Prospecting, Geochemical, Geophysical, Geological, Trenching and Diamond Drilling

RECEIVED

MAR 2 8 2003

Gold Commissioner's Office VANCOUVER, B.C.

ACE, Frank Creek , SCR and Peripheral

of the

Properties

Little River Area, Cariboo Mining Division, British Columbia 52° 45' N; 121° 15'W NTS

Work was done on the following claims: Ace 15-19, 22-27, 33-44, Ace 57, 58, 60, 62, 64, 67-72, 74,76,78, 82-84, LED 14,16,18 Abracad 2, Bill 1, Boo 1 & 2, Jess 1-4, Big Gulp 1-3 & 5-8, Frank, F3, F4, K 13, K 7, Maud 5,7,8, VC 1,6,3,11, Mag 2,3,5, PG 1,2,4,9 & Rol 1-3

Owned by

Report prepared by Louis E. Doyle from appended reports: Perry (2002), Wild (2002) & Walcott (2002)

March 28, 2003

Barker Minerals Ltd. March 2003 Table of Contents

Exploration Expenditures

Table of Contents

1.0 Introduction	n	1
1.1	Property	1
1.2	Location and Access	1
1.3	Regional Economic History	1
	1.3.1 Frank Creek Area	3
	1.3.2 Cariboo Zn-Pb Deposit	3
	1.3.3 Quesnel Platinum Project Areas	4
1.4	Geography and Physiography	5
1.5	Previous Work and Summary	5
2.0 Regional G	eology	7
2.1	Barkerville Terrane	8
2.2	Cariboo Terrane	8
2.3	Quesnel Terrane	9
2.4	Slide Mountain Terrane	9
3.0 Drilling		9
3.1	Ace VMS and Vein-gold Project	9
3.2	Frank Creek VMS Project	11
4.0 Interpretation	ons and Conclusions	12
4.1	Ace VMS and Vein-gold Project	13
4.2	Frank Creek VMS Project	15
4.3	SCR Project	16
4.4	Quesnel Platinum Project	17
5.0 Recommen	dations	17
5.1	Ace VMS and Vein-gold Project	17
5.2	Frank Creek VMS Project	18
5.3	SCR Project	19
5.4	Peacock Showing	20
5.5	Blackbear Project Area	20
5.6	Cariboo Prospect and Other Areas	20
5.7	Quesnel Platinum Project	21

6.0 Budgets

Barker Minerals Ltd. March 2003 Table of Contents

7.0 Certificate or Qualifications			
Figure 1	Mineral Claims and Project Areas	2	
Maps	Soil and Rock Sample Locations	In pocket	
	Rock Samples Geochemical Results	In pocket	
Appendix 1	Rock Sample Descriptions		
Appendix 2	Rock and Core Sample Assays		
Appendix 3	Chris Wild - Trenching and Drilling Report (2002)		
Appendix 4	Peter Walcott - Geophysical Report (2002)		
Appendix 5	Bruce Perry - Technical Report (October 2002)		
Appendix 6	Statement of Work		

1.0 Introduction

Work on the property to date includes geological mapping, stream-sediment and soil surveys, ground magnetometer and EM studies (VLF-EM, HLEM), airborne magnetometer and EM studies, prospecting, and, in some areas of potential economic interest, trenching and diamond drilling.

2002 exploration work consisted of prospecting (54 rock samples collected), soil sampling (63 soil samples collected, which have yet to be analyzed), geophysical surveys, geological mapping, trenching, and drilling which is detailed in appended Company reports: Trenching and Drilling Report (Wild 2002), Preliminary Geophysical report (Walcott 2002), and Report on Exploration (Perry 2002).

The Ace Prospect mineralization and Frank Creek and SCR mineral showings are of the VMS type. The Cariboo Prospect hosts a replacement style Zn-Pb deposit in carbonate rocks of the Cariboo terrane. Scattered stream-sediment anomalies situated within the claims have not been followed up in detail. The Quesnel Platinum Project areas may contain some of the source mafic and ultramafic rocks for PGE minerals occurring in numerous placer platinum occurrences associated with the Quesnel River and its tributaries. These claims also host mafic volcanic rocks that in one area contain anomalous concentrations of copper.

1.1 Property

The mineral exploration property consists of 4,092 mineral claim units, being approximately 260,000 acres or 105,222 hectares (Figure 1). The mineral claims comprising the property are owned by and registered in the name of Barker Minerals Ltd. or Louis Doyle in trust for Barker Minerals Ltd. (Perry 2002-Appendix 1). The property contains 16 mineral exploration project areas, some of which are currently under active exploration, including the Ace, Frank Creek, Sellers Creek Road (SCR) and Quesnel Platinum project areas. The mineral claim tenure numbers and expiry dates of the mineral claims comprising Barker Minerals' exploration property are listed in Perry 2002-Appendix 1.

1.2 Location and Access

The center of the property is situated 95 km northeast of the city of Williams Lake, B.C., the nearest supply center, and 34 km northeast of Likely, B. C., the nearest settlement.

Exploration work conducted by Barker Minerals Ltd. to the present date has been conducted under the authority of Mineral Exploration and Reclamation Permit MX-10-155. The local BC Inspector of Mines has indicated to Barker his satisfaction with Barker's progressive reclamation of trench and drill sites, and indicated also his satisfaction with the amount of the current reclamation bond Barker has supplied, without need for any further increase in the bond in respect to additional work planned.

1.3 Regional Economic History

Gold was discovered in the Barkerville-Wells area in 1858. Historical production totaled 3.7 million troy ounces, as 1.9 million ounces from placers and 1.8 million ounces from 2.7 million short tons of underground ore. The historic Bullion Pit near Likely produced 175,700 ounces of gold from 200 million tons of gravel and about 1/100th as much platinum.

* Enlargeable detailed figures are available for review in Adobe Acrobat format (PDF) on the Company's website: www.barkerminerals.com

Much of the lode and placer gold production from the Wells and Barkerville areas occurred in the eastern part of the Barkerville terrane, where most of the important present day lode gold prospects also occur. At the historic mines, the strata trend 315°, dip 45°NE and are cut by north to northeast-trending normal faults dipping 60°E. The zones of economically important quartz veins are contained in graphite-bearing layers near a contact with carbonate-bearing layers. Two sets of quartz veins contain pyrite and gold: transverse veins striking 030° and diagonal veins striking 070°; these contained 15-25% pyrite and 0.3-0.5 oz/t Au. Two other sets of quartz veins do not contain pyrite or gold. Pyrite in altered wall rock contained proportionally less gold. Replacement bodies of auriferous pyrite in carbonate rocks (mainly in the Island Mountain Mine north of Jack of Clubs Lake) accounted for nearly 1/3 of the lode gold mined. Other common sulphides in the mines are arsenopyrite, galena, sphalerite, cosalite (PbBiS), scheelite and bismuthinite (BiS₂). Free gold commonly occurs with nests of cosalite. Gangue minerals are quartz and ankerite/siderite. Wallrock alteration minerals are ankerite and sericite.

1.3.1 Frank Creek Area

Frank Creek has hosted sporadic placer mining since the turn of the century, the latest periods being 1984 to 1986 and 2000 to 2001. During early placer mining, several massive sulphide boulders containing up to 9.3% Zn+Pb (Formosa 1989) were found in a thin, clay-rich layer situated near the base of the alluvial material where Frank Creek canyon opens onto a delta.

During 1988, Formosa Resources Corp. and Rio Algom Mines conducted grid-controlled soil sampling, VLF-EM geophysical surveys and limited geological mapping. As a result of this work, they identified several coincident geophysical and soil geochemical anomalies. A trench excavated on a coincident Cu-Zn-Ag soil anomaly encountered rusty soil and lenses of ferricrete containing pyrite-rich fragments that contain also minor chalcopyrite, galena and sphalerite. On the slope above the above-mentioned alluvial massive sulphide boulders, 22.4 km of grid lines were cut and soil sampling was conducted at 25-m intervals, yielding some anomalous Cu, Pb, Zn and Ag concentrations but no outcropping bedrock mineralization.

During 1991, helicopter-facilitated magnetic, electromagnetic (EM) and radiometric surveys by Rio Algom identified seven areas containing anomalous EM signatures in the Frank Creek area, F-1 to F-7 target areas (Figures 5a and 5b).

During 1996, two, vertical, percussion holes were drilled along the D-Road switchback near the center of the F-1 target area by R. Yorston, a previous operator. They yielded poor recovery, mainly of very fine particles and minor amounts of rock chips of black and green phyllite. Both holes returned anomalous Cu, Pb, Zn, Ag and Au concentrations in the upper 18.3 m, with the best interval being 3.04 m averaging 1770 ppm Cu, 750 ppm Pb, 2970 ppm Zn, 4.8 ppm Ag and 790 ppb Au.

During the period covered by this report, the Company conducted geological and geophysical exploration work, including trenching, rock sampling, localized detailed mapping at the Frank Creek VMS discovery outcrop, diamond drilling and assaying (items 11, 12, 13 Perry-2002 report).

1.3.2 Cariboo Zn-Pb Deposit

Barker Minerals' Cariboo Prospect, also known as the Maybe Prospect, was explored during 1987 by Gibraltar Mines Ltd. The prospect contains three main stratiform lenses of ankerite,

quartz, sphalerite, galena and minor pyrite enclosed in limestone-rich strata of probable Middle Devonian age. The large Zn/Pb ratio, moderate silver content and low gold content are similar to those of many carbonate-hosted, replacement Zn-Pb deposits, including those in the Early Cambrian platform carbonates of the Kootenay arc. Limited bulldozer trenching and 21 diamond drill holes by Gibraltar Mines resulted in an in-house mineral inventory estimate of 400,000 tonnes at a grade of 4% Zn+Pb. This is not an appropriate category and does not comply with the requirements of current securities legislation. It has been recommended that limited confirmatory fieldwork and limited confirmatory drilling be done in order to define and categorize the known mineralization to current day industry and regulatory standards.

1.3.3 Quesnel Platinum Project Areas

Some placer deposits associated with the Quesnel River and some of its tributaries emanating from the north and east contain potentially significant concentrations of platinum group metals (Rublee, 1986 and Figure 2, Perry-2002). The highest concentration was obtained from a pan concentrate sample collected from Twenty-Mile Creek that assayed 2195 g/t Pt, 2210 g/t Pd and 1440 g/t Os. In this concentrate, the platinum group minerals (PGMs) were found as minute metallic grains within larger grains of magnetite and chromite.

A regional stream survey conducted by the BC Geological Survey during 1980 (GSC Open File 776), with results re-analyzed during 1997 by neutron activation (BC Geological Survey; BC RGS 50), showed anomalous concentrations of Cu, Ni, Cr, Co and Au in and around areas of ultramafic rocks that are situated partly along the Eureka fault and partly within the Quesnel terrane. An airborne magnetometer survey indicated several strong anomalies associated with ultramafic rocks located along the Eureka fault and at known locations of magnetite-bearing mafic and ultramafic rocks in the Quesnel terrane (Dome Exploration, 1981). During 1984, helicopter-facilitated multi-frequency EM, VLF-EM and magnetometer surveys were conducted in the Maud Lake, Victoria Creek and Trumph areas and many EM and magnetic anomalies were detected and recommended for further geological and geochemical investigation (BC During the late 1980s, QPX Minerals drilled two holes into Assessment Report #12780). ultramafic bodies at its Maude Lake property. Both holes, a few hundred metres apart, contained geochemically anomalous concentrations of Pt up to 35 ppb (1988, BC Assessment Report #17598). At the bottom of one of the drill holes was a 10-cm intersection of chalcopyritepyrite massive sulphide for which no assays are available. Mandella Resources conducted ground geophysical and geochemical soil surveys west of this area in the mid-1980's and identified VLF-EM geophysical anomalies and Pb, Zn, Cu and Au soil geochemical anomalies, which in some instances were coincident (BC Assessment Report #14816). Some of the PGM contents of the above mentioned Quesnel River placer deposits are probably derived from ultramafic rocks situated along the Eureka fault between the Quesnel terrane and the Barkerville terrane and from mafic and ultramafic rocks in the Quesnel terrane. Barker Minerals' claims in this area were staked because of potentially favorable geology, the recent dramatic increase in the price of PGMs and the apparent lack of previous PGE exploration in this potentially favorable area.

Reconnaissance geological, geochemical and airborne geophysical surveys were conducted over portions of the area by several companies in the 1980s, mainly during exploration for porphyry copper deposits. Some of these studies identified Cu-Pb-Zn-Ag soil anomalies that are coincident with HLEM-indicated conductors, which have not yet been tested by trenching or drilling.

1.4 Geography and Physiography

Williams Lake is an intermediate-sized city, which is served by Highway 97, the B.C. Railway, a major hydroelectric power grid and a modern airport. By road, Likely is 65 km northeast of 150 Mile House on Highway 97. Access to the Ace, Frank Creek and SCR exploration areas is *via* gravel logging roads bearing northeast from Likely. The distances from Likely to the main showings are as follows: Ace, 45 km; Frank Creek, 25 km; SCR, 22 km. Driving time to the Ace prospect from Likely is forty-five minutes. Access to the Quesnel Platinum project is mainly *via* gravel logging roads southeast from Quesnel, a distance of 25 km. In Likely, Barker Minerals maintains a property that includes a house, a bunkhouse, a workshop and a few tents. The house serves as a field office.

The property is situated in the central part of the Quesnel Highland between the eastern edge of the Interior Plateau and the western foothills of the Columbia Mountains. This area contains rounded mountains that are transitional between the rolling plateaus to the west and the rugged Cariboo Mountains to the east. Pleistocene and Recent ice sheets flowed away from the high mountains to the east over these plateaus and down to the southwest (Cariboo River), west (Little River) and northeast (Quesnel Lake), carving U-shaped valleys. The elevation ranges from 700-1650 m.

Precipitation in the region is heavy, as rain in the summer and snow in the winter. Drainage is to the west *via* the Cariboo, Little and Quesnel Rivers to the Fraser River. Quesnel Lake, the main scenic and topographic feature in the region, is a deep, long, forked, glacier-carved lake with an outlet at 725 m elevation. Vegetation is old-growth spruce, fir, pine, hemlock and cedar forest in all but the alpine regions of the higher mountains (mainly above 1400 m elevation). Weldwood has been actively logging fir, spruce and pine in the area (e.g., logging clear-cuts shown in aerial photo Figure 5c, Perry 2002), principally during winters, and has provided outlines of existing and planned roads and cut-blocks in and near the project areas.

1.5 Previous Work and Summary

The property is located 95 km northeast of Williams Lake in Central British Columbia. The property contains the idle Providence Mine, classified as a 'Past Producer' (BC MinFile 093A 003) of silver, lead, zinc and gold. The property also contains the Cariboo (a.k.a. Maybe) Prospect, which is classified as a 'Developed Prospect' (BC MinFile 093A 110). This is reported to be a lead-zinc (Zn-Pb) replacement-style deposit estimated to contain approximately 400,000 tonnes at an estimated grade of 4% Zn+Pb, using a 1% Zn+Pb cutoff. The property contains the Ace VMS Prospect, which was discovered during 1993 by Louis Doyle, President and CEO of Barker Minerals and is host to what has been described by BC Geological Survey geologists as Besshi-type volcanogenic massive sulphide (VMS) mineralization and auriferous (goldbearing) guartz veins (BC MinFile 093A 142). The property contains several known bedrock mineral occurrences, classified as 'showings' by the BC Geological Survey, including the Frank Creek VMS showing (BC MinFile 093A 152), the Sellers VMS showing (BC MinFile 093A 131). the Big silver-lead-gold showing (BC MinFile 093A 151), the Comin Throu Bear lead-zinc-silver showing (BC MinFile 093A 148), the Peacock gold-bearing quartz vein showing (BC MinFile 093A 133), the Maud alkalic porphyry copper-gold showing (BC MinFile 093A 119) and the Trump silver-lead showing (BC MinFile 093A 154). Both the Frank Creek VMS showing and Sellers Creek Road (SCR) VMS showing were discovered by Louis Doyle, President of Barker Minerals Ltd.

The eastern half of the property contains three VMS exploration project areas, the Ace, Frank Creek and SCR areas, each of which contain multiple exploration targets as indicated by geochemical, geophysical and geological data and which have been the focuses of Barker Minerals' exploration programs during the period 1993 to the present. The western half of the property contains the mineral claims hosting Barker Minerals' Quesnel Platinum Project.

Within the Ace project area surface geological, geochemical and geophysical surveys and two episodes of drilling [7 DDH (1260 m) in1998; 5 DDH (645 m) in 2002] have defined a belt of metamorphosed and deformed, felsic volcanic rocks containing massive and stringer sulphide mineralization, within which are anomalous concentrations of gold, silver, copper, lead and zinc. The belt is open along strike in both directions. Geophysical surveys have defined another major target located to the southeast of this belt in an apparently outcropless area containing encouraging soil geochemistry. Further exploratory trenching and drilling are recommended on these targets.

Within the Frank Creek project area a massive sulphide layer 1.2 m thick outcrops in a zone of overturned volcanic and sedimentary rocks. During 2002 a series of trenches were excavated in order to test several targets in and adjacent to the F-1 Target Area at the Frank Creek VMS project. Five exploratory trenches were excavated over a total distance of 289 metres up to 70 metres southeast of the discovery outcrop. Trench TR-BW-05 exposed the dark quartz eye phyllite host unit within which were found several small massive sulphide lenses within the projected strike extension of the mineralized zone exposed at the discovery outcrop. TR-BW-04 exposed copper stringer mineralization 60 metres southwest of the F-1 occurrence. Along with the mineralized exposure in TR-BW-10 excavated some 375 metres to the NW of the discovery outcrop, this exposure extends the known strike length of the mineralized zone to approximately 425 metres. The zone is open to potential extensions in both directions to the north and south and at depth. According to Wild (2002), former Chief Geologist of Goldstream Mine, near Revelstoke, B. C., the geological setting, mineralization and host rocks are all remarkably similar to the Goldstream Mine mineral deposit, which produced more than 2 million tonnes of ore at a grade in excess of 4.0% copper and 2.2% zinc.

Drill core from the initial exploratory drilling program [6 ddh (813 m)] at the Frank Creek project area contains intervals of Cu-Zn-Pb (+/- Au, Ag) massive sulphide mineralization that are significant examples of ore formation processes having occurred on the property. The mineralizations encountered in the drill core are similar to that exposed at the discovery outcrop where the discovery outcrop massive sulphide layer has been further exposed (3.5m in length and 1.5 metre wide) by trenching, and the local area mapped in detail (Wild, 2002). The concentrations of metals from grab samples of the outcrop massive sulphides ranged up to 4.4% Cu, 8.2% Zn, 1.1% Pb, 14.8oz/t Ag and 854 ppb Au. A chip sample across 5.77 metres exposed width assayed 0.82% Cu, 0.25 % Zn, 0.21% Pb and 44.3 g/t Ag including a .77 metre exposed width which assayed 2.1% Cu, .34% Zn, .11% Pb and 69 ppm Ag.

This Besshi-type VMS polymetallic mineralization also occurs in drill core in significant intervals (up to 0.4 metres) and contains significant concentrations of zinc, copper, silver, lead and gold (up to 3.4% Zn, 2.1% Cu, 2.8 oz/t Ag, 0.53% Pb and 746 ppb Au) within larger weakly mineralized units up to 52 metres wide in drill core intercepts that contain widespread disseminations of these metals. Several significant, combined geophysical and geochemical anomalies are present, one of which is situated within the area in which the massive sulphide outcrop occurs. Further exploratory trenching and drilling are recommended in order to test

these specific targets for economic mineralization and in order to further define the extent of the mineralized zone.

The SCR project area contains semi-massive sulphide mineralization in altered volcanic rocks. This project area also contains coincident base-metal soil anomalies and HLEM geophysical anomalies in an area of sparse outcrop. A Maxmin geophysical survey comprised of 4.2 line kilometers was completed during the 2002 field season. In areas of geophysical and geochemical anomalies, prospecting was successful in discovering float boulders which assayed as high as 17.3% Zn and 6.4% Pb. Further surface exploration including trenching and bedrock sampling in this area is recommended, to be followed by initial exploratory drilling.

The Cariboo Zn-Pb deposits reported to be comprised of replacement style Zn-Pb mineralization hosted in carbonate rocks of the lower strata of the Cariboo terrane. Diamond drilling conducted during the1980's outlined a 400,000 tonne deposit grading 4.0% Zn+Pb (BC MinFile 093A 110). Further surface mapping should be conducted in this area in order to help gain an understanding of the deformation history of the deposit and the potential for extensions of the known zone. Compilation of all relevant data and limited diamond drilling is recommended in order to confirm the previous operator's drilling and in order to further define and investigate the size and economic potential of this deposit, which is open in both directions along strike and at depth.

The western part of the property (Quesnel Platinum Project area) was staked for its platinum group element (PGE) potential. It contains zones of anomalous and intense copper concentrations in mafic volcanic rocks and may contain some of the mafic to ultramafic source rocks for some of the platinum group minerals (PGMs) recovered from the predominantly goldbearing placers associated with the Quesnel River and its tributaries. Further geochemical and geological surveys are recommended in order to explore for bedrock PGE mineralization and in order to explore the zone of mafic volcanic rocks containing anomalous concentrations of copper.

Exploration work conducted by Barker Minerals Ltd. to the present date has been conducted under the authority of Mineral Exploration and Reclamation Permit MX-10-155, which may be modified by amendments in order to facilitate future work such as that recommended within this report.

The estimated costs of the Phase 1 and Phase 2 programs are \$1,780,000 and \$4,000,000 respectively (Perry 2002).

2.0 Regional Geology

The regional geology was described by L.C. Struik (1988) and has been updated by F. Ferri, (2001). The Barkerville terrane is considered to be the northwest extension of the Kootenay terrane, which to the southeast overlies the Monashee metamorphic core complex, a large uplifted mass of high-grade paragneiss, quartzite and marble. The properties are on the flank of the northern, unexposed portion of this core complex. Northwest from the North Arm of Quesnel Lake the characteristic metamorphic minerals change from sillimanite through staurolite-kyanite, almandine garnet and biotite to chlorite northwest of the Ace claims. The garnet isograd runs northerly across the east-central part of the Ace group, while that of biotite is 30 km further northwest. Historic mines near Wells and Barkerville are in rocks of the greenschist facies. The age of both deformation and metamorphism is regarded as Mid-

Jurassic, which is interpreted as the time of collision of the North American plate to the east with a group of island arcs to the west. In the Little River area, four geological terranes are represented, most of which are dominated by marine sedimentary or metasedimentary rocks.

2.1 Barkerville Terrane

Most of the property area is underlain by marine strata of the Barkerville terrane, whose age is classified broadly as Late Proterozoic to Mid-Paleozoic. It is categorized by the Geological Survey of Canada as a subdivision of the Kootenay terrane. The region was deformed by intense, complex, in part isoclinal folding and overturning that produced an intimate interlensing of impure quartzite, siltstone, ankeritic dolomite, pelite and amphibolite. These rocks are cut by dikes and sills of metamorphosed diorite. Locally, stronger shear deformation produced mylonitic textures.

The northeastern third of this terrane is the main zone of economic interest in the Cariboo district. Struik described it as "gold-enriched", because it contains the historic Wells and Barkerville mines and the Cariboo Hudson deposit, 39 km and 18 km northwest of the Ace project area, respectively. This zone contains olive and grey micaceous quartzite and phyllite, amphibolite, marble, meta-tuff and meta-diorite sheets or sills. These descriptions are compatible with the rock types on the Ace project area, although the latter contains more metamorphosed felsic/intermediate volcanic rocks. Stratigraphic tops are unknown. The Barkerville terrane is cut by the Mid-Devonian Quesnel Lake gneiss (350 Ma), a coarse grained, leucocratic, biotite granitic gneiss with megacrysts of potassium feldspar. The main body of gneiss is 30 km long by 3 km wide and is elongated parallel to the eastern border of the Intermontane belt. Its contacts are in part concordant with, and in part perpendicular to, metamorphic layering. The Barkerville terrane hosts folded, sill-like masses up to 300 m thick of gneissic meta-diorite (400 Ma) and contains post-metamorphic anatectic pegmatite (86 Ma), particularly in a high-grade metamorphic aureole northwest of the North Arm of Quesnel Lake.

2.2 Cariboo Terrane

The northeastern part of the Little River area is underlain by marine peri-cratonic sedimentary strata of the Cariboo terrane. The Cariboo terrane consists mainly of limestone and dolomite with lesser siliceous, clastic, sedimentary rocks and argillite. Some geologists believe that the Cariboo terrane is a shallow, near-shore facies and the Barkerville is a deeper, offshore facies of the same erosion-deposition system. No rifting is suspected between the Cariboo terrane and the North American continent, in contrast to that between the Barkerville terrane and the North American continent.

The Cariboo and Barkerville terranes are separated by the regional Pleasant Valley thrust fault, which dips northeast moderately to steeply. It is reported by Struik (1988) to have moved the Cariboo block from the east over the Barkerville block along a strike length of over 100 km. In the map area, the fault cannot be found, suggesting that much of the movement attributed to it may have occurred by shearing in a broad zone along the "contact" between the two terranes.

Some of the carbonate layers in the lowest part of the Cariboo terrane (or upper part of the Barkerville terrane) are enriched in zinc and lead. Since the 1970's, preliminary exploration on stratiform Zn-Pb targets has been conducted in this area over a strike length of 23 km from the vicinity of the head of the North Arm, *via* Maeford Lake to the Cariboo (Maybe) prospect.

The Cariboo terrane was cut by the Jurassic-Cretaceous Little River stock, a medium-grained granodiorite grading to quartz monzonite. A normal fault along its southwest side (Little River fault) dips east and extends southeasterly to Limestone Point, on the western side of the North Arm of Quesnel Lake. It intersects, and in some literature has been confused with, the Pleasant Valley thrust. It moved chlorite-biotite metamorphic grade strata of the Cariboo terrane eastward to rest against staurolite-kyanite metamorphic grade strata of the Barkerville terrane.

2.3 Quesnel Terrane

A small southwestern portion of the Little River area is underlain by the Late Triassic to Early Jurassic, allochthonous Quesnel terrane. It was accreted to the North American continent, in part by subduction and in part by obduction. The Eureka thrust fault marks the boundary between the Quesnel and Barkerville terranes as well as that between the Intermontane and Omineca physiographic belts. The terrane is partly submarine and partly subaerial, consisting of volcanic and volcaniclastic rocks and co-magmatic intrusions, with minor carbonate lenses and related sedimentary rocks. Regionally, it hosts many important mineral deposits, mainly of Cu and Cu-Au, such as Highland Valley, Craigmont, Copper Mountain, QR and Mt. Polley. The Bullion Pit, from which 175,700 oz. of placer gold were produced, is near Likely just on the west side of the boundary between the Barkerville and Quesnel terranes.

2.4 Slide Mountain Terrane

Rocks of the allochthonous, Devonian to Late Triassic, Slide Mountain terrane underlie a very small part of the Little River area. Portions of these rocks were obducted, while others were subducted during collision of an oceanic plate with the continent. It is exposed east of Wells and Barkerville as the upper plate overlying the generally low-angle Pundata thrust fault. This fault it is nearly vertical where it crosses the southwestern part of the Little River area. Small slices of mainly mafic volcanic rocks and alpine-type ultramafic rocks of the Slide Mountain terrane occur in and parallel to the Eureka thrust. Minor lithologies include chert, meta-siltstone and argillite.

3.0 Drilling

The Company has conducted two episodes of drilling at its Ace VMS and vein gold project (Payne, 1998 and Wild, 2002) and one initial exploratory drilling program at its Frank Creek VMS project (Wild, 2002)

3.1 Ace VMS and Vein-gold Project

Barker Minerals' initial diamond drilling program at the Ace project (1998: 7 holes, ddh 98-01 to ddh 98-07, totaling 1260 m) targeted felsic strata and geophysical anomalies (chargeability highs, resistivity lows and magnetic highs) located within a zone suspected to be underlain partly by felsic rocks having exploration potential for massive sulphide deposits (Payne, 1999; BC Assessment Report). The holes were drilled between the main trench area and Colleen Road (Figures 4a, 4a-1, 4a-2 Perry, 2002). Summary drilling statistics are shown in Table 5a and Summary Drill Logs are shown in Table 5b of Perry 2002 report. Most of the holes were drilled to the south, dipping at -45°, which is approximately perpendicular to the regional trend of the metamorphic foliation. Two holes were drilled more steeply at -60°and -70° in order to attempt to penetrate specific geophysical anomalies. In some instances, it appears that the holes were not long enough to have reached the intended geophysical targets.

All drill holes of the 1998 program, except 98-05, intersected felsite, whose thickness ranged from 3.5 to 81.5 m. As the holes were drilled perpendicular or nearly so to the regional foliation, all thickness intervals are close to true thickness relative to the metamorphic event (Payne, 1999; BC Assessment Report). Because of the complex folding in the region, it is impossible to estimate true, pre-metamorphic thicknesses. Significant intersections and analytical results are presented in Table 5c of the 2002 Perry report. At the top of the main felsic section in DDH 98-03, a mineralized zone was intersected for 0.75 m, containing two intersections of massive sulphide mineralization, 0.25 m and 0.20 m long, separated by an intersection of calcite (probably limestone) 0.30 m thick. The massive sulphide mineralization carries apparently anomalous concentrations of Au, Ag, Cu, Zn, As, Se, Te, Sb, Bi, Mo and Cd. as determined by non-statistical consideration of the analytical data. The footwall alteration zone below the massive sulphide is anomalous in many of the same elements, generally with smaller concentrations than in the massive sulphide. As well, the footwall zone carries anomalous concentrations of Mo. Anomalous metal concentrations in the footwall decrease moderately to rapidly away from the top of the section of felsic rocks. Deeper in the footwall, many samples contain anomalous concentrations of Ag, Mo and Zn. In the centre of the felsite section, hole 98-07 intersected semi-massive sulphide mineralization for 0.36 m, containing anomalous concentrations of Ag, Cu, Bi and Se. Above and below this, the rocks contain anomalous concentrations of Ag, Zn, Mo, Bi and Se. Concentrations larger than 100 ppb Au, 500 ppb Ag, 200 ppm Cu, 70 ppm Pb and 150 ppm Zn are considered geochemically anomalous in this report.

During 2002, two diamond drill holes, ACE-02-01 and 02, were collared in the 16S Zone The first hole, Ace-02-01, tested a coincident max-min conductor and modest gravity anomaly and is located slightly up-ice from the high-grade (16.4% Zn/Pb) boulders found in previous programs. The top 49.0 metres consist of very siliceous quartz-muscovite schist and argillite. The next 10 metres consist of strongly calcareous marble, calc-schist, and argillite, immediately above a 6.5 metre section of "felsite". The felsite consists of plagioclase or albite with minor micas and quartz. The felsite in this area has concentrations in drill core up to 339 ppm Cu, 568 ppm Pb, and 156 ppm Zn. A narrow intercept (.07 metres) of Au/Bi/Te/W quartz vein assayed 745 ppb gold. Follow up geophysical surveys indicate that the possibility exists that this zone was faulted off where drilling occurred; further interpretation is required to determine the next program for this zone (Wild, 2002).

The second hole, Ace-02-02, tested a magnetic high anomaly but failed to explain the source of this anomaly. This strong, large magnetic anomaly is located up-ice from a zone of Au/Bi/Te/W quartz sulphide boulders that have gold concentrations up to 11 grams per tonne (g/t). It is anticipated that the next phase of drilling will test this high priority target for its economic gold potential. A 7.5 centimetre wide quartz vein at 159.6 metres near the end of hole Ace-02-02 assayed 692 ppb gold (Wild, 2002).

The other three drill holes in the Ace Project area, Ace-02-03 to 05, tested the 5N Zone (Figure 4a-2). All three intersected at least 40 metres of "felsite", which hosts VMS mineralization elsewhere on the property. The fine-grained nature of the rock, its intimate relationship to a series of thin marble bands, and almost regional extent suggest that it may be an exhalative horizon and an excellent target horizon for VMS deposits (Wild, 2002).

Two of the recent holes intersected significant sulphide mineralization near the top of the interval. Ace-02-03 intercepted 3.3 metres of semi-massive to massive sulphide mineralization with anomalous Cu/Pb/Zn metals. Mineralized felsite extended an additional 69 metres down hole below the strongly mineralized layer.

In drill hole Ace-02-04, a ten-metre interval of mineralized felsite between 43.8 - 53.8 metres, was highly anomalous for base and precious metal with concentrations up to 663 ppm Cu, 855 ppm Zn, 704 ppm Pb and 575 ppb Au. This hole was collared within 400 metres of a cluster of previously identified high grade quartz vein float boulders assaying up to 29 g/p/t Au, and zinclead mineralization (10% Zn, 2%Pb) in bedrock.

The last hole, Ace-02-05, was collared on L5N at 6+25W and drilled vertically to test a coincident ground magnetic high and subtle gravity anomaly. It was collared in the felsite unit, likely below the sulphide horizon (Wild, 2002).

Felsic volcanic rocks encountered during this drilling program consist mainly of extremely finegrained plagioclase with minor biotite and/or muscovite. Many contain minor to abundant replacement and recrystallized patches of coarser grained plagioclase, with or without minor to abundant quartz, ankerite, muscovite and pyrite. Some surface samples, previously described as metamorphosed diorite, were reinterpreted as recrystallized and replaced felsic volcanic rocks. Some felsic volcanic rocks contain zones up to several metres wide of weak to strong biotitic alteration, some of which occur in broad, diffuse envelopes about quartz-sulphide veins. In these zones, pyrrhotite is replaced by coarser-grained porphyroblasts and lenses of pyrite.

Veins containing anomalous metal concentrations are of three types. Quartz-pyrrhotite veins in DDH 98-01 carry anomalous concentrations of Cu, Ag and Bi. Quartz-pyrrhotite-tourmaline veins in DDH 98-02 carry anomalous concentrations of Au, Ag, Cu, Zn, Bi, Se and Te. A quartz-pyrrhotite vein in DDH 98-07 carries anomalous concentrations of Au, Ag, Cu, Pb, Bi and Se. Quartz (+pyrrhotite) veins intersected in DDH02-01, DDH 02-02, DDH 02-03 and DDH 02-04 carry anomalous metal concentrations of Au, Ag, As, Sb, Bi, Te, W, Mo and TI with concentrations of gold up to 764 ppb over 7 cm in DDH 02-01, 692 ppb over 7.5 cm in DDH 02-02, and 526 ppb over 25 cm in DDH 02-04. All six samples from DDH02-01 had geochemical patterns anomalous in Au, Ag, As, Sb, Bi, Te, W, Mo and TI. A zone from 42.5 metres to 58.6 metres in DDH02-04 was anomalous in Au, Ag, As, Sb, Bi, Te, W, Mo and TI. Numerous barren quartz and barren quartz-chlorite veins are present in drill core in many rock types and are particularly abundant in some intervals of quartzite and quartz-rich schist.

Comparison of drill-core data with previous analyses of boulders indicates that the massive sulphides and auriferous quartz-sulphide veins in the boulders and corresponding materials in the drill cores may have come from the same environment. This and the general angular appearance of the boulders and other large blocks of bedrock with which they occur in the overburden suggest strongly that the boulders are from a nearby bedrock source, probably slightly up-ice from their present locations.

3.2 Frank Creek VMS Project

During 2002, the Company conducted an initial exploratory diamond drilling program (7 ddh, 813m in total) in the vicinity of the Frank Creek massive sulphide discovery outcrop and nearby geological and geophysical targets (Table 6a;Table 6b 2002 Perry report). All of the initial drill holes were located within the F-1 Target Area (Figures 5a, 5b and 8a Perry 2002).

The drill core obtained during this initial exploratory program contains intervals of Cu-Zn-Pb (+/-Au, Ag) massive sulphide mineralization that are significant examples of ore formation processes having occurred on the property.

The mineralizations encountered in the core (Table 6c Perry 2002) are similar to that exposed at the discovery outcrop where a massive sulphide layer is exposed for some 3.5m length and 1.5 metre width (Lane 2000; Hunter Dickinson, 2000; and Hudson Bay Exploration & Development 2001). There, concentrations of metals from grab samples of the outcrop massive sulphides ranged up to 4.4% Cu, 8.2% Zn, 1.1% Pb, 14.8oz/t Ag and 854 ppb Au. A chip bedrock sample across .77 metres exposed width assayed 2.1% Cu, .34% Zn, .11% Pb and 69 ppm Ag.

This Besshi-type VMS polymetallic mineralization occurs in drill core in significant intervals (up to 0.4 metres) and contains significant concentrations (up to 3.4% Zn, 2.1% Cu, 2.8 oz/t Ag, 0.53% Pb and 746 ppb Au) within larger weakly mineralized units up to 52 metres wide in drill core intercepts that contain widespread disseminations of these metals.

Four of the 6 holes tested the Frank Creek mineralized horizon; the other two tested the immediate structural footwall, to a wide, conductive graphitic fault zone. FC-02-01, 05, and 06 intersected disseminated to semi-massive sulphides, dominantly pyritic, near the projected location of the mineralized horizon, downslope (northwest) of the original Frank Creek (F-1) Showing. FC-02-03 tested under the showing and intersected approximately 50cm of pyritic massive sulphide similar to that in the showing, caught in a large gougy fault zone. FC-02-02 and 04 tested strong max-min conductors and intersected significant graphitic shear zones in carbonate-altered metasedimentary rocks.

4.0 Interpretations and Conclusions

The Barker Minerals VMS and Vein Gold exploration Projects have been visited and examined, in various degrees of detail, by numerous independent professional geo-scientists and engineers, some associated with major mining companies or the BC Geological Survey. They have relayed to Barker their views on the exploration potential of the property and Barker Minerals' management and performance. The following are verbatim comments that Dr. Perry includes in his 2002 report in order to more fully appraise the reader of other professionals' views on Barker's property and Projects.

Charles R. Lammle, P. Eng. (1995):

"Realizing that he had made a good discovery, and that he was dealing with mineralization of complex mineralogy, he opened a line of communication for advice and support regarding the Ace property with senior provincial and federal government geologists. These geologists were solidly supportive, and results from the property continued to be encouraging."

Strathcona Mineral Services Ltd. (1998):

"Barker Minerals has assembled an impressive amount of information on the Ace and surrounding claims"

V. Preto, Ph. D., P. Eng., BC Geological Survey (1995): "Congratulations on the report and all the work that has been done - both excellent"

T. Hoy and V. Preto, Geologists, BC Geological Survey (1996):

"Three deposit types were observed on the tour: Au-quartz veins, carbonite-hosted Zn-Pb and besshi-style massive sulphide. We consider the massive sulphide potential the highest, mainly because of the size and regularity of both geochemical and geophysical anomailes and the amount of massive sulphide float."

Bob Lane, Geologist, BC Geological Survey (1996):

"I am especially interested in the Ace property, which I view as a significant new discovery-one that has ramifications for exploration in Downey succession rocks.

Bob Lane, Regional Geologist, Ministry of Energy and Mines

R. Lane and K. McDonald, Geologist, BC Geological Survey (2000):

"The Ace's host rock lithology and metal content suggest an affinity to well explored gold quartz veins of the Yanks Peak and Cow Mountain areas to the north. The geological setting, style of mineralization and geochemistry suggest an analogy to the "Plutonic-associated" or "Pogo-Type" Gold vein model."

British Columbia Mineral Exploration

Review 2000 Information Circular 2001-1

Ministry of Energy and Mines (Tom Schroeter)

"In the Likely area, 75 kilometres northeast of Williams Lake, Barker Minerals Ltd. continued geological mapping and geophysical surveys over its Frank Creek and Ace volcanogenic massive sulphide showings. Although the felsic rocks at Frank Creek are different from those at the Ace showing to the northeast, the proximity of the two zones in the Barkerville Terrane enhances the potential of discovery of more VMS deposits within the belt".

R. MacDonald, Teck Exploration Ltd. (1999):

"High grade assays from the Frank Creek property visits and Barker Minerals' exploration results from the Ace and other prospects underscore the significant untapped exploration potential of the Likely area. Furthermore, we are encouraged by the variety and widespread distribution of base and precious metal mineralization over the entire property package."

Robert C. Bell, INCO Technical Services (2000)

"We appreciate the excellent cooperation that we have received from you and your team in aiding us in our review, and commend you for the highly professional manner in which you have carried out your exploration and compiled the resulting data."

4.1 Ace VMS and Vein-gold Project

The Ace property is underlain mainly by a section of metamorphosed sedimentary and volcanic rocks. The most important sedimentary types are quartz-muscovite schist, quartz-chlorite-muscovite schist, quartz-te, quartz-rich schist and quartz-muscovite-biotite schist. In the eastern half of the property, garnet is common, especially in muscovite-rich and biotite-rich schist. Minor argillite, calcareous argillite and limestone are most common directly above the massive sulphide lenses. Deeper in the section on Barker Mountain and along Ishkloo Creek are minor amphibolite and biotite.

A volcanogenic massive-sulphide environment is associated with metamorphosed felsic volcanic rocks along the trend of Doyle's boulder field, where many boulders containing gold-bearing quartz veins and gold-bearing massive sulphides have been found. Drill holes intersected a zone of metamorphosed felsic volcanic rocks up to several km long and 80 m thick. These felsic rocks are dominated by plagioclase with minor to moderately abundant quartz, muscovite and biotite.

According to very recent preliminary work (pers. com., Dr. Tim Barrett, Ore Systems Consulting, September 26, 2002), the host rocks of the Ace mineralization are relatively metamorphosed

and structurally deformed. They include a variety of quartz-muscovite-chloritebiotitegarnet schists, a pale plagioclase-bearing rock up to several tens of metres thick that has been previously referred to as "felsite", and minor argillite and marble. Lithogeochemical data indicate that the "felsite" in fact is compositionally similar to calc-alkaline andesite. However, due to metamorphism and recrystallization, it is not certain if it represents a true volcanic rock or a clastic sediment such as greywacke. Amphibolites which probably represent mafic volcanic rocks are also present within 1-2 km of the Ace sulphide occurrence.

At the top of the main felsic section in DDH 98-03 is a zone 0.75 m thick, containing two intersections of massive sulphide mineralization 0.20 m thick and 0.25 m thick, separated by an intersection of calcite 0.30 m thick. The massive sulphide mineralization carries anomalous concentrations of Au, Ag, Cu, Zn, Bi, Se and Mn, as determined by non-statistical consideration of the analytical data.

A few massive sulphide samples collected from trenches in this zone contain up to 2% Zn. A similar zone of semi-massive sulphides 0.35 m thick occurs in the centre of the section of felsic volcanic rocks in DDH 98-07. Massive sulphide boulders containing large concentrations of Pb and Zn occur in the Colleen Road area, but their bedrock source has not been found.

In some strongly altered footwall rocks, the host rock was replaced completely by massive, finegrained pyrite and dark green chlorite. Others contain 20-30% disseminated, very fine-grained pyrrhotite. Many altered felsic rocks contain anomalous concentrations of base metals and precious metals, in part associated with recrystallized and/or replaced patches dominated by one or more of plagioclase, quartz, ankerite and sulphides. Anomalous concentrations increase in footwall rocks near the stratigraphic top of the main felsic section. These patterns show characteristics of footwall rocks beneath a typical VMS deposit.

The drill cores contain a few important faults up to a few metres wide. Because of the wide spacing of the drill holes, these could not be correlated between holes. The moderate to high graphite content of many of these makes them potentially significant conductors.

Most of the geophysical anomalies obtained in earlier studies have yet to be tested or explained. The main geophysical and geochemical anomaly at the western end of the main trench area is open to the west in an area that is interpreted to be underlain by felsic volcanic rocks. This extends west of the massive sulphide occurrence in DDH 98-03. Vectors in the thickness of massive sulphides, intensity of alteration and geochemical anomalies and thickness of the felsic volcanic section indicate that the area west of DDH 98-03 may contain an important exploration target. Another exploration target is indicated by a broad geophysical resistivity anomaly situated northeast of the area of drilling (Figure 4a Perry 2002). On surface, this area contains rubble of felsic volcanic rocks and abundant boulders of quartz veins containing anomalous concentrations of base and precious metals. A third important target is the elongate HLEM anomaly in the southeastern part of the project area (Conductor A, Figure 4a Perry 2002).

Delineation of the "felsite" unit led to the discovery of massive to semi-massive mineralization in the 5N Zone, an area that was extensively trenched prior to 1998. Three holes drilled into the zone in 2002 have defined the felsite package as a unit some 60-80 metres thick, possibly thickened by a series of tight to isoclinal folds. Immediately to the west in ACE-02-05 and the east in DDH-98-04, the unit breaks up into a series felsite layers, separated by weakly chloritic quartz-muscovite schists. In the 16S Area, ACE-02-01 was collared to test coincident max-min conductor and subtle gravity anomaly on line 16S. Wild indicated that both the conductor and

gravity were caused by a 6.5-metre thickness of felsite with up to 10% pyrite and pyrrhotite, however follow-up geophysical surveys suggest that this hole may not have tested the intended geophysical anomalies, as the zone may be faulted off. The follow-up geophysics defined potentially significant targets situated to the west and also possible faulted off extensions of the favorable horizon to the east (Walcott, 2002). Drill hole ACE-02-02, was collared immediately above the felsite and tested the footwall near a large ground magnetic high to the south. That anomaly was not adequately explained in the core. (Wild, 2002)

The felsite unit is reportedly made up of up to 80% plagioclase (Payne, 1998), although at least one sample was composed of mainly albite (Walus, 1997). The fine-grained nature of the rock, its intimate relationship to a series of thin marble bands, and almost regional extent suggests that it may be an exhalative horizon and an excellent target horizon for VMS deposits. Sulphide mineralization in 98-3, ACE-02-03, and ACE-02-04 is located near the structural top of the unit.

Gold-bearing quartz veins in this area occur in two main modes. The first are as early veins that were deformed strongly with the enclosing host rock. The second are as late crosscutting veins, many of which trend northeasterly. Many of the quartz veins occur in the same general area as the felsic rocks and boulders of massive sulphide.

The Ace project area has significant similarities to the Intrusion Related Gold System model setting as advanced by Lang, Baker, Hart and Mortenson (Society of Economic Geologists Newsletter #40, January, 2000), as it contains geology and mineralogy similar to that of the Yukon and Alaskan settings that host a variety of intrusion related gold deposits (Lane, 2000) such as Fort Knox (158 Mt@ 0.83 g/t Au; Bakke, 1995), Brewery Creek (13.3 Mt @1.44 g/t Au; Diment and Craig, 1998), Dublin Gulch (50.3 Mt @ 0.93 g/t Au; Northern Miner, 1997), True North (16.8 Mt @ 2.5 g/t Au; Harris and Gorton). The newest and highest-grade discovery in the belt is the Pogo deposit (Smith et al., 1999; 9.98 Mt @ 0.52 oz/t Au). According to independent geologists of Teck Exploration Ltd., who expressed that they wish to continue close monitoring of the Barker projects, it is clear from the data that multiple mineralizing episodes are present throughout the property (pers. comm., R. Macdonald, Teck Exploration Ltd., December 1999).

4.2 Frank Creek VMS Project

The Frank Creek area contains an important massive sulphide occurrence situated near the stratigraphic top of a fragmental, felsic volcanic rocks or feldspathic arkose. This overlies, in order, a section of black argillite and siltstone and an intermediate to mafic volcanic sequence of flows and fine fragmental rocks. Associated with the massive sulphide zone is a Cu-rich zone of stringer and replacement mineralization. The stratigraphic section is on the overturned limb of one of a set of major, southwesterly verging, F2 folds. All the rocks are metamorphosed, which has inhibited interpretation. The discovery of pillow structures in mafic volcanic rocks in Frank Creek indicates a sea-floor subaqueous environment, thereby enhancing the potential for further discoveries of massive sulphide and the Ace massive and stringer sulphide mineralization to volcanic rocks enhances the potential for discovery of additional VMS mineralization not only the Goose Range, but throughout the entire Barkerville terrane.

According to recent preliminary work (pers. com., Dr. Tim Barrett, Ore Systems Consulting, September 26, 2002), original stratigraphic relations and rock textures are much better preserved here than at the Ace VMS environment. Host rocks include quartz-eye-bearing sandstones, siltstones, shales, and minor mafic sills. Work is in progress to determine if the quartz-eye-bearing sandstones represent volcanic crystal tuffs or clastic sediments. Pillow

basalts are present 1-2 km south of the Frank Creek sulphide occurrence and basaltic volcaniclastic beds also outcrop in the area, although their stratigraphic position relative to the mineralization is currently uncertain. Nonetheless, the presence of extrusive rocks raises the possibility that mafic volcanism was occurring near the time of Frank Creek mineralization.

The massive sulphide outcrop, spatially related boulders and the Cu-rich stringer and replacement zone contain anomalous to potentially economic concentrations of Cu, Pb, Zn and Ag. Many samples are anomalous in Au and some contain anomalous concentrations of As, Bi, Cd, Hg, Sb, Tl and Mo. Concentrations of As, Bi, Hg, Mo and Sb also are anomalous in stream-sediment samples near other airborne geophysical anomalies. The HLEM survey suggests the presence of another massive sulphide target stratigraphically a few tens of metres above the massive sulphide outcrop. During 2001-2002, trenching and drilling at the Frank Creek VMS project were largely successful in exposing the mineralized zone over a strike length of approximately 425 metres. Based on the results to date, further trenching and drilling are recommended. (Perry, 2002)

According to recent preliminary work (pers. com., Dr. Tim Barrett, Ore Systems Consulting, September 26, 2002), the Ace and Frank Creek sulphides occur within the late Precambrian to lower Paleozoic Snowshoe Group of the Barkerville terrane. Based on regional geology, the paleotectonic setting of the Snowshoe Group is generally considered to have been a marine continental shelf which accumulated sandy to muddy clastic sediments and locally mafic to andesitic volcanic rocks. The Cu-Zn-Pb-bearing massive sulphides at Ace and Frank Creek are at least partly hosted by sedimentary rocks. Relative to typical VMS deposits, the massive sulphides are locally enriched in trace metals such as Sb, As, Bi, Hg, In and Sn, which is consistent with derivation of at least some of the metals from hydrothermal leaching of an underlying sedimentary sequence. Possible models for the setting of the massive sulphides, at this early stage of exploration, range from a sediment-dominated continental margin with local, mainly mafic volcanism along extensional faults, to a deeper-water Besshi-type setting, to a sediment-covered spreading axis. The proposed stratigraphic and lithogeochemical studies should serve to define the paleotectonic setting of the mineralization, the most favourable host lithologies, and the distribution of hydrothermal alteration, which in combination will provide a more focused exploration model for the area.

According to Wild (2002), former Chief Geologist of Goldstream Mine, near Revelstoke, B. C., the geological setting, mineralization and host rocks are all remarkably similar to the Goldstream Mine mineral deposit, which produced more than 2 million tonnes of ore at a grade in excess of 4.0% copper and 2.2% zinc.

The Big Gulp showing (F-4 target area) contains anomalous concentrations of Zn in strongly altered intermediate to mafic volcaniclastic rocks associated with a series of east-west-trending HLEM anomalies (F-4 in Figures 8a and 9 Perry 2002). This may be indicative of a stringer zone associated with a massive sulphide deposit.

4.3 SCR Project

A significant, new VMS prospect has been identified with the discovery of semi-massive sulphide and stringer sulphide mineralization in float and bedrock of altered intermediate to mafic volcanic rocks of the Sellers Creek Road area. Sulphide minerals include pyrite, pyrrhotite, chalcopyrite, sphalerite and galena. The geophysical surveys successfully outlined significant, coincident magnetic and conductive anomalies (HLEM) near the discovery area and near the area of Cu, Pb and Zn soil anomalies. The presence of volcanogenic massive

sulphides at the Ace, Frank Creek and SCR properties shows that potential exists for VMS deposits across the entire width of the Barkerville terrane (Payne, 2001; BC Assessment Report).

4.4 Quesnel Platinum Project

Reconnaissance geology and thin section petrology confirmed the occurrences and character of mafic and ultramafic rocks. These are probable sources of some of the PGMs in the placers of the Quesnel River and its tributaries. Several samples from hematite-altered amygdaloidal mafic flow rocks are anomalous in Cu, Ag and Hg. A recent BC Geological Survey study confirmed the presence of PGM's in the Quesnel River and some of its tributaries draining Barker's Quesnel Platinum Project areas, especially Black Bear Creek (Levson *et al*, 2002)

5.0 Recommendations

Various geological and mining professionals have been involved in the Barker Minerals Projects or have reviewed the Company's exploration work and made field examinations of the active projects. Dr. Bruce Perry has consolidated the recommendations with which he is in agreement, has added his own recommendations and has added emphasis, in some cases, to the recommendations of others.

5.1 Ace VMS and Vein-gold Project

Geological mapping should continue in order to improve understanding of the regional structure and the local geology of areas of felsic volcanic rocks that have not yet been examined. This additional mapping should be integrated with that being done between the Ace and Frank Creek areas by Ferri and others of the B.C. Geological Survey. Wild (2002) recommended extensive whole rock analysis to better characterize the felsite unit. Independent geological consultants of Strathcona Mineral Services (Toronto, Canada) toured the Ace Project and after inspecting core from the drill programs of 1998 and 2002 recommended further work including delineation of the felsite unit through mapping, soil geochemistry and geophysical surveys, followed by trenching where possible and drilling of targets which are selected by the combination of magnetic, MaxMin and gravity geophysical surveys. They are in agreement with Wild (2002) and Perry (2002) that an effort should be made to determine the origin of the felsite, as this has a bearing on the style of massive sulphide deposits that may exist in relation to this unit on the Company's property.

Barker Minerals has very recently enlisted the services of Dr. Tim Barrett and Dr. Wallace MacLean of Ore Systems Consulting (Toronto, Canada) to determine the stratigraphic and alteration relations of the rock sequences hosting the massive sulphide mineralization on the Ace and Frank Creek properties using advanced lithogeochemical methods, combined with new core and outcrop sampling and petrography. Ore Systems Consulting has previously worked on numerous volcanic-associated massive sulphide deposits, including those in the Noranda and Matagami camps of Quebec, the Timmins area of Ontario, the Cordillera of British Columbia, Sweden, Wales, Portugal and the Philippines, and have published numerous research papers on these areas, Perry (2002) recommends that they determine the paleotectonic and paleoseafloor setting of the mineralization in each area, as this will have a direct bearing on the chemical identification of the main mineral host rock units at the Ace and Frank Creek Projects in order to trace these favorable units laterally during exploration. The quantitative determination

of the degree of alteration is also recommended in order to determine the most intense portions of the hydrothermal systems on each property, as those areas containing a combination of favorable stratigraphy and strong hydrothermal alteration have the greatest potential for economic VMS mineralization. The results should be combined with known geophysical and soil-geochemistry anomalies established both by earlier surveys and potential 2003 surveys in order to help select high-priority drilling targets.

A study should be undertaken to better understand the genesis of the highgrade gold/bismuth/tungsten/telluride mineralization present in the very numerous float boulders found on the property. This will assist in developing specific strategies for exploration for the bedrock source(s) of these boulders and similar occurrences.

The HLEM and geochemical surveys should be extended to the west and to the east of the present surveys along the trend of the felsic volcanic rocks. Similar surveys should be conducted over the belt of felsic volcanic rocks north of Little River. The main HLEM electromagnetic anomaly discovered during 2000 has been tested by two gravity profiles which identified excess mass on both test lines that was co-incident with previously defined HLEM (Maxmin) anomalies. Similar gravity profiles should be run across the core of the altered felsic volcanic rocks defined in the 1998 drill program.

An IP survey should be conducted in order to verify the low resistivity e-scan-indicated target.

Additional detailed ground magnetic surveys are recommended in order to continue to identify drill targets which could be possible bedrock sources of the numerous clusters of magnetic pyrrhotite, gold-rich quartz sulphide boulders occurring on the Ace property.

Trenching should be conducted on anomalous zones where the thickness of the glacial overburden allows.

Diamond drilling should test targets identified by the existing geological, geophysical, geochemical and trenching results and by additional work that will be conducted in the first part of the 2003 field season. Further compilation work is required for the 5N Zone to determine if further drilling is required there next, or whether further surveys are required in preparation for potential drilling. According to Wild (2002), to the east, soil sampling, is warranted on some of the recently established grid on the east half of the project area. Also to the east, a coincident max-min conductor and subtle gravity anomaly on lines 3800S to 4700S should be followed up by extending the grid and extending the gravity coverage to adjacent lines. Drilling should be planned on the most promising part of the anomaly (Wild, 2002). Similarly, Walcott concluded that the residual gravity anomalies obtained in relation to EM conductors here be investigated by drilling (Walcott, 2002).

The second phase of the program will be contingent on obtaining sufficient positive results from the first phase of the proposed program.

5.2 Frank Creek VMS Project

Geological mapping should continue in order to help determine the stratigraphic and structural setting of the mineralization. This should be integrated with that being done by Ferri of the B.C. Geological Survey between the Ace and Frank Creek areas. Independent geological consultants of Strathcona Mineral Services (Toronto, Canada) toured the Frank Creek Project and after inspecting core from the drill program of 2002 recommended further work including

establishing survey grids, mapping and soil sampling and geophysical surveys similar to those recommended for the Ace Project, followed by trenching and drilling. They concluded that there is still the possibility that massive sulphide mineralization exists on the property and that more work is warranted on the remaining targets.

Barker Minerals has enlisted the services of Dr. Tim Barrett and Dr. Wallace MacLean of Ore Systems Consulting (Toronto, Canada) to determine the stratigraphic and alteration relations of the rock sequences hosting the massive sulphide mineralization on the Ace and Frank Creek properties using advanced lithogeochemical methods, combined with new core and outcrop sampling and petrography. Ore Systems Consulting has previously worked on numerous volcanic-associated massive sulphide deposits, including those in the Noranda and Matagami camps of Quebec, the Timmins area of Ontario, the Cordillera of British Columbia, Sweden, Wales, Portugal and the Philippines, and have published numerous research papers on these areas, Perry (2002) recommends that they, based on their worldwide experience and advance level of geological expertise in the field of volcanogenic massive sulphide deposits and models, determine the paleotectonic and paleoseafloor setting of the mineralization in each area, as this will have a direct bearing on the VMS model used during exploration. Perry (2002) also recommends work to determine the chemical identification of the main mineral host rock units at the Ace and Frank Creek Projects in order to trace these favorable units laterally during exploration. The quantitative determination of the degree of alteration is also recommended in order to determine the most intense portions of the hydrothermal systems on each property, as those areas containing a combination of favorable stratigraphy and strong hydrothermal alteration have the greatest potential for economic VMS mineralization. The results should be combined with known geophysical and soil-geochemistry anomalies established both by earlier surveys and potential 2003 surveys in order to select high-priority drilling targets.

The HLEM survey should be continued in areas of the grids not yet covered, especially to trace continuations of known anomalies that are suggestive of the presence of massive sulphide deposits. Additional preliminary gravity survey lines should be run across the main anomalies to more accurately define massive sulphide targets. Where topography and glacial cover are permissive, trenches should be excavated into prospective targets resultant from these studies. VLF geophysical surveys should be used to trace mineralization once it has been located in bedrock.

Geochemical soil surveys should be conducted over the strike extensions of known mineralized trends and also over specific target areas in order to identify base and/or precious metal soil anomalies, which may be indicative of economic massive sulphide mineralization targets in the local bedrock.

The most prospective anomalies as defined by geology, geophysics, geochemistry and trenching should be tested by diamond drilling.

The second phase of the program will be contingent on obtaining sufficient positive results from the first phase of the proposed program.

5.3 SCR Project

Geological mapping should continue in order to help determine the stratigraphic and structural setting of the mineralization. This should be integrated with that being done by Ferri of the B.C. Geological Survey between the Ace and Frank Creek areas.

Lithogeochemistry studies should be continued in order to determine the stratigraphic and alteration relations of the rock sequences hosting the known mineralization, using advanced lithogeochemical methods, combined with new core and outcrop sampling and petrography.

The HLEM survey should be continued to the east and southeast of the present grid to determine the extent of the anomaly in those directions. Where permissive, trenching should be conducted on defined target areas.

Soil geochemistry should be conducted over the grid and should be extended to the east to cover the possible extensions of the anomalous zone as defined by geology and coincident magnetic and HLEM anomalies.

Diamond drilling should test the most prospective anomalies as defined by the geology, geophysics, geochemistry and trenching.

The second phase of the program will be contingent on obtaining sufficient positive results from the first phase of the proposed program.

5.4 Peacock Showing

A mineral occurrence was found by a BC Geological Survey geologist during his local geological mapping work may be the previously known Peacock mineral showing. The Company should further expose and sample this mineralization. This occurrence has been interpreted by government geologists (Ferri, 2001) to be Besshi-type VMS mineralization. All available previous exploration results should be compiled, interpreted and, if then warranted, be followed up with an initial program designed to identify and develop drill targets having economic VMS and/or gold/silver potential.

5.5 Blackbear Project Area

Since it appears that interest in gold is increasing as its price has risen substantially during the previous year, the Company should begin to investigate this project area, which hosts the former Providence Mine, from which a previous operator's shipment of selected ore from the No. 2 zone assayed 3343 grams of silver per tonne, 45.7% lead, 0.11% zinc and 4.9 grams of gold per tonne (all the above from BC MinFile 093A 003). One grab sample (# 11-07-98-59; Barker Minerals) of outcropping mineralization contained 52% Pb, 0.03% Zn, 142 oz Ag / ton and 0.081oz Au/ton. (Payne, 1999; BC Assessment Report). All previous exploration results available should be compiled, interpreted and, if then warranted, be followed up with an initial program designed to identify and develop drill targets having economic VMS and/or gold/silver potential.

5.6 Cariboo Prospect and Other Areas

Detailed geological mapping should be continued in the Cariboo prospect area in order to help determine the extent of deformation and in order to explore for targets of Zn+Pb replacement deposits along strike of the known zones. Compilation of all relevant data and limited diamond drilling is recommended in order to confirm the previous operator's drilling and in order to further define and investigate the size and economic potential of this deposit, which is open in both directions along strike and at depth. Despite low gold concentrations found there to date, further prospecting in the near vicinity and exploratory investigation of the Foster zone for its

gold potential is recommended in light of its position within the Pleasant Valley Thrust and the intensity of sulphides in the zone and their localization at a junction of two large scale structures.

Elsewhere in the eastern half of the property, detailed mapping and follow-up geochemical sampling and geophysical surveys should be performed in areas of significant, multi-element stream-sediment anomalies. Areas of particular interest are the upper reaches of the Sellers Creek and Grain Creek drainage basins.

The second phase of the program will be contingent on obtaining sufficient positive results from the first phase of the proposed program.

5.7 Quesnel Platinum Project

Stream and soil sampling programs should be conducted in drainages associated with known placer occurrences of PGE minerals, especially in areas of mafic and ultramafic rocks that may be sources of such minerals. Studies should be done in order to characterize the assemblages of PGEs, which could help determine the environment of their origin. Geological mapping should be conducted in areas of mafic and ultramafic rocks in order to better understand the nature of these rocks and their possible association with PGE minerals. Prospecting should continue in drainages that contain known placer Pt deposits or anomalous concentrations of PGEs.

The zone of large copper concentrations in the Mag claims should be studied in more detail geologically, geochemically and geophysically. Other zones of coincident geochemical and geophysical anomalies should be examined once data from previous reports are compiled and interpreted. Some of these areas will require new grids for geophysical and geochemical surveys.

The second phase of the program will be contingent on obtaining sufficient positive results from the first phase of the proposed program.

6.0 Budgets

The estimated costs of the Phase 1 and Phase 2 programs are \$1,780,000 and \$4,000,000 respectively (Perry 2002).

7.0 Certificate or Qualifications

Report was prepared by Louis E. Doyle, Prospector and President of Barker Minerals Ltd. All data compiled from company technical reports, which are attached as appendices.

Barker Minerals Ltd. 2002 Sample Descriptions

_

Sample #	Target	Description	Location
02-111	SCR	Large angular float (6ft deep) stringer type, siliceous, PY, SPH?, CPY2 bands, greenish color	B/I 0+00-15ms
02-111A	SCR	Large angular float (6ft deep) stringer type, siliceous, PY, SPH?, CPY? bands, greenish color	B/L0+00-15ms
02-112	SCR	(8 feet deep) Float, siliceous, felsic? DIS PY, PO, minor CPY, (light bluish)	B/L0+00-0T00N
02-112A	SCR	(8 feet deep) Float, siliceous, felsic? DIS PY, PO, minor CPY, (light bluish)	B/L0+00-0+00N
02-113	SCR	Local float, dark green, PY, stringer, siliceous	0+50N-0+50E
02-113A	SCR	Local float, dark green, PY, stringer, siliceous	0+50N-0+50E
02-114	SCR	Local float, bluish GN/SPH/CPY DIS and wispy, white mica, PY, slightly magnetic	L6s-4+00E
02-114A	SCR	Local float, bluish GN/SPH/CPY DIS and wispy, white mica, PY, slightly magnetic	L6s-4+00E
02-115	SCR	Local float rusty boulder with some visible GN	L6s-4+00E
02-115A	SCR	Local float rusty boulder with some visible GN	L6s-4+00E
<u></u>	SCR	Local float, blue siliceous rock, Felsic? DIS, PY,PO,CPY, SPH? Sericite, GN	L6s-3+75E
02-116A	SCR	Local float, blue siliceous rock, Felsic? DIS, PY,PO,CPY, SPH? Sericite, GN	L6s-3+75E
02-117	SCR	Bedrock - carbonaceous, bluish, siltstone, some folication, fine grained	L4+90s-4+55E
02-117A	SCR	Bedrock - carbonaceous, bluish, siltstone, some folication, fine grained	L4+90s-4+55E
02-118	SCR	Bedrock SPH, GN, bluish, carbonate, alteration, minor carbonaceous material on foliation planes	L4+90s-4+55E
02-119	SCR	Bluish siltstone, some sulphides, weathering	L4+90s-4+55E
02-119A	SCR	Bluish siltstone, some sulphides, weathering	L4+90S-4+55E
02-120	SCR	Local float semi massive sulphide, football size, 6ft down, PY, PO?, Magnetic? CPY, SPH, GN? starting to oxidize	L5S-4+65E
02-120A	SCR	Local float semi massive sulphide, football size, 6ft down, PY, PO?, Magnetic? CPY, SPH, GN? starting to oxidize	L5S-4+65E
02-121	SCR	Bedrock repeat sample: Dark bluish/black siltstone, carbonaceous, some GN,SPH wisps?	4+75S4+75E
02-121A	SCR	Bedrock repeat sample: Dark bluish/black siltstone, carbonaceous, some GN,SPH wisps?	4+75S4+75E
02-122	SCR	Float 11ft down in till, felsic? Stringer type with some fresh sulphides	4+75S4+75E
02-122A	SCR	Float 11ft down in till, felsic? Stringer type with some fresh sulphides	4+75S4+75E
02-123	SCR	Float 8ft down in till, rusty oxidized Q-eyes/felsic clasts?	L5+15E-4+50S

Barker Minerals Ltd. 2002 Sample Descriptions

`ample#	Target	Description	Location
02-123A	SCR	Float 8ft down in till, rusty oxidized Q-eyes/felsic clasts?	L5+15E-4+50S
02-124	SCR	Float 9ft down in till, felsic volcanic?Q-eyes, feldspars	L5+15E-4+50S
02-124A	SCR	Float 9ft down in till, felsic volcanic?Q-eyes, feldspars	L5+15E-4+50S
02-125	SCR	Sub outcrop, cherty siltstone/mudstone SPH?	L5s-4+65E
02-125A	SCR	Sub outcrop, cherty siltstone/mudstone SPH?	L5s-4+65E
02-026	SCR	(Oxidizing angular 6ft down float)is eliminated to semi-massive PY,PO?,CPY,SPH? Chlorite,sericitic(slightly magnetic)	TH-L5+50E4+75S
02-027	SCR	15ft down float, angular local float, felsic, Q-eyes, oxidized sulphides, most of till is the rock type (non magnetic). Panned the till, concentrate is high PY & SPH.	TH L+50E 4+75S
02-028	SCR	Local float? slightly magnetic 8ft down in till, serictic, oxidizing, PY, CPY, SPH? angular, schist, panned the till conentrate, high in PY & SPH.	TH-L5+50E4+50S
02-029	SCR	Local float 6ft down high SPH/GN in schistose mostly oxidized,angular	TH-L6+00S4+00E
02-031	F-1	Massive Graphite?blocky shiny particles?metalic?gold?	Frank 02TR on L 55
02-035	F-7	Float from 30ft down near bedrock, semi-massive to massive bands(SPH?)PY,within silicieous host rock	F-7 L59+75N24+25W
102-036	F-1	Q-eye schist,oxidized sulphides?Near max/min conductor	F-1 TR L 55 by SWB sample #1
02-037	F-1	Large Q-eyes, sericite?schisty,rusty,feldspars?	F-1 L55 TR by SW #2 sample westend
02-038	F-1	Local float layered sulphide PY local near max min conductor	F-1 L56N 16E TR Westend float on B/R
02-039	F-1	Out crop, sericite schist dark Q-eyes, rusty?	F-1 L 56N/G ETR West end O/C
Till Samp	oles		
Sample #	Target	Description	Location
02-040	SCR	Till, 10ft depth, no bedrock	TH 02-02 10ft down
02-041	SCR	Till, 10 ft depth, no bedrock	TH 02-07 10ft down
02-042	SCR	Till, 4 ft depth, no bedrock	TH 02-07 4ft down
02-043	SCR	Till, 9ft depth	TH- 02-13 9ft down
02-044	SCR	Till, 15ft depth	TH-02-13
02-045	SCR	Till, 12ft depth	TH L 5+00E 3+25S
02-046	SCR	Till, 17ft depth, darker	TH L 5+00E 3+25S
02-047	SCR	Till, 15ft depth	L5+50E 4+75S
י <u>2-048</u>	SCR	Till, 8ft depth	L5+50E 4+50S
02-049	SCR	Till, 11ft depth	L5+75E 4+50S
02-050	SCR	Till, 11ft depth	L6+50E 3+50S

(B) Technical

Trenching

Aaron Do	yle - Operator	
	• 33.5 days @ \$250.00/day wages	\$ 8,375.00
	• 33.5 days @ \$90.00/day room & board	<u>\$ 3,015.00</u>
Total		\$11,390.00
Aaron Do	yle - Swamper	
	• 28 days @ \$200.00/day wages	\$ 5,600.00
	• 28 days @ \$90.00/day room & board	\$ 2,520.00
	• 28 days @ \$100.00/ day vehicle & gas	<u>\$ 2,800.00</u>
Total		\$10,920.00
Jim Doyle	e – Swamper	
•	• 33.5 days @ \$150.00/day wages	\$ 5,025.00
	• 33.5 days @ \$90.00/day room & board	<u>\$ 3,015.00</u>
Total		\$ 8,040.00
Back Hoe		
	• 32.5 days @ \$600.00/day	\$19,500.00
Bob West	ran - Rylant Construction	
	• 23 days @ \$1,187.05/day wages	\$27,302.13
	• 23 days @ \$90.00/day room & board	\$ 2,070.00
	• 23 days @ \$100.00/ day vehicle & gas	<u>\$ 2,300.00</u>
Total		\$31,672.13
Rudy Ge	ldert	
•	• 8 days @ \$561.75/ day wages	\$ 4,494.00
	• 8 days @ \$100.00/ day vehicle and gas	\$ 800.00
	• 8 days @ \$90.00/ day room and board	<u>\$ 720.00</u>
Total		\$ 6,014.00
KCD Cor	itracting	
	• Invoiced	\$ 711.56
Ray Savi	dan	
-	• 6.5 days @ \$840.26/day wages	\$ 5,461.69
	• 6.5 days @ \$100.00/day vehicle and gas	\$ 650.00
	• 6.5 days @ \$90.00/day room and board	<u>\$ 585.00</u>
Total		\$ 6,696.69
Total Tre	enching Costs	\$ 94,944.42
(B) Technical

Line cutting

Sherwood Fo	prest Contracting Services	
•	28 days @ \$200.00/day wages	\$ 5,600.00
•	28 @ \$25.00/day power saw rental	\$ 700.00
•	28 days @ \$90.00/day room & board	\$ 2,520.00
•	14 days @ \$100.00/day vehicle and gas	<u>\$ 1,400.00</u>
Total		\$ 10,220.00
Brad Donda	le	
•	4 days @ \$200.00/day wages	\$ 800.00
•	4 days @ \$100.00/ day vehicle and gas	\$ 400.00
•	4 @ \$25.00/day power saw rental	\$ 100.00
•	4 days @ \$90.00/day room and board	<u>\$360.00</u>
Total		\$ 1,660.00
Total Line c	utting costs	\$ 11,880.00
<u>Prospecti</u>	ng	
Aaron Doyle	- Prospector	
•	26 days @ \$200.00/day wages	\$ 5,200.00
•	26 days @ \$90.00/day room & board	\$ 2,340.00
•	26 days @ \$100.00/vehicle & gas	<u>\$ 2,600.00</u>
		\$10,140.00
Jim Doyle –	Prospector	• • • • • •
•	26 days @ \$200.00/day wages	\$ 5,200.00
•	26 days @ \$90.00/day room & board	<u>\$ 2,340.00</u>
Taria Davia	Ducenceton	\$ 7,540.00
Louis Doyle	- Prospector	\$ 7 800.00
•	20 days @ 5500.00/day wages	\$ 7,800.00
•	26 days @ 90.00/day room & board	\$ 2,540.00
Total	20 days @ \$100.00/day venicie & gas	<u>\$ 2,000.00</u> \$12 740 00
10141		\$12,740.00
Total Prospe	ecting costs	\$30,420.00
Total Expe	enditures for (B) Technical	\$137,244.42

(C) Technical

<u>Geological</u>

Tim Barret	t - Geologist	
•	23 days @ \$642.04/day wages	\$14,767.00
•	17 days @ \$90.00/day room & board	\$ 1,530.00
•	12 days @ \$100.00/day vehicle & gas	\$ 1,200.00
Total		\$17,497.00
Bruce Perr	y – Geologist	
•	25 days @ \$548.61/day wages	\$13,715.25
•	10 days @ \$90.00/day room and board	\$ 900.00
•	10 days @ \$100.00/day vehicle and gas	<u>\$_1,000.00</u>
Total		\$15,615.25
Strathcona	Minerals – Geologist	
•	6.1 days @ \$1,267.04/day wages	\$ 7,728.94
•	6 days @ \$90.00/day room and board	\$ 540.00
•	6 days @ \$100.00/day vehicle and gas	<u>\$ 600.00</u>
Total		\$ 8,868.94
Chris Wild	- Wildrock Resources - Geologist	
•	66 days @ \$366.58/day wages	\$24,194.28
•	59.5 days @ \$100.00/day vehicle & gas	\$ 5,950.00
•	66 days@ \$90.00/day room and board	<u>\$ 5,940.00</u>
Total		\$36,084.28
Louis Doyle	e – Planning & Managing	
•	53days @ \$300.00/day wages	\$15,900.00
•	53 days @ \$90.00/day room & board	\$ 4,770.00
•	43 days @ \$100.00/day vehicle and gas	<u>\$ 4,300.00</u>
Total		\$24,970.00
Aaron Doyl	e – Mapping	
•	21 days @ \$280.00/day wages	\$ 5,880.00
•	15 days @ \$90.00/day room and board	<u>\$ 1,350.00</u>
Total		\$ 7,230.00
Aaron Doyl	e – Camp logistics	
•	43 days @ \$250.00/day wages	\$10,750.00
•	43 days @ \$90.00/day room & board	\$ 3,870.00
•	31 days @ \$100.00/day vehicle and gas	\$ <u>3,100.00</u>
Total		\$17,720.00

(C) Technical

Jim Doyle	– Camp logistics	
	• 25 days @ \$250.00/day wages	\$ 6,250.00
	• 25 days @ \$90.00/day room & board	<u>\$ 2,250.00</u>
Total		\$ 8,500.00
Total Geol	ogical cost	\$136,485.47
Geophy	sical	
Peter Wald	cott & Associates – Geophysics	
Invo	pice #	
	4306	\$ 5,136.00
	4305	\$ 39,547.20
	4287	\$ 386.38
	4286	\$ 5,476.26
	4290	\$ 11,146.63
	4335	\$ 996.09
	4336	\$ 4,173.00
	4337	\$ 6,177.11
	4338	<u>\$ 6,842.65</u>
Total		\$ 79,881.32
	• 182 days @ \$438.91/day wages	\$ 79,881.62
	• 134 days @ \$90.00/day room and board	\$ 12,060.00
	• 25 days @ \$100.00/day vehicle and gas	\$ 2,500,00
Total		\$ 94,441.62
Total Geor	physical costs	\$ 94,441.62
Drilling		
Beaupre D	iamond Drilling	¢ (1 717 20
	• 84 days ($(U, 5/34, 7/3)$ day wages • 84 days ($(U, 5/34, 7/3)$ day wages	\$ 01,/1/.32 \$ 7.5<0.00
	• $42 \text{ days} \otimes \$100.00/\text{day room and board}$	\$ 7,300.00 \$ 4,300.00
Total	• 42 days @ \$100.00/day venicle and gas	<u>\$ 4,200.00</u> \$ 73,477,32
		<i> </i>
Jack Heine	emann	
	• 23 days @ \$262.61/day wages	\$ 6,040.03
	• 23 days @ \$90.00/day room and board	\$ 2,070.00
	 23 days @ \$100.00/day vehicle and gas 	<u>\$ 2,300.00</u>
Total		\$ 10,410.03
KCD Cont	racting – Invoiced	\$ 1,067.33

(C) Technical

-

-

- -

Rudy Ged	dert	
-	• 8 days @ \$416.38/day wages	\$ 3,331.05
	• 8 days @ \$90.00/day room and board	\$ 720.00
	• 8 days @ \$100.00/day vehicle and gas	<u>\$ 800.00</u>
Total		\$ 4,851.05
Total Dril	ling costs	\$ 89,805.73
<u>Geoche</u>	<u>mical</u>	
Acme Ana	llytical Laboritories	
	• 154 assays @ \$49.22/assay	\$ 7,580.43
Eco-Tech	Laboritories	
	• 154 assays @ \$29.45/assay	\$ 4,534.67
ALS Cher	nex	A 4 6 00 6 00
	• 248 assays @ \$68.49/assay	\$ 16,986.09
Total Geo	chemical costs	\$ 29,101.19
<u>Genera</u>	<u>l Expenses</u>	
	Glynis Cox	\$ 939.63
	Vehicle repair	\$ 16,852.03
	• Supplies	\$ 5,044.20
	• Groceries	\$ 14,612.03
	Guard Dog	\$ 875.86
	Travel Costs	\$ 17,642.52
	• Utilities	<u>\$ 5,779.56</u>
Total		\$ 61,745.83
Total ex	xpenditures for (C) Technical	\$411,579.84
Total ex	xpenditures for Technical (B)	\$137,244.42
Total e	xpenditures for Technical (C)	\$411,579.84
Total ex	xpenditures	\$548,824.26

852 E. HASTINGS ST. V. COUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 353-1716 ACME AND TICAL LABORATORIES LTD.)02 Accredited Co.) GEOCHEMICAL AN ISIS CERTIFICATE Barker Minerals Limited File # A200562 22117 - 37A Avenue, Langley BC V2Z 1N9 Submitted by: Louis Doyle P La Cr Ba A) Na K W Sc Tł S Hg Se Te Ga Au** Pt** Pd** NI CO MA FE AS U AU TH Sr Cd Sb Bi V Ca Mq SAMPLE# Cu Pb Zn Ag pom pom pom X pom pom pob pom pom pom pom pom vom X X pom pom X DDW \$ DDQ ż pob pom pom pom ppb pob pob 000 000 DDB daa maa 1.24 1.88 2.21 37.8 15 4.7 4.1 541 1.85 .3 1.5 .2 4.0 70.7 .01 .02 .40 41 .51 .087 7.7 46.1 .52 216.9 .119 <1 .89 .058 .45 .3 1.4 .28 .02 <5 .1 < .02 4.4 <2 3 3 6-1 001-49 -80+230 2.21 44.05 24.27 169.8 341 104.3 31.1 902 2.80 27.6 1.4 1.4 11.3 38.4 .85 .26 45 7 .21 .073 21.7 9.0 .11 187.6 .001 <1 .29 .002 .05 <.1 1.8 .07 .17 31 1.6 03 .7 4 <2 <2 001-49 - 230 3.21 51.99 34.61 214.1 203 118.3 20.7 1188 3.76 33.9 1.8 1.9 15.9 40.1 1.14 .38 .88 10 .21 .081 31.5 13.4 .17 213.9 .002 <1 .45 .002 .07 .1 2.7 .11 .07 50 2.1 06 1 1 9 <2 2 GROUP 1F1 - 1.00 GM SAMPLE LEACHED WITH 6 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 20 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. AU** PT** & PD** BY FIRE ASSAY & ANALYSIS BY ICP-ES. (30 gm) - SAMPLE TYPE: CLAY DATE RECEIVED: MAR 5 2002 Data_ All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME ANA	TICAL LA	BOR edi	ATO ted	RIE Co	:S 1)	LTI	D.			85	21	g .	HZ	AST	IN	GS	SI	•	v *	ັດດ	עסל	'er	BC		V62	\ 1	R6			PH	ONI	:(6	04)2	53	-3	15	8 1	7AX	(6	04	<u>۲</u>	3-1'	71(6
AA											GE	200	ЗH	EM	IC	AL	7	77/	4 .	S]	[S	C.	er:	rti	7 I (2A]	'E														l		A	V	A
								<u>B</u>	<u>ar</u> 221	ke 7	r - 3	<u>M:</u> 7A	<u>in</u> we	er nue	al , L	. S angl	Цј еу	m i BC	<u>te</u> v2z	<u>d</u> 189	9 1	Fi Sub	Le mit	# ted	A2 by:	20(Loi)56 Iis I	: 3 Doy	le																
	SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	0Ĵ	Ha	Fe	A5	U	Ai	۲۲ L	s Sr	Cđ	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba	Ti	а	Al	Nà	ĸ	W	Sc	71	S	Hg	Se	Te	Ga	Au**	Pt**	Pd**				=
		рры	ррл	ppe	ppm	ppb	ррт	рра	ррл	r	ррп	ррл	ppt	o ppr	i ppm	ррт	рря	ppi	n ppm	8	X	ppa	ppm	¥	ppa	8	ppm	¥	X	*	ppn) Timologi T	opm	ž	ррб	рол	ррт	ppa	ppb	ppb	ppb				
	G-1	1.72	1.87	2.70	36.0	13	4.5	3.8	562	1.70	.3	1.9	.2	2 5.1	87.2	.01	.02	. 12	2 39	. 63	.104	8.3	51.8	.54	213.7	. 134	ı	. 99 .	074	. 44	. Ó	1.5	28	. 02	<5	<.1	<.02	4.4	<2	<2	<2				
	SS-01 -80+230	.64	30.91	24.69	65.7	120	34.3	11.0	396	2.07	15.5	1.0	4.3	1 5.8	15.2	. 28	. 24	. 30	14	. 29	.068	16.5	23.6	. 40	3 9 .7	.019	<1	.53 .	002	.04	.3	1.0	.04	.06	10	.7	.02	1.6	80	<2	2				
	55-01 -230	97	47.95	35.43	98.B	222	49.8	16.3	808	2.73	22.1	1.7	2.8	358	30.0	.58	. 33	. 43	21	.58	. 121	21.7	33.5	.53	74.5	.024	1	. 81 .	004	. 07	.5	1.5	.06	. 05	2 9	1.3	.03	2.3	154	11	4				
	SS-02 -80+230	.31	11.63	4.89	41.9	26	27.0	10.0	295	2.81	1.0	.4	.8	8 5.2	32.6	07	.02	12.13	3 40	. 89	. 152	12.3	35.5	49	58.6	.063	1	.72 .	015	.09	1.9	1.2	.07	.03	<5	.3	<.02	2.9	<2	<2	2				
	SS-02 -230	. 69	23-19	14.93	8 8 . 1	39	46 5	18 1	659	3.75	1.4	1.2	. 8	B 30.8	3 73.1	. 15	.05	50.20	57	1.88	.244	63.6	62.6	. 88	120.0	. 117	31	. 43 .	052	. 18	4.4	2.9	. 13	.04	11	<.1	<.02	5.5	<2	2	<2				
	\$5-03-80+230	. 39	11.64	3.88	29.3	29	19.9	11.0	284	2.97	10	2.8	1	4 5.4	128 6	.06	.03	.91	40	. 61	081	11.6	22.1	. 37	35.4	. 642	<1	.59.	007	.07	.7	1.4	.06	. 07	<5	.5	< 02	2.6	<2	<2	2				
	SS-03 -230	.79	20.01	9.74	50.6	41	29.6	13.8	762	4.19	10	1.1	1.3	3 24 3	89 6	. 10	.06	2.15	i 49	1.77	.094	44.3	33.4	.64	57.2	. 080	<11	. 24 .	020	. 12	2.6	3.4	. 10	. 06	8	. 5	<.02	40	<2	<2	4				
	SS-04 -80+230	.33	11.36	6.16	34.9	39	17.6	86	271	2.62	1.6	. 6		3 6.	30.8	09	. 05	7.74	4 35	1.06	098	17.5	19.1	. 60	35.8	.037	<l< td=""><td>.53</td><td>006</td><td>.06</td><td>. 8</td><td>1.1</td><td>.05</td><td>. 05</td><td><5</td><td>.5</td><td><.02</td><td>2.2</td><td><2</td><td>6</td><td><2</td><td></td><td></td><td></td><td></td></l<>	.53	006	.06	. 8	1.1	.05	. 05	<5	.5	<.02	2.2	<2	6	<2				
	SS-04 -230	.85	24.91	14.42	71.4	75	29.2	13.7	559	3.13	3.6	1.1	1.6	6 14.	67.0	.20	. 10	23.53	3 36	2.26	. 145	34.7	29.6	1.17	74.3	.067	11	.07 .	016	. 11	5.5	1.9	.09	07	15	5	.02	36	<2	<2	5				
	SS-05 -80+230	.43	23.13	13.06	40.0	68	25.6	10.1	606	2.17	8.7	1.0	1.	1 10.4	5 8.8	8 . 08	.17	3.97	11	. 13	. 038	27.5	12.5	. 34	22.7	.017	<1	. 63 .	003	. 04	.2	.7	.05	. 02	10	.4	.03	19	2	<2	<2				
	55-05 -230	1.02	41.89	25.13	69.0	119	50.7	19.7	1499	3.79	13.2	2.0	3.9	9 12.	15.8	. 17	. 27	2.29	9 18	. 28	. 093	37.1	21.8	. 54	49.6	.022	<11	.06 .	004	.07	.6	1.5	.07	.02	13	.8	. 06	3.0	38	4	3				
	SS-06 -80+230	1.20	48.18	25.86	88.1	211	37.3	14.2	424	2.86	23.9	1.5	1.	1 6.	5 18.5	.33	. 28	12.3	3 19	. 37	.117	16.7	24.4	.53	74.1	.022	<1	.73 .	003	. 05	.5	1.3	.04	. 19	7	1.2	. 02	2.3	<2	3	2				
	SS-06 -230	1.83	63.52	38.39	127.0	271	49.7	18.6	712	3.94	32.3	2.2	3.3	7 10.	27.6	5.53	. 31	7.6	5 30	.54	.152	27.4	39.6	.81	132.4	.029	11	. 22 .	006	. 09	3.3	2.0	.07	. 12	17	1.1	.03	3.6	3	<2	4				
	RE SS-05 -80+230	. 50	24.50	14.09	43.1	72	27.1	10.9	639	2.21	76	1.1	1.3	1 11.	597	. 09	. 19	4.3	L 10	. 13	.041	30.6	13.0	.35	26.1	.023	<1	. 64 .	005	.05	.6	.8	.04	. 02	7	.5	.03	1.9	115	<2	<2				
	SS 07 80+230	1.50	34 . 17	31.89	66.7	147	41.3	20.4	861	2.38	15.0	1.1	1.1	5 6.	€ 12.3	3 . 45	. 29	. 82	2 17	. 21	. 086	20.1	25.0	.36	60 . B	. 023	<1	. 69 .	003	. 06	<.1	1.3	.06	. 05	8	. 8	.03	2 1	976	4	<2				
	SS-07 -230	2.67	62.04	54.76	122.0	217	73.6	37.0	1770	4.03	20.8	1.8	4.(69.	4 21.3	3 . 65	.41	1.09	ə 34	. 36	5.121	31.0	46.3	.73	127.8	.036	<11	. 55 .	004	. 12	. 2	2.4	.13	. 03	23	.8	.04	45	5	<2	5				
	SS-08 -80+230	1.26	28.00	21.47	67.5	126	32.4	12.4	996	2.15	11.6	1.0	1.3	15.	4 16.6	533	.26	. 42	2 15	. 28	3 . 106	16.1	19.9	. 34	72.0	.019	<1	. 58 .	002	. 05	<.1	1.0	. 04	.03	11	9	.02	1.8	2	5	<2				
	SS-08 -230	189	40.71	28.76	95.7	233	46.6	18.3	2370	3.27	16.5	1.5	3.4	4 6.	5 28 .€	579	. 33	.5	1 24	. 45	. 129	24.1	29.9	.53	131.6	.028	1	. 98 .	004	.08	<.1	1.8	.08	.03	30	1.2	.04	2.9	42	<2	<2				
	SS-09 -80+230	1 06	42.52	36.05	95.6	176	43.0	15.0	460	2.75	21.3	1.3	1	65	5 16 4	1	.31	75	ə 21	. 34	1.122	16.4	28.7	.52	67.9	.024	<1	.77 .	002	.05	<.1	1.5	. 05	. 10	7	1.0	.03	2.3	<2	<2	<2				
	55-09-230	1 78	86 94	81.52	210 6	417	82.7	27.6	1084	5.03	40.8	2.6	2	7 7	26 9	87	40	1 74	1 41	5.8	169	28.2	60.6	1 69	157 2	038	<11	73	003	11	3	3.6	12	07	31	1 F	05	5.0	6	<2	2				

STANDARD 053/FA-107 9.09 122.28 34.60 150.1 298 35.2 12.1 818 3.19 29.4 5.9 20.0 3 8 26.9 5.18 5.02 5.61 75 .54 .092 17.1 180.2 .60 151.6 .082 2 1.74 .029 .16 3.5 2.6 1.11 .03 233 1.2 1.00 6.0 489 474 477

GROUP 1F1 - 1.00 GM SAMPLE LEACHED WITH 6 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 20 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. AU** PT** & PD** GROUP 3B BY FIRE ASSAY & ANALYSIS BY ICP-ES. (30 gm) - SAMPLE TYPE: SEDIMENT Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data KFA

1#6754.1	ACME ANI	TICAL L 002 Acc	ABORATOR redited	RIES LTI Co.)).	852 E. H	ASTINGS S	T. V 'CO	UVER BC	V6A 1R	(6 P)	HONE (604)253-3158	FAX (604' ^5	3-1716
					Bar	ker Mir	iemical ierals I	imited	File	# A200	564				
	SAMPLE#	Mo Cu	Pb Zn Ag	g Ni Co	Mn Fe	As U Au	Th Sr (CI SI BI		La Cr	Mg Ba	Ti B Al	Na KWS	c T1 SHg	Se Te Ga
	SI . SS-10 . STANDARD DS3 9.	pm ppm p 10 1.18 4. 57 9.62 9. 40 123.32 33.	.93 4.0 29 .19 44.8 29 .79 151.6 27	p ppm ppm 5 .8 .1 5 35.9 15.2 3 35.4 11.2	6 .04 621 8.81 819 3.24	<pre></pre>	<pre></pre>	05 .27 .05 12 .84 .15 3 72 4.86 5.62	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	 , ppn ppn , <.5 2.0 , 11.1 198.0 , 17.2 181.2 	 .01 2.6 . .36 34.7 . .58 146.3 . 	001 <1 .01 161 3 .52 082 1 1.73	.194<.01 .2 <. .017 .03 .2 2. .028 .16 3.8 2.	1 <.02 .01 40 < 1 .02<.01 33 7 1.09 .02 206 1	<.1 .03 .1 .2 <.02 4.5 1.4 1.02 6.1
	GROUP UPPER - SAM DATE REC	P 1F1 - 1.00 R LIMITS - A IPLE TYPE: B REIVED:	GM SAMPLE G, AU, HG, LACK SAND MAR 5 2002	LEACHED W W, SE, TE DATE 1	ITH 6 ML , TL, GA, REPORT	2-2-2 HCL-HI SN = 100 PH MAILED:	NO3-H2O AT 9 PM; MO, CO, March	5 DEG. C FOR CD, SB, BI, $i \frac{1}{2} / 02$ SI	ONE HOUR, TH, U, B =	DILUTED TO 2,000 PPM; C.L.	D 20 ML, AN ; CU, PB, Z	WALYSED BY I ZN, NI, MN, "OYE, C.LEON	CP/ES & MS. AS, V, LA, CR G, J. WANG; CE	= 10,000 PPM.	ASSAYERS
4															
					÷										
															1
l	All results	are conside	ered the co	nfidential	property	of the cli	ent. Acme as	sumes the li	abilities	for actual	cost of t	he analysis	only.	Data	<u> </u>

	SAMPLE#	Ag** Au** gm/mt gm/mt	Pt** Pd* gm/mt gm/m	* it	
	SI SS-10 STANDARD FA-1	.3 .06 <.3 9.17 0R 102.2 .47	5 < .01 < .00 4 < .01 < .00 4464	1 1 6	
	GROUP 6 - PRECIOUS METALS BY - SAMPLE TYPE: BLACK SAND	FIRE ASSAY FROM 1 A.T. S	AMPLE, ANALYSIS BY	ICP-ES.	
DATE RECEIVED: MAR 5 2002 DATE	e report mailed: Mon	ch 14/02 SIGNED I	sy.C.h.,	D. TOYE, C.LEONG, J.	WANG; CERTIFIED B.C. ASSAY
		1)		

Data_____FA ____

VTICAL LABORATORIES LTD. 002 Accredited Co.)

852 E. HASTINGS ST. V COUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604' °53-1716

WHOLE ROC ICP ANALYSIS

Barker Minerals Limited File # A200561 Page 1 22117 - 37A Avenue, Langley BC V2Z 1N9 Submitted by: Louis Doyle

	SAMPLE#	\$i02 %	Al203 %	Fe203 %	MgO %	CaO %	Na20 %	к20 %	ті02 %	P2O5 %	MnO %	Сг203 %	Ba ppm	Ni ppm	Sc ppm	LOI %	101/C %	TOT/S %	SUM %	
· •••••	001-01	46 75	10.03	15 77	5 76	14.41	2.18	1.03	1.97	94	.26	. 005	771	<20	23	.6	.04	.24	99.80	
	001-01	10.15	16.03	10 63	6 20	10 31	2 78	.21	.87	19	.23	.050	96	90	37	2.4	. 10	.02	99.86	
	001-02	51 77	16 63	A 97	2 13	5.41	3 80	5 36	55	.41	.17	.004	2291	22	13	6.4	1.29	- 19	99.85	
	001-05	17 44	15 01	10 02	6 13	8 00	3 25	3 31		30	16	017	750	50	26	4.0	.04	. 04	99.91	
		41.01	17.01	10.02	4 07	7 17	3.25	3.31	.02		18	020	005	70	28	7 6	1 37	01	99.88	
	001-05	40.00	15.50	10.71	0.03	1.11	2.17	3.69	. (7	.44	. 10	.020	,,,	37	20	1.0	1.21		//.00	
	001-06	47.09	14.01	10.75	5.36	6.97	3.91	2.76	.77	.44	. 18	.018	1122	21	24	7.5	1.62	.05	99.89	
	001-07	51.28	17.20	12.23	3.31	10.97	2.43	.11	1.63	.27	. 19	.009	114	27	35	.2	.05	<.01	99.85	
	001-08	48.56	17.74	9.47	4.17	9.22	4.02	1.14	.95	.42	.16	.004	605	22	21	4.0	.06	.34	99.93	
	001-09	63.02	2.04	24.00	.06	.11	.28	.17	.17	.04	.01	.017	76	63	3	9.5	.07	11.83	99.44	
	001-10	45 44	3.41	30.82	1.79	.11	.21	.76	.05	.07	.18	.001	174	24	2	16.7	2.30	13.97	99.57	
									·					.			0.7/	47.07	00 F/	
	RE 001-10	44.76	3.38	31.70	1.76	.12	. 19	.74	.05	.06	. 18	<.001	174	24	2	16.6	2.36	13.97	99.56	
	001-11	47.76	11.44	23.90	3.03	. 16	.10	1.35	.43	.12	.10	.010	944	60	9	11.4	.03	10.28	99.92	
	001-12	9.27	2.91	39.63	3.71	6.75	.03	. 19	. 15	. 11	.96	.009	82	148	2	20.1	2.94	19.01	83.85	
	001-13	35.48	10.73	30.61	3.37	.51	1.15	.86	.47	. 16	. 19	.010	566	29	8	16.0	.37	14.74	99.61	
	001-14	29.19	10.25	17.01	7.06	12.46	-11	1.17	.41	. 15	1.54	.019	443	54	8	14.7	4.54	1.94	94.13	
					4 03	~ //			4 00	16	17	010	271	E/	11	7.0	97	02	00 02	
	001-15	70.11	10.49	6.49	1.92	2.44	1.51	1.21	1.09	. 17	. 10	.010	271	- 24		4.0	20.	.02	100 07	
	001-16	95.60	-47	2.80	.05	.10	.05	. 14	.09	.08	.01	.015	108	<20	2	.0	.02		100.02	
	001-17	84.90	.39	9.93	.10	.26	.05	. 16	.05	.09	.03	.022	81	<20	1	3.9	. 12	4.05	99.69	
	001-18	55.18	6.39	19.10	1.44	.37	.18	1.62	.56	. 39	.03	.015	1194	87		14.5	. 30	11.25	99.72	
	001-19	67.36	5.20	14.70	1.55	.72	.05	1.34	.42	.53	.02	.010	1385	89	5	1.0	.10	9.18	99.07	
	001-20	65.12	7.89	13.69	.85	.55	.06	2.98	-68	.48	.01	.024	3758	58	9	7.2	.04	8.06	99.96	
	001-21	67.09	2.53	17.98	2.02	.20	.02	.39	.34	.06	.07	.015	311	87	5	9.1	. 20	8.84	99.86	
	001-22	93.32	.74	3.45	.23	.08	. 10	.07	.07	. 15	.01	.001	78	26	2	1.8	.02	.95	100.03	
	001-23	91.51	1.52	4.34	.38	.07	.05	. 18	.12	.07	.01	.001	176	22	3	1.7	.01	.97	99.97	
	001-24	55.59	16.64	13.06	3.66	.25	3.39	1.20	.67	.09	.07	.022	1142	37	13	5.1	.01	2.70	99.88	
	001-25	12.05	3.50	39.88	3.66	5.53	.04	.34	.13	.06	.97	.012	153	37	3	20.3	2.98	18.33	86.49	
	001-26	62.85	3.28	21.49	.62	.41	.04	1.09	.27	.42	.01	.018	2221	127	4	8.8	.04	10.67	99.56	
	001-27	31.36	6.79	36.30	1.91	.06	.06	.88	.26	.12	.06	.006	599	30	5	21.8	.03	24.64	99.67	
	001-28	85.26	2.42	8.12	.15	.06	.07	.46	.21	. 10	.02	.019	355	27	4	3.0	- 05	1.86	99.94	
	001-29	88.06	.99	7.07	.63	.04	.02	.03	.06	. 12	.01	.013	15	<20	3	2.9	.03	2.96	99.95	
								_								. .		40.47	00.00	
	001-30	68.00	1.35	19.70	.38	.22	.03	.26	.08	.22	.01	.014	270	23	1	9.6	.12	12.13	99.90	
	STANDARD SO-17/CSB	61.51	14.00	5.88	2.33	4.66	4.15	1.32	.62	1.00	.56	_ 443	400	35	23	5.4	2.35	5.44	99.92	

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION. TOTAL C & S BY LECO. (NOT INCLUDED IN THE SUM) - SAMPLE TYPE: ROCK R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE REPORT MAILED: MANG 22/02 SIGNED BYD. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS DATE RECEIVED: MAR 5 2002

Data / FA

Barker Minerals Limited FILE # A200561

Page 2

	_	
A CHAT	-	VTICAL
AURK	ANNUL	TITE AL

SAMPLE#	si02	Al203	Fe203	MgO %	CaO %	Na20 %	K20	T i 02 %	P205 %	Mn0 %	Cr203 %	Ba	Ni	Sc	LOI %	TOT/C %	tot/s %	SUM %	
		· / •				~								<u> </u>					
001-31	32.59	8.83	35.92	2.29	.62	1.32	.36	.31	.20	.07	.005	333	<20	5	16.7	- 15	15.87	99.25	
001-32	53.48	i 14 .93	17.09	3.75	.20	1.57	1.32	.59	.03	.09	.008	1318	36	11	6.1	.03	3.60	99.32	
001-33	59.53	3.99	24.47	1.32	.42	.04	.95	.36	. 29	.02	.014	1431	<20	- 4	7.5	.02	13.30	99.07	
001-34	66.16	7,00	11.21	3.69	.54	.20	1.38	.76	. 23	.11	.072	1188	335	10	7.5	1.30	.23	99.03	
001-35	13.12	.18	58.42	.02	.04	. 05	.06	.01	.01	<.01	.002	32	<20	<1	27.1	.11	38.92	99.02	
aa4 7/	100		E ()	7 77	15 13	2 10	7/	40	10	17	011	76	83	14	<u> </u>	1 74	22	99 06	
001-36	140.0/	11.00	2.42	3.37	12.12	2.17		207	- 10	0/	005	7/3	~20	5	8.2	0.8	12 83	08 50	
001-37	28.45	4.02	23.00	2.19		.04	-12	.40	. 27	.04	.005	10	~20	ر 1 ر	22 3	.00	33 03	00 38	
001-38	38.40	5 <.05	30.42	.00	.00	.03	<.UZ	.01	< 01	- 01	000	7451	<20	2	20.5	.07	28.08	07 0%	
001-39	41.05	1.85	33.31	- 13	.01	.03	.49	47	<.Ui	<_UI	.000	5749	<20	7	0.5	.02	12 06	08 72	
001-39A	68.2	2.82	15.93	.22	.08	-05	.12	• 17	.02	.01	-001	2200	N20	5	9.5	.05	12.00	70.JZ	
001-40	65.27	7 3.81	18.54	.98	.28	.03	.97	.34	.17	.02	.005	1383	97	4	8.3	.04	10.93	98.88	
RE 001-40	65.30	5 3.81	18.60	.98	.28	.03	. 98	.34	. 16	.02	.004	1384	110	4	8.2	.04	10.83	98.94	
001-41	73.39	6.53	9.38	.43	.04	.06	1.70	.33	.06	<.01	.013	9844	22	6	5.7	.07	6.85	98.73	
001-42	79.99	3.14	7.99	.23	<.01	.03	.79	. 19	.03	<.01	.013	6181	33	3	4.9	.03	6.23	98.00	
001-43	22.2	2 1.01	51.87	.08	.02	.01	.31	.07	<.01	<.01	<.001	1739	<20	1	23.8	.09	32.93	99.59	
																		00 50	
001-44	7.69	9 1.60	60.57	.77	.47	. 13	.07	. 17	.03	.06	.009	- 79	47	2	28.0	1.40	27.60	99.58	
001-44A	29.10	2.19	43.33	1.00	1.68	. 10	.43	. 19	.07	.10	.023	619	<20	3	19.8	2.31	20.42	98.08	
001-44B	48.04	.96	33.45	.82	1.87	.02	.27	.10	.06	.06	.021	260	<20	1	13.7	1.14	17.77	99.40	
001-45	54.60	5 14.36	10.90	1.68	4.58	2.54	2.03	1.76	.29	.28	.007	941	38	18	6.3	1.65	.11	99.50	
001-46	38.40	5 6.26	38.04	.99	.12	.13	- 98	.58	. 14	.07	.010	306	<20	6	12.6	. 18	10.83	98.42	
004 /7	00.0		7 70	75	11	1 73	1 5 9	20	20	04	014	070	25	8	2.0	11	68	99 45	
001-47	2/ 0	2 40 00	2.70	.35		1.75	7 71		- 00	.04	014	800	20	11	2.8	18	11	99 67	
UU1-48	14.0	1 12.02	4,01	11 77	17 00	1.30	3.31	1 55	.05	19	0/6	172	102	64	1.6	.10	05	00 60	
001-55	43.4	1 13.10	13.25	11.22	13.00	1.02	. 22	1.22	.03	. 10	.040	408	40	20	2 7	11	55	00 57	
001-56	48.7		10.41	0.00	0.47	4.41	.92	1 4/	. 47	- 17	.022	200	40	60	1 /	1/	0/.	00 50	
001-57	41.7	5 11.50	15.17	13.12	11.70	1.09	.09	1.04	.02	. 10	.057	200	00	40	1.4	. 14	.04	77.30	
001-58	47.1	2 17.05	12.78	4.16	12.50	1.63	.42	.62	.16	.29	.019	85	31	24	2.8	.05	2.04	99.57	
001-59	44.4	8 14.39	12.72	8.90	12.32	2.04	.67	1.27	.53	. 18	.028	246	45	38	2.0	- 03	.07	99.56	
001-60	46.7	8 16.01	12.87	5.69	13.23	1.54	.21	.66	. 11	.33	.041	75	64	32	2.0	.05	.69	99.49	
001-61	46.5	1 14.67	13.28	4.57	13.24	2.14	.43	2.33	. 28	. 15	.028	177	112	26	1.9	.02	.01	99.56	
001-62	19.0	2.31	53.01	.23	. 18	.05	. 05	.03	<.01	.01	.007	40	<20	<1	26.8	.27	39.93	99.71	
			_										20		70 0	47		00 E/	
001-63	1.7	5.12	60.39	.10	. 10	.03	<.02	.01	.02	.01	.004	12	<20	<1	50.0	.17	46.92	92.54	
001-64	28.3	4 7.22	11.69	7.11	18.86	.64	1.01	1.04	. 13	.24	.232	1028	836	17	22.1	(.55	. 28	99.44	
STANDARD SO-17/CSB	61.1	8`13.75	5.88	2.41	4.80	4.16	1.30	.61	.95	.55	.442	584	- 52	22	5.4	2.58	5.54	99.48	

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data K FA

E 5

Barker Minerals Limited FILE # A200561

Page 3

ACHE ANALYTIC

SAMPLE#	si02	Al203	Fe203	MgO	CaO	Na2O	K20	Ti02	P205	MnO	Cr203	Ba	Ni	Sc	LOI	TOT/C	TOT/S	SUM	
	%	%	%	%	%	%	%	- %	%	%	*	ppm	ppm	ppm	%	%	%	%	
001 45	10 22	13	52 8/	20	10	۵4	13	04	07	02	008	60	<20	1	27.7	.21	42.87	99.82	
001-65	6/ 00	0 50	11 87	.20	21	18	2 00	32	16	14	011	1082	- 00	12	7.6	1.00	6.11	99.01	
001-60	6 0/	< 03	58 21	< 01	04	01	< 02	.01	.01	< 01	.006	21420	<20	<1	27.4	.31	36.36	95.04	
001-07	10 52	50	57.92	.03	.03	.08	.12	.06	<.01	<.01	.003	2985	<20	1	28.8	.06	39.80	98.40	
001 00	61 94	7 52	14 31	6.50	.20	.01	<.02	1.06	.11	.06	188	47	502	20	7.3	.85	2.78	99.28	
001 05	01.74	1156	14131	0.00						• •									
001-70	8.17	.51	58.41	.05	.06	.02	<.02	.06	.03	.01	.005	18271	<20	1	30.1	.03	46.41	99.48	
001-71	72.45	3.33	12.60	.24	.04	.08	. 88	.22	.04	.01	.013	5850	<20	4	7.6	.04	10.58	98.16	
001-72	58.47	4.80	19.39	.30	.04	.06	1.21	.30	.04	.01	,007	7328	<20	5	12.7	.05	17.58	98.15	
001-73	65.10	1.60	16.80	.06	.02	.47	.23	.15	-01	<.01	.020	14996	<20	2	11.7	.03	14.99	97.84	
001-74	24.10	3.26	44.13	.23	.01	- 04	.77	.21	.01	<.01	.006	6251	<20	3	24.5	.04	32.46	97.96	
004 75	70 /5	7 //	10 10	25	< 01	0/	01	34	01	< 01	010	6728	~20	٦	22.2	04	20 05	98 63	
001-75	17 76	2.40	57 76	.20	10.	.04	70	- 24	03	< 01	002	4273	<20	2	27.2	.03	37.43	98.56	
001-70	14 06	2.57	52.84	17	.04	.07	.73	18	.05	< 01	.002	4400	<20	2	27.5	.04	38.32	98.76	
001-77	14.00	2.02	70 33	48	.07	.01	02	.10	13	.07	.010	145	22	3	16.6	. 14	19.48	99.92	
001-78	26 33	1 01	9 42	7 60	13 72	.08	.18	.11	- 06	.55	.029	477	114	3	15.0	7.44	3.02	74.24	
001-78	20.33	1.01	,		13.72			• • •						-	••••				
001-79	12.12	1.05	56.07	.10	.08	.07	.26	.09	.06	.01	.004	2384	<20	1	28.5	.08	40.73	98.68	
001-80	20.96	2.26	47.09	. 15	.04	.03	.54	. 13	.03	<.01	.003	4774	<20	1	26.0	.03	37.29	97.77	
001-81	74.43	2.62	15.21	.05	.08	.37	.17	.22	.06	.01	.018	113	33	3	6.5	.08	7.06	99.76	
001-82	11.48	3.12	55.17	.17	.03	.06	.71	.22	.04	.01	.003	635	<20	3	28.7	. 19	43.62	99.79	
001-83	14.04	2.98	53.35	. 19	.03	.06	.69	.22	.07	.01	.003	614	<20	3	28.0	.20	42.22	99.71	
004 <i>Q</i> /	44.07	07	FF /7	24		0/	21	05	10	01	004	107	~20	1	28 8	20	/3 71	07 78	
001-84	111.87	.97	22.42	12.	-00	- 04	.21	.05	. 10	.01	.004	1/35	54	10	0 1	1 07	43.71	00 75	
001-85	40.42	23.13	1.30	2.09	.10	.04	2.00	-07	17	.04	2 003	20/	<20	1	35 0	11 50	18	05 30	
001-86	19 40	1.43	1.20	1.74	40.07	- 17	. 31	20	. 13	.05	012	122	<20	5	18 1	.68	19.62	95.84	
001-87	75 65	0.05	1. 27	55			2 80			.00	013	1804	53	8	5 2	2.29	.97	99.71	
001-08	20.01	7.75	4.61		. 4 /	. 12	2.00			.02	.013	1004		•	212	210/	•••		
001-89	91.64	2.64	.87	. 18	. 16	.05	.73	.11	.08	<.01	.015	770	<20	3	3.2	2.38	.06	99.76	
001-90	51.41	12.09	16.40	4.08	4.03	-41	1.07	1.90	.32	. 15	.030	1045	70	17	7.7	.06	3.70	99.71	
001-91	64.99	17.03	3.91	1.21	.42	. 16	4.80	. 78	. 12	.02	.015	2347	59	14	6.1	1.18	1.43	99.83	
001-92	76.23	7.48	4.26	1.39	2.63	.07	.97	.35	.24	.03	.012	889	35	7	5.8	1.69	1.49	99.57	
001-93	54.06	5.13	27.39	1.22	.18	.10	.50	.24	.11	-04	.006	151	33	5	10.4	- 09	8.72	99.40	
224.04	77 70	0.25	E 3/	4 5/	ЭF	1.0	1 15	74	07	.01	017	274	50	Q	٨. ٥	70	2 67	00 7/	
001-94	11.52	9.25	J.24	1.70	.25	.40	1.12	.30	.07	101	.013	250	72	10	5.0		2 76	00 73	
UU1-95	22.40	10.01	11.10	1.30	2.22	4.00	1.20	-04	1 07	.04	.014	6.17		25		2 7.8	5 32	00 80	
STANDARD SO-17/CSB	01.35	14.20	5.85	2.23	4.08	4.12	1.42	. 59	1.03	.50	.429	417	0		2.4	2.00	2.36	77.00	

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_/FA

.

Barker Minerals Limited FILE # A200561

Page 4

ACHE ANALYTICAI

SAMPLE#	Si02	A1203	Fe203	MgO	CaO	Na2O	K20	T i 02	P205	MnQ	Cr203	Ba	Ni	Sc	LOI	TOT/C	TOT/S	SUM	
 	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	%	%		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~	λ.	<u>Å</u>	74		74	ppn	ppii	ppm	/0	/6	~	/0	
001-86	7.83	1.44	1.21	1.72	48.36	. 19	.32	.06	. 13	,05	.001	201	<20	2	38.6	11.40	.12	99.93	
001-87	21.77	6.50	44.52	1.44	.51	.41	.67	.36	.33	.10	.012	143	20	7	18.0	.68	18.53	94.64	
001-88	76.47	9.83	3.92	.52	.34	. 11	2.82	.45	.20	.02	.013	1870	52	9	5.0	2.22	.84	99.91	
001-89	91.14	2.87	.92	. 19	.17	.10	.72	. 13	.11	<.01	.014	844	<20	3	3.3	2.46	.04	99.76	
001-90	51.00	12.41	16.53	3.72	3.94	-41	1.13	2.02	.31	.15	-032	1090	65	19	7.9	.08	3.46	99.68	
	11 17	17 44	7 07	1 21	1.1	14	1 70	87	18	03	015	25.87	50	15	64	1 23	1 30	99 89	
001-91	75 97	7.07	2.02	1 29	2 67	. 10	4.70	-04	. 10	.03	012	062	36	8	5 7	1 70	1 32	99 75	
001-92	1/2.03 EZ /E	6 30	79 00	1 17	2.05	12	.77 53	.50		.04	006	152	<20	5	10.2	.10	8.38	99.50	
001-95	74 01	0.48	5 27	1.17	24	. 12	1 28	.20	12	.07	013	287	48	ő	3.9	.36	2.50	99.89	
001 05	5/ 94	17 20	11 27	1 30	2 14	4 51	1 38		16	.04	014	268	37	11	6.0	.07	2.56	99.80	
001-95	54.00	17.20	11.21	1.30	2.14	4.51	1.50	.07	0	.04	.014	200	57	••	0.0		2170	//	
001-96	66.88	15.10	5.32	1.25	.89	6.48	.56	.70	.17	.03	.013	211	49	8	2.4	.07	1.34	99.82	
RE 001-96	66.99	15.09	5.27	1.26	.90	6.57	.58	.72	. 15	.03	.013	212	48	8	2.2	.07	1.28	99.80	
001-97	60.61	16.02	8.41	2.64	.37	.65	4.49	-81	.12	.12	.012	760	115	16	5.6	.56	2.10	99.95	
001-98	66.18	17.18	3.59	1.15	.31	.22	5.25	.66	.20	.03	.012	2758	31	11	4.9	.68	.60	100.00	
001-99	71.07	10.56	7.31	.60	.48	.28	3.23	.51	.08	.02	-011	963	51	9	5.3	.35	4.85	99.57	
001 100	74 19	0.25	10 03	6 02	15 05	06	1 15	1 40	23	17	207	454	394	27	19.0	4.72	.07	99.75	
001-101	50.10	11 60	12 07	1 10	66	25	3 52	50	11	.03	.012	769	66	12	9.0	.59	8.97	99.84	
001-101	8/ /8	5 28	2.84	35	77	12	1 01	23	20	01	018	1125	76	6	3.6	2.27	< .01	99.13	
001-102	12 06	27	56 99	04	08	03	03	02	.04	<.01	-003	1662	<20	<1	29.2	.01	43.70	99.81	
001-104	77 19	0 50	3 23	.71	. 44	.18	2.22	.49	.09	.01	.015	2590	48	ģ	5.3	2.81	1.25	99.76	
001 104	1		3.23	•••	•••						• - • -								
001-105	40.93	.75	7.82	37.75	.17	.01	<.02	.01	.01	.07	.342	32	1843	7	11.7	.11	.01	99.81	
001-106	55.86	16.79	8.50	4.41	2.68	3.96	1.70	1.02	.17	. 17	.007	735	32	25	4.4	.10	.90	99.76	
001-107	92.77	<.03	4.31	.08	.07	.05	.02	.02	.03	.01	.003	14	32	<1	2.5	.04	2.60	99.87	
001-108	41.56	1.13	9.25	35.22	. 99	<.01	<.02	.02	<.01	.06	.356	30	2055	7	11.0	.46	.03	99.85	
001-109	42.37	.66	8.32	36.56	.02	<.01	<.02	.01	<.01	.07	.357	10	1738	8	11.3	.06	<.01	99.89	
001-110	24 10	1 93	48 63	14	.01	.32	. 43	. 13	<.01	<.01	.002	136	<20	1	24.2	.01	35.72	99.90	
001-111	48 05	12 10	22 68	3 60	.18	-40	.84	1.40	.07	.41	.038	216	102	19	9.7	2.10	.84	99.51	
001-112	26 11	11.76	33.40	7.27	.33	.29	.60	1.73	.16	.69	.057	150	109	24	16.7	3.52	3.58	99.13	
001-113	63.71	12.02	11.48	2.45	.22	.38	1.20	1.39	.10	.13	.063	344	123	19	6.0	1.41	.22	99.20	
001-114	79.44	4.68	9.03	.26	.04	.31	.73	.25	<.01	.04	.020	189	29	6	5.0	2.48	.61	99.83	
·	Ì					_	_				• • •			-			40.07	0/ F/	
001-115	26.90	6.94	41.84	1.31	.28	.38	.74	.38	.29	.04	.014	179	41	7	17.4	- 55	19.86	96.54	
001-116	24.76	4.20	47.70	.17	-04	. 10	.90	.26	.05	.01	.016	402	<20	5	21.5	.20	28.88	99.75	
 STANDARD SO-17/CSB	61.39	13.94	5.75	2.30	4.63	4.14	1.45	.63	.92	.57	.424	404	- 36	24	5.4	2.4/	2.35	<b>AA'0</b> 0	

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data______FA

**44** (

.

Barker Minerals Limited FILE # A200561

Page 5

ACRE ANALISICAL		
SAMPLE#	SiD2 AL203 Fe203 Mg0 Ca0 Na20 K20 TiO2 P205 Mn0 Cr203 Ba Ni Sc LOI TOT/C TOT/S SUM % % % % % % % % % % % % ppm ppm ppm % % % %	
001-117 001-118 001-119 001-120 001-121	65.07       15.87       5.80       1.28       .39       .39       4.81       .65       .08       .03       .016       1448       37       12       5.3       .61       2.51       99.86         22.20       .83       49.88       .17       .07       .04       .23       .06       .04       .01       .007       107       <20	
001 - 122 001 - 123 001 - 124 001 - 125 001 - 126	42.88       5.34       9.59       11.15       8.73       .04       .11       .83       .04       .19       .271       83       589       19       20.7       6.28       <.01	
RE 001-126 Standard SO-17/CSB	49.34 15.68 10.39 7.10 7.12 2.68 1.88 .80 .19 .16 .032 1128 59 27 4.2 .39 .42 99.71 61.46 13.95 5.85 2.33 4.64 4.12 1.41 .62 .99 .56 .443 399 34 23 3.4 2.45 5.46 99.83	

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data____FA

SAMPI E#	Co	Cs	Ga	Нf	Nb	Rb	Sn	Sr	Ta	Th	<u> </u>	V	<u> </u>	Zr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	ТЬ	Dy	Ho	Er	Tm	Yb	<u></u>
	ppm	ppm	ppm	ррп	ppm	ррт	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	P
001-01 001-02 001-0 <b>3</b> 001-04 001-05	41.6 39.6 16.0 34.2 32.4	1.1 .2 1.3 .9 4.0	19.8 16.7 17.0 15.6 14.2	5.4 1.4 1.8 1.7 1.7	13.7 1.8 2.2 1.8 1.5	29.6 4.3 67.9 45.4 57.4	3 <1 <1 <1 <1	649.9 357.0 789.0 448.5 507.0	1.4 .1 .2 .1 .1	4.8 .4 1.2 .7 .7	2.2 .6 1.2 .6 .3	337 273 231 244 258	<1 <1 <1 <1 <1	143.4 54.6 60.6 56.3 47.0	70.9 22.1 19.4 20.4 20.2	47.5 6.2 9.7 5.8 7.2	116.1 12.1 18.4 11.9 14.7	15.75 1.81 2.37 1.72 1.98	76.3 9.5 10.9 9.2 10.9	17.1 2.8 3.0 2.8 2.8	4.55 .95 .96 .95 1.00	15.36 3.26 3.16 3.08 3.56	2.03 .53 .44 .52 .51	12.46 3.92 3.30 3.29 3.37	2.26 .76 .65 .73 .65	6.54 2.18 1.89 1.98 1.90	.95 .32 .30 .29 .27	6.69 2.20 1.96 2.01 2.05	
001-06 001-07 001-08 001-09 001-10	30.7 27.7 22.0 19.5 81.2	3.2 .2 .3 .4 .7	14.8 22.6 18.5 3.7 3.4	1.7 3.2 2.1 <b>3</b> .0 1.1	1.7 2.5 2.7 2.1 .6	44.5 2.9 19.5 7.4 32.2	<1 <1 <1 2 8	689.3 219.4 203.0 23.4 18.9	.1 .2 .1 <.1	.8 .4 1.0 4.3 2.9	.6 .5 1.3 .8 2.3	241 330 298 15 <5	<1 <1 <1 <1 3.3	47.4 114.3 78.2 108.1 37.8	19.9 43.1 23.0 6.3 7.8	7.0 6.1 9.1 14.7 8.2	13.6 15.4 19.0 28.4 18.1	1.98 2.56 2.65 3.15 1.83	10.3 15.3 13.3 12.0 7.8	2.8 5.3 3.9 2.2 1.4	.92 1.71 1.18 .30 .19	3.21 6.20 3.79 1.66 1.46	.51 1.01 .54 .22 .18	3.29 7.01 4.08 1.10 1.24	.66 1.45 .79 .20 .25	1.90 4.32 2.32 .54 .67	.28 .63 .32 .09 .09	1.84 4.20 2.23 .60 .52	
RE 001-10 001-11 001-12 001-13 001-14	78.9 79.6 92.7 62.4 24.8	.7 2.5 .4 1.6 1.3	3.1 16.2 4.5 15.7 14.7	1.0 1.5 .7 2.3 2.2	.6 8.2 2.2 8.8 6.1	27.5 72.4 10.3 43.1 55.4	6 3 3 3 7	18.0 16.2 100.0 52.4 167.0	<.1 .6 .2 .7	2.5 7.9 1.8 8.9 6.7	2.6 1.5 .9 2.3 1.7	<5 50 20 60 71	3.1 1.4 1.7 1.5 1.8	36.4 57.0 25.5 79.5 81.3	9.2 14.0 10.9 17.5 28.4	7.7 29.4 6.3 31.8 19.4	16.1 49.2 12.1 56.5 36.0	1.79 5.78 1.47 6.56 4.34	6.5 23.6 6.4 25.9 18.2	1.5 4.3 1.4 4.6 4.1	.22 1.04 .99 1.21 1.91	1.63 3.41 1.65 3.93 4.57	.24 .44 .25 .48 .68	1.52 2.53 1.67 2.81 4.36	.30 .45 .31 .53 .90	.80 1.30 .86 1.46 2.28	.11 .17 .13 .21 .34	.63 1.28 .85 1.36 2.18	
$\begin{array}{c} 01-11 \\ 01-12 \\ 01-12 \\ 01-12 \\ 01-13 \\ 001-13 \\ 001-14 \\ \end{array}$																													
001-20 001-21 001-22 001-23 001-24	14.3 37.4 11.6 8.9 12.1	1.0 .3 .3 2.0	13.0 5.1 3.1 4.2 22.3	2.2 .6 1.5 1.5 2.9	13.8 3.6 1.1 2.4 13.5	56.5 9.3 3.5 7.7 48.5	16 4 2 1 3	17.5 4.3 8.1 6.2 112.7	1.1 .2 <.1 .2 1.0	4.6 .9 1.4 1.7 10.0	5.3 1.4 .4 .7 1.9	150 76 5 11 64	3.3 2.0 5.2 4.4 2.0	78.0 22.8 53.4 50.4 96.8	15.2 8.9 8.6 5.0 16.2	21.3 7.3 7.9 14.4 25.9	35.3 12.2 18.2 31.2 45.5	4.46 1.58 1.79 3.10 5.38	17.4 7.2 7.3 12.6 21.0	3.4 1.7 1.5 2.4 3.6	.74 .46 .27 .37 1.08	2.92 1.92 1.60 1.58 2.74	.41 .26 .25 .19 .43	2.40 1.44 1.44 1.06 2.45	.47 .27 .27 .16 .53	1.33 .75 .73 .36 1.51	.18 .09 .11 .06 .24	1.21 .56 .67 .49 1.56	
001-25 001-26 001-27 001-28 001-28	278.5 19.6 117.9 23.9 42.0	-8 -6 1.5 -7 <.1	5.1 6.7 9.6 5.4 4.4	.8 1.1 1.0 2.6 1.1	2.3 4.6 4.7 4.6 1.7	22.0 21.4 44.2 16.6 1.0	4 12 2 4 2	97.4 9.5 10.5 14.8 2.9	.2 .3 .4 .3 <.1	3.1 2.6 5.3 4.0 1.9	1.9 4.3 .9 1.0 .4	27 144 31 24 14	2.7 2.4 2.1 4.0 1.6	29.4 35.4 33.9 91.3 44.4	20.2 9.5 10.4 10.4 10.6	13.5 12.6 19.6 19.2 14.0	24.2 22.5 31.9 42.5 32.4	2.88 2.76 3.75 4.36 3.03	12.2 11.1 14.2 18.1 12.0	2.8 2.1 2.6 3.6 2.2	1.08 .52 .69 .59 .39	2.84 1.94 2.00 2.60 2.00	.49 .28 .33 .42 .36	3.00 1.44 1.81 2.05 1.85	.65 .28 .32 .37 .35	1.62 .77 .90 .92 .92	.24 .12 .14 .15 .12	1.49 .69 .91 1.04 .92	
001-30 STANDARD SO-17	159.6 19.4	.3 3.9	7.2 19.4	.7 11.7	1.8 24.8	7.6 22.7	11 11	14.7 323.9	.1 4.5	1.3 11.1	3.4 12.7	159 124	4.6 11.1	24.9 365.2	3.2 27.4	5.3 10.9	9.7 23.2	1.07 2.87	4.1 13.8	.7 3.3	.16 1.07	.69 3.80	.08	.50 4.34	.08 .96	.27 2.78	<.05 .41	.40 2.89	
									GROU	P 48	- REE	E - Li	1802 I	FUSION	, ICP	/MS Fi	INISHEI	<b>)</b> .											

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_____FA__

**£**£ •

4

.

Barker Minerals Limited FILE # A200561

AUME ANALTIIUAL							_	_																					7 KM R.	
SAMPLE#		Co	Cs	Ga	Hf	Nb	Rb	Sn	Sr	Ta	Th	U	۷	W	Zr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
		ppm	ppin	ppm	ppii	ppm	ppin	ppin	ppa	ppn	ppm	ppii	ppn	ppa	phi	- ppii	Phil	ppin	ppii	hhi	ppin	hhii	ppiii	_ppm	ppm	ppin	Phu .	PPm	Phil	ppn
			-	4.7.4	4.5	5.0		.1	E/ 0	,	F 4	1 /	74	-1	/2 2	12.0	10.0	40 O	6 10	17.0	Z 5	00	2 44	74	2 18	70	1 10	15	03	14
001-31	2	(.9		12.1	1.2	5.9	14.4	< ł _	74.U	.4	5.0	1.4	20	< I - 4	43.3	16.7	19.0	40.U	4.17	71 3	5.5	.77	2.00	.30	2.10	- 37	1.10		. 5/	.14
001-32	1	1.4	2.4	22.5	2.5	11.5	57.0	2	00.3	.9	12.0	2.5	22	< <u> </u>	04.9	10.4	42.0	00.5	0.10	31.2	2.9	1.02	4.10	.50	3.01		1.40	. 22	70	.22
001-33		4.6	.4	7.2	.9	6.6	19.5	8	7.8	.4	5.5	5.2	115	1.8	39.0	10.7	12.2	20.3	2.41	10.8	2.4	. 29	1.97	.20	1.02	.29	.00	. 11	.72	.10
001-34	4	1.5	1.7	11.2	2.3	14.0	60.0	9	41.2	-8	4.5	6.3	98	4.1	(7.9	14 [	19.1	30.5	5.89	15.7	3.4	-81	2.57	.57	2.59	.44	1.30	- 20	1.45	.21
001-35	4	6.7	<.1	<.5	<.5	<.5	2.5	52	2.7	<.1	<.1	.5	<5	1.1	2.2	.5	<.5	<.5	.07	<.4	<.1	<.05	.15	.01	.10	<.05	<.05	<.05	<_05 <	<.01
001-36	2	7.0	.8	23.0	2.8	13.1	26.2	12	611.9	.9	13.6	10.1	62	<1	91.3	31.7	57.4	102.9	11.52	46.3	9.1	1.57	6.92	1.04	5.73	1.00	2.69	.37	2.58	.38
001-37	1	1.2	.3	6.8	1.1	6.7	20.2	5	8.5	.4	2.2	3.8	99	3.5	39.1	10.7	12.5	20.4	2.45	10.1	2.3	.48	1.86	.25	1.82	.31	.83	.10	.70	.10
001-38	10	1.6	<.1	<.5	<.5	<.5	.5	<1	.8	<.1	<.1	.2	<5	<1	.5	<.1	<.5	<.5	<,02	<.4	<.1	<.05	<.05	<.01	<.05	<.05	<.05	<.05	<.05 ·	<.01
001-39		3.5	.6	4.8	.7	1.8	21.9	286	8.3	.1	2.1	2.3	168	12.1	25.6	5.5	8.2	13.7	1.76	6.8	1.2	.24	.88	.12	.83	.16	.43	.06	.38	.06
001-394		89	.8	6.2	1.1	2.7	35.0	187	9.6	.2	3.1	2.7	251	14.2	39.0	6.5	11.9	20.4	2.45	9.6	1.8	.40	1.22	. 15	1.06	.21	.56	.08	.53	.07
001 <b>3</b> /A																														
001-40	1	7.4	.4	7.1	1.1	6.1	22.4	14	6.8	.4	2.7	2.6	131	4.3	37.9	6.3	7.5	11.8	1.66	7.0	1-4	.22	1.22	- 16	1.06	.19	.53	.07	.52	.07
RE 001-40	1	7.8	.5	6.5	1.0	6.1	22.0	13	7.0	.4	2.5	3.0	132	4.5	37.7	6.5	7.9	11.6	1.79	7.1	1.4	.20	1.24	-17	1.06	.19	.57	.06	.46	.08
001-41		9.2	1.7	12.7	4.2	6.0	76.1	123	20.5	.5	9.1	3.4	92	10.7	145.0	14.1	26.7	52.3	5.20	20.5	3.8	.46	2.38	.35	2.17	.39	1.19	-17	1.10	. 19
001-42		6.8	1.0	6.7	1.1	2.7	39.0	216	7.1	.2	2.8	3.3	278	11.9	36.5	6.5	12.7	18.6	2.27	8.9	1.8	.40	1.24	.17	1.15	. 18	.54	.06	.59	.08
001-43	2	5.5	-4	2.6	.5	.8	12.0	129	6.2	<.1	1.0	.9	46	11.8	16.9	2.8	3.7	4.5	.80	3.4	.6	.17	.56	.07	.50	.07	.22	<.05	.16	.02
001-44	9	3.0	.3	4.7	<.5	2.5	3.3	6	36.3	.1	.4	.9	12	11.8	12.8	11.6	16.3	23.5	2.72	10.8	1.8	.32	1.77	.26	1.75	.27	.82	.09	.54	.05
001-44A	11	6.9	.5	6.0	-6	2.5	17.1	7	34.3	.2	- 9	2.0	28	7.9	20.1	11.6	5.9	6.6	1.38	5.6	1.4	. 15	1.33	.22	1.40	.29	.82	.08	.65	.08
001-44B	2	3.9	.3	3.3	<.5	1.2	12.3	7	34.0	<.1	.4	1.2	15	3.8	9.4	4.8	1.3	<.5	.48	2.0	-4	.08	-67	.07	.61	.12	.33	<.05	.20	.04
001-45	2	2.0	2.6	18.8	6.3	28.4	84.1	2	204.9	1.9	10.5	2.9	145	5.4	236.3	34.1	38.5	85.8	9.18	37.1	8.1	1.56	7.27	1.05	6.61	1.06	2.90	.41	3.00	.42
001-46	9	4.5	.9	9.9	2.7	16.8	46.1	96	33.9	1.0	6.5	1.6	29	6.7	98.8	18.2	35.7	74.1	7.60	30.8	6.0	.60	4.84	.65	3.68	.54	1.58	.21	1.44	. 19
004 (7		<b>7</b> 0	4 7	40.7	1 7	F 7	(7.0	1	16.3	4	17 7	2.0	27	-1	220 7	14 7	707	70.0	6 01	25 /	45	94	7 77	50	2 71	1.6	1 / 1	21	1 54	22
001-47		1.0	1.5	10.7	0.3	2.3	01.9	-1	40.2	. 0	12.3	2.9	21 E0		230.7	20.1	32.1	70.0	7 90	20.4	4.J 5 Z	-00	7.22		2 41	.40	1 97	.21	1 02	21
001-48	1	0.7	2.0	15.7	9.0	9.9	114.0	< 1	39.5	.9	12.0	3.3	20	< 1 - 1	317.0	20.1	37.1	10 5	2.07	12 0	2.2	1 27	4.20	.01	5.01	.01	2 40	.20	1.72	. 31
001-55	2	2.5	-1	14.5	1.5	1.4	5.4	<1	328.2	<.1	<.1	<. I	423	<   	20.0	20.3	3.2	20.7	2.21	12.9	4.2	1.21	2.02	.00	7 16	.93	4 54	.34	4.50	. 37
001-56	5	4.5	2.1	16.5	1.5	3.2	29.2	<1	537.2	.2	1.9	1.4	238	<1	47.3	18.1	10.8	20.0	2.80	11.0	3.2		3.43	. 74	3.10	. 39	1.51	- 24	1.39	.23
001-57	5	3.3	<.1	15.7	2.2	3.6	4.0	1	453.0	.2	.5	• 1	440	<1	47.7	39.6	8.1	25.7	4.50	20.1	8.1	2.02	8.35	1.51	1.50	1.30	3.58	.49	5.19	-41
001-58	2	6.4	.4	19.2	1.0	<.5	10.1	3	300.1	<.1	.6	1.2	250	1.0	32.1	18.5	4.1	7.4	1.43	7.1	2.1	.68	2.72	.42	2.98	.59	1.62	.23	1.66	.31
001-59	4	3.9	-1	17.5	1.5	2.1	7.6	1	808.8	<.1	.3	. 1	380	<1	36.3	32.7	10.9	28.9	4.61	23.0	6.9	1.75	6.89	1.03	6.12	1.00	2.96	.38	2.61	.40
001-60	3	2.5	<.1	17.9	1.1	.5	3.0	2	372.2	<.1	.9	.9	285	1.0	34.5	18.1	6.6	12.4	2.01	9.5	3.0	.76	2.87	.44	3.02	.62	1.62	.24	1.65	.28
001-61	Ā	5.4	.5	22.6	4.0	33.0	10.4	- Ā	806.3	2.1	3.6	1.0	267	<1	150.5	24.6	28.5	60.0	6.77	26.9	6.2	1.75	5.80	.88	5.01	.80	2.25	.29	1.91	.28
001-62	1	1.0	2	<.5	< 5	<.5	2.4	130	4.5	< 1	.1	.7	<5	1.8	4.6	1.1	<.5	<.5	.12	.8	<.1	<.05	.20	.02	.21	<.05	.07	<.05	<.05	<.01
001 0L	•		• -								- •	••	-																	•
001-63	6	3.5	.1	.7	<.5	<.5	.7	205	1.8	<.1	<.1	1.8	<5	2.9	.5	1.8	<.5	<.5	.02	<.4	<.1	<.05	.22	.03	.32	<.05	. 10	<.05	<.05	<.01
001-64	9	8.3	1.0	10.1	1.6	11.8	41.5	46	391.2	`.6	1.3	4.3	118	7.3	57.7	20.9	10.7	21.3	2.76	11.4	2.8	.68	3.38	.58	3.31	.61	1.64	.21	1.41	.20
STANDARD S	50-17 1	8.8	4.0	20.3	11.9	26.0	22.9	12	323.1	4.2	12.3	12.1	123	12.1	367.0	27.1	12.0	24.4	3.01	14.2	3.5	1.04	4.04	.62	4.43	.94	2.90	.40	3.00	.45

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

4

.

Barker Minerals Limited FILE # A200561

AURE ANALITICAL							·····-																						
SAMPLE#	Co	Cs	Ga	Hf	Nb	Rb	Sn	Sr	Ta	Th	U	V	W	Zr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	ть	Dy	Ho	Er	Tm	Yb	Lu
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	mqq	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
001-65	20.3	.2	.8	<.5	.9	5.0	14	4.6	<.1	.6	2.5	11	4.2	8.6	1.8	1.5	3.9	.30	1.4	.4	.09	.56	.06	.38	.08	.16	<.05	.17	.03
001-66	37.3	2.5	11.3	6.4	6.4	98.9	21	30.5	_4	11.3	4.9	60	1.4	210.6	23.4	22.4	45.2	4.71	20.8	4.4	.82	5.16	.76	4.51	.78	2.13	.30	1.84	.27
001-67	<.5	<.1	4.9	<.5	<.5	.8	1000	77.2	<.1	<.1	2.6	19	9.1	3.4	.6	.6	.5	.04	<.4	.2	.98	.21	.01	.19	<.05	<.05	<.05	.06	.02
001-68	.9	.2	2.3	<.5	1.1	3.8	251	27.6	<.1	1.1	6.1	63	8.0	15.0	1.4	3.0	5.1	.50	2.1	.2	.16	.34	.04	.23	.05	.12	<.05	.16	.03
001-69	63.4	.1	11.7	1.8	10.5	1.5	25	3.4	.5	1.0	.9	137	11.9	58.8	13.1	10.8	23.0	2.59	12.3	2.5	.48	2.34	.40	2.41	.50	1.31	.15	1.17	.16
001-70	3.8	.5	3.8	.6	1.1	2.1	495	111.1	.1	1.2	3.9	105	43.8	14.8	2.5	7.0	10.8	1.25	4.8	.7	1.64	.75	.08	.51	.08	.20	<.05	.26	.03
001-71	1.8	1.1	7.0	1.3	3.8	37.5	75	6.6	.3	3.6	2.5	102	15.0	43.3	4.9	11.2	21.1	2.29	9.4	1.4	.31	1.10	.15	.77	.16	.49	.05	.48	.07
001-72	3.6	1.2	8.4	2.9	5.4	49.5	229	24.3	.5	5.8	1.9	62	16.0	96.8	14.1	18.8	37.1	3.93	16.6	2.7	.58	2.11	.35	2.05	.40	1.11	.16	1.18	.15
001-73	4.2	.4	6.6	1.1	2.8	10.4	440	50.9	.3	2.4	2.0	120	15.8	32.9	2.7	7.1	12.4	1.36	5.6	.9	.34	.57	.08	.49	.07	.23	<.05	.32	.05
001-74	3.1	.8	8.5	1.3	3.4	33.9	50	9.5	.2	2.8	1.3	99	13.2	40.6	10.5	14.0	22.1	2.47	10.5	1.9	.45	1.63	.26	1.80	.32	.85	.10	.72	.08
001-75 001-76 RE 001-76 001-77 001-78	1.0 4.3 4.5 15.5 97.9	.9 .7 .9 <.1	8.1 10.0 10.1 4.3 4.7	1.5 1.3 1.3 .7 <.5	4.5 3.3 3.4 2.4 1.3	37.8 28.9 29.9 .8 7.7	46 159 148 20 14	7.9 7.0 8.1 2.6 305.3	.3 .2 .1 <.1	4.0 2.7 3.2 2.3 .3	1.7 4.2 4.4 1.4 .2	129 217 222 12 23	16.8 23.8 24.1 2.2 <1	48.2 41.9 46.3 22.4 8.1	10.8 5.7 5.7 12.1 11.5	15.3 11.9 12.0 9.4 6.0	26.3 19.9 19.7 16.7 10.7	2.83 2.10 2.07 2.01 1.45	12.5 8.6 8.3 8.8 6.4	2.0 1.3 1.4 1.8 1.8	.44 .34 .37 .47 1.31	1.68 .91 .90 2.16 1.79	.27 .14 .15 .33 .30	1.80 .91 .94 1.99 1.96	.30 .18 .17 .36 .35	-88 -51 -48 -95 -78	.10 .07 .07 .12 .09	.65 .50 .52 .79 .54	.10 .07 .07 .12 .08
001-79	1.5	.5	4.0	.7	1.4	9.5	344	15.9	<.1	1.4	3.9	70	21.2	20.1	2.3	4.3	7.5	.80	3.5	.5	.23	.45	.06	.34	.05	.19	<.05	.22	.03
001-80	2.0	.6	7.3	.6	2.3	21.2	557	9.3	.1	1.8	4.4	129	30.1	24.2	3.4	8.0	14.6	1.54	6.2	.7	.39	.61	.08	.55	.12	.37	<.05	.32	.05
001-81	2.8	<.1	4.3	4.3	2.9	5.3	6	24.4	.2	6.9	1.3	19	<1	142.3	8.0	14.5	29.5	2.99	12.8	2.1	.28	1.48	.23	1.24	.25	.73	.10	.74	.12
001-82	8.8	.5	4.6	1.4	3.8	29.3	34	6.8	.3	3.1	1.3	71	6.0	45.8	11.5	18.1	33.2	3.56	15.8	2.6	.39	1.98	.29	1.87	.35	.89	.12	.85	.13
001-83	10.8	.6	4.6	1.6	3.7	27.6	37	7.0	.3	3.2	1.7	64	6.2	45.9	11.9	18.1	33.5	3.68	15.7	2.6	.47	2.08	.31	1.92	.36	.96	.13	.86	.14
001-84	12.3	.3	1.6	<.5	.9	7.8	81	4.2	<.1	1.1	.4	26	2.2	9.9	2.2	3.7	5.9	.66	2.7	4.	.10	.46	.08	.38	.07	.21	<.05	.19	.03
001-85	15.3	6.2	32.5	4.4	18.5	244.7	4	84.3	1.4	24.4	5.5	126	4.4	125.5	40.2	73.1	146.9	15.52	66.2	11.3	2.09	8.43	1.25	7.17	1.33	3.77	.54	3.48	.54
001-86	<.5	.3	2.3	.6	1.5	10.6	<1	1058.4	.1	1.6	1.0	5	<1	21.9	6.0	8.6	17.5	1.75	8.3	1.2	.28	1.17	.16	1.00	.18	.48	.07	.47	.07
001-87	37.6	.8	7.7	1.9	9.4	27.9	21	60.2	.5	6.6	2.8	49	5.7	59.9	19.8	23.5	53.4	5.64	25.5	4.7	1.02	4.47	.56	3.36	.61	1.78	.25	1.43	.23
001-88	7.4	3.2	13.8	2.3	7.0	97.9	<1	49.8	.6	7.6	3.6	383	2.3	77.7	16.2	27.1	51.5	5.69	24.5	3.8	.77	3.18	.44	2.80	.47	1.44	.19	1.40	.19
001-89	<.5	1.0	4.3	<.5	1.6	31.0	1	17.0	.1	1.4	.9	161	2.6	15.0	11.3	8.8	8.9	1.66	7.7	1.1	.24	1.27	.18	1.18	.27	.86	.12	.75	. 12
001-90	27.4	.9	22.9	3.4	31.3	28.9	176	372.5	1.8	4.3	4.0	180	8.4	128.2	20.7	18.6	41.1	4.76	22.5	4.3	1.49	4.09	.58	3.56	.69	1.90	.25	1.91	. 30
001-91	10.8	5.8	24.5	6.8	14.9	184.8	3	98.9	1.1	18.6	5.8	260	5.0	209.7	33.4	58.3	115.8	12.19	52.9	8.7	1.58	7.05	.90	5.35	1.05	3.07	.43	2.86	. 44
001-92	4.9	1.6	8.1	6.6	6.0	42.9	1	104.6	.4	8.4	5.0	178	2.8	201.0	18.8	20.3	39.6	4.23	18.2	3.4	.65	3.22	.47	3.15	.58	1.71	.24	1.67	. 25
001-93	54.5	.4	9.3	1.2	5.8	21.8	39	20.8	.4	3.7	1.8	31	4.5	48.6	13.7	18.4	37.0	3.98	18.5	3.2	.32	2.71	.38	2.28	.43	1.12	.16	.93	. 15
001-94	26.5	1.7	12.2	2.1	6.6	53.3	2	49.5	.5	7.7	1.7	57	4.0	65.0	12.7	11.9	24.8	2.47	10.9	2.0	.40	1.79	. 29	1.95	- 43	1.24	.17	1.29	.19
001-95	17.4	3.4	19.3	5.8	14.3	79.7	2	298.9	.9	16.2	10.8	40	4.1	180.9	17.6	30.2	63.7	6.87	29.5	5.0	.91	3.96	. 48	3.22	- 62	2.34	.33	2.57	.38
STANDARD SO-17	19.2	4.0	20.3	12.8	25.8	22.1	8	314.3	4.2	11.7	13.3	122	11.3	351.2	27.1	10.9	23.8	2.89	14.3	<b>3.3</b>	1.06	3.86	. 62	4.19	- 95	2.79	.40	2.85	.44

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data KFA __

Barker Minerals Limited FILE # A200561

I	ACME ANALYTICAL																		_										ACHE ANA	ALYTICAL
ŀ	SAMPLE#	Co ppm	Cs ppm	Ga ppm	Hf ppn	Nb ppm	Rb ppm	Sn ppm	Sr ppm	Ta ppm	Th ppm	U ppm	V ppm	W ppm	Zr ppm	Y ppm	La ppm	Ce ppm	Pr ppm	Nd ppm	Sm ppm	Eu ppm	Gd ppm	Tb ppm	Dy ppm	Ho ppm	Er ppm	Tm ppm	Yb ppm	Lu ppm
	001-86	2.5	.3	1.7	.6	1.6	11.7	<1	1084.3	<.1	1.5	1.0	9	<1	22.9	6.1	7.9	15.7	1 84	6.6	1.4	.32	1.12	.17	.88	. 18	.50	.07	.44	.05
	001-87	43.3	.7	7.3	1.4	8.9	27.9	30	60.7	.6	7.0	3.3	47	5.8	56.8	19.9	23.3	51.8	5 84	22.6	5.1	1.04	4.10	.63	3.31	.63	1.71	.23 1	.62	.23
	001-88	11.2	3.2	13.1	2.7	8.7	107.9	<1	52.9	.6	8.3	4.3	423	2.5	80.5	16.6	28.1	53.6	6 15	22.4	4.6	.80	3.34	.49	2.80	.55	1.43	.20 1	.57	.20
	001-89	.6	1.1	4.0	.5	1.4	31.3	<1	17.5	.1	1.2	_9	155	2.5	13.8	11.6	7.8	7.6	1 56	6.2	1.1	.19	_95	.17	1.11	.27	.97	.11	.87	.12
	001-90	33.0	.8	21.0	3.5	33.3	31.1	221	395.6	2.0	3.9	5.6	186	8.0	130.1	21.7	19.1	41.8	5 27	20.9	4.6	1.53	4.32	.62	3.49	.71	1.94	.28 1	.83	.27
	001-91	13.3	5.4	22.1	6.5	14.6	175.2	2	97.0	1.0	18.3	5.5	256	4.8	202.3	31.1	54.8	107.6	11.98	45.3	8.7	1.42	6.52	.89	4.78	.96	2.70	.39 2	2.77	.38
	001-92	8.4	1.6	7.3	6.5	5.8	42.7	<1	104.6	.5	9.3	4.9	178	2.5	202.5	16.6	18.8	38.2	4.28	15.9	3.3	.63	2.98	.45	2.61	.54	1.56	.22 1	.59	.21
	001-93	55.4	.6	9.1	1.1	6.2	22.6	35	22.2	.4	3.4	1.7	31	4.3	46.3	13.3	18.1	37.6	4.30	17.1	3.5	.33	3.01	.41	2.24	.37	1.19	.13	.87	.13
	001-94	39.4	1.6	12.6	2.2	7.3	54.3	1	54.9	.6	8.3	2.2	56	102.6	67.4	13.6	12.4	22.9	2.63	9.9	2.2	.44	1.90	.33	2.21	.44	1.31	.16 1	.32	.18
	001-95	20.7	<b>3.3</b>	18.4	5.5	15.2	84.1	<1	319.0	1.0	15.7	13.6	39	2.7	172.8	18.5	30.6	64.4	7.51	27.5	6.2	.99	4.16	.52	3.24	.67	2.23	.36 2	2.65	.38
	001-96 RE 001-96 001-97 001-98 001-99	14.1 14.3 56.9 7.2 14.4	3.3 3.5 6.1 4.4 2.0	13.9 13.7 20.0 20.4 13.7	6.1 6.8 4.4 5.4 5.6	9.1 9.6 12.9 14.6 9.8	44.1 47.3 177.1 180.3 110.9	<1 <1 2 6 12	297.2 303.0 49.4 62.7 39.9	.7 .8 1.0 1.3 .7	15.0 16.3 13.6 18.3 13.3	4.5 4.1 6.7 5.9 5.7	88 96 151 126 83	10.1 11.1 2.8 2.0 3.3	200.0 215.8 124.4 157.9 173.9	24.0 24.2 27.7 27.9 22.0	40.8 41.4 18.7 44.4 36.4	80.9 82.6 42.1 91.6 73.6	8.98 9.13 4.85 10.21 8.15	33.7 35.8 18.6 37.9 30.0	7.5 7.2 4.1 8.1 6.1	1.15 1.21 .77 1.26 1.03	5.48 5.44 3.52 6.20 4.40	.73 .73 .65 .83 .61	3.75 4.00 4.24 4.54 3.59	.79 .78 .92 .85 .71	2.26 2.26 2.87 2.51 2.17	.33 2 .33 2 .42 3 .33 2 .33 2 .28 2	2.36 2.43 5.10 2.35 2.06	.31 .33 .45 .34 .28
	001-100	56.0	1.2	11.0	2.7	18.1	50.8	3	267.3	1.1	2.2	1.2	157	2.1	94.6	15.2	15.8	31.9	3.85	15.5	4.0	.94	3.37	.48	2.67	.55	1.35	.17 1	1.20	.17
	001-101	15.4	2.2	15.7	4.9	10.6	132.6	3	51.7	.8	13.1	5.2	134	4.6	159.5	31.7	35.3	70.3	7.70	30.5	6.0	1.08	5.09	.74	4.63	.92	2.73	.40 2	2.64	.39
	001-102	5.0	1.6	6.3	.8	2.4	43.9	4	44.1	.2	2.8	4.1	258	1.9	26.5	23.9	13.7	15.3	2.89	12.1	2.9	.61	2.89	.43	2.45	.60	1.73	.21 1	1.42	.23
	001-103	7.3	<.1	<.5	<.5	<.5	1.0	653	22.3	<.1	.1	.4	5	1.2	1.9	.4	.8	1.0	.13	.4	.1	.08	.06	<.01	.08	<.05	<.05	<.05 <	<.05	<.01
	001-103	6.8	3.0	10.8	2.2	7.5	92.6	4	43.7	.5	7.1	4.4	379	1.6	77.8	17.6	23.8	43.9	5.12	19.9	3.8	.82	2.96	.44	2.51	.49	1.50	.21 1	1.45	.22
	001-105	98.0	<.1	1.7	<.5	.6	.8	9	3.5	<.1	<.1	.2	34	<1	1.6	1.4	1.6	2.5	.32	1.4	.3	<.05	.19	.03	.23	<.05	.11	<.05	.14	.02
	001-106	26.1	.8	15.8	2.4	3.3	36.6	<1	257.5	.2	1.8	1.1	260	<1	71.0	20.0	11.7	27.3	3.20	14.2	4.0	1.11	3.52	.57	3.37	.65	1.99	.27 1	1.86	.33
	001-107	34.0	.3	<.5	<.5	<.5	1.4	<1	5.8	<.1	.4	.1	<5	3.5	4.9	.6	1.9	2.4	.19	.9	.2	<.05	.16	.02	.13	<.05	.06	<.05	.09	<.01
	001-108	90.1	.1	2.0	<.5	1.1	<.5	<1	6.2	.2	.1	.9	36	<1	.7	6.0	1.4	2.2	.33	1.5	.6	.07	.87	.13	.78	.18	.48	.07	.52	.07
	001-108	88.6	<.1	1.2	<.5	<.5	<.5	<1	.9	<.1	<.1	.3	34	<1	.6	.8	.8	1.1	.09	<.4	<.1	<.05	.16	<.01	.13	<.05	.08	<.05	.07	.01
	001-110	12.7	.2	2.1	1.3	2.1	13.4	<1	13.4	.1	.7	.2	9	2.6	40.3	4.6	2.8	5.5	.52	2.2	.4	.14	.55	.08	.66	.15	.42	.06	.39	.06
	001-111	56.5	.9	17.8	2.8	15.6	38.6	103	51.8	1.0	4.7	7.9	236	28.0	92.4	48.2	25.4	51.0	5.97	25.3	6.3	1.21	6.14	1.07	6.43	1.41	3.81	.52 3	3.42	.47
	001-112	75.1	.5	16.7	2.5	15.6	25.2	134	37.9	1.0	1.6	3.5	247	44.2	77.4	44.2	12.1	26.1	3.10	14.2	4.5	.90	6.14	1.03	6.61	1.35	3.61	.48 3	3.26	.48
	001-113	47.5	1.4	16.1	3.3	15.5	54.3	61	51.3	.9	6.0	11.6	232	14.2	111.6	34.5	22.6	47.7	5.54	22.9	5.3	1.24	5.43	.84	4.97	1.00	2.75	.36 2	2.54	.40
	001-114	9.9	.7	9.0	.9	3.9	<b>33.</b> 8	35	34.2	.3	3.5	5.0	121	4.6	44.6	20.4	17.8	35.5	<b>3.8</b> 1	14.0	2.9	.61	2.61	.43	2.62	.61	1.66	.23 1	1.61	.24
	001-115	141.6	.6	7.4	1.7	8.7	32.1	32	51.7	.6	6.6	2.7	46	5.1	51.9	27.0	23.8	54.3	5.66	22.6	5.4	1.13	4.98	.80	4.26	.86	2.35	.31 2	2.13	.30
	001-116	21.4	.7	5.8	2.0	4.5	37.4	27	12.1	.3	4.6	5.7	109	4.4	63.4	8.3	19.1	33.4	3.56	1 <b>3.</b> 4	2.6	.45	2.06	.22	1.18	.24	.74	.10	.87	.11
	STANDARD SO-17	18.9	3.8	20.0	12.1	25.9	23.9	12	319.0	4.3	11.6	12.8	124	11.2	351.2	27.4	11.0	23.6	3.01	13.5	3.3	1.09	3.93	.66	4.15	.93	2.92	.41 2	2.94	.43

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_____FA

A	<b>Å</b> (
	VICA

¢

Barker Minerals Limited FILE # A200561



HORE HINCITION.																														
SAMPLE#	Co pom	Ċs DOM	Ga	Hf	Nb naci	Rb	Sn DDM	Sr pom	Ta pom	Th ppm	U ppm	V	W mag	Zr ppm	Y maqa	La pom	Ce ppm	Pr ppm	Nd ppm	Sm ppm	Eu ppm	Gd ppm	Tb ppm	Dy ppm	Ho ppm	Er ppm	Tm ppm	Yb ppm	Lu ppm	
	1.4	FF	FF	FF	сс		- FF																	••		· ·			_ <u></u>	
001-117	15.0	3.5	24.0	6.5	15.1	174.8	14	62.2	1.1	17.1	4.7	75	4.2	235.0	25.5	52.6	107.1	12.53	47.3	7.5	1.32	6.25	.86	4.68	.85	2.48	.35	2.40	.38	
001-118	16.8	.2	1.4	<.5	1.3	8.8	14	3.5	<.1	1.1	2.3	13	4.2	15.1	2.3	3.5	6.6	.74	2.8	.5	.11	.48	.08	.42	.08	.21	<.05	. 29	.03	
001-119	4 0	< 1	3 0	< 5	22	6.2	<1	101.6	<.1	.1	.2	30	1.2	9.7	6.0	2.0	4.2	.65	3.0	.8	.49	1.24	.16	1.11	.21	.50	.07	.37	.05	
001-120	48.0	1 8	21 2	37	25 4	60.3	2	204.8	1.6	3.0	1.1	265	3.8	150.3	25.8	19.7	41.9	5.44	24.7	5.2	1.52	5.83	.84	4.72	.95	2.44	.34	1.86	.26	
001-121	19.5	1.0	13 0	5 1	13 7	77 8	1	76 9	1 0	5 9	1 0	122	3 5	103 5	15 4	18 3	37 0	4.47	17.6	3.1	.93	2.95	.48	2.73	.54	1.57	.23	1.43	.20	
001-121	10.5	1.0	13.0	2.1	12.7	55.0		10.7	1.0		1.0	122	3.5	17312	1214	.0.5	3,													
001-122	60.3	1.7	7.8	1.1	6.7	5.3	2	338.6	.5	.9	.4	111	1.7	47.2	8.8	6.0	13.7	1.76	8.4	1.8	.55	1.91	.29	1.68	.34	.95	.10	.66	.10	
001-123	46.5	.4	20.8	3.6	29.4	9.7	2	639.4	2.0	3.0	.8	258	<1	141.6	23.4	25.3	49.8	6.35	26.3	4.6	1.66	5.46	.72	4.24	-84	2.27	.30	1.92	.23	
001-124	94.1		1.0	<.5	<.5	.6	<1	4.8	<.1	<.1	<.1	29	<1	1.0	.8	<.5	1.3	. 19	.7	.1	<.05	.14	.03	.16	<.05	.07	<.05	.06	<.01	
001-125	23 5		28	1 1	25	19 3	3	8.2	1	2.6	2.1	26	5.0	37.8	4.5	6.8	13.0	1.59	6.2	1.0	.17	.94	. 16	.75	.16	.48	.06	.36	.06	
001-126	3/ 0	1 1	17.6	1 4	26	38 5	<1	547 0	2	1 5	1 0	247	<1	51 5	18 0	84	18 4	2 60	12.5	2.9	-98	3.34	.53	3.19	. 66	1.79	.27	1.71	.26	
001-128	34.7	1	17.0	1.4	6.4	20.2			• •		1.0	241	- 1		10.0	0.4	10.4	2.00		/										
RE 001 10/	77 /	4 7	17 0	1 /	2/	77 F	-1	57/ 2	2	1 4	1 0	270	<b>~1</b>	51 0	17 9	85	16.8	2 51	12 7	27	01	3 08	52	3 21	63	1 87	27	1 67	23	
KE 001-126	22.4	1.4	17.0	1.4	2.4	27.2	1	774.2	.4	1.0	11.0	420		745 0	74.0	10.5	77.0	2.01	17 5	7 0	1 01	z 00		1 20	.00	2 00		2 80	17	
STANDARD SO-17	18.2	3.5	20.1	12.3	25.4	22.7	8	309.3	4.5	11.5	11.8	120	8.9	302.8	20.5	10.5	25.2	5.05	12.2	5.0	1.01	3.90	.00	4.37	.90	2.00	. 4 1	2.00	.43	

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data KFA

ACMB ANAUTTICAL LABORATORIES I (IS) 02 Accredited Co.) Ba	TD. rker	852 Mine	E, HAST GEOCHEM rals Li	INGS ST. ICAL AN mited	wrod (1SIS File	IVER BC S CERTI # A2005	V6A 11 FICAT 61	ε E Paqe	<b>PHONE</b> 1 (b)	(604)2	53-3158	FAX (604)	^53-1716
		22117 -	37A Avenue,	Langley BC	V2Z 1N9	Submitted	l by: Lou	is Doyle					
SAMPLE#	Mo	Cu	Pb Zn	Ni A	s Cd	Sb Bi	Ag Au	Нg	TL Se	Te Au*	* Pt** Pd**	ť	

	ppm	ppm	ppm	ppm	bbw	ppm	ppm	ррп	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppb	bbp	ppb	
001-01	.5	126.5	1.0	55	5.9	1.1	.1	. 1	.1	.1	26.1	.11	.1	<1	<1	36	<2	<2	
001-02	.8	38.1	1.3	51	47.3	1.2	<.1	.1	. 1	< 1	7.6	.01	<.1	<1	<1	18	<2	<2	
001-03	1.8	207.7	4.9	62	11.8	10.1		.1	.1	1	20.0	.10	<.1	<1	<1	34	2	11	
001-04	7	0/. 7	4 4	64	36.0	13 5	1	2	< 1	< 1	5 7	02	< 1	<1	<1	4	5	6	
001-04		74.1	7.4	74	22 1	7.0	. 1		- 1	1	2.1	.02	2 1	- 21	- 21	7	6	7	
001-05	-4	70.1	J.4	70	23.1	1.7	• •		<b>`</b> . !	• •	2.0	.00	<b>`</b> .'	~1			U	•	
001-06	.6	76.9	3.3	62	15.7	8.2	.1	.3	<.1	.1	3.1	.08	<.1	<1	<1	5	4	7	
001-07	1.1	33.3	.7	30	8.8	.7	.1	.1	<.1	<.1	<.5	.04	<.1	<1	<1	<2	3	2	
001-08	1 5	57 5	6.5	83	11.1	61 7	1	1.0	1	_1	8.2	.04	<.1	2	<1	7	<2	<2	
001-09	1 3	1000 R	283 0	386	01 4	4484 4	2 1	64	23 0	14 5	32 6	n4	< 1	4	<1	57	<2	<2	
001-10	31	2/17 2	2/1 8	2660	110 1	367 /	10 1	0.4	37 1	5 0	25 0	14	1	26	<1	47	<2	<2	
001-10	3.4	2417.2	241.0	2000	110.1		10.1	. /	37.1	2.0	23.7	. 14	• •	10	• •	47			
RE 001-10	3.3	2361.4	240.9	2616	107.7	377.5	9.5	.9	37.5	4.9	34.3	•.14	- 1	25	<1	48	<2	<2	
001-11	.9	1097.6	160.8	190	117.5	3.7	<.1	.2	13.0	1.7	22.9	.01	<.1	4	1	35	<2	<2	
001-12	1.5	793.6	17853.8	88955	241.0	6.6	266.5	11.9	60.2	33.3	35.0	3.38	. 1	34	1	60	<2	4	
001-13	.9	680.5	415.1	2207	147.2	<.5	8.9	.3	8.7	1.7	6.8	.08	<.1	4	1	12	<2	2	
001-14	12	127.8	10858 0	31829	40.3	1.1	123.7	1.4	237.6	68.7	22.0	1.58	5	25	4	63	<2	<2	
001 14		12110		31027											-		-		
001-15	1.3	22.5	127.7	180	44.8	12.6	.5	.1	1.6	.4	1.0	.02	- 1	<1	<1	<2	<2	<2 /	-
001-16	2.3	72.1	20.2	33	3.5	3.5	.1	.1	.7	.2	3.8	.02	<.1	<1	<1	10	<2	< <u>2</u>	
001-17	1.8	363.8	248.0	319	19.0	47.8	1.0	.3	1.9	1.1	76.4	.05	<.1	2	<1	106	<2	<2	
001-18	7.5	824.1	218.7	699	136.9	2738.5	2.9	2.4	8.2	2.0	5.0	.05	- 1	9	<1	14	2	6	
001-19	6.9	971.1	328.2	1789	127.8	815.4	3.8	1.4	5.0	2.1	2.9	. 13	- 1	3	<1	5	2	2	
001-20	11.8	1159.6	122.7	61	125.4	2.8	.2	.5	2.5	1.1	3.3	.01	- 1	2	<1	5	3	2	
001-21	2.3	586.4	143.5	235	180.7	32.3	.4	.2	3.7	1.1	2.2	.03	<.1	4	<1	4	<2	<2	
001-22	3.6	120.7	10.8	15	11.6	31.1	<.1	.1	1.3	.2	1.6	<.01	<.1	1	<1	3	<2	<2	
001-23	1.5	52.9	14.5	22	4.0	25.1	<.1	- 1	4.3	.1	3.4	<.01	<.1	<1	<1	5	<2	<2	
001-24	.8	728.7	18.1	89	27.4	<.5	<.1	_1	2.9	.3	2.7	.01	<.1	<1	<1	3	<2	<2	
001-25	1.7	952.0	12113.2	37682	224.9	6.3	142.6	4.0	24.4	12.5	59.2	1.74	.1	20	<1	80	<2	3	
001-26	9.5	2615.0	454.9	539	192.1	6.6	1.7	.6	10.7	4.3	8.8	.02	.1	9	<1	5	2	3	
001-27	1.1	1559.0	264.7	132	288.4	3.6	.1	.1	20.0	2.6	9.9	<.01	<.1	9	2	19	<2	<2	
001-28	1.9	141.5	153.6	248	22.1	37.5	.6	.2	5.3	.4	7.4	.03	<.1	<1	<1	6	<2	<2	
001-29	32	05 0	9 1	14	95	43 4	<.1	.5	2.2	2	14.1	.03	<.1	1	<1	36	<2	<2	
				• •										•	•		-	_	
001-30	7.3	502.0	176.9	120	27.9	133.5	.2	2.8	14.7	1.2	12.4	.04	.1	30	<1	44	<2	3	
STANDARD DS3/FA-10R	9.1	124.7	34.1	151	35.9	29.1	5.3	4.9	5.4	.3	23.8	.21	1.1	1	1	502	470	498	

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. AU** PT** & PD** GROUP 3B BY FIRE ASSAY & ANALYSIS BY ICP-ES. (30 gm) - SAMPLE TYPE: ROCK R150 60C

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data KFA



4

.

Barker Minerals Limited FILE # A200561

Page 2 (b)

CAMDI E#	Mo	 Cu	Ph	 7n	Ni	As		Sb	Bi	Åa	ÂIJ	На	τi	Se	Te	Au**	Pt**	Pd**	
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ррп	ppm	ppb	ppm	ррт	ррт	ppm	ppb	ppb	ppb	
					470 4					-		. 04		7					
001-31	1.3	1990.1	67.6	59	130.4		.2	.2	20.9	(	0.9	<.01	<.1	3	<1	2	~2	<2	
001-32	.6	211.4	10.7	87	37.5	<.5	<.1	.1	2.0	.1	2.1	.01	<.1	</td <td>&lt; 1</td> <td></td> <td>~~</td> <td>~<u>~</u></td> <td></td>	< 1		~~	~ <u>~</u>	
001-33	8.5	730.3	210.4	763	165.5	1485.5	1.6	1.4	5.5	1.8	6.5	.04	-1	4	<1	10	2	2	
001-34	5.4	327.7	1674.2	414	316.8	353.6	2.8	1.2	29.0	11.5	6.0	.02	•1	12	1	15	4		
001-35	2.3	21947.0	1550.7	323	30.8	4527.9	2.3	55.5	47.4	74.9	151.5	.74	-4	112	<1	854	<2	<2	
001-36	24	2170 8	18 1	81	58 7	11 7	6	4	1 1	14	26.2	01	< 1	<1	<1	16	4	<2	
001-37	0 0	1136.8	672 5	4736	174 4	382 9	11 8	12	78	3 1	5 0	30	< 1	4	<1	16	<2	3	
001-38	1.6	1258 0	83.0	32	131 3	216 4		2 0	5 4	1.3	122.4	<.01	< 1	118	1	159	<2	11	
001-30	16.0	187/ 3	703/ 2	6/.00	34 5	10632 9	20 6	151 3	73.8	83 7	124 0	44 00	14 7	43	<1	129	<2	<2	
001-304	12 1	12/8 6	7008 /	/382	20 4	5021 3	14 2	73 6	27 3	34 0	58.9	26 00	8 4	15	<1	61	<2	<2	
001-39A	12.1	1240.0	1770.4	4,202	27.4	5021.5	14.2	13.0	21.3	34.0	20.7	20.00	0.4			0.			
001-40	8.6	3007.8	1085.8	2442	144.0	1009.9	5.9	1.4	17.7	7.7	7.4	.22	.2	4	<1	7	<2	2	
RE 001-40	8.0	2870.9	1039.9	2360	138.4	956.0	5.3	1.3	17.1	7.1	7.1	.24	- 1	5	<1	7	4	5	
001-41	3.9	786.5	4838.5	2988	19.2	868.7	9.5	27.2	24.2	17.3	26.8	18.00	3.3	7	<1	46	<2	<2	
001-42	11.2	1314.8	7771.5	6710	36.2	1580.7	20.1	61.7	15.3	36.6	34.5	36.00	5.5	12	<1	37	<2	<2	
001-43	21.8	2762.4	1531.9	146	37.2	2184.5	.6	103.0	91.9	52.8	24.8	13.00	26.3	38	<1	144	<2	<2	
004 //	,,	0/0 /	90 E	20	260 /	17 7	1		170 6	1 1	5 /	03	2	22	-1	6	~2	~2	
001-44	4.4	940.4 2270 1	09.0	20	10/ 5	22002 0	• • •	15 7	47 0	1.1	52.2	.05	•	22	21	76	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	50	
UU 1-44A	2.9	10700 5	470 5	400	174.0	767 4	1.0	1.5	172 0	1.3	22.2	.05	- 1	20	-1	37	~7	1	
001-448	1 3.3	12309.5	130.5	199	1111.0	101.0	1.0	1.3	172.0	4.0	22.1	.09		20	1	<i>וב</i> כ	~2	-2	
001-45	1.8	03.1	1070 7	1780	20.1	714 1			7/7 2	120 0	82.0	.01	- 1	34	1	150	-2	~2	
001-46	1.0	20140.0	1930-3	1200	47.0	/10.1	2.0	4.1	347.2	129.0	02.0	.43	N. 1	-74		100	12	~2	
001-47	2.1	95.3	43.7	41	22.4	20.3	.1	.2	1.9	.6	4.1	.02	.1	<1	<1	<2	<2	<2	
001-48	1.1	56.9	22.2	58	24.4	8.4	-1	.2	1.2	.3	1.0	.04	.1	<1	<1	2	<2	<2	
001-55	.6	70.7	8.4	32	43.9	5.6	.1	.2	.2	.1	.6	.01	<.1	<1	<1	2	<2	2	
001-56	8.	118.9	4.3	56	31.8	2.9	<.1	.1	.1	<.1	1.3	.02	.2	<1	<1	2	7	9	
001-57	4	74.3	6.4	42	28.2	4.0	-1	.2	.5	.2	4.4	.01	<.1	<1	<1	11	4	3	
										_	4 -	~ ~ ~			- 4	,	,	,	
001-58	3.3	261.5	6.0	50	32.6	5.0	-1	.2	.4	. 2	1.7	.01	< 1	<1	<1	6	4	4	
001-59	.6	48.2	1.3	38	25.4	1.1	- 1	- 1	<.1	<.1	1.2	.01	< 1	<1	<1	2	2	2	
001-60	1.7	83.5	4.5	55	42.0	2.6	<.1	. 2	د.	.1	1.6	.01	<.1	<1	<1	4	2	2	
001-61	.6	16.5	2.7	- 55	45.3	1.5	.1	.1	<.1	<.1	1.3	<.01	<.1	<1	<1	<2	<2	2	
001-62	4.1	2948.3	1708.7	281	28.7	1528.8	1.1	58.6	35.0	22.5	2.7	2.31	5.9	21	<1	251	<2	<2	
001-63	2.2	44780.9	2442.7	6553	24.4	641.1	24.3	210.7	680.5	104.4	43.9	6.14	2.5	126	1	670	2	2	
001-64	1.1	478.7	29:0	84	793.5	508.3	.3	2.1	5.4	.9	3.0	.04	.1	<1	<1	7	5	6	
STANDARD DS3/FA-10R	0.0	119 3	32.3	143	32.6	28_0	5.2	4.7	5.2	.3	21.1	.26	1.0	1	1	480	459	464	
	1													·····					

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

٠

,

Barker Minerals Limited FILE # A200561



		_	÷.	···· · · -									71	<u> </u>	+.			n	
SAMPLE#	Mo	Cu	PB	Zn	N 1	AS	La	SD	81	Ag	AU	нg	11	Se	ie	AUnn	7t~~		
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	aqq	ppm	ppm	ppm	ppm	ppp	ppp	рро	
004 /5			4770 0		47.0	47/8 4	7 /	74 0	40 E	11.7	75 1	07	2 1	16	-1	209	~2	~2	
001-65	3.9	4405.0	1770.0	114	17.0	1200-1	5.4	30.9	00.0	40.3	37.1	.77	2.1	40	-1	300	~2	~2	
001-66	1.9	9661.0	261.1	400	105.9	49.4	1.0	1.1	2.0	13.0	03.4	10.	-0	70	1	110	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	
001-67	5.6	184.5	5307.9	72848	12.8	100.3	240.9	00.0	90.0	65.7	22.1	909.00	1.1	20	< 1	244	~2	12	
001-68	19.0	3268.0	3241.7	1675	48.4	1195.4	8.5	1510.5	61.6	95.8	8.4	51.00	7.9	54	<1	211	<2	<2	
001-69	8.	622.6	113.9	2266	612.4	92.8	15.6	6.7	2.1	1.2	8.8	. 36	• 1	<1	<	9	ు	4	
	I .												-					~	
001-70	8.9	5319.3	1630.1	800	35.8	1226.9	5.4	297.2	51.5	89.5	1.0	24.00	34.8	25	<1	132	<2	<2	
001-71	6.8	562.1	5818.7	6748	23.7	2630.7	26.1	62.6	9.8	27.2	58.5	41.00	9.9	15	<1	- 39	<2	<2	
001-72	4.6	584.2	7956.9	5117	21.5	3925.9	17.7	72.8	33.0	36.0	79.0	67.00	2.3	10	<1	84	<2	<2	
001-73	6.7	547.5	11309.4	7737	15.0	8312.4	28.3	151.9	16.3	49.9	111.5	147.00	4.1	21	<1	111	2	2	
001-74	6.0	4491.1	4229.6	7379	14.4	29528.7	23.7	102.9	108.6	44.9	123.8	55.00	1.4	177	1	156	<2	<2	
																	_	-	
001-75	6.1	5328.6	3779.1	4521	22.3	12115.5	15.3	70.3	63.1	26.8	114.9	37.00	3.4	126	<1	139	<2	<2	
001-76	9.8	4614.2	2693.4	3949	34.7	15214.0	16.6	138.8	85.5	39.2	24.5	41.00	7.9	160	<1	172	<2	<2	
RE 001-76	13.0	4729.7	2703.0	3983	35.7	15489.3	16.1	139.8	84.9	39.2	70.0	40.00	8.0	166	<1	177	<2	<2	
001-77	1.5	518.7	188.0	157	146.7	231.9	.4	1.7	10.7	3.0	5.8	.82	- 1	19	<1	5	<2	<2	
001-78	.7	339.9	157.4	65356	90.0	324.3	640.8	2.4	1.2	1.1	21.3	3.93	.1	1	<1	29	<2	<2	
001-79	31.4	3976.6	2984.8	1321	68.5	1605.8	7.6	133.1	78.0	40.5	5.5	35.00	42.9	38	<1	185	<2	<2	
001-80	18.3	4330.9	3107.7	4164	34.4	28314.2	17.5	331.2	68.8	50.1	72.1	52.00	20.0	59	<1	185	<2	<2	
001-81	1.3	1148.2	125.8	344	54.7	1306.8	2.6	2.2	3.6	2.7	8.9	.42	.2	2	<1	7	2	2	
001-82	2.4	6922.2	1850.7	492	28.4	727.8	2.2	17.9	117.8	36.0	2.2	.97	.4	111	<1	69	<2	<2	
001-83	3.6	5838.1	1806.6	487	29.2	884.7	2.1	20.7	110.1	34.7	1.5	1.17	1.0	102	<1	84	<2	<2	
001-84	5.4	13139.8	1551.8	630	29.2	2568.3	3.5	79.5	76.1	41.5	7.0	1.58	6.0	32	<1	179	<2	<2	
001-85	1.0	99.9	23.6	81	42.0	15.7	.3	.3	.7	.3	<.5	.09	. 1	<1	<1	<2	<2	<2	
001-86	.4	27.3	49.4	10	1.8	11.7	.1	.4	.7	.2	<.5	.05	<.1	<1	<1	13	<2	<2	
001-87	7.3	2799.0	9882.4	27304	132.9	370.5	93.7	1.3	24.3	12.8	13.1	2.00	<.1	27	<1	45	<2	<2	
001-88	9.6	60.9	90.6	398	42.2	15.7	3.2	.4	.5	.4	1.3	.09	- 1	3	<1	3	<2	<2	
001-89	4.0	14.0	55.8	44	6.2	9.9	.3	.6	.2	.5	2.2	.18	<.1	2	<1	16	2	3	
001-90	5.4	457.4	14.3	86	62.2	.8	.1	.3	11.8	-1	49.8	.02	<.1	6	<1	56	<2	<2	
001-91	8.2	33.7	26.9	200	56.2	22.4	1.3	.4	.5	.3	3.0	.04	.1	2	<1	<2	<2	<2	
001-92	5.5	57.2	13.7	198	31.2	9.3	1.7	.2	.1	.3	.5	.05	.1	5	<1	11	<2	<2	
001-93	6	1318.2	1445.3	706	31.3	3218.9	1.1	7.8	24.7	10.8	29.2	.22	<.1	16	<1	37	<2	<2	
001.75	.																		
001-94	2.6	151.9	167.6	16	48.8	17.5	.3	.2	186.5	1.0	1907.4	.02	<.1	<1	2	2731	<2	<2	
001-95	39_1	100.4	48.3	. 49	31.6	79	< 1	.1	82.6	.5	820.1	.02	.1	<1	2	803	3	2	
STANDARD DS3/FA-10R	9.7	120.5	33.5	146	35.7	28.8	5.2	4.9	5.6	.3	21.0	.24	1.1	<1	1	476	461	462	
STANDARD DSS/TA TOR			44.2											•					

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_____FA



.

Barker Minerals Limited FILE # A200561



Data / FA

											·			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
SAMPLE#	Mo	Cu	Pb	Zn	Ni	As	Cd	Sb	Bi	Ag	Au	Hg	п	Se	le	AU**	Pt×*	Pd**	
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	pbp	ppm	ppm	ppm	ppm	ppb	рро	рро	
001-86	1	21 4	44 R	10	र र	10.8	1	4	6	2	< 5	< 01	< 1	1	<1	11	~2	~2	
001-80	80	A182 0	1/585 0	44500	10/ 0	/80.3	100 7	1 2	27.2	1/ 0	20.5	1 33	< 1	41	<1	100	-2	<2	
001-07	11 2	4102.0	107.6	/10	194.0	17 6	7 6	1.4	6	14.7	20.5		1	- /	~1	7	-2	~2	
001-00	11.2	12 /	67.7	417	40.4	0.0	3.0	.7		.7		15	/ 1	1	21	21	~2	2	
001-89	4.	12.4	1/ 5	70	507	9.0			11 4		14 4	01	~ 1	4	~1	40	~2	ر در	
001-90	2.4	400.0	14.0	10	20.1	. (	• 1	.2	11.0	- 1	40.0	.01	<b>`</b> .	D	N	00	12	12	
001-91	86	30.5	24 5	187	64.2	20 4	1 1	4	.5	.2	18	. 04	.1	3	<1	7	<2	<2	
001-02	5 7	56.0	13 6	190	32.2	0 1	1 0	2	1	3	< 5	02	< 1	7	<1	15	<2	<2	
001-92	1.6	1231 3	1363 0	606	28.1	2805 0	1.0	6.8	21 8	10 5	25.6	11	< 1	17	<1	40	~2	~2	
001-95	20	1/0 5	172 /	17	50.0	10 0	7	0.0	103 5	1 6	1070 6	02	< 1		2	2007	~2	~2	
001-94	20 /	05 5	112.4	45	30.0	6.2	- 1		70 6	5	882 5	01	2	-1	2	876	~2	~2	
001-95	50.4	93.5	40.5	45	50.0	0.2	<b>`</b> . I	• 1	19.0		002.1	.01	. 2		2	0/0	10	12	
001-96	2.0	78.6	15.2	53	40.8	2.6	.1	.1	.7	.1	27.6	.02	.2	<1	<1	8	<2	<2	
RF 001-96	1.5	79.5	15.1	51	38.5	2.5	.1	.1	.6	.1	14.5	.01	.2	<1	<1	8	<2	<2	
001-97	28.2	149.4	33.2	121	117.1	1.0	.2	.1	2.3	.2	6.3	.02	.1	<1	<1	10	2	2	
001-98	27	50.9	37.5	128	27.6	3.7	.6	2	.2	2	5.1	03	_1	3	<1	4	<2	<2	
001-99	34	111 1	911.2	1635	44 4	124.2	6.3	2.8	1.3	4.2	21.2	1.80	.4	5	<1	80	<2	<2	
			,							•••=				-	•		-	-	
001-100	1.2	69.9	8.2	60	348.8	98.0	.2	.3	.1	<.1	3.6	<.01	<.1	<1	<1	7	6	6	
001-101	7.5	143.3	117.6	184	59.7	140.4	.5	3.8	.7	.6	13.6	.11	.4	5	<1	31	<2	<2	
001-102	8.5	59.7	46.7	156	58.7	13.7	.4	.3	.2	.2	2.4	.02	<.1	1	<1	22	3	4	
001-103	2.1	2792.0	1561.0	97	23.8	292.2	.3	48.9	28.2	7.5	2.3	1.51	.3	25	<1	177	<2	<2	
001-104	19.5	17.9	48.5	72	40.0	24.3	.1	1.8	.5	.4	1.6	.09	.1	4	<1	<2	<2	<2	
	1																		
001-105	.2	12.6	5.6	12	1537.3	23.7	.1	1.1	.1	<.1	-8	<.01	<.1	<1	<1	4	4	2	
001-106	1.0	132.9	3.4	57	18.1	3.3	<.1	.2	.1	.1	1.2	<.01	<.1	1	<1	2	4	4	
001-107	2.6	438.5	52.3	9	22.7	2.5	. 1	.4	330.3	.6	4.1	.01	<.1	1	11	3	<2	<2	
001-108	.1	5.1	2.2	7	1621.3	16.0	<.1	.9	1.6	<.1	1.5	<.01	<.1	<1	<1	<2	6	6	
001-109	.1	2.8	2.0	10	1157.4	4.8	<.1	.3	.2	<.1	<.5	<.01	<.1	<1	<1	<2	7	8	
001-110	2.1	24.5	1796.4	49	36.9	3027.5	.1	2.3	1.6	2.5	698.6	<.01	<.1	2	<1	743	<2	<2	
001-111	3.4	4206.0	321.0	518	94.8	127.9	1.3	.3	9.7	4.9	31.3	<.01	<.1	2	<1	5	3	5	
001-112	1.7	8836.8	538.9	951	130.3	214.9	3.0	.5	17.5	11.1	17.9	.01	<.1	5	<1	38	2	2	
001-113	4.3	6344.8	115.8	358	124.9	89.2	.7	.2	3.2	1.4	5.6	.01	<.1	<1	<1	4	3	5	
001-114	8.6	247.7	309.8	149	24.4	144.9	<.1	.9	11.1	5.5	2.3	-03	<.1	4	<1	32	2	6	
								_					-				_	_	
001-115	4.7	4936.4	5176.3	24208	128.9	512.5	76.5	.9	15.3	9.2	8.1	1.12	<.1	33	<1	72	<2	<2	
001-116	10.4	4530.0	5038.0	1463	91.9	368.3	4.4	5.1	61.7	28.8	5.1	.19	.2	88	<1	92	<2	<2	
STANDARD DS3/FA-10R	9.4	119.6	34.8	148	34.6	28.4	5.5	4.8	5.5	.3	22.4	.22	1.2	<1	1	488	481	474	

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.



.

,

Barker Minerals Limited FILE # A200561



SAMPLE#	Мо	Cu	Pb	Zn	Ni	As	Cd	Sb	Bi	Ag	Au	Hg	TL	Se	Te	Au**	Pt**	Pd**	
	ppii	phil	рри	hhiir	ppii	ppm	hhiii	hhiii	phu	ppii	ppu	pha	phu	hhiii	ppin	μμο	phn	hho	
					70.0		-			-			-						· · ·
001-117	1.7	87.9	92.6	125	39.2	144.2	.5	.8	. (	5	1.5	.04	د.	<1	<1	2	<2	<2	
001-118	7.1	5250.0	2779.0	828	21.8	1188.0	3.6	33.0	76.7	60.6	22.3	1.18	2.1	63	<1	325	<2	<2	
001-119	2.3	15.3	225.2	29	22.1	15.0	.3	.4	1.1	.7	.7	.03	<.1	1	<1	<2	<2	<2	
001-120	1.6	139.2	7.7	117	233.2	57.3	.3	.2	.1	.2	1.1	.02	<.1	<1	<1	4	5	5	
001-121	1.5	29.1	6.9	78	69.3	26.4	.1	. 1	<.1	.1	<.5	.01	.1	<1	<1	<2	<2	<2	
001-122	1.2	61.3	10.6	84	549.4	317.8	.3	.6	.1	.1	1.4	<.01	<.1	<1	<1	3	7	9	
001-123	.4	22.8	1.9	31	87.9	1.6	- 1	.1	<.1	<.1	.8	<.01	<.1	2	<1	2	2	4	
001-124	1	4.1	1.5	9	1422.2	9.5	.1	.5	.1	<.1	1.1	<.01	<.1	1	<1	3	- 7	6	
001-125	6.2	4817.0	2742.0	944	28.0	1239.0	4.0	22.8	73.9	53.2	21.8	2.37	5.1	55	<1	360	<2	<2	
001-126	1.7	118.3	7.2	96	52.6	5.8	.6	.2	1	.3	1.3	.02	.1	4	<1	<2	6	6	
RE 001-126	1.7	119.9	5.9	- 99	54.5	5.1	.6	.3	.1	.3	.8	.03	<.1	3	<1	4	6	7	
STANDARD DS3/FA-10F	9.1	120.3	33.6	151	35.7	29.4	5.7	4.8	5.4	.3	19.7	.22	1.2	1	1	476	465	474	

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

÷

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.



## ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

## CERTIFICATE OF ANALYSIS AK 2002-124B

2-Jul-02

BARKER MINERALS LTD. 22117 37A Ave Langley, BC V2Z 1N9

ATTENTION: Louis Doyle

No. of samples received: 5 Sample type: Core **Project #: Frank Creek Shipment #: None Given** Samples submitted by: Chris Wild

ET	*#. Tag #	Au (ppb)	Pd (ppb)	Pt (ppb)
6	1 08235	<5	<5	<5
. 6	2 08236	<5	<5	<5
6	3 08237	<5	<5	<5
6	4 08238	<5	10	<5
6	5 08239	<5 .	<5	<5

## QC DATA:

Standard:			
GEO'02	110	<5	<5

JJ/kk XLS/02 E-mail - Barker Minerals CC: Wildrock Resources - Email & Mail

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer



## ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dailas Drive. Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

## CERTIFICATE OF ANALYSIS AK 2002-124

BARKER MINERALS LTD. 22117 37A Ave Langley, BC V2Z 1N9

## ATTENTION: Louis Doyle

No. of samples received: 60 Sample type: Core **Project #: ACE** Shipment #: None Given Samples submitted by: Chris Wild

		Au	Pd	Pt	
ET #.	Tag #	(ppb)	(ppb)	(ppb)	
1	08151 Ace 02-01 13.0-14.5m	5	<5	5	
2	08152 Ace 02-01 17.37-19.0m	<5	<5	5	
3	08153 Ace 02-01 29.0-30.5m	<5	<5	5	
4	08154 Ace 02-01 37.5-39.0m	5	<5	5	
5	08155 Ace 02-01 45.0-46.5m	<5	<5	<5	
6	08156 Ace 02-01 47.5-49.0m	5	<5	5	
7	08157 Ace 02-01 49.0-49.7m	<5	<5	5	
8	08158	5	5	5	
9	08159 Ace 02-01 50.7-52.1m	5	<5	5	
10	08160 Ace 02-01 52.1-54.0m	<5	<5	<5	
11	08161 Ace 02-01 54.0-55.2m	<5	<5	5	,
12	08162 Ace 02-01 55.2-57.0m	<5	<5	5	
13	08163 Ace 02-01 57.0-58.8m	<5	<5	<5	
14	08164 Ace 02-01 58.8-61.0m	<5	<5	5	
15	08165 Ace 02-01 61.0-63.0m	<5 .	<5	5	14 - C
16	08166 Ace 02-01 63.0-65.3m	<5	<5	5	
17	08167 Ace 02-01 65.3-67.5m	<5	<5	5	
18	08168 Ace 02-01 76.0-77.5m	<5	<5	5	
19	08169 Ace 02-01 88.0-89.5m	<5	<5	<5	
20	08170 Ace 02-01 103.6-105.1m	<5	<5	5	
21	08171 Ace 02-01 130.0-131.5m	<5	<5	5	
22	08172 Ace 02-01 139.5-141.0m	<5	<5	<5	
23	08173	<5	<5	<5	
24	08174	30	<5	5	
25	08175	<5	<5	<5	
26	08176	<5	<5	5	
27	08177	<5	<5	5	
28	08178	20	<5	5	
29	08179	<5	<5	5	

2-Jul-02

....

## BARKER MINERALS LTD. AK 2002-124

2-Jul-02

		Au	Pd	Pt	
ET #.	Tag #	(ppb)	(ppb)	(ppb)	·····
30	08180	40	10	5	
31	08181	25	15	5	
<b>¥</b> 32	08182	5	20	5	
33	08183	<5	5	5	
34	08184	<5	5	5	
35	08185	<5	5	5	
36	08186	<5 '	<5	<5	
37	08187	<5	<5	<5	
38	08188	<5	<5	<5 -5	
39	08189	· <5	<5	<5 ~5	
40	08190	<5	<5	<0	
41	08191	<5	<5	<0	
42	08192	<5	<5 <i>E</i>	<5	
43	08193	<5	5	5	
44	08194	<5	5	<5	
45	08195	<5	<5	<5	
40	08190	<5 <5	5	<5	
48	08198	5	<5	<5	
49	08212	10	<5	<5	
50	08213	<5	<5	<5	
51	08214	50	35	5	
52	08215	10	5	<5	
53	08216	5	<5	<5	
54	08217	10	<5	<5	
55	08229	15	<5	<5	
<b></b> 56	08230	5	<5	<5	
57	08231	<5	<5	<5	
58	08232	<5	<5	<5	
59	08233	<5	<5	<5	
60	08234	<5	<5	<5	
QC DA	ATA:				
Respl		-	-		
1	08151 Ace 02-01 13.0-14.5m	5	5	<5	
36	08186	<5	<5	<5	
Repea	at:				· •
1	08151 Ace 02-01 13.0-14.5m	<5	<5	5	
10	08160 Ace 02-01 52.1-54.0m	<5	<5	<5	
19	08169 Ace 02-01 88.0-89.5m	<5	<5	5	
36	08186	<5	<5	<5	
45	08195	5	5	<5	
54	08217	5	<5	<5	
Stand	ard:				
GEO'0	2	110	<5	5	
				$\frown$	$\bigcirc$
				/ \ "ı	$\left( \begin{array}{c} & & \\ & & \\ & & \end{array} \right)$
JJ/kk			/	hat	a Qua
XLS/0	2		(I	ECO TÉCH	LABORATORY LTD.

E-mail - Barker Minerals CC: Wildrock Resources - Email & Mail B.C. Certified Assayer

Eco Tech LABORATORY LTD-Page 2

-

-

8-Jul-02

- ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4
- Phone: 250-573-5700 Fax : 250-573-4557

### Values in ppm unless otherwise reported

### Ρ Pb Sb Sr Ti% U v W Y Zn Ni Sn Ag Al% As Ba BiCa% Cd Co Cr Cu Fe % La Mg % Mn Mo Na% Et #. Tag # 48 <5 18 0.13 <10 17 <10 15 58 140 0.95 18 108 57 3.75 40 0.87 345 2 0.01 26 720 <20 08151 Ace 02-01 13.0-14.5m 0.2 1.02 <5 90 <1 1 76 <5 <20 20 0.09 <10 15 <10 12 78 22 3.92 40 1.11 245 <1 <0.01 33 910 4 2 08152 Ace 02-01 17.37-19.0m <0.2 1.46 <5 45 <5 0.79 <1 21 12 124 65 34 4.48 30 1.18 347 2 0.01 40 790 6 <5 <20 34 0.07 <10 25 <10 1.97 <5 65 <5 1.80 21 3 08153 Ace 02-01 29.0-30.5m 0.4 1 5 <20 111 0.06 <10 40 <10 278 75 10 578 16 0.02 50 1070 10 <5 <5 105 <5 3.10 4 14 85 3.37 0.81 4 08154 Ace 02-01 37.5-39.0m 0.2 1.07 37 0.07 14 <10 7 113 22 66 19 4.54 30 1.17 339 <1 0.02 32 470 4 <5 <20 <10 08155 Ace 02-01 45.0-46.5m 0.2 2.16 <5 35 <5 0.97 <1 5 10 481 80 55 3.44 30 0.78 216 15 0.02 52 700 8 <5 <20 28 0.05 <10 53 <10 08156 Ace 02-01 47.5-49.0m 0.2 1.26 <5 80 <5 1.14 11 16 6 57 540 40 <5 <20 123 0.06 <10 35 <10 10 134 <5 85 <5 5.74 2 16 68 77 3.31 30 0.70 361 14 0.03 08157 Ace 02-01 49.0-49.7m 0.2 0.91 7 5 <10 65 10 0.52 317 2 0.02 86 340 36 <5 <20 2536 0.02 <10 10 0.2 0.46 <5 35 <5 >10 4 17 9 1.05 08158 <1 8 67 <10 8 682 13 99 64 2.75 30 0.65 246 24 0.01 63 1200 10 <5 <20 116 0.05 <10 0.2 1.09 <5 125 <5 2.88 20 9 08159 Ace 02-01 50,7-52,1m 5 43 510 40 <5 <20 2748 0.03 <10 10 <10 7 10 0.63 236 <1 0.02 83 08160 Ace 02-01 52.1-54.0m 0.2 0.59 <5 35 <5 >10 <1 5 18 1.24 10 <20 112 0.06 <10 14 <10 5 246 7 0.02 39 470 24 <5 08161 Ace 02-01 54.0-55.2m <0.2 1.15 5 60 <5 1.95 19 89 37 4.03 20 0.97 214 1 11 6 69 28 <10 <5 2.14 20 89 80 3,53 10 0.64 289 18 0.02 58 1130 8 <5 <20 112 0.06 <10 08162 Ace 02-01 55.2-57.0m <0.2 0.48 <5 105 <1 12 0.75 635 19 0.02 57 920 14 <5 <20 187 0.06 <10 28 <10 8 242 90 <5 3.58 3 16 114 78 3.23 10 08163 Ace 02-01 57.0-58.8m 0.4 0.48 <5 13 9 181 119 <10 704 33 0.05 68 1160 42 <5 <20 124 0.08 <10 <5 2.75 3 17 139 86 4.10 20 0.85 08164 Ace 02-01 58.8-61.0m 0.4 0.52 <5 85 14 155 11 212 3.82 2 108 81 4.08 20 1.17 1281 9 0.05 60 1130 42 <5 <20 151 0.10 <10 <10 08165 Ace 02-01 61,0-63,0m 0.68 <5 140 <5 16 0.4 15 12 209 <20 154 0.08 <10 59 <10 <5 3.44 17 102 69 3.86 30 0.85 640 25 0.04 51 1130 24 <5 08166 Ace 02-01 63.0-65.3m 0.2 0.70 <5 160 -3 16 2065 8 <5 <20 162 0.12 <10 37 <10 9 169 11 0.02 64 1500 <5 3.38 2 17 117 102 5.40 20 0.93 08167 Ace 02-01 65.3-67.5m 0.2 0.81 <5 100 17 127 16 171 28 5.48 40 1.29 153 <1 0.01 43 1180 6 <5 <20 24 0.11 <10 38 <10 <0.2 2.34 <5 105 5 0.66 30 18 08168 Ace 02-01 76.0-77.5m <1 123 2 50 890 6 <5 <20 18 0.10 <10 35 <10 14 134 38 40 0.01 <0.2 2.44 <5 55 <5 0.48 <1 33 122 5.91 1.31 08169 Ace 02-01 88.0-89.5m 19 263 1 0.02 45 890 6 <5 <20 12 0.09 <10 39 <10 13 111 1.20 104 36 5.12 40 1.38 08170 Ace 02-01 103.6-105.1m 0.2 2.15 <5 50 <5 <1 24 20 5 512 2 < 0.01 550 6 <5 <20 33 0.09 <10 18 <10 141 <5 89 51 5.76 30 1.12 44 08171 Ace 02-01 130.0-131.5m 0.2 1.95 <5 25 0.86 <1 28 21 6 17 2.43 20 0.69 494 2 0.02 22 290 6 <5 <20 11 0.05 <10 13 <10 41 <5 20 <5 0.91 <1 10 141 22 08172 Ace 02-01 139.5-141.0m < 0.2 0.87 16 121 41 <10 57 40 89 2 0.02 40 980 6 <5 <20 6 0.13 <10 <5 95 <5 0.53 <1 30 121 5.14 1.13 23 08173 <0.2 2.02 8 17 6.68 30 0.62 351 2 0.01 56 540 Δ <5 <20 16 0.10 <10 4 <10 08174 0.6 0.46 <5 30 <5 1.45 1 21 126 438 24 16 <10 12 34 3.72 59 <5 <20 64 0.08 <10 30 <5 6.17 <1 16 101 33 20 1.95 1067 10 0.01 1460 6 <0.2 0.52 <5 25 08175

٦

٩

BARKER MINERALS LTD. 22117 37A Ave Langley, BC V2Z 1N9

٩

### ATTENTION: Louis Doyle

No. of samples received: 60 Sample type: Core Project #: ACE Shipment #: None Given Samples submitted by: Chris Wild

4

(

8-Jul-02

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4 Phone: 250-573-5700

Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2002-1248

BARKER MINERALS LTD. 22117 37A Ave Langley, BC V2Z 1N9

## ATTENTION: Louis Doyle

No. of samples received: 5 Sample type: Core **Project #: Frank Creek** Shipment #: None Given Samples submitted by: Chris Wild

## Values in ppm unless otherwise reported

Et #.	Tag #	Ag	Al %	As	Ba	Bio	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	<u>Ti %</u>	<u> </u>	<u>v</u>	<u></u>	<u>Y</u>	Zn
61	08235	0.2	0.17	35	30	<5	0.52	<1	16	107	60	2.60	10	0.34	137	4	<0.01	31	530	118	<5	<20	9	0.04	<10	7	<10	4	109
62	08236	0.6	0.40	80	70	<5	4.76	<1	23	78	79	3.71	10	2.65	1347	2	0.02	64	1090	162	<5	<20	68	0.08	<10	13	<10	6	234
, 63	08237	1.2	0.20	65	40	<5	6.19	3	17	63	125	3.69	10	3.12	2346	2	0.02	47	710	396	<5	<20	60	0.10	<10	4	10	6	994
64	08238	2.0	0.29	60	45	<5	0.64	5	26	86	93	3.56	10	0.69	674	<1	0.02	52	430	1374	<5	<20	11	0.06	<10	3	10	3	1725
65	08239	1.0	0.20	50	35	<5	2.10	3	17	97	80	2.72	10	1.17	1441	3	0.01	35	580	546	<5	<20	27	0.06	<10	3	<10	5	1085
QC DAT	<u>A:</u>																												
Standari GEO '02	d:	1.6	1.59	50	140	<5	1.67	<1	21	64	81	3.81	10	0.94	623	<1	0.02	27	650	22	<5	<20	37	0.14	<10	73	<10	11	79

JJ/kk

df/

XLS/02

E-mail - Barker Minerals

CC: Wildrock Resources - Email & Mail

Lesse ECOTECH LABORATORY LTD. B.C. Certified Assayer

ICP CERTIFICATE OF ANALYSIS AK 2002-124

N

ECO TECH LABORATORY LTD.

BARKER MINERALS LTD.

### Pb Sb Y Tag # Ag Al% As Ba BiCa% Cd Co Cr Cu Fe % La Mg % Mn Mo Na% Ni P Sn Sr Ti% U v W Zn Et #. 2.20 <5 40 <5 0.29 <1 26 107 23 5.24 40 1.24 138 <1 0.02 44 430 8 <5 <20 8 0.09 <10 28 <10 9 134 26 08176 < 0.2 8 <20 32 166 10 0.43 218 6 0.01 13 230 <5 15 0.03 <10 10 <10 3 27 08177 <0.2 0.68 <5 10 <5 0.40 <1 6 10 1.84 0.2 0.97 <5 10 <5 0.48 24 184 47 4.35 20 0.70 181 2 0.01 58 250 10 <5 <20 21 0.07 <10 14 <10 5 50 28 08178 <1 <5 14 154 17 3.12 20 0.86 423 0.02 30 320 8 <5 <20 14 0.05 <10 18 <10 6 60 29 08179 <0.2 1.30 15 <5 0.41 <1 4 30 08180 1.6 1.39 <5 20 <5 3.87 2 41 175 557 >10 40 1.57 7534 4 0.01 165 4100 20 <5 <20 252 0.38 <10 449 <10 30 282 <2 291 0.75 30 371 08181 0.9 2.15 <5 25 5 5.63 2 38 187 340 >10 50 2.62 >10000 9 < 0.01 127 3510 <5 <20 40 546 <10 31 106 2260 <2 <5 <20 260 0.54 574 <10 24 534 1.65 <5 30 <5 4.91 31 159 393 >10 30 2.43 >10000 3 0.03 10 32 08182 04 4 0.57 <5 60 <5 3 18 134 116 5.00 10 0.77 2488 19 0.02 51 1270 14 <5 <20 80 0.11 <10 17 <10 8 203 33 08183 0.2 1.86 <5 40 24 115 7.06 20 1.22 3129 14 0.03 68 1580 28 <5 <20 164 0.16 <10 110 <10 13 214 0.2 0.75 <5 3.02 2 111 34 08184 26 <5 215 35 08185 0.2 0.37 <5 85 <5 3.83 <1 18 93 30 3.90 10 1.05 570 26 0.07 50 1140 <20 0.07 <10 54 <10 9 171 0.33 <5 <5 15 86 35 3.61 10 1.19 986 40 0.06 53 1280 56 <5 <20 243 0.08 <10 59 <10 11 187 36 08186 0.4 60 3.61 1 32 37 08187 0.4 0.26 <5 80 <5 2.65 1 12 95 70 3.48 10 0.72 1016 125 0.05 53 1120 <5 <20 127 0.07 <10 10 <10 8 51 35 450 108 <5 <20 106 0.04 <10 4 99 <5 70 5 1.73 10 140 2.29 10 0.47 578 163 0.06 48 10 <10 38 08188 1.1 0.13 1 0.4 0.78 <5 50 <5 0.77 <1 22 97 56 5.21 20 1.23 387 1 0.08 33 390 10 <5 <20 56 0.10 <10 104 <10 4 139 39 08189 77 30 0.92 40 440 <2 <5 <20 29 0.08 <10 12 <10 5 08190 < 0.2 1.49 <5 30 <5 0.71 <1 24 31 4.20 413 <1 <0.01 104 40 <0.2 0.34 <5 70 <5 3.54 91 56 3.46 10 1.15 1121 8 < 0.01 43 1000 2 <5 <20 111 0.07 <10 8 <10 6 84 41 08191 <1 16 18 <5 <20 67 <10 4 42 08192 0.2 1.04 <5 90 <5 0.57 <1 25 87 54 4.97 20 1.06 268 <1 0.03 39 430 41 0.10 <10 174 76 69 20 1 0.05 46 390 8 <5 <20 67 0.21 <10 138 <10 10 137 43 08193 0.2 1.45 <5 65 <5 0.68 <1 29 4.95 1.17 368 7 < 0.2 1.68 <5 115 10 0.19 <1 26 71 32 4.34 20 0.93 189 <1 < 0.01 36 540 4 <5 <20 16 0.19 <10 22 <10 108 44 08194 53 5 0.95 <5 70 <5 0.69 28 71 64 5.90 20 1 14 381 <1 0.04 41 540 18 <5 <20 0.12 <10 61 <10 126 45 08195 0.2 1 43 30 <10 9 112 46 08196 <0.2 2.67 <5 30 <5 1.15 <1 28 111 5.93 50 1.56 566 3 0.01 53 720 6 <5 <20 46 0.09 <10 <5 <20 27 0.07 <10 3 100 <0.2 2.23 <5 30 <5 0.47 <1 23 95 30 5.10 20 1.24 338 <1 0.02 39 560 8 18 <10 47 08197 <5 <1 30 42 6.48 30 1.33 714 1 0.02 45 650 4 <5 <20 34 0.10 <10 26 <10 4 99 < 0.2 2.48 20 <5 0.81 94 48 08198 <5 1.94 79 35 511 52 540 66 <5 <20 230 0.07 <10 36 <10 5 665 49 08212 0.2 0.20 15 40 7 16 4.09 10 0.82 92 0.07 52 800 24 <5 <20 174 26 <10 6 353 0.15 10 55 <5 2.10 15 96 23 3.82 10 0.72 581 63 0.06 0.06 <10 50 08213 0.2 4 <5 16 217 51 08214 1.6 0.43 70 25 <5 2.98 <1 63 133 671 >10 60 1.17 5747 10 < 0.01 171 5500 <2 <20 134 0.41 20 44 <10 55 1590 <2 <5 <20 7 270 <5 80 <5 4.52 <1 25 117 159 >10 40 1.69 >10000 8 < 0.01 219 0.39 10 96 <10 1.58 52 08215 0.8 <0.2 0.50 <5 155 <5 1.58 <1 12 149 53 3.55 20 0.49 3076 5 0.01 16 730 <2 <5 <20 71 0.10 <10 4 <10 5 77 08216 53 0.33 25 60 10 2.34 22 99 255 5.73 20 0.72 1515 67 0.04 69 1710 26 <5 <20 81 0.11 <10 19 <10 11 112 0.6 1 54 08217 <5 <20 55 08229 0.2 2.29 <5 40 <5 0.46 <1 26 96 25 5.49 40 1.14 437 1 0.02 44 520 16 15 0.08 <10 20 <10 10 112 56 08230 02 0.39 <5 50 <5 1.91 11 17 94 66 4.21 20 0.72 667 45 0.04 60 1380 34 <5 <20 102 0.08 <10 42 <10 9 385 22 13 159 0.2 <5 80 <5 4.34 28 97 122 5.83 30 1.37 2168 15 0.03 66 1760 <5 <20 191 0.13 <10 93 <10 57 08231 0.53 1 7 90 <2 <5 <20 27 0.05 7 <10 48 58 08232 < 0.2 0.58 <5 10 <5 1,07 <1 8 153 17 2.50 0.54 504 7 < 0.01 11 350 <10 <5 83 50 5.20 20 0.72 468 <1 0.04 29 340 6 <5 <20 52 0.08 <10 15 <10 4 57 0.68 50 <5 0.88 <1 22 59 08233 0.2 157 584 48 630 20 <5 <20 93 65 6 0.4 0.79 <5 50 <5 1.19 <1 28 81 60 6.07 20 1,11 <1 0.05 0.10 <10 <10 60 08234

 $\sim$ 

BAR	KER MINERALS LTD.									ICP CE	RTIFIC	CATE O	F ANA	ALYSIS	AK 2002	2-124							ECO T	ЕСН ГЛ	ABOR	ATOR	Y LTD.		
Et #	. Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v		Y	Zn
<u>QC [</u> Resp	DATA: blit:																												
1 36	08151 Ace 02-01 13.0-14.5m 08186	0.2 0.4	1.08 0.35	<5 <5	115 60	75 <5	1.01 4.01	<1 1	21 17	77 87	54 34	4.07 3.91	40 10	0.85 1.18	360 1062	<1 49	0.01 0.07	27 58	820 1390	50 62	<5 <5	<20 <20	17 234	0.14 0.08	<10 <10	19 65	<10 <10	16 13	58 199
Repe	eat:	_		_																	_								
1	08151 Ace 02-01 13.0-14.5m	0.2	1.01	<5	90	90	0.97	<1	19	110	55	3.78	40	0.86	350	2	0.01	27	720	40	<5	<20	18	0.13	<10	17	<10	15	59
10	08160 Ace 02-01 52.1-54.0m	0.2	0.58	<5	30	<5	>10	<1	5	20	6	1.29	10	0.60	246	<1	0.02	85	520	42	<5	<20	2564	0.03	<10	10	<10	5	46
19	08169 Ace 02-01 88.0-89.5m	<0.2	2.42	<5	55	<5	0.47	<1	33	123	41	5.93	40	1.30	126	2	0.01	51	4240	8	<5 <5	<20	17	0.10	<10	35	<10	14	130
35	08186	0.4	0.33	<0	70	<0	3.77	<1	10	6/ 76	30	3.72	20	1.20	1028	43	0.05	00	1340	14	 >5 <5	<20	243	0.00	<10	62	<10	5	134
45 54	08195	0.2	0.33	25	95 65	10	2.30	1	28	99	252	5.99 6.15	20	0.70	405 1485	76	0.04	42 77	1660	26	<5	<20 <20	80	0.12	<10	19	<10	11	113
,																													
Stan	dard:			~5			4 00		~	~ ~	~~					- 4			000		~	-00		0.45	-40	74		44	70
GEO	· '02	1.4 1.2	1.61	65 50	140	<5 <5	1.66 1.67	<1 <1	21 21	64 64	80 81	3.82 3.81	10	0.94	625 623	<1 <1	0.02	28	650	20	-5 -5	<20 <20	38	0.15	<10	74 73	<10	11	79 79

JJ/kk

df/122a/124a/124b

XLS/02

E-mail - Barker Minerals

CC: Wildrock Resources - Email & Mail

(

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Cértified Assayer

ļ

10-Jul-02

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2002-131

BARKER MINERALS LTD. 22117 37A Ave Langley, BC V2Z 1N9

## ATTENTION: Louis Doyle

No. of samples received: 24 Sample Type: Core Project #: ACE Drill Hole #: ACE - 02-04 Samples submitted by: Chris Wild

Values in ppm unless otherwise reported

Et #.	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	<u>v</u>		Y	<u> </u>
1	8199	<0.2	1.40	<5	110	<5	0.88	<1	19	75	18	3.21	40	0.80	247	<1	0.02	28	860	4	<5	<20	31	0.13	<10	21	<10	15	66
2	8200	<0.2	1.64	<5	80	<5	0.75	<1	27	69	32	4.66	30	1.00	304	<1	0.02	38	640	6	<5	<20	37	0.11	<10	20	<10	8	95
3	8201	<0.2	1.16	<5	35	<5	7.37	<1	16	43	30	3.45	20	1.01	624	<1	0.01	50	1040	22	<5	<20	316	0.06	<10	9	<10	10	86
4	8202	0.2	1.10	<5	50	<5	2.16	<1	21	91	30	4.41	30	1.27	277	<1	0.05	41	610	26	<5	<20	145	0.10	<10	54	<10	8	126
5	8203	0.2	0.49	5	75	<5	>10	<1	11	78	20	2.39	20	1.03	389	26	0.05	62	650	76	<5	<20	574	0.06	<10	44	<10	13	153
						-												~~						• • •					
6	8204	0.6	0.25	40	75	<5	9.51	<1	10	50	14	2.09	10	0.55	420	92	0.03	66	490	100	<5	<20	514	0.04	<10	25	<10	11	87
7	8205	0.2	0.47	15	65	<5	4.00	1	18	91	25	3.72	20	0.89	379	24	0.04	49	/10	28	<5	<20	225	0.06	<10	21	<10	11	11/
8	8206	0.2	0.40	90	75	<5	7.62	2	14	66	24	3.96	20	0.97	1283	12	0.02	60	1070	64	<5	<20	481	0.08	<10	20	<10	9	292
9	8207	0.2	0.31	860	35	<5	4.71	<1	22	177	114	>10	40	1.45	7915	10	<0.01	78	770	22	<5	<20	261	0.30	<10	20	<10	9	71
10	8208	5.2	0.26	60	45	10	2.78	9	16	88	31	3.84	20	0.72	576	44	0.05	77	2020	704	<5	<20	159	0.06	<10	27	<10	13	855
11	8209	0.2	0.38	90	25	<5	1 08	8	19	102	114	3 74	10	0 44	256	21	0.01	66	500	10	<5	<20	72	0.05	<10	31	10	5	767
12	8210	0.6	0.13	30	30	<5	1 70	6	15	138	24	4.28	20	0.47	507	230	0.05	74	1740	94	<5	<20	127	0.06	<10	16	<10	9	507
13	8211	2.0	0.21	5	30	<5	2.06	6	17	91	26	4.39	20	0.71	585	307	0.08	65	1020	312	<5	<20	189	0.06	<10	27	<10	7	485
14	8218	0.4	0.23	<5	65	<5	4.56	<1	20	63	69	4.21	20	0.97	982	36	0.04	67	1390	36	<5	<20	136	0.07	<10	19	<10	10	55
15	8219	0.3	0.88	<5	60	<5	2.86	<1	21	106	67	4.48	30	1.62	590	4	0.04	52	1150	26	<5	<20	91	0.07	<10	52	<10	8	152
16	8220	0.2	1.56	<5	65	<5	>10	<1	18	98	23	3.35	20	2.19	766	1	0.02	73	430	18	<5	<20	369	0.06	<10	15	<10	11	57
17	8221	0.2	0.35	10	60	<5	8.06	<1	20	73	99	5.21	30	2.26	2386	25	0.03	84	1070	24	<5	<20	249	0.11	<10	18	<10	12	68
18	8222	0.4	0.33	35	50	<5	3.72	1	29	92	138	5.05	40	1.05	1023	39	0.05	68	1850	28	<5	<20	122	0.09	<10	32	<10	12	108
19	8223	0.6	0.28	<5	90	<5	6.16	2	13	81	76	3.93	30	1.06	2108	8	0.02	50	1550	32	<5	<20	165	0.09	<10	31	<10	14	121
20	8224	0.8	0.31	<5	45	<5	3.19	2	16	126	34	3.63	30	0.90	707	95	0.07	72	1750	94	<5	<20	119	0.07	<10	38	<10	11	187
21	0005	0.2	0.75	~5	50	~5	1 12	4	11	124	47	2 20	20	1.00	ຄາກ	20	0.09	70	2700	50	~5	~20	171	0.42	~10	166	~10	22	170
21	0220	0.2	1.20	<0 <5	50	< <u>5</u>	4.12	4	74	1,04	70	5.20	40	1.00	204	29	0.00	40	900	10	~J	~20	24	0.12	<10	54	<10	22	1/5
22	0220 0007	0.2	1.30	<5	05	<0 20	1.03	- 1	24	00	12	0.07	40	1.20	304	10	0.03	49	610	10	2	~20	34	0.07	~10	31 40	<10	/ E	100
23	8227	<0.2	1.83	<5	55	<5	0.72	<1	23	89	32	5.09	30	1.12	302	1	0.02	45	010	10	<5 	<20	35	0.06	<10	18	<10	5	139
24	8228	0.2	1.05	<5	80	<5	3.63	1	24	83	50	4.55	40	1.01	732	11	0.05	54	780	22	<5	<20	158	0.08	<10	52	<10	12	130

BARKER N	MINERALS LTD.								l	CP CEI	RTIFIC		F ANA	LYSIS	AK 200	02-131								ECO TI	ECH LA	BORA	TORY I	LTD.
Et #	Tag #	Ag	<u>AI %</u>	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	<u> Ti %</u>	U	v	w	<u> </u>
<u>QC DATA:</u> Resplit: 1	8199	<0.2	1.46	<5	135	<5	0.97	<1	21	95	17	3.51	40	0.81	269	<1	0.03	32	940	8	5	<20	30	0.15	<10	23	<10	17
Repeat:					ı																							
1	8199	<0.2	1.35	<5	115	<5	0.93	<1	19	80	17	3.36	40	0.77	260	<1	0.02	31	900	6	<5	<20	29	0.13	<10	22	<10	16
10	8208	5.2	0.27	65	45	5	2.76	9	16	89	32	3.85	20	0.74	570	45	0.05	74	2000	712	<5	<20	163	0.06	<10	28	<10	13
19	8223	0.6	0.25	<5	80	<5	5.50	1	12	75	66	3.74	30	0.92	1872	6	0.02	45	1410	28	<5	<20	140	0.09	<10	28	<10	13

ł

Standard: GEO '02 1.6 1.80 65 160 <5 1.83 23 75 90 4.23 20 1.05 684 <1 0.03 36 720 22 15 <20 42 0.17 <10 84 <10 12 79 <1

JJ/kk

df/

XLS/02

E-mail - Barker Minerals

CC: Wildrock Resources - Email & Mail

(

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certifierd Assayer rese

(

Y Zn

17 70

16 71 13 851 13 110

10-Jul-02 ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2002-131

10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4 Phone: 250-573-5700

Fax : 250-573-4557

48

49

8263

8264

< 0.2

0.2 0.16

0.27

155

220

<5

<5

<5 3.15

<5 1.28 <1

4

10 108

5 197 10 2.80

33 1.31

Samples submitted by: Chris Wild Values in ppm unless otherwise reported Et #. Ag Al% Ва Bi Ca % Cd Co Cr Cu Fe % La Mog % Mn Mo Na% Ni Ρ Pb Sb Sn Sr Ti% 11 v W Y Zn Tag # As 75 1395 0.02 57 560 618 <5 <20 <10 17 <10 3 2031 8240 1.8 <5 0.30 68 88 4.24 20 1.26 13 11 0.07 25 0.24 45 5 12 8241 18.0 0.25 130 40 <5 0.52 88 1183 >10 40 2.46 2498 8 0.02 57 530 3226 <5 <20 19 0.18 <10 19 <10 3 >10000 26 64 31 50 45 <5 3,72 9 18 59 217 4.65 20 2.45 2218 <1 0.02 42 260 208 <5 <20 51 0.10 <10 3 <10 2061 27 8242 1.6 0.22 5 28 8243 12.4 0.40 115 55 <5 0.30 127 68 130 1481 >10 50 3.55 3957 <1 0.03 71 360 808 <5 <20 8 0.27 <10 15 <10 4 >10000 <5 25 29 8244 0.6 0.59 65 100 <5 0.47 3 28 143 57 >10 50 2.62 3100 8 0.03 57 1450 60 <20 19 0.17 <10 <10 6 622 <5 40 22 502 <5 <20 2 1379 30 8245 0.6 0.34 5 40 0.28 5 10 149 3.24 30 1,51 718 5 0.03 110 14 0.05 <10 3 <10 25 <5 45 0.2 0.33 <5 45 <5 1.50 <1 10 128 14 2.81 20 0.81 1423 5 0.02 200 6 <20 31 0.06 <10 3 <10 2 31 8246 <0.2 40 55 <5 >10 <1 51 120 64 7.27 40 5.09 1184 <1 0.06 214 1730 4 <5 <20 107 0.12 <10 50 <10 5 71 32 8247 0.87 7.64 <0.2 0.47 145 235 <5 >10 <1 48 61 35 40 3.08 1011 2 0.04 167 2010 6 <5 <20 0.12 <10 19 <10 10 57 33 8248 114 34 8249 <0.2 0.27 <5 65 <5 5.58 <1 12 110 84 3.47 10 1.86 942 5 0.01 51 160 8 <5 <20 189 0.06 <10 4 <10 6 46 67 145 <5 55 95 70 7.01 30 1066 0.05 <5 <20 139 33 9 35 8250 <0.2 0.37 150 >10 <1 5.49 <1 291 1440 4 0.11 <10 <10 <5 154 108 20 22 36 200 <2 <5 <20 2 43 36 8251 0.2 0.29 35 <5 0.18 1 14 6.44 0.38 3 0.01 8 0.07 <10 4 <10 20 20 <5 2 24 <5 50 <5 6 102 10 1.66 10 0.78 534 2 0.03 190 <20 61 0.03 <10 2 37 8252 0.2 0.21 1.94 <1 <10 38 8253 < 0.2 1.36 150 15 <5 >10 <1 57 201 76 6.60 10 4.33 1229 <1 0.04 233 920 12 <5 <20 238 0.10 <10 31 <10 6 79 240 <5 2 3 45 0.29 <5 35 116 11 2.36 20 0.49 246 2 0.02 19 14 <20 0.03 <10 <10 39 8254 0.4 <5 0.11 <1 10 4 53 65 <20 3333 8255 >30 0.13 8010 15 <5 0.10 46 151 5238 50 0.45 0.01 290 2866 0.29 <10 16 з 40 <1 >10 - 7 8 4 <10 <5 41 8256 0.8 3.68 <5 225 <5 5.43 <1 30 229 48 6.04 80 4.38 762 <1 0.02 200 2390 20 <20 96 0.10 <10 92 <10 9 76 16 20 1.66 30 580 20 <5 <20 16 3 77 20 35 <5 0.65 <1 15 88 3.88 278 <1 0.04 0.05 <10 <10 4 42 8257 0.4 0.48 8258 1.80 475 35 <5 9.57 <1 63 434 8 7.56 30 6.78 1819 <1 0.03 392 820 6 <5 <20 333 0.13 <10 57 <10 6 137 43 0.2 0.2 2.54 65 20 50 306 102 7.75 30 1426 2 0.04 142 1040 8 <5 <20 83 0.13 121 <10 4 96 44 8259 <5 7.83 <1 4.82 <10 0.2 55 <5 131 15 3.89 40 1.08 425 0.04 600 18 <5 <20 0.05 6 5 91 45 8260 0.80 <5 0.66 16 <1 34 18 <10 <10 <1 8261 < 0.2 1.42 40 55 <5 7.83 <1 46 98 108 7.49 30 3.27 1452 <1 0.06 96 1120 <2 <5 <20 129 0.12 <10 52 <10 4 86 46 47 8262 < 0.2 0.75 500 40 <5 >10 <1 83 450 57 6.10 30 6.25 2608 <1 0.02 788 370 4 <5 <20 410 0.14 <10 23 <10 4 72

20

<10 0.46

1.16

649

306

2 0.03

9 0.01 32 550

27

300

<2

24

<5

<5

<20

<20

92 0.05

54 0.02 3 <10

7 <10

<10

<10

6

2

43

371

BARKER MINERALS LTD. 22117 37A Ave Langley, BC V2Z 1N9

### ATTENTION: Louis Doyle

No. of samples received: 65 Sample Type: Core Project #: Frank Creek Drill Hole #: FC-02-01 to FC-02-06 BARKER MINERALS LTD.

## ICP CERTIFICATE OF ANALYSIS AK 2002-131

## ECO TECH LABORATORY LTD.

Et #.	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
50	8265	<0.2	0.29	30	55	<5	7.42	<1	24	101	15	5.03	30	1.60	976	<1	0.03	84	830	10	<5	<20	128	0.08	<10	5	<10	6	71
51	8266	6.2	0.30	175	20	<5	0.19	8	35	130	1970	>10	30	1.69	1314	3	0.03	28	500	280	<5	<20	6	0.18	<10	8	<10	3	2268
52	8267	5.6	0.97	335	20	<5	0.30	3	53	136	2751	>10	30	1.77	1261	2	0.04	37	1160	430	<5	<20	8	0.21	<10	14	<10	4	1252
53	8268	5.2	0.80	210	25	<5	0.48	2	33	159	807	>10	30	2.17	1466	3	0.06	36	1880	232	<5	<20	14	0.17	<10	11	<10	6	872
54	8269	4.8	1.37	220	30	<5	0.10	3	28	118	908	>10	30	1.89	1212	1	0.03	29	210	486	<5	<20	5	0.15	<10	17	<10	3	1349
<b>V</b> +	0200	1.0	1.01		••		0.10	-								•	0.00				-		_						
55	8270	86	0.20	165	20	<5	0.09	5	48	152	4935	>10	30	1 48	1230	6	0.03	37	320	260	<5	<20	4	0.25	<10	7	<10	3	1255
56	8271	3.4	0.36	50	25	<5	0.09	2	24	165	539	8.62	30	1 43	1091	1	0.04	28	120	164	<5	<20	4	0.12	<10	6	<10	3	502
57	8272	12	0.39	45	35	<5	0.11	2	28	141	55	>10	40	1.83	1678	2	0.05	39	60	56	<5	<20	5	0.15	<10	9	<10	4	768
58	8273	10.5	0.40	125	30	<5	0.15	9	77	131	2104	>10	50	2 95	2448	<1	0.05	37	20	784	<5	<20	5	0.33	<10	6	<10	4	1671
59	8274	22	1 13	25	30	<5	0.12	3	25	119	342	>10	30	2.04	1553	2	0.03	26	170	156	<5	<20	5	0.14	<10	13	<10	2	750
00	0414	2.2		20	00		0.12		20		0.2				1000	-	0.00				-								
60	8275	2.8	0.90	35	25	<5	0.15	2	24	129	1173	9.64	30	1.94	1561	<1	0.03	23	330	120	<5	<20	5	0.16	<10	10	<10	3	501
61	8276	2.0	2 34	80	20	<5	0.48	5	41	138	1514	>10	30	2.52	1559	2	0.02	34	1480	200	<5	<20	12	0.20	<10	28	<10	5	1380
62	8277	3.4	2.43	695	20	<5	0.37	3	34	149	2315	>10	30	2.60	1529	3	0.01	35	880	232	<5	<20	9	0.19	<10	29	<10	3	1926
63	8278	4.6	2.86	180	20	<5	0.12	13	71	162	3612	>10	50	3.13	1780	2	0.02	39	270	234	<5	<20	4	0.32	<10	27	<10	4	4145
64	8279	53	2 04	195	20	<5	0.14	14	109	142	3189	>10	70	3.29	2924	4	0.01	57	120	296	<5	<20	4	0.40	<10	20	<10	4	3522
• ·						-				=				=															
65	8280	3.0	0.89	135	35	<5	0.17	3	-39	138	[•] 861	>10	30	2.31	1583	1	0.03	40	250	160	<5	<20	5	0.17	<10	8	<10	3	821
66	8281	0.6	1.28	50	40	<5	0.13	<1	13	129	94	6.50	20	1.62	1208	2	0.03	38	320	44	<5	<20	5	0.10	<10	10	<10	3	233
67	8282	0.2	0.27	<5	55	<5	3.62	<1	9	105	130	3.63	20	1.49	1656	2	0.03	28	100	54	<5	<20	36	0.08	<10	2	<10	4	124
68	8283	0.2	0.75	25	50	<5	1.57	<1	25	123	48	5.53	30	1.64	871	<1	0.04	54	530	52	<5	<20	25	0.08	<10	6	<10	4	256
69	8284	0.2	1.69	20	45	<5	0.17	<1	19	99	30	4.55	40	1.45	710	1	0.02	40	600	10	<5	<20	7	0.06	<10	10	<10	5	152
70	8285	<0.2	1.04	45	20	<5	7.66	<1	41	164	42	6.86	30	4.41	1378	<1	0.06	154	1080	4	<5	<20	38	0.11	<10	54	<10	5	93
71	8286	0.6	0.51	320	50	<5	0.10	<1	17	113	24	6.54	20	1.67	1144	1	0.04	32	150	326	<5	<20	6	0.09	<10	5	<10	2	693
72	8287	0.6	1.85	370	40	<5	0.19	<1	23	77	48	8.35	20	2.08	1192	<1	0.02	40	630	270	<5	<20	10	0.12	<10	17	<10	4	783
73	8288	0.2	0.82	165	45	<5	0.12	<1	18	99	20	5.78	20	1.48	927	<1	0.03	30	270	76	<5	<20	8	0.08	<10	9	<10	3	606
74	8289	0.8	1.89	65	35	<5	0.26	4	23	117	64	7,98	30	1.86	1090	3	0.02	39	590	166	10	<20	11	0.11	<10	16	<10	4	943
75	8290	0.6	1.76	25	45	<5	0.13	1	19	112	27	6.56	30	1.62	860	<1	0.02	36	300	192	<5	<20	7	0.09	<10	12	<10	3	378
76	8291	1.0	1.84	20	35	<5	0.16	3	21	106	64	8.24	20	1.93	1167	<1	0.02	33	140	290	<5	<20	6	0.11	⁻ <10	14	<10	3	931
77	8292	0.6	1.90	30	45	<5	0.20	1	19	118	28	7.55	30	1.81	1175	1	0.02	33	140	170	<5	<20	7	0.11	<10	14	<10	3	335
78	8293	0.6	1.99	250	40	<5	0.22	<1	20	125	40	7.54	20	1.90	1291	1	0.02	35	290	192	<5	<20	9	0.11	<10	16	<10	3	614
79	8294	1.0	1.98	105	55	<5	0.06	з	18	86	39	6.05	30	1.53	934	1	0.02	34	130	370	<5	<20	4	0.09	<10	20	<10	2	969
																									•				
80	8295	4.2	1.77	50	40	<5	0.15	8	32	88	284	>10	30	2.34	1550	<1	0.01	37	220	1006	<5	<20	7	0.16	<10	21	<10	3	2635
81	8296	2.0	0.46	425	35	<5	0.23	5	28	98	204	>10	30	2.16	1435	<1	0.04	34	360	920	<5	<20	11	0.14	<10	10	<10	3	2234
82	8297	20.2	0.99	335	25	<5	2.10	6	61	109	3978	>10	30	3.55	2321	1	0.04	45	470	1292	<5	<20	43	0.29	<10	13	<10	4	2507
83	8298	0.4	2.68	80	60	<5	3.97	<1	33	146	48	7.22	30	4.81	3034	<1	0.04	95	1040	68	<5	<20	58	0.15	<10	58	<10	5	301
84	8299	1.4	0.56	55	55	<5	0.19	2	22	104	248	7.10	30	1.72	1228	1	0.04	34	200	100	<5	<20	8	0.11	<10	5	<10	3	603

Page 2

BARKER	MINERALS LTD.								i		RTIF	CATE O	F ANA	LYSIS	AK 20	02-131	1								ECO TE	СН Ц4	BORAT	FORY L	TD.
Et #.	Tag #	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	РЬ	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
85	8300	2.4	0.28	40	40	<5	0.09	2	29	140	1066	9.35	30	0.91	943	3	0.04	19	80	26	<5	<20	6	0.15	<10	3	<10	3	225
86	8301	4.0	0.25	35	30	<5	0.08	2	63	140	2276	>10	30	1.01	949	2	0.04	21	100	112	<5	<20	5	0.20	<10	3	<10	3	317
87	8302	1.2	0.42	<5	60	<5	0.47	1	23	121	426	8.36	30	0.91	1050	<1	0.04	25	1710	80	<5	<20	15	0.12	<10	4	<10	6	359
88	8303	12	0.33	<5	65	<5	0.18	2	25	91	173	7.12	20	1.10	1181	1	0.03	37	160	152	<5	<20	6	0,10	<10	3	<10	3	443
89	8304	0.8	0.34	10	55	<5	1.73	4	26	104	175	5.96	20	1.24	1084	<1	0.03	32	320	76	<5	<20	30	0.09	<10	3	<10	4	776
Repeat:																													
36	8251	0.2	0.28	<5	40	<5	0.19	1	14	150	105	6.34	20	0.37	25	3	0.01	36	210	<2	<5	<20	8	0.07	<10	4	<10	2	42
45	8260	0.2	0.79	<5	55	<5	0.66	<1	16	130	16	3.86	40	1.06	425	<1	0.04	32	590	16	<5	<20	18	0.05	<10	6	<10	5	95
54	8269	4.6	1.36	225	25	<5	0.10	3	28	118	914	/ >10	30	1.87	1196	<1	0.03	29	200	478	<5	<20	5	0.15	<10	17	<10	3	1339
71	8286	0.6	0.51	330	50	<5	0 10	<1	16	115	24	6.53	20	1.66	1145	<1	0.04	30	170	322	<5	<20	6	0.09	<10	5	<10	3	703
80	8295	4.2	1.78	55	40	<5	0.15	9	31	88	283	>10	30	2.35	1557	<1	0.01	36	240	1004	<5	<20	7	0.16	<10	21	<10	3	2632
Resplit:																													
36	8251	0.2	0.32	<5	30	<5	0.19	<1	14	136	104	6.55	20	0.38	23	3	0.01	37	180	<2	<5	<20	8	0.08	<10	4	<10	2	43
71	8286	0.6	0.45	410	45	<5	0.10	<1	16	113	22	6.69	20	1.72	1196	<1	0.03	31	140	312	<5	<20	6	0.09	<10	4	<10	3	709
Standard.	•																												
GEO '02		1.6	1.64	55	145	<5	1.74	<1	21	71	81	3.96	20	0.95	634	<1	0.03	34	650	18	10	<20	40	0,15	<10	78	<10	11	81
GEO '02		1.6	1.58	50	140	<5	1.70	<1	21	70	78	3.85	10	0.91	622	<1	0.03	33	640	20	5	<20	38	0.15	<10	76	<10	10	79

JJ/kk df/131

XLS/02

E-mail - Barker Minerals

CC: Wildrock Resources - Email & Mail

(

ECO TECH LABOBATORY LTD. Jutta Jealouse B.C. Certifiod Assayer

(

## ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

Tech LABORATORY LTD.

10041 Dailas Drive, Kamioops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

## **CERTIFICATE OF ANALYSIS AK 2002-124A**

July 10, 2002

BARKER MINERALS LTD. 22117 37A Ave Langley, BC V2Z 1N9

Eco

## ATTENTION: Louis Doyle

No. of samples received: 60 Sample type: Core **Project #: ACE** Shipment #: None Given Samples submitted by: Chris Wild

## Note: Values expressed in percent

ET #.	Tag #	BaO	P205	SiO2	MnO	Fe203	MgO	AI203	CaO	TiO2	Na2O	K20	L.O.I.
1	08151 Ace 02-01 13.0-14.5m	0.11	0.18	71.72	0.07	6.32	1.94	11.64	1.39	0.90	0.39	4.14	1.29
2	08152 Ace 02-01 17.37-19.0m	0.11	0.24	66.84	0,06	6.68	2.18	14.81	1.11	0.97	0.35	4.24	2.41
3	08153 Ace 02-01 29.0-30.5m	0.17	0.20	63.09	0,07	6.89	2.19	16.51	2.47	0.89	0.74	3.56	3.22
4	08154 Ace 02-01 37.5-39.0m	0.22	0.25	65.31	0.09	5.07	1.55	12.99	3.93	0.53	0.96	2.70	6.53
7	08157 Ace 02-01 49.0-49.7m	0.17	0.14	61.83	0.06	4.91	1.41	14.10	7.55	0.51	1.92	2.52	4.87
14	08164 Ace 02-01 58.8-61.0m	0.09	0.27	70.41	0.11	5.99	1.61	11.38	3.65	0.42	4.65	1.02	0.90
16	08166 Ace 02-01 63.0-65.3m	0.22	0.28	65.95	0.10	5.47	1.68	13.52	4.36	0.53	3.88	2.34	1.91
18	08168 Ace 02-01 76.0-77.5	0.17	0.33	60.99	0.12	9.21	2.34	17.17	1.40	1.23	1.39	3.08	2.57
20	08170 Ace 02-01 103.6-105.1m	0.10	0.26	58.55	0.08	7.81	2.58	19.46	2.15	0.85	1.73	3.58	2.85
21	08171 Ace 02-01 130.0-131.5m	0.08	0.17	59.81	0.10	8.70	2.22	18,76	1.12	1.04	0.39	4.59	3.08
22	08172 Ace 02-01 139.5-141.0m	0.03	0.08	81.55	0.07	3.29	1.30	7.67	1.25	0.42	1.25	1.28	1.83
23	08173	0.12	0.27	62.11	0.10	8.49	2.08	17.42	1.44	0.98	1.73	3.44	1.82
25	08175	0.04	0.36	59.16	0.15	5.49	3.29	9,95	7.31	0.66	0.27	2.86	10.46
26	08176	0.10	0.13	60.93	0.11	8.68	2.33	18.34	0.99	1.11	1.34	3.27	2.72
29	08179	0.02	0.11	80.46	0.07	4.26	1.53	8.70	0.69	0.47	1.06	1.21	1.48
32	08182	0.19	0.65	51.16	1.81	18.97	4.05	8.08	6.24	0.83	2.38	1.85	3.88
33	08183	0.38	0.32	71.59	0.34	6.77	1.64	10.12	2.29	0.36	1.74	2.18	2.33
35	08185	0.12	0.36	62.50	0.09	5.21	1,80	13.98	4.76	0.49	6.70	1.01	3.03
37	08187	0.18	0.32	70.14	0,14	4.82	1.24	11.50	3.34	0.39	4.07	1.49	2.43
39	08189	0.06	0.13	59.30	0.07	7.95	2.09	17.03	1.20	0.94	8.23	1.23	1.78
40	08190	0.08	0.14	60.24	0.09	8.20	2.15	18.53	1.01	1.13	0.45	5.44	2.59
41	08191	0.13	0.26	65.87	0.16	5.65	2.31	10,96	4.52	0.55	0.01	3.76	5.88
42	08192	0.13	0.18	60.77	0.05	7.69	2.27	17.97	0.86	0.79	4.56	3.24	1.50
45	08195	0.17	0.19	57.49	0.07	8.70	2.37	18.58	1.05	0.91	5.74	3.26	1.52
47	08197	0.09	0.19	60.60	0.06	7.40	2.26	19.37	0.69	0.83	1.36	3.81	3,38
48	08198	0.07	0.21	57.99	0.11	9.35	2.43	18.85	1.14	1.27	1.16	3.57	3.89
49	08212	0.13	0.18	64.77	0.08	5.70	1.43	14.78	2.54	0,44	7.52	0.78	1.70
50	08213	0.15	0.28	68.13	0.09	5.26	1.24	12.58	2.71	0.39	6.24	0.81	2.18
#### BARKER MINERALS LTD. AK-2002-124

10-Jul

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

۰,

ET #.		Tag #	BaO	P205	SiO2	MnO	Fe203_	MgO	AI203	CaO	TiO2	Na2O	K20	L.O.I.
51	08214		0.11	1.58	37.85	0.93	34.15	2.12	4.10	4.51	0.18	0.01	1.22	13,34
53	08216		0.33	0.21	73.77	0.40	5.41	1.07	9.82	1.89	0.28	0.13	3.02	3.66
55	08229		0.11	0.12	60.79	0.08	7.83	2.15	19.37	0.80	0,95	1.52	3.56	2.72
56	08230		0.25	0.31	68.23	0.10	5.85	1.46	12.83	2.41	0.44	4.59	1.84	1.67
60	08234		0.08	0.15	52.55	0.08	7,53	1.83	15.78	1.49	0.85	6.46	1.64	11.56
<u>QC DA</u> Standa Mrg-1	<u>TA:</u> ard:		0.01	0.01 0.13	40.03	0.18	17.27	13.01 0.74	8. <b>4</b> 6	14.24	3.52	0.69	0.40	2.22
Sy-2			0.03	0.13	SU.58	0.12	0.30	0.74	20.71	1.81	0.∠8	7.03	1.00	4.00

Jf/wr124 LS/02 E-mail - Barker Minerals

CC: Wildrock Resources - Email & Mail

.

•



10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

### CERTIFICATE OF ANALYSIS AK 2002-131

BARKER MINERALS LTD. 22117 37A Ave Langley, BC V2Z 1N9

10-Jul-02

**ATTENTION:** Louis Doyle

1

No. of samples received: 24 Sample Type: Core Project #: ACE Drill Hole #: ACE - 02-04 Samples submitted by: Chris Wild

		Au	i Pd	Pt	
<u>ET #.</u>	Tag #	(ppb)	(ppb)	(ppb)	
1	8199	5	<5	<5	
2	8200	5	<5	<5	
3	8201	<5	<5	5	
4	8202	5	<5	<5	
5	8203	5	5	<5	
6	8204	5	<5	<5	
7	8205	5	<5	<5	
8	8206	40	<5	<5	
9	8207	575	<5	<5	
10	8208	5	<5	<5	
11	8209	10	<5	<5	,
12	8210	15	5	<5	
13	8211	10	5	5	
14	8218	5	5	<5	
15	8219	<5	<5	<5	· •
16	8220	5	<5	<5	
17	8221	5	<5	<5	
18	8222	15	5	<5	
19	8223	5	<5	<5	
20	8224	5	<5	<5	
21	8225	5	10	<5	
22	8226	5	5	<5	
23	8227	5	<5	<5	
24	8228	5	<5	<5	

### BARKER MINERALS LTD. AK 2002-131

10-Jul-02

ET #.	Tag #	Au (ppb)	Pd (ppb)	Pt (ppb)	
QC DA	TA:				
Resolit	 +-	,			
1	8199	5	<5	<5	
Repeat	f				
1	8199	5	<5	<5	
9	8207	615	-	-	
10	8208	10	<5	<5	
19	8223	10	<5	<5	
Standa	ard:				
GEO'02	2	130	-	-	

JJ/kk XLS/02 E-mail - Barker Minerals CC: Wildrock Resources - Email & Mail

7

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

.

•

10041 Dailas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

### CERTIFICATE OF ANALYSIS AK 2002-131

Tech LABORATORY LTD.

10-Jul-02

BARKER MINERALS LTD. 22117 37A Ave Langley, BC V2Z 1N9

.

ATTENTION: Louis Doyle

Eco

No. of samples received: 65 Sample Type: Core **Project #: Frank Creek Drill Hole #: FC-02-01 to FC-02-06** Samples submitted by: Chris Wild

		Au	₽d	Pt	
<u>ET</u> #.	Tag #	(ppb)	<u>(ppb)</u>	(ppb)	
25	8240	5	<5	<5	
26	8241	15	5	<5	
<del>۲</del> (	8242	5	5	<5	
<b>N</b>	8243	20	5	<5	
29	8244	5	<5	<5	
30	8245	5	<5	<5	
31	8246	<5	<5	<5	
32	8247	35	5	<5	
33	8248	5	<5	<5	
34	8249	5	<5	<5	
35	8250	5	<5	<5	
36	8251	20	<5	<5	
37	8252	5	<5	<5	
38	8253	10	<5	<5	
39	8254	5	<5	<5	.,
40	8255	250	<5	<5	
41	8256	5	<5	5	
42	8257	5	<5	<5	
43	8258	5	<5	<5	
44	8259	5	<5	<5	
45	8260	<5	<5	5	
46	8261	5	<5	<5	
47	8262	5	10	<5	
48	8263	<5	<5	<5	
49	8264	5	<5	<5	
50	8265	<5	<5	5	
51	8266	95	<5	<5	
<b></b>	8267	25	<5	<5	

### RARKER MINERALS LTD. AK 2002-131

10-Jul-02

		Au	Pd	Pt	
ET #.	Tag #	(ppb)	(ppb)	(ppb)	
53	8268	110	<5	<5	
54	8269	15	<5	<5	
55	8270	115	<5	<5	
56	8271	25	<5	<5	
57	8272	15	<5	<5	
58	8273	. 50	<5	<5	
59	8274	10	<5	<5	
60	8275	15	<5	<5	
61	8276	20	<5	<5	
62	8277	15	<5	.<5	
63	8278	35	<5	<5	
64	8279	<5	90	<5	
65	8280	65	<5	<5	
66	8281	10	<5	<5	
67	8282	5	<5	<5	
68	8283	5	<5	<5	
69	8284	<5	<5	<5	
70	8285	<5	<5	<5	
71	8286	10	<5	<5	
72	8287	10	<5	<5	
73	8288	10	<5	<5	
74	8289	5	<5	<5	
-	8290	<5	<5	<5	
76	8291	5	<5	<5	
77	8292	<5	<5	<5	
78	8293	<5	<5	<5	
79	8294	<5	<5	<5	
80	8295	5	<5	<5	
81	8296	10	<5	<5	
82	8297	40	<5	<5	
83	8298	6	<5	<5	
84	8299	5	<5	<5	
85	8300	150	<5	<5	
86	8301	110	5	<5	
87	8302	15	<5	<5	·•
88	8303	5	<5	<5	
8 <del>9</del>	8304	5	<5	<5	

-

•

### BARKER MINERALS LTD. AK 2002-131

### 10-Jul-02

$\checkmark$		Au	Pd	Pt	
<u>ET #.</u>	Tag #	(ppb)	(ppb)	<u>(ppb)</u>	
			·		
	ГА:				
Resplit		•			
36	8251	25	<5	<5	
71	8286	25	<5	<5	
Repeat	•				
36	8251	15	<5	<5	
45	8260	<5	<5	<5	
54	8269	15	<5	<5	
71	8286	15	<5	<5	
80	8295	5	<5	<5	
Standai	rd:				
GEO'02		130	-	-	
GEO'02		115	-	-	
GEO'02		120	-	-	

JJ/kk XLS/02 E-mail - Barker Minerals CC: Wildrock Resources - Email & Mail

ECO TECH LABORATORY LTD. B.C/Certified Asseyer



_____

10041 Dallas Drive, Kamioops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

### CERTIFICATE OF ASSAY AK 2002-131

BARKER MINERALS LTD. 22117 37A Ave Langley, BC V2Z 1N9

12-Jul-02

ATTENTION: Louis Doyle

No. of samples received: 65 Sample Type: Core **Project #: Frank Creek Drill Hole #: FC-02-01 to FC-02-06** Samples submitted by: Chris Wild

_	ET #.	Tag #	Ag (g/t)	Ag (oz/t)	Zn (%)	
	26	8241	-	-	2.30	
-	28	8243	-	-	3.40	
	40	8255	83.2	2.43	-	

#### QC DATA:

Repeat:				
R26	8241	-	-	2.20
R40	8255	83.6	2.44	-

JJ/kk XLS/02

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer



-----

10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

_

### CERTIFICATE OF ANALYSIS AK 2002-124B

BARKER MINERALS LTD. 22117 37A Ave Langley, BC V2Z 1N9

12-Jul-02

ATTENTION: Louis Doyle

No. of samples received: 5 Sample type: Core **Project #: Frank Creek** Shipment #: None Given Samples submitted by: Chris Wild

#### Note: Values expressed in percent

ET #.	Tag #	BaO	P205	SiO2	MnO	Fe203	MgO	AI203	CaO	TiO2	Na2O	K20	L.O.I.
62	08236	0.13	0.30	59.04	0.21	5.95	5.24	15.48	6.59	0.56	0.34	4.21	1.95
64	08237	0.10	0.12	69.62	0.09	4.98	1.54	14.02	0.81	0.61	0.33	3.98	3.79
QC DATA	i												
Standard:		0.01	0.05	40.02	0.40	47.07	40.04	0.40				<b>a</b>	
Sy-2		0.01	0.05	40.03 50.58	0.18	17.27 6.30	13.01 0.74	8.46 20.71	14.24 7.87	3.52 0.28	0.69 7.03	0,40 1,65	2.22 4.56

df/wr124c _S/02 E-mail - Barker Minerals CC: Wildrock Resources - Email & Mail

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

Page 1



10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

### **CERTIFICATE OF ANALYSIS AK 2002-131**

BARKER MINERALS LTD. 22117 37A Ave Langley, BC V2Z 1N9

#### ATTENTION: Louis Doyle

No. of samples received: 24 Sample Type: Core **Project #: ACE Drill Hole #: ACE - 02-04** Samples submitted by: Chris Wild

#### Note: Values expressed in percent

ET #.	Tag #	BaO	P205	SiO2	MnO	Fe203	MgO	AI203	CaO	TiO2	Na2O	K20	L.O.I.
1	8199	0.12	0.23	68.20	0.06	5.93	1.94	13.57	1.47	1.02	1.75	3.43	2.29
2	8200	0.17	0.19	61.51	0.07	8.15	2.13	16.59	1.05	1.16	1.93	4.00	3.05
3	8201	0.12	0.21	52.50	0.09	5.88	1.05	15.27	9.61	0,59	0.33	4.62	9.74
4	8202	0.01	0.70	60.84	0.06	6.09	3.25	14.98	8.35	0,71	0.67	1.11	3,55
5	8203	0.06	0.12	56.56	0.06	3.44	1.70	8.59	14.18	0.34	3.96	0.39	10.62
6	8204	0.10	0.12	59.96	0.06	3.05	1.15	8.81	12.70	0.33	2.90	1.35	9.47
7	8205	0.18	0.13	58.70	0,06	5.83	1.87	13.34	5.41	0.66	3.96	2.35	7.51
8	8206	0.33	0.24	52.89	0.17	5.92	2.01	12.27	9.77	0.42	0.93	3.45	11.60
10	8208	0.13	0.44	66.21	0.08	5.09	1.30	11.07	3.55	0.39	5.04	0.63	6.04
12	8210	0.09	0.32	74.53	0.07	5.58	0.78	7.56	2.03	0.29	3.89	0.23	4.62
13	8211	0.16	0.14	62.69	0.08	5.96	1.19	13.41	2.46	0.45	7.14	0.52	5.79
14	8218	0.17	0.19	62.23	0.13	5.77	1.58	11.48	5.67	0.44	4.55	1.08	6,71
15	8219	0.13	0.16	64.62	0.08	6.19	2.77	12.20	3.53	. 0.73	3.21	1.71	4.66
16	8220	0.14	0.10	47.91	0.11	5.25	3.84	11.25	14.31	0.47	0.77	2.41	13.46
17	8221	0,14	0.15	54.19	0.32	8.29	3.68	9.67	10.50	0.69	2.30	1.83	8.22
18	8222	0.11	0.31	60.96	0.14	6.68	1.64	12.68	4.67	0.64	5.24	1.06	5.87
19	8223	0.15	0.27	65.23	0.28	5.87	1.93	7.09	7.80	0.37	1.78	1.09	8.14
20	8224	0.12	0.28	66.88	0,10	4.73	1.49	10.80	3.99	Ö.50	5.30	0.65	5.16
21	8225	0.17	0,73	64.19	0.09	4.18	1.56	12.11	5.25	0.46	6.18	0.70	4.38
22	8226	0.17	0,16	59.35	0.06	8.24	2.35	17.32	1.40	0.81	3.94	2.81	3.39
24	8228	0.19	0.24	57. <b>82</b>	0.11	6.79	1.90	16.21	4.74	0.81	4.96	2.07	4.14

<u>QC_DATA:</u> Standard:												
Mra-1	0.01	0.03	38.49	0.18	17.73	13.42	8.47	14.79	3.74	0.77	0.14	2.22
Sy-2	0.03	0.14	49.38	0.12	6.56	0.66	20.98	8.33	0.31	7.25	1.70	4.56

Wr131 XLS/02 E-mail - Barker Minerals CC: Wildrock Resources - Email & Mail

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

17-Jul-02



¥

.

#### Chemex Al Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

BARKER MINERALS LTD. 1

22117 37A AVE. LANGLEY, BC V2Z 1N9

Project : FRANK AND ACE Comments: ATTN: LOUIS E. DOYLE

Pag ⇒ Tota .ges Эſ :1 :1 Certificate Date: 18-JUL-2002 Invoice No. : 10220085 P.O. Number : Account : PFD

					CERTIFIC	ATE OF A	NALYSIS	A02	20085	
SAMPLE	PREP CODE	Cu %	Zn %							
1LF05-12 2LF01-44 3LF01-32 3LF06-03 3LF06-05	212 212 212 212 212 212	1.14  2.08 1.27	3.02 3.42 							
		-								
		÷		• •						
								li and and a second second		



1

## ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 J: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9

Project : FRANK AND ACE Comments: ATTN: LOUIS E. DOYLE Pa iu....er :1-A Tota Pages :3 Certificate Date: 18-JUL-200; Invoice No. :10219395 P.O. Number : Account :PFD

										CE	ERTIF		E OF /		YSIS		A0219	9395		
SAMPLE	PREP CODE	Weight A Kg	u ppb ICP	Pt ppb ICP	Pd ppb ICP	A1203 % XRF	BaO % XRF	CaO % XRF	Cr203 % XRF	Fe203 % XRF	K20 % XRF	Mg0 % XRF	MnO % XRF	Na20 % XRF	P205 % XRF	SiO2 % XRF	SrO % XRF	TiO2 % XRF	LOI % XRF	TOTAL %
A0200-51	94139402	0.62	< 2	< 5	< 2	14.37	0.12	1.19	0.01	5.67	3.50	1.66	0.08	2.18	0.19	67.01	0.01	1.03	2.18	99.20
A0201-04	94139402	0.48	764	< 5	2	18.68	0.17	1.19	0.01	10.09	3.89	2.22	0.07	2.37	0.15	56.38	0.03	1.19	3.29	99.73
A0201-12	94139402	0.90	6	< 5	< 2	18.62	0.10	1.20	0.01	7.20	3.43	2.22	0.09	1.38	0.12	60.46	0.02	0.83	3.60	99.28
A0201-13	<b>P4139402</b>	0.76	8	< 5	< 2	3.40	0.01	1.04	0.03	13.45	1.03	0.74	0.08	0.07	0.04	74.28	< 0.01	0.37	3.85	98.39
<b>A0201-14</b>	94139402	0.90	2	< 5	6	7.95	0.20	7.87	0.01	13.98	2.10	2.65	0.73	0.81	0.35	53.58	0.05	0.34	7.38	98.00
A0201-15	94139402	1.42	2	< 5	6	6.29	0.11	6.37	0.01	9.28	1.62	1.71	0.47	1.48	0.38	65.23	0.04	0.37	5.08	98.44
A0201-47	94139402	0.95	14	< 10	4	6.63	0.09	1.03	0.01	31.68	2.05	0.77	0.09	0.42	0.28	48.33	< 0.01	0.61	7.30	99.30
AU202-05	94139402	0.70	2	< 5	4	17.18	0.05	4.40	0.01	12.13	1.53	2.05	0.07	5.66	0.15	54.07	0.04	1.08	2.80	99.29
AU202-06	P4139404	0.80	< 2	< 5		1/.80	0.15	0.95	0.02	1.80	3.86	2.15	0.07	0.63	0.14	61.74	0.02	0.94	3.41	99.80
K0202-07	#41354U2	1.14	< 4 		<u> </u>	3.71			U.U2	<b>2.10</b>	0.34	0.72	0.07	1.22	0.04	88.94	< 0.01	0.27	0.85	99.26
A0202-08	94139402	0.94	< 2	< 5	< 2	13.36	0.08	0.40	0.03	6.68	2.91	2.46	0.06	0.79	0.06	68.76	< 0.01	0.64	2.80	99.03
A0202-09	94139402	1.22	< 2	< 5	< 2	18.07	0.08	0.50	0.05	7.60	4.27	3.59	0.06	0.83	0.12	59.78	0.03	0.84	3.51	99.33
A0202-10	94139402	1.72	< 2	< 5	2	25.90	0.13	0.33	0.03	8.29	6.81	2.82	0.06	0.82	0.10	49.00	0.01	0.98	4.56	99.84
A0202-11	94139402	0.88	692	< 5	2	7.81	0.03	0.46	0.03	5.30	1.07	1.37	0.06	0.39	0.04	78.88	< 0.01	0.37	2.23	98.04
A0203-16	94139402	1.58	2	< 5	8	10.48	0.09	2.49	0.01	3.75	0.46	1.10	0.10	5.46	0.51	72.00	0.02	0.33	2.68	99.48
A0203-17	94139402	0.70	< 2	< 5	2	14.58	0.12	5.85	0.04	9.06	1.54	4.70	0.26	6.49	0.20	48.54	0.06	1.09	6.94	99.47
A0203-18	94139402	1.14	< 2	< 5	8	12.73	0.05	2.84	0.01	7.48	0.51	1.46	0.13	6.78	0.29	61.77	0.04	0.63	4.41	99.13
A0203-19	94139402	0.70	< 2	< 5	6	13.13	0.08	2.52	0.03	6.53	0.55	2.15	0.11	6.94	0.29	61.96	0.04	0.48	4.22	99.03
A0203-20	94139402	0.70	< 2	< 5	4	9.56	0.18	1.75	0.01	3.98	0.43	1.06	0.09	5.08	0.15	73.95	0.03	0.35	2.93	99.55
A0203-21	94139402	0.22	< 2	< 5	< 2	20.36	0.41	1.00	0.02	7.17	3.99	2.23	0.07	4.98	0.06	52.39	0.05	0.90	4.74	99.03
A0203-22	94139402	0.28	< 2	< 5	< 2	18.83	0.27	1.53	0.01	6.13	3.04	1.77	0.08	5.62	0.04	57.84	0.03	0.75	3.76	99.70
A0203-24	94139402	0.56	< 2	< 5	2	8.51	0.20	2.50	0.02	3.13	2.58	0.75	0.11	0.20	0.14	77.28	0.01	0.39	2.28	98.10
A0203-25	94139402	0.34	< 2	< 5	2	5.94	0.02	4.55	0.02	2.87	0.53	1.19	0.14	2.75	0.07	77.37	0.01	0.22	2.55	98.23
A0203-26	P413P402	1.00	30	< 5	2	17.47	0.16	2.20	0.01	7.34	1.90	2.34	0.12	6.41	0.13	55.99	0.02	0.79	4.91	99.79
A0203-27	94139402	1.50	< 2	< 5	4	10.81	0.14	3.65	0.01	5.70	1.19	1.84	0.21	4.25	0.25	66.08	0.01	0.40	4.30	98.84
A0203-28	94139402	2.02	< 2	< 5	6	12.27	0.21	4.66	0.02	5.74	2.91	2.01	0.18	2.26	0.30	61.60	0.02	0.52	5.45	98.15
A0203-29	94139402	2.08	< 2	< 5	2	12.89	0.15	6.37	0.02	5.78	2.72	2.87	0.22	3.55	0.21	57.43	0.03	0.65	5.17	98.06
A0203-30	94139402	2.28	< 2	< 5	2	13.74	0.16	5.48	0.01	5.42	2.75	2.23	0.13	3.78	0.12	60.51	0.03	0.53	4.46	99.35
A0203-31	94139402	1.44	< 2	< 5	2	17.07	0.12	3.07	0.01	7.56	1.61	2.41	0.12	7.04	0.18	54.14	0.03	1.26	4.99	99.61
A0203-32	94139402	1.02	< 2	<i>\$</i> 5	2	14.84	0.09	4.33	0.01	6.94	1.16	3.05	0.17	6.95	0.17	55.74	0.04	0.76	4.82	99.07
A0203-33	94139402	1.70	2	< 5	2	18.16	0.15	1.18	0.01	9.34	1.72	2.37	0.09	7.45	0.13	53.76	0.03	1.25	4.07	99.71
A0203-34	94139402	0.16	< 2	< 5	< 2	2.65	0.01	0.35	0.03	3.13	0.44	0.22	0.05	0.77	0.02	90.63	< 0.01	0.07	1.33	99.70
A0203-35	94139402	0.34	2	< 5	< 2	18.52	0.18	1.12	0.01	9.94	2.98	2.40	0.09	6.09	0.15	51.91	0.02	1.19	5.03	99.63
A0203-36	94139402	0.60	< 2	< 5	< 2	17.41	0.12	1.80	0.01	9.71	1.70	2.78	0.11	7.45	0.13	51.98	0.02	1.32	4.67	99.21
A0203-37	94139402	0.88	< 2	< 5	< 2	16.58	0.09	1.42	0.01	8.33	1.53	2.28	0.08	7.49	0.14	56.10	0.03	1.36	4.04	99.48
A0203-38	94139402	1.14	< 2	< 5	< 2	17.17	0.10	0.88	0.01	8.32	4.54	2.23	0.10	2.82	0.12	58.20	0.01	1.09	3.10	98.69
A0203-39	94139402	1.36	< 2	< 5	2	17.95	0.15	1.44	0.01	8.90	2.33	2.32	0.11	6.77	0.13	52.60	0.03	1.27	4.18	98.19
AU203-40	P413P402	2.16	< 2	< 5	< 2	18.06	0.08	0.85	0.01	8.59	5.25	2.17	0.10	1.55	0.12	57.97	0.01	1.25	3.20	99.21
AU203-41	P4139402	0.88	< 2	< 5	< 2	16.31	0.15	1.36	0.02	7.64	2.72	2.07	0.09	5.11	0.12	58.04	0.02	0.99	3.75	98.39
AU2U3-62	94139402	1.14	< 2	< 5	< 2	18.04	0.13	1.38	0.01	7.40	2.72	2.15	0.11	5.67	0.11	57.00	0.02	0.95	3.39	99.08

CERTIFICATION:_

Acial Wink



### **ALS Chemex** Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave... North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

BARKER MINERALS LTD. J:

> 22117 37A AVE. LANGLEY, BC V2Z 1N9

FRANK AND ACE Project : Comments: ATTN: LOUIS E. DOYLE Page ...er ∶1-B :3 Tota 85 Certificate Date: 18-JUL-2002 Invoice No. :10219395 P.O. Number PFD Account

**CERTIFICATE OF ANALYSIS** A0219395 Ga ĦĘ La Lu Мо NЪ Nđ Ce Ca Cu Dy Er Eu Gđ Ho Co  $\mathbf{Cr}$ PREP λg Ba ppm ppm ppm DDM **ppm** DDE ppm ppm ppm ppm ppm DDM ppm ppm CODE DDM DDM ppm SAMPLE ppm DOM 37.0 25 5.7 3.6 19 6.9 8 1.2 38.5 0.6 4 18 A0200-51 64139402 < 1 1115 83.0 13.5 130 4.6 1.5 170 12.3 270 7.1 4.2 1.8 24 8.9 5 1.5 50.5 0.5 4 24 49.0 94139402 < 1 1610 105.0 20.0 A0201-04 2.8 23 53.0 0.4 6 19 44.5 7.1 5 1.0 110.5 20.0 140 4.6 25 4.6 1.4 94139402 < 1 820 A0201-12 13.5 18.0 6 290 225 1.5 1.0 0.4 6 2.3 4 0.3 0.1 Q 36.0 19.0 1.4 A0201-13 94139402 < 1 160.0 12 5 22.5 26.5 0.5 12 1 94139402 < 1 1795 41.0 12.0 100 2.5 45 4.8 3.3 1.0 5.0 1.1 A0201-14 177.5 223 0.4 18 10 7.5 130 2.8 110 6.2 3.3 3.0 11 21.2 1 1.1 A0201-15 94139402 929 444 < 1 120 0.8 170 2.1 1.3 0.5 5 2.9 3 0.5 17.0 0.1 8 6 16.0 37.5 13.0 A0201-47 94139402 < 1 306 0.4 12 21 37.5 4.8 2.9 19 6.8 4 1.0 40.5 38.0 120 10.3 100 1.4 94139402 < 1 446 81.0 A0202-05 47.5 6 19 42.5 24 0.4 3.4 50 5.4 3.2 1.4 7.4 4 1.2 95.5 21.0 160 A0202-06 94139402 < 1 1340 0.3 14.5 0.1 6 4 11.0 20 0.9 0.4 2.1 4 94139402 < 1 62.0 28.0 9.5 160 0.4 1.5 4 A0202-07 6 11 40.5 96.0 16.5 170 3.6 45 4.5 2.7 1.4 19 6.8 4 1.0 47.5 0.4 < 1 552 A0202-08 94139402 42.5 35 3.6 1.6 24 7.2 6 1.2 51.0 0.5 6 14 94139402 < 1 738 106.5 16.5 190 5.7 5.6 A0202-09 34 9.4 67.0 0.6 8 17 57.5 94139402 25.5 200 7.0 55 7.1 4.4 2.0 -5 1.6 < 1 1245 136.0 A0202-10 20.5 0.8 11 3.6 3 0.5 25.0 0.1 6 8 65 1.5 94139402 < 1 191.0 50.0 13.5 270 1.9 2.6 A0202-11 24.0 0.2 116 7 19.5 35 3.2 2.0 0.8 13 3.9 1 0.8 11.5 160 1.5 A0203-16 94139402 < 1 857 41.0 0.7 22.0 0.4 26 15 19.0 2.2 22 1 94139402 < 1 1055 40.5 28.0 320 7.3 65 2.8 0.8 3.6 h0203-17 30.5 102 13 25.0 140 1.7 70 3.2 2.0 1.0 14 4.3 1 0.7 0.3 94139402 < 1 380 53.5 16.0 A0203-18 1.1 15 5.5 1 0.9 39.5 0.3 104 10 31.0 70 2.5 94139402 < 1 769 68.5 12.0 160 1.3 4.2 A0203-19 24.0 220 8 18.5 40 2.6 0.7 11 3.3 1 0.6 0.1 130 0.9 1.6 94139402 < 1 1595 42.5 9.0 A0203-20 53.0 1.6 31 7.3 3 0.9 63.0 0.3 8 16 123.0 17.5 160 5.0 65 4.3 2.5 < 1 4410 A0203-21 94139402 43.5 25 7.0 0.9 52.5 0.4 16 3.8 4.4 2.8 1.4 2 6 94139402 < 1 2700 103.0 15.0 160 80 A0203-22 1.2 15 3.2 0.4 27.0 0.1 102 9 19.0 64139402 < 1 1820 47.5 7.0 180 3.3 55 1.9 0.6 1 A0203-24 190 1.7 25 2.1 1.5 0.4 - 9 1.9 1 0.5 10.0 0.2 78 3 7.5 15.0 4.5 94139402 < 1 289 A0203-25 10 47.5 4.6 2.9 1.5 20 7.4 3 0.9 59.0 0.4 19 16.0 160 4.1 95 94139402 < 1 1470 114.5 A0203-26 32.5 0.4 22 11 27.5 3 0.9 4139402 < 1 1315 63.0 11.5 160 3.1 80 4.2 2.7 0.9 15 5.1 A0203-27 0.9 4.6 2 0.6 38.0 0.3 28 21 30.0 3.1 2.0 19 94139402 < 1 2020 68.0 13.5 210 4.5 70 A0203-28 34.0 16 17 27.0 190 13 0 60 3.4 2.1 1.0 17 4.4 3 0.7 0.3 94139402 < 1 1450 60.5 12.0 A0203-29 27.5 13.5 170 7.7 65 3.5 2.2 1.0 19 4.7 2 0.7 35.0 0.3 24 12 < 1 1600 65.5 94139402 10203-30 46.5 25 41.0 93.5 18.5 160 2.7 75 3.9 2.3 1.4 21 6.6 5 0.8 0.4 8 < 1 1080 A0203-31 94139402 14 16 42.0 6.4 0.7 51.5 0.4 < 1 700 3.9 90 3.8 2.3 1.4 19 3 94139402 97.5 14.5 170 A0203-32 5 20 45.0 4.6 1.7 24 7.4 0.9 51.0 0.4 4 64139402 < 1 1400 103.5 25.5 140 5.7 70 2.8 A0203-33 0.1 1 4.0 310 0.6 50 0.4 0.1 0.1 4 0.7 < 1 < 0.1 7.5 < 6 64139402 < 1 241 9.5 8.0 A0203-34 45.0 27.0 6.4 85 5.1 2.8 1.8 25 7.4 4 1.0 50.5 0.4 6 23 160 94139402 < 1 1755 102.5 A0203-35 5.8 54.0 6 28 47.5 5.5 45 3.6 1.8 24 8.3 5 1.2 0.5 < 1 1120 111.5 28.0 160 b4139402 A0203-36 29 48.0 22 6 1.1 54.5 0.4 6 < 1 820 180 6.3 45 5.4 3.2 1.8 8.1 94139402 110.5 22.5 A0203-37 25 44.5 180 17.2 45 6.2 3.7 1.7 23 7.7 7 1.2 49.5 0.5 6 84139402 < 2 941 108.0 22.5 A0203-38 25 7.9 1.0 54.5 0.4 6 23 46.5 < 1 1540 109.5 25.0 160 10.9 80 5.3 3.1 1.8 5 A0203-39 94139402 53.5 27 46.5 < 1 800 107.5 23.0 200 15.7 55 6.2 3.7 1.7 25 8.0 6 1.2 0.5 6 94139402 A0203-40 4.9 2.9 1.5 27 7.1 0.9 49.5 0.4 6 22 42.5 22.5 220 9.2 50 6 B4138402 < 1 1425 100.5 A0203-41 7.7 56.5 0.4 30 46.0 50 1.7 25 6 1.1 6 < 1 1195 119.0 20.5 170 8.7 5.3 3.1 64139402 A0203-42

CERTIFICATION: Special Litre



۱,

## ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 J: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9

Project : FRANK AND ACE Comments: ATTN: LOUIS E. DOYLE Page ----er :1-C Total ages :3 Certificate Date: 18-JUL-2002 Invoice No. :10219395 P.O. Number : Account :PFD

										CE	OF A	NALY	'SIS	4	0219	395	·			
	PREP	Ni	Pb	Pr	Rb	Sm	Sn	Sr	Ta	Tb	Th	Tl	Tm	U	V	W	Y	Yb	Zn	Zr
DAMP16								P.Perr		P.Den				- ppu	- Plan	- Plan				
A0200-51	94139402	25	10	9.8	127.0	7.1	3	132.0	1.5	1.1	11	< 0.5	0.6	2.5	70	3	35.0	3.6	70	322
A0201-04	P4139402	50	60	13.0	184.5	9.3	5	212	1.5	1.3	12	0.5	0.6	3.0	110	23	42.0	3.4	100	176.0
A0201-12	P4139402	35	10	12.8	149.0	8.0	3	220	1.5	1.0	14	0.5	0.4	2.0	75	3	26.0	2.8	95	165.5
A0201-13	94139402	30	270	4.0	52.8	4.0	2	40.4	0.5	0.3	2	< 0.5	0.1	0.5	25		9.0	0.9	105	144.5
A0201-14	94139402	30	5	5.9	/4.0	4.0		410	V.5	U.0	-	< 0.5	0.5	3.5	120	•	33.0	3.0	145	60.0
A0201-15	94139402	45	< 5	51.0	61.6	24.9	1	379	0.5	2.0	15	< 0.5	0.4	4.0	130	3	33.5	2.4	120	74.0
A0201-47	94139402	35	580	4.3	34.2	3.2	1	38.4	< 0.5	0.4	4	< 0.5	0.1	0.5	20	9	12.5	1.2	25	98.0
A0202-05	<b>\$413\$402</b>	55	25	10.5	117.5	7.4	3	411	1.5	1.0	9	< 0.5	0.4	3.0	155	7	27.0	2.7	90	164.5
A0202-06	<b>P413P402</b>	35	5	11.6	158.0	8.1	3	169.5	1.5	1.1	11	< 0.5	0.5	2.5	90,	10	31.0	3.0	85	144.0
A0202-07	94139402	25	5	3.1	15.0	2.2	< 1	39.4	< 0.5	0.3	5	< 0.5	0.1	1.0	15	6	8.5	0.9	20	157.5
A0202-08	94139402	50	20	11.1	124.5	7.2	3	87.6	0.5	0.9	14	< 0.5	0.4	3.5	70	13	25.0	2.4	70	167.5
A0202-09	94139402	45	20	12.3	176.5	7.9	- 4	104.5	1.0	1.1	15	< 0.5	0.6	3.5	95	10	33.0	3.4	90	202
A0202-10	<b>\$413\$402</b>	65	25	16.3	256	10.5	6	122.5	1.5	1.4	20	0.5	0.7	4.5	145	17	41.5	4.0	95	165.0
A0202-11	94139402	35	20	5.8	54.0	4.0	3	70.4	0.5	0.5	7	< 0.5	0.2	1.5	30	18	13.5	1.2	40	108.5
A0203-16	94139402	60	75	5.4	29.0	3.8	3	298	< 0.5	0.6	6	< 0.5	0.3	8.5	115	8	23.0	1.7	695	50.0
A0203-17	94139402	105	45	5.3	107.0	3.7	4	478	1.0	0.5	5	< 0.5	0.4	4.0	400	12	23.5	2.3	535	77.0
A0203-18	<b>þ413</b> 9402j	65	50	7.1	29.2	4.5	2	406	0.5	0.6	6	< 0.5	0.3	7.5	170	7	21.5	1.8	425	68.5
A0203-19	<b>94139402</b>	65	60	8.8	30.0	5.6	1	404	0.5	0.8	8	< 0.5	0.4	8.5	145	6	27.0	2.1	380	63.0
A0203-20	94139402	55	4.0	5.2	22.4	3.3	2	286	0.5	0.5	6	< 0.5	0.2	9.0	95	5	16.5	1.4	110	53.5
A0203-21	P413P402	50	20	15.0	183.0	8.8	7	304	1.5	1.0	16	< 0.5	0.3	3.5	505	12	24.0	2.1	160	88.5
A0203-22	94139402	50	15	12.4	131.5	7.3	7	240	1.0	0.9	13	< 0.5	0.4	3.5	300	13	26.0	2.4	140	71.5
A0203-24	94139402	35	10	5.7	143.5	3.3	15	94.3	1.0	0.4	7	< 0.5	0.1	3.5	185	11	11.5	1.1	25	50.5
A0203-25	P413P402	40	35	2.0	34.8	1.5	2	223	< 0.5	0.3	4	< 0.5	0.2	2.5	90	3	16.0	1.3	145	39.5
A0203-26	P413P402	45	10	14.0	113.0	8.4	7	235	1.5	0.9	18	< 0.5	0.4	4.0	215	11	26.5	2.3	95	115.5
A0203-27	94139402	40	10	7.9	77.8	5.1	4	222	0.5	0.7	10	< 0.5	0.4	4.5	220	6	26.0	2.5	115	115.5
A0203-28	94139402	60	10	8.5	165.0	5.1	17	225	30.0	0.6	10	< 0.5	0.3	6.5	315	9	19.0	1.7	155	79.0
A0203-29	P4139402	45	10	7.6	177.5	4.7	10	323	3.5	0.6	9	0.5	0.3	2.5	190	7	21.5	1.9	115	101.0
A0203-30	P4139402	50	5	7.9	136.0	4.7	7	330	3.5	0.6	10	< 0.5	0.3	4.5	265	8	21.0	2.0	125	76.5
A0203-31	P413P402	40	10	11.4	65.8	. 7.3	4	322	2.0	0.8	12	< 0.5	0.3	2.5	255	10	21.0	2.2	60	179.5
A0203-32	94139402	40	15	12.0	62.2	7.3	3	384	1.5	0.9	14	< 0.5	0.3	3.5	260	8	20.5	2.1	150	125.5
A0203-33	94139402	45	15	12.5	93.4	8.2	3	273	1.5	1.0	13	< 0.5	0.4	2.0	225	7	23.5	2.3	155	167.5
A0203-34	94139402	15	5	1.2	19.2	0.8	1	39.7	0.5	< 0.1	1	< 0.5	< 0.1	< 0.5	10	4	2.0	0.1	15	17.0
A0203-35	P413P402	45	10	12.4	141.0	8.5	6	215	3.5	1.0	14	< 0.5	0.4	2.0	265	10	25.0	2.4	140	158.0
A0203-36	P4139402	50	10	13.1	88.4	8.7	4	276	2.0	1.1	14	< 0.5	0.5	2.5	265	8	32.0	3.0	120	165.5
A0203-37	P4139402	45	10	13.4	81.0	8.8		282	2.0	1.1	15	< 0.5	0.5	2.5	225	7	29.0	2.8	125	217
A0203-38	94139402	45	5	12.2	209	8.5	3	136.5	2.0	1.1	15	0.5	0.5	2.0	110	3	33.0	3.2	120	235
A0203-39	P4139402	50	15	13.3	128.0	9.0	3	302	1.5	1.1	15	< 0.5	0.4	2.0	225	4	27.5	2.6	145	202
A0203-40	P4139402	45	5	13.0	225	8.6	3	132.5	2.0	1.2	16	0.5	0.5	2.0	110	2	33.0	3.3	120	227
A0203-41	P4139402	50	5	12.0	140.0	7.9	4	243	1.5	1.0	14	< 0.5	0.4	2.0	165	7	25.5	2.5	120	214
A0203-42	94139402	45	5	13.1	133.0	8.3	3	232	2.0	1.0	15	< 0.5	0.4	2.0	105	4	28.0	2.9	170	222
																	<u>^</u> .			

CERTIFICATION:__

(NUS 4



## ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

ວ: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9 Page Jer :1-D Total A.Jes :3 Certificate Date: 18-JUL-2002 Invoice No. : 10219395 P.O. Number : Account : PFD

A0219395

Project : FRANK AND ACE Comments: ATTN: LOUIS E. DOYLE

**CERTIFICATE OF ANALYSIS** 

PREP Al % As Ba ppm Be ppm Bi ppm Ca % Cd ppm Ce ppm Co ppm Cr ppm Cs ppm Cu ppm Fe % Ga ppm Ge ppm ĦĘ In К % Ag ppm (ICP) DDm SAMPLE CODE DDE 0.8 0.060 2.70 64136402 0.06 7.53 < 0.2 1263.0 2.35 0.10 0.78 < 0.02 81.8 15.1 80 4.65 24.6 3.66 20.05 0.15 A0200-51 94139402 1.30 9.00 < 0.2 118.0 3.90 26.9 0.77 0.06 100.0 23.0 118 12.80 339.8 6.24 24.45 0.25 0.6 0.075 2.92 A0201-04 0.06 104.0 22.6 77 22.8 4.52 25.55 0.15 0.3 0.075 2.73 9.70 7.4 930.0 2.80 1.58 0.79 4.50 A0201-12 94139402 0.08 0.16 31.0 19.0 210 285.2 8.52 5.00 0.15 0.1 0.025 0.78 94139402 < 0.2 108.5 0.85 626 0.62 1.35 A0201-13 0.38 1.61 0.5 0.045 1.66 94139402 0.40 < 0.2 98.0 1.90 5.45 5.00 1.36 45.5 15.4 59 2.65 202.0 8.74 11.80 0.30 A0201-14 4.11 328.0 9.15 0.25 0.6 0.030 1.28 94139402 0.20 3.32 < 0.2 271.5 1.20 1.80 4.10 0.96 41.1 8.4 96 2.85 5.74 A0201-15 48.0 1.05 1.72 0.65 0.52 81.5 24.8 174 1.65 525.0 21.3 8.65 0.50 0.3 0.045 1.54 A0201-47 94139402 0.88 3.31 1.8 4.25 0.93 1.60 0.08 78.7 37.7 74 9.70 121.0 7.42 18.80 0.25 0.5 0.035 1.14 4139402 391.0 A0202-05 0.38 8.38 < 0.2 < 0.2 1129.0 0.56 0.50 0.02 87.0 20.4 100 3.10 68.2 4.40 21.10 0.25 0.2 0.065 2.64 2.50 0.20 7.86 A0202-06 94139402 3.25 0.005 0.24 1.73 < 0.2 56.0 0.35 0.25 0.51 0.04 26.4 7.0 99 0.40 13.2 1.19 0.15 < 0.1 A0202-07 94139402 0.04 2.30 94139402 0.14 7.05 < 0.2 528.9 2.35 0.57 0.25 0.02 97.0 17.9 96 3.65 45.6 4.28 19.50 0.25 0.4 0.055 A0202-08 < 0.2 731.6 2.60 0.33 0.34 < 0.02 111.019.0 105 5.95 42.0 4.89 25.50 0.25 0.4 0.075 3.40 A0202-09 94139402 0.10 9.71 0.7 0.110 0.22 < 0.02 103.527.1 6.95 65.1 36.00 0.45 4.99 A0202-10 94139402 0.16 12.15 < 0.2 1171.0 3.75 0.58 87 5.30 72.6 7.85 0.020 0.92 72.2 0.24 0.02 47.6 13.4 135 1.90 3.14 0.20 0.1 94139402 2.79 < 0.2 188.0 1.45 A0202-11 0.40 27.6 0.120 0.38 775.2 2.80 4.74 1.70 16.65 42.7 11.8 54 1.45 2.44 13.10 0.10 0.4 10203-16 **64136402** 0.76 5.50 < 0.2 94139402 7.27 0.8 189.0 2.65 4.88 3,90 3.00 36.2 28.5 169 7.35 62.8 5.62 21.05 0.15 0.7 0.030 1.19 A0203-17 0.54 94139402 0.2 249.5 1.70 1.55 1.95 6.36 51.9 17.7 137 1.70 78.5 4.77 14.60 0.15 0.7 0.045 0.40 0.34 6.53 A0203-18 59.9 14.5 257 1.25 72.4 3.97 14.10 0.20 0.6 0.045 0.42 94139402 0.70 6.54 < 0.2 279.0 1.85 10.35 1.65 5.60 A0203-19 0.010 0.31 2.86 1.10 1.02 35.0 9.6 115 0.80 37.0 2.43 10.45 0.15 0.4 94139402 4.71 < 0.2 316.0 1.40 A0203-20 0.28 3.30 94139402 < 0.2 357.0 6.00 8.19 1.25 1.22 114.0 18.2 85 5.00 66.6 5.02 30.65 0.25 0.7 0.065 A0203-21 0.42 11.20 232.5 4.70 4.86 1.10 1.12 105.0 16.2 57 3.90 72.3 4.09 26.45 0.25 0.6 0.055 2.40 A0203-22 94139402 0.24 10.05 < 0.2 6.15 4.77 0.32 44.9 2.37 14.95 0.4 0.045 2.37 < 0.2 1580.0 1.95 7.1 72 3.20 42.8 0.20 94139402 0.08 5.18 A0203-24 3.10 1.20 1.42 13.40 72 1.65 14.8 1.89 8.30 0.10 0.3 0.020 0.43 < 0.2 261.5 1.44 4.0 A0203-25 94139402 0.26 3.15 0.035 < 0.2 365.0 4.05 5.64 1.60 0.64 106.0 17.2 86 4.35 89.4 4.97 20.85 0.20 0.8 1.55 A0203-26 94139402 0.20 9.36 < 0.2 423.5 3.05 1.64 2.40 1.06 66.6 11.3 62 3.10 94.9 3.64 14.90 0.20 1.2 0.030 0.96 A0203-27 94139402 0.18 5.58 94139402 < 0.2 2.40 3.20 1.70 61.8 17.1 312 77.1 3.81 18.90 0.20 0.7 0.050 2.30 0.14 6.43 330.5 5.90 4.65 A0203-28 0.84 63.4 13.8 191 13.00 54.1 3.70 17.55 0.20 1.1 0.035 2.19 94139402 0.14 6.68 < 0.2 339.5 4.70 1.28 4.40 A0203-29 < 0.2 703.7 4.10 1.12 3.70 0.98 62.2 14.1 95 7.50 67.1 3.45 19.10 0.15 0.8 0.040 2.15 A0203-30 94139402 0.18 7.02 1.25 0.28 100.5 22.70 0.045 A0203-31 94139402 0.26 8.21 < 0.2 331.5 2.50 2.68 2.00 20.5 106 2.95 87.6 4.64 0.20 0.9 0.040 0.98 A0203-32 94139402 0.30 8.13 < 0.2 641.4 2.20 1.83 3.20 0.88 91.9 15.4 64 3.90 81.4 4.66 19.55 0.20 1.1 70.1 5.97 23.35 0.20 0.065 1.33 94139402 < 0.2 114.5 2.65 1.44 0.82 0.30 96.0 25.4 62 5.65 0.7 A0203-33 0.24 9.08 28.4 2.10 0.005 0.34 216.0 0.55 0.51 0.24 0.02 7.81 8.6 126 0.55 3.00 0.05 < 0.1 A0203-34 94139402 0.06 1.37 < 0.2 1.57 0.87 0.28 106.5 30.5 106 7.40 92.7 7.16 27.90 0.30 0.9 0.090 2.55 94139402 0.4 96.0 3.60 A0203-35 0.20 10.35 135.5 1.25 0.28 107.0 A0203-36 94139402 0.28 8.94 < 0.2 2.60 1.83 28.9 94 5.60 41.0 6.45 24.95 0.25 0.9 0.060 1.37 136.5 2.15 1.87 1.00 0.20 107.5 24.9 114 6.40 31.4 5.44 22.80 0.25 0.6 0.055 1.21 A0203-37 94139402 0.16 8.43 0.2 0.23 0.62 0.12 99.6 26.1 233 16.75 51.7 5.63 24.05 0.30 0.6 0.070 3.58 94139402 9.01 < 0.2 873.6 2.25 A0203-38 0.06 25.75 A0203-39 64136402 0.16 9.00 < 0.2 132.0 3.05 0.76 0.98 0.20 95.8 27.3 163 10.85 68.3 5.76 0.35 0.6 0.080 1.84 6.33 25.95 0.06 108.0 25.8 15.75 49.0 0.45 0.075 4.45 A0203-40 94139402 0.06 10.25 < 0.2 761.2 2.35 0.14 0.63 150 0.5 94139402 < 0.2 221.5 3.20 0.57 1.05 0.14 98.2 28.7 285 9.15 39.6 5.84 26.65 0.25 0.4 0.085 2.45 A0203-41 0.10 9.65 23.1 40.8 5.11 27.20 0.30 0.075 2.24 A0203-42 94139402 9,58 < 0.2 598.6 2.65 0.28 0.96 0.12 113.5 90 9.10 0.6 0.12

CERTIFICATION:___

Kial Want



3

# ALS Chemex

Analytical Chemists * Geochemists * Registered Assavers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 J: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9

Project : FRANK AND ACE Comments: ATTN: LOUIS E. DOYLE Pate Service Pages :3 Certificate Date: 18-JUL-2002 Invoice No. : 10219395 P.O. Number : Account : PFD

**CERTIFICATE OF ANALYSIS** A0219395 PREP La prom Li prom Mg % Mn ppm Mo ppm Na % Mb pom Ni pom P pom Pb pom Rb pom Re S Sb pom Se Sn Sr ppm Ta ppm Te ppm (ICP) (ICP) (ICP) (ICP) SAMPLE CODE (ICP) (ICP) (ICP) (ICP) (TCP) (ICP) (ICP) מסס % (ICP) DOM (ICP) (ICP) (ICP) 4130402 25.2 15 7 27.6 A0200-51 41.0 0.89 390 0.65 1.44 870 9.0 118.0< 0.002 0.10 0.05 < 1 118.0 0.70 0.05 2 2 A0201-04 64139402 49.5 28.8 1.05 400 0.45 1.67 24.2 58.2 650 70.0 173.5< 0.002 1.21 0.25 3 4.4 181.0 1.55 0.55 A0201-12 64139402 56.0 37.4 1.21 520 1.10 0.98 9.7 40.0 540 17.5 139.0< 0.002 0.18 0.85 < 1 2.4 192.0 0.55 0.05 A0201-13 64139402 16.0 9.2 0.35 405 0.70 0.04 0.8 32.0 200 342 44.3< 0.002 2.77 0.25 1 3.8 19.4 < 0.05 0.95 A0201-14 64139402 27.5 16.0 1.23 5020 5.20 0.57 1.5 68.9 1540 17.5 66.6 0.008 2.50 0.15 14 1.0 368 0.05 0.35 A0201-15 4139402 12.8 0.94 3180 9.85 0.56 1.7 62.7 1450 10.0 57.1 0.014 25.5 1.69 0.05 0.25 8 0.8 360 0.05 94139402 0.33 1.1 1270 A0201-47 34.0 10.4 410 1.25 0.09 84.4 568 63.3< 0.002 6.48 0.10 69.4 < 0.05 0.15 3 1.0 64139402 20.8 0.92 415 5.85 4.29 56.8 1.92 A0202-05 40.0 6.7 £20 28.0 100.0 0.006 0.05 5 1.2 356 0.45 0.20 94139402 44.5 20.8 0.87 1.25 0.35 12.5 38.4 550 126.0 0.002 A0202-06 310 10.5 0.53 0.05 2 2.6 127.0 0.50 0.10 12.5< 0.002 A0202-07 94139402 12.5 4 6 0.28 280 0.85 0.80 2.3 21.2 220 6.5 0.13 < 0.05< 1 0.2 31.4 < 0.05 < 0.05 64136402 28.4 2.00 0.54 7.1 60.6 A0202-08 49.5 1.16 255 330 18.5 112.0 0.002 0.42 < 0.051 2.4 76.3 0.20 < 0.05A0202-09 b4139402 54.0 33.4 1.51 325 1.55 0.57 6.5 56.1 520 22.5 163.0 0.002 0.32 < 0.051 3.2 99.8 0.20 < 0.05A0202-10 **b**413**b**402 47.0 38.6 1.40 285 0.85 0.53 8.3 76.4 350 29.0 215 0.002 0.43 < 0.051 4.0 108.0 0.40 < 0.05 30.5 A0202-11 94139402 24.0 7.6 0.41 235 0.80 0.13 4.7 35.4 130 50.4< 0.002 0.96 < 0.05< 1 1.8 41.6 < 0.05 0.25 A0203-16 94139402 24.0 19.6 0.57 510 92.38 4.15 0.9 69.7 2590 92.0 26.4 0.090 0.77 0.05 3 1.4 270 < 0.05 0.05 62.0 64139402 19.0 2.45 2040 19.85 4.94 1.6 123.5 840 47.5 95.2 0.020 2.61 A0203-17 0.25 5 2.0 454 0.10 0.05 64139402 89.76 5.21 45.5 A0203-18 30.0 16.4 0.75 870 2.3 112.5 1320 26.5 0.056 2.71 0.05 0.6 380 5 0.10 0.10 94139402 745 103.25 5.11 164.5 1290 0.068 A0203-19 35.5 13.6 0.69 1.6 73.5 26.2 1.91 0.10 0.8 351 0.10 5 0.10 94139402 0.49 495 171.75 3.58 84.8 630 33.5 A0203-20 20.5 9.8 1.1 18.0 0.102 1.27 0.10 3 0.8 244 0.05 0.05 94139402 A0203-21 55.5 50.4 1.29 550 3.25 3.93 2.4 55.0 220 26.5 163.5 0.004 1.46 0.15 6 5.6 268 0.15 0.05 A0203-22 94139402 52.0 35.4 1.01 545 1.60 4.45 2.3 54.9 170 15.0 132.5 0.002 1.06 0.05 5 5.6 226 0.15 0.05 A0203-24 94139402 25.5 19.4 0.50 755 84.36 0.14 1.3 38.2 680 8.0 132.5 0.094 0.64 0.05 1 13.2 91.2 < 0.05 < 0.0594139402 7.5 900 55.82 2.02 340 A0203-25 12.6 0.71 0.5 40.4 34.5 30.5 0.062 1.13 < 0.051 1.2 201 < 0.05 < 0.05 94139402 33.2 820 5.16 A0203-26 56.0 1.29 6.10 3.9 58.8 560 11.0 105.0 0.010 0.05 1.88 4 5.2 216 0.25 0.05 A0203-27 **64136402** 36.0 30.4 0.99 1325 13.50 3.19 3.1 42.6 1070 69.9 0.012 1.05 < 0.059.0 4 2.8 196.0 0.20 < 0.05b413b402 35.0 51.0 1.12 1110 49.20 1.67 2.8 203 1290 10.5 149.0 0.046 1.07 13.4 A0203-28 0.05 3 201 0.15 < 0.05A0203-29 **64136402** 35.0 58.4 1.60 1510 24.30 2.68 4.1 114.5 980 10.0 162.0 0.020 1.25 0.25 < 0.050.05 2 9.2 292 A0203-30 **b413**b402 34.0 46.4 1.24 905 19.70 2.95 2.8 67.0 570 15.5 119.5 0.014 0.89 < 0.05297 0.15 < 0.053 6.2 **b413**b402 50.0 28.8 5.34 A0203-31 1.22 780 8.05 3.3 68.4 760 11.5 63.4 0.010 1.69 < 0.054 2.8 295 0.25 < 0.05**64136402** 22.6 1.70 1305 5.73 42.2 740 25.5 A0203-32 49.0 8.50 1.9 55.4 0.008 1.47 < 0.053 1.8 371 0.15 < 0.05A0203-33 94139402 44.0 32.4 1.20 575 0.75 5.78 2.7 50.2 560 16.5 81.2< 0.002 2.35 < 0.054 1.8 227 0.20 0.05 A0203-34 94139402 4.0 5.4 0.16 150 0.95 0.55 0.3 13.0 80 3.0 17.0< 0.002 1.23 0.05 1 0. B 36.2 0.05 < 0.05 e 94139402 47.5 43.0 740 A0203-35 1.34 590 3.15 4.83 3.0 67.4 12.0 141.5 0.004 3.75 0.05 5 4.0 202 0.20 0.05 A0203-36 94139402 1.43 735 5.92 50.0 31.6 2.70 3.0 62.8 590 15.0 79.2 0.004 2.98 < 0.054 2.2 238 0.20 < 0.0594139402 28.2 A0203-37 52.5 1.16 565 4.95 5.95 3.6 64.7 620 10.5 75.6 0.006 2.90 < 0.053 1.6 249 0.25 < 0.05\$4139402 49.5 48.8 1.22 19.50 2.11 12.3 129.5 510 7.0 193.5 0.64 A0203-38 595 0.018 0.05 1 125.0 0.35 0.05 2.2 94139402 2.37 < 0.05A0203-39 47.0 39.2 1.16 745 11.40 5.28 9.3 102.5 570 13.0 118.0 0.010 4 2.4 240 0.65 0.05 A0203-40 94139402 1.28 54.0 58.0 665 5.95 1.26 7.5 78.6 580 7.0 206 0.002 0.42 < 0.051 2.0 124.5 0.20 < 0.05 A0203-41 94139402 38.2 1.26 595 22.65 170.0 47.0 4.32 9.6 560 8.5 125.5 0.006 1.51 0.20 1 2.6 228 0.50 0.05 A0203-42 64139402 55.5 40.4 1.21 735 2.00 4.53 25.2 58.6 580 124.0< 0.002 7.0 0.95 0.05 1 2.0 219 1.70 < 0.05

CERTIFICATION: Specific Chican



a.

## ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 ວ: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9

Project : FRANK AND ACE Comments: ATTN: LOUIS E. DOYLE Pag Ler :1-F Total ages :3 Certificate Date: 18-JUL-2002 Invoice No. : 10219395 P.O. Number : Account : PFD

### CERTIFICATE OF ANALYSIS A0219395

	PREP	Th ppm	Ti %	T1 ppm	Uppma	V ppm	W ppm	Y ppm	Zn ppm	Zr	Hg	
SAMPLE	CODE	(ICP)	(ICP)	(ICP)	(10P)	(ICP)	(ICP)	(ICP)	(ICP)	ppm	ppp	
A0200-51	94139402	14.8	0.50	0.44	1.9	83	0.9	18.4	80	21.5	< 10	
30201-04	64136402	14.2	0.63	1.02	2.4	121	20.5	33.2	106	15.5	10	
10201-12	64138402	19.2	0.13	0.86	2.0	81	0.8	17.9	102	7.5	< 10	
10201-13	64136402	6.0	0.03	0.24	0.5	28	75.2	5.2	14	3.5	< 10	
A0201-14	94139402	5.4	0.09	0.46	3.1	169	1.4	17.9	156	18.5	< 10	
<u> </u>	↓											
A0201-15	94139402	6.0	0.09	0.44	4.3	160	0.9	15.2	152	24.0	< 10	
A0201-47	P413P402	9.6	0.07	0.32	1.4	41	1.0	16.4	46	7.0	< 10	
A0202-05	P4139402	11.6	0.37	0.74	2.2	148	0.8	15.6	94	14.0	< 10	
A0202-06	P413P402	14.0	0.46	0.64	2.1	91	5.1	18.9	72	6.0	< 10	
A0202-07	P413P402	6.4	0.11	0.08	0.8	16	0.4	5.6	14	2.0	< 10	
A0202-08	94139402	18.4	0.28	0.60	2.9	84	1.2	16.2	78	10.5	< 10	
A0202-09	<b>\$4139402</b>	20.4	0.44	0.84	3.2	113	0.5	20.2	98	11.0	< 10	
A0202-10	94139402	18.8	0.44	1.20	3.8	150	0.5	15.6	96	20.0	< 10	
A0202-11	94139402	8.6	0.14	0.30	1.4	31	11.9	9.2	18	5.0	< 10	
A0203-16	<b>\$413\$402</b>	7.8	0.03	0.18	9.3	111	0.9	14.5	844	13.5	< 10	
	84139402	5.2	0.09	0.72	4.3	398	1.1	11.2	628	26.0	< 10	
10203-18	64139402	8.6	0.06	0.22	8.9	159	1.0	13.3	502	25.0	< 10	
30203-19	BA138402	10.0	0.04	0.18	9.2	143	1.9	12.6	446	21.5	< 10	
20203-20	64136402	6.4	0.03	0.12	8.9	95	1.2	8.3	116	14.5	< 10	
A0203-21	94139402	17.8	0.17	0.88	3.6	548	5.6	6.7	178	22.5	< 10	
									150			
A0203-22	P413P402	16.2	0.12	0.68	3.8	344	0.5	0.5	120	20.0	< 10	
A0203-24	P4139402	8.0	0.09	0.68	4.8	217	7.7	0.4	4U 166	13.5	< 10	
A0203-25	P4139402	4.2	0.04	0.20	3.3	200	1.0	0./	100	0.0	< 10	
A0203-26	94139402	19.8	0.13	0.54	0.2	234	L L	11 0	126	40 0	< 10	
A0203-27	94139402	12.4	0.08	0.40	4.9	449	2.0	11.9	120	40.0	< 10	
A0203-28	94139402	10.4	0.12	0.72	8.1	338	6.4	12.0	170	26.0	< 10	
A0203-29	<b>\$413\$402</b>	10.6	0.17	1.08	3.0	204	4.2	12.5	126	39.5	< 10	
A0203-30	\$413\$402	11.0	0.15	0.74	5.4	277	3.4	11.0	136	27.5	< 10	
A0203-31	<b>\$413\$402</b>	14.8	0.11	0.38	2.4	- 252	3.0	9.0	54	31.5	< 10	
A0203-32	94139402	16.2	0.09	0.38	4.0	257	1.6	9.4	168	38.5	< 10	
10203-33	94139402	12.8	0.12	0.50	2.1	212	1.4	7.8	166	24.0	< 10	
40203-34	64136402	1.2	0.01	0.10	0.2	18	1.4	1.1	4	1.5	< 10	
A0203-35	64139402	13.6	0.17	0.76	2.0	295	5.3	10.0	166	30.0	< 10	
A0203-36	94139402	12.8	0.12	0.48	1.9	265	1.7	9.9	122	32.0	< 10	
A0203-37	94139402	15.0	0.15	0.44	2.3	215	1.4	9.6	130	21.5	< 10	
	h 1 1 2 h 4 2 2		0.57	1 12	1 5	116		7 7	132	21.0	< 10	
AU203-38	p4139402	13.8	0.56	1.12	1.3	712	0.8	1.7	134	20.0	< 10	
NUXU3-39	B4125402	13.2	0.40	1 1 1	1.0	417	7.4	o./	133	40.0 1e e	2 10	
AV203-40	B4138402		0.00	7.10	1.3	102	v.1 2 4	0.0 7 E	146	12.0	2 10	
NU2U3-61	P413P4U2	12.0	0.45	0.75	4 - 4	110	1 7	10 4	102	20 E	2 10	
NU2U3-42	P4139402	11.2	0.43	U./%	1.3	113	1./	10.4	174	40.3	× 10	

CERTIFICATION:



4

.

## ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 J: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9

Project : FRANK AND ACE Comments: ATTN: LOUIS E. DOYLE

CERTIFICATE OF ANALYSIS

Pa L. Jer: 2-A Tota, rages: 3 Certificate Date: 18-JUL-2002 Invoice No. : 10219395 P.O. Number: Account: PFD

A0219395

									<u> </u>											
SAMPLE	PREP CODE	Weight An Kg	u ppb l ICP	Pt ppb ICP	Pd ppb ICP	A1203 % XRF	Ba0 % XRF	CaO % XRF	Cr2O3 % XRF	Fe203 % IRF	K20 % XRF	Mg0 % XRF	Mn0 % XRF	Na20 % XRF	9205 % XRF	SiO2 % XRF	Sr0 % XRF	TiO2 % XRF	LOI % XRF	TOTAL %
40203-43	94139402	1.02	< 2	< 5	< 2	18.27	0.18	1.44	0.01	9.04	2.30	2.27	0.08	6.87	0.15	53.58	0.04	1.19	4.40	99.82
10203-44	94139402	1.28	< 2	< 5	4	13.84	0.15	3.51	0.01	6.64	1.88	1.97	0.14	5.14	0.41	58.91	0.03	0.55	5.48	98.66
20203-45	94139402	2.02	< 2	< 5	6	11.63	0.17	5.35	0.01	5.14	2.34	2.43	0.18	3.22	0.28	61.83	0.03	0.49	5.04	98.14
A0203-46	84138402	1.96	< 2	< 5	2	11.20	0.20	5.60	0.01	6.04	3.51	2.44	0.18	0.65	0.24	60.67	0.03	0.82	6.63	98.22
A0203-49	94139402	1.50	< 2	< 5	< 2	18.06	0.12	0.60	0.01	8.31	3.56	2.44	0.07	1.41	0.10	60.30	0.03	1.15	3.76	99.92
A0204-01	94139402	1.28	14	5	14	13.51	0.12	2.02	0.01	17.25	0.97	1.06	0.17	5.61	0.13	51.72	0.02	0.87	6.17	99.63
A0204-02	94139402	1.72	42	< 5	26	11.97	0.10	3.15	0.01	14.02	0.79	1.27	0.18	5.31	0.22	53.43	0.02	0.65	6.92	98.04
A0204-03	94139402	1.98	10	< 5	6	15.55	0.21	3.84	0.01	19.47	4.81	2.58	0.11	0.42	0.09	38.76	0.02	0.99	11.17	98.03
A0204-48	94139402	0.86	< 2	< 5	4	13.38	0.25	3.86	0.02	5.65	2.31	1.86	0.12	3.90	0.25	62.08	0.02	0.61	5.30	99.61
A0204-50	94139402	0.34	34	15	28	4.22	0.11	4.57	0.01	28.92	1.11	2.03	1.37	0.10	1.46	35.51	0.01	0.20	18.60	98.22
A0204-52	94139402	0.66	36	< 5	4	11.93	0.30	6.64	0.02	5.56	3.13	1.77	0.17	1.24	0.23	56.99	0.04	0.40	9.62	98.04
A0204-53	94139402	0.28	526	5	4	4.56	0.14	7.55	0.01	15.25	1.32	2.33	1.00	0.13	0.17	52.55	0.04	0.22	13.47	98.74
A0204-54	94139402	0.42	16	< 5	4	15.13	0.73	1.43	0.03	4.65	4.14	1.29	0.06	1.36	0.14	62.93	0.02	0.48	7.37	99.76
A0204-55	94139402	1.28	< 2	< 5	< 2	18.67	0.13	1.28	0.01	7.47	2.84	2.37	0.08	4.57	0.15	57.34	0.01	0.82	3.79	99.33
A9801-0201	94139402	1.62	< 2	< 5	2	13.62	0.21	4.07	0.02	5.00	2.49	1.70	0.07	1.70	0.14	63.69	0.05	0.56	5.92	yy.24
A9801-0202	94139402	2.22	2	< 5	4	11.39	0.17	6.39	0.02	3.99	2.42	1.43	0.07	1.39	0.14	62.74	0.05	0.43	7.49	98.12
A9801-0203	P413P402	2.04	< 2	< 5	2	15.55	0.19	4.32	0.01	5.94	3.43	1.94	0.09	2.48	0.19	57.84	0.05	0.77	4 34	33.01
A9801-0204	94139402	1.28	2	< 5	2	8.81	0.03	6.84	0.01	2.95	0.33	1.29	0.08	5.10	0.09	0/.40	0.00	0.34	3 1 3	98.50
A9801-0205	<b>P4139402</b>	1.44	4	< 10	< 4	7.25	0.03	4.84	0.02	4.74	0.6/	0.85	0.08	3.00	0.00	74.03	0.04	0.31	2.12	90.30
A9801-0207	94139402	1.30	4	< 5	4	12.09	0.23	5.16	0.02	4.90	3.03	1.49	0.11	1.24	0.18	01.40	0.04	0.50	0.33	33.40
A9802-06	94139402	1.40	2	< 5	4	10.39	0.12	10.45	0.01	4.25	1.62	1.95	0.13	3.99	0.18	56.25	0.06	0.42	8.75	98.57
1LF05-12	P4139402	0.68	114	< 10	< 4	3.33	0.01	0.34	0.01	19.04	0.20	1.9/	0.40	0.27	0.41	60 FJ	< 0.01	0.15	9.10	00 00
11505-13	P4139402	0.96	6	< 5	< 2	7.26	0.01	0.16	< 0.01	10.30	0.43	4.38	0.44	0.43	0.07	40 13	< 0.01	0.30	10.33	99.00
1LF05-14	94139402	0.08	100	< 5	6	5.42	< 0.01	0.04	0.01	49.89	0.14	4.40	0.10	0.32	0.05	67.13	< 0.01	0.34	7 00	90.09
1LF05-17	94139402	0.56	4	< 5	< 2	8.32	ų.uo	0.10	0.01	9.93	1.02	4.40	0.21	0.55	0.03		· •.••	0.33	7.80	33.01
1LF05-18	94139402	0.58	10	< 5	< 2	9.76	0.08	0.18	0.01	13.63	2.07	2.35	0.21	0.68	0.03	61.40	< 0.01	0.53	9.04	99.97 00 50
1LF05-19	P4139402	1.32	< 2	< 5		0.00	0.09	17 36	0.01	0.4/	A.06	15 10	0.14	0.06	0.0J	25 55	0.01	0.40	27 66	99.34
1LF05-20	P413P402	0.42	< 2	< 5	•	3.01	< 0.01	1/.30	0.13	5.03	0.00	13.13	0.30	0.00	0.00	£2.33	× 0.01	0.33	10 42	98 50
1LF05-23	P413P402	1.44	68	< 10		. 2.00	0.03	0.17	0.01	13 74	0.55	3.27	0.10	0.55	0.00	61 49	< 0.01	0.34	10 87	98 62
1LF05-24	94139402	1.02	54	د > ِ	· 4	6.8/	Ų.U3	0.44	0.01	13.44	0.73	3.34	0.21	0.03		01.40		0.32		
1LF05-25	94139402	1.84	38	< 5	< 2	7.70	0.05	0.19	0.01	11.08	1.04	3.04	0.17	0.61	0.06	65.99	< 0.01	0.36	8.00	98.30 99.02
1LF05-26	P4139402	2.22	30	< 5	2	1.31	0.03	0.15	0.01	11.00	2 74	3.00	0.17	0.75	0.09	60.31 61 65	< 0.01	0.54	8.42	99.20
1LF05-27	94139402	1.24	6	< 5	· · · ·	12.48	0.11	0.15	0.01	7.00 12 55	0 63	4.75	0.17	0.33	0.00	66 69	< 0.01	0.20	8.74	99.96
aLF05-30	94139402	1.02		< 5	5.4	0.14 0.14	0.01	0.10	2 0 01	25 03	0.03	3 60	0.44	0.4/	0.04	46.13	< 0.01	0.37	15.20	99.30
11906-01	94139402	0.76	14	< 5	, <u> </u>	5.90	0.03	0.50	< 0.01	45.54	0.37	3.39	0.37		0.00		< 0.01	0.37	13.40	
1LF06-07	94139402	0.50	132	< 5	i 2	11.86	0.07	0.58	< 0.01	15.17	2.54	4.08	0.24	0.85	0.05	50.22	< 0.01	0.37	12.90	98.93
1LF06-08	84138402	0.48	36	< 5	< 2	10.04	0.10	0.19	< 0.01	40.10	3.00	1 20	0.33	1.10	0.00	49.JO 74 ED	~ 0.04	0.73	A 10	00 72
1LF06-10	P413P402	0.54	< 2	< 5		11.71	0.05	0.84	0.01	3.44	2.00	1.20	0.07	0.38	0.08	26.00 CC A0	< 0.01 > 0.01	0.49	5 1 C	37./3
1LF06-11	P4139402	0.80	6	< 5	> < 2	14.01	0.08	0.30		4.40	3.54	4.14	0.07	0.40	0.43	10.00	~ 0.01	0.01	27.22	30.04
1LF06-21	94139402	0.22	216	< 5	5 < 2	/.98	0.05	V.44	< 0.01	34.41	1.55	0.43	0.34	0.79	0.05	10.11		0.30	£ / • & 4	JJ.43

him Wash CERTIFICATION:



8

## ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 ວ: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9

Project : FRANK AND ACE Comments: ATTN: LOUIS E. DOYLE

**CERTIFICATE OF ANALYSIS** 

Page Jer :2-B Total rages :3 Certificate Date: 18-JUL-2002 Invoice No. : 10219395 P.O. Number : Account : PFD

A0219395

	PREP	λg	Ba	Ce	Co	Cr	Cs	Cu	Dy	Er	Eu	Ga	Gđ	Æ	Но	La	Lu	Mo	Nb	Nd
SAMPLE	CODE	ppm	ppm	ppm	ppm	ppm	ppm	ppm	<b>DD</b>	ppm	DDur	ppm	<b>bbu</b>	ppm	ppm	ppm	ppm	ppm	ppm	ppa
20202 42	64139402	<i>c</i> 1	1650	104 5	26.5	150	5.8	85	5.3	3.1	1.7	26	7.8	5	1.0	50.5	0.4	6	24	45.5
20203-44	64136402	21	1390	69.5	14.5	160	2.8	85	5.2	3.2	1.2	21	5.8	2	1.0	36.5	0.4	30	18	30.0
N0203-46	61136402	21	1570	70.0	14.0	190	6.1	75	3.7	2.2	1.2	17	5.2	2	0.7	40.5	0.3	44	12	31.0
AU2U3-65	64120402	21	1745	55.0	16.5	170	3.6	105	3.5	2.3	1.0	16	4.5	3	0.7	29.5	0.3	22	21	24.5
WUZU3-40			1/63	113 6	22.0	200	3 6	115	5.5	3 8	2 0	25	8.8	Ă	1.3	56.5	0.5	6	14	49.5
N0203-49	P4139402	< 1	333	113.3	¥3.0	200	د . <i>د</i>			3.0					1.7	20.0				
A0204-01	94139402	< 1	991	86.0	30.5	200	1.4	210	6.2	4.0	1.4	16	7.8	3	1.3	52.0	0.5	42	21	43.0
A0204-02	<b>P413P402</b>	< 1	918	61.0	36.5	200	1.2	445	4.0	2.7	1.0	15	5.2	3	0.9	36.0	0.4	72	10	40.5
A0204~03	94139402	< 1	2000	92.5	129.5	210	5.8	185	4.4	2.3	1.6	23	6.9	4	0.8	46.0	0.4	14	10	40.5
A0204-48	<b>\$413</b> \$402	< 1	2550	61.0	16.5	250	2.6	70	3.5	2.3	1.0	20	4.8	2	0.7	34.0	0.3	46	12	27.0
A0204-50	94139402	< 1	429	20.0	24.5	140	1.4	265	5.1	3.7	1.0	4	4.8	< 1	1.2	21.0	0.5	12	3	17.5
A0204-52	94139402	< 1	1415	28.0	6.5	120	2.7	20	2.0	1.3	0.5	9	2.4	1	0.4	17.0	0.1	14	5	12.5
A0204-53	94139402	< 1	1125	42.5	11.5	240	2.2	70	5.5	3.5	1.0	8	6.1	1	1.2	31.5	0.5	8	5	28.0
30204-54	94139402	< 1	6720	67.5	14.0	300	7.2	95	3.1	1.9	1.2	21	4.9	1	0.6	39.0	0.3	28	9	30.0
A0204-55	94139402	< 1	1260	117.5	19.0	190	4.0	125	5.6	3.2	1.7	25	8.4	4	1.1	58.0	0.4	24	14	50.0
A9801-0201	94139402	< 1	1900	78.0	14.5	210	3.0	25	3.9	2.5	1.2	19	5.5	4	0.8	40.5	0.4	18	12	34.0
A9801-0202	94139402	< 1	1505	55.5	10.5	200	4.6	40	3.0	1.9	1.0	16	4.0	1	0.6	31.0	0.3	20	8	24.0
A9801-0203	64139402	< 1	1810	99.5	17.0	240	5.6	65	5.4	3.3	1.5	21	7.4	4	1.1	48.5	0.4	20	17	42.5
49801-0204	84139402	< 1	301	49.0	9.5	200	0.7	50	2.7	2.2	0.8	10	3.6	1	0.6	27.5	0.4	48	7	21.5
9801-0205	94139402	< 1	283	37.0	9.0	250	1.6	35	2.0	1.1	0.6	9	2.9	1	0.4	21.5	0.1	62	7	16.5
A9801-0207	94139402	< 1	2050	65.0	13.0	230	5.4	25	3.6	2.3	1.2	17	4.9	1	0.8	35.5	0.3	28	11	28.5
39802-06	P4139402	< 1	1305	53.5	10.5	200	2.8	30	3.7	2.5	1.0	14	4.4	2	0.9	28.0	0.4	30	10	24.5
11.805-12	64136402	4	27.0	9.5	37.0	140	0.1	>10000	2.0	1.3	0.1	3	1.7	< 1	0.4	6.0	0.1	8	1	5.0
11.805-13	64139402	ĩ	119.5	66.0	21.5	130	0.5	700	3.8	2.5	0.7	12	4.8	. 2	0.8	30.0	0.3	8	7	26.5
11.205-14	94139402	5	19.0	27.0	28.5	120	0.1	5680	2.6	1.7	0.3	5	2.8	< 1	0.6	14.0	0.2	8	3	12.5
1LF05-17	94139402	< 1	521	70.0	13.0	190	1.5	290	2.9	1.7	0.8	11	4.4	6	0.6	31.0	0.2	8	7	27.0
17.805-18	94139402		646	81.5	29.0	190	1.6	440	3.3	2.0	0.8	14	5.1	8	0.7	38.0	0.3	8	10	32.5
11.205-19	64136402	2 1	750	91.5	8.0	220	1.7	110	3.4	2.0	0.7	11	5.5	9	0.7	39.5	0.3	8	9	34.5
11205-20	64136402	21	36.5	15.0	65.0	1600	0.6	45	1.2	0.7	0.6	5	1.6	< 1	0.3	8.0	< 0.1	6	7	7.0
11205-23	64136402		142.5	59.0	28.0	. 210	0.6	1755	3.9	2.5	0.4	10	4.7	1	0.9	26.0	0.3	10	6	24.0
1LF05-24	94139402	< Ĩ	233	65.5	21.0	230	0.9	300	4.1	2.5	0.5	12	5.2	1	0.9	30.0	0.3	8	7	26.5
11.205-25	64139402	2	336	69.5	16.5	230	1.1	465	3.6	2.3	0.4	12	4.9	1	0.8	31.0	0.3	8	8	28.0
11.805-26	64136402	ĩ	271	75.5	15.5	210	0.9	705	3.8	2.5	0.5	12	5.3	1	0.8	33.5	0.3	8	8	30.0
11.805-27	64136402	< 1	773	78.5	10.5	190	2.3	280	3.5	2.3	0.8	18	5.1	6	0.8	36.0	0.3	8	12	32.5
11 205-30	64136402	21	126.5	37.5	12.5	150	0.5	195	2.2	1.3	0.4	<u> </u>	2.8	4	0.5	18.5	0.1	8	4	15.5
1LF06-01	4139402	< 1	238	67.5	51.0	190	1.1	1300	3.2	1.8	0.7	10	4.6	1	0.7	31.5	0.2	8	8	27.0
11806-07	84139402	د 1	680	78.5	39.0	160	1.9	1340	2.4	1.4	0.8	18	4.5	5	0.5	34.0	0.2	8	7	31.0
11.806-08	64139402	< 1	832	167.5	27.5	120	2.5	795	4.5	2.7	1.5	23	9.1	12	0.9	74.0	0.4	6	11	63.0
11.806-10	64136402	< 1	495	84.5	8.0	220	2.0	25	3.2	1.9	1.0	16	5.2	6	0.7	38.5	0.3	8	11	34.0
11.806-11	64136402	21	701	102.5	11.5	190	3.3	20	5.6	3.2	1.5	21	8.0	7	1.2	48.0	0.4	8	14	43.5
11806-21	64136402	· •	303	32.5	51.0	110	1.4	205	1.3	0.9	0.3	11	2.3	3	0.3	17.0	0.1	8	-4	14.0
LIFUU-AL		-	ى ى ي	5213				200				÷		-				-	-	

CERTIFICATION:_

112



## ALS Chemex

Analytical Chemists * Geochemists * Registered Assavers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 J: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9

Project : FRANK AND ACE Comments: ATTN: LOUIS E. DOYLE

**CERTIFICATE OF ANALYSIS** 

Page Jer :2-C Total ages :3 Certificate Date: 18-JUL-2002 Invoice No. : I0219395 P.O. Number : Account : PFD

A0219395

	PREP	Ni	Pb	Pr	Rb	Sm	Sn	Sr	Ta	Tb	ТЪ	Tl	Tm	υ	v	W	Y	ΥЪ	Zn	Zr
SAMPLE	CODE	ppm	<b>bb</b> m	ppm	ppm	ppm	ppm	ppm	bbw	ppm	ppm	ppm	ppm	ppm	bbu	ppm	bbw	ppm	ppm	ppm
A0203-43	94139402	50	20	12.6	109.0	8.5	5	274	1.5	1.1	14	< 0.5	0.4	2.5	265	7	27.5	2.5	165	182.0
A0203-44	94139402	45	15	8.6	79.6	5.5	- 4	284	1.0	0.9	11	< 0.5	0.5	5.5	325	5	30.5	2.9	90	79.5
A0203-45	94139402	55	30	9.0	104.5	5.5	2	355	0.5	0.7	10	< 0.5	0.3	4.5	190	3	21.5	1.9	155	89.0
A0203-46	94139402	45	20	6.9	134.5	4.7	2	236	1.5	0.7	7	< 0.5	0.3	3.0	180	3	21.5	2.0	125	107.0
A0203-49	94139402	45	15	14.1	155.5	9.2	4	155.0	1.5	1.3	16	< 0.5	0.5	2.5	125	4	34.5	3.0	100	158.0
A0204-01	94139402	160	35	11.8	41.0	7.6	4	226	1.5	1.1	13	< 0.5	0.5	12.5	350	12	39.5	3.3	30	123.5
A0204-02	94139402	135	65	8.2	34.0	5.3	3	265	0.5	0.7	. 9	< 0.5	0.4	9.5	230	9	25.5	2.2	190	91.0
A0204-03	94139402	165	30	11.0	195.5	7.6	2	AT2	1.5	0.9	15	0.5	0.3	2.0	120	28	21.0	4.1	330	720.0
A0204-48	94139402	55	25	7.7	99.2	4.9	2	79T	0.5	0.7	10	< 0.5	0.3	5.0	. Xeu .	2	22.5	2.1	110	8∡.J 32 A
A0204-50	94139402	180	20	4.2	30.8	3.8	< 1	100.5	< 0.5	0.8	3	< 0.5	0.5	3.5	162		38.0	3.0	110	33.0
A0204-52	94139402	30	25	3.6	75.6	2.4	1	200	< 0.5	0.4	4	< 0.5	0.1	2.5	135	3	11.5	1.2	130	51.5
A0204-53	94139402	55	25	7.0	68.6	5.5	1	371	< 0.5	1.0	- 4	< 0.5	0.5	2.0	105	5	32.0	3.1	55	57.0
A0204-54	94139402	55	5	8.5	182.0	5.2	2	247	0.5	0.6	11	0.5	0.3	8.0	555	4	17.5	1.7	555	66.5
A0204-55	94139402	45	15	13.9	134.5	9.2	3	221	1.5	1.1	19	< 0.5	0.4	4.0	240	3	27.5	2.6	150	135.0
A9801-0201	94139402	45	15	9.6	109.0	6.0	3	476	0.5	0.8	12	0.5	0.3	5.0	315	5	22.0	2.2	155	138.5
A9801-0202	4139402	45	10	7.0	107.0	4.3	2	490	0.5	0.6	9	0.5	0.3	4.5	280	7	18.5	1.6	210	66.5
A9801-0203	94139402	50	60	11.6	161.0	7.8	4	524	1.0	1.0	15	0.5	0.5	4.0	210	6	32.0	2.8	120	169.5
A9801-0204	94139402	65	140	6.2	17.4	3.9	±	110	< 0.5	0.5		< 0.5	0.4	<b>0.</b> U	4/5	8	44.5	4.3	170	03.0
A9801-0205	94139402	55	200	4.5	35.0	2.9	3	460	< U.5	0.4	10	< U.5	0.1	5.5	115	8	13.0	1.9	40	55.5 60 F
A9801-0207	94139402	40	10	0.3	149.5	3.1		435	0.5	0.7	10	0.5	0.5	0.3	405	2	24.5	1.9		09.5
A9802-06	94139402	50	105	6.5	70.2	4.4	2	647	0.5	0.6	8	< 0.5	0.4	6.5	340	- 4	25.0	2.5	490	67.0
1LF05-12	94139402	25	480	1.1	3.2	1.3	69	13.2	< 0.5	0.3	1	< 0.5	0.1	2.0	35	7	13.5	1.0	455	22.0
1LF05-13	94139402	30	260	7.2	19.6	4.7	132	24.4	0.5	0.7	9	< 0.5	0.4	2.0	45	13	21.5	2.3	840	65.5
1LF05-14	94139402	35	1020	3.2	2.8	2.5	87	11.4	< 0.5	0.4	3	< 0.5	0.3	4.0	55	2	18.0	1.5	1965	29.0
11705-17	94139402	20	50	7.3	74.4	4.8	28	54.3	0.5	0.6	13	< 0.5	0.3	2.0	30	7	14.5	1.7	290	234
1LF05-18	94139402	20	180	8.8	82.4	5.6	26	48.6	0.5	0.7	17	< 0.5	0.3	2.0	40	8	17.0	1.9	210	277
1LF05-19	94139402	15	40	9.6	88.8	5.9	44	40.4	0.5	0.7	<u>40</u>	< 0.5	0.3	2.5	25	y y	1/.0	1.9	90	330
1LF05-20	94139402	685	10	1.8	2.4	1.7	2	394	< 0.5	0.2	< T	< U.5	< 0.1	3.0	40	10	0.5	0.5	070	49.5
1LF05-23	94139402	40	350	0.0	24.0	- 11-11	20	37.3	< 0.5	V./	0	< 0.5	0.4	3.0	70	11	28.J	2.4	1075	53.0
TFR02-54	00139002	•		1 <b>4 4</b>	34.4	5.0		00.0	0.5	<b>V</b> ./	•	× v.5		4.0	10		43.3	4.1	1075	
1LF05-25	94139402	30	495	7.5	46.6	4.8	42	51.1	0.5	0.7	9	< 0.5	0.3	1.5	40	11	20.5	2.1	1065	59.0
11705-20	D4120402	43	110	0.1	39.0	5.4	55	71 A	0.5	0.7	15	20.5	0.3	2.0	60	10	19 5	2 1	332	203
11 205-20	D4130402	20	115	4.2	26.8	2.7	14	41.6	< 0.5	0.4		< 0.5	0.5	0.5	15	, j	12 0	1 1	145	130 5
11205-01	04130402	55	260	7 1	46.8	A 9	29	28.4	0.5	0.6	, 7	< 0.5	0.3	2.0	<b>A</b> 0		16 5	1 6	550	56.0
						•					•								550	
1LF06-07	94139402	20	70	8.2	106.0	4.9	44	95.2	0.5	0.5	12	< 0.5	0.2	2.0	40	8	12.0	1.3	320	159.0
<b>1LF06-08</b>	P4139402	15	60	17.7	134.5	10.2	50	134.0	0.5	1.0	27	0.5	0.4	3.5	45	28	22.0	2.5	385	427
1LF06-10	94139402	25	30	9.2	115.5	5.7	3	72.8	0.5	0.6	17	< 0.5	0.3	2.5	45	5	16.5	1.9	40	216
1LF06-11	94139402	30	25	11.6	174.5	8.1	.5	57.1	1.0	1.1	19	0.5	0.5	4.5	75	5	29.0	2.8	50	254
1LF06-21	94139402	45	1190	3.8	63.0	2.4	27	79.6	< 0.5	U.3	8	0.5	U.1	1.0	35	6	7.5	0.9	4390	110.0

CERTIFICATION:



۲

. .

### ALS Chemex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

J: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9

Project : FRANK AND ACE Comments: ATTN: LOUIS E. DOYLE

Par Jer :2-D Tota. ages :3 Certificate Date: 18-JUL-2002 Invoice No. : 10219395 P.O. Number : : :PFD Account

**CERTIFICATE OF ANALYSIS** 

A0219395

SAMPLE	PREP CODE	Ag ppm (ICP)	Al % (ICP)	As ppm	Bappm (ICP)	Beppm (ICP)	Bippm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Ceppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cs ppm (ICP)	Cuppm (ICP)	Fe % (ICP)	Gappm (ICP)	Geppm (ICP)	Hf ppm	In ppm	K% (ICP)
A0203-43	413 402	0.26	9.22	< 0.2	166.0	3.05	1.87	1.00	0.52	100.5	27.0	73	6.35	91.8	5.76	27.00	0.25	0.8	0.090	1.81
A0203-44	94139402	0.14	7.82	< 0.2	289.0	2.85	1.00	2.50	0.52	65.9	13.6	80	2.95	97.2	4.58	21.45	0.20	0.7	0.070	1.58
A0203-45	94139402	0.18	6.34	< 0.2	185.0	2.20	0.70	3.70	0.76	68.5	14.4	85	6.35	63.6	3.41	16.85	0.20	0.9	0.040	1.93
A0203-46	94139402	0.18	5.90	< 0.2	568.4	2.15	0.67	3.80	0.60	59.9	16.7	99	3.80	88.4	3.94	16.65	0.25	1.2	0.045	2.75
A0203-49	94139402	0.10	8.91	< 0.2	924.1	2.90	0.16	0.41	0.06	101.5	22.8	107	3.65	129.1	5.29	23.60	0.25	0.6	0.080	2.65
A0204-01	94139402	1.42	6.88	5.4	71.0	2.10	29.4	1.40	0.32	77.5	30.5	151	1.40	486.0	11.50	15.40	0.35	1.3	0.020	0.75
A0204-02	94139402	1.64	6.33	69.2	92.0	1.75	31.5	2.10	2.26	58.1	38.1	243	1.20	571.0	9.24	13.65	0.25	1.0	0.030	0.62
A0204-03	94139402	0.56	8.20	< 0.2	178.5	2.20	2.07	2.60	1.16	80.5	119.4	107	5.75	219.6	12.75	22.30	0.35	0.5	0.090	3.56
A0204-48	94139402	0.20	7.32	< 0.2	990.0	3.25	1.86	2.80	0.30	53.6	15.3	99	2.65	74.9	3.85	19.10	0.15	0.7	0.040	1.91
A0204-50	94139402	1.44	2.23	42.8	31.5	0.65	2.02	3.10	0.48	35.9	44.1	110	2.65	663.0	19.80	6.80	0.40	0.4	0.030	0.93
A0204-52	94139402	0.28	6.21	35.4	301.5	2.20	1.70	4.40	2.42	44.1	10.5	110	5.35	27.6	3.56	15.45	0.10	1.2	0.040	2.42
A0204-53	94139402	0.36	2.59	318	32.0	1.10	2.50	5.50	0.62	38.9	11.8	122	2.55	113.4	10.55	7.35	0.25	0.5	0.035	1.13
A0204-54	94139402	0.18	9.12	23.2	137.0	3.15	0.67	1.10	7.50	52.6	13.8	135	7.70	127.2	3.53	22.35	0.15	0.7	0.060	3.65
A0204-55	94139402	0.18	9.91	< 0.2	596.4	3.35	0.51	0.91	0.30	111.0	19.5	99	4.25	81.9	5.02	25.85	0.25	0.9	0.075	2.26
A9801-0201	94139402	0.18	7.50	< 0.2	923.2	2.80	0.13	2.90	0.60	73.6	15.1	94	3.10	49.8	3.35	19.30	0.20	0.5	0.045	2.08
A9801-0202	94139402	0.10	6.20	< 0.2	529.9	2.10	0.42	4.50	2.46	53.7	13.3	158	4.55	50.9	2.67	15.10	0.15	0.4	0.055	1.96
A9801-0203	94139402	0.40	7.95	< 0.2	415.5	3.00	1.87	2.90	0.68	91.9	20.9	207	5.40	71.2	3.74	20.55	0.25	0.6	0.060	2.57
A9801-0204	94139402	0.50	4.52	< 0.2	271.0	1.40	2.08	4.90	2.42	45.4	8.8	72	0.70	52.4	1.94	8.95	0.10	0.3	0.025	0.27
A9801-0205	94139402	1.14	3.66	< 0.2	249.0	1.35	4.60	3.40	0.56	35.6	9.3	97	1.55	33.8	1.82	7.95	0.05	0.3	0.010	0.52
A9801-0207	94139402	0.16	6.67	1.4	233.5	2.80	1.39	3.70	0.34	57.7	12.3	97	5.40	59.3	3.36	16.20	0.15	0.5	0.040	2.51
A9802-06	94139402	1.22	5.48	< 0.2	1174.0	2.45	4.71	7.70	6.52	51.2	10.9	83	2.80	69.8	2.74	14.40	0.15	0.5	0.080	1.32
ptr05-12	94139402	15.40	1.64	352	46.0	0.15	25.6	0.23	4.38	15.35	73.2	156	0.20	>10000	13.10	4.40	0.25	0.6	11.25	0.11
1LF05-13	94139402	2.10	4.08	70.8	105.0	0.25	4.49	0.11	3.18	62.3	22.3	114	0.50	829.0	11.40	11.85	0.20	1.2	1.485	0.33
1LF05-14	P413P402	25.7	2.99	515	29.0	0.15	75.1	0.03	14.55	48.1	54.5	130	0.20	7130	20.6	7.65	0.40	1.1	19.00	0.09
1LF05-17	94139402	0.94	4.83	23.6	482.5	0.75	2.11	0.06	1.06	65.5	13.5	93	1.45	381.0	7.22	11.25	0.15	1.6	1.525	1.53
1LF05-18	94139402	1.96	5.19	29.2	517.9	0.80	5.93	0.07	0.48	76.1	27.1	100	1.55	582.0	9.15	13.30	0.15	2.0	0.970	1.57
1LF05-19	94139402	0.28	4.46	37.6	641.3	0.80	0.92	0.04	0.16	81.7	7.4	87	1.60	122.1	3.96	10.00	0.10	1.9	0.355	1.54
1LF05-20	94139402	0.16	1.95	405	30.5	0.25	0.40	13.00	0.08	13.20	65.4	711	0.60	47.4	5.76	4.75	0.10	0.4	0.040	0.03
1LF05-23	94139402	5.78	3.25	54.4	117.0	0.35	10.80	0.13	3.54	53.1	27.2	111	0.60	2560	9.95	8.75	0.25	1.0	4.52	0.44
1LF05-24	P413P402	4.52	3.54	103.0	207.5	0.45	9.88	0.28	3.92	60.8	21.8	116	0.80	705.0	8.85	10.40	0.20	1.1	1.285	0.61
1LF05-25	94139402	3.44	4.29	73.2	292.5	0.45	8.35	0.13	3.54	64.4	15.9	113	1.00	577.0	7.30	11.70	0.15	1.1	0.905	0.80
1LF05-26	94139402	2.82	3.90	35.0	246.5	0.50	5.38	0.12	1.58	70.5	15.4	107	0.90	878.0	7.50	11.30	0.15	1.1	0.875	0.72
1LF05-27	P413P402	1.76	6.48	11.0	710.8	1.10	6.57	0.07	0.82	72.6	11.2	87	2.25	295.0	6.08	17.95	0.15	1.9	1.330	2.07
1LF05-30	94139402	1.46	3.28	10.4	99.0	0.45	5.26	0.07	0.18	32.0	13.3	114	0.50	199.1	8.44	8.35	0.25	0.7	0.290	0.48
1LF06-01	94139402	4.20	3.08	177.5	62.0	0.35	11.75	0.32	1.96	58.0	47.9	109	0.95	1535.0	17.10	9.20	0.40	1.0	2.08	0.72
1LF06-07	94139402	2.26	6.76	6.4	220.5	1.45	9.66	0.37	0.76	68.5	40.1	94	1.80	1560.0	10.60	17.60	0.20	1.7	3.69	2.05
<b>µLF06-08</b>	P4139402	2.18	9.22	48.6	101.0	1.85	11.90	0.14	0.88	151.5	33.2	87	2.40	991.0	17.55	24.10	0.45	3.4	1.520	2.67
LLF06-10	94139402	0.12	6.51	3.0	450.5	1.75	0.23	0.60	0.14	75.6	8.0	65	1.90	27.0	2.23	15.40	0.15	2.1	0.060	2.27
1LF06-11	94139402	0.10	8.26	5.8	469.5	2.40	0.52	0.41	0.02	95.6	11.5	74	3.10	22.2	2.94	21.05	0.20	2.9	0.085	3.30
1LF06-21	94139402	11.50	4.55	621	27.5	0.85	23.2	0.16	21.3	28.0	68.3	96	1.35	302.0	24.2	11.90	0.45	1.4	1.555	1.15
L		I				· · ··· ·			····									<del>/``}</del>		
														CERTIF		کی ا	新闻	We	ufe.	<u></u> *+



#### hemex S A Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 J: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9

Project : FRANK AND ACE Comments: ATTN: LOUIS E. DOYLE

**CERTIFICATE OF ANALYSIS** 

A0219395

	PREP	La ppm	Li ppm	Mg %	Mn ppm	Mo ppm	Na %	Nb ppm	Ni ppm	Pppm	Pb ppm	Rb ppm	Re	S	Sb ppm	Se	Sn	Sr ppm	Ta ppm	Te ppm
SAMPLE	CODE	(102)	(IUP)	(ICP)	(ICP)	(ICP)	(10P)	(ICP)	(ICP)	(102)	(ICP)	(109)		*	(ICP)	ppm	ppm	(ICP)	(ICP)	(ICP)
A0203-43	94139402	47.0	35.4	1.20	575	1.10	5.26	4.7	54.9	680	17.0	104.0	0.002	2.24	0.05	4	2.6	251	0.45	0.05
A0203-44	4139402	34.0	30.8	1.05	915	22.95	4.20	2.6	52.8	2020	14.0	73.7	0.020	2.61	0.05	3	2.4	271	0.15	0.05
A0203-45	94139402	39.0	29.2	1.36	1220	38.10	2.53	3.7	57.1	1320	41.0	97.3	0.038	1.70	0.15	3	1.4	325	0.20	0.05
A0203-46	94139402	32.0	27.2	1.42	1215	19.95	0.43	3.6	60.5	1040	28.5	128.5	0.024	0.92	0.05	4	1.8	221	0.15	0.10
A0203-49	94139402	50.0	25.4	1.27	425	3.70	0.98	5.9	58.5	460	10.5	137.0	0.002	0.56	7.70	1	2.2	136.5	0.40	< 0.05
A0204-01	94139402	45.5	6.4	0.55	1225	38.20	4.68	2.5	199.0	620	50.5	36.5	0.028	4.99	0.25	15	2.0	194.0	0.15	0.25
A0204~02	P413P402	32.5	4.2	0.68	1210	84.00	4.38	2.9	250	1040	68.5	30.3	0.030	5.36	0.45	13	1.6	228	0.10	0.25
A0204-03	P413P402	36.0	15.2	1.41	715	8.95	0.33	2.7	175.0	360	31.5	176.5	0.006	7.45	0.20	17	3.0	177.5	0.10	0.65
A0204-48	94139402	30.0	13.2	1.08	780	36.30	2.86	2.1	61.0	1200	21.0	90.3	0.048	1.37	0.15	. 4	3.2	256	0.10	0.05
A0204-50	94139402	35.0	5.8	0.92	5780	14.80	0.05	2.5	203	6710	17.5	65.5	0.042	>10.00	2.65	23	0.8	160.5	0.15	1.00
A0204-52	4139402	22.5	10.4	1.02	1115	15.05	0.92	4.0	54.6	970	63.5	136.5	0.012	2.29	1.40	5	1.6	329	0.25	0.15
A0204-53	94139402	27.5	7.0	1.44	7240	4.35	0.08	2.1	60.6	880	32.0	68.6	0.006	>10.00	3.65	7	1.0	331	0.10	0.25
NU2U4~34 80304_65	64139402	19.0	20.4	1 35	333	43.15	7.10	4.5	72.3	020	8.5	181.0	0.024	3.32	1.15	10	1.6	188.0	0.15	0.05
NUZUE-33	P413P402	20.0	30.8	1.35	405	13.10	3.54	4.7	55.4 EE 3	720	12.0	125.0	0.006	0.91	0.05	4	2.0	201	0.30	0.10
N9801-0201	94139402	39.0	44.0	1.02	405	12.75	1.11	1.3			17.5	103.5	0.012	0.74	0.10	4	1.4	457	0.15	0.05
<b>N9801-0202</b>	94139402	30.5	18.2	0.81	465	25.10	1.10	2.3	101.5	590	14.5	101.5	0.014	1.00	0.20	3	1.2	459	0.05	< 0.05
A9801-0203	94139402	47.5	22.6	1.06	590	31.30	1.83	3.8	131.5	850	87.5	143.5	0.012	1.16	0.15	3	2.4	462	0.20	0.10
A9801-0204	94139402	25.5	4.0	0.67	610	39.10	3.48	1.8	64.4	320	158.5	15.2	0.024	1.16	0.10	1	0.6	692	0.10	0.05
A9801-0205	P413P402	19.5	5.2	0.43	590	51.06	2.18	1.8	64.1	290	236	30.1	0.020	1.05	0.15	2	1.4	417	0.05	0.20
A9801-0207	94139402	32.0	14.4	0.89	865	18.60	0.94	4.0	66.0	870	20.5	137.5	0.020	1.17	0.35	4	2.0	426	0.20	0.10
A9802-06	94139402	28.0	8.4	1.03	1080	22.00	2.32	2.1	54.2	870	203	68.0	0.020	0.94	0.20	4	1.2	712	0.10	0.25
1LF05-12	94139402	7.0	21.8	1.04	1605	6.90	0.16	0.6	66.8	990	486	5.7	0.006	7.37	1.05	13	29.8	24.4	< 0.05	0.35
1LF05-13	94139402	29.0	68.2	2.65	1590	6.60	0.20	0.9	54.6	260	256	17.6	0.002	4.17	0.45	5	16.8	23.4	< 0.05	0.05
1LF05-14	94139402	23.0	50.0	1.34	665	2.35	0.16	0.5	60.1	210	1080	4.5	0.004	9.00	0.70	15	17.4	19.6	< 0.05	0.80
1LF05-17	94139402	30.5	9.4	1.39	1655	1.25	0.40	0.7	18.0	130	45.0	71.4<	0.002	0.43	0.45	1	18.2	54.4	< 0.05	< 0.05
1LF05-18	94139402	36.0	17.4	1.39	1535	0.85	0.38	0.7	18.6	130	198.0	78.2<	0.002	1.64	0.40	1	17.2	46.0	< 0.05	< 0.05
LF05-19	94139402	37.0	10.2	0.61	630	1.10	0.27	0.9	14.4	130	36.0	77.9<	0.002	0.56	0.35	< 1	27.8	34.6	< 0.05	< 0.05
16F05-20	94139402	6.0	41.0	8.50	2280	0.55	< 0.01	0.6	768	390	19.0	1.9<	0.002	0.44	1.40	< 1	0.6	435	< 0.05	< 0.05
LLFU3-23	P4139402	43.5	44.0	1.95	1515	2.55	0.47	0.7	37.6	300	377	20.8	0.006	3.62	0.40	4	20.8	53.8	< 0.05	0.05
TPE02-34	84139402	<b>45.</b> 0	122.0	¥.U4	1212	0.95	0.45	0.7	36.0	580	492	30.3<	0.002	2.71	1.05	3	18.6	83.0	< 0.05	0.05
1LF05-25	<b>\$413\$402</b>	30.0	35.4	1.74	1150	1.40	0.40	0.8	23.6	200	496	43.5<	0.002	2.16	1.00	2	23.2	50.2	< 0.05	0.05
1LF05-26	94139402	32.0	21.4	1.76	1210	0.90	0.58	0.8	22.0	390	191.0	38.2<	0.002	1.18	0.50	1	18.4	67.8	< 0.05	< 0.05
1LF05-27	94139402	35.5	15.0	1.55	1275	1.15	0.52	1.3	26.6	230	147.5	109.5<	0.002	0.69	0.25	1	45.0	70.0	0.05	< 0.05
1LF05-30	P4139402	14.5	32.2	2.33	1705	2.70	0.29	0.5	23.4	80	128.5	23.6<	0.002	1.55	0.15	1	7.4	37.8	< 0.05	0.05
1LF06-01	94139402	27.0	22.4	1.92	2830	2.05	0.15	0.7	53.3	330	324	41.7<	0.002	9.43	0.95	7	18.2	24.0	< 0.05	< 0.05
1LF06-07	94139402	31.5	17.8	2.39	2050	1.35	0.71	0.7	21.0	190	61.0	95.7<	0.002	2.66	0.35	3	35.4	93.2	< 0.05	0.10
LF06-08	P413P402	64.5	28.8	3.49	4150	1.95	1.01	0.9	26.6	250	114.5	131.0	0.002	6.40	0.40	6	49.0	129.5	< 0.05	0.05
1LF06-10	P4139402	37.0	11.4	0.78	385	1.45	0.44	1.4	24.4	370	28.5	106.5	0.002	0.21	0.15	< 1	2.2	70. <del>9</del>	< 0.05	< 0.05
1LFU6-11	¥4139402	46.0	19.4	1.24	320	1.60	0.33	1.7	28.8	1180	14.5	159.5	0.004	1.52	0.85	1	3.8	55.7	0.05	< 0.05
TP%00-31	¥4139402	12.0	67.0	4.52	3240	4.65	0.52	1.0	93.6	200	1415	60.1	0.002	>10.00	5.15	4	18.8	76.2	< 0.05	0.35

CERTIFICATION:

Page Ler :2-E Total Jes :3 Certificate Date: 18-JUL-2002 Invoice No. P.O. Number : 10219395 Account PFD



•

## ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 J: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9

Project : FRANK AND ACE Comments: ATTN: LOUIS E. DOYLE

**CERTIFICATE OF ANALYSIS** 

Pag Jer :2-F Total ages :3 Certificate Date: 18-JUL-2002 Invoice No. : 10219395 P.O. Number : Account : PFD

1

A0219395

. <u>.</u>			mi a.	m1	11	17	W ppe	V	7	7+	tia	
SAMPLE	CODE	Th ppm (ICP)	T1 % (ICP)	TI ppm (ICP)	(ICP)	(ICP)	W DDM (ICP)	(ICP)	(ICP)	ppm	ppb	
N0203-43	94139402	14.2	0.14	0.60	3.3	267	2.5	9.6	176	29.0	< 10	
N0203-44	94139402	11.4	0.10	0.38	6.5	348	1.9	14.6	104	25.0	< 10	
A0203-45	94139402	10.4	0.15	0.60	4.8	201	0.8	12.5	172	34.0	< 10	
N0203-46	94139402	8.6	0.19	0.72	3.2	185	1.1	11.0	132	46.5	< 10	
N0203-49	94139402	15.8	0.16	0.66	1.9	120	0.9	16.8	106	20.0	< 10	
A0204-01	94139402	12.4	0.06	0.28	14.1	357	3.1	10.4	28	47.0	< 10	
AU2U4-U2	94139404	12.2	0.05	1 02	1 7	118	3.3	7.8	360	15.5	< 10	
AU2U4-03	P4139404	10.0	0.14	0 46	5 1	243	4 0	10.0	48	24.0	< 10	
A0204-50	94139402	5.0	0.04	0.72	6.9	328	0.5	46.4	234	15.5	< 10	·
30204-52	94139402	7.6	0.12	0.92	4.7	260	2.9	11.7	278	43.0	< 10	
30204-53	94139402	3.8	0.04	0.50	2.1	117	2.1	22.5	70	19.0	< 10	
20204-54	4139402	6.0	0.15	1.26	9.7	666	1.5	8.1	732	24.0	< 10	
A0204-55	94139402	18.6	0.15	0.70	2.4	242	0.6	9.5	172	32.0	< 10	
A9801-0201	94139402	12.8	0.10	0.84	5.5	311	0.8	16.5	174	16.0	< 10	
A9801-0202	94139402	9.6	0.09	0.82	5.2	298	1.0	9.8	238	11.5	< 10	
A9801-0203	94139402	15.6	0.13	1.02	3.8	205	2.0	12.8	126	17.5	< 10	
A9801-0204	94139402	7.2	0.06	0.12	6.6	268	1.0	10.2	194	10.0	< 10	
A9801-0205	94139402	6.0	0.05	0.22	5.6	109	1.8	7.1	42	10.5	< 10	
A9801-0207	94139402	10.0	0.12	0.98	8.1	407	1.8	10.0	26	18.3	< 10	
A9802-06	94139402	8.6	0.08	0.50	9.3	346	1.0	11.6	586	19.5	< 10	
1LF05-12	D4130402	3.4	< 0.01	0.14	2.3	46	1.0	7 5	988	44 0	40	
1LF05-13	D4130402	9.2	0.04	0.10	4.7	102	0.6	11.1	4290	46.0	350	·
1LF05-17	94139402	14.2	0.04	0.48	2.0	33	1.1	6.0	354	55.0	10	
							1.0	E 3		69.0	10	
1LF05-18	94139402	17.2	0.04	0.54	4.1	30	1.0	5.3	434	63 5	~ 10	
1LF05-19	P4139402	19.0	0.04	0.50	1 4	49	1.3	5.3	82	17.0	10	
11805 22 17805 22	64138402	0.8	0.03	0.04	3 9	. 70	1.9	8.9	1125	38.0	50	
1LF05-24	94139402	9.2	0.02	0.26	2.7	38	1.6	6.6	1220	38.5	60	
11205-25	94139402	9.8	0.03	0.34	2.2	41	1.7	7.3	1250	42.5	50	······································
11.205-26	94139402	10.4	0.03	0.28	1.9	37	1.5	6.3	512	41.0	20	
1LF05-27	94139402	16.0	0.05	0.72	2.5	53	1.7	6.0	386	69.5	10	
1LF05-30	94139402	7.2	0.01	0.22	0.8	13	0.9	5.8	176	24.0	10	
1LF06-01	94139402	7.0	0.01	0.30	2.3	36	1.2	9.4	618	37.0	20	
1LF06-07	94139402	12.2	0.04	0.64	2.3	37	1.4	5.5	380	58.5	10	
1LF06-08	<b>\$413</b> \$402	25.2	0.05	0.82	3.9	52	2.4	9.0	476	114.5	10	
1LF06-10	94139402	16.8	0.07	0.68	2.9	49	0.8	5.8	46	69.5	< 10	
1LF06-11	P4139402	19.8	0.09	1.08	5.7	73	1.3	10.8	50	106.5	< 10	
1LF06-21	P413P402	8.6	0.02	Q.86	1.2	46	1.8	3.9	5120	57.0	250	
		1										

liten HEER CERTIFICATION:_ 1......



## ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 J: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9

Project : FRANK AND ACE Comments: ATTN: LOUIS E. DOYLE

**CERTIFICATE OF ANALYSIS** 

Pat Jer :3-A Total rages :3 Certificate Date: 18-JUL-2002 Invoice No. : 10219395 P.O. Number : Account : PFD

- {

*+

A0219395

Ĵ,

CERTIFICATION:_

Keal Warf

														_						
SAMPLE	PREP CODE	Weight Kg	Au ppb I ICP	Pt ppb ICP	Pd ppb ICP	A1203 % XRF	BaO % XRF	CaO % XRF	Cr2O3 % XRF	Fe203 % XRF	K20 % XRF	Mg0 % XRF	MnO % XRF	Na20 % XRF	₽205 % XRF	SiO2 % XRF	Sr0 % XRF	TiO2 % XRF	LOI % XRF	TOTAL %
11.206-22	94139402	0.50	4	< 5	< 2	10.33	0.08	0.63	0.02	10.31	2.21	3.64	0.23	0.49	0.10	63.39	< 0.01	0.45	7.89	99.77
21.F01-31	4139402	1.52	< 2	< 5	< 2	14.64	0.12	4.95	0.01	7.28	4.02	4.70	0.31	0.54	0.07	50.44	0.01	0.52	11.70	99.31
2LF01-44	94139402	0.48	22	< 5	2	12.27	0.10	0.40	< 0.01	21.93	3.40	6.03	0.41	1.48	0.10	32.61	< 0.01	0.55	18.77	98.05
2LF05-16	94139402	0.96	34	< 5	2	5.39	0.02	0.21	0.01	13.66	0.59	3.06	0.20	0.63	0.11	64.73	< 0.01	0.28	10.24	99.13
2LF05-34	94139402	0.62	10	< 5	4	3.67	0.01	0.14	0.02	9.16	0.44	2.24	0.15	0.36	0.05	72.63	< 0.01	0.19	8.94	98.00
2LF05-38	94139402	0.26	8	< 5	< 2	11.16	0.06	0.11	0.01	16.11	1.41	4.76	0.18	0.47	0.06	55.16	< 0.01	0.56	8.83	98.88
2LF05-42	<b>\$413</b> \$402	0.42	64	< 5	2	6.74	0.04	0.17	< 0.01	28.12	0.99	5.03	0.30	0.66	0.03	38.12	< 0.01	0.29	19.04	99.53
2LF06-02	94139402	0.84	60	< 5	< 2	7.20	0.03	2.63	< 0.01	14.79	0.75	5.66	0.29	0.70	0.09	53.75	< 0.01	0.41	12.90	99.20
2LF06-04	94139402	2.02	60	< 5	< 2	8.61	0.07	0.11	0.01	13.93	1.68	1.69	0.15	0.51	0.03	61.59	< 0.01	0.45	9.20	98.09
2LF06-35	94139402	1.46	< 2	< 5	< 2	16.05	0.13	0.32	0.01	7.72	3.74	3.20	0.15	0.82	0.07	58.09	< 0.01	0.65	8.38	99.33
2LF06-40	94139402	1.70	2	< 5	< 2	16.63	0.14	0.26	0.01	8.98	4.23	2.39	0.16	0.75	0.07	57.30	< 0.01	0.67	8.25	99.84
3LF01-32	P413P402	0.18	14	< 5	< 2	0.85	0.04	4.4/	0.01	21 02	1./5	2 01	0.51	1.00	0.11	60.23	0.01	0.30	13 17	90.09
3LF05-15	94139402	0.16	726	2		5.10	< 0.01	0.10	0.01	10 75	1 10	1 40	0.13	0.24	0.00	68 21	< 0.01	0.17	7.94	98.18
3LF05-19A 3LF05-33	94139402	0.16	174	< 5	2	5.00	0.03	0.14	0.01	16.94	0.65	2.78	0.19	0.40	0.05	60.23	< 0.01	0.26	11.57	98.31
3LF05-39	94139402	0.70	64	< 5	2	6.86	0.01	0.25	< 0.01	32.67	0.47	6.29	0.42	0.28	0.13	32.82	< 0.01	0.37	19.02	99.59
3LF05-43	94139402	0.22	38	< 5	< 2	9.31	0.04	0.21	< 0.01	30.01	1.24	6.12	0.30	0.87	0.03	30.49	< 0.01	0.32	20.83	99.77
3LF06-03	94139402	0.18	280	< 5	< 2	6.43	0.04	2.26	< 0.01	29.98	0.86	5.39	0.25	0.51	0.11	30.47	< 0.01	0.38	21.32	98.00
3LF06-05	94139402	0.08	584	< 5	< 2	4.37	0.03	0.15	0.01	29.20	0.83	1.93	0.16	0.08	0.03	46.61	< 0.01	0.20	16.27	99.87
3LF06-06	94139402	0.26	462	< 5	< 2	4.41	0.04	0.13	< 0.01	26.55	0.86	1.82	0.16	D.23	0.04	49.12	< 0.01	0.25	15.19	98.81
3LF06-36	94139402	0.08	190	< 10	< 4	3.66	0.01	0.13	0.03	18.10	0.63	3.69	0.28	0.62	0.03	58.36	< 0.01	0.12	12.82	98.48
BLF06-41	94139402	0.46	22			10 00	0.14	0.45	0.01	18 40	2 44	3 53	0.15	0.55	0.04	49.27	0.01	0.55	13.36	99.54
4LF06-37	94139402	0.48	22	< 5	< 2	10.88	0.09	0.15	0.01	18.40	2.44	3.53	0.25	0.56	0.04	49.27	0.01	0.55	13.36	99.54
																	0	$\sim$	1	



٠

.

### ALS Chemex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

J: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9

Project : FRANK AND ACE Comments: ATTN: LOUIS E. DOYLE

Page .er :3-B Totan .jes :3 Certificate Date: 18-JUL-2002 Invoice No. P.O. Number :10219395 : PFD Account

										CE	RTIFI	CATE	OF A	NALY	'SIS		40219	395		
SAMPLE	PREP CODE	Ag ppm	Ba ppm	Ce ppm	Co ppm	Cr ppm	Cs ppm	Cu ppm	Dy ppm	Er	Eu ppm	Ga ppm	Gd ppm	Hf ppm	Ho ppm	La ppm	Lu ppm	Mo jopm	Nb ppm	Nd ppn
1LF06-22	94139402	< 1	637	63.5	16.5	230	1.9	100	3.1	1.8	0.6	15	4.4	5	0.6	31.0	0.3	6	9	26.5
2LF01~31	94139402	< 1	1085	109.5	16.0	160	3.2	55	4.9	2.9	1.3	21	7.3	3	1.1	54.0	0.4	4	20	45.5
2LF01-44	94139402	10	847	82.0	64.0	170	2.4	1730	4.4	2.6	1.0	18	6.1	3	1.0	42.0	0.4	10	12	34.2
2LF05-16 2LF05-34	94139402 94139402	4	137.0 138.5	49.5 41.0	28.5 22.0	180 350	0.6 0.7	1700 750	3.0 3.8	1.8	0.4	8	4.1	< 1	0.9	21.0	0.3	10	4	18.0
2LF05-38	94139402	1	511	69.0	28.0	180	1.5	580	3.6	2.2	0.5	19	4.7	5	0.8	34.5	0.3	6	11	29.5
2LF05-42	94139402	5	223	12.5	56.5	150	1.0	1365	1.5	1.0	0.1	12	3.0	2	0.4	30.0	0.2	6	10	26.0
2LF06-02	94139402	7	201	66.5	37.0	140	1.4	1330	2.5	1.6	0.5	13	4.1	7	0.6	33.0	0.2	6	- 8	27.5
2LF06-04 2LF06-35	94139402 94139402	< 1	1175	114.0	43.5	190	3.0	85	4.8	2.9	1.3	24	7.4	6	1.0	54.5	0.4	6	14	47.0
		. 1	1305	118.0	17 0	200	3.2	170	4.6	2.9	1.4	24	7.3	7	1.0	55.0	0.4	6	15	48.0
2LFU6-40	DA130402	` <u>`</u>	431	57.0	27.0	200	1.2	2140	4.7	2.4	1.3	10	6.4	1	1.0	28.0	0.3	6	9	26.0
SLF01-32	A130402	13	103.0	32.5	67.5	250	0.4	7940	1.9	1.2	0.2	6	2.6	< 1	0.4	15.0	0.1	8	3	14.0
3LF05-19A	94139402	3	415	56.0	53.0	240	1.0	330	2.0	1.2	0.5	8	3.3	6	0.4	25.0	0.1	6	5	20.0
3LF05-33	4139402	12	187.0	56.5	48.5	170	0.7	6570	3.4	2.1	0.3	10	4.2	1	0.8	26.0	0.3	8	5	23.0
31705-39	94139402	5	140.0	55.5	78.5	160	0.5	3780	3.3	1.9	0.5	12	4.3	2	0.7	27.0	0.2	8	6	24.0
3LF05-43	94139402	20	263	8.5	84.0	80	1.1	3200	1.4	0.9	0.1	17	1.3	1	0.3	6.0	0.1	6	6	4.0
3LF06-03	94139402	78	192.5	39.5	154.0	170	0.6	>10000	1.6	0.9	0.3	12	2.7	1	0.3	18.0	0.1	8		17.0
3LF06-05	94139402	13	216	30.0	189.5	270	0.7	>10000	1.3	0.8	0.3	7	2.1	3	0.3	20.0	0.1	6	4	16.0
3LF06-06	94139402	11	251	42.5	149.0	100	0.7	0000	1.0		0.4	•	4.,		•••					
3LF06-36	94139402	6	144.0	15.5	48.5	400	0.5	2840	1.1	0.7	0.2	6 18	1.3	1 7	0.2	8.5 42.0	< 0.1	8	12	37.5
3LF06-41	94139402	2	989	95.5	42.U 20 E	200	1.9	1555	3.7	2.1	1.0	17	4.9	, 7	0.7	39.0	0.3	8	10	33.0
4LF06-37		3	, , ,		23.3							-,								
															CATION	<u> </u>	fi i	lurc		÷

CERTIFICATION:_



.

## ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 J: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9

Project : FRANK AND ACE Comments: ATTN: LOUIS E. DOYLE Pa in Jer :3-C Tota Pages :3 Certificate Date: 18-JUL-2002 Invoice No. : 10219395 P.O. Number : Account : PFD

										CE	RTIFI	CATE	OF A	NALY	SIS		0219	395		
SAMPLE	PREP CODE	Ni ppm	Pb ppm	Pr ppm	Rb p <b>pm</b>	Sm ppm	Sn ppm	Sr ppm	Ta ppm	Tb ppm	Th ppm	T1 ppm	Tm ppm	U Maqq	V Prm	W	<b>DD</b> ur K	Yb ppm	Zn ppm	Zr ppm
1LF06-22	94139402	35	250	7.3	97.6	4.6	32	64.8	0.5	0.6	12	< 0.5	0.3	2.0	40	10	15.0	1.8	205	183.5
2LF01-31	94139402	35	100	12.7	167.5	7.8	35	127.5	1.5	1.0	16	0.5	0.4	2.0	55		25.0	2.7	425	113.5
2LF01-44	94139402	65	660	9.8	132.0	6.2	114	65.6	1.0	0.9	11	0.5	0.4	3.0	130	11	24.0	2.4	>10000	100.0
2LF05-16 2LF05-34	94139402 94139402	30 45	55	4.9	23.2	3.8	15	38.0	< 0.5	0.0	5	< 0.5	0.4	4.5	120	14	26.5	2.1	220	49.5
21505-38	94139402	30	105	8.0	66.0	4.9	55	37.9	0.5	0.6	11	< 0.5	0.3	1.5	55	14	20.0	1.9	2180	160.0
2LF05-42	94139402	30	580	1.4	42.6	1.3	31	60.5	< 0.5	0.3	6	< 0.5	0.1	0.5	35	12	8.5	1.0	700	51.0
2LF06-02	94139402	35	435	6.9	31.8	4.2	37	110.0	0.5	0.5	8	< 0.5	0.2	1.5	45	16	12.0	1.4	1290	69.0
2LF06-04	94139402	20	100	7.7	71.0	4.7	42	64.1	0.5	0.5	14	< 0.5	0.2	2.0	3,5	7	13.5	1.5	225	238
2LF06-35	94139402	35	35	13.1	158.0	8.1	52	104.0	1.0	1.0	18	0.5	0.4	2.5	85	9	25.0	2.6	230	198.0
2LF06-40	94139402	40	135	13.2	171.0	7.8	41	72.4	1.0	0.9	19	0.5	0.4	2.5	75	8	24.5	2.6	410	234
3LF01-32	94139402	30	870	6.8	68.0	6.0	70	116.5	0.5	1.0	7	< 0.5	0.3	1.5	30	11	24.5	2.0	>10000	67.0
3LP05-15	84138402	20	270	3.6	17.0	2.5	168	30.9	< 0.5	0.3	3	< 0.5	0.1	1.5	40	8	11.5	1.1	3830	30.0
3LF05-19A 3LF05-33	94139402 94139402	45 35	455	5.7	28.2	4.3	33 90	44.5	< 0.5	0.6	5	< 0.5	0.1	2.0	∡u 60	5 15	21.5	1.1	2190	46.0
21 205 - 20	94139402	30	170	6 5	18.8		56	20.3	< 0.5	0.6	8	< 0.5	0 3	2.0	35	14	19.0	17	3720	79.0
31.205-43	4130402	40	1265	1.1	50.2	1.0	49	84.2	< 0.5	0.2	6	< 0.5	0.1	1.0	40	14	7.5	1.0	2430	46.5
31805-03	A130402	45	4350	4.5	30.2	3.1	322	96.8	0.5	0.3	6	< 0.5	0.1	1.5	35	16	8.0	0.8	9480	52.0
31.206-05	A139402	25	260	3.2	28.8	2.0	59	36.8	< 0.5	0.3	6	< 0.5	0.1	0.5	10	4	7.0	0.7	780	94.5
3LF06-06	94139402	30	205	4.6	33.8	2.9	77	37.1	< 0.5	0.3	8	< 0.5	0.1	1.0	15	- Ā	8.5	0.8	1125	135.5
3LF06-36	94139402	35	290	1.7	26.0	1.2	54	31.6	< 0.5	0.1	4	< 0.5	0.1	0.5	5	6	6.5	0.7	7810	69.0
3LF06-41	94139402	55	220	10.2	135.0	6.5	37	61.4	0.5	0.8	17	0.5	0.3	2.5	60	8	20.5	2.0	390	253
4LF06-37	94139402	40	180	9.2	96.0	5.5	49	78.9	0.5	0.6	15	< 0.5	0.3	. 2.0	50	10	17.0	1.9	565	243
				:																
																	à			

CERTIFICATION:

٩.

 $(\lambda)$ 

arcus



.

Π.

Т

#### **S** Chemex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

North Vancouver 212 Brooksbank Ave., British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 J: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9

Project : FRANK AND ACE Comments: ATTN: LOUIS E. DOYLE

Pag mber :3-D Total ages :3 Certificate Date: 18-JUL-2002 Invoice No. : 10219395 P.O. Number : Account PFD

**CERTIFICATE OF ANALYSIS** 

A0219395

SAMPLE	PREP CODE	Ag ppm (ICP)	A1 % (ICP)	As ppm	Bappm (ICP)	Be ppm (ICP)	Bippm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Ceppm (ICP)	Coppun (ICP)	Cr ppm (ICP)	Cs ppm (ICP)	Cuppm (ICP)	Fe % (ICP)	Gappm (ICP)	Ge ppm (ICP)	Hf ppm	In ppm	K% (ICP)
1LF06-22	94139402	0.52	5.68	741	656.4	0.95	0.66	0.44	0.30	56.0	15.4	143	1.90	107.3	7.28	15.80	0.30	2.3	0.120	1.86
2LF01-31	94139402	0.48	7.68	59.8	1068.0	1.70	1.46	3.60	1.20	93.0	15.0	75	3.15	38.4	4.88	20.50	0.30	3.0	0.070	3.32
2LF01-44	\$413\$402	11.50	6.39	183.0	45.5	1.20	20.7	0.29	90.8	62.0	59.8	84	2.30	1950.0	14.45	17.40	0.55	2.0	6.65	2.47
2LF05-16	94139402	5.54	2.64	177.5	124.5	0.30	9.95	0.15	11.55	45.4	26.2	88	0.65	1885.0	9.35	9.25	0.35	0.9	2.02	0.44
2LF05-34	94139402	2.88	2.31	46.4	152.0	0.35	5.90	0.12	0.76	39.8	24.9	230	0.70	815.0	7.90	7.75	0.30	0.9	0.795	0.44
2LF05-38	94139402	1.60	6.39	75.6	106.0	0.75	5.90	0.08	9.44	64.9	28.5	100	1.60	666.0	11.45	20.25	0.45	1.9	2.53	1.18
2LF05-42	94139402	8.04	3.95	204	34.0	0.45	17.20	0.12	2.82	11.00	51.3	100	1.00	1725.0	19.85	13.40	0.60	0.8	1.860	0.77
2LF06-02	94139402	11.25	3.75	128.5	199.5	0.40	20.5	1.75	4.38	61.6	38.9	77	0.70	2460	9.63	12.80	0.40	1.5	3.35	0.58
2LF06-04	94139402	2.46	4.65	39.0	195.0	0.75	3.66	0.06	0.94	70.4	44.7	129	1.55	1480.0	9.93	14.65	0.40	2.1	1.720	1.46
2LF06-35	94139402	0.26	8.28	58.4	1296.0	1.80	0.78	0.23	0.46	102.0	13.4	87	3.05	89.7	5.21	24.45	0.30	2.3	0.305	2.93
2LF06-40	94139402	0.68	8.26	20.6	1037.5	2.10	1.84	0.17	1.26	102.0	16.5	96	3.30	137.4	5.98	25.20	0.35	2.3	0.310	3.24
3LF01-32	\$413\$402	11.45	3.63	63.8	291.5	0.85	17.60	3.00	116.5	52.2	27.6	124	1.35	2450	9.97	10.40	0.40	1.3	5.16	1.41
3LF05-15	<b>\$413\$402</b>	15.65	1.81	500	82.0	0.25	16.90	0.09	20.0	27.6	60.8	135	0.45	8950	14.60	6.20	0.50	0.6	10.80	0.29
3LF05-19 <b>X</b>	<b>\$4139402</b>	4.52	3.27	17.4	50.5	0.65	15.15	0.14	1.82	51.2	54.4	139	1.15	364.0	9.58	8.95	0.35	1.7	0.810	1.04
3LF05-33	94139402	14.90	2.64	252	47.5	0.35	15.05	0.09	9.60	49.8	55.7	84	0.75	7220	11.70	9.60	0.45	0.8	10.00	0.50
3LF05-39	94139402	6.44	4.08	208	54.0	0.25	18.45	0.17	15.60	49.0	83.4	86	0.55	4650	22.5	12.70	0.75	1.3	6.25	0.34
3LF05-43	<b>\$413\$402</b>	24.6	5.08	109.5	148.5	0.60	49.1	0.14	12.80	6.78	86.4	62	1.20	3970	20.5	18.40	0.60	0.8	5.60	0.90
3LF06-03	<b>P413</b> P402	86.7	3.47	1945	33.0	0.35	173.0	1.45	32.0	37.1	147.6	78	0.75	>10000	20.4	12.80	0.80	1.1	34.4	0.54
BLF06-05	<b>\$413</b> \$402	15.35	2.36	209	42.5	0.30	17.30	0.08	3.98	26.4	183.0	156	0.70	>10000	19.75	7.15	0.65	0.9	4.85	0.55
3LF06-06	94139402	13.45	2.42	178.0	28.0	0.30	17.05	0.08	5.56	32.0	127.9	66	0.70	7840	17.25	7.60	0.60	1.1	8.06	0.62
3LF06-36	94139402	8.74	2.06	118.5	150.5	0.35	16.55	0.08	33.3	14.00	47.6	212	0.55	3390	12.20	5.85	0.35	0.7	9.04	0.49
3LF06-41	94139402	3.20	7.12	24.4	83.5	1.65	7.13	0.20	2.14	82.7	43.7	105	2.65	512.0	9.91	20.15	0.40	2.0	0.675	2.75
4LF06-37	94139402	4.54	5.86	120.0	194.0	1.20	12.15	0.10	1.74	78.9	28.8	105	2.00	1755.0	12.45	18.00	0.50	2.2	1.885	1.94
				÷		•														
1																				
1																				

CERTIFICATION:



.

T

## ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 J: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9

Project : FRANK AND ACE Comments: ATTN: LOUIS E. DOYLE

CERTIFICATE OF ANALYSIS

A0219395

SAMPLE	PREP CODE	La ppm (ICP)	Li ppm (ICP)	Ng % (ICP)	Mn ppm (ICP)	Moppm (ICP)	Na % (ICP)	Nb ppm (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm (ICP)	Rb ppm (ICP)	Re ppm	S %	Sb ppm (ICP)	Se ppm	Sn ppm	Sr ppm (ICP)	Ta ppm (ICP)	Te ppm (ICP)
1LF06-22	94139402	30.0	25.4	2.22	1670	1.45	0.19	1.7	37.4	440	308	88.8< (	0.002	0.32	2.30	< 1	18.2	57.8	0.10	< 0.05
2LF01-31	94139402	52.5	10.0	2.80	2280	0.40	0.30	5.1	33.0	290	130.5	142.0<	0.002	0.31	0.80	1	22.0	122.0	0.35	< 0.05
2LF01-44	94139402	29.0	8.4	3.18	3320	4.45	0.30	2.4	69.3	400	688	121.0	0.006	6.23	1.00	12	56.2	53.8	0.15	0.30
2LF05-16	94139402	22.5	14.2	1.69	1385	1.15	0.35	1.0	31.6	430	278	25.4<	0.002	4.56	0.75	6	20.2	40.4	0.05	0.05
2LF05-34	94139402	22.0	7.4	1.60	1310	5.70	0.29	1.2	51.5	280	94.0	23.3	0.016	1.14	0.60	3	11.4	37.6	0.05	0.10
2LF05-38	94139402	30.5	67.2	2.83	1420	0.90	0.27	1.5	32.2	260	133.0	64.9<	0.002	3.66	1.40	4	33.8	34.2	0.05	< 0.05
2LF05-42	94139402	5.5	14.4	2.79	2630	1.95	0.47	1.1	34.4	130	570	43.9<	0.002	6.11	1.40	6	19.2	59.7	0.05	0.15
2LF06-02	94139402	31.0	29.4	3.15	2030	1.40	0.41	1.8	36.4	400	654	31.3<	0.002	4.11	2.10	6	24.8	108.5	0.05	0.05
PLFU6-U4	94139402	33.0	10.0	0.99	1105	4.40	0.44	4.3	20.0	110	90.0	70.8<	0.002	2.51	0.60	4	29.6	62.6	0.10	0.05
2LF06-35	94139402	53.5	17.6	1.84	1105	0.70	0.54	3.4	35.0	340	49.0	142.0<	0.002	0.23	1.60	< 1	34.4	94.4	0.25	< 0.05
2LF06-40	94139402	51.0	14.2	1.32	1060	0.85	0.43	2.8	35.6	240	136.0	158.5<	0.002	0.50	0.40	1	27.0	65.4	0.20	< 0.05
SLF01-32	94139402	28.0	2.8	3.03	3700	1.13	0.13	1.1	31.6	200	1010	5/.8<	0.004	4.30	0.80	11	40.4	118.5	0.05	0.25
SLF05-15	P4139404	13.0	10.2	1.0/	033	2.00	0.44	V.0 A P	19.0	150	403	10.0<	0.004	>10.00	0.90	<b>XU</b>	40.0	28.4	< 0.05	0.20
3LF05-33	94139402	23.5	10.2	1.55	1355	2.00	0.36	0.7	37.4	240	578	27.6	0.002	5.59	0.70	12	38.8	40.6	< 0.05	0.15
3LF05-39	94139402	25.0	71.8	3.35	3240	1.65	0.12	1.1	51.1	510	388	20.2<	0.002	>10.00	2.95	13	29.8	20.0	0.05	0.10
3LF05-43	94139402	3.5	31.6	3.15	2700	1.50	0.65	1.0	48.6	150	1780	51.2<	0.002	3.73	0.90	9	34.4	81.6	< 0.05	0.10
3LF06-03	94139402	17.5	22.0	2.81	1725	1.30	0.38	0.9	55.9	440	5380	31.6<	0.002	>10.00	13.20	35	102.5	92.8	< 0.05	0.55
3LF06~05	94139402	12.0	6.8	0.98	1125	2.80	0.22	1.2	28.4	90	325	29.7<	0.002	>10.00	4.15	21	42.0	32.0	< 0.05	0.10
3LF06-06	94139402	15.5	6.4	0.92	1035	1.00	0.22	1.1	25.4	90	219	32.1<	0.002	>10.00	2.80	23	39.6	32.2	< 0.05	0.05
3LF06-36	94139402	7.5	6.6	2.02	2080	2.75	0.22	0.9	35.6	90	298	25.8<	0.002	4.89	1.25	7	22.8	32.0	< 0.05	0.25
3LF06-41	94139402	36.0	10.6	1.35	1375	1.00	0.37	1.5	62.7	250	321	133.0<	0.002	3.59	0.45	4	25.6	58.4	0.05	0.20
4LF06-37	94139402	39.5	10.0	1.95	2200	1.10	0.47	1.3	29.6	190	201	97.7<	0.002	. 2.56	0.55	3	28.4	79.8	0.05	0.05

Heral lura CERTIFICATION:_





SAMPLE

1LF06-22

2LF01-31

2LF01-44

2LF05-16

2LF05-34

2LF05-38

2LF05-42 2LF06-02

2LF06-04

2LF06-35

2LF06-40

3LF01-32

3LF05-15

3LF05-19A

3LF05-33

٠

## ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 J: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9

Project : FRANK AND ACE Comments: ATTN: LOUIS E. DOYLE

**CERTIFICATE OF ANALYSIS** 

Polymber: 3-F Tothe Pages: 3 Certificate Date: 18-JUL-200 Invoice No. : 10219395 P.O. Number: Account: PFD

A0219395

Ti % Tl ppm U ppm V ppm W ppm Y ppm Zn ppm Zr Нg PREP Th ppm (ICP) (ICP) CODE (ICP) (ICP) (ICP) (ICP) (ICP) (ICP) DDM ppb 94139402 18.4 0.06 0.60 2.8 45 1.8 5.5 236 58.5 10 476 86.0 30 94139402 22.8 0.10 1.12 2.6 48 1.9 9.3 6.8 >10000 124 2.3 63.0 2040 94139402 13.0 0.06 0.94 3.8 41 1.8 10.5 2850 31.5 120 94139402 7.8 0.03 0.22 2.9 94139402 6.0 0.03 0.20 6.2 109 3.7 13.4 254 34.5 10 94139402 14.8 0.05 0.52 2.3 50 2.0 6.3 2500 60.5 60 94139402 7.4 0.02 0.36 1.0 30 2.4 3.6 748 26.5 30 94139402 11.4 0.04 0.24 2.1 36 2.5 7.2 1380 48.5 60 94139402 16.8 0.05 0.46 2.2 34 2.2 6.0 236 64.5 10 228 72.5 94139402 22.0 0.10 0.86 2.6 68 2.9 7.2 10 0.10 0.98 3.2 64 2.6 7.2 410 76.0 10 94139402 22.4 12.3 >10000 45.5 94139402 10.0 0.04 0.52 1.8 26 1.3 2350 7.8 4080 20.5 180 **\$413\$402** 0.01 0.16 1.9 35 1.9 4.4 94139402 484 51.0 30 0.03 0.40 3.2 18 1.3 6.5 10.6 **\$413\$402** 7.0 48 2.6 10.0 2380 32.0 100 0.01 0.26 2.6

3LF05-39 94139402 11.4 0.02 0.28 2.4 28 1.6 6.9 4000 46.0 140 2580 31.0 100 3LF05-43 94139402 8.8 0.02 0.44 1.4 36 2.1 3.5 9750 400 27 38.5 3LF06-03 94139402 8.2 0.01 0.32 1.8 1.6 6.3 842 29.0 40 94139402 14 1.5 5.4 3LF06-05 6.8 0.02 0.22 0.9 0.01 14 1150 34.0 50 94139402 7.8 0.22 1.2 0.9 4.8 3LF06-06 7880 3LF06-36 94139402 5.0 0.01 0.20 0.7 13 1.5 4.1 22.5 350 \$4139402 17.6 0.06 0.82 2.8 52 2.1 6.9 468 69.0 10 3LF06-41 40 1.8 6.6 618 74.5 30 94139402 20.0 0.04 0.56 2.5 4LF06-37

Kid linak CERTIFICATION:

10041 Dallas Drive. Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

## CERTIFICATE OF ANALYSIS AK 2002-131

Tech LABORATORY LTD.

BARKER MINERALS LTD. 22117 37A Ave Langley, BC V2Z 1N9

Eco

ATTENTION: Louis Doyle

No. of samples received: 24 Sample Type: Core **Project #: ACE Drill Hole #: ACE - 02-04** Samples submitted by: Chris Wild

		В	TI	Hg	Se	Те	Sn
ET #.	Tag #	(ppm)	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)
1	8199	<1	0.32	<5	0.2	<0.02	0.3
2	8200	<1	0.18	<5	0.3	<0.02	0.2
3	8201	<1	0.05	<5	0.7	0.02	0.1
<b>y</b> 4	8202	2	0.24	<5	1.6	0.08	0.5
5	8203	1	0.11	<5	1.1	0.07	0.2
6	8204	<1	0.04	<5	1.4	0.07	0.1
7	8205	1	0.09	<5	1.8	0.08	0.2
8	8206	3	0.07	<5	4.1	0.12	0.2
9	8207	2	0.06	<5	6.1	0.20	0.2
10	8208	2	0.07	7	9.7	0.16	0.2
11	8209	2	0.07	<5	10.1	- 0.08	0.2
12	8210	1	0.03	<5	5.8	0.10	0.2
13	8211	<1	0.05	6	6.9	0.12	0.2
14	8218	<1	0.03	<5	3.2	0.03	0.2
15	8219	2	0.15	<5	1.4	0:07	0.2
16	8220	<1	0.04	<5	2.6	0.07	0.3
17	8221	<1	0.04	<5	2.6	0.07	0.3
18	8222	<1	0.09	<5	3.4	0.07	0.3
19	8223	3	0.09	<5	3.3	0.04	0.4
20	8224	2	0.12	<5	2.8	0.10	0.7
21	8225	<1	0.36	<5	1.4	0.08	0.7
22	8226	<1	0.06	<5	2.7	0.09	0.2
23	8227	<1	0.04	<5	1.0	0.03	0.1
24	8228	<1	0.16	<5	1.2	0,03	0.2

#### 24-Jui-02

### BARKER MINERALS LTD. AK 2002-131

### 24-Jul-02

$\checkmark$	В	ΪŤ	Hg	Se	Те	Sn
ET #. Tag #	(ppm)	(ppm)	(ppb)	(ppm)	<u>(ppm)</u>	(ppm)
QC DATA:						
Resplit:	•					
1 8199	<1	0.33	<5	0.2	<0.02	0.4
Repeat:						
10 8208	2	0.07	7	9.8	0.13	0.2
Standard:						
STANDARD	2	1.20	242	1.4	1.00	6.7

### NOTE: Results run by ACME Analytical Laboratories Ltd.

XLS/02 E-mail - Barker Minerals CC: Wildrock Resources - Email & Mail

Eco Tech LABORATORY LTD.

· .

•



10041 Dallas Drive. Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

## CERTIFICATE OF ANALYSIS AK 2002-131

24-Jul-02

BARKER MINERALS LTD. 22117 37A Ave Langley, BC V2Z 1N9

1

1

ATTENTION: Louis Doyle

No. of samples received: 65 Sample Type: Core **Project #: Frank Creek Drill Hole #: FC-02-01 to FC-02-06** Samples submitted by: Chris Wild

		В	TI	Hg	Se	Те	Sn
ET #.	Tag #	(ppm)	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)
25	8240	<1	0.05	129	1.4	0.03	2.8
26	8241	<1	0.07	1702	11.7	0.25	10.6
•7	8242	<1	0.05	183	1.3	0.04	2.3
-	8243	<1	0.11	2820	9.2	0.24	15.4
29	8244	<1	0.10	35	0.6	0,02	9.0
30	8245	<1	0.04	35	0.6	<0.02	0,9
31	8246	<1	0.02	<5	0.2	<0.02	0.2
32	8247	<1	<0.02	5	0.3	<0.02	<0.1
33	8248	<1	0.02	<5	0.3	<0.02	0.1
34	8249	<1	0.02	<5	0.4	<0.02	0.1
35	8250	<1	<0.02	<5	0.2	<0.02	0.1
36	8251	1	0.16	38	2.3	0.02	0.3
37	8252	<1	0.03	<5	<0.1	<0.02	0.1
38	8253	<1	0.02	<5	0.3	<0.02	<0.1
39	8254	<1	0.04	<5	< <b>0</b> .1	<0.02	· 0.2
40	8255	<1	15.19	6167	31.5	0.15	156.2
41	8256	<1	0.46	27	0.2	<0.02	1.3
42	8257	<1	0.11	<5	<0.1	<0.02	0.2
43	8258	<1	0.04	<5	0.1	0.02	<0.1
44	8259	<1	<0.02	<5	0.2	<0.02	<1
45	8260	<1	0.04	8	<0.1	<0.02	0.1
46	8261	<1	0.03	<5	0.3	<0.02	<0.1
47	8262	<1	0.04	9	0.3	0.4	<0.1
48	8263	<1	0.04	8	0.3	<0.02	0.1
49	8264	1	0.03	15	1.1	0.02	0.2
50	8265	<1	0.03	5	0.2	<0.02	0.1
51	8266	1	0.02	100	4.6	0.04	12.2
$\smile$	8267	<1	0.03	58	5.3	0.08	14.8

### BARKER MINERALS LTD. AK 2002-131

đ.

:

24-Jul-02

$\smile$		В	TI	Hg	Se	Те	Sn
ET #.	Tag #	(ppm)	(ppm)	<u>(ppb)</u>	(ppm)	(ppm)	<u>(ppm)</u>
53	8268	1	0.03	34	3.0	0.1	5.3
54	8269	<1	0.03	49	2.6	0.08	8.2
55	8270	1	0.03	53	6.2	0.07	24.3
56	8271	<1	0.03	24	1.9	0.03	3.4
57	8272	<1	0.03	33	0.6	0.03	1.4
58	8273	<1	• 0.04	64	4.3	0.07	9.7
59	8274	<1	0.03	24	1.3	0.07	2.5
60	8275	<1	0.03	13	2.2	0.04	7.7
61	8276	<1	0.04	47	4.9	0.02	10.5
62	8277	<1	0.03	74	3.3	0.04	23.3
63	8278	<1	0.17	189	7.1	0.03	25.2
64	8279	<1	0.15	129	11.0	0.08	18.4
65	8280	<1	0.05	27	2.1	0.05	6.6
66	8281	<1	0.06	7	0.3	<0.02	2.8
67	8282	<1	0.05	5	0.2	<0.02	1.7
68	8283	<1	0.07	11	0.3	0.03	0.3
69	8284	<1	0.1	8	0.2	<0.02	0.2
70	8285	<1	<0.02	12	0.1	<0.02	<0.1
71	8286	<1	0.05	23	0.3	0.02	2.0
72	8287	· <1	0.03	23	0.4	<0.02	1.8
73	8288	<1	0.04	23	0.3	<0.02	1.4
74	8289	<1	0.03	40	0.8	<0.02	1.8
-	8290	<1	0.04	11	0.3	<0.02	1.7
76	8291	<1	0.05	27	0.6	<0.02	1.9
77	8292	<1	0.04	10	0.3	<0.02	1.9
78	8293	<1	0.03	24	0.4	0.02	1.7
79	8294	<1	0.04	40	1.0	0.04	2.3
80	8295	<1	0.05	126	2.9	0.02	3.5
81	8296	<1	0.04	92	1.1	<0.02	3.7
82	8297	<1	0.04	114	6.8	0.11	24.4
83	8298	<1	0.05	11	0.3	< 0.02	1.0
84	8299	<1	0.05	27	0.7	0.03	2.8
85	8300	<1	0.04	12	1.4	0.03	4.3
86	8301	<1	0.04	16	4.6	0.05	10.2
87	8302	<1	0,05	13	1.3	<0.02	4.3
88	8303	<1	0.06	13	8.0	0.05	1.9
89	8304	<1	0.05	19	0.7	0.02	1.5

.

,

PARKER MINERALS LTD. AK 2002-131

24-Jui-02

ET #.	Tag #	B (ppm)	TI (ppm)	Hg (ppb)	Se (ppm)	Te (ppm)	Sn (ppm)
·							
QC DAT	<u> </u>						
Resplit:							
36	8251	<1	0.15	41	2.3	0.04	0.2
71	8286	<1	0.05	23	0.3	<0.02	1.9
Repeat:							
50	8265	<1	0.04	7	0.2	<0.02	0.1
80	8295	<1	0.05	118	2.9	<0.02	3.5
Standard	t:						
Standard		1	1.09	216	1.3	1.01	6.6
Standard		<1	1.15	222	1.3	0.96	6.5

NOTE: Results run by ACME Analytical Laboratories Ltd.

XLS/02 E-mail - Barker Minerals CC: Wildrock Resources - Email & Mail



10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

## CERTIFICATE OF ANALYSIS AK 2002-124B

24-Jul-02

BARKER MINERALS LTD. 22117 37A Ave Langley, BC V2Z 1N9

ATTENTION: Louis Doyle

No. of samples received: 5 Sample type: Core **Project #: Frank Creek** Shipment #: None Given Samples submitted by: Chris Wild

		В	TI	Hg	Se	Те	Sn	
ET #.	Tag #	(ppm)	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)	
61	08235	<1	0.03	10	2,50	0.03	0.3	
62	08236	<1	0.05	26	1.10	0.05	5	
63	08237	<1	0.04	70	0.90	0.02	1.4	
64	08238	<1	0.06	116	1.20	0.05	2.2	
65	08239	<1	0.04	80	1.00	0.03	1.0	

NOTE: Results run by ACME Analytical Laboratories Ltd.



10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

## CERTIFICATE OF ANALYSIS AK 2002-124

Tech LABORATORY LTD.

BARKER MINERALS LTD. 22117 37A Ave Langley, BC V2Z 1N9

Eco

### ATTENTION: Louis Doyle

No. of samples received: 60 Sample type: Core **Project #: ACE Shipment #: None Given** Samples submitted by: Chris Wild

		В	IT	Hg	Se	Те	Sn
ET #.	Tag #	(ppm)	(ррт)	(ppb)	(ppm)	(ppm)	(ppm)
1	08151 Ace 02-01 13.0-14.5m	<1	0.50	<5	0.3	0.07	0.3
2	08152 Ace 02-01 17.37-19.0m	<1	0.32	<5	0.3	<0.02	0.2
3	08153 Ace 02-01 29.0-30.5m	<1	0.06	<5	1.10	<0.02	0.2
4	08154 Ace 02-01 37.5-39.0m	<1	0.06	<5	5.10	0.03	0.1
5	08155 Ace 02-01 45.0-46.5m	<1	0.07	<5	0.60	<0.02	0.1
6	08156 Ace 02-01 47.5-49.0m	<1	0.06	<5	6.00	0.03	0.1
7	08157 Ace 02-01 49.0-49.7m	<1	0.07	<5	4.70	0.08	0.2
8	08158	<1	0.02	<5	1.10	0.09	<0.1
9	08159 Ace 02-01 50.7-52.1m	1	0.05	<5	5.20	0.05	0.2
10	08160 Ace 02-01 52.1-54.0m	<1	0.03	<5	0.40	0.11	0.1
11	08161 Ace 02-01 54.0-55.2m	<1	0.09	<5	. 1,90	0.06	0.2
12	08162 Ace 02-01 55.2-57.0m	<1	0.10	<5	4.20	0.05	0.2
13	08163 Ace 02-01 57.0-58.8m	1	0.09	<5	3.80	0.06	0.3
14	08164 Ace 02-01 58.8-61.0m	<1	0.12	<5	3.80	0.05	0.2
15	08165 Ace 02-01 61.0-63.0m	1	0.24	<5	3.40	0.04	0.4
16	08166 Ace 02-01 63.0-65.3m	1	0.27	<5	3.40	0.06	0.3
17	08167 Ace 02-01 65.3-67.5m	2	0.31	<5	8.90	0.12	0.2
18	08168 Ace 02-01 76.0-77.5m	<1	0.35	<5	<1	<0.02	0.4
19	08169 Ace 02-01 88.0-89.5m	<1	0.07	<5	0.20	<0.02	0.2
20	08170 Ace 02-01 103.6-105.1m	<1	0.12	<5	0.70	0.02	0.2
21	08171 Ace 02-01 130.0-131.5m	2	0.08	<5	0.40	0.03	0.2
22	08172 Ace 02-01 139.5-141.0m	<1	0.05	<5	0.10	<.02	0.2
23	08173	<1	0.43	<5	0.40	0.03	0.5
24	08174	8	0.33	<5	1,60	0.76	0.6
25	08175	1	0.13	<5	0.60	0.04	0.3
26	08176	1	0.06	<5	0.30	<.02	0.2
27	08177	<1	0.04	<5	0.10	< 02	0.2
28	08178	2	0.05	<5	0.50	0.06	0.2
29	08179	<1	0.05	<5	<0.1	<0.02	0.2

24-Jul-02

### DADKED MINEDALS I TO AK 2002.124

BARK	ER MINERALS LTD. AK 2002-124					24-Jul-02	
		В	TI	Hg	Se	Те	Sn
<u>ET #.</u>	Tag #	(ppm)	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)
30	08180	<1	0.08	<5	15.20	0.34	0.7
31	08181	<1	0.13	<5	10.60	0.27	1.2
32	08182	1	0.91	<5	9.10	0.15	1.3
33	08183	1	0.07	<5	3.20	0.04	0.2
34	08184	1	0.22	6	5.60	0.13	0.3
35	08185	1	0.15	<5	3.70	0.07	0.3
36	08186	2	0.16	5	3.90	0.06	0.3
37	08187	<1	0.05	<5	2.20	0.05	0.5
38	08188	<1	0.04	<5	2.00	0.08	0.3
39	08189	1	0.37	<5	3.40	0.04	0.5
40	08190	<1	0,10	. <5	0.20	0.02	0.2
41	08191	<1	0.08	<5	2.70	0.07	0.2
42	08192	<1	0.31	<5	2,60	0.06	0.3
43	08193	<1	0.9	<5	2.90	0.06	0.6
44	08194	<1	0.98	<5 	0.50	0.02	0.3
45	08195	<1	0.48	<5 -5	2.40	0.06	0.4
46	08196	<1	0.05	<5 .r	0.40	<0.02	0.2
4/	08197	<1	0.04	<5 -5	0.30	<0.02	0.1
48	08198	<1	0.03	<0	0.20	0.02	0.1
49	08212	<1	0.04	<5	0.00	0.00	0.2
50	08213	-1	0.03	<0	27.60	0.10	0.2
ວ ເ 5 ງ	08214	<1	0.14	<5 ~5	27.00 A QA	0.97	0.3
52 52	0215	<1 <1	0.20	\J <5	4.50	0.24	0.2
53	0210	<1	0.12	~5	7.20	0.00	0.4
- 54	08220	<1	0.07	<5	0.30	0.10	0.0
56	08230	<1	0.12	<5	4.00	0.02	0.1
57	08230	<1	0.72	<5	4.00	0.07	0.5
58	02231	<1	0.03	<5	0.30	<0.02	0.0
50	08233	<1	0.08	<5	2.60	0.04	0.2
60	08234	<1	0.21	<5	2.50	0.04	0.4
	ATA;						
Respl	it:						
1	08151 Ace 02-01 13.0-14.5m	<1	0.50	<5	0.2	0.08	0.4
36	08186	2	0,15	<5	3.70	0.07	0.4
Repea	at:						
17	08167 Ace 02-01 65.3-67.5m	<1	0.3	<5	8.70	0.12	0.2
50	08213	1	0.03	<5	5.90	0.08	0.1
Stand	ard:			_			
Standa	ard	3	1.27	236	1.40	0.98	7.0
Standa	ard	2	1.23	234	1.40	0.99	6.9

NOTE: Results run by ACME Analytical Laboratories Ltd.

LS/02 E-mail - Barker Minerals CC: Wildrock Resources - Email & Mail
## ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dalłas Drive. Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 emaił: ecotech@direct.ca

# CERTIFICATE OF ANALYSIS AK 2002-131

Tech LABORATORY LTD.

BARKER MINERALS LTD. 22117 37A Ave Langley, BC V2Z 1N9

Eco

## **ATTENTION: Louis Doyle**

No. of samples received: 65 Sample Type: Core **Project #: Frank Creek Drill Hole #: FC-02-01 to FC-02-06** Samples submitted by: Chris Wild

## Note: Values expressed in percent

ET #.	Tag #	BaO	P205	SiO2	MnO	Fe203	MgO	AI203	CaO	TiO2	Na2O	K20	L.O.I.
27	8242	0.14	0.22	52.83	0.33	7.34	4.36	13.17	5.22	0,52	0.29	3.76	11.84
31	8246	0.07	0.06	76,61	0.19	3.95	1.39	8.81	1.85	0.46	0.33	1.24	5.03
32	8247	0.08	0.31	31.44	0.17	9.81	7.20	9.25	15.39	2.06	1.00	0.19	23.11
35	8250	0.21	0.28	25.69	0.15	9.60	8.00	8.87	17.91	1.89	0.70	0.56	26.14
37	8252	0.07	0.06	79.53	0.07	2.46	1.56	6,59	2.77	0.33	1.32	1.18	4.05
38	8253	0.05	0.22	34.70	0.18	9.34	6.41	10.57	12.71	1.20	1.70	1.10	21.82
39	8254	0.06	0.07	79.21	0.04	3.42	1.08	9.28	0.27	0.43	0.53	2.18	3.41
<b>4</b> 1	8256	0.15	0.55	46.74	0.12	8.54	6.98	12.98	6,96	0.77	0.09	1.11	15.01
43	8258	0.06	0.12	34.11	0.26	10.71	10.22	7.52	12.25	1.52	0.19	0.79	22.27
44	8259	0.03	0.20	40.65	0.21	10.92	7.37	10.50	10.26	1.96	1.37	0.22	16.31
45	8260	0.09	0.14	70.02	0.06	5.40	1.94	11.80	0.80	0.63	1.76	2.17	5.20
47	8262	0.06	0.07	33.23	0.35	8.46	8.87	4.86	17.12	0.83	0,10	0.83	25.23
50	8265	0.09	0.16	53.35	0.14	7.04	2.71	9.47	9.62	0.98	1.13	1.98	13.31
56	8271	0.05	0.03	69.43	0,16	11.84	2.50	5.99	0.12	0.29	0.43	0.75	8.41
59	8274	0.05	0.04	63.30	0.23	14.19	3.59	7.42	0.25	0.36	0.43	0.73	9.42
66	8281	0.09	0.02	66.39	0.17	8.98	2.84	11.47	0.28	0.52	0.32	2.30	6.60
67	8282	0.11	0.04	67.28	0.22	5,15	2.57	9,41	4.42	0.44	0.41	2.24	7.71
68	8283	0.13	0.06	55.63	0.13	8.03	3.05	17.07	1.95	0.80	0.61	4.43	8.12
69	8284	0.10	0.12	64.49	0.11	6.62	2.77	15.62	0.25	0.65	0.24	3.84	5.20
70	8285	0.02	0.21	40.09	0.19	8.88	6.61	12.18	9.47	1.58	1.24	0.45	19.08
71	8286	0.10	0.07	62.08	0.17	9.17	3.22	12.43	0.20	0.55	··· 0.49	3.12	8.40
74	8289	0.08	0.15	61.37	0.17	11.08	3.36	12.99	0.39	0.75	0.30	2.63	6.72
77	8292	0.06	0.08	62.55	0.18	10.49	3,39	13.23	0.20	0.55	0.24	2.64	6.41
79	8294	0.08	0.09	67.49	0.14	8.46	2.95	12.40	0.30	0.51	0.20	2.46	4.91
83	8298	0.11	0.20	43.23	0.43	10.05	7.85	14.77	5.45	1.39	0.46	2.68	13.39
84	8299	0.12	0.05	57.78	0.18	9.79	3.22	14.54	0.33	0.60	0.69	3.62	9.06
89	8304	0.10	0.07	59.81	0.16	8.36	2.29	13.40	3.23	0.53	0.49	3.53	8.02
QC DATA:													
Standard:													
Mrg-1		0.01	0.03	38.49	0.18	17.73	13.42	8.47	14.79	3.74	0.77	0.14	2.22
Sv-4		0.03	0.14	49.38	0.12	6.56	0.66	20.98	8.33	0.31	7.25	1.70	4.56

af/wr131

XLS/02

E-mail - Barker Minerals
 CC: Mildrack Resources - Email

CC: Wildrock Resources - Email & Mail

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

25-Jul-02

Page 1



-

### hemex A Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

5: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9

Project : Comments: ATTN: LOUIS E. DOYLE

Page Jer :1 Total Jges :1 Certificate Date: 25-JUL-2002 Invoice No. : I0220690 P.O. Number : :PFD Account

						CERTIFIC	ATE OF A	NALYSIS	A02	20690	
SAMPLE	PREP CODE	Ag g/t	Cu %	Pb %	Zn %						
02104 02105 02107	212 212 212	115 134 >1500	3.10 4.31	 >50.0	2.03 1.87						
							-				
									•		
l	<u> </u>		]			<u> </u>	<u> </u>		L. <u>seminimu</u>		



.

# ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 J: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9 Page ar :1-A Tota ages :1 Certificate Date: 25-JUL-2002 Invoice No. : 10219735 P.O. Number : Account : PFD

Project : Comments: ATTN: LOUIS E. DOYLE

CERTIFICATE OF ANALYSIS A0

A0219735

CERTIFICATION: Skill Wank

*+

Weight Kg 1.00 1.28 0.84 2.40 2.252 2.054 0.10 0.010 0.010 2.0.54 0.10 2.1252 2.80 2.80 2.280 2.280 2.280 2.280 2.280 2.280 2.280 2.280 2.280 2.280 2.280 2.280 2.280 2.280 2.280 2.280 2.280 2.280 2.280 2.280 2.280 2.280 2.280 2.280 2.280 2.280 2.280 2.280 2.280 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.492 2.592 2.492 2.592 2.492 2.592 2.492 2.592 2.492 2.592 2.492 2.592 2.492 2.592 2.492 2.592 2.492 2.592 2.492 2.592 2.492 2.592 2.492 2.592 2.492 2.592 2.492 2.592 2.492 2.592 2.492 2.592 2.492 2.592 2.492 2.592 2.492 2.592 2.492 2.592 2.492 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.5	A1203 % XRF 0.73 0.70 0.37  0.24  13.69 0.41 17.52 11.15 19.37 18.94	BaO % XRF 0.01 0.02 < 0.01  < 0.01  0.10 < 0.01 0.33 0.37 0.17	CaO % XRF 0.24 0.33 0.14  1.46 0.01 2.40	Cr203 % XRF < 0.01 < 0.01 0.01  0.02  0.01 0.03	Fe203 % XRF 29.68 37.91 29.77  15.27  7.38 14.26	K20 % XRF 0.10 0.11 0.05  0.03  3.27 0.08	Mg0 % XRF 0.90 0.97 0.61  < 0.01  1.68 < 0.01	Mn0 % XRF 0.07 0.11 0.06  0.03  0.09	Na20 % XRF < 0.01 0.01 < 0.01  0.07  0.56	P205 % XRF < 0.01 0.01 < 0.01 	SiO2 % XRF 49.91 37.51 51.61  80.55	\$r0 \$ XRF < 0.01 < 0.01  < 0.01  < 0.01	TiO2 % XRF 0.02 0.02 < 0.01  0.01	LOI % XRF 16.49 20.85 16.72  3.08	TOTAL % 98.15 98.55 99.34 99.31	λg ppm 6 3 3 3 6 28 1	Ba ppm 141.5 121.0 30.0 18.0 51.0 17.5	Ce ppm 6.5 7.5 6.0 3.5 4.0 2.5
Kg           1.00           1.28           0.84           2.40           2.52           2.54           0.10           0.10           0.40           2.80           2.80           2.80           2.80           2.80           2.80           2.80           2.80           2.80           2.80           2.80           1.80           2.52           2.42	% XRF 0.73 0.70 0.37  0.24  13.69 0.41 17.52 11.15 19.37 18.94	% XRF 0.01 0.02 < 0.01  < 0.01  0.10 < 0.01 0.33 0.37 0.17	% XRF 0.24 0.33 0.14  1.46 0.01 2.40	% XRF < 0.01 < 0.01  0.02  0.01 0.03	% XRF 29.68 37.91 29.77  15.27  7.38 14.26	% XRF 0.10 0.11 0.05  0.03  3.27 0.08	<pre>% XRF 0.90 0.97 0.61 &lt; 0.01 1.68 &lt; 0.01</pre>	% XRF 0.07 0.11 0.06  0.03  0.09	<pre>% XRF &lt; 0.01 0.01 &lt; 0.01 0.07 0.56</pre>	% XRF < 0.01 0.01 < 0.01 < 0.01  < 0.01	% XRF 49.91 37.51 51.61  80.55	% XRF < 0.01 < 0.01 < 0.01  < 0.01	% XRF 0.02 0.02 < 0.01  0.01	% XRF 16.49 20.85 16.72  3.08	% 98.15 98.55 99.34  99.31	ppm 6 3 3 6 28 1	ppm 141.5 121.0 30.0 18.0 51.0 17.5	ppm 6.5 7.5 6.0 3.5 4.0 2.5
1.00         1.28         0.84         2.52         2.52         2.52         2.52         2.52         2.52         2.52         2.52         2.52         2.52         2.52         2.52         2.52         2.80         2.80         2.80         2.80         2.80         2.80         2.80         2.52         2.42         1.50	0.73 0.70 0.37  13.69 0.41 17.52 11.15 19.37 18.94	0.01 0.02 < 0.01  < 0.01  0.10 < 0.01 0.33 0.37 0.12	0.24 0.33 0.14  1.46 0.01 2.40	< 0.01 < 0.01 0.01  0.02  0.01 0.03	29.68 37.91 29.77  15.27  7.38 14.26	0.10 0.11 0.05  0.03  3.27 0.08	0.90 0.97 0.61  < 0.01  1.68 < 0.01	0.07 0.11 0.06  0.03  0.09	< 0.01 0.01 < 0.01  0.07	< 0.01 0.01 < 0.01  < 0.01 	49.91 37.51 51.61  80.55	< 0.01 < 0.01 < 0.01  < 0.01 	0.02 0.02 < 0.01	16.49 20.85 16.72  3.08	98.15 98.55 99.34  99.31	6 3 36 28 1	141.5 121.0 30.0 18.0 51.0	6.5 7.5 6.0 3.5 4.0 2.5
1.28         0.84         2.40         2.52         2.52         2.52         2.52         2.52         2.52         2.52         2.52         2.52         2.52         2.52         2.60         2.80         2.80         2.80         2.80         2.80         2.80         2.80         2.80         2.80         2.80         2.80         2.80         2.80         2.80         2.80         2.80         2.80         2.80         2.80         2.80         2.80         2.80         2.80         2.80         2.80         2.80         2.80         3.80         3.80         3.90         3.90         3.90         3.90         3.90         3.90         3.90         3.90 <t< td=""><td>0.70 0.37  13.69 0.41 17.52 11.15 19.37 18.94</td><td>0.02 &lt; 0.01  &lt; 0.01  0.10 &lt; 0.01 0.33 0.37 0.17</td><td>0.33 0.14  1.46 0.01 2.40</td><td>&lt; 0.01 0.01  0.02  0.01 0.03</td><td>37.91 29.77  15.27  7.38 14.26</td><td>0.11 0.05  0.03  3.27 0.08</td><td>0.97 0.61  &lt; 0.01  1.68 &lt; 0.01</td><td>0.11 0.06  0.03  0.09</td><td>0.01 &lt; 0.01 0.07 0.56</td><td>0.01 &lt; 0.01  &lt; 0.01 </td><td>37.51 51.61  80.55</td><td>&lt; 0.01 &lt; 0.01  &lt; 0.01 </td><td>0.02 &lt; 0.01</td><td>20.85 16.72  3.08</td><td>98.55 99.34  99.31</td><td>3 36 28 1</td><td>121.0 30.0 18.0 51.0</td><td>7.5 6.0 3.5 4.0 2.5</td></t<>	0.70 0.37  13.69 0.41 17.52 11.15 19.37 18.94	0.02 < 0.01  < 0.01  0.10 < 0.01 0.33 0.37 0.17	0.33 0.14  1.46 0.01 2.40	< 0.01 0.01  0.02  0.01 0.03	37.91 29.77  15.27  7.38 14.26	0.11 0.05  0.03  3.27 0.08	0.97 0.61  < 0.01  1.68 < 0.01	0.11 0.06  0.03  0.09	0.01 < 0.01 0.07 0.56	0.01 < 0.01  < 0.01 	37.51 51.61  80.55	< 0.01 < 0.01  < 0.01 	0.02 < 0.01	20.85 16.72  3.08	98.55 99.34  99.31	3 36 28 1	121.0 30.0 18.0 51.0	7.5 6.0 3.5 4.0 2.5
2       0.84         2       2.40         2       2.52         2       0.54         0       0.10         0       0.10         2       0.40         2       0.66         2       2.80         2       1.80         2       2.52         2       1.50	0.37  0.24  13.69 0.41 17.52 11.15 19.37 18.94	< 0.01  < 0.01  0.10 < 0.01 0.33 0.37 0.12	0.01 0.01 1.46 0.01 2.40	0.01  0.02  0.01 0.03	29.77  15.27  7.38 14.26	0.05  0.03  3.27 0.08	0.61  < 0.01  1.68 < 0.01	0.06	< 0.01  0.07  0.56	< 0.01  < 0.01 	51.61  80.55	< 0.01  < 0.01 	< 0.01	16.72  3.08	99.34  99.31	3 36 28 1	30.0 18.0 51.0 17.5	6.0 3.5 4.0 2.5
2       2.40         2       2.52         2       0.54         0       0.10         0       0.10         2       0.40         2       2.80         2       2.80         2       2.80         2       2.80         2       2.80         2       2.52         2       2.42         1.50	0.24  13.69 0.41 17.52 11.15 19.37 18.94	<pre>&lt; 0.01 0.10 &lt; 0.01 0.33 0.37 0.12</pre>	0.01 1.46 0.01 2.40	0.02	15.27  7.38 14.26	0.03  3.27 0.08	< 0.01  1.68 < 0.01	0.03	0.07	< 0.01	80.55	< 0.01	0.01	3.08	99.31	36 28 1	18.0 51.0 17.5	3.5 4.0 2.5  79.5
2       2.52         0       0.54         0       0.10         0       0.40         2       0.66         2       2.80         2       1.80         2       2.52         2       2.42         1.50	0.24  13.69 0.41 17.52 11.15 19.37 18.94	<pre>&lt; 0.01 0.10 &lt; 0.01 0.33 0.37 0.12</pre>	0.01 1.46 0.01 2.40	0.02	15.27  7.38 14.26	0.03  3.27 0.08	< 0.01  1.68 < 0.01	0.03	0.07	< 0.01	80.55	< 0.01	0.01	3.08	99.31 	28	51.0 17.5	4.0 2.5
2         0.54           0         0.10           2         0.40           2         0.66           2         2.80           2         1.80           2         2.52           2         2.42           1.50	0.24  13.69 0.41 17.52 11.15 19.37 18.94	< 0.01  0.10 < 0.01 0.33 0.37	0.01	0.02	15.27  7.38 14.26	0.03  3.27 0.08	< 0.01  1.68 < 0.01	0.03	0.07	< 0.01	80.55	< 0.01	0.01	3.08	99.31	1	17.5	2.5
0 0.10 0 0.40 2 0.66 2 2.80 2 1.80 2 2.52 2 2.42 2 1.50	13.69 0.41 17.52 11.15 19.37 18.94	0.10 < 0.01 0.33 0.37	1.46 0.01 2.40	0.01 0.03	7.38	3.27 0.08	1.68 < 0.01	0.09	0.56									
0       0.10         2       0.40         2       0.66         2       1.80         2       2.52         2       2.42         2       1.50	13.69 0.41 17.52 11.15 19.37 18.94	0.10 < 0.01 0.33 0.37	1.46 0.01 2.40	0.01 0.03	7.38	3.27 0.08	1.68	0.09	0.56									79.5
2       0.40         2       0.66         2       2.80         2       1.80         2       2.52         2       2.42         2       1.50	13.69 0.41 17.52 11.15 19.37 18.94	0.10 < 0.01 0.33 0.37	1.46 0.01 2.40	0.01	7.38	0.08	< 0.01	0.09	0.50			~ ~ 1	~ ~ ~		^			
2 0.66 2 2.80 2 1.80 2 2.52 2 2.42 2 1.50	0.41 17.52 11.15 19.37 18.94	< 0.01 0.33 0.37	2.40	0.03	14.20	0.08	< 0.01			0.14	00.90	10.01	0.84	3.09	30.83	· • •	700 20 F	2.2
2 2.80 2 1.80 2 2.52 2 2.42 2 1.50	17.52 11.15 19.37 18.94	0.33	2.40	0 01				0.03	0.05	< 0.01	76.43	< 0.01	< 0.01	7.80	33.10	1	29.5	3.0
2 1.80 2 2.52 2 2.42 2 1.50	11.15 19.37 18.94	0.37		0.01	7.06	4.41	1.75	0.11	2.46	0.07	57.62	0.02	0.70	5.12	99.58	< 1	3350	107.5
2 2.52 2 2.42 2 1.50	19.3/		3.45	0.03	4.91	2.00	7.14	0.13	3.30	0.30	66.63 66 63	0.03	1 17	3 03	33.30	21	2200	112 5
2 1.50	10.94	0.14	0.01	0.01	6.37	3.34	2.37	0.07	2.423	0.11	50.55 EC 01	0.04	1 22	2 81	90.00	$\sum_{i=1}^{n}$	210	105 5
2 1.50	10 37	0.08	0.09	0.01	9.34	3.45	2.54	0.11	1 65	0.12	56 28	0.01	1 26	4.08	99.27	~ 1	751	119.0
	19.37	0.09	0.80	0.01	3.40	3.30	4.33		1.05			0.01	1.10			· · ·		
2 0.52	20.26	0.14	3.05	0.01	10.61	3.75	2.88	0.10	3.53	0.17	48.38	0.04	1.03	5.17	99.12	< 1	1165	84.0
2 2.26	20.59	0.15	0.28	0.01	8.30	4.92	2.22	0.06	1.30	0.12	57.11	0.01	1.07	3.49	99.63	< 1	1260	107.0
2 1.18	19.64	0.13	0.30	0.02	7.95	5.42	2.30	0.07	0.43	0.15	58.82	0.02	0.91	3.56	99.72	< 1	1125	108.0
2 1.06	16.71	0.07	0.62	0.01	9.39	1.18	2.63	0.07	7.64	0.11	56.97	0.03	1.04	3.03	99.50	< 1	532	35.5
2 1.68	19.20	0.16	0.83	0.01	7.74	3.38	2.33	0.07	6.09	0.13	54.84	0.03	0.93	2.88	98.62	< 1	1420	117.5
2 1.94	15.67	0.09	2.96	0.01	6.82	1.53	2.29	0.10	7.09	0.11	57.65	0.05	0.74	4.19	99.30	< 1	744	82.0
2 1.96	19.25	0.08	0.92	0.02	9.15	3.10	2.52	0.13	1.99	0.12	20.95	0.01	1.29	3.59	99.18	< 1 2 1	794	110.U 97 A
2 1.06	17.70	0.09	0.65	0.01	8.10	3.04	2.04	0.09	1.09	0.10	61 13	0.01	1 21	2.33	33.37		623	a7.0
2 2.04	10.01	0.08	1.03	0.03	8.94	2.73	2.57	0.15	1 76	0.11	56 06	0.01	1 31	3.72	99.33	$\frac{1}{2}$	730	113.5
2 2.02	19.00	0.09	0.78		3.01	3.3/	4.07	V.10	1.70	U.12	50.00	0.01	1.34	J./2		· · ·	, 30	**3.3
2 2.52	19.31	0.10	0.52	0.02	9.58	3.23	2.61	0.13	2.11	0.14	56.56	0.01	1.32	3.41	99.05	< 1	785	132.5
2 1.38	18.46	0.12	0.60	0.01	8.70	3.04	2.00	0.09	1.20	0.10	58.70	0.01	1.00	3.01	55.23		550	100 0
2 0.68	19.26	0.08	0./3	0.01	10.04	2.14	2 62	0.13	1 50	0.13	56.86	0.02	1 36	3 75	99.09	21	637	111.5
	10.00	;														-		-
2222	1.38 0.68 0.60	1.38 18.46 0.68 19.26 0.60 18.80	1.38 18.46 0.12 0.68 19.26 0.08 0.60 18.80 0.09	1.38 18.46 0.12 0.60 0.68 19.26 0.08 0.73 0.60 18.80 0.09 0.69	1.38 18.46 0.12 0.60 0.01 0.68 19.26 0.08 0.73 0.01 0.60 18.80 0.09 0.69 0.01	1.38 18.46 0.12 0.60 0.01 8.70 0.68 19.26 0.08 0.73 0.01 10.04 0.60 18.80 0.09 0.69 0.01 9.68	1.38 18.46 0.12 0.60 0.01 8.70 3.62 0.68 19.26 0.08 0.73 0.01 10.04 2.72 0.60 18.80 0.09 0.69 0.01 9.68 3.36	1.38 18.46 0.12 0.60 0.01 8.70 3.62 2.65 0.68 19.26 0.08 0.73 0.01 10.04 2.72 2.81 0.60 18.80 0.09 0.69 0.01 9.68 3.36 2.52	1.38 18.46 0.12 0.60 0.01 8.70 3.62 2.65 0.09 0.68 19.26 0.08 0.73 0.01 10.04 2.72 2.81 0.13 0.60 18.80 0.09 0.69 0.01 9.68 3.36 2.52 0.14	1.38 18.46 0.12 0.60 0.01 8.70 3.62 2.65 0.09 1.28 0.68 19.26 0.08 0.73 0.01 10.04 2.72 2.81 0.13 2.69 0.60 18.80 0.09 0.69 0.01 9.68 3.36 2.52 0.14 1.50	1.38 18.46 0.12 0.60 0.01 8.70 3.62 2.65 0.09 1.28 0.10 0.68 19.26 0.08 0.73 0.01 10.04 2.72 2.81 0.13 2.69 0.13 0.60 18.80 0.09 0.69 0.01 9.68 3.36 2.52 0.14 1.50 0.11	1.38 18.46 0.12 0.60 0.01 8.70 3.62 2.65 0.09 1.28 0.10 58.70 0.68 19.26 0.08 0.73 0.01 10.04 2.72 2.81 0.13 2.69 0.13 56.11 0.60 18.80 0.09 0.69 0.01 9.68 3.36 2.52 0.14 1.50 0.11 56.86	1.38 18.46 0.12 0.60 0.01 8.70 3.62 2.65 0.09 1.28 0.10 58.70 0.01 0.68 19.26 0.08 0.73 0.01 10.04 2.72 2.81 0.13 2.69 0.13 56.11 0.02 0.60 18.80 0.09 0.69 0.01 9.68 3.36 2.52 0.14 1.50 0.11 56.86 0.01	1.38 18.46 0.12 0.60 0.01 8.70 3.62 2.65 0.09 1.28 0.10 58.70 0.01 1.08 0.68 19.26 0.08 0.73 0.01 10.04 2.72 2.81 0.13 2.69 0.13 56.11 0.02 1.69 0.60 18.80 0.09 0.69 0.01 9.68 3.36 2.52 0.14 1.50 0.11 56.86 0.01 1.36	1.38 18.46 0.12 0.60 0.01 8.70 3.62 2.65 0.09 1.28 0.10 58.70 0.01 1.08 3.81 0.68 19.26 0.08 0.73 0.01 10.04 2.72 2.81 0.13 2.69 0.13 56.11 0.02 1.69 3.47 0.60 18.80 0.09 0.69 0.01 9.68 3.36 2.52 0.14 1.50 0.11 56.86 0.01 1.36 3.75	1.38 18.46 0.12 0.60 0.01 8.70 3.62 2.65 0.09 1.28 0.10 58.70 0.01 1.08 3.81 99.23 0.68 19.26 0.08 0.73 0.01 10.04 2.72 2.81 0.13 2.69 0.13 56.11 0.02 1.69 3.47 99.89 0.60 18.80 0.09 0.69 0.01 9.68 3.36 2.52 0.14 1.50 0.11 56.86 0.01 1.36 3.75 98.88	1.38 18.46 0.12 0.60 0.01 8.70 3.62 2.65 0.09 1.28 0.10 58.70 0.01 1.08 3.81 99.23 < 1 0.68 19.26 0.08 0.73 0.01 10.04 2.72 2.81 0.13 2.69 0.13 56.11 0.02 1.69 3.47 99.89 < 1 0.60 18.80 0.09 0.69 0.01 9.68 3.36 2.52 0.14 1.50 0.11 56.86 0.01 1.36 3.75 98.88 < 1	1.38 18.46 0.12 0.60 0.01 8.70 3.62 2.65 0.09 1.28 0.10 58.70 0.01 1.08 3.81 99.23 < 1 996 0.68 19.26 0.08 0.73 0.01 10.04 2.72 2.81 0.13 2.69 0.13 56.11 0.02 1.69 3.47 99.89 < 1 565 0.60 18.80 0.09 0.69 0.01 9.68 3.36 2.52 0.14 1.50 0.11 56.86 0.01 1.36 3.75 98.88 < 1 637

* UNABLE TO FUSE SAMPLES 02104 AND 02105 FOR WHOLE ROCK.



# ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

J: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9 Pag ....er :1-B Tota uges :1 Certificate Date: 25-JUL-2002 Invoice No. :10219735 P.O. Number : Account :PFD

A0219735

. Afrid Wen

CERTIFICATION:

Project :

Comments: ATTN: LOUIS E. DOYLE

# CERTIFICATE OF ANALYSIS

Nb Nd Ni Pb Pr Eu Ga Gđ Ħ£ Ho La Lu Mo PREP Cu Dy Er Co Cr Cs ppm ppm ppm ppm DDE ppm DIM ppm ppm **DDM** ppm DDM ppm ppm SAMPLE CODE ppm ppm ppm DDm ppm 120 375 1.1 20 3.5 5830 0.4 0.2 2 0.9 < 1 0.1 10.0 < 0.1 1 02101 94139402 284 120 0.9 2.0 295 16 155 1.1 0.9 1825 1.1 0.5 0.1 2 0.9 < 1 0.1 11.0 < 0.1 1 4.0 80 02102 94139402 361 165 235 0.4 < 0.1 0.4 < 1 < 0.1 7.0 < 0.1 16 < 1 1.5 220 0.4 5430 0.3 0.1 1 301 02103 **\$413940**2 3770 14 1.5 20 0.5 0.1 0.4 < 1 < 0.1 6.0 < 0.1 < 1 0.2 >10000 0.6 0.1 < 1 94139402 89.0 20 02104 2.0 20 2860 0.6 16 0.3 0.1 1 0.6 < 1 0.1 6.5 < 0.1 < 1 30 0.3 >10000 1.5 02105 94139402 96.0 7.0 < 0.1 12 < 1 1.0 50 80 0.4 0.1 < 1 < 0.1 02106 64139402 35.5 220 0.2 545 0.3 < 0.1 < 0.1 1 ---02107 94029400 . . . ---_ _ _ -----------_ _ ---02108 94029400 _ _ _ _ _ _ ~ ~ -9.7 7.1 44.0 0.5 14 37.5 40 90 70 5.7 3.5 1.2 21 3 1.1 6 02109 94139402 20.0 180 4.3 125 345 0.4 < 0.1 < 0.1 12 < 1 1.0 225 0.1 < 0.1 < 0.1 1 0.1 < 1 6.0 02110 94139402 107.5 310 0.3 13.4 16 16 44.5 50 25 7.7 3 0.9 59.0 0.4 2.6 1.3 25 94139402 22.0 130 4.8 100 4.6 A0203-22A 27.0 106 9 19.5 70 90 5.2 0.3 94139402 12.0 180 2.2 60 3.5 2.3 0.9 16 4.1 1 0.7 A0203-23 58.0 6 19 50.0 60 30 12.9 110 6.5 3.7 1.8 27 9.2 5 1.2 0.5 64136402 25.0 130 4.0 A0203-50 27 9.0 1.2 55.0 0.5 8 21 49.0 85 45 12.7 3.2 50 6.5 3.8 1.7 5 64139402 27.0 140 A0203-51 10.2 1.3 63.0 0.5 6 21 54.5 60 20 13.9 28 5 120 3.5 55 7.1 3.9 1.9 64139402 26.0 A0203-52 65 9.7 55 44.5 0.7 22 20 36.5 5.2 120 5.0 3.2 1.3 28 6.7 5 1.0 A0203-53 94139402 28.5 110 45 15 11.7 26 1.2 51.5 0.5 6 19 44.5 130 5.4 35 6.1 3.5 1.6 8.3 5 A0203-54 94139402 21.0 45 13.8 9.5 22 49.5 55 160 5.3 40 6.5 4.1 1.7 29 1.3 62.0 0.5 6 84139402 24.5 A0203-55 35 11.5 1.6 23 8.2 1.3 48.5 0.4 6 23 40.5 55 120 6.7 80 6.5 3.7 **b413940**2 26.5 A0203-56 61.0 0.4 23 51.0 50 35 13.8 13.6 75 5.6 3.0 1.7 30 9.4 1.0 6 64139402 23.5 120 4 A0203-57 7.5 1.2 45.0 0.5 8 14 37.0 50 25 10.0 1.4 21 3 64139402 18.0 120 8.5 80 6.4 3.7 A0203-58 27 9.8 1.4 59.5 0.5 22 50.0 50 20 13.8 7.4 2.1 5 6 A0203-59 4139402 26.0 140 3.3 95 4.0 15 24 7.5 1.1 45.0 0.4 6 18 38.0 50 10.2 94139402 22.0 120 3.2 85 5.9 3.3 1.5 5 A0203-60 25 10.7 6.3 3.4 1.6 23 8.0 4 1.2 46.5 0.5 6 19 40.5 45 2.9 35 A0203-61 94139402 23.0 150 23 55 15 13.0 27 9.4 5 1.4 57.5 0.5 8 49.5 40 7.5 4.0 1.9 28.5 120 3.5 A0203-62 **64139402** 60 15 16.7 5 71.0 0.5 6 25 60.0 2.4 28 11.6 1.5 28.5 120 3.3 65 8.0 4.4 A0203-63 94139402 55 10 12.7 57.0 0.4 6 20 48.5 3.5 1.7 27 8.6 4 1.1 94139402 25.0 120 3.8 120 6.1 A0203-64 22 45.0 60 10 11.7 51.0 0.6 6 94139402 28.5 130 2.9 75 7.2 4.1 1.9 27 9.1 5 1.3 A0203-65 0.5 6 24 51.5 60 10 13.8 3.7 40 7.3 4.2 1.9 28 9.7 5 1.3 61.5 b4139402 26.5 120 A0203-66

* PLEASE NOTE

٠



# ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 J: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9

Project :

Comments: ATTN: LOUIS E. DOYLE

# CERTIFICATE OF ANALYSIS

Page ar :1-C Tota ages :1 Certificate Date: 25-JUL-2002 Invoice No. : 10219735 P.O. Number : Account : PFD

A0219735

## * PLEASE NOTE

4

SAMPLE 02101 02102 02103 02104	PREP CODE 94139402 94139402 94139402 94139402 94139402	Rb ppm 4.8 4.2 1.0	Sm. ppm 0.6 0.6	Sn ppm 16	Sr ppm	Ta ppm	Tb ppm	Th ppm	Tl ppm	Tm ppm	U Doma	V	W	Y	Yb maga	Zn	Zr DDM	Au CN g/t	Au ppb ICP	Pt ppb ICP
SAMPLE 02101 02102 02103 02103 02104	CODE 94139402 94139402 94139402 94139402 94139402 94139402	ppm 4.8 4.2 1.0	0.6 0.6	ppm 16	16.7	ppm	ppm	ppm	ppm	ppm	DDE		DDD		DOM	DDD	DDM	a/t	ICP	ICP
02101 02102 02103 02104	94139402 94139402 94139402 94139402 94139402	4.8 4.2 1.0	0.6	16	16.7							**								
02102 02103 02104	94139402 94139402 94139402 94139402 94139402	4.2	0.6	~		0.5	0.1	< 1	< 0.5	< 0.1	4.5	15	7	5.0	0.3	455	27.0		48	< 10
02103	94139402 94139402 94139402	1.0		đ	7.1	1.0	0.1	< 1	< 0.5	< 0.1	3.0	40	9	5.0	0.3	440	14.5		36	< 10
02104	94139402 94139402		0.3	9	2.6	< 0.5	< 0.1	< 1	< 0.5	< 0.1	2.0	10	8	3.0	0.1	295	6.0		28	< 10
	94139402	T.0	0.3	115	7.2	< 0.5	< 0.1	< 1	3.5	< 0.1	< 0.5	< 5	3	1.5	0.1	>10000	3.0		748	< 10
02105		4.0	0.4	192	5.0	< 0.5	< 0.1	< 1	4.5	< 0.1	1.5	< 5	4	3.0	0.1	>10000	4.0		704	< 10
02106	94139402	1.6	0.1	4	4.1	< 0.5	< 0.1	< 1	< 0.5	< 0.1	< 0.5	15	4	0.5	< 0.1	110	5.0		>10000	10
02107	<b>94029400</b>																	0.04	144	180
02108	<b>94029400</b>																	2.81	3740	< 60
02109	94139402	136.0	7.1	- 4	148.0	1.0	0.9	12	< 0.5	0.4	2.5	100	7	30.0	2.9	85	124.0		1880	< 5
02110	94139402	3.6	0.1	1	5.1	< 0.5	< 0.1	< 1	< 0.5	< 0.1	< 0.5	< 5	4	0.5	0.1	30	6.5		62	20
A0203-22A	94139402	207	7.9	14	186.0	1.0	0.9	17	0.5	0.3	6.0	275	19	23.5	2.5	75	82.5		34	< 5
A0203-23	P4139402	94.2	3.6	9	220	0.5	0.5	7	< 0.5	0.3	8.0	110	10	22.0	1.9	220	51.5		2	10
A0203-50	P4139402	165.5	9.0	3	137.0	2.0	1.2	16	0.5	0.4	3.0	140	4	32.5	3.0	120	159.5		< 2	45
A0203-51	P4139402	134.5	8.9	3	150.5	1.5	1.1	16	< 0.5	0.4	3.0	135	4	33.5	3.1	145	157.5		< 2	< 5
A0203-52	94139402	149.5	9.6	3	159.0	1.5	1.2	17	< 0.5	0.5	3.0	125	3	34.5	3.2	145	157.5		< 2	10
A0203-53	94139402	160.0	6.4	4	287	1.5	0.8	13	< 0.5	0.5	3.5	355	4	26.5	3.4	170	145.0		< 2	5
A0203-54	94139402	189.0	8.0	3	114.5	1.5	1.1	17	0.5	0.4	3.0	105	3	30.5	2.9	190	142.5		< 2	< 5
A0203-55	P4139402	196.0	9.4	4	98.8	1.5	1.2	16	0.5	0.5	3.0	120	2	33.0	3.5	145	152.5		10	20
A0203-56	94139402	78.2	7.9	3	245	1.5	1.1	12	< 0.5	0.4	2.5	255	4	30.0	3.0	215	157.0		< 2	< 5
A0203-57	94139402	164.5	9.3	4	208	1.5	1.1	17	0.5	0.4	3.5	265	8	26.0	2.7	140	147.5		< 2	< 5
A0203-58	94139402	84.6	7.2	3	369	1.5	1.0	12	< 0.5	0.4	3.5	235	5	31.0	3.3	255	106.0		< 2	< 5
A0203-59	94139402	139.0	9.3	3	151.5	1.5	1.3	17	< 0.5	0.5	3.0	125	3	34.0	3.4	125	201		< 2	< 5
A0203-60	P4139402	126.5	7.1	3	118.5	1.5	1.0	14	< 0.5	0.4	2.5	115	3	.29.0	2.8	120	174.0		< 2	< 5
A0203-61	94139402	119.0	7.6	5	129.0	1.5	1.1	17	< 0.5	0.4	2.5	125	2	30.0	3.1	120	158.0		< 2	< 5
A0203-62	94139402	145.5	8.8		139.0	2.0	1.4	1/	< 0.5	0.5	3.0	132	3	33.3	3.4	135	123.5		< 4	
A0203-63	94139402	136.0	11.3	3	134.0	1.5	1.5	19	< 0.5	0.5	3.0	140	3	36.5	3.7	140	179.0		< 2	< 5
A0203-64	94139402	156.0	8.5	3	122.5	1.5	1.1	18	< 0.5	0.4	3.0	135	3	30.5	2.8	125	149.0		< 2	10
A0203-65	P413P402	117.0	8.5	3	140.0	1.5	1.2	14	< 0.5	0.5	2.5	160	2	35.0	3.5	125	178.5		< 2	< 5
NULUS-00				:									-							

Spections CERTIFICATION:_



.

г

#### hemex C Δ Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

J: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9

Pag __er :1-D Totak _ges :1 Certificate Date: 25-JUL-2002 Invoice No. :10219735 P.O. Number Account :PFD

salwark:

CERTIFICATION:_

Project :

Comments: ATTN: LOUIS E. DOYLE

# **CERTIFICATE OF ANALYSIS**

SAMPLE	PREP CODE	Pd ppb ICP	Au FA g/t	Ag ppm (ICP)	Al % (ICP)	As ppm	Bappm ) (ICP)	Beppm (ICP)	Bippm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Ceppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cs ppm (ICP)	Cuppm (ICP)	Fe % (ICP)	Gappm (ICP)	Geppm (ICP)	Hf ppm
02101	94139402	20		10.75	0.33	3.0	64.5	0.15	35.2	0.17	1.78	3.69	302.0	104	0.60	9210	21.7	1.05	0.60	0.3
02102	94139402	16		5.34	0.29	2.8	36.5	0.05	36.4	0.21	1.56	4.15	364.0	61	0.75	2680	>25.0	1.05	0.75	0.2
02103	94139402	12		5.72	0.11	1.8	23.0	0.05	29.0	0.09	1.24	2.37	330.0	159	0.45	6920	21.6	0.45	0.60	< 0.1
02104	94139402	4		>100.0	0.07	806	8.5	< 0.05	830	0.01	58.9	0.51	166.7	58	0.15	>10000	>25.0	1.20	1.20	< 0.1
02105	\$4139402	< 4		>100.0	0.17	721	13.5	< 0.05	646	0.03	56.5	1.93	182.6	88	0.20	>10000	>25.0	1.55	1.20	< 0.1
02106	94139402	< 4	13.80	5.84	0.03	3.2	0.5	< 0.05	438	< 0.01	0.36	0.11	31.3	241	0.15	712.0	11.95	0.25	0.25	< 0.1
02107	94029400	12		>100.0	0.14	219	47.0	< 0.05	7280	0.06	179.0	15.65	11.1	55	0.10	529.0	2.51	0.50	4.55	< 0.1
02108	94029400	12		3.90	0.40	9.8	16.5	< 0.05	14.25	0.09	0.40	12.00	54.6	6280	0.20	30.4	>25.0	14.05	1.50	0.3
02109	94139402	< 2		1.32	7.08	< 0.2	660.6	2.45	80.7	1.10	0.42	75.4	20.0	123	4.40	. 70.8	5.43	20.25	0.25	0.6
02110	94139402	20		1.90	0.15	3.4	23.5	0.05	7.75	< 0.01	0.32	0.40	113.8	192	0.20	336.0	11.65	0.60	0.40	< 0.1
A0203-22A	94139402	< 2		0.26	9.32	0.2	732.0	5.10	4.15	1.80	0.42	99.0	19.9	88	5.25	111.1	5.02	27.10	0.25	0.6
A0203-23	94139402	6		0.48	5.89	< 0.2	182.5	5.00	6.34	2.30	4.46	36.5	11.5	126	2.15	55.2	3.45	15.30	0.20	0.4
A0203-50	94139402	< 2		0.34	10.60	< 0.2	1093.5	3.05	0.30	0.39	0.04	103.5	∡5.8 20.6	112	6.40	112.0	6.01	29.10	0.30	0.0
A0203-51	94139402	< 2		0.32	10.45	< 0.2	794.8	3.15	0.45	0.53	0.00	110 5	40.0	119	2.00	39.0	6.94	31.03	0.30	0.0
A0203-52	94139402	< 2		0.26	10.60	< 0.2	810.4	2.90	0.22	0.03	0.06	118.5	4/.1		3.75	1.4.0	0.00	23.30	0.35	
A0203-53	94139402	< 2		0.62	10.55	< 0.2	619.3	3.75	1.45	2.30	0.40	85.6	28.8	95	5.45	132.1	7.35	30.65	0.30	0.4
A0203-54	94139402	< 2		0.50	11.70	< 0.2	1441.0	3.60	0.30	0.23	0.06	118.0	22.7	117	6.10	40.4	6.36	31.55	0.30	0.6
A0203-55	94139402	6		0.68	11.25	< 0.2	1206.5	3.65	0.55	0.24	0.02	125.0	25.2	113	5.90	42.2	6.16	31.60	0.35	0.8
A0203-56	94139402	< 2		0.34	8.68	0.6	252.0	2.30	1.32	0.46	0.48	99.5	25.6	95	7.20	69.7	6.66	24.80	0.30	0.6
A0203-57	94139402	< 2		0.28	10.70	< 0.2	352.5	3.70	0.49	0.68	0.14	116.5	23.8	101	15.25	58.9	5.91	33.70	0.30	0.8
A0203-58	94139402	2		0.28	8.16	0.6	412.5	2.45	0.78	2.20	0.88	79.7	18.3	100	8.70	83.9	4.73	21.30	0.25	0.7
A0203-59	94139402	< 2		0.36	10.00	< 0.2	798.4	2.70	0.15	0.66	0.08	117.0	25.7	121	3.55	57.7	6.43	29.00	0.30	0.6
A0203-60	94139402	< 2		0.24	9.42	< 0.2	735.2	2.40	0.11	0.41	0.04	90.4	21.6	. 99	3.40	61.6	5.74	25.25	0.25	0.0
A0203-61	94139402	< 2		0.26	9.14	< 0.2	670.7	2.80	0.19	0.78	0.08	93.5 110 E	24.3	100	3.40	35.4	7 70	20.40	0.30	0.5
A0203-62	94139402	< 2		0.36	11.05	< 0.2	800.4	3.10	0.11	V.36	0.06	119.5	20.1	109	3.93	- 37.2	/.20	31.35	0.35	
A0203-63	94139402	< 2		0.32	10.90	< 0.2	838.4	2.70	0.11	0.41	0.04	141.5	25.7	91	3.65	54.7	7.08	31.20	0.35	0.6
A0203-64	94139402	< 2		0.26	10.45	< 0.2	1084.0	3.20	0.18	0.45	0.02	107.0	26.1	97	4.10	89.4	6.34	29.10	0.30	0.7
A0203-65	<b>\$413\$402</b>	< 2		0.28	10.60	< 0.2	622.6	2.65	0.15	0.56	0.02	110.0	29.9	112	3.30	75.2	7.36	28.80	0.30	0.7
AU2U3+66	<b>74137402</b>				10.20	~	075.0			0.33		100.0	2017		3.50					•••



4

# ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

J: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9 Page ar :1-E Total jes :1 Certificate Date: 25-JUL-2002 Invoice No. : I0219735 P.O. Number : Account : PFD

Project :

Comments: ATTN: LOUIS E. DOYLE

# CERTIFICATE OF ANALYSIS

A0219735

Stall forma

CERTIFICATION:_

**L**.,,

	PREP	In	К %	La DDM	Li ppm	Mg %	Mn ppm	Mo ppm	Na %	Nb ppm	Ni ppm	P ppm	Pb ppm	Rb ppm	Re	S	Sb ppm	Se	Sn	Sr ppm
SAMPLE	CODE	ppm	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	ppm	ጜ	(ICP)	ppm	ppm	(ICP)
02101	94139402	0.920	0.07	2.0	2.0	0.55	370	8.90	0.01	0.5	113.0	30	470	2.6	0.002	>10.00	0.25	51	13.4	3.0
02102	94139402	0.575	0.07	2.5	1.6	0.51	695	4.35	0.01	0.6	128.0	60	389	2.4<	0.002	>10.00	0.25	52	5.2	2.4
02103	94139402	0.825	0.01	1.5	1.0	0.35	300	2.85	< 0.01	0.4	126.5	< 10	239	0.1<	0.002	>10.00	0.25	52	6.2	1.2
02104	94139402	45.5	0.01	< 0.5	< 0.2	0.05	105	12.30	< 0.01	0.7	25.0	70	6130	0.1	0.002	>10.00	198.95	96	199.5	0.8
02105	94139402	55.6	0.06	0.5	0.2	0.12	175	16.45	< 0.01	0.8	24.8	50	5040	2.5	0.006	>10.00	92.65	112	254	2.8
02106	94139402	0.275	< 0.01	< 0.5	0.2	< 0.01	30	0.85	< 0.01	0.1	35.2	10	105.5	0.1<	0.002	5.89	1.85	4	2.0	1.0
02107	94029400	0.635	0.03	8.0	0.4	0.01	135	28.80	0.01	0.3	12.8	3302	>10000	1.0<	0.002	>10.00	/4.10	>1000	10.0	40.0
02108	94029400	0.035	0.03	6.0	0.8	0.20	/20	3.90	0.01	3.0	194.5	140 E40	0/U 140 E	142 04		1 20	0.60		2.4	134 5
02109 02110	94139402	0.105	2.87	< 0.5	1.0	0.01	555	1.35	< 0.01	0.4	120.0	40	526	2.5<	0.002	9.92	0.80	11	0.4	2.4
A0203-22A	94139402	0.090	3.67	48.0	32.6	1.10	810	11.20	1.77	2.6	48.0	240	19.5	202	0.012	2.06	0.25	5	11.6	180.0
A0203-23	94139402	0.085	1.45	18.5	18.0	0.67	775	93.89	2.46	1.8	61.4	1550	81.0	91.2	0.124	1.58	0.25	3	7.4	217
A0203-50	94139402	0.090	3.30	51.0	31.2	1.56	440	0.85	1.08	10.2	54.6	460	14.5	174.0	0.002	0.99	0.10	1	2.4	148.5
A0203-51	94139402	0.105	2.78	59.0	34.2	1.55	745	0.75	1.46	9.6	55.6	520	28.5	155.0<	0.002	0.48	0.10	1	2.2	169.0
A0203-52	94139402	0.100	2.95	58.0	36.0	1.57	715	0.60	1.24	8.4	56.7	450	15.0	158.5<	0.002	0.51	0.10	< 1	2.4	168.5
A0203-53	94139402	0.085	3.01	43.5	39.0	1.63	680	17.10	2.66	9.7	52.4	660	85.5	161.0	0.004	1.70	0.10	4	3.2	295
A0203-54	94139402	0.105	4.24	56.5	36.2	1.37	545	0.45	1.01	13.3	40.4	410	20.0	200 <		0.40	0.15	1	3.4	133.5
A0203-55	94139402	0.100	4.68	58.5	35.4	1.44	440	0.00	U.31 E 00	43.1	30.0	450	20.2	414 4	0.002	2 56	0.40	1	3.4	242
A0203-56 A0203-57	94139402	0.070	3.01	44.5 55.0	20.4 51.4	1.40	425	0.20	4.83	7.4	48.8	590	18.5	177.04	0.002	1.64	0.05	2	3.4	228
A0203-58	94139402	0.075	1.27	39.5	22.8	1.26	825	1.80	5.35	3.2	42.8	420	28.5	84.4	0.002	2.29	0.10	3	1.6	346
A0203-59	94139402	0.095	2.65	57.5	30.6	1.43	895	0.45	1.49	12.4	49.4	470	16.5	135.5<	0.002	0.30	0.05	1	2.2	160.5
A0203-60	94139402	0.080	2.53	46.0	31.2	1.51	530	0.40	1.34	9.0	46.0	420	11.0	126.5<	0.002	0.24	< 0.05	< 1	2.0	125.5
A0203-61	94139402	0.085	2.43	46.5	30.6	1.46	1120	0.60	1.10	9.4	42.0	540	21.5	125.54	< 0.002	0.19	< 0.05	< 1	2.0	144.5
A0203-62	94139402	0.105	2.93	59.5	35.6	1.69	1225	0.65	1.30	13.5	54.0	670	13.0	153.54	< 0.002	0.24	0.05	1	2.4	167.0
A0203-63	94139402	0.100	2.72	69.0	34.4	1.61	940	0.40	1.62	12.8	49.2	700	12.5	145.5	0.002	0.29	< 0.05	1	2.2	143.0
A0203-64	<b>P413P402</b>	0.090	3.03	53.5	30.4	1.65	525	0.35	0.96	9.6	53.9	520	11.5	103.54	CU.UU2	0.71	0.05	1	4.4	139.0
A0203-65	P413P402	0.100	2.30	53.0	34.0	1.69	1015	0.50	2.02	10.8	55.1	620	11.3	161 0	< 0.002	0.27	< 0.05		2.0	125.0
A0203-66	94139402	0.095	4.80		34.0	. 1. 31	975	0.55	1.13	9.0	,	620	10.0	151.0			0.05			135.0
ľ																				

* UNABLE TO FUSE SAMPLES 02104 AND 02105 FOR WHOLE ROCK.

.



.

# ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 J: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9 Page ar :1-F Tota jes :1 Certificate Date: 25-JUL-2002 Invoice No. :10219735 P.O. Number : Account :PFD

1

Project : Comments: ATTN: LOUIS E. DOYLE

# CERTIFICATE OF ANALYSIS

A0219735

SAMPLE	PREP CODE	Ta ppm (ICP)	Te ppm (ICP)	Th ppm (ICP)	Ti % (ICP)	Tl ppm (ICP)	Uppm (ICP)	V ppm (ICP)	W ppm (ICP)	Y ppm (ICP)	Zn ppm (ICP)	Zr ppm	Hg ppb	<u></u>	·····	
02101	94139402	< 0.05	1.55	1.2	< 0.01	0.06	4.0	11	3.3	3.5	498	18.0	90 50			
02102	64126402	< 0.05	1 65	× 0.0	< 0.01	< 0.02	2.0		3.8	2.5	320	2.0	60			
02103	64136402	< 0.05	0 75	202	< 0.01	7.44	0.6	< 1	3.5	0.8	>10000	1.0	16310			
02105	94139402	< 0.05	0.75	0.2	< 0.01	9.36	2.7	< 1	3.6	3.0	>10000	3.0	18990			
02106	94139402	< 0.05	47.9	< 0.2	< 0.01	0.20	< 0.1	4	0.2	0.3	126	< 0.5	< 10			
02107	64029400	< 0.05	386	1.6	0.02	2.12	11.2	20	2.7	5.3	210	2.0	60			
02108	4029400	0.05	0.65	2.0	0.25	0.08	1.7	2210	3.2	5.5	216	13.0	45400			
02109	84139402	0.45	2.55	16.0	0.30	0.76	1.9	94	4.4	11.1	72	18.5	240			
02110	4139402	< 0.05	0.65	0.6	< 0.01	0.12	0.4	10	0.5	0.5	24	0.5	20	•		
A0203-22A	94139402	0.15	0.15	21.4	0.14	0.98	5.1	259	11.4	7.7	70	19.5	30			
A0203-23	<b>\$413\$402</b>	0.05	0.10	5.8	0.07	0.48	7.3	108	5.4	12.6	222	14.5	< 10		·	ļ
A0203-50	94139402	0.55	0.05	23.0	0.20	0.86	1.9	140	1.1	17.7	112	24.5	10			
A0203-51	94139402	0.45	< 0.05	23.8	0.18	0.70	1.7	134	0.4	11.3	138	20.0	< 10			
A0203-52	<b>\$413\$402</b>	0.40	< 0.05	25.0	0.13	0.78	1.8	130	0.6	8.2	142	19.5	10			
A0203-53	94139402	0.50	0.25	20.2	0.28	0.78	2.1	350	0.8	12.1	170	12.5	< 10			
A0203-54	94139402	1.20	< 0.05	26.2	0.62	0.98	2.2	119	1.0	13.1	188	20.5	10			
A0203-55	P413P402	1.40	0.05	25.0	0.57	0.90	2.0	112	0.8	8.4	152	24.0	< 10			
A0203-56	94139402	0.20	< 0.05	17.4	0.11	8.54	1.3	220	0.5	9.8	212	20-5	10			1
A0203-57	94139402	0.40	< 0.05	23.6	0.30	0.92	2.2	4/3	1.8	<b>4.</b> 0	160	43.0	< 10	<u> </u>		
A0203-58	94139402	0.25	0.05	16.8	0.14	0.52	3.0	219	0.8	11.5	254	22.5	10			
A0203-59	94139402	0.65	< 0.05	25.6	0.38	0.68	2.1	129	0.4	24.3	112	21.0	10			
A0203-60	\$413\$402	0.45	< 0.05	21.2	0.23	0.64	1.7	119	0.4	17.6	106	17.0	10			
A0203-61	<b>\$413\$402</b>	0.45	< 0.05	20.4	0.32	0.62	1.7	119	0.3	21.7	116	18.0	< 10			
A0203-62	<b>\$413\$402</b>	0.65	< 0.05	25.2	0.42	0.74	2.1	147	0.4	25.3	134	21.5	10			1
A0203-63	94139402	0.65	< 0.05	28.8	0.35	0.70	2.1	141	0.4	26.3	128	22.0	< 10	·····		
A0203-64	94139402	0.45	< 0.05	23.4	0.20	0.76	1.9	139	0.6	18.0	120	23.0	10			
A0203-65	<b>\$413\$402</b>	0.55	< 0.05	22.2	0.35	0.58	1.6	167	0.3	14.8	116	23.5	10			
A0203-66	94139402	0.45	< 0.05	21.8	0.22	0.72	1.7	140	0.4	11.6	122	25.0	10			

**CERTIFICATION:** 

* UNABLE TO FUSE SAMPLES 02104 AND 02105 FOR WHOLE ROCK.



02107

,

SAMPLE

# ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

Ag FA

2730

g/t

Pb

% con

76.51

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

PREP

CODE

212 --

, o: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9 Pag ....uer :1 Totah ages :1 Certificate Date: 06-AUG-2002 Invoice No. :10221099 P.O. Number : Account :PFD

Project : Comments: ATTN: LOUIS E. DOYLE

CERTIFICATE OF ANALYSIS A0221099

CERTIFICATION

OVERLIMITS from A0220690



SAMPLE

.

PREP

CODE

A1203

# hemex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

BaQ

ວ: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9

Pag .er :1-/ Tota .ages :2 Jer :1-A Certificate Date: 09-AUG-2002 Invoice No. : 10221520 P.O. Number Account :PFD

Co

ppm

TJB SERIES Project : Comments: ATTN: LOUIS E. DOYLE CC: TIM BARRETT

#### **CERTIFICATE OF ANALYSIS** A0221520 K20 P205 **Si02** TiO2 LOI TOTAL Ba Ce CaO Cr203 Fe203 MgO MnO Na20 Sr0λg % XRF * ppm ppm ppm 0.01 23.88 0.06 0.23 0.07 0.10 0.05 59.78 < 0.01 0.04 12.43 98.94 < 1 19.5 14.5 896 0.95

02111	299	297	1.34	< 0.01	0.95	0.01	23.88	0.06	0.23	0.07	0.10	0.05	59.78 < 0.01	0.04	12.43	98.94	< 1 19.5	14.5	896
02112	299	297	11.04	0.06	0.52	0.01	7.52	1.89	1.89	0.12	1.47	0.10	69.70 < 0.01	0.49	3.30	98.11	< 1 540	67.0	20.0
02113	299	297	2.48	< 0.01	0.20	0.01	6.68	0.05	1.22	0.07	0.40	0.06	84.87 < 0.01	0.11	2.10	98.25	< 1 9.0	43.0	23.3
02114	299	297	4.68	0.04	21.62	0.01	14.14	1.09	9.33	4.23	0.25	0.03	15.11 0.05	0.20	28.84	99.62	1 295	23.5	18.5
02115	299	297	3.16	0.03	3.79	< 0.01	16.96	0.76	2.22	1.87	6.20	0.07	22.87 < 0.01	0.14	16.51	74.58	23 287	17.0	65.5
02116	299	297	3.36	0.02	23.94	< 0.01	17.43	0.74	8.52	5.49	0.48	0.04	7.82 0.05	0.15	31.30	99.34	1 176.0	31.5	15.0
02117	299	297	4.76	0.03	2.83	0.03	7.31	0.44	2.41	0.48	0.09	0.42	73.09 < 0.01	0.24	б.34	98.47	< 1 310	22.5	12.0
02118	299	297	7.99	0.06	1.81	0.02	9.93	0.69	1.82	2.30	1.20	1.26	66.73 0.01	0.39	5.09	99.30	< 1 499	52.0	35.0
02119	299	297	7.68	0.06	1.08	0.03	11.60	0.67	1.96	0.64	0.43	0.73	<b>69.31 &lt; 0.01</b>	0.46	4.98	99.63	< 1 460	60.0	21.5
02120	299	297	1.72	0.03	0.52	< 0.01	50.17	0.32	1.16	0.15	0.06	0.05	16.86 < 0.01	0.15	28.55	99.74	< 1 149.0	9.5	28.5
02121	299	297	5.86	0.09	0.51	0.02	5.58	0.86	1.39	0.13	0.15	0.29	81.17 < 0.01	0.31	3.49	99.85	2 699	27.5	9.0
02122	299	297	13.21	0.18	0.04	< 0.01	19.63	2.12	0.70	0.14	0.28	0.08	53.36 < 0.01	0.57	8.80	99.11	< 1 1455	63.0	29.0
02123	299	297	15.03	0.08	0.27	0.01	2.58	3.23	0.61	0.06	3.57	0.16	70.84 0.01	0.29	1.76	98.50	< 1 824	61.0	3.5
02124	299	297	13.89	0.37	0.34	0.01	2.15	3.81	0.63	0.08	3.09	0.20	72.88 < 0.01	0.26	1.53	99.24	< 1 3110	57.0	4.0
02125	299	297	8.92	0.05	1.71	0.02	10.46	0.78	2.28	0.63	Ó.97	1.18	67.18 < 0.01	0.61	4.72	99.51	< 1 474	40.5	12.5
TB-1-SCR	299	297	0.66	0.01	0.21	0.03	0.88	0.07	0.06	0.05	1.54	0.08	95.61 < 0.01	0.07	0.28	99.55	< 1 37.5	49.5	0.5
TB-2-SCR	299	297	5.80	0.10	2.16	0.03	5.22	0.89	1.67	0.21	0.26	1.47	76.54 < 0.01	0.25	3.98	98.58	< 1 811	39.0	8.5
TB-3-F6	299	297	15.93	0.27	2.69	0.04	14.77	1.76	7.37	0.22	2.19	0.38	46.96 0.01	2.65	4.34	99.58	< 1 3250	58.0	36.0
TB-4-FC	299	297	3.63	0.02	0.08	0.01	15.63	0.81	1.61	0.17	0.17	0.03	67.89 < 0.01	0.06	9.17	99.28	< 1 202	24.0	48.0
TB-5-FC	299	297	11.01	0.35	0.38	0.03	5.86	2.74	0.81	0.06	0.85	0.23	71.74 < 0.01	0.63	5.10	99.79	5 3020	65.5	13.0
TB-6-FC	299	297	6.19	0.04	1.61	0.02	2.66	1.03	0.50	0.09	1.76	0.04	81.88 < 0.01	0.18	2.24	98.24	< 1 396	33.5	4.5
FC-02-01-9.9M	299	297	14.04	0.12	0.66	< 0.01	3.54	3.52	1.20	0.08	0.46	0.15	69.96 < 0.01	0.60	4.46	98.79	< 1 1225	116.5	14.5
PC-02-01-10.6M	299	297	7.08	0.06	16.30	0.01	5.73	1.91	9.25	0.47	0.25	0.12	33.93 0.04	0.32	24.25	99.72	< 1 543	66.0	9.5
FC-02-01-23.1M	299	297	13.88	0.11	0.38	< 0.01	2.89	3.80	0.98	0.07	0.37	0.11	71.89 < 0.01	0.62	3.83	98.93	< 1 991	115.0	15.5
FC-02-01-66.4M	299	297	9.81	0.05	1.43	0.01	4.59	1.54	1.99	0.11	0.68	0.05	71.80 < 0.01	0.57	5.45	98.08	< 1 461	65.0	11.0
FC-02-01-92.2M	299	297	10.21	0.08	1.06	0.01	4.30	1.76	1.44	0.15	0.94	0.06	73.29 < 0.01	0.44	4.88	98.62	< 1 639	62.0	8.0
FC-02-03-44.6M	299	297	13.37	0.03	7.76	0.05	9.24	0.38	7.43	0.10	0.10	0.52	39.41 0.10	0.71	19.10	98.30	< 1 206	118.0	29.0
PC-02-03-60.3M	299	297	12.21	0.04	8.27	0.05	12.21	0.73	8.57	0.24	1.10	0.29	37.50 0.03	2.16	16.00	99.40	< 1 293	47.5	55.5
PC-02-03-73.5M	299	297	23.57	0.16	0.34	0.01	. 8.08	5.74	2.50	0.12	0.89	0.18	48.28 0.01	0.73	9.22	99.83	< 1 1600	158.0	18.5
PC-02-03-83.7M	299	297	12.23	0.03	9,19	0.05	10.51	0.27	6.45	0.30	2.01	0.25	40.31 0.03	2.07	15.85	99.55	< 1 56.0	40.0	51.0
FC-02-03-89.7M	299	297	9.13	0.07	1.13	0.01	5.31	1.50	2.10	0.21	1.28	0.05	71.23 0.01	0.48	6.05	98.56	< 1 558	55.5	11.0
FC-02-05-15.3M	299	297	6.10	0.05	0.15	0.01	2.68	1.24	0.98	0.11	0:40	0.05	83.09 < 0.01	0.41	3.92	99.19	< 1 325	60.0	2.5
PC-02-05-27.5M	299	297	7.33	0.03	0.10	< 0.01	12.29	0.69	3.71	0.20	0.89	0.04	63.99 < 0.01	0.35	9.81	99.43	< 1 171.0	55.0	16.0
PC-02-05-43.8M	299	297	9.67	0.05	0.13	< 0.01	16.32	1.02	3.48	0.18	1.03	0.05	55.88 < 0.01	0.51	10.75	99.07	< 1 246	72.0	22.5
FC-02-05-60.8M	299	297	14.40	0.10	0.12	0.01	9.87	2.92	3.28	0.16	0.63	0.09	58.65 < 0.01	0.67	7.34	98.24	< 1 865	77.5	12.5
FC-02-05-77.1M	299	297	7.26	0.07	3.90	0.01	2.67	1.77	1.79	0.13	0.29	0.01	74.05 < 0.01	0.33	6.20	98.48	< 1 581	68.0	4.5
FC-02-05-89.65M	299	297	11.00	0.07	11.16	< 0.01	9.07	2.89	5.42	0.31	0.43	0.08	38.80 0.02	0.51	19.89	99.65	< 1 562	65.0	18.5
FC-02-05-117.5M	299	297	7.39	0.05	0.11	0.02	1.90	1.88	0.72	0.07	0.38	0.05	83.62 < 0.01	0.21	2.34	98.74	< 1 385 <i>)</i>	42.5	4.0
FC-02-05-137.7M	299	297	11.45	0.10	0.30	0.01	4.28	3.05	1.80	0.11	0.44	0.13	70.98 < 0.01	0.50	5.29	98.44	< 1 931/	83.5	8.5
C-02-05-153.3M	299	297	10.88	0.04	3.09	0.03	7.63	1.68	4.15	0.15	0.69	0.12	59.15 < 0.01	1.00	9.60	98.21	< 1 38,3,	69.5	23.0
	1																/i/	1	
L	· • · · · ·	1															111:1		

CERTIFICATION:



# hemex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.. North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 J: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9

Invoice No. :10221520 P.O. Number PFD Account

Project : TJB SERIES

Comments: ATTN: LOUIS E. DOYLE CC: TIM BARRETT

# **CERTIFICATE OF ANALYSIS**

A0221520

CERTIFICATION:

						_	_	-	-				_	_							
	PR	EP	Cr	Cs	Cu	Dy	Er	Eu	Ga	Gđ	Ħf	Ho	La	Lu	No	Nb	Nd	Ni	Pb	Pr	Rb
SAMPLE	CO	DE	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	<b>ppm</b>	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
02111	299	297	180	< 0.1	990	0.9	0.6	0.3	1	1.3	< 1	0.1	6.5	< 0.1	< 2	1	6.0	35	25	1.6	1.4
02112	299	297	130	1.9	70	3.6	2.2	1.2	14	5.5	6	0.7	34.5	0.3	< 2	10	28.0	25	25	7.9	90.0
02113	299	297	170	0.1	80	2.0	0.9	0.6	5	3.7	3	0.4	19.0	0.1	< 2	3	16.5	5	15	4.5	1.2
02114	299	297	90	1.5	175	3.3	1.7	2.8	8	3.8	1	0.6	13.0	0.2	< 2	3	12.0	30	1830	3.0	55.8
02115	299	297	80	1.0	1100	3.2	1.9	2.2	7	3.3	< 1	0.7	11.0	0.2	6	1	9.0	60	>10000	2.4	42.0
02116	299	297	50	0.8	575	4.4	2.4	3.7	7	4.9	< 1	0.9	18.0	0.3	< 2	1	16.5	40	3170	4.3	32.4
02117	299	297	280	1.0	20	3.2	2.3	1.0	9	3.7	1	0.7	17.0	0.3	12	6	14.0	65	315	3.6	29.8
02118	299	297	200	1.1	120	5.1	2.9	2.0	12	6.6	2	1.0	35.5	0.4	10	9	27.0	80	20	7.4	35.0
02119	299	297	230	1.1	250	4.5	2.8	1.8	12	6.4	3	1.0	42.5	0.4	4	12	29.5	35	15	8.0	34.8
02120	299	297	30	0.5	150	1.2	0.7	0.3	4	1.3	< 1	0.2	6.0	< 0.1	2	1	5.5	10	40	1.5	12.0
02121	299	297	230	1.4	1660	2.6	1.7	0.9	9	3.2	1	0.6	17.5	0.2	8	6	14.5	45	140	3.9	42.0
02122	299	297	120	3.0	245	2.7	1.5	1.0	20	4.3	2	0.5	38.5	0.2	< 2	10	27.5	45	155	8.2	91.4
02123	299	297	180	3.0	< 5	3.9	2.2	0.9	18	5.1	4	0.8	30.5	0.3	< 2	16	25.5	5	90	7.3	156.0
02124	299	297	140	2.2	5	3.5	2.0	0.8	18	5.0	4	0.7	29.0	0.2	< 2	18	24.0	5	20	6.9	171.0
02125	299	297	210	1.1	60	4.5	2.8	1.4	13	5.4	3	1.0	26.5	0.3	8	13	22.0	30	15	5.8	37.6
TB-1-SCR	299	297	290	0.1	5	1.8	0.9	0.6	1	3.2	2	0.3	22.5	< 0.1	< 2	2	18.0	< 5	5	5.0	2.2
TB-2-SCR	299	297	210	1.4	15	4.8	3.0	1.7	10	5.7	2	1.0	26.5	0.4	12	6	23.0	40	15	6.1	40.0
TB-3-F6	299	297	390	4.9	20	5.2	2.9	2.3	22	6.4	6	1.1	27.5	0.3	< 2	49	29.5	135	35	7.5	74.2
TB-4-FC	299	297	150	0.7	840	2.0	1.1	0.3	4	2.4	1	0.4	11.0	0.1	< 2	1	9.5	25	50	2.6	35.6
TB-5-FC	299	297	220	2.6	360	4.2	2.5	1.2	17	5.4	6	0.9	34.0	0.3	8	12	28.0	50	750	8.0	125.5
TB-6-FC	299	297	180	0.9	10	1.6	0.9	0.5	6	2.3	4	0.3	18.5	0.1	< 2	4	13.5	5	20	4.0	45.6
FC-02-01-9.9M	299	297	110	3.1	10	4.9	2.8	1.5	17	7.7	4	1.0	59.0	0.3	< 2	20	48.0	30	10	13.6	168.5
FC-02-01-10.6M	299	297	70	1.4	< 5	3.8	2.1	1.2	9	5.1	1	0.8	33.0	0.2	. < 2	10	28.0	20	60	7.6	79.4
PC-02-01-23.1M	299	297	110	3.7	55	5.3	3.0	1.2	18	7.7	3	1.1	57.5	0.4	< 2	15	47.0	35	75	13.4	181.5
FC-02-01-66.4M	299	297	140	1.5	20	3.1	1.9	1.0	13	4.5	8	0.6	31.5	0.3	< 2	10	26.0	20	5	7.5	72.4
FC-02-01-92.2M	299	297	160	2.2	25	3.0	1.7	1.0	12	4.5	6	0.6	31.0	0.2	< 2	7	25.0	20	5	7.2	81.0
FC-02-03-44.6M	299	297	430	4.3	45	4.0	2.0	2.7	16	8.7	3	0.7	57.0	0.2	< 2	9	62.5	155	15	15.8	14.4
FC-02-03-60.3M	299	297	430	1.0	75	4.8	2.5	1.9	17	10.2	4	0.9	22.5	0.3	2	26	26.0	150		<b>b.4</b>	32.6
PC-02-03-73.5M	299	297	140	4.8	120	0.9	. 4.0	2.3	29	10.9	4	1.4	10.0	0.5	< 2	12	08.0	40	15	13.0	240
FC-02-03-83.7M	299	297	440		130	4.0	2.1	1.4	10		<b>4</b>	v.8	19.0	Ű.2	2		21.5	35	20	5.3	ð.∡
PC-02-03-89.7M	299	297	150	1.5	30	2.7	1.6	0.9	12	3.8	6	0.5	27.0	0.2	< 2	8	22.0	20	5	6.4	71.2
FC-02-05-15.3M	299	297	140	1.6	55	4.5	2.9	0.6	9	5.1	2	1.0	30.0	0.4	< 2	10	26.0	20	< 5	7.0	67.2
FC-02-05-27.5M	299	297	90	0.7	385	2.6	1.7	0.3	11	3.5	2	0.6	27.0	0.2	< 2	7	21.5	20	60	6.2	29.6
FC-02-05-43.8M	299	297	80	1.0	90	3.4	2.2	0.4	14	4.8	4	0.8	35.0	0.3	< 2	16	30.5	20	155	8.8	47.4
FC-02-05-60.8M	299	297	110	2.9	25	3.6	2.2	0.8	20	5.3	7	0.8	38.5	0.3	< 2	13	31.0	30	20	8.9	143.0
FC-02-05-77.1M	299	297	140	1.6	10	2.6	1.4	0.9	8	4.4	8	0.5	33.0	0.2	< 2	6	26.0	5	35	7.5	83.8
FC-02-05-89.65M	299	297	110	2.1	15	3.5	2.1	1.3	15	5.0	4	0.7	31.5	0.3	< 2	10	26.5	30	5	7.4	125.5
FC-02-05-117.5M	299	297	200	1.6	< 5	1.6	0.9	0.5	8	2.5	5	0.3	21.5	0.1	< 2	4	16.0	5	/25	4.7	92.4
PC-02-05-137.7M	299	297	130	2.9	25	3.5	2.1	1.1	16	5.3	10	0.7	41.5	0.3	< 2	11	33.5	15	//15	9.6	150.0
FC-02-05-153.3M	299	297	280	1.7	20	4.5	2.6	1.0	14	5.9	13	0.9	35.5	0.4	< 2	13	30.5	55	1. 20	8.3	80.0

* PLEASE NOTE

4

* SAMPLE "02115" WAS RE-WEIGHED, FUSED & ANALYZED. LOW TOTALS OBTAINED BOTH TIMES.



# ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9 Page N. Jer :1-C Total 9s :2 Certifi J Date: 09-AUG-2002 Invoice No. : 10221520 P.O. Number : Account :PFD

1

1

Project : TJB SERIES Comments: ATTN: LOUIS E. DOYLE CC: TIM BARRETT

# CERTIFICATE OF ANALYSIS A0

A0221520

1	PRE	P	Sm	Sn	Sr	Та	Тb	Th	т1	Tm	U	V	W	Y	Yb	Zn	Zr	
SAMPLE	COI	DE	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppa	ppm	ppm	ppm	ppm	ppm	ppm	
									< 0.5	< 0.1				<b>C</b> 5	0.6	25	21 5	
02111	299	297	1.3	5	6.6 651	< 0.5	0.1	14	< 0.5	0.3	3.0	55	3	18.5	1.9	80	204	
02112	299	29/	3.5	13	5 3	< 0.5	0.5	3	< 0.5	0.1	0.5	5	ĩ	8.5	0.6	30	104.5	
02113	299	207	3.4		306	< 0.5	0.6	3	< 0.5	0.2	0.5	40	3	20.5	1.5	2820	36.0	
02114	299	297	2.6	-	74.0	< 0.5	0.5	1	< 0.5	0.3	0.5	50	3	21.5	1.6	>10000	31.0	
02115	<b>A</b> 3 3																	
02116	299	297	4.3	4	274	< 0.5	0.8	3	< 0.5	0.3	0.5	40	4	28.5	1.9	7960	26.5	
02117	299	297	3.0	8	71.3	< 0.5	0.5	3	< 0.5	0.3	5.0	780	8	28.5	2.0	880	40.5	
02118	299	297	5.7	37	107.0	0.5	0.9	5	< 0.5	0.4	7.0	335	5	35.5	2.2	290	76.0	
02119	299	297	5.8	15	53.8	1.0	0.9	7	< 0.5	0.4	5.5	280	4	32.0	2.3	240	104.5	
02120	299	297	1.2	< 1	9.6	< 0.5	0.2	1	< 0.5	< 0.1	1.5	20	2	7.5	О.Ь	30	14.5	
02121	299	297	2.9	12	22.9	0.5	0.4	4	< 0.5	0.2	3.5	370	4	19.0	1.4	170	58.5	
02122	299	297	4.8	8	24.7	0.5	0.5	10	< 0.5	0.1	2.5	110	7	14.5	1.3	190	77.0	
02123	299	297	5.3	10	122.5	2.5	0.8	12	< 0.5	0.3	2.5	15	4	22.0	1.9	25	111.5	
02124	299	297	5.1	5	77.7	2.5	0.7	11	< 0.5	0.3	5.5	15	4	19.5	1.7	35	101.5	
02125	299	297	4.8	21	80.9	1.0	0.8	5	< 0.5	0.4	7.5	445	6	34.0	2.2	175	91.5	
mp_1_80P	200	297	3 3	< 1	4.7	< 0.5	0.4	1	< 0.5	0.1	< 0.5	< 5	2	9.0	0.6	5	77.0	
	299	297	5.0	11	62.7	0.5	0.8	5	< 0.5	0.4	7.0	905	6	37.0	2.4	115	87.0	
10-2-3CR	200	297	6.2	37	111.0	3.5	1.0	5	< 0.5	0.4	1.5	280	4	28.0	2.3	115	215	
TB-4-PC	299	297	2.0	12	16.2	< 0.5	0.4	3	< 0.5	0.1	1.5	5	2	12.0	0.8	90	41.0	
TB-5-FC	299	297	5.4	83	45.8	1.0	0.8	11	7.5	0.3	5.0	210	10	24.0	2.1	3000	202	
	200	207	2.4	<u> </u>	66 6	< 0.5	0.3	6	< 0.5	0.1	1.0	20	< 1	9.0	0.9	30	130.0	
110-0-FC	200	207	<u> </u>	•	49.6	1.5	1.0	14	< 0.5	0.4	2.0	80	3	25.5	2.2	40	117.5	
C-02~01-5.5A	200	207	5 4	1	310	0.5	0.7	7	< 0.5	0.3	1.5	40	2	21.0	1.6	90	74.5	
PC-02-01-13.1M	233	297	85	3.8	40.0	1.0	1.0	14	< 0.5	0.4	2.5	85	7	26.5	2.3	75	124.5	
FC-02-01-66.4M	299	297	4.7	2	79.0	0.5	0.6	12	< 0.5	0.3	2.5	60	2	17.5	1.7	70	292	
		0.00			70.1	0.5	0.6	11	< 0.5	0.2	1 5	45	1	17.0	1.5	50	187.0	
PC-02-01-92.2M	299	297		1	14.1	0.5	0.0	17	205	0.2	5.5	130	1	20.0	1.6	90	128.0	
PC-02-03-44.6M	299	231		1	262	2.0	0.9	2	< 0.5	0.3	1.5	300	5	24.0	1.9	120	164.5	
FC-02-03-60.3M	499	221	11 0	2	132 0	1.5	1.4	21	0.5	0.5	4.5	105	4	37.0	3.3	85	141.0	
FC-02-03-73.5M	299	297	4.9	1	297	1.5	0.8	2	< 0.5	0.3	0.5	305	2	21.0	1.7	115	134.5	
	<u> </u>				<u> </u>													
FC-02-03-89.7M	299	297	3.8	1	104.0	0.5	0.5	11	< 0.5	0.2	2.0	55	1	15.5	1.5	70	203	
FC-02-05-15.3M	299	297	5.0	14	24.9	0.5	0.8	0	< 0.5	0.4	4.5	135		32.U 16 6	1 5	200	0V.5 77 K	
PC-02-05-27.5M	299	] 297	3.6	24	62.3	0.5	0.5	8	< 0.5	0.4	1.5	6.3	10	15.5	2.3	200	151 0	
FC-02-05-43.8M	299	297	5.3	23	71.1	1.5	0.7	12	< 0.5	0.3	2.0	60	14	10.3	2.0	140	131.0	
FC-02-05-60.8M	299	297	5.5	56	55.3	1.0	0.7	13	< 0.5	0.3	3.5	80	8	20.5	2.0	140	201	
FC-02-05-77.1M	299	297	4.8	5	93.3	0.5	0.6	14	< 0.5	0.1	2.0	25	3	15.0	1.3	40	299	
FC-02-05-89.65M	299	297	4.9	2	216	0.5	0.7	10	< 0.5	0.3	1.5	65	2	20.0	1.7	55	150.0	
FC-02-05-117.5M	299	297	2.6	1	26.3	< 0.5	0.3	8	< 0.5	0.1	1.5	15	2	9.0	U.8	55	104.5	
FC-02-05-137.7M	299	297	5.8	4	41.1	0.5	0.7	17	1.5	0.3	3.5	50	4	19.5	1.8	75	102	
FC-02-05-153.3M	299	297	5.9	24	134.5	1.0	0.8	16	< 0.5	0.4	2.5	95	4	25.5	2.3	100	464	
l	L	<u> </u>																······································

* PLEASE NOTE

* SAMPLE "02115" WAS RE-WEIGHED, FUSED & ANALYZED, LOW TOTALS OBTAINED BOTH TIMES.

CERTIFICATION:_



# ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

່ວ: BARKER M	INERALS LTD.
--------------	--------------

22117 37A AVE. LANGLEY, BC V2Z 1N9 Pag .er :2-A Tota .ges :2 Certificate Date: 09-AUG-2002 Invoice No. : 10221520 P.O. Number : Account : PFD

A0221520

Project : TJB SERIES Comments: ATTN: LOUIS E. DOYLE CC: TIM BARRETT

**CERTIFICATE OF ANALYSIS** 

# * PLEASE NOTE

.

SAMPLE	PRI COI	ep de	A1203 % XRF	BaO % XRF	CaO % XRF	Cr2O3 % XRF	Fe2O3 % XRF	K20 % XRF	Mg0 % XRF	Mn0 % XRF	Na20 % XRF	P205 % XRF	SiO2 % XRF	SrO % XRF	TiO2 % XRF	LOI % XRF	TOTAL %	λg ppm	Ba ppm	Ce ppm	Co ppm
FC-02-06-26.6N FC-02-06-42.7M FC-02-06-61.1M FC-02-06-77.8M FC-02-06-101.4M	299 299 299 299 299 299	297 297 297 297 297 297	11.09 8.95 15.03 9.59 13.25	0.06 0.06 0.05 0.06 0.06	2.84 0.12 2.62 6.50 1.09	0.03 0.01 0.06 0.01 0.01	7.89 6.27 15.74 4.50 4.32	1.76 1.87 1.34 2.23 2.73	4.02 2.04 10.80 2.93 1.89	0.15 0.12 0.32 0.16 0.09	0.70 0.33 0.49 0.48 1.16	0.11 0.04 0.33 0.04 0.11	59.97 74.18 38.08 60.36 68.63	0.01 0.01 0.01 0.01 < 0.01	0.97 0.50 2.66 0.38 0.59	9.87 4.52 11.88 11.31 5.94	99.47 99.02 99.41 98.56 99.87	< 1 8 14 1 < 1	383 489 374 561 457	69.0 67.5 60.0 65.5 75.5	29.0 9.0 81.5 8.5 11.5
FC-02-06-115.0M FC-02-06-132.9M ACE-02-03-119.0M ACE-02-03-122.0M ACE-02-04-17.1M	299 299 299 299 299 299	297 297 297 297 297 297	8.79 11.06 19.70 19.86 14.52	0.04 0.06 0.09 0.10 0.13	0.68 0.21 0.65 0.56 1.69	0.02 0.01 0.01 0.01 0.01	2.17 7.17 8.07 9.48 4.62	1.69 2.27 3.57 3.41 3.31	1.16 3.05 2.47 2.54 1.39	0.06 0.12 0.08 0.08 0.10	1.14 0.28 1.79 1.72 2.58	0.06 0.09 0.15 0.19 0.26	80.16 69.60 57.45 56.66 67.60	< 0.01 < 0.01 0.01 0.01 0.01	0.25 0.47 0.84 1.29 1.05	3.15 5.41 4.18 4.04 2.52	99.37 99.80 99.06 99.95 99.79	< 1 < 1 < 1 < 1 < 1 < 1	283 460 832 821 1225	45.0 68.0 99.5 117.5 104.0	4.0 18.0 26.5 34.0 17.5
ACE-02-04-28.0M ACE-02-04-37.3M ACE-02-04-50.0M ACE-02-04-71.3M ACE-02-04-83.0M	299 299 299 299 299	297 297 297 297 297 297	15.37 15.50 16.90 17.82 10.20	0.13 0.05 0.26 0.20 0.14	0.83 6.26 2.94 6.97 4.01	0.01 0.01 0.01 0.01 0.01	6.59 5.51 6.54 5.55 4.04	3.02 0.81 1.12 3.70 0.66	1.91 2.77 1.80 3.05 1.56	0.08 0.05 0.07 0.07 0.13	1.95 7.63 7.82 4.32 5.28	0.27 0.33 0.05 0.11 0.60	65.31 53.43 54.51 49.48 68.81	0.02 0.06 0.05 0.05 0.03	1.22 0.67 0.60 0.63 0.35	2.59 5.32 6.12 6.13 3.12	99.30 98.40 98.79 98.09 98.94	< 1 < 1 < 1 < 1 < 1 < 1	1190 398 2360 1905 1190	97.0 70.5 78.0 72.0 40.0	22.5 19.5 18.5 25.0 12.0
ACE-02-04-98.1M ACE-02-04-112.0M	299 299	297 297	19.09 20.08	0.16 0.16	0.59 0.48	0.02	8.31 9.34	3.46 3.60	2.37 2.44	0.10 0.08	1.52 1.47	0.14 0.11	58.86 56.82	0.01 0.01	1.01 1.10	3.85 3.73	99.49 99.43	< 1 < 1	1490 1440	111.0 110.0	30.5 35.0
							·														
					÷																
																			\$		

CERTIFICATION:

* SAMPLE "02115" WAS RE-WEIGHED, FUSED & ANALYZED. LOW TOTALS OBTAINED BOTH TIMES.



# ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

## Jo: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9 A0221520

Project : TJB SERIES Comments: ATTN: LOUIS E. DOYLE CC: TIM BARRETT

**CERTIFICATE OF ANALYSIS** 

# * PLEASE NOTE

SAMPLE	PRI COI	SP DE	Cr ppm	Cs ppm	Cu ppm	Dy ppm	Er ppm	Eu ppm	Ga ppm	Gđ ppm	Hf ppm	Ho ppm	La ppm	Lu ppm	Mo ppm	Nb ppm	Nd ppm	Ni ppm	Pb ppm	Pr ppm	Rb ppm
FC-02-06-26.6M FC-02-06-42.7M FC-02-06-61.1M FC-02-06-77.8M	299 299 299 299 299	297 297 297 297 297	280 160 570 150	1.5 1.7 1.1 1.7 2.2	20 35 150 25 5	4.3 2.8 5.1 3.3 3.3	2.4 1.7 2.6 1.8 2.1	1.0 0.6 1.6 1.0 1.0	14 11 21 12 18	5.7 4.2 6.8 5.0 5.0	12 13 5 7 8	0.8 0.6 1.0 0.7 0.7	35.5 33.5 28.5 31.5 38.0	0.3 0.3 0.3 0.2 0.3	< 2 < 2 < 2 2 2 < 2	13 8 34 7 12	30.0 27.5 30.5 26.0 31.0	60 10 210 15 25	5 35 55 10 5	8.3 7.8 7.7 7.3 8.9	79.6 88.2 56.0 100.0 124.0
FC-02-06-101. AA FC-02-06-115.0M FC-02-06-132.9M ACE-02-03-119.0M ACE-02-03-122.0M ACE-02-04-17.1M	299 299 299 299 299 299	297 297 297 297 297 297	210 150 180 160 170	1.4 2.0 3.7 3.5 4.7	10 50 35 65 20	1.6 3.0 5.6 8.2 6.5	0.9 1.8 3.2 5.0 4.2	0.6 0.8 1.6 2.1 1.9	9 15 27 27 20	2.8 4.6 7.8 10.5 8.6	5 6 5 7 16	0.3 0.6 1.1 1.8 1.4	23.0 34.0 52.5 61.0 51.0	0.1 0.3 0.4 0.7 0.7	< 2 < 2 < 2 < 2 < 2 < 2 2	5 9 17 22 17	17.0 27.0 43.0 53.0 45.0	5 35 45 45 25	15 < 5 10 5 < 5	5.0 7.8 12.1 14.7 12.3	74.2 104.5 160.0 152.0 131.0
ACE-02-04-28.0M ACE-02-04-37.3M ACE-02-04-50.0M ACE-02-04-71.3M ACE-02-04-83.0M	299 299 299 299 299 299	297 297 297 297 297 297	130 160 160 150 190	2.3 3.3 2.2 10.0 2.8	20 15 20 55 30	7.0 3.1 3.2 2.4 4.1	4.3 1.6 2.0 1.3 2.2	1.9 1.0 1.1 1.0 0.9	21 16 23 23 13	8.8 5.3 5.1 4.7 4.5	9 4 2 3 1	1.5 0.6 0.7 0.5 0.8	47.0 37.0 45.5 43.0 22.5	0.6 0.2 0.2 0.1 0.2	< 2 4 56 2 134	19 12 11 12 7	42.5 30.5 33.5 31.0 19.5	25 35 50 40 60	< 5 35 5 10 55	11.8 8.8 9.7 9.1 5.2	121.5 42.6 55.8 153.0 39.2
ACE-02-04-98.1M ACE-02-04-112.0M	299 299	297 297	210 160	3.8 4.0	30 60	6.2 6.0	3.7 3.4	1.9 1.8	27 28	8.5 8.1	6 5	1.3 1.2	55.5 56.0	0.5 0.5	< 2 < 2	21 21	46.5	50 50	5 20	13.2 13.0	156.5 165.5
					÷																
																		, , , , , , , , , , , , , , , , , , , ,	$l_{2,2}$		

* SAMPLE "02115" WAS RE-WEIGHED, FUSED & ANALYZED. LOW TOTALS OBTAINED BOTH TIMES.



# ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

J: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9

Project : TJB SERIES Comments: ATTN: LOUIS E. DOYLE CC: TIM BARRETT

**CERTIFICATE OF ANALYSIS** 

Pating Ler: 2-C Tol ages: 2 Certificate Date: 09-AUG-20C Invoice No. : 10221520 P.O. Number: Account : PFD

A0221520

* PLEASE NOTE

,

			_	-	_	_	_	-1		_						-	<b>a</b>	
	PRI	2P	Sm	Sn	Sr	Ta	TD	Th	TL	TTA	U	V	W	¥	ΩΥ Ω	Zn	Zr	
SAMPLE	COI	DE	ppm	ppm	ppm	ppm	ppm	<b>DD</b> m	ppm	ppm	ppm	ppm	<b>bb</b> m	ppm	ppm	ppm	Dbu	· · · · · · · · · · · · · · · · · · ·
PG-02-06-26 6W	200	297	5.6	23	123.5	1.0	0.8	16	< 0.5	0.3	2.5	100	5	23.0	2.1	105	412	
FC-02-06-42.7M	299	297	4.5	31	46.2	0.5	0.5	16	< 0.5	0.2	2.5	35		15.5	1.6	230	428	
FC-02-06-61.1M	299	297	6.5	13	97.6	2.5	1.0	4	< 0.5	0.3	1.5	365	25	25.5	1.9	535	185.0	
FC-02-06-77.8M	299	297	4.8	7	152.5	0.5	0.7	12	< 0.5	0.2	2.0	40	3	19.0	1.5	75	230	
FC-02-06-101.4M	299	297	5.4	3	87.1	0.5	0.7	15	< 0.5	0.3	3.5	70	2	19.5	1.9	95	251	
FC-02-06-115.0M	299	297	3.0	1	58.7	< 0.5	0.3	10	< 0.5	0.1	2.0	25	1	9.0	0.9	45	159.0	
FC-02-06-132.9M	299	297	4.9	14	23.6	0.5	0.6	13	1.5	0.2	4.0	50	4	17.0	1.6	140	195.0	
ACE-02-03-119.0M	299	297	8.0	3	177.0	1.5	1.0	15	< 0.5	0.4	2.5	115	< 1	31.5	2.9	130	137.0	
ACE-02-03-122.0M	299	297	10.3	3	153.0	1.5	1.5	16	< 0.5	0.7	3.5	160	< 1	49.5	4.4	150	225	
ACE-02-04-17.1M	299	297	8.6	2	150.0	1.5	1.2	18	< 0.5	0.6	4.0	100	1	41.0	3.8	65	551	
ACE-02-04-28.0M	299	297	8.5	3	139.5	1.5	1.3	13	< 0.5	0.6	3.0	115	1	41.0	3.7	120	306	
ACE-02-04-37.3M	299	297	5.7	< 1	447	0.5	0.7	12	< 0.5	0.1	0.0	200	< 1	10.5	1.3	390	114-2	
ACE-02-04-50.0M	299	297	5.7	2	403	0.5	0.0	12	< 0.5	0.3	2.0	150	3	12.5	1 1	73	03.U 97 E	
ACE-02-04-71.3M	299	297	5.1	د ،	393	0.5	0.5	14	< 0.5	0.1	6.5	160		26.0	1 6	165	54 0	
ACE-U2-U4-83.UM	299	291	4.2		203	< 0.5			< 0.5	<b>U</b> .J	0.5	100	<u> </u>	20.0		105		
ACE-02-04-98.1M	299	297	8.8	3	141.0	1.5	1.2	15	< 0.5	0.5	2.5	125	1	36.5	3.3	160	184.0	
ACE-02-04-112.0M	299	297	8.0	3	135.5	1.5	1.1	10	< U.5	0.5	3.0	135	1	34.0	3.1	103	130.0	
			Į															
			1															
	1	]																
			1															
			ļ		•													
	1																	
			1															
		1																
	1																	
1																		
		l.																
		•	1															

CERTIFICATION:_



.

г

۳

# ALS Chemex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assavers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

.o: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9

Par L Jer :1-A Tota ages :2 Certificate Date: 13-AUG-200 :10221518 Invoice No. P.O. Number : Account PFD

Project : TJB SERIES Comments: ATTN: LOUIS E. DOYLE CC: TIM BARRETT

**CERTIFICATE OF ANALYSIS** 

	PREP	Weight Au	ppb Pt	: ppb 1	Pd ppb	λg ppm	A1 %	λs	Bappm	Be ppm :	Bi ppm	Ca %	Cd ppm	Ce ppm	Coppm	Cr ppm	Cs ppm	Cu ppm	Fe %	Gappm
SAMPLE	CODE	Kg	ICP	ICP	ICP	(ICP)	(ICP)	ppm	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(1CP)
02111	94139402	0.80	20	< 5	< 2	2.46	0.99	182.0	30.0	0.10	21.5	0.58	0.20	20.8	873.0	80	0.05	1985.0	15.45	5.50
02112	94139402	1.06	4	< 5	< 2	0.20	5.86	14.4	455.5	1.05	0.67	0.32	0.02	73.0	25.6	129	1.95	81.9	4.77	15.65
02113	94139402	0.30	14	< 5	< 2	2.38	2.30	7.4	307.0	0.55	4.82	13.50	8.88	25.2	21.1	54	1.60	248.0	8.27	6.85
02115	94139402	0.16	168	10	< 2	56.5	1.58	7.0	188.0	0.65	99.6	2.60>	500	18.10	78.5	44	1.15	1960.0	11.30	5.95
02116	94139402	0.44	6	< 5	< 2	3.32	1.58	2.4	181.5	0.40	2.79	14.50	29.9	32.8	16.9	34	0.85	819.0	9.76	5.10
02117	94139402 94139402	0.72	4	< 5 5	8	0.40	4.34	2.0	499.0	1.25	4.21	1.15	1.02	52.0	35.2	130	1.05	132.0	6.35	12.85
02119	94139402	0.52	4	5	8	0.22	3.68	1.4	413.0	0.70	6.58	0.63	0.22	57.3	19.0	144	0.95	252.0	6.71	10.40
02120	94139402	0.68	12	20	4	1.14	0.75	4.6	16.5	0.30	5.90	0.30	0.18	10.40	87.7	59	0.50	2150	>25.0	2.90
02121	94139402	0.88	< 2	< 5	6	0.12	3.10	2.6	749.2	1.00	0.64	0.34	0.56	30.9	9.2	126	1.50	102.3	3.64	9.85
02122	94139602	0.30	4	< 5	< 2	0.20	6.86	2.4	55.U 954 0	2.00	2.16	0.03	0.14	6U.2	27.7	59	3.20	510.0	12.90	19.85
02123	P4139403	0.54	2	< 5	< 4	0.04	7.26	5.0	3000	1.30	0.26	0.23	0.04	66.1	4.5	50	2.35	6.0	1.42	19.05
02125	4139402	1.00	2	5	6	0.14	4.65	3.8	507.1	1.15	5.21	1.10	0.08	44.7	13.4	134	1.10	67.2	6.67	13.90
TB-1-SCR	94139402	1.20	< 2	5	< 2	0.02	0.18	9.0	34.5	< 0.05	0.48	0.04	0.02	49.0	0.9	176	0.05	8.0	0.53	1.45
TB-2-SCR	4139402	1.00	< 2	5	8	0.02	3.17	6.2	812.0	0.95	0.54	1.45	0.04	44.6	8.9	149	1.40	15.6	3.48	10.10
TB-3-F6	94139402	1.44	< 2	< 5	< 2	0.06	7.99	14.4	2820	1.65	1.65	1.75	< 0.02	59.0	36.6	252	4.95	20.8	9.16	22.05
TB-4-FC	P4139402	0.94	12	5	< 2	1.56	1.93	52.8	194.5	0.40	3.04	0.05	10.45	24.9	47.8	105	0.70	1545.0	10.30	4.50
тв-5-гс	94139402	1.14	14	< 3	< 4 	0.98	5.55	200	/8.0	1.35	C.40	0.24	10.45	50.7	11.0	124	4.55	300.0	3.75	10.15
TB-6-FC	94139402	0.88	< 2	< 5	< 2	0.06	3.23	3.0	378.0	0.45	0.20	1.05	0.06	30.5	4.0	72	0.80	9.4	1.68	6.60
FC-02-01-9.9M	94139402 64136402	0.80	2	< 5	< 2	0.05	3 61	43.0 19.8	521 7	1 20	0.14	10 50	0.02	64 8	14.∡ 14.∡	40	1 30	11.0	3 32	9.15
FC-02-01-10.0M	94139402	0.60	2	< 5	< 2	0.30	7.33	49.0	706.4	1.65	0.32	0.25	0.10	117.0	15.1	45	3.60	61.7	1.88	20.35
FC-02-01-66.4M	94139402	0.92	< 2	< 5	< 2	0.08	5.58	16.2	471.5	1.30	0.12	1.00	0.06	67.4	11.2	71	1.50	19.0	3.12	14.85
FC-02-01-92.2M	94139402	0.82	< 2	< 5	< 2	0.08	5.45	8.4	640.0	1.20	0.21	0.70	0.02	63.8	8.3	84	2.20	24.4	2.78	13.30
FC-02-03-44.6M	94139402	0.50	< 2	< 5	< 2	0.12	7.33	2.6	190.0	1.50	0.14	5.40	0.12	116.0	26.4	201	4.20	44.0	5.51	16.40
PC-02-03-60.3M	P413P402	0.92	< 2	< 5	< 2	0.14	6.26	81.8	296.5	0.95	0.04	5.50	0.14	49.2	49.8	218	0.95	68.9 23.4	7.60	18.30
FC-02-03-83.7M	94139402	0.98	< 2	کې 5	6	0.16	6.16	46.2	53.5	0.55	0.03	5.90	0.14	41.3	43.2	187	0.25	116.4	6.39	16.40
FC-02-03-89.7M	94139402	0.72	< 2	< 5	< 2	0.06	5.18	9.2	549.1	1.30	0.07	0.78	0.12	57.5	9.4	62	1.50	31.8	3.61	13.35
FC-02-05-15.3M	94139402	0.58	< 2	< 5	2	0.14	3.06	30.6	328.0	0.40	0.17	0.09	< 0.02	61.3	2.3	56	1.55	53.5	1.74	9.35
FC-02-05-27.5M	P4139402	0.52	22	< 5	< 4	1.48	3.00	31 4	225.0	0.30	2.68	0.00	0.88	54.4	16.0	49	0.05	81 D	10 00	14 20
FC-02-05-60.8M	94139402	0.86	< 2	< 5	< 2	0.18	7.73	46.4	843.6	1.20	0.66	0.05	< 0.02	79.7	12.3	61	2.95	24.6	6.31	20.65
FC-02-05-77.1M	94139402	0.86	< 2	< 5	< 2	0.16	3.91	8.8	543.8	0.75	0.45	2.60	0.08	67.8	4.1	63	1.55	10.2	1.74	8.60
FC-02-05-89.65M	P413P402	0.50	< 2	< 5	< 2	0.02	5.80	22.6	570.8	1.50	0.13	7.50	0.10	71.0	17.8	53	2.10	17.6	5.74	16.10
FC-02-05-117.5M	P4139402	0.78	< 2	< 5	< 2 2	0.18	5.91	15 6	000 g	1.05	0.413	0.07	0.14	40.5	4.0	6/	1.05	24.0	2.23	8.50
FC-02-05-153.3M	94139402	0.56	2	< 5	< 2	0.10	6.67	33.8	408.0	0.90	0.17	2.00	0.06	77.2	21.4	121	1.60	16.8	4.78	16.65
		]															-1)-1	<u> </u>	· /	<b>.</b>
														CERTIF	ICATION		ylia	lve	infr.	*



÷5

.

г

Т

### LS Chemex Α Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

.o: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9

Invoice No. :10221518 P.O. Number : Account : PFD

Project : TJB SERIES Comments: ATTN: LOUIS E. DOYLE CC: TIM BARRETT

**CERTIFICATE OF ANALYSIS** 

SAMPLE	PREP		Geppm (ICP)	Hf ppm	In ppm	K% (ICP)	La ppm (ICP)	Li ppm (ICP)	Mg % (ICP)	Mn ppm (ICP)	Moppm (ICP)	Na % (ICP)	Nib ppm (ICP)	Nippm (ICP)	P ppm (ICP)	Pb ppm (ICP)	Rbppm (ICP)	Re ppm	s *	Sb ppm (ICP)	Se ppm
02111	941394	02	0.30	0.1	3.47	0.03	9.5	10.8	0.13	290	1.10	< 0.01	1.3	66.1	190	30.5	1.4	0.004	>10.00	0.80	12
02112	941394	02	0.20	0.4	0.145	1.54	37.0	24.4	1.01	700	0.75	1.04	5.4	33.0	430	22.0	85.8	0.004	1.01	0.15	1
02113	941394	02	0.15	0.8	0.060	0.01	18.5	8.8	0.78	350	0.60	< 0.01	2.0	9.0	320	3.0	1.0	0.004	1.58	0.25	1
02114	941394	02	0.20	0.6	0.110	0.84	14.0	11.6	5.12	>10000	0.55	0.05	0.6	41.6	180	2130	56.9	0.004	1.04	1.90	3
02115	941394	.02	0.45	0.5	5.35	0.61	10.0	7.4	1.13	>10000	0.90	0.04	0.6	85.3	290	>10000	44.0	0.004	4.09	28.55	91
02116	941394	02	0.25	0.6	0.175	0.52	18.0	7.4	4.42	>10000	0.50	0.04	0.6	62.0	180	3630	31.7	0.002	0.65	4.30	9
02117	641364	02	0.15	0.1	0.055	0.10	35.5	23.0	0.83	\$10000	9 35	0.01	3 0	102 0	2380	200	27.0	0.010	0.04	0.30	2
02119	641364	02	0.15	< 0.1	0.305	0.48	40.5	23.4	0.91	3320	3.60	0.26	2.4	43 0	2930	23.0	20.2	0.010	0.03	0.30	1
02120	41394	02	0.50	0.5	0.040	0.21	5.5	2.8	0.49	1165	5.85	0.02	1.1	301	160	106.5	12.8	0.008	>10.00	0.40	4
02121	941394	02	0.10	0.1	0.160	0.74	20.0	22.2	0.75	715	8.15	0.04	2.8	52.1	1390	21.0	37.2	0.008	0.15	0.20	1
02122	\$41394	02	0.25	1.7	0.100	1.67	31.0	47.0	0.38	875	1.00	0.16	3.0	54.3	300	12.0	90.6	0.002	4.43	0.30	4
02123	941394	02	0.15	2.3	0.075	2.78	35.5	26.8	0.36	240	0.65	2.56	14.1	8.8	750	9.0	142.0	0.002	0.01	0.20	< 1
02124	941394	02	0.15	2.3	0.035	3.21	35.0	25.0	0.37	410	0.65	2.13	17.7	11.2	880	22.0	150.0	0.006	0.01	0.25	1
02125	941394	02	0.20	< 0.1	0.125	0.62	27.5	26.4	1.07	3020	7.55	0.55	6.2	41.0	5220	12.0	34.7	0.014	0.03	0.20	1
TB-1-SCR	941394	02	0.05	0.1	0.025	0.03	21.5	1.2	0.02	40	1.15	< 0.01	1.5	3.0	350	5.5	1.4	0.002	0.05	0.15	< 1
TB-2-SCR	941394	02	0.15	< 0.1	0.120	0.75	29.0	20.6	0.82	845	12.30	0.04	2.3	52.8	6770	6.0	35.4	0.010	< 0.01	0.15	1
TB-3-F6	P41394	02	0.25	1.6	0.185	1.42	28.0	43.4	3.92	1295	0.75	1.20	11.1	164.0	1530	1.0	70.2	0.006	< 0.01	0.05	2
TB-4-FC	941394	02	0.20	0.5	0.580	0.66	11.5	3.4	0.91	1215	1.35	0.14	0.6	30.4	90	31.0	33.5	0.002	3.78	0.45	6
TB-3-FC	941394	04	0.20	4.0	U.023	4.44	20.0	/.0	0.45	400	6.95	0.18	5.4	56.5	1050	868	111.5	0.022	2.51	23.75	6
TB-6-FC	941394	02	0.05	0.7	0.010	0.85	16.5	2.6	0.28	500	0.65	1.20	1.3	9.8	100	23.0	36.5	0.002	0.02	0.25	< 1
FC-02-01-9.9M	P41394	02	0.20	2.4	0.045	2.97	61.5	8.2	0.67	410	0.35	0.23	10.7	37.2	660	6.5	147.0	0.004	0.94	0.40	1
FC-02-01-10.6M	641394	02	0.20	1.0	0.025	1.52	31.5	4.4	5.05	2540	0.45	0.13	3.7	23.0	. 470	115.5	71.7	0.004	0.25	0.45	1
FC-02-01-66.4M	941394	02	0.20	2.5	0.035	1.36	32.0	21.6	1.17	720	0.45	0.46	3.6	25.4	240	111.5	66.8	0.004	0.13	0.90	< 1
FC-02-01-92.2M	941394	02	0.15	1.9	0.030	1.46	31.0	14.6	0.79	930	0.60	0.66	3.0	22.2	210	15.0	73 9	0 004	0.46	0.15	
FC-02-03-44.6M	941394	02	0.25	3.1	0.040	0.29	57.0	59.2	3.89	995	1.15	0.05	9.0	171.0	2150	13.0	12.3	0.004	0.16	1.95	1
FC-02-03-60.3M	\$41394	02	0.20	0.8	0.075	0.58	23.0	85.2	4.60	1475	1.40	0.66	13.5	171.0	1260	4.0	29.5	0.006	0.10	0.15	ĩ
FC-02-03-73.5M	941394	02	0.30	3.0	0.085	4.37	91.5	19.4	1.28	780	0.60	0.62	11.1	50.2	710	6.0	219	0.006	0.01	0.20	1
FC-02-03-83.7M	941394	02	0.20	0.5	0.065	0.20	19.0	73.4	3.34	1865	1.00	1.53	6.9	107.0	1000	8.0	6.9	0.004	0.13	0.05	1
FC-02-03-89.7M	941394	02	0.15	2.0	0.030	1.31	27.5	13.8	1.23	1610	0.45	0.93	3.3	25.8	210	9.5	64.1	0.002	0.19	0.05	< 1
FC-02-05-15.3M	P41394	02	0.15	0.3	0.130	1.03	29.5	6.8	0.54	640	1.00	0.19	4.0	27.0	260	11.0	55.8	0.010	0.04	0.30	< 1
FC-02-05-27.5M	DA1204	02	0.20	2.1	0.790	0.50	40.0	40.0	1.99	1440	0.45	0.59	3.1	19.4	140	68.5	26.1	0.002	0.74	0.35	1
FC-02-05-60.8M	941394	02	0.20	2.1	0.215	2.35	41.0	41.8	1.80	1115	0.50	0.41	4.8	35.8	200	196.5	129.5	0.004	0.45	0.30	< 1
FC-02-05-77,1W	941394	0.2	0.15	1.9	0.035	1.49	32.5	6.2	1.01	830	0 50	0 22	3 1	9 4	110	10 F	70 6	0.004	0.20	0.20	
FC-02-05-89.65M	941394	02	0.20	1.4	0.040	2.37	34.0	7.4	3.03	2010	0.20	0.30	1.6	30.0	330	30.3	120.0	0.004	< 0.20	0.20	
PC-02-05-117.5M	941394	02	0.10	0.8	0.020	1.55	22.5	6.4	0.42	310	0.55	0.18	1.8	7.6	170	30.5	80.6	0.004	< 0.01	0.20	< 1
C-02-05-137.7M	<b>\$413\$4</b>	02	0.20	2.8	0.040	2.55	44.5	9.8	1.00	630	0.90	0.23	4.1	18.0	520	10.0	134.0	0.004	0.39	0.35	1
PC-02-05-153.3M	P41394	02	0.20	13.8	0.105	1.38	40.0	86.6	2.19	950	2.20	0.47	5.7	63.7	460	12.0	73.7	0.004	0.29	0.40	1
L	L	].							· · · · · · · · · · · · · · · · · · ·						CERTIF		<u> </u>	ki si	Jur.	l.	• •

CERTIFICATION:



14

#### hemex ΔΙ S Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave. North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 .o: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9

Pag Tota Jer :1-C Total .ges :2 Certificate Date: 13-AUG-2002 .2 Invoice No. :10221518 P.O. Number PFD Account

Project : TJB SERIES Comments: ATTN: LOUIS E. DOYLE CC: TIM BARRETT

**CERTIFICATE OF ANALYSIS** 

SAMPLE	PREP CODE	Sn ppm	Sr ppm (ICP)	Ta ppm (ICP)	Te ppm (ICP)	Th ppm (ICP)	Ti % (ICP)	Tl ppm (ICP)	Uppm (ICP)	V ppm (ICP)	W ppm (ICP)	Y ppm (ICP)	Zn ppm (ICP)	Zr ppm	Hg ppb	
02111	4139402	5.6	10.0	0.20	0.75	3.4	0.07	0.06	0.8	8	2.2	5.2	30	4.2	10	
02112	94139402	13.8	54.0	0.35	0.05	15.8	0.20	0.46	2.2	45	2.0	11.5	84	57.4	< 10	
02113	94139402	2.0	4.2	0.10	0.05	3.8	0.06	< 0.02	0.4	11	0.6	6.5	36	8.7	< 10	
02114	94139402	2.8	336	< 0.05	0.10	4.0	0.02	0.50	0.8	35	0.6	9.7	3170	23.1	150	
02115	94139402	8.2	86.5	< 0.05	3.85	2.0	0.01	0.52	0.8	38	0.8	17.0	>10000	22.6	7940	
02116	94139402	3.4	291	< 0.05	0.15	3.2	0.01	0.30	0.6	32	0.6	13.2	8820	16.4	440	
02117	94139402	4.8	75.9	< 0.05	0.10	3.8	0.04	0.36	4.9	733	2.0	11.5	1080	7.6	50	
02118	<b>P413P402</b>	30.0	109.0	< 0.05	< 0.05	5.8	0.15	0.34	6.8	294	2.1	17.8	342	2.6	< 10	1
02119	<b>9413940</b> 2	9.8	46.8	< 0.05	0.05	7.2	0.06	0.34	5.1	233	1.3	11.6	248	6.7	< 10	
02120	94139402	1.2	10.8	< 0.05	0.30	1.4	0.01	0.32	7.0	40	2.2	0.0	40	10.3	70	
02121	<b>\$413</b> \$402	9.2	23.4	< 0.05	< 0.05	5.2	0.09	0.40	3.7	359	2.0	8.8	204	11.5	< 10	
02122	94139402	6.4	22.0	0.10	0.20	9.0	0.06	0.68	2.4	95	2.6	4.5	216	54.3	10	
02123	94139402	9.6	122.0	1.50	< 0.05	15.0	0.15	0.54	2.4	15	3.3	10.1	24	64.4	< 10	
02124	P4139402	4.4	77.6	1.65	< 0.05	14.8	0.14	0.64	5.5	13	2.8	9.8	40	65.5	< 10	
02125	94139402	16.8	83.0	0.10	0.05	6.8	0.27	0.38	8.0	407	2.7	14.7	186	6.7	< 10	
TB-1-SCR	\$413\$402	0.6	4.6	< 0.05	< 0.05	2.2	0.03	0.02	0.4	5	1.0	4.1	10	3.5	< 10	
TB-2-SCR	<b>\$413</b> \$402	8.0	63.8	< 0.05	< 0.05	6.6	0.08	0.44	7.9	860	2.5	23.3	132	3.6	< 10	
TB-3-F6	<b>\$413\$4</b> 02	28.6	109.0	0.05	< 0.05	5.6	1.31	0.68	1.2	229	0.3	21.6	96	62.0	< 10	
TB-4-FC	<b>941394</b> 02	11.4	17.0	< 0.05	0.05	3.2	0.01	0.22	1.6	10	0.6	5.0	100	11.1	< 10	
TB-5-FC	94139402	63.2	39.4	0.20	< 0.05	6.6	0.18	13.35	4.6	178	4.4	12.5	3190	84.3	8290	
TB-6-FC	4139402	0.8	61.2	< 0.05	< 0.05	7.4	0.04	0.26	1.1	17	0.3	4.1	30	24.5	10	
FC-02-01-9.9M	94139402	2.0	46.2	0.60	< 0.05	16.8	0.21	0.70	1.8	65	1.3	8.2	32	94.5	< 10	
FC-02-01-10.6M	94139402	1.0	307	0.15	< 0.05	8.0	0.08	0.34	1.7	34	0.6	9.8	92	35.5	< 10	
FC-02-01-23.1M	<b>94139402</b>	31.6	36.8	0.50	< 0.05	17.8	0.21	0.86	2.5	71	3.0	8.2	74	79.0	< 10	
PC-02-01-66.4M	<b>P413P40</b> 2	1.6	77.6	0.20	< 0.05	15.0	0.12	0.36	2.3	53	0.5	8.2	68	91.5	< 10	
FC-02-01-92.2M	94139402	1.2	70.6	0.15	< 0.05	13.6	0.10	0.42	1.3	41	0.6	5.6	48	60.5	< 10	
FC-02-03-44.6M	<b>þ</b> 413 <b>þ</b> 402	1.0	968	0.40	< 0.05	8.2	0.41	0.18	5.9	112	1.1	15.7	86	136.0	20	
FC-02-03-60.3M	P413P402	0.8	255	0.40	< 0.05	2.6	0.70	0.18	1.3	237	1.5	7.8	106	31.5	< 10	
FC-02-03-73.5M	P4139402	2.8	126.5	0.70	< 0.05	. 25.8	0.29	1.10	4.7	88	2.3	10.8	78	102.0	< 10	
FC-02-03-83.7M	94139402	0.4	282	0.30	< 0.05	2.2	0.37	0.06	0.3	217	0.4	4.9		24.0	< 10	
FC-02-03-89.7M	<b>\$413\$4</b> 02	1.2	101.0	0.20	< 0.05	13.6	0.11	0.34	2.1	44	0.7	6.1	64	65.0	< 10	
FC-02-05-15.3M	<b>\$413\$402</b>	10.8	22.6	0.05	< 0.05	7.6	0.13	0.44	4.8	111	3.0	8.4	26	19.5	< 10	
FC-02-05-27.5M	94139402	16.8	61.3	0.20	< 0.05	9.8	0.07	0.20	1.4	37	4.1	4.3	292	41.5	< 10	
PC-02-05-43.8M	<b>94139402</b>	14.0	68.4	0.30	< 0.05	13.4	0.09	0.26	1.8	42	3.2	5.4	276	71.5	10	
FC-02-05-60.8M	94139402	43.4	55.6	0.30	< 0.05	15.4	0.13	0.90	3.0	63	3.1	5.6	130	68.0	< 10	
FC-02-05-77.1M	4139402	4.4	86.5	0.15	< 0.05	15.4	0.09	0.46	1.8	23	1.2	7.6	32	61.5	< 10	·····
FC-02-05-89.65M	P413P402	2.0	218	0.05	< 0.05	13.0	0.06	0.74	1.1	56	0.5	10.1	48	47.5	< 10	
FC-02-05-117.5M	P413P402	1.0	25.0	0.05	< 0.05	10.4	0.06	0.62	1.5	17	1.0	3.9	50	32.0	< 10	
FC-02-05-137.7M	P4139402	3.4	39.0	0.25	< 0.05	21.2	0.12	2.02	3.2	40	1.8	8.2	68	101.0	< 10	
FC-02-05-153.3M	P4139402	17.2	134.0	Q.30	< 0.05	20.0	0.21	U.38	2.2	83	1.7	9.1	86	>500	< 10	
L	Lł	<b>I</b>	<u> </u>									<u></u>		CERTIFIC	CATION:	Acialwankin.



# ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 J: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9 Page Jer :2-A Total Jges :2 Certificate Date: 13-AUG-2002 Invoice No. : 10221518 P.O. Number : Account : PFD

Project : TJB SERIES Comments: ATTN: LOUIS E. DOYLE CC: TIM BARRETT

CERTIFICATE OF ANALYSIS

A0221518

SAMPLE	PREP CODE	Weight / Kg	Au ppb P ICP	t ppb ICP	Pd ppb ICP	Ag ppm (ICP)	A1 % (ICP)	λs ppm	Bappm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Ceppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Csppm (ICP)	Cuppm (ICP)	Fe % (ICP)	Ga ppm (ICP)
FC-02-06-26.6M	4139402	0.82	2	< 5	< 2	0.08	5.90	43.0	391.0	0.95	0.40	1.85	0.10	71.2	23.0	113	1.60	15.6	4.93	14.80
FC-02-06-42.7M	94139402	0.60	< 2	< 5	< 2	0.26	4.70	10.6	491.5	0.85	0.46	0.06	0.42	68.6	7.9	66	1.55	23.0	4.02	11.35
FC-02-06-61.1M	P4139402	0.50	4	< 5	4	0.42	7.82	238	382.0	0.85	0.61	1.75	0.52	61.3	70.7	290	1.00	145.7	9.81	21.95
PC-02-06-77.8M FC-02-06-101.4M	94139402 94139402	0.82 0.80	< 2 < 2	< 5 < 5	< 2 < 2	0.22 0.06	5.02 6.88	12.6 38.0	542.9 466.0	1.55 1.80	0.45	4.30 0.72	0.16 0.12	65.6 81.3	7.2 11.3	55 80	1.60 2.20	18.6 4.8	2.90 2.75	11.30 18.85
FC-02-06-115.0M	94139402	0.90	< 2	< 5	< 2	0.20	4.00	5.0	265.5	1.05	0.52	0.39	0.10	46.4	3.7	109	1.30	11.0	1.28	8.90
FC-02-06-132.9M	94139402	0.68	< 2	< 5	< 2	0.08	5.62	19.4	449.5	1.25	0.25	0.13	0.08	72.9	15.1	79	1.90	45.4	4.40	15.45
ACE-02-03-119.0M	P4139402	0.58	< 2	5	< 2	0.08	9.77	1.8	815.2	3.50	0.20	0.42	0.04	93.6	24.3	94	3.65	33.6	4.95	26.95
ACE-02-03-122.0M	P4139402	0.86	< 2	< 5	< 2	0.08	11.05	1.2	845.2	3.45	0.21	0.37	0.04	122.5	27.7	88	3.50	60.5	5.84	30.15
ACE-02-04-17.1M	94139402	1.04	28	< 5	< 2	0.05	7.43	0.6	1281.0	2.50	0.10	1.15	0.02	110.5	15.2	83	4.85	23.0	2.99	20.00
ACE-02-04-28.0M	94139402	0.74	< 2	< 5	< 2	0.08	7.78	0.4	1135.5	2.55	0.08	0.55	0.02	99.2	19.3	68	2.35	23.2	4.17	21.85
ACE-02-04-37.3M	94139402	0.45	< 2	< 5	< 2	0.14	7.60	3.4	125.0	1.90	0.52	4.10	1.16	72.6	16.3	81	3.25	16.6	3.28	16.45
ACE-02-04-50.0M	P4139402	0.44		< 5	< 2	0.08	8.31	28.0	35.0	3-35	0.79	1.95	0.56	70.2	16.3	90	2.15	37.6	3.96	23.40
ACE-02-04-83.0M	94139402	0.60	< 2	< 5	6	0.44	5.25	1.8	120.5	1.65	1.69	2.70	U.26 1.58	43.6	23.1	101	10.60	55.8 28.0	3.53	25.40 13.60
ACE-02-04-98.1M	94139402	1.04	< 2	< 5	< 2	0.08	9.74	0.8	1427.0	3.45	0.15	0.39	0.04	118.5	26.6	109	3.90	28.4	5.24	28.40
ACE-02-04-112.0M	94139402	0.86	< 2	45	< 2	0.14	10.65	0.6	1440.5	3.75	0.30	0.33	0.02	120.5	31.2	87	4.25	53.6	6.20	29.40
				÷																

CERTIFICATION:

(xizan

( A ( B)



Т

#### hemex S Δ Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9

Pag Jer :2-B Tota ages :2 Certificate Date: 13-AUG-200; Invoice No. : 10221518 P.O. Number Account :PFD

**TJB SERIES** Project : Comments: ATTN: LOUIS E. DOYLE CC: TIM BARRETT

**CERTIFICATE OF ANALYSIS** 

	<u> </u>	2	2
Д.	13	/	1

SAMPLE	PREP CODE	Geppm (ICP)	Hf ppm	In ppm	K% (ICP)	La ppm (ICP)	Li ppm (ICP)	Mg % (ICP)	Min ppm (ICP)	Moppm (ICP)	Na % (ICP)	Nib ppm (ICP)	Nippm (ICP)	P ppm (ICP)	Pb ppm (ICP)	Rb ppm (ICP)	Re ppm	S %	Sb ppm (ICP)	Se ppm
FC-02-06-26.6M FC-02-06-42.7M	941394( 941394(	0.20	4.2 2.3	0.110 0.150	1.41 1.53	37.0 34.5	85.8 22.4	2.17 1.09	985 805	0.85	0.46 0.18	3.2 2.8	62.1 13.0	470 130	12.5 35.5	76.8 79.8	0.002	0.37	0.45	1 < 1
FC-02-06-61.1M	9413940	0.25	1.4	0.085	1.06	29.5	125.0	5.66	2150	1.45	0.29	21.2	210	1510	72.0	53.1	0.004	0.86	1.00	1
FC-02-06-77.8M	9413940	0.15	1.8	0.155	1.86	30.5	8.4	1.67	1045	0.40	0.32	2.7	15.6	110	14.5	87.0	0.002	0.05	0.15	< 1
FC-02-06-101.4M	9413940	0.20	4.1	0.040	2.21	42.5	20.0	1.02	490	0.45	0.56	3.4	26.6	410	14.5	112.5	0.004	0.10	0.25	< 1
FC-02-06-115.0M	9413940	0.15	1.3	0.020	1.29	22.5	9.4	0.50	185	0.80	0.33	1.8	9.6	160	18.5	59.8	0.002	0.01	0.10	< 1
EC-02-06-132.9M	D413040	0.20	2.3	0.140	1.77	58.0	43.4	1.58	675	0.50	0.13	2.7	31.4	330	9.0	92.4	0.002	0.34	0.35	< 1
ACE-02-03-112.08	641394	0.30	16.8	0.000	2.64	66.0	40.6	1 23	395	2 45	1.10	10.0	49.0	590	17.0	142.5	0.004	0.41	0.05	1
ACE-02-04-17.1M	6413940	0.25	0.8	0.055	2.72	56.5	22.6	0.70	570	0.65	1.80	16.5	27.0	1120	13.5	117.0	0.004	0.07	0.10	1
	<b>I</b>																0.004		0.05	<b>1</b>
ACE-02-04-28.0M	9413940	0.30	0.6	0.070	2.38	50.5	27.2	0.97	425	0.70	1.31	18.5	30.4	1090	8.0	107.0	0.004	0.26	< 0.05	1
ACE-02-04-37.3M	P413940	2 0.20	1.2	0.025	0.61	37.0	14.4	1.26	225	3.55	5.44	6.7	37.8	1330	51.5	36.7	0.006	2.48	0.20	3
ACE-02-04-71.3M	BA1394(	0.25	1.1	0.045	3 00	30.0	48 6	1 64	380	50.70	2.04	5.9	60.6	190	12.5	48.3	0.032	3.62	0.70	7
ACE-02-04-83.0M	9413940	0.15	0.2	0.020	0.52	24 5	15.0	0.74	700	131.50	3.76	2.5	65 A	2700	59 0	144.5	0.004	1.29	0.10	2
															35.0		0.145	1.75	0.05	3
ACE-02-04-98.1M	P413940	0.30	0.8	0.085	2.70	62.5	37.0	1.23	580	1.95	1.07	13.3	52.8	540	13.5	145.0	0.004	0.16	< 0.05	1
ACE-02-04-112.01	<b>9413</b> 940	0.30	0.6	0.090	2.94	64.5	39.2	1.34	450	0.95	1.04	13.2	57.1	450	27.5	159.5	0.004	0.27	0.05	1
				÷																

CERTIFICATION: Acia Wark



.

# ALS Chemex

Analytical Chemists * Geochemists * Registered Assavers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 ર: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9 Pag Jer :2-C Totar. ages :2 Certificate Date: 13-AUG-2002 Invoice No. : 10221518 P.O. Number : Account : PFD

Project : TJB SERIES Comments: ATTN: LOUIS E. DOYLE CC: TIM BARRETT

CERTIFICATE OF ANALYSIS A

SAMPLE	PREP CODE	Sn ppm	Sr ppm (ICP)	Ta ppm (ICP)	Te ppm (ICP)	Th ppm (ICP)	Ti % (ICP)	Tl ppm (ICP)	Uppm (ICP)	V ppm (ICP)	W ppm (ICP)	Y ppm (ICP)	Zn ppm (ICP)	Zr ppm	Hg ppb	
FC-02-06-26.6M FC-02-06-42.7M FC-02-06-61.1M	94139402 94139402 94139402	17.0 22.6 9.8	125.5 45.4 104.5	0.15 0.15 1.15	< 0.05 < 0.05 < 0.05	19.4 18.0 5.0	0.14 0.09 0.86	0.38 0.40 0.32	1.8 1.8 1.0	73 31 277	1.0 1.4 14.3	8.0 5.3 8.4	88 196 482	69.7 51.7 53.8	< 10 < 10 10	
FC-02-06-77.8M FC-02-06-101.4M	94139402 94139402	5.2 1.8	147.0 86.6	0.15 0.20	< 0.05 < 0.05	14.0 18.4	0.09 0.11	0.50 0.70	1.7 3.3	31 52	$1.1 \\ 1.3$	8.6 9.4	62 78	47.3 73.2	< 10 < 10	
FC-02-06-115.0M FC-02-06-132.9M ACE-02-03-119.0M ACE-02-03-122.0M ACE-02-04-17.1M	94139402 94139402 94139402 94139402 94139402 94139402	1.2 10.6 2.6 2.4 2.0	54.7 22.8 166.5 154.0 147.0	0.05 0.15 0.45 0.60 0.75	< 0.05 < 0.05 < 0.05 0.05 < 0.05	11.0 16.2 16.8 19.4 22.2	0.06 0.09 0.18 0.25 0.58	0.48 2.44 0.64 0.60 0.48	1.8 4.2 1.8 2.8 3.0	22 40 89 126 80	0.6 2.3 0.8 3.9 1.6	4.2 6.9 8.1 9.2 25.2	34 124 110 122 54	43.0 76.5 34.9 34.5 22.6	< 10 < 10 < 10 < 10 < 10 < 10	
ACE-02-04-28.0M ACE-02-04-37.3M ACE-02-04-50.0M ACE-02-04-71.3M ACE-02-04-83.0N	94139402 94139402 94139402 94139402 94139402 94139402	2.2 0.6 1.8 2.4 0.8	134.0 463 418 428 262	0.85 0.30 0.30 0.25 0.05	< 0.05 0.15 0.05 0.05 0.05	15.8 14.6 8.0 14.6 8.4	0.62 0.19 0.17 0.21 0.08	0.46 0.34 0.32 0.86 0.24	2.2 4.6 8.8 3.8 6.5	90 152 391 126 128	0.9 0.8 1.9 1.0 0.7	18.6 11.5 10.9 9.7 17.5	102 360 68 58 162	16.3 44.0 29.1 40.2 19.9	< 10 < 10 < 10 < 10 < 10 < 10 < 10	
ACE-02-04-98.1M ACE-02-04-112.0M	94139402 94139402	2.8 2.6	141.0 142.5	0.60 0.60	< 0.05 < 0.05	19.6 19.4	0.26 0.26	0.70 0.70	2.2 2.3	101 113	0.6	20.7 20.4	136 146	23.6 18.2	< 10 < 10	
				÷												
																(1) $(1)$ $(1)$

CERTIFICATION: Stan Wank



1

,

# ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 J: BARKER MINERALS LTD.

22117 37A AVE. LANGLEY, BC V2Z 1N9

Project : TJB SERIES Comments: ATTN: LOUIS E. DOYLE CC: TIM BARRETT Pag per :1 Tota ages :1 Certificate Date: 20-AUG-2002 Invoice No. : 10222088 P.O. Number : Account : PFD

					CER	<b>FIFICATE OF</b>	ANALYSIS	A022	22088	
SAMPLE	P) C(	REP ODE	Pb %	Zn %						
2115	212		6.40	17.30						
		Ì								
									0	<u> </u>

# **Preliminary Report**

on

**Diamond Drilling and Trenching** 

for the

Frank Creek & Ace Projects

**Cariboo Mining Division** 

N.T.S. 93A/11, 93A/14



Owner/Operator: Barker Minerals Ltd. 22117 37A Avenue Langley, B.C. V2Z 1N9 Tel: (604) 530-8752 Fax: (604) 530-8751

Christopher J. Wild, P.Eng. Consulting Geological Engineer Wildrock Resources Consulting & Drafting

June 26, 2002

Preliminary Report on May-June, 2002 DDH & Trenching Program

# Table of Contents

1.0	Summar	ry	1
2.0	Diamono	d Drilling and Trenching	6
	2	2.1 Frank Creek Trenching	6
		TR-02-01	
		TR-02-02	
		TR-02-03	
		TR-02-05	
	2	2.2 Frank Creek Diamond Drillholes	6
		FC-02-01	
		FC-02-02	
		FC-02-03 FC-02-04	
		FC-02-05	
		FC-02-06	
	2	2.3 Ace Diamond Drillholes	8
		ACE-02-01	
		ACE-02-02 ACE-02-03	
		ACE-02-04	
		ACE-02-05	
3.0	Discuss	sion	9
	3.	.1 Ace Project	9
	3.:	.2 Frank Creek Project	9
		-	
4.0	Referen	1Ces	11
		List of Tables	
Table	<b>1</b> 2	2002 Diamond Drillholes	1
Table	<b>2</b> 2	2002 Trench Log	2
		List of Figures	
			2
Figur	re 1 ro 2	Ace Project: 16S Zone Location Map	
Figu	re 3	Ace Project: 5N Zone Location Map	5
		Appendices	
<b>A</b> nne	endix 1	Certificate of Qualifications	
Appe	endix 2	Summary of Core Samples	
Appe	ondix 3	Drillhole Logs	

# 1.0 Summary

A total of 1,459.1 metres of diamond drilling was completed on 11 holes split between the Frank Creek and Ace Project areas, located approximately 20 to 40 kilometres northeast of Likely, B.C. The property is 100% owned by Barker Minerals Ltd. Table 1 shows the breakdown of drilling between the project areas and individual holes, as well as hole coordinates and orientations.

Hole No.	Date Collared	Date Completed	Northing	Easting	Elevation	Azimuth	Dip	Length
			metres	metres	metres			metres
FC-02-01	15-May-02	16-May-02	57 + 95 N	16 + 00 W	1042	090	-45	97.84
FC-02-02	16-May-02	18-May-02	57 + 20 N	12 + 80 W	1077	090	-45	144.78
FC-02-03	18-May-02	20-May-02	54 + 30 N	13 + 47 W	1140	090	-45	118.87
FC-02-04	20-May-02	22-May-02	54 + 50 N	12 + 20 W	1140	090	-45	158.19
FC-02-05	22-May-02	24-May-02	55 + 60 N	15 + 00 W	1115	075	-45	158.50
FC-02-06	24-May-02	25-May-02	56 + 11 N	15 + 41 W	1103	070	-45	135.03
						Total-FC		813.21
Ace-02-01	26-May-02	28-May-02	16 + 15S	6 + 65E	1005	180	-45	144.78
Ace-02-02	29-May-02	31-May-02	18 + 80S	8 + 64E	1025	180	-45	164.90
Ace-02-03	31-May-02	2-Jun-02	4 + 70N	5 + 70W	1028	180	-45	150.88
Ace-02-04	2-Jun-02	3-Jun-02	4 + 20N	5 +00W	1025	180	-45	117.35
Ace-02-05	3-Jun-02	4-Jun-02	5 + 00N	6 + 25W	1027	n/a	-90	67.97
						Total-Ace		645.87
						Total		1,459.08

Table 12002 Diamond Drillholes

On Frank Creek, all holes were located within the F-1 Target Area. Four of the 6 holes tested the Frank Creek mineralized horizon, the other two tested the immediate structural footwall, to a wide, conductive graphitic fault zone. FC-02-01, 05, and 06 intersected disseminated to semi-massive sulphides, dominantly pyritic, near the projected location of the mineralized horizon, downslope (northwest) of the original Frank Creek (F-1) Showing. FC-02-03 tested under the showing and intersected approximately 50cm of pyritic massive sulphide similar to that in the showing, caught in a large gougy fault zone. FC-02-02 and 04 tested strong max-min conductors and intersected significant graphitic shear zones in carbonate-altered metasedimentary rocks.

At the Ace, ACE-02-01 tested the 16S Target, defined by a max-min conductor and a subtle gravity anomaly. ACE-02-02 tested a ground magnetic high flanking the 16S anomalies to the south. The first hole intersected approximately 6.5 metres of "felsite", a fine-grained plagioclase-rich unit that elsewhere hosts massive sulphide mineralization.

Three holes, ACE-02-03 to 05, tested the 5N Zone, 2 kilometres to the west. All three intersected at least 40 metres of "felsite"; two intersected significant sulphide mineralization near the top of the interval. The three holes followed up on two holes completed through the felsite unit in 1998. Drilling also tested high ground magnetics, a max-min conductor, and another subtle gravity anomaly.

A total of 154 samples were collected from the core by sawing marked intervals, bagging half the core from the interval and retaining the other half as a permanent core record. A total of 84 samples were collected from the Ace core and 70 samples from Frank Creek. Sample lengths averaged 1.0-1.5 metres. Samples were transported to EcoTech Laboratories in Kamloops for analysis. All samples will be analyzed for 28 elements using standard ICP analysis after aqua regia leach. Au, Pt, and Pd will be fire assayed with a 30g sample. Trace elements Hg, Se, Te, TI, Sn, and B will be analyzed using ICP methods at Acme Analytical Laboratories in Vancouver. A total of 71 samples will also be run for whole rock major elements at EcoTech in an attempt to better characterize host rocks. Petrographic work is also planned for selected samples.

In addition to diamond drilling, a series of excavator trenches tested several targets in and adjacent to the F-1 Target Area at Frank Creek. Five trenches were excavated over a total distance of 289 metres; details are shown in Table 2. Exposures in trenches 1, 3, 4 and 5 provided much structural data and will be invaluable in piecing together the geology of the area. All but TR-02-05 had been reclaimed at the time of writing.

Table 2		2002 Trench Log	
Trench	Length (metres)	Location & Target	Description
TR-02-01	20	Northwest flank of magnetic high.	Argillite, dark phyllites.
TR-02-02	36	NW extension of mineralized horizon.	Qtz-ser phyllite, argillite, unstable.
TR-02-03	107	Max-min conductor, magnetic high.	Siliceous, gritty phyllites.
TR-02-04	65	Max-min conductor, magnetic high.	Argillite, minor sericitic phyllite.
TR-02-05	61	IP anomaly, near ms boulders.	Siliceous grits, minor argillite.

Figure 1 shows the locations of trenches and drill collars on the F-1 Target area. Trench TR-02-01 is located immediately west of F-1, off the map. Figures 2 and 3 show the drillhole locations on the 16S Target and 5N Zone on the Ace, respectively.



c:_work\barker\trddhloc.dgn Jun. 27, 2002 23:14:55







# 2.0 Diamond Drilling and Trenching

# 2.1 Frank Creek Trenching TR-02-01

A trench 100 metres in length was originally planned across a magnetic high to low on line 54N, between 19+50W and 20+50W, approximately 750 metres west of the F-1 Showing. However, bedrock was not encountered in test pits along the planned length. Bedrock was exposed 30 metres to the west, consisting of dark chloritic phyllite (QCSP) or argillite, quartz-sericite phyllite (QSP), and a siliceous and weakly pyritic exhalative unit, less than 50cm thick. Strikes are northwesterly with intermediate to steep southwesterly dips. A well-developed crenulation cleavage indicates proximal third phase folding.

## TR-02-02

A second trench was excavated on line 58N, between 15+45W and 15+80W. The trench tested for sulphide mineralization approximately 40 metres north of mineralization uncovered in TR-BW-10 and adjacent to drillhole FC-02-01. High subsurface water flow made the trench walls highly unstable and only muck piles were investigated. Rock consists of waxy quartz-sericite phyllite and less dark chloritic phyllite or argillite. No significant mineralization was encountered.

### TR-02-03

Good exposure was found in a 107 metre long trench immediately south of line 55W, between 15+00W and 16+00W. The centre of the trench is 225 metres west of the F-1 Showing. The trench cuts a maxmin conductor in an area of strong magnetic gradient. Most of the trench is underlain by grit and siliceous phyllites (QSP and QCSP). No obvious conductors or moderately magnetic rocks were mapped. Structurally, the principal foliation strikes to the north with intermediate west dips at the east end of the trench. Toward the middle of the trench, the foliation is folded to the west-northwest and back more northwesterly further west. No significant mineralization was encountered.

### TR-02-04

TR-02-04 was excavated 100 metres north of TR-02-03, also on a max-min conductor. Much of the trench is underlain by variably graphitic dark phyllite or argillite. Structurally, the argillite is strongly rodded with a west-northwesterly strike on the foliation. A gougy fault separates the argillite from softer, more sericitic phyllites at the west end of the trench. Strikes turn dramatically to the north-northeast. Again, no significant mineralization was encountered in the trench.

### TR-02-05

The last trench of the spring program is located 50 metres east of TR-BW-04, 100-150 metres southeast of the Frank Creek Showing (Figure 1). The trench is underlain by interlayered grit and argillite, folded into rods and fold crests that plunge gently to the northwest. The main foliation strikes to the northwest and dips steeply to the southwest. No significant mineralization was encountered.

## 2.2 Frank Creek Diamond Drillholes

## FC-02-01

The first hole, FC-02-01, was collared on line 58N at 16+00W, to test for mineralization uncovered near the west end of TR-BW-10 (Figure 1). Blebby pyrite with 2% patchy cp and minor sphalerite and galena was encountered in two narrow sections around 27.0 and 29.2 metres downhole. Host rocks are grey quartz sericite phyllites (QSP), dark chloritic phyllites (QCSP) and argiillite. Gougy and brecciated faults are common throughout. Recoveries were generally >90% overall, lower around these faults. Wispy tan

carbonate and spotted ankerite alteration are relatively common. Twelve samples were split for trace element analysis, 4 of those will also be analyzed for major elements.

## FC-02-02

The second hole was collared just north of line 57N, near 12+80W, and drilled under the first switchback and TR-BW-09. The hole encountered quartz-sericite phyllite, often gritty and flooded with wispy tan carbonate and associated Cr-mica. The hole also intersected several large graphitic fault zones with associated deformation breccias. These breccias frequently consist of QSP clasts in a dark, weakly carbonaceous matrix. Clasts are attenuated along the principal foliation, presumably to the northwest. The hole was stopped short of the inferred contact with limestones mapped over the east half of TR-BW-09. A total of 7 samples were split, 4 of which will be analyzed for major elements.

### FC-02-03

The third hole was collared around 35 metres west of the F-1 Showing and drilled to the east under the showing. The top of the hole is dominated by a 17 metre thick section of fault gouge (true thickness ~12 metres). Within the fault zone, a couple of pieces of pyritic massive sulphide were recovered over an interval around 50cm long. The Frank Creek massive sulphide has apparently been down dropped to the west, as indicated by the position of these sulphide pieces in the centre of the fault, below the showing. The footwall consists of quartz-sericite (QSP) and quartz-chlorite phyllites (QCSP) interrupted by numerous gougy faults. As in FC-02-02, carbonate alteration is widespread. A total of 6 samples were split, 4 of which will be analyzed for major elements.

### FC-02-04

The fourth hole was collared 135 metres east of FC-02-03, as part of a fence across the showing area. A line of IP run down the road across the showing area shows significant chargeabilities and low resistivities 100 metres east of the showing. Nothing that easily explains the anomaly was encountered; much of the section consists of QSP and QCSP, punctuated with thin argillite and limestone breccia intervals. A thick (13.5m) gougy quartz-graphite fault, likely part of Conductor B, dominates the lower third of the hole. Mineralization is quite weak and again, only 6 samples were split from this hole.

## FC-02-05

FC-02-05 was collared on line 15W, at 55+60N, and drilled at -45° toward 75°. The hole was positioned to test strong soil geochemical anomalies and potential mineralization associated with a highly altered outcrop on D Road. The top of the hole consists of coarsely interlayered QSP and argillite. Disseminated mineralization including pyrite and minor sphalerite, chalcopyrite and galena, begins near the top of the hole, culminating in 1.3 metres of semi-massive to massive sulphides. Sulphides are hosts in quartz-sericite phyllite, possibly a felsic volcanic unit. Disseminated mineralization is far less extensive below the intersection, becoming grittier with significant deformation breccia toward a fault near the bottom of the hole. Unlike the other holes, faulting was weak through most of the hole. A total of 20 samples were split for analysis.

### FC-02-06

In response to the discovery of significant mineralization in FC-02-05, a sixth hole was collared around 60 metres to the northwest, along strike, and drilled at -45° toward 70°. As expected, the hole is very similar to FC-02-05. The top of the hole consists of argillite and QSP with mineralization beginning near the top of a thick, relatively weakly faulted section of QSP. Mineralization consists of disseminated pyrite, minor chalcopyrite, sphalerite and traces of galena in layers and stringer zones. The sulphide horizon is marked by 10-12cm of semi-massive sulphides, similar to but far thinner than in FC-02-05. The footwall section consists of a carbonate-altered fine to medium-grained QSP, with local sections of deformation breccia and grit with very little faulting. A total of 19 samples were split for analysis.

## 2.3 Ace Diamond Drillholes

## ACE-02-01

Two diamond drillholes; ACE-02-01 and 02, were collared in the 16S Zone just to the west of a twodrillhole fence (98-01 and 05) completed in 1998 (Figure 2). The first hole, ACE-02-01, tested a coincident max-min conductor and modest gravity anomaly on L16S near the 8400 Road. The top 49.0 metres consist of very siliceous quartz-muscovite schist and argillite. The next 10 metres consist of strongly calcareous marble, calc-schist, and argillite, immediately above a 6.5 metre section of "felsite". Felsite consists of plagioclase or albite with minor micas and quartz and elsewhere is the host for massive to disseminated mineralization (Payne, 1998). A hole drilled 190 metres to the west, 98-01, intersected 3.5 metres of felsite. The footwall is made up of quartz-rich, muscovite and chlorite schists with variable amounts of garnet. A total of 22 samples were collected from ACE-02-01, to better characterize the various units in the Ace stratigraphic section.

## ACE-02-02

The second hole into the 16S Zone, ACE-02-02, was collared 100 metres to the east of ACE-02-01 on the 8400 Road (Figure 2), and tested a ground magnetic high 150 metres south of 8400 Road. The hole, ACE-02-02, did not intersect any felsite but did encounter two significant marble sections. The rest of the hole is made up of quartz-muscovite-chlorite+/-garnet schist. Although ACE-02-02 is situated near ACE-02-01, there is no obvious correlation of stratigraphy between the two. Seven samples were collected from throughout the hole.

### ACE-02-03

Three drillholes, ACE-02-03 to 05, tested the 5N Zone, an area tested by extensive trenching and 2 diamond drillholes completed in 1998 (Figure 3). Drillhole 98-03 intersected 0.25 metres and 0.2 metres of massive sulphide near the top an 81.5 metre thickness of felsite. ACE-02-03 was collared approximately 52 metres south of 98-03 in semi-massive sulphide up-dip from the massive sulphides in 98-03. As in 98-03, weakly mineralized felsite extended an additional 69 metres below the strongly mineralized layer. The footwall consists of mainly weakly chloritic quartz-muscovite schist, argillite, and minor marble. Significantly more argillite is present in ACE-02-03. A total of 19 samples were split from ACE-02-03, 12 from the felsite.

### ACE-02-04

ACE-02-04 was collared 93 metres east of, and between 98-03 and ACE-02-03 (Figure 3). Approximately 70.5 metres of felsite were encountered between 33.8 and 104.3 metres downhole, with disseminated and semi-massive mineralization spread over 4.9 metres between 53.8 and 58.7 metres downhole. The structural hangingwall consists of weakly biotitic and chloritic quartz-muscovite schists and a significant dirty marble. No such marble was identified in 98-03, but is present over 2 kilometres to the east, in ACE-02-01. The footwall consists of weakly chloritic quartz-muscovite schist. A total of 31 samples were split for analysis, 21 from the felsite unit.

### ACE-02-05

The last hole, ACE-02-05, was collared on L5N at 6+25W and drilled vertically to test a coincident ground magnetic high and subtle gravity anomaly (Figure 3). Both surveys had suggested a southerly dip to the target and fold geometries seen a few hundred metres to the southeast supported the possibility that the target horizon could turn over to the south. ACE-02-05 was collared in the felsite unit, likely below the sulphide horizon. Here, the felsite fingers in and out with quartz-muscovite schist and argillite to a depth of 66.5 metres with felsite intervals becoming thinner and less frequent. Sulphide content is less than 10% combined pyrite and pyrrhotite, but is probably sufficient to explain both the high magnetic and gravity. Only 4 samples were collected from the felsite and one from a quartz vein.

# 3.0 Discussion

## 3.1 Frank Creek

A much clearer picture of the geology of the F-1 Target Area at Frank Creek has emerged from recently completed trenching and drilling. A thick package of siliceous, sericitic and weakly chloritic phyllites and quartz eye grits host the mineralized horizon, best exposed at the F-1 Showing. This section appears to be siliciclastic, although there is some potential for felsic volcanic and/or volcaniclastic rocks within the package. Quartz eye units have previously been interpreted as felsic volcanic rocks and more study is required to determine their true nature. Much of the section consists of dark, argillaceous phyllites interpreted to be mudstones, and pale grey, fine-grained to weakly gritty phyllites interpreted to be siltstones. Occasional limestone units add to the sedimentary character of the section.

Structurally, trenching has shown that the rocks are tightly folded around northwest-plunging folds in an apparent "S" pattern, suggesting a large closure may exist to the southwest. Earlier recumbent, likely isoclinal second phase folds appear to have similar northwest-plunging fold axes, but have been folded around the more obvious third phase features. Faulting consists of more plastic shear zones that are parallel to the principal foliation (S2), with associated deformation breccias. Clasts are mainly siliceous metasediments, attenuated along F2, supported in a fine-grained dark grey muddy matrix. Late steep, north-trending brittle block faults cut these earlier features.

Mineralization includes pyritic massive sulphides exposed in the F-1 discovery trench. Drilling has intersected significant strongly disseminated, semi-massive to massive pyrite-rich mineralization along trend to the northwest in FC-02-05, 06, and 01. This mineralized trend was also exposed in TR-BW-10. Besides pyrite, chalcopyrite, sphalerite, and galena were identified in relatively minor amounts.

Future work on the F-1 Target Area should focus on extending the mineralized trend to the northwest where it likely continues to near the location of massive sulphide boulders in placer workings in Frank Creek. Efforts should also be made to extend the trend to the southeast, upslope from the showing area. Given the structural and lithological complexity of the area, emphasis should be on trying to understand the geology through trenching and drilling. Work should also focus on soil geochemistry to provide high quality targets for this work. Finally, the F-1 Target Area will be used as a template for exploring the many other targets on the Frank Creek and SCR Project Areas.

## 3.2 Ace Project

Drilling and mapping in 1998 provided an excellent geological framework for the project area. Delineation of the "felsite" unit lead to the discovery of massive to semi-massive mineralization in the 5N Zone, an area that was extensively trenched prior to 1998. Three holes drilled into the zone this spring have defined the felsite package as a unit some 60-80 metres thick, possibly thickened by a series of tight to isoclinal folds. Immediately to the west in ACE-02-05 and the east in DDH-98-04, the unit breaks up into a series felsite layers, separated by weakly chloritic quartz-muscovite schists.

The felsite unit is reportedly made up of up to 80% plagioclase (Payne, 1998), although at least one sample was composed of mainly albite (Walus, 1997). The fine-grained nature of the rock, its intimate relationship to a series of thin marble bands, and almost regional extent suggests that it may be an exhalative horizon and an excellent target horizon for VMS deposits. Sulphide mineralization in 98-3, ACE-02-03, and ACE-02-04 is located near the structural top of the unit. Extensive whole rock analysis of the felsite in ACE-02-03 and 04 should help to characterize the unit.

In the 16S Area, ACE-02-01 was collared to test coincident max-min conductor and subtle gravity anomaly on line 16S. Both the conductor and gravity were caused by a 6.5-metre thickness of felsite with up to 10% pyrite and pyrrhotite. A second hole, ACE-02-02, was collared immediately above the felsite

and tested the footwall toward a large ground magnetic high to the south. That anomaly was not adequately explained in the core.

At the current time, the 16S Target Area does not warrant further drilling. Further compilation work is required for the 5N Zone to determine if further drilling is required there. To the east, soil sampling, is warranted on some of the recently established grid on the east half of the project area. Also to the east, a coincident max-min conductor and subtle gravity anomaly on lines 3800S to 4700S should be followed up by extending the grid and possibly extending the gravity coverage to adjacent lines. Drilling should be planned on the most promising part of the anomaly.

Respectfully submitted,

Christopher J. Wild, P.Eng. Consulting Geological Engineer

June 26, 2002

# 4.0 References

Colpron, M., Logan, J.M., Gibson, G., and Wild, C.J. (1995); Geology and Mineral Occurrences of the Goldstream River Area, Northern Selkirk Mountains. B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Survey Branch, Open File 1995-2.

Ferri, F. (2001); Geological Setting of the Frank Creek Massive Sulphide Occurrence near Cariboo Lake, East-Central B.C., B.C. Ministry of Energy and Mines, Geological Fieldwork 2000, Paper 2001-1.

Hoy, T. and Ferri, F. (1998a); Stratabound Base Metal Deposits of the Barkerville Subterrane, Central British Columbia; B.C. Ministry of Employment and Investment, Geological Fieldwork 1997, Paper 1998-1.

Hoy, T. and Ferri, F. (1998b); Zn-Pb Deposits in the Cariboo Subterrane, Central British Columbia; B.C. Ministry of Employment and Investment, Geological Fieldwork 1997, Paper 1998-1.

Hoy, T., Gibson, G. and Berg, N.W. (1984); Copper-Zinc Deposits Associated with Basic Volcanism, Goldstream Area, Southeastern British Columbia. Economic Geology, Vol. 7, pp 789-814.

Logan, J.M. and Drobe, J.R. (1994); Summary of Activities, North Selkirk Project, Goldstream River and Downie Creek Map Areas (82M/8, 9 and parts of 10); B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1993, Paper 1994-1, pages 153-169.

Payne, J.G. (1998); Ace Project; Initial Drill Program, Drill Log. Internal Report.

Payne, J.G. (1998); Ace Project; Initial Drill Program, Petrographics. Internal Report.

Payne, J.G. (1998); Ace Project; Initial Drill Program, Preliminary Report & Assay Results. Internal Report.

Perry, B.J. and Payne, J.G. (2001); Qualification Report on the Barker Minerals Ltd. Property, including the Frank Creek, Ace and Sellers Creek Road VMS Projects and the Quesnel Platinum Project; Cariboo Mining Division, British Columbia, Canada, 94 pages.

Skupinski, A. (1995); Ore Petrography, Samples 94-10-1352, 94-10-1352 bis, 94-10-1358. Internal Report.

Skupinski, A. (1994); Ore Petrography, Samples (1).27.76PT, (2).09-14-94-9, (3).DD3 & (4).DD3 B. Internal Report.

Struik, L.C. (1988); Structural Geology of the Cariboo Gold Mining District, East-central British Columbia; Geological Survey of Canada, Memoir 421, 100 pages

Walcott, P.E. (2001); A Geophysical Report on Ground Electromagnetic and Magnetic Surveying; Ace, Frank Creek & Sellers Creek Properties, Little River Area, Cariboo Mining Division, B.C., N.T.S. 93A-14.

Walcott, P.E. (2002); A Report on Electromagnetic, Gravity, Induced Polarization, Trenching and Soil Sampling; Ace, Frank Creek & Sellers Creek Properties, Cariboo Lake Area, B.C., N.T.S. 93A-14.

Walus, A. (1997); Petrographic Report, Vancouver Petrographics. Internal Report.

Wild, C.J. (2001); Report on Trenching and Geological Mapping, Frank Creek Project, Cariboo Mining Division.

## Appendix 1

Certificate of Qualifications

I, Christopher J. Wild, do hereby certify that:

- 1) I am a consulting geological engineer currently residing at 307 Lexington Road, Comp 25, RR3, Lexington Heights Subdivision, Williams Lake, British Columbia, V2G 1M3.
  - a) I am a graduate of the University of British Columbia, with a Bachelor of Applied Science (B.A.Sc.) in Geological Engineering, Mineral Exploration Option (1984).
  - b) I have worked in mineral exploration and mine geology mainly in Canada on a full-time basis since 1985. I am former Chief Geologist at the Goldstream Mine, near Revelstoke, B.C. and Mount Polley Mine, near Williams Lake, B.C.
  - c) I am a Registered Member of the Association of Professional Engineers and Geoscientists of the Province of British Columbia (1994), and a member of the Canadian Institute of Mining and Metallurgy (CIM).
- I supervised the diamond drilling and trenching program described herein between May 14 June 18, 2002, and am responsible for all aspects of this report.
- 3) I am not aware of any material fact or material change with respect to the contents of this report that is not reflected in this report, the omission to disclose which makes this report misleading.
- 4) I am independent of Barker Minerals Limited or any of the claims described in this report, as set out in section 1.5 of NI 43-101.

Christopher J. Wild, P.Eng. Consulting Geological Engineer

June 26, 2002
Preliminary Report on May-June, 2002 DDH & Trenching Program

June 26, 2002

Appendix 2 Summary of Core Samples

## Summary of Samples and Requested Analyses

_ _-

Ace Project					
Drillhole	Sample	Numbers	No of Samples	Samples for Whole Rock Analysis	No.
ACE-02-01	8151	8172	22	8151-54, 57, 64, 66, 68, 70-72	11
ACE-02-02	8173	8179	7	8173, 75, 76, 79	4
ACE-02-03	8180	8198	19	8182, 83, 85, 87, 89-92, 95, 97, 98	11
ACE-02-04	8199	8229	31	8199-8206, 08, 10-14, 16, 18-26, 28, 29	18
ACE-02-05	8230	8234	5	8230, 34	2
		Total	84	Total	46
· · · · ·					
Frank Creek	Project				
Drillhole	Sample	Numbers	No of Samples	Samples for Whole Rock Analysis	No.
FC-02-01	8235	8246	12	8236, 38, 42, 46	4
FC-02-02	8247	8253	7	8247, 50, 52, 53	4
FC-02-03	8254	8259	6	8254, 56, 58, 59	4
FC-02-04	8260	8265	6	8260, 62, 65	3
FC-02-05	8266	8285	20	8271, 74, 81-85	7
FC-02-06	8286	8304	19	8286, 89, 92, 94, 98, 99, 8304	7
		Total	70	Total	25
All samples to b	be analyzed	for 28-elem	ent ICP.		
All samples to t	e analyzed	for Hg, Se	Te.		
All samples to b	be analyzed	for Au, Pt,	Pd.		
· · · · · · · · · · · · · · · · · · ·	[				
Results (hard	copy & em	ail) and inv	oices to:		
Barker Minerals	s Ltd.				
22117 37A Ave					
Langley, B.C.					
V2Z 1N9					
Attn: Louis Doy	le, Presider	it			
email: barker@	telus.net				
Tel: 604 530-87	752				
Fax: 604 530-8	751				
Results (hard	copy & em	ail), copy o	f invoices to:		
Wildrock Resou	Irces Consu	Iting & Draf	ting		
Comp 25, RR3	, Lexington	Subdivision			
Williams Lake,	B.C.				
V2G 1M3					
Attn: Chris Wild	, P.Eng.		-		
email: wildrock	@telus.net				
Tel: 250 392-76	588				
Fax: 250 392-7	651				

Ace-02-01 Samples

ACE-02-01						
Sample No.	From	То	Length	Lithology	ICP	WR
8151	13.00	14.50	1.50	QMBS	X	x
A0201-13	13.65	13.80	0.15			
A0201-47	16.75	16.8	0.05			
8152	17.40	19.00	1.60	QMCS	X	x
8153	29.00	30.50	1.50	QCMS	x	x
8154	37.50	39.00	1.50	Arg	x	x
A0201-12	41.15	41.30	0.15			
8155	45.00	46.50	1.50	QMCS	X	
8156	47.50	49.00	1.50	Arg	x	
8157	49.00	49.70	0.70	CS	x	x
8158	49.70	50.70	1.00	Marb	x	
8159	50.70	52.10	1.40	Arg	x	
8160	52.10	54.00	1.90	Marb	x	
8161	54.00	55.20	1.20	QMCS	x	
8162	55.20	57.00	1.80	Arg	x	
8163	57.00	58.80	1.80	Arg	x	
8164	58.80	61.00	2.20	Fels	x	x
8165	61.00	63.00	2.00	Fels	x	
8166	63.00	65.30	2.30	Fels	x	x
8167	65.30	67.50	2.20	QCMS	x	
A0201-14	65.40	65.60	0.20			
A0201-15	66.10	66.30	0.20			
A0201-04	71.56	71.63	0.07			
8168	76.00	77.50	1.50	QMCGS	Χ.	x
8169	88.00	89.50	1.50	QMCGS	X	
8170	103.60	105.10	1.50	QCMS	x	x
8171	130.00	131.50	1.50	QMCGS	x	x
8172	139.50	141.00	1.50	QMCS	x	x
28	samples					

ACE-02-02						
Sample No.	From	То	Length	Lithology	ICP	WR
8173	26.0	27.5	1.5	QMCGS	х	x
8174	47.9	48.1	0.2	QV	x	
8175	50.0	51.5	1.5	QMCS	х	x
8176	78.5	80.0	1.5	QMCGS	х	x
8177	110.0	111.5	1.5	QMCS	x	
8178	131.8	132.5	0.7	QV	х	
8179	151.0	152.5	1.5	QMCS	x	X
7	samples					4

_ _ _

Ace-02-03 Samples

ACE-02-03	<b>F</b>	<b>.</b>	Longth	Lithology		W/D
Sample No.	From	10	Length	LILINOIOGY		
8180	8.50	9.70	1.20	5113	X	
8181	9.70	11.80	2.10	DS Fala	X	
8182	11.80	13.90	2.10	Feis	X	X
8183	13.90	16.00	2.10	Feis	X	<b>X</b>
8184	16.00	18.00	2.00	Feis	x	
8185	18.00	19.60	1.60	Feis	X	X
8186	19.60	21.00	1.40	Feis	X	
A0203-16	21.00	21.60	0.60			
A0203-17	21.60	21.80	0.20			
A0203-18	21.80	22.35	0.55			
A0203-19	22.35	23.35	1.00			
A0203-20	23.35	23.95	0.60			
A0203-21	23.95	24.80	0.85			
A0203-22	24.80	25.70	0.90			
A0203-22A	25.90	26.90	1.00			
8187	26.90	28.30	1.40	Fels	X	X
8188	28.30	30.00	1.70	Fels	X	
A0203-23	30.40	31.10	0.70			
A0203-24	31.10	31.90	0.80			
A0203-25	31.90	32.75	0.85			
A0203-26	32.75	33.85	1.10			
A0203-27	33.85	34.45	0.60			
A0203-28	34.45	35.35	0.90			
A0203-29	35.35	35.80	0.45			
A0203-30	36.65	37.35	0.70			
A0203-31	38.50	39.40	0.90			
A0203-32	39.70	40.00	0.30			
8189	40.00	41.50	1.50	Fels	x	X
A0203-33	42.10	42.95	0.85			
A0203-34	42.95	43.45	0.50			
A0203-35	43.45	44.85	1.40			
A0203-36	44.85	45.65	0.80			
A0203-37	46.10	47.10	1.00			
A0203-38	47.10	48.20	1.10			
A0203-39	48.20	49.30	1.10			
A0203-40	49.30	50.30	1.00			
8190	50.30	51.30	1.00	QMCS	x	x
A0203-41	51.30	52.40	1.10			
A0203-42	52.40	53.00	0.60			
A0203-43	53.00	53.80	0.80			
A0203-44	53.80	54.25	0.45			
A0203-45	54.25	54.95	0.70			
A0203-46	54.95	55.50	0.55			
8191	55.50	57.70	2.20	Arg	X	X
8192	57.70	59.60	1.90	Fels	x	<b>X</b>
A0203-55	61.50	62.00	0.50			
8193	64.00	65.50	1.50	Fels	X	
8194	69.30	70.80	1.50	Fels	X	
8195	72.60	74.60	2.00	Fels	X	X

## Ace-02-03 Samples

								_
	A0203-56	74.55	75.05	0.50				
	A0203-57	75.25	76.40	1.15				
	A0203-58	76.40	77.55	1.15				
	A0203-54	80.00	81.25	1.25				
	A0203-53	81.25	81.55	0.30				
	8196	95.10	97.00	1.90	QMCS	X		
	A0203-59	97.85	98.70	0.85				
	A0203-60	97.90	98.45	0.55				
	A0203-61	99.70	100.60	0.90				
	A0203-62	100.60	101.45	0.85				
	A0203-63	101.45	102.65	1.20				
	A0203-64	104.20	104.90	0.70				
	A0203-50	108.00	109.50	1.50				
	A0203-49	109.30	109.50	0.20				
	A0203-51	111.25	112.45	1.20	•			
	A0203-52	112.45	113.20	0.75				
	8197	118.00	119.50	1.50	Arg	x	X	
	8198	132.00	133.50	1.50	QMCS	x	x	
-	A0203-65	138.38	138.68	0.30				
	A0203-66	143.80	144.05	0.25				
	69	samples	-					

_ _ _

____

. _ _ . .

Ace-02-04 Samples

_ _ _ _ _

- - - -

ACE-02-04						
Sample No.	From	То	Length	Lithology	ICP	WR
8199	17.50	19.00	1.50	QMBS	x	x
8200	25.50	27.00	1.50	QMCS	х	x
8201	32.00	33.80	1.80	Marb	х	x
8202	33.80	36.00	2.20	Fels	х	x
8203	36.00	38.00	2.00	Fels	х	x
8204	38.00	40.00	2.00	Fels	х	x
8205	40.00	42.50	2.50	Fels	х	X
8206	42.50	43.50	1.00	Arg	х	x
A0204-52	42.50	43.50	1.00			
8207	43.50	43.75	0.25	Fels	х	
A0204-53	43.50	43.75	0.25			
8208	43.75	45.70	1.95	Fels	х	x
8209	45.70	46.20	0.50	Arg	х	
A0204-54	45.70	46.20				
8210	46.20	48.00	1.80	Fels	х	x
8211	48.00	50.00	2.00	Fels	Х	×
8212	50.00	52.00	2.00	Fels	x	×
8213	52.00	53.80	1.80	Fels	Х	×
8214	54.25	54.60	0.35	Fels	х	×
A0204-50	54.25	54.60	0.35			
8215	54.60	55.70	1.10	Arg	х	
8216	55.70	56.60	0.90	Fels	х	x
8217	56.60	58.70	2.10	Arg	х	
A0204-01	57.60	57.90	0.30			
A0204-02	58.25	58.67	0.42			
8218	60.30	62.60	2.30	Fels	х	x
A0204-48	62.60	63.05	0.45			
A0204-03	64.50	64.53	0.03			
8219	65.90	67.20	1.30	Fels	X	x
8220	67.20	69.00	1.80	CS	х	x
8221	76.00	78.00	2.00	Fels	х	x
8222	78.00	80.00	2.00	Fels	х	x
8223	80.00	82.10	2.10	Fels	х	x
8224	82.90	84.10	1.20	Fels	х	x
8225	84.50	86.50	2.00	Fels	х	X
8226	91.10	92.10	1.00	Fels	х	x
A0204-55	91.10	92.10	1.00			
8227	92.10	94.50	2.40	Arg	х	
8228	102.40	104.30	1.90	Fels	х	X
8229	110.00	111.50	1.50	QMCS	×	×
40	samples					

_

- - - - -

____

ACE-02-05						
Sample No.	From	То	Length	Lithology	ICP	WR
8230	7.6	10.0	2.40	Fels	х	х
8231	10.0	12.0	2.00	Fels	x	
8232	16.7	17.5	0.80	QV	x	
8233	24.7	27.0	2.30	Fels	х	
8234	27.0	29.6	2.60	Fels	x	X
5	samples	•				

Preliminary Report on May-June, 2002 DDH & Trenching Program

June 26, 2002

-

Appendix 3 Drillhole Logs - -

_____

Diamond I	Drill Log	DDH No.	ACE-02-01			(	Tests	
Company:	Barker Minerals Ltd	Date Collared	May 26, 2002	Azimuth	180		Depth	Dip
Project:	Ace Project	Date Completed	May 28, 2002	Dip	-45		n/a	
Logger:	Christopher J. Wild, P.Eng.	Northing	16 + 15S	Length	144.78 m			
Date:	May 29, 2002	Easting	6 + 65E	Core Si	ze NQ	L		
Remarks	Test Max-Min conductor, coincident mag, soil geochem, charg hi, resist low.	Elevation	1005 m			L		<u> </u>

.

									altn	<u>1- we</u> a	ak <u>, 5</u> s	strong					
Dept	h (m)	Rock	Description	-%	%	%	%	%	chi	cal	cor	cla	Interv	al (m)	Sample		
From	Ťo	Code	Description	Po	Py	Ср	Sph	Gal	Cill	Cai	001		from	to	Number	·	ļ
0.0	7.62	Casing	Cased through glacial till, no recovery.														
																	l
7.62	10.90	Ovbn	Large blocks and rounded rubble on top of bedrock, mainly quartz-musc-biotite														
			schist, reflecting bedrock; one large block @ 8.2-8.9m contains significant														
						1											
10.90	17.40	QMBS	Quartz-Muscovite-Biotite Schist; pale grey, slightly greenish, siliceous and	1													
			schistose; consistent texture, well-foliated. Quartz-musc dominate with 5%		İ			1									
			scattered S2-parallel biotite, possibly minor chlorite giving greenish colour. S2 @ 175-85 to c.a. Weak subbides, weakly magnetic - likely pyrrhotite (po). Very										13.0	14.5	8151		
			competent, weakly fractured, 100% recovery.														
			13.7: 14cm white quartz vein @ 60 to c.a. (upper contact). Po-cp stwk.	7		1	1										
	-	i	16.75: 1-2cm layer of wispy brown massive sulphide, fine-grained and tarnished		1				1	1							
			with inclusions - sulphide matrix breccia.						1			1					
·									1								
17.40	19.00	QMCS		1-5	1	1							17.4	19.0	8152		
			schist, very similar to above with introduction of medium green chlorite. Biotite			1	1					1					
			remains as above. S2 @ 70-80 to c.a. Weakly magnetic with finely disseminated							1							
			po along S2. Continuing 100% recovery in weak to mod fractured core.		1	1	1			1							
									1	1							
19.00	22.00	OCMS	Quartz-Chlorite-Muscovite Schist; dark grey, fine-grained and weakly layered,	1	1			1				1					
	22.00	20110	still siliceous, weakly carbonaceous on some foliation surfaces. Borderline		1	1		ĺ	1	1	1	1					1
			weakly fractured. 21.8: 2-3mm wispy po band.							1							
		}				1	1	1									
22.00	26.60	OMBS	Quartz-Muscovite-Biotite Schist; same as 10.9-17.4m, weakly layered,	2	<2	1	1			1			[				<u> </u>
	20.00	4	siliceous schist, minor bitite and chlorite. S2 @ 80-85 to c.a. Po as before,	<u>⊢</u> =.	1				1	1	1	1		1			1
			uweakiy magnetic, perhaps t-gr pyrite along toilation planes. Weakiy tractured,				+	1									
				1	1 -	1			1	1	<u> </u>	1	1				1
26.60	30 00	OCM9	Quartz-Chlorite-Muscovite Schist; as before, 19.0-22.0m, dark grev, fine-	1	1			1	1			<u> </u>	29.0	30.5	8153		1
20.00	30.30		grained and weakly layered, still siliceous but more schistose with increased	<u> </u>			1	1	+	1				<u> </u>			<u>†                                    </u>
			-chlorite-musc, weakly carbonaceous on some foliation surfaces with increasing			1	1	1		<u> </u>		1	1		1	<u> </u>	<u> </u>
		<u> </u>	c.a., locally wavy. Increased "poker chip" fracturing, loss of recovery.	<b> </b>		+	1		†		<u> </u>	1	t	1		<u> </u>	<u> </u>
		<u> </u>	26.82-28.96: 70% recovery	+	1		-{	1		1		1	1	t			<u>†</u>
L		1		1	1	1	1	1	1	1	1	1	I	1	<u> </u>	<u>i</u>	1

F:\Old Desktop\CW 02 Drilling and Trenching\Logs&Assays\Logs\[ACE-02-01.xls]Page3

#

DDH No.

ACE-02-01

							A	lterati	on sco	ore 1 -	5						
Depti	n (m)	Rock	Description	%	%	%	%	%	chl	cal	ser	cla	Interv	al (m)	Sample		
From	То	Code		Po	Ру	Ср	Sph	Gal					from	to	Number		
30.9	32.1	QMCS	Quartz-Muscovite-Chlorite Schist; pale green, fine-grained siliceous and musc	1	<1	<b></b>											
			rich section with more limy layers. No biotite. Still minor sulphide along S2 @ 70														
			75 to c.a. Recovery 100%, weakly fractured.														
22.4	20.5	A	Arnillite: dark handed quartz-highte-chlorite schist, weakly carbonaceous, less	-1	2.2				<u> </u>								
32.1	39.3	Alg	siliceous with highly contorted and brecciated sections. Locally guite calcareous	<u> </u>			1						27.5	20.0	0454		<del></del> ,
┣────┼			with pale limy layers, and a stockwork of white calcite-quartz veinlets and				<u> </u>						37.3	39.0	0134		
			stringers. Increased pyrite, less po, weakly magnetic in less deformed sections.	<u> </u>		<b> </b>											
			Less competent, some loss of recovery.	<u> </u>													
			34.14-38.10: 80-85% recovery.														
			35.8-36.2: Less contorted qtz-chl-musc schist; S2 @ 55-65 to c.a.														
			39.0-39.5: Decreasing deformation, polished weakly graphitic slips @ 50-60 to c.	a.													
					]												
39.5	46.5	OMCS	Quartz-Muscovite-Chlorite Schist; same as 30.9-32.1m, pale green, finer	1	<1								45.0	46.5	8155		
	-10.0	QINOU	grained siliceous but with increased musc-chl and no biotite. Quartz-rich augen,	<u> </u>													
			1-2%, often contain po. Increasing limy sections, generally weak. Decrease in	<u> </u>			+										
			suprides, weakly magnetic. Locally moderately hactored.						-								
			39.93-42.37: 80-85% recovery; core becomes less fractured @ 42.9m.	<b> </b>			-										
		<b></b>		<b> </b>	ļ			<u> </u>			<u> </u>						
46.5	49.0	Arg	Argillite: dark banded, less contorted than above (32.1-39.5m), more	7	1								47.5	49.0	8156	I	
			schist, forming weak deformation breccia. Again, much more sulphide, mainly														
			pyrite, only weakly magnetic. Competent, weakly fractured.														
			46.5: Polished, wavy graphitic slip @ 55 to c.a. marks upper contact.	1													
			48 4-49 0: Dark "spots" 1-2mm bard no form but partially post D2	1		i											
									1								
	40.7			<u> </u>									40.0	40.7	0457		
49.0	49.7	CS	Calc-Silicate; pale green, with swirled not strongly schistose texture, quartz-rich,	·	3				1				49.0	49.7	015/		
			moderately calcareous patches. Weil-mineralized with po, minor pyrite, moderately magnetic. Weakly fractured, 100% recovery.		<u> </u>	<u> </u>											
				<u> </u>	ļ		<u> </u>	<u> </u>	<b> </b>		-						
			49.0: Gradational upper contact from spotted musc-rich argillite.	<u> </u>													<b> </b>
49.7	50.7	Marb	Marble; pale grey, well banded, very calcitic. Weak blebby pyrite, not magnetic.		1								49.7	50.7	8158		
-			Virtually unfractured.														
			49.7: Sharn, healed fracture marks contact @ 20 to c.a.   avering @ 40 to c.a.	T				1	Γ								
			50.5: Tight fold wrone levering, both limbs @ 45 to c.c.	1		1	1		1								
			100.0. Trgin lott maps layering, both innus @ 40 to 0.0.	1		1	+	1	1		1			- · · -	<u> </u>		
			100.7. Lower contact marked by planar graphing sip @ 50 to c.a., parallel to layer	<u>ng.</u> T			+	-	<del> </del>	1		$\left  - \right $				[]	
			Arrillites dork grow well beyond and strengty contested and folded.		-	+		-		┼		┟┈──┤	<u> </u>				
50.7	52.1	Arg	Increase in mainly pyrite, often forming 1-2mm bands partiel to S2. More po than	5	2					<u> </u>			50.7	52.1	8159	j	
			in previous argillite units - weak to moderate magnetism. Weakly fractured until		<b> </b>	<b> </b>	4	1	<u> </u>	-	<b> </b>				ļ		<b> </b>
			lower contact.		ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>						ļ
			51.2: S2 @ 55 to c.a., wavy.				1										1

F:\Old Desktop\CW 02 Drilling and Trenching\Logs&Assays\Logs\[ACE-02-01.xls]Page3

DDH No.

							A	lterati	on sco	ore 1 -	5						
Dept	h (m)	Rock	Description	% Do	%	%	% 5	% Col	chi	cal	ser	cla	Interv	al (m)	Sample		
From	10	Code		1 20	Ру	Ср	Spn	Gai					Trom	10	Number		
			51.5: S2 @ 0-70 to c.a., folded with S3 (axial plane cleavage) @ 45 to c.a. (oppos	ite). T								<b>—</b>		-			
			52.1: Sheared adjacent to lower contact @ 50 to c.a.		ļ												
i						<b> </b>											
52.1	54.0	Marb	Marble; as before (49.7-50.7m), tight fold @ 51.2m.	<1	<1		<<1						52.1	54.0	8160	<u> </u>	
			52.9: 5cm white quartz vein @ 70 to c.a.; minor po + sphalerite blebs.	2	<b> </b>		3			<b> </b>							
			53.3: Polished graphitic slip @ 60 to c.a.					ļ			<u> </u>						<u> </u>
			54.0: Increasing musc-chl, sharp drop in calcite.		ļ	ļ	ļ		<b></b>								
54.0	55.2	QMCS	Quartz-Muscovite-Chlorite Schist; pale greenish grey, fine-grained, very	5	1	ļ	l			<u> </u>			54.0	55.2	8161		
			siliceous, hard, weakly fractured. Quite contorted weak foliation, quartz veining	L													
			common. Up to 5% disseminated po, moderately magnetic, less pyrite.														L
			54.9: S2 @ 55 to c.a. in dark argillite section.														
55.2	58.8	Arg	Argillite: same as above, dark, moderately graphitic, mainly along S2 slips, very										55.2	57.0	8162		
			siliceous, not calcareous. Increase in pyrite, decreased po, weak to mod										57.0	58.8	8163		
			magnetic. Competent except for shear zone near bottom.		1												
			55.7: Bands of wispy py-po, along S2 @ 75 to c.a.						1								
			56.0: Bands of wispy py-po, along S2 @ 45 to c.a.				1			1	İ						
			57 4-57 7: Fault: quartz-graphite, 5-10cm of graphitic gouge with white guartz vei	n.													i
			57.7-58.5: Fault (con't): strongly sheared, becoming brecciated, numerous	T		1											
			graphitic slips and minor gouge.				1										
			58.7: Durite flattened along S2 @ 80-90 to c a		1									· · ·			
				<u>†                                    </u>				1			1						
50.0	65.2	Fala	Felsite: pale grey, conspicuously mottled unit composed of very fine-grained	5-10							1		58.8	61.0	8164		
30.0	05.5	F 815	plagioclase with minor but variable biotite (reddish flecks) and muscovite. Locally	10-10	<u>├</u> -								61.0	63.0	8165		
			Icalcareous patches, notable around disseminated to blebby po - moderately		1	-				-			62.0	65.2	9166	· · · · ·	
								+					00.0	00.0	0100	·	
			58.8: Fuzzy but distinct upper contact @ 85 to c.a.			<u> </u>											
·			61.2: Blebby sphalerite in quartz vein.				-				<u>+</u>						
			63.6-63.9: Quartz-Muscovite-Chlorite Schist; dark siliceous schist. 52 @ 85 to	<u>c.a.</u>			-	-									
			64.4-64.5: 4cm layer of grey Marble, @ 85 to c.a.				┨					—					
			65.3: Becomes spotted, possibly dark quartz eyes.								-			_			
		·	· · · · · · · · · · · · · · · · · · ·			-		┥───			_						
65.3	67.5	QCMS_	Quartz-Chlorite-Muscovite Schist; darker, moderately foliated, siliceous schist,	5	2	<u> </u>	<u> </u>		<u> </u>	-			65.3	67.5	8167		
			possibly tine-grained biotite or graphite. At least 5% po + py, much of it as wispy layers. Weakly fractured	<b> </b>			<u> </u>	─		<u> </u>		<b> </b>					
	ļ				<u> </u>										<b> </b>		I
			65.4-65.5: 10% wispy po bands @ 80 to c.a.		<u> </u>		ļ		<u> </u>		<b> </b>				<b>.</b>	ļ!	<b> </b>
			66.2: 5cm band of 20% po, minor py.	-	<u> </u>	<u> </u>		1	<u> </u>		<b> </b>		ļ.,		· -		ļ
L			67.5: Sharp lower contact, S2 @ 80 to c.a.	<u> </u>			1	1	<b> </b>	<u> </u>	<b> </b>	ļ					<b> </b>
1				1	1		1	1		1						1	1

							A	lterati	on sco	ore <u>1</u> -	5						
Depti	n (m) 🔡	Rock	Description	%	%	%	%	%	chl	cal	ser	cla	Interv	al (m)	Sample		
From	То	Code		Po	Ру	Ср	Sph	Gal	0111	oui	301	VIG	from	to	Number		<u> </u>
67.5	71.2	OMBS	Quartz-Muscovite-Biotite Schist; pale grey, slightly greenish, siliceous and	2-3	1												
			schistose; consistent texture, well-foliated. Quartz-musc dominate with 5%	<u> </u>				<u> </u>									
			scattered S2-parallel biotite, possibly minor chlorite giving greenish colour. S2 @														
			75-85 to c.a. Mod f-gr sulphides, weakly to mod magnetic - mainly pyrrhotite (po).						ļ								
			Very competent, weakly fractured, 100% recovery.													. <u> </u>	<u> </u>
			67.5: Sharp, unsheared contact @ 80 to c.a., same as S2.														
			71 2: Lower contact gradational over 15cm														
											1						
								+									
71.2	79.5	QMCGS	Quartz-Muscovite-Chlorite-Garnet Schist; green, fine-grained siliceous schist	2-3	<1									-			<u> </u>
			with strong musc-chi, minor flecks of biotite, and 2% pink porphyroblastic gamets.				ļ				·						<b> </b>
			A tew musc-nch sections are weakly sheared. Weaker line-grained po.														
			72.7: Minor 10cm shear zone, S2 @ 75 to c.a.				Ι										
			73 7-74 0. Minor shear zone				1										
			75.5.76.1: Minor shear zone @ 20.30 to c.a. 52 @ 60 to c.a.				1	1	1		1						
			75.3-76.4: Strong pick gamets to 5mm diameter				1						76.0	77.5	8168		
				1													
			78.5: 5-10cm shear zone, 52 @ 55 to c.a.								1						
			79.5: Weak shear along S2 @ 80 to c.a., marks contact, last of garnets.					<u></u>					· · · ·				
		· · ·	Our te Marson (te Oble (te Oshiet store sharing and a single store single store sto			<u> </u>											╂
79.5	86.9	QMCS	Quartz-Muscovite-Chlorite Schist, strongly micaceous unit, broken up; similar to above upit but tacking gamets. Somewhat darker and more finely lavered than	2	1			_	<b> </b>	ļ							<b> </b>
			above. Sheared zones show good crenulations on S2. Weak sulphides, weakly														ļ
			magnetic, py + po, disseminated and stringer veinlets.														
	<u> </u>		80.2: S2 @ 80 to c.a.														
			81.7: Weak shear zone. S2 @ 50 to c.a.														
			81 69-83 52: 65% recovery lost ~83 5m in poker chip schist														
			83.5-86.9: Well-fractured but not extensively sheared, some poker chips.						1								
			85.5: S2 @ 75 to c a					1	1								
									<u> </u>	1							
			Quartz-Muscovite-Chlorite-Garnet Schist: green (slightly paler than above					+	<u> </u>		1	<u> </u>	00 0	90.5	9160		
86.9	93.5	QMCGS	unit), fine-grained siliceous schist with strong musc-chl, minor flecks of biotite,	2-3	<u> </u>			+					00.0	03.5	0103		
		<u> </u>	and resumption of 2% pink porphyroblastic garnets. A few musc-rich sections are														
			weakly sheared. Weaker fine-grained po.						<u> </u>		<u> </u>						<u> </u>
			89.0-89.2: Strongly garnetiferous, irregular S2 parallel quartz veining.	<b> </b>							<b>_</b>	ļ	<b> </b>	ļ			<u> </u>
		ļ	89.2-89.3: Musc-rich shear zone, S2 @ 80 to c.a.	<b> </b>			<u> </u>		<u> </u>	ļ	<u> </u>	ļ	ļ				<b></b>
			90.3-90.9: Musc-rich shear zone, S2 @ 90 to c.a.				<u> </u>	$\downarrow$	<b> </b>		ļ	ļ					<b>_</b>
			91.4: 15cm barren white quartz vein, upper contact @ 80 to c.a.												L		
			93.0: S2 @ 75 to c.a.														<u> </u>
93.5	102.0	QCMS	Quartz-Chlorite-Muscovite Schist; darker, moderately foliated and finely	5	2												
			layered, siliceous schist, possibly fine-grained biotite or graphite, and no garnets;				1										
		┝───	not calcaeous. At least 5% po + py, much of it as wispy layers, moderately	$\vdash$	1	<u> </u>	+	1	1	1	1	1	t		1		1
		1	пладнень. чиевку пасшер.	1	1	J	1	1	1	I	1	1	1	1	1	l	

ACE-02-01

N

							A	Iterati	on sco	ore 1 -	5						
Dept	h (m)	Rock	Description	%	%	%	%	%	chl	cal	ser	cla	Interv	al (m)	Sample		
From	10	Code		P0	Fy	Сp	- Spn	Gai					Irom	10	Rumber		. <u></u>
			95.71-97.54: 45% recovery in soft micaceous and locally gougy shear zone.														
		· · · · · · · · · · · · · · · · · · ·	99.0: S2 @ 75 to c.a., consistent.														
			100.7: S2 @ 75 to c.a., unit is very consistent in texture and orientation.														
102.0	103.6	QMCGS	Same 86.9-93.5m, paler green, less strongly foliated and layered, presence of	2	<1												
			scallered plink gamets, less por py, less magnetic. Oz lær 6-00 lo c.a.						<u> </u>								
																	<u> </u>
103.6	112.7	QCMS	Quartz-Chlorite-Muscovite Schist; darker, moderately foliated and finely	3	1					<u> </u>			103.6	105.1	8170		
		(Arg)	occasional ragged gamet porphyroblasts; not calcaeous. At least 5% po + py,	<u> </u>		ļ	<u> </u>		<u> </u>								
			much of it as wispy layers, moderately magnetic. Weakly fractured to 107.4, then	<u> </u>		<u> </u>	<b> </b>	<b> </b>									
			moderately tractured.	ļ		ļ		<u> </u>			<b>_</b>						
			103.7: Ragged garnet porphyroblasts, one 12mm in diameter, classic augen.	ļ				<u> </u>			<u> </u>						
			107.0: S2 @ 75 to c.a.					ļ	ļ	ļ							
			107.4-112.7: Moderately fractured, much of it to "poker chips"; 75-80% recovery.				ļ	ļ							ļ		<b></b>
			110.5: Minor gouge along foliation.		<b></b>	<b> </b>		ļ									
			111.3: S2 @ 80 to c.a., very planar.								ļ						
								<u> </u>	ļ	<u> </u>							
112.7	132.8	QMCGS	Quartz-Muscovite-Chlorite-Garnet Schist; green (slightly paler than above	2-3	<1												l
			and resumption of 2% pink porphyroblastic garnets. A few musc-rich sections are														
			weakly sheared. Weaker fine-grained po.										130.0	131.5	8171		<b></b>
			113.9: S2 @ 65 to c.a., wavy and crenulated.														
			112.47-114.30: 60-65% recovery, losses at both ends.														
			114.30-117.35: 70% recovery, losses around 114.3m.			<u> </u>											
			114.3-115.7: 35% recovery; much white quartz vein rubble in strongly														
			garnetiferous musc-rich phyllite; likely a <b>fault zone</b> . 12cm of crowded garnet, louartz vein material, musc-rich phyllite with strong kink folds (M-type) with S3 @														
			45 to c.a., perpendicular to S2.														
			117.35: S2 @ 70 to c.a., planar.								Ì						
			120.4: S2 @ 75 to c.a.														
			102.8-122.0: Moderately fractured, some poker chips.														
			122.4-123.2: Scattered biotite; qtz-musc-biotite schist.														
			122.7: 3-4cm white quartz vein @ 70 to c.a.; 10% po, 1-2% py in fractures.														
			123.7-124.4: Weak gtz-musc-biotite schist, less chloritic.			1											
			124.4-124.8: Green chloritized porphyroblasts, after garnet?	1													
			124.1: 1-2cm white guartz vein, 5% po, 5% pv.	1		1		1	Î								
			125.9-126.7: Poker chip fracturing.	1			T	1	1				I			_	
<b></b>	1		127.1-138.0: Mod to strongly fractured: 127.9: 0.5cm white atz vein @ 70 to c.a.	1			1	1		1							
<b> </b>	1		129.6: Irregular 1-3cm thick barren white guartz vein	<u> </u>				1	<u> </u>	1	1						
	<u> </u>		131 0: 1cm white guartz vein 20% po, 4% pv, 1% cp, along fractures in vein @ 8	) to c	ч а.	1	1	$\mathbf{T}$	1	1	1				1		

Wildrock Resources Consulting & Drafting

F:\Old Desktop\CW 02 Drilling and Trenching\Logs&Assays\Logs\[ACE-02-01.xls]Page3

							A	Alterati	ion sco	ore 1 -	5						
Dept	n (m)	Rock	Description	%	%	%	%	%	chi	cal	ser	cla	Interv	al (m)	Sample		
From	То	Code		Po	Py	Ср	Sph	Gal		••••			from	to	Number		<u> </u>
			132.0: S2 @ 80 to c.a, weakly crenulated, sericitic.														
122.0	125.0	A.r.a.	Argillite / Quartz-Graphite Schist; dark, well-layered moderately graphitic schist,	-1	1												
132.0		Ary	focus of moderate faulting and associated white quartz veining. Not extensively		-			<u> </u>									
			fractured and only minor gouge, polished graphite along several S2 partings and					-									
			breccia at lower contact.														<b> </b>
			132.8: Irregular crosscutting white quartz vein with patches of tan carbonate,						<u> </u>								
			coarse bleb of pyrite, no po noted here.														
			132.9: Polished graphite slip @ 70 to c.a.; patch of brown mineral with up to 20%						I								
			po over 3-4cm - moderately magnetic.					1									
																	<u> </u>
			133.0-133.6: Hignly contorted, tolded quartz-graphite schist.						-								<u> </u>
			133.20-134.11: 70% recovery.	<u> </u>													<b></b>
			134.0-134.1: Fault; pale greenish clay gouge, some loss of recovery.				<b> </b>	<b> </b>									<b> </b>
			134.1-134.2: White quartz vein bound by polished graphitic slips @ 75 to c.a. (error	atic).			<u> </u>		<u> </u>								<u> </u>
			134.6-134.9: Quartz-graphite shear zone, numerous polished graphite slips.														
			134.9-135.0: Fault breccia; subrounded to subangular clasts in clay/graphite														
			matrix; lower slip @ 50 to c.a.														
							1		1								
							<del> </del>				-		400.5	444.0	0470		
135.0	144.8	QMCS	Quartz-Muscovite-(Chlorite) Schist; pale green, weakly layered and mainly	1	<b></b>								139.5	141.0	6172		
			waxy looking like sericite, soft but weakly fractured. Blobby po associated with quartz veining, but overall weakly mineralized with po + by.							<u> </u>							
						<u> </u>			<u> </u>								
			136.0: Thin (1-2mm) clay gouge slip.			ļ			<u> </u>								
			137.6: Quartz vein, 2-3cm thick, @ 70 to c.a.; 2-5% magnetic po wisps.											- ··· -			
			138.8: Irregular guartz veining, with 50% patchy to stringer dark brown carbonate														
			(mod rx with cold HCl), and 5% associated po.			1									-		
			420.0 140.7 lassessed substanting with many distinct white substances								<u> </u>	· · · ·					
			intruding pale green schist. No sulphides discerned.					-									
								+									
			141.8: Flattened py + po along S2 @ 80 to c.a.	<b> </b>	<b> </b>			<u> </u>	<b> </b>		<b> </b>						┟────
			143.6: 3-4cm white quartz vein with blebby po along selvages and minor py, min			ļ				L	ļ						<b> </b>
			po along tension cracks perpendicular to the vein; @ 65 to c.a														
			143.6-143.8: Qtz-muscovite-biotite schist.														
			143.9-144.2: 5% blebby to stringer bronze, magnetic po.														
			144 3-144 4: 7cm white quartz vein with minor by along selvage	1		1	1	1		1	1						
			ריזיט ויזיא ראווי אוונט קטמועב זיטור אוויד דווויטי איז מטווע סטוימעט.			<u> </u>	· ·				1				<b> </b>		1
									-	<u> </u>	+			ļ	}		<u> </u>
			END OF HOLE = 144.78 metres				<u>  </u>								<del> </del>		<u> </u>
				<u> </u>	<u> </u>	ļ			-						<del> </del>		<u> </u>
	-			<u> </u>	<u> </u>	<b> </b>	<u> </u>				ļ						-
										<u> </u>	<u> </u>					ļ	
							1	1			1						1

Diamond I	Drill Log	( _D	DH No.	ACE-02-02				rests	
Company:	Barker Minerals Ltd	Da	ate Collared	May 29, 2002	Azimu	h 180	]	Depth	Dip
Project:	Frank Creek	Da	ate Completed	May 31, 2002	Dip	-45		n/a	
Logger:	Christopher J. Wild. P.Eng.	N	orthing	18 +80S	Length	164.90 m			
Date:	May 31, 2002	E	asting	8 + 64E	Core S	ize NQ			
Remarks	Test mag high at L19S, 7+25E to 8+00E	EI	evation	1025 m			-		

									altn	1- we	ak, 5 s	strong					
Depth	n (m)	Rock	Description	%	%	%	%	%	chi	cal	ser	cla	Interv	al (m)	Sample		
From	То	Code		Po	Py	Ср	Sph	Gal					from	to	Number		
0.00	13.72	Casing	Cased through road fill and glacial till, no recovery.			ļ	<b> </b>	ļ									
13.72	39.40	QMCGS	Quartz-Muscovite-Chlorite-Garnet Schist; pale greenish grey, siliceous and	<1	1	<1											
			schistose; consistent texture, well-foliated. Quartz-muscovite-chlorite dominate,				<u> </u>	L									
			quite son, with 2% scattered porphyroblastic pink gamets typically 1mm diameter. S2 @ 75-85 to c.a. Weak to moderate sulphides, weakly magnetic - pyrrhotite										26.0	27.5	8173		
			(po), pyrite (py), and chalcopyrite (cp); concentrated along S2 planes. Very														
			competent, weakly fractured, 100% recovery.														
		1	13.7-14.9: Well contorted siliceous bands, garnets associated with micaceous laye	ers.													
			15.2-15.8: 5+% spotted brown biotite in qtz-musc-bi schist; no garnets.														
			15.5: 6cm quartz vein, well-mineralized with blebby and stockwork pyrrhotite,														
			lesser pyrite and/or marcasite, and traces of fine-grained cp.														
			18.3: S2 @ 75 to c.a.														
			21.2: Weakly gougy slip along S2 @ 70 to c.a.														
			21.3: Medium-grained pyrite and irregular fracture.														
			21.8: Minor weakly magnetic po + cp on S2 @ 80 to c.a.														
			22.8: Minor weakly magnetic po + cp on S2 @ 75 to c.a.												•		
			24.1: Minor py + cp on S2, adjacent to wispy 2-3cm barren white quartz veining.														
			25.1-26.0: Weak spotted biotite in QMCGS.														
			30.4: Weak calcite, minor py-po, trace cp on S2 @ 85 to c.a.														
			32.0: Minor po-py-cp on S2 @ 80 to c.a.														
			35.0: Minor po-py-cp on S2 @ 80 to c.a.														
			36.0: 3-4cm wispy white quartz vein; po>py>cp along selvages, S2.	1													
			39.4: Sharp contact along S2 @ 80 to c.a.														
39.40	41.70	Marb	Marble: darker grey, less green, fine-grained, finely lavered, dirty marl, quite	<1	<1												
			chloritic possibly > musc. Calcitic with strong reaction to HCI. Continues														
			competent and weakly fractured. Less sulphides po>py.					1									
41.70	46.80	QMCGS	Questa Nuccessite Chlorite Cornet Schiet: medium to groupich group find							1	1						
			grained, siliceous to micaceous schist, occasional gamets and weakly		1	1		1		1							
			carbonaceous. S2 @ 70-80 to c.a. Weakly magnetic with finely disseminated po		1	1	1	1		1							1
			along S2. Continuing 100% recovery in weak to moderately fractured core.	<u> </u>	1	+	+	+	1	1		1				<u> </u>	1

DDH No.

May 31, 2 Date

							A	lterati	ion sco	ore 1 -	- 5						
Depti	n (m)	Rock	Description	۱ %	%	%	%	%	chl	cal	ser	cla	Interv	al (m)	Sample		
From	10	Code		P0	Ру	Ср	Spn	Gai					trom	10	Number		
			42.9: Irregular quartz vein with patchy brown carbonate (tourm?) and blotchy po,	1-2cm			<b> </b>	ļ		<u> </u>							
			44.0: Kink folds, S2 is axial planar cleavage, layering folded, begin fold zone.				ļ										
			44.7: 16cm white quartz vein with cream patches of carbonate and minor <5%,				<b></b>										
			blebs of po. Lower contact @ 35 to c.a.														
			44.8-46.8: Increase in po, less py, slightly more magnetic; finely disseminated.														l
			45.8: S2 @ 40 to c.a.; continuing quite contorted.														
			46.5-46.8: Well-fractured, po>py in white guartz vein along contact @ 45 to c.a.						1								
									1		1						
46.8	47.7	QMBS	Quartz-Muscovite Biotite Schiet: pale grav brownish speckled musc-rich					1			1						
			schist; bands of biotite, weak chlorite often with pink garnets. Decreasing								<u> </u>						
			fracturing - very competent. Weakly disseminated po-py.								1						
									1		1						
477	62.4	OMCS		2	<u>_1</u>	· • •			1		1						i
47.7	02.4	QMCS	Quartz-Muscovite-Chlorite Schist; darker grey, well-layered, more strongly	-		<u>u</u>			+								
			minor cp along weakly polished S2 planes. Weakly fractured, quite competent.														
									-								
			47.9-48.1: Irregular quartz vein, upper contact @ 15 to c.a., lower @ 60 to c.a										47.9	48.1	8174		
			Quartz is mottled with coarse patchy brown mineral, reacts weakly with HCI but may be fine-grained tourmaline. 10-20% po>py, minor cp.				-					<b> </b>					
		<b> </b>									<b> </b>						
			48.4: Layering is crenulated with a strong S2 cleavage @ 50 to c.a.				ļ	ļ		<u> </u>	<u> </u>						ļ
			48.9: More open fold; vergence is uphole, to north.				<u> </u>	ļ									ļ
			50.0-50.8: Darker with fine felted texture, possibly tourmaline.										50.0	51.5	8175		
			55.8: White, 3-5cm quartz vein, 5% po along selvage, minor greenish muscovite-														
			sericite dispersed through vein, diffuse boundaries, with S2 @ 85 to c.a.														
			56.4: White quartz vein, 14cm thick, @ 70-75 to c.a., minor py along fractures.					Ι									
			57.3: Small tight folds, verging uphole to north (to antiformal closure).														
			58.4: Po, minor cp along S2 @ 90 to c.a.				1										
		[	159.7-60.1: Strong "poker chip" fracturing		1	1	1		1		ļ –						
			60.8 Pv-po-minor cp on S2 @ 90 to c a				1	1		1	1			† <b>-</b>			
			62 4: Sham lower contact narallel to S2 @ 85 to c a				1				1						
								<u> </u>	+		1						
62.4	00.0	ONCOS		-			1	1	+								
02.4	00.0	UMC03	schistose: consistent texture well-foliated commonly contorted. Quartz-	<b>–</b>													
			muscovite-chlorite dominate, quite soft, with 2% scattered porphyroblastic pink	<u> </u>							-						
		<u> </u>	garnets typically 1mm diameter. S2 @ 75-85 to c.a. Weak to moderate	<u> </u>	<u> </u>				╉───		$\vdash$			}	<u> </u>		
			suipnides, weakly magnetic - pyrmotite (po), pyrite (py), and chalcopyrite (cp); concentrated along S2. Very competent, weakly fractured, 100% recovery	├──				–		–		-					
				l		<b> </b>					──			<u> </u>	<u> </u>		
			66.3: Coarse very ragged, pink garnets, grass green chlorite in pressure shadow	s.	<u> </u>	ļ	<b>_</b>	<u> </u>	<u> </u>		_						l
			66.5: Open fold, vergence uncertain, possibly D3.	<b> </b>	ļ	ļ	<b> </b>	<b> </b>	<b> </b>	ļ	<u> </u>						<b> </b>
			68.6: S2 @ 75-90 to c.a., py>po on some S2 planes.														

							A	lterati	on sco	ore 1 -	5						
Depth	(m)	Rock	Description	%	ر م	%	% 0	%	chi	cal	ser	cla	Interv	al (m)	Sample Number		
From	To	Code		10	РУ	Ср	Spn	Gai		<u> </u>			Trom	10	Number		
			71.8-73.7: Strong "poker chip" fracturing; strong muscovite, py>po.					-									
			75.4: S2 @ 80 to c.a.				ļ				[						
			79.8: 3-4cm of pale grey quartz eye section with wispy grass green chlorite.			Ĺ			ļ		<u> </u>		78.5	80.0	8176		
			Flattened pyrite along several S2 planes @ 75 to c.a.					<u> </u>		ļ							
			81.0: S2 @ 70 to c.a.														
1			82 5-83 3: Marble: dirty, dark grey, highly schistose and well-layered.														ļ
			Interlayered with minor pale greenish QMCGS. Moderate to strongly calcareous														
			layers. Layering (S2) @ 80 to c.a., uniform.														
			84.6-85.7: Marble: same as 82.5-83.3m.														
			87 1-87 2: Marble: same as 82 5-83 3m					1									
			88 1-88 45: Marble: same as 82 5-83 3m														
			00.1-00.43. Marble, Same as 02.9-00.011.														
			Marble: same as 82.5-83.3m, fairly uniform, mod to strongly calcareous, with	2.2	-1		<u> </u>										
88.8	92.4	Marb	obvious calcitic layers and darker chl-musc layers (marl). Fine-grained po	2-3			1	1		+							
			throughout, weak to moderate magnetism. Weakly to moderately fractured.	·			+			+	╂──						
			89.9-90.0: S2 @ 75-80, S3 @ 50-55 to c.a.							-				<u> </u>			
			0 ( 11 ) ( 0) ( 1 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) (	<u> </u>					-								
92.4	105.9	QMCGS	Quartz-Muscovite-Chlorite-Garnet Schist, same as above (62.4-62.5m). Considerably more fractured, esp around minor gougy faults. Mineralization	1-2	1-2				-			<u> </u>					
			consists of po finely disseminated throughout and pyrite as flattened grains along														<u> </u>
			S2 fracture planes.	ļ		ļ	<u> </u>		ļ	_							ļ
			94.7-97.3: Sharp increase in fracturing, some "poker chips".											<b> </b>	ļ		<u> </u>
			96.0-96.1: Fault; moderate intensity, little displacement; lower slip @ 20 to c.a.						1								<u> </u>
			99.7-100.0: "Poker chip" fracturing; S2 @ 85-90 to c.a.												-		<u> </u>
			101.4: S2 contorted, S2 @ 25 to c.a.														
			101.7-101.8: Intense "poker chip" fracturing.												<u> </u>		1
			102.0: Quartz vein breccia, approx 5cm thick, @ 25 to c.a.; 3% py, 3% po, black				Ι		1					<b></b>			
			stockwork - possibly tourmaline.														
			102 1-105 9: Strong contaction of layering and S2 incr irregular quartz veining.	<1	2-3		1			1							
			minor "poker chip" fracturing. Decr garnets and increase in blebby pyrite.	<u> </u>									<u></u>				
						<u>†                                    </u>			1		1						
				1			1		+		1	1					<u> </u>
105.9	108.5	Fit	<u>prauit:</u> assoriment or quartz-graphite and clay gouge zones with sharp increase in carbonate and graphite.				+	+	+		+	+		1	1		<u> </u>
						-				-	+	+		<u> </u>			<u> </u>
			105.9-108.0: Mainly quartz-graphite schist ("argillite"), polished graphitic slips.		L							+					+
			107.3: Dark grey clay-graphite-quartz gouge, 5cm thick.	<u> </u>		-						-		<u> </u>	<u>+</u>		+
			108.0: Lower graphitic slip @ 30 to c.a.		<u> </u>			_					Į				
			108.2-108.5: Mainly pale greenish gouge; wavy lower "contact", polished clay-	<u> </u>	<b> </b>	<b> </b>						<b> </b>	<b> </b>				╂────
			sericite @ ~90 to c.a.						<b> </b>		ļ	<b>_</b>	ļ			<b> </b>	
									1		-	<b>_</b>			<u> </u>		ļ
																1	

ACE-02-02

							A	Alterati	on sco	ore 1 -	5					 
Depth	n (m)	Rock	Description	%	%	%	%	%	chi	cal	ser	cla	Interv	al (m)	Sample	 
From	То	Code		Po	Ру	Ср	Spn	Gal					trom	10	Number	 
108.5	118.8	QMCS	Quartz-Muscovite-Chlorite Schist: pale green, fine-grained and more massive-	1	1		<u> </u>				<b> </b>					 <u> </u>
			Strongly fractured with white sericite coating the core to 122.7m. Mineralization	ļ				<b> </b>								 
			includes pyrite on S2 fractures and po disseminated throughout, both somewhat													 
			weaker than before.				ļ		<u> </u>							 
			110.0-111.1: Zone of silicification surrounding a brittle white quartz vein, 10-15cm				<b>_</b>		ļ				110.0	111.5	8177	 
			several wispy white quartz veins in siliceous muscovite schist. S2 and veins are				<b> </b>	ļ	<b> </b>							 
			45-60 to c.a.					L	<u> </u>							 
			112.5: 4-5cm section of pale clay gouge @ 80 to c.a.								1					 
			112.7: S2 folded around fairly open fold - no vergence.													 ·
			113,8-114.8: Strongly silicified, as before (110.0-111.1m).													 ļ
			116.2: Minor gouge on S2 fractures.													 <del>_</del>
			116.3-117.5: Moderately to strongly silicified zone, as above.													 
			116.8-188.8: Strong fracturing.													 
118.8	122.5	Fault	118.57-119.18: 65% recovery.													 
			118.8: Upper slip @ 35-45 to c.a.													
			118.8-119.3: Mainly pale green gouge and rubbly fault breccia.													 
			119.6-120.4: Strongly sheared with soft sericitic fractures in vuggy schist @ 60 to	c.a.												 
	ï		120.40-121.31: 20% recovery, mainly pebbly rubble.													 
			121.31-122.53: 65% recovery,													 <b>_</b>
			121.5 (approx)-122.5: Mainly pale green gougy matrix and breccia blocks.				$\perp$									 ļ
					L											 
122.5	164.9	QMCS	Quartz-Muscovite-Chlorite Schist; as above, 108.5-118.8m; somewhat less	1	1											 
			fractured and less quartz veining. Minor calcite on late fractures.													 ļ
			122.8: White quartz vein with very diffuse boundaries, 5-6cm thick.													 
			123.3: S2 @ 65 to c.a.													
			123.4-123.8: Similar diffuse quartz veins, aligned with S2, minor magnetic po, py.	2	<1											
			128.0: Muscovite-rich, minor shear; S2 @ 65-70 to c.a.													
	-		128.4: White quartz vein, 1-3cm thick with 1 fracture-controlled bleb of po.													
			129.0-130.8: Strong silicification, diffuse white quartz veining, only minor sulphide	s.												
			131.8-132.4: White quartz vein, minor intervening musc schist. Upper contact @	7	5	tr	1						131.8	132.5	8178	 L
			55 to c.a., along S2. Hosts large patch of fine-grained po mixed with pyrite;													L
			reddish-bronze mineral may be sphalerite. Fractured at lower contact.													
			134.1: 1cm white quartz vein with 10% po + py, minor cp. Vein @ 55 to c.a.													L
			135.8-136.2: Strongly silicified zone, wispy musc schist @ 30 to c.a.									<u> </u>			ļ	
			136.9: Quartz vein with strong planar graphite slip @ 48 to c.a.													
			138.5: S2 @ 70 to c.a.													
			138.8: Lensoidal to blebby po 1-2mm thick along S2 @ 70 to c.a.													

Wildrock Resources Consulting & Drafting

DDH No.

May 31, 🌔 Date

_							A	Alterati	on sco	ore 1 -	5						
Dept From	h (m)	Rock	Description	% Po	% Pv	% Cn	% Sph	% Gat	chl	cal	ser	cla	Interv from	al (m) to	Sample Number	Cu	Au daa
		_ Code			.,	- <u>-</u> -											
			minor py, lesser po.	-													
			144.3: Blebby py + cp, roughly along S2 @ 80 to c.a.; weak to mod calcareous.														
			145.1-146.4: Increased fracturing, reflects more micaceous character.														
			147.7: 3cm white quartz vein @ 55 to c.a., po along selvages and fractures.														
			147.8: S2 @ 85 to c.a.														
			155.2: Begin to see some darker layers in pale green schist. Also, 2-3cm white quartz vein with patchy dark brown mineral with po+py, esp adjacent to lower contact.										151.0	152.5	8179		
			155.8-160.2: Darker, more schistose, moderately to well-fractured, local "poker														
			chips", minor shearing.	ļ	Ļ		<u> </u>				ļ						<b> </b>
			158.1-158.2: White quartz veining with polished graphitic slips @ 60 to c.a. Unsheared lower contact @ 60 to c.a., tight fold against vein.	┣─													
			159.6: White quartz vein, 4-5cm thick @ 50-70 to c.a., brown patchy mineral + po	> py.													
			160.9-163.6: Numerous white quartz veins, fuzzy silicification.														
			161.24-163.07: 67% recovery, no obvious cause of core loss.														
		Γ	163.8: Minor shear zone, musc-rich gouge over 5cm.														
			163.9-164.9: Back to pale greenish, more massive-looking schist.														
			164.8: Uniform kink folds with axial planes @ 55-60 to c.a., verging to antiform up	hole.			ļ										<u> </u>
								<u> </u>									
		ļ	END OF HOLE = 164.90 metres			<u> </u>											
		ļ															<u> </u>
		ļ			···	<u> </u>	<u> </u>										<u> </u>
		<u> </u>	· · · · · · ·		<u> </u>	<u> </u>			<u> </u>		<u> </u>						<u> </u>
				<u> </u>	<u> </u>				<u> </u>		<b> </b>						
		ļ			<u> </u>				<b> </b>	ļ	<b> </b>						
		L		<u> </u>	1	ļ					ļ						
						ļ					ļ						<u> </u>
							<u> </u>	<b>_</b>	<u> </u>		<b> </b>						<b></b>
			·					<u> </u>	1		<b> </b>						ļ
								<u> </u>									ļ
	1																
	1				Τ			1									

	Diamor	ıd Drill	Log	DDH	No.		Α	CE-	02-03	3					•	Fests	
	Company:		Barker Minerals Ltd	Date	Collare	ed	May 3	31, 200	)2				Azimuth	180		Depth	Dip
	Project:		Frank Creek	Date	Compl	leted	June	2, 200	2				Dip	-45		n/a	
	Logger:		Christopher J. Wild. P.Eng.	North	ing		4 + 70	DN					Length	150.88 m			
	Date:		June 2, 2002	Eastir	ıg		5 + 70	w					Core Size	NQ			
	Remarks		Drill fence with DDH-98-3, test mineralization in trench TR-97-1B	Eleva	tion		1028	m								L	
									altn 1	- wea	ik, 5 si	trong					
Dept	h (m)	Rock	Posserintion	%	%	%	%	%	chi	cal	sar	cia	Interv	al (m)	Sample		
From	То	Code	Description	Po	Ру	Ср	Sph	Gal	0	<u> </u>		oiu	from	to	Number		<u> </u>
0.00	8.23	Casing	Cased through fill from trench and till, no recovery.													<b> </b>	<b>_</b>
8.23	55.50	Fels	Felsite; pale grey, conspicuously mottled unit composed of very fine-grained	5-7	3												
			plagioclase with minor but variable biotite (reddish flecks) and muscovite. Locally														
•			calcareous patches, notable around disseminated to blebby po - moderately														
			recovery														
								<u> </u>		_	_						┥───┦
																<u> </u>	╅───┦
			8.5-9.7: Semi-Massive Sulphides; approx 20-30% pyrrhotite and pyrite; po	20	10								8.5	9.7	8180	<u> </u>	<b>├</b> ───┤
			forms a distinctive net-texture - very fine grained while pyrite is later, coarser													<b></b>	<u> </u>
			grained and forms within 1-2cm layers. Moderately to strongly magnetic.														
			9 7-11 8: Lavered and Disseminated Sulphides: approx 15-20% po +pyrite:	5	10								9.7	11.8	8181		
			pyrite more flashy, coarse-grained and in layered, as above, but much less fine														
			net-texture po. Sulphide layers and S2 @ 80 to c.a for most of interval.														
			9.7-10.7: Well-fractured, weakly gougy or rubbly.														
			11 8-13 9: Well-lavered, micaceous section, with several 2-3cm lavers of 25%				1						11.8	13.9	8182		
			coarse pyrite, minor po, possibly traces of reddish sphalerite.					-					13.9	16.0	8183		-
			13.8: White quartz vein 2-3cm thick @ 25-30 to c.a. 10% coarse pyrite with										16.0	18.0	8184		
			several coarse grains of reddish sphalerite.										18.0	19.6	8185		
																	1
			13.9-14.0: Pale grey to white, very line-grained and sinceous-looking, by > po in liveak stockwork, disseminations and blebs, weakly magnetic.	·												t	+
													· · · ·			<u> </u>	
			14.6-15.9: Well-layered and darker grey, esp 15.2-15.8m, becomes more cherty														╉━───┦
				-									<u> </u>				<u></u>
_			15.8; S2 @ 55 to c.a.													<u> </u>	<u> </u>
			17.2-17.5: Healed breccia, likely tectonic.	ļ		ļ	ļ						<b> </b>				<u> </u>
			17.5: Musc-rich gougy section around layer of py-po and brown tourmaline (?).	<u> </u>		ļ										<b></b>	
			17.5-19.6: Layered pale grey, few micas, <5% sulphides.													<u> </u>	
			19.6-35.5: Weakly spotted, pale grey to white, very uniform, weak micas so no				tr						19.6	21.0	8186	<u> </u>	<u> </u>
			real foliation developed. 5-10% po > py, moderately magnetic. Very weakly														
	1		fractured.														
		·	21.6-21.7: More biotite-rich section.	1				1					1	1			
	······		22.6-22.9: White guartz vein, 2cm thick, blebby po, flattened py along fractures, @	) 20 to	c.a.			<u> </u>									
			22.9: S2 @ 70 to c.a. weak.		1			1							1		

							A	lterati	on sco	re 1 -	5					 
Dept	n (m) To	Rock	Description	% Po	% Pv	% Cn	% Sph	% Gal	chi	cal	ser	cla	Interv:	al (m) to	Sample Number	 
FIOIN	10	Code	26 9-27 4: Stockwork precciation, autoclastic		ry.	οp	opii				-		26.9	28.3	8187	
			28.3-30.0: Looks glassy or like polished marble, minor diss sphalerite with py.										28.3	30.0	8188	
			31 3-31 4: 25cm milky white quartz vein sharp contacts lower @ 30 to c a				1						20.0			
			22.1.22.6: Placky brassis, basis but yyany batwan blacks; locally looks like a				1						-			 
			lapilli tuff with fine py-po stockwork forming the matrix.													 
			35.5-38.6: Brownish speckled biotite, possibly an alteration - 10-20% biotite with coarse pyrite grains superimposed on foliation.													
			37.7: S2 @ 70 to c.a.				]									 <b></b>
			39.5-39.8: Biotite-rich section, as before.													
			39.8-43.3: Layered pale greenish and weaker biotite sections, less felsic.										40.0	41.5	8189	
			42.9-43.3: Milky white quartz vein, minor po, py, traces of cp; vein @ 70 to c.a.													
			43.3-50.3: Weak but consistent biotite-felsite, 10% biotite; fine-grained disseminated po > py, associated with biotite, parallel to S2.													 
			50.3-51.3: Quartz-Muscovite-Chlorite Schist (QMCS); pale green, fine- grained, massive-looking.										50.3	51.3	8190	 
			51.3-55.5: Weak hiotite-felsite, as before.								+					
											1					 
55.5	57.7	Ara	Siliceous Araillite: dark grey banded strongly siliceous pale and dark grey	1	1			1					55.5	57.7	8191	
- 55.5	51.1	Ag	layers, strongly contorted. Sharp upper contact @ 75 to c.a., parallel to S2.	<u> </u>	•				1							 
			Gradational lower contact, decreasing dark layers into felsite. Slight decrease in			1		1							T.	 
			hard and competent.													
57.7	50.6	Fala	Feisite: nale grey, conspicuously mottled unit composed of very fine-grained	3.4	1						1		57.7	59.6	8192	
	59.0	LGIS	plagioclase with variable biotite (reddish flecks) and muscovite. Locally								1		07.1			 
			calcareous patches, notable around disseminated to blebby po - moderately			<u> </u>										
			recovery.				1	<u>†                                    </u>				<u> </u>				 <b> </b>
							1	<u> </u>	1							
50.6	62.6	ONCS	Quartz Mussovite Chlorite Schiet: pale green, fine-grained, homogeneous	2	<1				1		1					
59.0	03.0	QMCS	Relatively soft yet weakly fractured. Fine-grained disseminated po, minor py.									1			1	
							+								1	 
63.6	70.9	Fole?	Quartz-Biotite-(Muscovite-Chlorite) Schlst or Felsite: very distinctive biotite-	1	,		1	†	1			1	64.0	65.5	8193	
03.0	10.0	F015 (	rich fine-grained siliceous or felsic (plagioclase)-rich unit in which biotite forms	<b> </b>	╞╴╸			<u> </u>								<b> </b>
			thin bands often folded and swirled. Locally finely layered, resembles banded			1	1		1				69.3	70.8	8194	[
			weakly magnetic, weak po, increased coarser late pyrite.	<b> </b>			1	$\mathbf{T}$	1			1			<u>.</u>	
	<u> </u>			1			1	1	1		1					
70.8	72.6	OMCS	Quartz-Muscovite-Chlorite Schist: pale green_fine-grained_homogeneous	2	<1	1	1	1	1			1				
	, 2.0		Relatively soft yet weakly fractured. Fine-grained disseminated po, minor py.	<b></b>			1	1	1			1				<b></b>
						1	1	1	1	<u> </u>	1	1				[
				1	L	1	1		1			1		1	<u> </u>	 A CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWNER OWNER OF THE OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNE

							A	Alterati	on sco	ore 1 -	5					
Dept	h (m)	Rock	Description	% Po	% Dv	%	% Sob	% Gal	chl	cal	ser	cla	Interva	al (m)	Sample	 
From	10	Code		PO	Ру	Cp	Spn	Gai					Trom	10	Numper	 
72.6	78.9	Fels	Feisite; pale banded brown and grey, weakly mottled unit composed of very fine- grained plagioclase with variable up to 5% biotite (reddish flecks) and muscovite-	3-4	3-4								72.6	74.6	8195	 
			rich sections. Locally calcareous; disseminated to blebby po - moderately				··-									 
			magnetic and py, both with weak S2, py and po-rich sections, less overlap. Unit				<u> </u>	<u> </u>								 
			is dense, hard, weakly fractured, and very competent with 100% recovery.					<u> </u>								 
			78.9: Sharp lower contact @ 60-65 to c.a., parallel to S2.					1								
78.9	81.7	QMCS	Quartz-Muscovite-Chlorite Schist; pale green, weakly schistose, quite siliceous but relatively soft, possibly with chlorite. Same as 70.8-72.6m.	2	<1						ľ					
			80.8: Minor white quartz vein, 2-3cm thick with a 5mm bleb of po.													
			81.2: Felsite: 14cm zone of strongly mineralized (blebby po+py - 10%), quite													
			micaceous, S2 @ 70 to c.a.	1				T								
			80.6-81.7: Moderately fractured, increased to contact.													
			and an and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	1			1	-								
81.7	95.1	Arg	Siliceous Argillite; mixed unit of QMCS, weakly to strongly carbonaceous with	1-2	1-2											 
		<u> </u>	local graphitic slips. Significantly darker and well-layered compared to					1								
			diss but weaker py+po, weakly magnetic. Moderately fractured.	-			1	1								
			83.5-83.8: QMCS, siliceous,					1			1					
			84.1-84.7: Marble: mod to strongly calcareous, musc-rich bands. S2 @ 65-75 to	c.a.				1								
			24 7-85 9: Quartz Graphite Schiet / Fault: Moderately colographic dark erev													
		<u></u>	layered with numerous curved and polished graphite slips, minor white quartz													
			veining. Well-fractured, only 50% recovery.								1					
			85.9-89.8; Well-lavered, dark and pale grey to white 1-3mm "stripes" with			·										
			occasional 1-2mm pyrite bands; more competent.						<u> </u>							
			86.0: Needle-like mineral, up to 5mm long, usually with S2 but clearly post D2	1		<u>  · · · · · · · · · · · · · · · · · · ·</u>	·	1		= .	1					
			00.9.00.2. Ouest- Musecuite Chlasite Solicit sele sees silicous unit version								1					
			on felsite. Significant wispy po, blebby later py. Sharp upper contact @ 70 to	<b> </b>			1									
			c.a., flatter, more contorted lower contact.	<u> </u>			†									 
			90 2-91 5: Contorted dark banded schiet	+				+								 
			2015-01.7: More needle like onstale, clostly crossing \$2. (Layoyang2)													
┣───┤			91.3-91.7. more needle-line crystalis, diedrig Clossifig 32. (Leucoxelle?) 91.7-93.0: Well-fractured, rubbly including white guarty pabbles, share loss of													·
┣────┤			recovery - likely a fault centred around 92.0-92.5m.	<u> </u>			<del> </del>	<u> </u>						-		
							<del> </del>							-		 
			09 66 05 74, 000 and another the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco					-								
						<u> </u>		-					<b> </b>			
			194.3-35, 1: Gradational lower contact, becoming pale green, musc-rich.			<u> </u>										
			95.0: SZ @ 70 to c.a.													 
							<b> </b>									 

ACE-02-03

							Ą	lterati	on sco	ore 1 -	5					 
Dept	<u>n (m)</u>	Rock	Description	%	%	%	<b>%</b>	%	chl	cal	ser	cia	Interv	al (m)	Sample	 
From	То	Code		Po	Ру	Ср	Sph	Gal					trom	to	Number	 
95.1	106.2	QMCS	Quartz-Muscovite-Chlorite Schist; pale green, fine-grained and becoming more	1	1								95.1	97.0	8196	 
			massive-looking, alternating harder and more siliceous with softer, more													
			disseminated throughout, both somewhat weaker than before.													1
			98.8: S2 @ 77 to c.a., planar and consistent.													
			102.5-104.2: Moderately fractured, no evidence of brittle shearing.													
			103.2: 2-3cm laver of darker grey banded limestone, first appearance.													
			103 5: Tight fold outlined in core - compositional layer, well-developed axial													 
			planar cleaveage (S2) @ 60 to c.a no vergence.													
			103.7-104.0: Dirty grey banded limestone or mart; moderate reaction with dilute													
			HCl. Layering, S2 @ 75 to c.a., tight fold at upper contact (F2).													
			104.4: Limestone band, very irregular fold.													
			105 A 105 6: Two limestone layers as above													
								1								 
106.2	107.7	Marh	Manhles medium even well bended computed centeried mediorotoly colographic	<<1	<1											 i
100.2	107.1	marb	dirty limestone or marl. Quite micaceous - chlorite and muscovite. Weakly		~.											
			mineralized, fine-grained pyrite, not magnetic. Weakly fractured, very competent.													
			Quartz Muccowite Chlorite Schipt: pale groop, fine grained and becoming more													 
107.7	113.9	QMCS	massive-looking, alternating harder and more siliceous with softer, more	2	<1	<1			<b> </b>							 
			micaceous schist. Mineralization includes pyrite on S2 fractures and po					<b> </b>		ļ						 
			disseminated throughout, both somewhat weaker than before.					<u> </u>								 
			107.7-: 5% pale to white tabular to needle-like crystals (leucoxene?)				<b> </b>	<u> </u>								 ļ
			110.5: Bronze po with minor cp and py, on fracture (S2).													
			111.3: S2 @ 80 to c.a.													
			113.9: Lower contact, S2 @ 70-75 to c.a.													
113.9	131.3	Ara	Argillite; darker green-grey, fine-grained and well-layered but strongly contorted	1	3		1	1								
110.0		,	and folded; continuing quite siliceous. Sharp increase in secondary coarser-	<u> </u>					<u>                                      </u>							
			grained pyrite, minor tine-grained lenticular po. Needle-like white crystals still common.	<u> </u>		1										
			116.9-117.2: Tightly folded, micaceous, well-fractured, weak shear zone.													
			117.3: S2 @ 70 to c.a.													
			118.2-118.4: Well-fractured, micaceous, strongly crenulated S2 surfaces.										118.0	119.2	8197	
			120.4: S2 @ 65 to c.a.; folding evident but not measureable.					T	1							
			125.4-125.9: Fault: 5cm dark clay gouge, weakly graphitic, followed by 45cm of	<b> </b>		1		1	1	1						
			"poker chips", numerous polished micaceous slips.													
			125.9-126.5: Quartz-Muscovite-Chlorite Schist; pale green, fine-grained,													
	-		gradational with darker schist.D22													
			126.5-128.0: Darker, guartz-chlorite-muscovite schist, argillite.				1		1	1						
			128.0-128.5: QMCS, as above			1	1	1	1	1	[					 [

F:\Oid Desktop\CW 02 Drilling and Trenching\Logs&Assays\Logs\[ACE-02-03.xis]Page1

								Alterati	on sco	ore 1 -	5						
Depti	h (m)	Rock	Description	%	%	%	%	%	chl	cal	ser	cla	Interv	/al (m)	Sample		
From	То	Code		Po	Ру	Ср	Sph	Gal	0.11			0.0	from	to	Number		
			128.3: 10cm white quartz vein, upper contact @ 35-40 to c.a.; minor pyrite.														
			128.9-129.5: Series of weak S2-parallel shear zones, micaceous.														
			131.1: 10-12cm white quartz vein, parallel to S2 @ 70 to c.a., micaceous partings														
			131.3: irregular, weakly gougy fault @ 30 to c.a., schist same across fault, contact	t	-												
			parallel with S2 @ ~70-75 to c.a.				1										
							1										
131.3	150.9	OMCS	Quartz-Muscovite-Chlorite Schist; pale green, fine-grained weakly foliated and	<1	<1								132.0	133.5	8198		
			more massive-looking, quite siliceous and monotonous unit. Occasional white														
			quartz veins, 1-2cm thick, largely lacking sulphides. Mineralization includes minor	·													
			Coarse pyrite occasional disseminated po, both somewhat weaker than before.	<u> </u>			-										
																······	<b></b>
			130.2: S2 (2) 80 to c.a.														<b> </b>
			140.8: Weakly gougy fracture, @ 30 to c.a.							<b> </b>							<b> </b>
			142.6: S2 @ 80 to c.a.	ļ			<u> </u>										<b> </b>
			145.8: S2 @ 75 to c.a.				ļ			<b> </b>							<u> </u>
			147.2-147.6: Weakly gougy (micaceous) S2-parallel shear zone.	<u> </u>			<u> </u>										ļ
			148.3-149.3: Series of weakly gougy, S2-parallel shear zones.				<u> </u>										<b></b>
			149.7: Somewhat darker and more chloritic to end, folds evident but not														
			measured. Increase in blebby lenticular pyrite.														
			150.8: White quartz vein, 6cm thick @ 60-70 to c.a. (parallel to S2), patchy tan														
			carbonate, muscovite and dark brown, felted tourmaline along lower selvage. No														
			sulphides detected.														
			END OF HOLE = 150.88 metres														
								1		1							
				1			1										
							1										
														1			
				<u> </u>			-			<u> </u>							<u> </u>
							<u> </u>			<u> </u>							<u> </u>
									<u> </u>	<u> </u>					l		<b> </b>
		<u> </u>		<u> </u>			╂──		<u> </u>								<u> </u>
				<b> </b>						<b> </b>							<b> </b>
							<b> </b>		<u> </u>		<u> </u>						<b> </b>
								_	<u> </u>	<b> </b>	<u> </u>						<b> </b>
							<u> </u>	ļ		<u> </u>							I
							<u> </u>	<b> </b>	<b> </b>	<b> </b>	ļ						<b>_</b>
																	<u> </u>

	Diamor	nd Drill	Log	DDH	No.		A	CE-	02-0	4					•	Tests	
	Company:		Barker Minerals Ltd	Date	Collar	ed	June	2, 200	2			[	Azimuth	180		Depth	Dip
	Project:		Frank Creek	Date	Comp	leted	June	3, 200	2				Dip	-45		n/a	
	Logger:		Christopher J. Wild. P.Eng.	North	ing		4 + 20	0N					Length	117.35 m			
	Date:		June 4, 2002	Eastir	ng		5 + 0	0W					Core Size	NQ			
	Remarks		Step ~75m east of DDH-98-3 and ACE-02-03, test for mineralized horizon, felsite.	Eleva	tion		1025	m								ا	
									altn	1- wea	ak. 5 s	trona					
Dept	h (m)	Rock	Beervietien	%	%	%	%	%	ahl	cal	, .		Interv	al (m)	Sample		
From	To	Code	Description	Po	Ру	Ср	Sph	Gal	cni	Cat	ser	CIA	from	to	Number		
0.00	7.62	Casing	Cased through road fill and glacial till, no recovery.													<b></b>	
																ļ	
7.62	25.30	QMBS	Quartz-Muscovite-Biotite Schist; pale grey, slightly greenish, siliceous and	2	1											<u> </u>	
			schistose, weakly calcareous; consistent texture, well-foliated. Quartz-musc														
			Weak sulphides, weakly magnetic - pyrrhotite (po) associated with dark biotite														
			spots. Very competent, weakly fractured, 100% recovery.														
			7.6-10.8: Darker, calcareous & chloritic sections in spotted quartz musc schist.														
			10.8-14.6: Well-fractured pale spotted schist, "poker chip" sections.														
			10.9: S2 @ 85 to c.a.														
			10.67-13.41: 70-75% recovery.													L	
			12.3-12.4: Weakly gougy fracture zone.				ļ							_			
			13.41-15.54: 95-100% recovery.													ļ	
			15.4-15.9: Marble; dark grey, dirty chloritic schist.													<b></b>	<b> </b>
			17.5-25.3: Very weakly fractured, mainly good spotted schist, more chloritic and				ļ						17.5	19.0	8199	ļ	<b>  </b>
			some calcareous layers.				ļ									<b></b>	
											<u> </u>					<b></b>	
25.30	28.10	QMCS	Quartz-Muscovite-Chlorite Schist; medium greenish grey, fine-grained and	2-3	1								25.5	27.0	8200	Ļ	<b></b>
			weakly schistose, with grey marble layers and lenses. Chionic occurs as green wispy layers. Gradational with above unit and lower marble unit. Slight increase														
			in po + py, mainly as fine diseeminations along S2.														
			25.3: 5cm marble layer marks contact @ 85 to c.a.														
28.10	33.80	Marb	Marble; medium grey, well-layered but strongly contorted, moderate to strong	1-2	1								32.0	33.8	8201		
			reaction with 10% HCl, dirty, micaceous mari. Weakly to moderately tractured,							İ							
			quartz veinlets or segregations, usually not mineralized.														
			29.0: Limonitic fractures.														
			29.4: 8cm white quartz vein along S2 @ 80-90 to c.a. 5% po, 2% py.														
			31.5: Irregular white to grey quartz vein, 5-8cm thick.														
			31.7: 9cm white quartz vein, 75-90 to c.a.														
			31.9: 10cm fractured white quartz vein.														
	1			1		1	T	1	I .							1	

ł

							<u> </u>	literati	on sco	ne i -	0				<u> </u>		
Depti	ו (m)	Rock	Description	<b>%</b>	8	%	<b>%</b>	<b>%</b>	chl	cal	ser	cla	Interva	al (m)	Sample	r	
From	То	Code		10	Ру	Ср	Spn	Gai			1		Trom	10	Number		
33.8	42.5	Fels	Felsite; pale greenish, very fine-grained, siliceous-looking, and hard. Grades from OMCS to micaceous (musc. biotite) felsite over top 40cm, several grev	<1	3-4		<b> </b>				ļ		33.8	36.0	8202		
			banded marble intervals, as noted. Weak mineralization for felsite interval,					<u> </u>					36.0	38.0	8203		
	1		consisting mainly of pyrite, very weakly magnetic.										38.0	40.0	8204		
			35.7-36.1: Well-fractured, moderately limonitic.										40.0	42.5	8205		. <u> </u>
			36.1-36.4: Marble; pale cream to medium grey, well-layered @ 80 to c.a.														J
			38.0-38.2: Well-fractured, moderately limonitic.														
_			38.2-38.3: Marble; as above, strongly calcitic.														
			39.4-39.5: Marble; as above, 14cm thick interval @ 80 to c.a.														
			42.5-42.6: Marble; medium-grey, calcitic, 12cm thick @ 80 to c.a.														
						[											l
42.5	43.5	Ara	Argillite / Fault: dark grey to black, graphitic with this white guartz layers, very	<1	3-4								42.5	43.5	8206		l
			contorted, intensely deformed. Strong graphitic gouge at top of unit, likely lost up														
		i	to 40cm of core. Quite pyritic but very weakly magnetic.														
			42.67-44.20: 70-75% recovery.					<u> </u>									
			43.5: Undulating polished graphite slip marks sharp lower contact @ 60 to c.a.					1									
				1													
43.5	45.7	Fels	Felsite: pale greenish, as before (33.8-42.7m).	<<1	5-7		1						43.5	43.75	8207		
			43.5-43.7: 20% pyrite, medium-grained in stockwork in moderately calcareous		20								43.75	45.7	8208		
			section.		1												
			45.0: Patches of fine-grained galena and possibly fine honey sphalerite				1	2			Ι						
			associated with pyrite; forms wispy bands along folded layering.			1	1										
				1													
45.7	46.2	Are	Araillite / Fault: same as above (42.7.43.5m) more calcareous. Strong fine-	1	7		+			1			45.7	46.2	8209		
43.7	40.2	<u>My</u>	grained pyrite along S2, several planar graphitic slips.									1					
			45.7. Com black source, mediants graphits and purits							1							
			45.7: 2cm black gouge, moderate graphice and pyrite.		1		· · ·				+	1					
			140.2. Poisned graphice silp along lower contact (g) 55 to c.a., close to planal.				1	1	+	1	1	<u>†</u>					<u> </u>
			Felsite: pale greenish, as before (33.8-42.7m), pyrite is stronger along weak		+ -		╉──						46.2	49.0	9210		
46.2	53.8	Feis	foliation and disseminated throughout. Not magnetic, possibly traces of	<u>  &lt;&lt;1</u>	+			1			-		40.2	40.0	9244		<u> </u>
			chalcopyrite. Very consistent pale grey, siliceous-looking with only minor pale									-	48.0	50.0	0211		<u> </u>
			green muscovite. Hard and weakly fractured.			-	-					-	50.0	52.0	8212		
				-									52.0	53.8	8213		
53.8	54.3	Arg	Argillite / Fault; same as above (42.7-43.5m), not calcareous. Strong pyrite		5		-		+	<u> </u>	┨			<u> </u>			<u> </u>
			53.8: upper slip, weakly graphitic, @ 65 to c.a.		1	<u> </u>		_				<u> </u>	<b> </b>		<b> </b>		┨────
			53.34-54.25: 85-90% recovery, losses in argillite unit.	↓	$\downarrow$			<u> </u>	<u> </u>			1	<b> </b>				<b> </b>
			54.25: Several graphitic slips in rubble at lower contact.	<u> </u>								1	Ļ		ļ		
													54.25	54.6	8214		Ļ
				1		1		1				1			•		

ACE-02-04

Alteration score 1 - 5 % % % Interval (m) Sample Depth (m) Rock chi cla Description cal ser Ру Cp Sph Gal Po From То Code from to Number 54.3 54.6 55.7 8215 55.7 Fels Felsite: darker grey due to increased sulphides and chlorite, very contorted, micaceous felsite unit, quite strongly mineralized throughout with mainly pyrite and increasing fine-grained pyrrhotite. 54.25-54.6: Semi-massive Suphides; mainly pyrite, very weakly magnetic. <1 20 Ara Pyrite is forms bands up to 3cm thick, swirled, locally disseminated. 54.6-54.8: Pale olive green, guartz-muscovite schist, likely a metadyke or sill. --Fine grained with S2 @ 80 to c.a., may cut sulphide horizon at low angle. 3-5 3-5 54.8-55.7: Wispy bands of pyrite and po, moderately magnetic, locally > 10%, with bands of quartz, chlorite, and pale pinkish garnets. Semi-Massive Sulphides from 55.5-55.7m, strongly magnetic. <1 2 55.7 56.6 8216 55.7 56.6 Arg Argillite; dark grey, moderately-layered with minor contortions; numerous grey siliceous layers, 1-2mm thick, no calcareous bands, occasional wispy to disseminated pyrite in discontinuous bands. 55.7-55.8: Folded with intervening grey quartz veins, occ grains of sphene(?). 56.4: S2 @ 75 to c.a.; dark fine-grained silvery mineral - ilmenite-rutile(?). 56.6: Contact is weakly gougy, clay and chips in box. 3 58.7 8217 5 56.6 56.6 58.7 Fels Felsite; pale-grey, fine-grained, lacking micas, with apparent fractured-healed (cataclastic) texture. Weak wispy pyrite and very weakly magnetic at start. building to near semi-massive zone. Weakly fractured. 56.6: 1mm orange-brown limonite-ankerite spots. 57.3: Increasing fine-grained disseminated po, becoming net-textured, assoc py. 15 5 57.5-57.7: 15-20% po + py, good net texture; po > py. 10 58.3-58.5: 10-15% po + py, good net texture; po > py. 4 58.5-58.8: Strongly fractured. 2 58.7 60.3 Arg <1 Argillite; dark grey - darker than above argillite, very well-layered, not contorted, much less siliceous; limestone layer 58.8-58.9m, otherwise weakly calcareous. Occasional wispy to disseminated pyrite in discontinuous bands. 58.9: S2 @ 65 to c.a., very planar. 60.0: Some contortion of layers, weak fold; pyritic. 60.3: S2 & contact @ 70 to c.a., planar. Felsite: pale grey, fine-grained, locally layered with generally weak muscovite 5-7 2-3 60.3 62.6 8218 60.3 64.9 Fels and chlorite, some mottling with carbonate, and cataclastic texture. Up to 10% po + py, mainly fine-grained and disseminated, often together. Moderately magnetic. Hard and weakly fractured. 60.7: Tan-coloured patches and bands, hard, possibly K-feldspar(?).

Wildrock Resources Consulting & Drafting

F:\Old Desktop\CW 02 Drilling and Trenching\Logs&Assays\Logs\[ACE-02-04.xls]Page1

DDH No.

							A	Alterati	on sco	ore 1 -	5					
Dept	h (m)	Rock	Description	%	%	%	%	%	chi	cal	ser	cla	Interv	al (m)	Sample	
From	То	Code		Po	Ру	Ср	Sph	Gal					from	to	Number	 
			60.9: 5cm section of well-layered, pale to medium-grey calcitic limestone.													
			61.6-61.7: Blebby bronze po, strongly magnetic, lesser py.													
			62.0-62.3: Cataclastic texture - healed bx.													
			64.5: 2cm siliceous layer with 50% po + py, net-textured, along S2, layering.				-									
			64.8: S2 @ 80 to c.a., wavy, not planar, micaceous.													
					-											
64.9	65.9	Marb	Marble: dark arey, well-layered with fine pale arey calcitic and darker arey layers													
			locally quite contorted. Po + py continue fine-grained, somewhat weaker than in				1									
			felsite. Unit is moderately fractured.													
65.9	67.2	Fols	Felsite; pale grey, fine-grained, locally layered with generally weak muscovite and	5-7	2_3								65.0	67.2	8210	 
00.0	07.2	1 013	chlorite, some mottling with carbonate, and cataclastic texture. Up to 10% po +		2-5								03.3	07.2	0213	 
			py, mainly tine-grained and disseminated, often together. Moderately magnetic.		••		1	1								
			Find and wookly indicated.				<del> </del>									
07.0	70.0														0000	
67.2	76.0	68	Calc-Silicate Schist: grades from fine-grained felsite to slightly coarser grained, locally calcitic, quite micaceous, mainly muscovite, siliceous with occasional	2-3	2-3								67.2	69.0	8220	 
			quartz eyes. Some bands of felsite remain. Continues pale grey to greenish and													 
			brownish in biotite sections, very similar colour and texture and fracture					+								 
			characteristics to feisite. weaker po + py, finely disseminated along foliation.													 
						<b> </b>										 
			68.5: S2 @ 75 to c.a.			<b> </b>										 
			72.9: S2 @ 70 to c.a.; curved face, minor contortions.			<b> </b>	<b> </b>									 
			75.3-76.2: <20% recovery around a quartz vein, possible fault at "contact".			<u> </u>	<b> </b>		<u> </u>							 
																 ļ
76.0	82.1	Fels	<b>Felsite</b> ; micaceous and weakly calcareous, diminishing downhole; increasing po						ļ				76.0	78.0	8221	
			more cataclastic. Becomes increasingly calcareous, much as above. Very hard										78.0	80.0	8222	
			and weakly fractured.										80.0	82.1	8223	 
			77.7-78.4: Sharp increase in fine-grained po + py. Blebby py ~78.1m, less po.	2	10											
			77.8-79.5: Strong siliceous-looking felsite, no calcareous bands.													
			79.5-82.1: Several calcareous bands and veinlets; 10% po > py.													
			80.9-81.1: Quartz vein, irregular, over 50% very fine-grained brown patches,													
			possibly tourmaline, with blebby po and py. Vein appears to be @ 20 to c.a.													
82.1	82.9	Marb	Marble; top marked by very calcitic, dark grey banded limestone, continues less													
			calcitic and more siliceous. Moderate reaction with HCI.					1								
			82.4-82.9; Pale greenish, carbonate patches in matrix, no > py along bands	8	2											 
			82.6: 3-4cm white quartz vein lesser carbonate, good patchy po	10	-			1			1					
								1								
							1				1	r				

ACE-02-04

June 4,

Ì.

1

							A	lterati	on sco	re 1 -	5						
Dept	h (m)	Rock	Description	%	%	%	%	%	chi	cal	ser	cla	Interv	al (m)	Sample		
From	To	Code		Po	Ру	Ср	Sph	Gal					from	to	Number		
82.9	84.1	Fels	Felsite: much as above, continuing carbonate patches and lavers, locally	3-4	3-4								82.9	84.1	8224		
			cataclastic; brownish colour due to fine biotite - less than 5% micas. Variable po,														
			py.				<u> </u>		1								
							<u> </u>		<u> </u>								
									ļ								
84.1	84.5	Marb	Marble; mainly dark grey, well-layered, marbly texture. Weaker po + py. Upper	<1	1-2									、 			
			contact @ 60, lower @ 45 to c.a.														
								-									
84.5	88.4	Fels	Felsite; much as above, continuing carbonate patches and layers, locally	<1	5-7								84.5	86.5	8225		
			cataclastic; brownish colour due to fine biotite - less than 5% micas. Variable po														
			& py, much more pyritic. Weakly fractured, competent.														
			84.5-87.8; Brown, biotite-rich, moderately calcareous, similar to section of calc-	-4	7	1											
			silicate schist. Biotite occurs as fine bands in fine-grained "felsite" matrix;		<u> </u>	<b> </b>											
			carbonate occurs along these bands and as discrete strongly calcitic bands. Up			<b> </b>	<u> </u>		<u> </u>					-			
			to 10% py, weak po.								<u> </u>						
			87 8-88 4: Sharp contact with pale green, siliceous and weakly lavered with drop	3-4	1												l
			in biotite and pyrite and increase in muscovite and po. Contact @ 55 to c.a.					<u> </u>	<u> </u>								
			Transitional with quartz-muscovite-chlorite schist below.	<b> </b>				╉───									
			· · · · · · · · · · · · · · · · · · ·	<u> </u>		Į					<u> </u>						
88.4	91.1	QMCS	Quartz-Muscovite-Chlorite Schist: nale green to dark greenish grey, moderately	/ <1	<1												
		4.072	to well-lavered, largely contorted. Occasional limy lavers, grades to darker grey	′													
			argillite. Sharp drop in po + py. Weakly fractured.	<u> </u>				-									
							<u> </u>										
								ļ				ļ					
91.1	92.1	Fels	Felsite: pale greenish grey, well-lavered 1-3mm, more micaceous - esp musc-	3-4	1								91.1	92.1	8226		
			than most felsite intersections, not calcareous, guite contorted to cataclastic.														
			Modest po > py. Hard and weakly fractured.								· ·						
						<u> </u>			+								
										ļ							ļ
92.1	94.5	Arg	Argillite: dark siliceous non-calcareous schist with 40% QMCS. Strongly	1	3-4								92.1	94.5	8227		
			contorted layering, fine, needle-like crystals, up to 3mm long scattered		[												1
			Infoughout. Weak sulphides, mainly pyrite, very weakly magnetic. Moderately		<u> </u>			1									
						<u> </u>		1-				<u> </u>		1			<u> </u>
						<u> </u>		1		ļ	<u> </u>	<u> </u>			<u> </u>		<b> </b>
94.5	102.4	QMCS	Quartz-Muscovite-Chlorite Schist; pale green to dark greenish grey, moderately	2	<1					L							
			to well-layered, largely contorted, as above. Uccasional limy and darker grey														1
		<u> </u>	or Weakly to moderately fractured		1	1	1	1	1		1	1					
<b> </b>		<u> </u>			<del> </del>	<u> </u>		+	1								
			194.6: S2 @ 70 to c.a; wavy.		├	<b> </b>			—	<b> </b>		<u> </u>			<u> </u>		<b> </b>
			101.8: S2 @ 75 to c.a.; planar.	ļ	<b>_</b>	<u> </u>					<b> </b>						<b> </b>
102.4	104.2	Eale		2.4	1-2	1	Ì	1			1		1024	104 3	8228		
102.4	104.3	reis	<u>Persite;</u> pare green, quite micaceous, grading back into QMCS at both contacts.		1-2	<u> </u>	1	1	1								<u> </u>
			calcareous. Variable po > pv. Moderately fractured near the top.			<b> </b>			+			<u> </u>			1		<u> </u>
1			realization of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second	4	1	ł.	1	1	1	1	1	1	1	1		1	1

DDH No.

Date June 4, 2

1

				_			<u> </u>	lterati	on sco	re 1 -	5						
Dept	ι (m)	Rock	Description	%	%	%	%	%	chl	cal	ser	cla	Interv	al (m)	Sample	1	
From	То	Code		Ро	Ру	Ср	Sph	Gal					trom	to	Number		
			102.7-102.8: Weakly layered, vuggy texture, no increase in sulphides, minor Cr-														
			mica. Note 1-2mm crosscutting pyrite veinlets.											-		_	
			103.9-104.3: Well-layered.														
			104.2: S2 @ 72 to c.a.; planar.														
104.3	117 35	OMCS	Quartz-Muscovite-Chlorite Schist; pale to medium greenish grey, non-	2	<1												
104.0	117.00	QINCO	calcareous, moderately to well-layered, weakly contorted. Into monotonous	<u> </u>									110.0	111.5	8229		
			Sequence typical of the footwall. Fine needle-like crystals not apparent.								<u> </u>						
			104.3-105.5: Well-Tractured, close to poker chips ; 52 @ 80-90 to c.a.	-													
			104.5: 3-8cm thick white quartz vein with tan carbonate patches (10-20%), no po.					-				· · ·					
			105.5-109.6: Moderately fractured.	ļ													
			109.7: S2 @ 78 to c.a., planar, weakly crenulated.			ļ	ļ										
			116.3-117.35: Strongly fractured, close to "poker chips" S2 @ 80-90 to c.a. Lost		L												I
			~ 30cm of core.														
																	1
			END OF HOLE = 117.35 metres	1			1										1
															Ī		í – – –
																-	
				+ •		-			1								
							-							·			
				<u> </u>											,		
																	<u> </u>
				<u> </u>	ļ	ļ	┇	_	<u> </u>	ļ	<b> </b>						
				<u> </u>			ļ	<u> </u>									<b> </b>
																	<b></b>
				1							ſ						
						1	1		1		1			-			
					† —	1	1	1	1		1						-
						+		1	1		1						
							+	-									<u> </u>
	ļ			+						-							<u> </u>
		ļ		┨───	-												
L				<del> </del>				1		<u> </u>	-						
		L		1		<u> </u>	<b> </b>	<u> </u>		<u> </u>	—	<b> </b> '				·	┣───
				<u> </u>	L		<b> </b>	1	<b> </b>	ļ		<u> </u>					
											<u> </u>	<b>_</b>					<b> </b>

Company:	Barker Minerals Ltd	Date Collared	June 3, 2002	Azimuth	n/a	Depth	Dip
Project:	Frank Creek	Date Completed	June 4, 2002	Dip	-90	n/a	
Logger:	Christopher J. Wild. P.Eng.	Northing	5 + 00N	Length	67.97 m		
Date:	June 6, 2002	Easting	6 + 25W	Core Size	NQ		
Remarks	Vertical hole to test gravity anomaly with southerly dip and coincident mag high.	Elevation	1027 m				

.

4

Dept	ר (m)	Rock	Description	%	%	%	%	%	chl	cal	ser	cla	Interv	al (m)	Sample		
From	То	Code		Po	Ру	Ср	Sph	Gal					from	to	Number		
0.00	7.62	Casing	Cased through road fill and glacial till, no recovery; bedrock likely ~6.5m.														
									L								
7.62	22.20	Fels	Felsite; pale grey with weakly brownish and greenish sections corresponding to increased biotite and muscovite, respectively. Most of the unit consists of year	3-5	3-5								7.6	10.0	8230		
			fine grained quartz or plagioclase with highly variable micas and up to 10% po +				ļ						10.0	12.0	8231		
			py, is well-layered and weakly to strongly calcareous with marble layers. Most of														
			po - py is the-grained and disseminated, aligned with micas along tollation, some														
			quite common. Interval is weakly fractured, more in marble layers.														
			7.6-8.5: Cataclastic texture, no layering, stronger po > py. S2 @ 60 to c.a.														
			8.5-11.7: Well-layered, brownish biotite and increasing carbonate in bands. Po -														
			py are disseminated throughout though variable.														
			11.7-11.8: Finely-layered, dark grey quartz-musc-chl schist, strongly folded layers.														
			11.8-13.1: Pale greenish, finely-layered felsite, weakly calcareous.				-										
			13.1: Layering @ 70 to c.a.														
			13.1-13.3: Marble; finely-layered, medium-grey, calcitic.														
			13.3-14.1: Calcareous, pale green section.														
			14.1-16.7: Pale greenish, finely layered, weakly calcareous.														
			15.5: S2, layering @ 60 to c.a.														
			16.7-17.5: White quartz vein, continuous, with 5% tan carbonate patches, minor										16.7	17.5	8232		
			muscovite and weak po only along selvages. Vein appears conformable.								1						
			17.5-19.2: Pale green, contorted schistose felsite cut by irregular white guartz	1												Î	
			veining. Finer po > py.				1										
			19.2-21.0: More thickly layered, S2 @ 55-65 to c.a., not strongly mineralized.														
			21.0-21.1: Strong fracture zone.													Ì	
		-	21.2-22.2: Increasing musc-rich layers, grading to schist.														
22.20	24.70	QMS	Quartz-Muscovite Schist; pale green, very siliceous, finely-lavered, not				1										
		<u> </u>	calcareous, weakly mineralized, weakly magnetic. Moderately fractured.														
			22.2: S2 @ 65 to c.a., not contorted.														
			24.6: S2 @ 65 to c.a.; not contorted.														
24.70	29.60	Fels	Felsite; much as before, more cataclastic with several white quartz veins also	3-4	2-3								24.7	27.0	8233		
			disrupted. Moderate po + py, weak to moderate magnetism.										27.0	29.6	8234		

.

Т

Т

							A	Iterati	on sco	ore 1 -	5					 
Depti	ו (m)	Rock	Description	%	%	%	%	%	chi	cal	ser	cla	Interv	al (m)	Sample	 
From	То	Code		Po	Ру	Ср	Sph	Gal	•				from	to	Number	 
			25.8-26.2: Well fractured white quartz vein, tectonically disrupted, locally vuggy	<u> </u>			ļ									 
			with fine-grained po along selvage, coarse py > po.				Ļ									 
			26.3-26.9: Similar disrupted white quartz veining, less sulphide, locally vuggy.										-			 
			26.9-29.6: More uniform brownish, non-calcareous more weakly mineralized.													 <u> </u>
							Γ									İ
29.6	36.9	QMS	Quartz-Muscovite Schist; soft, pale green, less siliceous, more massive-	1	<1											
			looking, not calcareous, weak po + py, weakly magnetic. Weakly fractured.					1								
	-		30.7: S2 @ 40-45 to c.a., planar.													Ĺ
			34.1: S2 @ 45-50 to c.a., planar.													
			34.8: Layering becoming quite contorted, erratic folding.								Î					
			35,7-36.9: Moderately fractured.				1				1					
				1						<u> </u>	1					[
36.0	425	Ara	Argillite: dark grey, fine-grained and well-layered but strongly contorted and	1	3		1	1		<u> </u>						
30.9	42.J	Alg	folded; quite siliceous, 20% pale grey calcareous layers, not significantly	<u> </u>	Ť											
			carbonaceous. Sharp increase in secondary coarser-grained pyrite, minor fine-					1								 
			Igrained lenticular po. Occasional needle-like white crystals. Onlionn interval,						1	1						 
				+							<u>†</u>					
							1		-						1	 
42.5	48.0	QMS	Quartz-Muscovite Schist: soft, pale green, less siliceous, still strongly		<1											 
			weakly magnetic. Weakly fractured.			-			<u> </u>			<u> </u>				 
														<u> </u>		 <u> </u>
			42.5: Gradational upper contact into musc-nch schist.	<u> </u>							┨────					 <u> </u>
			44.2: S2 @ 55-60 to c.a., relatively flat.	<u> </u>							┨					 <b> </b>
			48.0: Gradational lower contact, relative decrease in musc, becomes darker.			<u> </u>		-								
									<u> </u>	<b> </b>					<b> </b>	 
48.0	51.3	Arg	Argillite; as above (36.9-42.5m), dark and very contorted.		<b> </b>		<u> </u>		<u> </u>	<u> </u>	ļ	<b> </b>		ļ		 <u> </u>
			48.2: S2 @ 55 to c.a						<b>_</b>							 ļ
			49.8: S2 @ 15 to c.a.	<u> </u>		ļ				ļ						 1
			50.4: Tight folds suggest a antiformal closure uphole, to south.													
		•	50.5: S2 @ 30 to c.a.													 
			51.1: Begin to see spotty to patchy ankerite alteration.													
51.3	54.5	Fels	Felsite; sharp contact across white, unmineralized quartz vein, may have been	2	4											
			more musc-rich. Pale greenish to brown and mottled, hard, not well-layered but													
			Weakly fractured.													
			53.9: S2 @ 35 to c.a.	1			1		1			T			Τ	
			54.5: Lower contact @ 65 to c.a.			1	1	1	1 -	1	1	1		1	1	
<b> </b>				-			1		1		1	1	<u> </u>	1		
	<u> </u>			-	†		1		+		1	1	1	1	<u>                                      </u>	 

DDH No.

ACE-02-05

							F	Alterati	on sco	ore I -	5						
Dept	h ( <b>m</b> )	Rock	Description	%	%	%	%	%	chl	cal	ser	cia	Interv	al (m)	Sample		r
From	То	Code		Po	Ру	Ср	Sph	Gal					from	to	Number		
54.5	56.4	Ara	Argillite: dark grey, well-layered, as before (36.0-42.5m), but much less conterted	3-5	5												
			and folded more siliceous layers. Still not strongly carbonaceous. Significantly														
			more po & py, esp along layers. Weakly fractured						-								
			55.2; S2 @ 55 to c.a., planar, polished.														
			· · · · · · · · · · · · · · · · · · ·														
56.4	57.7	Fels	Felsite; sharp contact at end of run. Pale greenish to brown and mottled, hard,	2	4												
			not well-layered, but locally stockwork breccia. Py > po, weakly magnetic.														
			Moderately fractured.				1										
							+	-									<b>├</b> ───┤
			57.1-57.4: Strongly cataclastic with well-developed pyrite stockwork, minor po.					-						ļ			L
			Dark hairline fractures(?) and bright green Cr-mica.														
			57.6: Cr. mice along layer accordiated with av														
			57.0. CI-Inica along layer associated with py.							-							
				1													ļ
57.7	63.3	Arg	Argillite: dark grey, well-layered, as before (36.9-42.5m), again guite contorted	3-5	5												
		· · · · · ·	and folded, more siliceous layers. Somewhat more carbonaceous, occasional														
			graphitic slips. Significantly more po & py, esp along layers. Weakly fractured.					+									
								<u> </u>									
			59.0: S2 @ 50 to c.a., wavy.					1									
			62.2.63.3: Moderately fractured, several curved and planar graphitic slips				1										
			102.3-03.3. Moderately fractured, several curved and planar graphice slips.					+						<u> </u>			
			62.5: S2 @ 55 to c.a., planar, mod graphitic slips; 62.6: S2 @ 0 to c.a., steepens.	ļ					<u> </u>		<b> </b>						<b></b>
62.2	63.8	Elt	Fault: only 12cm of soft year plastic clay to granular gouge recovered, assumed														
00.0	03.0	<u> </u>	To be where core was lost			-			╂								
				1		ļ		<b> </b>	<u> </u>							·····	
			62.48-65.53: 85-90% recovery.														
																	· · · · · ·
63.8	66.5	QMS	Quartz-Muscovite Schist; pale green, siliceous, locally contorted, weakly	2-3	2-3			+	-				·····				<u> </u>
			calcareous along 1cm po-rich layers, mod po + py, weakly magnetic. Weakly														
			fractured.														
											+						
			65: 1-2cm layer of 25% po, min py + cp, in net-texture, weaker to 65.2m.											· · ···			
			65.2-65.5: Felsite; slice of well-mineralized pale greenish-grey, fine-grained	5	5		1								I		<u> </u>
			felsite, as before. Py - po both blebby and disseminated.					1				1					
			65 7: Lovering (S2) @ 0 to a a giver 10cm	1		<b> </b>	1			1	1	1			1		
			05.7. Layening (52) @ 0 to c.a. over 10cm.			· · · ·	+			+	<del> </del>					<u> </u>	<u> </u>
			66.1-66.2: Irregular white quartz vein, rimmed by patchy tan carbonate over a				1									<u> </u>	Ļ
			total width of 10cm, @ ~ 40-50 to c.a. Sulphides limited to wall rock.	1			1			1							
				T T			1		1				1				
													<del> </del>				<u>├───</u>
		L		L		<u> </u>	<u>  </u>	1			<b> </b>				ļ		<u> </u>
66.5	67.97	Arg	Argillite; contorted dark banded schist, as described previously. Not calc, sharp	2	3-4		1				L						
			increase in pale needle-like crystals. Moderate fine po & coarse py.			Γ					T						
				+	· · ·		+		-								<u> </u>
				<b> </b>	<u> </u>		<u> </u>		<u> </u>	<u> </u>	<b> </b>	<b> </b>	ļ		<u> </u>		──
			END OF HOLE = 67.97 metres														
				-		-		-		-		-			-		

Wildrock Resources Consulting & Drafting

	Diamo	nd Drill	Log	DDH	No.		I	FC-0	) <b>2-</b> 0′	1					(	ſests	
i	Company:		Barker Minerals Ltd	Date	Collar	ed	May 1	15, 20	02				Azimuth	090		Depth	Dip
	Project:		Frank Creek	Date	Comp	leted	May 1	16, 20	02				Dip	-45		n/a	
	Logger:		Christopher J. Wild. P.Eng.	North	ing		L57+9	95N					Length	97.84 m			
	Date:		May 16, 2002	Eastir	ng		16+0	W					Core Size	NQ			
	Remarks		Test Trench 10 sulphide occurrence.	Eleva	tion		1042	m									
									alto	1. we	ak 5 s	trona					
Dept	h (m)	Rock		%	%	%	%	%		1- 110	ait, o s	aong	Interv	al (m)	Sample	Cu	Zn
From	То	Code	Description	Po	Ру	Ср	Sph	Gal	CNI	cai	ser	cia	from	to	Number	ppm	ppm
0.0	6.10	Casing	Cased through glacial till, no recovery.														
6.10	11.20	QSP Bx	Quartz-Sericite Phyllite-Breccia: pale to medium oney fine-orained sericite-rich	-	3-4				0	2	3	2					
		401 201	<u>udura-ocnose i nyme bredsta,</u> pale te mediam grey, mie granea, senose nen							_	-						
			breccia textures, with angular to subrounded clasts in phyllitic matrix. Phyllitic to														
			weakly schistose with pyrite-rich bands, often coarse-grained and cubic - pyritic														
			pands can crosscut rollation. Foliation (52) is at 60 to c.a. at 6.3m. Recovery >95% ROD ~ 50%														
			7.5: Minor Fault; 2cm pale grey clay gouge @ 70 to c.a.				ļ		ļ								
			9.1: Minor Fault; 5cm pale grey clay gouge @ 60 to c.a.														
			9.2-10.2: Pale grey more massive section, strongly sericitic. Looks like felsic														
			lapilli tuff unit with 0.5cm lapilli oriented along S2.														
			10.2: Weakly gougy slip at contact.														
			10.2-11.2: Breccia, likely deformational with subrounded blocks to 3-4cm in grey														
			phyllitic matrix; S2 does not penetrate larger clasts. Clasts show qtz-eyes														
			> felsic volcanic bx.														
44.00	45.00	<b>A</b>	Araillite: dark arow to black strongly folioted and well handed biotite(2) atz		_							•					
11.20	15.90	Arg	graphite phyllite; relatively soft. Strongly contorted with fine tight to isoclinal		5				U	1	1						
			rootless folds. Siliceous bands are moderately sericitic, possibly silty interbeds or				<u> </u>				<u> </u>						
			silica segregations. Pyritic with up to 10% over 20cm, 5% overall; concentrated ir	<u>ا</u>													
				<b> </b>							ļ						
			11.9: Finely banded, poss original layering, <1mm thick @ 80 to c.a.														
			15.0-15.2: 10-15% pyrite.										14.9	15.9	8235	60	109
15.90	18.20	QSP-Bx	15.9-16.0: White quartz vein, largely shattered, barren.		2-3												
			16.0-16.6: Finely laminated phyllite, bo bx textures.														
			16.6: Minor fault: 2cm grev clay gouge @ 65 to c.a. 16.6-17.2: Argillite.														
			17 2-17 3: Fault: 13cm of nale grey clay gouge by				1										
			17 6-17 7' Arnillite laver				<b> </b>										1
							<u> </u>										
40.00	00.00								<u> </u>					·	·		
18.20	20.80	Arg	Anguine, contact @ 80 to c.a., very snarp transition from granular-looking wacke		5-4												
· · · ·													19.6	20.6	8236	/9	234
			18.7; Minor fault; 1cm soft, sericitic gouge.														
			19.0-19.4: Fault; dark grey pebbly fault bx.				i i		1	1	1						1

4

Wildrock Resources Consulting & Drafting

4

F:\Old Desktop\CW 02 Drilling and Trenching\Logs&Assays\Logs\[FC-02-01.xls]Page4

.

FC-02-01

1

i

ł

Т

							A	lterati	on sco	ore 1 -	5						
Depti	<u>ו (m)</u>	Rock	Description	% D-	% D:/	%	% S=F	% Gal	chl	cal	ser	cla	Interva	al (m) to	Sample		Zn
From	10	Code		P0	Ру	Ср	Spn	Gai									
20.8	24.9	QSP	Quartz-Sericite Phyllite; pale-greenish-grey, fine-grained, weakly phyllitic, from		3	tr	tr	tr		1	3-4	1	20.6	22.0	8237	125	994
			well-banded to breccia, as above (6.1-11.2m). Puises of py-cp mineralization, as inoted below. Competent, non-calcareous, strong sericite alth.	·									22.0	23.5	8238	93	1725
							<u> </u>	1					23.5	24.9	8239	80	1085
			20.8: Contact, S2/I0 @ 80 to c.a.	ļ													
			20.8-21.6: Finely laminated section, weakening downhole.	<b>_</b>	<u> </u>		<b> </b>		ļ								<b> </b>
			21.6-24.9: Mainly massive to brecclated section, increased sulphides.		l				<u> </u>								<b> </b>
			22.4: 6cm bleb of 15-20% py, 2-3% galena, possible traces of sphalerite. Fine- grained, cubic pyrite, finer identifiable galena.														
			23.6: 1cm band of honey sphalerite (?) with coarse pyrite, minor galena and cp.														
			24.4: Minor fault: 1-2cm pale grey clay gouge.														
					1		1				1						
24.9	26.9	Ara	Arcillite: dark grov, massive to finely laminated silty mudstone less phylitic hut		5	<1	tr	tr		1	2	1	24.9	26.9	8240	88	2031
24.0	20.0		with locally contorted S2 (25.9m). Coarse pyrite common, distributed	<u> </u>				<u> </u>									
			throughout.			<u> </u>	-										
26.0	20.8	OSP	Quartz-Sericite Phyllite: as before 20.8-24.9m with darker laminated phyllite	1					1	†			26.9	27.3	8241	1183	2.30%
20.3	23.0	401	more dominant, becoming more mottled and possibly brecciated @ 28.6m.					1	1				27.3	29.1	8242	217	2061
			26.0.27.2: 5.10% pyrite, mainly coarse cubic, with 2% coarse patchy on 1%		10	2	1	<1					29.1	29.5	8243	1461	3.40%
	-		honey sphalerite, and <1% silvery galena.														
			29.8: Minor gougy shear @ 60 to c.a.						ļ		<u> </u>		27.30	29.10	2LF01-31	38	476
			28.4: Minor fault; 5cm pale clay-sericite gouge.										28.96	29.10	3LF01-32	2450	3.42%
			29.1-29.5: Sulphide zone with 5-10% coarse pyrite, 1-2% cp, 1% sphalerite and										29.10	29.50	2LF01-44	1950	3.02%
			minor galena in siliceous grey matrix.														
			29.3: S2 @ 52 to c.a.														
										:					:		
29.8	30.8	Fit	Fault; pale grey gougy and brecciated grey phyllite. Top slip @ 20 to c.a.,										29.5	30.8	8244	57	622
			bottom contact between gravelly bx and phyllite 15-20 to c.a.														
						Ι											
30.8	47.5	Ara	Argillite; dark grey, fine-grained, as before. Increasing graphite (moderate) and		2			1		1	1-2	2					
			sericite, decreased quartz makes unit softer and more fractured. Locally well-		<u> </u>			1									
			(40.3m). 2% cubic pyrite, locally 5%.		<u> </u>						1						
			30 6-36 5: Well-fractured 95% recovery		-					1							1
			37 0-37 1: Laver of brecciated sittstone (arey phyllite) or possibly lapilli tuff			1			1	†	1						
			42.0: 1-2cm band of coarse cubic system			$\square$	-		1	1	1						1
			42.8.43.1: Date arey phyllite good braccia texturas: 10% cubic purite	1		1			1								†
			142.0-40.1. Falle grey physine good brecold textures, 10.6 cubic pynie.	1	<u>†</u>	1	+	1	+	$\mathbf{t}$	1	1			1 1		1
			42.9.42.0: Minor fault, 10 m of dark grou washing routing		+	+		1	+		1	<u>                                      </u>					<u> </u>
			145.0-45.9. Millior laulit, Tucin of dark grey, weakly graphic gouge.			+	+	+	+	+	1		•			-	
			1mm blebs of cp noted.	<b> </b>	+	+	+	+	+	1	+	-					1
1				1	1	1	1	1	1	1	1	1					
Diam d Drill Log

DDH No.

FC-02-01

May 16, Date

							#	Alterati	on sco	ore 1 -	5						
Depth	<u>n (m)</u>	Rock	Description	%	%	%	% Sh	% Cal	chi	cal	ser	cla	Interv	al (m)	Sample	Cu	Zn
From	10	Code	46.2. Polichod graphitic plane @ 40 to a a becoming more provalent	P0	Fy	Ср	Spin	Gai					nom	ιο	HUIIIDHI	рри	ppm
<u>+</u>			46 Q-47 5: Well-fractured "noker chins"														
			40.04 49 72: 459/ Decourse							-							-
			40.94-40.73. 43% Recovery.														
						┠				┣							
47.5	49.0	Fit	raunt: poor recovery in dark graphilic gouge and polished graphilic schist and bx.			<u> </u>		+									
<u> </u>			· · · · · · · · · · · · · · · · · · ·					+			-						
49.0	51.3	QSP	Quartz-Sericite Phyllite; pale greenish to grey, fine-grained but with a few small		2				-				- · · · -				
$\longrightarrow$			portite.														
<u>+</u>				ļ													
ł			49.0-49.5: Competent, almost gritty siltstone.														
			49.5-50.4: Moderate intensity fault; quite gougy, esp last 5cm - @ 65 to c.a.	<b> </b>				<u> </u>							·		
			50.5-50.5: Fractured white quatrz vein.														
			51.2: 1-2cm band of c-gr pyrite, 25%.	<u> </u>					1					· · · · · · · · · · · · · · · · · · ·	-		
51.3	59.4	Arg	Argillite; dark grey, finely laminated with 25% pale grey siliceous bands, ~0.5mm		3-4	ļ		<b> </b>	0	1	2	2					
			thick. Dark polished graphitic planes, mod graphitic. Highly contorted and folded		L	<u> </u>											ļ
			pale grey layers over top 80cm, then fairly uniform with S2 @ 45 to c.a. (52.5m). Pyrite, both fine and coarse, occurs preferentially in the pale siliceous bands														
															-		
			Relatively competent, 100% recovery.														
			55.2: Weak shear zone, 5-10cm thick.				ļ										
59.4	60.1	Flt	Fault; dark, mainly graphitic mushy gouge; 5cm matrix-supported fault bx at top,														
	:		planar slip @ 50 to c.a. Pyritic black sand over last 30cm. Recovery ~50-60%.														
60.1	68.2	QSP	Quartz-Sericite Phyllite; pale grey phyllite, locally with clasts of argillite near top,										60.1	61.5	8245	40	1379
			extensively sheared and healed, becoming spotted, as described below. Coarse														
			65.5m.														
			60.1-61.5: Gritty appearance, with a series of healed S2-parallel fractures.														
			61.5-61.7: Fault; grey gouge, upper slip @ 50 to c.a. (parallel to S2).														
			61.7-62.3: Well-fractured, locally gougy slips.		-												
			62.9-63.3: Fault; gougy fault breccia, clasts to 3cm.						l	1							
			63.9-64.0 Fault; gouge.		1			1						••••			
			64.3: Contact between argillite layer and grey gritty phyllite @ 55 to c.a.					1			1						
			65.5-68.1: 15-20% pale grey "spots", 2-3mm diam, dolomite or ankerite alteration"	?			1		1		1						
			67.0-67.3: Well-fractured, weak shear zone.				1	1									
			67.3-67.6: Well-layered or laminated, with dark argillite @ 65 to c.a.				1	1		1							
			67.3: 1-2cm gougy seam.			1	1	1	1								· · · · ·
		<u>-</u>	68.1-68.2: 7-8cm quartz vein or sweat @ 60 to c.a., in arcillite.		<u> </u>	1	1	1	1	1	<u> </u>						
									1								
								-	<u> </u>		<del> </del>						

	<b>-</b> ·						/	Alterati	ion sc	ore 1 -	5						
Dept	h (m)	Rock	Description	%	%	%	%	%	chl	cal	ser	cla	Interv	al (m)	Sample	Cu	Źn
From	То	Code		Po	Ру	Ср	Sph	Gal					from	to	Number	ppm	ppm
68.2	71.3	Flt	Fault: 3cm of soft, plastic clay @ 80 to c.a., marks top of fault zone. Highly fractured throughout, often as a good breccia.	<u> </u>													
		_	68.3-69.7: Weakly "cemented" fault breccia with poorly sorted, angular to subrounded clasts to 5cm, in a dark, weakly graphitic matrix. Recovery ~75%.														
			69.7-70.5: Cracked grey siliceous unit.														
			70.6: Pale olive green clay gouge.														
			70.7-71.3: Mainly grey phyylite and quartz rubble; ~20% recovery - matrix washed	away	?												
71.3	74.7	QSP	Quartz-Sericite Phyllite: variable unit with "spotted" texture, argillite layers, and		1-2				1	1	3	3					
			breccia related to faulting on both sides of the interval. Continues non-calcareous	`	<u> </u>			ļ	ļ	ļ							L
			72.1-72.2: Significant quartz veins or sweats, white and barren, minor sericite.														
			72.6-72.9: Well-layered, as before. S2 @ 75 to c.a.														
			73.1-73.2: Pale greenish to cream carbonate alteration, with quartz eyes, 1mm														
			spots of Cr-mica, adjacent to brecciated quartz vein. Qtz eyes preserved.														
			73.2-73.5: Coarsely brecciated quartz vein, white to cloudy grey, barren.	<u> </u>													
74.7	77.2	Fit	Fault: increasing breccia intensity, with matrix becoming very soft clay, with fewer					ļ	1	1	4	5					
			and smaller hard grey dasis. Weakly cemented, locally fubbly.	<b> </b>		<b> </b>	_		<b> </b>	<b> </b>							ļ
				<u> </u>		<u> </u>				ļ							ļ
77.2	81.5	QSP	Pale to med grey, locally well-layered, contorted and brecciated, grading to arg.														L
			77.3-77.4: Pale greenish lapilli-shaped clasts in dark grey, graphitic matrix. Clasts up to 4 x 1.5cm, wide range in size and shape. S2 @ 40 to c.a.				-			-							
			79.7: Open fold, layering wraps but no penetrative axial planar foliation	1						1							
			79.8: 1cm grey gouge.	1													
			79.9: Becoming increasingly "spotted" and gritty, a few cm-size pyrite cubes.	1													
			81.4: 5cm wispy bandof tan carb altn, several good flecks of Cr-mica.	1						1							
81.5	82.7	Fit	Fault: medium grey gougy fault breccia with grey phyllite clasts supported in soft				1		1		1						
			grey clay. Both contacts @ 50-55 to c.a., undulating slip planes.		1		1										
82.7	87.2	OSP	Quartz-Sericite Phyllite: pale grey to pale olive green, fine-grained to weakly	1		<b> </b>	1		1	1							
02.1	01.2		gritty, quite uniform. Moderately fractured, but not strongly sheared or brecciated		··· ··		<u> </u>			1							
			as before. Locally spotted texture, coincident with greenish sericite. Less pyrite, locc 1cm cubes. Incr tan carb altn, max at I.c. @ 55 to c.a.					<u> </u>	<u> </u>								
· · · · · ·			85.8: S2 @ 70 to c.a.														
				l I	[		1										
87.2	97.8	OSCP	Quartz-Sericite-Chlorite Phyllite: dark grey, quartz-rich, non-graphitic, fine-								1		89.1	90.5	8246	14	45
	55		grained, finely foliated phyllite, often gritty and spotted, and weakly banded. Little	<b></b>			1		1		1						
		-	usine anny, core quite competent and good recovery. Upper contact @ 55 to c.a., pyrite cubes more common in top 30cm.		<u> </u>				1							=	
		1	In a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	1			1	1	1	1	1	I		1			4

							A	literation	on sco	le i -	5				0		<u> </u>
Dept	h (m)	Rock	Description	%	%	%	% •	<b>%</b>	chi	cal	ser	cla	Interv	al (m)	Sample		ł
From	То	Code	•	PO	Ру	Cp	Spn	Gai					trom	10	Number		<b> </b>
			87.8: 3-4cm thick quartz vein @ 65 to c.a., gougy 1cm shear on fw of vein.														
			88.0-88.1: Weak shear zone with white quartz veining, gougy in centre @ 35 to c.a	a.													
			88.1-92.2: Weakly foliated, dark grey gritty interval, more massive-looking.														
-			92.6: Minor shear @ 25 to c.a.				1										
			93.1-93.6: Dark grey gritty unit. 93.1: S2 @ 75 to c.a.										- 112				
			93.6: Quartz vein-minor shear zone, 5-7cm thick.														
			93.7-96.3: Well layered, 1-2mm, contorted section, very soft, increasing shearing														
			@ 95.0-95.3 and 95.6-95.9m.													<u> </u>	
			96.3-96.9: Pale olive green alteration of darker gritty unit.														L
			96.9-97.4: Well-layered soft, dark phyllite, as before.														
			97.4-97.8: Several cm thick white quartz veinlets, generally conformable with S2														
			@ 65 to c.a.														
			END OF HOLE = 97.84 metres														
		T.															
													-	-			
						<u> </u>											
<b> </b>																	
														:			
		┢													T		
							1				<u> </u>						<u> </u>
								+									
				1		<u> </u>											-
		ļ															
	ļ. <u> </u>							-									
		<u> </u>				1								<u> </u>			
ļ	<u> </u>	ļ		<b> </b>				<u> </u>	-			Į	ļ			l	<u> </u>
		ļ		<b> </b>				┫		ļ				ļ		<b> </b>	
				ļ					ļ			<b> </b>				<u> </u>	
				ļ			<u> </u>	1	<u> </u>		<u> </u>	<u> </u>		<b> </b>		ļ	<u> </u>
	<u> </u>				L				1		L			<u> </u>	<u> </u>	1	<b> </b>
								<u> </u>	l		ļ	<u> </u>	<u> </u>			ļ	<b>_</b>
												<u> </u>	L		ļ		L
		1												1			

	Diamo	nd Drill	Log	DDH	No.		F	-C-0	2-02						(	ſests	
[	Company:		Barker Minerals Ltd	Date	Collar	ed	May 1	6.200	02			ſ	Azimuth	090		Depth	Dip
	Project:		Frank Creek	Date	Compl	leted	May 1	7, 200	02			[	Dip	-45		n/a	
	Logger:		Christopher J. Wild. P.Eng.	North	ing		57+20	) N					Length	144.78 m			
	Date:		May 17, 2002	Eastin	ng		12+80	W				[	Core Size	NQ			
[	Remarks		Lower switchback, D Road; Conductor B	Eleva	tion		1077	m								L	
Dent	h (m)	Rock		%	%	%	%	%		<u> </u>		····	Interv	al (m)	Sample	Cu	Zn
From	To	Code	Description	Po	Ру	Ср	Sph	Gal	chi	cal	ser	cia	from	to	Number	ppm	ppm
0	10.7	Casing	Cased through glacial till, no recovery.														
		3															
10.7	28.2	OSP	Quests Serielte Bhulliter pole grow to weakly greenish, fine-grained to locally														
10.7	20.2	wor	aritty sittstone to sandstone/phyllite. Interval is weakly to moderately fractured.														
			with distinctive orange Fe-carbonate alteration along fractures and penetrating														┼━───┤
			phyllite at the top and bottom. Alteration is strong rust colour and reacts strongly										•	· · · ·		<b>-</b>	<u>├───</u> ┨
			with HCI. Minor irregular white and grey quartz veining. Weil-behaved main foliation, not crenulated														
_			10.7-15.0: Strong Fe-carb alteration, intense along fractures, penetrating up to 3cm into wall rock. Away from the fractures. Fe-carb forms spots becoming less														
			dense further from the fracture. Some sections up to 20cm thick consist of Fe-														
			carb, with in-situ clasts of grey phyllite.													<u> </u>	
			15.0-25.3: Fe-carbonate alteration is restricted to rusty fractures - generally										16.7	18.2	8247	64	71
			weakty fractured. No spotted Fe-carb in wall rock.														
			15.0: S2 @ 70 to c.a. 22.9: S2 @ 75 to c.a.														
			25.3-28.2: Strong Fe-carb alteration, likely related to strong graphitic fault zone													<b></b>	
_			below. As before, alteration is centred on large fractures, penetrating into wall up														
			to 7cm. Calcite veining in some fractures, very strong reaction to HCI.														
			26.2: Fe-carb on fracture @ 40 to c.a.														
			26.4: Calcite-Fe-carb vein, 5-7mm thick @ 30 to c.a.														
			26.6: S2 @ 75 to c.a.														
			26.8: Calcite-Fe-carb vein, 5-6mm thick @ 25 to c.a.										26.5	28.0	8248	35	57
			28.0-28.2: Last of Fe-carb attered phyllite, becomes rubbly.														
			28.04-29.26: Recovery = 20%, 15cm from 28.04 and 10cm above 29.26m.														
28.2	32.2	Ara	Arcillite: dark grow to black local fault pressia10-15% white and grey guartz														
20.2		,	veining; very well-fractured and sheared; not strongly graphitic, more chloritic.														
		-	(QCSP - Quartz-Chlorite-Sericite Phyllite).														
			28.2-29.1: Not recovered, assumed to be soft fault gouge, likely graphitic.	1			1	<u> </u>						-		<u> </u>	1
			29.1-29.6; Fine, dark grey weakly graphitic micaceous phylite, by cubes to 1cm.	<u>                                      </u>			1							1		1	1
			0.0.0.0. Well featured 25 200/ white mode visiting in dark shull the	<u> </u>										-		<b></b>	1 1
			in frequency of coarse pyrite cubes, some loose in box.	<u> </u>												<u> </u>	
			30 2-31 1: Contorted S2 folded not well-banded S2 @ 45 to c a	1			+	<u> </u>						<u> </u>			
			24.4.22.0. Dubbly again late of brittle white quarter vain material					┨				<b> </b>		<u>+</u>		<u>+</u>	
	1	1	131.1-32.0. Rubbly, again lots of bindle white quartz vein material.	1	1	1	1	1	1		1		1	1	1	1	

Diam 1 Drill Log

DDH No.

								A	Alterati	on sco	ore 1 -	5						
Dept	h (m)	Rock	Description	% D	%	% •	Kf	mt	chi	epi	cal	ser	cla	Interv	al (m)	Sample	Cu	Zn
From	10	Code		РУ	Ср	<u>uv</u>				-				Trom	10	Number	ppm	ppm
32.2	36.3	QSCP	Quartz-Sericite-Chlorite Phyllite; medium to dark grey phyllite, more gritty than above unit. Weakly foliated, locally massive. Quartz veining and coarse pyrite cubes still common.															
			35.0: S2 @ 60 to c.a.															
			33.8-35.5: Deformation bx, elongate clasts of pale grey siltstone in black mudstone matrix, clast & matrix-supported. Bx then contorted.															
36.3	38.7	QV/Flt	Quartz Vein in Fault; interval consists of thick white quartz veins at both contacts, bracketing a zone of highly silicified pale greenish phyllite.											36.3	37.3	8249	84	46
			36.3-37.3: Mainly white quartz vein with bits of phyllite between.															
			37.3-37.6: Hard silicified phyllite.															
			37.6-37.8: Soft sericitic phyllite.															
			37.8-38.1: Soft pale grey fault gouge, with pieces of white quartz vein to 3cr	n.														
			38.1-38.7: Mainly fractured white quartz vein.															
						1												
38.7	41.2	Flt	Fault: mainly highly fractured and sheared quartz-graphite schist with 5- 10% irregular white veining and significant gougy shears. Conductor.															
			38.7-39.6: Pale grey clay-sericite gouge with fine white quartz chunks. Less than 50% recovery.															
			39.6-41.2: Mainly black graphitic gouge and fine rubble; only 25% recovered	d.				1			1							
										1			-					
41.2	48.7	QGS	Quartz-Graphite Schist: black bighty contorted and schistose quartz-															
		(Arg)	graphite schist. Polished graphite planes indicate significant shearing. White quartz veining along S2, mostly 2-5mm thick. Well-fractured.															
			41.2-43.4: Soft and well-fractured, less quartz.															
			41.6: Crenulation fold axial plane (S3) @ 15 to c.a., S2 @ 20. opposite.				1	1		<u> </u>								
			43.4-45.0: More quartz veining, harder & less fractured.											• ·				
			46.4-46.9: Cream-coloured wisps along S2 in more pale grey, more felsic-								1							
			looking section. Clearly healed bx.															
			46 9-48 7: Poorly sorted deformation precial mainly matrix-supported with						1									
			elongate clasts oriented along S2. Clasts are oval, mainly rounded to					1	1	1	1							
		1	subrounded and pale grey in a medium grey featureless argiilite matrix.					1	1		1				1			
				1				1									-	
48.7	51.5	QSP-Bx	Quartz-Sericite Phyllite; pale grey to greenish deformation breccia, with several minor gougy slips. Fine scattered green Cr-mica grains ~ 50.5m.															
<u></u>			49.4-49.8, 50.0-50.3: Well fractured, locally gougy.															
			51.3: S2 @ 30-35 to c.a.						-							<u> </u>		
51.5	53.5	Fit	Fault; mainly pale grey mushy gouge. Lower slip @ 30 to c.a.			1			1	1						1		
			50.51-53.04: 0% recovery. Block: "Fault - No Core".															
						*	A		1		1							A

Wildrock Resources Consulting & Drafting

F:\Old Desktop\CW 02 Drilling and Trenching\Logs&Assays\Logs\[FC-02-02.xls]Page3

								A	lterati	on sco	ore 1 -	5					_	
Dept	h (m)	Rock	Description	%	%	%	Kf	mt	chl	epi	cal	ser	cla	Interva	al (m)	Sample	Cu	Zn
From	То	Code		Ру	Ср	Qv				<u> </u>				from	to	Number	ppm	ppm
53.5	61.0	QSP	Quartz-Sericite Phyllite; as above, pale grey phyllite with wispy brownish cream alth and occasional grains of Cr-mica. Most of interval is competent		l									53.5	55.0	8250	70	67
			but relatively soft. Good reaction with HCL when scratched - strong carb-					ļ	ļ			ļ						
			Cr-mica alteration. Possibly a mafic or ultramafic rock. Competent.		L							L						Ļ
			Quartz veins usually 2-4cm thick, cross cut steep S2, constitute approx 5-															
			10% of unit. Barren but often vuggy in centre.															
			56.4: S2 @ 80 to c.a.	1														
			59.5-60.3: Fault; minor rubbly shear zone.	1														
61.0	61.8	Fit	Fault: initially, gougy and rubbly zone consisting of carbonate altered grey	1														
			phyllite, leading to strongly gougy section and related fault breccias.															
			59 5-60 3' Gougy freture zone, rubbly at too															í
			60.3-61.0: Competent phyllite, increasing tectonic by becoming gougy									1						
			61.0.61.8: Pale grey, calcareous clay gourge	-														
			64.9.62.7: Maish second testanic by moderately well compared					-		-								
			61.8-63.7: Mainly coarse lectonic bx, moderately well-cemented.									<u> </u>						
				<u> </u>					<u> </u>				-					
63.8	70.6	Grey	Quartz-Sericite Phyllite; moderately fractured, locally sheared phyllite;					ļ			L		ļ					
			looks very similar to above grey phyllites but lacks significant carbonate and	l														
			Cr-mica. 2-3% pyrite cubes to 5-6mm, previously lacking.															L
			62.48-63.70: Only 45% recovery, likely at gougy seam `62.6.										<u> </u>					
			63.7-63.8: Clay gouge; lower slip @ 75-80 to c.a.															
			67.4: Gougy, weakly carbonacous slip, 3-4cm gouge @ 45 to c.a.															
			68.4: 2+cm layer of massive cubic pyrite @ 60 to c.a., disseminated pyrite	2								I		68.3	69.1	8251	108	43
			cubes more below layer.															
			67.6-66.7: Strong breccia clasts.					1										
			68.7-69.2: Strong breccia texture.					1										
			69.2-70.6: Well-fractured well-banded phyllite increasingly carbonaceous	1	1			1		1								
			and contorted.															
			69.8: S2 @ 40 to c.a. much flatter than most of interval															
					<u> </u>			$+ \cdots$										
				-	<u> </u>			+	+			╂───	<u> </u>					<u> </u>
70.6	75.6	Arg	Argillite: dark grey to black, finely laminated, strongly sheared with gougy	<b> </b>														
				1							<u> </u>							<b></b>
			70.6: Sharp contact along S2 @ 40 to c.a.	_	<b> </b> .			_	<b> </b>	<b> </b>		<u> </u>						<b> </b>
			71.2-75.6: Mainly graphitic rubble, only 20% recovery.	<b>I</b>	ļ					<u> </u>	ļ	<b> </b>						<b> </b>
75.6	76.0	Fit	Fault; intense black & grey clay gouge.		↓	<b> </b>		<u> </u>		<b>_</b>								<b> </b>
				<u> </u>						<u> </u>								L
76.0	84.1	Arg	Argillite: as before, dark grey to black, very fine grained and locally															
			massive-looking. Soft and highly fractured, sometimes poker chips.															
			76.2-77.8: Rubbly, not obviously sheared, close to 100% recovery.															
			76.6-76.7: Bands of guartz veinlets.															

FC-02-02

1

T T

1

1

1

.

								P	Alterati	on sco	pre 1 -	5						·
Depth	1 (m)	Rock	Description	%	%	%	Kf	mt	chl	epi	cal	ser	cla	Interv	/al (m)	Sample	Cu	Zn
From	То	Code_	· · · · · · · · · · · · · · · · · · ·	Ру	Ср	Qv		<u> </u>		<u> </u>				from	10	Number	ppm	ppm
			81.6-84.1: Rubbly quartz-graphite phyllite, not gougy, 90% recovery.			<b> </b>			<b> </b>			-						<b></b>
84.1	95.2	QSP-Bx	Quartz-Sericite-Phyllite: mainly tectonic breccia with pale grey clasts, subrounded and oval, very poorly sorted, in a darker grey, very fine-grained mudstone matrix. Some shearing evident narallel to S2: S2 generally guite.															
			steep to c.a. Relatively competent, weakly to moderately fractured. Not strongly pyritic.						<u> </u>									
			84.1-84.4: Finer bx, well-fractured to rubbly.															
			84.4- 85.6: Coarse, poorly sorted tectonic bx.		l .	[												Γ
-			85.6-85.7: Soft rubbly gouge.															
			85.9-86.2: Fault; grey clay gouge and white quartz vein fragments.															
-			88.3: Clay gouge seam <1cm thick @ 15 to c.a.						1									
			90.0: 5cm pale grey clay gouge.					1	T									
			90.0-91.4: Excellent matrix-supported, poorly-sorted tectonic bx.			[			1									
			93.0-93.6: Pale grey <u>gritty unit</u> , similar to quartz eye unit described below. Weakly fractured, <1% pyrite.															
	·—.		94.2-95.2; Strong bx, as 90.0-91.4m.			1		†	1	1								
						†			+									
95.2	101.0	OSP	Quartz-Sericite Phyllite; pale grey, fine to medium grained, siliceous with			†—-	[		1					96.0	97.5	8252	10	24
		Grit	clear glassy quartz eyes throughout, at times >25% of core. Few micas, weak S2. Hard and very competent, occ pyrite cubes. Possible felsic volcanic, but variable ntz-eye size & shape suggests clastic origin.						-									
			95.2: Upper contact is sharp, wavy @ 60 to c.a.					1	1	1		<u> </u>						
			95.6-95.8: Grey phyllite with occasional grains of Cr-mica.			†		-		1		1						<u> </u>
			98.7-99.0: Darker grey, brecciated, silt-mudstone, as before.			†		1		1		1			1	1		
-	··		99.7-99.9: Darker breccia section, mudstone matrix.			1			1						1	1		[
-						1			1							1		<u> </u>
101.0	114.3	OSP-Bx	Quartz-Sericite Phyllite; mainly tectonic breccia, with poorly sorted oval to			1		1	1									<u> </u>
		401 22	subrounded grey silty clasts in a darker grey, fine-grained matrix. Pyrite			<u> </u>			1			1						1
			shears.		1			1	1		1							1
	-		102.6-103.0: Grit section, as above, fewer quartz eves and weakly									1						
			brecciated, with lapilli-like clasts in hairline matrix.			1		Ť		1								
			107.4-107.6: Grit, as above.															
			108.0: Clasts of tan-altered grey phyllite/siltstone in dark grey matrix													1		
			suggests that breccia is post-deposition; ie. tectonic.										1	_	1			
			107.6-112.3: Strong tectonic bx, as before.															
			112.3-112.8: Grit unit.															
			112.8-114.3: Very strong breccia, more variety of clast types, shapes and sizes, matrix-supported.	<u> </u>				<b>—</b>										
			113.0: S2 @ 75 to c.a.	┼		1				+	1	+	1		-			<u> </u>
					<u> </u>			+	1			+			1	<u> </u>		1
		1		•		1	1	1		1	1 _		1		I	1	1	1

Depth From 114.3	r (m) To	Rock Code	Description	%	%	9/							I — T	Intony	al (m)	Sample	Cu 🗌	7n
114.3	10	i Code	besonption	<b>D</b>		ő.	Kf	mt	chi	epi	cal	ser	cla	fine in	ar (m)	Number		
114.3			·	Ру	Çp	QV				-				trom	το	Number	ppm	ppm
	120.9	FAULT	Fault; black weakly graphitic and grey clay gouge. A few short fault breccia intervals through the clay. Recovery is between 95-100%.	2-3														
			115.6: Several cm-size pyrite cubes.												-			
120.9	144.8	QSP-Bx	Quartz-Sericite Phyllite; mixed unit, pale to dark grey, fine-grained phyllite, likely silty mudstone, much of it tectonically brecciated and healed during deformation. Also, late gouge shearing and faulting common. Pyrite cubes continue but <1%. Strong tan carb altn and spotted ankerite.															
			120.9-133.5: Mainly finely laminated fine sediments, less bx.															ļ
			122.1-122.4: Moderately gougy shear zone.															
			122.8: Gouge-bx seam @ 20 to c.a.															
			123.1: Approx 10cm white quartz vein.															L
			123.2-123.4: Fault; soft, pale grey gouge.															<b></b>
			123.9: Gougy slip, 2cm thick, @ 20-30 to c.a.															
			124.2-124.5: Pale greenish, finely laminated, weakly calcareous phyllite, Fe- carb alteration. S2 @ 75-80 to c.a.															
			125.5-126.0: Grit unit, slightly softer and more sericitic.									1						
			126.5-127.9: Pale greenish, finely layered, quite calcareous - reacts with cold HCI - intense carb altn. S2 @ 85 to c.a.											126.5	127.8	8253	76	7
			128.6-128.8: Weak, gougy shear zone.															
			129.5-129.8: Fault; gougy shear zone with strongly polished graphitic slips over the last 10cm. S2 @ 20 to c.a.															
			129.8-131.1: Grit unit, weakly sheared throughout.															
			132.3-132.6: Fault: minor, gougy shear zone.							1								
			132.6-137.2: Mainly coarse tectonic bx. clasts of carb altered phyllite and gri	∎ t.				1				1						
			136.8: S2 @ 80 to c.a.															
			137.2-137.5: Fault: minor, gougy shear, upper slip @ 45 to c.a., cuts S2.	1			1											
			137.7-138.0: Lavering and S2 form open fold.	1					1	1	1							
			138.2, 138.6, 138.7: 1cm layers of tan carbonate altn with blebby green Cr-	1														
			mica, along S2 @ 90 to c.a. Coincident pyrite cubes @ 138.6m.															
			139.0: 3cm wispy tan carb altn, with minor Cr mica, S2 @ 80 to c.a.															
			138.0-139.0: Mainly grit unit.	1														
			139.0-141.9: Finely laminated phyllite with faint "spots" overprinted on foliation. Spots 2-5mm, appear to be sericite.															
		1	141.9-142.2: Weak tectonic breccia.			-	<u> </u>	1		1								
		1	142.2-142.5: Fine grit unit: S2 @ 80 to c.a.		<u> </u>			1	1	1		1						
			142.5-144.78: Finely laminated phyllite, as above (139.0-141.9m).									<u> </u>						
									<u> </u>		├──	├	$\left  - \right $					├

	Diamor	nd Drill	Log	DDH	l No.		F	FC-0	2-03	3					•	<b>Fests</b>	
	Company:		Barker Minerals Ltd	Date	Collar	ed	May 1	8, 20	02			ſ	Azimuth	090		Depth	Dip
	Project:		Frank Creek	Date	Comp	leted	May 2	20, 20	02				Dip	-45		n/a	
	Logger:		Christopher J.Wild. P.Eng.	North	ing		54+3(	) N				[	Length	118.87 m			
	Date:		May 21, 2002	Eastir	ng		13+47	7 W _					Core Size	NQ		L	
	Remarks		Drill east under Frank Creek Showing.	Eleva	tion		1140	m								L	
Dept	h (m)	Rock		%	%	%	%	%	1				Interv	al (m)	Sample	Cu	Zn
From	То	Code	Description	Ро	Ру	Ср	Sph	Gal	cni	cai	ser	Cia	from	to	Number	ppm	ррт
0.0	5.2	Casing	Cased through glacial till, no recovery.														
5.2	14.1	QSP	Quartz-Sericite Phyllite; pale grey, fine to medium-grained with somewhat gritty		1						3	1	8.6	9.6	8254	11	45
			Weak carb altn. Less than 1% pyrite, mainly as coarse cubes. Competent, weakly fractured, >95% recovery.											- "			
			5.18-5.35: Weakly oxidized, fine-grained, pale greenish sericitic phyllite.														
			5.35-6.0: Coarse-grained pea-size grit. Sericitic matrix with undulating foliation.														
			6.0-10.6: Mainly homogenous pale grey, slightly gritty, weakly layered QSP.														
			10.6-14.0: Finely interlayered, pale grey siltstone and dark grey mudstone, typically 2-5mm thick. Pale cream wispy carbonate (sericite) alteration.													<u> </u>	
			10.7: S2 @ 70 to c.a.														
			13.2-13.2: Blue quartz vein or sweat with 5% pyrite.														
			14.0; S2 @ 75 to c.a.														
							[										
14.1	14.4	QV	Quartz Vein, white bull quartz lacking sulphides. Highly fractured, uncertain recovery. Patchy tan carbonate.														
14.4	15.9	Flt	Fault; approx 20% recovery between 14.94-15.85m, block notes "gravel". Gravel		2												
			includes white quartz and pale green phyllite strongly altered by Fe-carbonate +														
			Interval boundaries.														
					1								-				
15.9	24.2	QSCP	Quartz-Sericite Chlorite Phyllite; finely interlayered, pale grey silty-looking	<u> </u>	1-2												
			phyllite with dark grey bands of mudstone, typically 2-5mm thick. Continuing													<u> </u>	
			Interval is moderately competent and fractured with recovery estimated at 91%.				1		1								
			16.7: 5cm section of cream-coloured Fe-carbonate alteration with minor Cr-mica														
	1		(~1%). S2 @ 60 to c.a.											<u> </u>			
			17.2-18.0: Cubes of pyrite, 2-3%.														
			18.3: Wisps of sericite, Fe-carbonate with strong Cr-mica @ 75 to c.a.													<u> </u>	
	1		18.7: Deformation breccia.														
			18.9-19.0: Fe-carbonate flooded along S2 @ 75 to c.a.														
	1		19.8-20.0: Deformation breccia.			Γ											
	†		20.0-24.2: Finer breccia in narrow intervals, minor wisny Fe-carb.														
		<u> </u>			1	1	1	t		1	<u> </u>	1		1	1		

FC-02-03

1

ł

								A	Alterati	ion sco	ore 1 -	- 5						
Depth	າ (m)	Rock	Description	%	%	%	Kf	mt	chi	ері	cal	ser	cla	Interv	al (m)	Sample	Cu	Zn
From	To	Code		Py	Ср	Qv								from	to	Number	ppm	ppm
24.2	41.1	Fit	Fault: Major structure, intense pale grey gouge and strongly gougy breccia.	2-3							2	4	5					L
			Strongly pyritic both as coarse and fine cubes.															<u> </u>
i			33.9-34.1; Black, weakly carbonaceous phyllite, not strongly sheared but															
			well-fractured. Significant wispy to banded sulphides, perhaps up to 10%,															
			mainly pyrite. Upper slip @ 40 to c.a.; recovery ~75%.															
			34 14-34 75' Recovery only 30-35%.	1						1								
			34.2-34.7: Massive Sulphides: Several cm-size pieces of pyritic massive	60	<1			2						34.2	34.7	8255	5238	3333
			sulphide in matrix of sulphide gouge, very little of the gouge was											• • • •				
		· · <u> </u>	Irecovered. Sulphides are >60% of pieces, fine-grained, weakly magnetic,															<u> </u>
									+			╂						
			34.7-41.1: Mainly pale to medium grey clay gouge and gouge breccia.	<u> </u>	<u> </u>				-	-			-					<u> </u>
			41.1: Very sharp planar slip between gouge and dyke @ 45 to c.a.	<u> </u>	<u> </u>	<u> </u>				-					· · ·		.=	ł
								┨			-	╂───						
41.1	41.8	AND	Andesite Dyke: Pale green, fine-grained, relatively fresh and undeformed.	<1		<u> </u>				1	<u> </u>			41.1	41.8	8256	48	76
			Soft yet weakly fractured. Weakly porphyritic with altered feldspar		ļ													
				<b> </b>	ļ													
																		<u> </u>
41.8	42.5	Flt	Fault: 10cm of clay gouge, washed out with only chips of black phyllite									ļ						
			remaining over remainder of interval (loss of core likely here but could be in															
			following interval).															
			41.15-42.06: Recovery ~88%.															
			42.06-43.59: Recovery ~75%.				1											
					<u> </u>													
42.5	43.7	050	Quartz-Sericite Phyllite: Pale grey quartz eye unit, medium grained, with															1
72.0	40.7	Grit	dark phyllitic "stockwork" giving core a lapilli or breccia appearance. Unit							1	1							
	·	Gil	Lappears to be volcaniclastic, but could be tectonically sheared dacitic	<b> </b>	-		1	1		1	-							
	·			+	<del> </del>													
			42.5: S2 plane @ 75 to c.a., top of unit.							+	+	-	+		_	-		╂
			43.0-43.2: Well-fractured, minor shear zone.		+			+										1
	n <u> </u>		43.5-43.6: Fault; pale grey clay gouge.					+	+			+	+			<u> </u>		<u>+</u>
					· ·						╂			<b> </b>				<del> </del>
43.7	44.2	Arg	Argillite: Dark grey, weakly carbonaceous, tectonically brecciated interval.	<u> </u>								<u> </u>		<b> </b>		ļ		<u> </u>
		<b> </b>	Sharp upper contact with clasts or Ght in mudstone mathx @ 75 to c.a.	1		<b> </b>	-		┨	_	+	<b>-</b>	┨					<u> </u>
				<b> </b>	ļ	<b> </b>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	1	<b> </b>			ļ	<b> </b>	<u> </u>
44.2	44.4	Fit	Fault: Relatively minor fault marked by 5-10cm of white to grey quartz vein	ļ	1				<u> </u>	<u> </u>		<b> </b>	<u> </u>	<b> </b>				
			and angular, pebbly gouge.															ļ
																ļ		ļ
44.4	45.1	AND	Andesite dyke, as described above, well-sheared and fractured contacts.															
			Fault at bottom, similar to 44.1-44.4m.			<u> </u>												
		<u> </u>		1	1	†	1					1	1 -		1			
		1	· · · · · · · · · · · · · · · · · · ·	1	1	1	1	-	i.		1			4	1	A	4	-

								A	Alterat	ion sco	ore 1 -	5						
Depti	<u>י (m)</u>	Rock	Description	%	%	%	Kf	mt	chl	epi	cal	ser	cla	Interv	al (m)	Sample	Cu	Zn
From	То	Code		Ру	Ср	QV				<u> </u>				from	to	Number	ppm	ppm
45.1	50.1	QSP	<u>Quartz-Sericite Phyllite</u> : Pale grey phyllite, generally brecciated, possibly a felsic (dacitic) volcanic breccia or tuff. More siliceous with less well- developed foliation. Clasts range up to several centimetres in size, but quite variable though better sorted and less elongate than tectonic breccia.	1-2										46.5	47.7	8257	16	77
		u	Cream to pale green "spots", up to 3mm diameter related to carb overprint.															
			47.3-47.7: Breccia texture with <3cm clasts of qtz eye dacite in wispy and swirled sericitic matrix.															
			45.7-45.8: Fault; minor with >5cm of clay gouge.															
			49.1-49.5: Moderately fractured with increased quartz veiing and minor goug	jy she	ars.													
			50.1: Sharp lower contact with fault.														ļ!	
50.1	50.2	Fit	Fault: 10cm of strong, pale grey clay gouge.															<b> </b>
50.2	53.4	Arg	Argillite: Mixed dark grey and pale grey phyllites, likely alternating layers of	1-2		-						-						
			siltstone (and grit) and mudstone. Increasing milky to granular quartz							1								
			(tops?).							1	1							
53.4	54.4	OSP	Quartz-Sericite Phyllite: Pale greenish or cream coloured, medium-	1-2			1							53.4	54.4	8258	8	137
		Grit	grained, granular texture with well-developed qtz eyes. Strong carbonate				1	1										
			alteration with significant 1mm grains of Cr-mica. Contacts are very sharp but irregular: upper may be alteration front lower is lithologic contact @ 20-															
			25 to c.a. with more intense altn, looking like a chill margin.															
54.4	56.2	Arg	Argillite: Similar to 50.2-53.4m. Mainly dark grey phyllite with up to 50%	1-2														
			quartz-sericite phyllite, possibly silty or gritty. White to milky and granular quartz veining makes up 5% of interval. Minor shearing and related															
			fracturing in dark phyllite.															
			54.5: S2 @ 70 to c.a. (variable).	1														
				1														
56.2	66.5	QSP	Quartz-Sericite Phyllite: Gritty quartz-eye unit, pale grey, medium-grained	1-2														
	_	Grit	with strongly foliated to brecciated texture. Strongly foliated and granular															
			as medium to coarse cubes.	/														
			57.4: S2 @ 55 to c.a.						1									
			57.4: Minor fault: 2-3cm of pale grey clay gouge. @ 45 to c.a. ~S2.	1									1					
			59.3-61.0: Cream to pale green carbonate alteration with modest Cr-mica.	1	1	1	1		1	Ì	1	1	1					
			62.2: Fault: minor marked by 5cm grev clay gouge.			1				1	1		1				[	
			64.7-65.2: Cream to pale green carbonate alteration with modest Cr-mica.	1			1	1		1			1					
			64.9: S2 @ 75 to c.a.	1		1		1	1	1	Ì		1					
			65.5-66.5: Finer grained, grey and more siliceous.	1	1	1		1	1	1		1	1					-
				1		1		1	1	1		1	1					
				1	1		1	1	1	1 -	ľ	1	1					1

								- 1	\lterati	ion sci	ore 1 -	5						
Depti	n (m)	Rock	Description	%	%	%	Kf	mt	chl	ері	cal	ser	cla	Interv	al (m)	Sample	Cu	Zn
From	To	Code	Quarte Oblavita Sariaita Sabiata Dark arou, madaratalu silisagua lagallu	РУ	Ср	QV		-						Trom	το	Number	ppm	ppm
66.5	68.0	QCSP	<u>Guartz-Chiorite-Sericite Schist:</u> Dark grey, moderately siliceous, locally finely lavered, gradational with overlying grey grit unit. Weakly "spotted"	2	<u> </u>			<u> </u>										
			with sericite overprint. Variable dark chlorite. Upper contact marked by	<u> </u>	ļ				<b> </b>		ļ							
			white to grey quartz veining. Sharp lower contact with fault zone.								<u> </u>							
			68.0: Lower contact, S2 @ 75 to c.a.			<u> </u>			<u> </u>		ļ							
											<u> </u>							
68.0	70.5	Fit	Fault: Highly fractured and gougy zone, less intense in places.	2														L
			68.0-68.2: Gougy with fine chips.															
			68.2-68.4: Fractured grey siliceous phyllite - gritty ad "spotted".															
			68.4-69.8: Strong carbonate alteration with spotty Cr-mica.										1					L
			68.28-69.80: Recovery ~75%.															
			69.8-70.5: Gouge and gouge breccia.															İ
70.5	77.7	QCSP	Quartz-Chlorite-Sericite Phyllite: Mainly dark grey, finely foliated with	1-2							1							
			minor warping of foliation evident. Grades to argillite.		1			1										
			70.5-70.9: Mainly soft, weakly carbonate altered grit.					1	1									
			70.9-71.1: Grey clay gouge, 5cm; quartz vein and minor shear.			1		1		1		1						
			72.2.72 5: Bala arow aronular to arithy looking with pole groop parisite (2)	1								1						
			spots, ~2mm diameter beginning and continuing below. Medium to coarse		1			İ		<u>                                      </u>	1							
	· · · · · · · · · · · · · · · · · · ·		cubic pyrite continue, only ~1%. S2 @ 40-70 to c.a.							1								
			73.2: Gougy shear @ 30 to c.a.; S2 @ 60 to c.a.						1									
			74.4: 2-4cm shear zone/breccia @ 70 to c.a.															
			74 8-76 7' Sham increase in 1-2cm thick white quartz veins form a weak		1	1	1											
			stockwork constituting 10% of interval.		<u> </u>	t												
			76.7-76.8: Fault: minor with 7cm of grey clay gouge.		1							1						
			76.8-77.7: Well-fractured, mainly QCSP, minor grit, Recovery 50-60%,					1			1	1	<u> </u>					
					<u> </u>				1				<u> </u>					
	70.0	000	Cream to pale grappick strength estherate altered guartz avec present							+								
11.1	79.2	Q3P	may be grit or felsic unit. Flecks of Cr-mica speckled throughout.	<b></b>	+				-									
									-			-						
			Our de Obligation Destation Dividition - La constation de facelusion de faceluire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Constituire - Co		╂──													···-
79.2	79.7	QCSP	wanter-onioniter-onione ringing. Increased nacturing as radit is approach	ieu.				+	+				1					<u> </u>
								+			╉───							
79.7	80.9	Fit	Strongly gougy rauit, UBP to 80.3, carbonate-attered USP to bottom.	1	+			+		+	┨───	-		<u> </u>			· · · ·	
			ou.o. Gougy planar slip @ 55 to c.a.	╂			<u> </u>	-			-	<u> </u>						
							<u> </u>		+								ļ	
80.9	89.2	QSP	Quartz-Sericite Phyllite: Similar to 77.7-79.2m. Very competent and	2	-	-	<u> </u>									1		<b> </b>
		Grit		1								<u> </u>	<b> </b>	82.0	83.5	8259	102	96
		ļ	80.9-81.7: Strong sericite spots, weak reaction to HCl. 81.5: S2 @ 55 to c.a	a.	1	<u> </u>	<u> </u>	<u> </u>	┥	<u> </u>			<u> </u>	<b> </b>			<b>.</b>	<b> </b>
			81.7: Quartz vein along contact, 8cm thick, with minor Cr-mica.	1	1		1	1		1	1	1	1	1	ł			

Wildrock Resources Consulting & Drafting

F:\Old Desktop\CW 02 Drilling and Trenching\Logs&Assays\Logs\[FC-02-03.xls]Page1

1

1

				0/		- 0/ 1					<u>ne i -</u>	<u> </u>		la farma	al (m)	Sampla		
Depth	( <u>m)</u>	Rock	Description	% ₽v	~~ C⊓	~~ 0v	Kf	mt	chi	ері	cal	ser	cla	from	to	Number		
From	10	Code	04.0.00.0. Others and and alteration with Crimica flacks throughout	r y	90	w.v								in one				
			85.8-85.9: Minor gougy shear, ~5cm, fractured to 80.1111.															
			88.0-89.2: Moderately fractured.															-
			88.6: Strong Cr-mica, fine flecks oriented with S2.					<b> </b>										
			89.2: Weakly gougy along contact; S2 @ 65 to c.a.	. <u></u>														
89.2	90.0	QSP	Quartz-Sericite Phyllite-Grit: Pale grey, very similar to above QSP but	1-2														
		Grit	stronger foliation, strong sericitic spots, weak quartz eyes, and very competent. Continuing weak to moderate carbonate alteration 1-2% fine-															L
			grained and coarse cubic pyrite.		1													
					1													
00.0	04.6	A	Argillite: Mainly dark grey to black fine-grained silt to mudstone with minor	2-3														
90.0	94.0	<u>~uy</u>	grit; strong to somewhat contorted foliation. Minor sericitic spotting in						<u> </u>							1		
			coarser intervals. Coarse pyrite cubes ~2%. A few minor shear zones													-		
			scattered. Irregular S2 parallel quartz veins or sweats to 3cm, make up 5-															
					<u> </u>					<u> </u>		<u> </u>			<u> </u>			
			90.0: Upper contact is sharp, parallel to S2 @ 70 to c.a.															
			90.6: 16cm interval of grey grit, upper contact marked by white quartz vein						-	<b> </b>								
				<u> </u>				1										
			91.7-91.9: Fault: strong pale grey clay gouge, lower slip @ 80 to c.a.						<u> </u>			ļ		<u> </u>				
			94,0-94.6: Moderately fractured.				ļ	ļ	<u> </u>		L							<b> -</b>
94.6	96.1	QSP	Quartz-Sericite Phyllite-Grit: Pale grey phyllite, some quartz eyes with an	3-5														<b> </b>
		Grit	indistinct fine to medium-grained texture. Moderate sericite spots and wispy							<u> </u>						L		<b></b>
			carbonate alteration. Coarse cubic pyrite to 1cm, up to 5%.															
			95.6: S2 @ 60 to c.a.									r						
						[			[									
06.1	101.8	EH	Fault: Series of strong clay gouge zones between sheared sediments.	2				1	1	1	1							
	101.0		26 1-08 8: Mainly year soft pale to medium grey douge a few cm-size	_				-	1		1			· · · ·				
			pieces of unsheared grit. Later 8cm thick white quartz vein at 97.2m.	<u> </u>														
			09. 9. 00. 2: Crit: a fow course clins		+										1			
			90.3-35.5. Girk, a few gouge sines.		-								1				<u> </u>	
┠────┤			199.3-99.7. Pale grey day gouge with fillingize gill clasts.					1		-		+					<u> </u>	
┣───┤		<b> </b>	99.7-101.6: Argillite; black, weakly carbonaceous phyllite and gouge. Note							+		╂	+			<u> </u>	<u> </u>	
		ļ		╂									-					╉─────
		ļ	101.6-101.8: Pale grey clay gouge.	_							<b> </b>							<del> </del>
				<b> </b>	<u> </u>		<b> </b>	↓	1	-			1	<b> </b>	<b> </b>		<u> </u>	
101.8	103.4	QSP	Quartz-Sericite Phyllite-Grit: Pale grey phyllite with fine quartz eyes and	3		ļ	ļ	↓		<u> </u>		<u> </u>	<u> </u>	I		<b> </b>		<u> </u>
		Grit	the same indistinct granular texture noted above (94.6-96.1m). Sericite		1				<u> </u>			<u> </u>						ļ
			spots and generally quite sericitic throughout. Coarse cubic pyrite persists.															1
												1		L				<u> </u>
		1																

_					1 47			<del></del>	AILEI AII		<u>лет-</u>	<u> </u>						
Depth	<u>i (m)</u> Ta	Rock	Description	% D	%	%	Kf	mt	chi	epi	cal	ser	cla	Inter	/al (m)	Sample		
rom	10	Code		РУ	Ср			<u>  ·</u>			<u> </u>			from	10	Number		<u> </u>
103.4	107.0	Flt	Fault: Moderate to strong intensity, locally clay gouge and breccia zone,			<u> </u>		<u> </u>		<b> </b>	-							
			becoming less gougy (possibly washed away) with poor recovery and							<u> </u>					ļ			
			Inumerous pieces of white quartz vein.															
			103.4-104.7: Mainly grey clay gouge with clasts of grit, QCSP, QSP.															
			103.33-104.85: 65% recovery.															
1			104.85-105.77: 90% recovery.															
			105.77-106.38: 50% recovery.															
			106.38-106.98: 25% recovery.								1							
			104.7-107.0: Grey phyllite & white quartz vein rubble with minor sericite-clay	goug	e.			1	1									
				ľ –	Γ			1	1									
107.0	111 7	OSP	Queste Sectoria Phyllips, Dala susceich arou, fine aroised and medarately.	2	1	1		1		1								
101.0	111.7	401	Development of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco	<u></u>	<del> </del>	<u> </u>		<u> </u>										<u> </u>
			flecks of Cr-mica. Also, sericite spots are relatively common.		+	ł			+						<u> </u>			
			108.2: Strong wispy band of Cr-mica in carbonate flooded zone			<u> </u>		<u> </u>										
															<u> </u>			
			110.2 110.2: Contested and braceisted				1											
									+									
			111.0: S2 @ 80 to c.a.															┨───
			111.5-111.7: Clay-altered, very soft shear zone.								<u> </u>					<u> </u>		
				ļ		ļ	ļ	<b> </b>		<b> </b>		<b> </b>			<u> </u>	<u> </u>		<u> </u>
111.7	113.9	Fit	Fault: Weak fault zone consisting of narrow gouge zones and soft	1	ļ	ļ			<u> </u>						<b>_</b>			
			moderately sheared grit, and quartz blotite-sencite phyllite.	ļ	ļ				L						ļ			
			112.0-112.2: Gougy rubble zone.	ļ														<u> </u>
			112.3: Gouge seam, grey clay, 1cm thick @ 75 to c.a.															
			112.3-113.9: Stockwork of thin clay gouge seams.												<u> </u>			
113.9	118.9	QSP	Quartz-Sericite (Chlorite) Phyllite: Medium grey, locally strongly	1-2														
			brecciated and contorted by deformation, generally fine-grained with wispy															
			carbonate alteration throughout.												[]			
			113.9-114.3: Strongly spotted.															
			115.0-115.9: Moderately fractured.							<u> </u>								1
			115.9-116.0: Fault: 4cm pale grey clay gouge.						1	1	1							
			116.0-116.2: Strong carbonate alteration.								<u> </u>	<u>+</u>						<u> </u>
			116.7-117.0: White guartz veining, possibly intruded toward end of		1		1		· ·	1	<u> </u>							<u> </u>
			deformation giving a contorted appearance. This interval is brecciated	$\vdash$				-		-	†				1	1		+
	·		during deformation and healed. Wispy pale cream carbonate alteration	┣─	+		-	-	-	+	┼───					+		<u>+</u>
			117 0-118 87: Strong carbonate alte associated with matrix of brassic		-			-	-	+	╂-──							+
		1	TTT TTO. 07. Strong carbonate and assocated with matrix of Dreccla.	<del> </del>	+		+	<u> </u>	<u> </u>	<u> </u>				ł	<u> </u>		<u> </u>	
				<b> </b>	+	<u> </u>	<u> </u>		<u> </u>	<u> </u>	╂					<b> </b>	<b> </b>	—

	Diamor	nd Drill	Log	DDH	No.		F	FC-0	2-04	•						Tests	
:	Company:		Barker Minerals Ltd	Date C	Collare	ed	May 2	20, 200	)2			[	Azimuth	090		Depth	Dip
	Project:		Frank Creek	Date C	Compl	eted	May 2	2, 200	)2				Dip	-45		n/a	
	Logger:		Christopher J. Wild. P.Eng.	Northi	ng		54 + 5	50N				[	Length	158.19 m			
	Date:		May 23, 2002	Eastin	g		12 + 2	20W				Į	Core Size	NQ			
	Remarks		Test east of Frank Creek showing, area of high chargeability, low resistivity.	Elevat	ion		1140	m									
									altn	i- wea	ak, 5 s	trong					
Dept From	h (m) To	Rock Code	Description	% Po	% Py	% Ср	% Sph	% Gal	chi	cal	ser	cla	Interv from	al (m) to	Sample Number	Cu ppm	Zn ppm
0.0	5.20	Casing	Cased through glacial till, no recovery.		-												
5 20	12.60	0088	Quartz-Chlorite-Sericite Phyllite: Medium to dark grey, variably textured		4.2												
5.20	13.00	UC3F	including interbedded darker mud and siltstone, locally tectonically brecciated.		1-2												
			Generally spotted texture in fine and medium-grained components. Weak cubic														
			and disseminated pyrite. Local moderate fracturing, otherwise competent.														
			5.2-5.8: Rusted "spots", possibly originally ankerite.														
			6.0-6.8: Finely layered, darker mudstone/phyllite, strong deformation breccia.														
			6.8-7.2: Thicker layered, medium-grey siltstone.														
			7.2-7.6: Fractured around white to grey quartz vein.														
			7.8-8.0: Fracture zone in dark phyllite. 8.7-8.9: Deformation breccia.														
			9.1-9.7: Finely layered dark phyllite.						1								
			9.7-12.8: Mainly spotted medium grey silty phyllite.										9.7	10.7	8260	15	91
			12.9-13.1: Increased fracturing in dark phyllite; minor shearing, transitional.														
			13.1-13.6: Siliceous, pale grey deformation breccia, healed.														
13.60	17.10	QSP	Quartz-Sericite Phyllite: Pale grey, fine to medium-grained, more massive, soft		2								16.1	17.1	8261	108	86
			but weakly fractured - possibly felsic volcanic or dyke. A few white													( ¹	
			traces of Cr-mica, 2-3% finer-grained pyrite														
			13.6: Strong reaction with HCI when nowdered. Contact @ 50 to c a														
			14.2.14.7: Dedree sterr men siliceare heeled breede heette selestrere writ														
			14.3-14.7. Darker grey, more sinceous, neared preccia - host to calcareous unit.														I
			spotted with quartz eyes clearly visible in the spots (ankerite altn?).														
			15.5-16.1: Limonitic fractures, end at 16.1 - becomes very massive.														
17.10	43.60	QCSP	Quartz-Chlorite-Sericite Phyllite: Medium to dark grey, fine to medium-grained,														
			mixed interval interlayered silty and muddy units. Variable rock quality, more														
			fractured in darker phyllite. Weak pyrite, usually cubes. Spotted, likely the broad L ankerite altn; no reaction with HCI but rusted out in oxidized top of hole.														
			17.1-21.3: Spotted grey phyllite; weakly fractured, competent; variable breccia textu	ле.													
			21.3-21.9: Fracture/shear zone, minor white quartz vein, rubbly; S2 @ 45 to c.a.														
			21.9-26.0: Generally darker, more fractured and clearly healed tectonic breccia														
			throughout. Interlayered dark and medium grey phyllites.														
			23.0: Cream-coloured, wispy carbonate alteration with flecks of Cr-mica, 5cm @ 75	i to c.a	a. (S2)	).											

Í

1

Í

ł

							A	lterati	on sco	оге 1 -	5						
Dept	h (m)	Rock	Description	%	%	%	%	%	chl	cal	ser	cia	Interv	al (m)	Sample	Cu	Zn
From	То	Code		P0	Ру	Ср	Spn	Gai					trom	10	Number	phu	ppm
			29.7-29.9: Well-tractured shear zone, 2cm white quartz vein, 2cm grey gouge sea	ım.													
			26.0-27.3: Medium grey, siliceous unit, possibly weakly gritty, competent.								<b> </b>						<u> </u>
			27.3: S2 @ 55 to c.a.														
			27.3-29.7: Strongly sheared, low angle to c.a., moderately to strongly fractured, not gougy. Mainly dark phyllite with lesser amounts of silty component.														
			27.3-28.0: Shear zone.											<u> </u>			
			29.0-29.7: Shear zone.														_
			29.7-30.2: Competent healed tectonic breccia.														
			30.2-31.1: Shear zone.														
			31.7: 10cm section of 10% pyrite cubes.														
			31.1-31.5: Fine undulating layers, pale and dark grey, strongly sericitic; IO @ 50 to	c.a.													
			31.5-33.4: Medium-grey, silty, spotted, weakly fractured and competent.														
			33.4-36.0: Medium-grey, more foliated, locally sericitic with pale spots. Much														
			more sheared, local gouge intervals and tectonic breccia.					1									
			36.0-37.1: Increased fracturing related to brittle white quartz veins; minor fault.						1								
			37.6: Minor fault, weakly gougy along slip @ 30 to c.a.						1								
			37.9-38.2: Cream-coloured, wispy carbonate alteration, no obvious Cr-mica.						1								
			38.2-39.8: Fine-grained, finely layered, contorted and brecciated, quite soft.					1									
		<b> </b>	39.8-40.8: Cream-coloured, wispy carbonate alteration, minor Cr-mica.	1													
		1	40.8.42.6: Mall faliated, partially carbonate altered phyllite to medium grey silty		3-4												
			phyllite with coarse deformation breccia and some dark phyllite layers.						1								
			Increased pyrite cubes.							1	1						
													· ·				
43.6	46.0	OSP	Quests Serieite Bhulliter Bele groom to groopish grov fine-grained phylite with		<1								43.6	44.6	8262	57	72
40.0	40.0		wispy carbonate alteration and increased bright green Cr-mica throughout. Soft														
			but competent.														
			45.2: Vuggy white guartz vein, 3.5cm thick, @ 20 to c.a.					1	1	1	1						1
46.0	47.4	Ara			2					1							
40.0	47.4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	layering and breccia; moderately fractured.		-	1				1							
			46.4: 5-10cm shear zone, polished slips, well-fractured with large pyrite cubes.	╆╼╍╌			+			1	+						<u> </u>
			46.4: S2 @ 55 to c.a	1			1	1				-					<u> </u>
		000			4.2			+		+	-	+					
41.4	50.5	<u>usr</u>	<u>Quartz-Sericite Phyllite:</u> Pale cream to greenish grey phyllite, siltstone with moderate spots - ankerite and carbonate alteration. Ranges from possibly utitive the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco		<u>  - 2</u>	+		+	1			1	<u> </u>			1	1
			near the top to more blocky breccia lower. Fine-grained, silty appearance.	<b>—</b>	-				+			1			1	-	<u>†</u>
··			47 4-48 4: Fractured along c a		$\vdash$			+	+	╆┈──	+	+				<u>                                      </u>	<u>†</u>
			49.1: Fault: minor with 1-2cm of grey clay gouge	+	$\vdash$		+-	+				+				<u> </u>	1
			19.1.1 aut, minor with 1-20m of greenish grey clay gouge.					+	1	+		+					+
		<u> </u>	40.2 50 5. Genere deformation brancin with fine argined ab altered alerte			+	+	+	+			+	<u> </u>				+
	1	1	149.3-50.5; Coarse deformation preccia with tine-grained cd-aitered clasts.	1	1	1	1	1	1	1	1	1	1		1	1	1

Wildrock Resources Consulting & Drafting

F:\Old Desktop\CW 02 Drilling and Trenching\Logs&Assays\Logs\[FC-02-04.xls]Page1

i

ł

1

1

Т

Ì

ł

Т

I

							A	Iterati	on sco	ore 1 -	5						
Depti	n (m)	Rock	Description	% Po	% bu	%	% Sob	% Gal	chl	cal	ser	cla	Interv	al (m)	Sample Number	Cu	Zn
From	10	Code		FO	гу	Cp	- əpn	Gai					nom	10	Number	Phin	
50.5	59.0	Ls Bx	Limestone Breccia: Pale to medium grey limestone clasts in darker grey matrix,		1-2												
			Argely clast-supported, clasts elongate along tollation, ranging norm minited														
			clasts of strongly carbonate-altered phyllite noted, esp @ 52.8m. Interval is														
			weakly fractured and competent. Pyrite continues to be cubic and weak.														
			53.8-54.4: Pale greenish phyllite, wispy, weakly calcareous alteration.														<u> </u>
			56.4: S2 @ 55 to c.a. 57.0-57.6: Dark muddy matrix, fractured.														
			57.9-58.1: Tan carb altn, more phyllitic section.														
59.0	64.1	QSP-Bx	Quartz-Sericite Phyllite-Breccia: Similar to above but medium grey non-		1-2								60.0	61.0	8263	10	43
			calcareous and more siliceous (harder) phyllite clasts in deformation breccia.														
			subrounded, less well-defined, less angular and slightly smaller.			· · ·											
							1										
	64.0		Dark grey very soft clay and sericite gourge. Fault appears to be conformable.				<u> </u>										í
04.1	04.9	<b>F</b> 11					1										
64.9	65.8	OSP-Bx	Quartz-Sericite Phyllite-Breccia: As before (59.0-64.1m), more rubbly.							<b> </b>							
0.10			65.4-65.8: Well-fractured, strongly sheared.														
				····	1			1									
	67.0		Azzillite: Date arou fine grained tectonically pressiated and bealed. Dark and	<u> </u>	2												[
05.0	07.9	Alg	contorted, competent except at top of interval.	<u> </u>	-				1						<b> </b>		
				1					<u> </u>								
				+				+	+	ł							
67.9	69.3	Arg-Bx	Argillite-Breccia: Strong tectonic breccia, as described above. Darker, fine-	<u> </u>	3-4	-				-							<u> </u>
			grained arguinte matrix. Weakly fractured and very competent. Increasing coarse loubic pyrite. 69.0: S2 @ 50 to c.a., curved.			-			<u> </u>		-						
																	<u> </u>
			69.1-69.3: Contorted argillite.		<b> </b>												
69.3	70.0	QSP	Quartz-Sericite Phyllite: Medium grey, fine to medium-grained, siliceous and		3	<u> </u>			<u> </u>								<b> </b>
			hard, possibly gritty or weakly deformed dyke. Brecciated and healed at lower							ļ							
			contact. Pyrite cubes continue. Strong ankente spois. Competent.														ļ
70.0	71.2	Arg-Bx	Argillite-Breccia: Dark grey to black, fine-grained, coarse clasts in deformation		3												
			breccia. Soft yet competent. Coarse cubic pyrite continues.														
		<b></b>								Γ							
71.2	71.9	Fit	Fault: Strongly gougy, black, moderately carbonaceous argillite. Approx 80%			Ī											
			recovery, very mushy gouge at lower contact. Undulatory upper slip @ 30 to c.a.									1		<u> </u>			
				1		<u> </u>		1	1	1	1	1		<u> </u>			
71.0	72.2	Arc Pr	Arcillite-Breccia: Deformation breccia, as above.	†	2-3	1	1	1	1	1-				<u> </u>		1	
70.0	13.3				2		1	1			1	1	1	1	1		[
13.3	10.1		Limestone Breccia: Well-layered, with elongated pale grey limestone clasts in darker less calcareous matrix. Same as limy interval (50.5-59.0m). 2cm white		<u> </u>	1	+	1	1	+	1		<u> </u>	1	1		
			quartz veins common. More layered, less bx'd.		+	+		+	+	1	+	+	<b> </b>	-	-		
			75.0.52.8.10.@.60.10.0.0		╂			+	+	+	+		1		1		1
<b> </b>		<u>                                     </u>				-			+	╂		+	<u> </u>			<u> </u>	
1		1	//b./: S2 & IU @ 25 to c.a., curved.		1	1	1		1	1	1	1	L			I	<u> </u>

Wildrock Resources Consulting & Drafting

F:\Old Desktop\CW 02 Drilling and Trenching\Logs&Assays\Logs\[FC-02-04.xls]Page1

							ļ į	Alterati	on sco	ore 1 -	5						
Dept	1 (m)	Rock	Description	%	%	%	%	%	chi	cal	ser	cla	Interv	/al (m)	Sample		
From	To	Code		Po	Ру	Ср	Sph	Gal					from	to	Number		
76.7	86.5	QCSP	Quartz-Chlorite-Sericite Phyllite: Mixed interval, dark and medium grey, interlayered siltstone and mudstone phyllites, generally deformed and brecciated. Locally finely layered. Generally weakly fractured and quite competent. Pyrite continues somewhat weak. Increased tan carb with quartz veining.		1-2												
			76.8-77.1: Several S2-parallel white quartz veins, irregular, ~1cm thick.														
			77.2-77.6: Mainly pale grey gritty-looking phyllite, well-laminated with quartz eyes.														
_			77.6-78.1: Strong deformation breccia, as described previously.														
			78.1-79.8: Medium grey, fine quartz-eye grit with layers of mudstone that have flowed around more rigid grit during deformation.								-						
			79.8-80.2: White barren quartz vein; moderately fractured.														
			80.2-80.8: Grey quartz-eye grit.														
				_													
			83.6-84.2: Minor shear and fracture zone, rubbly with white 20% white quartz.														
			84.2-86.5: Darker, less gritty phyllite, minor breccia and quartz veining.														
			84.8: S2 @ 60 to c.a.	<b> </b>				<u> </u>									ļ
				<u> </u>													<b> </b>
86.5	86.9	Fit	Fault: Intense clay gouge, very sharp slips, lower @ 70 to c.a. (S2).			<u> </u>		ļ	ļ	ļ	ļ						ļ
							<u> </u>		ļ		<u> </u>						<b> </b>
86.9	103.2	Arg	Argillite: Mixed interval (same as 76.7-86.5m), dark and medium grey, interlayered siltstone and mudstone, variable deformed and brecciated. Locally		1-2		<b> </b>										
			finely layered. Generally weakly fractured and quite competent. Pyrite continues														<u> </u>
			somewhat weak. Patchy tan carb in qtz vns.														<u> </u>
				1							<u> </u>						
			89.3-91.7: Similar to above but more clearly breccia with lapilli shaped silty clasts in muddy matrix.						<u> </u>								
			91.7-93.2: Well-layered and less intense breccia textures.														ļ
			93.1; S2 @ 75 to c.a.; highly variable from 40-80 to c.a.														
			93.1-93.7: Pale green, strongly sericitic dyke (?), upper contact @ 60 to c.a.,	L			<u> </u>		<u> </u>		<u> </u>						<b>_</b>
			sheared, lower contact appears to fade into darker phyllite.	<u> </u>													ļ
			93.7-97.3: Finely layered, soft silty and muddy interval; S2 @ 50 to c.a. (95.4m)	ļ		<u> </u>			<b> </b>					ļ	ļ		<b> </b>
			97.3-98.1: Sharp increase in frequency of cm-size S2 parallel quartz veins,				ļ								<u> </u>		
								+									
			198.1-103.2: Mixed interval with quartz veining, well-foliated grits and dark phyllite.	-	E 40										1		
			sharp @ 60-65 to c.a., parallel to S2.	-	5-10				+				<u> </u>				
								+									
103.2	107.5	٨٢٥	Annihitan Dank many finally layound dark at dite statistics to some finally becaused	<u>†                                    </u>	2	<u> </u>	+-										<u> </u>
103.2	107.5		section in overlying interval. 5% white quartz veining, frequently S2-parallel. Not				1				<u>†</u>			1	1		
			strongly pyritic, moderately fractured and less competent.				$\uparrow$	1						1	1		
				<u> </u>							<u>                                     </u>			1	1	· · · ·	
				1	1	1	1	1		1		1		1	1		1

Date	May 23.	
Date	10101 20, 4	i

1

1

							A	lterati	on sco	ore 1 -	5				<u> </u>		
Depti	1 (m)	Rock	Description	, s	% D::	%	% 5	% Gal	chl	cal	ser	cla	Interva	al (m) to	Sample	Cu	Zn
From	То	Code		P0	гу	Ср	Spir	Gai						.0	Humber	ppm	<u>ppin</u>
			Sharp increase in quartz veining to 20% of interval. Host rock is medium grey														
			106.8-107.5: Little quartz veining, finely layered phyllite, increased fracturing.						┨────			┝─┨					
107.5	108.7	Fit	Fault: Mixture of QCSP and fine white quartz rubble, and grey clay gouge.			ļ	<del> </del>										
			106.98-108.20: 65% recovery.				<u> </u>										
			108.7: Rough lower slip @ 30 to c.a.														
						ļ		<b> </b>									<u></u>
108.7	114.3	QCSP	Quartz-Chlorite-Sericite Phyllite: Medium-grey phyllite, locally well-layered (no		3-5	<b> </b>	ļ	<b> </b>		<b> </b>							
			significant breccia textures), intruded by increasing white quartz veining.		<u> </u>		<u> </u>	<u> </u>	ļ	<b>_</b>	ļ						
			109.1-109.9: Weak wispy tan carbonate-alteration, no obvious associated Cr-		<u> </u>		ļ	1		ļ							
			mica; significant silicification. Somewhat more pyrite.														
			109.9-111.1: Well-layered, 5% pyrite.				1										
			111.1-111.5: White quartz veining, approx 50%. Minor tan carbonate in quartz.														
			112.3-112.8: Mainly white quartz vein, irregular contacts.										112.3	112.8	8264	33	371
			112.8-114.3: Moderate to strong fracturing; dark grey phyllite and quartz.														
114.3	127.8	Fit	Fault: Black, moderate to strong graphite, minor quartz in gouge. Variable recove	ery.													
			113.69-114.60: 55% recovery.														
			115.21-115.82: 90% recovery.														
			114.3-115.3: Finely layered dark phyllite, mainly rubble.														ļ
			115.3-116.0: White quartz rubble in dark graphitic clay gouge.														l
			116.0-116.5: Highly sheared, contorted and locally graphitic and gougy dark phyllit	te.													
			115.82-117.35; 65 % recovery.	I													İ
			117.35-118.26; 75% recovery; mainly graphitic gouge and white guartz rubble.														
			118.26-119.18: 87% recovery: more graphitic gouge, less guartz rubble.														
			119 18-120 09: 45% recovery: graphilic rubble and gouge.		1												
			120.09-121.92: 60% recovery: graphitic gouge		1			1									
			121.02-123.44: 20% recovery: graphitic gouge	1		1									1		
			123 44 124 66: 80% recovery, graphile gouge.			1											
			123.44-124.00. 00 // recovery, manny graphing googe, more solid graphine pryme	<u> </u>			1		1								
		<u> </u>	124.00-120.27. 00% recovery, minor quarteriophic, graphic province and gouge.	+			+	+	1	1	1		İ				
			125.27-125.00. 100% recovery, good graphilic physics to 125.011, then godge.	<u> </u>			1		1		1		1				
			120.00-120.00: 100% recovery, dark phylite blocks in gouge.		<u> </u>				1		+	1		<u> </u>	<u> </u>		<u> </u>
			120.00-120.02: 80% recovery; signt increase in gouge.	<u>†                                    </u>	+	+	+		1					-	<u>†</u>		
		+		+	+	+	+	-	+	+	1	+	<u> </u>				
127.8	130.2	QSP	Uuartz-Sericite Phyliite: Pale greenish grey, highly sheared, locally gougy obvilite. Strong carbonate & Cr-mica alteration. locally excellent Cr-mica.	$\vdash$	+	+	+		+	+	+		<u> </u>				
		<u> </u>		-	+		+	+	+	+	+	1	<u> </u>				<u> </u>
1		1	127.0-120.2: Coarse nakes of bright green Cr-mica.									1	I	L	I	L	<u> </u>

Wildrock Resources Consulting & Drafting

F:\Old Desktop\CW U2 Drilling and Trenching\Logs&/ ssays rogat

							A	lterati	on sco	ore 1 -	5						
Dept	n (m)	Rock	Description	%	%	%	%	%	chl	cal	ser	cla	Interv	al (m)	Sample	Cu	Zn
From	То	Code		Ро	Ру	Ср	Sph	Gal						10	Number	ppm	phu
		- <u></u>	128.2-128.4: Mottled white and tan quartz-carbonate vein, with grey phyllitic				ļ										
			parting and strong Cr-mica along parting and contacts.						'								
			128.7-129.1: Strong Cr-mica; minor quartz vein, 2cm thick.						ļ								
			129.6-130.2: Fault; sheared and fractured with 12cm gouge @ 129.8m.														
130.2	144.6	QCSP	Quartz-Chlorite-Sericite Phyllite: Mixed interval, medium to dark grey, well-		1						<b> </b>						
			layered, heterogenous phyllite; locally dark biotite-rich or carbonate altered and														
			sericitic. Weak pyrite, weakly to moderately fractured.								L						
			130.2-131.3: Spotty tan carbonate alteration.														
			132.2: 4cm gouge seam @ 40 to c.a.														
			133.8-134.1: Strong deformation breccia textures.														
			134.1-134.3; Strong "spotted" texture; several replcaed with pyrite.														
			134 6-136.0: Significant white guartz veins (5-10%), mottled with carbonate?														L
-			137 2-137 4: White quartz and mottled carbonate vein 12cm thick, @ 30 to c.a.														L
			138.3: Strongly deformed unit with variable S2 @ 60 to c.a.				1										
			139.0: 5cm band of strong tan carbonate alteration. @ 70 to c.a. (S2)						T		1						
		1	139.2: 4cm gougy series of slips @ 70 to c.a.														
			139.8: 16cm band of strong tan carbonate alteration @ 75 to c.a.					1									
			141 6-142 2: Strong deformation breccia textures	_						1							
					1												
144.6	147.7	050	Quartz-Sericite Phyllite: Tan to pale grey, fine grained, strongly carbonate-				1						144.6	146.1	8265	15	71
144.0	147.7		altered, strongly sericitic phyllite. Scattered quartz eyes, <1mm in size; traces of		1						1						
			divispy Cr-mica. Unit exhibits the same deformation textures as the surrounding dark phylites. Competent and weakly fractured. Pyrite?									1					
			144 G: Charp but irregular upper contact @ 60 to c.a.					1	1	1		<u> </u>					
		<u> </u>				<u> </u>		+						<u></u>	1		
			143.2. 32 @ 60 to C.a.				+	<u> </u>	1		1						
			146.2-143.6: 50% recovery, train craps and tubble.						1		1	1					
	450.0	-	Questa Chlorita Serieita Bhullita: Strong deformation breccia in quartz-biotite	-	1		+	+		-				1		-	<u> </u>
147.7	158.2	QCSP	phylite. Generally tight, clast-supported with section of fine and coarse clasts.		<u>  `'</u>			+	+		+		1	1	1		
			Most clasts are pale grey in dark muddy matrix, giving the core a striking					+	+		1						
			appearance. Rootless isoclinal folds are locally apparent. Core is competent and weakly fractured. Continuing weak pyrite. Weakly calcareous.			<u> </u>	-	-		1					+		<u> </u>
					+				-	-							
	r	<u> </u>	154.3-154.6: Pale grey quartz-eye grit unit, sharp contacts parallel to S2 @ 80 to 0	<u>c.a.</u>		┨──		+									
┣───	<b> </b>		157.2: Tight fold, likely F2 due to lack of folding of S2.	-		+		+		+	+	-	<u> </u>		1	<u> </u>	<u> </u>
	<b> </b>	<u> </u>				+				+-		1	<b> </b>	1			1
		<del> </del>	END OF HOLE = 158.19 metres	<u> </u>	+	+		-	+	+			<u>t</u>	1	1	· ·	<u>†</u>
	<u> </u>							+	+	╂──		+	1	1-			+
<b> </b>		<b> </b>		-				+		+	+	1			1		
				<u> </u>	-		+					+		+	+	<u> </u>	+
I	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1

-	Diamòr	nd Drill	Log	DDH	No.		 	-U-0	2-05	)	1					Fests	
4	Company:		Barker Minerals Ltd	Date	Collar	ed	May 2	22, 200	02				Azimuth	075		Depth	Dip
<u>I</u>	Project:		Frank Creek	Date	Comp	eted	May 2	24, 200	02				Dip	-45		n/a	┥────
	Logger:		Christopher J.Wild. P.Eng.	North	ing		55 + 6	60N					Length	158.50 m			┥━━━━
	Date:		May 25, 2002	Eastin	ig 		15 + (	DOW					Core Size	INQ			+
Ľ	Remarks		[From 2nd switchback, D Road, toward "Stringer Outcrop"	[Eleva	tion		1115	m			ſ						
				_					aitn	1- wea	<u>a</u> k,5 s	strong					
Depth	<u>(m)</u>	Rock	Description	%	%	%	%	%	chl	cal	ser	cla	Inter	/al (m)	Sample	Cu	Zn
om	<u>To</u>	Code		PO	_Py	Ср	Sph	Gal					from	to	Number	ppm	ppm
0.0	4.57	Casing	Cased through glacial till, no recovery.														
													<b></b>				
4.57	5.10	Ovbn	Rubble, rounded, likely not from bedrock.														
1																	
5.10	8.90	Arg	Auxilities Dade may fire evaluate finally laward, with dade shullite originally		4	<1	tr										Ţ
		×	mudstone. Coarse blebby and cubic pyrite, some occurring along distinct layers.					<u> </u>			[	1	[				
			Dark limonite along fractures, in pyrite, and in 1mm spots. Relatively good rock								<u> </u>		<u>├</u> ───				+
			quality, especially for top of hole. No significant deformation breccia noted.												···.		
														<u> </u>	<u> </u>		+
			5.4: 1cm band of cubic to blebby pyrite @ 60 to c.a. (S2).								┨────				<u> </u>		
			5.5: Strong crenulation cleavage (S3) @ 30 to c.a.								h		<u>                                     </u>				
			6.3: Wispy chalcopyrite-sphalerite patch, 0.5 x 2cm, separate from pyrite.										6.00	6.30	1LF05-12	<u>1.14%</u>	1050
			8.3: Wispy chalcopyrite in strong dark limonite band, irregular.				· · ·						6.60	6.62	1LF05-14	7130	4290
	_						<u> </u>										
8.90	14.50	QSP	Quartz-Sericite Phyllite: Sheared upper contact, 5cm thick @ 80 to c.a., into		3-5	tr							9.15	9.45	1LF05-13	829	988
			Imuch paler grey, strongly sericitic, they layered tine-grained phylitte. Pyrite Icontinues along S2 mainly as medium cubes. Moderately fractured, again little														
			deformation breccia.														
			9.7, 10.0: 5-10mm bands of 25-50% cubic pyrite, @ 80 to c.a.								1						
			10.5-10.9: Weak healed breccias, likely deformational.			-					<u> </u>						
_			10.9: End of significant surface oxidation.					[									
			11 4: Irregular 1 4em band of mainly cubic pyrite								<u> </u>				<u> </u>		
			12.1.12.5: Cracked and rehealed glocay, medium grov quartz. Minor serieita					<u> </u>				1					-
			pyrite and carbonate form very weak stockwork in guartz.												<u> </u>		+
													<b> </b>				
			13.6-13.9: Dark grey, well-layered Arg, as above, lower contact @ 55 to c.a. (52)	·											<u> </u>		-
			13.9-14.5: Pale grey phyllite, largely quartz-flooded.														
							╂───	┨───			<u> </u>	<b> </b>	┞───	<b> </b>			
14.50	21.00	Arg	Argillite: Dark grey with fine pale grey interlayers, strongly contorted and quite		5	tr		<b> </b>					<u> </u>	<u> </u>	<u> </u>		
			pyritic, much as before (5.1-8.9m). Pyrite most often occurs as cubes and blebs									<u> </u>	<u> </u>		<u> </u>		
			16.5: S2 @ 75 to c.a														
			19.2: S2 @ 0 to c.a.; F3 closure with associated tight parasitic folds.														
				1 -			1		1		1	1	T			[	
			119.5-19.6; >25% pyrite, mainly as disassociated fine cubes, along layer														

Wildrock Resources Consulting & Drafting

F:\Old Desktop\CW 02 Drilling and Trenching\Logs&Assays\Logs\[FC-02-05.xls]Page1

Т

:

1

1

FC-02-05

							Α	lterati	on sco	ore 1 -	5						
Depti	n (m)	Rock	Description	%	%	%	%	%	chl	cal	ser	cia	Interva	al (m)	Sample	Cu	Zn
From	То	Code		10	Ру	Ср	Spn	Gai					from	10	Number	ppin	ppin
			20.2: <b>4-5cm band of semi-massive sulphides</b> , 25% pyrite, 3-5% cp, 1%		25	4	1	tr					19.5	21.0	8266	1970	2268
			spiralente, trace galeria, al munacey related, normagnetic. Dana @ oo to c.t.										19.50	21.00	2LF05-16	1885	2850
L			20.35: 5cm series of 3 pyrite-chalcopyrite-sphalerite bands.		15	2	0.5	tr					20.20	20.30	3LF05-15	8950	4080
				ļ			<b> </b>				ļ						
21.0	32.9	QSP	Quartz-Sericite Phyllite: Pale grey, weak to strong layering, locally well-		5	tr	tr	<u> </u>					21.0	22.8	8267	2751	1252
			mineralized with pyrite and minor chalcopyrite. Well-layered sections grade into					ļ			<b> </b>		22.80	23.70	1LF05-23	2560	1125
													23.70	24.70	1LF05-24	705	1220
			21.2-22.8: Coarse disseminated and wispy pyrite, chalcopyrite with minor to			ļ	<u> </u>						24.70	25.70	1LF05-25	577	1250
			with grey quartz and QSP, possible feeder type mineralization.										25.70	26.50	1LF05-26	878	512
			23.1-23.6: Fault: 10-20% recovery, 3cm gouge, rubbly.														<b></b>
			24.6: 1-2cm clay gouge and pebble breccia fault @ 65 to c.a.														ļ
			24.8: Minor chalcopyrite and trace sphalerite, weak minl continues.														
			26.1: White quartz vein with tan carbonate selvages, 1-2cm thick @ 50 to c.a.														
			26.6: 7cm band of 20% cubic pyrite @ 80 to c.a.										26.5	28.0	8268	807	872
			26.8: Cubic pyrite and 5% blebby cp associated with grey fist-sized quartz knot.										28.0	29.5	8269	908	1349
			27.0-27.1: 1cm layers of dark phyllite with intervening pale grey phyllite with										29.5	31.0	8270	4935	1255
			cubic pyrite and minor blebby cp.										31.0	32.9	8271	539	502
			27.9: Pyrite band with minor blebby cp and fine reddish-brown sphalerite.	-			1										
			28.3: Blebby pyrite with minor wispy cp and fine reddish-brown sphalerite.										29.50	30.40	3LF05-33	7220	2380
			28.5: 1-2cm band of coarse cubic pyrite and fine red-brown sphalerite @ 45 to c.	a.						Ι			30.40	31.00	2LF05-34	815	254
			29.4-30.4: Broad zone of mineralization, disseminated and in bands, made of of		10	1	tr										
			mainly coarse pyrite with minor wispy cp, and traces of reddish-brown sphalerite.														
			29.6: Band of chalcopyrite, trace sphalerite, 0.5cm thick @ 60 to c.a.														
			30.2-30.3: Wispy cp associated with coarse cubic pyrite, S2 @ 45 to c.a.														<u> </u>
			31.7: 1cm band of pyrite, lesser cp and minor sphalerite.		1-												
			32.3: Wispy band 1-2mm thick of cp and minor sphalerite.														
			32.9: Lower contact with thinly layered unit @ 55 to c.a.														
				1					1								
32.9	37.2	Ara	Argillite: Dark grey with fine pale grey interlayers, strongly contorted and quite		1												
			pyritic, much as before (5.1-8.9m). Foliation (S2) is contorted, folded (F3) with						1								
			blebs in pale grev lavers.														
			37.4: Crenulation cleavage (S3) @ 25 to c.a.; variable.														
			33.3: 3-4mm white quartz vein, mottled with tan carbonate, @ 65 to c.a.	1	1	1		1					-				
			34.2: Clearly outlined F3 antiform verging uphole to the west.	<u>†</u>		1	1		1						ſ		
			35.5: 1cm band of coarse pyrite, minor reddish-brown sphalerite.	1		1					1		35.0	36.0	8272	55	768
			36.1: F3 crenulation fold, cleavage @ 30 to c.a., S2 @ 35-40 to c.a., opposite.			†					1	1					1
			36.9-37.2; Weakly gougy shear zone; bottom slip @ 30 to c.a.		1			1	1	1	1						
				1	1				1	1		1					1

Ì

ļ

Date May 25,

I

1

I

							A	Iterati	on sco	ore 1 -	5					_	
Dept	h (m)	Rock	Description	%	%	%	%	%	chl	cal	ser	cla	Interv	al (m)	Sample	Cu	Zn
From	То	Code		Po	Ру	Ср	Sph	Gal					from	to	Number	ppm	ppm
37.2	50.3	QSP	Quartz-Sericite Phyllite: Pale grey, tine to med-grained, locally quartz-eye and ser-rich. Ser may represent alth of felsic volcanic, or regional metamorphism of		2-3						<u> </u>						
			pelitic rocks. Locally mineralized, mainly pyrite, lesser cp, minor sph and traces of	ļ		<u> </u>							-				
			galena. Interval is relatively competent, fracture zones noted.	<u> </u>	ļ							<b>  </b>					
			37.8-37.9: Pale grey swelled clay gouge with QSP clasts.	1		ļ						<b> </b>					
			38.8-38.9, 39.1-39.2: <u>Strongly mineralized section</u> , approx 10 cm thick,	tr	15	3-4	1	tr	2	1	4	1	38.8	39.2	8273	2104	1671
			and minor disseminated sphalerite in a soft sericite-chlorite host with occasional		ļ	<u> </u>							38.70	38.90	3LF05-43	3970	2580
			elongate clasts 1-2cm in length.							<u> </u>			38.90	39.20	3LF05-42	1725	748
			39.0-39.5: Weakly gougy and sheared.		1					ļ	<b> </b>						
			40.0: S2 flattens from 50 to 20 back to 50 to c.a. on an open monocline.							ļ							
			40.3: Minor gougy shear.								<u> </u>						
			40.7-42.0: Well-layered, 1-2mm, pale grey throughout, with broad open folding														
			and developing axial planar cleavage (S3).														
			41.6: S3 @ 30-50 to c.a.; verging to antiform to west.														
			44.6, 44.8: Gougy shears, 3-5cm thick, generally parallel to S2.														
			47.0-47.1: White mottled quartz-carbonate blowout with minor pyrite and sphalerit	e.													
			48.7. Weakly mineralized zone (6-7cm)consisting one narrow band of pyrite-minor	4									48.7	50.3	8274	342	750
			sphalerite and 1-2cm band of mainly pyrite, minor sphalerite, cp, and galena.														
			Disseminated mineralization between bands.						_								
			49.7: 10cm weakly gougy fracture zone; S2 @ 75 to c.a.														ļ
			50.1: Patchy pyrite, minor assoc sph, in and adjacent to grey quartz vein.														
50.3	55.6	DS	Disseminated Sulphide Zone: Significant wispy, disseminated to semi-massive		10	<1	<<1	tr					50.3	51.8	8275	1173	501
			sulphides in a siliceous felsic unit, possibly volcanic breccia. Sulphides include										51.8	53.3	8276	1514	1380
·····			pyrite, mainly fine-grained cubes, as wisps and patches, minor scattered patchy to	, 									53.3	54.8	8277	2315	1926
			Concentrations of each are highly variable, with py-cp and py-sph affinities. Often		Γ								54.8	55.6	8278	3612	4145
			pyrite occurs without cp or sph.		1	1											
r			50.3: S2 @ 80 to c.a.														
			50.3-50.9: 15% sulphides, mainly pyrite, wispy discontinuous layers,		15	tr	tr	1			1						
			51 3-51 5: 10-15% pvrite		15	tr	tr		1								
		1	51 9-52 3: Wisny ny-co, fine-grained sph.		12	1	<1										
	1	1	51 9: S2 @ 60 to c.a.			1	1										
		1	52 4-53.5: Wispy py-cp, minor sph.	1	10	1	<1			Τ	1						
	· · ·	1	52.5: S2 @ 45 to c.a. continues to flatten	1		1	1	Ì									
		†	53.2: S2 @ 30 to c.a.														
		1	53 5-54 2: 1-2% disseminated pyrite	1	1	1	1	ĺ	<u> </u>	1							
			52 4: S2 @ 20 to c a		1	1	1	1		1			1				
		1	52,4-55.6; Increase in sulphides, esp @ 55.0-55.3m, including cp & sph. locally	1	20	2	1	tr	<b>†</b>	1		1	1	ľ			
		+	semi-massive. S2 @ 30 to c.a., at 55.2m			†-	$\uparrow$	† "		1		1				İ	
I.	I	1		1 .	1	1	1		-	1	_	1	L	4			A

Wildrock Resources Consulting & Drafting

F:\Old Desktop\CW 02 Drilling and Trenching\Logs&Assays\Logs\[FC-02-05.xls]Page1

FC-02-05

I

I

Т

1

							A	lterati	on sco	re 1 -	5						
Dept	n (m)	Rock	Description	%	%	%	%	%	chl	cal	ser	cla	Interv	al (m)	Sample	Cu	Zn
From	То	Code_		Po	Ру	Ср	Sph	Gal					from	to	Number	ppm	ppm
55.6	56.3	SMS	Semi-Massive Sulphide Zone: close to 50% sulphides, still pyrite-dominant, fine-	ļ	25	3	2	<<1					55.6	56.3	8279	3189	3522
			cp, fine galena more isolated. Zone is not magnetic.Host is very siliceous, not					<u> </u>					55.6	55.8	2LF05-38	666	2500
			calcareous, much is grey quartz. Difficult to determine orientation of layering or										55.8	56.3	3LF05-39	4650	4000
			S2, quite contorted and folded.														
56.3	57.9	DS	Disseminated Sulphide Zone: Significant wispy, disseminated to semi-massive		10	1	0.5	tr					56.3	57.9	8280	861	821
			sulphides in a siliceous felsic unit, more granular than before. Far weaker than														
			wisps and patches, minor scattered patchy to disseminated cp, less reddish	·													
			sphalerite and traces of bluish silver galena. Concentrations of each are highly														
			variable, with py-cp and py-sph affinities. Often pyrite occurs without cp or sph.								1						
			foliation.	· · ·													
			56.3-56.5: Well-oractured, more white quartz, not mineralized, 1cm band of py-spl	י													[
			57.4 Good S2 @ 75 to c.a.	Ĩ													[
57.9	68.5	OSP	Quartz-Sericite Phyllite: Pale grey, somewhat more granular-looking with fine				1	1					57.9	59.4	8281	94	233
07.0	00.0		quartz eyes, more massive and little of the good felsic banding seen in the hw.														
			Irregular quartz veining continues with less sulphides, mainly medium-grained														
								1									
			50.2. 32 (g 13 to 0.4								†						
			c.a., crosscutting S2.														
			61.0-61.1: Irregular stockwork of coarse cubic pyrite, up to 1cm thick.										60.70	61.10	1LF05-30	199	176
			61.1-68.5: Moderately fractured section with considerable irregular grey quartz														
			veining, likely as a stockwork. Folded, contorted and locally sheared - looks														
			patchy on several centimetre scale. Host unit is strongly sericitic.														
			63.6-63.8: Weakly gougy shear zone @ 50-55 to c.a., minor.														
			64.2: 2cm patch of pyrite with minor associated cp + sph.														
			64.2-64.4: Brittle quartz vein fracture zone.														
			65.0: 1.0 x 0.5cm patch of cp.						ļ								
			65.3-65.5: F3 with S2 flattening to 0 to c.a., broad and open, no vergence sense.														
			65.6: Minor 1cm grey clay gouge @ 70 to c.a.														
			66.1-68.5: Sharp increase in coarse pyrite cubes.														
														<u> </u>			
68.5	82.1	QSP	Quartz-Sericite Phyllite: Much more uniform section, massive and granular-										68.50	68.90	1LF05-27	295	386
			Jractured and not contorted. Planar bands of phyllite make up less than 10% of										69.60	69.75	1LF05-17	381	354
			interval. Looks sedimentary or volcaniclastic. Increasing Fe-carb altn.														
			71.2: S2 @ 63 to c.a., strongly sericitic plane.														
			72.2: Band of patchy and disseminated pyrite - cp, both occur in phyllite along S2														
			and in irregular crosscutting grey quartz veinlet. S2 @ 45 to c.a.											-			

DDH No. FC-02-05

---

							A	lterati	on sco	ore 1 -	5						
Dept	<u>ו (m)</u> ד-	Rock	Description	% P^	% D./	%	% Snh	% Gal	chl	cal	ser	cla	Interv	al (m) to	Sample Number	Cu	Zn
From	10	Code	72.3: Weak patch of chalconvrite-nyrrhotite 2 x 10mm weakly magnetic	FU	ry.	40	- Spir	Gai					72 20	72.55	41 505 49	592	232
			72.6.74.9: Bletchy based bluich grou quotty in gwided and deformed phyllite. only										74.60	75.60	11 505-10	122	 
			minor pyrite associated with quartz.										74.00	75.08	3LF05-194	364	484
			75.2: Band of wispy po-py-cp mineralization, 2-3cm thick, @ 25 to c.a.														
			75.4-75.5: Botchy quartz veining, as above, with minor pyrite.														
			75.7: Band of semi-massive sulphide, much of it washed out leaving limonitic vugs; 5% patchy and wispy cp, 10-15% weakly magnetic po+py,														
			77.4: Grains of pyrite, some cubes, with very minor sph in band @ 60 to c.a.														
			79.0: Three bands of fine to mediumgrained py+po, weakly magnetic, @ 70 to c.a										77.8	79.3	8282	130	124
			79.6: Band of py-po-sph-cp, 0.5cm thick, @ 75 to c.a.				1										
			79.7-79.9: Zone of granular (cubic) pyrite stockwork with minor sph.				1										
			80.5: 1cm band of medium-grained granular pyrite, traces of reddish sph.														
82.1	87.6	QSP	Quartz-Sericite Phyllite: Pale, slightly greenish breccia, locally blocky becoming	finer ir	the c	entre.											
			ranges up to 5cm, becoming finer downsection with introduction of some vein														
			quartz. Weak sulphides.			_											<u> </u>
			84.0-86.3: Uniform 1cm felsic breccia clasts, clast-supported in felsic matrix.														
			Sericite common with locally abundant bright green Cr-mica, not obviously														
			carbonate-altered. Only minor pyrite.								ļ						
			84.4-84.7: Strong patches of micaceous Cr-mica.														L
			86.3-87.6: Similar to 82.1-84.0m section.										85.50	85.70	1LF05-20	47	82
				L							<u> </u>						
87.6	87.7	Fit	Minor gougy fault, poker-chip phyllite, @ 80 to c.a.														
87.7	90.2	QSP	Quartz-Sericite Phyllite: Medium-grey, locally "spotted" with sericite or ankerite,		2												
			well-layered gritty section and finer silty units. Looks sedimentary.														
90.2	97.8	QSP	Quartz-Sericite Phyllite: Heterogeneous section of pale grey phyllite, with fine										90.2	91.2	8283	48	256
			quartz-eye grits, pale greenish sericitic intervals, locally brecciated with dark grey		2												
			appears restricted to quartz vein episode, much later than early deformation									ļ	·				<b></b>
			breccias.			<u> </u>	1					ļ					
			92.3-93.2: Bluish-grey quartz vein and grey phyllite breccia.									<u> </u>			<u>                                     </u>		<b> </b>
			95.1-95.7: Vein breccia, as above.					<u> </u>				1					<b> </b>
			95.2: Wispy patch of Cr-mica, associated with patchy pyrite. S2 @ 70 to c.a.	<u> -</u> .	ļ	ļ	<u> </u>	1	<u> </u>	<b> </b>	1						<b> </b>
				ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>		L		<u> </u>					<b> </b>
97.8	136.5	QSP-Bx	Quartz-Sericite Phyllite: Pale and medium grey, gritty to fine-grained with layers (beds) greatly attenuated with less plastic gritty units forming clasts aligned with		2	<b> </b>	<u> </u>	<b> </b>		<b> </b>	<b> </b>						ļ
			S2 in finer more plastic matrix. Textures vary depending on the proportion of fine			<u> </u>	<u> </u>	<b> </b>	<u> </u>		<u> </u>				<u>  </u>		<b> </b>
			and coarse units.				1										

Wildrock Resources Consulting & Drafting

F:\Old Desktop\CW 02 Drilling and Trenching\Logs&Assays\Logs\[FC-02-05.xls]Page1

Diam d Drill Log

DDH No.

							A	Aterati	on sco	ore 1 -	5						
Depti	n (m)	Rock	Description	%	%	%	%	%	chl	cal	ser	cla	Interv	al (m)	Sample	Cu	Zn
From	10	Code		10	Ру	Ср	Spn	Gai					trom	το	Number	ppm	ррт
	<u> </u>		97.8-102.3: Pale grey, granular-looking gritty clast deformation breccia.								<b> </b>						
			96.1: White quartz vein, minor tan carbonate, 7cm thick @ 30-40 to c.a.														
			98.4: Blebby pyrite surrounding a grey quartz vein piece.					<u> </u>	<b> </b>								
			100.2: S2 @ 60 to c.a.														
			100.9-101.2: Mod to strongly fractured, good crenulation lineation on S2.														
			102.3-105.9: Much more finely layered, contorted and aligned clasts, darker grey reflecting fine-grained nature.														
			103.6: Grey quartz veins are tightly folded within chaotically folded phyllite.														
			105.2: S2 @ 80 to c.a.														
			105.9-109.7: Pale grey, coarse clasts, mostly fine grit. Fine grit is medium grained with good quartz eyes <1mm in diameter in sericitic groundmass. Weak greenish sericite, weakly spotted, possibly weak carbonate alteration. Weak		1-2												
			109.7-113.0: Grey fine quartz eye grit, weakly brecciated, esp in central part.														
			112.4-113.2: Good tan carbonate alteration, becomes spotted.														
		<u> </u>	113.0-136.5: Heterogeneous, less gritty strong deformation breccia. Continuing	<u> </u>				ŀ								<u></u>	
				1			_									-	
			113.0: 1cm gougy shear @ 45 to c.a.			ļ											
			118.5: 5cm grey clay gouge, @ 70 to c.a.			<b> </b>	<b> </b>	<u> </u>	<u> </u>		<b> </b>						
			119.9-120.2: Pale green dyke, relict felspar phenocrysts. Strong carbonate alteration with associated Cr-mica most noticeable near the contacts. Upper Contact @ 60, lower @ 45 to c a. Weakly fractured but soft sericite-calcite				 										
					<u> </u>			<u> </u>			<u> </u>						
			121.4: 10cm grey clay gouge fault, @ 40 to c.a.			ļ	<b> </b>	ļ									
			122.4-123.3: Strong breccia texture with pale clasts, poorly sorted, subrounded and matrix-supported.														
			128.2-128.8: Pale grey, strong irregular quartz eyes, clearly conglomeratic (grit-										124.0	125.0	8284	30	152
			size, max 3mm dia.), fining down (graded bed?).														
			128.8-129.2: Highly deformed with introdiction of blue-grey vein quartz.														
			129.3-129.5: Pebby blue-grey quartz veining crosscutting S2 @ 10 to c.a.					1									
			130.0-130.1: Shear zone, two gougy seams in broken rock, @ 70 to c.a.									[					
			130.5: S2 @ 60 to c.a.														
			130.5-136.5: Gradually becoming more aritty.														
		1		†			1	1			1	1					
136.5	139.9	QSP	Quartz-Sericite Phyllite: Grey phyllite, strongly sericitic, with sharp increase in number and degree of gougy shear zone and faults. More sheared grit, less true phyllite, weak quartz eyes. Far less competent, moderate to strong fracturing,														
			locally recovery <90%.				<u> </u>	<b> </b>	<u> </u>	<u> </u>	<u> </u>	<b> </b>					<b> </b>
			136.8-137.0: Strong shear zone, 6cm gouge @ 50 to c.a., undulatory.				l	<b> </b>	<u> </u>	<u> </u>			ļ				<b> </b>
			137.4-138.7: Hard and competent, partially silicified, some quartz veining.		<b> </b>		ļ		<u> </u>	<b> </b>		ļ					<b> </b>
											1						1

i

	· / \			67	07	07	۲ ۱۰۸		on see		1			-1 ()	Constant		
Depth From		Rock	Description	%   Po	% ₽∨	Cn	Snh	Gal	chi	cal	ser	cla	from	ai(m) to	Sample Number	Cu	
400.0	454.0				• •	40			<u> </u>						Muniber	- кып	Phill
139.9	151.9	⊢it	Fault: Broad zone of strong grey clay gouge, gouge breccia, strong brittle		1												
			carbonate alteration. Few sections of competent rock.					<b> </b>		· · · ·							
			120 00-141 43: 55 60% госомор														
			140.1-141.6: Mainly gouge, interise part of fault.											-			
			141.6-143.3: Weil-fractured, sheared with minor gouge.	ŀ													
			141.43-142.34: 85% recovery.														
			145.6-146.8: Several strong gouge sections, strong shear zones.				<u> </u>										
			143.26-144.48: 55-60% recovery.						<u> </u>								
			144.48-145.69: 50-55% recovery						<b> </b>	ļ	<u> </u>						
			145.69-146.91: 90% recovery.				<b>_</b>		ļ			<b> </b>					
			146.91-147.83: 90% recovery.				<u> </u>										
			147.8-150.4: Strongly sheared, 50% gougy, soft, can cut or crumbled with knife.			ļ		ļ									ļ
			150.4-151.9: Strongly sheared, crumbly but not strongly gougy.														
			151.2: S2 @ 70 to c.a., appears to be parallel to fault zone.														
								ļ									
151.9	158.5	QSP	Quartz-Sericite Phyllite: Pale greenish grey, carbonate-altered with scattered	L	1								153.0	154.0	8285	42	93
		Grit	flecks of Cr-mica, in a fine to medium-grained quartz-eye grit. Mostly weakly														
			fractured, but several shears and fracture zones noted. Weak cubic pyrite.														
			151.9-152.1: Strong Cr-mica. Upper shear @ 35 to c.a.														
			152.1-152.7: Rubbly fracture zone, bottom 20cm mainly white quartz vein.														
			155.2: Mushy gouge contact between QSP and dark mudstone phyllite, over 6cm,														
			@ 70 to c.a.				1										
			155.2-155.3: 10cm slice of dark grey to black, well layered mudstone @ 70 to c.a.														
			156.0-156.4: Interfingering dark mudstone in carbonate-altered QSP. Contacts														
			are sharp and @ 85-90 to c.a.														
			156.8-157.7: Strong shear zone, local gouge and well-fractured; minor mudstone														
			apparent. Most intense @ 157.6m.														
			157.7-158.2: Scattered flecks and patches of bright green Cr-mica in medium-														
			grained quartz-eye grit.														
							1										
			END OF HOLE = 158.50 metres				<u> </u>		1								
				1			1		1	<b> </b>							
		·		<u> </u>		<u> </u>	<u> </u>										
							<u>†</u>		1		1						
							<u> </u>							-			
							<u> </u>						h <b></b>				
		ļ	······································	<u> </u>													
				1			1	1	1		1			1			4

Diam d Drill Log

DDH No.

							<u> </u>	Iterati	on sco	ore 1 -	5						
Depti	<u>h (m)</u>	Rock	Description	%	%	%	%	%	chi	cal	ser	cla	Interv	val (m)	Sample	Cu	Zn
From	10	Code	·	PO	Ру	Ср	Spn	Gai					trom	το	Number	ppm	ppm
27.8	33.4	QSP	Quartz-Sericite Phyllite; as above (16.9-27.2m); slightly more gritty.		2-3	<u> </u>					ļ				<b> </b>		
			29.0: S2 @ 30 to c.a., orientation turned sharply at fault, dragged?				<u> </u>										
			30.4: S2 @ 0-5 to c.a., fractured down centre of core, highly crenulated.								<b> </b>						ļ
			33.2: S2 @ 45 to c.a.								ļ						
							ļ	ļ			ļ						ļ
33.4	33.9	Fit	Fault; minor gougy and rubbly fault, likely ~45 to c.a.				I				ļ						
													36.7	36.95	1LF06-22	107	236
33.9	54.0	QSP	Quartz-Sericite Phyllite; generally quite gritty (sand-size) and moderately	tr	5+	tr	tr						38.5	40.2	8287	48	783
		<u> </u>	tractured. Slightly darker reflecting minor carbonaceous content. A tew broken										40.2	41.7	8288	20	606
			selvages. Contortions of layering and S2 decreasing. Increased sulphide,										41.7	43.6	8289	64	943
			mainly pyrite.										43.6	45.1	8290	27	378
		••••••	38.5-40.2: Up to 10% sulphides, mainly pyrite, minor sphalerite.		10		min						45.1	46.6	8291	64	931
			41.7-43.6: Bands of disseminated pyrite, minor sphalerite, 5% sulphides.		5		min						46.6	48.5	8292	28	335
			45.7-46.4: Bands of disseminated pyrite, minor sphalerite, 5% sulphides,		5		min						48.5	50.5	8293	40	614
			47.1-47.6: Pebbly, fractured and healed blue-grey guartz vein; not mineralized,										50.5	52.3	8294	39	969
		-	48.4-49.2: Blue-grev guartz vein, as above. Fracturing increases toward fault.										52.3	52.7	8295	284	2635
		-	52 3-52 7: Bands of disseminated pyrite minor sphalerite 5% sulphides		5-7		min										
					<u> </u>										<u> </u> · · · ·	1	
54.0	54.8	Fit	Fault is poorly defined, very poor recovery.					· · ·									
			53.34-54.25: 25% core recovery.														
			54.25-54.86: 40% core recovery.														
																	(
54.8	56.4	OSP	Quartz-Sericite Phyllite: as above( 33.9-54.0m) well-sheared minor gouge														
56.4	56.7	Fit	Fault: well-defined strongly gougy fault with 0.5mm guartz eyes in gouge (gritty														
			QSP); 100% core recovery.														
				<u> </u>											<u>†</u> †		
56.7	135.0	OSP	· · · · · · · · · · · · · · · · · · ·	<u> </u>													
	100.0	wor	Quartz-Sericite Phyllite; pale grey with local wispy tan Fe-carbonate bands in	<u> </u>													
		•	sulphide mineralization extends to at least 75.0m, forming an identifiable horizon.	<u> </u>													·
			Generally weakly fractured and competent throughout.														<u> </u>
									-			╂			<u> </u>		
			b.7-57.6: Well-tractured adjacent to fault, wispy tan carbonate common.			<u> </u>						$\left  - \right $			┤──┤		
			7.6-59.4: Disseminated Sulphide Zone			<u> </u>		<u> </u>	<u> </u>								
			57.6-58.5: Increasing bands, 1-10mm thick of wispy, disseminated pyrite.					-	<u> </u>				56.7	58.5	8296	2234	204
			jec.e-ec.e: emi-massive suprides; 10cm thick band made up 25% medium- lorained pyrite, 5% chalcopyrite (cp), 2% sphalerite (sph) minor galena (gal) and	<1	25	5	2	<1				$\left  - \right $	58.5	59.4	8297	2507	3978
			pyπhotite (po). Very weakly magnetic. Wisps and bands @ 75 to c.a. 1x2cm			<u> </u>	<u> </u>				<u> </u>		58.5	59.44	2LF06-02	2460	1380
┟────┨			Junmineralized clast in zone. Overall, quite similar to massive sulphide zone in				<b> </b>	ļ					58.5	59.44	3LF06-03	2.08%	9750
											L			0.45m	sample from	n 0.96m ir	iterval?

Diam d Drill Log

DDH No.

FC-02-06

ł

I

1

I

ļ

ł

ł

ł

							A	lterati	ion sco	ere 1 -	- 5						
Dept	h (m)	Rock	Description	۲ %	% D	% (	% Sab	% Gal	chl	cal	ser	cla	Interv	al (m)	Sample	Cu	Zn
From	1 10	Code		FU	гу	υp	Spir	Gai						10	Number	ppin	ppin
			58.6-58.8: Several bands of disseminated pyrite, minor cp, up to 1cm thick.														
			58.9: 3-4cm layer of semi to massive pyrite, 5% cp.	-													
			59.1-59.4: Zone of disseminated bands of pyrite, cp, minor sph and galena.					<u> </u>									
		<u> </u>	59.4: Sharp drop in sulphide content.										59.4	61.2	8298	48	301
			59.9-61.2: Sharp increase in spotted and wispy tan Fe-carbonate, 1-2% pyrite.										61.2	63.2	8299	248	603
			62.2: Band of disseminated pyrite-sph, up to 1cm thick.				<u> </u>										
			62.6-63.1: Patchy coarse-grained pyrite, medium-grained po, minor cp & sph.										62.14	62.20	3LF06-36	3390	7880
			63.3-64.9: Weakly fractured, medium-grained grit, excellent fine quartz-eyes in wispy tan carbonate-altered matrix.										62.60	63.09	2LF06-37	1755	618
			64.0: S2 @ 70 to c.a.														
			64.9-75.2: Disseminated stringer sulphide zone, 5-7% mainly pyrite, minor sph, cp,	, po.									64.9	67.0	8300	1066	225
			65.5: 10cm white quartz vein, 5% po, minor cp, patchy and fracture-controlled										67.0	69.0	8301	2278	317
			tan carbonate, possible black hairline tourmaline.										69.0	71.0	8302	426	359
			65.8-66.2: Coarse and fine-grained wispy pyrite, minor po & sph.										71.0	73.0	8303	173	443
			66.3: White vuggy quartz vein, 6-7cm thick @ 60 to c.a.										73.0	75.2	8304	175	776
			66.4-66.8: Wispy dissmeinated py, minor cp. sph, po.														
			67.7-68.4: Strong zone of disseminated sulphides, mainly pyrite; strong cp @ 68.2	m.									67.00	69.00	2LF06-04	1480	236
			68.4-75.2: Decreasing sulphides, less frequent mineralized "pulses".										67.75	67.80	3LF06-05	1.27%	842
			72.0-72.5: Zone of strong wispy tan Fe-carbonate, minor pyrite, more siliceous.										68.20	68.35	3LF06-06	7840	1150
			74.3-74.7: Wispy pyrite, sph, rare galena.														
			75.0-75.2: Py-po, trace sph-gal associated with irregular quartz veining; patchy										71.9	72.3	3LF06-41	512	468
							<u> </u>										<u> </u>
			<b>75.2-135.0</b> : Weaker sulphides but increased tan carbonate flooding in wispy patches and spots. Continuing only weakly fractured, little brittle shearing.		2												
			83.7-135.0: Increased coarse-grained pyrite; very consistent unit.		2												
			84.9: 2-3cm gougy shear, little associated fracturing; S2 @ 75-80 to c.a.														
			86.8: Blebby py-cp, po, minor quartz with cp, many fine Fe-carb spots.										86.6	86.8	1LF06-07	1560	380
			89.1-135.0: Developing breccia texture with bullet-shaped lapilli-size clasts in										86.87	87.20	1LF06-08	991	476
			slightly darker matrix; much more subtle texture than in FC-02-05. Unit is still														
			quartz-eye grit locally coarser and packed.														
		[	90.5: 3cm vein of Fe-carb, strong Cr-mica, brighter green; wispy selvages @ 80 to	c.a.													
			93.2, 93.5: Similar zones of wispy Fe-carb and associated Cr-mica; 4 & 15cm														
			thick, respectively.														
			99.4: Quartz pebble grit, very poorly sorted with wispy Fe-carb in matrix.														
			99.5-99.7: Packed guartz-eyes, well-sorted with average diameter of 1-2mm. in gri	it.			Τ	Ι					99.4	99.7	1LF06-10	27	46
		1	101.5-104.3: Breccia textures coincident with increased fracturing and a few		[				1		1						
			partially healed blue-grey quartz veins.														
			104.3-108.8: Similar to above but less intense and obvious.														

Wildrock Resources Consulting & Drafting

Diam 1 Drill Log

DDH No.

June 14, 2 Date

							<i>F</i>	Alterati	on sco	ore 1 -	5						
Dept From	h (m) To	Rock	Description	% Po	% Pv	% Cn	Snh	Gal	chi	cal	ser	cla	Interv: from	al (m) to	Sample Number	Cu	Zn
		oode		+				- Oui	<u> </u>				440.0				
			thick; @ 70-80 to c.a.									<u>-</u>	112.0	112.3	1LF06-11		50
			118.6-122.1: Coarse breccia with unstrained but gritty pale grey sections.														
			122.1-123.4: Slightly more phyllitic, S2 @ 80 to c.a., variable.														ĺ
			123.4: Blue-grey quartz vein, 8cm thick, fractured but healed and mottled appearance; late coarse-grained cubic pyrite. Pyrite continues to 124.2m.														
			124.6-124.9: Well-fractured along blue-grey guartz vein.	-													
			125.7-125.9: Minor fault, gouge and rubble.														
			128.9-130.4: Slightly darker, more phyllitic.													÷	
			130.4-134.1: Weak breccia texture, coarse clasts of fine to moderately gritty, moderate Fe-carb, wispy and tan coloured through matrix.														
			134 1-134 4. Fractured white quartz vein in grit well fractured no sulphides	+		<u> </u>											
			134.4-135.0: Coarse more pebbly-looking grit, quartz grains 2-5mm, aligned.	1			1										
			clast-supported, better sorted in sericitic matrix.														
											[						
			END OF HOLE = 135.03 metres														
											ļ						ļ
<del></del>											ļ						
											<u> </u>						
	·····																
				-													
									ļ			<u> </u>					
		1															
				1													
		-											·				
				1													
				1				1									
				1			1	1	1								
				<u> </u>				<u> </u>									
																	1



	BARKE	r Mi PR	NERA	LS LT RTY	ס	
	5	N 2	ZON	E		
	GE	EO	LOC	3Y		
	G 10	20 SCALL	30 E: 1:1000	40 504		
LEGE	N D					
<b>29</b> 12	Overburden					
	Quertz-Music Pala priy is grand manaritik	ovite S n, imp	ichiat and, parts	dak and wait	initiae ai	•
	Children Children of	-Musco / 1	vite-likalit 1. ko pilitik 1. ko pilitik	Şahini Quru din m	ul veli inizia Ma	-
		- 14 un cu 14, 14, 19, 14, 14, 19,	dan China Internetion	n Özfallit A ast mil-lak	-	
	GCMR Querts	-Chiofi	a hikacovi	in Scielat 2. Ion divisi		•
	Macal Munor	sville-Qu a. ved-Nili	nia-Chiol	in Cohini. Hail		
		a likuwan m, kao y	dia Chier	e-Gernet S A, uni-Malain	ichint Luthup	
	Chilles Cuert	y fikupan na, tao p	dia Plagio Anti-	ciana Schie	it Waltersam	
	Cuert Anis gr	a-Cahina Ing alay	Quantalia a manufaci	áit legen.		
	Argilite Cash gay to black class contrates with	, we want to a		aphie, wein	niy calcaras r + ac.	
	ant Quert	a-Granh	ille Bichint			
PELS	Foliaito Pata gray, matteri		andread and	allesana kari	ng silit vir	-
·	nyananin ani bin comunitati bilaritin	and also	. Which is a allowing to prove	Typically L	18 % pa.	
- 1048	Falls gray, well-hay	end, ine	-	uisei eside.		
Ca	Calo-Schiet Pringene, natio	raisty inpo 4-		-	un mairee	, jacoby
	Calo-Schitt Pal-gram, actin groupy adapted		مدينة، إنس 		un medican	, (analy 
CS ant: Autom any: Antara bi Biolia	Calo-Schist Pak-gron, notis groupy stantar in spyrin	gar gar gr bugo	and, attacoun Gaussia Gaussia Caussian Caussian	• erd einen: 	na aditan N QV atit	, leastly Figuil Quartz Velta Billioficeilari
CS and Asian any Annu bi Biotin cei Caiche chi Citati	Calo-Schist Pale gran, node grangy statistics in in in	ger F buon Pit	Gannal, attaccas Gannal Gannal Camphin Lancoust Pingindu Pyrim		Na molecul N GV atto	, jacoby Féailt Quarte Velm Billeticelles
CS anth Astendi anyy Americ al Data any Childha any Childha ap Childha ap Childha	Calo-Schitt Pri-gran, and array stantin in h h pyste	ger F buos Pt pt pt sph sph	Cascol Cascol Craphia Landonir Pieglechi Pyrita Pyrita System		Na andron N GV alto	Feall County Vein Bibliothom
CS any Asian any Asian bi Binha cri Chiuh cri Chiuh pi Galare	Calo-Schiat Pais and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states and array states array states and array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array states array	and a part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the	and, allocan Gannal Graphia Lancaur Pinglodu Pyeliodu Rysholu Gybalodu Taurnadi		N Cav	Feall Guartz Veln Billottonton
CS anit Asianit capy Assert of Califor of Califor of Califor of Califor of Califor of Califor of Califor	Calo-Schlet Peie gerine sold sold spectra spectra Following Following Following Following Following Following	ger ger ger ger gen gen gen touen touen	Gaeral Gaeral Graphia Laucanir Piagladu Pyelis Pyelis Bybaladi Tauraal Gael fabalad		10	Feall Guarte Vein Billofication
CS state Animal state Animal	Calo-Sehiet Tek-yes, noise everyt aktivitä everyt aktivitä k k k k k k k k k k k k k k k k k k k	gar gr bugo phi oph touch touch	and, atlances Gastral, Graphita Lanctuar Pipelia Pyrila Byshotki Tearrish Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi Castairi C		11 2014 11 01 01 01 01 01 01 01 01	Fault Fault Guarte Velh Biturlionilon
CS weight Anished weight Anished of Cristian part Children part	Call-Selviet This year, noise annugi adutted annugi adutted gyrits synth solution feladary Ret ten Unation - Cautat	ndahi laya gar gar gar gar gar touta touta colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorado colorendo colorado colorado colorado colorado colorado colorado colo	and, atlances Gaterial Graphile Launcent Physics Pyrite Pyrite Rytelarit Gaterial Gaterial adjurted adjurted adjurted and adjurted			Fault Guarte Velh Matrikaskon
Că ante Aulant cay Aulant ca Calaba e Calaba e Calaba e Calaba e Calaba e Calaba e Calaba e Calaba	Call-Selviet Reisers, mainte erweite statute erweite statute gegetie gegetie s Felseer Reisers Reisers Caller Felseer Reisers Caller Felseer Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers R	naishi isan gar gar ga gar ga gar huoo gar pi pi na touta pi na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta na touta touta touta touta touta touta touta na touta na touta na touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touta touto	and, attaccus Garaphia Comphia Comphia Caraphia Lanctum Physics Physics Physics Physics Physics Physics Comphision System Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphision Comphistion Comphision Comphision Comphisti		N Crv drv drtc	Fault Guarte Velto Bitorification
CS solt Autom corporation of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen of Challen o	Call-Selvitet Philippen, noise energi scientes energi scientes	residy load ger ger ger pi loupo pi soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph	and, attacca General Graphia Lancour Pieglachu Pieglachu Pieglachu Pieglachu Richard Calarnat attacca		N N Qv dic	Fed Gunti Veh Shuthanker
	Call-Galviet Reisers, mainte etways adapted etways adapted protein service adapted protein service adapted protein service results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results results res	restrik i fan ger F Jaugo P pa pa pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south south pa south pa south pa south pa south pa south pa south pa south pa south pa south pa south s	diatena Galerai Laisteil Laisteile Prili Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybeleile Gybel		9 9 07 84	Fedi Quett Velo Billvillonker
CS set Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom cy Autom c	Call-Selvitet Reisers, mainte eternity adverter gegette gegette Selvitet Feltatier Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Reisers Rei	restally idea ger F F F Pi Pi Pi Pi Pi Pi Pi Pi Pi Pi	Alama Alama Gana Gana Gana Papina Papina Papina Papina Papina Alama Mana Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama Alama	   		Fault Guarte Velto Bitoritansion
	Callo Golviet Rubaren, noise structure and an anti- structure and anti- structure and anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure anti- structure a	restally idea gar gar gar gar pa pa aph gar commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi- commi-	Alasand Gaarad Gaarad Lascone Pyelo Pyelo Pyelo Tuureet Tuureet Aana	, graf akaman a a a a a a		Fedi Quett Velo Billvillonker
CS any Analytic statements and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California and California	Calio-Schlatt Calio-Schlatt Historian Autoritation Historian Autoritation Historian Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura Restaura	restaty ister ger ger f f hugo pr aph aph aph commit pr aph aph aph aph aph aph aph aph	Calence Calence Carephia Landowin Pyelos Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spinioth Spiniot		N adde	Faal Guint: Veln Biloideation
	Call-Galviet Call-Galviet Riversen, and structure structure structure structure structure structure nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation nation	andady idea gyr gyr gyr gyr haupo pi apha apha touma touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha touma apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha apha	Alamata Gaanat Graphia Carona Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio Prysio	, graf akaman 94 94 94 94 94 94 94 94 94 94 94 94 94	9 9 07 dit:	Fault Gastrie Velth Mitstienden
	Callo Golviet Reiseum, auder strunger strunger Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguine Seguin	restally ident S. 947 95 95 95 95 95 97 94 97 94 97 94 97 94 97 94 97 94 97 94 97 94 97 94 97 94 97 94 97 94 97 97 97 97 97 97 97 97 97 97	And Advances Calabrase Garante Garante Garante Particular Particular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Sparticular Spartic	, grad akamana akamana a a a a a a a a a a a a a a a a a	9 9 07 dit:	Fadi Quarte Vela Biloritaniton
CS solv Autom solv	Callo Schlatt Callo Schlatt Hin genn, make Hermit and Schlatten Hermit and Schlatten Schlatten Besteller Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Genetics Geneti	restrik i läytä 5. 977 970 970 970 970 970 970 970	Calence Calence Carephia Landowine Pyrin Openiolity Openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity openiolity ope	, and example ,	9 9 0 4 6 6 7	Fault Guarte Velte Bitstitunten
	Callo Schlatt Callo Schlatt Hunger, and Hunger, and Hunger, and Hunger, Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard Retard	restrik i läytä 5. 97 97 97 97 97 97 97 97 97 97	Alasand Gaand Gaand Lastoin Pytho Pythol Pythol Tuarest Tuarest Internal and	, graf akaman 94 94 94 94 94 94 94 94 94 94 94 94 94		Fault Guartie Velth Bitschenden
	Cable Gehlet Reiseren nuber etwerze stateste etwerze stateste etwerze stateste gestin gestin gestin gestin gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin gestin communication gestin gestin communication gestin gestin communication gestin gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication gestin communication	restrik i läytä s ger ger ger pd again againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa againa again again again again again again again	And Advant		9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Faal Quarte Vela Biloritionation
CS solt Autom cay Autom ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic ca Cubic	Callo Solvitet Reiserse, maio serveja solvitet serveja solvitet	restrik i lävit S F F Jaupo F F F S S S S S S S S S S S S S	Calence Calence Carepha Landson Pytho Pythologic Calence Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spatial Spati		9 9 0 4 6 0 1 1	Fault Guarte Veltr Bitstitunten
	Callo Golviet Reiserum, auder etwarten autor etwarten autor pysite 	restrik i länge s F F F F F F F F F F F F F	Alakana Galand Gapha Landar Pyth Pythylo Turret Turret anna alaka	1 grad akamana 94 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 GV dV dtc	Fadi Quarte Vela Bitribusteri
	Callo Golhiet River, and Call River, and Call River, and Call Spylin Bergelin Bergelin Call Spylin Call Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call Spylin Call	restrict i layer S F F P P P P P P P P P P P Common Common P P P P P Common P P P Common P P Common P Common P P Common P P Common P P Common P P Common P P Common P P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common P Common	Calence Calence Carephia Carephia Landonarr Pyelo Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelo Spelok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelolok Spelok Spelolok Spelolok Spelo Spelok Spelolok Spelok Spe	2 grad extension 4 Ya 9 grad 1 Ya 2 Gal 3 Gal 4 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal 5 Gal	9 GV dtc	Faal Guint: Vah Bisvilanskon
	Callo Schlatt Callo Schlatt	restrik i lävin S F F Jaupo F F F S S S S S S S S S S S S S	Calence Calence Calence Calence Calence Calence Specific Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calence Calen		9 9 0 4 4 5 1 1	Fault Guarte Veltr Biscilication

-----



							-
BAF A	RKEF CE			LTD ГҮ ∾	1		
	16	5S 2	ZONE				
C	ΞE	Ol	_OG	Y			
0	10	20 SCALE	30 40 5. 1.1000	5(im			
<u>GEND</u> a Overb	Jrden						
 Quart	-Musc	ovite S	ichisı				
us Pate gray Tuscovit	9 Quartz Pals gray	Musco	vite-BiotHe Schl	St to not and a	en fin seke	đ	
Gwcs	Quartz	os-nonand (-Muscon (n. fac.goz	vite Chiorite Sc nos giartz which	naan teetiis hist gara-teetas	1		
OCMS	Quartz	- Chiloni rodum on	e-Muscovite Sc en, frisigraned los	hist s skoecus	odi Ashahi	a	
NOCS	Musca Pae gre	vite-Qu ,	artz-Ch unte So iel, massistenst	his:			
ONEGS	Quart Pale gre Mo 24 re	z Musco en freign gend meter	wite-Chionite-Ga area quananat, wa migamet avise yot.	arnet Sor Arbitet di Ing	1i3L ⊪up		
OMPS	Quarta Pate sm	er fine gr	n-te Plagioc-asi red, quartz endior ( Durantzete	e Schist seçocese	PT TOLSO	aute	
Arailli	j°a∙en te	a-aariisi na Antesi	lag, massaðvise≓ch läg	:8 <b>%</b> .			
RG Dark ge otter co	ing to black into text ant Quarts	veak to niocal tre z-Graph	noterately graphit location Typinally ne Schist	s.venaby 3≪ipy+p	calcaneo :o.	uS.	
Felsit	j£ia.k.⊮ Tys.car; e	uungi; yra -S% c j ⊤	Male, gen iz wyrwg. 32	ded e, Lifett	a.ed.		
ELS Pae gie in zecovi oncrease	ry, mottled re-and byt rol n ofbio	very fine tite flecks anto da ov	grained and silder Weakity to moder sildatotoyons, Typ	sus looking skely talca reasiy 510	, anth var 1943us, 16(14),	al e	
ARD Fair (%	i <b>€</b> ny v <b>anat</b> -tay	ored time	le post ofti gla 164	i c alche			
CS Calc- Pale-pre siming-y	Schist	retaly in ye T	nad Seicacus Bric	rt cadecus	564720115	lace-y	
Ankante		3a.	Garnet		<b>ħ</b>		
Ansen proyinte Bictule		a" Ieuco	GrapNite Lieuconens		94. 8-5	Quartz Ven Sulofication	
Cacite Chome		piag Pi	Plagiociase Pyrile Burrootte				
Epilotte Golena		sen tourn	Sphaierite Tournaline				
	Foliation	 S2:0101	pailoration) S3				
.5 4	Beddirig Hold Verg	yen ka					
,* 	Content Fault D	Def wat. Ato-ato-at	ic <i>lere</i> d ened				
	SL DN-de Wesk Su	Hanz <b>or</b> Ilprade Ho	izor				
	Rope Tra						
0-	Grid Line Dnil Colu Outcon	ar					
	Centadp						
110 backs 6T	Sources						
VIII DROCK RES 7 2002	5GURGES		:	- LENAME	165204	ь <u>с</u> ее, b5-6	<b>₩</b> G



BAF A C	RKEF CE CRIBC 16 -98		NERALS OPERT ING DIVISION AV14 ZONE 1 SEC IG EAST		1
	5	10 SCAL	15 20 E: 1:500	25n:	
<u>END</u> Overb	urden				
Quart: Pain gens muscoril QMBS QMCS QMCS QMCS	z-Musc y to green Pate gree with mus Quartz Pate gree with mus Quartz Pate gree with mus Quartz Dark to r Pate gree Pate gree Pate gree Pate gree	Evite S sh, fine gr -Musco y to green coarte and -Musco on fren gr coarte and z-Musco and an gr povile-Que y, well-kel e z-Musco en fren gr gged medil	Ichist abled.gust2+tch and abled.gust2+tch and the Bolite Schlest up to 3% issued on the Chiorte Schl isse quartersh and with and gust2+tch and gust2+tch with Chiorte Schl isse gust2+tch with Chiorte Schl isse gust2+tch with Chiorte Schl isse gust2+tch isse t whilefolloand suff inch and weatholian to bootho. St St St St St St St St St St St St St	n at	
Argilli Derk gre otten ca	Quart Pale gre Quart Pale gre to black hiorted with Black a Typical	z-Musco en fine gra z-Schisti en eitoeo , weak to n h local bre z-Graph 	vite-Hagiociase 3 inned, quarte a v/or pia (Quartzite Is, musco: terich layer nodarately graphitic, icciation. Typically 5 ite Schist po.	Schust gjodase with muso s. vanably calcarao Al py + po. m. Uneccatel.	ovie. Kiš
B Felsit Pale gra rtusico vi cocusikut Marbi Pale gra Pale gra Calc- Pade-pri atrongly	e y, motiled in and bio sel inerbic le y, well-lay Schist sen, mode calcansou	very fine http://docks. and calc-r wred, fine rately lays s.	grained and silicaou Weakly to moderate silicato layon. Typica to medium grained o red, silicaous and mi	a-looking with var ly calcarancia, aly 5-10 % po. alote, caceous sections	iabie s. locally
nkenta rsenopyrite ictite alcite hlorite hlorite pidote alare		gar gr leuco plag py so sph tourm	Gamet Graphite Leucoxone Pisgioclase Pyrite Pyritotie Sphalerits Tourmalloe	fit QV silic	Fault Quartz Voln Silkdfication
/	Foliaison Fold Varg Linestion Contact Sulphide Week Su	S2 (prince Defined, infi Horizon Horizon	noe folation), S3 ofernal wrea rizon		
ALDROCK RES	OURCES			FILENAM	E. DDH-99-01.01VG

Ν TRENCH 8400 Road DDH-98-04 Azimuth: 180° Dip: -45° **FELS** ∞∠ 010 OMS OMS. æ / GCW FELS ocm⁵ ocans the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s OCM Tester Post of the second FELSIONCS 
 NI
 Pb

 (pprm)
 (ppm)

 49
 33.4

 34
 17.3

 37
 21.1

 32
 183.3

 41
 65.9

 88
 65.1

 37
 21.1

 32
 21.3

 44
 95.1

 36
 165.5

 37
 252

 64.6
 18.7

 40
 18.7

 38
 13.1

 46
 30.4

 39
 21.3

 43
 15.9

 V
 Zn

 (ppm)
 (cprn)

 88
 109.9

 15
 1.41

 121
 132.9

 14
 225.3

 37
 73.76

 46
 23.2

 46
 23.2

 47
 42.5

 11
 97.8

 13
 63.4

 18
 57.8

 63
 77.3

 33
 50.7

 14
 102.9
 Cd (ppm) 0.53 0.37 2.28 2.03 5.79 0.84 1.41 0.40 0.44 0.25 0.46 0.73 0.22 0.27 0.28 0.29 Se (ppm) 1.9 2.4 1.9 3.3 3.6 4.2 4.5 1.5 1.5 1.5 1.3 0.9 0.6 2.3 0.6 Pd (pppb) 3 √1 √1 6 9 10 16 7 3 6 5 2 √1 √1 √1 As (ppm) 15.7 63 5 72 3 79 8 83.2 193 9 96.0 1 83 5 18.5 18.5 17.4 3.3 17.4 3.3 17.4 3.3 1.9 < .5 0.8 Cu (ppm) 31.8 36.9 25.8 36.5 177.3 79.7 137.6 38.5 177.6 38.5 177.6 38.5 177.6 38.5 127.7 49.8 68.6 24.9 7.9 7.3 9.8 Nin (ppm) 308 454 408 935 2123 592 865 2123 592 865 1181 770 983 784 876 614 624 2607 846 No (ppm) 31.7 3.6 2.8 52.2 19.9 104.8 59.7 4.6 37.7 9.4 37.7 9.4 4.20 2.2 2.6 Au (ppb) 3 12 15 27 31 11 14 25 31 2 11 2 5 1 1 2 5 1 1 5 2 Ag (ppm) 0.12 0.14 0.27 1.42 0.60 0.49 0.66 1.13 0.30 0.33 0.71 0.19 0.11 0.33 0.29 0.14 Bi (ppm) 0.2 0.2 15.2 1.8 2.3 1.9 2.9 10 0.2 50 0.2 3.0 0.3 0.3 0.3 0.7 0.4 0.6 Tag # 187073 187074 187075 187075 187079 187079 187079 187089 187080 187082 187083 187084 187085 187086 187086 DDH-98-04 EOH = 199.94m

		ARIBOO M		N	
		9	93A/14		
		5N	ZONE		
i	DDH	-98-0	)4 SE(		١
•		VIEW	ING EAS	г	
	0	5 1	10 15 20	25m	
	E	sci	ALE: 1:500		
LE	GEND				
	Overb	urden			
Q	MS Pale grey	z-Muscovite y to greenish, fine e.	e Schist e grained, quartz-rich	n and well-foliated w	th
_	QMBS	Quartz-Mus Pale gray to gray	covite-Biotite Sci enish, fine grained, qui and up to 5% scattered	hist artz-rich and well-foliat I brown biotite	ed
	QMCS	Quartz-Mus Pale green, fine	scovite-Chlorite S grained, quartz-rich ar	chist ad well-foliated	
	QCMS	<ul> <li>with muscovite i</li> <li>Quartz-Chic</li> <li>Dark to mode im</li> </ul>	and chionte. prite-Muscovite S 1 preen, fine-grained la	ichist ss siliceous, weil-foliai	ed
		and chloritic.	Quartz-Chlorite S	ichist	
	Muca	] Pale grey, well- Ouartz-Mus	iolisted, muscovite-rich	Garnet Schist	
	QMCG	Pale green, fine to 5% ragged re	e grained, quartz-rich, v addish garnet porphyrol	vell-foliated with up blasts.	
	QMPS	Pale green, fine	scovite-Plagiocia: 9 grained, quartz and/or	r plagioclase with mus	covita.
	QS/QTZ	Quartz-Sch Pale green, silic	iist/Quartzite ceous, muscovite-rich k	ayars.	
A	RG Dark gre	te ey to black, weak	to moderately graph	ilic, variably calcare	ous
L		Quartz-Gra	phite Schist	gations, brecciated.	
<b>—</b>		⊥ Typkcally>5%, ş e	ру + ро.		
F	ELS Pale gre muscovi occasion	ey, mottled, very f ite and biotite flea nal marble and c	fine-grained and sillo cks. Weakly to mode atc-silicate layers. T	eous-locking with va arately calcareous, ypically 5-10% po.	nable
M	Marbl Pale gre	e y, well-layered, f	fine to medium grain	ed calcite.	
		Schist	lavered, siliceous an	d micaceous section	s, locally
L	strongly	calcareous.			
ank	Ankerite	gar	Garnet	fit	Fault
aspy hl	Arsenopyrite Blotite	gr Jeur	Graphite	QV	Quartz Vein Silicification
cal	Calcite	plag	Plagioclase		
hi	Chlorite	py	Pyrite		
p =:	Chalcopyrite	po	Pyrrhotite		
al	Galena	touri	m Tourmaline		
	,	Folloffer: 00 f	inducting following \: 00		
/	,10	Foliation: S2 (p Bedding	mation); S3		
	N	Fold Vergence			
Ś	1	Lineation			
		Contact: Define	ed, Inferred		
		Fault: Defined, Sulphide Horizo	Inferred		
		Weak Sulphide	Horizon		
AWN BY: TE: JULY	WILDROCK RES	OURCES		FILENAM	E' DDH-98-04 DM

s



QMBS Quartz-Muscovite-Biotite Schist Pale grey to greenish, fine grained, quartz-rich and well-foliated with muscovite and up to 5% scattered brown biotte.

QMPS Quartz-Muscovite-Plagioclase Schist Pale green, fine grained, quartz end/or plaguclase with muscovite

Gamet	fit	Fault
Graphite	QV	Quartz Vein
Leucoxene	silic	Silicification
Plagioclase		
Pyrite		
Pyrrhotite		
Sphalerite		
Tourmaline		



## BARKER MINERALS LTD ACE PROPERTY

## 16S ZONE VIEWING EAST

0 5 10 15 20 25m

SCALE: 1:500

QMBS Quartz-Muscovite-Biotite Schist Pale grey to greenish, fine grained, quartz-rich and well-toliated with muscovite and up to 5% scattered brown biotite.

QMCCS Quartz-Muscovite-Chlorite-Garnet Schist Pale green, fine grained, quartz-rich, welk-foilated with up to 5% ragged reddish gemet porphyroblasts.

QMPS Pale green, fine grained, quartz and/or plagoclase with muscovite.

	Garnet	fit	Fault
	Graphite	QV	Quartz Vein
D	Leucoxene	silic	Silicification
	Plagioclase		
	Pyrite		
	Pyrrhotite		
	Sphalerite		
n	Tourmaline		


		A		R		Ý		
	EN ZONE							
	۸.	E	02.0	14	SECT		J.	
	AL		-02-0	14	SEC	101	N	
			VIEW	(IIN	IG EAST			
		1	1 A	40.	9 76 1	ten i		
			50	SAU	E: 1,500			
1.1	EGE	ND						
E	08	Over	bunden					
Ē	are	Quart	tz-Muscovi y te present t	te S	ichist anad, sustainth and	und-Maint #		
1		Chres	Quarty-Mi Fair pretty	aco	rite-Distille Schrid n. Responder schridten	n aro natifician	-	
		GMC	Quartz-Ma Pole (rest) for off means	1500 16.90	vite-Chionte Sches ovet quatoriol evaluate shorte	-		
		GOM	Quartz-Ch Tart trimits and others	krt - p	n-Muscovite Schist en hen parteit seit sit	l anna, sai-hale	-	
		900	T Mussonile Has proceeded	Q.	artz-Chiortie Schol ad. rozcosta inte	1		
		GMCD	Guartz-M. Aur press. A to 1% regard	and the second	vito-Chépite-Game mos austu-co estat al game post-yotoaix	et Schliet West ethnic		
		Gian	Guartz-M	18-00	wher Plagociase S and Lary with play	chiel adate with inter	-	
		-	Chartz-St Tok press. 4	tial .	Quartzke x succore-nin sym			
ſ	ARG	Argill Dan g	lte ny taolaon, vez antoine avez to	ate for y tay' for a	endorstvily graptities to solitation. Typically 179	winter salcare		
1		dot	Quarte-Gr	aph 128	te Schist Mit, own sepagates	a branched		
ſ	FELS	Feisi Fok p	la ey, rectilier), cert His and cieffie 5	tie scie	gran will ante ell'ordise Mounts for molecular	kooning artis a gidal generation in a S-12Na na	rate	
Ĩ	NAME.	Mart Fain p	90 Ny, ani ityani	-	ic very ta franci ra	ule.		
Ì		Gelo	Schist					
1	a	seconds	Internet	r Karun	196, \$10804, \$12.05	ALBOAR PROTO	6. (0.96)	
	1.114	*		ŝ	Garwi		Fael	
***	Arben	0.09784	1	1	Gaptine .	QV alm	Guarte Vele	
unt .	Calvin			÷.	Pagactasi			
	Charl		1.00		Pytte			
101	041	opyrite			Pyrtulia			
	Epels Gailer		to.	-	Tournalite			
	2.2		Foliager 10	2011	gia Malaini NJ			
	1		Decition of		THE REPORT OF			
	N		Fatt Vergeton	1				
	£		Contact: Delt	-	internal.			
			Faut Debra		pings.			
			The light state of the local	141				
			Vision 15,450 m	a. 141	teer.			



BARKER MINERALS LTD ACE PROPERTY CANBOO MAINO OWBOW SAVIN 5N ZONE ACE-02-03 & DDH-98-03 SECTION VIEWING EAST USALE 1305 LEGENS Oracle 1305
VIEWING EAST
LEGEND Genoverbanden Guard-Maacovie Screel Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genoverbanden Genov
Out 1: Movements Contracts Statistic   Statistic Reported and an antimized   Statistic Reported Statistic   Statistic Reported Statistic   Statistic Reported Statistic   Statistic Reported Statistic   Statistic Reported Statistic   Statistic Reported Statistic   Statistic Reported Statistic   Statistic Reported Statistic   Statistic Reported Statistic   Statistic Reported Statistic   Statistic Reported Statistic   Statistic Reported Statistic   Statistic Reported Statistic   Statistic Reported Statistic   Statistic Reported Statistic   Statistic Reported Statistic   Statistic Reported Statistic   Statistic Reported Statistic   Statistic Reported Statistic   Statistic Reported Statistic   Statistic Reported Statistic   Statistic Reported Statistic   Statistic Reported Statistic   Statistic Reported Statistic   Statistic Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Re
008 Barting Construction Biology Transmitty and the second symposium construction transmitty and the second symposium construction from press construction on the generic construction of the second from press construction on the second construction of the second construction and the second second second second second from press construction on the second second second second from press construction on the second second second second from press construction on the second second second second from press construction on the second second second second second from press construction
an Lando ya Lando B 144 any Deregano y Dalate Di Hortz 2 Dalate Y Dalate Di Hortz 2 Dalate Y Dalate M Hortz 2 Lanto reg Paperse a Lanto y Pyter a Lanto y Pyter a Lanto y Pyter a Lanto an Torrado
Image: Spread of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second



fit	Fautt
QV	Quartz Vein
silic	Silicification

FILENAME: DOH-ACE-02-05 DWG





	BARKER MINERALS LTD FRANK CREEK PROJECT CARIBOO MINING DIVISION BCGB 934074							
	FRA	ANK CRE	EK					
~	FC-02- S	03 & FC	-02-0	4				
	VI	EW TO NORT	н					
	a	SCALE 1500						
	LEGEND				Ł			
	us Ovaburda	65						
	Andealte to Pasi pres, his	Ganite Dylera						
	Harvey's Ridge S.	poession.						
	Gett Gett	posty some surface as						
	eist Argiläte Ook senset de	PAL (197)						
	tor Quartz-Gar	cale Phylite: Sillstor	no		l			
	007 Quartz-Set	ricite Chlorite Phyllite			1			
	una Quartz-Chi	orbs-Sericte Phylite			l			
	um Duarta-Bo	like-Sercite Phyllite						
	Text Quartz-Graphile Schial							
	10 Litratizitat But establish, reduce pily live is rector granet paints substany append, are profile.							
	Massive S	a ternishe						
		ge tietet	Da	Searce				
	ini di di di di di di di di di di di di di	er Garre	10.484	Carolinate Neratori				
	tor Calibe Contrar Occasion Mare	ng Aspelan 11 Fyrm	91,7 12V	Fail Scott See				
	(Carlete, Horquett) (Claute	n Pythelia	also.	Skahiston				
	ar Epicas	torm Tourslee						
	In General							
	11 100	r: \$2 (armine become) \$1			L			
	100							
	A	angarten a						
		beined known						
		televent reterent						
		Sulpride Martine						



BARK	ER MI	NERALS	LTD OJECT	r
GARI	BOO MIT BCGS	NING DIVISIO 93A074	н	
FR	ANK	CRE	EK	
C-02	2-01	SEC	TION	
V	IEW T	O NORTH	4	
÷	1 11	+1 20	25m	
_	SCAL	E 1500		
END				
Overburde	m			
Andesite &	o Dacita représet, se	Dykes		
y's Ridge S	uccessi	on		
GrR Silcan a physic	e, produ par			
Argilite	NAME (2007)			
Quartz-Se	ricite Phy	vilite; Sitstone	e	
Quartz-Se	ricite Ch	lorite Phyllite		
]	davida, Ex	eisile Ob She		
	00108-26	acte Prysie		
Quartz-Bio	otte-Seri	cte Phylite		
Quartz-Gr Dai utorus	aphite S path: ite	chisi er conet		
Limestone Suff realizing stool-case y lay	a 6. method (r send and (r	ry, his to reduce y	paras, 14171.	
Massive 5	iuiphide			
cha	104	Dantel		Broota
rupprise	w	Graphia	101.4771	Corbonale
A	inuce:	Lauction	612	Alarghos
nien Mice	100	Pyrin	gy.	Quety Ve
ite, reseponte) Bo	40	Pyrtotta	380	Sluftesto
in the second	ap?	Sphereche		
	1497	Transie		
9				
Fold	un strare	cartanes 33		
Battl	10			
Filer 1	-			
Lines	aw.			
Gen	of Deinari	h de met		
inter fait	Sellind et	lend.		
S.AM	Suprese to	-Bur		
NOR REPORTS			- 25 13 2 3	
1000000000			71.014(E-1X	RESIDEN



		EK PRO EK PRO S 93A074 CCREE 02-05 TION TO 345 ³ 15 28 E 1500		r
LEGEND				
na Overburde	in.			
Andesite to Pale group, true	o Dacije	Dykers tribed		
Harvey's Ridge S	uccessi	on		
GRIT GRIT	a, pearly tot	ad tarahitete		
Argilite				
Daff trendert p	yêne (DBP)			
con Quartz-Se	ricite Ph	ylite; Sitstone		
osce Quartz-Se	ricite Ch	lorite Phylitte		
ocs# Quarta-Ch	ionte-Se	ricite Phylite		
Gen Quartz-Bi	atta-Seri	cite Phylite		
-001 Quartz-Gr	aphite S	chist e znec		
1.5 Limestone 3.6 July connector	, reder p	ay, the to rectory go	end verdic.	
Massive S	ulphide			
Asteria	au.	Datiet	B.c	Brooks.
historicayette	9'	Circlphote	co aim	Carbornes
Cattle	1.00	Pagociaie	11.7	Fail
on Chromium Mona (Suchala, rescionate)	419	Pyritti	QV	Quartz Valey
Chiefer	44	Participa de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composicinde la composición de la composición de la composición de l	860	Statuto
Cardola	200	Toernaire		
Galane				
2. 2. ma	e Szipe	ipal lokaterij 61		
- Bert	64			
a Public	interiore.			
1ª 1.000	-			
Cana	ct Definet.	interest.		
fat	Califact, and	arred.		
	Sugrade in	riner.		
V SALTING CHENDLING				
4.7 aniti	_		THENHER D	91-FS-8110-DMG



BARKE FRANK (				T ¹
FR/ F		CRE 02-06 TION TO 340" 15 - 20	EK	
LEGEND				
on Overburder	9			
Andesite to Palagrant Sta	Dacia print m	Dylias		
Harvey's Ridge St	looessi	an		
GRR GrR Sitemay#yike	justify the	ter) sandstarni.		
Angilite Dark landed ph	(29,2287)			
Gase Quartz-Ser	icite Ph	yfite: Sitstor	ne -	
Quartz-Ser	idie Cr	larite Phylik	6	
uor Quartz-Oh	orite-Se	encile Phylis		
Guartz-Bio	tte-Ser	iche Phyllite		
Guartz-Gra	chite S	ohist er itores		
Limestone		reg. The to initial	ponel catalo	
Massive S	uiphide			
o. Ankarte	æ	Catel	94	Bresilia
El Arson guyras Biotrias	er.	L'autorene.		Atention
Calcile	ping	Plegicities	FLT	Feult
Suchate, martpate)	100	Pyrtopia	0.04	bic/tation
Chatogente	-	1,roiene		
Epidony	Barre	Tournaline		
Golera				
2.7 Face	n 54 pm	cipul (biokers), 53		
Darkite Ver				
N' FastW	eperce.			
/* Lover	**			
Circle	t Delevert	other and		
11.8	in visions			
West	5.41114.14	12.0		
WAY INTRODUCE RECORDS	0			
33,7 2502			PLENNE BOHRS	0.03-03-34.5MG



# 100 St Dramin de ette Carbonete FLT Fault OV Questa Velo atic Michaelion Skiphide Hortzon Week Sulphide Hortzon == Grid line: Elabors Road Transh Outline -Galvert Grab Sample

PLEWIE THOUGH

.



E		BARK	ER M	INERAL	SLT	D		
N	FRANK CREEK PROJECT							
1		TRI	EN	CHA		<b>,</b>		
		1	TR-	02-0	3			
				02 0				
		-	508	w: 1:250	-			
	LEG	END						
	08	Overburder	,					
	AHE	Andealin to has peer, the	Dacite grated, set	Dykes				
	Harvey	n Ridge Su	coessi	m				
	OPET	Grit Shanna stylla	peorly and	al ambiens.				
	ARG	Argilite Dan bendec ph	n (201)					
	atr	Quartz-Ser	idle Ph	vilte; Siltet	one			
	QBCP	Quartz-Ser	icile Ch	iorite Phylik	te			
	ocar Quartz-Chlorite-Sericite Phylite							
	over Quartz-Blotts-Sericite Phylite							
	Dos Quartz-Graphile Schist Oter stronge provide stress array.							
	Life Stores and an and an and the section prevent, welling, mediant prevent, mediant prevent, and phylicits.							
	-	Massive S	ulphide					
	10 A.14	-		Genet		De Dessie		
	ti Skela	a an an an an an an an an an an an an an		Graphile		FLT Fault		
	creica Catal Creica Catal	te riture mice alle, markoster	ping PT	Pagiocheen Pyrte		QV Quarts Ven allo Silvaliation		
	dti Otta op Otak			Pyrtotle Sphalette				
	opi Epid pii Gala		South 1	Tormaine				
		Contact, Defined	, internel			Sugnide Hortzon Vitesk Sulphide Hortzon		
		Original Layering				Grid live; Bation Road		
	+	53 Foliation F3 Lineation			-	Trends outline Outwet		
		F2 Lineadori Vain				Circle carryin		
		Auen						
	1555 OC SHAM							



# BARKER MINERALS LTD FRANK CREEK PROJECT CARIBOO MINING DIVISION BCGS \$34074 TRENCH MAP TR-02-04 101 -----Scale: 1250 Gett Silimona phylite, poorty annal savet use Quartz-Sericite Phylite; Sitstone Guartz-Sericite Chiorite Phylite ocer Quartz-Chlorite-Sericite Phylite use Quartz-Biothe-Sericite Phyllite Lämestone But watering, water gey, the to maker prevet, saidti, materially layerst, and stylistic Re . Breaks it all Carbonata Course FLT Fault OV Querts Ven (Area) elic likefaster Pyris 80 Pyrtick eth. **Scholerite** 1947 Transition Sulphide Horizon Week Sulphide Horizo == Grid line; Shakon Road Trench outline Culvert -. Gradi earripte

PLENME THEIR DAY

#### **A PRELIMINARY REPORT**

#### <u>ON</u>

#### **ELECTROMAGNETIC, GRAVITY, MAGNETIC &**

#### INDUCED POLARIZATION SURVEYING

Ace & Frank Creek Properties Cariboo Lake Area, B.C. 52° 45'N, 121° 15'W N.T.S. 93 A 14

For

#### **BARKER MINERALS LIMITED**

Langley, British Columbia

By

#### PETER E. WALCOTT & ASSOCIATES LIMITED

Vancouver, British Columbia

**SEPTEMBER 2002** 

## **TABLE OF CONTENTS**

INTRODUCTION I	
PROPERTY , LOCATION & ACCESS	
GEOLOGY	
PREVIOUS WORK	;
PURPOSE	j
SURVEY SPECIFICATIONS	r
DISCUSSION OF RESULTS	,
SUMMARY, CONCLUSIONS & RECOMMENDATIONS	)

#### APPENDIX I

CERTIFICATION I.P. PSEUDO SECTION L 5800N

#### ACCOMPANYING MAPS

	<u> </u>			SCALE 1:2500	
ACE NORTH - S GRID I	PROFILES OF INPH	IASE & Q	UADRATURE	НF 200м LF 200м	Fig. 1 Fig. 2
ACE NORTH – N. GRID	**	"	"	НF 200м LF 200м	Fig. 3 Fig. 4
F-7 GRID	"	"	"	HF 100м LF 100м	Fig. 5 Fig. 6

#### MAGNETICS

ACE NORTH – N GRID CONTOURS	S OF TOT	AL FIELI	O INTENSITY	Fig. 10
ACE NORTH – C GRID "	**	"	"	Fig. 11
ACE NORTH – S GRID "	<del>4</del> 4	**	**	Fig. 12

#### MISE - A - LA - MASSE -

FRANK GRID – CONTOURS OF EQUIPOTENTIAL	FIG. 15

#### TABLE OF CONTENT CON'TD

VLF EM SURVEY

SCALE 1:2500

FRANK GRID - PROFILES OF INPHASE & QUADRATURE

Fig. 16

#### -1-

#### **INTRODUCTION.**

Between May 12th and June 8th, 2002, Peter E. Walcott & Associates Limited undertook a geophysical surveying programme over portions of two properties for Barker Minerals Limited.

The properties, known as the Ace, & Frank Creek respectively, are located in the Cariboo Mining District of British Columbia, on average 25 kilometres northeast of the settlement of Likely.

The programme consisted mainly of horizontal loop electromagnetic (E.M.) and gravity surveying on freshly hand cut picket lines on extensions of the grids from the 2001 surveys.

In addition some VLF EM traversing was carried out around the Frank Creek showing, a small mise-a- la-masse survey was undertaken over the same showing with the current electrode implanted in it, a short I.P. traverse was conducted over the projection of the strike of the mineralization on Line 5800N, and some detailed magnetic surveying was done over portions of the Ace grid.

The data are presented at a scale of 1:2500 in various forms on maps that accompany this report.

#### **PROPERTY, LOCATION & ACCESS**

The property consisting of 3949 units is located in the Cariboo Mining District of British Columbia, and stretches from the Likely to the Quesnel area.

The individual properties, known as the Ace & Frank Creek respectively, are situated between the Caribou and Quesnel lakes some 20 to 45 kilometres northeast of the settlement of Likely.

Access was obtained from Likely by means of 4-wheel drive vehicle along the logging roads that traverse the properties.

#### GEOLOGY.

The Ace & Frank Creek properties are located in the geological terrane known as the Barkerville Terrane, fault-bounded on the west from the Quesnel Terrane by the Eureka Thrust, and similarly on the east from the Cariboo Terrane by the Pleasant Valley Thrust.

The Barkerville Terrane is classified by the GSC as a subset of the Kootenay Terrane, deposited along the western edge of ancient North America.

Metamorphosed sedimentary and volcanic rocks - the result of bimodal volcanism in an island-arc scenario in the Late Proterozoic to Mid-Paleozoic age - underlie the property. These have been deformed by intense tectonism that has caused complex folding and overturning.

Volcanic-associated massive sulphide deposits occur in submarine volcanic rocks throughout the world in close association with at the least minor sedimentary assemblages. Thus the property areas are thought to have potential to host a polymetallic massive sulphide deposit(s)

A one metre thick massive copper-zinc-lead-silver sulphide occurrence was observed in black phyllites on the Frank Creek property. Additional pods of pyrite-chalcopyrite mineralization were also noted in the same assemblage, as well as numerous massive sulphide boulders of mostly pyrite.

A mineralized boulder field some 8 kilometres long by 1 kilometre wide trends roughly east-west through the Ace property. In it some 1000 mostly iron rich angular shaped boulders have been documented and it is referred to as the Doyle Train. Values of up to 20 g/t gold and 13% combined lead-zinc with 0.25% copper and 3 oz g/t silver were contained in sulphide bearing quartz veins and iron rich massive sulphides examples of the above. Limited trenching in some areas within the boulder field has uncovered similar mineralization in bedrock.

#### **GEOLOGY cont'd**

For more detailed information the reader is referred to the numerous publications on the area and to reports on the properties held by Barker Minerals Limited, particularly the qualifying for listing by Bruce J. Perry Ph.D. P. Geo. & John G. Payne Ph.D. and to the trenching and mapping by Christopher J. Wild P.Eng.

#### PREVIOUS WORK.

Previous work carried out on part or all of the properties consisted of prospecting and geological mapping, geochemical soil sampling, heliborne magnetic and electromagnetic surveying, ground magnetic and VLF EM surveying, induced polarization surveying, E-scan sounding and diamond drilling.

For further details the reader is referred to the aforementioned reports on the properties and to the reports on the 2000 survey and 2001 geophysical surveys by the writer.

#### PURPOSE.

The purpose of the electromagnetic surveys was to locate and/or further define E.M. conductors on the properties which could be attributable to massive sulphide mineralization whereas that of the gravity was to assist in the discrimination of graphitic and sulphide conductors, based on the premise that those conductors attributable to massive sulphides would exhibit a positive density contrast with the host and surrounding rocks, resulting in discernible gravity highs due to the excess mass.

A Geophysical Report on the Ace & Frank Creek Properties. FOR BARKER MINERALS LTD.

#### SURVEY SPECIFICATIONS.

#### Electromagnetic Surveying.

The basic principle of any electromagnetic survey is that when conductors are subjected to primary alternating fields secondary magnetic fields are induced in them. Measurements of these secondary fields give indications as to the size, shape, conductivity and depth of burial of conductors. In the absence of conductors no secondary fields are obtained.

The electromagnetic survey was carried out using two systems, namely a Max-Min IIA horizontal loop system, and a Geonics VLF system.

The Max-Min IIA system was manufactured by Apex Parametrics of Metropolitan Toronto, Ontario.

Readings of the inphase and quadrature components of the secondary field were made with the coils in the coplanar mode, i.e. maximum coupled, every 25 metres along the picket lines at frequencies of 222, 444, 888 and 1776 Hz.

A coil separation of 100 metres was employed on the Frank Creek F7, whereas one of 200 metres was used on the Ace grids.

Corrections for topography were made using the % slope between each 25 metre station. In all some 9.7 kilometres of E.M. traversing were carried out with the various coil separations.

The VLF system was built by Geonics Limited of Metropolitan, Toronto, Ontario. The unit makes use of the VLF transmitting stations operating for communication with submarines for its transmittal signal – the vertical antenna currents create concentric horizontal magnetic fields – and measures the vertical components of the secondary fields created as above. Here the Seattle transmitter was used.

-7-

#### SURVEY SPECIFICATIONS cont'd

#### Magnetic Surveying

The magnetic survey was carried out using a EDA - 19 proton precession magnetometer manufactured by EDA Instruments of Metropolitan Toronto, Ontario. This instrument measures variations of the earth's magnetic field to an accuracy of +/- 0.5 nanoteslas. Corrections for diurnal variations were made by comparison with readings taken at 10-second intervals on a similar instrument, held fixed at one location.

#### Induced Polarization Surveying.

The induced polarization (I.P.) survey was conducted using a pulse type system, the principal components of which are manufactured by Iris Instruments of Orleans, France.

The system consists basically of three units, a receiver (Iris), transmitter (Iris) and a motor generator (Generac). The transmitter, which provides a maximum of 4.0 kw d.c. to the ground, obtains its power from a 6.5 kw single phase alternator driven by a gasoline engine. The cycling rate of the transmitter is 2 seconds "current-on" and 2 seconds "current-off" with the pulses reversing continuously in polarity. The data recorded in the field consists of careful measurements of the current (I) in amperes flowing through the current electrodes  $C_1$  and  $C_2$ , the primary voltages (V) appearing between any two potential electrodes,  $P_1$  through  $P_7$ , during the "current-on" part of the cycle, and the apparent chargeability, (M_a) presented as a direct readout in millivolts per volt using a 200 millisecond delay and a 1000 millisecond sample window by the receiver, a digital receiver controlled by a micro-processor – the sample window is actually the total of ten individual windows of 100 millisecond widths.

The apparent resistivity  $(\int_a)$  in ohm metres is proportional to the ratio of the primary voltage and the measured current, the proportionality factor depending on the geometry of

#### SURVEY SPECIFICATIONS cont'd

the array used. The chargeability and resistivity are called apparent as they are values, which that portion of the earth sampled would have if it were homogeneous. As the earth sampled is usually inhomogeneous the calculated apparent chargeability and resistivity are functions of the actual chargeability and resistivity of the rocks.

The survey was carried out using the "pole-dipole" method of surveying. In this method the current electrode,  $C_1$ , and the potential electrodes,  $P_1$  through  $P_7$ , are moved in unison along the survey lines at a spacing of "a" (the dipole) apart, while the second current electrode,  $C_2$ , is kept constant at "infinity". The distance, "na" between  $C_1$  and the nearest potential electrode generally controls the depth to be explored by the particular separation, "n", traverse.

On the traverse along the portion of Line 5800 near the "D" road a 25 metre dipole was employed, and first to sixth separation measurements were obtained.

#### Gravity Surveying.

The gravity survey was carried out using a Lacoste G gravimeter. This instrument measures variations in the earth's gravitational field to an accuracy of plus or minus 0.05 mgals, and is thermostated to eliminate thermal drift corrections.

Values of observed gravity were obtained every 25 metres along the traverses at points located by 6" spikes driven flush with the ground and flagged. Corrections for meter drift were made by tying in to previously established base stations (2001) at intervals not exceeding three hours.

The elevations of the stations were obtained to 6 centimetre accuracy using a Sokkia total station and a prism reflector. The importance of station elevation accuracy is better understood by noting the rule of thumb correlation between observed gravity and elevation change namely 3 cms elevation difference makes for a 0.01 mgal observed gravity difference.

#### SURVEY SPECIFICATIONS cont'd

Station positioning was converted to UTM co-ordinates for latitude correction by tying-in to points on the grids established with an Ashtech Z Surveyor GPS System from the known point the BGACS station at Williams Lake.

In all some 8.5 kilometres of surveying were carried out using these methods.

#### **DISCUSSION OF RESULTS**

These should be studied in conjunction with the results of the 2000 and 2001 work in reports written by the writer.

#### Frank Creek.

The VLF EM survey conducted in the vicinity of the "massive sulphide" showing showed the latter to exhibit a weak response as can be seen on Figure 16, a plot of the inphase and quadrature profiles.

Several conductor axes, located by inphase crossovers on the various line traverses, can be seen trending northwestwards across the area surveyed, in keeping with the trend of the geology.

The mise-a-la-masse survey gave a fairly concentric equipotential pattern around the buried electrode – Figure 15, but did show some elongation about a similar northwest axis. Low potentials were obtained over conductor "B" – 2001 report – to the east of the showing.

Conductor "B" & "C" are clearly discernible on the calculated resistivity from the induced polarization traverse conducted along Line 5800N. The western edge of Conductor "B", located on the eastern extremity of the traverse, gave resistivity values of 2 to 5 ohmmetres, similar to those obtained on it on the 2001 road survey.

Conductor "C", which cuts the line at an oblique angle, is represented by resistivities of 8 to 12 ohm-metres between 1760 and 1860W.

No high chargeability values are directly associated with these resistivity lows except for some near surface effects over Conductor "C" suggesting the conductors to be more shear than graphite related.

Several zones of moderate chargeability can be seen on the pseudosection over a moderately high background of 25 to 30 mV/V. Only two of these have any appreciable

#### **DISCUSSION OF RESULTS cont'd**

width and depth extent, namely one between 1525 and 1600W, and another between 1725 and 1800W, with both associated with lower resistivities.

The Max-Min survey over the two lines on the F7 grid extended the wide conductor of moderate conductivity 100 metres in either direction – Figure 5 & 6.

The gravity profile run over the central line – Line 2500W – of the grid showed no residual high i.e. no excess mass, associated with the conductor, leading the writer to believe its causative source was primarily graphitic material.

<u>Ace.</u> Ace N - S

The Max-Min survey showed the grid to exhibit a wide zone of complex moderate to high conductivity on the three northernmost lines – Figure 1 & 2. In fact it appears the zone could actually be three individual conductors as shown – would need additional surveying with a smaller coil separation to confirm. They appear to be folded between Lines 1400 and 1500S, and offset by faulting between Lines 1600 and 1700S where they also start to drop off in conductivity. Similar offsets can be observed between Lines 1800 and 1900S, and Lines 1900 and 2000S – see 2000 survey report.

The gravity survey – calculated using a density of 2.65 gm/cc based on rock measurements conducted last winter – showed a small 0.25 mgal residual associated with the middle of the conductive zone on Lines 1500 and 1600S, and slightly lower residuals offset to the east on Lines 1400S, and to the west – the foot wall side – on Lines 1700 and 1800S.

The magnetic survey - Figure 12 - showed no correlation between the magnetic responses and the EM conductors. In fact, the magnetic feature appears attributable to small near surface features.

#### **DISCUSSION OF RESULTS cont'd**

Drill hole Ace-02-01 finished before the geophysics was completed, intersected no mineralization of significance but appears to have been drilled into the fault between Lines 1600 and 1700S.

Drill hole Ace-02-02, drilled under the same circumstances, to test the magnetic feature projected northwards from Line 1900S on the 2000 survey, also failed to intersect mineralization of significance. Magnetic surveying on Line 1800S failed to substantiate the aforementioned projection.

#### Ace N-N

The Max-Min survey located a conductor of poor to moderate conductivity trending across most of the grid but petering out to the south – Figures 3 and 4. The conductor exhibits some width, circa 10 metres, on Lines 400 and 500N, and has poorer conductive material associated with its foot wall as noted on the quadrature response.

The gravity survey – calculated using a density of 2.65 gm/cc – showed a weak residual anomaly associated with the foot wall of the conductor on Lines 400 and 500N.

The residual on Line 600 and 700 N coincident with the hanging wall of the conductor appears more related to topography as can be seen by comparison with the topographic profile.

Drill hole Ace-02-03 and 05 would have been drilled into the foot wall of the conductor with the former collared just about on it, while 04 should have intersected the tail of the conductive zone near 400N. This was borne out by the drill results where hole 03 intersected some semi massive to massive sulphides at the top of the hole, and hole 04 hit 10 metres of mineralized felsite at 43.8 metres.

#### - 14 -

#### **DISCUSSION OF RESULTS cont'd**

Again magnetic surveying showed no definitive correlation with conductivity. Higher susceptibilities were associated with the foot wall of the conductor as shown by the magnetic response circa 600W between 350N and 550N – Figure 10.

Ace N-C

Five lines of magnetic traversing were undertaken on this grid with an area of higher magnetic response observed trending across the grid – Figure 11 – to the east of the weakly conductive response – 2000 report.

#### SUMMARY, CONCLUSIONS & RECOMMENDATIONS.

Between May 12th and June 8th, 2002, Peter E. Walcott & Associates Limited undertook Max-Min E.M., gravity, magnetic, VLF EM and induced polarization surveying for Barker Minerals Ltd. on their Cariboo property, located in the Likely area of British Columbia.

These geophysical surveys were limited to two specific areas of the property, namely the Frank Creek and Ace North grids.

As before the Frank Creek showing showed little or no response to either two geophysical techniques – mise-a-la-masse and VLF EM – leading the writer to believe that no massive sulphide mineralization of significant strike length and/or size is present.

The limited I.P. surveying on Line 5800N on the Frank Creek grid confirmed the location of two previously located (2000 EM survey) E.M. conductors but gave little encouragement for additional drill targets.

The Max-Min survey extended the broad east-west striking F-7 conductor a further 100 metres in either direction, but the ensuing gravity traverse across the central portion failed to yield any significant residual anomaly indicative of excess mass, invoking the conclusion that the conductivity is mostly attributable to graphitic material.

The Max-Min survey extended the wide conductor located on Line 1600 S on the Ace North grid in 2001 to the north and south. The results suggested the conductor to be complex, and offset by folding and/or faulting, with better conductivity – moderate to good – on the northernmost lines.

Weak residual gravity anomalies were obtained associated with the conductor axes suggesting that mineralization could be the partial source of the conductivity, but not indicating the presence of significant VMS mineralization.

#### SUMMARY, CONCLUSIONS & RECOMMENDATIONS cont'd

Drilling carried out before the geophysics was done appeared to have been directed into the fault offset of the conductors, and intersected no mineralization of significance.

The Max-Min survey also extended the conductor located on Line 500N on the Ace North grid in 2001 to the north and south. Here the results indicated that the conductor exhibited poor to moderate conductivity, narrowed to the north and tailed off to the south.

Weak residual gravity anomalies were obtained associated with the foot wall of the conductor on the centre lines -400 and 500N. These could be indicative of weak mineralization but in no way suggest the presence of VMS mineralization of any significant size.

Drilling carried out here again before the completion of geophysics collared one hole in the conductor, directed another across it with encouraging results, and cored a third into the foot wall to test the gravity residual on Line 500N obtained on the 2001 survey.

Although no excess mass of significant size has been detected on the Ace grid to date, drilling has indicated the presence of favourable rock type to host such deposits. Thus the writer would recommend the continuation of the Max-Min EM - gravity programme in conjunction with geochemistry along strike across the favourable horizon(s) in the search for VMS mineralization.

#### - 17 –

### SUMMARY, CONCLUSIONS & RECOMMENDATIONS cont'd

Gravity profiling could be carried out at 200 metre line spacing over the defined E.M. conductors. Surface elevation maps might have to be prepared for the application of terrain corrections in the northerly and southerly parts of the trend.

Respectfully submitted,

## PETER E. WALCOTT & ASSOCIATES LIMITED

Peter E. Walcott, P.Eng. Geophysicist

Vancouver, B.C. September 2002

#### **CERTIFICATION**

- 1. I am graduate of the University of Toronto in 1962 with a B.A.Sc. in Engineering Physics, Geophysics Option.
- 2. I have been practicing my profession for the last forty years.
- 3. I am a member of the Association of Professional Engineers of British Columbia and Ontario.

Peter E.Walcott, P.Eng.

Vancouver, B.C. September, 2002

**APPENDIX** 

.










































Report on Exploration of the Barker Minerals Ltd. Property, including the Frank Creek and Sellers Creek Road VMS Projects, the Ace VMS and Vein Gold Project and the Quesnel Platinum Project; Cariboo Mining Division, British Columbia, Canada NTS 93 A and 93 B

October 2001 - September 2002

for

Barker Minerals Ltd., 22117 - 37A Ave. Langley, B. C. V2Z 1N9

by

Bruce J. Perry, Ph. D., P. Geo., F. G. A. C. PRO-GEO Exploration and Mining Services Inc. 2301 Skeena Dr. Kamloops, B. C. V2E 1Y2

Effective Date: October 21, 2002

# **Table of Contents**

Item 3:	Summary	Page # 5
Item 4:	Introduction and Terms of Reference	7
Item 5:	Disclaimer	7
Item 6:	Property Description and Location	7
Item 7:	Accessibility, Climate, Local Resources, Infrastructure and Physiography	8
Item 8:	<b>History</b> Frank Creek Area Cariboo Zn-Pb Deposit Quesnel Platinum Project Area	<b>8</b> 9 10 10
Item 9:	Geological Setting Barkerville Terrane Cariboo Terrane Quesnel Terrane Slide Mountain Terrane Ace Project Area Frank Creek and SCR Project Areas Cariboo (Maybe) Prospect Glaciation and Glacial Deposits	<b>11</b> 11 12 12 13 14 15 15
Item 10:	<b>Deposit Types</b> Volcanogenic Massive Sulphide (VMS) Deposits Zn-Pb Replacement Vein and Replacement Gold Magmatic PGE Mineralization	<b>16</b> 16 16 16 17
ltem 11:	Mineralization Providence Mine (Past Producer, BC MinFile 093A 003) Cariboo Zn-Pb Deposit (Developed Prospect; BC MinFile 093A 003), and Foster Showing (in Pleasant Valley Thrust; Roach, 1997) Ace Prospect (BC MinFile 093A 142) Mineralized boulder field Bedrock mineralization Frank Creek VMS Showing (BC MinFile 093A 152) Big Gulp Showing (BC MinFile 093A 151) Sellers Creek Road (SCR) Showing (BC MinFile 093A 131)	<b>17</b> 17 17 18 18 19 19 20 20

____

	Comin Throu Bear Showing (BC MinFile 093A 148)	20
	Peacock Showing (BC MinFile 093A 133)	21
	Trump Showing (BC Min File 093A 154)	21
Item 12:	Exploration	21
	Ace VMS and Vein Gold Project	21
	Frank Creek VMS and SCR Projects	24
	Cariboo Project	27
	Quesnel Platinum Project	27
Item 13:	Drilling	28
	Ace VMS and Vein Gold Project	28
	Frank Creek VMS Project	30
Item 14:	Sampling Method and Approach	31
	Rock Samples	31
	Geochemical Soil and Stream Sediment Samples	31
	Factors to affect accuracy and reliability of samples	31
	Sample quality and representation	31
	Geological controls	32
Item 15:	Sample Preparation, Analyses and Security	32
	Fire Assay	32
	ICP	32
	Ultra-trace ICP	33
	Hydride Method	33
	Whole Rock Analysis	33
Item 16:	Data Verification	33
Item 21:	Interpretation and Conclusions	34
	General	34
	Ace VMS and Vein Gold Project	35
	Frank Creek VMS Project	37
	SCR Project	38
	Quesnel Platinum Project	39
Item 22:	Recommendations and Proposed Exploration Budgets	39
	Ace VMS and Vein Gold Project	39
	Frank Creek VMS Project	40
	SCR Project	41
	Peacock Showing	42
	Blackbear Project	42
	Cariboo Prospect and other areas	42

	Quesnel Plati Proposed Exp	num Project Noration Budgets	43 44	
Certifica	Certificate Of Author			
Item 23:	References		48	
Item 26:	Figures and	l Tables	53	
Figures				
	Figure 1	Mineral Claims and Project Areas	54	
	Figure 2	Quesnel Platinum Project Areas	55	
	Figure 3	Regional Geology (after Ferri, 2001)	56	
	Figure 4	Ace Project - Magnetics and HLEM Conductors	57	
	Figure 4a	Ace Project Felsic Geology and Geophysical Anomalies	58	
	Figure 4a-1	Ace 16S zone Geology and Diamond Drilling	59	
	Figure 4a-2	Ace 5N zone Geology and Diamond Drilling	60	
	Figure 4b	Ace Project E-scan Survey, Resistivity Lows	61	
	Figure 4c	Ace Project Copper in Soils	62	
	Figure 4d	Ace Project Lead in Soils	63	
	Figure 4e	Ace Project Zinc in Soils	64	
	Figure 5a	Frank Creek VMS Project F-1 Target Area Geology	65	
	Figure 5b	Frank Creek VMS Project 2002 Drill Holes and HLEM MaxMin Conductors	66	
	Figure 5c	Aerial Photo of Frank Creek F-1 VMS Target Area	67	
	Figure 6a	Glacial Till Study Sample Locations and Doyle's Boulder Field	68	
	Figure 6b	Ace Project, Quartz Float Boulders, exceeding 220 ppb Gold	69	
	Figure 7a	Generalized Stratigraphic Column (after Ferri, 2001)	70	
	Figure 7b	Barkerville and Kootenay Terrane Correlations (after Ferri, 2002)	71	
	Figure 8a	Frank Creek and SCR Projects Geology and HLEM Conductors	72	
	Figure 8b	Cariboo Project Geology (Roach 96)	73	
	Figure 9	Frank Creek Project Ground Magnetics and HLEM Conductors	74	
	Figure 10a	Frank Creek Soils, Copper & HLEM Conductors	75	
	Figure 10b	Frank Creek Soils, Lead & HLEM Conductors	75	
	Figure 10c	Frank Creek Soils, Zinc & HLEM Conductors	75	
	Figure 11a	SCR Project Ground Magnetics and HLEM Indicated Conductors	76	
	Figure 11b	SCR Project Copper, Lead and Zinc in Soils and HLEM Conductors	76	
	Figure 12	Ace Project Geochemical & Geophysical Surveyed AreasTables	77	

# Tables

Table 1	Ace VMS and Vein Gold Project Assays	78
Table 2	Frank Creek - Massive Sulphide and Cu-rich Stringer Zone Assays	79
Table 3	Frank Creek - Median Whole-Rock Analyses (Major Rock Types)	80
Table 4	SCR-Semi-Massive Sulphide Mineralization Assays	81
Table 5a	Ace VMS Project Drill Hole Parameters (1998 and 2002)	82
Table 5b	Ace VMS Project Summary Drill Logs (1998 and 2002)	83
Table 5c	Ace VMS Project Significant DDH Intersections (1998 and 2002)	87

Table 6a	Frank Creek VMS Project Drill Hole Parameters (2002)	88
Table 6b	Frank Creek VMS Project Summary Drill Hole Core Logs (2002)	89
Table 6c	Frank Creek VMS Project Significant DDH Intersections (2002)	92
Table 7	Quesnel Platinum Project Rock Samples and Assays	93
Table 8	Analytical Check Samples	96

# Appendices:

Appendix 1. Mineral claims

97

#### Item 3: Summary

The property is located 95 km northeast of Williams Lake in Central British Columbia. This large mineral tenure holding consists of 4,092 mineral claim units (approximately 260,000 acres), of which 291 claim units are owned by Barker Minerals Ltd. and 3.801 claim units are held in trust for Barker Minerals (Figure 1 and Appendix 1). Of these, 453 claim units are subject to a 2% net smelter return royalty in favor of Louis Doyle. The property contains the idle Providence Mine, classified as a 'Past Producer' (BC MinFile 093A 003) of silver, lead, zinc and gold. The property also contains the Cariboo (a.k.a. Maybe) Prospect, which is classified as a 'Developed Prospect' (BC MinFile 093A 110). This is reported to be a lead-zinc (Zn-Pb) replacement-style deposit estimated to contain approximately 400,000 tonnes at an estimated grade of 4% Zn+Pb, using a 1% Zn+Pb cutoff. The property contains the Ace VMS Prospect, which was discovered during 1993 by Louis Doyle, President and CEO of Barker Minerals and is host to what has been described by BC Geological Survey geologists as Besshi-type volcanogenic massive sulphide (VMS) mineralization and auriferous (gold-bearing) quartz veins (BC MinFile 093A 142). The property contains several known bedrock mineral occurrences, classified as 'showings' by the BC Geological Survey, including the Frank Creek VMS showing (BC MinFile 093A 152), the Sellers VMS showing (BC MinFile 093A 131), the Big silver-leadgold showing (BC MinFile 093A 151), the Comin Throu Bear lead-zinc-silver showing (BC MinFile 093A 148), the Peacock gold-bearing quartz vein showing (BC MinFile 093A 133), the Maud alkalic porphyry copper-gold showing (BC MinFile 093A 119) and the Trump silver-lead showing (BC MinFile 093A 154). Both the Frank Creek VMS showing and Sellers Creek Road (SCR) VMS showing were discovered by Louis Doyle, President of Barker Minerals Ltd.

The eastern half of the property contains three VMS exploration project areas, the Ace, Frank Creek and SCR areas, each of which contain multiple exploration targets as indicated by geochemical, geophysical and geological data and which have been the focuses of Barker Minerals' exploration programs during the period 1993 to the present. The western half of the property contains the mineral claims hosting Barker Minerals' Quesnel Platinum Project (Figure 2).

Within the Ace project area (Figures 1, 4, 4a, 4a-1, 4a-2, 4b, 4c, 4d, 4e and 6b), surface geological, geochemical and geophysical surveys and two episodes of drilling [7 DDH (1260 m) in 1998; 5 DDH (645 m) in 2002] have defined a belt of metamorphosed and deformed, felsic volcanic rocks containing massive and stringer sulphide mineralization, within which are anomalous concentrations of gold, silver, copper, lead and zinc. The belt is open along strike in both directions. Geophysical surveys have defined another major target located to the southeast of this belt in an apparently outcropless area containing encouraging soil geochemistry. Further exploratory trenching and drilling are recommended on these targets.

Within the Frank Creek project area (Figures 1, 5a, 5b and 5c), a massive sulphide layer 1.2 m thick outcrops in a zone of overturned volcanic and sedimentary rocks. During 2002 a series of trenches were excavated in order to test several targets in and adjacent to the F-1 Target Area at the Frank Creek VMS project. Five exploratory trenches were excavated over a total distance of 289 metres up to 70 metres southeast of the discovery outcrop. Trench TR-BW-05 exposed the dark quartz eye phyllite host unit within which were found several small massive sulphide lenses within the projected strike extension of the mineralized zone exposed at the discovery outcrop. TR-BW-04 exposed copper stringer mineralization 60 metres southwest of the F-1 occurrence. Along with the mineralized exposure in TR-BW-10 excavated some 375 metres to the NW of the discovery outcrop, this exposure extends the known strike length of the mineralized zone to approximately 425 metres. The zone is open to potential

extensions in both directions to the north and south and at depth. According to Wild (2002), former Chief Geologist of Goldstream Mine, near Revelstoke, B. C., the geological setting, mineralization and host rocks are all remarkably similar to the Goldstream Mine mineral deposit, which produced more than 2 million tonnes of ore at a grade in excess of 4.0% copper and 2.2% zinc.

Drill core from the initial exploratory drilling program [6 ddh (813 m)] at the Frank Creek project area contains intervals of Cu-Zn-Pb (+/- Au, Ag) massive sulphide mineralization that are significant examples of ore formation processes having occurred on the property. The mineralizations encountered in the drill core are similar to that exposed at the discovery outcrop where the discovery outcrop massive sulphide layer has been further exposed (3.5m in length and 1.5 metre wide) by trenching, and the local area mapped in detail (Wild, 2002). The concentrations of metals from grab samples of the outcrop massive sulphides ranged up to 4.4% Cu, 8.2% Zn, 1.1% Pb, 14.8oz/t Ag and 854 ppb Au. A chip sample across 5.77 metres exposed width assayed 0.82% Cu, 0.25 % Zn, 0.21% Pb and 44.3 g/t Ag including a .77 metre exposed width which assayed 2.1% Cu, .34% Zn, .11% Pb and 69 ppm Ag.

This Besshi-type VMS polymetallic mineralization also occurs in drill core in significant intervals (up to 0.4 metres) and contains significant concentrations of zinc, copper, silver, lead and gold (up to 3.4% Zn, 2.1% Cu, 2.8 oz/t Ag, 0.53% Pb and 746 ppb Au) within larger weakly mineralized units up to 52 metres wide in drill core intercepts that contain widespread disseminations of these metals. Several significant, combined geophysical and geochemical anomalies are present, one of which is situated within the area in which the massive sulphide outcrop occurs. Further exploratory trenching and drilling are recommended in order to test these specific targets for economic mineralization and in order to further define the extent of the mineralized zone.

The SCR project (Figures 1, 11a and11b) area contains semi-massive sulphide mineralization in altered volcanic rocks. This project area also contains coincident base-metal soil anomalies and HLEM geophysical anomalies in an area of sparse outcrop. A Maxmin geophysical survey comprised of 4.2 line kilometers was completed during the 2002 field season. In areas of geophysical and geochemical anomalies, prospecting was successful in discovering float boulders which assayed as high as 17.3% Zn and 6.4% Pb (Table 4) Further surface exploration including trenching and bedrock sampling in this area is recommended, to be followed by initial exploratory drilling, if warranted.

The Cariboo Zn-Pb deposit (Figures 8b) is reported to be comprised of replacement style Zn-Pb mineralization hosted in carbonate rocks of the lower strata of the Cariboo terrane. Diamond drilling conducted during the1980's outlined a 400,000 tonne deposit grading 4.0% Zn+Pb (BC MinFile 093A 110). Further surface mapping should be conducted in this area in order to help gain an understanding of the deformation history of the deposit and the potential for extensions of the known zone. Compilation of all relevant data and limited diamond drilling is recommended in order to confirm the previous operator's drilling and in order to further define and investigate the size and economic potential of this deposit, which is open in both directions along strike and at depth.

The western part of the property (Quesnel Platinum Project area) was staked for its platinum group element (PGE) potential (Figures 1 and 2). It contains zones of anomalous and intense copper concentrations in mafic volcanic rocks and may contain some of the mafic to ultramafic source rocks for some of the platinum group minerals (PGMs) recovered from the predominantly gold-bearing placers associated with the Quesnel River and its tributaries.

Further geochemical and geological surveys are recommended in order to explore for bedrock PGE mineralization and in order to explore the zone of mafic volcanic rocks containing anomalous concentrations of copper.

Exploration work conducted by Barker Minerals Ltd. to the present date has been conducted under the authority of Mineral Exploration and Reclamation Permit MX-10-155, which may be modified by amendments in order to facilitate future work such as that recommended within this report.

The estimated costs of the Phase 1 and Phase 2 programs are \$1,780,000 and \$4,000,000 respectively.

## Item 4: Introduction and Terms of Reference

This report was prepared for Barker Minerals Ltd., as an annual professional geoscientist's report regarding exploration work conducted on its mineral exploration property in the Cariboo Mining Division of the Province of British Columbia during the period September 2001 through September 2002. Dr. Perry, P. Geo., F. G. A. C., the author of this update report, has been involved with the project intermittently since August, 2000, conducting geological reconnaissance, rock sampling, property inspections, report writing and acting as the Company's independent, qualified person per regulatory requirements, as required.

Work on the property to date includes geological mapping, stream-sediment and soil surveys, ground magnetometer and EM studies (VLF-EM, HLEM), airborne magnetometer and EM studies, prospecting, and, in some areas of potential economic interest, trenching and diamond drilling.

The Ace Prospect mineralization and Frank Creek and SCR mineral showings are of the VMS type. The Cariboo Prospect hosts a replacement style Zn-Pb deposit in carbonate rocks of the Cariboo terrane. Scattered stream-sediment anomalies situated within the claims have not been followed up in detail. The Quesnel Platinum Project areas may contain some of the source mafic and ultramafic rocks for PGE minerals occurring in numerous placer platinum occurrences associated with the Quesnel River and its tributaries. These claims also host mafic volcanic rocks that in one area contain anomalous concentrations of copper.

#### Item 5: Disclaimer

The author Perry has relied on the reports of J. Payne, Ph. D., C. Wild, P. Geo. and P. Walcott, P. Eng., which describe geological and geophysical exploration, respectively, conducted on the Company's property during the subject period. These reports are those listed within the References section of this report.

### Item 6: Property Description and Location

The mineral exploration property consists of 4,092 mineral claim units, being approximately 260,000 acres or 105,222 hectares (Figure 1). The mineral claims comprising the property are owned by and registered in the name of Barker Minerals Ltd. or Louis Doyle in trust for Barker Minerals Ltd. (Appendix 1). Of these, 453 claim units are subject to a 2% net smelter royalty in favor of Louis Doyle. The property contains 16 mineral exploration project areas, some of which are currently under active exploration, including the Ace, Frank Creek, Sellers Creek Road (SCR) and Quesnel Platinum project areas. The mineral claim tenure

numbers and expiry dates of the mineral claims comprising Barker Minerals' exploration property are listed in Appendix 1.

The centre of the property is situated 95 km northeast of the city of Williams Lake, B.C., the nearest supply center, and 34 km northeast of Likely, B. C., the nearest settlement (Figure 1).

Exploration work conducted by Barker Minerals Ltd. to the present date has been conducted under the authority of Mineral Exploration and Reclamation Permit MX-10-155, which may be modified by amendments in order to facilitate future work such as that recommended within this report. The author has reviewed recent correspondence from the local BC Inspector of Mines indicating to Barker his satisfaction with Barker's progressive reclamation of trench and drill sites, and indicating also his satisfaction with the amount of the current reclamation bond Barker has supplied, without need for any further increase in the bond in respect to additional work planned for the remainder of 2002 (pers. comm., K. McDonald, Inspector of Mines, September 3, 2002).

# Item 7: Accessibility, Climate, Local Resources, Infrastructure and Physiography

Williams Lake is an intermediate-sized city, which is served by Highway 97, the B.C. Railway, a major hydroelectric power grid and a modern airport. By road, Likely is 65 km northeast of 150 Mile House on Highway 97. Access to the Ace, Frank Creek and SCR exploration areas is *via* gravel logging roads bearing northeast from Likely. The distances from Likely to the main showings are as follows: Ace, 45 km; Frank Creek, 25 km; SCR, 22 km. Driving time to the Ace prospect from Likely is forty-five minutes. Access to the Quesnel Platinum project is mainly *via* gravel logging roads southeast from Quesnel, a distance of 25 km. In Likely, Barker Minerals maintains a property that includes a house, a bunkhouse, a workshop and a few tents. The house serves as a field office.

The property is situated in the central part of the Quesnel Highland between the eastern edge of the Interior Plateau and the western foothills of the Columbia Mountains. This area contains rounded mountains that are transitional between the rolling plateaus to the west and the rugged Cariboo Mountains to the east. Pleistocene and Recent ice sheets flowed away from the high mountains to the east over these plateaus and down to the southwest (Cariboo River), west (Little River) and northeast (Quesnel Lake), carving U-shaped valleys. The elevation ranges from 700-1650 m.

Precipitation in the region is heavy, as rain in the summer and snow in the winter. Drainage is to the west *via* the Cariboo, Little and Quesnel Rivers to the Fraser River. Quesnel Lake, the main scenic and topographic feature in the region, is a deep, long, forked, glacier-carved lake with an outlet at 725 m elevation. Vegetation is old-growth spruce, fir, pine, hemlock and cedar forest in all but the alpine regions of the higher mountains (mainly above 1400 m elevation). Weldwood has been actively logging fir, spruce and pine in the area (e.g., logging clear-cuts shown in aerial photo Figure 5c), principally during winters, and has provided outlines of existing and planned roads and cut-blocks in and near the project areas.

#### Item 8: History

Gold was discovered in the Barkerville-Wells area in 1858. Historical production totaled 3.7 million troy ounces, as 1.9 million ounces from placers and 1.8 million ounces from 2.7 million short tons of underground ore. The historic Bullion Pit near Likely produced 175,700

ounces of gold from 200 million tons of gravel and about 1/100th as much platinum. Gold and platinum were reported in similar proportions in placers in the Frank Creek area.

Much of the lode and placer gold production from the Wells and Barkerville areas occurred in the eastern part of the Barkerville terrane, where most of the important present day lode gold prospects also occur. At the historic mines, the strata trend 315, dip 45 NE and are cut by north to northeast-trending normal faults dipping 60 E. The zones of economically important quartz veins are contained in graphite-bearing layers near a contact with carbonate-bearing layers. Two sets of quartz veins contain pyrite and gold: transverse veins striking 030 and diagonal veins striking 070; these contained 15 -25% pyrite and 0.3-0.5 oz/st Au. Two other sets of quartz veins do not contain pyrite or gold. Pyrite in altered wall rock contained proportionally less gold. Replacement bodies of auriferous pyrite in carbonate rocks (mainly in the Island Mountain Mine north of Jack of Clubs Lake) accounted for nearly 1/3 of the lode gold mined. Other common sulphides in the mines are arsenopyrite, galena, sphalerite, cosalite (PbBiS), scheelite and bismuthinite (BiS₂). Free gold commonly occurs with nests of cosalite. Gangue minerals are quartz and ankerite/siderite. Wallrock alteration minerals are ankerite and sericite.

#### Frank Creek area

Frank Creek has hosted sporadic placer mining since the turn of the century, the latest periods being 1984 to 1986 and 2000 to 2001. During early placer mining, several massive sulphide boulders containing up to 9.3% Zn+Pb (Formosa 1989) were found in a thin, clay-rich layer situated near the base of the alluvial material where Frank Creek canyon opens onto a delta.

During 1988, Formosa Resources Corp. and Rio Algom Mines conducted grid-controlled soil sampling, VLF-EM geophysical surveys and limited geological mapping. As a result of this work, they identified several coincident geophysical and soil geochemical anomalies. A trench excavated on a coincident Cu-Zn-Ag soil anomaly encountered rusty soil and lenses of ferricrete containing pyrite-rich fragments that contain also minor chalcopyrite, galena and sphalerite. On the slope above the above-mentioned alluvial massive sulphide boulders, 22.4 km of grid lines were cut and soil sampling was conducted at 25-m intervals, yielding some anomalous Cu, Pb, Zn and Ag concentrations but no outcropping bedrock mineralization.

During 1991, helicopter-facilitated magnetic, electromagnetic (EM) and radiometric surveys by Rio Algom identified seven areas containing anomalous EM signatures in the Frank Creek area, F-1 to F-7 target areas (Figures 5a and 5b).

During 1996, two, vertical, percussion holes were drilled along the D-Road switchback near the center of the F-1 target area by R. Yorston, a previous operator. They yielded poor recovery, mainly of very fine particles and minor amounts of rock chips of black and green phyllite. Both holes returned anomalous Cu, Pb, Zn, Ag and Au concentrations in the upper 18.3 m, with the best interval being 3.04 m averaging 1770 ppm Cu, 750 ppm Pb, 2970 ppm Zn, 4.8 ppm Ag and 790 ppb Au.

During the period covered by this report, the Company conducted geological and geophysical exploration work, including trenching, rock sampling, localized detailed mapping at the Frank Creek VMS discovery outcrop, diamond drilling and assaying (items 11, 12, 13 this report).

## Cariboo Zn-Pb Deposit

Barker Minerals' Cariboo Prospect, also known as the Maybe Prospect, was explored during 1987 by Gibraltar Mines Ltd. The prospect contains three main stratiform lenses of ankerite, quartz, sphalerite, galena and minor pyrite enclosed in limestone-rich strata of probable Middle Devonian age. The large Zn/Pb ratio, moderate silver content and low gold content are similar to those of many carbonate-hosted, replacement Zn-Pb deposits, including those in the Early Cambrian platform carbonates of the Kootenay arc. Limited bulldozer trenching and 21 diamond drill holes by Gibraltar Mines resulted in an in-house mineral inventory estimate of 400,000 tonnes at a grade of 4% Zn+Pb. This is not an appropriate category and does not comply with the requirements of current securities legislation. The author has recommended that limited confirmatory fieldwork and limited confirmatory drilling be done in order to define and categorize the known mineralization to current day industry and regulatory standards.

## Quesnel Platinum Project areas

Some placer deposits associated with the Quesnel River and some of its tributaries emanating from the north and east contain potentially significant concentrations of platinum group metals (Rublee, 1986 and Figure 2). The highest concentration was obtained from a pan concentrate sample collected from Twenty-Mile Creek that assayed 2195 g/t Pt, 2210 g/t Pd and 1440 g/t Os. In this concentrate, the platinum group minerals (PGMs) were found as minute metallic grains within larger grains of magnetite and chromite.

A regional stream survey conducted by the BC Geological Survey during 1980 (GSC Open File 776), with results re-analyzed during 1997 by neutron activation (BC Geological Survey; BC RGS 50), showed anomalous concentrations of Cu, Ni, Cr. Co and Au in and around areas of ultramatic rocks that are situated partly along the Eureka fault and partly within the Quesnel terrane. An airborne magnetometer survey indicated several strong anomalies associated with ultramafic rocks located along the Eureka fault and at known locations of magnetite-bearing mafic and ultramafic rocks in the Quesnel terrane (Dome Exploration, 1981). During 1984, helicopter-facilitated multi-frequency EM, VLF-EM and magnetometer surveys were conducted in the Maud Lake, Victoria Creek and Trumph areas and many EM and magnetic anomalies were detected and recommended for further geological and geochemical investigation (BC Assessment Report #12780). During the late 1980s, QPX Minerals drilled two holes into ultramafic bodies at its Maude Lake property. Both holes, a few hundred metres apart, contained geochemically anomalous concentrations of Pt up to 35 ppb (1988, BC Assessment Report #17598). At the bottom of one of the drill holes was a 10-cm intersection of chalcopyrite-pyrite massive sulphide for which no assays are available. Mandella Resources conducted ground geophysical and geochemical soil surveys west of this area in the mid-1980's and identified vlf-EM geophysical anomalies and Pb, Zn, Cu and Au soil geochemical anomalies, which in some instances were coincident (BC Assessment Report #14816). Some of the PGM contents of the above mentioned Quesnel River placer deposits are probably derived from ultramatic rocks situated along the Eureka fault between the Quesnel terrane and the Barkerville terrane and from mafic and ultramafic rocks in the Quesnel terrane. Barker Minerals' claims in this area were staked because of potentially favorable geology, the recent dramatic increase in the price of PGMs and the apparent lack of previous PGE exploration in this potentially favorable area.

Reconnaissance geological, geochemical and airborne geophysical surveys were

conducted over portions of the area by several companies in the 1980s, mainly during exploration for porphyry copper deposits. Some of these studies identified Cu-Pb-Zn-Ag soil anomalies that are coincident with HLEM-indicated conductors which have not yet been tested by trenching or drilling.

# Item 9: Geological Setting

The regional geology was described by L.C. Struik (1988) and is shown updated in Figure 3 (after Ferri, 2001). The Barkerville terrane is considered to be the northwest extension of the Kootenay terrane, which to the southeast overlies the Monashee metamorphic core complex, a large uplifted mass of high-grade paragneiss, quartzite and marble. The properties are on the flank of the northern, unexposed portion of this core complex. Northwest from the North Arm of Quesnel Lake the characteristic metamorphic minerals change from sillimanite through staurolite-kyanite, almandine garnet and biotite to chlorite northwest of the Ace claims. The garnet isograd runs northerly across the east-central part of the Ace group, while that of biotite is 30 km further northwest. Historic mines near Wells and Barkerville are in rocks of the Jurassic, which is interpreted as the time of collision of the North American plate to the east with a group of island arcs to the west. In the Little River area, four geological terranes are represented, most of which are dominated by marine sedimentary or metasedimentary rocks (Figure 3).

# Barkerville Terrane

Most of the property area is underlain by marine strata of the Barkerville terrane, whose age is classified broadly as Late Proterozoic to Mid-Paleozoic. It is categorized by the Geological Survey of Canada as a subdivision of the Kootenay terrane. The region was deformed by intense, complex, in part isoclinal folding and overturning that produced an intimate interlensing of impure quartzite, siltstone, ankeritic dolomite, pelite and amphibolite. These rocks are cut by dikes and sills of metamorphosed diorite. Locally, stronger shear deformation produced mylonitic textures.

The northeastern third of this terrane is the main zone of economic interest in the Cariboo district. Struik described it as "gold-enriched", because it contains the historic Wells and Barkerville mines and the Cariboo Hudson deposit, 39 km and 18 km northwest of the Ace project area, respectively. This zone contains olive and grey micaceous quartzite and phyllite, amphibolite, marble, meta-tuff and meta-diorite sheets or sills. These descriptions are compatible with the rock types on the Ace project area, although the latter contains more metamorphosed felsic/intermediate volcanic rocks. Stratigraphic tops are unknown. The Barkerville terrane is cut by the Mid-Devonian Quesnel Lake gneiss (350 Ma), a coarse grained, leucocratic, biotite granitic gneiss with megacrysts of potassium feldspar. The main body of gneiss is 30 km long by 3 km wide and is elongated parallel to the eastern border of the Intermontane belt. Its contacts are in part concordant with, and in part perpendicular to, metamorphic layering. The Barkerville terrane hosts folded, sill-like masses up to 300 m thick of gneissic meta-diorite (400 Ma) and contains post-metamorphic anatectic pegmatite (86 Ma), particularly in a high-grade metamorphic aureole northwest of the North Arm of Quesnel Lake.

## Cariboo Terrane

The northeastern part of the Little River area is underlain by marine peri-cratonic sedimentary strata of the Cariboo terrane. The Cariboo terrane consists mainly of limestone and

dolomite with lesser siliceous, clastic, sedimentary rocks and argillite. Some geologists believe that the Cariboo terrane is a shallow, near-shore facies and the Barkerville is a deeper, offshore facies of the same erosion-deposition system. No rifting is suspected between the Cariboo terrane and the North American continent, in contrast to that between the Barkerville terrane and the North American continent.

The Cariboo and Barkerville terranes are separated by the regional Pleasant Valley thrust fault, which dips northeast moderately to steeply. It is reported by Struik (1988) to have moved the Cariboo block from the east over the Barkerville block along a strike length of over 100 km. In the map area, the fault cannot be found, suggesting that much of the movement attributed to it may have occurred by shearing in a broad zone along the "contact" between the two terranes.

Some of the carbonate layers in the lowest part of the Cariboo terrane (or upper part of the Barkerville terrane) are enriched in zinc and lead. Since the 1970's, preliminary exploration on stratiform Zn-Pb targets has been conducted in this area over a strike length of 23 km from the vicinity of the head of the North Arm, *via* Maeford Lake to the Cariboo (Maybe) prospect.

The Cariboo terrane was cut by the Jurassic-Cretaceous Little River stock, a mediumgrained granodiorite grading to quartz monzonite. A normal fault along its southwest side (Little River fault) dips east and extends southeasterly to Limestone Point, on the western side of the North Arm of Quesnel Lake. It intersects, and in some literature has been confused with, the Pleasant Valley thrust. It moved chlorite-biotite metamorphic grade strata of the Cariboo terrane eastward to rest against staurolite-kyanite metamorphic grade strata of the Barkerville terrane.

#### Quesnel Terrane

A small southwestern portion of the Little River area is underlain by the Late Triassic to Early Jurassic, allochthonous Quesnel terrane. It was accreted to the North American continent, in part by subduction and in part by obduction. The Eureka thrust fault marks the boundary between the Quesnel and Barkerville terranes as well as that between the Intermontane and Omineca physiographic belts. The terrane is partly submarine and partly subaerial, consisting of volcanic and volcaniclastic rocks and co-magmatic intrusions, with minor carbonate lenses and related sedimentary rocks. Regionally, it hosts many important mineral deposits, mainly of Cu and Cu-Au, such as Highland Valley, Craigmont, Copper Mountain, QR and Mt. Polley. The Bullion Pit, from which 175,700 oz. of placer gold were produced, is near Likely just on the west side of the boundary between the Barkerville and Quesnel terranes.

### Slide Mountain Terrane

Rocks of the allochthonous, Devonian to Late Triassic, Slide Mountain terrane underlie a very small part of the Little River area. Portions of these rocks were obducted, while others were subducted during collision of an oceanic plate with the continent. It is exposed east of Wells and Barkerville as the upper plate overlying the generally low-angle Pundata thrust fault. This fault it is nearly vertical where it crosses the southwestern part of the Little River area. Small slices of mainly mafic volcanic rocks and alpine-type ultramafic rocks of the Slide Mountain terrane occur in and parallel to the Eureka thrust. Minor lithologies include chert, meta-siltstone and argillite.

#### Ace project area

The Ace project area and vicinity are underlain by the Barkerville terrane that, except for its easternmost part, is believed to be Late Proterozoic. In spite of the amount of work done prior to 1998, the Ace project area had not been mapped in detail geologically, partly because of scarcity of outcrop. Most known outcrops are situated in creeks, in road cuts or in several of the trenches excavated by Barker Minerals during 1996 and 1997.

During the fall of 1998, low water levels in the major rivers allowed mapping of extensive bedrock exposures in their floors and walls. Most of the outcrop in the Little River is exposed southeast of the bridge on Colleen Road. West of there, the river valley is mainly covered by alluvial deposits with scattered small outcrops, mainly at major bends. The northern slope of Barker Mountain is virtually devoid of outcrop from just south of the main trench area to the zone of abundant outcrops near the crest of the mountain. The diamond-drilling program in 1998 gave the first detailed stratigraphic sections across the main zone of felsic volcanic rocks. Many geological questions remain unanswered, including the existence and location of the Pleasant Valley thrust fault and two northeast-trending, cross-faults (GSC-1 and GSC-2) that were reported to offset the Pleasant Valley thrust fault (Struik, 1988).

The geology of the Ace project area is shown in Figure 4a. A fairly continuous stratabound interval of plagioclase-rich rocks, interpreted as metamorphosed and altered felsic volcanic rocks, extends in an east-west direction for 7 km across the centre of the Ace project area from near the "J" Road at the west to Little River at the east. Because of very sparse outcrop west of the trenches, the thickness of felsic volcanic rocks in this area is unknown. In drill cores, the true thickness of the felsic unit is up to 80 metres. To the east, where the main band crosses Little River, the felsic volcanic unit is several metres thick. In the hanging wall (to the northeast) is a zone of quartz-muscovite-chlorite-leucoxene meta-sedimentary rocks containing intervals of bedded quartzite and quartz-rich schist. In the footwall (exposed mainly in drill core) are similar sedimentary rocks, but mainly lacking leucoxene.

North of Little River along a logging spur that extends east from the J road is a band up to 50 m thick of similar, altered felsic volcanic rocks containing disseminated lenses of pyrite or pyrrhotite. These grade upwards into quartz-muscovite-(chlorite) schist with local intervals of quartzite. Further up section to the northeast (probably in the Cariboo terrane) is a zone containing black, siliceous argillite to quartzite and interlayers of banded marble.

The felsic volcanic unit is dominated by plagioclase with much less abundant amounts of muscovite, biotite and quartz. It commonly contains 0.5-5% disseminated lenses of pyrrhotite parallel to foliation. In many areas, replacement patches consist of coarser grained plagioclase, quartz, ankerite, chlorite and sulphides. Sulphides are mainly pyrrhotite or pyrite, with local concentrations of one or more of sphalerite, galena and chalcopyrite. Two main alteration assemblages were recognized in trenches. The first consists of semi-massive to massive sulphide dominated by granular pyrite intergrown with abundant dark green chlorite and much less abundant sericite and quartz. The other consists of felsite containing 20-30%, very fine grained, disseminated pyrrhotite. Both types of altered rocks contain anomalous concentrations of base and precious metals.

# Frank Creek and SCR project areas

Work by Struik (1983) and Ferri (2001) placed the rocks of these project areas in the Snowshoe Group of the Barkerville terrane. These rocks include, from oldest to youngest, the

Keithley succession, Harvey's Ridge succession and Goose Peak quartzite (Figures 7a and 7b). The Keithley succession consists of micaceous quartz sandstone to siltstone, phyllite and quartz-muscovite schist, in which common pyrite and ankerite porphyroblasts give a brown to rusty brown weathering surface. At the top of the Keithley succession is a distinctive quartzite. Southwest of Browntop Mountain, a section of rusty-weathering quartz-chlorite-muscovite schist of the Keithley succession contains two stratabound intervals of marble 50-75 m thick. This area also contains a quartzite unit that is less than a few metres thick and contains minor disseminated chalcopyrite, sphalerite and galena. The upper contact of the Keithley orthoquartzite is sharp with the dark grey to black siliceous siltstone and phyllite of the Harvey's Ridge succession.

The lower part of the Harvey's Ridge succession is characterized by dark grey to black phyllite, schist, siltstone, siliceous siltstone and sandstone. An important wedge of mafic volcanic rocks occurs west of the Frank Creek fault. The upper contact of the Harvey's Ridge succession is gradational with the overlying Goose Peak quartzite. The contact is placed at the base of the lowermost, thick section of clean, feldspathic sandstone to quartzite. The Harvey's Ridge succession contains abundant interlayers of coarse grained, feldspathic sandstone and wacke, similar to but darker in colour than those of the Goose Peak quartzite.

The Goose Peak quartzite contains micaceous and feldspathic sandstone to quartzite, with minor interlayers of grey to dark grey phyllite/schist, siltstone, wacke and quartz-chloritemuscovite schist (possibly of volcanic origin). This unit caps many of the higher ridges situated to the east of the Frank Creek fault, including Goose Peak, Badger Peak and Borland Mountain. The Agnes conglomerate occurs in the upper transitional portion of the Harvey's Ridge section and may be a lateral equivalent of the Goose Peak quartzite. The Quesnel Lake gneiss, which intruded the older rocks in the Frank Creek area, was dated at 357.21.0 Ma by the U-Pb zircon method by the BC Geological Survey (Ferri, Hoy and Friedman, 1998).

The stratigraphic section is overturned and warped by a series of broad late-stage (F3) folds. Most rocks are variably slaty, foliated, laminated or schistose. In much of the Frank Creek area, the main foliation (S2) dips moderately to the west or southwest, in contrast to the regional trend of moderate dips to the northeast, such as at the Ace project area. The Frank Creek area is in the nose of a series of broad F3 folds that warp S2 gently to steeply, locally, and plunge gently to the northwest.

Most rocks of the Frank Creek project area are of the Harvey's Ridge succession. At the stratigraphic base of the section (top of Frank Ridge) is a finely banded, tuffaceous, basaltic andesite. Much less abundant are massive, coarser grained flows, one of which contains a few pillow flows, whose orientation supports the overturned model. A transition zone contains intercalations of volcanic and sedimentary rocks and mixed rocks described as tuffaceous phyllite. Stratigraphically overlying this unit (downslope to the north) is a zone of mixed quartz-pebble and sugary quartz sandstone, dark grey to black quartz siltstone and black argillite. Further downslope is a unit at least several tens of metres thick containing abundant angular fragments of quartz and lesser plagioclase ranging 0.5 - 3 mm in size. This unit has been interpreted either as pebbly sandstone to conglomerate or medium to coarse felsic tuff. It contains intervals up to a few metres thick of black, argillaceous schist that is mainly non-graphitic, but contains local zones of significant graphite content.

A broad interval represented by little to no outcrop separates the main zone of quartzpebble rocks from the stratigraphic level of the massive sulphide. Stratigraphically above the massive sulphide showing is a small outcrop containing abundant zones of pyrite and chalcopyrite replacement and stringer mineralization. The discovery of the massive sulphide zone and its probable genetic relationship to these rocks, which have been interpreted by Payne and some others to be felsic volcanic rocks, indicate that this area has potential for an economic VMS mineral deposit.

Further to the east and northeast is a resistant marker unit of quartzite and locally finely laminated limestone. The interpretation of this unit is not resolved. If the section is overturned, as detailed data suggest, this could be part of the Goose Peak quartzite. Alternately, it might be an interval of the Agnes conglomerate. In some outcrops, a pseudo-conglomeratic texture was produced by deformation. Some of these outcrops contain scattered, rounded boulders up to 25 cm across of quartzite of the same composition as the matrix. If they are actual boulders, the rock would be a true conglomerate. However, the absence of exotic boulder types argues that they are pseudo-boulders and are the products of the regional metamorphism. The limestone is exposed only in the canyon of Frank Creek. The quartzite continues as a significant stratigraphic marker unit to the southwest, where it does not contain any pseudo-conglomeratic textures.

To the east, a major fault (Frank Creek fault) identified in this study, drops the Frank Creek block down with respect to the Goose Peak block to the east, in which surface rocks are dominantly Goose Peak quartzite. Although regionally, F3 folds and L12/L23 lineations in the Goose Peak block also plunge gently to moderately to the northwest, within about 1 km of the Frank Creek fault, the plunge is reversed to gently to the southeast. Further work on the regional folding should be done in order to resolve the facing direction of the stratigraphic section and the direction of movement on the Frank Creek fault. Preliminary work in this study suggests that the stratigraphic section is overturned and the fault is normal.

# Cariboo (Maybe) Prospect area

The Cariboo (Maybe) Prospect was explored during 1987 by Gibraltar Mines Ltd. The prospect contains three main stratiform lenses of ankerite-quartz-sphalerite-galena-(pyrite) enclosed in limestone-rich intervals of probable Middle Devonian age (Hoy and Ferri, 1998). These, in turn, are inter-layered with dark grey graphitic phyllite. One prominent quartzite bed occurs a hundred metres stratigraphically below the sulphide-rich beds. The rocks were deformed, sheared and foliated. Some of the lenses probably were formed by late- to post-tectonic remobilization.

# Glaciation and glacial deposits

The last glacial stage that affected the Quesnel Highland, the Fraser glaciation, began 30,000 years ago. Much of this ice had melted by 10,000 years ago, but small remnants are preserved high in the alpine areas of the Cariboo Mountains. At lower elevations, glaciers of this age scoured the debris left by preceding ice advances, almost completely destroying them, leaving a chaotic assemblage of unsorted till, moraine and drift, with lenses of gravel and sand that had been roughly sorted by meltwater and rivers, leaving behind beds of silt and clay that were stratified by settlement in ice-dammed lakes. In the Cariboo area, the debris covers bedrock in valleys below 1700 m, leaving typical glacial features such as U-shaped valleys, ice-sculpted drumlins, moraine terraces and glacier and river benches. On the Barker Minerals properties, glacial deposits range from one to a few tens of metres thick. Some glacial till deposits are overlain by well-bedded glaciolacustrine clay and silt deposits up to a few tens of metres thick.

In much of the Cariboo district, a layer of distinctive, hard, compact, semi-rigid blue clay sits either on or slightly above bedrock and acts as "false" bedrock. It was formed from glacial drift left behind by the last ice advance prior to the Fraser glaciation and was compacted by the weight of the Fraser stage ice. In the placer-gold areas of the Cariboo, large amounts of gold were recovered from gravel resting on this clay. In places the clay layer was penetrated by the placer miners to reach richer "pay streaks" on true bedrock below.

# Item 10: Deposit Types

The company is exploring the property for the following types of mineral deposits:

## Volcanogenic Massive Sulphide (VMS) Deposits

Conformable, semi-massive to massive sulphide deposits of the Besshi type occur in the Kootenay terrane (Goldstream deposit), in the Yukon-Tanana and Nisling terranes and in the Klondike schist. Recent BC Geological Survey work suggests that these may all be part of an elongate terrane that also includes the Barkerville terrane (Hoy and Preto, 1996). Host rocks are deformed complexly and metamorphosed to micaceous quartzite, phyllite and schist, commonly graphitic. Marble and meta-volcanic rock lenses are common. Besshi-type deposits contain pyrite, pyrrhotite, magnetite and chalcopyrite, local sphalerite and rarely galena. Host rocks are mainly sedimentary, commonly siltstone, quartzite and carbonaceous schist near amphibolite (metamorphosed mafic volcanic rocks). The VMS target at the Ace prospect may be of a different type; there, felsic volcanic rocks are present, mafic volcanic rocks are absent or altered so intensely that they cannot be recognized, and galena and sphalerite are important minerals.

## Zn-Pb Replacement

The sulphide-rich layers of mineralization of Barker Minerals' Cariboo Zn-Pb deposit have a higher-grade central section up to 1 m. thick of more massive sphalerite with scattered patches of galena, with dispersed and vein sphalerite-galena mineralization extending 2-3 m on either side. The high Zn/Pb ratio, moderate silver content and low gold content are similar to those of many replacement carbonate-hosted Zn-Pb deposits, including those in the Early Cambrian platform carbonates of the Kootenay arc.

## Vein and Replacement Gold

Much of the lode and placer gold production from the Wells and Barkerville areas was from-the eastern part of the Barkerville terrane, where most of the important present day lode gold prospects also occur. At the historic mines, the strata trend 315°, dip 45°NE and are cut by north to northeast-trending normal faults dipping 60°E. The zones of economically important quartz veins are contained in graphite-bearing layers near a contact with carbonate-bearing layers. Two sets of quartz veins contain pyrite and gold: transverse veins striking 030° and diagonal veins striking 070°; these contained 15-25% pyrite and 0.3-0.5 oz/st Au. Two other sets of quartz veins do not contain pyrite or gold. Pyrite in altered wall rock contained proportionally less gold. Replacement bodies of auriferous pyrite in carbonate rocks (mainly in the Island Mountain Mine north of Jack of Clubs Lake) accounted for nearly 1/3 of the lode gold mined. Other common sulphides in the mines are arsenopyrite, galena, sphalerite, cosalite (PbBiS), scheelite and bismuthinite (BiS₂). Free gold commonly occurs with nests of cosalite. Gangue minerals are quartz and ankerite/siderite. Wallrock alteration minerals are ankerite and sericite.

# Magmatic PGE mineralization

Some of the PGM contents of the Quesnel River placer deposits are probably derived from ultramatic rocks situated along the Eureka fault between the Quesnel terrane and the Barkerville terrane and from matic and ultramatic rocks in the Quesnel terrane. Barker Minerals' claims in this area were staked because of potentially favorable geology, the recent dramatic increase in the price of PGMs and the apparent lack of previous PGE exploration in this potentially favorable area. Magmatic, dunite-peridotite-hosted PGE mineralization is sought.

## Item 11: Mineralization

#### Providence Mine (Past Producer; BC MinFile 093A 003)

Located in the Blackbear project area of Barker Minerals' property (Figure 1, project area #7), the mineralization is comprised of argentiferous (silver-bearing) galena with pyrite, minor sphalerite and gold contained within three subparallel gently dipping quartz veins hosted by metamorphosed tuff, possibly rhyolitic. The main vein is known to be approximately 180 m long and averages 4.5 m in width. A shipment of selected ore from the No. 2 zone assayed 3343 grams of silver per tonne, 45.7% lead, 0.11% zinc and 4.9 grams of gold per tonne (all the above from BC MinFile 093A 003). One grab sample (# 11-07-98-59; Barker Minerals) of outcropping mineralization contained 52% Pb, 0.03% Zn, 142 oz Ag / ton and 0.081oz Au / ton. (Payne, 1999; BC Assessment Report).

#### Cariboo Zn-Pb Deposit (Developed Prospect; BC MinFile 093A 003) and Foster Showing

Barker Minerals' Cariboo Prospect (Figure 1, project area #2), also known as the Maybe Prospect and classified as a developed prospect, was explored during 1986 and 1988 by Gibraltar Mines Ltd. The prospect contains three main stratiform lenses of ankerite, quartz, sphalerite, galena and minor pyrite enclosed in limestone-rich strata of probable Middle Devonian age. The large Zn/Pb ratio, moderate silver content and low gold content are similar to those of many carbonate-hosted, replacement Zn-Pb deposits, including those in the Early Cambrian platform carbonates of the Kootenay arc. Sampling of the zone intermittently over a 1.6 km strike length returned concentrations up to 15% combined Zn and Pb (Roach, 1997; BC Assessment Report). Limited bulldozer trenching and 21 diamond drill holes by Gibraltar Mines resulted in an estimated historical mineral inventory of 400,000 tonnes with an estimated grade of 4% Zn+Pb (BC MinFile 093A 110). This is not an appropriate category and does not comply with the requirements of current securities legislation. Barker Minerals' grab sample results returned concentrations up to 32.8% Zn, 4.5% Pb, and 63 g/t (2 oz/t) Ag.

Further east and south along the Pleasant Valley Thrust is the Foster mineral showing, situated at the junction of the thrust structure and a north-northwesterly striking fault. Here, abundant finely disseminated pyrite (5-15%) occurs in a zone 30 m wide of unknown strike length in sheared clastic metasediments dipping 40-50 degrees to the northeast The mineralization is accompanied by sericite-quartz-chlorite alteration (Roach, 1996).

#### Ace Prospect; VMS and auriferous quartz (BC MinFile 093A 142)

#### Mineralized boulder field:

During 1993, in the Ace Prospect project area (Figure 1, project area #1) at the outlet of a culvert on the "F" spur, a branch of Weldwood's "8400" logging road, a grab sample of sand collected by Louis Doyle (possibly contaminated by another collected 2 km down the road) assayed 129 g/t gold (Lammle, 1996; BC Assessment Report). At the end of October, Doyle staked the Unlikely I and Unlikely II mineral claims on the potential source area. During November of the same year these claims were vended to a newly formed company, Barker Minerals Ltd.

During 1994, the Ace mineral claims were staked around the Unlikely claims on the north-facing slope of Mount Barker. Prospecting, reconnaissance geological mapping and rock sampling, line cutting and soil geochemical sampling conducted during the summer of 1994 helped to locate many glacially transported cobbles and boulders comprised of vein quartz, quartz-pyrite-pyrrhotite and/or semi-massive to massive iron-rich sulphides. (Figures 4, 6a and 6b) Many of the boulders of quartz-rich veins and massive sulphides in the boulder field are sub-rounded to sub-angular. Many of the nearby coarse blocks of country rocks are distinctly angular. These features suggest that the as-yet-undiscovered bedrock source of the boulders is probably close by, possibly beneath glacial till deposits located up-ice (opposite direction of the flow ancient glacial ice) from the present locations of the boulders. The mineralization in some of the boulders of Doyle's boulder field has been compared with that of the Goldstream deposit north of Revelstoke and with that of the Vine prospect in southeastern B.C. (Hoy and Preto, 1996).

The main boulder field, along Weldwood's main "8400" haul road from km 8423 to km 8431, is 8 km long and several hundred metres wide. Many boulders are comprised of quartz veins with minor to moderately abundant amounts of one or more of tourmaline, sphalerite, chalcopyrite, galena and graphite. Grab samples collected from many boulders contained significant concentrations of gold and/or base metals (Figure 6b). The average of 53 widespread float boulders comprised of sulphide-bearing quartz veins was 3.1 g/t Au, with concentrations ranging up to 29 g/t Au. Many of the higher-concentration gold samples contain significant concentrations of lead (1000-2000 ppm), bismuth (100-2500 ppm), selenium (20-50 ppm) and tellurium (10-34 ppm). Several pyrrhotite-rich massive sulphide boulders contain 3-16% Zn+Pb and up to 3 oz/t Ag and Cu stringer material up to 4.1% Cu.

Skupinski (1995) conducted a petrographic examination of Ace boulder samples. "In four polished mounts and two polished sections over 30 grains of native gold were detected. The three largest grains were 0.03-0.05 mm in size. The other 27 grains were 0.01-0.03 mm in size. The grains are subhedral to euhedral in shape, especially those occurring in quartz. Native gold mainly occurs close to the borders between sulphides and quartz. Less frequently, it occurs as inclusions in pyrrhotite and marcasite. Frequently, gold is intergrown with tellurides and native bismuth. As a rule, all above minerals precipitate in close proximity to each other. They tend to occur on the surface of sulphides, or very close to the sulphide edges. Bismuth and telluride grains are always anhedral and up to 0.1 mm in size. By visual evaluation, volumetric contribution of telluride minerals in quartz vein (float boulders) is 100 times higher than that of native gold."

Precious and base metals have been, and continue to be, the major economic focuses of exploration.

Ace area bedrock mineralization:

The widespread presence of 2-5% disseminated pyrrhotite and/or pyrite in felsic volcanic rocks that has been indicated by surface rock sampling and 2 episodes of drilling along the main trend of the Ace zone suggests potential for VMS deposits.

Barker Minerals' trenches (Figure 4a) have exposed zones up to 10 m thick of semimassive sulphide containing 20-50% pyrite and/or pyrrhotite at its Ace VMS exploration project (Payne, 1998; BC Assessment Report). In the context of the presently accepted VMS models, this unit may represent the footwall of a VMS deposit. Two main alteration and mineralization assemblages were recognized in trenches. The first consists of semi-massive to massive sulphide dominated by granular pyrite intergrown with abundant dark green chlorite and much less abundant sericite and quartz. The other consists of felsite containing 20-30%, very finegrained, disseminated pyrrhotite. Both types of altered rocks contain anomalous concentrations of base and precious metals.

Diamond drill hole 98-03 (dipping -45°) intersected a stratiform, mineralized layer (Figures 4a and 4a-2). The intersection was 0.75 m long, and contained two massive sulphide intersections, 0.25 m and 0.20 m long, separated by an intersection of calcite 0.30 m long. Diamond drill hole 98-07 (dipping -45°) intersected semi-massive sulphide mineralization for an intercepted length of 0.36 m. The massive sulphide mineralization is composed of massive sulphide minerals of iron, copper and zinc, and carried small amounts of silver and gold. (Table 5c).

Two of the holes drilled during 2002 intersected significant sulphide mineralization near the top of the felsic volcanic rock interval. Ace-02-03 intercepted 3.3 metres of semi-massive to massive sulphide mineralization with anomalous Cu/Pb/Zn metals. Mineralized felsite extended an additional 69 metres down hole below the strongly mineralized layer (Table 5c).

The volume and grade of the mineralization have yet to be determined.

#### Frank Creek VMS showing (BC MinFile 093A 152)

During 1999, a trench excavated in a zone of weathered massive sulphide boulders near a culvert 2.2 km up the "D" logging road of the Frank Creek project area (Figure 1, project area #4) exposed a stratiform, massive sulphide layer at least 1.2 m thick over a strike-length of 10 m (VMS showing in F-1 target area shown in Figures 5a, 5b, 5c, 8a and 9). The attitude of the layer (strike 167°, dip 32°) is sub-parallel to that of the major foliation (S2) in the surrounding Additional boulders containing massive sulphide and stringer-style sulphide rocks. mineralization were found along strike as far as 150 m away. Reconnaissance VLF and Mag geophysical prospecting indicated the potential presence of a conductor under the D Road. Assay results of grab and chip samples collected from the boulders and outcrop (Table 2) suggest zoned-type, massive sulphide mineralization. During 2000, one chip sample (2306) was collected from a pod of magnetic massive sulphide 25 cm thick located stratigraphically beneath the main massive sulphide layer. Trenching during 2002 exposed small massive sulphide lenses approximately 70m along strike to southeast of the discovery outcrop. Along with the mineralized exposure in TR-BW-10 excavated earlier some 375 metres to the NW of the discovery outcrop, this exposure extends the known strike length of the mineralized zone to 425 metres. The mineralized zone is open in both directions to the north and south.

The volume and grade of the bedrock VMS mineralization have yet to be determined.

Float boulders mineralized with massive and disseminated base metal sulphides (predominantly sulphides of iron) occur locally. Three chip samples, collected from heavily mineralized boulders located in the placer area one km downhill and downstream (F-8 target area), contain anomalous concentrations in base and precious metals, and elevated concentrations of As, Sb, Bi, Hg and Sn. The most probable source for these boulders is from an eroded part of an as-yet-undiscovered massive sulphide body located higher up on the west bank of Frank Creek. Such a body could be the southeast extension of the known massive sulphide body or another separate massive sulphide lens.

Prospecting during the 2002 field season on the F-7 target area resulted in the discovery of massive sulphide float boulders, samples of which contained concentrations of zinc up to 7.3% (Table 2). The F-7 target area has associated airborne and ground HLEM anomalies, and copper, lead and zinc soil anomalies were detected nearby.

Float massive sulphide mineralization has been identified on F-1, F-4, F-7 and F-8 target areas, bedrock massive sulphide mineralization has also been identified on the F-1 and F-4 project areas. Since massive sulphide deposits tend to occur in clusters, the Company's chances for discovery of additional massive sulphide mineralization at other target areas throughout the Frank Creek project area may be enhanced.

### Big Gulp showing (BC MinFile 093A 151)

This mineral occurrence located within the F-4 target area of the Frank Creek project area (Figure 1, project area #4; and Figure 8) is comprised of sulphide-rich lenses in metamorphosed, altered, now ankeritic, fine-grained tuffaceous sedimentary rocks of original andesitic basalt composition. Chemical analysis of a composite grab sample collected during 1999 yielded results as 4.7% Zn, 600 ppm Cu, 1,520 ppb Hg, 435 ppb Ag, 205 ppm Cd and 29 ppm Pb (Payne, 2000; BC Assessment Report). A grab sample of this mineralization (#226802) collected by INCO personnel assayed 8.27%Zn and 791 ppm Cu, with traces of Pb and Ag. The volume and grade of the mineralization have yet to be determined.

#### Sellers Creek showing (BC MinFile 093A 131)

Sulphide minerals occur in the Sellers Creek showing (Figure 1, project area #5; Figures 8, 11a and 11b) as semi-massive and stringer mineralization in float and bedrock of altered intermediate to mafic metamorphosed volcanic rocks (Payne, 2001; BC Assessment Report). Sulphide minerals include pyrite, pyrrhotite, chalcopyrite, sphalerite and galena. Geophysical surveys outlined significant, coincident magnetic and conductive anomalies near the discovery area and an area of Cu, Pb and Zn soil geochemical anomalies. The significant results of Barker Minerals' rock sampling here are given in Table 4 of this report. The volume and grade of the mineralization have yet to be determined.

#### Comin Throu Bear showing (BC MinFile 093A 148)

At this location within the Black Stuart project area (Figure 1, project area #2), galena and barite (sedimentary or diagenetic mineralization) and quartz veins containing galena, sphalerite and possibly tetrahedrite occur within a dolostone breccia. The volume and grade of the mineralization have yet to be determined. The Company has not sampled this mineralization.

# Peacock showing (BC MinFile 093A 133)

The Peacock showing consists of several quartz veins up to about one meter wide in silicified schist. These veins, which strike to the north and dip steeply to the east, are weakly mineralized with galena, sphalerite and pyrite, with associated anomalous concentrations of gold and silver. According to BC government maps (Report of Minister of Mines (1926), page A178), the showing is situated within Barker Minerals' Rollie project area (Figure 1, project area #10). It is thought that the new Besshi-type VMS mineralization described recently in this area by the BC Geological Survey may be related to this old mineral showing, now re-discovered.

The volume and grade of the mineralization have yet to be determined.

### *Trump showing* (BC MinFile 093A 154)

Quartz veining occurs in both argillite and andesite units, but four mineralized quartz veins are hosted by phyllitic argillite. Mineralization consists of discontinuous blebs of argentiferous galena and disseminated pyrite in the quartz veins. Disseminated pyrite also occurs throughout the argillite. Sericitic alteration halos up to 3 meters across are associated with the galena-bearing units. Sample # 98-66 collected by Barker Minerals yielded 56.6 oz/st Ag, 0.55% Bi, 0.019 oz/st Au, and 54% Pb, and Sample # 98-69 yielded 36.5 oz/st Ag, 0.35% Bi, 0.023 oz/st Au and 37.6% Pb (Payne, 1999; BC Assessment Report). The volume and grade of the mineralization have yet to be determined.

## Item 12: Exploration

## Ace VMS and Vein Gold Project

During 1993, at the outlet of a culvert on the "F" spur, a branch of Weldwood's "8400" logging road (Figure 1, project area #1; and Figure 4a), a grab sample of sand collected by Louis Doyle (possibly contaminated by another collected 2 km down the road) assayed 129 g/t gold (Lammle, 1996; BC Assessment Report). At the end of October, Doyle staked the Unlikely I and Unlikely II mineral claims on the potential source area. During November of the same year these claims were vended to a newly formed company, Barker Minerals Ltd.

During 1994, the Ace mineral claims were staked around the Unlikely claims on the north-facing slope of Mount Barker. Prospecting, reconnaissance geological mapping and rock sampling, line cutting and soil geochemical sampling conducted during the summer of 1994 helped to locate many glacially transported cobbles and boulders comprised of vein quartz, quartz-pyrite-pyrrhotite and/or semi-massive to massive iron-rich sulphides (Lammle, 1996; BC Assessment Report). Many of the boulders of quartz-rich veins and massive sulphides in the boulder field are subrounded to subangular. Many of the nearby coarse blocks of country rocks are distinctly angular. These features suggest that the bedrock source of the boulders is probably close by, possibly beneath glacial till deposits located up-ice (opposite direction of the flow ancient glacial ice) from the present locations of the boulders.

The main boulder field, along Weldwood's main "8400" haul road from km 8423 to km 8431, is 8 km long and several hundred metres wide (Figure 4a and Figures 6a and 6b). Many of these boulders are comprised of quartz vein material with minor to moderately abundant amounts of one or more of tourmaline, sphalerite, chalcopyrite, galena and graphite. Grab

samples collected from many boulders contained significant concentrations of gold and/or base metals. The average of 53 widespread float boulders comprised of sulphide-bearing quartz veins was 3.1 g/t Au, with concentrations ranging up to 29 g/t Au (Lammle, 1996; BC Assessment Report) (Figure 6b). Many of the higher-concentration gold samples contain significant concentrations of lead (1000-2000 ppm), bismuth (100-2500 ppm), selenium (20-50 ppm) and Te (10-34 ppm). Several pyrrhotite-rich massive sulphide boulders contain 3-16% Zn+Pb and up to 3 oz/t Ag and stringer boulders up to 4.1% Cu. Precious and base metals have been, and continue to be, the major focuses of exploration.

The 1995 program included prospecting, line cutting, geochemistry, geophysics and geology. This expanded the database and identified geophysical and geochemical targets (Lammle, 1996; BC Assessment Report).

During 1996, Barker Minerals staked 2,590 claim units around the Ace project area and performed limited trenching and geological mapping on the Ace project area (Lammle, 1997; BC Assessment Report). Regional stream sampling and magnetometer surveys were conducted on these claims surveys; this resulted in the discovery of the Big Gulp mineral occurrence of sulphide rich lenses.

A test I.P. Survey was conducted on the central part of Doyle's boulder field by Scott Geophysics of Vancouver, B.C., to improve definition of geophysical targets outlined by the 1995 magnetic and VLF-EM studies (Scott, 1996). Several shallow, discrete targets have been outlined, mainly trending parallel to the regional stratigraphy and mainly indicated represented by coincident resistivity lows, chargeability highs and mag highs (Figure 4a, see resistivity low).

An experimental "E-Scan" 3-dimensional resistivity survey was done by Premier Geophysics of Vancouver, B.C., on part of the Ace (Kloo) grid southeast from the GSC2 fault on lines spaced at 100 m (Shore, 1997). The survey outlines a prominent near-surface resistivity low centred at 10E-36S that extends to depth (Figure 4b).

Results of the 1995 and 1996 GSM-19 magnetometer surveys are shown in Figure 5. The survey defined several, narrow, linear, near-surface anomalies associated with areas of high chargeability. Some magnetic anomalies occur in a circular zone about a magnetic low in the Ace 86 claim in the central part of the property. This low coincides with moderately anomalous values in gold, arsenic and boron in soil samples. As well, this area contains a circular area containing sinuous and irregular VLF-EM high readings.

In 1995 and 1996 on the Ace grid, 4,420 soil samples were collected from the top of the "B" soil horizon, or as close to that horizon as could be determined (Lammle 1996, 1997; BC Assessment Reports). In general, the top of the B horizon was reached at depths between 0.2 and 0.7 m. Figures 4c, 4d and 4e show the results of soil studies for Cu, Pb and Zn. Threshold concentrations used were as follows: Cu - 50 ppm, Zn - 100 ppm, and Pb - 25 ppm. The 1996 results compliment the patterns in the 1995 survey results, and show the more extensive nature of the Pb and Zn anomalies situated along the northern margin of Doyle's boulder field between the GSC-1 and GSC-2 faults.

During October, 1996, preliminary excavator/backhoe trenching in and near Doyle's boulder field was conducted. Thirty-six trenches totaling 260 m were excavated (Figure 4a.) The average depth was 4 m, and a few trenches reached 5.5 m in depth. These exposed bedrock at scattered points within the central part of the boulder field. Acme Analytical Laboratories analyzed 107 grab specimens of host rocks and mineralized zones by ICP, whole-

rock and hydride methods. Gold concentrations in rock samples collected from four trenches are anomalous. Two grab samples collected from Trench 30 near the "F" road, contained 1065 ppb and 1386 ppb Au. Grab samples of two siliceous rocks collected from Trench A contained 296 ppb and 77 ppb Au. Two grab samples collected from Trench G contained 213 ppb and 50 ppb Au. Concentrations of gold greater than trace correlate positively with Cu, Pb, Fe, Te and SiO2, and to a lesser degree with As, Bi and Hg. A negative correlation exists between Au and Zn.

During 1997, surface mapping was begun in an area of 2 sq. km in the core of Ace project area. Detailed geological mapping and sampling were conducted in 20 trenches totaling 1084 m in length and in 46 test pits (Payne, 1998; BC Assessment Report). The average depth was 4 m, and a few trenches reached 5.5 m in depth. Anomalous concentrations in rock samples collected from these trenches are shown in Table 1.

The 1997 program shows the continuity over a length of a few km of a belt of metamorphosed, felsic volcanic rocks dominated by plagioclase, and containing 1-5% disseminated pyrite and/or pyrrhotite. In this belt, trenches have exposed zones up to 10 m thick of semi-massive sulphide containing 20-50% pyrite and/or pyrrhotite. In the VMS model, this unit is in the footwall of the massive sulphide deposits. Less abundant units include muscovite-quartz, quartz-muscovite-biotite schist, and slightly graphitic phyllite. In the felsic volcanic unit, two main alteration assemblages were recognized in the field. The first consists of semi-massive to massive sulphide dominated by granular pyrite intergrown with abundant dark green chlorite and much less abundant sericite and quartz. The other consists of felsite containing 20-30% disseminated pyrrhotite. Both types of altered rocks contain anomalous values in base and precious metals.

From the Ace project area, 433 rock samples were collected, of which 343 were analyzed by ICP, whole-rock and Au-assay methods. From the remainder of the property, 151 rock samples were collected, of which 27 were analyzed by ICP, whole-rock and Au-assay methods. Petrographic examinations were made on 49 rock samples collected from the surface of the Ace project area and 7 from various locations in the eastern half of the property.

During the stream-sediment (silt) survey, 201 samples were collected from the Ace project area and analyzed, and 130 samples were collected from the remainder of the property and analyzed. During 1997, 336 soil samples, which had been collected from a grid on part of the Ace project area in 1996, were analyzed. As well, 30 soil profiles at various locations were logged, sampled and analyzed.

At the west end and northeast corners of the Ace grid, 31 km of additional grid lines were cut. The location of the grid cut during previous exploration was partly rectified by surveying junctions of grid lines with roads and with the Little River. This work continued into 1998. On the Ace project area, geophysical surveys included 11.9 km of magnetometer surveying and 8.7 km of beep-mat surveying.

During 1998, geological mapping continued and seven diamond drill holes (Figures 4a, 4a-1 and 4a-2) totaling 1260 m were drilled in the center of the Ace project area (Payne, 1999; BC Assessment Report). The results were used to help identify a VMS environment containing massive sulphide mineralization as indicated by three intersections of massive and semimassive sulphide mineralization measuring up to 0.36 m at or near the top of a pile of felsic volcanic rocks reaching 81.5 m thick (see Item 13: Drilling, this report). A footwall alteration zone that extends up to a few tens of metres below the massive sulphide zones contains
geochemically anomalous concentrations of base metals and precious metals. Forty-five polished thin sections from drill core were examined.

During 2000, 42 km of new grid line were cut and Max-min HLEM surveys (57.5 km) and magnetometer surveys (42 km) were conducted by Peter Walcott and Associates, Vancouver, B. C., resulting in the detection of three new indicated conductors A, B and C (Figure 4a). The HLEM survey indicated one major east-west trending conductor (Conductor A) 1200 m long and open to the east. Conductivity is poor to moderate. It is associated with a magnetic high on the south side of a broad magnetic low. A one-line, broadly indicated conductor (Conductor B) of poor to moderate conductivity is indicated at the northwest corner of the grid and extends off the grid. It is coincident with the east end of the resistivity low located in the1996 survey of the area to the west. Conductor C is indicated as a weak electro-magnetic anomaly situated near the end of two grid lines 200 m north of indicated Conductor B.

Magnetometer readings were taken over the entire grid at 25 metre intervals on lines spaced 100 m apart. The locations of base lines and several other grid points were determined by GPS. The results of the magnetometer survey correlate well with previous data generated by Barker Minerals in 1996. Broad variations in magnetism trend east-west and probably reflect differences in bedrock lithology, which also trend in that direction. A few local dipoles may represent small bodies of a magnetite-bearing rock such as diorite. Sixteen rock samples were collected from the Ace project area and assayed (Payne, 2001; BC Assessment Report).

Barker Minerals oriented and supported a study of glacial till on the Ace project area being conducted by Peter Bobrowsky (2000) of the British Columbia Geological Survey, with the goal of determining the direction(s) of ancient glacial ice movement in order to assist with locating the bedrock source of mineralized boulders found in previous programs (Figure 6a).

During 2001-2002, the Company conducted limited geophysical survey work (Walcott, 2002) comprising 13.4 km vlf-em, 11.8 km gravity, and 21.3 km mag (Figure 4a) mostly in preparation for the 2002 drilling program, the results of which are described in Item 13 (Drilling), this report. Electromagnetic surveying located previously unknown conductors on the Ace grids. Residual gravity anomalies were obtained over EM conductors on widely spaced profiles, suggesting that mineralization could be a partial causative source of those conductors (Walcott, 2002).

#### Frank Creek VMS and SCR Projects

During 1996, Barker Minerals staked 2,590 claim units and conducted regional stream sediment sampling and magnetometer surveys; this resulted in the discovery of the Big Gulp mineral occurrence of sulphide lenses (Lammle, 1997; BC Assessment Report).

During 1999, after staking the immediate area of the Frank showing, geological mapping and lithogeochemical sampling were conducted in the centre of the Frank Creek area. When numerous pyrite-rich samples were discovered by Barker Minerals personnel while prospecting above an old trench that contained abundant ferricrete, further exploration of this area was added to the program then underway. The prospecting examination in the near vicinity of the trench was extended. This resulted in the discovery of many boulders of massive sulphide located above a culvert situated 150 m east of the trench along side of the D-Road at 2.2 km up the D road. A trench that was excavated near the culvert exposed a 1.2-m-thick massive sulphide layer over a length of 10 m (Payne, 2000; BC Assessment Report) in the F-1 target area shown in Figures 5a, 5b, 5c and 8a. Significant results of rock sampling are presented in Table 2 of this report. Additional boulders of massive sulphide and stringer-style sulphide mineralization were found up to 150 m away along strike. Reconnaissance VLF and magnetometer geophysical prospecting indicated the presence of a potential 40 m wide conductor under the D-Road.

The massive sulphide samples collected from the Frank Creek showing and placer boulders found approximately 1.3 km downstream present a wide variation in composition, potentially reflecting the possible presence of a strongly zoned deposit. Such variation is typical of many VMS deposits in the world. Most notable are those samples containing concentrations of Ag greater than 14 oz/t and Pb concentrations ranging between 8 and 15.4%. These also contain Cu concentrations in the 0.3-0.6% range and Zn concentrations in the 1-5% range, and some are anomalous in As (1000-8000 ppm), Sb (300-600 ppm), Bi (55-285 ppm) and Se (50-195 ppm). Samples of the placer boulders are similar but contain much lower concentrations of Ag (2-4 oz/t) and Pb (1.9-4.5%), and containing anomalous Sn (300-500 ppm) and concentrations of Zn up to 5.4% and Ba up to 3% (Formosa 1989). Two massive sulphide samples and two from the stringer zone are rich in Cu (1.7-7.4%); these contain 0.5% Zn and One grab sample collected from the massive sulphide outcrop by an minor Pb and Ag. independent mining company contains 8.2% Zn (Table 2; sample #226808). Many samples carry anomalous concentrations of Au (200-450 ppb).

Several samples contain 10-25% CO₃ as calcite and dolomite; this is probably secondary in mafic rocks, but may be, in part at least, primary in phyllite and shale. Carbonate is not abundant in the felsic lapilli tuff, quartz monzonite, or quartzite. Phosphate is very abundant in two samples that are intermediate between shale and phyllite. The Ti/Zr ratios for quartzite, felsic lapilli tuff and quartz monzonite are low, relatively uniform and similar. Those of phyllite and shale are moderately higher and more variable. Mafic rocks have very high and fairly uniform ratios of Ti/Zr, which are high mainly because of a very high Ti content. Barium and potassium are unusually high in the mafic rocks in comparison with normal mafic rocks; this may be the result of potassic metasomatism.

During 2000, prospecting by Barker Minerals personnel resulted in the discovery of the SCR semi-massive sulphide occurrence (Figures 8a, 11a and 11b) located 4 km west of the Frank Creek Project (Payne, 2001; BC Assessment Report).

Surface geological mapping of an area of about 9 km² encompassing the Frank Creek and SCR project areas was conducted by J. G. Payne, Ph . D. The centre of the Frank Creek project area had been mapped during 1999. Geological mapping conducted during 2000 was outwards from the initially mapped area.

Thirty-five rock samples were collected and analyzed from the Frank Creek and SCR properties. The significant results of this work are presented in Table 4 of this report. Petrographic examination was performed on 27 rock samples and 7 massive sulphide samples collected from outcrops, most of which were collected within the Frank Creek project area.

Aggregate lengths of grid line cut in 2000 were: 88 km at Frank Creek Project and 17.9 km at the SCR Project. Magnetometer readings over the entirety of both grids were recorded at 25 m-intervals on lines spaced 100 m apart. On the Frank Creek grid, 39.5 km of HLEM geophysical surveying were completed and 19.9 km were completed on the SCR grid. The HLEM survey was conducted on portions of the grids by using a dipole separation of 100 m on the Frank Creek grid, with local areas of detailed survey conducted at 50-m spacing on lines spaced 100 m apart. The HLEM survey on the SCR project was conducted using a dipole

separation of 200 m. The locations of base lines and other key locations were determined by GPS surveying.

During 2000, grids were cut on Frank Creek and SCR areas and ground HLEM and magnetometer surveys were conducted (Walcott, 2000). Previous studies had outlined a coincident VLF-EM and magnetometer airborne anomaly associated with a strong base-metal geochemical anomaly in soil and stream-sediment samples in the area of the massive sulphide outcrop.

The magnetic contrast on the Frank Creek grid is low. Despite this, the magnetic patterns mimic the bedrock geology in some areas. Intermediate to volcanic rocks have moderately higher magnetic susceptibilities than the black argillite and siliceous siltstone unit.

The HLEM survey defined several poor to moderate HLEM indicated conductors in the Frank Creek area (Figure 9). Most are shallow and dip steeply. Indicated conductors A and B trend northwesterly east of the massive sulphide outcrop and are located stratigraphically just above the prominent quartzite-limestone marker that is exposed in Frank Creek canyon. The presence of Cu-rich stringer sulphide outcrops stratigraphically above the massive sulphide outcrop suggests the possibility of stacked massive sulphide deposits and makes the indicated Conductor A an excellent target for exploration for a massive sulphide deposit. Indicated Conductor D dips steeply. Indicated Conductors E, F, G, J and K are associated with the black argillite-siliceous siltstone unit below the intermediate volcanic rocks. Indicated Conductors A, B, C, D, E, F, G, J and K are associated with intense, coincident Cu-Pb-Zn soil anomalies (Figure 10).

Indicated Conductors H and I are anomalies that occur near the Big Gulp showing (F-4 target area, Figure 9) and are open to the west in an area containing no outcrop. One group of HLEM anomalies is associated with a stratigraphic unit of black argillite and quartz siltstone located structurally just below the volcanic rocks. Another, with a coincident soil base-metal anomaly, is in the altered volcanic rocks slightly higher on the ridge. Some of these anomalies are open at one or both ends. More work will be required to define them more completely.

In the SCR grid area, the magnetic contrast is 3.5 times higher than in the Frank Creek grid area, with a relief of 700 nanoteslas (Figure 11a). A 300-m-wide mag high that trends northwest correlates with the south side of a rib of Quesnel Lake gneiss. A narrower mag high trends in the same direction further to the south. Two moderate HLEM indicated conductors trend across the grid in the same orientation as the magnetic anomalies and one (Conductor A) is coincident with Cu/Pb/Zn soil anomalies (Figure 11b). Indicated Conductor A is narrow, presents poor to good conductivity and is associated with a strong magnetic feature. Indicated Conductor B is a narrow anomaly of poor to moderate conductivity paralleling indicated Conductor A, located to the southwest.

From the SCR area, fifteen rock samples were collected from surface outcrops and boulders of semi-massive sulphide. Anomalous results, as determined by non-statistical consideration of the data, are shown in Table 4, with anomalous concentrations in bold type.

Many of these are silicified intermediate volcanic rocks, some of which contain disseminated to semi-massive sulphides dominated by pyrite. A few samples carried anomalous concentrations of one or more of Cu, Zn and Pb, while a few carried anomalous concentrations of one or more of Co, Bi, Se and Sn. Samples SCR-7 and SCR-7a carried

anomalous concentrations of Pb and Zn, but contain only minor concentrations of pyrite.

During the period 2001 - 2002 the Company continued prospecting, geological mapping, geophysical surveys, trenching and bedrock sampling, and began diamond drilling at the Frank Creek VMS project, initially outlining a mineralized zone extending 425 m from the Frank Creek VMS discovery outcrop area northwesterly to Trench BW-10 (Figures 5a and 5b).

Electromagnetic (EM) surveying (Walcott, 2002) extended previously located conductor axes on the Frank Creek (Big Gulp) and Sellers Creek grids. While the Frank Creek VMS discovery outcrop showing was unresponsive to electromagnetic and induced polarization techniques, an area presenting anomalous I.P. chargeability responses was observed just east of the showing (Walcott, 2002). Preliminary gravity profiling on the Frank creek grids over the showing area and previously located EM conductors there failed to show any excess mass associated with them (Walcott, 2002). However, the geophysical contractor expressed concern over the required terrain corrections to the data, given the coarseness of the available terrain data. Re-visiting the data with additional control on the grid areas. Thus, the present data are incomplete, and it may not be appropriate at this point to draw any conclusions regarding apparent lack of gravity anomalies at EM conductor locations traversed.

A series of excavator trenches tested several targets in and adjacent to the F-1 Target Area at the Frank Creek VMS project. Five exploratory trenches were excavated over a total distance of 289 metres up to 70 metres southeast of the discovery outcrop. Trench TR-BW-05 exposed the dark quartz eye phyllite host unit within which were found several small massive sulphide lenses within the projected strike extension of the mineralized zone exposed at the discovery outcrop. TR-BW-04 exposed copper stringer mineralization 60 metres southwest of the F-1 occurrence. Along with the mineralized exposure in TR-BW-10 excavated earlier some 375 metres to the NW of the discovery outcrop, this exposure extends the known strike length of the mineralized zone to 425 metres. The zone is open in both directions to the north and south. The significant assay results of bedrock samples collected from the trenches are presented in Table 2.

During the period 2001-2002 the company conducted prospecting, geological and geophysical exploration work at the SCR area, including 4.2 km Maxmin vlf-em geophysical survey, nine test pits and 35 float and bedrock samples analyzed (Figures 11a and 11b and Table 4).

## Cariboo Project

During 1996 Barker Minerals conducted reconnaissance geological mapping and rock sampling, with some grab samples returning results of up to 32.8% Zn, with 2.4% - 4.5 % Pb and 63 g/t (2 oz/t) Ag (Figure 8b, after Roach 1996). The zinc and lead sulphides display enrichment in Hg and Sb, and the zone shows other characteristics of an epithermal system such as overall phyllic and advanced argillic alteration, quartz-carbonate and carbonate stockwork, and crustiform banded massive sphalerite and galena (Roach, 1997; BC Assessment Report).

### Quesnel Platinum Project

During 2000, Barker Minerals staked several areas of coincident airborne magnetic anomalies, chromium/nickel/cobalt/gold stream sediment anomalies and mafic to ultra-mafic rocks. The areas staked are near reported occurrences of PGMs in placer concentrates as

known from previous unpublished studies and assay results from samples collected from local placer miners during 2000.

Barker Minerals collected and assayed 97 rock samples (Table 7) to confirm the presence of the favourable mafic to ultra-mafic rock types, which are host to PGM deposits in other areas of the world (Payne, 2001; BC Assessment Report). Prospecting by Barker Minerals' personnel resulted in the discovery of a Cu-anomaly in the Geremi Creek area.

Reconnaissance geological mapping and sampling were conducted over portions of these claims in order to identify and confirm the occurrences of mafic and ultramafic rocks. Thin-section petrographic examinations were made on six samples. Geological mapping and rock geochemistry confirmed and characterized the presence of mafic and ultramafic rocks in the property. Several samples collected from hematite-altered amygdaloidal mafic flow rocks are anomalous in Cu, Ag and Hg (Payne, 2001; BC Assessment Report).

During 2000, several reconnaissance ground magnetometer and VLF-EM surveys were conducted by Barker staff along roads, in order to confirm and locate more accurately the anomalies identified in previous airborne surveys. These confirmatory geophysical survey traverses were conducted near the locations of stream samples (Figure 2) that contained anomalous concentrations of PGE's *per* Rublee (1986). Several ground magnetic anomalies confirmed the results of the airborne survey. Several VLF-EM survey traverses show significant crossovers that should be followed up with more detailed geological and geophysical studies controlled by conventional cut grids. In several of the traverse profiles, magnetic anomalies coincide with VLF-EM crossovers.

During the period 2001 - 2002, the Company conducted GPS surveying of claim post locations in order to more accurately define mineral claims in this project area and to obtain required assessment work credits (Walcott, 2001 Assessment Report).

#### Item 13: Drilling

The Company has conducted two episodes of drilling at its Ace VMS and vein gold project (Payne,1998 and Wild, 2002) and one initial exploratory drilling program at it's Frank Creek VMS project (Wild, 2002)

#### Ace VMS and vein-gold project

Barker Minerals' initial diamond drilling program at the Ace project (1998: 7 holes, ddh 98-01 to ddh 98-07, totaling 1260 m) targeted felsic strata and geophysical anomalies (chargeability highs, resistivity lows and magnetic highs) located within a zone suspected to be underlain partly by felsic rocks having exploration potential for massive sulphide deposits (Payne, 1999; BC Assessment Report). The holes were drilled between the main trench area and Colleen Road (Figures 4a,4a-1, 4a-2). Summary drilling statistics are shown in Table 5a and Summary Drill Logs are shown in Table 5b. Most of the holes were drilled to the south, dipping at -45°, which is approximately perpendicular to the regional trend of the metamorphic foliation. Two holes were drilled more steeply at -60°and -70° in order to attempt to penetrate specific geophysical anomalies. In some instances, it appears that the holes were not long enough to have reached the intended geophysical targets.

All drill holes of the 1998 program, except 98-05, intersected felsite, whose thickness ranged from 3.5 to 81.5 m. As the holes were drilled perpendicular or nearly so to the regional

foliation, all thickness intervals are close to true thickness relative to the metamorphic event (Payne, 1999; BC Assessment Report). Because of the complex folding in the region, it is impossible to estimate true, pre-metamorphic thicknesses. Significant intersections and analytical results are presented in Table 5c. At the top of the main felsic section in DDH 98-03, a mineralized zone was intersected for 0.75 m, containing two intersections of massive sulphide mineralization, 0.25 m and 0.20 m long, separated by an intersection of calcite (probably limestone) 0.30 m thick. The massive sulphide mineralization carries apparently anomalous concentrations of Au, Ag, Cu, Zn, As, Se, Te, Sb, Bi, Mo and Cd, as determined by nonstatistical consideration of the analytical data. The footwall alteration zone below the massive sulphide is anomalous in many of the same elements, generally with smaller concentrations than in the massive sulphide. As well, the footwall zone carries anomalous concentrations of Mo. Anomalous metal concentrations in the footwall decrease moderately to rapidly away from the top of the section of felsic rocks. Deeper in the footwall, many samples contain anomalous concentrations of Ag, Mo and Zn. In the centre of the felsite section, hole 98-07 intersected semi-massive sulphide mineralization for 0.36 m, containing anomalous concentrations of Ag. Cu, Bi and Se. Above and below this, the rocks contain anomalous concentrations of Aq. Zn. Mo, Bi and Se. Concentrations larger than 100 ppb Au, 500 ppb Ag, 200 ppm Cu, 70 ppm Pb and 150 ppm Zn are considered geochemically anomalous in this report.

During 2002, two diamond drill holes, ACE-02-01 and 02, were collared in the 16S Zone (Figure 4a-1). The first hole, Ace-02-01, tested a coincident max-min conductor and modest gravity anomaly and is located slightly up-ice from the high-grade (16.4% Zn/Pb) boulders found in previous programs. The top 49.0 metres consist of very siliceous quartz-muscovite schist and argillite. The next 10 metres consist of strongly calcareous marble, calc-schist, and argillite, immediately above a 6.5 metre section of "felsite". The felsite consists of plagioclase or albite with minor micas and quartz. The felsite in this area has concentrations in drill core up to 339 ppm Cu, 568 ppm Pb, and 156 ppm Zn. A narrow intercept (.07 metres) of Au/Bi/Te/W quartz vein assayed 745 ppb gold. Follow up geophysical surveys indicate that the possibility exists that this zone was faulted off where drilling occurred; further interpretation is required to determine the next program for this zone (Wild, 2002).

The second hole, Ace-02-02, tested a magnetic high anomaly but failed to explain the source of this anomaly. This strong, large magnetic anomaly is located up-ice from a zone of Au/Bi/Te/W quartz sulphide boulders that have gold concentrations up to 11 grams per tonne (g/t). It is anticipated that the next phase of drilling will test this high priority target for its economic gold potential. A 7.5 centimetre wide quartz vein at 159.6 metres near the end of hole Ace-02-02 assayed 692 ppb gold (Wild, 2002).

The other three drill holes in the Ace Project area, Ace-02-03 to 05, tested the 5N Zone (Figure 4a-2). All three intersected at least 40 metres of "felsite", which hosts VMS mineralization elsewhere on the property. The fine-grained nature of the rock, its intimate relationship to a series of thin marble bands, and almost regional extent suggest that it may be an exhalative horizon and an excellent target horizon for VMS deposits (Wild, 2002).

Two of the recent holes intersected significant sulphide mineralization near the top of the interval. Ace-02-03 intercepted 3.3 metres of semi-massive to massive sulphide mineralization with anomalous Cu/Pb/Zn metals. Mineralized felsite extended an additional 69 metres down hole below the strongly mineralized layer.

In drill hole Ace-02-04, a ten metre interval of mineralized felsite between 43.8 - 53.8 metres, was highly anomalous for base and precious metal with concentrations up to 663 ppm Cu, 855 ppm Zn, 704 ppm Pb and 575 ppb Au. This hole was collared within 400 metres of a

cluster of previously identified high grade quartz vein float boulders assaying up to 29 g/p/t Au, and zinc-lead mineralization (10% Zn, 2%Pb) in bedrock.

The last hole, Ace-02-05, was collared on L5N at 6+25W and drilled vertically to test a coincident ground magnetic high and subtle gravity anomaly. It was collared in the felsite unit, likely below the sulphide horizon (Wild,2002).

Felsic volcanic rocks encountered during this drilling program consist mainly of extremely fine-grained plagioclase with minor biotite and/or muscovite. Many contain minor to abundant replacement and recrystallized patches of coarser grained plagioclase, with or without minor to abundant quartz, ankerite, muscovite and pyrite. Some surface samples, previously described as metamorphosed diorite, were reinterpreted as recrystallized and replaced felsic volcanic rocks. Some felsic volcanic rocks contain zones up to several metres wide of weak to strong biotitic alteration, some of which occur in broad, diffuse envelopes about quartz-sulphide veins. In these zones, pyrrhotite is replaced by coarser-grained porphyroblasts and lenses of pyrite.

Veins containing anomalous metal concentrations are of three types. Quartz-pyrrhotite veins in DDH 98-01 carry anomalous concentrations of Cu, Ag and Bi. Quartz-pyrrhotite-tourmaline veins in DDH 98-02 carry anomalous concentrations of Au, Ag, Cu, Zn, Bi, Se and Te. A quartz-pyrrhotite vein in DDH 98-07 carries anomalous concentrations of Au, Ag, Cu, Pb, Bi and Se. Quartz (+pyrrhotite) veins intersected in DDH02-01, DDH 02-02, DDH 02-03 and DDH 02-04 carry anomalous metal concentrations of Au, Ag, As, Sb, Bi, Te, W, Mo and TI with concentrations of gold up to 764 ppb over 7 cm in DDH 02-01, 692 ppb over 7.5 cm in DDH 02-02 and 526 ppb over 25 cm in DDH 02-04. All six samples from DDH02-01 had geochemical patterns anomalous in Au, Ag, As, Sb, Bi, Te, W, Mo and TI. A zone from 42.5 metres to 58.6 metres in DDH02-04 was anomalous in Au, Ag, As, Sb, Bi, Te, W, Mo and TI. Numerous barren quartz and barren quartz-chlorite veins are present in drill core in many rock types and are particularly abundant in some intervals of quartzite and quartz-rich schist.

Comparison of drill-core data with previous analyses of boulders indicates that the massive sulphides and auriferous quartz-sulphide veins in the boulders and corresponding materials in the drill cores may have come from the same environment. This and the general angular appearance of the boulders and other large blocks of bedrock with which they occur in the overburden suggest strongly that the boulders are from a nearby bedrock source, probably slightly up-ice from their present locations.

#### Frank Creek VMS Project

During 2002, the Company conducted an initial exploratory diamond drilling program (7 ddh, 813m in total) in the vicinity of the Frank Creek massive sulphide discovery outcrop and nearby geological and geophysical targets (Table 6a;Table 6b). All of the initial drill holes were located within the F-1 Target Area (Figures 5a, 5b and 8a).

The drill core obtained during this initial exploratory program contains intervals of Cu-Zn-Pb (+/- Au, Ag) massive sulphide mineralization that are significant examples of ore formation processes having occurred on the property.

The mineralizations encountered in the core (Table 6c) are similar to that exposed at the discovery outcrop where a massive sulphide layer is exposed for some 3.5m length and 1.5 metre width (Lane 2000; Hunter Dickinson, 2000; and Hudson Bay Exploration & Development

2001). There, concentrations of metals from grab samples of the outcrop massive sulphides ranged up to 4.4% Cu, 8.2% Zn, 1.1% Pb, 14.8oz/t Ag and 854 ppb Au. A chip bedrock sample across .77 metres exposed width assayed 2.1% Cu, .34% Zn, .11% Pb and 69 ppm Ag.

This Besshi-type VMS polymetallic mineralization occurs in drill core in significant intervals (up to 0.4 metres) and contains significant concentrations (up to 3.4% Zn, 2.1% Cu, 2.8 oz/t Ag, 0.53% Pb and 746 ppb Au) within larger weakly mineralized units up to 52 metres wide in drill core intercepts that contain widespread disseminations of these metals.

Four of the 6 holes tested the Frank Creek mineralized horizon, the other two tested the immediate structural footwall, to a wide, conductive graphitic fault zone. FC-02-01, 05, and 06 intersected disseminated to semi-massive sulphides, dominantly pyritic, near the projected location of the mineralized horizon, downslope (northwest) of the original Frank Creek (F-1) Showing. FC-02-03 tested under the showing and intersected approximately 50cm of pyritic massive sulphide similar to that in the showing, caught in a large gougy fault zone. FC-02-02 and 04 tested strong max-min conductors and intersected significant graphitic shear zones in carbonate-altered metasedimentary rocks.

## Item 14. Sampling Method and Approach

## Rock samples

Reconnaissance rock samples were all grab samples. Outcrops and boulders containing sulphide mineralization were sampled by grab or chip sampling. All exposures of bedrock in trenched areas that contain sulphide mineralization were channel sampled. All drill core containing sulphide mineralization associated with the VMS targets was sawn in half with a diamond saw. One half of each sample interval was sent out for assay, while the other half was saved for future reference.

## Geochemical soil and stream-sediment samples

Soil samples were collected with grub hoe and trowel, from near the top of the "B" soil horizon, or as near to that horizon as could be reasonably determined under field circumstances. Samples were collected and placed in standard kraft paper envelopes manufactured for the purpose. The sample bags were labeled with the station and line. On return to base camp in Likely, the samples were air-dried in their bags prior to shipment to the lab. At the lab the samples were oven-dried, then sieved to -80 mesh and aliquots taken for testing.

Stream-sediment samples were collected by digging silt from the active steam bed, screening out coarse material in the field and sending the wet sample to the lab, where the -80 mesh fraction was obtained and analyzed.

## Factors to affect accuracy and reliability of samples

A few samples of drill core were from intervals for which drill recovery was significantly less than 100%. These include some of the intervals of massive sulphide.

## Sample quality and representation

Samples are of high quality and are representative of the population from which they

were collected.

#### Geological controls

Sampling of drill core from the Ace drilling programs was mainly from distinctive felsic volcanic rocks and massive sulphide, with a few samples from interlayered limestone near the stratigraphic top of the section. As the zone of mineralization was up to 80 m wide, sampling was done mainly at 1-metre intervals, except where significant geological contacts indicated that sample borders should be at such contacts, e.g., of the massive sulphide.

Sampling of drill core from the Frank Creek VMS initial drilling program was mainly from distinctive sediments and metasediments. A total of 300 samples were collected from the core by sawing marked intervals, bagging half the core from the interval and retaining the other half as a permanent core record. A total of 178 samples were collected from the Ace core and 112 samples from Frank Creek core. Samples and check samples were analyzed by Eco-Tech Laboratories (Kamloops, BC), Acme Laboratories (Vancouver, BC) and Chemex (Vancouver, BC) by standard ICP analysis, with Au, Pt, and Pd measured by fire assay. Cu, Pb, Zn samples above 10,000 ppm were analyzed by assay method. A suite of samples from a number of holes in both the Ace and Frank Creek project areas have also been analyzed for whole rock major elements, trace elements and rare earth elements in order to better characterize host rocks.

Significant sample results are shown in various tables comprising this report.

## Item 15. Sample Preparation, Analyses and Security

Core samples were cut and bagged at Likely under the supervision of John Payne, Ph. D., or Christopher J. Wild, P.Eng. Subsequently, the company re-sampled the core in order to obtain assay data on discreet features and intensely mineralized sub-intervals comprising the mineralized zones, and to facilitate additional whole rock chemical analyses. The samples were stored in a locked garage until shipment. Contract companies specializing in this type of work collected the geochemical exploration soil and stream sediment samples. Barker staff or contract geologists collected rock samples.

Barker Minerals Ltd. personnel shipped samples to the analytical laboratories.

Pulps, rejects and rock reference examples are stored at Barker Minerals' facilities in Langley. The drill core from the 1998 and 2002 drill programs is stored at the company's field camp in Likely, BC.

All assay and chemical analytical work was performed by certified laboratories. Acme Analytical Laboratories of Vancouver, B. C, performed most of the soil, stream and rock assays. Some check assaying was completed by Activation Laboratories in Ontario and Chemex of Vancouver. The results compared well.

## Fire assay

Traditional 30g lead fire assay followed by acid dissolution of the bead and ICP analysis of the resultant solution was used to determine gold, platinum, palladium in rock samples.

ICP

Normally Acme Laboratories provides a 30-element inductively-coupled plasma (ICP) analysis for soil and rock samples. The ICP method involves dissolving 0.5 grams of -80 mesh

sample in aqua regia (1hr @ 95°C), and the resulting solution is then aspirated into an ICP emission spectrograph, which determines the concentrations of the 30 elements. A standard "wet" geo-analytical method involving dissolution in aqua regia, extraction by MIBK and determination by graphite furnace atomic absorption spectroscopy was used to determine trace geochemical concentrations of gold in soil samples.

#### Ultra-trace ICP

Sample preparation and dissolution are the same as for standard ICP analyses. However, much larger splits are used, usually 10 grams. This allows analysis of a broader range of elements with much greater sensitivity and accuracy, using the same ICP emission spectrograph.

#### Hydride Method

Sample preparation and dissolution are the same as for ICP with 0.5 gram splits. As, Bi, Sb, Se, Te and Ge are then precipitated in a 50% ammonium hydroxide solution. After centrifuging, the precipitate is separated and re-dissolved in aqua regia. The hydrides of the analytes are then volatilized with borohydride solution, and determinations are made via the ICP emission spectrograph.

#### Whole rock analysis

Samples are dried and crushed to -80 mesh. Then a 0.2 gram sub-sample is placed in a crucible with  $LiBO_2$  flux, and melted during 25 minutes at  $1025^{0}C$ . The molten material is then dissolved in nitric acid, and the resulting solution is then aspirated into the ICP emission spectrograph for determination of the concentrations of major oxides and elements.

High-grade gold samples were analyzed by a second lab as a confirmation of the high-grade gold bearing nature of the samples (Table 8). Selected high-grade gold samples were examined by the Geological Association of Canada (Harris 1995), Dr. Payne (1994), and Dr. Skupinski (1994-5) whose petrographic reports confirmed the presence of gold and its associated minerals.

Occasionally, when high-grade gold results were obtained. Acme normally ran a repeat analysis of a sub-sample of the pulp of the sample.

Barker occasionally submitted duplicate samples in order to check the precision of the analytical work being performed. In these instances, a rock sample would be divided into 3 similar portions, with 2 going for analyses with different sample numbers to the same or different laboratories and the 3rd sample being stored for future reference or confirmation purposes.

The sampling, sample preparation, security and analytical procedures are adequate for the present stage of exploration of the property.

## Item 16. Data Verification

The author has verified locations of mineralization and important samples collected on the property or has relied on written reports of other professional geoscientists and engineers associated with the project from time to time. The Company has preserved the Certificates of Assay as issued by the accredited geo-analytical laboratories per each sample and test.

The analytical laboratories used standard reference materials and calibration solutions, repeat measurements on solutions and re-assays of pulps in order to insure quality control and

data verification in regard to chemical analyses. Occasional cross-check analyses were performed by other certified laboratories, and the results compared favorably (Table 8).

Certificates of Assay were issued in regard to all chemical analytical data and these are appended to the various Assessment Reports pertaining to Barker Minerals' exploration of the property as filed with the Mineral Titles Branch of the Government of the Province of British Columbia. These reports are listed in the references section of this report.

The geophysical surveys were conducted to industry standards by contracted professional geophysicists, including concurrent in-field checks on the validity of the data. Barker Minerals' staff have occasionally verified geophysical data *via* independent traverses with its own equipment.

Numerous samples were collected and analyzed independently by the Geological Survey of Canada (GSC), the British Columbia Geological Survey (BCGS) and several major mining companies as results of property reviews and visits, and the analytical results obtained independently compare well to Barker Minerals' results for similar material collected from the same locales.

#### Item 21: Interpretation and Conclusions

## General

The Barker Minerals VMS and Vein Gold exploration Projects have been visited and examined, in various degrees of detail, by numerous independent professional geo-scientists and engineers, some associated with major mining companies or the BC Geological Survey. They have relayed to Barker their views on the exploration potential of the property and Barker Minerals' management and performance. The following are verbatim comments that this author includes in this Report in order to more fully appraise the reader of other professionals' views on Barker's property and Projects.

## Charles R. Lammle, P. Eng. (1995):

"Realizing that he had made a good discovery, and that he was dealing with mineralization of complex mineralogy, he opened a line of communication for advice and support regarding the Ace property with senior provincial and federal government geologists. These geologists were solidly supportive, and results from the property continued to be encouraging."

Strathcona Mineral Services Ltd. (1998):

"Barker Minerals has assembled an impressive amount of information on the Ace and surrounding claims"

V. Preto, Ph. D., P. Eng., BC Geological Survey (1995): "Congratulations on the report and all the work that has been done - both excellent"

T. Hoy and V. Preto, Geologists, BC Geological Survey (1996):

"Three deposit types were observed on the tour: Au-quartz veins, carbonite-hosted Zn-Pb and besshi-style massive sulphide. We consider the massive sulphide potential the highest, mainly because of the size and regularity of both geochemical and geophysical anomailes and the amount of massive sulphide float."

Bob Lane, Geologist, BC Geological Survey (1996):

"I am especially interested in the Ace property, which I view as a significant new discovery-one that has ramifications for exploration in Downey succession rocks.

Bob Lane, Regional Geologist, Ministry of Energy and Mines

R. Lane and K. McDonald, Geologist, BC Geological Survey (2000):

"The Ace's host rock lithology and metal content suggest an affinity to well explored gold quartz veins of the Yanks Peak and Cow Mountain areas to the north. The geological setting, style of mineralization and geochemistry suggest an analogy to the "Plutonic-associated" or "Pogo-Type" Gold vein model."

British Columbia Mineral Exploration

Review 2000

Information Circular 2001-1

Ministry of Energy and Mines (Tom Schroeter)

"In the Likely area, 75 kilometres northeast of Williams Lake, Barker Minerals Ltd. continued geological mapping and geophysical surveys over its Frank Creek and Ace volcanogenic massive sulphide showings. Although the felsic rocks at Frank Creek are different from those at the Ace showing to the northeast, the proximity of the two zones in the Barkerville Terrane enhances the potential of discovery of more VMS deposits within the belt".

## R. MacDonald, Teck Exploration Ltd. (1999):

"High grade assays from the Frank Creek property visits and Barker Minerals' exploration results from the Ace and other prospects underscore the significant untapped exploration potential of the Likely area. Furthermore, we are encouraged by the variety and widespread distribution of base and precious metal mineralization over the entire property package."

## Robert C. Bell, INCO Technical Services (2000)

"We appreciate the excellent cooperation that we have received from you and your team in aiding us in our review, and commend you for the highly professional manner in which you have carried out your exploration and compiled the resulting data."

## Ace VMS and Vein Gold Project

The Ace property is underlain mainly by a section of metamorphosed sedimentary and volcanic rocks. The most important sedimentary types are quartz-muscovite schist, quartz-chlorite-muscovite schist, quartz-rich schist and quartz-muscovite-biotite schist. In the eastern half of the property, garnet is common, especially in muscovite-rich and biotite-rich schist. Minor argillite, calcareous argillite and limestone are most common directly above the massive sulphide lenses. Deeper in the section on Barker Mountain and along Ishkloo Creek are minor amphibolite and biotite amphibolite.

A volcanogenic massive-sulphide environment is associated with metamorphosed felsic volcanic rocks along the trend of Doyle's boulder field, where many boulders containing gold-bearing quartz veins and gold-bearing massive sulphides have been found. Drill holes intersected a zone of metamorphosed felsic volcanic rocks up to several km long and 80 m thick. These felsic rocks are dominated by plagioclase with minor to moderately abundant quartz, muscovite and biotite.

According to very recent preliminary work (pers. com., Dr. Tim Barrett, Ore Systems Consulting, September 26, 2002), the host rocks of the Ace mineralization are relatively

metamorphosed and structurally deformed. They include a variety of quartz-muscovitechlorite biotite garnet schists, a pale plagioclase -bearing rock up to several tens of metres thick that has been previously referred to as "felsite", and minor argillite and marble. Lithogeochemical data indicate that the "felsite" in fact is compositionally similar to calc-alkaline andesite. However, due t o metamorphism and recrystallization, it is not certain if it represents a true volcanic rock or a clastic sediment such as greywacke. Amphibolites which probably represent mafic volcanic rocks are also present within 1-2 km of the Ace sulphide occurrence.

At the top of the main felsic section in DDH 98-03 is a zone 0.75 m thick, containing two intersections of massive sulphide mineralization 0.20 m thick and 0.25 m thick, separated by an intersection of calcite 0.30 m thick. The massive sulphide mineralization carries anomalous concentrations of Au, Ag, Cu, Zn, Bi, Se and Mn, as determined by non-statistical consideration of the analytical data.

A few massive sulphide samples collected from trenches in this zone contain up to 2% Zn. A similar zone of semi-massive sulphides 0.35 m thick occurs in the centre of the section of felsic volcanic rocks in DDH 98-07. Massive sulphide boulders containing large concentrations of Pb and Zn occur in the Colleen Road area, but their bedrock source has not been found.

In some strongly altered footwall rocks, the host rock was replaced completely by massive, fine-grained pyrite and dark green chlorite. Others contain 20-30% disseminated, very fine-grained pyrrhotite. Many altered felsic rocks contain anomalous concentrations of base metals and precious metals, in part associated with recrystallized and/or replaced patches dominated by one or more of plagioclase, quartz, ankerite and sulphides. Anomalous concentrations increase in footwall rocks near the stratigraphic top of the main felsic section. These patterns show characteristics of footwall rocks beneath a typical VMS deposit.

The drill cores contain a few important faults up to a few metres wide. Because of the wide spacing of the drill holes, these could not be correlated between holes. The moderate to high graphite content of many of these makes them potentially significant conductors.

Most of the geophysical anomalies obtained in earlier studies have yet to be tested or explained. The main geophysical and geochemical anomaly at the western end of the main trench area is open to the west in an area that is interpreted to be underlain by felsic volcanic rocks. This extends west of the massive sulphide occurrence in DDH 98-03. Vectors in the thickness of massive sulphides, intensity of alteration and geochemical anomalies and thickness of the felsic volcanic section indicate that the area west of DDH 98-03 may contain an important exploration target. Another exploration target is indicated by a broad geophysical resistivity anomaly situated northeast of the area of drilling (Figure 4a). On surface, this area contains rubble of felsic volcanic rocks and abundant boulders of quartz veins containing anomalous concentrations of base and precious metals. A third important target is the elongate HLEM anomaly in the southeastern part of the project area (Conductor A, Figure 4a).

Delineation of the "felsite" unit lead to the discovery of massive to semi-massive mineralization in the 5N Zone, an area that was extensively trenched prior to 1998. Three holes drilled into the zone in 2002 have defined the felsite package as a unit some 60-80 metres thick, possibly thickened by a series of tight to isoclinal folds. Immediately to the west in ACE-02-05 and the east in DDH-98-04, the unit breaks up into a series felsite layers, separated by weakly chloritic quartz-muscovite schists. In the 16S Area, ACE-02-01 was collared to test coincident max-min conductor and subtle gravity anomaly on line 16S. Wild indicated that both the conductor and gravity were caused by a 6.5-metre thickness of felsite with up to 10% pyrite and

pyrrhotite, however follow-up geophysical surveys suggest that this hole may not have tested the intended geophysical anomalies, as the zone may be faulted off. The follow-up geophysics defined potentially significant targets situated to the west and also possible faulted off extensions of the favorable horizon to the east (Walcott, 2002). Drill hole ACE-02-02, was collared immediately above the felsite and tested the footwall near a large ground magnetic high to the south. That anomaly was not adequately explained in the core. (Wild, 2002)

The felsite unit is reportedly made up of up to 80% plagioclase (Payne, 1998), although at least one sample was composed of mainly albite (Walus, 1997). The fine-grained nature of the rock, its intimate relationship to a series of thin marble bands, and almost regional extent suggests that it may be an exhalative horizon and an excellent target horizon for VMS deposits. Sulphide mineralization in 98-3, ACE-02-03, and ACE-02-04 is located near the structural top of the unit.

Gold-bearing quartz veins in this area occur in two main modes. The first are as early veins that were deformed strongly with the enclosing host rock. The second are as late crosscutting veins, many of which trend northeasterly. Many of the quartz veins occur in the same general area as the felsic rocks and boulders of massive sulphide.

The Ace project area has significant similarities to the Intrusion Related Gold System model setting as advanced by Lang, Baker, Hart and Mortenson (Society of Economic Geologists Newsletter #40, January,2000), as it contains geology and mineralogy similar to that of the Yukon and Alaskan settings that host a variety of intrusion related gold deposits (Lane, 2000) such as Fort Knox (158 Mt@ 0.83 g/t Au; Bakke, 1995), Brewery Creek (13.3 Mt @1.44 g/t Au; Diment and Craig, 1998), Dublin Gulch (50.3 Mt @ 0.93 g/t Au; Northern Miner, 1997), True North (16.8 Mt @ 2.5 g/t Au; Harris and Gorton). The newest and highest-grade discovery in the belt is the Pogo deposit (Smith et al., 1999; 9.98 Mt @ 0.52 oz/t Au). According to independent geologists of Teck Exploration Ltd., who expressed that they wish to continue close monitoring of the Barker projects, it is clear from the data that multiple mineralizing episodes are present throughout the property (pers. comm., R. Macdonald, Teck Exploration Ltd., December 1999).

## Frank Creek VMS Project

The Frank Creek area contains an important massive sulphide occurrence situated near the stratigraphic top of a fragmental, felsic volcanic rocks or feldspathic arkose. This overlies, in order, a section of black argillite and siltstone and an intermediate to mafic volcanic sequence of flows and fine fragmental rocks. Associated with the massive sulphide zone is a Cu-rich zone of stringer and replacement mineralization. The stratigraphic section is on the overturned limb of one of a set of major, southwesterly verging, F2 folds. All the rocks are metamorphosed, which has inhibited interpretation. The discovery of pillow structures in mafic volcanic rocks in Frank Creek indicates a sea-floor subaqueous environment, thereby enhancing the potential for further discoveries of massive sulphide deposits in this belt of rocks. The association of the Frank Creek massive sulphide and the Ace massive and stringer sulphide mineralization to volcanic rocks enhances the potential for discovery of additional VMS mineralization not only the Goose Range, but throughout the entire Barkerville terrane.

According to recent preliminary work (pers. com., Dr. Tim Barrett, Ore Systems Consulting, September 26, 2002), original stratigraphic relations and rock textures are much better preserved here than at the Ace VMS environment. Host rocks include quartz-eye-bearing sandstones, siltstones, shales, and minor mafic sills. Work is in progress to determine if the

quartz-eye-bearing sandstones represent volcanic crystal tuffs or clastic sediments. Pillow basalts are present 1-2 km south of the Frank Creek sulphide occurrence and basaltic volcaniclastic beds also outcrop in the area, although their stratigraphic position relative to the mineralization is currently uncertain. Nonetheless, the presence of extrusive rocks raises the possibility that mafic volcanism was occurring near the time of Frank Creek mineralization.

The massive sulphide outcrop, spatially related boulders and the Cu-rich stringer and replacement zone contain anomalous to potentially economic concentrations of Cu, Pb, Zn and Ag. Many samples are anomalous in Au and some contain anomalous concentrations of As, Bi, Cd, Hg, Sb, TI and Mo. Concentrations of As, Bi, Hg, Mo and Sb also are anomalous in streamsediment samples near other airborne geophysical anomalies. The HLEM survey suggests the presence of another massive sulphide target stratigraphically a few tens of metres above the massive sulphide outcrop. During 2001-2002, trenching and drilling at the Frank Creek VMS project were largely successful in exposing the mineralized zone over a strike length of approximately 425 metres. Based on the results to date, further trenching and drilling are recommended (Item 22, this report).

According to recent preliminary work (pers. com., Dr. Tim Barrett, Ore Systems Consulting, September 26, 2002), the Ace and Frank Creek sulphides occur within the late Precambrian to lower Paleozoic Snowshoe Group of the Barkerville terrane. Based on regional geology, the paleotectonic setting of the Snowshoe Group is generally considered to have been a marine continental shelf which accumulated sandy to muddy clastic sediments and locally mafic to andesitic volcanic rocks. The Cu-Zn-Pb-bearing massive sulphides at Ace and Frank Creek are at least partly hosted by sedimentary rocks. Relative to typical VMS deposits, the massive sulphides are locally enriched in trace metals such as Sb, As, Bi, Hg, In and Sn, which is consistent with derivation of at least some of the metals from hydrothermal leaching of an underlying sedimentary sequence. Possible models for the setting of the massive sulphides, at this early stage of exploration, range from a sediment-dominated continental margin with local, mainly mafic volcanism along extensional faults, to a deeper-water Besshi-type setting, to a sediment-covered spreading axis. The proposed stratigraphic and lithogeochemical studies (as recommended also by this author, Item 22, this report) should serve to define the paleotectonic setting of the mineralization, the most favourable host lithologies, and the distribution of hydrothermal alteration, which in combination will provide a more focused exploration model for the area.

According to Wild (2002), former Chief Geologist of Goldstream Mine, near Revelstoke, B. C., the geological setting, mineralization and host rocks are all remarkably similar to the Goldstream Mine mineral deposit, which produced more than 2 million tonnes of ore at a grade in excess of 4.0% copper and 2.2% zinc.

The Big Gulp showing (F-4 target area) contains anomalous concentrations of Zn in strongly altered intermediate to mafic volcaniclastic rocks associated with a series of east-west-trending HLEM anomalies (F-4 in Figures 8a and 9). This may be indicative of a stringer zone associated with a massive sulphide deposit.

## SCR Project

A significant, new VMS prospect has been identified with the discovery of semi-massive sulphide and stringer sulphide mineralization in float and bedrock of altered intermediate to mafic volcanic rocks of the Sellers Creek Road area. Sulphide minerals include pyrite, pyrrhotite, chalcopyrite, sphalerite and galena. The geophysical surveys successfully outlined

significant, coincident magnetic and conductive anomalies (HLEM) near the discovery area and near the area of Cu, Pb and Zn soil anomalies. The presence of volcanogenic massive sulphides at the Ace, Frank Creek and SCR properties shows that potential exists for VMS deposits across the entire width of the Barkerville terrane (Payne, 2001; BC Assessment Report).

## Quesnel Platinum Project

Reconnaissance geology and thin section petrology confirmed the occurrences and character of mafic and ultramafic rocks. These are probable sources of some of the PGMs in the placers of the Quesnel River and its tributaries. Several samples from hematite-altered amygdaloidal mafic flow rocks are anomalous in Cu, Ag and Hg. A recent BC Geological Survey study confirmed the presence of PGM's in the Quesnel River and some of its tributaries draining Barker's Quesnel Platinum Project areas, especially Black Bear Creek (Levson *et al*, 2002)

## Item 22: Recommendations and Proposed Exploration Budgets

Various geological and mining professionals have been involved in the Barker Minerals Projects or have reviewed the Company's exploration work and made field examinations of the active projects. The present author has consolidated the recommendations with which he is in agreement, has added his own recommendations and has added emphasis, in some cases, to the recommendations of others.

## Ace Volcanogenic Massive Sulphide and Vein Gold Project

Geological mapping should continue in order to improve understanding of the regional structure and the local geology of areas of felsic volcanic rocks that have not yet been examined. This additional mapping should be integrated with that being done between the Ace and Frank Creek areas by Ferri and others of the B.C. Geological Survey. Wild (2002) recommended extensive whole rock analysis to better characterize the felsite unit. Independent geological consultants of Strathcona Mineral Services (Toronto, Canada) toured the Ace Project and after inspecting core from the drill programs of 1998 and 2002 recommended further work including delineation of the felsite unit through mapping, soil geochemistry and geophysical surveys, followed by trenching where possible and drilling of targets which are selected by the combination of magnetic, MaxMin and gravity geophysical surveys. They are in agreement with Wild (2002) and this author that an effort should be made to determine the origin of the felsite, as this has a bearing on the style of massive sulphide deposits that may exist in relation to this unit on the Company's property.

Barker Minerals has very recently enlisted the services of Dr. Tim Barrett and Dr.Wallace MacLean of Ore Systems Consulting to determine the stratigraphic and alteration relations of the rock sequences hosting the massive sulphide mineralization on the Ace and Frank Creek properties using advanced lithogeochemical methods, combined with new core and outcrop sampling and petrography. Ore Systems Consulting has previously worked on numerous volcanic-associated massive sulphide deposits, including those in the Noranda and Matagami camps of Quebec, the Timmins area of Ontario, the Cordillera of British Columbia, Sweden, Wales, Portugal and the Philippines, and have published numerous research papers on these areas, thus this author recommends that they determine the paleotectonic and paleoseafloor setting of the mineralization in each area, as this will have a direct bearing on the VMS model used during exploration. This author also recommends work to determine the

chemical identification of the main mineral host rock units at the Ace and Frank Creek Projects in order to trace these favorable units laterally during exploration. The quantitative determination of the degree of alteration is also recommended in order to determine the most intense portions of the hydrothermal systems on each property, as those areas containing a combination of favorable stratigraphy and strong hydrothermal alteration have the greatest potential for economic VMS mineralization. The results should be combined with known geophysical and soil-geochemistry anomalies established both by earlier surveys and potential 2003 surveys in order to help select high-priority drilling targets.

A study should be undertaken to better understand the genesis of the high grade gold/bismuth/tungsten/telluride mineralization present in the very numerous float boulders found on the property. This will assist in developing specific strategies for exploration for the bedrock source(s) of these boulders and similar occurrences.

The HLEM and geochemical surveys should be extended to the west and to the east of the present surveys along the trend of the felsic volcanic rocks. Similar surveys should be conducted over the belt of felsic volcanic rocks north of Little River. The main HLEM electromagnetic anomaly discovered during 2000 has been tested by two gravity profiles which identified excess mass on both test lines that was co-incident with previously defined HLEM (Maxmin) anomalies. Similar gravity profiles should be run across the core of the altered felsic volcanic rocks defined in the 1998 drill program.

An IP survey should be conducted in order to verify the low resistivity e-scan-indicated target.

Additional detailed ground magnetic surveys are recommended in order to continue to identify drill targets which could be possible bedrock sources of the numerous clusters of magnetic pyrrhotite, gold-rich quartz sulphide boulders occurring on the Ace property.

Trenching should be conducted on anomalous zones where the thickness of the glacial overburden allows.

Diamond drilling should test targets identified by the existing geological, geophysical, geochemical and trenching results and by additional work that will be conducted in the first part of the 2003 field season. Further compilation work is required for the 5N Zone to determine if further drilling is required there next, or whether further surveys are required in preparation for potential drilling. According to Wild (2002), to the east, soil sampling, is warranted on some of the recently established grid on the east half of the project area. Also to the east, a coincident max-min conductor and subtle gravity anomaly on lines 3800S to 4700S should be followed up by extending the grid and extending the gravity coverage to adjacent lines. Drilling should be planned on the most promising part of the anomaly (Wild, 2002). Similarly, Walcott concluded that the residual gravity anomalies obtained in relation to EM conductors here be investigated by drilling (Walcott, 2002).

The second phase of the program will be contingent on obtaining sufficient positive results from the first phase of the proposed program.

### Frank Creek Volcanogenic Massive Sulphide Project

Geological mapping should continue in order to help determine the stratigraphic and structural setting of the mineralization. This should be integrated with that being done by Ferri

of the B.C. Geological Survey between the Ace and Frank Creek areas. Independent geological consultants of Strathcona Mineral Services (Toronto, Canada) toured the Frank Creek Project and after inspecting core from the drill program of 2002 recommended further work including establishing survey grids, mapping and soil sampling and geophysical surveys similar to those recommended for the Ace Project, followed by trenching and drilling. They concluded that there is still the possibility that massive sulphide mineralization exists on the property and that more work is warranted on the remaining targets.

Barker Minerals has enlisted the services of Dr. Tim Barrett and Dr.Wallace MacLean of Ore Systems Consulting to determine the stratigraphic and alteration relations of the rock sequences hosting the massive sulphide mineralization on the Ace and Frank Creek properties using advanced lithogeochemical methods, combined with new core and outcrop sampling and petrography. Ore Systems Consulting has previously worked on numerous volcanic-associated massive sulphide deposits, including those in the Noranda and Matagami camps of Quebec, the Timmins area of Ontario, the Cordillera of British Columbia, Sweden, Wales, Portugal and the Philippines, and have published numerous research papers on these areas, thus this author recommends that they, based on their worldwide experience and advance level of geological expertise in the field of volcanogenic massive sulphide deposits and models, determine the paleotectonic and paleoseafloor setting of the mineralization in each area, as this will have a direct bearing on the VMS model used during exploration. This author also recommends work to determine the chemical identification of the main mineral host rock units at the Ace and Frank Creek Projects in order to trace these favorable units laterally during exploration. The quantitative determination of the degree of alteration is also recommended in order to determine the most intense portions of the hydrothermal systems on each property, as those areas containing a combination of favorable stratigraphy and strong hydrothermal alteration have the greatest potential for economic VMS mineralization. The results should be combined with known geophysical and soil-geochemistry anomalies established both by earlier surveys and potential 2003 surveys in order to select high-priority drilling targets.

The HLEM survey should be continued in areas of the grids not yet covered, especially to trace continuations of known anomalies that are suggestive of the presence of massive sulphide deposits. Additional preliminary gravity survey lines should be run across the main anomalies to more accurately define massive sulphide targets. Where topography and glacial cover are permissive, trenches should be excavated into prospective targets resultant from these studies. VLF geophysical surveys should be used to trace mineralization once it has been located in bedrock.

Geochemical soil surveys should be conducted over the strike extensions of known mineralized trends and also over specific target areas in order to identify base and/or precious metal soil anomalies, which may be indicative of economic massive sulphide mineralization targets in the local bedrock.

The most prospective anomalies as defined by geology, geophysics, geochemistry and trenching should be tested by diamond drilling.

The second phase of the program will be contingent on obtaining sufficient positive results from the first phase of the proposed program.

### SCR Project

Geological mapping should continue in order to help determine the stratigraphic and

structural setting of the mineralization. This should be integrated with that being done by Ferri of the B.C. Geological Survey between the Ace and Frank Creek areas.

Lithogeochemistry studies should be continued in order to determine the stratigraphic and alteration relations of the rock sequences hosting the known mineralization, using advanced lithogeochemical methods, combined with new core and outcrop sampling and petrography.

The HLEM survey should be continued to the east and southeast of the present grid to determine the extent of the anomaly in those directions. Where permissive, trenching should be conducted on defined target areas.

Soil geochemistry should be conducted over the grid and should be extended to the east to cover the possible extensions of the anomalous zone as defined by geology and coincident magnetic and HLEM anomalies.

Diamond drilling should test the most prospective anomalies as defined by the geology, geophysics, geochemistry and trenching.

The second phase of the program will be contingent on obtaining sufficient positive results from the first phase of the proposed program.

#### Peacock Showing

A mineral occurrence was found by a BC Geological Survey geologist during his local geological mapping work may be the previously known Peacock mineral showing. The Company should further expose and sample this mineralization. This occurrence has been interpreted by government geologists (Ferri 2001) to be Besshi-type VMS mineralization. All available previous exploration results should be compiled, interpreted and, if then warranted, be followed up with an initial program designed to identify and develop drill targets having economic VMS and/or gold/silver potential.

#### Blackbear Project Area

Since it appears that interest in gold is increasing as its price has risen substantially during the previous year, the Company should begin to investigate this project area, which hosts the former Providence Mine, from which a previous operator's shipment of selected ore from the No. 2 zone assayed 3343 grams of silver per tonne, 45.7% lead, 0.11% zinc and 4.9 grams of gold per tonne (all the above from BC MinFile 093A 003). One grab sample (# 11-07-98-59; Barker Minerals) of outcropping mineralization contained 52% Pb, 0.03% Zn, 142 oz Ag / ton and 0.081oz Au / ton. (Payne, 1999; BC Assessment Report). All previous exploration results available should be compiled, interpreted and, if then warranted, be followed up with an initial program designed to identify and develop drill targets having economic VMS and/or gold/silver potential.

#### Cariboo Prospect and Other Areas

Detailed geological mapping should be continued in the Cariboo prospect area in order to help determine the extent of deformation and in order to explore for targets of Zn+Pb replacement deposits along strike of the known zones. Compilation of all relevant data and limited diamond drilling is recommended in order to confirm the previous operator's drilling and in order to further define and investigate the size and economic potential of this deposit, which is open in both directions along strike and at depth. Despite low gold concentrations found there to date, further prospecting in the near vicinity and exploratory investigation of the Foster zone for its gold potential is recommended in light of its position within the Pleasant Valley Thrust and the intensity of sulphides in the zone and their localization at a junction of two large scale structures.

Elsewhere in the eastern half of the property, detailed mapping and follow-up geochemical sampling and geophysical surveys should be performed in areas of significant, multi-element stream-sediment anomalies. Areas of particular interest are the upper reaches of the Sellers Creek and Grain Creek drainage basins.

The second phase of the program will be contingent on obtaining sufficient positive results from the first phase of the proposed program.

#### Quesnel Platinum Project

Stream and soil sampling programs should be conducted in drainages associated with known placer occurrences of PGE minerals, especially in areas of mafic and ultramafic rocks that may be sources of such minerals. Studies should be done in order to characterize the assemblages of PGEs, which could help determine the environment of their origin. Geological mapping should be conducted in areas of mafic and ultramafic rocks in order to better understand the nature of these rocks and their possible association with PGE minerals. Prospecting should continue in drainages that contain known placer Pt deposits or anomalous concentrations of PGEs.

The zone of large copper concentrations in the Mag claims should be studied in more detail geologically, geochemically and geophysically. Other zones of coincident geochemical and geophysical anomalies should be examined once data from previous reports are compiled and interpreted. Some of these areas will require new grids for geophysical and geochemical surveys.

The second phase of the program will be contingent on obtaining sufficient positive results from the first phase of the proposed program.

# **Exploration Budget**

September 1, 2002 - November 30, 2003

## Ace

Phase	1
-------	---

Geological mapping and supervision	\$ 25,000
Grids, line-cutting, surveying	\$ 25,000
Trenching	\$ 50,000
Geophysical surveys	\$ 50,000
Geochemical surveying, sampling and assaying	\$ 30,000
Petrographic and mineralogical studies	\$ 10,000
Diamond Drilling (4,000m @ \$100/m**)	\$ 400,000
General Field	\$ 40,000
Total	\$ 630,000
* Phase 2	
Geological mapping and supervision	\$ 50,000
Grids, line-cutting, surveying	\$ 50,000
Trenching	\$ 50,000
Geophysical surveys	\$ 100,000
Geochemical surveying, sampling and assaying	\$ 100,000
Petrographic and mineralogical studies	\$ 25,000
Diamond Drilling (10,000m @ \$100/m**)	\$ 1,000,000
General Field	\$ 100,000
Total	\$ 1,475,000
Total Phase 1	\$ 630,000
Total Phase 2	\$ 1,475,000

* Phase 2 will be contingent on obtaining sufficient positive results from Phase 1.

** \$100/m all-in, including mobe/de-mobe, drilling, core logging, splitting, sampling and assaying.

# Frank Creek & SCR

Phase 1	
Geological mapping and supervision	\$ 8,000
Grids, line-cutting, surveying	\$ 8,000
Trenching	\$ 10,000
Prospecting	\$ 5,000
Geophysical surveys	\$ 20,000
Geochemical surveying, sampling and assaying	\$ 3,000
Petrographic and mineralogical studies	\$ 1,000
Diamond Drilling (6,000m @ \$100/m**)	\$ 600,000
General Field	
Exploration Manager	\$ 30,000
Field Manager	\$ 17,000
Vehicle rental	\$ 15,000
Field management and camp staff costs, groceries	\$ 30,000
Administration, report writing, map drafting	\$ 8,000
Fuel	\$ 5,000
Total	\$ 760,000

# Frank Creek & SCR

# *Phase 2

Geological mapping and supervision	\$ 50,000
Grids, line-cutting, surveying	\$ 40,000
Trenching	\$ 50,000
Geophysical surveys	\$ 100,000
Geochemical surveying, sampling and assaying	\$ 50,000
Petrographic and mineralogical studies	\$ 25,000
Diamond Drilling (10,000m @ \$100/m**)	\$ 1,000,000
General Field	\$ 100,000
Total	\$ 1,415,000
Total Phase 1	\$ 760,000
Total Phase 2	\$ 1,415,000

* Phase 2 will be contingent on obtaining sufficient positive results from Phase 1.

** \$100/m all-in, including mobe/de-mobe, drilling, core logging, splitting, sampling and assaying.

## **Cariboo and Foster Zone**

## * Phase 1

Geological mapping and supervision	\$ 25,000
Grids, line-cutting, surveying	\$ 25,000
Trenching	\$ 10,000
Geophysical surveys	\$ 50,000
Geochemical surveying, sampling and assaying	\$ 25,000
Petrographic and mineralogical studies	\$ 5,000
Diamond Drilling (1,500m @ \$100/m**)	\$ 150,000
General Field	\$ 50,000
Total	\$ 340,000
* Phase 2	
Geological mapping and supervision	\$ 50,000
Grids, line-cutting, surveying	\$ 50,000
Trenching	\$ 25,000
Geophysical surveys	\$ 100,000
Geochemical surveying, sampling and assaying	\$ 25,000
Petrographic and mineralogical studies	\$ 10,000
Diamond Drilling (5,000m @ \$100/m**)	\$ 500,000
General Field	\$ 100,000
Total	\$ 860,000
Total of Phase 1	\$ 340,000
Total of Phase 2	\$ 860,000

* Phase 2 will be contingent on obtaining sufficient positive results from Phase 1.

** \$100/m all-in, including mobe/de-mobe, drilling, core logging, splitting, sampling and assaying.

# **Quesnel Platinum/Peripheral**

Phase 1

Geological mapping and supervision Prospecting Grids, line-cutting, surveying Geophysical surveys Geochemical surveying, sampling and assaying Petrographic and mineralogical studies	\$ \$ \$ \$ \$ \$ \$ \$ \$	9,000 9,000 10,000 5,000 2,500 1,000
General Field	¢	4 400
Exploration Manager	φ Φ	4,400
Field Manager	ф Ф	2,000
Venicle remain	ф Ф	2,000
Administration, report writing, man draffing	φ Φ	3,000
Administration, report writing, map draiting	ф Ф	1,000
	ф ф	500
10(a)	Ф	50,000
* Phase 2		
Geological mapping and supervision	\$	15,000
Grids, line-cutting, surveying	\$	15,000
Trenching	\$	20,000
Geophysical surveys	\$	40,000
Geochemical surveying, sampling and assaving	Ŝ	25.000
Petrographic and mineralogical studies	Ŝ	5,000
Diamond Drilling (900m @ \$100/m**)	S	90,000
General Field	ŝ	40,000
Total	\$	250,000
Total Phase 1	\$	50.000
Total Phase 2	\$	250,000
* Phase 2 will be contingent on obtaining sufficient positive results from Phase 1.		
Total of all Phase 1	\$	1,780,000
Total of all Phase 2	\$	4,000,000
Total of Phase 1,and Phase 2	\$	5,780,000

Signed on this 21 day of October, 2002

Bruce J. Perry, Ph.D., P. Geo

Effective Date: October 21, 2002.

# Certificate of Author

I, Bruce J. Perry, of 2301 Skeena Drive, Kamloops, B. C., V2E 1Y2, do hereby certify that:

1. I have supervised and participated in the preparation of this Report on Exploration of the Barker Minerals Ltd. Property.

2. I am a "qualified person" as defined in National Instrument 43-101: Standards of Disclosure for Mineral Projects ("NI 43-101") and my qualifications include the following:

(a) I graduated from the University of Toronto, with distinction in 1984 with a B. Sc. degree in Geology.

(b) I graduated from the University of Toronto in 1990 with a M. Sc. degree in Geology.

(c) I graduated from the University of Toronto in 1994 with a Ph. D. degree in Geology.

(d) I am a Professional Geoscientist (P. Geo.) registered in the Association of Professional Engineers and Geoscientists of British Columbia, member# 23613, and have been a member in good standing since 1998.

(e) I am a Fellow of the Geological Association of Canada, Fellow No. 6569, and have been a member in good standing since 1997.

(f) From 1987 to the present, I have been actively engaged as a geologist in mineral exploration, mainly in Ontario and British Columbia, Canada.

(g) BC Certified Supervisor of Underground Mines (1995-2002) and BC Certified Supervisor of Open Pit Mines (1995-2002).

3. I have worked on the properties of Barker Minerals Ltd. as a consulting geologist intermittently since 2000 and my most recent visit to the properties of Barker Minerals Ltd. was for two days in October 2002.

4. I am not aware of any material fact or material change with respect to the subject matter of the Report, which is not reflected in the Report, the omission to disclose which makes the Qualification Report misleading.

5. I am independent of Barker Minerals Ltd. based on the tests set out in Section 1.5 of NI 43-101.

6. I have read and NI 43-101 and Form 43-101 F1 and the Report has been prepared in compliance with NI 43-101 and Form 43-101 F1.

Dated October 21, 2002.

Bruce J. Perry, Ph. D., P. Geo., F. G. A. C.

## Item 23: References

- B.C. Minister of Mines Reports: 1896, 1897, 1898, 1901, 1903, 1904, 1905, 1907, 19089, 1909, 1910, 1945, 1946, 1947, 1950, 1954, 1955, 1956, 1957, 1958, 1959, 1960, 1961, 1962.
- B.C. Geological Survey Branch, Mineral Claim Assessment Reports (submitted by industry): 2366, 3783, 3813, 4458, 4552, 7772, 8291, 8582, 9667, 9677, 9819, 10177, 10252, 10264, 11580, 11620, 11848, 12914, 13284, 13289, 13986, 14577, 15420, 15421, 15804, 15862, 17357, 17642, 17649, 17696, 17751, 17912, 18528, 19327, 19345, 19415, 19426, 20537, 20639, 21038, 21886, 21310, 21930, 22352, 22833, 22908, 23191, 23212, 23221, 23733, 24286.
- B.C Geological Survey Branch, Mineral Resources Division, Ministry of Energy, Mines and Petroleum Resources, National Mineral Inventory, Maybe Minfile # 093A 003, Maude Creek Placer Minfile #093A 085, Maybe Minfile #093A 110, Maud Minfile #093A 119, Sellers Creek Minfile # 093A 131, Peacock Minfile # 093A 133, Ace Minfile # 093A 142, Big Gulp Minfile # 093A 143, Comin Throu Bear Minfile # 093A 148, Big Minfile # 093A 151, Frank Creek Minfile # 093A 152, Trump Minfile # 093A 154.

Benedict, P.C., 1945, Structure at Island Mountain Mine, Wells, B.C., Trans. CIMM. pp 755-770.

- Bacon, W.R., 1975, Lode Gold Deposits in Western Canada, in Fifth Gold and Money Session and Gold Technical Session, AIME Pacific Northwest Metal & Minerals Conference, Portland, OR., pp. 139-163.
- Bloodgood, M.A. 1988, Geology of the Quesnel Terrane in the Spanish Lake Area, Central British Columbia, 93A11, BC EM & PR Paper 1988-1, pp. 139-145.
- Bobrowsky, P. and Bichler, A. 2001, Barkerville Project: Regional Till Geochemistry and Orientation Studies, Geological Fieldwork 2000, Paper 2001-1.
- Bowman, A., 1887, Report Geology of the Mining District of Cariboo, British Columbia, GSC Ann. Rept., 1887- 1888, vol. pp c5-c49.
- Bysouth, Garry D., 1988, Diamond Drill Report on the Maybe Group, Cariboo Mining Division, British Columbia, Assessment Report # 17357.

Campbell, R.B., 1961, Quesnel Lake, West Half, GSC Map 3-1961.

- Campbell, R.B., 1961, Quesnel Lake, East Half, GSC Map 42-1961.
- Craig, D.L., 1991, Geological and Geochemical Report on the Mae 1-8 and 15-22 Claims, Cariboo Mining Division, British Columbia, Assessment Report # 21886.
- Donaldson, W. S., 1992, Claims Geological, Geochemical and Geophysical Report on the Mass and Sel, Cariboo Mining Division, Assessment Report #22599.

Ferri, Filippo, Höy, Trygve and Friedman, Richard M., Geological Fieldwork 1998, Paper 1999-1

Description, U-Pb Age and Tectonic Setting of the Quesnel Lake Gneiss, East-Central British Columbia.

- Ferri, Filippo, 2001, Geological Setting of the Frank Creek Massive Sulphide Occurrence near Cariboo Lake, East-central B.C., Geological Fieldwork 2000, Paper 2001-1
- Ferri, Filippo, O'Brien, Brian H., 2002, Preliminary Geology of the Cariboo Lake Area, Central British Columbia (093A/11, 12 13 and 14) Geological Fieldwork 2001, Paper 2002-1.
- Fulton, R.J, 1984, Quaternary Glaciation, Canadian Cordillera; in Quaternary Stratigraphy of Canada a Canadian Contribution to IGCP Proj 24, ed. R.J. Fulton; GSC Paper 84-10, pp. 39-48.
- Harris, 1995, Geological Association of Canada, Unpublished Petrographical Studies.
- Hendrickson, Grant, 1997. Review of Barker Minerals Exploration Work (Geophysical Data). Unpublished report for Barker Minerals Ltd.
- Holland, Stuart S., 1950, Placer Gold Production of British Columbia, B.C. Dept. Mines Bul. 28, pp 89.
- Höy, Trygve, 1987, Geology of the Cottonbelt Lead-Zinc-Magnetite Layer, Carbonatites and Alkalic Rocks of the Mount Grace Area, Frenchman Cap Dome, southeastern British Columbia, British Columbia Energy, Mines and Petroleum Resources, Bull. 80, 99 p.
- Höy, Trygve and Ferri, Filippo, 1998a, Stratabound Base Metal Deposits of the Barkerville Subterrane, Central British Columbia, Geological Fieldwork 1997, Paper 1998-1, pages13-1-13-12
- Höy, Trygve and Ferri, Filippo, 1998b, Zn-Pb Deposits in the Cariboo Subterrane, Central British Columbia, Geological Fieldwork 1997, Paper 1998-1, pages 14-1 - 14-9
- Höy, Trygve, 1991, Volcanogenic Massive Sulphide Deposits in British Columbia, British Columbia Energy, Mines and Petroleum Resources, Paper 1991-4, pp 89-123.
- Höy, Trygve and Preto, Vic, 1995, 1996. Unpublished Letters to Louis Doyle and Roy Lammle.
- Jackaman, W. BC RGS 50, British Columbia Regional Geochemical Survey, Stream Sediment and Water Geochemical Data and Map Booklet, NTS 93A - Quesnel Lake
- Johnson, W.A. and Uglow, W.L., 1926, Placer and Vein Gold Deposits of Barkerville, Cariboo District, B.C., Geological Survey of Canada, Mem.149, pp 146.
- Lammle, Charles A.R., Salat, H.P., 1995, Prospecting, Geological Investigation and Geochemical Reconnaissance of a New Gold Discovery on the Ace Claims, Cariboo Mining Division, British Columbia, Assessment Report #23733
- Lammle, Charles A.R., 1995, Prospecting, Geological Investigation and Geochemical Reconnaissance of a New Gold Discovery on the Ace Claims, Cariboo Mining Division, British Columbia, Assessment Report #23733 Addendum.

- Lammle, Charles A.R., 1996, 1995 Assessment Work Program, Prospecting, Line Cutting, Geochemistry, Geophysics and Geology, Mount Barker Project, Cariboo Mining Division, British Columbia, Assessment Report #24286
- Lammle, Charles A.R., 1997, Geological, Geophysical Report on the Little River, Goose Range and Ace Properties (Mount Barker and Goose Range Projects), Cariboo Mining Division, British Columbia, Assessment Report #24989
- Lammle, Charles A.R., 1997, Barker Minerals Ltd., Little River Area, Appendices, Assessment Report #24989
- Lang, A.H., 1940, Little River and Keithley Creek, B.C., Geological Survey of Canada, Maps 561A and 562A.
- Lang, Baker, Hart & Mortenson, Society of Economic Geologists Newsletter #40, January 2000.
- Levson, V. M., Mate, D. J., Ferbey, T. 2002. PGE Placer Deposits in BC; Characterization and Implications for PGE Potential. BC Geological Survey Geological fieldwork Paper 2002-1.
- Lovang, G. 1980, DEB, MA, ME and PA Claims, Cariboo Mining Division, British Columbia Assessment Report #08582.
- McClintock, J.A., 1991, Mass and Annex Options, Geology, Geochemistry and Geophysics 1991Cariboo Mining Division, British Columbia, Assessment Report #21930
- McTaggart, K.C. and Knight, J., 1993, Geochemistry of Lode and Placer Gold of the Cariboo District, B.C., B.C. Dept of Energy, Mines and Petroleum Resources, Open File 1993-30, p. 26.
- Martin, L.S., 1989, Geological, Geochemical and Geophysical Report on the Mass Property Cariboo Mining Division, British Columbia, Assessment Report (#19345)
- Nelson, J.L., 1991, Carbonate-Hosted Lead-Zinc (Ag, Au) Deposits of British Columbia, B.C. Dept of Energy, Mines and Petroleum Resources, Paper 1991-4, pp. 71-88.
- Payne, J.G., 1996, Petrographic Report on Trenching, Cariboo Mining Division, British Columbia.
- Payne, J.G., 1998, Geological, Geochemical and Geophysical Report on the Ace and Peripheral Properties, Cariboo Mining Division, British Columbia, Assessment Report #25437
- Payne, J.G., 1999. Geology, Geochemistry and Geophysics of the Ace Property, Cariboo Mining Division, British Columbia, Assessment Report # 25904
- Payne, J.G., 1999. Preliminary Lithogeochemical Report on the Frank Creek Property, Cariboo Mining Division, British Columbia, Assessment Report # 26003
- Payne, J.G., 2000. Preliminary Geological Report on the Setting of the Frank Creek VMS Prospect, Quesnel Lake Area, British Columbia. Assessment Report

- Payne, J.G., 2001. Geology, Geochemistry and Geophysics of the Frank Creek, Ace and Sellers Road, and Quesnel Platinum Properties. Cariboo Mining Division, British Columbia, Assessment Report
- Reed, A.J.; Lovang, G. 1981, Alex, DEB, MA and STU Claims, Cariboo Mining Division, British Columbia, Assessment Report # 09819
- Roach, Stephen N., 1997, Geological Mapping Surveys conducted on the Goose Range Project Area, Cariboo Mining Area, British Columbia Assessment Report # 24989.
- Rublee, V.J, 1986. Occurrence and Distribution of Platinum-Group Elements in British Columbia. Open File 1986-7. Ministry of Energy, Mines and Petroleum Resources, British Columbia.
- Salat, H.P., 1995, Prospecting, Geological Investigation and Gechemical Reconnaissance of New Gold Discovery on the Ace Claims near Mount Barker, Cariboo Mining Division, British Columbia, Assessment # 23733.
- Scott, 1996, Scott Geophysics Limited, Pole-Dipole Induced Polarization Survey
- Shore, Greg A., 1997, 3-D Resistivity Survey, Mount Barker Project, Ace Property, Cariboo. Mining Division, British Columbia, Assessment # 24989
- Skerl, A.C., 1948, Geology of the Cariboo Gold Quartz Mine, Wells, B.C., Econ. Geol. v. 43, 571-597.
- Skupinski A., 1994-1995, Part 1 and Part 2, Ore Petrography Report.
- Slack, J.F., 1993, Descriptive and Grade Tonnage Models for Besshi-type Massive Sulphide Deposits, in Kirkham, R.V., Sinclair, W.D., Thorpe, R.I. and Duke, J.M., eds., Mineral Deposit Modeling: Geological Association of Canada Special Paper 40, p.343-371.
- Struik, L.C., 1988, Structural Geology of the Cariboo Gold Mining District, East-Central British Columbia, Geological Survey of Canada, Mem. 421, pp 100.
- Struik, L.C., 1983, Bedrock Geology of Spanish Lake (93A11) and parts of adjoining Areas, Central British Columbia, Geological Survey of Canada Open File 920.
- Struik, L.C., 1983, Bedrock Geology of Quesnel Lake (93A10) and part of Mitchell Lake (93A15) map areas, central British Columbia, Geological Survey of Canada Open File962.
- Tutt, Daniel, 2001, Geology and Geochemistry of the Ace Cu-Au-Ag-Zn-(Pb) Property Barkerville Subterrane, East-Central British Columbia, Thesis Paper
- Walcott Peter E., Feb, 2001, A Geophysical Report on Ground Electromagnetic and Magnetic Surveying Ace, Frank Creek & Sellers Creek Properties, Little River Area, Cariboo Mining Division, B.C., N.T.S. 93A-14.

Walcott, Peter E., March 2002, A Report on Electromagnetic, Gravity, Induced Polarization,

Trenching and Soil Sampling; Ace, Frank Creek and Sellers Creek Properties.

- Wild, Christoper J., 2001, Report on Trenching and Geological Mapping for the Frank Creek. Project
- Wild, Christoper J., 2002, Preliminary Report on Diamond Drilling and Trenching for the Frank Creek and Ace Projects.
- Yorston, Robert, 1996, Geology and Drilling on the Mass Claim, Cariboo Mining Division, British Columbia, Assessment Report #24662.

Item 26: Figures and Tables



* Enlargeable detailed figures are available for review in Adobe Acrobat format (PDF) on the Company's website, www.barkerminerals.com

2



* Enlargeable detailed tigures are available for review in Adobe Acrobat format (PDF) on the Company's website: www.barkarminerals.com

55



Figure 3: Generalized geological setting of the study area, together with some of the more significant mineral showings in the Barkerville and Caribos ternates.



* Enlargeable detailed figures are available for review in Adobe Acrobet format (PDF) on the Company's wabsite: www.barkerminerals.com



* Enlargeable detailed figures are available for review in Adobe Acrobat format (PDF) on the Company's website; www.barkerminerals.com

57



* Enlargeable detailed figures are available for review in Adobe Acrobat format (PDF) on the Company's website: www.barkerminerals.com

58



* Enlargeable detailed figures are available for review in Adobe Acrobat format (PDP) on the Company's website: www.barkerminerals.com


^{*} Entargeable detailed figures are available for review in Adobe Acrobit format (PDF) on the Company's website: www.barkerminerals.com



* Enlargeable detailed figures are available for review in Adobe Acrobat format (PDF) on the Company's website: www.barkerminerals.com

<u>n</u>



* Enlargeable detailed figures are available for review in Adobe Acrobat format (PDF) on the Company's website: www.barkerminerals.com

62



* Enlargeable detailed figures are available for review in Adobe Acrobat format (PDF) on the Company's website: www.barkerminerals.com



* Enlargeable detailed figures are available for review in Adobe Acrobat format (PDF) on the Company's website: www.barkerminerals.com





* Enlargeable detailed figures are available for review in Adobe Acrobiat format (PDF) on the Company's website: www.harkeminetals.com



* Enlargeable detailed figures are available for review in Adobe Acrobat format (PDF) on the Company's website: www.barkerminerals.com



* Enlargeable detailed figures are available for review in Adobe Acrobat format (PDF) on the Company's website: www.barkarminerals.com



Till geochemistry sample distribution within the Ace Project area [Samples were collected from back-hoe trenches located along roads.]

# BARKER MINERALS LTD. Ace VMS and Vein Gold Project Glacial Till Study Sample Locations (after Bobrowski, BC Geological Survey, 2001) Figure 6a

* Enlargeable detailed figures are available for review in Adobe Acrobat format (PDF) on the Company's website, www.barkerminerals.com



* Enlargeable detailed figures are available for review in Adobe Acrobat format (PDF) on the Company's website: www.barkerminerals.com



* Enlargeable detailed figures are available for review in Adobe Acrobat format (PDF) on the Company's website: www.barkerminerals.com



Figure 7b. Correlation of EBG stratigraphy associated with Lucky Coon and Mosquito King mineralization on the Adams Plateau (Höy, 1999) and proposed stratigraphy and associated mineralization within the Cariboo Lake map area.

BARKER MI	NERALS LTD.
Barkerville Terrane ( (after Fe	and Kootney Correlations rrri, 2002-1)
Figure 7b	Author: A. Doyle September 2002

^{*} Enlargeable detailed figures are available for review in Adobe Acrobat format (PDF) on the Company's website: www.barkerminerals.com



* Enlargeable detailed figures are available for review in Adobe Acrobat format (PDF) on the Company's website: www.barkerminerals.com



^{*} Enlargeable detailed figures are available for review in Adobe Acrobat format (PDF) on the Company's website: www.barkerminerals.com



* Enlargeable detailed figures are available for review in Adobe Acrobat format (PDF) on the Company's website: www.barkerminerals.com



* Enlargeable detailed ligures are available for review in Adobe Acrobat format (PDF) on the Company's website: www.barkerminetals.com



* Enlargeable detailed figures are available for review in Adobe Acrobet format (PDF) on the Company's website, www.barkerminerals.com



* Enlargeable detailed figures are available for review in Adobe Acrobat format (PDF) on the Company's website: www.barkerminerals.com

	Sample	Assay		Ag	Cu ppm	Pb ppm	Zn ppm	As		Bi	W	
Sample #	Туре	Туре	Au ppm	ррт	or %	or %	or %	ppm	Sb ppm	ppm	ррт	Te ppm
1261	Q	2,3	18.8	10		•				2025		
1199	Q	1,3	27.7							1965		
CX-03	Q	1	18.2	6.8	-					1435		
941160	Q	1	22.03		•			>10,000		35		
1270	Q	3,1	13.3		•					386		
1358	Q	1,3	23.7		-					510	•	46
1331	Q	3,1	2.5		-					250	337	
951080	Q	3	7.6		•					775	224	•
1193	Q	3,1	8.2	•	•					318	781	28.6
1194	Q	3,1	5.4		•					289	210	26.2
9706	Q	3,4	6		•			213	3.1	1378	6	13.4
9709	Q	3,4	1.5		-				•	172	147	48
9798	Q	3,4	8.1	1.5	•					865	13	60.2

# Table 1 - Ace Project Assays

#### Massive Sulphide Boulders: Grab Samples

	Sample	Assay		Ag (	Cu ppm	Pb ppm	Zn ppm	As		Bi	W	
Sample #	Туре	Туре	Au ppm	ppm o	or %	or %	or %	ppm	Sb ppm	ppm	ppm	Te ppm
295	MS	2,3	0.08	32.8	269	5.20%	8.50%	220		35		
9752	MS	3	0.07		387	0.76%	7.2%			57		
CX-45	MS	2				7.7%	8.8%				•	
99AGN	MS	2	•	43	•	5.7%	9.9%	•			•	

#### **Cu-Stringer Boulders: Grab Samples**

	Sample	Assay		Ag	Cu ppm	Pb ppm	Zn ppm	As		Bi	w	
Sample #	Туре	Туре	Au ppm	ppm	or %	or %	or %	ppm	Sb ppm	ppm	ppm	Te ppm
1253	ST	3	0.25	27.2	4.1%		158			16		

Legend:								
Sample Type	Assay Type							
MS - Massive sulphide boulders	1 - Fire Assay							
<b>Q</b> - Quartz sulphide vein boulders	2 - Metal Assay							
ST - Copper stringer boulders	<b>3 -</b> ICP							
	<b>4 -</b> Aqua Regia							

Table 2.	Frank Creek -	Massive S	ulphide and	Cu-rich Str	inger Zone A	ssays
					L 2	

_ _

- -

$\checkmark$	Au	Ag	Cu	Pb	Zn	Cd	Fe	S	As	Sb	Bi	TI	Se	Mo	Hg	W	Sn
Sample	ppb	ppm	%	%	%	ppm	%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Massive Su	ılphide (Gr	ab samp	les)														
99-F1	245	476	0.62	11.1	3.13	88	44.7	30.8	1110	420	57	7	67	7	25	18	-
JD-49	300	507	0.29	8.35	1.10	30	-	-	2900	370	10	-	-	20	-	-	-
99-F2	260	697	0.30	15.36	1.79	60	45.9	33.9	6150	610	87	11	160	17	23	12	-
99-F3	430	554	0.61	12.03	2.54	79	45.0	33.5	8380	505	88	6	195	5	21	35	-
2306	44	102	0.28	2.19	5.05	172	30.6	18.8	346	31	285	4	80	12	25	7	14
JD-48	170	47	4.47	0.08	0.41	10	-	-	400	10	10	-	-	<10	-	-	-
99-F7	600	102	1.37	0.69	0.61	15	57.9	31.1	720	62	59	40	12	17	36	15	-
Cu-rich St	ringer Zon	e (Grab s	samples)														
99-F4	290	2.1	7.41	0.09	0.44	17	40.6	12.1	2810	4	42	< 0.2	13	1	0.5	2	-
99-F5	230	1.3	4.76	0.07	0.36	13	41.1	11.4	2200	2	35	< 0.2	12	1	0.4	3	-
Massive Su	lphide Bou	lders fro	om Frank	Creek F-	7 & F-8 T	argets	(Grab s	amples)									
F-8 2029	188	129	0.34	4.46	3.86	121	50.7	40.1	4520	678	80	11	52	24	100	9	333
F-8 2030	173	68	0.33	2.28	2.36	52	45.5	35.1	28155	267	79	2	109	6	83	8	322
F-8 2031	80	102	0.16	1.85	0.52	18	34.8	28.1	3770	556	84	23	97	16	61	6	389
F-7 001-67	61	65	0.02	0.53	7.3	246	58	36	166	66	96	1	30	5.6	909	9	1000
F-1 Trench	Bedrock (	Grab sai	mples)														
F-1 Trench	131	74	2.20%	0.16%	323												
	150	129	2.10%	0.19%	0.13%												
	670	104	4.50%	0.24%	0.66%												
	45	12	0.28%	0.99%	2.70%												
	748	115	3.10%	0.61%	2.03%												
~	704	134	4.31%	0.51%	1.87%												
TR-BW-10	5	4	0.42%	321	518												
	38	11	0.88%	538	951												
	32	1	0.63%	115	358												
	72	9	0.49%	0.52%	2.42%												
	109	14	0.42%	1.46%	4.46%												
Massive Su	Iphide Bou	lders fro	om F-1 Ta	rget - Fra	nk Creek	(Grab	sample	s by ind	ependen	t Majo	rs)						
226808	490	204	0.61	3.45	8.21	290	>30	>5	778	88	220	-	-	20	7	-	-
JD0008	-	51	2.23	. 43	0.75	-	28.4	-	-	-	-	-	-	-	-	-	-
JD0049	-	506	0.29	8.35	1.10	30	40		2900	370	-	-	-	-	-	-	-
14868	190	344	1.1	0.13	4.6	-	-	-	-	-	-	-	-	-	-	-	-
Massive Su	lphide Chi	p Sampl	es from Fi	l Target -	Frank C	reek (C	Chip san	nples by	indeper	tdent	Major	s)					
HD	.82% Cu	, .25% Zi	n, .21 % Pl	b, & 44 pj	pm Ag, ov	er 5.77	metres										
209758	<b>2.1%</b> Cu	over .771	n, total wi	dth													
14865	2.1% Cu.	.28% Pt	o, .22% Zn	, 134 ppn	a Ag, 180	ppb Au,	over 40	cm									

 14865
 2.1% Cu, .28% Fb, .22% Zii, 154 ppm Ag, 180 ppb Au, over 40cm

 14869
 1.7% Cu, .13% Pb, .57% Zn, 258 ppm Ag, 190 ppb Au, over 60cm

 Table 3.
 Frank Creek – Median Whole-Rock Analyses (Major Rock Types)

<u>Unit</u>	<u>SiO2</u>	<u>AI2O3</u>	<u>Fe2O3</u>	<u>MgO</u>	<u>CaO</u>	<u>Na2O</u>	<u>K2O</u>	<u>TiO2</u>	<u>P2O5</u>	<u>MnO</u>	<u>Ba</u>	<u>Zr</u>	<u>Ti/Zr</u>	<u>*No.</u>
Q	90.0	4.3	2.3	0.24	0.08	0.15	0.80	0.20	0.06	0.02	190	120	14.4	4
FI	75.9	11.0	3.8	0.57	0.19	0.97	2.34	0.50	0.04	0.07	1310	200	13.5	13
QM	75.2	12.7	2.4	0.22	0.91	1.75	3.87	0.27	0.15	0.03	1490	72	22	10
Р	60.3	17.3	7.0	2.24	0.12	0.85	4.10	0.50	0.09	0.06	1620	130	39	22
А	49.2	11.8	4.6	4.4	2.9	1.24	2.0	0.57	0.08	0.06	1520	66	56	7
Mf,t	45.3	14.4	9.9	6.6	6.3	2.35	1.42	2.20	0.27	0.14	2000	96	138	10
Md	40.3	10.8	10. <b>7</b>	7.6	8.2	1.6	0.41	1.38	0.16	0.17	152	60	148	4

Q quartzite

FI felsic lapilli tuff or arkose

Md Mafic dyke *No. number of samples

QM quartz monzonite (Quesnel Lake gneiss)

P phyllite (sericite and chlorite-rich

A argillite, shale

Mf,t mafic flow and tuff

Table 4.	SCR – Semi-Massive Sulphide Mineralization
----------	--------------------------------------------

----

	Au	Ag		Pb		Cd	Co			As	Sb	Bi	Se	Мо	Hg	W	Sn
Sample	ppb	ppm	<b>Cu</b> %	%	Zn %	ppm	ppm	Fe %	S %	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm
SCR-1	3	0.30	0.09	-	-	-	148	19.4	9.8	1	0.1	1.8	3.2	2.9	-	6	<1
SCR-3	8	3.40	0.03	0.05	0.02	0.10	<del>9</del> 5	20.9	4.2	1	0.1	16	15	2.1	-	1	46
SCR-6	87	0.15	0.09	0.02	-	0.10	495	40.2	24.9	78	2.5	103	59	3.4	30	6	2
SCR-7	4	0.16	0.02	0.07	0.12	2.70	25	8.90	1.0	42	0.4	3.2	1.4	1.6	28	1	12
SCR-7a	34	3.4	0.10	0.09	0.33	8.80	75	8.4	3.3	785	5.4	7.3	3.7	3.6	89	6	11
001-12	60	33	0.08	1.80	8.90	266	92	40	19	6	11	60	34	1.5	3380	1.7	3
001-14	63	68	0.01	1. <del>9</del> 0	3.20	123	24	18	9	1.1	1	237	25	1.2	1580	1.8	7
001-25	80	12	0.09	1.20	3.80	142	278	39	18	6.3	4	24	20	1.7	1740	2.7	4
2115	168	56	0.19	6.40	17.30	>500	-	26	4	7	28	99	91	6	7940	1	8

-

-

# Table 5a.Ace VMS Project Drill Hole Parameters

# Table 5a Ace VMS Project Drill Hole Parameters (1998 and 2002)

	Easting	Northing	Elevation	Azimuth		Length
Hole No.	(metres)	(metres)	(metres)	(metres)	Dip	(metres)
1	627094	5852254	963	180	-45	300.21
2	626510	5852284	1020	180	-45	199.63
3	624861	5852434	1022	180	-45	157.9
4	625101	5852337	1032	180	-45	199.94
5	627072	5851845	1073	180	-60	150.81
6	626184	5852090	1047	180	-70	134.11
7	625638	5852164	1045	180	-45	117.49
					Total Length	1260.09

#### 2002 Drill Hole Parameters

	Easting	Northing	Elevation	Azimuth		Length
Hole No.	(metres)	(metres)	(metres)	(metres)	Dip	(metres)
Ace-02-01	6 + 65E	16 + 15S	1005	180	-45	144.78
Ace-02-02	8 + 64E	18 + 80S	1025	180	-45	164.90
Ace-02-03	5 + 70W	4 + 70N	1028	180	-45	150.88
Ace-02-04	5 +00W	4 + 20N	1025	180	-45	117.35
Ace-02-05	6 + 25W	5 + 00N	1027	n/a	-90	67.97
					Total	645.88

# Table 5b - Ace VMS Project Summary Drill Logs (1998 and 2002)

1998			
from (m) to 98-01	(m)		
0 - 12	.2 overburde	ən	
12.2 - 13	0.4 quartz-ric	h schist, quartz-muscovite s	chist
130.4 - 13	3.9 felsite		
133.9 - 13	6.8 argillite		
136.8 - 19	8.3 guartz-mi	iscovite-chlorite schist	
198.3 - 20	9.7 guartz-ca	lcite-muscovite-chlorite schie	st
209.9 - 21	4.4 siliceous	argillite	
214.4 - 27	0.9 guartz-mi	scovite-chlorite schist	
270.9 - 29	0.6 guartz-ric	h schist, minor quartz-musco	ovite schist
290.6 - 30	0.2 guartz-mi	iscovite schist	
from (m) to	(m)		
98-02	( )		
0 - 9.7	7 overburde	an	
9.7 - 27	.2 guartz-mi	uscovite-chlorite schist	
27.2 - 49	.45 guartz-mi	uscovite-biotite schist (biotite	alteration)
49.45 - 11	9.37 guartz-mi	iscovite-chlorite schist, quar	tz-muscovite-biotite schist
119.37 - 13	0.6 quartz-ric	h schist	
130.6 - 14	7.3 quartz-mi	iscovite schist	
143.7 - 16	0.4 finely lam	inated carbonaceous meta-s	siltstone argillite
160.4 - <b>1</b> 7	6.55 quartz-mi	uscovite-chlorite schist	
176.55 - 17	8.1 fault, abu	ndant graphite	
178.1 - 18	1.45 quartz-ch	lorite-muscovite schist with o	quartz-tourmaline veins
181.45 - 18	7.95 recrystal	lized felsite	
187.45 - 19	9.63 quartz-mi	uscovite-chlorite	
from (m) to	(m)		
98-03			
0.0 - 10	0.0 overburde	ən	
10.0 - 24	.75 quartz-mi	uscovite	
24.75 - 10	6.25 felsite		
		39.25-39.5	massive sulphide
			calcite (probably limestone)
		39.8-40.0	massive sulphide
		106.25-110.72	quartz-muscovite-chlorite-schist
		110.72-119.6	siliceous argillite
		119.6-121.3	quartz-chlorite-muscovite schist
		121.3-127.4	felsite
		127.4-157.9 <b>98-04</b>	quartz-muscovite-chlorite schist (variable)
		0-6.9 m	overburden
		6.9-16.8	quartz-muscovite-(biotite) schist
		16 8-24.38	felsite
24 38 - 25	57 argillite, li	mestone (lost core)	
25.7 - 36	5 felsite		
36.5 - 39	9.5 mixed zo	ne: quartz-chlorite-muscovite	e schist, felsite, limestone
39.5 - 72	2.9 duartz-ch	lorite-muscovite schist	
72.9 - 79	).1 quartz-m	uscovite-chlorite schist, mind	or felsite
79.1 - 85	5.4 guartz-ch	lorite-muscovite schist	
85.4 - 89	).55 felsite		
89,55 - 98	3.7 araillite. c	uartz-chlorite-muscovite sch	nist
98.7 - 10	)1.8 felsite	-	
101.8 - 10	)8.2 quartz-m	uscovite-chlorite schist	
108.2 - 10	)9.3 felsite		
109.3 - 12	22.5 quartz-ch	lorite-muscovite schist	

122.5 - 199.94	quartzite, quartz-rich schist	
from (m) to (m)		
98-05		
0 - 7.2	overburden	
7.2 - 14.28	quartz-muscovite-chlorite-garnet schist	
14.28 - 22.1	quartz-chlorite-muscovite schist	
22.1 - 47.75	quartz-muscovite-chlorite schist, quartz-ch	lorite-muscovite schist
47.75 - 70.6	argillite, intermediate crystal tuff	
70.6 - 113.57	quartz-rich schist, quartz-muscovite-chlorit	e schist
113.57 - 122.6	quartz-chlorite-muscovite schist	
122.6 - 150.87	quartzite, quartz-rich schist	
from (m) to (m)		
98-06		
0 - 4.57	overburden	
4.57 - 7.92	argillite, calcareous argillite	
7.92 - 18.1	felsite, minor calcareous argillite	
18.1 - 34.53	quartz-muscovite-chlorite-garnet schist	
34.53 - 39.1	argillite, cherty argillite, quartz-chlorite-mus	scovite schist, limestone
39.1 - 76.55	quartz-chlorite-muscovite schist	
76.55 - 79	quartz-muscovite-chlorite schist	
79.0 - 80.1	felsite	
80.1 - 99.9	<ul> <li>quartz-chlorite-muscovite schist, quartz-mi</li> </ul>	uscovite-chlorite schist
99.9 - 134.11	quartzite, quartz-rich schist, quartz-muscov	vite-chlorite schist
from (m) to (m)		
98-07		
0 - 13.34	overburden	
13.34 - 27.7	quartz-muscovite-biotite schist (biotite alte	ration)
27.7 - 29.8	quartz-muscovite-chlorite schist	
29.8 - 47.17	quartz-muscovite-biotite schist (biotite alter	ration)
47.17 - 91.88	felsite	
	79.04-79.40	semi-massive sulphide
	91.88-112.3	quartz-chlorite-muscovite schist
	112.3-113.2	argillite
113.2 - 117.49	felsic to intermediate tuff	

-

#### 2002

### DDH ACE-02-01 from (m) to (m)

---

am (m)	to (m)	
0.0 -	10. <del>9</del>	overburden
10.9 -	17.4	quartz-muscovite-biotite schist
17.4 -	19.0	quartz-muscovite-chlorite schist
19.0 -	22.0	quartz-chlorite-muscovite schist
22.0 -	26.6	quartz-muscovite-biotite schist
26.6 -	30.9	quartz-chlorite-muscovite schist
30.9 -	32.1	quartz-muscovite-chlorite schist
32.1 -	39.5	argillite
39.5 -	46.5	quartz-muscovite-chlorite schist
46.5 -	49.0	argillite
49.0 -	49.7	calc-silicate
49.7 -	50.7	marble
50.7 -	52.1	argillite
52.1 -	54.0	marble
54.0 -	55.2	quartz-muscovite-chlorite schist
55.2 -	58.8	argillite
58.8 -	65.3	felsite

65.3 - 67.5	quartz-chlorite-muscovite schist
67.5 - 71.2	quartz-muscovite-biotite schist
71.2 - 79.5	quartz-muscovite-chlorite-garnet schist
79.5 - 86.9	quartz-muscovite-chlorite schist
86.9 - 93.5	quartz-muscovite-chlorite-garnet schist
93.5 - 102.0	quartz-chlorite-muscovite schist
102.0 - 103.6	quartz-muscovite-chlorite-garnet schist
103.6 - 112.7	quartz-chlorite-muscovite schist (argillite)
112.7 - 132.8	quartz-muscovite-chlorite-garnet schist
132.8 - 135.0	argillite/quartz-graphite schist
135.0 - 144.8	quartz-muscovite-(chlorite) schist
OH ACE-02-02	
om (m) to (m)	
0.0 - 13.7	overburden
13.7 - 39.4	quartz-muscovite-chlorite-garnet schist
39.4 - 41.7	marble
41.7 - 46.8	quartz-muscovite-chlorite-garnet schist
46.8 - 47.7	quartz-muscovite-biotite schist
47.7 - 62.4	quartz-muscovite-chlorite schist
62.4 - 88.8	quartz-muscovite-chlorite-garnet schist

#### DD fro

····,		
0.0 -	13.7	overburden
13.7 -	39.4	quartz-muscovite-chlorite-garnet schist
39.4 -	41.7	marble
41.7 -	46.8	quartz-muscovite-chlorite-garnet schist
46.8 -	47.7	quartz-muscovite-biotite schist
47.7 -	62.4	quartz-muscovite-chlorite schist
62.4 -	88.8	quartz-muscovite-chlorite-garnet schist
88.8 -	92.4	marble
92.4 -	105.9	quartz-muscovite-chlorite-garnet schist
105.9 -	108.5	fault
108.5 -	118.8	quartz-muscovite-chlorite schist
118.8 -	122.5	fault
122.5 -	164.9	quartz-muscovite-chlorite schist

#### DDH ACE-02-03

from	(m)	to	(m)
------	-----	----	-----

0.0 - 8.2 overburden 8.2 - 55.5 felsite

#### 8.5 - 9.7 semi-massive sulphides (1.2m)

- -

- 9.7 11.8 layered and disseminated sulphides felsite
- 11.8 50.3 50.3 - 51.3
  - quartz-muscovite-chlorite schist

55.5 - 57.7	siliceous argillite
57.7 - 59.6	felsite
59.6 - 63.6	quartz-muscovite-chlorite schist
63.6 - 70.8	felsite
70.8 - 72.6	quartz-muscovite-chlorite schist
72.6 - 78.9	felsite
78.9 - 81.7	quartz-muscovite-chlorite schist
81.7 - 95.1	argillite
95.1 - 106.2	quartz-muscovite-chlorite schist
106.2 - 107.7	marble
107.7 - 113.9	quartz-muscovite-chlorite schist
113.9 - 131.3	argillite
131.3 - 150.9	quartz-muscovite-chlorite schist

#### DDH ACE-02-04

from (m) to (m)

0.0 - 7	.6	overburden				
7.6 - 2	5.3	guartz-muscovite-biotite schist				
25.3 - 28	8.1	quartz-muscovite-chlorite schis	t			
28.1 - 3	3.8	marble				
33.8 - 4	2.5	felsite (+marble)				
42.5 - 4	3.5	argillite/fault				
43.5 - 4	5.7	felsite				
45.7 - 4	6.2	argillite/fault				
46.2 - 5	3.8	felsite				
53.8 - 5	4.3	argillite/fault				
54 3 - 5	5.7	felsite				
			54.25-	54.6	semi-massive sulphides (argillite)	(0.35m)
			55.5 -	55.7	semi-massive sulphides	(0.2m)
						0.55m
55.7 - 5	6.6	argillite				
56.6 - 5	8.7	felsite				
58.7 - 6	0.3	argillite				
60.3 - 6	4.9	felsite				
64.9 - 6	5.9	marble				
65.9 - 6	7.2	felsite				
67.2 - 7	6.0	calc-silicate				
76.0 - 8	2.1	felsite				
82.1 - 8	2.9	marble				
82.9 - 84	4.1	felsite				
84.1 - 84	4.5	marble				
84.5 - 8	8.4	felsite				
88.4 - 9	1.1	quartz-muscovite-chlorite schis	t			
91.1 - 93	2.1	felsite				
92.1 - 94	4.5	argillite				
94.5 - 10	02.4	quartz-muscovite-chlorite schis	t			
102.4 - 10	04.3	felsite				
104.3 - <b>1</b>	17.35	quartz-muscovite-chlorite schis	t			
DDH ACE-02	2-05					
	o (m)	a sector and a sector a				
0.0 - 7.	.0	overburgen				
7.6-2	2.2					
22.2 - 2	4.7	quartz-muscovite schist				
24.7 - 2	9.0					
29.0 - 3	0.9 0.5	qualiz-muscovite schist				
36.9 - 42	2.5	arginite				
42.5 - 48	8.0	quartz-muscovite schist				
48.0 - 5	1.3					
51.3 - 54	4.0 c 4					
54.5 - 5	0.4 7 7	argillite				
50.4 - 5	1.1					
57.7 - 63	ა.ა ი ი	arginite				
63.3 - 6	3.0 6 E	iduit				
03.8 - 6	0.0 7 0 7	qualiz-muscovite schist				
00.0 - 0	1.31	arynnie				

 $\label{eq:c:expansion} C:\ Wildrock\ Barker\ Minerals\ 2002_ddh\ Ace\ Logs\ Ace02SummLogs.doc$ 

Table 5c - Ace VMS Project	Significant DDH intersections	(1998 and 2002)
I able Ju - Ave villo Frujevi	. Orginnicant DDTT intersections	(1330 and 2002)

1998 Hole	<b>Interval</b> metres	Lth. (cm)	<b>Au</b> ppb	<b>Ag</b> ppb	<b>Cu</b> ppm	<b>Pb</b> ppm	<b>Zn</b> pmm	<b>Mo</b> ppm	<b>Bi</b> ppm	<b>As</b> ppm	Se ppm	Cd ppm	<b>Sb</b> ppm	<b>Te</b> ppm	<b>Ti</b> ppm	<b>W</b> ppm
<del>9</del> 8-03	39.25-39.50	25	149	760	604	22	309	4.1	1.1	775	16.1	1.7	2	*	*	*
	39.5-39.8	30	27	5510	85	56	202	22	*	136	4.3	1.3	1.2	*	*	*
	39.8-40.0	20	280	1495	467	42	345	7.8	1.9	396	17. <b>6</b>	2.2	3.1	*	*	*
	40.45-41.60	115	39	556	242	57	142	4.1	*	81	5.1		*	*	*	*
	41.6-42.67	107	15	486	102	77	411	51	*	59	4.7	4.8	*	*	*	*
	42.67-43.7	103	33	673	247	77	519	7 <del>9</del>	*	73	6.2	6.5	1.7	*	*	*
	43.7-45.5	180	9	886	214	158	875	4.2	*	26	6.9	5.5	*	*	*	*
98-04	27.4-30.9	150	111	485	177	68	738	20	2.3	194	5.9	5.8	*	*	*	*
98-06	9.7-11.0	130	3	450	195	45	267	25	2.2	*	7.7	1.8	*	*	*	*
	11.0-12.04	104	2	645	79	64	104	16.5	3.1	*	3.9	1.1	*	*	*	*
98-07	79.04-79.4	36	6	1195	538	36	127	11	15.2	*	15.9		*	*	*	*
	84.5-86.0	150	5	2790	44	376	460	75	9.1	38	4.5	11.2	*	*	*	*
2002	interval metres	Lth. (cm)	Au nnh	Ag ppb	Cu	Pb ppm	Zn pmm	Mo ppm	Bi	As ppm	Se ppm	Cd	Sb ppm	Te	TI DDM	W
Hole	metres	(011)	ppb	PPD	ppm	ppin	Punu	ppin	ppin	ppin	PPIII	PPIII	ppin	ppm	ppin	ppm
02-01	13.65-13.80	15	8	380	285	342	14	6	626	0.2	1	0.16	0.25	0.95	0.24	77
	71.56-71.63	7	764	1300	339	70	106	4	26.9	0.2	3	0.06	0.25	0.55	1.02	23
02-02	159.63-159.75	7.5	692	400	72	30	40	6	72	0.2	*	0.02	0.05	0.25	0.3	18
02-03	21.0-21.6	60	*	760	35	92	844	116	4.7	0.2	3	16.6	0.05	0.05	0.18	8
	21.6-21.8	20	*	540	65	47	628	26	4.8	0.8	5	3	0.25	0.05	0.72	12
	21.8-22.35	55	*	340	78	45	502	102	1.5	0.2	5	6.3	5	0.1	0.22	7
	22.35-23.35	100	*	700	72	73	446	104	10.3	0.2	5	5.6	0.1	0.1	0.18	6
02-04	42.5-43.5	100	36	280	27	63	278	15	1.7	35	5	2.4	1.4	0.15	0.92	3
	43.5-43.75	25	526	360	113	32	70	8	2.5	318	7	0.6	3.6	0.25	0.5	5
	45.7-46.2	50	16	180	127	8	732	28	0.6	23	10	7.5	1.1	0.05	1.26	4
	54.25-54.6	35	34	1440	663	17	234	14	2.02	42	23	0.4	2.6	1	0.72	3
	57.6-57.9	30	14	1420	486	50	28	42	29.4	5	15	0.3	0.25	0.25	0.28	12
	58.5-58.67	0.15	42	1640	571	68	206	84	31.5	69	13	2.2	0.45	0.25	0.22	9

# Table 6a - Frank Creek VMS Project Drill Hole Parameters (2002)

	Date	Date	Northing	Easting	Elevation	Azimuth		Length
Hole No.	Collared	Completed	(metres)	(metres)	(metres)	(metres)	Dip	(metres)
FC-02-01	15-May-02	16-May-02	57 + 95 N	16 + 00 W	1042	90	-45	97.84
FC-02-02	16-May-02	18-May-02	57 + 20 N	12 + 80 W	1077	90	-45	144.78
FC-02-03	18-May-02	20-May-02	54 + 30 N	13 + 47 W	1140	90	-45	118.87
FC-02-04	20-May-02	22-May-02	54 + 50 N	12 + 20 W	1140	90	-45	158.19
FC-02-05	22-May-02	24-May-02	55 + 60 N	15 + 00 W	1115	75	-45	158.5
FC-02-06	24-May-02	25-May-02	56 + 11 N	15 + 41 W	1103	70	-45	135.03
							Total	813.21

DDH FC-02-01		
trom (m) to (m)		
0.0 - 6.1	overburden	
6.1 - 11.2	quartz-sericite phyllite - breccia	
11.2 - 15.9	argillite	
15.9 - 18.2	quartz-sericite phyllite - breccia	
18.2 - 20.8	argillite	
20.8 - 24.9	quartz-sericite phyllite	
24.9 - 26.9	argilite	
26.9 - 29.8	quartz-sericite phyllite	<i>(</i> <b>- -</b> )
	26.9 - 27.2 disseminated sulphide zone (10-15%)	(0.3m)
	29.1 - 29.5 disseminated sulphide zone (10-15%)	(0.4m) (0.7m)
29.8 - 30.8	fault	. ,
30.8 - 47.5	argillite	
47.5 - 49	fault	
49.0 - 51.3	quartz-sericite phyllite	
51.3 - 59.4	argillite	
59.4 - 60.1	fault	
60.1 - 68.2	quartz-sericite phyllite	
68.2 - <b>7</b> 1.3	fault	
71.3 - 74.7	quartz-sericite phyllite	
74.7 - 77.2	fault	
77.2 - 81.5	quartz-sericite phyllite	
81.5 - 82.7	fault	
82.7 - 87.2	quartz-sericite phyllite	
87.2 - 97.84	quartz-sericite-chlorite phyllite	
DDH FC-02-02		
from (m) to (m)		
0.0 - 10.7	overburden	
10.7 - 28.2	quartz-sericite phyllite	
28.2 - 32.2	argillite	
32 2 - 36 3	guartz-sericite-chlorite phyllite	
36.3 - 38.7	quartz vein / fault	
38.7 - 41.2	fault	
41.2 - 48.7	quartz-graphite schist	
48.7 - 51.5	guartz-sericite phyllite - breccia	
51.5 - 53.5	fault	
53.5 - 61.0	quartz-sericite phyllite	
61.0 - 63.8	fault	
63.8 - 70.6	guartz-sericite phyllite	
70.6 - 75.6	argillite	
75.6 - 76.0	fault	
76.0 - 84.1	argillite	
84.1 - 95.2	guartz-sericite phyllite - breccia	
95.2 - 101.0	quartz-sericite phyllite - grit	
101.0 - 114.3	quartz-sericite phyllite - breccia	
114.3 - 120.9	fault	
120.9 - 144.78	quartz-sericite phyllite - breccia	
DDH FC-02-03		

### Table 6b - Frank Creek Project: Summary Drill Hole Core Logs (2002)

from (m) to (m)

0.0 - 5.2	overburden
5.2 - 14.1	quartz-sericite privilite
14.1 - 14.4	quartz vein
14.4 - 15.9	fault
15.9 - 24.2	quartz-sericite-chlorite phyllite
24.2 - 41.1	fault
	34.2 - 34.7 massive sulphides (0.5m)
41.1 - 41.8	andesite dyke
41.8 - 42.5	fault
42.5 - 43.7	quartz-sericite phyllite - grit
43.7 - 44.2	argillite
44.2 - 44.4	fault
44.4 - 45.1	andesite dyke
45.1 - 50.1	guartz-sericite phyllite
50.1 - 50.2	fault
50.2 - 53.4	argillite
53 4 - 54 4	quartz-sericite phyllite - grit
54 4 - 56 2	arnillite
56.2 - 66.5	quartz-sericite phyllite - grit
66.5 - 68.0	quartz-chlorite-sericite phyllite
68.0 - 70.5	fault
70.5 - 77.7	auartz-chlorite-sericite phyllite
777 702	quartz-sericite phylite
70.2 70.7	quartz-sericite pryinte guartz-selicite sericite phyllite
707 800	fault
80.9 - 00.9	auartz-sericite obvilite - arit
90.0 - 94.6	araillite
90.0 - 94.0	augunto guartz-sericite obvilite - grit
94.0 - 90.1	foult
101.9 103.4	auartz sericite phyllite arit
101.0 - 103.4	fault
107.0 111.7	auartz sorieite phyllite
107.0 - 111.7	foult
1120 11897	auartz-sericite (chlorite) nhvilite
110.07	qualiz-senere (chonce) prynire
from (m) to (m)	
0.0 - 5.2	overburden
52-136	quartz-chlorite-sericite nhvllite
136-171	quartz sericite obvilite
17.1 - 43.6	quartz-chlorite-sericite phyllite
13.6 - 46.0	
46.0 - 47.4	araillite
40.0 - 47.4	augunte quartz-sericite phyllite
50.5 50.0	limestene bressie
50.5 - 59.0	
59.0 - 64.1	foult
64.0 65.9	iduit quatta corioita phyllita - brocoia
04.9 - 05.0	
67.0 60.3	arginite
01.9-09.3	argnine - Dreccia
09.3 - 7U.U 70.0 74.0	
70.0 - 71.2	arynnie - Dreccia fault
71.2 - 71.9	
71.9 - 73.3	argninte - preccia
13.3 - 10.1	

_ _ _ _ _ _ _ _ _ _ _ _ _

76.7 - 86.5 86.5 - 86.9 86.9 - 107.5 107.5 - 108.7 108.7 - 114.3 114.3 - 127.8	quartz-sericite phyllite fault argillite fault quartz-chlorite-sericite phylli fault	te		
127.8 - 130.2 130.2 - 144.6	quartz-sericite privilite quartz-chlorite-sericite phylli	te		
144.6 - 147.7	quartz-sericite phyllite			
147.7 - 158.19	quartz-chlorite-sericite phylli	te		
DDH FC-02-05 from (m) to (m)				
0.0 - 5.1	overburden			
0.1 - 0.9 8 9 - 14 5	arginite quartz sericite phyllite			
14.5 - 21	argillite			
21.0 - 32.9	quartz sericite phyllite (5-10	% disseminate	ed sulphides)	
32.9 - 37.2	argillite			
37.2 - 139.9	quartz sericite phyllite	503-556	disseminated sulphide zone (10-15%)	(0.5m)
		55.6 - 56.3	semi-massive sulphide zone (25-40%)	(0.7m)
		56.3 - 57.9	disseminated sulphide zone (10-15%)	(1.6m)
	•			(2.8m)
139.9 - 151.9	fault			
151.9 - 156.50	quartz-sericite priyinte - grit			
DDH FC-02-06				
from (m) to (m)				
0.0 - 5.2	overburden			
5.2 - 10.0 10.0 - 15.7	arginite quartz sericite phyllite			
15.7 - 16.9	argillite			
16.9 - 27.2	quartz sericite phyllite			
27.2 - 27.8	fault			
27.8 - 33.4	quartz sericite phyllite			
33,4 - 33,9 33,9 - 54,0	tault quartz sericite phyllite (hand	s of dissemin	ated sulphides)	
54 0 - 54 8	fault		aled sulphidesy	
54.8 - 56.4	quartz sericite phyllite (band	s of dissemination	ated sulphides)	
56.4 - 56.7	fault			
56.7 - 135.03	quartz sericite phyllite			(00 0)
		585 585	aisseminated sulphide zone (10-15%)	(00.9M) (00.1m)
		56.3 - 75.2	disseminated sulphide zone (5-10%)	(18.9m)

(19.9m)

C:_Wildrock\Barker Minerals\2002_ddh\Frank Creek\Logs\FC02SummLogs.doc

			···· <b>·</b> ··· <b>·</b> ···	Au	Ag	Cu	Pb	Zn
	From	То	Length	ppb	ppm or oz/t	ppm or %	ppm or %	ppm or %
FC-02-01	22	30.8	8.8	*	2.7	222	696	0.40%
	26.9	29.5	2.6	*	5.8	560	765	1.10%
incl	26.9	27.3	0.4	*	18	0.11%	0.30%	2.30%
incl	28.96	29.1	0.14	14	11.5	0.25%	0.10%	3.42%
and	29.1	29.5	0.4	*	12.4	0.14%	808	3.40%
FC-02-03	34.2	34.7	0.5	*	2.6 oz/t	0.52%	0.28%	0.33%
FC-02-05	6	6.3	0.3	114	15.4	1.14%	486	0.10%
	19.5	25.7	6.2	*	5.2	0.19%	407	0.15%
incl	20.2	20.3	0.1	726	15.7	0.90%	289	0.41%
	22.8	26.5	3.7	48	4.2	0.12%	400	0.11%
	29.5	30.4	0.9	174	14.9	0.72%	578	0.24%
	38.7	38.9	0.2	38	24.6	0.40%	0.18%	0.26%
	48.7	59.4	10.7	*	2.7	0.14%	168	0.13%
incl	51.8	56.3	4.5	*	3.4	0.24%	232	0.24%
incl	54.8	56.3	1.5	*	4.9	0.34%	264	0.39%
FC-02-06	17.2	17.5	0.3	14	4.2	0.15%	324	618
	27.2	27.28	0.08	216	11.5	302	0.14%	0.51%
	56.7	59.4	2.7	*	8.1	0.15%	0.10%	0.23%
incl	58.5	58.95	0.45	*	2.6 oz/t	2.08%	0.54%	0.98%
	62.14	62.2	0.06	190	8.7	0.34%	298	0.79%
	62.6	63.09	0.49	22	4.5	0.18%	201	618
	64.9	69	4.1	*	3.2	0.17%	68	270
incl	67	69	2	60	2.4	0.15%	90	236
incl	67.75	67.8	0.05	584	15.3	1.27%	325	842
incl	68.2	68.35	0.15	462	13.4	0.78%	219	0.12%
	86.6	86.8	0.2	132	2.2	0.16%	70	380

## Table 6c - Frank Creek VMS Project Significant DDH Intersections (2002)

# (

# Table 7 Quesnel Platinum Project Rock Samples and Assays

Sample #		Project	Cu	Pb	Zn	Ag	Au	Pt	Pd	Rh	Ni	Co	Cr	MgO	Bi	As
Ŭ		name	(ppm <b>)</b>	(ppm)	(ppm <b>)</b>	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(%)	(ppm)	(ppm)
	20/05/02	Mag	44.5	2.07	44.6	51	0.9	<3	<3		22.8	36	5.4	7.45	0.05	0.9
	2001	Mag	10.3	2.09	53.3	20	1	<1	<1		4.5	15.8	4	7.9	0.03	1
	2008	Mag	11.3	2.2	56.8	32	<1	1	<1		13.4	37	7.6	8.5	0.04	1.3
	2021	Mag	305	5.22	68.8	233	9	3	2		60.9	40.3	140	3.3	0.23	20.3
	2026	Mag	178	3.07	25	82	20	4	2		26.3	42	160	7.6	<.02	3.2
	2050	Gerimi Mag	13.90%	9.75	93	38000	90	8	55		6.9	11.7	22.2	1.6	0.04	24
	2075	Gerimi	3498	7.4	82.5	796	4	5	6	<1	4.6	14.3	6.4	3.2	<.02	21
	2076	Gerimi	55206	10.45	52.1	22087	6	9	18	3	48.4	25.3	136.9	4.7	<.02	50
	2077	Gerimi	7206	5.11	93	3266	1	9	7	3	24.2	29.1	24.9	8.6	<.02	5.1
	2081	Gerimi	1.5%	11.66	97.9	6309	8.7	4	13	<1	13.6	19.3	18.4	4.1	0.04	14
	2083	Gerimi	131	10.78	67	72	1.8	3	11	5	126	34	310	7.3	0.04	18
	2002	20 Mile	92	8.47	95.6	226	1	3	5		19.4	19.7	29.6	3.5	0.12	4.8
	2003	20 Mile	50	1.38	93. <b>7</b>	37	1.2	1	<1		204.7	51.3	470	10.9	<.02	0.4
	2045	20 Mile	54	2.43	97.9	55	<1	<1	1		234	49	520	10.5	<.02	0.2
	2089	20 Mile	313	6.15	64.4	198	4	<2	10	<5	27	32	90	5.4	0.06	0.7
Ś	2090	20 Mile	65	6.15	69	53	<2	3	9	<5	85	33	390	5.7	0.04	2.3
0	2091	20 Mile	108	6.02	77.8	55	3	<2	7	<5	54	27	260	4.8	0.09	3.3
	2092	20 Mile	96	1.35	75.7	36	<2	<2	5	<5	38	31	120	5.3	<.02	0.4
	2093	20 Mile	174	2.46	55.8	70	4	<2	7	<5	22	25	70	4.2	0.02	3.3
	2094	20 Mile	73	4.09	56.3	86	13	4	10	6	42	16	190	2.7	0.06	16
	2095	20 Mile	154	3.76	59.2	53	16	3	3	<5	29	19	80	3.5	<.02	0.7
	2096	20 Mile 20 Mile	237	2.33	55.6	554	<2	7	9	<5	58	36	240	5.8	<.02	1.8
	BSA-1	concentrate					51018	891	16	10						
	BSA-2	concentrate 20 Mile/					99999	4832	118	167						
	20/06/10	Maude	60	6.01	81.8	64	3	7	8		16.2	18.4	130	4.9	0.05	2.8
	2025	Maude	91	7.42	73	159	1	4	2		37.8	15.9	110	3.7	0.12	9.6
	2025-A	Maude	70	5.76	101	97	1	<1	2		20.9	23.4	37.5	5.1	0.06	12
	2025-B	Maude	68	6.63	83.1	100	5	1	2		16.7	16.7	14.6	2.2	0.08	10
	2040	Maude	147	18.67	111	169	10	4	10		9.4	24	13.3	4.7	0.08	1.7
	2041	Maude	295	22	133	344	6	<1	3		29.8	23.3	55.3	8.8	0.05	9
	20 <b>41-A</b>	Maude	23.67	7.71	66.4	57	2	8	10		37.1	30.1	500	8.83	0.06	6.7
	2042	Maude	127	20	118	136	8	1	1		5.9	16	6.6	2.2	0.13	7.9

2043 Maude	3181	13	80.7	2292	10	3	3		13	17.6	21.9	3.4	0.12	19	0.34	519	56.9	0.188	42	6.9
2043-A Maude	89	6.55	82.1	71	1	16	14		21.5	30.4	250	8.7	0.02	16	1.1	6	35.2	0.237	45	11.5
2044 Maude	231	8.27	95.3	128	4	2	15		7.4	29	3.8	4.4	0.15	3.6	0.13	3	67.3	0.269	47	10.22
2097 Maude	12 <del>9</del>	2.07	81	76	2	9	11	<5	38	33	170	6.9	0.04	0.3	0.1	14	72	0.269	47	10.2
2098 Maude	85	2.95	82	62	3	4	7	<5	79	38	120	6.9	<.02	0.9	0.1	9	70	1.3	44	13.6
2100 Maude Coyote	206	5.41	73	97	3	4	13	<5	25	33	90	4.8	0.1	2.3	0.11	98	65	0.215	46	10.3
2004 Porter Coyote	62	9.37	69	148	2	3	3		14.4	12.9	10.8	1.9	0.09	3.5	0.45	12	117	0.6	65	5
2005 Porter Coyote	132	5.46	47.2	66	<1	11	14		49.5	41	150	4.9	0.1	13	0.33	17	80	0.8	56	7
2047 Porter Coyote	92	8.27	81.6	110	5	<1	5		15.9	22.1	30	3.7	0.07	4.9	0.28	12	63	0.353	53	8.2
2060 Porter Coyote	71	11.04	48	263	2	1	4	<1	22.7	12.5	15.6	1.6	0.8	4.3	0.37	32	111	0.269	69	4
2061 Porter Coyote	120	11.58	220	488	5	5	6	<1	27.3	22.5	22.9	3	0.62	12	1.9	51	90	0.074	57	9
2062 Porter	111	4.79	81	96	1	5	5	1	20.5	30.9	40.2	3.8	0.56	6.8	0.11	1	77	0.354	54	9
2006 Porter	29.37	1.57	13.7	20	<1	3	<1		1587.6	87.5	2240	33	0.04	5.8	0.18	5	3	0.004	43	9.6
2007 Porter	13.86	12.62	46.3	71	1	<1	<1		27.1	6.5	18.6	1.2	0.06	6.4	0.28	30	376	0.5	83	2.7
2024 Porter	6.85	1.89	14.4	20	<1	6	3		1,900	93.8	3780	38	0.04	9.3	0.28	<5	3	0.004	38	4.53
2024-A Porter	10.84	5.28	11.7	34	2	9	7		1882.8	82	2590	41	0.05	11.8	0.2	20	3.3	0.001	39	3.58
2079 Porter	37.02	0.67	51.5	40.5	1	5	1	8	32	23	26.7	5.6	< 02	1.1	0.1	<5	67	1.5	54	11.2
2080 Porter	14.47	2.02	10.7	23	2	1	1	<1	1865	99	3590	37.1	0.06	5.6	0.07	20	2.5	0.004	42	6.9
2010 Victoria	128	6.16	54.9	59	3	8	7		26.9	34	35.1	6.2	0.07	1.7	0.13	19	50	0.9	49	10.1
2028 Victoria	139	7.28	70.9	74	1	11	8		33.3	28.1	51.6	6.5	0.06	3.1	0.14	13	54.8	0.279	47	10.9
2013 Kangaroo	8.54	5.26	19.9	81	3	2	<1		1214.3	69.4	858.9	32	0.05	20	1.2	<5	7.4	0.019	36	6.1
2014 Kangaroo	77	4.42	60.4	53	35	1	<1		14.7	16.9	50	2.8	0.03	5.9	0.36	14	91	0.276	58	7.3
2015 Kangaroo	154	5.91	59.7	134	4	2	2		25.1	28.2	90	3.7	0.14	0.1	0.29	<5	69	0.149	53	8.8
2015-A Kangaroo	152	11.87	65.9	176	3	2	6		39.5	19.8	170	2.8	0.36	<.1	0.22	5	87	0.124	56	7.2
2015-B Kangaroo	13.63	0.69	59.2	16	2	11	6		178	29.4	1109	17.6	0.02	7.4	0.21	<5	21	0.094	44	10
2016 Kangaroo	126	5.9	178	266	4	3	5		37	18.7	100	3.2	0.14	0.9	0.63	33	93	0.095	59	6.3
2018 Kangaroo	150	4.49	105	167	1	2	3		44.5	24.7	190	4.2	0.4	1.9	0.2	<5	69.9	0.128	50	7.9
2019 Kangaroo	146	3.65	67	52	1	5	9		73	36	210	6.6	0.14	0.4	0.13	6	44.3	0.122	49	10.6
2020 Kangaroo	509	3.09	54.5	302	5	11	12		69.7	64.2	190	7.7	0. <b>1</b> 4	0.9	0.16	5	30.8	0.093	45	11.4

(

(

(

2046 Kangaroo	51.34	4.38	82	62	2	<1	3		10.3	22	12.3	2.7	0.06	4.5	0.3	5	75.6	0.25	58	5.9
2082 Kangaroo	93	2.97	5.7	128	3	4	4	4	814	54	1960	16	0.1	151	91	170	14.8	<.001	39	4.3
2084 Rollie	5.05	4.14	8.6	20	21	4	5	4	1185	77	2500	28.7	0.12	17	0.12	24	2.1	0.001	30	7.2
2085 Rollie	4.33	0.55	9	27	28	6	3	2	1409	87	2830	29.3	0.13	1.1	0.13	9	0.5	0.004	28	5.6
2086 Rollie	38	3.28	94	258	4	2	5	5	38	37	60	5.3	0.06	<.1	0.06	17	76.4	0.031	47	11.4
2115 Rollie	3.89	31.48	40.5	78	8	3	6	<5	1309	78	2400	25.6	0.04	<.1	0.18	<5	14.6	0.001	31	6.8
2116 Rollie	5.65	10.31	24.3	18	<2	5	3	<5	19.3	43	580	10.5	<.02	<.1	0.07	<5	23.2	0.05	50	8
2117 Rollie	17.28	9.34	<b>5</b> 0. <b>7</b>	36	<2	<2	3	<5	81.5	30	200	6.1	<.02	0.1	0.19	<5	119.4	0.195	50	9.7
2023 Nyland	36.5	3.44	56.5	50	3	<1	<1		67	22.7	190	4.2	0.03	2.2	0.03	<5	42.2	0.057	53	8.5
2311 Nyland	45	2.12	40.2	42	<2	2	3	<5	27	34	150	6.1	<.02	<.1	0.07	10	35.9	0.145	50	10.8
2312 Nyland	44	1.93	48.6	37	4	4	3	<5	10.3	26	23.4	4.3	<.02	0.1	0.07	<5	49.2	0.133	52	9.8
2313 Nyland	17	9.05	68.8	101	2	<2	<2	<5	27	7.7	70.8	2.3	0.5	0.3	0.14	5	107.3	0.123	66	3.4
2314 Nyland	4.41	6.14	22.2	31	17	<2	<2	<5	8.9	8.4	16.7	1.1	0.09	<.1	0.14	6	45.7	0.082	70	4
2315 Nyland	75	2.92	41.1	77	4	<2	3	<5	144	46	650	9.8	0.03	0. <del>9</del>	0.12	9	31.4	0.131	48	10.5
2316 Nyland	22	1.61	33.8	44	<2	3	5	9	9	13	13.3	2.6	<.02	1.2	0.1	<5	75.6	0.099	59	6.8
2317 Nyland	13	1.37	44.5	29	2	<2	3	<5	23.3	30.7	56.3	3.7	0.04	0.9	0.15	<5	132.2	0.085	53	8.6
2078 BB	74	6.81	78	59	<1	<1	<1	2	25.6	121	128	0.29	0.31	19	0.21	<5	173.3	<.001	66	6.7

(

(
											· · · ·	
Lab	Sam	ple #	Sample #	A	л	Au	ppb	Cu %	Pb%	Zn %	Te ppm	Sample type
Eco-tech	Α		O2-95		3				5.2	8.5		
Acme												Ace / VMS
Chemex	С	B	21		}				7.0 9.0	7.7 8.8		
Eco-tech	А		1199	í	2	27,710						
Acme	С	F	1199	1	2	28,972 27,341						Ace/Au/Qtz
Eco-tech	А		1358	2	2	23,710						
Acme												Ace/Au/Qtz
Chemex	D	E		, í	2	17,310	16,590					
Acme	Α		95-1273		2	8,0	8,028					Ace/Au/Qtz
Chemex	С		04	4	2	8,0	000					
Acme	A		9769		1						65.8	Ace / Te
Chemex	С		O5	(	3						36.0	
Acme	Α	_	97101		1						37.0	Ace/ Te
Chemex	С		09		3						35.0	
Acme	A	D	1195	2	2A	2,995	.102/opt					Ace/Au/Qtz
Acme	А	D	1193	2	2A	8,258	.238/opt					Ace/Au/Qtz
Acme	A		9769		1	6	12					Ace/Au/Qtz
Chemex	С		O5	1	2	2	70					
Acme	Α	D	99-F-1	3	3				11.1 11.2			Frank/VMS
Eco-tech			8270	1	1		*	4935	260	1255		F-1/DDH02-05
Chemex			8270	1	1		*		336	1317		F-1/DDH02-05
Eco-tech			8273	1	1	*		2104	784	1671		F-1/DDH02-05
Chemex	-		8273	1	1	*		2847	675	1664		F-1/DDH02-05
Eco-tech			8279	1	1	*		3189	298	3522		F-1/DDH02-05
Chemex			8279	1	1	*		2658	260	3250		F-1/DDH02-05

Legend

## Table 8. Analytical Check Samples

### Sample type

- A Original Sample
- B Duplicate Sample
- C -Check Sample
- D Pulp Check Sample
- E -Reject Check Sample
- F Lab recheck

#### Analysis Type

- 1 ICP
- 2 Fire Assay
- 2A Metalic fire assay
- 3 Metal Assay

# Mineral Titles Tenurc Search Results Last updated April 30, 2002

. .

· _ _ - ·

----

· · –

-

17 M	latahos	Criteri	a Own	er Name	Tenure Type	Tenure Sta	itus		
			BARKER	R MINERALS	Mineral	Good Stand	ling		
				Wowl				·	
Tenure Number	<u>Claim</u> Name	<u>Owner</u> Number	<u>Map</u> Number	<u>Recorded</u>	<u>Status</u>		<u>Mining Division</u>	<u>Area</u>	<u>Tag</u> Number
				<u> </u>					Tumou
<u>339981</u>	ZAK 1	<u>140410</u> 100%	093A14E	2002.11.30	Good Standing 20	002.11.30	03 CARIBOO	18 un	223501
<u>339982</u>	ZAK 2	<u>140410</u> 100%	093A14E	2002.11.30	Good Standing 20	002.11.30	03 CARIBOO	18 un	223502
<u>339983</u>	ZAK 3	<u>140410</u> 100%	093A14E	2002.11.30	Good Standing 20	002.11.30	03 CARIBOO	18 un	223503
<u>339984</u>	ZAK 4	<u> 140410</u> 100%	093A14E	2002.11.30	Good Standing 20	002.11.30	03 CARIBOO	18 un	223504
<u>339985</u>	ZAK 5	140410 100%	093A14E	2002.11.30	Good Standing 20	002.11.30	03 CARIBOO	16 un	223505
<u>387808</u>	JAKK 1	<u>140410</u> 100%	093B16E	2003.06.22	Good Standing 20	003.06.22	03 CARIBOO	20 un	240446
387809	JAKK 2	<u>140410</u> 100%	093B16E	2003.06.22	Good Standing 20	03.06.22	03 CARIBOO	20 un	240447
<u>387810</u>	ЈАКК З	<u>140410</u> 100%	093B16E	2003.06.21	Good Standing 20	03.06.21	03 CARIBOO	20 un	240448
<u>391830</u>	ROL #1	<u>140410</u> 100%	093A11W	2003.02.03	Good Standing 20	003.02.03	03 CARIBOO	9 un	244180
<u>391831</u>	ROL #2	<u>140410</u> 100%	093A11W	2003.02.03	Good Standing 20	003.02.03	03 CARIBOO	10 un	244181
<u>391832</u>	ROL #3	<u>140410</u> 100%	093A11W	2003.02.03	Good Standing 20	003.02.03	03 CARIBOO	20 un	244182
<u>392031</u>	SC 1	<u>140410</u> 100%	093A11W	2003.02.12	Good Standing 20	003.02.12	03 CARIBOO	12 un	244183
<u>392032</u>	SC 2	<u>140410</u> 100%	093A11W	2003.02.12	Good Standing 20	003.02.12	03 CARIBOO	20 un	244184
<u>392033</u>	SC 3	140410 100%	093A11W	2003.02.12	Good Standing 20	003.02.12	03 CARIBOO	12 un	244185
<u>392034</u>	SC 4	<u>140410</u> 100%	093A11W	2003.02.12	Good Standing 20	003.02.12	03 CARIBOO	20 un	244186
<u>392035</u>	SC 5	140410 100%	093A11W	2003.02.12	Good Standing 20	03.02.12	03 CARIBOO	20 un	244187
<u>392036</u>	SC 6	<u>140410</u> 100%	093A11W	2003.02.12	Good Standing 20	03.02.12	03 CARIBOO	20 un	244188

# **Mineral Titles Tenure Search Results**

Last updated April 30, 2002

400 Matches

Owner Name Tenure Type Tenure Status Criteria DOYLE, LOUIS Good Standing Mineral

Tenure Number	<u>Claim Name</u>	<u>Owner</u> <u>Number</u>	<u>Map</u> <u>Number</u>	<u>Work</u> <u>Recorded</u> <u>To</u>	<u>Status</u>	<u>Mining Division</u>	<u>Area</u>	<u>Tag</u> <u>Number</u>
322616	UNLIKELY I	134602 100%	093A14E	2003.11.30	Good Standing 2003.11.30	03 CARIBOO	1 un	655356M
322617	UNLIKELY II	<u>134602</u> 100%	093A14E	2003.11.30	Good Standing 2003.11.30	03 CARIBOO	lun	655357M
322720	ACE 1	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	l un	650242M
<u>322721</u>	ACE 2	134602 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	Lun	650243M
322722	ACE 3	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	1 un	650244M
322723	ACE 4	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	l un	650245M
<u>322724</u>	ACE 5	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	1 un	650246M
322725	ACE 6	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	1 un	650247M
322726	ACE 7	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	l un	650248M
322727	ACE 8	1 <u>34602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	l un	650249M
322728	ACE 9	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	1 un	650250M
322729	ACE 10	134602 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	1 un	650301M
322730	ACE H	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	l un	650302M
<u>322731</u>	ACE 12	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	l un	650303M
322732	ACE 13	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11 30	03 CARIBOO	lun	650304M
322733	ACE 14	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	1 un	650305M
<u>323065</u>	ACE 15	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	l un	650251M
<u>323066</u>	ACE 16	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	l un	650252M
323067	ACE 17	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	lun	650253M
323068	ACE 18	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	l un	650254M
323069	ACE 19	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	lun	650255M
323070	ACE 20	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	[_1_un	650256M
323071	ACE 21	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	1 un	650257M
323072	ACE 22	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	l un	650258M
323073	ACE 23	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	1 un	650259M
<u>323</u> 074	ACE 24	134602 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	l un	650260M

13302   ACE 25   114602   100%   093A14E   2002 11.30   Good Standing 2002.11.30   Go ACRIBOO   1   un   650262M     123027   ACE 26   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   Go ACRIBOO   1   un   650262M     123027   ACE 28   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   G3   CARIBOO   1   un   650310M     123028   ACE 30   124602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   G3   CARIBOO   1   un   619897M     123081   ACE 31   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   G3   CARIBOO   1   un   619897M     123082   ACE 33   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   G3   CARIBOO   1   un   619897M     123082   ACE 33   134602   100%   093A14E   2002.11.30   Good Stan			·					·			
32397   ACF 2.6   134602   100%   093A14E   2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30   Good Standing 2002 11.30 <td></td> <td>323075</td> <td>ACE 25</td> <td><u>134602</u> 100%</td> <td>093A14E</td> <td>2002.11.30</td> <td>Good Standing 2002.11.30</td> <td>03</td> <td>CARIBOO</td> <td>l un</td> <td>650261M</td>		323075	ACE 25	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	650261M
232072   ACE 27   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   O3   CARIBOO   I   In   647220M     232073   ACE 28   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   O3   CARIBOO   I   in   650310M     232082   ACE 29   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   O3   CARIBOO   I   in   619897M     232081   ACE 31   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   O3   CARIBOO   I   in   619897M     232082   ACE 33   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   O3   CARIBOO   I   in   619897M     232082   ACE 33   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   O3   CARIBOO   I   in   619897M     232082   ACE 33   134602   100%   093A14E   20		323076	ACE 26	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	650262M
323078   ACE 28   134602   100%   993A14E   2002.11.30   Good Standing 2002.11.30   G3   CARIBOO   I   un   650310M     123002   ACE 29   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   G3   CARIBOO   I   un   650311M     123082   ACE 30   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   G3   CARIBOO   I   un   619898M     123082   ACE 31   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   G3   CARIBOO   I   un   619898M     323082   ACE 33   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   G3   CARIBOO   I   un   619898M     323082   ACE 35   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   G3   CARIBOO   I   un   650338M     323082   ACE 37   134602   100%   093A14E   20		323077	ACE 27	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	647220M
323072   ACE 29   134602   100%   693A14E   2002.11.30   Good Standing 2002.11.30   O3   CARIBOO   I   un   650311M     322080   ACE 30   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   O3   CARIBOO   I   un   619897M     323081   ACE 31   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   Good Standing 2002.11.30   Good Standing 2002.11.30   Good Standing 2002.11.30   Good Standing 2002.11.30   Good Standing 2002.11.30   Good Standing 2002.11.30   Good Standing 2002.11.30   Good Standing 2002.11.30   Good Standing 2002.11.30   Good Standing 2002.11.30   Good Standing 2002.11.30   Good Standing 2002.11.30   Good Standing 2002.11.30   Good Standing 2002.11.30   Good Standing 2002.11.30   Good Standing 2002.11.30   Good Standing 2002.11.30   Good Standing 2002.11.30   Good Standing 2002.11.30   Good Standing 2002.11.30   Good Standing 2002.11.30   Good Standing 2002.11.30   Good Standing 2002.11.30   Good Standing 2002.11.30   Good Standing 2002.11.30   Good Standing 2002.11.30   Good Standing 2002.11.30   Good Standing 2002.11.30   Good Standing 2002.11.30		<u>323078</u>	ACE 28	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	650310M
1223080   ACE 30   134602   100%   093A14E   2002.1130   Good Standing 2002.1130   03   CARBOO   1   un   619897M     123081   ACE 31   134602   100%   093A14E   2002.1130   Good Standing 2002.1130   03   CARBOO   1   un   619898M     123082   ACE 33   134602   100%   093A14E   2002.1130   Good Standing 2002.1130   03   CARBOO   1   un   619900M     122083   ACE 33   134602   100%   093A14E   2002.1130   Good Standing 2002.1130   03   CARBOO   1   un   620207M     122085   ACE 35   134602   100%   093A14E   2002.1130   Good Standing 2002.1130   03   CARBOO   1   un   65035M     122084   ACE 37   134602   100%   093A14E   2002.1130   Good Standing 2002.1130   03   CARBOO   1   un   65033M     122082   ACE 40   134602   100%   093A14E   2002.1130		323079	ACE 29	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	lun	650311M
323081   ACE 31   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   O3   CARBOO   I   In   619898M     322082   ACE 32   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   O3   CARBOO   I   In   619899M     322083   ACE 33   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   O3   CARBOO   I   In   619900M     321084   ACE 34   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   O3   CARBOO   I   In   620208M     322082   ACE 37   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   O3   CARBOO   I   In   650338M     322082   ACE 37   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   O3   CARBOO   I   in   650338M     322082   ACE 41   134602   100%   093A14E   2002.11.		<u>323080</u>	ACE 30	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	lun	619897M
323082   ACE 32   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   03   CARIBOO   1   un   619899M     323083   ACE 33   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   03   CARIBOO   1   un   619909M     323084   ACE 34   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   03   CARIBOO   1   un   620207M     323086   ACE 36   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   03   CARIBOO   1   un   618899M     323085   ACE 37   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   03   CARIBOO   1   un   650338M     323085   ACE 37   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   03   CARIBOO   1   un   650349M     323080   ACE 43   134602   100%   093A14E   20		<u>323081</u>	ACE 31	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	lun	619898M
223083   ACE 33   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   0.3   CARIBOO   1   un   619900M     223084   ACE 34   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   0.3   CARIBOO   1   un   620207M     223085   ACE 35   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   0.3   CARIBOO   1   un   620207M     223086   ACE 37   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   0.3   CARIBOO   1   un   65035M     223086   ACE 39   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   0.3   CARIBOO   1   un   65033M     223080   ACE 40   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   0.3   CARIBOO   1   un   65034M     223091   ACE 41   134602   100%   093A14E <td< td=""><td></td><td><u>323082</u></td><td>ACE 32</td><td><u>134602</u> 100%</td><td>093A14E</td><td>2002.11.30</td><td>Good Standing 2002.11.30</td><td>03</td><td>CARIBOO</td><td>l un</td><td>619899M</td></td<>		<u>323082</u>	ACE 32	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	619899M
323084   ACE 34   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   0.3   CARIBOO   1   un   620207M     323085   ACE 35   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   0.3   CARIBOO   1   un   620208M     323086   ACE 36   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   0.3   CARIBOO   1   un   650355M     323086   ACE 37   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   0.3   CARIBOO   1   un   650338M     323080   ACE 39   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   0.3   CARIBOO   1   un   650349M     323090   ACE 41   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   0.3   CARIBOO   1   un   650342M     323092   ACE 41   134602   100%   093A14E		<u>323083</u>	ACE 33	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	lun	619900M
323085   ACE 35   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   O3   CARIBOO   I   un   620208M     323086   ACE 36   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   O3   CARIBOO   I   un   618899M     323087   ACE 37   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   O3   CARIBOO   I   un   650338M     323087   ACE 38   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   O3   CARIBOO   I   un   650338M     323090   ACE 40   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   O3   CARIBOO   I   un   650349M     323092   ACE 41   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   O3   CARIBOO   I   un   650344M     323092   ACE 43   134602   100%   093A14E   20		323084	ACE 34	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	620207M
323086   ACE 36   134602   100%   093A14E   2002.11.30   Geod Standing 2002.11.30   O3   CARIBOO   I   un   618899M     323087   ACE 37   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   O3   CARIBOO   I   un   650355M     323088   ACE 38   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   O3   CARIBOO   I   un   650338M     323089   ACE 39   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   O3   CARIBOO   I   un   650339M     323090   ACE 40   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   O3   CARIBOO   I   un   650340M     323091   ACE 41   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   O3   CARIBOO   I   un   650342M     323091   ACE 43   134602   100%   093A14E   20		323085	ACE 35	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	lun	620208M
323087 ACE 37 134602 100% 093A14E 2002.11.30 Good Standing 2002.11.30 03 CARIBOO 1 un 650355M   323088 ACE 38 134602 100% 093A14E 2002.11.30 Good Standing 2002.11.30 03 CARIBOO 1 un 650358M   323089 ACE 39 134602 100% 093A14E 2002.11.30 Good Standing 2002.11.30 03 CARIBOO 1 un 650338M   323090 ACE 40 134602 100% 093A14E 2002.11.30 Good Standing 2002.11.30 03 CARIBOO 1 un 650340M   323091 ACE 41 134602 100% 093A14E 2002.11.30 Good Standing 2002.11.30 03 CARIBOO 1 un 650342M   323092 ACE 42 134602 100% 093A14E 2002.11.30 Good Standing 2002.11.30 03 CARIBOO 1 un 650342M   323092 ACE 44 134602 100% 093A14E 2002.11.30 Good Standing 2003.11.30 03 CARIBOO 1 un 650344		323086	ACE 36	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	618899M
323088   ACE 38   114602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   03   CARIBOO   1   un   650338M     323089   ACE 39   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   03   CARIBOO   1   un   650339M     323090   ACE 40   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   03   CARIBOO   1   un   650340M     323091   ACE 41   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   03   CARIBOO   1   un   650342M     323093   ACE 42   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   03   CARIBOO   1   un   650344M     323093   ACE 43   134602   100%   093A14E   2002.11.30   Good Standing 2002.11.30   03   CARIBOO   1   un   650344M     331316   ACE 57   134602   100%   093A14E   20		323087	ACE 37	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	lun	650355M
323082ACE 39134602100%093A14E2002.11.30Good Standing 2002.11.3003CARIBOO1un650339M323091ACE 40134602100%093A14E2002.11.30Good Standing 2002.11.3003CARIBOO1un650340M323091ACE 41134602100%093A14E2002.11.30Good Standing 2002.11.3003CARIBOO1un650340M323092ACE 42134602100%093A14E2002.11.30Good Standing 2002.11.3003CARIBOO1un650342M323093ACE 43134602100%093A14E2002.11.30Good Standing 2002.11.3003CARIBOO1un650342M323094ACE 44134602100%093A14E2002.11.30Good Standing 2002.11.3003CARIBOO1un650342M331316ACE 57134602100%093A14E2005.11.30Good Standing 2003.11.3003CARIBOO1un628362M331312ACE 58134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628363M331312ACE 61134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628363M331312ACE 62134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628363M331322ACE 63134602 <td></td> <td>323088</td> <td>ACE 38</td> <td><u>134602</u> 100%</td> <td>093A14E</td> <td>2002.11.30</td> <td>Good Standing 2002.11.30</td> <td>03</td> <td>CARIBOO</td> <td>l un</td> <td>650338M</td>		323088	ACE 38	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	650338M
323090ACE 40134602100%093A14E2002.11.30Good Standing 2002.11.3003CARIBOO1un650340M323091ACE 41134602100%093A14E2002.11.30Good Standing 2002.11.3003CARIBOO1un650341M323092ACE 42134602100%093A14E2002.11.30Good Standing 2002.11.3003CARIBOO1un650342M323093ACE 43134602100%093A14E2002.11.30Good Standing 2002.11.3003CARIBOO1un650342M323094ACE 44134602100%093A14E2002.11.30Good Standing 2002.11.3003CARIBOO1un650344M331316ACE 57134602100%093A14E2002.11.30Good Standing 2003.11.3003CARIBOO1un650344M331316ACE 57134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628362M331317ACE 68134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628363M331319ACE 60134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628365M331320ACE 61134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628365M331321ACE 62134602 <td></td> <td>323089</td> <td>ACE 39</td> <td>134602 100%</td> <td>093A14E</td> <td>2002.11.30</td> <td>Good Standing 2002.11.30</td> <td>03</td> <td>CARIBOO</td> <td>l un '</td> <td>650339M</td>		323089	ACE 39	134602 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un '	650339M
323091ACE 41134602100%093A14E2002.11.30Good Standing 2002.11.3003CARIBOO1u650341M323092ACE 42134602100%093A14E2002.11.30Good Standing 2002.11.3003CARIBOO1un650342M323093ACE 43134602100%093A14E2002.11.30Good Standing 2002.11.3003CARIBOO1un650342M323094ACE 44134602100%093A14E2002.11.30Good Standing 2002.11.3003CARIBOO1un650344M331316ACE 57134602100%093A14E2005.11.30Good Standing 2003.11.3003CARIBOO1un628362M331317ACE 58134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628363M331318ACE 59134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628363M331319ACE 60134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628365M331320ACE 61134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628367M331321ACE 62134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628367M331322ACE 63134602		323090	ACE 40	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	650340M
323092   ACE 42   134602   100%   093 A14E   2002.11.30   Good Standing 2002.11.30   03   CARIBOO   1 un   650342M     323093   ACE 43   134602   100%   093 A14E   2002.11.30   Good Standing 2002.11.30   03   CARIBOO   1 un   650343M     323094   ACE 44   134602   100%   093 A14E   2002.11.30   Good Standing 2002.11.30   03   CARIBOO   1 un   650343M     331316   ACE 57   134602   100%   093 A14E   2003.11.30   Good Standing 2003.11.30   03   CARIBOO   1 un   628362M     331317   ACE 58   134602   100%   093 A14E   2005.11.30   Good Standing 2005.11.30   03   CARIBOO   1 un   628363M     331318   ACE 59   134602   100%   093 A14E   2005.11.30   Good Standing 2005.11.30   03   CARIBOO   1 un   628366M     331312   ACE 61   134602   100%   093 A14E   2005.11.30   Good Standing 2005.11.30   03   CARIBOO		323091	ACE 41	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	lun	650341M
323093ACE 43134602100%093A14E2002.11.30Good Standing 2002.11.3003CARIBOO1un650343M323094ACE 44134602100%093A14E2002.11.30Good Standing 2003.11.3003CARIBOO1un650344M331316ACE 57134602100%093A14E2003.11.30Good Standing 2003.11.3003CARIBOO1un628362M331317ACE 58134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628363M331318ACE 59134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628364M331319ACE 60134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628365M331320ACE 61134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628367M331321ACE 62134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628367M331322ACE 63134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628367M331321ACE 64134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628367M331322ACE 64134602 <td>-</td> <td><u>323092</u></td> <td>ACE 42</td> <td>134602 100%</td> <td>093A14E</td> <td>2002.11.30</td> <td>Good Standing 2002.11.30</td> <td>03</td> <td>CARIBOO</td> <td>l un</td> <td>650342M</td>	-	<u>323092</u>	ACE 42	134602 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	650342M
323094ACE 44134602100%093A14E2002.11.30Good Standing 2002.11.3003CARIBOO1un650344M331316ACE 57134602100%093A14E2003.11.30Good Standing 2003.11.3003CARIBOO1un628362M331317ACE 58134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628363M331318ACE 59134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628364M331319ACE 60134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628365M331320ACE 61134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628366M331321ACE 62134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628367M331322ACE 63134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628368M331323ACE 64134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628367M331322ACE 63134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628370M331323ACE 64134602 <td></td> <td>323093</td> <td>ACE 43</td> <td><u>134602</u> 100%</td> <td>093A14E</td> <td>2002.11.30</td> <td>Good Standing 2002.11.30</td> <td>03</td> <td>CARIBOO</td> <td>lun</td> <td>650343M</td>		323093	ACE 43	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	lun	650343M
331316ACE 57134602100%093 A14E2003.11.30Good Standing 2003.11.300.3CARIBOO1un628362M331317ACE 58134602100%093 A14E2005.11.30Good Standing 2005.11.300.3CARIBOO1un628363M331318ACE 59134602100%093 A14E2005.11.30Good Standing 2005.11.300.3CARIBOO1un628364M331319ACE 60134602100%093 A14E2005.11.30Good Standing 2005.11.300.3CARIBOO1un628365M331320ACE 61134602100%093 A14E2005.11.30Good Standing 2005.11.300.3CARIBOO1un628366M331321ACE 62134602100%093 A14E2005.11.30Good Standing 2005.11.300.3CARIBOO1un628367M331322ACE 63134602100%093 A14E2005.11.30Good Standing 2005.11.300.3CARIBOO1un628368M331321ACE 64134602100%093 A14E2005.11.30Good Standing 2005.11.300.3CARIBOO1un628368M331322ACE 64134602100%093 A14E2005.11.30Good Standing 2005.11.300.3CARIBOO1un628370M331324ACE 65134602100%093 A14E2005.11.30Good Standing 2005.11.300.3CARIBOO1un628385M331325ACE 7		323094	ACE 44	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	650344M
331317ACE 58134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628363M331318ACE 59134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628364M331319ACE 60134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628365M331320ACE 61134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628366M331321ACE 62134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628367M331322ACE 63134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628367M331323ACE 64134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628368M331323ACE 64134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628369M331324ACE 65134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628385M331324ACE 61134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628385M331326ACE 71134602 <td></td> <td>331316</td> <td>ACE 57</td> <td><u>134602</u> 100%</td> <td>093A14E</td> <td>2003.11.30</td> <td>Good Standing 2003.11.30</td> <td>03</td> <td>CARIBOO</td> <td>  1 un  </td> <td>628362M</td>		331316	ACE 57	<u>134602</u> 100%	093A14E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	1 un	628362M
331318ACE 59134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO11n628364M331319ACE 60134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628365M331320ACE 61134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628365M331321ACE 62134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628367M331322ACE 63134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628368M331323ACE 64134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628369M331324ACE 65134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628370M331324ACE 65134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628385M331324ACE 70134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628385M331325ACE 71134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628385M331327ACE 721		331317	ACE 58	134602 100%	093A14E	2005.11.30	Good Standing 2005.11.30	03	CARIBOO	lun	628363M
331319ACE 60134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628365M331320ACE 61134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628366M331321ACE 62134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628366M331322ACE 63134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628368M331323ACE 64134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628369M331324ACE 65134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628369M331324ACE 65134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628370M331325ACE 70134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628385M331326ACE 71134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628385M331327ACE 72134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628387M331328ACE 73134602 <td></td> <td><u>331318</u></td> <td>ACE 59</td> <td><u>134602</u> 100%</td> <td>093A14E</td> <td>2005.11.30</td> <td>Good Standing 2005.11.30</td> <td>03</td> <td>CARIBOO</td> <td>lun</td> <td>628364M</td>		<u>331318</u>	ACE 59	<u>134602</u> 100%	093A14E	2005.11.30	Good Standing 2005.11.30	03	CARIBOO	lun	628364M
331320ACE 61134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628366M331321ACE 62134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628367M331322ACE 63134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628368M331323ACE 64134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628369M331324ACE 65134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628370M331325ACE 70134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628385M331326ACE 71134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628386M331326ACE 71134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628387M331327ACE 72134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628387M331328ACE 73134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628388M		331319	ACE 60	134602 100%	093A14E	2005.11.30	Good Standing 2005.11.30	03	CARIBOO	l un	628365M
331321ACE 62134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628367M331322ACE 63134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628368M331323ACE 64134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628369M331324ACE 65134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628370M331325ACE 70134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628385M331326ACE 71134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628386M331325ACE 71134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628386M331326ACE 71134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628387M331327ACE 72134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628387M331328ACE 73134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628388M		331320	ACE 61	134602 100%	093A14E	2005.11.30	Good Standing 2005.11.30	03	CARIBOO	l un	628366M
331322ACE 63134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628368M331323ACE 64134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628369M331324ACE 65134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628369M331325ACE 70134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628385M331326ACE 71134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628386M331327ACE 72134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628387M331328ACE 73134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628387M331327ACE 72134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628387M331328ACE 73134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628388M		<u>331321</u>	ACE 62	134602 100%	093A14E	2005.11.30	Good Standing 2005.11.30	03	CARIBOO	l un	628367M
331323ACE 64134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628369M331324ACE 65134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628370M331325ACE 70134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628385M331326ACE 71134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628386M331327ACE 72134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628387M331328ACE 73134602100%093A14E2005.11.30Good Standing 2005.11.3003CARIBOO1un628388M		331322	ACE 63	134602 100%	093A14E	2005.11.30	Good Standing 2005.11.30	03	CARIBOO	l un	628368M
331324 ACE 65 134602 100% 093A14E 2005.11.30 Good Standing 2005.11.30 03 CARIBOO 1 un 628370M   331325 ACE 70 134602 100% 093A14E 2005.11.30 Good Standing 2005.11.30 03 CARIBOO 1 un 628370M   331325 ACE 70 134602 100% 093A14E 2005.11.30 Good Standing 2005.11.30 03 CARIBOO 1 un 628385M   331326 ACE 71 134602 100% 093A14E 2005.11.30 Good Standing 2005.11.30 03 CARIBOO 1 un 628385M   331327 ACE 72 134602 100% 093A14E 2005.11.30 Good Standing 2005.11.30 03 CARIBOO 1 un 628387M   331327 ACE 72 134602 100% 093A14E 2005.11.30 Good Standing 2005.11.30 03 CARIBOO 1 un 628388M   331328 ACE 73 134602 100% 093A14E 2005.11.30 Good Standing 2005.11.30 03 CARIBOO 1 un 628388		331323	ACE 64	134602 100%	093A14E	2005.11.30	Good Standing 2005.11.30	03	CARIBOO	lun	628369M
331325 ACE 70 134602 100% 093A14E 2005.11.30 Good Standing 2005.11.30 03 CARIBOO 1 un 628385M   331326 ACE 71 134602 100% 093A14E 2005.11.30 Good Standing 2005.11.30 03 CARIBOO 1 un 628385M   331326 ACE 71 134602 100% 093A14E 2005.11.30 Good Standing 2005.11.30 03 CARIBOO 1 un 628386M   331327 ACE 72 134602 100% 093A14E 2005.11.30 Good Standing 2005.11.30 03 CARIBOO 1 un 628387M   331328 ACE 73 134602 100% 093A14E 2005.11.30 Good Standing 2005.11.30 03 CARIBOO 1 un 628388M		<u>331324</u>	ACE 65	<u>134602</u> 100%	093A14E	2005.11.30	Good Standing 2005.11.30	03	CARIBOO	l un	628370M
331326 ACE 71 134602 100% 093A14E 2005.11.30 Good Standing 2005.11.30 03 CARIBOO 1 un 628386M   331327 ACE 72 134602 100% 093A14E 2005.11.30 Good Standing 2005.11.30 03 CARIBOO 1 un 628386M   331327 ACE 72 134602 100% 093A14E 2005.11.30 Good Standing 2005.11.30 03 CARIBOO 1 un 628387M   331328 ACE 73 134602 100% 093A14E 2005.11.30 Good Standing 2005.11.30 03 CARIBOO 1 un 628388M		331325	ACE 70	134602 100%	093A14E	2005.11.30	Good Standing 2005.11.30	03	CARIBOO	lun	628385M
331327 ACE 72 134602 100% 093A14E 2005.11.30 Good Standing 2005.11.30 03 CARIBOO 1 un 628387M   331328 ACE 73 134602 100% 093A14E 2005.11.30 Good Standing 2005.11.30 03 CARIBOO 1 un 628388M		<u>331326</u>	ACE 71	134602 100%	093Al4E	2005.11.30	Good Standing 2005.11.30	03	CARIBOO	l un	628386M
331328   ACE 73   134602   100%   093A14E   2005.11.30   Good Standing 2005.11.30   03   CARIBOO   1   un   628388M		<u>331327</u>	ACE 72	<u>134602</u> 100%	093A14E	2005.11.30	Good Standing 2005.11.30	03	CARIBOO	l un	628387M
		331328	ACE 73	134602 100%	093A14E	2005.11.30	Good Standing 2005.11.30	03	CARIBOO	lun	628388M

331329	ACE 74	<u>134602</u> 1	00%	093A14E	2005.11.30	Good Standing 2005.11.30	03	CARIBOO	l un	628389M
<u>331330</u>	ACE 75	<u>134602</u> 1	00%	093A14E	2005.11.30	Good Standing 2005.11.30	03	CARIBOO	1 un ]	628390M
331331	ACE 76	134602 1	00%	093A14E	2005.11.30	Good Standing 2005.11.30	03	CARIBOO	l un	628391M
<u>331332</u>	ACE 77	<u>134602</u> 1	00%	093A14E	2005.11.30	Good Standing 2005.11.30	03	CARIBOO	l un	647601M
331333	ACE 78	<u>134602</u> 1	00%	093A14E	2005.11.30	Good Standing 2005.11.30	03	CARIBOO	lun	647602M
<u>331334</u>	ACE 79	<u>134602</u> 1	00%	093A14E	2005.11.30	Good Standing 2005.11.30	03	CARIBOO	lun	647603M
331335	ACE 82	134602 1	00%	093A14E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	l un	647609M
331336	ACE 83	<u>134602</u> 1	00%	093A14E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	lun	647610M
331337	ACE 84	134602 1	00%	093A14E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	l un	647611M
331338	ACE 85	134602 1	00%	093A14E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	l un	647612M
<u>331501</u>	ACE 86	134602 1	00%	093A14E	2005.11.30	Good Standing 2005.11.30	03	CARIBOO	lun	647613M
<u>331502</u>	ACE 87	134602 1	00%	093A14E	2005.11.30	Good Standing 2005.11.30	03	CARIBOO	l un	647614M
331503	ACE 88	134602 1	00%	093A14E	2005.11.30	Good Standing 2005.11.30	03	CARIBOO	lun	647615M
331504	ACE 89	134602 1	00%	093A14E	2005.11.30	Good Standing 2005.11.30	03	CARIBOO	l un	647616M
<u>331505</u>	ACE 90	<u>134602</u> 14	00%	093A14E	2005.11.30	Good Standing 2005.11.30	03	CARIBOO	lun	647617M
331506	ACE 91	134602 1	00%	093A14E	2005.11.30	Good Standing 2005.11.30	03	CARIBOO	l un	647618M
<u>331507</u>	ACE 92	<u>134602</u> 1	00%	093A14E	2005.11.30	Good Standing 2005.11.30	03	CARIBOO	l un ⁻	647619M
331508	ACE 93	134602 1	00%	093A14E	2005.11.30	Good Standing 2005.11.30	03	CARIBOO	l un	647620M
<u>331509</u>	ACE 94	134602 1	00%	093A14E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	lun	647621M
331510	ACE 95	134602 1	00%	093A14E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	1 un	628392M
331511	ACE 96	<u>134602</u> 10	00%	093A14E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	l un	628393M
331512	ACE 97	<u>134602</u> l	00%	093A14E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	lun	628394M
331513	ACE 98	<u>134602</u> I	00%	093A14E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	lun	628395M
331514	ACE 99	134602 1	00%	093A14E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	l un	628396M
331515	ACE 100	134602 1	00%	093A14E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	l un	628397M
331516	ACE 101	134602 1	00%	093Al4E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	lun	628398M
331517	ACE 102	134602 1	00%	093A14E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	l un	628399M
331518	ACE 103	134602 1	00%	093A14E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	l un	628400M
331519	ACE 104	134602 1	00%	093A14E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	l un	628372M
331520	ACE 105	134602 1	00%	093A14E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	l un	628373M
331521	ACE 106	134602 1	00%	093A14E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	l un	628374M
331522	ACE 107	134602 1	00%	093A14E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	l un	628375M
<u>331523</u>	ACE 108	134602 1	00%	093A14E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	l un	628376M

331524	4 ACE 109	<u>134602</u> 100%	093A14E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	lun	628377M
33152	5 ACE 110	<u>134602</u> 100%	093A14E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	l un	628378M
33152	ACE III	134602 100%	093A14E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	l un	628379M
<u>33152</u>	ACE 112	<u>134602</u> 100%	093A14E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	Iun	628380M
<u>33209</u>	Z ACE 67	<u>134602</u> 100%	093A14E	2005.11.30	Good Standing 2005.11.30	03	CARIBOO	l un	647606M
332098	ACE 68	<u>134602</u> 100%	093A14E	2005.11.30	Good Standing 2005.11.30	03	CARIBOO	lun	647607M
332099	ACE 69	<u>134602</u> 100%	093A14E	2005.11.30	Good Standing 2005.11.30	03	CARIBOO	lun	647608M
<u>33210</u> 4	LED I	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	lun	647681M
<u>33210</u>	E LED 2	134602 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	lun	647682M
332100	5   LED 3	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	lun	647683M
<u>33210</u>	/ LED 4	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	lun	647684M
332108	<u>1 LED 5</u>	134602 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	lun	647685M
<u>332109</u>	LED 6	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	lun	647686M
332110	<u>)</u> LED 7	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	1 un	647687M
<u>33211</u>	LED 8	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	lun	647688M
<u>33211</u> 2	<u>2</u> LED 9	134602 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	647689M
<u>33211</u>	LED 10	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	lun	647690M
332114	LED 11	134602 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	lun	647691M
33211	LED 12	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	lun	647692M
332110	<u>5</u> LED 13	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	lun	647693M
33211	2 LED 14	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	lun	647694M
332118	LED 15	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	647695M
332119	<u>)</u> LED 16	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	647696M
332120	<u>)</u> LED 17	134602 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	647697M
33212	LED 18	134602 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	lun	647698M
332122	<u>2</u> LED 19	134602 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	lun	647699M
33212	LED 20	134602 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	lun	647700M
332124	LED 21	134602 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	1 un	625781M
332125	E LED 22	134602 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	lun	625782M
332120	5 LED 23	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	lun	625783M
332122	LED 24	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	625784M
<u>33410</u>	JIM	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l5 un	200891
334102	KATHY	134602 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	15 un	200890

_ _

	334103	COL 6	134602	100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	10 un	200888
	<u>334104</u>	LD I	134602	100%	093A14E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	6 un	200449
	334105	LD 2	134602	100%	093A14E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	12 un	200450
	334106	AARON	<u>134602</u>	100%	093A14E	2002.11.30	Good Standing 2002 11.30	03	CARIBOO	15 un	200892
	334107	KIM	<u>134602</u>	100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l5 un	200889
	<u>334108</u>	COL 5	<u>134602</u>	100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	10 un	200887
	<u>334284</u>	E 1	<u>134602</u>	100%	093AI4E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	l un	625785M
	<u>334285</u>	E 2	134602	100%	093A14E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	l un	625786M
	<u>334286</u>	E 3	<u>134602</u>	100%	093A14E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	l un	625787M
	<u>334287</u>	E 4	<u>134602</u>	100%	093A14E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	l un	625788M
	<u>334288</u>	E 5	<u>134602</u>	100%	093A14E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	1 un	625789M
	<u>335484</u>	ROAR 1	<u>134602</u>	100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	6 un	213587
	<u>335485</u>	ROAR 2	134602	100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	12 un	213588
	<u>335486</u>	ROAR 3	<u>134602</u>	100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	9 un	213589
	335487	ROAR 4	<u>134602</u>	100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	18 un	213575
	<u>335600</u>	Е 6	<u>134602</u>	100%	093A14E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	l un	650351M
	<u>335601</u>	PRINCE 1	<u>134602</u>	100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	15 un	213591
-	<u>335602</u>	PRINCE 2	134602	100%	093A14E	2006.11.30	Good Standing 2006.11.30	03	CARIBOO	20 un	213586
	<u>335603</u>	ABRACAD 1	<u>134602</u>	100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	213594
	<u>335604</u>	ABRACAD 2	134602	100%	093A14E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	9 un	213595
	<u>335605</u>	KING I	<u>134602</u>	100%	093A14E	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	20 un	213592
İ	335606	QUEEN I	134602	100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	213593
	<u>336739</u>	ACE WEST 1	<u>134602</u>	100%	093A14E	2006.11.30	Good Standing 2006.11.30	03	CARIBOO	20 un	210389
	336740	ACE WEST 2	134602	100%	093A14E	2006.11.30	Good Standing 2006.11.30	03	CARIBOO	20 un	210489
	338226	BILL I	134602	100%	093A14E	2005.11.30	Good Standing 2005.11.30	03	CARIBOO	20 un	210861
	<u>338228</u>	CHARLIE 1	134602	100%	093A14E	2004.11.30	Good Standing 2004.11.30	03	CARIBOO	1 un	647674M
	<u>338229</u>	CHARLIE 2	<u>134602</u>	100%	093A14E	2004.11.30	Good Standing 2004.11.30	03	CARIBOO	l un	647675M
:	<u>338230</u>	CHARLIE 3	134602	100%	093A14E	2004.11.30	Good Standing 2004.11.30	03	CARIBOO	l un	647676M
Í	<u>338231</u>	CHARLIE 4	<u>134602</u>	100%	093A14E	2004.11.30	Good Standing 2004.11.30	03	CARIBOO	l un	647677M
Í	<u>338232</u>	CHARLIE 5	<u>134602</u>	100%	093A14E	2004.11.30	Good Standing 2004.11.30	03	CARIBOO	l un	647678M
	<u>343725</u>	CHAY I	<u>134602</u>	100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	210818
	<u>343726</u>	CHAY 2	134602	100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	210819
	<u>343727</u>	CHAY 3	134602	100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	210820

,

								<u> </u>	
	<u>343728</u>	CHAY 4	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	20 un	210821
1	<u>343735</u>	RIVY I	134602 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	18 un	210828
	<u>343736</u>	RIVY 2	134602 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	l8 un	210829
	<u>343737</u>	TYS 1	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	20 un	210830
	343738	TYS 2	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	20 un	210831
	<u>343745</u>	TYS 3	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	20 un	210832
	<u>343746</u>	TYS 4	134602 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	20 un	210833
	<u>343751</u>	NET I	134602 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	10 un	210896
	<u>343752</u>	NET 2	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	20 un	210897
	343753	NET 3	134602 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	12 un	210898
1	343754	NET 4	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	12 un	210899
	<u>343755</u>	BOO 1	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	16 un	210816
	<u>343756</u>	BOO 2	134602 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	18 un	210817
	<u>343757</u>	BLACK I	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	12 un	210822
i	<u>343758</u>	BLACK 2	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	18 un	210823
ļ	<u>343759</u>	GAR I	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	5 un	210834
	<u>343761</u>	GAR 2	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	20 un	210835
ĺ	343766	CATH 1	134602 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	18 un	210824
	<u>343767</u>	CATH 2	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	12 un	210825
	<u>343768</u>	CATH 3	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	18 un	210826
	<u>343769</u>	CATH 4	<u>134602</u> 100%	093A14E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	15 un	210827
	<u>343986</u>	BROWN 1	134602 100%	093A11W	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	15 un	213601
	<u>343987</u>	BROWN 2	<u>134602</u> 100%	093A11W	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	18 un	213602
ĺ	<u>343988</u>	BROWN 3	134602 100%	093A11W	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	20 un	213603
ĺ	<u>343989</u>	BROWN 4	134602 100%	093A11W	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	20 un	213604
Ī	<u>343990</u>	SELL I	134602 100%	093A11W	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	6 un	213605
-	<u>343991</u>	SELL 2	134602 100%	093AHW	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	4 un	213606
	<u>343992</u>	SELL 3	134602 100%	093A11W	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	8 un	213607
	<u>343993</u>	SELL 4	<u>134602</u> 100%	093A11W	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	12 un	213608
ĺ	344004	BAD 1	<u>134602</u> 100%	093A11W	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	20 un	210846
	344005	BAD 2	134602 100%	093A11W	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	20 un	210847
	344006	BAD 3	134602 100%	093A11W	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	20 un	210848
ĺ	344007	BADGER I	134602 100%	093A11W	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	6 un	210850

.

344008	BADGER 2	134602	100%	093A11W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l4 un	210864
344009	STEVEN 1	134602	100%	093A11E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	213609
344010	STEVEN 2	134602	100%	093A11E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	213610
<u>34401</u>	STEVEN 3	<u>134602</u>	100%	093A11E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	10 un	213611
344012	STEVEN 4	134602	100%	093A11E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	10 un	213612
<u>344013</u>	SON I	134602	100%	093A11E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	15 un	208212
344014	SON 2	134602	100%	093A11E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	18 un	208213
344015	GOO 1	134602	100%	093A11E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	210849
345690	AUBAR I	<u>134602</u>	100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	8 un	213621
345691	AUBAR 2	134602	100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	15 un	213622
<u>345692</u>	AUBAR 3	134602	100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	213623
<u>345693</u>	AUBAR 4	134602	100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	213624
345694	AUBAR 5	134602	100%	093A11E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	213625
<u>345695</u>	AUBAR 6	<u>134602</u>	100%	093A11E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	16 un	213626
<u>345696</u>	AUBAR 7	<u>134602</u>	100%	093A11E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	213627
345698	AUBAR 9	<u>134602</u>	100%	093A15W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	16 un	213629
<u>345699</u>	AUBAR 10	<u>134602</u>	100%	093A15W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	213630
<u>345702</u>	AUBAR 13	134602	100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	213633
<u>345703</u>	AUBAR 14	<u>134602</u>	100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	16 un	213634
<u>346689</u>	CHRIS 4	134602	100%	093A11E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	12 un	213656
<u>346690</u>	CHRIS 5	134602	100%	093A11E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	18 un	213657
<u>346691</u>	CHRIS 6	134602	100%	093A11E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	213658
<u>346692</u>	CHRIS 7	<u>134602</u>	100%	093A11E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	213659
<u>346693</u>	CHRIS 8	134602	100%	093A11E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	213660
<u>346694</u>	CHRIS 9	<u>134602</u>	100%	093A11E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	16 un	213661
<u>346695</u>	CHRIS 10	134602	100%	093A11E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	213662
<u>346696</u>	CHRIS 11	<u>134602</u>	100%	093A11E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	16 un	213663
<u>347057</u>	COMET 8	134602	100%	093A14E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	9 un	210865
347062	AMANDA 1	134602	100%	093A11W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	213664
347063	AMANDA 2	134602	100%	093A11W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	18 un	213665
<u>347064</u>	AMANDA 3	<u>134602</u>	100%	093A11W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	18 un	213666
<u>347065</u>	AMANDA 4	<u>134602</u>	100%	093A11W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	213667
347066	AMANDA 5	134602	100%	093A11W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	213613

347067	AMANDA 6	<u>134602</u> 100%	093AIIW	2002.11.30	Good Standing 2002.11.30	03 CA	RIBOO	20 un	213614
347068	AMANDA 7	134602 100%	093A11W	2002.11.30	Good Standing 2002.11.30	03 CA	RIBOO	20 un	213615
<u>347069</u>	AMANDA 8	134602 100%	093A11W	2002.11.30	Good Standing 2002.11.30	03 CA	RIBOO	4 un	210900
<u>347222</u>	GRAIN 1	<u>134602</u> 100%	093A11W	2002.11.30	Good Standing 2002.11.30	03 CA	RIBOO	20 un	231131
347223	GRAIN 2	134602 100%	093A11W	2002.11.30	Good Standing 2002.11.30	03 CA	RIBOO	16 un	231132
<u>347224</u>	GRAIN 3	<u>134602</u> 100%	093A11E	2002.11.30	Good Standing 2002.11.30	03 CA	RIBOO	20 un	231133
347225	GRAIN 4	134602 100%	093A11E	2002.11.30	Good Standing 2002.11.30	03 CA	RIBOO	20 un	231134
347226	GRAIN 5	<u>134602</u> 100%	093A11E	2002.11.30	Good Standing 2002.11.30	03 CA	RIBOO	16 un	231135
347227	GRAIN 6	134602 100%	093A11E	2002.11.30	Good Standing 2002.11.30	03 CA	RIBOO	16 un	231136
<u>347483</u>	B.B. 1	<u>134602</u> 100%	093A11W	2002.11.30	Good Standing 2002.11.30	03 CA	RIBOO	20 un	231141
347484	B.B. 2	134602 100%	093A11W	2002.11.30	Good Standing 2002.11.30	03 CA	RIBOO	20 un	231142
347485	B.B. 3	<u>134602</u> 100%	093A11W	2002.11.30	Good Standing 2002.11.30	03 CA	RIBOO	20 un	231143
347486	B.B. 4	<u>134602</u> 100%	093A11W	2002.11.30	Good Standing 2002.11.30	03 CA	RIBOO	20 un	231144
347589	B.B. 5	134602 100%	093A11W	2002.11.30	Good Standing 2002.11.30	03 CA	RIBOO	20 un	231145
<u>347590</u>	B.B. 6	<u>134602</u> 100%	093A11W	2002.11.30	Good Standing 2002.11.30	03 CA	RIBOO	20 un	231146
347591	B.B. 7	134602 100%	093A11W	2002.11.30	Good Standing 2002.11.30	03 CA	RIBOO	10 un	231147
347592	B.B. 8	<u>134602</u> 100%	093A11W	2002.11.30	Good Standing 2002.11.30	03 CA	RIBOO	20 un	231148
347593	B.B. 9	134602 100%	093A11W	2002.11.30	Good Standing 2002.11.30	03 CA	RIBOO	10 un	231149
<u>347595</u>	B.B. 11	<u>134602</u> 100%	093A11W	2002.11.30	Good Standing 2002.11.30	03 CA	RIBOO	20 un	231130
<u>347964</u>	JESS 1	134602 100%	093AIIW	2003.11.30	Good Standing 2003.11.30	03 CA	RIBOO	18 un	231137
<u>347965</u>	JESS 2	<u>134602</u> 100%	093A11W	2003.11.30	Good Standing 2003.11.30	03 CA	RIBOO	18 un	231138
347966	JESS 3	<u>134602</u> 100%	093A11W	2003.11.30	Good Standing 2003.11.30	03 CA	RIBOO	I8 un	231139
<u>347967</u>	JESS 4	<u>134602</u> 100%	093A11W	2003.11.30	Good Standing 2003.11.30	03 CA	RIBOO	18 un	231140
347968	LONG I	<u>134602</u> 100%	093A11E	2002.11.30	Good Standing 2002.11.30	03 CA	RIBOO	20 un	231171
348637	LONG 3	<u>134602</u> 100%	093A11E	2002.11.30	Good Standing 2002.11.30	03 CA	RIBOO	20 un	208467
<u>348639</u>	LONG 5	<u>134602</u> 100%	093A11E	2002.11.30	Good Standing 2002.11.30	03 CA	RIBOO	20 un	208469
348640	LONG 6	<u>134602</u> 100%	093A11E	2002.11.30	Good Standing 2002.11.30	03 CA	RIBOO	20 un	208470
348641	GRACE 1	134602 100%	093A11E	2002.11.30	Good Standing 2002.11.30	03 CA	RIBOO	20 un	208471
<u>348642</u>	GRACE 2	<u>134602</u> 100%	093A11E	2002.11.30	Good Standing 2002.11.30	03 CA	RIBOO	20 un	208472
348643	GRACE 3	134602 100%	093A11E	2002.11.30	Good Standing 2002.11.30	03 CA	RIBOO	20 un	208473
348644	GRACE 4	<u>134602</u> 100%	093A11E	2002.11.30	Good Standing 2002.11.30	03 CA	RIBOO	5 un	208474
348645	GRACE 5	<u>134602</u> 100%	093A11E	2002.11.30	Good Standing 2002.11.30	03 CA	RIBOO	18 un	208475
348646	GRACE 6	134602 100%	093A11E	2002.11.30	Good Standing 2002.11.30	03 CA	RIBOO	15_un	208476

									· ·· — — — — — — — — — — — — — — — — —		
'	<u>348647</u>	GRACE 7	134602	100%	093A11E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l2 un	208462
	<u>351089</u>	BIG GULP I	134602	100%	093A11W	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	12 un	208481
	<u>351090</u>	BIG GULP 2	134602	100%	093A11W	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	15 un	208482
	<u>351091</u>	BIG GULP 3	134602	100%	093A11W	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	12 un	208483
	351092	BIG GULP 4	134602	100%	093A11W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	15 un	208484
	<u>369406</u>	FRANK	134602	100%	093A14W	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	20 un	236768
	<u>369407</u>	F1	134602	100%	093A11W	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	lun	686507M
	<u>369408</u>	F2	<u>134602</u>	100%	093A11W	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	l un	686508M
	369409	F3	134602	100%	093A11W	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	lun	686509M
	<u>369410</u>	F4	<u>134602</u>	100%	093A11W	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	l un	686510M
	<u>369411</u>	F5	134602	100%	093A11W	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	l un	686511M
	<u>369412</u>	F6	134602	100%	093A11W	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	l un	686512M
	369413	F7	134602	100%	093A11W	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	lun	686513M
	369414	F8	134602	100%	093A11W	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	l un	686514M
	<u>373146</u>	FEI	134602	100%	093A14W	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	lun	692761M
	<u>373147</u>	FE2	<u>134602</u>	100%	093A14W	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	l un	692762M
	<u>373148</u>	FE3	<u>134602</u>	100%	093A14W	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	lun	692753M
'	<u>373149</u>	FE4	134602	100%	093A14W	2003.11.30	Good Standing 2003.11.30	03	CARIBOO	1 un	692754M
	<u>373150</u>	FE5	134602	100%	093A14W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	lun	692755M
	373333	FE	134602	100%	093A14W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	231935
	<u>375715</u>	КІ	<u>134602</u>	100%	093A14W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	239915
	<u>375716</u>	K2	134602	100%	093A14W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	239916
	<u>375717</u>	К3	<u>134602</u>	100%	093A14W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	239917
	<u>375718</u>	K4	134602	100%	093A14W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	239918
	<u>375748</u>	K5	134602	100%	093A14W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	239925
	<u>375756</u>	К6	134602	100%	093A11W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	239926
	<u>375757</u>	К9	134602	100%	093A12E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	239929
	<u>375758</u>	K10	134602	100%	093A12E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	239930
	<u>375759</u>	K11	134602	100%	093A12E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	239921
	<u>375760</u>	K12	134602	100%	093A12E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	239922
	<u>375761</u>	K13	134602	100%	093A12E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	239923
	<u>375762</u>	К7	134602	100%	093A11W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	239927
	375763	К8	134602	100%	093A11W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	239928

<u>376209</u>	M 1	134602 100%	093A12W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	692760M
376210	M 2	134602 100%	093A12W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	1 un	691374M
376211	M 3	134602 100%	093A12W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	691373M
376212	MAUD 1	134602 100%	093A12W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	203376
376213	MAUD 2	134602 100%	093A12W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	203377
<u>376214</u>	MAUD 3	<u>134602</u> 100%	093A12W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	203378
376215	MAUD 4	<u>134602</u> 100%	093A12W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	203379
376216	MAUD 5	<u>134602</u> 100%	093A12W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	203380
376217	MAUD 6	134602 100%	093A12W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	239919
377020	MAUD 10	134602 100%	093A12W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	239951
<u>377021</u>	MAUD 11	134602 100%	093A12W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	239952
<u>377022</u>	MAUD 15	134602 100%	093A12W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	15 un	239956
<u>377023</u>	MAUD 16	<u>134602</u> 100%	093A12W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	12 un	239957
377256	K18	<u>134602</u> 100%	093A14W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	697519M
<u>377257</u>	K19	<u>134602</u> 100%	093A14W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	lun	697520M
<u>377258</u>	K20	134602 100%	093A14W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	lun	697521M
<u>377259</u>	MAUD 7	<u>134602</u> 100%	093A12W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	239968
377260	MAUD 8	134602 100%	093A12W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	239969
<u>377261</u>	MAUD 9	<u>134602</u> 100%	093A12W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	239970
377431	FK 20	134602 100%	093A14W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	6 un	239920
<u>377515</u>	BEAR I	<u>134602</u> 100%	093A11W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	237845
377516	BEAR 2	134602 100%	093A11W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	237846
<u>377517</u>	BEAR 3	<u>134602</u> 100%	093A11W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	237880
377688	VC 1	134602 100%	093A13W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	238001
377720	VC 8	<u>134602</u> 100%	093A13W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	16 un	238078
377721	VC 9	<u>134602</u> 100%	093A13W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	238079
377724	VC 6	<u>134602</u> 100%	093A13W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	238006
377725	VC 7	134602 100%	093A13W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	238007
377726	VC 2	<u>134602</u> 100%	093A13W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	238002
377727	VC 3	134602 100%	093A13W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	238003
377728	VC 5	<u>134602</u> 100%	093A13W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	238005
377729	VC 11	<u>134602</u> 100%	093A13W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	238081
377730	VC 12	134602 100%	093A13W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	238082

<u>37773</u>	<u>81</u> VC 13	134602 100%	:093A13W	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	12 un	238083
37773	<u>82</u> VC 4	<u>134602</u> 100%	. 093A13W	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	20 un	238004
37773	3 VC 10	<u>134602</u> 100%	093A13W	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	20 un	237924
<u>37787</u>	7 <u>8</u> MAG A	<u>134602</u> 100%	093B16E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	lun	697573.M
37787	<u>79</u> MAG B	134602 100%	093B16E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	l un	697574M
<u>37788</u>	80 MAG C	134602 100%	093B16E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	l un	697575M
37788	<u>MAG D</u>	134602 100%	093B16E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	l un	697576M
37788	MAG E	134602 100%	093B16E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	lun	697577M
37788	33 MAG 1	<u>134602</u> 100%	093B16E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	20 un	237896
37788	4 MAG 3	134602 100%	093B16E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	20 un	237898
37788	5 MAG 5	134602 100%	093B16E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	10 un	237894
<u>37789</u>	9 MAG 2	134602 100%	093B16E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	20 un	237897
37798	7 MADAM 1	134602 100%	093A11W	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	20 un	237849
<u>37798</u>	8 MADAM 2	<u>134602</u> 100%	093A11W	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	20 un	237850
<u>37798</u>	<u>9</u>   MADAM 3	134602 100%	093A14W	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	16 un	237876
37799	0 MADAM 4	134602 100%	093A11W	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	12 un	237877
<u>37799</u>	1 MADAM 5	134602 100%	093A14W	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	16 un	237878
37799	2 MADAM 6	134602 100%	093A11W	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	12 un	237879
<u>37799</u>	<u>3</u> MADAM 7	<u>134602</u> 100%	093A14W	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	20 un	237847
<u>37799</u>	4 MADAM 8	134602 100%	093A14W	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	20 un	237848
<u>37811</u>	<u>3</u> P.G.	<u>134602</u> 100%	093A13E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	20 un	238072
<u>37811</u>	<u>4</u> PG I	134602 100%	093A13E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	20 un	239981
<u>37811</u>	<u>5</u>  PG 2	<u>134602</u> 100%	093A13E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	20 un	239982
<u>37811</u>	<u>6</u> PG 11	134602 100%	093A13E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	16 un	238073
<u>37811</u>	<u>7</u> PG 12	134602 100%	093A13E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	16 un	238074
<u>37811</u>	<u>8</u> PG 13	<u>134602</u> 100%	093A13E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	16 un	238075
37811	<u>9</u> PG 14	<u>134602</u> 100%	093A13E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	16 un	238076
37812	0 PG 4	<u>134602</u> 100%	093A12E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	20 un	239984
<u>37812</u>	<u>1</u> PG 5	<u>134602</u> 100%	093A12E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	20 un	239985
<u>37812</u>	<u>2</u> PG 6	<u>134602</u> 100%	093A12E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	20 un	239986
<u>37812</u>	<u>3</u> PG 7	<u>134602</u> 100%	093A12E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	20 un	239987
37812	<u>4</u> P.G 8	<u>134602</u> 100%	093A12E	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	20 un	238066
37812	5 COTT 1	134602 100%	093A13W	2002.11.30	Good Standing 2002.11.30	03 CARIBOO	l un	697522M

	<u>378126</u>	COTT 2	<u>134602</u>	100%	093A13W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	697523M
	<u>378127</u>	COTT 3	134602	100%	093A13W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	1 un	697528M
	<u>378128</u>	COTT 4	134602	100%	093A13W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	697529M
İ	<u>378129</u>	COTT 5	<u>134602</u>	100%	093A13W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	1 un	697530M
İ	<u>378130</u>	COTT 6	134602	100%	093A13W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	697531M
	<u>378131</u>	COTT 7	134602	100%	093A13W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	1 un	697532M
	378132	COTT 8	134602	100%	093A13W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	lun	697533M
ĺ	378133	COTT 9	134602	100%	093A13W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	697534M
ĺ	378134	COTT 10	134602	100%	093A13W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	697535M
	378135	COTT 11	134602	100%	093A13W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	697536M
	<u>378136</u>	COTT 12	<u>134602</u>	100%	093A13W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	1 un	697537M
	<u>378137</u>	COTT 13	<u>134602</u>	100%	093A13W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	697538M
	<u>378138</u>	COTT 14	<u>134602</u>	100%	093A13W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	1 un	697539M
	<u>378143</u>	COTT 16	134602	100%	093A12E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	697541M
	<u>378144</u>	COTT 17	134602	100%	093A12E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	697567M
	<u>378145</u>	PG 3	134602	100%	093A12E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	239983
	<u>378146</u>	P.G. 10	<u>134602</u>	100%	093A12E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	239980
1	<u>378148</u>	COTT 15	<u>134602</u>	100%	093A13W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	697540M
į	<u>378289</u>	MAUD	<u>134602</u>	100%	093A12W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	238084
ĺ	<u>378295</u>	PG 16	<u>134602</u>	100%	093A13E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	4 un	237950
	<u>378371</u>	MAG F	<u>134602</u>	100%	093B16E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	697578M
	<u>378372</u>	MAG G	<u>134602</u>	100%	093B16E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	697579M
	378373	MAG H	<u>134602</u>	100%	093B16E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	697580M
ſ	<u>378374</u>	MAGI	<u>134602</u>	100%	093B16E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	697581M
	<u>378375</u>	MAG J	<u>134602</u>	100%	093B16E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	697582M
ļ	<u>378376</u>	MAG K	134602	100%	093B16E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	lun	697583M
Ĩ	<u>378377</u>	MAG L	<u>134602</u>	100%	093B16E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	697584M
	<u>378378</u>	MAG M	134602	100%	093B16E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	697585M
İ	<u>378379</u>	MAG N	<u>134602</u>	100%	093B16E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	697586M
ſ	379267	K 15	134602	100%	093A12E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	238085
	<u>379270</u>	K 14	<u>134602</u>	100%	093A11W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	14 un	237937
Ē	379274	K 21	134602	100%	093A14W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	699911M
Ī	<u>379275</u>	K 23	134602	100%	093A14W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	699913M

	<u> </u>			<u> </u>		<u></u>				
379276	K 25	<u>134602</u> 1	00%	093A14W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	l un	699915M
<u>379556</u>	PG 9	<u> 134602</u> 1	00%	093A12E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	239979
379557	PG 15	134602 1	00%	093A13E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	16 un	237930
. <u>379810</u>	CU2S 1	<u>134602</u> 1	00%	093B16E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	12 un	215159
<u>379811</u>	CU2S 2	134602 1	00%	093B16E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	215189
<u>379812</u>	CU2S 3	134602 1	00%	093B16E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	20 un	215160
<u>379813</u>	CU2S 4	<u>134602</u> 1	00%	093B16E	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	15 un	215190
382062	BIG GULP 5	134602 10	00%	093A11W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	9 un	203888
382063	BIG GULP 6	<u>134602</u> 10	00%	093A11W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	9 un	203889
382064	BIG GULP 7	<u>134602</u> 10	00%	093A11W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	12 un	210485
382172	BIG GULP 8	134602 10	00%	093A11W	2002.11.30	Good Standing 2002.11.30	03	CARIBOO	lun	695800M

-----