.4  |
| SP-98    | 53072 | 23187 | b     | 15 |     | sand/silt | medbrn   | gully slp           | 85  | 11 | 12  | <5 | < .3 |
| SP-99    | 53000 | 23675 | b?    | 15 | 280 | silt?     |          | in eph. dr. channel | 185 | 19 | 47  | <5 | < .3 |
| SP-100   | 53038 | 23716 | b     | 25 | 280 | sand/silt | red-brn  | ,<br>moist          | 344 | 25 | 40  | <5 | 0.4  |
| SP-101   | 53076 | 23760 | b     | 30 | 280 | sand/silt |          | poor horizon        | 106 | 13 | 14  | <5 | < .3 |
| Std DS4  |       |       | b     |    |     |           |          |                     | 156 | 30 | 121 | <5 | 0.4  |

| SP-102      | 53116 | 23782 | b   | 20 | 300 | sand/silt | brn      |              | 81       | 8     | 12     | <5  | < .3    |
|-------------|-------|-------|-----|----|-----|-----------|----------|--------------|----------|-------|--------|-----|---------|
| SP-103      | 53154 | 23804 | b   | 20 | 300 | sand/silt | red      |              | 167      | 13    | 19     | <5  | < .3    |
| SP-104      | 53184 | 23820 | b   | 35 | 300 | sand/silt | red/brn  |              | 33       | 11    | 11     | <5  | < .3    |
| SP-105      | 53214 | 23837 | b   | 10 | 300 | sand/silt | red      | organic-rich | 87       | 16    | 6      | <5  | 0.3     |
| SP-106      | 53246 | 23850 | b   | 20 | 300 | sand/silt | red      | _            | 87       | 9     | 7      | <5  | < .3    |
| SP-106 Re   |       |       |     |    |     |           |          |              | 87       | 4     | 7      | <5  | < .3    |
| SP-107      | 53277 | 23871 | b   | 30 | 300 | sand/silt | red      |              | 113      | 15    | 16     | <5  | < .3    |
| SP-108      | 53307 | 23892 | b   | 20 | 320 | sand/silt | red      | organic      | 92       | 13    | 6      | <5  | 0.3     |
| SP-109      | 53331 | 23896 | b   | 20 | 320 | sand/silt | red      | 0            | 198      | 18    | 26     | <5  | < .3    |
| SP-110      | 53355 | 23900 | b   | 20 | 230 | sand/silt | red      |              | 152      | 12    | 7      | <5  | 0.4     |
| SP-111      | 53379 | 23905 | b   | 25 | 320 | sand/silt | red      |              | 150      | 13    | 8      | <5  | 0.3     |
| SP-112      | 53403 | 23910 | b   | 35 | 320 | sand/silt | red//brn |              | 50       | 7     | 22     | <5  | < .3    |
| SP-113      | 53427 | 24015 | b?? | 20 | 320 | sand/silt | red      |              | 119      | 14    | 52     | <5  | < .3    |
| SP-114      | 53443 | 24035 | b   | 25 | 320 | sand/silt | red      |              | 185      | 24    | 27     | <5  | < .3    |
| SP-115      | 53471 | 24055 | b   | 20 | 320 | sand/silt | red      |              | 74       | 9     | 8      | <5  | < .3    |
| SP-116      | 53499 | 24075 | b   | 20 | 320 | sand/silt | red      |              | 88       | 11    | 9      | <5  | 0.3     |
| SP-117      | 53535 | 24095 | b   | 20 | 320 | sand/silt | tan      |              | 75       | 24    | 28     | <5  | < .3    |
| SP-52       |       |       | b   |    |     | sand/silt |          |              | 124      | 13    | 21     |     | 0.4     |
| Std DS4     |       |       |     |    |     |           |          |              | 157      | 33    | 118    |     | 0,3     |
| Mean        |       |       |     |    |     |           |          |              | 107.6098 | 14.82 | 17.355 | (   | 0.34651 |
| SD          |       |       |     |    |     |           |          |              | 52.91543 | 8.598 | 21.108 | (   | 0.07351 |
| Mean + 2 SD |       |       |     |    |     |           |          |              | 213.4406 | 32.02 | 59.571 | (   | 0.49354 |
| Mean + SD   |       |       |     |    |     |           |          |              | 160.5252 | 23.42 | 38.463 | 0 ( | 0.42002 |

# APPENDIX B

. . ا

د م استا

1

, **L** 

. ...\*

٠

# LABORATORY ANALYTICAL REPORTS

•



2 - 302 48th Street - Saskatoon, SK - S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

- . . . . .

| Company:<br>Attention:<br>Project: |    | teco Resou<br>Burko, R. Ne |                                     | ISL Report:<br>Date Received:<br>Date Reported:<br>Invoice: | S11982<br>Oct 22, 2002<br>Oct 31, 2002<br>31180 |
|------------------------------------|----|----------------------------|-------------------------------------|-------------------------------------------------------------|-------------------------------------------------|
| Sample Typ<br>Soil                 | )e | Number<br>116              | Size Fraction<br>- 80 mesh (180 µm) | Sample Prep<br>Dry, Screen                                  | paration                                        |

### ICP-AES Aqua Regia Digestion HCI-HNO<sub>3</sub>

The Aqua Regia Leach digestion liberates most of the metals except those marked with an asterisk where the digestion will not be complete.

| Element<br>Name | Lower<br>Detection<br>Limit | Element<br>Name | Lower<br>Detection<br>Limit |
|-----------------|-----------------------------|-----------------|-----------------------------|
| Ag              | 0.3 ppm                     | Мо              | 1 ppm                       |
| AI*             | 0.01%                       | Na *            | 0.01%                       |
| As              | 2 ppm                       | Ni              | 1 ppm                       |
| Ba *            | 1 ppm                       | ₽*              | 0.001%                      |
| Be *            | 1 ppm                       | Pb              | 3 ppm                       |
| Bi              | 3 ppm                       | Sb              | 3 ppm                       |
| Ca *            | 0.01%                       | Sn *            | 5 ppm                       |
| Cd              | 0.5 ppm                     | Sr *            | 1 ppm                       |
| Co              | 1 ppm                       | Ti *            | 0.01%                       |
| Cr *            | 1 ppm                       | V *             | 1 ppm                       |
| Cu              | 1 ppm                       | w ·             | 2 ppm                       |
| Fe *            | 0.01%                       | Y               | 1 ppm                       |
| К *             | 0.01%                       | Zn              | 1 ppm                       |
| Mg *            | 0.01%                       | Zr *            | 1 ppm                       |
| Mn *            | 2 ppm                       |                 |                             |

Test reports may be reproduced, in their entirety, without our consent. Liability is limited to the analytical cost for analyses.

## TSL LABORATORIES INC.

Penteco Resources Ltd.

Attention: R. Burko, R. Newson Project: CK Sample: 116 Soil 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717 Report No: S11982 Date: October 31, 2002

### MULTIELEMENT ICP ANALYSIS

Aqua Regia Digestion

| Sample<br>Number | Ag<br>ppm | AI<br>% | As<br>ppm | Ba<br>ppm | Be<br>ppm | Bi<br>ppm | Ca<br>% | Cd<br>ppm | Co<br>ppm | Cr<br>ppm | Cu<br>ppm | Fe<br>% | K<br>% | Mg<br>% | Ma<br>ppm | Mo<br>ppm | Na<br>% | Ni<br>ppm | P<br>% | Pb<br>ppm | Sb<br>ppm | Sn<br>ppm | Sr<br>ppm | Ti<br>% | V<br>ppm | W<br>ppm | Y<br>ppm | Zn<br>ppm | Zr<br>ppm |
|------------------|-----------|---------|-----------|-----------|-----------|-----------|---------|-----------|-----------|-----------|-----------|---------|--------|---------|-----------|-----------|---------|-----------|--------|-----------|-----------|-----------|-----------|---------|----------|----------|----------|-----------|-----------|
|                  | P.P.      |         | P.E       |           | E.E.      | F 1.      |         | F.F       |           | FF        | F.C       |         |        |         | • •       | E E.      |         |           |        | r r       | FF        | - F       | ,,        |         |          |          |          |           |           |
| SP-1             | < .3      | 1.96    | < 2       | 143       | 1         | < 3       | 0.24    | < .5      | 10        | 41        | 17        | 2.39    | 0.32   | 0.59    | 448       | < 1       | 0 02    | 26        | 0.047  | 14        | < 3       | < 5       | 24        | Q. 15   | 43       | < 2      | 5        | 91        | 4         |
| SP-2             | < .3      | 2.09    | 4         | 109       | 1         | < 3       | 0.14    | < .5      | 9         | 39        | 17        | 2.48    | 0.24   | 0.55    | 401       | < 1       | 0.01    | 24        | 0.036  | 16        | < 3       | < 5       | 15        | 0.16    | 47       | 3        | 5        | 100       | 4         |
| SP-3             | < .3      | 0.92    | 2         | 62        | < 1       | < 3       | 0.27    | < .5      | 5         | 55        | 11        | 1.24    | 0.23   | 0.41    | 186       | 1         | 0.02    | 14        | 0.027  | 18        | < 3       | < 5       | 12        | 0.07    | 22       | < 2      | 3        | 47        | 2         |
| SP-4             | < .3      | 1.80    | < 2       | 103       | 1         | < 3       | 0.12    | < .5      | 6         | 25        | 10        | 2.17    | 0.11   | 0.27    | 353       | 1         |         | 17        |        | 14        | < 3       | < 5       | 11        | 0.16    | 45       | < 2      | 2        | 97        | 3         |
| SP-5             | < .3      | 3.08    | < 2       | 116       | 1         | < 3       | 0.17    | 0.6       | 10        | 32        | 10        | 2.72    | 0.10   | 0.35    | 419       | 1         | 0.01    | 25        | 0.129  | 9         | < 3       | < 5       | 15        | 0.22    | 54       | < 2      | 3        | 145       | 15        |
| SP-6             | < .3      | 1.99    | 3         | 188       | < 1       | < 3       | 0.10    | < .5      | 9         | 35        | 65        | 6.35    | 0.13   | 0.44    | 154       | 2         | 0.01    | 32        | 0.083  | 12        | 3         | < 5       | 13        | 0.18    | 45       | < 2      | 2        | 98        | 12        |
| SP-7             | <.3       | 1.11    | < 2       | 127       | < 1       | < 3       | 0.21    | < .5      | 5         | 60        | 10        | 1.46    | 0.15   | 0.36    | 165       | 1         | 0.03    | 17        |        | 13        | < 3       | < 5       | 16        | 0.10    | 30       | < 2      | 2        | 49        | 2         |
| SP-8             | < .3      | 1.27    | < 2       | 76        | 1         | < 3       | 0.11    | < .5      | 7         | 22        | 13        | 1.42    | 0.10   | 0.32    | 123       | < 1       | 0.01    | 22        |        | 8         | < 3       | < 5       | 8         | 0.08    | 23       | < 2      | 3        | 51        | 3         |
| SP-9             | < .3      | 2.19    | 4         | 95        | 1         | < 3       | 0.10    | < .5      | 8         | 25        | 12        | 1.80    | 0.10   | 0.32    | 123       | 1         | 0.01    | 23        | 0.048  | 11        | < 3       | < 5       | 9         | 0.12    | 30       | < 2      | 3        | 75        | 18        |
| SP-10            | < .3      | 1.53    | < 2       | 86        | 1         | < 3       | 0.13    | < .5      | 8         | 27        | 11        | 1.86    | 0.11   | 0.37    | 191       | < 1       | 0.01    | 28        | 0.046  | 13        | < 3       | < 5       | 11        | 0.11    | 34       | < 2      | 3        | 98        | 1         |
|                  |           |         |           |           |           |           |         |           |           |           |           |         |        |         |           |           |         |           |        |           |           |           |           |         |          |          |          |           |           |
| SP-11            | < .3      | 2.24    | < 2       | 79        | 1         | 3         | 0.11    | < .5      | 6         | 30        | 8         | 2.33    | 0.11   | 0.27    | 124       | 1         | 0.02    | 16        | 0.066  | 12        | < 3       | < 5       | 12        | 0.16    | 44       | < 2      | 2        | 91        | 7         |
| SP-12            | < .3      | 2.05    | 3         | 76        | 1         | < 3       | 0.08    | < .5      | 8         | 25        | 7         | 2.19    | 0.09   | 0.22    | 110       | < 1       | 0.01    | 18        | 0.141  | 10        | < 3       | < 5       | 7         | 0 17    | 45       | 5        | 2        | 108       | 12        |
| SP-14            | < .3      | 2.48    | < 2       | 176       | < 1       | < 3       | 0 11    | < .5      | 7         | 84        | 39        | 5.52    | 0.70   | 1,10    | 469       | 11        | 0.01    | 14        | 0.057  | 16        | < 3       | < 5       | 15        | 0.32    | 109      | < 2      | < 1      | 84        | 2         |
| SP-15            | < .3      | 0.90    | 3         | 146       | < 1       | < 3       | 0.26    | < .5      | 4         | 16        | 5         | 1.30    | 0.09   | 0,17    | 255       | < 1       | 0.01    | 10        |        | 10        | < 3       | < 5       | 26        | 0.09    | 28       | < 2      | 1        | 60        | 2         |
| SP-16            | < .3      | 1.12    | < 2       | 61        | 1         | < 3       | 0.20    | < .5      | 6         | 45        | 10        | 1.34    | 0.15   | 0.31    | 163       | 1         | 0.02    | 18        | 0.023  | 8         | < 3       | < 5       | 17        | 0.07    | 23       | < 2      | 3        | 40        | 1         |
| SP-17            | < .3      | 1.79    | 3         | 76        | 1         | < 3       | 0.14    | < .5      | 5         | 57        | 7         | 1.79    | 0.10   | 0.24    | 130       | 1         | 0.02    | 17        | 0.091  | 11        | < 3       | < 5       | 11        | 0.12    | 35       | < 2      | 2        | 70        | 5         |
| SP-18            | < .3      | 1.71    | 2         | 133       | 1         | < 3       | 0.16    | < .5      | 10        | 36        | 13        | 2.24    | 0.15   | 0.43    | 208       | 1         | 0.02    | 32        |        | 16        | < 3       | < 5       | 15        | 0.15    | 45       | < 2      | 2        | 114       | 3         |
| SP-19            | < .3      | 0.85    | < 2       | 76        | < 1       | < 3       | 0.16    | < .5      | 4         | 17        | 8         | 1.20    | 0.11   | 0.19    | 285       | < 1       | 0.01    | 11        | 0.025  | 13        | < 3       | < 5       | 16        | 0.08    | 26       | < 2      | 3        | 45        | < 1       |
| SP-20            | < .3      | 1.84    | < 2       | 90        | 1         | < 3       | 0.18    | < .5      | 9         | 25        | 7         | 2.06    | 0.12   | 0,31    | 149       | 1         | 0.01    | 27        |        | 14        | < 3       | < 5       | 16        | 0.17    | 39       | < 2      | 2        | 119       | 4         |
| SP-21            | < 3       | 1.43    | < 2       | 104       | 1         | < 3       | 0.20    | < .5      | 6         | 24        | 7         | 2.00    | 0.13   | 0.27    | 288       | 1         | 0 01    | 20        | 0.074  | 13        | < 3       | < 5       | 18        | 0 16    | 44       | < 2      | 2        | 86        | 3         |
|                  |           |         |           |           |           |           |         |           |           |           |           |         |        |         |           |           |         |           |        |           |           |           |           |         |          |          |          |           |           |
| SP-22            | < 3       | 1.45    | 3         | 94        | 1         | < 3       | 0.17    | < .5      | 6         | 30        | 8         | 1.95    | 0.15   | 0.45    | 187       | < 1       | 0.01    | 17        |        | 10        | < 3       | < 5       | 12        | 012     | 38       | < 2      | 3        | 72        | 2         |
| SP-23            | < 3       | 1.78    | 4         | 107       | 1         | < 3       | 0,19    | < .5      | 9         | 28        | 8         | 2.03    | 0.11   | 0.39    | 227       | < 1       | 0.01    | 27        |        | 13        | < 3       | < 5       | 16        | 0.13    | 36       | < 2      | 2        | 125       | 2         |
| SP-24            | < .3      | 1.18    | < 2       | 87        | < 1       | < 3       | 0.17    | < .5      | 5         | 54        | 8         | 1.64    | 0.13   | 0.28    | 278       | 1         | 0.01    | 14        |        | 12        | < 3       | < 5       | 14        | 0.12    | 31       | < 2      | 2        | 97        | 2         |
| SP-24 Re         | 04        | 1 20    | 2         |           | < 1       | < 3       | 0.17    | < .5      | 5         | 56        | 9         | 1.66    | 0 13   | 0 28    | 281       | 1         | 0.01    | 14        |        | 10        | < 3       | < 5       | 14        | 0.12    | 31       | < 2      | 2        | 98        | 2         |
| SP-25            | < .3      | 1.99    | 2         | 101       | 1         | < 3       | 0.21    | < .5      | 11        | 41        | 18        | 2 34    | 0.25   | 0.60    | 332       | < 1       | 0.01    | 28        | 0.030  | 12        | < 3       | < 5       | 17        | 0 16    | 42       | 2        | 5        | 81        | 4         |
| SP-26            | < 3       | 2.03    | 3         | 164       | 1         | < 3       | 0.17    | < .5      | 9         | 41        | 14        | 2,60    | 0.22   | 0.60    | 259       | 1         | 0.01    | 27        | 0.102  | 11        | < 3       | < 5       | 15        | 0.16    | 45       | 5        | 3        | 124       | 2         |
| SP-27            | < .3      | 2.81    | 3         | 194       | 1         |           | 0.52    | 0.5       | 13        | 56        | 30        | 2.88    | 0.44   | 0.82    | 659       | < 1       | 0.02    | 37        |        | 16        | < 3       | < 5       | 55        | 0.17    | 52       | < 2      | 14       | 106       | < 1       |
| SP-28            | < .3      | 2.41    | 2         | 133       | 1         | < 3       | 0.10    | < .5      | 9         | 33        | 14        | 2.30    | 0.18   | 0.41    | 771       | < 1       | 0.01    | 22        |        | 15        | < 3       | < 5       | 10        | 0.15    | 41       | < 2      | 3        | 124       | 4         |
| SP-29            | < .3      | 1.31    | 3         | 112       | 1         | < 3       | 0.24    | < .5      | 7         | 36        | 17        | 2.10    | 0.42   | 0.58    | 273       | 1         | 0.02    | 19        |        | 7         | < 3       | < 5       | 29        | 0.15    | 39       | < 2      | 4        | 65        | 2         |
| SP-30            | < .3      |         | 2         |           | 1         | < 3       | 0.23    | < .5      | 5         | 23        | 9         | 2.07    | 0.12   | 0.25    | 342       | 1         | 0.01    | 13        |        | 12        | < 3       | < 5       | 29        | 0.13    | 41       | < 2      | 2        | 87        | 2         |
|                  |           |         |           |           |           |           |         |           |           |           |           |         |        |         |           |           |         |           |        |           |           |           |           |         |          |          |          |           |           |
| SP-31            | < .3      | 1.97    | 3         | 115       | 1         | < 3       | 0.22    | < .5      | 8         | 32        | 13        | 2.57    | 0.13   | 0.42    | 216       | < 1       | 0.01    | 30        | 0.085  | 14        | < 3       | < 5       | 20        | 0.13    | 42       | 2        | 3        | 154       | 2         |
| SP-32            | < 3       | 1.67    | 2         | 97        | 1         | < 3       | 0.18    | < .5      | 6         | 31        | 9         | 2,30    | 0.15   | 0 37    | 167       | 1         | 0.01    | 21        | 0.048  | 10        | < 3       | < 5       | 16        | 015     | 45       | s 2      | 2        | 132       | 2         |
| SP-33            | < 3       | 1.82    | < 2       | 69        | 1         | < 3       | 0.10    | < .5      | 6         | 32        | 11        | 2.20    | 0.14   | 0.38    | 205       | 1         | 0.01    | 24        | 0.040  | 15        | < 3       | < 5       | 10        | 0.15    | 44       | < 2      | 2        | 97        | 2         |
| SP-34            | < .3      | 1.56    | 4         | 71        | 1         | < 3       | 0.14    | < .5      | 7         | 27        | 12        | 1.91    | 0 12   | 0.38    | 187       | 1         | < .01   | 21        | 0,057  | 9         | < 3       | < 5       | 14        | 0 12    | 35       | < 2      | 3        | 72        | 2         |
| Std DS4          | 0.4       | 1.76    | 23        | 144       | 2         | 5         | 0.54    | 4.9       | 10        | 161       | 118       | 3.12    | 0.16   | 0.59    | 815       | 6         | 0.04    | 33        | 0.087  | 30        | 6         | 5         | 28        | 0.09    | 73       | 5        | 7        | 154       | 4         |
|                  |           |         |           |           |           |           |         |           |           |           |           |         |        |         |           |           |         |           |        |           |           |           |           |         |          |          |          |           |           |

A 0.5 g sample is digested with 3 ml 3:1 HCI-HNO3 at 95C for 1 hour and diluted to 15 ml with D.I. H2O.

mp

Signed:

Mark Acres - Quality Assurance

Penteco Resources Ltd.

Attention: R. Burko, R. Newson Project: CK Sample: 116 Soil

## TSL LABORATORIES INC.

Report No: 2 - 302 48th Street East, Saskatoon, Saskatchewan. S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717 Date:

S11982 October 31, 2002

### MULTIELEMENT ICP ANALYSIS

Aqua Regia Digestion

| Sample         | Ag          | Al           | As     | Ba         | Be  | Bi         | Ca           | Cd          | Co  | Çr       | Cu      | Fe           | к            | Mg           | Mn         | Мо     | Na           | Ni       | Ρ     | Pb       | Sb         | Sn         | Sr       | Ti           | V        | W        | Y      | Zn        | Zr      |
|----------------|-------------|--------------|--------|------------|-----|------------|--------------|-------------|-----|----------|---------|--------------|--------------|--------------|------------|--------|--------------|----------|-------|----------|------------|------------|----------|--------------|----------|----------|--------|-----------|---------|
| Number         | ppm         | %            | ppm    | ppm        | ppm | ρpm        | %            | ppm         | ppm | ppm      | ppm     | %            | %            | %            | ppm        | ppm    | %            | ppm      | %     | ppm      | ppm        | ppm        | ppm      | %            | ppm      | ppm      | ppm    | ppm       | ppm     |
|                |             |              |        |            |     |            |              |             |     |          |         |              |              |              |            |        |              |          |       |          |            |            |          |              |          |          |        |           |         |
| SP-35          | < .3        | 1.25         | < 2    | 56         | 1   | < 3        | 0.11         | < .5        | 4   | 20       | 8       | 1,87         | 0 10         | 0.21         | 157        | 1      | 0.02         | 13       | 0.047 | 11       | < 3        | < 5        | 14       | 0.16         | 42       | < 2      | 2      | 51        | 3       |
| SP-36          | < .3        | 2.15         | < 2    | 121        | 1   | < 3        | 0 13         | < .5        | 6   | 23       | 6       | 2.46         | 0.10         | 0.26         | 113        | < 1    | 0.02         | 18       | 0.102 | 13       | < 3        | < 5        | 15       | 0.22         | 51       | 3        | 2      | 109       | 10      |
| SP-37          | 0.3         | 2.84         | 4      | 99         | 1   | 3          | 0.30         | < .5        | 11  | 31       | 7       | 3 27         | 0.11         | 0.35         | 339        | < 1    | 0.01         | 22       | 0.194 | 17       | < 3        | < 5        | 24       | 0.23         | 63       | < 2      | 2      | 139       | 7       |
| SP-38          | < .3        | 1.55         | < 2    | 155        | 1   | < 3        | 0.24         | < .5        | 11  | 42       | 19      | 2.30         | 0 46         | 0.63         | 350        | 1      | 0.02         | 26       | 0.050 | 11       | < 3        | < 5        | 24       | 0.14         | 40       | < 2      | 5      | 75        | 3       |
| SP-39          | 0.4         | 1.42         | 2      | 77         | 1   | 3          | 0.10         | < .5        | 5   | 23       | 6       | 2.06         | 0.12         | 0.24         | 273        | < 1    | 0.01         | 14       | 0.062 | 11       | < 3        | < 5        | 10       | 0.16         | 41       | < 2      | 2      | 85        | 4       |
|                |             |              |        |            |     |            |              |             |     |          |         |              |              |              |            |        |              |          |       |          | _          |            |          |              |          | -        | _      |           | _       |
| SP-40          | < .3        | 1 00         | 2      | 108        | < 1 | < 3        | 0.17         | < .5        | 8   | 29       | 13      | 1 69         | 0.30         | 0.42         | 246        | 1      | 0.01         | 18       | 0.055 | 10       |            | < 5        | 12       | 0.11         | 29       | < 2      | 5      | 45        | 3       |
| SP-41          | < .3        | 1.22         | < 2    | 62         | 1   | < 3        | 0.11         | < .5        | 5   | 22       | 9       | 1.69         | 0.10         | 0 24         | 150        | 1      | 0.01         | 17       | 0.045 | 12       | < 3        | 9          | 9        | 0.12         | 35       | < 2      | 2      | 69        | 3       |
| SP-42          | < .3        | 1.80         | 2      | 90         | 1   | < 3        | 0.07         | < .5        | 7   | 23       | 9       | 1.96         | 0.09         | 0.27         | 153        | < 1    | 0.01         | 21       | 0.049 | 9        | < 3        | < 5        | 6        | 0.16         | 41       | < 2      | 2      | 94        | 9       |
| SP-43          | 0.3         | 2.17         | < 2    | 70         | 1   | < 3        | 0.09         | < .5        | 5   | 18       | 6       | 1.72         | 0.06         | 0.16         | 122        | < 1    | 0.01         | 13       | 0.097 | 11       | < 3        | < 5        | 8        | 0.13         | 30       | 3        | 2      | 92        | 12      |
| SP-44          | 0.3         | 2.92         | 5      | 242        | 1   | < 3        | 0.23         | < .5        | 13  | 43       | 18      | 3.02         | 0.27         | 0.60         | 223        | < 1    | 0.02         | 38       | 0.090 | 23       | < 3        | < 5        | 26       | 0.24         | 59       | < 2      | 4      | 141       | 5       |
|                |             |              |        |            |     |            |              |             |     |          |         |              | _            |              | _          |        |              |          |       |          |            | _          |          |              |          | -        |        |           |         |
| SP-44 Re       | < .3        | 3.04         | 3      | 249        | 1   | < 3        | 0.24         | < .5        | 13  | 43       | 18      | 3.08         | 0.29         | 0.62         | 225        | < 1    | 0.02         | 39       | 0.091 | 24       | < 3        | < 5        | 26       | 0.24         | 58       | < 2      | 4      | 143       | 4       |
| SP-45          | < .3        | 1.16         | 2      | 88         | < 1 | < 3        | 0.06         | < .5        | 5   | 21       | 4       | 1.82         | 0.09         | 0.23         | 249        | < 1    | 0.01         | 13       | 0.045 | 10       | < 3        | < 5        | 7        | 0.13         | 39       | < 2      | 2      | 65        | 4       |
| SP-46          | < .3        | 1.39         | < 2    | 118        | < 1 | < 3        | 0.15         | < .5        | 7   | 33       | 14      | 2.38         | 0.15         | 0.42         | 318        | < 1    | 0.01         | 21       | 0.116 | 8        | < 3        | < 5        | 17       | 0.14         | 45       | < 2      | 2      | 73        | 2       |
| SP-47          | < .3        | 2.31         | 4      | 210        | 1   | < 3        | 0.10         | < .5        | 10  | 49       | 13      | 3.35         | 0.11         | 0.79         | 236        | < 1    | 0.02         | 30       | 0.220 | 14       | < 3        | < 5        | 13       | 0.14         | 58       | < 2      | 3      | 93        | 4       |
| SP-48          | < .3        | 1.78         | < 2    | 125        | 1   | < 3        | 0.12         | < .5        | 9   | 37       | 18      | 2.38         | 0.24         | 0.53         | 210        | < 1    | 0.01         | 30       | 0.028 | 12       | < 3        | < 5        | 15       | 0.15         | 43       | < 2      | 6      | 69        | 3       |
| 00.00          |             |              |        | 100        |     |            | ~            |             | 7   |          | •       | 0.50         | 0.40         | 0.00         | 450        |        |              | 4.0      | 0 497 |          | - 2        |            |          | 0.04         | 66       | < 2      | 2      | ~~        | 40      |
| SP-49          | < .3        | 3.27<br>1.89 | 4<br>3 | 123<br>166 |     | < 3<br>< 3 | 0.11<br>0.14 | <.5<br><.5  | 11  | 34<br>30 | 9<br>17 | 3.50<br>3.33 | 0.10<br>0.15 | 0.33<br>0.34 | 158<br>273 | 1<br>2 | 0.02<br>0.01 | 18<br>22 | 0.137 | 20<br>17 | < 3<br>< 3 | < 5<br>< 5 | 14<br>22 | 0.24<br>0.22 | 56       | × 2<br>5 | ∠<br>1 | 80<br>102 | 12<br>7 |
| SP-50<br>SP-51 | < .3<br>0.3 | 2.60         | < 2    | 129        | 1   | < 3        | 0.14         | <.5         | 11  | 30<br>40 | 13      | 3.59         | 0.15         | 0.34         | 273        | < 1    | 0.01         | 22       | 0.115 | 17       | < 3        | < 5        | 12       | 0.22         | 56<br>67 | < 2      | 2      | 114       | 8       |
| SP-53          | 0.3         | 2.00         | 2      | 146        | 1   | < 3        | 0.08         | < .5        | 14  | 40       | 14      | 3,55         | 0.12         | 0.65         | 203        | < 1    | 0.01         | 41       | 0.050 | 15       | < 3        | < 5        | 14       | 0.22         | 71       | < 2      | 2      | 116       | 3       |
| SP-53<br>SP-54 | < .3        | 2.15         |        | 140        | 1   | < 3        | 0.08         | < .5        | 10  | 47       | 14      | 3,95         | 0.22         | 0.64         | 223        | •      | 0.01         | 32       | 0.030 | 13       | < 3        | < 5        | 18       | 0.21         | 69       | < 2      | 2      | 92        | 5       |
| 58-24          | × .>        | 2.19         | 2      | 100        | I   | ~ )        | 014          | <b>`</b> .J | 10  | 41       | 1       | 3.90         | 0.19         | 0.04         | 204        | < 1    | 0.0 I        | 52       | 0.074 | 10       | - 3        | < 0        | 10       | UII          | 09       | ~ 2      | 2      | 92        | ر       |
| SP-55          | < .3        | 3.90         | 5      | 163        | 1   | < 3        | 0 18         | 05          | 15  | 38       | 9       | 3.66         | 0 15         | 0.48         | 567        | 1      | 0.02         | 43       | 0.205 | 16       | 3          | < 5        | 16       | 0,29         | 71       | < 2      | 2      | 146       | 19      |
| SP-56          | < .3        | 2.07         | < 2    | 140        | 1   | < 3        | 0 09         | < .5        | 12  | 32       | 13      | 2.52         | 0.15         | 0.39         | 203        | < 1    | 0.01         | 52       | 0 087 | 14       | < 3        | < 5        | 10       | 0 18         | 44       | < 2      | 2      | 121       | 3       |
| SP-57          | < .3        | 1.21         | < 2    | 132        | < 1 | < 3        | 0.12         | < .5        | 5   | 23       | 7       | 1.63         | 0.12         | 0.29         | 286        | 1      | 0.01         | 13       | 0.089 | 10       | < 3        | < 5        | 13       | 0.10         | 30       | < 2      | 2      | 66        | 3       |
| SP-58          | < .3        | 1.93         | 2      | 118        | 1   | < 3        | 0 10         | < .5        | 11  | 29       | 7       | 2.23         | 0,12         | 0,36         | 395        | < 1    | 0.01         | 29       | 0.064 | 12       | < 3        | < 5        | 12       | 0.18         | 42       | < 2      | 2      | 133       | 7       |
| SP-60A         | 0.3         | 2.82         | 2      | 118        | 1   | < 3        | 0.14         | < .5        | 13  | 33       | 12      | 2.33         | 0 14         | 0.37         | 321        | < 1    | 0.02         | 29       | 0.106 | 14       | < 3        | 5          | 13       | 0 18         | 43       | < 2      | 2      | 151       | 8       |
|                |             |              |        |            |     |            |              |             |     |          |         |              |              |              |            |        |              |          |       |          |            |            |          |              |          |          |        |           |         |
| SP-60B         | 0.3         | 1.82         | 3      | 115        | 1   | < 3        | 0.11         | < .5        | 12  | 30       | 9       | 2.06         | 0.13         | 0.37         | 277        | < 1    | 0.02         | 27       | 0.035 | 12       | < 3        | < 5        | 12       | 0.15         | 39       | < 2      | 2      | 105       | 4       |
| SP-61          | < .3        | 1.80         | < 2    | 104        | 1   | < 3        | 0.09         | < .5        | 6   | 36       | 10      | 2.53         | 0 16         | 0.48         | 182        | < 1    | 0.01         | 16       | 0 046 | 8        | < 3        | < 5        | 9        | 0.17         | 51       | < 2      | 3      | 81        | 4       |
| SP-62          | < .3        | 1.48         | < 2    | 101        | 1   | < 3        | 0.12         | < .5        | 7   | 31       | 11      | 1.94         | 0.15         | 0.48         | 221        | < 1    | 0.01         | 19       | 0.062 | 54       | < 3        | < 5        | 9        | 0.12         | 35       | < 2      | 3      | 83        | 3       |
| SP-63          | < .3        | 1.86         | < 2    | 130        | 1   | < 3        | 0.16         | < .5        | 10  | 37       | 13      | 2.30         | 0.18         | 0.53         | 408        | < 1    | 0.02         | 23       | 0.051 | 20       | < 3        | < 5        | 17       | 0 17         | 47       | < 2      | 3      | 107       | 3       |
| SP-64          | < .3        | 1,47         | < 2    | 109        | < 1 | < 3        | 0.16         | < .5        | 8   | 30       | 9       | 1.86         | 0,17         | 0.44         | 370        | < 1    | 0.02         | 19       | 0.049 | 13       | < 3        | < 5        | 14       | 0.13         | 34       | < 2      | 3      | 86        | 3       |
|                |             |              |        |            |     |            |              |             |     |          |         |              |              |              |            |        |              |          |       |          |            |            |          |              |          |          |        |           |         |
| SP-65          | 0.3         | 2.03         | < 2    | 88         | 1   | < 3        | 0.12         | < .5        | 7   | 27       | 7       | 2.02         | 0.13         | 0.30         | 117        | < 1    | 0.01         | 23       | 0.073 | 14       | < 3        | < 5        | 10       | 0.15         | 35       | 5        | 2      | 100       | 7       |
| SP-66          | < .3        | 2.00         | < 2    | 75         | 1   | < 3        | 0.12         | < .5        | 5   | 24       | 8       | 1.95         | 0.06         | 0.23         | 130        | < 1    | 0.01         | 17       | 0.119 | 12       | . < 3      | < 5        | 8        | 0.09         | 31       | 2        | 3      | 90        | 5       |
| SP-67          | < .3        | 0.27         | 2      | 32         | < 1 | < 3        | 0.06         | < .5        | 1   | 7        | 2       | 0.51         | 0.06         | 0.04         | 38         | < 1    | 0.02         | 2        | 0.015 | 8        | < 3        | < 5        | 6        | 0.09         | 17       | < 2      | 1      | 18        | 2       |
| SP-68          | < .3        | 2.32         | 2      | 109        | 1   | < 3        | 0.15         | < .5        | 5   | 25       | 7       | 2.59         | 0.09         | 0.25         | 135        | 1      | 0.02         | 15       | 0.203 | 20       | < 3        | < 5        | 16       | 0.23         | 55       | < 2      | 2      | 99        | 10      |
| Std DS4        | 0.3         | 1.71         | 22     | 148        | 3   | 5          | 0.52         | 4.9         | 11  | 164      | 120     | 3.15         | 0.17         | 0.60         | 828        | 6      | 0.04         | 35       | 0.089 | 30       | 5          | 5          | 29       | 0.09         | 74       | 5        | 7      | 152       | 6       |
|                |             |              |        |            |     |            |              |             |     |          |         |              |              |              |            | -      |              |          |       |          |            |            |          |              |          |          |        |           |         |

A 0.5 g sample is digested with 3 ml 3:1 HCI-HNO3 at 95C for 1 hour and diluted to 15 ml with D.I. H2O.

.

MAN

Signed:

Mark Acres - Quality Assurance

Page 2 of 4

Penteco Resources Ltd.

Attention: R. Burko, R. Newson Project: CK Sample: 116 Soil TSL LABORATORIES INC.

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No:\$11982Date:October 31, 2002

#### MULTIELEMENT ICP ANALYSIS

Aqua Regia Digestion

| Sample<br>Number | Ag<br>ppm | AI<br>% | As<br>ppm | Ba<br>ppm | Be<br>ppm | Bi<br>ppm | Ca<br>% | Cd<br>ppm | Co<br>ppm | Cr<br>ppm | Cu<br>ppm | Fe<br>% | К<br>% | Mg<br>% | Mn<br>ppm | oM<br>mqq | Na<br>% | Ni<br>Ppm | P<br>% | Pb<br>ppm | Sb<br>ppm | Sn<br>ppm | Sr<br>ppm | Ti<br>% | V<br>mqq   | W<br>ppm | Y<br>maa    | Zn<br>ppm | Zr<br>mag |
|------------------|-----------|---------|-----------|-----------|-----------|-----------|---------|-----------|-----------|-----------|-----------|---------|--------|---------|-----------|-----------|---------|-----------|--------|-----------|-----------|-----------|-----------|---------|------------|----------|-------------|-----------|-----------|
|                  | 2200      |         | PP.0      | P.10      | PPIN      | P.P.      |         | PP        | PP        | PP.07     | PPm       |         |        |         | P. P      | P.F       |         | F P       |        | P.P       | P         | PP···     | P.F       |         | P P        | FE       | r. <b>b</b> | FF .      | P.P.      |
| SP-69            | 0.4       | 1.80    | З         | 116       | 1         | < 3       | 0.10    | < .5      | 10        | 26        | 10        | 2.15    | 0.11   | 036     | 258       | < 1       | 0 02    | 27        | 0.096  | 12        | < 3       | < 5       | 9         | 0 15    | 38         | 4        | 3           | 172       | 6         |
| SP-70            | 0.5       | 1.81    | 6         | 142       | 1         | 3         | 0.13    | < .5      | 8         | 49        | 12        | 3.58    | 0.30   | 0 64    | 604       | 1         | 0 02    | 22        | 0.050  | 15        | < 3       | < 5       | 18        | 0.24    | 74         | 4        | 1           | 93        | i         |
| SP-71            | < .3      | 0.81    | < 2       | 122       | < 1       | 3         | 0.08    | < .5      | 5         | 31        | 7         | 2.09    | 0.25   | 0 32    | 1031      | 1         | 0.02    | 9         | 0.024  | 10        | < 3       | < 5       | 11        | 0.18    | 52         | < 2      | 1           | 42        | 1         |
| SP-72            | 0.3       | 2.12    | 4         | 107       | 1         | < 3       | 0.10    | < .5      | 11        | 68        | 40        | 4.17    | 0.46   | 1 10    | 410       | 5         | 0.03    | 28        | 0.038  | 13        | < 3       | 6         | 16        | 0.18    | 68         | 2        | 3           | 74        | 1         |
| SP-73            | 0.3       | 2.22    | 5         | 130       | 1         | < 3       | 0.14    | < .5      | 9         | 58        | 14        | 4.37    | 0.34   | 0.64    | 339       | 3         | 0.02    | 23        | 0.072  | 14        | < 3       | < 5       | 18        | 0.32    | 87         | < 2      | 1           | 129       | 3         |
| SP-74            | 0.3       | 2.14    | 2         | 111       | 1         | < 3       | 0.10    | < .5      | 7         | 48        | 13        | 4.05    | 0.23   | 0.45    | 239       | 3         | 0.02    | 21        | 0.097  | 12        | < 3       | 6         | 13        | 0.24    | 77         | < 2      | 1           | 71        | 3         |
| SP-75            | 0.3       | 2 46    | 2         | 142       | 1         | < 3       | 0 06    | < .5      | 11        | 58        | 27        | 3.90    | 0.36   | 0 86    | 282       | < 1       | 0.02    | 32        | 0.034  | 9         | < 3       | < 5       | 11        | 0.20    | 61         | < 2      | 2           | 83        | 2         |
| SP-76            | < .3      | 1.72    | 2         | 94        | 1         | < 3       | 0.09    | < .5      | 12        | 35        | 16        | 2.37    | 0.17   | 0.50    | 204       | < 1       | 0.02    | 38        | 0.033  | 10        | < 3       | < 5       | 9         | 0.13    | 41         | < 2      | 2           | 75        | 1         |
| SP-77            | 0.3       | 1.53    | < 2       | 85        | < 1       | < 3       | 0.15    | < .5      | 10        | 37        | 16        | 2,56    | 0.22   | 0.48    | 238       | 2         | 0.02    | 27        | 0.035  | 13        | < 3       | < 5       | 16        | 0.12    | 43         | < 2      | 2           | 81        | < 1       |
| SP 78            | < .3      | 1.57    | 2         | 86        | < 1       | < 3       | 0.10    | < .5      | 8         | 33        | 10        | 2.15    | 0.13   | 0.46    | 185       | < 1       | 0.02    | 26        | 0.042  | 12        | < 3       | < 5       | 8         | 0.12    | 39         | < 2      | 3           | 76        | 1         |
| SP-79            | < .3      | 1.65    | 2         | 108       | 1         | < 3       | 0.09    | < .5      | 8         | 30        | 10        | 2.61    | 0.10   | 0.35    | 203       | < 1       | 0.02    | 23        | 0.107  | 15        | < 3       | < 5       | 8         | 0.16    | 48         | < 2      | 2           | 94        | 3         |
| SP-80            | 0.3       | 3.17    | 2         | 110       | 1         | < 3       | 0.09    | < .5      | 14        | 36        | 9         | 2.96    | 0.15   | 0.41    | 170       | 1         | 0.02    | 34        | 0.070  | 13        | < 3       | < 5       | 10        | 0.22    | 48         | < 2      | 2           | 213       | 12        |
| SP-81            | 0.3       | 1.36    | 2         | 101       | < 1       | 3         | 0.09    | < 5       | 5         | 44        | 16        | 2.87    | 0.22   | 0.52    | 189       | 1         | 0.02    | 19        | 0.043  | 10        | < 3       | < 5       | 11        | 0.20    | 67         | < 2      | 2           | 60        | 1         |
| SP-82            | 0.3       | 2.15    | 3         | 121       | 1         | < 3       | 0.09    | < .5      | 10        | 42        | 13        | 2.90    | 0.17   | 0.47    | 212       | 1         | 0.02    | 20        | 0.077  | 11        | < 3       | 5         | 9         | 0,18    | 55         | < 2      | 2           | 140       | 3         |
| SP-83            | < .3      | 0.85    | 2         | 64        | < 1       | < 3       | 0.10    | < .5      | 5         | 21        | 10        | 1.56    | 0.11   | 0.24    | 161       | 1         | 0.02    | 13        | 0.018  | 12        | < 3       | < 5       | 12        | 0.12    | 38         | < 2      | 3           | 46        | 1         |
| SP-83 Re         | < .3      | 0.87    | < 2       | 66        | < 1       | < 3       | 0.11    | < .5      | 5         | 21        | 11        | 1.60    | 0.11   | 0.25    | 167       | 1         | 0.02    | 12        | 0.019  | 11        | < 3       | < 5       | 12        | 0.12    | 39         | < 2      | 3           | 47        | < 1       |
| SP-84            | 0.3       | 3.73    | 7         | 91        | 1         | < 3       | 0.10    | < .5      | 9         | 37        | 13        | 3.07    | 0.12   | 0.42    | 195       | < 1       | 0.01    | 24        | 0.130  | 11        | < 3       | < 5       | 7         | 0.19    | 53         | < 2      | 3           | 151       | 15        |
| SP-85            | 0.4       | 2.36    | 3         | 113       | 1         | 3         | 0.13    | < .5      | 6         | 38        | 10        | 3.71    | 0.10   | 0.32    | 181       | 1         | 0.01    | 19        | 0.100  | 16        | < 3       | < 5       | 13        | 0.23    | 65         | < 2      | 2           | 107       | 6         |
| SP-86            | < .3      | 2.52    | 7         | 115       | 1         | < 3       | 0.18    | < .5      | 8         | 35        | 12        | 3.35    | 0.12   | 0.41    | 190       | 1         | 0.01    | 24        | 0.074  | 13        | < 3       | < 5       | 15        | 0.22    | 61         | < 2      | 2           | 125       | 5         |
| SP-87            | 0.5       |         | 2         | 95        | 1         | < 3       | 0.14    | < .5      | 10        | 33        | 14        | 2.80    | 0 12   | 0.39    | 227       | 1         |         | 25        |        | 12        |           | < 5       | 11        | 0.16    | 46         | < 2      | 3           | 152       | 6         |
|                  |           |         |           |           |           |           |         |           |           |           |           |         |        |         |           |           |         |           |        |           |           |           |           |         |            |          |             |           |           |
| SP-88            | 0.3       | 3.11    | 3         | 98        | 1         |           | 0.28    | < .5      | 14        | 40        | 18        | 3.35    | 0.13   | 0 50    | 293       | 1         | 0 02    | 38        | 0.073  | 14        | < 3       | < 5       | 25        | 0.19    | 58         | < 2      | 4           | 146       | 7         |
| SP-89            | 0.6       | 2.44    | 3         | 258       | 1         | < 3       | 0.68    | < .5      | 19        | 49        | 49        | 3.04    | 0.42   | 1 00    | 414       | < 1       | 0 06    | 64        | 0.080  | 16        | < 3       | < 5       | 59        | 0.21    | 47         | < 2      | 13          | 99        | < 1       |
| SP-90            | 0.3       | 7.01    | < 2       | 69        | 2         |           | 0.27    | 0.6       | 14        | 36        | 16        | 4.91    | 0.07   | 0.30    | 254       | 1         | 0.03    | 37        | 0.128  | 38        | < 3       | < 5       | 32        | 0.20    | 57         | 3        | 4           | 96        | 33        |
| SP-91            | 0.3       |         | 3         | 79        | 1         |           | 0.13    | < .5      | 8         | 26        | 10        | 3.02    | 0.06   | 0 25    | 178       | 1         | 0.02    | 22        |        | 17        | < 3       | < 5       | 15        | 0.21    | 59         | < 2      | 2           | 103       | 16        |
| SP-92            | 0.3       | 3.41    | 5         | 103       | 1         | < 3       | 0.16    | < .5      | 12        | 34        | 15        | 2.94    | 0.09   | 0.44    | 199       | < 1       | 0.02    | 35        | 0 070  | 18        | < 3       | < 5       | 21        | 0.15    | 47         | < 2      | 3           | 186       | 11        |
| SP-93            | 0.3       | 1.92    | 4         | 77        | 1         | < 3       | 0.22    | < .5      | 5         | 28        | 13        | 2.60    | 0.11   | 0 24    | 125       | 1         | 0.01    | 17        | 0.025  | 77        | < 3       | < 5       | 23        | 0.17    | 5 <b>5</b> | 2        | 5           | 378       | 4         |
| SP-94            | 0.4       | 3 55    | 5         | 88        | 1         | < 3       | 0.19    | < .5      | 10        | 28        | 11        | 3.14    | 0.07   | 0.37    | 172       | < 1       | 0.02    | 32        | 0.073  | 28        | < 3       | < 5       | 30        | 0.15    | 42         | < 2      | 3           | 299       | 12        |
| SP-95            | 0.5       | 2.63    | 4         | 104       | 1         | 3         | 0.13    | < .5      | 8         | 33        | 14        | 2.94    | 0.09   | 0.49    | 177       | 1         | 0.01    | 26        | 0.058  | 11        | < 3       | < 5       | 11        | 0.17    | 52         | < 2      | 2           | 156       | 7         |
| SP-96            | < .3      | 1.72    | < 2       | 84        | 1         | < 3       | 0.10    | < .5      | 8         | 21        | 7         | 1.82    | 0.07   | 0.32    | 125       | < 1       | 0.01    | 22        | 0.031  | 13        | < 3       | < 5       | 11        | 0.10    | 29         | < 2      | 2           | 118       | 5         |
| SP-97            | 0.4       | 2.34    | 3         | 71        | < 1       | < 3       | 0.10    | < .5      | 3         | 20        | 4         | 2.12    | 0.04   | 0.10    | 104       | 1         | 0.01    | 8         | 0.064  | 15        | < 3       | < 5       | 11        | 0.17    | 48         | < 2      | 1           | 71        | 11        |
| SP-98            | < .3      | 1.50    | < 2       | 98        | 1         | < 3       | 0.11    | < .5      | 7         | 23        | 12        | 1.86    | 0.12   | 0.35    | 166       | < 1       | 0.01    | 19        | 0.051  | 11        | < 3       | < 5       | 10        | 0.10    | 31         | < 2      | 4           | 85        | 2         |
| SP-99            | < .3      |         | 2         | 177       | 1         | < 3       | 0.22    | 1.0       | 18        | 42        | 47        | 2.78    | 0.23   | 0.57    | 947       | < 1       | 0.02    | 44        |        | 19        | < 3       | < 5       | 24        | 0.13    | 45         | < 2      | 9           | 185       | 4         |
| SP-100           | 0.4       | 4.05    | 2         | 354       | 2         | < 3       | 0.32    | 0.8       | 23        | 53        | 40        | 3.38    | 0.33   | 0.69    | 2014      | 1         | 0.02    | 66        |        | 25        | < 3       | < 5       | 54        | 0.14    | 53         | < 2      | 21          | 344       | < 1       |
| SP-101           | < .3      |         | 2         | 127       | 1         | 4         | 0.14    | < .5      |           | 33        | 14        | 3.02    | 0.16   | 0.50    | 226       | < 1       | 0.01    | 20        |        | 13        | < 3       | < 5       | 15        | 0.15    | 50         | < 2      | 4           | 106       | 4         |
| Std DS4          | 0.4       |         | 21        | 147       | 2         | 5         | 0.52    | 4.9       | 11        | 162       | 121       | 3.18    | 0.16   | 0.60    | 829       | 6         | 0.04    | 32        |        | 30        | 5         | 5         | 29        | 0.09    | 73         | 5        | 7           | 156       | 5         |
| 010 001          | <b>e</b>  |         |           |           | -         | Ŭ         |         |           |           |           |           | 20      | 0.0    | 0.00    | 94.0      |           | 0.01    | 52        | 0.000  |           | Ũ         | Ŷ         |           | 0.20    | . 0        | 0        |             |           | 2         |

A 0.5 g sample is digested with 3 ml 3:1 HCI-HNO3 at 95C for 1 hour and diluted to 15 ml with D.I. H2O.

MAn Signed:

Mark Acres - Quality Assurance

Page 3 of 4

### Penteco Resources Ltd.

Attention: R. Burko, R. Newson Project: CK Sample: 116 Soil

## **TSL LABORATORIES INC.**

 2 - 302 48th Street East. Saskatoon, Saskatchewan, S7K 6A4
 Report No:
 \$11982

 Tel: (306) 931-1033
 Fax: (306) 242-4717
 Date:
 October 31, 2002

# MULTIELEMENT ICP ANALYSIS

Aqua Regia Digestion

| Sample    | Ag   | AI           | As     | Ba  | Ве  | Bi       | Ca   | Cd   | Co  | Cr  | Cu  | Fe   | к    | Mg   | Mn         | Мо  | Na   | Ni  | Р     | Pb  | Sb  | Sn  | Sr  | Τı   | V    | W   | Y      | Zn  | Zr  |
|-----------|------|--------------|--------|-----|-----|----------|------|------|-----|-----|-----|------|------|------|------------|-----|------|-----|-------|-----|-----|-----|-----|------|------|-----|--------|-----|-----|
| Number    | ppm  | %            | ppm    | ppm | ppm | ppm      | %    | ppm  | ppm | ppm | ppm | %    | %    | %    | ppm        | ppm | %    | ppm | %     | ppm | ppm | ppm | ppm | 3/0  | ppm  | ppm | ppm    | ppm | ppm |
|           |      |              |        |     |     |          |      |      |     |     |     |      |      |      |            |     |      | _   |       |     | -   |     |     |      |      |     |        |     | 2   |
| SP-102    | < 3  | 0.96         | < 2    | 89  | < 1 | < 3      | 017  | < .5 | 6   | 19  | 12  | 1.33 | 0 15 | 0.31 | 200        | < 1 | 0.01 |     | 0 052 | 8   | < 3 | < 5 | 13  | 0 08 | 20   | < 2 | 4      | 81  | 3   |
| SP-103    | < 3  | 3.59         | 2      | 162 | 1   | 4        | 0.15 | < .5 | 15  | 42  | 19  | 3.47 | 0 14 | 0.54 | 241        | < 1 | 0.01 | 54  | 0.109 | 13  | < 3 | < 5 | 14  | 0.24 | 64   | < 2 | 5      | 167 | 22  |
| SP-104    | < 3  | 2.19         | < 2    | 43  | 1   | < 3      | 0.12 | < .5 | 3   | 16  | 11  | 1.88 | 0.04 | 0.19 | 94         | < 1 | 0.01 | 5   | 0.160 | 11  | < 3 | < 5 | 6   | 0.08 | 31   | 2   | 4      | 33  | 6   |
| SP-105    | 0.3  | 2.12         | 2      | 94  | 1   | < 3      | 0.13 | < .5 | 3   | 18  | 6   | 2.10 | 0.04 | 0.15 | 204        | 1   | 0.01 | 6   | 0.122 | 16  | < 3 | < 5 | 9   | 0.13 | 47   | < 2 | 1      | 87  | 7   |
| SP-106    | < .3 | 1.88         | 2      | 75  | 1   | < 3      | 0.11 | < .5 | 5   | 17  | 7   | 1.76 | 0.06 | 0.29 | 148        | < 1 | 0.01 | 14  | 0.077 | 9   | < 3 | < 5 | 6   | 0.09 | 31   | < 2 | 3      | 87  | 6   |
|           | -    |              |        |     |     |          |      |      | -   | 47  | -   | 4 70 | 0.00 | 0.00 | 450        |     | 0.01 | 10  | 0.076 | 4   | < 3 | < 5 | 7   | 0 09 | 32   | < 2 | 3      | 87  | 5   |
| SP-106 Re | < .3 | 1.84         | < 2    | 71  | 1   | < 3      | 0.10 | < 5  | 5   | 17  |     | 1.72 | 0.06 | 0.29 | 150        | < 1 | 0.01 | 13  | 0.076 |     |     |     | 10  | 0.15 | 44   | < 2 | 1      | 113 | 5   |
| SP-107    | < .3 | 2.11         | 4      | 116 | 1   | < 3      | 0.07 | < .5 | 29  | 29  | 16  | 2.57 | 0.10 | 0.25 | 1707       | 1   | 0.01 | 31  | 0.082 | 15  | < 3 | < 5 |     |      |      |     | 1      | 92  | 5   |
| SP-108    | 0.3  | 2.09         | < 2    | 64  | 1   | < 3      | 0.07 | < .5 | 5   | 21  | 6   | 2.28 | 0.06 | 0.20 | 213        | < 1 | 0.01 | 11  | 0.132 | 13  | < 3 | < 5 | 6   | 0 17 | 48   | < 2 | 1      |     | 6   |
| SP-109    | < .3 | 3.89         | 4      | 219 | 1   | < 3      | 0 23 | < .5 | 31  | 39  | 26  | 4.04 | 0.17 | 0.44 | 525        | < 1 | 0.01 | 63  | 0.359 | 18  | 3   | < 5 | 27  | 0 23 | 65   | < 2 | د<br>م | 198 |     |
| SP-110    | 0.4  | 4.08         | < 2    | 119 | 1   | < 3      | 0.09 | < .5 | 12  | 41  | 7   | 3.66 | 0.12 | 0.39 | 321        | 1   | 0.02 | 23  | 0.146 | 12  | < 3 | < 5 | 9   | 0.23 | 60   | < 2 | 2      | 152 | 13  |
| SP-111    | 03   | 3.77         | < 2    | 97  | 1   | < 3      | 0.09 | < .5 | 13  | 29  | 8   | 3.10 | 0.10 | 0.27 | 241        | < 1 | 0.02 | 29  | 0.123 | 13  | < 3 | < 5 | 9   | 0.20 | 48   | < 2 | 3      | 150 | 12  |
|           |      | 1.65         | < 2    | 88  | 4   | < 3      | 0.09 | < .5 | 8   | 34  | 22  | 2.63 | 0.16 | 0.50 | 156        | < 1 | 0.01 | 28  | 0.053 | 7   | < 3 | < 5 | 8   | 0.12 | 39   | < 2 | 2      | 50  | 2   |
| SP-112    | < .3 |              | -      |     | 1   |          |      |      | -   | 38  | 52  | 3.13 | 0.35 | 1.06 | 958        | < 1 | 0.09 | 111 | 0.079 | 14  | < 3 | < 5 | 36  | 0.19 | 56   | < 2 | 6      | 119 | 5   |
| SP-113    | < .3 | 2.83         | 2      | 142 | 1   | < 3      | 0.54 | < .5 | 50  |     |     |      |      | 0.37 | 950<br>887 | < 1 | 0.03 | 59  | 0.194 | 24  | 3   | < 5 | 10  | 0.30 | 58   | < 2 | 10     | 185 | 37  |
| SP-114    | < .3 | 4.73         | 3      | 165 | 2   | < 3      | 0.08 | < .5 | 35  | 37  | 27  | 3.70 | 0.12 |      |            |     |      |     |       | 24  | -   | < 5 | 6   | 0.30 | 34   | < 2 | 2      | 74  | 2   |
| SP-115    | < .3 | 1.51         | 2      | 65  | < 1 | < 3      | 0.05 | < .5 | 5   | 23  | 8   | 1.85 | 0.09 | 0.27 | 155        | < 1 | 0.01 | 14  | 0.033 | 3   | < 3 | - 5 | 0   | 0.11 | - 54 | ~ 2 | 2.     | ,4  | 2   |
| SP-116    | 0.3  | 2.22         | 4      | 88  | 1   | < 3      | 0.08 | < .5 | 8   | 26  | 9   | 2.58 | 0 11 | 0.27 | 509        | < 1 | 0.01 | 17  | 0,165 | 11  | < 3 | < 5 | 9   | 0 15 | 48   | 3   | 2      | 88  | 5   |
| SP-117    | < .3 | 2.24         | 3      | 237 | 1   | < 3      | 0.13 | < .5 | 14  | 50  | 28  | 2.80 | 0.26 | 0.75 | 482        | < 1 | 0.01 | 45  | 0.026 | 24  | < 3 | < 5 | 20  | 0.14 | 47   | < 2 | 6      | 75  | 6   |
| No Number | 0.4  | 2.24<br>3.04 | ວ<br>າ | 152 | 1   | < 3      | 0.13 | < .5 | 8   | 52  | 20  | 5.09 | 0.28 | 0.68 | 212        | 1   | 0.01 | 23  | 0.058 | 13  | < 3 | < 5 | 11  | 0.24 | 86   | < 2 | 2      | 124 | 5   |
|           | 0.3  | 1.78         | 21     | 148 | 2   | ~ J<br>5 | 0.55 | 4.5  | 10  | 162 | 118 | 3.16 | 0.15 | 0.60 | 827        | 6   | 0.04 | 30  | 0.088 | 33  | 7   | Š   | 27  | 0.09 | 73   | 6   | 7      | 157 | 6   |
| Std DS4   | 0.3  | 1.70         | 21     | 140 | 2   | 3        | 0.00 | 4.0  | 10  | 102 | 110 | 3.10 | 0.10 | 0.00 | 021        | 0   | 0.04 | 50  | 0.000 | 55  | ſ   | 5   |     | 000  |      | Ų   | •      | 101 | 2   |

1 pm Signed:

A 0.5 g sample is digested with 3 ml 3:1 HCI-HNO3 at 95C for 1 hour and diluted to 15 ml with D.I. H2O.

Page 4 of 4

.

Mark Acres - Quality Assurance

. .



2 - 302 48th Street • Saskatoon, SK • S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

Company: Geologist: Project: Penteco Resources Ltd. R. Newson

TSL Report: Date Received: Date Reported: Invoice:

Remarks:

r 1

Not Received: SP-52, SP-59 Duplicate: SP-60 Additional: No Number

| Sample Type: | Number | Size Fraction     | Sample Preparation |
|--------------|--------|-------------------|--------------------|
| Soil         | 116    | -80 mesh (180 µm) | Dry, Screen        |

## Standard Procedure:

Samples for Au Fire Assay/AA (ppb) are weighed at 15 grams.

CK

S11982

31180

Oct 22, 2002 Oct 29, 2002

|         |      |               | Lower     | Upper     |
|---------|------|---------------|-----------|-----------|
| Element |      | Extraction    | Detection | Detection |
| Name    | Unit | Technique     | Limit     | Limit     |
| Au      | ppb  | Fire Assay/AA | 5         | 1000      |

. .

Test reports may be reproduced, in their entirety, without our consent. Liability is limited to the analytical cost for analyses.



C 1

#2 - 302 48<sup>th</sup> Street · Saskatoon, SK · S7K 6A4 P (306) 931-1033 F (306) 242-4717 E tsllab@sk.sympatico.ca

## **CERTIFICATE OF ANALYSIS**

| SAMPLE(S) FROM | Penteco Resources Ltd |
|----------------|-----------------------|
|                | 131 Egnatoff Way      |
|                | Saskatoon, SK         |
|                | S7K 7R9               |

| REPORT No. |
|------------|
| S11982     |

INVOICE #:31180 P.O.:

SAMPLE(S) OF Soil

R. Newson Project: CK

Not Rec'd: SP-52, SP-59 / Duplicate SP-60 / Additional: No Number

|     |     |                | Au<br>ppb         |
|-----|-----|----------------|-------------------|
| SP- | 1   |                | <5                |
| SP- | 2   |                | <5/<5             |
| SP- | 3   |                | 5                 |
| SP- | 4   |                | < 5               |
| SP- | 5   |                | < 5               |
| SP- | 6   |                | < 5               |
| SP- | 7   |                | <5                |
| SP- | 8   |                | <5                |
| SP- | 9   |                | <5                |
| SP- | 10  |                | <5                |
|     |     |                |                   |
| SP- | 11  |                | <5                |
| SP- | 12  |                | <5/<5             |
| SP- | 14  |                | < 5               |
| SP- | 15  |                | < 5               |
| SP- | 16  |                | < 5               |
| SP- | 17  |                | <5                |
| SP- | 18  |                | < 5               |
| SP- | 19  |                | < 5               |
| SP- | 20  |                | <5                |
| SP- | 21  |                | < 5               |
| COP | IES | TO:            | R. Burko, R.      |
|     |     | - <del>-</del> | Distante Distante |

INVOICE TO: Penteco Resources - Saskatoon

Newson

Oct 29/02

SIGNED

Mark Acres - Quality Assurance

17 Ac



(° )

( )

11

#2 - 302 48™ Street · Saskatoon, SK · S7K 6A4 P (306) 931-1033 F (306) 242-4717 E tsllab@sk.sympatico.ca

## CERTIFICATE OF ANALYSIS

| SAMPLE(S) FROM | Penteco Resources Ltd. |
|----------------|------------------------|
|                | 131 Egnatoff Way       |
|                | Saskatoon, SK          |
|                | S7K 7R9                |
|                |                        |



INVOICE #:31180 P.O.:

# SAMPLE(S) OF Soil

R. Newson Project: CK

|   |             |      |      | Au<br>ppb      |
|---|-------------|------|------|----------------|
| S | Р <b>-</b>  | 22   |      | <5             |
| S | P -         | 23   |      | <5             |
| S | P -         | 24   |      | <5/<5          |
| S | <b>P</b> -  | 25   |      | < 5            |
| S | P -         | 26   |      | < 5            |
| S | P-          | 27   |      | < 5            |
| S | P –         | 28   |      | < 5            |
| S | P -         | 29   |      | <5             |
| S | P -         | 30   |      | < 5            |
| S | P-          | 31   |      | < 5            |
| S | P -         | 32   |      | < 5            |
| S | P -         | 33   |      | <5/<5          |
| S | P -         | 34   |      | <5             |
| S | P -         | 35   |      | < 5            |
| S | P-          | 36   |      | < 5            |
| S | P-          | 37   |      | < 5            |
| S | P-          | 38   |      | < 5            |
| S | P -         | 39   |      | < 5            |
| S | 9 - I       | 40   |      | < 5            |
| S | P-          | 41   |      | <5             |
| C | OP          | IES  | TO:  | R. Burko, R. 1 |
| т | ът <i>и</i> | ATCE | TO - | Panteco Pegou  |

COPIES TO: R. Burko, R. Newson INVOICE TO: Penteco Resources - Saskatoon

Oct 29/02

SIGNED \_\_\_

Mark Acres - Quality Assurance

nopper



#2 - 302 48<sup>th</sup> Street · Saskatoon, SK · S7K 6A4 P (306) 931-1033 F (306) 242-4717 E tsllab@sk.sympatico.ca

## CERTIFICATE OF ANALYSIS

| SAMPLE(S) FROM | Penteco Resources Ltd. |
|----------------|------------------------|
|                | 131 Egnatoff Way       |
|                | Saskatoon, SK          |
|                | S7K 7R9                |
|                |                        |



INVOICE #:31180 P.O.:

# SAMPLE(S) OF Soil

 $\langle \rangle$ 

R. Newson Project: CK

|                                                     | Au                  |   |
|-----------------------------------------------------|---------------------|---|
|                                                     | ppb                 |   |
|                                                     |                     |   |
| SP- 42                                              | 35                  |   |
| SP- 43                                              | <5/<5               |   |
| SP- 44                                              | < 5                 |   |
| SP- 45                                              | < 5                 |   |
| SP- 46                                              | 5                   |   |
| CD 47                                               | -                   |   |
| SP- 47                                              | < 5                 |   |
| SP- 48                                              | < 5                 |   |
| SP- 49                                              | < 5                 |   |
| SP- 50                                              | <5                  |   |
| SP- 51                                              | < 5                 |   |
| SP- 53                                              | < 5                 |   |
| SP- 55                                              | <5/<5               |   |
|                                                     |                     |   |
| SP- 55                                              | <5                  |   |
| SP- 56                                              | < 5                 |   |
| SP- 57                                              | <5                  |   |
| SP- 58                                              | ~ 5                 |   |
| SP- 60 A                                            | < 5                 |   |
| SP- 60 B                                            | <5                  |   |
| SP- 61                                              | < 5                 |   |
| SP- 62                                              | <5                  |   |
| $\mathbf{U}_{\mathbf{L}} = \mathbf{U}_{\mathbf{L}}$ |                     |   |
| COPIES TO:                                          | R. Burko, R. Newson | L |
|                                                     | Penteco Resources - |   |
|                                                     |                     |   |

Oct 29/02

est. SIGNED

Mark Acres - Quality Assurance



**C** 1

۲.

1

#2 - 302 48<sup>th</sup> Street · Saskatoon, SK · S7K 6A4 P (306) 931-1033 F (306) 242-4717 E tsllab@sk.sympatico.ca

# **CERTIFICATE OF ANALYSIS**

| SAMPLE(S) FROM | Penteco Resources Ltd.<br>131 Egnatoff Way<br>Saskatoon, SK<br>S7K 7R9 | REPORT No.<br>S11982     |
|----------------|------------------------------------------------------------------------|--------------------------|
| SAMPLE(S) OF   | bil                                                                    | INVOICE #:31180<br>P.O.: |
|                | R. Newson<br>Project: CK                                               |                          |
|                |                                                                        |                          |
|                | Au                                                                     |                          |
|                | dād                                                                    |                          |
| SP- 63         | < 5                                                                    |                          |
| SP- 64         | <5/<5                                                                  |                          |
| SP- 65         | <5                                                                     |                          |
| SP- 66         | <5                                                                     |                          |
| SP- 67         | <5                                                                     |                          |
| SP- 68         | <5                                                                     |                          |
| SP- 69         | < 5                                                                    |                          |
| SP- 70         | < 5                                                                    |                          |
| SP- 71         | <5                                                                     |                          |
| SP- 72         | < 5                                                                    |                          |
| SP- 73         | <5                                                                     |                          |
| SP- 74         | <5/<5                                                                  |                          |
| SP- 75         | <5                                                                     | r,                       |
| SP- 76         | < 5                                                                    |                          |
| SP- 77         | <5                                                                     |                          |
| SP- 78         | <5                                                                     |                          |
| SP- 79         | <5                                                                     |                          |
| SP- 80         | 5                                                                      |                          |
| SP- 81         | <5                                                                     |                          |
| SP- 82         | < 5                                                                    |                          |
|                | IO: R. Burko, R. Newson                                                |                          |
| INVOICE 7      | CO: Penteco Resources - Saskatoon                                      | and A                    |
| Oct 29/02      |                                                                        | propher                  |

SIGNED



#2 - 302 48<sup>th</sup> Street · Saskatoon, SK · S7K 6A4 P (306) 931-1033 F (306) 242-4717 E tsllab@sk.sympatico.ca

# **CERTIFICATE OF ANALYSIS**

| AMPLE(S) FROM | Penteco Resources Ltd.<br>131 Egnatoff Way<br>Saskatoon, SK<br>S7K 7R9 | REPORT No.<br>S11982     |
|---------------|------------------------------------------------------------------------|--------------------------|
| SAMPLE(S) OF  | il                                                                     | INVOICE #:31180<br>P.O.: |
|               | R. Newson<br>Project: CK                                               |                          |
|               |                                                                        |                          |
|               | Au                                                                     |                          |
|               | dđđ                                                                    |                          |
| SP- 83        | <5                                                                     |                          |
| SP- 84        | <5/<5                                                                  |                          |
| SP- 85        | <5                                                                     |                          |
| SP- 86        | <5                                                                     |                          |
| SP- 87        | <5                                                                     |                          |
| SP- 88        | <5                                                                     |                          |
| SP- 89        | <5                                                                     |                          |
| SP- 90        | < 5                                                                    |                          |
| SP- 91        | < 5                                                                    |                          |
| SP- 92        | < 5                                                                    |                          |
| SP- 93        | < 5                                                                    |                          |
| SP- 94        | <5/5                                                                   |                          |
| SP- 95        | <5                                                                     |                          |
| SP- 96        | < 5                                                                    |                          |
| SP- 97        | < 5                                                                    |                          |
| SP- 98        | <5                                                                     |                          |
| SP- 99        | < 5                                                                    |                          |
| SP-100        | < 5                                                                    |                          |
| SP-101        | < 5                                                                    |                          |
| SP-102        | < 5                                                                    |                          |
| COPIES T      | O: R. Burko, R. Newson                                                 |                          |
| INVOICE 1     |                                                                        | <u>,</u>                 |
| Oct 29/02     |                                                                        | 12 h Are                 |

٢.

r r

ſ.

( )

٢ I

SIGNED\_



SAMPLE(S) FROM Penteco Resources Ltd.

#2 - 302 48<sup>th</sup> Street · Saskatoon, SK · S7K 6A4 P (306) 931-1033 F (306) 242-4717 E tsilab@sk.sympatico.ca

## **CERTIFICATE OF ANALYSIS**

|   | SAMPLE(S) FROM                                 | Penteco Resources<br>131 Egnatoff Way<br>Saskatoon, SK<br>S7K 7R9 | Ltd.                     | REPORT No.<br>S11982 |
|---|------------------------------------------------|-------------------------------------------------------------------|--------------------------|----------------------|
| I | SAMPLE(S) OF                                   | pil .                                                             | INVOICE #:31180<br>P.O.: |                      |
|   |                                                | R. Newson<br>Project: CK                                          |                          |                      |
|   |                                                | Au<br>ppb                                                         |                          |                      |
| 1 | SP-103<br>SP-104<br>SP-105<br>SP-106<br>SP-107 | <5<br><5<br><5/<5<br><5<br><5<br><5                               |                          |                      |
| 1 | SP-108<br>SP-109<br>SP-110<br>SP-111<br>SP-112 | < 5<br>< 5<br>< 5<br>< 5<br>< 5<br>< 5                            |                          |                      |
|   | SP-113<br>SP-114<br>SP-115<br>SP-116<br>SP-117 | <5<br><5<br><5<br><5<br><5                                        | ·                        |                      |

No Number

Oct 29/02

COPIES TO: R. Burko, R. Newson INVOICE TO: Penteco Resources - Saskatoon

<5

1 pAin

SIGNED

Mark Acres - Quality Assurance