JUN 3 - 2003

Geological, Geophysical, and Geochemical Assessment Report

 on the
Toodoggone Project

Finlay River, Toodoggone, British Columbia NTS: M94E02, 07 E/W
Latitude $57^{\circ} 13^{\prime} \mathrm{N}$, Longitude: $126^{\circ} 42^{\prime} \mathrm{W}$
Omineca Mining Division
for

Stealth Minerals Limited 2382 Bayview Avenue
 Toronto, Ontario
 Canada, M2L 1A1

by

David E. Blann, P.Eng
Brian T. Malahoff, P.Geo
Standard Metals Exploration Ltd.
May, 2003

GEOLOGICAL SURVEY BRANCH ASSESGMENT FEPORT

Table of Contents

1.0 Summary 3
2.0 Introduction and Terms of Reference. 4
3.0 Property Description and Location 4
4.0 Access, Climate, Local Resources, Infrastructure, Physiography. 5
5.0 History 6
6.0 Geological Setting 8
6.1 Regional Geology Introduction. 8
6.2 Stratigraphy 8
6.3 Intrusive Rocks. 8
6.4 Structure 9
6.5 Property Geology 9
6.5.1 Pine Geology (Structure, Mineralization, Alteration) 11
6.5.2 Pine-SW Geology (Structure, Mineralization, Alteration) 11
6.5.3 Mex Geology (Structure, Mineralization, Alteration) 12
6.5.4 Nub Geology (Structure, Mineralization, Alteration). 13
6.5.5 Vip Geology (Structure, Mineralization, Alteration) 14
6.5.6 Goat Geology (Structure, Mineralization, Alteration) 17
6.5.7 Wrich Hill Geology (Structure, Mineralization, Alteration). 17
7.0 Deposit Types 19
8.0 Exploration 19
8.1 Silt Geochemical Survey 20
8.2 Soil Geochemical Survey 20
8.3 Prospecting and Rock Sampling 20
8.4 Line Cutting 22
8.5 Grid Establishment 22
8.6 Machine Trenching 22
8.7 Geological Grid Mapping 23
8.8 Geological Trench Mapping 23
8.9 Rock Chip Sampling of Excavator Trenches. 23
8.10 Ground Geophysical Survey 24
9.0 Sample Method and Approach 25
10.0 Sample Preparation, Analyses and Security 25
11.0 Adjacent Properties 26
12.0 Interpretation and Conclusions 26
12.1 Goat. 26
12.2 Pine (includes Tree/Fin) 26
12.3 Pine-SW 27
12.4 Mex 27
12.5 Nub Mountain 28
12.6 Vip 28
12.7 Wrich Hill. 30
13.0 Recommendations. 30
13.1 Drilling 30
13.1.1 Porphyry gold-copper targets 30
13.1.2 Epithermal gold-silver targets. 31

APPENDIX 1 - TABLES
Table 1 - Claim Status
Table 2 - Geological Abbreviations
Table 3-VIP Trench Summary
Table 4 - Wrich Trench Summary
APPENDIX 2 - FIGURES
APPENDIX 3.1- GEOPHYSICAL REPORTS
APPENDIX 3.2 - PIMA SHORT WAVE INFRARED REPORT
APPENDIX 3.3 - PETROGRAPHIC REPORT
APPENDIX 4 - ROCK SAMPLE SHEETS AND CERTIFICATES OF ANALYSIS

1.0 Summary

The Toodoggone Project is located in north central British Columbia approximately 430 kilometers northwest of Prince George. The 1007 mineral claim units are located in the Toodoggone District (Omineca Mining Division) and in part, adjoin Northgate Exploration Limited Kemess gold-copper property to the south. Stealth Minerals Limited has an option to earn up to 100% in these properties totaling approximately 25,000 hectares in area from Electrum Resource Corp., a private company.

Previous exploration of the Toodoggone Project area was focused on porphyry copper exploration from 1968 to 1981. During this time the Fin (porphyry), JK (porphyry), Pine (copper-gold porphyry) Mex (copper-gold) and Vip (skarn) prospects were identified. Between 1980 and 1990 exploration on the property concentrated on epithermal type goldsilver prospects (Wrich, Nub, Goat, Electrum) and to a lesser extent skam (Vip) and porphyry (Mex) prospects. Between 1990 and 2001 porphyry copper-gold (Pine-Tree, Mex), epithermal (Goat, Nub, Wrich) and skarn (Vip) prospects were examined.

The Toodoggone district lies within the eastern margin of the Intermontane Tectonic Belt in the Stikinia and in part, the Quesnellia Terrane. These Terranes consist mainly of island-arc volcanic, plutonic and sedimentary rocks of Late Triassic to Early Jurassic age with a Lower Permian basement represented by the Asitka Group. Granitoid members of the Black Lake Intrusive Suite have intruded these rocks. Regional northwest trending high-angle normal and strike slip faults cut through the Toodoggone Project area and northeasteriy trending high-angle faults cut and displace northwest trending structures.

The Black Lake intrusive Suite is part of a belt of Mesozoic intrusions that are intermittently exposed along the eastem margin of the Intermontane Belt. These intrusions are associated with copper-gold porphyry deposits (Kemess, Mount Milligan, Lorraine and Pine). The Kemess South deposit is currently being mined and the Mount Milligan, Lorraine, Kemess North and Pine deposits are at an advanced exploration stage or well developed. The Toodoggone Project includes an advanced stage copper-gold porphyry deposit (Pine), potential for discovery of additional copper-gold porphyry deposits, low and high sulphidation epithermal gold-silver, and skarn copper-gold-silver deposits.

The 2002 exploration program consisted of silt and soil geochemical surveys, geologically targeted prospecting, rock sampling, machine trail construction and trenching, geological mapping and ground geophysical surveys. Significant results were returned from the 2002 exploration program. Potentially economic grade and width of mineralization is indicated from trenching the Wrich Hill (epithermal gold-siiver) and the Vip (skarn copper-goid-siiver) prospects.

At the Wrich Hill prospect four machine trenches exposed a 100-150 metre wide zone of intense kaolinite-dickite-silica alteration with hematite, quartz-chalcedony breccia in proximity to the regional Wrich fault. The zone strikes approximately 140 degrees and dips steeply. Overall, chip sampling of Trenches 1,2 , and 3 , returned $0.81 \mathrm{~g} / \mathrm{mt}$ gold, $9.2 \mathrm{~g} / \mathrm{mt}$ silver over an average 105 metres, and selected sections include: 20.0 metres containing $2.86 \mathrm{~g} / \mathrm{tgold}, 7.0 \mathrm{~g} / \mathrm{t}$
silver, including 2 metres containing $10.2 \mathrm{~g} / \mathrm{mt}$ gold, $7.3 \mathrm{~g} / \mathrm{mt}$ silver in Trench $1,2.0$ metres containing $17.33 \mathrm{~g} / \mathrm{t}$ gold, $13.2 \mathrm{~g} / \mathrm{t}$ silver, and 12.0 metres containing $2.65 \mathrm{~g} / \mathrm{t}$ gold, $18.0 \mathrm{~g} / \mathrm{t}$ silver in Trench $2,62.0$ metres containing $0.90 \mathrm{~g} / \mathrm{t}$ gold, $7.3 \mathrm{~g} / \mathrm{t}$ silver, including 16.0 metres containing $1.39 \mathrm{~g} / \mathrm{mt}$ gold, $10.7 \mathrm{~g} / \mathrm{mt}$ silver, and 12.0 metres containing $1.43 \mathrm{~g} / \mathrm{mt}$ gold, $5.3 \mathrm{~g} / \mathrm{mt}$ silver in Jrench 3. Mineralized zones appear continuous in the four trenches over a strike length of approximately 150 metres, and favorable geology, alteration and goid-silver values in outcrop and float occur along the Wrich fault trend for a combined strike length of 850-1200 metres and remains open to the northwest and southeast.

At the Vip prospect in the West Skarn area, Trench \#1 returned 0.10% copper, $2.6 \mathrm{~g} / \mathrm{mt}$ silver and $0.83 \mathrm{~g} / \mathrm{mt}$ gold over 6.0 metres and 0.33% copper, $13.4 \mathrm{~g} / \mathrm{mt}$ silver and $3.2 \mathrm{~g} / \mathrm{mt}$ gold over 18.0 metres. Trench \# 2 retumed 0.24% copper, $10.9 \mathrm{~g} / \mathrm{mt}$ silver and $1.53 \mathrm{~g} / \mathrm{mt}$ gold over 18.0 metres, and 0.22% copper, $6.6 \mathrm{~g} / \mathrm{mt}$ silver and $2.8 \mathrm{~g} / \mathrm{mt}$ gold over 24.0 metres. Trench 3 retumed 0.47% copper, $12.1 \mathrm{~g} / \mathrm{mt}$ silver, $0.96 \mathrm{~g} / \mathrm{mt}$ gold over 21.0 metres. The mineralized zones in trench 1, 2 and 3 appear to trend northeast-soutwest, and may be continuous over a distance of approximately 200 metres and remain open. In the East Skarn area, Trench \#15 returned 1.41% copper, $32.6 \mathrm{~g} / \mathrm{mt}$ silver and $5.8 \mathrm{~g} / \mathrm{mt}$ gold over 6.0 metres. Although grades are somewhat erratic, favorable marble and skarn occurs over 700 metres in a northeast-southwest trend, and remains open. In the North Skarn area, Trench \#6 retumed 1.16% copper, $52.0 \mathrm{~g} / \mathrm{mt}$ silver and $3.6 \mathrm{~g} / \mathrm{mt}$ gold over 6.0 metres. Similar to the East skarn, grades are somewhat erratic however favorable marble and skarn alteration occurs over 600 metres in a northeast-southwest trend, and remains open.

Additional work in the form of property-wide geologically targeted prospecting, airborne and ground geophysical, geochemical surveys where appropriate, excavator trenching, alteration studies and drilling the Pine, Mex, and Vip porphyry and skarn prospects, respectively, and the Goat, Wrich Hill, and Electrum epithermal gold-silver prospects is recommended.

2.0 Introduction and Terms of Reference

This technical report highlights information obtained from a 2002 exploration program carried out on the Toodoggone Project claims for Stealth Minerals Limited. This report was prepared for assessment credit in the Omineca Mining Division of British Columbia. Sources of historical information contained in this report are provided in Section 16 (References). The authors, qualified persons under National Instrument 43-101, were involved in all fieldwork except the ground geophysical surveys. Lloyd Geophysics Inc. of Vancouver, British Columbia was commissioned by Stealth Minerals Limited to conduct and interpret the geophysical surveys (Appendix 3-2).

3.0 Property Description and Location

The Toodoggone Project is located 22 kilometres north of the Kemess South Mine, and by road, is approximately 400 kilometres north of Mackenzie, British Columbia (Figure 1). It is located in the Omineca Mining Division at $57^{\circ} 13^{\prime}$ North latitude and $126^{\circ} 42^{\prime}$ West longitude on NAD83 map sheets $94 E .016, .017, .026, .027, .036, .037$. The property
is divided by the northeast flowing drainage of the Finlay River. The Toodoggone Project is comprised of 1007 mineral claim units. These claims are registered at B.C. Mineral Tities 100% in the name of Electrum Resource Corp, a private company, of Vancouver, B.C, and are under an option agreement with Stealth Minerals Limited (Table 1, Figure 2). The claims have not been legally surveyed.

Terms and conditions of the option agreement, royalties and payments made or to be made to others for these claims are not known.

Permitting for exploration programs is granted through the B.C. Mines Branch, in Prince George, B.C. No undue requirements or restrictions are associated with the property, and permitting was granted for all exploration proposals applied for. The B.C. Government holds reclamation Security in the amount of $\$ 36,000$ on behalf of Stealth Minerals Limited for the property.

4.0 Access, Climate, Local Resources, Infrastructure, Physiography

Access to the main camp at the Pine gold-copper deposit is currently by the all-weather Omineca Resource Access Road, approximately 410 kilometers north of Windy Point, B.C., 20 kilometres north of the Kemess Mine gate, and 22 kilometers of rough road east. Travel time from Prince George is approximately 10 hours, or 7 hours from Mackenzie. Access to the VIP and Electrum zones, on the north side of the Finlay River, is via a northeast trending rough gravel road joining the Omineca Resource Access Road just north of the Firesteel River. Airstrips are in place at the Kemess South Mine and Sturdee Valley approximately 20 and 30 kilometres south and north, respectively of the Pine property. Hydropower to the Kemess Mine is in place.

A new access road connecting with the deep-sea port of Stewart is proposed, and would significantly reduce future costs associated with development and operation of new mining ventures in the Toodoggone. Dominant economic products from the Toodoggone district are gold and silver, and more recently copper-gold concentrate.

The Toodoggone Project is located between approximately 1100 metres elevation in the Finlay River valley and 2000 metres elevation to the south and north. The terrain is gentle to undulating, with northeasterly-directed glacio-fluvial deposits, re-worked moraine and gravel terrace underlying much of the Finlay River valley. The ground cover in this area is extensively beetle-killed and burnt pine-spruce forest, with local areas of swamp and pond. Debris comprised of rockslide and talus occur near the base of over-steep, truncated ridges to the south and north of the Finlay River valley where elevations reach 2000 metres and largely stunted pine, spruce and sub-alpine to alpine groundcover prevails.

Seasonal temperatures vary from $-35^{\circ} \mathrm{C}$ in winter to over $30^{\circ} \mathrm{C}$ during the 4 months of summer. The mean daily temperatures for July and January are approximately $14^{\circ} \mathrm{C}$ and -15 to $-20^{\circ} \mathrm{C}$, respectively. Precipitation between 50 and 75 centimetres occurs annually, with most during the winter months as snow cover of approximately 2 metres.

The optimal time for surface exploration on the Pine property is between mid-late June and September.

5.0 History

The exploration history of the Toodoggone project is summarized below and is based predominantly on published assessment reports. A minimum $\$ 3.6$ million in unadjusted Canadian dollars was filed for assessment work on the various prospects between 1967 and 2001.

Kennco Exploration (Westem) Ltd. performed porphyry copper expioration in the Toodoggone between 1968 and 1973 (Stevenson, 1969, 1970, 1971, and Mullan, 1971, 1973) During this time, airborne magnetometer, induced polarization, geology and geochemical surveys were performed principally over the Fin porphyry prospect. One 25 -metre x-ray diamond drill hole was completed on the Fin copper-molybdenum prospect. The JK porphyry and VIP skarn prospects were also identified during this period (Hallof, 1971), (Allen, 1973, Hodgson, 1974), respectively.

The Mex prospect was initially explored in 1977 (Caelles, 1978), and the VIP skarn claims were re-staked as the Grace claims (MacQuarrie, 1979). In 1979, the VIP prospect was further explored (Allen, 1980), and while exploring the Fin prospect, Rio Tinto discovered the Pine copper-gold prospect and drilled two holes (Haynes, 1980). In 1981, RioTinto performed twelve BQ diameter diamond drill holes totaling 1,354 metres on the Pine gold-copper prospect (Haynes, 1981). Further work on the Mex prospect by Cominco (Sharp, 1981), and initial prospecting and geochemical surveys on Nub Mountain (Vuiimiri, 1981) were performed. Initial work is documented on the Wrich prospect (Vulimiri, 1982), and Brinco Mining Ltd. conducted geological mapping on the Fin prospect (Woodcock, 1982), and reconnaissance geochemical surveys were performed on the Rich 1claim (Fox, 1982). Diamond drilling on the VIP skarn (Allen, 1984), and follow-up geochemical surveys on the Rich1 (Wilson, 1984) were performed in 1983. Detailed geological mapping and VLF-EM, and EM-resistivity were conducted on the Wrich (Crooker, Vulimiri, 1985). During 1986, the VIP-Grace prospect was flown by a iow-level airborne magneticNLF survey (White, 1986), and soil sampling was focused on the Grace 5 claim/East Gold anomaly (Allen, 1986). Work in this area was followed up in 1987 with detailed soil sampling, and magnetic and VLF surveys (MacQuarrie, 1987). On Nub Mountain, 248 km of airbome magnetic and VLF data was reviewed on the Fine claims (Cukor, 1987), and reconnaissance geochemistry performed on the Rod 1claim, north of the Wrich prospect (Cooke, 1987). In addition, Cheni Gold targeted linear resistivity structures within the clay alteration of the Wrich prospect with 5 drill holes totaling 883.6 metres (Reid et al., 1987). A detailed topographic map was made of the Rich prospect (Evans, 1987) and fill-in rock sampling and petrography performed on the Fin claims (Harris, 1987). During 1988, the previous soil sampling grid was extended on the Fine claims on Nub mountain (Dunn, 1988). Regional geological mapping, prospecting and rock, soil and silt sampling was performed and new base and precious metal mineralization was identified in several areas such as the Skarn, Goat, River, Barite, Peak prospects (Burns, 1988 a,b). Gold-silver bearing quartz-chalcedony vein breccias were the focus of work on the Electrum-Beaverdam zone, and completion of an access road followed by diamond drilling of 22 holes totaling 1903 metres were conducted on this prospect (Reynolds, 1988). Data from a low-ievel airbome magnetic and VLF-EM survey were reviewed for the

Peak-Swan and Eric-Dawn (part of the Mex prospect) claim groups (Woods, 1988 a, b). Encouraging results from diamond drilling on the Electrum-Beaverdam prospects were followed up with 92 percussion drill holes totaling 1974 metres that were designed as deep overburden samples and testing extensions around the general area of the Electrum-Beaverdam zone (Reynolds, 1989). Strong gold anomalies were returned from silt and heavy mineral sampling of Norod creek, north and east of Wrich Hill (Wesa, 1989), and an early spring program comprised of 12 km of grid and magnetic, VLF-EM surveys were conducted on the Eric property, near the Mex prospect (Amold and Collins, 1989). Pearson (1989) conducted five small soil grids and heavy mineral stream sediment sampling over the Pine-Tree prospects. The Nub mountain Fine claims were explored by geological, geochemical surveys, and although helicopter mobilized backhoe trenching failed to reach bedrock, soil sampling extended the existing geochemical anomalies (Seywerd, 1990). Cominco optioned the Pine-Tree property and performed geochemical sampling, prospecting and chaining of 41.7 km of grid for an I.P. Survey (Smith, 1990). By late 1990, Cominco completed magnetometer and induced polarization surveys, and built a rough road into the Pine-Tree-Fin zone, followed by 1460 metres of percussion drilling in 23 drill sites; the onset of winter and technical problems with the drill prevented some targets from being tested (Smith, 1991). Stream silt and rock sampling was conducted on the Easter Seal/ Fin claims, north of the Finlay River (Harivel, 1992). Compilation of previous surveys and additional rock, soil, silt sampling was performed on the Mex property (Pauwels, 1992). Romulus Resources optioned the Pine-Tree-Fin property, expanded the claim holdings and performed line cutting, induced polarization, soil and rock sampling, detailed geological mapping, air photography, survey control, additional sampling of 1980 drill core, and drilled 783 metres of HQ diameter core in four holes on the Pine zone (Bowen, 1993a). The regional work was successful in identifying the Northwest Breccia, West, and North prospects. By the end of 1993, Romulus completed nine additional drill holes totaling 1702.3 metres, and published a resource of 40 million tonnes grading $0.57 \mathrm{~g} / \mathrm{g}$ gold, 0.15% copper for the Pine deposit (Rebagliati, 1993, 1995). In 1995 and 1996, rock and soil sampling on the Kath and Paula claims, and Landsat imagery of the property was performed, respectively (Sterenberg, 1996). The Black claims were staked, and a stream silt-sampling program was carried out (Ostensoe, 1997). Optioned by Stealth Minerals Limited (formerly Stealth Mining Corp.), during the summer of 1997 additional claims were staked, covering the Goat, Wrich, VIP, Electrum, and Nub Mountain prospects. Stealth performed 1903 metres of diamond drilling in 12 holes on the Pine deposit, initiated a sludge- sampling program, and carried out minor additional rock sampling and soil sampling of the area (Blann, 1998). During 1998, Stealth performed 1290 metres of diamond drilling in 7 holes on the Pine deposit, and made reconnaissance traverses of the Mex and Northwest Breccia (Blann, 1999). In early 1999, approximately 11 km of magnetometer survey was conducted in the Far Southwest portion of the Pine property, south of the VIP prospects (Blann, 1999). Drilling of three holes totaling 745.4 metres in the Pine deposit, and reconnaissance prospecting, mapping and rock sampling on the Pine Southwest, Goat, VIP, Electrum, Nub West, and Nub North prospects were completed (Blann, 2000). Stealth staked the JC claims, north of the Pine property, in early 1999, and performed first-pass reconnaissance prospecting (Blann, 2000). During 2000, Steaith further evaluated the potential of the Pine Southwest, VIP, Goat, and Wrich prospects with geological mapping, detailed prospecting and rock sampling (Blann, 2001).

6.0 Geological Setting

6.1 Regional Geology Introduction

The Toodoggone project area lies within the eastern margin of the Intermontane Tectonic Belt (Figure 3). The intermontane Belt is made up of four unique tectonostratigraphic terranes and the project area lies within the Stikinia and, in part the Quesnellia Terranes. The Stikinia and Quesnellia Terranes consist mainly of island-arc volcanic, plutonic and sedimentary rocks of Late Triassic to Early Jurassic age with a Lower Permian basement represented by the Asitka Group (Diakow and Metcalfe, 1997). To the east older metamorphosed Precambrian and younger strata (clastic and chemical sedimentary rocks) of the Cassier Terrane (Omineca Belt) is separated from the Intermontane Belt by a regional system of transcurrent faults (Diakow, Panteleyev and Schroeter, 1993).

6.2 Stratigraphy

Lithologies in the Toodoggone area are Permian to Cretaceous in age and are comprised, in order from oldest to youngest, of Asitka Group, Stuhini Group, Toodoggone Formation and Sustut Group (Diakow and Metcalfe, 1997).

Lower Permian aged rocks of the Asitka Group consist of andesite and rhyolite volcanic rocks with locally prominent sections of inter-bedded marine sedimentary rocks consisting of limestone and chert.

Upper Triassic rocks of the Stuhini Group (also referred to as Takla Group) unconformably overlie the Asitka Group. Stuhini Group rocks are more widespread and characterized by clinopyroxine-bearing basatt, andesite, and associated epiclastic rocks, and locally appear similar to Paleozoic rocks.

Locally, Lower Jurassic Toodoggone Formation (Hazelton Group) volcanic fragmental rocks of dacite-andesite composition lie in non-erosional, gently dipping unconformity with Stuhini Group rocks. Minor lava flows and rare myolitic flows and breccia occur in the Toodoggone Formation.

Upper Cretaceous Sustut Group consists of conglomerates, sandstones and siltstones with minor felsic tuff and occurs in unconformable contact with Takla/Stuhini and Hazelton Group rocks.

6.3 Intrusive Rocks

Early Jurassic Black Lake Intrusive Suite calc-alkaline plutons are apparently coeval with the Toodoggone Formation volcanic rocks and development of an elongated volcano-tectonic depression that is endowed with numerous precious metal-bearing occurrences (Diakow and Metcalfe, 1997). The composite Black Lake Intrusive Suite is generally medium grained and grades from granodiorite to quartz monzonite. This intrusive suite includes the Black Lake pluton (granodiorite to quartz monzonite), Giegerich/Duncan Lake plutons (homblende-biotite granodiorite) and Sovereign pluton (hornblende-biotite granodiorite). Dikes and sills of trachy andesite to latite and minor basalt cut previous
lithology. Late Triassic Alaska-type ultramafic intrusions were regionally mapped east of Kemess North, and possible occurrences southwest of the Mex prospect, and on the Pil prospects northwest of the property.

6.4 Structure

A system of high-angle normal and possibly contrackion faults trend between 120 degrees and 150 degrees in azimuth and occurs with conjugate sets of secondary faults trending from 20 to 40 degrees, and 60 to 80 degrees in azimuth. These structures may impart primary control of high-level co-magmatic plutons and deposition of the Toodoggone Formation rocks.

Regional-scale, northwest trending structures include the Saunders-Wrich fault that cuts through the Toodoggone Project area, and occurs in part over a distance of 30 kilometres, with up to 4 kilometres of right-lateral displacement indicated. Parallel faults also display dip-slip movement, locally placing Stuhini Group in contact with Toodoggone Formation as at Kemess North (Diakow, 1997), or Wrich Hill.

Northeasterly trending high angle faults cut and displace northwest trending structures, tilting and rotating monoclinal strata (Diakow, 1986). The presence of high-level epithermal mineralization in proximity to the Saunders-Wrich fault at Wrich Hill, and at the Electrum zone at lower elevations to the north, may suggest a post-mineral, north side down displacement along a northeast trending fault in the Finlay River valley (Blann, 2001). North trending, right-lateral strike slip faults are prominent along the eastern margin of the Geigerich Pluton, and are Cretaceous and Early Tertiary in age.

6.5 Property Geology

The general property geology and prospect location is provided in Figure 4.

A northwesteriy trending belt of dominantly voicanic rocks comprised of Upper Triassic Takia/Stuhini Group and undivided Hazelton Group, Lower to Middle Jurassic Toodoggone Formation, respectively, underlies the Toodoggone project area. Locally massively bedded carbonate and sediments of the Permian aged Asitka Group occurs in the western portion of the Toodoggone project area.

The oldest rock unit on the property is the Asitka Group, comprised of coralline limestone inter-bedded with chert and argillite. Mafic and felsic volcanic rocks are also present in this package. Calcareous meta-sediment, siliciclastic and massively bedded marble occur in the southwest portion of the Toodoggone property and inciude the VIP skarn. It remains unclear whether sedimentary rocks in these areas are in part the Asitka Group or lower Takla/Stuhini Group.

The Takla/Stuhini Group is comprised of massive, dark green, coarse-grained porphyritic augite basalt, and finegrained aphyric basaltic andesite lava with lapilli tuff and volcanic breccia, and minor amygdaloidal flows. Tuffaceous
siltstone, mudstone, and limestone lenses occur. Takła/Stuhini Group rocks outcrop predominantly in the west side of the Toodoggone property, and possibly in the eastern portions of the Nub Mountain and JC areas.

The Hazeiton Group is comprised of undivided and Toodoggone Formation sub-aerial and marine volcanic members divided into lower and upper volcanic cycles. The lower cycle consists of the Adoogachoo, Moyez, Metsantan and McClair Members and the upper cycie consists of the Attycelley and Saunders Members. B.C. Geological Survey Branch mapping suggests the east-central and northem portion of the Pine property is underlain by undivided Hazelton and the upper cycle Toodoggone Formation volcanic rocks.

The Attyceliey Member is 500 metres in thickness, and comprised of a heterogeneous mixture of green, grey and mauve lapilli-ash tuff, subordinate lapilli tuff, with minor ash and lava flows, and epiclastic rocks. These rocks resemble the Adoogachoo Member.

The Saunders Member is composed almost exclusively of welded crystal dacite ash flow and tuff. The lower contact of this member appears to be in part, erosional with underlying Takla/Stuhini Group conglomerate and tuffite.

Mesozoic intrusions of the Lower to Middle Jurassic Black Lake Intrusive Suite cut Asitka, Stuhini and are in part coeval with the Toodoggone Formation; the Kemess and Pine deposits are associated with Early Jurassic calc-alkaline intrusions. The Geigerich, Duncan Lake, and Sovereign plutons are of predominantly granodiorite derivation and are compositionally and texturally similar, with the Sovereign pluton having somewhat more prominent quartz phenocrysts.

The Geigerich pluton is elongated, with contacts ranging from 020 to 140 in azimuth (Diakow, 1997), and subparallel to the Saunders-Wrich fault. The northwest edge of the Geigerich pluton is the location of the Pine, Tree, Fin and Mex porphyry gold-copper prospects.

The Duncan Lake pluton appears to plunge southeast beneath the Kemess North deposit, and affects adjacent Toodoggone Formation voicanic rocks (Diakow, 1997).

Dikes and sills of quartz latite porphyry, and trachy-andesite to basalt composition cut intrusive and volcanic rocks.

Lower to Upper Cretaceous Sustut Group sedimentary rocks in part comprised of conglomerate, and volcanic units are in unconformable contact with Takla/Stuhini and Hazelton Group rocks to the west of the Toodoggone property. It is inferred that the Sustut Group rapidly covered underlying Toodoggone Formation and older rocks, in part preserving them from erosion by future glacial activity in the Toodoggone Project area.

The area was glaciated and northeast directed glacio-fluvial deposits cover approximately 80% of the Pine deposit and lower elevations of the Finlay River valiey and tributaries. In these areas approximately 1-25 metres of clean, unconsolidated sand and till with rounded.boulders up to 1 metre in diameter occur. Gossanous ferricrete and pebble breccia occurs along the base of the hill to the southeast of the Pine and Tree prospects, and in the creek draining the Mex prospect, respectively.

Airborne magnetic and ground induced polarization surveys suggest northwest and northeast trending zones of elevated magnetite content, and moderate to high chargeability occur, respectively (Open File 3495, Lloyd 1992). Fractures, shears and faults in rocks and drill core trend north-northwest, northeast, east, and dip variably.

Detailed geology of prospects investigated during the 2002 field season is described in sections 7.51 to 7.57. These prospects include the Pine, Pine-SW, Mex, Nub, Vip, Goat, and Wrich. Refer to Figure 4a for location of prospects.

6.5.1 Pine Geology (Structure, Mineralization, Alteration)

The Pine and Tree prospects are hosted by Toodoggone Formation dacite cut by Omineca intrusions, dikes and silis of monzonite to quartz latite and trachy-andesite composition, respectively. The Tree prospect occurs near the contact with the Geigerich granodiorite. Volcanic and intrusive rock contain moderate to strong fractures and pyrite and chalcopyrite occur as fracture controlled blebs, veinlets and disseminations. Quartz, sericite, K-feldspar, anhydrite and magnetite alteration and pyrite, chalcopyrite mineralization with associated goid and silver values occur over an area of approximately 2 kilometres in length and 500-1000 metres in width, and is in part affected by late-stage intense quartz-sericite-clay alteration near surface. This phyllic style alteration occurs a further 1-2 kilometres southwest (Flats) and 1 kilometre northeast (Fin) of the Pine-Tree prospects and may overlie potassic alteration in these areas.

6.5.2 Pine-SW Geology (Structure, Mineralization, Alteration)

Volcanic and minor sedimentary rocks of the Lower Jurassic Toodoggone Formation and Upper Triassic Takla/Stuhini Group underiie the Pine-SW area, including the Peak prospect. Dikes were mapped intruding the Toodoggone Formation.

The Saunders and Attycelley member of the Toodoggone Formation are regionally mapped at the Pine-SW Prospect and described as a crystal rich, dacite ash-flow tuff and lithic-crystal and lapilli-ash tuff, respectively. Takla/Stuhini Group rocks consist of basalt, andesite (augite-homblende) flows and limestone.

Dikes mapped at the Pine-SW Prospect are composed dominantly of dacite porphyry. Dacite porphyry (crowded porphyry) dikes occur up to approximately 18 metres wide and trend north south and in a northeasterly southwesterly direction. Dacite porphyry dikes are medium to coarse grained, strongly magnetic and characterized by phenocrysts of actinolite (after? Hornblende) +/- plagioclase $+/$-quartz. The phenocrysts are set in a fine-grained, quartz $+/$ - K-feldspar +/- plagioclase holocrystalline groundmass.

Structures mapped at the Pine-SW prospect include faults and fractures.

A fault mapped in a gossanous trench was orientated in a northeast southwest direction dipping moderately northwest. Slickensides are horizontal suggesting strike-slip fault movement.

Fractures are common especially in gossanous zones and typically trend northwest southeast and dip moderately to steeply to the southwest.

Pyrite is the dominant sulphide at the Pine-SW prospect and occurs disseminated (trace to 5%) throughout the gossanous alteration zones. Quartz, carbonate, and gypsum veinlets are fairly common at this prospect. A quartz veinlet float sample contained trace pyrite and chalcopyrite. Carbonate veinlets up to approximately 8 centimetres wide trend northwest southeast and dip moderately northeast. Gypsum veiniets approximately 5 centimetres wide are orientated northwest southeast and dip steeply to the northeast. Zeolite (white) is common coating fractures in volcanic racks within strongly altered zones (phyllic).

Alteration mapped at the Pine-SW prospect consists of a wide spread gossanous phyllic zone (sericite, quartz, pyrite, chlorite, gypsum, and jarosite/goethite/hematite).

The pervasive phyllic alteration may also overlie potassic alteration in this area. The presence of favorable geology, widespread phyllic alteration, suggests this prospect may reflect a peripheral zone surrounding a porphyry copper type deposit.

6.5.3 Mex Geology (Structure, Mineralization, Alteration)

The Mex prospect is underlain by volcanic rocks of the Lower Jurassic Toodoggone Formation cut by intrusive rocks of the Early Jurassic Black Lake Intrusive Suite near the margin of the Geigerich Batholith, granodiorite in composition. Numerous dikes intrude the Toodoggone Formation. (Figure 5).

The Saunders Member of the Toodoggone Formation was regionally mapped at the Mex prospect and described as a crystal rich, dacitic ash-flow tuff. The Attycelley Member may be present, however, strong pervasive alteration has destroyed original textures in some rocks.

Early Jurassic Black Lake intrusive rocks grade from granodiorite to quartz monzonite composition and are typically medium to coarse grained and moderately magnetic. The main mafic minerals are hornblende and $+J$-biotite. These intrusive rocks are common in the northwest and southeast regions of the Mex prospect and are moderately propylitic altered with chlorite and epidote.

Dikes mapped at the Mex prospect are composed dominantly of dacite porphyry and lesser aplite.

Dacite porphyry (crowded porphyry) dikes are the most common dike and occur up to approximately 90 metres wide. They trend typically in a northeasterly southwesterly direction as a parallel dike swarm. Dacite porphyry dikes are medium to coarse grained, strongly magnetic and characterized by phenocrysts of actinolite (after? homblende) $+/-$ plagioclase $+/$ - quartz. The phenocrysts are set in a fine-grained, quartz $+/$ - K-feldspar $+/$ - plagioclase holocrystalline groundmass.

An aplitic dike in the northeast part of the Mex grid cuts intrusive rock. This dike was fine-grained, light pinkish-red, sugary texture and was approximately 5 metres wide. The dike trends northwest - southeast dipping steeply southwest.

Structures mapped at the Mex prospect include faults, fractures, and shears (assumed/observed).

Faults mapped trend typically northwest southeast cut by northeast southwest structures, and Cretaceous-Tertiary aged structures trend north south. Fractures have numerous orientations and are common throughout the prospect especially near faults and dikes.

Quartz veiniets are common at the Mex prospect and typically trend in a northeast southwest direction and dip steeply to the southeast. The quartz veinlets are generally between 1 mm and 1-2 centimetres in width, and locally contain sericite, magnetite-hematite, pyrite, chalcopyrite, molybdenite and associated copper, molybdenum, gold and silver values. Quartz stock work was observed on the northeast slope of the Mex prospect near the southern granodiorite contact and in the central northeast grid area, in proximity to a dacite dike. These areas contain quartz stockwork accompanied by weak to moderate k-feldspar alteration. Specular hematite and gypsum veinlets are less common. One specular hematite veiniet trends northeast southwest and dips moderately to the southeast. Gypsum veinlet approximately 2 centimetres wide had a northwest-southeast trend and dipped moderately to the southwest. Malachite and azurite replace copper sulphides, and locally chalcocite occurs. Zeolite (white-pink) and manganese stain (metallic black) are common along fractures in the volcanic rocks.

Alteration mapped at the Mex prospect includes a centralized phyllic zone (sericite, quartz, pyrite, chlorite, jarosite/goethite/hematite, manganese, and anhydrite?/gypsum) and an outer zone of propylitic alteration (chlorite, calcite, epidote, and sericite).

The presence of favorable geology, alteration, mineralized quartz stockwork, rock, soil and silt geochemistry, and induced polarization and magnetic anomalies suggests a central, quartz-k-feidspar-magnetite-chaicopyrite-enriched potassic core of the Mex prospect may exist beneath the pervasive phyllic alteration zone.

6.5.4 Nub Geology (Structure, Mineralization, Alteration)

Hazelton Group rocks comprised of dominantly Toodoggone Formation underlie the Nub Mountain area, however Takla/Stuhini rocks may occur; their location, distribution and contacts remain unclear. Hazelton Group rocks occur in contact to the east with an Omineca intrusion of granodiorite composition, and may represent part of the Geigerich Batholith. The Nub and Nub North prospects contain propylitic to quartz-sericite pyrite altered volcanic rocks cut by quartz-sericite-calcite pyrite altered shear zones containing epithermal quartz-carbonate veins, breccia and stockwork with variable concentrations of pyrite, chalcopyrite, sphalerite and galena mineralization and associated copper, zinc, lead, gold and silver values. Most outcropping veins are erratic, narrow and discontinuous however, veins have returned significant values of up to $10.7 \mathrm{~g} / \mathrm{t}$ goid and $409.7 \mathrm{~g} / \mathrm{t}$ silver in proximity to a soil anomaly approximately 50 metres in width and 400 metres in length containing values of up to 1150 ppb gold. With the association of large
regional structures, there is potential in these areas to host significant veins or stockwork of epithermal gold-silver mineralization.

The Nub West and Northwest breccia prospects may be spatially related to a northerly trending regional structure and associated intense argillic to advanced argillic (quartz alunite) hydrothermal alteration extending for approximately 600 1000 metres in width and a distance of approximately 5 kilometres. Muiti-element soil, silt and rock geochemical anomalies, geoiogy, and extent of hydrothermal alteration suggest this structure is favorable for the development of high-sulphidation epithermal to transitional porphyry gold-copper deposits, and remain untested by drilling.

6.5.5 Vip Geology (Structure, Mineralization, Alteration)

The Vip prospect is underiain by marine meta-sedimentary rocks of the Permian age Asitka Group lithology. Early Jurassic plutonic rocks and a variety of dikes intrude the Asitka Group (Figure 6,7,8,9). The meta-sedimentary rocks form roof pendants on the intrusive stock.

The marine sedimentary rocks of the Asitka Group were first deposited as massive limestone with later deposition of siltstone, sandstone and shale and regionally metamorphosed to greenschist and amphibolite grade (Diakow, Panteleyev, and Schroeter, 1993). Contact metamorphism and varying degrees of metasomatism and retrograde hydrothermal alteration have resulted in the development of calcic Cu-Au-Ag skarns. Meta-sediments mapped at the Vip Prospect consist of argillite (hornfels?), marble, gamet-biotite schist, muscovite schist, biotite schist, meta-siltstone and quartzite. These meta-sediments outcrop in the northwest, southwest and northeast portions of the 2002 Vip grid (Figure 6).

Intrusions and numerous dikes were mapped at the Vip Prospect.

The Early Jurassic Black Lake intrusive stock grades from granodiorite to quartz monzonite and are typically medium to coarse grained and strongly magnetic. The main mafic minerals are biotite and homblende. These intrusive rocks are common in all parts of the grid and are generally fresh, unaltered except near contacts with meta-sediments and dikes, or to the west end of the grid. At meta-sediment and dike contacts a deep pink color typically occurs in the intrusive rock and may suggest localized k-feldspar alteration. In the northern part of the Vip grid large areas of intrusive rock have a pink color and may be a result of hidden faulting, dikes and /or sedimentary contacts.

Dikes mapped at the Vip Prospect, in decreasing order of incidence, are composed of dacite porphyry, quartz-eye porphyry, augite porphyry, aplite, quartz monzonite, syenite, and andesite.

Dacite porphyry (crowded porphyry) dikes are the most common dike and occur up to approximately 60 metres wide. They generally trend in a northwesterly-southeasterly direction and dip steeply to the northeast. Dacite porphyry is coarse grained, strongly magnetic and characterized by phenocrysts of actinolite (after hornblende?) +/- plagioclase $+/$ -
quartz. The phenocrysts are set in a fine-grained, quartz +/-K-feldspar +/- plagioclase holocrystalline groundmass (PetraScience Consultants inc., 2003).

Quartzeye porphyry dikes are generally medium to coarse grained, strongly magnetic and occur up to approximately 14 metres wide. They trend in a northwest-southeast direction and dip moderately to steeply to the southwest. Rounded quartz phenocrysts and feldspar (plagioclase, other?) characterize the quartz-eye porphyry dike. These dikes are typically mineralized with chalcopyrite, malachite, azurite and pyrite. Alteration includes chlorite $+/$-sericite with strong specularite along fractures. Later quartz and calcite veinlets are common.

Augite porphyry dikes are fairly common in the southwest region of the Vip grid. They are generally medium grained, strongly magnetic and occur up to approximately 10 metres wide or more. The dikes trend northwest southeast and dip moderately to the southwest. Augite porphyry is characterized by dark augite phenocrysts and plagioclase set in a dark green groundmass (chlorite?).

Aplite dikes are found in the central and east regions of the Vip grid. They are generally fine-grained light pinkish red, sugary texture and occur up to approximately 2 metres wide. The dikes trend generally in a northwesterly southeasterly direction and dip steeply to the northeast.

Quartz monzonite dikes are found in the central region of the Vip grid and are generally medium grained. They contain feldspar, quartz, hornblende and $+/$-biotite. They are generally moderately magnetic and occur up to approximately 0.5 metres wide or more. Quartz monzonite dikes were observed trending in a northeast-southwest direction with a steep northwesterly dip.

Syenite dikes occur at the Vip-West and are coarse-grained, with K-feldspar (?orthoclase), minor fine-grained plagioclase, trace quartz and minor chlorite after biotite or hornblende (PetraScience Consultants inc., 2003). These rocks may in part reflect intense potassium hydrothermal alteration of monzonite, however, they cut granodiorite and older rocks, are oriented variably, and are spatially associated with pyrite-chalcopyrite.

Andesite dikes are not common and one is found in the central-south Vip grid. The dike is medium grained, strongly magnetic, and is approximately 10 metres wide. The dike trends in a northwest-southeast direction with a possible moderate deep to the northeast. The andesite dike is dark green with porphyritic plagioclase phenocrysts in a finegrained groundmass.

Structures mapped on the Vip grid include faulting, lineaments, foliations, bedding, vein/veinlets and fractures.

Faulting is common especially in skarn zones where dikes are numerous and in regions of the Black Lake intrusive stock (Figure 6). Faulting in skarn zones typically trend in a northwest-southeast direction dipping steeply to the southwest with less common northeast trending faults. This direction is consistent with the regional dominant Drybrough fault, which is a steeply dipping northwest trending normal fault (Diakow, Panteleyev, and Schroeter, 1993). Faulting in
the Black Lake intrusive stock is common in creek lineaments and in areas of strong dike emplacement. Again, fauts generally trend in a northwest southeast direction but dip both southwest and northeast. Slickensides generally pitch moderately to the southeast.

Foliations are common in the meta-sediment units mapped at the Vip grid (Figure 6). In the east and central Vip grid regions the foliations trend in a northeasterly southwesterly direction dipping steeply to the southeast. In the west regions of the grid the foliations and possible bedding trend more northwesterly southeasterly and dip moderately to steeply southwest.

Veins and veinlets (quartz/calcite) are common at the Vip Prospect and typically trend in a northwest southeast direction and dip steeply to the northeast. The veins/veinlets are generally narrow but one quartz-molybdenum vein was approximately 1 metre wide or more.

Fractures have numerous orientations and are common throughout the property especially near fault, dike and skarn zones.

A number of Cu-Au-Ag rich skam zones have developed in meta-sediment and marble near and adjacent to marble/meta-sediment contacts. Skarn is also developed in near-by intrusive rock and at intrusive/meta-sediment contacts. Skarn mineralization is typically veinffracture controlled or occurs as disseminated patches or grains within skarn assemblages (PetraScience Consultants Inc., 2003).

The following major mineral assemblages are associated with each skam zone: Vip West (Figure 6,9) - chalcopyrite +/pyrite (minor minerals include sphalerite, magnetite, hematite); Vip East (Figure 6,7) - bornite $+/$ - chalcopyrite $+/$ sulphosalts, magnetite $+/$-chalcopyrite and pyrite $+/$ - pyrrhotite (minor minerals include hematite); Vip North (Figure 6,8) - magnetite $+/$ - hematite +1 - chalcopyrite; Vip Northeast (Figure 6) - pyrite $+/$ - hematite (PetraScience Consultants Inc., 2003). Chalcocite, covellite and malachite replace copper sulphide. Hematite or limonite occur rimming and partly replacing sulphide minerals and occur lining open vugs or boxwork and infilling fractures (PetraScience Consultants Inc., 2003). Some quartz veins/veiniets related and unrelated to the skarn zones contain trace molybdenum. Prospecting 2 kilometres west of the Vip West zone located a new copper, silver, gold prospect in intrusive rock. The rocks and the alteration (K-feldspar) in this area appear more porphyritic (Intrusion-related porphyry Cu-Ag-Au) than the mineralized intrusive rocks in the Vip West skarn area.

Contact metamorphosed carbonate and sedimentary rock have undergone varying degrees of metasomatism and retrograde hydrothermal alteration to produce calcic skarns and include endoskarn and exoskarn.

Prograde alteration within the intrusive rock (syenite) varies from early garnet followed by epidote-quartz-tremolite and followed by retrograde muscovite-clay-chlorite alteration (PetraScience Consultants Inc., 2003). Biotite and clinozoisite occur as early alteration in the dacite porphyry probably followed by late sericite alteration (PetraScience Consultants Inc., 2003).

In the exoskarn, prograde alteration comprises garnet skarn (West, North, East), epidote-quartz rich skarn (North, East), magnetite rich skarn (West, North, East), clinopyroxene skam (East), actinolite-epidote-vesuvianite (West), and wollastonite skarn (East) (PetraScience Consultants Inc., 2003). Retrograde alteration comprises actinolite, chloritecarbonate $+/$ - talc, chiorite-clay-sericite, calcite (carbonate)-quartz $+/$ - tremolite, serpentine-talc and muscovite or sericite-pyrite (PetraScience Consultants Inc., 2003).

6.5.6 Goat Geology (Structure, Mineralization, Alteration)

On a ridge west of MacAburn creek, several east trending polymetallic quartz-carbonate veiniets, breccia and stockwork occur in Takla/Stuhini Group andesite and siliciclastic rock, cut by dikes of intermediate andesite composition. The veinlets are approximately $5-40 \mathrm{~cm}$ in width, and minimum 100 metres in length occur within shear zones approximately 1-4 metres in width and over 200 metres in length. These structures extend eastward down to MacAbum creek, the location of the Takla-Toodoggone contact. Veins and breccia are comprised of vuggy, banded, bladed calcite and quartz containing variable pyrite, chalcopyrite, sphalerite and galena, and associated gold and silver values. Three veins sampled to date have returned encouraging gold-silver values and there are numerous similar veins that remain unsampled. Mineralization occurring at the Goat prospect may be cross cutting structures spatially related to the northwest trending Takla-Toodoggone contact or Wrich fault. Takla/Stuhini Group rocks at the Goat prospect are variably altered to chlorite-epidote-sericite, and quartz-sericite-pyrite-pyrnotite-ankerite and garnet-epidote-diopside minerals occur at the north end of Goat Lake.

6.5.7 Wrich Hill Geology (Structure, Mineralization, Alteration)

Volcanic rocks of the Lower Jurassic Toodoggone Formation underlie the Wrich Hill prospect (Figure 10). The Upper Triassic Takla/Stuhini Group lithology is mapped west of Wrich Hill.

The Toodoggone Formation volcanic rocks can be further subdivided into the Attycelley Member consisting of mainly green, grey and mauve lapilli-ash tuff; and the Saunders Member (youngest rocks of the Toodoggone Formation) consisting of partly welded, crystal-rich, dacitic ash-fiow tuffs. (Diakow, Panteleyev and Schroeter, 1993).

Structures mapped at the Wrich Hill prospect include faults, veins/veinlets/vein breccias and fractures.

Faults are common and typically trend in a northwest-southeast direction dipping steeply to the northeast and southwest. Crosscutting faults are less common and generally trend northeast with variable dips. The dominant fault direction is consistent with the regional Saunders-Wrich fault, which is a steeply dipping northwest trending strike-slip fault with about 5 kilometres of right-lateral offset (Diakow, Panteleyev, and Schroeter, 1993). It is believed the Saunders-Wrich fault lies immediately to the west of the Wrich Hill zone and is responsible for numerous secondary faults found at the Wrich Hill prospect. Slickensides mapped in the Wrich Hill zone were either vertical or pitched steeply to the northeast.

Veins and veinlets (quartz/chalcedony/ quartz breccia $+/$ - chalcedony) are common and typically trend in a northwestsoutheast direction and dip steeply to the northeast and southwest. The veins/veinlets are generally narrow but occur up to 1 metre wide. The veins/veinlets (quartz, quartz breccia $+/$ chalcedony/+/-barite) make up the numerous silicaflooded zones with abundant hematite that typically trend in a northwest direction (Figure 10). Barite veinlets are mapped and occur in geochemical anomalous concentration along with arsenic, antimony and mercury at Wrich Hill.

Fractures have numerous orientations and are common throughout the region and typically trend in a dominant northwest direction with variable dips.

Mineralization on Wrich Hill is generally sulphide poor and probably represents an oxidized and in part, leached cap. A combination of strong pervasive limonite/ hematite and boxwork texture is common in siliceous zones but pyrite is rare. One exception is strong pyrite ($8-15 \%$ Py-blebs, lenses) found in gougy fault zones within and adjacent to the Saunders-Wrich fault. Dominant sulphides at Wrich Hill consist of pyrite and fine-grained black silver sulphosalts in association with silica. Nearby the Wrich Hill prospect two samples of rounded semi-massive and massive galena were found in float samples and appear to have come from some distance away. Sulphides at the Wrich Hill prospect occur as disseminations or interstitial fillings and are associated with quartz veins/veinlets, quartz breccias, chalcedony veinlets, quartz-chalcedony breccias/veiniets, and zones of silica flooding, barite veinlets and gougy fault zones proximal to the Saunders-Wrich fault.

A limited PIMA short-wave infrared analysis of the Wrich Hill prospect (Appendix 3-3), from 18 seiected rock samples from trenches (T1 to $T 4$) and from rocks proximal to trenches, concluded that the mineralogy is dominated by dickite, kaolinite, smectite, and silica (PetraScience Consultants Inc., 2003). Minor illite was noted, and diaspore may be present in some samples (PetraScience Consultants Inc., 2003). These results suggest that argillic, intermediate argillic and possibly advanced argillic alterations are present at the Wrich Hill zone. Kaolinite/dickite, which are the most common alteration at Wrich Hill, occur in the marginal argillic zone of high-sulphidation gold-silver epithermal deposits (A.J.B. Thompson, J.F.H. Thompson, Dunne, 1996). In low-sulfidation epithermal systems, kaolinite, illite and smectite form as zones of massive argillic alteration. Diaspore, that may be present in some rock samples, is considered an advanced argillic alteration and is common in high-sulphidation epithermal deposits. Some key alteration minerals indicative of high-sulphidation epithermal systems, however, are missing from the samples collected and analyzed (PIMA) at Wrich Hill. Key proximal alteration minerals in high-sulphidation epithermal deposits include crystalline alunite and pyrophyllite at deeper levels (Sillitoe, 1993). Argillic alteration inciudes low temperature silica (opal, cristobalite), pyrite, and kaolin with minor sulphur, and is termed advanced argillic where alunite is also present (Corbett, 2002). Alteration in high-sulphidation systems is zoned from the core outwards by alunite, pyrophyllite, kaolin, illitic and chloritic clays (Corbett, 2002). Mineralogy dominated by pyrophyllite-diaspore-dickite may be an indicator of higher temperature (deeper) conditions, while lower temperature pervasive silicification or alunite-kaolin occur in cooler, higher levels of high sulphidation systems (Corbett, 2002). The Wrich Hill prospect is difficult to categorize as a low or a high sulphidation system based on the available alteration results and is placed in a transitional category (combination of both high and low sulphidation systems) until further field evidence is found. Gold values typically
correlate with the strongest dickite signatures, however, anomalous gold also occurs in areas that appear to have mixed kaolinite/dickite assemblages (PetraScience Consultants inc., 2003). In field samples, zones of breccia containing strong fine-grained hematite + /- limonite and boxwork silica and veiniets are generally associated with higher gold and silver assays at the Wrich Hill prospect.

7.0 Deposit Types

The Toodoggone Project contains deposits and prospects of transitional calc-alkaline porphyry gold-copper associated with Omineca intrusions similar to those at the Kemess south and North deposits. The Pine, Tree and Fin porphyry gold-copper $+/$-molybdenum prospects are at the most advanced exploration stage to date, having demonstrated potential to develop a porphyry copper-gold resource. Similar targets with no drilling include the Mex, Flats, North and Northwest Breccia (NWB).

At the Goat-Wrich, Electrum, Nub Mountain and JC prospects, volcanic-hosted structurally controlled high to tow sulphidation epithermal alteration and associated gold-silver values occurs and are similar exploration targets to other well-documented gold-silver deposits and mines within the Toodoggone district, and elsewhere in the world.

Contact metasomatic mineralization comprised of copper-(+/-zinc)-gold-silver skam prospects occur at the VIP, and are hosted by Asitka Group limestone and marble, siliciclastic and volcanic rocks in roof pendants or screens of the Black Lake pluton and associated intrusions. Favorable geology for development of skam mineralization also occurs to the south of the VIP, on the south side of the Finlay River (Blann, 2001).

8.0 Exploration

Standard Metals Exploration Limited conducted the 2002 Toodoggone Project field exploration program under contract to Stealth Minerals Limited between July 24 and September 30, 2002.

The 2002 exploration program consisted of a silt and soil geochemical survey, prospecting, rock sampling, line cutting, grid establishment, machine trenching, geological grid mapping, geological trench mapping, rock chip sampling of excavator trenches and ground geophysical surveys (Magnetometer, induced polarization (IP) and resistivity surveys).

In August additional blocks of ground were staked and prospected on favorable regional geological and geophysical trends to the north and west of the main claim block.

Work was carried out by a crew complement averaging fifteen men. The program was in part helicopter supported from a road-accessed camp located on Fin Lake near the east central part of the main claim block.

8.1 Silt Geochemical Survey

A limited reconnaissance silt geochemical survey was performed in August 2002 on recently staked ground (Figure 2, 4a) that had favorable regional geological and geophysical trends. A total of five silt samples (DS 1 to DS 5) and numerous rock specimen samples were coliected. Two of the five silt samples (DS 3 and DS 5) were considered to be anomalous for gold. Silt sample DS 3 returned the highest gold assay of $123.1 \mathrm{ppb}(0.123 \mathrm{~g} / \mathrm{mt}$ or $0.004 \mathrm{0z} / \mathrm{mt}$) with elevated silver (1.0 ppm), molybdenum (4.5 ppm), copper (92.6 ppm), lead (294.3 ppm), zinc (588 ppm), arsenic (23 ppm) and cadmium (9.8 ppm). Silt sample DS 5 retumed a gold assay of $21.6 \mathrm{ppb}(0.0216 \mathrm{~g} / \mathrm{mt}$ or $0.0007 \mathrm{oz} / \mathrm{mt}$) with elevated copper (17.9 ppm), lead (13.1 ppm) and zinc (289 ppm).

8.2 Soil Geochemical Survey

A reconnaissance soil geochemical survey was performed at the Wrich prospect (Figure 12) on August 11, 2002. A total of 11 soil samples ($0+00 S$ to $1+005$) were collected along a north south soil line every 10 metres in a ravine west of Wrich Hill (Figure 12). Three of the soil samples collected were anomalous for gold. Soil sample 0+90S had the highest gold assay of $175.9 \mathrm{ppb}(0.176 \mathrm{~g} / \mathrm{mt}$ or $0.006 \mathrm{oz} / \mathrm{mt}$). Soil sample $0+40 \mathrm{~S}$ returned a gold assay of 47.6 ppb ($0.048 \mathrm{~g} / \mathrm{mt}$ or $0.001 \mathrm{oz} / \mathrm{mt}$) and soil sample $0+80 \mathrm{~S}$ assayed $28.3 \mathrm{ppb}(0.028 \mathrm{~g} / \mathrm{mt}$ or $0.0009 \mathrm{oz} / \mathrm{mt})$ of gold. The soil samples collected also had elevated copper, lead and arsenic values. Soil sample 0+90S returned elevated copper (27.7 ppm), lead (83.6 ppm) and arsenic (40.5 ppm). Soil sample $0+40 S$ returned elevated copper (77.7 ppm), lead (55 ppm), arsenic (41.5 ppm) and sample $0+80 \mathrm{~S}$ returned elevated copper (87 ppm), lead (31.6 ppm) and arsenic (18.8 ppm).

8.3 Prospecting and Rock Sampling

Prospecting and rock sampling of selected mineralized outcrop and float was carried out on the Goat, Pine, Pine SW (includes Peak samples), Mex, Nub, Vip and Wrich prospects between July 24 and September 30, 2002 (Figure 4).

At the Goat prospect (Figure 4,4a) a total of six rock samples were taken (02DB-132 to 02DB-137) from selected quartz-carbonate veins. Two rock samples (02DB-134, 02DB-135) returned substantial gold and silver assays. Rock sample 02DB-134 had the highest gold and silver assays with $165.87 \mathrm{~g} / \mathrm{mt}(5.33 \mathrm{oz} / \mathrm{mt})$ of gold and $396.5 \mathrm{~g} / \mathrm{mt}$ (12.75 $\mathrm{oz} / \mathrm{mt}$) of silver. Rock sample 02DB-135 returned a gold assay of $0.95 \mathrm{~g} / \mathrm{mt}(0.031 \mathrm{oz} / \mathrm{mt})$ and a silver assay of 57.7 $\mathrm{g} / \mathrm{mt}(1.86 \mathrm{oz} / \mathrm{mt})$. Both rock samples also showed high copper, lead and zinc values. Rock sample 02DB-134 assayed 0.006% copper, 3.92% lead, 9.61% zinc and rock sample 02DB-135 assayed 0.651% copper, 1.09% lead, 0.34% zinc. Two other rock samples taken at the Goat prospect (02DB-132, 02DB-133) were anomalous for gold, silver, copper, lead, zinc and molybdenum. Rock sample 02DB-132 assayed $0.03 \mathrm{~g} / \mathrm{mt}$ ($0.001 \mathrm{oz} / \mathrm{mt}$) gold, $6.6 \mathrm{~g} / \mathrm{mt}(0.212 \mathrm{oz} / \mathrm{mt}$) silver, 0.074% copper, 0.23% lead, 1.61% zinc and 0.003% molybdenum. Rock sample 02DB-133 assayed $0.05 \mathrm{~g} / \mathrm{mt}$ $(0.002 \mathrm{oz} / \mathrm{mt})$ gold, $2.6 \mathrm{~g} / \mathrm{mt}(0.084 \mathrm{oz} / \mathrm{mt})$ silver, 0.01% copper, $<.01 \%$ lead, 0.04% zinc and 0.003% molybdenum.

At the Pine prospect (Figure 4,4a) a total of four grab and chip samples (O2DB-3, 4 and 02BM-8, 9) were taken from mineralized and gossanous outcrops on July $\mathbf{2 8 , 2 0 0 2}$. All samples were anomalous in gold. Rock sample 02DB-3 returned the highest gold assay of $0.25 \mathrm{~g} / \mathrm{mt}(0.008 \mathrm{oz} / \mathrm{mt})$ and an anomalous value for copper at 0.028%. Intense surface leaching/weathering has likely removed copper from the rock samples, however the presence of gold suggests proximity with potassic alteration and porphyry gold-copper mineralization in this area.

Prospecting and rock sampling on the Pine-SW (Figure 4,4a) was carried out between July 27 and August 2, 2002 with a total of 29 grab and continuous chip samples of selected gossanous and mineralized outcrops. All rock samples collected returned low assays in precious metals values. The highest gold assay was rock sample 02BM-6 with 0.03 $\mathrm{g} / \mathrm{mt}(0.001 \mathrm{oz} / \mathrm{mt})$ over 1.0 metre. Rock sample 02BM-6 also had an elevated copper value of 0.01%. Rock sample 02BM-16 returned an anomalous silver assay of $1.3 \mathrm{~g} / \mathrm{mt}(0.042 \mathrm{oz} / \mathrm{mt})$ and a gold assay of $0.02 \mathrm{~g} / \mathrm{mt}(0.0006 \mathrm{oz} / \mathrm{mt})$ over 5.0 metres.

At the Mex prospect (Figure $4 \mathrm{a}, 5$) a total of 13 grab and continuous chip rock samples were collected from mineralized, gossanous and quartz stockworked outcrop on August 19, 2002. All samples returned anomalous gold, silver, copper, zinc and molybdenum assays. Rock sample 02DB-121 returned the highest gold assay of $0.47 \mathrm{~g} / \mathrm{mt}(0.015 \mathrm{oz} / \mathrm{mt})$ and $1.1 \mathrm{~g} / \mathrm{mt}$ silver ($0.0350 \mathrm{z} / \mathrm{mt}$) over 1.0 metres. This sample also showed elevated copper (0.06%), zinc (0.03%) and molybdenum (0.002%) values. The highest copper assay was from sample $02 \mathrm{BM}-203$ (Float) at 0.25% with $0.14 \mathrm{~g} / \mathrm{mt}$ $(0.005 \mathrm{oz} / \mathrm{mt})$ gold and $0.9 \mathrm{~g} / \mathrm{mt}(0.029 \mathrm{oz} / \mathrm{mt})$ silver. This sample also showed elevated zinc (0.03%) and molybdenum (0.002\%) values.

At the Nub prospect ($\mathrm{Nub} / \mathrm{Nwb}$) (Figure 4,13) a total of 11 grab and continuous chip rock samples were collected from mineralized and gossanous outcrop during September 2002. Most samples were anomalous for gold, silver and copper. Between NWB and Nub West rock sample 02DB-126 returned $0.10 \mathrm{~g} / \mathrm{t}$ gold, $2.2 \mathrm{~g} / \mathrm{t}$ silver from a grab of pink-orange crystal tuff with 1-2mm quartz stock work. Rock sample 02DB-141 (grab from subcrop) returned the highest gold assay of $0.59 \mathrm{~g} / \mathrm{mt}(0.019 \mathrm{oz} / \mathrm{mt})$ with $5.2 \mathrm{~g} / \mathrm{mt}(0.167 \mathrm{oz} / \mathrm{mt})$ of silver and 0.045% copper. Elevated lead and zinc values are common at the Nub Prospect but are not always associated with higher gold/silver assays. The highest lead assay was rock sample 02DB-142 at 0.07\% and the highest zinc assay was rock sample 02DB-131 at 0.2\%.

Prospecting at the Vip prospect (Figure 4,6,13) and nearby 343-creek (southwest of Vip, Figure 4a) produced a total of 58 grab, float, and continuous chip rock samples between August 4 and September 4, 2002. The prospecting samples were collected mainly from copper-gold-silver rich skam, copper rich porphyry dikes and pyrite rich gossanous hornfelsed metasediment. These rock samples do not include continuous chip samples taken from excavator trenches discussed under 10.9: Rock Chip Sampling of Excavator Trenches.

Most of the Vip prospecting samples contain anomalous gold, silver and copper (Figure 6, Appendix 3-1). Rock sample 02DB-32 (epidote skarn, semi-massive py, cpy over 0.07 m) returned the highest assay for gold ($56.20 \mathrm{~g} / \mathrm{mt}$ or 4.807 oz/mt), silver ($165.3 \mathrm{~g} / \mathrm{mt}$ or $5.314 \mathrm{oz} / \mathrm{mt}$), and copper (5.273%). A six-metre continuous chip sample (02DB-26) over
gossanous, siliceous hornfelsed metasitstone with coarse pyrite returned $1.28 \mathrm{~g} / \mathrm{mt}$ gold ($0.041 \mathrm{oz} / \mathrm{mt}$) and $3.2 \mathrm{~g} / \mathrm{mt}$ silver ($0.103 \mathrm{oz} / \mathrm{mt}$). A grab sample (RR06-02) from the 343 -creek area southwest of the Vip Prospect assayed 2.70 g / mt gold ($0.087 \mathrm{oz} / \mathrm{mt}$), $94.4 \mathrm{~g} / \mathrm{mt}$ silver ($3.035 \mathrm{oz} / \mathrm{mt}$) and 2.312% copper.

At the Wrich Hill prospect (Figure $4 a, 12$) at total of 76 grab, continuous chip and float prospecting samples were taken between August 3 and September 12, 2002. Most prospecting samples were taken from silicified (quartz-chalcedony) hematite, clay altered volcanic rock. These rock samples do not include continuous chip samples taken from excavator trenches discussed under 10.9: Rock Chip Sampling of Excavator Trenches.

Most of the Wrich prospecting samples were anomalous and enriched in gold and silver (Figure 12, Appendix 3-1). The highest gold/silver assay was from rock sample 02-BM-48 (Float sample). It assayed 81.10g/mt gold (2.607 oz/mt) and $109.8 \mathrm{~g} / \mathrm{mt}$ silver ($3.530 \mathrm{oz} / \mathrm{mt}$). Two rock samples returned very high lead and silver assays (Appendix 3-1). Rock sample 02-DB-11 (Float sample) returned the highest silver assay of $409.6 \mathrm{~g} / \mathrm{mt}(13.169 \mathrm{oz} / \mathrm{mt}), 50.72 \%$ lead and 0.19 g / mt gold. Rock sample 02-BM-23 (Fioat sample) returned the highest lead assay of 79.7% with $405.1 \mathrm{~g} / \mathrm{mt}$ silver ($13.0240 z / \mathrm{mt}$) and $0.16 \mathrm{~g} / \mathrm{mt}$ gold.

8.4 Line Cutting

For the purposes of performing an induced polarization survey, a crew of two to four carried out line cutting on the Vip and Wrich. A total of 27 kilometres of line cutting was done on the Vip prospect and 2.2 line kilometres on the Wrich between August and September 8, 2002.

8.5 Grid Establishment

A two to four-man crew established a flagged grid and tie-lines on the Vip prospect for geological and geophysical control between August and September 8, 2002. Grid lines were compass oriented and distances along lines were measured by hip chain. All grid lines, base lines, tie lines and sample sites were checked by GPS 〈Global Positioning System) and tied into recognizable topographical features. A total of 55.5 line kilometres of grid was established on the Vip prospect and includes grid lines, base lines and tie lines.

Three NW-SE grid lines were put in on the Mex prospect (3.6 line kilometres) between August and September 8, 2002. All lines were controlled by GPS, compass, hipchain and tied into recognizable topographical features.

8.6 Machine Trenching

Machine trenching was carried out on the Wrich and Vip prospects between August 11 and September 24, 2002 using a Hitachi: EX200LG tracked excavator.

Approximately 1000 metres of machine trenching were completed at the Vip prospect including test pits and approximately 525 metres of machine trenching were done at the Wrich prospect.

8.7 Geological Grid Mapping

Geological grid mapping was carried out on the Mex, Vip and Wrich prospects between August 10 and September 8, 2002. Geological grid mapping at the Mex prospect was carried out at 1:5000 scale for a total of approximately 2.5 line kilometres. At the Vip prospect there were 49.5 line kilometres of geological grid mapping completed at 1:2500 scale and approximately 2.0 kilometres completed at the Wrich prospect (1:5000 scale).

8.8 Geological Trench Mapping

Geological trench mapping was initiated at the Vip and Wrich prospects between August 13 and September 28, 2002. A total of 1439 metres were mapped at the Vip (944 m) and Wrich (495 m) prospects at 1:250 scale.

8.9 Rock Chip Sampling of Excavator Trenches

Rock chip sampling of excavator trenches was carried out between August 13 and September 29, 2002 on the Vip and Wrich prospects.

At the Vip prospect 944 metres of rock chip sampling from 17 trenches was performed and width-weighted grades were calculated (Figure 6, Table 3). In the West Skarn area, Trench \#1 (Figure 9) contained two copper/silver/gold rich zones. The first zone assayed 0.10% copper, $2.6 \mathrm{~g} / \mathrm{mt}$ silver ($0.084 \mathrm{oz} / \mathrm{mt}$) and $0.83 \mathrm{~g} / \mathrm{gold}(0.027 \mathrm{oz} / \mathrm{mt}$) over 6.0 metres. The second zone assayed 0.33% copper, $13.4 \mathrm{~g} / \mathrm{mt}$ silver ($0.431 \mathrm{oz} / \mathrm{mt}$) and $3.2 \mathrm{~g} / \mathrm{mt}$ gold ($0.103 \mathrm{oz} / \mathrm{mt}$) over 18.0 metres. Also in the West Skam area, Trench \# 2 revealed two copper/silver/gold rich zones. The first zone assayed 0.24% copper, $10.9 \mathrm{~g} / \mathrm{mt}$ silver ($0.350 \mathrm{oz} / \mathrm{mt}$) and $1.53 \mathrm{~g} / \mathrm{mt}$ gold ($0.049 \mathrm{oz} / \mathrm{mt}$) over 18.0 metres. The second zone in Trench \#2 assayed 0.22% copper, $6.6 \mathrm{~g} / \mathrm{mt}$ silver ($0.212 \mathrm{oz} / \mathrm{mt}$) and $2.8 \mathrm{~g} / \mathrm{mt}$ gold ($0.090 \mathrm{oz} / \mathrm{mt}$) over 24.0 metres. Trench 3 returned 0.47% copper, $12.1 \mathrm{~g} / \mathrm{mt}$ silver, $0.96 \mathrm{~g} / \mathrm{mt}$ gold over 21.0 metres. In the East Skarn area, Trench \#15 (Figure 7) assayed 1.41% copper, $32.6 \mathrm{~g} / \mathrm{mt}$ silver ($1.048 \mathrm{oz} / \mathrm{mt}$) and $5.8 \mathrm{~g} / \mathrm{mt}$ gold ($0.186 \mathrm{oz} / \mathrm{mt}$) over 6.0 metres. In the North Skarn area, Trench \#6 (Figure 8) assayed 1.16% copper, $52.0 \mathrm{~g} / \mathrm{mt}$ silver ($1.672 \mathrm{oz} / \mathrm{mt}$) and 3.6 g / mt goid ($0.116 \mathrm{oz} / \mathrm{mt}$) over 6.0 metres.

At the Wrich prospect 495 metres of rock chip sampling from 4 trenches was completed (Figure 11, Table 4). Significant gold and silver values were returned from chip sampling the trenches, and width weighted grades were calculated. Trench \#1 returned $1.87 \mathrm{~g} / \mathrm{mt}$ gold and $7.01 \mathrm{~g} / \mathrm{mt}$ silver over 34 metres . Trench $\# 2$ returned $2.084 \mathrm{~g} / \mathrm{mt}$ gold ($0.067 \mathrm{oz} / \mathrm{mt}$) and $10.600 \mathrm{~g} / \mathrm{mt}$ silver ($0.34 \mathrm{oz} / \mathrm{mt}$) over 46.0 metres. In Trench \# 3 two gold/silver rich zones were revealed. The first zone assayed $1.116 \mathrm{~g} / \mathrm{mt}$ gold ($0.036 \mathrm{oz} / \mathrm{mt}$) and $9.385 \mathrm{~g} / \mathrm{mt}$ silver ($0.302 \mathrm{oz} / \mathrm{mt}$) over 26.0 metres. The second zone returned $1.040 \mathrm{~g} / \mathrm{mt}$ gold ($0.033 \mathrm{oz} / \mathrm{mt}$) and $6.800 \mathrm{~g} / \mathrm{mt}$ silver ($0.219 \mathrm{oz} / \mathrm{mt}$) over 24.0 metres.

Overall, Trenches 1,2, and 3, returned a combined average grade of $0.81 \mathrm{~g} / \mathrm{mt}$ gold, $9.2 \mathrm{~g} / \mathrm{mt}$ silver over an average width of 105 metres, with selected sections including: 20.0 metres $2.86 \mathrm{~g} / \mathrm{t}$ gold, $7.0 \mathrm{~g} / \mathrm{t}$ silver, including 2 metres containing $10.2 \mathrm{~g} / \mathrm{mt}$ gold, $7.3 \mathrm{~g} / \mathrm{mt}$ silver in Trench $1,12.0$ metres $2.65 \mathrm{~g} / \mathrm{t}$ gold, $18.0 \mathrm{~g} / \mathrm{t}$ silver, and 2.0 metres $17.33 \mathrm{~g} / \mathrm{t}$ gold, $13.2 \mathrm{~g} / \mathrm{t}$ silver in Trench 2, 16.0 metres $1.39 \mathrm{~g} / \mathrm{mt}$ gold, $10.7 \mathrm{~g} / \mathrm{mt}$ silver, and 12.0 metres $1.43 \mathrm{~g} / \mathrm{mt}$ gold, $5.3 \mathrm{~g} / \mathrm{mt}$ silver in Trench 3.

8.10 Ground Geophysical Survey

Lloyd Geophysics Inc. of Vancouver, British Columbia was commissioned by Stealth Minerals Limited to conduct and interpret approximately 28 kilometres of ground IP (Induced Polarization Geophysical Survey) and resistivity surveys and 53 kilometres of ground magnetometer surveys (Lloyd, 2003)(Appendix 3-2). Geophysical equipment used in the IP survey includes a 7.5 kw time domain unit consisting of a 400 hertz Onan/Wagner Leland motor generator set and a Mark II transmitter manufactured by Huntec Limited, Toronto, Canada and a 6 channel IP-6 receiver manufactured by Iris Instruments, Orleans, France (Lloyd, 2003). Geophysical equipment used in the magnetometer survey consists of 2 Omni total field proton precession magnetometers manufactured by EDA instruments inc., Toronto, Ontario (Lloyd, 2003). A pole-dipole array was used for the IP survey (At Mex and Vip) with a dipole length equal to 50 metres and at the Wrich prospect the dipole length equals to 25 metres (Lloyd, 2003). The magnetometer survey measurements were recorded at 12.5 metre station intervals (Lloyd, 2003). A Professional Geoscientist supervised all geophysical surveys.

Ground IP and resistivity surveys were performed on the Mex, Vip and Wrich prospects between August 23 and September 12, 2002. Magnetometer surveys were performed at the Mex and the Vip prospects between August 23 and September 9, 2002.

At the Mex Prospect an IP (includes resistivity survey) and magnetometer survey were conducted on NW-SE lines (line M1, line M2, line M3). Results of the surveys on grid line M1 indicated a strong magnetic high (1500 nT above background), 150 metres wide, occurs between stations 125 N and 275 N (centered at 200 N). This strong magnetic high is associated with a fairly isolated chargeability and resistivity high and may represent a body dipping steeply to the northwest and containing $+/-15 \%$ magnetite (Lloyd, 2003). The IP survey on line M1 revealed a broad moderately high chargeability response, 450 metres wide, extending from station 600 N to 1050 N (Lloyd, 2003). Line M2, approximately 350 metres northeast of line M1, revealed a magnetic anomaly again centered at about 200N but with only 400 to 500 nT above background. This may be due to strong overburden cover (Lloyd, 2003). The IP survey showed a broad moderately high chargeability response, 800 metres wide, extending from about station 175 N to 975 N (Lloyd, 2003). On line M3 (200 metres southwest of M1) the magnetic data again revealed a strong magnetic high (1500 nT above background), 100 metres wide, extending from station 175 N to station 275 N . A moderate chargeability high, about 200 metres wide, extending from stations 150 N to 350 N correlates with the magnetic high.

At the Vip prospect grid an IP (includes resistivity survey) and magnetometer survey were conducted on NW-SE lines. In general, two well-defined sub-parallel magnetic linears (approximately 900 metres in length) occur over the East
skarn zone (Figure 7) and numerous short wavelength, moderate amplitude, magnetic anomalies occur throughout the grid area (Lloyd, 2003). These smaller magnetic anomalies appear best developed in the metasediment to the northwest and east of the West skarn zone (Lloyd, 2003). The anomalies form a series of northeast-southwest trending magnetic linears with average widths between 10 and 40 metres and average amplitudes from about 200 to 1000 nT (Lloyd, 2003). The IP survey revealed 6 fairly moderate amplitude chargeability anomalies. Trenches T5, T6, T7 in the North skarn zone lie within chargeability anomaly number 5, which is approximately 750 metres long and 175 metres wide (Lloyd, 2003). Trench T3 in the West skam zone cuts IP anomalies number 1 and 2 (Lloyd, 2003). Further trenching is needed in order to test all the chargeability anomalies.

At the Wrich prospect an induced polarization (IP) and resistivity survey were conducted on three E-W lines (line 0 , line 400 N, line 800 N) to test for the presence and distribution of metallic sulphides. Results of the surveys on line 0 revealed a well-defined chargeability and resistivity anomaly approximately 200 metres wide, centered at about 150 W (Lloyd, 2003). Strong, pervasive silicification and vuggy chalcedony vein breccia are believed to be the main cause of the very strong resistivity anomaly and the fairly moderate chargeability response is most probably caused by minor amounts of metallic suiphides (Lloyd, 2003). On line 400 N there is a well-defined chargeability anomaly, approximately 100 metres wide, centered at about 275 W (Lloyd, 2003). The resistivity anomaly associated with this chargeability high is extremely weak and although there is little or no evidence that the rocks at this location are oxidized, they are, in fact, still well silicified (Lloyd, 2003). A second chargeability and resistivity anomaly, less than 50 metres wide, occurs at about 425 W (Lloyd, 2003). Results from line 800 N indicate that the geophysical pattern of the anomalies is similar to that found on line 400 N . The first anomaly is a relatively weak chargeability anomaly, approximately 50 metres wide, centered at about 175 W with no resistivity response (Lloyd, 2003). The second chargeability anomaly, approximately 100 metres wide, centered at about 350 W is associated with a moderate resistivity high (Lloyd, 2003). The final chargeability/resistivity high, approximately 100 metres wide, is centered at about 900 W (Lloyd, 2003).

9.0 Sample Method and Approach

Trench sampling was performed by taking representative chip samples between distance markers along the wall of the trenches. Duplicate/ repeat samples were taken from trenches and results compared well with original samples.

10.0 Sample Preparation, Analyses and Security

Samples were bagged in the field, and tied closed. These were then placed in large rice bags labeled for shipping and transported by truck, bus or air to Acme Analytical Laboratories in Vancouver. Sample assay certificates are located in Appendix 3.1.

11.0 Adjacent Properties

The Kemess and Pine deposits are associated with Early Jurassic (ca. 202-~190 Ma) calc-alkaline intrusions of the Black Lake Intrusive Suite. As of December 31, 2001, the Kemess South contains proven reserves of approximately 132.6 million tonnes grading $0.70 \mathrm{~g} / \mathrm{t}$ goid, 0.23% copper, or approximately 3 million ounces of goid. In 2001 the Kemess South mine produced 277,106 ounces of gold, and $66,304,000$ pounds of copper. The Kemess North deposit has an inferred mineral resource of 442 million tonnes grading $0.40 \mathrm{~g} / \mathrm{t}$ gold and 0.23% copper. An interval of 100 metres grading 0.60% copper and $1.54 \mathrm{~g} / \mathrm{t}$ gold was returned in drill hole KN-01-11 (Northgate Expioration Ltd. website, April, 2001). The geology, alteration and mineralization of the Kemess deposits are associated with Omineca intrusions, similar to that of the Pine deposit.

The Shasta, Baker, Lawyers, and Alberts Hump are high grade, volcanic-hosted epithermal gold-silver deposits with historical production. At the Lawyers Mine, in the Amethyst Gold Breccia zone 499,889 tonnes of ore milled had a recovered grade of $8.8 \mathrm{~g} / \mathrm{t}$ gold and $190.1 \mathrm{~g} / \mathrm{t}$ silver. The Baker Mine " A^{n} vein milled 77,500 tonnes of ore with a recovered grade of $15.1 \mathrm{~g} / \mathrm{t}$ gold, $297.9 \mathrm{~g} / \mathrm{t}$ silver, and the Shasta deposit produced 106,300 tonnes with a recovered grade of $4.53 \mathrm{~g} / \mathrm{t}$ gold, 250.0 gft silver (Bulletin 86). These deposits occur northwest of the Toodoggone Project and are hosted by similar lithology, alteration and mineralization as the Goat-Wrich, Electrum, Nub Mountain and JC prospects.

12.0 Interpretation and Conclusions

Detailed geological (mapping/prospecting/sampling), geochemical surveys of prospects within the Toodoggone project claims combined with selected ground geophysical survey data have identified several areas with potential to host epithermal (gold-silver), skarn (copper-gold-silver) and porphyry (copper-gold) type deposits.

12.1 Goat

The Goat prospect is underlain by Takla/Stuhini Group andesite and siliciclastic rocks and contains several outcropping sub-parallel epithermal-style polymetallic quartz-carbonate veins and breccia. The veins and breccia occur within a 200 metre-wide zone that contain significant quantities of pyrite-chalcopyrite-galena-sphalerite mineralization. The Goat prospect returned assays with anomalous gold, silver, copper, lead and zinc. Vein/veinlets/breccia are approximately 540 cm wide, and minimum 100 metres in length occur within shear zones approximately 1-4 metres in width and over 200 metres in length. One chip sample of a quartz-carbonate vein returned $165.87 \mathrm{~g} / \mathrm{mt}(5.33 \mathrm{oz} / \mathrm{mt})$ gold and 396.5 g / mt ($12.75 \mathrm{oz} / \mathrm{mt}$) of silver.

12.2 Pine (includes Tree/Fin)

The Pine and Tree prospects are hosted by Toodoggone Formation dacite cut by Omineca intrusions, dikes and silis of monzonite to quartz latite composition, respectively. The Tree prospect occurs near the contact with the Geigerich
granodiorite. Quartz, sericite, K-feldspar and magnetite alteration and pyrite, chaicopyrite mineralization with associated gold and silver values occur over an area of approximately 2 kilometres in length and 500-1000 metres in width, and is in part affected by late-stage intense quartz-sericite-clay alteration near surface. This phyllic style alteration occurs a further 1-2 kilometres southwest (Flats) and 1 kilometre northeast (Fin) of the Pine-Tree prospects and may overlie potassic alteration in these areas. Previous geology, geochemical, geophysical surveys and diamond drilling have outlined a potential gold-copper resource that remains under-explored.

Geological similarities with the Kemess porphyry gold-copper deposits, and widespread gold-copper mineralization suggest potential for the Pine deposit to host a very large gold-copper resource. The presence of erratic, narrow, highgrade gold values (P97-4:215.9g/mt gold over 1.3 metres) and abundance of zinc in drill core near surface in addition to drill core recovery, sludge sampling and petrographic results, suggest potential for increased goid grade in a nearsurface "Broken zone" possibly reflecting a peripheral, oxide/supergene portion of the overall porphyry gold-copper system.

A brief visit in the 2002 field season returned a gold assay of $0.25 \mathrm{~g} / \mathrm{mt}(0.008 \mathrm{oz} / \mathrm{mt})$ from a rare surface exposure on the northwest side of the Pine deposit.

12.3 Pine-SW

The Pine-SW returned assays with low gold and silver values (highest gold-0.03 g / mt gold, highest silver- $1.3 \mathrm{~g} / \mathrm{mt}$). However, a wide spread gossanous phyllic alteration zone (sericite, quartz, pyrite, chlorite, gypsum, jarosite/goethite/hematite) suggests this prospect may represent part of an outer phyllic zone that overlying potassic alteration of a porphyry type deposit.

12.4 Mex

The Mex prospect is underlain by volcanic rocks of the Toodoggone Formation cut by intrusive rocks of the Black Lake intrusive suite near the margin of the Geigerich Batholith (granodiorite). Numerous dacite dikes intrude the Toodoggone Formation. Pyrite, chalcopyrite, malachite, azurite, manganese wad, magnetite-hematite and locally chalcocite occur as disseminations, along fractures, within quartz veinlets and quartz stockwork. The Mex prospect returned anomalous gold, silver, copper, zinc, and molybdenum values. One chip sample assayed $0.47 \mathrm{~g} / \mathrm{mt}$ gold, $1.1 \mathrm{~g} / \mathrm{mt}$ silver, 0.06% copper, 0.03% zinc and 0.002% molybdenum. Previous sampling from the Mex Prospect in past years returned 6267ppm copper, 1932 ppb gold in rock, 550ppm copper, 3260 ppb gold in soil, and 8190ppm copper, 643 ppb goid in stream silt. Values of $1,960-8,190 \mathrm{ppm}$ copper, $261-643 \mathrm{ppb}$ gold obtained in silt samples to the northeast of the Mex showing strongly suggests that copper-gold mineralization exists below the leached outcrops.

Results of an IP (Induced Polarization) and magnetometer survey indicated a strong magnetic high, 150 metres wide on line M1 and 100 metres wide on line M3. This strong magnetic high is associated with a fairly isolated chargeability and
resistivity high and may represent a body dipping steeply to the northwest containing $+/-15 \%$ magnetite (Lloyd, 2003). The IP survey indicated three areas with broad moderately high chargeability responses

Alteration mapped at the Mex prospect includes a centralized phyllic zone (sericite, quartz, pyrite, chlorite, jarosite/goethite/hematite, manganese, anhydrite?/gypsum) and an outer zone of propylitic alteration (chlorite, calcite, epidote and sericite).

The presence of favorable geology, alteration, mineralized quartz stock work, rock, soil and silt geochemistry, and induced polarization and magnetic anomalies suggest a quartz-k-feldspar-magnetite-chalcopyrite-enriched potassic core may exist beneath the extensive phyllic alteration zone.

12.5 Nub Mountain

Hazelton Group rocks in contact to the east with an Omineca intrusion of granodiorite composition underlie the Nub Mountain area. The Nub and Nub North prospects contain propylitic to quartz-sericite pyrite altered volcanic rocks cut by quartz-sericite-pyrite altered shear zones containing epithermal style quartz-carbonate veins, breccia and stockwork with variable concentrations of pyrite, chalcopyrite, sphalerite and galena with associated copper, zinc, lead, gold and silver values. Most outcropping veins are erratic, narrow and discontinuous however, veins have returned significant
 metres in length containing values of up to 1150 ppb gold. With the association of large regional structures, there is potential in these areas to host significant veins or stock work of high-grade epithermal gold-silver mineralization.

The Nub West and Northwest breccia prospects may be spatially related to a northerly trending regional structure and associated intense hydrothermal alteration with dimensions of approximately 600-1000 metres in width and 5 kilometres in length. Petrography of the Nub West identified quartz-alunite alteration, and sampling in 1999 returned vuggy silica and native sulphur in specimens. Multi-element soil, silt and rock geochemical anomalies, geology, and extent of hydrothermal alteration suggest these prospects are favorable for the development of high-sulphidation epithermal to transitional porphyry gold-copper deposits, and remain untested by drilling.

12.6 Vip

The Vip prospect is underlain by marine meta-sedimentary rocks of the Permian age Asitka Group lithology. Early Jurassic plutonic rocks and a variety of dikes intrude the Asitka Group. The meta-sedimentary rocks form roof pendants or fault-bounded screens over the intrusive stock. Contact metamorphism and varying degrees of metasomatism and retrograde hydrothermal alteration have resulted in the deveiopment of calcic Cu-Au-Ag skarns.

A number of $\mathrm{Cu}-\mathrm{Au}-\mathrm{Ag}$ rich skarn zones have developed in meta-sediment and marble near and adjacent to marble/meta-sediment contacts. Skarn is also developed in near-by intrusive rock and intrusive/meta-sediment
contacts. Skarn mineralization is typically veinfracture controlled or occurs as disseminated patches or grains within skarn assemblages. The following major mineral assemblages are associated with each skarn zone: Vip Westchalcopyrite $+/$ - pyrite (minor minerals include sphalerite, magnetite, hematite); Vip East- bornite $+/$-chalcopyrite $+/$ sulphosalts, magnetite $+/$-chalcopyrite and pyrite $+/$ - pyrthotite (minor minerals include hematite); Vip North-magnetite +/- hematite +/-chaicopyrite; Vip Northeast - pyrite +/- hematite. Chalcocite, covellite and malachite replace copper sulphides. Hematite or limonite occur rimming and partly replacing sulphide minerals and occur lining open vugs or boxwork and infilling fractures. Some quartz veins/veinlets related and unrelated to the skam zones contain trace molybdenum. Prospecting 2 kilometres west of the Vip West zone located a new copper, silver, gold prospect in monzonite. The geology and alteration (K-feldspar) in this area appear consistent with intrusion-related porphyry Cu-Ag-Au mineralization; the original rock grab sample from this area assayed 2.3% copper, $94.4 \mathrm{~g} / \mathrm{mt}$ silver, $2.7 \mathrm{~g} / \mathrm{mt}$ gold.

In the West Skarn area, Trench \#1 contained two copper/silver/gold rich zones; 0.10% copper, $2.6 \mathrm{~g} / \mathrm{mt}$ silver (0.084 $\mathrm{oz} / \mathrm{mt}$) and $0.83 \mathrm{~g} / \mathrm{tgold}(0.027 \mathrm{oz} / \mathrm{mt})$ over 6.0 metres and 0.33% copper, $13.4 \mathrm{~g} / \mathrm{mt}$ silver ($0.431 \mathrm{oz} / \mathrm{mt}$) and $3.2 \mathrm{~g} / \mathrm{mt}$ gold ($0.103 \mathrm{oz} / \mathrm{mt}$) over 18.0 metres. Also in the West Skarn area, Trench \# 2 revealed two copper/silver/gold rich zones; 0.24% copper, $10.9 \mathrm{~g} / \mathrm{mt}$ silver ($0.350 \mathrm{oz} / \mathrm{mt}$) and $1.53 \mathrm{~g} / \mathrm{mt}$ gold ($0.049 \mathrm{oz} / \mathrm{mt}$) over 18.0 metres and 0.22% copper, $6.6 \mathrm{~g} / \mathrm{mt}$ silver ($0.212 \mathrm{oz} / \mathrm{mt}$) and $2.8 \mathrm{~g} / \mathrm{mt}$ gold ($0.090 \mathrm{oz} / \mathrm{mt}$) over 24.0 metres. Trench \#3 returned 21 metres containing 0.47% copper, $12.1 \mathrm{~g} / \mathrm{mt}$ silver and $0.96 \mathrm{~g} / \mathrm{mt}$ gold. The sections occurring in Trench 1,2 and 3 may be part of a continuous skarn zone over 200 metres in length and remain open. There is a large magnetic anomaly to the north of Trench \#1 and \#2.

In the East Skam area, Trench \#15 retumed up to 1.41% copper, $32.6 \mathrm{~g} / \mathrm{mt}$ silver ($1.048 \mathrm{oz} / \mathrm{mt}$) and $5.8 \mathrm{~g} / \mathrm{mt}$ gold ($0.186 \mathrm{oz} / \mathrm{mt}$) over 6.0 metres. Although mineralization appears erratic on surface, marble and skarn alteration occur over a mapped distance of approximately 700 metres and remains open. I.P. and magnetic surveys suggest the skam zone may extend for 900 metres, and there is a large IP anomaly north of Trench \#15.

In the North Skarn area, Trench \#6 returned 1.16\% copper, $52.0 \mathrm{~g} / \mathrm{mt}$ silver ($1.672 \mathrm{oz} / \mathrm{mt}$) and $3.6 \mathrm{~g} / \mathrm{mt}$ gold (0.116 oz $/ \mathrm{mt}$) over 6.0 metres. Marble, hornfelsed meta-sediment and skarn alteration is mapped on surface for over 600 metres and remains open.

In the Northeast Zone (Figure 6) a 6.0 metre chip sample returned $5.3 \mathrm{~g} / \mathrm{mt}$ silver and $1.2 \mathrm{~g} / \mathrm{mt}$ gold without appreciable copper values in a pyrite-rich, silicified meta-siltstone unit. This style of mineralization may represent structurally controlled gold-silver mineralization, potentially "leakage", within the cap rock above skam alteration and mineralization. The area is underiain by a large, strong I.P. chargeability anomaly.

The North, West and East skarn zone are each large areas of favorable geology, alteration and mineralization for the development of skarn copper-gold-silver deposits. There is the additional possibility that the north and east skam zones may be continuous beneath a cap rock of hornfelsed meta-sediments.

12.7 Wrich Hill

Volcanic rocks of the Toodoggone Formation underlie the Wrich Hill prospect with Takla/Stuhini Group lithology mapped to the west. Kaolinite, dickite, silica altered dacite tuff/breccia with intense hydrothermal breccia occurs in a wide zone proximal to the northwest trending regional Wrich fault. Gold-silver values occur dominantly with strong limonite/hematite, pervasive silica, boxwork and breccia textures, and quartz-chalcedony veinlets in hand samples.

Machine trenching exposed an alteration zone 100-150 metres in width that includes two zones of intense silicification and quartz-chalcedony brecciation in proximity to the regional Wrich fault. Overall, Trenches 1,2, and 3, returned a combined average grade of $0.81 \mathrm{~g} / \mathrm{mt}$ gold, $9.2 \mathrm{~g} / \mathrm{mt}$ silver over an average width of 105 metres, with sections including: 20.0 metres $2.86 \mathrm{~g} / \mathrm{t}$ gold, $7.0 \mathrm{~g} / \mathrm{t}$ silver, including 2 metres containing $10.2 \mathrm{~g} / \mathrm{mt}$ gold, $7.3 \mathrm{~g} / \mathrm{mt}$ silver in Trench $1,12.0$ metres $2.65 \mathrm{~g} / \mathrm{t}$ gold, $18.0 \mathrm{~g} / \mathrm{t}$ silver, and 2.0 metres $17.33 \mathrm{~g} / \mathrm{t}$ gold, $13.2 \mathrm{~g} / \mathrm{t}$ silver in Trench $2,16.0$ metres $1.39 \mathrm{~g} / \mathrm{mt}$ gold, $10.7 \mathrm{~g} / \mathrm{mt}$ silver, and 12.0 metres $1.43 \mathrm{~g} / \mathrm{mt}$ goid, $5.3 \mathrm{~g} / \mathrm{mt}$ silver in Trench 3 . Mineralized zones appear continuous in the four trenches over a strike length of approximately 150 metres, and favorabie geology, alteration and gold-silver values in rock and soil occur along the Wrich fault trend for a combined strike length of 850 metres and remains open to the northwest and southeast.

Results of an induced polarization and resistivity survey revealed a well-defined chargeability and resistivity anomaly approximately 200 metres wide on line 0 (Appendix 3-2). Strong, pervasive silicification and vuggy chalcedony vein breccia are believed to be the main cause of the very strong resistivity anomaly and the fairly moderate chargeability response is most probably caused by minor amounts of metallic sulphides. On line 400 N (50 metres wide anomaly) and 800 N (100 metres wide anomaly), chargeability and resistivity anomalies occurs.

13.0 Recommendations

The Toodoggone Project contains several targets recommended for diamond drilling and several areas require further evaluation by geological, geophysical and geochemical methods.

13.1 Drilling

13.1.1 Porphyry gold-copper targets

Diamond drilling in the Pine gold-copper deposit is required to identify a higher-grade core, and with assistance of reverse circulation drilling, the grade, size and metallurgical characterization of a potential near-surface oxide/supergene zone shouid be investigated. There is potential for the Pine and Tree zones to be a part of the same large porphyry system, and several holes are recommended to determine this. As Cominco's last percussion hole did not reach bedrock in a favorable target area of the Fin zone, one hole is recommended in this area. A large area
underlain by favorable geophysical and geological setting underlies the Flats target, located southwest of the Pine deposit and two holes are recommended.

The presence of favorable geology, alteration, mineralization, and induced polarization and magnetic anomalies on the Mex prospect are of sufficient quality and quantity to recommend three holes. The North target, on the north side of the Finlay River, is an induced polarization and soil geochemical anomaly that represents a large porphyry or skarn copper-goid target, and two holes are recommended.

13.1.2 Epithermal gold-silver targets

The Wrich Hill prospect contains structure, geology, alteration, and mineralization consistent with an epithermal goldsilver deposit. It is recommended that a program of 6-10 diamond or reverse circulation drill holes is necessary to test a 100-150 metre wide zone of intense alteration (dickite, kaolinite, silica) with potentially economic grade gold-silver values. Deeper drilling is warranted to determine the presence of bonanza grade deposits. Additional drilling or trenching to the northwest, along the regional Wrich faull trend, or adjacent soil anomalies to the north and west and the Goat prospect further west is warranted.

13.1.3 Skarn copper-goid-silver targets

The VIP prospect contains several copper-gold-silver skarn zones returning significant values from surface showings, and trenches. Approximately 20-25 diamond drill holes and additional trenching directed to trace the favorable marble and skam horizon to the intrusive contact at depth and along strike is recommended. The source of a strong magnetic anomaly located between L30-34W near the baseline remains unknown.

13.2 Geophysical Surveys

Low-level airborne magnetic, VLF-Em, and radiometric survey of property is warranted. Geophysical Surveys (IP, and Magnetometer) are recommended in areas of extensive overburden cover on the proposed extensions of the Vip prospect grid (3,000 metres in a southwesterly direction) towards 343 creek and the Steel prospects.

Geophysical Surveys (IP and/or Resisitivity) are recommended at the Wrich Hill, Nub Mountain, JC prospects in areas of extensive overburden cover in order to further delineate the gold-silver rich siliceous zones along strike (northwest and southeast).

13.3 Geological, Geochemical Surveys

Continued geological mapping, alteration and petrography investigations, rock, soil and silt sampling and prospecting of the Toodoggone Project area, including Nub Mountain, and JC are recommended.

14.0 References

Allen, D.G. and MacQuarrie, D.R. 1984. Geological, Geophysical and Diamond Drilling Report on the Grace 1 to 5 Claims, $57^{\circ} 11^{\prime} \mathrm{N}, 127^{\circ} 52^{\prime}$ W, NTS 94E/2, Omineca Mining Division. Prepared for Asitka Resources Corp. Assessment Report \# 13057.

Arnold, R.R. and Collins, D.A. 1989. Assessment Report on the Eric Property, Finlay River Area, Omineca Mining Division, NTS 94E/2, $57^{\circ} 10^{\prime} \mathrm{N}, 126^{\circ} 42^{\prime} \mathrm{W}$. Prepared for Consolicated Petroquin Resources Ltd., Vancouver, B.C. Prepared by Hi-Tec Resource Management Ltd., Vancouver, B.C. Assessment Report \# 18920.

Blann, D.E. 1998. Geological Report 1997 Diamond Drilling Program on the Pine Property, Finlay River, Toodoggone, British Columbia, NTS 94E.017, 94E.027, $57^{\circ} 131^{\prime} \mathrm{N}, 127^{\circ} 42^{\prime} \mathrm{W}$, Omineca Mining Division. Prepared for Stealth Mining Corp., Edmonton, AB. Prepared by Standard Metals Exploration Ltd., Burnaby, B.C. Assessment Report \# 25517.

Blann, D.E. 1999a. Geological and Diamond Drilling Report on the Pine Prospect, Finlay River, Toodoggone, British Columbia, NTS 94E.017, $94 \mathrm{E} .027,57^{\circ} 131^{\prime} \mathrm{N}, 127^{\circ} 42^{\prime} \mathrm{W}$, Omineca Mining Division. Prepared for Stealth Mining Corp., Edmonton, AB. Prepared by Standard Metals Exploration Ltd., Burnaby, B.C. Assessment Report \# 25908.

Blann, D.E. 1999b. Ground Magnetometer Geophysical Survey on the Grace Prospect, Finlay River, Toodoggone, British Columbia, UTM $94 \mathrm{E} .016,57^{\circ} 07^{\prime} \mathrm{N}, 127^{\circ} 52^{\prime} \mathrm{W}$, Omineca Mining Division. Prepared for Stealth Mining Corp., Edmonton, AB. Prepared by Standard Metais Exploration Ltd., Burnaby, B.C. Assessment Report \# 25919.

Blann, D.E. 2000a. Assessment Report on the JC Property, Toodoggone River, British Columbia, NTS 94E/07W, UTM 94E036, 94E037, $57^{\circ} 21^{\prime} \mathrm{N}, 127^{\circ} 48^{\prime} \mathrm{W}$, Omineca Mining Division. Prepared for Stealth Mining Corp., Edmonton, AB. Prepared by Standard Metals Exploration Ltd., Burnaby, B.C. Assessment Report \# 26252.

Blann, D.E. 2000b. Diamond Drilling and Prospecting Report on the Pine Project, Finlay River, Toodoggone, British Columbia, NTS 94E.017, 94E.027, $57^{\circ} 131^{\prime} \mathrm{N}, 127^{\circ} 42^{\prime} \mathrm{W}$, Omineca Mining Division. Prepared for Stealth Mining Corp., Edmonton, AB. Prepared by Standard Metals Exploration Ltd., Burnaby, B.C. Assessment Report \# 26251.

Blann, D.E. 2001. Geological Assessment Report on the Pine Property, Finlay River, Toodoggone, British Columbia, NTS 94E.017, 94E.027, $57^{\circ} 131^{\prime} \mathrm{N}, 127^{\circ} 42^{\prime} \mathrm{W}$, Omineca Mining Division. Prepared for Stealth Mining Corp., Edmonton, AB. Prepared by Standard Metals Exploration Ltd., Burnaby, B.C. Assessment Report \# 26545.

Bowen, B.K. 1993. Assessment Report - 1992 Exploration Program, Pine Property, Omineca Mining Division, British Columbia, Canada. NTS $94 \mathrm{E} / 287,57^{\circ} 13^{\prime} \mathrm{N}, 126^{\circ} 42^{\prime} \mathrm{W}$. Prepared by Romulus Resources Ltd, Vancouver, B.C. Assessment Report \# 22873.

Burns, P.J. 1988a. Geologica//Geochemical Report on the Jok 1 to 6, Error 1 to 8, Grace 1 to 5, Concha 1 to 7, Skarn 1 to 4, Wrich 1 to 2 Claims, Omineca Mining Division, NTS 94E/2E, 2W, 7W, $57^{\circ} 07^{\prime}-57^{\circ} 15^{\prime} \mathrm{N}, 126^{\circ} 44^{\prime}$ $126^{\circ} 54^{\prime}$ W. Prepared for Skylark Resources Ltd., Vancouver, B.C. Assessment Report \# 17459.

Burns, P.J. 1988b. Geological/Geochemical Report on the Peak 1 and 2 Claims, Omineca Mining Division, NTS $94 E / 2 E, 2 W, 57^{\circ} 10^{\prime} \mathrm{N}, 126^{\circ} 44^{\prime} \mathrm{W}$. Prepared for Skylark Resources Ltd., Vancouver, B.C. Assessment Report \# 17454.

Caelles, J.C., Cooke, D.L. and Harden, G. 1978. Geological Mapping and Rock and Soil Geochemical Work on the Mex Property (Mex Claim; 12 units), Toodoggone River Area, Omineca Mining Division. Prepared by Cominco Ltd. Assessment Report \#6763.

Campbell, C. and Haynes, L. 1981. Pearson Option (Fin Claims) Diamond Drilling, Geophysics 1980, Omineca Mining Division, B.C., NTS 94 E 2. Assessment Report \# 8686.

Cooke, D.L. 1987. Assessment Report on the Reconnaissance Geology and Geochemistry of the Rod 1 Mineral Claim, Toodoggone River Area, Omineca Mining District, 94E/2W, $57^{\circ} 10^{\circ} \mathrm{N}, 126^{\circ} 45.5^{\prime}$ W. Prepared by D.L. Cooke \& Associates Ltd., Vancouver, B.C. Assessment Report \# 15548.

Cooke, D.L. and Richardson, J. 1969. Geological Report on the PIL Nos. 1-12 Claims, situated on Jock Creek in the Omineca Mining Division, $57^{\circ} 17^{\prime} \mathrm{N}, 126^{\circ} 48^{\prime} \mathrm{W}$. Prepared for Cominco Ltd. Assessment Report \#1888.

Corbett, G. 2002. Epithermal Goid For Explorationists, in The Australian Institude of Geoscientists
Crawford, S.A. and Vulimiri, M.R. 1981. Geological and Geochemical Report on the Nub Mtn. Claim Group (92 Units), Omineca Mining Division, NTS 94E/7E, 7W. Prepared for Serem Ltd. Assessment Report \# 9747.

Diakow, L.J. and Metcalfe, P. 1997. Geology of the Swannell Ranges in the Vicinity of the Kemess Copper Gold Porphyry Deposit, Attyceliey Creek (NTS 94E/2), Toodoggone River Map Area. British Columbia Geological Survey Branch. Geological Fieldwork 1996, Paper 1997-1, 101-115.

Diakow, L.J., Panteleyev, A., and Schroeter, T.G. 1993. Geology of the Early Jurassic Toodoggone Formation and Gold-Silver Deposits in the Toodoggone River Map Area, Northern British Columbia. B.C. Ministry of Energy Mines and Petroleum Resources, Bulletin 86, 72 pages.

Dunn, D. St. Clair and Wares, R. 1988. Evaluation of the Toodoggone Area Properties, Wolverine/Fisher Ciaims, Gacho/Suet Claims, Gord/Mul Claims, Eloise/Jeremy/Daniel Claims, Fine Claims, Barny Claims, Liard \& Omineca Mining Divisions, NTS 94E/2,3,6,7,11. Prepared for Toodoggone Gold inc., Vancouver, B.C. Prepared by Tecucomp Geological Inc. Assessment Report \# 18161.

Evans, B.T. 1987. Air Photography and Map Generation, Richy 1 Mineral Claim, NTS 94E/2W,570 ${ }^{\circ}$ 'N, $126^{\circ} 42^{\prime} \mathrm{W}$, Omineca Mining Division, B.C. Prepared for Golden Rule Resources Ltd., Calgary, AB. Assessment Report \# 15923.

Fox, M. 1982. Geological, Geochemical and Geophysical Report, Rich 1 Mineral Claim, $57^{\circ} 09^{\prime}$ N, $126^{\circ} 42^{\prime}$ W, NTS 92-E-2W, Omineca Mining Division, B.C. Prepared for Golden Rule Resources Ltd., Calgary, AB. Prepared by Taiga Consultants Ltd., Calgary, AB. Assessment Report \# 10344.

Goudie, M.A. and Hallof, P.G. 1971a. Report on the Induced Polarization and Resistivity Survey on the J.K. Claim Group, Toodoggone River Area, Omineca Mining Division, B.C. Prepared for Cordilleran Engineering Ltd. Prepared by McPhar Geophysics Ltd. Assessment Report \# 3265.

Goudie, M.A. and Mullan, A.W. 1971. Report on the Reconnaissance Induced Polarization and Resistivity Survey on the Pine No. 6 and 7 Groups, Thutade Lake Area, Omineca Mining Division, B.C. Prepared for Kennco Explorations (Western) Limited. Assessment Report \# 3266.

Harivel, C. 1992. Geochemical Assessment Report on the Easter Seal Mineral Claim and Environs, Pine Property, Finlay River Area, B.C., 94 E, $57^{\circ} 15^{\prime} \mathrm{N}, 126^{\circ} 40^{\prime}$ W, Omineca Mining District. Prepared for Dr. John Barakso. Assessment Report \# 22324.

Harris, J.F. 1987. Rock Geochemistry, Lithological Classification and Alteration Studies in Volcanic Rock from the Central Part of the Fin Property, Fin Claim Group, Omineca Mining Division, British Columbia. NTS 94E-2E, $57^{\circ} 12^{\prime} 30^{\prime \prime}$ N, $126^{\circ} 41^{\prime} 42^{\prime \prime}$ W. Prepared for B.D. Pearson. Prepared by Harris Exploration Services, North Vancouver, B.C. Assessment Report \# 16,502.

Haynes, L. 1980. Fin Claims (Pearson Option) Diamond Drilling, Omineca Mining Division, B.C., NTS 94 E 2. Assessment Report \# 8331.

Haynes, L. and Knight, D. 1980. Fin Claims (Pearson Option) Geology and Geochemistry, Omineca Mining Division, B.C., NTS 94 E 2. Assessment Report \# 7750.

Hermary, R.G. and Woods D.V. 1988a. Geophysical Report on an Airborn Magnetic and VLF-EM Survey, Eric and Dawn Claim, Omineca Mining Division, $57^{\circ} 12^{\prime} \mathrm{N}, 126^{\circ} 41^{\prime} \mathrm{W}$, NTS 94E/2E. Prepared for Canadian Venture Corp. Prepared by Western Geophysical Aero Data Ltd. Assessment Report \# 17595.

Hermary, R.G. and Woods D.V. 1988b. Geophysical Report on an Airborn Magnetic and VLF-EM Survey on the Peak, Au 1, Au 2, Swan 1 and Swan 2 Claims, Omineca Mining Division, $57^{\circ} 10^{\circ} \mathrm{N}, 126^{\circ} 42^{\prime} \mathrm{W}$, NTS 94E/2E and 94E/2W. Prepared for Canadian Venture Corp. Prepared by Westem Geophysical Aero Data Ltd. Assessment Report \# 17603.

Hodgson, C.J. 1974. Finlay River Property (VIP Claims). Prepared by AMAX Vancouver. Assessment Report \# 5144.
Klit, D.A. and Lloyd, J. 1992. A Geophysical Report on an induced Polarizaiton Survey on the Pine Property, Omineca Mining Division, British Columbia. Prepared for Romulus Resources Ltd., Vancouver, B.C. Prepared by Lloyd Geophysics Inc., Vancouver, B.C.

MacQuarrie, D.R. 1979. A Report on the Geology, Geophysics and Geochemistry of the Grace \#1-14 Claims, Omineca Mining Division, NTS 94E2W, $57^{\circ} 11^{\prime} \mathrm{N}, 126^{\circ} 52^{\prime} \mathrm{W}$. Assessment Report \# 7649.

MacQuarrie, D.R. 1980. Grace Claims Summary Report, Omineca Mining Division, NTS 94E2W, $57^{\circ} 11^{\prime} \mathrm{N}, 126^{\circ} 52^{\prime} \mathrm{W}$. Assessment Report \# 9494.

MacQuarrie, D.R. 1987. Geophysical and Geochemical Report on the Grace 1 to 5 Claims, Omineca Mining Division, B.C., $57^{\circ} 11^{\prime} \mathrm{N}, 126^{\circ} 52^{\prime}$ W, NTS 94E/2. Prepared for Asitka Resource Corp. Prepared by A\&M Exploration Ltd., Vancouver, B.C. Assessment Report \# 16307.

Ostensoe, E. 1997. Report of Geochemical Survey, Black 1-4, 5-10, 11, 12 Mineral Claims, Tenure No. 352922-25 inclusive, $352928-33$ inclusive, $352926,352927,57^{\circ} 14^{\prime} \mathrm{N}, 126^{\circ} 42^{\prime} \mathrm{W}$, NTS 94 E , Finlay River Area, Toodoggone District, Omineca Mining Division, British Columbia. Prepared for Stealth Mining Corp., Edmonton, AB. Assessment Report \#25268.

Pauwels, A.M. and Baris, J. 1992. Geological and Geochemical Surveys on the Mex Property. Prepared for Cominco Ltd. Assessment Report \# 22240.

Pearson, B.D. and St. John, R. 1989. Fin Claims, Soil and Stream Silt Geochemistry, Ominica Mining Division, North Central B.C., NTS 94E 2. Assessment Report \# 18954.

Pezzot, E.T. and Cukor, V. 1987. Geophysical Report on an Airborn VLF-Electromagnetometer and Magnetometer Survey, Fine $1-4$ Claims, Omineca Mining Division, $57^{\circ} 16.5^{\prime} \mathrm{N}, 126^{\circ} 43.5^{\prime} \mathrm{W}$, NTS $94 \mathrm{E} / 7 \mathrm{E}$. Prepared for Toodoggone Gold Inc. Prepared by Western Geophysical Aero Data Ltd. Assessment Report \# 15962.

Pezzot, E.T. and White, G.E. 1986. Geophysical Report on an Airborn VLF-Electromagnetometer and Magnetometer Survey, Grace 1-4 Claims, Omineca Mining Division, $57^{\circ} 09^{\prime} \mathrm{N}, 126^{\circ} 52^{\prime} \mathrm{W}$, NTS $94 \mathrm{E} / 2$. Prepared for Asitka Resource Corp. Prepared by Western Geophysical Aero Data Ltd. Assessment Report \# 15202.

Rebagliati, C.M. 1993. Pine Gold-Copper Porphyry Project, Summary Report on the 1993 Diamond Drilling Program, Omineca Mining Division, British Columbia, Canada, NTS 94E/2\&7, $57^{\circ} 13^{\prime} \mathrm{N}, 126^{\circ} 42^{\prime} \mathrm{W}$. Prepared for Romulus Resources Ltd. Prepared by Copeland Rebagliati \& Associates Ltd.

Rebagliati, C.M., Bowen, B.K. and Copeland, D.J. 1993. Pine Property Gold-Copper and Copper-Molybdenum Porphyry Prospects, Kemess-Toodoggone District, Northem British Columbia. Paper 29, CIM Special Volume 46, pp 436-440.

Reynolds, P. 1988. Diamond Drilling Report on the Grace Claim Group, Omineca Mining Division, Grace 5/5801, NTS $94 E / 2,57^{\circ} 10^{\prime} \mathrm{N}, 126^{\circ} 50^{\prime} \mathrm{W}$. Prepared for Skylark Resources Ltd., Vancouver, B.C. Assessment Report \#18313.

Reynolds, P. 1989. Percussion Drilling Report on the Grace Claim Group, Omineca Mining Division, Grace 5/5801, NTS 94E/2, $57^{\circ} 10^{\prime} \mathrm{N}, 126^{\circ} 50^{\prime}$ W. Prepared for Skylark Resources Ltd., Vancouver, B.C. Assessment Report \#18856.

Seywerd, J.H. 1990. Geological and Geochemical Report on the Fine I-IV Claims, Omineca Mining Division, $57^{\circ} 20^{\circ} \mathrm{N}$, $126^{\circ} 45^{\prime}$ W, NTS 94E/7. Prepared for Toodoggone Gold Inc. Prepared by White Geophysical Inc. Assessment Report \# 19998.

Sharp, R.J. 1981 Geochemical Report on the Mex Mineral Claim in the Finlay River Area, Omineca Mining Division, B.C., $57^{\circ} 12^{\prime} \mathrm{N}, 126^{\circ} 39^{\prime} \mathrm{W}$. Prepared by Cominco Ltd. Assessment Report \# 9384.

Sillitoe, R.H., 1993, Epithermal models: Genetic types, geometrical controls and shallow features, in Kirkham, R.V., Sinclair, W.D., Thorpe, R.I. and Duke, J.M., eds., Minerals Deposit Modeling: Geological Association of Canada, Special Paper 40, p. 403-417.

Smith, M. and Allen, D.G. 1986. Geological and Geochemical Report on the Grace 1 to 5 Claims, Omineca Mining Division, B.C., $57^{\circ} 11^{\prime} \mathrm{N}, 126^{\circ} 52^{\prime} \mathrm{W}$, NTS $94 \mathrm{E} / 2$. Prepared for Asitka Resource Corp. Prepared by A\&M Exploration Ltd., Vancouver, B.C. Assessment Report \# 15375.

Smith, P.K. and Mullan, A.W. 1973. Report on the Airborne Magnetic Survey, Pine Property, Thutade Lake Area, Omineca Mining Division, B.C. Prepared for Kennco Explorations (Westem) Limited. Assessment Report \# 4396.

Smith, S.W., Pauwels, A.M. and Wolfe, W.J. 1990. Assessment Report on Rock Sampling and Line Chaining on the Pinetree Property, Omineca Mining District, British Columbia. Prepared by Cominco Ltd. Assessment Report \# 20300.

Smith, S.W., Pauwels, A.M. and Wolfe, W.J. 1991a. Assessment Report on Road Building, Geophysics and Percussion Drilling on the Pinetree Property, Omineca Mining District, B.C. Prepared by Cominco Ltd. Assessment Report \# 21139.

Smith, S.W., Pauwels, A.M. and Wolfe, W.J. 1991b. 1990 Owners Report on the Pinetree Property. Prepared by Cominco Ltd.

Sterenberg, V.Z. 1996. Assessment Report - 1995 and 1996 Exploration, Pine Property, Omineca Mining Division, British Columbia, Canada, NTS $94 \mathrm{E}-287,57^{\circ} 13^{\prime} \mathrm{N}, 126^{\circ} 42^{\prime} \mathrm{W}$. Prepared for Electrum Resources Inc., Vancouver, B.C. Assessment Report\# 24641

Stevenson, R.W. 1969a. Geological and Geochemical Surveys, Pine No. 1, 2, 3 Groups (Pine Mineral Claims 1 to 98 and 129 to 134), Situated 13 miles northeast of Thutade Lake, Omineca Mining Division, British Columbia, 57° 126° SW. Prepared for Kennco Explorations, (Western) Limited. Assessment Report \# 1846.

Stevenson, R.W. 1969b. Soil Geochemical Survey, Pine No. 2 Group (Pine Mineral Claims 37-45, 47, 49, 56, 58-72, 129-134), Situated 13 miles northeast of Thutade Lake, Omineca Mining Division, British Columbia, $57^{\circ} 126^{\circ}$ SW. Prepared for Kennco Explorations, (Western) Limited. Assessment Report \# 1886.

Stevenson, R.W. 1969c. Soil Geochemical Survey, Pine No. 3 Group (Pine Mineral Claims 15-18, 46, 48, 50-55, 57, $73-98,144$ Fr.), Situated 13 miles northeast of Thutade Lake, Omineca Mining Division, British Columbia, 57° 126° SW. Prepared for Kennco Explorations, (Western) Limited. Assessment Report \# 1983.

Stevenson, R.W. 1969d. Soil Geochemical Survey, Pine No. 4 Group (Pine Mineral Claims 99-128), Situated 14 miles northeast of Thutade Lake, Omineca Mining Division, British Columbia, $57^{\circ} 126^{\circ}$ SW. Prepared for Kennco Explorations, (Western) Limited. Assessment Report \# 2035.

Stevenson, R.W. 1970a. Geological and Geochemical Surveys, Pine No. 1, 2, 3 Groups (Pine Mineral Claims 1 to 98, 129 to 142 Fr.), Situated 13 miles northeast of Thutade Lake, Omineca Mining Division, British Columbia, 57° 126° SW. Prepared for Kennco Explorations, (Western) Limited. Assessment Report \# 2326.

Stevenson, R.W. 1970b. Geological Survey, Pine No. 5 Group (Pine Mineral Claims 18, 39, 41, 43, 44, 46, 48, 65, 67, $69,71,74,76-79,81,83,143 \mathrm{Fr} ., 144 \mathrm{Fr}$.), Situated 13 miles northeast of Thutade Lake, Omineca Mining Division, British Columbia, $57^{\circ} 126^{\circ}$ SW. Prepared for Kennco Explorations, (Western) Limited. Assessment Report \# 2380.

Stevenson, R.W. 1971a. Report on Magnetometer Survey, Pine No. 6 \& 7 Groups (Pine Mineral Claims 13-18, 31-46, $65,67-80,85-88,90,93,95,129,131,135 \mathrm{Fr} .-142 \mathrm{Fr}$.), Situated 13 miles northeast of Thutade Lake, Omineca Mining Division, British Columbia, $57^{\circ} 13^{\prime} \mathrm{N}, 126^{\circ} 43^{\prime} \mathrm{W}, 94 \mathrm{E} / 2 \mathrm{E}$. Prepared for Kennco Explorations, (Western) Limited. Assessment Report \# 3120.

Stevenson, R.W. 1971b. Report on Soil Geochemical and Magnetometer Surveys, Pine No. 6\&7 Groups (Pine Mineral Claims $13-18,31-46,65,67-79,85-88,90,93,95,129,131,135$ Fr.-142 Fr. 80), Situated 13 miles northeast of Thutade Lake, Omineca Mining Division, British Columbia, $57^{\circ} 13^{\prime} \mathrm{N}, 126^{\circ} 43^{\prime} \mathrm{W}, 94 \mathrm{E} / 2 \mathrm{E}$. Prepared for Kennco Explorations, (Western) Limited. Assessment Report \# 3031.

Tegart, P.F., Plecash, D.C., Reid, R.E. and Illerbrun, KL. 1987. Diamond Drilling Report on the Wrich 1, 2 and 3 claims, Toodoggone River Area, Omenica Mining Division, B.C., $94 \mathrm{E} 2,57^{\circ} 08^{\prime} \mathrm{N}, 126^{\circ} 45^{\prime} \mathrm{W}$. Prepared for Cheni Gold Mines Inc. Assessment Report \# 16470.

Ulich, Thomas; Detlef, Gunther; Heinrich, Christof, 2001. The Evolution of a Porphyry Cu-Au Deposit, Based on LA-ICP-MS Analysis of Fluid Inclusions: Bajo de la Alumbrara, Argentina. Economic Geology Volume 96, pp 1743 1774.

Vulimiri, M.R. and Crawford S.A. 1982. Geological and Geochemical Report on the Wrich 1,2 and 3 Claims (32 Units), Omineca Mining Division. Prepared for Serem Ltd., Vancouver, B.C. Assessment Report \# 10705.

Vulimiri, M.R. and Crooker, G. 1985. Geological and Geophysical Report on the Wrich 1,2 and 3 Claims, Toodoggone River Area, Omineca Mining Division, 94E-2E,W $57^{\circ} 08^{\prime} \mathrm{N}, 126^{\circ} 45^{\prime} \mathrm{W}$. Prepared for Serem Ltd., Vancouver, B.C. Assessment Report \# 14069.

Wesa, G.L. 1988. Diamond Drilling Report on the Wrich Group (Wrich 1), Record No. 4249, Omineca Mining Division, British Columbia, NTS 94E/2W, $57^{\circ} 09^{\prime} \mathrm{N}, 126^{\circ} 46^{\prime}$ W. Prepared for Skylark Resources Ltd. Assessment Report \# 18098.

Wesa, G.L. 1989. Geochemical Report on the Ricky Claim Group, Omineca Mining Division, Wrich 2 (4250), 3 (4327) and 3 (9308), NTS 94E/2, $57^{\circ} 10^{\circ} \mathrm{N}, 126^{\circ} 50^{\prime} \mathrm{W}$. Prepared for Skylark Resources Ltd. Assessment Report \# 18396.

Wilson, G.L. 1984. Geological and Geophysical Report, Rich 1 Mineral Claim, , $57^{\circ} 00^{\circ} \mathrm{N}, 126^{\circ} 42^{\prime}$ W, NTS $94 E / 2$ W, Omineca Mining Division, B.C. Prepared for Golden Rule Resources Ltd., Calgary, AB. Prepared by Taiga Consultants Ltd., Calgary, AB.

Woodcock, J.R. and Gorc, D. 1982. Geology and Geochemistry on Fin Claims, Omineca Mining Division (94E-2). Prepared for Brinco Mining Ltd. Prepared by J.R. Woodcock Consultants Ltd., Vancouver, B.C. Assessment Report\# 11032.

15.0 Certificates of Qualified Persons

CERTIFICATE OF QUALIFIED PERSON

I, Brian T. Malahoff, in the Province of British Columbia do hereby certify that:
I am a Consulting Geologist with a business office at 313-3411 Springfield Drive, Richmond, BC, V7E 1 Z1. Telephone (604-277-7514) and E-mail (btm@zoolink.com).

I am a graduate in Geological Sciences from the University of British Columbia (B.Sc., 1985).
I have practiced my profession since 1985 and I am a "qualified person" under the regulations of National Instrument 43-101.

I am a registered member in good standing of the Association of Professional Engineers and Geoscientists of the Province of British Columbia (No. 19165).

I have worked on the Toodoggone Project property between July 24 and September 30, 2002 and worked as a Consulting Professional Geologist.

I am not aware of any material fact or material change with respect to the subject matter of the technical report.

I am responsible for geology related sections of the technical report.
I hold no interest in any securities or mineral claim holdings of Stealth Minerals Limited at this time.
This report may be used by Stealth Minerals Limited for any prospectus, release or statement of material fact or offering memorandum related to the Toodoggone Project Property, provided that no excerpts are used out of context with the whole.

DATED in Vancouver, British Columbia, this $23^{\text {rd }}$ day of May 2003.

CERTIFICATE OF QUALIFIED PERSON

I, David E. Blann, of Squamish, British Columbia, do hereby certify:
That I am a Professional Engineer registered in the Province of British Columbia.
That I am a graduate in Geological Engineering from the Montana College of Mineral Science and Technology (School of Mines), Butte, Montana (1987).

That I am a graduate in Mining Engineering Technology from the B.C. Institute of Technology (1984).
That I have been actively engaged in the mining and mineral exploration industry since 1984.
That the 2002 exploration program was directed and performed under my supervision, and information, conclusions and recommendations herein are based on approximately thirty weeks on the property between 1997and 2002, and review of information in public records.

Dated in Squamish, B.C., May 23, 2003

David E. Blann, P.Eng.

16.0 Statement of Work

WAGES	DAYS	\$/DAY		
Bill McWiliam, Consultant per Stealth Minerals				\$71,000.00
Dr. Ken Dawson, PhD, P.Geo. Consuttant, per Steath Minerals				\$7,808.00
D. Blann, Professional Geological Engineer	160	\$600.00		\$96,000.00
B. Malahoff, Professional Geologist	104	\$500.00		\$50,500.00
E. Mackenzie, Prospector	55	\$300.00		\$16,500.00
D. Ridley, Prospector	7	\$300.00		\$2,100.00
G. Chadillon, Field Assistant	62	\$250.00		\$15,500.00
Field Support personell and subcontractors	436	\$125.00		\$54,500.00
			Subtotal	\$313,908.00
DISBURSEMENTS				
Rio Minerals Ltd. V1P grid, claim locations, rock, silt sampling @ 80\%				\$15,533.54
CJL Enterprises Linecutiong				\$17,755.17
Lepka Holdings. Heavy Equipment-Excavator				\$17,972.00
Lloyd Geophysics Inc. Geophysical Survey				\$54,242.61
Canadian Helicopters				\$100,433.88
Aircraft charters				\$5,357.27
Geochemical/Assay Laboratory Services				\$17,601.28
PetraScience Consultants Inc- PIMA+ Petrographic Study				\$3,960.00
Drafting, Maps and Reproductions				\$7,912.82
				\$15,740.76
Field Communications				\$5,342.55
Shipping/Bus				\$1,541.82
			Subtotal:	\$263,393.70
			10\% on Disbursements:	\$26,339.37
			Subtotal:	\$289,733.07
			Wages and Disbursements:	\$603,641.07
			5\% Management Fee:	\$30,182.05
			Subtotal:	\$633,823.12
			GST @7\%	\$44,367.62
Respectfully Submitted			Total:	\$678,190.74

DISBURSEMENTS

Rio Minerals Ltd. VIP grid,claim locations, rock, silt sampling @ 80\%
CJL Enterprises Linecuting
$\$ 1797200$
Lloyd Geophysics Inc. Geophysical Survey
Canadian Helicopters
\$100,433.88
Aircraft charters
\$5,357.27
Geochemical/Assay Laboratory Services \$3,960.00
PetraScience Consultants Inc- PIMA + Petrographic Study \$7,912.82
Dratting, Maps and Reproductions $\$ 15,740.76$
Field Communications
Shipping/Bus
10\% on Disbursements: \$26,339.37

Wages and Disbursements: $\$ 603,641.07$
5\% Management Fee: $\$ 30,182.05$
Subtotal: $\quad \$ 633,823.12$
$\begin{array}{cr}\text { GST @7\% } & \$ 44,367.62 \\ \text { Total: } & \$ 678,190.74\end{array}$

David E. Blann, P.Eng.

17.0 Proposed Budget

Perform airborne magnetic, radiometric and VLF-EM survey
Estimated Cost \$(can) Prospecting, trench, rock, soil silt sampling, geological mapping and alteration studies of 51 prospects
\$800,000
MachineRoad/trail construction, trenching, reclamation
\$100,000
Diamond Drilling all-in

Target	\# Holes	Length(m)	Total(m)
Pine	4	300	1200
Tree	2	200	400
Fin	2	150	300
Flats	2	200	400
Mex	3	200	600
North	2	150	300
Wrich-Goat	15	200	300
Electum	4	150	600
VIP	20	150	3000
		Total->	9,800

$\$ 1,900,000$

Table 1 - Claim Status

Name	Tenure \#	Units	Staking Date mm/dd/yy	Expiry Date yy/mm/dd	Registered Owner
Fin 3	238305	1	80/07/31	2008MAR31	107591
Fin 11	240089	20	88/08/18	2006MAR31	107591
Fin 12	240090	20	88/08/18	2007MAR31	107591
Fin 14	240091	20	88/08/48	2007MAR31	107591
Fin 16	240092	6	88/08/18	2007MAR31	107591
Fin 17	240093	8	88/08/18	2006MAR31	107591
Fin 18	240094	12	88/08/18	2006MAR31	107591
Fin 19	240095	6	88/08/18	2007MAR31	107591
Fin 20	241595	20	90/02/13	2006MAR31	107591
Fin 21	241596	16	90/02/13	2006MAR31	107591
Easter 1	241918	16	90/04/16	2006MAR31	107591
Easter 2	241919	12	90/04/16	2006MAR31	107591
Easter 3	241920	20	90/04/16	2006MAR31	107591
Easter 4	241921	20	90/04/17	2006MAR31	107591
Paula	300641	20	91/06/08	2006MAR31	107591
Easter Seal	303156	20	91/08/08	2006MAR31	107591
Fin 21	308119	20	92/03/14	2006MAR31	107591
Fin 22	308120	20	92/03/14	2006MAR31	107591
Fin 23	308121	20	92/03/14	2006MAR31	107591
Fin 24	308122	20	92/03/14	2006MAR31	107591
Fin 25	308123	20	92/03/14	2006MAR31	107591
Fin 26	308124	20	92/03/14	2006MAR31	107591
Song 3	310038	1	92/05/31	2007MAR31	107591
Song 4	310039	1	92/05/31	2007MAR31	107591
Song 5	310040	1	92/05/31	2007MAR31	107591
Song 6	310041	1	92/05/31	2007MAR31	107591
Song 7	310042	1	92/05/31	2007MAR31	107591
Song 8	310043	1	92/05/31	2007MAR31	107591
Song 9	310044	1	92/05/31	2007MAR31	107591
Song 10	310045	1	92/05/31	2007MAR31	107591
LY 2	310060	1	92/05/30	2007MAR31	107591
LY 3	310061	1	92/05/30	2007MAR31	107591
LY 4	310062	1	92/05/30	2007MAR31	107591
Song 2	310064	20	92/05/30	2006MAR31	107591
Egg 1	310065	15	92/05/29	2006MAR31	107591
Egg 2	310066	15	92/05/29	2006MAR31	107591
Song 1	310079	20	92/05/29	2006MAR31	107591
LY 5	310080	1	92/05/30	2006MAR31	107591
LY 1	310081	20	92/05/30	2006MAR31	107591
Kath 2	319656	20	93/07/19	2006MAR31	107591
Kath 4	319658	15	93/07/20	2006MAR31	107591
Kath 6	319661	1	93/07/19	2007MAR31	107591
Kath 7	319662	1	93/07/19	2007MAR31	107591
Kath 8	319663	1	93/07/19	2007MAR31	107591
Kath 9	319666	1	93/07/20	2007MAR31	107591

Name	Tenure \#	Units	staking Date mm/dd/yy	Expiry Date yy/mm/dd	Registered Owner
JC 13	395987	18	$08 / 09 / 02$	2006MAR31	107591
JC 14	395988	20	$08 / 08 / 02$	2006MAR31	107591
JC 15	395989	20	$08 / 08 / 02$	2006MAR31	107591
Sky 4	395990	20	$8 / 12 / 02$	2006MAR31	107591
Sky 5	395991	20	$8 / 12 / 02$	2006MAR31	107591
TAX 5	396811	1	$09 / 29 / 02$	2006MAR31	107591
TAX 6	396812	1	$09 / 29 / 02$	2006MAR31	107591
TAX 7	396813	1	$09 / 29 / 02$	2006MAR31	107591
TAX 8	396814	1	$09 / 29 / 02$	2006MAR31	107591
ELE 7	396815	1	$09 / 26 / 02$	2006MAR31	107591
ELE 8	396816	1	$09 / 26 / 02$	2006MAR31	107591
ELE 9	396817	1	$09 / 28 / 02$	2006MAR31	107591
ELE 10	396818	1	$09 / 28 / 02$	2006MAR31	107591
ELE 1	396854	1	$09 / 26 / 02$	2006MAR31	107591
ELE 2	396855	1	$09 / 26 / 02$	2006MAR31	107591
ELE 3	396856	1	$09 / 26 / 02$	2006MAR31	107591
ELE 4	396857	1	$09 / 26 / 02$	2006MAR31	107591
ELE 5	396858	1	$09 / 26 / 02$	2006MAR31	107591
ELE 6	396859	1	$09 / 26 / 02$	2006MAR31	107591

Table 2 - Geological Abbreviations

arsen Sulphides arsenopyrite A/Ad		
bar	barite	Apd
bo	bomite	Aupd
cc	chalcocite	B
cp	chalcopyrite	Bes
gl	galena	Bgs/Gbs
Na	native copper	Bs/Qbs
po	pyrthotite	Cfp
py	pyrite	Da/Dap
pyr	pyrargyrite	Dact/ T or tf
sp	sphalerite	Dalt/ T or tf
tet	tetrahedrite	Dat/T ort
Oxides		Fp/Fxt
az	azurite	Gb
FeOx	iron oxides	Gd
goe	goethite	Gr
goss	gossanous	Hnf
hem/spec	hematite, specularite	Ld
hyzn	hydrozincite	M
jar	jarosite	Ms/Qms
lim	limonite	Msist/Mseds
mag	magnetite, magnetic	Mvol
mal	malachite	Mz
Alteration		Mzd
adarg/pyrh	advanced argillic/pyrophyllite	Pbxd
alb	albite (sodic/calcic)	Peg
arg	argillic (clay)	Px
bi	biotite	Qbflp
ca/carb	calcite/carbonate	Qep
calskam	calcic skarn (ga/clinopyroxene/wo)	Qfp
chl	chlorite	Qmz
ep	epidote	Qtzite/Qzit
Interarg	intermediate argillic-ser/ch/clay	Rhy
k-feld	k-feldspar (orthoclase/microcline)	Skn
phy	phyllic-sericite (muscovite-illite)	Slst/Sed/Sch
pot	potassic-biotite/k-feldspar	Textures
propy	propylitic-chl,ep,alb,ca	bld
pyroph	pyrophyllite	bx
qtz/Q	quartz (silicification)	bxw
retskarn	retrograde skarn-ca, chl (hem)	cks
ser/s	sericitic, sericite	drus
sil	silicic-qza, chalcedony, siliceous	$f b$
skarn 1	ga-ep-diop-mag	grbl
skam 2	act-ep-ga-mag	het
skam 3	diop-ga-ep	lbx
skam 4	act-ga-ep	p
skarn 5	hem (specularite) -mag-act	try
skam6	gamet (ga)-(brown)	vug
skam 7	ga-ep	x
Metals		Qualifiers
Ag	Silver	C/A

Rock Names

Andesite/ Andesitic dike
Aplite dike
Augite porphyry dike Basalt
Biotite chlorite schist Bio-ga schist, ga-bio schist Biotite schist/Quartz-Bs Crowded feldspar porphyry
Dacite, Dacite porphyry
Dacite crystal tuffl/ Tuff
Dacite lithic tuff/ Tuff
Dacite tuff/ Tuff
Feldspar porphyryffeld-xT
Gabbro
Granodiorite
Granite
Hornfels
Lamprophyric dike
Marble
Muscovite schist/quartz-Ms
Metasiltstone/metasediments
Mafic volcanic
Monzonite
Monzodiorite
Pebble breccia dike
Pegmatite
Pyroxenite
Qtz/bioffeld/hbld porphyry
Qtz eye porphyry -feld/hbld
Quartz feldspar porphyry
Quartz monzonite
Quartzite
Rhyolite
Skarn
Siltstone, sediment, schist
bladed
breccia
boxwork
cockscombe
drusy
flowbanded
granoblastic
heterolithic
intrusive breccia
porphyry, porphyritic
trachytic
vuggy-open space fill
crystal/crystals
core axis

	Sulphides		Rock Names
As	Arsenic	cg	coarse grained
Au	Gold	chip/ N/S	chip sample/ no sample
Ba	Barium	diss	disseminated, disseminations
Bi	Bismuth	fg	fine grained
Cd	Cadmium	fit	float sample- over no interval
Cu	Copper	f	friable
Mo	Molybdenum	frag	fragment
Pd	Lead	fs	fresh surface
Sb	Antimony	gdms	groundmass
Zn	Zinc	grab	grab sample -over no interval
Rock Minerals		iri	iridescence
act	actinolite	le	leached
amp	amphibole	mg	medium grained
aug	augite	mic	micaceous, mica
bio	biotite	mod/modly	moderate, moderately
c	clay	msv	massive
chid	chalcedony	O/C	outcrop
diop	diopside	per	pervasive
feld	feldspar	qf	quartz flooded
ga	garnet	replac	replacement
gyp	gypsum	sal	salvage
hbld/Hp	hornblende/hornblende porphyry	str/strly	strong, strongly
mst	manganese stain	sub	subcrop
mus	muscovite	tr	trace
orth	orthoclase	wk/wkly	weak, weakly
plag	plagioclase	ws	weathered surface
pyx	pyroxene	Colors	
qtz/Q	quartz	bl	blue
trem	tremolite	blk	black
wohwoll	woliastonite	bm	brown
zeo	zeolite	grn	green
Structures		gry	grey
bd	bedding	or	orange
fit/shr	faultshear	wh	white
fltg	fault gouge	Analytical	
fol	foliation	A.A.	Atomic Absorption
fp	fault plane	F.A.	Fire Assay
frac/fracs/fracd	fracture/fractures/fractured	g / gm	grams
lin	lineament	g/t	grams per tonne/ 1000 kg
pit	pitch of slickensides	ICP	Induced Couple Plasma
plg	plunge of slickensides	IP(Geophysics)	Induced Polarization
sh	sheeted veinlets	m	metre
slick	slickensides	mt	1 metric tonne/1000 kg
strg/strgs	stringer/stringers	Oz't	ounces per ton/ 2000 lbs
stwk	stockwork veinlets	ppb	parts per billion
vn/vns	vein/veins	ppm	parts per million
vni/vnis	veinlet/veinlets	UTM	Universal Transverse Mercator

Table 3 - VIP Trench Summary

$\begin{aligned} & \mathrm{MP} \\ & \text { Zone } \end{aligned}$	\#	Length m	From	$\begin{aligned} & \text { To } \\ & \mathrm{m} \\ & \hline \end{aligned}$	Width m	$\begin{aligned} & \text { CU } \\ & \% \end{aligned}$	AG gm/mt	Au gm/mt
West_L32+10W	1	48	0	6	6	0.10	2.60	0.83
West_L32+10W	1		18	36	18	0.33	13.36	3.19
West_L32+50W	2	54	0	15	15	0.24	10.92	1.53
West L $32+50 \mathrm{~W}$	2		24	48	24	0.22	22.75	2.77
	2	includes	36	42	6	0.72	6.56	9.40
West_L34W	3	234	114	129	15	0.14	0.27	0.39
West_L34W	3		183	204	21	0.47	12.10	0.96
	3	includes	183	189	6	0.83	23.35	1.87
WestL34W	3 a	at $18 \mathrm{~m}, 10 \mathrm{mN}$	$\rightarrow \mathrm{NE}$		5.1	1.13	44.42	2.79
SouthWestL35W	4	14	0	14	14	0.27	8.51	0.01
North_ L22W	5	25	12	15	3	0.09	0.3	0.01
North_L24W	6	63	9	15	6	1.16	52.00	3.61
North_L26W	7	87	63	66	3	0.28	<. 3	0.03
East_L17W	8	50.0	0.0	50.0	50.0	no samples taken		
EastLL17+25W	9	21.0	3.0	6.0	3.0	0.36	5.50	0.20
East_L17+70W	10	33.0	12.0	18.0	6.0	0.50	11.65	0.01
East_L18W	11	87.0	15.0	27.0	12.0	0.38	12.23	0.41
East_L18W	11	at $16.5 \mathrm{~mm} \rightarrow \mathrm{NE}$			3.1	0.59	15.70	1.14
EastL18+45W	12	15	0.0	3.0	3.0	0.45	7.70	0.06
EastL18+75W	13	18	0.0	3.0	3.0	0.12	1.5	0.04
EastL19W	14	50	0.0	25.0	25.0	no samples taken		
East_L19W	14		25.0	50.0	25.0	no samples taken		
EastL19+75W	15	57	12.0	18.0	6.0	0.94	2.78	0.66
EastL19+75W	15		24.0	27.0	3.0	1.27	20.30	0.90
EastL19+75W	15		36.0	42.0	6.0	1.41	32.60	5.81
EastL19+75W	15	at 45 m	high-grade grabNE		1.3	9.67	45.10	5.46
EastL20+25W	16	67	0.0	3.0	3.0	0.03	0.3	0.01
EastL20+25W	16		65.0	66.0	1.0	0.18	6.1	0.03
East L22W	17	21	3.0	9.0	6.0	0.03	<. 3	0.01

[^0]
Table 4 - Wrich Trench Summary

\square		From (m)	To (m)	Width (m)	$\begin{gathered} \mathrm{Ag} \\ (\mathrm{~g} / \mathrm{t}) \end{gathered}$	Au (g / t)
\square	Trench 1	0.0	10.0	10.0	7.3	0.05
	Trench 1	10.0	38.0	28.0	10.8	0.26
	Trench 1	38.0	54.0	16.0	11.2	0.04
$[$	Trench 1	54.0	88.0	34.0	7.0	1.87
	Trench 1	88.0	100.0	12.0	9.1	0.04
	Total	0.0	100.0	100.0	9.0	0.72
$[$	Trench 2	0.0	4.0	4.0	0.8	0.03
	Trench 2	4.0	16.0	12.0	5.5	0.23
$[$	Trench 2	16.0	36.0	20.0	3.6	0.07
	Trench 2	36.0	58.0	22.0	21.4	0.70
	Trench 2	58.0	74.0	16.0	14.7	0.08
$[1$	Trench 2	74.0	76.0	2.0	13.2	17.33
	Trench 2	76.0	82.0	6.0	7.8	0.78
	Trench 2	82.0	120.0	38.0	10.9	1.51
\square	Trench 2	120.0	132.0	12.0	7.6	0.46
ω	Total	4.0	132.0	128.0	11.1	0.96
U	Trench 3	0.0	30.0	30.0	7.6	0.08
	Trench 3	30.0	38.0	8.0	6.6	0.38
	Trench 3	38.0	58.0	20.0	10.6	1.28
$\left[\begin{array}{l} 1 \\ 1 \end{array}\right.$	Trench 3	58.0	68.0	10.0	4.3	0.23
	Trench 3	68.0	100.0	32.0	6.1	0.88
	Trench 3	100.0	118.0	18.0	4.2	0.10
5	Total	30.0	118.0	88.0	6.6	0.69
	Trench 4	0.0	10.0	10.0	3.0	0.02
[Trench 4	10.0	18.0	8.0	7.7	0.15
	Trench 4	18.0	55.0	37.0	3.1	0.02
	Trench 4	55.0	78.0	23.0	18.0	0.41
	Total	10.0	78.0	68.0	8.7	0.16

APPENDIX 2 - FIGURES

Figures 1, 2, 3, 4 enclosed
Figures 4a, 5-12 in pocket

APPENDIX 3.1- GEOPHYSICAL REPORTS

See Lloyd Geophysics Inc 2002, separate reports:
Induced Polarization and Magnetic Survey of the VIP Prospect Induced Polarization and Magnetic Survey of the MEX Prospect Induced Polarization Survey of the Wrich Prospect

APPENDIX 3.2 - PIMA SHORT WAVE INFRARED REPORT

PIMA Short-wave Infrared Analysis: Wrich Property, Toodoggone, B.C.

6 January 2003

Prepared for: David Blann

Stealth Minerals

PetraScience Consultants Inc.
700-700 West Pender St.
Vancouver, B.C. V6C 1G8 Canada
Phone: 604.684.5857
info@petrascience.com www.petrascience.com

Summary

David Blann submitted a set of 18 rock samples from the Wrich Property, Toodoggone, B.c. for short-wave infrared spectral analysis on November 7, 2002. The samples represent an area of epithermal-style alteration. A sketch map of the property was provided with the samples (see Figure 1). The goal of the work was to determine the SWIR-active mineralogy. The table of results was retumed by e-mail on December 6, 2002. This final report includes a summary and examples of the spectra.

Kim Heberlein, P.Geo. (Maple Ridge, B.C.) and Anne Thompson, P.Geo. carried out the analysis using a PIMA-H spectrometer. The SWIR-responsive mineralogy is dominated by kaolinite, dickite, smectite, and silica. Minor illite was also noted, and diaspore may be present in some samples. The results for analyses of each sample are shown below.

Figure 1. Sketch map of sample locations provided by David Blann, Stealth Minerals.

Table of Results

Sample	Spectrum	Au gh	Agg gt	Minerals	Comment
02-BM-049	439R001A	49.80	81.9	Dickite, silica	White soft vein
	439R001B			Kaolinite, dickite, silica	Limonitic leached quartzy m.intr./white speckied
02-DB-012	439R002A	0.46	8.6	Silica, weak ?kaolinite	Offwhite/limonitic leached quartzy m.intr./sus
	439R002B			Silica, weak ?kaolinite	Offwhite/limonitic leached quartzy m.intr./sus
02-DB-045	439R003A	10.04	15.9	Dickite, silica, weak diaspore?	White/orange/brown quartzy limonitic bx
	439R003B			Dickite, silica, weak diaspore?	White/orange/brown quartzy limonitic bx
02-DB-160	439R004A	NS		Smectite, kaolinite	Greygreen/white speckled m.int, limonitic stained
	439R004B			Smectite, kaolinite	Greygreenwhite speckled m.int, limonitic stained
02-DB-161	439R005A	NS		Smectite, kaolinite	Lt. green/white speckled ppy
	439R005B			Smectite, kaolinite	Lt. green/white speckled ppy
T2-DE-102	439R006A	1.02	19.3	Silica, probable dickite, kaolinite	Grey/brown cherty/qzt bx
	439R006B			Silica, probable dickite, kaolinite, ??zunyite	Grey/brown cherty/qzt bx
T2-DB-112a	439R007A	0.88	11.4	Dickite, silica, probable diaspore	Brown/white limonitic/qzy bx?
	439R007B			Silica, dickite, possible diaspore	Brow//white limonitic/qzy bx?
T4-DB-037	439R008A	0.42	11.0	Silica, dickite, ?other	Cse gybrown Xn /white powdery altn
	439R008B			Silica, dickite, ?other	Cse gybrown xin/white powdery altn
W-T1-031m	439R009A	2.46	16.8	Dickite, possible kaolinite	Grey fg silicd/white speckled/abundant sus. Noisy spectra
	439R009B			Dickite, ? ill lite	Fracture
W-T1-047m	439R010A	1.29	11.9	Dickite, kaolinite, silica	Brown limonitic stained/white speckled/bxd ppy? Leached.
	439R010B			Dickite, kaolinite, silica	Brown limonitic stained/white speckled/bxd ppy? Leached.
W-T1-055m	439R011A	2.08	5.5	Kaolinite, dickite, silica	Brown/grey white specked, limonitic washed ppyitic
	439R011B			Kaolinite, dickite, silica	Brown/grey white specked, limonitic washed ppyitic
W-T1-058m	439R012A	2.41	3.4	Dickite, kaolinite, silica	Grey/brown/white, strong lim/hem. Stained bxd ppyitic
	439R012B			Kaolinite, dickite, silica	Grey/brown/white, strong lim/hem. Stained bxd ppyitic
	439R012A			Dickite, probable kaolinite, silica, illite?	White fracture
W-T1-063m	439R013A	10.82	7.3	Dickite, kaolinite, silica	White/hem/limonitc mottled, strong altr/qzy
	439R013A			Dickite, kaolinite, silica	White/hem/imonitc mottled, strong altn/qzy
W-T1-070m	439R014A	0.18	4.7	Kaolinite, dickite, silica	Strong white pervasive attn
	439R014B			Dickite, silica	Bx'd area with hem. Fragment
W-T1-150m	439R015A	0.02	0.6	Dickite, possible ilfite	White/yellow pervasive soft altn
	439R015B			Dickite, silica,	White/yellow pervasive soft altn
W-T2-010m	439R016A	4.20	0.1	Kaolinite, possible dickite	Lt. grey/white speckled soft attn
	439R016B			Kaolinite, silica?, possible dickite	Lt. grey/white speckled soft altn
W-T2-075m	439R017A	17.33	13.2	Dickite, silica, possible kaolinite	Lt. grey, f.g. silic./strong pervasive lim/hem./sus
	439R017B			Silica, dickite, possible ilite?	Lt. grey, f.g. silic./strong pervasive lim/hem./sus
W-T2-109m	439R018A	2.62	17.3	Dickite, silica	Grey/brown strong lim. Bx, silic/white powdery patches
	439R018B			Silica,dickite	Grey/brown strong lim. Bx, silic/white powdery patches

PIMA: Wrich, Toodoggone, B.C.
Kim Heberlein, P.Geo. and Anne J.B. Thompson, P.Geo.

Method

SWIR Analysis

Short-wave infrared spectroscopy detects the energy generated by vibrations within molecular bonds. These bonds have bending and stretching modes within the 1300 to 2500 nm region of the electromagnetic spectrum. The observed absorption features are manifestations of first and second overtones and combination tones of fundamental modes that occur in the mid-infrared region. SWIR is particularly sensitive to certain molecules and radicals, inciuding, $\mathrm{OH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{4}, \mathrm{CO}_{3}$, and cation- OH bonds such as $\mathrm{Al}-\mathrm{OH}, \mathrm{Mg}-\mathrm{OH}$ and $\mathrm{Fe}-\mathrm{OH}$. The positions of the features in the spectrum and their characteristic shapes are a function of the molecular bonds present in the mineral. Variations in chemical composition may be detected as the wavelength positions of features shift consistently with elemental substitution. SWIR spectroscopy is partly sensitive to crystallinity variations, but may not detect primary changes in the lattice structure. A typical spectrum consists of several absorption features. Figure 1 below illustrates the various aspects of an absorption feature, including wavelength position, depth and width (full height, half width maximum). The outline of the hull or continuum is also shown.

Figure 2. Elements of a reflectance spectrum, including hull, wavelength posifion and depth.
The PIMA-ll is a commercial field instrument built by Integrated Spectronics Pty. Ltd. in Australia. The instrument has an internal light source, allowing collection of laboratory quality data in the field. In addition, intemal calibration allows for comparison of data from one year to the next. The instrument is capable of measuring a variety of sample types, including rocks, chips, powders and liquids.

Sampling Conditions

Each sample was analyzed twice and every analysis used gold reflectance calibration. Wavelength calibration was carried out approximately every $5^{\circ} \mathrm{C}$ change in temperature.

Mineral Identification

Mineral identification was verified using references from the Spectral Library, SPECMIN ${ }^{\boldsymbol{T M}}$ and compared using overiays in FeatureSearch 1.5 (Simis Solutions). Representative plots in this report were made using SpecWin.

Results

The SWIR-responsive mineralogy is dominated by dickite, kaolinite, and smectite with probable diaspore and in some samples, fraces of illite. Gold values typically correlate with the strongest dickite signatures, however anomalous gold also occurs in areas that appear to have mixed kaolinite/dickite assemblages. In a few samples, illite may occur on fractures. If so, it may represent a later more neutral fluid that also carried gold. More extensive, systematic sampling is required in order to confirm consistent variations in the alteration mineralogy as an aide to exploration.

Examples of representative analyses are shown in the figures below and stacked plots of the data follow.

Figure 3. The above plot shows examples of a dickite reference overiain on an analysis for sample 02-BM-049. The rounded nature of the feature at 1900 nm suggests the presence of a silica phase.

oxcupsise

Figure 4. The above plot shows a mixture of kaolinite and dickite with references for these minerals overlain on an analysis for sample WT1-070.

Figure 5. Examples of kaolinite and smectite overlain on an analysis for sample 02-DB-160.

PIMA: Wrich, Toodoggone, B.C.
Kim Heberiein, P.Geo. and Anne J.B. Thompson, P.Geo.

APPENDIX 3.3 - PETROGRAPHIC REPORT

Petrography Report

Nub-west, Goat and Mex prospects, Toodoggone area British Columbia

24 January 2002

Prepared For:
David E. Blann, P.Eng.
Stealth Minerals Limited 38151 Clarke Drive Squamish, BC VON 3GO

PetraScience Consultants Inc.
700-700 West Pender Street
Vancouver, B.C. V6C 1G8 Canada
phone: 604.684.5857 fax: 604.222.4642
info@petrascience.com
www.petrascience.com

Sample: Nub-west
LITHOLOGY: feldspar porphyry
ALTERATION TYPE: quartz, alunite

Hand Sample Description:

Fine-grained, hard (silicified), vaguely porphyritic grey-white rock with part of a pink silicic lava ?clast or ?vein fragment on one edge. Sample is cut by translucent quartz veinlet ($<1 \mathrm{~mm}$ thick) and a few fractures with orange-brown oxide minerals.

Thin Section Description:

This section is a former porphyritic rock with groundmass and phenocrysts pervasively replaced by microcrystalline quartz and alunite. Primary porphyritic textures are partly retained. Alunite is colourless, occurs as pervasive alteration of the rock but is particularly abundant as envelopes around quartz veinlets. A portion of a clast or vein fragment on one side of the section, pink in hand sample, is pervasively replaced by fine-grained, slightly deformed alunite (after?feldspar) and quartz. Ilmenite occurs as disseminated crystals with distinct internal crystallographic orientation after ?magnetite. Traces of hematite occur as disseminated aggregates replacing former tabular minerals. Rutile occurs disseminated in trace amounts.

MAJOR MIINERALS

Mineral	\%	Distribution \& Characteristics	Optical
quartz	75	2 varieties: 1. Microcrystalline, massive aggregates, intergrown with ?alunite, occurs as replacement of groundmass and phenocrysts. 2. Very fine-grained, anhedral aggregates intergrown with ?alunite in veinlet.	
alunite	23	3 varieties: 1. Very fine grained, anhedral to fibrous, occurs intergrown with microcrystalline quartz as replacement of groundmass and tabular phenocrysts 2. Fine-grained, flaky, occurs as replacement of feldspar? in lava ?clast or vein fragment. 3. Fine-grained, platy, occurs as pervasive alteration envelopes and within quartz veinlet.	uniaxial + colourless, parallel extinction

MINOR MINERALS

Mineral	$\%$	Distribution \& Characteristics	Optical
?ilmenite	2	fine-grained, eu-subhedral, relict crystallographically-oriented texture after ? ?agnetite, disseminated typically as replacement of former tabular phenocrysts with quartt and ?alunite	opaque in PPL
hematite	tr	very fine-grained to aphanitic, irregular aggegates, occurs as replacement of former tabular phenocrysts very fine-grained, rounded grains and aggregates, disseminated	red in PPL
rutile	tr	pale brown	
in PPL			

Nub-west: Porphyritic rock with groundmass and tabular phenocrysts pervasively replaced by microcrystalline quartz and alunite. Primary porphyritic textures are retained. Field of view $=6.0 \mathrm{~mm}$. XPL.

Nub-west: Alunite, very fine-grained, as pervasive alteration of the rock and particularly abundant as fine-grained envelopes around quartz veinlets. Field of view $=0.8 \mathrm{~mm}$. XPL.

Sample: M-1

LITHOLOGY: quartz-feldspar porphyry
ALTERATION TYPE: K-feldspar, quartz, epidote, chlorite, actinolite-tremolite
Hand Sample Description:
Fine-grained, quartz-porphyritic pink rock cut by quartz-epidote-magnetite土trace K-feldspar veinlets (about 2 mm wide). The rock has undergone pervasive replacement by K-feldspar (based on stain). Epidote occurs in patches associated with magnetite and beige microcrystalline quartz in the rock.

Thin Section Description:

This section is a fine-grained, strongly K-feldspar-altered porphyritic rock with phenocrysts of quartz (approximately 3\%) and K-feldspar (after plagioclase, approximately 10%) that is cut by two crosscutting quartz dominant veinlets with minor epidote-magnetite-chlorite-actinolite $\pm \mathrm{K}$-feldspar. Strongly pervasive K-feldspar alteration occurs as very fine-grained, brown, turbid, massive, aggregates that replace tabular plagioclase phenocrysts (primary polysynthetic twinning texture preserved) and plagioclase in the groundmass. Illite occurs in trace amounts as fine fibres replacing K-feldspar. Epidote occurs as irregular clots in the quartz veinlets and in patches associated with very fine-grained quartz aggregate, eu-anhedral magnetite, platy actinolite-tremolite and locally grains of titanite. Magnetite is partly replaced by hematite which can occur as boxwork coated by orange-brown limonite. Chalcopyrite occurs as very fine-grained, anhedral grains, approximately $20 \mu \mathrm{~m}$ size, within magnetite.

Sample: M-1

MAJOR MINERALS

Mineral	\%	Distribution \& Characteristics	Optical
K-feldspar	55	very fine-grained, massive aggregates, locally as intergrown equant grains, brown, turbid, occurs as strongly pervasive alteration of groundmass and plagiociase phenocrysts (original textures \& polysynthetic twinning preserved), also occurs as trace disseminated grains associated with epidote within quartz veinlet	
quartz	32	3 varieties: I. Fine to medium-grained, sub-anhedral, embayed, occurs as phenocrysts. 2. Very fine-grained, euhedral aggregates, occurs with epidote and magnetite as patchy replacement of groundmass 3. Fine to medium-grained, sub-anhedral aggregates, prismatic to equant, uniform to undulatory extinction, irregular grain boundaries, cracked, fluid inclusions are secondary, irregular-shaped with inconsistent liquid-tovapour ratios (necked?) and small ($1-10 \mu \mathrm{~m}$ average size), occurs with epidote, chlorite and magnetite as veinlets	
epidote	5	fine-grained, anhedral aggregates, high relief, occurs in patches in associated with very fine-grained quartz aggregate, magnetite and locally titanite, also occurs in veinlets with chlorite, quartz, actinolite-tremolite, magnetite and hematite	yellow in PPL, high δ

MINOR MINERALS

Mineral	\%	Distribution \& Characteristics	Optical
chlorite	4	fine-grained, platy to radiating aggregates, pleochroic: colourless to pale green, occurs in veinlets with magnetite, quartz, epidote,	
magnetite	2	actinolite-tremolite and locally hematite fine-grained, eu-anhedral grains and aggregates, locally replaced by hematite, occurs disseminated and in patches in the rock associated with very fine-grained quartz and epidote, also occurs in the quartz veinlets, fractured and infilled by chlorite and epidote fine-grained, platy to fibrous, pleochroic: colourless to pale blue- green, moderate birefringence, occurs with epidote and chlorite	slightly inclined patches in the rock and in the quartz veinlet very fine-grained, fibrous to anhedral, partly replaces K-feldspar fine to very fine-grained, an-subhedral, locally rhombic wedge- shaped forms, high relief aphanitic aggregates, occurs rimming open vugs and coating bladed
actinolite-tremolite 2 orange-	extreme δ		
hematite			

M-1: Irregular patch of epidote associated with very fine-grained quartz aggregate. Note phenocrysts of K-feldspar (after plagioclase) and quartz. Field of view $=5.5 \mathrm{~mm}$. XPL.

M-1: Very fine-grained anhedral grains of chalcopyrite within subhedral, strongly pitted magnetite aggregate. Field of view $=0.5 \mathrm{~mm}$. RL.

Sample: M-2

LITHOLOGY: quartz-feldspar porphyry
ALTERATION TYPE: K-feldspar, quartz, epidote, chlorite

Hand Sample Description:

Fine-grained, quartz-feldspar porphyritic pink rock cut by quartz and later magnetite vein stockwork. The rock has undergone pervasive replacement by K-feldspar (based on stain). Epidote occurs in patches as replacement of tabular phenocrysts.

Thin Section Description:

This section, similar to section M-1, is a fine-grained, strongly K-feldspar-altered porphyritic rock with phenocrysts of quartz and plagioclase that is cut by quartz-epidote and subsequently magnetite-hematitechlorite vein stockwork. Strongly pervasive K-feldspar alteration occurs as very fine-grained, brown, turbid, massive, aggregates that replace tabular plagioclase phenocrysts (primary polysynthetic twinning texture preserved) and plagioclase in the groundmass. Illite occurs in trace amounts as fine fibres replacing K-feldspar. Minor epidote occurs with K-feldspar and traces of titanite as replacement of plagioclase phenocrysts. Epidote also occurs with fine-grained anhedral quartz in fine veinlets ($\sim 2 \mathrm{~mm}$ wide) that are offset by later magnetite veinlets. Magnetite occurs as fine-grained, euhedral grains that are locally intergrown with bladed hematite. Hematite is partly infilled by chlorite. Chalcopyrite occurs as very fine-grained, anhedral grains, approximately $20 \mu \mathrm{~m}$ size, within magnetite.

Sample: M-2
MAJOR MINERALS

MINOR MINERALS

Mineral	\%	Distribution \& Characteristics	Optical
chlorite	4	fine-grained, platy to radiating aggregates, pleochroic: colourless to pale green, occurs in veinlets with magnetite, quartz, epidote and locally hematite	
epidote	3	fine-grained, anhedral aggregates, high relief, occurs with Kfeldspar and titanite replacing former plagioclase grains, also occurs in veinlets with chlorite, quartz, magnetite and hematite	yellow in PPL, high δ
hematite	3	fine-grained, laths occur in boxwork texture, rimmed in some cases by finer grained hematite, may partly replace magnetite	grey-white in RL
illite	4	very fine-grained, fibrous to anhedral, partly replaces K-feldspar	
titanite	tr	fine to very fine-grained, an-subhedral, locally rhombic wedgeshaped forms, high relief	extreme δ
?chalcopyrite/?gold	t	very fine-grained, anhedral grains, approximately $20 \mu \mathrm{~m}$ size, within magnetite	yellow in RL

M-2: Strongly K-feldspar-altered porphyritic rock with phenocrysts of quartz and plagioclase cut by quartz-(epidote not in field of view) and subsequently magnetite-goethite-chlorite vein stockwork. Field of view $=5.5 \mathrm{~mm}$. PPL.

M-2: Fine-grained, euhedral magnetite intergrown with bladed hematite (light grey). Field of view $=0.6 \mathrm{~mm}$. RL.

Sample: Goat
LITHOLOGY: quartz-calcite vein ?breccia
ALTERATION TYPE: epidote, sericite

Hand Sample Description:

Fine to medium-grained, euhedral prismatic quartz infilled by calcite occurs ?overgrowing pale greenaltered, fine-grained ?fragments (2 to 3 cm in diameter) in ?cockade-texture within a $3-4 \mathrm{~cm}$ wide vein. Fine to medium-grained, brown sphalerite occurs disseminated and as aggregates with galena. Traces of fine-grained chalcopyrite occur disseminated.

Thin Section Description:

This section is a vein ?breccia which comprises silicified and sericitized former ?wallrock fragments overgrown by prismatic quartz in a cockade-like texture, infilled by calcite and overprinted by disseminated sphalerite, galena and traces of chalcopyrite and pyrite. Prismatic quartz occurs as medium and fine-grained varieties; both are characterised by small, primary, irregular-shaped, liquid and vapourrich fluid inclusions. Medium-grained, elongate, prismatic quartz has distinct bands of primary fluid inclusions adjacent to its rims. Prismatic quartz overgrows eu-subhedral fine-grained quartz, patchy very fine-grained sericite and clay aggregates and traces of disseminated rutile and apatite; these minerals may have replaced former ?wallrock fragments. Brown sphalerite occurs disseminated, locally with fine-grained galena, as fine to medium-grained grains and aggregates overprinting prismatic quartz and rarely rimmed by epidote. Fine-grained chalcopyrite occurs as one grain overprinting prismatic quartz. Very fine-grained, eu-subhedral, cubic pyrite is disseminated.

Sample: Goat

MAJOR MINERALS

Mineral	\%	Distribution \& Characteristics	Optical
quartz	75	3 varieties:	
		1. Fine-grained, eu-subhedral, aggregates, virtually no fluid inclusions, occurs with sericite, clay and traces of rutile and apatite as replaced ?substrate (former ?fragments) to elongate prismatic quartz. 2. Medium-grained, euhedral, prismatic, prominent growth zones at rim defined by bands of small ($10 \mu \mathrm{~m}$ average size) primary, liquid and vapour-rich, irregular-shaped fluid inclusions, occurs overgrowing fragments that have been replaced by quartz-sericite-?clay-rutile and apatite, occurs overgrown by fine-grained prismatic quartz aggregates or infilled directly by calcite. 3. Fine-grained, euhedral, prismatic, growth zones defined by primary fluid inclusions similar to medium-grained quart, infilled by calcite	
calcite	12	fine to medium-grained, anhedral, occurs as infill to prismatic quartz	
sphalerite	7	fine to medium-grained grains and aggregates, fluid inclusions are secondary, large ($20 \mu \mathrm{~m}$ size), smooth-shaped and both liquid and vapour-rich, occurs disseminated overprinting prismatic quart, locally rimmed by epidote, locally intergrown with galena	mediumbrown in PPL, isotropic

MINOR MINERALS

Mineral	\%	Distribution \& Characteristics	Optical
galena	2	fine-grained, anhedral, prominant triangular cleavage pits, occurs disseminated and intergrown with sphalerite very fine-grained, anhedral to flaky, locally radiating aggregates, occurs with ?clay, rutile and apatite as replacement of former	white in RL
sericite	2	?fragments very fine-grained, anhedral aggregates, occurs locally rimming sphalerite, occurs as ?infill to prismatic quartz	colourless to pale yellow in PPL
epidote	1	aphanitic aggregates, brown, occurs in patches with sericite and	
?clay	fine-grained quartz as replacement of original ?fragments		
very fine-grained, anhedral, occurs as an isolated grain, overprints			
prismatic and fine-grained vein quartz			
very fine-grained, eu-subhedral, cubic forms, disseminated	yellow in		
pyrite	tr	RL	
rutile	very fine-grained, anhedral grains and aggregates, disseminated in		
fr	fine-grained, eu-subhedral quartz aggregates very fine-grained, acicular, disseminated in fine-grained, eu- subhedral quartz aggregates aphanitic aggregates, occurs rimming chalcopyrite and within galena	in RL brown in	
apatite	tr	PPL colourless	

Goat: Medium-grained, elongate, prismatic quartz with distinct rims of primary fluid inclusions. Quartz is infilled by calcite and overprinted by brown sphalerite intergrown with galena (opaque). Field of view $=6.0 \mathrm{~mm}$. PPL.

Goat: Anhedral, subrounded chalcopyrite overprinting prismatic quartz. Field of view $=0.8 \mathrm{~mm}$. RL.

APPENDIX 4 - ROCK SAMPLE SHEETS AND CERTIFICATES OF ANALYSIS

Stealth Minerals Limited Toodoggone Project

Number	m	m	m	m	Code		00000	m	kg	Vein	Py	$\mathrm{cp}^{\text {p }}$	Sp	Gl	Mag	Hem	Lim	at	Ser	Mag	k-teld	Biot	CH	Ep	Ca	Clay
TW4 - WRICH: resample: (66.0-68.0): st hem + lim, dacite crystal tuff, mod-st silica flooding, Tr dark black-purplish-red siver? sulphasalts, gougy in part, weak barite, weak-mod pyrophyllite, weak manganese stain																										
02EM-14								2.0	-	-		-	-		-	15	15	-	-	-	-	-		-		
TW4 - WRICH: resample: (68.0-70.0): weak-mod lim + hem, weak silica flooding, bleached white-grey, dacite crystal tuff, gougy in part, modly frac, weak-mod pyrophyllite along fracs																										
02EM-15								2.0							\cdot	30	30	-						.	.	-
TW4-WRICH: resample: (70.0 - 72.0) st hem + lim, mod-st silica flooding, bleached with-grey, dacite crystal tuff, weak-mod pyrophylite along fracs, weak boxwork text, weak manganese stain, gougy in part																										
O2EM-16								2.0		-		-		-	-	-	-	-	-	-	-	-	-	-	-	
TW4 - WRICH: resample: (72.0-74.0): st hem + lim, mod-st silica flooding + mod-str boxwork text, bleached white dacite crystal tuff, quz/chalcedony, mainly qtz flooded with boxwork text, weak-																										
02EM-17								2.0		-		\cdots	-	\cdot	-	\cdot	-	-	-	-	- 1	-		.	-	-
TW4 - WRICH: resample: (74.0-76.0): mod-str hem + lim, mod silica flooding in part, weak boxwork text, bleached white dacite crystal tuff, weak qtz-chalcedony veinlet, mod-str pyrophyllite, gougy																										
02EM-18								2.0	-	-	-	.	-	-	-	-	-	.	-	-	-	-		-	.	
TW4-WRICH: resample: (76.0-78.0): as 02EM-17 with more fault gouge in fault zone																										
02BM-228	0635376	635349		5				2.0	-	-		\cdot	-	\cdot	\cdot	25	25	-	.	-	.					
Trench (0-2.0) mod-str silica flooded dacite crystal tuff, mos-str hem + lim, weakly vuggy-drusy, mod qiz chalcedony, mod boxwork text																										
0289-229								2.0	-	-	\cdot	\cdot	-	-	-	25	25	-	-	-	.	-			-	
(2.0-4.0) weak-mod silica flooded dacite crystal tuff, mod-str lim+hem, weak qtz-chalcedony, weak boxwork text, weak pyrophyllite																										
02BM-230								2.0	.	-	-	-	-	-	-	25	25	-	-	-	.	-
(4.0-6.0) as 028M-229																										
02BM-231								2.0	-	-	-	-	-	-	-	-		.	.	-		.		.	.	-
(6.0-8.0) as 02BM-229																										
02BM-232								2.0	\cdot	-	-	-	\cdot	-	\cdot	\cdot	-	.	-	.	-	-	-	.	-	
(8.0-10.0) as 028M-229 + weak qtz chalcedony bx																										
02BM-233								2.0	\cdot	\cdot	-	-	\cdot	\cdot	-	25	25	.	.	-	-	-	-	.	.	.

Rock Sample Description Sheet Area: WRICH

Stealth Minerals Limited Toodoggone Project

Sample	East	Noth	Elov.			Text.	Stu.										\%	Penvasvo Altarato scalale 1.5								
Number	m	m	m	m	Code		00000	m	kg	Veln	Py	cp_{p}	Sp	G	Mag	Hem	Lim	at	Sor	Mag	k-fedd	Bibl	CHI	Ep	Ca	Clay
T4 (83.0.88.0) as T4DB--31, white-grey-greenish (FS), modly-stly fractured																										
T4DB-33								2.0								5	5			-	-	-	-			1
T24 (88.0-90.0) as T4DB-31, triable in part and gougy, faut zone																										
T4DE-34								2.0								-			-	.	-	.	.	-		
T4 (90.0-92.0, as T4DB-31, friable in part and gougy																										
T4DE-35								3.0							-	5	5	-	-	-	-	-				3
T4 (02.0-95.0) gougy bleached white-grey-brn, fault zone, weak lim + hem, mod pyrophylitit + arg, Tr frags with qtz-chalcedony stringers																										
02BM-204								0.4		-	\cdot			\cdot	-	35	20	5	-	-	-				.	-
T4-check, in interval ($70-72$) check channel sample across 0.4 m with st silica flooding, st hem + mod lim, st boxwork text, narrow (5 mm wide) barite veinlet, purplish red alt suggest possible ruby-silver minerals pyrargyite?																										
02BM-205								0.9			Tr					35	20	5		-	-	-	-		-	-
T4 check, check channel sample across 0.9 m on strly sil zone in T 4 (72.0-74.0), striy sil and silica flooded zone, st boxwork textures, mod-St hem + mod lim, weak-mod pyrophylite as blebs and along fractures																										
02BM-206								0.8			-		-	-	-	35	20	5	-	-	-	-	-	-	-	-
T4 check, check channel sample across 0.8 m on striy sil 20 ene in T 4 ($58.0-60.0$, strly sil and silica flooded zone, st boxwork textures, str hem + mod lim																										
O2EM-08								3.0	Chlp				-	-	-	10	20	-	-	-	-	.	-	-	-	.
TW4 - WRICH: resample: ($55.0-58.0$): bleached white dacite crystal tuff + fault gouge, mod-st pyrophylite, weak hem, mod lim, weak=mod silica flooding in part (55.5 m), weak boxwork text in part, leached py and/or feld																										
02EM-09.								2.0	-		Tr		-		-	-	-	-	-	-	-	-				-
TW4 - WRICH: resample: (58.0-60.0): bleached white-grey dacite crystal tuff, increase in hem, mod-st silica flooding in part, mod boxwork text, cubic - leached py, mod pyrophyllite in part, mod lim, mod manganese stain																										
02EM-10								2.0	-	-	-		-		-	-	-	-	-	-	-				.	.
TW4 - WRICH: resample: (60.0-62.0): as 02EM-09 with st hem + lim, mod-st silica flooding, mod-st boxwork text leached py and/or feld, no visible sulphides																										
O2EM-11								20		-	-	-	-	-	-	30	30	-		-	-	-	-	-	-	.
TW4 - WRICH: resample: (62.0-64.0): dacite crystal tuff, mod qta flooding + boxwork text, mod manganese stain, mod to st pyrophylilite along some fracs, leached-bleached white-grey																										
02EM-12								20	-	\cdot	-	-	\cdot	\cdot	\cdot	\cdot	-	-	\cdot	-	-	-	.	-	-	-
TW4- WRICH: resample: (64.0-66.0): v.str hem + mod lim, mod-st silica flooding, mod-stt pyrophyllite along fracs, modily stly frac, gougy in part, mod manganese stain																										
O2EM-13								2.0				-	-	-	-	30	30	-	.	-	-	-

Rock Sample Description Sheet
Stealth Minerals Limited
Area: GOAT
Toodoggone Project

NAD 83 UTM

Sample	East	North	Elev.	EPE	Rock	Text.	Stu.	w		\%	\%	\%	\%	\%	\%	\%	\%	Pervasive Alteration scaie 1.5								
Number	m	m	m	m	Code		00000	m	kg	Vein	Py	Cp	Sp	G	Mag	Hem	Lim	at	Ser	Mag	k-feld	Biot	Ch	Ep	Ca	Clay
02DB-132	0634589	6335300	1685	9	Q-CaVM			-	0.4	100	1	0.1	2	0.5	-	-	1	4	-	-	-	-	3	3	5	-
float below Goat Ridge, calcite-Qt-vein breccia, carbonate wallrock 4+6 sided, striated pyrite, heterolithic feldspar porphyry andesite well-winned py																										
02DB-133	634427	6335390	1803	6	VnBx	Bx	33015	1.0	-	80	. 5	. 1	-	-	-	-	.	2	-	-	\bullet	-	2	3	4	-
Shear, Bx, Qtz-Ca Vn. 10-15 metres long 1.0 metres wide, anastomosing calcite, C.G., tat?, mod-str chlep-ca, Fp And (Takia)																										
02DB-134	634440	6335440	1783	7	VnBx	Bx	060180	0.13	-	90	1.0	0.1	3.0	1.0	-	-	-	2	-	-	-	-	2	2	4	2
02DB-135	634587	6335544	1669	5	VnBx	Bx		-	2.0	90	1.0	0.1	1.0	2.0	-	-	-	-	-	-	-	-	1	1	3	1
At L34N, 42+50E. Float of Qtz-CA VnBx, C.G. Calcite																										
02DB-136	634721	6335645	1582	9	Fil	Bx	330190	1.0	-	1	1.0	-	-	-	-	1	2	-	3	-	-	-	3	2	3	-
IP Line 03W1 7+75W. Fault Gouoge + Qtz-Ca Vn Bx with chl-ser-py, +pale green mal2/mariposite, black MnOx																										
02DB-137	0634694	6335673	1519	18	Hbl-fp			-	1.0	-	5.0	. 01			5.0		-	-	2	-	-	3	-	1	\cdot	\bullet
In creek wall. Crowded HblFp, mod B-ser. Widespread disseminated py throughout matrix along creek wall. Dikes? Flow-dome?																										

NAD 83 UTM																										
Sample	East	North	Elov.	EPE	Rock	Text.	Stru.	W		\%					\%	\%					Nvasive	Alteratio	scale			
Number	m	m	m	m	Code		00000	m	kg	Vein	Py	Cp_{p}	Sp	G	Mag	Hem	Lim	Qt	Ser	Mag	k-feld	Biot	Cht	Ep	Ca	Clay
02DB-118	0644367	6342091	1747	5	GD	Shr	045	\cdot	2.0	2	2	0.2	-	-	2	2	3	3	3	1	2	-	3	2	-	3
Mal +MnOx in shear propylitic granodiorite																										
02DB-119	0644380	6342168	1719	6	QFp	Stk		2×2	2.0	2	2	-	-	-	3	2	2	3	3	2	\cdot	-	\cdot	2	\cdot	1
02DB-120	0641375	6342189	1705	9	QFP	Stk		182	2	1	3	-	-	-	10	1	-	4	4	4	\cdot	-	-	-	-	-
02DB-121	0641371	6342231	1693	9	Qep	Stk		1x1	2.0	7	2	-	-	-	10	-	1	3	3	4	3	-	-	2	-	-
magnetite and quartz vein stockwork with Lim and Py																										
02DB-122	0641407	6342237	1661	9	Qep	Stk		\cdot	2.0	5	2	0.1	-	-	10	-	-	4	4	4	3	-	-	2	-	-
strong quartz-k-feldspar-magnetite stockwork hosted in quartz eye porphyry, MEX CENTRAL																										
02DB-144	0641364	6342348	1620	7	GD	Stk	010190	2.0	1.0	2	2	0.1	-	-	5	-	-	1	4	4	3	-	1	1	-	-
grab of outcrop, white-clear Qtz-Mag-Py veinlets 1-5mm x-cutting / sheeted, locally vuggy with FeOx Lim/Goet																										
O2DB-145	0641318	6342389	1612	8	GD	Stk		3.0	2.0	1	1.0	0.1	-	-	10	-	-	3	4	4	3	-	1	3	-	-
02DB-146	0641290	6342432	1630	14	GD	Stk		5.0	2.0	1	3	-	-	-	2	-	-	3	3	2	3	-	1	3	*	-
similar to 145, weak Qtz veinlets, more Ser-Py, chip/grab over 5 m																										
02DB-147	0640906	6342461	1729	4	Fp			-	1.0	-	2	0.1	-	-	1	5	3	-	3	1	-	-	3	4	-	-
grab on ridge, strong FeOx 20ne, epidote spot feldspar porphyry, green-grey matrix																										
02BM-200	-	-	-	-	-	-	-	.		-	-	-	-	-	-	.		-	-	-	-	-	-	-	\cdot	-
Refer to Figure 5																										
02BM-201	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	\cdot	-	-	\cdot	\cdot	-
Refer to Figure 5																										
02BM-202	-	-	-	-	-	\cdot	-	-	-	-	-	-	-	-	-	-	-	-	\bullet	-	\cdot	-	-	\cdot	-	-
Refer to Figure 5																										
02BM-203		-	-	-	-	-	-	\cdot	-	-	-	-	-	-	-	-	\bullet	-	\cdot	-	-	\cdot	\cdot	\cdot	-	\cdot
Refer to Figure 5																										

E

C
C.

E
C
[
E
E- \qquad \square \qquad E \qquad \square
E
-
\square

Rock Sample Description Sheet
Area: NUB

Stealth Minerals Limited
Toodoggone Project

NAD 83 UTM																										
Samplo	East	North	Etev.	EPE	Rock	Text.	Stu.	W	Grab	\%	\%	\%		\%	\%	\%	\%				vasive	Iteratio	acalo			
Number	m	m	m	m	Code		000100	m	kg	Vein	Py	Cp	Sp	G	Mag	Hem	Lim	Qtz	Ser	Mag	k-fedd	Biot	Ch	Ep	Ca	Clay
0208-123	0635307	6348227	1767	5	Fxt	Shr		-	2.5	1	-	-	-	-	-	10	5	4	3	-	-	-	-	-	-	1

 pale green Fxt Ser-Ep+Py replace feldspar, weakly vuggy, Qtz-Py veins, 1-2 mm, 1-2\% x-cut, orange Fp dike nearby, NUB

02DB-128	0635623	6349167	1647	6	Fxt	Bx	316/60	0.15	50	1	0.5	-	-	-	-	\bullet	-	3	3		-	-	3	3	2	-
Otz-Ca vein Bx with barite?, Py, Cp NUB																										
02DB-129	0636685	6349080	1800	9	Fxt			-	1	10	0.2	0.2	-	1.0	-	1	-	2	3	-	-	-	2	3	1	-
grab of float from ravine, Q-S-Py veins/Bx NUB																										
0208-130	0636810	6349310	1721	7	QFp			-	2	3	1	0.5	-	-	-	1	1	3	3		1	-	2	3	3	-
Quartz-Feldspar Porphyry																										
0208-131	0636788	6349391	1704	B	Fxt			-	2.0	10	1	0.5	0.1	-	-	1	-	1	3	-	-	-	2	4	1	-
10 cm massive epidote replacement/vein with MaVAz + Hydrozincite, Cp on edge of outcrop																										
020B-138	0634580	6350337	1780	3	Sil	Stk	315/90	-	1.0	10	-	-	-	-	-	1	1	5	-	-	-	-	-	-	-	1
at west contact with Ep-2k vn maroon Fx Lit, fault + massive silica replacementflooding cut by white vuggy quartz veins trace limonite, marbled appearance: Nub west																										
O20B-139	0634641	6350384	1776	4	Sil	Stk		-	1.0	2.0	-	-	-	\bullet	-	1	1	5	-	-	-	-	-	-	-	3
Chaicedony Bx with vuggy veins of Qtz-Lim-Jar-Goet (<1\%) possible alunite clay. Nub West																										
020B-140.	0635740	6350454	1867	7	FxLit			.	1.0	1.0	0.1	-	-	0.1	-	\bullet	0.1	2	-	-	-	-	2	2	2	-
tuff cut by $1-3 \mathrm{~mm}$ Qtz-Ca veins with Tr Py, Cl , boulder/subcrop Nub Mt.																										
02DB-141:	0636377	6350460	1892		Fxt	Stk		-	1.0	5	0.2	0.1	0.1	0.1	-	0.1	-	1	-	-	-	-	3	3	2	-
tuff cut by Qtz vein 2-3 mm stockworks, vuggy, with $\mathrm{Cp}, \mathrm{Gl}, \mathrm{Py}$, subcrop. Nub Mt																										

0208-142					Fxt	Stk	-	1.0	25	0.2	0.2	-	0.1	-	-	-	2	-	-	-	-	3	3	2	-
25 m east of 141, as above, Qtz veins cut Qtz-Ca veins, subcrop																									
02D8-143	0636552	6350392	1868	4	Fxt	Stk	0.10	1.0	75	0.1	-	-	-	-	-	-	3	-	-	-	-	3	3	1	-

02DB-145	0641318	6342389	1612	8	GD	Stk	3.0	-	1	1	0.1	-	-	10	-	-	3	4	4	3	-	1	3	-	-
float 10 m east of 128N 47+00E, intense pervasive sil, CCDY, vuggy, crushed and sheared, 1-2\% Jar-Goet breccia.																									
RR05-02					V		-	1.0	-	5.0	-	-	-	-	-	0.1	3	3	-	-	-	-	1	-	3

NAD 83 UTM																										
Sample	East	North	Elev.	EPE	Rock	Text.	Stu.			\%	\%	\%	\%					Pervasive Atteration scale 1-5								
Number	m	m	m	m	Code		00000	m	kg	Vein	Py	c_{p}	Sp	Gl	Mag	Hem	Lim	Otz	Ser	Mag	k-feld	Biot	Ch	Ep	Ca	Clay
02DB-2	0635966	6338827		7	Da	Shr	030	25.0	3	-	4				1	1	3	3	3	1	-	-	2	2	-	4
Peak Prospect, Grab of subcroploutcrop over 25 m northwest trending, sample of strongly gossanous Q-F crystal tuff Dacite, white to pale grey, rusty, well fractured, near gov.minfile location.																										
02BM-1	0635798	6338610		7			43149 NW	3.0		-	Tito2		-	-		10	20-30		-	.	.	-	,	2	-	3
EPE: 7, orangy-brown (WS), Feld-Qtz Porphyry(Dacite) light green to grey-white (freshh surface), chip trending 072 ${ }^{\circ}$ sicken sides @ o mark, 43/49 NW - measured plane movement SW, strike-slip																										
02BM-2				7				3.0	-		$\mathrm{It}^{\text {r }}$		-	-		5	10	.	-	.	-	-	1	1	-	1
EPE: 7, continuous chip trending 72*, orange-grey-bm weathered surface, modly fractured, light green (fresh surface), Feldspar-Qtz-Porphyry (Dacite)																										
02BM-3				7				3.0		-	Tit	.	-	-	-	5	10	.	-	-		-	1	1	-	1
as above, EPE: 7, continuous chip trending 18°, as previous																										
02BM-4	0635945	6339721		6				1.0	-		Froi						-	2	4	-	-	-	-	-	\cdot	-
EPE:6, continuous chip trending 181 ${ }^{\circ}$, Stry gossonous, str yellow-orange (weathered surface) and (fresh surface), remant textures destroyed, leached, feldspar-Qtz, porphyry (Dacite), Str Qtz-Ser-Py																										
02BM-7.	0636157	6340090		7					Grab		Trlo2				-		-			-	2	-		.	-	-
EPE:7, orangy-red-bm (weathered surface), modly frac, Qt eyes, light beige-pink (fresh surface)Feldspar-Qtz-Porphyry (Dacite)																										
02BM. 6	0636578	6340704		5				1.0	-		Triot		-	-	-	15	30		-	-	1	-	1	1	-	1
EPE:5, Str Lim + Hem, orangy-red (weathered surface), greenish-red (fresh surface), Feldspar-Qt-Porphyry (Dacite)																										
02DBM-7	0636616	6340773		7				3.0			Trio2						-	4	4	-	-	-	-	-	-	3
EPE:7, continuous chip tending 231 ${ }^{\circ}$, modly fractured, orangy-yellow (weathered surface), grey-white (fresh surface), Feldspar pheros to clay, Feldspar-Qtz Porphyry-Dacite, tuff?																										
02BM-13	0636438	6341553		7					Grab		It	-		-		3	3		.	1	-	-	-			-
Brown (WS), olive green (FS), weak to mod Qtz veinlats (orientation?), grab from subcrop, weakly magnetic, vuggy-drusy Qtz veinlats, Andesitic																										
02BM-14	0636624	6340785		\| 6				2.0			Trtot			-		- 3	3	3	3	-	3	-	2	2		
continuous chip ($0-2.0 \mathrm{~m}$, yellow-orange (WS), yellow-orange-greenish (FS), non-magnetic, m.g. feldspar (pink) quartz crysta, tuff-dacite																										
02BM-15	0636718	6340939		\| 5					Grab		It					1	3	-	-	1	-	-	4	4	-	
grab from o/c, bm-orange (WS), pinkis-green (FS), weakly magnetic, gypsum veinlets @ 347 ${ }^{\circ} / 80 \mathrm{NE}$ up to 5 cm in width, m.g. feldsapr-qiz crystal tuff-dacite																										
02BM-16.	0636854	6342640		11				5.0			1-2					-	20	4	4	-	-	\cdot	-	-	-	
continuous chip ($0-5.0 \mathrm{~m}$), bm-orangy-yellow (WS), light gray-green (FS), striy gossanous in part, 1-2\% fine dissem Py, non-magnetic, modly to strty frac, feldspar-qtz porphyry-dacite																										
02BM-17.	0636869	6342548		7				6.0			T1102		-			3	3	4	4		-	-	2	2	-	-
continous chip ($0-6.0 \mathrm{~m}$) str qtz-ser-py zure, m.g. feldspar-qtz porphyry -dacite, yellow-orange-bm-white (WS), strty gossonous, Tr -2\%, fine dissem, py, light grey-white (FS), alt destroyed most features, str white zeolite, dacitic																										
02BM-18	0637102	6342095						5.0	-		T1101			-			-	1	1			-	.	-	-	-
chip (0-5.0 m), modly frac, modly gossonous, mod lim+hem, dominat regional fracture foliation @ 315/70 SW, weakly magnetic, Tr -1\% dissem py, feldspar-qtz porphyry-dacitic																										
02BNH-19								5.0	-	- -	Tilo2		-	-		-	-	2	2	-	-	-	-	-	-	.

Rock Sample Descriptlon Sheet
Area:
PEAK

NAD 83 UTM

Sample	East	North	Elev.	EPE	Rock	Text.	Stu.	W	Grab	\%	\%	\%	\%	\%	\%	\%	\%				rvasive	Aleration	acale			
Number	m	m	m	m	Code		000100	m	kg	Vein	Py	Cp	Sp	G1	Mag	Hem	Lim	Qtz	Ser	Mag	k-feld	Biot	Ch	Ep	Ca	Clay
as above, continuous chip ($5.0-10.0 \mathrm{~m}$), as previous sample with increased qiz-sericit-py, modly frac																										
02BM-20								7.0	-	-	1.2	-	-			-	-	3	3	-	-	-	-	-	\bullet	-
as above, continuous chip (10.0-17.0 m), dominant fracture direction $316 / 84 \mathrm{SW}$, gypsum along this fracture, grey-greenish (FS) m.g. porphyritic feldspar porphyry-dacite tuff?																										
02BM-21	0637125	6342097		12				10	-	-	1-2	-	-		-	15	30	4	4	-	.	-	-	-	-	-
continuous chip over 10.0 m , dominant fracture orientation is $315 / 55 \mathrm{SW}$, white zeolite covers ail fractures, light grey-green (FS) with remnant medium grained feldspar, pheros, strly frac, non-magnetic, feldspar and qtz porphyry-dacite, tuff?																										
02BM-22:	0637193	6342056		17				5.0	.	-	1-2	-	-	-	-	15	20	3	3	-	.	-	-	.	-	-
float 10 m east of 128N 47+00E, intense pervasive sil, CCDY, vuggy, crushed and sheared, 1-2\% Jar-Goet breccia.																										

Rock Sample Description Sheet Area: PINE

Stealth Minerals Limited Toodoggone Project

Number	m	m	m	m	Code		00000			Voin	Py	Cp	Sp		Nag					Mag	k-1ed		ChI	Ep	${ }^{\text {cas }}$	Clay
02DB-3					QFp	Shr	340		2.5		5	-	-	-	1	2	3	3	3	3	2		2	2	-	2
Location: Pine Deposit, 20 m west of 97DB-37, intense quartz-seracite, limonite-goethite, weakly magnetic, orange to grey-black, well fractured, neare L185W, beside small creek, 25 m west of 02BM sample by creek.																										
02DB.4					QFp				1.0	80	1	-	\cdot	-	-	1	1	5	5	-	-	.	-	-	-	4
Location: Pine Deposit, $40 \mathrm{m@020}$ (rom 02BM sample by creek, on side of sharp ridge, intense perv. Q-S and silicification, grey-white almost pure quartz-sericite, minor FeOx, limonite, pyrite.																										
028M-8:	0638546	6343835		7					Grab		Trio2				5	15	30			2			2	2		
stly gossonous-orange-red-brn (weathered surface), dark green (rresh surface), modly fracured Feldspar-Qtz Porphyry-Dacite																										
028M-9	063854	6343815		6				1.0			Trio2				Trio 10	5	30	2	2	4			2	2		
continuous chip tending 203°, most remnant textures destoyed, narrow veinlet gypsum (2 mm), modly-stly gossanous, dark green (fresh surface), orange-yellow-brn (weathered surface), feldsparQtz Porphyry																										
02BM-10	0633789	6337033		9				-	Grab	[-	1.2	\cdots	-		-	-	-	2	-	4	-	.	2	2	-	-
grab from subcrop, brown (WS) and light green (FS), f.g., dissem (1-2\%) Py, stry magnetic, mod. Siliceous, andesite with Feldspar pheros																										
028M-11	063306	6336975		7				-	Grab	-	3	-	-	-		-	-	-	-	4	-	-	3	3		-
grab from olc to subcrop, mod dark green (FS), grown (WS), stly magnetic, hornsfelds, 3\% dissan Py, Feldspar-Qtz Porphyry-Dacite																										
028M-12	063377	636796		6				\cdot	Grab	-	Tr	\cdot	-	\cdot		15	-	.	-	3	-	\cdot	3	3	-	-
grab from subcrip to olc, green-reddish-brown (WS), dark green (FS), weak calcite veinlets - orientation?, modly-stily frac, modly-striy magnetic, adesitic																										
								-	-	-	-	-	-	-	\cdot	\cdot	-	-	-	\cdot	-	-	.	-	-	\cdot
								-	-	-	-	\cdot	-	\cdot	\cdot	\cdot	\cdot	-	-	-	\cdot	-	.	.	-	.
								-	-	-	-	-	-	-	-	-	-	-	.	-	-	-	.	-	\cdot	-

Rock Sample Description Sheet
Area:

	m	m	m	$\left.\begin{array}{c} \mathrm{m} \\ \mathrm{~m} \end{array}\right]$	code		conose	m	kg	Vein	Py	c_{p}	sp	G1	Nag	Hem	Lim	Q	Ser	Nag	k-feld	Biot	Ch1	Ep	Ca	Clay
0208-1	0633132	633850		6	Da	Shr			2.0		5			.	2	.	3	4	4	1	1	.	.	2		2
Hb-Q-F Dacite 20 m south of road, subcrop, probable outcrop, stongly fractured.																										
020B-5.	0633864	6337182		6	And				1.0	1	3	0.1	-		5		0.5		3	1			2	2	2	1
Float, augite-hornblende andesite flow, olive green, trace pyite, chalcopyrite in fractures and replacing matics.																										
02DB-6	0634269	6336723			OVN				1.5	100	0.2	0.2	-			0.1	0.1	5	3	-		-		-	-	
7 km north of Goat Lake in creek, numberous quartz float, sample of pale green-white massive quartz vein weakly fractured, weak vugs, trace Py, Cp +1- TetAArg?, MNOX, various quartz vein float																										
02BM-42	083322	6335613		10				2.0			$\mathrm{Tr}^{\text {r }}$					15				3						
chip over $2.0 \mathrm{mg} \sim 2.0 \mathrm{~m}$ wide breccia zone with carbonate matix tending $001 / 60 \mathrm{SE}$, host rock, modly-strly magnetic, i.g., dark grey, mafic basalt feldspar phenocrysts																										
02BM-43	0633214	6335609		8				0.2			Tr	-	-	-		15			-	3	L.					
carbonate veinlet -8 cm wide trending 333/51 NE and another 10 cm of carbonarte veinlet breccia hosted in mafic basalt, modly-stly magnetic, mod hem, chip over 20 cm																										
02BM-44	063294	6335759		6					Float			-														
grab from float, brn-oragne (WS), light green-grey (FS), f.mg. Hornblende porphyry dyke with tract po (pyrthootte), mod lim along fractures																										
02BM-45	0633013	6335635		15				-			Tr	-					5	-						.		
grab from o/c, rusty limstone next to fautle $320 / 44 \mathrm{NE}$, weak lim, no slicks																										
02BM-46.	0632883	6335525		6				-									5			2	.	.		.	-	
grab from float, basalic to ordesitic, modly magnetic, narrow 2 mm wide aplite veinlet, weak lim along tractures																										
02BM-47	063258	6335517		8				-			1-2	-	-	-	-		20	\cdot	1		-		-	-	\cdot	.
grab from float, modly gossonous, $1-2 \%$ fine dissem, + blebs py in andesite, Tr po, mod-st lim, weak sericite, non-magnetic																										

Sample Number	East m	North m	Elev. m	$\begin{array}{\|c\|} \hline \text { EPE } \\ \mathrm{m} \end{array}$	Rock Code	Text.	$\begin{aligned} & \text { Stru. } \\ & \text { 000000 } \end{aligned}$	$\begin{aligned} & \hline \text { w } \\ & \mathrm{m} \end{aligned}$	$\begin{gathered} \text { Grab } \\ \mathrm{kg} \end{gathered}$	$\begin{gathered} \% \\ \text { Vein } \end{gathered}$	$\begin{aligned} & \% \\ & \text { Py } \end{aligned}$		$\begin{aligned} & \% \\ & c p \end{aligned}$	$\begin{gathered} \text { \% } \\ \text { Sp } \end{gathered}$	$\begin{aligned} & \% \\ & \text { G } \end{aligned}$	$\begin{gathered} \text { \% } \\ \text { Mag } \end{gathered}$	$\begin{gathered} \% \\ \text { Hem } \end{gathered}$	$\begin{aligned} & \text { \% } \\ & \text { Lim } \end{aligned}$	Pervasive Ateration scale 1-5									
													Ot						Ser	Mag	k-feld	Biot	Ch	Ep	Ca	Clay		
02DB-18	0629148	6338510	1207	7	SKN			1	2			0.1		0.1	-	-	-	1	-	1	1	-	-	3	1	1	-	-
dark green sericite, Chl, gamet-diopside-mica, B-Hbl-Act? Wk fractd w Ep-Albite?																												
02DB-19					M			0.25	2	-		0.1	0.3	-		-	2	1	-	3	-	-	1	1	1	-	-	
Location: $10 \mathrm{~m} @ 290^{\circ}$ from 18, massive marble subcrop, 5-10\% chalcocite-malachite/azurite, $6-10 \mathrm{~cm}$ vein semi-massive cc, $\mathrm{Cu}, \mathrm{Ag}, \mathrm{Au}(0.946,0.9,0.13$)																												
02DB-20	0629137	6338514	1225	7	Skn		045	0.5	2.0	20		0.5	1.0	-	-	-	1	1	1	2	-	\cdot	1	1	1	-	-	
marble - gamet - Ep - diopside, coarse grained Cp 1\%, bo 1\% (2.421, 114.2, 4.72)																												
020B-21.					Skn		$330{ }^{\circ}$.4×. 4	2	10		0.2	3	-		-	-	1	2	2	-	-	1	1	1	-	-	
1 m northeast of 20, marble - Ga-D.Cp-bo (1\%), massive Cp in veins and pods, panel sample $0.4 \times 0.4 \mathrm{~m}(5.867,74.6,4.51)$																												
02DB-22					3kn		045 ${ }^{\circ}$	0.25	1	10		0.2	3	-	-	-	-	1	1	2	-	-	1	2	2	1	1	
1 m northeast of 21 , chip across vein (5 cm) total 0.25 chip, vein cut by 360° chloritic shear ($3.545,24.9,0.97$)																												
02DB-23:					SLST			0.3	2			5	0.5	-	-	-	1	1	2	2	-	\cdot	3	1	1	1	-	
Location: 5 m north of 22, pyritic silstone/quartzite/whiteclear quarta vein, massive quartz with sericite partings cut by $1-5 \mathrm{~mm}$ white calc-silicate veinlets.																												
02DB-24:	0629011	6338636	1254	5	SLST			1×1	2	T.		5	0.1	-	.	3	1	2	1	3	3	-	3	1	-	-	-	
dark-light micaceous siltstone with magnetite-pyrite veinlets																												
02DB-25	0629069	6334070	1263	4	SLST	Shr	026°	1.0	1	-		2	0.1	-	-	1	1	1		2	1	-	3	2	-		-	
dark biotite HNF metasilstone weak Chc-Diopside?, foliated schist near contact with Hbl-Grd dike 080\%/90																												
02D8-26	0629130	6339040	1246	7	SLST			6.0	3	1		3	0.1	-	-	-	2	1	2	2	1	-	3	2	1	.	1	
old tench BRG 110°, GRAB along trench, HNF metalsilstone, SCH?, locally silicified, vuggy QTB, pyrite cube boxwork																												
02DB-27:	0628345	6337590			SKN		310003	1.8	3.0	10		3	1.0		-	10	-	-	1	-	4	1	2	2	2	-	-	
chlorite-Py-Cp, 2K-chlorite, gamet-magnetitediopside (Px)-epidote, red-brown gamat, chip 1.8 m along 060: CHL shears contain semi-massive Py-Cp 1-3 cm (320° trend), frct's $0200^{\circ}, 080^{\circ}$, Cp-bowGa-D-																												
020B-28					SKN		020350	2.4	3.5	10		1	2	-	-	10	0.5			.	4	1	2	1	1	-	1.	
continued from 27: $2 \mathrm{k}-\mathrm{CHL}$-Ga-D-Mag-Calc-Silicate, TrBoftamished Cp?, frct's 350 ${ }^{\circ}, 010^{\circ}, 090$, limonite on 010°.																												
02DB-29	0628340	6337580			SKN		0	2.0	3.0	5		0.5	1	-	-	25	-	-	-	-	4	-	-	2	3	2	-	
chip/grab of subcrop boulders and bedrock, along 045 ${ }^{\circ}$ trend, coarse grained Px-AMPH-Ga-Ep-Mag + Ca SKN, epidote and clay tone.																												
020B-30					SKN		3300°	0.3	1.5	20		1	1	-	-			1	\cdot	-	-	$3 ?$	1	2	2	\cdot	-	
continued from 29: $\mathrm{Ga-D}+$ pink feldsparcalc silicate flooding, veins; with clots, veinlets of massive Cp , with mice envelopes, pegmatite?, sample ends at large tree root.																												
02DB-31					SKN		31070 W	1.0	3.0	20		0.5	0.76		-	2	1	1	1	1	2	$3 ?$	-	2	1	1.	1	
Location: 1 m northeast of 30 , sample trend 045°, similar to 30, pale cream to pink, bleached, sheared, pathcy remobilized clots, lenses, semi-massive veins of Cp and Py, decreasing Cp to end of sample.																												
02DB-32					SKN		310°	0.07	1.5	80		5	10	-	-	1	1	[5	-	2	-	1	.	I.	5	-	1	
Location: @ 31, semi-massive Py, Cp in epidoto-calc-silicate SKN, sheared, brecciated matrix, weakly vuggy quartz.																												

02DB-33					SCH		31070s	0.35	1.5	5		-	0.1			-		10	-	0.5		1	1	2	-	-	2	3	1	-
Continued from 31, pale-dark green Ep-D/Px schist, weak sericiteopidote-quartz + Ca veining $10-25 / \mathrm{m}, 1-2 \mathrm{~mm}$, brittle fracture veins, vuggy with trace Cp																														
02DB-34					SKN			-	2.0	1		. 5	1			-		20	1	1		-	1	4	-	1	-	-	-	-
Location: 2 m southwest of 29, similar to 29, coarsegrained Px-AMP SKN with magnetite clots, dark-pate green, sulphide clots, remains open																														
02DP-35	0628317	6337543		12	SCH			-	1.5	1		3	0.1			-		0.5	-	-		-	1	1	-	2	-	-	\cdot	-
quartz-biotite-AMPH-schist, weakly fractured limonite $\operatorname{Tr~Cp,~pale~green~-~white,~} 45 \mathrm{~m} @ 260^{\circ}$ from DH83-3																														
020B-36.	0628341	6337540		6	M3D			-	1.5	1		0.5	0.5			-		0.5	-	-		-	3	-	1	3	-	1	-	-
Location: 10 m northwest of 35, grey-white fine-grained crowded feldspar porphyry, v. fine Px/AMPH, browm mica, Py, Cp, replace mafics and feldspar, weakly fractured with FeOx, Cp.																														
02DE:124	L18W	1+25s			SKN		045	0.10	2.5	60		1	0.5		-	-		70	20	.		1	-	5	-	1	2	2	-	1
VIP, @ P99 DR-65 + P99 BK-11, dig out extension to zone, brab, massive magnetite and specularite and Cp-Mal																														
02DB-125	0629189	6338642	1231	9	SKN			-	2.0	-		-	3		-	-		-	-	-		-	\cdot	-	-	-	-	-	-	-
grey-pale green calc-silicate + red-brown gamet with FG magnetite + Cp(3\%) 25 m NW of DH 83-1,2																														
02DB-127					HNF	Snr		-	2.5	10		-	-			-		1	-	1		4	4	1	-	-	1	1	-	2
float 10 m east of 128N 47+00E, intense pervasive sil, CCDY, vuggy, crushed and shoared, 1-2\% Jar-Goet breccia.																														
028M-32	0629211	6338648		7				-	-	-		-	2			-		-	10	15		-	-	4	-	-	-	-	-	-
grab from olc, stly magnetic, diopside-gamet-magnetite+-epidote skam, weak carb along fractures, sugary white mable																														
02BM-33	0629194	6338655		7				-	-			-	1-2			-		-	-	-		-	-	-	-	-	-	-	-	-
grab from subcrop / o/c, diopsidegamet (bm) -apidote skam, dilssem, blebby and namrow stringers of CPY, non-magnetic, Tr mol																														
028M-34	0629200	6338644		7				-	-	-		-	tr-1			-		\cdot	-	-		-	-	-	-	-	-	-	-	-
grab from olc, diopside-magnetite-epidote-gamet (bm) skam, Tr -1\% cpy dissem, blebs, stringers																														
O2BM-35	0629208	6338670		7				-	-	-		24	Tr		-	-		-	-	5		-	-	-	-	-	-	-	-	-
grab from suberop, diopside-magnetitogamet skam, Tr po, weak lim																														
02BM-36	0628933	6338510		7				-	-	-		Tr	\cdot		\cdot	-		-	-	5		-	-	3	-	-	-	-	-	-
float sample, f.g., light greeen micaceaus sitstone, weak lim along fracs, strly magnetic																														
02BM-37.	0829015	6338749						-	-	-		Ir	-		-	-		-	-	5		\cdots	\cdot	\bullet	-	-	-	\cdots	\cdot	-
brab from o/c, f.g.-m.g. micaceous siltstone, white-beige, weak lim along fractures, non-magnetic																														
02BM-38:	0629156	6338972		7				-	-	-		Tr	-		-	-		-	-	-		-	-	2	-	-	\cdot	\cdot	-	-
grab from o/c, m.g., micaceous siltsone, baven qtz veinlets (10-12 mm wide), modly magneti																														
02BM339	0629161	6338955		8				-	-	.		\cdot	-		-	-		-	\cdot	-		-	-	-	-	-	-	-	.	-
float, f.g. - m.g., weakly micaceous siltstone, 2 cm wide qlz veinlet, no visible suiphides																														
O2BN-40								-	-	-		Tr	-		-	-		-	-	-		\cdots	-	-	-	-	3	3	\cdot	3
near 02BM-38, continuous chip over $1 \mathrm{m@} \mathrm{288}$, located $3 \mathrm{m@} \mathbf{2 8 0}^{\circ}$ from 02BM-28, modly micaceous sittstone with possible bedding or fracture foliation @ 007/78 NW																														
02BM-41	0629439	6339052		10				-	-	-		3-5	It		-	\cdot		-	-	-		-	-	-	-	-	\cdot	-	\cdot	-
grab from o/c, strily gossonous, orange-bm (WS), dark green (FS), meta siltstone?, arg + propylific alt has destroyed remnant fexttures, boxwork textures																														
02BM-52	0628580	6339097		13				-	Grab	-		-	Tr		-	-		-	5	5		-	-	-	-	.	4	-	-	-
grab from subcrop, sheared granite to granodite, vuggy-drusy 2 cm wide qiz veinlet																														

02BM-234	0628160	6337212						Grab		-	Tr-2	Tr-2							-	-	-	-		-	-	-	.	-	
028M-235	0628160	6337212					-	Grab		-	Tr-2	Tr-2	-			.			-	.	.	1.		.		.		1.	I-
test pit, L36, 4+00S: grab from olc, same as 02BM-234																													
02BM-236							-	-			-	Tr					-		.	-	-	.		-	-	-	-	-	
test pit L20W, 0+50S to 0+75S, quartite - Tr cpy																													
02BM-237							\cdot	-		-	Tr-1	Tr	-		\cdot	-	20		20	.	-	-		-	-	-	-	\cdot	-
test pit L20W, $0+50 \mathrm{~N}$ modly gossanous metasitstone, Tr-1\% py, Tr cpy mod lim +hem																													

Rock Sample Descriptlon Sheet
Stealth Minerais Limited
Area: VIP

Toodoggone Project

Number	m	m	m	m	Code		00000	m	kg	Vein	Py	CP_{p}	Sp	G	Mag	Hem	Lim	Otz	Ser	Mag	k-fold	Biot	ChI	Ep	Ca	Clay
02DB-156					M3	+		3.0	-	-	1	3.0	-	-	4	1	-	-	2	-	3	-	2	2	-	-
trench $2,30-33 \mathrm{mNE}$ wall, massive veins and diss Cp in qtz-(Go) Ep-K-Feld alt'd CFpMz																										
V-T1-1.					Sch	She		3.0	-	1	-	-	-	-	-	1	-	1	-	2	-	4	1	1	-	1
(0-3.0 m) pale green f.g. foliated bioite-muscolite shcist mod-strongly fractured, sheared, white-pale-orange zeolite-clay filled fractured, quartz-calc-silicate veins with trace FeOX																										
$\because \mathrm{V}-\mathrm{T} 1-2$					Ms/Skn			3.0	-	-	0.5	0.1	-	-		0	-	-	-	2	-	.	3	2	-	-
(3.0-6.0 m) pale green - orange brown f.g. meat siltstone + skn brown garnet																										
V-T1-3					Skn			3.0	-	-	0.1	1.0	-	-	-	2	0.5	-	-	4	-	\cdot	2	5	-	1
$(6.0-9.0 \mathrm{~m}$) dark green brown m.g. mag-ep-diopside/Px/actinolite + gamet coarse grained clots, blebs with Cp (1%) >>Py (0.1%) red FeOx filled fractures, 10 cal 110\% cp in $5-10 \mathrm{~cm}$ veins																										
V-T1-4					Sch	Shr		3.0	-	1	0.1	0.1	-	-	1	1	.	1	-	3	-	4	1	2	-	-
(9.0-12.0 m) dark green black f.g. biotite-gamet schist, diopside +f.g. gamet crystals, sheared, quartz-calc-sil fractures 1.5 mm																										
V-T1-5								3.0	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
(12.0-15.0 m) as above, strongly sheared/fautted, pale white clay/pyroxinoids? zeolite veins																										
V-T1-6								3.0	-		-	-	-		-		-	-	-	-	-	-	-	-	-	-
($15.0-18.0 \mathrm{~m}$) as above, massive, less foliated																										
V-T1.7					Skn			3.0		5	0.5	0.5	-	-	-	3	1	1	-	2	-	-	-	3	\cdot	-
(18.0-21.0 m$)$ pale green, f.g. massive calc-sil, $\mathrm{d} \pm$ ep \pm ga, mod frct'd with red FeOx gouge, matrix repl with v.FG, py, cp , grey fault gouge 2-3 mm, qtz veinlets $1-2 \mathrm{~mm}$, hard but broken, fautted near end.																										
V-T1-8					Skn			3.0					-		-	.	-	1	-	3	-	-	-	3	.	-
(21.0-24.0 m$)$ green brown, fine grained, massive calc-silicate/sicarm, sheared/shattered, gamet-Ep-D, pink-white qtz-calc-sil to zeol filled frct's, gouge, increasing py, cp , mag to end																										
V-T1.9					Skn			3.0			0.5	2.0	-		10	3	2	-	-	4	-		-	3	-	-
($24.0-27.0 \mathrm{~m}$) dark orange brown, massive calc-silicate, ga-ep-d, cp > py, mag variable with FeOx hemjoettijar , malachite, ga-cp veins, increasing shearing and gouge to end, decreasing cp																										
V-T1-10					Skn			3.0	-		0.5	1.0	-	-	10	2	2	-	-	4	-	.	-	3	-	-
(27.0-30.0 m) pale green purple orange brown calc-sil skn ga-ep-d-mag, massive, hard, mod-strg frotd, sheared with red FeOx gouge, cp repl. matrix, mag-gacp 1% veins with epidote, some grey fault																										
V-T1-11					Skn			3.0	-		0.1	0.2	-	.	5	2	5	.	.	3		-	2	4	-	-
(30.0-33.0 m) pale dark green, f.g. ep-ga skn, ga-ep-d, mod chl + clay alt'd fautishears with red FeOf + lim																										
V-T1-12					Skn			3.0	-		0.5	0.5	-	-	10	2	1	-	-	4	-	-	1	4	-	1
(33.0-36.0 m) pale dark green omage brown calc-sil skn mag-ga-ep-d, green mica, omage-pink feldipar veins, zeol, with c.g. cp, strong red FeOx fret's + ep-clay neea grey fault gouge																										
V-T1-13					Skn			3.0	-	-	0.1	0.1	-	-	5	2	0.1	-	.	2	.	-	-	3	-	-
($36.0-39.0 \mathrm{~m}$) pale olive green brown ga-ep-d skn, soft, sheared, pink-orange qtz-feld? veins/zeol $5-10 \mathrm{~mm}$ (scapolite?) foliated schist																										
V-T1-14					Sch			3.0	-	-	0.1	0.1	-	-	5	2	0.1	-	\cdot	2	\bullet	-	-	3	-	-
($39.0-42.0 \mathrm{~m}$) as above, 10% pink-orange calc-sil/qta/zeo/veins in dark green black biotite sch locally sil + weak ga-d																										

Rock Sample Description Sheet
Stealth Minerals Limited
Area: VIP

Toodoggone Project

NAD 83 UTM																										
Sample	East	North	Elev.	EPE	Rock	Text.	Stru.		Grab	\%	\%			\%				Pervasive Alleration scale 1-5								
Number	m	m	m	m	Code		00000	m	kg	Voin	Py	Cp	sp	G1	Mag	Hem	Lim	Qtz	Ser	Mag	k-fedd	Biot	Ch	Ep	Ca	Clay
V-T4-15					Sch			3.0	-	-	0.1	0.1	-	-	2	2	0.1	-	-	1	-	-	-	2	-	1
($42.0-45.0 \mathrm{~m}$) as above, b-muscovite schist gouge locally																										
V-T1-16					Maed			3.0		-	0.1	-	-		1	1	0.1	-	-	1	-	-	-	1	-	1
black qlz-px-b foliated meta sediment, Tr FeOx frct's pink felds(?) veining decreasing end																										
V-T2-1	0628314	6337575		11				3.0		-		Tr-1	-	-	-		-	-	-	2	-	-	-	\bullet	-	-
($0-3.0 \mathrm{~m}$): skam: diopside + act + ep + gamet (bm), weakly-modly mag, @ 1-2 mm increase in magnetite (blebs) + blebs of cpy, Tr -1\% dissem + blebby cpy, @ 2.8 -3.0 m weak hem along fractures, weak-																										
V-T2-2								3.0		-	-	Tr-1	-			20	-		-	3	-	-	-	-	-	-
($3.0-6.0 \mathrm{~m}$): skam: inverse in magnetite + diopside + act, diopside + act + mag + Ep + gamet (bm), strify frac between 3.5-6.0 m, possible fault, mod-str zoolite (pink) + hem along fracs, gougy in part, Tr-1\% dissem cpy associated with magnetite																										
V-T2-3								3.0		-	-	Tr-2				20			.	4	-	-	.	-	-	-
(6.0-9.0 m) skam: diapside + act + gamet (bm) + $\mathrm{Mg}+\mathrm{Gp}$, mod hem along fracs, modly frac, weak qtz veinlets, str copy, Tr-2\% dissem + blebby, bonded cpy																										
V-T24								3.0				Tr. 1		-		20			.	4	-	-	-	-	-	
(9.0-12.0 m): modly frac skam, stly mag, greenish-brown, diopside +act + gamet (bm) + magnetite + Gp, Tr-1\% cpy-dissem, blebby + stringers along fracts, mod-hem + pink zeolite along fracs																										
V-T2-5								3.0		-		It		-		10	-	-	.		.		-	-	-	\cdot
(12.0-15.0 m): modly-strly frac skam + mixed meta sitstone, weak-mod biotite, gougy in part, skam: diopside + act + gamet (bm) + magnetite + ep, Tr dissem + blebby copy in qz-marble bx, vuggy-drusy in part, leached, weak hem + str pink zeolite																										
V-T2.6								3.0	-		-	-	.			-	-		-	-	-	-	-	-		-
($15.0-18.0 \mathrm{~m}$): f.m.g, grey, weakly frac feld + qtz + biotite porphyry dyke, weak skarn gamet +ep in part, weakly to modly mag, weak pink zeolite along fracs, slicks @ 15.2 m, F.P. @ $150 / 85$ SE, slicks pitching 42 NW - up - zeolite along fracs @ 180/69E																										
V-T2.7								3.0		-		Ir			-		.		.	-	I.		-	-	-	-
(18.0-21.0 m): feldspar + qtz + biotite porphyry dyke + weak skam: diopside +ep + gamet (bm), Tr cpy, mod.pink zeolite along fracs																										
V-T2-8								3.0		-	-	Ir	.		-				-	-			-	-	-	-
(21.0-24.0 m) as V-T2.7 without skam																										
V-T2-9								3.0	-	-	-	Tr	-	-	-		-	-	-	-	-			-	-	-
(24.0-27.0 m): feldspar + qz + biotite +1 - honb dyke, Tr dissem cpy, weakly mag, mod-strty sil																										
V-T2-10								3.0			-	Tr	-	-	-	-	-		-	-	-	-		-	\bullet	-
(27.0-30.0 m): as V-T2-9																										
V-T2-11								3.0	-		-	Tr	\bullet		-		-		-	-	\cdot	-	-	-	\cdot	-
($30.0-33.0 \mathrm{~m}$): feld + qtz + biotite porphyry dyke, Tr dissem cpy, increase in magnettie, modly to str. mag, striy hornfels - sil																										

Stealth Minerals Limited Toodoggone Project
Area: VIP

NAD B3 UTM

Number	m	m	m	m	Code		00000	m	kg	Vein	Py	Cp	Sp	G!	Mag	Hem	Lim	at	Ser	Mag	k-feld	Biot	Ch	Ep	Ca	Clay
V-T2-12								3.0	-	-	-	Ir	-	-	-	-	-	-	-	\cdot	-	-	-	-	-	-
(33.0-36.0 m): feld + qtz + biotite, Tr dissem + blebby cpy + weak diopside + act + mag skam, Tr blebby + dissem cpy, strly silthomfeld, mod mag																										
V.T2-13								3.0	-	-	-	1-2	-	-	-	-	-	-	-	-	-	-	-	\cdot	-	-
(36.0-39.0 m); str cpy (1-2\% dissem + blebby), mod-str. magnetite, str k-spar altered inturive dyke, remnant feldspar - alteration has destroyed some text, stryy homfels/sil, Tr boomite																										
V-T2-14								3.0	-	-	-	$1-2$	-	-	-	-	-	-	-	-	-	-	.	-	-	-
($39.0-42.0 \mathrm{~mm}$): as V-T2-13 without bomite, with 1-2\% dissem + blebby cpy, mod mal, banded magnetite + weak diopside + magnefite skam +1-act +ep + gamet (bm)																										
V.T2-15								3.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\cdot	-	-
(42.0-45.0 m): modly-striy frac, feldspar porphyry, str pink zeolite along fracs © $213 / 70^{\circ} \mathrm{NW}$, gougy in part, stty mag in part, weak-mod k-spar, no visible sulphide																										
V-T2-16								3.0	-	-	-	-	-	\cdot	-	15	.	.	.	-	-	\cdot	-	\cdot	-	-
(45.0-48.0 m): as V -T2-16 with weak-mod hem along fracs + woak ep veinlets, gougy in part																										
V-T2-17								3.0	-	-	-	\cdot	-	-	\cdot	-	-	-	-	-	-	-	-	\cdot	\cdot	-
(48.0-51.0 m): mod-str k-spar alt, porphyry dyke, mod chl +ep along fracs, mod manganese stain along fracs, mod part zeoilite along fracs																										
V-T2-18								3.0	-	-	-	-	-	-	-	-	-	\cdot	-	-	-	-	-	-	-	\cdot
(51.0-54.0 m): weakly frac, massive augite porphyry dyke, dark green, mafic, strly mag																										
V-T3-1					V -sed			3.0	-	-	-	0.1	-	-	\cdot	2	-	-	3	-	-	-	4	1	-	-
(0-3.0 m) pale green grey f.g. volcaric/sediment, sheared contact Hbl GD + calc sil																										
V-T3:2					V-89d			3.0	-	-	0	0	-	-	-	3	-	-	4	-	-	-	3	1	-	-
(3.0-6.0 m) as above																										
V-T3-3					+8kn			3.0	-	-	0.1	0.3	-	-	-	2	-	-	2	-	\cdot	-	1	1	\cdot	-
(6.0-9.0 m) sheared contact HbI GD + calc-sil zone, ep-d? strong																										
V-T3-4					Gd			3.0	-	-	0	0	-	\cdot	-	-	-	\cdot	3	1	-	-	3	2	\cdot	-
(9.0-12.0 m) sheared pale grey green granodiorite, pyroxine, actinolite, diopside																										
V-T35					Gd			3.0	-	\cdot	0	0	-	-	-	-	-	-	2	1	-	-	3	2	\cdot	-
(12.0-15.0 m) as above																										
V-T3:6					Gd			3.0	-	-	0	0	-	-	-	-	-	-	2	1	-	-	3	2	\cdot	\cdot
(15.0-18.0 m) as above																										
V - $3-7$					+8kn		165180	3.0	-	-	0.1	0.1	-	-	-	-	-	-	3	2	-	\cdot	3	2	-	\cdot
(18.0-21.0 m) px-amph, act, near f.g. crowded foldspar poryphyry dike																										
V-T3-8.					+8kn			-	\cdot	-	0.1	0.1	\cdot	-	\cdot	\cdot	-	-	2	2	-	-	3	2	-	-

NAD 83 UTM																										
Sample	East	North	Elev.	EPE	Rock	Text.	Stu.			\%						\%					ervasive A	Niteratio	scale			
Number	m	m	m	m	Code		00000	m	kg	Vein	Py	Cp	sp	GI	Mag	Hem	Lim	Qt	Sor	Mag	k-feld	Biot	Chl	Ep	Ca	Clay
(21.0-24.0 m) orange washed calc-silicate in gd/skn																										
V-T3-8					Gd		36093	3.0	-	-	0.1	0.1	-	-	-	1	-	-	4	1	-	-	2	1	-	-
(24.0-27.0 m) strong sericite shears, hnf wallrock																										
V-T3-10					Gd			3.0	-	-	0	0	-	-	-	3	-	-	3	-	-	-	3	1	-	-
pale-olive green diopside / px																										
V-T3-11					+8kn			3.0	-	-	0	0	-	-	-	2	-	-	3	-	-	-	3	1	-	-
($30.0-33.0 \mathrm{~m}$) as above																										
V-T3-12					Gd			3.0	-	-	0	0	-	-	-	1	.	-	1	-	-	-	3	2	-	-
(33.0-36.0 m) as above, less diopside																										
V-T3-13:					Gd			3.0	-	-	0	0	-	-	-	1	-	-	1	.	-	-	3	2	-	-
(36.0-39.0 m) as above, increasing shearing, sericite (coarse grained)																										
V-T3-14					Gd			3.0	-	-	0	0	-	-	-	2	-	-	3	-	-	-	4	1	\cdot	\cdot
(39.0-42.0 m) strong sericite and sheared																										
: V - 3 - 15					Gd			3.0	-	-	0	0	-	-	-	1	-	-	3	-	-	\cdot	4	2	-	-
(42.0-45.0 m) moderate, sheared, v.weak diopside?																										
V-T3-16					Gd			3.0	-	-	0	0	-	-	\cdot	1	-	-	4	-	-	-	3	1	-	-
(45.0-48.0 m) as above																										
V-T3-17					Gd			3.0	-	-	0.1	0	-	-	-	-	-	-	5	-	-	\cdot	4	2	-	-
(48.0-51.0 m) intense sericite / white mica, px																										
V-T3-18					Skn			3.0	-	-	0.1	0.1	-	-	-	4	-	-	2	-	-	\cdot	3	3	-	-
(51.0-54.0 m) contact Gd/Skn Ga-Ep-D, strong specular hematite, $\mathrm{Ga}(3) \mathrm{D}(3)$																										
VT3-19					Skn			3.0	-	-	0	0	-	-	-	2	-	-	3	-	-	\cdot	3	2	\cdot	-
(54.0-57.0 m) Ga(2) D(2) spec hem																										
V-T3-20					CFp			3.0	-	-	0	0	-	\cdot	-	1	-	-	4	\cdot	1	\cdot	4	2	-	-
(57.0-60.0 m) pale grey crowded feldspar porphyry with albite-k-foldspar veins																										
V-T3-21:					CFp			3.0	.	-	0	0	-	-	\cdot	\cdot	-	-	2	2	\cdot	\cdot	3	1	-	-
(60.0-63.0 m) as above, minor k-feldspar veins, weakly magnetic																										
V-T3-22					+8kn			3.0	-	-	0	0	\cdot	-	\cdot	-	-	-	2	1	\cdot	\cdot	3	2	\cdot	-
(63.0-66.0 m) weak Ga(1) $\mathrm{D}(1)$																										

NAD 83 UTM																										
Sample	East	North	Elov.	EPE	Rock	Text.	Stru.	W	Grab	\%	\%	\%	\%	\%							vasive A	Aleration	scale			
Number	m	m	m	m	Code		00000	m	kg	Vein	Py	Cp	Sp	Gl	Mag	Hom	Lim	Qtz	Ser	Mag	k-feld	Biot	Chl	Ep	Ca	Clay
V-T3-23					Skn		-	3.0	-	-	0	0.1	-	-	-	2	-	-	3	2	-	-	2	3	-	-
(66.0-69 m) Ga(3) D(3) Ep(3) Mod skn \pm qtz-k-feld veins																										
V-73-24					+5kn			3.0	-	-	0	0.1	-	-	-	2	-	-	3	2	-	-	2	3	-	-
(69.0-72.0 m) as above, + Gd/CFp																										
V-T3-25					+8kn			3.0	-	-	0	0.1	-	-	-	1	-	-	3	2	-	-	3	3	-	-
(72.0-75.0 m) Ga(1) D(1) \pm albite? $\mathrm{Gd} / \mathrm{CF} p$																										
V-T3-26:					+ 8 kn			3.0	-	-	0.1	0.2	-	-	-	1	-	-	3	2	-	-	3	3	-	-
(75.0-78.0 m) Ga(1) $\mathrm{D}(1)$ as above																										
$\bigcirc \mathrm{V}$ T $3-27$					+8kn			-	-	-	-	-	-	-	-	2	-	-	3	2	-	-	3	3	-	-
(78.0-81.0 m) Ga(2) $\mathrm{D}(1)$ as above																										
V-T3-28					HNF			3.0	-	-	0	0	-	-	-	4	-	-	4	1	-	-	4	2	-	-
(81.0-84.0 m) Ga(2) $\mathrm{D}(2)$ pink-orange feldspathic veins																										
V -T3-29					HNF			3.0	-	-	0	0	-	-	-	4	-	-	4	1	-	-	4	2	-	-
(84.0-87.0 m) as above																										
V.T3-30					HNF			3.0	-	-	0.1	0.1	-	-	-	3	-	-	5	0	-	-	4	2	-	-
($87.0-90.0 \mathrm{~m}$) as above, intensely sheared, sericite / white mica																										
V.T3-31					Skn	Shr		3.0	-	-	0	0	-	-	-	2	-	-	4	0	-	-	3	3	-	\bullet
(90.0-93.0 m) Ga(2) $\mathrm{D}(2)$, intense shear																										
\because V73-32					Skn			3.0	-	-	0	0	-	-	-	1	-	-	3	1	-	-	3	2	-	-
(93.0-86.0 m) Ga(2) $\mathrm{D}(3)$, sericite decreasing																										
$\bigcirc \mathrm{V}$ T3:33					Skn			3.0	-	-	0	0	-	\bullet	\bullet	3	-	-	3	3	1	-	2	2	-	-
(93.0-96.0 m) minor pink feidspar (k-feld?) veins																										
V-13-34					MSkn			3.0	-	-	0	0.2	-	-	\bullet	3	-	-	3	3	1	-	2	1	-	-
(96.0-99.0 m) Ga(1) D(2) pink feldspar veins, increasing Px																										
V.T3-35					Px Skn			3.0	-	-	0	0	-	-	-	2	-	-	4	0	-	-	3	2	-	-
(99.0-102 m) Ga(1) D(3) med-course grained Px, weak Ep																										
$\mathrm{V}=13-36$					Skn	Shr		3.0	-	-	0.1	0	-	-	-	4	-	-	4	0	-	-	3	1	-	-
(102.0-105.0 m) Ga(0) $\mathrm{D}(3)$ shearing at end, strong hem																										
V-13-37.					Skn	Fit		3.0	-	-	0	0	-	-	-	3	-	-	3	0	-	-	3	4	-	-

Number	m	m	m	m	code		00000	m	kg	Vein	Py	cp	sp	G	Mag	Hem	Lim	Qu	Ser	Mag	k-fadd	Biot	chl	Ep	Ca	Clay
(105.0-108.0 m) Ga(0) D(3), strong hem																										
V-T3-38					PxSkn			3.0	-	\cdot	0	0	-	-	-	3	.	.	3	0	.	.	3	3	.	.
(108.0-111.0 m) Ga(0) D(3), dark green c.g. Px meta volcanic banded and frac +replacement hematite																										
V-73-38					Skn			3.0	-	-	0.1	0.3	.	-	-	4	-	1	4	4	-	.	4	4	-	.
(111.0-114.0 m) Ga (3) D(3), at ledge mag hem skn																										
V-T3-40					Skn			3.0	-	-	0.2	1.0	-	-	-	4	-	2	4	4	-	.	3	4	-	-
(114.0-117.0 m) Ga(3) D(4) bottom of ledge, mag hem skn																										
V-T3-41					3kn	Fth		3.0	-	-	0.1	0.1	.	-	.	2	.	1	4	0	.	-	4	2	-	-
(117.0-120.0 m) Ga(3) D(3) Ga increasing																										
V-T3; 22					Skn	FH		3.0	-	-	0.1	0.0	-	-	-	3	-	.	4	0	.	.	3	2	-	1
(120.0-123.0 m) Ga(3) D(3), ser-clay fault, Hnf mseds/volc																										
V.T3-43					Hnt			3.0	-	-	0.1	0	-	-	-	2	-	1	3	0	-	-	3	3	.	-
(123.0-126.0 m) Ga(0) D(1) dark green matavolc / sed, qtz-k-feld bx vein $5-10 \mathrm{~cm}$																										
V-T3-44					PxHnf			3.0	-	-	0.1	0	-	-	\cdot	1	-	.	3	2	.	-	3	2	-	\cdot
(126.0-129.0 m) Ga(0) D(2) Px metased/volc, banded, qtz-ca, chl-Ep-D																										
V-T3-45					PxHnt			3.0	-	-	0.1	0	-	-	-	2	-	.	3	1	.	.	3	2	.	-
(129.0-132.0 m) Ga(1) D(3), dark green Px mseds																										
V-T3.46					skn			-	-	-	0.1	0.1	\cdot	-	-	2	-	.	3	2	.	.	2	3	-	.
(132.0-135.0 m) Ga(3) D(3), Ga-Ep-D skn																										
V.T3-47					HNF			3.0	-	-	0.1	0	-	\cdot	\cdot	2	\cdot	.	3	0	.	-	2	3	.	-
(135.0-138.0 m) Ga(2) D(3). Hnf msed																										
V -T3-48					Hinf			3.0	-	-	0	0	-	-	-	0	-	.	3	0	-	-	2	2	\cdot	-
(138.0-141.0 m) Ga(0) D(2) as above																										
V-T3-49.					Hif			3.0	-	-	0	0	-	-	-	1	-	.	2	1	\cdot	-	2	2	.	-
(144.0-147.0 m) Ga(1) D(2) banded Hnf msed																										
V -T3-50					Hnf			3.0	-	-	0	0	-	-	-	0	-	-	3	0	-	\cdot	1	3	-	-
(147.0-150.0 m) Ga(1) D(1) as above																										
V-T3-51					HndSkr			3.0	\cdot	-	0	0	-	-	\cdot	0	.	-	3	0	-	-	1	4	-	-
($150.0-153.0 \mathrm{~m}$) Ga(3) D(3) Ga-D veins, Ga-Ep-D vns																										

Rock Sample Description Sheet
Stealth Minerals Limited
Area: VIP

Sample	East	Noth	Eler.		Rock	Text												Penvasve Alleration Ecale 1-5								
Number	m	m	m	m	Code		00000		kg	Voin	Py	cp_{p}	sp	${ }_{6}$	Mas	Hem	Lim	Qt	Sor	Mag	k-10dd	Biot	Chl	Ep	Ca	Clay
(195.0-198.0 m) Ga(4) D(0) sheared Chl-Ep-Ser + D/actinolite skn + Hni Mseds / mvole Qtt-Ca vein																										
V-T3-67					Skn			3.0		-	0.5	1.5	-	-	-	3	-	-	3	0	.	.	3	3	-	-
(198.0-201.0 m) Ga(2) D(3) Ga-marble skn cut by strong sericite-clay gouge, Qt-Ca veins + Bx, Ba?																										
V-T3-68.					skn			3.0	-	-	0.1	0.2	-	-	-	3	-	-	3	2	.	-	4	3	-	-
(201.0-204.0 m) Ga(2) D(3) Garmarbie +Ga-D-actinolite? skn, chi-ser silps, bo? Qt-Ca veins +Cp																										
V-T3-69					PxMy			3.0	.		0.1	0.1	-	-	-	2	-	-	3	0	-	\cdot	3	2	2	-
(204.0-207.0 m) Ga(2) D(3) Chl-Ca, Fp																										
V-13.70					PxiNr			3.0	-		0.1	0	-	-	-	2	-	-	3	0	.	-	3	2	3	.
(207.0-210.0 m) Ga(1) D(3), sheared Chl-Ca, Augite-Ep																										
V-T3-71					PxAN			3.0			0	0	-	-	.	3	.	-	2	0	-	.	4	2	2	
(210.0-213.0 m$) \mathrm{Ga}(0) \mathrm{D}(3)$ as above, Chl-Ep-Ca veins with spoc hem																										
V -73-72					NwMar			3.0	\cdot	-	0	0	-	-	-	2	-	-	3	0	-	.	4	3	2	
($213.0-216.0 \mathrm{~m}$) Ga(1) D(3) as above, Chl-Ep-Qtz-Ca velins with spec hem																										
V.73-73.					Mv			3.0	\cdot	-	0.1	0	-			2	-	-	3	0	\cdot	-	4	4	3	.
(216.0-219.0 m) Gaj(0) D(2) spec hem at end																										
V-T3-74					Mv			3.0	-		0.1	0	-	-	-	2		-	3	0	-	-	4	4	3	-
(219,0-222.0 m) Ga(0) D(2) Mv + marble?, strong Caveins +Ep + spec hem																										
V-T3-75					\cdots			3.0	-		0.1	0	-	-	-	3	-		3	0	-	-	4	4	3	\cdot
(222.0-225.0 m) Ga(0) D(2) Qtz-Ca veins + spec hem																										
V-T3.76					Mv			3.0	-	-	0	0	-	-	-	2	-	-	3	0	-	-	4	4	3	-
(225.0-228.0 m) Ga(0) D(0), increasing Ep-Ca-spec veins, Ex strong ser + clay frct's, sheared Fp?, pink-orange clay veins																										
V.T3-77					Mv	Shr		3.0	-		0.1	0.1	-	-	-	2	-	-	5	0	-	-	3	2	3	3
($228.0-231.0 \mathrm{~m}$) Ga(0) D(0) strong veining as above, Qtz-Ca veins + Py-Cp, sheared ser																										
V-T3-78	0628191	6337423	1208	5	Mv	Shr		3.0	-	\cdot	0	0	-	\cdot	\cdot	2	-	.	5	0	-	\cdot	2	2	4	3
(231.0-234.0 m) Ga(0) D(0) strong faut/ shear intense sericite + clay, end of tench L.34W $2+50 \mathrm{~S}$																										
0208-167	0628050	6337573	1269	[5	SKN	LST	100208	-		-	2	4	-	-	20	5	-	-	2	-	2	\cdot	3	3	-	\cdot
trench 3a @ 023*, 0-2.0 m@0.0 m, massive magnetite-chalcopyite pod's lenses, veins, Mag Go-Ep-D SKN CpZMag																										
02DB-158					SKN	LsT		-	-	-	2	3	-	-	20	5	-	-	2	-	2	-	3	3	-	\cdot
trench $3 \mathrm{a}, 2.0-4.0 \mathrm{~m}$ as above, increasing gamet D to end																										

Number	m	m	m	m	Code		00000	m	kg	Vein	Py	CP_{p}	Sp	GI	Mag	Hem	Lim	Ctz	Ser	Mag	k-feld	Biot	Cht	Ep	Ca	Clay
02DB-159					SKN	LST		-	-	-	2	2	-	-	40	5	-	.	3	-	2	.	3	3	-	-
trench 3a, 4.0-5.1 m as above, malachite-Cp, magnetite $>\mathrm{CD}$, fault @ 040° and 280°																										
V -T4-1.	0628452	6337039		8				3.0	-	-	-	Tr-1	-	\cdot	-	30	-	-	-	-	-	-	-	-	-	-
($0-3.0 \mathrm{~m}$): str chl + sercite allered, mod mag, greenish-black (FS), mod specularite,narow qlz + calcite veinlets $\sim 2-5 \mathrm{~mm}$ wide, st mal +Tr - 1% dissem + blebs + stingers cpy, weak-mod blebs spec + mag, st hem along fracs, sheared faulted, feld $+q \not q+$ biotite porphyry dyke																										
V-T4-2								3.0	-	-	-	$\mathrm{Tr}-1$	-	-	-	30	-	-	-	-	.	.	.	-	-	.
(3.0-6.0 m): as V-T4-1																										
V-T4.3								3.0	-	-	-	Tr-1	-	-	-	30	-	-	-	-	-	-	-	-	-	-
(6.0-9.0 m): as V-T4-1																										
V-T4-4								3.0	-	-	-	Tr-1	-	-	-	30	.	-	-	-	-	.	\cdot	$-$	-	-
(9.0-12.0 m): as V-T4-1																										
V-T4-5								2.0	-	-	-	Tt-2	-	-	-	30	-	-	-	-	-	.	-	$-$	-	-
(12.0-14.0 m) as V-T4-1, Tr-2\% dissem + blebby + stringer cpy, st mal																										
V-T5-1	0628546	6338692		7				3.0	-	-	-	Tr	-	-	-	-	-	-	-	2	-	-	-	-	-	-
(0-3.0 m) 》 3.0 m : north skam: v.str spec + mag skam (in part), +1- ep +1- act, Tr cpy																										
V - 7 5-2								3.0	-	-	\bullet	Tr	\cdot	-	\bullet	-	-	-	-	2	-	-	\cdot	$-$	\bullet	-
(3.0-6.0 m) » 3.0 m : north skam, v.str spec + mag (in part), skam + str zones of ep + ser + qzz, Tr cpy + mal																										
V-T5-3								3.0	-	-	-	Ir	-	-	-	-	-	\bullet	\cdot	2	-	-	-	\cdot	-	-
(6.0-9.0 m) n 3.0 m : north skam, v.str spec + mag (in part) \pm ep \pm act skam																										
V-T5-4								3.0	\bullet	-	\cdot	Tr	-	\cdot	-	\cdot	-	\cdot	.	2	-	\cdot	-	-	\cdot	-
(9.0-12.0 m) \% 3.0 m : north skam, v.str spec + mag (in part) \pm ep \pm gamet \pm act skam, Tr mal + cpy																										
V-T5-5								3.0	-	-	-	Tr-1	-	-	-	-	-	-	-	4	\cdot	-	\cdot	\cdot	-	-
(12.0-15.0 m) n $3.0 \mathrm{~m}:$ north skam, v.str mag + spec +ep + gamet skam, Tr-1\% + cpy, str mal																										
V -T5-8								3.0	-	-	\checkmark	Tr	\cdot	-	-	-	-	-	-	2	-	-	-	-	-	\cdot
(15.0-18.0 m): north skam: gamet + spec + mag +ep skam + mixed homfels + meta seds, Tr mal + cpy																										
V-T5-7								3.0	-	-	-	Tr	-	-	-	-	-	\cdot	\cdot	-	-	-	\cdot	\cdot	\cdot	\cdot
(18.0-21.0 m): north skam: gamet + spec + mag +ep sakrn + mixed nomfesl + meta seds, Tr mal + cpy																										
V-T5-8								3.0	-	-	-	Tr	\checkmark	-	-	\cdot	-	\cdot	\cdot	-	\cdot	\cdot	\cdot	-	-	\cdot
(21.0-24. m): north skam: meta seds + homfels + mixed chl + ser alt intrusive (granodiorite) f.g. green homfels, end trench																										

Rock Sample Description Sheet
Stealth Minerals Limited
Area: VIP

NAD 83 UTM																										
Sample	East	North	Elov.	EPE	Rock	Text.	Stru.	W	Grab	\%	\%	\%	\%	\%	\%	\%	\%	Pervasive Atteration scale 1-5								
Number	m	m	m	m	Code		00000	m	kg	Vein	Py	Cp	sp	G	Mag	Hem	Lim	az	Ser	Mag	k-feld	Biot	Ch 1	Ep	Ca	Clay
V-T6-1	0628499	6338551		24				3.0	-	-	-	Tr	\cdot	-	-	-	-	-	-	-	-	-	-	-	-	-
($0-3.0 \mathrm{~m}$): north skam: 10.5 m south along line from L24W, $3+25 \mathrm{~N}$, mixed marble + gamet +ep skam \pm act + spec, Tr mal + cpy near contact with marble - 8tr hem at contact																										
V -T $6-2$								3.0	-	-	-	Tr	-	-	-	-	-	.	.	-	-	-	-	-	-	-
(3.0-6.0 m); north skam: mixed marble + gamet \pm ep skam, Tr mal + cpy																										
V-T0-3								3.0	-	-	\cdot	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(6.0-9.0 m) : north skam: gamet \pm ep skam + homfels																										
V-T6-4								3.0	-	-	\checkmark	Tr-2	\cdot	-	\cdot	30	\cdot	-	-	-	-	-	-	-	-	\cdot
(9.0-12.0 m): north skam: marble + gamet + spec +ep \pm act skam, str mal +az, Tr-2\% dissem, burds, blebs, stringers cpy, str cpy at contact with marble, going down marble contact in trench, str																										
V -T6-5								3.0	-	-	-	Tr-2	-	-	-	20	.	-	-	-	-	-	-	-	-	-
(12.0-15.0 m) north skam: gamet \pm ep, str mal + cpy, Tr-2\% cpy, blebs, stringers, dissem, no magnetic, weak-mod hem																										
V-T6-8								3.0	-	-	-	-	-	-	\cdot	-	-	-	-	-	-	-	-	-	-	-
(15.0-18.0 m): north skam: str spec hem in gamet +ep skam, Tr mal																										
V-T0.7								3.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\cdot	.	-
(18.0-21.0 m): notth skam: gamet skam \pm ep, weak hem, modly frac																										
V - $\mathrm{T}-8$								3.0	\cdot	-	\cdot	-	-	-	-	-	-	-	-	-	-	-	-	-	.	-
(21.0-24. m): north skam: as V - 76.7 + homfels																										
V-T8-8								3.0	-	-	-	Tr	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(24.0-27.0 m): north skam: gamet \pm ep skam + homfels																										
V.T6-10								3.0	-	-	Tr	Ir	-	-	\cdot	-	-	-	-	-	.	-	\cdot	-	\cdots	-
(27.0-30.0 m): north skam: modly homfels metaseds, f.g. green, Tr cpy + py																										
V-T6-11								3.0	\cdots	-	-	-	\cdot	\cdot	-	-	-	-	-	-	-	-	-	\cdot	\bullet	-
($30.0-33.0 \mathrm{~m}$): north skam: aplithe to granitic dyke, feld-atz \pm homblende - f.mg, flesh colour																										
V - T -12	\square							3.0	-	-	Tr	-	\cdot	-	-	-	-	-	-	-	-	-	-	-	\cdot	\cdot
(33.0-36.0 m): north skarn: mlxed dyke + meta seds, f.g. dark green + chle, modly homfels, weak qte veinlets																										
V-T6-13								3.0	-	[Tr-1	-	-	-	-	-	-	\cdot	-	-	-	\cdot	\cdot	-	-	-
(36.0-39.0 m): north skam: mixed granitic feldspar - qtz porphyry + meta seds, f.g. dark green, modly homfels, Tr -1\% py																										
V-T0-14								3.0	-	-	Tr	Tr	-	-	-	-	\cdot	-	-	-	-	\cdot	-	-	.	-
(39.0-42.0 m): north skam: as V-T6-13, + Tr py + cpy, mod qz2 veinlets in modly homfels meta seds																										
V-TQ-15								3.0	-	-	Tr	-	-	-	-	-	-	-	\cdot	\bullet	\cdot	\cdot	\cdot	-	\bullet	-

Rock Sample Description Sheet
Stealth Minerals LIImited
Area: VIP
Toodoggone Project

NAD 89 UTM																										
Sample Number	$\begin{gathered} \text { East } \\ \mathrm{m} \\ \hline \end{gathered}$	North m	$\begin{gathered} \text { Elev. } \\ \mathrm{m} \end{gathered}$	$\begin{gathered} \mathrm{EPE} \\ \mathrm{~m} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Rock } \\ & \text { Code } \end{aligned}$	Text.	Stu. 00000	$\begin{aligned} & \hline \text { W } \\ & \mathrm{m} \end{aligned}$	$\begin{aligned} & \hline \text { Grab } \\ & \mathrm{kg} \end{aligned}$	$\begin{gathered} \% \\ \text { Vein } \end{gathered}$	$\begin{aligned} & \text { \% } \\ & \text { Py } \end{aligned}$	$\begin{aligned} & \% \\ & c_{p} \end{aligned}$	$\begin{aligned} & \% \\ & \text { \%p } \end{aligned}$	$\begin{aligned} & \% \\ & \mathrm{G} \end{aligned}$	$\begin{gathered} \text { \% } \\ \text { Mag } \end{gathered}$	$\begin{gathered} \hline \% \\ \text { Hem } \end{gathered}$	$\begin{aligned} & \text { \% } \\ & \text { Lim } \end{aligned}$	Pervasive Alferation scale 1-5								
																		Qt	Ser	Mag	k-feld	Biot	Ch	Ep	Ca	Clay
V-T12-2								3.0	-	-	-	Ir	-	-	-	-	-	.	.	.	-	-	-	-	-	.
(3.0-6.0 m): east skam: skam: str spaec + gamet (bm) +ep \pm mag in part, Tr mal + cpy																										
V.T12-3								3.0	-	-	-	Tr	-	-	-	-	-	-	-	-	-	.	-	-	-	-
(6.0-9.0 m): east skam: skam: str spec + gamet (bm) +ep \pm mag + mixed gamet (bm) +ep skam \pm spec \pm mag, Tr mal + cpy																										
V-T12-4								3.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(9.0-12.0 m): east skam: mixed homfels (meta siltstone) + narow felsic dyke (feld + qtz \pm blotite) porphyry, sty ep $+k$-spar along fracs + garnet (bm) +ep skam with weak + spec \pm mag in part																										
V-T12-5	0629196	6338635		7				3.0	-	-	-	-	-	-	-	-	-	-	-	.	.	.	-	-	.	-
(12.0-15.0 m): east skam: homfels (meta sitstone), f.g. green, modly honfels, mod qtz veinlets																										
V-T13-1	0629171	6338338		11				3.0	-	\cdots	-	Tr	-	-	\bullet	\cdots	\cdot	\cdot	-	-	-	\bullet	-	-	\bullet	-
(0-3.0 m): east skarm: marble-white c.g., contact with skam @ $1.7 \mathrm{~m} @ 51 / 58 \mathrm{SE}$, skam mod-str spec + gamet (bm) +ep + mag. Tr mal + cpy. Magnetite in some areas and not in others - spotty.																										
V-T13-2								3.0	-	-	-	-	-	-	-	-	-	.	-	-	.	.	-	-	-	-
(3.0-6.0 m): east skam: skam: spec + garnet (bm) +ep + magnetite (spotty) Tr mal																										
V-T13-3								3.0	-	-	-	\bullet	\bullet	\bullet	\bullet	-	-	-	-	-	-	-	.	-	\cdot	\cdot
(6.0-9.0 m): east skam: gamet (bm) + ep - mixed andesite dyke (f.g. dark green, feldspar pheros, modly magnetic, dark ground mass)																										
V -T13-4								3.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\cdot	-	-
(9.0-12.0 m): east skam: skarn: gamet (bm) +ep + spec, non-magnetic																										
V-T13-5								3.0	-	\bullet	Tr	-	\cdot	\cdot	\cdot	-	-	-	-	-	-	-	.	-	\cdot	\cdot
(12.0-15.0 m): east skam: skam: gamet (bm) + ep + weak - mixed homfels (meta siltstone) @ 14.4 mdoly-stry homfels																										
V-TT3:6	0629182	6338624						3.0	-	-	Tr	-	\cdots	\cdots	\bullet	*	-	.	-	-	-	-	-	-	\cdot	-
(15.0-18.0 m) : east skarn: homfels (modly-strly homfels meta seds), weak-mod qtz veinleats, narrow feld +qtz \pm blotite \pm homb dyke with str ep along fracs																										
V-T17-1:	0629008	6338326						3.0	-	-	-	-	-	-	-	-	-	.	.	\cdot	-	-	-	-	-	-
(0-3.0 m): east skam: marble with c.g. + weak mixed homfels (modly homfels meta seds)																										
V-T17-2								3.0	-	-	-	-	-	\cdot	-	-	-	-	-	-	-	-	.	-	-	-
(3.0-6.0 m): east skam: gamet (bm) + ep skam + mixed homfels (meta seds) --modly homfels, Tr mal along fracs in skam																										
V.T17-3								3.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\cdot
(6.0-9.0 m): east skam: dark green, f.g. homfels (meta seds) + gamet (bm) \pm ep skam																										
V-T17-4								3.0	-	-	-	-	-	-	-	-	\cdot	\cdot	-	-	-	-	\cdot	-	\cdot	\cdot
(9.0-12.0 m): east skam: gamet (bm) \pm ep + dark green, f.g. homfels (meta seds)																										
V-T17-5								3.0	\cdot	-	\cdot	\cdot	\cdot	\cdot	-	-	-	-	\cdots	\cdot	-	-	-	\cdot	-	-

Rock Sample Description Sheet
Stealth Minerals Limited
Area: VIP
Toodoggone Project

NAD 83 UTM																										
Sample	East	North	Elev.	EPE	Rock	Text.	Stru.							\%		\%	\%				vasive	Hteratio	scale			
Number	m	m	m	m	Code		00000	m	kg	Vein	Py	Cp	Sp	Gl	Mag	Hem	Lim	atz	Ser	Mag	k-feld	Biot	Ch	Ep	Ca	Clay
(12.0-15.0 m): east skarn: gamet (bm) + weak ep + white c.g. marble @ contact 14.8 m																										
V-T17-8								3.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(15.0-18.0 m): east skam: marble - white, c.g.																										
V-T17-7	0629017	6338321		7				3.0	-	-	-	-	-	-	-	-	-	-	-	.	-	-	-	-	-	-
(18.0-21.0 m): east skam: marble - white, c.g.																										
V-T16-1	0628087	6338528						3.0	-	-	-	It	-	-	\bullet.	-	-	-	-	-	-	-	-	\cdot	$-$	-
(0-3.0 m): east skam: gamet (bm) + ep skam, modly frac, Tr mal + cpy, contact with marble - white, c.g. @ $1.1 \mathrm{m@} \mathrm{39/58} \mathrm{SE}$																										
V-T18-2								3.0	-	-	-	-	-	-	-	-	-	-	-	.	-	-	\cdot	-	-	-
(3.0-6.0 m): east skam: marble - white, c.g., weak chl + ep along fracs, weak layer of gamet (bm) +ep skam ~ 30 cm wide @ 39/62SE																										
V-T18-3								1.0	-	-	Tr-1	-	-	-	-	-	-	-	-	-	-	.	-	-	-	-
(24.0-25.0 m): east skam: str sleeted qtz veinlets + stockwork in f.g. homfels + marble + gamet (bm) + ep skam Tr-1\% py																										
V-17:1					BMs			3.0	-	-	0.1	0	-	-	\cdot	0	-	-	3	3	-	-	2	1	-	-
(0-3.0 m) Gg(0) $\mathrm{D}(2) \mathrm{GD}$ dike 10 cm																										
V-T7-2					Q8Ms	Shr		3.0	-	-	0.1	0	-	-	\cdot	0	-	-	2	3	-	-	2	1	\bullet	-
($3.0-6.0 \mathrm{~m}$) Ga(0) $\mathrm{D}(1)$																										
V-17.3					BM3			3.0	-	-	0.3	0	-	-	-	0	-	-	2	3	-	-	1	1	\cdots	-
(6.0-9.0 m) Ga(0) D(0) GD dike 10 cm																										
V-17-4					BM3			3.0	-	-	1.0	0.1	-	-	-	0	-	-	3	1	-	-	1	1	-	-
(9.0-12.0 m) Ga(0) D(0) B-Ser-meta siltstone, small shears with $\mathrm{Py} \pm \mathrm{Cp}$																										
V-T7-5					ams			3.0	-	-	1.0	0.2	-	-	-	0	-	-	3	0	-	-	1	1	-	-
(12.0-15.0 m) Ga(0) D(0) B-quarzite / metasitstone hard																										
V-77.6					QM8			3.0	-	-	0.5	0.2	-	-	-	0	-	\cdot	2	0	-	\cdot	1	1	\cdot	-
(15.0-18.0 m) as above																										
V-77-7					QM3			3.0	-	-	0.5	0.1	-	-	-	\cdot	-	\bullet	2	1	-	-	2	2	\bullet	\bullet
(18.0-21.0 m) Ga(0) D(0) as above																										
V-17-8					QM9			3.0	\cdot	-	0.7	0.1	\cdot	\cdot	-	-	-	-	2	0	\bullet	\bullet	1	1	\cdot	\cdot
(21.0-24.0 m) Ga(0) D(0) as above																										
V-T7-9					QM3			3.0	-	-	0.7	0.2	-	\cdot	-	0	-	\cdot	3	1	-	\cdot	1	1	\cdots	\cdot
($24.0-27.0 \mathrm{~m}$) Ga(0) D(0) as above																										

NAD 83 UTM																										
Sample	East	North	Elev.		Rock	Text.	Stu.	w	Grab	\%	\%			\%							Nasiva	Neratio	n scale			
Number	m	m	m	m	Code		00000	m	kg	Vein	Py	Cp	Sp	G	Mag	Hem	Lim	Qtz	Sor	Mag	k-feld	Biot	Cnl	Ep	Ca	Clay
V-77-10					QBM9			3.0	-	-	0.5	0.1	-	-	-	0	.	.	3	0	-	-	0	0	-	-
(27.0-30.0 m) Ga(0) D(0) quartz biotite sch																										
V-77-11					CMm			3.0	-	-	0.5	0.1	-	-	-	0	.	.	3	1	-	-	0	0	-	-
(30.0-33.0 m) Ga(0) D(0) biotite quartzite																										
V-T7-12					BQMs			3.0	-	-	0.2	0.1	-	-	-	0	-	.	3	2	-	-	0	0	-	-
($33.0-36.0 \mathrm{~m}$) Ga(0) D(0) biotite quartzite metasilistone																										
V-7-43					BQM			3.0	-	-	0.3	0.1	-	-	-	-	-	.	3	1	\cdot	-	1	1	.	-
(36.0-39.0 m) Ga(0) D(0) BQtz metasiltstone																										
V-77-14					B0M3			3.0	.	-	1.0	0	-	-	-	0	-	.	2	0	\cdot	-	0	0	-	-
(39.0-42.0 m) Ga(0) $\mathrm{D}(0)$ as above																										
V-T7-15					BOM 3			3.0	-	-	2.0	0.1	-	-	-	0	-	-	2	1	-	\cdot	0	0	-	-
(42.0-45.0 m) Ga(0) D(0) as above																										
V.77-16					QM3			3.0	-	-	0.3	0	-	-	-	0	-	-	2	0	-	\square	0	0	-	-
(45.0-48.0 m) Ga(2) D(2) f.g. q'z metasiltstone																										
V-77-17					ams			3.0	-	-	0.5	0.1	-	-	-	0	-	-	3	0	-	\cdot	0	1	-	-
(48.0-51.0 m) Ga(1) D(4) quartzite + green Ga skam																										
V-77-18:					QM3			3.0	-	-	1.5	0	-	-	-	0	-	-	3	0	-	-	1	1	-	-
(51.0-54.0 m) Ga(4) D(4) as above																										
V-77-19					Oms			3.0	-	-	1.0	0	-	-	-	0	-	-	3	0	.	\cdot	1	1	-	-
(54.0-57.0 m) Ga(3) D(2) brown Ga																										
V-7720					QMa			3.0	-	-	1.5	0	-	-	\bullet	1	-	-	3	0	-	\cdot	0	1	\cdot	\cdot
(57.0-60.0 m) Ga(3) D(2) brown Ga, FeOx shear																										
V-T7-21					Skn			3.0	-	-	0.5	1.5	-	-	-	3	-	-	3	5	-	-	0	3	-	-
(60.0-63.0 m) Ga(3) D(3) mag-Ep-D skn sheared																										
V-77-22					skn			3.0	-	-	0.5	1.0	-	-	-	3	-	-	3	5	.	\cdot	0	2	-	-
(63.0-66.0 m) Ga(2) D(3) mag-Ep-D skn + marble sheared																										
V-77-23					Skn			3.0	-	\cdot	0.5	0.5	-	-	-	2	-	-	3	4	-	-	0	2	$-$	-
(66.0-69.0 m) Ga(3) D(2), as above + minor metasilistone, FeOx																										
V-T7-24					Mar			3.0	-	\cdot	0.3	0.2	-	-	-	2	-	\cdot	2	3	-	-	-	2	-	.

\square
L
Γ
[
E-
E.-
L.
[.
\square
E
E
\square
[]
-
L.

Rock Sample Description Sheet

Stealth Minerals Limited

Area: VIP

Number	m	m	m	m	code		00000	m	kg	Voin	Py	cp	Sp	G1	Mag	Hem	Lim	Qt	Sor	Mag	k.feld	Biot	Chl	Ep	Ca	Clay
(69.0-72.0 m) Ga(3) D(3) marble + metasiltstone																										
V-T7-25					Mar			3.0	-		0.3	0.2	-	-	-	3	.	.	3	3	-	.	1	2	-	.
(72.0.75.0 m) Ga(2) D(2) as above, shearad mantle and quartite / metasilistone																										
V-77-28					Mar			3.0	-	\cdot	0.5	0.1	\cdot	-	-	3	-	.	3	3	-	-	1	3	-	-
(75.0 .78 .0 m) Ga(3) D(3) as above, sheared																										
V-77-27					Skn			3.0	-	-	1.0	0.2	-	-	.	0	-	-	2	4	.	-	1	2	-	-
(78.0.-81.0 m) Ga(4) D(4) green Ga skn ms																										
V-77-28					BM3			3.0	-	.	1.0	0	-	-	-	0		-	2	2	-	-	0	1	-	
(81.0-84.0 m) Ga(1) D(3) massive biotite metasilistone																										
V. 77.29					BM9			3.0	-	-	1.0	0.1	-	-	-	0		-	2	2	-	-	0	1	-	.
(84.0-87.0 m) Ga(1) D(2) as above, Ep in shears, end of Trench 7																										
0208-156.					M	$1+$		3.0	\cdot		1	3.0	-	-	4	1	2	\cdot	-	-	3	\cdot	2	2	-	-
trench $2,30-33 \mathrm{~m} \mathrm{~N}$-E wall, massive vains and diss, Cp in Q2z-(Ga) Ep-K-Fold alitd CEpMz																										
02DB-157	0682050	6337573	1269	5	Skn	L.to	100202	2.0	-	-	2	4	\cdot	-	20	5	-	-	2	-	2	-	3	3	\cdot	-
trench 3a@023 ${ }^{\circ} 0-2.0 \mathrm{m@} 0.0 \mathrm{~m}$, massive magneite, chalcopyitte POD's lenses, veins, Mag Ga-Ep-D SKN CpZMag																										
02DE-158					Skn	Lot		2.0	-	-	2	3	-	-	20	5	.	.	2	-	2	-	3	3	-	\cdot
trench 3a, 2.0-4.0 m as above, increasing gamet - D to end																										
02DB-159					Skn	L.88		1.1	\cdot	\cdot	2	2	-	-	40	5	.	-	3	-	2	-	3	3	-	\cdot

NAD 83 UTM																										
Samplo	East	North	Elev.	EPE	Rock	Text.	Stu.	W		\%	\%	\%	\%	\%	\%	\%	\%	Pevvasive Atteration scale 1-5								
Number	m	m	m	m	Code		000000	m	kg	Vein	Py	Cp	Sp	G1	Mag	Hem	Lim	Qtz	Ser	Mag	k-fold	Biot	CH	Ep	Ca	Clay
02DB7	0835222	6335475	1704	4	Dat			-	1.0	1	2	-	-	-	-	2	2	2	3	-	-	-	\bullet.	-	-	4
froat 5 m northwest of old drill site, argelfic, breccia, FeOx, Ba, vuggy boxwork, weak silicification, trace quartx and hem veins $<1 \mathrm{~mm}(8.6,0.66)$																										
0208-8	0835175	6335488	1699	5	Dat			-	3.0	2	1	-	-	-	-	3	2	3	2	-	-	-	-	-	-	4
float northwest of 7, fumerolic hematite, bleached, silicified, breccia, quartz-chalcedony veiniets, vuggy with hematite-limonite and boxwork after pyrite, sample is of 3 floats in a 10 m area (9.2 , 0.19)																										
02DB-9	0635157	6335500	1694	4	Dat			-	1.0	3	-	-	-	-	-	4	3	3	3	.	-	.	.	-	-	4
30 m northwest of grey, bleached, vuggy boxwork with limonite-hematite +/-quartz (weak veinlets 1-3 mm) float, tsarite, bladed hematite on barite? (109.5, 0.64)																										
020B-10	0635112	6335486	1694	4	Dat			0.20	3	3	\cdots	-	-	-	\cdot	5	5	4	3	\bullet	\cdots	-	-	-	-	4
float 10 m east of GOODB-23, vuggy quartz, silicification strong hematile-limonite, breccia, bladed barile and x-culting irregular quartz veinlets lining drusy cavities, crusted with hematite (112.9, 9.56)																										
02DB:11	0634989	6335938	1616	7				-	0.5	100	2	-	-	80	-	2	5	-	.	2
float of massive CG galena vuggy quartz veins in float nearby with Py, L.p																										
0208-12					Dat			-	2	40	0.5	0.1	-	-	-	5	2	4	1	-	-	-	-	-	-	1
Location: 20 m northeast of 11. Float, vuggy, comb quartz and strong silicification, Bx, Py, TrCp, note approximately 10 m@ $060{ }^{\circ}$ to $\mathrm{L} 34 \mathrm{~N}, 48+50 \mathrm{E}(8.6,0.46)$																										
02DB-13	0635063	6335929	1611	5	Dat			-	2	2	0	-	-	-	-	3	5	2	3	-	-	-	-	-	-	4
float strong clay altered Fp , moderate silicification, local comb quartz																										
02DB-14					Dat			-	2	1	-	-	-	-	-	5	10	4	3	-	-	-	-	-	-	4
Location: 5 m south of 02BM-25. Float, 15 m west of GOODB-23, vuggy, residual boxwork, silicification lattice with lim/hem (0.8, 0.04)																										
02D8-15	0634846	6335388	1712	5	Afp	Stk	310, 045	20×20	4	5	0.2	0.1	-	-	-	1	-	-	2	-	1	-	3	3	3	1
augite-feddspar porphyry, pale-dark green moderate sericite-epidote-calcite, wk 2 k veinlets(?), moderate calcite veins, breccia, stk outcrop																										
02DB-16	0634871	6335179	1755	5	And	Stk	040	2.0	2	5	0.1	0.1	-	-	-	1	-	1	2	-	-	-	3	3	3	-
Orage feldspar andesite crystal tuff, quartz-Ca veiniets, Stk, Tr, Py																										
02DB-17:	0834925	6335437	1696	4	And		340°	-	1	10	0.2	0.1	-	-	-	2	1	1	3	-	-	-	3	3	2	1
float in ravine, walirock intense gossan-Py propylitic Fx+ whitectear quartz, comb, Bx vugs																										
02DB37	0835343	6335471		6	Da	Stk	310°	1.0	2.0	2	-	-	-	-	-	5	2	2	-	-	-	\bullet	-	-	-	4
grey-brown dacile breccia, X-cut by Q-HEM-JAR-goet veinlets $2 \mathrm{~mm} 020-040^{\circ}, 310-330^{\circ}$ shear																										
02DB-38	0635241	6335545		5	Da	Stk		-	1.5	5	*	-	*	-	\cdots	5	0.5	2	-	-	-	-	-	-	-	4
dacite - Bx, weakly vuggy, boxwork, sil matrix, strong white clay Q-Ep vacing feldspar, weak x-culting quarlz veinlets with Lim-Hem-Jar-goet																										
02DB.39	0635279	6335468		5	Da			\cdots	1.0	10	-	\cdots	-	-	-	5	2	4	-	-	-	-	-	-	-	3
float 10 m east of 128N 47+00E, intense pervasive sil, CCDY, vuggy, crushed and sheared, 1-2\% Jar-Goet breccia.																										
$0208-40$	0635301	6335484		5	Da	Stk		-	1.5	20	-	-	-	-	-	$?$	7	4	\bullet	-	-	\bullet	\bullet	-	-	3
float, as abve, quartz-hematle veins, crushed, sheared, brecciated.																										
$\therefore 02 \mathrm{DB-41}$.	0635326	6335580		5	Da	Bx		0.5	2.0	20	-	\bullet	-	-	-	1	1	5	-	\bullet	-	-	-	-	-	3

NAD 83 UTM																										
Sample Number	East m	$\begin{aligned} & \text { North } \\ & \mathrm{m} \end{aligned}$	Elev.m	$\begin{array}{\|c} \mathrm{EPE} \\ \mathrm{~m} \end{array}$	$\begin{aligned} & \text { Rock } \\ & \text { Code } \end{aligned}$	Text.	Stu.$000 / 00$	$\begin{aligned} & \mathrm{W} \\ & \mathrm{~m} \end{aligned}$	$\begin{gathered} \text { Grab } \\ \mathrm{kg} \end{gathered}$	$\begin{gathered} \hline \% \\ \text { Vein } \end{gathered}$	$\begin{aligned} & \hline \% \\ & \text { Py } \end{aligned}$	$\begin{aligned} & \% \\ & \mathrm{Cp} \end{aligned}$	$\begin{aligned} & \% \\ & \mathrm{sp} \end{aligned}$	$\begin{aligned} & \% \\ & \mathrm{GI} \end{aligned}$	$\begin{gathered} \hline \% \\ \text { Magg } \end{gathered}$	$\begin{array}{\|c\|} \hline \% \\ \text { Hem } \\ \hline \end{array}$	$\begin{gathered} \text { \% } \\ \text { Lim } \end{gathered}$	Pervasive Alteration scale 1-5								
																		Qt	Ser	Mag	k k-feld	Biot	Chl	Ep	Ca	Clay
T208-50.	-1	0			Fxt		278010	1.0	\cdot	-	-	-	-	-	-	3	1	1	1	-	-	-	2	1	-	2
trench 2 pale green-maroon, fine grained feldspar crystal tuff, weak sausserite-clay, soft, blocky fractures, +1-chlorite																										
T2DB-51:	0	2			Fxt		318180	2.0	-	5	-	-	-	-	-	5	5	1	1	-	-	-	2	1	-	3
trench 2 cont'd, as above, maroon tuff, last meter Lim-Jar + - weak goet along slips																										
T20B-52.	2	4			Fxt			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	.	-
trench 2 cont'd, as above																										
T208-53	4	6			Fxt	Shr	318180	2.0	-	10	-	-	-	-	-	20	5	3	1	.	-	-	2	1	-	4
trench 2 contd, strong shear $/ \mathrm{m}_{1} 20 \mathrm{~cm}$ Sil+CCDY Bx+Jar-goet, 0.8 m soft, sheared maroon Fxtfiow?																										
T208-54	6	8			Fxt	Shr	100180	2.0	-	1	-	-	\cdot	\cdot	-	5	2	1	1	.	-	-	2	-	-	4
trench 2 cont'd, as above, maroon Fxt, sheared with local googe, Bx, strong clay, Lim + Jar + goet (minor), Sil fragments at end.																										
T2DB-55	8	10			Fxt		110188	2.0	-	-	-	-	-	-	-	10	5	4	-	-	.	-	-	-	-	4
trench 2 cont'd, from 8-9, strong Sil, weak Bx, mod-strongly broken; $9-10$ mixed maroon Fxt, soft, sheared with Sil fragments																										
2DB-56	10	12			Fxt	Shr		2.0	-	5	-	-	-	-	-	10	5	2	-	-	-	-	-	-	-	4
trench 2 cont'd, pale green, moderate (Ser)-clay $=1$ - Chl, sheared along sample, some cobbles of Sil and CCDY																										
T2DB-57:	12	14			Fautt	Fil	110188	2.0	-	1	-	-	-	-	-	2	2	4	-	-	.	-	.	-	-	4
trench 2 contd, fault gouge with Sil + Jar + goet fragments (25\%), moderate clay and Sil wallrock																										
T2DB-58	14	16			Fxt	Flt	110188	2.0	-	-	-	-	-	-	-	-	-	3	-	-	-	-	-	-	-	3
trench 2 contd, pale grey-maroon Da Fxt, moderate Sil, with Jar-goet shear 0.5 m , shattered along fault zone																										
T2DB-59:	16	18			Fxt		310	2.0	-	-	-	-	-	-	-	3	2	3	-	-	-	-	.	\cdot	-	3
trench 2 cont'd, as above, increasing Hem + Pyrophillite (Pyroph) along fractures																										
T2DB-60	18	20			Faull	Fil	290	2.0	-	-	-	\cdot	-	-	-	5	5	-	.	.	-	-	-	-	-	5
trench 2 cont'd, massive fault gouge subparallel sample																										
T2DB-61	20	22			Fault	FH		2.0	-	\cdot	-	-	-	\cdot	-	-	-	-	-	-	-	-	-	-	-	5
trench 2 contd, as above (\#60)																										
T2B2-62	22	24			Fault	Ft	320n0	2.0	-	5	-	-	-	-	-	5	5	3	-	\cdot	-	-	-	-	-	4
trench 2 cont'd, fault forim, then maroon Fxt, Sil, cut by cream-white Qtz-Pyroph viens $2-5 \mathrm{~cm}$																										
T2DB-63	24	26			Faull	Flt	13050	2.0	-	2	-	-	-	\cdot	-	8	3	3	-	-	-	-	-	-	-	4
trench 2 cont'd, as above, sheared, broken, increasing FeOx, Hem, goet, minor Qtx-CCDY veinlets, vuggy																										
T20B-64	26	28			Fault	Flt		2.0	-	1	-	-	-	-	-	8	3	3	-	-	.	-	-	-	-	3
Standard Metals Exploration Ltd. ${ }^{\text {a }}$ Date: 5/26/2003																										

Number	m	m	m	m	Code		000000	m	kg	Vein	Py	Cp	Sp	G	Mag	Hem	1 mm	Qt	Sor	Mag	k-feid	Blot	Chl	Ep	Ca	Clay
trench 2 cont'd, as above for 1 m , then soft pale green Fxt, gouge																										
T2DB-65	28	30			Fault	Fil	050990	2.0	-	-	-	-	-	-	-	5	2	1	-	.	-	-	-	-	-	5
trench 2 cont'd, as above																										
T2DB-68:	30	32			Fauth	FII		2.0	\cdot	-	-	-	-	-	-	5	7	1	-	-	-	-	-	-	-	4
trench 2 cont'd, as above for 1 m , then x-cutting fault 1-2 cm with stong Sil (4) + Qiz-CCDY Bx																										
T2DB-67	32	34			Fxt			2.0	-	-	\cdot	-	-	-	-	3	2	2	-	-	-	-	-	-	-	3
trench 2 conttd, maroon Fxt, blocky but more competent than previous																										
T2BDB-68	34	36			Fxt		320980	2.0	-	-	-	-	-	-	-	3	2	2	-	-	-	-	-	-	.	3
trench 2 contd, as above, with minor shear + gouge zones +Jar-goet, local Sil over 5-10 cm																										
T2DB-69	36	38			Fxt		${ }^{25088}$	2.0	-	5	-	-	-	-	-	7	5	4	.	-	-	-	.	-	-	2
trench 2 contd, strong Sil, Jar-goet replacing matrix, veins $1-3 \mathrm{~cm}$, vuggy Qtz, porous boxwork, moderately broken, shattered																										
T2DB-70	38	40			Fxt			2.0	-	5	-	-	-	-	-	5	5	4	-	-	-	-	-	-	-	2
trench 2 contd, as above, black FeOx + MnOx stain, pervasive Sil																										
T208-71	40	42			Fxt			2.0	-	5	\cdot	-	-	-	-	5	5	4	-	-	-	-	-	-	-	3
trench 2 contid, as above, moderate to strong Sil, white Sil + Clay alt'd Feldspar, black MnOx $+\mathrm{FeOx}+$ Jar-goet filled fractures/veins																										
T2DB-72	42	44			Faut	Filt	310	2.0	-	2	-	-	-	-	-	5	5	3	-	-	-	.	-	-	-	4
trench 2 cont'd, possible subcrop, fault zone - maroon Fxt, strong clay																										
T2DB-73	44	46			Fxt	Bx	250/80	2.0	-	10	-	-	-	-	-	2	3	4	-	-	-	-	-	-	-	3
trench 2 cont'd, hard, blocky, strong Sil + vuggy Qtz, porous boxwork, Qtz-CCDY Bx with FeOx-Jar-goet-Pyroph veins + - barite?, 1-2 cm. Sample 73a check																										
T2DB-74	46	48			Fxt	Bx		2.0	-	10	-	-	-	-	-	3	3	4	-	-	\cdot	\cdot	-	-	-	5
trench 2 cont'd, grey-white-maroon Fxt, as above, intense Sil (5) zones, Qtz-CCDY Bx in mod. Sil matrix, minor shears with Qtz-CCDY + Jar-goet-Pyroph, shattered, brittle fracture, pervasive Qtz-Pyroph-Clay matrix																										
T20B-75:	48	50			Fxt	Bx		2.0	-	7	-	-	-	-	-	3	3	4	-	-	-	-	-	-	-	4
trench 2 cont'd, as above, Sil shear zones + Bx with clay gouge 1-2 cm, FeOx, MnOx fractures																										
T2DB-76.	50	52			Fxt	Bx	200710	2.0	-	5	-	\cdot	\cdot	-	-	5	5	4	-	-	-	-	-	\because	-	4
trench 2 cont'd, as above, sheeted velns, 1-2 cm of Qtz-CCDY + Pyroph + Jar-goet																										
T20B-77:	52	54			Fxt		180180	2.0	-	20	\square	\cdot	\bullet	-	\cdot	5	5	4	-	-	-	.	\cdot	-	-	3
trench 2 cont'd, grey-maroon Fxt, irregular Qtz-CCDY Bx veins $5-10 \mathrm{~cm}$ with ar-goet-Hem in fractures, sheared Re-Bx																										

Γ \square $[\square]$

NAD 83 UTM

	East	North				Text.											\%	Pervasive Alleration scalie 1.5								
Number	m	m	m	m	Code		00000	m	kg	Vein	Py	cp	Sp	Gl	mag	Hem	Um	Qt	Ser	Nag	k-feled	Brot	Cht	Ep	Ca	Clay
T2DB-78	54	56			Fxt	stk		2.0	-	10	-	-	-	.	-	5	5	3	-	-	-	-	.	-	.	3
trench 2 contd, as above, Clay-Pyroph matix with Hem, 10\% Jar-goet +Qtz-CCDY Bx veins, decreasing Sill to end																										
T2DB-79	56	58			Fx	Stk	09030	2.0	\cdot	10		-	-			4	4	3	-	-	-	-	-	.	-	3
tench 2 contd, grey-pale green Fxt, vuggy, porous Qtz-DDCY veinlest 1-3 mm, + boxwork, faulted 1-3mm gouge-Jar-Pyroph																										
O2DB-80	58	60			Fxt		${ }^{3} 5080$	2.0	-	5		5	5	3	3
tench 2 contd, pale grey-brown-green-maroon, Sil +Pyroph matix + veins in Frct's, patchy Sil (4) + vuggy Otz.																										
02DB-81	60	62			Fxt			2.0		5					-	5	5	3	.	-	-	-	-	.	-	3
trench 2 contd, as above, x-cutting shear at end of sample, highly broken																										
02D8-82	62	64			Fxt	Shr	O883300	2.0	.	5	\cdot	\cdot	.	-	\cdot	5	5	4	1	\cdot	-	-	1	1	-	3
trench 2 contd, maroon Fxt, Sil (4) for 50 cm , then 50 cm puple-maroon fautt - sofftsheared matix with ale green spots, then mod-strong Sil (4) with vuggy Qtz-CCDY + 10% Jar-goet-Hem and Pyroph in veins																										
02DB-83	64	66			Fxt			2.0		10		-	-	-	-	10	10	4	.	-		.	.		-	3
tench 2 cont'd, as above, weak-moderately broken, Jar-goet-Hem + Pyroph veins and vuggy boxwork locally																										
02DE-84	66	68			Fxt	Fit		2.0		5	-	-	-		-	5	5	3	-	-	-	-	-	.	-	3
trench 2 cont'd, grey-pale green Sil (3) Fxt with Qtz-CCDY Bx decreasing: shear-fault with maroon gouge 1 m with wallrock fragments, clay gouge + Jar-goet-Pyroph veinlets																										
02DB-85.	68	70			Fault	Flt		2.0		5		\cdots	-	-		5	7	2	-	-	\cdot	-	\cdot	-	-	4
trench 2 cont'd, fault gouge continued 1 m , grey-green clay couge with Lim-Jar-Pyroph veinlets, $1-2 \mathrm{~mm}$, then moderately Sil (3) grey-white Hem-Pyroph matix Fxt stongly broken																										
026B-86	70	72			Fauth		320	2.0	-	5	-	-	\cdot	-	-	6	7	3	-	-		-	-	-	-	4
trench 2 contd, as above, moderate FeOx, minor MnOx on fractures, weakly vuggy + boxwork, strong clay alt'd wallrock, stong gouge fault in last 35 cm																										
02081-87	72	74			Fault		045	2.0	.	-	.	-	-	.	-	-	.	1	.	-	.	-	-	-	-	5
trench 2 contd, fault gouge with wallrock fragments																										
0208-88.	74	76			Fauth		020	2.0	-		-	-	-	-		-		-	-	-		.	.	-	-	5
tench 2 contd, as above																										
0208-89	76	78			Fxt		0500220	2.0	\cdot	10	\checkmark	$-$	-	-	-	5	5	3	-	-	-	-	-	-	-	4
trench 2 cont'd, olive green-maroon Fxt, strong Bx with Qtz-CCDY viens, 10% Lim-goet + + -Barite? + Pyroph																										
02DB-90	78	80			Bx		22050	2.0	-	10	-	-	\cdot	\cdot	-	5	5	3	-	-	-	-	-	-	-	3

\square
Γ
\square
L

NAD 83 UTM																										
Sample Number	Eastm	$\begin{aligned} & \text { North } \\ & \mathrm{m} \end{aligned}$	Elev. m	$\begin{array}{\|c\|} \hline \text { EPE } \\ \mathbf{m} \\ \hline \end{array}$	$\begin{aligned} & \text { Rock } \\ & \text { Code } \end{aligned}$	Text	Stu. 000100	$\begin{aligned} & \text { W } \\ & \text { m } \end{aligned}$	$\begin{aligned} & \text { Grab } \\ & \text { kg } \end{aligned}$	$\begin{gathered} \text { \% } \\ \text { Voin } \end{gathered}$	$\begin{aligned} & \% \\ & \text { Py } \end{aligned}$	$\begin{aligned} & \% \\ & \mathrm{Cp} \end{aligned}$	$\begin{aligned} & \text { \% } \\ & \text { sp } \end{aligned}$	$\begin{aligned} & \% \\ & \mathrm{GI} \end{aligned}$	$\begin{gathered} \text { \% } \\ \text { Mag } \end{gathered}$	$\begin{gathered} \% \\ \text { Hem } \end{gathered}$	$\begin{aligned} & \% \\ & \text { Lim } \end{aligned}$	Pervasive Atteration scale 1-5								
																		at	Ser	Mag	k-feld	Biot	CH	Ep	Ca	Clay
trench 2 contd, shattered, brittle-fracture zone, mod. Sil (3) + Bx , partially exposed Sil Bx vein with Hem in a pale grey-brown matrix																										
02DB-91	80	82			Fxt			2.0	-	5	-	-	-	-	-	5	5	3	-	-	-	-	-	-	-	4
tench 2 contd, pale grey-white matrix, Bx + Sil (3) with Qtz-Pyroph-Jar-goet veins $0.5 \cdot 3 \mathrm{~cm}$, minor clay gouge																										
02DE-92	82	84			Fxt			2.0	-	5	-	-	-	-	\cdot	10	5	3	-	-	-	-	-	-	-	4
trench 2 cont'd, white-grey-maroon Fxt, Pyroph-clay replacing Feldspar + veins - strong clay (4), minor vuggy Qtz with strong Hem																										
02DB-93.	84	86			Fxt			2.0	\cdots	-	-	-	-	-	-	5	5	3	-	-	-	-	-	-	-	4
trench 2 conttd, grey-white, soft, stong clay + Qtz matrix + veins Qtz-Pyroph-Hem, local Bx																										
02DB-94	86	88			Fxt		320080	2.0	-	5	-	\bullet	\bullet	\cdot	\bullet	5	5	3	-	-	-	-	-	-	-	3
trench 2 cont'd, grey-maroon, mod Sil (3) with Qtz-CCDY, vuggy, porous boxwork, Qtz-flooding up to 10 cm with Jar-goet-Hem + Pyroph veins																										
02DB-95	88	90			Fxt		15070	2.0	-	10	-	-	-	-	-	5	5	3	-	-	-	.	-	-	-	3
trench 2 cont'd, pale grey-maroon Fxt, locat Qtz-flooding, Bx, Sil (up to 5), Jar-goet-Pyroph veins 1-2 mm with veinlets of Hem x-cutting, SAMPLE 96a REPEAT																										
02DB-96a	88	90			Fxt		15070	2.0	-	10	-	-	-	-	-	5	5	3	-	.	-	-	-	-	-	3
Repeat: 02DB-95																										
02DB-97:	90	92			Fxt	Stk	32090	2.0	-	2	-	-	-	\cdot	-	10	3	4	-	-	-	-	-	-	-	5
trench 2 contd, grey-maroon Fxt, strong white clay-Pyroph, $1-2 \mathrm{~mm}$ up to 5 cm veins of Qtz-CCDY Bx, vuggy, Hem 10\%																										
02DB-98	92	94			Fxt	Stk		2.0	-	2	-	-	-	.	-	10	3	4	-	-	-	-	-	.	-	5
trench 2 contd, as above, strong fracturing, britte																										
02D8-99	94	96			Fxt	Stk	280	2.0	-	10	-	-	-	-	-	5	3	4	-	-	-	-	.	-	-	4
trench 2 contd, as above, shattered, grey Qtz-CCDY +1-barite?-Pyroph veins 1-2 cm																										
0208-100	96	98			Fxt	Stk		2.0	-	5	-	\cdot	\cdot	-	-	5	3	5	-	\cdot	-	-	-	-	-	4
trench 2 contd, intense Sil (5) +Qtz-Pyroph, vuggy with Hem 5\%, veins + Bx to 5 cm																										
O2DB-101	98	100			Fxt	Stk		2.0	-	5	-	-	-	-	-	5	3	5	-	-	-	-	-	-	-	4
trench 2 cont'd, as above																										
02DB-102	100	102			Qun		14070	2.0	\cdot	75	-	-	\cdot	-	\cdot	10	3	5	-	-	-	-	-	-	.	3
trench 2 cont'd, $1 \mathrm{~m} \mathrm{Qtz-CCDY}$ pebble Bx, + Qtz-CCDY Bx veins, Qtz-Pyroph + Lim/Jar/Goet veins 1-2 cm																										
02DB-103	102	104			Fxt	Stk	320	2.0	\cdots	10	-	-	\cdot	-	-	7	7	4	-	-	-	-	-	-	-	3
trench 2 cont'd, strong Sil + Pyroph veins, Bx, highly broken along sample plane, Jar/Goet-Hem Bx																										
02DB-104	104	106			Fxt	Stk	310040	2.0	-	30	-	-	-	-	-	10	5	5	-	-	-	-	-	\cdot	-	3

Rock Sample Description Sheet
Area: WRICH

Stealth Minerals Limited
Toodoggone Project

Number	m	m	m	m	Cose		00000	m	kg	Ven	Py	cp_{p}	Sp	G	Mag	Hem	Lim	Qt	Ser	Mag	k-teld	Biot	Ch	Ep	Ca	Clay
trench 2 contd, intense Sil with Qtz-CCDY flooding veins, Bx, vuggy, strong Hem																										
O2DB-105	106	108			Fxt	Stk		2.0	-	30	-	-	-	-	-	10	5	5	.	-	.	-	.	.	.	3
tench 2 contd, as above																										
020B-106.	108	110			Qun	Bx	310	2.0	-	70		-	-	-	-	45	5	5		3
trench 2 cont'd, at top of legs: soft, fault to west, 10-20\% Hem-Jar-Goet + Qtz-CCDY vein Bx, vuggy																										
02DB-107	110	112			Qun	Bx		2.0	-	70		-	-	.	.	15	5	5	.	-	3
trench 2 cont'd, west side of ledge, as above, strong Pyroph-Clay																										
02DB-108	112	114			Qun	Bx		2.0		50	2	-	-	-	-	10	5	5	-	-		-	.	.	.	3
trench 2 contd, as above, intense Sill + vuggy Qtz-Hem Bx, note pyite weak to moderately converted to Jar																										
02DB-109.	114	116			Qun	Bx	320280	2.0		75	2	-	-	-	.	10	5	4	-	3
trench 2 contd, Qtz-CCDY Bx, Pyroph-Clay + Jar-Goet (5), increasing Clay, Pyrite																										
02DB-110	116	118			Fxt	S**		2.0	-	5	-		-	-	-	2	2	3		3
trench 2 contd, subcrop?, pale grey-white clay replacing Feldspar + veinlets, soft, sheared																										
02DB-111	118	120			Fxt		33070	2.0	-	5	-	-	\cdot	\cdot	-	5	5	3	.	-	.	-	.	.	.	4
trench 2 contd, soft, pale green-crey, Fxt, locally Sil (3-4), sheared + fault gouge with wallrock fragments, south wall sample																										
02DB-111a	118	120			Fxt			2.0	-	5	-	-	-	-	-	2	2	2	-	-		3
Trench 2 north wall, clay alfd Fxt fragments +fault gouge, decreasing Sil, Hem																										
02D8-112	120	125			Faut \mid		130180	5.0	.		\cdot	-	-	-	-	-	-	-	.	.	5
trench 2 contd, south wall, subcrop, slay-fautt gouge																										
020B-112a	120	125			Qun	Bx		\cdot	25		\cdot	\cdot	\cdot	-	-	10	5	3	-	4
Trench 2 grab, north wall, subcropp, fault zone with Qtz-CCDY Bx veins, intense Sil, vuggy + Hem, grey Qtz veinlets																										
O2DB-113					Faut		270	\cdot -	-	-		-	-	-	-	-	.		.	.	-	5
trench 2 contd, @135 m, grab of subcropffault zone with clay attd walliock																										
02DE-114	125	130			Fxt			5.0	\cdot	-	\cdot	\cdot	\cdot	\cdot	\cdot	7	5	4	-	.	.	-	.	.	.	3
Trench 2 north wall boulders/subcroploutcrop, adjacent fault zone, highly broken, maroon-grey Fxt, Qtz-CCDY flooding, vuggy, + veinlets $1-3 \mathrm{~mm}$ with Hem																										
02DB-115					Fx			-	2.0	-	-	-	-	-	$\cdot 1$	10	3	-	-	-	.	3
trench 2 cont'd, @131 m, probable outcrop, as above																										
0208-116	135	137			Fx			\cdot	2	25	\cdot	-	\cdot	-	\cdot	10	3	4	.	.	-	.	.	-	-	3

Rock Sample Description Sheet
Area: WRICH
NAD 83 UTM

Sample	East	North	Elev.	EPE	Rock	Text.	Stru,	W	Grab	\%	\%	\%		\%	\%	\%	\%				vasive	Itera	scale			
Number	m	m	m	m	Code		000000		kg	Vein	Py	Cp	Sp	Gl	Mag	Hem	Lim	Qtz	Ser	Mag	k-feld	Biot	Chi	Ep	Ca	Clay

Trench 2 north wall as \#114 above

02DB-117				Fx			-	2	3	-	-			.	-	2	2	3				-		.	.	-	4
Trench 2 @140 m grab, probably outcrop, sof, broken, decreasing Sil, increasing Clay, Jar-Goet 1-3\%																											
T4DB-36	58	60					\cdot	-	-	-	-		-	-	-	-	.	-				.	-	\cdot	-	-	
tench 4, repeat T4DB-20																											
TADB-37	70	72					-	-	-	.	-		-	-	-	-	-	.				-	-	-	.	-	
trench 4, repeat T4DB-26																											
02BM-73	0635344	6335583	4				2.0	\cdot	\cdot	\cdot	-		-	-	-	15	20	2			-	-	-	-	.	-	2

0 mark of TW1, $0-2.0 \mathrm{~m}$, motted, brn-white-grey (WS), grey-purple (FS), dacite, tuft?, weak pyrophylite, weakly to modly sil, weak boxwork text, weak narrow (1 -2 mm) q(z-chalcedony stringers, weak bx

TW1 ($4.0-6.0 \mathrm{~m}$), same diescription as $02 \mathrm{BM}-73$ with qtz-chalcedony veinlets @ 4.9-5.2 m , boxwork text, vuggy-drusy in part, orientation?, bx fragments of qtz-chalcedony in this interval @ 5.7 m mod boxwork and qtz-chalcedony
 TW1 ($6.0-8.0 \mathrm{~m}$), mottled, brn-white-grey (WS), gey purple (FS) dacite porphyry (tuff?), weak pyrophylite, weak qtz-chaicedony stringers in part, @7.5 m a 20 cm wide qtz flooded sone with qiz. chalcedony stringers

TW1, ($10.0-12.0 \mathrm{~m}$), mottled, brn-white-grey-orangy-red (WS), grey-purple (FS), dacite porphyry, tufft, weak pyrophyllite, modly fracs, increase in ql2-chalcedony stringers $+B \mathrm{Bx}$, orientation, increase in boxwork text, iridescence
 TW1, ($12.0-14.0 \mathrm{~m}$), as 02 BM -78, increase in q(z-flooding in dacite, weak qtz-chalcedony stringers $(1-2 \mathrm{~mm})$, and chalcedony +qtz Bx fras, iridescence, weak boxwork text

E
\cdots

NAD 63 UTM																										
Sample	East	North	Elov.	EPE	Rook	Text.	Stu.	W	Grab	\%	\%	\%	\%	\%	\%	\%	\%				vasko	Ateratio	scale			
Number	m	m	m	m	Code		00000	m	kg	Vein	Py	Cp	Sp	G	Mag	Hem	Lim	Qt	Ser	Mag	k-fald	Blot	Chl	Ep	Ca	Clay
iridescence																										
02BM-81								2.0	-	-	Tr	-	-	-	-	5	5	-	-	-	-	-	-	-	-	2
TW1, (16.0-18.0 m), as 02BM-80																										
02BM-82								2.0	\bullet	-	Tr	-	-	-	-	5	5	-	-	-	-	-	-	-	-	3

TW1, (18.0-20.0 m), motted brn-white-grey-orangy-red (WS), grey-purple (FS), weak mixed f.g. Ht brn (tuff-welded?), f.g. matrix with weak feldspar pheros, mainly dacitic poyphyry, weak pyrophyllite, weak qtz-chalcedory stringers ($1-2 \mathrm{~mm}$) weak boxwork

02BM-83								20					-	-					-	5	5					-	.	.	-	-		3
TW1, (20.0-22.0), same as 02BM-82, no visible sulphides																																
02BM-84								2.0												15	10		2						-	-	-	2
TW1, $(22.0-24.0 \mathrm{~m})$, st increase in specular hematite, mod pyrophylite and qtz-chalcedory, reddlsh-grey-yellow-white (WS), purple-grey (FS), dacite porphyry, tufff, weak-mod qtz-chalcedony veinlets ($1-2 \mathrm{~mm}$), mod qtz flooding, weak boxwork																																
02BM-85								2.0					Ir			-	.		-	20	15	5	-			-					-	
TW1, ($24.0-26.0 \mathrm{~m}$), same description as 02BM-84, weak boxwork text, mod specular hem																																
02BM-86								2.0					-			-				25	10	0	-			.				.	-	3
TW1, (26.0-28.0 m), fault zone: gougy, stily fractured, friable, mod-st pyrophyllite, slickensides on fragemnts, dacit porphyry (uufr)																																
028M-87								2.0					-			-			-	25	10	0	-			-					-	3
TW1, (28.0-30.0 m) , same description as 02BM-86																																
02BM-88								2.0					Tr			-	-		-	15	15	15	-	-		-					-	2
$\mathrm{TW} 1,(30.0-32.0 \mathrm{~m}), 2.0 \mathrm{~m}$, more massive, modly frac, orangy-reddish-while-grey (WS), friable in part, pruple-grey (FS), weak-mod lim + hem, weak pyrophylite, trace qtz/chalcedony stringers ($1-2$,mm), trace boxwork text																																
O2BM-89								2.0												15		15				-		.			-	2
TW1, ($32.0-34.0 \mathrm{~m}$), as 028M-88, mod pyrophyllite along some fracs, trace qtz-chalcedony veinlet ($1-2 \mathrm{~mm}$ wide), triable in part																																
028M-90								2.0					-			-			-	15		15	\cdot			\cdot	-	-	-	-	\cdots	2
TW1, ($34.0-36.0 \mathrm{~m}$), same as $028 \mathrm{M}-88$, mod pyrophylite along some fracs, tuffaceous dacite (lithic frags?) with no observable qtz/chalcedony stingers or boxwork																																
02BM-91								2.0				-	-							15		15		I.			.	-		.	\cdot	2
TW1, ($36.0-38.0 \mathrm{~m}$), same as 028M-88, with no observable qtz-chalcedony stringers or boxwork																																
028M-92								2.0				-	-			-				5		5	.			\cdot		-	-	-	-	3
TW1, $(38.0 .40 .0 \mathrm{~m})$, bleached white, friable in part, weak pyrophylite, dacite porphyry, modly sil qtz-chalcedony zone with bx between $39.0-39.4 \sim 0.4 \mathrm{~m}$ wide																																
02BM-93								2.0		-		-	-	-		\cdot	.		-	5		5	.	.		-		.	-	-	-	3

1

NAD 83 UTM																										
Sample	East	North	Elav.	EPE	Rock	Text.	Stru.	W	Grab	\%	\%	\%	\%	\%	\%	\%	\%				vastve	Ateratio	scale			
Number	m	m	m	m	Code		000\%00	m	kg	Vein	Py	Cp	Sp	Gl	Mag	Hem	4 m	Qtz	Ser	Mag	k-fold	Biot	Chi	Ep	Ca	Clay
TW1, (40.0-42.0), same description as 02BM-93, weak specular hematite																										
\cdots 028M-94								2.0	\checkmark	-	-	-	-	-	-	15	15	3	-	-	-	-	-	-	-	3
TW1 (42.0-44.0), increase in silicification and qtz flooding, modly sil, qtz-chalcedony-dacite fragments, Bx to rounded, agglomerate?, weak-mod boxwork text, qtz-chalcedony-dacitic pebble bx zone @126/86 SW																										
028M-95								2.0	-	-	-	-	-	*	-	-	-	3	-	-	\square	-	-	-	-	2
TW1, (44.0-46.0 m), increase in silicification, qtz fooding and boxwork text, weak pyrophyllite, arg, mod sil, weak-mod hem + lim, weak - mod specular hem, dacitic porphyry (tuff)																										
028M-96								2.0	-	-	-	-	-	-	\cdots	30	15	4	-	\cdots	-	\cdots	-	-	\bigcirc	-
TW1, (46.0-48.0), yellow-orangy-reddish-white-brn (WS), mod pyrophyllite along fractures, str hem, vuggy-drusy in part, modly striy sil, mod chaicedony stringers + bx frags, st boxwork text, barite, str qtz flooding and qtz chalcedony, mod-str specular hem																										
02BM-97								2.0	-	.	-	.	-	.	-	30	15	4	-	-	.	-	.	.	-	.
TW1 (48.0-50.0) as 02BM-96 with mod qtz-chalcedony + boxwork text																										
028M-98:								2.0	-	-	-	\bullet	\bullet	-	-	30	15	4	-	-	-	-	-	-	-	-
TW1 (50.0-52.0) as 02BM-96 with mod qtz chalcedony																										
02BM-99								2.0	-	-	-	\bullet	-	-	-	10	10	\bullet	-	-	-	-	-	-	-	3
TW1 (52.0-54.0) brn-white-yellowish (WS), bleached white-grey (FS), weak-mod pyrophylite along fractures, dactici porphyry (tuff?), modly frac, friable in part																										
02BM-100								2.0	-	-	-	-	-	-		10	10	-	-	-	-	-	-	-	-	3
TW1 (54.0-56.0) as 02BM-99, mod-st pyrophyllite along some fracs																										
02BM-101.								2.0	-	-	-	-	-	-	\bullet	20	20	-	-	-	-	-	-	-	-	2
TW1 (56.-58.0) increase in lim + hem, mod sil, weak boxwork text, weak-mod pyrophyllite, friable in part, dacitic tuff																										
02BM-102								2.0	-	-	-	-	-	-	-	10	10	-	-	-	-	-	-	-	-	3
TW1 (58.0-60.0) same as 02BM-99, + mod-str pyrophylite along some fractures																										
02BM-103								2.0	-	-	\square	-	\bullet	-	\cdots	10	10	2	-	-	\bullet	-	-	-	-	3
TW1 (60.0-62.0) same as 02BM-99 with mod-str pyrophylite along some fracs and weak increase in qiz flooding, trace boxwork textures																										
02BM-104								2.0	-	-	-	-	-	-	-	5	5	-	-	*	-	-	-	-	-	3
TW1 (62.0-64.0) brn-yellow (WS), purple-grey (FS), weak pyrophyllite, weak-mod-arg, dacitic porphyry (tuffaceous)																										
02BM-105								2.0	-	-	-	-	-	-	\bullet	5	5	1	-	-	-	-	-	-	-	3
TW1 (64.0-66.0) same as 02BM-104 with mod sil section																										
02BM-106								2.0	-	\bullet	-	-	-	-	-	10	10	-	-	-	-	-	-	-	-	3

Standard Metals Exploration Ltd.
Date: 5/26/2003
nad 83 UTM

Number	m	m	m	m	Code		00000	m	kg	Vein	Py	Cp	Sp	G	Mag	Hem	Lmm	Qtz	Ser	Mag	k-feld	Biot	CHI	Ep	Ca	Clay
TW1 (66.0-68.0) same as 02BM-104																										
02BM-107								2.0	-	-	-	-	-	-	-	5	5	-	-	-	-	-	-	-	-	3
TW1 (68.0-70.0) same as 02BM-104																										
028M-108								2.0	-	\cdot	-	-	$-$	-	-	\cdot	-	-	-	-	\cdot	\cdot	-	-	-	-
TW1 (70.0-72.0) mod hem+lim, weak-mod qtz-chalcedony veinlets + bx, mod pyrophyllite, dacite porphyry (tuffaceous?)																										
O2BM-109								2.0	-	-	Tr	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TW1 (72.0-74.0) same as 02BM-108 with weak-mod qtz-chalcedony veinlets + qtz flooding + qtz chalcedony bx, fridescence, mod manganes stain																										
02BM-110								2.0	-	-	-	-	-	-	-	20	15	3	-	-	-	-	-	-	\cdot	-
TW1 (74.0-76.0) mod-str pyrophyllite, weak-mod qtz-chalcedony veinlets + weak-mod q'z flooding + qtz chalcedony bx, mod-str hem, mod lim, mod manganese stain, mod specular hematite																										
02BM-111								2.0	-	-	-	-	-	-	-	20	15	3	-	*	-	-	\cdot	-	-	-
TW1 (76.0-78.0) as 02BM-110 with weak-mod pyrophyllite																										
02BM-112								2.0	\cdot	\cdot	\cdot	\cdot	-	-	\cdot	5	5	-	-	-	-	-	-	-	-	2
TW1 (78.0-80.0) brn-yellow (WS), weak pyrophyllite, weak-mod arg, weak lim hem																										
02BM-113								2.0	-	\cdot	-	-	-	-	-	-	-	-	\cdot	-	-	-	-	-	-	-
TW1 (80.0-82.0)																										
02BM-114								2.0	\cdot	\bullet	\cdot	\cdot	\cdot	-	\bullet	25	15	3	\cdot	\cdot	-	-	-	-	-	3
TW1 (82.0-84.0) str pyrophyllit, mod qtz flooding, weak boxwork text, weak qtz-chalcedony stringers, mod sil, dacitic crystal tuff (porphyritic)																										
02BM-115								2.0	-	-	-	-	-	-	-	-	-	2	-	\cdot	-	-	-	-	-	2
TW1 (84.0-86.0), weak-modily sil, qtz-chalcedony-dacite pebble bx, weak lim +hem, weak pyrophyllite																										
O2BM-116								2.0	-	-	-	-	-	-	\bullet	15	-	2	-	\cdot	-	-	-	-	-	-
TW1 (86.0-88.0) weak-mod hem in part, dacitic crystal tuff, weak sil																										
O2BM-117								2.0	\cdot	-	-	-	\cdot	\checkmark	\cdot	25	-	3	-	\cdot	-	*	\cdot	-	\cdot	3
TW1 (88.0-90.0) mod sil, str hem, mod qtz-chalcedony stringers, bx, st fault gauge, hematite reich zone, dacite crystal tuff																										
O2BM-118								-	\cdots	-	-	-	-	-	\bullet	-	\cdot	\cdot	$-$	-	\cdot	\cdot	\cdot	-	-	2
TW1 massive, f.g., feldspar +1-qtz-hornblend-bioteit crystal tuff, weak light green serpentinized feldspar?, modly frac, weak arg _																										
\because 02BM-119								2.0	-	-	-	-	-	-	-	\cdot	-	-	\cdot	\bullet	\cdot	-	\cdot	-	\cdot	2
TW1 (92.0-94.0) as 02BM-118																										
02BM-120								2.0	-	\cdot	\cdot	\cdot	\cdot	-	-	-	-	-	-	-	\cdot	\cdot	-	-	\bullet	2

NAD 33 UTM

Sample						Text											\%				vasive A	Allerat	scale			
Number	m	m	m	m	Cose		00000	m	kg	Vein	Py	CP	sp	G	Mag	Hom	Lim	Qb	Ser	Mag	k-fold	Biot	CHI	Ep	Ca	Clay
TW1 (94.0-96.0) as 028M-118																										
02BM-121								2.0	-	-	-	-	-	-	-	-	.	.	-	-	-	.	.	.	-	2
TW1 (96.0-98.0) as 02BM-118																										
02BM-122								2.0	-	-	-	-	-	-	-	-	-	.	-	-	-	-	-	.	-	2
TW1 (98.0-100.0) as 02BM-118																										
02BM-123								2.0	-	-	-	-	-	.	-	-	-	.	.	-	2
TW1 (100.0-102.0) as 028M-118																										
O2BM-124								2.0	-	-	-	-	-	-	-	-	-	-	-	.	-	-	-	-	-	2
TW1 (102.0-104.0) as 028M-118																										
02BM-125								2.0	-	.	-	-	-	-	-	-	-	-	-	.	.	-	-	-	-	2
TW1 (104.0-106.0) as 02BM-118																										
02BM-126								2.0	-	-	-	-	-	-	-	-	-	-	-	.	-	.	-	.	.	2
TW1 (106.0-108.0) as 028M-118																										
02BM-127								2.0	-	\cdot	-	-	-	-	-	-	-	-	-	.	.	-	.	-	-	2
TW1 (108.0-110.0) as 02BM-118																										
02BM-128								2.0	-	-	-	\cdot	-	-	-	-	5	-	.	.	-	-	-	-	.	4
TW1 (110.0-120.0) broken, gougy, tormented crystal tuff near fault, weak lim, mod-str-arg, strly frac																										
02BM-129								2.0	-	.	-	-	-	-	\cdot	-	5	-	-	\cdot	.	-	-	-	-	4
TW1 (112.0-114.0) as 02BM-128																										
O2BM-130								2.0	\cdot	\cdot	-	\cdot	-	-	-	-	-	-	-	-	.	-	-	.	.	5
TW1 (114.0-116.0) fault gouge - brn-white-greenish, remnant feldspars, v. str pyrophyllite + arg																										
02BM-131								2.0	.	-	.	-	-	-	-	-	.	-	-	-	-	-	-	.	.	5
TW1 (116.0-118.0) as 02BM-130																										
02BM-132.								2.0	-	-	3.5	-	\cdot	\cdot	-	\cdot	\cdot	-	-	-	.	-	-	-	-	5
TW1 (118.0-120.0) fault gouge, brn-white-greenish, 3-5\% blebby fine py, also along fractures in gouge, v.str arg + pyrophylilite, remnant feldspars																										
02BM-133:								2.0		-	-	-	-	-	-	-	.	-	.	.	-	-		-	-	5
TW1 (120.0-122.0) as 02BM-132 without py																										
02BM-134								2.0	\cdot	\cdot	-	\cdot	\cdot	\cdot	\cdot	\cdot	-	-	\cdot	\cdot	-	-	\cdot	\cdot	-	5
TW1 (122.0-124.0) as 028M-132 without py																										

NAD 83 UTM																										
Sample	East	North	Elev.	EPE	Rock	Text	Stu.	W	Grab	\%	\%	\%		\%	\%	\%	\%				vasive	Iteratio	scale			
Number	m	m	m	m	Code		00000	m	kg	Vein	Py	Cp	Sp	Gl	Mag	Hem	Lim	Qt	Sor	Mag	k-fold	Biot	Chl	Ep	Ca	Clay
O2BM-135								2.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5
TW1 (124.0-126.0) as 02BM-132 without py																										
02BM-136								2.0	-	\cdot	3-5	-	-	-	\cdot	-	-	.	-	\cdot	-	-	-	-	-	5
TW1 (126.0-128.0) as 02BM-132																										
02BM-137								5.0	-	-	-	-	-	-	\cdot	5	-	-	\cdot	-	-	-	-	-	\cdot	5
TW1 (128.0-133.0) as 02BM-132 without fine py, weak hem, fault plane @ 227/89 NW - movement on measured surface down, pitch of slicks 63 toward NE																										
02BM-138								2.0	-	-	-	-	-	-	-	-	.	.	-	-	-	-	-	-	-	5
TW1 (133.0-135.0) as 02BM-132 without py																										
02BM-139								2.0	-	-	-	-	-	-	\cdot	-	-	-	-	-	-	-	-	-	-	5
TW1 (135.0-137.0) as 02BM-132 without py																										
02BM-140								2.0	-	-	-	-	-	-	\cdot	*	-	-	-	-	-	-	\cdot	-	-	5
TW1 (137.0-139.0) as 02BM-132 without py																										
02BM-141								2.0	-	-	\cdot	\cdot	-	-	\cdot	5	5	-	\cdot	-	-	-	-	-	-	4
TW1 (139.0-141.0), strly frac, broken, str arg, dacitic erystal tuff, most text destroyed, remnant feldspar pheros, weak boxwork, v.weak qtz flooding, weak lim + hem																										
02BM-142								2.0	-	-	-	-	-	-	-	5	5	-	-	-	-	-	-	-	-	4
TW1 (141.0-143.0) as 02BM-141																										
02BM-143								5.0	-	\bullet	$3-5$	-	\cdot	-	\cdot	-	-	-	-	-	-	-	-	-	\cdot	5
TW1 (143.0-148.0) fault gouge, brn-white-greenish, v.str arg + pyrophyllite, 3-5\% blebby py																										
02BM-144								5.0	-	-	3-5	\cdot	-	-	-	\cdot	-	-	-	-	-	\cdot	\cdot	-	-	5
TW1 (148.0-153.0) as 02BM-143 end of sampling on TW1																										
02BM-145	0635390	6335557		7				2.0	\cdot	\bullet	\bullet	-	-	-	-	Tr	5	1	-	\cdots	\cdot	\cdot	-	\cdot	-	2
TW3 (0-2.0) brn (WS) motted grey-white-purplish-orangy, dacitic crystal tuff, trace qtz-chalcedony veinlets, modly frac, weak manganese stain																										
02BM-146								2.0	-	-	-	-	-	-	-	Tr	5	2	\cdots	-	-	-	-	\cdots	\bullet	3
TW3 (2.0-4.0), brn (WS), mottled grey-white-purplish, dacitic crystal tuff, weak qtz-chalcedony veinlets + boxwork, modly frac, barite?, frac @ $123 / 38$ SW, possible fault @ $190 / 70$ SE																										
02BM-147								2.0	\cdots	\bullet	\cdots	\cdots	-	-	-	-	-	3	-	-	-	\cdot	-	-	\cdot	-
TW3 (4.0-6.0) zone of mod sil, qtz flooding, qtz-chalcedony veinlets and boxwork text, dacitic crystal tuff, modly frac, mod-str pyrophyllite along fracs																										
02BM-148								2.0	-	-	-	-	-	.	-	-	-	3	-	-	-	-	-	-	\cdot	-

C
C
\square
E
C
C
E
\square
E
[
$[$
C
$[$
T
$\square]$
[

Rock Sample Description Sheet
Stealth Minerais Limited
Area: WRICH

NAD 83 UTM																										
Sample	East	North	Elov.	EPE	Rock	Text.	Stru.	W	Grab	\%				\%	\%	\%	\%				vasive	Alteration	scale			
Number	m	m	m	m	Code		00000	m	kg	Vein	Py	Cp	Sp	Gl	Mag	Hem	Lim	Qt	Ser	Mag	k-teld	Biot	Ch	Ep	Ca	clay
02BM-149								2.0	\cdot	-	-	-	-	-	-	-	-	1	-	-	$-$	-	-	-	-	-
TW3 (8.0-10.0), weak qtz-chalcedony, mod. Pyrophyllie along fracs, weak boxwork text, weak lim + hem, dacitic crystal tuff																										
O2BM-150								2.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	.	-	-	-
TW3 (10.0-12.0) as 02BM-149)																										
O2BM-151								2.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TW3 (12.0-14.0) as 02BM-49 (think he meant 149?)																										
02BM-152								2.0	-	-	-	-	-	*	-	5	5	3	.	-	-	-	-	-	-	-
TW3 (14.0-16.0) dacit crystal tuff, weak lim + hem, weak mod qtz-flooding, weak mod qiz-chalcedony veinlets, weak-mod pyrophyllite along fractures, iridescence, modly sil + weak boxwork text																										
02BM-153								2.0	-	-	-	-	-	-	\cdot	5	5	3	-	-	-	-	-	\cdot	-	-
TW3 (16.0-18.0) as 02BM-152																										
02BM-154								2.0	\bullet	\cdots	-	\cdot	\bullet	\cdot	-	-	-	2	\cdots	\cdots	-	-	-	-	\cdot	2
TW3 (18.0-20.0) dacite crystal tuff (porphyry) weak light green altered feldspar?, friable in part, with mod arg, modly frac, fault zone, weak qtz-chalcendony from silicified zone																										
02BM-155								2.0	\cdots	-	-	-	-	-	-	-	-	-	-	.	-	-	-	-	-	2
TW3 (20.0-22.0) dacite crystal tuff (porphyry), friable in part, mod arg, modly to strly frac, fault zone																										
02BM-156								2.0	-	-	-	-	-	-	\cdot	-	-	\cdot	-	-	\bullet	-	-	-	\checkmark	-
TW3 (22.0-24.0) dacit crystal tuff with lithic frags, porphyy, weak qqz flooding + qtz-chalcedony veinlets in part, modly frac																										
$02 \mathrm{BM}-157$								2.0	-	-	.	-	-	-	-	-	-	\cdot	-	\cdot	\bullet	\cdot	-	-	\cdot	\cdot
TW3 (24.0-26.0) as 02BM-156																										
02BM-158								2.0	\cdot	\because	-	-	-	-	-	-	\cdot	\cdot	\cdot	.	-	-	\cdot	-	\cdot	-
TW3 (26.0-28.0) dacite crystal tuff, striy frac, sheared, friable, lithic fragments, trace barite, orientation? Purple to brn-white																										
02BM-159:								2.0	-	-	-	-	-	-	-	\bullet	\cdot	-	\cdot	-	\cdot	\cdots	\cdot	\cdot	-	-
TW3 (28.0-30.0) as 02BM-158																										
02BM-160								2.0	\checkmark	-	\bullet	\bullet	-	-	\cdots	-	\cdots	\cdots	-	-	-	-	-	-	\cdot	\cdot
TW3 (30.0-32.0) dacitic crystal tuff (porphyry), mod pyrophyllite along fracs, weak manganese stain atong fracs, weak qtz flooding + boxwork text, weak qlz-chalcedony veinlets																										
02BM-161								2.0	-	\cdot	-	\cdot	\cdot	\bullet	-	-	\cdot	\bullet								
TW3 (32.0-34.0) as 02BM-160, vuggy-drusy in part																										

$\square \square$
 \square
 C
 Γ
 Rock Sample Description Sheet
 Area: WRICH

[
L
Γ
Γ
1
\square
-
Γ
L
-
[] \qquad C
[]

NAD 83 UTM																										
Sample	East	North	Evor.		Rock	Text.	Stu.			\%							\%				vaska	Alterato	Bealo			
Number	m	m	m	m	Code		00000	m	kg	Vein	Py	cp_{p}	Sp	G	Mag	Hom	Lim	Q	Ser	Nag	k-reld	8lot	Chl	Ep	Ca	Clay
02BM-162								2.0	.	\cdot	-	-	-	-	-		-	.	-	.	-	.	-	.	-	2
TW3 (34.0-36.0) dacite crysttal luff (porphyry), modly frac																										
02BM-163								2.0	-	-	-	-	-	-	-	-	-	-	.	.	-	-	-	-	-	2
TW3 (36.0-38.0) as 02BM-162																										
02BM-164								2.0	.	-	-	-	-	-	.	-	-	-	-	-	-	-	-	-	-	-
TW3 (38.0-40.0) as 02BM-162 with trace qta-flooding in part																										
02BM-165								2.0	-	-		-			\cdot	-	-	2	-	-	-	-	-	.	-	.
TW3 (40.0-42.0) dacite crystal tuff (porphyry), weak pyrophyllite along fracs, weak-mod qqz-flooding + boxwork text, weak qqz-chalcedony veinlets + bx chalcedony frags																										
02BM-166								2.0	-	-	-	-	-		-	15	15	3	.	-	- 1	.	.	.	-	-
TW3 (42.0-44.0) dacitic crystal tuf (porphyry), mod pyrophyylite along fracs, mod-str qz flooding + boxwork text, mod qtz chalcedony veinlets + bx fragments, mod lim + hem																										
028M-467								2.0							-	15	15	3	-	-	-	.	-	.	.	
TW3 (44.0-46.0) as 02BM-166, mod-str sil																										
02BM-168								2.0	\cdot	\cdot	\cdot	\cdots	-	-	-	-	\cdot	1	-	.	-	-	-	.	-	2
TW3 (46.0-48.0) as previous, dacitic crystal tuff (porphyry), modly frac, mod arg, trace qtz-flooded dacite																										
02BM-169.								2.0	-				-	-	-	\cdot	-	1	-	-			-		\cdot	2
TW3 (48.0.50.0) as previous 02BM-168																										
02BM-170								2.0	-	-	\cdot	-	\cdots	\cdot	\cdot	\cdots	-	1	-	-	-	-	-	-	.	3
TW3 (50.0-52.0) dacitic crystal tuff (porphyry), grey to purple (maroon), weak mod pyrophylite along fractures, weak qtz-flooding and weak qtz chalcedony stringers, weak lim + hem, weakly sil, mod arg																										
02BM-174								2.0		-	-	-	-	-	-	-	-	1		-	-	-		-	-	3
TW3 (52.0-54.0) as 028M-170																										
028M-472								2.0	-	\cdot	-	-	\cdot	-	-	-	-	2			-	-	-	-	-	3
TW3 (54.0-56.0) as 02BM-170, with mod sil qtz-flooded dacite in part, weak boxwork text																										
02BM-173								2.0	-		-	-	-		\cdot	-	-	2	-	-	.	-	.	-	-	3
TW3 (56.0-58.0) as 02BM-170, with mod sil + bx																										
02BM-174								2.0	-	-	-	-	-	-	-		-	1	-	-	\cdot	-	-	-	-	3
TW3 (58.0-60.0) as 02BM-170																										
02BM-175								2.0	-	-	-	\cdot	-	-	-	-	-	2	.	.	-	-	-	-	-	3

Standard Metals Exploration Ltd.

L

Rock Sample Description Sheet
Area:

Stealth Minerals Limited
Toodoggone Project

Number	m	m	m	m	Code		00000	m	kg	Veln	Py	Cp	Sp	G	Mag	Hem	Lim	Qb	Sor	Nag	k-feld	Blot	CHI	Ep	Ca	Clay
TW3 (88.0-90.0) as previous 028M-188																										
O2BM-190.								-	-	-	-	-	-	-	-	15	-	-	-	-	-	-	-	-	-	
TW3 (90.0-92.0) falut gouge, friable, remnant feldspar, purple-brn-white, mod hem																										
02BM-191								2.0		-	-	-	-			25		2			-	.		-	.	-
TW3 (92.0-94.0) st hem, weak-mod qtz flooding + qtz-chalcedony veinlets + friable and gougy, dactic crystal tuff (porphyritc), mod lim, weak boxwork text																										
02BM-192								2.0		-	-	-	-		-	30	-	-	-	-				-	-	-
TW3 (94.0-96.0), st hem, mod-st pyrophylite along fractures, indescence, weak-mod qtz flooding + qtz-chalcedony veinlets, mod lim, modly frac																										
028M-193								2.0	.	.	-	-	-	-		30	-	-	.	-	.	-	.	.	-	.
TW3 (96.0-98.0) as 028M-192																										
02BM-194								2.0		\cdot	Tr	\cdot	-	-	-	30	15	3	-	-	-	-		-	-	-
TW3 (98.0-100.0) as 02BM-192 with mod-st qtz-chalcedony bx + stringers + qtz flooding, st hem + mod lim, mod pyrophyllte along fracs, mod boxwork text																										
02BM-195								2.0	-	-	-	-	-	-	-	15	15	-	.	.	-	-	-	-	.	2
TW3 (100.0-102.0) dacitc crystal tuff (porpyritic) mod hem, lim, modly frac, weak pyrophyllite, weak-mod arg																										
02BM-196								2.0		-	-	-			-	25	15	-	-		-			.	-	2
TW3 (102.0-104.0) as 02BM-195 with mod-st hem + mod lim																										
02BM-197								2.0		-	\cdot	-	-		-	30	15	3	-	\cdot	-	-	-	-	\cdot	-
TW3 (104.0-106.0) str hem, mod lim, mod qtz flooding in part, mod qt-chalcedony stingers + bx, mod boxwork text, weak pyrophylite + mod arg																										
02BM-198								2.0	-	-	-	-	-	-	-	-		-	-	\cdot	-	-	-	.		
TW3 (106.0-108.0) as 02BM-197 with weak qqz-flooding																										
02BM-199								1.0	-	-	-		-	-	.	30	15	3	\cdot	-	-	-	-	-	-	2
TW3 (108.0-110.0) as 028M-197																										
TR4DB:01	0635254	6335685		6				5.0	-	-	-	-	-	\cdot	-	-	5		2	.	-	\cdot	\cdot	\cdot	.	
weak-mod arg, brn-white-range (WS), bleached white (FS), strly frac, dacitic porphyry tufit remnant feldspar pheros, sericite, weak lim																										
TR4DE-02								4.0	-	-	.	-	-	-		-	5	-	2		-	\cdot	\cdot	\cdot	-	-
TR4 (5.0-9.0) as TRADB-01 friable in part																										
TR4DE-03								1.0	-	-	-	\cdot		-	-	5	5	4	-	\cdot	-	-	-	-	\cdot	-
TR4 (9.0-10.0) modly-stiy sil zone, vuggy drusy qtz in part, qt-chalcedony veinlets, weak lim + hem																										
TR4D8-04								2.0	-	-	-	-	-	-	-	\cdot	\cdots	1	\cdot	-	-	-	\cdot	-	\cdot	-
TR4 (10.0-12.0) weakly-modly frac, dacitic crystal porphyry tuff, weak qtz-chalcedony, weak lim +hem, weak qtz flooding, weak-mod pyrophyllite																										

Rock Sample Description Sheet Area: WRICH

Stealth Minerals Limited Toodoggone Project

Number	m	m	m	m	code		00000	m	kg	Vein	Py	Cp	Sp	G	Mag	Hem	Lim	Qt	Sor	Mag	k-fold	Biot	Cht	Ep	Ca	Clay
TR4DB-05								2.0	-	-	-	-	-	-	-	5	5	-	-	-	-	-	-	-	-	2
TR4 (12.0-14.0) modly-stry fractured, cg feldspar porphyry crystal tuff, weak-mod pyrophyllite, weak-mod arg, weak lim + hem																										
TR4DB-06								2.0	-	-	-	-	-	-	-	5	5	-	-	-	-	-	-	-	-	2
TR4 (14.0-16-0) as TR4DB-05, trace barite																										
TR4DB:07.								2.0	-	-	-	-	-	-	-	5	5	3	-	-	-	-	-	-	-	-
TR4 (16.0-18.0) modly-stry qtz flooded qtz-chalcedony bx, weak hem, lim, pyrophylilite																										
T4DE-08								2.0	-	\checkmark	-	-	-		-	-	-	-	-	-	-	-	.	-	-	2
T4 (18.0-20.0) bleached white, friable, fmg porphyry (dacitic), weak-mod arg, gougy in part																										
T4DB-09								5.0	-	-	-	-	-	-	\cdot	5	-	-	-	-	-	-	-	-	-	-
T4 (20.0-25.0) gougy, weak lim, friable, porphyry (dacitic)																										
T40B-10								5.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T4 (25.0-30.0) gougy, faulted, greenish-beige-gouge, feldspar porphyry (dacitic), friable, str pyrophyllite																										
T4DB-11.								5.0	-	-	-	-	-	-	-	-	5	-	-	-	-	-	-	-	-	-
T4 (30.0-35.0) greenish feldspar porphyry (dacitic), modly to stly frac, mod manganese stain along fracture, weak lim, friable in part																										
T4DB-12:								3.0	-	-	-	-	-	-	-	-	-	-	-	.	-	-	-	-	-	-
T4 (35.0-38.0) 3.0 as previous T4DB-11																										
T4DB-13								2.0	-	-	-	-	-		-	-	-	-	-	-	-	\cdot	-	-	-	-
T4 (38.0-40.0) 2. Bleached white feldspar porphyry tuff (dacitic), modly to strly frac, mod arg + weak mod pyrophyllite near fault zone																										
T408-14								2.0	-	-	-	-	-		-	-	5	-	-	-	-	-	-	-	-	2
T4 (40.0-42.0) 2.0 wodly frac, bleached white, friable in part + gougy near 42.0 mark, falut sone, weak lim, jarosite, weak manganese stain along fractures, mod arg																										
T4DB-15								3.0	-	-	-	.	-	-	-	-	-	-	-	.	-	-	\cdot	-	-	\cdot
T4 (42.0-45.0) as T4DB-14 with less fault gouge, modly to strly fractured feldspar porphyry																										
TADB-16								5.0	.	-	-	-	-	-	-		-	-	-	-	-	-	-	-	\cdot	4
T4 (45.0-50.0) as T4DB-14, gougy in part, strly frac sone, modly-str arg + pyrophyllite																										
T4DB-17								5.0	-	-	\cdot	-	-	-	-	-	5	-	-	-	*	\cdot	-	\bullet	\cdot	4
T4 (50.0-55.0), bleached white-greenish brn, in part gougy feldspar, str arg + pyrophyllite, weak lim																										
T4DB-18								2.0	-	-	Tr	-	\cdot	-	\bullet	15	5	2	2	-	1 -	\cdot	$-$	-	-	-
T4 (55.0-57.0) fault zone + start of hem rich zone, gougy, bleached-white-green, modly sil, trace fine black (metallic) silver sulpha salts, qtz-sericite-weak py, lithic frags, pebble to pebble bx																										

Number	m	m	m	m	Code		00000	m	kg	Vein	Py	Cp	Sp	GI	Mag	Hem	Lim	Qt	Ser	Mag	k-feild	Bio!	Ch	Ep	Ca	Clay
T40B-19								1.0	-	-	-	-	-	\cdot	-	15	15	1	-	-	-	-	-	-	-	-
T4 (57.0-58.0) hem rich zone, feldspar porphyry, modly frac, weak qtz fooding, mod hem + lim																										
T4DB-20								2.0	-	-	-	-	-	-	-	30	15	5	-	-	-	-	-	-	\cdot	-
T4 (58.0-60.0) str hem + mod lim, str boxwork textures, reddish-orangy (WS), modly-striy sil, mod-str qtz flooding, mod pyrophyllite, barite stringer, orientation?, qtz-chalcedony																										
T4DB-21								2.0	-	\cdot	-	-	-	-	-	30	15	5	-	-	-	-	.	-	-	-
T4 (60.0-62.0) as T4DB--20 without barite																										
T4DB-22								2.0	-	-	-	-	-		-	30	15	2	-	-	-	-	-	-	-	\cdot
T4 (62.0-64.0) weakly-modly sil, fing feldspar porphyry daitic tuff, str hem, mod lim, weak-mod pyrophyllite, weak qtz-flooding																										
T408-23								2.0	-	-	Tr	-	-	-	-	35	15	5	\cdot	-	-	-	-	-	-	-
T4 (64.0-66.0), v.str hem, hem zone, weak to str silica flooding, mod pyrophyllie along fractures, Tr py in feldspar porphyry (dacitic) weak-mod lim, modly frac																										
T40B-24								2.0	-	-	-	-	-	-	-	20	5	3	-	-	-	-	-	*	-	-
T4 (66.0-68.0) md hem + weak lim, weak to str silica flooding in narrow zone, modly frac, feldspar porphyry dacitic tuff, weak pyrophyllite, Tr barite																										
T4DB-25								2.0	-	-	-	-	-	-	-	5	5	2	\cdot	-	-	-	-	-	-	2
T4 (68.0-70.0), weak hem + lim, zones of weak to mod silica flooding, feldspar porphyry (dacitic tuff), beige-grey (FS), weak arg																										
T40E-26								2.0	-	-	Tr	\cdot	-	-	-	35	15	5	\cdot	\cdots	\cdots	\cdots	\cdots	-	\cdot	-
T4 (70.0-72.0) str hem + mod lim, weak to str silica flooding in feldspar porphyry (dacitic) mod-str boxwork text in silica flooded zone $\sim 0.4 \mathrm{~m}$ wide, barite veinlet (5 mm wide) orientation?, Tr fine dissempy																										
T4DB-27								2.0	-	-	-	-	-	-	-	5	5	3	-	\cdot	\cdot	-	-	-	-	\bullet
T4 (72.0-74.0) weak hem + lim, str pyrophyllite blebs and along fracture (white to pale green), weak boxwork text, weak to strong silica flooding +																										
T4DB-28								2.0	\bullet	-	-	-	\bullet	-	-	5	5	1	-	-	-	-	-	-	-	-
T4 (74.0-76.0) weak hem + lim, weak silica flooding in part, weak-mod pyrophyllite in feldspar porphyry tuff (dacitic)																										
T4DB-29								2.0	-	-	-	-	-	-	-	5	5	1	\cdot	\cdot	\cdot	\cdot	\cdot	-	-	\cdot
T2 (76.0-78.0) as T4DB-28																										
T4DB-30								3.0	\cdot	-	-	\cdot	-	-	-	-	-	-	-	\cdot	-	-	-	\cdot	\cdot	4
T4 (78.0-81.0) fault gouge, grey-white-brn, weak reddish, remnant feldspars visible, mod-str pyrophyllite + arg																										
T4DB-31								2.0	-	-	-	\cdots	-	-	\bullet	5	5	-	\cdot	\cdot	\cdot	-	-	\cdot	\cdot	1
T4 (81.0-83.0) massive, weak hem + lim, weak arg, feldspar porphyry, weak manganese stain along factures, modly to striy frac																										
T4DB-32								5.0	-	-	-	-	-	-	-	5	5	-	-	\cdot	\cdot	-	\cdot	-	-	1

 assay certificatie

PHONE (6044253.3158 EAX 604$) 253 \% 1716$.

Standard Metalys: Fille \# A 202841

SAMPLE\#	$\begin{gathered} \text { MO } \\ \% \end{gathered}$	$\mathbf{C U}$	$\begin{gathered} \text { PB } \\ \% \end{gathered}$	$\begin{array}{r} \text { ZN } \\ \mathbf{x} \end{array}$	$\begin{array}{r} A G \\ \mathrm{gm} / \mathrm{mt} \end{array}$	$\begin{gathered} \mathrm{NI} \\ \% \end{gathered}$	$\begin{array}{r} \mathrm{CO} \\ \% \end{array}$	$\begin{gathered} \text { MN } \\ \% \end{gathered}$	$\begin{gathered} \text { FE } \\ \mathbf{x} \end{gathered}$	$\begin{gathered} \text { AS } \\ \text { \% } \end{gathered}$	$\begin{gathered} \text { SR } \\ \mathbf{\%} \end{gathered}$	$\begin{gathered} C D \\ \% \end{gathered}$	$\begin{gathered} \text { SB } \\ \% \end{gathered}$	$\begin{array}{r} \text { BI } \\ \mathbf{\%} \end{array}$	$\begin{gathered} C A \\ \mathbf{\%} \end{gathered}$	$\begin{aligned} & \mathbf{P} \\ & \mathbf{\%} \end{aligned}$	$\begin{gathered} C R \\ \% \end{gathered}$	$\begin{gathered} \text { Mg } \\ \% \end{gathered}$	$\begin{gathered} \mathrm{AL} \\ \mathrm{\%} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{NA} \\ \mathbf{\%} \end{gathered}$	$\begin{aligned} & \mathbf{K} \\ & \mathbf{X} \end{aligned}$	$\begin{array}{ll} \mathrm{H} & \mathrm{Hg} \\ \% & \% \end{array}$	$\begin{gathered} \mathrm{Au}^{* *} \\ \mathrm{gm} / \mathrm{mt} \end{gathered}$
SI	\{.001	<. 001	<. 01	<. 01	. 5	. $001<$	<. 001	<. 01	. 04	<. $01<$	< $001<$	<. 001	. 001	< 01	. $14 \times$. $001<$	<. 001	. 01	. 01	. 44	. 01	<.001<. 001	$<.01$
0208-7	f. 001	. 003	. 01	<. 01	8.6	. $001<$	<. 001	<. 01	1.88	< 01	. 011 <	<. 001	. 001	< 01	. 01	. 020.	. 001	. 01	. 41	<. 01	. 02	<.001<. 001	. 66
02DB-8	+. 001	. 006	$<.01$	<. 01	9.2	. $001<$	<. 001	<. 01	2.83	< 01	. $007<$	<. 001	. 003	< 01	< 01	. 016.	. 001	. 01	. 44	< 01	<. 01	<.001<. 001	. 19
0208-9	. 001	. 014	. 01	<. 01	109.5	.001<	<. 001	. 01	4.17	. 01	.009<	<. 001	. 022	< 01	. 01	. 047	. 001	. 01	. 44	<. 01	. 03	<.001<.001	. .64
0208-10	. 002	. 022	. 02	<. 01	112.9	. 001	. 001	. 01	5.35	. 03	. 010 <	<. 001	. 010	< 01	. 01	. 050.	. 002	. 01	. 36	<. 01	. 02	<.001<. 001	9.56
0208-12	. 016	. 003	. 01	. 01	8.6	<,001<	< 001	. 01	1.88	.01<	<.001<	<. 001	. 002	<. 01	. 01	. 003	. 002	. 02	. 11	<. 01	. 02	< $001<.001$. 46
02DB-14	\}. 001	. 003	<. 01	<. 01		<. 001	<. 001	. 02	4.16	< 01	. $009 \times$	<.001<	<. 001	<. 01	. 01	. 031.	. 001	<. 01	. 65	<. 01	<. 01	<.001<.001	. 04
02DB-17	f. 001	. 002	< 01	. 01	<. 3	. 002	. 001	. 24	3.21	< 01	. $0001<$	<.001<	< 001	< 01	. 80	. 015	. 002	1.17	1.27	. 02	<. 01	<.001<. 001	. 04
0208-19	\$. 001	. 946	$<.01$. 04	-9 9	. 002	. 005	. 06	1.10	< 01	. 004	. $001<$	<. 001	<. 01	3.03	. 024	. 001	. 03	2.04	$<.01$. 01	. $001<.001$. 13
0208-20	\{. 001	2.421	. 01	. 04	114.2	. 002	. 002	. 20	6.87	<. 01	. 009	. 001	. 001	. 01	26.15	.001<.	<. 001	. 07	. 05	<. 01		.002<.001	4.72
02DB-21	. 001	5.867	$<.01$. 11	74.6	. 010	. 012	. 22	12.70	<. 01	. 005	. 002	<. 001	$<.01$	17.74	<. $001<$	<. 001	. 06	. 10	. 01	< 01	. $004<.001$	4.51
02DB-22	\}. 001	3.545	$<.01$. 04	24.9	. 004	. 005	. 14	6.03	<. 01	. 002	. 001	<. 001	$<.01$	5.43	. $025<$	<. 001	. 04	1.77	<. 01	<. 01	. $002<.001$. 97
028M-23	\}. 001	. 024	79.72	. 13	$405.1<$	<. $001<$	<. 001	<. 01	. 18	<. 01	. 001	. 006	. 035	<. 01	. $04 \times$	<. $001<$	<. 001	<. 01	. 01	< 01	<. 01	<.001<.001	. 16
02BM-24	\$. 001	. 023	. 07	< 01	15.5<	<.001	<. 001	. 01	1.51	<. 01	. 004 <	<. 0001	<. 001	<. 01	. 08	. 008	. 003	<. 01	. 22	<. 01	<. 01	<.001<.001	. 70
028M-25	. 001	. 020	. 22	<. 01	26.5	. $001<$	<. 001	. 01	2.97	<. 01	.008<	<. 001	. 001	<. 01	. 07	. 019	. 002	<. 01	. 33	<. 01	<. 01	<.001<.001	. 16
RE 02BM-25	. 001	. 017	. 21	$<.01$	26.5	<. 001	<. 001	$<.01$	2.91	$<.01$. $008<$	<. 001	. 001	$<.01$. 07	. 017	. 002	. 01	. 31	< 01	< 01	<. $001<.001$. 15
02BM-26	. 004	. 016	. 01	<. 01	24.7<	<. $001<$	<. 001	. 01	3.93	. 01	. 0022	<. 001	. 003	<. 01	. 01	. 032	. 002	< 01	. 14	< 01		<. $001<.001$	1.39
O2BM-27	. 005	. 021	. 03	<. 01	148.2	<. 001	<. 001	. 01	8.05	. 01	. $002<$	<. 001	. 009	< 01	< 01	. 033	. 002	<. 01	. 20	<. 01	< 01	<. $001<.001$	18.44
02BM-28	¢. 001	. 004	. 01	< 01	31.8<	3< 001	<. 001	$<.01$. 86	<. 01	.006<	<. 001	. 003	<. 01	< 01	. 009	. 002	<. 01	. 40	<. 01	<. 01	<.001<.001	. 16
02BM-29	f. 001	. 012	. 02	<. 01	$12.6<$	6<. 001	<. 001	<. 01	3.38	<. 01	. $034 \times$	<. 001	. 002	< 01	. 04	. 118	. 001	. 01	. 62	<. 01		<.001<. 001	. 08
02BM-30	. 001	. 014	. 01	<. 01	$13.2<$	2<. 001	1<, 001	. 01	4.82	. 01	. $010<$	< 001	. 011	<. 01	. 01	. 022	. 001	. 01	. 37	$<.01$. 01	<. $001<.001$	3.93
02BM-31	. 001	. 010	. 02	<. 01	5.6	. 001	1<. 001	. 01	3.37	<. 01	. 002 <	<. 001	<. 001	< 01	. 01	. 039	. 002	. 01	. 24	<. 01	. 04	. $001<.001$	3.36
STANDARD R-1/AU-1	. 089	. 835	1.30	2.32	101.4	. 031	. 026	. 09	6.77	. 96	. 030	. 050	. 164	. 03	1.49	. 108	. 027	. 97	1.01	. 17	. 46	.006<. 001	3.34

GROUP 7AR - 1.000 GM SAMPLE, AQUA - REGIA (HCL-HNO3-HZO) DIGESTION TO 100 ML , ANALYSED BY ICP-ES.
AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE.

- SAMPLE TYPE: ROCK R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

852 E. HASTINGS ST: VANCOUVER BC V VGA IR6

Standard, Metalis. Fille. \# A 202913 \% IF Page. 1

[^1]ACME ANALYTICAL THABORATORIESS LTD.
852 E. HASTINGS ST: VANCOUVER BC V V 6 A 1 LG
ASSAY CERTIFICATE
Standard. Metals: File. \# A203048

GROUP TAR - 1.000 GM SAMPLE, AQUA - REGIN (HCL-HNO3-H20) DIGESTION TO 100 ML, ANALYSED BY ICP-ES.

- SAMPLE TYPE: ROCK R150 60C AU** BY FIRE ASSAY FROM i A.T. SAMPLE.

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

GROUP TAR - 1.000 GM SAMPLE, AQUA - REGIA (HCL-HNO3-H2O) DIGESTION TO 100 ML, ANALYSED BY ICP-ES.

- SAMPLE TYPE: ROCK R150 60C AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE.

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.
DATE RECEIVED: AUG 162002 DATE REPORT MAILED: fY $27 / 02$
SIGNED BY

Standard Metals PROJECT SMX02-2 FILE \# A203099

Sample type: ROCK R150 60C.

GROUP DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 hCL-HNO3-h2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. UPPER LIMITS - $A G, A U, K G, H=100 \mathrm{PPM}$; MO, $C O, C D, S B, B 1, T H, U \& B=2,000 P P M ; C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 P P M$ - SAMPLE TYPE: SOIL SS80 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: aUG 132002 DATE REPORT MAILED: ALg $27 / 02$

SIGNED BY..'Nmo. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

		12		$\begin{aligned} & 80 R \mathrm{~A} \\ & \mathrm{edit} \end{aligned}$		RTES Co.			8151	852 GE Bta Clarke			TES		T. 4 ANA 4.8 uamish	VANC LHS $\mathrm{F} /$ H BC	COOY 818 1 le VON		BC 4RT. $\stackrel{+}{42}$			0		HON	6		$253=$		$8 \mathrm{~A}$					\forall
SAMPLE\#	$\begin{array}{r} \text { Mo } \\ \text { Pppm } \end{array}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{pppm} \end{array}$	$\begin{gathered} \mathrm{Pb} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{ppm} \end{array}$		$\begin{gathered} \mathrm{Ni} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \text { Co } \\ \text { ppm } \end{array}$	Mn ppp	Fe Fe $\%$	As ppm	s	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$	Th ppm	$\begin{gathered} \mathrm{Sr} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{lc} \mathrm{r} & \mathrm{~cd} \\ \mathrm{~m} & \mathrm{ppm} \end{array}$	Sb	$\begin{gathered} \mathrm{Bi} \\ \mathrm{ppm} \mathrm{p} \end{gathered}$	$\begin{array}{r} V \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Ca} \\ \% \end{array}$		$\begin{array}{r} \text { La } \\ \text { ppmin } \end{array}$	cr ppm	$\begin{gathered} \mathbf{M g} \\ \mathbf{x} \end{gathered}$	Ba ppm	$\begin{gathered} \mathrm{Ti} \\ \mathbf{\%} \end{gathered}$	$\begin{array}{r} 8 \\ \mathrm{ppm} \end{array}$		$\begin{gathered} \mathrm{Na} \\ \% \end{gathered}$		$\begin{array}{r} W \\ \text { ppm } \end{array}$		Sc ppm	$\begin{array}{rr} \text { TI } & s \\ \text { ppm } & \% \end{array}$	Ga ppm
G-1	1.3	2.6	2.0	40	<. 1	4.1	3.7	480	1.83		12.3		4.5		6 <. 1	. 1	. 1	37	. 48	. 086	7	12.3	.49	196	. 111	1	. 80	. 058	. 44			1.8	. $3<.05$	4
DS 1	3.0	133.2	137.1	557	2.4	6.2	10.2	1223	2.96	9.1	16.9	10.4	1.8	63	9.4	. 3	. 3	48	1.33	. 129	69	7.6	. 91	709	. 033	2	3.07	. 011	. 13	. 1	11	9.7	. 1.06	8
DS 2	2.7	32.1	32.0	142	. 3	5.1	11.6	1110	4.00	13.6	63.1	4.7	1.7		51.8	. 5		110	. 91	. 084	15	7.0	. 85	124	. 124		1.78	. 009	. 08	. 2	. 02	5.0	. $1<.05$	7
DS 3	4.5	92.6	294.3	588	1.0	5.2	25.4	2747	5.03	23.0	02.5	123.1	4.6	39	99.8	. 3	. 3	101	. 67	. 121	22	4.9	. 97	106	. 059		2.01	. 006	. 07	. 1	. 03	6.5	<.1 . 17	7
DS 4	1.1	21.4	16.3	80	. 1	3.2	13.0	1298	3.44	18.3	34.2	6.5	1.7	90	0.5	. 5	. 1	82	1.68	. 082	10	4.1	1.02	62	. 097	2	3.11	. 012	. 07	. 2	. 02	5.7	<. 1<. 05	11
OS 5	1.4	17.9	13.1	289	. 1	13.7	13.4	1051	3.01	6.5	51.0	21.6	1.8		62.0	. 3	. 1	76	. 48	. 085	12	11.8	. 57	111	. 079		1.28	. 007	. 05	. 2		3.4	$<.1<.05$	4
RP 03	7.1	90.2	41.9	548	. 5	17.4	24.2	1580	3.92	13.0	03.2	8.0	2.8		33.4	. 4	. 4	74	. 81	. 108	14	22.2	. 76	138	. 061		2.26	. 010	. 07	. 2	. 01	4.0	<.1<. 05	6
RR-01-02	6.6	84.6	115.6	513	. 6	6.3	31.3	2015	4.69	15.5	52.0		2.8	38	83.7	. 9	. 4	67	. 25	. 131	22	7.1	. 67	188	. 089		3.26	. 012	. 09	. 1	. 01	5.0	. 1.09	6
RR-04-02	. 7	44.6	40.7	106	1.0	7.1	9.4	1101	2.90	11.7	71.4	9.8	1.1	52	2.6	. 3	. 1	62	1.22	. 076	13	7.8	. 79	251	. 068		1.91	. 008	. 11	. 1	. 03	4.1	. $1<.05$	6
STANDARD DS3	9.3	125.7	31.0	157	. 3	35.4	11.6	795	3.26	31.6	65.6	19.0	3.6	25	55.9	5.0	4.9	72	. 54	. 088	16	179.0	. 60	138	. 087	2	1.81	. 027	. 16	3.4	. 21	3.7	1.1<.05	6

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE KOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS.
UPPER LIMITS - AG, AU, HG, $H=100$ PPM; MO, $C O, C D, S B, B I, T H, U \& B=2,000 P P M ; C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 ~ P P M$.

- SAMPLE TYPE: SILT SS80 60C

DATE RECEIVED: AUG 132002 DATE REPORT MAILED: Hug $27 / 02$ SIGNED BY. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

ANALYTTICAT (ISO 9002 A		LABORATORIES LI ccredilted Co.)					D.		852	E. H EOCl eta ke Dr	HAST HEM	TNG CH	It						$5 \mathrm{sin}$	1 R6 2 HE \# A 2 by 0		EHEO	WE\% (04	253	$\because 31$	58		66	4)2	53.1711	
SAMPLE\#	Mo Cu ppm ppin	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathbf{2 n} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Ag} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Ni} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Co } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Mn} \\ \mathrm{ppm} \end{array}$	\%	$\begin{array}{r} \mathrm{As} \\ 6 \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} u \\ \text { ppn } \end{array}$	$\begin{array}{r} \mathrm{Au} \\ \mathrm{ppob} \end{array}$	$\begin{array}{r} \text { Th } \\ \mathrm{ppom} \\ \hline \end{array}$	$\begin{gathered} \mathrm{Sr} \\ \mathrm{ppr} \end{gathered}$	$\begin{array}{r} \text { Cd } \\ \text { A ppm } \end{array}$	$\begin{array}{r} \mathrm{Sb} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} B i \quad V \\ p p m \end{gathered}$	$\begin{gathered} \mathrm{Ca} \\ \% \end{gathered}$			$\begin{array}{r} \mathrm{Cr} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Mg} \\ \% \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{Ba} \\ & \hline \mathbf{p m} \end{aligned}$	$\begin{array}{r} \mathrm{Ti} \\ \mathbf{\%} \end{array}$		$\begin{gathered} \text { Al } \\ \text { \% } \end{gathered}$	$\begin{gathered} \mathrm{Na} \\ \% \end{gathered}$		Pp			Tl ppan	
RP-01	. 852.5	18.0	94	. 8	7.1	11.6	605	2.30	41.8	33.0	8.1	. 9	49	. 7	1.1	.273	. 74	126	52	9.7	. 9	201	021		2.24	. 006	06		07	8.8	. 1.11	9
RP-02	1.620 .6	19.8	104	. 2	8.3	14.8	2189	3.38	17.4	2.2	3.0	1.6	28	1.0	. 7	. 174	. 52	070	13	10.1	. 96	181	. 071	1	1.65	010	9	. 2	01	4.2	1<. 05	6
RP-04	6.9247 .0	39.0	610	.	36.4	38.2	1691	5.71	5.6	4.7	19.0	1.0	59	3.9	. 3	. 5122	. 89	099	d	133.3	1.84	26	147		2.31	. 014	05	. 3	01	7.4	. 1.09	8
RR03-02	1.662 .3	19.6	421	3	20.0	29.6	2332	5.90	7.7	. 9	4.6	1.3	48	3.1	. 5	. 1177	. 97	. 080	12	5.6	2.08	107	233	3	3.05	. 020	. 06		. 01	12.6	<.1<.05	11
STANDARD DS3	8.7124 .7	1.4	159	3	35.	11.7	764	3.32	31.2	6.0	19.0	3.6	26	5.9	5.0	5.277	. 53	. 086	17	178.0	. 58	137	091	1	1.70	. 028	15	3.7	21	4.0	$1.2<.05$	6

GROUP 1DA - 10.0 GM SAMPLE LEACHED WITH 60 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED 10200 ML , ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, $H=100$ PPM; MO, $C O, C D, S B, B I, T H, U \& B=2,000$ PPM; $C U, P B, 2 N, N I, M N, A S, V, L A, C R=10,000$ PPN.

- SAMPLE TYPE: SILT SS80 60C

GROUP 7AR - 1.000 GM SAMPLE, AQUA - REGIA (HCL-HNO3-H2O) DIGESTION TO 100 ML , ANALYSED BY ICP-ES.
AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE.
SAMPLE TYPE: ROCK R150 60C Semples beginning 'RE' are Reruns gnd TRRE' are Reject Reruns.

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^2]

[^3]Standard Metals
FILE \# A203274
Page 5

SAMPLE\#	$\begin{array}{r} \text { MO } \\ \% \end{array}$	$\begin{gathered} \mathrm{CU} \\ \text { \% } \end{gathered}$	$\begin{gathered} \text { PB } \\ \% \end{gathered}$	$\begin{gathered} 2 N \\ \% \end{gathered}$	$\begin{array}{rrr} \text { AG } & \mathrm{NI} & \mathrm{CO} \\ \mathrm{gm} / \mathrm{mt} & \% & \% \end{array}$	$\begin{gathered} M N \\ \% \end{gathered}$	$\begin{gathered} \mathrm{FE} \\ \% \end{gathered}$	$\begin{array}{r} \text { AS } \\ \mathbf{\%} \end{array}$	$\begin{array}{cc} \text { SR } & \text { CD } \\ \% & \% \end{array}$	$\begin{gathered} \text { SB } \\ \% \end{gathered}$	$\begin{gathered} \text { BI } \\ \% \end{gathered}$	$\begin{gathered} \text { CA } \\ \% \end{gathered}$	$\begin{aligned} & P \\ & \% \end{aligned}$	$\begin{gathered} \text { CR } \\ \% \end{gathered}$	$\begin{aligned} & M G \\ & \% \end{aligned}$	$\begin{gathered} \text { AL } \\ \% \end{gathered}$	$\begin{gathered} \text { NA } \\ \% \end{gathered}$	$\begin{array}{ccc} \mathrm{K} & \mathrm{~W} & \mathrm{Hg} \\ \% & \% & \% \end{array}$	$\begin{gathered} \mathrm{Au}^{* *} \\ \mathrm{gm} / \mathrm{mt} \end{gathered}$	
T20B-59	\{. 001	. 002	. 01	<. 01	3.5<.001<. 001	<. 01	1.01	<. 01	.007<.001 . 00	. 002	<, 01	. 02	. 016.	. 002	. 01	. 86	$<.01$. 12<.001<. 001	. 08	
T20B-60	\{. 001	. 002	. 01	<. 01	1.5<.001<.001	<. 01	1.79	<. 01	.002<.001 . 00	. 001	<. 01	. 07	.017<.	. 001	. 05	1.04	. 01	. $37<.001<.001$. 01	
T2DB-61	\}. 001	. 001	. 01	<. 01	1.9<.001<.001	. 01	1.96	<. 01	. $003<.001 .00$. 001	<, 01	. 07	. 019 .	. 001	. 06	1.07	. 01	. $42<.001<.001$. 02	
T2DB-62	2. 001	. 002	. 01	<. 01	$4.0<.001<.001$	<. 01	1.22	<. 01	.003<.001 . 00	. 001	< 01	. 04	. 012.	. 001	. 02	. 70	. 01	. $25<.001<.001$. 05	
T2DB-63	¢. 001	. 004	$.01$	<. 01	$4.8<.001<.001$	<. 01	1.38	<. 01	.003<.001 . 0	. 001	< 01	. 01	. 016 .	. 001	. 02	. 84	. 01	. $31<.001<.001$. 08	
T2DB-64	\{. 001	. 003	<. 01	< 01	3.0<.001<.001	<. 01	1.37	<. 01	.002<.001 .	. 002	<. 01	. 01	. 013.	. 001	. 02	. 60	. 01	. $39<.001<.001$. 08	
T208-65	¢. 001	. 004	. 01	<. 01	2.3<.001<. 001	<. 01	1.65	<. 01	.002<.001<.00	. 001	$<.01$. 01	. 020.	. 001	. 03	1.01	<. 01	. $45<.001<.001$. 04	
T20B-66	. 001	. 004	. 01	<. 01	6.5<.001<. 001	<. 01	1.53	<. 01	.003<.001 .	. 001	< 01	. 01	. 019.	. 002	. 02	. 55	$<.01$. $38<.001<.001$. 10	
T2DB-67	$\underline{8} 001$. 003	<. 01	<. 01	7.1<.001<. 001	<. 01	1.57	<. 01	.004<.001 .	. 001	< 01	. 01	. 021 .	. 001	. 03	1.02	. 01	. $33.001<.001$. 16	
T2DB-68	\} 0001	. 001	<. 01	<. 01	$1.7<.001<.001$. 01	1.34	<. 01	. $003<.001<$.	. 001	< 01	. 03	. 015 .	. 001	. 03	. 21	< 01	. $38<.001<.001$. 03	
T2DB-69	. 001	. 005	. 01	< 01	7.6<.001<.001	<. 01	1.85	<. 01	.013<.001 .	. 001	< 01	$<.01$. 045.	. 002	. 01	1.12	$<.01$. $03.001<.001$. 93	
T2DB-70	. 001	. 004	. 01	< 201	$4.8<.001<.001$	<. 01	1.29	<. 01	.009<.001 .	. 001	< 01	< 01	. 026.	. 001	. 01	1.05	<. 01	. $02<.001<.001$. 15	
T20B-71	. 001	. 010	. 01	< 01	7.5<.001<. 001	<. 01	4.54	. 01	.010<.001 .	. 001	< 01	. 01	. 094.	. 002	. 01	. 76	. 01	. $03<.001<.001$. 19	
T208-72	. 001	. 003	<. 01	<. 01	$6.3<.001<.001$	<. 01	1.34	<. 01	.006<.001 .	. 001	<. 01	. 01	. 016.	. 001	. 02	. 78	<. 01	. $03<.001<.001$. 61	
T2DB-73	. 001	. 005	. 01	<. 01	12.6.001<. 001	<. 01	2.28	. 01	.007<.001 .	. 001	<. 01	<. 01	. 023.	. 002	<. 01	.15	. 01	. $02.001<.001$. 45	
T208-73a	4.001	. 005	<. 01	$<.01$	$9.1<.001<.001$	<. 01	1.69	. 01	.006<.001 .	. 001	<. 01	$<.01$. 016.	. 002	$<.01$. 43	< 01	<.01<.001<. 001	. 30	
T2DB-74	. 001	. 005	. 01	<. 01	27.3<.001<.001	<. 01	1.96	. 01	.008<.001 .	. 005	<. 01	<. 01	. 015.	. 002	<. 01	. 35	<. 01	. $03.001<.001$. 63	
T2DB-75	. 001	. 006	. 01	$<.01$	34.3<.001<.001	<. 01	2.15	. 01	.010<.001 .	. 006	<. 01	<. 01	. 019 .	. 003	. 01	. 58	<. 01	.03<.001<.001	2.73	
T208-76	¢. 001	. 007	<. 01	$<.01$	$50.6 .001<.001$	<. 01	2.27	. 01	.007<.001 .	. 005	< 01	< 01	. 014.	. 003	<. 01	. 54	< 01	. $01.001<.001$. 78	
RE T2DB-76	. 001	. 007	. 01	<. 01	50.4<.001<. 001	<. 01	2.37	. 01	.007<.001 .	. 005	< 01	<. 01	. 014.	. 003	<. 01	. 06	<. 01	. $01.001<.001$. 79	
T2DB-77	\$. 001	. 007	. 01	< 01	41.3<.001<.001	<. 01	2.15	. 01	.006<.001	. 007	<. 01	<. 01	. 022.	. 001	< 01	. 09	<. 01	. $01.001<.001$. 53	
1208-78	4.001	. 006	. 01	< .01	19.4<.001<. 001	<. 01	1.77	. 01	.006<.001 .	. 003	<. 01	<. 01	. 016.	. 002	<. 01	. 81	<. 01	. $01<.001<.001$. 25	
T208-79	¢. 001	. 006	. 01	< 01	23.3<.001<.001	<. 01	1.65	< 01	.006<.001 .	. 002	<. 01	< 01	. 017.	. 002	<. 01	. 65	< 01	.08<.001<.001	. 43	
T2DB-80	¢.001	. 004	<. 01	<. 01	11.4<.001<.001	<. 01	1.06	<. 01	. $006<$ < 001 .	. 001	<. 01	< 01	. 015	. 001	. 01	. 72	. 01	. $05<.001<.001$. 11	
T2DB-81	\{. 001	. 004	$.01$	< 01	15.4<.001<. 001	<. 01	1.04	<. 01	. $007<.001$.	. 001	<. 01	<. 01	. 011.	. 002	. 01	1.02	<. 01	. $07.001<.001$. 12	
T2DB-82	¢. 001	. 004	$\text { . } 01$	< 01	25.0<.001<.001	<. 01	1.03	<. 01	.004<.001 .	. 001	<. 01	. 01	. 009.	. 002	. 01	. 64	. 01	.16<.001<.001	. 12	
T2D8-83	$\{.001$. 005	. 01	<. 01	19.1<.001<.001	<. 01	1.41	<. 01	. $006<.001$. 001	<. 01	<. 01	. 017.	. 001	. 01	. 33	<. 01	. $02<.001<.001$. 09	
T2DB-84	\}.001	. 004	<. 01	$<.01$	$6.2 .001<.001$	<. 01	1.09	<, 01	. $002<.001$.	. 001	< 01	. 02	. 012.	. 001	. 02	. 18	< 01	. $33<.001<.001$. 01	
T2DB-85	$\} .001$. 003	. 01	$<.01$	10.7<.001<.001	<. 01	. 75	<. 01	.002<.001<.	<. 001	< 01	. 01	.012<.	<. 001	. 02	. 49	<. 01	.32<.001<.001	. 05	
T2DB-86	\}.001	. 006	. 01	<. 01	20.2<.001<.001	<. 01	1.67	<. 01	$.003<.001<$.	<. 001	<. 01	. 01	. 014.	. 001	. 02	1.11	<. 01	. 23<.001<.001	. 03	
T2D8-87	$\underline{0} 001$. 003	. 01	<. 01	$9.2<.001<.001$	<. 01	. 83	<. 01	. $001<.001$. 003	<. 01	. 02	. $018 \times$	<. 001	. 03	. 57	<. 01	. $39<.001<.001$. 07	
T208-88	¢ 0001	. 004	. 01	<. 01	13.2.001<.001	<. 01	1.28	<. 01	. $004<.001$.	. 001	<. 01	. 01	. 018.	. 001	. 01	. 66	<. 01	. $27<.001<.001$	17.33	
т20B-89	\$. 001	. 013	. 01	<. 01	11.3<.001<. 001	<. 01	5.08	. 01	. $006<.001$. 001	<. 01	. 01	. 092	. 001	$<.01$. 58	. 01	<.01<.001<. 001	. 95	
T2DB-90	\$. 001	. 003	< .01	<. 01	8.3 . $001<.001$	< .01	1.05	<. 01	. $007<.001$. 001	<. 01	. 01	. 027	. 001	< 01	1.53	<. 01	$<.01 .001<.009$. 71	
T2DB-91	¢. 001	. 001	<, 01	<. 01	3.7<.001<.001	<. 01	. 46	<. 01	.007>.001<.	<. 001	<. 01	<. 01	. 022.	. 002	<. 01	. 66	< 01	$<.01<.001<.001$. 69	
STANDARD R-1/AU-1	. 091	. 838	1.27	2.17	100.2 . 031.027	. 08	6.60	. 94	. 030.045 .	. 160	. 03	1.45	. 109	. 025	. 99	1.01	.16	. 41.005 .001	3.35	

[^4]

[^5]

[^6]

Sample type: ROCK R150 60C.

GROUP TAR - 1.000 GM SAMPLE, AQUA - REGIA (HCL-hNO3-h20) DIGESTION TO 100 ML, ANALYSED BY ICP-ES.

- SAMPLE TYPE: ROCK R150 60C AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE.

[$\square \square$
ACME ANALYTICAL LABORATORIES LID.
852 8. HASTMNGS ST: VANCOUVER BC V6A IR 6
ASSAY CERTIFICATE
Standard Metalas/aflele \# A 203913

GROUP TAR - 1.000 GM SAMPLE, AQUA - REGIA (HCL-HNO3-h20) DIGESTION TO 100 ML, ANALYSED BY ICP-ES.
SAMPLE TYPE: ROCK R150 60C AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE
Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: SEP 192002 DATE REPORT MAILED:
Sept $27 / 02$ signed ax. $C!\rho$
D. TOME, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

38151 Clarke Drive, F 0 , squamish BC , YON 360 , submitted by\% D. Blain

GROUP TAR - 1.000 GM SAMPLE, AQUA - REGIN (HCL-HNO3-H2O) DIGESTION TO 100 ML , ANALYSED BY ICP-ES.

- SAMPLE TYPE: ROCK R150 60C AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE.

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost oof the analysis only.

Sample type: ROCK R150 60C.

ACME ANALXTHCAI LABORATORIES LITD.
852. E. HASTINGS ST: VANCOUVER BC V6A. 1 R6

41
Standard Metals FILE \# A204049
Page 2

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Sample type: ROCK R150 60C.

ACMB ANALYTICAL LABORATORIES LTD.
AAL
852 R. hastings st. VANCOUVRR bC V6A IRG

GROUP 7AR - 1.000 GM SAMPLE, AOUA - REGIA (HCL-hNO3-h2O) DIGESTION TO 100 ML , ANALYSED BY ICP-ES.

- SAMPLE TYPE: ROCK R 150 60C AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE.

Samples beginning.'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

44

Standard Metals PROJECT SMX02-2 FILE \# A204426
Page 2

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

La

[^7]ache amat tical

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

[^8]

[^9]

AU\# - 100 GM SAMPLES LEACH $1 \mathrm{~N} 1 \%$ CYANIDE, SHAKE 5 MINUTES EVERY HOUR FOR 24 HOUR, ANALYSED BY ICP.
ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM \& AU > 1000 PPB

- SAMPLE TYPE: ROCK PULP Samples beginning 'RE' are Reruns and 'RRE'gre Reject Reruns.

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH $3 \mathrm{ML} 2-2-2$ HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML , ANALYSED BY ICP-MS.
UPPER LIMITS - AG, AU, HG, $W=100 \mathrm{PPM}$; $M O, C O, C D, S B, B I, T H, U \& B=2,000 \mathrm{PPM} ; \mathrm{CU}, \mathrm{PB}, \mathrm{ZN}, \mathrm{NI}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$.

- SAMPLE TYPE: ROCK PULP

GROUP 10X - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS.
UPPER LIMITS - $A G, A U, H G, W=100 \mathrm{PPM}$; $M O, C O, C D, S B, B I, T H, U \& B=2,000 P P M ; C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 P P M$.

- SAMPLE TYPE: ROCK PULP

Standard is STANDARD DS4.
GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS.
UPPER LIMITS - $A G, A U, H G, W=100 \mathrm{PPM} ; \mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH}, \mathrm{U} \& \mathrm{~B}=2,000 \mathrm{PPM} ; \mathrm{CU}, \mathrm{PB}, \mathrm{ZN}, \mathrm{NI}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$.

- SAMPLE TYPE: ROCK PULP

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH $3 \mathrm{ML} 2-2-2$ HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. UPPER LIMITS - $A G, A U, H G, W=100 \mathrm{PPM} ; \mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, 8 \mathrm{BI}, \mathrm{TH}, \mathrm{U} \& \mathrm{~B}=2,000 \mathrm{PPM} ; \mathrm{CU}, \mathrm{PB}, \mathrm{ZN}, \mathrm{NI}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$. - SAMPLE TYPE: ROCK PULP

GROUP DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, $W=100 \mathrm{PPM}$; $\mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH}, \mathrm{U} \& \mathrm{~B}=2,000 \mathrm{PPM} ; \mathrm{CU}, \mathrm{PB}, \mathrm{ZN}, \mathrm{NI}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$. - SAMPLE TYPE: ROCK PULP

GROUP $10 \mathrm{X}-0.50 \mathrm{GM}$ SAMPLE LEACHED WITH $3 \mathrm{ML} 2-2-2$ HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS.
UPPER LIMITS - AG, $A U, H G, W=100 \mathrm{PPM}$; MO, CO, $C D, S B, B I, T H, U \& B=2,000 P P M$; $C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 P P M$.

- SAMPLE TYPE: ROCK PULP Samples beginning' ${ }^{2}$ RE' are Reruns and 'RRE' are Reject Reruap.
date received: jan 102003 date report mailed: Gau $15 / 03$
signed by... $h \ldots \ldots$ tore, c.leong, j. wang; certified b.c. assayers

852 E. HASTINGS ST: VANCOUVER BC VGA. ARG
PHONE (604) 253-3158 FAX (604)253-1716
GEOCHEMICAL ANALYSIS CERTIFICATE
Standard Metals File. \# A203451R
38151 clarke Drive, P. O. , Squeamish BC V ON 360% Submitted by: D. Elan

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS.
UPPER LIMITS - $A G, A U, H G, W=100 \mathrm{PPM}$; $\mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH}, \mathrm{U} \& \mathrm{~B}=2,000 \mathrm{PPM} ; \mathrm{CU}, \mathrm{PB}, \mathrm{ZN}, \mathrm{NI}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$.

- SAMPLE TYPE: ROCK PULP

DATE RECEIVED: JAN 102003 DATE REPORT MAILED: SOM $15 / 03$
SIGNED BY...:......... TOME, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

852. E , HASTTNGS ST, VANCOUVER BC, V6A IR6
PHONE (604) $253-3158$ FAX $(604) 253-1716$
GEOCHEMICAL ANATYSIS CERTIFICATE

ACME ANALYTICAL LABORATORIES LTD.

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-hNO3-h2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS.
UPPER LIMITS - AG, $A U, H G, W=100 \mathrm{PPM} ; \mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH}, \mathrm{U} \& \mathrm{~B}=2,000 \mathrm{PPM}$; $\mathrm{CU}, \mathrm{PB}, \mathrm{ZN}, \mathrm{NI}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$.

- SAMPLE TYPE: ROCK PULP
date received: jan 102003 date report mailed: 0 an $15 / 03$ signed by. 0 . h.o.o.o. tope, c.leong, j. hang; certified b.c. assayers

Standard is STANDARD DS4.
group dx - 0.50 GM Sample leached with 3 ml 2-2-2 hCL-hno3-hzo at 95 deg. c for one hour, diluted to 10 ml, analysed by icp-ms.
UPPER LIMITS - AG, AU, HG, $W=100 \mathrm{PPM} ; \mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH}, \mathrm{U} \& \mathrm{~B}=2,000 \mathrm{PPM} ; \mathrm{CU}, \mathrm{PB}, \mathrm{ZN}, \mathrm{NI}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$.

- SAMPLE TYPE: ROCK PULP
dAte received: jan 102003 date report mailed: au $15 / 03$ Signed by. it......p. tote, c.leong, j. wang; certified bic. assayers

 UPPER CIMITS - $A G, A U, H G, W=100 \mathrm{PPM} ; \mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH}, \mathrm{U} \& \mathrm{~B}=2,000 \mathrm{PPM} ; \mathrm{CU}, \mathrm{PB}, \mathrm{ZN}, \mathrm{NI}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$.
- SAMPLE TYPE: ROCK PULP
date received: jan 162003 date repport mailed: an $20 / 2003$ signed by

[^0]: Standard Metals Exploration Ltd

[^1]: Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^2]: Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^3]: Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^4]: Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^5]: Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^6]: Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^7]: Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^8]: Sample type: ROCK R150 60C, Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^9]: Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject_Reruns.

