ASSESSMENT REPORT

RECEIVED

AUG 2 1 2003

Gold Commissioner's Offic DIAMOND DRILLING VANCOUVER, B.C.

LONE GROUP LONE, BRIAN, AND FISHER CLAIMS

WILDHORSE RIVER AREA

FORT STEELE MINING DIVISION

NTS 82G/12 TRIM 82G063

Lat. 49º 49' N Long. 115º 35' W

UTM 550 0000 N and 604 000 E

For Golconda Resources Ltd. 620-304-8th Avenue SW Calgary, Alberta T2P 1C2

> By David L. Pighin

Super Group Holdings Ltd. 1805 13th Avenue S Cranbrook, B.C. V1C 5Y1

August 2003

î

TABLE OF CONTENTS

1.00	INTRODUCTION	. 1
	1.10 Location and Access	. 1
	1.20 Property	1
	1.30 Physiography	1
	1.40 History of Previous Exploration	1
	1.50 Objectives	5
2.00	GEOLOGY	5
	2.10 Regional Geology	
	2.20 Property Geology	
3.00	DIAMOND DRILLING	7
	3.10 Introduction	7
	3.20 Results	8
4.00	CONCLUSIONS AND RECOMMENDATIONS	. 9
5.00	REFERENCES	. 11
6.00	STATEMENT OF EXPENDITURES	12
7.00	AUTHOR'S QUALIFICATIONS	. 12

LIST OF ILLUSTRATIONS

i

Figure 1:	Propertry Location Map	2 10
Figure 2:	Lone Group Claim Map showing location of Drill Holes	10
Table 1:	Diamond Drill Hole Data	8
Appendix 1:	Diamond Drill Hole Logs	13
Appendix 2:	Assays	14

1.00 INTRODUCTION

This report describes a program of diamond drilling completed on the Lone Group of claims in 2002. The work began on June 15, 2002 and was completed by August 3, 2002.

1.10 Location and Access

The Lone Group claims lie on the western edge of the Rocky Mountain Trench, approximately twenty kilomters northeast of Cranbrook, B.C.

Access is facilitated by travelling north on highway 3/95 from Cranbrook to Fort Steele, then easterly for 2.5 kilomters to the Maus creek turnoff. Travel 3.0 kilometers to the Boulder creek junction and turn left. The southern boundary of the claim group lies 2.0 kilometers to the north.

1.20 Property

The Lone Group property consists of 16 claims totalling 54 claim units. B. Kostiuk is the registered claim owner. The claims are controlled by Golconda Resources under the terms of an agreement signed between Kostiuk and Golconda. See Fig. 2.

1.30 Physiography

The claims occupy the transition from the steppe parkland of the Rocky Mountain Trench to the upper alpine of the Hughes Range within the Rocky Mountains. The central portion of the claim group encompasses the majority of Lone Peak, whose southern slopes are characterized by vertical exposures and strong relief from 1000 meters to 1807 meters. The northern slopes are moderate in relief and heavily timbered, a function of moderately shallow north/northeast dipping metasediments of the Kitchener and Creston formations. Vegetation consists of upper alpine balsam fir and spruce with lesser deciduous stands of birch, aspen, and poplar developed in receiving sites. The lowermost elevations are floored with pine grass and low density stands of Douglas fir and lodgepole pine.

1.40 History of Previous Exploration

The Wildhorse river experienced a gold rush in the spring of 1864. Activity ultimately focused in the area of Fisherville which was moved to accommodate intense placer mining of the underlying gravels. This locale lies on the eastern bank of the Wildhorse river just south of the confluence with Fisher creek.

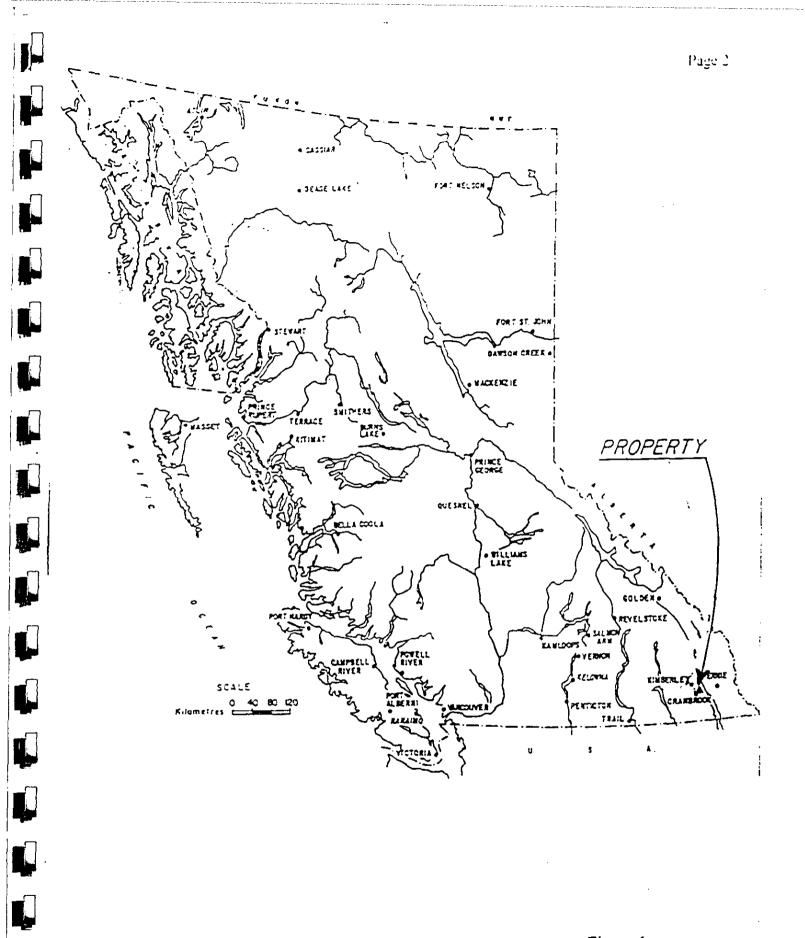


Figure I LONE GROUP Location Map

t

1.40 History of Previous Exploration - continued -

Intense activity followed in this area, with one of the most substantial by Wildhorse Gold Mines Ltd. in the late 1950's to the early 1960's on the western bank of the Wildhorse river near the mouth of Fisher creek. Mechanized placer mining continues in this area.

An argentiferous galena showing approximately 500 meters below the mouth of Fisher creek on the west side of Wildhorse creek produced 24 tons of hand sorted ore by Messrs. Storey and Dean in the early 1950's. Subsequent work by Brown, Ruther, et al. removed all remaining ore and work was concentrated on the east side of the Wildhorse on another showing. Reports fail to mention the correlation, if any, on this small series of lenticular galena-bearing lenses. Blasting removed the sulphide mineralization and the project was terminated. The sulphide was apparently emplaced as limited, discontinuous lenses in steep northwesterly dipping joint planes. (Robinson, M.C.).

Reconnaissance exploration programs for a bedrock source of precious and base metal mineralization in the Wildhorse/Fisher drainages were initiated by King Resources Ltd. in late 1965. Only one locale of minor galena associated with quartz veining was observed, on the western bank below the confluence of Brewery creek and Wildhorse river.

In 1983 Imperial Metals Corporation conducted a stream sediment program along the Fisher, Brewery, and Wildhorse streams. A soil sampling program concentrated on the Fisher and Brewery creek drainages. An anomalous gold value near the mouth of Fisher creek led to the staking of the Peak 1 and 2 claims immediately north of Lone Peak in the Fisher and Wildhorse drainages. The inferred source of the anomaly was proximal quartz veining within the middle Proterozoic clastics of the middle Aldridge formation.

The Peak claims were transferred to Cathedral Gold Corporation in 1987 and expanded to include the Peak 3-6 claims in 1988. The 1987 program consisted of heavy mineral stream sediment sampling from Fisher creek. Sample analyses showed two samples from the cirque at the headwaters of Fisher creek to be barren, with subsequent downstream samples yielding a steady increase in gold from background to 20,000 ppb at the 1370 meter level. Below this, values were erratic. Size fraction analyses of two orientation samples showed that the gold is retained in the non-magnetic fraction to -150 mesh, from a standard -40 mesh analysis fraction. Gold was evident as coarse and rounded in all but the coarsest fraction. Four exploration samples from the upper and lowermost sections of Fisher creek yielded visible gold of similar texture. Positive element plot correlation of iron, arsenic, silver, and

i

1.40 History of Previous Exploration - continued -

magnesium indicate the gold may exist in arsenic-bearing pyrite. Arsenopyrite was ruled out owing to low values and no visual observations.

The high gold values indicate that extremely fine gold is present as well. A tentative interpretation based on the values was for a single gold source located on the upper western edge of the cirque, or additional sources to the southeast and also above the property boundary.

The 1988 programs consisted of soil geochemistry surveys in the form of a grid near the headwaters of Fisher creek (511 soil samples, 13 rock samples) and a contour line at 1370 meters on the ridge separating Maus and Fisher creeks (60 soil samples). The former returned highly anomalous gold values (data not supplied), the latter lower anomalous with a single high of 40 ppb within a non-inclusive suite of six anomalous values (20 ppb and greater). The samples were obtained from the middle Proterozoic Creston formation. Element correlation and size fraction analysis was not performed.

In 1990 Cathedral Gold Corp. expanded the program northward to include the Boulder creek area. Mapping and prospecting led to new discoveries of mineralization, the most relevant to this study being the "Ridge Zone". This area lies on the ridge between Boulder and Fisher creeks above the 1988 soil grid. Fault gouge and quartz vein samples from a steeply dipping, 220 degree trending fault zone produced values of 2910 ppb and 1160 ppb gold, respectively. A quartz stockwork sample 500 meters to the northeast generated 1430 ppb gold with anomalous lead and silver values. The inferred host rocks are argillaceous siltites of the Creston formation. Base metal occurrences were rare and in association with middle Proterozoic gabbro-diorite sills and dykes. Samples from these areas failed to yield anomalous gold values.

The results show a correlation between property/regional scale faulting and gold emplacement. Veining associated with mafic intrusive activity is preferential to limited base metal enrichment.

In 1993 C.B. Newmarch et al. performed a surface sampling program at the northern base of Lone Peak within the current Brian and Brian 1 claims. Six hand dug samples from a postulated paleochannel were concentrated (vibrating sluice and pan), and analyzed on a visual basis. Four samples were described as bearing galena and samples FC-3, FC-3A, and FC-4 contained gold or a similar coloured mineral such as native copper. The program neither confirms nor dismisses the possibility of goldbearing gravels owing to the lack of chemical verification by assay and confusion with mineral identification. The sample locations however are in proximity to recent work by B. Kostiuk which has produced gold from air rotary chip drillhole samples (Fig. 3).

1.40 History of Previous Exploration - continued -

Brief geological reconnaissance work has been performed on the Lone group by Richard Walker, P.Geo. and prospectors Tom and Mike Kennedy. This work resulted in the identification of Proterozoic leuco to mesocratic gabbroic intrusions near the summit of Lone Peak and a hypabyssal Cretaceous syenite occurrence on the lower northwest slope.

In 1997 B. Kostiuk completed a 3 meter deep excavator test pit to explore for placer gold on bedrock. In 1998, he completed 3 air rotary percussion holes totalling 498 ft. These holes were designed to test bedrock for placer gold and as shallow tests for primary base metal and gold mineralization in the bedrock.

1.50 Objectives

The 2001 to 2002 Diamond Drilling program was designed to test base metal and gold occurrences found in bedrock by the air rotary drilling done in 1999-2000. The 2001-2002 Diamond Drill program also tested the Lone Mountain fault for mineralization and tested gold mineralization thought to be located near the base of Lone Mountain.

2.00 GEOLOGY

2.10 Regional Geology

The area is underlain by a succession of middle Proterozoic clastics and lesser carbonates and tuffaceous siltstones of the Lower Purcell Supergroup. These include the lower (Fort Steele), middle, and upper Aldridge, Creston, Kitchener, Van creek, Nicol creek, and Gateway formations. This stratigraphic assemblage is variably intruded by gabbro/diorite and syenite/monzonite sills and dykes of middle Proterozoic and Cretaceous age, respectively.

The lower Aldridge formation is a thick (to12 kilometers) section of argillaceous pelagic sediments deposited within a euxinic environment intercalated with minor turbidite flows. The middle Aldridge is predominantly a turbidite succession marked by incomplete Bouma facies quartzitic wackes and lesser argillites. The upper Aldridge represents a transition to a shallower water facies with varve style planar argillites and siltstones. These laminae are often bound by fine to medium grain disseminations of pyrrhotite which oxidize to give the section a rust red colouration. The contact with the lower Creston is marked by an increase in bedding thickness, colour change, and a common occurrence of primary sedimentary structures. The Creston formation is a green to mauve coloured shallow water section consisting

2.10 Regional Geology - continued -

of siltstone, argillites and lesser quartz arenites. Textures include small scale cross bedding sets and asymmetrical ripple marks. Epigenetic clastic dykes are not uncommon as well. Dolomitic siltstone, limestone and dolomite represent the onset of the carbonate environment characterized by the Kitchener formation. The thin Van Creek formation consists of siltstones similar to those of the Creston formation and uppermost tuffaceous siltstones. Amygdaloidal and vesicular basalt characterize the Nicol creek formation which is overlain by fine clastics and stromatolitic and silty dolomites of the Gateway formation.

The Purcell Supergroup was folded by the Purcell Orogeny about 850 Ma. Major faults transect the area and are inferred to be the western extensions of the Moyie and St. Mary reverse faults located on the east side of the Rocky Mountain Trench. The former is labeled here as the Lussier creek and Boulder creek faults which course the north base of Lone Peak and trend north and eastward, respectively. This tectono-stratigraphic assemblage is structurally complex, resulting in overturned and juxtaposed units.

2.20 Property Geology

In 2001 the Lone Group property was geologically mapped at a scale of 1:10,000. Also, in 2001 outcrops on the property were prospected in some detail for surface base metal and gold showings.

The Lone Group is underlain by Middle Proterozoic sediments. On the claims these sediments are subdivided into the Kitchener formation conformably underlain by the Creston formation which is conformably underlain by the Upper Aldridge formation. The Kitchener formation occupies the northern one-half of the property and the Creston formation underlies most of the property on the south. The Upper Aldridge formation underlies the southeast corner of the claim block.

The Kitchener formation consists mainly of green and beige siltstone, grey argillite, buff dolomitic argillite, dolomitic siltstone and silty dolomite. Dynamic metamorphism along the Boulder creek fault has altered a wide belt of Kitchener sediments to dolomitic and sericitic phyllites.

The Creston formation is composed mainly of grey and black argillites, interbedded siltstones, green and mauve quartzites and quartz arenites, interbedded siltstone, white to light green quartz arenite and interbedded argillite. The Upper Aldridge formation is medium to thin bedded, thinly laminated, rusty weathering, dark grey and grey argillite and siltstone.

L

2.20 Property Geology - continued -

Mapping located rare northeast trending, steeply dipping granodiorite, prophyritic monzonite and felsite dykes that intrude both Kitchener and Creston formations. Thin northeast trending greenstone dykes are commonly found intruding both the Kitchener and Creston formations. In the northern part of the property, a relatively large and continuous gabbro sill and dyke complex intrude the Kitchener formation. Individual gabbro bodies are rarely more than 20 meters thick. Sediments adjacent to the gabbro intrusives are intensively albitized and cut by later witherite and siderite veins and breccia pods.

Structure on the property is dominated by a northeast plunging asymmetrical anticline. The anticline is bounded along its northwest limb by the Boulder creek thrust fault and is bounded on the southeast limb by the Maus creek thrust fault. (Note: this fault has recently been identified as a result of the Lone Group geological mapping program.) The Lone Mountain fault is a northwest-striking, left latteral normal fault. In drill hole LP02-2, the Lone Mountain fault dips 65° west and is marked by a shear zone 50 meters thick.

Minerals of economic interest on the Lone Group claims are gold, copper and cobalt. Recent prospecting and geological mapping has discovered a number of new gold occurrences and one copper-gold showing. Thin northeast trending veinlets, rarely more than 1cm thick, host pyrite and visible gold. These veins form sheeted zones in the Upper Creston quartzites. A 2 to 3 meter thick quartz arenite bed hosts disseminated bornite and bornite in quartz veinlets. A grab sample ran 1% Cu and 1 gram Au. In 2000 an air rotary percussion drill hole discovered cobaltiferous, auriferous pyrite in Kitchener formation phyllites.

3.00 DIAMOND DRILLING

3.10 Introduction

In June, July and August of 2002, three diamond drill holes totalling 662.5 meters were drilled on the Lone Group property. The holes were drilled from one drill pad located on the southeast flank of Lone Mountain near the top.

Drilling was done by LeClerc Diamond Drilling of Cranbrook, B.C., and the core was logged by D.L. Pighin, P.Geo. The core is stored in covered core racks on the Vine property near the north end of Moyie Lake.

See Fig. 2 for drill hole location map and Appendix 1 for completed drill logs. Drill hole assays are provided in Appendix 2.

TABLE 1: Diamond Drill Hole Data

Drill Hole	Collar Azimuth	Dip	Elevation	Start	End	Length	UTM Coords
LP - 02 - 6	112 deg.	-60 deg	1600m	June 15/02	June 16/02	108.0m	(E) 603590 (N) 5499760
LP - 02 - 7	275 deg.	-45 deg	1600m	June 16/02	July 9/02	203.3m	(E) 603590 (N) 5499760
LP - 02 - 8	212 deg.	-55 deg	1600m	July 10/02	Aug. 3/02	351.2m	(E) 603590 (N) 5499760

3.20 Results

Drill Holes LP02-6, LP02-7 and LP02-8 were drilled from a common drill pad.

Drill Hole LP02-6

Drill Hole LP02-6 was drilled to test a gold-bearing sheeted vein zone developed in a thick sequence of coarse-grained hematitic quartzites, stratigraphically located at the top of the Creston Formation. At surface, the sheeted vein zone is formed by steeply-dipping, N.E.-trending, 1 cm thick quartz-limonite (after pyrite) veinlets. Surface prospecting located rare specks of visible gold in some of these veinlets.

Hole LP02-6 cut the sheeted vein zone from 3.65 meters to 91.5 meters. Unfortunately, the target zone was highly fractured and oxidized, such that most of the zone was ground up and washed away by the drill. Core loss in the target zone ranged between 30 and 80 percent. The best gold assay in Hole LP02-6 was 50cm of hematitic quartzite at 65 ppb Au.

Drill Hole LP02-7

Drill Hole LP02-7 was drilled to the west to test the north-western edge of the sheeted vein zone tested by LP02-6. The hole was in and out sheeted vein zones and associated breccia structures from 1.8 meters to 160.0 meters. The target zone in Hole LP02-7 is also highly fractured and oxidized, and therefore, core loss was as bad as it was in Hole LP02-6. The hightest gold value in the hole is 159 ppb from 157.0 meters to 158.0 meters.

Drill Hole LP02-8

Hole LP02-8 was drilled to the south from the collars of Holes LP02-6 and LP02-7. Drill Hole LP02-8 was designed to test the downdip extension of an outcropping Cu-Au bearing quartzite bed. At surface bornite occurs in a two meter thick white coarse-grained quartzite bed. The bornite occurs disseminated in the quartzite and in thin quartz-filled fractures.

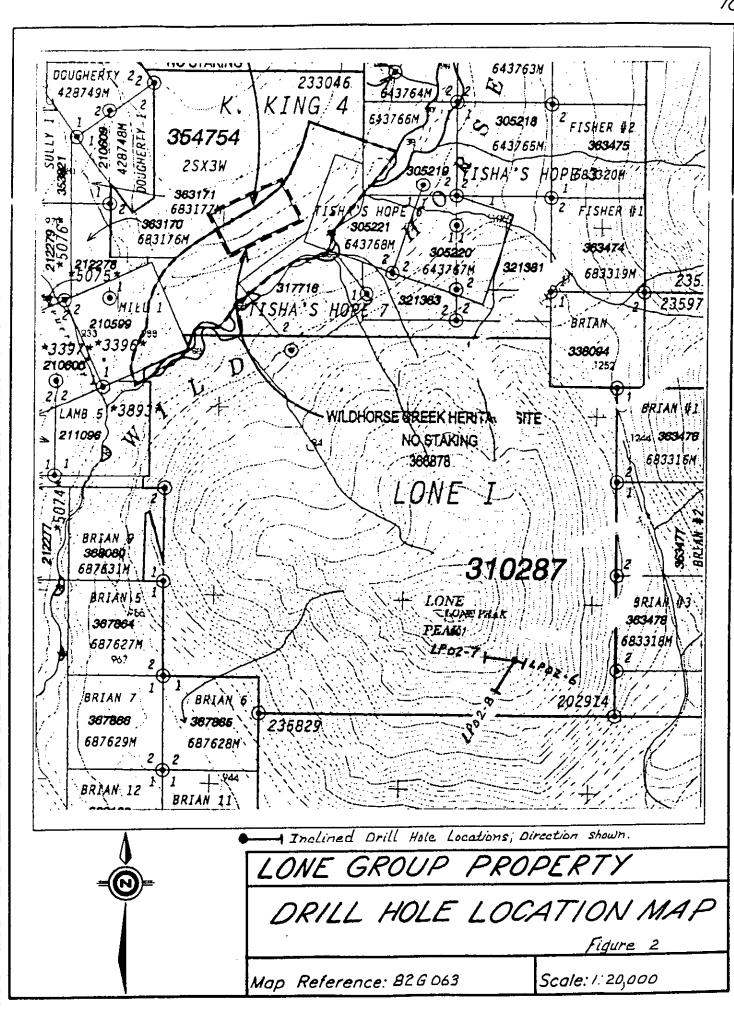
3.20 Results - continued --

Hole LP02-8 cut the Cu-bearing quartzite bed from 279.0 meters to 381.0 meters. The Cu-bearing quartzite in Hole LP02-8 is 210.0 meters down dip from its surface exposure. The Cu mineralization in the hole is highly oxidized, and consists mainly of disseminated malachite and limonite with rare specks of chalcopyrite and bornite. Mineralization is best developed in the top 50 cm of quartzite. i.e. 50 cm at 156 ppb Au and 1272 ppm Cu.

See Appendix 1 for Drill Hole Logs. See Appendix 2 for Assays.

4.00 CONCLUSIONS AND RECOMMENDATIONS

Drill Holes LP02-6 and LP02-7 did not adequately test the sheeted vein zone and breccias for gold. At surface, coarse gold occurs in soft limonite-filled vugs and fractures in the quartz veinlets. Excessive grinding, washing and reaming in the target zone by the driller resulted in severe core loss, in some cases up to 80 percent. This type of drilling would have washed most of the gold and limonite into the open cracks and cavities which are adjacent to the drill hole.


Drill Hole LP02-8 did complete its objective. The hole intercepted the copper-gold bearing quartzite at a point 210 meters down dip from its surface exposure, proving that the mineralization is stratabound and continuous. The copper-gold mineralization found in the quartzite bed at surface and in the hole may be distal to a larger, higher grade deposit located on strike to the east of Hole LP02-8. The area to the east of Hole LP02-8 is glacial till and talus covered. However, this area is host to an airborne magnetic anomaly.

If further drilling is planned to retest the auriferous sheeted veins and breccia zone, the following should be considered:

- 1. Drilling should be done with H.Q. rods.
- 2. A mud expert should be employed to design a program which would plug the cavities in bedrock and improve core recovery.

The stratabound copper-gold horizon should be explored to the east of Hole LP02-8. An initial program of grid soil geochemistry and ground geophysics is recommended, and if warranted, a follow-up program of trenching and diamond drilling is also recommended.

3. Assays from grab samples of the copper-gold horizon at surface ran 1% Cu, 1 gram Au and 1 oz Ag.

5.00 REFERENCES

- Corvalan, I.R., 1984: Report on Geochemical Survey, Peak 1-2 Claims, Imperial Metals Corporation, Assessment Report #13106.
- Delancey, P.R., 1990: Geological Mapping, Prospecting, and Rock Sampling on the Peak 1-6 Mineral Claims, Cathedral Gold Corporation. Assessment Report #20420.
- Edumnds, F.R., 1987: Report on Heavy Mineral Geochemistry, Peak 1 and 2 Claims, Cathedral Gold Corporation, Assessment Report #16790.
- Gorc, D., 1989: Soil Geochemical Survey on the Peak Property, Peak 1-6 Mineral Claims, Cathedral Gold Corporation, Assessment Report #18795.
- Hoy, Trygve, 1982-83: Geology of the Cranbrook Sheet and the Sullivan Mine Area, Preliminary Map No. 54, Ministry of Energy, Mines, and Petroleum Resources, Province of British Columbia.
- Kostiuk, B., 2000: Lone Group Assessment Report.
- Kostiuk, B., 1999: Lone Group Assessment Report.
- Nemarch, C., 1994: Report on North Fisher Group-Placer Claims, Assessment Report #23399.
- Pighin, D.L., 2002: Diamond Drilling, Lone Group. Lone, Brian, and Fisher Claims, Wildhorse River Area.
- Robinson, M.C., 1965: Lynn Group of Claims Geological Report, King Resources Ltd., Assessment Report #822.

Ryley, J., 2000: The Lone Group and Surrounding Area.

Walker, R., 1994: Lone Peak Placer and Mineral Claims, Internal Report.

Page 12

6.00 STATEMENT OF EXPENDITURES

Mallard Logging Ltd Backhoe. Re: drill pad construction	\$ 5,344.76
Mallard Lowbedding Ltd Hauling Hoe	152.47
Dan Pighin D7 (Water hauling project)	2,268.40
Pighin Welding (Water hauling project)	3,926.90
Lost Creek Ent.(Water hauling project)	4,722.98
LeClerc Drilling Ltd	87,715.60
Assays	7,230.00
Super Group Holdings Ltd. (Geologist, Sampler, 4x4 trucks)	21,828.83

TOTAL EXPENDITURES...... \$ 133,189.94

BRITISH COLUMBIA

7.00 AUTHOR'S QUALIFICATIONS

As author of this report I, David L. Pighin, certify that:

- I am a self-employed consulting geologist whose office is at Hidden Valley Road, Cranbrook, B.C., mailing address is 301 - 8th Street S., Cranbrook, B.C., V1C 1P2.
- 2. I am a Member in good standing of the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 3. I have been actively involved in mining and exploration geology, primarily in the Province of British Columbia, for the past 36 years.
- 4. I was employed by Cominco Ltd. as a prospector, exploration technician and geologist for24 years and later by numerous junior exploration companies.

Dated at Cranbrook, British Columbia, this 20th day of September, 2003.

FESSIO. David L. Pighin, P.Geo. PROVINCE D. L. PIGHIN

Page 13

APPENDIX 1

DIAMOND DRILL HOLE LOGS

DRILL HOLE RECORD	GOLCONDA RESOURCES LTD.	Page 1 of 8 LP - 02 - 6
PROPERTY: Lone Group LOCATION: Lone I Claim, south side of Lone Mtn., near top COMMENCED: June 15, 2002	HORJ. COMP: 54.0 VERT. COMP: 93.53	HOLE#: LP 02 -6 LENGTH: 108.0 meters

COMMENCED: June 15, 2002	COMPLETED.		CUKK, DIP: -00-	
COORDS: Long:	Lat:		TRUE BEARING: 112 ⁰ Azimuth	DRILL CONTRACTOR: LeClerc Drilling
COORDS: UTM (E) 60 3590 (N) 5499760) (EL)		% RECOVERY:	CORE SIZE: NQ
COORDS: Grid (E)	(N)	(EL)	LOGGED DATE: June 2002	CASING: 0 to 3.65
ELEVATION: 1600 meters	COLLAR: Dip: -60 ⁰	Azi:112 ⁰	LOGGED BY: D.L. Pighin	CORE STORAGE: Vine Property
OD IECTIVE. To test Cold Minamiliantics				

Objective , To lest Gold Milleralization											
SURVEYS: Depth:	Dip:	Azi:	Туре:	Additional Surveys:	Depth:	Dip:	Azi:				

From To LITHOLOGY: Siltstone, minor thin argillite interbeds. 3.65 - 7.2

COLOUR: Light green, brown speckled siltstone, with thin wispy yellow argillite layers.

PRIMARY STRUCTURE: Medium bedded siltstones, with very thin wispy, flame structured, slump structured argillite interbeds. Bedding is sharp and highly distorted by soft sediment deformation.

TECTONIC STRUCTURE: Weakly fractured at 30^o, 54^o, and 8^o to core; the 8^o fracture appears to be youngest.

GENERAL ALTERATION: Siltstone matrix altered to finely crystalline sericite, argillite interebeds altered to massive yellowish finely crystalline muscovite? limonite after siderite is speckled throughout siltstone beds.

	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	To
	Fractures are healed by quartz-calcite-siderite and limonite after siderite, and some pyrolusite veinlets form	01901	3.65	4.5
	1% to 20% of core by volume.	01902	4.5	5.0
		01903	5.0	5.5
7.2 - 11.0	LITHOLOGY: Siltstone, thinly interbedded argillite, some thin beds of mud chip breccia.	01904	5.5	6.0
		01905	6.0	6.5
	COLOUR: Wispy banded grey, purple and maroon, scattered patches of green and maroon banding.	01906	6.5	7.0

PRIMARY STRUCTURE: Thin bedded, fine grained, bedding distinct, wavy, flame structured at 8.0m. Bedding to core = 54^o.

TECTONIC STRUCTURE: Rare fractures at 8°, 30° and 54° to core.

GENERAL ALTERATION: Sericitic and strongly hematized. Hematization occurs as fine reddish purple dust forming irregular bands, lenses, and wisps, also forms cubic crystallines after pyrite. Argillite interbeds altered to sericite. Siderite weakly disseminated throughout sediments.

DRILL HO	DLE RECORD GOLCONDA RESOURCES LTD.		Page LP - (2 of 8 02 - 6
From To	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То
7.2 - 11.0	Late quartz-siderite veinlets are rare and are rarely more than 2mm thick, they cut core axis	01907	7.0	7.5
cont.	as described above. Hematite forms 30% of this unit, and locally thin bands and lenses are	01908	7.5	8.0
••••	composed of 80% hematite 10.0m to 11.0m 50% core loss.	01909	8.0	8.5
		01910	8.5	9.0
1.0 - 15.0	LITHOLOGY: Quartzite interbedded siltstone. (80% quartzite). Some thin mud chip breccia beds.	01911	9.0	9.5
1.0 - 15.0		01912	9.5	10.0
	COLOUR: Mainly banded purple and maroon, some white quartizte beds.	01913	10.0	10.5
		01914	10.5	11.0
	PRIMARY STRUCTURE: Medium to thin bedded quartzites, thin interbeds of argillites, bedding is distinct, wa		11.0	11.5
	and distorted by soft sediment deformation. Quartzite beds consist of very coarse, mature, unsorted quartz sand	01916	11.5	12.0
	with a sericite and or hematite matrix.	01917	12.0	12.5
		01918	12.5	13.0
	TECTONIC STRUCTURE: Fractured as previously described.	01919	13.0	13.5
	The forme birk of form. The dated as provides by december.	01920	13.5	14.0
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	01921	14.0	14.5
	Irregular bands and wisps of hematite form 40% of core volume. Hematite crystalline after pyrite common throughout unit. Quartz-limonite fractures are rare.	01922	14.5	15.0
5.0 - 27.5	LITHOLOGY: Weakly hematitic quartzite interbedded siltstone and argillite.			
	COLOUR: Mainly pinkish maroon (hematite) speckled brown (FeCa), thin bands of green and yellowish green ar	gillite.		
	PRIMARY STRUCTURE: Medium to thin-bedded, rare thick beds. Bedding distinct, wavy, and distorted by so deformation. Quartzite beds are very coarse grained and composed of unsorted, ungraded mature quartz, sand with matrix, and locally abundant FeCa in matrix.	ft sediment a hematite stain	ed sericitic	;
	TECTONIC STRUCTURE: Fractures developed throughout intervals at 55 ⁰ , 8 ⁰ , 36 ⁰ , 67 ⁰ , to core axis. Frac intense from 21.0m to 27.5m.	tures are most		

GENERAL ALTERATION: Hematitic, sericitic is overprinted by FeCa, and dolomite thin argillite bed partings altered to yellowish sericite, and locally to hematite.

DRILL HOLE RECORD GOLCONDA RESOURCES LTD.										Page LP - (3 of 8)2 - 6	
From To	MINERALIZATION											
15.0 - 27.5	Fractures outlined above	e are gener	ally from 2n		l by quartz	z, limonite, a						
cont.	SAMPLE #	From	То	SAMPLE #	From	То	SAMPLE #	From	То			
	01923	15.0	15.5	01932	19.5	20.0	01941	24.0	24.5			
	01924	15.5	16.0	01933	20.0	20.5	01942	24.5	25.0			
	01925	16.0	16.5	01934	20.5	21.0	01943	25.0	25.5			
	01926	16.5	17.0	01935	21.0	21.5	01944	25.5	26.0			
	01927	17.0	17.5	01936	21.5	22.0	01945	26.0	26.5			
	01928	17.5	18.0	01937	22.0	22.5	01946	26.5	27.0			
	01929	18.0	18.5	01938	22.5	23.0	01947	27.0	27.5			
	01930	18.5	19.0	01939	23.0	23.5	01948	27.5	28.0			
	01931	19.0	19.5	01940	23.5	24.0						
27.5 - 34.7	LITHOLOGY: Brecciated rubbly quartzite 27.5m to 32.5m. Brecciated rubbly grey siltstone							SAMP		From	То	
	33.5m to 34.7m. Note: Core Loss! in the interval is 75%.							019		28.0	29.5	
								019		29.5	30.0	
	PRIMARY STRUCTURE: Destroyed by drill - no bedding etc.								51	30.0 30.5	30.5	
									01952		31.	
	TECTONIC STRUCTURE: Fault Zone 32.5m to 33.5m. Fault cuts core axis at 88°. Fault consists								01953		31.5	
	soft gouge.								54	31.5	32.0	
	* *								55	32.0	32.5	
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:							019	56	32.5	33.0	
	No visible mineralization.							019	57	33.0	33.5	
								019	58	33.5	34.0	
34.7 - 39.6	LITHOLOGY: Hemat siderite, and/or dolomite		ite, minor th	in argillite interbeds Fe	eCa dissen	ninated throu	ighout interval. Possibly	[,] 019	59	34.0	34.5	

COLOUR: Purplish grey with dark purple and maroon mottling and lineation, overprinted by brown speckling.

PRIMARY STRUCTURE: Quartzite, fine grained, composed of mature, unsorted, medium to very fine quartz sand. Thin argillite beds show no primary structure at 37.0m. Bedding to core = 56° .

GENERAL ALTERATION: Matrix strongly silicified and sericitized. Hematization might be primary?

DRILL HO	GOLCONDA RESOURCES LTD.		Page LP - (
34.7 - 39.7 cont.	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Finely disseminated hematite and hematite staining. 1% max by vol. hematite. No quartz-filled fractures in this	SAMPLE #	From	To C.Loss
	section.	01960 01961	34.5 35.0	35.0 35.5
39.6 - 49.4	LITHOLOGY: Quartzite, with rare thin distorted argillite interbeds	01962 01963	35.5 36.0	36.0 36.5
	COLOUR: Light whitish brown to maroonish white, generally heavily speckled brown, thin irregular distorted bands of yellow and green.	01964 01965	36.5 37.0	37.0 37.5
		01966	37.5	38.0
	PRIMARY STRUCTURE: Quartzites are thick to medium bedded, generally coarse grained, composed of unsorted, ungraded, quartz sand. Argillite occurs as rare thin interbeds generally distorted by soft sediment deformation, ie, ball and pillow structure dominate.	01967 01968	38.0 38.5	38.5 (50%) 39.0 (50%)

TECTONIC STRUCTURE: 41.2m to 44.3m quartz veinlet zone. Veins cut core mainly at 85° to 90° , rarely at 70° to core. At 44.3m to 49.4m less veinlets but some are at 8° to core axis.

GENERAL ALTERATION: Quartzite matrix intensely silicified and sericitized, overprinted by disseminated FeCa mineralization. Hematization occurs locally. Waxy yellow and yellowish green, thin, irregular sericite veinlets are abundant in vein zone. Argillite interbeds generally altered to yellowish green sericite.

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:

At 41.2m to 44.3m abundant quartz-siderite-calcite veinlets form 75% of the core between 41.2m to 44.3m. Pyrite occurs in some of the veins. The veins are rarely more than 1cm thick with one vein 30cm thick. Waxy yellow sericite wisps and thin irregular veins cut some quartz veins, and is in part cut by some quartz veinlets. The fracture zone from 44.3m to 49.4m is as above but with far less quartz-carbonate veins, perhaps 10% by volume.

SAMPLE #	From	Тө	SAMPLE #	From	То	SAMPLE #	From	То
01969	39.0	39.5	01876	42.5	43.0	01883	46.0	46.5
01970	39.5	40.0	01877	43.0	43.5	01884	46.5	47.0
01971	40.0	40.5	01878	43.5	44.0	01885	47.0	47.5
01972	40.5	41.0	01879	44.0	44.5	01886	47.5	48.0
01973	41.0	41.5	01880	44.5	45.0	01887	48.0	48.5
01974	41.5	42.0	01881	45.0	45.5	01888	48.5	49.0
01975	42.0	42.5	01882	45.5	46.0			

49.4 - 59.5 **LITHOLOGY:** Hematic siltstone interbedded hematic quartzite, with thin distorted argillite interbeds. maroon banding and mottling, commonly speckled brown, with light green bands and patches.

GOLCONDA RESOURCES LTD.

Page 5 of 8 LP - 02 - 6

From To 49.4 - 59.5 **PRIMARY STRUCTURE:** Siltstones and quartzites; medium bedded, rarely thick bedded. Bedding distinct distorted by ball and pillow structures, mud cracks, etc. Quartzites are fine grained, unsorted and ungraded. Bedding to core 61⁰ at 49.9m.

cont.

TECTONIC STRUCTURE: Quartz carbonate filled fractures are rare but are best developed between 53.5m and 54.0m. These fractures cut core at $68^{\circ} - 80^{\circ}$.

GENERAL ALTERATION: Quartzite and some siltstone beds are intensely silicified and sericitized. Thin wispy veinlets of yellow sericite overprints silicification and white sericitization. Hematite may be primary, late sideritization as disseminated small crystallines; may be related to adjacent ??.

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:

At 53.5m to 59.3m best zone of veinlets in the section. The veinlets form approximately 2% of core in this interval. Veinlets cut core at 68° to 80° , 2mm to 10mm in thickness. The veins consist of calcite and lime, dark brown limonite. Host siltstone is intensely sericitized and cut by thin wispy bands of vellowish green sericite. Yellowish green sericite rims some of the veinlets.

SAMPLE #	From	То	Core Loss	SAMPLE #	From	То	SAMPLE #	From	То	Core Loss
01889	49.0	49.5		01895	52.0	52.5	01976	55.0	55.5	
01890	49.5	50.0	20%	01896	52.5	53.0	01977	55.5	56.0	40%
01891	50.0	50.5	20%	01897	53.0	53.5	01978	56.0	56.5	
01892	50.5	51.0		01898	53.5	54.0	01979	56.5	57.0	
01893	51.0	51.5		01899	54.0	54.5	01980	57.0	57.5	20%
01894	51.5	52.0		01900	54.5	55.0	01981	57.5	58.0	
							01982	58.0	58.	

59.5 - 73.5 **LITHOLOGY:** Quartzite, hematic quartzite, interbedded hematic siltstone, hematic argillite and argillite at 65.0m - 10cm thick green and brown calcareous-chloritic tuff bed.

COLOUR: Mainly purplish grey, with maroon wisps and irregular bands, some green beds with maroon banding.

PRIMARY STRUCTURE: Mainly thin to very thin bedded, rare medium beds. Bedding is distinct, wavy to distorted by soft sediment deformation, i.e. dewatering and compaction. Quartzites are very fine grained and in part very coarse grained with no grain sorting or grading. Argillite beds are typically distorted with thin, coarse grained, sandy lenses, and tiny sand filled dewatering structures.

TECTONIC STRUCTURE: Quartz veinlets cut core at 54° to 45° . (Not abundant). Bedding at 71.0m = 48° .

GENERAL ALTERATION: Siltstones and quartzites are intensely silicified and sericitized. Hematization may be diagenetic. Overprinting everything are widely scattered, tiny crystallines and blebs of Fe Ca, weathers dark reddish brown. These crystallines occur throughout most of the sediments.

GOLCONDA RESOURCES LTD.

From ToMINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:59.5 - 73.5Widely scattered 2mm to 5mm thick siderite? and quartz veinlets. Siderite generally altered to calcareous limonite.
cont

SAMPLE #	From	То	SAMPLE #	From	То	SAMPLE #	From	То	Core Loss
01983	58.5	59.0	01992	63.0	63.5	87451	67.5	86.0	
01984	59.0	59.5	01993	63.5	64.0	87452	68.0	68.3	18%
01985	59.5	60.0	01994	64.0	64.5	87453	68.3	68.5	
01986	60.0	60.5	01995	64.5	65.0	87454	68.5	69.0	20%
01987	60.5	61.0	01996	65.0	65.5	87455	69.0	69.5	22%
01988	61.0	61.5	01997	65.5	66.0	87456	69.5	70.0	
01989	61.5	62.0	01998	66.0	66.5	87457	70.0	70.5	
01990	62.0	62.5	01999	66.5	67.0	87458	70.5	71.0	
01991	62.5	63.0	02000	67.0	67.5	87459	71.0	71.5	
						87460	71.5	72.0	

73.5 - 87.5 **LITHOLOGY:** Hematitic quartzite, interbedded siltstone; hematitic siltstone and argillite at 77.0m is 20cm thick. Green and buff volcanic tuff-bed carbonatized in part.

COLOUR: Generally light maroon to dark maroon with tan, light green and white wispy and irregular beds.

PRIMARY STRUCTURE: Generally thin to very thin bedded, rare medium beds. Bedding is distinct and distorted by soft sediment formation. Quartzite beds are both fine and very coarse grained; argillite beds continue to be deformed by dewatering structures and compaction structures.

TECTONIC STRUCTURE: At 73.5m to 78.5m finely crackle brecciated, overprinted by quartz-carbonate vein at 10° and 30° to core axis.

GENERAL ALTERATION: At 73.5m to 78.5m intensely silicified and sericitized, cut by thin very irregulart veinlet of yellow sericite.

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: At 73.5m to 78.5m crackle breccia veinlet zone. Crackle breccia is formed by abundant hairline fractures at all angles to core. The fractures healed aled by chalcedony. Crackle breccia is cut by veinlets of quartz-siderite.

SAMPLE #	From	То	Core Loss	SAMPLE #	From	То	Core Loss	SAMPLE #	From	То	Core Loss
87461	72.0	72.5		87470	76.5	77.0		87479	81.0	81.5	
87462	72.5	73.0		87471	77.0	77.5	50%	87480	81.5	82.0	20%
87463	73.0	73.5		87472	77.5	78.0	80%	87481	82.0	82.5	
87464	73.5	74.0	20%	87473	78.0	78.5	30%	87482	82.5	83.0	
87465	74.0	74.5		87474	78.5	79.0	40%	87483	83.0	83.5	
87466	74.5	75.0	40%	87475	79.0	79.5	40%	87484	83.5	84.0	
87467	75.0	75.5	50%	87476	79.5	80.0	40%	87485	84.0	84.5	20%
87468	75.5	76.0	70%	87477	80.0	80.5		87486	84.5	85.0	
87469	76.0	76.5		87478	80.5	81.0		87487	85.0	85.5	
		-						87488	85.5	86.0	

DRI	LL HOI	LE REC	ORD		GOL	CONDA	RESOU	JRCES	LTD.		Page	e 7 of 8	

LP - 02 - 6

From To	LITHOLOGY: Hematitic quarties with widely scattered clasts and wisps of hematitic argillite.	SAMPLE #	From	То
87.5 - 92.5		87489	86.0	86.5
	COLOUR: Mottled purple with light brown patches. Speckled black by coarse grains of hematitic? quartz sand.	87490	86.5	87.0
		87491	87.0	87.5
	PRIMARY STRUCTURE: Very thick bed; no bedding, composed of coarse grained mature quartz sand, with	87492	87.5	88.0
	widely scattered small clasts of argillite, 5% of the quartz sand is translucent black giving the quartzite a distinctive	87493	88.0	88.5
	peppered look.	87494	88.5	89.0
		87495	89.0	89.5
	TECTONIC STRUCTURE: Rare veinlets at 70 ⁰ to core.	87496	89.5	90.0
		87497	90.0	90.5
	GENERAL ALTERATION: Quartzite matrix is totally sericitized. Silicification is patchy. Hematitization coats	87498	90.5	91.0
	quartz grains and alters argillite clasts. Hematitization appears to be diagenetic.	87499	91.0	91.5

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Quartz-siderite veins are rare, 2mm to 5mm thick.

91.5 - 95.5 LITHOLOGY: Hematitic quartzite, with scattered small argillite wisps and clasts.

COLOUR: Mainly maroon with widely scattered dark brown patches - after (FeCa).

	SAMPLE #	From	То
PRIMARY STRUCTURE: Very thick bedded, no bedding, quartzites composed mainly of coarse grains	87500	91.5	92.0
of mature quartz sand, sorted and ungraded, scattered argillite wisps and clasts.	87501	92.0	92.5
	87502	92.5	93.0
TECTONIC STRUCTURE: Rare veinlets as previously described.	87503	93.0	93.5
	87504	93.5	94.0
GENERAL ALTERATION: Intensely silicified, matrix altered to hematitic sericite, very weakly disseminated	87505	94.0	94.5
(FeCa)as tinybrown specks. Paper thin (styolitic) yellow sericite veinlets appear to overprint all early alteration.	87506	94.5	95.0
	87507	95.0	95.5

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:

Widely scattered thin veinlets of dark brown weathering siderite? cut core at 70° . Dark brown weathering siderite occurs also as irregular patches and disseminations. Best developed between 92.0m and 92.5m.

95.5 - 99.0 LITHOLOGY: Hematitic quartzite with widely scattered clasts and wisps of argillite.

COLOUR: Purplish grey, with tan and dark brown alteration patches, black speckling due to dark quartz sand.

PRIMARY STRUCTURE: Very thick bedded. Bedding is very rare and indistinct; looks the same as rock described previously between 87.5m and 91.5m.

TECTONIC STRUCTURE: Rare veinlets at 70[°] to core.

DRILL HO	LE RECORD GOLCONDA RESOURCES LTD.		Page LP - (
From To 95.5 - 99.0	GENERAL ALTERATION: Silicified and sericitized, scattered patches of late dark brown and tannish carbonate-Fe alteration best developed between 98.5m to 99.0m.	SAMPLE # 87508 87509	From 95.5 96.0	To 96.0 96.5
cont.	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Fe-Ca veinlets rarely more than 5mm thick, weathers dark brown. Patches of Fe-Ca alteration best developed between 98.5m and 99.0m.	87510 87511 87512 87513	96.5 97.0 97.5 98.0	97.0 97.5 98.0 98.5 99.0
99.0 - 108.0	LITHOLOGY: Hematitic quartzite. 104.3m to 108.0m mud and ground up core, some gravel most likely a cavity in bedrock.	87514 V	98.5	99.0
End	COLOUR: Maroon and maroonish grey with scattered large and small patches of dark brown Fe-Ca alteration.	SAMPLE # 87515	From 99.0	To 99.5
of Hole	PRIMARY STRUCTURE: Thick bedded. Bedding is rare, quartzite is as previously described (91.5m-95.5m). At 101.5m bedding to core is 55 ⁰ .	87516 87517 87518	99.5 100.0 100.5	100.0 100.5 101.0
	TECTONIC STRUCTURE: Veinlets cut core at angles of 65 ⁰ and 85 ⁰ . Best developed between 99.0m to 100.0m.	87519 87520	101.0 101.5	101.5 102.0
	GENERAL ALTERATION: Intensely silicified and sericitized (matrix altered to sericite). Dark brown Fe-Ca	87521 87522	102.0 102.5	102.5 103.0

GENERAL ALTERATION: Intensely silicified and sericitized (matrix altered to sericite). Dark brown Fe-Ca87522102.5103.0occurs in large and small irregular patches, generally associated with paper thin yellow sericite veinlets.87523103.0103.5This type of alteration is best developed between 95.5m to101.0m. Hematization - diagenetic?87524103.5104.0

Jame J Piglin

D. L. PIGHIN BRITISH COLUMBIA OSCIENTS

DRILL HOLI	E RECORD		GOLCO	ONDA RESOURCH	ES LTD.				Page LP - 0		
COMMENCED: COORDS: Long:	one 1 Claim, south side of June 16, 2002 : I (E) 60 3590 (N) 549976 (E)	COMPLETED: Lat:	Fuly 9, 2002 (EL)	HORI. COMP: 143.75 VERT. COMP: 143.7 CORR. DIP: -45 ⁰ TRUE BEARING: 27: % RECOVERY: LOGGED DATE: Jur ° LOGGED BY: D.L.	5m 5 ^o Azimuth ne 2002		HOLE#: LI LENGTH: DRILL CON CORE SIZE CASING: 1 CORE STOP	203.3 mete TRACTOR NQ .8 meters	k: LeClerc	-	
OBJECTIVE: T SURVEYS: Dep	Fo Test Gold Mineralization the Dip:		ype:	Additional Surveys:	Depth:	Dip:	Azi:				
	PRIMARY STRUCTUR the deformation is confine Bedding to core at 3.0m =	ed to thin argillite i = 54°.	nterbeds; siltston	es are fine grained, no ev	vidence of gra	ading. Sc	ome siltstone	beds show y	very fine c	ross laminat	
	the deformation is confine Bedding to core at 3.0m = TECTONIC STRUCTU of 20° and 41° and 60°.	ed to thin argillite i = 54°. RE: Thin veinlets	nterbeds; siltston are scattered thr	es are fine grained, no ev oughout interval, they cu	vidence of gra at core axis at	ading. So angles	ome siltstone SA	beds show v MPLE # 87525 87526	From 3.0 4.0	To 4.0 5.0	
	the deformation is confine Bedding to core at 3.0m = TECTONIC STRUCTU	ed to thin argillite i = 54°. RE: Thin veinlets ION: Siltstone is s	nterbeds; siltston are scattered thr	es are fine grained, no ev oughout interval, they cu	vidence of gra at core axis at	ading. So angles	ome siltstone SA	beds show v MPLE # 87525	From 3.0	ross laminat To 4.0	
	the deformation is confine Bedding to core at 3.0m = TECTONIC STRUCTU of 20° and 41° and 60°. GENERAL ALTERATI	ed to thin argillite i = 54°. RE: Thin veinlets ION: Siltstone is s rich veinlets. ASSOCIATED A Ca veins ranging b	nterbeds; siltston are scattered thr trongly sericitize LTERATIONS etween 1mm and	es are fine grained, no evolution of the second state of the secon	vidence of gra at core axis at eCa which ma : core at angels	ading. So angles ay be	SA	beds show v MPLE # 87525 87526 87527 87529	From 3.0 4.0 5.0 7.0	To 4.0 5.0 6.0 8.0	
	the deformation is confine Bedding to core at 3.0m = TECTONIC STRUCTU of 20° and 41° and 60°. GENERAL ALTERATI related to adjacent FeCa r MINERALIZATION & Thin quartz, dolomite, Fe above. Some limonite aft	ed to thin argillite i = 54°. IRE: Thin veinlets ION: Siltstone is s rich veinlets. ASSOCIATED A Ca veins ranging b rer pyrite noted mai	nterbeds; siltston are scattered thr trongly sericitize LTERATIONS etween 1mm and inly in the 60° ve	tes are fine grained, no evolution of the second state of the seco	vidence of gra at core axis at eCa which ma : core at angels	ading. So angles ay be	SA	beds show v MPLE # 87525 87526 87527 87529 87530	From 3.0 4.0 5.0 7.0 8.0	To 4.0 5.0 6.0 8.0 9.0	
10.1 - 24.0	the deformation is confine Bedding to core at 3.0m = TECTONIC STRUCTU of 20° and 41° and 60°. GENERAL ALTERATI related to adjacent FeCa r MINERALIZATION & Thin quartz, dolomite, Fe above. Some limonite aft between 3.0m and 4.0m.	ed to thin argillite i = 54°. RE: Thin veinlets ION: Siltstone is s fich veinlets. ASSOCIATED A Ca veins ranging b ter pyrite noted main ic quartzite, interbo	nterbeds; siltston are scattered thr trongly sericitize LTERATIONS etween 1mm and inly in the 60° ve edded by thin arg	tes are fine grained, no evolution of the second state of the seco	vidence of gra at core axis at eCa which ma : core at angels t abundant	ading. So angles ay be as descri	ome siltstone SA	beds show v MPLE # 87525 87526 87527 87529 87530	From 3.0 4.0 5.0 7.0 8.0	To 4.0 5.0 6.0 8.0 9.0	
10.1 - 24.0	the deformation is confine Bedding to core at 3.0m = TECTONIC STRUCTU of 20° and 41° and 60°. GENERAL ALTERATA related to adjacent FeCa r MINERALIZATION & Thin quartz, dolomite, Fe above. Some limonite aff between 3.0m and 4.0m. LITHOLOGY: Hematit	ed to thin argillite i = 54°. RE: Thin veinlets ION: Siltstone is s fich veinlets. ASSOCIATED A Ca veins ranging b for pyrite noted main the quartzite, interback h thin light green a RE: Medium to thi	nterbeds; siltston are scattered thr trongly sericitize LTERATIONS etween 1mm and inly in the 60° ve edded by thin arg nd rarely purple and n bedded, rarely	thick bedded quartzite. F	vidence of gra at core axis at eCa which ma core at angels t abundant erprinted by to Bedding is dis	ading. So angles ay be as descri prown spe stinct but	ome siltstone SA bed eckling.	beds show v MPLE # 87525 87526 87527 87529 87530 87531	From 3.0 4.0 5.0 7.0 8.0 9.0	To 4.0 5.0 6.0 8.0 9.0 10.0	tions.

- - ----

_

- - - -

KILL HU	LE RECORD GOLCONDA RESOURCES LTD.		Page LP - 0	2 of 8 12 - 7
rom To	GENERAL ALTERATION: Quartzite are intensely silicified and sericitized. Hematization in general is probably	SAMPLE #	From	То
0.1 - 24.0	diagenetic, but bands of late dark black hematization cuts the maroon hematization. In these dark zones hematite	87532	10.0	11.0
cont.	forms 100% of the quartzite matrix. In some of these zones hematite is pseudomorphic after pyrite. Brown limonite	87533	11.0	12.0
	is weakly disseminated throughout the section.	87534	12.0	13.0
		87535	13.0	14.0
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	87536	14.0	15.0
		87537	15.0	16.0
	At 11.0m to 11.9m large dolomite, limonite (after siderite?) quartz vein cuts core at 43°, rare limonite after pyrite in	87538	16.0	17.0
	vein. Vein gangue includes clasts of argillite 14.0m to 15.5m. A similar vein 2cm to 5cm thick subparallels core	87539	17.0	18.0
	axis, or cut core axis at 10°. Hematite zones 50% plus by volume cut core at 13.8m (10cm thick) and at 18.6m,	87540	18.0	19.0
	(20 cm thick).	87541	19.0	20.0
		87542	20.0	21.0
4.0 - 25.5	LITHOLOGY: Hematitic quartzite with abundant argillite clasts.	87543	21.0	22.0
4.0 - 20.0		87544	22.0	23.0
	COLOUR: Purple with white mottling.	87545	23.0	24.0
	abundant angular and rounded argillite clasts.			
	TECTONIC STRUCTURE: Rare, very thin fractures at 5° to core. GENERAL ALTERATION: Silicified and sericitic; weakly disseminated dolomite and brown limonite throughout be the oxidized equivalent of the dolomite. Dolomitization appears to overprint other alteration types.	sediments. The	e brown li	monite appea
	TECTONIC STRUCTURE: Rare, very thin fractures at 5° to core. GENERAL ALTERATION: Silicified and sericitic; weakly disseminated dolomite and brown limonite throughout	sediments. The SAMPLE # 87546	e brown lie From 24.0	monite appea To 25.0
25.5 - 27.4	 TECTONIC STRUCTURE: Rare, very thin fractures at 5° to core. GENERAL ALTERATION: Silicified and sericitic; weakly disseminated dolomite and brown limonite throughout be the oxidized equivalent of the dolomite. Dolomitization appears to overprint other alteration types. MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: 	SAMPLE #	From	То
25.5 - 27.4	 TECTONIC STRUCTURE: Rare, very thin fractures at 5° to core. GENERAL ALTERATION: Silicified and sericitic; weakly disseminated dolomite and brown limonite throughout be the oxidized equivalent of the dolomite. Dolomitization appears to overprint other alteration types. MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Rare, thin, very irregular limonite filled veinlets. 	SAMPLE #	From	То
25.5 - 27.4	 TECTONIC STRUCTURE: Rare, very thin fractures at 5° to core. GENERAL ALTERATION: Silicified and sericitic; weakly disseminated dolomite and brown limonite throughout be the oxidized equivalent of the dolomite. Dolomitization appears to overprint other alteration types. MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Rare, thin, very irregular limonite filled veinlets. LITHOLOGY: Argillite, rare thin quartzite beds. 	SAMPLE #	From	То
25.5 - 27.4	 TECTONIC STRUCTURE: Rare, very thin fractures at 5° to core. GENERAL ALTERATION: Silicified and sericitic; weakly disseminated dolomite and brown limonite throughout be the oxidized equivalent of the dolomite. Dolomitization appears to overprint other alteration types. MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Rare, thin, very irregular limonite filled veinlets. LITHOLOGY: Argillite, rare thin quartzite beds. COLOUR: Light green, speckled brown locally. 	SAMPLE #	From	То

DRILL HOI	LE RECORD GOLCONDA RESOURCES LTD.		Page LP - (3 of 8 02 - 7
From To 25.5 - 27.4 cont.	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Numerous (1cm apart) parallel hairline fractures host brown limonite. From 26.5m to 27.0m, abundant quartz - FeCa vein material, crushed by drilling.	SAMPLE # 87547 87548	From 25.0 26.0	To 26.0 27.0
27.4 - 31.8	LITHOLOGY: Hematitic quartzite interbedded hematitic siltstone with thin argillite bed partings.			
	COLOUR: Grey with purple and maroon banding and or mottling.			
	PRIMARY STRUCTURE: Medium to thin bedded. Bedding is distinct; generally wavy, distorted by s coarse grained, mainly mature, unsorted, ungraded quartz sand. Siltstones consist of fine silicaeous silt in		. Quartzite:	s are medium a
	TECTONIC STRUCTURE: Veinlets cut core at 45°, 55° and 27°.		_	_
	CENEDAL ALTERATIONS Strongly silisified generally equisitie year workly discominated brown E	SAMPLE # eCa and 87549	From 27.0	То 28.0
	GENERAL ALTERATION: Strongly silicified, generally sericitic, very weakly disseminated brown Fe dolomite disseminated throughout sediments, hematization throughout the section - looks diagenetic.	87550	27.0	28.0 29.0
	doronne disseminated unoughout sediments, nematization unoughout the section - rooks diagenetic.	87550	29.0	30.0
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	87552	30.0	31.0
	Veinlets of quartz and FeCa generally 2mm to 3mm thick rarely 10 mm thick. Best developed between 2 28.5m; average veinlets density 3 per 10cm. These veins cut core as outlined above.		31.0	32.0
31.8 - 56.5	LITHOLOGY: Weakly hematitic quartzite and siltstone interbedded argillite.			
	COLOUR: Mainly pinkish maroon, strongly speckled brown, some dark maroon banding with yellowisl	h green and light green arg	gillite beds.	
	PRIMARY STRUCTURE: Medium to thin bedded. Bedding distinct and generally distorted by soft set are fine to medium grained, rarely coarse grained, generally ungraded and unsorted. Bedding to core at 4		gillite interl	beds. Quartzites
	TECTONIC STRUCTURE: Fractures at 55° - 60° dominant set to core axis, and lesser fractures at 15°	^o and 20 ^o to c/a.		
	GENERAL ALTERATION: Strongly silicified and sericitized. Most quartzite beds coentain 5% to 7% throughout the section and is most likely diagenetic.	% late disseminated Fe-Ca	. Hematiza	tion is weak
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Quartz-limonite fi rarely 10mm. Fracture density average 2 to 3 per 10cm, but locally 10 fractures per 10cm. Best fracture			

SAMPLE #	From	То	SAMPLE #	From	То	SAMPLE #	From	То
87554	32.0	33.0	87559	37.0	38.0	87564	42.0	43.0
87555	33.0	34.0	87560	38.09	39.0	87565	43.0	44.0
87556	34.0	35.0	87561	39.0	40.0	87566	44.0	45.0
87557	35.0	36.0	87562	40.0	41.0	87567	45.0	46.0
87558	36.0	37.0	87563	41.0	42.0	87568	46.0	47.0

GOLCONDA RESOURCES LTD.

Page 4 of 8 LP - 02 - 7

56.5 - 63.0 LITHOLOGY: Hematitic quartzite, rare wispy argillite interbeds.

COLOUR: Dark maroon with brownish tinge; wispy purple lineations, purple argillite clasts, rare white bands.

PRIMARY STRUCTURE: Medium to thick bedded. Distinct bedding planes generally marked by thin distorted argillite interbeds. Quartzites are coarse to very coarse grained quartz sand with widely scattered grit sized red and purple grains of argillite. Pebble sized clasts of purple and maroon argillite are also widely scattered throughout quartzite beds. Some quartzite beds have scattered grains of black quartz (coated by hematite?).

TECTONIC STRUCTURE: Mineralized fractures are not abundant but cut core at 48° and 58°.

GENERAL ALTERATION: Quartzites are generally silicified and sericitized, and are weakly to strongly hematized throughout. Intense hematization occurs in scattered bands, rarely more than 10cm thick. Disseminated limy brown (Fe Ca) specks (5% to 7% by vol) overprint everything. Rare, late, very thin, very irrregular veinlets of yellow sericite cut core at all angles.

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Quartrz-dolomite-calcareous limonite veinlets are rare in the interval. Intense hematization at 54.5m to 54.7m; 56.5m to 56.6m; 59.2m to 59.3m and 70.0m to 70.1m

63.0 - 73.5 **LITHOLOGY:** Hematitic quartzite, wispy, thin argillite bed partings.

COLOUR: Mainly maroon, banded purple, with light brown, light green and purple argillite bed partings.

PRIMARY STRUCTURE: Medium to thin bedded, rare thick beds. Bedding is distinct with distorted thin argillite bed partings. Quartzites are coarse to very coarse grained and consist of mature, unsorted and ungraded quartz sand. Bedding to core at $70.0m = 40^{\circ}$.

TECTONIC STRUCTURE: Fractures are very rare.

GENERAL ALTERATION: As previously described for rock between 56.0m and 63.0m.

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Rare, very thin guartz - dolomite, calcareous limonite veinlets.

73.5 - 126.2 LITHOLOGY: Hematitic quartzite interbedded hematitic siltstone, thin argillite interbeds.

COLOUR: Mainly maroon with purple mottling and banded by olive grey argillite interbeds.

PRIMARY STRUCTURE: Medium bedded. Bedding planes are distinct and wavy to wispy, commonly flame structured. Quartzite beds are generally fine grained. Some siltstone beds are finely parallel laminated outlined by purple hematization. Small, angular to rounded argillite (mud chips) are widely scattered throughout the unit.

TECTONIC STRUCTURE: Mineralized fractures cut core at 12° , 54° and 40° , best developed between 81.0m to 84.0m. Bedding to core axis at $111.0m = 40^{\circ}$, at $115.0m = 50^{\circ}$. Fractures from 118.0m to 122.0m are mainly at 06° and 60° and 25° and 41° to core axis.

RILL HO	LE RECORD GOLCONDA RESOURCES LTD.		Page 5 of 8 LP - 02 - 7					
rom To	GENERAL ALTERATION: Quartzite beds generally silicified and sericitized. Siltstone beds are generally	SAMPLE #	From	To (C.Loss			
3.5 - 126.2	sericitized and partly silicified. At 75.5m - 126.2m Fe Ca is weakly, to locally strongly disseminated	87569	80.0	81.0				
cont.	throughout interval.	87570	81.0	82.0				
		87571	82.0	83.0				
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURES: Dolomite - quartz -	87572	83.0 84.0	84.0 85,0				
	calcareous limonite filled fractures are rare in this interval, but are abundant between 81.0m to 84.0m.	87573 87574	84.0 85.0	85.0 86.0				
	These veinlets range in thickness from 2mm to 20mm in thickness. Veinlets as above abundant 118.0m to 122.0m.	87575	85.0 86.0	80.0 87.0				
6.2 - 154.0	LITHOLOGY: Mainly hematitic quartzite, lesser interbedded argillite.	87576	118.0	119.0	50%			
0.2 - 134.0	LIINOLOGI: Mainy nematic quartere, lesser incrocuded arginite.	87577	119.0	120.0	<i>QQi</i>			
	COLOUR. Marcon to purple with marcon and purple handing: some white patches: locally strongly speckled	87578	120.0	121.0				
	 COLOUR: Maroon to purple with maroon and purple banding; some white patches; locally strongly speckled brown. PRIMARY STRUCTURE: Medium to very thin bedded. Bedding is distinct and marked by thin wispy-wavy bed 	87578 87579 s of argillite. Qu	120.0 121.0 artzites are	121.0 122.0 e coarse				
	brown. PRIMARY STRUCTURE: Medium to very thin bedded. Bedding is distinct and marked by thin wispy-wavy bed coarse grained, mainly unsorted, ungraded, mature quartz detritus in sericite matrix. Brown Fe-Ca carbonate weakly throughout matrix. TECTONIC STRUCTURE: Fractures are relatiavely abundant between 143m and 148m. They cut core	87579 s of argillite. Qu	121.0 artzites are	122.0 e coarse	60% to very			
	brown. PRIMARY STRUCTURE: Medium to very thin bedded. Bedding is distinct and marked by thin wispy-wavy bed coarse grained, mainly unsorted, ungraded, mature quartz detritus in sericite matrix. Brown Fe-Ca carbonate weakly throughout matrix.	87579 s of argillite. Qu y to locally, stror	121.0 artzites are ngly dissen	122.0 e coarse hinated				
	 brown. PRIMARY STRUCTURE: Medium to very thin bedded. Bedding is distinct and marked by thin wispy-wavy bed coarse grained, mainly unsorted, ungraded, mature quartz detritus in sericite matrix. Brown Fe-Ca carbonate weakly throughout matrix. TECTONIC STRUCTURE: Fractures are relatiavely abundant between 143m and 148m. They cut core at 5°, 55° and 35°. Fractures are widely scattered throughout unit. Abundant fractures at 151.5m to 152.0m. 	87579 s of argillite. Qu y to locally, stror SAMPLE #	121.0 artzites are ngly dissen From	122.0 e coarse hinated				
	 brown. PRIMARY STRUCTURE: Medium to very thin bedded. Bedding is distinct and marked by thin wispy-wavy bed coarse grained, mainly unsorted, ungraded, mature quartz detritus in sericite matrix. Brown Fe-Ca carbonate weakly throughout matrix. TECTONIC STRUCTURE: Fractures are relatiavely abundant between 143m and 148m. They cut core at 5°, 55° and 35°. Fractures are widely scattered throughout unit. Abundant fractures at 151.5m to 152.0m. GENERAL ALTERATION: Quartzites and argillites are hematitic throughout interval. Quartzite matrix and 	87579 s of argillite. Qu y to locally, stror SAMPLE # 87580	121,0 artzites are ngly dissen From 143.0	122.0 e coarse ninated To 144.0				
	 brown. PRIMARY STRUCTURE: Medium to very thin bedded. Bedding is distinct and marked by thin wispy-wavy bed coarse grained, mainly unsorted, ungraded, mature quartz detritus in sericite matrix. Brown Fe-Ca carbonate weakly throughout matrix. TECTONIC STRUCTURE: Fractures are relatiavely abundant between 143m and 148m. They cut core at 5°, 55° and 35°. Fractures are widely scattered throughout unit. Abundant fractures at 151.5m to 152.0m. 	87579 s of argillite. Qu y to locally, stror SAMPLE # 87580 87581	121,0 artzites are agly dissen From 143.0 144.0	122.0 e coarse ninated To 144.0 145.0				
	 brown. PRIMARY STRUCTURE: Medium to very thin bedded. Bedding is distinct and marked by thin wispy-wavy bed coarse grained, mainly unsorted, ungraded, mature quartz detritus in sericite matrix. Brown Fe-Ca carbonate weakly throughout matrix. TECTONIC STRUCTURE: Fractures are relatiavely abundant between 143m and 148m. They cut core at 5°, 55° and 35°. Fractures are widely scattered throughout unit. Abundant fractures at 151.5m to 152.0m. GENERAL ALTERATION: Quartzites and argillites are hematitic throughout interval. Quartzite matrix and some argillite beds totally altered to sericite. 	87579 s of argillite. Qu y to locally, stror SAMPLE # 87580 87581 87582	121,0 artzites are agly dissen From 143.0 144.0 145.0	122.0 e coarse ninated To 144.0 145.0 146.0				
	brown. PRIMARY STRUCTURE: Medium to very thin bedded. Bedding is distinct and marked by thin wispy-wavy bed coarse grained, mainly unsorted, ungraded, mature quartz detritus in sericite matrix. Brown Fe-Ca carbonate weakly throughout matrix. TECTONIC STRUCTURE: Fractures are relatiavely abundant between 143m and 148m. They cut core at 5°, 55° and 35°. Fractures are widely scattered throughout unit. Abundant fractures at 151.5m to 152.0m. GENERAL ALTERATION: Quartzites and argillites are hematitic throughout interval. Quartzite matrix and some argillite beds totally altered to sericite. MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	87579 s of argillite. Qu y to locally, stror SAMPLE # 87580 87581 87582 87583	121,0 artzites are agly dissen 143.0 144.0 145.0 146.0	122.0 e coarse ninated To 144.0 145.0 146.0 147.0				
	 brown. PRIMARY STRUCTURE: Medium to very thin bedded. Bedding is distinct and marked by thin wispy-wavy bed coarse grained, mainly unsorted, ungraded, mature quartz detritus in sericite matrix. Brown Fe-Ca carbonate weakly throughout matrix. TECTONIC STRUCTURE: Fractures are relatiavely abundant between 143m and 148m. They cut core at 5°, 55° and 35°. Fractures are widely scattered throughout unit. Abundant fractures at 151.5m to 152.0m. GENERAL ALTERATION: Quartzites and argillites are hematitic throughout interval. Quartzite matrix and some argillite beds totally altered to sericite. 	87579 s of argillite. Qu y to locally, stror SAMPLE # 87580 87581 87582	121,0 artzites are agly dissen From 143.0 144.0 145.0	122.0 e coarse ninated To 144.0 145.0 146.0				

COLOUR: Light maroon to salmon pink; finely parallel laminated by fine yellowish - tan lamina.

PRIMARY STRUCTURE: Thick bedded. Bedding is indistinct, but fine parallel lamination is sharp. Quartzite is composed of very fine quartz detritus and fine quartz siltstone. Bedding to core 37° at 156.0m and 32° at 160.0m. Breccia cut by veinlets at 68°, 6°, and 30° to core axis.

TECTONIC STRUCTURE: Crackle brecciated from 154.0m to 160.0m. Breccia cut by veinlets at 68°, 6° and 30° to core axis.

GENERAL ALTERATION: Intensely silicified, late, tiny dolomite rhombs weakly disseminated throughout; thinly laminated by yellow sericite; matrix also sericitized.

RILL HO	LE RECORD	GOLCONDA RESOURCES LTD.		Page LP - 0	
From To 154.0 - 160.0	Finely crackle brecciated with cha	CIATED ALTERATIONS, HOST STRUCTURE: Ilcedony matrix. Breccia is overprinted by quartz-carbonate-FeCa. n; veinlets form approximately 10% of core by volume.	SAMPLE # 87586	From 154.0	155.0
160.0 - 176.2	LITHOLOGY: Hematitic quart	tite, minor interbeds of argillite and siltstone.	87587 87588 87589	155.0 156.0 157.0	156.0 157.0 158.0
	COLOUR: Purple quartzite inte	bedded olive grey argillite, weakly speckled by brown limonite.	87590 87591	158.0 159.0	159.0 160.0
	Quartzite is mainly fine grained, a	inly thin to very thin bedded. Bedding distinct, wavy to distorted. are medium grained beds, some beds are very finely laminated. ormed by fine layers of argillite (sericite).			
		168.0m to 172.9m badly broken ground (rubble). Some thin gouge fille 3.7m to 175.6m fault gouge; contacts destroyed by drill (core loss 50%)		idely scatte	ered thin veinlets
	GENERAL ALTERATION: G	enerally sericitized throughout, with some beds intensely silicified; spech	kled brown by calcareous	limonite.	
	MINERALIZATION & ASSO Widely scattered thin 2mm to 3m	CIATED ALTERATIONS, HOST STRUCTURE: m limonite, quartz veinlets.			
176.2 - 177.2	LITHOLOGY: Quartzite.				
	COLOUR: Light maroon, finely	parallel laminated by light yellow lamina.			
	PRIMARY STRUCTURE: Thi	ck bedded, very fine grained quartz detritus, finely parallel laminated. B	Bedding to core at 176.5m	= 45°.	
	TECTONIC STRUCTURE: W	ell crackle brecciated from 176.2m to 177.2m. Fractures are at 5°, 61° a	and 21° to core axis.		
	GENERAL ALTERATION: In	tensely silicified, fine yellow sericite form thin parallel lamina (altered the	hin argillaceous layers?).		
		CIATED ALTERATIONS, HOST STRUCTURE: e filled by quartz-limonite and transparent chalcedony.	SAMPLE # 87592 87593	From 176.5 177.0	To 177.0 177.5
177.2 - 182.9	LITHOLOGY: Siltstone interbe	dded argillite and quartzite.	01070		-,
	COLOUR: Light maroon, rarely	dark maroon, wispy, thin banded by light yellowish green and light gree	en argillite.		
	PRIMARY STRUCTURE: Me	dium to thin bedded. Bedding is distinct, wavy and wispy. Bedding plan scattered throughout some of the siltstone and quartzite beds. Quartzite	tes are marked by thin dist	orted argil	lite beds. Thin

- - -

DRILL HO	LE RECORD GOLCONDA RESOURCES LTD.		Page LP - (
From To 177.2 - 182.9	TECTONIC STRUCTURE: At 179.5m to 179.7m soft fault gouge (no contacts). Scattered veinlets as previously described.		From	Тө	
	GENERAL ALTERATION: Sericitic throughout; siltstone and quartzite beds weakly speckled brown by calcareous limonite; silicification is patchy.	SAMPLE # 87594 87595	177.5 178.0	178.0 178.5	
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Limonite-quartz filled veinlets scattered throughout interval; veinlets rarely more than 2mm in thickness.	87596 87597 87598	178.5 179.0 179.5	179.0 179.5 180.0	
182.9 - 187.5	LITHOLOGY: Brecciated sediments with soft gouge matrix.				
	COLOUR: Grey sediments in yellowish clay matrix; brown limonite patches.				
	PRIMARY STRUCTURE: n/a	SAMPLE # 87599	From 184.0	To 184.5	C.Loss 20%
	TECTONIC STRUCTURE: Fault zone 182.9m to 187.5m cut core at 6°.	87600 87601	184.5 185.0	185.0 185.5	10%
	GENERAL ALTERATION: Spotty limonitization.	87602 87603	185.5 186.0	186.0 186.5	
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Limonite zones in the fault gouge are probably limonitic quartz veins that are crushed by shearing related to fault movement.	87604 87605	186.5 187.0	187.0 187.5	
187.5 - 203.3	LITHOLOGY: Siltstone interbedded argillite, minor quartzite.				
	COLOUR: Grey to light grey, wispy purple banding and mottling.				

PRIMARY STRUCTURE: Thin bedded. Bedding distinct, wispy and wavy, distorted, possibly by tectonics. Siltstone and quartzite fine grained. Bedding to core at 203.0m is 45° to core axis.

TECTONIC STRUCTURE: Broken rubbly core; relatively abundant veinlets at 20° to 25° to core axis; best developed at 187.5m to 196.0m and 203.3m.

GENERAL ALTERATION: Weakly hematite, generally sericitic throughout, patchy silicification.

DRILL HOLE RECORD

GOLCONDA RESOURCES LTD.

Page 8 of 8 LP - 02 - 7

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:

Calcareous limonite and quartz veinlets range in thickness from 2mm to 10mm. The veins cut core at 20° - 25°. Fractures are best developed from 187.5m to 196.0m.

	SAMPLE #	From	То	SAMPLE #	From	То	SAMPLE #	From	То
End	87606	187.5	188.0	87612	190.5	191.0	87618	193.5	194.0
of	87607	188.0	188.5	87613	191.0	191.5	87619	194.0	194.5
Hole	87608	188.5	189.0	87614	191.5	192.0	87620	194.5	195.0
	87609	189.0	189.5	87615	192.0	192.5	87621	195.0	195.5
	87610	189.5	190.0	87616	192.5	193.0	87622	195.5	196.0
	87611	190.0	190.5	87617	193.0	193.5			

Jour I, ESSIO, PROVINCE OF D. L. PIGHIN BRITISH COLUMBI

SCIE

GOLCONDA RESOURCES LTD.

Page 1 of 14 LP - 02 - 8

PROPERTY: Lone Group LOCATION: Lone 1 Claim, south			HORI. COMP: 201.4 m VERT. COMP: 287.7 m			HOLE#: LP 02 - 8 LENGTH: 351.2 meters
COMMENCED: July 10, 2002 COORDS: Long: COORDS: UTM (E) 60 3590 COORDS: Grid (E) ELEVATION: 1600 meters	COMPLETE Lat: (N) 5499760 (EI (N) COLLAR: D	(EL)	CORR. DIP: -55 ⁰ TRUE BEARING: 212 % RECOVERY: LOGGED DATE: July 12 ⁰ LOGGED BY: D.L. Pi	2002		DRILL CONTRACTOR: LeClerc Drilling CORE SIZE: NQ CASING: 3.1 meters CORE STORAGE: Vine Property
OBJECTIVE: To Test Gold Mine SURVEYS: Depth: Dip:	ralization Azi:	Туре:	Additional Surveys:	Depth:	Dip:	Azi:

From To LITHOLOGY: Argillite.

3.1 - 3.7

COLOUR: Light green with scattered wisps and patches of dark green.

PRIMARY STRUCTURE: Thin to very thin bedded. Bedding is sharp and highly distorted by soft sediment deformation, mostly dewatering structures.

TECTONIC STRUCTURE: Nil.

GENERAL ALTERATION: Generally sericitic and soft.

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Hematite pseudomorphic after pyrite is disseminated in tiny cubs throughout. Tiny cubic crystallines of limonite after pyrite is disseminated throughout argillite.

3.7 - 5.5 LITHOLOGY: Quartzite, interbedded argillite (80% quartzite).

COLOUR: Quartzite light green with thin, wispy-lensey light yellowish green argillite beds; some brown speckling.

PRIMARY STRUCTURE: Thin to very thin bedded, rare medium beds, quartzite very fine grained. Bedding is distinct and deformed by soft sediment deformation, such as ball and pillow structures developed in very irregular bedding planes.

TECTONIC STRUCTURE: At 4.4m a 10cm gouge zone cuts core at 63°. Veins and veinlets are relatively abundant. They cut core axis at 11°, 50° and 61°.

GENERAL ALTERATION: Strongly silicified and sericitized with late patches of finely disseminated brown Fe Ca.

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:

Veins described above range in thickness from 2mm to 30mm and consist of quartz-dolomite-calcareous limonite and rare limonite after pyrite. Veins form 1% to 2% and rarely 30% of core by volume.

GOLCONDA RESOURCES LTD.

Page 2 of 14 LP - 02 - 8

From To LITHOLOGY: Weakly hematitic quartzite, rare siltstone interbedded argillite (90% quartzite).

5.5 - 10.6

COLOUR: Light maroon to pinkish maroon quartzites, olive green argillite, all units lightly speckled brown.

PRIMARY STRUCTURE: Medium to thin bedded, rarely thick bedded. Bedding distinct, generally distorted as previously described. Quartzites are generally fine grained, but near base of unit are beds of very coarse grained quartzites consisting of mature, unsorted, non-graded quartz sand with rare thin layers of dark purple, strongly hematitic muds. Bedding to core 84°.

TECTONIC STRUCTURE: Abundant veins as described previously.

GENERAL ALTERATION: Weakly hematitic with patches of strongly hematized argillite. Beds are generally silicified and sericitized.

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Veins and veinlets are relatively abundant. They are as previously described. They are most abundant from 5.5m to 6.7 meters.

10.6 - 12.3 **LITHOLOGY:** Quartzite, interbedded hematitic quartzite and hematitic argillite.

COLOUR: Irregularly banded by white quartzite, purple quartzite, green and dark purple argillite.

PRIMARY STRUCTURE: Thin to very thin bedded. Bedding is sharp but strongly disrupted by soft sediment deformation such as ball and pillow structures, load casting, dewatering structures. Quartzite beds are very coarse grained.

TECTONIC STRUCTURE: Nil.

GENERAL ALTERATION: Some argillite and quartzite beds are strongly hematized, generally silicified and sericitic.

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURES: No mineralization other than hematite.

12.3 - 25.8 LITHOLOGY: Weakly hematitic quartzite, rare, strongly hematitic quartzite beds, some wispy thin argillite interbeds.

COLOUR: Maroon quartzite, speckled brown, wispy banded by green and yellow argillite.

PRIMARY STRUCTURE: Medium to thin bedded. Bedding is distinct and strongly disrupted by soft sediment deformations. Quartzites are all generally coarse grained.

TECTONIC STRUCTURE: Rare veinlets cut core axis at 11° to 50°; 21.5m to 25.8m badly broken and rubbly.

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Thin quartz-limonite veins are widely scattered throughout interval.

GOLCONDA RESOURCES LTD.

Page 3 of 14 LP - 02 - 8

From To LITHOLOGY: Hematitic quartzite, thin argillite bed partings (90% quartzite).

25.8 - 28.5

COLOUR: Purple quartzite banded by white, dark purple and light green.

PRIMARY STRUCTURE: Medium to thin bedded. Bedding distinct, wavy due to soft sediment deformation. Quartzites are coarse to very coarse grained consisting of mature, unsorted, non-graded quartz sand, and rare hematitic argillite grit-sized clasts. Thin argillite interbeds are strongly hematitic and rarely green.

TECTONIC STRUCTURE: Thin breccia (1cm thick) structure cut core at 30° and 17°.

GENERAL ALTERATION: Hematized in general (primary) overprinted by bands of white silicification.

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Nil.

28.5 - 41.3 LITHOLOGY: Weakly hematitic quartile, thin argillite bed partings (90% quartile).

COLOUR: Pinkish maroon quartzite, thinly banded, light yellow and brownish yellow argillite.

PRIMARY STRUCTURE: Medium bedded. Bedding is distinct and marked by thin argillite layers. Quartzites are coarse grained, consisting of mature quartz sand; unsorted and non-graded. Argillite interbeds typically distorted by soft sediment deformation, load casts, ball and pillow structures, etc. Bedding to core at $33.0m = 75^{\circ}$.

TECTONIC STRUCTURE: Thin (1cm to 2cm) breccia structures cut core at 35°, Fault Zone, 35.5m to 36.1m cuts core at 73°, consists mainly of soft gouge.

GENERAL ALTERATION: Generally intensely silicified and sericitic. Thin late (2mm) stylolitic yellow sericite structures throughout interval.

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:

A 1cm thick quartz-carbonate vein cuts core at 75° parallel to bedding. These veins are widely scattered. At 34.8m to 35.5m quartz-dolomite-calcite-limonite vein cuts core at 73°, hosts abundant angular clasts of quartzite (breccia). Thin, widely scattered limonite veinlets cut core at 35°.

41.3 - 52.0 LITHOLOGY: Siltstone interbedded quartzite, rare thin beds of mud chip breccia.

COLOUR: Grey, greenish grey siltstone interbedded maroon and grey quartzite.

PRIMARY STRUCTURE: Medium to thin bedded. Bedding is distinct, generally wavy, due to soft sediment deformation as previously described. Quartizites are very fine grained and finely parallel and cross laminated; generally accented by dark maroon colouration. Bedding to core at 52.0m = 83°.

TECTONIC STRUCTURE: Fractures are rare and generally at 30° to core axis.

DRILL HOLE RECORD GOLCONDA RESOURCES LTI	D. Page 4 of 14
--	-----------------

LP - 02 - 8

From To 41.3 - 52.0	GENERAL ALTERATION: Quartzite beds are generally silicified and sericitic; some siltstone beds are silicified	ed.			
cont	MINEREALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Rare limonite and quartz veinlets.				
52.0 - 64.0	LITHOLOGY: Limonitic argillaceous quartzite, argillite occurs mainly as scattered, thin, wispy lenses in otherw	vise pure quartzite.			
	COLOUR: Brown quartzite with some white and maroon patches, with scattered yellow and maroon argillite ler	ses and clasts.			
	PRIMARY STRUCTURE: Medium bedded. Bedding distinct and wavy. Quartzites consist of coarse to very coarse, mature, unsorted and non-graded quartz sand with scattered argillite clasts (mud chips) and abundant small wispy argillite lenses.	SAMPLE #	From	То	C.Loss
	abundant sinan wispy argnine tenses.	87623	55.0	56.0	
	TECTONIC STRUCTURE: Relatively abundant veins and veinlets cutting core axis at 30° and 15°.	87624 87625	56.0 57.0	57.0 58.0	
	GENERAL ALTERATION: Silicified, sericitized, overprinted by late limonitization.	87626 87627	58.0 59.0	59.0 60.0	
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	87628	60.0	61.0	
	Limonite after pyrite is finely disseminated in quartzite. The quartzite is cut by numerous veinlets ranging in	87629	61.0	62.0	
	thickness from 1mm to 2mm. The veins are formed by quartz, dolomite, limonite and limonite after pyrite.	87630	62.0	63.0	
	Some veinlets are distinctly vuggy.	87631	63.0	64.0	
64.0 - 66.0	LITHOLOGY: Quartz - dolomite - limonite Breccia Zone. Sedimentary clasts are mainly fine grained, light ma	aroon quartzite.			
	COLOUR: White and light grey quartz, light tannish brown dolomite, and dark brown limonite.	SAMPLE # 87632	From 64.0	То 65.0	
	TECTONIC STRUCTURE: Breccia Zone cuts core axis at 30°.	87633	65.0	66.0	
	GENERAL ALTERATION: Quartzite clasts are intensely sericitized by white sericite, and cut by late yellow s	ericite.			
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: At 64.0m to 66.0m quartz - dolomite - limonite Breccia Zone. Paragneiss: First, finely crackle breccia develope crackle breccia healed by fine crystalline watery grey quartz. Second, milky white quartz with disseminated pyrit thin glassy quartz filled tension cracks, with some white quartz crystallines. Fourth, calcareous limonite overprin	e. Third, coarsely	itic, fine g crystallin	rained e doloi	quartzite; mite with

66.0 - 78.3 LITHOLOGY: Quartzite interbedded argillite; 50% argillite and 50% quartzite. At 77.2m to 77.4m volcanic tuff? Bed, limey and weathers in part to limonite, scattered grit-sized volcanic fragments, some of which are rimmed by fuchsite.

COLOUR: Light maroon quartzite with some dark maroon lineation and light greenish grey argillite with some maroon lineation and mottling.

										[]		
· 	.	*	B	· · · · · · · · · · · · · · · · · · ·	· · · · ·	فسيحسب				······································		·

DRILL HOLE RECORD GOLCONDA RESOURCES LTD. Page 5 of 14

LP - 02 - 8

To

67.0

From

66.0

SAMPLE #

From To PRIMARY STRUCTURE: Medium bedded. Bedding distinct and typically distorted by soft deformation as previously described. Quartzites are mainly medium to fine grained. Argillite beds are rarely more than 10cm thick, and typically disrupted by soft sediment deformation. Bedding to core at 78.0m = 82°.

TECTONIC STRUCTURE: Veins and veinlets are relatively abundant at 10°, 45°, and 75° to core axis.

GENERAL ALTERATION: Quartzite, weakly hematitic, generally silicified and sericitized. 87634

	87635	67.0	68.0
MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	87636	68.0	69.0
Vein and veinlets described above range in thickness between 2mm and 10mm. They consist mainly of quartz,	87637	69.0	70.0
dolomite and limonite. Pyrite is very rare.			

78.3 - 85.0 LITHOLOGY: Quartzite, minor very thin argillite interbeds.

COLOUR: Light maroon with fine yellow wispy lineation. Some dark brown patches and bands.

PRIMARY STRUCTURE: Medium to thin bedded. Bedding is distinct and distorted by soft sediment deformation. Quartzites are very coarse grained consisting of mature, unsorted, non-graded quartz sand and widely scattered argillite clasts (mud chips). Most of the mud chips are sharply angular and dark maroon to red in colour.

TECTONIC STRUCTURE: Widely scattered quartz veinlets, rare limonite veinlet at 36° to core axis.

GENERAL ALTERATION: Silicified and sericitized, overprinted by disseminated calcareous limonite. Thin waxy yellow to waxy light pink, irregular to stylolitic layers of sericite are abundant within the quartize beds.

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Limonitic quartz and quartz veinlets are rare in this section.

85.0 - 87.0 LITHOLOGY: Calcareous volcanic tuff (altered basic volcanic rock?) consists mainly of fine grained matrix consisting of calcareous limonite and fine calcareous ash. Coarse volcaniclastic detritus consists of chloritized feldspar, rare quartz and clasts of limonite.

COLOUR: n/a.

PRIMARY STRUCTURE: Volcanic clasts shows a preferred orientation parallel to bedding. Bedding at 60° to core axis.

TECTONIC STRUCTURE: n/a.

GENERAL ALTERATION: n/a.

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То
Tuff unit is strongly limonite.	87638	86.8	87.0

DRILL HOLE RECORD GOLCONDA RESOURCES LTD.

Page 6 of 14 LP - 02 - 8

87.0 - 92.0 **LITHOLOGY:** Hematitic, argillaceous quartzite.

COLOUR: Purple to dark purple.

PRIMARY STRUCTURE: Thick bedded. Bedding indistinct, argillaceous quartzite consists (80%) coarse to very coarse, mature quartz sand with argillite clasts and thin wispy argillite lenses scattered throughout unit.

TECTONIC STRUCTURE: Nil.

GENERAL ALTERATION: Silicified and sericitized, with some late Fe - Ca alteration.

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Rare thin limonitic veinlets.

92.0 - 95.0 LITHOLOGY: Quartzite, rare, thin argillite bed tops.

COLOUR: Light maroon with very fine maroon, yellow and rarely green parallel lineation.

PRIMARY STRUCTURE: Thick bedded. Bedding is distinct and is marked by light green silty argillite. The quartzite is very fine grained and is very finely parallel laminated. The lamina is accented by whitish maroon and yellow colours.

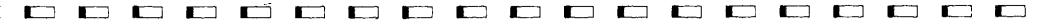
TECTONIC STRUCTURE: The unit is finely crackle brecciated, then cut by later veins at 15° and 10° to core axis.

GENERAL ALTERATION: Intensely silicified with some fine sericite.

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Crackle breccia is healed by micro crystallines, watery quartz, and then is cut by late quartz-carbonate-limonite veins.

95.0 - 115.0 LITHOLOGY: Quartzite interbedded siltstone and minor argillite.

COLOUR: Light purple and light maroon quartzites banded by light green to olive green silty argillite.


PRIMARY STRUCTURE: Thin to very thin bedded. Bedding is distinct, wavy due to flame structures, cut and fill structures, some soft sediment slumping, locally finely cross bedded. In general the beds are finely but very irregularly laminated. Bedding to core 62° at 113.0m.

TECTONIC STRUCTURE: Veins generally at 31° and at 61° (parallel to bedding). The veins are best developed between 110.0m and 115.0m.

GENERAL ALTERATION: Sericitation and locally intense silicification.

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:

Veins rarely more than 1cm thick, consisting of quartz and calcareous limonite. These veins are relatively abundant between 110.0m and 115.0m

DRILL HOLE RECORD GOLCONDA RESOURCES LTD.

Page 7 of 14 LP - 02 - 8

From To LITHOLOGY: Hematitic quartzite.

115.0 - 120.7

COLOUR: Purple with some maroon banding with dark brown and brown patches, and thin yellow partings.

PRIMARY STRUCTURE: Medium to thin bedded, coarse to very coarse grained. Bedding is sharply marked by thin (1cm or less) irregular yellow argillite beds.

TECTONIC STRUCTURE: Scattered thin veinlets as previously described.

GENERAL ALTERATION: Generally silicified and sericitized, hematization probably early (diagenetic).

MINEREALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Rare quartz-carbonate-limonite veinlets.

120.7 - 130.0 **LITHOLOGY:** Quartzite interbedded argillite.

COLOUR: Light maroon quartzite with interbeds of light green or olive green argillite.

PRIMARY STRUCTURE: Thin to very thin bedded. Bedding is sharp and wavy to disrupted by early sedimentalogical structures such as cut and fill channels, load casts, ball and pillow structures, etc. Quartzite generally very fine grained. Bedding at 129.5m = 75° to core axis.

TECTONIC STRUCTURE: Fault consisting of soft gouge from 122.6m to 124.0m cuts core axis at 65°.

GENERAL ALTERATION: Strongly silicified quartzite beds commonly sericitic.

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Widely scattered veinlets as previously described.

130.0 - 133.7 LITHOLOGY: Hematitic argillaceous quartzite (70% quartzite).

COLOUR: Purple with some white patches quartzite with abundant dark maroon argillite clasts and lenses.

PRIMARY STRUCTURE: Medium to thin bedded. Bedding is indistinct, marked by thin, wispy, lenticular argillite beds, or thin interbeds of argillite (mud chips) fragmentals. The quartzites consist of coarse grained to very coarse grained, mature quartz sandstone.

TECTONIC STRUCTURE: Rare thin veinlets at 10° to core.

GENERAL ALTERATION: Hematitic probably diagenetic, generally silicified and sericitic, locally intensely chloritic.

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: n/a.

DRILL HOLE RECORD GOLCO

GOLCONDA RESOURCES LTD.

Page 8 of 14 LP - 02 - 8

From To LITHOLOGY: Siltstone interbedded argillite. At 135.2m to 135.5m, volcanic tuff, buff mottled green. At 136.3m to 137.0m volcanic tuff, buff mottled green.

COLOUR: Mainly grey siltstone and argillite, rare green argillite.

PRIMARY STRUCTURE: Medium to thin bedded. Badly broken core; bedding not certain, generally fine grained sediments. Bedding at 137.0m = 56°.

TECTONIC STRUCTURE: A 10cm fault gouge at 134.4m cuts core at 60°; at 136.0m a 10cm fault gouge cut core at 66°. At 137.0m to 138.0m brecciated sediments and fault gouge cut core at 66°?

GENERAL ALTERATION: Regional only

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Nil.

137.8 - 147.5 LITHOLOGY: Quartzite interbedded hematitic quartzite.

COLOUR: Light brown and purple quartzite.

PRIMARY STRUCTURE: Medium to thin bedded, indistinct bedding. Quartzites are generally medium to coarse grained. Most of the core is badly broken (rubbly).

TECTONIC STRUCTURES: At 132.2m to 139.7m Fault Zone consists of soft gouge and brecciated sediments. Fault cuts core at 60°. At 139.7m to 145.6m brecciated sediments and gouge (part of the Fault Zone?).

GENERAL ALTERATION: Hematitic in part, generally sericitic and silicified.

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Rare limonite filled veinlets.

From To LITHOLOGY: Argillite interbedded siltstone, rare quartzite bed.

147.5 - 150.1

COLOUR: Light green with thin wispy dark maroon and purple bandings.

PRIMARY STRUCTURE: Thin to very thin bedded. Bedding is distinct, and wavy. Bedding 85° to core.

TECTONIC STRUCTURE: At 149.5m to 150.5m fractures are abundant at 40° and 57° to core axis.

GENERAL ALTERATION: Regional.

$lacksymbol{ }$			
-----------------	--	--	--

DRILL HOLE RECORD	GOLCONDA RESOURCES LTD.	Page 9 of 14
		LP - 02 - 8

From To	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То
147.5 - 150.1	Limonite-dolomite filled fractures rarely 1cm thick are most abundant between 149.5m and 150.5.	87639	148.5	149.5
cont		87640	149.5	150.5

150.1 - 174.0 LITHOLOGY: Quartzite, interbedded argillite, and siltstone.

COLOUR: Light maroon to light yellowish grey quartiztes with wispy yellow bed partings, light green argillite interbeds.

PRIMARY STRUCTURE: Medium bedded. Bedding is distinct and generally marked by thin, wispy to disrupted yellow argillite beds, and light greenish grey argillite interbeds. Generally fine grained quartzites. Bedding to core = 86° at 172.0m.

TECTONIC STRUCTURE: Abundant fracturing at 55° and 20° to core axis. Best developed between 150.5m and 151.5m; at 167.2m 20cm of fault gouge contacts destroyed.

GENERAL ALTERATION: Fine grained quartiztes are intensely silicified. Argillite wisps and beds are altered to fine crystalline yellow sericitite?

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То
At 150.5m to 151.5m quartz-dolomite veins form 50% of core by volume. The veins are mineralized by limonite	87641	150.5	151.5
after dolspar and limonite after pyrite. Limonite after pyrite is also very weakly disseminated through host	87642	151.5	152.5
quartzite. At 150.1m to 150.4m fragmental bed with limonite matrix. At 153.4m to 154.0m finely crackle breccia	87643	153.4	154.0
zone healed by finely crystalline watery quartz, overprinted by late quartz-limonite veins.			

174.0 - 212.5 LITHOLOGY: Mud chip fragmentals; argillite clasts in quartzite matrix. Interbedded argillite and siltstone, 80% of interval is fragmental beds.

COLOUR: Purple banded, white and green quartzite spotted by dark maroon and purple argillite clasts.

PRIMARY STRUCTURE: Thick to medium bedded. Bedding is distinct and marked wispy and lensy argillite interbeds. The fragmental beds consist of angular, distorted hematitic argillite and argillite clasts which are matrix supported. Matrix consists of coarse, mature, unsorted quartz sand. Clasts show a preferred orientation parallel to bedding.

TECTONIC STRUCTURE: Nil.

GENERAL ALTERATION: Matrix of fragmental beds is generally chloritic and locally sericitic. Argillite clasts are in part hematitic and sericitic and in part chloritic. Local patches of brown disseminated FeCa.

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Nil.

DRILL HOLE RECORD

GOLCONDA RESOURCES LTD.

Page 10 of 14 LP - 02 - 8

From To LITHOLOGY: Siltstone interbedded argillite (80% siltstone).

212.5 - 221.0

COLOUR: Light maroon, grey siltstone, light grey and light greyish grey argillite.

PRIMARY STRUCTURE: Medium to thick bedded. Bedding is indistinct, generally wavy. Bedding to core at 214.0m = 78°.

TECTONIC STRUCTURE: Nil.

GENERAL ALTERATION: Generally weakly hematitic, and strongly sericitic. Siltstone matrix is mainly sericite. Late specks of brown limonite is weakly disseminated throughout siltstone, but locally limonite is abundant and forms distinct bands and patches of heavily disseminated limonite. Silicification is intense but patchy throughout the section.

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:

Rare quartz-FeCa veinlets. Generally very fine specks of hematite are finely disseminated throughout the siltstone beds. Some of the hematite occurs as tiny, massive, early hematite wisps and lenses.

221.0 - 224.5 LITHOLOGY: Quartzite, minor argillite bed partings. (90% quartzite).

COLOUR: Mottled green, white, maroon and brown.

PRIMARY STRUCTURE: Thick bedded. Bedding is indistinct. Quartzite consists of coarse grained, mature, unsorted quartz sand with widely scattered mud chip fragments. Some thin discontinuous argillite layers.

TECTONIC STRUCTURE: At 223.6m a 10cm zone of fault gouge, contacts destroyed by drill.

GENERAL ALTERATION: Chloritic and sericitic, generally silicified, late dolomite weakly disseminated throughout.

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Some widely scattered limonite after pyrite.

224.5 - 263.0 LITHOLOGY: Siltstone interbedded argillite (80% siltstone).

COLOUR: Light greenish grey and light maroonish grey, generally laminated by dark maroon and dark green.

PRIMARY STRUCTURE: Medium to thin bedded. Bedding is distinct, wavy to distorted by soft sediment deformation such as ball and pillow structures, load casts, syneresis cracks, etc. Siltstone is finely laminated in part by thin wavy and discontinuous lamina, commonly accented by colour ie.. maroon and green, at 244.5m bedding to core 70°.

TECTONIC STRUCTURE: Widely scattered veinlets at 60°, 16° and 42°. At 251.4m a 10cm soft fault cuts core parallel to bedding.

DRILL HOLE RECORD GOLCONDA RESOURCES LTD.

Page 11 of 14 LP - 02 - 8

From To GENERAL ALTERATION: Siltstone beds are locally intensely silicified. Beds are generally sericitic throughout, chloritzation is weak, hematization is also weak, but locally earthy hematite will form tiny massive lenses and discontinuous lamina. Dolomite occurs as widely scattered white specks. (Commonly altered to limonite) throughout siltstone beds.

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:

Thin quartz-dolomite-limonite filled fractures rarely more than 5mm thick are widely scattered throughout the section.

263.0 - 267.3 LITHOLOGY: Silty argillite and argillite.

COLOUR: Wavy banded light green and green.

PRIMARY STRUCTURE: Medium to thin bedded. Bedding distinct, distorted by soft sediment deformation such as load casts, ball and pillow structures, cut and fill channels and synaeresis cracks. Some beds are very finely current laminated. Most bed contacts appear to be erosional.

TECTONIC STRUCTURE: At 267.0m thin (2cm thick) gouge filled shear zone cuts core parallel to bedding.

GENERAL ALTERATION: Sericitic throughout. Some beds are intensely sericitized as well. Late, tiny dolomite crystals are widely scattered throughout sediments.

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Nil

267.3 - 279.0 LITHOLOGY: Siltstone, very minor argillite.

COLOUR: Maroon, grey with dark maroon lamination.

PRIMARY STRUCTURE: Medium to thin bedded. Bedding is distinct and wavy, and generally distorted due to soft sediment deformation. Some very finely current laminated beds.

TECTONIC STRUCTURE: Rare hairline fractures at 11° and 55° to core axis.

GENERAL ALTERATION: Sericitic throughout, weakly hematite, limonite specks are widely disseminated throughout sediments.

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Rare hairline fracture filled by limonite.

279.0 - 281.0 LITHOLOGY: Quartzite in part limonitic quartzite. Cu bearing.

COLOUR: White, with heavily speckled brown zone near base of unit.

PRIMARY STRUCTURE: Thick bedded. Bedding is indistinct. Quartzite is composed of medium grains of quartz in a quartz and limonite matrix. Most of the quartz grains are angular due to quartz overgrowths on individual quartz grains.

DRILL HOL	E RECORD GOLCONDA RESOURCES LTD.			Page LP - (12 of 14)2 - 8
From To 279.0 - 281.0	TECTONIC STRUCTURE: Quartz-limonite filled fractures at 11° to core axis.				
cont.	GENERAL ALTERATION: Matrix intensely silicified, and locally the matrix is intensely limonitic.	SAMPLE #	From	То	Length
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	87646 87647	279.0 279.5	279.5 280.0	50cm 50cm
	Malachite, limonite and very rare chalcopyrite occurs in the top 50cm of quartzite beds. Cu mineralization	87648	280.0	280.5	50cm
	and associated limonite is disseminated quartzite matrix and in late quartz-limonite veinlets.	87649	280.5	281.0	50cm
	From 280.5m to 281.0m matrix of quartzite is strongly limonitic.	87650	281.0	281.5	50cm
281.0 - 286.6	LITHOLOGY: Siltstone interbedded argillite.				
	COLOUR: Mainly banded light green and dark green, some grey beds, tannish brown near top of section.				
	PRIMARY STRUCTURE: Probably medium to thin bedded. Drilling has totally reduced the core in this	section to rubb	le. Beddir	ng to core	e 81º at 281.0m.
	TECTONIC STRUCTURE: ?				
	GENERAL ALTERATION: Sericitic.				
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Rare limonite veinlets.				
286.6 - 292.0	LITHOLOGY: Siltstone, minor thin argillite interbeds (90% siltstone).				
	COLOUD. Conceptly managing any think handed by manager areas and light areas				
	COLOUR: Generally maroonish grey, thinly banded by maroon, green and light green.				
	PRIMARY STRUCTURE: Medium to thin bedded. Bedding is distinct and distorted by soft sediment de	formation, silts	tone is rare	ely lamin	ated.
		formation, silts	tone is rare	ely lamin	ated.
	PRIMARY STRUCTURE: Medium to thin bedded. Bedding is distinct and distorted by soft sediment de	eformation, silts	tone is rare	ely lamin	ated.
	PRIMARY STRUCTURE: Medium to thin bedded. Bedding is distinct and distorted by soft sediment de TECTONIC STRUCTURE: Thin shear zone marked by 5cm of gouge cuts core at 40° at 287.0m	eformation, silts	tone is rare	ely lamin	ated.
292.0 - 298.5	PRIMARY STRUCTURE: Medium to thin bedded. Bedding is distinct and distorted by soft sediment de TECTONIC STRUCTURE: Thin shear zone marked by 5cm of gouge cuts core at 40° at 287.0m GENERAL ALTERATION: Generally weakly hematitic, sericitic throughout. MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	eformation, silts	tone is rare	ely lamin	ated.

- •

DRILL HOLE RECORD GOLCONDA RESOURCES LTD.

Page 13 of 14 LP - 02 - 8

From ToPRIMARY STRUCTURE: Thin to very thin bedded, rare, medium bed. Bedding is sharp and distorted by soft sediment deformation, such as synaereses292.0 - 298.5cracks, scour channels, ball and pillow structures. Some bedding planes are distinctly erosional, some beds are finely laminated by both wavy and parallelcontlamina. Rare tiny lenses and paper thin layers of coarse quartz sand. Bedding to core at 294.0m = 80°.

TECTONIC STRUCTURE: Nil.

GENERAL ALTERATION: Siltstone beds can be intensely silicified, and are generally sericitic throughout.

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:

At 295.0m to 296.0m bornite occurs as fine disseminations in coarse sand-filled tiny lenses and syneresis cracks, and rare in hairline quartz veinlets. Est.? 300ppm Cu over one meter. Very widely scattered, thin calcite-limonite-quartz-chlorite fill fractures cut core at 20°, 68° and parallel to bedding. The 20° set of fractures are typical tension cracks.

298.5 - 320.0 LITHOLOGY: Siltstone, thin argillite interbeds (90% siltstone). At 315.7m to 317.6m green siltstone interbedded argillite as described at 292.0m to 298.5m.

COLOUR: Mainly maroon, grey with dark maroon, purple and olive grey wispy laminations, some grey siltstone beds.

PRIMARY STRUCTURE: Thin to very thin bedded, rare medium beds. Bedding is distinct and distorted by soft sediment deformation as described previously. Bedding at 317.0m = 80°.

TECTONIC STRUCTURE: Nil

GENERAL ALTERATION: Generally seracitic and hematitic.

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:

Scattered (widely) calcite - limonite filled tension cracks at 20° to core axis. At 315.0m to 317.6m bornite disseminated in thin, coarse grained quartz arenite layers and 3mm x 3mm quartz arenite lense host disseminated bornite.

320.0 - 326.8 **LITHOLOGY:** Mud chip breccia. Quartzite matrix, argillite clasts, monor argillite.

COLOUR: Greenish purple and white quartzite matrix, with purple, dark maroon argillite clasts.

PRIMARY STRUCTURE: Thick bedded. Bedding is indistinct, matrix consists of mature, unsorted, non-graded quartz sand. Mud chip clasts are generally oriented parallel to bedding. Clasts are sharply angular, commonly bent and distorted.

TECTONIC STRUCTURE: Nil.

GENERAL ALTERATION: Quartzite matrix is sericitic in part and chloritic in part. Argillite clasts are hematitic to strongly hematitic. Some small clasts appear to be mainly earthy hematitic.

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Nil.

DRILL HOLE RECORD

GOLCONDA RESOURCES LTD.

Page 14 of 14 LP - 02 - 8

From To LITHOLOGY: Siltstone interbedded quartzite, some thin argillite interbeds.

326.8 - 351.2 End

Hole

COLOUR: Light maroon, grey with dark maroon lineation, some olive grey and green lineation.

of

PRIMARY STRUCTURE: Thin to very thin bedded. Some medium beds. Bedding planes are distinct. Quartzite beds are all very fine grained. Bedding to core at 351.0m = 84°.

TECTONIC STRUCTURE: Nil.

GENERAL ALTERATION: Sediments are all weakly hematitic, all are sericitic, and quartzite beds are strongly silicified.

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Nil.

Love I. Pighini FESSIO PROVINCE OF D. L. PIGHIN BRITISH COLUMBIA SCIEN

ASSESSMENT REPORT D.D. - LONE GROUP

Page 14

1

ł

APPENDIX 2

ASSAYS

DRILL HOLE RECORD

GOLCONDA RESOURCES LTD.

LP - 02 - 6

ASSAYS

DRILL HOLE RECORD

LP - 02 - 6

REPORT: V02-00734.0 (COMPLETE)

REFERENCE:

SUBMITTED BY: UNKNOWN

DATE RECEIVED: 03-JUL-02

Geochemicar Lab Report

DATE PRINTED: 15-JUL-02

CLIENT: GOLCONDA RESOURCES LTD.

PROJECT: NONE GIVEN1

DATE APPROVED	ELEMENT	NUMBER OF ANALYSES	LOWER DETECTION	EXTRACTION	METHOD	SAMPLE TYPES	NUMBER	SIZE FRACTIONS	NUMBER	SAMPLE PREPARATIONS	NUMBI
AFFRONED		ARACIGED	Derection	Extraction		R ROCK	151	2 -150	151	CRUSH/SPLIT & PULV.	15
020707 1 Au3	0 Au - FA30	151	5 PPB	Fire Assay of 30g	30g Fire Assay - AA						
020707 2 Ag	Ag - 1C30	151	0.5 PPM	HF-KNO3-HCLO4-HCL	INDUC. COUP. PLASMA						
020707 3 Cu	Cu - IC30	1 51	1 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP, PLASMA			ations based upon			
020707 4 Pb	Pb - IC30	151	2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	sampler	mineralization,	IC30 results for			
020707 5 Zn	Zn - 1030	151	2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	Al, Ba a	and Cr may vary				
020707 6 Mo	Mo - IC30	151	1 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	-					
020707 7 Ni	Ni - 1C30	151	1 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	REPORT COPIES TO	: 620 - 304 8TH	AVE S.W.	INVOICE	TO: 620 - 304 8TH AVE	s.w.
020707 8 Co	Co - IC30	151	1 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA		MR. D.L. PIGH	IN			
020707 9 Cd	Cd - 1C30	151	1.0 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP, PLASMA						
020707 10 Bi	Bī - 1C30	151	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	*****	****	*****	****	*****	****
020707 11 As	As - 1C30	151	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	This r	eport must not	be reproduced except	t in full. The	e data presented in th	is
020707 12 Sb	Sb - 1030	151	5 PPM	HF-HN03-HCLO4-HCL	INDUC. COUP. PLASMA					'Sample Number" and is	
020707 12 30	00 1050		2 1 1 1			applic	able only to th	e samples as receive	ed expressed o	n a dry basis unless	
020707 13 Fe	Tot Fe - 1C30	151	0.01 PCT	HF+HN03-HCLO4-HCL	INDUC. COUP. PLASMA		ise indicated				
020707 14 Mn	Mn - IC30	151	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	*****	*****	*****	***********	******	****
020707 15 Te	Te - IC30	151	25 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA						
020707 16 Ba	Ba - 1C30	151	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA						
020707 17 Cr	Cr - 1C30	151	2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA						
020707 18 V	V - 1030	151	2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA						
	1050		2								
020707 19 Sn	Sn - 1030	151	20 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA						
020707 20 W	W - 1C30	151	20 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA						
020707 21 Li	Li - 1C30	151	2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP, PLASMA						
020707 22 Ga	Ga - IC30	151	10 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA						
020707 23 La	La - IC30	151	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA						
020707 24 Sc	Sc - 1C30	151	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA						
020707 25 Ta	Ta - IC30	151	5 PPM	HF-HN03-HCL04-HCL	INDUC. COUP. PLASMA						
020707 26 Ti	Ti - IC30	151	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA						
020707 20 11 020707 27 AL	AL - IC30	151	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA						
	Mg - IC30	151	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA						
020707 28 Mg				HF-HNO3-HCLO4-HCL							
020707 29 Ca	Ca - 1C30	151	0.01 PCT		INDUC. COUP. PLASMA						
020707 30 Na	Na - 1C30	151	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA						
020707 31 K	K - I C3 0	151	0.01 PCT	HF-HNO3-KCLO4-KCL	INDUC. COUP. PLASMA						
020707 32 Nb	Nb - IC30	151	5 PPM	HF-HN03-HCLO4-HCL	INDUC. COUP. PLASMA						
020707 33 Sr	Sr - 1C30	151	1 PPM	HF-HN03-HCL04-HCL	INDUC. COUP. PLASMA						
020707 34 Y	Y - IC30	151	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA						
020707 35 Zr	Zr - IC30	151	5 PPM	HF-HNO3-HCLO4-HCL	INDUC, COUP. PLASMA						
020707 36 s	S - 1C30	151	0.002 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA						
. –											

LIENT: GO	DLCONDA RESOURCES LTD.		1	ID	77 -1	/				••••						PROJECT:	NONE GIV	'EN1	
EPORT: VO	2-00734.0 (COMPLETE	> [4	ne .	pro	72-0	2		DA	E RECEIV	/ED: 03-JU	L -02	DATE	PRINTED	: 15-JUL-0	2 PA0	E 1 OF 10			
AMPLE	ELEMENT AU30 Ag	Cu Pb	Zn Me	Ni Co	cd Bi	As Sb F	e Tot	Mn Te	Ba Cr	v V Sn	କାର୍ଯ୍ୟ କାର୍ଯ୍ୟ	i Ga La	a Sc 1	ía Ti	AL Mg	Ca Na	K NB S	r Y	Zr S
UMBER	UNITS PPB PPM	PPM PPM	PPM PPI	M PPM PPM	PPM PPM	PPM PPM	PCT	PPM PPM	PPM PP	PPM PPM	PPM PPM	1 PPM PPI	1 PPM PF	M PCT P	ст рст	PCT PCT PC	T PPM PF	M PPM I	PPM PCT
		1 중중			8 888 2 880														
1949	<5 <0.5	2 11	28 🔗	1े 11 ें।	8 <1.0 <5	8 <5	1.45	88 <25	456 88	3 38 <20	<20 8	3 12 37	7 8 •	<5 0 . 31 6.	17 0.45 0	.37 0.06 1.9	17 12	99	81 0.006
1950	<5 <0.5	3 14	28 <	1 9 0	5 <1.0 <5	8 <5	1.19	83 <25	352 115	5 33 <20	<20 6	5 <10 37	2 6 •	<5 0 . 21 4.	78 0.32 0	.23 0.10 1.9	19 7	8 9	58 0.005
1951	<5 <0.5	39	24	1 10 0	6 <1.0 <5	6 <5	1.28	259 <25	360 132	2 24 <20	<20 5	5 <10 2	5 <5 ·	<5 0.17 4.	60 0,36	.06 0.23 2.0)2 5 1	2 11	45 0.011
1952	8 <0.5	1 8	23 <	1 8	7 <1.0 <5	<চ <চ	1.22	103 <25	397 77	32 <20	<20 6	5 <10 30	56.	<5 0,24 5.	33 0.36 (.37 0.05 2.	9 9	5 12	70 0.006
1953	<5 <0.5	2 6	🤄 17 😽	1 11 🤇	7 <1.0 <5	6 <5	1.14	85 <25	307 119	26 <20	<20 5	5 <10 3.	3 <5 ·	<5 0.20 4.	33 0.31 (.27 0.21 2.0	19 7	9 10	63 0.003
				ù di	é siè														
1954	<5 <0.5	1 8	21 <	18	6 <1.0 <5	7 <5	1.17	146 <25	301 104	20 <20	<20 4	4 <10 2	5 5	<5 0.16 4.	28 0.32 0	.52 0.83 1.7	'4 5 Z	.3 10	47 0.006
1955	<5 <0.5	1 7	32 <	1 16 11	1 <1.0 <5	9 <5	2.09	108 <25	557 102	2 45 <20	<20 7	7 12 44	59.	< 0.33 7.	11 0.62 (.34 0.89 2.3	<i>i</i> 5 <u>13</u> 2	8 15	99 0.004
956	<5 <0.5	1 6	34 <	1 11 1	0<1.0 <5	6 <5	1.83	196 <25	609 58	3 38 <20	<20 8	3 12 34	8 7 ·	<5 0.27 6.	60 0.80 0	.58 0.45 2.0	16 11 1	9 13	77 0.007
1957	<5 <0.5	28	35	1 12 9	9 <1.0 <5	11 <5	2.26	895 <25	612 124	38 <20	<20 7	7 11 34	4 6 ·	<5 0.21 5.	64 0.77 2	2.95 0.32 2.1	.6 9 1	9 15	71 0.022
958	<5 <0.5	<1 <2	ି 35 ଁ <	1 14	9 <1.0 <5	<5 <5	1.74	124 <25	446 8	I 35 <20	<20 8	8 <10 3	B 6	<\$ 0.28 5.	39 0.68 (.30 1.23 2.	16 12 3	0 9	61 0.003
																	800000) 1000000 100000		
1959	<5 <0.5	1 5	28 <	1 9 8	8 <1.0 <5	<5 <5	1.52	92 <25	352 83	5 24 <20	<20 8	8 <10 3:	3 6 ·	<\$ 0.23 5.	30 0.54 ().14 1.51 1.3	7 7 3	7 12	66 0.002
1960	<5 <0.5	<1 8	34 <	1 11 付	9 <1.0 <5	6 <5	1.76	133 <25	427 7	7 33 <20	<20 9	9 11 3	5 6 ·	< 0.26 5.	71 0.69 (.28 1.13 2.0	16 11 3	2 14	87 0.003
1961	<5 <0.5	1 4	29 <	1 9	7 <1.0 <5	<5 <5	1.51	285 <25	371 8	3 28 <20	<20 7	7 <10 20	8 5 ·	<\$ 0.19 5.	02 0.69 0	.65 1.14 1.1	7 7 4	.0 15	86 0.006
1962	<5 <0.5	<1 3	32 <	1 12 9	9 <1.0 <5	6 <5	2.17	107 <25	451 74	33 <20	<20 8	B [11] 3.	7 🔭 ·	<5 0.27 5.	89 0.63 (.19 1.32 1.8	<i>1</i> 5 10 3	5 13	75 0.004
1963	<5 <0,5	ব ঁ	34 <	1 13 9	9 <1.0 <5	<5 <5	1.95	90 <25	395 8	29 <20	<20 9	9 <10 31	0 <u>6</u> ·	<\$ 0.23 5.	69 0.65 ().13 1.35 2.0	JS 8 3	4 13	68 0.002
						19000000 5000000 10000000 10000000													
1964	<5 <0.5	<1 5	19 <	្ត្រ៍ 11 ្រូទ	9 <1.0 <5	<5 <5	1.33	60 <25	374 74	34 <20	<20 6	5 10 30	5 <u></u> 6	< 0.25 4.	98 0.38 (.14 0.18 2.2	:8 11	9 9	60 0.003
1965	<5 <0.5	<1 6	35 <	1 13	9 <1.0 <5	<5 <5	2.11	151 <25	453 97	2 31 <20	<20 9	9 12 34	4 7	6 0.24 5.	88 0.69 0	.21 1.09 2.3	24 9 3	<i>i</i> 0 12	75 0.003
1966	<5 <0.5	25	30 <	1 12 1	8 <1.0 <5	6 <5	1.64	204 <25	370 97	2 23 <20	<20 8	8 <10 2	B 6	<5 0.21 4.	85 0.60 ().38 1.21 2.0)2 7 ?	4 7	41 0.005
1967	<5 <0.5	1 6	ු 32 ි	1 13 😒	9 <1.0 <5	5 <5	1.48	137 <25	288 8	3 18 <20	<20	7 <10 2	5 <5 ·	<5 0.20 4.	70 0.54	.27 1.48 1.0	<i>3</i> 0 6 4	ı0 <u>1</u> 3	57 0.003
1968 ,	<5 <0.5	26	36	2 15 10	0 <1.0 <5	7 <5	1.85	117 <25	454 74	4 29 <20	<20 8	8 11 3	7 8 ·	<5 0.29 6.	23 0.58 (.20 1.28 1.9	/2 11 3	3 13	76 0.003
							:											4040606 644,669 727,699	
969	<5 <0.5	25	30	1 12 9	9 <1.0 <5	6 <5	1.75	131 <25	381 7	9 25 <20	<20 (6 10 2	86	<5 0.25 5.	37 0.43).21 1.28 1.9)1 9 3	sz [11]	66 0.003
970	<5 <0.5	2 3	19 <	1 9 !	5 <1.0 <5	-ত 🕤	1.12	125 <25	254 15.	3 19 <20	<20	3 <10 14	9 <5	<5 0.13 3.	03 0.34 (0.37 0.38 1.4	,5 <5 1	3 8	35 0.004
971	<5 <0.5	5 4	່ 11 🔬	-32 - 84S	5.8 303030	10601006			202032284	(1994) 1997		2012000	1949 (B. 1949)	100.00040	20000000	0.11 0.02 0.	40000000	10106060	
972	<5 <0.5	36	8 <	17	1 <1.0 <5	ব্য ব্য	0.42	58 <25	82 18	3 9 <20	<20 <	2 <10 1	0 <5 ·	< 5 0.02 0.	85 0.08 ().14 0.01 0.4	,8 <5	4 5	10 0.003
973	<5 <0.5	7 29	23	3 10 0	6 <1.0 <5	<5 <5	1.84	376 <25	272 16	1 27 <20	<20	4 <10 1	6 6	<5 0.16 3.	82 1.03	2.67 0.04 1.4	76 6 Z	25 8	45 0.021
				8 9			:												
1974	<5 <0.5	6 Supp.	11 - 10560 <i>2</i>	664 1666	03	1994 da Aga		nin phe te	200000000000	10000039	\$0.000	660068	500000	2000 CM	20202028	.89 0.05 2.4	202000		
1975 _	<5 <0.5	(e - 1986	1998 - 2012 2012	200 - 9096692	20100-001		af an	020032	(0000000)	X49361	2002/02	8899 (S)	0333333	<u> (2003)</u>	1.78 0.06 2.0	3880983	3600.03)	3/36/3260
1876		x 2.001 (a)	~ 문가학	500	11. SSS34	2011		nang sa n Nganasa	- 1860 i Ab	K.38869	Stat 18	10000	0.0000	100100000	5000000	1.92 0.04 1.	6660 S		131222360
1877	1. Sec. 1	6 11		901	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			2014	- C26000112		Second Contraction	- 8980en,	599 c 197		20222-0222	2.59 0.03 0.	2020-2020	120.000	10000000
1878	11 <0.5	27 9	14 <	1 8	5 <1.0 <5	<5 <5	1.11	185 <25	240 12	3 18 <20	<20 4	4 <10 1	8 <5	<5 0.12 3.	30 0.40	0.69 0.03 1.	১7 <5 1	14 7	

AR

CLIENT: GOLCONDA RESOURCES LTD.

NONE	GIVEN1
	NONE

Geochemicar Lab report

:	REPORT: VO	2-00734.0 (COMPLETE)												DAT	e rec	EIVE	D: 03-	JUL-02		DATE	PRINT	ED: '	15-JUL	-02	PAGE	2 OF	10				
	SAMPLE	ELEMENT AU30 Ag	Cu	Pb	Zn	Мо	Ni	Co	Çd	Bi	As	Sb Fe	e Tot	Mn	Te	Ba	Cr	v s	n W	Li	Ga L	a Sc	ĩa	Ti	AL	Mg	Ca N	20 80	K Nb	Sr	Y Zr	- s
1	NUMBER	UNITS PPB PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM PP	M PPM I	PPM	PPM PP	M PPM	PPM	PCT	PCT	PCT P	T PC	T PC	T PPM	PPM PP	MPPN	PCT
														, y																		
1	01879	23 0.6	12	6	23	2	14	12 •	<1.0	<5	5	<5	1.97	564	<25	309	181	44 <2	0 <20	4	<10 3	1 6	ঁ <5	0.28	3.12	0.99 3.	21 0.0	3 1.6	4 12	83	B 36	5 0.031
!	01880	<5 <0.5	4	4	12	<1	9	4 <	:1.0	6	<5	ক	0.81	73	<25	220	130	15 <2	0 <20	3	<10 1	6 <5	< ১	0.11	2.84	0.24 0.4	8 0.0	3 1.6	। ব্	19	6 33	6,005
1	01881	<5 <0.5	4	10	11	2	9	_4 <	<1.0	<5	<5			Y. 66 (* 1		1446		100000	10000-00		000000			-00000000		0.26 0.	~	9.98 1	000000	9	6 31	0.004
ļ.	01882	<5 <0.5	7	2	9	1		N. 591		<5	-	o. 808. u		2.1		1.161 1919		No. 66	220006		200-201	1990 (A		- 2000000000		0.26 0.	1,00,000	202		(T 088	931 - 11	7 0.006
ł	01883	8 <0.5	5	11	16	2	12	<u> </u>	<1.0	<5	8	ব	1.19	173	<25	442	180	ZZ <2	0 <20	5	<10 2	1 <5	<5	0.15	3.63	0.39 0.1	\$5 0.0	4 1.9 4	4 6	10	8 54	0.007
I	01884	7 <0.5	4	14	15	<1	7	ંકુ	<1.0	ব্য	6	<5 .	1.00	180	<25	268	156	17 <2	0 <20	4	<10 1	9 <5	ঁ ব্য	0.10	2.62	0.27 0.	28 0.0	3 1.4	9 <5	10	7 35	6 0.005
(01885	<5 <0.5	4	3	17	2	9	ু5্∙	<1.0	<5	<5	ব	1.25	106	<25	412	156	24 <2	0 <20	5	<10 2	3 <5	ଁ <୨	0.14	3.60	0.31 0.	24 0.0	3 1.2	১ <হ	9	9 53	5 0.006
	01886	<5 <0.5	5	13	12	<1	6	3 <	<1.0	6	<5	ব্য	0.89	136	<25	172	170	12 <2	0 <20	3	<10 1	4 <5	ঁ	0.07	1.91	0.23 0.	37 0.0	2 0.8	6 ত	7	6 30	0.005
l	01887	<5 <0.5	4	4	28	<1	13	9 •	<1.0	<5	6	ও	1.99	257	<25	535	141	39 <2	0 <20	7	12 3	7 8	<5	0.28	5.87	0.69 0.	52 0.1	1 1.8	6 10	14 1	1 6	5 0.005
ł	01888	9 <0.5	7	4	24	<1	13	8 <	<1.0	ব্য	7	~5	1.57	298	<25	362	152	26 <2	0 <20	4	<10 2	3 <5	<5	0.19	3.61	0.43 0.0	58 0.10	01.4	1 6	16	9 45	5 0.006
;	01889	<5 <0.5	4	<2	18	<1	10	6 <	<1.0	<5	6	-5	1.31	168	<25	300	185	20 <2	0 <20	3	<10 2	0 <5	ঁ <5	0.12	3.05	0.32 0.	38 0.1	6 1.2	2 <5	13 🖉	8 4(0.005
	01890	6 <0.5	<1	3	22	<1	9	9 •	<1.0	ব্হ	5	ৎহ	1.63	213	<25	472	72	28 <2	0 <20	5	<10 3	5 6	ঁ ৎ	0.26	5.09	0.50 0.	46 0.9	4 1.7	3 11	31 🐰	8 49	0.005
	01891	<5 <0.5	1	<2	22	<1	9	8 <	:1.0	<5	<5	<5	1.70	195	<25	455	111	28 <2	0 <20	5	<10 3	1 5	<5	0.22	4.12	0.47 0.4	48 0.7	5 1.9	5 7	28	7 48	3 0.004
	01892	<5 <0.5	5	3	28	<1	13	10 <	<1.0	<5	7	ব্হ	2.13	202	<25	528	124	35 <2	0 <20	6	12 3	3 7	<5	0.25	5.75	0.50 0.	38 0.5	5 1.9	6 10	23 1	1 67	5 0.004
	01893	<5 <0.5	<1	4	22	<1	10	8 •	<1.0	<5	4 5	ব	1.64	182	<25 ,	541	76	30 <2	0 <20	6	<10 3	25	S	0.23	4.74	0.68 0.	53 0.34	8 1.8	5 10	21	8 56	5 0.006
	01894	<5 <0.5	2	-2	16	ং1	8	5.	(1.0	<5	<5	حه	1.29	141	<25	400	114	26 <2	0 <20	4	11 2	9 <5	<5	0.19	4.81	0.50 0.	45 0.0	5 1.5	56	10 1	0 67	5 0.004
	01895	<5 <0.5	<1	3	22	ৰ1	9	8 -	<1.0	<5	6	<5	1.76	210	<25	472	75	45 <2	0 <20	5	13 3	5 7	ঁ <5	0.28	5.96	0.59 0.	70 0.3	3 1.7	3 11	22 1	1 7:	5 0.006
	01896	<5 <0.5	<1	~2	26	<1	10	9∢	<1.0	<5	<5	ৎ	1.78	303	<25	390	75	37 <2	0 <20	5	<10 3	1 6	ব্য	0.23	5.29	0.59 0.	35 0.9	9 1.5	4 10	35 1	2 65	5 0.007
	01897	<5 <0.5	2	<2	18	<1	8	7 •	<1.0	<5	6	ব্য	1.53	288	<25	399	71	37 <2	0 <20	5	<10 2	9 6	<5	0.22	5.01	0.57 0.	70 0.2	9 1.7	8 9	17 🖪	0 60	0.007
	01898	<5 <0.5	1	2	19	<1	7	7 .•	<1.0	ঁ	5	<5	1.66	626	<25	421	67	35 <2	0 <20	5	<10 3	1 6	<5	0.22	4,92	0.81 1.	51 0.2	81.8	B 9	23 1	1 61	0.011
i	01899	<5 <0.5	2	3	20	<1	10	6 <	<1.0	<5	<5	<5	1.36	151	<25	308	121	24 <2	0 <20	4	<10 2	4 <5	ঁ ব্য	0.15	3,88	0.41 0.	36 0.4	3 1.7	36	16	9 44	0.003
	01900	<5 <0.5	<1	4	17	<1	9	5.	<1.0	ব্য	7	-5	1.51	239	<25	487	88	29 <2	0 <20	5	11 3	0 6	<5	0.21	5.42	0.58 0.	76 0.1	1 2.2	7 7	j 13	1 7	0.006
	01976	<5 <0.5	<1	<2	17	<1	6	ं ५	<1.0	<5	7	<5	1.26	187	<25	400	72	23 <2	0 <20	5	<10 3	1 <5	ँ <ऽ	0.18	4.93	0.57 0.	52 0.2	9 1.7	5 6	17 🐰	9 58	3 0.005
	01977	<5 <0.5	1	3	15	<1	9	4 •	<1.0	5	6	-5	1.02	235	<25	325	86	17 <2	0 <20	4	<10 2	2 <5	ິ <5	0.13	4.24	0.53 0.	50 0.6	5 1.4	7 <5	27 1	0 4⁄	0.006
	01978	<5 <0.5	<1	<2	22	<1	8	8 •	<1.0	<5	8	<5	1.55	159	<25	480	67	38 <2	0 <20	7	<10 3	6 7	<5	0.25	6.10	0.63 0.	47 0.3	9 1.9	69	16	9 63	3 0.005
I	01979	<5 <0.5	2	~2	40	্ৰ1	17	13 <	<1.0	<5	7	<5	2.20	329	<25	546	62	53 <2	0 <20	11	13 3	98	ح ا	0.31	6.81	0.92 1.	J 3 0.6	4 1.8	5 13	26 1	2 7:	5 0,008
I	01980	<5 <0.5	1	3	33	<1		89 C.S.		응 같은 것을 못했다.		90,049		395.75	<i>.</i>	8.8000	8	Persea	网络索尔		ୀ3 4	1.13693	<5	0.33	6.74	0.81 0.	35 0.9	6 1.8	1 15	31 🕅	5 75	0.003
1	01981	<5 <0.5	1.	-2		<1		901 e -				256 C		1.1		12 M.	<		- 10600 S		12 3	9829	÷-	1000000		0.65 0.		948 948	- 10	. 9.5	witi –	89898.23
I	01982	<5 <0.5	2	<2	28	<1		7 A.								2		200 A.V.	2012		<u>]</u> 1] 3	a stand	а — — — — — — — — — — — — — — — — — — —	- M.M.		0.71 0.	2,693	88	199-49	e 390	20	1989-099-9 <u>0</u>
	01983	<5 <0.5	<1	6 .	43	<1 	14	୍ <u></u> ମ4. <	<1.0	~ 5 , V	7	<5	2.23	134	<25	518	68	50 <2	0 <20	14	13 4	3 9	<5	0.34	6.84	0.85 0.	26 1.1	5°1.7 フ	9 [14]	34 1	6 83	3 0.003

រនាងចំនួន

	LCONDA RESOURCES LTD. 2-00734.0 (COMPLETE)											DAT	e rece	I VED :	03-J	UL-02		DATE	PRINTE	D: 1	5-JUL-02	PAGE	PROJECT 3 OF 10		: GIV	EN1	
MPLE	ELEMENT AU30 Ag	Cu	Pb	Zn	Мо	Ni	Co	Cd Bi	As	Sb Fe	e Tot	Mn	Те	Ba	Cr 🕺	V Sn	W	Li	Ga L	a Sc	Ta	Ti A	l Mg C	a Nə	ĸ	ND S	r ¥	Zr S
MBER	UNITS PPB PPM	PPM	PPM	PPM	PPM	PPM F	PM P	PM PPM	PPM	PPM	PCT	PPM	PPM	PPN P	P M P F	om opm	PPM	PPM F	PM PP	N PPM	PPM	PCT PC	T PCT PC	T PCT	PCT P	M PP	M PPM I	PPM PCT
100/		2		10		F			् १ १ जन		0.01	ם ליגיי מלוי	-25		47						~E	1777	7 0 / 0 0 3	0 1 7 1 1	े 01 े	e E z	o	/1 0 004
984	<5 <0.5	2		19	<1 -1			.0 <5	S.	199496 (85	en la compañía de la	331533		0.99%	jeke:			70.400.2	36332	- 18 A		. 2323	
1985	<5 <0.5		~2 5	23 28	<1	8	292.9	.0 <5 .0 <5	Q	1994 (de 1		885. L 1		517		422	- 999999		1990)) 1990)	3880 S	ę.	884038 <u>8</u> .	4 0.65 0.5 0 0.66 0.2	2633366	- 33	2023	23403	
1986	<5 <0.5	-	지신 문의		<1 _1		90659.	11 845	<u>a</u> 1			96. T.:		475	- ÷	299 T	- <u>\$</u> 7933		28522	1999.00	6	885389	7 0.67 0.3			060 - E	6-006	
1987	<5 <0.5		11 M.	32	ং া	1.1		.0 <5	: -			92 F.		8 . Geo.		940 TT	- 21.22	_		- 10 C I		<u> 관련</u> 공항법	6 0.75 0.2	- 영화관성		신값	- 1920 - De	
1988	<5 40.5		3		<1			.0 <5	· 7		2.00	ID	· ~2 5	308	0	11 ~20	~ <u>c</u> u	11	5 10 4			0.29 0.0	0.11 0.2		.71		•	0.000
989	<5 <0.5	<1	5	29	<1	10	9 <1	.0 <5	ິ 7	′ <	1.92	190	<25	446	67	28 <20	<20	9	<10 3	3 6	<5	0.24 5.4	8 0.66 0.3	7 1.40 1	.29	10 4	3 13	73 0,005
990	<5 <0.5	1	~2		<1		8 <1	292.2	e	- No - No		-96.50 T.S.		199309224		89Q.1	100000		Sec. 26	- NGC/00		2343-63644 E	1 0.63 0.3	- 1993 (1993) 1993 - 1993 (1993)	- 208		2011/2020	4000000000
991	<5 <0.5	<1	<2	20	<1	9.	7 <1	.0 <5	<5														0 0.62 0.6					
992	<5 <0.5	1	<2	18	<1	9	7 <1	.0 <5	7	<5	1.59	151	<25	572	62 🔅	₹ <u>1</u> <20	<20	7	12 3	6 7	<5	0.28 6.0	9 0.52 0.5	5 0.05 1	.68	11	9 12	75 0.005
993	<5 <0.5	1	 2	15	<1	7	5 <1	.0 <5	े <5	<5	1.27	136	<25	474 1	08 2	27 <20	<20	5	10 3	35	<5	0.23 4.7	9 0.46 0.8	2 0.04 1	.93	8 1	3 10	66 0.007
					283913. 13. 스북	1			9 19 2																			
1994	<5 <0.5	: 1	<2	18	ି<1	7	7 <1	.0 <5	8	<5	1.53	121	<25	614	85	38 <20	<20	7	10 3	8 7	<5	0.28 6.1	7 0.60 0.3	9 0.09 1	.79	10 1	2 14	78 0.004
995	<5 <0.5	3	~2	58	<1	20	16 <1	.0 <5	6		2.88	292	<25	802	69	76 <20	<20	19	13 5	0 9	<5	0.44 8.1	7 1.29 1.2	3 0.33 2	.13 🕈	26 3	8 17	102 0.010
996	<5 <0.5	4	<2	35	্ৰা	10	10 <1	.0 🛷	6	<	1.51	346	<25	464	99	53 <20	<20	11	<10 2	9 <5	<5	0.25 4.3	4 0.74 0.9	7 1.53 1	.18	11 6	5 12	60 0.011
1997	<5 <0.5	<1	6	38	1	12	10 <1	.0 <5	- -	<5	1.80	148	<25	499	68	3 4 <20	<20	13 •	<10 3	3 7	<5	0.26 5.9	7 0.76 0.1	9 1.46 1	.42	8 4	0 13	82 0.003
998	<5 <0.5	1	3	27	<1	12	8 <1	.0 <5	<u></u> 5	<5	1.58	140	<25	467	88 🗄	30 <20	<20	9	10 3	2 6	<5	0.23 5.4	3 0.61 0.2	9 0.71	.42	8 2	5 10	66 0.003
			1990						22 27 80				9. N															
1999	<5 <0.5	<1	- 4	25	<1	8	8 <1	.0 <5	5	s.	1.37	136	<25	418	80	21 <20	<20	8	<10 2	8 5	<5	0.21 4.7	3 0.54 0.2	4 1.53 '	.36 🖔	8 4	5 10	55 0.005
2000	<5 <0.5	<1	<2	32	< 1	13	11 <1	.0 <5	7	′ <5	2.47	84	<25	646	67 ी	41. < 20	<20	11	16 4	5 9	<5	0.35 7.1	7 0.74 0.1	5 1.19	.64	14 2	9 14	89 0.002
7451	<5 <0.5	2	4	23	<1	11	7 <1	.0 <5	i 7	′ <5	1.93	312	<25	633 1	41 🖁	28 <20	<20	8	<10 3	2 6	<5	0.22 4.6	6 0.70 0.7	3 0.58	.51	8 2	6 11	67 0.011
7452	18 <0.5	2	4	22	<1	7	5 <1	.0 <5	s. 8 5	5	1.15	62	<25	270 1	11 🕈	17 <20	<20	7	<10 2	2 <5	<5	0.15 3.1	2 0.39 0.1	0 0.64 (.94	6 1	7 8	48 0.002
7453	<5 <0.5	<1	3	24	্ব	9	7 <1	.0 <5	ິ 7	′ <s< td=""><td>1.57</td><td>62</td><td><25</td><td>355 1</td><td>02 Å</td><td>23 <20</td><td><20</td><td>8</td><td><10 2</td><td>8 5</td><td><5</td><td>0.19 4.1</td><td>6 0.49 0.1</td><td>0 0.68</td><td>.93</td><td>82</td><td>0 9</td><td>58 <.002</td></s<>	1.57	62	<25	355 1	02 Å	23 <20	<20	8	<10 2	8 5	<5	0.19 4.1	6 0.49 0.1	0 0.68	.93	82	0 9	58 <.002
	4 A.		0.2			3		- 19-0 						AN STATES	200 2						e ë						- 1948) - 1993	
7454	<5 <0.5		<2	23	<1	6	5 <1	.0 <5		<5	1.12	55	<25	261	83	17 <20	<20	7	<10 2	0 <5	<5	0.14 3.0	9 0.40 0.0	7 0.63	.54	6 1	6 9	51 0.003
7455	22 <0.5		38,339	32	<1	10	988 Q	gere.	S.,	6336,85		1023427		1997 1998 -	- 12		- 292962		\$33753	196100	St	1993-1994 1993-1994	2 0.62 0.2	8366 - 684	. 383	10 2	6 9	58 0.005
7456	<5 <0.5		10000	22	্ৰ	7	an se	.0 <	6	1.11		198 - A.C.	e	0.0000000		1946	- State (8	• •	- eere		9	<u> - 6666666</u>	8 0.45 0.3	233339933		88.2	00000	41 0,005
7457	<5 <0.5	<1	4	33	<1	10	9 <1	.0 <5	ି 7	- 335 - 53		100		348		- 162	0.000	: ;	09985y		Ş	1949 (1949 (1949 (1949 (1949 (1949 (1949 (1949 (1949 (1949 (1949 (1949 (1949 (1949 (1949 (1949 (1949 (1949 (194	7 0.68 0.1	8000324A		ing ships	2011년~	72 0.003
7458	<5 <0.5		~2		<1	10	999601	.0 <5	80	- 80 B C		19. OST	9	366663	- 60	689Ê	- 31.223		1999-199 1999-1999	- 33353	<5	0.25 5.8	3 0.85 0.2	3 1.04	.57	10 3	4 16	109 0.005
7459	8 -0 E	: 	المينية. المراقب	1.6		1/	12 -1	n 25			2 14	200 00	-75	510	/E	(1) (1) ~20	~70	16	40 /	n a	~5	0 29 6 5	0 0.99 0.1	0 0 0 0	02	17 2	rs 20	126 0 002
	8 <0.5 7 <0.5		-85	46	<1 		Bebei		<u>-</u>	l <5 ,		ia - 1			Ś		- 380.66			3000	5	385789	- 196 - 19 <u>6</u> - 1		3	新始	- 90 MAR	- 1922-1933 1932-1933
7460	7 <0.5		<u>4</u>	44	্ৰা	3	(1999) 1	.0 <5	S			Sec. 1		566	- A		- 903-6		926.20	- Bereis	6	86. S.	7 0.99 0.2	- 1897-1998-		S-252		
7461	<s <0.5<="" td=""><td></td><td>16.2</td><td>20</td><td>ং1় </td><td></td><td></td><td>.0 <5</td><td></td><td>- 19 C</td><td></td><td>200</td><td></td><td>506</td><td>÷.</td><td></td><td>- 90839</td><td></td><td>99-60</td><td>3,646</td><td>÷</td><td>1069-899 fr</td><td>5 0.55 0.6</td><td>3603-02</td><td></td><td>1.693</td><td>. <u>8690</u>3</td><td></td></s>		16.2	20	ং 1় 			.0 <5		- 19 C		200		506	÷.		- 90839		99-60	3,646	÷	1069-899 fr	5 0.55 0.6	3603-02		1.693	. <u>8690</u> 3	
7462	<5 <0.5	3			୍ <ୀ			.0 ×5				1		547		- 1 Mar	- 운전용					~ 이 전 같은 것이 같아.	8 0.67 0.2	4,0000				1 - 1888 H Co
7463	<\$ <0.5	: 4	<2	33		11	10 <1	.0 <5	ू < 5	' ≦	2.17	126	<25	502	59	54 <20	<20	9	11 3	6 7	< হ	U.28 6.3	0 0.64 0.2	6 U.79	. <i>1</i> 5 💡	11: 2	o]]]	66 U-UUS

4050-0002

-KPAC)

Ű

Geochemicar Lab Kepon

	OLCONDA RESOURCES LTD. 02-00734.0 (COMPLETE														DAT	re rec	EIVED	: 03-	-JUL-C	02	DAT	EPR	INTE	D: 1	5-JUL-	02	PAGE			NONE (JIVEN	•	
AMPLE	ELEMENT Au30 Ag		- 80	Pb	Zn	Мо		Co		- 82.2		Sb Fe		<u>, 1997</u>	Te	Ba		्र १	- 683	t. Li	1.52		Sc		Ti	AL	Mg C	0.000	80. XV	< Nb	e - 1		Zr
umber	UNITS PPB PPM	PPN	1 8 P	PM	PPM	PPM	PPM	PPM	PP	I PPM	PPM	PPM	PCT	PPM	PPM	PPM	PPM P	PM PF	PM PPN	1 PPM	1 PPM	PPM	PPM I	PPM	PCT	PCT	PCT PC	T PC1	i PCI	PPM	PPM	PPM	PPM P
7464	8 ≾0.5	35		8	20	<1	9	4	<1 (े । े र 5	- <5	্ব	1 38	155	<25	485	92	23 <	20 <20	្តែ	ر د <10	25	<5	<5 (1 21 4	. 19	0.43 0.3	7 0 35	े 1.84	4 0	16	6	52 0.0
7465	 < 0.5 < √0.5 			<2	17	<1		5.425		1932.19				8690		1993		neero -		16			9999-1-1 1		60.000		0.38 0.1	3869	42	. 2088	817.		74 0.0
7466	<5 <0.5		- 38	6	15	<i< td=""><td></td><td>-8380C)</td><td></td><td>) <5</td><td></td><td>1.1</td><td></td><td>ente e</td><td></td><td>김희 가장</td><td>1</td><td>996 Q</td><td>200</td><td>68</td><td>- 3468</td><td>(</td><td></td><td></td><td>1803 B</td><td></td><td>0.30 0.0</td><td></td><td>966 1</td><td>- 2002-3</td><td>5</td><td></td><td>65 <.0</td></i<>		-8380C)) <5		1.1		ente e		김희 가장	1	996 Q	200	68	- 3468	(1803 B		0.30 0.0		966 1	- 2002-3	5		65 <.0
7467	< d.5			5	15	<1	9		2	্ ব্য		· · ·	1.08	·		- 12 A.A.		S. 674 -	2017 1		- 1960) 1960)		6275				0.27 0.1	19962	÷.	. 63.0	5		59 0.0
7468	6 <0.5	-	- 98	6	15	୍ <u>ୟ</u>	-	-986-00		- 6800 98		3.374				- 1999 (1992)	÷.		2000	36 T			036360	· · ·	0.000		0.31 0.1	- <u>Si</u> lar	<u>48</u>	146668	8 7 8	886-69	62 0.0
											:				i.	1999) - 1999)						}									i i		
7469	<5 <0.5	-	7	4	21	ব	10	7	<1.0) ব	<5	<5	1.27	96	<25	371	110	24 <	20 <20): 5	5 11	18	5	<5	0.20 4	.47	0.29 0.4	8 0.0	5 1.6	7 8	7	6	54 0.0
7470	<5 <0.5	19) 🕅	5	138	2	62	45	<1.0	• <5	12	<5	6.13	802	<25	603	179 1	39 <2	20 <20	35	5 <10	52	13	7	1.05 6	.63	2.35 4.4	0 1.49	1.4	5 70	125	16	87 0.0
7471	<5 <0.5	34		7	16	୍ <ୀ	10	8	<1.0) <5	<5	<5	1.25	184	<25	617	102	24 <2	20 <20) 4	· <10	20	<5	<5 i	0.19 3	.73	0.31 0.9	8 0.05) 7	13	7	50 0.0
7472	<5 <0.5	14	•	3	12	ব	8	- 302-97		- 31020			0.88	88731	1.	-98,231	6		1993	83 - L	- 1993		3300 iQ.	:	26.05160		0.22 0.0	194803	88. -	- 4030 3	š _ :	7	48 <.0
37473	<5 <0.5	14	•	<2	15	1	7	7	<1.() <5	<5	1.00		000 y	9 - C	12000			1993	8	- 2000		100000		30330		0.28 0.7		88 - C		8	5	53 0.0
						738.4 Seett									5		8														A S S		
7474	<5 <0.5	2	5	3	12	<1	6	4	<1.0) <5	<5	5	0.85	32	<25	253	88	16 <	20 <20) 3	s <10	30	≺5	<5	0.17 3	.67	0.23 0.1	0 0.04	1.6	7 7	6	7	51 0.0
7475	<5 <0.5		18	<2	13	<1	7	5	<1.0) ্ব	6		0.98	934. P		11.11.54				685	166758		-9889 C		24200-19		0.27 0.1		995 - E	- (1893)	÷	8	70 0.0
7476	<5 <0.5		1	2	17	-	8	6	<1.0) 5	6	<5	1.40	135	<25	407	89	27 <	20 <20)) 5	5 <10	32	6	5	0.27 5	.36	0.36 0.4	9 0.0	1.5	6 8	5	9	73 0.0
7477	<5 <0.5	1		3	19	<1	9	1992)			-	<5		1997 BY		20030303	3	8040	- 1975g	<u>90</u> 2	- 30393		82.0		alat it.		0.46 0.4	- 19480	65	1996	14	9	59 0.0
7478	<5 <0,5	<	1	7	18	<1	8	- 30 - 12		- 3330-101		11111		11.0		1.801.1013		2008	60000	988	1006.55		383398		- 360346		0.43 0.5	2008.0	90	2003039	8	2020	200202
														9														3963 3963					00000 00000 000000 000000
7479	<5 <0.5	1		5	8	2	8	1	<1.() 5	<5	ି <i>(</i> .<5ି	0.56	80	° ⊡<25	117	216	B <4	20 <20) <2	2 <10	10	<5	<5	0.04 1	.00	0.10 0.2	3 0.0	2 0.5	5 5	ें 5	6	17 0.0
7480	<5 <0.5	•	1	4	18	্ব		11 H H		1000		1990 B.		1.1		11.12	· .	2022	977 Q	90 - E	- 3095)		360.18				0.44 0.2			36333	š.	11	75 0.0
7481	<5 <0.5	<		2	22	<1 -		442		- 20,05		- 1 A		Shi C			: <u>`</u>	1969-Å.	1979	987			805268		lodisterel –		0.54 0.3	રેલે સર્વે	90 - E		12	11	81 0.0
7482	<5 <0.5		195	3	22	্ব	11	- 200	÷	- 30054	ę	100 C		ear ei	1.	-2003000		88:00 -	jach.	391	6.0000	;	100000		89-9333		0.53 0.3	34993	665	. 3928.0	8	33,7683	72 0.0
7483	<5 <0.5	1		्रन्थः ् ४ ः	18	<1	10	1.1		- 999.03	2	Sec. 3		21		1.200	·			4 J	- 10 - es		11.102		XX(20146)		0.45 0.4	20022	639 -	10000	8 T -		· · = 7335
			· . · ·					1												an Ja				-			1.14		99 20		8		
37484	<5 <0.5		.	4	15	<1	8	6	<1.0	1 <5	<5	≈<5∋	1.27	े 153	<25	420	144	23 <	20 <20	ි.)ි 5	5 <10	28	<5	<5	0 18 4	.25	0.39 0.4	9 0.0	41.4	1 <5	1 1	10	50 0.0
7485	<5 0.7	() () () () () () () () () ()	5		111	2				- 46143		1402438		X.a. h		1.43		1000 C	1963	<u>08</u>	- 5063		263.28				1.70 6.6	- 1996 B	664. 	- 1993-1993 1993-1993	8	3980 Q	19996
7486	<5 <0.5	<i>.</i>	- 28	3	42	্ব						1.101		épon, c		1000		5666G	्रेस्टेन	eng-	19946		2018		69689-33		0.79 0.8	- 66888	18 - E	365333	81		60.66
7487	<5 <0.5		5	4	29	ং ।		2015.	2	16880		ା <u>ର</u> ୍ୟୁତ୍ର		18) MA		100000		397N -	2992 2002	SS	- 999-99		112942		2010-042 J		0.73 0.3	266233	66	2000	22 - C	1000.000	200320
37488	<5 <0.5		12	8,000	32				2	- 366034		<5		영 집안		2883833			8.6	98	- 39.12		-3986Q	-	900035	-	0.65 0.5	10386	28		8	339 C.	1633 0
		; }	•		JL		16				. 0	3	1.70	رمت	(- 	477	17				• 314 3	- -		~		,		- 0.0 366	20 0-1 0	• 2001.4 2001.4 2001.4	< "'' 2		
37489	<5 <0.5			3	23	ু	11	0	<1_(्ः् । < ऽ	7	ं. ⊲<5	1.77	201	<25	546	70	ः 32 <	20 <21))]) 7	7 <10	31	7	< 5	0.28 5	.81	0.59 0.7	3 0 3	ू 21.8	0 R	ੁੱ 18	10	67 0.0
37490	<5 <0.5	: .	2 🖉	4	20	an file		2				< 5						044¥ -	- 18 A.	1.2			-622.193		1000000		0.49 1.0	39.0	90 - C		de la compañía de la	S	1993
37491	<5 <0.5		- 19	-7 <2		22 C - 21		100	2	- 91 - 19		~~ ⊲<5		1.1		- <u>1968</u>	1.1	570-	- 85° '				1802.43		88829032		0.62 0.4	- N9829	2255			10. IOS	67 0.0
7492	<5 <0.5	· _	3	Sec.	17	বা						- C1 - 2				1694743.53	: 8	ine a star	10.00	8			-95508		100000		0.37 0.4		88	3896	÷		1.1 830
7493	<5 <0.5			2		ःः <1		1.11		- 1 - <u>1</u> - 1		<5 <5						S. A.	late a	. 49	- 200 M V		-600 M		04666		0.38 0.2		<u>19</u> 3	689	20 A	-99-263	35 0.0
11 473			• २२२ २०५		L 1		11		<u>ст</u> а.		0	20	1.43	193	25	2(0	(7)	10.5		si i	' <u>3</u> 8	10		2	u. U7 (C		0.00.0.2		ି '		ζ, Υ	ଁ	

lso9002

-TŘÍ (

Geochemicar-Lab-report

	LCONDA RESOL											-			D. 07				THTCS	. 16. 4	11 -02			ROJECT:		E 611	VENI		
CEPURT: VU	2-00734.0 (COMPLETE)			.,					·····	L	JAIEN	KECE I VI	D: 03-	JUL-U2		AIE PK	INTED	: 15-JL	JL-02	PA	je o	OF 10					
SAMPLE	ELEMENT A	u30 Ag	. Cu	Pb	Zn	Mo	Ni	Co (d Bî /	ls Sb F	e Tot	Mn 1	le 🎉	Ba Cr	V SI	n 🖁	LiGe	i La	Sc. 1	Ta Ti	AL	Mg	Ca	Na	κ.	Nb 9	Sr	Y Zr	
IUMBER	UNITS	PPB PPM	PPM	PPM	PPM	PPM	PPM P	PM PI	m PPM PI	м рр м	PCT	PPM PF	m pr	PM PPM	PPM PPI	M PPM	PPM PPM	PPM	PPM PF	PM PC1	PCT	PCT	PCT	PCT F	YCT P	PM PI	PM PP	M PPM	I PC
37494		<5 <0.5	4	3	17	1	10	5 <1	.0 <5	⊲ ≼	1.34	113 <	25 25	56 201	17 <2	0 <20	6 <10	17	<u>ج</u>	<5 0.08	3 2.26	0.35	0.20	0.02 1	.02	<5	9	8 34	0.00
37495		<5 <0.5	3	3	24	<1	9	6 <1	.0 <5	<5 <5	1.75	678 <	25 39	95 163	21 <2	0 <20	8 <10) 21	<u>ج</u>	<5 0.12	23.43	0,67	0.64	0.03 1	.47	<5	12 🕈	9 45	0.00
37496		<5 <0.5	3	~2	27	<1	12	7 <1	0 <5	5 <5	1.91	151 <2	25 45	58 188	27 <2	0 <20	10 <10	28	5.	<5 0.17	4.29	0.61	0.32	0.04 1	.65	6	7 1	1 72	0.00
37497		<5 <0.5	3	2	25	<1	11 🖇	7 <1	.0 <5	<5 <5	1.52	252 <2	25 35	55 176	19 <2	0 <20	9 <10	21	<5 ·	<5 0.13	3.26	0.55	0.31	0.03 1	.39	7	8	9 56	0.00
37498		<5 <0.5	2	10	20	1	9	5 <1	.0 <5	ত ব্য	1.50	3253 <	25 32	29 148	19 <2	0 <20	6 <10	19	ا ه ا	<5 0.10	2.78	1.49	2.60	0.02 1	.21	<5 :	31 1	0 43	0.01
37499~		<5 <0.5	3	6	19	<1	9	5 <1	.0 <5	5 <5	1.57	2723 <	25 3 2	27 138	20 <2	0 <20	6 <10) 18	- ব	<5 0.1	1 3.01	1.36	2.64	0.02 1	.50	<5	29	9 40	0.01
37500		<5 <0.5	3	ं उ	16	2	12 🖇	5 <1	.0 <5	ত ত	1.51	330 <	25 47	24 190	24 <2	0 <20	6 <10	21	<5 ·	<5 0.1	5 3.76	0.44	0.64	0.02 1	.53 🖇	6	7 🛞	7 52	2 0.00
37501		<5 <0.5	11	7	16	<1	8	4 <1	.0 6	5 <5	1.62	1210 <	25 37	70 178	17 <2	0 <20	4 <10) 13	<5	6 0.10	2.55	0.75	2.55	0.02 1	.24	ব্য	22 🔅	8 36	5 0.02
37502		<5 <0.5	7	2	10	1	8	4 <1	.0 <5	<5 <5	0.96	341 <	25 24	49 172	16 <2	0 <20	5 <10	12	-১	<5 0.08	3 2.36	0.36	0.87	0.02 0	.97 🖁	-5	9	6 31	0.00
37503		<5 <0.5	3	3	11	<1	8	4 <1	.0 <5	ও ও	1.05	483 <	25 3'	14 168	17 <2	0 <20	4 <1() 15	<5 ·	<5 0.10	2.56	0.35	0.65	0.02 1	.13	< 5	9	6 35	0.00
37504		<5 <0,5	2	5	10	ব	7	3 <1	.0 <5	<5 <5	0 .9 4	249 <	25 Z	29 197	13 <2	0 <20	4 <10) 12	ও -	<5 0.07	7 1.99	0.24	0.39	0.02 1	.00	ব্হ	6	6 27	' 0.0
37505		<5 <0.5	3	2	15	<1	8 🖇	5 <1	.0 <5	ৎ 5	1.22	496 <	25 2	99 159	15 <2	0 <20	6 <10) 13	- ১	<5 0.0	3 2.27	0.35	0.47	0.02 1	.13 🕺	ক	6	6 30	1 0.0
37506		<5 <0.5	3	3	20	<1	12	5 <1	.0 <5	5 <5	1.78	721 <	25 4	12 169	21 <2	0 <20	7 <10	20	- ব্য	<5 0.12	23.30	0.50	0.86	0.02 1	.29	<5	7	8 48	1 0.OC
37507		<5 <0.5	3	2	15	<1	6	5 <1	.0 <5	ও <ऽ	1.17	1768 <	25 24	99 125	14 <2	0 <20	4 <10	12	<5 ·	<5 0.08	3 2.10	0.75	1.57	0.02 0	.97	ব্য	17 🕈	7 28	3 0.01
37508		<5 <0.5	35	5	24	<1	12	7 <1	.0 <5	ৎ 😽	2.02	369 <	25 39	98 168	24 <2	0 <20	9 <10) 24	5 ·	<5 0.14	3.55	0.53	0.34	0.02 1	.46	≪5	7	0 58	0.00
37509		<5 <0.5	11	<2	29	ব	14	9 <1	.0 <5	< <	2.73	999 <	25 64	91 138	38 <2	0 <20	11 1	23	8.	<5 0.2	2 5.61	0.78	0.70	0.04 2	.35	8	10	2 84	F 0.0
37510		<5 <0.5	20	3	31	<1	15 🕈	9 <1	.0 <5	<5 <5	2.56	836 <	25 6	17 159	33 <2	0 <20	11 1	26	7	<5 0.19	5.03	0.77	0.93	0.04 2	. 15 🕴	7	12 ें	1 79	0.00
37511		<5 <0.5	23	3	28	<1	13	8 <1	.0 <5	ত ত	2.12	1260 <	25 5	17 161	27 <2	0 <20	9 <10	22	6	<5 0.1	5 4.07	0.81	1.25	0.03 1	.55 🕺	ক	13 🗿	0 60	0.01
37512		<5 <0.5	1	4	34	্ব	16	9 <1	.0 <5	5 <5	2.48	1930 <	25 6	52 169	31 <2	0 <20	10 10	24	7.	<5 0.18	3 4.79	0.91	1.13	0.03 1	.64	6	13 🕅	1 68	1 0.01
37513		<5 <0.5	2	6	27	্ব	13	10 <1	.0 <5	8 <5	2.39	3368 <	25 6	76 143	33 <2	0 <20	8 <1) 19	7.	s 0.11	8 5.05	1.36	2.53	0.03 1	.91	7	26	3 80) 0.01
37514		<5 <0,5	2	4	21	<1	9	6 <1	.0 <5	5 <5	1.76	3098 <	25 5	80 158	23 <2	0 <20	5 <1	0 24	<5 ·	<5 0.1	3 3.38	0.94	2.41	0.02 1	.53	<5	22	0 53	s o.o
37515		<5 <0.5	3	3	9	<1	5	2 <1	.0 <5	< ৰ	0.75	536 <	25 2	10 205	10 <2	0 <20	3 <1	0 9	-5	<5 0.0	51.42	0.27	0.73	0.01 0	.84	<5	9	5 21	1 0.0
37516		<5 <0.5	2	5	9	2	4	3 <1	.0 7	<5 <5	0.84	1167 <	25 2	29 192	7 <2	0 <20	2 <1	5 8	<5 ·	<5 0.04	0.96	0.44	1.55	0.01 0	.56	-5	17 📓	6 17	0.0
37517		<5 <0.5	3	2	15	1	6	4 <1	.0 <5	<5 7	1.01	2188 <	25 2,	24 172	12 <2	0 <20	3 <1	5 11	<5 ·	<5 0.0	51.71	1.23	2.60	0.01 1	.00	<5	28	7 23	5 0.0
37518		<5 <0.5	2	5	30	<1	10	7 <1	.0 <5	8 <5	1.69	1288 <	25 5	23 151	33 <2	0 <20	8 <1	26	6	<5 0.1	7 4.47	0.85	1.52	0.14 2	.73	8	28	0 87	' 0.0
37519		<5 <0.5	2	4	36	<1	12	7 <1	.0 <5	5 <5	2.51	2724 <	25 6	06 154	3 5 <2	0 <20	10 <1	0 30	7	<5 0.19	9 5.03	1.56	2.88	0.25 3	.05	11	44 🖉	6 109	> 0.0
37520		<5 <0.5	2	6	35	ব	11	8 <1	.0 <5	7 <5	2.66	345 <	25 7	05 135	41 <2	0 <20	9 1	3 30	8	<5 0.2	4 5.88	0.61	0.99	0.24 3	.12	11	23 ္တိ	4 119	> 0.0
37521		<5 <0.5	3	5	20	<1	7	4 <1	.0 <5	<5 <5	1.39	214 <	25 3	43 142	22 <2	0 <20	5 <1	3 18	<5	<5 0.1	1 2.86	0.34	0.44	0.12 2	.50	6	20	9 57	1 0.0
37522		<5 4.3	23	4	21	2	11 🖁	42 <1	.0 <5	6 <5	1.34	1339 <	25 3 6	66 168	21 <2	0 <20	7 <1	0 14	<5	<5 0.0	9 2.38	0.68	1.08	0.13 1	.68	<5	41 🖉	0 37	/ 0.0
37523		<5 <0.5	148	7.	27	2	10	6 <1	.0 <5	<5 <5	1.30	262 <	25 3	40 190	22 <2	0 <20	6 <1	0 14	<5	<5 0.1	2.48	0.42	0.30	0.19 1	.98	<5	33 🖉	7 31	0.0

Geochemicar-Lab report

LIENT: GOLCONDA R EPORT: VO2-00734.							(DATE RECEIV	ΈD: 03-J	UL~02	DATE PI	RINTED:	15-JUL-02	PAGE		: NONE GIV	/EN1	
	NT AU30 Ag TS PPB PPM	 A second sec second second sec	Zn Mo PPM PPM				e Tot Min PCT PPM PI									k ND S Pct PPM PF	00042603	Zr PPM PC
524	<5 ≺0.5	5 4	25 <1	10 6 <	1.0 <5 ·	-5 <5	1.87 654 <	25 513 211	27 <20	<20 7	<10 21	<5 <s< td=""><td>5 0.14 3.8[,]</td><td>1 0.68 0.</td><td>73 0.24 1</td><td>.66 6 3</td><td>50 11</td><td>38 0.0</td></s<>	5 0.14 3.8 [,]	1 0.68 0.	73 0.24 1	.66 6 3	50 11	38 0.0

- KTYÝC Ý

Geochemicar Lab report

CLIENT: GOLCONDA RES REPORT: V02-00734.0																DA	TE RE	CEIVE	D: 0	3-JUL	-02]	DATE	PRIN	TED:	15-JU	02	F	PAGE			ONE G	IVEN1		
STANDARD ELEMEN"	TAU	50 Ag	् इ. (Cu	Pb	Zn	Mc) Ni	i SC	0 Ca	1 81	i As	Sb	Fe To	t seMi	n Te	Ba	Cr	V	Şn	W	Li	ici Gai L	a S	i) Ci Ta	a Ti	Al	ine Me	s g Ca	Na	Lg K	Nb	Sr	Y Y	Zr 5
NAME UNIT:	s pj	28 PP	I PI	PM 🕺	PPM	PPM	PP	PPI	1 PP	M PPN	PP	PPM	РРМ	PC	r PPI	PPN	PPM	PPM	PPM	PPM B	PPM P	PM PI	PM PP	m ppi	M PPI	M PCT	PCT	PC	г рст	PCT	PCT	PPM	PPM P	PM PI	м рст
				8												8. 				0.474															
ANALYTICAL BLANK		<5 <0 .5	, ·	<1	~2	2	<	j 3	5 🔇	1 <1.() ँद	5 <5	<5	<0.0	। ं <	5 <25	<5	<2	<2	<20 š	<20	<2 <	10 <	5 😤	5 <	5 <.01	<.01	<.0	1 <.01	<.01	<.01	جه	<1	<	<5 <.002
ANALYTICAL BLANK		<5 <0.5	5	<1	3	<2		<	। ि	1 <1.() ें<	5 <5	ব্য	0.0	1 🏹	5 ₀ <25	i <5	<2	<2	<20 <	<20	<2 <	10 <	5 🔮	5 <	5 <.01	<.01	<.0	1 <.01	<.01	<.01	<5	<1	<5	<5 <.002
ANALYTICAL BLANK		⊲.5	5	<1	<2	2			2 🗧	1 <1.() ੁਵ	5 <5	<5	0.0	1 <	5 <25	<	<2	<2	<20 <	<20	<2 <	10 <	5 <	5 <	5 <.01	<.01	<.0	1 <.01	<.01	<.01	<5	<1	<5	<5 <.002
ANALYTICAL BLANK		<5 <0.5	5	2	<2	<2	•	100 C	i 920	1 <1.(- 200 S	240 T	- 2001025		1 _<		- 10 A 10		100.000		0.00000		eo. 200	10960	star -	20,406.00	5 C	- 19 or of (2	96.5	1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -		111000000	- 330	11222	<5 <.002
ANALYTICAL BLANK		- <0.5	5	<1 ୍ଧି ୍	~2	<2		<	I 8	1 <1.() <	5 <5	\$	<0.0	1 8<	5 <25	i <5	<2	<2	<20 •	<20	<2 <	10 <	5 🔀	s <	5 <.01	<.01	<.0	1 <.01	<.01	0.02	: उ	<1	ৎ	<5 <.007
Number of Analyses		4	5	5	5	5		े 50 !	5 8	5 !) 5 5 5	s 5	5		5 🖂 !	55	5	5	5	5	5	5 8	5	5 Ś	5 !	5 5	5		5 5	5	5	5	5	5	5
Mean Value		3 0.3	3	<1 }	1	1		i '	1 💒	1 0.	;	33	3	0.0	1 - :	3 13	3	1	1	10	10	1 🕺	5	3	3 3	3 <.01	<.01	<.0	ू 1ं<.01	<.01	0.01	3	<1 §	3	3 0.00
Standard Deviation		- 20		<1 े	<1	<1			1			28 21 -		<0.0	1			а (; -		- 3	-	- 3		- 30		-	0000 -		-		0.01		- 33		- <.001
Accepted Value		5 0.2	2	1	2	1		1 1	I	1 0.9	5	2 5	5	0.0	- 19. ee s		_ <1	1	1	<1	<1	<1	<1 <	1 🗧	1 <	1 <.01	-	<.0	1 <.01		<.01	<1	<1	<1	<1 <.00
				4 4														k. De				0.000									 9. 9.				
HX12 Oxide	66	33		- 3		-			•			-			- 93			} •		- 3		- 3		- 33		- 88	-		-		-		- 8		-
Number of Analyses		1		- 3		-			- 23	99 		8 -)	- 341 - 18139	t		-				- 80		- 100	98 23	- 3333	-		-		-		- 8		
Mean Value	66	53		-		-		88 88		÷.		- 8			- 2.2			- %				- 30	9 <u>1</u> 8	-		- 0000000 - 000000 - 000000	-		999 200		8		- 8		- 200
Standard Deviation		- 8665				-			•		- 36	-			- 360-	- - -		8 8 -		- 3		- 33		- 333		-	-		-		-		- 3		-
Accepted Value	66	00	28 192 240	-	_	-			- 33						-	-	•	-		-		- 100	-	- 200		-	-				-		-		-
GS01-2 In-House		- 21.0	6 56	82	238	3862	1347	2 394!	5 5	6 25.	7 2	3 351	679	3.9	5 249	4. <25	5 882	85	204	<20	<20	44 <	10 2	21	5 <	5 0.30	6.99	1.6	9 5.47	' 2.61	1.78	3 17	666	15	32 1.16
Number of Analyses		- 200	1	1	1	1		i '	1	1	1	1 1	1		1	1 1	1	1	1	1	1	1	1	1	18	1	1		1 1		8 6 1	I 👬	1	1	1
Mean Value		- 21.0	6 56	82	238	3862	134,	2 394	ः इ. ेऽ	6 25.	7 2	3 351	679	3.9	5 249	4 13	5 882	85	204	10	10	44	5 2	21	5	3 0.30	6.99	1.6	9 5.47	2.61	1.78	3 17	666	15	32 1.160
Standard Deviation		- 88		-		-		÷.	- 200	300 200 700	- 200	- -			-		. 80	85 5		-)	-	- 8		- 333		- 888	-				- -		- 8		- 1993
Accepted Value		- 21.4	4 60	60	244	3730	1456	5 433	3 10	5 26.9) 3	3 322	666	4.1	8 251	5 -	· 708	108	241	5	32	39	11 2	25 1	7 1	2 0.34	6.99	1.7	4 5.29	2.85	1.85	5 19	653	14	32 1.17
OX5 Oxide	9	84		-					-		•				.			5 33 35 -		-		•		- 33		-	-					- 338.0			-
Number of Analyses		1		- 2	0.0000000 	-		20 	- 33		- 899	- 15		÷	- 28	÷.	- 13313	- 10		-		- 00		- 20		- 200	- 20			- 1933 - 1935	- 	- 1995			- 2000
Mean Value	9	84				-			- 220		• 33	-			- 83	-		- 8		-		- 00000		- 333		-	-		- - -		-				- 22
Standard Deviation				- 3		-			- 33	200 1900 - 1					- 22	÷ •		-		-		- 3	987612 1914 1915 1917	-		- 335	-				- 		- 1		- 1000000 - 1000000 - 1000000
Accepted Value	9	58 ·	1993 1997 1998 1998		-	-			- 200						- 2	-		- 12		-		- 0000		-	-	- 200	-		-						-
CANMET STSD-4		- 40.	5	59 J	17	9 7		ें 1 2'	9 (1	7 <1.	الح	ं 5 14	, s	3.6	7 133	े 7 <25	5 1653	65	93	<20	<20	12 <	:10 '	18 1	0 <	5 0.38	4.64	11	8 2.75	5 1 . 87	71.13	3 13	292	18	44 0,10
Number of Analyses		- 33	1	1)	1	1			- 188	1	- 665	di.	1		1 3 3		. 192 i.	3 .	_1		1	1	994 (J	20	1	236666	88. 1	- 3363	338. 	- 60 V		1.294	1 3	1	66666
Mean Value		- 0.	3 I	59	17	97		1 2	9 Í	7 0.	5 2	3 14	ંુ	3.6	7 133	7 13	3 1653	65	93	10	10	12	् <u></u> 5ः 1		- 10 A	202029	4.64	11	8 2.75	5 1.87	ै।.1	3 13	292	18	44 0.102
Standard Deviation		- 1	<u>.</u>	- 3		-		्र इ.स. १	- 8		- 30	j	- 11		-	. .		-		-	999 Se	- 8		- 🖉		- 80	-		*** • ₹§: -			- 983	-		- 33
Accepted Value		- 0.	3	66	16	107		2 2 3	0 1	3 0.0	ક	- 15	7	4.1	0 152	0 -	· 2000	66	106	2		14	1	24 1	4 <	1 0.46	6.40) 1.2	8 2.8	5 2.00) 1.3	39	350	24	53 0.09
,		260	se ^{ji}		1917,s		12.34	8. T	- 50	28 - 1	- 60	3. T					-3012	0	100	. – .	243a	118	3983 T		цŵ	68765	8	220	-81 - T	- 89	89, i 🗍	- 1993		34995 -	

eeooz

- KENC (

F

Geochemical Lab Report

CLIENT: GOLCONDA RE REPORT: V02-00734.0															DAT	e reci	EIVED	: 03-	JUL-0	2	DATE	e pri	NTED:	15-JI	JL-02	P/		PROJEC 8 OF 1		NE GI	VEN1		
*****	••••••••	 			••••••• •	 20:199	•••••••••••••••					 13 e	•••••					 9 5	 835.113			 ج	••••••••••••••••••••••••••••••••••••••	••••••••••••••••••••••••••••••••••••••		and the second	 X.	. Adama			 NC		
STANDARD ELEMEN		8. A. A.		687	3	- 4. LAN		-201863				894.780 -	e Tot	952.65	Te	Ba		0.48	09.8		Ga		1988		88 - C	181.000.	Ca	Na	K	Nb	Sr	ΥZ	r 🔆 🖇 S
IAME UNIT:	S PPB	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM F	PPM	PCT	PPM	PPM	PPM I	PPM P	PM PP	M PPM	PPM	PPM F	PPM P	PM PP	M PC	i PC1	r PCT	PCT	PCT	PCT	PPM P	PM PP	M PP	M PCT
																	18 45																
GS91-1 In-House			89	12	8 TT	공연구	ć, i	0.00000		ৎ				-00-00 A.A.		u de se de la competition de la compet		1.11.01		÷.	0.0000000	- X	84,94 M;	0000000	C11	1.84	1.91	1.66	1.13	19 2	44 [1	3 4	B 0.035
Number of Analyses			1		8 1	- 200 (200)	ST - 1	1		-386.661	- 1-3	1		1		2006.2 (0.01)	10	SH 5.	20200		8020002		200000	1000000	CC	l	di i	1		-000 yearson	2000	Control	1 🔠
Mean Value	-	1.1	89	12	89	2	42	27	0.5	3	13	3	5.08	822	13	648	85 10	5 9 1	0 10	28	5	10	17	3 0.49	6.54	1.84	1.91	1.66	1.13	19 2	44 🚺	3 4	B 0.035
Standard Deviation	-		-		- 6		- 8		-		-		-		-		- 3		- 333	- 1		- 33		- 0200	왕 . 왕		-		-		- 33		
Accepted Value	-	0.7	99	11	88	2	40	18	0.1	1	8	1	4.95	850	-	800	108 1	75	4 2	32	4	10	18	1 0.5	8.30	1.90	1.85	1.82	1.00	17 2	65 1	36	0.030
DX8 Oxide	178		-		: : -		- -		-		-		-		_ :		-		- 20					- 1000					-		•		
Number of Analyses	1	3038233	-		-		2 		-				-		_		- 3		- 3333	- 10		-	이 2016. 이 30년 21 월양	- 33333 - 33333	÷.	898999 - 20200 -	- -	- 819993) - 919043	_		- 200	992 200 -	
Mean Value	178	- 2022/08/3	-		-		- 8		-				-			- 전화전 산전 - 4	- 88		- 00000	8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			nionifi Kasop Sittali	- 0000	20 20 		-		_		- 22		
Standard Deviation	-		-		-		s S -		_		- 3		-		-		- ×		- 33	-		-		-			- 12		_		-		
Accepted Value	186		-		-		8. 		-		-	•	-		-		- 200		-	-		•		-			- - -		-		- 1000000		-
CANMET LKSD-2	-	<0.5	35	43	206	<u></u>	26	20	1.2	<5	13	<5	4.25	1924	<25	692	38 (56 <2	0 <20	20	12	60	10 <	5 0.32	2 5.70	0.91	1.45	1.34	1.76	12 2	07 3	6 13	4 0.144
Number of Analyses	-	6.18	1	1	1	ંા	2	1992.20		2000 100	2	ાં		1		0.41.200		<000.	1000 a.e.,	÷	1000		90.040	- 100 A 4	38: 							2003 - C	0,00,000,00
lean Value	-	0.3	35	43	206	1	26	20	1.2	3	13	3	4.25	1924	13	692	38 (6 1	0 10	20	12	60	10	3 0.32	25.70	0.91	1.45	1.34	1.76	12 2	07 3	6 13	4 0.144
Standard Deviation	-		-	2638	-	- 2017-5 - 2017-5	e 	- 9090 (P)	-			694803 -	-	-		- NY 200			000 = 01=	-		- 3	성관한 사용자	- 689	8 2		-		-		日 - 約3	<u>.</u>	
Accepted Value	-	0.8	37	- 44	209	2	26	17	0.8	24	9	%1 ,	4.30	2020	- :	780	57 🔅	7	5 🔆	20		68	13 <	1 0.40	6.50	1.01	1.57	1.43	2.19	16 2	20 4	4 12	8 0.140
					8		č.												- 5668 2668			0.040			999 200 200							353	
DX9 Oxide	453		-		-		- 8		-		-		-		- :	199 - 3	- 🍭		- 88-	-		-				• \$2030 • \$2030	-		-		- 33		- 69,889
lumber of Analyses	1		-		-	- 		+	-		- ``		-	·	-	· -			-)-	-	-	- 3					2 -		-		- 200		
lean Value	453		-		-		ė –	340	-		- (-	-		ŝ.	- 3		- 33	-		- 3		- 00000			s -	- 11,603,00 - 11,000,60 - 11,000,600	-		- 33		- 83835.
Standard Deviation	-		-		- 10		-		-		-		-				- 3		- 335	- 1				- 0000			-		-		- 333		- 200 0000 - 200 000
Accepted Value	465		-		-		(-		-		- 3		-		-]		- 33		- 200	-		- 33	8828 8763		-		-	2020000 2020000 2020000	-		- 32		
SS01-1 In-House		4.3		4,99,79	5	0.00000000		13.60.0		30.33	1	00000		1.1.1		1900 A.	114	- AQ	1988-97	9	-265 1.25	6	9986	08076	665 1	0.57	1.25	0.62	1.12	12 2	35 👔	0 5	3 0.620
lumber of Analyses		1		8 1	1 I.	- 2019200				102007.5	1.8	Section,	1	3050 J. T. J.		Sec. 200325	22		1083001	5	1		1111		50 C	§§¶	÷	1		1		1	
lean Value		4.3		걸었는걸	8	4592	213	1949	9.5	ି 3	1.1	580	2.40	818		534 .	535	2002	3302	ж.	2001001	20		20200	88	0.57	1.25	0.62	1.12	2000-00	35 1	0 5	3 0.620
Standard Deviation				35233	3		-		-		- 10		-		•		-		- 88			- 8			58. T		÷	1000000	-		- 33		
Accepted Value	-	4.9	331	4124	1054	4441	211	19	9.5	2	68 3	552	2.24	782	- :	496 .	576	71	- 33	23		22	8 1	0 0.2	2.78	3 0.60	1.20	0.69	1.11	7 2	33	9 4	5 0.609
								2023			2020									ý P							9. 2010 2010				90 20	2000 2000	
					5		er H			1983). 3783	1444 1444 1444					nia de . Ristres											5. 4 2						
					1						1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -																8	- 31333355 - 3133355 - 313355					
					2		20 20 20								:	jaj.				2		- 					200						
					8						0.000							348 		:					ie Si		9 5. 1.						
		an a		2000	2	- 44 E	2	Sec. 1		-1889 1997	, in the second s			anos	:			382	- 983 x 3		3833		2000	100000	63 		ŝ					308 508	100000000 80000000

Geochemical Lab Report

()

	CONDA RESOURCES LTD.														DAT	e Re	CEIVE	D: 0	3-jul	-02	I	DATE	PRIN	ITED :	: 15	-JUL	-02	P/		PROJEC		- NC U		1		
SAMPLE	ELEMENT Au30 Ag	C	u (Pb	Zn	Мо	Ni	Co	Cd	Bi	As	Sb Fe	e Tot	Mn	Te	Ba	Cr	v	Sn	W	Li	Ga L	.a S	ic 1	Ta 🕴	Ti	AL	Mg	Ca	Na	ĸ	Nb	Sr	Ŷ	Zr	
NUMBER	UNITS PPB PPM	PP	M) 	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM P	PM P	PM P	PM PF	m pp	m PF	M §	PCT	PCT	PCT	PCT	PCT	РСТ	PPM I	PPM	PPM F	PM	P
01953	<5 <0.5		2 2	6	17	<1	11	7	<1.0	ব্য	6	<5	1.14	85	<25	307	119	26	<20 <	20	5 <	10 3	53 ×	s. •	<50	.20	4.33	0.31	0.27	0.21	2.09	7	9	10	63	0.0
Duplicate	<0.5	8	2	5	17	<1		189,000		19999		<5		- (889 per		80.335	<u>i</u>	Santia.	- 3	- 18 A -		ussi	- 683	0086		5166616		30hc103	÷.	-00030000	97 7.	33,0000		1999 - S.S.		-286261
01970	<5 <0.5		2	3	19	<1	: • •		<1.0	~5	-5	<5	1 12	125	<25	254	153	10	<20 <	20	3 <	10 1	0	5.	ار م	13	3 03	0 34	0 37	0 38	1 45	~ 5	13	8	35	0.0
Duplicate	<5 <0.5	8	3	5	21	·				1000		2000.05		60011		3894.3	3	iachta		85663	- 20	985 Ê.			- N	riadad.		100000	8	1003666	1.67	100000				10000
01890	6 <0.5		:1	3	22	<1	0	0	<1 0	~5	5	< 5	1 63	213	-25	1.70	72	78	~20 4	20	5 2	103 7	5		ة 50	26	5 00	0.50	n 44	0 04	1 73	11	31	8	49	0.0
ouplicate	<0.5	8.	:1	4	24	<1		1200.3		2010-000		ঁ				- 88 C. 28		90. V.S.		86566		997 M.	8.0	616		90.00266		808000.3	24	30030300		101.000.00		888 T.C.		-325
400/			-										4 70					<u>.</u>	~		, 8		~		- 6		(01	A	े 	A AF	4 FF		40		(7	
)1894)uplicate	<5 <0.5 <5		2	~2	16	<1	8	2	<1.0	\$	<>	<5	1.29	141	حک	400	114	20	<2U <	20	4	112 (57 IS		S U	. 17	4.01	0.50	U.47	0.03	1.77	0	IV	łV	00	0,0
			- 		~~						_				-		- 				•									a. of					74	
1982 uplicate	<5 <0.5 <0.5	2	2	<2 <2	28 29	요즘 작품		- N. 19		$-\phi_{ij} > \phi_{ij}$		া জ			<	iğramı,		엄마 안전	2	N9992		18138	- 80	838		et et de la		1.025.201	i.,	2898633		- See See S		2008030		2888
			0000000												-										2000000											
01991 Duplicate	<5 <0.5 <5	<	ୀ ୍	<2	20	<1	9	7	<1.0	<5	<5	<5	1.50	195	<25 (532	64	28	<20 <	20	7	10 3	53	7.	<5 0	.27	6.10	0.62	0.61	0.28	2.03	11	15	11	74	0.0
			1940000												8. 21						400202				0000000											
37452	18 <0.5	8	2	4	22	1 	•	1966: R		- 200 403		5		S 195		-36×54	9	90.9908	2	228.2		1,030	- 32	5 A.S.		eterite:		0.381633	81	- 2020-202	4	680.946		1993	48 46	335
Duplicate	<0.5		3	6	20	1	10	2	<1.0	^	<>	\$	1.55	80	<25	252	104	10	<20 <	20	1 <	10 4	-4	.	o u	. 12	2.80	0.57	0.15	0.65	1.14	9	14		40	u.u
37465	<5 <0.5		2	<2	17	<1	9	6	<1.0	<5	6	<5	1.31	36	<25	431	87	27	<20 <	20	6	13 3	53	7	60	.28	5.71	0.38	0.11	0.05	1.40	10	6	9	74	0.0
uplicate	<5		20010000																		ar (80).				4000.00											
37469	<5 <0.5		7	4	21	≺1	10	7	<1.0	<5	<5	ৎ	1.27	96	<25	371	110	24	<20 <	20	5	11	18	5 ·	<5 0	.20	4_47	0.29	0.48	0.06	1.67	8	7	6	54	0.0
uplicate	<0.5		8	3	20	<1	10	7	<1.0	<5	5	~5	1.31	99	<25	390	96	25	<20 <	20	5 <	10 2	20	6	<5 0	.21	4.62	0.30	0.50	0.07	1.73	8	7	6	56	0.0
7487	<5 <0.5		3	4	29	<1	12	9	<1.0	<5	9	ব্য	2.13	191	े <25	611	105	43	<20 <	20	10	13 :	57	8.	<5 0	.29	6.95	0.73	0.30	0.14	2.08	12	11	12	82	0.0
uplicate	<5	5 9 9	0000000																		5799 A.S.				2000 A				8							
37489	<5 <0.5	•	:1	3	23	<1	11	9	<1.0	<5	7	< 5	1.77	291	<25	546	79	32	<20 <	20	7 <	10 3	31	7	<50	.28	5.81	0.59	0.73	0.32	1.80	8	18	10	67	0.0
uplicate	<0.5		2	3	24	ः<1ः	11	9	<1.0	<5	<5	ক	1.79	294	<25	552	85	32	<20 🛓	20	7 <	10 3	34	7	<5 0	.29	5.87	0.60	0.71	0.33	2.15	ୀ1	19	10	62	0.0
37506	<5 <0.5		ें उ	3	20	<1	12	ें 5	<1.0	<5	5	\$	1.78	721	<25	412	169	21	<20 <	20	7 <	10	20	5 ·	ं <5 0	.12	3.30	0.50	0.86	0.02	1.29	<5	7	8	48	0.0
Duplicate	<0.5	í.	5 ु	6	21	2	12	5	<1.0	<5	<5	<5	1.82	734	<25	422	159	22	<20 <	20	7 <	10	22	ු රි් ·	<5 0	.13	3.37	0.51	0.89	0.02	1.33	<5	10	8	48	0.0

Geochemicar Lab Report

	.CONDA RESOUR 2-00734.0 (C	OMPLE	TE)												DAT	E RECEI	VED: 03-	JUL-02	DATE P	RINTE	D: 1	5-JUL-02	! F				WE GIV	EN1	
Mple Mber	ELEMENT AU UNITS P	во 🥈	Ag	Cu	Pb	Zn	Mo	Ni	Co	Cd	Bi /	As Sb	Fe Tot	Mņ													ND S PPM PP	2 C C C C C C C C C C C C C C C C C C C	55,7559
7511		<5 <0	.5	23	ँउ	28	<1	13	8 <	1.0	<5 ·	< ব	2.12	1260	<25	517 16	1 27 <2	0 <20 9	9 <10 22	6	<5	0.15 4.0	07 0.81	1.25	0.03	1.55	-5 1	3 10	60 0.01
uplicate		<5						-							-											-			

Geochemical Lab Report

REPORT: V02-00721.0 (COMPLETE)

REFERENCE:

CLIENT: GOLCONDA RESOURCES LTD.

PROJECT: LONE GROUP

SUBMITTED BY: D.L. PIGHIN DATE RECEIVED: 27-JUN-02 DATE PRINTED: 3-JUL-02

Geochemicar Lab Report

	ELEMENT		NUMBER OF ANALYSES	LOWER DETECTION	EXTRACTION	METHOD	SAMPLE TYPES	NUMBER	SIZE	FRACTIONS	NUMBER	SAMPLE PREPARATIONS	s nume
Digitizity 2 Ag - 1C30 48 0.5 PPH HF-HH03-HELCA-HC INDUC. CUP. PLASMA REMARKS: Due to digestion limitations based upon C02702 2 V D -1C30 48 2 PPH HF-HH03-HELCA-HC INDUC. COUP. PLASMA AL B and Cr may vary. C02702 2 P. D -1C30 48 1 PPH HF-HH03-HELCA-HC INDUC. COUP. PLASMA AL B and Cr may vary. C02702 2 P. D -1C30 48 1 PPH HF-HH03-HELCA-HC INDUC. COUP. PLASMA AL B and Cr may vary. C02702 6 Co - 1C30 48 1 PPH HF-HH03-HELCA-HC INDUC. COUP. PLASMA REPORT COPIES T0: 620 - 304 BH AVE S.V. INVOICE T0: 620 - 304 BH AVE C02702 9 Cd Cd 1 C130 48 1 PPH HF-HH03-HELCA-HC INDUC. COUP. PLASMA REPORT COPIES T0: 620 - 304 BH AVE S.V. INVOICE T0: 620 - 304 BH AVE S.V. C02702 1 As As -1C30 48 5 PPH HF-HH03-HELCA-HC INDUC. COUP. PLASMA FR. Deport tass problementation to the reproduced except in full. The data prosented in tass problementation tass problementation tass problementation tass problementation tass problementation tasproblementation tass problementation tass problementa	ELEPIENI		ANALISES	DETECTION	EATINGTION		R ROCK	48	2 .	- 150	48	CRUSH/SPLIT & PULV	. 4
Digitizity 2 Ag - 1C30 48 0.5 PPH HF-HH03-HELCA-HC INDUC. CUP. PLASMA REMARKS: Due to digestion limitations based upon C02702 2 V D -1C30 48 2 PPH HF-HH03-HELCA-HC INDUC. COUP. PLASMA AL B and Cr may vary. C02702 2 P. D -1C30 48 1 PPH HF-HH03-HELCA-HC INDUC. COUP. PLASMA AL B and Cr may vary. C02702 2 P. D -1C30 48 1 PPH HF-HH03-HELCA-HC INDUC. COUP. PLASMA AL B and Cr may vary. C02702 6 Co - 1C30 48 1 PPH HF-HH03-HELCA-HC INDUC. COUP. PLASMA REPORT COPIES T0: 620 - 304 BH AVE S.V. INVOICE T0: 620 - 304 BH AVE C02702 9 Cd Cd 1 C130 48 1 PPH HF-HH03-HELCA-HC INDUC. COUP. PLASMA REPORT COPIES T0: 620 - 304 BH AVE S.V. INVOICE T0: 620 - 304 BH AVE S.V. C02702 1 As As -1C30 48 5 PPH HF-HH03-HELCA-HC INDUC. COUP. PLASMA FR. Deport tass problementation to the reproduced except in full. The data prosented in tass problementation tass problementation tass problementation tass problementation tass problementation tasproblementation tass problementation tass problementa	Au30 Au - F/	- FA30	48	5 PPB	Fire Assay of 30g	30g Fire Assay - AA							
CONTROL Since Control Control <thcontrol< th=""> <thcontrol< th=""> <thcon< td=""><td></td><td></td><td></td><td></td><td>· · ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thcon<></thcontrol<></thcontrol<>					· · ·								
CONTROL CONTROL CONTROL CONTROL CONTROL Sample mineralization, IC30 results for CONTROL 2 PPM MF-HMC3-HCLCA-HCL INDUC. COUP. PLASMA AL, Ba and Cr. may vary. CONTROL 2 PPM MF-HMC3-HCLCA-HCL INDUC. COUP. PLASMA AL, Ba and Cr. may vary. CONTROL 2 COL C.G. 1000 C.G. 1000 COUP. PLASMA MR. DL. PIGHIN CONTROL 2 C.G. 1000 C.G. 1000 C.G. 1000 COUP. PLASMA MR. DL. PIGHIN INVOICE TO: 620 - 306 81H AVE S.W. INVOICE TO: 620 - 306 81H AVE CONTROL 2 C.G. 1000 C.G. 1000 C.G. 1000 COUP. PLASMA MR. DL. PIGHIN INVOICE TO: 620 - 306 81H AVE INVOICE TO: 620 - 306 81H AVE MR. DL. PIGHIN CONTROL 1 A.G. 1000 COUP. PLASMA MR. DL. PIGHIN MR. DL. PIGHIN MR. DL. PIGHIN CONTROL 1 A.G. 1000 COUP. PLASMA This report must not be reproduced except in full. The data presented in the opticable only to the samples indering the miserial subscitule and the mineral subscitule and the mineral subscitule and the mi					HE-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	REMARKS: Due to c	digestion limit	ations	based upon			
CÓDIDO 5 S. M. C. 1C30 48 2 PPM HF-HNG3-HCLO-HCL INDUC. COUP. PLASHA Al, Ba and Cr may vary. CAUTO 2 6 Mo Mo 1C30 48 1 PPM HF-HNG3-HCLO-HCL INDUC. COUP. PLASHA Al, Ba and Cr may vary. CAUTO 2 A 1 PPM HF-HNG3-HCLO-HCL INDUC. COUP. PLASHA REPORT COPIES TO: 620 - 304 8TH AVE S.V. INVOICE TO: 620 - 304 8TH AVE S.V. CAUTO 2 A S 1 PPM HF-HNG3-HCLO-HCL INDUC. COUP. PLASHA MR. D.L. PIGHIN CAUTO 2 A S S 5 PPM HF-HNG3-HCLO-HCL INDUC. COUP. PLASHA MR. D.L. PIGHIN CAUTO 2 A S S 5 PPM HF-HNG3-HCLO-HCL INDUC. COUP. PLASHA This report must not be reproduced except in full. The data presented in t CAUTO 2 A S S 5 PPM HF-HNG3-HCLO-HCL INDUC. COUP. PLASHA This report must not be reproduced except in full. The data presented in t CAUTO 2 S S D S I S O TO F C I S O TO F T HF-HNG3-HCLO-HCL INDUC. COUP. PLASHA This report must not be reproduced except in full. The data presented in t CAUTO 2 S F PM H HF-HNG3-HCLO-HCL INDUC. COU													
COUNTRY G MD NG I C30 48 1 PPM HF-ING3-HCLO-HCL INDUC. COUP. PLASMA COUNTRY 6 G Co - IC30 48 1 PPM HF-ING3-HCLO-HCL INDUC. COUP. PLASMA REPORT COPIES TO: 620 - 304 8TH AVE S.V. INVOICE TO: 620 - 304 8TH AVE COUNTRY 6 G Co - IC30 48 1 PPM HF-ING3-HCLO-HCL INDUC. COUP. PLASMA NR. D.L. PIGHIN COUNTRY 8 G Co - IC30 48 5 PPM HF-ING3-HCLO-HCL INDUC. COUP. PLASMA NR. D.L. PIGHIN COUNTRY 1 Ris As - IC30 48 5 PPM HF-ING3-HCLO-HCL INDUC. COUP. PLASMA Treport Tiss precific to those samples ide identified under "Sample NUMPH" and I applicable only to the samples as received expressed on a dry basis unless COUNTRY 1 R Te - 1 C30 48 5 PPM HF-ING3-HCLO-HCL INDUC. COUP. PLASMA Treport Tiss cold to samples identified under "Sample NUMPH" and I applicable only to the samples as received expressed on a dry basis unless COUNTRY 1 R Te - 1 C30 48 2 PPM HF-ING3-HCLO-HCL INDUC. COUP. PLASMA													
020702 7 Ni Ni 1123 48 1 PPM HF-HNG3-HCLO4-HCL INDUC. COUP. PLASMA REPORT COPIES TO: 620 - 304 8TH AV ES.V. INVOICE TO: 620 - 304 8TH AV 020702 8 Co Co 1123 48 1.0 PPM HF-HNG3-HCLO4-HCL INUC. COUP. PLASMA MR. D.L. PICHIN NR. D.L. PICHIN NR D.D. D.D. PICHIN NR D.D.D.D.D.D. D								and of may for y	•				
202072 1 0 0 1 0 0 1 0 0 1 0 0 1 0 <td>MO MO - 11</td> <td>- 1030</td> <td>40</td> <td>I FFM</td> <td>AF-NNUJ-BULU4-BUL</td> <td>INDUC. COUP. PLASHA</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	MO MO - 11	- 1030	40	I FFM	AF-NNUJ-BULU4-BUL	INDUC. COUP. PLASHA							
Diagrad B co. Co. T CS Co. Co. T PRM HF-HMS3-HCLCA-HCL INUC. CUP, PLASMA MR. D. PTM 020702 0 G do 1 CIS 4.8 1.0 PM HF-HMS3-HCLCA-HCL INUC. CUP, PLASMA MR. D. DPM HF-HMS3-HCLCA-HCL INUC. CUP, PLASMA This report must not be reproduced except in full. The data presented in t 020702 13 Fe Tot Fe - 1C30 48 5 PPM HF-HMS3-HCLCA-HCL INUC. CUP, PLASMA This report must not be reproduced except in full. The data presented in t 020702 13 Fe Tot Fe - 1C30 48 5 PPM HF-HMS3-HCLCA-HCL INUC. CUP, PLASMA This report must not be reproduced except in full. The data presented in t 020702 13 Fe Tot Fe - 1C30 48 5 PPM HF-HMS3-HCLCA-HCL INUC. CUP, PLASMA This report must not be reproduced except in full. The data presented in t 020702 16 Ba Ba - 1C50 48 5 PPM HF-HMS3-HCLCA-HCL INUC. CUP, PLASMA 020702 15 V - 1C30 48	Ni Ni-TI	- 1630	48	1 PPM	HE-HNO3-HOLO4-HOL	TNDUC, COUP, PLASMA	REPORT COPIES TO:	: 620 - 304 8th	AVES	.W.	INVOICE	TO: 620 - 304 8TH AV	E S.W.
020702 0 <td></td>													
020702 10 81 61 1230 48 5 PPH HF-HN03-HCL04-HCL INDUC. COUP. PLASMA ************************************													
DigD/Dig								*****	*****	*****	*****	*****	****
C20702 12 Sb								poort must pot	ha ren	roduced excer	at in full. The	data presented in th	his
020702 13 Fe Tot Fe - 1C30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA otherwise indicated 020702 14 Mn Mn - 1C30 48 25 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA otherwise indicated 020702 15 Te Te - 1C30 48 25 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA otherwise indicated 020702 16 Ms 68 a - 1C30 48 2 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 18 W V - 1C30 48 2 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 19 Sn Sn - 1C30 48 2 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 19 Sn Sn - 1C30 48 2 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 21 W V - 1C30 48 2 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 21 St Li 1. 1030 48 2 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 22 St La La - 1C30 48 5 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA			. –										
020702 13 Fe Tot Fe - 1C30 48 0.01 PCT HF-HH03-HCL04-HCL INDUC. COUP. PLASMA otherwise indicated 020702 14 Mm Hm - 1C30 48 5 PPM HF-HH03-HCL04-HCL INDUC. COUP. PLASMA otherwise indicated 020702 15 Te Te - 1C30 48 5 PPM HF-HH03-HCL04-HCL INDUC. COUP. PLASMA otherwise indicated 020702 16 Ba Ba - 1C30 48 2 PPM HF-HH03-HCL04-HCL INDUC. COUP. PLASMA 020702 17 C Cr - 1C30 48 2 PPM HF-HH03-HCL04-HCL INDUC. COUP. PLASMA otherwise indicated 020702 18 V V - 1C30 48 2 PPM HF-HH03-HCL04-HCL INDUC. COUP. PLASMA otherwise indicated 020702 19 Sn Sn - 1C30 48 2 PPM HF-HH03-HCL04-HCL INDUC. COUP. PLASMA otherwise indicated 020702 20 W W - 1C30 48 2 PPM HF-HH03-HCL04-HCL INDUC. COUP. PLASMA otherwise indicated 020702 21 Li Li Li 1C30 48 5 PPM HF-HH03-HCL04-HCL INDUC. COUP. PLASMA 020702 25 Ka La La 1C30 48 5 PPM HF-HH03-HCL04-HCL INDUC. COUP. PL	50 50 - 10	- 1630	40	D PPM	HF-HNOS-HCLO4-HCL	INDUC. COUP. PLASHA	a report	able only to the		les es receiv	ed expressed o	n a dry basis unless	-
Corrol 14 Mn Mn 1130 48 5 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA Corrol 15 He re - 1030 48 25 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA Corrol 15 He re - 1030 48 25 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA Corrol 16 W v - 1030 48 2 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA Corrol 19 Sn sn - 1030 48 2 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA Corrol 21 S V V - 1030 48 2 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA Corrol 21 S N W - 1030 48 20 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA Corrol 22 N W W - 1030 48 20 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA Corrol 22 S La La - 1030 48 5 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA Corrol 22 K S cs - 1030 48 5 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA Corrol 22 K S cs - 1030 48 0.01 PCT			(0						ie salip	ites as receiv	reu expresseu u	and a dry basis circes	
U20702 15 Te 1:30 48 5 FPM HF-HN3FHCL0+HCL INDUC. COUP. PLASMA U20702 15 Ba a 1:30 48 5 PPM HF-HN3FHCL0+HCL INDUC. COUP. PLASMA 020702 16 Ba a 1:30 48 5 PPM HF-HN3FHCL0+HCL INDUC. COUP. PLASMA 020702 16 K V - I:30 48 2 PPM HF-HN03-HCL0+HCL INDUC. COUP. PLASMA 020702 18 V - I:30 48 20 PPM HF-HN03-HCL0+HCL INDUC. COUP. PLASMA 020702 21 Li Li 1:30 48 20 PPM HF-HN03-HCL0+HCL INDUC. COUP. PLASMA 020702 22 Ga Ga 1:30 48 20 PPM HF-HN03-HCL0+HCL INDUC. COUP. PLASMA 020702 22 Ga Ga 1:30 48 5 PPM HF-HN03-HCL0+HCL INDUC. COUP. PLASMA 020702 25 Ta Ta 1:630 48							•		وجأور مليد مايد ماله مايد مايد م		e nie nie nie nie nie nie nie nie nie ni	*****	*****
020702 16 Ba - 1030 48 5 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 17 Cr - 1030 48 2 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 19 Sn - 1030 48 20 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 19 Sn - 1030 48 20 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 20 W - 1030 48 20 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 22 Ga Ga 1030 48 20 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 22 Ga Ga 1030 48 5 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 24 Sc Sc 1020 COUP. PLASMA INDUC. COUP. PLASMA 020702 25 Ta Ta 1030 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 27 AL <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>i i</td> <td>********</td> <td>******</td> <td>***********</td> <td></td> <td></td> <td></td>		-					i i	********	******	***********			
020702 17 Cr 1C30 48 2 PPM HF-HN03-HCLQ4-HCL INDUC. COUP. PLASMA 020702 18 V V 1C30 48 2 PPM HF-HN03-HCLQ4-HCL INDUC. COUP. PLASMA 020702 19 Sn n 1C30 48 20 PPM HF-HN03-HCLQ4-HCL INDUC. COUP. PLASMA 020702 20 W V 1C30 48 20 PPM HF-HN03-HCLQ4-HCL INDUC. COUP. PLASMA 020702 21 L 1 1C30 48 20 PPM HF-HN03-HCLQ4-HCL INDUC. COUP. PLASMA 020702 22 Ga Ga 1C30 48 5 PPM HF-HN03-HCLQ4-HCL INDUC. COUP. PLASMA 020702 24 Sc Sc 1C30 48 5 PPM HF-HN03-HCLQ4-HCL INDUC. COUP. PLASMA 020702 25 Ta Ta 1C30 48 0.01 PCT HF-HN03-HCLQ4-HCL INDUC. COUP. PLASMA 020702 25 Ta Ta 1C30 48 0.01 PCT<													
Q20702 18 V V IC30 48 2 PPM HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA Q20702 19 Sn - IC30 48 20 PPM HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA Q20702 20 W - IC30 48 20 PPM HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA Q20702 21 Li i I-IC30 48 2 PPM HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA Q20702 23 Ga I-IC30 48 5 PPM HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA Q20702 24 Sc Sc IC30 48 5 PPM HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA Q20702 24 Sc Sc IC30 48 0.01 PCT HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA Q20702 25 Ta IC30 48 0.01 PCT HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA Q20702 27 AL IC30 48 0.01 PCT HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA Q2													
020702 19 Sn - 1 C30 48 20 PPM HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA 020702 20 W - 1 C30 48 20 PPM HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA 020702 21 L i I C30 48 2 PPM HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA 020702 22 Ga Ga - 1 C30 48 5 PPM HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA 020702 23 La La - 1 C30 48 5 PPM HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA 020702 25 Sc - 1 C30 48 5 PPM HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA 020702 25 Ta Ta - 1 C30 48 0.01 PCT HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA 020702 27 AI AI - 1 C30 48 0.01 PCT HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA 020702 26 Ga - 1 C30 48 0.01 PCT HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA 020702 23 K K <	Cr Cr - I	- 1C30	48	2 PPM									
020702 20 W W H - 1C30 48 20 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA 020702 21 Li Li - 1C30 48 2 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA 020702 22 La La - 1C30 48 10 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA 020702 22 La La - 1C30 48 5 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA 020702 24 Sc Sc - 1C30 48 5 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA 020702 25 Ta Ta - 1C30 48 5 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA 020702 26 Ti Ti - 1C30 48 0.01 PCT HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA 020702 27 AL AL - 1C30 48 0.01 PCT HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA 020702 29 Ca Ca - 1C30 48 0.01 PCT HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA 020702 30 Na Na - IC30 48 0.01 PCT <t< td=""><td>V V - IC</td><td>- IC30</td><td>48</td><td>2 PPM</td><td>HF-HNO3-HCLO4-HCL</td><td>INDUC. COUP. PLASM</td><td>k i i i i i i i i i i i i i i i i i i i</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	V V - IC	- IC30	48	2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM	k i i i i i i i i i i i i i i i i i i i						
020702 20 W W - 1C30 48 20 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASHA 020702 21 Li Li - IC30 48 2 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASHA 020702 23 La a IC30 48 5 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASHA 020702 24 Sc sc - IC30 48 5 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASHA 020702 24 Sc sc - IC30 48 5 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASHA 020702 25 Ta Ta - IC30 48 0.01 PCT HF-HN03-HCLO4-HCL INDUC. COUP. PLASHA 020702 26 Ti Ti - IC30 48 0.01 PCT HF-HN03-HCLO4-HCL INDUC. COUP. PLASHA 020702 29 Ga Ga - IC30 48 0.01 PCT HF-HN03-HCLO4-HCL INDUC. COUP. PLASHA 020702 30 Na a IC30 48 0.01 PCT HF-HN03-HCLO4-HCL INDUC. COUP. PLASH	Sn Sn - I	- 1030	48	20 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM	L						
020702 21 Li Li - IC30 48 2 PPH HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA 020702 23 La - IC30 48 10 PPH HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA 020702 24 sc sc - IC30 48 5 PPM HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA 020702 24 sc sc - IC30 48 5 PPM HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA 020702 25 Ta 1a - IC30 48 5 PPM HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA 020702 26 Ti - IC30 48 0.01 PCT HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA 020702 27 AL AL - IC30 48 0.01 PCT HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA 020702 28 Mg Hg - IC30 48 0.01 PCT HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA 020702 30 Na Na - IC30 48 0.01													
020702 22 Ga Ga - IC30 48 10 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 23 La La - IC30 48 5 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 24 Sc Sc - IC30 48 5 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 25 Ta - IC30 48 5 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 25 Ta - IC30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 27 AL - IC30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 28 Mg Mg - IC30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 29 Ca Ca - IC30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 31 K K - IC30 48 0.01 PCT HF-HN0													
020702 23 La La - IC30 48 5 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 24 Sc Sc - IC30 48 5 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 25 Ta - IC30 48 5 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 26 Ti Ti - IC30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 27 AL AL - IC30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 28 Mg Mg - IC30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 29 Ca Ca - IC30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 30 Na Na - IC30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 31 K K - IC30 48													
020702 24 Sc Sc - 1030 48 5 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 25 Ta - 1030 48 5 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 26 Ti - 1030 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 27 AL AL - 1030 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 27 AL AL - 1030 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 29 Ca Ca - 1030 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 30 Na Na - 1030 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 31 K K - 1030 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 32 Nb Nb - 1030 48 5 PPM H													
020702 25 Ta Ta - 1C30 48 5 PPM HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA 020702 26 Ti Ti - 1C30 48 0.01 PCT HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA 020702 27 AL AL - 1C30 48 0.01 PCT HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA 020702 28 Mg Mg - 1C30 48 0.01 PCT HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA 020702 29 Ca Ca - 1C30 48 0.01 PCT HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA 020702 29 Ca Ca - 1C30 48 0.01 PCT HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA 020702 29 Ca Ca - 1C30 48 0.01 PCT HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA 020702 30 Na Na - 1C30 48 0.01 PCT HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA 020702 31 K K - 1C30 48 5 PPM HF-HNO3-HCLO4-HCL INDUC. COUP. PLASMA 020702 31 K K - 1C30 48 5 PPM													
020702 26 T i T i - 1 C 30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 27 AL AL - 1 C 30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 28 Mg Mg - 1 C 30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 29 Ca Ca - 1 C 30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 30 Na Na - 1 C 30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 31 K K - IC 30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 31 K K - IC 30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 32 Nb Nb - IC 30 48 5 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 33 Sr Sr - IC 30 48 5 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 34 Y Y - IC 30 48 5 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702	30 30 - 1	- 1050	-0	2 114			•						
020702 26 T i T i - 1 C 30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 27 AL AL - 1 C 30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 28 Mg Mg - 1 C 30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 29 Ca Ca - 1 C 30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 29 Ca Ca - 1 C 30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 30 Na Na - 1 C 30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 31 K K - 1 C 30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 32 Nb Nb - 1 C 30 48 5 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 33 Sr Sr - 1 C 30 48 5 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 34 Y Y - 1 C 30 48	Ta Ta-la	- 1030	48	5 PPM	HF-HNO3-HCLO4-HCL	INDUC, COUP, PLASM	I						
020702 27 Al Al - IC30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 28 Mg Mg - IC30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 29 Ca Ca - IC30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 30 Na Na - IC30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 31 K K - IC30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 31 K K - IC30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 32 Nb Nb - IC30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 33 Sr Sr - IC30 48 5 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 34 Y Y - IC30 48 5 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 35 Zr Zr - IC30 48 5 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 35 Zr Zr - IC30													
020702 28 Mg Mg - 1C30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 29 Ca Ca - 1C30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 30 Na Na - 1C30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 31 K K - 1C30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 31 K K - 1C30 48 0.01 PCT HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 32 Nb Nb - 1C30 48 5 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 33 Sr Sr - 1C30 48 5 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 34 Y Y - 1C30 48 5 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA 020702 35 Zr Zr - 1C30 48 5 PPM HF-HN03-HCL04-HCL INDUC. COUP. PLASMA													
02070229Ca1030480.01PCTHF-HN03-HCL04-HCLINDUC. COUP. PLASMA02070230NaNa1030480.01PCTHF-HN03-HCL04-HCLINDUC. COUP. PLASMA02070231KK-IC30480.01PCTHF-HN03-HCL04-HCLINDUC. COUP. PLASMA02070231KK-IC30485PPMHF-HN03-HCL04-HCLINDUC. COUP. PLASMA02070232NbNb-IC30485PPMHF-HN03-HCL04-HCLINDUC. COUP. PLASMA02070233SrSr-IC30481PPMHF-HN03-HCL04-HCLINDUC. COUP. PLASMA02070234YY-IC30485PPMHF-HN03-HCL04-HCLINDUC. COUP. PLASMA02070235ZrZr-IC30485PPMHF-HN03-HCL04-HCLINDUC. COUP. PLASMA02070235ZrZr-IC30485PPMHF-HN03-HCL04-HCLINDUC. COUP. PLASMA													
020702 30 NaNa - IC30480.01 PCTHF-HN03-HCL04-HCLINDUC. COUP. PLASMA020702 31 KK - IC30480.01 PCTHF-HN03-HCL04-HCLINDUC. COUP. PLASMA020702 32 NbNb - IC30485 PPMHF-HN03-HCL04-HCLINDUC. COUP. PLASMA020702 33 SrSr - IC30481 PPMHF-HN03-HCL04-HCLINDUC. COUP. PLASMA020702 34 YY - IC30485 PPMHF-HN03-HCL04-HCLINDUC. COUP. PLASMA020702 35 ZrZr - IC30485 PPMHF-HN03-HCL04-HCLINDUC. COUP. PLASMA													
020702 31 KK - IC30480.01 PCTHF-HN03-HCLO4-HCLINDUC. COUP. PLASMA020702 32 NbNb - IC30485 PPMHF-HN03-HCLO4-HCLINDUC. COUP. PLASMA020702 33 SrSr - IC30481 PPMHF-HN03-HCLO4-HCLINDUC. COUP. PLASMA020702 34 YY - IC30485 PPMHF-HN03-HCLO4-HCLINDUC. COUP. PLASMA020702 35 ZrZr - IC30485 PPMHF-HN03-HCLO4-HCLINDUC. COUP. PLASMA													
020702 32 Nb Nb - IC30 48 5 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA 020702 33 Sr Sr - IC30 48 1 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA 020702 34 Y Y - IC30 48 5 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA 020702 35 Zr Zr - IC30 48 5 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA	Na Na-I	- 1630	40	0.01 PCI	nr-nNUJ-nuLU4-nuL	INDUC. COUP. PLASH	1						
020702 32 Nb Nb - IC30 48 5 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA 020702 33 Sr Sr - IC30 48 1 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA 020702 34 Y Y - IC30 48 5 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA 020702 35 Zr Zr - IC30 48 5 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA	κ κ- IC	- IC30	48	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM	l III						
020702 33 Sr Sr - IC30 48 1 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA 020702 34 Y Y - IC30 48 5 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA 020702 35 Zr Zr - IC30 48 5 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA					HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM	١						
020702 34 Y Y - IC30 48 5 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA 020702 35 Zr Zr - IC30 48 5 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA													
020702 35 Zr Zr - IC30 48 5 PPM HF-HN03-HCLO4-HCL INDUC. COUP. PLASMA													
	5 5-16	1630	40	0.002 FUI		THEORY COOL FERGIN	•						

Geochemical Lab Report

, i	ROV	IDAR	EGG	

EMENT AU30 AG UNITS PPB PPM <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5	PPM P 29 27 33 71	PM PP 3 2 <2 2 <2 2 <2 4	M PPM 2 2 2 <1 9 <1	РРМ 10 10	PPM { 8 <' 9 <'	>PM PP	M PPN 5 11	I PPM	PCT	Mn PPM PI		<u> </u>	264,2000		252h		••••••	 		4,27993	Ca	Na	K Nb	Sr	Y	590000
UNITS PPB PPM <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5	PPM P 29 27 33 71	PM PP 3 2 <2 2 <2 2 <2 4	M PPM 2 2 2 <1 9 <1	РРМ 10 10	PPM { 8 <' 9 <'	>PM PP	M PPN 5 11	I PPM	PCT	- 194 - 201 - 1		<u> </u>	264,2000		252h		ာင	ाब ु	11 A	L Mg	i ua 💮	enere de la compañía	K ND	11 - OC	- 19 C -	590000
<5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5	29 27 33 71	3 2 <2 2 <2 2 <2 4	2 2 2 <1 9 <1	10 10	8 <' 9 <'	I.0 <	5 11				PRI PPRI				DOM DO	1 DDU	DOM:	DOM OF	67 DO	r not	DOT	DT D	OT DOM	DOM C	main	NU 000
<5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5	27 33 71	<2 2 <2 2 <2 4	2 <1 9 <1	10	9 <'			्र			· · · ·		PPM PPM	PPR		ч. Р РМ	PPM I	PPM P	LI PL					PPM P	PM P	PM PC
<5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5	27 33 71	<2 2 <2 2 <2 4	2 <1 9 <1	10	9 <'				1.55	270 <	25 752	121	44 <20	<70	6	2 2 7.9	8	്	25 6 5	1 0 78	्र 1 13 n	2/. 3	01 1n	25	12	85 0 031
<5 <.5 <5 <.5 <5 <.5 <5 <.5	33 71	<2 2 <2 4	9 <1				5 8																			
<5 < 5 <5 <.5 <5 <.5	71	<2 4			11 <'																					
<5 <.5 <5 <.5			- 200.002																							
	ě.	99 or 11																								
	8	্র বিবিদ্য	्र 1 व्य	12	े े10 २१	े । ० े	- 5		1 37	27/ ~	25 603	100	20 ~20	~20	7 -1	n - 2/		~ 0		0 43	0 66 1	10.2	01 2	.7	47	(7 0 00)
NJ N-3																										89 0.000
<5 <.5			-										- 11 G L 1		- 14A				1	- 11 D - 604					· .	5 SAM 1 44
<5 <.5																										
	8						8. 7																			0.00.
<5 <.5	2	4 5	2 <1	18	15 <1	.0 <	5 <5	<5	3.16	132 <	25 797	67	52 <20	<20	14	2 45	9	<5 0.	34 7.8	3 0.83	0.15 1.	08 3.	.01 11	32	16	98 < 002
<5 <.5	3	<2 2	3 <1	7	6 <1	.0 <	5 5 <5	ঁ	2.41	88 <	25 563	150	-48 <20	<20	5 <1) 36	6	<5 0.	17 4.7	3 0.37	0.32 0.	25 2.	40 8	17	18	86 0.004
		200 B A								1.11.11					20030		2424			-04-04-04-040	· 0.005	52000.0	000-000	0		
9 <.5	2	<2 2	9 <1	14	9 <1	.0 🔇	5 5 5	ंड	2,18	155 <	25 410	210	32 <20	<20	6 <1	26	5	ِ ح 0	19 4 4	0 44	0.23 0	51.1	90 6	17	12 '	54 0 002
			2012/00/00					20020		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Q	100 C C C C C C C C C C C C C C C C C C	20.0000	200.0		10000	2004	1995 B.		· • • • • • • • • • • • • • • • • • • •	00000			Sec. 1. 1. Sec	< 1000000000
106 L 66	1.1	10.000	100.01.00		2010 100			2,62,200		- 6000 C 1 0 0 0 C C	2.542 1	NC	- CE-00000000	and the state	1.57.57	2011 - C	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		1005111				0.0000000	-0	- 10 C C	- Charles States
<5 <.5	4	ି <2	8 2	5	2 <1	.0 <	 5 <5	< <u>s</u>	0.82	189 <2	25 351	212	<u>्</u> 7 <20	<20	<2 <10)) 12	<5	<5 0.	04 1.3	5 0.32	0.87 0.	02 0.	73 <5	15	5	17 0.020
	<5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5	<5 <.5 4 $<5 <.5 2$ $<5 <.5 2$ $<5 <.5 2$ $<5 <.5 2$ $<5 <.5 3$ $<5 <.5 3$ $<5 <.5 2$ $<5 <.5 2$ $<5 <.5 2$ $<5 <.5 2$ $<5 <.5 2$ $<5 <.5 2$ $<5 <.5 2$ $<5 <.5 2$ $<5 <.5 2$ $<5 <.5 2$ $<5 <.5 3$ $<5 <.5 5$ $<5 <.5 3$ $<5 <.5 5$ $<5 <.5 4$ $<5 <.5 3$ $<5 <.5 4$	$<5 < .5 \\ 4 < 2 \\ 3$ $<5 < .5 \\ 2 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	$<5 < .5 \\ 4 \\ <2 \\ 37 \\ <1 \\ <5 \\ <.5 \\ 2 \\ <2 \\ 50 \\ <1 \\ <5 \\ <5 \\ <5 \\ <2 \\ <2 \\ 50 \\ <1 \\ <5 \\ <5 \\ <5 \\ <2 \\ <2 \\ <2 \\ <2 \\ <1 \\ <5 \\ <5 \\ <5 \\ <2 \\ <2 \\ <2 \\ <1 \\ <5 \\ <5 \\ <2 \\ <2 \\ <2 \\ <1 \\ <1 \\ <5 \\ <5 \\ <2 \\ <2 \\ <2 \\ <1 \\ <1 \\ <5 \\ <5 \\ <2 \\ <2 \\ <2 \\ <1 \\ <1 \\ <5 \\ <5 \\ <2 \\ <2 \\ <2 \\ <1 \\ <1 \\ <5 \\ <5 \\ <2 \\ <2 \\ <2 \\ <1 \\ <1 \\ <5 \\ <5 \\ <2 \\ <2 \\ <2 \\ <1 \\ <1 \\ <5 \\ <5 \\ <2 \\ <2 \\ <2 \\ <1 \\ <1 \\ <5 \\ <5 \\ <2 \\ <2 \\ <2 \\ <1 \\ <1 \\ <5 \\ <5 \\ <2 \\ <2 \\ <2 \\ <1 \\ <1 \\ <5 \\ <5 \\ <5 \\ <2 \\ <2 \\ <2 \\ <1 \\ <1 \\ <5 \\ <5 \\ <5 \\ <2 \\ <8 \\ 1 \\ <5 \\ <5 \\ <2 \\ <8 \\ <2 \\ <5 \\ <5 \\ <2 \\ <8 \\ <2 \\ <5 \\ <5 \\ <2 \\ <2 \\ <4 \\ <1 \\ <5 \\ <5 \\ <2 \\ <2 \\ <4 \\ <1 \\ <5 \\ <5 \\ <2 \\ <2 \\ <4 \\ <1 \\ <5 \\ <5 \\ <2 \\ <2 \\ <4 \\ <1 \\ <5 \\ <5 \\ <2 \\ <2 \\ <4 \\ <1 \\ <5 \\ <5 \\ <2 \\ <2 \\ <4 \\ <1 \\ <5 \\ <5 \\ <2 \\ <2 \\ <4 \\ <1 \\ <5 \\ <5 \\ <2 \\ <2 \\ <4 \\ <1 \\ <5 \\ <5 \\ <2 \\ <2 \\ <4 \\ <1 \\ <5 \\ <5 \\ <2 \\ <2 \\ <4 \\ <1 \\ <5 \\ <5 \\ <5 \\ <2 \\ <2 \\ <4 \\ <1 \\ <5 \\ <5 \\ <2 \\ <2 \\ <4 \\ <1 \\ <5 \\ <5 \\ <5 \\ <2 \\ <2 \\ <4 \\ <1 \\ <5 \\ <5 \\ <5 \\ <2 \\ <2 \\ <4 \\ <1 \\ <5 \\ <5 \\ <5 \\ <2 \\ <5 \\ <5 \\ <2 \\ <5 \\ <5$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																	

<u> 12007</u>

• • •

.

_ . . .

Geochemical Lab Report

BONDAR CLEGG

0721.0 (COMPLETE ELEMENT ALI30 Ag UNITS PPB PPM 1 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5	Cu PPM 1 5 3 3 3	>PM 1 <2 <2 <2 3	22 22 22 26 25	ррм р <1 1 <1	PM PP 10 9	м РР 6<1. 7<1.	M PPM 0 <5	PPM	PPM	PCT	Mn PPM	Te PPM	Ba	Сг	<u>v</u> :	sn 🥈	W) L	UN-02 i Ga	La	Sc	Ta	Ti	Al	Mg	Ca	Na	κ	Nb	Sr	Y	Zr	S
UNITS PPB PPM 1 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5	5 3 3 3	>PM 1 <2 <2 <2 3	22 22 22 26 25	ррм р <1 1 <1	PM PP 10 9	м РР 6<1. 7<1.	M PPM 0 <5	PPM	PPM	PCT	Mn PPM	Te PPM	Ba PPM P	Cr	V :	sn	₩) L	i Ga	La	Sc	Ta	Ti	Al	Mg	Ca	Na	K	ND PM F	Sr PM P	Y PM P	Zr PM	S PCT
UNITS PPB PPM 1 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5	5 3 3 3	>PM 1 <2 <2 <2 3	22 22 22 26 25	ррм р <1 1 <1	PM PP 10 9	м РР 6<1. 7<1.	M PPM 0 <5	PPM	PPM	PCT	PPM	PPM	ра РРМ Р	DM D		N 1	W S L	1 00	La		- 10				DCT 0	DCT	DCT I	PM F	PM P	PM P	PM 3	PCT
ব্য <.5 ব্য <.5 ব্য <.5 ব্য <.5 ব্য <.5 ব্য <.5	533	<2 <2 <2 <2 <3	22 22 26 25	<1 1 <1	10 9	6 <1. 7 <1.	0 <5	6			rrn See	FFM	FFF(:F			M DD	M DD	M DDM	DOM I	DDM D	PDM 🔅	PCT	PCT	PCT								
<5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5	3 3 3	<2 <2 3	22 26 25	1 <1	9	7 <1.			· <5				42		r r m sr i	о г. 	FIGE F				111		10,		. - . ्				ŝ.			
<5 <.5 <5 <.5 <5 <.5 <5 <.5 <5 <.5	3 3 3	<2 <2 3	22 26 25	1 <1	9	7 <1.				1.58	338	<25	376-2	777	 21 <	20 <2	0	5 <10	22	<5	<5 C).13	3.52	0.38 0	.50 Č	.13	1.74	5	12 ें	9	51 0	.005
<5 <.5 <5 <.5 <5 <.5 <5 <.5	3	<2 3	26 25	<1	10			< - S																								
ব্য ২.5 ব্য ২.5 ব্য ২.5	3	3	25			8 <1	ក 🏹	ંડ	5	1.81	368	<25	423 2	214	31 <	ກີ່ໄ	0.	5 <10	30	5	<5 (0.17	4.44	0.50 C	.63 0	.30	2.12	7	20	12	60 0	.005
⊲5 <.5 <5 <.5	3	6	L ,	1	7	9 8 <1	្រំ ្រុំ	6 8	<5	1.27	529	<25	371 1	196	24 <	20 <2	0	4 <10	25	<5	<5 (0.14	3.54	0.60 1	1.00	.29	1.67	6	27 ँ	12	51 0	.010
<5 <.5		. v	45	· 1	15 1	14 ~1	ٽي ح	57	, <u>~</u> 5	2.15	283	<25	601	97	45 <	20 <2	20	9 13	39	6	<5 (0.21	7.01	0.65 0	0.73).22	3.40	11	17	18 1	10 0	.007
<5 <.5			47			1970 - 7 I B 200	•	ŝ		2.15																						
~	2	16	28	<1	0	8 <1	n <	 5. €	- ব	1.79	429	<25	731 1	137	39 <	20 <2	20	8 <10	29	6	<5 (0.19	6.26	0.79 1	1.17 (.08	2.91	11	30	19 1	04 0	.014
<5 <.5	4	-7 -7	11	<1 <1	6	4 <1	n <	ି ଚ	ંં	0.83	90	<25	244 1	176	24 <	20 <2	20	4 <10	20	<5	<5 (0.13	3.53	0.32 0).43 (.04	1.76	9	6.	13	56 0	.003
`````````````````````````````````````	2	2	17	<1	6	6 <1.	0 4	5 5 5	5	1.76	296	<25	352 1	141	43 <	20 <2	20	5 <10	29	5	<5 (	0.18	4.53	0.51 (	0.82	).04	2.31	6	14	13	51 0	.006
6 < 5	<1	2	19	<1	8	8 <1.	0 <	ि 5 वि	) 🔇	1.80	224	<25	506	71	57 <	20 <2	20	7 10	36	8	<5 (	0.31	6.97	0.64 (	0.65	0.06	3.41	11	13 [§]	11	75 0	.006
<b>`</b> ``					- 8		- 83				- 8 <u>7</u> 8998 - 11		6 CO 												-							
ج ج ج 5	<1	~2	18	<1	8	7 <1.	0 <	5 8	3 <5	1.67	281	<25	485 [°] .	76	46 <	20 <2	20	6 <10	33	8	<5 (	0.28	6.36	0.71	1.37 (	0.06	3.24	8	15 💡	11	64 0	.010
<5 <.5	4	<2	15	<1	7	5 <1.	0 <	5 <b>6</b>	5 <5	1.52	361	<25	262	251	16 <	20 <2	20	3 <10	24	<5	<5	0.13	3.02	0.33 (	0.80	0.24	1.34	<5	22	12	37 0	.007
<5 <.5	3	5	15	<1	8	6 <1.	0 <	5 <	5 <b>≺</b> 5	1.35	236	<25	252 2	265	16 <	20 <2	20	3 <10	23	<5	<5	0.13	2.94	0.29 (	0.45	0.12	1.45	<5	10	9	36 0	.004
<5 <.5	5	3	11	<1	7	3 <1.	0 <	5 <	5 5	1.00	251	<25	140	328	10 <	20 <	20 <	<2 <b>&lt;</b> 10	12	<5	<5	0.06	1.47	0.26 (	0.68	0.01	0.76	<5	8	8	20 0	.007
<5 <.5	3	~2	12	<1	6	3 <1.	0 <	5 <	5 6	0,94	285	<25	147	256	10 <	20 <2	20 <	<2 <10	14	<5	<5	0.07	1.78	0.41 (	0.96	0.06	0.87	<5	12	7	21 0	.008
<5 <.5	4	5	13	1	7	4 <1.	0 <	5 <	5 <5	1.15	362	<25	234	231	19 <	20 <	20	3 <10	23	<5	<b>&lt;</b> 5 j	0.12	3.04	0.56	1.02	0.03	1.54	<5	17	10	39 0	.009
<5 <.5	2	5	20	<1	9 🖁	9 <1.	0 <	5 10	) <5	1.89	221	<25	510	96	39 <	20 <	20	7 <10	32	8	<5	0.33	6.57	0.60	1.02	0.05	3.19	12	12	11	77 0	-009
																														2		
	-	<pre>&lt;5 &lt;.5 2 6 &lt;.5 &lt;1 <pre>&lt;5 &lt;.5 &lt;3 <pre>&lt;5 &lt;.5 &lt;4 <pre>&lt;5 &lt;.5 &lt;5 <pre><pre>&lt;5 &lt;.5 &lt;5 <pre>&lt;5 &lt;.5 &lt;5 <pre><pre>&lt;5 &lt;.5 &lt;5 <pre><pre>&lt;5 &lt;.5 &lt;5 <pre><pre>&lt;5 &lt;.5 &lt;5 <pre><pre>&lt;5 &lt;.5 &lt;5 <pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	<5 <,5 2 <2 6 <,5 <1 <2 <5 <,5 <1 <2 <5 <,5 <1 <2 <5 <,5 <3 <2 <5 <,5 <4 <2 <5 <,5 <3 <5 <5 <,5 <5 <3 <5 <,5 <5 <3 <5 <,5 <3 <2 <5 <,5 <3 <2 <5 <,5 <3 <2 <5 <,5 <3 <2 <5 <,5 <3 <2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<5	<5	45 4.5 2 42 17 41 6 6 41.0 45 45 45 11.76 296 425 352 141 6 4.5 41 42 19 41 8 8 41.0 45 10 45 1.80 224 425 506 71 45 4.5 3 42 13 2 6 4 41.0 45 45 5 5 1.26 803 425 255 259 45 4.5 4 42 15 41 7 5 41.0 45 6 45 1.52 361 425 262 251 45 4.5 3 5 15 41 8 6 41.0 45 45 45 1.52 361 425 262 251 45 4.5 3 5 15 41 8 6 41.0 45 45 45 1.52 361 425 262 251 45 4.5 3 5 15 41 8 6 41.0 45 45 45 1.52 361 425 262 251 45 4.5 3 5 11 41 7 3 41.0 45 45 45 1.00 251 425 140 328 45 4.5 3 42 12 41 6 3 41.0 45 45 45 1.15 362 425 254 251 45 4.5 4 5 13 1 7 4 41.0 45 45 45 1.15 362 425 234 231 45 4.5 2 5 20 41 9 9 41.0 45 10 45 1.89 221 425 510 96	S < 5 2 < 2 17 <1 6 6 < 1.0 <5 <5 < 1 1.76 296 <25 352 141 43 <     6 < 5 <1 <2 19 <1 8 8 < 1.0 <5 10 <5 1.80 224 <25 506 71 57 <     5 <     5 <1 <2 18 <1 8 7 <1.0 <5 8 <5 1.67 281 <25 485 76 46 <     5 <5 <3 <2 13 2 6 4 <1.0 <5 <5 <5 1.26 803 <25 255 259 13 <     5 <5 <5 <1 <2 15 <1 7 5 <1.0 <5 6 <5 1.52 361 <25 262 251 16 <     5 <5 <5 <3 5 15 <1 8 6 <1.0 <5 <5 <5 1.35 236 <25 252 265 16 <     5 <5 <5 <5 <5 <5 <3 5 15 <1 8 6 <1.0 <5 <5 <5 1.00 251 <25 140 328 10 <     5 <     5 <5 <5 <3 <2 12 1 <1 7 3 <1.0 <5 <5 <1 0.0 251 <25 140 328 10 <     5 <     5 <5 <3 <2 12 <1 6 3 <1.0 <5 <5 <1 0.0 251 <25 140 328 10 <     5 <     5 <5 <1 3 21 <2 12 <1 6 3 <1.0 <5 <5 <1 0.0 251 <25 140 328 10 <     5 <     5 <1.5 2 36 <25 252 245 10 <     5 <     5 <1.5 2 36 <25 252 245 10 <     5 <     5 <1.5 5 3 11 <1 7 3 <1.0 <5 <5 <1 0.0 251 <25 140 328 10 <     5 <     5 <1.5 5 2 5 20 <1 9 9 <1.0 <5 10 <5 1.15 362 <25 234 231 19 <     5 <     5 <.5 2 5 20 <1 9 9 <1.0 <5 10 <5 1.89 221 <25 510 96 39 <	<5	s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s       s	c5       c5       c       1       c6       c6       c1       c5       c	c5       2       2       17       c1       6       6       c1.0       c5       c5       1.76       296       c5       352       141       43       c2.0       5       c1.0       29         6       c5       c1       c2       19       c1       8       8       c1.0       c5       10       c5       1.80       224       c5       506       71       57       c20       c2       7       10       36         c5       c5       c1       c2       18       c1       8       7       c1.0       c5       8       c5       1.67       281       c25       485       76       46       c20       c20       c4       c10       c4       c5       c5       1.25       265       255       259       13       c0       c2       c10       18         c5       c5       15       c1       8       c1.0       c5       c5       1.05       256       252       265       16       c0       c2       c10       c2       c10       20       c2       c10       21         c5       c5       3       c1       c1       c5       c5       c	c5 < 5	c5       2       2       17       c1       6       6       c5       c5<	\$<<5	c5       c5       2       2       17       c1       6       6       c1.0       c5       c5       c5       17.6       296       25       35       c10       29       5       c5       0.18       4.53         6<	c5       2       2       17       c1       6       6       c1.0       c5       c5       1.76       296       c25       352       141       43       c20       c20       5       c10       29       5       c5       c10       c2       c25       c26       c25       c20       7       10       36       8       c5       0.31       6.97       0.64       0.4         c5       c5       c1       c2       18       c1       8       7       c1.0       c5       8       c5       1.67       281       c25       c50       71       7       c20       c20       c4       c10       c3       c5       c5       1.26       803       c25       c25       c50       13       c20       c20       c4       c10       c3       c5       c5       c10       c3       c5       c5<	c       c       2       1       c       6       c       0       c       c       c       1       20       c       23       5       10       20       23       5       10       20       22       25       50       7       10       36       8       c       0.31       0.82       0.31       0.82       0.31       0.57       0.40       0.55       10       22       25       506       71       57       20       20       7       10       36       8       5       0.28       0.31       0.57       0.40       0.55       10       5       10       5       10       5       10       5       10       5       10       5       10       5       10       5       10       25       125       10       20       20       21       18       5       0.08       1.137       0.42       200       4       5       5       0.08       1.73       0.42       200       4       5       5       0.08       1.73       0.42       20       2       10       23       45       5       0.08       1.75       25       10       23       10       10       10	S < S	c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c	c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c	5       2       2       17       4       6       5       6       1.76       296       25       5       10       29       5       5       0.18       4.5       0.5       10       0.5       1.80       224       25       56       7       7       0       26       8       5       0.31       6.77       0.40       0.65       0.06       3.41       11       13         5       <.5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} < < 5 & < 4 & < 2 & < 11 & < 1 & 6 & < 3 & < 10 & < 5 & < 5 & < 6 & 0.98 & 225 & < 2577 & 223 & < 22 & < 20 & 20 & 2 & < < 10 & 16 & < 5 & < 5 & < 0.08 & 2.12 & < 0.00 & < 0.04 & < 0.09 & < 0.05 & 0.02 & 2.00 & 0.05 & 0.00 & 2.10 & < 0.13 & 0.05 & 0.05 & 0.02 & 0.04 & 0.09 & < 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05$

CLIENT: GOL REPORT: VO2																			DA	TE R	ECEI	/ED:	27	JUN-C	12	DA	te p	RINTE	ED:	3-JL	JL-02	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	PAGE	3 OF	JECT: 54			JF"
STANDARD NAME	ELEMENT UNITS																															Ca PCT	(protected)	1	nd PPM f	- 1 - P	449.4V.	
0X8 Oxide		18	7	Ś.			- 20				-					- 200		• .	-	-	Ż	- 33		- 33		- 33	s. Rij	-		-		-		-				- 0000
Number of A	nalyses		1 🔆	8	- 3				-		-		- -	963 -	4	- 5		-	-			- 3		-		- 20	-	-	23 	-		-		-		-		- 88
Mean Value		18	7 🛞	80	- 8		- 3		-		-		- 12			-		- 1	s á l	- 9		- 35		- 🖉	Ş.	- 30		- 33		-		-		-		-		- 333
Standard De	viation		- 898 1997		- 3		- (		-		-		-		e S	-		- 3		- 3	1	- 33		- 3		- 20		- 33		- }		-		-				- 33
Accepted Va	lue	18	6		- (\$\$\$\$\$\$		- 000		-		-		-			- 200		- 3	20 <del>7</del> 93 -	- 200		-		-		- 333		-		-	, see	-		-		-		- 33
ANALYTICAL	BLANK	<	् 5 २.	5 5 <	ें 1 ें	<2	~2	<1	<1	<1	<1.0	) <5	े ऽ	্ব	<0.	01	< <	25	ব	<2	<2 <	20 <	20 •	<2 <	10 <	5	5 <	-5 <.	01 <	<.01	<.01	<.01	<.01	<.01	<5	<1	جه	<5 <.
ANALYTICAL	BLANK		- <	5	2	<b>~2</b>	<2	<1	<1	<1	<1.0	) <	s <5	ঁ	<0.	01 Š	<5 <	25	<5	<2 ³	<2 <	20 🗧	20	<2 <	10 <	5 😽	5 <	5 <.	01 <	<.01	<.01	<.01	<.01	<.01	<5	<1	<5	⊲ <.
Number of A	Inalyses		1 🕌			S. 19								2			2	2	2	2	2	2	2	2	2	2 🤮	2	2 👌	2	2	2	2	ି 2	2	2	2	2	2
Mean Value												; ुँउ	s 3	ि ुउ	<0.	01 🛞	3	13 🗄	3	1	1	10	10	1 🐰	5	3 👸	3	3 🐫	01 <	<.01	<.01	<.01	<.01	<.01	3	<1	3	3 0.
Standard De	eviation		-	100	1		- 200		-		-					- 200		• •		-		-		-		- 10		-		-		-	-	-		-		- 200
Accepted Va	alue		5 0.	2	1	2	1	1	1	1	0.5	j 2	2 5	5	0.	05	1	<1	<1		1	<1	<1 ·	<1	<1 •	<1 `<		<1 <.	01	-	<.01	<.01	-	<.01	<1	<1	<1	<1 <.
0X9 Oxide		46	0	987 240 ≜33	- 33				-		-					-		a Adot of here		-		-	10000. 3400	•		- 22		-	e E	-	-	-		-		-	1997) 199 <b>7</b> - 1	-
Number of A	Analyses		1	1990 4445 446	- 8		- }		-		-	- 20	-	- 29923 - 59924 - 59924	487 1997	- 3		- ;		-		- 3	88900 1993	- 20		- 33		- 88	-	-		-		- -		-		- 33
Mean Value		46	0 🖉		- 88		- }	1944) 1955	-		-		- 	- 22	P.			-	-	-	823 3.30	- 20		- 3		- 22		- 33	5	-		-		-		-		- 200
Standard De	eviation		- 200		- 3		- }		-	8 S	- -		8		e G	- 3		• .:		-		• 80		- 33		- 33		-		-		-		-		-		- 33
Accepted Va	alue	46	5		- 3000-00 (2000-00)		-		-		-	- 000	<u>.</u> 			- 99		- 66		-		-		- -		- 20		- 33355		-	÷	-		-		-		- 000000
GS91-1 In-H	louse		002	2006	- 22			90.00.Q		201.00	50 C	0.000	2225	1.111	6 h.																				) 17			
Number of A	Analyses		- 33	1	1 🖏	1	1	1	1	1	1	1 💱	1 '	1 🛞																1					1			
Mean Value			- 0.	39	4	12	93	<1	44	31	0.5	5	3 1	7 💦	ie 5.	37 ŝ	372	13 7	756	97	189	10	10	29 (					50 1	8.00	2.10	2.13	1.72	1.19	17		15	52 0
Standard De	eviation		• 82	<u>.</u>	•	Ċ.	-		-		( ·			8.4	S.	- 20			-			- 4		- 80	68660	- 2	8 16P	322		-		-		-				_ 2
Accepted Va	alue		- 0.	79	9	11	88	2	40	18	0.1	1		3	4.	95	350	- 8	800 <i>*</i>	108	175	4	2	32	4	10	18	10.	51	8.30	1 <b>.90</b>	1.85	1.82	1.00	) 17	265	35	<b>о</b> 0
CANMET LKSD	<b>D-2</b>		- 🔮	5 5 3	6	51 7	221	<1	27	24	1.1	1 <	5 1!	5 <5	ê 4.	50 20	)58 <	25	784	41 ⁻	72 <	20 Š	20	20 <	10 (	64	<b>(1</b> )	<5 0.	34 (	6.80	0.99	1.58	1.33	2.11	1	226	40 1	43 0
Number of A	Analyses		- 33									- C2463	202	1 💮																								
Mean Value			- 0.	3े 3	6	51 7	221	<1	27	24	្ត 1.1	1 🔅	3 1	5 👌	S 4	50 2	<b>)58</b>	13 7	784	41	72	10 🗄	10	20	5 (	<b>64</b>	11	30.	34	6.80	0.99	1.58	1.33	2.11	11	226	40 1	43 0
						14.4.4		10.000		1000000	8	- 19 A.	14	-	0		10.00				20.00		6.0		· · · · ·		S 48 -		298103.		100000	e	-309993	-31 	887944	-		- 💫
Standard De	eviation		- 🖄	-	- }		-				÷.	- 13	t.		•			-	-	-	117	- 1	20 <b>4</b>		- 1 <b>5</b> 12	18		- 8			action of	-		÷.	> 16	-		

Geochemical Lab Report

Bondar Clegg Canada Limited, 130 Pemberton Avenue, North Vancouver, BC, V7P 2R5, (604) 985-0681

CLIENT: GOL																	DA	TE	RECEIV	FD:	27-JI	JN-O	)2	DA	TE PR	RINT	ED: 3	- JUL	-02	P	AGE	4 OF		LU	NE GR	ωr	
EPORT: VO2	·····	•••••	••••••			•••••											· · · · · · · · · · · · · · · · · · ·						 	 	 	 Geo			····	·····		•••••	2525282				
SAMPLE	ELEMENT	Au30	Ag	Cu	Pb	Zn	Мо	Nī	Co	Cd	Bi	As 🕴	Sb F	e Tot	Mn	Te	Ba	Cr	V S	n	W. L	i G	ia La	िऽ	¢ Ta	1	Tî A	l	Mg	Ca	Na	K	Nb	Sг	Y	Zr	S
umber	UNITS	PPB	PPM I	PM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM P	PM	PCT	PPM	PPM	PPM P	PM	PPM PP	MP	PM PP	N PP	M PPM	PP	M PPN	1 P	PCT PC	ΤP	CT I	PCT	PCT	PCT	PPM	PPM	PPM	PPM	PCT
					nagen en Miller Geographica							2000			2. 221				<u></u>				<u> </u>		ili Altar	- 60	20 0 1	୍ଧି	(3.0	ं रुक्त	\ 17	7 45	10	14	17	. 00	0.005
1902		<5	<.5	27	<2	22	্ৰা	10	9	<1.0	<del>ر</del> ج د	8	<5 \$	1.26	103	<25 ·	640	57	53 <2	0 <	20 8	ଓ ା 7 ୀ	14 55		0 < o ∠¤	5 0.	.30 8.1 .28 7.7	5 U. K 0	02:U 60:0	.39	). 13 1 12	3.05	12 8	12	13	· 77	0.005
uplicate		<5	<.5	25	<2 	21	<1	10	<b>8</b>	<1.0	0	ଁ	<b>`</b>	1.21	97	<25	012	7	· 72 · ~2	US S	- <b>2</b> U	1 (19) 201	( <b>)</b> )2		, ,		. 20 1 . 1	· .	000		J - 12	J.4J				:	
1920		~5	2.5	2	5	1.2	े. े१	: : 12	्र 12	<1 N	~5	្ត្រ	<5	2.04	97	<25	499 1	00	37 <2	े २ 0	20	ः १ <1	10 28	944 1944 1947 <b>1</b>	6 <	5 0.	.23 5.5	90.	57 0	.14 (	0.84	2.17	6	26	12	76	<.002
uplicate			~ 5	<1	2	40	<1	12	12	<1.0	ঁ	6	<5	1.96	93	<25	480 1	04	36 <2	0 <	20	8 <1	10 27	• 80	6 <	5 0.	.22 5.3	7 0.	55 0	.13 (	D.81	2.13	9	25	12	69	<.002
upticate																	×'.			dia dia dia																	
1924		<5	<.5	3	<2	11	<1	5	ંડ	<1.0	<5	ব	ব	0.94	.96	<25	299	18	17 <2	20 <	20	3 <1	10 17	' 🔮	5 <	5 0.	.12 3.3	1 0.	24 0	.33 (	0.04	1.74	<5	7	9	37	0.003
uplicate		<5				-						100 S					1 - X 			00000										;				2 		-	
				_								_ 3			्रिय	.05	े को जिल्ला के स			<u>ا</u>	20	E - 1	000 CC		)) 도 기	5.0	10 / 5	3 0	51 N	82 0	<u>Λ</u> .	2 31	~	14	13	51 51	0.006
01939		<5	<.5	2	<2	17	<1 ,	6	6	<1.0	<5 	<> -5	੍ਰੇ	1.76	296	<25	552)1 358-1	141 154	43 <0 15 20	20 S	20 20	기 등 5 위	10 25		기 ~ 5 ~	50	.18 4.5 .20 4.5	9 N.	52 0		0.04	2.36	7	15	14	49	0.007
ouplicate			< <b>12</b> 0	2	<2	8 18	- 8 <b>5</b> 19	. O	- 10 <b>2</b> 0 - 10 - 10	×1.0				1.00	310	~25	.00	1.74		-• ?		1	<u> </u>	34	ि अन्य						1123) 1 033				-1948); - 3803	:	
1948		<5	<.5	2	5	20	<1	9	9	<1.0	ব্য	10	<5	1.89	221	<25	510	96	39 <2	20 <	20	7 <1	10 32	2	8 <	5 0	.33 6.9	7 0.	60 1	.02	0.05	3.19	12	12	11	77	0.009
uplicate		<5			ng syar Di syar			:- :											1999 1999	100	2820 8000			199 103		Colors See State				1							

Geochemicar Lab report



**DRILL HOLE RECORD** 

**GOLCONDA RESOURCES LTD.** 

LP - 02 - 7

_____

# ASSAYS

# **DRILL HOLE RECORD**

LP - 02 - 7

_____

____



REPORT: V02-00805.0 ( COMPLETE )

REFERENCE:

CLIENT: GOLCONDA RESOURCES LTD.

SUBMITTED BY: D.L. PIGHIN DATE RECEIVED: 01-AUG-02 DATE PRINTED: 7-AUG-02

. . . . . . . . .

PROJECT: LONE GROUP

DATE	NUMBER OF	LOWER		NETHOD	SAMPLE TYPES	NUMBER	SIZE	FRACTIONS	NUMBER	SAMPLE PREPARATIONS	S NUMI
APPROVED ELEMENT	ANALYSES	DETECTION	EXTRACTION	METHOD	R ROCK	54	2	-150	54	CRUSH/SPLIT & PULV.	. !
020806 1 Au30 Au - FA30	54	5 PPB	Fire Assay of 30g	30g Fire Assay - AA							
020806 2 Cu Cu - 1C30	54	1 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA							
020806 3 Ag Ag - 1C30	54	0.5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	REMARKS: Due to (	igestion limit	ations	based upon			
020806 4 Pb Pb - IC30	54	2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA		nineralization,		results for			
020806 5 Zn Zn - IC30	54	2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	Al, Ba	and Cr may vary	•				
020806 6 Mo Mo - 1C30	54	1 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA							
020806 7 Ni Ni-1C30	54	1 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	REPORT COPIES TO	: 620 - 304 8TH	AVE S	.w.	INVOICE	TO: 620 - 304 8TH AVE	E S.W.
020806 8 Co Co - IC30	54	1 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	L	MR. D.L. PIGH	IN				
020806 9 Cd Cd - IC30	54	1.0 PPM	HF-HN03-HCLO4-HCL	INDUC. COUP. PLASMA	le la						
020806 10 Bi Bi - 1C30	54	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA						*****	
020806 11 As As - 1C30	54	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	This r	eport must not	be rep	roduced except	in full. The	data presented in th	his
020806 12 Sb Sb - IC30	54	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	report	is specific to	those	samples ident	ified under "	Sample Number" and i	S
520000 TE 35 35 1650	2.1	2			applic	able only to th	e samp	oles as receive	d expressed o	n a dry basis unless	i
020806 13 Fe Tot Fe - IC30	54	0.01 PCT	HF-HNO3-KCLO4-KCL	INDUC. COUP. PLASM	otherw	ise indicated					
020806 14 Mn Mn - IC30	54	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA		*****	*****	*****	******	*****	*****
020806 15 Te Te - IC30	54	25 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA							
020806 16 Ba Ba - IC30	54	5 PPM	HF-HNO3-HCLO4-HCL	INDUC, COUP. PLASMA							
020806 17 Cr Cr - IC30	54	2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM							
	54	2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM							
020806 18 V V - IC30	14	C FFB									
020806 19 Sn Sn - IC30	54	20 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM							
020806 20 W W - 1C30	54	20 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM							
020806 21 Li Li - IC30	54	2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM							
020806 22 Ga Ga - IC30	54	10 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM						•	
020806 23 La La - IC30	54	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM							
020806 24 Sc Sc - IC30	54	5 PPM	HF-HNO3-HCLO4-HCL	INDUC, COUP. PLASM	4						
020806 25 Ta Ta - 1C30	54	5 PPM	HF-HNO3-KCLO4-HCL	INDUC. COUP. PLASM							
020806 26 Ti Ti - IC30	54	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC, COUP. PLASM							
020806 27 AL AL - IC30	54	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC, COUP. PLASM							
020806 28 Mg Mg - 1C30	54	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM							
020806 29 Ca Ca - IC30	54	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM							
020806 30 Na Na - IC30	54	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM	A						
020806 31 K K - IC30	54	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM	A						
020806 32 Nb Nb - 1C30	54	5 PPM	KF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM		· · ·					
020806 33 Sr Sr - 1C30	54	1 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM	A					•	
020806 34 Y Y - 1C30	54	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM		•					
020806 35 Zr Zr - 1030	54	5 PPM	HF-HN03-HCLO4-HCL	INDUC, COUP. PLASM							
020806 36 S S - 1C30	. 54	0.002 PCT	HF-HNO3-HCLO4-HCL	INDUC, COUP. PLASM							
	. ,4				-						

87597

87598

CLIENT: GO	LCONDA RESOURCES	LTD.																											PROJE	CT: L	ONE	GROUF	2
REPORT: VO	2~00805.0 ( COMPI	LETE )		•••••	· · • • • • • • • •										DATE	REC	E I VED :	01-A	UG-C	2	DA	TE P	RINT	ED:	7-AU	G-02	P	AGE	1 OF	4			
SAMPLE	ELEMENT AU30	Cu Ag	Pb	Zn	Мо	Ni	Co	Cd	Bi	As	Sb Fe	e Tot	Mn	Te	Ba	Cr	V Sr	า (	Li	Ga	La	Sc	Та	Ti	AL	Mg	Ca	Na	ĸ	Nb	Sr	Y	Zr 🎆
NUMBER	UNITS PPB I	PPM PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPM F	PM F	PM PPM	1 PPM	PPM	PPM	PPM	PPM	PPM	PCT	PCT	PCT	PCT	PCT	РСТ	PPM	PPM	PPM I	PP <b>M P</b> (
87569	<5	2 <.5	7	30	3	8	10	<1.0	<5	<5	<5	1.47	241	<25	470 1	28	24 <20	) <20	3	<10	27	ব্য	<b>&lt;</b> 5	0.18	4.78	0.41	0.53	1.34	1.89	8	46	9	42 0.0
87570	<5	<1 <.5	11	53	ୀ	11	15	<1.0	<5	<5	<5	2,20	171	<25	806	97	47 <20	) <20	5	18	40	8	<5	0.27	7.43	0.64	0.58	1.02	2.49	12	33	14	70 0.0
87571		<1 <.5	- 199 av		1.50.5		- 92 yr 19		-2(2,, 2)	·	8		30000000		1.525	11	- 1991 (PC)	- 111 SC		19 - MS		2026		8.5600000	8	- 908103		-02.2	99	10010000		121203	239.6
87572	1	<1 <.5		<i></i>	82 A		-996-3,		1.00	5	43 CS -		10.008		<i>633</i>		248.3	2,999		2008		39.0 W.		1000000	2	- 336333	38	1633611	YS.	- 6980387		8610	1998
87573		2 <.5	1969-0.49	14 C	200-00	8	100.000		-200	(+	- 860, 1066		- HOGO X	-	1.0.000000		Server 1	an gada	0.00	26623966					÷.	- 2007-201		1100000	26	000003		10030000	6.8690
							9999). 1995).			-																	8		83 91				
87574	5	<1 <.5	8	40	ŝ	10	13	<1.0	<5	8	<≤	2.01	174	<25	627	97	44 <20	) <20	4	13	33	6	<5	0.26	6.07	0.4	5 0.46	1.46	5 2.35	7	52	13	55 0.0
87575		1.<.5	- A.						1				1111			92	38 <20	) <20	3	11	32	6	<5	0.24	5.78	0.4	0.27	1.64	1.95	10	41	12	55 0.0
87576	<5	2 <.5	5	12	<1	5	ंउ	<1.0	<5	<5	~5	0.63	97	<25	142 1	93	11 <20	) <20	<2	<10	9	<5	<5	0.04	1.26	0.17	0.21	0.04	0.67	<5	6	5	13 0.0
87577		3 <.5	- 02010-00	2	14.069		s Carlos	:	- 11066		1000,700,000		- 90 M. A.		N 1925		5.893 Q	0.000.0		1997		- spaces		100000.000	Ъ.	- 5.33525.	98	1263813	331	- 592556		1652	
87578		1 <.5	-032-3	(2) (2)	-99.44		29 C.S	, ,	1223-3		1139-121		- generoe				9994QC	- 21.123		-98836C		10008		12.2027.202	0	- 2000 0	592	- 18-39 A.	- C.			20 MB	regera
		san i se Sinin	and and a second	ia -			002		1917. 1914 - 19		n de la compañía de La compañía de la comp									- Quiles		ne Se Riser			8			anii - Galaat	974. 1997 -	- 22,227 - 22,223			en 1 1910
87579	<5	2 0.5	5	46	<1	11	12	<1.0	<5	5	~5	1.85	143	<25	579 1	22	37 <20	) <20	5	13	29	6	<5	0.24	5.65	0.52	20.50	0.10	2.71	9	10	8	61 0.0
87580		1 <.5	- Star C. S	2	- SD-11		1219		- 29 - L	<i>4</i>	128206		- N. S. S. S.		1.22		81628	- 18° a 1		1.000		31, 32, 32,		3269233	Q	- 2010/06	-88	1989-8		380366		198306-	0.0000
87581		<1s<.5			200 S. 11		100 11		1600-10		door na		1.000					- 49 C.				12.1		- 1999 A	10 I.		590 C		4.00	- Approxime in		- C.M. + CC	
87582	<5	1 <.5	<2	21	In the second	9	7	<1.0	-5	<5	<5	1.61	1358	<25	402 1	111	23 <20	0 <20	4	<10	16	<5	<5	0.11	3.02	1.0	1.71	0.0	2 1.69	১ <১	15	7	33 0.0
87583	<5	<1 0.5	4	23	°.₽	11	7	<1.0	്ട	<5	<5	1.88	1431	<25	479 1	140	28 <20	20	5	<10	19	ব্য	<5	0.13	3.58	1.0	1.74	0.0	3 1.96	s <5	16	8	38 0.0
	-	1949 - 19 Mener				2			- 8-9554 - 555556	6 0	28556 2886																						
87584	<5	2 <.5	2	10	2011 2011	7	3	<1.0	<5	<5	<5	0.86	550	<25	227 1	32	11 <20	0 <20	<2	<10	10	<5	<5	0.05	1.54	0.4	20.75	i 0.0'	1 0.85	<5	9	<5	20 0.0
87585		1 <.5	30013	÷.	8608ee	2	Selació		267559		100001000		i huis de te		N 11526	1		80000	5	2000		-02302		6.3686	8	- 306669	880	100000	20			-966 - S.	286
87586		2 <.5	- Serger S	99	100 0				- 91 and		-1757/00-		<ul> <li>bohnvosolo</li> </ul>		<ul> <li>Control (1996)</li> </ul>		cor ség	- 6 m - 6	9	1000.00		3000 A		36666		- 200000		2,00320	900	- 1000 ° Ut		201400	10,663
87587		1 <.5	- 100 C		10 I I I I	1	1000		20, 01	(h)	- 964 J. D. A.		- 가운 한가 한		2004 C		1090. Aug	- 1 A.		- nerfor sel		2002000			12	- 000000	940		S26		t	2004004	2000
87588		1 <.5	- 199. TH	÷			2013		188 (1		82 B -		- Astro-A		11 A.			- 1927 - P	5	12.11		12.33		8,838,93	÷.	- 202 C	-6-	1.337	144 - C	12626		1007 a.	- 1985 1985
				·	- 1753 - 1				<u>ê</u>	-			신문				신신		: >	이 가지. Alter			-		ŝ								- 100 8.48
87589	159	6 <.5	10	25	<1	: 5	ાંડ	<1.0	ঁত	5	<5	1.58	323	<25	563	94	44 <20	0 <20	5	13	52	7	<5	0.35	6.10	0.6	0.86	5 1.0	2 2.65	5 10	27	10	71 0.0
87590		1 <.5	- 0.62	e.,	40.04	2	-6983	e	- 02104		- 25 B C -		- 194 J. (* 1		1.12		9999	3390 C	•	- 67.94		- 6 Y 266		-000000	8		lee -	- 19362	14	- 20893			0.8
87591		2 <.5	1000	0	1940 1	· ·	1000	s	- 1966	ŝ.			in the second second		100		ingel –	Barry Barry	·	- 99006		1960.1		2004000	S	100000	253	1233.43	56g	- 302003		0.0000	_N/
87592		2 0.5	- 10 C		2.52		1. S. 18		- 6,200		1287 - X - I		قرتي المحوولات		- Qual 6 6.		83.33	- 481.68	1	- 52,623		30008		1204030	08	- 200033	233. -	1000000	32	- 368688		-40366.00	1939
87593		<1 <.5	194		27-8	S	1082.1		- 444/32	2	2020-22		10.000		(1) A 2002.		00000			120020		111.5552		1999,000	80	- 39999	222	000000	690) -			1930-361	
				20		j U				Ŭ			176	-23	ية <b>در</b> 1999 1999	1-1			J				. ``						, <b></b>				
87594	~5	ر 1 <.5	١n	5. 2/		e o	्र भाष	'21 0	े <u>द</u>	p		2 09	122	-2F	752	52	୍କର୍କ୍କ 158		7	20	50	10	~5	0 37	् ८ २०	200 A 0 6	ິ ເດີ / :	<b>) n</b> n	ं 6 २ ०१		-1	10	84 n
97595 87595		ाॅ<.5	. Sr.		10.2					e	5							- 24 - 3		100		1940 - Be		- 1999 - A	- 19	194600	238	200.00		<ul> <li>- 200500</li> </ul>	÷.	Sec. 2017-2	· · · · · · · · · · · · · · · · · · ·
				÷.	. Mar 19	S	2.5		10.14	e	- C. 1966		- 32 CMP		- 21 - 10 - 10 - 10 - 10 - 10 - 10 - 10		- A. A.	10 YO N	÷	10.000		- 20 A - 20		1000000		10000	105	1222			÷	- SC 1 - SL	
87596	<>	1 0.7	ଁଷ	- 24	<1	9	્યુકા	<1.0	ാ	< S	್ಯಾಂ	1.85	216	<25	045	105	44 <2	v <20	6	ାର	40	ď	୍	0.55	୍ତ୍ରତ୍ୟ	1 UND)	ະ ປ.ວ	5 U.U	o 2.2	ાટ	: <b>&lt;</b> 1	<u> 200</u>	12 0.

F

9002

<5 <1 <.5 7 24 <1 7 9 <1.0 <5 <5 <5 1.69 352 <25 549 114 31 <20 <20 6 13 34 6 <5 0.25 5.53 0.58 0.90 0.29 2.49 9 7 8 48 0.007

Geochemical Lab Report

Bondar Clegg Canada Limited, 212 Brooksbank Avenue, North Vancouver, BC, V7J 2C1, (604) 984-0221

<5 <1 <.5 <2 23 2 8 8 <1.0 <5 <5 1.84 1067 <25 578 121 22 <20 <20 4 <10 26 <5 <5 0.16 3.99 0.52 6.03 0.08 2.08 <5 13 10 35 0.041

	LCONDA RESOURCES 2-00805.0 ( COMP												ε	DATE	e rec	CE I VED	: 01-/	AUG-C	12	DAT	TE PR	RINTED:	7-AU	G-02	P	P AGE 2		T:LC	ONE (	GROUP		
SAMPLE	ELEMENT Au30	CU A	a Pb	Zn	Mo	Ni S	Co	Cd	Bí A	s ેs	sb Fe Tot	Mn	Te E		Cr	∵v√s	n Su	Li	Ga	 	Sc	Ta Ti	A	Ma	Са	in i	ĸ	Nb	Sr			 
NUMBER	UNITS PPB	· · · ·		·					9 K			PPM I							· · ·			PPM PCT						· .		1.50		PC
87599	<5	<1 0.6	6 (10	31	<1)	9	11 <	1.0	<5 <	5	5 1.75	144	<25	<i>?</i> 9 '	113	33 <2	0 <20	8	11	32	6	<5 0.25	6.05	0.69	0.40	0.93	2.18	11	22	11	57 0.	.00
87600	<5	<1 <.!	5 4	27	<1	8	9 <	1.0	<5 <	s 🕺	5 1.56	413 •	<25 44	<b>43</b>	93	27 <2	0 <20	7	<10	30	<5	<5 0.20	4.99	0.66	0.65	0.70	2.04	6	17	10	45 0.	.00
87601	<5	<1 <.5	5 了 3	37	2	12	14 <	1.0	<5 <	ত 😽	5 2.78	618	<25 75	51	94	44 <2	0 <20	9	17	41	8	<5 0.32	6.63	0.89	2.24	0.06	2.21	12	17	13	67 0.	.01
87602	<5	<1 <.5	5 7	37	2	ា0 ្លឹ	14 <	1.0 🖁	<s <<="" td=""><td>ડ 🦉</td><td>5 2.17</td><td>277</td><td>&lt;25 71</td><td>16</td><td>77</td><td>45 &lt;2</td><td>0 &lt;20</td><td>10</td><td>16</td><td>46</td><td>9</td><td>&lt;5 0.35</td><td>7.19</td><td>0.84</td><td>0.51</td><td>0.15</td><td>2.24</td><td>1</td><td>&lt;1</td><td>11</td><td>68 0.</td><td>.00</td></s>	ડ 🦉	5 2.17	277	<25 71	16	77	45 <2	0 <20	10	16	46	9	<5 0.35	7.19	0.84	0.51	0.15	2.24	1	<1	11	68 0.	.00
87603	<5	<1 0.5	5 7	64	<1	16	19 <	1.0	<del>ر</del> ي ،	5 k	5 3.03	1157	<25 76	58	69	35 <2	0 <20	16	13	38	7	<5 0.28	6.52	1.26	1.66	0.65	1.97	11	18	11	64 0.	.01
87604	<5	<1 <.5	5 5	35	<1	10	13 <	1.0	<5 <	5	5 1.93	<b>97</b> ·	<25 48	32	61	32 <2	0 <20	10	11	37	7	<5 0.27	6.28	0.90	0.34	0.90	1.93	10	20	10.	62 0	.00
87605		dee.1.200	10000013	S	1,0010		1942 - 1941 - H	÷ ÷		- 16 s	5 2.84	11111111111		- C. A.		001102	- 1971 A CO	0-	NAMES (1997)		61060/0	1950-4962	99).	- 2.60 P.5546		10000010000		10000100			0.000	00000
87606	<5	<1 0.5	5 7	31	ંટ	6	9.<	1.0 🖁	<্য ৰ	5 K	5 1.74	1292 ·	<25 41	16 1	121	14 <2	0 <20	5	<10	18	<5	<5 0.13	3.54	0.59	2.21	1.08	1.14	5	32	8	30 0.	.01
87607	<5	<1 <.5	5 8	29	1	7 2	10 <	1.0 🖗	<5 <	<b>5</b> 🖄	<u>්</u> 1.55	402	<25 45	55 1	101	28 <2	0 <20	6	<10	31	<5	<5 0.21	5.07	0.57	0.79	1.46	1.83	7	35	10	49 0.	.00
87608	<5	<1 <.5	5 4	27	<1	7	11 <	1.0	<5 <	<del>د</del> 5	5 1.64	474 -	<25 49	5	81	29 <2	0 <20	6	10	31	5	<5 0.21	5.39	0.52	0.75	1.63	1.78	9	42	10	43 0.	.00
87609	<5	<1<.5	5 6	23	<1	5	8 <	1.0	<5 <	5 ×	5 1.42	327	<25 45	54 1	108	26 <2	0 <20	5	<10	31	<5	<5 0.19	4.91	0.42	0.68	1.49	1.70	7	41	9	41 0	.00
87610		NEW TINGS			CO U AM		-C. S 11		2000 C		5 1.40	10 A 10 A	5.5	- C O		1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 -			10.00000		serineres.	10000000	501		e	100000-00000		••••••••••••••••••••••••••••••••••••		0000000		
87611		2000,107,000		Q	20000-002		6.046.00		, 10000 D	1000	5 1.34	- 200 CT (00)		10110	25				- COD 10CD -		2 9 9 9 9 9 9 M	2120000	- 10 C			- 5050000000-		2000-000 C			5.03	00000
87612		20200	200° D2		2 12.				1.1.1.1		5 1.87	- NOT				11.1 Z			1 - C. L. A.		22.2	1.0000000	242	<ul> <li>a materia)</li> </ul>		106000000		C 120 11 1		1011111	2013	0.0004
87613		No. 198									5 2.37	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -									996 - C		27 C			- C.Y. Q.C.Y.		- CT 1 40			100	i de la compañía de l
87614	<5	<1 <.5	5 10	30	<1	7	12 <	1.0 🖗	<5 <	5	5 1.99	273 -	<25 57	73	81 ै	43 <2	0 <20	7		44	7	<5 0.30	6.04	0.61	0.59	1.21	2.45	10	24	10	62 0.	.00
87615		201001-00	222.000.00	· ·	5 A. 1941.	50	SC 12 S 4		an a		5 1.93					- 1 N	¥		1997 1997		1 IN R.		. See	- 1 2010 NO				an Arrente		800.00V	1.55	
87616		10 A 10	1 A. A.								5 2.34						100		- CO. 67		1.161	10.00 Q A A		- ANN 669-		- 10 M M M M		NY 10. 14			- 16 o	- 00 D. O
87617		- VPC06V0			- C		1 C. M. 19				5 1.77	100 C M 600		1.01		2012/11/2	2010005	<i>a</i>	1000000		99999-99C	2012010	S	- X000 D - O				0.000.000		0005-000		0.0000
87618	<5	<1 <.5	5 8 5	40	<1	12	15 <	1.0	- <	<del>ا</del> ح	5 2.30	126 •	<25 63	50	80	51 <2	0 <20	10	13	44	8	<5 0.34	6.65	0.74	0.22	1.11	2.54	10	21	10	71 0.	.00
87619	<5	<1 0.5	5 8	35	2	11	15 <'	1.0	<5 <	5 š	5 2.81	1410	<25 95	4	68	50 <2	0 <20	7	13	42	8	<5 0.32	6.43	0.79	3.30	0.54	2.35	10	23	11	66 0.	.02
87620	<5	<1 <.5	5 5	41	े2	9	13 <'	1.0 🖁	<5 <	5 ×	5 2.64	1613 •	<25 76	52	68	37 <2	0 <20	. 6	11	34	6	<5 0.23	5.07	1.05	4.07	0.64	2.00	8	45	11	45 0.	. 02
87621	<5	<1 <.5	5 8	40	<b>1</b> ≩	12 ें	15 <'	1.0 🖇	<5 <	5 🔆	5 2.54	771.	<25 74	5	89	46 <2	0 <20	8	13	39	8	<5 0.29	6.12	0.68	1.81	0.89	2.18	9	23	10	61 0.	.01
87622	<5	<1 <.5	5 7	45	8	17	18 <'	1.0 🖁	<্ <	5 😽	5 3.15	806	<25 88	8	71	59 <2	0 <20	10	19	46	13	<5 0.34	7.41	0.86	1.62	0.68	2.25	13	19	11	68 0.	.01
															• and and and address of the and					o souther statements of the statement of the statements												
	:			· ·		du ther		Succession of the						с» 2 1	and show					1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.					1	1	2				1. 2000 1	

2002

Geochemical Lab Report

CLIENT: GOLC REPORT: VO2-																		DATE	RECI	EIVED	): 01·	AUG	-02	DA	TE P	RINTED:	7-AU	JG-02	Ρ		3 OF 4			Group		
STANDARD IAME	ELEMENT UNITS		89. A.S.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		- C. A. S.		· ·		- 11, MCC		20.022					120120	200	00000	2010.				- CO 2003	Ta T PPM PC	50.55	- 20 0 4 4		- 128 J. 1997	é.	Nb PPM P		y P <b>PM</b> P		PC
NALYTICAL B	BLANK	<5	2	<.5	3	<2	<1	2	1	<1.0	ৎ	<5	<5	<0.0		5 <2	5 ्र	<5	<2	<2 <4	20 <2	) <	2 <10	<5	<5	<5 <.0	1 <.01	ا <.01	<.01	<.01	<.01	<5	<1	<5	<5	<.00
NALYTICAL B	BLANK	-	<1	<.5	4	<2	<1	1	<1	<1.0	<5	<5	-5	<0.0	िंड	5 <2	5 🖉	<5	<b>&lt;</b> 2	<2 <2	20 <2	) <	2 <10	<5	<5	<5 <.0	1 <.01	<.01	<.01	<.01	<.01	<5	<1	<5	<5	<.00
iumber of An	alyses	1	2	2	2	2	2	2	2	2	2	2	2	:	2	2	2 🗟	2	2	2	2	2	2 2	2	2	2	2 2	2 2	ິ 2	2	2	2	2	2	2	
iean Value		3	1	0.3	3	1	<1	1 :	<b>&lt;1</b>	0.5	3	3	3	<0.0	183	3 3 1	<b>3</b> 🖄	3	1	1 1	10 1	)	1 5	3	3	3 <.0	1 <.01	<.01	<.01	<.01	<.01	3	<1	3	3 (	0.0
Standard Dev	viation	-	1	-	<b>1</b>	-		<1	<1	-		-							- Consider.		- 200		- 42	-		-	-	•	-				- 3		-	
Accepted Val	ue	5	1	0.2	2	1		1	1	0.5	2	5	5	0.0	5	1 <	1	<1	1	1	<1 <	<	1 <1	<1	<1	<1 <.0	1 -	· <.01	<.01		<.01	<1	<1	<1	<1	<.0
						•															des des red (c. 1011) 1000 - 1010 - 1011 1000 - 1010 - 1011												1997-1997 - 1997-1997			
X5 Oxide		1006		-	K N Sees	_		1 1		-		-					- **		-		-					-	-		- - -		-		-			
lumber of An	nalyses	1		-	್ ವ್ರತ	-		-	-	-		-			ہ۔ رابع	i Terr		-	- 2		- 8.	•	- 25	-		- 33	-	. <u>665</u>	-		į -		-		-	
lean Value	-	1006		-		-		-	÷	-	19904	-			- 68	64 57	- 51	-22	-		- 20		- 18330	-		- 333	800 500 -	- 2000	8 2 -		- 2				-	
Standard Dev	viation	-		-		-		-		-		-	2000-000 2000-00 2000-00				- 33		- 3		- 33		- 8-	-		- 333	-		- 5		-		-	~	-	
ccepted Val	.ue	968		-		-		-		-		-					-		•		- 200		- 23	-		-	-	- 2000	-		-		-		-	
ANMET STSD-	-4	-	70	0.8	16	117	3	35	24	<1.0	<5	13	6	4.2	3 159	ं 7 <2	5 >2(	000	85 1	14 <	20 <2	ງ 1	4 <10	20	12	<5 0.4	5 6.69	9 1.34	3.09	2.01	1.47	10 3	393	20	58	0.1
umber of An	nalyses	-	1	1	1	1	1	1	1	1	1	1	1		I 🤶			<pre>C_20020</pre>		pipe.		- No.	C 2000.2		100000	1	268	366,660	6. T		2			806466		
lean Value		-	70	8.0	16	117	3	35	24	0.5	3	13	6	4.2	3 159	7 1	3 20	000	85 1	14	10 ៍1	0 1	4 5	20	12	3 0.4	5 6.69	9 1.34	3.09	2.01	§1.47	10 3	393	20	58	0.1
itandard Dev	viation	-		-	Ŷ	-		-		•		-			- 200		- 85		- 2		- 88		-	-		- 33650 (369)			-		č –		-		-	
ccepted Val	ue	-	66	0.3	16	107	2	30	13	0.6		15	7	4.1	) 152	0	- 20	000	66 1	06	2	≝ 1 ⊲	4 -	24	14	<1 0.4	6 6.40	1.28	2.86	2.00	1.33	9 3	350	24	53	0.0
is91-1 In-Ho	use	-	91	1.0	10	95	2	46	35	<1.0	<5	10	<5	5.3	9 84		5 (* 5	788 1	୍  04_1'	93 </td <td>20 &lt;2</td> <td>0 2</td> <td>9 &lt;10</td> <td>11</td> <td>20</td> <td>&lt;5 0.5</td> <td>3 7.21</td> <td>1 2.08</td> <td>2.07</td> <td>1.74</td> <td>1.18</td> <td>10 ;</td> <td>283</td> <td>13</td> <td>56</td> <td>0.0</td>	20 <2	0 2	9 <10	11	20	<5 0.5	3 7.21	1 2.08	2.07	1.74	1.18	10 ;	283	13	56	0.0
lumber of An	nalyses	-		1	្ន	1	1	1	1	1	1	1	1		1 333	1	<b>1</b> 🍰	1	1	i <b>1</b>	1 🚟	1	1	1	1	1	1 1	1 331	6 (	1	<u></u> 1	1	1	1	1	
lean Value	•	-	10000000	-	100,000		10000000		20070110		2000000	5	1000040		84	7 1	3 ें दे	788 1	04 1	93	10 ់1	0 2	9 5	11	20	3 0.5	3 7.2	1 2.08	2.07	1.74	់ 1 <b>.</b> 18	10 ;	283	13	56	0.0
Standard Dev	viation	-					- 660,000	-		-		-	2000) 8860-8						- 3		- 33	<u>.</u>	- 200	-			- - -	- 333	90 - E		-		-		-	
ccepted Val	ue	-	99	0.7	11	88	2	40	18	0.1	1	8	្នា	4.9	5 85	0	- 8	300 1	08 1	75	4	2 3	2 4	10	18	1 0.5	1 8.30	0 1.90	1.85	1.82	<u></u> ଶ.୦୦	17.7	265	13	60	0.0
·																			alat be street of our set of																	

Geochemicar Lab Report

-

----

	ONDA RESOURCE 00805.0 ( COM													DATE	RECEI	VED:	01-AU(	G-02	DAT	TE PR	RINTED	: 7-AL	G-02	PAG	Proji E 4 of		LONE	GROUI	2	
SAMPLE NUMBER	ELEMENT AU30 UNITS PPB																									(Nb) PPM			Zr PPM	
87574	<5	<1 <.5	8	40		의 10	3 <1.0	4	8	<5	2.01	174	<25	627	97 44	<20	<20	4 13	33	6	<5 0.	26 6.07	0.43 (	).46 ]	.46 2.3	5 7	52	13	55	0.01
Ouplicate																									.52 2.24					
37590	<5	1 <.5	7	26		7	5 <1.0	< <b>5</b>	8	<5	1.36	390	<25	279 14	43 23	<20	<20	3 <10	56	7	<5 0.	42 3.57	0.63	070.	.65 1.44	÷ 12	20	12	69	0.01
uplicate	<5																													
37591	<5	2 <.5	5	20	1	5	1 <1.0	<5	6	ৎ	1.13	290	<25	240 14	40 16	<20	<20	3 <10	39	⊲5	<5 0.	29 2.78	0.39 (	).85 O	.58 1.04	58	14	7	54	0.00
uplicate		3 <.5	5	23	<1	6 1	0 <1.0	<5	<5	ৎ	1.12	286	<25	237 1	70 16	<20	<20	3 <10	39	<5	<5 0.	30 2.80	0.40 (	0.89 0	.64 1.00	5 7	13	7	56	0.00
7611	<5	1 <.5	5	28	<1	7	0 <1.0	<5	<5	ব	1.34	74	<25	448	89 32	<20	<20	5 10	31	5	<5 0.	22 5.46	0.47 (	).08 1	.28 1.90	5 8	27	9	53	<.00
uplicate		1 <.5	7	24	<1	7	9 <1.0	<5	<5	<5	1.34	74	<25	440 (	95 31	<20	<20	5 <10	30	5	<5 0.	21 5.27	0.45 (	0.08 1	.23 2.0	7 9	27	9	53	<.00
7614	<5	<1 <.5	10	30	<1	7	2 <1.0	<5	<5	<5	1.99	273	<25 ·	573 8	31 4 <b>3</b>	<20	<20	7 11	44	7	<5 0-	30 6.04	0.61 (	0.59 1	.21 2.4	5 10	24	10	62	0.00
uplicate	<5																	99992 19493 1949	1000 Aug											
·																														

-7

**...**.

Geochemical Lab Report

REPORT: V02-00751						REF	ERENCE :				
CLIENT: GOLCONDA I	•••••••						MITTED BY: UN				
PROJECT: NONE GIV	EN1						ECEIVED: 11-J	UL-02 DATE PRINTED			
DATE		NUMBER OF		EXTRACTION	METHOD	SAMPLE TYPES	NUMBER	SIZE FRACTIONS	NUMBER	SAMPLE PREPARATIONS	NUMBER
APPROVED ELEMI	ENI	ANALYSES	DETECTION	EXTRACTION	MET NOD	R ROCK	44	2 -150	44	CRUSH/SPLIT & PULV.	44
• · · · · · · · · · · · · · · · · ·	Au - FA30	44	5 PPB	Fire Assay of 30g							
	Ag - IC30	44	0.5 PPM	HF-HNO3-KCLO4-HCL KF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	REMARKS: Due to di	destion limit	ations based upon			
	Cu - IC30	44 44	1 PPM 2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA INDUC, COUP. PLASMA			IC30 results for			
	Pb - IC30 Zn - IC30	44	2 PPM 2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA		d Cr may vary				
	Mo - IC30	44	1 PPM	HF-HN03-HCL04-HCL	INDUC. COUP. PLASMA	,	·- ·· ··· <b>,</b> ··· <b>,</b>				
020716 7 Ni	Ni - IC30	44	1 PPM	HF-HN03-HCLO4-HCL	INDUC. COUP. PLASMA	REPORT COPIES TO:	620 - 304 8th	AVE S.W.	INVOICE	TO: 620 - 304 8TH AVE	s.w.
	Co - IC30	44	1 PPM	KF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA		MR. D.L. PIGH	IN			
	Cd - 1C30	44	1.0 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	والمرابعة والمرابعة والمرابعة والمرابعة	ألح وأحجاء والحوارد والحوالة والحرار والحرار والحرار		*******	*****	****
	Bi - 1C30	44	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA					data presented in th	
	As - IC30	44 44	5 PPM 5 PPM	HF-HNO3-HCLO4-HCL HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMÀ INDUC. COUP. PLASMÀ	report i	is specific to	those samples ident	ified under "	Sample Number" and is	
020716 12 Sb	Sb - IC30	44	5 PPM	HF-HNUS-HULU4-HUL	INDOC. COUP. PERSIA	applicab	ole only to th	e samples as receive	d expressed o	n a dry basis unless	
020716 13 Fe Tot	Fe - IC30	44	0.01 PCT	HF-HN03-HCLO4-HCL	INDUC. COUP. PLASMA	otherwis	e indicated	والموارية والمراجعة والمرابعة والمرابعة والمرابعة والمرابعة والمرابعة والمرابعة والمرابعة والمرابعة والمرابعة	***********	****	****
	Mn - 1C30	44	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	********					
	Te - IC30	44	25 PPM	HF-HNO3-HCLO4-HCL	INDUC, COUP. PLASMA INDUC, COUP. PLASMA						
	Ba - IC30	44 44	5 PPM 2 PPM	HF-HNO3-HCLO4-HCL HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA						
	Cr - 1C30 V - IC30	44 44	2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA						
00074/ 60 0-	c	44	20 PPM	HF-HNO3-HCLO4-HCL	INDUC, COUP. PLASMA						
	Sn - IC30 W - IC30	44 44	20 PPM	HF-KNO3-HCLO4-HCL	INDUC. COUP. PLASMA						
	w - 1030 Li - 1030	44	2 PPM	HF-HN03-HCL04-HCL	INDUC, COUP. PLASMA						
	Ga - 1C30	44	10 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA						
	La - IC30	44	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA						
	Sc - 1C30	44	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA						
020716 25 Ta	Ta - IC30	44	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA						
	Tī - IC30	44	0.01 PCT		INDUC. COUP. PLASMA						
	AL - 1C30	44	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA						
	Mg - 1C30	44	0.01 PCT 0.01 PCT	HF-HNO3-HCLO4-HCL HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA INDUC. COUP. PLASMA						
	Ca - 1C30 Na - IC30	44 44	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA						
	K - IC30	44	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA						
	Nb - 1C30	44	5 PPM	KF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA						
	Sr - 1C30	44	1 PPM 5 DDM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA INDUC. COUP. PLASMA						
020716 34 Y	Y - 1C30	44 44	5 PPM 5 PPM	HF-HNO3-HCLO4-HCL HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA						
	Zr - 1C30										

		····· · · · · · · · · · · · · · · · ·		0				• • • • •											T- NON	GIVEN1	• ••• ••••
	CONDA RESOURCES LTD. 2-00751.0 ( COMPLETE )	ΰŰ	H L	POZ	-07				DATE	RECEIVE	D: 11	-JUL-C	)2	DATE	PRINTED	: 17-JUL-	)2 P	AGE 1 OF			
1PLE	ELEMENT Au30 Ag Cu F	b Zn Mo	Ni Co	Cd Bi	As Sb F	e Tot	Mn	Te Ba	Cr	V Sr		Li š	a La	Sc	Ta Ti	AL M	j Ca	Na K	Nb S	· Y Z	r S
(BER	UNITS PPB PPM PPM PF	m PPM PPM	PPM PPM I	PPM PPM P	PM PPM	PCT	PPM I	PPM PPI	1 PPM	PPM PPM	PPM	PPM PF	PPM PPM	PPM I	PPM PCT	PCT PC	PCT	PCT PCT	PPM PPI	4 PPM PF	M PCT
525	<5 <.5 8	6 49 8	20 17 <	1.0 5	12 <5	2.36	202	<25 91	3 64	56 <20	<20	14 2	22 39	12	<5 0.32	2 7.42 0.7	2 0.59	0.32 3.44	11 2	5 18 9	0.014
526	<pre>&lt;5 \.5 0 &lt;5 &lt;.5 7 </pre>																	0.24 3.49	11 1	5 14 8	7 0.009
27	<5 <.5 53																	1.12 2.24	12 3	7 14 5	9 0.013
28	<5 <,5 47	2 41 1	17 14 <	1.0 <5	6 <5	1.57	188	<25 61	4 52	55 <20	<20	12 🖏	18 39	10	<5 0 <b>.3</b> 4	7.63 0.7	5 0 <b>.</b> 45	1.00 3.01	12 2	9 14 9	7 0.008
29	<5 <.5 75	2 47 <1	15 14 <	1.0 ्र	< ও	1.50	149	<25 42	3 49	39 <20	<20	15 了	16 32	8	<5 0.26	6.56 0.8	<b>3</b> 0.23	5 1.10 2.31	82	5 <u>14</u> 8	2 0.005
30	<5 <.5 22	2 39 ≺1	17 14 <	::::: 1.0 ⊲<5 :	<5 <5	1.61	202	<25 58	8. 47	54 <20	<b>. &lt;2</b> 00	13 🏑	19 40	) 10:	<5 0.34	7.88 0.8	4: 0.47	0.84 3.17	12 2	1 15 10	2 0.005
51	6 <.5 91	 219<1	99<	1.0 <5	5 <5	1.33	144	<25 64	7 57	55 <20	<20	8	19 40	) 10	<5 0.30	7.61 0.6	4 0.55	6 0.10 3.95	11 1	0 15 10	0.008
2	<5 <.5 23																				
3	<5 1.3 25	9 35 1	16 8 <	1.0 <5	<্য <	4.90	1817	<25 36	1 44	13 <20	) <20	4 <	10 9	> <5	<5 0.0	5 2.17 3.4	5 >10.00	0.04 1.18	<5 10	6 13	9 0.073
4	<5 <.5 1	2 26 <1	15 10 <	1.0 <5	- ব	2.12	198	<25 74	1 59	42 <20	) <20	8	18 36	5 9	<5 0.32	2 7.37 0.5	5 0.45	5 0.20 3.82	8	9 13 9	2 0.005
F	<5 <.5 1	्र र २ √	6 7 /	1 0	~5 ~5	0.07	167	20 28	े २ 138	21. <21	1 20	َ د د	10 20	ו געלי ו	<5 0.1	1 2.66 0.2	5 0.50	0.03 1.45	<5	7 10	39 0.006
5 6	<5 <.5% 2 %																1.00	2 0.03 2.16	SC 2000		70 0.022
7	<5 <.5 2																Xori	2 0.04 2.24	660.000	5 11	52 0.018
8	<5 <.5 <1 >-																	2 0.17 2.01	7	9 10	44 0.006
9	10 <.5 2																	0.23 3.10	8 1	2 12	73 0.006
0	<5 <.5 2																946). 1	7 0.36 1.75	10000000000	00000000	-0.000-00000000
.1	<5 <.5 <1																-89	1 0.03 2.04	-976-08		11601000000
2	< <u>-</u> ,5 <1																2000	4 0.04 2.55	0000000	0.0263	74 0.006
3	<5 <.5 1 ू																5.63	7 0.05 3.0' 3 0.04 1.8	2010-000	1969/062	B2 0.006
4	<5 <.5 7	5 29 2	158<	1.0 <5	8 7	1.49	276	<25 36	4 153	20 <2	) <20	10 3	13 27	( ୪	<> U.1	1 3.41 0.	1 0.2	5 U_U4 I.oc	)		51 0.004
5	<5 <.5 1	<2 15 2	7 5 <	1.0 <5	6 <5	1.31	305	<25 27	0 159	16 <2	) <20	5	11 21	1 <5	<5 0.1	0 2.76 0.	3 0.3	9 0.08 1.49	> <5	9 9	41 0.005
6	<5 <.5 1																	0 0.36 1.80	) [5] '	8 11	49 0.005
7	<5 <.5 <1																	9 0.52 2.14	8 2	5 15	75 0.007
8	<5 <.5 <1																	9 0.44 4.00	- Riyangaan	2005 (Arros)	2010/06/2011
9	ব ২.5 ব	2 45 <1	12 11 <	1.0 🐟	<5 <5	1.79	163	<25 35	7 98	45 <2	0 <20		- C. M.		- 19 C	48 - LaS	0 0.2	5 0.76 2.0	। १११) द र	4 16	72 0.004
0	<b>&lt;5 &lt;.5</b> 1	2 35 <1	14 10 <	1.0 5	<u>র</u> জ	2.11	114	<25 39	7 ⁸ 116	46 <2	0 <20	9	17 31		o Dotata		6 0.4	6 0.89 2.3	5 8 4	0 12	74 0.006
1	<5 <.5 <1																2007/1	3 0.66 2.0	1.1001.0		NO 66 76010
52	< <u></u>																	7 0.67 1.6	5 🛛 👔 i	20 12	54 0.003
53	<5 <.5 <1																	7 1.05 1.8	в <u>(</u> 7) а	27 10	63 0.00 <b>3</b>
54	<5 <.5 2																	4 0.35 0.9	4 <5	2 11	33 0.003

LIENT: GOLCONDA R												DATE	DECEIN	FD. 11_	JUL-02	D		NTED. 1	7-JUL-02	PAG			NE GIV	EN1	
EPORT: V02-00751.		)											RECEIV											 	
	NT Au30 Ag																			58	896 K	0.3033	Sr Y	k.	-3897098
NUMBER UNI	ts ppb ppm p	PM PP	M PPM	PPM F	PPM PPI	M PPM	PPM PF	PM PPM	PCT	PPM F	PPM PPM	PPM	PPM PP	m ppm f	PM PPM	PPM PI	PM PPM	N PCT P	CT PCT	PCT F	PCT PCT	PPM P	PM PPM	PPM	PC.
			÷.	n ang san Ting					1		Mi	97 17 1949								11 A <b></b> - A			AC 40		<b>n</b> 00
37555																			07 0.29	N33	90 1.53	202000	30000	.35	- 20000000
37556																			50 0.12		12 0.74	0000000 1000000	S2593		10000
37557																		5 0.23 5.			40 2.41	00000000	106000	5.e	0000000
87558																		5 0.31 6.		- 1999 - 1999	.18 2.41	20200313	6869	50 C	- 50,000
37559	<5 <.5	2	3 26	<1	10	7 <1.0	ঁ	ৎ ্	1.46	165 •	<25 351	146	25 <2	0 <20	4 11	24	୍	5 0.16 3.	62 0.27	0.51 0	.31 1.74		11 830	ני י	0.00
		-							2 00	400	-25 (D)	400	70.40	n ~20	E 9179	77	ر ار د	5 0 2/ 5	47 D 37	0 30 0	.80 2.25	~~	21 17	76	0.00
87560																			47 0.37 08 0.27		.71 1.71	20000000		20	- 99,900,8
87561																			80 0.39		.67 2.42	1999-1999	1973	81	18,888
87562																			99 0 <b>.</b> 37		.29 2.14		1980) 1980)	8); ()	- 938333
87563																		5 0.29 6.		365	.30 2.46	- Sidfield	00000	10	100000
87564		<b>`</b>	4 JU					¥ (8)	. <b></b>														10060 20000 2000 2000 2000		
87565	<5 <.5	4	2 43	<1	14 1	3 <1.0	ۍ ا	<5 <5	2.12	160	<25 546	53	36 <2	0 <20	8 16	32	8 <	5 0.31 6.	81 0.52	0.35 1	.29 2.69	10	35 14	68	0.0
87566																		5 0.26 6.	13 0.42	0.21 1	.25 2.26	8	31 14	71	<.00
87567																			99 0.35		.20 2.08	8	29 1	ji 72	0.0
87568																			82 0.44		.87 2.77	8	24 10	84	0.00

Geochemicar Lab Report

17

EPORT: V02-00751.0 (	OURCES LTD ( COMPLETE														DA	TE F	RECEI	VED :	11	JUL-C	2	DATI	E PRI	INTED	: 17-	JUL-02	2 F	PAGE	3 OF		: NONE	GIV	ENI	
TANDARD ELEMENT	Au30 Ag	Cu	РЬ	Zn	Мо	Ni (C	ò	Cd	Bi	As	Sb F	e Tot	Mn	Te	Ba	Cr	, V	Sn §		.i 🤅	ia Li	a Sc	Ta	71	Al	Mg			-68 (		lb Sr	- 3324	Ýð.	- 5686
AME UNITS	PPB PPM	PPM	PPM	PPM	PPM	PPM PF	M P	PPM PI	PM F	PPM P	PM	PCT	PPM	PPM	PPM F	PPM F	PPM F	PM P	PM Pf	M PP	M PPI	Y PPM	PPM	PCT	PCT	PCT	PC1	T PC	T PC	CT PF	M PPM		PPM	PCT
	· · · · ·							N N S		8 (	i ya da Yazika Mazika							49 										998) 1921	80 	Ň				- 8005-4 - 224 - 224
X12 Oxide	6723 -	-		-	24.5	- 33		- 000		•	-	-		-	-	-		- 10 10 10		- 3	48 ·		5		-	3.65			3	- 33				
umber of Analyses	1 -	-		-	n se de Angel de	500 887	100 C	• 3				-		•	•	-		- 22		•		- 333-1 1000	-					- 2000		•	-			
iean Value	6723 -	-		-		- 8		- 000		- 220		-	1960 – 18 1960 – 18	-	- <b>-</b> -	- 2		- 2703		- 200		- 200	-		-	- 1927-097-0 - 2002-0999	i i	• 4924 2025		- 3333			•	
tandard Deviation	- 1000	- 1 -		-		- 83		- 20		- 3		-		-	( <del>+</del> ?:	- :		- 2014	-	- 200	ð.	•	-		- 		5 · 9	- 22		- 33				
ccepted Value	6600 -	-		-		•		- 2007 PV				-		-	· •	-		- 000				- 255	-					- 200		• 30			-	
NALYTICAL BLANK	<5 <.5	<1	2	<2	্ব	2	<1 <1	1.0	<5	<5	<5	0.02	<5	<25	<5	<2	<2 ·	20 <	20	<2 <1	10 <	5 <5	ح	<.01	<.01	<.01	<0.0	1 <	)1 <.(	01 🖁	<5 <1	<	5 <5	<.002
NALYTICAL BLANK	<5 <.5	<1	~2	<2	<1	1	< <b>1 &lt;1</b>	1.0 🖁	<5	<5	ব্চ	0.02	<5	<25	<5	<2	<2 ·	20 s	20	<2 🖏	0 <	5 <5	<5	<.01	<.01	<.01	<0.0	1 <.(	)1 <.(	01 🖉	<5 <1	। <5	5 <5	s <.002
lumber of Analyses	2 Z	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2 🔅	2	2 2	2	ି 2	2 2	2 2	č i	2 🖄	2	2	Z 2	? Ž	2 2	2002
lean Value	3 0.3	<1	1	1	<1	2	<1 C	).5 ្ល័	3	3	3	0.02	3	13	3	1	٩Č,	10 👌	10	1 🕺	5	3 3	3	<.01	<.01	<.01	<0.0	1 <.(	)1 <.0	01 🖇	3 <1		5 3	6 0.001
tandard Deviation	-			-		<1	-	- 33				<0.01		-	- 					- 100		-	- 1		-			- 900		- 0000000			-	
ccepted Value	5 0.2	ິ 1	2	1	<u></u>	1	1 0	).5 ⁸	2	5	5	0.05	1891 1891	<1	<1	1 :	៍	<1	<1 ·	<1	<1 <	1 <1	<1	<.01	ି   -	< .01	<0.0	1	÷ <.(	01 🖁	< <b>1</b> <1	<	1 <1	<.00
								907-94 907-94		100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100								te v Andre .												15.600.001.				
																													-0.4		10 2//		e e/	0.07
S91-1 In-House	0/0010 2000-0	8	335.75.		1.200.00		9000 (j. 1996) 1997 (j. 1996)	č	800 B.		100000				1.135						10100		22	098,82.	200	100000	1.8	20000	84340			. 300		280636
lumber of Analyses	- 1	§ 1	1	1	া	1	1	1 ្វ័	1	1	া	1	201	1	1	1	ា	1	1	1	1	1 🧃	1		i í	I <b>1</b>		1	1	1	1 1	1	1 1	
lumber of Analyses lean Value	0/0010 2000-0	§ 1	1	1	া	1	1	1 ្វ័	1	1	া	1		1	1	1	ា	1	1	1	1		1		i í	100000		1	1	1	1 1	1	1 1	
lumber of Analyses lean Value Standard Deviation	- 1 - 1.0 	1 92 -	1 5 -	1 87 -	1 <1 -	1 43 ; -	1 28 (	1 0.5 -	1 3 -	1 9 -	1 3 -	1 5.30 -	1 858 -	1 13 -	1 693	1 84 -	1 177	1 10 -	1 10 -	1 29 -	1 5 1	1 1 0 19 	1 3 -	1 0.50	1 ) 7.68	1 1 3 1.88 	1.8	1 19 1.: -	1 59 1.: -	1 20 -	1 18 249	1 7 15 -	1 1 5 54 	 + 0.033
lumber of Analyses lean Value	- 1 - 1.0 	1 92 -	1 5 -	1 87 -	1 <1 -	1 43 ; -	1 28 (	1 0.5 -	1 3 -	1 9 -	1 3 -	1	1 858 -	1 13 -	1 693	1 84 -	1 177	1 10 -	1	1 29 -	1 5 1	1 🧃	1 3 -	1 0.50	1 ) 7.68	I <b>1</b>	1.8	1 19 1.: -	1 59 1.: -	1 20 -	1 18 249	1 7 15 -	1 1 5 54 	 + 0.033
lumber of Analyses lean Value Standard Deviation	- 1 - 1.0 	1 92 -	1 5 -	1 87 -	1 <1 -	1 43 - 40	1 28 (	1 0.5 -	1 3 -	1 9 -	1 3 -	1 5.30 -	1 858 -	1 13 -	1 693	1 84 -	1 177	1 10 -	1 10 -	1 29 -	1 5 1	1 1 0 19 	1 3 -	1 0.50	1 ) 7.68	1 1 3 1.88 	1.8	1 19 1.: -	1 59 1.: -	1 20 -	1 18 249	1 7 15 -	1 1 5 54 	 + 0.033
lumber of Analyses lean Value Standard Deviation Accepted Value	- 1 - 1:0 - - 0:7	1 92 -	1 5 - 11	1 87 -	1 <1 -	1 43 - 40 -	1 28 ( - 18 (	1 0.5 -	1 3 -	1 9 -	1 3 -	1 5.30 -	1 858 -	1 13 -	1 693	1 84 -	1 177	1 10 -	1 10 -	1 29 -	1 5 1	1 1 0 19 	1 3 -	1 0.50	1 ) 7.68	1 1 3 1.88 	1.8	1 19 1.: -	1 59 1.: -	1 20 -	1 18 249	1 7 15 -	1 1 5 54 	+ 0.033   + 0.033  - 0.030
lumber of Analyses lean Value Standard Deviation Accepted Value DX5 Oxide	- 1 - 1.0  - 0.7 974 -	1 92 -	1 5 - 11	1 87 -	1 <1 - 2	1 43 - 40 - -	1 28 ( 18 (	1 0.5 -	1 3 -	1 9 -	1 3 -	1 5.30 -	1 858 -	1 13 -	1 693	1 84 -	1 177	1 10 -	1 10 -	1 29 -	1 5 1	1 1 0 19 	1 3 -	1 0.50	1 ) 7.68	1 1 3 1.88 	1.8	1 19 1.: -	1 59 1.: -	1 20 -	1 18 249	1 7 15 -	1 1 5 54 	 + 0.033
lumber of Analyses lean Value Standard Deviation Accepted Value DX5 Oxide Lumber of Analyses	- 1 - 1.0  - 0.7 974 - 1 -	1 92 - 99 - - -	1 5 - 11	1 87 -	1 <1 - 2 -	1 43 - 40 - -	1 28 ( 18 (	1 0.5 -	1 3 -	1 9 -	1 3 -	1 5.30 -	1 858 -	1 13 -	1 693	1 84 -	1 177	1 10 -	1 10	1 29 -	1 5 1	1 1 0 19 	1 3 -	1 0.50	1 ) 7.68	1 1 3 1.88 	1.8	1 19 1.: -	1 59 1.: -	1 20 -	1 18 249	1 7 15 -	1 1 5 54 	 + 0.033
Number of Analyses Nean Value Standard Deviation Accepted Value DX5 Oxide Number of Analyses Nean Value	- 1 - 1.0  - 0.7 974 - 974 -	1 92 - 99 - - - -	1 5 - 11	1 87 - 88 - - -	1 <1 - 2 -	1 43 - 40 - -	1 28 ( - -	1 0.5 -	1 3 -	1 9 -	1 3 -	1 5.30 -	1 858 -	1 13 -	1 693	1 84 -	1 177	1 10 -	1 10	1 29 -	1 5 1	1 1 0 19 	1 3 -	1 0.50	1 ) 7.68	1 1 3 1.88 	1.8	1 19 1.: -	1 59 1.: -	1 20 -	1 18 249	1 7 15 -	1 1 5 54 	 + 0.033
Humber of Analyses Hean Value Standard Deviation Accepted Value DX5 Oxide Humber of Analyses Hean Value Standard Deviation	- 1 - 1.0  974 - 974 - 974 - - - 968 -	1 92 - 99 - - - - -	1 5 11 - -	1 87 - 88 - - - - - - -	1 <1 - - - -	1 43 - 40 - - - - -	1 28 ( 18 ( -	1 - 0.5 - - - - -	1 3 - 1 - - - -	1 9 - 8 - - - - - - -	1 3 - 1 - - - - -	1 5.30 -	1 858 - 850 - - - - -	1 - - - -	1 693 - 800	1 84 - 108 - - - - -	1 177 175 	1 - - - - - -	1 10 2 - -	1 29 - 32 - - - -	1 -5 1 - -	1 1 0 19  0 18    	1 - - - - -	1 0.50 	1 7.68  1 8.30  	1 1 3 1.88  0 1.90          -	1.8 1.8	1 9 1.: 5 1.; - - -	1 59 1.: -	1 20 - 00 - - - - -	1 1 18 249 - 17 265	1 15 - 15 - 13 5 13  -	1 1 5 54  3 60    	1
Number of Analyses Nean Value Standard Deviation Accepted Value DX5 Oxide Number of Analyses Nean Value Standard Deviation Accepted Value	- 1 - 1.0  974 - 974 - 974 - - - 968 -	1 92 - 99 - - - - 335	1 5 - 11 - - - - 39	1 87 - 88 - - - - - 205	1 <1 - - - - - - - - - - - - - - - -	1 43 - 40 - - - - 27	1 28 ( - 18 ( - - - 22 ⁽	1 - 0.5 - - - - -	1 3 - 1 - - - -	1 9 - 8 - - - - 15	1 3 - 1 - - - - -	1 5.30 - 4.95 - - - - - - - - - - - - - - - - - - -	1 858 - 850 - - - - -	1 13 - - - - - - - - - -	1 693 800 718	1 84 - 108 - - - - - 39	1 177 175 	1 - - - - - -	1 10 2 - - - - - -	1 29 - 32 - - - -	1 5 1 4 1 - - 14 6	1 1 0 19  0 18    	1 3 - - - -	1 0.50 	1 7.68 	1 1 3 1.88  0 1.90          -	1.8 1.8 1.4	1 9 1.: 5 1.; - - -	1 59 1.: 82 1.: - - 25 1.	1 20 - 00 - - - - -	1 1 18 249 - 17 265	1 7 7 15 7 15 7 13 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 5 54  3 60    	1 0.033 
lumber of Analyses lean Value Standard Deviation Accepted Value DX5 Oxide Rumber of Analyses lean Value Standard Deviation Accepted Value	- 1 - 1.0  974 - 1 974 - - - 968 - - - <.5	1 92 - 99 - - - 335 1	1 5 - 11 - - - - - 39 1	1 87 - 88 - - - - 205 1	1 2 - - - 1	1 43 - 40 - - - - 27 1	1 28 ( - - - - - 22 ⁻	1 	1 3 - 1 - - - - - - - -	1 9 - 8 - - - - 15	1 3 - 1 - - - - -	1 5.30 - 4.95 - - - - - - - - - - - 1	1 858 - 850 - - - - - - - - 1907	1 13 - - - - - - - - - - - - - - - - - -	1 693 800 - - - - - - - - - - - - - - - - - -	1 84 - 108 - - - - 39 1	1 177 175 - - - - - - - - - - - - - - - - - - -	1 10 - - - - - - - - - - - - - - - - - -	1 10 2 - - - - - - - - - - - - - - - - - -	1 29 - 32 - - - - 21 21	1 5 1 - - - 14 6	1 1 0 19  0 18     1 10	1 3 - - - - - - 1	1 0.50 	1 - 2 7.68 - 1 8.30 - - - - - - - - - - - - -	1 1 3 1.88  0 1.90          -	1.8 1.8 1.4	1 9 1. - 5 1. - - - 5 1.	1 59 1.: 82 1.: - - 25 1.	1 20 - 00 - - - - 78 1	1 1 18 249 17 26 - - - - 9 20 1	1 79 19 	1 1 5 54 3 3 60       -  - - -	1 0.033 
Aumber of Analyses Mean Value Standard Deviation Accepted Value DX5 Oxide Aumber of Analyses Mean Value Standard Deviation Accepted Value CANMET LKSD-2 Aumber of Analyses	- 1 - 1.0 - 0.7 974 - 974 - 974 - - 968 - - - <.5 - 1	1 92 - 99 - - 335 1 335	1 5 - 11 - - - - - 39 1	1 87 - 88 - - - - 205 1	1 2 - - - 1	1 43 - 40 - - - - 27 1	1 28 ( - - - - - 22 ·	1 	1 3 - 1 - - - - - - - -	1 9 - 8 - - - - - 15 1	1 3 - 1 - - - - - - - - - - - - - - - -	1 5.30 - 4.95 - - - - - - - - - - - 1	1 858 - 850 - - - - - - - - 1907 1	1 13 - - - - - - - - - - - - - - - - - -	1 693 800 - - - - - - - - - - - - - - - - - -	1 84 - 108 - - - - 39 1	1 177 175 - - - - - - - - - - - - - - - - - - -	1 10 - - - - - - - - - - - - - - - - - -	1 10 2 - - - - - - - - - - - - - - - - - -	1 29 - 32 - - - - 21 21	1 5 1 - - - 14 6	1 1 0 19  0 18     1 10	1 3 - - - - - - 1	1 0.50 	1 - 2 7.68 - 1 8.30 - - - - - - - - - - - - -	1 1 3 1.88          -	1.8 1.8 1.4	1 9 1. - 5 1. - - - 5 1.	1 59 1.; - - - 25 1.	1 20 - 00 - - - - 78 1	1 1 18 249 17 26 - - - - 9 20 1	1 79 19 	1 1 5 54 3 3 60       -  - - -	1 1 4 0.033    1 0.15

ုဝုဝူဒ

**RPMG**[†]

Geochemicar Lab Report

	.CONDA RESOU 2-00751.0 (														D	ΑTE	RECEI	VED	: 11-	jul-	02	D	ATE	PRI	NTED	: 17-	JUL-02	P/	AGE -		ECT: 1 4	ione;	GIV	EN1	
SAMPLE NUMBER	ELEMENT A UNITS	lu30 Ag PPB PPM P	- 1994 - 1994	- CE				12	$(x_i) \geq 0$		67.1020 -		2000002				$(1, 1, 2, \dots, 2, n)$		1. E	- C		- 2	1.2ML			2	1.0.2000		Na PCT	8	( NĐ PPM		- 20000	2	s PCT
37526		<5 <.5	- share	-97 C	- 1946 (yr.	-	91 - 2 C	2	C2-C - C		1. sectors		- 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 1 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194				· · ·		1.1.1		- 55		an segmente de			2	- 990 Y. A.		- 00000000	8	- 22 4 59	-	- St. 5	£	<ul> <li>MARCELLER</li> </ul>
uplicate		<.>	7 <4	२०उ े	13 <b>2</b>	15	15 <	1.0	<>	5	\$	2.20	- <b>3</b> 54 ·	<25	698	59	: <b>୦</b> ୮୦ ାଜନ	-20	<20	6	20 - 3	58	У	<5	0.55	(.29	0.61	0.95	0.24	3.21	' 12 	15	ा <b>२</b>	94	0.005
7543		<5 <.5	1 🟹	2 2	25 <1	12	8 <	1.0	\$	<5	ব	1.78	229 ·	<25	582	122	27 <	:20	<20	7	15 2	2 <del>9</del>	6	<5	0.22	5.86	0.51	0.47	0.05	3.01	6 ا	8	12	82	0.00
plicate		<5		24				- 50.0 -	: 🔅		<u> </u>		-2:33ş.		ing in		AdS N		25-		3 (28). 1 (3										202424 240, 11			ŝ.	
7544		<5 <.5	7 5	5 2	9 2	15	8 <	1.0	<5	8	7	1.49	276	<25	364	153	20 •	<20	<20	10	13 2	27	8	<5	0.11	3.41	0.31	0.23	0.04	1.88	3 <5	6	15	51	0.00
plicate		<.5	5 4	¢ 2	23 <1		7 <		1 i i.		10000	1.56	277	<25	371	154	18 -		<20	5 <	:10 2	24	<5	<5	0.12	3.58	8 0.33	0.24	0.04	1.94	i <5	4	11	55	0.00
7563		20 <.5	ा •1 ्य	3 2	<u>9</u> <1		S		<5		<u></u>	1.93	259	<25	485	69	27 -		1. 1011	5	17 3	33	7	<5	0.26	5.99	0.37	0.30	1.29	2.14	. 8	33	13	ຸ ຊ. <b>7</b> 1	0.00
plicate		<.5	<1	5 2	28 <1	12	10 <	:1 <b>.</b> 0 ្ខ្	র	<5	ব	1.94	260	<25	486	68	24	<20	<20	5	15 3	32	6	<5	0.26	6.04	0.37	0.31	1.25	2.19	<b>?</b> 7	33	14	70	0.00
7565		<5 <.5	4 <2	2 4	<b>.3</b> <1	14	13 <	:1.0	ৎ	<5	<5	2.12	160	<25	546	53	36 -	<20	<20	8	16 3	32	8	<5	0.31	6.81	0.52	0.35	1.29	2.69	7 10	35	14	68	0.00
uplicate								Yet 3.1. C. Strandowski (2000) https://www.com/article.com/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/arti article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/article/art																											

Geochemicar Lab Report



DRILL HOLE RECORD

**GOLCONDA RESOURCES LTD.** 

LP - 02 - 8

- -----

# ASSAYS

# **DRILL HOLE RECORD**

LP - 02 - 8

		BON		EGG				]	Geo	chemic		
REPORT: VO2-0	0870.0 ( COMPLETE	•				REI	ERENCE :					
CLIENT: GOLCO	NDA RESOURCES LTD	)_					MITTED BY: D.I					
PROJECT: LONE	GROUP				······	DATE I	ECEIVED: 19-AU	JG-02	2 DATE PRINTED	: 22-AUG-02		
DATE	CI PARAT		LOWER DETECTION	EXTRACTION	METHOD	SAMPLE TYPES	NUMBER	S17	ZE FRACTIONS	NUMBER	SAMPLE PREPARATIONS N	IUMBER
APPROVED	ELEMENT	ANALYSES	DETECTION	EXTRACTION	METNOD	D DRILL CORE	28	2	- 150	28	CRUSH/SPLIT & PULV.	28
020821 1 Au3		28	5 PPB	Fire Assay of 30g	30g Fire Assay - AA							
020821 2 Cu	Cu - 1C30	28		HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	REMARKS: Due to d	inection limit	ation	ne hased unon			
020821 3 Ag 020821 4 Pb	Ag - IC30 Pb - IC30	28 28	0.5 PPM 2 PPM	HF-HNO3-HCLO4-HCL HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA INDUC. COUP. PLASMA		ineralization,					
020821 4 PD	Zn - IC30	28	2 PPM	KF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	•	nd Cr may vary		,			
020821 6 Mo	Mo - IC30	28	1 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA							
000001 7 115	u: 1070	20	1 004	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	REPORT COPIES TO:	620 - 304 RTH	۵VE	5 U	INVOICE	TO: 620 - 304 8TH AVE S.	.W.
020821 7 Ni 020821 8 Co	Ni - 1C30 Co - 1C30	28 28	1 PPM 1 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA INDUC. COUP. PLASMA	REPORT COPIES TO.	MR. D.L. PIGH		J.N.	INTOTOL		
020821 8 CO	Cd - IC30	28	1.0 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA							
020821 9 CL	Bī - IC30	28	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA						*****	
020821 11 As	As - IC30	28	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	This re	port must not	be r	eproduced except	in full. The	data presented in this	
020821 12 Sb	Sb - IC30	28	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	report applica	is specific to ble only to th	tho: esa	se samples identi mples as received	fied under " Lexpressed c	Sample Number" and is on a dry basis unless	
020821 13 Fe	Tot Fe - IC30	28	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	otherwi	se indicated					
020821 14 Mn	Mn - IC30	28	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	******	********	****	*****	******	*******	**
020821 15 Te	Te - 1C30	28	25 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA							
020821 16 Ba	Ba - IC30	28	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA							
020821 17 Cr	Cr - IC30 V - IC30	28 28	2 PPM 2 PPM	HF-HNO3-HCLO4-HCL HF-HNO3-HCLO4-HCL	INDUC, COUP, PLASMA INDUC, COUP, PLASMA							
020821 18 V	v - 1030	20	2 FFM	HE-HROD-RECOM-REC	INDUC, COUP. PERSMA							
020821 19 Sn	Sn - IC30	28	20 PPM	HF-HNO3-HCLO4-KCL	INDUC. COUP. PLASMA							
020821 20 W	W - IC30	28	20 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA							
020821 21 Li	Li - IC30	28	2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA							
020821 22 Ga	Ga - IC30	28	10 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA							
020821 23 La	La - IC30	28 28	5 PPM 5 PPM	HF-HNO3-HCLO4-HCL HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA INDUC. COUP. PLASMA							
020821 24 Sc	Sc - IC30	20	5 PPM	NC-NNUJ-NULU4-NUL	INDUC, COUP. FLASHA							
020821 25 Ta	Ta - IC30	28	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA							
020821 26 Ti	Ti - IC30	28	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA							
020821 27 AL	Al - IC30	28	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA							
020821 28 Mg	Mg - 1C30	28	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA							
020821 29 Ca	Ca - IC30	28	0.01 PCT	HF-HNO3-HCLO4-HCL HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA INDUC. COUP. PLASMA							
020821 30 Na	Na - IC30	28	0.01 PCT	117-1000-10L04-10L	INDUC. COUP. FLASMA							
020821 31 K	K - 1C30	28	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA							
020821 32 Nb	Nb - 1C30	28	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA							
020821 33 Sr	Sr - IC30	28	1 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA							
020821 34 Y	Y - IC30	28	5 PPM	HF-HN03-HCLO4-HCL	INDUC. COUP. PLASMA							
020821 35 Zr	Zr - IC30	28	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA							
020821 36 S	S - IC30	28	0.002 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	L .						
	,										· ·	

- - - - - -

. . . . . .

____ __ __ __ __ __

- ...

Geochemical Lab Report

....

BONDAR CLEGG

CLIENT: GO	OLCONDA RESOURCES	LTD.																				,			P	ROJEC	T: LC	one (	ROUP		
REPORT: VO	02-00870.0 ( COMPI	ETE )											DATE	RECE	IVED:	19-A	UG-02	2	DATE	PRI	NTED:	22-AU	G-02	P/	GE 1	OF 3					
	EL ENERT 1. 70		_ <u>8-9</u>	o Zn	Мо		a (	- - -	Ac	Sh F	e Tot	Mn T	e Ba	Cr 👘	V Sn	្ល	1 i §	Ga	La S	с т	a 🚟	i Al	Mg	Ca	Na	κ	Nb	Sr	Y	Zr	S
SAMPLE	ELEMENT AU30	Cu A	• 860	399 T. T.	- 39999		886-	2000-00 10	A	2000300			M PPM P	10000	X 2.	- 1940 A 194		- 12 C .		ALC	- 9 S.Z	161			PCT	PCT	PPM P	PPM F	PPM P	PM ···:	PCT
iumber	UNITS PPB	rrn rr	n eer	1 PFN	EER.	rrm re	PI	rı çrn	r r m		101			96. 94	6				1 1		648		1	8	- X 				n ng Kalèn	Ś	nda.
76 77	8	3 <	s 20	4 25		14	6 <1	0 5	<5	~5	1 81	817 <2	5 433 2	57 2	6 <20	<20	5	<10	20 🔾	5 <	5 0.1	2 3.45	0.48	0.59	0.04	1.78	<5	11	9	46 <	.002
37623	6	ے ہے۔ 1 ح		2 20	- 33/203		3666	.0 <5	ğ.				5 455 2						2,00	201 C	200100	2004 - C	1.1.1		e prob		10112012		ennoen -	44 <	002
37624		2 <		3 32		- 198	50 i	- 10868 10868		365 <u>65</u> -			5 741 2		89 Y -	- Bideo A							0.80								
37625	92	<1 <	- 	4 27	686.68		692 - C	.0 S	0	- SS - C -			5 641 1					1,00,00		ee	5.050		1702	A	a de la constaña a		<5		144 A.		80 N. S.
37626	10	1989 - Gee	- 3883	988	100.000	88	āe i	.0 <5	1				5 761 1														<5	23	9	37 0	.010
37627	9	1985 - <b>1</b> 985 -				. 나 38 고	5°'		<u> </u>		1.50							ett Diversi				29 		ę. ż						÷	1.000
87628	11	<1 <	5	् र 17	2	12	6 <1	.n <5	7	<5	2,10	1302 <2	5 829 1	82 2		<20	6	<10	25 😽	5 <	5 0.1	4 3.96	5 0.96	1.64	0.03	1.60	<5	24	10	52 0	011
87629	8	2 <	- 438	ି 6 20	- 380,675								5 542 1																		
87630	ہ ح		1 30	2 18	- 84360	<u>-</u> - 2	9999	.0 <5					5 344 2																		
87631	ব	2 <		2 11	- 9429		1000	.0 <5	8	8683.			5 269 2															37	8	23 0	.003
	~ ~	666666	.5	30 ii	8029		88463	.0 <5	ei -	States.			5 132 2																<5	16 <	.002
87632	~ ~ ~															62	× <													100 A	
87633	<5	<1 <	5	6 17	· 6	12	7 <1	.0 <5	6	<5	3.62	1237 <2	15 <b>89</b> 1	133 ी	12 <20	<20	<2	<10	19	8	8 0.0	2 0.7	2 4.88	9.96	0.02	0.39	<5	80	7	6 0	.036
37634	5	<1 <		6 16	- 36-23	: 17 38	6803	.0 <5	40	30.3435	2.38	514 <2	5 409							7 <	5 O.2	2 5.4	5 1.73	3.74	0.05	1.99	<5	32	9	47 0	.010
37635	- ব	<1 <	- 383	2 13		88	28236	.0 <5	80	2010000		36 2 Sec. A. A.	5 460	865	10000	0.0000		00000000	2063				0.47						10	53 <	.002
37636	5	<1 <	11 (23)	599 I T	. <b>≺1</b>	: 1.82		.0 <5	0.0	- ABAR A. S.		1012030000	25 553		00000	- 20 GA		105-22555	10.0	9 <	5 O.3	50 7.19	9 0.51	0.34	0,05	2.10	8	9	13	78 <	.002
87637	<5	<1 <	10	59 i T	) Z	c = 200	5.7600 - 1	- COCC	96				5 586			2010/01/12/14		- March 1996		8 <	<5 0.3	52 7.50	5 0.57	0.82	0.06	3.01	6	15	12	62 <	.002
01001									8					1999 1999 1999										2		1				0 5	
87638	5	51 <	.5 <	2 2 163	2	75	54 <1	.0 <5	8 15	<5	8.22	1494 <2	25 568 '	186 2 [°]	10 <20	) <20	55	<10	75 🖁	5 <	<b>5</b> 1.7	0 8.4	5 3.46	5.47	2.36	1.04	100	130	21	68 0	.018
87639	5	- 7 <		202	- 32:333	i 15-	2829 <u>8</u>	.0 <5	S:	90002			25 <b>592</b> '																		
87640	5	3 <	- 66	4 19			9-204 0-000	.0 <5	÷.	3363.C		10000	25 455	133	1. S				199	²			1 0.88				- A. A. S. A. A.		3 - M N		4
87641	5	- - - 	12 38	96 - E	- 33353		10.10	.0 <5	66 - C	333355		10004 1000	25 630 2		10000			200 A 200 -		5 •	<5 0,1	2 3.3	8 0.80	1.48	0.04	1.60	<5	18	6	34 0	.009
87642	5	<1 <	11 83	3 3 14	099999		6836	.0 <5	3S	-20039-			25 388															23	9	41 3	.002
01042						•			8		••			1990 1990							8.0					1				1	
87643	5	<1 <	5	4 13	. 2	10	7 <1	.0 <	ঁ ব	5	1.49	122 <	25 478	111 🖁	43 <20	) <20	4	<10	36	7 .	<5 0.2	29 6.5	7 0.54	0.46	0.06	2.39	5	13	10	55 <	.002
87644	5	<1 <	TT 839	SQC 17	- 38879	8 - 13	808	.0 <5	6	200 (a. 1	0.86	- 2월일 <u>-</u> -	2010/02/94	- 24	. SA.	12.02.0		100. (An		1 A 14	1.111	66567	4 0.15		- HGL 1 - 12		- 20. Y S	13	6	21 🛓	.002
87645	5			2 12	- 2003	1. 132	9499	.0 <5	88	2000000	0.81		2002/02/02/		er, ere er						201 W.	Concernance -	2 0.13		- 1 Oct. 2017		1000000	9	6	19 <	.002
87646	-	1272 <	1000 0000	\$1135 -	; ব	i 35	88666	.0 11	8	-98,8898	0.70	Sanchais	1000000		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2275.02	ē	200223	2.43	9990 P	3. A.S.	00007	2 0.09	·			- 20000.00		6	12 0	.002
87647	<5	45 <		70 II	10.464	( i ())	63.8 °	.0 <5	:		0.39	- 333337		- T - S	200200		3			36. C 1	. 2007	er politi	3 0.04	0	1.00000	ć	- 66.87 93	7	<5	10	.002
07047	~												- 2017. 488.8				3											;	1949) 2020)	ŝ	
87648	<5	35 <	.5	8 7	7 <1	6	2 <1	.0 <	<u> </u>	ব্য	0.48	76 <	25 1433	259	5 <20	) <20	<2	<10	8	<5 ·	<5 0.0	02 0.6	7 0.07	0.04	0.01	0.34	<5	25	5	12 0	.024
87649		33 <	T 33	2 9	- 3362	1 - 12	े उ <1	3333	ঁ ব	ಿಂತ		133 <		- 33	SV-0 R		5	380340		00000	S. 21	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	8 0.05		- NASARA	99 - E			0.00200		
87650	<5	8.452	220	927) - •	265	7	276)	.0 <	- N	- 198-34 ⁰		3838042	25 206		10000	1.836		2.805		0.0911	200 ge	6.69 M	1 0.09		- A. C. MA		- 989036	9	7	21 5	.002
01030	<b>v</b>												- 75		at Ti At	1977 1977 - 1977			Ś		.) (* 525)	- ABRI A A Arry				5 1				ş	
																<i>0</i>			1999 1999					÷		-	$\mathbf{D}$				
			97) 97)	32		\$	833		Š.	1999			8 a 8 a		÷.			2722	36	890) 1	i gà	Si di	164	2	C	-}	1	1	98-98.	1	We the

. KPMĆ

LIENT: GOLCONDA RES					,		••••							DATE	RECE	IVED	: 19-AUC	3-02	DA	TE PRI	INTED:	22-AL	JG-02	P/	PI Age 2			e grouf	•
EPORT: V02-00870.0		 Nine softend	······	РБ 3	Zn Mo	Ni	Co	Cd	Bi	As Sb F	e Tot			Ba	Cr 🛁	v s	ណ ៊ីម្លី (	i Ga	La	Sc 1	Га 🏹	i ما	L Mg		- 이상 유가 한		Nb S	1.0.2	1999/14
AME UNITS	PPB	PPM F	PPM F	P <b>PM</b> PI	M PPM	PPM	PPM	PPM §	P <b>PM</b> P	PM PPM	PCT	PPM	PPM	PPM P	PM PP	MOPP	m PPM PI	M PPM	PPM	PPM PF	M PC	T PC	r pct	PCT	PCT	PCT I	PPN PP	m PPM I	PPM PCT
					5 gebbs 199	×.										°, s											n a w Malaka		
X9 Oxide	460		-			-				- 1997 1997	-		-			•	- 3-3	- 33	-		- 102 8)		- 0.00	-		-	a etal. Na	• >>• 2.40	5.2000
umber of Analyses	1		-		- 33	8 -		-			-		-		- 19 -	2	- 82	- 35- 10	-					-	-	•		•	
ean Value	460		- ;		- 4.	-	(14.) (14.)	- 1	-	• <u>2</u> . 	-	ೇಷ್	-	-	- 11	-	-		- -	27	 	tiv i Gr				-	-		
tandard Deviation	-		- 3		- 225	<u> </u>		-			-		-			÷.			š -		- 2		• 997	-		-		98. S	- 2004-1 - 2004-1
ccepted Value	465		- 3		- 35	-		-		- 2000	-		-	4.07. <del>4</del> 1.5	- \$.	<del>.</del> .		- 344 X A	5		- X	. 249 		-		-		- 20- <del>4</del> 11-11	
					37595 20193	į.													2 				- 293 d				्र सम्बद्ध		- <u>_</u>
NALYTICAL BLANK	<5	<1	<.5	<2	<2 1	໌ <1	<1 -	<1.0	<5	<5 <5		1621120		1 Sec. 1.															<5 <.002
umber of Analyses	1				1					1 1				<b>1</b>															1 1
lean Value	3	< <b>1</b>	0.3	1	1 🗐	<1	<1	0.5	3	3 3	0.01	3	13					1_5	<b>3</b>	3	_3 <;(	)1 <.0	1 <.01	<.01	<.U1	<.01	्ऽ <	୍ଷ	3 0.001
tandard Deviation	-		-		- (s	<u>.</u> -		-		- 39997	-		-				COMPAREMENT	- 12년 - 22년 - 22년	1					s –		-		- 333) 	
ccepted Value	5	1	0.2	2	1 🏦	§ 1	1	0.5	2	5 5	0.05	i (1	<1	<1	ា ្	1.	<1 <1	<1 <1	ୁ <ୀ	< <u>1</u>	<1 <.(	21	- <.01	<.01		<.01	<u></u> <	(1 _ <1)	<1 <.001
		- 3499999 200223											÷		- J						_ %						ana. Sean-	-	(0.000
ANMET STSD-4	-	C 2000 100000		gala a shikalar	200910				And the second second	12,000,000	4.15	5 1536	<25	1944	65 9	/9∴<7	20 <b>&lt;20</b>	13 <10	) 20	10	<5 0.	+1 6.9	1 1.25	2.69	2.06	1.34	7 55	5 20	49 0.092
lumber of Analyses	-		1	1	1 🧐	ି 1	- <u>8</u> 216	1	1	1																			1 1
lean Value	-	59	0.3	17 1	00 3	29	19	0.5	3	14 6	4.15	5 1536	13	1944	65 5	<b>79</b>	10 10	13 5	8 <b>20</b>		10.205	41.6.9	11:0	2.05	2.00	1.34	ႏွာ	ע2 כו	49 0.092
Standard Deviation	-		-		- 200	- -		-		-	-		-		- 8		-				- 200			-		-	<u> </u>		57 0.000
ccepted Value	-	66	0.3	16 1	07 2	<u></u> 30	13	0.6		15 7	4.10	) 1520	-	2000	66 10	6	2	14 🔗	° 24	14	<1 0.	45 6.4	U 1.28	2.80	2.00	1.55	95	DU 24	53 0.090
																				- 530	2 4		1				с. 1939 г.		
			;			é.										5. 8				8 67		0.1		2					
			;										÷	12.15			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		i.		, j		<u>م</u>						
													-		ý. C				÷.					ġ.					
							80003									2		2014 1980):				1999) 1999			- 44 H	2			
													;		, si			223) 2733	ŝ				- 9999 - 5 Q	ř.					- 1997 - 1997
																ŝ			b.					sii 1. A					
						ŝ.							÷		20			1. Ng						Ş.				2009 2007	
										and a second s		- 20				0.00	467.4	1.18 1				S.	1.1999.00	··			- 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997		
			8			3									, î		사람 (14) 사망 (14)	25 (	ç,		1				18				
			1							걸찾				- NAA - Dariel		•		en e	с: 							0 12	10.0		
					28	99									÷.	20 ⁻	899 . A	~ 28. 신왕			993 -		18	. '	20				
										ngan pinan Di kasar			2	inger Som kan					er Solo				84,2 A		and and a second se	2			
						8							4		1	) 1	adak		)es No		89			1					: 8000 1000
			ļ																					Ś.,		2 2 2			
		- 19 Q	ļ										ĺ.						Č.										
										101999 1943			5		2	er.			at in the second s					2					
		encontra Tablet Al alerti			478 99										8			274 274	5.			1960 U. 1955 - 1					1973 1973		
			5- 2-	영광	38	ee P			10000					1.0	3							관관	<i></i>	1			1.1	2 - A.	- 199 A

AM

Geochemical Lab Report

Bondar Clegg Canada Limited, 212 Brooksbank Avenue, North Vancouver, BC, V7J 2C1, (604) 984-0221

BONDAR CLEGG

BER       UNITS PPB       PPM		GOLCONDA RESOURCES LTD. V02-00870.0 ( COMPLETE ) DAT													DATE RECEIVED: 19-AUG-02						DATE PRINTED: 22-AUG-02					PROJECT: LONE GROUP PAGE 3 OF 3								
licate       2 <.5	MPLE MBER		10.0	·	<ol> <li>OPE 200</li> </ol>		1961 B		000. ľ	d B 4 PPI	As 1 PPM	1000									·		5 - State - 1		201		i Ca PCT	Na PCT	K PCT	Nb PPM	Sr PPM	Y PPM PI	zr 👌 M	S PCT
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						25 22	2	14 15	6 <1.0	ן איני איני	5 <5 5 7	ح ح	1.81	81) 794	7 <25 5 <25	433 424	257 235	26 < 24 <	20 <b>&lt;2</b> 20 <b>&lt;</b> 2	់ ០ ។ ០ ។	5 <10 5 <10	20 19	حه ح	<50. <50.	12 3.4 12 3.3	5 0.44 8 0.44	3 0.59 5 0.59	0.04	1.78 1.87	<5 <5	11 13	9 8	46 <. 43 <.	002 002
icate 8 <.5 17 10 <1 12 8 <1.0 <5 <5 <5 1.36 343 <25 615 221 26 <20 <20 4 <10 15 <5 <5 0.12 3.26 0.79 1.44 0.04 1.43 <5 18 6 32 0.009 4 <6 35 <5 5 5 8 7 <1 6 2 <1.0 <5 10 <5 0.48 76 <25 1433 259 5 <20 <2 <10 8 <5 <5 0.02 0.67 0.07 0.04 0.01 0.34 <5 25 5 12 0.024	94		6 <	ě.																station Station			a y		с ș.		20	1020	yr S	ŝ.		1.1	÷.	
			<5	8 <.5 8 <.5	19 17	9 10	2 <1	13 12	8 <1.( 8 <1.)	0 < 0 <	5 <5 5 <5	ব্য ব্য	1.39 1.36	) 35 5 34	1 <25 3 <25	630 615	235 221	26 < 26 <	20 <2 20 <2	20 20	4 <10 4 <10	18 15	ৎ ৎ	<50. <50.	12 3.3 12 3.2	8 0.8 6 0.7	0 1.48 9 1.44	3 0.04 5 0.04	1.60 1.43	<5 <5	18 18	6 6	34 0. 32 0.	009 009
			<5 3 <5	5 <.5	8	7	<b>&lt;1</b>	6	2 <1.	0 <	5 10	8	0.48	3 7	6 <25	i 1433	259	5 <	20 <b>₹</b>	20 <	2 <10	8	<b>.</b>	<5 0.	02 0.6	7 0.0	7 0.04	• 0.01	0.34	<b>9</b>	, 25	<b>5</b>	12 0.	024
								- - - - - - - - - - - - - - - - - - -		M., MÖR SMINT																								