

ASSESSMENT REPORT ON DIAMOND DRILLING & GEOCHEMICAL WORK ON THE FOLLOWING CLAIMS

> CROESUS 1 251848 CROESUS 4 251851 HORATIO 1 396309 HORATIO 3 396311

١

EVENT # 3194046 (Stat. of Exp.) EVENT # 3194045 (Notice to Group)

WORK PERMIT # MX-1-314

Located

34 KM EAST OF STEWART, BRITISH COLUMBIA SKEENA MINING DIVISION

56 degrees 00 minutes latitude 129 degrees 31 minutes longitude

N.T.S. 104A/4E, 104A/3W

PROJECT PERIOD: August 1 to October 23, 2002

ON BEHALF OF TEUTON RESOURCES CORP. VANCOUVER, B.C.

D. Cremonese, P. Eng. 6737 Cartier Street O. Vancouver, B.C. V6P 4S1

Date: August 1, 2003

TABLE OF CONTENTS

INTRODUCTION	1
A. Property, Location, Access and Physiography B. Status of Property C. History D. References E. Summary of Work Done	1 1 4 5
TECHNICAL DATA AND INTERPRETATION	б
A. Regional Geology B. Property Geology C. Rock Geochemistry a. Introduction b. Treatment of Data c. Sample Descriptions d. Discussion 	6 7 8 8 9 25
	26 26
 a. Introduction b. Treatment of Data c. Discussion E. Field Procedure and Laboratory Technique F. Conclusions 	26 26 27 28 28
	 B. Status of Property C. History D. References E. Summary of Work Done TECHNICAL DATA AND INTERPRETATION A. Regional Geology B. Property Geology C. Rock Geochemistry a. Introduction b. Treatment of Data c. Sample Descriptions d. Discussion D. Drill Core Geochemistry a. Introduction b. Treatment of Data c. Sample Descriptions d. Discussion D. Drill Core Geochemistry a. Introduction b. Treatment of Data c. Discussion E. Field Procedure and Laboratory Technique

APPENDICES

1

- I Work Cost Statement II Certificate III Diamond Drill Logs IV Assay Certificates

ILLUSTRATIONS

Fig. l	Location Map	Report Body
Fig. 2	Claims Map	Report Body
Fig. 3	Regional Geology Map	Report Body
Fig. 4	2002 Rock Geochemistry & Drill	
	Hole Location Map	Map Pocket
Fig. 5	Kosciuszko Zone-Drill Sections	
	Holes DN02-1 and DN02-2	Report Body
Fig. 6	Kosciuszko Zone-Drill Section	
	Hole DN02-3	Report Body

1. INTRODUCTION

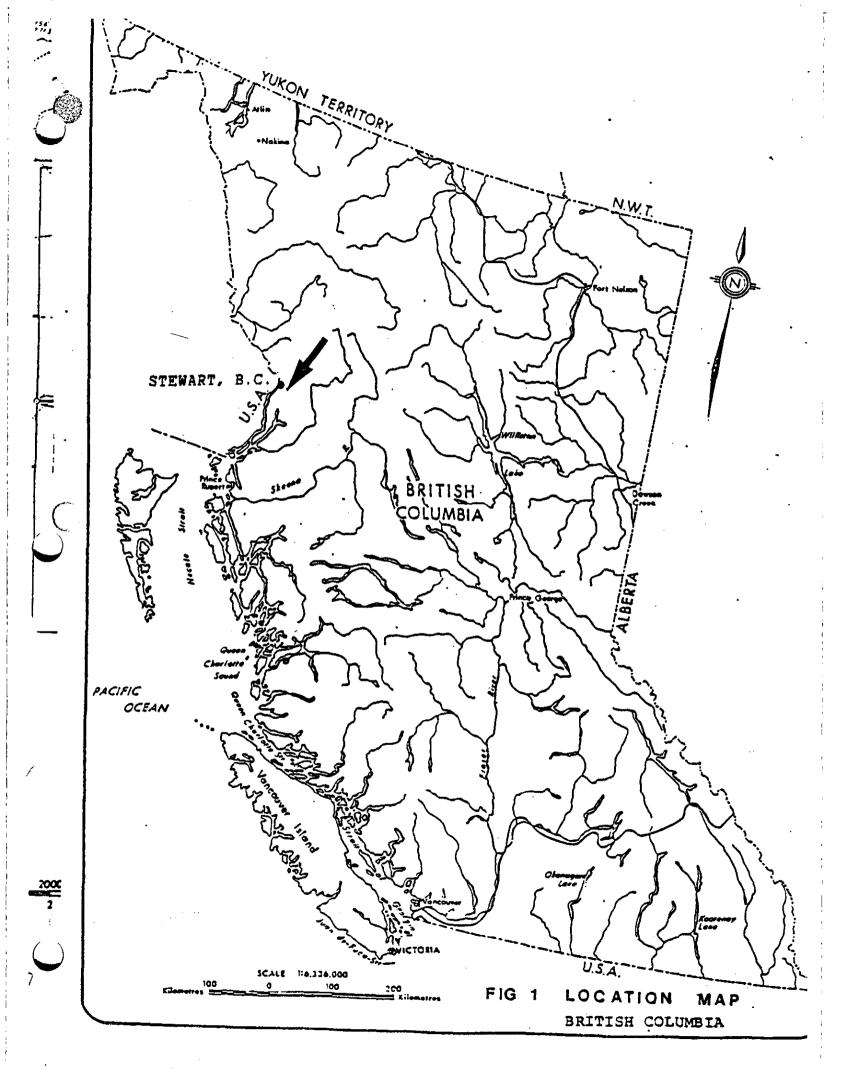
A. Property, Location, Access and Physiography

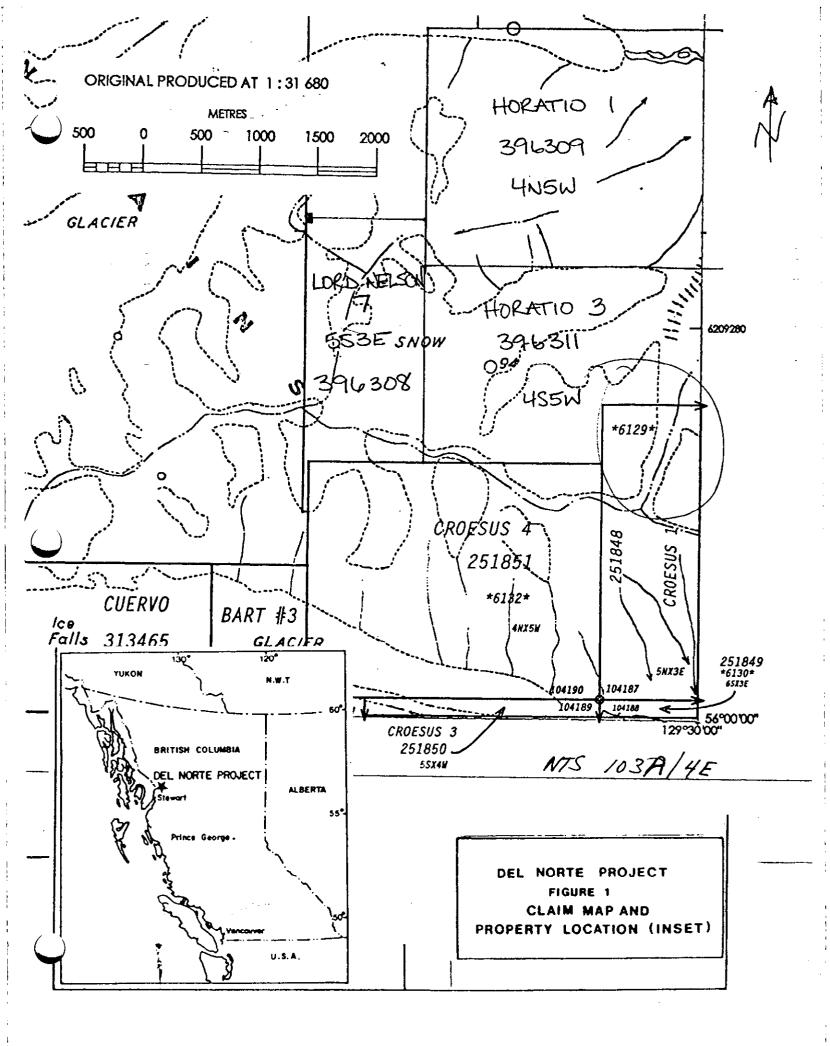
The property is located about 34 km east of Stewart, British Columbia. Nearest paved road is the Bear River Highway about 10 km to the north. Access is presently limited to helicopter, either from the base at Stewart or from the Ellsworth Logging Camp on Highway 37. There is a possibility that logging roads running west across the Nass River from Highway 37 may one day provide the closest approach to the property.

The Croesus and Horatio claims lie along both sides of the ridge dividing Del Norte and Nelson Creeks, two streams flowing east out of the Cambria Icefield and into the White River. Elevations vary from approximately 1050 meters on the creek bed at the eastern edge of the property to more than 2000 meters near ridge tops. Vegetation in the area changes from a mantle of mountain hemlock and balsam at low-lying elevations to shrubs, mountain grasses and heather at higher elevations. Slopes range from moderate to steep to precipitous.

Climate is relatively severe, particularly at higher elevations. Because the property lies on the eastern edge of the Cambria Icefield, precipitation is not as pronounced as in the immediate Stewart area.

B. Status of Property


Relevant claim information is summarized below:


Name		Tenure	No. of Units	Expiry Date
Croesus	1	251848	15	May 4, 2008
Croesus	4	251851	20	May 4, 2008
Horatio	1	396309	20	Sept.9, 2008
Horatio	3	396311	20	Sept.9, 2008

Claim locations are shown on Fig. 2 after government N.T.S. maps. The claims are owned by Teuton Resources Corp. of Vancouver, British Columbia.

C. History

Records indicate that the property was originally staked as the "Bullion" claim, sometime prior to 1913. This early work was undoubtedly a follow-up to the small-scale placer gold operations reported to have taken place on Nelson, Del Norte and Willoughby Creeks.

Between this first staking and 1922, when the property was restaked as the Delnorte Group by Green and Ficklin of Hyder, Alaska, a small adit was driven to test a zone of quartz veining paralleling the contact between Bowser sediments and Hazelton volcaniclastics. In 1939, Owen McFadden of Stewart, backed by a syndicate, explored the ground by a series of fifteen open-cuts and some small pop-At this time the property was known as the "Meziadin holes. In the same year, the property was visited by Dr. Mandy of Group". the B.C. Department of Mines; Mandy examined and sampled several of Samples results indicated erratic low-grade gold the showings. mineralization associated with copper and occasional zinc values (Ref. 7, 1939). According to extant records, most of the sampling was from the north side of Del Norte Creek.

Exploration carried out during this period was severely restricted by difficult access. The trail leading into the Del Norte Creek drainage from the end of the Bear River road was over 75km long and entailed two difficult mountain crossings.

In the 1960's the area was explored again by companies searching for porphyry copper deposits. This, and subsequent work, was supported by helicopter. In the late 1970's and early 1980's, renewed exploration efforts concentrated on precious metals. Apparently, this work did not uncover anything of importance in the Del Norte Creek area (Ref. 6).

In 1987 Teuton Resources Corp. acquired the Croesus claims and carried out a program of rock and silt sampling (Ref. 9). Silt samples taken from the creek draining the Bullion showing returned moderate to highly anomalous values in gold, silver, copper, lead, and zinc. The best rock grab sample assayed 19,300 ppb Au and came from a quartz sulfide lens in a prominent gossan on the southern side of Del Norte Creek (Hardpan Creek area).

In 1988 Teuton followed up on these results with a limited program of geological mapping, prospecting, rock sampling and soil sampling in the Bullion and Hardpan Creek areas (Ref. 10). Two zones, one featuring lead-zinc mineralization, the other copper-gold, were discovered in the Hardpan Creek drainage. Several grab samples taken peripheral to these zones returned anomalous values in gold, silver, copper, lead and zinc.

On the strength of the 1988 work, and collaterally because of the enthusiasm generated by the major Eskay Creek discoveries, Teuton was able to option the property to Goodgold Resources Ltd. in 1989. During 1989, Goodgold contracted Aerodat (Ref. 13) to carry out an airborne EM and Magnetometer survey over the property. Results outlined a magnetically higher central area (corresponding to volcanic rocks, and/or intrusives) flanked on the northwest and east by a lower slowly varying magnetic field (corresponding to sedimentary rocks). Goodgold also completed a small surface program concentrating on the Bullion area, with mixed results (Ref. 12).

In 1990, Goodgold mounted a major \$500,000+ program focussing mostly on the Hardpan Creek portion of the property and consisting of a preliminary phase of grid construction, mapping/prospecting, blasting/trenching, soil geochemical sampling, and geophysical surveying, followed by a second phase of diamond drilling entailing 12 holes (total 1,119m). Results of this work were compiled in a lengthy report by Bishop and Gal (Ref. 15, on file with BCEMPR). Highlights include the discovery of the gold-copper "O" zone, the gold-silver-(copper, lead, zinc) "Humdinger" zone, the lead-zinc-(gold-silver) "Grizzly" zone as well as several minor zones of precious and base metal mineralization. The best drill intercept was from Hole 90-1 on the O zone which ran 15.2m grading 0.107 opt gold and 0.410% copper.

In 1991 Goodgold carried out another \$100,000 of work before relinquishing its option. During this phase, which concentrated on the north side of Del Norte Creek, geochemical sampling, prospecting and mapping identified several strong multi-element soil geochem anomalies as well as a number of precious metal bearing quartz sulfide veins. Best assay came from a 1m chip sample across the NMG vein at its southernmost exposure: 0.31 oz/ton gold and 16.67 oz/ton silver. The vein was tentatively associated with a sharp, flanking silver soil anomaly. A zone of stringers, some highly auriferous, also quartz calcite was discovered north of the toe of Del Norte Glacier. Soil sampling over this area, named the "Crackle" zone, disclosed widespread elevated to anomalous copper values. Alteration patterns suggested a porphyry environment.

Teuton carried out more work the same season, mostly involving induced polarization surveys over the Crackle zone area. These surveys were only partially completed due to extreme weather but interpretation indicated at least two IP anomalies.

1992. 1993, The property was dormant during However, in large scale exploration and encouraging results from the development program at the proximate Red Mountain property of Lac Minerals was a catalyst for further work at Del Norte. Teuton carried out a modest 1993 work program which included rock geochemical sampling at four sites within the Del Norte property. Sampling in the Crackle zone and vicinity resulted in the discovery new clusters of Au-Ag-As-(Zn-Cu) quartz sulfide several of stringers some with high gold values to just under 2.0 opt. These stringers are now known to occur over an area roughly 700 m square encompassing both sides of Del Norte Glacier.

D. References

- 1. GROVE, E.W. (1971): Bulletin 58, Geology and Mineral Deposits of the Stewart Area. B.C.M.E.M.P.R.
- GROVE, E.W. (1982): Unuk River, Salmon River, Anyox Map Areas. Ministry of Energy, Mines and Petroleum Resources, B.C.
- 3. GROVE, E.W. (1987): Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox Area, Bulletin 63, BCMEMPR
- ALLDRICK, D.J.(1984); Geological Setting of the Precious Metals Deposits in the Stewart Area, Paper 84-1, Geological Fieldwork 1983", B.C.M.E.M.P.R.
- ALLDRICK, D.J.(1985); "Stratigraphy and Petrology of the Stewart Mining Camp (104B/1E)", p. 316, Paper 85-1, Geological Fieldwork 1984, B.C.M.E.M.P.R.
- DOWNING, B.W. (1983); "Report on the Wilby Creek Group, Meziadin Lake, B.C.", private report for Viscount Resources Corp.
- 7. BCDM SPECIAL REPORT 3 (1939); "Meziadin Group"--Geological sketch and sample map by Dr. J.T. Mandy, Resident Engineer, Prince Rupert.
- 8. BCDM MINISTER OF MINES ANNUAL REPORTS; 1922-77 1939-67
- 9. CREMONESE, D.M. (1988); Assessment Report on Geochemical Work on the Croesus Claims. On file with BCMEMPR.
- 10. CREMONESE, D.M. (1989); Assessment Report on Geochemical Work on the Croesus 2,3 Claims. On file with BCMEMPR.
- 11. CREMONESE, D.M. (1991); Assessment Report on Geological and Geochemical Work on the Croesus 1-4 Claims for Teuton Resources Corp. On File with BCMEMPR
- 12. CREMONESE, D.M. (1994); Assessment Report on Geochemical Work on the Croesus, 2,3,4 and Bond 7 Claims. On file with BCMEMPR.
- 13. DVORAK, Z. (1989); Report on Combined Helicopter Magnetic, Electromagnetic and VLF Survey, Del Norte Area, Cambria Range, B.C.; Aerodat Ltd. Private Report for Goodgold Resources Ltd.
- 14. DEWONCK, B. AND HARDY, J. (1989); Summary Report on the

Goodgold Resources Ltd. Del Norte Project and Max Project; Report by Orequest Consultants Ltd. for Goodgold Resources Ltd.

- 15. BISHOP, C. AND GAL, L. (1991); Summary Report on 1990 Geological, Geochemical, and Geophysical Surveys, Trenching and Diamond Drilling Results on the Del Norte Property. Report by International Kodiak Resources Inc. for Teuton Resources Corp. and Goodgold Resources Ltd. On File with BCMEMPR.
- 16. LeBEL, J.L. (1989); Report on Del Norte Creek Property and Max Property. Private report for Sierra Madre Resources Inc.

E. Summary of Work Done.

The 2002 work on the Del Norte Creek property was part of a larger program covering several Stewart area properties spanning the period from August 1 to October 23, 2002. The field crew consisted of Alex Walus, geologist, and prospector/foreman, Merle Moorman, under the supervision of the author. All have spent many seasons exploring the Stewart area.

The crew operated initially out of a fly camp which was later transformed into a drill camp after the discovery and subsequent drilling of the Kosciuszko zone. Supplies and equipment were shuttled into the property from a staging area just west of the Surprise Creek bridge on the Stewart-Meziadin Highway. Once drilling commenced, a Vancouver Island Helicopter was based directly in camp as it was necessary to fly the drill crew to and from the drill sites. Inclement weather and frequent drill equipment breakdowns contributed to a significant increase in helicopter costs.

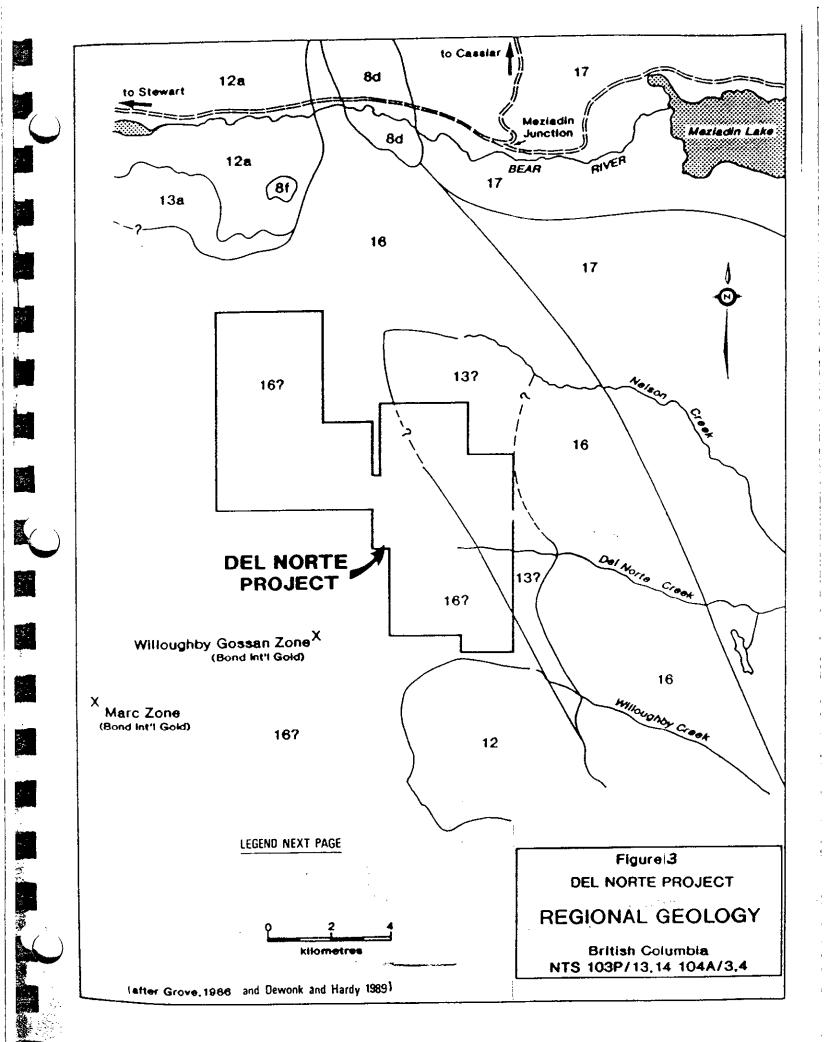
The surface geochemical rock sampling program involved 99 samples: 24 float, 33 chip and 42 grab. All rock samples were prepared and analyzed for gold content/ICP at either the Eco-Tech Laboratory in Kamloops, B.C. or at Pioneer Laboratories in Richmond, BC.

Seven, thin-wall BQ holes were drilled during the 2002 program, using a drill supplied by local Stewart contractor, Mtn. Boy Minerals Ltd. The first three holes were drilled from the same pad, all of which intersected the Kosciuszko zone. A fourth, short hole was drilled in the opposite direction from the first two (same pad) to test for geology under moraine cover. Three additional holes from a second pad all had to be abandoned before target depth because of technical problems, leading to the early termination of the 2002 program. A total of 358 metres of drilling was completed.

2. TECHNICAL DATA AND INTERPRETATION

A. Regional Geology

The property lies along the eastern edge of a broad, NNW trending belt of Triassic and Jurassic volcanic and sedimentary rocks termed by Grove (1971) as the "Stewart Complex". This belt is bounded to the west by the Coast Crystalline Belt (mainly granodiorites) and to the east by a thick series of sedimentary rocks known as the Bowser Assemblage (Middle Jurassic to Upper Jurassic age).


A major contact between sedimentary rocks of the Bowser Group and volcaniclastics of the lower Jurassic Hazelton Group passes north-south between Strohn Creek and the White River. Three west-east flowing tributaries of the White River with headwaters in the Cambria icefield are all known to carry placer gold. These streams, from north to south, are Nelson Creek, Del Norte (also known as "Porter") Creek and Willoughby Creek. The source of the placer gold has intrigued Stewart area prospectors for many years.

Prior to the Bond Gold/Lac Minerals gold discovery at Red Mountain, about 12 km west of the property, the area received little attention from government geologists. However, capsule descriptions of regional geology were written up in a few private reports. The author was able to locate a summation of regional geology in this area from such a report--a lengthy excerpt from Downing (1983) follows:

"Tectonically, the Bowser-Hazelton contact appears to be a thrust zone with Bowser sediment "slices" occurring within and overlying the Hazelton volcaniclastics to the west. No Hazelton rocks were noted overlying the Bowser sediments to the east. The Bowser sediments include shale, silt-mudstone, wacke and conglomerate while andesitic to rhyolitic tuffs and flows, limestone and argillite make up the Hazelton assemblage. The predominant dip direction of bedding in the Bowser sediments is northeasterly. Along the west fork to Surprise Creek, the Hazelton-Bowser contact is well preserved--tuffs and coarse tuff breccia overlain by a basal conglomerate grading to wacke-silt-mudstone-shale.

Several medium to coarse-grained porphyritic (potash feldspar) quartz monzonite and biotite granodiorite stocks occur along the contact zone. Other intrusives include augite to hornblende plagioclase porphyries of possible volcanic origin and northwest trending lamprophyre and hornblende porphyry dykes which in places form a dyke swarm, all of which occur predominantly south of the Stewart highway (Nelson-Porter-Willoughby Creeks area). [Note: Downing uses "Porter" to describe Del Norte Creek--this is an alternative name].

Metamorphism is predominantly of the greenschist facies on a regional scale. Andalusite occurs in the argillites on the west

LEGEND for Figure # 3
SEDIMENTARY AND VOLCANIC ROCKS (atter Grove, 1986)
QUATERNARY
20 UNCONSOLIDATED DEPOSITS; RIVER FLOODPLAIN, ESTUARINE, RIVER CHANNEL AND TERRACES, ALLUVIAL FANS, DELTAS AND BEACHES, OUTWASH, GLACIAL LAKE SEDIMENTS, TILL PEAT, LANDSLIDES, VOLCANIC ASH, HOTSPRING DEPOSITS
U O N 19 2 U U
O PLEISTOCENE AND RECENT
JURASSIC
HAZELTON GROUP
UPPER JURASSIC
NASE FORMATION SILTSTONE, GREYWACKE, SANDSTONE, SOME CALCARENITE, ARGIL- LITE, CONGLOMERATE, MINOR 'LIMESTONE, MINOR COAL (INCLU- DING EQUIVALENT SHALE, PHYLLITE, AND SCHIST)
MIDDLE JURASSIC SALMON RIVER FORMATION
16 SILTSTONE, GREYWACKE, SANDSTONE, SOME CALCARENITE, MINOR LIMESTONE, ARGILLITE, CONLOMERATE, LITTORAL DEPOSITS
15 RHYOLITE, RHYOLITE BRECCIA; CRYSTAL AND LITHIC TUFF
BETTY CREEK FORMATION
14 PILLOW LAVA, BROKEN PILLOW BRECCIA (4); ANDESITIC AND BAS
GREEN, RED, PURPLE, AND BLACK VOLCANIC BRECCIA, CONLOM- GERATE, SANDSTONE, AND SILTSTONE (6); CRYSTAL AND LITHIC TUFF (6); SILTSTONE (6); MINOR CHERT AND LIMESTONE (IN- CLUDES SOME LAVA (+14)] (6)
LOWER JURASSIC
UNUK RIVER FORMATION
T22 GREEN, RED, AND PURPLE VOLCANIC BRECCIA, CONGLOMERATE, SANDSTONE, AND SILTSTONE (1); CRYSTAL AND LITHIC TUFF (6); SANDSTONE (1); CONGLOMERATE (6); LIMESTONE (6); CHERT (1); MINOR COAL (6)
TIT PILLOW LAVA LA: VOLCANIC FLOWS (6)
TRIASSIC
UPPER TRIASSIC
TAKLA GROUP (7)
10 SILTSTONE, SANOSTONE, CONGLOMERATE (6); VOLCANIC SILT- STONE, SANOSTONE, CONLOMGERATE (6); AND SOME BRECCIA (6); CRYSTAL AND LITHIC TUFF (6); LIMESTONE (6)
PLUTONIC ROCKS
OLIGOCENE AND YOUNGER
GRANODIORITE (2) EASALT (2)
O EOCENE (STOCKS, ETC.) AND OLDER
O EOCENE (STOCKS, ETC.) AND OLDER O OUARTZ-DIORITE (4); GRANODIORITE (4); MONZONITE (4); OUARTZ O B OUARTZ-DIORITE (4); AUGITE DIORITE (4); FELDSPAR PORPHYRY (1)

L

7

---. .

.

.

COAST PLUTONIC COMPLEX: GRANODIORITE (); QUARTZ DIORITE (); QUARTZ MONZONITE, SOME GRANITE (); MIGMATITE - AGMA-TITE (d)

. . .

fork to Surprise Creek. Biotite hornfels zones are associated with a majority of the quartz monzonite-granodiorite stocks.

The east-west flowing Strohn and Bear Creeks (Stewart highway section) occur along a major tectonic break which transects the northerly trending structural fabric in the Stewart area. The sense and amount of displacement along this break (strike slip fault?) is unknown. Displacement along the Bowser-Hazelton contact in the Willoughby-Bowser Lake area is unknown, however, offset along this contact on the Long Lake fault north of Stewart indicates approximately 1500 feet (Grove, 1971). A dominant pyritic shear zone up to ten meters across occurs near the Hazelton-Bowser contact from Willoughby to Porter Creeks."

Property location relative to regional geology is shown on Fig. 3.

B. Property Geology

The local geology of the property area was sketched by Dr. Mandy, B.C. Department of Mines in 1939 (Ref. 7). Mandy shows the major volcaniclastic-sediment (Hazelton-Bowser) contact running roughly north-south, about 1,000m or so east of the Legal Post for the Croesus claims. The volcaniclastics are described as a sequence of andesitic breccia (some lava), andesite, andesite tuff and lava locally pyritized and silicified, carbonate tuff locally pyritized and transitional tuffs/argillites.

Mapping in 1991 for Goodgold/Teuton by Brian Game provided a more detailed version of Mandy's observations and incorporated modern geological nomenclature. Game's mapping showed a roughly NNW trending strike to two major units, the Betty Creek Formation (on the west) and the overlying Salmon River Formation (on the east). The Betty Creek Formation was refined into five sub-units: 3a-plagioclase porphyry intermediate flows (andesite); 3b-intermediate ash lapilli and plagioclase crystal tuffs; 3c--3e--strongly phyllic-argillic 3d--argillite; and, agglomerate; Similarly, the Salmon River Formation was altered volcanics. divided into four sub-units: 2a--argillite, laminated mudstone; 2b-2c--siltstone; and, pebble 2d--chert argillite; -cherty A third unit, the Ashman Formation, consisting of conglomerate. argillite and intraformational conglomerates was observed in outcrop in the southeast corner of the Bullion zone area. Several plagioclase hornblende porphyry dykes were also mapped in this locality.

Prospecting in 1991 1km west of the Bullion zone disclosed a zone on the north side of the Del Norte Glacier marked by a series of blood-red discolored, resistive knobs jutting out of the glacial hardpan. Within this zone, a sub-area was discovered and subsequently named the "Crackle Zone" because it featured a network of quartz stringers/veins (approx. 6 per 3m section), varying from 1 to 15 cm in width, within a silicified crystal tuff (Betty Creek Formation). The stringers/veins were observed to contain medium to coarse-grained inclusions of chalcopyrite, pyrite and to a lesser extent massive coarse-grained magnetite plus or minus arsenopyrite. Dip was observed as generally 40-50 degrees to the west with a north-south strike. Observed outcrop of the Crackle Zone was about 50 by 100m, possible extensions obscured by glacial hardpan, overburden and snow/ice. Work in 1993 extended the range of these stringers/veins considerably. A large area surrounding the Crackle Zone is marked by pervasive propylitic and argillic alteration.

During the 2002 program, prospecting west of the Kosciuszko zone disclosed a belt of felsic volcanics, tentantively identified as the Mt. Dilworth Formation. These rocks were also seen in core from Holes 4-7. In other parts of the Stewart Complex, the Mt. Dilworth Formation is found adjacent to the base of the Salmon River Formation, but it had not previously been identified in the Del Norte-Nelson Creek area.

C. Rock Geochemistry

a. Introduction

Reconnaissance rock geochemical samples were taken in 2002 in and around an area newly exposed by retreating ice. Tracing of float samples quickly led to the discovery of the Kosciuszko zone, a quartz sulphide cemented breccia in argillite near the base of the Salmon River Formation. Results from this work are shown at a scale of 1:5000 on Fig. 4.

Altogether 99 samples were taken: 24 float, 33 chip and 42 grab. Locations for the samples were tied into a base map, where possible, with the help of a portable GPS unit.

b. Treatment of Data

Geochemical reconnaissance sampling results are presented in this report on Figs. 4 and 5 at a scale of 1:5,000. A table in both Figs. 4 and 5 shows gold values in ppb (opt in boldface, where applicable), silver values in ppm (opt in boldface, where applicable), and arsenic, copper, lead and zinc values in ppm (% in boldface, where applicable).

As in other small-scale surveys, a statistical treatment according to standard methods was not deemed practical. In lieu of such treatment, the author has simply chosen anomalous levels by reference to several rock geochemical programs conducted over other properties in the Stewart region over the past ten years. On this basis, anomalous levels are indicated below:

Element

Anomalous Above*

Gold Silver Arsenic Copper Lead Antimony Zinc 100 ppb 3.6 ppm 120 ppm 200 ppm 160 ppm 100 ppm 320 ppm

* Anomalous ranges will vary greatly according to rock type. For this reason, defining anomalous levels for any particular property based on regional averages is somewhat arbitrary.

c. Sample Descriptions

NOTE: For reference, element values for Au, Ag, As, Cu, Pb, Sb and Zn have been appended below the sample descriptions where any one of the six elements exceeds 2X the anomalous threshold indicated in the previous section (with all of those elements reporting 2X threshold highlighted in bold).

A02-55 Float of black argillite with 1-2% of extremely fine grained disseminated sulphides, also yellow stain on fractures.

Au	-	230	ppb	Ag	-	1.6 ppm
As		35	ppm	Cu	-	48 ppm
Pb	_	16	ppm	Sb	-	5 ppm
Zn	-	428	ppm			

A02-56 Float of argillite with 1-2 % of disseminated cubic pyrite.

Au	-	5 ppb	Ag	-	0.4 ppm
As	-	5 ppm	Cu	-	17 ppm
Pb	-	20 ppm	Sb	-	10 ppm
Zn	-	86 ppm			

A02-57 Float of argillite with 3-5 % of fine disseminated pyrite

Au	-	5	ppb	Ag	-	1.2 ppm
As	—	25	ppm	Cu	_	46 ppm
Pb		28	ppm	Sb	-	10 ppm
Zn		215	ppm			-

A02-58

Very angular float of quartz vein 25-30 cm in diameter. Except quartz the boulder consists of 20-25% limonite, 5-7% galena and malachite azurite stain

Au	-	0.458 c	oz/t	Ag		195.39	oz/t
As	-	1450 p	nqc	Cu	_	7521	ppm
Pb		17.10	~ સ્ટ	Sb		7640	ppm
Zn	***	12.70	8				

A02-59 Grab from carbonaceous argillite with 1-2% of fine grained pyrite forming disseminations and 1-3 mm wide bands.

Au		625	ppb	Ag	-	7.29	oz/t
As	-	90	ppm	Cu	-	236	ppm
Pb	-	4392	ppm	Sb	-	275	ppm
Zn	-	3071	ppm				

A02-60 Grab from irregular quartz-carbonate veining hosted in argillite. No sulphides.

Au	-	150 ppb	Ag	-	1.65	oz/t
As	-	10 ppm	Cu	-	56	ppm
Pb	-	938 ppm	Sb	-	55	ppm
Zn	-	851 ppm				

A02-61 Grab from pyrite rich (10-15%) pod 20 cm across hosted in argillite

Au	-	35	ppb	Ag	-	6.6 ppm
As	-	310	ppm	Cu	-	49 ppm
Pb	_	72	ppm	Sb.	-	5 ppm
Zn	-	208	ppm			

A02-62 Chip 0.4 m across limonitic quartz vein hosted in argillite/siltstone. Vein thickness ranges from 5 to 40 cm, orientation 20/shallow to W.

Au	_	20	ppb	Ag		2.8	ppm
As	-	20	ppm	Cu	-		ppm
Pb	-	50	ppm	Sb	_	5	ppm
Zn	-	50	ppm				

A02-63 LG vein. Chip sample 1.0 m long over at least 1.0 m wide (footwall covered by overburden) shear replacement quartz vein hosted in argillite/siltstone. The vein contains locally up to 5% galena and up to 3% pyrite. In places the vein contains abundant limonite and carbonaceous substance. Vein orientation 350/steep W.

Au - 0.405 oz/t Ag - 15.92 oz/t

As	-	235	ppm	Cu	-	935 ppm
Pb	-	6346	ppm	Sb	-	830 ppm
Zn	_	1.82	- 8			

A02-64 Grab from sheared carbonaceous argillite with 5-10% of disseminated to semi-massive pyrite

Au	-	35 ppb	Ag	-	1.4 ppm
As	-	170 ppm	Cu	-	47 ppm
Pb	~	32 ppm	Sb	-	5 ppm
Zn	~	586 ppm			

A02-65 Chip 1.0 m across very limonitic argillite with yellowgreenish stain on fractures.

Au		65	ppb	Ag		2.6 ppm
As	~	25	ppm	Cu	-	56 ppm
$^{\mathrm{Pb}}$	~	28	ppm	Sb	-	5 ppm
Zn	~	247	ppm			

A02-66 Chip 0.25 m across quartz vein, limonitic, no visible sulphides.

Au	-	0.082	oz/t	Ag	-	4.84	oz/t
As	-	4190	ppm	Cu	_	160	ppm
Pb	-	3860	ppm	Sb	-	185	ppm
Zn	-	508	ppm				

A02-67 Grab from a pod 1.8 m across of quartz replacement with 5-10% galena and 3-5% sphalerite. The pod is located several metres from Kosciuszko zone.

Au	_	0.567	oz/t	Ag		50.74	
As		440	ppm	Cu		944	ppm
Pb	_	3.65	- 8	Sb	-	1805	ppm
Zn		2.85	ક				

A02-68 Grab from Kosciuszko zone,. The sample contain 5-10 % galena, 3-5% pyrite and minor sphalerite in a gangue of quartz.

Au	-	0.232	oz/t	Ag	-	14.64 oz/t
As	-	2405	ppm	Cu	-	118 ppm
\mathbf{Pb}	-	4.48	સ	Sb	-	570 ppm
Zn	-	1.83	ક			

A02-69 Angular float of quartz boulder measuring 20 by 70 cm with minor galena and some limonite.

Au - 0.070 oz/t Ag - 20.12 oz/t

As		200 ppm	Cu	-	1379 ppm
Pb	-	6710 ppm	Sb	-	1165 ppm
Zn	_	1325 ppm			_

A02-70 Chip 1.1 m across limonitic quartz vein striking 10 degrees and dipping vertically. The vein is 1 to 2 m wide and can be traced for 10 metres. It is terminated on both ends by talus.

Au	-	120 ppb	Ag	-	21.2 ppm
As	-	250 ppm	Cu	-	41 ppm
Pb	-	218 ppm	Sb	-	40 ppm
Zn	-	171 ppm			

A02-71 Grab from limonitic small irregular veining hosted in andesitic rocks.

Au	-	85 ppb	Ag	-	4.2 ppm
As		5 ppm	Cu	-	28 ppm
Pb	-	80 ppm	Sb	_	15 ppm
Zn	_	45 ppm			

Chip across 15 cm wide quartz vein striking 60 degrees A02-72 with shallow W dip. It contains 10-15 % limonite. There are also numerous thin 0.5-1.0 cm wide quartz veinlets oriented parallel to the sampled vein.

Au	-	10 ppb	Ag	-	3.2 ppm
As		25 ppm	Cu	-	23 ppm
Pb		42 ppm	Sb	-	10 ppm
Zn	-	68 ppm			

A02-73 Chip across 0.3 m wide shear replacement vein composed of sericite, chalcedonic silica and limonite. The vein is visible over 7-8 m and occupies a portion of much wider shear zone running along the bottom of a creek i.e. 340/vertical.

Au	-	205	ppb	Ag		1.2 ppm
As	_	10	ppm	Cu		112 ppm
Pb	-	38	ppm	Sb	-	15 ppm
Zn	-	68	ppm			

A02-74

Grab from the main shear zone (going along the bottom of the creek) replaced by quartz, carbonates and limonite.

Au	-	15 ppb	Ag	-	0.6 ppm
As	-	5 ppm	Cu	-	39 ppm
Pb	-	18 ppm	Sb		5 ppm
Zn	-	83 ppm			

Au	-	10 ppb	Ag	-	0.2 ppm
As	-	5 ppm	Cu	-	23 ppm
Pb	-	14 ppm	Sb	-	5 ppm
Zn		81 ppm			

A02-76 Grab from 2 cm wide quartz-limonite vein. Orientation 20/shallow W.

Au	-	10	ppb	Ag	~	0.2 ppm
As	-	150	ppm	Cu		5 ppm
Pb	-	18	ppm	Sb	~	10 ppm
Zn	-	48	ppm			

A02-77 Grab from sericite-quartz-carbonate-limonite altered andesitic rock.

Au	-	4 ppm	Ag	-	0.6 ppm
As	-	45 ppm	Cu	-	41 ppm
Pb	-	14 ppm	Sb		5 ppm
Zn	_	95 ppm			

A02-78 Angular float of quartz vein with 1-2 % galena and some limonite.

Au	-	0.784	oz/t	Ag	-	21.87	oz/t
As	_	60	ppm	Cu	-	125	ppm
Pb	-	3.08	-8	Sb	-	655	ppm
Zn	-	71	ppm				

A02-79 Grab sample from LG vein consisting of limonitic quartz with 2-3% galena. The vein is at least 0.8 m wide, footwall covered by talus.

Au	-	0.426	oz/t	Ag	-	35.58 oz/t
As	-	715	ppm	Cu		1728 ppm
Pb	-	3.95		Sb	-	2500 ppm
Zn	-	8.65	÷			

A02-80 Chip 1.2 m from LG vein located right on the contact between andesites and argillites. Footwall is not exposed. The sample contains an average <1% galena and <1% pyrite.

Au	_	0.207	oz/t	Ag	-	8.40 oz/t
As	-	170	ppm	Cu	-	529 ppm

Pb	-	3356 ppm	Sb	-	425 ppm
Zn		3320 ppm			

A02-81 Chip 1.1 m across LG vein. The sample contains an average <1% galena, <1% pyrite, some limonite and malachite stain

Au	-	0.227	oz/t	Ag	-	24.50 oz/t
As	-	440	ppm	Cu	-	1267 ppm
РЬ	-	6712	ppm	Sb	-	1310 ppm
Zn	-	3515	ppm			_

A02-82 Several metres from Kosciuszko zone. Chip 1.3 m from mineralized argillite adjacent to dacite dyke. Sample averages <1% galena and <1 % pyrite, strong limonite. Mineralization is concentrated in quartz replacements.

Au	-	0.170	oz/t	Ag	-	9.33 oz/t
As	-	2175	ppm	Cu	-	346 ppm
₽b	-	9918	ppm	Sb	-	430 ppm
Zn	-	1239	ppm			

A02-83 Kosciuszko zone. Chip 0.5 m across heavily mineralized quartz vein. It contains an average of 5-10% galena, 5-10% tetrahedrite, abundant limonite and malachite stain. Vein orientation 25deg/vert

Au	-	3.412	oz/t	Ag -	155.73 oz/t
As	-	2490	ppm	Cu -	5665 ppm
Pb	-	5.98	8	Sb -	6775 ppm
Zn	-	1.07	€		

A02-84 Chip 1.0 m from Kosciuszko zone. Combined sulphide content 10-15 %, sulphides include: galena, sphalerite, pyrite and tetrahedrite. The rock is a guartz cemented breccia.

Au	-	0.178	oz/t	Ag	-	13.15 oz/t	
As	-	6775	ppm	Cu	-	256 ppm	
Pb	-	3.47	8	Sb	-	2095 ppm	
Zn	-	1.35	ક				

A02-85 Chip 1.85 m from Kosciuszko zone. It is a quartz cemented breccia with an average 5-10% of combined galena, sphalerite, pyrite and tetrahedrite.

Au	-	0.128 oz/	t Ag	-	2.95 oz/t
As	-	2115 ppm	Cu	-	103 ppm
Pb	-	4384 ppm	Sb	-	120 ppm
Zn		4225 ppm			

A02-86

Chip 1.2 m from the bottom part of Kosciuszko zone. The sample is of quartz cemented breccia and quartz replacements. Average sulphide content - 5-7% (pyrite, galena, sphalerite).

Au	-	0.125	oz/t	Ag	-	13.47 oz/t
As	~	2115	ppm	Cu	-	598 ppm
Pb	~	1.59	- 8	Sb	-	615 ppm
Zn	**	1.45	€			-

A02-102 Very angular piece of float with 30-40 % of sulphides which include galena, tetrahedrite lesser chalcopyrite and pyrite. Gangue minerals include quartz lesser carbonates.

Au	-	0.487	oz/t	Ag -	-	170.90	oz/t
As	***	540	ppm	Cu -	-	8343	ppm
Pb	-	8.16	ે સ્ટ	Sb -	-	1630	ppm
Zn	-	2.59	ક				

A02-103 Chip across 0.6 m wide quartz-carbonate replacement vein occupying a part of a shear zone. It contains minor pyrite and some limonite. Vein orientation 320/v to steep S.

Au	-	520	ppb	Ag	-	1.37	oz/t
As	-	2660	ppm	Cu	-	89	ppm
Pb	-	606	ppm	Sb	-	25	ppm
Zn	-	470	ppm				

A02-104 Chip 2.3 m from the trench completed over a quartz vein with less than 1 % of combined galena and pyrite. Vein orientation 330/steep S dip, the vein turns N uphill and pinches out. On the other end it disappears under the snow.

Au	_	0.076	oz/t	Ag	-	6.42	oz/t
As	-	1095	ppm	Cu	-	138	ppm
Pb	-	1.47	ેક	Sb	_	150	ppm
Zn	-	6807	ppm				

A02-105 Float of quartz stockwork hosted in argillite. No sulphides, some limonite.

Au	-	110 ppb	Ag		9.0 ppm
As	-	345 ppm	Cu	-	18 ppm
Pb	-	284 ppm	Sb	_	15 ppm
Zn	-	264 ppm			

A02-106 Angular float, fragment of quartz vein with drusy cavities. It contains 3-5% of combined galena, tetrahedrite and lesser sphalerite.

Au		0.297	oz/t	Ag -	115.49	oz/t
As	-	645	ppm	Cu -	7814	ppm
Pb	-	1.11	ક	Sb -	7415	ppm
Zn	-	2535	ppm			

A02-107 Float of quartz cemented argillite breccia. No sulphides, abundant limonite.

Au	-	80 ppb	Ag	 7.6 ppm
As	_	70 ppm	Cu	 211 ppm
Pb	-	138 ppm	Sb	 35 ppm
Zn	-	342 ppm		

A02-108 Float of quartz cemented breccia, Argillite (?) fragments dominate, there are also fragments of altered felsic (?) rock, a few fragments are composed of limonite.

Au	-	60	ppb	Ag	-	5.6 ppm
As	_	65	ppm	Cu	-	534 ppm
Pb	-	698	ppm	Sb	-	255 ppm
Zn	_	122	ppm			

A02-109 Large, angular float of quartz cemented argillite breccia, abundant vugs partly filled with limonite.

Au	-	80	ppb	Ag	-	5.2	ppm
As	_	75	ppm	Cu		391	ppm
Pb	-	1362	ppm	Sb	-	40	ppm
Zn		1.04	ક				

A02-110 Grab sample from 10 cm wide, banded quartz-limonite vein. Orientation 30/vert.

Au	-	60	ppb	A	lg −	3.0) ppm
As		10	ppm	C	'u –	13	3 ppm
Pb	-	482	ppm	S	ib -		5 ppm
Zn	-	274	ppm			•	

A02-111 Grab from a small pod of quartz replacement with abundant limonite.

Au	-	40 ppb		Ag	-	0.8 ppm
As	-	15 ppm		Cu	-	10 ppm
Pb	-	32 ppm	-	Sb	-	5 ppm
Zn	-	37 ppm				

A02-112 Grab from a small quartz-sericite-limonite pod.

Au	_	0.002	oz/t	Ag	_	0.8 ppm
As	-	195	ppm	Cu	-	28 ppm
Pb	_	60	ppm	Sb	_	5 ppm
Zn	-	225	ppm			

A02-113 Chip across 30 cm wide quartz vein with average 5% galena and some limonite.

Au	-	0.060	oz/t	Ag	-	31.38	oz/t
As	-	100	ppm	Cu	-	844	ppm
Pb	-	8.65	8	Sb	-	925	ppm
Zn	-	4.03	ક્ર				

A02-114 Chip across 0.2 m wide quartz vein with some limonite, no sulphides.

Au	-	31	ppb	Ag	-	1.65 oz/t
As		70	ppm	Cu	-	75 ppm
Pb	-	1992	ppm	Sb	-	35 ppm
Zn		522	ppm			

A02-115 Chip 0.2 m across limonitic quartz vein with minor (<1%) tetrahedrite and malachite. Orientation 0/vert. to steep W.

Au	-	0.226 0	oz/t	Ag	-	31.38	oz/t
As	-	105 p	pm	Cu	-	1704	ppm
Pb	-	4442 p	pm	Sb	-	1045	ppm
Zn	-	842 p	ppm				

A02-116 [Sample description lost]

Au	-	34 ppb	Ag	-	5.0 ppm
As	-	50 ppm	Cu	-	12 ppm
Pb		50 ppm	Sb	-	10 ppm
Zn	-	86 ppm			

A02-117 Chip across 0.2 m wide, banded quartz vein with 1% combined tetrahedrite and galena

Au	-	0.038	oz/t	Ag	-	22.40 oz/t
As	-	110	ppm	Cu	-	1370 ppm
Pb	-	1.01	8	Sb	-	290 ppm
Zn	-	430	ppm			

Samples A02-118 to 123 constitute a continuous chip line completed across the bottom part of Kosciuszko zone.

A02-118 Chip 2.0 m from quartz cemented argillite breccia with 5% sulphides which include galena, pyrite, sphalerite and minor tetrahedrite: also abundant limonite. Sporadically there are vuggy cavities with quartz crystals.

Au	-	0.266	oz/t	Ag		26.92	
As		2148	ppm	Cu	-	769	ppm
Pb	-	1.90	&	Sb	-	1326	ppm
Zn	-	7834	ppm				

A02-119 Same as A02-118

Au	-	0.277 oz/	t Ag	-	45.15	oz/t
As	-	1930 ppm	Cu	_	1933	ppm
Pb	-	5.12 %	Sb		1818	ppm
Zn	-	2.30 %				-

A02-120 Chip 2.0 m from argillite locally brecciated and cemented by quartz with 1-2 % sulphides which include galena and pyrite. Sporadically vuggy cavities with quartz crystals.

Au	-	0.124 oz/t	Ag		2.40 oz/t
As	-	1173 ppm	Cu	-	86 ppm
Pb	-	3938 ppm	Sb	-	82 ppm
Zn	•	2236 ppm			

A02-121 Chip 2.0 m across argillites with local quartz replacements containing minor pyrite and galena (<1%). Also some limonite-mostly on fractures.

Au	-	0.052	oz/t	Ag	-	1.21	oz/t
As	-	1215	ppm	Cu	-	83	ppm
Pb	-	1538	ppm	Sb	-	43	ppm
Zn	-	1937	ppm				

A02-122 Same description as previous sample.

Au	-	0.176	oz/t	Ag	-	16.48 oz/	't
As	-	112	ppm	Cu	-	780 ppm	1
Pb	-	2322	ppm	Sb	-	580 ppm	l
Zn	-	6258	ppm				

A02-123 Chip 1.4 m across argillite with limonitic stain.

Au	-	490	ppb	Ag	-	9.2 ppm
As	-	775	ppm	Cu	_	52 ppm
· · · Pb		534	ppm	Sb	-	14 ppm
Zn	-	1187	ppm			

A02-124 Grab from completely quartz-sericite-pyrite altered rock. Pyrite content 2-3%.

Au	-	60 ppb	Ag	-	1.3 ppm
As	-	27 ppm	Cu	-	41 ppm
Pb	_	52 ppm	\mathbf{Sb}	-	3 ppm
Zn	_	10 ppm			

A02-125 Same as A02-124

Au	-	250 pj	dc	Ag	-	3.0	ppm
As	-	30 p	om	Cu	—	23	ppm
Pb	-	327 p	om	Sb	—	3	ppm
Zn	-	32 pi	pm				

A02-126 Grab from completely quartz-sericite-pyrite altered rock. Pyrite content 2-3%. There is also a trace amount of very fine grained galena and tetrahedrite(?).

Au	-	0.062	oz/t	Ag	-	19.4	
As		34	ppm	Cu	-	1031	ppm
Pb	-	5208	ppm	Sb	_	18	ppm
Zn	-	1223	ppm				

A02-127 Chip 1.0 m across 3.0 m wide bleached zone composed of sericite and clays. No sulphides nor limonite. Zone orientation 320/v.

Au		23 ppb	Ag	-	2.2 ppm
As	—	21 ppm	Cu	-	5 ppm
Pb	_	72 ppm	Sb	-	3 ppm
Zn		32 ppm			

A02-128 Chip across 1.5 m across limonitic part of the zone adjacent to bleached zone sampled by A02-127. The sample consists of sericite, clays and limonite.

Au	-	360 ppb	Ag	-	4.2 ppm
As	-	52 ppm	Cu	-	156 ppm
Pb	-	752 ppm	Sb		3 ppm
Zn	-	581 ppm			

A02-129 Grab from completely quartz -sericite-limonite altered rock.

Au	-	45 ppb	Ag	-	7.1 ppm
As	-	64 ppm	Cu	-	112 ppm
Pb	-	67 ppm	Sb	-	27 ppm
Zn	- - ,	210 ppm			

A02-130 Grab from 10 to 30 cm wide quartz vein, some limonite, no sulphides. Orientation 60/v.

Au	-	90 ppb	Ag	-	23.1 ppm
As	-	73 ppm	Cu	-	258 ppm
Pb		289 ppm	Sb	-	99 ppm
Zn	-	514 ppm			

A02-131 Chip across 0.2 m wide quartz vein with < 1% pyrite and some limonite. Vein exhibits platy foliation. Orientation N-S/steep dip to W.

Au	_	1120 ppb	Ag	-	28.4 ppm
As	-	190 ppm	Cu	-	225 ppm
Pb	-	449 ppm	Sb	-	56 ppm
Zn	-	266 ppm			

A02-132 Grab from quartz-carbonate-limonite-replacement vein. No sulphides,. Vein width 30-40 cm, orientation 10/v.

Au		85 ppb	Ag	-	1.0 ppm
As	-	29 ppm	Cu	-	13 ppm
Pb	_	22 ppm	Sb	—	7 ppm
Zn	-	44 ppm			

A02-133 Chip from quartz vein 0.2 m wide with 1% galena. Orientation 140/v.

Au	-	0.793 oz	/t Ag	-	14.18 oz/t
As	-	2932 pp	m Cu	-	441 ppm
Pb	-	1.38 *	s Sb	-	759 ppm
Zn	-	1830 pp	m		

A02-134 Float of quartz replaced rock with < 1% galena, which tend to be concentrated in quartz-carbonate veinlets.

Au	_	380 ppb	Ag	-	6.36 opt
As	-	147 ppm	Cu	-	234 ppm
Pb	-	9644 ppm	Sb	-	245 ppm
Zn	-	943 ppm			

A02-135 Chip 0.5 m across limonitic quartz replaced rock. No sulphides. It constitutes a part of a silicified shear zone running along the bottom of a creek.

Au	-	190 ppb	Ag	-	19.1 ppm
As		122 ppm	Cu		26 ppm
Pb	_	258 ppm	Sb	-	29 ppm
Zn		300 ppm			

A02-136 Grab from 10 cm wide quartz vein with < 1% galena and tetrahedrite. Vein orientation 30/steep W. It is situated on the edge of the main zone.

Au	-	120 ppb	Ag	-	5.28 oz/t
As	-	48 ppm	Cu		290 ppm
Pb	-	9390 ppm	Sb	-	277 ppm
Zn	-	447 ppm			

A02-137 Chip 1.0 m from the main zone. The sample consists of argillite/siltstone to large extent replaced by quartz. Some limonite, no sulphides.

Au	-	225 ppb	Ag	_	3.1 ppm
As	-	114 ppm	Cu		16 ppm
Pb	-	119 ppm	Sb	-	6 ppm
Zn	-	163 ppm			

A02-138 Grab from 10 cm wide quartz vein with < 1% galena. The vein, hosted in argillites is oriented 160/steepW. It can be seen for only 10 metres. Both ends are terminated by snow and talus. Along the footwall of the vein there is a 1.0 m wide zone of quartz stringers.

Au	-	0.087	oz/t	Ag	-	39.08	oz/t
As	-	255	ppm	Cu	-	461	ppm
Pb	-	1.26	ક	Sb		1310	ppm
Zn	-	502	ppm				

A02-139 Chip 1.0 m from the zone of quartz stringers within argillite.

Au	-	130 ppb	Ag		8.3 ppm
As	~	595 ppm	Cu	-	32 ppm
Pb	-	132 ppm	Sb	-	15 ppm
Zn	~	185 ppm			

A02-140 Chip across 15 cm wide quartz vein with 1 % combined galena and tetrahedrite. Orientatiion 330/shallow.

Au	 0.129	oz/t	Ag	-	15.69	oz/t
As	 450	ppm	Cu	-	510	ppm
Pb	 1.32	- - &	Sb	-	1555	ppm
Zn	 1801	ppm				

A02-141 Float of altered andesite pyroclastics with 1 cm wide quartz-pyrite vein.

Au	~	100 ppb	Ag	-	4.0 ppm
As		15 ppm	Cu	-	266 ppm
Pb	-	84 ppm	Sb	-	5 ppm

Zn - 1288 ppm

A02-142 Float (small piece) of quartz vein with 1% galena and pyrite.

Au	-	130 ppb	Ag	_	1.74 oz/t
As	-	5 ppm	Cu	-	118 ppm
Pb	-	3.69 %	Sb	-	35 ppm
Zn	-	28 ppm			

A02-143 Float of quartz vein with 1-2 % of combined fined grained galena and tetrahedrite plus cubic pyrite. The rock contains 3-5 % of soft light green mineral.

Au	_	100	ppb	Ag	-	2.27 oz/t
As	_	5	ppm	Cu	-	175 ppm
Pb	-	4.71	ક્ર	Sb	-	25 ppm
Zn	-	48	ppm			

A02-144 Float of limonitic quartz vein with 15% coarse grained pyrite.

Au	-	240	ppb	Ag	-	1.17 oz/t
As	-	20	ppm	Cu		1374 ppm
Pb	-	220	ppm	Sb	-	5 ppm
Zn	-	94	ppm			

A02-145 Grab from limonitic sericite-clay gouge located in small gully.

Au	-	70	ppb	A	g	-	1.4	ppm
As	-	5	ppm	С	u	-	129	ppm
Pb	-	126	ppm	S	b	-	5	ppm
Zn	-	233	ppm					

A02-146 Chip sample (35 cm) across a big angular boulder measuring 90 by 50 by 35 cm. It contains an average of 25 % of combined tetrahedrite, galena and sphalerite in a gangue of quartz.

Au	-	0.362	oz/t	Ag	-	84.57	oz/t
As	 `	780	ppm	Cu		3665	ppm
Pb	-	6.69	2	Sb	-	4655	ppm
Zn	-	5.10	ક				

A02-147 Chip sample 0.5 m from argillite/siltstone with minor quartz replacements containing up to 3 % pyrite. This sample is an extension of chip line A02-118,-123 (Kosciuszko zone) to the west. 1

ł

.

Au	-	0.066	oz/t	Ag	-	1.16 oz/t
As		1420	ppm	Cu	-	39 ppm
\mathbf{Pb}	~	2130	ppm	Sb	-	55 ppm
Zn		2183	ppm			

- Samples A02-148 to 150 were collected to the south of Kosciuszko zone in Del Norte Valley.
- A02-148 Chip 0.6 m across limonitic quartz vein located on the contact of Betty Creek and Salmon River Formations (NMG vein ?). Orientation 350/v. steep W. The vein runs along the bottom of the creek and ranges in widths from 0.5 to 1.0 m. It locally contains galena and tetrahedrite up to 5%.

Au		0.074	oz/t	Ag	-	2.40 oz/t
As	~	110	ppm	Cu	-	114 ppm
Pb	-	1366	ppm	Sb	_	115 ppm
Zn		293	ppm			

A02-149 Float of quartz vein with minor galena. This float most likely did not came from NMG vein but from another vein up the hill.

Au	-	240	ppb	Ag	-	19.9 ppm
As		75	ppm	Cu	-	16 ppm
Pb	-	1476	ppm	Sb	-	20 ppm
Zn	-	1490	ppm			

A02-150 Float of quartz vein with 1 % of combined galena, sphalerite, tetrahedrite and pyrite.

Au	-	0.071	oz/t	Ag	-	3.19	oz/t
As	-	35	ppm	Cu	-	101	ppm
Pb	-	9263	ppm	Sb	-	120	ppm
Zn	-	6945	ppm				

MM02-01 Grab sample from one of a series of calcite-quartz veins 3 to 12 inches thick.

Au	 .	90 ppb	Ag	-	>30.0 ppm
As	-	20 ppm	Cu	-	11 ppm
Pb	-	210 ppm	Sb	-	10 ppm
Zn	-	208 ppm			

MM02-02 Grab sample from quartz vein 4 inches thick (the same series of veins but 30 metres higher)

Au	-	35 ppb	Ag	-	0.6 ppm
As	-	45 ppm	Cu	- '	4 ppm
Pb	-	68 ppm	Sb	-	5 ppm

MM02-03 Same as MM02-02

Zn

Au	-	30	ppb	Ag	_	0.2	ppm
As	-	5	ppm	Cu	-	4	ppm
Pb	-	36	ppm	Sb	_	- 5	ppm
Zn	-	26	ppm				

MM02-04 Grab from 8 inches wide quartz-carbonate vein hosted in argillite.

Au		80 j	ppb	Ag	-	2.4	ppm
As	_	15 j	ppm	Cu	-	4	ppm
Pb	-	116 j	opm	Sb	-	5	ppm
Zn	_	35 j	ppm				

MM02-05 Float of heavily mineralized rock with combined 25% galena, pyrite , sphalerite

Au		0.286	oz/t	Ag	-	13.01	oz/t
As	-	> 1.0	÷	Cu	_	1315	ppm
Pb	-	10.10	ક્ર	Sb	-	1110	ppm
Zn		10.30	8				

MM02-17 Boulder zone (located 50-70 m uphill from Kosciuszko zone). Grab from heavily mineralized portion of the zone.

Au	-	0.087	oz/t	Ag	-	22.86	oz/t
As	-	1320	ppm	Cu	-	821	ppm
Pb	-	9092	ppm	Sb	-	805	ppm
Zn	-	2.48	8				

MM02-18 Same as MM02-17

Au	-	0.126	oz/t	Ag	-	3.06 oz/t
As	-	765	ppm	Cu	-	66 ppm
Pb	-	8204	ppm	Sb	-	80 ppm
Zn	-	7106	ppm			

MM02-19 Angular float containing 5 cm wide vein with pyrite.

Au – As – Pb – Zn –	35 62	ppb ppm ppm	Ag Cu Sb	- - -	25	ppm ppm
------------------------------	----------	-------------------	----------------	-------------	----	------------

MM02-20 Small rounded boulder with orange bright stain, some galena and sphalerite. The rock contains square clasts of argillite and grey intrusive.

ł

Au		0.034	oz/t	Ag	-	4.07 oz/t
As	-	45	ppm	Cu	-	91 ppm
Pb	-	8550	ppm	Sb		150 ppm
Zn	-	7979	ppm			

MM02-21 Float. Fragment of quartz vein similar to sample MM02-20 but less sulphides (<1%).

Au	-	40 ppb	Ag		1.2	ppm	
As	-	40 ppm		Cu	-	11 ppm	
Pb	-	40 ppm		Sb	-	5 ppm	
Zn	-	101 ppm					

MM02-22 Float of quartz-carbonate vein with 40% sulphides.

Au	-	0.106	oz/t	Ag	r —	69.99	oz/t
As	-	620	ppm	Cu	. –	2680	ppm
Pb	-	10.80	સ્ટ	Sb) –	> 1.0	8
Zn	-	5.53	8				

MM02-23 Float of quartz carbonate vein with some pyrite.

Au	-	0.204 oz/t	Ag	-	23.16	oz/t
As	-	575 ppm	Cu	-	621	ppm
Pb	-	1.39 %	Sb	-	1000	ppm
Zn	-	554 ppm				

MM02-24 Grab from quartz vein with some pyrite

Au		20 ppb	Ag		5.6 ppm
As	-	5 ppm	Cu	-	11 ppm
Pb	-	172 ppm	Sb	-	15 ppm
Zn	-	82 ppm			

MM02-25 Float of quartz-carbonate vein with minor galena. Size of the boulder 20 by 40 cm, semi-rounded.

Au	_	90 ppb	Ag		20.4 ppm
As	_	5 ppm	Cu	-	141 ppm
Pb	-	2428 ppm	Sb	-	15 ppm
Zn	-	1678 ppm			

c. Discussion

Surface sampling of the Kosciuszko zone returned a promising grade of 0.179 oz/ton gold and 18.4 oz/ton silver over a width of 10.0m (cf. Fig. 4). Individual samples taken uphill from the 10m interval returned values ranging up to 3.42 oz/ton gold and 155.73 oz/ton silver over 0.5m (#A02-83). Steepness of the

terrain precluded extensive sampling uphill and downhill exposures of the north-northwesterly striking zone were obscured by snow and moraine.

Similar mineralization in float samples taken from boulders located approximately 400m to the east indicates the possible presence of another zone. Chip samples taken from the LG vein also contained significant amounts of gold and silver.

D. Drill Core Geochemistry

a. Introduction

Drill Holes DN02-1 to 3 were collared at elevation 1530m to explore the newly discovered gold-silver bearing Kosciuszko zone. Orientation of the holes is shown in an inset map entitled "Kosciuszko Zone, Geology, Sample and Drill Hole Locations", Fig. 4. Hole DN02-4 was from the same set up, but with an azimuth 180 degrees from the first two holes. It was primarily a geological hole to determine rock type under moraine to the west.

Three further holes, DN02-5 to 7 were attempted from a second pad (Pad #2, cf. Inset map "LG Vein", Fig. 4) but could not be completed due to technical difficulties. This led to the early curtailment of the planned 2002 program.

Altogether 358 m of thin wall BQ-size drilling was completed.

A summary of drill holes follows:

Hole #	Target	Azimuth (deg.)	Dip (deg.)	Length (m)
DN02-1	Kosciuszko zone	070	45	71.06
DN02-2	Kosciuszko zone	070	55	72.28
DN02-3	Kosciuszko zone	050	45	46.36
DN02-4	Geology hole	250	45	33.34
DN02-5	LG Vein	070	60	39.0*
DN02-6	LG Vein	. 070	65	60.0*
DN02-7	LG Vein	070	74	46.0*

*All holes abandoned short of target depth

b. Treatment of Data

Core from the holes was logged by Alex Walus, geologist. The most common assay interval was 1.50m, a few smaller or larger samples being taken where needed according to observed mineralization or structure. Detailed logs are presented in Appendix III.

The entire core for each hole was split and each sample run for

gold content (ppb tolerance) and 30 element ICP. Where necessary, further assays were undertaken. Portions of the core were diamond sawed and all holes were stored in a company-owned shed in Stewart.

Vertical sections for DDH DN02-1-3 are shown on Figs. 5 & 6

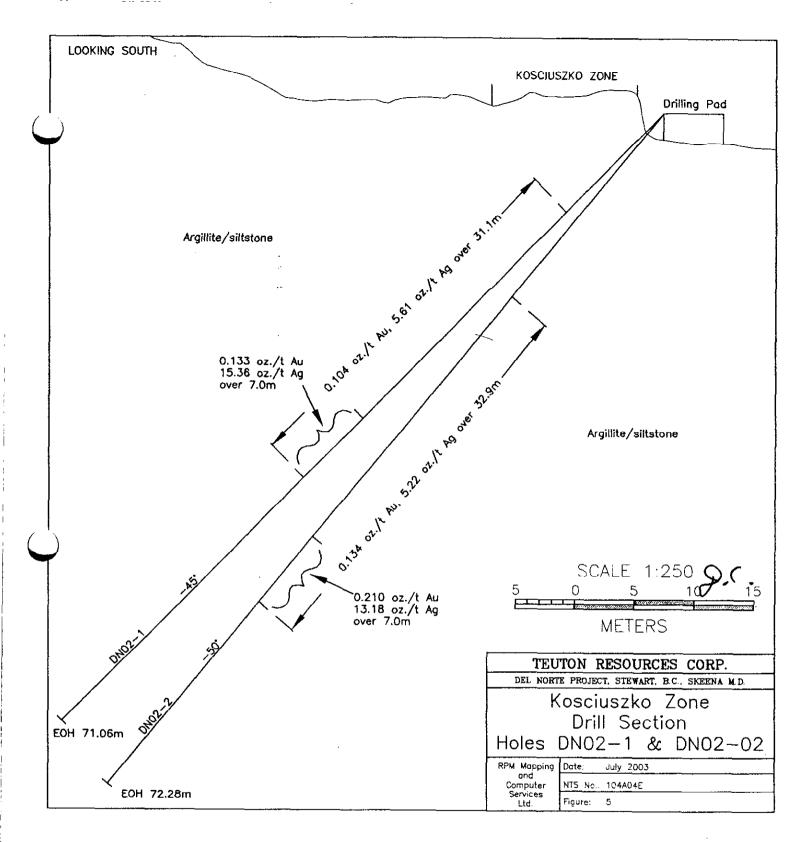
c. Discussion

Kosciuszko Zone

The first three holes all successfully intersected the Kosciuszko zone. Significant results are itemized below:

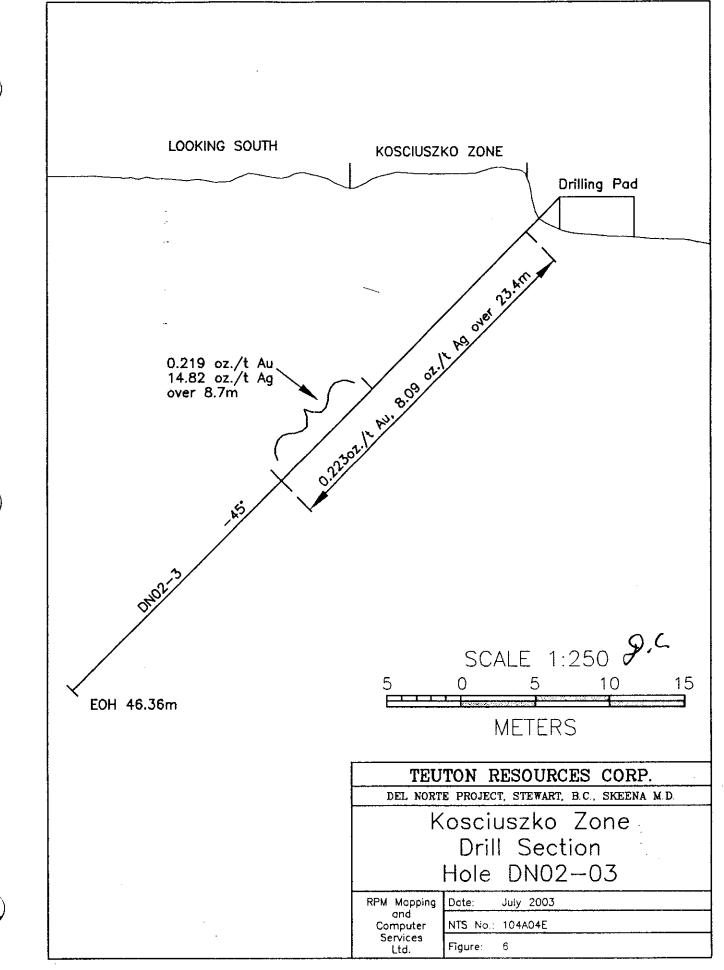
Drill Hole	Interval (metres)	Length (metres)	Length (feet)	Gold (oz/ton)	Silver (oz/ton)	Gold Equiv.* (oz/ton)
2002-1	11.9-43.0 including	31.1	102.0	0.104	5.61	0.185
	36.0-43.0	7.0	23.0	0.133	15.96	0.361
	42.0-43.0	1.0	3,3	0.324	46.55	0.989
2002-2	19.8-52.7 including	32.9	107.9	0.134	5.22	0.208
	33.0-40.0	7.0	23.0	0.210	13.18	0.398
2002-3	1.3-24.7 including	23.4	76.8	0.223	8.09	0.339
	16.0-24.7	8.7	28.5	0.219	14.82	0.431

* Based on 70:1 ratio between current gold and silver prices


Due to the steepness of the surface outcrop of the Kosciuszko zone, possible drill pad locations were very limited. The site finally chosen was picked for safety reasons, even though it meant the drill would be to some degree chasing the zone down dip. True widths for the first three holes are estimated at between 8-10m, in conformance with the 10m width indicated from surface sampling.

Both holes DN02-1 and DN02-2 had gold-silver mineralized intervals occurring above the main qtz-sulphide breccia. The significance of these results are not yet clear.

Hole DN02-4, a geology hole, did not intersect any significant mineralization.


LG Vein area

The target in this area was exposed in an inaccessible cliff face and was at first thought to be a possible extension of the

SCALE REDUCED 80%-TO FIT LETTER SIZE D.C.

()

Kosciuszko zone to the north (a large snow/ice field lying between precluded surface tracing of the zone). However, the mineralization is now thought to be the easterly extension of the LG vein, discovered during an earlier program. In any event, none of the three holes drilled from Pad#2 into this target were able to reach target depth because of technical difficulties and all had to be prematurely abandoned. No significant mineralization was encountered.

E. Field Procedure and Labratory Analysis

Analysis of core specimens collected during the 2002 program was carried out both at the Eco-Tech Laboratories facility in Kamloops and at the Pioneer Laboratories facility in Richmond, BC.

After standard rock sample preparation, the 30 element Inductively Coupled Argon Plasma analysis was intiated by digesting a 0.5 gm sub-sample from each field specimen with 3ml 3-1-2 HCl-HNO3-H20 at 95 deg. C for one hour, followed by dilution to 10 ml with water. The Atomic Absorption measurement for ppb tolerance gold was preceded by subjecting 10 gram samples to standard fire-assay preconcentration techniques to produce silver beads which were subsequently dissolved. Where required, assays were subsequently performed to test for individual metals using standard analytical techniques.

F. Conclusions

Results from the first three holes of the 2002 drill program on the Del Norte are encouraging and indicate potential for a gold-silver epithermal type deposit. Results from surface sampling suggest that other, similarly mineralized occurrences are located nearby.

Further work is warranted. This will entail comprehensive surface surveys, including prospecting, geological mapping, and trenching, in order to identify and prioritize drill targets. An initial allocation of 1,500m of drilling should be adequate to follow-up on the promising 2002 results.

Respectfully submitted,

manere

D. Cremonese, P.Eng. August 1, 2003

APPENDIX I - WORK COST STATEMENT

Field Personnel-Period Aug. 1 to Oct. 23, 2002: A. Walus, P. Geol., Geologist 60 days @ \$225/day 13,500 Merle Moorman, Prospector/Foreman 60 days @ \$265/day 15,900 Mason Grober, Field hand 1,200 10 days @ \$120/day D. Cremonese, P.Eng. (Supervision) 5,600 14 days @ \$400/day Helicopter - Vancouver Island Helicopters Various dates between Aug. 19 and Oct. 20, 2002 Crew/Drill/Equipment/Camp/Core Mob & Demob 76,733 78.1 hours @ \$982.49/hr. Drilling Costs (Contractor-Mtn. Boy Minerals) Footage Charge: 1,174 ft. @ \$15/ft 17,610 4,944 Drill Parts: 2,000 Pad Lumber: 2,000 Mob/demob allocation: 5,000 Hose/Pump Rental (Hy-Tech Drilling) 2,236 Expediting - Robert Moffatt 15,898 Food/Camp Supplies/Equipment Rental/Misc. 85%* of \$18,704.12 Workman's compensation 858 2.37% of \$36,200 1,640 Stewart Accommodation/Supplies/Telephone 4,164 Travel Costs (Personnel) Assay costs--Eco-Tech Labs Au geochem + 30 elem. ICP + rock sample prep 2,089 102 @ \$20.48/sample 528 Au assay: 59 @ \$8.95/sample 352 Ag assay: 44 @ \$8.00/sample 452 Pb & Zn assay: 60 @ \$7.53/sample Assay costs-Pioneer Labs Au geochem + 30 elem. ICP + rock sample prep 1,414 73 @ \$19.37/sample 462 Ag assay: 54 @ \$8.56/sample 102 Pb & Zn assay: 12 @ \$8.56/sample Report Costs Report and map preparation, compilation and research

D. Cremonese, P.Eng., 4.5 days @ \$400/day 1,800 Draughting-- RPM Computer 360 Copies, report, jackets, maps, etc. 35 TOTAL.....\$177,237

Amount Claimed Per Statement of Exploration #:

Note 1: Teuton Resources Corp. is in a legal dispute with the drilling contractor for the 2002 program, Mtn. Boy Minerals. Mtn. Boy Minerals alleges the amount owing for drilling services is substantially higher than the amounts indicated in the cost statement above. Final costs for the project will depend upon resolution of the dispute (Teuton has, in turn, filed a counterclaim against Mtn. Boy Minerals).

Note 2: More than sufficient \$ value of work was done post Sept. 9, 2002 to justified assessment work credits claimed against the Horatio claims (which came into existence only after that date).

*Based on ratio of field man-days to total project field man-days

Please adjust PAC account accordingly.

30

\$5,550

APPENDIX II - CERTIFICATE

I, Dino M. Cremonese, do hereby certify that:

- 1. I am a mineral property consultant with an office at 6737 Cartier Street, Vancouver, B.C.
- I am a graduate of the University of British Columbia (B.A.Sc. in metallurgical engineering, 1972, and L.L.B., 1979).
- 3. I am a Professional Engineer registered with the Association of Professional Engineers of the Province of British Columbia as a resident member, #13876.
- 4. I have practised my profession since 1979.
- 5. This report is based upon work carried out on the Croesus and Horatio mineral claims, Skeena Mining Division from August to October of 2002. Reference to field notes and maps made by geologist A. Walus and prospector M. Moorman is acknowledged. I have full confidence in the abilities of all samplers used in the 2002 geochemical program and am satisfied that all samples were taken properly and with care.
- 6. I am a principal of Teuton Resources Corp., owner of the Croesus/Horatio claims: this report was prepared solely for satisfying assessment work requirements in accordance with government regulations.

Dated at Vancouver, B.C. this 1st day of August, 2003.

D. Cremonese, P.Eng.

APPENDIX III

DIAMOND DRILLING LOGS

(

.

ł

TEUT	ON RESOURCES	G CORP.	DRILL LOGS DEL NORT	E PROJEC	т
DIP AN	IGLE: - BY: AL	45 DEGR EX WALU	5 DEPTH: 71.06 M		
Samp le #	Sample Interval (metres)	Widt h (m)	Description	Ag ppm	Au ppu
DRILL HOLE: DN02-1 AZIMUTH: 070 DEGREES DIF ANGLE: -45 DEGREES DEFTH: 71.06 M DATE: SEPT. 24-28, 2002 Agg Sample Midt Description Agg Interval h (m) Provided and the provide					
	4.60-4.80				
	+		porphyry. The latter contains rounded quartz crystals 0.3 to 0.5cm across. The rock is moderately sericitized and		
1001	4.80-6.70	1.90		4.2	0.
	5.18-8.23		Core recovery 70%. Badly broken core.		
	6.70-7.60		At the end of the interval ther are two lcm wide quartz veins $@30$ deg. To c/a. Minor dissem. Pyrite and trace		
1002 6.70-7.70 1.00		26.1	0.		
	7.60-8.20		Argillite with 2-3% dissem. pyrite		
1003	7.70-8.20	0.50		10.8	0.
1004	820-8.80	0.60	3% pryite and <1% combined galena and tetrahedrite. There is also 1-2% sphalerite. Galena, tetrahedrite and sphalerite occurs exclusively in qtz- feldspar cement. Pyrite occurs both in cement and also within breccia	420	10.
1005		1.80		5.2	0.
1006		1.30		3.8	0.
			quartz carbonate-sulphide replacement zones, veins and qtz-carbonate- sulphide cemented breccia intimately intercalated with short (10-60cm) sections of unmineralized host rocks. Qtz-carb-sulph material constitutes approx. 40-45% of the whole interval. The bulk of the sulphides which include pyrite, sphalerite, galena and lesser tetrahedrite is closely		

L

 \bigcirc

.

.

.

İ

-- --

DRILL DIP AN		02-1 45 DEGR	DRILL LOGS AZIMUTH:	DEL NORTI 070 DEGREES	- FRUUEU	-1
LOGGEI DATE:	BY: AL	EX WALU		71.06 M		
Samp le #	Sample Interval (metres)	Widt h (m)	Description		Ag ppm	P
			Most pyrite occurs in disseminated grains c 5% of the rock.volume content varies widely 15% (in most of the i do not exceed 1-2%). include argillite, fe grained diorite and a fragments are very an size from less than 1 across. Sporadically cavities.	omprising up to . Sulphide from trace to nterval sulphides Host rocks lsite, fine ndesite. Breccia gular ranging in cm to 10cm		
	11.90- 15.50		Sulphide zone with av and <1% combined gale and sphalerite. At 14 are a few qtz veins a contacts at 40 to 70 mostly 40-50 deg. to	na, tetrahedrite .50-14.70 there nd lithological deg. to c/a,		
1007	11.90- 13.50	1.60			34.6	
1008	13.50- 15.00	1.50			80.0	
	15.50- 15.80		Argillite with 2-3% d pyrite.	issem. Cubic		
	15.80- 18.50		Sulphide zone with av sulphides. Locally t sericite-clay alterat qtz vein oriented 75	here is strong ion. At 17.00m		
	18.50- 19.70		Fine-grained diorite. qtz replacement zone. contact between qtz v 35 deg. to c/a. Dior sericitized.	At 19.30 Mein and diorite @		
1009	15.00- 16.50	1.50			208	
1010	16.50- 18.00	1.50			66.0	
1011	18.00- 19.50	1.50			72.0	
	19.70- 19.90		Interval with 10-15% sphalerite, galena, t			

1

1

 \bigcirc

DRILL		02-1	AZIMUTH: 070 DEGREES		
DIPAN Loggei Date:	BY: AL	45 DEGF EX WALU EPT. 24			
Samp le #	Sample Interval (metres)	Widt h (m)	Description	Ag ppm	Au ppm
1012	19.50- 21.00	1.50		302	4.9(
	19.90- 20.80		Qtz-carb-sulph replacement/breccia zone. 1-2% of combined gal, tetra, sphaler, pyrite. At 20.50-20.70 there is 15-20% of combined gal, tetra, sph, pyr.		
	20.80- 21.05		Argillite with 1% dissem. Pyrite.		
	21.05- 23.40		Intercalated felsite and argillite. At 21.10 two qtz feldspar sulphite veins 1cm wide @ 40 deg. to core axis.		
1013	21.00- 22.50			34.6	1.1
	21.70- 21.90		Qtz-carb-sulph replacement zone, 2-3% total sulphides.		
	23.40- 28.00		Qtz-carb-sulph replacement/breccia zone. Average sulph. Content <1% (gal, tetra, sph,pyr). At 23.40 argillite-qtz vein contact at 45 deg. to c/a. Locally very strong sericite- clay alteration.		
1014	22.50- 24.00	1.50		21.0	1.2
1015	24.00- 25.50	1.50		54.0	4.1
1016	25.50- 27.00	1.50		82.0	3.1
1017	27.00- 28.50	1.50		35.2	2.0
_	28.00- 28.20		Felsite.		
· · ·	28.20- 28.60		Argillite. Felsite/argillite contact at 60 deg. to c/a.		
	28.60- 31.00		Qtz-carb-sulph replacement/breccia zone. Total sulph content <1%.		
	31.00- 31.50		Fine-grained diorite. Moderate alteration. It contains 1cm wide qtz sulph vein at 60 deg. to c/a.		

i

| | | |

-

i.

I.

i

.

 \bigcirc

.

 \bigcirc

 \bigcirc

TEUT	ON RESOURCE	S CORP.		DRILL LOGS	B DEL	NORTE PROJE	CT
DRILL DIP AN LOGGEE DATE:	IGLE: BY: A	NO2-1 -45 DEGR LEX WALU SEPT. 24	S	AZIMUTH: DEPTH: 2002	070 DEGREES 71.06 M		
Samp le #	Sample Interval (metres)	Widt h (m)	Desc	ription		Ag ppm	Au ppm
1018	28.50- 30.00	1.50				180	2.7
1019	30.00- 31,50	1.50				24.0	3.0
········	31.50- 43.00		zone cont	. At 34.00-34.	in at 30-40 deg	. to	
1020	31.50- 33.00	1.50				60.0	1.1
1021	33.00- 34.50	1.50				58.0	2.9
1022	34.50- 36.00	1.50				120	2.8
1023	36.00- 37.50	1.50				446	3.5
1024	37.50- 39.00	1.50				44.0	4.4
1025	39.00- 40.50	1.50				570	1.8
1026	40.50- 42.00	1.50				430	4.0
1027	42.00- 43.50	1.50				1,620	11.1
	43.00- 49.50		Argi	llite with 1-3%	fine diss. pyr	ite	
	43.50- 43.70		hang wide	ing wall of dyk	25 deg. to c/a. e there is a lc yrite vein, als	m	
	43.90- 44.10			ow pyrite and q s at 25 deg. to	tz-feldspar-pyr c/a.	ite	
	44.83- 44.90		Two pyri	cm wide felsite te at 20 deg. t	dyke with 5-7% o c/a.		
	47.10- 47.20	1			elsite with 10- sphalerite and		

 \bigcirc

TEUT	ON RESOURC	ES CORP.	DRILL LOGS	DEL NORT	E PROJEC	T
DRILL DIP AN LOGGEE DATE:	IGLE :	DN02-1 -45 DEGR LEX WALU SEPT. 24		070 DEGREES 71.06 M		
Samp le #	Sample Interval (metres)	Widt h (m)	Description		Ag ppm	Au ppm
			gal/tetra.			
1028	43.00- 44.50	1.50			18.4	0.7
1029	44.50- 46.00	1.50			11.6	0.5
1030	46.00- 47.50	1.50			10.8	1.1
1031	47.50- 49,50	1.50			5.6	0.3
	49.50- 54.00		Argillite with abund substance. Dissem. from 1 to 7%.	lant carbonaceous To blebby pryite		
	50.40- 51.40		Interval mostly repl At 50.40 to 50.50 s pyrite.	aced by carbonate. Section with 15%		
1032	49.50- 50.40	0.90			17.1	0.9
1033	50.40- 51.40	1.00			1.6	0.1
	54.00- 58.00		Argillite with 1-3% Pyrite.	fine, dissem.		
	55.50- 55.51		Pyrite vein at 20 de	eg. to c/a.		
1034	51.40- 54.00	2.60			5.0	0.1
1035	54.00- 56.00	2.00	W, W, K		3.9	0.0
1036	56.00- 58.00	2.00		· · · · · · · · · · · · · · · · · · ·	7.4	0.1
	58.00- 58.50	-	Felsite dyke with 1- dissem. pyrite.	-2% very fine,		
	60.20- 61.20		Brecciated interval part by qtz, minor p galena.	replaced in most oyrite, sphal and		
	61.20- 65.70		Argillite with 2-4% Pyrite. Also thin o veinlets up to 0.5cm 25 deg. to c/a.	tz-carbonate		

ļ

•

 \bigcirc

 \bigcirc

 \bigcirc

TEUI	ON RESOURCES	CORP.	DRILL LOGS DEL NORT	E PROJEC	т
DIP A	NGLE: -4 D BY: ALI)2-1 45 DEGR EX WALU EPT. 24			
Samp le #	Sample Interval (metres)	Widt h (m)	Description	Ag ppm	Au ppm
1037	58.00- 58.50	0.50		0.7	0.03
1038	58.50- 60.20	1.70		4.1	0.13
1039	60.20- 61.20	1.00		22.3	0.9
1040	61.20- 63.50	2.30		7.4	0.2
1041	63.50- 65.70	2.20		0.7	0.0
	65.70- 71.06 еон		Argillite/siltstone with bedding at 20-25 deg. to c/a. Minor pyrite, sporadic minor replacements by felsite along bedding planes.		

. .

......

 \bigcirc

 \bigcirc

TEUT	ON RESOURCES	CORP.	DRILL LOGS AZIMUTH:	DEL 070 DEGREES	NORTE	PROJEC	T
DIP AN LOGGED DATE:	BY: ALL	50 DEGR EX WALU EPT. 28		72.28 M	_		
Samp le #	Sample Interval (metres)	Widt h (m)	Description			Ag ppm	Au PPm
	0.00-3.05		Casing-overburden.				
	3.05-6.00		Fine-grained diorite strong sericite alte short intervals of a felsite. Plagioclas	ration. Local. rgillite and m	ly inor		
	5.00-5.13		Argillite-felsite br carbonates. No sulp		ЪУ		
	6.00- 10.00		Argillite with minor pyrite.	disseminated			
	8.00-8.50		Fine-grained diorite sericite alteration.	. Moderate			
	8.70-8.73		Dyke of diorite at 4 axis.	5 deg. to core			
	9.00-9.15		Interval replaced mo with minor pyrite.	stly by felsit	e		
	10.00- 12.50		Felsite, moderately locally, weakly to s chloritized. Somese interval are breccia spaces filled with q other sections are t replaced by qtz and interval contains mi pyrite.	trongly ctions of the ted with open tz and carbona to various degr carbonates. T	tes, ees		
1042	10.0-12.5	2.50		·		3.7	0.07
	11.2-11.5		Interval consisting argillite in a few p felsite.	mostly of places replaced	рλ		
	12.50- 19.10		Argillite with 1-3% often with abundant substance.			-	
	12.80- 13.00		Section replaced by lesser felsite.	carbonates and			
	13.40- 14.35		Interval is 50% repl diorite/andesite, le 8-10% pyrite.	aced by esser felsite a	nd		
	15.5-15.7		Same as interval abo	ove.			
	18.6-18.8		Qtz-pyrite-sphalerit 0.4cmwide. Attitude 20 deg. to c/a.	ce-galena vein e ranges from C	to		

 \bigcirc

 \bigcirc

 \bigcirc

.

LOGGED BY: ALEX			DRILL LOGS DEL NOR AZIMUTH: 070 DEGREES	TE PROJEC	
R ·	DBY: ALL	50 DEGRE EX WALUS EPT. 28-			
Samp le #	Sample Interval (metres)	Widt h (m)	Description	Ag ppm	A PP
	19.1-19.8		Fine-grained, locally silicified andesite, minor dissem. to blebby pyr.		
1043	12.5-13.4	0.9		38.9	1
1044	13.4- 14.35	0.95		186	11
1045	14.35- 16.00	1.65		392	27
1046	16.0-18.0	2.00		35.2	
1047	18.0-19.8	1.80		82.1	[-
	19 8-22 1		zones and veins intimately intercalated with short (10-60 cm) sections of unmineralized host rocks. Qtz-carb-sulph material constitutes approx. 40-45% of the interval. Most of the sulphides (pyrite, sphal, gal and lesser tetra) is closely associated with qtz and carb. Part of pyrite occurs in host rocks as dissem grains comprising up to 5% of the rock by volume. Sulph content varies widely fromtrace to 5%, mostly it does not exceed 1-2%. Host rocks include argillite, felsite, fine-grained diorite, andesite and minor feldspar porphyry. Argillite shows no alteration, the remaining host rocks exhibit weak to moderate sericitization and locally, moderate silicification. Breccia fragments are very angular ranging from less than lcm to 10cm across. Sporadically there are vuggy cavities.	7	
	19.8-22.1		Interval consisting of very fine grained andesite, felsite and feldspar porphyry. The section is partly replaced by qtz, lesser, feldspar with less than 1% of sulphides. The rocks are often silicified.		
 	22.1-25.0		Host rock is mainly argillite.	<u></u>	-
	25.0-25.8		Host rock is dominated by fine-grained diorite/andesite. A few qtz carb	L }	

TEUT	ON RESOURCES	CORP.	DRILL LOGS DEL NORT	E PROJEC	T
DRILL DIP AN LOGGEI DATE:	IGLE: -! DBY: ALE	02-2 50 Degr EX Walu EPT. 28			
Samp le #	Sample Interval (metres)	Widt h (m)	Description	Ag ppm	
			veins show attitude 80-90 deg. to c/a.		Ĩ
1048	19.8-21.0	1.20		29.1	
1049	21.0-22.5	1.50		46.5	
1050	22.5-24.0	1.50		29.7	
1051	24.0-25.5	1.50		64.5	
	25.8-27.3		Several qtz-carb veins at attitudes ranging from 70 to 90 deg. to c/a.		
	31.0-31.1		Qtz-pyrite vein at 20 deg. to c/a.		
	35.00- 35.02		Diorite/argillite contact at 80 deg. to c/a.		
	36.20- 36.22		Qtz-sulph vein at 80 deg. to c/a.		
	36.8- 36.82		Qtz-sulph vein at 45 deg. to c/a.		
1052	25.5-27.0	1.50		45.б	Γ
1053	27.0-28.5	1.50		51.2	T
1054	28.5-30.0	1.50		201	Γ
1055	30.0-31.5	1.50		20.5	t
1056	31.5-33.0	1.50		178	T
1057	33.0-34.5	1.50		910	T
1058	34.5- 35.68	1.18		261	Ţ
1059	35.68- 37.00	1.32		319	ſ
	46.0-47.0		Two qtz-sulph veins at 80 deg. to c/a, and two lithological contacts at 80 deg. to c/a.		
	48.0-48.5		Qtz-sulph veins and argillite/felsite contact at 70-90 deg. to c/a.		
1060	37.0-38.5	1.50		143	ſ
1061	38.5-40.0	1.50		570	Γ
1062	40.0-41.5	1.50		149	
1063	41.5-43.0	1.50		69.2	Τ

 \bigcirc

TEUT	ON RESOURCES	CORP.	DRILL LOGS	DEL NORTE	PROJEC	Т
DRILL DIP AN LOGGED DATE:	IGLE: -! BY: ALI	D2-2 50 DEGRI EX WALU: EPT, 28		070 DEGREES 72.28 M		
Samp le #	Sample Interval (metres)	Widt h (m)	Description		Ag ppm	Au ppm
1064	43.0-44.5	1.50			410	0.78
1065	44.5-46.0	1.50			118	1.62
1066	46.0-47.5	1.50			158	1.58
1067	47.5-49.0	1.50			82.8	9.28
1068	49.0-50.5	1.50			56.1	4.56
1069	50.5-51.5	1.00			123	17.65
1070	51.5-52.7	1.20			41.2	7.21
	52.7-54.5		Felsite, leight beig to c/a.	e, aphantic rock.		
	54.5- 72.28		Argillite with up to pyrite.	7% disseminated		
	55.2- 57.03		Argillite, badly bro 66%). Several piece veining with less th and sphalerite.	s of core with qtz		
	57.5-57.7		Interval intruded by felsite.	diorite and		
	60.5-61.5		Well visible bedding 15-20 deg. to c/a.	in argillite at	·	
	63.2-64.1		Strongly brecciated argillite. Partial carbonate, lesser qt	replacement by		
	67.5-70.5		Argillite in several by beige to light gr Replacement often fo planes which are at	een felsite. llows bedding		
	71-72.28 EOH		Argillite interval w replacements contain and minor sphalerite	ing 2-3% pyrite		
1071	52.7-54.0	1.30		·······	5.7	0.91
1072	54.0-55.2	1.20		· · · · · · · · · · · · · · · · · · ·	1.6	0.05
1073	55.2- 57.03	1.33	·		26.9	0.84
1074	63.2-64.1	0.90	<u> </u>		1.1	0.03
1075	71.00- 72.28	1.28		·····	7.1	0.03

.

Ţ

' i

i I I

. 1

 \bigcirc

 \bigcirc

 \bigcirc

DRILL DIP AN LOGGED	GLE: -45 DE BY: ALEX WA	ALUS DEPTH: 46.36 M
DATE: Samp le	OCT. 4 Sample Wid Interval h (metres) (m	bbw bb
	0.00-0.50	Argillite partly replaced by felsite. Core recovery 66%.
	0.50-1.30	Fine-grained diorite. Moderately sericitized. It contains 1-2% of very fine-grained pyrite.
	1.30-24.7	Main sulphide zone. The zone comprises qtz-carb-sulph cemented breccia, qtz-carb-sulph replacement zones and veins intimately intercalated with short (10-70 cm) sections of unmineralized host rocks. Qtz-carb-sulph material constitutes approx. 40-45% of the interval. Most of the sulphides (pyrite, sphal, gal and lesser tetra) is closely associated with qtz and carb. Part of pyrite occurs in host rocks as dissem grains comprising up to 5% of the rock by volume. Sulph content in qtz- feldspar dominated portions of the core varies widely from trace to trace to 7%, mostly it does not exceed 1-2%. Host rocks include argillite, felsite, fine to medium-grained diorite, and aphanatic to fine-grained andesite. All host rocks except argillite show weak to moderate sericitization and locally silicification. There are a few sections of the core with very strong clay-sericite alteration. Breccia fragments are very angular ranging from less than 1cm to 10cm across. Sporadically there are vuggy cavities
	3.20-3.22	Trace of bright orange mineral (realgar?). Felsite/andesite contact at 45 deg. to
-	6.20-6.23	c/a.
	6.30-6.40	Two narrow qtz-sulph veins at 55-60 deg. to c/a.
	7.40-8.20	Medium-grained diorite. Weak to moderate sericite alteration.
	13.50- 13.52	Qtz-carb-sulph vein at 75 deg.to c/a.
	13.6-13.8	Interval dominated by qtz and clay- 3.7

I

TEUT	ON RESOURCES	CORP.		DRILL LOGS	B DEL NOR	E PROJEC	T
DRILL DIP AN LOGGED DATE:	IGLE: -4 BY: ALE	2-3 5 DEGR X WALU T. 4-7	s	AZIMUTH : DEPTH :	050 DEGREES 46.36 M		
Samp le #	Sample Interval (metres)	Widt h (m)		ption 		Ag ppm	7 Pl
	16.8-17.1		Beddin	a at 45 deg. 1	to c/a; also 2 at 45 deg. to c/a.		
	24.5-24.6		Interv	al of sericit	e-clay gouge.		
1076	0.0-1.30	1.30		······································		3.7	
1077	1.3-2.5	1.20		· · · · · · · · · · · · · · · · · · ·		38.9	
1078	2.5-4.0	1.50				186	1
1079	4.0-5.5	1.50				392	2
1080	5.5-7.0	1.50				35.2	
1081	7.0-8.5	1.50				82.1	
1082	8.5-10.0	1.50				112	
1082 1083 1084	10.0-11.5	1.50				34.3	
	11.5-13.0	1.50				254	1
1085	13.0-14.5	1.50				58.9	
1086	14.5-16.0	1.50				192	
1087	16.0-17.5	1.50				113	1
1088	17.5-19.0	1.50				308]]
1089	19.0-20.5	1.50		<u></u>		2,010	
1090	20.5-22.0	1.20		······		183	
1091	22.0-23.5	1.50		<u>, , , , , , , , , , , , , , , , , , , </u>		125	
1092	23.5-24.7	1.20	1			262	
	24.7- 29.25		to mod silic: chlor: felds	derate sericit ification. Lo itization. Th par-sulph veir	ned diorite. Weak cization and ocally weak here are a few qtz- ns(0.5 to 3.0cm) deg. to c/a.		
	29.25- 33.5		seric:	eldspar-sulph	e felsite. Weak n. There are a few veins(0.5 to 1.5cm 0 deg. to c/a.		
	33.50- 46.36 EOH		beddi: place	ng at 20 deg. s there are na	& dissem. pyrite, to c/a. In a few arrow replacements ing along bedding		

ł

.

.

•

 \bigcirc

DRILL DIP AN LOGGED DATE:	GLE: -4 BY: ALE)2-3 15 DEGR EX WALU CT. 4-7	S DEPTH: 46.36 M		
Samp le #	Sample Interval (metres)	Widt h (m)	Description	Ag ppm	Au ppm
	34.60- 34.65		planes. Two narrow veins 0.2 - 0.4 cm wide of pyrite and qtz-feldspar-sulph, at 20- 25 deg. to c/a.		
·	38.00- 38.02		Qtz-feldspar-pyrite vein, 2cm wide, at 25 deg. to c/a.		
	45.00- 45.05		0.5 cm wide pyrite vein at 20 deg. to c/a.		
	45.20- 45.35		Qtz-carb-pyrite vein, 4cm wide, at 0 deg. to c/a.		
1093	24.7-27.0	2.30		5.6	0.0
1094	27.0- 29.25	2.25		4.3	0.0
1095	29.25- 31.00	1.75		5.7	0.9
EOH	46.36				Τ

.

÷

.

į

 \bigcirc

 \bigcirc

TEUT	ON RESOURCES	CORP.	DRILL LOGS	DEL NORTE	PROJECT	
DRILL DIP AN LOGGED DATE:	GLE: -4 BY: ALE	2-4 5 DEGRE X WALUS . 7, 20	DEPTH:	250 DEGREES 33.24 M		
Samp le #	Sample Interval (metres)	Widt h (m)	Description		Ag ppm	Au ppm
	0.00-5.80		Casing-overburden.			
	5.8-26.2		Argillite, sporadical with minor siltstone. from 60 to 90 deg. to often thin, irregular veinlets at different c/a. Locally up to 2 pyrite.	Bedding varies c/a. There are qtz-carb attitudes to		
	6.30-6.35		Narrow dyke of felsit c/a. It contains 1-2 vein at the same atti	cm wide pyrite		
	7.20-7.30		Qtz vein at 20 deg. t	co c/a.		
	7.40-7.50		Section of the core r felsite.	eplaced by		
	7.5-7.70		Qtz vein 0.5cm wide a c/a.	at 0-10 deg. to		
	8.5-8.90		Interval replaced by felsite.	carbonates by		
	9.90- 10.05		Interval replaced by felsite, minor pyrite	carbonates and		
	10.50- 10.55		Felsite-qtz-feldspar- to 1.5cm wide	-pyrite vein, 1		
	12.00- 13.14		Fault zone—abundant o substance, in large p clay-sericite gouge.	part altered to		
	13.42- 13.80		Felsite, bottom of the brecciated.	he interval is		
	21.40- 21.55		Interval with distin pyrite mineralizatio siltstone/sandstone.	ct sygenetic n associated with		
	26.20- 33.24 EOH		Siltstone sporadical with argillite.	ly interlayered		
	27.00- 27.20		Brecciated section i replaced by carbonat	n most part es.		
1096	12.0-14.0	2.00			1.6	0
1097	14.0-16.0	2.00			1.2	C
1098	16.0-18.0	2.00			1.8	
1099	18.0-21.4	3.40			1.3	C

1.1.1.1

_

TEUI	ON RESOUR	CES CORP.	DRILL LO	DGS DEL NORTE	PROJEC	т
DRILL		DN02-4	AZIMUTH:	250 DEGREES		
DIP AN LOGGEN DATE:		-45 DEGRE ALEX WALUS OCT. 7, 20	S DEPTH:	33.24 M		
Samp le #	Sample Interva. (metres	1 h	Description		Ag	Au ppm
1100	21.4- 21.55	0.15			3.9	0.
1101	27.0-27	.2 0.20			0.8	0.

i

No further samples

APPENDIX IV

ASSAY CERTIFICATES

33

Eco Tech LABORATORY LTD.

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

CERTIFICATE OF ASSAY AK 2002-5009

TEUTON RESOURCES CORPORATION 509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

ATTENTION: DINO CREMONESE

No. of samples received: 37 Sample type: Rock **Project #: None Given Shipment #: None Given** Samples submitted by: A. Walus

-		Ag	Ag	Pb	Zn	
ET #.	Tag #	(g/t)	(oz/t)	(%)	(%)	
4	A02-58	6700	195.39	17.10	12.70	
5	A02-59	250	7.29			
6	A02-60	56.7	1.65			
9	A02-63	546	15.92		1.82	
12	A02-66	166	4.84			
13	A02-67	1740	50.74	3.65	2.85	
14	A02-68	502	14.64	4.48	1.83	
15	A02-69	690	20.12			
24	A02-78	750	21.87	3.08		
25	A02-79	1220	35.58	3.95	8.65	
26	A02-80	288	8.40			
27	A02-81	840	24,50			
28	A02-82	320	9.33	1.02		
29	A02-83			5.98	1.07	
30	A02-84			3.47	1.35	
32	A02-86	380	11.08	1.59	1.45	
37	MM-02-05	446	13.01	10.10	10.30	

70.0

QC DATA:

S	tandar	d:
	Mpla	

CPb-1

JJ/kk XLS/02

ECO TECH LABORATORY LTD. Jutta Jealøuse B.C. Certified Assayer

4.50

Page 1

2.04

4.40

5-Sep-02

۰. .

5-Sep-02

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AS 2002-5009

TEUTON RESOURCES CORPORATION 509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

ATTENTION: DINO CREMONESE

No. of samples received: 37 Sample type: Rock
Project #: None Given Shipment #: None Given Samples submitted by: A. Walus

Values in ppm unless otherwise reported

Et #	Tag #	Au(ppb)	Ag	A1 %	As	Ba	81	Ca %	Cd	Co_	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	ρ	Pb		Sn		<u>Ti %</u>	U	V	_ <u>w_</u>	Y	Zn
1	A02-55	230	1.6	0.32	35	75	<5	0.22	6	-4	163	46	2.56		0.13	76	6	0.06	19	630	16	-	<20	12		-	41	<10	5	428
2	A02-56	5	0.4	1.60	<5	20	<5	0.33	<1	5	157	17	3.26	20	1.51	420	3	0.02	13	320	20	<5	<20	3	0.05	<10	81	<10	4	86
3	A02-57	5	1.2	1.47	25	65	<5	0.12	3	10	73	46	4.52	20	1.09	253	3	0.02	15	350	28	10	<20	7		<10	32	<10	5	215
4	A02-58	>1000	>30	0.03	1450	10	<5	0.18 >	1000	7	108	7521	2,68	10	0.06	1386		<0.01	3		>10000	7640	<20	68	0.18	<10	<1	<10		>10000
5	A02-59	625	>30	0.91	90	45	<5	2.74	54	4	119	236	1.90	30	0.03	35	7	<0.01	22 3	>10000	4392	275	<20	306	0.02	<10	31	<10	37	3071
																													~	
6	A02-60	150	>30	0.08	10	20	<5	5.40	15	2	214	56			0.25	749		<0.01	22	200	938	55	<20	577		<10	4	10	9	651
7	A02-61	35	6.6	0.35	310	30	<5	0.11	3	18	103	49	>10	70	0.22	<1		<0.01	21	690	72	<5	<20	8		<10	8	<10	5	208
8	A02-62	20	2.8	0.03	20	5	<5	0.16	<1	2	180	6		<10	0.03	100	-	<0.01	6	110	50	5	<20	-		<10	<1	<10	<1	50
9	A02-63	>1000	>30	0.09	235	20	<5	0.58	293	6	190	935		10	0,15	367		<0.01	14	400	6346	830	<20	36	0,04	<10	3	<10		>10000
10	A02-64	35	1.4	0.39	170	55	<5	5.51	7	12	92	47	5.14	30	0.37	1205	16	0.01	39	780	32	<5	<20	271	0,07	<10	9	<10	11	586
										_	. – 4										-	-						-10	~	0.47
11	A02-65	65	2.6	1.06	25	45	<5	0,21	2	5	121	56		20	0.69	222	18		21	1200	28	5	<20	8		<10	149	<10	6	247
12	A02-66	>1000	>30	0.06	4190	15	<5	0.09	<1	5	239	160	3.97	20	0.09	4501	•		7	160	3860	185	<20	9		<10	5	300	2	508
13	A02-67	>1000	>30	0.04	440	15	<5	0.53	495	3	310	944	1,70	10	0.03	92		<0.01	10		>10000	1805	20	103	0,03	10	2	<10		>10000
14	A02-68	>1000	>30	0,12	2405	50	20	4,45	362	16	243	118	9,14	40		>10000		<0.01	27		>10000	570	<20	101		<10	11	<10		>10000
15	A02-69	>1000	>30	0.02	200	10	<5	0.02	25	1	258	1379	0.53	<10	<0.01	97	14	<0.01	6	100	6710	1165	<20	3	0,03	<10	2	30	<1	1325
																			-	400	040		-00		0.04	~~~	•	-10	-4	474
16	A02-70	120	21.2	0.10	250	20	<5	0.02	1	3	232	41			0.03	113		<0.01	1	120	218	40	<20	3		<10	3	<10	<1	171
17	A02-71	85	4.2	0.64	<5	35	<5	0.35	<1	9	313	28	2.12	20	0.24	108		<0.01	10	1520	80	15	<20	45		<10	14	<10	2	45
18	A02-72	10	3.2	0.08	25	25	<5	0.07	<1	5	354	23	1.85	10		568		<0.01	9	320	42	10	<20	9	0.03		4	<10	3	68
19	A02-73	205	1.2	0.48	10	40	<5	0,19	<1	10	103	112	2.55	20	0.06	287	_	<0.01	9	770	38	15	<20	52		<10	38	<10	5	68
20	A02-74	15	0.6	0.55	<5	100	<5	9,66	1	15	68	39	6.57	50	0.59	2295	2	<0.01	39	1180	18	<5	<20	17	0.12	<10	36	<10	11	83
					_		_						.										~~~			-40	~		10	**
21	A02-75	10	0.2	0.55	<5	80	<5	6,84	<1	16	56	23		40	1.55	1597		<0.01	39	1500	14	<5	<20	116		<10	31	<10	10	61
22	A02-76	10	<0.2	0.04	150	20	<5	0.07	<1	4	226	5		10	0.04	474		< 0.01	9	140	18	10	<20	3	0.03		6	<10	3	48
23	A02-77	4	0.6	0.66	45	70	<5	3.51	<1	21	53	41	5.21	40	0.99	933	<1	0.03	· 30	1970	14	<5	<20	240	0.07	<10	30	<10	8	95
24	A02-78	>1000	>30	0.01	60	5	<5	0.02	3	1	296	125			<0.01	32		<0.01	6		>10000	655	40			<10	<1	<10	<1	71
25	A02-79	>1000	>30	0.06	715	45	<5	0.04 >	1000	9	278	172B	3.89	<10	0.02	50	<1	<0.01	11	230	>10000	2500	40	55	0.07	<10	2	<10	5	>10000

Page 1

09/05/02

16:51

222505734557

ECO-TECH KAM

J

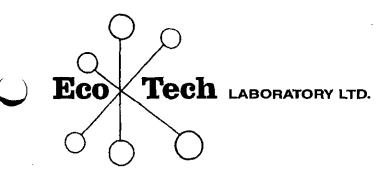
TEUTON RESOURCES CORPORATION

ICP CERTIFICATE OF ANALYSIS AS 2002-5009

ECO TECH LABORATORY LTD.

Et #.	Tag #	Au(ppb)	Ag	A! %	As	Ba	8(Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg <u>%</u>	Mn	Mo Na %	NI	P	Pb	Sb	Sn	Sr	<u>Ti %</u>	U	<u>v</u>	w	Y	Zn	
26	A02-80	>1000	>30	0.09	170	40	<5	0.77	53	5	202	529	2.14	10	0.22	468	11 < 0.01	11		3356	425	<20	49		<10	6	<10	2	3320	
27	A02-81	>1000	>30	0.06	440	30	<5	0,79	54	4	187	1267	2.20	20	0.23	350	5 <0.01	11	270	6712		<20	45	0,05	<10	4	<10	1	3515	
28	A02-82	>1000	>30	0.14	2175	35	<5	0.07	16	5	132	346	3.16	20	0.05	60	14 0.01	12		9918	430	<20	13	0.03	<10	9	<10	4	1239	
29	A02-83	>1000	>30	0.02	2490	15	<5	0.02	233	4	188	5665	2.99	10	0.03	202	<1 <0.01		370 >1		6775	20	21	0.12	<10	2	<10		10000	
30	A02-84	>1000	>30	0.07	6775	<5	<5	0.89	451	7	193	256	4.51	10	0.13	5081	47 <0.01	37	1930 >1	0000	2095	<20	84	0.15	<10	8	<10	11 >	10000	
31	A02-85	>1000	>30	0.18	2115	50	5	2.29	67	8	156	103	4,97	30		>10000	10 0.01		,	4384	120	<20	244		<10	8	<10	4	4225	
32	A02-86	>1000	>30	0.10	1345	50	10	4.33	244	11	143	598	6.41	50		>10000	20 <0.01	_		0000		<20	180	0.77	10	11	<10		10000	
33	MM-02-01	90	>30		20	35	<5	0.17	3	2	255	11		<10	0.03	808	2 0.01		70	210		<20	14		<10	6	<10	<1	208	
34	MM-02-02	35	0.6	0.23	<5	65	<5	3,50	1	2	162	4		<10	0.03	1343	8 0.03		570	68	-	<20	261		<10	13	<10	4	31	
35	MM-02-03	30	0.2	0.06	<5	2025	<5	0.38	<1	4	209	4	0.66	<10	0.04	427	1 0.01	6	40	36	<5	<20	55	0.02	<10	4	<10	2	26	
36	MM-02-04	80	2,4	0.03	15	45	<5	0.07	<1	4	187	6	1.45	<10	0.02	79	7 <0.01	5	100	116	<5	<20	8	0.01	<10	1	290	2	35	
37	MM-02-05	>1000	>30	0.08	>10000	35	<5	0.77 >	1000	25	153	1315	8,57	40	0.25	539	<1 <0.01	11	490 >1	0000	1110	<20	36	0.09	<10	3	<10	3.>	10000	
<u>QC DAT</u> Resplit: 1 36		- 85	1.3 2.4	0.34 0.03	30 15	80 50	২ ২	0.23 0.09	8 2	4	155 206	47 9	2.44 1.58	20 10	0.15 0.02	81 72	6 0.06 2 <0.01		620 100	24 134		<20 <20	12 9	0.02 0.01	<10 <10	40 1	<10 310	4 2	472 35	
Repeat:	1																													
' 1	A02-55	220	1,6	0,33	35	90	<5	0.23	8	5	170	49	2.65	20	0.13	72	6 0.06	5 19	660	16	10	<20	12	0.03	<10	42	<10	5	452	
10	A02-64	-	1.6	0.41	155	60	<5	5.16	7	11	90	49	4.95	30	0.38	1167	16 0.01	38	760	36	<5	<20	290	0.07	<10	9	<10	11	526	
15	A02-70	130	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	
19	A02-73	-	1.6	0.48	5	45	<5	0.18	<1	10	102	113	2.53	20	0.06	289	2 <0.0	18	780	60	15	<20	52	0.03	<10	38	<10	5	79	
27	A02-81	>1000	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	•	•	-	
Standar GEO '02		135	1.4	1.59	60	150	15	1.61	<1	22	70	84	3.60	10	0.96	586	2 0.02		730	28	<5	<20	33			72	<10	13	76	
GEO '02	1	-	1.6	1.62	60	155	15	1.63	1	22	71	86	3.62	10	0.99	587	3 0.02	2 32	740	26	5	<20	35	0.11	<10	72	<10	13	79	

ECO TECH LABORATORY LTD. Juita Jealoise B.C. Ceptified Assayer


JJ/kk df/293 XLS/02 09/05/02

16:52

22505734557

ECO-TECH KAM.

ECO-TECH KAM.

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

6-Sep-02

10041 Dallas Drive, Kamloops, B.C. V2C 674 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

CERTIFICATE OF ASSAY AS 2002-5009

TEUTON RESOURCES CORPORATION 509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

ATTENTION: DINO CREMONESE

No. of samples received: 37 Sample type: Rock **Project #: None Given** Shipment #: None Given Samples submitted by: A. Walus

		1		
		Au	Au	
<u> </u>	Tag #	(g/t)	<u>(oz/t)</u>	
4	A02-58	15.70	0.458	
9	A02-63	13.90	0.405	
12	A02-66	2.80	0.082	
13	A02-67	17.60	0.513	
14	A02-68	7,96	0.232	
15	A02-69	2.41	0.070	
24	A02-78	26,90	0.784	
25	A02-79	14.60	0.426	
26	A02-80	7.10	0.207	
27	A02-81	7,80	0.227	
28	A02-82	5.83	0.170	
37	MM-02-05	9.81	0.286	

JJ/kk XLS/02

TECHLABORATORY LTD. EÇO outta Jealouse B.C. Certified Assayer

Page 1

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

CERTIFICATE OF ASSAY AS 2002-5010

TEUTON RESOURCES CORPORATION 509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

ATTENTION: DINO CREMONESE

Eco

No. of samples received: 24 Sample Type: Rock **Project #: None given** Shipment #: None given Samples submitted by: A. Walus

JJ∕kk

X115/02

$\langle \rangle$			Ag	Ag	Zn	
\bigcirc	ET #	Tag #	(g/t)	(oz/t)	(%)	
	1	A02-87	94.3	2.75		
	8	A02-94	50.1	1.46		
	9	A02-95	132	3.85		
	10	A02-96	. 110	3.21	4.00	
	12	A02-98	38.0	1.11		
	14	A02-100	158	4.61		
	24	MM-02-14	299	8.72	2.20	

ECO ECHLABORATORY LTD. Jutta Jealouse B.C./Certified Assayer

Tech LABORATORY LTD.

12-Sep-02

TEUTON RESOURCES CORPORATION AK 2002-5010

17-Sep-02

	_ "	Au	Au	Ag	Ag	Pb	Zn	
<u> </u>	Tag #	(g/t)	<u>(oz/t)</u>	(g/t)	(oz/t)	(%)	<u> (%) </u>	
23	A02-113	2.05	0.060	1076.0	31.38	8.65	4.03	
24	A02-114	0.32	0.009	56.4	1.65			
25	A02-115	7.76	0.226	910.0	26.54			
26	A02-116	0.04	0.001					
27	A02-117	1.31	0.038	768.0	22.40	1.01		
QC DATA	<u>:</u>							
Resplit:								
1	MM-02-15	0.33	0.010					
Repeat:								
· 1	MM-02-15	0.34	0.010	36.5	1.06	1.09		
10	MM-02-24	0.03	0.001					
16	A02-106			3960.0	115.49	1.11		
Standard:								
STD-M		1.87	0.055					
Mpla						4.32		

TECH LABORATORY LTD.

ECO TECH LABORATORY LTE Jutta Jealouse B.C. Certified Assayer

JJ/kk XLS/02

ŧ

.

Eco Tech JABORATORY LID.

09/11/02

17:21

2505734557

ECO-TECH KAM.

a001

10-Sep-02

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AS 2002-5010

TEUTON RESOURCES CORPORATION 509-875 W. HASTINGS STREET VANCOUVER, B.C. V5C 1N2

ATTENTION: DINO CREMONESE

No, of samples received: 24 Sample Type: Rock Project #: None given Shipment #: None given Samples submitted by: A. Walus

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	p	Pb	Sb	Sn	Sr	Tl %	U	V	W	<u>Y</u>	Zn
1	A02-87	50	>30	0.09	170	35	<5	0.65	15	8	284	98	1,41	<10	0.16	183	15	0.02	10	20	3806	75	<20	257		<10	-	<10	<1	1510
ż	A02-88	5	2.2	0.05	15	60	<5	7.29	<1	2	199	5	0.69	<10	0.05	805	5	0.02	24	30	68	<5	<20	564		<10		<10	6	55
3	A02-89	<5	1.4	0.09	25	30	<5	5.22	8	8	212	43	2.73	<10	0.33	636	4	0.02	58	80	58	<5	<20	139		<10	Э	<10	6	387
4	A02-90	<5	1.4	0.05	<5	20	<5	4.28	<1	2	171	66	0.82	<10	0.04	739	6	0.02	18	10	20	<5	<20	52	0.02	<10	<1	<10	5	67
5	A02-91	370	0.6	0.16	355	20	<5	0.07	<1	21	220	7	>10	20	0,17	176	12	0.02	7	380	6	<5	<20	19	0.09	<10	4	<10	5	37
													_												o (1		40	c 0		3953
6	A02-92	10	11.2	0.12	80	20	<5	>10	56	11	51	736	5.31		4.77		12.		48	370	2188	10	<20	415		<10	19 3	5 0 30	4	3953 1958
7	A02-93	<5	18.4	0.02	<\$	250	10	>10	21	з	21	15	1.42	10		>10000	10	0.03	87	50	1850	<5	<20	1221	0.21	<10	-		3	737
8	A02-94	<5	>30	0,34	50	190	<5	0.13	3	7	124	41	2.56	<10	0.15	877	16	0.01	6	270	614	15	<20	549		<10	8	<10		3168
9	A02-95	5	>30	0.09	<5	90	5	2.55	20	4	144	20	2.75	<10	0.44	6314	6	0.02	12	100	394	10	<20	581	0.11	10	5	<10	1	
10	A02-96	5	>30	0.04	60	15	<5	>10	234	6	22	164	2.41	<10	0.53	6528	<1	0.02	45	60	2850	<5	<20	305	0.12	<10	3	<10	<1 :	>10000
		_					~	. 40	45	а		5	1.13	<10	0 20	>10000	5	0.03	85	60	920	<5	<20	861	0.18	<10	2	<10	<1	1295
11	A02-97	<5	7.8	0.02	<5	510	5	>10	15	3	41	-				>10000		0.03	83	40	892	<5	<20	620		<10	3	20	2	2224
12	A02-98	<5	>30	0.02	<5	120	10	>10	24	4	26	10	2.04	10	+++-		(78	100	204	<5	<20	318	0.22	<10	3	<10	2	666
13	A02-99	5	3.0	0.03	<5	465	10	>10	8	4	33	4	2.21	10			6	0.03			204		260	79	0.12	10	13	60	4	4734
14	A02-100	180	>30	0.66	760	30	5	1.19	58	21	110	56	>10	30	3.40		15 5	0.02	13 10	820 1520	2042	30 5	200 <20	28	0.12	<10	13	<10	6	47.34 61
15	A02-101	10	4.8	0.38	90	10	<5	0.99	<1	9	78	9	4.92	20	0.12	332	D	0.02	ţŬ	1320	52	5	~20	20	0.04	~10	'	10	v	от ,
				0.00	-6	475	<5	5.73	<1		146	5	2.60	<10	0.33	2286	12	0.02	20	280	6	<5	<20	201	0.05	<10	2	<10	5	38
16	MM-02-06	<5	0.6	0.06	<5	175	<5	>10		12	53	32	2.10	10	0.39	5214	2		51	410	76	<5	<20	325	0.10	<10	4	<10	7	2301
17	MM-02-07	<5	9.6	0.17	15	30	10	2.89	4	14	113	116	1 49	10	0.38	587	1	0.04	13	1460	26	<5	<20	489	0.23	<10	79	<10	14	137
18	MM-02-08	<5	0.8	0.94	<5	50			<1	23	155	3	6.80	20	1,93	413	<1	0.02	17	240	20	<5	<20	29		<10		<10	2	159
19	MM-02-09	5	0.2	3,06	<5	40	<5	0.41				3		<10	0.37	743	8	0.02	11	420	10	<5	<20	136	0.03	<10		<10	2	42
20	MM-02-10	<5	0.2	0.69	<5	60	<5	2.21	<1	5	181	3	1.74	~10	0.57	140	Ŷ	0.00		720	10	~0	-20	150	0.00	~10	••	-10	-	
- 4		F	~ 4	0.46	80	5	<5	0.89	<1	14	59	15	6,32	20	0.19	115	1	0.02	17	1330	40	5	<20	26	0.05	<10	8	<10	5	37
21	MM-02-11	5	2.4		-		-			8	167	12		10	0.14	719	10		9	210	12	<5	<20	57		<10	2	<10	1	17
22	MM-02-12	<5	0.2	0.20	5	75	<5 ~5	1.25	<1		99	2		30	0.03	477	2	0.04	5	40	10	<5	<20	32	0.01	<10	<1	<10	3	51
23	MM-02-13	<5	0.2	0.21	<5	95	<5	0.71	<1	2		49	0.75	<10	0.03	>10000	3		90	60	7390	<5	<20	960	0.19	<10	3	180	<1	>10000
24	MM-02-14	20	>30	0.04	<5	60	10	>10	141	3	16	49	0.75	~10	0,11	-10000	3	0.00	30	00	1000	-0	-20	ΨŪΦ	0,10		Ŭ			

Page 1

PIONEER LABORATORIES INC #103-2691 VISCOUNT WAY RICHMOND, BC CANADA V6V 2R5 TEL.(604)231-8165

ASSAY CERTIFICATE

ירטט אוו אאואליב'יא טופבגנסט אוודה סט או טר פקטם ובעום, טווטנט נט זעט אל אלוא אמנטי AG, MD ADALYSIS - 1.000 gin San and is finished by AA.

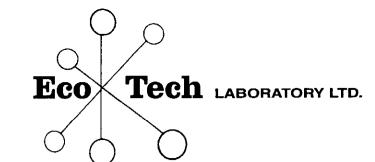
Projecta	N RESOURCES CORP. : (ype: Rocks			Analyst Report No. 2024148 Date: September 20, 2002
	SAMPLE	Ag G/I	Pb	
	A02-118	923	1.90	
	A02-119	1548	5.12	
	A02-120	82.3		
	A02-121	41.5		
	A02-122	565		
	A02-133	486	1.38	
	A02-134	218		
	A02-136	181		
	2002DC-5	996	2.45	
	2002DC-6	212		

PIONEER LA ATORIES INC.

#103-2691 VISCOUNT WAY A MOND, BC

), BC CANADA V6V 2R5

TELEPHONE -- J4) 231-8165


TEUTON RESOURCES CORP. Project:

Sample Type: Rocks

GEOCHEMICAL ANALYSIS CERTIFICATE

Multi-element ICP Analysis - .500 gram sample is digested with 3 ml of aqua regia, diluted to 10 ml with Water. This leach is partial for Mn, Fe, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K and Al. Detection Limit for Au is 3 ppm. *Au Analysis- 10 gram sample is digested with aqua regia, MIBK extracted, graphite furnace AA finished to 1 ppb detection. Analyst <u>RSolm</u> Report No. 2024146 Date: September 18, 2002

SAMPLE A02-118	ppm	ppm	000																Ca												
		• •	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	ppm	ppm	ppm	ppm	ppm p	pm	bbu	x	x	ppm	ppm	*	ppm	;	(ppm	*	X	*	ppm	ppt
	9	769	17917	7834	421.7	9	3	5531	6.65	2148	< 8	5	< 2	67	144.2	1326	3	10	1.26	.032	2	62	.17	22	< .0'	< 3	. 14	.01	.10	11	9120
A02-119	6	1933	25794	23051	320.3	8	2	11854	8.39	1930	< 8	8	< 2	131	443.2	1818 <	3	6	2.42	.024	1	61	.31	21	< .0'	< 3	.12	.01	.08	12	9500
A02-120	29	86	3938	2236	.91.7	16	4	2205	4.31	1173	< 8	ND	< 2	51	33.1	82 <	3	28	1.28	.055	4	46	.10	48	< .0'	< 3	.22	.01	.13	< 2	4250
A02-121	24	83	1538	1937	45.8	21	6	2147	4.31	1215	< 8	ND	2	19	30.3	43	4	23	.20	.034	7	32	.05	39	< .0:	< 3	.23	.01	.12	< 2	1780
A02-122	13	780	2322	6258	486.6	6	2	305	.55	112	< 8	8	< 2	5	117.2	580 <	3	2	.07	.004	1	178	< .01	5	< .01	< 3	.03<	.01	.02	< 2	6050
A02-123	16	52	534	1187	9.2	24	6	1022	3.32	775	< 8	ND	< 2	48	16.8	14 <	3	35	.61	.029	4	53	.53	27	< .01	< 3	.67	.01	.08	< 2	490
A02-124	9	41	52	10	1.3	5	24	76	3.31	27	< 8	ND	< 2	11	< .5	3 <	3	11	.49	. 148	3	20	.04	69	< .01	< 3	.49	.01	.30	< 2	60
A02-125	3	23	327	32	3.0	6	15	29	7.83	30	< 8	ND	2	8	.5	< 3	3	7	.05	,064	1	27	.01	15	< .01	< 3	.28	.01	.19	< 2	250
A02-126	46	1031	5208	1223	19.4	5	15	1428	4.43	34	< 8	22	< 2	26	8.1	18	15	7	.71	.062	2	9 9	. 18	62	< .01	< 3	.22	.01	.15	< 2	2150
A02-127	3	, 5	72	32	2.2	2	1	33	.82	21	< 8	ND	2	95	< .5	< 3	3	7	.02	.082	20	24	.01	552	< .01	< 3	.23	.01	.20	673	23
A02-128	5	156	752	581	4.2	4	12	690	5.19	52	< 8	ND	2	30	1.7	< 3	3	11	.10	.171	7	8	.05	88	< .01	< 3	.41	.01	.16	335	360
A02-129	17	112	67	210	7.1	23	9	2266	3.16	64	< 8	ND	2	94	1.6	27 <	3	10	2.81	.068	3	127	.%			< 3	.24	.01	.10	4	45
A02-130	23	258	289	514	23.1	19	6	1052	2.02	73	< 8	ND	2	107	5.6	99 <	3	15	1.61	.049	2	181	.45	48 ·	< .01	< 3	.12		.06	< 2	90
A02-131	10	225	449	266	28.4	5	8	1071	2.75	190	< 8	NÐ	< 2	68	4.6	56	5	6	1.53	.031	1	132	.64	46	< .01	< 3	.11	.01	.08	11	1120
A02-132	3	13	22	44	1.0	8	13	2502	5.69	29	< 8	ND	< 2	248	1.1	7 <	3	23	10.01	.038	3	36	2.63	51 ·	< .01	< 3	.15	.01	.10	2	85
A02-133	7	441 [°]	14430	1830	448.1	4	1	74	1,18	2932	< 8	26	< 2	26	38.2	759 <	3	2	.10	.007	1	176	< .01	12 -	< .01	< 3	.05<	.01	-03	68	27200
A02-134	12	234	9644	943	246.4	7	2	9500	3.38	147	< 8	4	< 2	20	18.2	245 <	3	2	.07	.004	1	169	.05	9 ·	< .01	< 3	.03<	.01	.03	32	380
A02-135	11	26	258	300	19.1	8	2	429	1.17	122	< 8	ND	< 2	21	4.3	29 <	3	5	.22	.049	3	146	.02	24 -	< .01	< 3	.14<	.01	.09	< 2	190
A02-136	16	290	9390	447	213.2	7	2	135	.54	48	< 8	ND	< 2	2	10.3	277	3	2	.01	.004	< 1	257 ·	< .01	3 -	< .01	< 3	.03	.01	.02	< 2	120
402-137	6	16	119	163	3.1	8	4	791	1.70	114	< 8	ND	< 2	65	2.7	6	3	4	,68	.038	2	126	.15	24 ·	< .01	< 3	.14<	.01	.10	< 2	225
2002DC-2	12	30	32	140	2.5	18	11	1514	4.43	26	< 8	ND	< 2	7	1.8	< 3 <	3	24	.25	.117	9	26	1.03	81	.02	< 3	1.96	.03	.17	< 2	10
200200-3	10	55	150	1610	6.2	28	10	2470	3.88	1621	< 8	ND	2	70	22.4	7 <	3	14	.86	.048	9	18	.30	41	.01	< 3	.29	.01	-14	< 2	420
200200-4	9	44	397	1521	5.2	8	7	1449	2.33	99	< 8	ND	< 2	191	28.3	10 <	3	3	3.58	.021	2	108	.53	14 -	< .01	< 3	.11	.01	.08	< 2	180
200200-5	9	1682.3	25166	9742	269.9	10	4	439	2.94	325	< 8	30	< 2	14	176.1	1112	6	5	.07	.047	3	90	.02	30 -	< .01	< 3	.22	.01	.13	8	42100
2002DC-6	34	444	4966	2543	227.9	19	50	923	1.75	561	< 8	4	< 2	13	45.8	319	4	4	.20	.031	3	155	.02	23	.01	< 3	.13<	.01	.08	< 2	12450
02-S2 Silt	3	37	147	344	5,8	20	12	1719	3.67	173	< 8	ND	< 2	45	4.2	9 <	3	20	.68	.134	10	Ś	.47	47	.02	< 3	.85	.01	.04	4	195
							a	issa		ges	tio	n :	is	req	uire	d fo	or"	co	rre	ct d esti		•								PAGE	1

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

CERTIFICATE OF ASSAY AS 2002-5013

TEUTON RESOURCES CORPORATION 6737 CARTIER STREET VANCOUVER, B.C. V6P 4S1

23-Oct-02

ATTENTION: DINO CREMONESE

No. of samples received: 13 Sample type: Rock **Project #: None given Shipment #: None given** Samples submitted by: A. Walus

,	abinitioa by: 74. Plando	Au	Au	Ag	Ag	Pb	Zn
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	(%)	(%)
1	A02-138	2.98	0.087	1340	39.08	1.26	
2	A02-139	0.13	0.004				
3	A02-140	4.43	0.129	538	15.69	1.32	
4	A02-141	0.10	0.003				
5	A02-142	0.13	0.004	59.8	1.74	3.69	
6	A02-143	0.10	0.003	77.8	2.27	4.71	
) 7	A02-144	0.24	0.007	40.0	1.17		
8	A02-145	0.07	0.002				
9	A01-146	12.40	0,362	2900	84.57	6.69	5.10
10	A02-147	2.28	0.066	39.6	1.16		
11	A02-148	2.53	0.074	82.2	2.40		
12	A02-149	0.24	0.007				
13	A02-150	2.43	0.071	109.2	3.19		
QC DATA	λ:						
Resplit:		•					
1	A02-138	2.85	0.083	1380	40.25	1.21	
Repeat:							
1	A02-138	3.01	0.088				
3	A02-140	4.90	0.143				
9	A01-146	13.80	0.402	3040	88.656		
10	A02-147	2.03	0.059				
11	A02-148	2.36	0.069				

Standard:

Mpla

UJ/ejd XLS/02

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

4.33

19.0

2.04

Page 1

69.8

23-Oct-02

ICP CERTIFICATE OF ANALYSIS AS 2002-5013

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Tag #

A02-138

Et #.

Values in ppm unless otherwise reported

Project #: None given Shipment#: None given Samples submitted by: A. Walus Sr TI% υ v w Cu Fe % La Mg % Mn Mo Na % NI Р ΡЬ SЪ Sn Cđ Co Cr 450 >10000 1310 <20 7 0.04 <10 7 <10 52 17 < 0.01 11 182 461 3 2.98 <10 0.04 8 22 0.03 <10 7 <10 12 <0.01 10 570 132 15 <20 <10 0.11 161 -0.20

TEUTON RESOURCES CORPORATION

ATTENTION: DINO CREMONESE

Zn

502

185

а

4

No. of samples received: 13 Sample type: Rock

6737 CARTIER STREET

VANCOUVER, B.C.

V6P 4S1

Ag Al% As

>30 0.13

255

Bi Ca%

<5 0.02

Ba

60

2	A02-139	8.3	0.23	595	45	<5	0.35	<1	3	134	32	2,36	<10	0.11	161	12 <0.01	10	570	132	15	<20	22	0.03	10		~ 10	7	4004
3	A02-140	>30	0.03	450	<5	<5	0.02	78	2	164	510	1.10	<10	0.02	85	5 < 0.01	6		>10000	1555	<20	17	0.02	<10	2	20	1	1801
4	A02-141	4.0	0.40	15	215	<5	2.63	59	11	127	266	3.21	10	0.06	2115	5 0.01	11	1130	84	<5	<20	2	0.07	<10	11	20	0	1288
5	A02-142	>30	0.06	<5	60	40	0.03	З	2	237	118	0.99	<10	0.01	140	8 <0.01	7		>10000	35	<20	9	0.01	<10	2	<10	<1	28
6	A02-143	>30	0.22	5	75	65	0.35	1	2	125	175	0.61	<10	0,02	647	6 <0.01	3		>10000	25	<20	105	0.02	<10	6	<10	4	48
7	A02-144	>30	0.04	20	15	<5	<0.01	2	6	190	1374	5.90	<10	0. 0 7	10	7 <0.01	6	150	220	<5	<20	6	0.09	<10	2	<10	3	94
B	A02-145	1.4	0.63	<5	345	<5	0.25	1	14	79	129	>10	20	0.15	42	5 <0.01	4	980	126	<5	<20	25	0.12	<10	46	<10	5	233
9	A01-146	>30	0.02	780	<5	<5		>1000	6	138	3665	5.48	<10	0.21	>10000	<1 <0.01	5	350	>10000	4655	<20	99	0.26	20	2	<10	1>	10000
10	A02-147	>30		1420	20	<5	2.13	31	10	89	39	4.58	<10	0.76	2894	5 <0.01	23	280	2130	55	<20	165	0.08	<10	17	50	5	2183
11	A02-148	>30	0.08	110	10	<5	0.04	2	3	217	114	1.42	<10	0.02	327	12 <0.01	10	290	1366	115	<20	5	0.02	<10	3	<10	2	293
12	A02-149	19,9	0.15	75	25	<5	0.03	22	3	173	16	1.46	<10	0.02	175	7 <0.01	8	170	1476	20	<20	5	0.02	<10	5	20	2	1490
13	A02-150		<0.01	35	<5	<5	<0.01	157	1	184	101	0.49	<10	<0.01	97	3 <0.01	5	<10	9263	120	<20	1	<0.01	<10	<1	<10	<1	6945
<u>QC DAT/</u> Resplit: 1 Repeat:	A02-138 A02-138 A02-138	>30 >30	0.17	245 245	40 60	<5 <5	0.02 0.02	8 7	3	185 178	513 459	2.89 2.90	<10	0.04 0.04	52 60	20 <0.01 17 <0.01	13 9		>10000 >10000	1335 1240	<20 <20	6	0.04 0.04	<10 <10	9 7	<10 <10	3 2	458 501
•	102.100	- •••	••																									
Standard GEO '02	:	1.6	1.57	50	140	<5	1.72	<1	21	67	86	3.77	<10	0.92	643	<1 0.02	32	780	40	5	<20	37	0.14	<10	73	<10	10	69
JJ/kk dt/418 XLS/02																				/	EEO T Jutta J B.C. C	ealous	e/		LTD.	<u></u>		

Page 1

df/418 XLS/02

ECO-TECH KAM.

Ø004

ECO-TECH KAM.

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

CERTIFICATE OF ASSAY AS 2002-387R

TEUTON RESOURCES CORPORATION 6737 CARTIER STREET VANCOUVER, B.C. V6P 4S1

16-Oct-02

ATTENTION: DINO CREMONESE

No. of samples received; 28 Sample type: Core Project #: None given Shipment #: None given

	ET #.	Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	Pb (%)	Zn _(%)	
()	<u> </u>			0.007	<u>(9/1/</u>				
	1	1001	0.23				0.05	• • •	
	2	1002	0.31	0.009			0.85	0.63	
	3	1003	0.11	0.003					
	4	1004	10.50	0.306	420	12.25			
	5	1005	0.26	0.008					
	6	1006	0.13	0.004					
	7	1007	1.61	0.047	34.6	1.01			
	8	1008	6.89	0.201	80.0	2.33			
	9	1009	8.67	0.253	208	6.07	0.99	0.89	
	10	1010	4.67	0.136	66.0	1.93		1.01	
	11	1011	1.73	0.050	72.0	2.10			
	12	1012	4.90	0.143	302	8.81	2.50	2.55	
	13	1013	1.10	0.032	34.6	1.01			
	14	1014	1.29	0.038					
	15	1015	4.15	0.121	54.0	1.58			
	16	1016	3.11	0.091	82.0	2.39			
	17	1017	2.05	0.060	35.2	1.03			
	18	1018	2.70	0.079	180	5.25			
	19	1019	3,09	0.090					
	20	1020	1.13	0.033	60.0	1.75			

ECØ TECH LADORATORY LTD. kitta Jealouse B.C. Cernfied Assayer

JJ/kk XLS/02

Page 1

		Au	Au	Ag	Ag	Pb	Zn	
<u> </u>	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	(%)	(%)	
21	1021	2.97	0.087	58.0	1.69			
22	1022	2.84	0.083	120	3.50			
23	1023	3,51	0.102	446	13.01	1.04	0.99	
24	1024	4,43	0.129	44.0	1.28			
25	1025	1.84	0.054	570	16.62	4.35		
26	1026	4,09	0.119	430	12.54		1,70	
27	1027	11.10	0.324	1620	47.24	3,50		
28	1034	0.12	0.003					
QC DATA:								
Resplit:								
1	1001	0.26	0.008					
Repeat:								
1	1001	0.26	0.008		-			
4	1004	9.50	0.277					
8	1008	7.55	0.220			•		
9	1009	8.65	0.252					
10	1010	4.81	0.140					
12	1012	. 5.28	0.154					
15	1015	3.84	0.112					
23	1023			446	13.01			
24	1024	4.20	0.122					
					. —			

0.318

Standard:
Mpla
PM 171

25

26

27

1025

1026

1027

1.46 0.043

10.90

2.04

17.61

13.07

46.66

604

448

1600

70.0

ECONECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/kk XLS/02 i

16-Oct-02

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

CERTIFICATE OF ASSAY AS 2002-5012

Tech LABORATORY LTD.

TEUTON RESOURCES CORPORATION 6737 CARTIER STREET VANCOUVER, B.C. V6P 4S1

ATTENTION: DINO CREMONESE

Eco

No. of samples received: 16 Sample type: Core **Project #: None given Shipment #: None given** Samples submitted by: A. Walus

			Au	Au	
	ET #.	Tag #	(g/t)	(oz/t)	
=	1	1028	0.71	0.021	
	2	1029	0.50	0.015	
	3	1030	1.14	0.033	
) 4	1031	0.36	0.010	
$\overline{}$	5	1032	0.95	0.028	
	6	1033	0.13	0.004	
	7	1035	0.07	0.002	
	8	1036	0.18	0.005	
	9	1037	0.03	0.001	
	10	1038	0.13	0.004	
	11	1039	0.93	0.027	
	12	1040	0.27	0.008	
	13	1041	0.08	0.002	
	14	1042	0.03	0.001	
	15	1043	0.20	0.006	
	16	1044	0.47	0.014	
	QC DATA:				
=	Resplit:				
	1	1028	0.73	0.021	
	Repeat:				
	1 1	1028	0.67	0.020	
	1	1020			
	Standard:				
	PM171		1.39	0.041	
	\ ·			-	ECO TECH LABORATORY LTD.
	JJ/kk				Jutta Jealouse/
-	XLS/02				B.C. Certified/Assayer
	ALO/UZ				D.C. Contined/ (Course)

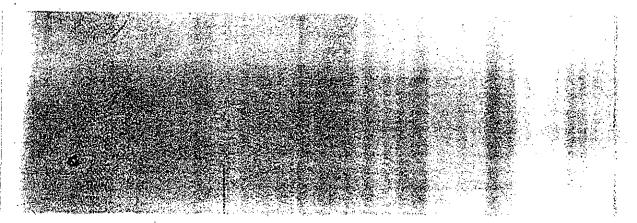
22-Oct-02

10-Oc

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AS 2002-387

TEUTON RESOURCES CORPORATION 6737 CARTIER STREET VANCOUVER, B.C. V6P 4S1

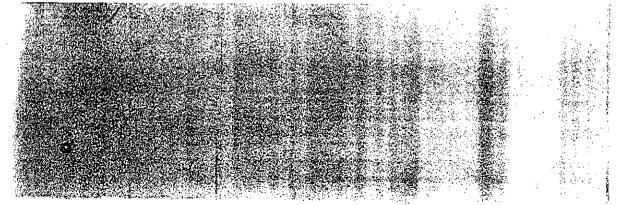

ATTENTION: DINO CREMONESE

No. of samples received: 28 Sample type: Core Project #: None given Shipment #: None given

Values in ppm unless otherwise reported

Et #.	Tag #	Ag	AI %	As	8a	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	IJ	٧.	<u></u> W	Y	Zn
1	1001	4.2	0.45	2440	85	<5	4.80	<1	10	38	28	3.51	10	0,78	1436	4	0,02	17	1580	188	<5	<20	177	0.05	<10	10	<10	9	647
2	1002	26.1	0.21	1125	35	<5	2.66	50	9	70	70	3.44	<10	0,71	1868	38	0.02	88	430	402	65	<20	128	0.06	<10	49	<10	6	2472
3	1003	10.8	0.26	4215	65	<5	3,31	<1	8	114	25	2.73	<10	0.54	1383	9	0.03	10	1330	474	20	<20	146	0.04	<10	4	<10	6	581
4	1004	>30	0.12	3930	15	<5	5.19	121	10	78	685	7.23	<10	0.82	>10000	12	0.02	23	610	8650	850	<20	293	0.30	<10	10	<10	8	6377
5	1005	5.2	0,46	1535	65	<5	5.40	<1	13	48	37	4.61	10	1.03	1247	2	0.03	12	2150	308	<5	<20	234	0.06	<10	6	<10	9	560
6	1006	3.8	0.53	760	75	<5 '	5.62	3	12	62 1	34	4.17	20	0.99	1388	7	0.03	18	2080	182	<5	<20	207	0.06	<10	21	<10	11	486
7	1007	>30	0.19	3675	35	<5	2.89	23	7	104	37	2.73	<10	0.50	2360	8	0.02	10	1140	2450	45	<20	121	0.06	<10	4	<10	6	2463
8	1008	>30	0.21	2945	45	<5	3,78	123	12	116	84	6.61	<10	0.70	9975	41	0.03	18	780	5860	130	<20	261	0.18	<10	6	<10	8	6287
9	1009	>30	0.21	2465	50	<5	4.98	168	Э	82	243	7.00	<10	0.77	>10000	7	0.03	19	800	9860	230	<20	261	0.23	<10	8	<10	9	8856
10	1010	>30	0.18	3035	35	<5	5.44	183	11	87	56	6.20	<10	0.66	9670	16	0.03	24	780	6550	110	<20	268	0.18	10	11	<10	9 >	>10000
11	1011	>30	0.27	2140	55	<5	3,97	142	10	72	34	4,42	<10	0.74	4765	10	0.03	12	1150	7560	80	<20	228	0.10	<10	5	<10		7320
12	1012	>30	0.18	2240	<5	10	3.97	811	12	102	248	7.15	<10	0.62	>10000	34	0.03	24		>10000	530	20	185	0.19	<10	11	<10	8 >	>10000
13	1013	>30	0.22	1350	30	<5	2.66	26	8	72	47	3.51	<10	0.72	3477	56	0.03	54	560	2156	50	<20	183	0,07	<10	28	<10	8	1419
14	1014	21.0	0.19	1550	25	<5	2.76	22	8	90	29	4.09	<10	0.84	2309	24	0.03	30	480	1520	25	<20	218	0 07	<10	12	<10	7	1402
15	1015	>30	0.25	2095	40	10	4.68	124	, 9	90	79	5.73	<10	0.59	9216	5	0.03	19	1800	4350	60	<20	224	0.18	<10	7	<10	12	6562
16	1016	>30	0.15	1440	25	<5	3,30	97	8	70	134	5.06	<10	0.62	4462	7	0.03	24		2147	50	<20	260	0.11	<10	5	<10	7	5876
17	1017	>30	0.22	1325	25	<5	4.31	15	8	89	55	4.28	<10	0.67	2162	50	0.03	25	1820	798	40	<20	298	0.07	<10	11	<10	12	1232
18	1018	>30	0.20	1360	20	<5	2.99	173	12	78	326	5.29	<10	0.83	5616	4		23		4689	345	<20	221	0.13	<10	13	<10	12	9125
19	1019	24.0	0.19	1875	25	<5	2.57	15	9	97	36	4,99	<10	0.85	3204	38		21	570	1099	30	<20	241	0.09	<10	7	<10	7	1333
20	1020	>30	0.30	2295	55	<5	4.32	59	11	85	161	4.03	<10	0.70	2579	4	0.03	21	1120	1198	40	<20	207	0.08	<10	10	<10	9	3589
21	1021	>30	0.23	2235	40	<5	4.28	48	9	76	95	5.07	<10	0.50	3004	5	0.03	18	1240	1987	85	<20	197	0.09	<10	6	<10	10	2961
22	1022 -	>30	0.19	2950	10	<5	2.25	108	10	83	231	5.19	<10	0.60	2128	4	0.03	26	630	3890	180	<20	198	0.08	<10	10	<10	8	6689
23	1023	>30	0.20	2125	25	<5	2.91	182	11	83	764	4.44	<10	0.39	2452	2	0.03	18	950	>10000	490	<20	127	0.09	<10	6	<10	8	9666
24	1024	>30	0.25	1660	45	<5	1.75	44	10	104	70	4.18	<10	0.54	2260	7	0.03	19	970	3688	70	<20	151	0.08	<10	8	<10	7	3120
25	1025	>30	0.18	1210	25	<5	1.89	49	10	61	758	3.57	<10	0.62	2254	15	0.03	24	530	>10000	625	<20	222	0.08	<10	6	<10	6	2189

Page 1


-

TEUTON F	RESC	3 COF	RPÓRA						/ к	CP CE	RTIFIC	ATE O	F ANA	LYSIS	AS 2)								ŧ	ECO TE	CH LA	BORAT	ORY	LTD.	C
Et #	Tag #	Αα	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mo	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	V	W	<u>Y</u>	Zn	
26	1026	>30	0.18	1600	30	<5	1.65	275	8	116	880	4.55	<10	0.51	3166	5	0.03	24	320	6508	585	<20	153	0.10	<10	12	<10		>10000	
27	1027	>30	0.19	2770	10	<5	2.06	126	10	84	2577	7.59	<10	0.57	4100	6	0.03	22		>10000	2820	<20	194	0.16	<10	6	<10	8	6689	
28	1034	5.0	0.42	105	20	<5	3,71	33	8	60	- 82	4,50	10	0.49	789	35	0.03	72	2800	58	10	<20	152	0.06	<10	50	<10	17	1135	
QC/DATA Resplit: 1	1001	4.6	0.41	2350	70	<5	4.67	<1	7	34	29	3.56	10	0.76	1234	3	0.03	19	1110	180	<5	<20	182	0,05	<10	9	<10	8	651	
Repeat:									_							~		47	4000	404		-00	460	0.05	~10	9	<10	8	653	
1	1001	4.4	0.42		75	<5	4,38	<1	9	36	26	3.49	10	0.73	1428	3	0.02	17	1380	184	<5	<20	168	0.05	<10 <10	9 10	<10	-	>10000	
10	1010	>30	0.16		25	<5	5.23	176	10	86	51	6.16	<10	0.62	8642	14		24		6540	90	<20	239	0.16 0.08	<10	7	<10	6	1345	
19	1019	23.8	0.19	1820	30	<5	2.28	12		95 I	40	4.37	<10	0.87	2921	34	0.03	21	540	1170	30	<20	258	0.08		(~10	U	1040	
Standard: GEO '02		1.6	1.76	60	145	<5	1.68	<1	20	63	89	4.00	10	1.00	639	<1	0.04	35	710	24	<5	<20	44	0.15	<u>_</u> <10	78	<10	11	68	

JJ/kk df/371 XLS/02

ECOTERIA LABORATORY LTD. Juita Jealouse B.C. Certified Assayer

Page 2

to and the second s

. . . .

.

.

23-Oct-02

ICP CERTIFICATE OF ANALYSIS AS 2002-2012

ECO TECH LABORATORY LTD. 10041 Dailas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

Et #.	Tag #	Ag	AI %	As_	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	Р	РЬ	Sb	Sn	Sr	<u>Ti %</u>	U	<u>v</u>	W	Y	Zn
1	1028	18.4	0.26	1195	35	<\$	2.53	19	11	112	54	4.16	<10	0.92	2071	11	0.02	47	500	442	15	<20	264	0.08	<10	25	20	8	
2	1029	11.6	0.22	935	30	<5	2.58	<1	11	77	42	4.03	<10	0.96	1102	7	0.02	27	340	168	10	<20	270	0.07	<10	13	<10	6	226
3	1030	10.8	0.28	1950	45	<5	2.99	5	10	54	28	4.50	<10	1.58	3721	Э	0.03	19	490	450	10	<20	279	0,10	<10	8	<10	8	737
4	1031	5.6	0.43	575	40	<5	3.89	<1	15	65	40	4.10	10	1.37	1606	4	0.02	28	2530	80	<5	<20	382	0.07	<10	20	<10	18	159
5	1032	17.1	0.16	575	15	<5	4.81	4	7	85	43	4.87	<10	0.48	3018	27	0.02	42	310	986	15	<20	214	0,10	<10	19	<10	6	305
6	1033	1.6	0.07	250	25	<5	>10	<1	4	18	21	2.77	<10	0.30	2549	5	0.01	97	330	34	<5	<20	1340	0.07	<10	7	<10	7	46
7	1035	3.9	0.30	395	25	<5	5.75	44	10	57	77	3,30	<10	0.66	2722	30	0.01	78	540	16	<5	<20	141	0.07	<10	44	30	7	1974
8	1036	7.4	0,30	375	25	<5	3,39	22	9	66	65	3.61	<10	0.75	1084	12	0,01	62	440	178	10	<20	160	0,06	<10	31	20	5	1214
9	1037	0.7	0.48	10	75	<5	>10	<1	7	32	15	3.01	10	0.95	5516	5	0.05	36	1960	18	<5	<20	155	0.10	<10	4	<10	30	79
10	1038	4.1	0.39	85	35	<5	1.39	1	11	64	39	3.80	<10	0.77	772	6	0.02	24	450	26	5	<20	130	0.06	<10	8	<10	5	172
11	1039	22.3	0.10	400	10	<5	2.77	7	5	118	41	2.57	<10	0,39	2495	5	<0.01	19	220	684	10	<20	214	0.06	<10	5	650	4	483
12	1040	7.4	0.70	335	40	<5	2.87	<1	13	61	64	3,70	<10	1.09	1431	4	0.03	31	520	36	15	<20	178	0.07	<10	23	30	7	125
13	1041	0.7	1.56	<5	50	<5	1.08	<1	9	68	33	3.19	10	1.24	492	3	0.02	19	1040	16	<5	<20	27	0,05	<10	37	<10	13	84
14	1042	1.2	0.64	270	50	<5	>10	<1	14	58	34	3.21	<10	1.15	1909	3	0.02	39	1520	20	<5	<20	459	0.07	<10	19	<10	17	155
15	1043	14.4	0.31	690	45	<5	8.42	57	11	79	81	3.48	<10	0.75	3484	31	0,01	96	480	588	5	<20	197	0,09	<10	76	40	8	2403
16	1044	9,6	0.31	620	20	<5	>10	16	22	83	182	>10	20	0.78	7404	204	0.01	123	460	94	<5	<20	160	0.21	<10	47	10	15	802
<u>QC DATA:</u> Resplit:	L																												
1	1028	18.0	0.20	1220	25	<5	2.67	15	11	88	55	4.16	<10	0.87	2056	10	0.01	47	570	422	20	<20	235	0.07	<10	22	20	8	1094
Repeat:	1020	10.0	0.20	1220	20	-0	2.01	10	••	00	00	4.10	-10	0.01	2000		0.01	••	010		20	-2.0	400	0.07				-	
1	1028	18.3	0.24	1235	30	<5	2.54	18	11	112	49	4.20	<10	0.86	2070	12	0.02	48	530	468	20	<20	239	0.07	<10	24	20	7	1213
l Ciandai-	1020	10.5	0.24	1200	30	~5	4.04	10		112	40	7.20	-10	0.00	2010	12	0.02	40	200		20	-20		0.01	10			•	
Standard: GEO '02		1.6	1.58	55	140	<5	1.72	<1	22	68	86	3.82	<10	0.92	655	<1	0,02	32	780	30	<5	<20	37	0.14	<10	74	<10	11	75
																						\sim							

ECO TECH LABORATORY LTD. B.C. Certified Assayer

. موجه ال

TEUTON RESOURCES CORPORATION

ATTENTION: DINO CREMONESE

Samples submitted by: A. Walus

No, of samples received: 16 Sample type: Core Project #: None given Shipment #: None given

6737 CARTIER STREET

VANCOUVER, B.C.

V6P 4S1

- - -

-

Page 1

JJ/kk df/418 XLS/02

t

1

PIONEER LABORATORIES INC #103-2691 VISCOUNT WAY RICHMOND, BC CANADA V6V 2R5 TEL.(604)231-8165

ASSAY CERTIFICATE

Ag, Pb Analysis \sim 1.000 gm sample is digested with 50 ml of equa regia, diluted to 100 ml with water and is finished by AA.

TEUTON RESOURCES CORP. Project: Sample Type: Cores Analyst <u>2 Salm</u> Report No. 2024445

Date: November 01, 2002

	SAMPLE	Ag G/T	Pb %	
	1059	319		
	1060	143	1.37	
	1061	570	1.48	
	1062	149		
	1063	69.2		
	1064	410	5.50	
	1065	118		
	1066	158	1.61	
	1067	82.8		
	1068	56.1		
	1069	123		
	1070	41.2		
	1077	38.9		
	1078	186		
	1079	392	1.29	
	1080	35.2		
	1081	82.1		
	1082	112		
	1083	34.3		
	1084	254	1.15	
	1085	58.9		
	1086	192		
	1087	113		
	1088	308.0	1.70	
	1089	2010	3.04	
·	1090	183		
	1091	125		
	1092	262		
	1104	45.8		

PIONEER LABORATORIES INC.

TEUTON RESOURCES CORP. Project: Sample Type: Cores #103-2691 VISCOUNT WAY RICHMOND, BC CANADA V6V 2R5

GEOCHEMICAL ANALYSIS CERTIFICATE

Multi-element ICP Analysis - .500 gram sample is digested with 3 ml of aqua regia, diluted to 10 ml with Water. This leach is partial for Mn, Fe, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K and Al. Detection Limit for Au is 3 ppm. *Au Analysis- 10 gram sample is digested with aqua regia, MIBK extracted, graphite furnace AA finished to 1 ppb detection. TELEPHONE (604)231-8165

Analyst <u>IZSahn</u> Report No. 2024424 Date: November 01, 2002

ELEMENT	Mo	Cu	Pb	Zn	Ag	Ni	ŝ	Mn	Fe	As	ູບ	Au	Th	Sr	Cd	Sb	Bi	۷	Ca	P	La	Cr	Mg	Ba	Ti	8	Al	Na	K	W	Au*
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	z	ppm	ppm p	nqa	ppm	ppm	ppm	ppm	ppm	ppm	X	2	ppm	ppm	X	ppm	Z	ppm	z	X	X	ppm	ppb
1059	5	704	4011	9015	363.8	16	6	2180	3.77	1525	8	6	2	175	151.5	554	3	12	2,06	.027	3	59	.60	48	.01	3	.27	.01	.16	3	8810
1060	12	141	12586	4566	157.4	21	6	3180	5.28	1881	8	ND	3	196	78.9	157	3	11	2.81	.065	3	72	. 39	57	.01	3	. 32	.02	.18	3	2960
1061	7	982	13508	16939	394.9	18	4	5057	6.06	2224	8	6	2	242	310.2	632	3	11	2.48	.039	2	69	. 59	46	.01	3	.23	.01	.14	2	8210
1062	8	283	2253	7369	158.8	8	4	3286	3.74	1631	8	3	2	139	121.4	200	3	6	2.02	. 060	4	100	.40	39	.01	3	.22	.01	.15	7	4040
1063	59	65	5350	1188	67.3	12	5	3726	3,50	2033	8	ND	2	259	19.5	73	3	17	3.97	.160	8	92	.68	59	.01	3	.41	.01	.16	6	1080
1064	6	52	19493	932	374.3	9	5	1837	2.89	1162	8	ND	2	310	25.1	382	3	7	5.07	. 058	3	49	.60	49	.01	3	.24	.01	.13	2	780
1065	10	97	7029	12768	113.2	11	3	4550	3.39	1741	8	ND	2	322	229.6	97	3	13	4.19	. 206	8	55	.77	55	.01	3	.31	.01	.17	2	1620
1066	17	26	14599	10798	163.3	12	5	6474	4.67	1959	8	ND	2	330	199.0	128	3	8	2.68	.034	2	34	.86	44	.01	3	.27	.01	. 18	3	1580
1067	8	60	6443	11638	71.4	7	3	5981	4.67	3022	8	7	2	286	205.8	60	3	5	4.24	.039	2	70	.61	43	.01	3	.20	.01	.14	7	9280
1068	4	74	1844	10516	43.7	6	4	8467	6.01	2805	8	3	2	327	179.2	43	3	6	4.10	.068	3	33	.94	67	.01	3	. 39	.01	.17	2	4560
1069	10	143	5964	5746	125.3	6	1	11782	10.65	5270	8	10	2	366	96.6	155	3	6	5.54	.024	2	84	.64	31	.01	3	.13	.01	.10	7	17650
1070	3	59	1312	2028	39.3	4	5	3333	5,44	3562	8	7	2	282	30.3	48	3	5	5.26	.065	4	57	.66	68	.01	3	.34	.02	.20	5	7210
1071	10	12	391	456	5.8	8	3	1590	2.85	506	8	ND	2	240	5.9	11	3	5	1.82	.030	4	54	1.25	57	.01	3	.33	.01	.20	2	380
1072	8	34	168	363	10.3	18	8	926	3.12	1554	8	NÐ	2	185	4.4	16	3	6	1.58	.054	2	44	.73	43	.01	3	.30	.02	.17	2	630
1073	4	28	2371	4751	26.9	22	4	3485	3.93	673	8	ND	2	230	71.6	20	3	16	2.74	.146	6	51	.88	40	.01	3	.32	.01	.17	3	840
1074	۲	34	35	83	1.1	11	7	2689	2.79	26	8	ND	2	745	.6	6	3	22	20.69	.057	4	9	.32	20	.01	3	.29	.01	.02	2	36
1075	16	85	81	2182	7.1	66	4	866	4.00	105	8	ND	2	203	42.7	9	3	43	3.48	.026	2	46	.57	37	.01	3	.28	.01	.10	5	30
1076	5	33	46	1010	3.7	14	5	1123	2.92	855	8	ND	2	183	14.8	6	3	33	3.77	.093	7	22	.61	80	.01	3	.47	.01	.16	2	70
1077	11	37	2482	3212	38.7	8	6	2488	3.05	3243	8	ND	2	187	48.0	38	3	8	2.64	.313	10	72	. 52	60	.01	3	. 34	.01	.21	3	1460
1078	31	229	8230	6054	188.4	21	6	11643	7,85	2190	8	6	2	197	98.6	237	3	11	3.42	.036	2	72	.63	39	.01	3	.21	.01	.13	9	11210
1079	17	528	12038	16315	388.1	19	2	17769	10.88	3918	8	18	3	252	285.8	789	3	20	5.22	.019	2	48	.96	30	.01	3	.15	.01	.10	3	27540
1080	11	52	1862	3403	36.4	15	6	4606	4.06	1537	8	ND	2	198	50.3	80	3	11	2.30	.028	2	62	.67	43	.01	3	.23	.01	.15	58	2140
1081	1	82	4929	3315	78.1	6	5	11529	6.79	1543	8	3	2	378	49.9	110	3	9	5.38	. 089	5	32	1.10	83	.01	3	.40	.02	.17	3	4160
1082	8	113	4596	18033	106.7	11	4	15838	6.37	1336	8	3	2	307	308.9	121	3	18	5.14	.068	6	42	.95	51	.01	3	.31	.01	.10	2	5890
1083	11	35	2214	2589	32.7	29	4	6450	6.97	1496	8	3	2	131	39.5	38	3	16	1.85	.020	1	51	.38	21	.01	3	.16	.01	.10	4	4610
1084	4	304	9907	7963	248.7	13	2	13959	8,27	2538	8	6	2	342	125.8	294	3	13	5.13	.052	3	34	.92	34	.01	3	. 18	.01	.11	2	10460
1085	4	71	2625	3419	56.3	6	6	7537	4.36	1345	8	3	2	260	49.5	57	3	25	4.85	.077	4	31	.76	54	.01	3	.41	.01	.15	3	4640
1086	17	235	5552	12764	192.2	13	4	1759	3.09	2057	8	ND	2	269	230.4	138	3	10	4.08	.035	2	50	.70	49	.01	3	.28	.01	.17	5	1120
1087	29	151	2838	3502	109.8	13	5	1490	4.04	1385	8	8	2	146	57.3	117	3	7	1.31	.046	2	77	.47	34	.01	3	.19	.01	.11	4	11710
1088	7	351	14848	14018	292.9	11	3	4875	5.75	2094	8	10	2	118	257.0	300	4	6	1.42	.037	2	67	.30	42	.01	3	.22	.01	.14	3	11600

IONEER LABORATORIES INC.

TELEPHONE (604)231-8165

FROM

. .

Pion

ň

5

BG

EUTON RESOURCES CORP. -oject: ample Type: Cores

GEOCHEMICAL ANALYSIS CERTIFICATE

RICHMOND, BC

V6V 2R5

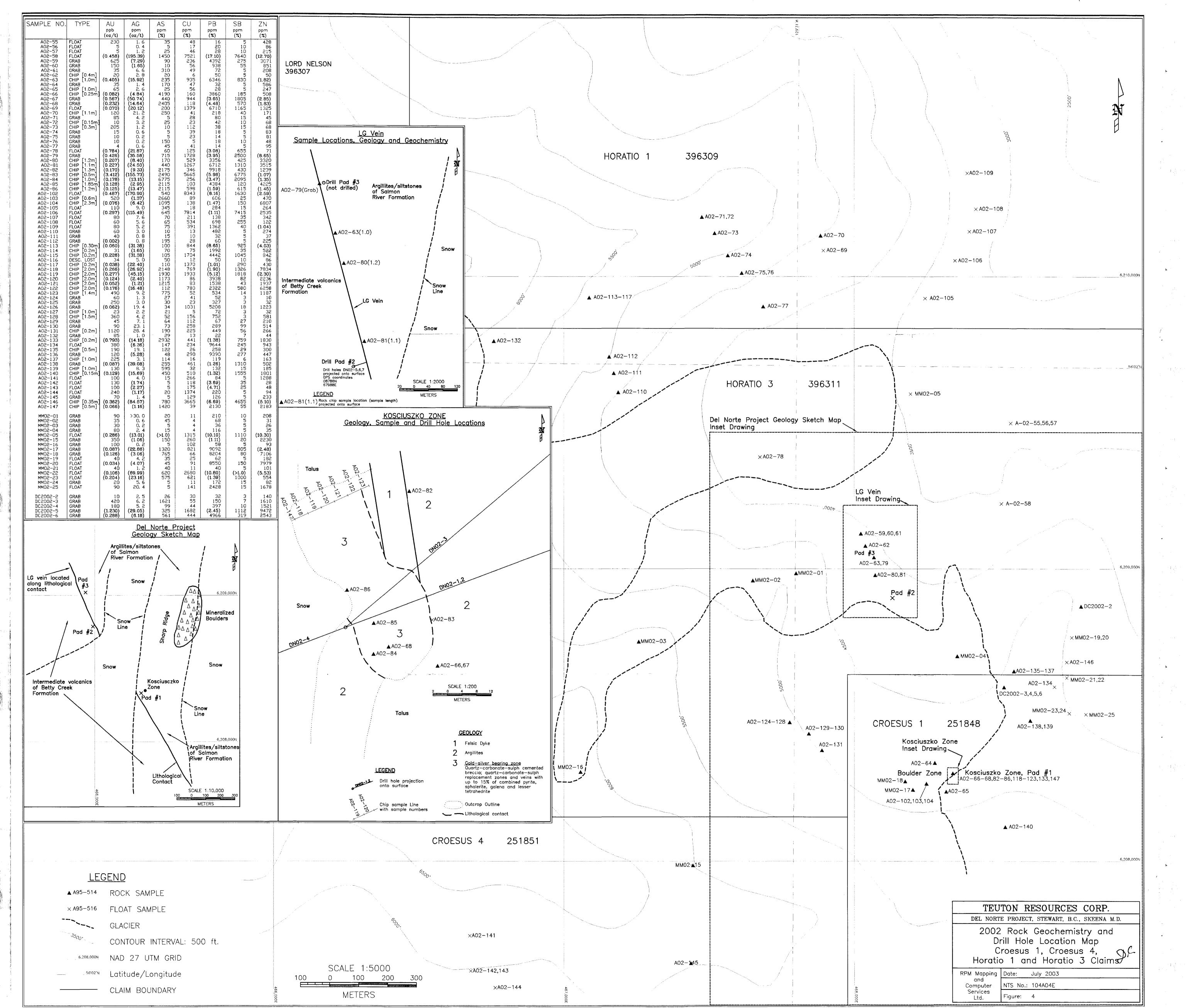
CANADA

#103-2691 VISCOUNT WAY

Multi-element ICP Analysis - .500 gram sample is digested with 3 ml of aqua regia, diluted to 10 ml with Water. This leach is partial for Mn, Fe, Ca, P, La, Cr, Mg. Ba, Ti, B, W and limited for Na, K and Al. Detection Limit for Au is 3 ppm. *Au Analysis- 10 gram sample is digested with aqua regia, MIBK extracted, graphite furnace AA finished to 1 ppb detection.

Analyst Report No. 2024424 Date: November 01, 2002

	LIEMENT	Мо	Cu	Pb	Zn	Ag	NI	Co	Hin	Fe	As	U	Au	Th	Sr	Cd	Sb	B1	٧	Ca	P	لها	C۲	Mg	8a	Τi	В	A1	Na	K	W	Au* 9
I	AMPLE	ppm	ppm	ρpm	ρ ρ π	ppm	ppm	ppm	ppm	X	ppm	ррп	ppm	ppm	ρ¢m	Ppm	ppn (ppm	ppm	X	X	ppm	ppm	x	ppm	X	ppm	2	2	*	ppm	pp dq
	1259	5	704	4011	9015	363.8	16	6	2180	3.77	1525	8	6	2	175	151.5	554	3	12	2.06	.027	3	59	.60	48	.01	3	.27	.01	.16	3	8810 -
i -	1060	12	141	12586	4566	157.4	21	6	3180	5,28	1881	8	ND	3	196	78.9	157	3	11	2.81	.065	3	72	. 39	57	.01	3	. 32	.02	.18	3	2960 m
į s	061	7	98 2	13508	16939		18	4	5057	6.06	2224	8	6	2	242	310.2	632	3	11	2.48	.039	2	69	. 59	46	.01	3	.23	.01	.14	2	8210 ;
	1 262	8	283	2253	7369	158,8	8	4	3286	3.74	1631	8	3	2	139	121.4	200	3	6	2.02	.060	4	100	.40	39	.01	3	.22	.01	.15	7	4040 0
i	063	59	65	5350	1188	67.3	12	5	3726	3.50	2033	8	ND	2	259	19,5	73	3	17	3.97	, 160	8	9 2	.68	59	.01	3	.41	,01	. 16	6	1980
i	1064	6	52	19493	932	374.3	9	5	1837	2.89	1162	8	ND	2	310	25.1	382	3	7	5,07	.058	3	49	.60	49	.01	3	. 24	.01	.13	٤	780
i –	1065	10	97	7029	12768	113.2	11	3	4550	3.39	1741	в	ND	2	322	229.6	97	3	13	4.19	.206	8	55	.77	55	.01	3	.31	.01	. 17	2	1620
i –	066	17	26	14599	10798	163, 3	12	5	6474	4.67	1959	8	ND	2	330	199.0	128	3	B	2.68	.034	2	34	. 66	44	.01	3	.27	.01	, 18	3	1583 🚽
i –	1067	8	60	6443	11638	71.4	7	3	5981	4.67	3022	B	7	2	286	205.8	60	3	5	4.24	.039	2	70	.61	43	.01	3	. 20	.01	.14	7	9280 7
i.	068	4	74	1844	10516	43.7	6	4	B467	5.01	2805	8	3	2	327	179.2	43	3	6	4.10	.068	3	33	.94	67	10.	3	. 39	.0;	.17	2	4560 ^{''} Z
i	069	10	143	5964	5746	125.3	6	1	11782	10.65	5270	8	10	2	366	96.6	155	3	6	5.54	.024	2	84	.64	31	.01	з	.13	.01	.10	7	17650
17	1 070	3	59	1312	2028	39.3	4	5	3333	5.44	3562	8	7	2	282	30.3	48	3	5	5.26	.065	4	57	. 66	68	.01	3	. 34	.02	.20	5	7210 ·
I.	[071	10	12	391	456	5.8	8	3	1590	2.85	506	8	ND	2	240	5.9	11	3	5	1,82	.030	4	54	1.25	57	.01	3	. 33	.01	.20	2	380 8
I.	072	8	34	168	363	10.3	18	8	926	3.12	1554	8	ND	2	185	4.4	16	3	6	1.58	.054	2	44	.73	43	.01	3	.30	. 02	.17	S	£ 08∂
I	1073	4	28	2371	4751	26.9	22	4	3485	3, 93	673	8	ND	2	230	71.6	20	3	18	2,74	. 146	6	51	.88	40	.01	3	. 32	.01	.17	3	840 U N
I.	1074	1	34	35	83	٤,1	11	7	2689	2.79	26	8	ND	2	745	.6	8	3	22	20.69	. 057	4	9	.32	20	.01	3	.29	.01	.02	2	36 g
1	075	. 30	85	81	2182	7,1	66	4	866	4.00	105	8	ND	2	203	42.7	9	3	43	3.48	. 026	2	46	.57	37	.01	3	.28	.01	.10	5	30 Ŭ
I.	076	5	33	46	1010	3.7	14	5	1123	2.92	855	8	ND	2	183	14.8	6	3	33	3.77	. 093	7	22	.61	80	.01	3	. 47	.01	.16	2	70 +
I.	077	11	37				8	6	2488	3.05	3243	8	ND		187	48.0	38	З	8	2.64	.313	10	72	. 52	60	. 01	3	. 34	. D1	.21	3	1460
I.	1078	31	229	8230	6054	188.4	21	6	11643	7.85	2190	8	6	2	197	98.6	237	3	11	3.42	.036	2	72	.63	39	.01	3	.21	.ગ	.13	9	11210
1	1 079	17	52B	12038	16315	388.1	19	2	17769	10.88	3918	8	18	3	252	285.8	789	3	20	5.22	.019	2	48	.96	30	.01	3	.15	.01	.10	3	27540
!	1080	11	52	1862	3403	36.4	15	6	4606	4.05	1537	8	NO	2	198	50.3	80	3	11	2.30	.028	2	62	.67	43	.01	3	.23	.01	. 15	58	ے 2140
ł.	1 081	1	82	4929	3315	78.1	6	5	11529		1543	8	З	2	378	49.9	110	3		5.38	. 089	5	32	1.10	83	•01	3	,40	.02	. 17	3	4169 🗄
Į.	1082	8	113	4596	18033	106.7	11	4	15838	6.37	1336	8	3	2	307	308.9	121	3	10	5.14	.068	6	42	.95	51	.01	3	.31	. 01	. 10	2	5890
ļ	083	11	35	2214	2589	32.7	29	4	6450	6.97	1496	8	3	2	131	39.5	38	3	16	1.85	.020	1	51	.38	21	.01	3	. 16	.01	,10	4	4610
1) OB4	4	304	9907	7963	248.7	13	2	1 395 9	8.27	2538	8	6	2	342	125.8	294	3	13	5.13	.052	3	34	.92	34	.01	3	. 18	, 01	.11	2	10460 0 4640 0
1	1085	4	71	2625	3419	56.3	б	6	7537	4.36	1 345	8	3	2	260	49.5	57	3	25	4.85	.077	4	31	.76	54	.01	3	. 41	.01	.15	3	4640
1	G8 6	17	235	5552	12764	192.2	13	4	1759	3,09	2057	8	ND	2	269	230.4	138	3	10	4.08	.035	2	50	.70	49	.01	3	. 28	.01	.17	5	1120
1	087	29	151	2838	3502	109.8	13	5	1490	4.04	1385	8	8	2	146	\$7.3	117	3	7	1.31	.046	2	77	.47	34	.01	3	. 19	.01	.11	4	טוקור יי
ļ	088	7	351	14848	14018	292.9	11	3	4875	5,75	2094	8	10	2	118	257.0	300	4	6	1.42	.037	2	67	.30	42	.01	3	. 22	.0 1	.14	3	11600


																														•	
ELEMENT	Мо		РЬ	Zn	- T	Ni	G	Mn	Fe	As	ບ	Au	Th	-	C4	Sb	Bi	V	Ca	P T	La	Cr	Mg	Ba	Ti T	8	A1	Na	ĸ	W	Au
SAMPLE	bbm	ppm	ppm	ppra	ppm	ppm	ppm	ppm	Z	bbw	ppm	ppm	bbu	ppa	ррт	ppm	ppa	ppm	74	z	ppm	ppm	~	ppm	*	ppm	z	*	*	ppm	ppb
1089	4	3214	20020	12087	213.2	20	5	4278	5.82	1785	8	7	2	324	235.5	1432	3	13	4.96	.035	2	40	.61 `	36	.01	3	.23	.01	.13	2	8920
1090	27	273	3398	4017	179.3	14	4	3047	3.73	1302	8	3	2	388	58.2	133	3	10	6.38	.020	2	90	. 59	27	.01	3	.17	.01	.10	2	5280
1091	30	190	3138	6562	122.8	14	6	2822	4.34	1245	8	3	2	168	105.7	156	3	10	2.25	.061	3	61	. 54	48	.01	3	. 29	.01	.16	9	3740
1092	4	461	3556	7473	279.7	9	5	2227	3.69	1587	8	3	2	296	127.6	305	3	6	4.62	.062	3	36	. 52	62	.01	3	.29	.01	.15	7	2760
1093	1	7	484	744	5.6	2	5	1473	2.77	1568	8	ND	2	204	9.7	4	3	4	3.06	.084	8	2 9	.76	9 7	.01	3	.44	.02	.19	2	410
1094	1	9	324	543	4.3	2	5	1489	2.57	1669	8	ND	3	206	7.1	6	3	7	3.06	. 076	7	25	.65	82	.01	3	. 47	-01	. 16	2	350
1095	4	10	344	309	5.7	4	3	1554	2.67	1133	8	ND	2	134	4.0	8	3	2	1.50	.044	4	25	.89	64	.01	3	. 34	.01	.19	2	9 10
1096	6	37	22	504	1.6	17	6	1096	3.34	197	8	ND	2	312	8.5	6	3	24	4.38	.061	3	25	1.08	43	.01	3	.43	.01	.11	2	50
1097	7	36	26	344	1.2	24	5	698	2.47	32	8	ND	2	144	5.8	8	З	18	2,86	.053	3	46	.66	42	.01	3	.27	.01	.12	2	10
1098	6	43	47	206	1.8	18	6	710	2.63	453	8	ND	2	169	2.8	8	3	15	2.72	.050	3	50	.72	37	.01	3	.25	.01	.12	2	50
1099	23	45	39	717	1.3	42	5	898	2.26	146	8	ND	2	315	9.3	8	3	15	4.58	.064	3	33	. 58	52	.01	3	.27	.01	.14	2	60
1100	22	48	71	366	3.9	57	19	717	5.22	174	8	ND	2	149	4.0	19	3	21	2.36	.177	6	8	. 72	39	.01	3	.65	.01	.29	2	32
1101	1	13	19	41	.8	2	3	2390	2.10	10	8	ND	2	1 781	.5	3	3	15	27.07	.021	2	3	. 60	50	.01	3	.41	.01	.05	28	8
1102	3	58	186	204	3.6	11	11	1681	4.25	61	8	ND	2	230	1.5	21	3	8	5.72	. 161	3	46	1.07	53	.01	3	.25	.01	.16	2	45
1103	9	40	100	142	3.1	5	8	1506	4.15	37	8	ND	2	210	1.0	10	3	8	5.01	.052	1	79	1.06	74	.01	3	.15	.01	.08	2	42
1104	7	111	921	990	46.3	31	15	19 11	4.48	92	8	NÐ	2	74	15.1	50	3	20	.92	. 109	2	44	.30	49	.01	3	. 39	.01	.16	15	760
1105	5	11	44	490	2.6	26	1	2800	6.77	35	8	ND	2	890	6.5	1 6	3	8	17.73	.027	3	25	2.38	95	.01	3	.15	.01	.07	2	11
1106	19	51	62	285	1.6	37	11	847	5.26	78	8	ND	2	184	3.1	16	3	11	4.21	.119	4	11	. 74	56	.01	3	.31	.01	.17	2	19

For Pb, Zn greater than 10,000 ppm, assay digestion is required for correct data.

For Ag greater than 35 ppm, assay digestion is required for correct data.

A.

PAGE 2

