2002 GEOLOGICAL and GEOCHEMICAL REPORT ON THE CASSIAR PROJECT

MAGNO replacement deposit: 446,684t of 4.8% Pb, 4.6% Zn, 142 g/t Ag

 NTS: 104P/4 and 5

 Latitude: 59°16' N
 Longitude: 129°50' W

Liard Mining Division

Work performed between July 31 and August 13, 2002 (Chiera, Zone, Bev, Alta, Pit, Bunny, Pinks, Energizer, Ever and Ready claims)

Owner/Operator Eveready Resources Corporation 2616 - 126 Avenue SW Calgary, Alberta T2W 3V6

By Jean Pautler, P. Geo JP Exploration Services Inc. P. O. Box 477 Kamloops, British Columbia V2C 5L2 JUL 3 1 2003 Gold Commissioner's Office VANCOUVER, B.C.

March, 2003

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

SUMMARY:

The 3500 ha Cassiar property, NTS map sheets 104 P/4 and 5, is located immediately south of the Cassiar townsite, 125 km north of Dease Lake, B.C. and 145 km south of Watson Lake, Yukon Territory. The property is situated in the Liard Mining Division with a latitude and longitude of 59°16' N and 129°50' W. Good infrastructure exists to and on the property with an airstrip and a network of roads and trails. The property is owned and was operated by Eveready Resources Corporation Calgary, Alberta.

The Cassiar property is primarily underlain by carbonate and fine clastic strata of the Precambrian to Paleozoic Cassiar Terrane. The Cassiar Terrane is overlain by the Paleozoic Sylvester Allochthon in the southeastern property area and is intruded by the mid Cretaceous aged Cassiar Batholith in the western property area. Younger, late Cretaceous aged granitic stocks intrude the batholith along its margin.

The main target is silver-lead-zinc replacement mineralization \pm gold and copper, similar to the Silvertip deposit, which contains a resource of 2.57 million tonnes of 325 g/t Ag, 6.4% Pb, 8.8% Zn and 0.63 g/t Au and lies 120 km north-northwest of Cassiar along trend. Potential also exists for plutonic associated gold and porphyry molybdenum with associated tungsten-molybdenum-copper-lead-zinc skarns and tin-silver veins related to late Cretaceous stocks, and for volcanogenic massive sulfide mineralization in the Sylvester Allochthon.

Work in 2002 consisted of the compilation of available data, evaluation of known showings, geological mapping, prospecting and geochemical sampling.

The Cassiar Project area covers three known deposits with published reserves and seven additional Minfile occurrences as well as numerous showings. Two of the deposits are silver-lead-zinc replacements and include the Magno Deposit with an indicated and inferred resource of 446,684 tonnes of 141.7 g/t Ag, 4.84% Pb and 4.59% Zn from three zones and the Middle D Zone containing a drill indicated resource of 90,000 tonnes of 70 g/t Ag, 3.3% Pb and 6.3% Zn. Gold is present and was calculated in the Magno East resource estimate as 1 g/t. In 2002, samples from the Magno West and East and the Middle D Zones returned a maximum of 1.2 g/t Au, 1.5 g/t Au and 6.2 g/t Au, respectively, with values up to 6.5% Sn reported from the Middle D Zone.

Three of the additional Minfile occurrences are silver-lead-zinc replacements and include the Upper D Zone with 240 g/t Ag, 4.7% Pb and 4.7% Zn over 7.6m; Granite Creek with 11.7 g/t Ag and 14% Zn over 3m, both from drilling; and the Pant Zone with 296 g/t Ag, 2.3% Pb and 1.5% Sn. Gold values were not listed in the results but samples in 2002 returned 0.9 g/t Au from the Upper D and 2.3 g/t Au from Granite Creek. Nine additional silver-lead-zinc replacement showings occur on the property and include the Waterfall Zone with 612 g/t Ag, 20.5% Pb, 1.5% Zn and 1 g/t Au; the Magno

1

1

ł

North with 37 g/t Ag, 7.9% Pb, 3.3% Zn and 0.5 g/t Au; Magno New with 24 g/t Ag, 2.2% Pb, 3.9% Zn; Magno South with 339 g/t Ag, 9.5% Pb, 19.5% Zn, 0.5 g/t Au; Magno Extra with 43 g/t Ag, 0.3% Pb, 10.9% Zn; Hill 1818 with 82 g/t Ag, 0.6% Pb, 1.1% Zn; the Tremolite Zone with 26 g/t Ag, 1.4% Pb, 0.12% Zn and 1.5 g/t Au; the Lower D Zone with pyrrhotite lenses; and the G Zone where a pyrrhotite-pyrite-magnetite body and trace sphalerite was intersected in drilling.

The third deposit is the porphyry molybdenum Storie or Casmo Moly Deposit with an unclassified open pit resource of 100.5 mt of 0.129 % MoS_2 . The mineralization is open to the east, north and west. A value of 0.39% Mo over 2.1m is reported from the Ray Showing, 2.5 km to the north and a drill hole on the M Zone, 1 km to the east, reportedly returned 0.23% MoS_2 over 130m. A large gossanous and altered zone within the Cassiar stock occurs along cliffs, south and southeast of the M Zone. At the G Zone, 2.5 km to the east, the presence of skarn mineralogy in the area and anomalous molybdenum in soils suggests the presence of an underlying stock or cupola of the Cassiar Stock.

Three skarn showings (including the M Zone and Brown Spot), thought to be related, can be traced for 700m along the eastern margin of the Cassiar Stock, which hosts the Storie Molybdenum Deposit and are anomalous in Pb, Zn, Ag, W, Mo and Cu. Skarn mineralogy is also evident another 200m to the north and at the G and Tremolite Zones.

A 27,000 tonne probable Cypress type volcanogenic massive sulfide lens grading 1.52% Cu and 0.9 % Zn, with Au and Ag values, has been previously outlined at the Lang Creek Minfile Showing in the southeastern property area.

An initial \$30,000 program of recconnaissance geophysical surveying over the Granite Creek, Waterfall, Magno North, Magno New, Magno South, Magno Extra and Hill 1818 Showings with follow-up trenching and an initial evaluation of the Lang Creek, Pant and Ray showings and the cliffs southeast of the M Zone is recommended for 2003.

TABLE OF CONTENTS

ł.

7.0

1

Page

SUMM	IARY	i
1.0	LOCATION AND ACCESS	1
2.0	LEGAL DESCRIPTION	1
3.0	PHYSIOGRAPHY	2
4.0	HISTORY	2
5.0	2002 WORK	2
6.0	GEOLOGY	3
	6.1 Regional6.2 Property6.3 Mineralization	3 3 4
7.0	GEOCHEMISTRY	6
	7.1 Procedure7.2 Results and Interpretation	6 7

8.0

APPENDICES

Appendix	1	Selected References
Appendix	li	Claim Data
Appendix	III	Minfile Reports
Appendix	IV	Sample Descriptions
Appendix	V	Geochemical Procedure and Results
Appendix	VI	Photographs
Appendix	VII	Statement of Expenditures
Appendix	VIII	Statement of Qualifications

LIST OF FIGURES

Following Page

1	Location Map (1:10,000,000)	Figure 1
1	Claim Map (1:40,000)	Figure 2
3	Regional Geology Map (1: 750,000)	Figure 3
3	Property Geology (1:40,000)	Figure 4
6	Mineralization (1:40,000)	Figure 5
back pocket	Geology and Sample Locations (1:10,000)	Figure 6
7	Upper Adit (1:100)	Figure 7

LIST OF PHOTOGRAPHS

- Cover View of the Magno Zones in centre, looking south from Cassiar.
- Photo 1 View of the Magno Zones looking west.
- Photo 2 Inside Upper Adit and view of Upper Adit, looking southerly.
- Photo 3 View looking northwesterly of the Magno West Zone, showing Upper and Lower Adits, Upper D, Middle D and Granite Creek Zones.
- Photo 4 View looking easterly to the G and Tremolite Zones from Hill 1818.
- Photo 5 View looking westerly to the Storie Molybdenum Deposit.
- Photo 6 View looking northerly of the M Zone skarn.
- Photo 7 View of altered Cassiar Stock, south and southeast of the M Zone, looking westerly towards the Storie Molybdenum Deposit.

1.0 LOCATION AND ACCESS (Figure 1)

The Cassiar property, NTS map sheets 104P/4 and 5 and BCGS maps 104P 021 and 022, is located immediately south of the Cassiar townsite, 125 km north of Dease Lake, British Columbia, 145 km south of Watson Lake, Yukon Territory and 480 km from the port at Stewart, British Columbia. The property is situated in the Liard Mining Division with a latitude and longitude of 59°16' N and 129°50' W.

The property is accessible by paved highway to the townsite of Cassiar, which is equipped with an airstrip. A network of roads and trails crosses the property (refer to Figure 2).

2.0 LEGAL DESCRIPTION (Figure 2, Appendix II)

The Cassiar Project Claim Group consists of 148 contiguous claims covering an area of approximately 3500 hectares. The property is 100% owned, subject to net smelter returns, and the current program was funded by Eveready Resources Corporation of Calgary, Alberta. Work on the Ever and Ready claims did not commence until after August 5, 2002. The Volt property was acquired by staking in December, 2002, subsequent to the completion of the 2002 program on the property. A table showing pertinent claim data follows:

Claim Name	Record No.	Units	Expiry Date
CHIERA 1 TO 20	221627	20	Nov. 30, 2007
ZONE 1 TO 4	221628	4	Nov. 30, 2007
BEV 1 TO 20	221696	20	Nov. 30, 2007
ALTA 1	221819	2	Nov. 30, 2011
PIT NO. 1	227706	1	Nov. 30, 2007
PIT NO. 2	227707	1	Nov. 30, 2007
BUNNY	370621	20	Nov. 30, 2003
PINKS	370622	20	Nov. 30, 2003
ENERGIZER	394378	20	Nov. 30, 2003
READY	395420	20	Aug. 5, 2003
EVER 1-4	395423-426	4	Aug. 5, 2003
VOLT	399119	20	Dec. 31, 2003

3.0 PHYSIOGRAPHY

The Cassiar property is situated south of Troutline Creek and just east of the 1981m Limestone Peak within the rugged Stikine Ranges of the Cassiar Mountains. The area was affected by both continental and alpine glaciation with northwesterly trending ice flow directions. Elevations on the property range from less than 1,000m on the Volt claims to 2060m on the western Ready claim. Most of the property lies above treeline with thick spruce, alder and willow at the lower elevations. There is good bedrock exposure above treeline, which lies at approximately 1400 - 1500m. Due to high snowfall the optimum months for field exploration are late July to mid September.

4.0 HISTORY

1922 1953	discovery of Pb, Zn, Ag mineralization on the property 21 tonnes shipped from the Magno Zone
1955	Silver Standard completed trenching and drilled 9 holes on replacements
1964-8	6799m in 48 diamond drill holes and 100m in 10 RC holes by Casmo Mining on Storie Moly
1971	Levana completed 964m of diamond drilling in 4 holes on Storie Moly
1968-75,8	Cons. Coast Silver completed airborne and ground magnetic surveys, 666m of underground development (2 adits on Magno West), 621m of underground drilling, 50 surface holes on Magno, D and M Zones and in 1971 produced 12 tonnes of 132 g/t Ag, 4.5% Pb and 5.6% Zn from the Magno Zone
1976	geophysics, 1638m of diamond drilling and trenching by Balfour Mining Ltd. on the Magno Zone
1979-81	Shell completed mapping, geophysics, geochemistry and 895m of diamond drilling holes in 8 holes (Pant Zone-3, Granite Creek-2) and 8094m of diamond drilling on Storie Moly
1995	Pacific Bay Minerals completed geochemistry and 1 RC drill hole (Lower D Zone)
1997-2002	acquisition by Eveready Resources Corporation

1998 mapping, trenching, 1817m of diamond drilling in 8 holes on Magno Zone

5.0 2002 WORK

Work in 2002 consisted of the compilation of available data, evaluation of known showings, geological mapping, prospecting and geochemical sampling. A total of 25 mandays were spent on the Cassiar claims between July 31 and August 13, 2002. Hand excavation was utilized to gain access to the Upper Adit (inaccessible since prior to 1975), which was subsequently mapped and sampled. Control was provided by 1:20,000 based TRIM topographic maps, hipchain, compass, altimeter and GPS.

6.0 GEOLOGY

6.1 **Regional** (Figure 3)

The Cassiar Project area is primarily underlain by platformal metasedimentary rocks of the Precambrian to Paleozoic Cassiar Terrane, flanked on the west by the Cretaceous Cassiar Batholith and on the east by the late Paleozoic Sylvester Allochthon, a klippe of Slide Mountain Terrane marine volcano-sedimentary and ultramafic rocks preserved within the McDame anticlinorium.

The Cassiar Terrane hosts several lead-zinc-silver replacement and tungstenmolybdenum-copper-lead-zinc skarn occurrences, both on the property and along trend. Most notably, the Silvertip (Midway) lead-zinc-silver replacement deposit, with a resource of 2.57 million tonnes of 325 g/t Ag, 6.4% Pb, 8.8% Zn and 0.63 g/t Au, lies 120 km northnorthwest of Cassiar along trend.

In the region, porphyry molybdenum mineralization occurs within late Cretaceous stocks along the margin of the Cassiar Batholith.

ţ

1

The Sylvester Allochthon hosts the gold-bearing quartz veins of the Erickson Gold Camp (approximately 7 km east of the Cassiar Project area), which produced 327,881 ounces of gold and 96,045 ounces of silver from 1939 to 1999. The Cassiar asbestos deposits are also hosted by ultramafic rocks within the Sylvester Allochthon. In addition there is a known occurrence and excellent potential for volcanogenic massive sulfide deposits within this environment.

6.2 **Property** (Figure 4)

The property is primarily underlain by stratigraphy of the Cassiar Terrane, summarized as follows:

mid Devonian	M [°] Dame Group	limestone and dolostone
Ordovician – Silurian	Road River Group	siltstone, graphitic slate, argillaceous limestone
Cambrian	Rosella Formation Boya Formation	limestone, dolostone and shale quartzite and phyllite

The replacement mineralization on the property is hosted by carbonate strata of the Cambrian aged Rosella Formation (formerly referred to as the carbonate member of the Atan Group), which represents the lowermost carbonate member of the Cassiar Terrane. Mineralization at the Silvertip Deposit is hosted by the Devonian aged McDame Limestone, higher up within the Cassiar Terrane stratigraphy.

The Rosella Formation is underlain by interbedded quartzite and phyllite of the Boya Formation, also of Cambrian age, to the west and lies in fault contact (along the Marble Creek Fault) with siltstone, graphitic slate and argillaceous limestone of the younger, Ordovician to Silurian, Road River Group to the east. The McDame Limestone overlies the Road River Group in the eastern property area.

The Mississippian to Triassic Sylvester Allochthon, primarily consisting of basaltic volcanic and clastic sedimentary rocks, overlies the Cassiar Terrane in the southeastern property area where it hosts Cypress type copper-zinc-silver-gold volcanogenic massive sulfide style mineralization. The contact with the Cassiar Terrane stratigraphy is defined by a major thrust fault.

The Cassiar Terrane is intruded by the mid Cretaceous aged Cassiar Batholith in the western property area. Younger, late Cretaceous aged granitic stocks intrude the batholith along its eastern margin, the Cassiar Stock in the southwestern property area and another similar stock in the northwestern property area. All the above units are intruded by mafic and felsic dykes. Porphyry molybdenum, \pm tin-tungsten, mineralization appears to be associated with the Cretaceous stocks.

6.3 Mineralization (Figure 5)

The Cassiar Project area covers three known deposits with published reserves and seven additional Minfile occurrences as well as numerous showings (Appendix III). Two of the deposits are silver-lead-zinc replacements and include the Magno Deposit (Minfile 104P 006 – cover photo) with an indicated and inferred resource of 446,684 tonnes of 141.7 g/t Ag, 4.84% Pb and 4.59% Zn from three zones (West, Central, Mid or Middle West, and East – Photos 1 and 3); and the Middle D Zone (Minfile 104P 080 – Photo3) containing a drill indicated resource of 90,000 tonnes of 70 g/t Ag, 3.3% Pb and 6.3% Zn (BC Minfile, 2002). Two adits (Upper and Lower – Photos 1 to 3) have been driven on the Magno West Zone.

Although only limited partial data is available for tin, significant tin mineralization has been reported from previous drilling on both the Magno Deposit and the Middle D Zone with values of 0.32% Sn over 4.6m from the Middle West Zone and up to 6.5% Sn over 0.9m from the Middle D Zone (Bloomer, 1980a).

The above mineralization occurs within easterly trending, fracture controlled alteration zones referred to as the M^cMullen and D Alteration Zones. The Magno Deposit

encompasses replacement bodies of galena, sphalerite, magnetite, pyrrhotite, pyrite, siderite and pyrolusite as irregular shoots, 60-90m long and up to 8m wide, along the 1.3 km long M^cMullen Zone, which trends easterly and dips steeply north (Photo 1).

Similar mineralization to the Magno Deposit is evident at the Middle D Zone, which lies 1.8 km north of the Magno and occurs as east trending shoots up to 7m wide, centrally located along the 1.5 km long D Alteration Zone; and at the Upper D Zone (Minfile 104P 044) located near the western extent of the D Alteration Zone. Pyrrhotite lenses were intersected in minor drilling (total of 6 holes) in the Lower D Zone, near the eastern extent of the D Alteration Zone. (Refer to Photo 3).

Three separate easterly trending replacement zones are situated between the D and M^oMullen Alteration Zones and include Granite Creek (Minfile 104P 081 – Photo 3), the Waterfall Zone, and Magno North. A 0.7 to 3m wide band of pyrrhotite, pyrite, magnetite, galena, sphalerite, arsenopyrite and siderite has been delineated at the Granite Creek Showing, which is exposed at 1235m on the eastern bank of Granite Creek. The Waterfall Showing consists of a 10cm fracture filling of galena, sphalerite, pyrite, siderite at approximately the 1315m elevation in Marble Creek. The Magno North Zone, discovered in 2002, consists of oxidized magnetite, galena, sphalerite and siderite felsenmere exposed over a 150m wide area.

Three similar zones occur 200 to 500m south of the M^cMullen Zone; Magno New, Magno South and Magno Extra. The Magno New Zone consists of a 200m long zone of oxidized galena and sphalerite bearing felsenmere, about 200m south of the Upper Adit. The Magno South Zone, discovered in 1998, 300m south of the Upper Adit, has been traced for 400m. The Magno Extra Zone consists of similar felsenmere spread over a 100m area along the ridgetop, 500m south of the Magno Zone. The Magno New and Extra Zones were both discovered in 2002.

Three additional possible replacement showings occur 750m south of the M^cMullen Alteration Zone proximal to the easterly trending X Fault and include Hill 1818, the Tremolite Zone and the G Zone (Photo 4). Tremolite skarn occurs at the G and Tremolite Zones. A pyrrhotite-pyrite-magnetite body and trace sphalerite was intersected in drilling (total of 4 holes) below the G Zone (Bloomer, 1980a).

Two arsenopyrite-pyrite-marcasite-siderite replacement style massive sulfide bodies are exposed at the Pant Zone (Minfile 104P 082) 1.2 km southeast of the Magno, with values of 1.5% Sn over 3.3m obtained in 1978 (Minfile, 2002) and 296 g/t Ag, 2.3% Pb over 0.4m reported from drilling (Bloomer, 1980c). A direct correlation between arsenic and tin was noted (Bloomer, 1980a).

The third deposit in the Cassiar Project is the porphyry molybdenum Storie or Casmo Moly Deposit (Minfile 104P 069 – Photo 5) with an unclassified resource of 100.5 mt of 0.129 % MoS_2 (0.077% Mo) mineable by open pit (BC Minfile, 2002). The mineralization is open to the east, north and west. A value of 0.39% Mo over 2.1m is reported from the Ray Showing, 2.5 km to the north (BC Minfile, 2002). In 1968, Coast Silver conducted a

4 hole drill program on the M Zone, 1 km to the east, with reports of a drill hole returning 0.23% MoS_2 over 130 and 0.23% MoS_2 over 5m (Bloomer, 1980a). Original data is being sought to confirm the result(s). The Cassiar stock south and southeast of the M Zone is gossanous and altered (Photo7). Exploration in this area has probably been hampered by the ruggedness of the exposure. At the G Zone, 2.5 km to the east, the presence of skarn mineralogy in the area and anomalous molybdenum in soils suggests the presence of an underlying stock or cupola of the Cassiar Stock.

Three skarn showings along the eastern margin of the Cassiar Stock, which hosts the Storie Molybdenum Deposit (the M Zone – Photo 6, Brown Spot and a showing 75m north of the Brown Spot) are thought to be related and may represent a continuous 700m long, at least 5m wide north-northwesterly trending zone. Skarn mineralogy was discovered another 200m to the north and is also evident at the G and Tremolite Zones, as mentioned above, approximately 800m to the east.

The Lang Creek probable Cypress type volcanogenic massive sulfide showing (Minfile 104P 008) in the southeastern property area has recently been added to the Cassiar Project. The showing consists of pyrite, chalcopyrite, marcasite and chalcocite at the contact between pyritic cherty argillite and chalcopyrite-bearing andesite tuff. A 27,000 tonne lens grading 1.52% Cu and 0.9 % Zn was outlined by Cominco with a sample reported to grade 1.8% Cu, 0.1% Pb, 0.8% Zn, 36 g/t Ag and 1.7 g/t Au over 1m (Bloomer, 1980a).

7.0 GEOCHEMISTRY (Figures 4-7)

7.1 Procedure

A total of 88 rock and 7 soil samples were collected from the property in 2002. The samples were sent to Eco Tech Lab, Kamloops, B.C. and analyzed for AI, Sb, As, Ba, Bi, Cd, Ca, Cr, Co, Cu, Fe, La, Pb, Mg, Mn, Mo, Na, Ni, P, Ag, Sr, Ti, Sn, W, U, V, Y and Zn using a 28 element ICP package which involves a nitric-aqua regia digestion. Gold was analyzed by fire assay with an atomic absorption finish. Values >1,000 ppb Au, 30 ppm Ag and >10,000 ppm Pb and Zn were assayed for gold by fire assay and silver, lead and zinc assays were completed by acid digestion. Select samples were analysed for tin using a multi-acid digestion and for tungsten by ammonium iodide fusion. Lab procedures and results are outlined in Appendix V.

The rock samples across the property primarily consisted of grab samples of sulfide mineralization, oxidized and altered zones, exposed as float, subcrop and outcrop. Soil samples (denoted with an "S") were generally collected from the C horizon with a hammer and sent to the lab in waterproof kraft bags.

Sample locations are plotted on Figure 6 and on Figure 7, if collected from the Upper Adit. Rock sample descriptions with lead, zinc, silver, gold, tin, tungsten, molybdenum, arsenic and copper results are listed in Appendix IV. Anomalous results are summarized in Figure 5.

7.2 Results and Interpretation

7.2.1 Rocks: (Figures 5-7)

Sampling at the Magno Deposit in 2002 confirmed significant lead, zinc and silver grades, indicated the presence of significant gold and suggested the presence of higher-grade zones within the deposit. A total of six samples were collected with values up to 63% Pb, 3.3% Zn, 2280 g/t Ag and 1.2 g/t Au from the Upper Adit on Magno West (Samples 7664, 7836-39) and 45% Pb, 0.5% Zn, 39 g/t Ag and 1.5 g/t Au from a sample from Magno East (7844). The Lower Adit was not resampled in 2002 but samples collected in 1998 include 676 g/t Ag, 25.2% Pb and 22.2% Zn over 1.8m; 818 g/t Ag, 27.7% Pb and 2.5% Zn over 5.7m; and 2,025 g/t Ag and 67.6% Pb over 1m.

Six samples were collected from the Middle D Zone in 2002 to evaluate the gold potential. In 1998, pyrite-pyrrhotite rich debris from the old trenches returned 2.9 g/t Au. In 2002, values of 6.2 g/t Au, with 0.5% Sn (Sample 7700) and 2.9 g/t Au (7804) were obtained from arsenopyrite-bearing boulders. It should be noted that the Middle D Zone was discovered by drilling the occurrence of sulfide-bearing boulders. No outcrop is exposed at surface.

The Upper D Zone, near the western extent of the D Alteration Zone, previously returned values up to 240 g/t Ag, 4.7% Pb and 4.7% Zn over 7.6m from drilling. Samples in 2002 suggested the potential for higher-grade zones and indicated the presence of gold, tin and tungsten. Results include 458 g/t Ag, 17.9% Pb, 4.6% Zn, 0.4 g/t Au and 0.06% Sn (Sample 7661) and 398 g/t Ag, 14.2% Pb, 7.4% Zn, 0.9 g/t Au and 0.03% Sn (7662).

Results of the three separate easterly trending replacement zones between the M^cMullen and D Alteration Zones (Granite Creek, Waterfall and Magno North) will be discussed, from north to south.

The Granite Creek Zone returned 58.4 g/t Ag, 1.28% Pb, 0.56% Zn and 0.6 g/t Au with >1% As over 0.7m (Sample 7805), silver values up to 102 g/t Ag from similar highgrade boulders (7806) and values up to 2.32 g/t Au from more arsenopyrite rich boulders (7807) within the area. Previous surface sampling returned 57 g/t Ag, 1.4% Pb, 0.63% Zn and 1.0 g/t Au with 1.2% Sn over 1m (Bloomer, 1980a) and limited previous drilling (2 holes) returned 14% Zn and 11.7 g/t Ag over 3m (Bloomer, 1980c). A sample of iron oxidized sericite schist (7849) from an old trench with poor exposure, 400m east of the Granite Creek Zone, did not return significant base or precious metal values but may indicate the possible extension of the zone through this general area, possibly slightly to the north.

i

Although the Waterfall Showing could not be located in 2002, oxidized float from an old trench, 150m easterly from the showing, returned 612 g/t Ag, 20.5% Pb, 1.5% Zn and 1 g/t Au (7845). Values of 37 g/t Ag, 7.9% Pb, 1.3% Zn and 0.5 g/t Au with 0.6% As (7687) and 9.6 g/t Ag, 0.5% Pb, 3.3% Zn with 875 ppm As (7686) were obtained from oxidized felsenmere from the newly discovered Magno North Zone.

Significant results were obtained from the three similar replacement zones south of the M^cMullen Zone. Oxidized felsenmere within the carbonate unit from the Magno New Zone returned 24 g/t Ag, 2.21% Pb, 3.85% Zn with 1290 ppm As (7694). Sampling along the Magno South trend returned 208 g/t Ag, 0.16% Pb, 19.5% Zn and 0.5 g/t Au (Sample 7693), 24 g/t Ag, 0.75% Pb, 1.22% Zn and 0.1 g/t Au with 915 ppm As (7842) and 10 g/t Ag, 0.19% Pb, 5.06% Zn with 2105 ppm As (7843). Results from the Magno South Zone in 1998 included 339 g/t Ag, 9.5% Pb and 2.6% Zn. Oxidized felsenmere from the Magno Extra Zone returned 43 g/t Ag, 0.3% Pb, 10.9% Zn with 0.11% Cu and 1160 ppm As (7691).

The three additional possible replacement showings further south of the M^cMullen Alteration Zone proximal to the easterly trending X Fault also carried promising results. A single sample from an old trench on Hill 1818 returned 82 g/t Ag, 0.59% Pb, 1.14% Zn (Sample 7667). Oxidized, pyrrhotite-bearing felsenmere from the Tremolite Zone contains 1.5 g/t Au with 11 g/t Ag and 1% As (7812). Magnetite-bearing felsenmere west of the Tremolite Zone returned 26 g/t Ag, 1.35% Pb, 0.12% Zn and 285 ppb Au with 0.6% As (7816). Four samples collected from the G Zone (7808-10,18) did not carry significant base or precious metal values but were anomalous in arsenic (750 ppm As) and low anomalous gold (185 ppb). However anomalous lead, zinc and molybdenum values in soils and 0.2% Sn over 2m in drilling have been reported in previous work (Bloomer, 1980a).

A total of 12 samples were collected from the Storie or Casmo Moly Deposit (7671-79, 7820-22) with values up to 0.55% Mo (7675) and 0.07% W (7677). A central, easterly trending high-grade core appears to be evident but requires a review of previous drill data for confirmation. Results were not significantly anomalous from the vicinity of Ray Moly, but only two samples were collected (7684-5) and very little time was spent in the area.

Chip samples (each 1.5m wide) across the M Zone skarn were enriched in tungsten, tin and copper with values up to 1.5% W (7826), 0.05% Sn (7827) and 0.2% Cu (7828). Anomalous tungsten and tin values (up to 0.5% W, 0.02% Sn in Sample 7823) occur within the altered intrusion, just south of the M Zone skarn. Samples from the Brown Spot returned anomalous values of 0.2% Sn, 0.09% Cu and 0.1 g/t Au (7680-82). Skarn felsenmere just east of the Brown Spot carries 59 g/t Ag, 1.02% Pb, 1.3% Zn, 0.3 g/t Au and 0.05% Sn in Sample 7689. The skarn mineralogy and similar geochemical signature between the M Zone skarn and the Brown Spot suggests that the Brown Spot and mineralization to the east and north-northwest are related and define a northnorthwesterly trending at least 700m long skarn zone.

7.2.2 Soils: (Figure 6)

A soil sample (Sample S 7655) collected between two mineralized exposures at the Upper D Zone returned >10,000 ppm Zn, 632 ppm Pb and 75 ppb Au, with low anomalous arsenic (295 ppm) and antimony (35 ppm). This suggests an easterly trend and 300m strike extent for the surface exposure.

A soil sample, containing >10,000 ppm Zn, >10,000 ppm Pb, >30 ppm Ag and 695 ppb Au, with anomalous values of 2950 ppm As, 215 ppm Sb, 40 ppm Bi, 1424 ppm Cu and 190 ppm tungsten (Sample S 7848), was collected 200m northwest of and may be related to the westerly strike extension of the Waterfall Zone, yielding a 350m strike extent for the zone.

Two soil samples were collected from Hill 1818 due to poor bedrock exposure. The samples returned maximum values of >10,000 ppm Zn, >10,000 ppm Pb, >30 ppm Ag

and 45 ppb Au, with highly anomalous values of 2755 ppm As, 475 ppm Sb and 55 ppm Bi (Sample S 7666). The geochemical signature is similar to that of the Magno Zone.

Soil sample S 7834 returned 2130 ppm W with 739 ppm Cu, 35 ppb Au and 80 Bi (Sample S 7834). The sample lies 350 north along trend of and has a similar geochemical signature to the Brown Spot, suggesting the continuation of the skarn zone in this direction.

8.0 CONCLUSIONS AND RECOMMENDATIONS

Total drill indicated reserves for three zones on the Magno and the Middle D Zones are 488,510 tonnes of 168 g/t Ag, 5.3% Pb and 4.46% Zn (Bloomer, 1981). In 1998, LAS Energy Associates Ltd. of Calgary, Alta outlined an indicated and inferred resource of 446,684 tonnes of 141.7 g/t Ag, 4.84% Pb and 4.59% Zn for the three Magno Zones. Gold is present and was calculated in the Magno East resource estimate as 1 g/t. In 2002, samples from the Magno West and East and the Middle D Zones returned a maximum of 1.2 g/t Au, 1.5 g/t Au and 6.2 g/t Au, respectively. Values up to 6.5% Sn are reported from drilling on the Middle D Zone.

Additional potential exists at the Magno Deposit itself and along the 1.3 km extent of the M^cMullen Alteration Zone. Most of the drilling has been confined to above 100m and the entire extent of the zone has not been tested partially due to the location of prior claim boundaries at the western limits of the two adits. The orebody widens at the end of the adits and is exposed on the west side of the ridge. Carbonate hosted lead-zinc-silver replacement occurs at the western extent of the M^cMullen Zone (which has not been tested) and the section between the Middle and East Magno Zones is poorly exposed. The deposit is open in both directions and at depth.

Higher-grade zones also occur within the Magno Deposit. Assays from the Lower Adit of the Magno Zone in 1998 include 676 g/t Ag, 25.2% Pb and 22.2% Zn over 1.8m; 818 g/t Ag, 27.7% Pb and 2.5% Zn over 5.7m; and 2,025 g/t Ag and 67.6% Pb over 1m. In 2002, values up to 63% Pb, 3.3% Zn, 2280 g/t Ag and 1.2 g/t Au were obtained from the Upper Adit and 45% Pb, 0.5% Zn, 39 g/t Ag and 1.5 g/t Au from a sample from Magno East.

The Middle D Zone has only been tested to a depth of 90m and additional work is warranted along the extent of the D Alteration Zone as indicated by significant results from the Upper D and the presence of pyrrhotite lenses at the Lower D Zone. In 1998, pyrite-pyrrhotite rich debris from the old trenches at the Middle D Zone returned 2.9 g/t Au and 6.2 g/t Au was obtained from arsenopyrite-bearing boulders in 2002. The gold potential of pyrrhotite rich lenses at the D Zone and elsewhere on the property needs to be evaluated.

The M^cMullen Alteration Zone is coincident with an easterly trending fracture system that probably developed due to tensional forces related to the emplacement of the Cretaceous plutons. The D Zone, Granite Creek, Waterfall, Magno North, Magno New, Magno South and Hill 1818 Showings appear to represent subparallel fracture/alteration zones of this type. Significant results have been obtained from the above showings despite limited work; consequently potential exists for the discovery of economic mineralization along the subparallel alteration zones.

Vein and replacement style mineralization at the Upper D Zone contains values up to 240 g/t Ag, 4.7% Pb and 4.7% Zn over 7.6m from drilling. Pyrrhotite lenses were intersected in minor drilling in the Lower D Zone. Three separate easterly trending zones are situated between the M^cMullen and D Alteration Zones and contain 14% Zn and 11.7 g/t Ag over 3m from Granite Creek (Minfile 104P 081); 612 g/t Ag, 20.5% Pb, 1.5% Zn and 1 g/t Au from the Waterfall Zone; and 37 g/t Ag, 7.9% Pb, 3.3% Zn and 0.5 g/t Au from Magno North. Three similar zones occur 200 to 500m south of the M^cMullen Zone; Magno New with 24 g/t Ag, 2.21% Pb, 3.85% Zn; Magno South with 339 g/t Ag, 9.5% Pb, 19.5% Zn, and 0.5 g/t Au; and Magno Extra with 43 g/t Ag, 0.3% Pb, 10.9% Zn with 0.11% Cu.

The Granite Creek Zone exhibits a similar geophysical signature to the Middle D Zone (Bloomer, 1980a) and although prior drilling may have been directed the wrong way, one of the two holes drilled intersected a wider zone of significant mineralization.

Three additional replacement showings occur 750m south of the M^cMullen Alteration Zone proximal to the easterly trending X Fault and include Hill 1818 with 82 g/t Ag, 0.6% Pb, 1.1% Zn; the Tremolite Zone with 26 g/t Ag, 1.4% Pb, 0.12% Zn and 1.5 g/t Au; and the G Zone with anomalous lead, zinc and molybdenum values in soils and 0.2% Sn over 2m in drilling. Skarn mineralogy at the G and Tremolite Zones and anomalous molybdenum in soils at the G Zone suggests the presence of an underlying stock or cupola of the Cassiar Stock with potential for porphyry molybdenum mineralization.

Additional work is needed to determine the exact nature of mineralization at the G, Tremolite and Pant Zones in order to evaluate the potential for replacement, skarn and porphyry molybdenum mineralization.

The Pant Zone (Minfile 104P 082) 1.2 km southeast of the Magno, exhibits vein and replacement style mineralization with values of 1.5% Sn over 3.3m and 296 g/t Ag, 2.3% Pb over 0.4m reported.

The Storie Deposit (Minfile 104P 069) 2.5 km southwest of the Magno and hosted by a Late Cretaceous stock at the eastern margin of the Cassiar Batholith, has an unclassified reserve of 100.5 million tonnes of 0.077% Mo (0.129% MoS_2) mineable by open pit (Bloomer, 1980a). A value of 0.39% Mo over 2.1m is reported from the Ray Showing, 2.5 km to the north and a drill hole on the M Zone, 1 km to the east of the Storie Deposit, reportedly returned 0.23% MoS_2 over 130m. Alteration is extensive within the cliffs southeast of the Storie Deposit (south and southeast of the M Zone) and requires detailed

mapping and prospecting to evaluate its potential. There is also potential for porphyry molybdenum mineralization at the G Zone, 2.5 km to the east.

Three skarn showings, thought to be related, occur along the eastern margin of the Cassiar Stock, which hosts the Storie Molybdenum Deposit and are anomalous in Pb, Zn, Ag, W, Mo and Cu. Tin mineralization occurs within the intrusion just south of the M Zone. Skarn mineralogy is also evident at the G and Tremolite Zones.

The porphyry molybdenum (Storie Deposit) and skarn potential (M Zone) on the property, particularly that associated with the late Cretaceous Cassiar Stock, requires a detailed evaluation to determine the size potential since mineralization is open to the east, north and west. Skarn deposits enriched in gold, copper, tungsten and molybdenum could also occur below the replacement deposits, proximal to buried plutons.

The Lang Creek volcanogenic massive sulfide showing in the southeastern property area has recently been added to the Cassiar Project and requires an evaluation. A 27,000 tonne lens grading 1.52% Cu and 0.9 % Zn was outlined by Cominco. A 1m chip sample from the showing reportedly returned 1.8% Cu, 0.1% Pb, 0.8% Zn, 36 g/t Ag and 1.7 g/t Au. The showing remains untested at depth and several untested conductive zones occur northeast of the showing.

The magnetite content in the Magno Deposit can be quite high with reported assays to 58.7%. Magnetite could be a valuable by-product and manganese could also be saleable. This should be considered when evaluating the showings and magnetic geophysical surveys can be employed to trace the known silver-lead zinc replacement showings along strike.

A program of grid controlled ground magnetic surveying with detailed geological mapping, followed by trenching and drilling would be required to delineate additional mineralization along the McMullen and D Alteration Zones. Additional data location and compilation is necessary to determine the extent and limits of known mineralization at the Magno and Middle D Zones prior to field work.

The Granite Creek, Waterfall, Magno North, Magno New, Magno South Magno Extra and Hill 1818 Showings can be evaluated by recconnaissance ground magnetic surveying, followed by trenching and diamond drilling. The Granite Creek, Waterfall, Magno North and Hill 1818 Showings are good candidates for mechanical trenching. Hand/blast trenching will be required on the Magno New and South Zones.

Geological mapping and detailed prospecting is required to evaluate the other showings and to evaluate the gold potential, particularly at Lang Creek, which was acquired late in 2002 and the Pant Zone, not investigated since 1981. Complete data review and compilation will be necessary to evaluate the potential and to determine the extent and grade of known mineralization at the Storie Deposit prior to field work. The Ray occurrence requires a detailed field investigation and detailed mapping and prospecting is necessary to evaluate the potential of the alteration zone within the Cassiar Stock south and southeast of the M Zone skarn.

An initial program of recconnaissance geophysical surveying over the Granite Creek, Waterfall, Magno North, Magno New, Magno South, Magno Extra and Hill 1818 Showings with follow-up trenching and an initial evaluation of the Lang Creek, Pant and Ray showings and the cliffs southeast of the M Zone is recommended for 2003.

A budget of \$30,000 would be required as follows:

ì

Wages:	(14 man days @ \$400/day)	\$ 5,600.00		
	(12 man days @ \$300/day)	3,600.00		
Prepara	tion:	2,500.00		
Accomm	nodation and Meals:	1,000.00		
Equipme	ent Rental, Supplies:	2,000.00		
Geoche	mistry:	1,800.00		
Mobiliza	tion/demobilization:	2,000.00		
Report a	and Drafting:	4,000.00		
Trenchir	ng:	6,500.00		
Miscella	neous:			
TOTAL:		\$ 30,000.00		

APPENDIX I

Selected References

- Abbott, G. (1983): Silver-bearing veins and replacement deposits of the Rancheria District; In Yukon Geology and Exploration 1983, p34-44. DIAND.
- Allen, E. J. and Iliffe, M.J. (1998): Geology and resources of the Cassiar Project areas, Cassiar, British Columbia; Report for Eveready Resources Corp.
- Bloomer, C.J. (1981): Cassiar Project 3191P; geological, drilling and geochemical assessment report. British Columbia Ministry of Energy Mines and Petroleum Resources Assessment Report 9548.

(1980c): Cassiar Project, 1980 - assessment report. British Columbia Ministry of Energy Mines and Petroleum Resources Assessment Report 9262.

(1980b): Casmo Project, 1980 assessment report. British Columbia Ministry of Energy Mines and Petroleum Resources Assessment Report 9215.

(1980a): Cassiar Project – 3991P, 1979 report. British Columbia Ministry of Energy Mines and Petroleum Resources Assessment Report 7912.

British Columbia Minfile, (2002): 104P 4,5; Ministry of Energy and Mines.

Cukor, V. (1976): Magno, Jean Group; report on diamond drilling; British Columbia Ministry of Energy Mines and Petroleum Resources Assessment Report 6084, for Balfour Mining Ltd.

(1975): Magno Group; report on geological survey; British Columbia Ministry of Energy Mines and Petroleum Resources Assessment Report 5578, for Balfour Mining Ltd.

(1975): Magno Group; progress report underground drilling program; British Columbia Ministry of Energy Mines and Petroleum Resources Assessment Report 5713, for Balfour Mining Ltd.

- Moyle, F. (1996): Geological, geochemical and diamond drilling report on the Storie Silver Property; British Columbia Ministry of Energy Mines and Petroleum Resources Assessment Report 24707, for Pacific Bay Minerals Ltd.
- Nikols, D. and Hoffman, G. L. (1999): 1998 Cassiar exploration report: southern block; British Columbia Ministry of Energy Mines and Petroleum Resources Assessment Report, for Eveready Resources Corp.
- Smitheringale, W. G. (1980): Preliminary report on the 1980 Casmo geological mapping program; Private report for Shell Canada.

(1980): 1979 exploration program, Casmo Property, Cassiar, British Columbia. British Columbia Ministry of Energy Mines and Petroleum Resources Assessment Report 7978.

APPENDIX II

i

Claim Data

____ige

DATA last updated on January 10, 2003

15 Matchae	Critoria	Owner Name	Tenure Type	Tenure Status
TO MALCHES	Criteria	EVEREADY RESOURCES CORP	Mineral	Good Standing

Tenure Number	Claim Name	Owner Number	Map Number	Work Recorded To	Status	Mining Division	Area	Tag Number
221627	CHIERA 1 TO 20	<u>140972</u> 100%	<u>104P021</u>	2007.11.30	Good Standing 2007.11.30	09 LIARD	20 un	6506
221628	ZONE 1 TO 4	140972 100%	<u>104P021</u>	2007.11.30	Good Standing 2007.11.30	09 LIARD	4 un	6505
221696	BEV 1 TO 20	<u>140972</u> 100%	<u>104P021</u>	2007.11.30	Good Standing 2007.11.30	09 LIARD	20 un	811
221819	ALTA 1	<u>140972</u> 100%	<u>104P021</u>	2011.11.30	Good Standing 2011.11.30	09 LIARD	2 un	43090
227706	PIT NO. 1	<u>140972</u> 100%	<u>104P021</u>	2007.11.30	Good Standing 2007.11.30	09 LIARD	1 un	414081M
227707	PIT NO. 2	<u>140972</u> 100%	<u>104P021</u>	2007.11.30	Good Standing 2007.11.30	09 LIARD	1 un	414082M
370621	BUNNY	140972 100%	<u>104P021</u>	2003.11.30	Good Standing 2003.11.30	09 LIARD	16 un	235391
370622	PINKS	<u>140972</u> 100%	<u>104P021</u>	2003.11.30	Good Standing 2003.11.30	09 LIARD	20 un	235392
394378	ENERGIZER	<u>140972</u> 100%	<u>104P021</u>	2003.11.30	Good Standing 2003.11.30	09 LIARD	20 un	210715
395420	READY	<u>140972</u> 100%	<u>104P021</u>	2003.08.05	Good Standing 2003.08.05	09 LIARD	20 un	210717
395423	EVER 1	140972 100%	<u>104P021</u>	2003.08.05	Good Standing 2003.08.05	09 LIARD	1 un	601926M
395424	EVER 2	<u>140972</u> 100%	<u>104P021</u>	2003.08.05	Good Standing 2003.08.05	09 LIARD	1 un	601927M
395425	EVER 3	<u>140972</u> 100%	104P021	2003.08.05	Good Standing 2003.08.05	09 LIARD	1 un	601928M
395426	EVER 4	140972 100%	<u>104P021</u>	2003.08.05	Good Standing 2003.08.05	09 LIARD	1 un	601929M
399119	VOLT	140972 100%	104P022	2003.12.31	Good Standing 2003.12.31	09 LIARD	20 un	227933

To download this information to a comma delimited text file click here.

Your use of this site is subject to this disclaimer.

Shortcuts: Main Menu Free Miner Search Tenure Search Lot Search

• Top • Copyright • Disclaimer • Privacy

• Feedback

APPENDIX III

÷

ſ

r j Luj

r ·

Minfile Reports

MINFILE Capsule Geology and Bibliography

MINFILE Home page Main Search Menu Back to Search Results ARIS Home page

Capsule Geology and Bibliography

Printable Report

104P 006 Production Report Inventory Report

Name	MAGNO	Mining Division	Liard
Status	Developed Prospect	NTS	104P05W NAD 27
Latitude Longitude	59 15 30 N 129 49 59 W	UTM	09 6568904 452500
Commodities	Silver Lead Zinc Magnetite Gold	Deposit Types	J01 : Polymetallic manto Ag-Pb-Zn.
Tectonic Belt	Omineca	Terranes	Cassiar.

Capsule Geology	Approximately 4 kilometres south of the Cassiar townsite, this area is underlain by massive blue-grey Lower Cambrian Atan Group limestones, which strike approximately north and dip predominantly about 50 degrees east. The limestone is intruded by an east-trending intermediate dyke. Mineralization consists of replacement bodies of galena, sphalerite, magnetite, pyrrhotite, pyrite, siderite and pyrolusite emplaced as irregular shoots along a 1200 metre long east-trending fault zone. Shoots are 60 to 90 metres long and up to 8 metres wide. The limestone has been irregularly dolomitized with intense dolomitization closest to mineralization. Chlorite, rhodochrosite, smithsonite and hydrozincite occur in the more altered rocks.
	The Magno West has inferred reserves of 200,487 tonnes grading 198.8 grams per tonne silver, 5.4 per cent lead and 3.4 per cent zinc; the Magno Mid has unclassified reserves of 77,100 tonnes grading 9.43 per cent lead, 5.34 per cent zinc and 258.5 grams per tonne silver; the Magno East has unclassified reserves of 129,273 tonnes grading 4.0 per cent lead, 4.4 per cent zinc and 131.0 grams per tonne silver; the Middle D has unclassified reserves of 81,650 tonnes grading 3.3 per cent lead, 6.3 per cent zinc and 20.0 grams per tonne silver; total unclassified reserves for the Middle D, Magno East, Magno Mid and Magno West zones are 488,510 tonnes grading 168 grams per tonne silver, 5.3 per cent lead and 4.46 per cent zinc (C.J. Blooman, Shell Internal Report 1981).

Eveready Resources Corp. holds the property.

Bibliography http://www.em.gov.bc	EMPR AR 1955-10; 1967-26 EMPR ASS RPT <u>*1990</u> , <u>*5578</u> , <u>*5713</u> , <u>*6084</u> , <u>*7912</u> , <u>*9262</u> , <u>*9548</u> EMPR EXPL 1975-E194; 1976-E198 EMPR FIELDWORK 1979, pp. 80-88; 1988 pp. 323-337 EMPR GEM 1969-41; 1970-36; 1971-57 EMPR MP MAP 1992-13 EMPR PF (George Cross Newsletter: unknown issues) EMR MIN BULL MR 223 B.C. 354 EMR MP CORPFILE (New Coast Silver Mines Ltd.; Balfour Mining Ltd.) GSC MAP *1110A GSC MEM *319, pp. 120,122 GSC OF *1988-28, p. 104 .ca/cf/minfile/search/search.cfm?mode=capbib&minfilno=104P%20%20006	1/11/03
	GCNL Feb.4, 1972; Jan.3, 1974; #186,#187,#211,#225, 1975; #76, #88,#96,#108,#112,#115,#116,#119,#130,#132,#141,#155, 1976; #138, 1978; #186, 1979 N MINER Sept.4,Dec.4, 1975; Jul.17, May 20,Jun.24,Dec.9, 1976; Nov.1, 1979 Sevensma. P.H. (1975): Balfour Mining Ltd Magno Group. June 1975.	

MINFILE Capsule Geology and Bibliography

MINFILE Home page Main Search Menu Back to Search Results ARIS Home page

Capsule Geology and Bibliography

Printable Report

104P 080 Inventory Report

Name	MIDDLE D	Mining Division	Liard	
Status	Developed Prospect	NTS	104P05W NAD 27	
Latitude Longitude	59 16 35 N 129 49 38 W	UTM	09 6570915 452850	
Commodities	Zinc Lead Silver Magnetite	Deposit Types	J01 : Polymetallic manto Ag-Pb-Zn. H07 : Sn-Ag veins.	
Tectonic Belt	Omineca	Terranes	Cassiar.	

Capsule Geology	Just south of Cassiar, silver-lead-zinc mineralization is emplaced as irregular east-west trending replacement shoots within Lower Cambrian Atan carbonates, adjacent to the north trending Marble Creek fault. Locally the replacement bodies are conformable. The limestone host has been extensively dolomitized in association with mineral emplacement. Galena with a silver-lead ratio of approximately 1:1 and sphalerite comprise the bulk mineralogy. Gangue material is siderite, carbonate, tremolite and silica with varying quantities of pyrolusite, pyrrhotite, pyrite and magnetite. The shoots vary in thickness from several centimetres up to 7 metres. Drilling has tested the deposit to a vertical depth of 90 metres. Drill indicated reserves stand at 90,000 tonnes grading 6.3 per cent zinc, 3.3 per cent lead, and 70 grams per tonne silver (Assessment Report 7912).
Dikligenerke	EMDD ASS DDT *7012 *0212 *0548
bionography	EMPR FIELDWORK *1978, p. 57; 1979, pp. 80-88; 1988 pp.323-337

	EMPR FIELDWORK *1978, p. 57; 1979, pp. 80-88; 1988 pp.323-337 EMPR MP MAP 1992-13
	GSC MAP 381A; 1110A
-	GSC MEM 194; 319

Database last posted: January 08, 2003

Go to: Main Search Menu; MINFILE Name/No. Search; Commodity/Status/NTS Search; Deposit Type Search; Tectonic Belt/Terrane/Latitude/Longitude Search

MINFILE Home page

This page last updated: June 11, 2001

•Top •Copyright •Disclaimer •Privacy

MINFILE Capsule Geology and Bibliography

MINFILE Home page Main Search Menu Back to Search Results ARIS Home page

104P

Capsule Geology and Bibliography

Printable Report

3

069 Inventory Report

Г	Name	STORIE	Mining Division	Liard
F	Status	Developed Prospect	NTS	104P04W NAD 27
	Latitude Longitude	59 14 50 N 129 52 00 W	UTM	09 6567694 450564
F	Commodities	Molybdenum	Deposit Types	L05 : Porphyry Mo (Low F- type).
	Tectonic Belt	Omineca	Terranes	Cassiar.

	Capsule Geology	The Storie deposit is approximately 5 kilometres south of Cassiar. The deposit is within the felsic intrus phases of a Late Cretaceous stock near the eastern margin of the older Cassiar batholith. Intrusive phase include a coarse-grained megacrystic quartz monzonite containing zones of finer-grained porphyritic to equigranular quartz monzonite with gradational contacts. The quartz monzonites occur as sheet-like box dipping gently northwest.	tive es dies
		Molybdenum mineralization is associated with small quartz- feldspar porphyry bodies, which have grad or interfingering contacts with quartz monzonite. Molybdenite occurs as selvages along quartz and quar pyrite-bearing fractures, as smears or disseminations along dry or slickensided fractures, and as dissemi mainly in the finer-grained porphyry dykes. Mineralization is concentrated along intrusive contacts, wh movement has occurred. Fractures commonly contain muscovite and have potassium feldspar alteration envelopes. Fluorite may occur with coarse-grained muscovite in fractures. Beryl occurs locally in vugg veins. The deposit lacks breccia zones and large-scale quartz stockworks. The dimensions are approxim 1000 by 500 by 100 metres.	lational rtz- inations iere 1 y quartz nately
		Unclassified reserves mineable by open pit are 100.5 million tonnes grading 0.129 per cent MoS2; cont to Mo using the factor 1.6681 (Northern Miner - March 4, 1982).	version
B http://w	ibliography vww.em.gov.bo	EMPR FIELDWORK 1978, pp. 51-60; *1979, p. 84; *1980, pp. 52-56; 1988 pp. 339-344 EMPR ASS RPT 277, *7978, *9215 EMPR PF (Geological notes from CIM Meeting, 1981; Excerpt from CIM Vol.76, No.852, Ground geophysical investigations over the Casmo molybdenite deposit) EMPR OF 1992-1 EMPR AR 1964-10; 1965-12; 1966-18; 1968-35 EMPR GEM 1971-56 EMPR GEOLOGY 1977-81, pp. 188,189 EMPR MAP 58; 65 (1989) GSC MAP 1110A GSC MEM 319 EMR MIN BULL MR 223 B.C. 351 EMR MP CORPFILE (Fort Reliance Minerals Ltd.; Shell Canada Ltd.) N MINER Mar.4, 1982 2.ca/cf/minfile/search/search.cfm?mode=capbib&minfilno=104P%20%20069	1/11/0
		W MINER Feb., 1979, pp. 14-19 Bloomer, C. (1981): *The Casmo deposit, paper presented at 6th Annual District 6 Meeting, CIM, Victoria, Oct. 1981 Saydam, S. (1983): *Ground geophysical investigations over the Casmo molybdenite deposit, CIM V. 76, N. 852, p. 80	

•Ministry Home

Programs & Services

Ministry News Ministry Search Reports & Publications Site Map Contacts

MINFILE Capsule Geology and Bibliography

MINFILE Home page Main Search Menu Back to Search Results ARIS Home page

Capsule Geology and Bibliography

104P 044

Name	UPPER D	Mining Division	Liard
Status	Prospect	NTS	104P05W NAD 27
Latitude Longitude	59 16 30 N 129 50 30 W	UTM	09 6570768 452029
Commodifies	Silver Lead Zinc Gold Magnetite	Deposit Types	H07 : Sn-Ag veins.
Tectonic Belt	Omineca	Terranes	Cassiar.

Ministry of Energy & Mines

Capsule Geology	Approximately 1.0 kilometre southwest of Cassiar, Lower Cambrian Atan Group limestones are strongly faulted and dolomitized. The dolomite contains patches and scales of rhodochrosite and chlorite, while unaltered limestone is brecciated with stringers of calcite. Vein and replacement mineralization consists of galena, sphalerite, magnetite, pyrite, pyrrhotite and pyrolusite. The best drill intersection reported is 7.6 metres grading 240 grams per tonne silver, 4.74 per cent zinc, 4.73 per cent lead and 0.069 grams per tonne gold (Assessment Report 9548).
--------------------	--

Bibliography	EMPR ASS RPT <u>1962</u> , *7912, *9262, *9548 EMPR AR 1968-35 EMPR GEM 1969-40 EMPR EXPL 1980-513,514 GSC MEM 319 GSC MAP 1110A EMPR FIELDWORK 1978, pp. 51-60; 1979, pp. 80-88; 1988 pp.323-337 EMPR MP MAP 1992-13
--------------	--

Database last posted: January 08, 2003

Go to: Main Search Menu; MINFILE Name/No. Search; Commodity/Status/NTS Search; Deposit Type Search; Tectonic Belt/Terrane/Latitude/Longitude Search

MINFILE Home page

This page last updated: June 11, 2001

+Top +Copyright +Disclaimer +Privacy

Ministry Home Government of British Columbia Ministry of Programs & Services Energy & Mines

Ministry News Ministry Search Reports & Publications Site Map Contacts

MINFILE Capsule Geology and Bibliography

MINFILE Home	page
Main Search Me	nu
Back to Search K	esults
ARIS Home page	

Capsule Geology and Bibliography

104P 081

Name	GRANITE CREEK	Mining Division	Liard
Status	Prospect	NTS	104P05W NAD 27
Latitude Longitude	59 16 15 N 129 50 00 W	UTM	09 6570298 452498
Commodities	Silver Lead Zinc Gold Tin Magnetite	Deposit Types	H07 : Sn-Ag veins.
Tectonic Belt	Omineca	Terranes	Cassiar.

Capsule Geology	On Granite Creek south of Cassiar, a one metre thick vein outcrops in recrystallized white to buff marble of the Lower Cambrian Atan Group. Mineralization consists of galena, sphalerite, pyrite, pyrrhotite and magnetite with siderite gangue. The limestone beds strike approximately north and dip 70 degrees east. The showing is adjacent to the north trending Marble Creek fault. A 3.02 metre intersection of massive sulphides assayed 14 per cent zinc, 0.1 per cent lead, 11.66 grams per tonne silver and 0.03 per cent tin (Assessment Report 9262). An earlier assay from Assessment Report 7912 assayed 1.0 grams per tonne gold.
--------------------	--

Bibliography	EMPR ASS RPT *7912, *9262 EMPR FIELDWORK 1978, pp. 51-60: 1979, pp. 80-88			
	EMPR MP MAP 1992-13 GSC MEM 319			
	GSC MAP 1110A			

Database last posted: January 08, 2003

Go to: Main Search Menu; MINFILE Name/No. Search; Commodity/Status/NTS Search; Deposit Type Search; Tectonic Belt/Terrane/Latitude/Longitude Search

MINFILE Home page

This page last updated: June 11, 2001

•Top •Copyright •Disclaimer •Privacy

Feedback

Printable Report

Ministry News Ministry Search Reports & Publications Site Map Contacts

MINFILE Capsule Geology and Bibliography

MINFILE Home page Main Search Menu Back to Search Results ARIS Home page

Capsule Geology and Bibliography

104P 040

Name	RAY	Mining Division	Liard	
Status	Showing	NTS	104P05W NAD 27	
Latitude Longitude	59 16 10 N 129 51 45 W	UTM	09 6570165 450834	
Commodities	Molybdenum Silver	Deposit Types		
Tectonic Belt	Omineca	Terranes	Plutonic Rocks.	

Capsule Geology	A 2 metre wide pegmatite pod with coarse-grained molybdenite rosettes occurs in Late Cretaceous porphyritic quartz monzonite of the Cassiar Batholith.
	A sample across 2.1 metres assayed 0.39 per cent molybdenum and 3.43 grams per tonne silver (Property File, Sevensma, P.H., 1968).

Bibliography	EMPR PF (*Sevensma, P.H., (1968): Chapparel Mines Ltd.; Ray Group,
	17 pages)
	EMPR AR 1968-35
	EMPR GEM 1969-40
	EMPR ASS RPT 1962
	EMPR MP MAP 1992-13
	EMR MP CORPFILE (Chapparel Mines Ltd.)
	GSC MEM 319
	GSC MAP 1110A

Database last posted: January 08, 2003

Go to: Main Search Menu; MINFILE Name/No. Search; Commodity/Status/NTS Search; Deposit Type Search; Tectonic Belt/Terrane/Latitude/Longitude Search

MINFILE Home page

This page last updated: June 11, 2001

•Top •Copyright •Disclaimer •Privacy

Feedback

•Ministry Home

Programs & Services

Ministry News Ministry Search Reports & Publications Site Map Contacts

MINFILE Capsule Geology and Bibliography

MINFILE Home page Main Search Menu Back to Search Results ARIS Home page

Capsule Geology and Bibliography

104P 037

[Name	M	Mining Division	Liard
ľ	Status	Showing	NTS	104P04W NAD 27
	Latitude Longitude	59 14 55 N 129 50 45 W	UTM	09 6567833 451754
	Commodities	Molybdenum Tungsten	Deposit Types	
	Tectonic Belt	Omineca	Terranes	Cassiar.

.Government of British Columbia

Ministry of Energy & Mines

Capsule Geology	Approximately 3 kilometres due south of Cassiar, molybdenum mineralization occurs in Late Cretaceous Cassiar Stock quartz mon- zonite adjacent to a contact with Lower Cambrian Atan Group hornfels. The contact strikes approximately northwest-southeast. Molybdenum occurs as disseminations and fine-grained fracture fillings with sericite, pyrite, gypsum, quartz and fluorite. The fractures strike east and dip gently north. A small garnet-diopside, garnet- actinolite skarn, with trace scheelite in quartz veinlets, occurs northeast of the contact in Atan Group hornfels.
--------------------	---

Bibliography	EMPR ASS RPT 277, *7912 EMPR FIELDWORK *1978, pp. 52,56,57; 1979, pp. 80-88; 1988 pp.339-344 EMPR EXPL 1979-319 EMR MP CORPFILE (*Fort Reliance Minerals)					
	GSC MEM 319 GSC MAP 1110A EMPR OF 1991-17					

Database last posted: January 08, 2003

Go to: Main Search Menu; MINFILE Name/No. Search; Commodity/Status/NTS Search; Deposit Type Search; Tectonic Belt/Terrane/Latitude/Longitude Search

MINFILE Home page

This page last updated: June 11, 2001

•Top •Copyright •Disclaimer •Privacy

Printable Report

•Ministry Home

Programs & Services

Ministry News Ministry Search Reports & Publications Site Map Contacts

MINFILE Capsule Geology and Bibliography

MINFILE Home page Main Search Menu Back to Search Results ARIS Home page

Capsule Geology and Bibliography

104P 082

Name	PANT	Mining Division	Liard	
Status	Showing	NTS	104P04W NAD 27	
Latitude Lougitude	59 14 40 N 129 48 50 W	UTM	09 6567346 453571	
Commodities	Silver Lead Zinc Tin Copper	Deposit Types	H07 : Sn-Ag veins.	
Tectonic Belt	Omineca	Terranes	Cassiar.	

.Government of British Columbia

Ministry of F Energy & Mines

Capsulc Geology	Approximately 7 kilometres south of Cassiar, a fault zone trending 160 degrees separates Lower Cambrian Atan Group marbles from Cambro-Ordovician Kechika Group black shales to the east. Two replacement zones of massive sulphide in the carbonates contain arsenopyrite, cassiterite, pyrrhotite, pyrite and siderite. A sample across a 3.3 metre width ran 1.5 per cent tin. The faulted footwall contains a galena and sphalerite bearing quartz vein. Assay results from drilling include 0.6 metres grading 49 grams per tonne silver, 0.74 per cent zinc, 0.22 per cent lead, 0.10 per cent tin, 0.08 per cent copper and 0.4 metres grading 296.2 grams per tonne silver and 2.28 per cent lead (Assessment Report 9262).
--------------------	---

Bibliography	EMPR ASS RPT *7912, *9262, *9548 EMPR FIELDWORK *1978, pp. 52,57; 1979, pp. 80-88; 1988 pp.339-344 GSC MAP 381A; 1110A GSC MEM 194; 319

Database last posted: January 08, 2003

Go to: Main Search Menu; MINFILE Name/No. Search; Commodity/Status/NTS Search; Deposit Type Search; Tectonic Belt/Terrane/Latitude/Longitude Search

MINFILE Home page

This page last updated: June 11, 2001

•Top •Copyright •Disclaimer •Privacy

Feedback

Programs & Services

Ministry of Energy & Mines

Ministry News Ministry Search Reports & Publications Site Map Contacts

MINFILE Capsule Geology and Bibliography

MINFILE Home page Main Search Menu Back to Search Results ARIS Home page

•Ministry Home

Capsule Geology and Bibliography

104P 008

Name	LANG CREEK	Mining Division	Liard
Status	Prospect	NTS	104P04W NAD 27
Latitude Longitude	59 14 00 N 129 46 00 W	UTM	09 6566077 456250
Commodities	Copper Zinc Gold Silver Lead	Deposit Types	G05 : Cyprus massive sulphide Cu (Zn).
Tectonic Belt	Omineca	Terranes	Slide Mountain.

Capsule Geology	A shallow dipping conformable, massive sulphide lens up to 2 metres thick occurs in cherty argillite of the Sylvester Allochthon which is interbedded with greenstone. Mineralization consists of pyrrhotite, pyrite, chalcopyrite, sphalerite, marcasite and chalco- cite. Malachite and azurite occur in patches on outcrops. A sample across 1.0 metre assayed 1.7 grams per tonne gold, 36 grams per tonne silver, 1.84 per cent copper, 0.12 per cent lead and 0.77 per cent zinc (Fieldwork 1978, page 57). About 27,000 tonnes have been out- lined, grading 1.52 per cent copper and 0.90 per cent zinc (Assess- ment Report 7912).
--------------------	---

Bibliography	EMPR FIELDWORK *1978, pp. 52,53,57; 1979, pp. 80-88; 1980, pp. 55-62; 1981, pp. 156-161; 1987, pp. 245-248; 1988 pp.339-344 EMR MP CORPFILE (*Crown Point Expl. Ltd.; Coast Silver Mines Ltd.) EMPR PF (*Sevensma, P.H. (1968): Ray Group, report for Chapparal Mines Ltd., See Ray, 104P 040) EMPR ASS RPT 285, *7912, *9548 EMPR AR 1961-7; 1967-26 EMPR EXPL 1979-317,318; 1980-513 GSC MEM 194; 319 GSC MAP 381A; 1110A		
--------------	--	--	--

Database last posted: January 08, 2003

Go to: Main Search Menu; MINFILE Name/No. Search; Commodity/Status/NTS Search; Deposit Type Search; Tectonic Belt/Terrane/Latitude/Longitude Search

MINFILE Home page

This page last updated: June 11, 2001

.Ministry Home

Programs & Services

Ministry of F Energy & Mines

Ministry News Ministry Search Reports & Publications Site Map Contacts

MINFILE Capsule Geology and Bibliography

MINFILE Home page Main Search Menu Back to Search Results ARIS Home page

Capsule Geology and Bibliography

104P 050

Name	TROUTLINE CREEK	Mining Division	Liard	
Status	Showing	NTS	104P05W NAD 27	
Latitude Longitude	59 15 40 N 129 46 50 W	UTM	09 6569179 455494	
Commodities	Copper	Deposit Types		
Tectonic Belt	Omineca	Terranes	Slide Mountain.	

Capsule Geology	Geological Survey of Canada Map 1110A shows a copper occurrence in Upper Paleozoic Sylvester Allochthon greenstone, located near Troutline Creek south of Mount McDame. No other information available. This occurrence could be the same as the Lang Creek (104P 008) copper occurrence. Recent mapping (Fieldwork,
	1988) indicates that this location is not in the Sylvester Allochthon, while the 104P 008 location is.

Bibliography	GSC MAP 381A; *1110A EMPR FIELDWORK 1979, pp. 80-88; 1980, pp. 55-62; 1981, pp. 156-161;
	1987, pp. 245-248 GSC MEM 194: 319
	Harms, T.A., (1986): Structural and Tectonic Analysis of the Sylvester Allochthon, Northern British Columbia, Implications
	for Paleogeography and Accretion, Ph. D. Thesis, University of Arizona
	EMPK MP MAP 1992-13

Database last posted: January 08, 2003

Go to: Main Search Menu; MINFILE Name/No. Search; Commodity/Status/NTS Search; Deposit Type Search; Tectonic Belt/Terrane/Latitude/Longitude Search

MINFILE Home page

This page last updated: June 11, 2001

Top •Copyright •Disclaimer •Privacy

APPENDIX IV

:

_

ŧ

[

Sample Descriptions

.

the set of the set of

CASSIAR P	ROPERTY, Britis	h Columbia													
2002 ROCH	SAMPLE DESCR	RIPTIONS													
		NAD 92	ZONE O							- increase					
SAMPLE	LOCATION	FASTING	NORTHING	FLEV.	TYPE	GEOLOGY	Pb ppm	Zn ppm	Ag ppm	Au ppb	Sn ppm	W ppm	Mo ppm	As ppm	Cu ppb
7656	Upper D	Li to fillo			grab	pyrite, magnetite in endoskarn in intrusion; greisen?	18	106	<0.2	<5	<20	<10	5	<5	79
7657	Upper D trenches				grab	galena, less sphalerite, magnetite, pyrolusite	16.10%	0.58%	394	435	439	65	30	<5	36
7658	Upper D trenches				grab	pyrite and magnetite as fine disseminations and aggregates	208	361	1	<5	25	172.5	13	<5	201
7659	above Upper D				grab	rusty quartz veins to 10 cm in intrusion	40	9	<0.2	<5	20	<10	7	<5	6
7660	above Upper D				grab	rusty hornfelsed sediments with pyrite and pyrrhotite	32	33	<0.2	15	3	7.2	<1	<5	27
7661	Upper D				grab	ferricrete with limestone and galena fragments in limonite, galena, sphalerite cement	17.90%	4.60%	458	385	559	14.5	11	75	51
7662	Upper D trench				grab	angular boulders of pyrolusite, magnetite, galena and sphalerite,	14.20%	7,40%	398	890	301	0,1	28	50	61
7663	W of Magno West				grab	magnetite with galena, lesser trace sphalerite, from W side of Main Ridge, Ready Claim	3.45%	0.42%	365	90	<20	40	10	<5	8
7664	Upper Adit				grab	high grade Pb from Upper Adit area	63.00%	0.65%	2280	535	40	70	2	60	4
7667	1818 Peak trench				grab	hornfelsed sediment with trace galena, sphalerite, pyrolusite	0.59%	1.14%	82.3	15	40	140	17	455	2
7668	Straw Zone		-		grab	bleached, pyritic shales with pyrite nodules	410	51	2.2	15	<20	<10	1	270	20
7669	Straw Zone				grab	pyrrhotite in hornfelsed sediment to weak px-gnt-woll-act skarn	332	59	1.6	<5	5	3.1	3	70	58
7670	Straw Zone	-			grab	woll-quartz-calcite skarn +/- trace pyrite	158	38	1	<5	<20	<10	5	20	54
7671	Storie Moly				grab	very fine grained siliceous zones with molybdenum in rusty weathering Cassiar Stock	60	12	<0.2	<5	<20	10	131	<5	5
7672	Storie Moly				grab	vuggy, quartz rich, rusty weathering Cassiar Stock with epidote-sericite alteration, pyrite cubes	50	13	<0.2	20	<20	330	1084	<5	8
7673	Storie Moly				grab	trace molybdenum in rusty weathering, ep-sericite altered Cassiar Stock above DDH 80-8	38	11	<0.2	<5	<20	<10	40	10	6
7674	Storie Moly				grab	high grade molybdenum along fractures in rusty zone in stock with vellow molybdenum bloom	40	10	<0.2	<5	<20	<10	2077	<5	7
7675	Storie Moly				grab	high grade molybdenum associated with 080/55N fractures in and along quartz vein and host intrusion	32	16	<0.2	<5	20	70	5533	<5	13
7676	Storie Moly	450787	6567862	1620	1m chip	trace molybdenum and pyrite in 070/60N sheeted quartz vein zone in +/- Mn stained intrusion,	28	18	<0.2	<5	<20	20	1060	<5	32
7677	Storie Moly	450787	6567856	1620	1m chip	trace molybdenum and pyrite in 080/55N sheeted quartz vein zone in rusty, altered zone in intrusion	36	14	<0.2	<5	5	673.1	690	75	10
7678	Storie Moly NW				grab	trace molybdenum and pyrite in rusty, altered intrusion	38	21	<0.2	<5	<20	<10	176	5	5
7679	Storie Moly NW				grab	blueish sheeted quartz veining with trace molybdenum	24	11	<0.2	<5	<20	<10	23	<5	5
7680	Brown Spot				grab	magnetite-pyrrhotite-trace chalcopyrite skarn zone in limestone near contact with Cassiar Stock	114	81	0.4	40	<20	50	<1	<5	920
7681	Brown Spot				grab	magnetite-pyrrhotite-trace chalcopyrite skarn zone in limestone near contact with Cassiar Stock	<2	70	0.6	110	38	15.4	2	<5	495
7682	Storie Moly				angular float	massive magnetite skarn from limestone/magnetite boulders below Brown Spot; from Brown Spot area	32	181	0.4	15	1620	30	<1	<5	11

CASSIAR P	ROPERTY, Britis	h Columbia													
2002 ROCH	SAMPLE DESC	RIPTIONS								1.1					
			70115.0	1				-							
SAMPLE	LOCATION	FASTING	NORTHING	FIEV	TYPE	GEOLOGY	Pb ppm	Zn ppm	Ag ppm	Au ppb	Sn ppm	W ppm	Mo ppm	As ppm	Cu ppb
7683	140m N of Magno West			Let the try T T	grab	pyrolusite, magnetite, galena	1022	4.13%	12.6	50	435	8.5	<1	295	41
7684	Ray Moly				grab	strong sericite altered, weakly pyritic rusty weathering intrusion	46	20	0.4	<5	28	34.7	37	10	63
7685	Ray Moly				grab	smoky quartz veins in very fg to cg intrusion	8	26	<0.2	<5	<20	<10	14	<5	3
7686	Magno North	at switchback			grab	minor galena, magnetite, pyrolusite, trace chalcopyrite in limonite, calcite at switchback to Upper Adit, on ridge	4884	3.25%	9.6	35	<20	<10	35	875	9
7687	Main Ridge, Magno N				grab	oxidized, yellow stained blds with pyrolusite, magnetite, galena and sphalerite below trenched? bank on W side of ridge	7.88%	1.31%	36.5	535	116	14.3	50	6260	150
7688	Main Ridge				grab	quartz and calcite stringered grey limestone, S of Zone near ridgetop	814	647	0.4	35	<20	10	<1	125	3
7689	E of Brown Spot	451752	6568403	1852	grab	gnt-diop-act-cal-quartz skarn with galena and sphalerite	1.02%	1.30%	59	315	462	0.5	29	<5	52
7690	Magno Extra	451908	6568822	1816	grab	quartz-cal breccia, trending 100, in limestone above CL	2460	6665	13.6	15	<20	<10	<1	125	6
7691	Magno Extra				grab	oxidized, Fe-Mn cement above 7690, along 100 trending zone	2762	10.90%	43.5	85	<20	<10	<1	1160	1062
7692	Magno Extra				grab	red, Mn stained, altered and hornfelsed limestone	1948	3088	3	10	20	<10	<1	330	20
7693	Magno South	451906	6568916	1785	grab	hematite and Mn cement with limestone fragments	1566	19.50%	208	475	<20	<10	<1	1420	79
7694	Magno New	451955	6568985	1781	grab	ferricrete with hematite and magnetite	2.21%	3.85%	24.2	35	<20	<10	<1	1290	49
7695	above Upper D				grab	arsenopyrite, pyrite, pyrrhotite in biotite-diop hornfelsed sediment	82	136	0.8	5	70	76	2	145	147
7696	above Upper D				grab	pyritic nodules on fractures in biotite hornfelsed sediments	18	102	0.6	30	174	8.4	3	<5	161
7697	above Upper D				grab	sphalerite or cassiterite in rusty hornfelsed sediments	14	176	0.4	15	180	18.2	25	<5	80
7698	Upper D				local	pyrrhotite rich float in trench E of (below) 7695-7	4	46	1.2	210	25	514.7	<1	<5	614
7699	Middle D				local	pyrrhotite, trace chalcopyrite in strongly hornfelsed metasedimentary	46	119	1.6	230	73	195.3	<1	160	516
7700	Middle D				local	arsenopyrite, pyrite, trace magnetite boulders	50	81	1.4	6.2 g/t	5200	73.7	6	>10000	44
7801	Middle D				local	massive pyrrhotite, trace diopside, pyrite and chalcopyrite?	<2	33	1.6	510	<20	20	19	720	456
7802	Middle D				local	actinolite-pyrite skarn	6	127	0.6	30	16	157	5	305	369
7803	Middle D				local float	very rusty actinolite-pyrrhotite-arsenopyrite skarn	<2	133	0.2	500	<20	<10	20	>10000	204
7804	Middle D				local	arsenopyrite, pyrite zone near ladder (old adit?)	34	45	2.2	2.92 g/t	<20	20	2	>10000	262
7805	Granite Ck				0.7m	massive pyrrhotite, pyrite, sphalerite, lesser magnetite, galena, trace chalcopyrite and arsenopyrite?	1.28%	5557	58.4	600	<20	60	<1	>10000	616
7806	Granite Ck				grab	high grade	1.10%	3610	102	40	<20	40	<1	>10000	577
7807	Granite Ck Zone				grab	arsenopyrite rich boulders	686	308	8.6	2.32 g/t	<20	<10	4	>10000	328

CASSIAR P	ROPERTY Britis	h Columbia													
2002 ROCK	SAMPLE DESCR	IPTIONS													
							_	-							
		NAD 83	ZONE 9	m	-		Ph nom	70.0000	Ăr pom	Au pob	Sn.pom	Wppm	Mo ppm	As ppm	Cuppb
SAMPLE	LOCATION	EASTING	NORTHING	ELEV.	TYPE	GEOLOGY	-2	160	0.4	140		<10	30	750	37
7808	G Zone	_			float	magnetite, pyrolusite	~~	108	0.4	140	<20			100	
7809	upper G Zone				grab	pyrite in veinlets in cherty sediment	122	31	0.2	10	<20	<10	1	500	44
7810	G Zone				grab	pyritic bands up to 0.5 cm in sericite altered, argillic metaseds, +/- hornfelsed, also pyrite in overlying ferricrete	66	57	0.8	185	<20	<10	<1	70	153
7811	Tremolite Zone				grab	quartz vein boulders with grey, pyritic(?) patches, silicified limestone, limestone breccia	46	79	4.4	125	<20	30	12	180	7
7812	Tremolite				grab	ferricrete, above hornfelsed sediments with minor pyrrhotite, same location as 07811	30	132	10.6	1.50 g/t	<20	20	<1	9910	522
7814	Tremolite				grab	breccia with silicified limestone fragments in aphanitic quartz matrix +/- minor pyrite, in fault zone	86	237	3.2	140	<20	<10	5	240	55
7815	Tremolite	453533	6568313	1760	grab	quartz vein / silicified breccia	354	106	6.6	110	<20	<10	13	445	35
7816	W of Tremolite				grab	Mn stained magnetite bearing blocks from trenched area	1.35%	1225	26.2	285	<20	20	7	5880	536
7818	G Zone	453125	6568617		grab	pyrrhotite, pyrite bearing sericite altered shales just south of creek along fault zone	88	35	0.4	<5	<20	<10	<1	655	120
7819	Dark Spot			1415	grab	weak tremolite-actinolite skarn	14	122	<0.2	<5	48	1	3	10	1
7820	Storie Moly				grab	molybdenum in c. g. intrusion and quartz veins on south side of 055 trending structure	26	19	0.2	<5	<20	60	3283	<5	9
7821	Storie Moly				grab	molybdenum in finer quartz eye intrusion and quartz veins, 100m s of 820	16	8	0.2	<5	<20	<10	1179	<5	3
7822	Storie Moly				grab	5 % disseminated molybdenum in intrusion with yellow molybdenum bloom, between 820 and 821	14	16	0.2	<5	<20	10	2780	<5	4
7823	below M Zone				grab	greisen zone in intrusion with fluorite and sericite	20	13	0.2	<5	161	5100.0	29	<5	2
7824	below M Zone				grab	fine pyrite and very trace molybdenum in f.g. sericite altered intrusion	14	16	0.4	<5	78	696.2	8	5	3
7825	below M Zone				grab	highly pyritic, sericite altered, siliceous intrusion	12	11	0.2	<5	69	481.0	30	<5	12
7826	M Zone				rough	south side of skarn zone, pyrite rich	<2	45	0.6	5	85	15053.0	13	<5	1808
7827	M Zone				rough	magnetite rich skarn north of 826	<2	135	0.2	60	486	441.0	<1	<5	559
7828	M Zone				rough	less massive, pyrite-magnetite-pyrrhotite-chalcopyrite? skarn on north	<2	75	0.6	10	253	350.9	<1	<5	2323
7829	M Zone				grab	light coloured, fine pyrite-tremolite skarn, minor magnetite in centre	<2	36	0.4	15	97	364.2	<1	<5	147
7830	near Brown Spot				grab	magnetite skarn, 75m north of Brown Spot	<2	116	<0.2	<5	<20	10	<1	<5	56
7831	Ready	451660	6569030	1700	grab	pyrrhotite hornfels with some pyrite	78	32	<0.2	<5	<20	20	<1	<5	77
7832	Ready	451660	6569030	1700	grab	magnetite with Mn-Fe coating	<2	81	1.4	<5	7	458.6	<1	<5	1455
7833	Ready	451523	6568841	1676	grab	oxidized, hornfels to skarn with Mn-ferricrete coating	122	1104	1.4	10	3	444.9	12	115	1050
7835	Ready	451523	6568841	1676	grab	tremolite-actinolite-pyrrhotite skarn	14	27	0.2	20	10	192	3	<5	430

CASSIAR F	PROPERTY, Britis	h Columbia													
2002 ROCH	SAMPLE DESCI	RIPTIONS													
		NAD 83	ZONE 9	m										-	
SAMPLE	LOCATION	EASTING	NORTHING	ELEV.	TYPE	GEOLOGY	Pb ppm	Zn ppm	Ag ppm	Au ppb	Sn ppm	W ppm	Mo ppm	As ppm	Cu ppb
7836	Upper Adit				grab	high grade galena from south branch	44.00%	1.85%	1640	1.15 g/t	<20	<10	357	2935	70
7837	Upper Adit				grab	magnetite +/- pyrrhotite, trace galena from south branch	2652	7725	8	310	<20	100	29	215	10
7838	Upper Adit				grab	magnetite, minor sphalerite, trace galena from north branch	2.14%	1.95%	62	170	<20	<10	53	910	55
7839	Upper Adit			_	grab	high grade galena from north branch	53.50%	3.25%	1340	730	<20	<10	<1	3415	79
7840	Magno New	200m SSW	of Upper Adit	1650	grab	oxidized galena, sphalerite with Mn-Fe coating	4072	2.60%	20	90	<20	<10	37	1000	53
7841	Magno New	250m SSW	of Upper Adit	1675	grab	oxidized galena, sphalerite with Mn-Fe coating	5336	1.16%	13,8	55	<20	<10	34	<5	36
7842	Magno South		-		grab	oxidized galena, sphalerite with Mn-Fe coating	7466	1.22%	23.8	105	<20	<10	49	915	50
7843	Magno South				grab	oxidized galena, sphalerite with Mn-Fe coating	1916	5.06%	10,2	70	<20	<10	111	2105	58
7844	Magno East, west side				grab	oxidized galena, sphalerite with Mn-Fe coating	44.50%	5208	1340	1.55 g/t	<20	<10	71	1575	120
7845	Above Waterfall				float	small pieces of oxidized galena, sphalerite with Mn-Fe coating in trench above (east of) waterfall	20.50%	1,70%	612	1.02 g/t	<20	<10	80	4585	354
7846	above Straw Zone	453071	6569556		grab	hydrozincite? in pyritic shales	780	130	2.2	5	<20	<10	2	<5	94
7847	above Straw Zone				grab	rusty quartz veins with trace galena	342	84	1.8	5	<20	<10	3	<5	68
7849	trench E of Granite Creek				grab	oxidized Mn-Ferricrete coating sericite schist with limestone subrop in area between Granite Creek and Waterfall Showing	184	278	1.4	5	<20	10	4	<5	26

APPENDIX V

[

i

L

l

1

!

Geochemical Procedure and Results

Analytical Procedure Assessment Report

MULTI ELEMENT ICP ANALYSIS

Samples are catalogued and dried. Soil samples are screened to obtain a -80 mesh sample. Samples unable to produce adequate -80 mesh material are screened at a coarser fraction. These samples are flagged with the relevant mesh. Rock samples are 2 stage crushed to minus 10 mesh and pulverized on a ring mill pulverizer to minus 140 mesh, rolled and homogenized.

A 0.5 gram sample is digested with aqua regia which contains beryllium which acts as an internal standard. The sample is analyzed on a Jarrell Ash ICP unit.

Results are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are printed on a laser printer and are faxed and/or mailed to the client.

BASE METAL ASSAYS (Ag, Cu, Pb, Zn)

Samples are catalogued and dried. Rock samples are 2 stage crushed followed by pulverizing a 250 gram subsample. The subsample is rolled and homogenized and bagged in a prenumbered bag.

A suitable sample weight is digested with aqua regia. The sample is allowed to cool, bulked up to a suitable volume and analyzed by an atomic absorption instrument, to .01 % detection limit.

Appropriate certified reference materials accompany the samples through the process providing accurate quality control.

Result data is entered along with standards and repeat values and are faxed and/or mailed to the client.

K:Methods/methicp

Analytical Procedure - Assessment Report

GEOCHEMICAL GOLD ANALYSIS

Samples are catalogued and dried. Soils are prepared by sieving through an 80 mesh screen to obtain a minus 80 mesh fraction. Samples unable to produce adequate minus 80 mesh material are screened at a coarser fraction. These samples are flagged with the relevant mesh. Rock samples are 2 stage crushed to minus 10 mesh and a 250 gram subsample is pulverized on a ring mill pulverizer to -140 mesh. The subsample is rolled, homogenized and bagged in a prenumbered bag.

The sample is weighed to 10/15/30 grams and fused along with proper fluxing materials. The bead is digested in aqua regia and analyzed on an atomic absorption instrument. Over-range values for rocks are re-analyzed using gold assay methods.

Appropriate reference materials accompany the samples through the process allowing for quality control assessment. Results are entered and printed along with quality control data (repeats and standards). The data is faxed and/or mailed to the client.

ANALYTICAL METHOD FOR GOLD ASSAY

Samples are sorted and dried (if necessary). The samples are crushed through a jaw crusher and cone or roll crusher to -10 mesh. The sample is split through a Jones riffle until a -250 gram subsample is achieved. The subsample is pulverized in a ring & puck pulverizer to 95% - 140 mesh. The sample is rolled to homogenize.

A 1/2 or 1.0 A.T. sample size is fire assayed using appropriate fluxes. The resultant dore bead is parted and then digested with aqua regia and then analyzed on a Perkin Elmer AA instrument.

Appropriate standards and repeat sample (Quality Control components) accompany the samples on the data sheet.

K:methods/methauas K:Methods/geoauana

TUNGSTEN GEOCHEMICAL PROCEDURE

Samples are received and catalogued. Wet samples are dried, then crushed and pulverized to >95% -140 mesh. A multi acid (HCL, HN03, HF, HCl04) combination is used to digest 0.25g of sample through a series of stages achieving a total digestion. The final stage is brought up to volume with aqua-regia and then analyzed on an inductively coupled plasma (ICP) spectrometer. Appropriate quality control samples are run along with the samples to assure QA/QC integrity.

TIN GEOCHEMICAL ANALYSIS

Samples are catalogued and dried. Soil samples are screened to obtain a –80 mesh sample. Samples unable to produce adequate –80 mesh material are screened at a coarser fraction. These samples are flagged with the relevant mesh. Rock samples are 2 stage crushed to minus 10 mesh and pulverized on a ring mill pulverizer to minus 140 mesh, rolled and homogenized.

A 1-gram sample is fused with ammonium iodide. The sample is then diluted to 10ml with 10% HCL. The sample is analyzed on a Perkin Elmer ICP unit.

Results are collated by computer and are printed along with accompanying quality control data (repeats and standards).

22-Aug-02

- - ----

. . .

.....

F

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

ICP CERTIFICATE OF ANALYSIS AS 2002-5002

- -

F

EVEREADY RESOURCES CORP. 2616-126TH AVE. S.W. CALGARY, ALBERTA T2W 3V6

5

Ĩ.

ł

1

 · _

ATTENTION: RICHARD FISCHER

No. of samples received: 26 Sample Type: Rock Project #: Cassiar Shipment #: 1 Samples submitted by: Jean Pauller

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	W	<u>Y</u>	Zn
1	07656	<5	<0.2	0,59	<5	25	<5	0.24	<1	10	105	79	2,77	20	0.31	385	5	0.03	7	650	18	<5	<20	3	0.06	<10	19	<10	11	106
2	07657	435	>30	0.09	<5	<5	60	0.26	95	22	113	36	>10	40	0.48	>10000	30	<0.01	4	<10	>10000	170	60	22	1.80	320	6	50	11	4854
3	07658	<5	1.0	0.43	<5	25	<5	0.78	2	6	112	201	3.12	30	0.18	294	13	0.01	6	830	208	<5	<20	7	0.05	<10	6	140	15	361
4	07659	<5	<0.2	0.09	<5	<5	<5	0.01	<1	1	176	6	0.68	<10	0.05	57	7	<0.01	5	50	40	<5	20	<1	0.01	<10	3	<10	<1	9
5	07660	15	<0.2	1.31	<5	35	<5	0.06	<1	17	108	27	2.65	10	0.73	101	<1	0.01	28	360	32	<5	<20	<1	0.11	<10	25	<10	6	33
6	07661	385	>30	0.28	75	<5	45	0.92	325	19	100	51	>10	40	0.86	>10000	11	<0.01	5	110	>10000	215	80	36	1.32	210	8	490	8 :	>10000
7	07662	890	>30	0.07	50	<5	85	0.24	602	23	100	61	>10	30	0.38	>10000	28	<0.01	<1	<10	>10000	145	20	46	2.21	430	7	890	7:	>10000
8	07663	90	>30	0.04	<5	<5	30	0.72	22	19	113	8	>10	50	0.83	>10000	10	<0.01	5	<10	>10000	40	<20	5	1.03	140	3	40	6	3173
9	07664	535	>30	0.01	60	<5	<5	0.04	84	<1	3	4	0.87	<10	0.02	659	2	<0.01	<1	<10	>10000	1620	40	19	0.02	<10	<1	70	<1	6872
10	07667	15	>30	0.09	455	160	25	>10	50	6	36	2	3.37	20	9.62	>10000	17	<0.01	104	<10	5384	55	40	<1	0.65	30	4	140	26	9687
																_						_		_			_			
11	07668	15	2.2	0.71	270	<5	<5	0.17	<1	39	61	20	5,60	<10	D.33	65	1	0.01	39	250	410	<5	<20	6	0.07	<10	7	<10	4	51
12	07669	<5	1.6	2.42	70	60	<5	1.25	<1	12	86	58	2.58	<10	0.98	128	3	0.11	32	260	332	<5	<20	49	0.06	<10	14	<10	2	59
13	07670	<5	1.0	1.88	20	60	<5	1.28	<1	9	70	54	3.58	<10	D.48	62	5	0.07	24	670	158	<5	<20	42	0.06	<10	9	<10	3	38
14	D7671	<5	<0.2	0.30	<5	55	<5	0.01	<1	1	11D	5	0.71	<10	0.02	41	131	<0.01	3	50	60	<5	<20	3	<0.01	<10	1	10	<1	12
15	07672	20	<0.2	0,40	<5	45	<5	Ð.08	<1	2	113	8	0.91	20	0.02	40	1084	<0.01	5	360	50	<5	<20	5	0.01	20	2	330	7	13
		_				_	_															-	••							
16	07673	<5	<0.2	0.42	10	<5	<5	0.06	<1	1	121	6	0.69	40	0.01	46	40	<0.01	4	430	38	<5	<20	8	<0.01	<10	6	<10	6	11
17	07674	<5	<0.2	0.37	<5	35	<5	0.04	<1	2	87	7	1.34	10	0.02	14	2077	<0.01	3	400	40	<5	<20	4	0.02	<10	5	<10	2	10
18	07675	<5	<0.2	0.32	<5	45	<5	0.07	2	3	151	13	1.06	10	0.15	120	5533	0.02	5	340	32	10	20	6	0.05	<10		70	3	16
19	07676	<5	<0.2	0.58	<5	95	<5	0,11	<1	10	118	32	1.61	40	0.09	302	1060	<0.01	5	430	28	<5	<20	(0.03	10	5	20	9	18
20	07677	<5	<0.2	0.44	75	45	<5	0.07	<1	3	103	10	1.32	20	0.05	151	690	<0.01	3	400	36	<5	<20	10	0,02	50	4	530	6	14
		_			_		_					_								~ • •		-		~			~	40	-	
21	07678	<5	<0.2	0.27	5	15	<5	0.05	<1	2	116	5	0,83	10	0.02	34	1/6	<0.01	4	240	38	<5	<20	3	0.01	<10	2	<10	5	21
22	07679	<5	<0.2	0.48	<5	15	<5	0.09	<1	2	99	5	1.38	30	0.02	27	23	<0.01	4	610	24	<5	<20	8	0,02	10	6	<10	8	11
23	07681	110	0,6	0.23	<5	<5	655	2.85	<1	21	65	495	>10	20	6.47	1893	2	0.03	19	30	<2	<5	<20	<1	0.25	<10	Z	10	3	70
24	07682	15	0.4	0.24	<5	<5	45	3,96	2	17	145	11	>10	50	>10	2699	<1	<0.01	40	<10	32	<5	1620	<1	0.48	20	9	30	4	181
25	07683	50	12.6	0.10	295	<5	<5	1.08	252	21	142	41	>10	50	0.77	>10000	<1	<0.01	4	<10	1022	<5	60	<1	0.78	70	6	470	10 :	>10000

EVEREADY RESOURCES CORP.

125 1.4 1.65

-

-

135

50 130

-

5 1.58

- - -

-

F

Et #.	Tag #	Au(ppb)	Ag	AI %_	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	V	W	Y	Zn
26	07680	40	0.4	0.29	<5	<5	150	3.23	<1	24	58	920	>10	10	8.02	2515	<1	0.04	24	20	114	<5	<20	<1	0.20	<10	1	50	<1	81
QC DATA	:																													
Repeat:	_																													
1	07656	-	<0.2	0.58	<5	25	<5	0.23	1	10	104	78	2.73	20	0.31	377	5	0.03	6	630	24	<5	<20	3	0.06	<10	19	<10	11	107
2	07657	475	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-
6	07661	390	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7	07662	890	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9	07664	500	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10	07667	5	>30	0.09	460	160	25	>10	51	6	37	2	3.40	20	9.68	>10000	19	<0.01	106	10	5430	50	40	<1	0.65	20	4	130	27	9794
D (%)																														
rtesρiπ: 1	07656	10	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

10 0.96

607

<1 0.02

31 670

22

ICP CERTIFICATE OF ANALYSIS AS 2002-5002

20

64

<1

84 3.57

E

JJ/kk df/253/275 XLS/02 Fax: 403-251-2592 cc: Jean Pautler cc: Gene Whiting

Standard:

GEO '02

GEO '02

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

_ _ _ _ _ _

<5 <20 40 0.14 <10 71 <10 11

-

-

ECO TECH LABORATORY LTD.

75

-

- ·

- _ ___

_ __

Sheet2

	06-Sep-02																													
FCO TEO		TORY I TO	<u>, </u>								CP CE	RTIFI	CATEO	F ANA	LYSIS	AS 2002	2-5005						EVER	EADY	RESO	URCES	COR	PORAT		
10041 Da	allas Drive		·										1								••		2616-	126TH	AVE. S	S.W.				
KAMLO	DPS, B.C.																						CALC	SARY,	ALBER	RTA				
V2C 6T4																							T2W ;	3V6						
								_																						
Phone: 2	50-573-5700																						ATTE	NTION	RIC		ISCH	ĒR		
Fax : 2	50-573-4557																									h can af c				
																							NO. 01	r sampi		wea: c	2			
												_											Droio	ne rype	t. RUG Secial					
																							Shin	nent #	2					
Values i	nonm unles	s otherwis	e reno	rted																			Samo	les sut	mitted	by: Jea	n Pau	tler		
V 4/4 00 //	r ppm umes																													
																					· · ·				-					
																								_						
Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	TI %	U	V	W	<u> </u>	Zn
1	07684	<5	0.4	0.32	10	15	<5	0.09	<1	2	163	63	1.78	20	0,06	39	37	0.02	5	410	46	<5	<20	2	0.02	<10	3	<10	5	20
2	07685	<5	<0.2	0.48	<5	40	<5	0.16	<1	7	175	3	1.37	40	0.35	228	14	0.04	6	530	8	<5	<20	<1	0.16	<10	16	<10	10	26
3	07686	35	9.6	0.04	875	185	80	0.67		26	141	9	>10	130	0.52	<1	35	< 0.01	4	<10	4884	<5	<20	<1	2.27	<10	8	<10	2	>10000
4	07687	535	>30	0.03	6260	30	<5	0.06		17	115	150	>10	110	0.45	3013	50	0.01	<1	270	>10000	320	<20	13	0.36	<10	5	<10	8	9089
5	07688	35	0.4	0.18	125	10	<5	>10	4	2	- 34	3	1.15	<10	>10	1051	51	<0.01	91	\$10	014	<u></u>	~20	~ 1	0.04	<10				047
6	07689	315	>30	0.07	<5	40	65	>10	95	17	70	52	>10	70	6.53	>10000	29	<0.01	56	40	>10000	<5	<20	<1	1.83	<10	10	<10	<1	>10000
7	07690	15	13.6	0.07	125	15	5	>10	12	6	21	6	0.91	<10	9.03	2497	<1	< 0.01	88	10	2460	<5	<20	<1	0.07	<10	3	<10	2	6665
8	07691	85	>30	0.17	1160	45	<5	2.71	204	22	101	1062	>10	150	0.70	1258	<1	< 0.01	19	80	2762	<5	<20	<1	0.39	<10	8	<10	12	>10000
9	07692	10	3.0	0.09	330	30	5	>10	25	3	37	20	2.25	10	>10	6952	<1	<0.01	86	<10	1948	<5	20	<1	0.20	<10	4	<10	3	3088
10	07693	475	>30	0.41	1420	70	<5	>10	510	15	59	79	>10	60	0.95	2170	<1	<0.01	38	300	1566	<5	<20	<1	0.20	<10	28	<10	24	>10000
11	07694	35	24.2	0.21	1290	<5	10	>10	300	18	51	49	6.17	20	6.48	>10000	<1	< 0.01	101	400	>10000	165	<20	<1	0.75	<10	28	<10	28	>10000
12	07695	5	0.8	2.76	145	25	<5	2.28	<1	38	105	147	7.96	30	0.39	597	2	0.06		780	82	<5	<20	135	0.15	<10	12	50	9	136
13	07696	30	0.6	1.69	<5	20	5	2.80	1	20	122	161	>10	50	0.47	1233	3	<0.01	18	520	18	<0	<20	<1	0.31	<10	19	<10	14	102
14	07697	15	1.2	1.67	<0	20	5 675	1.94	1	91	100	614	0.04		0.30	1095	20	0.01	10	2240	14	<5	<20	113	0.24	<10	8	350	13	46
15	07696	210	1.4	2.34			0/3	1.04			104	014	-10	- 30	0.43			0.14	72	2240		·.	-20	,	0.20	10				
16	07699	230	1.6	7.20	160	60	150	3.80	<1	42	122	516	>10	70	2.08	592	<1	0.19	33	1050	46	<5	<20	144	0.34	<10	66	80	10	119
17	07700	>1000	1.4	0.04	>10000	20	40	6.65	589	37	87	44	>10	70	1.83	>10000	6	<0.01	30	20	50	315	<20	<1	0.54	<10	3	30	18	81
18	07801	510	1.6	0.02	720	20	95	1.38	5	64	75	456	>10	70	0.41	178	19	<0.01	50	10	<2	100	<20	<1	0.22	<10	3	20	6	33
19	07802	30	0.6	2.80	305	35	<5	1.53	<1	70	120	369	>10	80	1.27	25	5	0.08	27	1370	6	<5	<20	36	0.25	<10	42	100	8	127
20	07803	500	0.2	0.04	>10000	50	45	7.63	<1	31	131	204	>10	120	2.69	>10000	20	<0.01	26	10	<2	<5	<20	<1	1.38	<10	4	<10	19	133
																						100								
21	07804	>1000	2.2	2.29	>10000	30	130	2.04	176		102	262	>10	80	0.47	187	2	0.08		890	34	100	<20	19	0.21	<10	8	20	20	45
22	07805	600	>30	0.01	>10000	45	45	2.98	<1	21	127	616	>10	130	1.52	8483	<1	<0.01	8	<10	>10000	5	<20	<1	0.50	<10	2	0	1	200/
23	0/806	40	>30	0.02	>10000	45	145	2.19	<1	20	134	229	>10	130	1.44	0722	<1 A	<0.01	10	40	-10000	<u>62</u>	<20	<u><1</u>	0.03	<10		4U <10	12	3010
24	07807	>1000	0.6	0.02	750		60	7 73	<1	2/	113	328	>10	110	4 20		30	<0.01	28	<10	<2		<20	40	1 91	<10	- 2	<10	11	169
20	07000	140]	0.4	0.04	0.1		-00	1.15	, , ,	24		51	1 - 10	110	7.20	41		-0.01	20	-10	-4.				1.01		· (

.

EVEREA	DY RESOU	RCES COF	POR/	ATION	· · · · · · · · · · · · · · · · · · ·	[·	<u> </u>	, 	· · · · ·	ICP CF		CATEC	F AN/	LYSIS	AS 200	2-5005	, <u> </u>	·						ECO 7	ECHI		ATOR		,
			,,		1		·			()		,		, 	<u> </u>	, <u> </u>	1+	$ \ \ \ \ \ \ \ \ \ \ \ \ \ $	·+	(·	t+	 +	I	100.		ADVI	AIUN	1 616	·
Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	N	P	Pb	Sb	Sn	Sr	TI %	U	. v †	(W	⊢Y [†]	Zn
26	07809	10	0.2	6.70	500	35	5	5.81	<1	28	61	44	3.03	20	0.55	504	1	0.13	83	860	122	<5	<20	28	0.09	<10	9	<10	6	31
27	07810	185	0.8	4.44	70	65	, <u>5</u>	0.85	<1	91	105	153	>10	40	5.71	232	1 <1	0.05	147	860	66	<5	<20	19	0.26	<10	55	<10	10	57
28	07811	125	4.4	0.04	180	5	<5	0.47	<1	2	267	7	1.51	<10	0.06	128	12	<0.01	8	30	46	55	<20	· <1	0.02	<10	1	30	1	79
29	07812	>1000	10.6	0.26	9910	35	35	0.57	<1	32	130	522	>10	130	0.75	3747	· <1	<0.01	32	60	30	<5	<20	1 3'	0.47	<10 ⁺	5	20	14	132
30	07814	140	3.2	0.16	240	95	<5	0.22	<1	5	91	55	3,01	10	0.11	97	5	<0.01	12	50	86	70	<20	· 2'	0.03	<10 ⁺	2	<10	2	237
<u> </u>	<u>ا ا ا ا ا</u>		Ĺ		<u> </u>		<u> </u>					I			()	1	1 <u></u> _		1	f		· +	i — +	ı — — •		(<u> </u>	ر ا	(<u> </u>	ر ب	
31	07815	110	6.6	0.07	445	90	<5	1.68	_<1	7	271	35	2.50	<10	0.70	364	(13)	<0.01	19	(<u>40</u>)	354	55)	<20	(<1	0.03	(<10	11	(<10	2	106
32	07816	285	26.2	0.14	5880	70	25	0.17	<1	22	144	536	>10	150	0.71	207	7	<0.01	2	140	>10000	50)	<20	1 3'	0.43	<10	24	20	13	1225
33	07818	<5	<u>0.4</u>	6.41	655	55	10	4.47	<1	35	109	120	7.79	40	0.75	31	<1	0.34	56	700	88	<5	<20	311	0.13	<10	28	1 <10	5	35
34	07819	<5	<0.2 V	0.09	1 <u>0</u>	10		>10	8	<1	14	1	0.09		0.36	180	3	<0.01	35	240	14	<5	<20	<1	<0.01	<10	9	· <10 [†]	8	122
35	07820	<5	0.2	0.36	- <u></u> i	15	<5	0.09	<1	4	149	9	1.27	10	0.11	155	3283	0.02	5	390	26	<5	<20	4	0.05	<10	7	60	3	19
		<u> </u>	<u> </u>	<u></u>	<u>ا</u> ا	<u> </u>	ا <u>ب</u>	<u> </u>	<u> </u>	ال			<u> </u>	ل	ا	<u>ا</u> ا	ل		<u> </u>	·'	·'	<u>ر</u> ر		· <u> </u>		()		1		
30	07821	< <u>5</u>	0.2	0.22	<5	15	<5	0.03	<1	2	163	3	0.73	<10	0.02	52	1179	0.02	5	130	16	i <5	<20	<u>1</u>	0.02	<10	<1	<10	8	8
3/	0/822		0.2	0.40	< <u>5</u>			0.10	<1		139	4	1.19	20	0.17	170	2780	0.03	5	400	14	<5	<20	<1	0.07	<10	10	10	5	16
30	0/823		0.2	1.08	<u>احجہ</u> ا	50	10	1.41	<1	6	90	2	0.78	40	0.09	236	29	0.02	6	880	20	<5	<20	<1	0.02	<10	5	790	26	13
- 39	0/824	Columnation (100)	0.4	0.20	5	15	<u><5</u>	0.02	<u> ></u>	<u> </u>	136	3	1.83	<10	0.03	112	8	<0.01	3	180	14	<5	<20	3	0.02	<10	2	290	2	16
<u>40</u>	0/625		<u> </u>	0.56	<u> ^0</u>	30	<u></u>	0.54	<u></u>	4	1/9	12	2.21		0.06	97	30	0.01	7	410)	121	<5	<20		0.03	<10	3	520	9	11
41	07826	<u>←</u>		0.46		10	160	1 40		455	455	1000		- 100	- 10				<u>ل</u> ے ا	,	<u>ب</u>	<u>ا</u>	<u> </u>	<u> </u>	<u></u>		Ļ.	- <u> </u>		
41	07820	H	0.0	1 0.40 11	<u>~~</u>	40	275	1.45		100	100	1808	>10	120	1.10	145	13	0.03		470	< <u>2</u>	<5	<20	2)	0.34	<10	34	590	14	45
43	07828	+ 10	0.6		~~~~	+ 25	210	1.00		- 15	128	223	>10	120	(.//	2064	<u></u>	0.02	1/	30	< <u>2</u>	<5	<20	<1	0.35	<10	21	330	9	135
40	07829	15	0.0			25		0.41		(<u>19</u>	79	2323	>10	901	6.29	000	<u>[]></u>	0.01	12	100	<u> ~2</u>	<5	<20	<1)	0.29	<10	19	280	7	75
45	07830		<0.2	0.05		- <u>20</u>	0	2.00	<u></u>		134	14/	>10	100	3.44	890	<u></u>	0.07	12	<10	<2	<5	<20	<1	0.15	<10	13	240	4	36
_ 		+	<u></u>	+ 0.15			<u> </u>	<u>- U. IV</u>		_ +	134	- 30		100	4.14	1183		_<0.01	<u>—</u> Ч	20	- <u></u> 2	<u></u>	<20	<u></u>]	0.35	<10	12	<u>, 10</u> j	4	116
46	07831	< <u>5</u>	<0.2	+ 6 69 ⁺	<5	25	15	5.09	<1	- 28	177	77	2.57	- 30	1 00	464			- 40	1040	+	·					,	l		
47	07832		14	0.00	<5	45		0.48			106	1455	3.57	120		705	<u></u>	0.14	40	1040	(8)	<5	<20	<u> </u>	0.23	<10	42	20	12	32
48	07833	10	1.4	1 0.10	115	105	745	0.40	3	30	158	1455	>10	220	0.03	686	<u>11</u>	<0.01	23	O	+ 122	<5	<2U	<u></u>	0.31	<10	6	360	10	81
49	07835	20	0.2	0.06	<5	10	<5	1 54	1	100	39	430	4 92	20	1 72	373	<u></u>	0.01			14	<0 <5	<20		0.01	<10	- 0	300	12	1104
50	07836	>1000	>30	1 0.02	2935	25	<5	0.41	138	11	-58	70	>10	- 60	0.28	10000	357	-0.03	- c1	-10	14		<20 -20	<u></u>	0.00	<10	- <u>-</u>	120		- 27
	, +		, +		,	<u> </u>	+	· · · · ·		+		- <u></u> †			0.20	~10000	+	<u><0.01</u>	/ 4	~10	>10000	900	< <u>2</u> 0		0.51	<10	<u> </u>	<10	<u> </u>	<u>>10000</u>
51	07837	310	8.0	0.04	215	50	60	3.64	52	24	107	10	>10	120	0.96	~10000	- 29	-0.01	·	~10	2652		-20	<u> </u>	1 95	-10				7705
52	07838	170	>30	0.05	910	50	95	1.32	229	29	124	55	>10	130	0.60	>10000	53	<0.01	<u> </u>	<10	>10000		<20		1.00	<10	- D - R	- 100	4	- 10000
53	07839	730	, >30 ⁺	0.04	3415	5	10	0.25	202	10	35	79	>10	40	0.28	>10000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<0.01	<u> </u>	20	>10000	1015	<20	12	0.40	<10	2	~ <10		>10000
54	07840	90	20.0	0.10	1000	315	85	6.18	163	26	112	53	>10	130	0.47	>10000	37	<0.01		40	4072	<5	<20	<u></u> +	2 43	~10	-	~10	- 2	>10000
55	07841	55	13.8	0.08	<5	80	80	0.29	34	26	123	36	>10	140	0.49	>10000	34	<0.01	5	70	5336	<	<20	- 23	2.70	<10	8	-10	- 5	~10000
	·				·	(<u> </u>		1	-				, <u> </u>					(The second sec	. —	<u> </u>		_ ``` +			· · · · · ·		_ +	<u> </u>		210000
56	07842	105	23.8	0.07	915	75	95	4.34	43	26	112	50	>10	120	0.47	>10000	49	<0.01	15	20	7466	<5	<20	<1	2 70	<10	21	<10	2	×10000
57	07843	70	10.2	0.08	2105	65	205	0.44	41	40	151	58	>10	110	0.37	>10000	111	<0.01	8	<10	1916	<5	<20	12	5 69	<10	-22	<10	<1	~10000
58	07844	>1000	>30	0.02	1575	20	<5	0.14	42	17	78	120	· `>10	90	0.32	>10000	71	<0.01	6	90	>10000	1300	<20	19	0.54	<10	4	<10	12	5208
59	07845	>1000	>30	0.14	4585	65	<5	0.16	63	19	111	354	>10	150	0.57	>10000	80	<0.01	8	80	>10000	490	<20	26	0.51	<10	10	<10	8	>10000
60	07846	5	2.2	4.83	<5	265	20	2.32	<1	17	135	94	3.54	20	2.49	195	2	0.41	37	1100	780	<5	<20	136	0.35	<10	131	<10	12	130
	L							·					·					·	·+		, †	,t		+	1			<u> </u>	·	
61	07847	5	1.8	0.11	<5	20	<5	5.24	<1	3	166	68	0.58	<10	0.07	388	3	<0.01	21	30	342	<5	<20	141	0.02	<10	2	<10	6	- 84
62	07849	5	1.4	6.95	<5	165	5	0.63	1	93	189	26	>10	70	6.82	154	4	0.05	93	240	184	<5	<20	17	0.28	<10	65	10	37	278

Page 4

and the second second

• 1

EVEREA	DY RESOU	RCES COR	PORA	TION							ICP CE	RTIFI	CATE C	F ANA	LYSIS	AS 200	2-5005								ECO 1	ECH L	ABOR	ATOR	Y LTD	
Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	S	r Ti%	U	V	w	Y	Zr
OC DAT																														
Reneat:	*						-																							
1	07684	<5	04	0.32	30	15	<5	0.09	<1	3	164	64	1.78	20	0.05	37	37	0.02	8	410	46	15	<20	1	0.02	<10	3	<10	- 4	27
10	07693	630	-				-	-			-	-	-		-		-	-			-	-	-							
19	07802	10	0.6	2.83	320	20	<5	1.57	<1	73	125	361	>10	70	1.27	23	5	0.08	30	1420	10	<5	<20	35	0.26	<10	43	100	9	48
36	07821	<5	0.2	0.21	<5	15	<5	0.03	<1	2	156	3	0.70	<10	0.03	48	1128	0.02	4	130	14	<5	<20	<	0.02	<10	<1	<10	8	
45	07830	<5	<0.2	0.15	<5	65	<5	0.10	2	22	133	58	>10	160	4.20	1187	<1	<0.01	7	<10	<2	<5	<20		0.36	<10	12	10	4	121
54	07840		19.8	0.12	1065	345	90	6.12	164	28	116	55	>10	170	0.54	>10000	40	<0.01	18	20	3944	<5	<20	<	2.64	<10	9	<10	<1	>10000
Docalit:																														
<u> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</u>	07694		04	0.28	30	15	-5	0.10	-1	3	130	55	1.83	20	0.05	30	33	0.01		460	52	~ 5	<20	1 11	0.02	<10	2	20	5	27
36	07821	<5	0.4	0.20	<5	15	<5	0.03	<1		154	3	0.69	<10	0.03	66	993	0.02	4	120	16	<5	<20	<	0.02	<10	<1	<10	4	18
																												, 1		
Standard	1:																													
GEO '02		135	1.4	1.52	60	140	10	1.70	<1	21	73	84	3.80	20	0.90	621	<1	0.02	33	730	28	<5	<20	32	2 0.21	<10	73	<10	12	72
GEO '02		135	1.6	1.55	60	145	10	1.64	<1	21	71	86	3.70	20	0.93	613	2	0.02	32	730	30	<5	<20	33	0.23	<10	71	<10	12	73
																									-					
																									-					
1.14-1-																							600	TECH		ATOD				
JJ/KK																							ECU	leeler	LABU			<i>.</i>	-	
ai/293		-																					Julia	Certifie	d Acco					
AL3/02	54 2502				<u> </u>											 							D.C.							
rdx: 403-2	01-2092	-	<u>.</u>				i								<u> </u>															
CC. Joan Pl	1400														<u> </u>						· · · · · · · · · · · · · · · · · · ·			-			\rightarrow			

5

.

	21-Aug-02													Γ																
ECO TE	CH LABORA	TORY LTI	b .								ICP CE	RTIFI	CATE	OF ANA	LYSIS	AS 20	02-500	1					EVER	EADY F	RESOU	RCES	CORP	۰ <u>.</u>		
10041 D	allas Drive																						2616-1	26TH /	AVE. S.	W.				
KAMLO	OPS. B.C.																						CALG	ARY, A	LBERT	ΓA				
V2C 6T4	l																						T2W 3	V6						
Phone: 2	250-573-5700)		1																			ATTEN	ITION:	RICH/	ARD FI	SCHE	R		
Fax : 2	50-573-4557	,																												
																							No. of	sample	s recei	ved: 7				
																							Sample	е Туре:	Soil					
																							Projec	t#: Ca	assiar					
																							Shipm	ent #:	1					
Values i	n ppm unles	ss otherwi	se repo	brted																			Sampl	es subr	nitted b	y: Jean	Pauti	ler		
													-																	
Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	TI %	U	<u>v</u>	W	Y	Zn
1	S-076-55	75	1.0	1.14	295	10	5	>10	54	7	52	66	8.54	20	>10	3635	<1	0.02	69	40	632	35	<20	<1	0.18	<10	6	<10	11	>10000
2	S-076-65	5	2.8	9.20	20	75	<5	4.13	73	187	47	646	9.85	90	2.44	4332	25	0.01	617	260	1184	<5	<20	17	0.21	<10	23	<10	263	5060
3	S-076-66	45	>30	0.64	2755	470	55	3.17	203	919	116	229	>10	60	2.86	10000	398	<0.01	1179	1450	>10000	475	<20	69	1.74	<10	93	<10	52	>10000
															L															
																<u> </u>	<u> </u>									L				
	28-Aug-02										ICP CE	RTIF	CATE	OF AN/	LYSIS	AS 20	02-500	6	<u> </u>									<u> </u>		
																												L		
																												L	-	
1	S-07813	<5	<0.2	1.69	10	315	<5	0.71	<1	9	28	22	3.69	30	0.90	55	<1	0.04	23	470	34	<5	<20	48	0.04	<10	9	<10	3	28
2	S-07817	110	0.2	2.44	95	290	<5	2.76	<1	15	47	34	4.12	30	2.62	378	<1	0.01	36	550	84	<5	<20	<1	0.09	<10	37	<10	7	285
3	S-07834	35	<0.2	0.72	<5	75	80	8.95	<1	15	81	739	>10	90	6.68	500	<1	0.02	39	290	38	<5	<20	<1	0.28	<10	31	2130		169
4	S-07848	695	>30	0.57	2950	95	40	1.24	161	43	119	1424	>10	140	0.98	10000	16	0.01	26	410	>10000	215	<20	33	0.75	60	18	190	22	>10000
				ļ															1								\vdash			
Repeat:									50		54		0.40		10	0500		0.00		40	C40	25			0.40			- 10		> 10000
1 1	S-076-55	-	1.2	1.12	295	10	5	>10	53	'	51	60	8.42	20	>10	3509	<1	0.02	6/	40	010	30	60	۲١	0.18	<10	0	~10		>10000
	-			4 74		040		0.70					0.00	- 40	0.00	60		0.04	- 24	460	20	7E	<20	40	0.04	-10		<10	2	49
	S-07813		<0.2	1./1	10	310	<5	0.72	<1	a	28	23	3.69	40	0.92	00	~ 1	0.04		400			~20	40	0.04		9		3	40
4	5-07848	/05	-		-	-			-	-	-		⁻									· · · ·				_				
Ctonday				<u> </u>	+									· · ·												·	┢───┤	<u> </u>		
GEO 102	<u>u:</u>	130	1.4	1 71	55	130	<5	1 48	<1	18	60	92	3 33	10	0.99	593	<1	0.03	28	670	20	<5	<20	45	0.13	<10	70	<10	10	67
GLU 02	•	130	1.4	1.71		. 100		1.40					0.00	10				0.00												
GEO IO2			10	1.63	55	140	5	1 58	<1	20	67	85	3.60	20	0.95	599	<1	0.03	31	680	26	<5	<20	40	0 17	<10	73	<10	12	77
020 02	·		1.0	1.00		1.40		1.00		20	,		- 0.00		0.00			1												
														1																
															-															
					1												<u> </u>													····
	+							i						1				1								i				
	+				1										<u> </u>		<u> </u>	1	1			• • • • •								
JJ/kk										.			·				<u> </u>	1					ECO T	ECH L	ABOR/	ATORY	LTD.		1	
df/251a	1							<u>† – – – – – – – – – – – – – – – – – – –</u>						1	[-·	· · ·			1				Jutta J	ealous	e					
Y1 S/02			1	+	+ -																		BCC	ertified	Assave	ar				

i.

ł

, L

		CERT	IFICAT	E OF ASS	SAY AS	2002- 5	002	
EVEREADY	RESOUR	CES CORP.						
2616-126TH	AVE. S.W.	•						28-Aug-02
CALGARY,	ALBERTA							
T2W 3V6			· · · · · · · · · · · · · · · · · · ·					
ATTENTION	I: RICHAR	D FISCHER						
No. of samp	les received	d: 26						
Sample Typ	e: Rock							
Project #: (Cassiar						-	
Shipment #	: 1							
Samples sul	bmitted by:	Jean Pautler						
				Pb	Zn	Ag	Ag	
ET #.	Tag #			(%)	(%)	(g/t)	(oz/t)	
2	07657			16.10	0.58	394	11.5	
6	07661			17.90	4.60	458	13.4	
7	07662			14.20	7.40	398	11.6	
8	07663			3.45	0.42	365	10.6	
9	07664			63.0	0.65	2280	66.5	
10	07667			0.59	1.14	82.3	2.4	
25	07683				4.13			
QC DATA:								
Repeat:								
2	07657			15.90	0.58	389	11.3	
Standard:								
CPB-1					4.43			
Mpla						69.7	2.0	
·····								
								· · · · · · · · · · · · · · · · · · ·
						ECO TECH		
1.1.1.1.				-		ECO IECH	LABURAI	UKTLID.
JJ/KK						Jutta Jealou	JSE	
XLS/02						B.C. Certifie	ed Assayer	

Page 7

;

1

16

ł

i

		CERTI	FICATE	OF ASS	AY AK	2002-50	05	
EVEREAD	YRESOUR	CES CORPORA						
2616-126T	HAVE. S.W							06-Sep-02
CALGARY	. ALBERTA							
T2W 3V6								
ATTENTIO	N: RICHAR	ND FISCHER						
No of com		4. 60						
NO. OI Salli	Dies received	<i>u. 02</i>						
Sample Ty	Cassiar							
Floject #:	Cassiar #. 2							
Samples of	H. Z	Ioon Doutlor						
Samples st	Ibrinited by.	Jean Paulier				<u>_</u>		
		Δ	A 11	۸a	۸a	Dh	7 n	
FT #	Tag #		(oz/t)			(%)	<u>(%)</u>	
	1 ay #	(9/1)	(02/1)	(9/7	(0211)	(70)	(70)	
3	07686				4.00	7.00	3.20	
4	07687			30.5	1.00	7.88	1.31	
0	07669			59.0	1.72	1.02	10.00	
	07691			43.5	1.27 6.07		10.90	
10	07693			206.0	0.07		19.00	
17	07694	6.20	0 101			<u> </u>	3.00	
	07700	0.20	0.101					
21	07804	2.92	0.065	58 /	1 70	1 28		
22	07805			102	2 98	1.20		
23	07807	2 3 2	0.068	102	2,30	1.10		
24	07812	1.50	0.000					
32	07816	1.00	0.044			1 35		
50	07836	1 15	0.034	1640	47.83	44.00	1.85	
52	07030	1.13	0.004	62.0	1.81		1.00	
53	07839			1340	39.08	53.5	3 25	
54	07840						2 60	
55	07841						1 16	
56	07842			_			1.22	
57	07843						5.06	
58	07844	1.55	0.045	1340	39.08	44.5		
59	07845	1.02	0.030	612	17.85	20.5	1.70	
							• •	
	1							
	1							
						ECO TECH	LABORA1	ORY LTD.
JJ/kk						Jutta Jealou	Ise	
XLS/02						B.C. Certifie	d Assayer	

Page 8

i

. |

ł

			DTICI					.000		
			RIIFI	CATE	JF ANALT	<u>515 Aa</u>	5 2002-3	5002		
EVERE	EADY RESC	URCES	CORPO	RATION					25-Oct-02	
2616-1	26TH AVE.	S.W.								
CALG/	ARY, ALBE	RTA								
T2W 3	V6									
ATTEN	ITION: RIC	HARD FI	SCHER							
No. of	compleo reg	aluad: 24								
Sample	a Type: Por	elveu. 20)							
Projec	t#: Cassia	/n /r							-	
Shinm	ont #• 1			·						
Samole	es submitter	l by: Jean	Pautler							
Gampic			1 44407							
				· · · ·	Sn	W				
ET #.	Tag #				(ppm)	(ppm)				
2	07657				439	65.0				
3	07658				25	172.5				
5	07660	1			3	7.2				
6	07661				559	14.5				
7	07662				301	0.1				
12	07669				5	3.1				
20	07677				5	673.1				
23	07681				38	15.4				
25	07683				435	8.5				
OC DA										
Standa	ard:	l								
SO-17					10	9.8				
50-17					10	10.0			[
1							ECO TEC	H LABORA	TORY LTD	•
JJ/kk							Jutta Jealo	ouse		
XLS/02	2						B.C. Certif	ied Assaye	r	

ļ

i

•

1

÷

İ

		CE			FANALY	SIS AS	6 2002-50)05		
EVERE	ADY RES	OURCES	CORPOR	RATION					25-Oct-02	
2616-12	26TH AVE.	S.W.	[
CALGA	RY. ALBE	RTA		· · ·						•
T2W 3V	/6									
ATTEN	TION: RIC		SCHER							
No of s	amples rec	eived: 6	2							
Sample	Type: Ro	ck				I				
Project	# Cassia	9 <i>1</i>								
Shinme	nt <u>#</u> ∙ 2									
Sample	s submitte	d hv: .lear	Pautier						<u></u>	
Janpio	o oasnindo	a sy. ocar			Sn	w				
FT#	Tag #				(nnm)	(nnm)				
1	0769/		i		28	24.7				
	07697				112	14.7				
4 6	07690				110	14.3				
40	07609				402	76.0				
12	07090				174	70.0				
13	07696				1/4	0.4				
14	07097				180	18.2				
15	07698				25	514.7				
10	07599				(3	195.3				
17	07700				5200	13.1				
19	07802	<u> </u>	<u> </u>		16	157.0				
34	07819				48	1.0				
38	07823				161	5100.0				
39	07824				78	696.2				
40	07825				69	481.0				
41	07826				85	15053.3				
42	07827				486	441.0				
43	07828	_			253	350.9				
44	07829				97	364.2				
47	07832				7	458.6				
48	07833				3	444.9				
49	07835				10	192.0				
QC DA	TA:									
Repeat										
17	07700				6073	71.3				· · · · · · · · ·
48	07833				3	444.8				
Standa	rd:									
SO-17					10	9.8				
SO-17					10	10.8	E	CO TECH	LABORA	FORY LTD.
								utta Jealo	use	
					·			C. Certifi	ed Assaver	
							ļB		eu nasayer	

Г

CERTIFICATE OF ANALYSIS AS 2002-5006

EVEREADY RESOURCES CORPORATION 2616-126TH AVE. S.W. CALGARY, ALBERTA T2W 3V6

ATTENTION: RICHARD FISCHER

No. of samples received: 4 Sample Type: Soil **Project #: Cassiar Shipment #: 2** Samples submitted by: Jean Pautler

		Sn	W	
ET #.	Tag #	· (ppm)	(ppm)	
1	S-07813	2	6.1	
2	S-07817	8	6.7	
3	S-07834	13	3800.0	
4	S-07848	1170	22.2	

OC DATA:

Standard: 10

JJ/kk XLS/02 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

9.8

12-Sep-02

APPENDIX VI

ι

Γ

Т

Photographs

Photo 1	View of the Magno Zones looking west.
Photo 2	Inside Upper Adit and view of Upper Adit, looking southerly.
Photo 3	View looking northwesterly of the Magno West Zone, showing Upper and Lower Adits, Upper D, Middle D and Granite Creek Zones.
Photo 4	View looking easterly to the G and Tremolite Zones from Hill 1818.
Photo 5	View looking westerly to the Storie Molybdenum Deposit.
Photo 6	View looking northerly of the M Zone skarn.
Photo 7	View of altered Cassiar Stock, south and southeast of the M Zone, looking westerly towards the Storie Molybdenum Deposit.

O UPPER ADIT 63 Pb, 3.3 Zn, 2280 Ag, 1.2 Au - 2002

.

LOWER ADD 27 Pb, 22 Zn, 818 Ag - 1998

1 1 1 1

1 I I I

MAGNO ZONES

MAGNO MID

Resource: 9.4 Pb, 5.3 Zn, 259 Ag

67 Pb, 3.6 Zn, 2025 Ag, 1.5 Au

UPPER ADIT

G and TREMOLITE ZONES FROM HILL 1818

STORIE MOLY: 100 mt 0.129% MoS₂, Hi grade core 0.55% MoS₂

M ZONE SKARN: 1.5 W% / 3.3m, 0.2% Cu, 130m 0.23% MoS,

ALTERED CASSIAR STOCK south of M ZONE

APPENDIX VII - Statement of Expenditures											
Wages:	J. Pa G. W	utler hiting	14 days @ 400.00/day\$5,600.0012 days @ 300.00/day3,600.00								
			Total: 26 man-days (16 md)	\$ 9,200.00 (5,600.00)							
Geochemis	try:	88 rocks 7 soils 16 rock assa total digestio	Au, ICP Au, ICP Iys Au, Ag, Pb, Zn n/fusion Sn, W								
		•	Total:	3,370.47 (3,370.47)							
Shipping:				186.00 (186.00)							
Equipment	Rental	: Truck ATV Truck	14 days @ 50./day (10) 700.00 5 days @ 40./day (5) 200.00 4 days @ 50./day (4) 200.00								
		T UON	Total:	1,100.00 (900.00)							
Meals, Groo	ceries:	26 man-days (16 md)	s @20.00/md	520.00 (320.00)							
Field Suppl	lies:	(flagging tap 26 ma (16 m	e, thread, sample bags) an-days @ 15.00/md d)	390.00 (240.00)							
Gas:				439.40 (385.00)							
Maps, Print	is & Co	pies:		295.00 (295.00)							
Report & D	rafting			\$ 3,600,00 (\$ 3,600,00)							
GRAND TO	TAL:			\$ 19,100.47							
Total amou (comp	int app pleted a	lied for asses after Aug 5)	ssment	(\$14,896.47)							

1

ļ

New expiry date on Ever and Ready claims: Aug 5, 2008.

,

..

APPENDIX VIII

STATEMENT OF QUALIFICATION

I, Jean Marie Pautler, do hereby certify that:

I am a geologist with more than twenty years of experience in the Canadian Cordillera.

I am a graduate of Laurentian University, Sudbury, Ontario with an Honours B.Sc. degree in geology (May, 1980).

I am a Professional Geoscientist, registered in the province of British Columbia.

I supervised and implemented the 2002 exploration program on the Cassiar Project between July 31 and August 13, 2002.

I have no direct or indirect interest in the Cassiar property, which is the subject of this report.

Jean Pautler, P.Geo. JP Exploration Services Inc.

