

Diamond Drilling Report on the Praxis Property

NORTHWESTERN BRITISH COLUMBIA

Georgie River Area (NT.S. 103P/12, 103O/9, 103P/13),

Skeena Mining Division, Northwestern British Columbia

Latitude 55 42' 3", Longitude 130 0' 39"

for

Northgate Explorations Ltd. 2050-1055 W. Georgia St. PO Box 11179, Royal Centre Vancouver, BC V6E 3R5

and

Praxis Goldfields Inc. 852 Tsawwassen Beach Road Delta BC. V4M 2J3

by

D.L. Kuran (P.Geo.)

Kuran Exploration Ltd. 25630 Bosonworth Av. Maple Ridge, BC. V2W 1G9

> GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

1.0 Introduction	 1
2.0 Location, Access, and Physiography 2.1 Claim Status	 1 2
3.0 Regional Geologic Setting	 3
4.0 Previous Work	 5
5.0 Property Geology 5.1 Structural Geology	 7 10
6.0 2002 Drill Program	 10
7.0 Detailed Geology 7.1 Mineralization 7.2 Analytical Procedures	 12 14 15
8.0 Discussion of Results	 16
9.0 Recommendations for Exploration	 18
10.0 References	 19

LIST OF TABLES

Table 1	List of Claims	 3
Table 2	Diamond Drill Summary	 12

LIST OF FIGURES

Following Page

Page

Figure 1	Project Location Map		2
Figure 2	Claim Map		3
Figure 3	Regional Geology and Mineral Deposits		4
Figure 4	District Geology		4
Figure 5	Property Compilation Map		7
Figure 6	Section Ridge; Geology, Drill Hole Locations		13
Figure 7	Section Ridge; Detailed Geology, Drill Hole L	oc	13
Figure 8	Rhyolite Ridge; Geology, Drill Hole Loc.		14
Figure 9	Section Ridge; Drill Section 10+500 E		15
Figure 10	Section Ridge; Drill Section 10+200E		15
Figure 11	Section Ridge; Drill Section 9+900 E		15
Figure 12	Rhyolite Ridge; Drill Section DDH RR 02-01		15
Figure 13	Rhyolite Ridge; Drill Section DDH RR 02-02		15

LIST OF APPENDICES

iii

Appendix	Ι	Statement of Costs
Appendix	II	Geological Lithology Codes
Appendix	III	Díamond Drill Core Logs
Appendix	IV	Analytical Procedures
Appendix	v	Assay Certificates
Appendix	VI	Statement of Qualifications

1

۲۱ أ

> ۲ : ا

1.0 Introduction

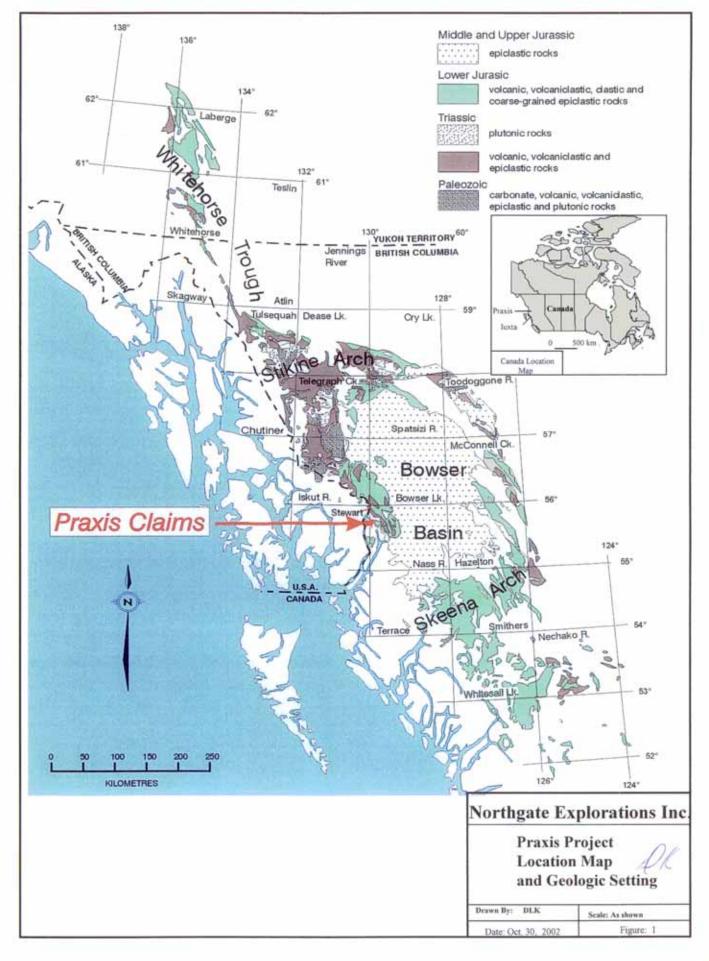
CSS Exploration Inc., a private Company, whose name was changed to Praxis Goldfields Inc., controls a 100% interest in the Praxis Property, in the Skeena Mining Division of northwestern British Columbia, Canada (fig. 1,2). A portion of the Property was optioned to Northgate Explorations Inc. in August, 2002. The field work described in this report covers the drilling completed by Northgate on its' optioned portion of the claims and drilling completed by Praxis Goldfields on the non- optioned portion of the Property. A total of 1946.5 m was drilled on the Praxis 6 claim in 5 holes by Northgate and 563 m was completed on the Praxis 4 claim by Praxis Goldfields in two holes between September 2, 2002 and Sept. 29, 2002.

The Praxis Project located in the prolific Stewart Mining Camp, consists of 325 Praxis mineral claim units plus 70 contiguous optioned contiguous Brown and Ark mineral claim units which cover an area of 75 square kilometers adjacent to tidewater. Elevations range from sea level to 2000m on the claims. No exploration work prior to 2000 has been documented on the Praxis claims southwest of the Georgie River. Government agencies have completed regional scale mapping and stream sediment surveys in the district. The claims are underlain by bimodal felsic and mafic subaqueous Mesozoic aged metavolcanic and metasedimentary rocks believed permissive for hosting an Eskay Creek or Anyox type of volcanic associated massive sulphide deposit. Systematic geochemical, geophysical and geological surveys completed in 2000 and 2001 by CSS Explorations Inc

2.0 Location, Access, and Physiography

The Praxis Property is located approximately 22 kilometers due south of the town of Stewart, in northwestern British Columbia (fig. 1).

Access to the property is generally via helicopter from a seasonal base in Stewart, about 15 minutes flight time away. The west side of the property may be accessed by boat from Portland Canal. Stewart is an all-weather port with a large paved airstrip and paved highway access to Highway 37, the Stewart-Cassiar Highway. The communities of Smithers and Terrace, both serviced daily from Vancouver by passenger airlines, are about three or four hours drive from Stewart. Smithers and Terrace are on the main NWBC rail line.

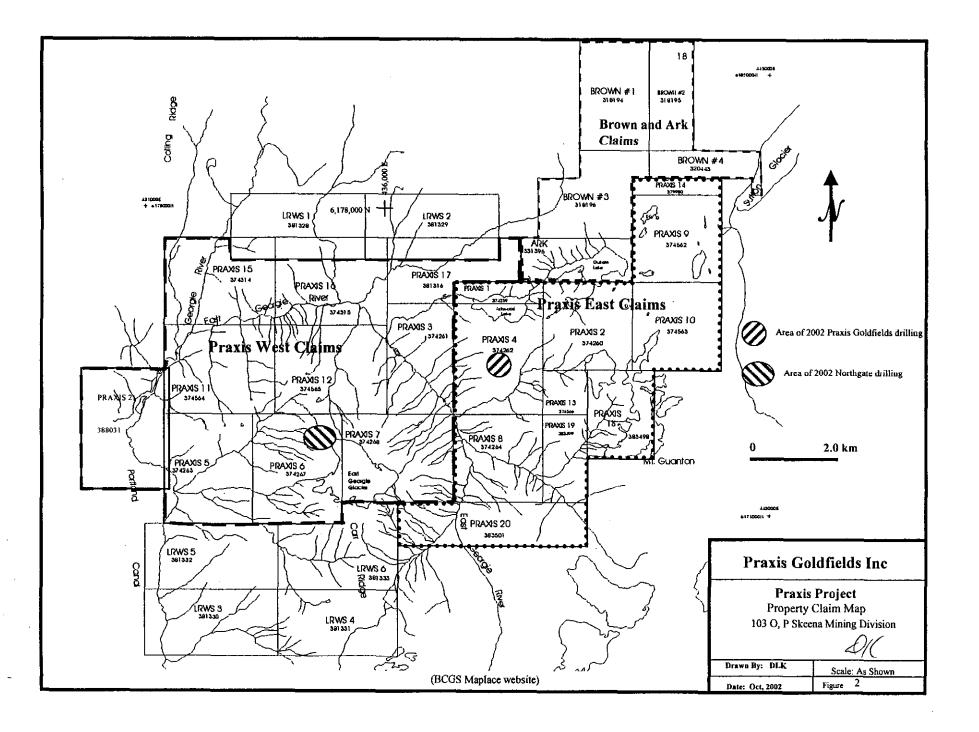

Relief on the Praxis Property is just under 2000 meters, with peaks between 1700 and 2000 meters located near the southern and northeastern boundaries of the claim group. About a third of the property is above tree line and several permanent mountain glaciers occur at higher elevations. The Claims are cut by the East Georgie River. Ample water for all purposes is available on the claims. The lower slopes are heavily vegetated with hemlock and fir trees.

The claims, located on the northwest coast of BC, are subject to a cool maritime climate with moderate to heavy rainfall from September to November and 3-7 m of snowfall from November to April. Summers are cool and moist.

2.1 Claim Status

The property consists of 325 contiguous claim units of the Praxis 1-21 claims and 70 units of the Brown #1-4 and Ark claim for a total of 395 units covering approximately 75 square kilometers. The claims run from tidewater on Portland Canal on the west to the valley of the Sutton River on the east (fig. 2, table I). The Praxis claims are registered as 100% ownership to CSS Explorations Inc. (now Praxis Goldfields) of Delta BC. The Brown#1-Brown#4 and Ark mineral claims are registered as 100% interest to CSS of Delta, BC; they are currently under option from Quaterra Resources and are in good standing until 2004 and 2005 as seen in Table 1.

In August, 2002 Praxis Goldfields, optioned the western portion of the Praxis Property to Northgate Explorations, of Vancouver. The optioned package, referred to and illustrated on Figure 3 as the Praxis West Claims consists of the Praxis 3,5,6,7,11,12,15,16,17 and 21 mineral claims totaling 193 units. Northgate has the right to earn 51% interest in the West Claims by spending \$3,000,000.00 over 4 years and may earn a 51% interest in the East claims by spending \$300,000 on the East claims before Dec. 31, 2003. The remainder of the Praxis claims and the optioned Brown and Ark claims are operated by Praxis Goldfields.



.

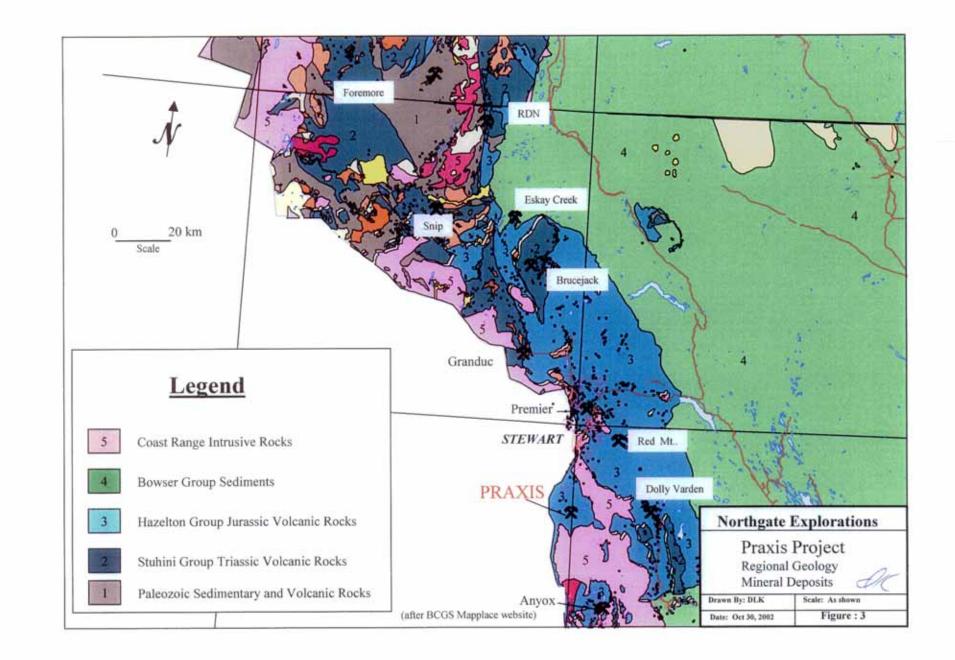
Claim Name	Record No.	No. of Units	et Claims Expiry Date		
Praxis West Claims			As of June 2002		
Praxis 5	374263	20	Feb.28/04		
Praxis 6	374267	20	Feb.28/04		
Praxis 7	374268	20	Feb.28/04		
Praxis 11	374564	20	Feb.28/04		
axis 12 374565		20	Feb.28/04		
Praxis 3 374261		15	Feb.28/04		
Praxis 15 381314		20	Feb.28/05		
Praxis 16 381315		20	Feb.28/05		
Praxis 17 381316		18	Feb.28/05		
Praxis 21	388031	20	Feb.28/04		
Claim Name Praxis East Claims		193 units			
Praxis 1	374259	4	Feb.28/04		
Praxis 2	374260	16	Feb.28/04		
Praxis 4	374262	20	Feb.28/04		
Praxis 8	374264	16	Feb.28/04		
Praxis 9	374562	16	Feb.28/04		
axis 9 574562 axis 10 374563		16	Feb.28/04		
Praxis 13 374566		4	Feb.28/04		
Praxis 14 379980		4	Feb.28/04 Feb.28/04		
Praxis 18 383498		12			
Praxis 19	383499	8	Feb.28/04		
Praxis 20	383501	16	Feb.28/04		
Claim Name Brown and Ark		116 units			
ARK	331396	10	Mar31/04		
Brown#1	318194	20	Mar.31/05		
Brown#2	318195	10	Mar.31/05		
Brown#3	318196	20	Mar.31/04		
Brown#4	320443	10	Mar.31/04		

3.0 Regional Geologic Setting

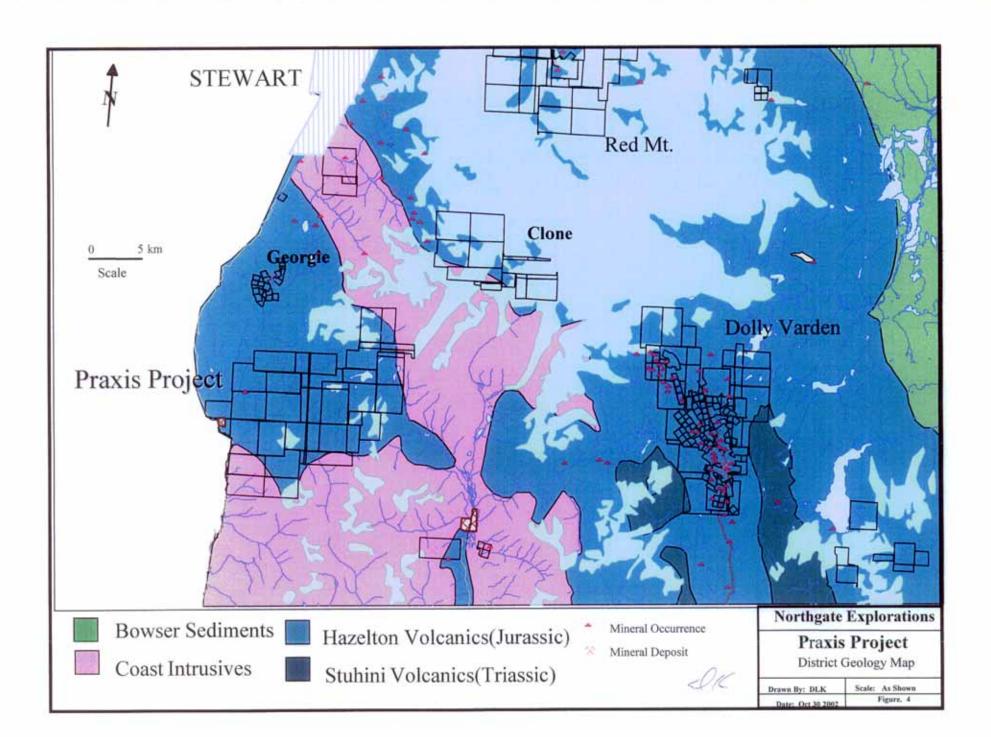
The Praxis property is underlain primarily by mid-Mesozoic Stikine terrane arc volcanic and intrusive rocks and lies in a mineral-rich belt between the Iskut and Kitsault-Anyox areas (Fig.3, 4). The central and westcentral parts of the property are underlain by submarine bimodal volcanic rocks and siliceous fine-grained black clastic rocks that are correlative with the Middle Jurassic Salmon River formation of the Hazelton Group. The Salmon River formation to the north hosts the rich Eskay Creek Au-Ag deposit, a deposit interpreted to have formed in an environment transitional between that of a subaqueous hot spring and an exhalative volcanogenic massive

· .

the second se


sulphide (VMS). The favorable stratigraphy of the Salmon River formation, together with older lithologic units, is folded by large-scale, east-northeasterly vergent open to tight folds. The folded rocks are intruded by massive granitic plutons of early Tertiary age which post-date the main regional deformational event.

Airborne and ground geophysics confirm the existence of highly conductive areas which each include multiple discrete high amplitude conductors within the prospective sedimentary rocks. In addition, reconnaissance prospecting indicates that the country rocks are rich in iron sulphides (pyrite and pyrrhotite, in both sedimentary and volcanic rocks, in particular the rhyolites) and are locally highly anomalous geochemically in gold, zinc, barium, copper and arsenic. Pyrrhotite-sphalerite veins in the rhyolite carry up to 18 g/T gold in grab samples.


Regionally, Hazelton Group rocks are overlain conformably by clastic strata of the Middle to Upper Jurassic Bowser Lake Group, a predominantly turbiditic onlap succession recording the accretion of Stikinia to western North America. The Bowser Lake Group, along with fine grained Middle Jurassic clastic rocks of the uppermost Hazelton Group (Salmon River formation), outline several structural culminations marking the western margin of the Cretaceous-Early Tertiary Skeena Fold Belt (figs.1, 3). Shortening within the fold belt records contraction and consolidation of the North American margin that post-dated the accretion of Stikinia and which coincided in large part with the arrival of the more westerly Alexander and Wrangellia terranes (Evenchick 1991a, b). The crests of the culminations are typically underlain and upheld by the relatively resistant volcanic rocks of the Hazelton Group and as such they correspond with many of the higher ranges and icefields in the region.

The property is mainly underlain by stratified and intrusive rocks of Early to Middle Jurassic age that are part of the Stikine terrane (Stikinia), an arc terrane of oceanic affinity accreted to the North American continental margin in mid-Mesozoic time. Stikinia consists of mid-Paleozoic to Middle Jurassic oceanic volcano-sedimentary successions and coeval plutons that are commonly subdivided into Paleozoic, Triassic and Jurassic tectonic assemblages (fig. 4). In the Georgie River area, and in the Cambria Icefield area to the north, rocks of the younger two assemblages predominate, although local Paleozoic deep marine strata are present (Greig et al. 1995a, Greig et al. 1994a, and b).

The Praxis Property is located in the southeast part of a mineral-rich belt of Stikine terrane rocks that lies along the eastern flank of the Coast Mountains. The belt lies between the Iskut and Kitsault-Anyox areas and is centered on the town of Stewart (fig. 4). In spite of the rugged terrain, inclement weather and difficult access

E

common to the region, it has a long and successful history of mining and mineral exploration.

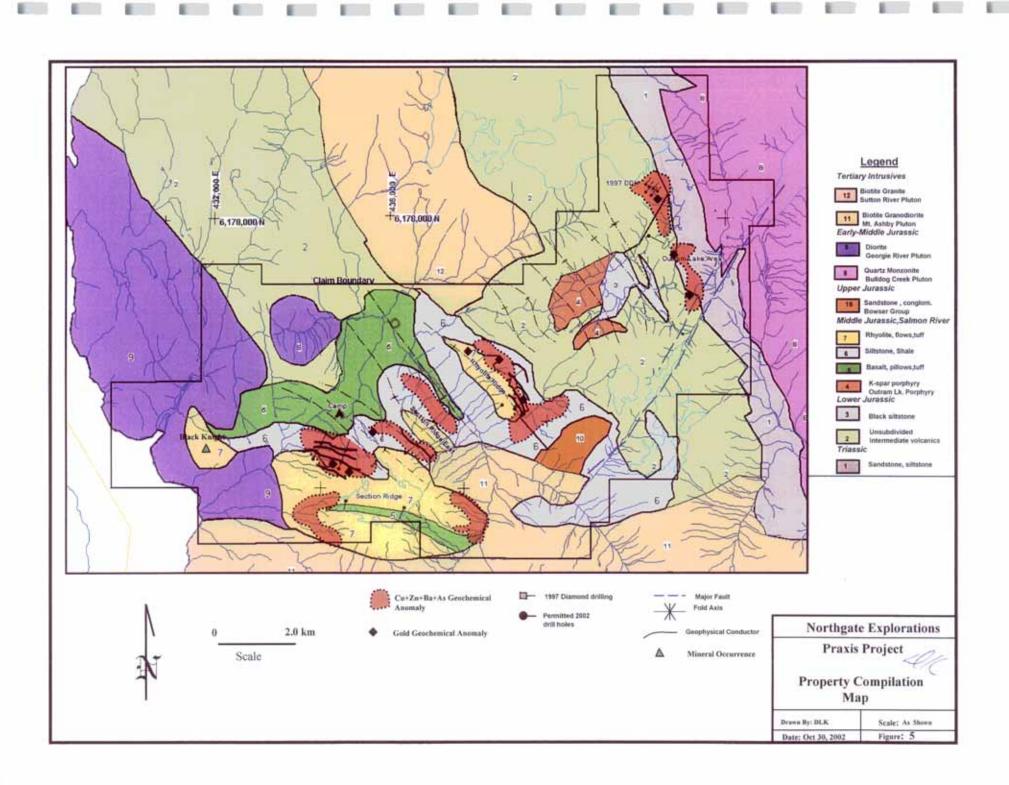
The only presently producing mine is the Eskay Creek mine of Barrick Gold Corp., an extremely rich Au-Ag deposit near the north end of the belt (fig.3). The Eskay Creek deposit is interpreted to have formed in an environment transitional between subaqueous hot springs and exhalative VMS. The geologic setting for the deposit is similar to that of the Praxis property. The Eskay Creek deposit is hosted within the Salmon River bimodal subaqueous rhyolite to basalt sequence with the clastic massive sulphide deposit contained in the Contact Mudstone at the rhyolite- basalt contact. The Eskay rhyolite has been dated at 178 Ma, the Praxis rhyolite at 176 Ma. The lead isotopes at Eskay are correlative with leads from Kisalt as well indicating the Praxis geology is contained within the same Jurassic metalogenic event. The Eskay Creek deposit contains most of its remaining 1.426 MT grading 38.9g/T Au and 2045 g/T Ag in the 21B Zone(Barrick 2001 Annual Report). This orebody measures 1400m long x250 m wide and 2-15 m thick. The orebody plunges moderately north and is open to depth. 'Transitional' Eskay Creek-type deposits therefore form the preferred model for exploration on the property. The regional metalogenic picture of the Iskut-Anyox belt strongly suggests that potential also exists on the property for the occurrence of other deposit types. These include more typical VMS deposits (e.g., Anyox and Granduc: Cu-rich base metals), possible 'transitional-type' deposits variously interpreted as veins or exhalative (Dolly Varden(?) and Torbrit(?), both Agrich) and precious and base metal veins (Premier, Big Missouri, Porter Idaho, Scottie Gold, Georgia River). It should be noted that Tertiary intrusions in the belt may also be productive, as some of the vein deposits noted above (Porter Idaho, Georgia River) are likely Tertiary in age, Porphyry molybdenum deposits exist in the area as well (e.g., the past-producing Kitsault mine and the nearby Ajax deposit).

4.0 Previous Work

Little documented exploration work has been undertaken on the Praxis property. The single reported historic mineral occurrence within the bounds of the Praxis claims is the Black Knight prospect, a Cu-Pb-Zn-Au vein upon which limited underground work and surface trenching was apparently undertaken (source: Minfile, the government database of Mineral Occurrences). The Black Knight has not located to date, but it apparently occurs on the steep forested slopes of a tributary of the East Georgie River, not far upstream of its confluence with the Georgie River. This location corresponds to the westward strike extension of the Section Ridge East rhyolitesediment contact.

Other, similar base metal-bearing quartz veins or shears occur not far north of the property. Examples are the Pedro Georgia occurrence and the M.J. Group to the northwest near the Georgie River (Hanson 1935). To the northeast, on the ARK and BROWN 1-4 claims that are adjacent to the Praxis group (fig. 2, 5), there are several showings, soil anomalies, and(or) occurrences of float which are reported to have the character of epithermal and(or) VMS-type mineralization. They have been the focus for considerable recent exploration, including diamond drilling (1997: 1050metres m in 7 BQTW size drill holes), prospecting, geologic mapping, and geophysical and geochemical surveys (Todoruk and Weekes 1993, Weekes 1994, Kerr and Verley 1998). The highest grade core intersection was 2.23 gpt Au/1.8m. The original Brown-Ark Property originally extended to cover portions of Rhyolite Ridge target on the Praxis 4 claim as evident by the 1972 vintage claim posts and tags still located there.

In addition to property-scale work, the Georgie River area has been encompassed by several government regional geological surveys (e.g., Hanson 1935, Grove 1986, Evenchick and Snyder 1999, Evenchick et al.1999). During the course of these surveys, significant advances have been made in the geological understanding of the area (e.g., documentation by Evenchick et al.(1999) of rhyolitic rocks of late Early to Middle Jurassic age, which led, in part, to the initiation of this program), although no previously undiscovered mineral occurrences have been noted.


In August 2000, 30 man-days were spent evaluating the exploration potential of the newly staked Praxis 1-20 mineral claims and the adjacent Brown and Ark claims, optioned from Quaterra Minerals Ltd. Geological examinations confirmed the presence of subaqueous pillowed basalts, rhyolite flows, dated at 176 Ma by the Government, and pyritic mudstone horizons, consistent with geological features permissive to host syngenetic stratiform massive sulphide deposits such as are found elsewhere in the adjacent Mesozoic volcanic arc rocks. The age and lithologies present indicate that the claims are underlain by the Salmon River Formation; these rocks host both the Anyox and Eskay Creek mines. A total of 47 rock samples, 15 soil samples and 42 stream sediment samples were taken. Analyses by Acme labs in Vancouver of all sample types indicate highly anomalous populations in both Au, Ag and bases metals plus As are present on the claims. In September 2000, CSS Explorations commissioned a Fugaro Airborne geophysical survey consisting of electromagnetic, magnetic, radiometric and surveys to be flown over the entire property at a line spacing of 250 meters. The survey was successful in outlining the felsic rocks by their resistivity and potassium signatures while the electromagnetic survey identified several extremely strong conductors apparently hosted by intervolcanic shale members. Between July and September 2001 a four-nine man crew spent approximately 225 man-days working on the Praxis Property. The work included reconnaissance and detailed geologic mapping, prospecting, stream sediment sampling, and a limited amount of traverse and contour soil sampling. A total of 228 rock samples, 486 soil and 111 stream sediment samples were taken. The Acme Analytical Lab. results indicate several areas anomalous in Zn, Cu, Ba and As with local anomalous precious metals values evident in the soil data. The soil anomalies correspond well with the soil anomalies hosted by the intervolcanic sediments. Rock sample of 30cm wide sulphide veins in the rhyolite returned up to 18.6 gpt Au. Additionally, a seven line kilometer horizontal-loop ground EM survey was completed over one of the airborne conductor targets resulted in ground confirmation in location attitude and strength of the conductors. A compilation of property geology and results is given in Figure 5.

5.0 Property Geology

Geological mapping on the property by CSS is controlled by outcrop mapping during geochemical sampling, kilometer spaced geological transects resulting in 1:20,000 scale coverage and local 1:5000 scale mapping.

Lower to Middle Jurassic Hazelton Group rocks, consisting of voluminous resistant volcanic and associated volcaniclastic strata, predominate in the Georgie River area. The volcanic rocks are mainly of intermediate composition, but the youngest volcanic members, in particular, are bimodal, being mainly basalt and rhyolite. Clastic and subordinate volcanic strata of the Stuhini Group (Middle(?) to Upper Triassic) may be present near the east side of the property, and Middle to Upper Jurassic Bowser Lake Group clastic rocks, which conformably overlie the Hazelton Group, may also be present locally, such as northwest of Mt. Guanton. These stratified rocks are folded into northwest-trending folds with wavelengths and amplitudes of hundreds of meters. The property is also essentially surrounded and partly underlain by a number of voluminous plutons. To the east and in part to the north is the monzonitic Early Jurassic Bulldog Creek pluton. To the south is the Paleocene to Eocene Mt. Ashby pluton, which is similar in age and in its granitic composition to the Sutton River pluton, which in part bounds the claim group to the north. On the west, and in part on the northwest, is a newly-recognized dioritic plutonic body, of uncertain age and extent which is informally named the Georgie River pluton.

In the vicinity of the northern boundary of the property, Hazelton Group rocks are in part intruded by and in part interlayered with rocks of the Outram Lake porphyry, a probable flow-dome complex of intermediate to

felsic composition. The following section first describes plutonic rocks and then follows with stratified rocks.

Pale grey weathering, dark grey tuffaceous(?) sandstone and pebbly sandstone, and local chert(?) and felsic volcanic(?) pebble conglomerate occur northwest of Mount Guanton and are tentatively assigned to the Middle and(or) Upper Jurassic Bowser Lake Group. They are generally much coarser and much less siliceous than the underlying mudstone, silty mudstone, and local siltstone of the Salmon River formation. The contact is gradational.

In the Georgie River area, the Salmon River formation has the same gross characteristics it has elsewhere in the region: it forms the uppermost part of the Hazelton Group and consists predominantly of fine-grained siliceous and locally pyritic clastic rocks, with locally interbedded rhyolite and basalt. In the Georgie River area, it appears as if the three main lithologies may occur in any stratigraphic order, although in general the bulk of the basalt appears to be older. A bimodal volcanic setting is indicated by the interbedded mafic and felsic rocks, by the presence of debris flows containing both basalt and rhyolite fragments, and by the paucity of lithologies of intermediate composition.

Basaltic rocks of the Salmon River consist principally of dark green pyroxene-phyric fragmental varieties: tuff-breccia, fine to coarse lapilli tuff, muddy debris flows, pillow breccia, and ash tuff. However, pillow basalt occurs locally in the vicinity of the East Georgie glacier, and pyroxene-rich sandstone was also noted locally. The submarine basalts are possibly correlative with unit Jb to the north in the Cambria area (Greig et al. 1994a). These basalts underlay the permissive mudstone unit, similar to the geological setting of the Anyox VMS deposit located 40 km to the south of Praxis.

Salmon River formation clastic rocks consist primarily of rusty weathering, black to dark grey, thin bedded and laminated to locally thick bedded and massive siliceous mudstone, silty pyritic mudstone, and local siltstone. The fine-grained clastic rocks occur in a belt across the central part of the claim block, repeated across northwesttrending folds. Locally the mudstone contains carbonate concretions and in places, decimeter to meter thick beds and lenses of limestone are developed. The pyrite within this unit is typically disseminated to blebby, but is locally patchy and semi-massive; rarely is it lens-like to laminated and in those places it may be stratiform.

The unit underlies a significant portion of the pathfinder element (Au, Cu, Zn, Ba, As) soils and rock anomalies and is the target host rock for a VMS deposit in the stratigraphy. Anomalous copper, zinc and barium rock samples indicate syngenetic mineralization is potentially located within this intervolcanic shale basin.

A distinctive silica-carbonate possibly exhalative rock lies in the upper portions of the sedimentary basin, below the rhyolite. Rhyolite to rhyodacite flows, flow-breccia, and local ash and fine lapilli tuff and sills (?) were first documented by Evenchick and Snyder (1999) and occur on either side of the East Georgie glacier and across the East Georgie River southwest of Ashwood Lake. The rocks are buff, white, and locally rusty weathering and dark grey to pale green-grey on fresh surfaces. They are aphyric to feldspar-phyric and commonly contain finegrained disseminated pyrite-locally pyrite may be semi-massive. Several large red iron oxide gossans occur on rhyolite near the south end of Rhyolite Ridge. These rocks have been dated by Evenchick at 176 Ma, which places it in the Middle Salmon River Formation, analogous to the 178 Ma rhyolite at Eskay Creek, which forms the footwall to that transitional VMS deposit. The unit hosts several base and precious metal veins and shears. Subdivisions within the rhyolite stratigraphy include an upper flow banded massive white sequence, an rusty black to white pyrite-pyrrhotite bearing sequence and a dark altered sequence further down in the stratigraphy (Fig. 7). This strong protolith destroying chlorite alteration may indicate a conduit area. The footwall rhyolite of the 21 B deposit at Eskay Creek is extensively chlorite altered. Near the base of the rhyolite member is a conspicuous black siliceous, manganiferous bedded unit with conspicuous carbonate concretions and laminations. The Outram Lake porphyry is a potassium feldspar megacrystic potassic rhyodacite, rhyolite, or trachydacite. In addition to the distinctive potassium feldspar megacrysts, which are not always apparent in outcrop and which may comprise only 5% of the mode, quartz, hornblende, and plagioclase feldspar occur as common phenocrysts. Although certainly in part intrusive, the rocks are locally stratified and fragmental, and the body may represent a volcanic flow-dome. Locally, such as north of East Georgie glacier and in the vicinity of Outram Lake, mappable bodies of clastic rocks occur within the predominantly volcanic parts of the Hazelton Group. They are comprised mainly of thin to medium bedded siltstone and sandstone which is locally pyritic, but muddy debris flow deposits and volcanic conglomerate may also be present. Much of the Praxis property, particularly on the East on the Brown and Ark claims, is underlain by feldspar-phyric volcanic rocks of probable andesitic composition. The andesitic rocks are commonly crowded with plagioclase feldspar, but also commonly contain hornblende or pyroxene phenocrysts. Locally, such as along the southern shores of Ashwood Lake, they may contain sparse quartz phenocrysts. The most common rock types are tuff-breccia, lapilli tuff (coarser varieties generally more abundant), tuffaceous debris flows, and ash tuff. Muddy tuffaceous deposits common in upper part, near their contact with overlying Lower to Middle Jurassic clastic rocks. Locally the andesitic rocks are interbedded with dacite, basaltic andesite, and basalt, but the low density of traverses and the difficulty of tracing individual rock units has hindered subdivision. These rocks host numerous structurally controlled base and precious metal occurrences and were the focus for the early drilling on the property Undivided largely fine-grained clastic and subordinate volcanic rocks occur along the eastern boundary of the property, in contact with the Bulldog Creek pluton. The rocks consist of siliceous siltstone, silty mudstone, sandstone, local limestone, and conglomerate. These rocks were initially interpreted to be Salmon River.

5.1 Structural Geology

. Several very strong topographic lineaments are apparent on the east part of the property, but this area remains to be traversed and the northwest-side-up displacement across the faults requires further study.

The structural style in the Georgie River area is dominated by large-scale east-northeasterly vergent open to tight folds with common wavelengths and amplitudes of hundreds of meters. The folds are locally mirrored on the outcrop-scale by gently to moderately northwesterly and southeasterly plunging minor folds. Locally the small-scale folds have a moderately well-developed axial planar cleavage. In the more massive rocks, foliation is locally moderately well-developed, such as in several places within the Georgie River pluton on the west side of the property and within feldspathic dacitic-andesite(?) of the Hazelton Group along the southern shores of Ashwood Lake. The relationship of the foliation to folding has not yet been established.

6.0 2002 Drill Program

In August of 2002, Northgate exploration of Vancouver optioned the West claims and initiated a diamond drill program to test the geochemical and geophysical anomalies associated with the bimodal volcanic-sedimentary stratigraphy located within the Section Ridge VMS style target on the Praxis 6 mineral claim. Subsequently, Praxis goldfields completed a limited drill test of the geochemical and geophysically defined VMS style target at Rhyolite Ridge on the Praxis 4 mineral claim of the East Group of claims.

To complete this work, Hi-Teck drilling of Smithers BC was contracted to complete the diamond drilling utilizing a 500 D helicopter transportable 3000 series style hydraulic diamond drill producing BQTK sized core samples. Drilling was completed on a seven days a week, two shifts per day basis.

Helicopter support was supplied by Canadian Helicopters utilizing a Hughes 500D helicopter based in Smithers BC, stationed in Camp for the duration of the project and occasionally a Bell 206 b helicopter supplied by

Vancouver Island Helicopters based in Stewart BC.

Fuel for camp, diamond drilling and helicopter was supplied by Grandmac Services of Stewart BC. Expediting, camp construction and support was supplied by Drifter Enterprises of Stewart BC. Groceries were supplied by Save-On foods of Terrace BC. Bandstra Trucking was utilized for freighting. Assaying of drill core samples sawn and bagged on site and transported to Vancouver was completed by Assayers Canada Ltd. The cook/1st-aid duties and camp/core labor, completed by Sandra Lussier and Oliver Hendrickson, were independent contractors hired for the job. Geological services and project management was supplied by Kuran Exploration Ltd. of Maple Ridge BC. All services and supplies were contracted through Northgate Explorations, the Project Operator. Exploration work permits, free use permits and reclamation bonds are held by CSS Explorations. The average population of the camp was one geologist, one technician, one cook, one pilot, one engineer and four drillers (9). The camp, supplied by CSS Exploration, was rebuilt on the previously existing permitted camp site on the Praxis 6 claim consisted of plywood floors and prefab metal tubing frames. Camp water was obtained via a 250m x 5cm gravity fed water line to a water filter in camp. Electrical power for the camp and rock saw was provided by a CSS owned 6500 kw gasoline powered generator and a rented 6500 kw diesel powered generator. All drill pad material (two pads) was removed from drill sites and stored in camp at the core shack. Wooded tent floors were left on site with all tents, fuel drums and gear returned to storage in Stewart. The diamond drill core is stored at the camp site horizontally cross stacked on 4x4s flat on the ground.

Table 2 describes the drill holes completed during the program.

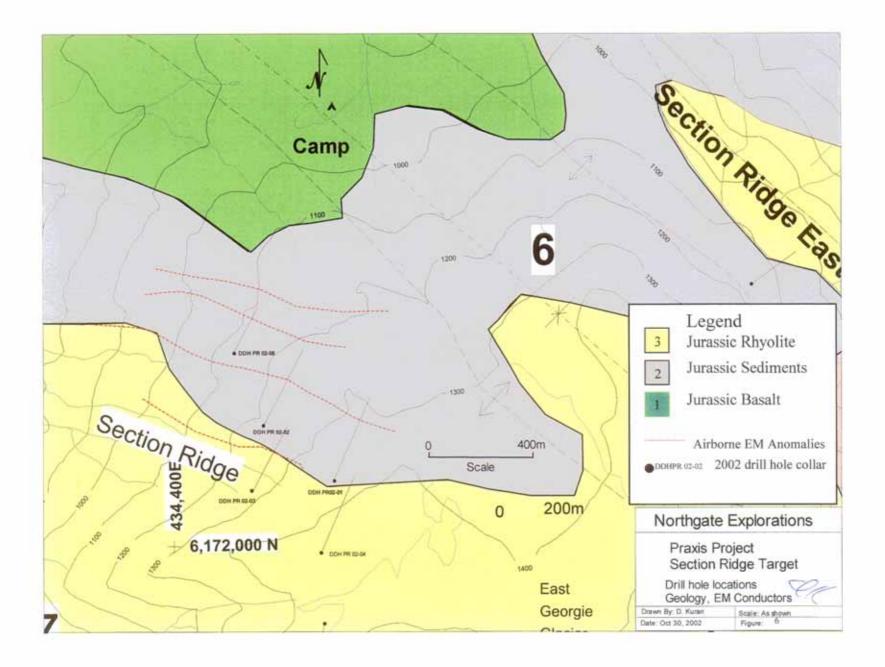
Table 2 Diamond Drill Summary										
Hole #	Target	Operator	Dip	Az.	Depth	UTM N	UTM E	Elev.	Claim	# Sample
PR02-01	SRidge	Northgate	-47	030	407.0	6172210	4349710	1125m	Praxis6	53
PR02-02	SRidge	Northgate	-45	030	370.4	6172450	434725	1249m	Praxis6	50
PR0203	SRidge	Northgate	-55	030	452.3	6172225	434674	1260m	Praxis6	64
PR0204	SRidge	Northgate	-57	030	534.3	6171990	4344950	1440m	Praxis6	108
PR0205	SRidge	Northgate	-50	030	182.5	6172722	434624	1105m	Praxis6	49
Totals					1946.5					324
RR0201	RRidge	PRGoldfields	-55	050	350.0	6174456	438780	1143	Praxis4	114
RR0202	RRidge	PRGoldfields	-50	045	213.0	6174750	438560	1105	Praxis4	61
Totals					563					175
TOTAL					2509.5					499

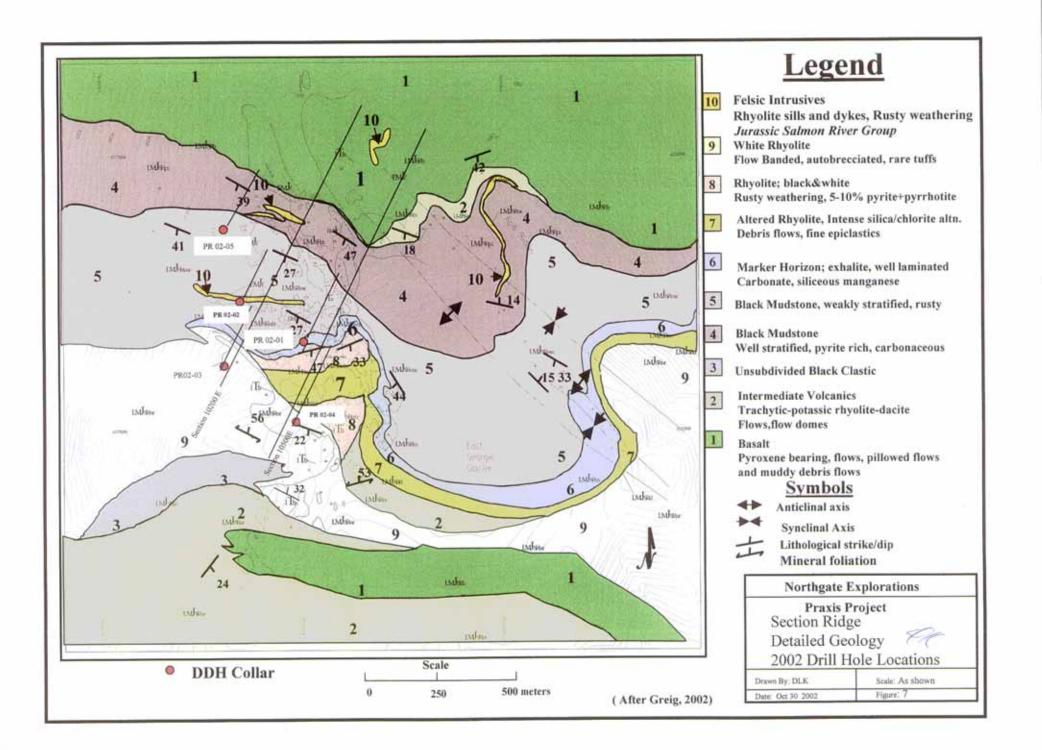
Table 2 Diamond Drill Summary

7.0 Detailed Geology

The Section Ridge Target, which was drilled by Northgate during this program, is comprised of an upright stratigraphic sequence consisting of a Jurassic subaqueous basalt flow package overlain by a variable thickness of intermediate composition lithic tuff, fragmental and flows followed by a thick marine clastic sequence overlain by a Jurassic rhyolite flow package. Figure 6, 7 show detailed geology and 2002 drill hole locations.

The basal basalt package consists of massive augite phyric flows and rarely flow breccias. The augite content increases down from the top, as does the freshness of the crystals which comprise 2-7 % of the rock. Alteration within the basalts is confined to weak bleaching of the upper contact sections and minor silica and epidote along fractures. Minor secondary brown biotite is present in more strongly foliated sections. Basalt derived dark green epiclastics are found in the lower sandy to turbiditic sequences in the base of the overlying marine clastic sequence.


The andesitic or intermediate rocks overlying the basalts vary in thickness and lithology from over 50 m of flow rocks as seen in hole PR-02-04 to thin distal equivalent andesitic epiclastics tuffs and lithic tuffs.

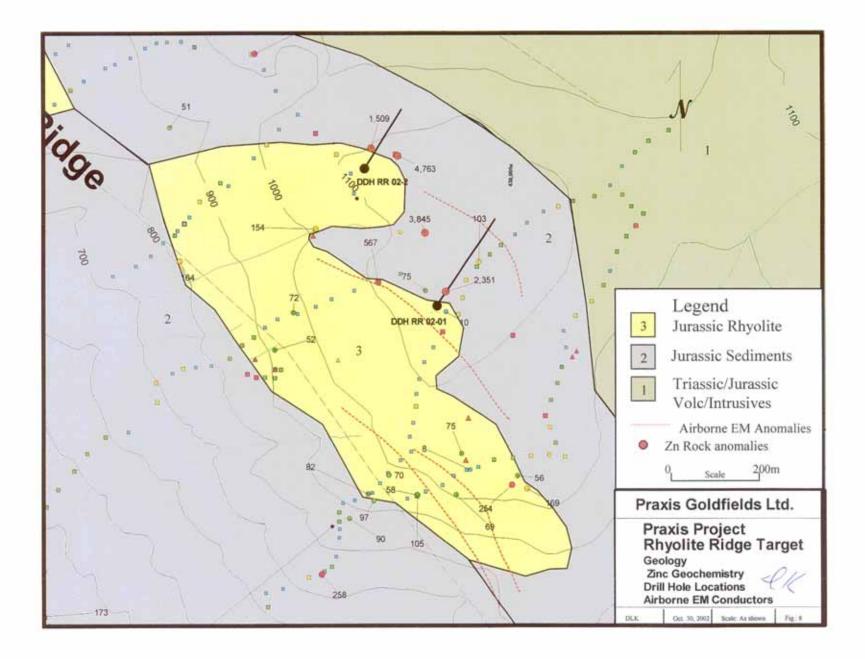

These andesite epiclastics or derived sediments are also present in varying degrees up section as tuff horizons within the laminated mudstone sections. The lower portion of hole PR 02-02 contained a 2 m interval containing possibly epigenetic galena, sphalerite and minor chalcopyrite disseminated in a lithic tuff/fragmental lithology and associated with carbonate and silica alteration.

These epiclastics and minor flows are overlain by a marine basinal facies black clastic sediment sequence characterized by a lower turbiditic sequence including graded sandstone/siltstone members, above which lies a middle well laminated thinly bedded black carbonaceous mudstone sequence. The upper portions of the classic rocks is usually a more massive less well bedded black mudstone with minor calcareous units neat the top. These rocks contain 1-10 % laminated syngenetic iron sulphides. These sulphides are now mainly pyrrhotite but may originally been pyrite. Minor sphalerite and traces of chalcopyrite are present as well. This clastic sequence as drilled intersected is up to 350 m thick but is likely isoclinally fold thickened. The regional cleavage is very close to the bedding attitude and small scale fold closures about this flat cleavage were noted in the core. Alteration within the black clastic sequence consists mostly of fracture related silicification and quartz veining in areas adjacent to faults. Conspicuous to the mudstones are sections of 2-15 % round to ovate 1mm black andalusite porphyroblasts. These are growing later than the cleavage, probably Tertiary aged. Locally both black amygdular looking andalusite and white 1cm long lathes of chiastolite are present. This indicates a thermal overprint of up to 600deg C and at a burial depth of less than 1.0 km on the low grade green schist metamorphism. This thermal may have reset the stratibound pyrite to pyrrhotite.

Overlying the sediments is a younger Jurassic aged rhyolite flow and tuff package. The package consists mainly of massive to flow banded aphyric to slightly feldspar phyric flows and weakly auto brecciated flows. The base of the rhyolite section has several coarser fragmental to tuffaceous members that are moderately chlorite altered.

Several styles of dykes and sills intrude and cut the stratigraphy drilled. The majority are bedding parallel mafic to andesitic Tertiary aged sills. Several occur within fault zones and occupy Jurassic to Cretaceous folding related bedding parallel slip faults. The felsic sills are felt to be equivalent to and possibly feed the upper rhyolite flows which are the top of the section drill tested.

The detailed geology of the Rhyolite Ridge target consists of a similar sequence of lithologies as intersected at Section Ridge. The section consists of an upper rhyolite package that has been intruded by a Tertiary mafic dyke swarm as seen in the hole RR 02-02 section. The clastic sequence at Rhyolite Ridge contains laminated silty limestone beds with elevated base metals. The base of the stratigraphy on the east side of Rhyolite Ridge differs from Section Ridge in that the footwall to the black clastic sequence is a feldspar crystal rich tuff or intrusive of possibly lower Jurassic age.

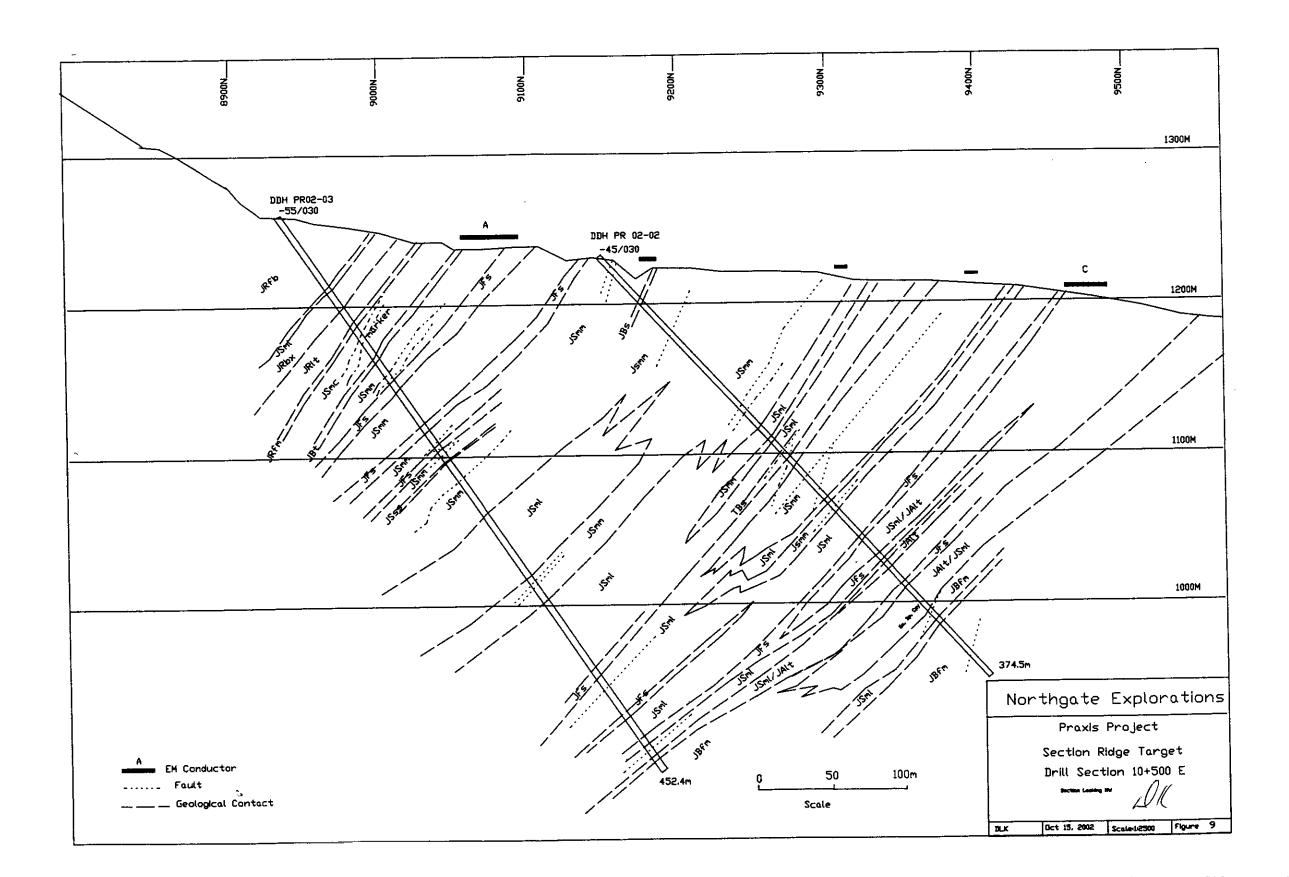

The detailed description of the lithologies intersected are found in Appendix III; the core log sheets which have the sampled intervals indicated and the resultant values for Cu, Pb, Zn, Ag and Au given. Visual display of the interpreted drill hole geology is found in Figures 9 to 13 displayed as cross sections with the location of the surface projection of EM conductors targeted. A description of the Lith codes used is found in Appendix II. The plan locations of the Section Ridge holes, shown with surface geology are shown on Figures 6, 7. The plan map for the location and surface geology for the Rhyolite Ridge target is shown on Figure 8.

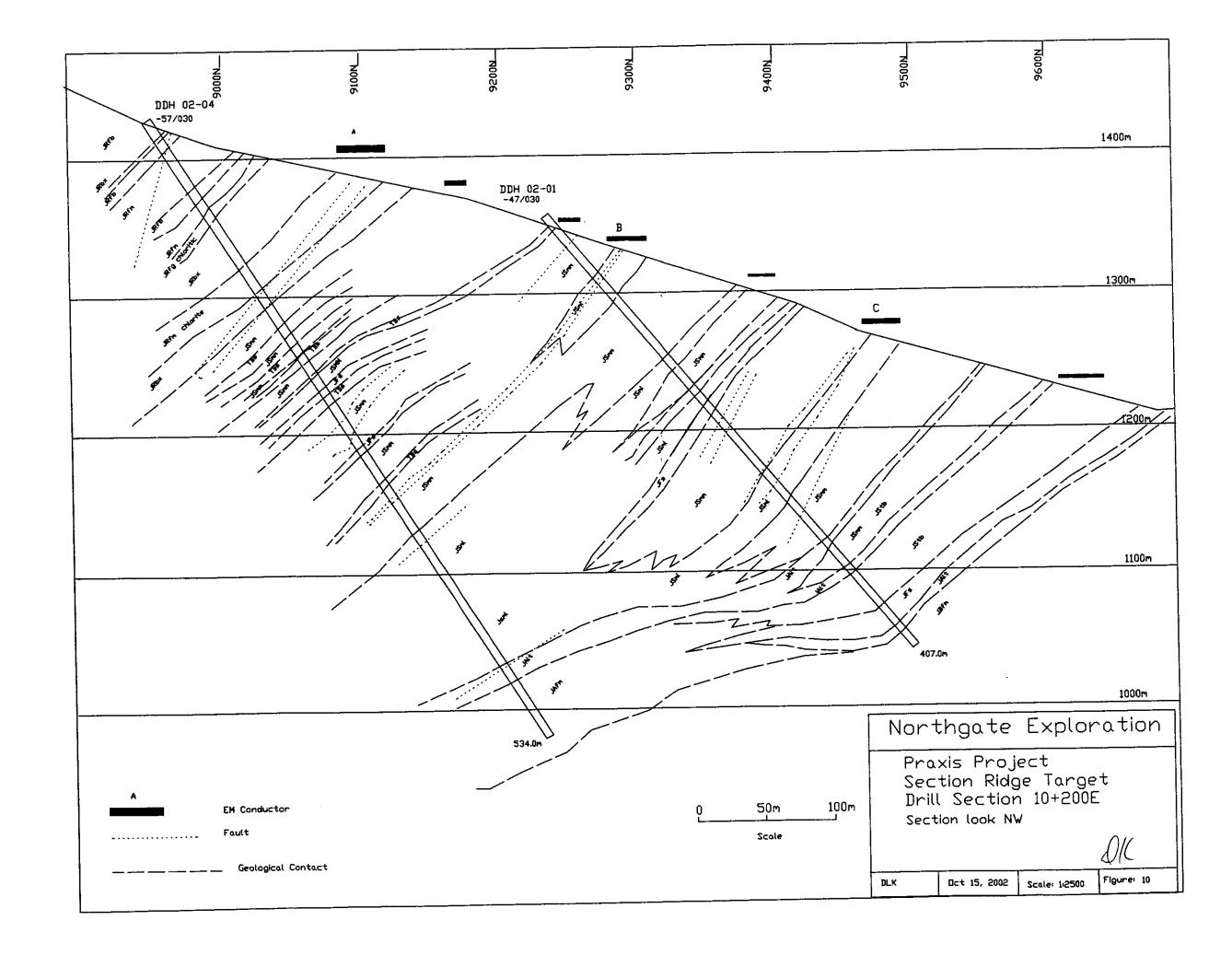
7.1 Mineralization

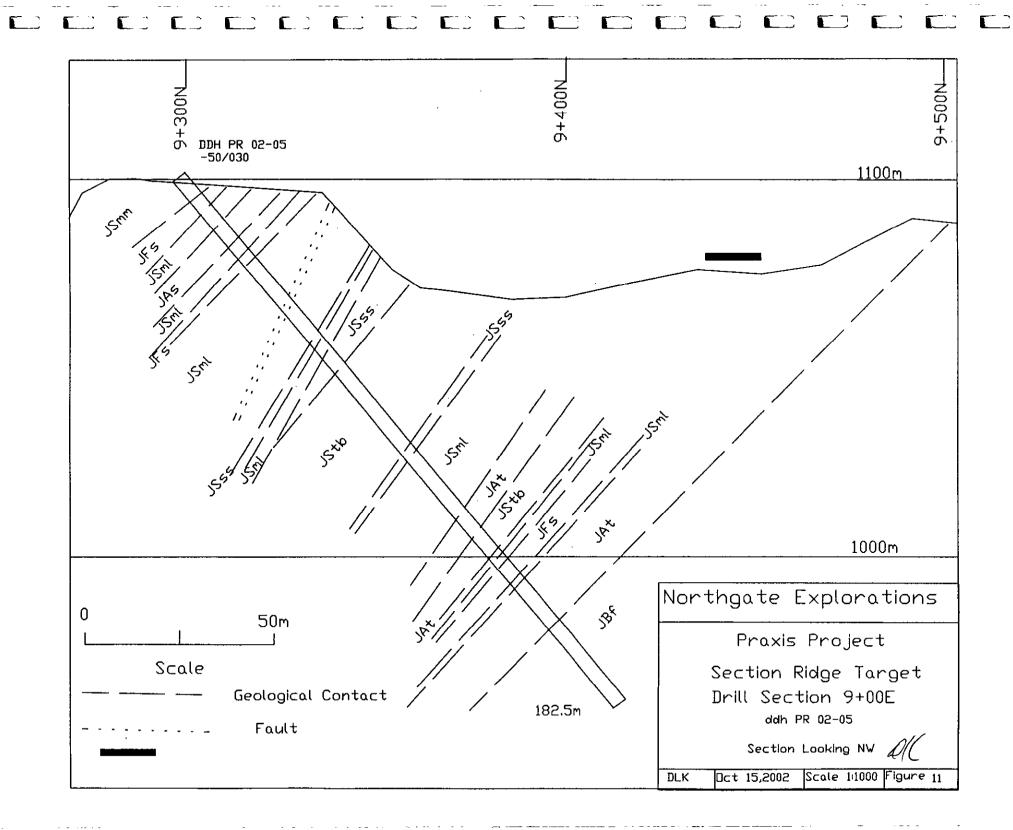
The target for the drill program was stratiform base metals consistent with a syngenetic volcanogenic massive sulphide model. This model was chosen to fit the copper and zinc soil and rock geochemistry corresponding spatially with both airborne and ground EM geophysical anomalies interpreted as stacked, parallel to the stratigraphy. Drilling failed to intersect significant amounts of base or precious metals in either target.

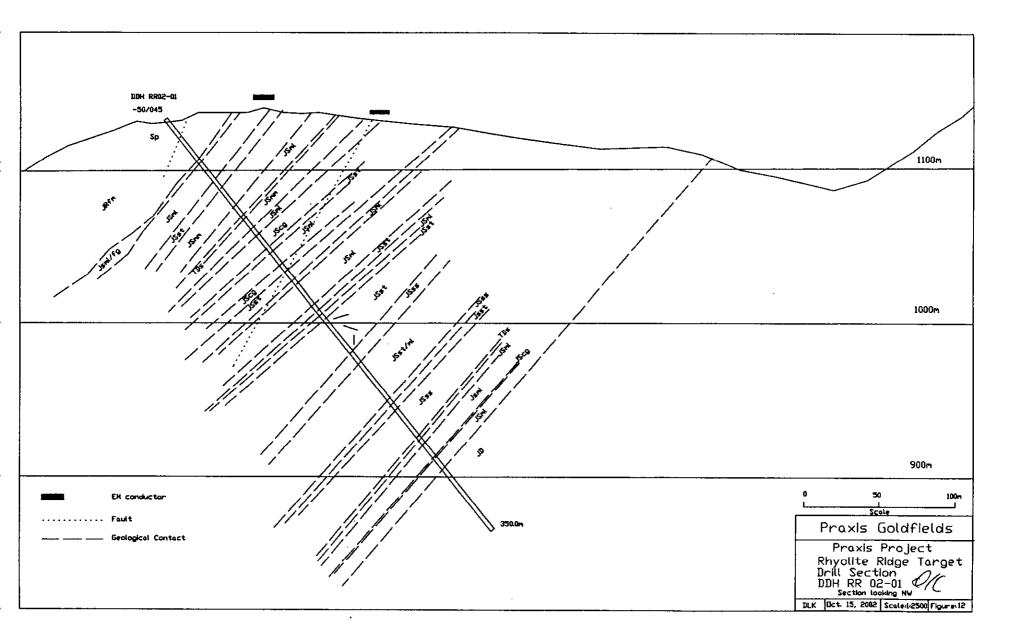
In the Section Ridge target, laminated to bedded pyrrhotite and pyrite are present to several percent in the laminated mudstone stratigraphy. Zinc values averaged 150 ppm in most of the stratigraphy, corresponding to a slightly elevated content of a black restricted shale basin. The copper and lead values were generally very low. Silver and gold values were very low except at the mineralize andesite tuff in the lower portion of hole PR 02-02. The section containing the epigenetic base metals returned 6734 ppm Pb, 3942 ppm Zn with 13.8 gpt Ag and 0.27 gpt Au. Barium, arsenic and antimony values were very low.

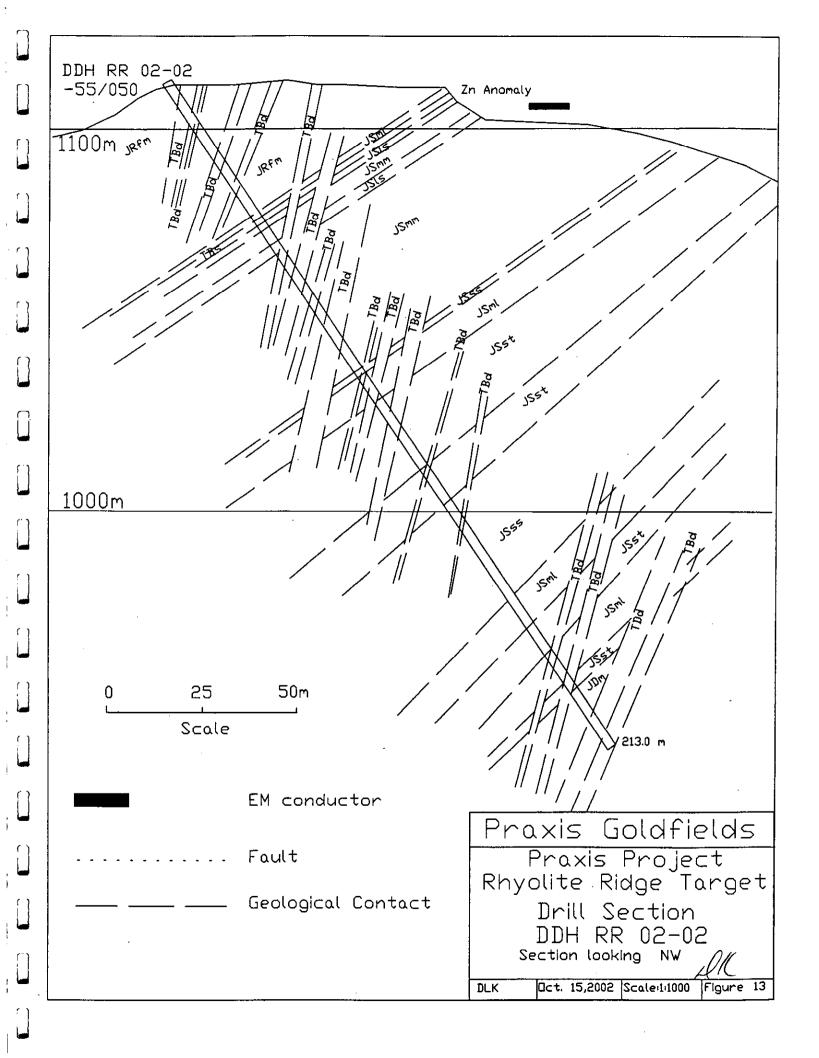
In the Rhyolite Ridge section, the target was a zinc rich VMS target containing stratigraphically conformable airborne EM geophysical targets. On surface, mudstone lithologies near the upper portion of the section returned 1000-4000 ppm Zn from soil and rock samples. Drill Hole RR 02-01 intersected fracture filling and veined sphalerite in the upper rhyolite sequence at 5.5-7.0m which returned 2066 ppm Zn/1.5m true thickness.


The uppermost mudstone in hole RR 02-01 returned 1581 ppm Zn/1.0 m. This corresponds to the surface samples at the up dip projection which contained 2351 ppm Zn. Hole RR02-01 from Rhyolite Ridge contained the highest average silver values at an average of 1.56 gpt Ag over 18.5 m true thickness from 282.3m to 290.3m. This is 10 times the average value for silver in the drilling.


In general the mudstones on Rhyolite Ridge contain 2-3 times the zinc as Section Ridge. Local highs averaging 1228 ppm Zn/2.6m occur as at 51.0-53.6 m in hole RR 0202. As well, the highest gold value returned for the program was from the adjacent 1.5m section in hole RR 02-02 at 57.5-59.0m which returned 1.82 gpt Au. The highly strained section of black mudstone in hole RR 02-02 from 163.7-190.9 averaged 728 ppm Zn. Lead, copper and silver values are disappointingly low


Lithologies and structures intersected at the down dip projection of the surface trace of the EM geophysical anomalies that helped define the drill targets are felt to be represented by the bedding plane parallel faults. These zones are 1-4 m wide and contain broken black mudstone with clay gouge and graphitic slips with 2-7 % disseminated iron sulphides. The position of these faults would give the impression of stratigraphic controlled conductive zones, interpreted to be concentration of connected sulphides.


7.2 Analytical Procedures


Core samples extracted at the drill were placed in consecutively numbered wooded core boxes at the drill by the drill crew. The core was slung by helicopter to the core shack at camp twice daily at shift change, weather permitting. At the core shack, the footage markers were converted from feet measured increments to the equivalent metric values. The core was logged by D. Kuran who recorded geological information and mineralization observed along with appropriate samples to be taken on paper log sheets, later transcribed to a digital base. Two portions of consecutively numbered assay tags were placed at the end of an interval to be sampled. The core was sampled in intervals averaging 1.5 m in homogenous or similar rock with shorter intervals based on lithological breaks or mineralization being taken when required. The core samples were taken by sawing the core in half along the long axis as to represent the lithologies or mineralization as to 50:50 to the sample and the other half returned to its original position in the core box for future reference. One half of the double tag, containing sequential numbers only was placed in the plastic sample bag with the half core and securely tied. The other half of the numbered tag was stapled into the core box at the end of the corresponding interval sampled.

Batches of ten sequential sample numbered samples were placed in addressed rice bags and securely sealed with a non-reusable plastic strip closure. Samples were helicopter shipped as batches representing a whole drill hole to Stewart BC where they we met by the expeditor who took possession and conveyed then to the Bandstra truck terminal at the earliest opportunity. The samples were trucked to Assayers Canada Ltd. of 8282 Sherbrooke St. of Vancouver for geochemical analysis. The samples were analyzed for gold by fire assay with atomic adsorption finish and a 30 element ICP package including base metals and silver. A description of laboratory techniques and quality control is located in Appendix IV with assay certificates found in Appendix IV.

8.0 Discussion of Results

Total of seven drill holes totaling 2509.5 m tested two targets, separated by 6 km, within the same stratigraphic sequence. The drilling was completed to test existing, previously developed targets for significant mineralization or indication of favorable stratigraphy with a positive geochemical signature, possibly indicating the proximity of a stratiform volcanic associated massive sulphide deposit of sufficient size and grade to warrant further exploration.

Drilling on Section Ridge tested the target stratigraphy with 5 drill holes totaling 1946.5m. The holes were orientated to cut the stratigraphy at right angles to give true stratigraphic thicknesses of lithologies and mineralization intersected. The drill pattern consisted of two fences of two holes roughly 300m apart and a third fence with one hole 300m further NW. The holes in the fences tested the stratigraphy at pierce points roughly 250 apart and down dip from surface on section. The drilling tested the stratigraphic package determined to host the target mineralization from the rhyolite at the top of the stratigraphic section to the basalt at the stratigraphic footwall of the section. The target stratigraphy was tested over a strike length of 650 m from PR 0204 in the SE to PR 02-05 in the NW and to a down dip depth of 500m along the footwall basalt contact measured from surface to the end of hole PR-0204. This block contained the numerous parallel stacked EM geophysical conductors.

The bedding attitudes observed in core samples indicated that the stratigraphy was being drilled at right angles to dip and strike. The lithologies intersected were those consisted with an intervolcanic sediment basin permissive to host a stratigraphic polymetalic deposit. Stratiform iron sulphides were observed and sampled. The assay results from the Section Ridge core reveal that although the permissive rocks may be present, if there is a significant deposit within the stratigraphy, Section Ridge appears to be very distal.

Significant weight was put into the EM geophysical anomalies as an indication of significant concentration of conductive sulphides to be present within the stratigraphy. It is felt that the geophysical response was caused by sulphide and clay bearing fault zones, parallel to the stratigraphy. Sufficient drilling has been completed to test the geophysics and the total stratigraphic package containing the EM anomalies and low grade surface geochemical signature to downgrade the target to one of no further drilling is warranted at this time. Further surface mapping and sampling along strike toward fold repeated portions of the stratigraphy such as Section Ridge East may produce future drill targets.

Drilling on the Rhyolite Ridge target totaled 563 m in two holes located 375 m apart along strike. The holes were designed to test the southwest dipping northeast limb of the Rhyolite Ridge syncline which hosts several 1000-4000 ppm Zn rock geochemical samples and airborne geophysical anomalies, contained within the Salmon River aged marine black clastic sediments. Bedding attitudes observed within the core confirmed the holes were intersecting the target stratigraphy at true thickness orientation, aside from minor irregularities due to local small scale folding. The lithologies intersected were similar to what was observed on surface and hosted similar grades of mineralization. The rhyolite in hole RR 02-01 contained minor fracture filling and disseminated sphalerite mineralization. The upper portions of both holes core mudstones which assayed anomalous Zn values to 2500 ppm Zn, in the same order of magnitude as the surface samples. Other base metal values including As and Sb which are indicative of a more vent proximal transition style VMS are at detection limits. Hole RR-02-02 contained anomalous silver values but are still well below economic thresholds. The highest gold value recorded returned 1.86 grams per tonne.

The overall geochemical signature of the Rhyolite Ridge stratigraphy is 2-3 times the values returned from the Section Ridge target. Although the values are anomalous, no potentially economic grade base or precious metal grade intersections were seen. The higher background values in the Rhyolite Ridge area may indicate that further surface work, along strike and to the west, on the opposing limb of the syncline, east of the East Georgie River may produce further drill targets.

9.0 Recommendations for Exploration

During the 2002 drilling program on the Praxis Project, two previously defined targets were drill tested for there potential to host economic size and grade polymetalic sulphide deposits. The Section Ridge target, tested over a strike length of 650 m and down dip to 550 m failed to indicate the presence or proximity of a massive sulphide deposit. The Rhyolite Ridge target while failing to intersect economic grade material, carried 2-3 times the base and precious metal values than Section Ridge. The highest gold value for the program was intersected at this target.

It is recommended that a surface exploration program consisting further detailed mapping and prospecting on the west limb of the Rhyolite Ridge syncline from the ridge to the river and up the east facing slope, west of the river. This area is the east projection of the Section Ridge East target. Comments for a local helicopter pilot indicated the presence of trenched and small scale mine dumps in the area just east of the junction of the Georgie and East Georgie river may be the location of the Black Knight working described in the Minister of Mines mineral deposits database. This observation should be followed up as it is in the area of the northward projection of the Section Ridge East Target. This exploration program would consist of a 4-6 man geological/prospecting crew based out of the Praxis Camp. The program would take 2-3 weeks depending on weather and date of seasonal snow ablation. The cost of this program would be in the order of \$75,000.00 dollars. If significant drill targets are produced from this work, a drill program could be mounted to take advantage of the limited drill season.

10.0 References

Anderson, R.G. 1993: A Mesozoic stratigraphic and plutonic framework for northwestern Stikinia (Iskut River area), northwestern British Columbia, Canada; in Mesozoic Paleogeography of the Western United States--II, (ed.), G. Dunne and K. McDougall; Society of Economic Palaeontologists and Mineralogists, Pacific Section, vol. 71, p. 477-494.

Edmunds, F.C., Kuran, D. L., Rye, K.A., 1994. The Geology of the 21Zone Deposits at Eskay Creek Northwestern British Columbia, Canada; Black Hills Fifth Western Regional Conference on Precious Metals, Coal and the Environment, 1994, p. 154-175.

Evenchick, C.A. 1991a: Geometry, evolution, and tectonic framework of the Skeena Fold Belt, north-central British Columbia; Tectonics, v. 10, no. 3, p. 527-546.

Evenchick, C.A. 1991b: Structural relationships of the Skeena Fold Belt west of the Bowser Basin, northwest British Columbia; Canadian Journal of Earth Sciences, v. 28, p. 973-983.

Evenchick, C.A., and Snyder, L.D. 1999. Geology of the Georgie River area of northwest Nass River map area, northwestern British Columbia; In Current Research 1999-A, Geological Survey of Canada, p. 13-23.

Evenchick, C.A., Snyder, L.D., and McNicoll, V.J. 1999. Geology of Hastings Arm West half (103P/12W) and parts of 103P/13, 103O/9 and 103O/16, British Columbia. Geological Survey of Canada, Open File 2996; 1:50,000 scale.

Greig, C.J., May 26, 2002, Geological and Geochemical Report on the Praxis Property (Praxis 1-21, Ark and Brown 1-4 claims), August 2001.

Greig, C.J., Hendrickson, G.A., 2001. Geology and Geochemistry, Praxis Property, Company Report.

Greig, C.J., Anderson, R.G., Daubeny, P.H., and Bull, K.F. 1994a. Geology of the Cambria Icefield area, northwestern British Columbia. Geological Survey of Canada, Open File 2931.

Greig, C.J., Anderson, R.G., Daubeny, P.H., Bull, K.F., and Hinderman, T.K. 1994b. Geology of the Cambria Icefield and regional setting for the Red Mountain Au deposit, northwestern British Columbia. In Current Research, Part A; Geological Survey of Canada, Paper 94-1A, p. 45-56.

Greig, C.J., Cordey, F., and Orchard, M.J. 1995a. Tectonic significance of Early Permian to Late Triassic radiolarian cherts, Kinskuch Lake-Cambria Icefield area, SE of Stewart, NW B.C. Geological Association of Canada-Mineralogical Association of Canada, Program with Abstracts, v. xx, p.Axx.

Greig, C.J., McNicoll, V.J., Anderson, R.G., Daubeny, P.H., Harakal, J.E., and Runkle, D. 1995b. New K-Ar and U-Pb dates for the Cambria Icefield area, northwestern British Columbia; In Current Research 1995-A, Geological Survey of Canada, p. 97-103.

Grove, E.W. 1986. Geology and mineral deposits of the Unuk River-Salmon River-Anyox area; British Columbia Ministry of Energy, Mines and Petroleum Resources, Bulletin 63, 152p.

Hanson, G. 1935. Portland Canal Area, British Columbia; Geological Survey of Canada, Memoir 175, 179p.

Hendrickson, G.A., February 27, 2002, Geophysical Report on the Praxis Project for CSS Explorations Inc by Delta Geoscience Ltd.

Kerr, J.R., and Verley, C.G. 1998. Diamond Drill Report on the Ashwood Property, Skeena Mining District; unpublished Assessment Report for Golden Fortune Investments Ltd., 8p., plus appendices.

Massey, N.W.D., Alldrick, D.J., and Lefebure, D.V. 1999. Potential for Subaqueous Hot-spring (Eskay Ck) Deposits in British Columbia; Ministry of Energy and Mines, Open File 1999-14, 2 maps and report.

Todoruk, S.L., and Weekes, S. 1993. 1993 Geological, Geochemical and Prospecting Report on the Ashwood Project; unpublished Assessment Report for Aquaterre Mineral Development Ltd., 31p., plus appendices and maps.

Weekes, S. 1994. 1994 Geological, Geochemical, Geophysical and Diamond Drilling Report on the Ashwood Project; unpublished Assessment Report for Aquaterre Mineral Development Ltd., 30p., plus appendices and maps.

Appendix I

, **(**

1

r -

1

Praxis Project

Statement of Costs

Cost Statement Praxis Property Aug 15-Oct 30, 2002

.

,

.

•

Category	Account Description	Total Praxis 6	Total Praxis 4	Project total	Brown/Ark-rec
· · · · · · · · · · · · · · · · ·					
Contractors	Personnel				
	D.Kuran_project geo @ \$400/day	14900	4500	19400	3
	O. Hendrickson Sampler/camp@\$175.00/day	7088	1513	8601	1
	Jack Fillion expediter(30/hr)	10680	2830	13510	2
	Sandy Luccier(cook) 235/day	7638	2063	9701	
	Lloyd Muir labour@ \$17.50/hr	437.5		437.5	
	Sylviano Appenzeller labour@\$17.50/hr	1207.5		1207.5	
Drilling	Surface \$50.00/m	97500	28150	125650	
	Casing	946	150	1096	
	Mob/Demob	2500	2500	5000	
	Moving	5409	1215	6624	
	Tests	375	225	600	1
	Standby	4169	715	4884	
•••	Mud, Supplies	640	995	1635	
	Pad Building	850	90	940	
	fuel	3237	920	4157	
	Core boxes	4968	1032	6000	
Analysis, Assay		1			
	Geochem Analysis & Assay	5236	2800	8036	
Field/Camp		1			
	Field Supplies/saw blades	1950	750	2700	· · · ·
· ·-	Groceries	6493.51	354.16	1	
	Propane/gasoline	160	120		
	Camp Costs(120/day)	3600	0		
	Camp Construction	7042	2270		
Travel					
	Lodging	2838.17	557.1	3395.27	-
	Meals, Groceries	804.1			
	Truck Gas/oil	302.92		578.66	
	Truck daily cost	1080		1080	
Transportation/Air Sup					
	Helicopter @ 875	81375	41824	123199	1
	Helicopter - Fuel@125/hr	15672			
	VIH Helicopter		1524.96		
Support Activities				1	
	Communication sat phones, vhf	4355	577	4932	
	Maps/Pubs/Photos/Reports	8.59		8.59	
	D.Kuran Report writing	3210			
	Office Supplies	+			
	Freight	400	300	700	1
	i rogit				·
Other A&G/Managem	ent Fee			+	
	load site rental	300	100	400	
	TOTAL COSTS:	296592.29	106614.52	403206.81	1

•

Appendix II

Praxis Project

Core Logging Lithological Codes

Praxis Core Lith Codes

.

,

TBdm	Tertiary basalt dyke; massive
TBda	Tertiary basalt dyke; amygdular
TBs	Tertiary Basalt sill
TDs	Tertiary Diorite sill
JFd/s	Jurassic felsic dyke/sill
JRfm	Jurassic rhyolite ;massive
Лfb	Jurassic rhyolite; flow banded
JRbx	Jurassic rhyolite; brecciated
JRlt	Jurassic rhyolite lithic tuff.
JRfg	Jurassic rhyolite fragmental
JSmc	Jurassic Marker horizon, calcareous
JSmm	Jurassic Sediments, mudstone massive(Po, Py)
JSml	Jurassic mudstone laminated (Po, Py)
JStb	Jurassic mudstone/sediment turbedite sequence
JSst	Jurassic siltstone
JScg	Jurassic conglomerate
JSss	Jurassic sandstone
JAf	Jurassic andesite flow
JAlt	Jurassic Andesite lithic tuff
JBmf	Jurassic Basalt; massive flow .
ЛВьх	Jurassic Basalt; flow breccia
Ъ	Jurassic Diorite
VNc	Vein; carbonate
VNq	Vein; quartz
FZ	Fault Zone; broken, gouge

() \int . []

Appendix III

ļ

r [

ĺ

()

Praxis Project

2002 Drill Core Logs

		I	1	1	1	r	1	<u> </u>				<u> </u>	·		<u>.</u> т							i	1	1		r
		Diamond Drill Log		HO	LE:	[⊥] PR	02-0	b1											Page 1/4						 	<u> </u>
		Company: Northgate		1	L		ł															i	Azimut	L	L	Dip
		Project: Praxis			North		<u>6172</u>													Collar				030		-47
		Core logged by: D Kuran Start Date: Sept 2,2002 Finish Date: Sept 5,2002		<u> </u>	Easti	ng ation	4349								-+				EOH	388 407m					 '	-53
													· · -						LOII	407111		<u> </u>			 	
	<u> </u>							SCAL																		
Depl from	h(m) to	Description	ROCK			% Sp	% Po	%	% Qvn	Chl	Sil	Fol				2 ^m I mag	Re Re		Sample Number	Intern from	/ali(m) to	Cu	Pb	Zn	Ag	Au
0	6.7	casing	JSmm	-17			1	0.2	C VIII	chiome	quienz		90	zet	<u>K-</u> T	mag	- î	*	NUMBER	400		ррт	ppm	ppm	ppm	g/t
				+	<u> </u>		<u> </u>						90					0								
4.2	5.2 9.0	Black massive mudstone, 5% 1m m white pblasts	JSmm			—	1											-				 			}'	<u> </u>
		Anygdaliodal Andesite sill, 2% hbld xtals lower contact irregular @45	TBda										45					80				 			<u> </u>	───
9.0	10.5	Black-gry mass. Mudstm, minor grey silty beds to tom	JSmm		-		tr						85			—ł	<u>_</u> {	<u>10</u>	·. · · ·		<u> </u>				╉────	<u> </u>
		9.5 Scm vuggy gtv vn	VNq	3																		· · · ·		┨		ļ
10.5	12.4	Mafic dyke, dark green, variably vessicular	TBda		<u> </u>									<u> </u>							 		ļ	ļ	 	
12.4	27.0	Black-gry mass. Mudstm, rare 1-5mm py lams, unit thickenned by folding	JSmm	1	<u> </u>		2	\vdash	-+				90		-+	<u> </u>	1	00	9001	14.0	15.0	70	16	[····	1	0.0
		14.0-15.0 lam Po		 		<u> </u>	4												9002	18.5	20.0	94	8	75	i <0.2	0.0
		19.8 5% py/5cm, minor shear	I												-											L
		20.2 5cm qtz vein	VNq.	ļ									45								ļ					
		24.2-24.5 broken, minor gouge	FZ		L								70													
27.0	27.5	Mafic dyke medium green weakly foliated 🕤	TBdm									45	45				1	00								
27.5	29.5	Black mudstone, carbonaceous, weak shear, minor broken core,graphitic	JSmm				2										9	ю 🗌								
		slips, minor qtz stringers.																								
29.5	30.7	Brown-green mafic sill, patchy brown biotite, minor qtz veins	TBdm				tr						75				1	00	9003	29.5	30.7	97	10	102	<0.2	0.0
30.7	56.7	Black massive mudstone, minor Po lams and on foliation, unit rextalized near	JSmm				3										1	00	9004	32.5	34.0	67	6	71	<0.2	
		footwall sill,2% irregulkar gtz veins to 1 cm.																	9005	34.0	35.5	105	14			1
		56.3-56.5 tam Py		1			3												9006	35.5	37.0	129	14	84		
		56.5-56.7 3% vein Py	1				3						\neg		-				9007	37.0	38.5	81	10	51	1	
56.7	58.9	Felsic sili, light grey, unit crackled and silicified	JFd	1			3					3	65		-+			20	9008	38.5	40.0	104	10			
58.9	66.3	Black mudstone, laminated over 30 cm sections, very fine grained white	JSmm	†			2						80					5	9009	55.7	56.7	47	10	128	1	
		p blasts, Andalusite, minor contorted carbonated lenses to 3 cm,	Jonan										<u></u>					<u> </u>	5005		50.7	4/	°	120	<u> </u>	0.03
		64.1-66.3 5% 1-2mm black carbonate spots, minor qtz/carb stringers at base				<u> </u>			3			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		-+	-+										<u>├</u> ────┤	<u> </u>
66.3	69.8	Fault, black rubble 20% gouge,fault is bedding parallel	FZ	· · · ·			-		-3				80					+								<u> </u>
69.8		Black mudstome, mainly massive minor laminated to thinly bedded sections			<u> </u>		1		2	-+		90	60		+			_								
05.0	11.4	72.8-75.0 5-19% 1mm white p blasts	JSmm	<u> </u>	 		-	_	<u></u>			90	_		+			5	9010	70.1	71.6	85	18	132	<0.2	0.02
·													65											——	<u>├</u> ───┘	·
		75.0-75.1 sandy grit bed							_						-+	<u> </u>									اا	
		80.5 black mud bed flames up-hole into silt(tops up-hole)			┨───				\rightarrow											•• •						l
74.4		Amygdular mafic sill,5% 1mm round white amygdals	TBda	tr	<u> </u>		_2		2		· ·		75			_		7							ļ!	
80.0	130.5	Thick unit of black mudstone with thin laminated to thinly bedded sections		tr			2		2			90	80		-+			8	9011	82.0	83.5	50	12	108	<0.2	0.0
		and minor lighter grey slity beds	<u> </u>		 														9012	83.5	85. 0	74	10	104	<0.2	0.03
		82.2-82.3 qtz/carb healed shear	 	3	<u> </u>		1												9013	85.0	86.5	70	4	84	<0.2	0.03
		82.3-86.5 taminated section, fine Po dissem in 10-15 cm siltier sections			L		3																			
		85.2 15cm qtz/carb nx vein	VNc	 		·																				
		89.0-89.4 patchy carb alt.		I							1															1

.

																						1				
		Diamond Drill Log		ца	.E:F	000	-01												Dage 2/4							ļ
		Diamond Drin Log	├		-6.6	-KU2	-01												Page2/4		<u> </u> !					
							ALTN	SCA	LE: 1	5	MAX															
Dept		Description	ROCK	% Py	%	%	%	%	% Qvn	Chi	Sil	Fol	beds	2 ^s	2×	2 ^M	RQD	Recov.	Sample Number	Interv from	ral (m)	Cu	Pb	Zn	Ag	<u>Au</u>
from	to		CODE	Py		эр	F0	୍ଦ୍ୟ		chionite	theup			58r	K-F	mag		~~			to	ppm tor	ppm	ppm	ppm	g/i
		92.5 10cm carbonate bed.	$ \square$													·			9014	95.0	96.5	137	14	116	<0.2	
		99.6 5 cm carb bx vein parallel to bedding																	9015	96.5	98.0	107	14	99	<0.2	
		101.4 3cm py/carb vein parallel to beds.	\vdash				20						65						9016	116.5	117.5	86	12	104	<0.2	1
		116.5-117.5 3% fine Po.	┠┦				3						75					100	9017	117.5	119.0	82	14	114	<0.2	-
		117.5-119.0 3% fine Po, Tr py	 	۲U U			3									<u> </u>		100	9018	129.0	130.5	173	16	97	<0.2	0.02
130.5	140.5	Black lam mudstone with 10% light grey carbonate beds and med-fine graded	JSml										85					100	9019	130.5	132.0	78	4	35	<0.2	0.02
		grit beds to 15 cm containing up to 10% vfg Py/Po		<u> </u>												 			9020	132.0	133.5	52	2	31	<0.2	0.03
		139.2-139.5 10% Py in grit bed.											<u> </u>		<u> </u>	 			9021	133.5	135.0	45	. 4	25	<0.2	0.03
140.5	157.4	Black mass mudstone, minor Po, 5 cm carbonate rich sections	JSmm	tr			2						80						9022	135.0	136.5	75	6	67	<0.2	0.04
157.4	159.5	Amygdaloidat mafic sill, med. Green, 20% brown biotite.	Tbda				1						80					100	9023	136.5	138.0	96	8	74	<0.2	0.03
													_						9024	138.0	139.5	109	10	63	<0.2	0.04
159.5	172.2	Blacm massive mudstone with 10% 5 cm lighter grey silty bed with minor Po.	JSmm				2						80					95	9025	139.5	141.0	145	8	59	<0.2	0.01
		as fine lenses and 2mm laminations														1			9026	169.3	170.8	95	6	86	<0.2	0.02
172.2	179.5	Felsic sill, contacts +-10 deg to bedding with minor blotite and Po at rim.	JSFs								4		60					100								
		5% fine hbld going to chlorite +silica.																_								
179.5	196.6	Blacm massive mudstone with 10% 5 cm lighter grey silty bed with minor Po.	JSmm										85					75								
		gritty carbonate beds to 2 cm contain Tr blebby Po	•																							
		181.7 2cm qtz vein)				
		20 cm with 10% 1mm black andalusite p blasts.														1	-									
		186.3-187.1 broken core																								
		187.1 3 cm gouge shear																								
		189.8-190.2 broken core														1—										
		189.9-190.0 shear, black gouge and carbonate veins	FZ																							
		190.5 5%Po/5cm		<u> </u>												1										·
		195.0-196.9 broken core, 10cm qtz vein at 30 deg.	FZ														···· · ==									<u> </u>
197.6	206.5	Black massive mudstone, section contains 10% 1 mm round black andalusite	JSmm	tr			1									 										
	100.0	spots, minor carb slips at 20 deg.		<u> </u>			·											1								
206.5	230.2	Masive black mudstone, unit contains 50 cm setions of taminayted mudstone	JSmm		t		1					50	75		<u> </u>	<u> </u>		70				 			i	1
200.5		Unit weakly fractured at 30 deg filled by qtz and qtz/carb veins.	23000				-'								<u> </u>											
		217-217.7 laminated section													 	\vdash					<u> </u>	 				
			VNc																		<u> </u>	┟──┤			<u> </u>	t
		322.5 10 cm catspar vein 226.5-228.0 taminated mudstone		!			2	<u> </u>			<u> </u>		—						0007	226.5	220.0	85		405		
			╉╼───┙		 			L					<u> </u>		-			 	9027	226.5	228.0	85	18	125	<0.2	0.01

		Diamond Drill Log		но	E:	PRO	201															[]				
															·				Page 3/4							
													151													
Dept	1 (m) to	Description	ROCK CODE	% Dv	% Ср	% Sp.	% Po	<u>%</u> Ga	% Qvn	Chi	Sil	Fol	beds	2° Ser		2 ^m mag	RQD	Recov %	Sample Number	Interv from	al (m) to	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au 9/1
230.2		broken core	FZ	17	Ϋ́́	op.		<u><u> </u></u>	40	chicking	draws.			90		mag		60	Number	non			phir	phu.	ррп	<u> </u>
-230.2	232.0	231.0-231.9 quartz healed gouge, graphilic slips at 90, bedding fault	<u> </u>						40					90		— ·		60				┟┤				<u> </u>
232.8	004.5							-																		
232.0	201.5	well bedded and banded black mudstone, deds at 5-10 cm, lighter grey silty to																	i			<u>├</u> ──- [/]				
		sandy layers to 15 cm. Top of unit broken with minor shears and qtz flooding.																				∤'				<u> </u>
		Gritty units contain 3-5% diss. Py.																			<u> </u>	<u> </u>				<u> </u>
		233.0-233.3 qtz flooding							40									80			į	<u> </u> '	_			<u> </u>
		233.3-234.6 broken core, graphite	FZ					-+	5									60		<u> </u>				 		
		234.7 light grey sitty bed		<u> </u>									85			i			9028	236.2	237.7	138	22	102	<0.2	0.01
		235.3 shear at 20 deg						_					20													
		237.0 15 cm grit bed with 5% Po, 2 cm finely laminated gry-gm ash beds											90													
		244.7 25 cm silica heated shear, bedding parallel									3		65													
		244.9-246.4 20 grit bed with 3-5% fine Po					3						85						9029	244.9	246.4	130	16	109	<0.2	0.01
		256.2-256.9 Fault broken core, 5 cm gouge	. FZ	3					<u> </u>			· — . · ·	80					85	9030	246.4	247.9	95	12	113	<0.2	0.01
																			9031	247.9	249.4	131	14	122	<0.2	0.01
261.5	303.7	Black massive mudstone, weakly bedded at 10-15 cm with 1-2cm fine silty to											85					100						ļ		
		gritty lams, minor grey sandy grit beds possibly felsic derived, local bedding																								L
		parallel shears.																								
		265.7-266.0 pyritic grit bed, 3-5m pebble top reverse grading, fining down																								
		270.3-270.5 grit bed																								
		273.4-274.0 friable, 5% qtz	FZ						5				85						9032	272.0	273.5	93	12	125	<0.2	0.01
		274.8-275.2 gouge	FZ																							
		277.8-278.1 Friable, gouge veins	FZ						20																	
		278.1-303.7 Homogenous, weakly banded massive mudstone																								
		289.2-290.7 Several 10cm pyritic black grit beds					3						85					100	9033	289.2	290.7	116	8	79	<0.2	0.01
303.7	308.9	Laminated black mudstone interbedded with green-brn mafic derived epiclastic	JSml																9034	303.7	305.2	96	8	90	<0.2	0.01
		beds, gritty beds have 2-5% vfg Po, 2% Po in mudstone, relic feldspar and																	9035	305.2	306.7	55	8	79	<0.2	0.01
		homblende grains in some grit layers.																	9036	306.7	307.7	87	8	50	<0.2	0.01
308.9	311.6	Light grey-green well sorted fine silt to sand sand size epiclastic, massive, rare	JSst										80					100	9037	307.7	308.9	73	8	50	<0.2	
		2-5cm mud layers, uppere contact gradational/20cm, lower sharp with beds.					Tr																			
311.6	336.7	Thick turbeditic sequence; interbedded .5-2 m sections of alternating																	9038	318.3	319.8	94	8	76	<0.2	0.01
		iaminated black mudstone and uphole fining coarse to fine sand sized						_											9039	319.8	321.3	78	8	112		
		andesite-mafic derived sediments. Mudstone layers contain pyritc grit beds.																	9040	321.3	322.8	93	8	113	<0.2	
		311.6-319.3 Mixed sand and mud, sand clasts up to 3cm, bm biotite layers																	9041	322.8	324.3	111	8	98	<0.2	
		318.3-331.6 mainly massive mud with fine to med sand layers, gritty beds					2						65					100	9042	324.3	325.8	97	8	97	<0.2	
		331.6-336.7 40% sandy grit beds, irregular and contorted.																	9043	325.8	327.3	81	10			
336 7	343.6	Drab green well sorted fine -med grain and/mafic tuff, mimor mud, bio.layers	JBit										···						9043	323.8	328.8	80	10	105	<0.2	0.01
	3-10.0	ground ground and the triad grain and then with the trian block yers	504																9044	328.8	328.8	93	10	•••	<0.2	h
		· · · · · · · · · · · · · · · · · · ·		-									<u> </u>		{		• ••		1 3043	520.0	0.00.3		10	103	~0.2	0.01

6

6

		Diamond Drill Log	i H	ole:	: PR	02-0	01	1.	i i	1								1								
									Γ										Page 4/4							······
							ALTI	V SCA	LE:	15	XAN															
Depth	1 (m)	Description	ROCK	%	%	%	%	%	%	Chi	SII	Fol	beds	25	2 ^K	2 ^M	ROD	Recov.	Sample	Interv	al (m)	Cu	Pb	Zn	Aq	Au
rom	to		ROCK CODE	Py	Ср	Sp	Po	Ga	Qvn	chiorite	quarte			Ser	k-f	mag		%	Number	from	to	ppm	ppm	ppm	ppm	g/i
	-						1	1	1										9046	330.3	331.6	103	12	81	<0.2	
43.6	367.7	Turbeditic sequence ;20% upward fining cycles of clean coarce to fine cycles	JStb																							
		347.7-348.1 sandy layer	1		1	1			1																	
		353.6-353.9 sandy layer			<u> </u>																					
		354.0-355.5 mudstone beds at top coarcening down to gebbly sand		4			1						85					100	9047	354.0	355.5	58	8	52	<0.2	
		395.5-360.3 dark green fining up andesite/basaltic sand unit 360,3-364.7 Black Iam. Mudstone,diss. Po in bands and in siliceous layers	ŀ																9048		357.0	70	8		<0.2	
		360.3-364.7 Black lam. Mudstone, diss. Po in bands and in siliceous layers	1				3												9049	357.0	358.50		8			
		364.7-367.7 Dark-med green mafic epiclastic with 25% mud tayers					1	1		I									9050	358.5		77	6	54	<0.2	
		387.4-367.6 white qtz vein	VNq										75						9051	360.3	361.8	79	6	81	<0.2	
67.7	383.9	Very fine grained massive intermediate sill, 1% Po spots after matics	JAs		[9052	361.8	363.3	80	8	87	<0.2	
		contact transition zone; brown-grey biotite rihc, relic amygdules																	3053	363.3	364.7	67	4	50	<0.2	
86.6	389.3	brown-grey and/bsit tuff, well layered.	JBt										70													
89.3	407.7	Fine-med grainmed-dark green matic flow,rare relic amygdules, bleaching			T	T				3																
		decreases down to dark green pxroxene phyric basalt, minor amygdular	JBf		1	1			1																	•
		sections						1	1																	
	407.7	EOH			1		1	1	1											·						
						1			1						- 1											
			1		1	1	1			· · ·																
			1			1	1		<u> </u>	ł							_		r							
					<u></u>	1-	-	-	-					-	-	-										
								+	+				-		-+											
						<u> </u>			<u> </u>																	
						-	-	-	-																	
							<u> </u>	<u> </u>								-										
		· · · · · · · · · · · · · · · · · · ·	L			ļ	Į	<u> </u>	ļ	ļ																
					<u> </u>		L		<u> </u>																	
			ļ		ļ	ļ							$ \rightarrow $													
				i	<u> </u>	ļ	ļ	<u> </u>													L					
					1																					
																						·				
						1																				
								Ι																		
			1				Τ	Ι																		
				1	1	1	1	1	1	1																
_			1	1	t			1	+	†				i												
			1	i —	1	<u> · · ·</u>	1	<u> </u>	1	t											· ·					
			 	—	+	<u> </u>	+	+	+	+				<u> </u>							<u> </u>		<u> </u>			

.

HOLE: PR 02-02

Company, Noringale	
Project: Praxis	
Core logged by: D. Kuran	
Start Date: Sept 6,02	Finish Date: Sept. 9,02

Northing	6172450
Easting	434725
Elevation .	1249

Page 1/4		Azimuth	Dip
	Collar	030	-45
	381		-56
EOH	370.4		1

Depi	_	Description	ROCK	%	%	%	%			Сы		Fol	beds	2 ⁵	2 ^K	2 ^M	ROD	Recov.	Sample	Interv	ral (m)	Cu	Pb	Zn	Ag	Au
from	to		CODE	Ру	Ср	Sρ	Po	Ga	Qvn	chiorite	guertz			8ef	<u>k-1</u>	mag		%	Number	from	to	ррт	ррт	ррт	ppm	g/t
0	2.6	Casing											<u> </u>					40								
2.6	57.5	Black massive mudsstone, monotonous, minor laminated sections, grey	JSmm	tr			1						ļ													<u> </u>
		beds. Po, Py mineralization occur as bedded laminations and dissem																								
		in siltier beds, locally rechrystallized along foliation, weathering to 10.3m					 			ļ						<u> </u>										
		10.2 Minor Po lams		tr				.			2		85			<u> </u>		100								
		17.0 10 cm broken with rusty gyz.]															1	
		19.9 19 cm qtz breccia vein	VNq										45													
		20.5-21.0 Weak shear, minoir graphitic slips	FZ										30									<u> </u>				
		24.8 5cm grit brown bed	<u> </u>										75													
		31.2-31.7 gtz healed breccia														· .										
		32.2-33.2 Unit contains 10% 1mm black andalusite p blasts			1																					
		39.7-41.2 vgf diss. Py and whispy Po		2			2					_	78	•					111001	39.7	41.2	84	12	108	1.00	0.0
		46.7-47.5 Diss -banded fg Po, minor Po veins				L	5												111002	46.0	47.5	129	12	103	1.00	0.02
		53.0-54.5 1-3 cm bands of 20% diss. Po										75	80					100	111003	53.0	54.5	121	16	85	1.60	0.0
		56.9-57.3 shear, graphitic slips	_										30													
57.5	59.3	Vessicular mafic sill, grey-brn, 2%.3-1 cm carb amygdules	TBsa	_	I								50					100								
59.3	60.3	Black massive mudsstone, 10% 3-5 cm angular mafic blocks, 5% Po, Tr Sp(?)	JSmm										40					90	111004	59.2	60.3	78	16	121	1.60	0.01
60.3	63.1	Massive black mudstone with 60% coarce light grey silt at base, silicified	JSmm	1			3						80					100								
63.1	142.8	Massive black mudstone unit contains local laminated sections with 2-5% fg	JSmm																							
		Po in siltier sections, minor shearing, local patchy silic.			1																					
		69.0-69.2 sandy bed with mud ripups					2						75					100	111005	66.7	68.2	115	14	127	1.40	0.02
		66.7-68.2 Po lams and diss in grit		1			3																			
		69.4-69.6 grey sandy unit																								
		74.7-79.5 well bedd @ 3 cm																								
		80.7 20 cm shear @ 45 deg.	FZ										45					60								
		84.8 7 cm qtz healed shear @ 90																								
		85.1 bx healed by fine sand																								
		90.0-91.0 5% andatusite pblasts											70													
		90.3-94.5 irregular 1-2 cm silty beds with 5% diss. Po					3												111006	93.0	94.5	90	8	111	1.00	0.0
		95.5 minor whispy Po																	111007	94.5	96.0	64	10	116	0.40	0.0
		102.3 3mm Po bed with tr Cpy			tr													100	111008	102.0	103.0	169	8	150	0.60	0.0
		108.4-109.9 3% Po as 1mm lams		tr			2						80					100	111009	108.4	109.9	98	14	128	1.00	0.02
		166.5-118.0 massive mudstone 2% clotty Po																	111010	112.4	113.7	99	8	163	0.60	0.0

.

HOLE: PR 02-02

Page 2/4

Dept	lh (m)	Description	ROCK	%	%	%	%	SCA	%			Fol	beds	2 ⁸	2 ^K	2 ^M	ROD	Recov.	Sample	Inten	/al (m)	Cu	Pb	Zn	Αq	Au
from	to		CODE		Ср		Po	Ga	Qvn	chiorite	quartz			Ser	k-1	mag		%	Number	from	to	ррт	ppm	ppm	ppm	9/
		124.0-125.5 Fine Po lams parallel to bedding			1													90	111011	116.5	118.0	72	8	120	0.4	0.0
		125.410 cm shear zone																	111012	124.0	125.5	95	10	110	0.2	0.0
		126.5-126.9 shear gouge	FZ										75					70								T
		129.5-129.8 Fault 5 cm qtz plus gouge	FZ										65					70								
		130.0-131.5 5% irregular Po lams				ľ	5												111013	130.0	131.5	126	18	127	0.2	0.0
		1315-133.0 3% Po																	111014	101.5	133.0	121	16	127	0.2	0.0
		133.7-139.8 broken, fault zone, minor graphitic slips	FZ						5																	
		140.2-141.7 2 cm wide Po bed					3		2				80						111015	140.2	141.7	211	14	125	0.4	0.0
		142.2-142.8 Fine laminated cherty horizon									3															
142.8	148.8	Black, finely laminated at 1-3 mm, contains light gray siliceous sections and																								
		gritty Po rich layers up to 10%/15 cm.	JSml	1			3				2		90					100	111016	142.8	144.3	95	10	136	0.2	0.
		142.8-144.3 finely laminated siliceous unit					2												111017	144,3	145.8	80	8	134	0.2	0.
		144.3-145.8 Black weakly laminated mudstn					3						90						111018	145.8	147.3	103	12	142	0.2	0.
		145.8-147.3 Black lam musdtone, lam Po, diss Po in grit beds					5												111019	147.3	149.8	158	16	131	<0.2	0.
148.9	153.7	Black weakly bedded massive mudstone, locally rextalized, minor Po lams	JSmm	tr			2						85					100								
153.7	164.6	Well bedded at 2-5 cm, local black gritty beds to 15cm contain 5-7% Po.light	JSmł	1			4						85					95	111020	153.5	155.0	130	14	104	<0.2	0
		grey silica altered patches, sulphide present to 157.3. Bedding isolinally																	111021	155.0	156.5	214	16	199	0.2	0.
		folded about bedding plane parallel axia planes. Po as vfg disseminations																	111022	156.5	157.3	158	10	99	<0.2	0.
		and 40ppm of 1-3 mm lams, In grit beds clasts up to4mm are 30% Po. As																	111023	160.3	164.6	169	14	141	<0.2	0.
		sulphidic clasts or sulphidized clasts.																								
164.6	166.5	Grey-brn massive malic sill, 10ppm brown biotite, contacts conformable	TBdm										85					100								
166.5	174.5	Black lam mudstone, 10% gritty beds and very fine siliceous silty beds	JSml	tr			4						85					100	111024	166.5	168.0	136	14	146	<0.2	0.
		rare 10 cm grit beds with 7ppm Po.																	111025	168.0	169.5	60	10	83	<0.2	0,
		168.3-168.5 Qtz vn gouge Fault Zone	FZ										30						111026	169.5	171.0	149	16	129	<0.2	0.
		171.0-172.0 brown grit bed, 10ppm fine Po					10											70	111027	171.0	172.0	120	16	117	<0.2	0.
174.5	200.6	Massive Black mudstone, weakly bedded at 20cm with light grey silty beds	JSmm										80					100								
		to 2 cm. Local uphote fining light grey sandy beds with 7% diss Po.																								\square
		174.5-175.2 light grey fine sandstone, feldspathic.											80													
		177.3 15 cm black gouge	FZ										75					70								1
	L	178.6-179.0 qtz healed gouge	FZ										75					70								
		179.0-180.1 Light grey chippy sandstone, fining up											80					100								
		190.0-191.0 Coarce clastic bed, silicified top, 10% Po in dirty grit portion																	111028	190.0	191.0	195	18	80	0.2	0.
		192.2-192.7 shear zone, 20% qtz veins@30 deg.	FZ						20				30					85								
200.6	211.0	Black taminated mudstone at a mm scale, minor Py as bedded lams.	JSml										90					100								
211.0	216.9	Black massive mudstone, local lighter grey grit sections.	JSmm										90					100								
		212.2 Light grey silicified bed											80													
		213.8 minor shear, weak gouge																							<u> </u>	

HOLE: PR 02-02

Page 3/4

.

		·····										LE: 1	The second value of the se													
Dept from	h (m) to	Description	ROCK	%	%	%	%	% Ga	*	Chi		Fol	beds		2 ^K		RQD	Recov.	Sample		val (m)	Cu	РЬ	Zn	Ag	Au
100				<u>- ry</u>		<u> sp.</u>	FU	Ga	QVn	chlorite	quarte			Ser	k-1	mag		%	Number	from	to	ppm	ррт	ррт	ppm	g/t
		213.8-214.1 Light gray feldspathic sandstone, fining up.	_	<u> </u>									···			 										
		215.0-216.3 10 cm coarce sand layers			+															1						
	<u> </u>	215.7 mud flame up into silt	_		-	-								· · · ·		 							· · · · ·			
——		216.4-216.8 Broken core, minor graphitic slips	FZ		·[80			ļ		70				I	ļ			
216.9	240.4	Black laminated mudstone, taminated at a 3-7 cm scale, Irregular patchy Po,	JSml									85	75			 		90							ļ	<u> </u>
	<u> </u>	and fine laminations.					<u> </u>										 '						ļ		ļ	
 		233.3 5cm Po bed, 40% Po.	_			ļ								<u> </u>					111029	229.3	230.8	81	16	106	<0.2	0.01
<u> </u>		239.25 2 -2cm mass Po beds.												1					111030	230.8	232.3	67	14	131	<0.2	<0.0
		239.5-240.0 brownish bioitie rich grit, 2% Po	_			-													111031	232.3	233.8	212	16	140	<0.2	0.0
240.4		Felsic sill, mottled brown with 2ndary biotite near contacts, tr Po	JFdm				tr				3		85					100								
241.2	242.5	Black laminated mudstone, ig brown silty tayers to 5 cm with 7% ig Po	JSml		ļ	ļ	3						85					100	111032	240.5	246.0	80	12	94	<0.2	0.0
		coarcer Po as lams to 3mm.																	111033	246.0	247.5	97	10	141	<0.2	0.0
242.5	250.6	Andesite tuff, mottled, fine grain homogenous, weak silicification	JAt																				1			
250.6	254.5	Black laminared mudstone, lams at 3mm	JSml	r			3						55					100	111034	250.6	251.1	37	8	111	<0.2	0.0
																			111035	251.1	252.6	80	10	119	<0.2	0.0
						1													111036	252.6	254.5	74	10	62	<0.2	0.0
254.5	255.3	Andesite tuff, fine grn-brn top of fine sand size coarcening down to sharp	JAL	[60													
		basal contact at 60 deg.					[· · · · · ·					
255.3	261.6	Felsic sill, mottled grey-grn to pink, patchy carbonate altn, massive.	JFsm															100								
		260.2-261.6 carbonate vein, open space euhedral xtals	VNc										10													
261.6	262.5	Fine grain andesitic tuff/epiclastic sandstone brown biotite patches, slightly	JAt										85			<u> </u>		100								
		coarcer down hole.		<u> </u>	1													100								
262.5	263.9																									
102.0	200.0	laminated at 1-4 mm, minor 1-2mm Po lams.				<u> </u>										<u> </u>									<u> </u>	
263.9	2726	Andesite sill, upper contact contains 10ppm brown biotitepatches. Relic	JAsm		{		tr																			
203.5	213.0		JASM		<u> </u>	+	<u> </u>						• •••													
		feldspar phenos visible. Core of sill contains 10% 1-3mm white amygdules	_	-		+																				
070.0	076.4	lower 0.5m section has 3-5 cm blocks of sill in fine green matrix.		-	ł—	+																				
273.6		Andesite tuff, well laminated, 25% black mud lams @2-10 mm.	JA1		 						-		65					100								
275.1	278.1	Black-grey laminated mudstone, minor andesitic tuff component. Lam Po	JSml			-	3						80					100	111037	275.1	276.6	109	10	97	<0.2	0.01
			_	<u> </u>		<u> </u>													111038	276.6	278.1	86	10	92	<0.2	0.02
278.1		Dark grey fine grain muddy grit	JSss							├			90	\square				100								
279.6	287.1	Black laminated mudstone, 5% Po as diss in silty beds.	JSml		┣		tr				-		85					100	111039	278.1	279.6	46	8	18	<0.2	0.01
			<u> </u>	—	<u> </u>	_					-								111040	279.6	281.1	77	10	123	<0.2	0.01
		·····	_		 	I										L			111041	281.1	282.6	73	10	121	<0.2	0.02
				.	 	I													111042	282.6	284.1	73	88	108	<0.2	0.0
																			111043	284.1	285.6	67	10	117	<0.2	0.01
																			111044	285.6	287.1	94	8	120	<0.2	0.01

289.3 292.	Description 3 Mixed mud and graded sandy feldspathic beds. Minor diss Po 6 Felsic Sill, brecciated,, dark-med grey green, rotated blocks up to 7 cm	ROCK CODE		%		_			15																
287.1 289. 289.3 292.	3 Mixed mud and graded sandy feldspathic beds. Minor diss Po				%	%	%	%	Chi	Sil	Fol	beds	2 ^s	2 ^K	2™	RQD	Recov.	Sample	Interv	al (m)	Cu	Pb	Zn	Ag	Au
289.3 292.			Py	Cp	Sp	Po	Ga	Qvn	chiorite	quartz			Ser	k-f	mag		1 %	Number	from	to	ppm	ppm	ppm	ppm	g/t
	0 Felsic Sill, brecciated, dark-med grey green, rotated blocks up to 7 cm	JSms	1		<u> </u>	tr						85					100								
		JFsb				2				3		75					100								
202.0 204	of medium grained felsic intrusive, minor retic hold, 1% patchy Po and brown	1	1	<u> </u>																					
202.0 204	biotite, silicification increasing down.	1										<u> </u>													
, ∠∋∠.U ∠30.	3 Andesitic tuff, homogenous faint bedding, med-dk grn.	Jat				tr			2	1		80					100	·							
298.3 301.	9 Andesitic I tuff, fine grain homogenous, light green, contains patches of	JAt	1	tr	2	1	2		1	3		80					100	111045	296.8	298.3	59	10	36	<0.2	<0.01
	light grey siliceous alteration containing patches and aggregates of fine												h					111046	298.3	299.3	252	6734	3942	13.8	0.27
· · · · · · · · · · · · · · · · · · ·	to medium grained galena, sphalerite and minor chalcopyrite up to 5%/10cm.	1																111047		300.3	157	702	1553	2	0.01
	Lower contact gradational	1	1															111048		301.8	127	18	65	0.2	0.02
301.9 312.	7 Andesite fragmental, brownish green, heterolithic, porly sorted, matrix	JAti	1	tr		2			2	3		90					100	111049	301.8	303.3	235	10	160	<0.2	0.01
	supported, frags are .5-1x3cm, angular, fine grain matrix weakly sericitized					_												111050	303.3	304.8	212	10	98	<0.2	0.01
	Unit contains 2% Po and rare Cpy grain.																	ľ							
	304.0-304.2 Fine sandy section, unit gets more chloritic down section,																								
	frags more closely packed.																								
	306-312.0 Frags to 2 cm are weakly pyroxene phyric basalt	T	<u> </u>																						
312.7 321.	1 Pyroxene basalt, massive, dark grey-green, patchy chlorite-sericite altn.		Γ	<u> </u>							[
	317.2-317.8 shear/gouge	FZ												-											
	basal section has cobbles, poss flow bottom bx.	JBmf							3								98								
321.1 327.	2 Black laminated mudstone with fine light green tuff beds	JSml				tr						85					100								
	323.0-323.7 upwardly fining light grey coarce grit		1																						
327.2 329.	5 Interbedded fine dark grey silty mudstone anmd light green and beds	JSml		<u> </u>		tr												· · · · · · · · · · · · · · · · · · ·							
	4 Pyroxene basait, massive, dark grey-green, patchy chlorite-sericite altn.	1															98								
	local patchy brown biotite																								
	365.0-365.8 Fault, filled by white glassy guartz.	FZ			-			60				45													
370.	4 EOH.																								
· · · · · · · · · · · · · · · · · · ·																									
													<u> </u>												
			<u> </u>																						
		1	1																						
		1	1		1								<u>†</u>	<u> </u>											
		1		<u> </u>																					
			i i	1																				\neg	
		1	1							· · · · ·	1		t												
		1	1										1												
			1	\vdash									†	-											

>

		Diamond Drill Log		HO	LE:			PR	02-	-03									Page 1/4	ļ						
		Company: Northgate						-				-											Azimuth			Dip
		Project: Praxis			North			6172											•	Collar				030		-55
		Core logged by D. Kuran Start Date: Sept. 10.02 Finish Date: Sept. 14.02			Eastin	<u> </u>		0434				-							EOH	222 452						-52 -54
	l	Start Date: Sept. 10,02 Finish Date: Sept. 14,02			CIGAS	1001	ł					J							LON	-32		(· ·			.	
Donth	(10)	Description	ROCK	%	%	%	ALTI	N SCA	-	15 Chi		Fol	beds	2 ⁵	2 ^K	2 ^M	ROD	Recov.	Sample	Interv	al (m)	Cu	РЬ	Zn	Ag	Au
Depth from	to	Descipiion	CODE	Py	Ĉp	Sp	Po			chsionite				ser	k-f			<u> *</u>	Number	from	to	ppm	ppm	ppm	ppm	g/t
0	2.0	Casing								<u> </u>						ļ						ļ				
2.0	50.8	Rhyolite flow, flow banded, locally weakly brecclated to milled, faintly	JRfb				tr	<u> </u>	ļ	ļ	4	 	75			<u> </u>	<u> </u>	100				'				
$ \rightarrow $		feldspar phyric, minor 1 cm spherulites, weathered to 42m				<u> </u>	ļ	<u> </u>	<u> </u>		<u> </u>			<u> </u>				 								-
50.8	51.6	Black Laminated siliceous mudstone, thin unit between myolite flows	JSml					1	<u> </u>		3		60			ļ		75								
51.6	75.8	Rhyolite flow, brecclated, light to medium grey, aphyric fragments range				<u> </u>				-	 	<u> </u>	<u> </u>	<u> </u>				100				 				
		from .3-4cm and vary from clast to matrix supported, rare black mudstone							<u> </u>				 				<u> </u>									
		clast. Minor fracture filling Po. Minor chlorite and epidote stringers.	ļ			 	 		<u> </u>	1	3	<u> </u>				 		100		ļ						
75.8	83.3	Fetsic tuff, sandy, dark green chlorite alteration, contains minor silt, well	JRSt	1			tr		<u> </u>	3	_	-	65		<u> </u>	 				·		<u> </u>				
		sorted, upper contact sharp at 45 deg, lower diffuse.		<u> </u>			<u> </u>		ļ		<u> </u>	 	-			 	ļ									
83.3	86.7	Rhyolite flow, weakly autobrecciated, slightly shattered, fragment	JRbx	tr_				 	ļ	4-1-	4		85			<u> </u>		100				<u> </u>				
	•	supported, lower contact sharp at 85 deg.		<u> </u>		<u> </u>			<u> </u>	1		<u> </u>										 				
86.7	112.8	Massive mudstone, black, minor gtz./ carb veins, Diss. Po along beds	JSmm	tr	tr	tr	2					<u> </u>	80			<u> </u>	98			ļ			 			
		minor thin streaks of liver colored sphalerite parallel to beds,					<u> </u>	<u> </u>	<u> </u>		┥					 			,			┝──	<u> </u>			
		interval has several 10 cm shear/fault zones				L	ļ		<u> </u>	1.		1		<u> </u>	ļ							L				
		87.2-87.3 Gougy shear	FZ										70	 	<u> </u>	 	1	90	111051	91.0	92.5	129	14	106	<0.2	0.0
		91.3-91.7 Minor fine Sp as vfg whisps		ļ.—	tr		2				ļ						<u> </u>		111052	92.5	94.0	99	12	154	<0.2	0.0
		93.4-93.7 Broken core																	111053	94.0	95.5	111	10	121	<0.2	0.0
		94.2-94.6 B roken core					<u> </u>	ļ				 			 		<u> </u>	<u> </u>	111054	95.5	97.0	125	10	99	<0.2	0.0
$ \rightarrow $		97.0-98.2 Broken, gouge, 30% carb. Veins	FZ	2		ļ	ļ		<u> </u>			<u> </u>		ļ	 	ļ	<u> </u>	<u> </u>				_				
		100.0-166.3 Several sections black hard chrystallized section, Marker unit		<u> </u>			 		ļ				<u> </u>	<u> </u>	┨		 									
		93.3 10cm gouge at 80 deg.	FZ						 				80		1	 	95		111055	100.0	101.5	1	8	70	<0.2	0.0
		100.9 tr Cpy in Po vein, 3mm	 	<u> </u>	tr	 	_		<u> </u>			 		ļ	ļ	 	<u> </u>		111056	101.5	103.0	131	10	152	<0.2	<0.
		105.1 tr fine SP with Poin bedding parallel qtz sweats	ļ	<u> </u>		tr			<u> </u>	<u> </u>		_			·				111057	103.0	104.5	78	10	126	<0.2	<0.
$ \rightarrow $		105.7 1mm liver spalerite lam				1			-	<u> </u>	_	1				<u> </u>			111058	104.5	106.0		6	123	<0.2	<0.
112.8	114.1	Dark green vfg and-mafic tuff, weil sorted , patchy brown biotite.	JBt		<u> </u>							_		 					111059	106.0	107.5	1	10	155	<0.2	<0.
114.1	130.0	massive mudstone, black, sections of dark green mafic silt								-	+		<u> </u>		-	1	-		111060	107.5	109.0	77	8	133	<0.2	0.0
		114.1-115.6 3-5% taminated and blebby Po		<u> </u>		 	5			2			75	-	-	-	-	100	111061	109.0	110.5	1	8	115	<0.2	0.0
$ \rightarrow $		116.0-119.5 2 cn gtz vein 5 deg to core, 117.2 Tr Sp in vein			<u> </u>	tr	_				+	-	 	<u> </u>			╂──		111062	114.1	115.6	1	10	143	<0.2	<0.
		121.1-122.0 Dark green tuff layer	 	<u> </u>				-		<u> </u>			┢╌	<u> </u>			 		111063	115.6	117.1	87	8	139	<0.2	0.0
130.0	134.8	Rhyolite sill, light pinkish grey,10% fine chloritic clots, upper and	JFs	┝			-					-	<u> </u>				 	· ···· ·	111064	117.1	118.6	76	6	143	<0.2	<0
		lower contacts have 0.5 m bleached hilds into adjacent seds.	 	<u> </u>	<u> </u>	_	┨	 -	┥						+					 		 				
134.8	460.0	Black mass, mudstone, local weakly lam sections, Po as diss grains, beds of	1 JSmm	1	1	1	1	+	1	1 '	1	1	80	1	1	1	1	100		1	1	1	1	I ´	1	

.

HOLE: PR 02-03

Page 2/4

Dept	h (m)	Description	ROCK	%	%	%	%	%	%	Chi	Şil	Fol	beds	2 ⁶	2 ^K	2	RQD	Recov.	Sample	Interv	al (m)	Cu	Pb	Zn	Ag	Au
from	to	•	CODE			Sp	Po	Ga	Qvn	chiorite	quarte			Ser	k-f	mag		%	Number	from	to	ppm	ppm	ррт	ppm	9
		135.5-137.0 Massive ridstn with Po lams					3						90					100	111065	135.5	137.0	127	14	133	<0.2	0.
		142.4-143.9 2% Po, siliceous					2												111066	142.4	143.9	60	8	122	<0.2	0
		143.9-144.8 Qtz vein, 15 cm	VNg																111067	143.9	144.8	132	12	139	<0.2	<(
		144.8-146.3 Black mudstone					3						90					100	111068	144.8	146.3	103	6	56	<0.2	_0
		146.3-147.7 dark brown vfg sand beds with 20% vfg diss. Py.		20									90						111069	146.3	147.7	140	10	75	<0.2	0
		147.7-148.3 Mafic sill ,	JBs																							
		151.9 7cm qtz/carb vein 2 75 deg.	VNq										75													
		152.4-152.8 Light grey finely laminated highly siliceous beds											80													
153.8	159.4	Medium grey, massive fine grain siltstone	JSst				tr											95								
		156.5 3 cm carb vein																								
		159.0 Shear with qtz/carb veins /10cm	FZ										60					100								
159.6	165.0	Massive black mudstone, poorty bedded with slightly coarcer siltsone	JSmm										60				_	100								
165.0	170.0	Rhyolite sill, medium -dark grey, top 40cm finely bx, bottom contact sharp	JFs							1	3		60													
		silicification, 10% fine Po spots, minor 5cm qtz veins with 5% Po.																								
170.0	179.7	Massive black mudstone, minor lam sections containing 30%Po/20cm.	JSmm				5						80					90	111070	171.9	173.4	111	18	78	<0.2	<
		base is broken and qtz veined, minor vfg black silty mud.										1														\square
		173.4-174.4 Po beds 2cm thick, slightly contorted, grading up.					15				1		85					100	111071	173.4	174.4	90	12	132	<0.2	6
		177.4-175.9 3-5% Po in 13 cm bands																	111072	174.4	176.9	116	12	139	<0.2	<
		175.9-174.4 3% vfg lam Po					3												111073	176.9	177.4	137	14	113	<0.2	<
		178.5-179.7 Fault, broken core, graphitic slips, lower contact sheared at 45	FZ	2					20									60								
179.7	182.7	Rhyolite sili, medium -dark grey, breciated, silicified, lower C at 45 deg	JFms								3							75								
182.7	191.4	Massive black mudstone, minor shearing. Diss Po in contorted silic lams	JSmm										90					90								
		183.0-183.5 Fault, broken core	FZ										90													· · ·
		183.5-183.8 5% Po					5																			
		187.7-187.9 Fault, qtz, gouge	FZ	1			2		20				90							1						
		189.7-190.0 Vfg silt, 2% vfg po					2																			
		191.1-192.6 massive, 4% 2mm diss Po		Γ			4		[80					100	111074	191.1	192.6	67	8	133	<0.2	<
		192.6-194.1 Diss po in silty beds at int of beds and cleavage										80	45						111075	192.6	194.1	66	6	78	<0.2	6
194.1	197.1	Grit, dark grey, well sorted upward fining, Po as diss clastic grains.	JSsg				2		[80					100	111076	194.1	195.6	126	8	53	<0.2	1
197.1	200.3	Black laminated mudstone at 2-3cm scale	JSml	[2						80					100	111077	195.6	197.1	79	6	117	<0.2	6
200.3	240.0	Black massive mudstone, spotty carb alteration, and alusite spots	}																							
		208.7-210.4 light grey-green epiclastic silty unit.																								
		209.2 Fault gouge, 15 cm	FZ										50													
		212.9 10cm hard siliceous band with 5% vfg py.																		[[
		214.4 20 cm brown biotidic silty beds																	111078	216.6	218.0	94	10	114	<0.2	1
		215.7_7cm gtz vein, 45 deg, poss tr Sp adjacent to vein.																	111079	218.0	219.5	46	6	35	<0.2	
		224.0 1 cm Po lam	[1	1														111080	235.5	237.0	89	10	52	<0.2	

Diamond D	rill Log
-----------	----------

HOLE: PR 02-03

FK 02-03

Page 3/4

0	h (m)	Description	POCK	0/	04	04	0 ∠	0Z	0/	_	_	LE:			L. PK	1 2 ^M	Inon	Recov.	Enmala	Inter	ol (m)	C	Dh	7-	<u> </u>	· · · ·
from	h (m) to	Description	ROCK	% Py	6 %	% So.	% Po	% Ga	0vn	Chi chlorite	quentz		Deas	2 ^S Ser	2 ^K	∡ mag	RUD	Recov.	Sample Number	from	al (m) to	Cu ppm	Pb ppm	Zn ppm	Ag ppm	-
240.0	290.3	Laminated black mudstone unit, unit consists of 1-3 m units of upward fining	JSml	.,			1.0		S. C.		14000	1			1.27	inag			Hamber	ingiti		ppin	ppn	ppm		\square
240.0	290.3	cycles of silt to mud containing several 5% Po/10cm bands and dissem. Po.	J 3111		┼──							-					1								<u>├</u> ───┘	
					+		3	t—		1															<u> </u>	
		Unit contains .5-1.5 cm white xtat rosettes and blades; and alusite.			+		- 3		<u> </u>														<u> </u>			
_ _		241.2 2cm 60% Po				+							<u> </u>	-	┼──	1			111081	243.0		30	4	28	<0.2	
		260.5-265.0 more massive	JSmm				2						90	╂				100	111082	244.5		79	8	71	<0.2	
		265.8 5 cm gouge parallel to beds.			┨							}							111083	249.0	250.5	51	4	50	<0.2	┢━
		266.1-290.3 well lam, 5% white and alusite blades			+				-	-							<u> </u>		111084	253.6	255.1	100	10	80	<0.2	┝
		272.9 poss fine Sp lam			 		┢.──									ļ		 	111085	272.8	274.3	83_	8	94	<0.2	╞
		274.6 10 cm grit bed, 2% Po				4		ļ	<u> </u>	<u> </u>				<u> </u>			ļ	· · ·	111086	274.3	275.4	67	8	119	<0.2	_
		280.4-290.3 Well Iam. Local Po rich silty section.				1		<u> </u>		<u> </u>				 		<u> </u>	ļ		111087	280.4	281.9	76	12	135	<0.2	
		289.2 sand bed @ 85 deg.			<u> </u>	┣_	<u> </u>	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>	85	<u> </u>			 	_	111088	281.9	283.6	42	6	110	<0.2	
290.0	292.3	Black mudstone /grit debris flow,mudstone ripup clasts to 2 cm in grey sand	JSdf	1		<u> </u>	4	ļ				ļ	90				<u> </u>		111089	290.3	291.3	115	12	103	<0.2	
292.3	310.2	Black massive mudstone, minor white pblasts ,several gougy shear zone	JSmm																111090	291.3	292.4	66	10	85	<0.2	L
		and blocks of felsic sills.			ļ,	I		ļ				_										<u> </u>				
		298.3-299.8 Graphitic slips, gouge, fault zone	FZ								_				<u> </u>											
		301.2-301.8 Fault Gouge, graphite, 301.4-301.6 rhyolite block	FZ							I																
		304.1-304.7 broken core																								
		304.9-305.2 myolite block			1																					Γ
		309.0 40 cm gritty layer, tr Po				Ι									[Г
310.2	369.0	Thick unit of very well laminated black mudstone comprised of upwardly	JSml	_		1			T	1		90	80		1				111091	311.3	312.3	47	8	57	<0.2	Γ
		fining cycles of 3-5 m thick packages of Po rich mud grading									<u> </u>						—		111092	314.1	315.1	51	8	127	<0.2	Γ
		down to coarce silt-sand and pebble sized material.			1	1	1		1	1	1	1					1		111093	319.7	320.7	88	8	116	<0,2	T
		Grades and basat scour marks indicate tops .							1	1		1			1		1		111094	320.7		34	6	132	<0.2	ſ
		are uphole. Package may be isoclinally thickened.						 			1	1					1		111095	337.1		105	10	102	<0.2	f
					<u> </u>				\square	1	1	1	1		1-		1		111096	338.6	339.8	85	12	132	<0.2	t
		330.3 coarce base; heterolithic pebbles to 1 cm.			1		5	\square	1		†	1	85	-	<u> </u>	· · · ·	1		111097	339.8	341.3	69	12	113	<0.2	┢
		337.1 -338.6 well tam section, vfg diss po in sitty sections.			1	1	5	1	1	+	†	90	85	1	1	1	1		111098	341.3	343.0	66	10	100	<0.2	t
		343.0-352.0 laminated with sandy to grit interbeds, 4-7% diss Po			+		Ť	†		1		† <u> </u>	<u>†</u>	†—	+	1	1	t	111099	343.0	344.5	117	12	244	<0.2	t
		353.0-355.5 60% grit, 7% Po			$t \rightarrow t$	\vdash	1	†—		+	†		····	1		1	1	 	111100	344.5	1	107	12	137	<0.2	t
					1-	†—	\vdash		+	+	†	+	····	1	1	<u> </u>	1	1	111101	346.0	340.0	146	24	136	<0.2	t
					+	+	1	<u> </u>		1	┢	<u> </u>	1		\vdash	\vdash	1		111102	346.0	· · · · ·	119	12	135	<0.2	┢
					+	\vdash	+	<u> </u>	+	1	+	<u> </u>		\vdash	+	1-	 				1		1			┝
								+	 -	+		+	<u> </u>	 	+		+		111103	349.0	350.5	97	10	129	<0.2	╞
				-	+	+		╂	┼──	+	┢	+	-	\vdash	-				111104	350.5	352.0	122	10	84	<0.2	╀
			ļ		+	\vdash	–				├	┼──	┣──	┢		┼──			111105	352.0	353.5	124	12	92	<0.2	$\left \right $
							–		┼					┼──			+	 	111106	353.5	355.5	120	14	153	<0.2	┞
369.0	370.0	Chilled and/mafic sill, dark grey, massive, patchy carb alt. hflds of seds	TBms		<u> </u>		1					70	ł					I							<u> </u>	L

HOLE:

		Diamond Drill Log		но	LE:			PR	02-0	03								l	Page 4/4	ļ						
										_	N SCA															
Dept	۱ (m)	Description	ROCK	%	%	%	%	%	%	Chi	Sil	Fol	beds	2 ⁵	2 ^K	2 [™]	RQD	Recov.	Sample	Interv	al (m)	Cu	Pb	Zn	Ag	Au
from	to		CODE	Py	Cp	Sp.	Po	Ga	Qvn	chiorite	quertz			Ser	k-[mag		*	Number	from	to	ppm	ppm	ppm	ppm	g/t
370.0	372.7	beds.	JSmm		1				5				90					100								
372.7	373.7	Felsic sill chilled hilds sed margins, light grey massive	JFsm	1							3		75								-					
373.7	401.3	Black finely laminated mudstone, light grey 1-2 cm silty at 3-5 cm																								
		Minor irregularly spaces silty-sandy beds. Po as1-3 mm layers in mud																								
		and 1% diss grains.																								
		375.7 10 cm black gouge, fault	FZ									75														
		376.9 10cm medium sand sized mafic derived clastc bed										ļ								ļ						
		379.1-381.6 5-7 cn qtz veins, minor 1-2 mm round andalusite pblast spots			<u> </u>		I		_	4	<u> </u>		Į									<u> </u>		[
	-	382.2 4 cm qtz. Vein				<u> </u>	I —	<u> </u>	—			<u> </u>								<u> </u>		ļ		 		
		386.5-386.7 light grey siliciclastic bed, med-fine sand size		<u> </u>	<u> </u>	<u> </u>	_	<u> </u>	—	<u> </u>	<u> </u>											<u> </u>				
ļ		307.2-307.4 siliceous clastic bed(sandstone), light green		<u> </u>					+	<u> </u>										I		ļ				
		368.4-369.2 Fault Gouge, bedding parallel contacts	FZ			<u> </u>	1	<u> </u>	┿──				75					80				<u> </u>				
		389.8-390.6 Broken core, graphitic slips		ļ	<u> </u>	<u> </u>	I	ļ	—	<u> </u>	I		 							<u> </u>	 	ļ		ļ		
		390.6-392.1 finely lam Po tr py		1	 		3		—		-							85	111107	390.6		80	10	109	<0.2	0.02
					<u> </u>		<u> </u>		—	1	<u> </u>	 	ļ						111108	399.0	400.5	54	6	115	<0.2	0.01
		Rhyolite sill, light grey siliceous, 10% qtz veins, Tr Po, minor patchy sericite	JFsm		ļ	ļ	tr		+	1		I	I					100			I			[
401.9	423.4	Black finely laminated mudstone, siliceous silt with 3-5% fine banded	JSml			ļ	3		1	1														L		
		to diss. Po.							\bot				ļ													
		404.7-405.0 Light grey vfg siliceous bed.																						<u> </u>		
		405.7-407.2 Finely laminated mudsone, 3% po lams to 3 mm.					3						90					100	111109	405.7	407.2	89	8	101	<0.2	0.02
		408.6-410.0 5% Iam Po		1			4			1			90					100	111110	408.6	410.1	86	8	109	<0.2	0.01
		413.5-415.0 narrow 1-3mm Po beds at 90deg.					3						90						111111	413.5	415.0	90	8	65	<0.2	0.01
		420.5-421 light grey upward fining feldspathic clastic sands							T										111112	421.9	423.4	64	6	92	<0.2	0.01
423.4	425.8	bedding	JFms		T		T			Τ																
425.8	430.6	Felsic-int. sill, fine grained massive homogenous	JFms	[1	1	I	1	1																	
430.6	433.0	Dark bm-purple contact bx,3-12 ang. Frags in green poorly sorted			Τ	T				T									111113	436.5	438.0	63	8	54	<0.2	0.02
		milled matrix		<u> </u>	1	T	1	· · · · ·	1	1	1				T											
433	439.1	Black finely laminated mudstone, Rare py lam, upper .5m hflds, bleached	JSml	1	1	1		1		1														1		
		437.4 5cm black gouge	FZ	1	1	1			1				90		1		100					1				
439.1	442.9	Intermediate fragmental/lithic tuff, fine grained, medium-drab green	JAII		1	1			1			80					100									
		well sorted, upper .5m has 1-2 cmfrags, minor mud content, fairly soft,		1	1	1			1			1	1		1				111114	440.1	441.6	38	<2	30	<0.2	0.01
		40 cm of clean feldspar xtals and detritus, brown biotite along foliation.	· · · · · ·										1		1											
		439.4-440.2 gtz heated fault breccia.	FZ	<u> </u>		1			<u> </u>	-					1					1						
442.9	452.3	Basalt flow, augite/pyroxene phyric,	JBfm	1	1	1	\uparrow	1	1	1		1			1					1	t	t – t	1	1		
		drab-dark green, gets fresher down hole, upper 2 m stightly chilled			+	†	<u> </u>	1	+	1		1	1		1	1				1		t	<u> </u>	1		
1		and bleached			†	1		1	1	1		\mathbf{t}	1	<u> </u>	1					1	t	1	<u> </u>			
		EOH	<u> </u>	1	+			+	+	1	+	1	1		1-	·				1	t	t				

Diamond Drill Log Company: Northgate Project: Praxis

Core logged by: D. Kuran

Finish Date: Sept 20. 2002

Start Date: Sept 14, 2002

HOLE: PR 02-04

Elevation 1440

Northing

Easting

6171990

434950

Page 1/5

		Azimuth	Dip
1	Collar	030	-57
	262		-56
EOH	534		-60

							ALTI	N SCA	ALE:	5	MAX												-			
Dept	n (m)	Description	ROCK	%	%	%	%	%	%	Chi	Sil	Fol	beds	2 ^{\$}	2 ^K	2 ^M	RQD	Recov.	Sample	Interv	val (m)	Cu	Pb	Zn	Ag	Au
from	to		CODE	Ру	Ср	Sp	Po	Ga	Qvn	enkorte	quartz			56r	k-f	mag		%	Number	from	to	ррт	ppm	ppm	ppm	g/t
0	20.1	Rhyolite, light grey, mod well flow banded, weak sericite along flow bands, broken core	JRfb	tr							3		25					60					· · · · ·			
20.1	22.4	Rhyolite breccia, matrix supported, 15-25% 2-6 cm subangular frags in light green matrix	JRbx	1									80													
22.4	34.4	Rhyolite, light grey, mod well flow banded, weak autobreccia, minor 1cm round sperulitic growth	JRfb																							
		32.8 5 cm gouge/ shear										50														
		34.0 minor calcile veins																								
34.4	67.0	Rhyolite, massive to weakly flow banded, patchy silicn. next to fractures, Tr Po along bands	JRfb				tr				3		70					90								1
67.0	70.2	Rhyolite , light grey well flow banded, Tr chl. along bands	JRfb	1									70					75								1
70.2	74.5	Rhyolite, massive, light grey aphanitic, trace chl after mafics	JRfm																							
74.5	77.2	Rhyolite, massive, dark green chlorite altered, slightly feldspar phyric, 5% 1mm white fidspr	JRfm							3	•	70						100								
77.2	89.6	Rhyolite, massive, med grey green, moderate patchy to pervasive chlorite alteration	JRfm				t t			2																
89.6	92.6	Rhyolite, fragmental, dark green upward fining matrix supported, heterolithic. Mixed chloritic	JRtf							3	2							100								
		and chloritized frags from .3-1.2 cm. Minor whispy chl along foliation.																								
92.6	94.8	Rhyolite, flow banded flow, light-med green, weak patchy chlorite altn. Weak auto bx, fo	JRfb	tr																						
94.8	105.4	Rhyolite breccia, clast supported, light cream clasts in darker slightly chloritic matrix,	JRbx																							
		chl on fract. fragments subangular2-7cm, larger ones subrounded.			1																					
105.4	123.5	Rhyolite, massive flow, med-dark grey green, slightly autobx, patchy to pervasive chloritie alt	JRfm	2				- -		3	2	75						100								1
		110.0 10cm milled thyolite																								1
		116.0-117.0 broken core chloritic slips									30															
		121.6-123.5 Clast supported bx, flow bottom bx.																								
123.5	128.0	Rhyolite breccia, light grey frags in a dark green slightly pyritic matrix	JRbx	2			1			2								70								
128.0	130.1	Rhyoliyte flow, massive weakly bx, patchy chl/ser alt in matrix	JRfm																							
		129.8-130.0 Fault	FZ																							
130.1	155.2	Rhyolite fragmental, strong pervasive chlorite alteration, matrix supported, 25% .2-2 cm	JRfg	4						4	2															
		subangular grey green relic frags in dark green chlorite-biotite rich matrix.																	111115	137.6	138.6	4	14	195	<0.2	0.02
		137.6-138.6 5% diss. Po most fract surfaces are chloritic slips, minor patchy carb alt at base.																								
155.2	157.7	Rhyolite breccia.weak pervasive pink hem alt. at top grading down to pervasive chl alt	JRbx				5			3									111116	155.2	156.7	21	14	120	0.2	0.01
		interval contains 5% Po and tr Aspy.			Ι.														111117	156.7	157.7	27	10	78	<0.2	0.02
157.7	159.6	Fault Zone Broken, gouged chloritic core. Zone filled by late felted feldspar phyric mafic dyke	FZ	tr						2			90													
159.6	166.7	Rhyolite Breccia, pinkish greyauto bx, later shattered healed by Py+Po +chl/ser. In matrix	JRbx				2						78					80	111118	161.5	163.0	4	18	89	<0.2	0.02
						1.													111119	163.0	164.5	8	14	107	<0.2	0.01
166.7	179.0	Massive black mudstone, badly broken core, weak bedded at 10cm with ltgry carb layers																								
		169.5-170.1 fault gouge, minor euhedral buckshot Po after Py.	FZ										75					80								
		168.1-168.5 5% round 1mm andalusite spots																			[

HOLE: PR 02-04

Page 2/5

							ALTN	SCA	LE: 1	5	MAX															
Dept	th (m)	Description	ROCK	%	%	%	%	*	%	Chi	Sil	Foi	beds	2 ^s	2 [×]	2 [₩]	RQD	Recov.	Sample	Interv	al (m)	Cu	Pb	Zn	Ag	Au
from	to		CODE	Ру	Cp	Sp	Po	Ga	Qvn	chiorile	quantz			Ser	k-f	mag	l	%	Number	from	to	ppm	ppm	ррт	ррт	g/t
		177.4 15 cm dark green ash bed.											90													1
179.0	190.6	Mafic sill, light grey green, felted feldspar phyric, non fol.young, contacts weakly sheared.	TBs										85					100								
190.6	199.5	Mudstone, massive to weakly bedded, unit broken, 5% carb veins, minor fract filling Po.	JSmm				2						85													
		197.0-199.5 broken core several .5 m sections of gouge aand graphite	FZ																							
199.5	207.5	Mafic sill, light grey green, fetted feldspar phyric, non foliated ,young, contactos weakly chilled	TØs										85				· .									
207.5		Mudstone, black, laminated, slightly bake dand silicifiedMinor lam Po, andalusite spots	JSmm				2						80					100								
209.0	211.0	Mafic dyke, fine grained homogenous, felted feldspar, contacts xcutting at 45deg	TBd										45													
211.0	218.5	Mudstone, black, massive, weakly bedded, 1-2% Po filled tension tears@ 45 deg to beds,																	111120	211.0	212.5	67	6	75	<0.2	0.01
		minor 3-7 cm light grey calc bands																	111121	212.5	214.0	60	6	66	<0.2	0.01
		216.8-217.3 Graphilic shear	FZ										75						111122	214.0	215.5	74	8	85	<0.2	0.01
											[111123	215.5	217.0	92	16	89	0.2	0.01
																			111124	217.0	218.5	66	16	127	<0.2	0.01
218.5	220.8	Mafic sill, fine grained, felted feldspar, finer at contacts which are slightly sheared.	TBs										85					100								
220.8	231.2	Mudstone, black massive, weakly bedded intervals, foliation deforms bedded Po,	JSmm																111125	221.5	223.0	67	8	87	<0.2	0.01
·		minor carb beds, minor slight silica selvage about Po beds																	111126	223.0	224.5	71	10	107	<0.2	0.01
		228.7-229.0 light grey limy bed																	111127	224.5	226.0	89	10	82	<0.2	0.02
		230.1-230.4 5% irregular Po																								
	L	230 8-231.0 qtz/carb vein, 2-5% patchy po on margins	VNq				5						80	:				100								
231.2	235.2	Rhyolite sill, Jurassic, fine grained-aphanitic, minor biotite at bx margins, 7% Po. fol at 45 deg	JRs									45	80						111128	231.2	232.7	47	14	126	<0.2	0.02
																			111129	232.7	234.2	25	12	135	<0.2	0.01
																			111130	234.2	235.2	67	16	139	<0.2	0.01
235.2	244.5	Mudstone, massive ,black, minor 1-2cm grye siliceous bands with 10% vfg Py+Po, local patchy	JSmm									_		ļ	L											
		carb alt. , 2mm Po veins as filled tension fract. 90 deg to beds.		1			4						65			<u> </u>			111131	241.5	243.0	66	8	109	<0.2	0.01
																	ļ.,		111132	243.0	244.5	73	6	64	<0.2	0.01
244.5	246.5	Mudstone, black, finely laminated on 1-2 mm scale, very fine Po lams and disseminations in	JSml				6							<u> </u>		<u> </u>	<u> </u>		111133	244.5	246.0	72	4	48	<0.2	0.02
		carbonaceous mudstone.											L			ļ									[]	
426.5	289.6	Mudstone, black, massive, local limy sections to 20 cm,					3			•	[70	ļ.,,_			L	80	111334	252.0	253,5	59	4	32	<0.2	0.01
		257.0-259.0 Broken core, gouge, graphitic slips.	FZ				4							 					111135	253.5	255.0	63	4	39	<0.2	0.01
	 	264.5-268.0 Fault zZone black gouge	FZ										80					70	111136	255.0	256.5	59	6	57	<0.2	0.01
	ļ	268.0-268.2 Irregular Polenses, unit has weak bedding outlined by 5mm -3-5 mm Polams.																	111137	272.5	274.0	130	20	. 74	<0.2	0.01
		272.5-276.0 5-7% Po a diss whispy bands to 30%po/3-5 cm.											ļ	ļ			I		111138	274.0	275.5	. 86	12	101	<0.2	0.01
	L	272.5-285 numerous graphitic slips.										<u> </u>	<u> </u>	 	ļ	ļ			111139	275.5	277.0	76	8	156	<0.2	0.01
	L	287.6-281.9 Limy unit												ļ	L									L		ļ
283.6		Rhyolite slil, light grey, brecciated, 5% fract filling Po, 40% white qtz veins, sheared margins	JRs				7		40				45	 				100							L	
284.6	308.5	Mudstone. Massive, black, interval shattered and healed by fine 1-3 mm qtz/carb veins at 80											 	ļ		ļ										
		and 30 deg. Minor Po as bedding normaltension joints and 3 cm bands with 3-10% Po.								L	 													Ļ	\square	
		289.5-295.2 Shear Zone, gougy slips and qtz veins	FZ														l									<u> </u>

HOLE: PR 02-04

Page 3/5

										ALTN		LE: 1	5 1	XAN												
Dept	n (m)	Description	ROCK	%	%	%	%	%	%	Chl	Sil	Fol	beds	2 ⁸	2 ^ĸ	2 ^M	ROD	Recov.	Sample	Inter	val (m)	Cu	Pb	Zn	Ag	Au
from	to		CODE	Ру	Ср	Sp.	Po	Ga	Qvn	chiorte	quertz			Ser	k-1	тад		*	Number	from	to	ppm	ppm	ppm	ppm	g/t
		295.8-298.7 massive mudstone, diss and buckshot Py.							1										111140	296.0	297.5	100	10	130	<0.2	0.01
		298.7-303.0 Broken core, 30% qtz/carb veins	FZ	2			2		1								1		111141	297.5	299.0	92	10	118	<0.2	0.01
		304.5 Black hard rextallized material																	111142	303.0	304.5	72	12	114	<0.2	0.01
		· · · · · · · · · · · · · · · · · · ·																	111143	304.5	306.0	74	6	84	<0.2	0.01
																			111144	306.0	307.5	99	12	100	<0.2	<0.01
308.5	312.7	Mafic sill, grey, felted felspar, minor patchy 2ndary biotite. 0.5 m chilled sill margins.	TBs															100								
312.7		Mudstone, black, massive, Internally broken and weakly sheared.							10				75					60								
		Minor gougy sections with 5% 1-2mm euhedral Py cubes. Numarous graphitic slips		tr			1												111145	325.0	326.5	104	10	99	<0.2	0.01
		314.0-314.5 andalusite spots																	111146	326.5	327.0	78	12	100	<0.2	0.01
		319.5-321.0 5% 3mm euhedral buckshol Po after Py cubes																								
		323.6-324.1 chilled matic dyke.							1																	
		325.0-328.0 Weakly laminated, whispy Po, 0.5-1cm fine grit beds with 10-15% Po.																								
330.0	331.3	And-mafic lithic tuff. Light grey green, fine -medium grained sand sized material, upper contact	Jalt										80													
		gradational, lower sharp at 80 deg.																								
331.3	338.1	Mudstone, massive ,black, minor laminated to disseminated fine Po					2	1									Γ			{						
		333.1-333.5 Broken core, shear	FZ			1	5					75														
338.1	339.3	Mafic sill, grey, felted felspar, minor patchy 2ndary biotite. 0.5 m chilled sill margins.	TBs									-														
339.3	351.8	Mudstone, massive, black, patchy to diss. fg Py, Poss tr Sp as fracture fillingand vfg lams	JSmm				1										Γ		111147	340.1	341.6	154	14	153	<0.2	0.01
		343.0-346.0 both black spotted and white blades of andalusite.		\square					1								1		111148	341.6	343.1	58	6	119	<0.2	0.01
		346.1-351.8 mainkly massiveblack mudstone, minor silty-sandy beds to 15 cm. Tr Cpy		2	tr	tr	4					90	75					100	111149	343.1	344.6	40	10	116	<0.2	<0.01
		on fracture surfaces and in Po lams.																	111150	344.6	346.1	56	6	111	<0.2	0.01
									1								1		111151	346.1	347.6	66	6	123	<0.2	0.01
					<u> </u>	1											1		111152	347.6	349.1	75	10	82	<0.2	0.01
																	1		111153	349.1	350.6	98	10	90	<0.2	0.01
						1													111154	350.6	351.8	69	10	90	<0.2	0.01
351,8	464.0	Mudstone, black, weakly to well laminated with massive sections. Patchy spots of andalusite	JSmm			1											1		111155	351.8	353.3	112	10	95	<0.2	0.01
		pblasts and 10-30 cm sections of very carbonaceous pyritic mud. Unit carries minor							1								Ţ		111156	353.3	354.8	98	10	85	<0.2	0.01
	-	Cpy and Sp with tr Aspy assoc. with po and Py mainly along fractures.																	111157	354.8	356.3	120	8	102	<0.2	0.01
		353.5 tr red Sp in Py Po bed		-						-			65				1		111158	356.3	357.8	111	8	116	<0.2	0.01
		354.2 3cm qtz vein3-5 % Po, 2% Cpy grains to 1mm	VNa		1		3										1		111159	357.8	359.3	114	8	122	<0.2	0.01
		362.4-362.6 20 cm black gouge @ 90 deg.	FZ			1	1	1	1	1		90							111160	359.3	361.8	87	6	107	<0.2	0.01
		365.5-370.0 mod. Well lam at 2-5mm, minor graded grit beds to 15 cm		tr		1	5		Τ				75					100								
		374.5 5cm qtz, Vein				1						45							111161	365.5	367.0	144	10	145	<0.2	0.01
		375.0-376.0 Gritty sand bed	1					1											111162	367.0	368.5	93	8	114	<0.2	0.01
		377.9 3 cm qtz. Bx vein, 5% Po	VNq		[1			T			809							111163	368.5	370.0	109	12	119	<0.2	0.01
		379.5 4cm qtz vein tr Cpy	VNq	[1	1	3	1	1			50											1			1
		380.4 10cm qtz/Po section 60% Po+1% Cpy/10 cm	VNq		1	1	80	1	1	1		10				1	1					1	1			1

.

HOLE: PR 02-04

Page 4/5

			DOOL		~	~	~	~		.				25	AK I	2				Τ		-	-	-		1
Depti from	1 (m) to	Description	ROCK	% Ру	% Ср	% Sp.	% Po	% Ga	% Qvn	Chi		Fol	beds				RQD	Recov.	Sample	from	/al (m) to	Çu	Pb	Zn	Ag	
TORI		381.6-382.0 Beds contorted.		Ру	Cp.	op.	10	Ga	QVI	chiorita	Quartz			Ser	<u>k-</u> {	mag		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Number 111164	376.5	10 378.0	ppm 81	ppm 10	ppm 100	ррт <0.2	<u>'</u>
		381-3-3220 Beds contented. 385-391 5% white and alusite blades						<u> </u>					-+							378.0			16	109	1	
								<u> </u>											111165	1	379.5	80	18	112	<0.2	
		390.1 5 cm qtz vn, 10% Po, 1% cpy												+				<u> </u>	111166	379.5	381.0	159	20	130	<0.2	
		396.1 1% Cpy+10% Py/10cm in laminations	-			-	<u> </u>							···· •·					111167	381.0	382.5	77	18	85	<0.2	-
		398.0-398.5 well laminated , minor ripups, filme lams are 'M' folded around flat 90 deg axis	┼──	<u> </u>			\vdash	<u> </u>							_				111168	382.5	384.0	91	10	112	<0.2	
		402.0-403.5 mixed lam mudsune and sendy beds.		1	tr		5 5					$\left - \right $	85	-	_					1						
		405.0 Tr Cpy on slip surfaces.	+		t		<u> </u>					\vdash		\rightarrow	-				111169		391.5	120	10	158	<0.2	⁽
		411.8 15 cm fine sandy bed, tr Aspy, 7% Po+tr Cpy	+											-+					111170	391.5	393.0	91	12	134	<0.2	⁽
		414.0-416.0 more massive, 10% andalusite spots			tr		7					90	80	<u> </u>		_			111171	393.0	394.5	68	10	112	<0.2	<u> (</u>
		416.0-426.0 Finely laminated at 2mm scale.		<u> </u>	<u> </u>			 	-				85						111172	394.5	396.0	83	12	95	<0.2	<u> _</u>
		420.0-420.3 Fault, graphitic gouge	FZ.			_		I				 	90						111173	396.0	397.5	94	36	170	<0.2	<u> </u> _
		421.5 10% Py/10cm v/g	┨	<u> </u>	 	<u> </u>	L	<u> </u>			<u> </u>											ļ	ļ	ļ		4
		422.7-423.3 Fault gouge,	FZ_	<u> </u>		L					·								111174	400.5	402.0	134	12	87	<0.2	<u> </u>
		425.6 5cm 60% Po+tr Cpy in lams		L	tr	ļ		L	 						_				111175	402.0	403.5	92	8	62	<0.2	
		428.0 1 mm Cpy fracture fill	 		1		5	ļ			ļ		85	_					111176	403.5	405.0	114	14	138	<0.2	
		427.7 15 cm shear	ļ		L														111177	405.0	406.5	106	16	123	<0.2	
		428.4 10 cm gouge	FZ	3									90						111178	406.5	408.0	98	12	118	<0.2	
		429.4- 429.6 graphitic slips													_				111179	408.0	409.5	140	16	133	<0.2	
		430.0-431.6 less laminated									İ								111180	409.5	411.0	_110	14	130	<0.2	
		429.5-435.5 Weakly laminated, minor .5 mm Po streaks on fol										90	80	· [111181	411.0	412.5	122	16	157	<0.2	
		433.3 5cm qtz. Bx vein 2% py		2															111182	412.5	414.0	111	14	130	<0.2	
		439.0 4cm qtz. Sweats 2cm3 chunks of Po +Cpy	VNg	1	1		3					45		_						1						
		440.0-443.0 3% lam po	T				3							-1					111183	416.0	417.5	122	14	159	<0.2	1
		446.6-446.8 qtz/carb vn tr spalerite at margins	VNq	1		r	3												111184	417.5	419.0	60	8	125	<0.2	
		449.65-449.7 2 bands 1-4 cm fine red sandy material, poss spalente																	111185	419.0	420.5	71	10	122	<0.2	1
		450.0-451.5 Lam Po I cm round clast with 1% po tr Sp.	1			1													111186	420.5	422.0	99	10	134	<0.2	1
		456.0-457.5 Very well laminated with 1-2 mm Po lams, Tr Sp+Tr Cpy in thin Po lams.	T	[1													111187	422.0	423.5	59	18	129	<0.2	
		460.5 Tr Aspy																	111188	423.5	425.0	75	10	121	<0.2	1-
464.0	466.2	Sandstone, fine grained, light grey, Tr Po	JSss			tr	1						90					100	111189	425.0		101	8	120	<0.2	
466.2		Mudstone, black, laminated, weakly fractured, minor PoPo lams to .5 cm, Tr Cpy in Po lams	JSml		tr		5		5						-	· · · · · ·			111190	425.5		82	10	121	<0.2	1
		466.9 2cm Po lam, tr Cpy	1						<u> </u>		·····								111191	428.0	<u> </u>	112	14	111	<0.2	
470.0	485.0	Andesite epiclastic, mottled tan-green, lithic tuff, fine to coarce grained sand to pebble sized,	1						5											420.0	420.0	1.12				1-
		minor pathchy chlorite-carb alteration, Numerous thin open spaced vuggy qtz/carb veins	+	1.				1	ات										111192	435.5	437.0	75	10	111	<0.2	1
		476.2-477.7 Motiled brown-green, Tr PO, Cpy	┼┈╼╼	 										+		_			111193	438.5	1	70	8	122	<0.2	1.
		484.2-485.0 Faulted Breccia, contact chi alt	FZ		Į –					<u> </u>	4	·-		-					111193	438.5	1	126	14	162	1	1
			<u> </u>			\vdash	\vdash						 		-					1			1	1	<0.2	+
				<u> </u>	-	-	-	-		<u> </u>			$ \rightarrow $	-	-				111195	440.0		76	10	96	<0.2	+
			·	<u> </u>	i —	<u> </u>	I	└──				<u> </u>					L	I	111196	441.5	443.0	75	10	110	<0.2	

HOLE: PR 02-04

Page5/5

															-					T .				(-
Depth ((m)	Description	ROCK	%	%	%	%	%	%	СЫ	Şil	Fo	i be	ds 2	s a	2 2	! [™] R	QD Reco	. Sample	Interv	val (m)	Cu	Pb	Zn	Ag	
from	to		CODE	Ру	Ср	Sp.	Po	Ga	Qvn	chierte	quantz	1		s	or	<u>. 1 m</u>		*	Number	from	to	ρρm	ppm	ppm	ppm	
85.0	534.3	Andesite flow, massive mottled grey green with brown patches, local granular texture with	JAfm		tr	i	tr										_		111198	444.5	446.0	71	8	96	<0.2	
	[2ndary biotite. Fractured areas have patchy silica+ carb+epidote along fractures and in veins.								 									111199	446.0	447.5	104	10	75	<0.2	
		Minor diss, galena and chalco assoc with fracture sources velns and alt, patches,																	111200	447.5	449.0	88	8	116	<0.2	1_
		494.1-494.6 Bleached zone.																	111201	449.0	450.0	147	8	128	<0.2	_
		504.5 2cm bleached fract @ 40 deg, Tr Po, Cpy			tr		tr												111202	450.0	451.5	93	8	90	<0.2	
		506.0-506.5 Patchy epidote and silicaTr Cpy, Po						1									_		111203	451.5	453.0	84	10	104	<0.2	
																			111204	453.0	454.5	41	4	75	<0.2	1
		521.2-522.5 Slightly brecciated, biotite alt , fine Po																	111205	454.5	456.0	75	10	63	<0.2	
		522.5-529.2 Light green, fine grain Po5% patchy carb alt.											Τ						111206	456.0	457.5	82	8	89	<0.2	
		529.2-530.7 Fol. parallel patches of light green sillc, carb and brown biolite, tr.Po.											T						111207	457.5	459.0	97	10	105	<0.2	
		530.7-534.3 Light grey fine grained andesite, 10% patchy white carb alt.											Т				Τ		111208	459.0	460.5	86	10	112	<0.2	T
	534.3														1	1			111209	460.5	462.0	99	8	104	<0.2	Т
				1	1	<u> </u>													111210	462.0	464.0	101	12	101	<0.2	Т
									1										111211	466.2	467.7	93	14	78	<0.2	T
																			111212	467.7		1	10	87	<0.2	
				-						1					+				· 111213	469.2		96	8	103	<0.2	
-+									<u> </u>		1	1		+	+					100.2		<u> </u>		1	1	+
					<u> </u>			\mathbf{t}			<u> </u>				╈				111214	476.2	477.7	68	4	45	<0.2	十
					1	+	ł	\vdash		\vdash	+		+	+-			+		111215	478.7		1	20	78	<0.2	
					+		-	-	-	\vdash		+					+			4/0./	400.8	- 23	20	1 10	1	+
					<u> </u>				1	┼╌╍			+-	+	+		╉		111216	494.1	495.6	99	8	54	<0.2	+
								+	+		+	╈	+				+		111217	495.6		28	6	58	<0.2	
			<u> </u>	-	-		├		+	-	+	╉──	-+						111218	495.0 504.0			12	84	<0.2	_
					\vdash		<u> </u>	-	+	┢	┉						+		111219	504.0	1	1	16	114	<0.2	_
+-					┼──	<u> </u>	╂		-	╂		+	+-			-					508.5	48	40	60	0.2	
			╂──		+	-		+	+	+—	-	+	+-				+	_	111220	1 507.0	208.5	40	40		1 0.2	╈
<u> </u>			┼──		-	╂──	<u> </u>	+		-		+			+		-+-	_		+		+	+	90	<0.2	+
				<u> </u>	-	┢	<u> </u>			\vdash				_ -	+	_	-		111221	521.1			10		•	
			ł	-			<u> </u>	-	┼╌	┼──		+	+	+	-				111222	529.2	530.7	148	10	78	0.4	+
<u> </u>						\vdash	╂──	┼──		+	+	+		-+-	·-ŀ							+	<u> </u>	+	+	+
			╂───		-	╂		+	⊢		+	+	+	+	-	-+-	-+-		+	+	 	+	+	+	+	┿
-+				╂—	\vdash	╂	╆━	+	+	+		+	-	_			-+			+──	╂	╉	+	+	+	╉
\rightarrow				<u> </u>	-	┝╌╸	┼—	+	\vdash				+	+			+			+	—	—	╂───	+	+	╀
\rightarrow			₋	_	<u> </u>	┟╼╍	₋	-	┢	+		+-	_		+		+			+	—	—	—	┼──	+	+-
			 			 	-	₋				+	+	+		+	-+			–	┥───	╂───	──	╂───		+-
			<u> </u>	1		\vdash		_			_	+			_		_							_	+	
																								\perp	_	_

HOLE: PR 02-05

Page 1/2

Project: Praxis	
Core logged by: D. Kuran	

Diamond Drill Log

Northing	6172722
Easting	434624
Elevation	1105 m

		 	Azimuth	<u> </u>	 Dip
	Collar			030	-50
	182				-55
EOH	182.5				

ALTN SCALE: 1----5 MAX RQD Recov. Description ROCK % % % % % Chi Sil Fol beds 2⁸ 2^K 2™ Sample interval (m) Cu Pb Zn Ag Au Depth (m) % CODE Ру Cp Sp Ро to Ga Qvn k-f Number from ppm from to ser mag % mqq ppm ppm g/t 0 2 Casing 2 2 80 80 90 JSmm 2 5.8 Mudstone, laminated ,black, lams at 2-5 cm,minor laminated Py and on bedding tr parallel foliation. 1-3 cm rare fine sandy beds. 10.0 Rhyolite sill, upper contact sharp at 85 deg, 10cm hfls of seds, 2% patchty Po JFs 2 85 5.8 JSmm 3 90 90 10.0 15.3 Mudstone, laminated ,black, contains 1-3 cm 20% Po beds with tr Cpy, tr 111223 12.3 13.8 114 16 55 <0.2 0.01 15.3 97 111224 13.8 99 8 <0.2 lower .5 m hfis and bleached, Tr cpy on fract. Surfaces and with Po bands. < 0.01 'ĴĂs 3 15.3 22.8 Andesite sill, fine grained, grey green, 10 cm pathches of qtz. With patchy biotite 22.8 25.5 Mudstone, black laminated contains 20% 10-15 cm fine to coarce andesitic JSmm 2 78 111225 22.8 24.3 160 12 65 <0.2 0.02 25.5 57 derived sand. 1-2% diss Po, minor shearing at contacts. 111326 24.3 99 4 <0.2 0.02 25.5 28.4 Rhyolite sill, light grey, patchy chl-epidote alt on fract. 1-2% diss Po JFs 1 28.4 55.2 Mudstone, black laminated, lams at .3-2 cm. 10% .5 cm light grey soft silty beds JSmm 75 85 111327 31.0 32.5 67 0.01 10 90 <0.2 92 8 <0.2 10-15 cm biotite rich sandy beds. 111328 32.5 34.0 116 0.01 tr 33.8-34.0 QV < 1%Sp, Cpy VNa tr 111329 34.0 35.5 98 12 107 <0.2 0.01 41.2-41.5 graded fine to pebbly sand beds, 3-5% diss. Po 111330 35.5 37.0 88 8 92 <0.2 0.01 45.1 122 14 111 <0.2 111331 43.6 0.02 43.6-45.1 slightly broken core, 2% banded, 3% patchy Po. 45.2 10 cm gtz stockwork 111332 45.1 46.6 77 10 54 <0.2 0.01 48.1 5 cm qtz vein 111333 46.6 48.1 76 8 54 <0.2 0.01 49.6 163 46 106 <0.2 0.02 48.8 Tr cpy with Po in gritty bed. 111334 48.1 50.5 1% Cpy/5cm in irregular Po patch. tr 3 111335 49.6 51.1 134 14 127 <0.2 0.01 55.2 56.4 Sandstone, light grey, fining up, feldspathic sand, Tr diss Po JSss tr 75 100 70 56.4 60.4 Mudstone, black laminated, broken core, numerous graphitic slips. JSmm 2 75 12 90 60.4 JSss 111336 60.4 61.4 147 18 105 <0.2 65.0 Sandstone, light grey, fining up, feldspathic sand tops grades down to more mafic 0.01 bases with broken augite stals, patchy brown detrital biotite. 65.0 97.2 Turbeditic sequence consiting of interbedded black muddy lams coarcening down JStb 111337 65.0 66.5 70 <0.2 0.01 86 8 111338 68,0 57 to sand sized mafic/andesite epiclastic bases. Cross-bedding common. 66.5 89 8 <0.2 0.01 Laminated Po in in muddy sections to 10%. Up to 10% black andalusite pblasts. 111339 68.0 69.5 127 12 78 <0.2 0.01 70.4-75.5 VFG lams, slightly wavy, 10% Po in 104 mm beds 71.0 93 10 77 <0.2 111340 69.5 0.01 79.6 light grey limy grit beds 111341 71.0 72.5 87 12 65 <0.2 0.01 80.2-88.0 Laminated mudstone, minor med green mafic tuff layers 111342 72.5 74.0 107 8 96 <0.2 0.01 88.0-93.5 Well laminated, fine 1-2mm Po lams 111343 74.0 75.5 110 10 126 <0.2 0.01 88.1-88.9 Dark green mafic epiclastic, coarcening down to pebble sized clasts 111344 75.5 77.0 74 8 86 <0.2 0.02 95.1-95.3 Very coarce, irregular beds, clasts to 2cm in fine sand matrix. 77.0 78.5 76 6 126 <0.2 0.01 111345 78.5 80.0 73 10 119 <0.2 0.02 111346

HOLE:

PR-02-05

Page 2/2

·····		······································	r					1	ALE:			T		1		1										-
Depth		Description	ROCK	%	%	%	%	%		Chi	Sil	Fo	beds				RQD	Recov.	Sample		val (m)	Cu	РЬ	Zn	Ag .	<u> </u>
from	to		CODE	Ру	Ср	Sp	Po	Ga	Qvn	chlorite	e quartz	-		Ser	k-1	mag	 	*	Number	from	to	ppm	ppm	ppm	ppm	1
95.3	97.2	Sandstone, light greenish grey, mod well sorted, 30% dark green mafic content	JSss					ļ	.		<u> </u>	90	85		_	Į	 	100	111347	88.0	89.5	104	14	101	<0.2	
97.2	117.3	Mudstone, black laminated, finely laminated @ 1-5mm, 5% Po+Py in lams						<u> </u>			<u> </u>			<u> </u>	<u> </u>		I		111348	89.5	91.0	84	10	91	<0.2	<
		and specks on foliation. Minor coarce Cpy on fract and with Po tams with minor Sp.									<u> </u>			 	ļ	ļ	<u> </u>		111349	91.0	92.5	147	10	73	<0.2	
		103.0-103.5 < 1% cpy			tr						ļ		<u> </u>						111350	92.5	94.0	120	8	113	<0.2	1
		105.6-105.8 Qtz/carb vein Tr Sp, cpy at contacts	VNq		tr	tr							<u> </u>						111251	94.0	95.3	85	8	111	<0.2	
		107.0-107.8 minor fine Sp																								
117.3	124.0	Andesite epiclastic/lithic tuff, light grey green, well sorted, containing 10% matic stals	JAt										85						111252	97.2	98.7	91	8	94	<0.2	
124.0	130.5	Turbedite, interbedded black mud and biotite rich sandy seds in 3-7 cm beds,	JStb				3					85	60					100	111253	98.7	100.2	105	10	115	<0.2	
		lower beds coarce with 4cm cobbles to 4cm in muddy matrix, 2% Iam Po, 3% diss Po																	111254	100.2	101.7	92	10	115	<0.2	1
130.5	131.4	Andesite epiclastic/lithic tuff, light grey green, poorly sorted, coarsens down	JAt																111255	101.7	103.2	101	12	199	<0.2	_
131.4	132.3	Mudstone, black laminated, finely laminated @ 1-5mm, 5% Po+Py in lams and specks																	111256	103.2	104.7	85	12	233	<0.2	
		131.4-131.6 massive fine grained red sandy bed.										T							111257	104.7	106.2	59	10	141	<0.2	1
32.3	139.5	Felsic sill, mottled light grey to dark grey, weak fol. Minor silica-epidote envelopes on fract.	JFs				1		1	Γ	1	80			1		1		111258	106.2	107.7	62	6	115	<0.2	
		Muddy sillstone, dark green-black laminated unit coarsens to base with fine pebbles to 2 cm	JSst				2						60						111259	107.7	109.2	70	6	120	<0.2	_
40.8	153.6	Andesite/mafic tuff, med-dark green, weakly bedded, 5% broken augite xtals									1			1					111260	109.2	110.7	59	6	125	<0.2	_
		152.9-153.4 Carb. Altered strong fol.							1			1		1			1		111261	110.7	112.2	64	6	128	<0.2	
153.6		Basalt flow, massive augite phyric flow, dark green, Px getting fresher down hole,								1	1	1-	-	1			1		111262	112.2	113.7	84	6	123	<0.2	_
		minor qtz/carb veins 10% px xtals to 3mm, chloritic slips, Tr Po.							1	1	1	1	-	<u> </u>	1		1		111263	113.7	115.2	71	8	121	<0.2	
	182.5										1	1	-				1		111264	115.2	116.7	62	6	94	<0.2	
											1		-	1		1	1			110.2	110,7		Ŭ		-0.2	+
									1		1	1	1	1	1	1	†		111265	124.0	125.5	114	8	85	<0.2	+
											+	\uparrow		1		<u> · · ·</u>			111266	125.5	127,0	122	12	104	<0.2	
					r		-	1			1	\vdash	1				1		111267	127.0	128.5	74	8	117	<0.2	
	-1											+	+	1	1	 	†		111268	128.0	130.5	59	4	89	<0.2	
+	{							1-		<u> </u>	+	┼─	+	-	1				111269	130.5	131.4	90	4	23	<0.2	
												+-	1-			-			111270	131.4	132.3	99	10	112	<0.2	-
								+	+		+	╋	+-	<u> · · ·</u>		<u> </u>	1		111270	[131,4	132.3	99		112	<u> <0.2</u>	╋
											1-	+	-	-		<u>+</u>	+		111271	139.5	140.8	71	12	136	<0.2	+
		· · · · · · · · · · · · · · · · · · ·							+		+	┼─	+				<u> </u>		1112/1	139.5	140.6	/1	12	130	<0.2	
+		······································	·;									+		-	-								<u> </u>			╉╌
											1	+			· ·										<u> </u>	+
+						<u> </u>	-		+		+	╉──	-	┢			 			 			<u> </u>		—	+
									+		+	+		┢	+		<u> </u>			—	<u> </u>		<u> </u>		──	+
-+						<u> </u>	-	-		<u> </u>	+	+-			+		┨───								├	+-
	—		<u> </u>				 	╂			+	+		 			 			I						+
+			 		<u> </u>	<u> </u>	┣—	–	\vdash	-		+	+	ļ	 		i —								┟───	+-
1			I				ł	I	.1.	1	.1	1	1	1	1	1	1	1		1			1			1

Diamond Drill Log		HOLE:
Company: Praxis Goldfields		- -
Project: Praxis		Northing
Core logged by: D. Kuran		Easting
Start Date: Sept 24,2002	Finish Date: Sept 27, 2002	Elouotia

Northing	6174456
Easting	438783
Elevation	1143

RR 02-01

		 Azimuth		 Dip
	Collar		045	 -50
	123m			-59
EOH	350m			-57

Page 1/4

ALTN SCALE: 1---5 MAX

Dept	<u>փ (m)</u>	Description	ROCK	%	%	%	%	%	%	Chi	Sil	Fol	beds	2 ^s	2 ^K	2 ^M	ROD	Recov.	Sample	Interv	al (m)	Cu	Pb_	Zn	Ag	Au
from	10		CODE	Ру	Ср	Sp	Po	Ga	Qvn	chiorite	quartz			801	k-f	mag		%	Number	from	to	ррт	ppm	ppm	ppm	g
0	31.0	Rhyolite flow, massive, light grey,weathered and broken, weakly foliated.	JFfm				L			1	3	40						75								
		minor chlorite on fractures, local diss Po to 7%				<u> </u>	7																			
		5.5-7.1 Irregular to fol controlled fine grained liver colored sphalerite				3													111272	5.5	7.0	7	8	2066	<0.2	0.
		15.5 weakly flow banded																	111273	7.0	8,5	4	4	225	<0.2	<0
		18.0-24.0 weakly Bx patchy sericite									2	3		2												
		24.9. 2cm qtz/carb vein @40 deg	VNq																							
		27.2-30.0 rusty oxidized zone centred on 10 cm shear at 27.6 m	FZ																							
31.0	32.0	Mudstone breccia, laminated mudstone contains 10% 2-4 cm myolite frags	JSmJ	1		1	1						40					100								
		and felsic ash. 1% fine Sp in felsic ash and rhyo frags																	111274	31.0	32.0	33	148	1581	0.60	0.
32.0	51.0	Mudstone, black, laminated, hard and siliceous, bedding outlined	JSmt															100	111275	32.0	33.5	50	18	708	<0.2	0.
		by .5-2mm Po lams, unit slightly silty, local calcareous sections																	111276	33.5	35.0	47	12	481	0.20	0
		minor carb veins parallel to bedding.]										111277	35.0	36.5	48	18	401	<0.2	0
		43.0 beds at 80 deg											80						111278	36.5	38.0	26	10	244	<0.2	<0
		44.1 5% carb stringers over 10 cm.																	111279	38.0	39.5	19	4	126	<0.2	0
		48.0-51.3 3-5% iregular 1-5mm carb patches, bedding contorted.																	111280	39.5	41.0	25	10	251	<0.2	<0
		48.4 beds at 90 deg											90						111281	41.0	42.5	30	12	341	<0.2	0.
51.0	57.4	Silty musdtone, black, massive, interval broken, minor Po rich layers	JSst	1			tr						85					100	111282	42.5	44.0	37	16	321	<0.2	0.
57.4	58.8	Calcareous siltstone, dark gray, well bedded	JSst	tr									80			·			111283	45.0	45.5	36	16	240	<0.2	0.
58.8	77.3	Mudstone, black massive, hard, rare bedding plane visible																	111284	45.5	47.0	39	16	305	<0.2	0.
		667.5-72.5 Unit looks porous due to 5% dissolved fract fill carbonate																	111285	47.0	48.5	32	18	457	<0.2	0
		75.7-75.8 Light grey limy grit bed						Í	1										111286	48.5	50.0	41	20	339	<0.2	0.
		75.8-76.1 Several contorted gtz veins, tr Po, Sp				tr	tr												111287	50.0	51.0	31	14	742	<0.2	<0
77.3	82.0	Mudstone, black, laminated. Numerous 1-5 mm carb lams, Po as lams	JSml		[tr	10						80					100	111288	58.8	60.3	45	10	152	<0.2	0.
		and fracture fills, unit veriable calcareous, local limy mud balls																	111289	75.8	77.3	29	4	227	<0.2	0
		83.0 xbeds cut Po lams																	111290	77,3	78.8	83	12	159	<0.2	0.
82.0	85.1	Homblend monzodiorite sill, very fresh, 10% 1-3mm hbld laths in	TDs							1			80					100	111291	78.8	80.3	82	12	246	<0.2	0.
		equigranular fine grained light -med grey feldspathic groundmass						1											111292	80.3	82.0	65	28	226	<0.2	0
		fine grained at contacts at 80 deg						[Γ																	<u> </u>
85.1	89.8	Mudstone, massive, black, minor thinly lam sections,< 1% Po	JSmm		[<u> </u>							80					100								
		86.9-87.0 med grey limy clastic bed.							1																	<u> </u>
														-												<u> </u>
				·					1																	
					l —	t —			1-							i										·

HOLE: RR 02-01

Page 2/4

											15		r –	1	<u> </u>	1				-		•••••	<u> </u>				,
	<u>h (m)</u>	Description	ROCK	%			%	%	%	%	Chi	Sil	Fol	beds	2 ⁵	2 ^K	24	RQD	Recov.	Sample	Interv	/al (m)	Cu	Pb	Zn	Ag	A
from	to		CODE	P	<u>y c</u>	<u>e </u>	Sp	Po	Ga	Qvn	chionta	quartz	ļ	ļ	Ser	k-1	mag	<u> </u>	%	Number	from	to	рргп	ppm	ppm	ррт	
89.8	97.5	Mudstone, black, laminated, variably calcareous. Lams at 1-10 mm intervals	JSml	tr	· -		tr	8						75			 	<u> </u>	100	111293	89.8	91.3	36	12	250	<0.2	0
	<u> </u>	local white carb bands/veins parallel to beds. Tr Sp in Po lams,	 							[1			<u> </u>			111294	91.3	92.8	55	16	511	<0.2	0
		Lower section contains rare 1cm round sandy pebbles.	 									L	ļ	<u> </u>	L		<u> </u>			111295	92.8	94.3	51	16	710	<0.2	0
97.5	108.4	Conglomerate, med grey, heterolithic, mud matrix supported,	 										ļ							111296	94.3	95.8	47	36	428	<0.2	0
		Clasts .5-7cm, mainly light grey silty sandstone, rare felsic looking frag.			_															111297	95.8	97.5	38	8	313	<0.2	<
		Po as diss and lams in muddy matrix and as diss in pressure shadows	!													<u> </u>	L			111298	97.5	99.0	39	8	419	<0.2	6
		adjacent to strained clasts, minor Sp assoc, with carb sweats(99.3)	!	L	_															111299	99.0	100.50	35	8	343	0.2	6
108.4	111.6	Siltstone, massive, dark grey,	JSst					tr						80					100	111300	100.5	102.0	39	8	399	0.2	0
111.6	123.2	Mudstone, black, laminated with grey silt beds at 1cm. Unit contains	jSmi]								111301	102.0	103.5	37	6	292	<0.2	<
		5% dis Po as fine lams and disagregated lams, unit very hard																		111302	103.5	105,0	49	10	427	<0.2	<
123.2	126.6	Conglomerate, med grey, chaotic heterolithic mud matrix supported,	JScg	tr				5						80						111303	105.0	106.5	51	4	655	0.2	
126.6	133.3	Siltstone, black-dark green siltstone interbedded with dark green mafic	JSst	tr				0												111304	106.5	108.4	51	6	532	<0.2	C
		derived epiclastic beds, minor calcareous bands				ľ		5												111305	111.8	113.1	39	6	268	<0.2	
		130.3-131.8 Shear/fault centred on 20cm gouge @ 131.5	FZ					7									1			111306	113.1	114.6	43	6	294	<0.2	
		shear at 60 deg, beds at 90.					_	8												111307	114.6	116.1	42	6	276	<0.2	
								8										1		111308	116.2	117.6	46	4	339	<0.2	
							\neg	7					··· ·	1						111309	117.6	119.1	42	6	282	<0.2	
								7	• • • • • •					-			<u>† </u>	1		111310	119.1	120.6	47	6	306	<0.2	
			I					5				<u> </u>					†	1		111311	120.6	120.0	44	6	349	<0.2	
								Ť				1					1	<u> </u>		111312	122.1	123.2	43	6	352	<0.2	
								5			\vdash		<u> </u>				 										1
			<u>}</u>		+		-							ł			<u> </u>			111313	123.2	124.7	41	10	317	<0.2	
133.3	135.2	Mudstone, black, laminated, Po as 1-3 mm lams, minor carbonate	JSml		-	+					-									111314	124.7	126.6	45	8	290	<0.2	<u> </u>
135.2			12111				+													111315	133.0	134.5	51	6	468	<0.2	
133.2	104.4	Silty mudstone, dark grey eventy spaced 2-5cm bands, Po as 1 mm tams	┨───┦				-+	-				 —		· · · ·						111316	134.5	135.2	47	8	381	<0.2	
		Tr Py on weak shears, minor lam sections calcareous	 			+	-				<u> </u>									111317	135.2	136.7	50	8	521	<0.2	<
	·	154.3- 10cm shattered section carb healed.	 	_		+	-	_					├							111318	138.2	139.6	43	10	370	<0.2	- <
	· · · · · · · · · · · · · · · · · · ·		 		-	+	-				[·					+	──			111319	141.0	142.5	50	10	437	<0.2	<u> </u>
	·										ļ									111320	144.0	145.5	37	30	205	<0.2	1_0
				_					·····					ł		-	-	 		111321	146.8	148.3	48	_16	286	0.2	
			┢┥	<u> </u>		-+-			·									╂—		111322	149.5	151.0	33	8	598	<0.2	<
			┠┦										_			<u> </u>				111323	152.4	154.4	51	10	429	<0.2	<
154.4	161.2	Siltstone, massive, light grey, weakly bedded	JSst	<u> </u>										–		 		 		111324	154.4	155.9	28	4	190	0.2	4
		154.4-155.9 Tr Sp on fract	┢──┤		+		<u>v</u>	2			<u> </u>		 	 		 	ļ	 		111325	155.9	157.4	31	4	175	<0.2	
			 				-+				<u> </u>		<u> </u>			ļ		 		111351	157.4	158.9	25	2	189	<0.2	1
											 			ļ		ļ		_					ا ا				L
														<u> </u>			ļ									L	
								- 1																		I	ĺ

Diamond Drill Log

HOLE: RR 02-01

Page 3/4

										ALT	N SCA	LE: 1	15	мах												
Dept	h (m)	Description	ROCK	%	%	%	%	%	%	Chi	Sil	Fol	beds	2 ^{\$}	2 ^K	2 [™]	RQD	Recov.	Sample	Interv	/al (m)	Cu	Pb	Zn	Ag	Au
from	to		CODE	Ру	Ср	Sp.	Po	Ga	Qvn	chlorite	quartz			Ser	k-1	mag		*	Number	from	to	ppm	ppm	ppm	ppm	g/t
161.2	163.0	Mudstone, black, laminated, hard, PO lamsand bedding parallel diss.	JSmt													Γ			111352	161.2	163,0	44	4	441	0.2	<0.01
163.0	166.4	Sandstone, light grey, well sorted, calcareous, minor dark grey silty beds.	jSss			tr	1				1		70						111353	163.0	164.5	14	6	170	<0.2	<0.01
		Minor diss and fract filling Sp							T										111354	164.5	166.4	16	4	168	<0.2	
166.4	167.8	Siltstone, black, laminated, poss fine Sp lam	JSst			1	1		1				70						111355	166.4	167.8	31	26		0.2	
167.8	192.9	Siltstone, med grey lam-banded, unit very uniform, contains 20 cm sandy	JSst	ł			0			Γ			80			1			111356	167.8	168.3	18,	2	150	<0.2	<0.01
		to coarce silt sections. Conspicuous lack of sulphides.																	111357	171.5	173.0	24	2	208	<0.2	<0.01
		167.8-169.3 Unit shattered, healed by fine qtz veins							20				80						111358	174.3	175.8	55	8	558	0.6	0.01
		171.5-173.0 Banded sandstone											80						111359	1177.3	178.8	43	2	472	<0.2	<0.01
		174.3-175.8 Slightly muddy, rare Po lam.		tr			2												111360	178.8	180.3	37	<2	381	<0.2	<0.01
		177.5 7 cm qtz vein, 2% Sp	VNq			2													111361	182.0	184.4	60	2	283	<0.2	····· · ·
		184.4-185.9 Light grey pink bands, poss Sp.																	111362	184.4	185.9	46	2		<0.2	
		185.9-187.4 Fine Sp grains on fol.				tr			5		r		75						111363	185.9	187.4	47	4	791	<0.2	
		187.4-188.9 Minor lam Po, Tr Sp				tr	1						20						111364	187.4	188.9	42	8	720	0.2	<0.01
		188.9-190.6 Tr po, minor Sp, beds in fold closure on flat axis at 189.5					2	—	5		1		60						111365	188.9	190.6	40	4	623	<0.2	<0.01
		190.6-191.1 light grey silt lams					2												111366	190.6	192.1	35	<2		<0.2	
		191.7-192.0 5% qtz veins							5				90						111367	192.1	192.9	52	2	1184	<0.2	
192.9	201.6	Sandstone, light grey, well sorted, consists of .7-1.2 m thick well	JSss		1	-					1		75						111368	194.5	196.0	29	<2	92	<0.2	
		sorted fine sand beds separated by 2-10 cm thick black mud beds																	111369	198.8	200.3	32	2		<0.2	
		no visible sulphides																								
201.6	236.3	Siltstone, alternating 80% dark muddy sily and 20% light buff silty beds	JSst																111370	201.6	203.1	60	4	180	<0.2	0.01
		210.4-211.9 10% fine gtz veinlets							10				90						111371	204.6	206.1	66	6	188	<0.2	0.01
		216.3- 217.8 Tr po in patched					tr						80						111372	207.5	209.0	65	4	206	<0.2	0.01
		219.1-220.6 Tr Sp and Po in fract.				tr	tr						80					100	111373	210.4	211.9	56	4	259	<0.2	0.01
		220.6-221.1 shattered, 2% fract filling Po, beds @ 60-20 deg.					1						60						111374	213.3	214.8	59	2	223	<0.2	0.01
		223.3 2% Sp/5cm				1													111375	216.3	217.8	38	2	240	<0.2	0.01
	_	232.5 silica flood, coarce biotite																	111376	219.1	220.6	51	6	312	<0.2	0.02
		233.7-234.4 fine brown-grey sandy bedfining down hole, poss through																	111377	220.6	222.1	26	4	197	<0.2	0.01
		anlicline or reverse graded sed unit.																	111378	222.1	223.6	22	2	163	<0.2	0.01
236.3	238.5	Sandstone, dark greenwell sorted, contains 10% hbid xtals top contact	JSss	2		tr							70						111379	223.6	225.1	32	2	146	<0.2	0.01
		sharp, bottom gradational, possibly upside down.																	111380	225.1	226.6	53	4	200	<0.2	0.01
																			111381	229.2	231.2	47	<2	164	<0.2	0.01
238.5	241.5	Siltstone, dark grey-black, laminated, vfg py diss in bands, poss diss Sp	JSst	1		tr													111382	240.0	244.5	59	4	143	<0.2	0.01
241.5	263.5	Sandstone, brown-grey, top(uphole) is gtz pebbles, mudstone and																								
		sand pebbles in fine biotitic sand. Unit fines downhole. Members of																	111383	257.5	259.0	28.00	2.00	75.00	<0.2	0.01
		unit are 2-3 m thick with coarce bases and silty to muddy tops as each																								
		unit fines downhole.																								
		243.7-244.1 lam mud, minor Py		1																						

ļ

ļ

Diamond Drill Log

HOLE: RR 02-01

Page 4/4

						<u> </u>				ALTI	V SCA	LE:	15	MAX	·	<u></u>	· · · ·			-						
Dept	h (m)	Description	ROCK	%	%	, %	%	%	%	Спі	SII	Fol	beds	2 ^s	2 ^ĸ	2 [™]	RQD	Recov.	Sample	Interv	al (m)	Cu	Pb	Zn	Ag	AL
from	to		CODE	Ру	Ср	Sp.	Po	Ga	Qvn	chiedle	quartz			Ser	k-f	mag		%	Number	from	to	ррт	ppm	ррт	ppm	g/
63.5	267.4	Mudstone, black, laminated, contorted, silicified	JSml	2.							4		80						111384	265.5	264.4	29	2	90	<0.2	<0
67.4	270.3	Homblende monzodiorite sill, very fine grain10% 1-2mm hbld taths,	TDs																111385	264.5	265.9	4 9	8	224	0.6	0.
		chill on sill side							-										111386	265.9	267.4	74	22	360	0.6	0.
270.3	283.7	Mudstone, black, laminated, interbedded dark grey siltstone at 2-5 cm	JSml	4			1												111387	270.3	271.8	110	10	741	0.8	0.
		unit hard, siliceous, local 30-50 cm limy bands. Unit caries Py		3			1												111388	271.8	273.3	69	12	397	1.2	0
		as opposed to Po as primary sulphide, sections of laminated Py contorted		2			1												111389	273.3	274.8	68	12	275	1	0
		Local silicification or contorted siliceous lams		5			1												111390	274.8	276.3	62	10	192	1.4	<
		277.8-279.3 vfg Py lams to 1 cm with dlss coarser Py		7			1												111391	278.3	277.8	71	14	526	2	0
		279.3-280.8 vfg Py lams		7								<u> </u>	75						111392	277.8	279.3	91	14	1505	1.8	0
		281.8 Py lams fining down hole		10	L		2												111393	279.3	280.8	79	10	573	1.6	0
		282.3-283.7 minor gritty beds to 5 cm		6			1						80						111394	280.8	282.3	68	10	254	1.2	<
																			1111395	282.3	283.7	81	6	494	1.4	
283.7	284.9	Conglomerate, mudstone clasts to 2.5 cm in muddy matrix	JScg	3			2												111396	283.7	284.9	25	8	186	1.2	6
284.9	290.3	Mudstone, black, laminated, fine sandy beds grading up hole	JSml	3			3						90						111397	284.9	286.4	82	16	1615	2.8	(
		289.0 1cm Py clast in grit bed																	111398	286.4	287.9	69	14	895	2	(
																			111399	287.9	289.4	50	10	658	2	
																			111400	289.4	290.3	58	12	1880	2.4	(
290.3	353.2	Monzodiorite, med grey-green to brown intrusive, variably feldspar phyric																	111401	295.8	927.3	10	2	84	<0.2	C
		feldspars corroded and rounded. Up to 20% 1-3mm white feldspar stals																	111402	301.7	303.2	4	2	92	<0.2	(
		in green-bm blotite rich matrix, some sections more xtal rich than others								•		L		<u> </u>					111403	310.5	312.0	15	<2	101	<0.2	. (
		Minor qtz veining to 2cm on fract at 45 deg.																	111404	315.0	316.5	.2	2	93	<0.2	<
		320.0-231.7 light grey green, granular textured, epidote rich																	111405	319.5	321.0	12	<2	83	<0.2	(
		327.1 10cm qtz. Carb vein at 5 deg.					ł												111406	326.5	328.0	13	<2	91	<0.2	
		minor chlorite all of matic component						1							1				111407	332.5	334.0	<1	<2	89	<0.2	
	353.2	ЕОН																	111408	339.8	341.3	9	<2	88	<0.2	<
																			111409	344.2	345.7	<1	<2	90	<0.2	
																			111410	351.2	352.7	48	<2	80	<0.2	
		·······																								
					Γ																					[
								1								1		[[[[]		
					1	1	•	<u> </u>		T	1	1	<u> </u>	1					· · · · ·		·			[]		

ļ

1

ļ

ļ

!

Diamond Drill Log Company: Praxis Goldfields		
Project: Praxis		
Core logged by : D., Kuran		
Start Date: Sept 28,2002	Finish Date: Sept 29, 2002	

.

HOLE	Ξ:	RR Ó	2-02
110-6	÷ •		

Northing	6174750
Easting	438560
Elevation	1105

Page	1/3
------	-----

		 Azimut	۱ <u> </u>	 Dip
	Collar		050	 -55
	213m			-61
EOH	213			

ALTN SCALE: 1-5 MAX

Dept	h (m)	Description	ROCK	%	%	%	%	%	%	Chl	Sil	Fol	beds	2 ^{\$}	2 ^K	2 ^M	RQD	Recov.	Sample	Interv	rat (m)	Cu	Pb	Zn	Ag	Ац
from	to		CODE	Ру	Ср	Sp	Po	Ga	Qvn	chiorite	quertz			şar	k-f	mag		%	Number	from	to	ppm	ррт	ppm	ррт	g/t
0	1.5	Casing																								
1.5	4.5	Rhyolite, Light grey, aphanitic, mass flow. Frac set with silicified margins	JRfm	L							2	50						75								
		Weathered, rusty fracture surfaces.																								
4.5	10.4	Basalt sill, massive, fine grained weakly augite phyric, core amydaloidal,	TBs																							
10.4	11.9	Rhyolite, Light grey, aphanitic,flow banded, minor sericite on bands	JRfb											1		 		100								
11.9	13.0	Basalt dyke, dark green-bm, slightly feldspar phyric, contacts sharp 20 deg	TBd										20													
13.0	23.1	Rhyolite flow, weakly flow banded, spotty black carbon alt. FeOx on fract .	JRfb										75			[100								
23.1	25.4	Basalt dyke, fine grained, base has 10% hbld laths and is fidspar phyric	TBd																							
		Lower contact at 40 deg.													·											
25.4	31.6	Rhyolite flow, weakly flow banded at 80 deg, rusty weathered, FZ at 28.0 m	JRfb				tr						80	j												
31.6	33.0	Mafic dyke, fine, dark green, 10% 1mm white feldspar pheno.	TBd										30													
33.0	35.0	Rhyolite flow, weakly flow banded at 55 deg, minor sericite along bands	JRfb										55	1												
35.0	38.6	Mafic dyke, fine grained dark green, feldspar phyric, contacts at 30 deg.	TBd										30													
38.6	41.1	Rhyolite flow, well flow banded, aphanilic, minor patchy Po	JRfb				2											100	111411	40.1	41.1	10	102	590	0.4	0.01
41.1	42.0	Mudstone, black laminated, slightly silicified	JSml	3			3		30				78						111412	41.1	42.0	19	20	581	<0.2	0.01
		41.8-42.0 Qtz vein, deep red oxide in base of vein, poss ox galena	VNq																							
42.0	45.1	Mafic sill, fine, dk grey feldspar phyric. Contacts sheared at 90 deg.	TBs										90													
45.1	46.6	Silty limestone, light grey finely laminated, Tr vfg Py	JSłs										45						111413	45.1	46.6	<1	72	202	0.8	0.01
		45.1-45.3 Black pyritic mudstone , non calc.																								
46.6	51.0	Mudstone, black, massive, weakly bedded, minor Py+Po on beds	JSmm	1			1						50						111414	46.6	48.1	39	12	446	0.2	0.01
51.0	53.6	Silty limestone, It gry, laminated contains sections of 10% py/10cm.	JSts																111415	48.1	49.6	33	14	536	0.2	0.01
		3% fine Py in timestone.																	111416	49.6	51.0	34	14	388	0.2	0.01
		52.4-53.0 Black lam mud section, 2% po contorted beds.																	111417	51.0	52.5	<1	162	1153	0.2	0.01
53.6	57.5	Mafic dyke, fine, chilled, 3% 1mm feldspar phenos, xcutting by 30 deg.	TBd										30					85	111418	52.5	53.6	13	286	1303	0.4	0.02
57.5	60,1	Mudstone, black,massive, siliceous, unit shattered,	JSmm				3				3								111419	57.5	59.0	21	12	308	0.6	1.82
		57.5-59.0 70% silica, 10% patchy Po.																	111420	59.0	60.1	<1	6	144	<0.2	0.01
		59.0-60.1 dark grey, 20% v fine silica flooding, 2% Po.																								
60.1	65.9	Mafic dyke, fg, dark grey, contacts cut beds at 70 deg.																								
		63.7 5 cm white qtz vein, chloritic selvages	VNq													<u> </u>										
65.9	70.4	Mudstone, black, massive, weakly shattered, 5% fine qtz stringers	JSmm				3		5				75						111421	65.9	67.4	17	8	140	<0.2	0.01
		68.3-69.0 Cong. unit with mudstone clasts to 3 cm.																	111422	67.4	68.9	25	8	815	<0.2	0.02
		69.0 5 cm 7-10% Po.					4												111423	68.9	70.4	38	12	368	0.2	0.01
		69.0-69.5 silicified									3															

Diamond	Drill	Log	

HOLE: RR 02-02

Page 2/3

							ALTN	I SCA	LE: 1	5	мах							_								
Dept	h (m)	Description	ROCK	%	%	%	%	%.	%	Chl	Sil	Fol	beds	2 ⁵	2 ^K	2 ^M	RQD	Recov.	Sample	Interv	al (m)	Cu	Pb	Zn	Ag	Au
from	to		CODE	Py	Ср	Sp	Po	Ga	Qvn	chiorite	quartz			Ser	k-f	mag		*	Number	from	to	ppm	ppm	ppm	ррт	g/t
70.4	71.4	Mafic dyke, fine grained, dark green, 10 cm brown chilled margins	TBd										40													
71.4	75.8	Mudstone, black, fine lams, light grey wavy silica lams, lower C @ 30 deg.	JSml				3						30						111424	71.4	72.9	22	8	240	<0.2	0.01
75.8	85.4	Mafic dyke, mass, feldspar phyric, coarser center, margins chilled, brown	TBd																111425	72.9	74.4	11	4	168	<0.2	0.01
		79.4-80.1 included section of laminated mudstone. Baked hard																	111426	74.4	75.8	22	6	298	<0.2	0.01
		84.0-84.4 included section of massive mudstone																								
85.4	91.8	Silly mudstone, black, well lam with bands of light grey silt beds to 5 cm	JSst	1			tr						75					100	1111427	85.4	86.9	33	8	382	<0.2	0.01
		unit very low in sulphides, rare vfg Po lam. Unit gets coarser down hole.																	111428	86.9	88.4	26	8	508	<0.2	0.01
91.8	92.4	Sandstone, light brown,fg, well bedded. Beds cut at 90 deg by dyke.	JSss				tr						75		_				111429	88.4	89.9	15	6	595	<0.2	0.01
92.4	94.3	Mafic dyke, grey green, fine grained, massive homogenous.	TBd										45						111430	89.9	91.8	23	6	658	<0.2	0.01
94.3	97.2	Mudstone, black, fine lams,contains 20% It grey silt beds, 10% silic.	JSml	1					10				80					100	111431	94.3	95.7	43	4	203	<0.2	<0.01
		bedding parallel fine qtz veins, 1% fine Py.																	111432	95.7	97.2	41	6	229	<0.2	0.01
97.2	101.1	Mafic dyke, fine grained, massive, grey green, no foliated	TBd																							
101.1	116.9	Muddy sillstone, dk grey, hythmically banded at a 1-10mm scale.	JSst				tr						80					100	111433	101.1	102.6	42	4	195	<0.2	0.01
		Unit contains 5% silic by qtz sweats. No visible sulphides, minor Po in qtz																	111434	103.9	105.4	30	4	198	<0.2	0.01
		107.5 0.5 cm Po lam		<u> </u>			tr												111435	106.7	108.2	60	6	184	<0.2	0.01
		110.0 5 cm qtz vein	VNg																111436	109.4	111.9	27	4	138	<0.2	<0.01
		113.0 Beds at 90 deg.											90						111437	112.3	113.8	31	6	185	<0.2	0.01
		116.0 20 cm fine grained carbonate layer																	111438	115.1	116.8	37	4	128	<0.2	0.01
		116.6-118.0 5% qtz stringers							5																	
116.9	122.1	Mafic dyke, fine grained massive, cuts beds	TBd																							
		119.1-119.6 included laminated homfelsed siltstone section														ĺ										
122.1	123.2	Black laminated sittstone	JSst]						_			60													
123.2	123.7	Mafic dyke	TBd																							
123.7	134.8	Siltstone, it grey, well banded with mudstone layers. Contains 15% silica	JSst			tr	tr		15		3		78						111439	125.1	126.6	39	6	383	<0.2	0.01
		as bedding parallel sweats and veins, Tr Po and Sp																	111440	127.8	129.3	45	6	255	<0.2	0.01
		125.0 beds at 85 deg.				<u> </u>													111441	130.8	132.3	42	6	134	<0.2	0.01
		129.0 beds at 60 deg.															ļ									
		133.0 shear at 30 deg, minor gouge	FZ																							
		134.4 2% Po/10cm																								
134.8	138.6	Sandstone, light grey, fine sand-coarse silt size.15% qtz veins, tr Py	JSss	tr		L	L		15		4								111442	134.8	136.3	11	6	211	<0.2	0.01
		135.4 shear at 30 deg.	FZ																111443	142.4	143.9	18	4	56	<0.2	0.01
138.6	139.8	Siltstone, black-grey laminated	JSst	ť									80					100	111444	145.1	146.6	21	6	92	<0.2	0.01
139.8	140.2	Mafic dyke, vfg chilled, dark grey.	TBd			L													111445	148.0	149.5	24	6	109	<0.2	0.01
140.2	160.7	Sandstone, cyclic members with fine muddy tops coarsening down to	JSss	tr					5		3		80						111446	151.8	152.3	26	6	83	<0.2	0.02
		coarse sand to pebbly bases. Interval mod -highly strained and foliated with																	111447	158.0	159.5	29	8	180	<0.2	0.01
		knotted look to coarser sections. low sulphide content, tr Py on fract																	111448	159.5	160.0	21	6	85	<0.2	0.01
		158.0-160.7 light brown biotitic matrix]												

HOLE: RR 02-02

Page 3/3

										ALTN	SCA	LE:	15	мах												
Dept	n (m)	Description	ROCK	%	%	%	%	%	%	СЫ	Sil	Fol	beds	2 ⁸	2 ^K	2 ^M	RQD	Recov.	Sample	Interv	ai (m)	Çu	Pb	Zn	Ag	Au
from	to		CODE	Py	Сρ	Sp.	Po	Ga	Qvn	chiorite	quartz			Ser	k-f	mag		%	Number	from	io	ppm	ррт	ppm	ppm	g/t
160.7	175.5	Mudstone, black, lam, highly strained, up to 40% white bedding parallel	JSml	5			tr		40		3	75	75						111449	160.7	162.2	50	16	295	1	0.01
		qtz veinletts to 3cm.Fractures are graphitic slips. broken5-2 cm Py																	111450	162.2	163.7	60	16	371	1	<0.01
		beds. 20 cm fault gouge at 167.3 at 70 deg. Lower portion of interval																	111451	163.7	165.2	57	12	727	1.2	0.01
		from 172.8-175.5; beds of 20-30% fine Py in sandy beds to 15 cm.																	111452	165.2	166.7	67	16	812	1.2	0.01
		174.2-175.5 15% fine bedded py, slightly contorted.																	111453	166.7	168.2	63	32	668	0.8	0.01
175.5	185.4	Sillstone, black, mass., rare sandy Py lam to 2 cm with 3-7% Py,	JSst	7								80	90						111454	168.2	169.7	74	16	829	1.2	0.01
185.4	187.9	Mafic dyke, fine grained, green brown, felspar phyric, contact @45 deg.	TBd																111455	169.7	171.2	74	14	584	1	0.01
																<u>.</u>			111456	171.2	172.7	75	14	692	1	0.01
187.9	193.9	Mudstone, black, laminations contorted. Contains 5% qtz sweats,	JSml	8									80						111457	172.7	174.2	63	14	622	0.8	0.01
		7% fine py .as lams and diss																	111458	174.2	175.5	50	12	448	0.6	0.01
193.9	195.8	Mafic dyke, fine grained chilled, light green, fine hbld and feldspar phyric	TBd						ļ										111459	175.5	177.0	80	14	590	0.8	0.01
195.8	197.1	Sittstone, slightly silt, pebbly base of sandy members, tr Sp at 147.6 m	JSst			tr	' 3						80		ļ				111460	177.0	178.5	93	12	274	0.8	0.01
197.1	205.8	Hybrid oxidixed top of dioritic to monzonitic intrusive, fine to med grained,	JD																111461	178.5	180.0	73	16	137	0.6	0.01
		greenish brown, 2ndary biotite on foliation, rock is bleached, massive						['	<u> </u>										111562	180.0	181.5	80	12	1995	1.2	0.01
205.8	211.8	Monzodiorite, fresh young, non foliated, 5% fresh homblend,	TDd					ļ'											111463	181.5	183.0	85	12	763	1.4	0.01
		20% corroded margined feldspars.													<u> </u>				111464	183.0	184.5	95	12	352	1	0.01
211.8	213.0	Mafic dyke, dark green, 10% black hold and 5% feldspar laths.	TBd						!										111465	184.5	185.4	58	18	182	1.2	0.01
	213.0	ЕОН												ļ.,	L				111466	187.9	189.4	80	12	596	1.8	0.01
										I					<u> </u>				111467	189.4	190.9	98	10	2815	1.6	0.01
																			111468	190.9	192.4	77	12	526	1.0	0.01
																			111469	192.4	193.9	107	20	607	0.6	0.01
								ļ'											111470	197.0	198.0	14	14	228	<0.2	0.01
																										ļ
																									<u> </u>	
															<u> </u>											Í
		•								<u> </u>																ļ
									ļ				<u> </u>							<u> </u>						
												L		L												
										L		ļ														
																			<u> </u>							
				L																						

Appendix IV

1....

1_

).....

()

Analytical Procedures

QUALITY ASSURANCE/QUALITY CONTROL

At Assayers Canada, samples are separated into batches of up to 30 samples, but usually not exceeding 24 samples. In each batch, at least 1 in 10 samples is analyzed in duplicate. In a batch of 24 samples, therefore, 3 of the samples are analyzed in duplicate. If the variance between the sample and its duplicate is unacceptable, the batch will be re-assayed. Acceptable percent variances between the values of assay duplicates varies depending on the actual value of the parameter being measured.

In each batch, at least one standard, the certified values of which are known, are run with the samples. If the assayed value of the standard is outside the accepted range, the batch will be re-assayed.

The laboratories to which we sub-contract work all have ISO 9002 certification, and we are working towards this end as well.

8282 Sherbrooke Street, Vancouver, B.C. Canada V5X 4R6 Tel: 604 327-3436 Fax: 604 327-3423

Procedure Summary:

Sample Preparation - Rock

Procedure:

Rock and core samples are dried at 60° C. The samples are crushed using a jaw crusher. The -1/4" output from the jaw crusher is then riffled on a Jones Riffle Splitter to produce representative 150 to 300 gram sub-samples. These sub-samples are then pulverized to >90% -150 mesh using a ring and puck pulverizer, rolled and bagged for analysis. The rejects remaining from the Jones Riffle are bagged and stored.

8282 Sherbrooke Street, Vancouver, B.C. Canada V5X 4R6 Tel: 604 327-3436 Fax: 604 327-3423 i

Procedure Summary:

Gold (Au) Fire Assay

Element(s) Analyzed:

Gold (Au) - g/tonne

Procedure:

The samples are fluxed, a silver inquart added and mixed. The assays are fused in batches of 24 assays along with a natural standard and a reagent blank. This batch of 26 assays is carried through the whole procedure as a set. After cupellation the precious metal beads are transferred into new glassware, dissolved with aqua regia solution, diluted to volume and mixed.

The resulting solutions are analyzed on an atomic absorption spectrometer using a suitable standard set. The natural standard fused along with this set must be within 2 standard deviations of its known or the whole set is re-assayed.

10% of the samples with the highest grade of all assays in the batch are re-assayed and reported in duplicate along with the standard and reagent blank.

Detection Limit : 0.01 g/tonne

Procedure Summary:

30 Element Aqua Regia Leach ICP-AES Analysis

Elements Analyzed:

Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sn, Sr, Th, Ti, U, W, Zn

Procedure:

- Digest 0.500 grams of the sample for 2 hours at 95°C with an 1:3:4 HNO₃:HCl:H₂O mixture.
- After cooling, the sample is diluted to standard volume.
- Analyze by Perkin Elmer Optima 3000 Inductively Coupled Plasma spectrophotometer using standardized operating conditions.
- Detection limit and analytical range are element specific.

Appendix V

1

רי ניי

r n j_

ļ,

ſ

ſ

Core Assay Certificates

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Cover Page

To: Northgate Explorations Ltd. c/o Kemess Mine Box 3519 Smithers, BC Canada, VOJ 2N0

٢ ١

Attention: Mike Hibbitts

Certificate:2V0356Report date:03-Oct-02Invoice No.42817Account Number:1808

Project: Praxis

Item	Qnty.	Descrip	tion
1	53	Sample Prep:Rock	
2	53	Fire Assay:Gold,1AT	
3	53	ICP:Aqua Regia Leach	
		-	
		I	
Notes:			

Assayers Canada is operated by Mineral Environments Laboratories Ltd.

At .

Quality Staying for over 25 Years

Assay Certificate

2V-0356-RA1

Oct-03-02

Northgate Explorations Ltd. Company: Praxis Project: Attn:

Mike Hibbitts

We *hereby certify* the following assay of 24 drill core samples submitted Sep-19-02 by D. Kuran.

Sample Name	Au g/tonne	Au g/tonne	
9001	0.02	0.01	 <u> </u>
9002	0.02	0.01	
9003	0.03		
9004	0.03		
9005	0.04		
9006	0.03	· ····································	
9007	0.03	0.02	
9008	0.02		
9009	0.03		
9010	0.02		
9011	0.02		
9012	0.03		
9013	0.03		
9014	0.03		
9015	0.04		
9016	0.03		
9017	0.02		
9018	0.02		
9019	0.02		
9 020	0.03		
9021	0.03		
9022	0.04		
9023	0.03	0.02	
9024	0.04		
*97-2	1.39		
*Blank	<0.01		

Cuality Assaying for over 25 Yours

Assay Certificate

2V-0356-RA2

Oct-03-02

Company:Northgate Explorations Ltd.Project:PraxisAttn:Mike Hibbitts

We *hereby certify* the following assay of 24 drill core samples submitted Sep-19-02 by D. Kuran.

Sample Name	Au g/tonne	Au g/tonne	
		g/tonne	
9025	0.01		
9026	0.02		
9027	0.01		
9028	0.01		
9029	0.01	0.01	· · · · · · · · · · · · · · · · · · ·
9030	0.01		
9031	0.01		
9032	0.01		
9033	0.01		,
9034	0.01		
9035	0.01		
9036	0.01		
9037	0.01		
9038	0.01		
9039	0.01	0.01	
9040	0.03		
9041	0.06		
9042	0.01		1
9043	0.01	0.01	
9044	0.01		
9045	0.01		
9046	0.01	0.02	
9047	0.01		
9048	0.01		
*97-2	1.43		
*Blank	<0.01		

the

F&

Quality Assaying for over 25 Years

Assay Certificate

2V-0356-RA3

Oct-03-02

Company:	North
Project:	Praxis
Attn:	Mike I

1 3

2

Northgate Explorations Ltd. Praxis Mike Hibbitts

We hereby certify the following assay of 5 drill core samples submitted Sep-19-02 by D. Kuran.

Sample Name	Au g/tonne	Au g/tonne	
9049	0.01	0.01	
9050	0.01		
9051	0.01		
9052	0.02		
9053	0.01		
*97-2	1.33		
*Blank	<0.01		

Certified by

Northgate Explorations Ltd.

Attention: Mike Hibbitts

Project: Praxis

I.

1

Sample: drill core

Assayers Canada

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6	Report No	:	2V0356 RJ
Tel: (604) 327-3436 Fax: (604) 327-3423	Date	:	Oct-03-02

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Мп ppm	Mo ppm	Na %	Ni ppm	Р ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zri ppm	Zr ppm	
9001	<0.2	6.72	35	170	1.0	<5	2.91	<1	12	56	70	5.73	1.85	2.29	1050	10	0.59	20	1390	16	<5	17	<10	339	0.20	203	<10	5	143	4	
9002	<0.2	4.87	95	260	1.0	<5	3.23	<1	18	32	94	5.22	0.75	1.51	630	10	0.24	28	1370	8	<5	6	<10	455	0.11	87	<10	4	75	4	
9003	<0.2	3.16	10	250	0.5	<5	1.17	<1	19	58	97	6.23	1.14	2.20	415	<2	0.26	9	1230	10	<5	12	<10	85	0.21	98	<10	17	102	5	
9004	<0.2	7.88	10	500	1.5	<5	4.99	<1	12	64	67	4.29	1.09	1.09	635	4	0.53	17	1960	6	<5	7	<10	540	0.18	144	<10	5	71	3	
9005	<0.2	6.76	10	320	1.5	<5	3.18	<1	15	56	105	5.94	1.86	1.36	1000	12	0.76	24	1790	14	<5	18	<10	302	0.27	229	<10	7	110	4	
9006	<0.2	4.45	10	160	1.0	<5	2.62	<1	18	51	12 9	6.21	1.21	1.11	695	14	0.42	29	2000	14	<5	8	<10	175	0.22	141	<10	7	84	4	
9007	<0.2	6.57	20	310	1.0	<5	4.67	<1	12	60	81	4.36	0.84	0.76	565	12	0.51	21	1680	10	<5	10	<10	435	0.15	130	<10	5	51	3	
9008	<0.2	2.31	35	150	0.5	<5	0.58	<1	15	28	104	5.99	1.44	1.19	725	12	0.16	27	1360	10	<5	5	<10	36	0.21	101	<10	4	91	4	
9009	<0.2	5.81	35	360	1.5	<5	5.49	<1	12	49	47	6.91	1.92	3.36	1255	10	0.57	21	2230	8	<5	14	<10	471	0.25	167	<10	6	128	5	
9010	<0.2	4.15	25	150	1.0	<5	1.84	<1	18	42	85	6.28	0.29	1.24	890	6	0.37	32	1140	18	<5	4	<10	194	0.11	87	<10	4	132	4	
9011	<0.2	6.66	30	400	1.5	<5	3.17	<1	12	56	50	5.25	1.16	1.39	670	8	0.56	23	1540	12	<5	12	<10	331	0.14	149	<10	4	108	3	
9012	<0.2	8,16	25	410	1.0	<5	4.42	<1	14	64	74	5.45	1.41	1.41	575	8	0.49	25	1150	10	<5	15	<10	454	0.17	187	<10	5	104	4	
9013	<0.2	6.41	115	550	1.0	<5	4.78	<1	13	47	70	4.12	1.22	0.97	625	8	0.33	20	1260	4	<5	6	<10	484	0.19	103	<10	5	84	3	
9014	<0.2	4,26	15	190	1.0	<5	1.58	<1	18	40	137	6.77	0.89	1.13	520	10	0.48	28	1460	14	<5	7	<10	192	0.13	113	<10	4	116	4	
9015	<0.2	3.85	25	170	1.0	<5	1.34	<1	17	43	107	6.38	0.58	1.09	530	6	0.33	28	1720	14	<5	4	<10	144	0.10	75	<10	4	99	4	
9016	<0.2	8.01	5	360	1.0	<5	4.06	<1	12	99	86	5.56	1.38	1.35	455	2	0.60	19	1120	12	<5	13	<10	384	0.16	127	<10	4	104	4	
9017	<0.2	7.27	<5	340	1.0	<5	3.55	<1	12	73	82	5.69	1.46	1.29	400	2	0.59	20	1320	14	<5	12	<10	344	0.17	118	<10	4	114	4	
9018	<0.2	2.59	40	190	0.5	<5	1.10	<1	20	68	173	6.04	0.90	1.32	605	20	0.21	43	1360	16	<5	8	<10	79	0.20	104	<10	5	97	5	
9019	<0.2	2.78	5	60	0.5	<5	4.23	<1	9	30	78	2,47	0.22	0.95	365	8	0.11	21	1890	4	<5	3	<10	259	0.09	44	<10	4	35	3	
9020	<0.2	4.41	25	140	0.5	<5	7.84	<1	5	37	52	1.98	0.60	2.39	525	8	0.35	17	1420	Z	<5	4	<10	1050	0.08	83	<10	3	31	2	
9021	<0.2	3.80	15	250	0.5	<5	9.03	<1	5	42	45	2.44	0.66	3.45	580	8	0.33	15	1430	4	<5	3	<10	1178	80.0	67	<10	3	25	3	
9022	<0.2	5.55	40	220	1.0	<5	3.41	<1	13	81	75	4.15	1.38	1.37	530	16	0.63	27	3440	6	<5	15	<10	444	0.18	218	<10	5	67	3	
9023	<0.2	6.98	80	200	1.0	<5	4.57	<1	17	89	96	4.72	1.27	1.33	555	10	0.61	51	3900	8	<5	8	<10	596	0.17	167	<10	6	74	3	
9024	<0.2	5.16	60	310	0.5	<5	6.69	<1	18	120	109	4.19	1,19	2.35	635	8	0.46	77	2130	10	<5	8	<10	728	0.15	129	<10	5	63	Э	
9025	<0.2	5.75	65	310	1.0	<5	6.04	<1	23	129	145	4.56	0.93	1.64	460	8	0.48	90	2710	8	<5	9	<10	694	0.16	119	<10	5	59	3	
9026	<0.2	7.50	40	310	1.5	<5	4.68	<1	15	98	95	5.05	1.74	1.97	830	10	0.46	36		6	<5	11	<10	578	0.22	157	<10	5	86	3	
9027	<0.2	3.27	15	170	1.0	<5	1.21	<1	16	47	85	6.00	0.64	2.11	880	4	0.18	33	890	18	<5	7	<10	87	0.17	92	<10	8	125	4	
9028	<0.2	2.58	10	100	1.0	<5	1.12	<1	20	88	138	5.79	0.44	2.04	820	8	0.07	58	1250	22	<5	6	<10	28	0.20	89	<10	8	102	4	
9029	<0.2	4.26	35	240	0.5	<5	2.49	<1	19	105	130	5.95	0.78	1.81	1000	4	0.27	57	1300	16	<5	11	<10	205	0.19	143	<10	5	109	4	
9030	<0.2	4.23	35	320	0.5	<5	1.67	<1	19	118	95	5.98	1.07	1.94	1035	6	0.25	59	1320	12	<5	12	<10	128	0.21	158	<10	5	113	4	

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signed:

₹'n.

Northgate Explorations Ltd. 1

Attention: Mike Hibbitts I.

Project: Praxis ÷

Sample: drill core

Assayers Canada

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6	Report No	:	2V0356 RJ
Tel: (604) 327-3436 Fax: (604) 327-3423	Date	:	Oct-03-02

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

	ample umber	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
: 90)31	<0.2	4.12	25	290	0.5	<5	1.52	<1	23	154	131	6.45	1.32	1.82	755	4	0.18	80	900	14	<s< td=""><td>13</td><td><10</td><td>138</td><td>0.22</td><td>161</td><td><10</td><td>4</td><td>122</td><td>4</td></s<>	13	<10	138	0.22	161	<10	4	122	4
: 90	32	<0.2	2.58	<5	110	0.5	<5	0.35	<1	15	59	93	6.29	0.70	1.43	415	2	0.05	29	770	12	<5	5	<10	20	0.10	69	<10	4	125	4
: 90)33	<0.2	7.04	60	230	1.0	<5	3.63	<1	21	153	116	5.89	1.56	1.79	545	4	0.38	74	1260	8	<5	15	<10	377	0.21	160	<10	4	79	4
: 90)34	<0.2	5.48	25	550	1.0	<5	2.99	<1	20	162	96	5.29	1.63	1.95	885	2	0.39	61	1190	8	<5	14	<10	266	0.24	156	<10	4	90	3
: 90	35	<0.2	6.20	20	890	1.0	<5	2.97	<1	18	209	55	4,83	1.98	2.25	545	<2	0.64	65	1170	8	<5	21	<10	409	0.26	189	<10	5	79	3
: 90	136	<0.2	5.52	15	610	1.0	<5	5.19	<1	24	272	87	4.31	1.19	1.32	475	Z	0.50	106	1190	8	5	9	<10	508	0.18	105	<10	4	50	3
: 90	37	<0.2	5.52	15	610	1.0	<5	7.36	<1	20	200	73	3.88	1.24	1.40	690	2	0.51	77	1070	8	<5	11	<10	612	0.19	116	<10	5	50	3
: 90	38	<0.2	6.82	25	580	1.0	<5	3.92	<1	25	249	94	5.01	2.00	2.13	600	2	0.43	101	1400	8	<5	17	<10	400	0.24	150	<10	5	76	3
: 90	139	<0.2	3.67	<5	390	0.5	<5	0.75	<1	20	152	78	6.09	2.75	2.49	790	4	0.15	57	1550	8	5	16	<10	34	0.32	183	<10	4	112	4
· 90	940	<0.2	5.62	<5	220	1.0	<5	2.14	<1	19	126	93	6.09	2.35	2.44	1015	4	0.52	55	1550	8	<\$	20	<10	179	0.30	211	<10	5	113	4
· 90	941	<0.2	6.33	<5	160	1.0	<5	3.01	<1	22	170	111	6.02	2.09	2.24	920	4	0.45	66	1750	8	<5	17	<10	238	0.27	184	<10	6	98	4
· 90	942	<0.2	5.96	< 5	160	1.0	<5	2.57	<1	20	163	97	6.01	2.20	2.48	935	4	0.53	66	1540	8	<5	17	<10	223	0.28	190	<10	6	97	4
90	143	<0.2	4.03	<5	270	0.5	<5	1.39	<1	20	153	81	6.05	2.41	2.65	950	2	0.27	60	1220	10	<5	20	<10	79	0.32	204	<10	6	106	4
· 90	144	<0.2	3.16	< 5	340	0.5	<5	0.67	<1	18	129	80	5.81	2.33	2.55	860	2	0.21	44	1490	10	<5	19	<10	32	0.33	209	<10	6	105	3
· 90)45	<0.2	3.30	<5	230	0.5	<5	0.77	<1	20	157	93	6.10	2.29	2.72	815	4	0.22	57	1600	10	<5	20	<10	36	0.33	208	<10	7	103	4
· 90	46	<0.2	4.48	<5	190	1.0	<5	1.75	<1	19	168	103	5.82	1.97	2.63	595	4	0.37	60	1760	12	<5	14	<10	153	0.26	167	<10	6	81	4
· 90	47	<0.2	1.78	35	290	0.5	<5	5.70	<1	21	246	58	4.05	1.13	1.54	1180	<2	0.11	85	1040	8	5	9	<10	140	0.21	122	<10	5	52	3
. 90	48	<0.2	2.31	5	420	0.5	<5	0.74	<1	17	128	70	5.17	2.17	2.23	660	2	0.12	44	1190	8	<5	15	<10	15	0.31	186	<10	6	95	3
· 90	49	<0.2	1.60	5	240	0.5	<5	1.44	<1	17	119	77	4.67	1.46	1.53	540	4	0.10	49	1750	8	<5	8	<10	19	0.25	141	<10	5	72	3
. 90	50	<0.2	1.67	5	150	0.5	<5	3.92	<1	19	194	77	4.13	1.09	1.36	740	6	0.13	71	1770	6	<5	5	<10	88	0.21	114	<10	4	54	3
90	51	<0.2	1.94	5	360	0.5	<5	1.39	<1	19	147	79	4.90	1.76	1.94	495	4	0.10	55	1720	6	<5	9	<10	31	0.28	159	<10	5	81	3
. 90	52	<0.2	2.19	<5	400	0.5	`<5	1.75	<1	17	104	80	5.22	1.97	2.05	625	4	0.11	40	2160	8	5	13	<10	46	0.31	178	<10	7	87	3
. 90	53	<0.2	2.16	15	490	0.5	<5	4.29	<1	18	183	67	3.59	1.19	1.59	675	2	0.17	69	1180	4	<5	6	<10	173	0.21	112	<10	4	50	2

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Ċ.

Signed:

أسمأ

f 1

11

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Cover Page

To: Northgate Explorations Ltd. c/o Kemess Mine Box 3519 Smithers, BC Canada, VOJ 2NO

Attention: Mike Hibbitts

Certificate:2V0363Report date:09-Oct-02Invoice No.42825Account Number:1808

Project: Praxis

Description Qnty. Item 50 Sample Prep:Rock 1 2 1 Assay:Lead 3 50 Fire Assay:Gold, 1AT ICP:Aqua Regia Leach 50 4 1 Ż 1 4 Notes: · 1 .

Assayers Canada is operated by Mineral Environments Laboratories Ltd.

Charles Reserved for over 25 1/ 100

2V-0363-RA1

Assay Certificate

Oct-08-02

Company:Northgate Explorations Ltd.Project:PraxisAttn:Mike Hibbitts

We *hereby certify* the following assay of 24 core samples submitted Sep-24-02 by D. Kuran.

Sample Name	Au g/tonne	Au g/tonne	Pb %	Рb %		
111001	0.02	0.02				
111002	0.02					
111003	0.02					
111004	0.01					
111005	0.02					
111006	0.02					
111007	0.01					
111008	0.02					
111009	0.02					
111010	0.01	0.01				
111011	0.01					
111012	0.02					
111013	0.02					
111014	0.02					
111015	0.03					
111016	0.01					
111017	0.01					•
111018	0.01				•	
111019	0.01					
111020	0.02	0.02				
111021	0.02					
111022	0.02					
111023	0.02					
111024	0.01					
*97-2	1.41					
*Blank	<0.01					

ter

Course Considering for over 33 Gauge

2V-0363-RA2

Company:Northgate Explorations Ltd.Project:PraxisAttn:Mike Hibbitts

Assay Certificate

Oct-08-02

We *hereby certify* the following assay of 24 core samples submitted Sep-24-02 by D. Kuran.

Sample Name	Au g/tonne	Au g/tonne	Pb %	Pb %	
111025	0.01		· · · ·		······································
111026	0.02				
111027	0.01				
111028	0.01				
111029	0.01				
111030	<0.01				
111031	0.02				
111032	0.01				
111033	0.02				
111034	0.01				
111035	0.01	0.01		-	
111036	0.01				
111037	0.01				
111038	0.02				
111039	0.01	0.01			
111040	0.01				
111041	0.02				
111042	0.01				
111043	0.01				
111044	0.01			· .	
£11045	<0.01				
111046	0.27	0.31	0.71	0.72	
111047	0.01				
111048	0.02				
*MP-1a (1/5)			0.88		
*97-2	1.41			· · · · · · · · · · · · · · · · · · ·	
*Blank	<0.01		<0.01		

the

.

٢

r · |

r · |

1

r 1

ſ

2

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

the

.

. .

	Carentilly .	Variation from t	and the for		
Assa	<u>uy Certificate</u>				2V-0363-RA3
Company: Project: Attn:	Northgate Explorations Ltd. Praxis Mike Hibbitts				Oct-08-02
	<i>y certify</i> the following assay of 2 c Sep-24-02 by D. Kuran.	ore samples			
Sample Name	Au g/tonne	Au g/tonne	Pb %	Р b %	

Name	g/tonne	g/tonne	%	%	
111049	0.01	0.02			
111050	0.01				
*97-2	1.40				
*Blank	<0.01				

Certified by

								E.J			
				Ass	ayers C	anada					

Northgate Explorations Ltd.

Attention: Mike Hibbitts

Project: Praxis

Sample: Core

ı.

1

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6	Report No	:	2V0363 RJ
Tel: (604) 327-3436 Fax: (604) 327-3423	Date	:	Oct-08-02

. '

÷

the

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sam Num		Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	Р ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
1110	01	1.0	3.84	55	270	0.5	<5	1.05	<1	14	54	84	5.74	1.64	2.57	525	14	0.17	23	2180	12	<5	11	<10	144	0.15	132	<10	5	108	4
1110		1.0	5.13	45		1.0	<5	2.19	<1	18	46	129	6.75	1.47	1.61	610	8	0.54	38		12	<5	8	<10	333	0.13	133	<10	4	103	4
1110		1.6	2.27	60	130	0.5	<5	1.43	<1	18	43	121	6.09	0.87	1.55	630	14	0.10	39		16	5	5	<10	79	0.06	71	<10	4	85	4
1110		1.6	5.77	5	350	2.0	<5	2.47	<1	16	53	78	6.25	1.21	1.65	505	8	0.43	26		16	<5	15	<10	400	0.19	144	<10	4	121	4
1110		1.4	3.72			0.5	<5	1.72	<1	18	73	115	5.45	1.04	1.02		8	0.24	40		14	5		<10	183	0.12	114	<10	4	127	4
1110	06	1.0	2.81	5	240	0.5	<5	1.05	<1	16	36	90	5,10	0.86	0.90	570	2	0.12	11	870	8	<5	6	<10	109	0.14	90	<10	3	111	3
1110	07	0.4	2.95	5	200	0.5	<5	0.74	<1	14	38	64	5.64	0.85	1.09	655	<2	0.12	10	890	10	<5	6	<10	86	0.15	95	<10	4	116	3
1110	08	0.6	3.50	5	600	0.5	<5	1.36	<1	9	40	169	4.57	1.45	1.64	915	4	0.19	7	1320	8	<5	9	<10	115	0.21	101	<10	6	150	3
1110	09	1.0	2.23	< 5	130	1.0	<5	0.49	<1	15	39	98	5.51	0.71	1.23	415	8	0.08	20	810	14	<5	5	<10	54	0.12	74	<10	3	128	4
1110	10	0.6	3.46	80	410	0.5	<5	0.36	<1	17	106	99	5.72	1.65	2.04	685	6	0.10	38	830	8	5	15	<10	28	0.23	146	<10	2	163	4
																															1
1110	11	0.4	3.08	15	350	0.5	<5	0.61	<1	14	44	72	4.73	1.36	1.70	805	4	0.14	11	730	8	<5	9	<10	50	0.21	107	<10	3	120	3
1110	12	0.2	2.87	85	190	0.5	<5	0.63	<1	14	44	95	5.36	1.09	1.49	500	4	0.15	16	1000	10	<5	6	<10	107	0.14	88	<10	3	110	3
1110	13	0.2	3.90	125	280	0.5	< 5	1.11	<1	19	83	126	5.82	0.96	2.56	1050	8	0.26	45	740	18	<5	11	<10	146	0.11	139	<10	3	127	4
1110	14	0.2	5.17	30	220	0.5	<5	1.73	<1	21	131	121	6.61	1.59	2.58	990	8	0.32	66	1390	16	5	16	<10	183	0.16	186	<10	4	127	4
1110	15	0.4	5.28	20	190	1.0	<5	2.39	<1	20	79	211	6.05	1.92	1.95	880	8	0.29	41	1230	14	<5	11	<10	307	0.24	146	<10	3	125	4
																															i
1110	16	0.2	3.02	10	290	0.5	<5	0.50	<1	13	38	95	4.98	1.47	1.96	830	6	0.12	13	870	10	<5	8	<10	46	0.17	92	<10	3		i.
1110	17	0.2	3.38	20	230	1.0	<5	0.38	<1	13	39	80	5.39	1.43	2.19	780	4	0.11	17	630	8	< 5	8	<10	46	0.17	99	<10	2	134	3
1110	18	0.2	3.38	20	220	0.5	<5	1.01	<1	18	75	103	5.92	1.39	1.82	845	12	0.21	40	1900	12	5	10	<10	90	0.15	126	<10	4	142	4 ¦
1110		<0.2	6.71	10	160	1.0	<5	2.69	<1	29	263	158	7.13	2.12	2.66	830	8	0.38	109		16	5	23	<10	330	0.22	214	<10	3		5
1110	20	<0.2	4.06	70	280	0.5	<5	1.87	<1	24	238	130	5.74	1.76	2.66	490	6	0.20	92	870	14	5	17	<10	184	0.18	152	<10	2	104	4
							_	.																							_
1110		0.2	3.85	50	-	0.5	<5	0.63	<1	29	272	214	6.66	1.88	2.70	555	8	0.15	122		16	5	20	<10	138	0.22	194	<10	2		
1110		<0.2	3.49	25		0.5	<5	0.52	<1	19	128	158	5.41	1.28	2.22	445	6	0.17	68		10	5	12	<10	131	0.13	131	<10	1	99	
1110		<0.2	4.46			0.5	<5	1.19	<1	35	308	169	6.24	2.06	2.91	615	8	0.28	141		14	5	21	<10	231	0.21	182		3	141	4
1110		<0.2	3.76	15	490	0.5	<5	1.65	<1	22	236	136	5.90	2.27	3.97	740	- 6	0.12	93	600	14	5	21	<10	144	0.25	185	<10	2	146	4
1110	25	<0.2	5.11	40	310	1.0	<5	6.29	<1	11	55	60	4.20	1.26	3.32	865	12	0.23	28	950	10	5	10	<10	387	0.18	126	<10	<u></u> 3	83	3
	~																-					_									
1110		< 0.2	5.94	35	330	1.0	<5	2.60	<1	24	194	-149	6.27	2.41	2.62	960	6	0.45	83		16	5	19	<10	301	0.26	180	<10	4	129	4
1110		< 0.2	5.79	20	370	1.0	<5	3.13	<1	25	243	120	6.15	2.37	2.81	920	10	0.43	98		16	5	20	<10	350	0.28	198	<10	4	117	4
1110		0.2	6.85	5		1.0	<5	4.37	<1	25	139	195	5.76	1.00	1.11	545	4	0.40	87		18	<5	8	<10	526	0.17	111	<10	4	80	4
1110		< 0.2	2.94	5	250	0.5	<5	0.91	<1	15	60	81	6.58	0.69	1.93	735	4	0.09	30		16	<5	8	<10	15	0.16	109	<10	7	106	4
1110	30	<0.2	3.17	60	250	0.5	<5	0.79	<1	15	84	67	6.23	0.78	2.23	830	10	0.09	37	1060	14	<5	11	<10	15	0.20	143	<10	6	131	4

Page 1 of 2

A .5 gm sample is digested with 5 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Assayers Canada 38282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Northgate Explorations Ltd.

Attention: Mike Hibbitts

Project: Praxis

Sample: Core

Tel: (604) 327-3436 Fax: (604) 327-3423

 Report No
 :
 2V0363 RJ

 Date
 :
 Oct-08-02

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	A! %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	К %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	Р ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W pom	Y ppm	Zn ppm	Žr ppm
	•••			••						••						• •			• • •								• • •	••	••	••
111031	<0.2	4.21	50	100	0.5	<5	1.10	<1	23	71	212	8.50	1.80	2.23	715	10	0.18	44	1420	16	<5	13	<10	55	0.23	159	<10	5	140	5
111032	<0.2	5.55	870	240	1.0	<5	2.99	<1	22	81	80	5.28	1.52	1,45	695	10	0.32	36	1860	12	<5	13	<10	295	0,22	159	<10	4	94	3
111033	<0.2	3.21	100	250	0.5	<5	0.60	<1	· 21	126	97	6.63	2.36	2.23	840	12	0.15	47	1000	10	<5	20	<10	37	0.33	213	<10	5	141	4
111034	<0.2	4.61	280	780	0.5	<5	2.69	<1	21	130	37	4.94	1.59	1.94	570	12	0.28	52	1770	8	< 5	14	<10	267	0.21	162	<10	6	111	3
111035	<0.2	4.20	190	390	0.5	<5	1.41	<1	20	132	80	5.78	2.17	2.18	930	14	0.24	56	1230	10	5	19	<10	126	0.30	179	<10	5	119	4
111036	<0.2	5.28	145	180	0.5	<5	3.98	<1	18	86	74	4.15	1.15	1.26	545	8	0.47	52	2730	10	<5	5	<10	458	0.15	85	<10	4	62	3
111037	<0.2	5.41	45	340	1.0	<5	3.05	<1	22	118	109	5.76	2.03	2.14	895	8	0.48	70	1360	10	<5	15	<10	269	0.26	169	<10	6	97	4
111038	<0.2	5.44	155	330	1.0	<5	3.02	<1	20	111	86	5.55	1.94	2.04	880	16	0.38	57	1730	10	<5	16	<10	406	0.28	174	<10	5	92	4
111039	<0.2	3.77	325	80	0.5	< 5	11.10	<1	13	86	46	2.00	0.41	0.54	690	6	0.31	56	1840	8	<5	2	<10	992	0.08	35	<10	4	18	2
111040	<0.2	3.51	15	320	1.0	<5	1.35	<1	19	116	77	6.16	2.01	2.25	710	4	0.19	42	1320	10	5	12	<10	82	0.28	139	<10	5	123	4
111041	<0.2	3.02	< 5	270	1.0	< 5	0.31	<1	16	80	73	6.04	1.79	1.96	535	4	0.11	30	850	10	< 5	7	<10	25	0.24	102	<10	3	121	4
111042	<0.2	2.76	25	230	1.0	<5	0.22	<1	16	32	73	5.91	1.57	1.70	415	6	0.08	19	710	8	<5	4	<10	16	0.21	74	<10	2	108	4
111043	<0.2	3.27	25	310	0.5	<5	0.55	<1	16	87	67	5.90	2.01	2.07	660	2	0.14	34	850	10	< 5	11	<10	38	0.26	129	<10	3	117	4
111044	<0.2	3.59	20	540	0.5	<5	0.57	<1	19	111	94	6.29	2.62	2.49	1295	4	0.12	52	1630	8	5	15	<10	18	0.30	179	<10	4	120	4
111045	<0.2	4.68	25	310	0.5	<5	2.69	<1	19	308	59	2.37	1.02	1.75	165	<2	0.10	106	1210	10	5	1	<10	430	0.11	66	<10	1	36	1
111046	13.8	3.02	65	80	0.5	< 5	3.69	12	22	199	252	2.13	0.27	0.82	500	<2	0.23	114	1060	6734	10	2	<10	539	0.09	50	60	2	3942	2
111047	2.0	2.16	35	60	0.5	<\$	4.52	5	27	215	157	2.64	0.24	0.84	715	2	0.21	126	1230	702	5	2	<10	361	0.11	59	20	3	1553	2
111048	0.2	3.29	35	570	0.5	<5	1.47	<1	29	365	127	4.45	1.53	2.66	505	<2	0.14	104	1460	18	5	2	<10	130	0.24	127	<10	2	65	3 1
111049	<0.2	2.39	< 5	470	0.5	< 5	2.38	<1	28	50	235	5.92	2.31	2.03	790	<2	0.06	32	2030	10	5	3	<10	46	0.39	247	<10	5	160	4
111050	<0.2	2.53	<5	530	0.5	<5	3.09	<1	28	57	212	6.42	2.50	2.23	865	<2	0.07	29	2140	10	<5	5	<10	88	0.41	278	<10	7	98	2

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signed:

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Cover Page

To: Northgate Explorations Ltd. c/o Kemess Mine Box 3519 Smithers, BC Canada, VOJ 2N0

1

÷

Attention: Mike Hibbitts

Certificate:	2V0366
Report date:	07-Oct-02
Invoice No.	42823
Account Number:	1808

Project: Praxis

	Item	Qnty.	Description
	1 2 3	64 64 64	Sample Prep:Rock Fire Assay:Gold,1AT ICP:Aqua Regia Leach
	Notes:		
$\left[\right]$	Į		

Assayers Canada is operated by Mineral Environments Laboratories Ltd.

th

Quality Assaying for over 25 Years

2V-0366-RA1

Assay Certificate Northgate Explorations Ltd. Company:

Praxis

Project:

Oct-07-02

Mike Hibbitts Attn: We *hereby certify* the following assay of 24 core samples submitted Sep-26-02 by D. Kuran.

Sample Name	Au g/tonne	Au g/tonne	
111051	0.01		
111052	0.01	0.01	
111053	0.01		
111054	0.01		
111055	0.01		
111056	<0.01		
111057	<0.01		
111058	<0.01	0.01	
111059	<0.01		
111060	0.01		
111061	0.01		
111062	<0.01		
111063	0.01		
111064	<0.01		
111065	0.01		
111066	0.01		
111067	<0.01		
111068	0.01		
111069	0.01		
111070	<0.01	<0.01	
111071	0.01		
111072	<0.01		
111073	<0.01		
111074	<0.01		
*97-2	1.41		
*Blank	<0.01		

Quality Assaying for over 25 Genry

Assay Certificate

2V-0366-RA2

Company:Northgate Explorations Ltd.Project:PraxisAttn:Mike Hibbitts

Oct-07-02

We *hereby certify* the following assay of 24 core samples submitted Sep-26-02 by D. Kuran.

Sample Name	Au g/tonne	Au g/tonne	
111075	0.02		· · · · · · · · · · · · · · · · · · ·
111076	0.01		
111077	0.01	0.01	
111078	0.02		
111079	0.01		
111080	0.02		
111081	0.01		
111082	0.08		
111083	0.01	0.01	
111084	0.01		
111085	0.01		
111086	0.01		
111087	0.01		
111088	0.01		
111089	0.01		
111090	0.01	0.01	
111091	0.02		
111092	0.01		
111093	0.02		
111094	0.01		
1 11095	0.01		
111096	0.01		
111097	0.01	0.01	
111098	0.01		
*97-2	1.40		
*Blank	<0.01		······

the

Condition Association for over 20 Years

Assay Certificate

2V-0366-RA3

Oct-07-02

Company:Northgate Explorations Ltd.Project:PraxisAttn:Mike Hibbitts

ר -

We *hereby certify* the following assay of 16 core samples submitted Sep-26-02 by D. Kuran.

Au g/tonne	Au g/tonne	Sample Name
0.02	0.01	111099
	<0.01	111100
	0.01	111101
	0.01	111102
 	0.02	111103
	0.01	111104
	0.01	111105
	0.02	111106
	0.02	111107
	0.01	111108
	0.02	111109
	0.01	111110
	0.01	111111
	0.01	111112
 0.01	0.02	111113
	0.01	111114
	1.39	*97-2
	<0.01	*Blank

the

Assayers Canada 8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Northgate Explorations Ltd.

Attention: Mike Hibbitts

Project: Praxis

Sample: Core

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 2V0366 RJ Date : Oct-07-02

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
111051	<0.2	2.46	< 5	120	1.0	<5	0.48	<1	17	36	129	7.05	0.57	1.29	290	6	0.12	31	580	14	<5	3	<10	118	0.03	45	<10	z	106	4
111052	<0.2	6.32	75	190	0.5	<5	3.05	<1	29	454	99	7.12	1.28	2.98	450	<2	0.28	120	3690	12	10	19	<10	379	0.19	194	<10	8	154	5
. 111053	<0.2	5.13	20	120	1.0	<5	2.11	<1	21	249	111	6.20	0.78	2.18	340	2	0.24	75	1500	10	5	11	<10	382	0.11	119	<10	4	121	4
. 111054	<0.2	3.57	< 5	270	1.0	<5	1.50	<1	15	49	125	5.77	0.86	1.42	635	8	0.20	26	1320	10	<5	8	<10	209	0.15	117	<10	5	99	4
. 111055	<0.2	4.92	45	500	0.5	<5	5.37	<1	12	80	51	3.74	0.94	1.14	1050	6	0.25	26	1440	8	<5	9	<10	748	0.15	108	<10	6	70	3
111056	<0.2	2.89	<5	140	1.0	<5	0.35	<1	15	39	131	6.60	0.95	1.53	890	2	0.07	29	940	10	<5	4	<10	16	0.14	77	<10	3	152	4
. 111057	<0.2	2.52	35	240	1.0	<5	0.23	<1	19	75	78	6.21	1.21	1.07	355	6	0.06	22	750	10	<5	7	<10	14	0.17	101	<10	3	126	4
111058	<0.2	2.55	35	300	1.0	<5	0.22	<1	16	56	61	5.74	1.26	1.04	405	2	0.06	15	770	6	<5	9	<10	7	0.19	114	<10	2	123	4
. 111059	<0.2	2.91	<5	230	1.0	<5	0.39	<1	19	68	98	7.00	1.18	1.29	530	10	0.08	30	1360	10	<5	9	<10	19	0.17	130	<10	4	155	4
. 111060	<0.2	2.31	<5	160	1.0	<5	0.18	<1	14	34	77	6.18	0.94	1.06	300	6	0.05	16	660	8	<5	5	<10	9	0.14	77	<10	2	133	4
111061	<0.2	2.56	5	140	1.0	<5	0.37	<1	14	54	70	5.40	0.73	1.06	445	2	0.09	20	900	8	<5	5	<10	35	0.11	78	<10	3	115	3
. 111062	<0.2	2.79		180	0.5	<5	0.40	<1	20	85		6.49	0.94	1.28	510	4	0.09	37			<5	9	<10	34	0.13	108		3	143	4
111063	<0.2	2.85		250	1.0	<5	0.28	<1	17	47	87	6.47	1.28	1.22	410	4	0.07	19			< 5	8	<10	15	0.18	98	<10	3		4
. 111064	<0.2	3.16	10	290	1.0	<5	0.31	<1	16	49	76	6.56	1.40	1.24	510	2	0.08	17			<5	8	<10	18	0.21	108	<10	3	143	4
111065	<0.2	3.12	5	200	0.5	<5	0.39	<1	17	56	127	8.73	1.28	1.31	790	<2	0.09	14			5	11	<10		0.22	139		5		6
	.0.7			450												_				_	•							_		
. 111066 . 111067	< 0.2	3.23	15 50	450 200	0.5	<5		<1	15	53	60	6.83	1.42	1.26	660	<2	0.08	11			<5	11	<10	16	0.23	136		4		4
. 111067	< 0.2	2.94	50	320	0.5	<5 <5		<1	23	115	132	7.00	0.94	2.09	745	2	0.08	53			<5	14	<10	20	0.14	146	<10	5	139	4
. 111069	<0.2 <0.2	6.01 6.98		430	0.5 1.0	<5	4.69 4.40	<1 <1	26 25	198 211	103 140	4.43 4.95	1.15 1.39	1.02 1.58	390 300	4	0.43	118	1670		5	. 7	<10	629	0.19	102		4	56	3 3
. 111070	<0.2	6.64	55	530	1.0	<5	4.40	<1	26	211	140		1.59	1.58	515		0.59 0.47				5	11	<10	526	0.18	140		4	75 78	3 3
. 1110/0	-U.2	0.04		550	1.0			~1	20	240		5.05	1.05	1.74	313	Ŭ	0.47	112	1260	10	J	14	<10	579	0.20	151	<10	-	70	5
. 111071	<0.2	3.07	15	180	0.5	<5	0.49	<1	18	109	90	6.20	0.71	1.66	510	2	0.11	47	1070	12	5	8	<10	50	0.12	108	<10	3	132	4
. 111072	<0.2	2.54	<5	160	0.5	< 5	0.30	<1	18	54	116	6.64	0.47	1.66	495	4	0.09	46	730	12	< 5	6	<10	20	0.07	86	<10	3	139	4
111073	<0.2	6.02	60	240	0.5	< 5	3.45	<1	31	280	137	6.92	0.93	2.06	790	6	0.26	131	1670	14	5	16	<10	334	0.14	163	<10	6	113	4
. 111074	<0.2	2.57	10	140	0.5	<5	0.26	<1	15	56	67	5. 9 6	0.49	1.56	525	<2	0.07	23	850	8	<5	7	<10	14	0.10	100	<10	4	133	4
. 111075	<0.2	5.07	25	520	1.0	<5	7.89	<1	10	41	66	4.27	1,24	2.61	1205	10	0.43	20	1900	8	<5	13	<10	770	0.17	169	<10	6	78	4
111076	<0.2	4.41	20	390	0.5	<5	9.65	<1	12	32	126	4.15	0.95	2.78	1325	8	0.25	22	1460	8	<5	8	<10	731	0.12	109	<10	5	53	3
. 111077	<0.2	5.34	30	530	1.0	< 5	Z.76	<1	16	46	79	5.88	1.72	1.42	885	6	0.34	24	1360	6	<5	14	<10	279	0.20	170	<10	4	117	4
111078	<0.2	3.87	15	300	1.0	<5	1.97	<1	18	56	94	6.43	1.58	1.39	690	8	0.15	30	2320	10	5	8	<10	202	0.22	131	<10	6	114	4
. 111079	<0.2	3.75	10	120	0.5	<5	8.64	<1	6	38	46	2.44	0.58	1.83	665	18	0.33	17	2840	6	<5	5	<10	881	0.09	88	<10	4	35	2
111080	<0.2	3.79	10	130	0.5	<5	5.90	<1	10	44	89	3.74	0.92	2.14	675	28	0.27	19	3490	10	<5	9	<10	552	0.14	115	<10	6	52	3

A .5 gm sample is digested with 5 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.1.H20.

Signed:

Page 1 of 3

Northgate Explorations Ltd.

Attention: Mike Hibbitts

Project: Praxis

Sample: Core 1

Assayers Canada

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6	Report No	:	2V0366 RJ
Tel: (604) 327-3436 Fax: (604) 327-3423	Date	:	Oct-07-02

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

I	Sampl e Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm	
	111081	<0.2	3.22	20	200	0.5	<5	11.87	<1	3	21	30	2.00	0.49	2.48	880	18	0.19	14	3230	4	<5	2	<10	1256	0.05	53	<10	4	28	2	
	111082	<0.2	4.41	30	280	0.5	< 5	3.13	<1	12	27	79	4.84	0.96	2.28	310	22	0.18	19	530	8	<5	5	<10	589	0.16	79	<10	3	71	3	
	111083	<0.2	4.33	10	440	0.5	<5	5.93	<1	8	24	51	3.50	1.35	2.65	760	22	0.19	15	1470	4	<5	8	<10	586	0.16	96	<10	4	50	3	
	111084	<0.2	4.51	25	190	0.5	<5	1.83	<1	16	39	100	5.88	1.74	2.14	695	14	0.31	27	1740	10	<5	12	<10	187	0.18	158	<10	4	80	4	
	111085	<0.2	6.56	75	230	1.0	<5	3.09	<1	15	43	83	5.35	2.00	2.48	635	12	0.33	22	1390	8	<5	13	<10	407	0.21	155	<10	3	94	4	
	111086	<0.2	2.49	5	220	1.0	<5	0.32	<1	14	29	87	5.35	1.06	1.19	495	2	0.10	11	820	8	<5	5	<10	29	0.15	74	<10	3	119	4	
	111087	<0.2	3.01	10	450	0.5	<5	0.90	<1	11	43	76	4.53	1.33	1.07	750	4	0.24	8	920	12	<5	8	<10	101	0.21	96	<10	5	135	3	
	111088	<0.2	3.33	<5	580	0.5	<5	1.50	<1	8	67	42	3.47	1.09	0.89	630	4	0.24	5	1240	6	<5	7	<10	148	0.20	84	<10	7	110	3	
	111089	<0.2	3.73	20	270	1.0	<5	1.03	<1	16	40	115	5.69	1.17	1.62	730	8	0.26	22	890	12	<5	6	<10	113	0.16	107	<10	4	103	4	
	111090	<0.2	1.13	<5	90	<0.5	<5	1.97	<1	11	40	66	6.49	0.28	0.36	530	4	0.13	7	2040	10	5	8	<10	90	0.16	39	<10	19	85	5	
	111091	<0.2	2.32		140	0.5	<5	6.22	<1	7		47	4.54	0.27	0.46		2	0.23	9	930	. 8	<5	5	<10	647	0.12	29	<10	11	57	3	
	111092	<0.2	3.71	40	370	1.0	<5	2.00	<1	16		51	5.06	1.16	1.12		6	0.25	26	1010	8	<5	7	<10	287	0.18	106	<10	5	127	3	
	111093	<0.2	3.39	30	480	0.5	<5	1.15	<1	11		88	4.54	1.26	1.31	750	4	0.22	12	1140	8	<5	7	<10	117	0.18	90	<10	5	116	3	
	111094	<0.2	2.87	20	300	1.0	<5	0.81	<1	13	37	34	4.96	1.35	0.92	660	<2	0.10	9	1140	6	<5	7	<10	80	0.19	100	<10	5	132	3	
	111095	<0.2	1.40	<5	110	1.0	<5	0.25	<1	16	13	105	5.46	0.83	0.71	285	6	0.05	13	690	10	. 5	2	<10	11	0.10	40	<10	4	102	4	
	111096	<0.2	5.03	30	280	1.0	<5	2.79	<1	16	53	85	5.35	1,23	1,13	555	12	0.26	25	1830	12	<5	10	<10	339	0.16	132	<10	5	132	4	
	111097	<0.2	8.65	10	680	2.0	<5	4.52	<1	14	70	69	5.41	2.02	1.82	895	8	0.48	27	1120	12	<5	18	<10	527	0.24	182	<10	5	113	3	
	111098	<0.2	2.61	15	150	0.5	<5	0.67	<1	13	50	66	5.37	0.61	1.44	370	12	0.12	30	750	10	<5	4	<10	144	0.06	57	<10	3	100	3	
	111099	<0.2	3.20	10	140	0.5	<5	0.85	<1	21	125	117	6.93	0.40	1.79	610	4	0.10	73	920	12	5	7	<10	68	0.06	99	<10	4	244	4	
	111100	<0.2	6.04	25	330	0.5	<5	2.67	<1	30	273	107	6.94	1.35	2.40	1095	4	0.29	121	1420	12	5	15	<10	292	0.17	176	<10	5	137	4	
	111101	<0.2	5.47	65	210	0.5	<5	3.13	<1	34	344	146	8.13	0.85	3.13	2005	4	0.24	138	1670	24	5	17	<10	237	0.15	190	<10	8	136	5	
	111102	<0.2	6.45	15	490	0.5	<5	2.42	<1	27	188	119	7.29	1.89	2.65	1495	8	0.35	106	1620	12	<5	22	<10	203	0.24	235	<10	5	124	5	
	111103	<0.2	6.16	10	750	1.0	< 5	1.87	<1	26		97	7.24	2.17	2.86		6	0.36	100	1560	10	<5	24	<10	173	0.28	252	<10	5	129	5	
	111104	<0.2	7.91	65	440	1.0	<5	5.54	<1	34	365	122	6.16	1.44	2.06	895	4	0.38	148	1840	10	5	17	<10	559	0.19	171	<10	5	84	4	
	111105	<0.2	5.76	35	340	1.0	<5	2.53	<1	28	222	124	6.45	1.15	1.94	680	4	0.29	116	1190	12	5	12	<10	320	0.14	139	<10	4	92	. 4	
	111106	<0.2	6.41	40	250	1.0	<5	2.14	<1	30		120	8.20	2.20	2.78	965	4	0.39	130		14	5	26	<10	243	0.27	220	<10	5	153	5	
	111107	<0.2	4.63	10	270	0.5	<5	1.87	<1	20	127	80	6.25	1.21	2.09	985	4	0.31	59	1380	10	< 5	14	<10	160	0.16	171	<10	4	109	4	
	111108	<0.2	7.31	20	780	1.0	<5	4.12	<1	14	110	54	5.37	2.39	3.09	895	4	0.48	34	1270	6	<5	18	<10	465	0.26	197	<10	6	115	3	
	111109	<0.2	6.15	<5	140	1.0	<5	3.20	<1	16	78	89	5.63	1.58	1.93	675	6	0.58	34	2320	8	<5	14	<10	333	0.20	182	<10	7	101	4	
	111110	<0.2	6.64	40	630	1.0	<5	2.98	<1	19	112	86	6.15	2.47	2.39	1290	4	0.55	54	1390	8	<5	18	<10	300	0.28	205	<10	6	109	4	

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signed:_

	_ L				L		I							Ľ	ا ئ		L.	<i></i> -	L_	⁻	L				·	L	 •			L
													•		Cana										в			21/	0266	пі
Northgate I	Explo	rati	ons	Ltd.							2 Sher															ort N	0:		0366	
Attention: Mike	Hibbit	ts								T	[el: (60	04) 32	27-34	36 F	ax: (6	04) 32	7-342	23							Date	:	:	0	ct-07-0	02
Project: Praxis																														
Sample: Core										M	ULTI	I-EL	EM	ENT	ICP	ANA	LY	SIS												
												A	qua R	egia I	Digest	ion														
Sample Number	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm

945

875

680

8 0.68

6 0.36

8 0.34

14 0.07

47 2490

176

51 1510

49 1250

860

8

6

8

<2

<5

<5

<5

10

8 <10

14

7 <10

9

<10

<10

4.56 1.16 1.10

63 3.73 0.65 1.15

38 3.67 0.74 3.67

2.21 2.19

<1

<1

<1

<1

<5 6.21

< 5 3.03

<5 8.22

<5 9.80

17

19

15

24

81

85

86

424

90

64 5.18

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

<0.2 6.18

<0.2 4.46

<0.2 2.96

<0.2 3.10

111111

111112

111113

111114

55

60

90

55

140

720

70

80

1.0

1.0

0.5

0.5

Signed:

HL.

6

7

6

5

3

804 0.16

524 0.14

0.27

305 0.11 101

170

121

178

103

<10

<10

<10

<10

65

92

54

30

3

3

4

3

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Cover Page

To: Northgate Explorations Ltd. c/o Kemess Mine Box 3519 Smithers, BC Canada, VOJ 2N0

Attention: Mike Hibbitts

Certificate:2V0374Report date:17-Oct-02Invoice No.42840Account Number:1808

Project: Praxis

Description Item Qnty. Sample Prep:Rock 108 1 Fire Assay:Gold,1AT 2 108 ICP:Aqua Regia Leach 3 108 r 2 Notes:

Assayers Canada is operated by Mineral Environments Laboratories Ltd.

Buntilly Assaying for over 25 Years

2V-0374-RA1

Assay Certificate Company: Northgate Explorations Ltd.

Oct-17-02

Project: Praxis Attn: Mike Hibbitts

We *hereby certify* the following assay of 24 rock samples submitted Oct-03-02 by D. Kuran.

Sample Name	Au g/tonne	Au g/tonne	
111115	0.02		
111116	0.01		
111117	0.02		
111118	0.02		
111119	0.01		
111120	0.01		
111121	0.01		
111122	0.01	0.01	
111123	0.01		
111124	0.01		
111125	0.01		
111126	0.01		
111127	0.02		
111128	0.02		
111129	0.01	0.01	
111130	0.01		· · · · · · · · · · · · · · · · · · ·
111131	0.01		
111132	0.01		
111133	0.02		
111134	0.01		
. 1 11135	0.01	0.01	
111136	0.01		
111137	0.01		
111138	0.01		
*97-2	1.35		
*Blank	<0.01		

Fler

2V-0374-RA2

Assay Certificate

(

Oct-17-02

Company:Northgate Explorations Ltd.Project:PraxisAttn:Mike Hibbitts

We *hereby certify* the following assay of 24 rock samples submitted Oct-03-02 by D. Kuran.

Sample Name	Au g/tonne	Au g/tonne	
111139	0.01		
111140	0.01		
111141	0.01		
111142	0.01		
111143	<0.01		
111144	<0.01		
111145	0.01		
111146	0.01		
111147	0.01		
111148	0.01	0.01	
111149	<0.01		
111150	0.01		
111151	0.01		
111152	0.01		
111153	0.01	0.01	
111154	0.01		
111155	0.01		
111156	0.01		
111157	0.01		
111158	0.01	0.01	
1 11159	0.01		
111160	0.01		
111161	0.01		
111162	0.01		
*97-2	1.36		
*Blank	<0.01		

the

į

 (γ)

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

AU

and the second second

2V-0374-RA3

Assay Certificate

Oct-17-02

Company:Northgate Explorations Ltd.Project:PraxisAttn:Mike Hibbitts

We *hereby certify* the following assay of 24 rock samples submitted Oct-03-02 by D. Kuran.

Sample Name	Au g/tonne	Au g/tonne	
111163	0.01		
111164	0.01		
111165	0.01	0.01	
111166	0.02		
111167	0.01		
111168	0.01		
111169	0.01		
111170	0.01		
111171	0.01		
111172	0.01		
111173	0.03		
111174	0.02		
111175	0.01	0.01	
111176	0.02		
111177	0.01		
111178	0.02		
111179	0.01		
111180	0.02		
111181	0.02		
111182	0.02		
111183	0.02	_	
111184	0.01		
111185	0.01	0.01	
111186	0.01		
*97-2	1.34		
*Blank	<0.01		

Constitution of the second of the second

Assay Certificate

2V-0374-RA4

Oct-17-02

Company:	Northgate Explorations Ltd.
Project:	Praxis
Attn:	Mike Hibbitts

()

We *hereby certify* the following assay of 24 rock samples submitted Oct-03-02 by D. Kuran.

Sample Name	Au g/tonne	Au g/tonne	
111187	0.01		
111188	0.01		
111189	0.01		
	0.01		
111190	0.01	0.01	
111191		0.01	
111192	0.01		
111193	0.01		
111194	0.01		
111195	0.01		
111196	0.01		
111197	0.01	0.01	
111198	0.01		
111199	0.01		
111200	0.01		
111201	0.01		
	0.01		· ·
111202	0.01		
111203	0.01		
111204	0.01		
111205			
111206	0.01		
111207	0.01		
111208	0.01	0.01	
111209	0.01		
111210	0.01		
*97-2	1.35		
*Blank	<0.01		

the

I

the

Assay Certificate

2V-0374-RA5

_____ .__ .__ .___.

Company:Northgate Explorations Ltd.Project:PraxisAttn:Mike Hibbitts

Oct-17-02

We *hereby certify* the following assay of 12 rock samples submitted Oct-03-02 by D. Kuran.

13

 Au g/tonne	Au g/tonne	Sample Name
	<0.01	111211
	0.02	111212
	0.01	111213
	<0.01	111214
	0.01	111215
	<0.01	111216
	<0.01	111217
	0.02	111218
	<0.01	111219
 0.01	0.01	111220
	0.01	111221
	0.01	111222
	1.40	*97-2
	<0.01	*Blank

.

Certified by

Northgate Explorations Ltd.

Attention: Mike Hibbitts

Project: Praxis

Sample: Rock

1

Assayers Canada

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6	Report No	:	2V0374 RJ
Tel: (604) 327-3436 Fax: (604) 327-3423	Date	:	Oct-17-02

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm	
111115	<0.2	3.19	80	160	0.5	<5	0.96	<1	16	26	4	9.04	1.56	1.63	485	2	0.12	4	4240	14	5	19	<10	<1	0.23	60	<10	26	195	7	
111116	0.2	1.18	85	80	0.5	<5	1.27	<1	13	32	21	6.81	0.72	1.15	595	12	0.09	5	3070	14	5	9	<10	<1	0.24	20	<10	24	120	11	
111117	<0.2	1.23	230	130	0.5	< 5	1.57	<1	11	44	27	6.09	0.51	1.10	615	6	0.11	4	3210	10	<5	7	<10	6	0.23	17	<10	26	78	11	
111118	<0.2	1.55	50	50	0.5	<5	0.97	<1	10	36	4	7.83	0.37	1.35	780	2	0.08	4	2230	18	S	12	<10	<1	0.13	14	<10	23	89	6	
111119	<0.2	1.65	25	50	0.5	< 5	1.12	<1	10	35	8	7.82	0.58	1.48	900	2	0.10	5	2330	14	<\$	12	<10	82	0.13	22	<10	18	107	14	
111120	<0.2	2.94	25	170	0.5	<5	4.07	<1	12	31	67	4.13	0.43	2.12	870	12	0.17	21	1320	6	<5	4	<10	322	0.16	71	<10	6	75	4	
111121	<0.2	5.92	10	230	1.0	< 5	7.21	<1	8	35	60	3.63	0.89	2.76	875	8	0.39	14	1820	6	< 5	6	<10	768	0.16	112	<10	5	66	4	
111122	<0.Z	5.61	15	220	1.0	<5	4.15	<1	14	47	74	4.64	0.85	1.10	765	8	0.36	19	1640	8	<5	10	<10	471	0.21	128	<10	6	85	3	
111123	0.2	4,32	70	220	1.0	< 5	4.20	<1	16	46	92	5.64	0.57	0.94	820	8	0.22	28	1560	16	<5	7	<10	339	0.10	103	<10	7	89	4	
111124	<0.2	3.20	30	130	1.0	<5	2.23	<1	14	40	66	5.62	0.59	1.25	855	6	0.21	22	1370	16	<5	9	<10	127	0.18	114	<10	6	127	4	
111125	<0.2	4,55	30	260	1.0	< 5	3.54	<1	14	41	67	5.20	0.94	2.04	760	16	0.30	25	1990	8	<5	13	<10	315	0.20	165	<10	6	87	4	
111126	<0.2	3.06	10	260	1.0	<5	0.85	<1	14	31	71	6.33	1.26	1.05	260	6	0.14	16	890	10	<5	7	<10	138	0.20	100	<10	3	107	4	
111127	<0.2	2.86	< 5	160	0.5	<5	1.80	<1	12	27	89	5.70	0.73	0.99	235	10	0.09	14	630	10	<5	3	<10	183	0.13	64	<10	2	82	4	
111128	<0.2	1.77	< 5	30	0.5	<5	1.33	<1	8	56	47	7.25	0.07	0.55	385	2	0.20	8	1300	14	<5	9	<10	150	0.17	18	<10	12	126	6	
111129	<0.2	0.84	<5	10	0.5	<5	1.05	<1	6	61	25	6.33	0.04	0.47	555	2	0.09	6	990	12	<\$	9	<10	16	0.21	15	<10	18	135	5	
111130	<0.2	1.14	<5	20	0.5	<5	0.88	<1	9	66	67	7.32	0.08	0.67	485	2	0.11	8	1050	16		11	<10	34	0.17	19	<10	16	139	6	
111131	<0.2	6.57	25	240	1.0	< 5	3.21	<1	13	60	66	5.30	1.96	2.07	980	8	0.66	20	2040	8	<5	16	<10	431	0.26	187	<10	7	109	4	
111132	<0.2	7.24	50	230	1.0	<5	5.51	<1	12	59	73	4.10	0.71	0.80	530	8	0.68	19	1810	6	<5	4	<10	868	0.14	94	<10	5	64	3	
111133	<0.2	6.61	15	80	1.0	<5	5.68	<1	12	51	72	3.54	0.15	0.23	240	18	0.54	20	2530	4	<5	2	<10	947	0.09	42	<10	4	48	3	
111134	<0.2	5.85	30	30	1.0	<5	4.32	<1	10	46	59	2.46	0.31	0.47	195	8	0.60	18	1500	4	<5	1	<10	597	0.11	52	<10	4	32	2	
111135	<0.2	6.14	45	50	1.0	<5	4.54	<1	11	52	63	3.17	0.67	0.85	295	8	0.64	20	1580	4	<5	3	<10	695	0.14	83	<10	4	39	2	
111136	<0.2	5.69	20	430	1.0	< 5	8.61	<1	7	32	59	3.84	1.23	2.54	835	4	0.31	14	1880	6	<5	6	<10	721	0.16	103	<10	5	57	3	
111137	<0.2	1.72	30	70	0.5	<5	0.84	<1	23	49	130	6.53	0.63	1.12	475	22	0.12	40	910	20	5	8	<10	44	0.18	107	<10	6	74	6	
111138	<0.2	4.99	35	170	1.0	< 5	2.96	<1	14	46	86	5.26	0.62	1.71	895	16	0.37	24	1930	12	< 5	9	<10	351	0.21	129	<10	6	101	4	
111139	<0.2	4,67	40	200	0.5	<5	2.29	<1	13	64	76	5.13	1.37	1.92	885	6	0.36	27	1880	8	<5	13	<10	291	0.23	146	<10	6	156	3	
111140	<0.2	4.07	60	260	1.0	< 5	1.08	<1	18	66	100	6.24	1.10	2.25	655	18	0.22	45	1480	10	<5	12	<10	406	0.16	153	<10	5	130	4	
111141	<0.2	4.18	45	180	1.0	<5	2.89	<1	15	44	92	6.07	0.59	1.89	805	8	0.18	33	1740	10	<5	9	<10	258	0.18	127	<10	8	118	4	
111142	<0.2	2.96	50	80	1.0	< 5	1.06	<1	12	31	72	5.55	0.28	2.25	920	8	0.10	22	1260	12	<5	7	<10	94	0.21	107	<10	8	114	4	
111143	<0.2	3.48	55	100	0.5	< 5	3.20	<1	13	31	74	4.73	0.24	1.89	795	18	0.16	25	1750	6	<5	6	<10	286	0.13	89	<10	5	84	4	
111144	<0.2	2.86	30	110	0.5	<5	0.96	<1	18	33	99	5.88	0.36	2.14	710	40	0.16	34	1480	12	<5	7	<10	129	0.15	101	<10	7	100	5	

A .5 gm sample is digested with 5 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signed:

Page 1 of 4

Northgate Explorations Ltd.

Attention: Mike Hibbitts

Project: Praxis

J

Т

Sample: Rock

Assayers Canada

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6	Report No	:	2V0374 RJ
Tel: (604) 327-3436 Fax: (604) 327-3423	Date	:	Oct-17-02

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

:	Sample Number	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
	111145	<0.2	3.63	25	110	1.0	<5	4.02	<1	15	40	104	5.14	0.26	1.37	820	10	0.14	30	1780	10	5	6	<10	383	0.14	97	<10	8	99	5
	111146	<0.2	4.19	50	190	1.0	<5	3.71	<1	14	44	78	4.90	0.51	1,53	1125	10	0.20	29	1170	12	<5	9	<10	406	0.18	114	<10	6	100	4
	111147	<0.2	3.91	10	170	1.0	< 5	1.07	<1	17	47	154	8.37	0.59	1.87	905	2			1310	14	<5	10	<10	106	0.22	130	<10	9	153	5
	111148	<0.2	4.10	25	360	1.0	< 5	1.07	<1	20	85	58	5.83	1.00	1.60	685	2		30		6	<5	14	<10	144	0.21	160	<10	6	119	3
	111149	<0.2	3.70	40	410	1.0	<5	0.72		19	92	40	5,44	1.13	1.58	610	z		31		10	<5	15	<10	124	0.21	173	<10	5		3
·	111150	<0.2	3.78	30	390	1.0	<5	0.92		17	89		5.29	1.10	1.52	620	2	0.13	-	1110	6	< 5	12	<10	153	0.19	147	<10	4	-	3
	111151	<0.2	3.91	25	390	1.0	< 5	0.69	<1	19	82	66	5.77	1.33	1.58	590	2	0.14	29	1090	6	<5	12	<10	186	0.20	142	<10	3	123	3
	111152	<0.2	4.43	25	250	1.0	<5	3.73	<1	15	54		4.82	0.53	1.58	865	10			1170	10	<5	9	<10	423	0.16	109	<10	6	82	3
	111153	<0.2	5.83	30	360	1.0	<5	3.61	<1	18	68	98	5,34	1.06	1.11	780	28	0.32	38	1540	10	<5	11	<10	481	0.17	144	<10	5	90	4
	111154	<0.2	4.20	150	350	0.5	<5	2.14	<1	19	96	69	4.88	0.97	1.31	810	20	0.21	42	1170	10	<5	11	<10	393	0.22	134	<10	4	90	4
:	111155	<0.2	6.27	85	550	1.0	<5	3.87	<1	18	77	112	5.38	1.65	1.51	960	14	0.32	44	1880	10	< 5	14	<10	523	0.24	157	<10	5	95	4
1	111156	<0.2	5.36	15	370	0.5	<5	2.67	<1	15	73	98	4.99	1.34	1.42	710	18	0.29	36	1170	10	<5	11	<10	427	0.20	143	<10	4	85	4
1	111157	<0.2	4.23	50	230	1.0	<5	1.63	<1	20	81	120	5.54	0.98	1.49	550	16	0.16	51	1090	8	<5	9	<10	191	0.14	121	<10	3	102	4
1	111158	<0.2	3.05	35	210	1.0	<5	0.50	<1	18	82	111	5.52	0.97	1.52	470	16	0.14	43	820	8	<5	10	<10	54	0.14	124	<10	3	116	4
I.	111159	<0.2	3.18	175	220	0.5	<5	0.49	<1	23	154	114	5.98	0.86	1.70	550	6	0.12	77	950	8	5	11	<10	51	0.13	133	<10	3	122	4
					455																_	•	_								
1	111160	< 0.2	3.33	20	150	0.5	<5	0.98	<1	17	73	87	5.81	0.59	1.59	560	6				6	< 5	8	<10	121	0.10	113	<10	4		4
1	111161	<0.2	3.32	50	170	0.5	< 5	0.65	<1	20	130	144	6.73	0.62	2.06	770	4			940	10	5	11	<10	28	0.16	136	<10	4		4
1	111162	<0.2	3.13	15	160	0.5	< 5	0.84	<1	17	84	93	5.95	0.54	1.62	620		0.12	38		8	<5	9	<10	82	0.14	119	<10	5	114	4
1	111163	< 0.2	3.57	10	160	0.5	<5	1.04	<1	20	114	109	6.08	0.59	1.73	715	4	0.15	50		12	5	10	<10	77	0.14	127	<10	5	119	4
I	111164	<0.2	2.09	10	70	0.5	<5	0.76	<1	13	53	81	5.60	0.17	1.11	725	4	0.08	22	920	16	<5	4	<10	22	0.07	89	<10	4	109	4
I	111165	<0.2	3.48	45	150	0.5	< 5	3.55	<1	12	6 4	80	5.53	0.22	1.30	1365	6	0.18	32	1300	18	<5	6	<10	162	0.06	113	<10	6	112	4
1	111166	<0.2	3.64	75	120	0.5	< 5	2.10	<1	29	63	159	9.13	0.25	1.43	1215	4	0.17	54	1180	20	<5	5	<10	91	0.09	101	<10	4	130	6
1	111167	<0.2	2.40	50	110	0.5	< 5	5.26	<1	14	63	77	5.18	0.20	1.11	1610	6	0.08	33	1180	18	<5	5	<10	184	0.08	96	<10	6	85	4
I.	111168	<0.2	2.17	20	150	0.5	< 5	0.60	<1	16	47	91	5.55	0.60	0.95	585	2	0.09	23	860	10	< 5	5	<10	72	0.14	75	<10	6	112	4
l	111169	<0.2	3.09	25	230	1.0	<5	0.51	<1	19	58	120	6.80	0.92	1.33	555	2	0.08	26	1090	10	<5	8	<10	75	0.17	111	<10	5	158	4
1	111170	<0.2	2.29	15	140	0.5	<5	0.42	<1	16	39	91	6.13	0.47	1.12	495	2	0.06	22	1160	12	< 5	4	<10	25	0.09	73	<10	6	134	4
	111171		2.11		110	0.5	< 5	0.50	<1	13	30	68	5.38	0.27	0.98	425	<2	0.06	16	820	10	<5	2	<10	22	0.07	54	<10	6		3
	111172	<0.2	1.66	<5	100	0.5	<5	0.26	<1	15	24		5.32	0.26	0.89	350		0.05	17	760	12	<5	2	<10	1	0.05	40	<10	- 6	95	3
	111173	<0.2	2.12	410	60	0.5	< 5	2.45	<1	15	39	94	6.25	0.18	1.31	1050	2		23	1240	36	<5	4	<10	50	0.07	80	<10	9	170	4
	111174	<0.2	8.36	95	470	1.0	< 5	4.81	<1	30	223	134		1.59	1.92	630		0.34	113		12	<5	17	<10	-	0.20	171	<10	5	87	4
	****/7		0.00			1.0			••	50	~~_J		5,55		1.52	0.00	J	0.54		1000	14		1,	~10	502	0.20	1,1	-10	,	0/	-

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signed:

FLI

Assayers Canada

Northgate Explorations Ltd.	, §282 Sherbrooke St., Vancouver, B.C., V5X 4R6	Report No : 2V0374 RJ
Attention: Mike Hibbitts	Tel: (604) 327-3436 Fax: (604) 327-3423	Date : Oct-17-02

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

111175 -0.2 8.29 65 450 1.0 <5 6.69 21 111 1.0 65 60 2.0 1.0 2.5 5.69 2.1 1.1 1.1 6.0 1.0 5.5 1.0 1.0 7.6 6.0 1.0 7.6 7.0 <td< th=""><th></th><th>Sample Number</th><th>Ag ppm</th><th>AI %</th><th>As ppm</th><th>Ba ppm</th><th>Be ppm</th><th>Bi ppm</th><th>Ca %</th><th>Cd ppm</th><th>Co ppm</th><th>Cr ppm</th><th>Cu ppm</th><th>Fe %</th><th>K %</th><th>Mg %</th><th>Mn ppm</th><th>Mo ppm</th><th>Na %</th><th>Ni ppm</th><th>P ppm</th><th>Pb ppm</th><th>Sb ppm</th><th>Sc ppm</th><th>Sn ppm</th><th>Sr ppm</th><th>Ti %</th><th>V ppm</th><th>W ppm</th><th>Y ppm</th><th>Zn ppm</th><th>Zr ppm</th></td<>		Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
11176 <0.2		111175	<0.2	8 79	65	450	10	< 5	5 69	<1	20	118	92	4 90	1.08	1 28	525	10	0.27	68	2380	8	<5	10	<10	768	0.16	105	<10	5	62	з
111172 -0.2 5.4 45 30 1.0 45 1.2 1.0 2.5 4.5 1.0 2.5 1.0 <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>		-								_												-	-									-
1 111179 -0.2 2.7.6 60 490 1.0 es 3.8 es 1.0 <th1< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td></th1<>				-																								-				-
1 11179 <0.2 5.75 65 300 1.0 <5 1.92 1.0 7.0 2.10<										-													-							-		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																																5
1 111181 <0.2			-0.2	5.7.5						•						2.22	0.0		0.51		1.00	10							-10	-		-
111102 -0.2 3.10 25 20 1.5 <5	1	111180	<0.2	3.26	75	200	1.0	< 5	0.60	<1	22	100	110	6.74	1.27	1.76	650	12	0.15	51	1280	14	5	9	<10	57	0.16	108	<10	4	130	4
111183 -0.2 3.22 60 230 1.0 -5 0.48 -1 22 6.0 5.83 0.90 1.22 330 -2 0.12 16 700 14 -5 8 -10 0.0 1.0 10 1 14 35 6.00 5.83 0.90 1.22 330 -2 0.10 15 0.14 71 -0.0 3 125 4 1 111185 -0.2 3.16 25 0.0 1.0 -5 0.5 1.1 20 0.50 10 -5 5.5 -10 0.7 0.13 89 -10 3 1.24 4 111187 -0.2 2.87 20 160 0.5 <5	1	111181	<0.2	4.07	210	290	1.0	<5	0.81	<1	28	217	122	7.46	1.64	2.44	850	8	0.18	94	1360	16	5	17	<10	69	0.24	164	<10	5	157	5
1 111184 <0.2 3.20 10 190 1.0 <5 0.48 <1 14 35 60 5.83 0.90 1.32 330 <2 0.12 16 700 8 <5 4 <10 62 0.14 71 <10 3 122 4 1 111185 <0.2	1	111182	<0.2	3.10	25	220	1.5	<5	0.48	<1	22	97	111	6.74	1.32	1.87	915	16	0.13	57	830	14	<5	9	<10	48	0.18	117	<10	Э	130	4
111185 <0.2	1	111183	<0.2	3.22	60	230	1.0	<5	0.64	<1	22	81	122	6.90	1.08	1.79	610	8	0.13	53	1070	14	<5	8	<10	40	0.18	109	<10	4	159	4
111186 .0.2 2.33 10 240 1.0 <5	1	111184	<0.2	3.20	10	190	1.0	<5	0.48	<1	14	35	60	5.83	0.90	1.32	330	<2	0.12	16	700	8	<5	4	<10	82	0.14	71	<10	3	125	4
111186 .0.2 2.33 10 240 1.0 <5																																
111167 <0.2	I	111185	<0.2	3.16	25	200	1.0	<5		<1	17	48	71	6.28	0.69	1.32	440	2	0.11				<5	5	<10	107	0.13	89	<10	5		4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	111186	<0.2	2. 9 3	10	240	1.0	<5	0.32	<1	17	41	99	6.73	0.83	1.36	475	<2	0.08	17		10	<5	8	<10	65	0.16	104	<10			4
111189 <0.2	1	111187	<0.2	2.87	20	160		<5		<1	14	44	59	5.90	0.44	1.24	505	<2		14	700	18	<5	6	<10	80	0.11	85	<10	5	129	4
$\begin{array}{c} 111190 \\ (1) \\ (1$	1	111188	<0.2	2.17	20	120	0.5	<5	0.22	<1	15	-39	75	5.69	0.38	1.08	370	<2	0.07	20	620	10	< 5	4	<10	24	0.08	64	<10	3	121	4
111191 <0.2	1	111189	<0.2	1.86	<5	100	0.5	<5	0.17	<1	13	16	101	5.66	0.28	1.02	280	4	0.06	20	520	8	<5	2	<10	16	0.04	36	<10	3	120	4
111191 <0.2		*****			. 5				a 75				02	- -	a 37		200	-	a 47		630			-			0.00					
111192 .0.2 2.09 .5 90 0.5 .5 0.23 .1 13 29 75 5.67 0.35 1.37 430 4 0.06 20 920 10 5 2 <10																																
111193 <0.2	-							-												-					-					-		•
111194 <0.2 2.37 <5 170 0.5 <5 0.54 <1 18 39 126 6.50 0.96 1.44 595 4 0.07 25 1040 14 <5 6 <10 28 0.13 91 <10 6 162 4 111195 <0.2										_													+	_	_							
$\begin{array}{c} 111195 \\ (11196) \\ (11196) \\ (11196) \\ (11196) \\ (11196) \\ (11196) \\ (11196) \\ (11196) \\ (11196) \\ (11196) \\ (11196) \\ (11196) \\ (11196) \\ (1111196) \\ (1111196) \\ ($																								-								
111196 <0.2		111194	<0.2	2.37	< 5	170	0.5	< 5	0.54	<1	10	29	120	6.50	0.96	1.44	292	4	0.07	25	1040	14	< 3	0	<10	28	0.13	91	<10	0	102	4
111197 <0.2	:	111195	<0.2	6.86	80	560	1.0	<5	4.11	<1	18	61	76	5.24	1.75	1.64	990	4	0.48	29	1450	10	<5	14	<10	392	0.24	164	<10	5	96	3
111198 <0.2	:	111196	<0.2	5.50	15	360	0.5	<5	2.67	<1	18	85	75	5.84	2.28	1.89	1135	4	0.38	39	1480	10	<5	17	<10	231	0.28	177	<10	6	110	4
111199 <0.2	:	111197	<0.2	6.16	15	340	1.0	<5	4.46	<1	17	73	103	5.56	1.33	1.62	1145	4	0.41	41	1420	12	<5	12	<10	307	0.18	145	<10	7	96	4
111200 <0.2	:	111198	<0.2	5.92	45	620	0.5	< 5	4.11	<1	17	115	71	5.47	2.14	1.76	1550	2	0.40	46	1370	8	< 5	16	<10	464	0.28	173	<10	7	96	4
111201 <0.2 5.33 50 600 1.0 <5 1.43 <1 22 135 147 6.41 2.42 2.15 1495 4 0.29 58 1240 8 5 15 <10 120 0.30 175 <10 4 128 4 111202 5 780 1.0 <5	:	111199	<0.2	7.42	5	470	1.0	<5	4.49	<1	17	88	104	4.83	1.37	1.24	935	4	0.43	44	1490	10	< 5	10	<10	397	0.20	123	<10	5	75	. 3
111201 <0.2 5.33 50 600 1.0 <5 1.43 <1 22 135 147 6.41 2.42 2.15 1495 4 0.29 58 1240 8 5 15 <10 120 0.30 175 <10 4 128 4 111202 5 780 1.0 <5																																
111202 <0.2	1	111200	<0.2			460			2.68	<1		98	88	6.13	2.36			6	0.27	45	1530	8	<5	14	<10	199	0.30	175	<10	5	116	4
111203 <0.2 5.11 5 450 0.5 <5 1.64 <1 17 86 84 5.72 2.36 2.47 1005 4 0.25 31 1200 10 <\$ 16 <10 157 0.29 174 <10 4 104 4	:	111201	<0.2	5.33	50	600	1.0	<5		<1		135	147	6.41	2.42	2.15	1495	4	0.29	58	1240	8	5	15	<10	120	0.30	175	<10	4	128	4
		111202	<0.2	6.54	5	780		<5	3.57	<1	17	78	93	5.08	2.07	1.85	1090	2	0.33	34	1150	8	<5	15	<10	355	0.28	160	<10	5	90	3
111204 <0.2 5.19 25 830 1.0 <5 5.18 <1 12 72. 41 3.96 1.94 2.28 880 4 0.33 20 580 4 <\$ 14 <10 616 0.23 133 <10 6 75 3	:	111203	<0.2	5.11	5	450	0.5	<5	1.64	<1	17	86	84	5.72	2.36	2.47	1005	4	0.25	31	1200	10	<2	16	<10	157	0.29	174	<10	4	104	4
	:	111204	<0.2	5.19	25	830	1.0	<5	5.18	<1	12	72.	41	3.96	1.94	2.28	880	4	0.33	20	580	4	<\$	14	<10	616	0.23	133	<10	6	75	3

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

1 L T

ł

Project: Praxis

Sample: Rock

Signed:_

The

Assayers Canada

Northgate Explorations Ltd.

Attention: Mike Hibbitts

Project: Praxis

1

Sample: Rock

, §282 Sherbrooke St., Vancouver, B.C., V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423
 Report No
 : 2V0374 RJ

 Date
 : Oct-17-02

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

i r	Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm	
	111205	<0.2	6.75	35	780	1.0	<5	3.75	<1	17	117	75	4.09	1.75	2.12	500	8	0.49	57	900	10	5	10	<10	495	0.21	125	<10	4	63	3	
	111206	<0.2	6.66	30	620	1.0	<5	4.55	<1	16	102	82	5.25	2.19	2.35	950	6	0.41	45	1380	8	< 5	14	<10	381	0.26	165	<10	6	89	3	
	111207	<0.2	6.48	30	450	0.5	<5	2.99	<1	21	162	97	6.14	2.24	2.27	900	4	0.32	66	1320	10	< 5	16	<10	298	0.28	177	<10	5	105	4	
	111208	<0.2	4.47	10	330	0.5	<5	1.21	< 1	18	120	86	6.08	2.32	2.39	900	4	0.31	49	1060	10	<5	17	<10	127	0.28	182	<10	4	112	4	
	111209	<0.2	6.45	<5	420	1.0	<5	2.74	<1	15	74	99	5.78	2.32	2.19	1090	4	0.52	28	1520	8	5	17	<10	234	0.26	187	<10	5	104	4	
	111210	<0.2	5.40	95	490	0.5	<5	2.93	<1	20	129	101	5.70	2.26	2.39	1150	6	0.47	61	1300	12	< 5	16	<10	352	0.27	195	<10	6	101	4	
	111211	<0.2	4.15	25	300	0.5	< 5	2.55	<1	22	147	93	5.18	1.31	1.97	550	10	0.40	76	1330	14	5	10	<10	313	0.22	148	<10	6	78	4	
	111212	<0.2	5.18	10	350	0.5	< 5	3.93	<1	18	100	119	4.74	1.51	1.70	640	6	0.53	53	1240	10	<5	12	<10	581	0.22	138	<10	5	87	4	
	111213	<0.2	4.96	10	460	0.5	<5	2.29	<1	21	144	96	5.71	2.47	2.74	785	4	0.31	64	1570	8	5	18	<10	236	0.29	170	<10	7	103	4	
	111214	<0.2	2.81	45	740	0.5	< 5	0.83	<1	23	400	68	3.40	1.25	2.23	120	2	0.20	118	660	4	5	11	<10	134	0.18	116	<10	3	45	2	
	111215	<0.2	2.27	<5	210	0.5	<5	2.38	<1	15	95	29	4.65	1.40	1.30	590	2	0.06	29	1500	20	<5	9	<10	118	0.24	159	<10	7	78	4	
	111216	<0.Z	1.74	<5	140	<0.5	<5	0.83	1>	14	38	99	4.33	1.24	1.03	600	<2	0.08	10	1760	8	5	8	<10	7	0.27	168	<10	9	54	3	
	111217	<0.2	2.33	5	280	0.5	<5	0.54	<1	15	35	28	4.97	1.81	1.48	710	< 2	0.07	7	1770	6	< 5	12	<10	4	0.31	184	<10	10	56	. 4	
	111218	<0.2	2.09	<5	250	0.5	<5	0.60	<1	14	35	42	4.98	1.66	1.31	715	<2	0.08	6	1790	12	< 5	10	<10	3	0.32	192	<10	10	84	4	
	111219	<0.2	1.87	<5	110	0.5	<5	0.74	<1	14	30	74	4.35	1.04	1.25	690	<2	0.08	5	1840	16	<5	8	<10	5	0.27	180	<10	11	114	3	
	111220	0.2	1.22	<5	70	0.5	<5	0.86	<1	12	27	48	3.33	0.50	0.71	490	<2	0.07	5	1820	40	<5	5	<10	16	0.20	124	<10	9	60	3	
	111221	<0.2	2.75	< 5	330	0.5	<5	1.21	<1	22	247	20	5.15	1.88	2.06	1025	<2	0.09	75	1770	10	5	8	<10	19	0.29	172	<10	7	90	4	
	111222	0.4	2.88	15	140	0.5	<5	4.79	<1	17	218	146	2.58	0.44	1.58	660	<2	0.14	93	1120	10	< 5	3	<10	258	0.10	62	20	3	78	2	

ŀ

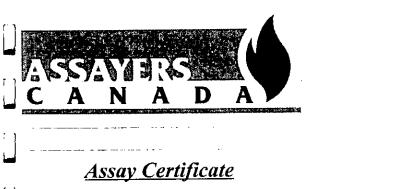
r '

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

.

Cover Page


To: Northgate Explorations Ltd. c/o Kemess Mine Box 3519 Smithers, BC Canada, VOJ 2NO

Attention: Mike Hibbitts

Certificate:2V0375Report date:17-Oct-02Invoice No.42841Account Number:1808

Project: Praxis

	Item	Qnty.	Description
	1	49	Sample Prep:Rock
1	2	49	Fire Assay:Gold,1AT
	3	49	ICP:Aqua Regia Leach
	Ĵ		
	··		
	Notes:		
1	l		

2V-0375-RA1

Oct-17-02

Company:Northgate Explorations Ltd.Project:PraxisAttn:Mike Hibbitts

We *hereby certify* the following assay of 24 rock samples submitted Oct-02-03 by D. Kuran.

ample	Au	Au	
lame	g/tonne	g/tonne	
11223	0.01		
11224	<0.01		
11225	0.02		
11326	0.02		
11327	0.01		
11328	0.01		
11329	0.01		
11330	0.01		
11331	0.02	0.02	
11332	0.01		· · · · · · · · · · · · · · · · · · ·
11333	0.01		··· · · · · · · · · · · · · · · · · ·
11334	0.02		
11335	0.01		
11336	0.01	0.02	
.11337	0.01		
11338	0.01		
11339	0.01		
11340	0.01		
11341	0.01	0.01	
.11342	0.01		
11343	0.01		
11344	0.02		
11345	0.01		
11346	0.02		
97-2	1.41		
Blank	<0.01		

the

:

THE

Oct-17-02

2V-0375-RA2

Assay Certificate

r)

1

<u>۲</u>

Company:	Northgate Explorations Ltd.
Project:	Praxis
Attn:	Mike Hibbitts

We *hereby certify* the following assay of 24 rock samples submitted Oct-02-03 by D. Kuran.

Sample	Au	Au	
Name	g/tonne	g/tonne	
111347	0.01		
111348	<0.01	0.01	
111349	0.02		
111350	0.01		
111251	0.01		
111252	<0.01		
111253	0.01		
111254	0.01		
111255	0.01		
111256	0.01		
111257	0.02		
111258	<0.01	0.01	
111259	0.01		
111260	<0.01		
111261	0.01		
111262	0.01		
111263	0.02	0.01	
111264	<0.01		
111265	0.01		
111266	0.01		
111267	0.01		· · · · · · · · · · · · · · · · · · ·
111268	0.01		
111269	<0.01		
111270	0.01		
*97-2	1.38		
*Blank	<0.01		

Certified by

ï

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423 i

Assay Certificate

2V-0375-RA3

Company:Northgate Explorations Ltd.Project:PraxisAttn:Mike Hibbitts

2

Oct-17-02

We *hereby certify* the following assay of 1 rock sample submitted Oct-02-03 by D. Kuran.

Sample Name	Au g/tonne	Au g/tonne	
111271	<0.01	<0.01	
*97-2 *Blank	1.39 <0.01		

Certified by

the

Northgate Explorations Ltd.

Attention: Mike Hibbitts

Project: Praxis

Sample: Rock

Assayers Canada

• •	8282 Sherbrooke St., Vancouver, B.C., V5X 4R6	Report No	:	2V0375 RJ
÷	Tel: (604) 327-3436 Fax: (604) 327-3423	Date	:	Oct-17-02

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Z PP
111223	<0.2	3.34	125	260	0.5	<5	1.28	<1	32	238	114	4.27	0.99	2.75	215	10	0.20	151	830	16	5	5	<10	176	0.13	98	<10	2	55	5
111224	<0.2	3.41	65	460	0.5	<5	1.47	<1	22	175	99	4.69	2.05	3.74	390	22	0.12	81	510	8	<5	14	<10	123	0.24	175	<10	3	93	,
111225	<0.2	4.56	85	180	0.5	<5	1.80	<1	38	452	160	5.62	1.63	4.20	290	14	0.19	207	980	12	5	7	<10	294	0.20	141	<10	3	6	i
111326	<0.2	4.78	90	830	1.0	<5	2.03	<1	31	226	99	4.10	1.88	3.04	270	18	0.25	144	770	4	5	2	<10	435	0.19	87	<10	2	57	,
111327	<0.2	6.30	45	650	1.0	<5	2.8 5	<1	13	72	67	4.92	2.30	3.22	595	14	0.59	34	1700	10	<5	12	<10	372	0.23	173	<10	5	90	}
111328	<0.2	5.23	70	290	0.5	<5	3.11	<1	24	218	92	5.86	2.54	3.97	845	14	0.35	97	1310	8	5	18	<10	309	0.26	194	<10	5	11(;
111329	<0.2	5.42	15	130	1.0	<5	2.13	<1	15	58	98	5.63	1.89	1.81	770	12	0.56	30	1440	12	<5	14	<10	233	0.22	176	<10	4	107	1
111330	<0.2	3.66	35	380	0.5	<5	3.96	<1	13	66	88	5.32	1.79	3.68	985	6	0.15	33	1360	8	<5	12	<10	239	0.19	144	<10	3	92	ż i
111331	<0.2	2.77	70	130	0.5	< 5	0.71	<1	21	112	122	6.01	0.86	2.59	750	18	0.08	69	980	14	5	9	<10	105	0.12	131	<10	4	11:	i i
111332	<0.2	2.35	30	170	0.5	<5	6.06	<1	8	46	77	3.73	0.58	2.88	740	18	0.09	28	1510	10	<5	6	<10	459	0.07	79	<10	4	54	ł
						· _	_		_								_								_				_	
111333	<0.2	3.38	70	150	0.5	·<5	5.80	<1	15	165	76	3.70	0.26	4.01	655	18		78		8	5	8	<10	495	0.09	99	<10	3		
111334	<0.2	4.37	70	170	0.5	< 5	2.47	<1	25	256	163	5.80	1.23	3.24	670	6	0.20	107	1290	46	5	15		249	0.17	156	<10	4		
111335	< 0.2	5.31	55	130	0.5	<5	1.99	<1	22	184	134	5.85	2.14	3.63	770	16		77		14	5	19		311	0.22	195	<10	4		
111336	<0.2	6.18	25	310	1.0	<5	3.07	<1	21	195	147	4.94	1.74	1.89	610	2		82		18	<5	11		464	0.22	144	<10	4		
111337	<0.2	6.38	15	480	1.0	< 5	3.39	<1	20	163	86	4.58	1.74	1.82	450	6	0.59	71	1540	8	<5	9	<10	468	0.20	149	<10	4	70	,
111338	<0.2	5.56	20	560	0.5	<5	5.51	<1	22	220	89	4.19	1.47	1.59	630	2	0.50	99	1240	8	<5	7	<10	689	0.17	111	<10	4	5	,
111339	<0,2	5.78	20	340	0.5	<5	4.46	<1	21	157	127	4.53	1.48	1.49	485	- 4	0.56	84		12	<5	8	<10	635	0.19	117	<10	4		
111340	<0.2	5.57	20	300	0.5	<5	2.99	<1	23	184	93	4.89	1.94	1.99	460	2	0.45	87	1010	10	<5	12		430	0.24	138	<10	4	7	
111341	<0.2	5.84	20	380	0.5	< 5	4.03	<1	25	219	87	4.66	1.68	1.83	520	2	0,47	117	1370	12	5		<10	600	0,19	124	<10	4		
111342	<0,2	6.89	<5	350	1.0	< 5	3.42	<1	20	165	107	5.56	2.24	2.48	955	8	0.51	72			<5	17	<10	440	0.25	185	<10	5		
111343	<0.2	4.32	<5	250	0.5	< 5	1.15	<1	23	162	110	6.55	1.58	2.32	715	6	0,19	77	1060	10	5	13	<10	102	0.20	148	<10	4	126	ذ
111344	<0.2	4.16	10	270	0.5	<5	2.94	<1	21	140	74	5.38	1.20	1.55	480	4	0.12	85	1030	8	< 5	10	<10	218	0.18	100	<10	3	8	5
111345	<0.2	2.84	< 5	180	1.0	< 5	0.27	<1	15	37	76	5.41	1.10	1.34	295	2	0.08	16	700	6	<5	5	<10	25	0.18	82	<10	3	120	ś
111346	<0.2	2.92	< 5	210	1.0	<5	0.23	<1	16	53	·73	5.57	1.16	1.33	330	2	0.08	22	740	10	< 5	6	· <10	30	0.18	86	<10	3	119)
111347	<0,2	6.84	5	650	1.0	<5	2.76	<1	24	219	104	5.82	2.43	2.85	730	8	0,41	93	1170	14	5	20	<10	430	0.26	189	<10	5	10:	L
						_																								
111348	<0.2	5.43	25	690	0.5	<5	6.27	<1	19	174	84		1.99	3.26	1780		0.39	80		10	5	15		495	0,22		<10	4		
111349	<0.2	7.47	20	590	1.0	<5	4.19	<1	30	278	147	5.07	1.68	2.54	445	6	0.55	146		10	5	12		472	0.18	177	<10	S		
111350	<0.2	5.02	<5	350	1.0	<5	1.44	<1	24	162	120	5.99	1.89	2.45	500	4	0.27	83		8	5	13	<10	147	0.23	157	<10	4		
111251	<0.2	3.40	< 5	520	0.5	<5	0.23	<1	19	143	85	5.12	1.72	2.02	420	<2	0.10	48	680	8	<5	11	<10	29	0.24	119	<10	3		
111252	<0.2	3.87	<5	320	0.5	<5	1.35	<1	20	117	91	5.75	1.47	1.90	640	4	0.22	52	1080	8	<5	11	<10	125	0.21	131	<10	5	94	ł

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signed:_

THI.

Page 1 of 2

Assayers Canada , 8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Northgate Explorations Ltd.

Attention: Mike Hibbitts

Project: Praxis

Sample: Rock

Tel: (604) 327-3436 Fax: (604) 327-3423

 Report No
 : 2V0375 RJ

 Date
 : Oct-17-02


MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr pprr
111253	<0.2	3.42	<5	480	0.5	<5	0.54	<1	22	84	105	6.18	2.22	2.19	845	4	0.10	44	1060	10	< 5	15	<10	16	0.31	164	<10	4	115	5
111254	< 0.2	5.77	<5	380	1.0	<5	2.43	<1	16	81	92	5.64	1.92	1.92	880	6	0.39	34	1390		<5	14	<10	225	0.24	171	<10	5	115	5
111255	<0.2	7.07	<5	180	1.0	<5	2.92	<1	19	137	101	6.39	Z.15	2.33	1370	4					<5	20	<10	276	0.24	221	<10	6	199	•
111256	<0.2	6.51	<5	180	1.0	<5	2.55	<1	18	105	85	6.39	2.13	2.24	1410	6	0.72		1550		< 5	19	<10	247	0.25	229	<10	6	233	3
111257	<0.2	3.15	5	540	0.5	<5	0.60	<1	18	68	59	5.72	1.84	1.61	800	4	0.11	30	910	10	<5	13	<10	40	0.27	147	<10	4	143	L
111258	<0.2	2.64	<5	300	1.0	<5	0.19	<1	18	44	62	5.56	1.71	1.45	415	2	0.05	23	840	6	<5	6	<10	3	0.25	92	<10	4	11	5
111259	<0.2	2.56	<5	240	1.0	<5	0.21	<1	15	28	70	5.40	1.51	1.41	355	2	0.06	16	790	8	<5	S	<10	8	0.24	83	<10	4	120	0
111260	<0.2	2.82	< 5	280	1.0	<5	0.20	<1	16	27	59	5.64	1.77	1,53	435	<2	0.05	14	900	6	<5	6	<10	1	0.26	89	<10	4	125	5
111261	<0.2	2.71	< 5	260	1.0	<5	0.16	<1	16	20	64	5.41	1.79	1.52	350	<2	0.05	14	750	6	5	5	<10	<1	0.27	79	<10	3	128	3
111262	<0.2	2.68	<5	250	1.0	<5	0.13	<1	16	19	84	5.77	1.78	1.53	310	<2	0.05	15	640	6	< 5	5	<10	<1	0.27	77	<10	3	12	3
111263	<0.2	2,53	< 5	210	0.5	<5	0.12	<1	15	20	71	5.70	1.69	1.47	260	2	0.05	15	580	8	<5	5	<10	< 1	0.25	73	<10	3	12:	L
111264	<0.2	2.89	< 5	570	0.5	<5	3.91	<1	15	38	62	4.64	1.78	1.57	775	2	0.08	19	770	6	<5	9	<10	230	0.27	106	<10	4	94	4
111265	<0.2	6.28	<5	440	1.0	<5	3.11	<1	24	195	114	5.71	2.03	2.69	1115	8	0.49	96	1450	8	5	15	<10	314	0.24	174	<10	6	8	5
111266	<0.2	6,99	35	270	1.0	<5	2.80	<1	32	252	122	6.58	2.65	3.2B	885	8	0.54	130	1620	12	5	20	<10	216	0.27	215	<10	6	104	4
111267	<0.2	3,34	<5	400	0.5	<5	0.25	<1	20	164	74	6.29	2.28	2.60	660	4	0.08	58	900	8	5	16	<10	2	0.27	159	<10	3	11	7
111268	<0.2	4.24	25	740	0.5	<5	1.27	<1	23	295	59	5.31	2.15	2.46	435	2	0.21	86	890	4	5	21	<10	119	0.26	181	<10	4	89	Э
111269	<0.2	2.77	70	50	0.5	<5	3.30	<1	27	201	90	1.97	0.20	0.76	295	<2	0.18	133	1300	4	5	4	<10	240	0.10	42	<10	3	2	3
111270	<0.2	4.44	25	540	0.5	<5	1.70	<1	21	92	99	5.84	2.19	2.17	865	4	0.27	34	1060	10	5	17	<10	105	0.32	192	<10	6	11	2
111271	<0.2	4.08	25	700	0.5	<5	0.80	<1	23	190	71	6.79	2.94	2.76	1275	4	0.10	75	1360	12	5	19	<10	30	0.31	197	<10	8	130	5

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signed:

ì

[|____

r

1

()

ι

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Cover Page

To: Northgate Explorations Ltd. c/o Kemess Mine Box 3519 Smithers, BC Canada, VOJ 2NO

Attention: Mike Hibbitts

2V0389
22-Oct-02
42847
1808

Project: Praxis

	Item	Qnty.	Description	
	1 2 3	114 114	Sample Prep:Rock Fire Assay:Gold,1AT	:
	3	114	ICP:Aqua Regia Leach	
	,, -			
	Notes:	 	,	_
[]				

Assayers Canada is operated by Mineral Environments Laboratories Ltd.

the

i

Assay Certificate

2V-0389-RA1

Oct-22-02

~

Company:	Northgate Explorations Ltd.
Project:	Praxis
Attn:	Mike Hibbitts

We *hereby certify* the following assay of 24 core samples submitted Oct-10-02 by D. Kuran.

Sample Name	Au g/tonne	Au g/tonne	
111272	0.01		
111273	<0.01		
111274	0.01		
111275	0.01		
111276	0.01		
111277	0.01		
111278	<0.01		
111279	0.01	0.01	
111280	<0.01		
111281	0.01		
111282	0.01		
111283	0.01		
111284	0.01		
111285	0.01	0.01	
111286	0.01		
111287	<0.01	-	
111288	0.01		
111289	0.01		
111290	0.01		
111291	0.01		
1 11292	0.01	0.01	
111293	0.01		
111294	0.01		
111295	0.01		
*97-2	1.39		<u> </u>
*Blank	<0.01		

Assay Certificate

2V-0389-RA2

Company:Northgate Explorations Ltd.Project:PraxisAttn:Mike Hibbitts

Oct-22-02

We *hereby certify* the following assay of 24 core samples submitted Oct-10-02 by D. Kuran.

	Au g/tonne	Au g/tonne	Sample Name
		0.01	111296
		<0.01	111297
		0.01	111298
		0.01	111299
	<0.01	0.01	111300
······································		<0.01	111301
		<0.01	111302
		0.01	111303
		0.01	111304
· · · · · · · · · · · · · · · · · · ·	0.01	0.01	111305
		0.01	111306
		0.01	111307
		0.01	111308
		0.01	111309
		0.01	111310
		<0.01	111311
		0.01	111312
	0.01	0.01	111313
		0.01	111314
		0.01	111315
		<0.01	111316
		<0.01	111317
		<0.01	111318
		<0.01	111319
		1.39	*97-2
		<0.01	*Blank

the

2V-0389-RA3

Oct-22-02

Assay Certificate

Company:	Northgate Explorations Ltd.
Project:	Praxis
Attn:	Mike Hibbitts

11

We *hereby certify* the following assay of 24 core samples submitted Oct-10-02 by D. Kuran.

Sample Name	Au g/tonne	Au g/tonne	
111320	0.01		
111321	0.01		
111322	<0.01		
111323	<0.01		
111324	0.01	0.01	· · · · · · · · · · · · · · · · · · ·
111325	0.01		
111351	0.01		
111352	<0.01		
111353	<0.01		
111354	<0.01		· · · · · ·
111355	<0.01		
111356	<0.01		
111357	<0.01		•
111358	0.01	0.01	
111359	<0.01		
111360	<0.01		
111361	0.01		
111362	0.01		
111363	<0.01		
111364	<0.01	<0.01	
Î11365	<0.01		
111366	<0.01		
111367	0.01		
111368	<0.01		
*97-2	1.33		
*Blank	<0.01		

the

2V-0389-RA4

Assay Certificate

Oct-22-02

Company:	Northgate Explorations Ltd.
Project:	Praxis
Attn:	Mike Hibbitts

We *hereby certify* the following assay of 24 core samples submitted Oct-10-02 by D. Kuran.

Sample Name	Au g/tonne	Au g/tonne	
111369	<0.01		
111370	0.01		
111371	0.01		
111372	0.01	<0.01	
111373	0.01		
111374	0.01		
111375	0.01		
111376	0.02	0.01	
111377	0.01		
111378	0.01		
111379	0.01		,
111380	0.01		
111381	0.01		
111382	0.01		
111383	0.01		
111384	<0.01	<0.01	
111385	0.01		
111386	0.01		,
111387	0.01		
111388	0.01		
1 11389	0.01	·	· ·
111390	<0.01		
111391	0.01		
111392	0.01		
*97-2	1.35		
*Blank	<0.01		

the

2V-0389-RA5

Assay Certificate

Oct-22-02

Northgate Explorations Ltd.
Praxis
Mike Hibbitts

We *hereby certify* the following assay of 18 core samples submitted Oct-10-02 by D. Kuran.

- ---

Sample Name	Au g/tonne	Au g/tonne		
111393	0.01			
111394	<0.01			
111395	0.02			
111396	0.01			
111397	0.01	<0.01		
111398	0.01			
111399	0.01			
111400	0.01			
111401	0.01			
111402	0.01			
111403	0.02	0.01		
111404	<0,01			
111405	0.01			
111406	0.01			
111407	0.01		2	
111408	<0.01	-	· · · · · · · · · · · · · · · · · · ·	
111409	0.01			
111410	0.01			
*97-2	1.40		· · ·	
*Blank	<0.01			

the

Northgate Explorations Ltd.

Attention: Mike Hibbitts

Project: Praxis

Sample: Core 1

Assayers Canada

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6	Report No	:	2V0389 RJ
Tel: (604) 327-3436 Fax: (604) 327-3423	Date	:	Oct-22-02

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

•	Sample Number	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
						-	_													•				••							
1	111272	<0.2	0.23		40	< 0.5	<5	0.02	4	1			1.78	0.14		70	2		5		8	<5	1	<10	<1	0.01	3	40	4	2066	2
!	111273	<0.2	0.20		40	< 0.5	<5	0.02	<1				1.54	0.13		65	2	0.07	4	70	4	5	1	<10	<1	0.01	2	10	3	225	2
l.	111274	0.6	2.17		50	0.5	< 5	4.40	3	6	74	33	4.18	0.73		950	16	0.28	26	-	148	<5	7	<10	115	0.09	70	20	12		5
1	111275	<0.2	3.82		30	1.0	<5	3.96	5	_		50	4.26	0.70	0.94	530	26	0.58	50		18	<5	12	<10	158	0.10	211	10	9		3
1	111276	0.2	3.32	10	40	0.5	<5	4.63	3	5	103	47	4.11	0.62	0.85	635	16	Û.47	39	1240	12	< 5	11	<10	167	0.09	158	<10	8	481	3
1	111277	<0.2	2.68	10	50	0.5	<5	3.99	2	6	87	48	4.52	0.61	0.80	645	18	0.34	38	1180	18	<5	7	<10	117	0.09	103	<10	9	401	4
1	111278	<0.2	2.82	<5	60	0.5	< 5	2.40	1	5	69	26	3.95	0.88	1.12		10	0.35	21		10	<5	9	<10	83	0.10	94	<10	7	244	3
1	111279	<0.2	2.02	<5	80	0.5	< 5	2.48	<1	5	51	19	3.25	0.83	0.98	840	4	0.21	8		4	< 5	7	<10	67	0.10	55	<10	7	126	2
ŗ.	111280	<0.2	2.28	<5	50	0.5	<5	1.87	1	5	70	25	3.59	0.70	0.86	520	20	0.32	32	760	10	< 5	9	<10	70	0.09	85	<10	8	251	3
1	111281	<0.2	2.77	10	60	0.5	< 5	2.61	1	5	79	30	3.72	0.65	0.88	505	26	0.36	39		12	<5	10	<10	114	0.08	110	<10	7	341	3
1	111282	<0.2	3.46	10	90	1.0	< 5	3.22	1	6	89	37	4.04	0.66	0.97	535	28	0.48	45	850	16	< 5	12	<10	161	0.10	144	<10	8	321	3
ł.	111283	< 0.2	2.38		60	0.5	<5	1.36	1	5	64	36	4.20	0.92	1,16	380	18	0.31	45	770	16	<5	6	<10	61	0.10	86	<10	8	240	3
1	111284	<0.2	2.79		60	0.5	<5	2.69	1	7	75	39	4.39	0.71	1.03	455	28	0.36	44	820	16	<5	10	<10	121	0.11	118	<10	9	305	4
i.	111285	<0.2	3.28	20	60	0.5	<5	3.08	2	6	85	32	4.33	0.59	0.88	480	28	0.44	48	790	18	<5	11	<10	139	0.11	120	<10	9	457	4
÷	111286	<0.2	2.20	5	50	0.5	<5	2.64	2	7	75	41	4.73	0.67	1.11	470	28	0.30	48	890	20	5	10	<10	94	0.11	117	<10	8	339	4
	44307												7.00	• • •	~ ~~							•					70			747	4
:	111287	< 0.2	1.94		60	0.5	<5	9.54	4	6	71	31	3.89	0.41	0.97		14	0.21		1000	14	5	6	<10	210	0.09	79	10	11		3
:	111288	< 0.2	2.52		270	0.5	< S	4.74	<1		84	45	4.04	0.97	1.35	760	8	0.31		1740	10	< 5	9	<10	295	0.14	124	<10	11		-
:	111289	< 0.2	2.23 2.53		300	0.5	<5	1.05	1	5	62 72	29	3.71	1.29	1.70	405	2	0.16		1010	4	<5	9	<10	66	0.11	76	<10	6 8	227 159	3
:	111290	< 0.2			130	0.5	< 5	4.49	1	17		83	6.23	0.86	1.28		8	0.26		1260	12	<5	14	<10	214	0.14	178	<10	-		
:	111291	<0.2	2.43	20	80	<0.5	<5	3.30	<1	17	44	82	7.01	1.23	1.92	940	2	0.16	23	1550	12	<5	16	<10	177	0.10	152	<10	6	246	5
:	111292	<0.2	3.66	5	180	0.5	< 5	7.50	1	10	63	65	4.68	0.55	0.76	1035	6	0.41	23	1940	28	<5	6	<10	437	0.10	73	<10	8	226	3
;	111293	<0.2	3.56	< 5	80	0.5	< 5	9.32	1	5	70	36	4.35	0.53	0.82	1155	30	0.46	32	710	12	<5	5	<10	264	0.09	61	<10	11	250	4
;	111294	<0.2	3.98	< 5	80	0.5	< 5	3.80	3	7	106	55	5.46	0.88	1.43	550	24	0.61	54	1180	16	<5	10	<10	202	0.14	148	<10	12	511	5
i	111295	<0.2	3.33	< 5	50	0.5	<5	4.16	5	7	113	51	4.79	0.74	1.50	615	28	0.50	63	1040	16	< 5	13	<10	165	0.15	212	10	11	710	4
1	111296	<0.2	2.06	15	50	0.5	<5	1.61	2	7	90	47	4.56	0.88	1.38	470	20	0.23	50	760	36	5	14	<10	51	0.13	185	10	10	428	4
							_		-	_												_							_		
	111297	< 0.2				0.5		2.46	2	8	106		4.28	0.88	1.21	475	14	0.48		1300	8	5	10	<10	159	0.11	153	<10	9	313	
:	111298	<0.2	2.00		110	0.5	< 5	1.19	3	6	114	39	4.10	0.83	0.93	395		0.27	-	1120	8	< 5	10	<10	59	0.10	161	<10	9	419	
i	111299	0.2	2.02			0.5	<5	1.58	2	6	120	35	4.07	0.96	0.99	470		0.27		1500	8	5	12	<10		0.14	177	<10	12		
:	111300	0.2	2.28			0.5	< 5	1.85	3	8	125	39	4.43	0.92	0.97	475		0.36		2330	8	5	13	<10	73		194	<10	15		
	111301	<0.2	1.54	35	150	0.5	<5	0.81	1	7	99	37	4.13	0.93	0.91	380	10	0.17	27	1810	6	5	9	<10	29	0.14	153	<10	12	292	4

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.1.H20.

-

Page 1 of 4

FL-Signed:

Northgate Explorations Ltd.

Attention: Mike Hibbitts

Project: Praxis

Sample: Core

Assayers Canada

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6 Report No : 2V0389 RJ Tel: (604) 327-3436 Fax: (604) 327-3423 : Oct-22-02 Date

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

	Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm	
																				• •			••									
	111302	< 0.2				0.5	< 5	0.97	2	-	95			1.18	1.08	405	14	0.20	38		10	5	10	<10	29	0.16		<10	9	427	4	
1	111303	0.2	4.23	10		1.0	< 5	3.85	6	8	89	51	4.44	1.02	1.03	675	20	0.63	47		4	<5	15	<10	172	0.16	243	<10	13	655	4	
i	111304	<0.2		15		0.5	< 5	2.49	4	9	90	51	4.83	1.24	1.19	600	46	0.47		1180	6	<5	16	<10	126	0.17	248	<10	9		4	
I	111305	<0.2		<5		0.5	< 5	0.72	2	_	153	39	4.23	1.18	1.01	310	8	0.20	33			5	14	<10	39	0.19	170	<10	6	268	3	
1	111306	<0.Z	3.01	20	210	0.5	<5	1.60	2	8	134	43	4.54	0.98	0.96	345	12	0.37	33	920	6	5	13	<10	107	0.17	149	<10	10	294	4	
	111307	<0.2	2.07	10	180	0.5	<5	0.99	2	8	106	42	4.53	1.17	0.98	360	12	0.19	37	1530	6	<5	13	<10	34	0.19	147	<10	9	276	4	
1	111308	<0.2				0.5		1.48	2		113	46		1.04	0.99	330	18	0.43	47			< 5	14	<10	91	0.18	151	<10	10		4	
i.	111309	< 0.2				1.0	< 5	3.33	2		108	42		0.96	0.98	455	14	0.62		1000		5	14	<10	154	0.15	144	<10	10		4	
1	111310	<0.2	3.97			1.0	<5	2.30	Z		135	47	4.80	1.01	1.04	375	20	0.64		1080	6	5	15	<10	132	0.18	153	<10	12		4	
1	111311	<0.2	3.36	15	160	0.5	<5	1.93	2	8	109	44	4.75	1.02	1.09	385	26	0.51		1120	6	5	14	<10	117	0,17		<10	11		4	
																					-											
1	111312	<0.2	3.16	10	150	0.5	< 5	2.41	2	7	89	43	4.43	0.94	1.09	340	18	0.40	46	1050	6	5	12	<10	110	0.18	132	<10	11	352	4	
T = 0	111313	<0.2	1.50	15	120	0.5	<5	0.60	1	8	108	41	4.48	1.00	1.09	365	20	0.12	41	1310	10	5	13	<10	13	0.15	144	<10	10	317	4	
1	111314	<0.2	2.20	30	180	0.5	< 5	1.41	1	9	108	45	5.24	1.24	1.08	435	14	0.15	38	2490	8	5	11	<10	44	0.20	157	<10	12	290	4	
1	111315	<0.2	2.87	30	80	0.5	< 5	1.76	3	7	105	51	4.40	0.80	1.09	405	28	0.41	52	950	6	5	11	<10	88	0.14	196	<10	9	468	4	
1	111316	<0.2	2.58	15	60	0.5	< 5	1.24	2	7	87	47	4.48	0.71	1.24	375	32	0.33	47	860	8	5	12	<10	75	0.14	173	<10	10	381	4	
																						•										
1	111317	<0.2	3.36	10	70	0.5	< 5	2.43	4	6	109	50	4.20	0.79	1.18	420	28	0.54	56		8	5	12	<10	146	0.13		<10	9		4	
1	111318	<0.2		< 5	50	0.5		1.68	3	6	118	43	4.52	0.56	1.05	405	20	0.42	53		10	5	11	<10	90	0.14	163	<10	11		4	
1	111319	<0.2	2.15	5	60	0.5		1.29	3	7	127	50	4.46	0.73	1.04	395	22	0.34	53		10	5	13	<10	62	0.16	220	<10	10		4	
:	111320	<0.2	2.06	10	90	0.5	<5	1.20	1	6	79	37	3.71	0.86	1.07	450	16	0.23	30		30	<5	9	<10	47	0.10	125	<10	6		3	
:	111321	0.2	3.03	15	110	0.5	<5	3.60	2	6	105	48	4.24	0.53	0.79	600	24	0.39	59	1140	16	<5	8	<10	142	0.10	126	<10	7	286	3	
:	111322	<0.2	1.59	25	70	0.5	<5	1.36	4	4	83	33	3.65	0.95	1.29	430	0	0.11	25	860		<5	6	<10	37	0.09	64	10	5	598	3	
	111323	< 0.2	2.13	25	40	0.5	<5	1.53	2	-	91	51	4.27	0.71	1.11	415	20	0.11	47		8	- 5	11	<10	89			<10	9		4	
:	111324	0.2	3.60	130	70	1.0	-	1.55	<1	6	75	28	4.27 3.84	1.02	1.04	745		0.30 0.38		1120	10 4	<5	7	<10	172	0.14	56	<10	9		3	
:	111325	<0.2		105	80	0.5		1.33	<1	7	72	31	4.02		0.80	575	4	0.38		1140	4	<5	6	<10	86	0.12	61	<10	7		3	
:	111351	<0.2	1.61	40	130	0.5		1.36	<1	, 8	70	25	3.62		0.79	\$80		0.14	13		2	<5	10	<10	39	0.12	97	<10	, 5		3	
		- U.E	2.01		1.50	0.5	.,	1.50	-1	U	, 0	23	3.62	1.04	0.79	200	2	0.14	د.	700	2	~ 2	10	~+0		0.19		~10	J	105		
:	111352	0.2	3.52	20	60	0.5	<5	1.95	3	7	95	44	4.39	0.94	0.97	460	16	0.50	43	900	4	5	12	<10	92	0.12	183	<10	9	441	3	
:	111353	<0.2	1.86	15	80	0.5	< 5	1.16	<1	3	84	14	2.83	0.56	0.75	335	6	0.20	12	470	6	< 5	3	<10	52	0.06	36	<10	11	170	3	
:	111354	<0.2	1.40	20	100	0.5	< 5	2.01	<1	3	67	16	2.93	0.41	0.70	620	4	0.13	11	640	4	< 5	з	<10	57	0.07	41	<10	13	168	3	
:	111355	0.2	1.32	5	140	0.5	< 5	0.39	3	7	61	31	3.90	0.83	0.85	470	4	0.07	18	650	26	< 5	6	<10	3	0.16	84	<10	7	377	3	
:	111356	<0.Z	1.19	5	90	0.5	<5	1.10	1>	6	78	18	3.23	0.44	0.55	705	z	0.09	10	550	2	< 5	7	<10	27	0.15	60	<10	10	150	3	

A .5 gm sample is digested with 5 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signed:

Fbr-

Northgate Explorations Ltd.

Attention: Mike Hibbitts

Project: Praxis

Sample: Core

Assayers Canada

8282 Sherbrooke St., Var	ncouver, B.C., V5X 4R6	Report No	:	2V0389 RJ
Tel: (604) 327-3436	Fax: (604) 327-3423	Date	:	Oct-22-02

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

	Sample Number	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	Р ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
	111357	-0.2	1.30	5	100	0.5	~F	0.62	1	7	73	74	7 5 7	0.75	0.50	520	_	0.00		4.9.70	-	. 5	7			0.00			••	200	-
	111358	<0.2 0.6	1.30	25	60	0.5	<5 <5	0.62	4	11	82	55	3.53 5.39	0.73	0.56 0.69			0.08	14		2	<5 5		<10	12		77	<10	10 13	208 558	3
	111359	<0.2	2.01	10		0.5	<5	0.33	3	12	138		4.15			475 480	24	0.09	37		-	5		<10	1		143 108	10 10	12	472	4
	111360	<0.2	1.91	5		0.5	<5	1.47	2		120	37		1.14	1.02		4	0.09	101	580	2	-	8 Q	<10	50	0.23 0.20	108	<10	4	381	3
1	111361	<0.2	2.49	10		0.5	<5	0.93	1		146		4.49					0.11	74 143	520 570	<2 2	<5 5	9	<10 <10	19	0.20	105	<10	4	283	3
'	111501	NU.2	2.43	10	250	0.5	~ 5	0.95		15	140	00	4.43	1.00	1.39	433	4	0.10	145	370	4	2		<10	19	0.20	105	<10	2	203	2
1	111362	<0.2	2.13	5	250	0.5	<5	1.22	2	11	109	46	4.08	1.45	1.27	605	6	0.12	84	520	z	5	7	<10	67	0.19	102	<10	3	396	3
1	111363	<0.2	1.88	20	200	0.5	<5	0.56	4	10	97	47	3.84	1.11	0.98	460		0.14	79	560	4	5	10	<10	15	0.18	133	10	4	791	3
	111364	0.2	1.05	10	80	<0.5	< 5	0.78	5	7	112	42	4.10	0.71	0.58	480		0.11	41	740	8	5		<10	20	0.13	198	10	5	720	3
1	111365	< 0.2	1.17	35	90	<0.5	< 5	1.14	3	6	89	40	4.04	0.75	0.71	780	8	0.13	36	900	4	<5	10	<10	18	0.12	161	10	7	623	3
1	111366	<0.2	1.33	10	130	<0.5	< 5	0.84	3	7	106	35	3.56	0.86	0.77	595	8	0.13	46	550	<2	5	9	<10	25	0.13	144	10	5	515	3
1	111367	<0.2	1.33	< 5	160	<0.5	< 5	1.14	9	7	116	52	3.32	0.67	0.59	525	24	0.15	57	570	.2	<5	10	<10	54	0.12	251	20	6	1184	3
1	111368	<0.2	2.57	5	1090	0.5	< 5	0.18	<1	15	333	29	3.77	1.77	2.28	215	2	0.07	149	540	<2	5	11	<10	1	0.24	119	<10	2	92	2
!	111369	<0.2	2.53	5	770	0.5	<5	1.59	<1	13	313	32	3.26	1.32	1.97	350	2	0.13	151	580	2	5	10	<10	125	0.19	109	<10	3	85	2
!	111370	<0.2	3.01	< 5	480	0.5	< 5	0.37	<1	15	188	60	4.69	1.87	2.25	350	4	0.12	144	630	4	5	12	<10	16	0.23	137	<10	2	180	3
!	111371	<0.2	3.62	<5	420	0.5	<5	0.82	<1	15	178	66	4.70	1.82	2.17	315	4	0.20	147	700	6	<5	11	<10	46	0.22	135	<10	2	188	3
																						•									
	111372	<0.2	2.75	<5	270	0.5	<5	0.40	<1	14	160	65	4.83	1.34	2.12	305	2	0.09	125	970	4	5	10	<10	13	0.19	136	<10	3	206	3
1	111373	< 0.2	2.66	< 5	320	0.5	<5	0.50	1	13	136	56	4.43	1.55	1.95	415	. 4	0.11	116	1030	4	5	9	<10	12	0.17	117	<10	3	259	3
:	111374	<0.2	2.72	< 5	480	0.5	<5	0.25	<1	16	216	59	4.59	1.80	2.23	365	4	0.08	136	650	2	5	13	<10	7	0.23	149	<10	2	223	3
	111375	<0.2	2.86	10	400	0.5	<5	0.46	1	12	112	38	4.61	1.62	2.11	385	6	0.12	79	770	2	<5	13	<10	20	0.22	123	<10	3	240	3
	111376	<0.2	Z.47	5	290	0.5	< 5	0.28	2	14	149	51	4.80	1.80	1.91	485	8	0.09	114	710	6	5	12	<10	4	0.22	136	<10	3	312	3
				_		_	_			_												_							_		
	111377	< 0.2	2.66	5		0.5	<5	0.86	<1	9	93	26	4.19	1.38	1.35			0.16	43		4	<5	13	<10	51		95	<10	6	197	3
	111378	<0.2	1.39	5		0.5	<5	0.23	<1	7	93	22	3.36	1.03	0.85	365	4	0.08	32		2	< 5	10	<10	4	0.18	80	<10	4	163	2
	111379	< 0.2	1.65	15		0.5	<5	0.52	<1	9	92		3.49	0.93	0.99		• 4	0.08	48	640	2	<5	7	<10	22	0.18	72		6	146	3
	111380	<0.2	1.82	5		0.5	<5	0.24	<1	14	116	53	4.27	1.33	1.37	315	4	0.06	101	810	4	5	5	<10	<1	0.20	74	<10	4	200	3
:	111381	<0.2	2.55	5	430	0.5	< 5	0.69	<1	13	125	47	4.15	1.45	1.22	610	4	0.22	57	710	<2	5	13	<10	41	0.23	155	<10	4	164	. 3
	111382	<0.2	3.75	<5	310	0.5	< 5	1.63	1	15	133	50	5.06	1.06	1 24	655	7	0.19	85	1290	4	5	11	<10	122	0.25	130	<10	4	143	3
	111382	< 0.2	1.85	5		0.5	<5	3.61	<1	12	292	28	2.79	0.78	1.59	780		0.19	125	460	4	5	11	<10	122	0.25	87	<10	4	75	2
	111384	< 0.2	1.79	90	160	0.5	<5	0.59	<1	12	280	20	3.24	0.75	1.61	425		0.11	102		2	5	/ 8	<10	144 61	0.19	95	<10	4	90	2
	111385	0.6	Z.19	20	80	0.5	<5	1.06	1	12	178	29 49	3.98	0.65	1.01	445	4		78	760	2 8	5	5 \$		108	0.14 0.12	95 115	<10	4 8	224	2
			2.19	<5	110	0.5	<5	1.68	2	10 6											-	5	5	<10					-	360	3
·	111386	0.6	2,51	< 5	110	0.5	~ 5	1.00	2	6	113	74	4.11	0.52	1.16	495	6	0.30	38	890	22	5	· /	<10	129	0.09	104	<10	14	200	د

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signed:

Northgate Explorations Ltd.

Attention: Mike Hibbitts

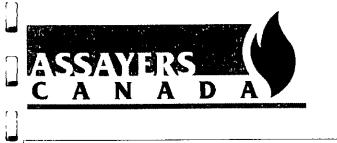
Project: Praxis

Sample: Core

Assayers Canada

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6	Report No	:	2V0389 RJ
Tel: (604) 327-3436 Fax: (604) 327-3423	Date	:	Oct-22-02

MULTI-ELEMENT ICP ANALYSIS


Aqua Regia Digestion

1	Sample Number	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
:	111387	0.8	1.65	<5	40	0.5	<5	3.57	7	7	116	110	4.40	0.29	0.63	625	26	0.21	47	2060	10	5	7	<10	101	0.08	202	10	12	741	3
1	111388	1.2	1.39	<5	40	0.5	< 5	2.05	3	7	121	69	4.45	0.16	0.66	510	10	0.19	42	770	12	5	5	<10	90	0.06	104	<10	8	397	3
1	111389	1.0	1.73	5	50	0.5	<5	0.99	1	8	119	68	5.02	0.24	1.03	610	6	0.21	35	760	12	5	7	<10	69	0.08	109	<10	8	275	4
1	111390	1.4	1.76	10	50	0.5	<5	1.17	1	10	129	62	5.20	0.40	0.76	790	2	0.30	37	1380	10	5	8	<10	91	0.08	112	<10	9	192	4
÷.	111391	2.0	2.41	15	50	0.5	<5	2.33	4	10	106	71	4.99	0.35	0.88	785	8	0.37	38	1140	14	5	8	<10	134	0.09	119	<10	9	526	3
:	111392	1.8	2.61	55	60	0.5	< 5	1.73	12	7	138	91	5.47	0.37	0.88	460	30	0.36	67	810	14	5	7	<10	147	0.07	241	20	10	1505	4
:	111393	1.6	Z.61	35	90	0.5		1.47	3	7	110		4.78	0.57	1.10	495		0.25	45			5	6	<10	146	0.05	121	10	8	573	3
1	111394	1.2	1.66	25	60	0.5	< 5	0.63	1	6	73	68	4.81	0.71	1.09	495		0.17	36	560		5	3	<10	55	0.04	54	<10	3	254	3
1	111395	1.4	4.45	20	80	1.0	< 5	2.83	4	8	92	81	5.37	0.68	1.04	700	10	0.40	48	1610	6	5	6	<10	193	0.06	103	<10	7	494	4
:	111396	1.2	1.88	10	110	0.5	<5	1.44	1	12	61	25	4.24	0.58	0.85	615	8	0.18	18	2750	8	5	2	<10	55	0.03	39	<10	9	186	4
:	111397	2.8	1.89	5		0.5			17	7	88	82		0.70	1.03	605	20	0.18		1090		5	4	<10	38	0.03	178	30	5		4
1	111398	.Z.0	1.45	5		<0.5	<5		10	6	79	69		0.66	1.00	495	14	0.11	45			5	2	<10	34	0.03	103	10	6		3
:	111399	2.0	1.91	<5	120	0.5		1.15	7	6	81	50	3.93	0.72	1.08	630	12	0.17	33			5	3	<10	40	0.03	90	10	5	658	3
1	111400	2.4	1.44	<5		< 0.5	<5		20	6	74	58	4.48	0.77	1.16	545	20	0.13	38			5	3	<10	29	0.03	93	30	3		4
1	111401	<0.2	2.94	<5	1380	0.5	<5	1.57	<1	6	63	10	3.57	1.17	0.68	345	<2	0.26	4	1010	2	<5	7	<10	122	0.22	74	<10	6	84	2
1	111402	<0.2	2.49	10	2020	0.5	< 5	0.71	<1	9	50	4	4.21	1.36	1.00	520	<2	0.18	6	1020	2	<5	7	<10	55	0.25	89	<10	7	92	3
	111403	<0.2	2.56	< 5	670	<0.5	<5	0.63	<1	7	42	15	4.54	0.95	1.04	305	<2	0.11	6	1110	<2	< 5	7	<10	36	0.17	74	<10	6	101	3
	111404	<0.2	2.60	< 5	500	0.5	<5	0.74	<1	7	36	2	4.17	0.54	1.51	355	<2	0.10	5	1150	2	<5	7	<10	56	0.15	88	<10	7	93	3
1	111405	<0.2	2,14	<5	200	0.5	< 5	1.72	<1	9	70	12	2.95	0.09	1.22	395	<2	0.11	12	1220	<2	< 5	2	<10	126	0.14	51	<10	3	83	б
1	111406	<0.2	3.29	<5	820	0.5	< 5	1.55	<1	6	54	13	3.42	0.39	1.35	355	<2	0.24	5	1020	<2	<5	5	<10	172	0.11	77	<10	7	91	2
	111407	<0.2	2.59	< 5	180	<0.5	<5	0.85	<1	5	38	<1	3.74	0.08	1.71	415	<2	0.13	4	1110	<2	<5	4	<10	65	0.10	69	<10	6	89	2
	111408	<0.2	3.26	<5	840	0.5	< 5	1.33	<1	5	41	9	3.77	0.30	1.66	435	<2	0.25	4	1110	<2	<5	4	<10	155	0.11	76	<10	6	88	2
	111409	<0.2	3.17	< 5	310	0.5	< 5	1.47	<1	7	55	<1	3.47	0.66	1.60	680	<2	0.25	6	1110	<2	< 5	4	<10	226	0.16	60	<10	5	90	2
	111410	<0.2	1.98	<5	150	0.5	<5	1.36	<1	10	56	48	3.44	0.32	1.33	535	< 2	0.14	8	1170	<2	<5	3	<10	101	0.16	69	<10	4	80	4

A .5 gm sample is digested with 5 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

- - - - - - - - -

Signed:

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 ŗ

Tel: (604) 327-3436 Fax: (604) 327-3423

Cover Page

To: Northgate Explorations Ltd. c/o Kemess Mine Box 3519 Smithers, BC Canada, VOJ 2N0

1

Attention: Mike Hibbitts

Certificate	: 2V0384
Report date	: 18-Oct-02
Invoice No.	42842
Account Num	ber: 1808

Project: Praxis

Item	Qnty.	Description
1	61	Sample Prep:Rock
2	61	Fire Assay:Gold,1AT
3	61	ICP:Aqua Regia Leach
2		
Notes	:	

Assayers Canada is operated by Mineral Environments Laboratories Ltd.

ASSAYERS C A N A D A

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Assay Certificate

2V-0384-RA1

Company:Northgate Explorations Ltd.Project:PraxisAttn:Mike Hibbitts

Oct-18-02

We *hereby certify* the following assay of 24 core samples submitted Oct-08-02 by D. Kuran.

Sample Name	Au g/tonne	Au g/tonne	 		
111411	0.01				
111412	0.01				
111413	0.01	0.01			
111414	0.01				
111415	0.01		 	×	
111416	0.01				
111417	0.01				
111418	0.02				
111419	1.82	1.96			
111420	0.01		 		
111421	0.01				
111422	0.02				
111423	0.01				
111424	0.01				
111425	0.01		 		
111426	0.01				
111427	0.01				
111428	0.01				-
111429	0.01				
111430	0.01		 		<u></u>
111431	<0.01				
111432	0.01				
111433	0.01	0.01			
111434	0.01				
*97-2	1.40				
*Blank	<0.01				

the Certified by

	N A	× ,	۰. ۴				
A	S.	N					
ABRATIN A REAL	A	N	A	D	A		

Assay Certificate

Company: Project: Attn:

2V-0384-RA2

Northgate Explorations Ltd. Praxis Mike Hibbitts Oct-18-02

We *hereby certify* the following assay of 24 core samples submitted Oct-08-02 by D. Kuran.

Sample Name	Au g/tonne	Au g/tonne		
L11435	0.01		 	
111436	<0.01			
111437	0.01			
L11438	0.01	0.01		
L11439	0.01		 	
L11440	0.01	<u> </u>		
111441	0.01			
111442	0.01			
111443	0.01			
L11444	0.01			
11445	0.01		 	•
L11446	0.02			
L11447	0.01			
L11448	0.01			
11449	0.01			
11450	<0.01	0.01	 	
L11451	0.01			
L11452	0.01			
L11453	0.01		,	
L11454	0.01			
L11455	0.01		 	
111456	0.01	0.01		
L11457	0.01			
L11458	0.01			
*97-2	1.45			
Blank	<0.01		 	

the Certified by - - -----

the

Assay Certificate

2V-0384-RA3

Company:Northgate Explorations Ltd.Project:PraxisAttn:Mike Hibbitts

-

Oct-18-02

We *hereby certify* the following assay of 13 core samples submitted Oct-08-02 by D. Kuran.

Sample Name	Au g/tonne	Au g/tonne	
111459	0.01		
111460	0.01		
111461	0.01	0.01	
111462	0.01		•
111463	0.01		
111464	0.01		
111465	0.01		
111466	0.01		
111467	0.01		
111468	0.01		
111469	0.01		
111470	0.01		
09054	0.01	0.01	
*97-2	1.39	-	
*Blank	<0.01		

Certified by

Northgate Explorations Ltd.

Attention: Mike Hibbitts

Project: Praxis

1

T

1

i

Т

Sample: Core

Assayers Canada

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6	Report No	:	2V0384 RJ
Tel: (604) 327-3436 Fax: (604) 327-3423	Date	:	Oct-18-02

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

:	Sample Number	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Şb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
	111411	0.4	0.42	<5	60	0.5	<5	0.19	4	2	65	10	7.96	0.17	0.24	05	2	0.07			102	5		-10	7	0.01	6	10	7	590	4
i J	111412		1.87	<5	20	1.0	<\$	5.31	2	4	60			0.07		95 565	2 26		8 29	110 870	102 20	د 5>	<1	<10 <10	57	0.01 0.09	103	10 <10	7	590 581	5
1	111412	0.8	0.67	25	20	0.5	<5	>15.00	<1	<1	19			0.08			20			220	20 72	5	2	<10	-	0.02	41	<10	2		2
1	111414		4.26	<5	30	1.0	<5	3.73	3	6	68			0.59		560		0.52		890	12	5	9	<10		0.02	168	<10	28	446	3
I	111415		3.46	<5	40	0.5	<5.	2.98	4	6	62			0.59		480	18			850	14	5	7	<10		0.07	139		6		3
	*** 125	0.2	5115			0.5	- • •	2170	•	0	•-	35		0.50	0.55	100	10	0.41	50	050		,		~10	115	0.07	135	10	Ū	500	2
1	111416	0.2	3.62	< 5	40	1.0	<\$	2.01	3	6	66	34	4.06	0.81	1.36	385	18	0.42	37	970	14	< 5	9	<10	105	0.08	147	<10	7	388	3
1	111417	0.2	1.22	55	50	1.0	<5	13.95	<1	3	15	<1	5.61	0.16	0.46	2660	8	0.08	7	290	162	5	2	<10	348	0.03	28	10	3	1153	4
1	111418	0.4	2.40	30	30	1.5	<5	13.53	4	5	31	13	5.19	0.34	0.72	2135	12	0.19	17	550	286	5	5	<10	362	0.06	60	10	9	1303	5
1	111419	0.6	0.57	330	50	0.5	<5	0.28	<1	5	42	21	5.11	0.17	0.21	140	2	0.06	17	90	12	< 5	<1	<10	3	0.02	7	<10	11	308	4
:	111420	<0.2	1.14	<5	120	0.5	<\$	2.03	<1	3	82	<1	1.89	0.17	0.37	585	4	0.13	8	130	6	< 5	3	<10	51	0.07	20	<10	22	144	2
	111421	<0.2	2 56	5	200	1.0	< 5'	1.43	<1	10	56	17	4 77	0.77	1 50	635	2	0.17	14	1540	8	<5	11	<10	94	0.33	118	<10	13	140	7
	111422	< 0.2		10	110	1.0	<5	1.59	7	10	85			1.22		600		0.25		1040	8	5	12	<10	99	0.24	222	10	14	815	4
	111423		3.15	5		1.0	<5	3.37	2	10	59			0.32		495		0.11	35	1170	12	5	- Îg	<10			159	<10	13		6
	111424	<0.2		10		0.5	<\$	1.72	1	8	72			0.38		675		0.17		990	8	<5	10	<10		0.18	133		13		3
1	111425	<0.2		5		0.5	< 5	1.65	<1	5	64			1.08		620		0.16		690	4	<5	9	<10		0.15	65	<10	7		3
	111426	<0.2	2.36	15	130	0.5	<5	2.11	1	9	88	22	3.95	0.91	1.18	625	24	0.29	29	1540	6	5	12	<10	104	0.17	140	<10	12	298	3
:	111427	<0.2	1.85	20	240	0.5	<\$	1.20	1	12	127	33	3.85	1.21	1.16	665	8	0.10	97	740	6	5	7	<10	38	0.22	107	<10	7	382	3
	111428	<0.2	1.71	15	150	0.5	<5	1.00	2	12	70	26	3.85	0.92	1.14	500	10	0.09	59	860	8	5	8	<10	35	0.25	105	10	6	508	5
	111429	<0.2	1.53	15	180	0.5	<\$	1.38	3	11	77	15	3.96	0.71	1.06	630	4	0.11	31	1250	6	<5	11	<10	52	0.28	129	10	9	59 5	6
	111430	<0.2	1.57	10	200	0.5	<5	1.00	5	7	76	23	3.18	0.88	0.78	510	10	0.13	29	630	6	5	6	<10	40	0.14	116	10	5	658	3
	111431	<0.2	7 70	5	450	0.5	<5	0.59	<1	14	176	43	4 22	1.33	2 08	400		0.11	129	630	4	5	11	<10	A 1	0.19	125	<10	5	203	3
	111432	<0.2		Ś		0.5	<5	0.78	1	15	155			0.88		375		0.09		840	6	5	8	<10	47	0.21	113	<10	8	229	3
	111433	<0.2		20	480	0.5	<5	0.74	<1	15	203			1.51		370		0.17		670	4	<5	12	<10		0.21	137	<10	5		3
	111434	<0.2		10	770	0.5	<5	0.49	<1	14	138			1.89		585		0.14	94	730	4	5	12	<10		0.27	133	· <10	3		3
	111435	<0.2		20	370	0.5	<5	0.85	<1	14	154			1.66		510		0.20		920	6	5	13	<10		0.26	140		5		3
																					-	_			•-				_		
	111436	<0.2	2.29	5	520	0.5	<\$	0,87	<1	10	109	27	3.72	1.44	1.27	\$35	2	0.14	57	740	4	5	10	<10	73	0.23	90	<10	4	138	3
	111437	<0.2	2.31	15	370	0.5	< 5	0.70	<1	12	107	31	3.99	1.38	1.26	630	2	0.13	59	740	6	5	10	<10	47	0.24	107	<10	6	185	З
	111438	<0.2	2.07	10	340	0.5	<5	1.97	<1	10	96	37	3.69	1.33	1.23	845	4	0.12	68	540	4	5	7	<10	78	0.21	74	<10	5	128	3
	111439	<0.2	1.96	15	260	0.5	<5	1.21	2	12	82	39	4.43	1.08	1.02	870	6	0.15	38	910	6	5	12	<10	47	0.24	158	<10	7	383	61
	111440	<0.2	2.38	10	240	0.5	<5	1.38	1	12	83	45	4.33	0.96	1.10	800	2	0.22	39	800	6	5	11	<10	112	0.23	134	<10	7	255	3

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

-

Signed:

Te-

Page 1 of 3

Assayers Canada .§282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Northgate Explorations Ltd.

Attention: Mike Hibbitts

Project: Praxis

Sample: Core

1

1

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No:2V0384 RJDate:Oct-18-02

Fi-

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

	ample umber	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	Р ррт	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
11	1441	<0.2	2 16	30	240	0.5	<5	1.53	<1	15	205	42	3 99	1.24	1 43	750	4	0.16	123	590	6	5	11	<10	102	0.24	138	<10	4	134	3
	1442	< 0.2		5		0.5	<5	0.83	1	4	65			0.08		420	4	0.06	125	450	6	5		<10		0.10	43	<10	12	211	3
	1443	<0.2		5			<5	0.30	<1	6	150			0.59	-	175	2	-	41	390	4	5	т А	<10		0.10	47	<10	3	56	2
	1444		1.29	15		0.5	<5	0.55		9	153			0.80	. –	360	2		59	440	6	5	7	<10	34	0.19	76	<10	5	92	2
	1445		1.68	<5		0.5	< 5	0.83	<1	10	118			0.69		620		0.12	48	660	6	5	8	<10		0.18	82	<10	7	109	3
									-								-				•										-
11	1446	<0.2	1.99	10	260	0.5	<5	0.48	<1	12	213	26	3.26	1.17	1.70	420	2	0.11	90	510	6	5	8	<10	37	0.23	98	<10	4	83	3
11	1447	<0.2	2.60	<5	830	0.5	<5	0.93	1	12	202	29	3.97	1.44	1.79	575	2	0.21	77	640	8	5	11	<10	56	0.24	118	<10	4	180	3
11	1448	<0.2	1.73	25	350	0.5	<5	2.56	<1	11	304	21	2.79	1.01	1.51	640	2	0.08	124	450	6	5	7	<10	79	0.18	79	<10	4	85	2
11	1449	1.0	1.81	5	80	0.5	< 5	2.39	2	7	95	50	3.93	0.61	1.07	825	6	0.15	47	870	16	5	5	<10	85	0.08	80	<10	6	295	3
11	1450	1.0	1.40	<5	80	<0.5	<5	0.75	3	7	79	60	4.60	0.68	1.09	520	8	0.14	42	1880	16	5	4	<10	31	0.06	76	<10	9	371	3
									•																						
	1451		3.51	< 5		0.5	<5	4.24	7	5	87			0.46		825		0.39	38		12	<5	7	<10	238	0.08	127	10	11		3
	1452		3.48	5	50	0.5	< 5	3.23	7	6	108			0.23		790		0.41	45		16	< 5	6	<10		0.08	153	10	9	812	3
	1453		1.81	45		0.5	<5	2.67	5	6	76			0.11		675	10	0.14	47	950	32	5	3	<10		0.07	97	10	10		4
11	1454		2.10	70	70	0.5	< 5	1.59	6	7	109			0.21		530	14	0.24	52	750	16	5	4	<10	147	0.07	134	10	7	829	4
11	1455	1.0	1.64	40	80	0.5	<5	3.01	4	5	74	74	4.01	0.34	0.93	905	8	0.12	40	1570	14	5	3	<10	74	0.06	74	10	10	584	3
									_	_							. –					_						_	_		_
	1456		2.79	35	80	0.5	<5	1.56	5	7	110			0.55		680		0.34	52	970	14	5	6	<10	93		160	10	8	692	3
	1457		2.49	35		0.5	<5	1.93	4	6	92			0.56		640		0.25	45		14	5	4	<10	86	0.05	92	10	8	622	3
	1458		1.90	65		0.5	< 5	3.78	1	6	69			0.53				0.14	37	1160	12	5	3	<10	91	0.05	54	<10	8	448	4
	1459		3.00	30		0.5	< 5	3,76	4	6	127			0.38		855		0.28	49	1320	14	5	5	<10	140	0.05	127	10	9	590	3
11	1460	0.8	1.82	30	60	0.5	<5	0.81	<1	6	95	93	4.58	0.54	0.98	550	4	0.14	42	410	12	5	3	<10	43	0.05	69	<10	6	274	3
11	1461	0.6	1.27	20	70	0.5	<5	0.77	<1	8	55	73	5 17	0.20	1.06	540	2	0.09	38	580	16	5	з	<10	33	0.09	43	<10	9	137	4
	1462		2.98	25	90	0.5	<5	2.09	19	6	106			0.35		650		0.24	54	1300	12	5	4	<10	130	0.07	160	30	-	1995	3
	1463		3.03	40	100	0.5	< 5	5.53	6	6	93			0.17		965		0.22	41	780	12	5	3	<10	207	0.07	135	10	9		3
	1464		2.70	30	90	0.5	< 5	1.56	2	6	105			0.21		440	8	0.31	45	1060	12	5	5	<10		0.05	100	<10	7		3
	1465		1.33	50		0.5	<5	0.48	<1	. 7	67			0.27		455		0.08	34	600	18		1	<10		0.03	39	<10	5		4
••				•••					-					0.2.			Ũ			000			-		5.	0.02		-10		101	,
11	1466	1.8	4.09	55	60	1.0	<5	2.74	4	8	95	80	5.07	0.11	0.99	555	18	0.35	50	1780	12	5	5	<10	151	0.09	131	<10	14	596	4
11	1467	1.6	3.91	35	110	1.0	<5	3.21	28	6	120	98	4.05	0.16	0.50	445	36	0.23	80	1380	10	<5	3	<10	159	0.07	185	50	12	2815	3
11	1468	1.0	1.89	15	80	0.5	<5	1.04	4	6	84	77	3.99	0.14	1.01	340	8	0.19	37	660	12	5	3	<10	48	0.10	88	10	9	526	3
11	1469	0.6	2.98	10	60	0.5	<5	3.10	5	6	87	107	4.70	0.19	1.07	445	12	0.20	38	1240	20	<5	5	<10	115	0.09	117	<10	9	607	4
11	1470	<0.2	1.72	<5	70	0.5	< 5	1.63	1	7	38	14	4.48	0.15	0.67	650	8	0.15	15	1170	14	<5	2	<10	68	0.07	29	<10	7	228	3

A .5 grn sample is digested with 5 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signed:

Page 2 of 3

			2		2		L .		C . J		[]	E				Ľ	_	C.	2		[E		L _		[2 (E	· ·
													Assa	ayeı	rs C	anad	la														
I	Northgate E	xplo	rati	ons l	Ltd.					18	282 S	herbr	ooke	St., V	/anco	uver,	B.C., '	V5X	4R6							Rep	ort Ne	D :	2V	0384	RJ
	Attention: Mike	-									Tel	: (604) 327-	-3436	5 Fax	x: (604	4) 327	-342	3							Date		:	0	ct-18-0)2
1	Project: Praxis																														
;	Sample: Core										MUI	TI-	ELE	ME	NT I	ICP A	ANA	LYS	SIS												
													Aqua	a Reg	gia Di	igestic	n														
: 	Sample Number	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %		Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm

12 3.37 0.34 0.44 380

2 0.08

450

8

<5

8

6 <10

21 0.19

48 <10

17

86

4

<0.2 0.93 170 120

.

0.5

<5

1.22

<1

10

65

09054

Signed:

Appendix VI

Statement of Qualifications

D.L. Kuran, P. Geo

2

6

۰.

STATEMENT OF QUALIFICATIONS

I, David L. Kuran, am a self employed geological consultant, principal of Kuran Exploration Ltd., of 25630 Bosonworth Avenue in the Municipality of Maple Ridge in the Province of British Columbia, certify that:

- 1) I am a graduate of the University of Manitoba (1978) and hold a B. Sc. Degree in Geology.
- 2) I am a registered as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia, Canada, Registration # 19142 and a Fellow in the Geological Association of Canada.
- 3) I have been employed in my profession as Geologist continuously since graduation by various mining companies and consulting firms in Canada, USA, Mexico and Europe. I have 10 years consecutive experience in VMS style exploration in the Stewart to Iskut areas of BC. I am a Qualified Person for the purposes of this report.
- 4) This report was written at the request of Northgate Explorations Ltd. and Praxis Goldfields Inc. who contracted the author to manage the subject exploration program.
- 5) This report is based upon data collected during field work completed by the author on the Praxis Property, Skeena Mining Division, Northwestern BC. during the 2002 drilling program completed on the Praxis Project between August 17, 2002 and October 6, 2002, and a thorough research of available public information, and personal experience in the district. I relied on geological mapping by government agencies and the geological mapping of Charlie Greig with respect to the surface lithological descriptions and stratigraphic relations on the Praxis Property. Geophysical interpretations were obtained from the sited references and review of the data and reports.
- 6) I am not aware of any additional exploration or activities on either property completed since August 2001 that would be additional to the work detailed in this report or any data that has been omitted from being mentioned in the report.
- 7) I am an Independent Qualified Person with respect to this report as defined by Section 1.5 of NI 43-101.
- 8) I have had no prior interest or involvement with either of the subject properties or adjacent properties described in this report.
- 9) I have read NI-43-101 and prepared this report in compliance with that instrument.

Dated this 30 th day of October, 2002 at Maple Ridge BC, Canada.

OFESSION PROVINCE David L. Kuran P. Geo, COLUMBIA SCIEN

ŝ