GEOCHEMICAL AND GEOLOGICAL ASSESSMENT REPORT

on the

TRUAX PROPERTY

Lillooet Mining Division, BC NTS 92J/15W

Location: 7 km. Southeast of Gold Bridge Latitude: 50∀49' 30" North Longitude: 122∀45' 40" West

for

J-Pacific Gold Inc. Suite 1440, 1166 Alberni Street Vancouver, BC V6E 3Z3

Prepared by:

Rob Montgomery, B.Sc. Geologist GEOQUEST CONSULTING LTD. 8055 Aspen Road Vernon, BC

January 15, 2003

TABLE OF CONTENTS

Page
SUMMARY1
INTRODUCTION
General Statement2
Location and Access2
Physiography and Vegetation2
Claims
History
REGIONAL GEOLOGY5
LOCAL GEOLOGY
Structure5
Mineralization
GEOCHEMISTRY6
RESULTS
Stream Sampling7
Rock Sampling7
Soil Sampling8
CONCLUSIONS AND RECOMMENDATIONS9

		After Page
Figure 1	Location Map	1
Figure 2	Claim Map	2
Figure 3	Geological Plan	2
Figure 4A	Truax 3 Grid – Geochemical Plan - Au	8
4B	Truax 3 Grid – Geochemical Plan - As	8
4C	Truax 3 Grid – Geochemical Plan - Sb	8
4D	Truax 3 Grid – Geochemical Plan - Cu	8
Figure 5A	Truax 4 Grid – Geochemical Plan - Au	8
5B	Truax 4 Grid – Geochemical Plan - As	8
5C	Truax 4 Grid – Geochemical Plan - Cu	8
Figure 6	Rock and Silt Geochemistry (Au, As, Sb, Cu)	7

TABLES

		Page
Table I	Historical Work on the Truax Property	4

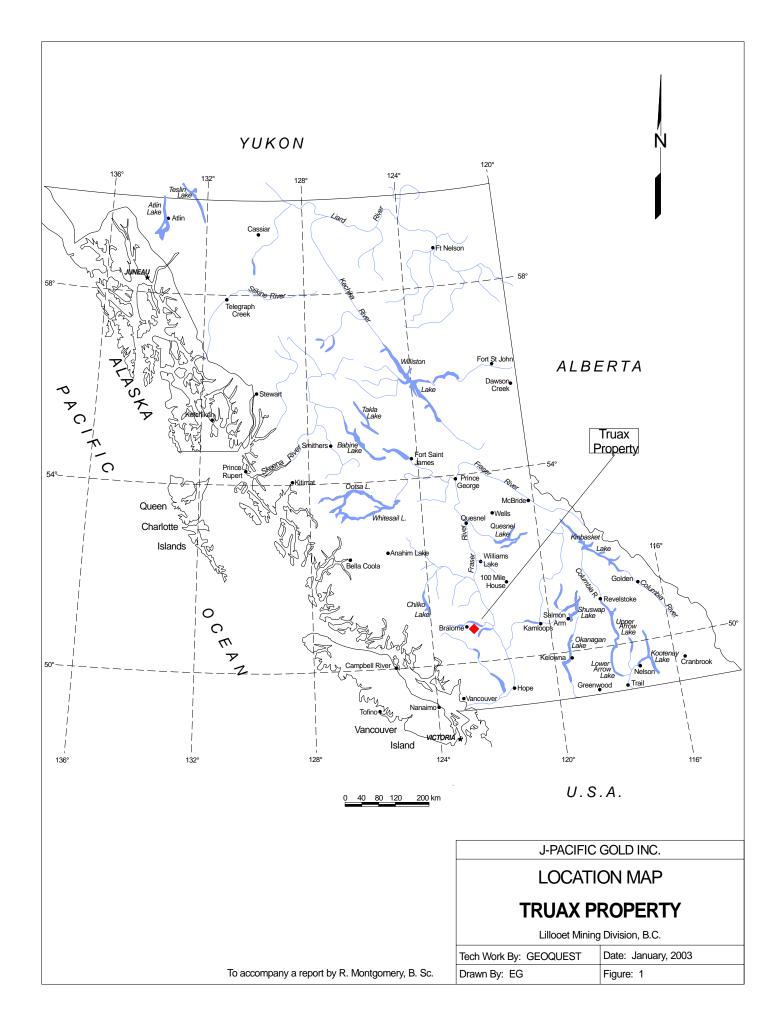
APPENDICES

Appendix A	Silt Sample Descriptions
Appendix B	Rock Sample Descriptions
Appendix C	Analytical Data and Methodology
Appendix D	Personnel
Appendix E	Statement of Expenditures
Appendix F	References
Appendix G	Certificate

SUMMARY

The Truax property is situated approximately 7 kilometres southeast of the community of Gold Bridge in southwestern British Columbia. Gold Bridge is situated on Highway 40 approximately 100 km by road west of Lillooet. Driving time from Gold Bridge to the property is approximately 30 minutes. Several logging roads in the Gold Bridge area provide access to the lower elevations of the property. Cat trails, 4X4 roads, and ATV trails allow access to higher elevations. A total of 94 units comprise the property that is 100% owned by J-Pacific Gold Inc. of Vancouver, B.C.

The property is located within 2.5 km of the Bralorne-Pioneer Mines. **These two deposits collectively yielded 4.1 million ounces** of gold making this the largest gold producing camp in the province. The first recorded work on the property took place in the 1930s. Prospectors discovered high-grade mineralized float scattered across south and westerly facing talus slopes. Bralorne Mines drilled some shallow holes in the early 1940s. From the 1970s through the 1980s, various companies conducted soil and silt sampling, trenching, airborne and ground geophysics. Targets included gold, silver, copper, lead, and antimony.


The central portion of the Truax property is underlain by granodiorite of the Cretaceous to Tertiary Bendor pluton. The contact between the intrusive and steeply dipping sediments and volcanics of the Mississippian to Jurassic Bridge River Group trends northwest-southeast across the southern section of the property. Fergusson Group and Pioneer Formation rocks underlie the northern regions of the claim block. Major faults in the claim area trend northwest-southeast and include the Cadwallader and Fergusson faults. Rock outcrops are intermittent below tree line. Extensive outcrops characterize areas of steep topography as well as large talus slides.

Numerous mineral occurrences are documented on the property. Mineralization in the granodiorite occurs in quartz veins within shear zones. These zones are often bleached and kaolinized. Pods and disseminations of stibnite, pyrite, arsenopyrite, and sphalerite are associated with silicified clay-rich alteration zones. Sampling near Truax peak by Logan and Goldsmith yielded assay results on three chip samples (across 0.5 to 1.5 metres) averaging 3.5 grams per tonne gold; 1730 grams per tonne silver; 1.41% antimony; and 7.31% lead. Mineralization also occurs as finely disseminated molybdenite with pyrite in argillic-sericitic altered granodiorite.

Additional exploration is warranted and should concentrate on mapping and prospecting in the vicinity of the Truax 3 grid. A moderate to strong correlation between gold, arsenic, antimony, and to a lesser degree copper, occurs on the Truax 3 grid. Prospecting and mapping southeasterly from the Truax 3 grid upstream on Fergusson Creek is also recommended.

On the Truax 4 grid, there is a moderate to strong correlation between gold, arsenic, and copper. Antimony occurs only at background levels consistent with the underlying sedimentary host rocks. The anomalies found on the Truax 4 grid may represent a mineralized northwest trending structure parallel to the Peter and Milchuck veins that are situated approximately 1.0 km. west of the grid.

Magnetometer and VLF-EM surveys could be conducted relatively inexpensively and would be useful for defining lithologic and structural features on both grids.

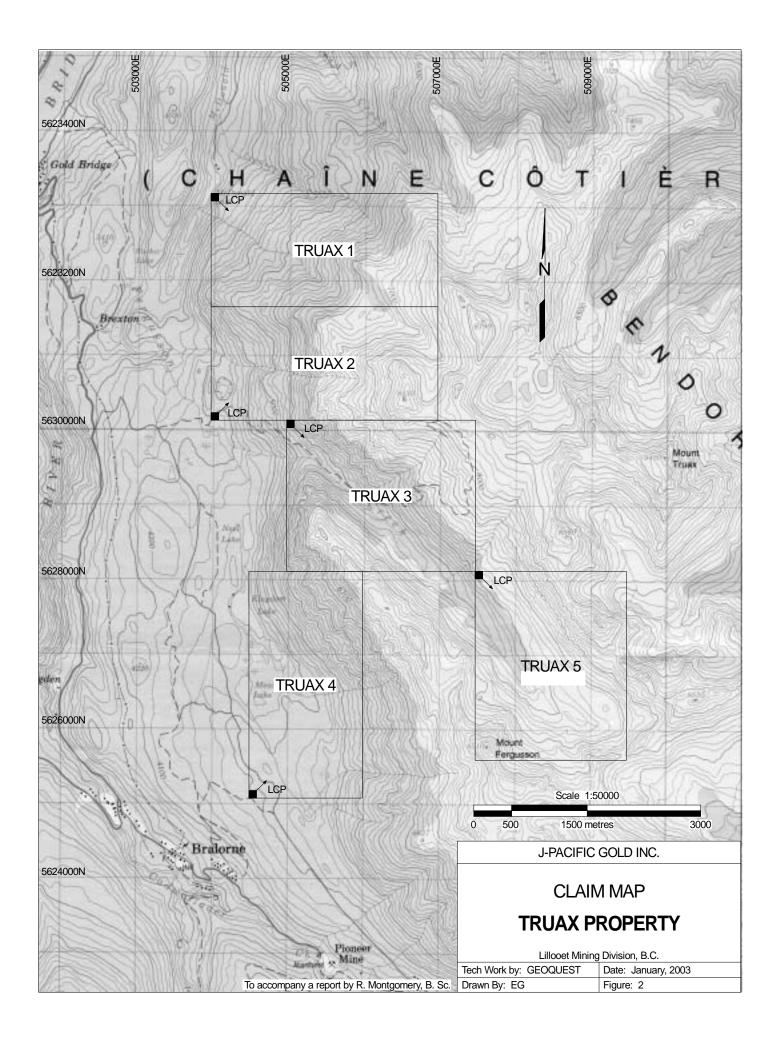
INTRODUCTION

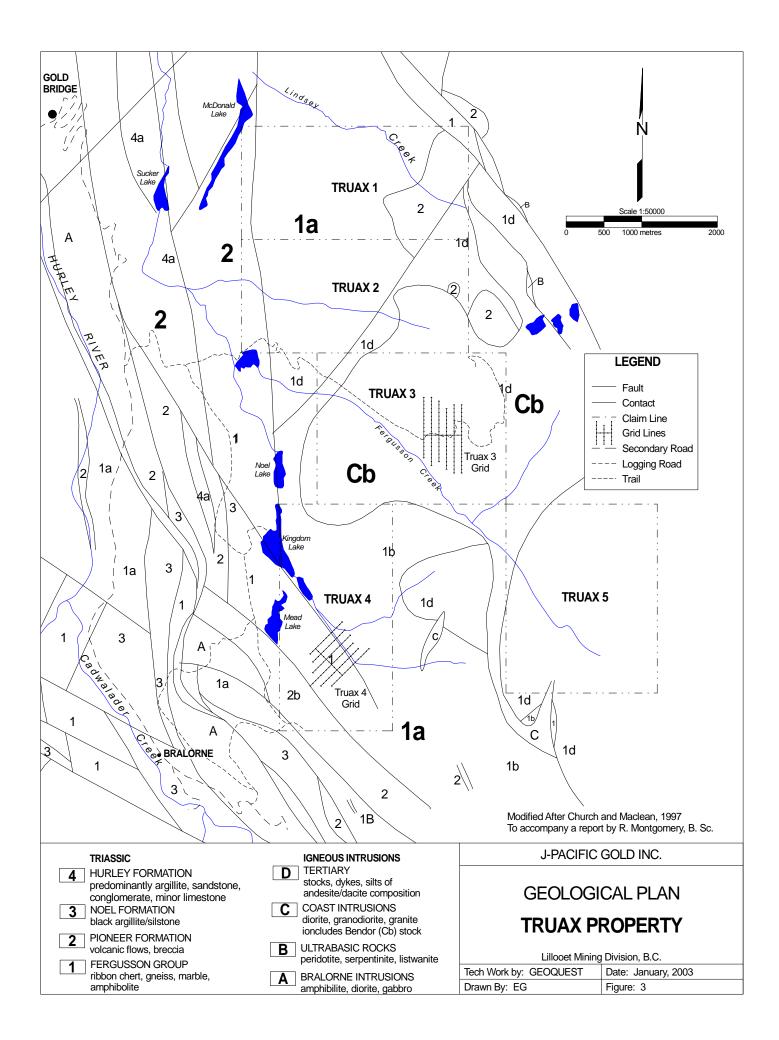
General Statement

During the last week of October 2002, the writer and Mr. Warner Gruenwald conducted preliminary exploration work on the Truax property. The property, owned by J-Pacific Gold Inc., is situated in southwestern British Columbia near the community of Gold Bridge. A program of stream, soil, and rock sampling was undertaken in two principal areas of the property. The primary objective of the program was to establish the geochemical signature in areas of favourable geology. The location of these reconnaissance grids was based on geological setting and historical findings, with priority given to unexplored portions of the property. Soil geochemistry has proven to be a successful tool in the Bridge River District. The exploration program was also based on structural features such as faults and shears that often host mineralization in the Bendor Range. The Truax 3 grid is positioned over a structural feature that is likely a splay off the Fergusson Creek Fault.

Numerous high-grade gold-quartz veins have been discovered in this region. Other exploration targets include sedimentaryhosted gold, and silver, gold, antimony, copper, and lead mineralization in sheared granitic rocks (Bendor intrusion).

Location and Access


The Truax property is located approximately 7 kilometres southeast of the community of Gold Bridge in southwestern British Columbia. Gold Bridge is located 106 kilometres westerly of Lillooet along Highway 40 (Figure 1). Geographic coordinates for the property are $50^{\circ}49'$ north latitude and $122^{\circ}46'$ west longitude on NTS Map 92J/15W.


Several logging roads originating in Gold Bridge give access to various portions of the claim block. Old exploration roads and ATV trails provide limited access to higher elevations of the claims. Access to the Truax 3 grid is gained from Gold Bridge via the road to Lost Lake. From Lost Lake the road becomes an ATV trail and continues up Fergusson Creek for 12.5 km. Access to the Truax 4 grid is via the Kingdom Lake logging road.

Physiography and Vegetation

The Truax property is characterized by steep, mountainous terrain situated along the eastern flanks of the Coast Range Mountains. Outcrops and talus slides are common on the higher elevations. Major drainages generally flow north-south to northwest-southeasterly. Hot, dry summers and relatively mild, wet, snowy winters characterize the climate. Slopes are predominantly steep to the southwest and northeast along the major drainages. Elevations range from 1200 metres at the southwest corner of Truax 4 to 2590 metres at the summit of Mount Fergusson. The only area of gentle relief is situated in the southwest corner of the Truax 4 claim. The major drainage transecting the property is Fergusson Creek, which flows northwesterly through the Truax 3 and Truax 5 claim blocks. The high elevation of the property generally limits fieldwork from June to October each year.

Much of the claim group is situated above tree line. Lower elevations are forested with fir, spruce, balsam, and pine (on south facing slopes). Vegetation at higher elevations is limited to short grasses, juniper shrubs, and low ground cover. Minor logging has occurred on the lower elevation areas of Truax 1 and Truax 4.

<u>Claims</u>

The Truax property consists of five 4-post claims totaling 94 units (Figure 2). All claims are located in the Lillooet Mining Division and are 100% owned by J-Pacific Gold Inc. of Vancouver, B.C. Details of the claims are as follows:

Claim Name	Tag No.	Tenure Number	No of Units	Expiry Date
Truax 1	206871	397711	18	Oct 26, 2003
Truax 2	206872	397712	18	Oct 27, 2003
Truax 3	206873	397713	20	Oct 27, 2003
Truax 4	206870	397714	18	Oct 25, 2003
Truax 5	228328	397715	20	Nov 03, 2003

All claims are situated on Crown Land. The author personally observed several claim posts that were placed in accordance with all mineral tenure regulations.

<u>History</u>

The Bridge River area has a long history of mining activity dating back to the turn of the century. Most mining activity was centred on gold deposits such as Bralorne, Pioneer, Minto, Coronation and Wayside. The Bralorne and Pioneer deposits produced gold for nearly 70 years. Mining ceased at Bralorne in 1971 due to the prevailing gold price (\$US35/oz) and the high costs associated with mining at increasing depths. *During their history, the Bralorne and Pioneer mines produced 4.1 million ounces of gold (0.53 oz/ton), making this the largest gold producing camp in British Columbia's history.*

In the 1990s, Bralorne-Pioneer Gold Mines Ltd. re-installed a mill with a reported capacity of 450 tons per day. Published reserves above the 800 mine level are 476,835 tons grading 0.31oz/ton. Between the 800 and 2600 levels Miller-Tait and others (1996) have quoted additional resources of 605,432 tons grading 0.27 oz/ton Au. Bralorne-Pioneer conducted diamond drilling this fall on the Loco area. A "geologic reserve" estimate of 37,457 tons at 0.244 oz/ton Au, reported by Miller-Tait (1995), is included in the reserve figure above the 800 level.

The Truax Property has witnessed exploration by individuals and companies since the 1930s. Prospectors were attracted to the area by high-grade mineralized float on south and westerly facing talus slopes. In 1944, the discovery of high-grade quartz veins with arsenopyrite prompted Bralorne Mines Ltd. to option property near Steep Creek. An 8 meter adit was driven with assays as high as 4.46 oz/ton gold and 7.5 oz/ton silver over a width of 30 cm.

Exploration was limited until the 1970s when several companies conducted geophysical surveys, geochemical surveys, and trenching. Exploration to present has been carried out by several companies following up high gold, silver, antimony, and lead occurrences primarily in the Steep Creek and Truax Peak area. A detailed history of the Truax claims is shown in Table I.

Personal communication with Mr. Tom Illidge of Gold Bridge indicates that very high-grade gold was encountered in a diamond drill hole drilled on the upper reaches of Fergusson Creek in the 1940's. A limited amount of time was spent searching for the drill tripod, which Mr. Illidge observed from a helicopter while working in the Fergusson Peak area in the 1980's. Future prospecting in this area should endeavor to locate this old drill site. The limited time frame of the 2002 program did not allow for sufficient follow-up of the mineralized float in talus found near the contact between the Bendor granodiorites and Fergusson Group rocks.

HISTORICAL WORK ON THE TRUAX PROPERTY

YEAR	WORK BY	AREAS EXPLORED	SCOPE OF WORK		RESULTS	DOCUMENTATION
1937	N/A	Southeast slopes of Mount Truax	∉# Mineralized float.	∉#	Unknown.	No data
1941	Unknown	Mount Truax (Stewart Claim)	∉# 15 tonnes of hand-cobbed antimony-rich ore shipped.	∉#	Assay results/recovery unknown.	Church, B.N. Bridge River Mining Camp (Paper 1995-3)
1945	Bralorne Mines Ltd.	Steep Creek (Lucky Ranger Claim)	∉#3 shallow DDHs (62 m. total) ∉#8 meter adit	∉# ∉#	DDHs encountered intensely sheared rock resulting in very poor core recovery and inconclusive results. 30 cm. wide quartz vein in adit assayed 4.46 oz/ton Au and 7.5 oz/ton Ag.	Assessment Reports: #14225, 22288
1945	Ashmore Syndicate	Steep Creek	Surface prospecting			Assessment Report: #22288
1959	Hurley River Mines	Mount Truax	∉# Staked 15 claims ∉# Stripping and diamond drilling	¢	Results up to 5-62 grams per tonne Au, 38 grams per tonne Ag, and up to 34.25 % Sb	Church, B.N. Bridge River Mining Camp (Paper 1995-3)
1964	Frobex Ltd.	3 km. west of Mount Truax	# Bulldozer trenching	¢	No significant results	Church, B.N. Bridge River Mining Camp (Paper 1995-3)
1970	Dawson Range Mines Ltd.	Mount Truax	∉# Trenching ∉# 2 DDHs	∉#	Unknown.	Church, B.N. Bridge River Mining Camp (Paper 1995-3)
1970	Westview Mining Co. Ltd.	3 km. west of Mount Truax	∉# Purchased the Rock Claims and staked the Roy Claims ∉# 13.8 km. of Magnetics and VLF-EM	∉# ∉#	No apparent follow-up work Claims lapsed	Church, B.N. Bridge River Mining Camp (Paper 1995-3)
1980	Tamarind Holding Corp.	3.5 km. west of Mount Truax (near Truax 3 grid)	∉# Trenching of 'main showing' exposed a 70m. strike length and 3.1 m true thickness	∉#	Sample 3 (width 1.0 m across main showing) assayed 0.56 oz/ton Au, 49.53 oz/ton Ag, 2.31% Sb and 5.37% Pb	Assessment Report: #8341
1981	Rabbit Oil & Gas Ltd.	Southeast of headwaters of Steep Creek	∉# 20 km of airborne Magnetics and VLF- EM	∉# ∉#	Weak magnetic anomalies indicate northwest plunging structures Several weak VLF-EM anomalies	Assessment Report: #9982
1985	Newmont Exploration of Canada Ltd.	Headwaters of Steep Creek	∉# Soil and rock geochemistry	∉# ∉#	Delineated 3 distinct areas anomalous in Au Assays from a northwest-trending fractured band of chert were: 61 100 ppb Au, 21 486 ppm As, 1303 ppm Sb, 124 ppm Ag, and 3953 ppm Pb	Assessment Report: #14225
1985	Coral Energy Corp.	3 km. west of Mount Truax (near Truax 3 grid)	∉# Trenching (6 trenches) ∉# Geological mapping	∉#	2 types of mineralization were documented:a) veins/silicification within shear zones in granodioriteb) porphyry style disseminated Mo and Py within argillic-phyllic altered granodiorite	Assessment Report: #14727
1987	Coral Energy Corp.	3 km. west of Mount Truax (near Truax 3 grid)	∉# Soil geochemistry (1400 m baseline with 100 m spaced N-S cross lines; total of 720 soils)∉# Geological mapping∉# Trenching	∉# ∉#	9 Au, Ag, As, Sb, Cu, Pb, Zn soil anomalies were defined 'Anomaly A' is over 500 m long and contained high values in all of the above elements Trenching confirmed 1985 work; 1 m chip samples returned Ag values of 4.0-8.5 oz/ton; Au up to 0.104 oz/ton	Assessment Report: #16638
1988	Levon Resources Ltd.	Steep Creek	∉#211 km of airborne Mag and VLF-EM survey	¢	VLF-EM survey revealed 14 multi-line conductors; the majority of which reflected NW to North -trending shears, faults and contact zones	Assessment Report: #18432
1991	Levon Resources Ltd.	Steep Creek	∉# Collected 102 soil samples and analyzed for Au, As, Ag, Sb, Cu, Pb, Zn	∉#	The highest Au value was 205 ppb; the highest Ag value was 1.4 ppm Three anomalous areas were defined	Assessment Report: #22288

REGIONAL GEOLOGY

The Truax property is situated near the western margin of the Intermontane belt of volcanic and sedimentary rocks where it abuts the eastern flank of the Coast Plutonic Complex of Jurassic to Tertiary age. Northwest trending roof pendants and fault systems characterize this tectonic belt. Roof pendants of Mesozoic volcanic and sedimentary rocks belonging to the Cadwallader and Bridge River (Fergusson) Group are entrained in quartz diorite and granodiorite plutons (Figure 3). Large northwesterly trending fault systems occur throughout the region; these include the Cadwallader and Fergusson faults. These faults were probably remobilized in Cretaceous time when tectonic pressure was created by eastward drifting insular belt rocks. This tectonic activity resulted in several periods of intrusive activity thus forming Cretaceous and Tertiary plutons (Bendor granodiorite?) and volcanics.

Regionally, mineralization is often related to nearby granitic intrusions. These likely provided the heat sources and mineralizing hydrothermal fluids. The Bralorne-Pioneer deposits are examples of mineralization related to deep-seated faults adjacent to granitic intrusions.

LOCAL GEOLOGY

On more local scale, the northwest lobe of the Bendor Pluton, which intrudes Fergusson group sedimentary rocks, underlies the central portion of the Truax property. Metamporphosed Fergusson rocks include: biotite quartz gneiss, garnetiferous schist and amphibolite. The composition of the pluton is primarily biotite hornblende granodiorite, locally grading to granitic or dioritic composition. Smaller outcrops of quartz diorite may represent a precursor to the Bendor intrusion. Xenoliths of the darker quartz diorite are commonly seen in the granodiorites. The granodiorite generally consists of 10-20% quartz, 55-65% plagioclase, 5-15% amphibole, 5-10% biotite and accessory K-feldspar, magnetite, apatite, sphene, and zircon (B.N Church, 1995). Zircon age dating of the Bendor granodiorite in the Fergusson Creek area (Truax 3 grid) yielded an upper Cretaceous age of 69.5 to 98.4 Ma (B.N. Church, 1989).

The northern portion of the claim block (Truax 1 & 2) is underlain predominantly by Fergusson Group rocks and volcanic flows and breccias of the Pioneer formation. These rock types also typify the southern portions of the Truax property (Truax 4 grid). A lens of light tan to grey coarse-grained limestone outcrops near the Truax 4 soil grid. This lens lies within chert and argillite of the Fergusson group.

Structure

Structures play an important role in exploration in the Bridge River Mining camp. Mineralization in the Bendor Range is often related to structural controls such as faults and shears. Rocks commonly strike northwesterly and dip steeply in both directions. They generally exhibit good bedding and/or foliation. The Bendor granodiorites typically display well-developed fracture sets. In the area northeast of the Truax 3 grid, a frequency plot of main fracture sets (B.N. Church,1995) resulted in orientations of 180∀80∀W and 73∀25∀NW (the most commonly mineralized attitude).

The Truax 3 soil grid is located in a strongly sheared and altered gully, which is oriented at 246 \forall and flows into Fergusson Creek. This probably represents a conjugate structure to the Fergusson Creek fault. Gold, silver, arsenic and antimony mineralization occurs in veins associated with shear structures in the granodiorite. These shear zones vary from a few centimetres to over 3 metres thick and dip northwesterly at 20 \forall 30 \forall (Truax II gold showing, BC Minfile 092JNE060).

Mineralization

Documented mineralization just east of the Truax 3 grid area consists of clay-altered, kaolinized, and silicified shear zones within the granodiorite. Pods and disseminations of stibnite, pyrite, arsenopyrite, and sphalerite are associated with discontinuous, sub horizontal silicified bands, which are enclosed by a yellow-white clay envelope.

A trench on the former Truax II gold property, northeast of the current Grid 3 contained large pods of sphalerite and spectacular bladed stibnite crystals along with pyrite, arsenopyrite, chalcopyrite, ruby silver and realgar (Sampson, 1987). A 30 cm wide channel sample across this sub-horizontal quartz vein assayed 1.7 g/tonne Au, 112 g/tonne Ag, 2.7% Pb, 3.2% Zn, and 1.06% Sb.

Zones of strongly altered, rusty, gossanous granodiorite often surround the mineralized structures. Previous operators found the gossans to be prospective areas for trenching. A possible porphyry-style environment was inferred by previous operators just east (<500 m) of the Truax 3 grid. Mineralization consisting of finely disseminated molybdenite and pyrite +/- chalcopyrite occurs within clay-altered granodiorite.

EXPLORATION WORK

During the last week of October, 2002 the writer supervised a geochemical survey on the Truax Property. Two soil grids were established. The Truax 3 grid was located in the central portion of the property and was positioned to test an area of strong alteration/shearing within the Bendor granodiorites. The Truax 4 grid was situated in the southwest corner of the claim block. The target of this grid was parallel or en echelon Au-quartz veins similar to the nearby Peter and Milchuck veins (Bralorne-Pioneer Gold Mines Ltd.).

GEOCHEMICAL PROGRAM

A total of 181 soils samples (Figures 4 & 5), 13 rock samples (Figure 6), and 8 silt samples (Figure 6) were collected on the Truax Property. The Truax 3 grid is comprised of a 500 metre east-west baseline along which north-south cross lines were established. Lines were spaced at 100 metres with 50 metre soil sample stations along lines. A total of 5.3 line kilometres were established.

The Truax 4 grid consists of a 500 metre long baseline oriented at $315\forall$ (strike of the nearby Peter Vein). Northeastsouthwest cross lines were established at 100 metre spacings along the baseline. Soil samples were collected at 50 metre stations along the grid lines. The Truax 4 grid totals 4.3 line kilometres. Soil samples were collected from the "B" horizon with a tree planting shovel. Samples were placed in kraft bags labeled with the appropriate grid coordinates. In a few cases (predominantly on scree slopes) talus fines were collected. Intermittent frozen ground was encountered on north-facing slopes of the Truax 3 grid, making it difficult to reach the "B" horizon. A total of 181 soils were collected.

In total 8 silt samples were collected. Active stream sediments were screened to -10 mesh and a 500-750 gram sample was collected in a kraft envelope, which was labeled with field coordinates.

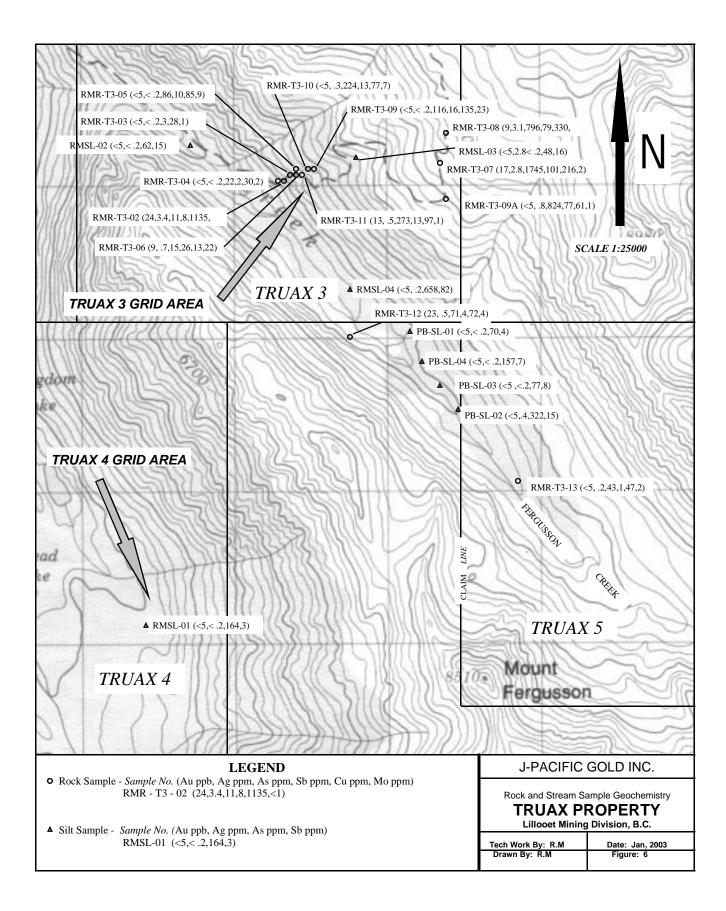
A total of 13 rock samples consisting of multiple chips from float or outcrop were collected. All of these are located in the vicinity of the Truax 3 grid.

All soil, rock, and silt samples were submitted to ALS Chemex of Vancouver, BC for gold and 34-element ICP analysis. The analytical lab procedures and assay results for all samples are attached in Appendix C and plotted on maps in Figures 4 & 5.

RESULTS

Stream Sampling

No significant assays for precious metals were obtained from the silt samples. However, some strong arsenic and moderate antimony and molybdenum assays were indicated.


The stream sample data for gold, arsenic, antimony and molybdenum is shown on a 1:25,000 scale map (Figure 6). All gold values in silts were less than 5 ppb. The most anomalous element in the silt samples collected was arsenic. The highest value was 658 ppm (RMSL-04). Samples RMSL-02, PBSL 01, & 02 were well above background with values of 322, 157 & 164 ppm respectively. Silt RMSL-04 also had a moderately anomalous antimony value of 82 ppm along with a weakly anomalous molybdenum assay of 18 ppm.

Rock Sampling

Rock samples were collected primarily in the vicinity of the Truax 3 soil grid (Figure 6). Several samples were also obtained from old trenches on the Truax II property just east of the Truax 3 grid. As well, a few rock samples were collected while prospecting up towards the headwaters of Fergusson creek.

The highest gold values were 24 and 23 ppb from samples RMR-T3-02 and RMR-T3-12 respectively. RMR-T3-02 also had the highest Ag and Cu assays at 3.4 and 1135 ppm respectively. RMR-T3-12 was a composite grab sample of a meta-volcanic/argillaceous quartzite obtained from a talus slide on the west side of Fergusson Creek near the southeastern claim boundary of Truax 3. It returned low base metal and arsenic values.

Sample RMR-T3-07 was a composite chip sample from an old trench east of the Truax 3 grid and consisted of limonitic, strongly altered, locally quartz-veined granodiorite. Occasional yellow/smoky quartz crystals lining vugs were noted. This sample yielded the highest As, Pb, and Sb values (1745, 104, and 101 ppm respectively). A strong correlation was noted between Au, Ag, As, Cu, Pb, and Sb for this rock.

The strongest Sb assays were obtained from the old trenches. RMR-T3-06, however, yielded a moderate Sb value of 26 ppm, as well as slightly elevated gold and molybdenum. This rock was collected from a silicified, kaolinized, strongly sheared granodiorite outcrop on the Truax 3 grid

Soil Sampling

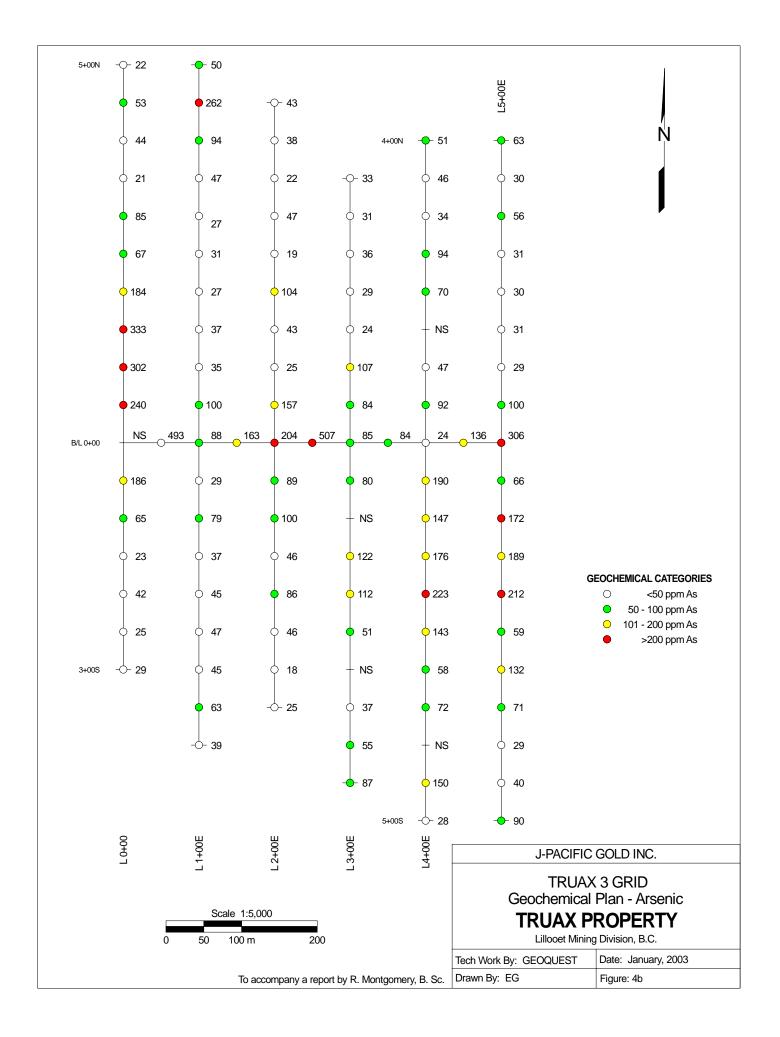
Soil sampling was undertaken on two areas of the property: the eastern central portion of the Truax 3 claim and the south-central portion of the Truax 4 grid (Figures 4 & 5).

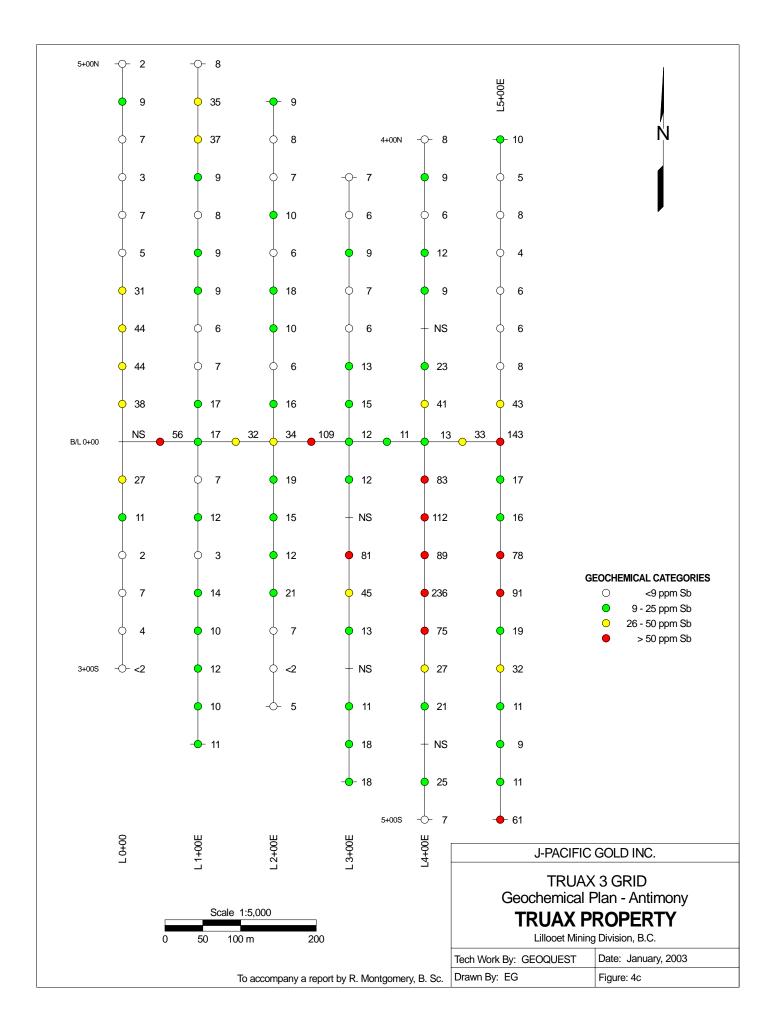
Soil sampling proved effective over the Truax 3 and Truax 4 grids. Overburden was thicker on the lower elevation Truax 4 grid. Overburden was generally thinner and outcrop much more prevalent on the Truax 3 grid.

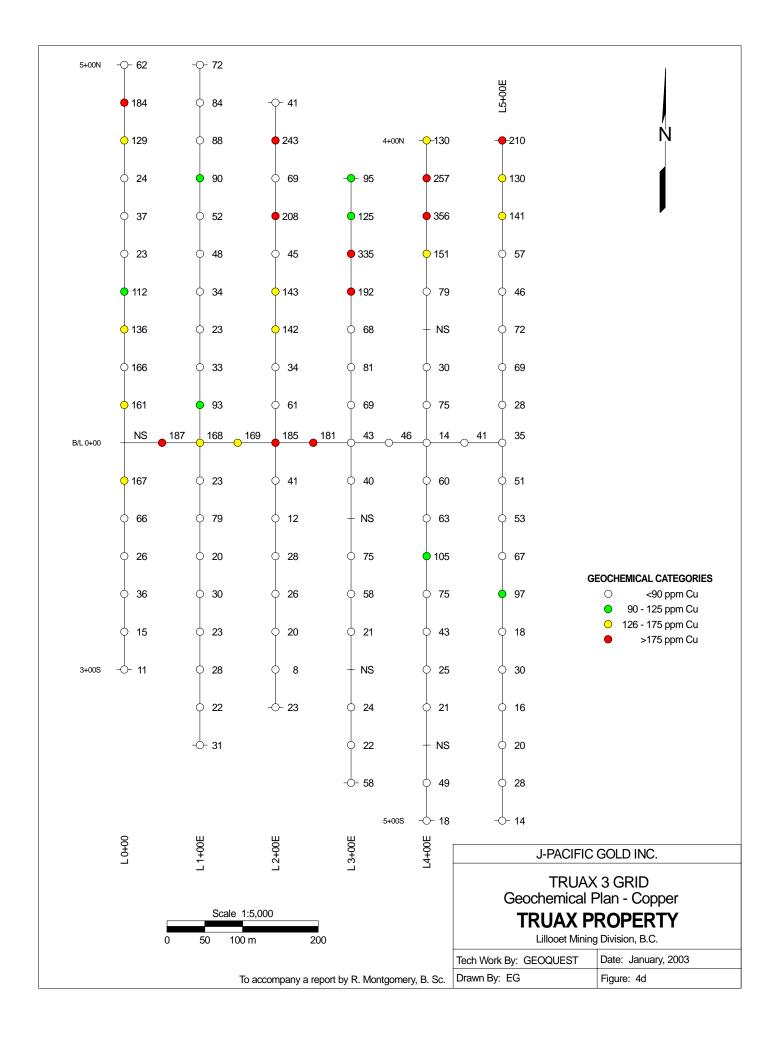
TRUAX 3 GRID

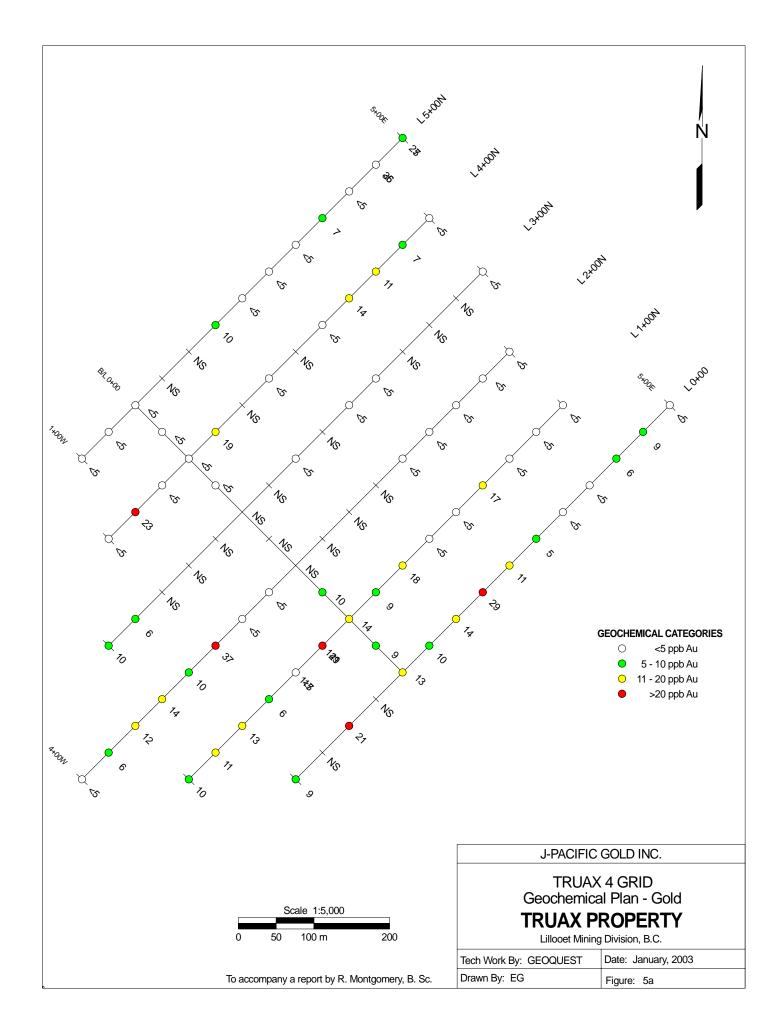
The highest gold value obtained on the Truax 3 grid was 45 ppb at L2+00E, 4+00N. Elevated gold values extend northwest and southeast from this point. Anomalous gold values also extend along the baseline from 0+50E to 3+00E. A weak to moderate northwest to southeast trending gold anomaly is centered over this portion of the baseline.

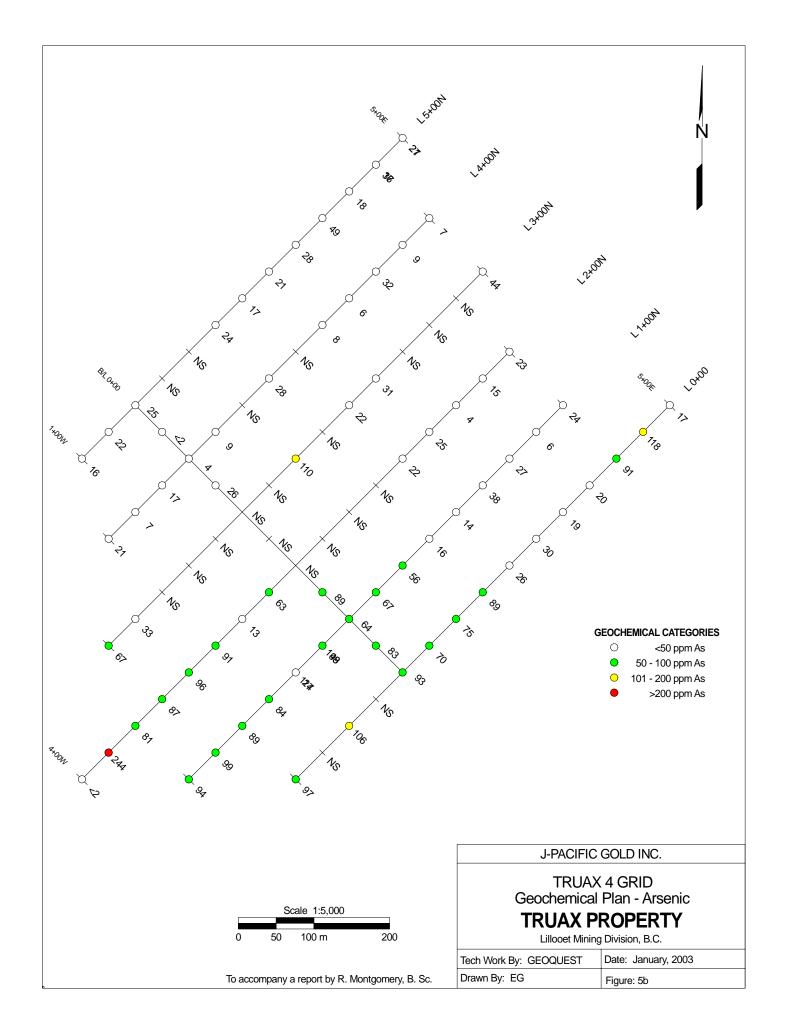

The highest arsenic value was 507 ppm at baseline 2+50E. A broad moderate to strong arsenic anomaly extends the length of the baseline and trends roughly northwesterly. The highest antimony value in soils was located at L4+00E, 2+00S. There is a moderate to strong antimony anomaly surrounding this sample. The largest copper value in soils was 356 ppm at L4+00E, 3+00N. High copper values are noted from baseline 0+00 to baseline 2+50E and extend northeasterly from the baseline to the northern ends of L3+00E to L5+00E.

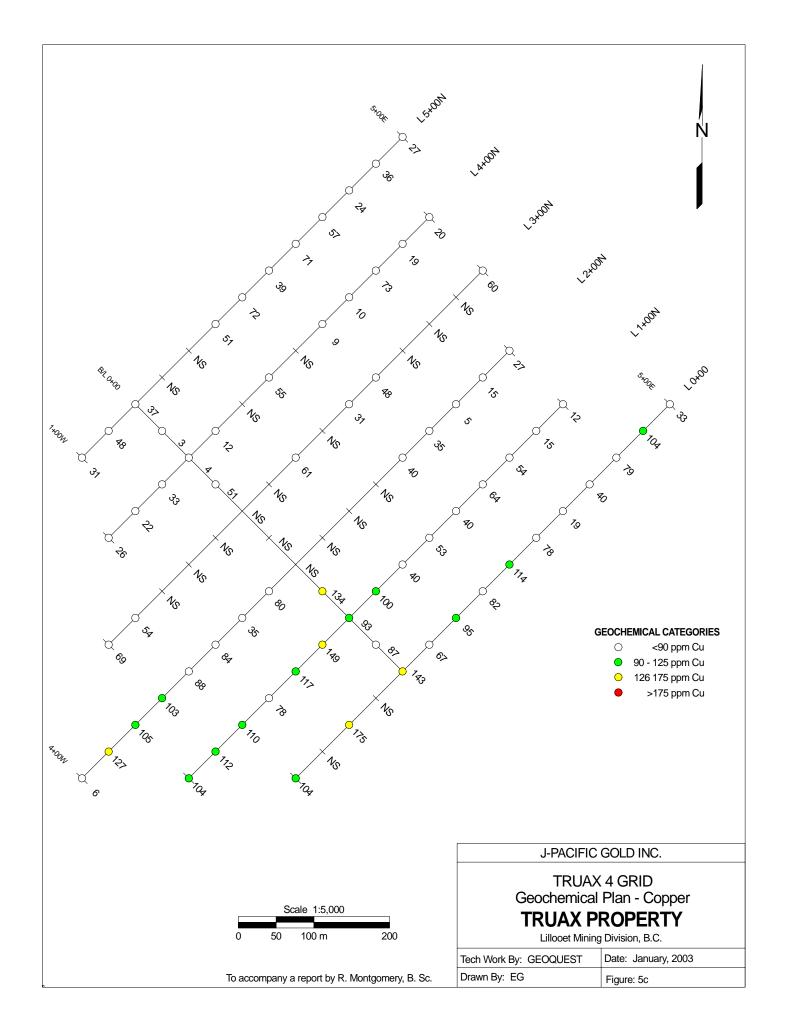

There is a moderate to strong correlation between gold, arsenic, and antimony geochemistry. The anomalous soil geochemistry over the baseline from 0+00 to 3+50E likely reflects the strongly altered, sheared granodiorite noted in this prominent gully. Anomalous metal values on L0+00 from the baseline to 2+00 N coincide with sheared and altered granodiorite noted in outcrop in this area.


TRUAX 4 GRID


The highest gold assay on the Truax 4 grid was 37 ppm at L2+00N, 1+50W. Several of the highest gold values occur west of the baseline and create a crude northwest trending anomaly. Several high gold values also occur east of the baseline on Lines 0+00, 1+00N and 4+00N. The highest arsenic value was 244 ppm and is situated at L2+00N, 3+50W. There is a weak correlation between gold and arsenic. The largest copper assay was 175 ppm at L0+00, 1+00W. There is a weak to moderate correlation between gold and copper in soils.


Antimony assays were all background on the Truax 4 grid, which is a reflection of the underlying Fergusson Group, and Pioneer Formation sedimentary and volcanic rocks.





CONCLUSIONS AND RECOMMENDATIONS

The Bridge River mining camp is British Columbia's premier gold producer. The Truax property has been intermittently explored and significant mineralization was found in several areas of the property. The 2002 soil geochemical survey revealed several gold-arsenic-copper +/- antimony anomalies on both the Truax 3 and Truax 4 grids. Of particular interest is the area east of the Truax 3 grid where past exploration work confirmed the presence of silver, gold, antimony and base metal mineralization. It appears, however, that previous workers did not explore the strongly sheared and altered granodiorite that was targeted by the Truax 3 grid. Also, the upper reaches of Fergusson Creek near the contact between the Bendor granodiorites and the Fergusson Group rocks may be prospective for gold mineralization.

The Truax 4 soil grid produced some coincident gold, arsenic, and copper anomalies. Considering the proximity of these anomalies to the Peter and Milchuck Veins (Bralorne-Pioneer Gold Mines Ltd.) there exists the possibility of parallel or en echelon northwest trending gold-quartz veins.

Based on the 2002 exploration program and geological setting within the Bralorne-Pioneer gold camp, the Truax property warrants follow-up work. Geochemistry on the Truax 3 grid suggests expansion of the geochemical grid to the west-northwest should be considered. Prospecting upstream along Fergusson Creek to locate the reported old drill site is also warranted.

Considering the importance of structures as controls on mineralization it would be useful to conduct geophysical surveys. Such surveys would be a relatively inexpensive way to define faults, shears, and geological contacts. On the Truax 3 grid, electromagnetic surveys could help define structural zones while magnetics may delineate the extent of alteration. Given the overburden on the Truax 4 grid, electromagnetic surveys could determine the presence of any geophysical features that may reflect mineralized structures or veins. Magnetics on this grid may also help delineate geological contacts. Any geophysical anomalies on the above grids should be followed up by mapping, prospecting and soil geochemistry.

Submitted by,

Rob Montgomery, B.Sc. Dated: January 15, 2003

APPENDIX A

SILT SAMPLE DESCRIPTIONS

TRUAX PROPERTY- SILT SAMPLES DESCRIPTIONS										
Site	El. (m)	Source	Width (m)	Comments	Au ppb	Ag ppm	As ppm	Mo ppm	Sb ppm	
RMSL-01	1540	150∀	0.5	Gentle to moderate gradient; 80% sedimentary rocks (argillite, chert, limestone); near old limestone kiln	<5	<.2	164	1	3	
RMSL-02	1677	130∀	0.5	Small creek flowing northwesterly into Fergusson Creek (station 40 m east of Fergusson Creek); float predominantly quartz diorite	<5	<2	62	2	15	
RMSL-03	2110	67∀	1.0	Moderate to steep gradient; granodiorite outcrop on surface; float 95% granodiorite; site 40 m upslope of old exploration road	<5	<.2	48	1	16	
RMSL-04	1848	40∀	0.4	Small meandering creek on north edge of swamp (north side of Fergusson Creek); fine silt (mixed sedimentary and intrusive rock)	<5	.2	658	18	82	
PB-SL-01	1799	40∀	1.0	Gentle gradient; no outcrop noted	<5	<.2	70	6	4	
PB-SL-02	1829	60∀	0.5	Gentle to moderate gradient; adjacent to talus slide; some oxidation/limonite in creek	<5	.4	322	3	15	
PB-SL-03	1832	40∀	0.3	High mica content noted in stream sediment	<5	<.2	77	<1	8	
PB-SL-04	1814	60∀	0.5	Granodiorite float (large boulders)	<5	<2	157	3	7	

APPENDIX B

ROCK SAMPLE DESCRIPTIONS

TRUAX PROPERTY- ROCK SAMPLE DESCRIPTIONS

Sample #	Description	Au ppb	Ag ppm	As ppm	Cu ppm	Mo ppm	Pb ppm	Sb ppm
RMR-T3-02	Light grey, medium-grained granodiorite. Limonitic fractures. 5-7% Biotite (1-2 mm avg.). 3-5% disseminated pyrite. ¹ / ₂ % disseminated chalcopyrite.	24	3.4	11	1135	<1	<2	8
RMR-T3-03	Light grey, medium-grained granodiorite, weakly bleached. Less biotite than RMR-T3-02 (1%). 2-3% pyrite. 30cm chip sample across shear.	1	< .2	12	28	1	<2	3
RMR-T3-04	Strongly bleached, sericitic granodiorite. Strong hematite/limonite on weathered surface and fractures. Locally silicified with small vugs in quartz. Locally 5-7% disseminated pyrite. Grab sample in decomposing shear zone.	1	<.2	22	30	2	<2	2
RMR-T3-05	2.0 m chip sample across strongly bleached, clay-altered granodiorite. Occasional narrow quartz veinlets with pyrite cubes. Sericite alteration common on fractures.	1	<.2	86	85	9	<2	10
RMR-T3-06	Bleached, clay-altered, silicified granodiorite. 5 m wide chip sample across sericite-altered shear zone. Local narrow quartz veinlets/vuggy quartz. Limonitic. 1-2% disseminated pyrite.	9	.7	15	13	22	15	26
RMR-T3-07	Limonitic, sheared, silicified, quartz-veined granodiorite. Vuggy, occasional yellow/smoky quartz crystals in vugs. 15 m long composite grab of chips on spoil pile of old trench (trench slumped in). Sulphides oxidized out of rock.	17	2.8	1745	216	2	104	101
RMR-T3-08	Limonitic, weakly bleached granodiorite. Much fresher than RMR-T3-07. 15-20% biotite. ½% disseminated pyrite. 5 m long chip sample across west end of 273∀trending 15 m long trench (remainder of trench caved in).	9	3.1	796	330	<1	21	79
RMR-T3-09	4 m chip sample across decomposed granodiorite at eastern end of large altered zone. West end of sample cut by clay-altered shear zone (attitude 016∀90∀). 240∀trending slickensides at west end of sample. Noted float boulder with Mo, Cpy, Py just down slope of sample.	1	<. 2	116	135	23	2	16
RMR-T3-09A	Limonitic, moderately altered/bleached granodiorite. Grab sample taken from 20 m long 150\forall trending trench.	1	.8	824	61	1	18	77
RMR-T3-10	Strongly altered/sheared, biotite-rich granodiorite. Shears kaolinized, locally narrow quartz veinlets with 1-2% pyrite.	1	.3	224	77	7	4	13
RMR-T3-11	Rusty/limonitic strongly sheared granodiorite between 2 large shear zones. West shear attitude: 215∀37∀ NW. East shear attitude: 360∀90∀ Entire sample strongly kaolinized. Occasional, narrow, irregular quartz veins. Locally ½-1% molybdenum, 1-2% disseminated pyrite. Trace chalcopyrite.	13	.5	273	97	1	<2	21
RMR-T3-12	Grab sample consisting of meta-volcanics, dirty quartzite, argillaceous quartzite, limestone, hornfels sediments/volcanics. Sample represents gossanous pendent material seen in cliffs on southwest side of Fergusson Creek. Trace <i>to</i> 3-5% fine-grained pyrrhotite >pyrite. Trace chalcopyrite.	23	.5	71	72	4	5	4
RMR-T3-13	Skarny (?) dirty quartzite boulder. Sample collected at 13 m long 158∀trending shallow cut bench. Cut bank is 30-45 cm high and dates back to the 1940s?	1	.2	43	47	2	2	1

APPENDIX C

ANALYTICAL DATA AND METHODOLOGY

Compilation of:

ALS Chemex file numbers:

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

To: J - PACIFIC GOLD INC. 1440 - 1166 ALBERNI STREET VANCOUVER BC V6E 3Z3 Page # : 1 Date : 12-Nov-2002 Account: MYT

CERTIFICATE VA02005628

Project : 98

P.O. No:

This report is for 1 SEDIMENT sample submitted to our lab in North Vancouver, BC, Canada on 7-Nov-2002.

The following have access to data associated with this certificate:

ALS Canada Ltd.

212 Brooksbank Avenue

North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

WARNER GRUENWALD

SAMPLE PREPARATION							
ALS CODE	DESCRIPTION						
WEI-21	Received Sample Weight						
LOG-22	Sample login - Rcd w/o BarCode						
SCR-41	Screen to -180um and save both						
SCR-41+ Screen to -180um (+) fraction							

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-AA23	Au 30g FA-AA finish	AAS
ME-ICP41	34 element aqua regia ICP-AES	ICP-AES

To: J - PACIFIC GOLD INC. ATTN: WARNER GRUENWALD 8055 ASPEN ROAD VERNON BC V1B 3M9

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to sample as submitted. All pages of this report have been checked and approved for release.

Signature:

Heek Com

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: J - PACIFIC GOLD INC. 1440 - 1166 ALBERNI STREET VANCOUVER BC V6E 3Z3

Page #: 2 - A Total # of pages : 2 (A - C) Date : 12-Nov-2002 Account: MYT

Project : 98

CERTIFICATE OF ANALYSIS

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
RMSL-04		1.00	<0.005	0.2	0.59	658	10	70	<0.5	<2	0.21	<0.5	28	277	11	3.94

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: J - PACIFIC GOLD INC. 1440 - 1166 ALBERNI STREET VANCOUVER BC V6E 3Z3 Page #: 2 - B Total # of pages : 2 (A - C) Date : 12-Nov-2002 Account: MYT

Project : 98

CERTIFICATE OF ANALYSIS VA02005628

Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
RMSL-04		10	1	0.14	10	6.41	356	18	0.01	534	480	6	0.02	82	2	20

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: J - PACIFIC GOLD INC. 1440 - 1166 ALBERNI STREET VANCOUVER BC V6E 3Z3 Page #: 2 - C Total # of pages : 2 (A - C) Date : 12-Nov-2002 Account: MYT

Project : 98

CERTIFICATE OF ANALYSIS VA

VA02005628

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2
RMSL-04		0.07	<10	20	71	<10	37

Project : 98 P.O. No:

on 7-Nov-2002.

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd. 2020 Residence Aurona

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

CERTIFICATE VA02005629

This report is for 13 ROCK samples submitted to our lab in North Vancouver, BC, Canada

NICK FERRIS WARNER GRUENWALD

The following have access to data associated with this certificate:

To: J - PACIFIC GOLD INC. 1440 - 1166 ALBERNI STREET VANCOUVER BC V6E 3Z3

ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
CRU-31	Fine crushing - 70% <2mm	
SPL-21	Split sample - riffle splitter	
PUL-31	Pulverize split to 85% <75 um	
	ANALYTICAL PROCEDURES	

	ANALINOALINOOLION	
ALS CODE	DESCRIPTION	INSTRUMENT
Au-AA23	Au 30g FA-AA finish	AAS
ME-ICP41	34 Element Aqua Regia ICP-AES	ICP-AES

To: J - PACIFIC GOLD INC. ATTN: WARNER GRUENWALD 8055 ASPEN ROAD VERNON BC V1B 3M9

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

.

Rfield Bog

.

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: J - PACIFIC GOLD INC. 1440 - 1166 ALBERNI STREET VANCOUVER BC V6E 3Z3 Page #: 2 - A Total # of pages : 2 (A - C) Date : 23-Jan-2003 Account: MYT

Project : 98

CERTIFICATE OF ANALYSIS V

SIS VA02005629

.

Sample Description	Nothod Analyte Units LOR	WEI-21 Rocvil Wt kg 0.02	Au-AA23 Au ppm 0.005	NIE-ICP41 Ag ppm 0.2	NE-ICP41 Al % 0.01	NE-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	NE-ICP41 Be ppm 0.5	NE-ICP41 Bi ppm 2	NE-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
RMR-T3-02		1.40	0.024	3.4	0.88	11	<10	120	<0.5	<2	0.12	<0.5	5	86	1135	2.12
RMR-T3-03		0.80	<0.005	<0.2	0.53	12	<10	140	<0.5	4	0.06	<0.5	5	78	28	1.83
RMR-T3-04		0.92	<0.005	⊲0.2	0.49	22	<10	100	<0.5	2	0.04	<0.5	3	61	30	1.95
RMR-T3-05		1.28	<0.005	<0.2	0.46	86	<10	110	<0.5	3	0.08	<0.5	2	67	85	3.58
RMR-T3-06		1.78	0.009	0.7	0.23	15	<10	50	<0.5	12	0.11	<0.5	<1	57	13	1.37
RMR-T3-07		1.76	0.017	2.8	0.50	1745	10	70	<0.5	44	0.10	1.2	5	63	216	2.74
RMR-T3-08		1.78	0.009	3.1	0.70	796	10	130	<0.5	12	0.21	<0.5	11	62	330	3.04
RMR-T3-09		1.28	<0.005	<0.2	1.08	116	<10	180	<0.5	<2	0.26	<0.5	10	58	135	1.93
RMR-T3-09A		1.40	<0.005	0.8	0.48	824	10	70	<0.5	2	0.16	<0.5	6	61	61	1.87
RMR-T3-10		1.34	<0.005	0.3	0.68	224	<10	90	<0.5	<2	0.06	<0.5	2	65	77	1.68
RMR-T3-11		1.96	0.013	0.5	1.01	273	<10	130	<0.5	<2	0.08	<0.5	4	62	97	2.85
RMR-T3-12		1.26	0.023	0.5	1.36	71	<10	140	<0.5	2	0.55	<0.5	7	113	72	2.11
RMR-T3-13		1.26	<0.005	0.2	1.19	43	<10	110	<0.5	<2	0.17	<0.5	3	140	47	1.68

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 964 0221 Fax: 604 964 0218 To: J - PACIFIC GOLD INC. 1440 - 1166 ALBERNI STREET VANCOUVER BC V6E 3Z3

Page #: 2 - B Total # of pages : 2 (A - C) Date : 23-Jan-2003 Account: MYT

٠

.

Project : 98

CERTIFICATE OF ANALYSIS

VA02005629

Sample Description	Nethod Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	NE-ICP41 K % 0.01	ME-ICP41 La ppm 10	NE-ICP41 Ng % 0.01	NE-ICP41 Na ppm 5	ME-ICP41 No ppm 1	NIE-ICP41 Na % 0.01	NI5-ICP41 Ni ppm 1	NE-ICP41 P ppm 10	NE-ICP41 Pb ppm 2	NE-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	NE-ICP41 Sc ppm 1	NE-ICP41 Sr ppm 1
RMR-T3-02		10	<1	0.40	<10	0.83	221	<1	0.05	10	470	<2	1.15	8	3	10
RMR-T3-03		<10	1	0.28	<10	0.35	69	1	0.05	6	260	<2	0.99	3	1	12
RMR-T3-04		<10	<1	0.25	<10	0.32	57	2	0.03	6	250	2	1.13	2	1	10
RMR-T3-05		<10	1	0.25	<10	0.20	54	9	0.04	5	550	2	0.49	10	2	25
RMR-T3-06		<10	1	0.21	<10	0.02	11	22	0.02	2	150	15	0.32	26	<1	11
RMR-T3-07		<10	8	0.16	10	0.15	123	2	0.01	7	280	104	0.05	101	2	31
RMR-T3-08		<10	13	0.36	10	0.36	208	<1	0.03	15	620	21	0.02	79	3	17
RMR-T3-09		10	<1	0.33	10	0.60	292	23	0.04	9	450	2	0.01	16	3	101
RMR-T3-09A		<10	10	0.25	10	0.18	205	1	0.03	11	510	18	<0.01	77	3	15
RMR-T3-10		<10	1	0.23	10	0.28	99	7	0.04	4	390	4	0.06	13	3	10
RMR-T3-11		10	1	0.25	<10	0.50	236	1	0.04	8	520	<2	0.09	21	4	10
RMR-T3-12		10	<1	0.43	<10	0.77	244	4	0.12	28	570	5	0.57	4	6	21
RMR-T3-13		10	<1	0.38	<10	0.55	218	2	0.02	13	260	2	0.15	<2	5	13

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: J - PACIFIC GOLD INC. 1440 - 1166 ALBERNI STREET VANCOUVER BC V6E 3Z3

Page #: 2 - C Total # of pages : 2 (A - C) Date : 23-Jan-2003 Account: MYT

Project : 98

CERTIFICATE OF ANALYSIS

VA	020	0	5629	

	Method Analyte	ME-ICP41 Ti	ME-ICP41 Ti	ME-ICP41 U	ME-ICP41 V	ME-ICP41 W	ME-ICP41 Za
Sample Description	Units LOR	% 0.01	ррт 10	рран 10	ppm 1	ppm 10	ppm 2
RMR-T3-02		0.08	<10	<10	40	<10	54
RMR-T3-03		0.04	<10	<10	20	<10	18
RMR-T3-04		0.03	<10	<10	18	<10	16
RMR-T3-05		0.03	<10	<10	24	<10	21
RMR-T3-06		<0.01	<10	<10	3	<10	4
RMR-T3-07		<0.01	<10	<10	45	<10	79
RMR-T3-08		0.07	<10	<10	42	<10	48
RMR-T3-09		0.11	<10	10	42	<10	39
RMR-T3-09A		0.03	<10	10	28	<10	41
RMR-T3-10		0.05	<10	<10	28	<10	33
RMR-T3-11		0.09	<10	<10	53	<10	60
RMR-T3-12		0.11	<10	<10	66	<10	39
RMR-T3-13		0.05	<10	<10	31	<10	32
		1					

٠

.

ALS CHERK EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7.J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: J - PACIFIC GOLD INC. 1440 - 1166 ALBERNI STREET VANCOUVER BC V6E 3Z3 Page # : 1 Date : 23-Jan-2003 Account: MYT

CERTIFICATE VA02006436

SAMPLE PREPARATION

ALS CODE DESCRIPTION

FND-01 Find Sample For Re-Shipment

ANALYTICAL PROCEDURES

ALS CODEDESCRIPTIONINSTRUMENTME-ICP4134 Element Aqua Regia ICP-AESICP-AES

Project : 98

P.O. No:

This report is for 188 PULP samples submitted to our lab in North Vancouver, BC, Canada on 3-Dec-2002.

The following have access to data associated with this certificate:

NICK FERRIS WARNER GRUENWALD

To: J - PACIFIC GOLD INC. ATTN: WARNER GRUENWALD 8055 ASPEN ROAD VERNON BC V1B 3M9

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

.

Rfield Bog

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: J - PACIFIC GOLD INC. 1440 - 1166 ALBERNI STREET VANCOUVER BC V6E 3Z3 Page #: 2 - A Total # of pages : 6 (A - C) Date : 23-Jan-2003 Account: MYT

Project : 98

CERTIFICATE OF ANALYSIS

SIS VA02006436

Sample Description	Method Analyte Units LOR	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	NE-ICP41 B ppm 10	NIE-ICP41 Ba ppm 10	NE-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01	NE-ICP41 Ga ppm 10	ME-ICP41 Hy ppm 1
L0+00N 1+00W		0.2	2.44	106	<10	300	<0.5	<2	0.28	<0.5	24	107	175	4.38	10	<1
L0+00N 2+00W		0.5	2.13	97	<10	210	<0.5	4	0.17	<0.5	17	79	104	3.73	10	<1
L1+00N 0+50W		<0.2	2.11	98	<10	260	<0.5	<2	0.30	<0.5	23	96	149	4.11	10	<1
L1+00N 1+00W		<0.2	2.62	24	<10	120	<0.5	<2	0.19	<0.5	21	205	117	4.37	10	<1
L1+00N 1+50W		0.3	1.84	84	<10	210	<0.5	<2	0.28	0.8	15	74	78	3.37	10	ব
L1+00N 2+00W		0.3	2.09	89	<10	230	<0.5	2	0.18	0.8	12	89	110	3.78	10	<1
L1+00N 2+50W		0.2	2.25	99	<10	210	<0.5	<2	0.19	<0.5	22	95	112	3.92	10	<1
L1+00N 3+00W		<0.2	2.15	94	<10	190	<0.5	2	0.30	<0.5	15	102	104	3.89	10	<1
L2+00N 0+50W		<0.2	2.18	63	<10	210	<0.5	<2	0.27	<0.5	7	51	80	3.76	10	<1
L2+00N 1+00W		<0.2	2.04	13	<10	100	<0.5	<2	0.22	0.7	19	164	35	3.28	10	<1
L2+00N 1+50W		<0.2	2.09	91	<10	190	<0.5	2	0.19	<0.5	14	112	84	3.82	10	<1
L2+00N 2+00W		<0.2	1.81	96	<10	250	<0.5	<2	0.18	<0.5	18	77	88	3.55	10	<1
L2+00N 2+50W		<0.2	2.09	87	<10	240	<0.5	<2	0.27	<0.5	20	110	103	3.76	10	<1
L2+00N 3+00W		<0.2	1.76	81	<10	180	<0.5	<2	0.26	<0.5	20	85	105	3.42	10	<1
L2+00N 3+50W		0.9	0.57	244	10	130	0.6	4	2.79	1.9	25	26	127	4.64	10	1
L2+00N 4+00W		<0.2	1.05	<2	<10	30	<0.5	2	0.15	<0.5	4	9	6	1.27	<10	<1
L3+00N 2+00W		0.7	1.82	33	<10	190	<0.5	<2	0.48	<0.5	8	70	54	3.08	10	<1
L3+00N 2+50W		<0.2	2.20	67	<10	210	<0.5	<2	0.64	<0.5	6	112	69	3.00	10	<1
L4+00N 0+50W		<0.2	2.28	17	<10	70	<0.5	<2	0.15	<0.5	18	186	33	3.00	10	<1
L4+00N 1+00W		<0.2	1.57	7	<10	80	<0.5	<2	0.15	<0.5	10	94	22	2.23	10	<1
L4+00N 1+50W		<0.2	2.45	21	<10	100	<0.5	<2	0.12	0.6	17	130	26	3.03	10	<1
L5+00N 0+50W		<0.2	2.62	22	<10	100	<0.5	<2	0.21	<0.5	22	199	48	3.50	10	1
L5+00N 1+00W		0.6	2.05	16	<10	130	<0.5	<2	0.15	<0.5	12	84	31	3.28	10	<1
L0+00N 0+50E		<0.2	1.91	70	<10	240	<0.5	<2	0.40	0.6	15	84	67	3.36	10	<1
L0+00N 1+00E		<0.2	1.91	75	<10	250	<0.5	3	0.26	<0.5	20	. 94	95	3.49	10	<1
L0+00N 1+50E		<0.2	1.97	89	<10	230	<0.5	<2	0.29	<0.5	15	73	82	3.30	10	<1
L0+00N 2+00E		1.2	1.86	26	<10	180	<0.5	<2	0.07	<0.5	15	49	114	3.55	10	1
L0+00N 2+50E		<0.2	3.01	30	<10	210	0.5	<2	0.16	<0.5	25	183	78	3.49	10	<1
L0+00N 3+00E		<0.2	1. 40	19	<10	140	<0.5	、 <2	0.10	<0.5	10	53	19	1.77	10	<1
L0+00N 3+50E	•	0.3	1.83	20	<10	120	<0.5	<2	0.17	<0.5	14	109	40	2.18	10	<1
L0+00N 4+00E		<0.2	1.94	91	<10	190	<0.5	<2	0.39	<0.5	13	97	79	3.59	10	<1
L0+00N 4+50E		0.2	2.22	118	<10	210	<0.5	<2	0.27	<0.5	20	106	104	4.07	10	<1
L0+00N 5+00E	•	<0.2	1.56	17	<10	310	<0.5	► <2	0.80	1.0	15	77	33	2. 1 1	10	<1
L1+00N 0+50E		0.2	1.84	67	<10	230	<0.5	<2	0.22	<0.5	19	86	100	3.21	10	<1
L1+00N 1+00E		<0.2	1.97	56	<10	180	<0.5	<2	0.17	<0.5	11	70	40	3.11	10	<1
L1+00N 1+50E		<0.2	2.41	16	<10	190	<0.5	<2	0.26	<0.5	22	115	53	3.37	10	<1
L1+00N 2+00E		<0.2	1.53	14	<10	180	<0.5	2	0.19	<0.5	15	50	40	2.19	10	1
L1+00N 2+50E		<0.2	1.45	38	<10	250	<0.5	<2	0.17	<0.5	15	86	64	2.61	10	1
L1+00N 3+00E		0.2	2.33	27	<10	210	<0.5	<2	0.14	<0.5	22	149	54	2.72	10	<1
L1+00N 3+50E		0.2	1.29	6	<10	160	<0.5	<2	0.11	<0.5	9	55	15	1.56	10	<1

•

.

Т

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: J - PACIFIC GOLD INC. 1440 - 1166 ALBERNI STREET VANCOUVER BC V6E 3Z3 Page #: 3 - A Total # of pages : 6 (A - C) Date : 23-Jan-2003 Account: MYT

Project : 98

CERTIFICATE OF ANALYSIS

IS VA02006436

Sample Description	lilethod Analyte Units LOR	NE-ICP41 Ag ppm 0.2	NE-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	NE-ICP41 Be ppm 0.5	NE-ICP41 Bi ppm 2	NE-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	NE-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1
L1+00N 4+00E		<0.2	1.11	24	<10	120	<0.5	<2	0.16	<0.5	6	42	12	1.54	10	<1
L2+00N 2+00E		<0.2	2.18	22	<10	130	<0.5	<2	0.12	<0.5	17	126	40	3.18	10	1
L2+00N 2+50E		⊲0.2	2.01	25	<10	140	<0.5	<2	0.18	<0.5	15	80	35	2.90	10	1
L2+00N 3+00E		<0.2	0.81	4	<10	60	<0.5	~2	0.10	<0.5	6	13	5	1.20	<10	<1
L2+00N 3+50E		0.2	1.68	15	<10	160	<0.5	<2	0.20	<0.5	11	104	15	1.98	10	<1
L2+00N 4+00E		0.2	2.05	23	<10	200	<0.5	~2	0.22	<0.5	26	132	27	2.26	10	<1
BL 0+00N		0.5	2.10	93	<10	240	<0.5	<2	0.23	<0.5	16	80	143	4.02	10	1
BL 0+50N		<0.2	1.70	83	<10	220	<0.5	2	0.28	<0.5	14	71	87	3.50	10	<1
BL 1+00N		⊲0.2	2.32	64	<10	240	<0.5	<2	0.17	<0.5	25	120	93	3.88	10	<1
BL 1+50N		<0.2	2.33	89	<10	310	<0.5	<2	0.24	<0.5	20	90	134	4.11	10	<1
BL 3+50N		⊲0.2	2.80	26	<10	100	<0.5	<2	0.17	<0.5	27	276	51	3.53	10	<1
BL 4+00N		0.2	0.76	4	<10	70	<0.5	<2	0.12	<0.5	3	10	4	1.19	<10	<1
BL 4+50N		0.2	0.34	<2	<10	50	<0.5	<2	0.11	<0.5	1	6	3	0.63	<10	<1
BL 5+00N		<0.2	2.81	25	<10	90	<0.5	<2	0.25	<0.5	20	276	37	3.51	10	<1
L3N 1+00E		<0.2	3.26	110	<10	120	<0.5	~2	0.21	0.6	48	460	61	4.90	20	<1
L3N 2+00E		<0.2	2.59	22	<10	170	<0.5	<2	0.18	<0.5	24	227	31	3.43	10	<1
L3N 2+50E		<0.2	2.15	31	<10	130	<0.5	<2	0.42	<0.5	14	207	48	3.29	10	1
L3N 4+50E		0.4	2.42	44	<10	240	<0.5	<2	0.39	<0.5	22	147	60	3.43	10	<1
L4N 0+50E		<0.2	0.30	9	<10	60	<0.5	<2	0.23	<0.5	4	10	12	0.84	<10	1
L4N 1+50E		0.2	2.26	28	<10	130	<0.5	<2	0.08	0.5	18	159	55	3.57	10	<1
L4N 2+50E		0.9	1.66	8	<10	120	<0.5	<2	0.12	<0.5	12	47	9	1.90	10	<1
L4N 3+00E		<0.2	0.95	6	<10	210	<0.5	<2	0.14	0.5	6	9	10	1.54	<10	<1
L4N 3+50E		<0.2	2.04	32	<10	200	<0.5	<2	0.10	0.6	18	117	73	3.14	10	<1
L4N 4+00E		0.2	1.55	9	<10	110	<0.5	<2	0.08	<0.5	7	28	19	2.12	10	<1
L4N 4+50E		0.3	1.09	7	<10	50	<0.5	<2	0.11	<0.5	4	16	20	1.60	10	<1
L5N 1+50E		<0.2	1.71	24	<10	260	<0.5	<2	0.57	0.9	7	130	51	1.77	10	<1
L5N 2+00E		<0.2	4.97	17	<10	100	0.5	<2	0.43	0.6	41	807	72	5.66	10	<1
L5N 2+50E		<0.2	3.34	21	<10	90	<0.5	<2	0.21	1.3	30	376	39	3.57	10	<1
L5N 3+00E		<0.2	2.30	28	<10	130	<0.5	<2	0.22	<0.5	18 _	158	71	3.68	10	<1
L5N 3+50E		<0.2	2.28	49	<10	160	<0.5	<2	0.17	<0.5	18	148	57	3.56	10	<1
L5N 4+00E		<0.2	1.69	18	<10	130	<0.5	<2	0.14	<0.5	14	55	24	2.24	10	<1
L5N 4+50E		0.3	1.97	17	<10	130	<0.5	<2	0.05	<0.5	11	47	36	3.05	10	<1
L5N 5+00E		0.8	1.93	21	≤ 10	120	<0.5	<2	0.13	0.7	11 -	55	27	2.70	10	<1
T3BL 0+50E		0.6	0.72	493	<10	200	<0.5	<2	0.03	<0.5	4	19	187	5.45	10	1
T3BL 1+00E		0.2	1.23	88	<10	290	<0.5	<2	0.24	<0.5	14	27	168	3.24	10	2
T3BL 1+50E		0.2	1.12	163	<10	200	<0.5	<2	0.22	<0.5	19	31	169	3.44	10	2
T3BL 2+00E		<0.2	2.05	204	<10	220	<0.5	<2	0.17	<0.5	15	53	185	3.66	10	<1
T3BL 2+50E		<0.2	1.76	507	<10	340	<0.5	4	0.27	0.9	13	34	181	4.25	10	2
T3BL 4+00E		<0.2	0.92	24	<10	50	<0.5	<2	0.07	<0.5	4	12	14	1.51	<10	<1
T3BL 4+50E		<0.2	1.72	136	<10	120	<0.5	<2	0.12	<0.5	9	37	41	2.87	10	1

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: J - PACIFIC GOLD INC. 1440 - 1166 ALBERNI STREET VANCOUVER BC V6E 3Z3 Page #: 4 - A Total # of pages : 6 (A - C) Date : 23-Jan-2003 Account: MYT

Project : 98

CERTIFICATE OF ANALYSIS VA02006436

Sample Description	Nethod Analyte Units LOR	ME-ICP41 Ay ppm	NE-ICP41 Al %	ME-ICP41 As ppm	NE-ICP41 B ppm	NE-ICP41 Ba ppm	NE-ICP41 Be ppm	NE-ICP41 Bi ppm	NE-ICP41 Ca %	NE-ICP41 Cd ppm	NE-ICP41 Co ppm	ME-ICP41 Cr ppm	ME-ICP41 Cu ppm	ME-ICP41 Fe %	ME-ICP41 Ga ppm	NE-ICP41 Hy ppm
	LUK	0.2	9.91	2	10	10	0.5	2	0.01	0.5	1	1	1	0.01	10	1
T3BL 5+00E		<0.2	1.08	306	<10	220	<0.5	2	0.22	<0.5	9	29	35	2.66	10	4
T3BL 3+00N		<0.2	2.09	85	<10	150	<0.5	2	0.08	<0.5	9	48	43	3.06	10	<1
T3BL 3+50N		<0.2	2.10	84	<10	160	<0.5	2	0.08	<0.5	10	48	46	3.08	10	<1
BLT3 00+00 0+50N		0.3	1.53	240	<10	260	<0.5	5	0.13	<0.5	5	44	161	4.01	.10	1
T3 0+00 1+00N		0.2	1.48	302	<10	180	<0.5	2	0.11	<0.5	12	42	166	3.37	10	1
T3 0+00 1+50N		0.2	1.37	333	<10	170	<0.5	<2	0.16	<0.5	12	33	136	3.26	10	<1
T3 0+00 2+00N		-0.3	1.52	184	<10	170	<0.5	3	0.15	⊲0.5	13	42	112	3.27	10	1
T3 0+00 2+50N		<0.2	1.88	67	<10	100	<0.5	<2	0.08	<0.5	8	59	23	2.68	10	<1
T3 0+00 3+00N		<0.2	1.66	85	<10	170	<0.5	<2	0.12	⊲0.5	10	62	37	2.58	10	<1
T3 0+00 3+50N		0.3	0.34	21	10	90	<0.5	2	1.49	8.2	4	15	24	0.64	<10	<1
T3 0+00 4+00N		<0.2	1.66	44	<10	290	<0.5	<2	0.15	<0.5	11	41	129	3.07	10	<1
T3 0+00 4+50N		<0.2	1.69	53	<10	190	<0.5	<2	0.13	<0.5	9	33	184	2.79	10	1
T3 0+00 5+00N		<0.2	1.62	22	<10	180	<0.5	<2	0.15	<0.5	9	37	62	2.78	10	<1
T3 L0+00E 0+50S		0.3	1.23	186	<10	260	<0.5	<2	0.22	<0.5	12	32	167	3.64	10	1
T3 L0+00E 1+00S		<0.2	1.33	65	<10	200	<0.5	<2	0.14	<0.5	7	28	66	2.73	10	<1
T3 L0+00E 1+50S		<0.2	1.09	23	<10	60	<0.5	<2	0.10	<0.5	4	13	26	1.60	<10	<1
T3 L0+00E 2+00S		<0.2	0.77	42	<10	110	<0.5	2	0.06	<0.5	3	25	36	1.90	10	<1
T3 L0+00E 2+50S		0.3	0.56	25	<10	60	<0.5	<2	0.06	<0.5	3	18	15	1.54	10	<1
T3 L0+00E 3+00S		<0.2	0.51	29	<10	40	<0.5	<2	0.12	<0.5	2	11	11	0.99	<10	1
T3 L1+00E 0+50S		<0.2	1.58	29	<10	180	0.7	<2	0.39	<0.5	8	21	23	2.97	10	2
T3 L1+00E 1+00S		<0.2	1.65	79	<10	350	0.5	<2	0.30	⊲0.5	16	22	79	2.52	10	<1
T3 L1+00E 1+50S		0.4	1.41	37	<10	100	<0.5	4	0.12	<0.5	7	13	20	1.77	<10	<1
T3 L1+00E 2+00S		<0.2	1.06	45	<10	150	<0.5	<2	0.10	⊲0.5	5	24	30	2.09	10	<1
T3 L1+00E 2+50S		<0.2	1.08	47	<10	130	<0.5	<2	0.08	<0.5	6	29	23	2.18	10	<1
T3 L1+00E 3+00S		<0.2	1.09	45	<10	150	<0.5	<2	0.14	<0.5	5	27	28	2.16	10	<1
T3 L1+00E 3+50S		<0.2	0.99	63	<10	110	<0.5	<2	0.13	<0.5	4	22	22	1.95	10	<1
T3 L1+00E 4+00S		<0.2	1.28	39	<10	170	<0.5	4	0.18	<0.5	7	30	31	2.18	10	<1
T3 L2+00E 0+50S		0.2	1.26	89	<10	120	<0.5	<2	0.11	<0.5	6	25	41	2.52	10	1
T3 L2+00E 1+00S		<0.2	1.12	100	<10	130	<0.5	<2	0.21	<0.5	4	12	12	1.59	ູ10	3
T3 L2+00E 1+50S		<0.2	1.16	46	<10	170	<0.5	3	0.11	<0.5	7	27	28	2.25	10	<1
T3 L2+00E 2+00S		<0.2	1.12	86	<10	380	<0.5	5	0.15	<0.5	6	21	26	2.70	10	1
T3 L2+00E 2+50S		<0.2	1.07	46	<10	110	<0.5	<2	0.08	<0.5	5	22	20	1.94	10	<1
T3 L2+00E 3+00S		<0.2	0.76	18	<10	50	<0.5	<2	- 0.08	<0.5	4	11	8	1.32	≤10	1
T3 L2+00E 3+50S		<0.2	1.23	25	<10	110	<0.5	<2	0.11	<0.5	6	21	23	1.77	10	<1
T3 L3+00E 0+50S		<0.2	1.98	80	<10	140	<0.5	<2	0.09	<0.5	9	45	40	2.95	10	<1
T3 L3+00E 1+50S		<0.2	1.37	122	<10	250	<0.5	2	0.17	<0.5	9	32	75	2.77	10	<1
T3 L3+00E 2+00S		<0.2	1.55	112	<10	200	<0.5	<2	0.23	<0.5	9	31	58	2.52	10	1
T3 L3+00E 2+50S		<0.2	1.14	51	<10	110	<0.5	<2	0.11	<0.5	6	26	21	2.05	10	<1
T3 L3+00E 3+50S		<0.2	1.33	37	<10	160	<0.5	<2	0.14	<0.5	8	30	24	2.28	10	<1
T3 L3+00E 4+00S		<0.2	1.40	55	<10	130	<0.5	<2	0.12	<0.5	7	39	22	2.40	10	<1

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: J - PACIFIC GOLD INC. 1440 - 1166 ALBERNI STREET VANCOUVER BC V6E 3Z3 Page #: 5 - A Total # of pages : 6 (A - C) Date : 23-Jan-2003 Account: MYT

Project : 98

CERTIFICATE OF ANALYSIS

SIS VA02006436

Sample Description	Nethed Analyte Units LOR	NE-ICP41 Ag ppm 0.2	NE-ICP41 Al % 0.01	NE-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	NE-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	NE-ICP41 Fe % 0.01	NIE-ICP41 Ga ppm 10	ME-ICP41 Hy ppm 1
T3 L3+00E 4+50S		<0.2	1.47	87	<10	150	⊲0.5	<2	0.28	<0.5	11	59	58	2.43	10	<1
T3 L4+00E 0+50S		<0.2	1.54	190	<10	300	<0.5	<2	0.24	<0.5	11	40	60	3.22	10	1
T3 L4+00E 1+00S		0.2	1.36	147	<10	220	<0.5	<2	0.19	<0.5	11	33	63	2.82	10	1
T3 L4+00E 1+50S		<0.2	1.34	176	<10	290	<0.5	<2	0.24	1.2	11	37	105	3.10	10	<1
T3 L4+00E 2+00S		⊲0.2	1.36	223	<10	330	<0.5	2	0.34	1.6	12	36	72	3.19	10	<1
T3 L4+00E 2+50S		<0.2	1.43	143	<10	300	<0.5	2	0.22	<0.5	12	36	43	3.38	10	1
T3 L4+00E 3+00S		<0.2	1.12	58	<10	150	<0.5	<2	0.12	<0.5	8	31	25	2.40	10	<1
T3 L4+00E 3+50S		<0.2	1.30	72	<10	170	<0.5	<2	0.15	<0.5	8	30	21	2.44	10	<1
T3 L4+00E 4+50S		<0.2	2.04	150	<10	170	<0.5	<2	0.15	<0.5	11	61	49	2.87	10	1
T3 L4+00E 5+00S		⊲0.2	0.96	28	<10	90	<0.5	<2	0.06	<0.5	5	32	18	2.09	10	<1
T3 L5+00E 0+50S		<0.2	1.59	66	<10	160	<0.5	<2	0.15	<0.5	9	37	51	2.59	10	<1
T3 L5+00E 1+00S		<0.2	1.70	172	<10	330	<0.5	29	0.28	<0.5	14	43	53	4.18	10	5
T3 L5+00E 1+50S		<0.2	1.62	189	<10	410	<0.5	<2	0.31	0.5	14	45	67	4.08	10	1
T3 L5+00E 2+00S		<0.2	1.62	212	<10	190	<0.5	2	0.15	<0.5	11	39	97	3.44	10	1
T3 L5+00E 2+50S		<0.2	1.12	59	<10	210	<0.5	<2	0.27	<0.5	7	32	18	2.37	10	<1
T3 L5+00E 3+00S		<0.2	1.37	132	<10	160	<0.5	<2	0.24	<0.5	9	46	30	2.47	10	1
T3 L5+00E 3+50S		<0.2	1.01	71	<10	130	<0.5	<2	0.24	<0.5	6	27	16	2.01	10	<1
T3 L5+00E 4+00S		<0.2	1.62	29	<10	240	<0.5	<2	0.15	<0.5	9	35	20	2.53	10	<1
T3 L5+00E 4+50S		<0.2	2.04	40	<10	220	<0.5	~2	0.14	<0.5	10	43	28	3.06	10	<1
T3 L5+00E 5+00S		<0.2	1.12	90	<10	160	<0.5	<2	0.12	<0.5	6	30	14	2.23	10	<1
T3 1+00E 0+50N		⊲0.2	1.43	100	<10	240	<0.5	<2	0.24	<0.5	10	50	93	2.79	10	<1
T3 1+00E 1+00N		<0.2	1.04	35	<10	160	<0.5	<2	0.08	<0.5	6	30	33	2.07	10	<1
T3 1+00E 1+50N		<0.2	1.36	37	<10	100	<0.5	<2	0.08	<0.5	6	29	23	2.14	10	<1
T3 1+00E 2+00N		<0.2	1.08	27	<10	130	<0.5	<2	0.06	<0.5	5	22	34	1.96	10	<1
T3 1+00E 2+50N		⊲0.2	1.51	31	<10	150	<0.5	<2	0.07	<0.5	7	34	48	2.18	10	<1
T3 1+00E 3+00N		⊲0.2	1.07	27	<10	140	<0.5	<2	0.06	<0.5	4	29	52	2.27	10	<1
T3 1+00E 3+50N		0.2	1.52	47	<10	120	<0.5	<2	0.05	<0.5	5	38	90	2.78	10	1
T3 1+00E 4+00N		0.2	1.64	94	<10	210	<0.5	2	0.17	<0.5	10	42	88	3.06	10	<1
T3 1+00E 4+50N		0.6	1.44	262	<10	120	<0.5	<2	0.45	1.0	10	32	84	2.65	10	1
T3 1+00E 5+00N		0.2	1.34	50	<10	160	<0.5	2	0.12	<0.5	8	37	72	2.64	10	<1
T3 2+00E 0+50N		<0.2	1.40	157	<10	180	<0.5	<2	0.16	<0.5	10	53	61	2.57	10	<1
T3 2+00E 1+00N		<0.2	0.93	25	<10	170	<0.5	<2	0.10	<0.5	6	26	34	1.89	10	<1
T3 2+00E 4+50N		<0.2	1.42	43	<10	220	<0.5	<2	0.08	<0.5	7	31 -	142	2.75	10	<1
T3 2+00E 2+00N		<0.2	1.84	104	<10	220	<0.5	<2	0.12	<0.5	11	42	143	3.29	10	<1
T3 2+00E 2+50N		<0.2	0.86	19	<10	150	<0.5	<2	0.11	<0.5	6	23	45	2.00	10	<1
T3 2+00E 3+00N		<0.2	1.89	47	<10	170	<0.5	<2	0.08	<0.5	10	44	208	2.97	10	<1
T3 2+00E 3+50N		<0.2	1.40	22	<10	110	<0.5	<2	0.08	<0.5	6	26	69	1.89	10	1
T3 2+00E 4+00N		<0.2	1.51	38	<10	130	<0.5	<2	0.08	<0.5	7	38	243	2.88	10	1
T3 2+00E 4+50N		0.2	1.22	43	<10	110	<0.5	<2	0.09	<0.5	6	34	41	2.34	10	<1
T3 3+00E 0+50N		<0.2	1.59	84	<10	140	<0.5	<2	0.21	<0.5	10	59	69	2.68	10	<1

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: J - PACIFIC GOLD INC. 1440 - 1166 ALBERNI STREET VANCOUVER BC V6E 3Z3

Page #: 6 - A Total # of pages: 6 (A - C) Date : 23-Jan-2003 Account: MYT

Project : 98

CERTIFICATE OF ANALYSIS

Sample Description	Nethod Analyte Units LOR	ME-ICP41 Ag ppm 0.2	NE-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	NE-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	NNE-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1
T3 3+00E 1+00N		⊲0.2	1.50	107	<10	150	<0.5	<2	0.33	<0.5	11	67	81	2.52	10	1
T3 3+00E 1+50N		<0.2	1.20	24	<10	220	<0.5	<2	0.23	<0.5	7	27	68	2.11	10	<1
T3 3+00E 2+00N		0.2	1.26	29	<10	140	<0.5	<2	0.12	⊲0.5	9	33	192	2.64	10	<1
T3 3+00E 2+50N		<0.2	1.64	36	<10	200	<0.5	<2	0.14	<0.5	10	38	335	3.17	10	<1
T3 3+00E 3+00N		0.3	2.15	31	<10	140	<0.5	<2	0.09	<0.5	7	39	125	3.04	10	<1
T3 3+00E 3+50N		<0.2	1.60	33	<10	140	<0.5	<2	0.07	<0.5	7	36	95	2.62	10	<1
T3 4+00E 0+50N		<0.2	1.85	92	<10	210	<0.5	<2	0.10	<0.5	10	39	75	3.52	10	1
T3 4+00E 1+00N		<0.2	1.35	47	<10	140	<0.5	<2	0.08	<0.5	8	28	30	2.48	10	<1
T3 4+00E 2+00N		<0.2	1.45	70	<10	180	<0.5	<2	0.17	<0.5	10	32	79	2.49	10	<1
T3 4+00E 2+50N		<0.2	1.68	94	<10	210	<0.5	<2	0.12	<0.5	9	38	151	3.00	10	1
T3 4+00E 3+00N		<0.2	1.80	34	<10	270	<0.5	<2	0.18	<0.5	11	41	356	3.36	10	1
T3 4+00E 3+50N		<0.2	2.20	46	<10	170	<0.5	<2	0.16	<0.5	11	46	257	3.40	10	<1
T3 4+00E 4+00N		<0.2	2.36	51	<10	220	<0.5	<2	0.12	<0.5	12	43	130	3.85	10	<1
T3 5+00E 0+50N		<0.2	1.12	100	<10	100	<0.5	<2	0.08	<0.5	6	28	28	2.19	10	<1
T3 5+00E 1+00N		<0.2	1.64	29	<10	300	<0.5	<2	0.20	<0.5	8	36	69	2.75	10	<1
T3 5+00E 1+50N		<0.2	1.74	31	<10	290	<0.5	<2	0.19	<0.5	8	38	72	2.84	10	<1
T3 5+00E 2+00N		<0.2	1.59	30	<10	230	<0.5	<2	0.20	<0.5	8	34	46	2.61	10	<1
T3 5+00E 2+50N		<0.2	1.54	31	<10	330	<0.5	<2	0.30	<0.5	9	35	57	2.72	10	1
T3 5+00E 3+00N		<0.2	1.44	56	<10	280	<0.5	<2	0.30	<0.5	10	38	141	3.43	10	<1
T3 5+00E 3+50N		<0.2	1.68	30	<10	320	<0.5	<2	0.43	<0.5	10	36	130	3.03	10	<1
T3 5+00E 4+00N		<0.2	2.19	63	<10	390	<0.5	<2	0.39	<0.5	13	48	210	3.58	10	<1
RMSL-01		<0.2	0.95	70	<10	120	<0.5	<2	0.35	<0.5	10	52	46	2.28	<10	<1
RMSL-02		0.4	1.27	322	<10	120	<0.5	<2	0.52	<0.5	9	37	41	2.54	<10	<1
RMSL-03		<0.2	1.15	77	<10	120	<0.5	<2	0.37	<0.5	9	73	67	2.26	<10	1
PB-SL-01		<0.2	0.95	157	<10	120	<0.5	<2	0.57	<0.5	9	62	22	2.31	10	<1
PB-SL-02		<0.2	0.91	164	<10	110	<0.5	<2	0.66	<0.5	9	55	27	2.13	10	<1
PB-SL-03		<0.2	1.08	62	<10	140	<0.5	<2	0.47	<0.5	9	62	36	2.45	10	11
PB-SL-04		<0.2	0.63	48	<10	70	<0.5	<2	0.34	<0.5	6	37	19	2.15	<10	<1
			•	•						-						-

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Lid. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: J - PACIFIC GOLD INC. 1440 - 1166 ALBERNI STREET VANCOUVER BC V6E 3Z3 Page #: 2 - B Total # of pages : 6 (A - C) Date : 23-Jan-2003 Account: MYT

Project : 98

CERTIFICATE OF ANALYSIS

'SIS VA02006436

Sample Description	Nethed Analyte Units LOR	ME-ICP41 K % 0.01	NE-ICP41 La ppm 10	NIE-ICP41 My % 0.01	ME-ICP41 Ma ppm 5	NIE-ICP41 No ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	NE-ICP41 Pb ppm 2	NE-ICP41 S % 0.01	NE-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Ti % 0.01	ME-ICP41 Ti ppm 10
L0+00N 1+00W		0.44	<10	1.44	652	14	0.02	114	840	11	0.19	5	6	49	0.14	<10
L0+00N 2+00W		0.20	<10	0.99	222	9	0.02	68	1330	5	0.14	3	4	34	0.11	<10
L1+00N 0+50W		0.50	<10	1.26	612	10	0.02	111	1000	7	0.20	4	5	44	0.12	<10
L1+00N 1+00W		0.11	<10	2.30	551	5	<0.01	197	640	10	0.03	2	5	16	0.12	<10
L1+00N 1+50W		0.19	<10	0.95	297	9	0.02	66	900	8	0.12	2	3	39	0.10	<10
L1+00N 2+00W		0.27	<10	1.15	269	11	0.02	72	740	11	0.18	3	4	38	0.12	<10
L1+00N 2+50W		0.27	<10	1.14	310	11	0.02	81	920	8	0.12	3	4	33	0.11	<10
L1+00N 3+00W		0.26	<10	1.27	311	13	0.02	86	520	8	0.15	5	4	35	0.12	<10
L2+00N 0+50W		0.19	<10	1.13	208	11	0.03	34	840	6	0.29	2	6	51	0.16	<10
L2+00N 1+00W		0.09	<10	1.68	614	2	<0.01	156	850	6	0.02	<2	4	18	0.09	<10
L2+00N 1+50W		0.20	<10	1.19	272	9	0.02	80	1240	4	0.14	3	4	33	0.10	<10
L2+00N 2+00W		0.29	<10	0.98	349	8	0.02	69	1160	7	0.16	4	4	35	0.10	<10
L2+00N 2+50W		0.37	<10	1.28	382	10	0.02	93	880	7	0.15	4	4	36	0.11	<10
L2+00N 3+00W		0.31	<10	0.96	484	15	0.02	96	770	8	0.15	4	4	34	0.09	<10
L2+00N 3+50W		0.10	<10	0.28	726	48	0.04	261	1380	8	0.26	5	<1	103	0.01	<10
L2+00N 4+00W		0.02	<10	0.17	121	1	0.02	8	710	5	0.01	2	1	13	0.06	<10
L3+00N 2+00W		0.29	<10	1.08	245	6	0.03	74	740	7	0.15	3	4	45	0.13	<10
L3+00N 2+50W		0.38	<10	1.41	259	6	0.02	66	570	9	0.09	3	4	45	0.13	<10
L4+00N 0+50W		0.06	<10	1.77	331	2	<0.01	140	1040	10	0.02	<2	4	13	0.11	<10
L4+00N 1+00W		0.06	<10	1.02	227	1	0.01	70	520	4	0.01	<2	3	11	0.09	<10
L4+00N 1+50W		0.04	<10	1.23	255	2	<0.01	110	1140	5	0.01	2	3	9	0.10	<10
L5+00N 0+50W		0.07	<10	2.01	454	2	0.01	157	1150	7	0.01	<2	5	13	0.12	<10
L5+00N 1+00W		0.05	<10	0.88	342	1	0.01	81	1570	11	0.02	<2	3	16	0.12	<10
L0+00N 0+50E		0.24	<10	1.01	444	7	0.02	63	1610	10	0.11	3	3	46	0.10	<10
L0+00N 1+00E		0.30	<10	1.10	467	8	0.02	79	960	10	0.13	2	4	37	0.10	<10
L0+00N 1+50E		0.26	<10	0.95	319	8	0.02	64	1260	8	0.13	2	4	40	0.11	<10
L0+00N 2+00E		0.15	10	0.82	359	7	0.01	56	800	18	0.05	2	3	14	0.04	<10
L0+00N 2+50E		0.09	10	1.44	377	3	0.01	179	1120	11	0.02	<2	6	18	0.15	<10
L0+00N 3+00E	•	0.04	<10	0.41	479	1	0.01	45	820	10	0.01	<2	2	. 12	0.09	<10
L0+00N 3+50E	`.	0.06	<10	0.80	153	1	0.02	87	1220	7	0.02	<2	4	• 17	0.15	<10
L0+00N 4+00E		0.25	<10	1.08	299	8	0.02	67	1490	7	0.13	4	4	37	0.12	<10
L0+00N 4+50E		0.27	<10	1.16	358	8	0.03	77	1030	6	0.14	3	4	40	0.13	<10
L0+00N 5+00E	•	0.15	<10	0.63	464	1	0.01=	73	3480	5	0.03	<2	3	• 62	0.11	<10
L1+00N 0+50E		0.27	<10	1.03	463	9	0.02	77	750	5	0.10	4	4	31	0.11	<10
L1+00N 1+00E		0.13	<10	0.73	230	5	0.01	48	1860	9	0.08	<2	3	27	0.10	<10
L1+00N 1+50E		0.24	<10	1.53	402	1	0.01	111	790	3	0.03	<2	7	20	0.18	<10
L1+00N 2+00E		0.11	10	0.75	300	1	0.01	72	480	7	0.02	<2	3	23	0.07	<10
L1+00N 2+50E		0.14	10	0.78	400	4	0.01	82	940	9	0.05	<2	3	26	0.08	<10
L1+00N 3+00E		0.11	<10	1.19	323	1	0.01	167	730	10	0.05	<2	6	19	0.18	<10
L1+00N 3+50E		0.04	<10	0.44	206	<1	0.02	42	1400	5	0.02	3	2	16	0.10	<10

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue Norih Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: J - PACIFIC GOLD INC. 1440 - 1166 ALBERNI STREET VANCOUVER BC V6E 3Z3 Page #: 3 - B Total # of pages : 6 (A - C) Date : 23-Jan-2003 Account: MYT

Project : 98

CERTIFICATE OF ANALYSIS

S VA02006436

Sample Description	Nethed Analyte Units LOR	NE-ICP41 K % 0.01	NE-ICP41 La ppm 10	NE-ICP41 Ng % 0.01	NE-ICP41 Na ppm 5	NE-ICP41 No ppm 1	ME-ICP41 Na % 0.01	NE-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	NE-ICP41 S % 0.01	NIE-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Ti % 0.01	NIE-ICP41 Ti ppm 10
L1+00N 4+00E		0.05	<10	0.33	181	1	0.02	26	2000	6	0.01	2	2	14	0.09	<10
L2+00N 2+00E		0.13	10	1.40	323	1	0.01	105	940	7	0.02	3	4	11	0.10	<10
L2+00N 2+50E		0.13	10	0.95	299	1	0.01	68	900	8	0.01	<2	3	14	0.07	<10
L2+00N 3+00E		0.03	<10	0.16	377	<1	0.01	13	640	2	0.01	<2	1	11	0.08	<10
L2+00N 3+50E		0.07	<10	0.67	213	<1	0.02	49	1490	7	0.03	<2	3	20	0.14	<10
L2+00N 4+00E		0.06	<10	0.90	310	<1	0.01	131	1000	9	0.01	2	4	23	0.15	<10
BL 0+00N		0.41	<10	1.17	430	12	0.03	72	700	7	0.22	3	5	47	0.13	<10
BL 0+50N		0.29	<10	0.95	297	9	0.02	60	1150	4	0.17	4	4	39	0.10	<10
BL 1+00N		0.35	<10	1.43	1050	8	0.02	94	1420	8	0.14	3	5	33	0.15	<10
BL 1+50N		0.35	<10	1.28	460	12	0.03	80	980	6	0.18	3	6	44	0.16	<10
BL 3+50N		0.06	<10	2.63	487	2	<0.01	231	1070	5	0.01	<2	6	9	0.11	<10
BL 4+00N		0.03	<10	0.12	95	1	0.01	9	1000	3	0.01	<2	1	12	0.07	<10
BL 4+50N		0.03	<10	0.07	45	<1	0.01	5	290	2	0.01	<2	1	11	0.07	<10
BL 5+00N		0.05	<10	2.81	607	<1	<0.01	190	880	2	0.01	<2	6	16	0.14	<10
L3N 1+00E		0.09	10	4.07	2570	4	0.01	291	1350	13	0.02	<2	9	14	0.09	<10
L3N 2+00E		0.11	<10	2.21	363	<1	0.01	153	1240	5	0.01	2	5	13	0.15	<10
L3N 2+50E		0.11	10	1.98	307	2	0.01	134	360	7	0.02	<2	5	37	0.09	<10
L3N 4+50E		0.17	10	1.34	886	4	0.01	107	1390	5	0.08	<2	3	39	0.11	<10
L4N 0+50E		0.05	<10	0.11	274	2	0.02	18	170	<2	0.01	<2	1	13	0.06	<10
L4N 1+50E		0.09	10	1.57	441	4	0.01	126	730	6	0.01	<2	4	8	0.05	<10
L4N 2+50E		0.04	<10	0.44	614	<1	0.01	74	1280	6	0.01	<2	2	12	0.08	<10
L4N 3+00E		0.04	<10	0.14	253	<1	0.02	11	1600	5	0.01	<2	1	18	0.07	<10
L4N 3+50E		0.14	10	1.14	339	3	<0.01	132	330	11	0.01	<2	3	14	0.06	<10
L4N 4+00E		0.06	10	0.40	329	2	0.01	26	610	8	0.01	<2	2	12	0.03	<10
L4N 4+50E		0.07	<10	0.23	136	2	0.01	16	440	6	0.01	<2	1	13	0.07	<10
L5N 1+50E		0.30	<10	1.25	245	8	0.02	102	570	6	0.11	<2	3	39	0.09	<10
L5N 2+00E		0.43	<10	7.51	892	1	<0.01	517	480	3	0.02	<2	16	26	0.25	<10
L5N 2+50E		0.10	<10	3.71	669	<1	<0.01	305	550	6	0.01	3	8	14	0.16	<10
L5N 3+00E		0.12	10	1.77	419	2	0.01	135	1090	13	0.01	<2	5	19	0.10	<10
L5N 3+50E		0.13	10	1. 49	312	2	<0.01	114	530	11	0.01	<2	5	15	0.09	<10
L5N 4+00E		0.10	10	0.71	253	2	0.01	73	460	9	0.01	<2	3	16	0.09	<10
L5N 4+50E		0.11	10	0.74	176	2	0.01	40	600	16	0.02	<2	2	10	0.03	<10
L5N 5+00E		0.09	<10	0.60	- 178	2	0.01	54	1520	11	0.02	<2	3	16	0.08	<10
T3BL 0+50E		0.26	10	0.38	162	37	0.03	4	970	25	0.42	56	3	27	0.03	<10
T3BL 1+00E		0.33	10	0.64	471	41	0.01	14	810	6	0.04	17	5	79	0.08	<10
T3BL 1+50E		0.39	10	0.67	424	24	0.01	16	830	3	0.13	32	5	134	0.10	<10
T3BL 2+00E		0.41	10	0.88	478	25	0.01	31	970	2	0.02	34	5	48	0.19	<10
T3BL 2+50E		0.32	10	0.75	386	48	0.01	19	600	8	0.02	109	5	131	0.13	<10
T3BL 4+00E		0.06	<10	0.21	127	1	0.01	7	340	5	0.01	13	1	11	0.10	<10
T3BL 4+50E		0.24	10	0.60	260	1	0.01	22	950	4	0.02	33	3	16	0.17	<10

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: J - PACIFIC GOLD INC. 1440 - 1166 ALBERNI STREET VANCOUVER BC V6E 3Z3 Page #: 4 - B Total # of pages: 6 (A - C) Date : 23-Jan-2003 Account: MYT

Project : 98

CERTIFICATE OF ANALYSIS

SIS VA02006436

Sample Description	Nethod Analyte Units LOR	ME-ICP41 K % 0.01	NE-ICP41 La ppm 10	NE-ICP41 Ng % 0.01	NE-ICP41 Nu ppm 5	ME-ICP41 No ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	NE-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Ti % 0.01	ME-ICP41 Ti ppm 10
T3BL 5+00E		0.36	10	0.55	414	5	<0.01	14	700	6	0.01	143	3	21	0.15	<10
T3BL 3+00N		0.26	<10	0.77	215	2	0.01	30	630	4	0.02	12	3	14	0.23	<10
T3BL 3+50N		0.27	<10	0.79	213	2	0.01	31	580	5	0.02	11	3	14	0.23	<10
BLT3 00+00 0+50N		0.52	10	0.99	288	23	0.02	14	960	3	0.35	38	5	44	0.17	<10
T3 0+00 1+00N		0.39	10	0.78	244	41	0.01	21	540	3	0.09	44	5	29	0.17	<10
T3 0+00 1+50N		0.34	10	0.65	503	52	0.01	21	690	6	0.09	44	4	56	0.13	<10
T3 0+00 2+00N		0.24	10	0.66	657	24	0.01	29	660	16	0.04	31	4	22	0.14	<10
T3 0+00 2+50N		0.14	<10	0.66	145	2	0.01	29	430	7	0.01	5	3	15	0.21	<10
T3 0+00 3+00N		0.28	<10	0.79	231	1	0.01	36	550	4	0.02	7	3	19	0.18	<10
T3 0+00 3+50N		0.13	<10	0.25	220	4	0.02	12	790	5	0.18	3	1	66	0.04	<10
T3 0+00 4+00N		0.33	10	0.84	856	6	0.01	24	650	5	0.03	7	3	24	0.23	<10
T3 0+00 4+50N		0.28	10	0.73	338	9	0.01	18	550	4	0.01	9	3	17	0.17	<10
T3 0+00 5+00N		0.27	<10	0.73	236	1	0.01	19	440	3	0.01	2	3	24	0.19	<10
T3 L0+00E 0+50S		0.43	10	0.72	465	33	0.01	12	1020	11	0.17	27	4	44	0.10	<10
T3 L0+00E 1+00S		0.28	10	0.64	189	20	0.01	13	520	3	0.06	11	3	35	0.13	<10
T3 L0+00E 1+50S		0.06	<10	0.26	124	- 4	0.01	9	430	4	0.01	2	1	15	0.09	<10
T3 L0+00E 2+00S		0.11	<10	0.34	108	10	0.01	10	720	5	0.04	7	1	20	0.11	<10
T3 L0+00E 2+50S		0.06	<10	0.24	160	4	0.01	10	670	4	0.02	4	1	11	0.11	<10
T3 L0+00E 3+00S		0.04	<10	0.17	79	<1	0.02	6	510	2	0.01	<2	1	11	0.06	<10
T3 L1+00E 0+50S		0.44	10	0.93	326	3	0.01	11	450	6	0.02	7	5	33	0.10	<10
T3 L1+00E 1+00S		0.40	10	0.63	515	10	0.01	16	710	<2	0.05	12	4	41	0.09	<10
T3 L1+00E 1+50S		0.08	<10	0.21	174	3	0.02	8	940	3	0.02	3	1	20	0.10	<10
T3 L1+00E 2+00S		0.14	<10	0.43	155	9	0.01	12	950	5	0.03	14	2	32	0.12	<10
T3 L1+00E 2+50S		0.28	<10	0.53	149	34	0.01	15	290	8	0.04	10	2	28	0.14	<10
T3 L1+00E 3+00S		0.14	<10	0.52	149	15	0.01	14	540	7	0.04	12	2	28	0.14	<10
T3 L1+00E 3+50S		0.09	<10	0.40	120	9	0.01	12	910	8	0.03	10	2	24	0.12	<10
T3 L1+00E 4+00S		0.19	<10	0.51	520	4	0.01	21	810	4	0.03	11	2	25	0.14	<10
T3 L2+00E 0+50S		0.19	<10	0.48	213	8	0.01	12	1310	6	0.03	19	2	29	0.13	<10
T3 L2+00E 1+00S		0.27	10	0.43	117	2	<0.01	5	480	2	0.01	15	2	25	0.05	<10
T3 L2+00E 1+50S		0.23	<10	0.53	224	10	0.01	14	460	4	0.03	12	2	36	0.14	<10
T3 L2+00E 2+00S		0.30	10	0.53	195	122	0.01	10	350	10	0.14	21	2	64	0.11	<10
T3 L2+00E 2+50S		0.12	<10	0.42	143	6	0.01	13	660	4	0.02	7	2	19	0.13	<10
T3 L2+00E 3+00S		-0.04	<10	0.15	97	1	0.02	6 -	910	3	0.01	<2	1	8	► 0.08	<10
T3 L2+00E 3+50S		0.12	<10	0.37	270	3	0.01	16	560	6	0.03	5	2	19	0.12	<10
T3 L3+00E 0+50S		0.24	<10	0.73	215	2	0.01	29	660	5	0.02	12	3	15	0.22	<10
T3 L3+00E 1+50S		0.37	10	0.71	351	6	0.01	17	540	4	0.02	81	3	39	0.20	<10
T3 L3+00E 2+00S		0.32	10	0.69	554	6	0.01	18	820	6	0.05	45	3	37	0.13	<10
T3 L3+00E 2+50S		0.14	<10	0.42	168	2	0.01	16	720	6	0.01	13	2	19	0.15	<10
T3 L3+00E 3+50S		0.15	<10	0.52	739	2	0.01	18	610	6	0.02	11	2	21	0.16	<10
T3 L3+00E 4+00S		0.20	<10	0.59	175	2	0.01	24	320	4	0.02	18	2	21	0.17	<10

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: J - PACIFIC GOLD INC. 1440 - 1166 ALBERNI STREET VANCOUVER BC V6E 3Z3 Page #: 5 - B Total # of pages : 6 (A - C) Date : 23-Jan-2003 Account: MYT

Project : 98

CERTIFICATE OF ANALYSIS

IS VA02006436

Sample Description	Nethod Analyte Units LOR	NE-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Ng % 0.01	NE-ICP41 Na ppm 5	NE-ICP41 No ppm 1	ME-ICP41 Na % 0.01	NE-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	NE-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Ti % 0.01	ME-ICP41 Ti ppm 16
T3 L3+00E 4+50S		0.32	10	0.83	307	1	0.01	30	890	3	0.02	18	2	26	0.15	<10
T3 L4+00E 0+50S		0.39	10	0.76	465	4	0.01	21	780	4	0.03	83	4	32	0.20	<10
T3 L4+00E 1+00S		0.27	10	0.63	502	4	0.01	21	630	5	0.02	112	3	26	0.17	<10
T3 L4+00E 1+50S		0.53	10	0.84	545	2	0.01	19	750	4	0.02	. 89	4	41	0.21	<10
T3 L4+00E 2+00S		0.53	10	0.80	600	3	0.01	20	890	4	0.03	236	4	37	0.20	<10
T3 L4+00E 2+50S		0.51	10	0.82	490	3	0.01	20	730	4	0.02	75	4	29	0.23	<10
T3 L4+00E 3+00S		0.18	<10	0.51	250	2	0.01	17	720	<2	0.02	27	2	20	0.18	<10
T3 L4+00E 3+50S		0.26	10	0.58	257	1	0.01	17	630	3	0.02	21	2	21	0.19	<10
T3 L4+00E 4+50S		0.25	10	0.89	247	2	0.01	31	520	2	0.01	25	3	28	0.20	<10
T3 L4+00E 5+00S		0.13	<10	0.44	188	2	0.01	16	390	3	0.02	7	2	16	0.17	<10
T3 L5+00E 0+50S		0.22	10	0.56	477	1	0.01	22	850	4	0.02	17	3	20	0.16	<10
T3 L5+00E 1+00S		0.65	20	0.87	637	2	0.01	26	1040	4	0.02	16	8	22	0.26	<10
T3 L5+00E 1+50S		0.78	10	1.00	729	3	0.01	27	1060	4	0.03	78	6	35	0.25	<10
T3 L5+00E 2+00S		0.27	10	0.71	479	4	0.01	22	740	9	0.02	91	4	30	0.16	<10
T3 L5+00E 2+50S		0.25	10	0.56	387	2	0.01	16	720	5	0.02	19	2	30	0.18	<10
T3 L5+00E 3+00S		0.30	10	0.72	232	3	0.01	20	400	<2	0.03	32	2	31	0.17	<10
T3 L5+00E 3+50S		0.17	<10	0.45	183	3	0.01	15	220	4	0.02	11	2	27	0.16	<10
T3 L5+00E 4+00S		0.21	<10	0.61	646	<1	0.01	24	520	6	0.02	9	2	27	0.21	<10
T3 L5+00E 4+50S		0.28	10	0.82	288	<1	0.01	25	530	7	0.02	11	3	28	0.24	<10
T3 L5+00E 5+00S		0.19	<10	0.51	141	1	0.01	17	420	9	0.01	61	2	25	0.16	<10
T3 1+00E 0+50N		0.42	10	0.80	347	14	0.01	29	740	6	0.03	17	4	40	0.18	<10
T3 1+00E 1+00N		0.21	<10	0.48	244	11	0.01	17	460	6	0.03	7	2	22	0.15	<10
T3 1+00E 1+50N		0.12	<10	0.41	198	9	0.01	16	610	6	0.02	6	2	15	0.14	<10
T3 1+00E 2+00N		0.15	<10	0.38	186	17	0.01	13	350	6	0.04	9	2	18	0.14	<10
T3 1+00E 2+50N		0.15	<10	0.56	399	17	0.01	23	460	9	0.03	9	2	18	0.17	<10
T3 1+00E 3+00N		0.19	<10	0.53	150	28	0.01	14	310	10	0.03	8	2	21	0.21	<10
T3 1+00E 3+50N		0.20	<10	0.63	190	20	0.01	19	560	8	0.03	9	3	17	0.21	<10
T3 1+00E 4+00N		0.41	10	0.71	380	2	0.01	25	930	26	0.02	37	3	34	0.19	<10
T3 1+00E 4+50N		0.20	10	0.64	466	3	0.01	19	870	49	0.07	ູ 35	2	41	0.13	<10
T3 1+00E 5+00N		0.27	10	0.69	277	2	0.01	18	680	20	0.02	- 8	3	27	0.19	<10
T3 2+00E 0+50N		0.32	10	0.76	253	2	0.01	27	680	4	0.03	16	3	35	0.15	<10
T3 2+00E 1+00N		0.13	<10	0.41	243	7	0.01	16	560	5	0.02	6	2	27	0.14	<10
T3 2+00E 1+50N		0.31	<10	0.64	199	- 32	0.01	16	490	4	0.03	- 10	3	26	0.20	<10
T3 2+00E 2+00N		0.35	10	0.74	517	43	0.01	26	1020	7	0.09	18	4	31	0.20	<10
T3 2+00E 2+50N		0.14	<10	0.38	490	10	0.01	14	590	5	0.02	6	1	19	0.14	<10
T3 2+00E 3+00N		0.26	10	0.79	330	51	0.01	28	980	6	0.04	10	3	20	0.18	<10
T3 2+00E 3+50N		0.15	<10	0.48	213	9	0.01	17	640	8	0.03	7	2	17	0.15	<10
T3 2+00E 4+00N		0.24	10	0.64	190	18	0.01	18	570	8	0.02	8	3	13	0.18	<10
T3 2+00E 4+50N		0.13	<10	0.52	209	2	0.01	19	1010	13	0.02	9	2	19	0.19	<10
T3 3+00E 0+50N		0.25	<10	0.69	328	2	0.01	24	1040	6	0.02	15	2	32	0.14	<10

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 964 0221 Fax: 604 964 0218 To: J - PACIFIC GOLD INC. 1440 - 1166 ALBERNI STREET VANCOUVER BC V6E 3Z3 Page #: 6 - B Total # of pages : 6 (A - C) Date : 23-Jan-2003 Account: MYT

Project : 98

CERTIFICATE OF ANALYSIS

SIS VA02006436

Sample Description	Hethod Analyte Units LOR	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Ng % 0.01	ME-ICP41 Ma ppm 5	ME-ICP41 No ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Mi ppm 1	NE-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	NIE-ICP41 S % 0.01	NIE-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	NE-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10
T3 3+00E 1+00N		0.27	<10	0.71	346	1	0.01	26	1290	3	0.03	13	2	42	0.13	<10
T3 3+00E 1+50N		0.23	<10	0.53	477	8	0.01	16	1000	3	0.02	6	2	34	0.17	<10
T3 3+00E 2+00N		0.25	10	0.56	390	21	0.01	18	770	6	0.02	7	3	16	0.16	<10
T3 3+00E 2+50N		0.40	. 10	0.83	318	36	0.01	19	830	6	0.02	9	4	18	0.22	<10
T3 3+00E 3+00N		0.26	<10	0.71	256	13	0.01	17	850	4	0.03	6	3	18	0.22	<10
T3 3+00E 3+50N		0.26	<10	0.63	453	8	0.01	18	590	7	0.04	7	2	17	0.18	<10
T3 4+00E 0+50N		0.46	10	0.76	361	4	0.01	21	730	6	0.02	41	4	10	0.23	<10
T3 4+00E 1+00N		0.19	<10	0.53	403	2	0.01	16	570	4	0.02	23	2	13	0.17	<10
T3 4+00E 2+00N		0.30	10	0.60	468	8	0.01	17	760	10	0.02	9	3	23	0.18	<10
T3 4+00E 2+50N		0.40	10	0.75	304	12	<0.01	19	640	9	0.02	12	3	21	0.21	<10
T3 4+00E 3+00N		0.54	10	0.87	249	28	<0.01	20	870	5	0.02	6	4	32	0.23	<10
T3 4+00E 3+50N		0.40	10	0.90	337	13	0.01	33	1160	3	0.02	9	4	17	0.24	<10
T3 4+00E 4+00N		0.33	<10	0.84	383	7	0.01	30	830	7	0.06	8	5	24	0.21	<10
T3 5+00E 0+50N		0.18	<10	0.41	313	1	0.01	15	530	6	0.02	43	2	12	0.13	<10
T3 5+00E 1+00N		0.45	<10	0.72	270	1	<0.01	16	620	<2	0.01	8	2	50	0.21	<10
T3 5+00E 1+50N		0.44	10	0.74	272	<1	<0.01	18	680	2	0.01	6	3	52	0.21	<10
T3 5+00E 2+00N		0.32	<10	0.70	395	1	0.01	18	840	8	0.02	6	2	36	0.21	<10
T3 5+00E 2+50N		0.49	10	0.75	423	1	0.01	17	810	4	0.02	4	3	60	0.19	<10
T3 5+00E 3+00N		0.63	10	0.84	434	6	<0.01	18	1070	5	0.01	8	4	33	0.21	<10
T3 5+00E 3+50N		0.60	10	0.88	369	2	0.01	17	1020	4	0.01	5	4	102	0.19	<10
T3 5+00E 4+00N		0.67	10	1.11	318	2	0.01	20	820	<2	0.02	10	6	130	0.20	<10
RMSL-01		0.21	<10	0.59	262	6	0.02	49	480	4	0.09	4	2	26	0.07	<10
RMSL-02		0.20	10	0.62	483	3	0.02	24	510	19	0.03	15	3	46	0.16	<10
RMSL-03		0.27	10	0.70	227	<1	0.01	26	1150	3	0.01	8	2	33	0.13	<10
PB-SL-01		0.24	<10	0.65	503	3	0.01	31	730	2	0.04	7	2	35	0.16	<10
PB-SL-02		0.18	<10	0.56	353	1	0.01	94	640	2	0.05	3	2	32	0.12	<10
PB-SL-03		0.30	10	0.79	252	2	0.01	27	1340	17	0.02	15	2	24	0.21	<10
PB-SL-04		0.17	10	0.42	201	1	0.01	14	1060	3	0.01	16	1	12	0.15	<10
			•						-							-

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: J - PACIFIC GOLD INC. 1440 - 1166 ALBERNI STREET VANCOUVER BC V6E 3Z3

Page #: 2 - C Total # of pages: 6 (A - C) Date : 23-Jan-2003 Account: MYT

Project : 98

CERTIFICATE OF ANALYSIS

	Methed Analyte	NIE-ICP41 U	NE-ICP41 V	ME-ICP41 W	ME-ICP41 Zn
Sample Description	Units LOR	ppm 10	ppm 1	ppm 10	ppm 2
L0+00N 1+00W		<10	79	10	118
L0+00N 2+00W		<10	68	10	101
L1+00N 0+50W		<10	70	10	113
L1+00N 1+00W		<10	73	10	156
L1+00N 1+50W		<10	59	<10	89
1+00N 2+00W		<10	71	<10	81
L1+00N 2+50W		<10	67	<10	110
L1+00N 3+00W		<10	67	10	105
L2+00N 0+50W		<10	92 56	<10 <10	68 111
L2+00N 1+00W		<10			111
L2+00N 1+50W		<10	65	<10	111
L2+00N 2+00W		<10	59	<10	125
L2+00N 2+50W		<10	64	<10	102
L2+00N 3+00W		<10	55	<10	94
L2+00N 3+50W		<10	43	10	34
L2+00N 4+00W		<10	34	<10	26
L3+00N 2+00W		<10	59	10	95
L3+00N 2+50W		<10	68	<10	62
L4+00N 0+50W		<10	70	<10	101
L4+00N 1+00W		<10	49	<10	90
L4+00N 1+50W		<10	66	<10	126
L5+00N 0+50W		<10	75	<10	170
L5+00N 1+00W		<10	75	<10	116
L0+00N 0+50E		<10	60	10	85
L0+00N 1+00E		<10	59	10	94
L0+00N 1+50E		<10	61	<10	75
L0+00N 2+00E		<10	55	<10	124
L0+00N 2+50E		<10	82	<10	240
L0+00N 3+00E		<10	45	<10	101
L0+00N 3+50E		<10	60	<10	101
L0+00N 4+00E		<10	66	<10	92
L0+00N 4+50E		<10	71	10	97
L0+00N 5+00E+		<10	39	<10	171
L1+00N 0+50E		<10	58	<10	82
L1+00N 1+00E		<10	63	10	77
L1+00N 1+50E		<10	81	<10	127
L1+00N 2+00E		<10	38	<10	169
L1+00N 2+50E		<10	45	<10	180
L1+00N 3+00E		<10	75	<10	233
L1+00N 3+50E		<10	42	<10	92

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: J - PACIFIC GOLD INC. 1440 - 1166 ALBERNI STREET VANCOUVER BC V6E 3Z3

Page #: 3 - C Total # of pages : 6 (A - C) Date : 23-Jan-2003 Account: MYT

Project : 98

CERTIFICATE OF ANALYSIS

		ME-ICP41	ME-ICP41	NE-ICP41	ME-ICP4
	Hethed Analyte	U	WE-IGP41	W	Zn
Í	Units	ppm	ppm	ppm	ppm
Sample Description	LOR	10	1	10	2
L1+00N 4+00E		<10	41	<10	62
L2+00N 2+00E		<10	60	<10	183
L2+00N 2+50E		<10	53	<10	158
L2+00N 3+00E		<10	33	<10	55
L2+00N 3+50E		<10	55	<10	134
L2+00N 4+00E		<10	60	<10	174
BL 0+00N		<10	72	10	83
BL 0+50N		<10	61	<10	73
BL 1+00N		<10	71	<10	144
BL 1+50N		<10	80	10	101
BL 3+50N		<10	80	<10	181
BL 4+00N		<10	32	<10	32
BL 4+50N		<10	18	<10	11
BL 5+00N		<10	90	<10	115
L3N 1+00E		<10	106	<10	124
L3N 2+00E		<10	72	<10	183
L3N 2+50E		<10	67	<10	136
L3N 4+50E		<10	66	<10	169
L4N 0+50E		<10	23	<10	14
L4N 1+50E		<10	58	<10	169
L4N 2+50E		<10	43	<10	169
L4N 3+00E		<10	43 35	<10	76
L4N 3+50E		<10	35 49	<10	76 176
L4N 4+00E		<10	49 37	<10	103
L4N 4+50E		<10	37	<10	71
L5N 1+50E		<10	46	<10	82
L5N 2+00E		<10	137	<10	111
L5N 2+50E		<10	80	<10	328
L5N 3+00E		<10	70	<10	176
L5N 3+50E		<10	68	· <10	172
L5N 4+00E		<10	49	<10	207
L5N 4+50E		<10	49	<10	213
L5N 5+00E		<10	60	• <10	188
T3BL 0+50E		10	48	<10	48
T3BL 1+00E		10	57	<10	49
T3BL 1+50E		10	63	<10	65
T3BL 2+00E		10	86	10	96
T3BL 2+50E		20	73	10	122
T3BL 4+00E		<10	44	<10	31
T3BL 4+50E		<10	65	10	64
· · · -					

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: J - PACIFIC GOLD INC. 1440 - 1166 ALBERNI STREET VANCOUVER BC V6E 3Z3

Page #: 4 - C Total # of pages: 6 (A - C) Date : 23-Jan-2003 Account: MYT

Project : 98

CERTIFICATE OF ANALYSIS VAUZUU0450

V	AN	20	ne.	436	

	Nethod	ME-ICP41 U	NE-ICP41 V	ME-ICP41 W	NE-ICP41 Za
Sample Description	Analyte Units LOR	ppm 10	ppm 1	ррт 10	ppm 2
T3BL 5+00E		<10	55	<10	58
T3BL 3+00N		<10	74	10	85
T3BL 3+50N		<10	74	10	87
BLT3 00+00 0+50N		<10	85	10	75
T3 0+00 1+00N		<10	78	10	101
T3 0+00 1+50N		<10	63	<10	108
T3 0+00 2+00N		<10	71	10	94
T3 0+00 2+50N		<10	77	<10	68
T3 0+00 3+00N		<10	73	<10	51
T3 0+00 3+50N		<10	14	<10	210
T3 0+00 4+00N		<10	72	10	102
T3 0+00 4+50N		<10	62	<10	67
T3 0+00 5+00N		<10	67	<10	73
T3 L0+00E 0+50S		10	57	10	6 9
T3 L0+00E 1+00S		<10	58	<10	48
T3 L0+00E 1+50S		<10	40	<10	37
T3 L0+00E 2+00S		<10	47	<10	33
T3 L0+00E 2+50S		<10	42	<10	33
T3 L0+00E 3+00S T3 L1+00E 0+50S		<10	28 49	<10 <10	18 57
		10			
T3 L1+00E 1+00S		10	45	<10	55
T3 L1+00E 1+50S		<10	45	<10	36
T3 L1+00E 2+00S		<10	49	<10	52
T3 L1+00E 2+50S		<10	50 50	<10	53
T3 L1+00E 3+00S		<10	52	<10	59
T3 L1+00E 3+50S		<10	48	<10	44
T3 L1+00E 4+00S		<10	56	<10	72
T3 L2+00E 0+50S		<10	54	<10	67
T3 L2+00E 1+00S	•	<10	27	<10	39
T3 L2+00E 1+50S	•	<10	52	<10	49
T3 L2+00E 2+00S		<10	41	<10	38
T3 L2+00E 2+50S		<10	48	<10	54
T3 L2+00E 3+00S	•	<10	36	<10	31
T3 L2+00E 3+50S		<10	47	<10	48
T3 L3+00E 0+50S		<10	71	<10	80
T3 L3+00E 1+50S		<10	63	10	103
T3 L3+00E 2+00S		<10	53	<10	74
T3 L3+00E 2+50S		<10	53	<10	51
T3 L3+00E 3+50S		<10	57	<10	68
T3 L3+00E 4+00S		<10	64	<10	49

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

ALS Canada Ltd.

Т

212 Brooksbank Avenue

To: J - PACIFIC GOLD INC. 1440 - 1166 ALBERNI STREET VANCOUVER BC V6E 3Z3

Page #: 5 - C Total # of pages: 6 (A - C) Date : 23-Jan-2003 Account: MYT

Project : 98

CERTIFICATE OF ANALYSIS

Lample Description U V W Za 3 L3+00E 4+50S 10 74 <10 53 3 L4+00E 0+50S 10 74 10 80 3 L4+00E 1+50S 10 74 10 80 3 L4+00E 1+50S 10 68 10 207 3 L4+00E 1+50S 10 68 10 207 3 L4+00E 1+50S 10 68 10 207 3 L4+00E 2+50S 10 75 <10 101 3 L4+00E 2+50S 10 61 10 56 3 L4+00E 2+50S 10 67 10 67 3 L4+00E 2+50S 20 80 <10 63 3 L4+00E 5+00S 10 67 10 69 3 L5+00E 1+50S 10 88 10 129 3 L5+00E 1+50S 10 89 10 129 3 L5+00E 2+50S 10 64 <10 74 3 L5+00E 3+50S 10		Nethed	ME-ICP41	ME-ICP41	ME-ICP41	INE-ICP41
isample Description Lot 1e 1 1e 2 3 L3+00E 4+50S 10 74 <10 53 3 L4+00E 0+50S 10 74 10 80 3 L4+00E 1+50S 10 68 10 207 3 L4+00E 1+50S 10 68 10 207 3 L4+00E 2+50S 10 75 <10 101 3 L4+00E 2+50S 10 75 <10 101 3 L4+00E 3+50S <10 61 <10 56 3 L4+00E 3+50S <10 67 10 69 3 L4+00E 3+50S 10 67 10 69 3 L4+00E 3+50S 10 67 10 69 3 L5+00E 1+50S 10 90 10 98 3 L5+00E 1+50S 10 88 10 129 3 L5+00E 2+50S 10 63 <10 52 3 L5+00E 3+50S 10 53 <10 54 3 L5+00E 3+50S		Analyte	U	v	w	Za
3 L3+00E 4+50S 10 74 <10	Sample Description					
3 L4+00E 0+50S 10 74 10 80 3 L4+00E 1+00S <10		LUK				
3 L4+00E 1+00S <10 62 10 108 3 L4+00E 1+50S 10 66 10 207 3 L4+00E 1+50S 10 69 10 144 3 L4+00E 2+50S 10 75 <10						
3 L4+00E 1+50S 10 68 10 207 3 L4+00E 2+00S 10 69 10 144 3 L4+00E 2+50S 10 75 <10						
3 L4+00E 2+00S 10 69 10 144 3 L4+00E 2+50S 10 75 <10						
3 L4+00E 2+50S 10 75 <10						
T3 L4+00E 3+00S <10			1			
T3 L4+00E 3+50S <10						
T3 L4+00E 4+50S 20 80 <10						
T3 L4+00E 5+00S <10 54 <10 44 T3 L5+00E 0+50S 10 67 10 69 T3 L5+00E 1+00S 10 90 10 98 T3 L5+00E 1+50S 10 88 10 129 T3 L5+00E 2+00S <10						
T3 L5+00E 0+50S10671069T3 L5+00E 1+50S10901098T3 L5+00E 1+50S108810129T3 L5+00E 2+00S<10						
T3 L5+00E 1+00S 10 90 10 98 T3 L5+00E 1+50S 10 88 10 129 T3 L5+00E 2+00S <10						
T3 L5+00E 1+50S 10 88 10 129 T3 L5+00E 2+00S <10						
T3 L5+00E 2+00S <10						
T3 L5+00E 2+50S <10 60 <10 52 T3 L5+00E 3+00S 10 69 10 49 T3 L5+00E 3+50S 10 53 <10						
T3 L5+00E 3+00S10691049T3 L5+00E 3+50S1053<10						
T3 L5+00E $3+50S$ 1053<1041T3 L5+00E $4+00S$ <10	T3 L5+00E 2+50S		<10	60	<10	52
T3 L5+00E 4+00S<10 64 <10 74 T3 L5+00E 4+50S<10	T3 L5+00E 3+00S		10	69	10	
T3 L5+00E 4+50S <10	T3 L5+00E 3+50S		10	53	<10	
T3 L5+00E 5+00S <10 55 <10 56 T3 1+00E 0+50N <10	T3 L5+00E 4+00S		<10	64	<10	
r3 1+00E 0+50N <10	T3 L5+00E 4+50S		<10	75	<10	72
Image: T3 1+00E 1+00N<10501049T3 1+00E 1+50N<10	T3 L5+00E 5+00S		<10	55	<10	56
Image: T3 1+00E 1+00N<10501049T3 1+00E 1+50N<10	T3 1+00E 0+50N		<10	72	<10	67
T3 1+00E 1+50N<10 57 <10 55 T3 1+00E 2+00N<10	T3 1+00E 1+00N					
T3 1+00E 2+00N<1050<1047T3 1+00E 2+50N<10	T3 1+00E 1+50N					
T3 1+00E 2+50N <10 53 <10 62 T3 1+00E 3+00N <10	T3 1+00E 2+00N					
T3 1+00E 3+00N <10	T3 1+00E 2+50N					
T3 1+00E 3+50N <10						
T3 1+00E 4+00N <10						
T3 1+00E 4+50N 10 57 10 183 T3 1+00E 5+00N <10						
T3 1+00E 5+00N <10 64 <10 73 T3 2+00E 0+50N 10 77 <10						
T3 2+00E 0+50N 10 77 <10						
T3 2+00E 1+00N <10						
T3 2+00E 1+50N <10	T3 2+00E 0+50N					
T3 2+00E 2+00N <10 73 10 108 T3 2+00E 2+50N <10	T3 2+00E 1+00N					
T3 2+00E 2+50N <10 53 <10 52 T3 2+00E 3+00N <10	T3 2+00E 1+50N					
T3 2+00E 3+00N <10 66 10 79 T3 2+00E 3+50N <10						
T3 2+00E 3+50N <10	T3 2+00E 2+50N		<10	53	<10	52
T3 2+00E 4+00N <10 70 10 58 T3 2+00E 4+50N <10	T3 2+00E 3+00N		<10	66	10	79
T3 2+00E 4+50N <10 60 10 79	T3 2+00E 3+50N		<10	47	10	50
	T3 2+00E 4+00N		<10	70	10	58
T3 3+00E 0+50N <10 89 <10 59	T3 2+00E 4+50N		<10	60	10	79
	T3 3+00E 0+50N		<10	89	<10	59

ALS Chemex EXCELLENCE IN AMALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: J - PACIFIC GOLD INC. 1440 - 1166 ALBERNI STREET VANCOUVER BC V6E 3Z3 Page #: 6 - C Total # of pages : 6 (A - C) Date : 23-Jan-2003 Account: MYT

Project : 98

CERTIFICATE OF ANALYSIS VAC

	Nethod Analyte Units	ME-ICP41 U ppm	NE-ICP41 V ppm	M5-ICP41 W ppm	NE-ICP41 Za ppm
Sample Description	LOR	10	1	10	2
T3 3+00E 1+00N T3 3+00E 1+50N		10 <10	91 50	<10 <10	59 51
T3 3+00E 1+50N T3 3+00E 2+00N		<10	50 63	20	50
T3 3+00E 2+50N		.10	72	20	62
T3 3+00E 3+00N		<10	70	20	75
T3 3+00E 3+50N		<10	64	10	62
T3 4+00E 0+50N		<10	77	10	82
T3 4+00E 1+00N		<10	58	10	63
T3 4+00E 2+00N T3 4+00E 2+50N		<10	61 67	10 30	61 72
		<10	67		
T3 4+00E 3+00N		10	78	30 20	63 81
T3 4+00E 3+50N T3 4+00E 4+00N		10 <10	77 93	30 10	81
T3 5+00E 0+50N		<10	55	<10	51
T3 5+00E 1+00N		<10	65	<10	53
T3 5+00E 1+50N		<10	66	<10	55
T3 5+00E 2+00N		<10	64	<10	65
T3 5+00E 2+50N		<10	63	<10	57
T3 5+00E 3+00N		10	75	10	78
T3 5+00E 3+50N		10	67	<10	59
T3 5+00E 4+00N		10	88	10	55
RMSL-01		<10	39	<10	55
RMSL-02 RMSL-03		60 20	67 02	<10 <10	78 48
PB-SL-03		20 10	92 87	<10 10	48 46
PB-SL-02		10	72	<10	48
PB-SL-02 PB-SL-03		10	72 85	<10 10	48 47
PB-SL-04		10	76	10	39
		•			
		1			

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada To: J - PACIFIC GOLD INC. 1440 - 1166 ALBERNI STREET VANCOUVER BC V6E 3Z3 Page # : 1 Date : 23-Jan-2003 Account: MYT

CERTIFICATE VA02005683

Phone: 604 984 0221 Fax: 604 984 0218

Project : 98

P.O. No:

This report is for 189 SOIL samples submitted to our lab in North Vancouver, BC, Canada on 8-Nov-2002.

The following have access to data associated with this certificate:

NICK FERRIS WARNER GRUENWALD

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
SCR-41	Screen to -180um and save both	
SCR-41+	Screen to -180um (+) fraction	

	ANALYTICAL PROCE	DURES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-AA23	Au 30g FA-AA finish	AAS

To: J - PACIFIC GOLD INC. ATTN: WARNER GRUENWALD 8055 ASPEN ROAD VERNON BC V1B 3M9

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

.

Rfueld Bog

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: J - PACIFIC GOLD INC. 1440 - 1166 ALBERNI STREET VANCOUVER BC V6E 3Z3 Page #: 2 - A Total # of pages : 6 (A) Date : 23-Jan-2003 Account: MYT

Project : 98

CERTIFICATE OF ANALYSIS V/

Sample Description	Nethod Analyte Units LOR	WEI-21 Rocvil Wt kg 0.02	Au-AA23 Au ppm 0.005	
L0+00N 1+00W		0.42	0.021	
L0+00N 2+00W		0.42	0.009	
L1+00N 0+50W		0.48	0.021	
L1+00N 1+00W		0.46	<0.005	
1+00N 1+50W		0.36	0.006	
1+00N 2+00W		0.42	0.013	
1+00N 2+50W		0.54	0.011	
_1+00N 3+00W		0.44	0.010	
_2+00N 0+50W		0.30	<0.005	
2+00N 1+00W		0.36	<0.005	
2+00N 1+50W		0.48	0.037	
L2+00N 2+00W		0.52	0.010	
2+00N 2+50W		0.56	0.014	
L2+00N 3+00W		0.40	0.012	
L2+00N 3+50W		0.28	0.006	
2+00N 4+00W		0.50	<0.005	
3+00N 2+00W		0.50	0.006	
3+00N 2+50W		0.54	0.010	
4+00N 0+50W		0.62	<0.005	
L4+00N 1+00W		0.60	0.023	
L4+00N 1+50W		0.56	<0.005	
L5+00N 0+50W		0.50	<0.005	
L5+00N 1+00W		0.40	<0.005	
L0+00N 0+50E		0.32	0.010	
L0+00N 1+00E		0.36	0.014	
L0+00N 1+50E		0.48	0.029	
L0+00N 2+00E		0.48	0.011	
.0+00N 2+50E		0.54	0.005	
L0+00N 3+00E		0.46	< 0.005	
L0+00N 3+50E		0.50	<0.005	
L0+00N 4+00E		0.40	0.006	
L0+00N 4+50E		0.62	0.009	
L0+00N 5+00E		• 0.40	< 0.005	• • •
L1+00N 0+50E		0.46	0.009	
L1+00N 1+00E		0.40	0.009	
L1+00N 1+50E		0.50	<0.005	
L1+00N 1+50E		0.50	<0.005	
L1+00N 2+50E		0.48	0.017	
L1+00N 3+00E		0.50	<0.005	
L1+00N 3+50E		0.38	<0.005	

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: J - PACIFIC GOLD INC. 1440 - 1166 ALBERNI STREET VANCOUVER BC V6E 3Z3

Page #: 3 - A Total # of pages: 6 (A) Date : 23-Jan-2003 Account: MYT

Project : 98

CERTIFICATE OF ANALYSIS

	Hethed	WEI-21	Au-AA23	
	Analyte	Recvil Wt	Au	
Sample Description	Units LOR	kg 8.82	ррт 0.005	
.1+00N 4+00E		0.38	<0.005	
2+00N 2+00E		0.36	<0.005	
2+00N 2+50E		0.52	<0.005	
2+00N 3+00E		0.32	<0.005	
2+00N 3+50E		0.52	<0.005	
2+00N 4+00E				
2+00N 4+00E SL 0+00N		0.44 0.52	<0.005 0.013	
3L 0+50N			0.009	
		0.52		
3L 1+00N 3L 1+50N		0.40 0.44	0.014 0.010	
BL 3+50N		0.52	<0.005	
BL 4+00N		0.40	<0.005	
BL 4+50N		0.34	<0.005	
BL 5+00N		0.48	<0.005	
L3N 1+00E		0.36	0.005	
L3N 2+00E		0.38	<0.005	
.3N 2+50E		0.38	<0.005	
L3N 4+50E		0.34	<0.005	
L4N 0+50E		0.46	0.019	
L4N 1+50E		0.34	<0.005	
L4N 2+50E		0.40	<0.005	
L4N 3+00E		0.28	0.014	
L4N 3+50E		0.40	0.011	
L4N 4+00E		0.26	0.007	
L4N 4+50E		0.32	<0.005	
L5N 1+50E		0.40	0.010	
L5N 2+00E		0.30	<0.005	
L5N 2+50E		0.40	<0.005	
L5N 3+00E		0.34	<0.005	х х
LŜN 3+50E		0.38	0.007	
L5N 4+00E		0.42	<0.005	
L5N 4+50E		0.30	<0.005	
_\$N 5+00E		0.34	0.005	• •
T3BL 0+50E		0.40	0.012	
T3BL 1+00E		0.30	0.006	
T3BL 1+50E		0.26	0.007	
T3BL 2+00E		0.28	0.016	
T3BL 2+50E		0.66	0.007	
T3BL 4+00E		0.40	<0.005	
T3BL 4+50E		0.48	< 0.005	

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: J - PACIFIC GOLD INC. 1440 - 1166 ALBERNI STREET VANCOUVER BC V6E 3Z3

Page #: 4 - A Total # of pages : 6 (A) Date : 23-Jan-2003 Account: MYT

Project : 98

CERTIFICATE OF ANALYSIS

•			-	~	~	^		^	~	•
	w	Ά		7	61			ю.	ж.	ξ
	v		<u>.</u>	-	v	v	J	•	U,	

	Nethod	WEI-21	Ap-AA23
	Analyte	Recyd Wt	Au
	Units	kg	ppm
Sample Description	LOR	0.02	0.005
T3BL 5+00E		0.64	<0.005
T3BL 3+00N		0.60	0.007
T3BL 3+50N		0.56	<0.005
BLT3 00+00 0+50N		0.30	0.008
T3 0+00 1+00N		0.40	0.008
T3 0+00 1+50N		0.30	0.014 0.008
T3 0+00 2+00N		0.24	
T3 0+00 2+50N		0.30	<0.005
T3 0+00 3+00N T3 0+00 3+50N		0.16	<0.005 <0.005
		0.06	
T3 0+00 4+00N		0.36	<0.005
T3 0+00 4+50N		0.34	<0.005
T3 0+00 5+00N		0.34	<0.005
T3 L0+00E 0+50S		0.32	0.005
T3 L0+00E 1+00S		0.38	<0.005
T3 L0+00E 1+50S		0.32	<0.005
T3 L0+00E 2+00S		0.24	<0.005
T3 L0+00E 2+50S		0.18	<0.005
T3 L0+00E 3+00S		0.18	<0.005 <0.005
T3 L1+00E 0+50S		0.12	<0.005
T3 L1+00E 1+00S		0.32	<0.005
T3 L1+00E 1+50S		0.44	<0.005
T3 L1+00E 2+00S		0.28	<0.005
T3 L1+00E 2+50S		0.22	<0.005
T3 L1+00E 3+00S		0.28	<0.005
T3 L1+00E 3+50S		0.16	<0.005
T3 L1+00E 4+00S		0.10	<0.005
T3 L2+00E 0+50S		0.20	0.013
T3 L2+00E 1+00S		0.30	<0.005
T3 L2+00E 1+50S		0.32	<0.005
T3 L2+00E 2+00S		0.36	<0.005
T3 L2+00E 2+50S		0.26	<0.005
T3 L2+00E 3+00S			<0.005
T3 L2+00E 3+50S		0.20	<0.005
T3 L3+00E 0+50S		0.42	<0.005
T3 L3+00E 1+50S		0.56	<0.005
T3 L3+00E 2+00S		0.60	<0.005
T3 L3+00E 2+50S		0.52	<0.005
T3 L3+00E 3+50S		0.40	0.007
T3 L3+00E 4+00S		0.48	<0.005

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: J - PACIFIC GOLD INC. 1440 - 1166 ALBERNI STREET VANCOUVER BC V6E 3Z3

Page #: 5 - A Total # of pages: 6 (A) Date : 23-Jan-2003 Account: MYT

Project : 98

CERTIFICATE OF ANALYSIS VAUZU

V	Δ	02	20	05	68	3
•				~~	~~	

	Nethed	WEI-21	Au-AA23		
	Analyte	Recvi Wit	Aa		
	Units	lag –	ppm		
mple Description	LOR	0.02	0.005		
+00E 4+50S		0.18	<0.005		
.4+00E 0+50S		0.72	<0.005		
4+00E 1+00S		0.48	0.013		
4+00E 1+50S		0.58	<0.005		
4+00E 2+00S		0.56	0.021		
+00E 2+50S		0.64	<0.005		
4+00E 3+00S		0.36	<0.005		
L4+00E 3+50S		0.44	<0.005		
4+00E 4+50S		0.58	<0.005		
4+00E 5+00S		0.30	<0.005		
+00E 0+50S		0.44	<0.005		
5+00E 1+00S		0.58	<0.005		
5+00E 1+50S		0.60	<0.005		
L5+00E 2+00S		0.44	<0.005		
.5+00E 2+50S		0.34	<0.005		
+00E 3+00S		0.30	<0.005		
5+00E 3+50S		0.26	<0.005		
5+00E 4+00S		0.32	<0.005		
5+00E 4+50S		0.62	<0.005		
+00E 5+00S		0.34	<0.005		
00E 0+50N		0.30	<0.005		
00E 1+00N		0.30	<0.005		
00E 1+50N		0.28	<0.005		
00E 2+00N		0.24	<0.005		
00E 2+50N		0.18	<0.005		
00E 3+00N		0.20	<0.005		
+00E 3+50N		0.30	< 0.005		
-00E 4+00N		0.28	<0.005		
00E 4+50N		0.20	0.007		
+00E 5+ÒON		0.24	<0.005	•	•
+00E 0+50N		0.22	<0.005		
2+00E 1+00N		0.22	<0.005		
+00E 1+50N		0.26	<0.005	•	•
+00E 2+00N		0.32	<0.005		
00E 2+50N		0.24	<0.005		
00E 3+00N		0.26	<0.005		
+00E 3+50N		0.16	< 0.005		
+00E 4+00N		0.32	0.045		
+00E 4+50N		0.14	<0.005		
+00E 0+50N		0.52	< 0.005		

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: J - PACIFIC GOLD INC. 1440 - 1166 ALBERNI STREET VANCOUVER BC V6E 3Z3

Page #: 6 - A Total # of pages: 6 (A) Date : 23-Jan-2003 Account: MYT

Project : 98

CERTIFICATE OF ANALYSIS VAULU UUUU.

VA	0200)5683	2
	LIZER.		

	Nethod	WEI-21	A#-AA23				
	Analyte Units	Recvé Wt	Au				
ample Description	LOR	kg 8.82	ррт 0.005				
3+00E 1+00N		0.50	<0.005				
3 3+00E 1+50N		0.40	<0.005				
3 3+00E 2+00N		0.56	<0.005				
3 3+00E 2+50N		0.62	<0.005				
3 3+00E 3+00N		0.44	0.005				
3 3+00E 3+50N		0.32	<0.005				
3 4+00E 0+50N		0.68	<0.005				
3 4+00E 1+00N		0.44	<0.005				
3 4+00E 2+00N		0.64	<0.005				
3 4+00E 2+50N		0.66	0.019	 			
3 4+00E 3+00N		0.68	<0.005				
3 4+00E 3+50N		0.62	0.010				
13 4+00E 4+00N		0.40	<0.005				
13 5+00E 0+50N		0.46	<0.005				
3 5+00E 1+00N		0.64	<0.005				
3 5+00E 1+50N		0.60	<0.005				
3 5+00E 2+00N		0.38	<0.005				
3 5+00E 2+50N		0.50	<0.005				
T3 5+00E 3+00N		0.62	<0.005				
T3 5+00E 3+50N		0.66	<0.005				· · · ·
T3 5+00E 4+00N		0.48	<0.005				
RMSL-01		0.42	<0.005				
RMSL-02		0.32	<0.005				
RMSL-03		0.36	<0.005				
PB-SL-01		0.62	<0.005			-	
PB-SL-02		0.62	<0.005				
PB-SL-03		0.56	<0.005				
PB-SL-04		0.64	<0.005				
			*		s.		
					•		
]					
					•		
		1					

ALS Chemex Sample Preparation Summary

The packages described below are used to produce a sub-sample ready for analysis. Code Description Application

PREP-21 Log sample in tracking system, dry and pulverize entire sample to better than 85% passing 75 micron. Rock chip or drill sample with a maximum particle size of 20 mm.

PREP-22 Log sample in tracking system, dry, coarse crush and pulverize entire sample to better than 85% passing 75 micron. Rock chip or drill sample with a particle size greater than 20 mm.

PREP-31 Log sample in tracking system, dry, fine crush entire sample to better than 70% -2 mm, split off up to 250 g and pulverize split to better than 85% passing 75 micron. Rock chip or drill sample.

PREP-41 Log sample in tracking system, dry, and dry-sieve sample to -180 micron (80 mesh). Plus fraction is retained unless disposal is requested. Applicable to samples < 1 kg. Soil or sediment sample up to 1kg.

<u>Fire Assay Procedure</u> – Au-AA23 and Au-AA24 Fire Assay Fusion

Sample Decomposition:Fire Assay FusionAnalytical Method:Atomic Absorption Spectroscopy (AAS)

A prepared sample is fused with a mixture of lead oxide, sodium carbonate, borax, silica and other reagents as required inquarted with 6 mg of gold-free silver and then cupelled to yield a precious metal bead.

The bead is digested for $\frac{1}{2}$ hour in dilute nitric acid. Hydrochloric acid is then added and the solution is digested for an additional hour. The digested solution is cooled, diluted to 7.5 ml with demineralized water, homogenized and then analyzed by atomic absorption spectrometry.

International Units:

Routine <u>Code</u>	Rush <u>Code</u>	<u>Element</u>	Sample Weight <u>(grams)</u>	<u>Symbol</u>	Detection <u>Limit</u>	Upper <u>Limit</u>
983	991 1001	Gold	30	Au	5 ppb	10,000 ppb
99	1091	Gold	30	Au	0.005 ppm	10 ppm
494	1209	Gold	30	Au	0.005 g∕t	10 g/t
3583		Gold	50	Au	5 ppb	10,000 ppb
3584		Gold	50	Au	0.005 ppm	10 ppm
3594		Gold	50	Au	0.005 g∕t	10 g/t

American/English Units:

Routine <u>Code</u>	Rush <u>Code</u>	<u>Element</u>	Sample Weight <u>(grams)</u>	<u>Symbol</u>	Detection <u>Limit</u>	Upper <u>Limit</u>
877	1977	Gold	30	Au	0.0002 oz/ton	0.3 oz/ton

<u>Geochemical Procedure</u> - ME-ICP41 Trace Level Methods Using Conventional ICP-AES Analysis

Sample Decomposition:Nitric Aqua Regia DigestionAnalytical Method:Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP - AES)

A prepared sample (0.50 grams) is digested with aqua regia for at least one hour in a hot water bath. After cooling, the resulting solution is diluted to 12.5 ml with demineralized water, mixed and analyzed by inductively coupled plasma-atomic emission spectrometry. The analytical results are corrected for inter-element spectral interferences.

Chemex				Detection	Upper
<u>Code</u>		<u>Element</u>	<u>Symbol</u>	<u>Limit</u>	<u>Limit</u>
229		ICP-AQ Digestion	n/a	n/a	n/a
2119	*	Aluminum	Al	0.01%	15 %
2141		Antimony	Sb	2 ppm	1 %
2120		Arsenic	As	2 ppm	1 %
2121	*	Barium	Ba	10 ppm	1 %
2122	*	Beryllium	Be	0.5 ppm	0.01 %
2123		Bismuth	Bi	2 ppm	1 %
557		Boron	В	10 ppm	10,000 ppm
2125		Cadmium	Cd	0.5 ppm	0.05 %
2124	*	Calcium	Ca	0.01%	15 %
2127	*	Chromium	Cr	1 ppm	1 %
2126		Cobalt	Со	1 ppm	1 %
2128		Copper	Cu	1 ppm	1 %
2130	*	Gallium	Ga	10 ppm	1 %
2150		Iron	Fe	0.01%	15 %
2151	*	Lanthanum	La	10 ppm	1 %
2140		Lead	Pb	2 ppm	1 %
2134	*	Magnesium	Mg	0.01%	15 %
2135		Manganese	Mn	5 ppm	1 %
2131		Mercury	Hg	1 ppm	1 %
2136		Molybdenum	Mo	1 ppm	1 %
2138		Nickel	Ni	1 ppm	1 %
2139		Phosphorus	Р	10 ppm	1 %
2132	*	Potassium	K	0.01%	10 %

Geochemical Procedure – ME-ICP41 (con't)

Chemex				Detection	Upper
<u>Code</u>		<u>Element</u>	<u>Symbol</u>	<u>Limit</u>	<u>Limit</u>
2142	*	Scandium	Sc	1 ppm	1 %
2118		Silver	Ag	0.2 ppm	0.01 %
2137	*	Sodium	Na	0.01%	10 %
2143	*	Strontium	Sr	1 ppm	1 %
551		Sulfur	S	0.01 %	10 %
2145	*	Thallium	Tl	10 ppm	1 %
2144	*	Titanium	Ti	0.01%	10 %
2148	*	Tungsten	W	10 ppm	1 %
2146		Uranium	U	10 ppm	1 %
2147		Vanadium	V	1 ppm	1 %
2149		Zinc	Zn	2 ppm	1 %

*Elements for which the digestion is possibly incomplete.

APPENDIX D PERSONNEL

W. Gruenwald, P. Geo.

Nov. 1-2, 2002; Jan 20-24, 2003	4 days
R. Montgomery, B. Sc.	
Oct. 28- Nov. 3, 2002, Jan. 15-17, 2003	9 days
Sabre Exploration	
Oct. 30- Nov. 2, 2002	5 days

APPENDIX E STATEMENT OF EXPENDITURES

Consulting Fees/Labour:

Geoquest Consulting Ltd., Vernon, B.C.	1600.00	
Rob Montgomery	2925.00	
Sabre Exploration	3000.00	\$7,525.00
Analytical Costs:		
ALS Chemex		\$4,872.88
Transportation Costs:		
Geoquest Consulting Ltd.	308.00	
Rob Montgomery	356.00	
Tom Illidge (Quad Rental)	425.00	
Sabre Exploration (Truck Rental)	630.50	
Sabre Exploration (Quad Rental)	250.00	\$1,861.50
Accommodation/Meals:		
Geoquest Consulting Ltd.	913.57	
Sabre Exploration	765.00	\$1,678.57
Supplies and Miscellaneous:		
Field supplies, topographic maps		\$100.34
Report Compilation:		
Secretarial, drafting, photocopies, map printing,		\$747.29
report binding, freight, telephone.		
TOTAL:		<u>\$ 16,785.58</u>

APPENDIX F REFERENCES

Bailey, D.G.; Payie, G.J.; Gaba, R.G.; Schiarizza, P.; MacLean, M.E.; Church, B.N. (1992)	Minfile Map 092J- Pemberton, B.C Mineral Occurrence Map.
Brewer, L. (1988)	Geophysical Report on the Airborne Magnetic and VLF-EM Surveys over the Rangers and Apples Claims.
	B.C. Ministry of Energy and Mines, Assessment Report #18432
BSGS Minfile Database (2003)	Minfile, Capsule Geology and Bibliography- Truax II Showing (092JNE060)
Church, B.N. (1995)	Bridge River Mining Camp- Geology and Mineral Deposits (Paper 1995-3)
Gruenwald, W. (2000)	Geochemical and Geological Assessment Report on the Hope Creek Claims. B.C. Ministry of Energy and Mines Assessment Report
Logan, J. (1980)	Preliminary Report on the Windy I Mineral Claim.
	B.C. Ministry of Energy and Mines, Assessment Report #8341
Miller-Tait, J (1992)	Assessment Report on the Ranger Property near Gold Bridge, BC
	B.C. Ministry of Energy and Mines, Assessment Report #22288
Pezzot, T. (1981)	Geophysical Report on an Airborne VLF-EM & Magnetometer Survey Foxy 1-8, Bee 1-10 Claims.
	B.C. Ministry of Energy and Mines, Assessment Report #9982
Sampson, C. (1987)	Report on Geological Mapping, Geochemical Soil Sampling and Trenching- Truax Gold I and Truax Gold II Claims.
	B.C. Ministry of Energy and Mines, Assessment Report #16638
Sampson, C. (1987)	Report on Trenching and Geological Mapping, Truax Gold II Claims
	B.C. Ministry of Energy and Mines, Assessment Report #14727
Turner, J. (1985)	Geological and Geochemical Report on the Ranger and Lucky Ranger Claims.
	B.C. Ministry of Energy and Mines, Assessment Report #14225

APPENDIX G CERTIFICATE

I, ROB MONTGOMERY, OF THE CITY OF ENDERBY, BRITISH COLUMBIA HEREBY CERTIFY THAT:

1. I am a graduate of the University of Calgary with a B.Sc. degree in Geology (1990).

- 2. I am employed as an independent consulting Geologist in Enderby, B.C.
- 3. I have practiced continuously as a Geologist for the past 13 years in western Canada and the US.
- This report is based on a study of published reports, government data, personal communications, and my knowledge of the Truax property. The exploration program discussed in this report was under my direct supervision.

Rol monty

Rob Montgomery, B.Sc. Geologist Dated: January 15, 2003

I, WARNER GRUENWALD OF THE CITY OF VERNON, BRITISH COLUMBIA HEREBY CERTIFY THAT:

1. I am a graduate of the University of British Columbia with a B. Sc. degree in Geology (1972).

2. I am a registered member of the Professional Engineers and Geoscientists of British Columbia (#23202).

3. 1 am a fellow of the Geological Association of Canada (F2958)

4. I am employed as consulting geologist and president of Geoquest Consulting Ltd., Vernon, B.C.

5. I have practiced continuously as a Geologist for the past 30 years in western Canada and the US.

 Robert Montgomery works as a contract geologist for Geoquest Consulting Ltd. and directed the field program on the Truax property.

W. Gruenwald, P. Geo. Dated: January 15, 2003