

REPORT

on the

2002 SUMMER DRILLING PROGRAM

on the

LORRAINE-JAJAY PROPERTY

OMINECA MINING DIVISION, BC.

NTS: 93N14W

Latitude 55° 55' N, Longitude 125° 27' W

For

EASTFIELD RESOURCES LTD.

by

J.W. MORTON, P.Geo.

June 12, 2003

TABLE OF CONTENTS

	PAGE
SUMMARY	1
PROPERTY DESCRIPTON AND LOCATION	2
ACCESSIBILITY, CLIMATE, LOCAL RESOURCES AND PHY	YSIOGRAPHY 5
LOGISTICS MAP	5
CLAIM MAP (SUMMARIZED)	6
CLAIM MAP (FROM BC GOVERNMENT FILES)	7
HISTORY	8
GEOLOGICAL SETTING	12
DEPOSIT TYPES	12
MINERALIZATION	13
EXPLORATION	14
DRILLING	15
SAMPLING METHOD AND APPROACH	15
SAMPLE PREPARATION, ANALYSIS AND SECURITY	15
MINERAL RESOURCES	16
RECOMMENDATIONS	16
COST STATEMENT	17
AUTHOR QUALIFICATIONS	18
DIAMOND DRILL LOGS, 2002-61, -62, -63, -64, -65 AND- 66	APPENDIX
ANALYTICAL CERTIFICATES	APPENDIX
DIAMOND DRILL LOCATION MAP ATT.	ACHED IN POCKET

Mincord Exploration Consultants Ltd., 110-325 Howe St., Vancouver, BC, V6C 1Z7

SUMMARY

In 2002, Eastfield initiated the most recent exploration program at the Lorraine property. Work was initiated in March 2002 with a three-hole diamond drill program completed in winter conditions. The March drilling program was followed by four more diamond drill holes drilled in July and August. The total footage drilled in 2002 was 1106 metres. Drill hole 2002-62 proved to be the highlight of the 2002 drill program intersecting 149 metres grading 0.57% copper and 0.38 g/t gold with 51 metres grading 0.89% copper and 0.61 g/t gold. Five of the 6 holes drilled in 2002 returned significant copper-gold intersections and will add new tonnage to the resource.

The six holes completed in 2002 are included in this report for completeness although costs claimed are restricted to the four holes drilled in the summer program.

PROPERTY DESCRIPTON AND LOCATION

The Lorraine-Jajay property covers 1,050 claim units located in the Omineca Mining Division of central BC. The claims, listed below, are all located on government (crown) land and encompass approximately 27,000 hectares (67,000 acres).

Eastfield may earn up to a 75% interest in the Lorraine-Jajay property from Lysander Minerals Corporation and certain individuals. By completing \$4,000,000 in exploration and making \$550,000 in payments before December, 2007, Eastfield earns 65% and, by completing a positive feasibility study within two years thereafter, increases its interest to 75%.

Claim Name	Record #	# units	Expiry Date	Expiry Year
Pal 1	346810	6	11-Aug	2003
Pal 2	346811	20	31-Mar	2004
Pal 3	346812	20	31-Mar	2004
Pal 4	346813	20	11-Aug	2003
Pal 6	346815	20	11-Aug	2003
Pal 7	346816	20	11-Aug	2003
Pal 8	346817	15	11-Aug	2003
Pal 9	346818	20	11-Aug	2003
Pal 10	346819	20	11-Aug	2003
Pal 12	346820	15	11-Aug	2003
Pal 13	346821	20	31-Mar	2004
Pal 14	346822	15	31-Mar	2004
Pal 15	346823	20	31-Mar	2004
Pal 16	346824	20	11-Aug	2003
Pal 17	346825	20	11-Aug	2003
Pal 18	346826	20	11-Aug	2003
Pal 19	346827	20	11-Aug	2003
Pal 20	346828	8	11-Aug	2003
Pal 21	346829	20	11-Aug	2003
Pal 22	346830	8	11-Aug	2003
Pal 23	346831	20	June 30	2004
Pal 24	346832	20	11-Aug	2003
Pal 25	346833	20	11-Aug	2003
Pal 26	346834	20	11-Aug	2003
Pal 27	346835	20	11-Aug	2003
Pal 30	346838	20	11-Aug	2003
Pal 31	346839	20	11-Aug	2003
Pal 32	349774	20	11-Aug	2003
Pal 33	349775	12	31-Mar	2004
Pal 34	349776	8	31-Mar	2004
Pal 37	349779	20	31-Mar	2004
Pal 41	349783	15	20-Aug	2003
Pal 42	349784	12	18-Aug	2003
Pal 44	349786	20	20-Aug	2003
Pal 47	350425	15	24-Aua	2003

Mincord Exploration Consultants Ltd., 110-325 Howe St., Vancouver, BC, V6C 1Z7

ì

J.W. Morton P.Geo.

Claim Name	Record #	# units	Expiry Date	Expiry Year
Pal 48	350016	12	11-Aug	2003
Bobino #1	346808	10	31 -M ar	2004
Bobinette	346809	10	11-Aug	2003
Fiona	352235	1	11-Aug	2003
Isabelle	352236	1	11-Aug	2003
Suzanne	352237	1	11-Aug	2003
Steelhead 1	334766	8	11-Aug	2003
Steelhead 2	334767	8	11-Aug	2003
Sh 8	334773	1	11-Aug	2003
Sh 9	334774	1	11-Aug	2003
Sh 10	334775	1	11-Aug	2003
Lorraine 1	243499	1	17-Sep	2006
Lorraine 2	243500	1	17-Sep	2006
Lorraine 3	243501	1	17-Sep	2006
Lorraine 4	243502	1	17-Sep	2006
Lorraine 5	243503	1	17-Sep	2006
Lorraine 6	243504	1	17-Sep	2006
Lorraine 7	243505	1	17-Sep	2006
Lorraine 8	243506	1	17-Sep	2006
Lorraine 9	243507	1	22-Jun	2006
Lorraine 10	243508	1	22-Jun	2006
Lorraine 11	243509	1	22-Jun	2006
Lorraine 12	243510	1	22-Jun	2006
Lorraine 1FR	245449	1	31-May	2006
Lorraine 2FR	245450	1	31-May	2006
Lorraine 3FR	245451	1	31-May	2006
Lorrex 1	243646	1	4-Sen	2006
Lorrex 2	243647	1	4-Sep	2006
GK 1	245043	1	3-Jul	2006
GK 2	245044	1	3-Jul	2006
GK 3	245045	1	3-Jul	2006
GK 4	245046	1	3-Jul	2006
GK 5	245047	1	3-Jul	2006
GK 6	245048	1	3-Jul	2006
GK 7	245049	1	3-Jul	2006
GK 8	245050	1	3-Jul	2006
GK 9	245051	1	3-Jul	2006
GK 10	245052	1	3-Jul	2006
GK 11	245053	1	3-Jul	2006
GK 18	245054	1	3-Jul	2006
GK 19	245055	1	3-Jul	2006
GK 20	245056	1	3-Jul	2006
GK 21	245057	1	3-Jul	2006
GK 109 FR	245452	1	31-May	2006
GK 110 FR	245530	1	25-Jul	2006
GK 111 FR	245453	1	31-May	2006
GK 112 FR	245521	1	25- Jul	2006
Dorothy 1	240001	12	20-001 11 Aug	2000
	241431	12	i i Aug	2003

Mincord Exploration Consultants Ltd., 110-325 Howe St., Vancouver, BC, V6C 1Z7

ţ

i i

Claim Name	Record #	# units	Expiry Date	Expiry Year
Dorothy 2	241432	12	31-Mar	2004
Dorothy 3	241433	12	31-Mar	2004
Dorothy 4	241434	12	31-Mar	2004
Dorothy 5	241961	12	11-Aug	2003
Dorothy 6	241962	15	11-Aug	2003
Dorothy 7	241963	18	31-Mar	2004
Dorothy #1	243511	1	11-Aug	2003
Dorothy #3	243512	1	11-Aug	2003
Elizabeth #1	243513	1	27-Aug	2003
Steele #1	240496	20	29-Apr	2004
Steele #2	240497	20	29-Apr	2004
Steele #3	240498	20	29-Apr	2004
Steele #4	240499	20	29-Apr	2004
Boot 6	242900	15	31-Mar	2004
Boot 10	303913	20	5-Sep	2003
Mackenzie 1	372404	20	31-Mar	2004
Mackenzie 2	372405	20	31-Mar	2004
Mackenzie 3	372406	20	31-Mar	2004
Mackenzie 4	372407	8	31-Mar	2004
Mackenzie 5	372408	8	31-Mar	2004
Dome 1	384003	20	June 30	2004
Dome 2	384004	20	June 30	2004
Nupal	388797	12	31 July	2004
Total		1,050		

ACCESSIBILITY, CLIMATE, LOCAL RESOURCES AND PHYSIOGRAPHY

The Lorraine-Jajay property is located in the Omineca Mountains near the headwaters of Duckling Creek. This location is approximately 280 km northwest of Prince George, British Columbia. Road access to the Lorraine claims, which form the heart of the Lorraine-Jajay property, is most commonly via Fort St. James and Germansen Landing using a bush road off the Omineca Mining Road. Recent logging activity in the area has pushed industrial logging roads to within a few kilometres of the property from the southeast (via Germansen Landing), from the southwest (via the BC rail loading facilities at Takla Lake) and from the north (via MacKenzie and the Kemess Access Corridor). One of the newly constructed roads approaches the property from the southwest using a new bridge on the Omineca River. It provides access to the BC Rail at Lovell Cove on Takla Lake where logs are shipped to Prince George. This road and bridge will be an important component to the necessary infrastructure if and when a mine is constructed on the property. A second road accesses the extreme southeastern region of the property using a new logging road branching from the Omineca Mining Road. This road extends to within a few hundred metres of the east bank of Duckling Creek.

Mincord Exploration Consultants Ltd., 110-325 Howe St., Vancouver, BC, V6C 1Z7

Mincord Exploration Consultants Ltd., 110-325 Howe St., Vancouver, BC, V6C 1Z7

CLAIM MAP FROM BC GOVERNMENT

e property is located in a section of the interior which is truncated to the north and south by the broad, subdued river valleys of the Osilinka and Omineca Rivers, respectively. Elevations on the property range from approximately 1,000 metres (3,200 feet) on Duckling Creek to around 2,100 metres (6,900 feet) on the highest ridge tops. Pleistocene glaciation has incised a number of north and east-facing cirques, which interrupt the general north-south lineation of the topography. Cirque floors are generally found at 1,550 to 1,600 metres (5,000 to 5,200 feet) elevation. Talus development is extensive on the northern and eastern slopes, while the southern and westerly slopes are commonly vegetated. Glacial till and fluvioglacial outwash blanket the valley bottoms, limiting most outcrop exposures to streambeds below tree line. A thick growth of mature spruce, pine and balsam covers much of the lower elevation.

The climate of this region of BC is typically cool and moderate with warm moist summers and cold winters. The lower elevation regions of the claims are snow free from the end of April until the beginning of November. In the highest elevation regions of the claims, winter snow may linger until the end of June and occur again any time after the middle of September. Total snowfall is not excessive.

Eastfield may earn up to a 75% interest in the Lorraine-Jajay property from Lysander Minerals Corporation and certain individuals. By completing \$4,000,000 in exploration and making \$550,000 in payments before December 31, 2007, Eastfield earns 65% and, by completing a positive feasibility study increases its interest to 75%.

There are no known environmental or aboriginal issues specific to the Lorraine-Jajay claims known to the author other than those that relate to British Columbia in its generality.

HISTORY

In the early 1900's, prospectors noted the malachite-stained bluffs of Lorraine Mountain, but it was not until 1931 that the property was first staked. The Consolidated Mining and Smelting Company Limited (later named Cominco) acquired the Lorraine property in 1943 and held it until 1947.

Kennex (a subsidiary of the Kennecott Corporation) acquired the Lorraine property in late 1947 and, in 1948, under the name of Northwestern Explorations Limited, they mapped and surface sampled the property. In 1949, five widely-spaced AX diamond drill-holes were completed on the Lorraine claims in the vicinity of the copper stained cliffs. Results from this drilling were mixed.

Regional prospecting, undertaken during the 1948 program, located copper-mineralized float on the East Side of Duckling Creek (approximately 8 kilometres distant) in what soon became the Dorothy and Elizabeth showings. Several boulders, described as being

Mincord Exploration Consultants Ltd., 110-325 Howe St., Vancouver, BC, V6C 1Z7

up to 4 cubic feet in volume and consisting of approximately 90% sulfide, were discovered on the Elizabeth claims. These boulders returned assays varying from 24.20% to 31.25% copper. In 1949, Northwestern followed-up this prospecting with a program of mapping, line-cutting, hand trenching and diamond-drilling. Four AX diamond-drill holes, totalling 442 metres, were drilled at the Dorothy showing. The best intersection from this program assayed 0.48% copper over 109 metres (357 feet).

Limited exploration was carried out in the area during the 1950's and early 1960's. In 1951, H. Warren and D. Barr carried out a biogeochemical survey in the Dorothy Elizabeth area. In the early 1960's Kennco Explorations (Western) Limited carried out a program of mapping, silt and soil sampling, and geophysical (IP and magnetometer) surveys in the area, and in 1963, they drilled 2 AX diamond-drill holes (DDH DY-1, 2). Sufficient assessment work was generated by this work to hold the Dorothy 2-post claims until 1972, after which cash in lieu of work was paid to hold the property.

The Lorraine property then lay dormant until it was joint ventured with Granby Mining Company Limited in 1970. During the period 1970-73, Granby enlarged the property and carried out a major exploration program of geological mapping, rock and soil sampling, trenching and drilling. A total of 3,992 metres of diamond drilling and 2,470 metres of percussion drilling were completed on the Main Zone. By 1973, the Main zone had been sub-divided into two zones and a preliminary estimate of reserves calculated. The Lower Main zone was inferred to contain 5,500,000 tons grading 0.6% copper and 0.1 grams per tonne gold, and the Upper Main Zone was inferred to contain 4,500,000 tons grading 0.75% copper and 0.34 grams per tonne gold. A cut off grade of 0.4% copper was used in the calculations. A large area surrounding the Granby-Kennecott holdings was acquired or staked by a large group of junior and senior resource companies. Senior companies conducting exploration in the early 1970's on the site of the present Lorraine-Jajay claims peripheral to the Kennecott holdings included Noranda, Cominco, Falconbridge and Amoco Canada.

The Lorraine properties were inactive during the later years of the 1970's and through most of the 1980's. In 1989, Kennecott Canada Inc. began a reassessment of the gold-copper potential of the Lorraine and Dorothy properties. The property was expanded, and an initial orientation program was contracted to C.E.C. Engineering Ltd. in 1990. This included road rehabilitation, establishing grids, geological mapping, soil sampling, and geophysical (IP and magnetometer) surveys.

In 1991, Kennecott resumed management of the property and embarked on a twelve-hole (2,392 metres) diamond-drill program in the Lorraine area, with nine holes drilled in the Lorraine Extension (later called the Bishop) Zone. Two holes drilled were also drilled in the Webber zone and one hole drilled in the North Cirque Zone. Detailed geological mapping and petrographic studies were begun during this program. The exploration program also extended to the Dorothy / Elizabeth areas. Work consisted of road construction (from the Dorothy Duckling Creek access road to the Elizabeth Breccia area), test pitting, rock sampling, IP surveys and the diamond drilling of 6 NQ holes for a

Mincord Exploration Consultants Ltd., 110-325 Howe St., Vancouver, BC, V6C 1Z7

total of 961.6 metres. The first three holes were drilled at the Dorothy showing in the vicinity of Northwestern's 1949 drill-holes, the remaining three holes were drilled along the Dorothy Duckling Creek road south of Dorel Creek. The most significant intersection was in hole D91-1 which averaged 0.34% copper and 0.12 grams per tonne gold over 121 metres.

In 1993, Kennecott drilled another 2 holes (the 3rd hole was lost in overburden) in the Lorraine claims, along with detailed rock chip sampling of the Main and Extension (Bishop) zones.

In 1990, BP Resources Canada optioned several claims surrounding the Lorraine claims. This option was negotiated following the discovery of platinum and palladium mineralized float by an area prospector in 1990. In 1991, BP located the source of the mineralization in a breccia outcropping from a cliff face. In 1991, BP completed geochemical, induced polarization and minor diamond drilling northeast of the Bishop Zone as well as completing a detailed airborne geophysical survey. An expanded program was proposed for 1992 but was not completed owing to the decision of BP's parent oil company to wind down BP Resources Canada.

In 1994, Lysander Gold Corporation (now Lysander Minerals Corporation) optioned the Lorraine property from Kennecott and carried out a 10-hole diamond-drill program (1,221.4 metres), which was focussed on the western part of the Upper Main (3 holes) and Bishop (7 holes) zones. The success of this program led to the optioning of the adjacent Boot-Steele claims to protect a possible southeastern extension of the Bishop zone.

Lysander continued drilling in 1995 with a 26-hole, 3,843.53 metre program. A total of 23 holes (2,903 metres) were drilled on the Upper Main Zone proving that mineralization occurs with greater potential at depth than earlier work had suggested. Two holes were drilled in the Bishop zone in 1995 with both failing to intersect significant mineralization, suggesting that faulting is an important feature in this area. A single "wildcat" hole drilled on Jeno Ridge (above the "BM" Breccia) also failed to intersect economic mineralization. This program also successfully established the existence of a potential oxide copper resource in the weathered talus apron below the Upper Main Zone.

In 1996, Lysander optioned the Dorothy and Steelhead properties and staked the Pal claims. Initial work in 1996 on the expanded Jajay property included a geochemical program of sampling soils, talus fines, seepage sediments and rocks over the western third of the expanded property. A 10-hole diamond-drill program in 1996 probed extensions of the Upper Main Zone and reestablished extensions to mineralization in the Bishop zone. Significant intersections included hole 96-44 which cut 32.2 metres (106 feet) of 1.49% copper in this zone (in 2002 Eastfield purchased The Steelhead Property).

Lysander continued drilling in 1997 with an 8-hole (1,146.3 metres) program. 4 holes were drilled in the Dorothy showing, 3 holes in the Bishop zone and 1 hole in the Ato

Mincord Exploration Consultants Ltd., 110-325 Howe St., Vancouver, BC, V6C 1Z7

area (Bobinette claim). In the Bishop zone, hole 97-47 intersected 64 metres of 0.58 % copper and 0.24 grams per tonne gold. The geochemical (talus fines and seepage sampling) program was continued in 1997, and a limited amount of follow-up sampling was carried out. Numerous copper and gold anomalies were identified in both of the 1996 and 1997 geochemical surveys. Subsequent reanalysis of some of these samples resulted in the identification of several PGE anomalies.

In 1999, Lysander completed 3 fly-camp scale reconnaissance-prospecting surveys of three of the more obvious targets originating from the geochemical reconnaissance completed in 1996 and 1997. The most significant result of this work was the identification of "Lorraine style" mineralization in an alpine drainage 1,000 metres south of the Bishop Zone. Evaluation here led to the discovery of several new outcrops containing significant copper and gold mineralization in potassic altered syenite and syenite-magnetite breccia. The importance of this discovery is enhanced by the fact that these exposures bear a striking similarity to mineralization that occurs at the Lorraine Upper Main Zone. Five outcrop (and rubble) samples at this discovery (named the Page Zone) averaged 0.86% copper and 0.47 gm/t gold. The Page Zone currently constitutes a prime target.

Eastfield Resources Ltd. optioned the Lorraine-Jajay property from Lysander Minerals Corporation in October, 2000. Shortly thereafter Eastfield initiated a program in the southeastern region of the claim block (the Mackenzie Zone). The program which ran until early November, 2000 entailed drilling 5 short holes totalling 378 metres and completing a 91 sample soil survey. While the drilling was unsuccessful, the soil survey outlined a significant new copper-gold anomaly which remains open-ended and which warrants additional work. In retrospect, it can be surmised that it was premature to initiate diamond drilling in this area ahead of completing soil and geophysical surveys.

In 2001, Eastfield initiated the most recent exploration program at the Lorraine-Jajay property. The program, which commenced in June, ran until the middle of October and entailed 2,508 metres of diamond drilling in 13 holes, 16.5 kilometres of induced polarization and magnetometer survey and the reconstruction of Upper Camp. A summary of significant drill intercepts is included as appendix 2 of this report. Hole 2001-58 establishes an open direction to mineralization on the southern boundary of the Bishop Zone while hole 2001-60 establishes an open direction to mineralization on the southern boundary of the Lower Main Zone. Holes 2001-58 and 2001-60 are approximately 1,400 metres distant from each other.

In 2002 Eastfield completed 7 diamond drill holes totaling 1106 metres, repaired the access road to the camp and defined new drill targets in the AlL Alone Dome and Webber Basin areas.

GEOLOGICAL SETTING

The Lorraine-Jajay property occurs within a large intrusive complex which is itself located within a northwest-southeast trending Mesozoic depositional basin formerly referred to as the Quesnel Trough and more recently referred to as the Quesnel Terrane. The origin of this basin has been ascribed both to a rift basin and an island arc model. In the section including the Lorraine-Jajay property, the rift basin model is the most compelling. Here, the basin is approximately 40 kilometres wide and is discretely bounded by the Pinchi Fault on the west and the Manson Fault on the east. Mafic volcanic rocks including basalt and andesite (mapped as the Takla Group), commonly crosscut by pyroxenite dykes, dominate the basin infill.

The intrusive complex (The Hogem Batholith) that dominates the Lorraine-Jajay property is at least partially comagmatic with the Takla Group volcanic rocks and is comparable in age (Middle to Upper Jurassic). With the exception of the extreme eastern region of the Lorraine-Jajay property, all volcanic rocks have eroded off the edifice which is considered to now represent a deeper level of the intrusion. The complex is divided into three major phases that grade from an earliest basic phase in the northeast to a syenite middle phase in the centre and a younger granitic phase in the southwest. Opinions differ with respect to whether or not the earlier basic phase and the middle syenite phase have cross cutting relationships, implying a significant variance in ages. Opinion is consistent that the youngest granitic phase (granite to granodiorite) crosscuts both the syenite and basic phases.

The Duckling Creek Syenitic Suite is the most significant unit in the region for the occurrence of copper, gold and PGM mineralization. The Duckling Creek Syenitic Suite forms an oblate northwest trending unit approximately 35 kilometres long and averaging 8 kilometres wide. Approximately 50% of the Lorraine-Jajay property is underlain by this suite while most of the remainder of the property is underlain by the older basic phase. The youngest phase, consisting of granite to granodiorite, is restricted to cross-cutting dykes and to a small area on the southwest side of the property.

A number of unusual aspects present in the rocks of the Duckling Creek Syenitic Suite have caused some workers to predict a large alkaline intrusive body with carbonatite characteristics at depth. A discrete magnetic ring approximately 12 kilometres in diameter is associated with Lorraine and several other known areas of significant coppergold \pm PGM mineralization. The ring was an important consideration in assembling the present property holdings. The centre of the ring, which occurs under an overburden filled valley, remains an intriguing target.

Another unusual aspect in the vicinity of mineralization is an often-foliated character to the rocks and an often-pervasive potassium-sodium metasomatism in them. On a detailed scale, rocks resembling pyroxenite can be observed essentially changing back and forth to rocks resembling symite over distances less than a metre (sometimes over a few

Mincord Exploration Consultants Ltd., 110-325 Howe St., Vancouver, BC, V6C 1Z7

centimeters). Petrographic studies of the Lorraine mineralized zones indicate that potassium metasomatism in all units is typically manifested by pervasive replacement to orthoclase, microcline and biotite while sodium metasomatism is manifested by plagioclase replacement to albite and augite pyroxene conversion to aggirine pyroxene (i.e. calcium replacement by sodium). The most comprehensive petrographic study at Lorraine (Koo, M.Sc., UBC 1968) concludes that the parent rocks within the resource area were primarily dioritic and that the current "syenite" units are predominantly secondary. This hypothesis goes on to speculate that a blind, alkali enriched, intrusive responsible for the pervasive metasomatism at Lorraine (termed fenitization by Koo) is also the likely candidate for the source of the copper and gold mineralization.

Some workers have attributed this variability more to migmitization arising from emplacement of the complex at great depth within a regime fostering ductile deformation than to metasomatism.

DEPOSIT TYPES

The setting of the Lorraine-Jajay property within a probable rift basin dominated by intrusive materials of mantle derivation lends itself to analogies with many world class deposits containing large resources of copper-gold and platinum group metals. Additional comparisons can also be made to other deposits containing mantle-derived accumulations of copper-gold mineralization in association with large volumes of iron oxide. A brief list of possible analogies is as follows:

Galore Creek, BC. Ernest Henry, Australia.

284 million tons @ 0.67 % Cu and 0.44 g/t Au 122 million tons @ 1.1 % Cu and 0.6 g/t Au Afton, BC. (now DRC Resources Ltd.) 31 million tons @ 1.10 % Cu and 0.58 g/t Au

MINERALIZATION

The Duckling Syenitic Suite is by far the most significant unit for economic metal mineralization (copper-gold and PGM) on the Lorraine-Jajay property. The greatest concentrations of copper minerals, dominantly bornite and chalcopyrite with lesser chalcocite and covellite, occur in "syenitic" rocks and to a lesser extent in pyroxenite and diorite. Pyrite is generally rare or absent while magnetite is usually ubiquitous. Gold content shows a positive correlation with "syenitic"-hosted copper mineralization while PGM mineralization is positively correlated with gabbro. Mineralization is dominantly disseminated versus fracture controlled, and the mineralizing event shows evidence of having been long-lived and dynamic and, at least in part, magmatic. Evidence for the long-lived character of the mineralizing event is offered by the range of ductile and brittle deformation zones with which it is associated and fault effects which both control and truncate mineralization. Evidence for the magmatic origin of mineralization is offered by its character of occurrence as blebs and "net textured" semi-massive sulfide in pyroxenite. Mineralization in the Lower Main Zone is sometimes hosted by an unusual syenite migmatite in which anastomosing arrays of pink potassium feldspar rich bands and

Mincord Exploration Consultants Ltd., 110-325 Howe St., Vancouver, BC, V6C 1Z7

dyklets encompass and envelop a biotite-pyroxene mafic phase. This style of mineralized rock gives an impression that mafic rock was brecciated, invaded with a younger "syenitic" differentiate and then subjected to ductile deformation.

On Jeno Ridge, 1,200 metres south of the Bishop Zone, a clast-supported breccia with a matrix dominated by bornite and chalcocite occurs on a 50-metre exposure of cliff face (the "BM Breccia"). This mineralization (matrix to the breccia) is extremely high grade and often is in excess of 10% copper with 10 to 18 g/t gold and 1.0 to 3.5 g/t palladium. On a hand specimen scale, mineralized rock here is divided into bands of potassium feldspar plus albite which are gradational to bands dominated by mafic minerals. Included in the mafic minerals are diopside, biotite, apatite and garnet. Opaque minerals (copper sulfides) and magnetite are intergrown with and form a matrix to the mafic minerals. Minor bismuth telluride occurs within bornite. Pyrite is notably absent, implying a low sulfur system. The petrology here suggests that the mineralization is hosted within the mafic portion of a compositionally banded intrusion and is primary in part and replacement in part. The major significance of this mineralization will be realized when the larger source of the magma represented in the breccia is located. Mineralization occurring in the younger granitic rocks of the Hogem Batholith is generally of lesser importance. Two exceptions from this generalization are worth commenting on. Firstly, an area of copper-molybdenum mineralization was located in 1999 immediately to the north of the Steelhead claims. This mineralization, which is relatively low grade at the discovery outcrop, was found while following up several strong copper in talus fines and seepage samples. The full significance of this mineralization has not yet been determined. Secondly, and possibly of greater importance, is the gold analysis obtained from a granitic dyke occupying the last 2.6 m of hole 95-27 drilled in the Upper Main Zone. The dyke (which extends to the bottom of the hole and may have a greater width) graded 4.79 g/t gold. It may be indicative of a gold mineralizing event associated with this phase.

EXPLORATION

Eastfield has compiled results from more than 55 private and publicly filed reports concerning exploration work completed by results of 14 companies who have completed exploration work on the Lorraine-Jajay property subsequent to 1949. Much of this work has been digitized to enable correlation between surveys in what was a severely fractured land tenure until recent times. Reports generated by the Kennecott Corporation, the Granby Mining Company, Lysander Minerals Corporation (formerly Lysander Gold Corporation) and BP Minerals Canada form the key data resources for the project and are deemed to be the most reliable. Data originating from these companies is interpreted in conjunction with the company's own data in making exploration decisions in the core area including and surrounding the Lorraine claims. A geological model typical for copper and gold mineralization in an alkalic (and quartz undersaturated) intrusive is consistent with this data.

DRILLING

The First diamond drilling on the Lorraine claims occurred in 1949 and since that time most drilling has been on the core Lorraine claims. In total 139 diamond drill hole have been completed on these claims with an additional 20 percussion holes. Twenty diamond drill holes have been completed on the Dorothy claims and approximately the same number in several scattered locations throughout the remainder of the property. Most drill holes drilled after 1972 have their replicated slits stored at two core storage facilities on the property.

SAMPLING METHOD AND APPROACH

Diamond drill core is transported by helicopter or pickup truck from the drill to the core storage and sampling facility located on the property. Here the core is laid out and marked for sampling by the project geologist. The core is then split with a mechanical core splitter with half of the core being retained in the core box and the other half being put in a plastic sample bag which is then sealed. The samples are then transported to town, generally twice a weak, and delivered to a bonded freight dealer for delivery to the facilities of Acme Analytical Laboratories in Vancouver.

SAMPLE PREPARATION, ANALYSIS AND SECURITY

Drill core is taken by helicopter from the drill to the sample preparation and processing facility where it is quickly examined by a qualified geologist and marked into sample intervals. The core is then split using a mechanical splitter with half of the sample put into sample bags with a multi-digit sample number and the other half placed back in the core box in preparation for permanent on-site storage. Individual bags of core samples, generally weighing \pm 5 kilograms, are collected into larger shipment bags weighing \pm 30 kilograms and closed with wire or a zip lock fastener. The sample bags are then delivered to a bonded freight company in Fort St. James for shipment to the facilities of Acme Analytical Laboratories in Vancouver (samples are not accompanied with information concerning hole number or meterage). At Acme Analytical Laboratories, the samples are assayed (or analyzed) using the procedures indicated in appendix 3. Internal standards provided by Acme Analytical Laboratories are introduced into the sample stream at a rate of approximately one internal standard for every ten samples. At the conclusion of the splitting and sampling the core is examined in detail and logged by the geologist before permanent storage.

Sample shipments out of camp generally occur once or twice a week according to specific logistical circumstances under the supervision of camp personnel who endeavor not to leave the samples unattended until delivered to the bonded freight company.

MINERAL RESOURCES

In 1998, G.R. Peatfield, Ph.D., P. Eng. computed a then-current resource for Lysander Gold Corporation (now Lysander Minerals Corporation). Mr. Peatfield's methodology consisted of using a series of level plans constructed on 10 metre increments to compute new resources present within the Upper Main and Bishop Zones. The smaller Lower Main Zone, with a published resource originating from earlier Granby Mining and Kennco work, was added to his new calculations. The sum of these resources, excerpted from the Peatfield report in the 1997 annual report for Lysander Gold Corporation (published ahead of the annual meeting dated May 28, 1998) is as follows:

Zone	MM Tonnes	Cu (%)	Au (g/t)
Upper Main	11.89	0.71	0.26
(Measured and indicated)			
Upper Main	3.96	0.70	0.25
(Inferred)			
Bishop	7.72	0.64	0.07
(Measured and indicated)			
Bishop	2.87	0.62	0.05
(Inferred)			
Lower Main	5.50	0.60	0.10 *(gold analysis
			incomplete)
Total	31.94	0.66	
	31.94	0.66	0.26 (adjusting to
			reflect population
			with Au and Cu
			determinations)
			ucici minations)

Peatfield noted in his 1998 report that the three zones in his resource calculation are all open for expansion (in at least one direction). A recent review of drilling by this author indicates that several holes in the Upper Main and Bishop Zones are not effectively cut off at depth, offering a further opportunity to expand the mineral resource. It is also noted that a significant area between the Upper and Lower Main zones remains untested. No resources have been attributed to several additional potentially economic drill intercepts in other mineralized areas that occur on the larger claim group (example: Dorothy drill hole 49-D-2 that intersected 357 feet grading 0.48% copper). *Mr. Peatfield's 1998 calculation was completed before national policy 43-01 came into effect and may have been computed outside the protocol prescribed by this regulation.*

RECOMMENDATIONS

Further diamond drilling to the southeast of hole 2002-65 and to the northwest of hole 2002-63 should be undertaken to continue the expansion of the Lower Main Zone. Further diamond drilling should occur northeast of hole 2002-58 in the Bishop Zone to determine the limits of mineralization in this area.

Mincord Exploration Consultants Ltd., 110-325 Howe St., Vancouver, BC, V6C 1Z7

COST STATEMENT

Camp set	up, and site c		
Dates	July 9- July	/ 21	
Dates	12 July 5-July	721	
Days	13		
Persons	4		
Code	FL,GC,JC,	JP	
Persons c	osts	\$16,575	
Camp Cos	sts	\$6,877	
Pick Up Ti	ruck, Rental	\$1,170	
ATV Renta	al	\$1,950	
Helicopter	7.6 hours	\$7,296	
West Jet		\$125	
Fuel		\$3,000	
Lumber		\$1,500	
Freight		\$2,000	
Miscellane	eous	\$1,300	
Motel		\$421	
Sat Phone	Rental	\$130	
GPS Rent	al, 2 units	\$130	
Phone Ch	arges	\$341	
Total for	Period		\$42,81
Core relog	gging, road re	pair.	
Dates	July 22-Ju	uly 26	
Davs	5		

Days	5	22.2.1	
Persons	8		
Code	FL,GC,JC,	JP	
	C, BM, GP,	GN	
Persons co	osts	\$12,625	
Camp Cos	ts	\$3,165	
Pick Up Tr	uck, Rental a	\$450	
2nd Pickup	o truck	\$800	
ATV Renta	al	\$750	
Helicopter	3.2 hours	\$3,072	
West Jet		\$719	
Miscellane	ous	\$500	
Sat Phone	Rental	\$50	
GPS Rent	al, 2 units	\$50	
Phone Ch	arges	\$131	
Total for I	Period		\$22,3

Dilling an	a cone re-rooginite
Dates	July 27-July 30
Days	4
Persons	12

	Code	FL,GC,JC, C, GP, GN 4 drillers	JP	
	Persons cos	sts	\$8.300	
	Camp Costs	6	\$2.948	
	Pick Up Tru	ck. Rental a	\$360	
	ATV Rental	(George, Fr	\$600	
	ATV Rental	(Mincord)	\$200	
	Helicopter 5	0 hours	\$4,800	
	West Jet		\$375	
	Miscellaneo	us	\$400	30
	Drilling 700	feet	\$15 540	
	Sat Phone F	Rental	\$40	
	GPS Rental	2 units	\$40	
	Phone Charges		\$105	
	Total for Pe	eriod	<u>w100</u>	<u>\$33,603</u>
	Continue dr	lling and co	e re-loggin	in the second
	Dates	July 31-Au	a 9	9
	Davs	10		
	Persons	12		
	Code	FL GC .IC .	IP	
C GG GP		GN		
		4 drillers		
	Persons cos	ts	\$25 250	
Camp Costs			\$7 370	
		the set of the set of the	41,010	
	Pick Up True	ck Rental a	\$900	
	Pick Up True Second Pick	ck, Rental a	\$900 \$900	

Persons costs	\$25,250
Camp Costs	\$7,370
Pick Up Truck, Rental a	\$900
Second Pick Up Truck	\$900
ATV Rental (George, Fr	\$1,800
ATV Rental (Mincord)	\$600
Helicopter 3 hours	\$2,880
Drilling 1200 feet	\$26,640
West Jet	\$125
Miscellaneous	\$1,000
Sat Phone Rental	\$100
GPS Rental, 2 units	\$100
Phone Charges	\$263

riod	\$67,928
finished Chores	
Aug 10-Aug 12	
3	
5	

Persons	5	
Code	FL,GC,JC,	JP
	С	
Persons co	osts	\$4,725
Camp cost	s	\$1,665
Pick Up Truck, Rental a		\$270
ATV Renta	al (George, Fr	\$450

Total for Period

Dates Days

ATV Rental (Mincord)	\$150		
West Jet	\$125	Γ	Francois Larocqu
Helicopter 1.5 hours	\$1,440		George Charbonn
Miscellaneous	\$300		J.P. Charbonneau
Sat Phone Rental	\$30		Jay Page (JP), pe
GPS Rental 2 units	\$30		Cook (C), per day
Phone Charges	\$79		Bill Morton (BM).
Total for Period	<u>wrv</u>	\$9,264	Glen Garratt (GG
Total for Feriod		ww.imw.i	Giles Peatfield (G
Close up Untiniched Cho	201		Camp Rental per
Detes Aug 12	100	State of the second second second	Generator Rental
Dates Aug-13			Food and Consur
Days 1			Field Equipment
Persons 3			Expediting per d
Code FL,GC, JP	C4 000		Diskup Truck Por
Persons costs	\$1,000		Pickup Truck Rei
Camp costs	\$503		PICKUP TIUCK Rep
Pick Up Truck, Rental a	\$90		ATV Rental (Geo
ATV Rental (George, Fr	\$150		ATV Rental (Mind
ATV Rental (Mincord)	\$50		Helicopter, per he
West Jet	\$125	7	West Jet Vancou
Miscellaneous	\$100		West Jet Prince (
Sat Phone Rental	\$10		Drilling, per foot
GPS Rental, 2 units	\$10		Assay, per foot
Phone Charges	<u>\$26</u>		Miscellaneous, p
Total for Period		\$2,064	Graham Nixon (C
			Sat Phone Renta
			GPS Units, 2 at 3
Clean up Unfinished Cho	ores		Phone Charges,
Dates August 14-	Aug 19		
Davs 6			
Persons 4			
Code EL GC JC	С		
Porcone costs	\$6 750		Drill Contractor:
Comp costs	\$3 174		Smithers BC V
Dick Up Truck Pontol o	\$540		011111010, 20, 10
Pick Up Truck, Rental a	\$040		Holicopter Contr
ATV Rental (George, Fr	2900		Fort St. Jamos
AIV Rental (Mincord) 2	\$600		FUIL SL. Jaines,
West Jet	\$125		Ocalesias Cost
Helicopter (0.5 hr)	\$480		Geological Cont
Miscellaneous	\$600		Consultants Ltd.
Sat Phone Rental	\$60		Vancouver, BC,
GPS Rental, 2 units	\$60		
Phone Charges	<u>\$158</u>		
Total for Period		\$13,447	-
Total Summer 2002 Dr	rilling		<u>\$191,432</u>

wint: ord Exploration Consultants Ltd., 110-325 Howe St., Vancouver, BC, V6C 1Z7

Larocque (FL), per day	\$275
Charbonneau (GC), per day	\$275
rbonneau (JC), per day	\$275
e (JP), per day	\$450
), per day	\$300
on (BM), per day	\$450
rratt (GG), per day	\$450
atfield (GP), per day	\$500
ental, per day	\$250
or Rental, per day	\$25
d Consumables, per man, per day	\$26
uipment Rental, per day	\$100
ng, per day	\$50
Truck Rental, each day	\$70
Truck Repair, each day	\$20
ntal (George and Francois), each, day	\$50
ntal (Mincord), each, day	\$50
ter, per hour	\$960
t Vancouver-Prince George	\$125
et Prince George-Vancouver	\$125
per foot	\$20
per foot	\$2.20
aneous, per day	\$100
Nixon (GN)	No Cost
one Rental, per day	\$10
nits, 2 at \$5 each per day	\$5
Charges, per minute, (15 per day)	\$1.75

ntractor: Britten Bros. Diamond Drilling rs, BC, V0J 2N0.

oter Contractor: Interior Helicopters . James, BC, V0J 1P0

tants Ltd., 110 325 Howe Street Jver, BC, V6C 1 Z 7

AUTHOR QUALIFICATIONS

I, J.W. Morton am a graduate of Carleton University Ottawa with a B.Sc. (1973) in Geology and a graduate of the University of British Columbia with a M. Sc. (1976) in Graduate Studies.

I, J.W Morton have been a member of the Association of Professional Engineers and Geoscientists of the Province of BC (P.Geo.) since 1991.

I, J.W. Morton have practiced my profession since graduation throughout Western Canada, the Western USA and Mexico.

I, J.W Morton supervised the work outlined in this report.

Signed this 12 day of June, 2003

J.W Morton P.Geo

DATE

June 12, 2003

F

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 1 of 11

Property:	Lorraine	Total Length: 186.05	Footage	DIP TEST m) Dip Me	S asured Dip		Start Da	ate: March	n 08, 2002	<u></u>		
Grid Cord	· · · · · · · · · · · · · · · · · · ·	Core Size: BQTW	186	-76 °	-71°	1	Comple	tion: Mar	ch 09, 200	02		
Elevation:	1604 m	Azimuth: 50°			1		Logged	By: Jay V	V. Page			
Section	1004111				1		Date lor		rch 09 - 10	2 2002		
Section.				02) 414	<u>.</u>	10070	7	ggcu. mai	01100 - 11	., 2002		
NOTES: LO	ower Main Are	a, PAU: as for 2001-b0, GPS Location (corrected): 01M 347306.5 E; 620	JU522.U N (NAL	83). Analyti	cal report # /	420076	7.					
FOOTA	GF (metres)			SAM	PI FS	A	Rec	ana kanananan sala, m	on in gen konnen des eine	ASSAYS		na da nganaka jina da nganga
From (m)	To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
	-											
0.00	9.14	CASING (30 Feet).										
9.14	24.50	MESO-SYENITE - with a minor gneissic texture of variable intensity. Chlo	orite									
		altered mafics dominate mafic (30-40%) component and enclose 20-30%	ó									
L		sericite-epidote altered feldspars. Pinkish coloured layers of K-feldspar,	1-2		1							· · · · -
		- mm thick every 1 cm define gneissic texture at 50° to core axis. Likewise	e 1-				-					
		2 mm thick layers of 60-90% chlorite conform to 50° to core axis										
		orientations. Moderately to strongly magnetic with 1-3% fine grained										
		magnetite, which shows some iron oxide alteration. Rock contains sever	al		+	-	1					
		% carbonate, both as very fine-grained disseminations and as thin				<u>+</u>						
		(<0.5mm) stringers at 15-20° core axis which cross-cut foliation. Traces	of		1							
		bornite noted in chlorite-rich sections. Gneissic foliation varies on metre										1
		scale to mottled / patchy looking mafic-rich syenite. Sericite alteration is	;									
		weak to moderate and pervasive. Fine-grained biotite is common in maf	fic									
		centres and forms networks with magnetite. The buff light brown colour	red									
		feldspars appear more sericite altered than the pink K-feldspars, but ove	erall			ļ						
		the mineralogy is indistinct and cloudy / dirty looking. Irregular magneti	te									
		replacements are common and locally reach 5% over a few centimetres.										1
		Minor specks of pyrite are noted. This unit is characterized by intense										<u> </u>
		pervasive chlorite-sericite-biotite-carbonate alteration.	· · · · · · · · · · · · · · · · · · ·			ļ						
		9.14 - 12.00 As above.										
		12.00 - 15.00 As above, several orangish-pink, thin K-feldspar patches	A2051	9.14	4 12.00	2.86	98	1//	9	<.3 .2	< 2	3
		carry 1-2% pyrite.	A2051	12.00	15.00	3.00	100	239	1	< ,3	< 2	3
		15.00 - 18.00 As above, includes a 12 cm broken epidote-rich zone at	A2051	15.00	19.00	2.00	08	225	16			2
		15,96 which may be a minor fault. Pyrite is more common toward botto	m of	15.00	10.00	3,00	30	225	10	5	- 2	
<u> </u>		run as disseminated blebs with chlorite and perhaps a weak envelope				1	+	• •				
		enclosing a 3-4 mm calcite veinlet at 17.80 m. Veinlet cuts core at 10 -	20°									
		to core axis.										
		18.00 - 21.34 As above traces of pyrite noted. Fine-grained highlite ha	A2051	18.00	21.34	3.34	96	232	23	< .3	< 2	4
		increased to 10-15% of rock. Interval ends with 15 cm of broken rubble										
		which may be a minor fault.	/									
1		- 21.34 - 24.00 As above with a short mesocratic svenite section betwee										
		21.90 and 22.42 Interval is very broken and fractured	A2051	05 21.34	4 24.00	2.66	98	1747	169	1.6	2	10
		24.00 - 27.32 The first 50 cm of this interval is broken, chlorite-rich alt	ered			<u> </u>						
		svenite with 2-3% cubic fine-grained pyrite. The balance of this interval	A2051	6 24.00	27.32	3.32	50	1958	212	2.3	2	7
		broken rubble and fault gouge which appears to be derived from chlorite						ļ				
		altered mesocratic svenite above.										

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 2 of 11

FOOTA	GE (metres)			SAMF	PLES		Rec.			ASSAYS		
From (m)	<u>To (m)</u>		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
											ļ	<u> </u>
24.50	27.32	FAULT ZONE -see above - broken, sheared rubble and chlorite-rich fault									<u> </u>	<u> </u>
		gouge which appears to be derived from matic-rich syenite above. Recovery	· · ·				•				<u> </u>	
		within this interval is 40%.									<u> </u>	+
		-						·				+
27.32	42.00	MESO-SYENITE - with local gradations to chlorite-altered melano-syenite.										
		Light tan-buff coloured K-feldspar comprises, on average, 40 to 80% of the										
		rock, and shows little alteration near top of interval, perhaps minor sericitic										
		alteration in spots. Mafic-rich sections altered to chlorite-biotite. Weakly									L	ļ
		magnetic, weak to moderate carbonate alteration. Minor disseminated										+
I		specks of pyrite are common, aften found as cubes. Initial 85 cm of this						l				÷
		interval has epidote coating irregular fractures and may be related to fault	· · · · -									
· · · · · · · · · · · · · · · · · · ·		above. This unit is the beginning of economic sulphide mineralization, which	· · · · ·									+
	-	is spotty to begin with. Consists principally of chalcopyrite and bornite as			-							<u> </u>
		disseminated blebs and minor amounts of unassociated pyrite.	A205107	27.32	30.00	2.68	100	1415	77	1.2	< 2	5
		27.32 - 30.00 Several patches of cubic pyrite for a few cm along with									1	
		weak sericitic alteration. Most matics completely altered to chlorite, chlorite										
		and epidote, and minor biotite.										
		30.00 - 33.00 Moderate angled fractures (30 - 60° to core axis) control /	A205108	30.00	33.00	3.00	99	2926	54	1.3	< 2	4
		contain 2-4 mm wide fillings of chlorite, epidote, biotite. Also have epidote									<u> </u>	ļ
		envelopes. Impression that there is lots of fine white mica as alteration									<u> </u>	<u> </u>
		product of feldspars (mostly white feldspar). Disseminated bornite blebs									<u> </u>	
		with lesser chalcopyrite begins at 32.08. Appears at first to be more closely										
	+	32.20 runs about 1 - 1 5% bornite 1% shalsonwrite. Bost (strongest					<u></u>	· · · · ·				
		bornite associated with chlorite-biotite-enidote spots. Weaker mineralization										
		in section showing weak clay-sericite-carbonate alteration								<u> </u>		<u> </u>
		33.00 - 36.00 low angle (5 - 15° to core axis) fracture fillings of carbonate										
		common through first 60 cm. Continuing strong bornite + chalconvrite also	A205109	33.00	36.00	3.00	98	3509	62	1.9	2	. 7
		continuing strongly magnetic. At 33.53 (run block) core becomes fresher										
		looking / unaltered by clay-sericite-carbonate alterations 65-75% K-										
		feldspar, 10-15% medium grained biotite, 5-10% chlorite with associated 3-									ļ	
		5% magnetite, 1-2% bornite, 1% chalcopyrite. The biotite + magnetite give										
		this section a fairly dark colour index, could be considered melanocratic.			·						<u> </u>	
		Amount of sulphide mineralization drops off quickly to minor amounts with										·
		small patches of 2-4% bornite, 1-2% chlacopyrite in chlorite-biotite patches.									 -	
	· ·	Trace pyrite.										
		36.00 - 39.00 The mafics are altered to fine-grained chlorite-biotite-	A205110	36,00	39.00	3.00	100	5499	269	3.5	3	7
		magnetite which impart a greenish-grey tone to core. As a result core tends										
		to be mesocratic rather than melanocratic despite carrying 25-35% mafics.										
		Continuing strongly magnetic (1-3%). Dominant mafic is fine to medium										
		grained aggregates and thin irregular masses of biotite. Continuing strongly						ļ			ļ	
		mineralized with disseminated blebs of bornite (1.0 to 2.0%) and									 	<u> </u>
				1							1	

f

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

٦

Page: 3 of 11

F

FOOT	AGE (metres)			SAMP	LES		Rec.	Ι		ASSAYS		
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		chalcopyrite (0.5 to 1.0%). Traces of carbonate alteration as disseminated										
		-specks and as fracture fillings which are common on 20-30° fractures.							-			<u> </u>
		Bornite-chalcopyrite mineralization patchy but continuing moderately strong.										
		Magnetite 1-2%, locally to 5%. Small patches of sericite alteration appear to					· · · · ·					
		be controlled by intermediate 30-45° to core axis fractures. Minor enidote										
		associated with orangish K-feldspar patches				ļ			-			+
		39 00 - 43 00 Continuing magnetic, carbonate costing moderate to low	A205111	20.00	42.00	2.00	100	6526	270		-	
			A205111	39.00	42.00	3.00	100	0520	219	3.9		
		decreasing through this interval. Also perhaps more manc and more altered										+ • •
				· · · · ·								
42.00	56.78	MELANO-SYENITE - mafic content averages greater than 40% but there are				,						
		local variations to meso-syenite. The general trend of increasing mafic										
		content and decreasing sulphide mineralization appears to continue through										
		the upper part of this interval.										ļ
		42.00 - 45.00 As above, blebs of chalcopyrite are noted in small magnetite	A205112	42.00	45.00	3.00	100	3241	123	1.2	2	4
		stringers and patches. Fine disseminated specks of bornite and chalcopyrite										<u> </u>
		are common through much of interval, total <0.5%.				ļ				· · · · ·		<u> </u>
		45.00 - 48.00 As above, continuing fine-grained specks of bornite and	A205113	45.00	48.00	3.00	100	3032	123	1.5	2	5
		chalcopyrite to 1 mm in size. Pyrite may also be present. Total sulphide		ļ								
		<0.5%. Magnetite varies 1-3%, mostly as small replacements but also as										
		irregular patches to 3mm. FIne-grained biotite replacements to 2 mm										
		comprise about 10% of the rock composition.										+
		48.00 - 51.00 As above, but with an increase in mafic content to locally	A205114	48.00	51.00	3.00	100	2071	300	34		
	·	> 50%, all of which is fine-grained and altered to chlorite, magnetite, biotite	~~~~~~	40.00	51.00	3.00		2371		0.4		`
		- and less commonly epidote. Steep cross-cutting fractures at 45 - 70° to core						· · · · · ·				
		axis carry 1 - 2 mm orange k-feldspar with pyrite and chalcopyrite, approx.								· · ·		
		1 cm wide envelopes carry mostly several % pyrite, minor chalcoyrite.										
		Trace bornite noted as rare small specks.										
		51.00 - 54.00 Initial 50 cm is very broken and first 30 cm is just rubble,	A205115	51.00	54.00	3.00	96	1337	501	4.8	< 2	4
		may be a minor fault. No slickensides noted. Pronounced carbonate										
		alteration with carbonates coating most fractures on larger pieces. Pyrite										
		blebs commonly associated with thin orange k-feldspar veinlets cross-cutting					. <u>.</u>					ļ
		at 45 - 60° to core axis. Lower 1.5 metres of interal is meso-svenite with k-										<u> </u>
		-feldspar enclosing grains of chlorite altered pyroxene. Feldspars are										
ļ		pervasively moderately altered to sericite. Magnetite is common, locally up						ļ				
		to 5% and appears to be increasing with depth. Occasional k-feldspar to 1.5							<u> </u>			<u> </u>
		cm diameter, most ~ 3-4 mm. Magnetite increases toward end of interval to										<u> </u>
		10 - 15% as large blebs.						· · ·		<u> </u>		
		54.00 - 56.78 Interval begins with 1 metre of magnetite-rich core. varies	0205446	54.00	56 79	2 70	00	3415	115	24		10
		40-80% magnetite as large blebs and masses to 6 cm. Chlorite is closely		34.00	50.76	2.10	30	3413		JJ.I		- 19
		associated with the magnetite, often enclosing it. K-feldspar is intergrown,							+		· · ·	
		up to 1 - 2 cm in size but most as medium grained (2 - 4 mm) masses. Thin							+			+

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Æ

f

Page: 4 of 11

I.

ſ

7

f

FOOTAG	E (metres)			SAMP	LES	an in the second second	Rec.			ASSAYS		1
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		carbonate (1 - 2 mm) veinlets cut core axis at 10 - 15°. These fractures									· · ·	
		have some control on chalcopyrite which locally reaches 5% over 10 - 15 cm										
		toward bottom of magnetite-rich section. Chalcopyrite is found as both										
		large blebs and thin fracture fillings. No bornite noted in this magnetite-rich										
L		section. At 55.00 m the magnetite is terminated by an irregular mass of										
		quartz and calcite over 3 cm, followed by intensely sericite-chlorite altered										+
		mafic syenite. A 30 - 40 cm section is broken and cemented poorly by										
		- carbonate. This section from about 55.20 to 55.60 is broken to a rubble and							· · · ·			
		the slickensides on some pieces indicate shearing. Cubic pyrite noted in 45°										
		fractures. Remainder of interval is intensely altered (chlorite-sericite) carries										
		minor pyrite in 20 to 45° to core axis carbonate veinlets, and is quite broken,										
		suggesting another fault at about 56.80										
56.78	70.10	MESO-SYENITE - with local variations to melano-syenite.										<u> </u>
		56.78 - 59.77 Interval begins with 1.1 metres of mesocratic syenite, with	A205117	56.78	59.77	2.99	98	3519	152	1.2	3	6
		the matics completley altered to chlorite, magnetite <u>+</u> hematite and biotite.										
		Followed by a more matic syenite, similarly altered with frequent carbonate										
		veinlets and small irregular lenses. Hematite has become more common on										+
	·{	broken surfaces. Slickensides on sheared core in the last 40 cm of interval										
		rake at 45° on 30° surfaces coated with carbonate and hematite. Carbonate										
		veinlets cary minor blebs of magnetite. No economic minerals seen.						1				1
		59.77 - 62.37 As above, initial section to run block at 60.96 is highly	A205118	59.77	62.37	2.60	90	348	28	< .3	2	2 2
		sheared and broken. Hematite and carbonate coatings on most 5 to 30° to					-					
		core axis fractures have slickensides that rake at 60°. Rock shows intense										
		carbonate-chlorite alteration. Idiomorphic k-feldspar shows weak sericite										
		alteration and encloses mafics. From 60.96 to 62.37 there is a fresher-										
		looking rock similar to that found above in the shear zone. Mafics are										
		dominantly biotite with lesser chlorite. Continuing magnetic. Weak							<u> </u>			
		_ carbonate alteration plus some anastamosing low angle 1 mm carbonate						1				
		_filled fractures. Weak sericite alteration of feldspars especially whitish									· · ·	
		feldspars. Mafic content varies from 30 to 50%. Mafic-rich parts have a										· ·
		darker colour index because of green sericite alteration of feldspars and										
		higher (to 4%) magnetite content. In these parts, salmon-pink k-feldspar is							· ·		· ·	
		more commonly elongate to 2 cm.							1			
		62.37 - 64.19 Interval begins with a shear zone from 62.27 to ~ 63.20	A205119	62.37	64.19	1.82	95	1295	i 76	i < .3	< 2	2 3
		with poor recovery + rubble at top and slickensides raking at 45° on 20°										
		fracture faces coated with carbonate, gypsum and chlorite. Rock is intensely										
		altered to sericite \pm biotite \pm magnetite. Towards bottom of interval										
		alteration decreases and rock is similar to pink syenite in above sample								ļ		
	<u> </u>		L							<u> </u>		
		64.19 - 67.00 As described above. Pinkish-brown / greenish-tan coloured	A205120	64.19	67.00	2.81	100	1403	65	i < ,3	<u> < 2</u>	2 7
		meso-syenite with numerous irregular patches of sericite \pm chlorite-biotite					·			+		
I		_alteration. 1 - 4% magnetite, mostly as fine disseminations, but locally				ļ		· · · · · · · · · · · · · · · · · · ·				

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 5 of 11

FOOTA	GE (metres)	LITHOLOGICAL DESCRIPTION		SAMPI	LES	an an an girth can short af	Rec.			ASSAYS		
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		reaching 10 - 15% giving a dark grey colour to core. The core splits into					• •					
		rainy angular pieces through here. Tiny low angle (5 to 10° to core axis)										
		-disseminations Little evidence of economic subbides seen through the last										
		section of several sample intervals.										
ļ		67.00 - 70.10 As described above, with numerous patches of sericite-	A205424	67.00	70.40	2.0	400	0704	426	1.2	ļ	
		chlorite <u>+</u> biotite / magnetite alteration and a 20 cm length of massive	A205121	67.00	70.10	3.10	100	2121	130	1.3	2	· · · · ·
		magnetite beginning at 68.20. Magnetite carries carbonate veinlets at 15 -										
		45° to core axis plus some disseminated carbonate. Traces of fine bornite										
		noted in magnetite. Pyrite with some 60 - 70° orange k-feldspar and										
		carbonate veinlets.										
70.10	73.00	MIXTURE OF SYENITE WITH PYROXENITE - syenite varies from mesocratic										
		to melanocratic but is in general mafic-rich with numerous patches of										
		magnetite, chlorite-epidote-magnetite, and chlorite altered pyroxenite.										
		Overall interval is very melanocratic with lesser sections of mesocratic		1								
		syenice. 70 10 - 73 00. The pyrovenitic section from 71 74 to perhans 72 50 (core	A205122	70,10	73.00	2.90	100	4149	281	2	5	16
		very broken in this area) is strongly mineralized with disseminated blebs of										
		bornite and lesser chalcopyrite in amounts of 2 - 4% total sulphide.										
		Magnetite-rich sections, which are also chlorite rich \pm epidote, are also										
		strongly mineralized with large blebs of chalcopyrite and bornite and fracture		_								ļ
		controlled chalcopyrite. Most of the mineralization appears to be in the										
		chlorite-rich material surrounding and enclosing the magnetite masses.	· · ·									
		Many of the sections run up to 5% sulphides over short, cm scale, intervals.										
73.00	81 20	MICACEOUS PYROXENITE - intensely chlorite altered and carrying ~ 10%) — — — — — — — — — — — — — — — — — — —									
10.00		medium (1 - 3 mm) grained biotite. Much of this unit is strongly										
		mineralized.										
		73.00 - 76.00 Chlorite-biotite altered pyroxenite carries 2 - 4% bornite	A205123	73.00	76.00	3.00	95	3909	219	2.5	11	32
		through the first 30 cm with the bornite as fine-grained disseminations. This										
		mineralized section is truncated by a short shear-zone in which slickensides			·	<u> </u>						
· ·		rake at 65° on 10° to core axis fracture surfaces. Below the shear the										
		pyroxenite continues but with spotty patches of good bornite and minor										
		chalcopyrite mineralization separated by weaker disseminated bornite										
		mineralization. Several fractures at 20 - 450 to core axis.										
		75.00 - 79.00 As above, continuing moderate to strongly mineralized,	A205124	76.00	79.00	3.00	100	2652	251	1.7	10	33
		$\frac{1}{4}$ mm thick at 10 - 60° to core axis are more numerous than above. Several										
		\pm min and at 10 \pm 00 to core axis are more numerous unit above. Several constraints \pm vigos in coldite poted in 1 mm wide 10 ^o to core avia value to the total t				 		 		+		
		Through last metre of interval rock grades into a green sericite-				<u>├</u> ───┼						
	··· • · · · · · · · · · · · · · · · · ·	in mough have meane of meeting rock grades into a green sellule	1								<u> </u>	

F

ſ

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 6 of 11

ſ

7

FOOTAC	E (motros)		erre un tricit in des manuels de mense des services de la service de la service de la service de la service de	SAMD			Par		 досток моден токот и и 	ASSAYS		
From (m)	To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (pom)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
	1	chlorite-biotite rock of probable melano-svenite origin. Continuing moderate									417	
		bornite mineralization										
		79 00 - 81 20 As described above - micaceous pyroxenite with local	A205125	79.00	81.20	2.20	100	3251	171	0.6	9	23
		variation to melano-svenite. White carbonate veinlets have numerous										
		orientations and in in places appear to cement a weak breccia. Continuing										
		moderately to strangly mineralized with disceminated bornite, which locally										
		rosches E%										
:												
81.20	82.35	MESO-SYENITE with short variations to melano-syenite. Dominantly meso-										
		cratic and because of short length not logged as syenite undivided. Also										
		includes small patch of melano syenite / pyroxenite. Tan coloured K-										
		feldspars generally medium grained (~ 4 mm) but also some to 1 cm.										
		81.20 - 82.35 Trace pyrite, chalcopyrite noted as tiny specks.										
			A205126	81.20	82.35	1.15	100	602	24	< .3	3	4
00.05	96.60							···				
82.35	00.09	MELANO-SYENITE - with local variations to meso-syenite. Interval begins										
		with pyroxene-rich melano-syenite composed of 10 - 20% white feldspar, 70										
	· · · · · · · · · · · · · · · · · · ·	- 80% pyroxene, most showing some chlorite alteration, and 10 - 15%										
		biotite - most fine (1 mm) but some larger (6 mm). A few k-feldspars show										
		optical continuity and enclose grains of pyroxene; they are about 1 cm in	· · ·									
		size. Moderately magnetic. Pervasive but weak carbonate alteration.										
		Interval becomes more felsic with depth, mafics drop to about 40 - 50%,										
		locally 20%.	A205127	82.35	84.85	2.50	100	508	30	< .3	3	14
		82.35 - 84.85 As above, minor pyrite, tiny specks of bornite to 0.1%.	A205128	84.85	86.69	1.84	100	98	7	< .3	4	7
		84.85 - 86.69 Melano-syenite as described above. Chlorite altered										
		pyroxene content ranges up to 75%. Biotite 10 - 15%; K-feldspar, medium										
		grained, ranging from 20 to 35%. Strongly magnetic. Trace pyrite, trace										
		bornite (?).										
	-											
									-			
86.69	96.40	MESO-SYENITE - with local variations to melano-syenite due to variable										
		mafic content and short intervals of largely massive magnetite.										
		86.69 - 89.00 Tiny disseminated specks of chalcopyrite + pyrite (minor	A205129	86.69	89.00	2.31	100	1401	49	0.4	3	9
		amounts). Continuing magnetic, including a magnetite-rich section between										
		87.73 and 88.49. At 87.46 there is a 4 mm guartz-carbonate vein at 90° to										-
		-core axis.										
		89.00 - 92.00 As above, but without magnetite-rich masses. Core has a	A205130	89.00	92.00	3.00	100	730	41	0.8	3	7
· · · ·		bit more of a greenish colour due to more chlorite and epidote altered										
· · · · ·		mafics. Continuing magnetic. Includes a few pieces of chlorite-epidote				ļ						
		altered melano-svenite / biotite pyroxenite containing a minor few specks of										
	·	sulphide (pyrite or chalcopyrite?).										
		92.00 - 94.00 As above, including several pieces to 6 cm of melano-svenite	4005401				400					
		which show pervasive alteration to biotite chlorite and epidote. These	A205131	92,00	94.00	2.00	100	920	26	<u>U,9</u>	16	17
		patches are weakly to moderately mineralized with disseminated blebs of										<u> </u>
		patches are weakly to moderately mineralized with disseminated blebs of									-	

F

لت

f

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 7 of 11

FOOTA	GE (metres)		na min yan Galanti walikani kana yana manana a manayar	SAMP	LES	and the second second second second	Rec.			ASSAYS		
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		chalcopyrite (roughly 0.1 to 0.4%).										
		94.00 - 96.40 As above. Weakly magnetic. Pervasive weak sericite	A205132	94.00	96,40	2.40	100	941	37	< .3	5	7
		alteration of medium grained (2 - 4 mm) pink k-feldspar containing minor				1						
		amounts (<0.5%) of disseminated specks of chalcopyrite. Re-appearance of										
		_small blebs of bornite also. Both appear to increase toward bottom of run to										
		_ between 0.5 and 1.0 % total.										
00.40	404.74	CVENTTE LINDIVIDED including coveral short sections of mass quenits										
96.40	104.74	STENTIE - UNDIVIDED - Including several short sections of meso-systeme										
		and manc-rich sections that approach pyroxeniuc composition (90% mancs)	A205133	96.40	100.00	3.60	100	1288	117	1	5	15
		96.40 - 100.00 As above with highly variable matric content (20 - 85%	A203133	30.40	100.00	0.00	100	1200				10
		maric). Moderately magnetic. Cross-cutting thin (1 - 2 mm) brange K-										
		$_{\rm T}$ reidspar \pm minor quartz carrying pyrite, chaicopyrite and a bright purple										
		mineral (covellite) coating pyrite. Similar veinlets (all at 80 - 90° to core										
		axis) are composed mostly of calcite. Well developed pyrite envelopes									1	
		extend 1 - 2 cm on either side of veinlets. Other veinlets are composed of							· · · · · · · · · · · · · · · · · · ·			
	-	both calcite and quartz and fairly pyrite-rich, 3 - 5% with minor chalcopyrite,										
		and occasional specks of greyish-purple mineral / coating mentioned earlier.										
		Veinlets with quartz vary from 65 to 90° to core axis.										
		100.00 - 103.00 Interval is mostly meso-syenite with some mafic-rich	A205134	100.00	103.00	3.00	98	631	15	< ,3	< 2	4
		sections. A few quartz-carbonate veinlets are present but fewer than in										
		above sample interval. Disseminated pyrite common in k-feldspar alteration										
		zones that cross-cut at moderate / high angles (45 - 90° to core axis).										
		Minor disseminated chalcopyrite in veinlets and in surrounding envelopes.	A205135	103.00	104.74	1.74	100	1205	19	< .3	< 2	8
		103.00 - 104.74 As above.										
						L						
104.74	136.61	MESO-SYENITE - with some local variations to melano-syenite.										
		104.74 - 108.00 As above; very similar to meso-syenite in above units.	A205136	104.74	108.00	3.26	100	1659	201	1	5	12
		Disseminated fine-grained specks of pyrite and chalcopyrite common to \sim				<u> </u>		ļ				
L		_0.5% total sulphide but locally reaches 2% chalcopyrite over short intervals.						 				
		Amount of sulphides is increasing with depth through this section.										
		108.00 - 111.50 As above, spotty moderate chalcopyrite disseminations		100.00					5.40			
			A205137	108.00	111.50	3.50	100	4063	542	3		14
		- 60° to core axis) fractures. Rock is becoming fresher looking; k-feldspar						ŀ				
		showing little if any alteration.										
		111.50 - 115.00 As above. Moderate to patchy strong mineralization,	A205138	111 50	115.00	3 50	100	2567	300	21	-	13
	_	disseminated chalcopyrite reaches 4% over short intervals, minor pyrite.	A205136	ETE.50	113.00	3.50	100	2307	330	2.1	``````````````````````````````````````	10
		Mafic content has dropped to about 15 - 20%; balance is medium grained,									-	
		light brown k-feldspar. This interval includes a few short (5 - 10 cm) patches						1				
		of cross-cutting magnetite-chlorite-epidote-sericite biotite alteration. Fine-	··				†				1.	
		grained, disseminated sulphide reaches 0.5 - 1.0% with most of it pyrite.				1		1			+	
		minor chalcopyrite at end of run.				1				1	· _ ····	1
							t-	1			1	

27 Sept. 2002

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 8 of 11

FOOTAG	E (metres)			SAMPL	ES	na anna an Anna an Anna an Anna	Rec.			ASSAYS		
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
-		115.00 - 118.00 Interval begins with a more mafic section (melano-syenite	A205139	115.00	118.00	3.00	98	1244	100	1	4	10
		for 50 cm) then a broken bit and back into meso-syenite as above. Mafic										
		section mineralized with disseminated blebs of chalcopyrite to 1%. Brown										
	-	_meso-syenite is mineralized with 0.5 to 2.0% pyrite with minor chalcopyrite.										
		-118.00 - 121.00 As above, many low angle fractures (<10° to core axis).										
		-Split cores have thin (1 - 2 mm) carbonate deposits. Minor (~ 0.5%) pyrite	A205140	118.00	121.00	3.00	100	414	14	< .3	2	5
		+ chalcopyrite as disseminated blebs.										
<u></u>	<u> </u>	121.00 - 124.00 As above, containing minor disseminated specks of pyrite	4005444	404.00	40.4.00		400					
		and chalcopyrite.	A205141	121.00	124.00	3.00	100	554	27	د. >	< 2	5
		124.00 - 127.00 As above, primary mafic is fine-grained clusters of biotite.	A205142	124.00	127.00	2.00	100	205				
		Minor disseminated chalcopyrite.	A205142	124.00	127.00	3.00	100	205	9	د. >	<u> </u>	2
		127.00 - 130.00 As above; mafic content has dropped to about 15%.	A205143	127.00	130.00	3.00	100	241	17	< 3	< 7	
		130.00 - 133.00 As above: low angle fractures at 0 to 15° to core axis	A205144	130.00	133.00	3.00	100	92		< 3	< 2	< 2
		25000 25500 10 above, for angle hadda is at 0 to the data	7200144	100.00	100.00	0.00	100	32				2
		_carry 1 min deposits of carbonate and chionite. Fynce controlled by 70 - 90		· · · · · · · · · · · · · · · · · · ·								
		122.00 , 126.61 As shows, containing containts filled low angle frontiures	A205145	133.00	136.61	3.61	100	96	10	< 3	< 2	< 2
		135.00 - 150.01 As above, containing carbonate filled low angle fractures										~
	+	and pyrite as disseminated blebs and cubes associated with some steep										
		-iractures.										
136.61	139.58	MELANO-SYENITE - with biotite-chlorite-epidote altered mafics in a medium-										
		grained syenite. Mafic content varies from 20 to 75%, averages about 45%.										
		The most common mafic is biotite which occurs as aggregates of fine-										
		grained replacements and as medium-grained books. Core broken at 137.60										
		(fault?).										
		136.61 - 139.58 A few disseminated specks of pyrite. Some mafic-rich	A205146	136.61	139.58	2.97	100	781	42	< .3	3	10
		spots look like pieces of chlorite-altered pyroxenite.										
	· · · ·											
139 58	143 77	MESO-SYENTTE - very similar to above intervals but with slightly loss matie										
133.50	143.77	content local variations include melanoscratic variatios (>40% matic)				· · · ·						
		content. Local variations include melanocratic varieties (>40% mainc).										
		120 59 142 77 Minor enable of numitic possible shaloon with poted	A205147	139 58	143 77	4 19	100	421	25	< 3		6
		139.58 - 143.77 Minor specks of pyrice, possible charcopyrice noted.	7400117	100.00	140.77			121	20			
	ļ											
143.77	145.00	_MELANO- SYENITE - darker, finer-grained syenite with packed chlorite-										
		biotite altered pyroxene crystals, with many crystal outlines distinct. Dark										
		_green sericite alteration of feldspars. 2 - 3% fine-grained magnetite, 25 -										
		35% feldspar, 30 - 45% pyroxene, 20 - 25% biotite. Also short (10 -15 cm)										
		_variations to 75% pink k-feldspar.	A205149	142 77	145.00	1 22	100	1104	110			
		143.77 - 145.00 Contains minor specks of sulphide (pyrite or	A200148	143.17	145.00	1.23	100	1164	110	< .3	4	35

F

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

7

-٦

F

Page: 9 of 11

H

FOOTAG	3E (metres)			SAMPL	.ES	A COLORADO DE COMO DE C	Rec.			ASSAYS	ANTIMATION AND AND AND AND AND AND	an an ann an Arranna an Arranna an Arranna an Arrainn an Arrainn an Arrainn an Arrainn an Arrainn an Arrainn an
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
145.00	158.85	MESO- SYENITE - a grey syenite of generally finer grain size than above, \sim										
		1 - 2 mm, lots of fine-grained biotite, magnetite and chlorite after pyroxene.										
		Feldspar is up to 4 mm, mostly grey and tan coloured, comprises ~ 65% of						·				
		rock. 2 - 3% magnetite.	4005440	4.45.00	4 47 00	0.00	400	400	40		10	F
		145.00 - 147.00 as above, minor disseminated pyrite with small amounts	A205149	145.00	147.00	2.00	100	492	10	<.3	10	5
		$(< 0.1\%)$ of chalcopyrite blebs \pm bornite. Grain size increases slightly										
		toward bottom of interval, to 2 - 4 mm. Also colour tone becomes more pink										
		toward bottom.	A205150	147.00	150.00	3.00	100	435	28	< 3	6	6
···		147.00 - 150.00 as above, minor disseminated pyrite.	A205151	150.00	153.00	3.00	100	403	48	< 3	13	5
	-	150.00 - 153.00 cross-cutting zones of pinkish-orange k-feldspar are	7.200101	100.00		0.00						
	-	common, have indistinct boundaries, epidote sometimes associated. Minor										
		disseminated pyrite, small patches include disseminated chalcopyrite.										
		Chalcopyrite blebs associated with an irregular patch of magnetite. Low										
		angle fractures have thin layers of chlorite-carbonate-gypsum to 2 mm thick.										
		Most of these fractures are at about 15 degrees to c.a.										
		153.00 - 156.00 as above, minor disseminated pyrite with patches of	A205152	153.00	156.00	3.00	100	278	22	< .3	7	4
		disseminated blebs of chalcopyrite. Interval includes several patches of									ļ	
		chlorite-altered pyroxenite (to 10 cm).										
		156.00 - 158.85 as above, k-feldspar becoming more orange coloured	A205153	156.00	158.85	2.85	100	365	22	< .3	2	4
		through this interval. More pieces of chlorite altered pyroxenite toward										
		contact.										
												<u> </u>
ļ								<u> </u>				
159.85	161 20	A MIX OF OVENITE AND DVDOVENITE as short interval that and as hard										
156.65	103.20	A MIX OF SYENITE AND PYROXENITE - a short interval that grades back										
	1	and forth several times between melano-syenite and blottle pyroxenite.	A205154	158.85	161.20	2.35	100	304	15	<.3	6	9
	-	158.85 - 161.20 pyroxene is pervasively altered to chlorite but crystal		100.00		1.00					-	
		snape is still easily recognizable. Magnetice content to 5%, blocke ranges 15										
		- 20% in pyroxene-rich secuons; less, closer to 10 - 15% in reluspar-rich										-
		- parts. Trace pyrite.										
161.20	167.00	MESO-SYENITE - beginning of strong disseminated mineralization in a										
		medium grained (1 - 3 mm), grey syenite with greenish and tan / brown										
		tones in it. Principal mafic is biotite in amounts of 5 to 15%. Pinkish tan /										
		grey k-feldspar is equigranular, intergrown and unaltered. Dark grey-										
		greenish patches are biotite-magnetite, grey feldspar <u>+</u> chlorite. Core is										
ļ		very magnetic.										
		161.20 - 164.00 parts of this interval approach leuco-syenite with mafics	A205155	161.20	164.00	2.80	100	4761	442	2.5	5	16
·····		- (biotite) approaching 5%. Strongly mineralized with up to 4% chalcopyrite										
		-and 2% bornite over short distances; average closer to 1 - 1.5% total.									-	
		Minor pyrite.	A205156	164.00	167.00	3.00	100	3216	215	1 4	4	10
		164.00 - 167.00 as above, increase in mafics, principally biotite, with	A203150	104.00	107.00	3.00	100	5210	213	1.4		
		depth also small patches of chlorite-biotite-epidote altered pyroxenite.		· · ·				1				

F

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 10 of 11

FOOTA	GE (metres)	LITHOLOGICAL DESCRIPTION		SAMP	LES		Rec.	<u></u>		ASSAYS	D4 (b .)	
From (m)	To (m)	Cantinuing strangly minoralized with fine black of shaleonysite and bornite	Sample #	From (m)	[O (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	PT (ppb)	
		(usually in contact with each other). Strength of mineralization appears to										
		be decreasing toward bottom of interval.										
	-									:		
167.00	170.00	A MIX OF SYENITE AND PYROXENITE - the upper part of this interval to										
		167.84 is meso-syenite as described above. From 167.84 - 169.24 is 1.4 m										
		for sneared and broken up blocke pyroxenite with slickensides that take at 60° on 10° to core pyris fracture faces costed with chlorite and carbonate										
		The last meso-svenite section is from 169 24 - 170 00 and is as described										
		above.										
		167.00 - 170.00 Syenitic sections moderately well mineralized with chalco	A205157	167.00	170.00	3.00	90	3210	252	1.9	4	8
		pyrite and bornite, but the pyroxenitic section does not carry sulphides.									· · · ·	
170.00	173.60	SYENITE UNDIVIDED - a short section of syenite that varies from leuco-										
		syenite at the top to meso-syenite with several short sections of melano-										
		syenite. Grain size of the k-feldspar appears to be greatest where there is										
· · · ·		the least amount of matics (5 - 7 mm), and varies to 2 mm in matic-rich		1								
		170.00 - 173.60 Chalconvrite - bornite mineralization decreases with	A205158	170.00	173.60	3.60	100	2540	118	1.1	3	8
		depth but there are still strongly mineralized patches. Average sulphide 1%.										
173.60	175.96	MELANO-SYENITE - mafic rich svenite with pieces and a short section of										
110.00	110.00	biotite pyroxenite with more than 10% k-feldspar. Interval is biotite rich and										
		most K-feldspar is grey, medium grained and equigranular. Several quartz										
		veins 5 - 6 mm wide cut the core at 70 - 75° to core axis and carry cubic										
		pyrite in centre, and have pyrite - K-feldspar envelopes. Minor carbonate										-
		present. Mafic-rich sections are very chlorite rich and some are strongly										
		- mineralized with chalcopyrite.	A205159	173.60	175.96	2.36	100	1962	97	0.5	5	i 10
		1/3.60 - 1/3.96 as above.								<u> </u>		1
475.00	479.69											
1/5.96	1/8.68	IMESU-STENTILE - WITH a rew small plotite-chlorite rich patches. Maric						<u> </u>				
		30% in others.				· ·						
		175.96 - 178.68 weak to moderate patchy chalcopyrite <u>+</u> bornite	A205160	175.96	178.68	2.72	100	2221	117	1.2	3	3 7
		mineralization. Total in the range 0.5 to 1.0%.				<u> </u>						
178.68	179.26	MICACEOUS PYROXENITE - pervasive alteration to chlorite, epidote, biotite										+
		and magnetite. Variable 5 - 10% pink feldspar to 6 mm, may locally reach										
		15 - 25%.	4005404	470.00	170.00		100	405		0.2		10
. <u> </u>		178.86 - 179.26 as above, includes some low angle calcite veinlets; no	A205161	1/8.68	179.26	0.58	100	495	21	0.3	<u> </u>	
		sulphides seen.								ļ		
I	1		1	1	1	1	1	1	1	1	1	1

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 11 of 11

FOOTAGE (metres)		LITHOLOGICAL DESCRIPTION		SAMPLES Sample # From (m) To (m)			Rec. %	ASSAYS				
179.26	186.05	 MESO-SYENITE - variable pink to grey syenite with biotite, magnetite <u>+</u> minor chlorite alteration of mafics. 179.26 - 182.00 as above, moderately well mineralized with pyrite as fine disseminated specks. Weakly mineralized with disseminated blebs of chalcopyrite. 182.00 - 186.05 as above. Amount of fine (1 - 2 mm) biotite has increased to about 20 - 25%. Sulphide content has remained the same at 0.5% 	A205162	179.26	182.00	2.74	100	1193 	73	<u> </u>	3	5
186.05		END OF HOLE										

Lorraine Project Diamond Drill Log Mincord Exploration Consultants Ltd. DDH: 2002-61A for Eastfield Resources Ltd. DIP TESTS Dip Measured Dip Property: Lorraine Total Length: 33.53 Footage (m) Core Size: BQTW 0 Grid Cord: Azimuth: 50° Elevation: 1604 m Inclination: -70° Section:

-----NOTEC LITH O CPP. 04 July 20021 040 0000500

FOOT	AGE (metres)	LITHOLOGICAL DESCRIPTION		SAMP	LES		Rec.			ASSAYS		
From (m) To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
0.00	9 14	CASTNG (30 Eact)										
0.00	3.14											
9.14	24.91	MELANO-SYENITE - a chlorite-sericite-carbonate altered mafic-rich svenite	1									+
		displaying a well developed foliation at 45 - 55° over short intervals										t
		a displaying a went developed fonation at 15 55 over short intervals. Low		9.14	11.27	2.13	96					
		angle fractures of about 20 to core axis carry thin (< 1mm) carbonate										_
		fillings. Rock composition includes several percent carbonate. Core has		11.27	15.24	3.97	98				· ·	
		strong magnetic character with 2 - 3% fine disseminations of magnetite,		15.24	18 20	3.05	100					
		most commonly as replacements associated with chlorite. Minor		13.24	10.23	0.00	100					
		disseminated pyrite is found with narrow cross-cutting bands (2 - 4 mm) of		18.29	21.34	3.05	100			· · · ·		
9.14 24.91		orange-pink k-feldspar. Many 30° to core axis fractures display slickensides										1
		as chlorite-hematite coatings which rake at 55°. Minor cubic pyrite to 1 mm		21.34	24.76	3.42	85					
		noted on moderate (45 - 60° to core axis) fractures with chlorite-hematite										
		-coatings. K-feldspar content varies from 30 to 65% and averages about										
		50%, with 50% mafics (chlorite + magnetite). Last run broken with	· ·									
		bematite prominent on fracture surfaces.										+
		24 76 - 24 91 FAULT ZONE - 15 cm chlorite-rich broken core.				···					·	
												1
24.91	28.60	FAULT ZONE (continued) - 2 metres of core missing. 24.91 marks the										
		bottom contact of the chlorite-altered mafic-rich syenite. The pulverized										ļ
		chlorite-rioch fault gouge is carbonate-rich and contains no magnetite.		24.76	28.60	3.84	35					
		27.43 - 28.60 - hematite-rich, brownish fault gouge is friable and very										+
		broken. Clavish material is carbonate-rich but fragments show only weak				· · · ·						-
		reaction to acid. 28.60 is approximate top of underlying mesocratic svenite.										-
		but interval from 27.43 - 28.60 within fault zone appears derived from										
		underlying unit										
28.60	33.53	_MESO-SYENITE - with numerous local gradations to chlorite-altered mafic-										<u></u>
		_ rich syenite. This interval is generally dominated by pink syenite with less		28.60	30.48	1.88	08					
		-chlorite-altered mafics, magnetite and sericite alteration than above. Also		28.00	50.40	1.00	30					
		coarser-grained, with fresher, unaltered K-feldspar. Beginning of		30,48	33.53	3.05	100					
		disseminated small blebs of chalcopyrite, pyrite and minor bornite.						1				1
		Sulphides are interstitial to K-feldspar, along with a network of chlorite,										
		biotite and magnetite (all of which appear to be secondary replacements).										
		_Total sulphides < 1%.			· · · ·					<u> </u>		+
				· ·						-		+
									· · · · ·			+
33 53			L									-
55.55	1		1	1		I		1		.1		1

Page: 1 of 1

Start Date: March 07, 2002

Logged By: Jay W. Page

Completion: March 08, 2002

Date logged: March 09, 2002

0

F

I.

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

F

Page: 1 of 11

and an opposite provide a second statement of the second statement of the second second second second second se	ang pantang sa pala tang pang pang pang pang pang pang pang p			an a	DIP TESTS	<u>S</u>			na an a	a sum runnanne reference		and and a survey of the draw of the	
Property: Lorrain	ne	Total Length: 243.84		Footage (m)	Dip Mea	sured Dip	1	Start Da	ļ				
Grid Cord:		Core Size: BQTW			°			Comple	tion: Mar	ch 12, 20	02		
Elevation: 1597 n	n	Azimuth: 50°						Logged	By: Jay V	V. Page			
Section:		Inclination: -43°						Date log	gged: Mai	rch 13-15	, 2002		
NOTES: Lower Ma	ain Area, PAD: on section	on 4525-NW, approximately 84 metres SW of	f 2001-48, on r	oad. UTM (est)	347270 E; 6	00538 N (NAD 8	3). Analy	tical report	# A2007	767.		
FOOTAGE (metr From (m) To	es) (m)	LITHOLOGICAL DESCRIPTION		Sample #	SAMF From (m)	PLES To (m)	Metres	Rec.	Cu (ppm)	Au (ppb)	ASSAYS Ag (ppm)	Pt (ppb)	Pd (ppb)
0.00 9.14	CASING (30 Fe	et).		<u> </u>									
9.14 18.00	MESO-SYENITE at 14.40 m. Lir Weakly magnet 9.14 - 12.00 blebs of chalcop biotite. 12.00 - 14.95 than above, ab 14.95 - 18.00 medium-graine a few cm of chl weak to moder 1.0%). Continu	 pink and grey syenite with a 10 - 15 cm pinonite and malachite staining on most broken tic. Moderate to strongly mineralized with 1 - 1.5 pyrite and about 0.5% bornite. Mafics altere As above, continuing strongly mineralized, pout 2x chalcopyrite to bornite. Pink, medium Interval begins with a biotite-rich (25 - 35% d (2 - 4 mm) syenite from 14.95 - 16.13, the lorite into pink syenite as described above. Pately well mineralized with disseminated bleb uing malachite stains on fractures. 	iece of pyroxen n surfaces. W disseminate d to chlorite ar operhaps better operhaps better ope	te. A205164 A205165 A205165 A205166 S	9.14	12.00	2.86	98 98 100 100	7220	624 1335 80	2.5		3 7 5 9 3 6
	SYENITE UNDI as described al chlorite-sericite 18.00 - 21.00 spots with a fer coating many it suggesting a fa 21.00 - 24.38 showing intens with extensive but locally stroi ends with brok	VIDED - interval begins with 72 cm (to 18.72 pove, remainder is melano-syenite which shore a alteration. As above. In general, weakly mineralized e w tiny blebs bornite. Interval is very broken rregular surfaces. Last 70 cm are broken inte ault. As above, dark grey rusty core with irregular e chlorite-sericite alteration. Entire length of limonitic deposits on fracture surfaces. Rock ng bornite mineralization as disseminated ble en rubble.) of pink syenit ws pervasive except for a fev with limonite o a rusty rubbl ar surfaces and interval is rust shows patchy bs. Interval	e	21.00	21.00	3.00	3 100	10041 7977	305	5 9.0 7.4		4 6
24.38 26.65	PYROXENITE - paste, Some fi found, Little lin syenite. 24.38 - 26.65	a broken rubble of chlorite-altered pyroxenit ractures have polished slippage surfaces but monite present or sulphides noted. Part of th As above, no sulphides, non-magnetic.	e and chlorite no slickensides nis unit is melar	A205169	24.38	26.65	2.27	7 90	9198	552	2 6.1		6 9

F

Ť

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 2 of 11

 T

FOOTAG	E (metres)			SAMP	LES	Rec.				ASSAYS	a and the second	ange in dagt giften ener her te
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)_	Pd (ppb)
26.65	42.67	MELANO-SYENITE - a dark grey-green syenite showing extensive chlorite-										····
		sericite alteration. Initial section from 26.65 to 27.50 is limonitic rubble from									<u> </u>	
		a shear / fault.										
		26.65 - 30.00 As above with intense alteration becoming more moderate	A205170	26.65	30.00	3.35	70	20227	1035	14.2	. 7	15
		toward bottom of interval and also some individual grain textures becoming										<u> </u>
		visible. Moderately to strongly mineralized with disseminated blebs of			=							
		bornite, weak chalcopyrite except a strong patch toward bottom of run.										
		Average ~ 1.5% bornite, 0.5% chalcopyrite.	A205171	30.00	32.82	2.82	100	27789	2117	18.0	8	12
		30.00 - 32.82 As above, strong chlorite alteration, weak development of										
	····· · · · · · · · · · · · · · · · ·	biotite, weak sericitic alteration of feldspars. Strong disseminated blebs of										
		bornite and somewhat lesser chalcopyrite mineralization. Average 2- 3%		-								Ļ
		bornite, 1% chalcopyrite. Small irregular carbonate (+ minor quartz?)						-				
		veinlets. Weak to non-magnetic.	A205172	33.83	36.00	3.18	80	0909	424	3.6		8
		32.82 - 36.00 As above, a shear zone extends from 32.82 to 36.58 with	A203172	JZ.02	30,00	3,10		0000	424	5.0	<u>_</u>	
		the most intense shearing between 33.02 and 33.86 where small pieces of										
		chloritic rubble are all that remain. The core is extremely altered to a										
		crumbly fissile chlorite rock. Many surfaces have a polished appearance but										
		slickensides not present / preserved. Impression that movement was at \sim									<u> </u>	
		45° on $\sim 20^{\circ}$ to core axis surfaces. Shear is non-limonitic except for a 10 cm										
		section at ~ 35.00 m. Also little or no carbonate. At 34.90 there is an									+	
		irregular quartz vein / lens without sulphides. Toward end of interval fault										
	-	breccia / rubble is carbonate cemented.										
		36.00 - 39.00 As above, less intense chlorite alteration allows	A205173	36.00	39.00	3.00	98	7558	611	5,3	4	10
		distinguishing fragments \pm carbonate cement and feldspathic fraction. Little										
		or no movement of fragments suggests proximity to fault / shear zone but										
· · · · · · · · · · · · · · · · · · ·		not in it. More competent core begins at 36.58 m. Fairly intense chlorite-										
		sericite alteration obscures most features but rock appears to have about										
		40% mafic content. Most pieces are strongly mineralized with bornite (1.0 -										
		1.5%) and chalcopyrite (0.5 - 1.0%). Thin 1 - 2 mm quartz-carbonate										
		veinlets are common toward bottom of interval and carry pyrite blebs and										
		cubes. Veinlets are irregular; larger ones at 35° to core axis. Slickensides										
		on one piece rake at 850 on a 10° to core axis fracture face.	A205174	39.00	42 67	3.67	90	9768	902	58	ç	20
		39.00 - 42.67 As above. Lots of tiny (to 1 mm wide) irregular veinlets.	7200174		12.01	0.01						
		Near top of interval, many contain minor guartz (?). Continuing strong										
		bornite mineralization + chalcopyrite blebs (generally less than 1%). Strong									<u> </u>	
		bornite mineralization is becoming a bit patchy, not as strong as higher						· · · ·			ļ	
		intervals above. Core broken at 40.70 for 20 cm (fracture), sheared at									<u>+-</u>	
		41.70 with slickensides at $45 - 50^{\circ}$ on 10° fractures									+	
				-								
42.67	44.65	MESO-SYENITE - greyish-pink, medium grained syenite with ~ 15 - 25%				1					<u> </u>	
		mafic content (largely biotite) plus several short intervals / pieces of green										
		mostly chlorite-rich rock (pyroxenite?) 5 - 10 cm long. Meso-syenite is more				-					<u> </u>	+
	· · ·	competent than above, breaks with sharp edges. No sericitic alteration.										+
		Cross-cutting orange k-feldspar rich zones at $70 - 80^{\circ}$ to core axis							-		+	+

Ŧ

F

E

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

7

Page: 3 of 11

FOOTA	GE (metres)	LITHOLOGICAL DESCRIPTION		SAMP	LES	harran an an an Arraya m	Rec.		and an an an an and an	ASSAYS		THE REPORT OF A
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
· · ·			A205175	42.67	44 65	1 08	100	7701	400	43	2	17
		42.67 - 44.65 Moderately well mineralized with 1% disseminated blebs of	7203113	42.07	44.00	1.50	100		430			17
		bornite, 0.5% chalcopyrite. Strongly magnetic (1 - 3% magnetite).										
44.65	75.38	MELANO-SYENITE - dark greenish-grey medium-grained syenite with 40 -										
		60% chlorite, biotite and magnetite, 44.65 ~ 47.20 is approximate interval	l									<u> </u>
		of a series of broken rubble zones, some grinding of core through here						1				
		Weak to non-magnetic.										
		44.65 - 48.00 Dark, mafic-rich svenite. Broken rubble to 47.18 m.	A205176	44 CE	49.00	2.25	05		206	24		
		Chlorite-biotite rich, weak sericite altered svenite. Noticeable drop in	A205176	44.00	40.00	3,35	60	4600	200	2.4	<u> </u>	- · · ·
		mineralization through here - minor to trace of bornite + chalcopyrite.						ł				
		48.00 - 51.15 As above, chlorite-biotite rich core, ~ 40% mafic content.	A205177	48.00	51.15	3.15	100	736	16	0.8	2	e
		Weakly magnetic, minor sulphides present. In lower part of interal there										
		are several irregular 1 - 2 mm thick carbonate veinlets. At 48.77 there is a									ļ	
		6 cm qtz-carbonate vein, no sulphides associated with it. Also, contacts are										
	-	irregular.										
		51.15 - 54.10 Interval begins with a 15 - 20 cm wide quartz-carbonate	A205178	51.15	54.10	2.95	100	1952	125	0.6	< 2	< 2
		vein with irregular fractured contacts and possible colloform / refractured									1	
		habit. Tiny specks of unidentified metallic in vein (specular hematite?)									ļ	
		Traces of sulphide (pyrite or chalcopyrite?) in medium-grained syenite.				·						-
		Note: drillers have added block at 51.82 with "mis-lock" written on it. From										
	-	52.75 to 53.20 is a large quartz-carbonate vein with small fractured bits of										
		syenitic wall rocks included. Veining and silicification (envelopes?) extend										
		another 40 cm to 53.60 m. No sulphides noted. Below vein, core is strongly								-	· · · ·	
		mineralized with chalcopyrite and lesser bornite for last 50 cm, 1 - 2%									i	1
		chalcopyrite, 0.5% bornite.										
		54.10 - 57.00 Interval begins with 20 cm of broken, rounded rubble.	A205179	54.10	57.00	2.90	100	9061	230	4.8	3	4
		Followed by strongly mineralized melano-syenite. Mafic content appears to			•							
		decrease with depth. Sulphides average 2% chalcopyrite, 1% bornite,									ļ	ļ
	-	locally much higher. Several 2 mm qtz-carbonate veins cut core at 45° to										ļ
	_	core axis and carry blebs of chalcopyrite + K-feldspar envelopes.										
		57.00 - 59.82 As above. Broken rubble for first 20 cm and also from	A205180	57.00	59.82	2.82	100	8085	506	6.3	3	5
		58.30 to 59.32 m. Fracturing may suggest some faulting but little evidence										
		of movement. Continuing strong disseminated bornite mineralization to 1.0									ļ	<u> </u>
	-	1.5%, 1% chalcopyrite. Last 50 cm of interval includes irregular veining										
		and silicification of fragments. No additional sulphides present.	A205181	59.82	63.00	3 18	95	2024	157	15	< 2	
		59.82 - 63.00 Continuing as above, carbonate (<u>+</u> trace quartz?) veining	7,200101	03.02	00.00	0.10		2024	137	1.0	· · · ·	
		and fragments (most appear in place). Fragments show pervasive chlorite-										· · ·
		sericite alteration and many are well mineralized with bornite, chalcopyrite										
		and pyrite (pyrite envelopes?). Carbonate veining carries some pyrite. By							· · · · ·			<u> </u>
		160.96 (run block) carbonate veining comprises 30% of rock, includes vugs,										
		-traces of pyrite. From 61.36 to 62.30 is a chloritic shear zone with friable								+	[
· · · · · · · · · · · · · · · · · · ·		and pulverized rock. No slickensides found. No sulphides. Last 70 cm of						1				t
		Interval is grey syenite with variable 25 - 50% matic and moderately well	· ·									
1	1	developed bornite + chalcopyrite disseminated mineralization.					1		1			

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

T

Page: 4 of 11

			interaction of the second s	a de la del a destrucción de la destruc	Control II and III, when provide 1984	halman saman ndarang menalaman kad	and a subset of the second		n pangi menganakan salah danak di			
FOOTAG	E (metres)	LITHOLOGICAL DESCRIPTION		SAMPI	LES	Rec.			ASSAYS			
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		63.00 - 66.00 As above. Interval begins with 40 cm of rubble, then 35 cm	A205182	63.00	66.00	3.00	65	2227	126	1.6	<u> < 2</u>	5
		of poorly mineralized svenite, followed by 1.8 m of rubble (10% recovery)										
		thence into 1.2 m of largely meso-svenite with 25 - 50% matic content										
		Wealth minareliand with the sear of multi-2										
		weakly mineralized with traces or pyrite?										
		66.00 - 69.00 As above. Melano-syenite with <u>short</u> local variations to	A205183	66.00	69.00	3.00	90	2144	56	1.0	< 2	3
		meso-syenite. Mafic content usually in 40 - 50% range dominated by										
		biotite. Weakly mineralized (minor bornite) for 80 cm then followed by a										
		1.2 metro (56.90 - 69.00) chear zone with fragments computed with objects										
		1.2 metre (60.00 - 68.00) snear zone with tragments cemented with chionce										
		+ carbonate. No slickensides or sulphides noted. Below shear zone is a										
		biotite-rich melano-syenite that is moderately well mineralized with tiny										
		blebs of bornite and chalcopyrite. Total sulphide content is about 1%.										
		69 00 - 72 58 As above. Medium grained biotite svenite with minor	A205184	00.69	72 58	3 58	100	5498	311	32	< 2	2
		discovery 2.50 As above. Median granted blocks sychice with finite	7200104	00.00	72.00	0.00	100	5450		5.2	- 6	
		disseminated dornite mineralization which locally reaches 1%. Toward										
		bottom of interval (last metre) fine disseminated blebs of chalcopyrite reach						н н		· ·		
		1 - 2%, bornite 0.3 - 0.6%.										
		72.58 - 75.38 Melano-svenite but with short local variations to meso-	4005405	70.50	75 20	0.00	100	2000	470	4.6		
		scients and a 10 cm patch of chlorite and magnetite (at 74.40). There has	A205165	12.56	/0,38	2.00	100	3209	1/9	1.0	2	5
		syence and a to cm pace of chore and magnetice (at 74.40). There has										
		been a gradual increase in magnetite to about 3% as fine disseminated										
		blebs. A few patches of 1% bornite but overall interval is weakly										
		mineralized. Carbonate coating on low angle fracture faces $(10 - 20^{\circ} \text{ to})$						ļ				
75.38	78.36	MELANO-SYENITE - mafic-rich (chlorite, biotite, magnetite + epidote)										
		svenite with 15 - 20% k-feldspar to 1 cm. Distinct from above melano-										
		svenite by the high percent of biotite (25 - 40%) and its close appearance to										
		chlarita-altared histita avrovanita. Weakly minoralized. Strengly magnetic										
		chionice-alcered blocke pyroxenite. Weakly mineralized. Sciongly magnetic,										
		Probably several percent fine disseminated carbonate.										
		75.38 - 78.36 As above.	A205186	75.38	78,36	2.98	100	271	28	0.4	2	4
		· · · · · · · · · · · · · · · · · · ·										
		MESO-SYENITE - pink, medium-grained (2 mm) idiomorphic syenite with										
78,36	84.38	chart local variations to louse-svenite and melane-svenite, as the mafe							_			
		Isnort focal variations to reuco-sychice and melano-sychice, as the manc										
		(largely blotite) varies from 5 - 50%. Weak magnetism.										
		78.36 - 81.00 As above, patchy strong disseminated chalcopyrite and	A205187	78 36	81.00	2 64	100	1874	123	0.9	< 2	4
		minor bornite.	/ 200 /01			2.01	100	1014	120	0.0	· •	
		81.00 - 84.38 As above includes a biotite-chlorite rich section at 82.30	A205188	81.00	84 38	3 38	100	2107	164	13	e 2	< 2
		Continuing natchy strong chalconyrite with losser hernite minoralization	7203100	01.00	04,00	0.00	100	2107		1.5	<u> </u>	- 2
		Conunuing patchy strong chalcopyrite with lesser bornite mineralization.										
		Mineralization on average is a bit better toward bottom of interval.										
04.30	86.00			-				· ·				
04.38	00.90	A MIX OF SYENITE AND PYROXENITE - an interval that varies through										
		several alternations between meso-syenite, melano-syenite and a chlorite-										
		biotite-carbonate rich rock (after pyroxenite?).										
· · · · · · ·		84.34 - 85.23 As above interval is mostly chlorite-biotite-carbonate rich					465				···· ··· ··· ··· ··· ··· ··· ··· ··· ·	<u> </u>
		real. No subhides seen	A205189	84.38	85.23	0.85	100	437	21	< .3	< 2	< 2
	1	prouk. No suprides seen.				1 [
Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

T

Page: 5 of 11

1

ł

FOOTAG	E (metres)	LITHOLOGICAL DESCRIPTION		SAMPL	.ES		Rec.	Alf		ASSAYS		ernadienten area atean a
From (m)	10 (m)	85 23 - 86 90 As above mostly svenite but includes very small natches of	Sample #	From (m) 85 23	0 (m) 86 90	Metres 1 67	% 100	Cu (ppm) 289	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		chlorite-biotite-carbonate rock. No sulphides seen. Magnetite-rich to 3%	7200700	00.20	00.00	1.01		200	02		- 2	
86.90	89.38	MELANO-SYENITE - Biotite-rich mafic syenite. Strongly magnetic. Grey K-										
· · · · . · · · · · · · · · · · · · · · · · · ·		feldspar is medium-grained (2 mm) but some to 8 mm. Cut by some 1 - 4										
		mm quartz veins of generally low angles (10 - 20° to core axis). Some of										
		vein material appears chalcedonic. No sulphides seen in veining.										
		86.90 - 89.38 As above. Between 88.78 and 89.38 the core varies	A205191	86.90	89.38	2.48	100	414	20	< .3	3	6
		between meso-syenite and mafic-rich patches. The meso-syenite is										
		moderately well mineralized with about 0.5% bornite and 0.5% chalcopyrite										
		as small blebs.					i					
89.38	99.92	MESO-SYENITE - pink medium-grained idiomorphic svenite with 5 - 20%									i	
		mafics (biotite, chlorite) , locally to 40 - 50% in small patches. Core is cut										
		by very small (<1 mm) quartz carbonate veinlets of low (0 - 10° to core axis)										
		and moderate (45 - 60° to core axis) angles. Larger veinlets to 8 mm show					-					
		multiple fractures and include breccia fragments (in place). Mostly white										
		"milky" quartz but often with thin chalcedonic / clear glassy lenses. Syenite										
		host carries disseminated sulphides which average 1.0 - 1.5% bornite +										
		chalcopyrite.	A205192	89.38	91.00	1.62	100	4390	273	2.5	3	4
		89.38 - 91.00 As above. Bornite and chalcopyrite locally reach 1% each.	A205193	91.00	94,00	3.00	100	13357	708	7.7	4	5
		91.00 - 94.00 As above. More mafic-rich (20 - 40%) and contains more										
		and larger quartz veinlets. Disseminated blebs of bornite to 1% and										
		chalcopyrite to 1%, locally much higher.	A205194	94.00	96.67	2.67	100	6099	396	3.3	4	5
		94.00 - 96.67 As above. Strong to moderate patchy mineralization.										
· · • · • · • · • · • · • · • · • · • ·		Disseminated blebs of bornite to 1%, and chalcopyrite 1%.										
		chlorite rock. Cross-cutting pinkish orange K-feldspar alteration enveloper	A205195	96.67	99.92	3.25	100	8516	530	4.6	4	5
		with 2 10 mm wide quart voice out the care of Σ^{c} and the care out τ										
		with 2 - 10 mini wide quartz veris, cut the core at 55 - 60 to core axis, carry										
		1% bornite 1 - 2% chalconvrite but becoming natchy toward bottom of										
		interval										
99. 9 2	100.96	MELANO-SYENITE - dark biotite-chlorite rich syenite. Mafics reach 80 -										
		90%. NOT a hypidiomorphic texture with chlorite pseudomorphing										
		pyroxene. Composed of 30 - 45% biotite to 3 mm, 30% chlorite, 10 - 20%										
		medium-grained K-feldspar, 2 - 3% magnetite.										
· · · · · · · · · · · · · · · · · · ·		99.92 - 100.96 As above, blebs of chalcopyrite and bornite associated with	A205196	99.92	100.96	1.04	100	1695	68	0.9	4	11
		cross-cutting K-feldspar zone 1 cm wide at 85° to core axis.										
100.96	107.62	MESO-SYENITE - pinkish-grey syenite with 10 - 20% fine biotite and local										
		variations to melano-syenite. Thin hairline quartz-carbonate veinlets are										
		common and generally at $0 - 20^{\circ}$ tocore axis. Larger quartz veins to	· · · · · · · · · · · · · · · · · · ·									

ر حر

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 6 of 11

FOOTAG	E (metres)		ng in takan kana sa na na kana na mangapan na dar	SAMP	LES		Rec.			ASSAYS		er folga a confisió ambén ambén
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		1.5 cm contain breccia fragments (mineralized). 100.96 - 103.00 As above. Moderately to strongly (patchy) mineralized	A205197	100.96	103.00	2.04	100	3703	131	2.1		3
		103.00 - 107.62 As above. This interval begins with 1.5 metres of quartz		100.00								
		veining, but is only weakly mineralized for balance of run (except for a few patches of 1% bornite and 1 - 2% chalcopyrite. Overall 0.25 - 0.5% bornite.	A205198	103.00	107.62	4.62	100	6204	402	4.4	2	6
		and 0.5 - 1.0% chalcopyrite.										
107.62	111.02	MELANO-SYENITE - biotite-chlorite rich syenite with mafics comprising 40 - 50% of rock. Feldspars (pink) tending to be elongate, up to 1 cm, sub-										
		oriented 60 - 90° to core axis. Grey feldspar showing weak sericitic alteration. Strongly magnetic.										
		107.62 - 111.02 as above. Trace of bornite spotted, no other sulphides seen. A 2 cm quartz vein cross-cuts at 45° to core axis, appears barren.	A205199	107.62	111.02	3.40	100	125	15	5. >	4	13
111.02	114.92	SYENITE UNDIVIDED - a short interval with rapid variations between meso- syenite (mafics 20 - 25%) and melano-syenite with a mafic content of about									-	
		60%. Tiny quartz-carbonate veinlets (< 1 mm) are common at 0 - 10° to core axis. Larger veins to 1 cm are quartz only and carry small vein wall										
		70 - 90° to core axis (about 30% of K-feldspar). Felsic-rich parts (meso- svenite) are better mineralized with disseminated blebs and specks of										
		chalcopyrite - bornite to $1 - 2\%$ combined. Pyrite blebs noted with 30° to							-			
		core axis carbonate veinlet. 111.02 - 114.09 As described above.	A205200	111.02	114.92	3.90	100	3281	242	2.8	6	11
114.92	120.00	MESO- SYENITE - pink, medium-grained syenite with 10 - 20% mafic									· · · · · ·	
		10000000000000000000000000000000000000	A205201	114.92	117.00	2.08	100	17748	732	19.4	3	6
		several 30° fractures. Thin calcite stringers common. Strength of										
		mineralization increases toward bottom of interval (chalcopyrite). 117.00 - 120.00 as above. Strongly mineralized with 1- 2% disseminated	A205202	117.00	120.00	3.00	100	4807	160	4.0	3	6
		tiny blebs of bornite plus 1% chalcopyrite.										
120.00	125.14	MELANO-SYENITE - a greenish-grey mafic-rich syenite. Mafics are biotite 20										
		- 25%, chlorite 20 - 30%; both alteration products. Strongly magnetic, 2 - 4% magnetite. K-feldspar mostly medium- to coarse-grained with lath-like										
		120.00 - 122.00 No sulphides seen.	A205203	120.00	122.00	2.00	100	85	12	< .3	6	. 11
		122.00 - 125.14 As above, but with k-feldspar content increasing to 40 - 50%. No sulphides seen.	A205204	122.00	125.14	3.14	100	824	35	1.5	6	12

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

E

٦

f

~__

ſ

Page: 7 of 11

F

FOOTAG	E (metres)			SAMP	LES	i - Marine Antonio e e constitu	Rec.	and the second second second	a na internet de la companya de la compositione de la composition de la composition de la composition de la com	ASSAYS	tere (f) Territal II an Level)	nggi cogan Tigoridi albana artidar (stanis) a
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
105.44	424.47											
125.14	131.47	MESO-SYENITE - pink medium-grained syenite with 10 \cdot 15% biotite $+$										
		chlorite for mafics, local patches of biotite over 20 - 30 cm reach 60% but										
		overall interval is best described as meso-syenite. Magnetic.										
		125.14 - 128.00 Strongly mineralized with about 2% bornite and 1 - 2%	A205205	125.14	128.00	2.86	100	8841	1161	9.3	9	15
		chalcopyrite as fine disseminated blebs.										
		128.00 - 131.4 / As above, slight increase in magnetite to 4 - 5% in spots,	A205206	128.00	131.47	3.47	100	8011	507	6.3	3	7
	· · · · · · · · · · · · · · · · · · ·	possible slight decrease in sulphides, although still strongly mineralized with								·····	• ·	
	-	1 - 2% bornite and 1% chalcopyrite, some controlled by 60° to core axis										
		fractures.										
131.47	143.26	SYENITE UNDIVIDED - a mix of meso- and melano-svenites and a 40 cm										
		section of biotite pyroxenite with 10 - 20% feldspar, so could also be										
		considered a mix of svenite and pyroxenite. Also many small patches of the				ļ						
		melano-svenitic pyroxenite. Strongly magnetic.										
		131.47 - 133.20 As above, but not as well mineralized, maybe 1%	A205207	131 47	133.20	1 73	100	1535	33	0.4	- 3	6
		chalcopyrite, trace of bornite in feldspathic sections. Broken, ground core	1200201	101.47	100.20		100	1000		v.+	· · · · · · · · · · · · · · · · · · ·	···· · · · · · · · · · · · · · · · · ·
		toward bottom.										
		133.230 - 135.67 As described above, begins with melano-svenite due to	A205208	133.20	135.67	2.47	100	2298	73	1.6	2	5
		high biotite content (40 - 50%) grades into meso-svenite for lower half of										
		interval. Patchy moderate disseminated bornite and chalcopyrite										
		mineralization but overall much weaker than higher in section.										
		135.67 - 140.00 As above, interval begins with biotite-rich (40 - 60%) for	A205209	135.67	140.00	4.33	100	2033	208	0.9	7	10
		35 cm then grades into and out of meso-svenite and melano-svenite.										
		Patches of disseminated bornite and chalcopyrite but overall weakly										
		mineralized.										-
		140.00 - 143.26 As above. Melano-svenitic sections often include patches	4205210	140.00	142.26	2.26	100	2014	462	22	7	15
	1	of chlorite pseudomorphing pyroxene. Otherwise mostly meso-svenite.	A203210	140.00	143.20	3.20	100	3014	405	2.3	· · · · · · · · · · · · · · · · · · ·	13
		Patches of strong disseminated (1 - 2%) bornite and 1 - 2% chalcopyrite										
		but interval is overall only weak to moderately mineralized. ~ 1% total				1						
		sulphides.										
			1									
								-				
143.26	201.94	MESO-SYENITE - similar to most of above undivided syenite unit.										
		Continuing to have biotite or chlorite rich patches, but >95% of unit is meso										
		syenite. Composed of 65 - 85% medium-grained (2 - 4 mm) pinkish grey k-										
ļ		feldspar, most is idiomorphic, <1% are larger than 2 cm.										
	· · ·	143.26 - 146.00 As above, moderately well mineralized, with patches to	A205211	143.26	146.00	274	100	5670	537	50	6	17
		2% bornite, 0.5% chalcopyrite. Some fracture control on mineralization.	74200211	140.20	.40.00	2.74	100	0010		0.0		
		Also, fractures at 20° to core axis for bornite only, 45° to core axis for										
		chalcopyrite only.										
		146.00 - 149.00 As above, moderately well mineralized with ~ 1% bornite,	A205212	146.00	149.00	3.00	100	5384	544	3.9	7	13
		minor chalcopyrite. Patches to 3% bornite.										
		149.00 - 152.00 As described above, meso-syenite with some small	A205213	149 00	152.00	3.00	100	3205	264	22	8	12
·	1.	patches of biotite and / or chlorite-epidote after pyroxene. Weak to patchy	A200213		102.00	5.00	100	5205	204	£.2		10

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 8 of 11

FOOTAGE (n From (m)	metres) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	SAMP From (m)	LES To (m)	Metres	Rec. %	Cu (ppm)	Au (ppb)	ASSAYS Ag (ppm)	Pt (pob)	Pd (ppb)
		moderate disseminated bornite mineralization 0.5 to 1.0%. Strength of			1.9					J S (FF)	<u> </u>	
		mineralizaiton appears to be decreasing through this part of the hole. At										
		150.30 there is 5 cm of massive magnetite with associated epidote, but no										
		sulphides.										
		152.00 - 155.00 As above. There has been a slight increase in biotite and	A205214	152.00	155.00	3.00	100	1966	35	0.9	3	3
		chlorite to 20 - 25%. Total magnetite has increased also to about 3 - 4%.										
		Sulphides have decreased. Disseminated bornite in the feldspathic fraction										
· · · · · · · · · · · · · · · · · · ·		ranges from 0.25 to 0.5%.	A205215	155.00	159.00	2.00	100	1660	46	1.4		
		155.00 - 158.00 As above, increasing mafic content and a shift to mostly	A203213	155.00	100.00	3.00	100	1009	40	1.4	3	`````
		grey k-feldspar gives a darker (grey) colour tone to core. This section is										
		more equigranular than those above. Mafics are in the range of 20 - 35%.										
		Disseminated blebs of chalcopyrite interstitial to K-feldspar have appeared to										
		about 1% by 156.00 m. Trace bornite. Sulphides drop off in the last metre	·									
		or interval.	A205216	158.00	161.00	3.00	100	1369	20	0.5	4	
		158.00 - 161.00 As above. Maric content (principally blotte followed by chlorite) has increased to 40% through initial metro of run, then decreases					,					
		to 20 - 25% Moderate minoralization with a 1% shaloon wite as fine										
		disceminations Increasing pink k-feldspar								. <u>-</u>		
		161 00 - 164 00 As above. Slightly more coarse-grained than higher in	A205217	161.00	164.00	3.00	100	975	29	0.5	2	3
		section some pink / orange k-feldspars to 2 cm Impression of a weak	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					010		0.0		
		directed fabric develops at $60 - 90^{\circ}$ to core axis. Continuing weak to										
		Imoderate chalconvrite mineralization, average around 0.5%. Continuing										
		strongly magnetic. Pink k-feldspar dies out and by the last metre is entirely										
		arev feldspar.										
		164.00 - 167.00 As above. Grev feldspar 75 - 90%, biotite 10 - 15%.	A205218	164.00	167.00	3.00	100	1352	25	0.9	< 2	2
		chlorite 5 - 10%, magnetite 3 - 5%. Disseminated tiny blebs of chalcopyrite										
		locally reach 2%, average 0.5%.										
		167.00 - 170.64 As above. More biotite-chlorite rich patches than above.	A205219	167.00	170 64	3.64	100	1377	19	10	2	
		A mixture of pink and grey feldspar, medium grained but with some pink	, 200210	101.00	110.04	0.04		10/1	13	1.0		
		lath-shaped k-feldspars to 1 cm. Weak to patchy moderate chalcopyrite										ĺ
		mineralization to 0.25 to 0.5%. Large blebs of chalcopyrite are found on 45										
		50° to core axis fractures. Continuing strongly magnetic.	A205220	170.64	472.00	2.26	400	1497		0.6		
		170.64 - 173.00 As above. Meso-syenite with several irregular patches of	A205220	170.04	173.00	2.30	100	1407	14	0.0		^
		biotite-chlorite-magnetite after pyroxenite. Pink k-feldspar dominant mostly									· · · · · · · · · · · · · · · · · · ·	i
		medium-grained but some crystals to 1 cm. Biotite-chlorite-epidote content										
		averages 15 - 20%. Disseminated chalcopyrite to 1%. Several large blebs								1		ļ
 		of chalcopyrite associated with[? Sentence incomplete in field log.]										
		173.00 - 176.00 As above. Weak gneissic texture developed at 65° to	A205221	173.00	176.00	3.00	100	1154	31	06	2	
		core axis at 174.00 for 20 - 40 cm. Pyrite associated with 70° to core axis								5.0		
		fractures and 1 cm wide K-feldspar alteration envelopes. Disseminated										
		chalcopyrite to about 1%.										
		176.00 - 179.00 As above. Mafic content has dropped to ~ 10% (mostly	Δ205222	176.00	170.00	3.00	100	1167	13	0.6		
		biotite). Magnetite 3 - 5%. Disseminated chalcopyrite 1 to 1.5% but		170.00	179,00	3.00	100	1107	1.3	0,0	~ 2	-
		patchy.										

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 9 of 11

to all the according to a special or the same week norm	na mila shika wa sanaa ma sha amaa ya aya a nakaf			1998 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 -		orrenew.confile. marweland	ar ozoartar. A omitzik (öri			and the second se		A MARINE CONTRACT OF A CONTRACT. OF A CONTRACT
FOOTA	GE (metres)	LITHOLOGICAL DESCRIPTION		SAMP	LES		Rec.			ASSAYS		
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pol (ppb)
		1/9.00 - 182.00 As above. More matic patches. Pyrite associated with 50°	A205223	179.00	182.00	3.00	100	1735	42	0.9	3	4
	1	degrees to c.a. fractures along with calcite and chlorite vein fillings. Weak										
		patchy disseminated chalcopyrite.										
		182.00 - 185.00 As above. Slight increase in grey colour tone / matic	A205224	182.00	185.00	3.00	100	874	13	04	2	
		102.00 - 103.00 As above. Signeticitease in grey colour cone / mane	1200224	102.00	100.00	0.00	100	0,4	19	U. 4		
		content. Patchy 1% disseminated chalcopyrite yielding overall weak (~										
		-0.5%) chalcopyrite mineralization.										
		185.00 - 188.00 As above Medium-grained pink equigranular svenite										
		$r_{\rm refe}$ (bistite (shlarite) content = 10, 150/ Markhy minoralized with time	A205225	185.00	188.00	3.00	100	1587	23	0.7	2	3
		manc (bould \pm chiome) content ~ 10 - 15%. Weakly mineralized with they										
		specks of disseminated chalcopyrite ~ 0.5%.										
		188.00 - 191.00 As above. Slight increase in biotite content to 15 - 20%	A205226	188.00	191.00	3.00	100	2764	48	1.6	3	5
		and magnetite content to 4% Disseminated chalconvrite has increased to								:	-	
		1 - 206 average - 106 - Trace berpite										
		191.00 - 194.00 As above. Grey syenite, medium grained (2 - 3 mm).	A205227	191.00	194.00	3.00	100	1956	35	0.8	2	4
		Equigranular grey feldspar ~ 75 - 85%, biotite 10 - 15%, 2 - 5% magnetite.				0.00				0.0		· ·
		Disseminated fine chalcopyrite 1% but more strongly mineralized patches to					· · · ·					
	-	2 206 Also includes - 0 506 homite										
		2 - 5%. Also includes ~ 0.5% bornice.	4005000	404.00	407.00	2.00	400	4254		0.4		
		194.00 - 197.00 As above. Increase in amount of pink k-feldspar and	A205226	194.00	197.00	3.00	100	1351		0.4		3
		presence of some k-feldspar crystals to 1 cm. Minor disseminated										
		chalconvrite Irregular cross-cutting zones of grange k-feidspar alteration										
		are parren.										
		197.00 - 200.00 A return to grey magnetite-rich, medium-grained syenite,	A205229	197.00	200.00	3.00	100	1614	44	0.5	3	5
		no sulphides seen.										
		200.00 - 201.94 Grev svenite as noted above becoming lighter toped due										
		to work conjeta any alteration also notehos of work discominated							-			
		to weak sericite-clay alteration, also patches of weak disseminated										
		chalcopyrite mineralization.										
201.04	206.00	CVENITE LINDIVIDED a mill of more quantite with matching and serve within a										
201.34	200.00	STENTIE UNDIVIDED - a mix of meso-syenite with patches and cross-cutting		· · · · · -								
		zones of melano-syenite (chlorite-epidote-magnetite with more than 10%	1005000	200.00	202.00	2.00	400	1010				
		-feldspar after pyroxenite). Probably equally correct to consider this to be a	A205230	200.00	203.00	3.00	. 100	1016		د. ۲	3	°
		mix of svenite and altered ovroxenite. Essentially a transition zone to										
		underking pyrevenite. Sample break or cample \$205220 door not										
		underlying pyroxenite. Sample break on sample A205230 does not										
		accurately reflect this break.										
		201.94 - 203.00 As described above. Traces of chalcopyrite. Thin (<1										
		mm) carbonate veinlets cut core at 20° to core avis										
			A205231	203.00	206.00	3.00	100	1748	71	0.7	3	7
		203.00 - 206.00 As above. Pieces of chlorite-epidote-magnetite altered									· · · · · · · · · · · · · · · · · · ·	
		pyroxenite in pink chlorite-epidote altered syenite. Pink K-feldspar alteration										
		"envelope" in contact with [these] pieces contains mostly pyrite. Epidote										
	1	alteration "envelope" outside of nink K-feldspar contains disseminated										
		and a second of the second sec			<u> </u>							
	-	chaicopyrite, Overali interval is weakly mineralized.	├ ─────									
	-+											
200.00	000.05									·		
206.00	209.85	MICACEOUS PYROXENITE - biotite-chlorite altered pyroxenite. Biotite to										
		35% and 8 mm helps define a weak fabric at 60 - 80 degrees to c.a.										
		-Chlorite-altered pyroxenite pseudomorphs comprise 50 - 65% of rock						ļ., , , , , , , , , , , , , , , , , , ,				
1												1

I

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 10 of 11

50074			1 1	CAMD	EC	hadd of the set of the state of	Per	anna maraona da maraona di mar		ASSAYS		
	UE (metres)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
								V.L - 7		<u> </u>		
		Interval includes several patches of unaltered pinkish-orange k-feldspar near										
		contact and many small lens-like segregations. Within the hypidiomorphic										
		pyroxenite texture, subhedral k-feldspars enclose euhedral pyroxene										
		pseudomorphs. This K-feldspar is mostly sericitic altered and comprises										
		10% to occasionally 20% of rock giving variation to melano-syenite. Several									ļ	
		percent magnetite present.										
		206.00 - 209.85 As described above. Cross-cutting quartz-feldspar +	A205232	206.00	209.85	3.85	100	162	19	< .3	g	5
		carbonate veins, 3 - 6 mm wide, carry cubic pyrite.						t	1			
000.05	014.00											
209.85	211.93	MESO-SYENITE - pink medium-grained syenite with 5 - 10% blotte. Maric										
· · · · · ·		content increases to 20 - 35% near contacts over 20 - 30 cm.	A205233	209.85	211.93	2.08	100	1094	77	0.8	5	10
		-209.85 - 211.93 Disseminated 1 - 2% chalcopyrite, average ~ 1%.										
211.93	214.34	A MIXTURE OF PYROXENITE AND SYENITE - a short interval with several	l									
		gradations between pyroxenite, syenitic pyroxenite (melano-syenite), biotite										
		rich syenite with "migmatitic" gneissic texture (gneissic syenite varying to										
		melano-syenite) and meso-syenite (<40% mafic / biotite). Gneissic fraction										
		carries 1 - 2% disseminated chalcopyrite with fabric oriented at 60° to core				1						
· · · · ·	-	avis Svenitic fraction carries minor chalconvrite						1				
		211 93 - 214 34 Weakly mineralized	A205234	211.93	214.34	2.41	100	693	13	< .3	6	3 3
												<u> </u>
											· · · ·	+
214.34	221.12	SYENITE UNDIVIDED - pink biotite-syenite which is dominantly meso-									···-	
		syenite, but with 25 - 50% biotite. It varies over 10's of cm between meso-										
		and melano-syenite. Also, some of this syenite has a gneissic texture as										
		defined by layering and alignment of biotite yielding short sections of										
		gneissic syenite. This rock has been referred to as "migmatite" in the past.										
		214.34 - 217.00 Minor disseminated chałcopyrite.	A205235	214.34	217.00	2.66	100	1521	49	0.8	4	1 7
		217.00 - 221.12 As above. Traces of disseminated specks of pyrite or	A205236	217.00	221.12	4.12	100	444	42	0.3		4
		chalcopyrite. Pyrite associated with 45° to core axis fractures.										
221.12	222.29	A MIX OF PYROXENITE AND SYENITE - biotite pyroxenite and short sections	1									
		of meso- and melano-svenite. A transition zone between biotite pyroxenite										
		- below and svenite above										
		$\frac{1}{2}$	100505-	001.10	000.00		400			1		
-		221.12 - 222.29 No sulphides seen; cardonate fractures at 45 to core	A205237	221.12	222.29	1.17	100	131	10	<u> </u>		4
							-					-
			I								1	
222.29	227.40	MICACEOUS PYROXENITE - biotite pyroxenite as described above. K-										
		feldspar content varies 5 - 15% resulting in variations to melano-svenite						1				1

.

f

F

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

 F

)

F

Page: 11 of 11

F

i

i.

T

1

}

I

Т

FOOTAGE (met	LITHOLOGICAL DESCRIPTION		SAMPL	.ES_		Rec.			ASSAYS	D	
From (m) T	m) over short distances. As above, core is characterized by intense chlorite	Sample #	From (m)	To (m)	Metres	<u>%</u>	Cu (ppm)	Au (ppb)	Ag (ppm)	Pτ (ppb)	Pa (ppb)
	alteration.	A205238	222.29	227 40	5 1 1	100	129	9	<.3	7	/ 3
227.40 234.1	A MIXTURE OF SYENITE AND PYROXENITE - a mixture of a repeating sequence of meso-syenite, "migmatite" (melano-syenite) and biotite pyroxenite. Very similar to mixtures above. The gneissic texture is oriented at 45 to 90°, most commonly close to 90°. Well mineralized in the felsic	1									
	parts of this interval with pyrite and chalcopyrite. 227.40 - 231.21 As above. Highly variable sulphide mineralization. Pyrit	A205239	227.40	231.21	3.81	100	2478	31	0.6	7	7
	 varies from trace to 5%, chalcopyrite from 0 to 1%. 231.21 - 234.13 As described above. Includes 3 intervals of biotite pyroxenite and 4 of syenite - biotite migmatite, plus various pieces of each other in each of the above. Pyrite-rich in spots. Disseminated chalcopyrite 	A205240	231.21	234.13	2.92	100	1633	23	0.6	5	; <u>9</u>
	0.5 to 1.0% through most of the syenitic parts.										
234.13 240.4	OIKOCRYSTIC PYROXENITE - coarse K-feldspar crystals to 1 -2 cm. Oikocrysts are crowded, often grain boundary contacts or intergrowths. K- feldspar content is approximately 20 - 35% oikocrysts and 5 - 15% finer (medium: 2 - 4 mm) grained K-feldspar. Medium to coarse grained (3 - 9 mm) biotite comprises 10 - 20% of rock. Chlorite pseudomorphs after										
	pyroxene to 60%. Magnetic. 234.13 - 237.00 As described above. Trace to minor pyrite. 237.00 - 240.40 As above. Oikocrysts have died out by end of interval.	A205241 A205242	234.13 237.00	237.00 240.40	2.87	98	149 55	3	8. > (3. > (3	3	3 4 3 11
240.40 242.	A MIXTURE OF PYROXENITE AND SYENITE - biotite pyroxenite and meso- syenite as described above.	A205243	240.40	242.50	2.10	100	25	5	i < .3		5 5
242.50 243.	MICACEOUS PYROXENITE - biotite-rich pyroxenite in which the biotite is often coarse-grained (to 1 cm) books and comprises up to 60% of the rock 242.50 - 243.84 As above. No sulphides seen.	A205244	242.50	243.84	1.34	100	101	3	5. > 6	8 7	7 8
243.84	END OF HOLE										
· · ·		-		• • •	1	+		1-	1	1	

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 1 of 12

Property	: Lorraine		Total Length: 198.12		Footage (m)	DIP TESTS Dip Mea	s asured Dip		Start Da	ate: July 2	25, 2002			
Grid Cor	d:		Core Size: BQTW	_	failed	•	•		Comple	tion: July	27, 2002			
Elevation	1597 m		Azimuth: 45° (mag. declin, 28°)						Logged	Bv: Jav \	N. Page			
Section			Inclination: -45°				1		Date lo	aaed: Jul	v 26 - Aug	ust 02, 20	02	
NOTES:	Lower Main Are	a, "Irish" PAD: UTM	(hand held instrument) 347235 E; 6200561 N (Analytical rep	ort # A2027	772.							
a a constant and a constant of the second						พัฒนาสาราชาวได้สะกับระ	ana ar a garann sandar 'n			I			1- M-10-	
Foon From (m	TAGE (metres) 1) To (m)				Sample #	SAMI From (m)	PLES To (m)	Metres	Rec.	Cu (ppm)	Au (ppb)	ASSAYS Ag (ppm)	Pt (ppb)	Pd (ppb)
	0.44	CACTNIC (20 Feet)			1									
0.00	9.14	CASING (30 Feet).												+
9.14	31.80	MESOCRATIC SYE	NITE - pinkish grey medium grained syenite with	70 - 90%										
		medium-grained (1 - 3 mm) pink k-feldspar, 5 - 15 % fine dissemin	ated										<u> </u>
		- randomly oriented	flakes of biotite, generally about 1 mm in diame	er.						_				
		Irregular and low t	to moderate angle $(10 - 45^\circ)$ to core axis) fracture	s have										
		rusty fracture face	s and fillings. Core has a somewhat mottled app	earance						<u> </u>				+
		due to patchy chlo	rite-clav-sericite-carbonate alteration (after felds	oars). A										
		Irusty broken zone	between 13.86 and 16.40 appears to be a fault of	f little										
		consequence. This	s svenitic interval has little to no magnetism asso	ciated				ļ						
		with it.					-							
		9.14 - 12.00 Mes	socratic syenite with 1 - 2 % fine disseminated bl	ebs of	A 205251	9.14	12.00	2.86	85	6356	434	4.3		
		tiny irregular chalo	copyrite and associated ~ 1 % bornite. Most sul	ohide is					1					
		disseminated in a	random fashion but a small amount of chalcopyri	e										
		appears to be frac	ture controlled at about 45° to core axis. Minor			·						<u> </u>		
		malachite.												
l		12.00 - 13.86 As	s above, syenite with 5 - 10 % fine biotite and irr	egular	A 205252	12.00	13.86	1.86	92	3746	280	2.3		
		patches of light gr	een alteration which are rich in carbonate, chlori	e, clay, ±										
		sericite. The inter	val gives a good reaction to cold HCI and is easily											
		scratched suggest	ing pervasive sericite <u>+</u> carbonate + clay alteration	on of			ļ			ļ ·				
		feldspars. Genera	lly mineralized with up to 1 - 1.5 % chałcopyrite	and 0.5 %	ı 									
·		bornite.												
		13.86 - 16.40 Lii	monitic zone of broken rock and soft crumbly rub	ble.	A 205253	13.86	5 16.40	2.54	55	3128	206	2.4	l I	
		Ubiquitous clay - li	imonite alteration <u>+</u> sericite. Fractures generally	irregular										
		and limonite filled.	Zone also includes pieces of coarser grained sy	enite								ļ	ļ	
		than above, which	displays less alteration. Inferred fault zone cont	ains little								1		
		carbonate but has	several low angle (10 - 15° to core axis) feldspar	filled										
		fractures. Spots o	of pitch limonite common. Little seen of primary s	ulphides										1
		but the interval do	es contain patches of malachite on fracture face	toward										
		bottom of interval,	, also small malachite spots.				10.00			10.10	100			
		16.40 - 18.00 Fo	potwall of inferred fault with a return to grey sye	iite,	A 205254	16.40	18,00	1.60	92	10405	498	5 6.5		
		similar to above b	ut with a darker grey colour, due in part to patch	es of finer	·					ŀ				
		grained 1 mm mas	sses of grey feldspar and fine-grained biotite. In	tial							· · ·			
1		section from 16.40) - 17.55 shows alteration common in fault zone b	ut is	•									
		more competent.	Limonite and malachite coat fractures but 'prima	ry'							<u> </u>			
		chalcopyrite to loc	ally 2 - 4 %, average 1 - 1.5 %. Bornite is still p	esent as		ļ	· · ·		ļ			-		
		tiny blebs associat	ed with chalcopyrite blebs. Bornite not as comm	on as		· · · · · · · · · · · · · · · · · · ·		+						
L		-labove fault, blebs	are smaller, averages about 0.5 %. Colour grad	25	L			···		I				

F

ſ

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 2 of 12

1

F007407 / ·			CAMP	EC	v nin - sur anal so.	Dee	and the second	in colored staying the second	ASSAVS		anna air an an All Chan ann an Air air air
FOUTAGE (met	es) LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (pob)	Pd (ppb)
	5 (m)						<u> </u>		3 (1	· - (FF-)	
	through interval from pink (limonite stained) to grey at bottom of interval.										
	Small spots of chalcocite common on fracture faces with limonite, malachite.										
	18.00 - 21.00 Grey syenite with weakly developed 1 cm wide pinkish (k-	A 205255	18.00	21.00	3.00	98	11000	671	6.3		
	feldspar?) alteration envelopes or weak limonite staining following hairline										
	limonite filled fractures. Interval is strongly mineralized with 2 - 4 %										
	chalcopyrite and 1 - 2 % bornite, locally reaching 5 % combined, all as fine										
	disseminated blebs. Fine disseminated biotite is common throughout. Trace										
	of interstitial carbonate [and] k-feldspar. 80 - 90 % of rock is very tight-										
	looking, intergrown, with rare crystal faces. Continuing limonitic + chalcocite										
	spots on low angle fractures around 10 - 15° to core axis.										
	21.00 - 21.60 As described above but with numerous limonitic fracture	A 205256	21.00	24.00	3.00	95	6539	618	42		
	faces, most of which are somewhat irregular, lower angle fractures (~ 15 -	<u>A 203230</u>	21.00	24.00	5.00		0000				
	30° to core axis). Chalcopyrite and bornite disseminated mineralization as										
	described above. Contact below is a 30° limonitic fracture with a 7 mm white										
	calcite fracture filling Minor malachite with limonite										
	21 60 - 21 90 As above but a pronounced increase of pervasive moderate										
	alteration to a chlorite-sericite-carbonate rich rock. Trace subhides			·····							
	21 90 - 22 73 A section with many irregular limonitic fractures with minor										
	bematite patches. Chalcocite spots. Penvasive sericite alteration of much of										
	Interval experially parts with Ferstaining interval exclusion in a few									_	
	enote. Short certions of relatively unattered rock display up to 1 % bornite										
	spots. Short sectors of relativity unaltered fock display up to 1 70 bornite,										
	22.73 - 24.00 Grey even to with much fine-grained biotite (10 - 20 %) and			•							
	minor fine-grained magnetite. Interval includes fine-grained disceminated										
	chalcopyrite to locally 1.9% and hernite to 0.5.%, but average is much less										
	Eldcharts chow pervasive weak to moderate sericitic alteration										
	between dark grow (grow foldspar, biotite + chlorite + magnetite) and	A 205257	24.00	27.00	3.00	95	3719	502	2.3		
	$\frac{1}{1}$										
	discominated blobs but nateby average less than 0.5.%. Durite much of										
	disseminated blebs but patchy, average less than 0.5 %. Fyrite, much of							·		· · · ·	
	alteration [which] appear to cross-cut at about 45° to core axis. Small blebs										
	of bornite associated with chalcopyrite blebs in unaltered syenite (but these										
	patches are not common).	4.005050	07.00	24.00	4.00	40	0496		1 5		
	27.00 - 31.80 As above, but interval begins with a 40 cm section of broken	A 205258	27.00	31.80	4.80	40	2100	30	ī.ə		
· · · · ·	and ground core and rubble, and interval includes several similar fracture									1	
	zones. Many fracture faces are limonitic. Patches of chlorite \pm epidote and			-							
	sericite are common. Biotite, both as fine disseminations (secondary) and as										
	6 - 10 cm books, is common in the chlorite-sericite patches. Several short										
	sections are so intensely altered that all pre-existing textures are destroyed.		Ī		ļ		· · ·				
	There is a possible fault cutting through here, as approximately a metre is					<u> </u>					
	missing or washed out, leaving only a few rounded pebbles. Disseminated										
	chalcopyrite and associated bornite are noted in some of the weakly altered										
	sections, but average amount is ~ 0.25 to 0.50 %.			*	1	İ	h				

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

.

 Page: 3 of 12

Т

1

ł

FOOTAG	E (metres)			SAMP	LES		Rec.	analaman kay analas ariya tataya		ASSAYS		ownower water the structure
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
31.80	36.20	MELANOCRATIC SYENITE - dark greenish-grey coloured syenite composed			· · · ·							
		of 20 - 40 % grey k-feldspar, 30 - 50 % chlorite-sericite after feldspar (apple		· · ·								
		green), 15 - 25 % biotite which forms felted masses interstitial to coarse k-										
		feldspar (some k-feldspars to 1 cm), 1 - 2 % epidote, strong reaction to HCl										
		suggests 1 - 2 % interstitial carbonate. Most biotite is fine to medium										
		grained and together with k-feldspar laths help define a weak, cross-cutting										
		fabric. Thin 2 - 4 mm clear quartz veins cut the core at 45° to core axis, and										
ļ		include pyrite envelopes to 1 cm wide. Low angle fratures very limonitic,										
·····-	-	denerally in the range 5 - 15° to core axis. Unit terminates in 10 cm of										
·		crumbly friable limonite stained rock that appears to cross-cut roughly										
		perpendicular to the core axis		1	·		-					
		31.80 - 36.20 Traces of disseminated chalconvrite as tiny specks noted.	A 205259	31.80	36.20	4.40	95	328	28	0.4		
]									
36.20	63.00	MESOCRATIC SYENITE - medium to coarse-grained, greyish-pink syenite]								<u> </u>	
		with numerous small and large patches of chlorite, sericite, carbonate										
		alteration. Biotite ranges from 10 - 15 % in k-feldspar rich sections to 10 -						-				
	+	20 % in the chlorite-sericite rich patches. The upper part of this interval										
		contains many large irregualr patches of magnetite, perhaps replacements										
		of a matrix to coarse k-feldspars. Some k-feldspars dispay optical continuity										
		over 3 - 4 cm although because of their intergrown nature this is only				<u> </u>		ļ				
		apparent on broken surfaces. Many altered magnetite-rich sections of this						·				<u> </u>
		interval could be considered melanocratic but because of their small size are				· · · · · · · · · · · · · · · · · · ·						
		not broken out separately.										
		36.20 - 39.00 Mesocratic syenite as described above. Well mineralized	A 205260	36.20	39.00	2.80	100	5615	399	3.8		
		with up to 5 % fine disseminated chalcopyrite and up to 1 % associated										
		bornite in the pink k-feldspar rich sections. Chlorite-sericite rich sections										
		contain mainly bornite up to 1 % as disseminated blebs. Irregular blebs of										
		magnetite are common. Cross-cutting bairline fractures at $60 - 80^{\circ}$ to core										
		Taxis have associated 2 - 4 mm nink k-feldspar alteration envelopes which										
	· · · · · · · · · · · · · · · · · · ·											
		30 00 - 42 00 As described above but shows weaker mineralization patchy	A 205261	39.00	42.00	3.00	98	3166	99	2.4		
		chalconvrite up to 1 % as fine disceminations. Last 1 5 metres of interval is										
		more matic (mostly chlorite new) and could be considered melanocratic										
		Some large k foldener enktel faces to 4 cm are noted at 40.30 metres					L					ļ
		Some large k-feldspar crystal laces to 4 cm are noted at 40.50 medies.		l							1	
		Pervasive carbonate alteration and coatings on 10° to core axis fracture										
		_faces.	A 205262	42.00	45.00	3.00	100	2561	85	1.6	;	
		42.00 - 45.30 Initial 85 cm is chlorite and magnetite rich. Bornite in this	A 200202	42.00	40.00	0.00	1.00					
		section is associated with and mixed with magnetite. Average over section	I			1		1	†	1		
		is about 1 - 2 %, some blebs of chalcopyrite to about 0.5 %. Balance of				1						
	-	interval, except from 44.70 to 45.30 is pink syenite carrying 1 - 2 %										
		disseminated blebs of chalcopyrite. 44.70 to 45.30 is chlorite and magnetite	I					<u> </u>	L			· · ·
		rich, carries up to 2 % chalcopyrite as poorly defined replacements (?)										
ļ		within the chlorite-rich parts but also closely associated with the magnetite.						<u> </u>				+
J		Pyrite fracture fillings and disseminated blebs in 1 cm wide envelopes are						1	<u> </u>			

F

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 4 of 12

1

Т

Т

FOOTAGE (metres)			SAMP	LES	949, Mar 1999, Mar 1999	Rec.		1999 - Hand State of	ASSAYS	akangan daran teri menungki teri	
From (m) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
	associated with 45° to core axis fractures.	A 205262	45.00	48.00	3.00	100	901	48	10		<u> </u>
	45.30 - 48.00 Pink syenite as described earlier with about 90 % k-reldspar,	A 205263	45.00	40,00	3.00	100	331	40	1.0		
	-varying to 70 % in chlorite-rich sections over 20 - 30 cm. Small patches or										
	disseminated chalcopyrite and lesser bornite locally reach 2 - 3 % over 5 cm										
	but average is maybe 0.5 % combined sulphide. K-feldspar is intergrown										
	and appears to be largely medium grained (2 - 5 mm) but laths to 1 cm are										
	very common on broken surfaces, suggesting that average grain size is						<u> </u>				
	coarser than on first appearance. Bornite blebs are more commonly										
	associated with chlorite-blotite rich patches.										
	-48.00 - 51.00 Pink mesocratic syenite with a rew patches of chiorite-	A 205264	48.00	51.00	3.00	100	1968	106	1.3		
	epidote-magnetite alteration. Interval includes a rew patches or moderate	-									
	disseminated chalcopyrite and bornite mineralization but overall interval is										<u> </u>
	weakly mineralized. Pyrite in weak to moderate envelopes is associated with										
	45° to core axis fractures. Thin, 1 - 2 mm wide carbonate veinlets have										
	hematite selvages and are oriented at 25 - 35° to core axis. Trace of										1
	carbonate through most of interval as fine interstitial alteration product.										
	Non-magnetic except with chlorite.							100			
	51.00 - 54.00 As described above. Pink mesocratic syenite with some	A 205265	51.00	54.00	3.00	100	1898	106	1,7		
	random 2 - 4 cm patches of chlorite-sericite-carbonate <u>+</u> magnetite clots.										
	Weakly to moderately mineralized with disseminated blebs of chalcopyrite										
	and associated minor bornite. A few 60° to core axis fractures have										1
	malachite staining. A low angle (10° to core axis) fracture is limonitic and										
	has chalcocite spots. Hematitic staining and a weak pyritic envelope enclose				[-			
	45 to 60° to core axis fractures	ļ					ļ	<u> </u>			
	54.00 - 57.00 Pink meso-svenite as described above, but contains several	A 205266	54.00	57.00	3.00	100	2612	122	17		
	large patches of magnetite with associated chlorite-sericite and carbonate	A 203200	54.00	57.00	3.00	100	2012	122			
	alteration Magnetite natches contain small irregular blebs of chalcopyrite.										
	Epidote common with some of the chlorite-rich alteration natches. Low										
	= phase common war some of the entitle entitle and the entitle addition parameter 2000 $=$ and carbo										
	This is regular energy of shalessite along with minor malachite. Pare this 1 - 2										
	The guard voice core block of chalconverte. Generally weakly magnetic								· · ·		
							1				
	E7 00 - 60 00 As above, pink svenite with irregular patches of chlorite -	A 205267	57.00	60.00	3.00	100	4450	311	3.6		
	apidote + magnetite. The pink symple (k-feldspar >90 %) contains most of										
	$=$ epidote \pm inagnetic. The pink syenice (k-feldspar >50 %) contains most of					<u> </u>					
	The supplice mineralization, but is only weakly (patchy moderately)										
											+
	fractures (10 - 30° to core axis) commonly carry limonite with minor	ļ						-			-
	Ichaicocite and malachite.						1				
	60.00 - 63.00 Pink mesosyenite gradually becoming more biotite- and	A 205268	60.00	63.00	3.00	100	2803	171	3.3	1	
	magnetite-rich toward bottom of interval; patchy ~ 1 mm in size. No										
	foliation defined. Tiny specks of bornite are associated with the magnetite.		ļ					<u> </u>		ļ	
	Patchy strong chalcopyrite + bornite mineralization outside the biotite-rich										
	sections which occurs as fine dissemination. Chalcopyrite also noted in				+			·		1	· · · ·
		·			+		1			+	

31 Oct. 2002

Eastfield Resources Ltd.

F

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 5 of 12

1

1

	- /		an a	CAMP	EC		Rec			ASSAVS	89-00 Bride - 10 Annual 2004	e energia de la concerna de sente
FOOTAG	To (metres)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (pom)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
FIOID (m)	10 (m)		oumpio #		10 (11)				· · · · (- 01-7	
63.00	67.60	SYENITE UNDIVIDED - a mix of mesocratic and melanocratic syenite that										
		varies rapidly over short intervals. Although this interval is largely										
		melanocratic parts of it are identical to the runs above. Parts with large										
		blebs of magnetite have associated dark green chlorite + minor epidote and										
	<u> </u>	biotite. No subbides poted with the magnetite or in biotite-chlorite rich										
		continues. Mesocratic svenite fraction is strongly mineralized with finely							· · ·			
		discominated chalconvite and bernite up to 2 - 4.% each over short										
		inter all and every sing about 2 - 2.06 combined. Sections of chloriter										
· · · ·		Intervals and averaging about 2 - 3 % combined. Security of choice										
		sericite-bloute alteration up to ob citilate largely barren of sciplices.										L
		Fracture control on some chalcopyrite is evident in 70 to 90° to core axis										ļ
		fractures, often associated with quartz veins to 4 mm thick and weakly										
		developed pyrite alteration envelopes.	A 205260	63.00	67.60	4 60	90	1968	351	43		
		63.00 - 67.60 As above. Average sulphide content about 1 % combined	A 205209	63.00	07.00	4.00	30	1300				
· · ·		chalcopyrite and bornite. Interval ends in clay + chlorite rich fault rubble.										
67.60	83.68	MESOCRATIC SYENITE - pinkish grey syenite as previously described.										
		Composed of up to 90 % medium-grained k-feldspar with 5 - 10 % very fine-										
		grained flakes of biotite (0.5 to 1.0 mm). Patches and intervals up to 30 cm										
		of chlorite-epidote-carbonate alteration are common. Pink k-feldspar										
· · · ·		alteration envelopes up to 1 cm but more commonly to 2 mm are associated										
		with 1 mm quartz-carbonate-purite veinlets at $60 - 80^{\circ}$ to core axis										·
		67 60 - 70 00 Dink meco-svenite as described above. Interval begins with										
		107.00 - 70.00 Fink meso-syenite as described above. Interval begins with	A 205270	67.60	70.00	2.40	90	2726	564	4.3		
		4 - 5 cm white quartz vein cutting core at 85° to core axis. Contacts are										ļ
		rusty and fracture faces have chalcocite spots. Pyrite common in and near										<u> </u>
		grey quartz veinlets, but also include chalcopyrite blebs. Unaltered K-										<u> </u>
		feldspar rich sections are strongly mineralized with finely disseminated blebs										
		of chalcopyrite and bornite. However this comprises less than half the										
		interval. At 68.50 a 40 cm (?) broken zone (fault) displays extensive										t
		carbonate alteration. Small fragments are of mineralized syenite.										1
		70.00 - 73.00 As above. Pink + grey syenite with patches of chlorite -	A 205271	70.00	73.00	3.00	98	1848	84	1.8		
		epidote alteration. Mineralization has decreased to small pin-heads of										
		disseminated chalcopyrite. Chlorite-rich intervals often contain irregular		L								
		hairline carbonate veinlets and patches of moderate disseminated		<u> </u>					ļ			<u> </u>
		chalcopyrite and minor bornite.										
		73.00 - 75.40 As described above. Pink syenite with patches and short	A 205272	73.00	75.40	2 40	100	1476	87	13		<u> </u>
		intervals of chlorite-carbonate alteration. Weakly mineralized with	A 203272	13.00	13.40	2.40	100	1410	5,			
		disseminated chalcopyrite. ~ 0.25 %.						···· -				
		75.40 - 77.50 Meso-svenite with many large patches and short intervals of	A 205273	75.40	77.50	2.10	100	275	14	0.4		
		chlorite-magnetite. The coarse magnetite to 3 cm has associated 1 mm										
		cubic pyrite minor carbonate reactions to cold HCL. Meso-svenitic sections				ļ						
		are north mineralized										
1		Tare poorly minicialized. 77.80 - 80.00 Similar to that described above with patches and intervals of	1 205074	77 50	80.00	2.50	100	1050	E C			
		chlorite carbonate alteration. Little magnetite accepted with chlorite ac	A 205274	11.50	80.00	2.50	100	1059	00	0.0		<u> </u>
		Chionice-carbonate alteration. Little magnetite associated with chionite as		<u> </u>		 			+			+

31 Oct. 2002

F

Ħ

٦

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Ŧ

T

Page: 6 of 12

Т

Т

FOOTAG	F (metres)		nen sen en sen de la companya de la de la companya de la de	SAMP	LES		Rec.	an in an		ASSAYS	an estador de la contra de	a de la constante de la constan
From (m)	To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		opposed to above run. Sulphides largely limited to small amount of									[]	
		disseminated pyrite.										
		80.00 - 83.68 Meso-syenite as above for first 1.5 metres then becoming	A 205275	80.00	83.68	3.68	100	1317	74	1.1		
		lighter in colour with mafic content dropping to about 5 %. Patches of							•			
		strong chalcopyrite and bornite are of limited extent and do not extend for									!	
		more than a few cm into the otherwise poorly mineralized rock. Carbonate									ļ]	
	l	filled fractures at 45° to core axis often have associated pyrite. Irregular										
		fracture surfaces and those at 30° have limonitic coatings.										
											ļ'	
83.68	117.30	SYENITE UNDIVIDED - a mixture of meso-syenite and more matic / chlorite-										
		rich melano-syenite. Maric-rich sections contain magnetite as large coarse-		·								
		grained clots to 3 cm. Overall poorly mineralized. More magnetic than										
		meso-syenice above.	4 005070		00.40	2.50	400	777	44		ļ	
		interval. Chalconvrite and nyrite blebs associated with 1 + 3 mm wide quartz	A 205276	83.68	80.18	2.50	100	211	41	0.4		
		$\frac{1}{2}$										
		according the magnetite. There appears to be an intimate association										
		between the chlorite and magnetite, both always being found together.								··· ···	 '	
		86.18 - 89.18 As above, largely meso-svenite for first 1.5 m, then	A 205277	86 18	80.18	3.00	90	531	13	0.3		
		becoming very mafic - chlorite-rich along with broken rubble (fault?) zone	A 200211	00.10	00.10	0.00	50			0.0		
		from 88.05 to 88.75 metres. The greyish-pink syenite contains minor to										
		weak chalcopyrite mineralization, and trace of bornite, all as fine										ļ
		disseminations. Chlorite-rich sections are carbonate-rich where broken into										
		fine rubble, elsewhere only minor amounts of carbonate are present. Minor										
		pyrite present.										
		89.18 - 92.00 Meso-syenite as described above, but showing patchy	A 205278	89.18	92.00	2.82	100	322	12	< .3		
		sericitic alteration, part of which is clearly associated with irregular fractures.							·			
·		Medium to coarse magnetite replacements to 1 cm across. Weak										
		- chalcopyrite - bornite mineralization as disseminated blebs. Amounts are				1						
		less than 0.25 %. A rare leuco-syenite is found from 89.77 to 90.90 and due										
		in part to a 1 - 2 cm wide fine grained quartz-carbonate vein at 10 - 20° to										
		core axis. Vein is barren, but does contain a discontinuous hematite										1
		selvage. Hematite is better developed as a fracture filling in irreguair					1					
		- rractures and minor quartz-carbonate veins within the meso-syenite.										
		92.00 - 95.00 All interval of variable manc concent from metano-systime to	A 205279	92.00	95.00	3.00	90	429	32	0.3		
		chlorite and magnetite alteration. Cross-cutting guartz + carbonate veinlets										
		1 - 2 mm carry pyrite and chalcopyrite blebs Pyrite is also found as weakly										
		defined envelopes to about 1 cm wide. Veinlets are oriented 80 - 85° to core										
		axis Meso-svenite part is weakly mineralized with minor amounts of								ļ	<u> </u>	
I	ļ	disseminated chalcopyrite. Mafic-rich parts often have limonitic low-angle										
<u> </u>		fractures at 10 - 20° to core axis	<u> </u>			+					+	
			A 205280	95.00	08.00	2 00	80	473	19	0.4	1	
		195.00 - 98.00 Meso- and melano-svenite, similar to that described above.	<u>N200200</u>	35,00	30.00	3.00	00	413	10	U.4	<u>'</u>	

I

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 7 of 12

Т

T.

i

			an an sa taga sa an a sa an		EC	e Alexandra alexand	Pee	yonnana yooshoodada wa	an a	ASSAVE	an ann ann an an an Airlinn gu de Airl	
FOOTAG	E (metres)	LITHOLOGICAL DESCRIPTION	Sampla #	SAMPI From (m)	.==> 	Metroc	Kec. %	Cu (nom)	Au (noh)	ACI (nom)	Pt (onh)	Pd (pph)
From (m)	10 (m)		Janpie #		10 (m)	MCGCS		Cu (ppil)	/nu (ppo)	, A (Mun)	· ((PPv)	, a (ppb)
		to core axis, especially with calcite and gypsum fracture fillings to 3 mm										
		thick. Mesocratic syenite sections are weakly mineralized with disseminated										
		chalcopyrite. Chlorite-rich parts contain irregular blebs of magnetite. 97.19										
		to 97.74 is a limonitic zone of rubble with poor recovery (~10 - 20 %)							<u> </u>			
ļ		suggesting a major fracture, if not a fault, although no movement is										
		indicated.										
		98.00 - 101.00 As above. The initial 90 cm of this interval consists of	A 205281	98.00	101.00	3.00	100	589	124	0.9		
		meso-syenite with prominent low-angle limonitic fractures at 5 to 20° to core										
		axis. Many if these fractures are filled with vugs filled with calcite crystals.										
		Very coarse-grained magnetite between 99.40 and 99.65, some of which										·
	<u> </u>	appears to be fracture fillings / replacements at 45° to core axis. Minor					,					
	1	chalcopyrite is associated with the magnetite. Pyrite present is controlled by										
		$45 - 60^{\circ}$ fractures Meso-svenite is weakly mineralized with disceminated										
		blebs of chalconvrite										<u> </u>
		101 00 - 104 00 Meso-svenite with weak disseminated chalconvrite	A 205202	101.00	404.00	2 00	100	9.45	70	1 5		
		mineralization. Irregular magnetite networks and patches appear to have	A 205282	101.00	104.00	3.00	100	040	(0	1.3		
		come fracture control at moderate angles (45 - 60° to core avis)										
		Chalconverte + pyrite in accoration with magnetite forms heads in fractures					· ·					
		Δ and discominations. May be weakly developed envelopes around fractures										
		Tanu unseminationed magnetite, biotite and chlorite alteration all increase										
L												
		toward bottom of interval. Pyrite associated with 1 cm quartz vein at 45° to	<u> </u>									
		core axis at 103.90 metres.	A 205283	104.00	107.00	3.00	100	2054	180	1.3		
		104.00 - 107.00 A mix of meso- and melano-syenite, the variation due to										
		increase / changes in biotite, chlorite and disseminated magnetite, which		-								
		over short intervals reach 60 % combined. Disseminated chalcopyrite						ļ		ļ		l
		mineralization is weak to begin with but has strengthened considerably by				ļ						
		the end of the interval to about 3 %; minor bornite. Cubic pyrite common in							,			<u> </u>
		some mafic-rich parts, usually fracture control is obvious, generally steeply	···· ·									
		dipping [sic] (60 - 80° to core axis).										
		107.00 - 110.00 Meso-syenite as above, with many patches of biotite,	A 205284	107.00	110.00	3.00	96	6785	490	3.2		
		chlorite + magnetite-rich alteration. Many of these patches are also rich in										
		chalcopyrite, to 5 % over 1 - 2 cm, 1 - 2 % for whole mafic patch. K-						Į				
		feldspar rich meso-syenite is moderately well mineralized with fine										
		disseminated chalcopyrite, trace bornite. Pyrite overprints much of the										+
 		interval, without apparent preference for either meso-syenite or mafic-rich				<u> </u>				+··· · ·		
· · · · · · · · ·		patches. Pyrite, often cubic, to several %, marks locations of fractures with				<u>+-</u>			† · · · · ·		· · ·	
		a line of blebs, often associated with patches of orangish to reddish stained /										
		altered k-feldspar.										ļ
		110.00 - 113.00 Meso-syenite as described above with many dark green	A 205285	110.00	113.00	3.00	100	4036	330	2.4		
		mafic patches of chlorite-biotite-magnetite <u>+</u> epidote and carrying 2 - 4 %										
·		pyrite and 1 - 2 % chalcopyrite, but occasionally reaching 5 % over short										
		intervals. The meso-syenite is moderately well mineralized with 1 - 2 %										
		chalcopyrite, 1 % pyrite and a trace of bornite.										
		113.00 - 116.00 As above, mafic patches (chlorite-biotite-magnetite) are	A 205286	113.00	116.00	3.00	100	1574	57	0.6		

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 8 of 12

÷.

I

Т

Т

i.

Т

			and the second second second second	SAMD	LFS		Rec.			ASSAYS	an a	
FOOTAG	To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		more strongly mineralized with large, coarse-grained replacements of										
		magnetite along with associated pyrite and chalcopyrite. The mesosyenite is	L			<u> </u>						
		as above with 1 - 2 % disseminated chalcopyrite.										
		116.00 - 117.30 Meso-svenite as above, with magnetite-rich mafic										
		patches of chlorite-biotite-epidote. The amount of chalcopyrite has dropped										
		off, but still 1 %.										
447.00	110 15	LEUCO SVENITE (117 20 - 119 15) - medium-grained composed of 95 - 98	A 205287	116.00	119.00	3.00	100	1295	56	0.8		
117.30	116,15	12 CCC-STENTIE (117.30 - 116.13) - median-graned, composed of 55 50		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
		minor quartz (2) Prohably a dyke										
												<u> </u>
												·
118 15	150 40	MESO-SYENITE - medium-grained pinkish-grey meso-syenite as above.		<u> </u>						· · · · · · · · · · · · · · · · · · ·		
110.10		118.15 - 122.00 Meso-svenite as above but with a slightly darker grev										
		colour due to fine-grained disseminated and networks of magnetite.		440.00	400.00	2 00		0450	246	1 5		
		Continuing disseminated weak to moderately strong chalcopyrite. Irregular	A 205288	119.00	122.00	3.00	98	2 159	245	1.5		
		natchy green chlorite-enidote alteration shows some fracture control (at 60°										
		to core axis) and carries blebs of chalcopyrite.										
		122.00 - 125.00 Pinkish-arev meso-svenite as described above. Sections	A 205289	122.00	125.00	3.00	100	4192	582	2.7		
		with a grever colour are due to an increase in fine-grained magnetite.										
		Interval is fairly consistently mineralized with fine disseminated blebs of										
		chalcopyrite and lesser bornite throughout. Chalcopyrite averages about 1										
		%, bornite about 0.25 %. Some steeply dipping [sic] fractures at 80° to										
		core axis are heavily mineralized with 1 - 2 mm blebs of up to 3 - % %							· · · · ·			
		-chalcopyrite and bornite combined. Fractures are also locus of chlorite-										
		biotite-epidote and pink k-feldspar alteration / envelopes. Small chlorite-rich				<u> </u>						
		+ epidote, biotite, magnetite, sericite patches comprise ~ 10 % of interval.										
		125.00 - 128.00 Grey meso-syenite as described above. Dark grey colour	A 205290	125.00	128.00	3.00	98	4152	373	2.5		L
		due to locally 10 - 20 % fine grained magnetite. Variable patchy strong to			<u> </u>			ļ				
		_ moderate disseminated chalcopyrite and associated bornite mineralization.										
		Some blebs to 2 mm, most less than 0.5 mm. Pink k-feldspar patches and				<u> </u>						
		cross-cutting k-feldspar alteration envelopes with associated epidote are										
·····		controlled by 30° to core axis fractures and are unmineralized. Blebs of										
		chalcopyrite are common in patches of chlorite (after pyroxene) with biotite										ļ
		and magnetite.										
		- 128.00 - 131.00 Grey meso-syenite as above. Grey colour due to grey	A 205291	128.00	131.00	3.00	98	3 2886	204	1.8		
		feldspar and fine grained biotite and magnetite. Moderate to patchy strong										
		fine disseminated chalcopyrite <u>+</u> bornite mineralization. Pink k-feldspar		<u> </u>					<u> </u>			
		forms unmineralized patches and alteration envelopes along 60 - 70° to core	L						- 			
		axis fractures. Low angle (0 to 10° to core axis) fractures have extensive				-	· · ·					+
		calcite coatings. Interval ends with a 20 cm section of very coarse-grained,										
· · · · ·		pink leuco-syenite.										<u> </u>
		131.00 - 134.00 Pinkish-grey meso-syenite with a magnetite-rich section	A 205292	131.00	134.00	3.00	100	4637	200	2.7		
		from 131.48 to 131.80 metres. Much of this interval is meso-syenite verging										+

Ĩ

E

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Ĩ

Page: 9 of 12

1

			CAMD	I FS	49994100,0000000000000000	Rec	anna thailte Contri - 27 (c. 177		ASSAYS		eningi alem antone more taar
FOOTAGE (metres)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
	an lourse question with a matic content of 5 - 10 % biotite and minor			`` <i>``</i>							
	magnetite Strongly mineralized with very fine-grained chalconvrite and										
	hamita Magnetita rich cortion with up to 10 cm of mostly massive										
	magnetite antains 2 4 % coarse black of chalconvirte along with										
	magnetite contains 3 - 4 % coarse blebs of chalcopyrice along with										
	Intermixed / associated coarse blebs of pyrile to 5 * 5 %.	A 205293	134.00	137.00	3.00	100	3694	262	2.9		
	134.00 - 137.00 Pinkish-grey syenite as described above with several										
	some evidence of fracture control and of are bounded by a fracture.				ļ						
	Mesosyenitic fraction continues to be strongly mineralized with disseminated		-					<u> </u>			
	chalcopyrite and bornite to about 2 - 3 % combined. Chlorite - magnetice										
	rich patches do not appear to be mineralized in this interval. Mineralization										
	weakens to end of interval.										
	137.00 - 140.00 Grey meso-syenite as described above. Overall weaker	A 205294	137.00	140.00	3.00	100	6430	275	4.7		
	disseminated chalcopyrite mineralization (in the range of 0.5 to 1 %) but										
	with patchy strong bornite mineralization to 3 % over a rew cm. Fractures		····								
	at 20° to core axis control minor blebs of chalcopyrite. Continuing magnetic.	A 205205	140.00	143.00	3.00	100	4854	371	34		· · · · · · · · · · · · · · · · · · ·
	140.00 - 143.00 Grey meso-syenite with fine-grained biotite, magnetite	A 205295	140.00	143.00	3.00	100					
	and chlorite in the range of 5 - 10 % through much of this interval, but with										
	mafic-rich patches of melano-syenite especially between 140.86 abd 142.67										
	metres. Disseminated chalcopyrite mineralization remains weak, but with a										
	few small patches of chalcopyrite - bornite mineralization which reaches 2 %										
	over 1 - 2 cm. At 142.02 chlorite - hematite coatings on 20° to core axis										<u> </u>
	fracture surfaces record slickensides which rake at 60°. These mafic-rich /										
	chlorite-rich zones show a strong reaction to cold HCI. Fracture controlled	· · ·								· · · ·	
	chalconvrite - bornite blebs mark fractures at 10° to core axis through										
	chlorite - magnetite rich patches. Below 142.67 meso-svenite is moderately										
	to patchy strongly mineralized with disseminated chalcopyrite and bornite.				ļ						
	to patery sublight minicialized that disservations to 2 mm thick are common										
	Low aligie (5 - 10 to core axis) callie veils, 1 - 2 min unce, are common.	A 205206	143.00	146.00	3.00	100	4629	326	32		
		A 200290	145.00	140.00	0.00	100					
	Istrongly mineralized disseminated line blebs of chalcopynice and minor		+		<u> </u>		1		1		
	$_$ Domite. Ubiquitous fine, ~ 0.5 to 1.0 mm bioute comprises 5 - 10 %.										
	weakly magnetic.										
	146.00 - 148.00 Meso-syenite, continuing pinkish-grey colour and medium	A 205297	146.00	148.00	2.00	99	5128	454	3.7		ļ
	grained. Ubiquitous fine biotite to 10 %. Disseminated hine biebs of	ļ	+		-						
	chalcopyrite to about 2 - 3 %, fine associated blebs of bornite often in						<u> </u>				
	contact with chalcopyrite blebs. Bornite ranges 0.25 to 0.5 %. Moderate										
	magnetism.	A 205298	3 148.00	150.40	2.40	96	1927	82	1.3	i	
	148.00 - 150.40 Meso-syenite as above but with many low angle fractures										
	(5 - 20° to core axis). Most have coatings of calcite, several with chlorite									·	
	have slickensides which range from 0 to 20° rake. Rock in contact with						 			···	
	fractures is often broken into rubble after splitting. Disseminated			· · · · · · · · · · · · · · · · · · ·							
									1		
	bornite. Weakly developed pyrite alteration envelopes follow 1 - 2 mm thick		+			-	1				
	calcite veinlets at 60° to core axis. Weakly to non-magnetic.										

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 10 of 12

1

1

FOOTAG	E (metres)		eren en besken en sen en en en der stad i de detter Schelen	SAMP	LES		Rec.	Brown and randomization its one Brown	agh a' S Mhalead an y Igean Long Al-Aug	ASSAYS	1. Constanting of the Constant	100 100 100 100 100 100 100 100 100 100
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
150.40	198.12	SYENITE UNDIVIDED - a mix of meso- and melano-syenite.	A 205200	150.40	152.00	2 60	100	2005	140	21		
		150.40 - 153.00 Syenite in which variations in biotite content from 10 to	A 205299	150.40	155.00	2.00	100	2995	140	Z .1		
		45 % plus patches of dark green chlorite alteration result in a variation back										
		and forth between meso- and melano-syenite. Weak to moderate										
		disseminated fine specks of chalcopyrite and minor bornite. Chlorite-rich										
		patches are generally lacking in sulphide mineralization. Pink k-feldspar rich										
		patches are generally irregular without obvious structural control.	A 005000	452.00	450.00	2.00	06	0400	70	14		
l		153.00 - 156.00 Meso-syenite with several mafic-rich patches of chlorite -	A 205300	153.00	100.00	3.00		2100	12	1.4		
l		magnetite \pm epidote. Sulphide mineralization is limited to weak										· · · ·
		disseminated chalcopyrite mineralization.										
		156.00 - 159.00 Meso-syenite as above with chlorite - magnetite - epidote	A 205301	156.00	159.00	3.00	100	517	14	0.3		
		patches which are mineralized with up to 2 % blebs of chalcopyrite, some of										
		which is associated with 45° to core axis fractures. Pink k-feldspar rich										
		sections are poorly mineralized. Grey syenitic section with 10 - 20 % fine-										
		grained biotite are moderately well mineralized with disseminated blebs of										
		chalcopyrite.										
		159.00 - 162.00 Meso-syenite - similar to that described above, but with	A 205302	159.00	162.00	3.00	92	2786	110	2.3		
		fewer and smaller mafic patches. Generally weak chalcopyrite										<u> </u>
		mineralization although moderately strong over a few cm in grey, biotite-rich										
		/ altered patches of syenite. Minor epidote as at least in part controlled by										
		45 to 60° to core axis fractures. Some of the epidote has a few blebs of										
		chalcopyrite associated with it. Parts of this interval are broken, but one 50								-		
		cm section from 159.50 has only 50 % recovery.										
		162.00 - 165.00 Meso-svenite with variations to melano-svenite. Weak	A 205303	162.00	165.00	3.00	99	1440	81	1.0		
		mineralization through interval, disseminated chalcopyrite maybe reaches		<u>_</u>				 		ļ		
		1% over a few cm, otherwise is closer to 0.25 %. Slightly greenish cast to										
		most of interval is due to weak but pervasive chlorite - sericite development.										
		165.00 - 168.00 Meso-svenite with numerous more mafic patches of	A 205304	165.00	168 00	3 00	99	4240	600	2.8		<u>-</u>
		biotite or chlorite to 4 cm. Many of the dark grey / fine-grained biotite-rich										1
		patches (maybe 20 % of interval) are strongly mineralized with disseminated										
		chalcopyrite and bornite. Chlorite - magnetite patches are unmineralized.										
		Pink svenite is only weakly mineralized.										
		168.00 - 170.69 Meso-svenite with a medium dark grey colour due to										
		grey feldspar and fine-grained biotite and magnetite. Overall moderately										
	· · · ·	well mineralized, but variable and patchy. All of mineralization is as fine	A 205305	168.00	174.00	6.00	60	2084	289	1.5		
		disseminations with most being chalconvrite at about 1 % and minor										
		amounts of pyrite and borpite										
		170 69 - 174 00 Meso-svenite but with four rubble-fracture zones each										
		about 50 cm long. The fracture zones are heavily chloritized with 2 - 3 mm						<u> </u>				
		thick fracture fillings of chlorite - calcite and clay. Recovery is noor in the							=-	<u> </u>		
		range of 30 - 50 % Fragments of nink meso-svenite are weakly to	· · · · · · · · · · · · · · · · · · ·	· · · · ·								+
	· · · · · · · · · · · · · · · · · · ·	moderately well mineralized. Chloritized sections are poorly to pon-					· · ·		1		1	
		mineralized					····		· · · · ·			
		174 00 - 175 09 Meco-svenite verging on leuco-svenite with a mafic	A 205306	174.00	177.00	3.00	65	1395	46	1.1		
-		content of 5 - 10 % biotite as small clusters of medium-grained biotite										
	1	THE REPORT OF A COMPANY AND A CO		1								1

T

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

F

Page: 11 of 12

Т

Т

Т

Т

1

1

1

FOOTAG	E (metres)		THE CONTRACT OF A DESCRIPTION OF A DESCRIPTION	SAMP	LES	nt an an an an Anna	Rec.	and a second	in hege werden Beltrich volltingen Aller	ASSAYS		
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		Weakly mineralized with disseminated blebs of chalcopyrite. Light greenish										
		cast to interval is due to weak but pervasive sericite alteration.	A 205207	177.00	180.00	3.00	45	1052	52	0.8		
		175.09 - 182.45 Fault or shear zone. All rock is strongly and pervasively	A 205307	177.00	100.00	3.00	40					
		chlorite altered with large amounts of ground and broken rock. Most										
		fractures are in the 5 to 20° to core axis range and contain extensive										
		coatings of chlorite, carbonate and ground rock. Poor recovery through this										
		interval, average is about 40 - 60 %. Larger fragments are meso-syenite.										
		Traces of pyrite as small cubes. Non-magnetic.										
		182.45 - 183.00 Meso-svenite. A return to competent rock. Pink k-	A 205209	190.00	192.00	3.00	60	705	46	0.9		
		feldspar alteration patches with epidote centres are noted. A weak foliation	A 205308	180.00	105.00	3.00			40	0.5		
· · · · ·		is developed at 50° to core axis and is defined by 10 % biotite flakes and						·				
·-···		small patches. No mineralization noted	i			1						
		183 00 - 186 00 Meso-svenite as described above with 10 - 15 % fine										
		103.00 - 100.00 (reso-systemet as described above, while 10 10 in the	A 205309	183.00	186.00	3.00	98	1072	33	0.9		
		biotite flakes which define a weak following at 45 to core axis. Indisurce						· ·				
		pinkish-grey streaks (potassic alteration) may mark incipient inactures and										
L		help reinforce the foliation. Trace amounts of disseminated chalcopyrite and										
		a few larger blebs to 2 mm or bornite were noted. The follation is distinct										
		for the first 60 cm, becomes more perpendicular for the next 30 cm and dies						·				
		out in a short chlorite-rich section. No mineralization is noted in the chlorite-										
		rich or in the following chlorite - epidote rich section. The remaining meso-							i			
		syenite from 184.15 to 186.00 is weakly mineralized with disseminated										
_		chalcopyrite and bornite. Core has a light green colour due to pervasive but										
		weak sericite and chlorite alteration.	A 205310	186 00	189.00	3.00	98	2083	90	1.2		
	· · · ·	186.00 - 189.00 Meso-syenite which varies to melano-syenite where a	A 2000 10	100.00	100.00	0.00						
		strongly developed foliation at 60° to core axis is defined by streaks and										
		laminations of biotite and chlorite <u>+</u> magnetite. Some laminations / streaks										
		varying to patches, are well mineralized with blebs of chalcopyrite. K-										
		feldspar alteration forms thin intervening fingers. Interval ends with a short										
	<u> </u>	chlorite fractured zone.	ļ				· · ·	· · · · · · · · · · · · · · · · · · ·				
I		189.00 - 192.00 Meso-syenite with pale pinkish-orange colour and a 60°	A 205311	189.00	192.00	3.00	94	1059	52	0.8	<u> </u>	
	<u> </u>	foliation defined by chlorite streaks. At 190.23, a 30 cm section of coarse										1
		magnetite to 60 % of the rock carries blebs of pyrite and chalcopyrite and is										
	-	cut by 2 - 3 mm k-feldspar veinlets at 45 - 60° to core axis. Meso-svenite										
		-varving to melano-svenite due to patches and streaks of chlorite, diopside										
ļ		(2) and + magnetite. The last 50 cm are soft, crumbly (fractured?) chlorite										
		Itered mecosyenite		<u> </u>				<u> </u>				
		102 00 - 105 00 The initial 1.5 metres of this interval is sheared meso-	A 205312	192.00	195.00	3.00	92	972	28	0.7		1
	<u> </u>	svepite although the large amount of chlorite rubble suggests it could have										
	1	been more mafic. The balance of the interval is meso-svenite with mafic										
		-(chlorite - highlite) content varying to melano-svenite. No sulphides noted										
		ADE 00 100 12 Melana avanita with a waskly defined faliation at 50 50°		1					-			
	ļ	143.00 - 198.12 Melano-syenice with a weakly defined follation at 50 - 00	A 205212	195.00	198.13	3 12	100	2520	123	1.8		
		to core axis. Foliation defined by patches and suleaks of chlorite plus some	A 200313	190.00	130.12		100	2520	123	1.0		
		-1^{\sim} 15° to core axis k-feidspar veinlets. Patchy fine bornite noted with the	ł					1	· · ·			
I	- I		n	· · · · · · · · · · · · · · · · · · ·				1	1		1	

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 12 of 12

i

i

FOOTAG	E (metres) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	SAMP From (m)	LES To (m)	Metres	Rec. %	Cu (ppm)	Au (ppb)	ASSAYS Ag (ppm)	Pt (ppb)	Pd (ppb)
		chlorite in some mafic patches. Interval gradually grades into meso-syenite by end of interval. Thin low-angle calcite veinlets noted in several spots. Strongly magnetic.										
198.12		END OF HOLE										
				· · · · · · · · · · · · · · · · · · ·								

T

F

F

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 1 of 11

1

1

	L	langa manakanan kanan kana Kanan kanan kana	Total Langth: 175.25		E++((-)	DIP TESTS		an a	Start D	ato: lub:?			
Property:	Lorraine	·	Core Size: BODM	- Г	+ootage (m)	Dip Mea	sured Dip	1	Start Da	ate: July 2	30 2002		
Grid Cord	1:			- -	175	51	43		Comple	non. July	30, 2002		
Elevation	: 1610 m		Azimuth: 45° (mag. declin. 28°)	- -					Logged	By: Jay \	V. Page		
Section:			Inclination: -45°						Date lo	gged: Au	gust 04 - 0	6, 2002	
NOTES:	Lower Main Are	a, "French" PAD: 1	UTM (hand held instrument) 347308 E; 6200554 N	(NAD 83).	Analytical	report # A20	2961.						
FOOT	AGE (metres)			ang san sing ang tang san	a na ana amin'ny fanisa dia mampika dia	SAMP	LES		Rec		non meneration service data d'Arres no	ASSAYS	escittatus controlarence atarate
From (m) To (m)				Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)
0.00	3.00	CASING (10 Feet)		1									
3.00	38.33	SYENITE - UNDIV	IDED - a mix of leucocratic to melanocratic syenite	e, all of									
			xtensively altered. Oxidation and the development	of							··· ·		
		limonite, clay and	carbonates has obscured most textures down to 1	3.5									
·		metres and intern	nittently down to 32.0 metres.	ŀ									
		3.00 - 6.00 Mes	o-syenite. The initial 1.4 metres of this interval are	not									
		limonitic and are	a chlorite-sericite altered meso-syenite. Initial 30 c	m are	A 205314	3.00	6.00	3.00	95	2955	196	2.1	
		very chlorite-rich	with sections of fine biotite packed together giving	a felted									
		appearance. The	initial 1.4 metres display moderate to strong chalco	opyrite									
		and minor bornite	e disseminated mineralization. The limonitic part ha	s little									
		rock texture visibl	le, but clay developed appears to be pervasive and										
		extensive in these	areas. No chalcopyrite noted here, but occasional	blebs of				<u> </u>					
		bornite remain.	he last 65 cm of the interval are chlorite-sericite all	tered,									
		with the chloritiza	ition most intense in the initial 10 cm. Irregular car	bonate									
		veining (calcite) is	s extensive and seems to be controlled mainly by lo	wangle		· · · ·							1
		fractures, ~ 15 -	20° to core axis. These fractures often have a chlor	rite									
		filling. Dissemina	ted blebs of bornite are found through this latter se	ction, in					ļ				
		amounts to 1 %.			A 205215	6.00	0.00	2.00	08	2905	170	21	
		6.00 - 9.00 Lime	onite-sericite-clay altered rocks. Many k-reidspars a	appear	A 200310	0.00	9.00	3.00	30	2095	113	2.1	
·- ·-· ·		to be recognizable	e and the least altered. Cores of some larger fragm	ients are									
		-chlorite-sericite (g	green) altered meso-syenite with 1 % disseminated					1					
		chalcopyrite and	minor bornite with possible 45° to core axis fracture	control.									
L		Thin, cryptocrysta	alline quartz veins cut through limonitic parts at 30 l	to 45° to									
		core axis, do not	appear to carry mineralization.	-	A 205316	9.00	12.00	3.00	95	2698	167	1.6	
		- 9.00 - 12.00 Lin	nonitic clay-sericite altered rock as above, but with	more	A 2000 10	3.00	12.00	0.00		2030	107	1.5	
		variable intensity.	. Strong limonite-clay alteration in some 30 cm sect	ions and						· · · · · · · · · · · · · · · · · · ·			
		relatively unaltere	ed meso-syenite in others. These "fresher" sections	show									
		chlorite-limonite a	alteration along and in narrow adjacent envelopes fo	ollowing								· · · · ·	-
		45 - 60° to core a	xis fractures. Minor specks of chalcopyrite noted.	ŀ	A 205247	12.00	15.00	200		A749	284	74	
		– 12.00 - 15.00 L	imonite-clay altered rock with intermittent sections	of	A 200017	12.00	15.00	5.00	90	4240		2.0	1
		biotite-chlorite alt	ered melano-syenite. Small magnetite replacement	ts	· ···· · · ·					1			
		commonin chlorit	e-rich spots. Mafic content variable, but in 40 - 60	%									
		range, mostly pat	tches and streaks of chlorite with biotite. Dissemina	ted									
		chalcopyrite and i	bornite to 1 - 2 % combined, trace covellite. Bornit	e is				<u> </u>					
		dominant over ch	alcopyrite in several spots, found as disseminated f	ine		'							
		blebs. Cross-cutt	ing calcite veinlets are common, range in orientatio	n from					+	· · ·			
		10° to 90° to core	axis.					1	1	1			1

E

۳

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 2 of 11

T

н

1

Т

1

I

Т

FOOTAG	F (metres)		on an an an an an An	SAMP	LES	and the state of the second second	Rec.	1944 - 1946 - 1946 - 1946 - 1947 - 1947 - 1948 - 1948 - 1948 - 1948 - 1948 - 1948 - 1948 - 1948 - 1948 - 1948 -		ASSAYS	
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)
				15.00	40.00	0.00	400	0700	204		-
		15.00 - 18.00 Meso-syenite. Grey biotite syenite with irregular cross-	A 205318	15.00	18.00	3.00	100	2703	324	2.2	
	······	cutting patches of pink k-feldspar alteration. Chlorite alteration is most									
		commonly found as streaks and patches which suggest some fracture									
		control. Fine grained flakes of biotite locally reach 30 % and together with									
		the chlorite push the composition into melano-syenite over short intervals.									
		Moderately well mineralized with disseminated chalcopyrite and lesser									
		bornite to 2 % combined. A 60 cm section near the bottom of the interval									
		shows intense chlorite-sericite alteration, some large blebs of magnetite with									
		associated chalcopyrite blebs. At 17.65 there is a 2 - 3 cm brown flow-					-				
		banded quartz (cryptocrystalline) vein that cuts the core at 90° to core axis									
<u> </u>		and includes a silicification envelope that extends to 5 cm below the vein. It									
		carries to 5 % cubic pyrite.								10	
		18.00 - 19.98 Leuco-syenite with several large patches of intense chlorite-	A 205319	18.00	19.98	1.98	100	2529	202	1.8	
	·	sericite, and in one section limonite alteration. Interval is biotite-poor, just									· · · · · · · · · · · · · · · · · · ·
		occasional small clusters and a minor amount associated with steep								-	
		fractures. Low angle carbonate veining extends through the section;									
		generally thin but they range from hairline to 8 mm in size and they are									
		generally almost flat lying [sic] with a range of 0 to 20° to core axis. Another									
		set of veins appear to include some quartz, especially as a vein-centre filling.									<u> </u>
		Hematite also forms thin selvages and vein laminations. The low angle veins									
		all appear barren but [there is] a 2nd set of guartz-carbonate veins at 80 -									
		90° to core axis. They carry blebs of chalcopyrite with minor associated									
		bornite and appear to cross-cut the low-angle carbonate veins, but the									
		evidence is not conclusive. Overall the svenite core in this interval appears									
		to be bleached or altered by potassic alteration. Disseminated chalcopyrite									
		and associated blebs of bornite are common through the interval in amounts									
		af about 1 -2 % chalcopyrite and 0.5 % bornite	A 205320	19.98	21.55	1.57	95	7040	627	5.0	
		19 98 - 21 55 Meso-svenite, gradational from leuco-svenite above									
		carbonate + quartz veining persists for first 60 cm mostly at very low									
		$\frac{1}{2}$									
		angles, 0 • 15 to core axis. Enfonce standing continion of higher angle									
		The that described higher in cartion. Gray with random flacks of pale pink (
		to that described higher in section, Grey with random necks of pale pink /									
		orange. Medium-grained, composed of 10% life blocke, most of which								[
		Loccurs as small clusters. Larger manc spots / sureaks are formed of chlorice									
		and bloute. These manc-rich pacches range from 10 % to 50 %. K-relidspar									
		Is medium-grained (2 - 4 mm) hypidiomorphic / intergrown, and does not									
		break with many k-relospar cleavage planes exposed, suggesting some									
		degree of weak but pervasive sericitic alteration. Strongly mineralized with 2		-							
 		1-4 % disseminated chalcopyrite and 0.5 - 1 % bornite.	A 205321	21.55	24.00	2.45	95	5273	516	3.3	3
		-121.33 - 24.00 Meso-syenite varying to melano-syenite as the frequency									
	-	- and size or matrix chlorite - blottle \pm magnetite patches increases.									
		Continuing strongly mineralized with 2 - % chalcopyrite and 1 % bornite as									
		disseminated blebs. Both maric patches and k-relospar only sections are									
1		istrongly mineralized. A weak banded appearance is created by 2 - 3 mm									

E

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

E

Page: 3 of 11

i.

ł

EOOTAG	E (motros)			SAMPL	ES		Rec.			ASSAYS	a de la constanción d
Erom (m)	To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)
		wide bands of k-feldspar which cut the core at approximately 60° to core									
		avic and suggest some degree of fracture control on the k-feldsnar									· · · ·
		axis, and suggest some degree of macture condition and k relaspan									
		anceration. Traces of interstitian carbonate detected. Moderately magnetic.			• · ·						
		Some low-angle fractures (0 to core axis) which split the core evening toward									
		the bottom of the interval are limonite - carbonate -chalcocite rich.									
		Disseminated mineralization decreases through last metre of run.									
		24.00 - 27.00 Melano-syenite with vanations to meso-syenite as biotite	A 205322	24.00	27.00	3.00	95	2625	122	1.8	
		varies 20 - 40 % and matic patches to 80 % of core over short intervals.									
		Magnetite commonly associated with biotite, often forming bands at 45° to									
		core axis with biotite and chlorite. Chlorite-only patches have little									
	<u> </u>	magnetite and few chalcopyrite blebs. K-feldspar + biotite + magnetite rich									
		section (most of the meso-syenite) is moderately well mineralized with 1 - 2									
		% very fine-grained specks of chalcopyrite. Pink k-feldspar rich spots which									
		are coarser grained with minor epidote are poorly mineralized and appear to									ļ
		be an over-printing alteration. Low angle fractures (0 - 10° to core axis) are									
		common and carry coatings of limonite, carbonate and chalcocite (minor).									
		By end of interval, tenor of mineralization has dropped off considerably.			<u> </u>						
		27.00 - 30.00 Melano-syenite with variations to meso-syenite, especially	A 205323	27.00	30.00	3.00	98	4531	340	2.7	/
		where over-printing k-feldspar alteration is prominent. Many low angle									
		fractures (0 - 30° to core axis) are limonitic and include spots of chalcocite.									
		Grev svenite with very fine biotite (10 - 40 %) bosts very fine grained									
		disceminated specks of chalconvrite, possibly also pyrite (?) Mafic patches								<u> </u>	
		of chlorite, magnetite and biotite commonly have blebs of chalcopyrite to 2									
		mm Chlorite natches with epidote and nink k-feldspar are often poorly	<u> </u>								
		mineralized							· · · ·		
		30 00 - 32 00 Meso-svenite with variations to melano-svenite. Variations	A 205324	30.00	32.00	2.00	100	8541	702	5.9)
		in biotite content (5 - 40 %) have little relationship to amount of				<u> </u>	ļ				
		discominated chalconverte other than biotite rich sections have finer grained /						<u> </u>			
		cmaller specks of chalconvrite than do the slightly coarser-grained nink k-	·								
		foldenar rich contians. All contians moderately to strongly mineralized with				1			<u> </u>		
	···	discominated choleonyrite (1 - 2 %) and minor hernite. Minor fracture				· ····					
	<u> </u>	juissenninated that opyrite (1 - 5 %) and minor bornite. Minor nature					1	1			
			A 205325	32.00	36.00	4.00	50	2295	90	1.5	5
		32.00 - 36.00 Syenite undivided, varying from melano-syenite at the									
		beginning to meso-syenite throughout the centre to end of interval. Almost				ļ					
	<u> </u>	entire interval is broken rubble with poor recovery, maybe 50 %. Most								+	
		fragments contain fine disseminated chalcopyrite, initial 30 cm is more									
		strongly mineralized and less broken. Interval begins with limonitic fractures				+		1	··		1
		-at 30° to core axis and poorly developed slickensides which rake at ~ 60°.	<u> </u>								
		Bornite blebs to 1 % noted in initial chlorite - sericite altered syenite.									
		36.00 - 38.33 Syenite - meso-syenite for initial 1.25 metres, although	A 205326	36.00	38.33	2.33	90	516	i 53	3 0.5	5
		_much of it is broken into rubble. This initial section is medium-grained, but					<u> </u>	1			
		coarser than the preceeding mineralized syenite. Poorly mineralized with									
		only traces of chalcopyrite. Biotite in small clusters. Chlorite - epidote				+					
		alteration of early mafics. From 37.25 - 38.33 is a very uniform looking					1				
		-melano-svenite with mafics - chlorite altered pyroxene and biotite interstitial						1			

ſ

 .

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

T

Page: 4 of 11

i

1

T T

T

1

T

FOOTAG	E (motros)		an a	SAMPL	ES	narran na ranaran bahar	Rec.			ASSAYS	perior - Provinsion - Provinsion
From (m)	To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)
170111(0)	1										
		to subhedral k-feldspars to 1 cm. Weakly developed fabric perpendicular to									
		core axis. Cross-cutting k-feldspar veinlets at 80° to core axis. Interval is									
		poorly mineralized.			<u> </u>						<u> </u>
					·· -				· - · · ·		
38.33	144.23	MESO-SYENITE - with intervals of weakly developed gneissic syenite.									
		38.33 - 40.00 Meso-svenite: fine grained biotite locally reaches 35 %,	A 205327	38.33	40.00	1.67	100	1985	94	1.5	i
		contains fine-grained disseminated chalcopyrite and pyrite. The interval									
		begins with cross-cutting carbonate + minor guartz and sericite alteration									
		over several centimetres. Plentiful cubic pyrite associated with this cross-									
		cutting feature. Several short sections are strongly mineralized with									
		chalconvrite and nyrite when fractures (usually $60 - 80^{\circ}$ to core axis) cut									
		through these sections they are also well mineralized with blebs of									
		chalconvrite and nurite									
		40 00 - 43 00 Meso-svenite with numerous natches and short intervals of	A 205328	40.00	43.00	3.00	100	1011	25	0.4	
		coarser grained nink k-feldsnar. These natches are poorty mineralized and if	A 200020	40.00		0.00					
		mineralization is present, it is usually frature controlled. Grey coloured									
		svenite contains variable amounts of fine biotite and disseminated blebs of									
		- chalconvrite and lesser pyrite. The rapid changes between pink and grey									
		svenite grain size and alteration presents a very chaotic appearance. Some		-							
		coarse-grained natches of magnetite to 2 cm contain blebs of chalcopyrite	· · · · · · · · · · · · · · · · · · ·							<u> </u>	1
		and pyrite. Some fracture surfaces have 2 cm long needle-like pyroxene									
		crystals (aererine?)						-			
		43.00 - 46.00 Meso-svenite as described above. Mottled grey and pink	A 205329	43.00	46.00	3.00	100	1630	46	6.0 G	1
		-coloured patches with some magnetite - chlorite rich sections. Local						ļ			
		variations to melano-svenite. Magnetite-rich sections over several		·		<u> </u>					
		centimetres (to 60 % magnetite) are often richly mineralized with			-			· ·			+
		chalcopyrite and pyrite blebs. Overall weak to moderately mineralized with									
		0.5 to 1.0 % chalconvrite, although natches of strong mineralization exist.							1		
		46.00 - 49.00 Meso-svenite as described above. Overall pink colour tone									
		with grey patches, along with a few large magnetite - chlorite patches to 3	A 205330	46.00	49.00	3.00	100	2295	65	5 1.6	\$
		cm. Most of interval is weakly mineralized with ~ 0.5 % disseminated					l	<u> </u>		+	
		chalconvrite with loccer pyrite. Pare 45° to core avis fractures control some				+				+	
		chlorite - opidete and k-feldenar alteration - Several of the magnetite									
	-	$_{1}$ children e pluote and k-reliuspar alteration. Several of the magnetice									
· · · · · ·		minoralization in nink meso-svenite are usually less than 10 cm long									
		40 00 - 53 00 Meco-system as described above. Overall pink colour tone		-				<u> </u>			
		with darker patches of magnetite or biotite-rich spots Patchy strong	A 205221	40.00	52 OC	3.00	100	140/	7/	1 10	<u></u>
		disceminated chalconvrite (to 3 %) in an otherwise weakly mineralized	A 205331	49.00	52.00	5.00	100	1-40-	, <u>,</u>	1 1.0	,
		uisseminated chalcopyrite (to 5 %) in an otherwise weakly mineralized				-		-	1		
		$ \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0									
		- JZ.UU - JD.UU Mesosyenite as described above. Low angle (0 - 10 to core	A 205332	52.00	55.00	3.00	96	5 1413	5	1 1.3	2
		Taxis) tractures split the core in many parts of this interval. Most fractures					÷.				
		Jare coated with 1 mm thick layers or carbonate, and also, near the top,		·			·				
		Himonite(?) Minor chalcocite is noted as spots on fractures riear bottom of	<u> </u>								-
1		linterval, Pink syenite is mineralized with 1 - 2 % chaicopyrite [as]	I	1			J	-l	·/		

f

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

-

Page: 5 of 11

1

Ť.

i.

1

1

T.

FOOTAGE	(metres)			SAMPI	LES	and a grade of the second s	Rec.		der mit Alter Martin General von der	ASSAYS	
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)
		disceminations, but arey svenite which comprises most of the interval is									
		poorly to weakly mineralized. Interval is moderately magnetic									
		55 00 - 58 00 Meso-svenite as described above, but with several short (to	A 205222	55.00	58.00	3.00	100	2411	155	21	
		20 cm melanocratic sections. Low angle fractures (0 to 15° to core axis)	A 200000	55.00		3.00			100		
	· ·	150 cm) melanocratic sections. Low angle mactices (0 to 15 to tore axis)									
		have carbonate coatings. A few 90° to core axis fractures are marked by									
		weakly developed pyrite envelopes. The interval is overall weakly									· · · ·
		mineralized but with a few patches of $1 - 2$ % chalcopyrite. Rare 60 - 70°									
		fractures carry blebs of chalcopyrite and bornite. The melanocratic patches		+							
		appear unmineralized. A quartz vein at 56.30 cuts the core at 90° to core									
		axis and is 10 cm wide, but is barren.	-								
		58.00 - 61.00 Meso-syenite with one 38 cm section of melano-syenite very	A 205334	58.00	61.00	3.00	100	2482	123	1.6	
		similar to that described above. Generally weakly mineralized. Melanocratic									
		section carries traces of pyrite except where cut by 45° to core axis					· · · · · · · · · · · · · · · · · · ·				
		carbonate veinlets / fractures where blebs of chalcopyrite form a weakly						<u> </u>			
		developed envelope. Low angle fractures are coated with carbonate.									
		61.00 - 64.00 Meso-syenite as described above. Greenish-pink colour tone	A 205335	61.00	64.00	3.00	100	2535	76	2.2	
		throughout interval. Variable disseminated chalcopyrite ranges from 0.25 to									
		2 %, average is closer to 0.5 %, traces of bornite noted. Fractures at 30° to								ļ	
		core axis have carbonate coatings and carry blebs of chalcopyrite.									
		64.00 - 67.00 Meso-syenite as described above. Variable grey colour tone	A 205336	64.00	67.00	3.00	100	2003	65	1.4	
		due to variations in fine-grained biotite content (5 - 35 %). Weak to									
-	<u> </u>	moderately strong disseminated fine-grained chalcopyrite found through									
		most of interval, average about 1 %. Minor pyrite. Darker, biotite rich									
		sections are also magnetite rich.	A 205227	67.00	70.00	3.00	100	3645	118	23	
		67.00 - 70.00 Meso-syenite as above. Gradual increase in biotite content	A 205337	07.00	10.00	3.00	100		110	2.0	<u></u>
+		results in a darker colour tone toward bottom of interval. Weakly									
		mineralized at top of interval, becoming better mineralized (1.0 - 1.5 %)									
		with disseminated specks of chalcopyrite. Becomes more magnetic with								ļ	
		depth.	4 005000	70.00	70.00	2.00	400	2624	104		,
		70.00 - 73.00 Meso-syenite as above. Medium greyish-pink colour tone.	A 205338	70.00	73.00	3.00	100	3631	104	2.1	
		Medium grained with 10 - 20 % fine-grained biotite. Moderately well									
		mineralized with 1 - 2 % disseminated chalcopyrite through most of interval.									1
		Pink k-feldspar alteration patches carry mostly pyrite, minor chalcopyrite. A									
		low angle fracture between 71.15 and 71.84 has polished chlorite - hematite									
		_ coatings.	A 005000	72.00	76.00	2 00	100	1042	66	1 1 2	2
+		73.00 - 76.00 Meso-syenite as above. Pinkish-grey colour tone, continuing	A 205339	/3.00	70.00	3.00	100	1342	00	1.5	'
		medium grained. Some patches of chlorite \pm magnetite. Fine grained									
+	······	disseminated biotite, and as small aggregates. Overall interval is weakly									
		mineralized although there are several more strongly mineralized patches.									
		Larger blebs of chalcopyrite are associated with magnetite - chlorite rich								ļ	
		patches, many of which appear to have some degree of fracture control,									
		although there is no dominant direction.	A 205340	76.00	79.00	3.00	100	3513	195	24	1
		76.00 - 79.00 Meso-syenite. Similar to above but with many more mafic	<u> </u>	70.00	13.00	. 0.00				†· •••	
		patches of chlorite, biotite, magnetite. Moderately well mineralized through									
		I most of the interval with 1.0 - 1.5 % disseminated blebs of chalcopyrite plus	1						1		

T

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 6 of 11

ſ

I

I

Т

			SAMD			Rec	of canada di gana calin bia di matrica	9-17-18-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	ASSAYS	alahan ya kata ana ang kapatén di kata kata kata kata kata kata kata kat
FOUTAGE (meu		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)
	minor bornite. Mafic patches are weakly mineralized but some do contain									
	small blebs of chalcopyrite and bornite.									
	79.00 - 82.00 Meso-syenite as above with continuing mafic-rich patches.	A 205341	79.00	82.00	3.00	100	2641	95	1.5	
	One mafic-rich patch at 80.18 has an aggregate mass of 1 cm long pyroxene									
	crystals. Small blebs of chalcopyrite and bornite noted in association with									
	chlorite surrounding the pyroxene aggregate. Most of interval is moderately	A 205342	82.00	85.00	3.00	100	2182	51	1.4	
	well mineralized with disseminated chalcopyrite to approximately 1 %.									
	82.00 - 85.00 Meso-syenite as above with continuing numerous patches of									
	mafic-rich core interrupted by pink k-feldspar potassic alteration zone.									
	Mineralization is moderate but decreases through the potassic alteration									
	zones and is minor in the mafic-rich sections.									
	85.00 - 88.00 Meso-syenite as described above, but with weak	A 205343	85.00	88.00	3.00	100	1530	77	1.0	
	disseminated chalcopyrite and pyrite mineralization through most of the									
	interval. At 86.15 there is a patch of chlorite - biotite - magnetite with 5 %									
	chalcopyrite in closely spaced small blebs over 1 - 2 cm. Cross-cutting bands									
	of k-feldspar and k-feldspar with epidote cut the core at 45 and 35° to core									
	axis respectively and are unmineralized.									
	88.00 - 91.00 Meso-svenite as described above. Moderately to poorly	A 205344	88.00	91.00	3.00	100	1596	46	1.3	
	mineralized Much of the interval has narrow k-feldspar alteration zones /									
	envelopes cross-cutting at steep angles (00 - 00 to core axis) giving a weak									
	are not mineralized									
		A 205345	91.00	03.62	2.62	100	961	30	0.9	
	chalconvite mineralization continuing Cross-cutting pink streaks at 60 to	A 200340	51.00	55.02	2.02	100			0.5	
	85" to core axis are potassic alteration. Large knots of coarse-grained									
	magnetite to 3 cm contain only minor small blebs of chalcopyrite.									
	Disseminated pyrite becoming more common in amounts or 0.5 % through		1							
	cryptocrystalline quartz veins to 1 cm split core a low angles (0 - 10° to core									
	axis) and carry, to begin with, considerable pyrite to 5 % of the core in									<u>+</u>
	spots. Thin hematite selvages common along vein margins. Multiple-stage									
	fracturing suggested by vein relationships and cross-cutting selvages.									
	93.62 - 97.00 Meso-syenite which has been subjected to extensive veining	A 205346	93.62	97.00	3.38	100	826	17	0.6	i
	along with potassic and carbonate alteration. Low angle fractures (0 - 10° to									
	core axis) and veins split the core leaving 1 - 2 mm thick carbonate (<u>+</u>									
	quartz) deposits on fracture faces. Much of the host syenite through to									
	94.85 is bleached looking and subject to moderate pervasive sericite and									
	chlorite alteration. Minor cubic pyrite noted in veining especially with quartz									
	rich veining. No copper sulphides seen above 94.50, minor chalcopyrite				ļ					
	noted below. At 96.40, several 30 - 40° to core axis fractures are marked by									
	thin laminations of hematite (incipient selvage development), also one 40° to			<u> </u>						+
	core axis grey quartz vein with hematite selvages at this location. Vein is 2	· · · · ·							1	
	core and grey quare ten man hernade servages at and rotation want to z									1
	Continued next page:						1			
	lasteries town holds:	1	1	1	1	1	1	1	ł	1

 T

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

 Page: 7 of 11

1

1

FOOTAC	E (motroc)		an a	SAMP	Rec	annan Chilippe Breaksie		ASSAYS	aanaana gabaana ah		
From (m)	To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)
		97.00 - 100.00 Meso-syenite but pervasive potassic overprinting in upper	4 0050 47	07.00	400.00	2.00	400	4570		13	
		1.5 metres pushes the rock classification close to leuco-syenite (~ 5 $\%$	A 205347	97.00	100.00	3.00	100	19/9		1,3	
	h	mafics). Minor pyrite, trace chalcopyrite. At 98.50 the core is the familiar									
		meso-syenite described through much of this hole. Mafic content is									
		approximately 10 - 20%, being chlorite and fine biotite. Little sulphide									
		visible, only minor amounts of disseminated chalcopyrite noted.									
		100.00 - 103.00 Meso-syenite with numerous patches and weakly defined	A 205348	100.00	103.00	3.00	100	2667	42	1.9	
		streaks (at 60 to 80° to core axis) of pink k-feldspar alteration, often slightly									
	· · · · · · · · · · · · · · · · · · ·	coarser grained than the host syenite. Minor epidote is commonly	· · · ·								
<u></u>		associated with the pink k-feldspar. Minor pyrite suggests some fracture			-						
		control. Traces of chalcopyrite through most of the interval but short									
		intervals reach 0.5 % chalcopyrite. Moderately magnetic. A gneissic-like									
	1	texture at 80° to core axis has developed over a few short intervals and is									
		defined by streaks of k-feldspar and chlorite (which can include tiny blebs of		· · · -							
		chalcopyrite) along with fine biotite. A mafic-rich melano-syenite patch from			· ·						
		101.70 to 102.15 carries 2 - 3 % chalcopyrite as irregular blebs interstitial to									
		and enveloping chlorite altered pyroxene crystals to 1 - 2 mm long.									
		103.00 - 106.00 Meso-syenite with widespread potassic over-printing	A 205349	103.00	106.00	3.00	100	1907	59	1.5	
		giving a weak fabric approximately perpendicular to the core axis. Mafic									
l		patches of chlorite, magnetite and biotite beginning and extending through									
		next several sample intervals. At 105.20 a 4 mm grey fine-grained quartz									
	<u> </u>	vein cuts core ar 20° to core axis.	· · ·								
		106.00 - 109.00 Meso-svenite as described above. Pink colour tone due	A 205350	106.00	109.00	3.00	100	1767	116	1.7	
		to pervasive k-feldspar alteration. Mafic patches of chlorite - magnetite -									
1		biotite common. Weak disseminated chalcopyrite mineralization, trace						· · · · · ·			
		bornite.									
		109-00 - 112-00 Meso-svenite showing a decrease in the late k-feldspar	A 205351	109.00	112.00	3.00	100	1519	20	1.2	
		overprinting alteration and allowing the fracture control on the alteration to									
		be more visible (dominantly cross-cutting at high angles but also parallel to									
		the core axis). The grey meso-syenite with 10 - 15 % fine biotite is									
		imineralized with moderate amounts of disseminated blebs of chalcopyrite as	<u></u>								
·	<u> </u>	described higher in the hole. Chalcopyrite in the range of 1.0 - 1.5 %, also									
	+	minor bornite. Irregular patches of chlorite, aggregated biotite + magnetite					··· ·				
		form streaks and discontinuous linears suggesting fracture control. Minor									
		blebs of chalcopyrite noted in and associated with these patches.									
		112.00 - 115.00 Meso-svenite as above, with patchy, streaky k-feldspar				0.00	400	4704			
		alteration weakly oriented at 45 - 60° to core axis. Mafic natches and	A 205352	112.00	115.00	3.00	100	1/64	28	1.1	
	<u> </u>	and allow weakly oriented at 45° 00° to core axis. Mane patients and									
		Jspecks suggest 45 - 90 to core axis fracture control. Disseminated				-					1
		I o % abalaanyrite									
		11.0 % chalcopyrite.									
		115.00 - 116.00 Meso-syenite as above. Patchy strong mineralization.	A 205353	115.00	118.00	3.00	100	1742	18	1.0	
		Disseminated charcopyrite ranges from minor (~ 0.1 %) to 5 %, average									
1	1	TCIOSEF LO U.S %.	1			1		1			

31 Oct. 2002

Eastfield Resources Ltd.

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 8 of 11

FOOTAG	E (metres)		ner og de service of animal fractioners	SAMP	LES	and the second sector second	Rec.	n file a des parts monormalisations a		ASSAYS	n na anna airtean fa an tarristi na 1987.
From (m)	To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)
		118.00 - 121.00 Meso-syenite as described above. Greyish colour tone									
		from 10 - 15 % fine grained biotite. Occasional small patches of chlorite -	A 205354	118.00	121.00	3.00	100	1511	28	1.1	
		biotite. Disseminated chalcopyrite appears to be strengthening with depth									
		through several samples here. The average in this interval is about 1 %									
		with minor bornite blebs. Continuing magnetic.									
		121.00 - 124.00 Meso-syenite as described above with increasing pink k-	A 205355	121.00	124.00	3.00	100	795	38	0.7	
		feldspar / potassic over-printing alteration toward bottom of interval. Where									
		k-feldspar alteration cross-cuts core it measures within range of 40 - 50° to									
		core axis. Amount of disseminated k-feldspar decreases in pink k-feldspar									
		rich areas, but overall still averages about 0.5 - 1.0 %, mostly as very fine									
		disseminated specks. Traces of bornite associated with the chalcopyrite									
		blebs.									
		124.00 - 127.00 Meso-syenite as described above. Increasing k-feldspar	A 205356	124.00	127.00	3.00	100	1102	40	0.8	
		overprint through interval, cross-cuts core at or near perpendicular to core	· · · · ·								
		axis. Streaks of chlorite - biotite + magnetite tend to be around 60° to core									
		axis. Weakly mineralized with 0.25 - 0.5 % disseminated specks of									
		chalcopyrite and traces of bornite.									
		127.00 - 129.95 Meso-svenite as above. Grevish biotite - magnetite	A 205357	127.00	129.95	2.95	100	2442	67	1.8	
		svenite with over-printing pink potasic alteration as indistinct patches and									
		streaks at a multitude of angles, although mostly cross-cutting at greater									
	1	than 45° to core axis. Grevish biotite - magnetite rich (10 - 20 % combined)									
		svenite is much more strongly mineralized with 2 - 3 % disseminated									
		-chalcopyrite and 0.5 - 1.0 % bornite than is the nink mafic-poor potassic									
		alteration which, if mineralized at all, carries about 0.25 - 0.5 %									
		disseminated chalconvrite. Short sections of the grevish svenite are heavily									
		mineralized with up to 5 % combined fine grained chalcopyrite and bornite.									
		Weakly magnetic.									
		129.95 - 132.95 Meso-svenite as described above. Cross-cutting pink k-	A 205358	129.95	132.95	3.00	100	1635	64	1.3	
		feldspar alteration often has a grey quartz veinlet at its core. These veinlets									
		range in size from 1 mm to 1 cm, carry cubic pyrite and are oriented 45 to									
		90° to core axis. Only a trace of chalconvrite noted in one veinlet. Fabric									
		defined by k-feldspar streaks which are interspersed with chlorite - biotite -									
		magnetite streaks (often thin ≈ 1 mm) is weak but oriented at 70° to core									
		$\frac{1}{1}$ and									
	-	axis. A low angle fracture from 151.75 to 152.15 has chickle coatings with $\frac{1}{2}$									
ļ		slickensides which rake at 15. Disseminated chalcopyrite and pornite									
		(trace) is common but weak, pernaps 0.5 - 0.75 % chaicopyrite. Pyrite also									
		present in amounts of about 0.5 % but patchy.									
			A 205359	132.95	135.95	3.00	100	1176	51	1.0	
		tone suggests an increase in overprinting potassic alteration. Disseminated									<u> </u>
		Dyrite, otten cubic, has succeeded chalcopyrite as the dominant sulphide.									
		Fyrice now comprises 0.5 to 1.0 %, chalcopyrite about 0.25 - 0.75 %. They have a support to the second									
		145 to core axis and sometimes carry rare blebs of chalcopyrite.									
		133,33 - 138,33 Meso-syenite as described above. Darker colour tone	A 205360	135.95	138.95	3.00	100	732	33	0.5	

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

 F

Page: 9 of 11

 Т

Т

			and the contract of the second s	SAMDI	FS	- WELLER AND AN INCOME	Rec	antonun ar 14 Martin 19 - 19 - 19		ASSAYS	MP-2. HIPTOPHER STATE
FOOTAG	E (metres)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)
From (m)	i u (m)	alteration although it is still present, commonly cutting the core at about 45°									
		to core axis Interval is weakly mineralized with 0.25 % disseminated]				
		chalconvrite						l			
		138.95 - 141.95 Meso-svenite as described above. Fine-grained biotite	A 205261	138.05	141 05	3.00	100	1194	35	1.0	
		Content increases to about 20 - 25 % in places. K-feldspar alteration more	A 205301	130.93		0.00					
<u> </u>	<u> </u>	subdued than above Patchy strong disseminated chalcopyrite is prominent	┣ ───────┤			└───┤					
	<u> </u>	in the dark grey biotite section at the beginning of the interval but decreases									
		as the rock becomes more nink k-feldspar rich and mafic poor. Average				1		<u> </u>			
		composition about 0.75 % chalcopyrite. possible trace bornite.	A 205362	141.05	143.05	2 00	100	1004	60	20	
	ļ	141.95 - 143.95 Meso-svenite as above to begin with but after the first 50	A 205362	141.95	143.95	2.00	100	1304	02	2.0	
	<u> </u>	cm, the grain size becomes coarser to 3 - 5 mm and more potassically	 			┞────┤					· · · ·
		altered. Disseminated chalcopyrite is strongly [developed] in the initial 50									
		cm in spots but almost dies out through the last metre of this interval.								<u>_</u>	
		143.95 - 144.23 Meso-syenite as described immediately above. Medium	A 205363	143.95	146.95	3.00	100	732	15	0.4	
	ļ	grained, but locally coarse to 1 cm. Interval includes aggregates and				┞		├ ───┤			
		streaks of biotite, some of which is 5 mm in diameter. Somewhat vague				┞───┤		├ ───`			
	+	chlorite + sericite patches; these are also noted in the last metre of the									
		above interval. Traces of chalcopyrite as tiny blebs.									
		1									
					۱ <u> </u>	├ ──-		├ ───		<u> </u>	
		4			L			<u>↓</u>			·
		_Note:				<u> </u>					
	+	The interval from approximately 142.60 to 144.23 is one of nervasive and									
		overwhelming potassic alteration. Gradational above through many sample									
		-intervals and gradational over about 5 metres from 144.23 to ~ 156.00. At		·	ļ	┨────┧	l			<u> </u>	
L		144 23 is a contact between intensely potassically altered, medium to coarse			├			<u> </u>			
		grained mesosyenite and a finer grained potassic altered + epidote sveno-			<u>├</u> ──	<u> </u>		t			
	+	monomite (2) A fracture contact in the core at this point is at $7n^{\circ}$ to the									
		- moneonice (). A macture contact in the core at this point is at 70 to the						L			<u> </u>
		- Lore ans, in reality who is a gradational boundary to a phase of potassic		L		<u> </u>	ļ	<u> </u>	·		
			4			+			<u> </u>		
144.22	152.05	MONZONITE - with a gradational contact with the potassic alteration zone /	<u>۱</u>				<u> </u>	+			1
144.23	132.93			ł		1					
		144 73 - 146 05 Sveno-monzonite transitional boundary of potassic								•	
		- lteration zone above to monzonite below Rights to 20 % is interstitial to			ļ	<u> </u>	L			<u> </u>	
		The feldenar. No sulphides noted	L					<u> </u>			
		146 05 - 140 05 Sveno-monzonite grading into monzonite as potassic	A 205364	146.95	149 95	3.00	100	1157	19	0.7	/
		alteration dies out after first metre. Monzonite is medium grained with 10 -	A 200004		140.00						
		30 % medium to coarse grained highlite + chlorite + highlite after matic									
		aggregates (pyroyene?) These matics form a weakly developed fabric at 30				<u> </u>		<u> </u>			
		$=$ 1 aggregates (provence). These manes form a weakly developed fable at 50 \pm to 45° to core axis. Possibly about 0.5 to 1.0.% quartz in rock. Continuing		<u> </u>							
L		Twosk patches of pale pink k-feldspar and minor enidote. Mineralized with		<u> </u>	+	+	<u> </u>	+		<u> </u>	
					 		<u> </u>	+			1
	·				 		<u> </u>				
		-1			1	1	1	1	1		1

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 10 of 11

FOOTA	GE (metres)			SAMP	LES	in the second second second	Rec.		alana ya 2017 Maya (Analasi (Analas	ASSAYS	official stars in the star of the star
From (m)	To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)
			Î	,	· · · ·						
		149.95 - 152.95 Monzonite. light grey medium- to medium-coarse	A 205365	149.95	152.95	3.00	100	1074	30	1.1	
<u> </u>		grained k-feldspar rich rock carrying 20 to 30 % matrics, mostly blotite, in 2 -									
ļ		6 mm aggregates with chlorite. Weakly to moderately well mineralized with									
		disseminated blebs of chalcopyrite to 1 % and bornite 0.25 - 0.5 %. Two									
		short coarse-grained sections carry blebs of chalcopyrite and bornite to 2	· · · · ·								
		mm and about 1 - 2 % combined. Core is moderately magnetic. Cannot								-	
	1	see any quartz. Some of the feldspar, maybe 20 %, has a slight pinkish									
		colour, maybe indicating some degree of potassic alteration. The effect is									
		_increasing with depth through this interval.									
152 95	170.48	MESO-SYENITE - with minor variation to sveno-monzonite	1								
102.00		152 95 - 155 95 Sveno-monzonite vaning to meso-svenite. Interval is									
		gradational contact / boundary of notacsic alteration which is weak above	A 205366	152.95	155.95	3.00	100	859	19	0.7	
		and strong below. Minor 2 - 3 % enidote + associated with pink k-feldspar									
		and so ong below. Minor, $2 = 5\%$ epidole <u>T</u> associated with pink k-relaspar.									
		weakly finite alized with 0.25 = 0.5 % disseminated blebs of chalcopyrite,									
		some of [chis supplice] may be pyrice. Supplice is more commonly						<u> </u>			
	-	associated with manc aggregates, and in some places small epidote spots.	· · · ·				:				
		Traces of interstudi carbonate. Continuing magnetic.						1			
		155.95 - 156.95 Meso-syenite with pinkish-grey colour. Interval is weakly	A 205367	155.95	158.95	3.00	100	865	22	0.6	
		mineralized with minor blebs of chalcopyrite. A blottle-rich patch at the top									
L		for the interval contains a rew small blebs or chaicopyrite.					100				
		158.95 - 161.95 Meso-syenite as above. Pronounced pink K-feldspar	A 205368	158.95	161.95	3.00	100	1110	16	0.8	
		potassic alteration. Biotite locally reaches 40 %, more commonly 15 - 20 %.							·		
		Weakly mineralized with occasional small blebs of chalcopyrite, maybe									
		-0.25%. Continuing magnetic. Poorly defined streaks of biotite (fine grained)									
		are oriented at 30° to core axis.									
		161.95 - 164.67 Meso-syenite with variable amounts of biotite - chlorite -	A 205369	161.95	164.67	2.72	100	993	34	0.7	·
		magnetite approaching 40 %. Patchy to dominant pink k-feldspar / potassic	L								
		alteration toward bottom of interval. Irregular carbonate veining parallels	I								
I		-the core axis for 30 to 40 cm, varies in thickness from 1 mm to 8 mm. No	ļ				<u> </u>				
· · · ·		sulphide mineralization associated with this veining. Epidote is associated									
		with patches of intense k-feldspar alteration. Low angle carbonate - epidote					•••••				
		filled fractures are oriented at 10° to core axis.									
		164.67 - 167.95 Meso-syenite, beginning of an interval of several samples									
		of very pink, intensely potassic altered core. Mafics, mostly biotite, comprise	A 205370	164.67	167.95	3.28	100	799	24	0.7	
		+5 - 15 % of the core and usually are found as small aggregates. Rock verges									
		on being leucocratic, in contrast to above, where it verged on being									
		melanocratic. Low angle (10° to core axis) fractures are filled with 1 mm									
		thick coatings of carbonate and minor epidote + chlorite. These fractures						·			
		are common in first 1.5 metres. Interval is weakly mineralized with 0.25 to									
		=0.5 % blebs of chalconvrite and minor pyrite									ļ
	_	167.95 - 170.11 Meso-sveniter intervals of leuco-svenite Strong nink k-	A 205271	167.05	470.00	4.60	100	2420			
		feldenar notacsic alteration Mafirs typically 5 - 15 % with highly dominant	A 2053/1	26.101	172.03	4.08	100	3120	60	1.5	
		Tradepart pocassic accretion. Trades typically 5 - 15 70 With Diouce dominant.		1	<u> </u>	I	1	I	l	·	.l.

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 11 of 11

FOOTAG	E (metres)			SAMP	LES	al an an ann an Anna an Anna	Rec.		and the second second	ASSAYS	
From (m)	<u>To (m)</u>		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)
		Some grey patches have up to 20 % fine bloute and magnetice, all very line		·							
		grained. Minor chalcopyrite and pyrite mineralization. A 10 to core axis									
		170 11 - 170 48 Sulphide-rich meso-svenite A short interval of pink			<u> </u>						
		svenite with up to 50 % cubic pyrite and 2 - 5 % chalcopyrite as									
		disseminations, larger blebs and fracture coatings. Chalcopyrite reaches									
		10 % over a few cm. Weak to non-magnetic.									
		•									
									· <u> </u>		
170.48	172.63	SYENITE UNDIVIDED - a short interval of coarse-grained meso-syenite and									_
		melano-syenite.									
		170.48 - 171.78 Meso-syenite - coarse-grained with some phenocrysts to	··· <u>·</u> ··								
		30 cm judging by reflections on cleavage planes. Variable potassic alteration									
		of feldspars has created a 2-feldspar rock. One is pink with perthitic									
		structure, possibly alteration of plagloclase, and the other a dark grey k-									
	· · · · · ·	Telaspar, otten very coarse grained and sometimes with a plink reaction him.									
		according with the biotite and $2 - 3$ % medium-grained magnetite. $1 - 2$ %									
		associated epidote Trace of chalcopyrite.									
		171.78 - 172.63 Melano-svenite. A more mafic-rich, coarse grained			· ··					-	
		version of the preceeding interval. Coarse biotite and lesser chlorite to 50 %									
		with locally up to 40 % magnetite. Interval is strongly mineralized with 1 - 2									
		%, 1 - 3 mm blebs of bornite, interstitial to biotite and intimately associated									
	ļ	wtih the magnetite.									
		- 									
172.63	175.15	BIOTITE PYROXENITE - with minor variations to melano-syenite. K-feldspar									
		is medium-grained and interstitial to green, euhedral, medium-grained 2 - 3									
		Imm long pyroxenes and coarser blotite books to 6 mm. Composed or 60 -									
		75 % pyroxene, 5 - 15 % relaspar, 15 - 25 % blotte. Pyroxene appears to									
		be childred attered. Top contact with melano-systeme is very epidote from (20 \sim 30 %) and pink k feldspars rich. After 15 - 25 cm contact zone, feldspars					<u> </u>				
		172.63 - 175.15 Biotite pyroxenite as above. No sulphide mineralization	A 205372	172.63	175.25	2.62	100	57	3	< .3	
		seen. Minor k-feldspar veining at 80° to core axis.									
				<u> </u>	<u> </u>						
		<u> </u>									
175.15	175.25	MESO-SYENITE (175.15 - 175.25) - as described higher in section.									
		Contact with pyroxenite is gradational over ~ 1 cm, not a fault contact. No	ļ	·							L
		sulphides. Not enough core to say if this is a small syenite body within the			<u> </u>			<u> </u>			
		pyroxenite or a larger unit.							<u> </u>		
· · · · · · · · · · · · · · · · · · ·											
475.05		-]	·		ļļ					
1/5.25	<u> </u>	END OF HOLE									
J	·					<u> </u>		+	+	+	

Lo DD	rraine Pro PH: 2002-6	ject Diamond 5	Drill Log	Mincord Explora fo <mark>r Eastf</mark> iel	ation Con d Resourc	sultants ces Ltd.	Ltd.						Page	: 1 of
Droporty: I	orraino		Total Length: 149 35		Footage (m)	DIP TESTS Dip Meas	sured Dip	entendos, et apportante	Start Da	te: July 2	9, 2002	and a second		- de des la bonnella de deserva
Crid Cord:	orranie		Core Size: BOTW	[none	•	•		Complet	tion: July	31, 2002			
Elevation:	1610 m		Azimuth: 45° (mag declin, 28°)						Logged	By: Jay W	I. Page			
Elevation:			Inclination: -45°						Date log	ged: Aug	ust 07 - 1	0, 2002		
NOTES: Lo	wer Main Are	a, "Scottish" PAD:	UTM (hand held instrument) 3473	53 E; 6200498 N (NAD 83	3). Analytical	report # A20	02926.			-				
FOOTAG	E (metres)	n en en en son en		angan ang sang ang sang sang sang sang s	Sample #	SAMP From (m)	LES To (m)	Metres	Rec. %	Cu (ppm)	Au (ppb)	ASSAYS Ag (ppm)	Pt (ppb)	Pd (ppb)
FIONI (III)	10 (m)									-				
0.00	9.14	CASING (30 Feet) cored bits of bou). 1.25 metres recovered but not si Iders, etc.	ampled. Mostly pebbles,										
9.14	15.00	A MIX OF PYROX 9.14 - 14.40 Py to 30%, mostly 1 (to 30%) in addit very broken, only	ENITE AND SYENITE. roxenite with minor syenite. Pyrox - 3 mm in size. The first 1.5 metre tion to being chlorite altered (pyrox y a limited amount of core.	xenite is biotite-rich, up es are very epidote-rich ene). Most of interval is	A 205373	9.14	15.00	5.86	30	78	0.01	10	0.01	0.3
15.00	22.72	Ave been meso-	syenite with minor pyroxenite pater syenite but very broken up. Epido DED - meso-syenite with numerour	les. Syenite appears to te alteration intense. s variations to melano-										
		syenite. Patchy a with epidote alter broken and groun recognizable. K- core at high angl	and highly variable pink k-feldspar (ration create a chaotic looking core nd. In the last metre, core is more feldspar potassic alteration often fc les, typically 70 - 80° to core axis.	potassic alteration along . Initial 2 metres are competent and features irms streaks cutting the No sulphides seen.				· · · · · · · · · · · · · · · · · · ·						
		15.00 - 18.00	No specific comment in log.]									<u> </u>		
		- 18.00 - 21.00 - several spots. Co chlorite alteration	Veso-syenite but with mafic conten ontinuing patchy intense k-feldspar n. Magnetic. No sulphides seen.	t approaching 40% in potassic, epidote and	A 205374 A 205375	15.00 18.00	18.00 21.00	3.00 3.00	60 100	199 92	0.02	4	0.00	< .3 < .3
		21.00 - 22.72 minor pyroxenite and where feldsp azurite coatings fraction biotite is	Melano-syenite with short intervals . The pyroxenite is intensely alter bathic, the feldspar is very white co on one fracture, in the broken rubb the most common mafic, at 15 to ing patchy kefeldspar potassic and	of meso-syenite and ed to chlorite-epidote loured. Malachite - ile. In the syenitic 30%, followed by epidote alteration. No	A 205376	21.00	22.72	1.72	80	63	0.01	6	0.01	< .3
		sulphides seen.												
22.72	29.65	BIOTITE PYROX	ENITE with short intervals of syenite	e (both meso- and s-cutting pink k-feldspar	A 205377	22.72	27.00	4.28	3 98	182	0.02	2 11	0.0	1 < .3

I

-

veinlets / alteration envelopes ar 45 and 60° to core axis. Pyroxenite is epidote-rich, ~ 20 - 30%. Biotite is 15 to 20%, generally as aggregates, individual flakes are 2 - 4 mm in diameter. A weak fabric in the pyroxenite is

of 9

T

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

F

Í

Page: 2 of 9

FOOT	AGE (metres)		анан ултан алу жыланда байлаган.	SAMP	LES		Rec.		Booker of Constants of the	ASSAYS		
From (m)	To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		defined by poor alignment of biotite and chlorite altered pyroxenite. No										
		chalconvrite seen. Strongly magnetic Fractures (0 to 45° to core axix) are										
		limonitic Minor disceminated bornite noted										
		77 00 - 79 65 A mixture of biotite pyroxenite and svenite. Biotite	A 205378	27.00	29.65	2.65	100	376	0.04	21	0.02	0.3
		pyrovenite as described above. Melano-svenite has a gneissic texture										
		developed at 80 - 95° to core avia over 15 cm. Interval of meso-svenite										
		- developed at ou - 65 to core axis over 15 cm. Interval of meso systeme										
		shows intense pink cheldspar alterions / replacements, also epidote net.	·									
		of pyrovenite is pervasive through this interval										
29.65	46.50	A MIXTURE OF SYENITE AND PYROXENITE. There are numerous variations								<u> . </u>		
		between melano-syenite and meso-syenite and between pyroxenite and										
		melano-syenite.										
		- 29.65 - 33.50 A mixture of biotite pyroxenite and potassic altered melano-	A 205379	29.65	33.50	3.85	100	415	0.04	35	0.04	0.3
		syenite. In the initial 60 cm of syenite, matrices are intensely altered to										
		epidote and chlorite. Clots and irregular bands of coarse-grained magnetite								· · ·		
		which suggest some fracture control at 30 - 60° to core axis. Magnetite is							1			<u></u>
		-always associated with chlorite and epidote through here. The blotte				ļ						
		pyroxenite shows pervasive chlorite alteration or pyroxenes. No sulphides		·				ļ				
		seen in the pyroxenite. The last 1.5 metres, roughly from 52.00 is an		·····								
		Intensely altered syenite in which mands have been reduced to spots of the							· · · ·			
		_grained blottle and the grain boundaries of most of the k-reliuspal are	· · · · ·									
		\Box carbonate \pm clay \pm sentice altered. Looks like interise potassic alteration.										
		Generally cross-cuts at about 45 - 90 to core axis. Weakly mineralized with									ļ	
		disseminated that opynice and cubic pyrite. At 52.02 a 2 cm quarte ven cuts										
						-						
		-33 50 - 37 50 Dyroxenite and melano-svenite. The initial 1 5 metres of this	L								· ·	
		interval is heavily broken up and sheared and should be considered a fault	A 205380	33.50	37.50	4 00	84	143	0.01	20	0.02	<.3
		zone. Polished chlorite and hematite coatings are on fracture surfaces.	A 200000		01.00	4.00						·
		many of which are convoluted. The rock here appears to have been mafic-										
		rich (pyroxenite?) but sheared chlorite is all that is left. The entire interval is								ļ		
		sheared, but the last 1.4 m has some recognizable core, being melano-										
		syenite. Mafics comprise about 65% of this interval, mostly biotite, chlorite				-						
		and magnetite.										
		37.50 - 40.00 Meso-syenite with variations to melano-syenite and minor	A 205381	37.50	40.00	2.50	98	3 307	0.03	15	0.02	2 0.3
		pyroxenite. Cross-cutting pink k-feldspar and minor epidote give a weak										
		-fabric to the rock oriented at roughly 90° to core axis but varying to 45° to						<u> </u>				
		core axis. No sulphides seen. Biotite varies to 35%, magnetite to 5%.	<u> </u>			1		1	<u> </u>			
		Epidote locally reaches 25% in the pyroxenite.								ļ		
		40.00 - 43.41 Meso-syenite with gradations into melano-syenite and	A 205382	40.00	43.4	3.41	100	739	0.07	54	0.0	0.6
		patches of biotite pyroxenite. Entire interval has been intensely k-feldspar							+		- <u> </u>	
		land epidote altered. Mafics consist of biotite, with chlorite and epidote after			L		·	1	+		1	1

f

F

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

--]

Page: 3 of 9

1

FOOTAG	GE (metres)			SAMP	LES		Rec.			ASSAYS		
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		pyroxepe Magnetite appears to have been stable. Traces of pyrite noted.		·		ļ					··	
		Melanocratic sections are very epidote rich.										
		43.41 - 46.50 Melano-svenite with mafic content generally in the 65 to	A 205383	43.41	46.50	3.09	100	10650	1.07	1009	1.01	6.2
		80% range but locally varying to 95% (and therefore biotite pyroxenite.)			-							
		Most k-feldspar in the melano-svenite is coarse grained, up to 1 cm and pink										
		coloured K-feldsnar and biotite show rough alignment at 80° to core axis.	· · · · · · · · · · · · · · · · · · ·									
		A section of meso-svenite between 45.24 and 45.72 is moderately well				-						
		mineralized with 1% chalcopyrite and 0.25 to 0.50% bornite as fine						· · · · · · · · · · · · · · · · · · ·				
		disseminations. This rapidly changes back into melano-syenite with a slight										
		tendency for k-feldspars to be very coarse / pegmatitic to 2 cm. The last 39		-								
		cm varies between meso- and melano-syenite several times and is very							·	<u>.</u>		
		chlorite rich.										
		_										
46.50	71.73	MESO-SYENITE WITH VARIATIONS TO MELANO-SYENITE. Overall colour										
		tone is light to medium because of the intense k-feldspar potassic and			ļ							
		chlorite-epidote alteration. Magnetite is ubiquitous, being present as fine										
	_	disseminations, large aggregates, networks and breccia-like matrix fillings /						1				
		replacements.										
		46.50 - 51.68 Syenite undivided. As above, mainly meso-syenite, with	A 205384	46.50	51.68	5.18	100	3128	0.31	288	0.29	1.9
		many gradations into melano-syenite, all with a strong k-feldspar potassic								<u> </u>		
		_overprint. Mafics largely altered to chlorite and epidote. Epidote-rich to	· · · · · · · · · · · · · · · · · · ·									
		20% in places. Fine biotite is common. Magnetite-rich spots, where the	•			1	1					
	-	magnetite reaches 30 - 40%, do not appear to have any sulphide										
		mineralization, but are intimately associated with chlorite and epidote.										
		Where fracture control is visible as a control on alteration, it is commonly at			·						<u> </u>	
		about 20 to 30° to core axis. Darker sections of finer-grained mafic-rich	· ·									
		$-$ (now largely chlorite \pm biotite \pm magnetite) syenite are strongly mineralized				1						
		with up to 2% disseminated blebs of bornite. However, this rock type										
		comprises less than 10% of the interval.		=			400	7050	0.00	4449	1 1 7	1
		51.68 - 54.00 Meso-syenite with a strong k-feldspar potassic overprint	A 205385	51.68	54.00	2.32	100	/958	0.80		1.12	1.
							+					
		30 - 50% fine-grained chlorite, maybe 15 - 20% very fine-grained block,			<u> </u>							
		and is moderately well mineralized with fine disseminated borflice to about										
		1%. PIRK K-reluspar contains patcing weak bornice matching the pink k-										
		Infacture controlled chalcopyrite. Dark grey patches within the prink ke	I									
		$\frac{1}{1} \frac{1}{1} \frac{1}$						-				
		bornite (2 - 3%) and chalcopyrite (1 - 2%). I to 2 mm calcite verniets at 45										
		to core axis have associated 1 cm brownish-pink k-leidspar alteration										
		envelopes and carry chalcopyrite blebs. Likewise, similar fractures contain a										
		Imm quartz veiniets but they are cut by later chaicopyrite-bearing 45 to core					+					
		axis fractures. Traces of cubic pyrite noted in K-relosper altered parts.	A 205386	54.00	57.3	3.37	100	4050	0.4	1 487	0.49	3.
		54.00 - 57.37 Meso-syenite with potassic overprint as described above.										
		Continuing moderately well mineralized with disseminated chalcopyrite and							1			
		pornite. Darker, grey patches with fine-grained bould, magnetite and	1		1			1	1	1	1	1

ר –

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 4 of 9

FOOTAG	E (metres)			SAMPL	_ES		Rec.		and and a second se	ASSAYS	han dipun garana ana ang	
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
						-						
		chlorite are well mineralized with 1 - 2% disseminated bornite. Weakly to										
		moderately magnetic.	A 205387	57 37	59 76	2 39	100	19284	1 93	2969	2 97	12 7
		57.37 - 59.76 Melano-syenite with up to 90% dark matics. Continuing	A 200007	57.57		2.00		13204	1.55			,2.,
	+	strong potassic (pink k-feldspar) overprint. Very dark character of core							·			
		through this interval due to fine-grained biotite to 25%, fine-grained chlorite										
		to 50%, and magnetite to 3 - 5%. Very strongly mineralized with 1 - 4%										
		disseminated bornite and lesser chalcopyrite. Average 1 - 2% bornite.										
		Fracture controlled chalcopyrite in reddish / brown k-feldspar alteration										
		envelopes at 40 - 50° to core axis.										
		59.76 - 63.00 Meso-syenite with variations to melano-syenite. Initial 30	A 205388	59.76	63.00	3.24	100	2126	0.21	242	0.24	1.6
	1	cm are gneissic melano-syenite. Gneissic texture parallel to core axis and							_			
		defined by elongate / streaky patches of chlorite-biotite, minor blebs of								_		
		bornite. Strongly magnetic. Remainder of interval is strongly k-feldspar and										
		epidote altered. Patchy strong disseminated chalcopyrite and bornite										
		mineralization but overall becoming weaker than above. Most of interval is			·							
	<u></u>	split by low angle sinuous fractures with chlorite-hematite-carbonate							<u> </u>			
		coatings. Grey patches are very magnetite-rich.										
	1	63.00 - 66.00 Meso-syenite with variations to melano-syenite as described	A 205389	63.00	66.00	3.00	100	877	0.09	142	0.14	1
		above. Many sections in this interval have strong pink k-feldspar and										
		epidote overprints. Several dark grey magnetite-biotite and chlorite rich										
	·	-patches are strongly mineralized with disseminated chalcopyrite, but most of										
		interval is weakly mineralized.						·				
		66.00 - 69.00 Meso-syenite with small 2 - 3 mm long chlorite altered mafic	A 205390	66.00	69.00	3.00	100	137	0.01	30	0.03	< .3
		patches to 30%. Continuing k-feldspar epidote overprint. Where associated										
		with an obvious fracture, it is usually oriented at 80 - 90° to core axis and					·····					
		carries cubic pyrite. Weakly mineralized, with disseminated minor										
		chalcopyrite, moderately well mineralized in a few small dark grey patches.										<u> </u>
		69.00 - 71.73 Meso-svenite for first 1.2 metres as described above, then	A 205391	00.69	71 73	2 73	100	596	0.06	53	0.05	0.6
		showing rapid variations between meso- and melano-svenite, along with	<u>A 200001</u>	05.00		2.70			0.00			0.0
		small patches of pyroxenite. Interval is biotite-rich, often to 40%.						t -				
		Moderately magnetic and includes some large magnetite patches to 3 cm.										
		Epidote and k-feldspar alteration common throughout. Weakly mineralized										
		with minor chalcopyrite and bornite (trace), no particular association with								·	┨─────	
		mafic-rich patches									·	
		-					<u> </u>					
							•					
						L		<u> </u>				
/1.73	83.57	BIOTITE PYROXENITE as historically used on property, although much of it					<u> </u>		<u> </u>	<u> </u>		<u> </u>
		would be considered melano-syenite as the feldspar content varies from 5 to										
		20%. Pervasive chlorite alteration of largely euhedral 1 - 3 mm pyroxene.				<u> </u>		1	<u> </u>			
		Biotite 10% as large aggregates to 5 - 10 mm. Feldspar is interstitial to										
		pyroxene. Bornite as interstitial blebs to pyroxene; moderately well										ļ
				L					<u> </u>		<u> </u>	l

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 5 of 9

I

Т

I

1

FOOTAG	E (metres)		ali de la constanta de la constante de la const	SAMPL	.ES	an a	Rec.		and the state of the	ASSAYS		
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
<u> </u>		71.73 - 75.00 Biotite pyroxenite as described above. Local variations to	A 205392	71.73	75.00	3.27	100	3645	0.36	259	0.26	2.3
		melano-syenite as feldspar content varies to 20%. Initial part of interval is										
		strongly mineralized with interstitial blebs of chalcopyrite and bornite to 5%										
		combined. After initial 30 cm, mineralization decreases to weakly mineralized										
		with occasional patches of 1 - 2% bornite. Much of run is broken but with										
		sinuous fracture faces carrying greasy coatings of chlorite - epidote -										
		carbonate + hematite. Slickensides on 10° to core axis fractures rake at 30°.										
		75.00 - 78.00 Biotite pyroxenite as described above with numerous	A 205393	75.00	78 00	3 00	100	4892	0.49	510	0.51	3
		variations to melano-syenite (feldspar to 20%). Moderately to strongly	A 200000									
		mineralized with blebs of bornite, and in strongly mineralized patches also										
		chalcopyrite blebs. Sulphides appear to be associated with biotite-rich										
		patches. Low angle (10° to core axis) have polished chlorite coatings and										
		slickensides at 50°										
		78.00 - 81.00 Biotite pyroxenite as described above, less variation to	A 205394	78.00	81.00	3.00	100	2178	0.22	122	0.12	1.1
· · · · · · · ·		melano-svenite. Pervasive chlorite alteration, also apple green sericite										
		alteration of feldspar making rock look more mafic than it was. Biotite 15 -							_			
		20%. Continuing disseminated blebs of bornite. Chalcopyrite found as										
	1	disseminated blebs, often associated with bornite blebs and also showing										
		some tendency for fracture control, typically hairline fractures at $\sim 60^{\circ}$ to					·					
		core axis. Biotite usually as aggregates to 8 mm. Bornite averages 1 - 2%,										
		chalcopyrite about 0.5%.								100		1.0
		81.00 - 83.57 Chlorite altered biotite pyroxenite and melano-syenite.	A 205395	81.00	83.57	2.57	100	2642	0.26	162	0.16	1.0
		Strongly magnetic. Very similar to intervals above. Chlorite-carbonate										
		coated $20 - 30^{\circ}$ to core axis fractures with slickensides at 30 to 45°.										
		Irregular carbonate filled fractures. Continuing strongly mineralized 1 - 2%										
		disseminated blebs of bornite and 0.5 to 1.0% chalcopyrite.										
	05.00	MECO CVENTE Madium amined nink quanta with 10 - 2006 modium.			-							
83.57	85.69	MESO-STENTIE. Medium-grained pink syenite with 10 - 20% medium-								<u> </u>		
		_grained bloute and 5 - 15% epidote.	A 205396	83.57	85.69	2.12	100	1704	0,17	35	0.04	0.9
		33.57 - 83.09 Millior to trace amounts of small blebs of chalcopyrite and										
		becomes matic (chlorite and histite) rich						ļ				
			. <u> </u>									
	· · · · · · · · · · · · · · · · · · ·			· · · ·								
85.69	86.55	CHLORITE-RICH ROCK, altered pyroxenite and / or melano-syenite. Intense										
		and pervasive chlorite + apple-green sericite alteration has destroyed most										<u> </u>
		-textures in rock. Biotite 5 - 15 % is commonly medium to coarse-grained.										
		85.69 - 86.55 Strongly mineralized with disseminated blebs of bornite and	A 205397	85.69	86.55	0.86	100	2429	0.24	120	0.12	1.6
		chalcopyrite to 3 - 4% combined.	A 200001	00.00		0.00	100					
	105.04							ļ				
86.55	135.04	MESO-SYENITE with minor variations to / intervals of melano-syenite and					·			<u> </u>		
		pyroxenite. Rock has been extensively altered, by a variety of processes.										
		-Most of this unit is bleached / raded looking, and the intensity of this										ļ
<u> </u>	· - · ·	Theaching varies according to proximity to 45 to 60° to core axis fractures, at	1			1	1			1	1	1

ŧ

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

~1

ſ

Page: 6 of 9

FOOTAGE (metres)		and the second	SAMPL	.ES	No.''	Rec.			ASSAYS	an a	
From (m) To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
	least in several locations. Early alteration types include chlorite and sericite,										
	later alteration includes cross-cutting fracture controlled k-feldspar potassic		·				 				
	and an amorphous, although probably fracture influenced, alteration that is						f		i		
	responsible for the bleaching, possibly albitization. Alteration is not argillic								i		
	and there has been no clay produced or carbonate. Fractures carrying				-						
	quartz veins to 1 cm at 30 to 45° to core axis commonly have pink k-feldspar						·				
	and pyrite envelopes.										
	86.55 - 89.28 Meso-syenite with extensive calcite veining, much of which	A 205398	86.55	89.28	2.73	100	164	0.02	94	0.09	U. <u>4</u>
	is irregular, but low angle (0 to 20° to core axis) [veins] appear most						ł				
	frequently. Interval begins with 15 cm thick calcite vein which cuts core at										
	30° to core axis. The core has been subjected to intense chlorite and										
	sericite alteration. Sulphides limited to fracture controlled pyrite.										
	89.28 - 92.00 Meso-svenite as described above, but with strong	4 005000		02.00	0.70	400	4000	0.47	464	0.46	
	overprinting chlorite-sericite-potassic + albitic alteration. Numerous calcite	A 205399	89.28	92.00	2.12	100	1693	0.17	401	0.40	2.0
	veinlets also $10 - 20^{\circ}$ to core axis 1 cm white quartz veins. Some very tiny						ł				
	veinlets also 10 - 20 to core axis. I clin white quarter veins. Some very any										
	any alega areas at high angles traisally near 00° to core avia. They					_					
	envelopes crosscut core at high angles, typically hear 90 to core axis. They,										
	and associated quartz verniets, often carry cubic pyrite. Interval is overall										
	weakly mineralized but there are patches of 1 - 2% disseminated						ł				
	_chalcopyrite and bornite.	A 205400	92.00	95.00	3.00	100	2440	0.24	425	0.43	2.5
	92.00 - 95.00 Meso-syenite but strongly altered as described above.										
	-Patchy strong disseminated chalcopyrite and bornite mineralization, average										
	1 - 2% combined, much higher than above interval. K-leiuspar alteration							ļ			
	envelopes along 40 - 50° to core axis fractures carry pyrite and minor										
		A 201101	95.00	98.00	3.00	100	5065	0.51	333	0.33	5
·	95.00 - 98.00 Meso-syenite as described above. Continuing strong	A 201101	33.00		3.00	100		0.51		0.00	
	alteration overprint, pervasive sericite alteration. Disseminated and fracture										
	controlled chalcopyrite and bornite mineralization. Interval cut by										
	numerous, multiple quartz and carbonate veinlets to 8 mm, most at low										· .
	angles, typically 10° to core axis. Some are heavily mineralized with large										
	blebs of chalcopyrite and minor bornite. The syenite is weakly mineralized			<u> </u>							
}	overall, although there are patches of strong disseminated bornite.								<u>+</u>		
	98.00 - 101.00 Meso-syenite as described above to 99.00 metres. Rock is	A 201102	98.00	101.00	3.00	98	1733	0.17	970	0.97	4.8
	highly altered and cut by numerous quartz-calcite veinlets. At 99.00 is the										
	beginning of a fault with the rock very broken and sheared. This pattern of										
	fault broken, very chlorite-rich rock interspersed by more competent										
	$_{-}$ potassic and sericite altered rock repeats itself for the next roughly 30									<u> </u>	
	 metres. Mineralization is largely fracture controlled pyrite in k-feldspar 			<u> </u>					<u> </u>	<u> </u>	
	potassic altered zones. Fracture zones have extensive deposits of chlorite,	· •									
	carbonate, clay, and mixed hematite on fractures, that when measurable						<u> </u>	-			
	are oriented at 10 - 30° to core axis.										
	101.00 - 104.00 Meso-syenite with multiple crush zones as described	A 201103	101.00	104.00	3.00	98	453	0.05	165	0.17	0.7
	above. Cross-cutting quartz-carbonate veinlets are typically at 30 to 45° to										
	core axis. Strong chlorite-sericite alteration of entire interval.	— · · · ·					┨────		+		
Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 7 of 9

1

FOOTAG	E (metres)	LITHOLOGICAL DESCRIPTION	Somela #	SAMP		Motroc	Rec.	Cu (nom)	Au (noh)	ASSAYS	Pt (pph)	Pol(nnh)
From (m)	To (m)		Sample #	- riom (m)	10 (m)	wienes	70			, .a (hhu)	· · (ppo)	(1995)
		104 00 - 107 00 Meso-svenite with several broken, faulted intervals as	A 201104	104.00	107.00	3.00	98	1189	0.12	276	0.28	2.1
		described above Mafic-rich (chlorite) Broken ground may be more mafic										
		than meso-svenite, judging by the amount of chlorite. Unfractured sections										
		have a strong reddish-nink k-feldspar potassic overprint with many small										·
		quartz carbonate veinlets. Blebs of chalcopyrite appear to be associated										
		with $45 - 60^{\circ}$ to core axis fractures.										
		107 00 - 110.00 Meso-svenite. Strongly altered by potassic, chloritic and	A 201105	107.00	110.00	3.00	98	349	0.03	63	0.06	0.5
		sericitic alteration. Very broken and sheared. Quartz-carbonate veining										
		common at angles less than 30° to core axis. Minor disseminated pyrite.										
		110 nn - 113 nn Meso-svenite? Intensely altered and sheared as	A 201106	110.00	113.00	3.00	98	324	0.03	30	0.03	< .3
		described above. Minor disseminated pyrite as above. Continuing magnetic.										
		113.00 - 116.00 Melano-svenite, may have been more mafic than										
		intervals above judging by the amount of chlorite. Intense and pervasive	A 201107	113.00	116.00	3.00	90	1209	U.12	386	0.39	2.5
		chlorite alteration. Interval is very broken and sheared. Very pyritic over										
		short intervals. Minor chalcopyrite. Much of pyrite is cubic. Overall										
		carbonate rich. Hematite noticeable over some short intervals coating										
		fracture surfaces. Minor chalcopyrite.							0.07	400	0.12	0.7
		116.00 - 119.00 Chlorite-rich sheared and broken rock. Alteration and	A 201108	116.00	119.00	3.00	90	697	0.07	130	0.13	0.7
		fracturing have destroyed original rock textures. Originally may have been a						<u> </u>				
		melano-syenite but difficult to say with any certainty. One hard lump is well										
		mineralized with bornite as fine disseminations, and few blebs of										
		chalcopyrite noted in quartz-calcite vein material (broken). Some fracture										
		surfaces are covered with hematite coatings.	4 204 400	110.00	122.00	2.00	09	581	0.06	- 22	0.02	0.4
		119.00 - 122.00 Meso-syenite - a return to more competent core but	A 201109	119.00	122.00	3.00	90	301	0.00		0.02	0.4
		continuing massive alteration producing chlorite, sericite, k-feldspar and										
		hematite. Minor cubic pyrite noted.										
	-	122.00 - 125.00 Meso-syenite as described above. Strong chlorite and k-	A 201110	122.00	125.00	3.00	98	359	0.04	13	0.01	< .3
		feldspar alteration, numerous calcite veinlets. Minor cubic pyrite associated										
		with quartz-calcite veinlets at 60° to core axis and reddish k-feldspar				+						
	<u> </u>	alteration. Powdery blue coating on fracture surfaces may be due to						· ··				
		something used by drillers when drilling [??].										
·		125.00 - 128.00 Syenite. Larger, recognizable pieces are meso-syenite	A 201111	125.00	128.00	3.00	90	487	0.05	152	0.15	0.6
		but [there is a] large amount of chlorite in the extensive broken rubble										
	ļ. ———	through most of the interval. Carbonate veining still is common. Larger							· · ·		· · · ·	
		fragments are k-feldspar potassic altered.	A 201112	128.00	131.00	3.00	98	381	0.04	24	0.02	0.3
		128.00 - 131.00 Meso-syenite. The extensive broken zone through the										
		intervals above begins to die out by about 130.00 metres. Extensive chlorite										
		alteration through the upper part of this interval. The last metre or so of										
		this interval features fresher-looking rock although chlorite alteration is still										
		present. Fine biotite is probably secondary. There is also extensive						1	···			
				+								
		- seen.										
		131.00 - 133.22 Meso-syenice as described above. Low angle fractures (0	A 201113	131.00	133.22	2.22	100	<u>1 588</u>	0.06	11	0.01	0.3
	1	Ito 10° to core axis) through last metre of interval carry chlorite and hematite	1	1	1	E .	1	1	1	1	1	

31 Oct. 2002

.

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

 \mathbf{D}

Page: 8 of 9

FOOTAC	GE (metres)		nen och Albert anderen statt i der verste som etter	SAMPL	.ES	1	Rec.		an chuin ban marina ann	ASSAYS	and a second	1 10-3 ⁻¹
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		coatings. A 3 mm thick crypto[crystalline] guartz vein occupying one 0 - 10°						-				
		to core axis fracture has minor associated pyrite.	···· -									
		133.22 - 135.04 Meso-syenite as above but broken up with a powdery	A 201114	133.22	135.04	1.82	100	4194	0.42	245	0.25	4.7
	-{	chlorite-epidote-carbonate coating on most surfaces. Moderately well										
		mineralized in the latter part / last metre, with 1 - 2% disseminated and										
		fracture controlled chalcopyrite and traces of disseminated bornite. Average										
		about 0.50 to 1.0% chalcopyrite. Much of this interval and the several						····				
		above have such heavy amounts of chlorite and mafic alteration products						·				
		that these intervals may have been mostly melano-syenite.	<u> </u>			+					·····	
135.04	149.35	MESO-SYENITE - showing extensive K-reidspar potassic and chlorite-epidote										
		alteration, and disrupted by quartz-carbonate veining.										
		135.04 - 138.00 Meso-syenite as described above. Initial 85 cm, from	A 201115	135.04	138.00	2.96	100	666	0.07	75	0.08	0.8
		135.04 to 135.89, is a transition from chlorite-epidote dominant alteration										
		above to pink K-reidspar potassic alteration through most of this unit. Initial						·				
		strong epidote altered syenite with 30° to core axis fracture controlled 1 cm					····· ·					
		pink k-feldspar alteration envelopes. Noted disseminated blebs of										
		chalcopyrite. Also minor chalcopyrite as blebs on fractures. Pink k-feldspar			-							
		potassic altered syenite carries mainly just minor specks of pyrite. From										
		135.89 to 136.74 is a zone of intense quartz-carbonate veining with k-										
		feldspar altered breccia fragments. Multiple refracturing, with white quartz										
		veinlets cutting grey crypto[crystalline] quartz veins. Later white veins										
		appear to carry mostly pyrite. Possible ID on arsenopyrite (very white							······································			
		pyrite). Grey quartz has minor blebs of chalcopyrite and bornite. Balance of							_			
		Interval is strongly potassic and sericitically altered with abundant quartz +										
		carbonate veining, most in the 30 - 45 range. Minor pyrite noted. No	A 201116	138.00	141 00	3.00	100	442	0.04	19	0.02	04
		copper suppliqes seen in latter section.	<u>A201110</u>	150.00	141.00	3.00	100		0.04		0.02	<u>v.</u> -
	+	138.00 - 141.00 Meso-syenite as above. Strong patchy k-relaspar		· · · –								
		potassic and apple-green service alteration gives a very motuled										
		appearance. Cryptocrystalline quartz veins cut through interval in several										
	_	spots. Most are irregular but tend to be of intermediate angles, ~ 30 to 60°.										
		Hematite selvages, vein coatings and spots are common. Magnetite appears		┠─────┼		+						
		to have been altered to hematite. Disseminated pyrite common, minor blebs				1						
		of chalcopyrite noted.										
		141.00 - 144.08 Meso-syenite as described above. Patchy k-feldspar and	A 201117	141.00	144.08	3.08	100	722	0.07	20	0.02	0.9
·											· ··	
		lower angle (U - 45° to core axis). Blebs of chalcopyrite are common in the				<u> </u>						
<u> </u>		quartz veins along with a rew patches of disseminated chalcopyrite in the	L			+	· · · · · · · · · · · · · · · · · · ·		-			
		-syenite. Minor cubic pyrite common. Interval ends with 28 cm wide white				<u> </u>						
		and grey crypto[crystalline] quartz veins. The white quartz vein has cut the										
		grey quartz vein and parallels it. The late white vein includes some							L			
		carbonate. Grey vein has a white quartz selvage.	A 201119	144.00	1/6 50	2 42	100	260	0.02		0.03	23
		144.08 - 146.50 Meso-syenite as described above. Patchy K-feldspar and	A 201118	144.08	140,30	2.42	100	200	0.03		0.03	<u>, , , , , , , , , , , , , , , , , , , </u>
J		Jsericitic alteration extends to \sim 145.00 metres. Thin (1 - 3 mm) quartz veins		J		J	↓ <u>-</u>	J	J			

_

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 9 of 9

FOOTAG	F (metres)			SAMP	LES		Rec.			ASSAYS		
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		which commonly have hematite selvages are common to 144.60 and are oriented at 0 to 20° to core axis. Minor pyrite noted. After a 20 cm broken zone with chlorite-rich coatings on 20° to core axis fractures the core is much darker in colour and less altered. Continuing potassic alteration results in a dark reddish brown k-feldspar and fine-grained biotite. Patches of apple-green sericite alteration. Prominent magnetite clots. Minor pyrite, trace specks of chalcopyrite (?). 146.50 - 149.35 Meso-syenite as described above. Brown colour tone due to brownish-red k-feldspar. Magnetite forms small disseminated blebs throughout interval. Minor pyrite with traces of chalcopyrite, mostly controlled by small irregular quartz veins.	A 201119	146.50	149.35	2.85	100	97	0.01	6	0.01	
149.35		END OF HOLE										

--- .

-

ſ

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 1 of 7

					DIP TESTS			1					
Property:	Lorraine	152.40		Footage (m)	Dip Mea	sured Dip		Start Da	ite: Augu	st 01, 200	2		
Grid Cord	· · · · · · · · · · · · · · · · · · ·	Core Size: BQTW		149	66 ື	60 °		Comple	tion: Aug	ust 02, <u>20</u>	02		
Elevation:	1735 m	Azimuth: 45° (mag. declin. 28°)						Logged	By: Jay V	V. Page			
Section:		Inclination: -60°						Date log	ged: Aug	ust 10 - 1	1, 2002		
NOTES	ower Main Are	a (North Ridge): UTM (band held instrument) 347500 E: 6200785 N (N	AD 83)	. Analvtical r	eport # A20	2998.							
HOTES. L									-				<u> </u>
FOOTA	GE (metres)	LITHOLOGICAL DESCRIPTION			SAMP	LES		Rec.	_		ASSAYS	B 4 4 1	Dit (1)
From (m)	To (m)			Sample #	From (m)	To(m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	P <u>d (ppb)</u>
0.00	3.05	CASING (10 Feet)			<u></u>								
0.00	3.03												
3.05	3.48	No recovery.]				<u> </u>					<u> </u>
								+					<u> </u>
3.48	12.00	BIOTITE PYROXENITE with minor cross-cutting guartz veinlets and sve	nite										
		dykes. Biotite pyroxenite is medium-grained , biotite comprises 15 - 2	5% of								ļ		
		rock, generally as discrete flakes or small aggregates. Alignment of bio	otite						 ·	·			
		gives a foliation to section of the pyroxenite, generally around 80° to co	ore										
		axis. Many parts of this unit are rich in mustard-green epidote, up to	30%										
		in spots. Feldspar ranges from 5 to 10% of rock, and is interstitial to											
		pervasively chlorite-altered euhedral pyroxene (60 - 80% of rock). Cro	SS-					1				-	
		cutting syenitic veinlets to 4mm are generally steeper than 80° to core	axis,										
		but range down to 60° to core axis. Moderately to strongly magnetic.		A 201420	7 40	6.00	2 61	100	- 12				
		3.48 - 6.00 Biotite pyroxenite as described above. No sulphides seer). 	A 201120	5.48	9.00	2,52) 100	13		< 3		<u> </u>
		5.00 - 9.00 As described above. Minor patches where feldspar contents in a second state of the second st	nc h and										
		-Increases to 15 - 20%, inese are not okocrysts. Core is carbonate no	enitic								_		
		The function of the calculate stringers. Finite pyrice with a rew synthesis $\frac{1}{2}$ values for $60 \text{ to } 80^{\circ}$ to core axis									1		
		9 00 - 12 00 Biotite pyroxenite as described above Feldspar conten	t	A 201122	9.00	12.00	3.00	100	36	< 2	< 3		
		variable, generally about 5 - 10%, but in spots it varies to 20% over a	few										
		-cm. No sulphides seen.										<u> </u>	1
		4		· · · · · · · · · · · · · · · · · · ·							-		
													 -
12.00	23.19	MELANO-SYENITE - a slightly more feldspathic version of the biotite											1
<u> </u>		_ipyroxenite. Feldspar is primary, interstitial to pyroxene but in amount	S OF IU Vie									·	<u> </u>
		- 15% such that pyroxene crystals are only in point contact. Pyroxene	mns						<u> </u>				
		to 5 mm in diameter, with less than 50% as tiny random flakes. Biotit	e		ļ				 	<u> </u>			
		comprises 10 - 20% of the rock. Pervasive weak to moderate chlorite	-		·	+				 			
		alteration of pyroxene. Epidote is very common through a number of											
		intervals here, in amounts to 20%. In places at appears that the pyro	xene				ļ	<u> </u>		<u> </u>		 	
		has altered to epidote, and feldspar has a pale pink tone suggesting th	nat it										
		-may be the result of a potassic alteration event. Elsewhere the epidot	e			+	· ·		·	1			
<u>}</u>		appears interstitial to the pyroxene (chlorite altered) and is maybe											ļ
		plagioclase that has altered to epidote. Epidote is also very common a	as an		<u> </u>								
		_learthy coating on 45° to core axis fracture faces and associated with						+	·		-		

31 Oct. 2002

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

 \square

- 1

Page: 2 of 7

FOOTA	GE (metres)			SAMPL	.ES	·····	Rec			ASSAYS		
From (m)	T o (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		addregates of fine-grained muscovite (after biotite). Moderately magnetic.										
<u> </u>		12.00 - 15.00 Melano-svenite or biotite pyroxenite with 10 - 15% feldspar.										
· · · —		Intense chlorite - enidote alteration through this interval. No sulphides seen.	A 201123	12.00	15.00	3.00	100	209	4	< 3		<u> </u>
		Interval begins with 25 cm of coarse-grained svenitic dykes, contains minor	A 201123	12.00	10.00	5.00	100	203	_			<u> </u>
<u>├</u>	+	Interval begins with 25 cm of coarse granica sychiad dykes, contains minor $(1, -20)$ such a site sets of 4^{10} to sets over					_					<u> </u>
		-1(1 - 2%) quartz, cuts core ar 45 to core axis.									<u> </u>	
			A 201124	15.00	18.00	3.00	100	35	< 2	< .3		_
		content locally to about 20%,, some of which seems to follow a low angle										
		fracture (?). No sulphides seen.										<u> </u>
		18.00 - 21.00 Melano-syenite as described above. Epidote alteration more			04.00	2.00	400				<u> </u>	
	- <u> </u>	patchy rather than continuous. Between 19.5 and 20.3 several syenitic	A 201125	18.00	21.00	3.00	100	29	1	< .3		<u> </u>
		dykes to 8 cm thick cut through the core at intermediate angles \sim 45° to										
}		- core axis. In places, numerous thin carbonate veinlets cut the core at 45° to					-	· · · · · · · · · · · · · · · · · · ·				
		core axis, carrying minor cubic pyrite. Variable magnetism.										· · · ·
		21.00 - 23.19 Melano-svenite as described above Feldspar content										
J		increasing in a patchy but overall steady way. Endote alteration decreasing	A 201126	21.00	25.04	4.04	100	30	< 2	< .3		
										. <u> </u>		
	<u> </u>					<u> </u>						
										<u> </u>		
22.40	24.26	CVTRUTT LINDTUTDED a military of many and malana symplety which having		·		t l						
23.19	31.30	STENTIE UNDIVIDED - a mixture of meso- and metano-syenite which begins		·								<u>↓ ·</u>
I		with patches of meso-syenite within the melano-syenite and by 25.00 there										
		are only short intervals and patches of melano-syenite in the meso-syenite.		t }	,							
		23.19 - 25.04 Sample break changed to 23.19 from 25.04 after viewing										
		split core. [But actual sample not changed? Unclear.] Feldspar content		[[_			[Ĺ	1
		increases to about 70% with patches of chlorite - biotite - magnetite -		ļi			_			ļ	ļ	
		epidote, some of which have malachite stains.	4 001407		27.00	1.00	100					<u>+-</u>
		25.04 - 27.00 Meso-syenite with a few patches of melano-syenite.	<u>A 201127</u>	25.04	27.00	1.90	100	240	o	×.3		
 		Malachite noted in a few mafic (biotite - magnetite) rich patches. K-feldspar		<u>├</u>					·			<u> </u>
		-continuing interstitial to euhedral pyroxene, but k-feldspar also becoming				<u> </u>	· · · · · · · · · · · · · · · · · · ·				<u> </u>	
·		more coarse-grained.		tt							·	
		27.00 - 29.34 Meso-syenite as described above, with patches of melano-	A 201128	27.00	29.34	2.34	100	804	38	0.4		
}		syenite. No sulphides seen.										
		29.34 - 31.36 Meso-svenite. An abrupt change to a fine- to medium-	A 201129	29.34	31.36	2.02	100	3507	121	1.6		
		orained biotite-rich svenite, although if there was some plagloclase (?) it				ļ .		ļ			<u> </u>	<u> </u>
		-could easily be a diorite. Fine grain size precludes any real ID on the									i	
		feldspars Biotite to 30% is fine-grained with randomly distributed flakes		i						<u> </u>		
		not aggregates. Sulphide rich with 2 - 3% nyrite some of it cubic, and 1 -										+
· · · · · ·		2% chalconvrite All sulphides occur as fine-grained disseminated blebs							·		-	<u> </u>
<u> </u>		This is probable cause of I P chargeability anomaly. Vague cross-cutting				1		1				
		Li rins is probable cause of i.r. chargeability anomaly. Vague, cross-cuturing										
		Tradric at 90° to core axis. Irregular, coarse syenitic patches toward end of										
		Interval. Non-magnetic.		<u> </u>					<u> </u>			
			 	<u> </u>								
			·	·			 -			<u> </u>		
31.36		BIOTITE PYROXENITE and MELANO-SYENITE - with reidspar content	I	+		-		··		+	<u> </u>	
	·			╂				<u> </u>			-	
		-Similar to pyroxenite / melano-syenite as described near the top of this hole.				-		1			+	<u> </u>

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 3 of 7

 \square

FOOTA	E (metros)			SAMPL	ES		Rec.			ASSAYS		
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		Interstitial k-feldspar to euhedral + chlorite altered pyroxene. Biotite			<u> </u>					·		
	<u> </u>	commonly forms clusters / aggregates.						-				
		31.36 - 32.94 No sulphides seen.	A 201130	31.36	32.94	1.58	100	49	7	< .3		<u> </u>
			···							<u> </u>		
32 94	40.29	MESO-SYENITE - with a few patches of melano-syenite / biotite pyroxenite to					· · · -					
		6 cm. Pink colour tone, medium-grained, with 15 - 30% small mafic								ļ	<u> </u>	<u> </u>
		aggregates of biotite, chlorite and magnetite.	A 201131	32.94	36.00	3.06	100	260	15	< .3	i	
		32.94 - 36.00 Meso-syenite as above. Minor, ~ 0.5% disseminated pyrite.	A 201132	36.00	40.29	4.29	100	198	8	< ,3		
		36.00 - 40.29 Meso-syenite as described above with a few matic-rich									·	
		patches. A short (20 cm) coarse-grained syenitic dyke cuts through at 50.80				<u> </u>	·					
		at about 45° to core axis. Minor disseminated pyrite. Many small patches										
												<u> </u>
	(7.00	ANTAUTE (MORITOED - a shart interval of mostly mass even its with a section										† -
40.29	47.92	SYENITE UNDIVIDED - a short interval or mosuy meso-syenite with a section af molono, even its from 40.29 to 40.94 which is is pyroyene (chlorite-rich)										
		and biotite rich									ļ	
		40.29 - 44.00 Syenite as described above. Initial 65 cm of melano-syenite	A 201133	40.29	44.00	3 71	98	1197	61	0.9)	
		is not mineralized but there is patchy disseminated chalcopyrite and pyrite in	<u></u>									
		the meso-syenite to 1 - 2%. The meso-syenite shows variable pink k-							· ·			
		feldspar and sericite alteration. The lower part of the interval from 43.00 is					<u> </u>					
		broken and strongly limonitically stained along with carbonate coatings on										
		-fracture surfaces generally at about 10 - 20° to core axis. Pieces of limonite										<u> </u>
		stained core are mineralized with ~ 2% disseminated chalcopyrite.	A 201124	44.00	47.92	3 92	92	348	19	3	3	
		44.00 - 47.92 Limoniac meso-syenite with the last 90 cm becoming more matic rich section contains	A 201134	44.00		<u> </u>						-
	· · · -	minor disseminated chalcopyrite. Otherwise, the interval is unmineralized										
		except for a minor amount of cubic pyrite.				+			<u> </u>			
										-		
												_
47.92	51.68	A MIXTURE OF BIOTITE PYROXENITE AND MELANO-SYENITE. Feldspar						 	<u> </u>			
		content varies from 5 to 15% through much of interval then increases to 20						·				
		- 25% toward bottom of this unit. K-feldspar is interstitial to chlorite altered						1				
		-pyroxene and aggregates of biotite. Strongly magnetic.		47.00	49.6	0 0 77	10	14	11	a < -	3	
		47.92 - 48.69 A mixture of plotte pyroxenite and melano-systemic as	A 201135	47.92	40.0	9 0.77			<u>' </u>			
		μ with bidge coop avent purite in quartz veins at 70° to core axis, and 1 cm										
		appearance.	A 201136	48 69	51.6	8 2.99	10		,	2 < .	3	
<u> </u>		48.69 - 51.68 A mix of biotite pyroxenite and melano-syenite as described							-			
	······································	above.										
			d							-	_	
51.68	62 17	MESO-SYENITE - medium-grained pink k-feldspar altered meso-svenite.	ì	-[1					
V1.00		Mafic-rich patches of chlorite-biotite and magnetite. Patchy epidote							1			
· · · · · · · · · · · · · · · · · · ·				1	1	1	1	1	1	1	í	T

Lorraine Project Diamond Drill Log DDH: 2002-66

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Page: 4 of 7

FOOT	AGE (metres)		l l	SAMP	LES		Rec.		······	ASSAYS		
From (m)) To (m)	LITHOLOGICAL DESCRIPTION	Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
		alteration Widespread interstitial fine-grained carbonate to about 1%										
		51.68 - 54.00 Meso-svenite as described above. Pyrite common with thin	A 201137	51.68	54.00	2 32	100	292		03		
├		calcite veinlets at 80 - 90° to core axis. Minor patches of disseminated	A 201137	J1.00		2.52	100		52	0.0		
· · · · · · · · · · · · · · · · · · ·		chalconvrite and pyrite in several spots. Limonitic fractures at around 30° to										
<u>-</u>		54.00 - 57.00 Meso-svenite as above. Continuing limonitic fractures and	A 201129	54.00	57.00	2 00		442	20	03		<u> </u>
		cross-cutting veinlets at $60 - 90^\circ$ to core axis, with cubic pyrite	<u>A 201136</u>		57.00	3.00		474		0.5		
		57.00 - 60.00 Meso-svenite as above. Minor disseminated pyrite. K-	A 201139	57.00	60.00	3.00	100	309	42	0.3		
		Ifeldspar and epidote alteration common.										
		60.00 - 62.17 Meso-syenite as described above. Continuing low angle (0 -	<u>A 201140</u>	60.00	62.17	2.17	100	238	28	< .3		
		10° to core axis) fractures coated with limonite and carbonate. Patchy k-										
		feldspar and epidote alteration.	·									
			· · · · · · · · · · · · · · · · · · ·		·······							
62.17	67.94	MELANO-SYENITE - with variable feldspar content, but generally about 20%.			<u> </u>		· · · · · · · · · · · · · · · · · · ·					
		-K-feldspar is interstitial to patches of chlorite - biotite and chlorite altered				·						
		pyroxene with biotite. Some cross-cutting thin k-feldspar veinlets at 90° to										
		core axis.										
L		62.17 - 66.00 Melano-syehite as described above. Minor epidote	A 201141	62.17	66.00	3.83	100	1207		1.1		
J	_ <u> </u>	alteration. K-reidspar forming coarse phenocrysts to 1 cm in places giving a	┣────									
· · · -			·			-						
		66.00 - 67.94 Melano-syenite as above. Continuing low angle limonitic	A 201142	66.00	67.94	1.94	100	111	10	< .3		
			 									
67.94	69.91	SYENITE UNDIVIDED - a mixture of meso-svenite with short more mafic	i		<u> </u>			<u> </u>				
<u></u>		intervals of melano-svenite.						<u> </u>				
		67.94 - 69.91 Meso-svenite with numerous patches of dark grey, biotite -	A 201143	67.94	69.91	1.97	100	943	39	0.6		
<u> </u>		magnetite rich svenite, many of which are moderately well mineralized with										
		1 - 2% chalcopyrite and 1 - 3% pyrite. Overall average values are low and	├ ────									
		where present, pyrite is always more plentiful than chalcopyrite.										
										 		
69.91	75.95	MIXTURE OF BIOTITE PYROXENITE AND MELANO-SYENITE as the feldspar	I	·				{ · ······		<u> </u>		
├ ───		content varies [from] 5 to 20%. In a rew spots bands of grey K-feldspar (?)										· ·
		- to 60% form short intervals and it is difficult to say if they are a cross-cutting				<u> </u>						
		Treature. Epidote is very common (to 25 - 30%) in first 2 metres, dying out								·		
ļ								┢			·	
		60 91 - 77 00 Melano-svenite with some variations to pyrovenite Many	A 201144	69.91	72.00	2 09	100	656	62	0.4		
		enidote-rich patches. Minor disseminated pyrite trace chalcopyrite			, _, _		,					
		Magnetic.				-						
		72.00 - 75.95 Biotite pyroxenite with variations to melano-svenite. Biotite	A 004445		70.00	1 2 05				^		
		to 25 - 30%, showing no tendency to clump. K-feldspar ar about 10%.	A 201145	/2.00	/5.95	3,95	100	15	<u> </u>	<.3		
		Continuing epidote alteration. Low angle (0 - 10° to core axis) fractures are								· · · ·		
		carbonate + hematite rich. No sulphides seen.				<u> </u>		<u> </u>		L		
											I	

Ŧ

F

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

F

Page: 5 of 7

7

						· · · · ·		· · · · · · · · · · · · · · · · · · ·				
FOOTAG	E (metres)			SAMPL	.ES		Rec.			ASSAYS		
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pol (ppb)
	\											
75.95	98.36	MESO-SYENITE (?) - medium-grained grey svenite with pink k-feldspar										
	1	notocic alteration with accociated purite overprinting initial 2 metros										
		potassic attendion with associated pyrice overprinting initial 2 metres.										
		Difficult to 1D the feldspars thus unit could be a monzonite. Streaks of										
<u> </u>		biotite define weak foliation that cuts core at 80 - 90° to core axis.										
		75.95 - 79.00 Meso-svenite as described above. Well mineralized with	A 201146	75.95	79.00	3.05	100	672	38	0.7		
		disceminated pyrite, minor blabs of chalcopyrite noted. Epidote spots										
		asseminated pyrite, minor blebs of chalcopyrite noted. Epidote spoe										
		common. Limoniuc low-angle fractures.			-			-				
		79.00 - 82.00 Meso-syenite as above. Moderately well mineralized with	A 201147	79.00	82.00	3.00	100	727	66	1.8		
· · · · · · · · · · · · · · · · · · ·		disseminated pyrite. Traces of chalcopyrite noted with mafic spots.						-				
		82.00 - 85.00 Meso-syenite as above. Continuing disseminated fine-	A 201148	82.00	85.00	3,00	100	292	32	0.4		
		grained pyrite, some of which is cubic. Minor chalcopyrite blebs associated										
		with matic natches. Cross-cutting pink k-feldsnar alteration envelopes 1 - 2										
	<u> </u>	The filling for the set of the one of the set of the se										
<u> </u>		cm wide follow fractures at 80 to 90° to core axis.		 								
		85.00 - 88.00 Meso-syenite as above. Mineralized with 0.5% disseminated	A 201149	85.00	88.00	3.00	100	244	23	0,3		
~~	 	pyrite. Continuing strongly magnetic, 2 - 4% magnetite.		1 1								
	+	88.00 - 91.00 Meso-syenite as above. Slightly more strongly mineralized	A 201150	88.00	91.00	3.00	100	210	35	< .3		
		with pyrite than above. More cross-cutting pink k-feldspar alteration and										
	+	milliplice and above too										
				1								
		91.00 - 94.00 Meso-syenite as above, but grey sections, NOT overprinted	A 201151	91.00	94.00	3.00	100	223	35	0.4		
		by cross-cutting pink k-feldspar alteration, appear to be more like a										
		monzonite. Very patchy potassic alteration in this interval. Also very broken										
		up with low angle (0 to 20° to core axis) impositic fractures										
		04.00 07.00 Mose events vaning to netactic altered menzenite. Much	A 201152	94.00	97.00	3,00	90	371	22	0.4		
		94.00 - 97.00 Meso-syenice varying to potassic altered monizonice. Much										
		of this interval is dark grey in colour, which is due to darkness of the										
· · ·		feldspars, NOT the mafic content. Minor disseminated pyrite. Much of this							-			
		interval is broken up into a limonitic rubble, especially between 94.80 - 95.20		[-							
		metres.		<u> </u>								
		97 00 - 98 36 Meso-svenite as above No conner sulphides seen	A 201153	97.00	98.36	1.36	100	187	37	< .3		
												1
	··											
98.36	101.39	MESO-SYENITE - a change in svenite to a coarse-grained, red k-feldspar		1				1				
		evenite Laucocratic in colour tone because of alteration of matics to	··					1		t		
· · · · ·		syenice. Leucociauc in colour tone because of alteration of matics to					1	t-				
		aggregate spots of muscovite. Hine-grained biotite with magnetite still	·					<u> </u>	1	}		
1		provides some dark spots. Appears to have been subjected to very intense	A 201154	98.36	101.39	3.03	100	565	97	1.8		
<u> </u>		potassic alteration.		··			1					1
		98.36 - 101.39 As above. Occasional blebs of chalcopyrite and pyrite.		 					<u> </u>	1	1	1
		······································	-	<u> </u>		<u> </u>			[
				<u> </u>			1	1		1		
101 39	106 80	SYENITE UNDIVIDED - a variable section of meso-svenite and a more mafic-		+			1	1	İ	-		
				<u> </u>		1		1				
			A 201155	101.39	104.32	2.93	98	9	6	< .3		
		101.39 - 104.32 Interval begins with a 50 cm section of melano-syenite		+		1	· · · · · · · ·					1
		followed by a grey meso-syenite similar to that logged several intervals		+			1				1	1
<u> </u>		above. Pink k-feldspar alteration cross-cuts at about 70° to core axis. No				1	·	1				1
· · ·		sulphides seen										
-		104.22 105 80 More evenite vaning to angissis svenite. The angissis	A 201156	104.32	106.80	2.48	100	48	27	0.3		
		104.32 - 100.00 Meso-syenice varying to gneissic syenice. The gneissic				1	1	1	1	1		

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

.

Page: 6 of 7

FOOTAG	GE (metres)	LITHOLOGICAL DESCRIPTION	Sample #	SAMPI From (m)	LES To (m)	Metres	Rec. %	Cu (ppm)	Au (ppb)	ASSAYS Ag (ppm)	Pt (ppb)	Pd (ppb)
From (m)	1o (m)		oumpi <u>o #</u>									
		texture is defined by streaks of biotite and magnetite. Minor epidote										·
<u> </u>		alteration. No sulphides seen.										·
			ļ									
			·									
106.80	136.11	SYENITE UNDIVIDED - but mostly melano-syenite with feldspar content of										
		about 20%. Feldspars are coarse-grained in spots and also form clusters										
·		giving a k-feldspar spotted appearance to the rock. Epidote alteration is										
		patchy but locally intense.										<u> </u>
		106.80 - 109.00 Melano-syenite as described above. Pervasive and locally	A 201157	106.80	109.00	2.20	100	401	12	0.3		
·	-	intense chlorite - epidote alteration, especially of pyroxene crystals.		100.00	440.00	- 2 00	100	221				
		109.00 - 112.00 Melano-syenite as above with two 20 cm wide cross-	A 201158	109.00	112.00			231	23			
		cutting patches of pink meso-syenite. Feldspar content 20 - 30%. A few								· · ·		
		-short patches of grey meso-syenite have thin mafic stringers cutting through			·							
		at 10 - 20° to core axis. No sulphides seen.	· · · · · · · · · · · · · · · · · · ·	· · ·								
		112.00 - 115.00 Melano-syenite with minor variations to a dark grey meso-	A 201159	112.00	115.00	3.00	100	400	37	0.6		<u> </u>
		svenite. Patchy epidote alteration. Cross-cutting k-feldspar veins /				. <u> </u>		<u> </u>	. <u> </u>			
		-alteration envelopes commonly cut core at 80 - 90° to core axis. No						<u> </u>				
		subhides seen.										+
		115.00 - 118.00 Melano-svenite with a low-angle limonitic fault separating	A 201160	115.00	118.00	3,00	100	779	271	1.3		-
		a medium-grained pyroxene - biotite - feldspar svenite from a fine-grained										
		biotite-rich svenite below. This section below is strongly mineralized with						ļ				ļ
┣── ─		cubic pyrite and weakly mineralized with fracture controlled blebs of				 			ļ	<u> </u>		
	_	chalcopyrite (irregular fractures).										+
		-118 on - 121 on Melano-svenite grading into meso-svenite by end of	A 201161	118.00	121.00	3.00	100	214	77	0.6		
		interval Melano-svenite is very rich in fine-grained biotite, but grain size	AZUTIO	110,00	121.00	- 5.00			<u></u>			-
		increases to medium - coarse in first metre. Fracture controlled pyrite noted										
		$\int \frac{1}{1000} e^{-\frac{1}{1000}}		1							[<u> </u>
<u> </u>		on steep (60 - 90 to core axis) fractures, some with fine-grained biotite-rich						L				
		121.00 - 124.00 A mixture or meso-syenice, me-granied biotechen	A 201162	121.00	124.00	3.00	90	1232	179	1.7		
		melano-syenite, and medium-grained pyroxene-rich melano-syenite.						<u> </u>			+	
		Fracture controlled pyrite common, especially on steeper fractures from 45			· · · · · · · · · · · · · · · · · · ·						-	
I		90° to core axis. Minor chalcopyrite blebs noted on some fractures. Interval				-					1	
ļ		ends with a 1 metre chlorite-rich crush zone (fault).				<u> </u>						
		-124.00 - 127.00 Meso-syenite grading into and out of intensely epidote	A 201163	3 124.00	127.00	3.00	94	677	56	6 1.1		
	-	altered melano-syenite. Initial 50 cm of interval is broken up and limonitic.										
		No sulphides seen.			400.00		400			1 13	1	
		127.00 - 130.00 Melano-syenite with local variations to meso-syenite as	A 201164	127.00	130.00	3.00	- 100	032		3 1	<u>'</u>	+
I		feldspar content ranges from 30% to 60%. Continuing intense epidote	· · · · · · · · · · · · · · · · · · ·				<u> </u>	<u> </u>				
	<u> </u>	alteration, often accompanied by coarse magnetite. Trace pyrite.					1	1	1			
		130.00 - 133.00 Melano-syenite with continuing intense epidote alteration.	A 20116	5 130.00	133.00	3.00	100	2208	3 175	5 2.5	i	
<u> </u>		No copper sulphides seen.							1			
		133.00 - 136.71 Melano-syenite with continuing strong epidote overprint.	A 20116	5 133.00	136.71	3.71	100	<u>pj 2707</u>	/168	8		
		This interval is a jumbled-up mixture of various fine to medium grain-sized				+	<u> </u>				+	
		and biotite-rich to biotite-pyroxene rich melano-syenite. Minor cubic pyrite.							-			+
		_	I				+		1		1-	
1	1				+·		+				-1	

31 Oct. 2002

Mincord Exploration Consultants Ltd. for Eastfield Resources Ltd.

Ŧ

Page: 7 of 7

ſ

FOOTA	GE (metres)			SAMP	LES		Rec.			ASSAYS		
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	%	Cu (ppm)	Au (ppb)	Ag (ppm)	Pt (ppb)	Pd (ppb)
136.71	147.48	MESO-SYENITE - with short intervals of gneissic syenite. Gneissic texture										
	<u> </u>	defined by streaks and bands of biotite. Strong pink k-feldspar potassic							<u> </u>			
		overprint evident through this unit. Contact above at 60° to core axis.	·	<u> </u>		<u> </u>			<u> </u>		ļ	
}		136.71 - 139.00 Meso-syenite as described above, with a few small mafic	A 201167	136 71	139.00	2 29	100	2891	158	36		
		(chlorite and/or biotite) patches. Strong chalcopyrite mineralization on some										
		30° to core axis fracture faces.										
· · · · · · · · · · · · · · · · · · ·		139.00 - 142.00 Meso-syenite as described above, beginning of large	<u>A 201168</u>		142.00	3.00	100	801	158	1.5		
	+	percentage (to 30%) of fine-grained biotite, and including some weakly										<u> </u>
·		developed foliations. Minor disseminated chalcopyrite and a trace of bornite.		·							<u> </u>	
		Continuing strong pink k-feldspar potassic overprint,										
}		142.00 - 145.00 Meso-svenite as above. Minor disseminated chalcopyrite	A 201169	142.00	145.00	3.00	100	715	46	0,8	`	
		and pyrite. Local gneissic texture at 50° to core axis										
		145.00 - 147.48 Meso-svenite as above with strong k-feldspar potassic										
ļ		overprint. Chaissic texture often irregular but when well defined is at about	A 201170	145.00	147.48	2.48	100	590	47	0.8	· · · · · · · · · · · · · · · · · · ·	
		50° to says min. Minor black of shaloon with						<u> </u>				
147.49	152.40	MELANO EVENITE a chlorita altered purplone - biotite cuento with 20										
	132.40	Preciation - Stellar - a chiorate altered pyroxene - biolite syenite with 20 -				-						1
		35% feidspar, Pervasive and locally strong epidote alteration over-print.	A 201171	147.48	149.80	2.32	100	461	59	0.7		
—		147.48 - 149.80 As above. No suiphides seen.	A 201172	149.80	152.40	2.60	100	436	52	0.6		
		149.80 - 152.40 As above. Very broken into 1 cm bits, and exremely			······					L		<u> </u>
		epidote altered. No sulphides seen.							1	<u> </u>		· · · ·
ļ			·					——————————————————————————————————————				
		<u></u>										
152.40	_ _											
102.40									<u> </u>	· -		
			1									
								_	 	<u></u>	· · · · · · · · · · · · · · · · · · ·	
				1				1		1		·

Γ	CME LYT L (ISO 9002 A	il/ ccir(edi	TÓ	Co) L .)	.	_]-		JE. Gec	CHE	TI) MI(TAT	_T. . AN		OU SIS	CI.	_)C			a E	1	E	ï	(6 d	ڌ	3-1		FAL		4)2	<u> </u>	716	
			E	ast	:£1	<u>e1</u>	<u>1 R</u>	680 1	<u>urc</u> 10 - 1	88 925 H	<u>Ltd</u> Swe S	.) , \	PRC /anco)JEC ouver	<u>r l</u> .(50 v60) <u>RR</u> 127	AIN	JE Jomi	Fi	le by: J		A20 . Pa)07(ge	57	1	?ag	e 1	-						
	SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U PPm p	Au pm p	Th S opm pp	- Cd n ppm	Sb ppm	Bi ppm (V ppm	Ca X	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti X	B ppm	Al %	Na %	K % p	N N mqx	lu** P ppb	ppb	ppb	
	SI A 205101 A 205102 A 205103 A 205104	<1 <1 <1 3	<1 177 239 225 232	<3 <3 6 3 4	<1 103 88 80 92	<.3 <.3 <.3 <.3 <.3	<1 39 45 48 41	<1 23 21 23 22	2 1184 986 1047 1391	.02 4.33 3.76 4.24 3.63	<2 4 3 4 2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 16 <2 16 2 19 <2 22 <2 22	5 <.2 3 .4 5 .5 5 .5 3 .4	८३ ८३ ८३ ८३ ८३	3 3 3 3 3 3 3 3 3	<1 150 3 126 2 146 2 119 4	.14< 5.09 2.33 2.90 4.43	.001 .238 .216 .204 .203	<1 14 14 14 17	3 77 91 103 74	<.01 1.82 1.45 1.78 1.82	3< 94 120 239 237	.01 .13 .12 .13 .09	<3 3 3 3 1 3 1 3 1	.01 .59 .40 .47	.60 .12 .13 .12 .07	.01 .97 .83 .78 .72	<2 5 5 4 4	<2 9 7 16 23	~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 3 3 3 4	
	A 205105 A 205106 A 205107 A 205108 A 205109	4 42 3 2 3	1747 1958 1415 2926 3509	9 10 <3 5 6	128 67 52 62 89	1.6 2.3 1.2 1.3 1.9	34 9 7 7 11	30 ⁻ 19 ⁻ 11 13 17	673 479 889 736 877	5.06 3.13 1.86 2.32 3.58	3 3 6 4 3	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 29 <2 21 5 29 <2 24 <2 30	9 1.0 0 .6 5 .3 2 .4 9 .7	<3 <3 <3 <3 <3	3 <3 <3 <3 <3	193 5 97 5 67 7 100 7 152 7	5.54 5.10 2.89 1.72 1.36	.310 .214 .421 .201 .216	20 13 25 10 10	50 18 19 25 28	1.96 .92 .76 .74 .91	728 231 342 226 149	.05 .01 .05 .09 .16	3 1 3 1 3 1 3 1 3 1	.83 .40 .14 .13 .46	.05 .03 .09 .09 .11	.67 .30 .69 .75 .79	5 2 2 3 4	169 212 77 54 62	2 2 2 2 2 2 2 2	10 7 5 4 7	
	A 205110 A 205111 A 205112 A 205113 A 205113 A 205114	7 4 3 2 14	5499 6526 3241 3032 2971	10 <3 4 19	89 97 98 137 179	3.5 3.9 1.2 1.5 3.4	6 6 11 11	11 10 12 19 22	776 647 930 1295 1807	2.48 2.33 2.85 4.67 5.15	4 6 3 15	8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 31 2 28 <2 19 2 21 3 19	5.5 5.5 2.3 9.6 9.10	3 3 3 3 9 9 9	3 3 3 3 3	126 114 140 266 273	1.57 1.32 2.02 2.06 3.63	. 142 . 089 . 118 . 167 . 238	11 8 9 12 18	16 21 21 21 21 27	.78 .62 .86 1.05 1.38	156 123 146 157 136	.10 .10 .10 .14 .12	4 1 4 1 <3 1 4 1 3 1	.46 .32 .25 .39 .66	.11 .12 .09 .10 .11	.63 .58 .66 .66 .64	4 5 4 7	269 279 123 123 399	3 2 2 2 3	7 3 4 5 6	
ĸ	A 205115 A 205116 A 205117 A 205118 A 205119	3 2 2 4 10	1337 3415 3519 348 1295	21 <3 <3 4 <3	127 179 81 113 119	4.8 3.1 1.2 <.3 <.3	10 17 5 15 11	21 33 11 22 20	1421 2185 1309 1599 1183	6.08 11.28 2.31 4.67 4.43	9 23 3 5 3	10 14 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	4 22 6 21 <2 18 2 18 <2 15	9 .6 5 1.5 1 .4 2 .4 3 .4	<3 13 <3 <3 <3	<3 4 <3 3 3	343 724 106 217 172	2.88 5.20 5.89 5.47 5.29	.249 .357 .146 .263 .167	19 33 15 18 12	23 17 15 30 22	.94 .58 .70 1.03 .81	184 67 93 77 93	.10 .04 .03 .05 .01	61 31 31 31 31	.20 .38 .10 .42 .61	.09 .03 .04 .03 .02	.65 .41 .45 .38 .33	5 6 4 4 4	501 115 152 28 76	<2 3 2 2 2	4 19 6 2 3	
	A 205120 RE A 205120 RRE A 205120 A 205121 A 205122	1 1 6 5	1403 1379 1439 2721 4149	3 3 3 6 6	130 129 134 166 165	<.3 <.3 <.3 1.3 2.0	8 9 13 30	18 18 18 23 34	1578 1547 1627 1824 1457	4.01 3.90 4.29 7.11 10.48	2 <2 3 6	<8 <8 8 <8 12	<2 <2 <2 <2 <2 <2 <2	<2 19 <2 19 <2 19 <2 19 <2 18 2 23	5.3).4 7.4 7.8 5.1.1	3 3 3 4 3	<3 <3 <3 <4	201 194 216 396 619	5.38 5.31 5.47 5.35 2.44	.092 .089 .092 .069 .101 :	10 9 10 8 8	9 16 19 15 32	1.11 1.09 1.12 1.03 1.35	104 102 110 140 481	.07 .07 .07 .06 .17	<3 1 4 1 <3 1 <3 1 5 1	.29 .25 .29 .27 .29	.06 .06 .06 .06 .10	.46 .45 .46 .37 .49	4 4 6 7	65 66 65 136 281	<2 2 2 5	7 6 7 7 16	
ė	A 205123 A 205124 A 205125 A 205126 A 205127	<1 2 3 1	3909 2652 3251 602 508	3 3 5 5 <3	96 48 103 46 55	2.5 1.7 <.3 <.3	70 45 56 10 15	26 15 30 12 19	176 922 1290 694 1083	6.39 2.48 6.21 2.84 3.59	5 <2 3 <2 3	9 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	3 14 2 16 2 17 <2 16 <2 20	7 .5 5 .2 5 .5 3 <.2 1 .2	3 3 3 3 3 3 3	4 3 3 3 3	306 2 89 2 273 2 108 1 133 2	2.69 5.46 5.90 1.40 5.06	.245 .230 .263 .021 .157	14 12 12 2 9	113 102 145 27 33	2.42 1.70 1.83 .93 1.50	127 117 120 155 133	.15 .09 .14 .10 .11	3 1 3 1 3 1 3 1 3 1 3 1	.90 .90 .39 .94 .34	.06 .06 .05 .07 .06	.59 .40 .56 .41 .50	5 2 4 2 3	219 251 171 24 30	11 10 9 3 3	32 33 23 4 14	
	A 205128 A 205129 A 205130 A 205131 STANDARD DS3/FA-10R	2 17 3 8 9	98 1401 730 920 119	<3 5 <3 3 33	89 189 98 58 147	<.3 .4 .8 .9 <.3	20 17 9 8 36	32 29 13 10 12	259 770 982 789 800	5.54 9.64 3.13 2.17 3.13	4 5 3 31	9 17 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	2 23 <2 15 3 24 5 21 4 2	3 .2 1 1.0 9 .2 1 <.2 3 5.6	८३ ८२ ८२ ८२ ८२ ८२	<3 4 <3 4 6	226 540 135 95 76	2,88 2,54 2.07 2.64 .52	.374 .071 .287 .483 .091	18 7 17 27 18	28 17 31 26 181	1.99 1.24 .92 .88 .57	329 168 182 218 147	.18 .15 .11 .11 .09	31 31 31 31 31	.82 .35 .15 .14 .70	.09 .09 .11 .11 .04	1.16 .42 .43 .54 .17	4 7 3 3 5	7 49 41 26 487	4 3 16 482	7 9 7 17 485	
	GROUP UPPER ASSAY - SAM <u>Sampl</u>	P 1D LIM REC NPLE es b	- 0. ITS OMMEI TYPE egini	50 GI - AG NDED : COI ning	AU FOR RE R <u>'RE</u>	MPLE , HG ROCI 150 (<u>4 ar</u> (LEAC W = AND SOC Rer	HED 1 100 CORE AU	ITH 3 PPM; SAMF 3** P1 and 1	MO, MO, MO, MO, MO, MO, MO, MO, MO, MO,	2-2-2 CO, CI LF CU D** GI are R	HCL- D, SE PB 2 ROUP elect	HNO 3, BI 2N AS 3B E t Rei	3-H20 1, TH, 5 > 1% 3Y FIR runs.	AT 95 U&E , AG > E ASSA	DEG. = 2 - 30 \Y &	C FI 2,000 PPM A ANAL	DR ON PPM; & AU YSIS	IE HOI CU, > 100 BY IO	UR, D PB, 1 00 PPI CP-ES	ILUTI ZN, I B . (30	ED T NI, i O gm	0 10 MN, #	ML, As, V	ANAL'	YSED , CR	BY I = 10	СР-Е),000	S. PPM.					
	DATE RECEIVED:	MAR	22 2	2002	D.	ATE	REI	PORT	' MA:	ILEI	•: N	lai	.ch	-28/	02	SIG	NBD	BY.	<u>.</u> ,,	<u>h-</u>		. 7 6.	TOYI	E, C.	LEON	G, J.	. WA!	NG; C	ERTIF	ied i	B.C. /	ASSAYI	ERS	,
	All results are consi	dere	d the	e cor	nfid	entia	al pr	operi	y of:	the (lien	t. Ac	:me a	assume	the	liab	, ilit [;]	ies 1	ога	tual	cost	í of	the	anal	ysis	only					Data_	A FA	۱	

ADE AVELTICAL	(Eas	L) ie:	La	Re	BOU:	rc
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	
A 205132	1	941	4	44	<.3	7	10	601	1.9
A 205133	5	1288	- 4	87	1.0	23	25	1271	5.0
A 205134	3	631	<3	57	<.3	9	18	845	3.4
A 205135	3	1205	13	57	<.3	13	17	890	3.
A 205136	2	1659	4	38	1.0	6	9	543	2.0

es Ltd. PROJECT LORRAINE FILE # A200767

Page 2

Data

																																	E ANALITICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al X	Na %	K X	W. ppm	Au** ppb	Pt** ppb	Pd** ppb
A 205132 A 205133 A 205134 A 205135 A 205136	1 5 3 2	941 1288 631 1205 1659	4 4 <3 13 4	44 87 57 57 38	<.3 1.0 <.3 <.3 1.0	7 23 9 13 6	10 25 18 17 9	601 1271 845 890 543	1.98 5.08 3.43 3.73 2.05	<2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 <8 <8 <8 <8	~~~~~~	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	184 232 221 173 140	<.2 .5 <.2 <.2 <.2	ও ও ও ও ও ও ও	3 3 3 3 4	77 208 136 153 91	1.75 3.66 2.44 2.30 1.90	.137 .390 .229 .137 .213	9 19 12 8 13	15 36 16 28 19	.65 1.25 .87 1.07 .38	221 294 155 89 79	.05 .12 .09 .13 .07	3 3 3 4 3	.81 1.24 1.02 1.24 .63	.06 .06 .07 .09 .07	.43 .69 .44 .50 .25	2 2 3 2 2	37 117 15 19 201	5 5 <2 <2 5	7 15 4 8 12
A 205137 A 205138 A 205139 A 205140 A 205141	3 1 2 2 3	4063 2567 1244 414 554	8 5 3 3 3 3	57 57 25 39 46	3.0 2.1 1.0 <.3 <.3	11 9 4 5 13	13 11 6 7 12	707 659 451 465 553	3.59 3.34 1.33 2.10 2.99	2 2 2 2 2 2 2 2 2 2 2 2 2	<8 <8 <8 <8 <8	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3 4 3 2 ~2	134 125 89 114 142	<.2 .3 <.2 <.2 <.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 3 3 3 3 3 3 3	175 165 37 85 122	2.34 2.14 1.78 1.27 1.25	.343 .326 .042 .045 .098	23 23 12 7 8	19 11 11 15 27	.40 .30 .13 .25 .55	64 87 113 81 118	.06 .05 .01 .09 .13	3 3 3 3 3 4	.70 .63 .49 .56 .73	.06 .06 .05 .09 .08	.24 .27 .22 .26 .42	3 2 2 2 2 2	542 390 100 14 27	5 5 4 2 2	14 13 10 5 5
A 205142 A 205143 A 205144 A 205145 A 205146	1 <1 3 19	205 241 92 96 781	<3 4 6 24	35 37 43 39 91	<.3 <.3 <.3 <.3 <.3	18 17 15 15 19	10 9 10 10 24	576 537 679 587 1041	2.59 2.28 2.26 1.99 4.58	≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈	<8 <8 <8 <8 <8	\$\$\$\$\$	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	144 91 115 131 245	<.2 <.2 <.2 <.2 <.2	3 3 3 3 3 3 3 3 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	91 79 110 76 212	1.08 .96 2.13 1.80 1.80	.077 .067 .073 .093 .238	8 7 8 8 12	46 40 36 32 25	.69 .58 .57 .56 1.46	125 78 55 107 346	.14 .12 .07 .08 .14	3 3 3 3 3 3 3 3 3 3	.82 .73 .76 .73 1.47	.11 .09 .08 .07 .10	.61 .50 .45 .49 .91	2 2 2 2 2 2 2 3 3	9 12 3 10 42	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 3 <2 <2 10
A 205147 A 205148 A 205149 A 205150 RE A 205150	10 6 3 3	421 1184 492 435 471	6 9 4 3 8	65 99 90 82 87	<.3 <.3 <.3 <.3 <.3	10 28 10 8 9	16 30 14 11 11	788 1023 820 858 909	3.99 5.68 4.13 3.26 3.44	2000 2000 2000	<8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8888 8888 8888 8888 8888 8888 8888 8888 8888	340 286 2530 229 234	<.2 .2 <.2 <.2 <.2	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20202 20202	186 227 222 167 179	1.64 1.67 1.28 1.39 1.47	.132 .380 .125 .148 .158	8 18 9 11 12	19 36 16 20 23	.88 1.75 .65 .66 .70	262 277 98 136 150	.10 .16 .10 .10 .10	3 3 5 5 4	1.32 1.72 1.43 .89 .96	.13 .09 .25 .07 .08	.59 1.14 .35 .44 .48	2 3 3 3 4	25 110 16 28 28	3 4 10 6 6	6 36 5 6 6
RRE A 205150 A 205151 A 205152 A 205153 A 205154	2 9 4 5 <1	470 403 278 365 304	3 3 3 6 8	90 59 25 36 81	<.3 <.3 <.3 <.3 <.3	8 8 5 6 26	12 13 8 9 29	921 821 469 524 991	3.48 3.17 1.59 2.09 6.18	2 2 2 2 2 2 3 2 2 3 2	<8 <8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	239 165 170 349 355	<.2 <.2 <.2 <.2 <.2 <.2	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	3000 00000	184 147 61 89 281	1.50 2.08 1.41 1.65 1.71	.164 .139 .072 .111 .385	12 10 7 10 19	16 22 20 25 32	.70 .73 .71 .68 1.59	140 147 - 93 136 130	.10 .07 .05 .07 .16	6 4 5 3	.92 .84 .84 1.22 1.67	.07 .06 .10 .13 .16	.45 .42 .39 .47 .85	3 3 2 2 2 2	30 48 22 22 15	6 13 7 2 6	6 5 4 9
A 205155 A 205156 A 205157 A 205158 A 205159	4 1 8 4 9	4761 3216 3210 2540 1962	7 5 9 8 15	51 59 50 40 84	2.5 1.4 1.9 1.1 .5	9 10 7 13 21	9 13 9 14 22	448 677 423 493 958	2.20 3.15 2.07 2.55 4.70	<2 2 10 3 2	<8 <8 <8 <8 <8	< < < < < < < < < < < < < < < < <> </td <td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td> <td>182 225 100 306 242</td> <td><.2 <.2 .2 <.2 <.2</td> <td><3 <3 26 <3 <3</td> <td>7 <3 <3 4 3</td> <td>109 154 57 97 219</td> <td>.83 1.18 1.25 1.28 1.95</td> <td>.073 .106 .075 .109 .247</td> <td>6 7 6 7 12</td> <td>17 16 14 27 32</td> <td>.48 .69 .62 .70 1.42</td> <td>90 142 171 319 294</td> <td>.10 .12 .01 .08 .16</td> <td>5 5 8 3 5</td> <td>1.02 1.01 .80 .88 1.25</td> <td>.14 .12 .03 .09 .08</td> <td>.48 .53 .25 .45 .83</td> <td>3 2 3 2 3</td> <td>442 215 252 118 97</td> <td>6 4 3 5</td> <td>16 10 8 8 10</td>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	182 225 100 306 242	<.2 <.2 .2 <.2 <.2	<3 <3 26 <3 <3	7 <3 <3 4 3	109 154 57 97 219	.83 1.18 1.25 1.28 1.95	.073 .106 .075 .109 .247	6 7 6 7 12	17 16 14 27 32	.48 .69 .62 .70 1.42	90 142 171 319 294	.10 .12 .01 .08 .16	5 5 8 3 5	1.02 1.01 .80 .88 1.25	.14 .12 .03 .09 .08	.48 .53 .25 .45 .83	3 2 3 2 3	442 215 252 118 97	6 4 3 5	16 10 8 8 10
A 205160 A 205161 A 205162 A 205163 STANDARD DS3/FA-10R	5 2 8 6 8	2221 495 1193 2047 139	17 5 8 17 36	63 120 71 78 145	1.2 .3 <.3 .7 <.3	9 34 12 8 35	14 24 17 13 12	621 1110 656 800 796	3.03 6.21 3.46 3.58 3.08	3 2 <2 2 30	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <3	932 180 1254 465 29	.2 <.2 <.2 .3 5.2	3 3 3 3 3 6	<3 <3 <3 <4 4 4	143 316 158 171 74	1.35 2.59 1.42 2.22 .51	.108 .399 .093 .140 .093	6 19 7 9 16	15 38 19 20 178	.69 1.45 .52 .73 .57	142 134 193 457 147	.10 .17 .09 .08 .08	5 5 7 6	1.39 1.36 1.06 .95 1.66	.17 .09 .13 .07 .04	.40 .96 .50 .46 .16	3 4 3 5 5	117 27 53 73 462	3 7 3 3 479	7 16 8 5 483

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

AA
AND AND STREET
ACRE ANALTEICAL

Eastfield Resources Ltd. PROJECT LORRAINE FILE # A200767

-

;

Data

												_									<u> </u>												
SAMPLE#	Mo	Çu ppm	Pb ppm	Zn ppm	Ag ppm	Ní ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B	Al %	Na %	к %	W open	Au** ppb	Pt** ppb	Pd** ppb
A 205164 A 205165 A 205166 A 205167 A 205168	7 3 <1 3 7	7220 11002 3253 10041 7977	16 16 3 10 8	134 74 100 172 130	2.5 6.6 2.1 9.0 7.4	15 10 12 8 8	24 14 18 13 13	1170 831 864 933 1296	6.82 2.50 3.05 2.65 2.52	10 5 15 105 129	<8 <8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	5 <2 2 2 2	153 129 153 151 165	.7 .5 .3 1.4 2.6	<3 <3 7 198 124	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	433 102 143 110 94	1.88 1.94 1.31 1.96 3.99	.231 .186 .192 .167 .227	18 13 11 15 16	14 26 16 14 9	1.14 1.03 1.10 .62 .25	126 145 174 127 72<	.11 .09 .12 .02 .01	3 <3 10 9 3	1.12 1.02 1.02 .91 .84	.09 .06 .05 .03 .01	.54 .62 .68 .34 .25	5 4 3 6 6	624 1335 80 305 745	3 5 3 2 4	7 9 6 4 6
A 205169 A 205170 A 205171 A 205172 A 205173	4 5 6 3 6	9198 20227 27789 6060 7558	12 14 13 6 6	114 150 128 96 93	6.1 14.2 18.0 3.6 5.3	11 14 14 6 7	16 21 20 12 13	1604 1364 1278 1212 1388	3.61 4.48 4.41 2.55 2.69	377 162 60 320 125	<8 8 8 8 8 8 8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 5 8 3 3	132 156 198 144 165	1.0 1.3 1.2 .8 .7	6 5 3 3 3 3	4 11 19 3 3	151 155 174 102 124	4.45 3.40 3.82 3.74 3.84	.135 .279 .369 .073 .175	11 23 29 8 14	18 6 6 13 9	.23 .51 .51 .20 .39	16< 44 87 18< 45	.01 .01 .02 .01 .01	7 8 4 7 9	.88 1.25 1.14 .82 .92	.01 .02 .03 .01 .02	.20 .29 .38 .20 .28	7 9 9 4 5	552 1035 2117 424 611	6 7 8 3 4	9 15 12 8 10
A 205174 A 205175 A 205176 A 205177 A 205178	5 3 3 1 2	9768 7701 4806 736 1952	6 4 6 4 3	79 75 98 99 75	5.8 4.3 2.4 .8 .6	7 6 8 19 8	12 10 15 32 15	1078 865 1142 1632 3425	2.53 2.17 3.45 5.06 2.86	13 3 13 10 76	<8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	178 162 156 1171 178	.6 .5 .6 .5	3 3 3 3 3 3 3 3 3 3	3 4 3 3 3 3 3	104 93 127 212 97	2.83 2.39 3.10 4.49 8.20	.081 .121 .124 .459 .135	11 12 10 23 9	11 11 9 18 16	.58 .58 .75 1.53 1.13	67 85 89 1232 69	.02 .04 .05 .14 .02	4 4 8 5	.85 .82 1.15 1.52 .58	.03 .05 .04 .04 .01	.32 .35 .47 .96 .16	5 4 3 5 4	902 490 206 16 125	9 3 2 2 2 2	20 17 8 6 <2
A 205179 A 205180 RE A 205180 RRE A 205180 A 205181	3 1 1 2 4	9061 8085 8142 8350 2024	5 7 8 9 7	90 68 67 69 95	4.8 6.3 6.5 1.5	11 7 7 9	14 10 10 10 13	748 684 695 696 3098	3.34 2.29 2.33 2.40 2.70	14 76 74 74 90	<8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2 <2 <2 <2 <2 <2 <2	173 171 174 180 251	.5 .5 .4 .5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 <3 5 3 3 3	144 93 94 98 193	1.92 1.89 1.92 1.92 9.23	.084 .058 .057 .058 .060	9 8 8 8 8	16 10 9 11 14	.45 .38 .38 .39 .33	67 66 68 76 37<	.03 .01 .01 .01 .01	4 6 3 6 3	.86 .67 .68 .72 .55	.03 .03 .03 .03 .03	.31 .24 .24 .27 .14	4344 44	230 506 485 470 157	3 3 3 - 3 - 2	4 5 5 5 2
A 205182 A 205183 A 205184 A 205185 A 205186	5 2 3 2 6	2227 2144 5498 3209 271	5 3 6 3 3	95 105 102 74 110	1.6 1.0 3.2 1.6 .4	11 10 10 7 20	17 18 14 11 36	1046 1040 827 777 1540	4.09 3.95 3.54 2.43 5.72	21 5 2 <2 4	<8 8 8 8 8 8 8 8	~ 2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	218 235 302 262 418	.4 .2 .5 .3 .2	3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3	227 169 184 124 232	2.32 2.16 1.17 1.63 3.47	.093 .081 .096 .031 .475	7 7 6 4 22	12 11 17 13 19	.79 .87 .82 .71 2.04	125 143 469 131 1046	.10 .08 .13 .10 .17	5 6 3 3 4	.96 1.13 1.21 .82 1.86	.04 .04 .08 .06 .05	.51 .55 .67 .37 1.36	4 3 4 3 4	126 56 311 179 28	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	5 3 2 5 4
A 205187 A 205188 A 205189 A 205190 A 205191	5 6 11 16 2	1874 2107 437 289 414	14 7 <3 <3 <3	33 26 57 37 79	.9 1.3 <.3 <.3 <.3	4 4 11 5 23	7 6 14 10 27	411 322 1002 844 1319	1.47 1.18 6.26 2.16 4.66	3 3 5 2 2	<8 <8 <8 <8 <8	~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	181 276 506 337 1500	.2 .2 .2 .2 .3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4 3 3 3 3 3 3	60 38 302 69 190	.97 .88 2.61 2.94 3.57	.032 .023 .031 .027 .253	4 4 4 15	14 15 8 13 49	.40 .34 1.34 .76 1.39	147 132 64 91 526	.10 .05 .06 .03 .15	3 4 4 3 3	.55 .82 1.87 .99 1.30	.06 .11 .07 .04 .04	.35 .34 .31 .29 .85	<2 <2 <2 <2 <2 <2 <2 <3	123 164 21 32 20	<2 <2 <2 <2 <2 <2 <2 <2 <2 <3	4 ~2 ~2 ~2 ~6
A 205192 A 205193 A 205194 A 205195 Standard DS3/FA-10r	7 8 5 5 10	4390 13357 6099 8516 136	3 4 4 6 34	68 73 72 87 143	2.5 7.7 3.3 4.6 <.3	9 8 9 10 35	14 11 12 16 12	1110 842 658 795 790	2.72 2.70 3.13 4.30 3.06	2 4 5 8 32	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 4	220 161 383 233 27	.3 .7 .4 .6 5.4	3 3 3 3 6	<3 7 <3 3 6	125 109 154 216 71	2.73 2.45 1.23 1.41 .51	.187 .119 .121 .138 .090	14 11 8 8 16	24 14 14 13 169	.82 .45 .67 .79 .56	162 143 416 191 148	.03 .02 .09 .13 .08	<3 <3 3 <3 5	.79 .75 1.19 .95 1.63	.04 .03 .10 .06 .04	.32 .25 .38 .62 .15	4 4 3 6	273 708 396 530 488	3 4 4 4 485	4 5 5 5 478

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

			5]	- E									L	ł	L		E.						E)		
ACHE ANALYTICAL			Ea	sti	Eie:	14	Rei	sou	rce	s L	td	. P	RO	JEC	ΤI	LOR	RA	INE	E	FILE	c #	A2	200	767	•			Pa	ge	4		ACHE	ANALYTICAL
SAMPLE#	Мо ррп	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P X	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na X	K X	W ppm	Au** ppb	Pt** ppb	Pd** ppb
A 205196 A 205197 A 205198 A 205199 A 205200	4 9 4 1 68	1695 3703 6204 125 3281	<3 3 5 <3 66	132 75 63 77 135	.9 2.1 4.4 <.3 2.8	21 7 7 18 16	32 11 12 30 24	1464 989 1133 1169 1252	6.02 2.62 2.47 4.54 4.71	<2 6 16 2 4	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	3 <2 <2 2 2 2	1319 527 153 1383 928	.2 .3 .5 .2 .9	ও ও ও ও ও ও	<3 <3 <3 3 3	299 106 96 189 248	3.31 2.57 2.96 3.03 3.30	.410 .089 .072 .348 .265	23 8 7 20 18	20 16 8 18 21	1.83 .55 .98 1.64 1.37	660 275 201 423 542	.17 .03 .02 .19 .12	ও ও ও ও ও ও ও ও ও	1.62 .62 .44 1.38 1.07	.06 .04 .02 .05 .04	1.29 .41 .27 1.14 .79	4 3 3 2 4	68 131 402 15 242	4 5 2 4 6	11 3 6 13 11
A 205201 A 205202 A 205203 A 205204 A 205205	23 8 2 8 5	17748 4807 85 824 8841	15 5 <3 5 6	83 81 85 109 95	19.4 4.0 <.3 1.5 9.3	11 12 21 26 16	12 16 34 34 17	640 805 1015 1307 827	2.92 3.92 4.83 6.28 3.38	11 2 3 2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 2 2 9 2	127 160 548 324 270	1.6 _4 _2 _4 1.1	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	6 3 3 3 6	118 223 199 281 156	1.53 1.75 2.07 3.37 1.60	.093 .116 .398 .502 .159	10 11 18 30 11	18 14 21 21 18	.48 .64 1.76 1.78 .93	154 149 408 240 167	.02 .05 .16 .14 .14	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	.46 .74 1.63 1.65 .93	.03 .04 .05 .06 .06	.27 .43 1.33 1.27 .71	4 4 3 5	732 160 12 35 1161	3 3 6 9	6 6 11 12 15
A 205206 A 205207 A 205208 A 205209 A 205210	4 5 5 5 3	8011 1535 2298 2033 3814	8 <3 <3 <3 <4	91 92 58 81 96	6.3 .4 1.6 .9 2.3	10 19 7 14 12	12 22 10 17 14	678 992 497 732 927	2.95 4.71 2.26 4.46 3.59	<2 <2 <2 <2 <2 <2 <3	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 2 2 3 2 3 2	153 253 194 396 513	.8 .3 .3 .5	00000	6 3 3 5 3 5 3	158 242 108 229 179	1.02 2.37 .62 1.15 1.74	.095 .235 .072 .160 .071	8 14 6 11 7	10 27 12 18 12	.73 1.11 .60 .75 .66	102 258 111 117 55	.13 .16 .13 .13 .09	ଏ 4 ଏ ସ ସ ସ	.76 1.06 .87 1.16 .94	.05 .06 .10 .18 .07	-68 -94 -68 -61 -46	5 3 2 4 3	507 33 73 208 463	3 3 2 7 7	7 6 5 10 15
RE A 205210 RRE A 205210 A 205211 A 205212 A 205213	4 3 5 6	3865 3651 5670 5384 3205	3 <3 11 8 10	96 94 56 76 103	2.3 2.2 5.0 3.9 2.2	12 11 7 10 15	14 14 7 10 17	933 911 397 679 951	3.62 3.46 1.88 2.53 4.28	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	516 503 306 345 525	.5 .5 .8 .6	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	34333 333	180 170 89 120 228	1.75 1.73 .60 1.08 1.52	.071 .069 .065 .042 .087	7 7 5 7	11 10 11 18 17	.66 .65 .27 .64 .95	57 59 90 71 156	.09 .09 .05 .09 .13	उ उ उ उ उ उ	.98 .96 .37 .83 1.09	.07 .07 .05 .09 .08	.47 .47 .33 .51 .79	4 3 5 5	344 401 537 544 264	7 7 6 7 8	14 14 17 13 13
A 205214 A 205215 A 205216 A 205217 A 205218	7 5 4 6 6	1966 1669 1369 975 1352	<3 123 4 <3 6	140 144 132 71 79	.9 1.4 .5 .9	9 8 12 7 5	17 12 15 10 8	1056 960 927 572 545	4.18 3.63 5.04 3.03 2.68	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3 2 4 2 2	295 114 141 419 219	.4 1.2 .4 .2 .3	3 3 3 3 3 3 3 3	4 3 3 4 3	231 200 283 156 126	1.32 1.54 1.08 1.17 1.00	.096 .054 .035 .061 .066	8 7 5 6 6	18 21 21 21 13	.83 .61 .50 .40 .26	125 69 59 104 68	.14 .11 .13 .09 .10	3 <3 6 9 4	1.06 .78 .79 1.10 .95	.07 .04 .06 .22 .26	.65 .40 .37 .42 .41	4 4 4 3 4	35 46 20 29 25	3 3 4 2 <2	3 7 3 2
A 205219 A 205220 A 205221 A 205222 A 205223	1 2 5 3 3	1377 1487 1154 1167 1735	4 4 5 6	101 96 81 66 87	1.0 .6 .6 .9	7 10 5 4 3	10 15 9 7 9	644 722 594 481 611	3.64 3.30 2.79 2.49 2.48	~2 ~2 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	<8 <8 <8 <8 <8	< < < < < < < < < < < < < < < < < < < <	3 2 3 2 2	168 350 346 269 150	.5 .4 .3 .4 .4	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	3 3 3 3 3 3 3 3 3 3 3 3 3	190 153 140 127 109	.65 1.16 .89 .63 .92	.017 .012 .027 .018 .058	4 4 4 6	8 11 13 15 9	.31 .47 .32 .27 .45	55 98 89 111 71	.13 .11 .11 .12 .13	3 5 4 4 4	.56 .65 .52 .50 .72	.06 .06 .05 .05 .05	.36 .39 .30 .37 .43	3 3 2 3	19 14 31 13 42	2 2 2 2 2 2 3	4 2 2 4
A 205224 A 205225 A 205226 A 205226 STANDARD DS3/FA-10R	4 2 3 4 10	874 1587 2764 1956 139	8 4 10 <3 36	103 74 102 95 145	.4 .7 1.6 .8 <.3	5 5 8 5 34	9 8 12 12 12	656 530 665 672 778	2.87 2.78 3.66 3.75 3.02	<2 <2 <2 2 29	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2	2 3 3 2 4	290 83 113 704 28	.3 .4 .3 .4 5.4	3 2 2 2 3 3 3 3 3 6 6	3 3 3 3 3 6	134 158 190 225 71	.88 .85 .93 1.12 .50	.037 .015 .052 .066 .088	5 4 6 7 17	13 11 19 10 169	-43 -40 -48 -42 -55	61 70 73 123 144	.13 .17 .16 .14 .08	5 4 6 4 5	.80 .67 .81 1.21 1.60	.07 .05 .06 .15 .04	.36 .44 .46 .52 .15	4 2 4 4 5	13 23 48 35 486	2 2 3 2 493	3 5 4 479

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ŧ

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data]) FA

į 1

AGE AVALYTICAL	j	•) :	ا Eas	stf	」 ie	• 1d	Re	ຣວນ	irce	. 88) Ltċ	1.	PR	ר כיבר	CT	LOI	RR]	E	FII	E :	 ‡ A	2 00	 767		<i>ل</i>		Pa	ge	5	ل ا	AC1	E AVALYTIC	~J
SAMPLE#	Mo ppm	Cu ppm (Pb ppm p	Zn opm	Ag ppm	Ni ppm	Со ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P X	La ppm	Cr ppm	Mg %	8a ppm	Ti %	B ppm	Al X	Na %	К %	W ppm	Au** ppb	Pt** ppb	Pd** ppb	·
A 205228 A 205229 A 205230 A 205231 A 205232	3 4 5 5 <1	1351 1614 1016 1748 162	<3 5 5 6 3	77 86 83 93 83	.4 .5 <.3 .7 <.3	5 6 11 139	9 11 9 12 38	553 639 620 744 1079	2.47 3.22 2.71 2.75 5.07	4 <2 <2 <2 3	<8 <8 <8 <8 9	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <3	362 319 256 456 297	.2 .4 .3 .5 .4	00000 00000	3 3 3 3 3 3 3 3 3 3 3 3 3	123 158 131 124 144	1.06 1.44 1.35 1.40 2.51	.045 .083 .067 .097 .109	5 6 7 9	18 24 20 21 356	.42 .50 .45 .66 3.33	130 58 44 135 271	. 12 . 14 . 12 . 12 . 25	<3 13 <3 <3 4	.91 1.55 1.24 1.01 2.12	.10 .42 .30 .09 .06	.52 .44 .33 .61 2.24	2 3 4 4 4	27 44 30 71 19	2 3 3 9	3 5 8 7 5	
A 205233 A 205234 A 205235 A 205236 A 205237	2 3 3 4 2	094 693 1521 444 131	4 1 5 <3 <3	105 79 89 78 69	.8 <.3 .8 .3 <.3	19 87 22 13 111	15 30 19 13 33	744 788 720 639 866	4.60 4.36 4.12 3.31 4.54	<2 3 2 2 2 2 2	<8 12 8 <8 8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 3 2 2 2 2 2	256 328 191 174 1304	.3 .2 .3 .2	3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3	249 161 215 152 133	1.03 .95 1.00 1.15 1.95	.062 .115 .108 .070 .112	5 9 7 5 9	38 225 38 43 254	.63 2.39 1.19 .81 2.72	281 293 299 210 299	.14 .29 .23 .13 .25	3 6 3 3 3 3 3	.82 1.78 1.27 .90 1.89	.09 .11 .10 .07 .08	.69 1.83 1.32 .89 1.93	2 4 4 2 2	77 13 49 42 10	5 6 4 2 11	10 3 7 4 4	
A 205238 RE A 205238 RRE A 205238 A 205239 A 205240	3 2 2 14 14	129 126 126 2478 1633	<3 <3 <3 8 16	67 66 65 59 61	<.3 <.3 <.3 .6 .6	129 128 128 75 59	36 36 35 39 32	842 837 838 699 683	4.53 4.50 4.55 4.33 3.86	2 <2 2 3 3	12 21 16 <8 12	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 3 3 2 2	399 392 399 443 320	.2 .3 .2 .5	3 3 3 3 3 3 3 3 3 3	3 3 4 3 3 3 4 3 3	131 130 133 142 135	1.55 1.54 1.55 1.67 1.35	.078 .078 .079 .110 .120	8 7 8 8	328 323 328 164 117	3.05 3.03 3.03 2.46 1.84	221 219 217 288 350	.23 .23 .23 .32 .24	5 6 7 4 6	1.96 1.97 1.96 1.93 1.74	.08 .08 .08 .10 .17	2.02 2.01 2.00 1.96 1.56	3 3 4 3 3 3	9 8 31 23	7 7 7 5	3 3 7 9	
A 205241 A 205242 A 205243 A 205243 Standard DS3/FA-10R	<1 <1 <1 1 9	149 55 25 101 120	4 <3 <3 <3 34 1	57 60 57 66 148	<.3 <.3 <.3 <.3 <.3	59 60 78 128 35	22 27 34 47 12	606 787 743 827 764	3.03 4.33 3.80 5.10 3.07	3 3 <2 28	<8 10 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 <2 <2 <2 <2 <4	479 233 271 248 28	.3 .3 .3 .2 5.3	3 3 3 3 3 3 3 3	9 2 2 2 2 9 2 2 2 2 2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4	97 146 129 196 72	1.26 2.01 2.09 2.73 .51	.119 .163 .263 .200 .087	8 8 13 16 17	160 156 170 288 178	1.69 2.07 2.82 4.22 .55	144 158 1095 1770 142	.20 .19 .29 .25 .09	5 4 3 3 3 3	2.06 2.05 2.19 2.77 1.65	.36 .20 .12 .07 .04	1.25 1.46 2.11 2.67 .17	2 2 3 2 5	3 <2 5 3 492	3 3 5 7 471	4 11 5 8 478	
Sample type: CORE	<u>R150</u>	<u>60C.</u>	<u> </u>	<u>nple</u>	s be	ginn	ing_	<u>'RE'</u>	аге	<u>Rerur</u>	<u>ns ar</u>	<u>nd '</u> F	RRE '	are f	Rejec	<u>:t Re</u>	<u>runs</u>	.					-	•.			;	. 1					1912 - E. 1922 	
																																	с қ. 	а, т
																																·		
																				a														

Data

FA

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U mqq	Au ppm	Th s ppm p	Sr C pm pp	d S m pp	b B mipp	i V m. ppm	Ca X	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti % pp	B	Al %	Na %	к . % г	W A xpm	lu** ppb
SI A 205314 A 205315 A 205316 A 205317	<1 1 1 2	2 2955 2895 2698 4248	< 3 5 3 3	3 74 89 92 148	<.3 2.1 2.1 1.6 2.6	1 8 9 12	<1 8 11 10 17	7 1069 603 782 1231	.03 2.33 2.89 2.91 4.72	<2 29 91 23 16	<8 <8 <8 <8 <8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<2 4 6 4 1	2 <. 57 <. 71 <. 87 <. 16 .	5 < 5 < 5 < 5 <	3 < 3 < 3 < 3 < 3 <	3 <1 4 161 3 118 3 136 3 250	.08 ⁴ 3.34 1.79 2.41 3.21	.001 .307 .204 .273 .275	<1 21 19 23 19	2 14 14 17 24	<.01 .49 .22 .33 .58	5<. 26 26 36 39	.01 < .01 < .01 < .02 <	3 3 3 3 3 1	.01 . .57 . .77 . .91 .	.38 .02 .01 .01 .02	.01 .18 .17 .27 .40	2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥	<2 196 179 167 384
A 205318 A 205319 A 205320 A 205321 A 205322	3 3 3 1 <1	2703 2529 7040 5273 2625	5 5 8 8	120 79 56 120 145	2.2 1.8 5.0 3.3 1.8	9 9 10 13	14 10 6 13 18	1013 1391 700 673 1002	3.68 2.35 1.37 3.90 5.94	9 13 12 <2 5	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2	5 1 6 9 3 1 8 1	25 <. 90 . 64 . 98 <. 34 .	5 < 5 < 8 < 5 < 6 <	3 3 < 3 < 3 <	4 205 3 108 3 54 3 216 3 339	2.39 4.50 2.19 1.61 2.90	.255 .318 .062 .214 .396	17 25 7 14 25	17 8 9 12 13	.59 .92 .50 .61 .86	71 99< 44 79 43	.06 .01 .03 .08	3 3 3 3 3 3 3 3 3	.77 .59 .38 .77 .97	.02 .02 .02 .03 .04	.37 .22 .20 .22 .32	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	324 202 627 516 122
A 205323 A 205324 A 205325 A 205326 A 205326 A 205327	2 3 2 <1 2	4531 8541 2295 516 1985	7 8 8 3 7	109 100 97 146 95	2.7 5.9 1.5 .5	11 9 10 15 10	12 13 14 24 15	726 707 1164 1202 823	3.19 2.69 2.90 5.31 3.30	3 6 3 3	<8 <8 <8 <8 <8	~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~	3 4 <2 2 2 2 <2 1	95 <. 85 . 00 <. 00 <. 69 <.	5 < 8 < 5 < 5 <	3 < 3 < 3 < 3 <	3 163 3 112 3 145 3 240 3 170	1.64 1.76 3.44 2.58 1.95	.102 .135 .043 .283 .070	7 9 6 15 4	19 10 9 17 27	.67 .63 .87 1.58 .91	42 46 42 286 88	.10 .08 .09 .12 .11	उ उ उ उ 1 उ	.82 .81 .93 .34 .86	.03 .03 .03 .04 1 .04	.31 .49 .36 .44 .50	88888 8888	340 702 90 53 94
A 205328 A 205329 A 205330 RE A 205330 RRE A 205330	3 4 4 5	1011 1630 2295 2196 2288	3 3 4 4 6	96 107 102 99 102	.4 .8 1.6 1.7 1.6	13 11 12 13 14	13 16 17 16 17	720 880 809 782 825	3.89 4.60 4.26 4.04 4.28	<2 3 2 2 2 2	<8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 1 2 1 <2 2 <2 2 <2 2	07 <. 32 <. 19 <. 09 <. 20 <.	5 < 5 < 5 < 5 <	3 < 3 < 3 < 3 < 3 <	3 242 3 273 3 227 3 216 3 227	1.05 1.65 1.38 1.32 1.39	.075 .039 .050 .049 .053	5 3 4 3 4	23 17 16 16 16	.81 .82 .83 .80 .83	70 42 92 90 97	.13 .12 .14 .14 .14	3 3 3 3 3 3 3	.80 .82 .83 .79 .85	.04 .03 .03 .04 .04	.56 .42 .64 .61 .65	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	25 46 65 66 63
A 205331 A 205332 A 205333 .STD R-1 A 205334	2 5 11 870 3	1404 1413 2411 8302 2482	3 <3 8 11817 12	90 101 113 19569 99	1.0 1.2 2.1 98.2 1.6	9 10 11 250 9	11 12 14 251 12	856 987 1002 755 867	3.50 3.62 3.93 6.39 3.22	<2 2 13 9351 <2	<8 <8 <8 120 <8	<2 <2 <2 15 <2	<2 1 <2 1 3 1 89 2 <2 1	46 <. 81 <. 89 <. 54 442. 26 <.	.5 < .5 < .4 132 .5 <	3 < 3 < 3 < 27 28 3 <	3 188 3 192 3 191 9 37 3 172	1.68 2.26 2.48 1.41	.072 .092 .173 .097 .116	5 8 11 444 8	26 17 21 246 13	.70 .78 .81 .88 .84	64 56 122 28 101	.10 .08 .07 .08 .11	3 3 3 3 3 3 3 3	.74 .94 .85 .86 .90	.03 .03 .03 .15 .03	.51 .42 .46 .38 .54	<2 <2 <2 49 <2	74 51 155 - 123
A 205335 A 205336 A 205337 A 205338 A 205338 A 205339	2 2 1 1	2535 2003 3645 3631 1942	<3 4 3 5 3 3	83 60 87 91 87	2.2 1.4 2.3 2.7 1.3	7 7 10 11 11	8 10 11 12	535 506 535 569 540	2.72 2.98 3.58 4.10 3.83	<2 4 2 <2 2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 1 <2 1 3 1 3 1 2	08 <. 04 <. 06 <. 08 <. 90 <.	.5 « .5 « .5 «	3 < 3 < 3 3 3 3	3 161 3 184 3 195 3 230 3 225	1.08 .82 1.05 1.17 .79	.061 .068 .150 .158 .098	4 9 10 6	11 14 14 15 14	.48 .43 .57 .53 .56	50 91 45 47 48	.11 .11 .13 .12 .14	ଏ 4 ଏ ଏ ଏ ଏ ଏ	.56 .52 .65 .56 .55	.02 .03 .03 .03 .03	.29 .39 .28 .29 .43	~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~	76 65 118 104 66
A 205340 A 205341 A 205342 A 205343 Standard DS3/AU-R	1 2 4 5 9	3513 2641 2182 1530 127	3 <3 7 5 31	99 81 73 113 160	2.4 1.5 1.4 1.0 <.3	13 10 12 13 38	15 11 11 14 11	779 591 532 773 775	4.38 3.33 3.47 4.23 3.26	4 2 2 <2 30	<8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 1 <2 1 2 1 <2 1 3	20 < 23 < 12 < 28 < 28 6	.5 < .5 < .5 <	3 × 3 × 3 × 5	3 254 3 207 3 218 3 231 5 81	1.75 1.21 .87 1.17 .56	.096 .115 .111 .081 .087	6 7 7 5 17	12 14 19 22 185	.93 .81 .64 .87 .59	42 35 43 82 139	.15 .12 .13 .15 .09	<3 <3 3 7 <3 1	.75 .73 .64 .80 .78	.04 .04 .04 .03 .04	.45 .39 .40 .56 .15	<2 <2 <2 <2 <2 <2 <2 <2	195 95 51 77 489
GROU UPPE ASSA - SA <u>Samp</u>	P 1D R LIM Y REC MPLE Les b	- 0.5 AITS - COMMEN TYPE: Deginr	AG, A AG, A IDED FO CORE	AMPLE U, HG R ROCI R150 (E' ar	LEAC , W == K AND 60C e Rer	HED W 100 CORE AU UNS 8	ITH PPM; SAM i** G and '	3 ML MO, PLES ROUP RRE!	2-2-2 CO, C IF CU 3B - are F	2 HCL CD, SI J PB 3 30.00 Reject	HNO3 B, BI ZN AS D GM <u>t Rer</u>	5-H20 , TH 5 > 1 SAMP <u>runs.</u>) AT 9 I, U & I%, AG PLE AN	5 DEG. B = 2 > 30 B ALYSIS	С FOR ,000 р РРМ & ВУ FA	NE PM; AU > V/ICF	HOUR CU, F 1000	, DIL B, ZN PPB	UTED	ΤΟ 10 MN,) ML, AS, YE. (ANAL V, LA	YSED , CR) BY I 2 = 10	CP-E ,000	S. PPM	I.	B.C.	. AS	SAYEI

				· ·				با نید 	· · · ·	- IV								п л.			L 			- F d		<u>ح</u>	<u> </u>		ACHE ANAL	YTICAL
SAMPLE#	ppin ppin	ppm	zn ppm	Ag ppm	ppm	co ppm	Mn ppn	ге %	AS ppm	ppm	AU ppm	ppm pp	n ca n ppm	sb ppm	B1	v 1. ppm	Ca %	P X	La ppm i	Cr ppm	Mg X	Ba ppm	T1 %	в ppm	AL %	Na X	к %	W ppm	Au** ppb	
A 205344	3 1596	<3	120	1.3	9	11	763	3.61	<2	<8	<2	<2 11	8 <.5	<3	<3	197	1.03	.073	5	17	.85	63	.13	<3	.79	.02	.50	<2	46	
A 205345	2 961	< ব	118	.9	13	14	1070 4	4.39	<2	<8	<2	2 14	9.6	<3	3	222	2.61	.108	7	26	.95	123	.10	্র	.75	.03	.51	<2	30	
A 200340	0 4570	C)	09	0	2	6	- 191 A - 576 -	2.00	Ö 2	<ð 20	~2	2 13	8 <.5	< <u>></u>	· <5	92	2.55	.091	11	14	.71	117	.03	্র	.47	.02	.27	2	17	
A 205348	2 2667	9	77	1.9	12	9	587	2.75	<2 <2	<8 <8	<2 <2	<2 24	9 .5 9 .5	د» ح	<	155	1.00	.072	2 4	18	.55 .54	125 69	.10	र उ	.62 .57	.04	.34 .39	2	59 42	
205349	2 1907	4	72	1.5	7	7	464 2	2.26	<2	<8>	<2	29	4 <.5	<3	<	133	.83	.033	5	9	.40	47	.11	<3	.44	.02	.25	2	59	
205350	1 1767	3	84	1.7	8	9	526 3	5.02	3	<8	<2	38	8 <.5	<3	<3	182	.71	.031	4	15	.57	56	.15	<3	.56	.03	.42	2	116	
205351	1 1519	<u> </u>	69	1.2	4	6	432	1.91	2	<8	<2	28	9 <.5	<3	୍ୟ	106	.73	.047	5	11	.52	51	.15	<3	.59	.04	.37	2	20	
205352 205353	2 1764	. 5	76 68	1.1	7 8	9	523 424	2.33 2.27	2 4	<8 <8	<2 <2	29	3 <.5 3 <.5	থ ও	 	5 138 5 140	.99 .76	.100	77	8 13	.71 .63	60 65	.17	<3 <3	.73 .66	_03 _04	.53 .53	2 2	. 28 18	
STD R-1	836 8123	11965	19242	96.3	253	258	753 (5.26	9249	115	9	92 25	2 439.5	1338	285	37	1.37	.095	444	246	.83	28	.08	3	.86	.15	.37	58	-	
205354	2 1511	5	74	1.1	5	8	483 2	2.67	<2°	<8	<2	29	9 <.5	<3	<3	5 157	1.04	.122	8	9	.54	53	.14	<3	.58	.04	.39	2	28	
205355	2 795	<3	71	.7	6	9	566	2.74	2	<8	<2	2 11	8 <.5	<3	<	145	1.30	.105	7	9	.73	61	.14	<3	.71	.03	.52	2	38	
205356	1 1102	3	89	.8	5	8	511 2	2.80	<2	<8	<2	3 6	8 <.5	_ <3	<	157	.86	.089	6	.9	.53	40	.14	ব্র	.58	.03	.39	<2	40	
205357	2 2442	3	113	1.8	8	9	585 2	2.94	2	<8	<2	4 35	1 <.5	<3	<3	5 164	1.03	.067	6	17	.49	64	.12	ব	.52	.03	.32	2	67	
205358	2 1635	<3	126	1.3	10	11	756 3	3.67	3	<8	<2	3 59	8 <.5	<3	<	208	1.41	.081	7	18	.53	86	.11	ও	.57	.02	.30	<2	64	
5359	1 1176	3	135	1.0	9	10	631 .	3.79	2	<8	<2	3 76	8 <.5	<3	<	219	.91	.059	5	19	.52	56	.15	<3	.61	.03	.39	<2	51	
05360	2 732	3	111	.5	9	9	700 2	2.95	3	<8	<2	4 13	5 <.5	<3	<	161	1.57	.084	<u>7</u>	20	.57	73	.11	<3	.59	.02	.35	<2	33	
A 205360 A 205360	2. (52	4	115	.0	8 8	10	710 : 712 7	5.01	<2	<8 <8	<2 <2	4 15	/ <.5 7 < 5	<5 ~3	<5	164	1.61	.086	4	20	-58 58	76	.11	<3	.61	.02	.36	<2	29	
, A 20000									-		-								_	20			•••		.00	.02	, .	~6	20	
205361	2 1194	4	158	1.0	10	11	962	5.5/	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<8 ~9	<2	4 10	2 <.5	<5	<	202	1.15	.100		19	.67	61	.14	4	.77	.03	.42	2	35	
205362	4 732	 	130	2.0	11	14	700	4.10	<2	~0 <8	<2	2 19	0 1.5 0 1.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<	220	00	107	7	20	-04 60	04	14	~3	. 15	.05	.21	~2	02 15	
205364	4 1157	6	97	.7	7	10	505 3	3.08	2	<8	<2	3 13	8 <.5	<3	<3	162	.90	.063	Ś	18	.43	51	.12	<3	.89	.11	.39	2	19	
205365	6 1074	4	73	1.1	18	10	522	3.21	3	<8	<2	4 19	5 <.5	<3	<	167	1.07	.118	8	33	.58	88	.15	3	1.73	.75	.76	7	30	
205366	2 859	7	111	.7	11	9	584	5.25	<2	<8	<2	3 10	8 <.5	<3	<3	178	.86	.042	5	32	.46	46	.15	<3	.83	.10	.32	2	19	
205367	1 865	<u><3</u>	124	.6	10	9	550	3.44	<2	<8	<2	4 17	8 <.5	্ব	<3	184	.90	.067	6	24	-46	40	.13	<3	.75	.04	.25	<2	22	۰.
205368	1 1110	্ব	123	.8	7	10	620 3	3.59	3	<8	<2	3 12	7 <.5	<3	<	193	1.18	.056	5	24	.48	37	.13	<3	.73	.04	.28	<2	16	
205369	2 993	<5	154	7		13	986 4	4.30	4	<8 - 8	<2	3 11	1 <.5	<3	<	220	2.17	.086	8	15	.60	35	.07	<3	-81	.03	.22	<2	34	ъ.
U76CU	3 (99	5	115	••	9	У	002 3	5. 19	5	<ö	<2	<2 9	לי> וי	د>) <3	157	1.58	.047	2	14	.48	74	.06	<3	,63	.03	.30	<2	24	
.05371	3 3126	<3	98	1.5	55	49	763 (5.28	4	<8	<2	2 18	0 <.5	<3	<	190	1.73	.162	9	24	.89	204	. 15	<3	1.01	.03	1.12	<2	68	
205372	2 57	<3	69	<.3	131	35	670 4	4.54	5	<8	<2	2 43	0 <.5	<3	<	138	1.23	- 164	10	268	2.79	487	.29	4	1.94	.06 2	2.97	4	3	
ANDARD DS3/AU*K	- Y 129	5	122	.4	20	11	(21)	עו ג	21	<0	< <u>Z</u>	- 4 6	עיכ ז	5) 3	1 79	. 24	.005	17	180	. 20	154	.09	د>	1.02	.05	.15	5	499	

Sample type: CORE_R150_60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA VIA

÷

(ISO 90)	02	i LA Accr	M addte	d Co] LT .)	1	<u>ן</u>]B. 750/		TIN T	.	 	1 12 1 3	تەن_ مەرەر		_)C		_1) ())]		1	P L	_!((50 2	\3	- 4		FAL	4)2 2		16
11			Ea	<u>etfi</u>	<u>eld</u>	<u>Re</u>	801 11	urce 0 - 3	9200 98] 25 Hoi	utd we St	. P ., Vi	ROi ncoi	JEC JVer	EC V	1919 1 <u>011</u> 60 127	св <u>air</u> sı	iR⊥. L <u>@</u> Jomit	Fi.ted	Le by: J	£i ∦ } ay ₩.	120: Pag	296 e	2	Pa	ıge	1						A
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppn	Fe X	As ppm (U Ppm p	Au opm p	Th opm	Sr ppm	Cdi ppm	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti X j	B ppm	Al X	Na X	к %	W A ppm	u** S ppb	ample lb
SI A 205373 A 205374 A 205375 A 205376	1 1 1 1	2 78 199 92 63	3 2 2 2 3 3 3 3	4 137 92 78 98	<.3 .3 <.3 <.3 <.3	<1 40 38 30 44	<1 40 16 16 25	<2 1146 817 836 999	.02 6.90 3.66 3.81 4.49	<2 3 2 2 3 2 3 3	<8 <8 <8 <8 <8	2222 2222 2222	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3 194 174 261 241	<.5 <.5 <.5 <.5 <.5	00000 00000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 248 124 130 151	.13 4.26 1.46 1.70 2.02	.001 .390 .194 .205 .304	1 22 12 13 16	2 56 2 73 1 65 1 83 1	.01 2.52 1.07 1.03 1.91	13< 617 80 153 211	.01 .06 .12 .12 .12	3 1 3 1 4 1 4 1	.01 .97 .95 1.11 1.67	.55 .05 .04 .05 .04	.01 1.90 .70 .72 1.57	<2 4 2 2 2 2 2 2 2 2 2 2 2	<2 10 4 8 6	- 10 11 12 14
A 205377 A 205378 A 205379 A 205380 A 205381	1 1 2 4 2	182 376 415 143 307	<3 3 4 4 6	121 134 186 117 147	<.3 .3 .3 <.3 .3	48 39 32 38 33	46 37 34 26 23	870 1183 1656 1362 1207	7.81 6.64 7.27 4.50 4.25	2 4 2 5 4	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	247 200 282 212 177	<.5 <.5 <.5 <.5 <.5	3333 333 33 33	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	294 245 252 170 155	2.83 3.15 4.24 3.74 2.56	.435 .419 .315 .299 .274	24 16 10 16 16	82 2 63 2 49 2 54 2 52 1	2.82 2.55 2.31 2.41 1.75	1234 885 855 195 210	.07 .11 .15 .12 .12	<3 1 <3 1 <3 1 4 1 4 1	1.99 1.90 1.63 1.54 1.40	.06 .04 .03 .03 .03	2.73 2.28 1.72 1.41 1.38	<2 6 2 2 2 2	11 21 35 20 15	13 12 18 17 19
A 205382 A 205383 A 205384 A 205385 A 205386	4 8 7 4	739 10650 3128 7958 4050	7 6 8 29 6	124 109 123 89 37	.6 6.2 1.9 13.0 3.2	12 10 22 7 3	18 15 34 10 5	1057 919 927 766 451	3.21 2.49 5.93 2.21 1.21	6 6 4 12 3	<8 <8 <8 <8 <8	~? ~? ~? ? ?	2 3 2 3 2 3 2	222 185 366 142 114	.6 .8 <.5 1.2 <.5	८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८	34333 333	130 131 242 100 50	2.26 2.40 2.37 2.97 1.46	.229 .310 .383 .285 .078	15 22 19 21 7	18 1 12 1 23 1 11 13	1.39 1.26 1.87 .91 .45	186 155 864 70 81	.11 .10 .12 .06 .06	3 3 3 3 3 3 3	1.20 .96 1.48 .76 .44	.04 .03 .04 .03 .03	.59 .29 1.53 .33 .21	3 <2 1 <2 <2 1 <2	54 009 288 118 487	17 20 18 10 15
A 205387 A 205388 A 205389 A 205390 RE A 205390	9 5 10 11 10	19284 2126 877 137 131	7 <3 6 5 3	207 163 157 82 81	12.7 1.6 1.0 <.3 <.3	17 12 13 6 5	24 19 19 11 10	1374 1428 1281 810 809	6.24 5.13 5.63 2.92 2.92	<2 6 8 4 3	<8 <8 <8 <8 <8	2 2 2 2 2 2 2 2 2 2	<2 6 13 2 2	110 138 180 182 181	1.2 <.5 <.5 <.5 <.5	3 3 3 3 3 3 3 3	3 <3 <3 <3 <3	329 256 247 120 121	2.50 3.56 3.97 2.18 2.17	.084 .535 .864 .231 .228	6 32 49 14 14	12 1 14 1 11 1 10 10	1.60 1.13 1.07 .76 .76	56 42 52 48 48	.14 .07 .07 .08 .08	<3 1 3 5 1 3 4	1.37 .91 1.02 .87 .87	.03 .03 .04 .04 .04	.63 .19 .31 .21 .22	<2 2 2 <2 <2 <2 2 2	2969 242 142 30 27	14 15 11 13
RRE A 205390 A 205391 A 205392 .STD R-1 A 205393	11 4 2 917 2	129 596 3645 8428 4892	5 6 12516 8	80 102 79 21097 82	 <.3 .6 2.3 101.6 3.0 	8 13 58 265 62	10 19 18 259 19	807 1062 960 762 711	2.95 4.08 3.67 6.63 4.03	5 <2 <2 9874 · 6	<8 <8 <8 130 <8	<2 <2 <2 13 <2	2 <2 3 91 3	187 178 2972 283 2844	<.5 <.5 <.5 470.1 <.5	<3 <3 <3 1444 <3	<3 <3 <3 301 .<3	122 166 163 38 170	2.15 2.41 3.70 1.49 2.39	.220 .177 .279 .103 .321	14 10 16 466 18	10 17 1 129 2 261 102 1	.75 1.39 2.03 .91 1.84	51 97 1,16 32 210	.08 .14 .14 .08 .13	4 3 6 3 3	.88 1.19 1.12 .87 1.04	.04 .04 .04 .15 .04	.23 .74 .91 .41 .84	2 <2 54 <2	27 53 259 510	- 14 15 - 14
A 205394 A 205395 A 205396 A 205397 A 205398	<1 2 2 11	2178 2642 1704 2429 164	<3 5 3 6 .4	132 93 90 230 71	1.1 1.6 .9 1.6 .4	48 60 19 65 10	28 21 19 46 12	1332 989 926 1672 1372	7.62 3.97 2.88 9.50 2.90	<2 4 7 5 2	<8 <8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	296 2363 220 198 88	<.5 <.5 .6 <.5	33333 3333 3	3 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	340 151 121 411 94	5.24 3.76 2.51 8.10 4.36	.210 .207 .190 .378 .165	12 13 11 25 9	78 2 133 3 16 1 106 1 12 1	2.28 3.00 1.60 1.55 1.38	167 183 99 70 309	.13 .13 .08 .08 .08	3 3 3 3 3 3 3 3 3 3 3 3 3	1.31 1.32 1.24 2.43 .52	.03 .03 .03 .01 .01	.70 .62 .42 .47 .26	<2 <2 2 2 3	122 162 35 120 94	11 12 11 7 11
A 205399 A 205400 A 201101 A 201102 Standard DS3/Au-R	14 3 2 3 10	1693 2440 5065 1733 126	6 5 12 7 31	82 56 69 73 162	2.6 2.5 5.0 4.8 <.3	19 11 12 9 37	13 9 10 12 11	1302 699 1005 1124 817	3.07 2.39 2.43 3.36 3.33	3 3 10 6 29	<8 <8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2 <2 2 2 4	93 94 75 94 29	<.5 <.5 1.1 <.5 6.0	33335	3 3 3 3 3 6	106 80 90 99 80	3.82 2.09 3.55 4.24 .57	.137 .170 .175 .282 .089	6 9 11 16 17	26 1 14 10 7 190	. 15 . 60 . 93 . 84 . 60	308< 254 314< 152< 140	.01 .01 .01 .01 .01 .10	<3 4 <3 <3 <3	.41 .48 .53 .64 1.78	.01 .01 .01 .01 .01	.17 .20 .15 .20 .16	2 2 <2 3 3	461 425 333 970 489	12 13 12 14 -
DATE RECEIV	GRO UPPI ASS - S <u>Sam</u> ED:	UP 1D ER LIM AY REC AMPLE ples b AUG	- 0.50 HITS - COMMEND TYPE: Des inni 12 20	GM SA AG, AU ED FOR CORE R ng 'RE 02 D	MPLE I , HG, ROCK 150 60 / are ATE	EACH W = AND C <u>Reru</u> REP(ED W 100 I CORE AU <u>INS AI</u>	ITH 3 PPM; 1 SAMPI ** GRO nd /R MAI	ML 2 MO, CO LES I OUP 3 RE' a LED	-2-2 0, CD F CU B - 3 <u>re Re</u>	HCL-H , SB, PB ZN 0.00 ject	IN03 BI I AS GM S <u>Reri</u>	+H20 , TH, > 19 SAMPI Ins.	AT 93 , U & %, AG LE AN	5 DEG. B = 2 > 30 ALYSIS SIGN	C FC ,000 PPM 8 BY F	DR ON PPM; AU A/IC BY.	E HO CU, > 10 :P.	UR, D PB, 00 PP	ILUTE ZN, N B	Ю ТО 11, М	10 M N, AS TOYE	4L, A S, V, , C.L	NALYS LA, EONG,	ED B' CR =	Y ICF 10,0 WANG	P-ES. DOO F	PPM.	ED B.	.c. A	SSAYE	25
Ail results are	con	sidere	d the	confid	ential	pro	perty	y of 1	the ci	lient	U . Acm	ne as	sume	es the	e liab	iliti	es f	or a	ctual	cost	of	the a	analy	sis o	nly.				D	ata_	FA	

•

Eastfield Resources Ltd. PROJECT Lorraine FILE # A202962 Page 2 ADE ANULYTICAL SAMPLE# Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W Au** S															A ALALYTICAL																	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm (Sr ppm	Cd ppm	Sb ppm	8i ppm	V ppm	Ca X	P %	La ppm	Cr ppm	Mg X	Ba ppm	Ti %	8 ppm	Al X	Na X	K X	W ppm	Au** ppb	Sample lb
A 201103 A 201104 A 201105 A 201106 A 201107	2 2 2 2 2 2	453 1189 349 324 1209	5 7 4 4 6	72 66 83 87 96	.7 2.1 .5 <.3 2.5	7 7 7 10	11 9 10 12 16	1237 849 1000 1056 779	3.00 2.44 3.27 3.88 4.02	<2 2 <2 <2 2 2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 3 2 4	81 79 91 95 81	<.5 .6 <.5 <.5 <.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0000 0000	86 84 153 163 154	3.39 2.95 3.25 3.17 2.60	.144 .140 .168 .059 .190	12 11 13 7 15	9 7 8 7 11	.63 .34 .42 .51 .33	166 149 134 81 67	.01 .01 .01 .01 .02	33333 3333	.79 .59 .54 .58 .93	.01 .02 .01 .02 .01	.32 .20 .15 .17 .20	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	165 276 63 30 386	13 12 12 12 12
A 201108 RE A 201108 RRE A 201108 A 201109 A 201110	4 5 4 2 1	697 695 649 581 359	8 8 7 7 4	116 110 96 90 96	.7 .9 1.6 .4 <.3	8 9 8 9 8	13 14 13 12 10	1111 1106 1055 860 1201	3.39 3.35 3.21 3.46 3.32	3. 3 2 8	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2	4 5 3 8	108 106 104 118 158	1.1 1.1 .8 <.5 .5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22222 22222	115 114 109 130 138	3.51 3.50 3.37 2.90 3.66	.305 .304 .288 .181 .483	17 18 16 13 29	7 6 7 10 10	.41 .41 .40 .31 .66	449 440 436 119 330	.01 .01 .01 .01 .01	43333	.84 .83 .81 .84 .71	.01 .01 .01 .02 .01	.23 .23 .23 .21 .19	2 2 2 2 2 5	130 127 158 22 13	11 - 12 12
A 201111 .STD R-1 A 201112 A 201113 A 201114	6 914 1 1 2	487 8450 381 588 4194	5 13012 5 4 104	80 20849 112 131 68	.6 101.3 .3 .3 4.7	8 273 11 10 8	13 274 15 15 9	1137 774 801 1172 872	3.80 6.92 4.77 5.00 2.54	5 10172 4 2 10	<8 120 <8 <8 <8	<2 14 <2 <2 <2	4 93 6 3 <2	153 276 111 113 68	<.5 482.1 <.5 <.5 .8	<3 1452 <3 <3 <3	<3 311 <3 <3 <3	103 39 214 235 112	3.08 1.55 2.49 2.85 2.00	.181 .104 .378 .230 .038	10 487 24 18 5	6 271 11 12 11	.72 .92 .39 .41 .41	252 26 55 55 71	01 .08 .03 .02 .01	3 3 5 3 3 3	.86 .95 .88 .67 .34	.01 .16 .03 .02 .02	.24 .42 .27 .15 .13	2 59 2 <2 <2	152 24 11 245	10 - 13 9 8
A 201115 A 201116 A 201117 A 201118 A 201119	9 2 4 1	666 442 722 260 97	6 5 4 4 4	97 102 113 112 96	.8 .4 .9 <.3 <.3	10 9 10 9 9	11 11 13 12	1355 1098 1383 1211 1202	3.43 3.61 3.66 4.70 4.00	10 11 18 4 <2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	3 5 4 5 2	82 71 125 100 94	.7 <.5 <.5 <.5 <.5	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	3 3 3 3 3 3 3 3 3 3 3 3 3	133 161 152 204 184	4.36 2.90 3.60 2.90 3.03	.242 .413 .262 .273 .122	15 25 18 21 10	9 7 10 15 17	1.24 .68 .99 .59 .65	370 110 289 74 124	.01 .01 .01 .02 .04	3 <3 3 3 3	.39 .54 .49 .63 .55	.01 .01 .02 .02 .02	.14 .18 .19 .20 .17	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	75 19 20 34 6	13 12 13 10 11
STANDARD DS3/AU-R Sample type: (9 CORE	125 <u>R150 d</u>	31 50C. s	162 Samples	<.3	37	12 'RE	819 <u>'</u> are	3.29 Reru	30 Ins and	<8 1 / RR	<2 <u>E' a</u>	4 re R	30 ejec	6.1	5 I <u>ns.</u>	5	81	.58	.087		<u>190</u>	.59	142	.10	<3	1.73	.04	.15	5	483	<u> </u>

Data_

FA

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

CMR LYT (ISO 9002	Aq.	i al gred:	1TOI Lted	L Ji Co.)	ur it		Ľ		. H OCH	II: Emic	CAL.	- Ē. Al	U NALY	JUVI SIS	CER	: FIE	r TC	1R6 Ate		PH	I	(604		3-3	ľ	FA.		.) 2		
			Sast	fiel	<u>.d</u> R	es 1	<u>941</u> 10 -	<u>çes</u> 325	Lit Howe	<u>d.</u> st., v	RC anco	UE(uver	BC V6	<u>orra</u> c 127	<u>ine</u> Subm	r Itte	d by	е # : Јау	A20 W. Pa)29 ige	98		2ag	e 1						
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Żn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th S pprnpp	r Co ni ppn	Sb Ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	B ppm	Al X	Na %	к %	v W Ippm	\u** ppb
SI A 201120 A 201121 A 201122 A 201123	<1 1 2 1 1	<1 13 13 36 209	3 3 3 3 3 3 3	1 60 77 71 82	<.3 <.3 <.3 <.3 <.3	<1 81 84 82 53	<1 33 36 34 30	<2 709 809 716 804	.02 4.82 5.11 5.07 4.64	<2 3 <2 2 4	<8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2 23 <2 22 <2 19 <2 20	1 <.5 4 <.5 1 <.5 4 <.5 1 <.5	0 0 0 0 0 0 0 0	3 3 3 3 3 3 3	<1 154 162 177 156	.05< 3.31 3.88 2.88 2.67	.001 .217 .227 .187 .347	<1 18 18 18 21	1 206 207 213 116	<.01 2.73 2.88 2.66 1.97	24 535 557 519 433	 .01 .12 .14 .13 .12 	00000	.01 1.68 1.82 1.71 1.45	.26 .05 .04 .05 .05	<.01 2.47 2.65 2.60 1.66	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3 5 9 2 4
A 201124 A 201125 A 201126 A 201127 A 201128	1 2 4 5	35 29 30 248 804	<3 <3 <3 <3 8	89 88 73 57 53	<.3 <.3 <.3 <.3 .4	52 63 56 32 22	33 35 26 17 16	879 842 711 598 586	5.45 6.32 4.62 3.12 2.90	5 3 5 4 2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2	<2 20 2 21 <2 25 <2 51 <2 98	8 <.5 9 <.5 3 <.5 8 <.5 6 <.5	0 0 0 0 0 0 0	3 3 3 3 3 3 3 3	179 204 162 105 105	2.74 2.75 1.53 1.63 1.67	.423 .281 .143 .132 .120	23 18 10 9 7	77 101 170 103 70	1.95 1.93 1.62 1.36 1.26	265 170 126 97 337	.10 .15 .18 .13 .15	33333 3333	1.45 1.34 1.29 1.67 2.15	.05 .05 .09 .14 .41	1.37 1.61 1.24 .90 1.05	2 2 3 3 3	<2 7 <2 8 38
A 201129 A 201130 RE A 201130 RRE A 201130 A 201131	7 1 1 6	3507 49 48 51 260	9 3 3 3 3 3	97 87 88 89 67	1.6 <.3 <.3 <.3 <.3	23 57 57 58 8	25 27 27 27 27 14	702 814 822 832 924	3.99 6.07 6.11 6.11 3.50	2 <2 3 <2 <2	<8 <8 <8 <8 <8	~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~	<2 14 <2 12 <2 12 <2 12 <2 11 <2 33	5 <.5 1 <.5 2 <.5 3 <.5 4 <.5	ব্য ব্য ব্য ব্য	3 3 3 3 3 3 3 3 3	201 219 222 221 124	1.07 1.59 1.61 1.54 3.02	.094 .101 .102 .100 .112	6 7 7 8	58 127 129 128 18	2.91 1.37 1.38 1.39 .77	220 72 73 72 398	.36 .20 .21 .21 .09	33333 2525 2	2.01 1.04 1.04 1.05 .97	.08 .07 .06 .06 .06	3.32 1.01 1.01 1.03 .66	<2 2 3 3 2 2	121 7 3 3 15
A 201132 A 201133 A 201134 A 201135 A 201136	7 4 3 3 1	198 1197 348 16 7	4 5 3 3 3 3	70 66 61 140 114	<.3 .9 <.3 <.3 <.3	7 11 13 60 44	12 13 15 39 39	955 673 892 1507 1044	3.45 2.52 3.40 8.71 8.08	3 3 4 6 5	<8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<pre><2 30 2 15 <2 22 2 83 2 75 </pre>	4 <.5 5 .6 6 <.5 6 <.5 6 <.5	<3 4 <3 <3 <3	3 3 3 3 3	123 90 110 308 303	2.93 1.99 3.42 6.11 3.07	.131 .070 .112 .294 .365	9 7 7 15 19	14 22 14 76 62	.80 .65 .42 1.38 1.61	125 158 204 275 247	.09 .09 .04 .14 .08	33333	1.11 .84 .74 1.18 1.14	.06 .04 .03 .03 .04	.49 .63 .41 .98 1.05	<2 3 2 2	8 61 19 13 2
A 201137 A 201138 A 201139 .STD R-1 A 201140	7 7 2 890 2	292 442 309 8547 238	8 10 11 12356 8	101 123 142 20174 104	.3 .3 100.8 <.3	6 9 9 261 10	11 10 9 254 9	1214 1219 1082 777 950	3.31 3.25 3.01 6.66 2.91	3 3 <2 10101 3	<8 <8 <8 120 <8	<2 <2 <2 11 <2	<pre><2 21 2 22 2 30 92 27 <2 29</pre>	4 <.5 2 .7 6 <.5 2 474.3 0 <.5	<3 <3 <3 1455 <3	<3 <3 <3 305 <3	118 128 136 37 130	2.79 2.50 1.78 1.46 2.18	.108 .107 .110 .104 .108	9 11 10 467 10	13 18 22 255 18	.64 .67 .68 .89 .59	140 160 79 36 133	.08 .08 .11 .08 .10	33333 5555	.87 .93 1.03 .89 .91	.05 .05 .07 .16 .05	.52 .42 .30 .43 .35	2 2 3 40 3	52 32 42 - 28
A 201141 A 201142 A 201143 A 201144 A 201145	2 1 10 19 1	1207 111 943 656 15	⊲ 5 ⊲ 11 ⊲	138 129 60 90 105	1.1 <.3 .6 .4 <.3	27 22 23 64 76	34 30 21 33 33	1281 1306 861 966 858	7.09 5.86 3.92 5.37 5.25	5 6 3 3 3	<8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 304 2 293 <2 444 <2 16 <2 125	4 <.5 3 <.5 4 <.5 7 <.5 8 <.5	ব্য ব্য ব্য ব্য ব্য	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	275 231 145 188 172	3.70 3.97 2.83 2.51 2.13	.367 .342 .114 .276 .230	19 16 7 12 11	38 28 72 117 213	1.89 1.74 .83 1.81 2.58	1047 700 399 138 339	.14 .13 .11 .14 .22	00000 0000	1.75 1.50 .78 1.38 1.75	.04 .03 .03 .04 .04	1.72 1.34 .71 1.27 2.47	6 2 2 3 2 3 2	51 10 39 62 8
A 201146 A 201147 A 201148 A 201149 STANDARD DS3/AU-R	5 29 3 3	672 727 292 244 127	20 50 18 17 30	208 280 227 170 161	.7 1.8 .4 .3 .3	5 2 2 3 36	12 12 9 10 11	1153 1144 972 911 779	3.51 4.00 3.14 3.06 3.24	6 13 5 4 32	<8 <8 <8 <8 <8	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<pre><2 14 <2 11 <2 11 <2 13 <2 13 4 29</pre>	4 .7 1 1.8 7 <.5 9 <.5 9 5.5	ব্য ব্য ব্য ব্য 5	3 3 3 3 5	130 118 115 125 82	1.85 1.26 1.29 1.34 .56	.091 .079 .079 .084 .089	7 5 5 6 17	9 4 5 4 187	.64 .63 .62 .62 .58	35 33 31 31 141	.11 .14 .14 .15 .08	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$.89 1.00 .95 1.01 1.72	.04 .04 .04 .05 .03	.26 .29 .27 .26 .15	2 2 2 2 2 3	38 66 32 23 486
GRC UPF ASS - S Sam	DUP PER I SAY I SAMPI	ID - 0 IMITS Recomm .e Typ B begi	.50 GM - AG, ENDED E: COR nning	SAMPLE AU, HO FOR ROO E R150 'RE' au	E LEAC G, W = CK AND 60C re Rer	HED 100 COR A	WITH PPM; E SAN U** (and	3 ML 7 MO, 9 PLES 9 ROUP 9 RRE1	2-2- CO, IF C 3B - are	2 HCL- CD, SB U PB Z 30.00 Reject	HNO3 , BI N AS GM Rer	-H2O , TH > 11 SAMPI uns.	AT 95 , U & 1 %, AG 3 Le Anai	DEG. C B = 2,0 > 30 PP LYSIS B	FOR 00 pp: M & A Y FA/	DNE M; Cl U > ' ICP.	HOUR, U, PE 1000	, DILU 3, ZN, PP8	TED T NI,	0 10 MN,	ML, AS, \	ANAL'	YSED , CR	BY I = 10	CP-E ,000	S. PPM.				
DATE RECEIVED:	4	.UG 12	2002	DATI	s rej	POR:	г M2	LLE	D: /	Hng	2	0	l	Signe	DBY	Ċ	:h	J <u></u>	7.0.	тоу	E, C	LEON	G, J.	. WAN	G; C	ERTII	IED	B.C.	ASSA	YERS
All results are con	side	red t	he con	fidenti	ial pr	oper	ty of	f the	clie	nt. Ac	me a	ssume	es the	liabil	ities	for	actu	al co] st of	the	anal	ysis	only	•				Data		·:/
				_	_																									

· • •

			-																												
AA ACKE AURLYTICAL		1	East	fiel	ld F	les	oui		s L	 td.	PR	 0JI	ECT L	orra	ine		FII) LE ‡	‡ A:	202	998) .			Pa	lge	2	}	ľ	CHE ANALYI	i CAL
SAMPLE#	Mó ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	N ł ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th Sr ppm ppm	Cd ppm	sb ppm	Bi ppm	V ppm	Ca %	P X	La ppm	Cr ppm	Mg X	Ba ppm	Tİ Xı	B ppm	Al %	Na X	K %	W / ppm	\u** ppb	
A 201150 A 201151 A 201152 A 201153 A 201153 A 201154	3 7 8 4 16	210 223 371 187 565	23 25 13 12 16	181 191 125 108 19	<.3 .4 .4 <.3 1.8	3 1 3 2 1	10 10 11 10 7	989 1008 1208 1001 641	2.99 3.17 3.28 3.25 .96	4 <2 6 3 <2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 128 <2 130 <2 122 <2 189 <2 285	<.5 <.5 <.5 <.5 <.5	3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3	116 104 114 130 19	1.53 1.74 2.37 2.07 4.42	.098 .114 .138 .144 .090	6 8 11 10 7	4 4 3 3 3	.58 .63 .56 .62 .16	26 31 27 71 466<	.11 .10 .06 .09	00000	.89 .96 .96 .97 .47	.04 .04 .05 .06 .03	.16 .24 .25 .24 .24	~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2	35 35 22 37 97	
A 201155 A 201156 A 201157 A 201158 A 201158 A 201159	3 8 4 1 4	9 48 401 231 400	८३ ८३ ८३ ८३	74 64 117 108 127	<.3 .3 <.3 <.6	19 14 43 23 31	17 12 34 27 32	1123 819 1206 1037 1170	3.75 3.28 5.21 4.89 5.84	<2 <2 3 <2 3 <2 3 <2 3 <2 3	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	2 256 2 243 <2 316 <2 313 2 423	<.5 <.5 <.5 <.5 <.5	3 3 3 3 3 3 3 3 3 3 3 3 3	33333 3333	110 89 192 215 231	4.16 2.51 3.28 2.43 3.08	.171 .140 .381 .351 .395	13 12 18 15 20	52 28 68 32 44	1.24 .80 2.64 1.64 2.10	286 281 425 426 674	.08 .07 .15 .13 .12	3 3 3 3 3 3 3 3 3 3 3 3 3	1.06 .88 1.95 1.32 1.73	.03 .04 .04 .05 .04	.59 .76 1.92 1.39 1.85	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6 27 12 23 37	
.STD R-1 A 201160 A 201161 A 201162 RE A 201162	894 6 8 12 12	8501 779 214 1232 1255	12244 <3 7 5 3	21105 108 115 153 156	98.1 1.3 .6 1.7 1.7	261 35 24 33 33	261 24 26 25 26	766 1181 1358 1296 1298	6.44 4.93 5.50 5.21 5.25	9834 4 5 2 4	120 <8 <8 <8 <8	11 <2 <2 <2 <2	90 266 2 286 <2 409 2 246 <2 250	466.1 <.5 <.5 .5 .6	1425 3 3 3 3 3	298 <3 <3 <3 <3	39 195 253 218 221	1.45 4.30 6.05 3.86 3.92	.103 .295 .347 .255 .259	464 16 15 15 14	260 57 32 57 57 57	.91 1.51 1.83 1.83 1.84	36 323 332 353 361	.08 .12 .11 .14 .14	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	.90 1.22 1.34 1.52 1.53	.15 .04 .03 .04 .04	.40 1.12 1.28 1.30 1.30	48 2 2 2 2	271 77 179 172	
RRE A 201162 A 201163 A 201164 A 201165 A 201166	12 3 9 3 15	1276 677 832 2208 2707	7 <3 10 8 <3	157 140 149 136 199	1.7 1.1 1.3 2.5 2.0	33 28 31 37 39	26 29 28 27 31	1310 1258 1416 1247 1558	5.33 4.49 4.78 4.27 6.84	2 7 3 10 6	<8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 248 3 249 4 257 5 248 3 260	.6 <.5 .8 <.5	00000 00000	33333 3333	221 188 223 174 302	3.97 3.54 3.75 3.45 3.74	.264 .436 .329 .451 .371	15 28 24 39 27	58 30 44 49 59	1.89 1.76 1.96 2.03 1.77	355 264 353 288 391	.14 .11 .13 .12 .12	\$\$\$\$\$	1.57 1.37 1.54 1.67 1.52	.04 .04 .04 .04 .05	1.34 1.07 1.22 1.42 1.17	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	180 56 98 175 168	
A 201167 A 201168 A 201169 A 201170 A 201171	36 12 3 5 4	2891 801 715 590 461	12 4 6 4	62 77 52 56 137	3.6 1.5 .8 .8 .7	10 11 7 38	10 15 10 9 31	464 804 546 494 1049	1.68 3.05 2.13 1.94 6.90	5 7 ~2 ~2 4	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 150 <2 199 <2 243 <2 193 2 287	1.1 .8 <.5 <.5 <.5	9 5 3 3 3 3 3	3 3 3 3 3 3 3 3	64 125 87 90 270	1.42 2.57 1.79 1.35 2.86	.063 .157 .102 .043 .350	5 9 7 3 20	9 17 14 10 64	.89 1.35 .87 1.07 1.85	241 288 342 345 704	.10 .14 .14 .17 .17	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.84 1.12 .92 1.00 1.55	.05 .04 .04 .05 .05	.92 .94 .95 1.19 1.54	2 3 2 2 2	158 158 46 47 59	
A 201172 STANDARD DS3/AU-R	4	436 134	<3 31	132 161	.6 .4	25 36	23 11	1125 764	3.99 3.22	2 32	<8 <8	<2 <2	2 248 4 29	<.5 6.0	<3 5	<3 4	182 81	2.59 .57	.209	14 17	35 188	1.65	293 141	.16 .08	ও ও	1.41 1.78	.05 .03	1.06	2 3	52 481	

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data VFA

