## Geological, Geochemical and Interpretative Report



(Hanna 9, Portal 1, Portal 2, MM1 Fr., Mack #1-4, Hopefull#1-4, Highgrade, Thrush, Copco#1-6, Roy#1-4, Tod#7-8, Atlas #1-11, Atlas 12 Fr, Dor#1, Miss Daisy 1-2, Bes 1-2, Tor 2)

**Liard Mining Division** 

N.T.S. 104P/5 Latitude 59° 17' N Longitude 129° 42' W

For: Navasota Resources Limited #207 – 141 Victoria Street Kamloops, B.C. V2C 1Z5

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT R.C. Wells, P.Geo, FGAC. Consulting Geologist. Kamloops Geological Services Ltd. FESSIO August 25, 2003 OVINCE

## **TABLE OF CONTENTS**

 $\bigcirc$ 

 $\bigcirc$ 

 $\bigcirc$ 

| SUMMARY                                                   | 1  |
|-----------------------------------------------------------|----|
| 1.0 INTRODUCTION                                          | 4  |
| 1.1 LOCATION                                              | 4  |
| 1.2 PHYSIOGRAPHY                                          | 4  |
| 1.3 PROPERTY                                              | 5  |
| 1.4 EXPLORATION HISTORY                                   | 9  |
| 1.5 GEOLOGICAL SETTING                                    | 11 |
| Regional Geology                                          | 11 |
| Local and Property Geology                                | 13 |
| 2.0 2003 GEOLOGICAL-GEOCHEMICAL PROGRAM                   | 17 |
| 2.1 INTRODUCTION                                          | 17 |
| 2.2 PROCEDURE                                             | 17 |
| 2.3 GEOLOGICAL RESULTS                                    | 19 |
| a) Lithologies                                            | 19 |
| b) General Comments on Alteration and Mineralization      | 19 |
| c) Comments on Structure and Mineralization in Gold Zones | 21 |
| (i) Taurus Mine                                           | 21 |
| (ii) Sable Area                                           | 22 |
| (iii)88 Hill Zone                                         | 23 |
| (1v)88 West Zone                                          | 23 |
| (v) Highway Zone                                          | 24 |
| (VI) Laurus West Zone                                     | 25 |
| 2.4 GEOCHEMICAL RESULTS                                   | 20 |
| a) Comments on Litnogeochemistry                          | 20 |
| b) Chemical Changes during Alteration and Mineralization  | 21 |
| 25 SADIE CODE SAMPLING                                    | 29 |
| 2.5 SABLE CORE SAMELING                                   | 30 |
| b) Results                                                | 30 |
|                                                           | 20 |
| 3.0 DISCUSSION AND CONCLUSIONS                            | 32 |
| 4.0 RECOMMENDATIONS                                       | 34 |
| 5.0 REFERENCES                                            | 35 |
| 6.0 STATEMENT OF COSTS                                    | 37 |
| 7.0 STATEMENT OF QUALIFICATIONS                           | 38 |

## APPENDICES

At Rear.

| APPENDIX A | STATEMENT OF WORK             |
|------------|-------------------------------|
| APPENDIX B | 2003 DRILL LOGS               |
| APPENDIX C | GEOCHEMICAL DATA AND PLOTS    |
| APPENDIX D | SABLE AREA CORE SAMPLING DATA |
| APPENDIX E | LARGE FIGURES AND PLANS       |

()

()

()

## LIST OF TABLES

Page

| 5,6      | TAURUS PROPERTY MINERAL CLAIMS                                  | TABLE 1 |
|----------|-----------------------------------------------------------------|---------|
| pendix 6 | 2003 CASSIAR-TAURUS PROJECT: Ap<br>GEOCHEMICAL SAMPLES          | TABLE 2 |
| 28       | AVERAGE CHEMICAL COMPOSITIONS FOR<br>LITHOLOGY-ALTERATION TYPES | TABLE 3 |
| 29       | <b>T3 PYRITIC SAMPLES-GOLD VALUES AND VARIABILITY</b>           | TABLE 4 |
| pendix D | SABLE ZONE-CORE SAMPLING RESULTS App                            | TABLE 5 |

## LIST OF FIGURES

|          |                         | -          |
|----------|-------------------------|------------|
| FIGURE 1 | LOCATION MAP            | 3          |
| FIGURE 2 | CLAIM MAP               | 7          |
| FIGURE 3 | SITE PLAN               | 8          |
| FIGURE 4 | REGIONAL GEOLOGY        | 12         |
| FIGURE 5 | PROPERTY GEOLOGY        | APPENDIX E |
| FIGURE 6 | DRILLHOLE LOCATION PLAN | APPENDIX E |

### **CHEMICAL PLOTS AND DIAGRAMS**

- FIGURE 7.1 **TAS Diagram-Basalts** FIGURE 7.2 Al<sub>2</sub>O<sub>3</sub>-MgO-FeO+TiO<sub>2</sub>. Basalts FIGURE 7.3 MnO-P<sub>2</sub>O<sub>5</sub>-TiO<sub>2</sub>. Basalts FIGURE 8.1 Au ppb-As ppm Plot FIGURE 8.2 K<sub>2</sub>O (WT%)-Au ppb Plot FIGURE 8.3 Au ppb-MgO Plot FIGURE 8.4 Au ppb-SiO<sub>2</sub> Plot Au-Na<sub>2</sub> O Plot FIGURE 8.5 FIGURE 8.6 Au-Ag Plot FIGURE 8.7 Au-Cu Plot FIGURE 8.8 Au-Zn Plot FIGURE 8.9 Ag-As Plot **FIGURE 8.10** K<sub>2</sub>O-As Plot **FIGURE 8.11** K<sub>2</sub>O-Na<sub>2</sub>O Plot
- FIGURE 8.12 MgO-K<sub>2</sub>O Plot
- FIGURE 8.13 K<sub>2</sub>O-SiO<sub>2</sub>/TiO<sub>2</sub> Ratio Plot

#### **APPENDIX C**

#### SUMMARY

1

This report documents a summer 2003 exploration program on the Taurus gold property in the Cassiar Camp, northern British Columbia by Navasota Resources Ltd. The property has excellent year round road access and consists of 45 mineral claims covering approximately 10 km<sup>2</sup>. Navasota recently concluded an agreement with Taurus Resources Inc. (the owner) to earn a possible 100% interest in the property subject to staged payments and a 2.5% NSR on ten mineral claims.

The property is located in the Sylvester Allochthon composed of Devonian to Triassic age subaqueous volcanic, sedimentary and ultramafic rocks juxtaposed in several thrust sheets. Gold mineralization at Taurus has many features in common with ophiolite related gold-quartz vein systems (major gold camps) in the Western Cordillera including Wells-Barkerville, Bralorne and Mother Lode.

There are several known easterly trending gold zones on the property including the past producing Taurus Mine (1981-1988). These feature broad zones of carbonate alteration within pillowed to massive basalts that host swarms of steeply dipping quartz veins with abundant disseminated wallrock pyrite (euhedral). This is called T4 style pyritic alteration-quartz vein mineralization. Another less common style of gold mineralization called T3 features abundant very fine disseminated pyrite in the Taurus West area.

A significant amount of previous gold exploration with local underground development (Taurus Mine, Plaza and Sable workings) has taken place on the property followed by some large drill programs in the 1990's. Pre-1995 exploration largely focused on higher grade (>6 g/t) potential associated with larger penetrative quartz vein systems within T4 mineralized zones. Exploration by Cyprus Canada Inc. in 1995 followed by International Taurus and Cusac Gold Mines investigated the low grade (1-3 g/t) bulk-tonnage gold potential of the larger T4 zones such as 88 Hill. Several resource calculations have been documented, most recently 62,397,477 tonnes grading 0.8g/t gold in 1999 by Cusac Gold Mines.

Preliminary geological modeling by Navasota using more recent drilling data encountered significant problems with the geometry of gold mineralization within zones. The objectives of the 2003 geological-geochemical program were to improve geological understanding and to assess previous exploration. Total program costs were \$55,593.77 with approximately 100 man/days on the property. Exploration activities included significant core-relogging, surface examinations, sampling of Sable drill core and some later geochemical study on selected samples.

The results from the 2003 exploration program were encouraging, demonstrating that many of the known gold zones had both high grade (T4-quartz veins) and low grade (T4-vein alteration and, or pyritic T3 mineralization) bulk-tonnage potential. Previous exploration had in many cases not adequately tested either in some of the zones. Some large gaps occur in the drilling between some of the zones for no apparent reason.

In zones like 88 Hill, 88 West to Taurus West and even the Taurus Mine the structural controls on gold mineralization are not clear. Structures appear to be long lived, often in broad

panels including several sets of pre to post-mineral faults with complex interplay and a variety of orientations.

Pyritic alteration- quartz vein (T4) and pyritic (T3) gold mineralization are spatially and possibly genetically related. Both feature significant potassium addition, strongly elevated arsenic and sodium depletion. T3 mineralization is far more extensive than previously recorded occurring in all of the zones examined in 2003 other than the Sable. T3 locally appears to overprint T4 mineralization, however the relationship between them and controls on T3 are not clear.

The Taurus Property has excellent gold potential with a variety of targets. Further exploration is strongly recommended, future work should include well orientated diamond drilling, surface work and technical studies. This would also include further metallurgical studies on T3 pyritic gold mineralization.

2



#### **1.0 INTRODUCTION**

4

This report presents the results from a geological-geochemical program completed on the Taurus property by Navasota Resource Ltd. during June and July 2003. This program was supervised by L. Warner, P.Geo, President, Navasota Resources and R. C Wells P.Geo, Consulting geologist for Kamloops Geological Services Ltd. and was financed by Navasota Resources Ltd. with offices at 207-141 Victoria Street, Kamloops, BC. Total applicable exploration expenses on the Taurus Property during this phase of exploration amounted to \$55,593.77.

This was the first exploration program by Navasota on this promising property with several known gold zones and the past producing Taurus Gold Mine. The focus was on improving geological understanding in particular the controls on gold mineralization and was property wide. Exploration activities included significant core re-logging with geochemical sampling and surface examinations.

A recent 43-101 'Report on Exploration Activities on the Taurus Property' by C. Wild, P. Eng. (2003) was a very useful reference. With his kind permission sections of this report were incorporated into Section 1.0 as this is basically background data.

#### **1.1 LOCATION AND ACCESS**

The Taurus Property covers approximately 800 hectares located in the Liard Mining Division, north-central British Columbia, approximately 8 kilometres east of the former townsite of Cassiar, B.C., 117 kilometres north of Dease Lake, B.C., and 141 kilometres south of Watson Lake, Yukon Territory (Figure 1). The property sits on NTS mapsheet 104P05E and BCGS mapsheet 104P022, at 59° 16' 28" latitude and 129° 41' 22" longitude, and UTM coordinates 6570815mN and 460706mE (UTM Zone 09 – NAD 83).

There is excellent road access to the property from the Stewart-Cassiar Highway 37 at Jade City. The old Cassiar Highway (paved) bisects the property and lies proximal to several of the known gold zones. From here numerous old mine and exploration roads to the north and south yield excellent vehicle access to most areas. Previous mining activities on the property in the 1980's and 1990,s have left several buildings on the property some of which are still useable.

#### **1.2 PHYSIOGRAPHY**

The Taurus Property is located at the confluence of Quartzrock and Troutline Creeks which then drain west into McDame Creek. Troutline Creek forms a broad westerly trending valley, its floor up to two kilometers wide features swampy areas separated by low hills with elevations between 1000 and 1200 metres. The two creeks are deeply incised in the Wings Canyon-confluence area with vertical cliffs and rapids. To the north and south valley slopes rise

steeply to local peaks over 2000 metres in elevation. Vegetation consists of forests of jackpine, lodgepole pine, black spruce, and poplar thinning to buckbrush and alpine meadows above treeline at 1400 metres. Previous mining and exploration activities on the property have resulted in patchy cleared areas which have been reclaimed (seeded).

Daily mean temperatures at Dease Lake, 100 kilometres to the south of the property, range from  $-18^{\circ}$  C in January to  $+13^{\circ}$  C in July. Snowfall between October and May has total accumulation of 227 centimetres.

#### **1.3 PROPERTY**

Table 1 lists the 46 claims comprising the property. International Taurus Resources Inc. holds, except for a 2.5% Net Smelter Return (NSR) in effect for ten claims noted below, a 100% undivided right, title and interest in all of the Taurus claims free and clear of all encumbrances and royalties. The ten claims marked with an asterisk (\*) are subject to a 2.5% NSR royalty in favour of Sable Resources Ltd. Figure 2 shows the location of claims and the property outline.

| Claim       | Tenure     | Tag    | Units | Expiry Date        |
|-------------|------------|--------|-------|--------------------|
|             | <u>No.</u> | No.    |       |                    |
| HANNA 9     | 221785     | 19067  | 9     | September 19, 2005 |
| PORTAL 2    | 221900     | 41466  | 9     | October 9, 2003    |
| PORTAL 1    | 221901     | 41465  | 15    | October 9, 2003    |
| MM 1 FR.    | 222080     | 41467  | 1     | November 28, 2004  |
| MACK#1*     | 226142     | 2599   | 1     | October 2, 2005    |
| MACK#2*     | 226143     | 2600   | 1     | October 2, 2005    |
| MACK#3*     | 226144     | 2601   | 1     | October 2, 2005    |
| MACK#4*     | 226145     | 2602   | 1     | October 2, 2005    |
| HOPEFULL#1* | 226146     | 2607   | 1     | October 2, 2005    |
| HOPEFULL#2* | 226147     | 2608   | 1     | October 2, 2005    |
| HOPEFULL#3* | 226148     | 2609   | 1     | October 2, 2005    |
| HOPEFULL#4* | 226149     | 2610   | 1     | October 2, 2005    |
| HILLSIDE*   | 226150     | 2633   | 1     | November 2, 2006   |
| HIGHGRADE*  | 226151     | 2630   | 1     | November 2, 2006   |
| THRUSH      | 226207     | 241446 | 1     | September 11, 2005 |
| COPCO#1     | 226208     | 355002 | 1     | September 29, 2005 |
| COPCO#2     | 226209     | 355003 | 1     | September 29, 2005 |
| COPCO#3     | 226210     | 355006 | 1     | September 29, 2005 |
| COPCO#4     | 226211     | 355007 | 1     | September 29, 2005 |
| COPCO#5     | 226212     | 355004 | 1     | September 29, 2005 |
| COPCO#6     | 226213     | 355005 | 1     | September 29, 2005 |
| ROY #1      | 227201     | 148039 | 1     | September 14, 2005 |
| ROY #2      | 227202     | 148040 | 1     | September 14, 2005 |
| ROY #3      | 227203     | 148041 | 1     | September 14, 2005 |

#### **Table 1: Taurus Property Mineral Claims**

Ronald C. Wells P.GEO, FGAC, Kamloops Geological Services Ltd

5

| ROY #4       | 227204 | 148042 | 1 | September 14, 2005 |
|--------------|--------|--------|---|--------------------|
| TOD#7        | 227536 | 859986 | 1 | October 20, 2005   |
| TOD#8        | 227537 | 859987 | 1 | October 20, 2005   |
| ATLAS#1      | 227694 | 431545 | 1 | March 21, 2005     |
| ATLAS#2      | 227695 | 431546 | 1 | March 21, 2005     |
| ATLAS#3      | 227696 | 431547 | 1 | March 21, 2005     |
| ATLAS#4      | 227697 | 431548 | 1 | March 21, 2005     |
| ATLAS#5      | 227698 | 431549 | 1 | March 21, 2005     |
| ATLAS#6      | 227699 | 431550 | 1 | March 21, 2005     |
| ATLAS#7      | 227700 | 431551 | 1 | March 21, 2005     |
| ATLAS#8      | 227701 | 431552 | 1 | March 21, 2005     |
| ATLAS#9      | 227702 | 431553 | 1 | March 21, 2005     |
| ATLAS#10     | 227703 | 431554 | 1 | March 21, 2005     |
| ATLAS#11     | 227704 | 431555 | 1 | March 21, 2005     |
| ATLAS#12 FR. | 227705 | 431556 | 1 | March 21, 2005     |
| DOR#1        | 227708 | 372824 | 1 | April 13, 2004     |
| MISS DAISY 1 | 331105 | 658604 | 1 | September 26, 2005 |
| MISS DAISY 2 | 331106 | 658603 | 1 | September 26, 2005 |
| BES 1        | 331167 | 658606 | 1 | October 1, 2004    |
| BES 2        | 331168 | 658607 | 1 | October 1, 2004    |
| TOR 2        | 332630 | 120591 | 1 | November 3, 2004   |
| FIRE WEED    | 395270 |        | 1 | September 11 2005  |

In 1995, Cyprus Canada contracted Ivan Royan, British Columbia Land Surveyor, of Underhill and Underhill to complete a survey of the Taurus claims, to determine if any fractions existed between claims and resolve which claims had precedence. According to Broughton and Masson (1996), this work resolved location and precedence issues and allowed Cyprus Canada to stake apparent open ground. As a result, some discrepancies exist between claim locations from the survey and those on the Ministry of Energy and Mines website. Figure 2 uses the surveyed claim locations. Placer claims exist along both Quartzrock and Troutline Creeks within the Taurus property boundary. Surface tenures also overlap the Taurus property, but no title search has been done.

Navasota Resources Ltd. reported on February 20<sup>th</sup>, 2003 that it had concluded a mineral property option agreement with International Taurus Resources Inc. to earn up to an undivided 70% proportionate legal and beneficial interest in the Taurus group of mineral claims. On July 15<sup>th</sup>, 2003 the company concluded a new option agreement with Taurus Resources to replace the previous one. This new agreement allows the company to earn a 100% interest in the property subject to staged payments and a 2.5% NSR. on ten of the mineral claims.

Ronald C. Wells P.GEO, FGAC, Kamloops Geological Services Ltd

6





#### **1.4 EXPLORATION HISTORY**

The following discussion on property history was taken in large part from a report by C. Wild (2003).

9

**Pre-1988:** The Cassiar area was first explored in 1874, resulting in the discovery of placer gold in McDame Creek. By 1895, 2.2 million grams had been produced. Gold-quartz veins were discovered in Troutline Creek in 1934, leading to the discovery of many more veins that lead to the establishment of several small gold mining operations. The Taurus Mine was originally covered by seven claims of the Cornucopia Group staked by J.C. Simpson in 1935. Simpson carried out stripping, trenching and rock sampling until 1944. The following year, Benroy Gold Mines Ltd. optioned the property and completed more than 700 metres of trenching and 1500 metres of diamond drilling.

The claims were restaked in 1959 by Couture and Copeman who hand-mined 25 tons of high-grade ore from a short adit. In 1960, Cornucopia Explorations Ltd. was incorporated to acquire the property. The following year, Cornucopia changed names to Hanna Gold Mines Ltd. and proceeded with 1180 metres of drifting and crosscutting, and 1000 metres of diamond drilling. By the end of 1963, an "indicated reserve" of 72,500 tonnes grading 22.6 grams per tonne gold had been outlined (Gunning, 1987).

In 1964, Newconex Canadian Exploration Ltd. optioned the property and completed an additional 180 metres of drifting and crosscutting and 210 metres of drilling. In 1972, Hanna Gold Mines became Dorchester Resources Ltd., and rehabilitated and resampled the main 3600 level adit, and completed another 223 metres of underground diamond drilling between 1973 and 1975. In 1976, Dorchester Resources became Taurus Resources Ltd. In 1978, Ashlu Gold Mines Ltd. optioned the property and completed 7.2 kilometres of ground-based magnetometer and electromagnetic surveys. In 1979, United Hearne Resources Ltd. optioned the property and continued underground development and drilling, confirming a "reserve" of 60,000 tonnes grading 16.1 grams per tonne gold.

A 135 tonne per day mill was constructed at the Taurus Mine in 1980-81, treating 220,000 tones of ore, averaging 5.14 grams per tonne gold prior to closing in 1988. The Plaza and Sable workings, south of the highway, were developed between 1980 and 1994 but recorded no production.

1988 to 1994: In 1988, Sable Resources Ltd. conducted an Induced Polarization (IP) survey that outlined 33 anomalies on the "Main Grid" area. Trenching and 5 diamond drillholes tested one anomaly discovering the 1988-1 and 1988-2 vein systems in the 88 Hill area. Hole 88-5 intersected 5.99 grams per tonne over 12.34 metres. Subsequently, a small open pit extracted 2600 tonnes grading 2.06 grams per tonne from the 1988-2 vein.

In 1993, Sable extended IP coverage and completed additional trenching. Late in 1993, Sable sold its controlling block of shares in International Taurus Resources Inc., to Hera Resources Inc. who finished a trenching and 26-hole diamond drilling program totaling 1554

metres (5099 feet) on the east side of 88 Hill. Trenching tested 6 of 42 geophysical (IP) targets, discovering 3 gold-bearing vein systems (1993-1 to 3), which were subsequently drill-tested. A "potential resource" of 436,000 tonnes (481,000 tons) in individual narrow quartz veins grading 6.99 grams per tonne gold (0.204 ounces per ton) was reported by B.E. Spencer (1994) for the 88-1, 93-1, and 93-2 vein systems.

A second resource calculation, including the 88-1, 93-1, and 93-2 vein systems, was completed by A. Beaton, P.Eng., in May 1994 and concluded a "geological or potential ore reserve" of 367,000 tons grading 0.172 ounces per ton. The estimate includes data from the portion of 1994 trenching and diamond drilling completed in the 88 Hill area. That portion of the program consisted of extensive trenching and diamond drilling along the south and north margins of the area explored in 1993.

**1994 to Present:** In 1994, International Taurus moved to the north side of the highway, completing 88 diamond drillholes totaling 7517.5 metres and an IP survey over 26.68 kilometres of grid, along strike to the west of the Taurus mine workings. In addition, 220 metres of drifting and 47 metres of raising were completed in the existing underground workings to define additional mineral resources. Underground development was suspended in late 1994, following the discovery of new targets. One drillhole west of the Taurus workings, 94-56, intersected 44.5 metres of pyritic mineralization grading 1.6 grams per tonne. This new zone, dubbed the Taurus West Zone, signaled the potential for bulk tonnage gold deposits on the Taurus property. A total of 24 diamond drillholes tested the Taurus West. Seven holes collared from 3 set-ups over 350 metres, tested the B.M. Zone, an 850-metre long IP anomaly, approximately 300 metres north of Taurus West.

Cyprus Canada Inc. signed a joint venture agreement with International Taurus and Cusac Gold Mines Ltd. in January 1995, and Douglas Busat in May 1995, assembling a claim package of some 4000 hectares stretching 10 kilometres east-west by 4 kilometres north-south. In March 1995, Cyprus began diamond drilling on the Taurus West and 88 West areas, completing 7 widely spaced NQ holes (T95-1 to 7) totaling 1357.2 metres. A grid was cut with a 200 metre line spacing with 3000 metre long lines oriented north-south, to serve as control for pole-dipole IP and ground magnetometer surveys. In May and June, another 7 widely spaced NQ holes (T95-8 to 14) totaling 1209.4 metres tested chargeability anomalies in the south, southwest, west and northwest portions of the grid, as well as the southern part of the Taurus West area.

Mapping the central portion of the property commenced in mid-June 1995, with limited trenching at Taurus West. A soil geochemical survey was completed over the grid at 50 metre stations (Figure 6). Diamond drilling resumed in July, completing an additional 10,104.1 metres in 64 holes. Two rigs drilled both NQ and HQ holes, over the 88 Hill, Taurus Mine and Taurus West areas, using 100 to 400 metre hole spacing. The grid was expanded later in the summer for further IP, ground magnetometer and soil geochemical surveys. Finally, in September, a reverse-circulation (RC) drill was brought in to twin 5 diamond drillholes in the Taurus West, Highway, and 88 Hill Zones. A total of 826 metres of drilling was completed to determine the viability of the RC system.

Preliminary metallurgical testing on 11 composite samples from the 88 Hill and Taurus West Zones was designed to test the characteristics of two dominant types of mineralization. Leach tests utilizing cyanide and froth flotation tests were run. Also, a preliminary resource calculation was completed to quantify potential resources for economic analyses. An inferred, undiluted mineral inventory of 38 million tonnes grading 1.42 grams per tonnes was calculated for the 88 Hill, Taurus West and Highway Zones. A second calculation utilized the same data but a different set of assumptions defined potential resource of 40.6 million tonnes grading 1.07 grams per tonne.

In July 1996, Cyprus decided to discontinue its efforts on the Taurus property, feeling that the deposit failed to meet its requirements at the time. International Taurus continued on with a program of 36 reverse-circulation holes, totaling 3869 metres, drilled on 50-metre centres on the 88 Hill Zone, and 5 diamond drillholes, totaling 582 metres, extending the zone some 300 metres to the west. The program was designed to upgrade a portion of the inferred mineral resource, defining a "drill indicated reserve" of 13,725,350 tonnes grading 1.01 grams per tonne gold. An additional 27,355,000 tonnes grading 0.67 grams per tonne gold was classified as "inferred". A sectional method of resource calculation was employed. Given the lack of rigorous economic analyses and general geological modeling in the calculation, this figure is an indicated mineral resource. Additional wide-spaced drilling in the Taurus West Zone outlined a "drill inferred resource" of 25,134,000 tonnes grading 0.67 grams per tonne gold. This figure updated a part of the global inferred resource completed by Cyprus.

A further six holes totaling 790 metres was completed by International Taurus in 1997. No logs or hole locations were found in data supplied by International Taurus.

No significant work programs were completed in 1998. In September, Cusac Gold Mines entered into an agreement with International Taurus to earn up to 70% interest in the Taurus property by performing a certain minimum amount of exploration and development work over a four-year period and completing a positive feasibility study. In 1999, Cusac completed another resource calculation. Cusac defined six distinct zones using a database of 130 drillholes to define a "total mineral inventory" of 62,397,477 tonnes grading 0.80 grams per tones.

#### **1.5 GEOLOGICAL SETTING**

#### **Regional Geology**

Rocks of the Sylvester Allochthon, an accreted terrane of Mississippian to Triassic age, underlie the Taurus property (Figure 4). The allochthon was thrust over miogeoclinal platformal rocks of the Cassiar Terrane, forming a flat-bottomed, northwest-trending synclinorium of stacked thrust slices. The North American continental margin can be characterized as platformal limestones interbedded with clastic rocks including quartzite, grey to green phyllite, sandstone, phyllitic siltstone, and shale of Cassiar Terrane.

Emplacement of the allochthon may not have occurred until early Jurassic time. The Sylvester Group can be divided into three major divisions (Nelson et al., 1988). The base of the group, Division I, is composed of mainly chert and black argillite, with lesser sandstone, siltstone, diorite and diabase sills, and bedded quartz-pyrite-barite exhalites. Division II, which hosts



Geology of the Cassiar gold camp, after Harms (1989) and Nelson and Bradford (1993). Generalized cross-section of the Erickson mine area is from Harms (1989).

# Figure 4: Regional Geology

mineralization at Taurus, is made up of basaltic flows and breccias, chert and argillite, and intercalated with variably altered, narrow bodies of ultramafic rocks. The highest exposed structural level of the allochthon, Division III, is comprised of island arc volcanic rocks of basic to felsic composition and limestones. The Sylvester Group is correlated with Slide Mountain Terrane.

The Sylvester allochthon is intruded by the late Cretaceous Cassiar batholith to the west, and several other smaller stocks in the Cassiar area ranging in age from 90 Ma to 50 Ma. Compositionally, these intrusive rocks are quartz monzonites.

#### Local and Property Geology

#### 1. Lithology:

The Taurus property and surrounding area are underlain by a variably deformed sequence of Division II massive to pillowed, medium grey-green basaltic flows, chert and argillite intruded by mafic and lamprophyre dykes. Figure 5 is the most recent property geology map, Cyprus geologists divided the Taurus stratigraphy, generally from oldest to youngest, as follows (Broughton and Masson, 1996):

*Argillite* is typically dark grey to black, carbonaceous to graphitic, well bedded and commonly sheared. Beds range from 1mm to 10cm in thickness. Argillite grades into argillaceous chert. Contacts with basalts are sheared, graphitic, gougy, and brecciated. The unit was used as a basal marker for drilling.

*Chert and argillaceous chert* are characterized by alternating bands of soft (3-4) pale greenish mudstone and hard (>6) cream white chert. This cherty nature may in part be secondary as contacts with adjacent basalts, mudstone and argillite are often gradational.

*Mudstone* pale green, soft and finely laminated, occurs at the base of mineralized basalts in the 88 Hill area, and has been correlated with adjacent cherts.

Ultramafics occur at the west end of the property near the basalt-argillite contact and range in colour from dark green to black and texture from strongly schistose to massive. These sills or flows are altered to chlorite + talc +/- pyrrhotite, with local fuchsite in listwaenite. In one location, a 1-metre section of massive sulphide (pyrrhotite + minor chalcopyrite) is hosted in deformed chlorite-talc-serpentine schist.

*Mafic volcanics* dominate the property area occurring as light to medium dark green massive to pillowed flows, altered to chlorite-actinolite-epidote-leucoxene-carbonate-sericite. A magnetic jasperoidal pillowed sub-type has been recognized. Pillowed flows are generally poorly developed and not laterally extensive. Mafic flows are the dominant host of gold mineralization at Taurus and are underlain and intercalated with sedimentary rocks.

*Mafic tuffs* are noted at several locations throughout the property, but do not appear to form correlatable units. The tuffs are fine-grained, massive to fine laminated.

13

*Mafic and Lamprophyre Dykes* cut all other units on the Taurus property. Mafic dykes are aphanitic, dark green to black while lamprophyre dykes host biotite and occasional pink potassium feldspar phenocrysts. Both range from centimetres to 10 metres in thickness. Lamprophyre dykes have strongly magnetic contact aureoles up to 1 metre into the host rock.

#### 2. Structure:

Volcanic and sedimentary sequences on the Taurus property are relatively flat lying and face up. Within the basalt package, a steeply dipping north to northwest trending foliation appears to predate all other structures. Flat, sheared contacts may represent significant thrust faults, the most important being the lower contact of the dominantly basaltic sequence. A series of shallow east-dipping faults are possibly rooted in this basal thrust?. This tectonic event likely resulted in ground preparation that allowed mineralizing fluids to circulate through the host rock.

Several sets of pre-mineralization structures have been identified. A low angle thrust fault striking northwest with a  $15^{\circ}$  dip to the southwest separates basaltic host rocks from barren argillites. This structure is likely one a series of thrust sheets. Another mineralized fault set strikes to the north and dips  $30-40^{\circ}$  to the east, crosscutting the other sets and displays reverse sense of movement. One such fault may correlate with a north-trending reverse fault at the Cusac (Erickson) Mine, 8 kilometres to the south. Many quartz veins at the Taurus Mine are controlled by a series of faults striking  $80-90^{\circ}$  and dipping  $50-60^{\circ}$  to the south. Movement is interpreted to be both right lateral and reverse along these faults. Pyritic faults often occur adjacent to these larger quartz veins.

Post-ore structures include at least three sets of steeply dipping faults. One set of narrow faults striking 290-300° has been mapped in the Taurus Mine with metre-scale sinistral displacements of mineralized veins. A prominent subvertical set, trending 310-330°, shows up as chlorite schist in basalt and laminated to schistose fabric in cherts. Another subvertical northeast trending set has been defined from magnetometer and IP data. One set of faults strikes 250° with shallow southerly dips.

Hydrothermally altered basalt forms east-trending, steeply dipping, braided zones up to 60 metres thick, separated by blocks of unaltered basalt. Alteration consists of plagioclase altering to sericite and augite to epidote, sphene and chlorite. As alteration intensity increases, plagioclase and augite are completely replaced and the groundmass alters to dolomite, leucoxene and traces of potassium feldspar.

#### 3. Mineralization:

Both Taurus and the neighbouring Cusac (Erickson) Mines exploited well-defined Mesothermal quartz-carbonate-gold veins, similar to other volcanic-hosted vein systems at Bralorne and in the Mother Lode district of California. These vein systems are characterized by white to clear bull quartz and lesser iron-magnesium carbonate, calcite and traces of sericite. Drilling in 1994 highlighted the potential for low grade, bulk tonnage gold. Mineralization in this setting falls into two types: pyritic quartz veining and disseminated pyrite. The following section describes the various vein types and mineralization in more detail.

Two basic types of gold mineralization are predominantly hosted in altered basalt. Pyritic quartz veins are best developed at the Taurus Mine and 88 Hill Areas, in three main structural trends described in Item 9. Pyritic quartz vein mineralization can be subdivided into two subtypes: large veins and broad zones of sheeted or swarmed veins. Veins are composed of white quartz with patches of clear quartz, clay and sericite flanked by narrow zones of sulphide mineralization, typically 10 centimetres wide, along the vein margins. These zones often extend into the wallrock overprinting the vein contacts. Sulphides consist of pyrite with minor tetrahedrite and arsenopyrite, and trace sphalerite, galena and chalcopyrite. Systematic chip sampling shows that fine gold is concentrated in these sulphide zones averaging 21 grams per tonnes over 10 centimetres compared with only 1.8 grams per tonne over 50 centimetres across the centre of the vein, along graphitic banding. Alteration halos typically average 2 grams per tonne over 40 centimetres (Gunning, 1988).

In broad zones of pyritic quartz vein mineralization, pyrite typically makes up 5-10% of the rock, mainly as fine disseminations, fracture fillings, veinlets, halos and mud faults. Pyrite is associated with minor arsenopyrite along vein margins, chalcopyrite, green sericite, sphalerite and occasional visible gold. These broad zones have an east-west strike and steep southerly dip. Gold grains occur among quartz grains and in and adjacent to pyrite grains.

The second type of mineralization, termed disseminated pyritic or pyrite – carbonate mineralization, is characterized by 10-40% fine-grained pyrite, commonly banded and lacking significant quartz veining. The banded appearance is actually a shear fabric with basalt altered to sericite/muscovite + dolomite +/- leucoxene +/- quartz. Unmineralized quartz + carbonate veinlets are common, as are irregular, hairline, locally graphitic fracturing.

Distal to the gold-bearing mineralization, two vein structures with high silver:gold ratios have been explored. The Elan veins, northwest of the property, returned silver grades up to 5 ounces per ton but gold grades are typically less than 0.01 ounces per ton. These veins are not considered to be of much significance.

Seven areas of mineralization have been identified, each with a unique set of geological characteristics (Figure 3). Continuity appears to be good within each area but continuity between various zones is still a major issue to be resolved. Mineralization at the **Taurus Mine** is fairly well understood with large vein systems as described above. A zone of disseminated pyritic mineralization has been identified in the Decline Fault hangingwall. Controls for low-grade mineralization at Taurus Mine are not well understood.

Mineralization at **88 Hill** extends at least 1000 metres by 400 metres and includes surface and underground development work on the **Sable** and **Plaza** vein systems. Pyritic quartz vein mineralization occurs in swarms or sheets within pyritized and ankeritized basalt. Veins exposed in trenches and underground workings generally strike east-west with steep north and south dips and occur as broad zones of small tensional veins and narrow zones around continuous veins. These mineralized zones are separated by unaltered, unmineralized basalt. Mineralized zones are broadly continuous but individual structures are not correlatable. The **88** Hill Zone is open to the east back toward the Taurus Mine, and to the north and south. To the north, the zone may continue into the Highway Zone. Mineralization in the **88 West Zone** does not appear to extend beyond the east-dipping Taurus West Fault.

The **Highway Zone** lies along the north side of the highway between Quartzrock Creek and the Taurus West Fault. Geologically the Highway Zone is very similar to the 88 Hill, with pyritic quartz vein mineralization in the east to broad quartz-rich zones in the west.

**Taurus West** hosts disseminated pyrite-type mineralization centred on section 1100W (Figure 11). Drilling has demonstrated that continuity within the zone is limited and does not extend to 1000W or 1200W.

Wings Canyon lies in Quartzrock Creek approximately one kilometre south of the Taurus Mine. Most of the zone lies immediately south the property, but given its proximity to the property, it is included in this discussion. The zone is characterized by a broad zone of low-grade mineralization related to extensive northeast striking and variably south-dipping white quartz veins.

#### 2.0 2003 GEOLOGICAL-GEOCHEMICAL PROGRAM

#### **2.1 INTRODUCTION**

Navasota Resources Ltd completed a preliminary geological program-assessment on the Cassiar-Taurus Property between June 25 and July18, 2003. This was supervised by Navasota president Lorne Warner, P Geo and utilized Kamloops Geological services an independent consulting company (R. Wells, P. Geo). The objective was to improve understanding of the geological setting and controls on gold mineralization within the known gold zones on the Taurus Property.

Prior to departure an in depth examination was made of previous exploration data mainly from recent programs by International Taurus, Cyprus Canada and Cusac Gold Mines in the 1990's. Cusac's database of 130 drill holes used during 1999 resource calculation was made available to Navasota. There are excellent facilities on the property left over from previous exploration and mining including a useable cabin and core shack. Drill core from the large programs in the 1990's was stored in racks, labeled. 1994 and earlier core is cross-stacked and locally incomplete, some boxes are difficult to impossible to decipher. Many roads and trails on the property are still useable however access is often restricted by barriers or berms etc. The old underground workings at the Taurus mine, Plaza and Sable have been reclaimed as have the majority of trenches. Drillholes plugs for 1995 and later still have readable tags. Exploration grids are variably overgrown with sparse reference points and locally require considerable upgrading if they are to be used.

#### **2.2 PROCEDURES**

Recent geological modeling using the Cusac drillhole database and Vulcan software could not resolve the orientation of gold mineralization (shoots) in several of the known zones with any confidence. The often wide and variable spacing of drillhole's often allowed more than one interpretation of >1gt gold shoots with both sub-vertical and shallow dipping possible. This orientation problem was compounded by the generally uniform azimuth of holes which was north or south plus or minus ten degrees for much of the property.

While on site a strategy quickly evolved whereby holes in key areas were re-logged focusing on structure, alteration and mineralization in order to improve understanding of geometry. This was supplemented where possible by surface examinations of any outcrops and frequent reference to the Vulcan modelling. 23 drillholes were re-logged (3265.08 metres total) from five of the gold zones on the property as follows:

| GOLD ZONE    | HOLE NUMBERS                       |
|--------------|------------------------------------|
| TAURUS MINE  | T95-36, 37, 19, 22 and 31          |
| SABLE        | T95-43, 41 and 75                  |
| 88 HILL      | T95-67, 64, 62 snd 60              |
| 88 WEST      | T95-13, 4, 50, 72, 66A, 66B and 81 |
| HIGHWAY WEST | T95-18 and 3 and 67?               |
| TAURUS WEST  | T 94-74 and 79                     |

17

The locations of these holes are shown on Figure 6 with other 1995 Cyprus Canada drill holes. Copies of the new 2003 logs for these holes occur in Appendix B.

During the re-logging a selection of representative core samples were collected for future reference. 21 of these were chosen for geochemical analysis to answer specific questions regarding protoliths and alteration, These were transported back to Kamloops and submitted to Eco-Tech Laboratory for 30 gram gold geochemical. (ppb) or assay (g/t), 22 clement ICP and Whole-Rock Major Oxides by ICP (plus LOI.). Copies of original laboratory certificates of analysis occur in Appendix C.

#### **2.3 GEOLOGICAL RESULTS**

#### a) Lithologies

The selective re-logging of drillholes confirmed that the mineralization on the Taurus property is hosted by a sequence of sub-aqueous metavolcanic rocks underlain by sediments, mainly argillites and cherts.

The less altered mafic volcanic rocks are dominated by green, fine grained massive (MB, Cyprus unit T1) to pillowed (PB, Cyprus unit T1a) basalts. Massive units are predominantly non -magnetic and fairly homogeneous. In contrast pillowed sequences can be quite variable with local pillow-breccia units, inter-pillow jasperoid and, or chert and inter-beds of fine tuff, mudstone and chert (mixed tuff-chemical sediments). Locally pillow basalt sequences are moderate to strongly magnetic (Cyprus unit T1a jas.mag). Both holes T94-64 and 67 located north of the 88 Hill Zone intersected narrow sequences of interbedded tuff and chert within a sequence of massive to pillowed basalt. One of these units within hole T95-64 (131.9-137.40m) featured fine laminated tuff and jasperoid chemical sediments overlain by grey chert beds.

Past drilling in the 88 Hill, Sable and Taurus Mine areas encountered flat to shallow dipping sequences of bedded grey chert (Cyprus Unit T7) and, or dark argillite (Cyprus Unit T6) beneath the mafic volcanic sequence. Some inter-fingering between these volcanics and sediments is probable in the contact areas however due to strong deformation overprints (with dislocation) relationships are often unclear. The bedded cherts commonly grade downward (and laterally?) into interbedded sequences with carbonaceous to cherty argillites and local more massive mudstones. Locally in the stronger deformation zones the argillites are converted to carbonaceous phyllites and graphitic schists.

Centimetre to metre scale, dark coloured, fine grained to porphyritic lamprophyre dykes (Cyprus Units T10, T11) were observed in several holes drilled in the Taurus Mine and 88 Hill areas. These have sharp contacts and often cut the altered metavolcanics in mineralized areas, steep to vertical dips and easterly strike are inferred. Mineral compositions includes brown biotite and, or amphibole (often chloritized) with local recognizable augite and K. feldspar phenocrysts plus calcite amygdales. Contact areas, with volcanic wallrocks may feature hornfels with strong magnetism. One larger lamprophyre dyke at the bottom of hole T95-31 contained abundant 'milled' (well rounded) xenoliths up to 10cm in. diameter consisting of medium to coarse grained diorite and granite. The lamprophyre dykes are clearly late, post-dating mineralization and alteration.

#### b) General Comments on Alteration and Mineralization

The earlier comments regarding alteration and mineralization in Section 1.5 are essentially correct however some clarification is necessary based on recent drill core and surface observations. In general terms there appears to be two main styles of auriferous mineralization which are spatially and possibly genetically related. Both are hosted by alteration zones in the mafic metavolcanic sequence, to date no significant gold values have been recorded from the underlying sediments. During core logging it was clearly apparent that patchy carbonate alteration was widespread outside of the mineralized zones especially in the pillowed basalts.

19

20

ł

This alteration involves weak to strong, patchy-disseminated calcite with local associated epidote. It appears to be an early (background) alteration which may be unrelated or distal to gold mineralization. The volcanic host generally retains its green colour.

**Pyritic Quartz Vein Mineralization** (Cyprus Units T4/T4A/T5) is the dominant auriferous mineralization in virtually all of the known zones including Wings Canyon and the main ore-type during production at the Taurus mine. This mineralization is hosted by broad easterly trending carbonate alteration zones with abundant quartz veining (swarms) and disseminated wallrock pyrite (SCQP units this logging). These alteration zones can be linear to anastomosing, hundreds of metres in length, up to tens of metres in width and are separated by less altered to fresh metavolcanics.

Quartz veins in these zones can be from millimeter to several metres in width and have variable orientations. The larger veins are generally concordant, steeply dipping to vertical (where examined) and exhibit a variety of textures from massive to crude banded. Deformation is indicated by fracture-cleavages, local brecciation and folding (88 Hill trenches). Vein quartz is generally milky to grey with little carbonate and local medium to coarse grained blebs of sphalerite, tetrahedrite plus or minus pyrite, chalcopyrite and arsenopyrite. Significant amounts of disseminated prismatic arsenopyrite were observed in the selvedges and wallrocks to some narrow quartz veins. Some of these also featured wallrock apple green sericite, fine chalcopyrite and light coloured sphalerite.

The quartz veins in these carbonate alteration zones have broad pyritic haloes. These may be tens of metres in width where they overlap and commonly feature between 2 and 15% (locally more) disseminated, fine to coarse grained euhedral pyrite. The coarser euhedral pyrite is often proximal to the vein and may form semi-massive selvedge aggregates or inclusions (in vein). Closer inspection often reveals some fine disseminated arsenopyrite in these areas. In areas distal to the veins the pyrite haloes grade outward into weakly pyritic carbonate rocks (Cyprus Unit T2) which were called CB during re-logging. The carbonate in the mineralized alteration zones displays a common zonation from distal calcite-ankerite through ankerite dominant to Fe dolomite-ankerite in proximal vein areas. Some fine disseminated pale to greenish sericite is evident in proximal areas to veins disseminated within the carbonate and locally concentrated in aggregates along vein selvedges. Petrographic examination of 1995 Cyprus thin sections confirmed many of these observations especially the dominance of ankeritic to dolomitic carbonates in proximal areas to veins with local fine disseminated sericite. Other interesting features include hairline fractures in euhedral pyrite and quartz pressure shadow fringes indicating pre-kinematic sulfides. Secondly veins with highly strained quartz and strongly embayed (resorbed) contacts again indicating pre-kinematic age.

The quartz vein intervals with recorded visible gold in drill logs have often been removed (by Cyprus 1995) consequently it is not possible to comment on gold relationships in these areas. Visible gold was observed during surface examination of old trenches in the west 88 Hill area and in the Taurus tailings area. In both cases millimeter size grains and aggregates of gold occur within weathered quartz with sponge like appearance lining cavities (after pyrite?). Some fine gold was also observed along grain contacts or fractures within more solid quartz. The gold observed at the trench at 88 Hill was clearly associated with an 070<sup>o</sup>E striking deformed quartz vein with steep northerly dip and abundant euhedral pyrite in the wallrocks (above hole T95-62)

**Disseminated Pyritic Mineralization** (Cyprus Unit T3, PAZ in 2003) are characterized by 10 to 40% very fine to fine grained pyrite with matrix carbonate (ankerite-dolomite?) plus or minus local fine sericite, chlorite, quartz and K. feldspar. Shear fabrics and banding are locally evident with inferred steep dips. Quartz veining is generally absent or brecciated, lensy carbonate (calcite) veinlets occur locally.

According to Cyprus reports (Broughton and Masson, 1996) this.T3 style of mineralization is restricted to drill holes in the Taurus West area. Based on some preliminary metallurgical testing (samples from 3 holes) it appears refractory. The recent core logging clearly indicated that T3 (PAZ) style mineralization was far more extensive than previously recognized occurring in the Taurus Mine, 88.Hill, 88 West, Taurus West and Highway (west) zones. Previous reference has also been made to fine pyrite zones (30% pyrite) in the Decline Fault hangingwall at Taurus Mine (Broughton and Masson, 1996). Within these areas the T3 mineralization consistently returns gold values in the 1 to 8 g/t range and lies proximal to larger fault zones. Fabrics are commonly evident in matrix sericite and, or chlorite with local carbon fractures-coatings. Some of these T3 zones appear to overprint T4 vein style mineralization and incorporates deformed veinlet quartz and coarser pyrite (inclusions).

#### c) Comments on Structure and Mineralization in Zones

A few comments follow on observed and interpreted structures and mineralization in specific gold zones. It must be emphasized that these are preliminary and often based on observations from a limited number of widely spaced drill holes and sparse outcrop.

## (i) Taurus Mine

The Taurus mine area is geologically one of the better understood areas on the property with significant exploration, development and limited gold production over the last 35 years. Swarms of easterly trending quartz veins (T4 style) dip steeply between  $60^{\circ}$  and  $80^{\circ}$  to the south with numerous fault displacements. Mining focussed on the more continuous vein zones with individual veins up to 2 metres wide. Development took place on five levels in the hangingwall to the north striking and east dipping Decline Fault. The vein zones were traced along strike for up to 200 metres and 100 metres vertical ( with displacements) east of the fault.

The Decline Fault is an important long lived structure which probably continues south into the Wings Canyon area. There is some confusion over its age and dip, most recently Cyprus geologists indicated a  $30^{\circ}$  east dip with a pre to syn-mineral age (Broughton and Masson, 1996). Earlier structural studies by Read (1983) indicated more of a NNW trending fault zone-panel with individual faults dipping  $30^{\circ}$  to  $80^{\circ}$  east. Displacements of an east trending (post-mineral) lamprophyre dyke and slickenside measurements indicated 482 metres of reverse displacement and 97 metres of right lateral displacement. Measurements on northwesterly faults in the mine area indicated net slips of 24 to 72 metres with significant left lateral components ( post-dyke displacement).

During this study core was examined from several 1995 holes at Taurus Mine covering both the hangingwall and footwall areas to the Decline Fault. Several key observations were as follows:

Ronald C. Wells P.GEO, FGAC, Kamloops Geological Services Ltd

21

The Decline Fault could not be isolated as a single fault in holes T95-19 and 22. A broad zone of moderate to intense deformation with several faults occurs over a 30 to 40 metre vertical interval. The observable deformation clearly postdates pyritic quartz vein mineralization (T4) with fracturing-brecciation and local carbon coatings. Narrow zones of fine pyritic (T3) mineralization occur proximal to structures (and locally overprint T4), these yield gold values in the 1 to 4 g/t range.

The T4 style of mineralization with abundant quartz veining is better developed within and above (hangingwall to) the Decline fault zone. Narrower and steeply dipping T4 zones were however observed in the footwall and west of the fault (DDH. T95-31), these returned 1 to 3 g/t gold values. T3 style gold mineralization was not observed in these areas.

There is more than one east trending lamprophyre dyke indicated in the mine area. The larger of these appears to be vertical and was traced along strike (by a few drill sections) for 400 metres across the Decline fault zone without any significant lateral displacements (more than 20 metres). This is contrary to observations made underground (Read, 1983) which indicate large displacements.

Using the top of the underlying chert-argillite sequence as a stratigraphic marker there is an indicated 170 metre reverse dip slip displacement on the Decline Fault zone. This would be a net pre and post-mineral displacement and assumes a uniform dip to the stratigraphy and no repetition (folding) of sedimentary units in the mine area.

#### (ii) Sable Area

Previous exploration in the Sable workings area, east of Hill 88 involved a significant amount of drilling and included limited underground development and exploration on one level (no production). There appears to be two or more easterly striking vein-alteration systems (T4) separated by weakly altered basalts. The larger veins are up to 2 metres in width, dips are vertical to steep south. Gold grades are quite variable, many narrow intervals of >20 g/t are indicated in drill logs associated with quartz veins. Many mineralized core intervals in 1994 holes were not sampled probably because the focus was on higher grade quartz veins?

Three holes were drilled in the Sable area in 1995 on two north sections approximately 100 metres apart. Two holes within the Sable workings at grid 4W (60050E) encountered several T4 quartz vein-pyrite alteration zones separated by weekly altered basalts. The former returned 4 to .6 g/t gold values over 2 to 8 metre core lengths. Similar zones in hole T95-75 to the west returned two higher grade 4 metre long intersections averaging 8.9 and 16.9 g/t Au. The interesting structural feature in these three holes is a 10 to 20 metre wide zone of moderate to intense deformation which lies at, or just above the top of the chert-argillite sequence. This zone has features in common with the Decline fault zone but has an indicated  $30^{0}$  dip to the south. The top of the chert-argillite sequence in this area appears to be flat lying. T4 style mineralization is caught up within the fault (post mineral) and better grade gold zones occur proximal in the hangingwall. Some large milky quartz veins (T95-75) appear syn to post-kinematic and incorporate mineralized fragments within the deformation zone. No T3 (PAZ) style pyritic mineralization was observed. It should be noted that the rigid 2 metre core length

22

sampling in 1995 by Cyprus poorly covered some veins and under-valued potentially high grade intervals 1 to 1.5 metres in length.

#### (iii) 88 Hill Zone

The 88 Hill Zone is a large area extending one kilometer west from the sable workings and features several subparallel to anastomosing quartz vein-pyrite alteration zones (T4) over 400 metre width. This area received a significant amount of drilling in 1995 with some followup in 1996. Individual zones and larger veins commonly have azimuth .070<sup>o</sup> to 090<sup>o</sup>E. strike and sub-vertical dips. Unfortunately most of the larger 1995 trenches on the hill have been reclaimed however one important rock cut-trench remains open at grid 8W above DDH. T95-62. Drill holes along this section line (59650E) were chosen for closer examination with the trench.

Drill holes T95-60, 62, 67 and 67 encountered several broad quartz vein-pyritic alteration zones with 10 to 40 metres apparent width and inferred vertical to steep north dips. These are broader than those in the Sable area and many have gradational contacts. A total of three (separate and narrow) lamprophyre dykes were observed in holes 62 and 64. The two in hole 64 are proximal to a late fault zone. This fault possibly correlates with the east trending valley along the Cassiar road, and featured proximal 4 metre wide zones of T3 pyritic mineralization averaging 1.5 g/t Au. The broad alteration zones with T4 style mineralization in holes 60 and 62 in the heart of Hill 88 returned long intervals averaging >1 g/t Au including 2 to 10 metre intervals with 2 to 10 g/t Au values.

The trench above hole 95-62 exposes two, 4 to 6 metre wide quartz vein-pyritic alteration zones (T4) with  $070^{0}$  E strike and predominantly  $80^{0}$  N to vertical dips. This veining is highly deformed with fracture cleavages, local brecciation, shearing and folding. Narrow tensional (lensy) veins have variable orientation. Visible gold was observed in cavities within the weathered-vuggy (previously pyritic) selvedge areas to two of the larger quartz veins. One of these surface veins correlates ( $80^{0}$  N dip) with a gold bearing quartz vein zone in the hole below (2m @ 16.2 g/t Au). At surface a late NE trending fault ( $70^{0}$  E dip) displaces the larger quartz vein (2m.sinistral) and has horizontal slickensides.

Later examination of 1995 and 1996 drill logs indicated that the hole 62 gold zone could be traced along strike  $070^{\circ}$  E for up to 250 metres through 1.5 metre intervals of 3 to 24.9 g/t Au. The rigid 2 metre 1995 sample intervals by Cyprus in the 88 Hill drilling were again a problem like at Sable and poorly represented the observable vein mineralization. Some 2 metre samples started and stopped within narrow mineralized quartz veins.

#### (iv) 88 West Zone

The 88 Hill mineralized zones appear to continue west into what is called the 88 West area. This area straddles the property boundary (approx. grid 11W, Figure 6) with the Add #2 and 4 claims to the west. The triangular shaped Panda fraction occurs within the Taurus property between grid 8W and 10W (Figures 2 and 6). Previous drilling by Cyprus Canada (1995) in the largely overburden covered area involved linear north-south fences of holes spaced up to 100 metres apart. Drilling indicated that the mineralization at 88 Hill was underlain by the Taurus West Fault in this area between grid 11W and 13W. This northerly trending fault is up to 3

metres wide, graphitic and possibly marks the western boundary of mineralization in this area (Broughton and Masson 1996).

During this study several drill holes were examined in the 88 West area including T95-50, 13, 4, 72, 66A, 66B and 94-81. In these holes the abundance of T4 style mineralization with numerous large quartz veins (greater than 1 metre wide) is notable. It was not possible to identify a single structure as the Taurus West Fault as suggested by Broughton and Masson (1996). The core logging indicated one or more northerly trending deformation (fracture-fault) zones both proximal to, and well above the underlying argillite-chert sequence. Structural measurements from drill core strongly suggested steep dips to fabrics and individual faults. Some of these faults appear to penetrate into the sediments below!

The broad zones of more typical T4 style alteration-vein mineralization also appear to These in 1995 drilling returned broad zones of low grade, 1 g/t gold have steep dips. mineralization for example hole T95-13, 108.6 metres averaging 1.10 gt Au and hole T95-50, 56.4 metres averaging 1.03 g/t Au. Within these occur narrower 10 to 25 metre intervals averaging 2 to 3 g/t Au and local auriferous quartz veins with some 2 metre samples >10 g/t (similar to the 88 Hill). Two very large quartz veins up to 40 metres in core length occur in holes T95-4 and 50. These appear post mineral and locally contain abundant angular fragments of T4 style mineralization. Gold grades in these veins can be related to the volume of mineralized fragments, there are few gold values > 1 g/t over 2 metre sample width. The orientation of these veins is unclear as there is poor correlation from hole to hole, they may represent 'blow-outs' at intersecting structures. Several intervals of T3 style fine grained pyritic mineralization were encountered in holes T95-13 and 50. These intervals were up to 40 metres in core length and occurred proximal or within stronger deformation (fault) panels. Drill hole T95-13 featured three intervals of T3 mineralization between 5 and 40 metres in length. The stronger T3 mineralization returned gold values consistently in the 2 to 5 g/t range for example in hole T95-13, 26.5 metres averaged 3.01 g/t Au. Some of the T3 intervals have strong structural fabrics and appear to overprint T4 mineralization.

Later interpretations on the Taurus West Fault suggested that northerly trending and steeply dipping penetrative structures in this area were displacing the top of the sedimentary sequence some tens of metres vertically. It was also apparent that in the grid 11W area a significant amount of deformation appears focused on the volcanic-sedimentary contact (with proximal T3 mineralization). A significant amount of follow-up work is required in this area to resolve some of the orientation problems.

#### (v) The Highway Zone

The Highway gold zone has been traced by drilling for approximately one kilometer between the Taurus West Fault and Quartzrock Creek along a  $070^{0}$  E strike. Dips are vertical to steep north and widths between 10 and 30 metres. Pyritic quartz vein (T4) mineralization previously returned 1 to 2 g/t (average) gold values over the width of the zone.

During this study two holes (T95-3 and 18) were examined from the western end of the zone between Taurus West and 88 West, proximal to the Taurus West Fault. The drill holes in this area although clearly on the Highway Zone trend have features more in common with 88

West due to the influence of the Taurus West deformation zone. These holes feature abundant T4 style quartz veining with pyritic alteration as well as large post mineral quartz veins with mineralized fragments (up to 20 metres core length) in hole T95-18. Higher grade quartz veins are present, for example in hole T95-3 a 1.53 metre interval (22.9 g/t) featured visible gold, tetrahedrite and chalcopyrite. An example of a more typical T4 interval in this zone would be 1.76 g/t Au over 12 metres in hole T95-18. Steeply dipping fault panels occur in both holes and have indicated north strike. One of these faults in hole T85-3 with associated T3 pyritic mineralization correlates (north strike) with a similar zone in hole T95-13 to the south in the 88 West Zone. Intense deformation is focused on the volcanic-sedimentary contact with T3 pyritic mineralization associated with faulting above. Gold grades associated with pyritic mineralization were in the 1 to 2 g/t range over 6 to 16 metres core length.

It is not clear if hole T95-67 at grid 8W cut the Highway Zone. One 26 metre long interval of T4 pyritic quartz vein mineralization near the top of the hole returned gold values in the 1 to 2 g/t range. The Highway Zone based on projections from nearby holes should be further to the north and this may represent another parallel zone.

#### (vi) Taurus West Zone

The Taurus West Zone lies north of the highway between grid 10W and 12+50W and 6N and 10N. Drilling and limited trenching by Cyprus Canada in 1995 outlined strong T3 (fine pyrite) mineralization in this area with broad intersections such as 2.47 g/t Au over 86 metres in drill hole T95-29. These were largely restricted to grid 11W, previous interpretations suggested that T3 mineralization had easterly strike with steep and shallow dips (Broughton and Masson, 1996). This could not explain the abrupt termination of mineralization to the east and west!

Two 1994 drill holes T94-74 (Az  $180^{\circ}$  S) and T94-79 (Az  $135^{\circ}$  SE) collared near grid 9N were examined in detail. Both holes encountered several faults and fault zones (locally carbonaceous), some with proximal fine pyrite (T3) mineralization. The host rocks are largely pillowed basalts. Local remnants of T4 mineralization with narrow quartz veins was observed in hole 79 and had a fine pyrite (T3) overprint. The main T3 mineralized intervals in these holes were from 5 to 11 metres core length however multiple narrower zones (swarms) were also present. Gold grades were typically in the 1 to 5 g/t range. Because of the large number of T3 zones in these holes it is not possible to correlate individual zones (determine strike) with any confidence. Steep dips are probable for the carbonaceous faults and fracture zones.

The Taurus West fault panels observed in the Highway and 88 West holes to the south project into the Taurus West area. Similar styles of faulting were observed in Taurus West holes with associated fine pyrite (T3) mineralization. A north to NNW trend to T3 mineralization can explain the observed distribution within the Taurus West area. If this interpretation is correct previous drilling has not adequately tested mineralization in this area and there is good potential for parallel zones, more easterly orientated drilling is clearly required.

#### 2.4 GEOCHEMICAL RESULTS

During the 2003 geological program a total of 21 samples were collected for later geochemical study. Sample locations with brief geological comments and previous core analytical results are summarized are summarized in Table 2. This table also includes selected geochemical data from 2003. All of the analytical work was by Eco-Tech Laboratory Ltd. based in Kamloops B.C. Samples were crushed (-10 the 250 gram split to -140 mesh) and run for 28 elements using standard ICP following aqua-regia digestion. Gold analysis was 30 gram fire assay with ICP finish (geochemical ppb. or assay g/t). Whole-rock analyses were run for 11 major oxides using ICP with lithium-metaborate fusion and nitric acid digestion. Laboratory Certificates of Analysis (AK2003-266 and 267) are located in Appendix C with internal QC and standard data.

The geochemical data was examined by the author using a variety of X-Y and ratio plots and standard discrimination diagrams. A selection of these diagrams were included (as figures) in Appendix C for reference.

#### a) Comments on Lithogeochemistry

Four representative samples from 'less altered' massive to pillowed basalts (23451 to 454) were selected to determine the background geochemistry for the host metavolcanics. It should be noted that the four core samples contained some carbonate (calcite), were non magnetic and contained less than 2% disseminated pyrite. One representative sample was also taken from a three metre wide biotite-lamprophyre dyke with sharp contacts within hole T92-62 drilled on the 88 Hill Zone.

The basalts display a limited range for the major oxides (Wt.%) and clearly plot within the basalt field on a TAS diagram by Le Maitre (1989), Figure 7.1. K<sub>2</sub>O levels are relatively low < 0.1% while Na<sub>2</sub>O are > 1.9%, these are sub-alkalic (sodic) basalts. Diagrams using other combinations of elements indicate that these samples have affinities with high iron tholeiitic basalts (Figure 7.2 Jensen, 1976) and mid-ocean-ridge basalts (Figure 7.3 MORB, Mullen, 1983). These geochemical features including high TiO<sub>2</sub> values are consistent with basalts of Division 11 as determined during a regional petrogeochemical study by Nelson et al (1983). The trace element ICP data for the Taurus basalts indicated elevated copper and zinc values in the 50 to 108 ppm. range, arsenic values are low, below detection. Gold values were above detection level at 10 to 15 ppb.

Lamprophyres can be subdivided into calc-alkaline and alkaline types based on geochemistry (and mineralogy) with calc-alkaline silica saturated (SiO<sub>2</sub> approx. 50-54%) and mildly potassic K>Na. Alkaline lamprophyres are ultrabasic with SiO<sub>2</sub> <44% and distinctly sodic with brown alkali amphibole. The single lamprophyre sample from 88 Hill clearly falls into the calc-alkaline group with high K<sub>2</sub>0 at 6.79% and SiO<sub>2</sub> at 51.84%. The presence of milled granitic clasts (Cassiar Batholith?) in other lamprophyre dykes on the property indicates potential for crustal contamination of these deep seated melts. The lamprophyre geochemistry appears consistent with this.

#### b) Chemical Changes during Alteration and Mineralization

The 2003 geological study (previous sections) indicated that within gold zones there is progressive alteration from weakly carbonated basalt (calcite) through carbonated basalt (CB, calcite-ankerite) with minor pyrite to core areas with abundant carbonate (ankerite-dolomite), quartz veining and disseminated pyrite mineralization in the wallrocks (SCQP, T4 style mineralization). Multi-gram gold values (2 to > 30 g/t) are generally restricted to T4 core areas, within or proximal to quartz veins. Strong concentrations of fine grained pyrite proximal to structural zones produced 1 to 8 g/t gold values in T3 style (PAZ) mineralization. This T3 mineralization locally appears to overprint T4.

The geochemistry of the sample suite which included all four of these alterationmineralization types was examined using a variety of elements in X-Y and ratio plots (Appendix C). Samples from the different types of alteration plotted in clusters on many of these diagrams. On some these the sample groups would plot on a continuous trend suggesting progressive alteration. The four obvious sample groupings that resulted were 1 Unaltered Basalt (calcite alteration), 2 Carbonated Basalts with low Au (CB), 3 Gold Mineralized T4 (SCQP) and 4 Fine Pyrite with gold mineralization (T3, PAZ). Average chemical values for these four groups are summarized in Table 3. This table is very useful summary of the chemical trends observed in the various diagrams (Appendix C). These results should be regarded as preliminary because of the small sample population (21). T4 style mineralization locally produces much higher gold values than T3, the values in the latter are generally more uniform.

There is commonly a big increase in gold values with associated silver and arsenic from peripheral carbonate zones to core areas with T4 and, or T3 style mineralization. Gold generally shows high correlation with arsenic ( $R^2$  0.74) and lesser silver ( $R^2$  0.45). Arsenopyrite was observed in many T4 mineralized core intervals. The uniform high arsenic values in T3 style mineralized intervals was a surprize as very little arsenopyrite was observed in this setting (very fine grained?).

Progressive alteration results in higher volatiles (LOI) which relates to both carbonate (CO<sub>2</sub>) and pyrite (sulfidation). Potassic alteration appears to accompany carbonatization and gold mineralization with high K<sub>2</sub>0-Au correlation ( $\mathbb{R}^2$  0.61). Conversely sodium displays a negative correlation declining rapidly with carbonate alteration and gold mineralization.

T3 and T4 alteration-mineralization zones appear to contain less silica (lower  $SiO_2$  on a volatile free basis) relative to less altered basalt. This probably relates to  $SiO_2$  migration in to nearby structures (quartz veins) during carbonate alteration. Elevated MnO values in mineralized zones probably correlates with ankeritic carbonate compositions. Copper values appear to drop with alteration and gold mineralization zinc however is only depleted in T3 (PAZ) zones.

Comparisons between T4 and T3 sample chemistry indicates higher  $Al_2O_3$ ,  $Fe_2O_3$ ,  $K_2O_3$ , CaO and MgO, lower SiO<sub>2</sub> and Na<sub>2</sub>O in T3. This correlates with the mineralogy, T3 zones feature abundant pyrite and local concentrations of sericite and, or chlorite. There are some obvious chemical similarities between the two styles of mineralization in particular high  $K_2O_3$ , Ag

| LITHOLOGY      | SAMPLES | Au ppb | Ag ppm | As ppm | Cu ppm | Zn ppm | P2O8 % | SIO <sub>2</sub> % | MnO % | Fe <sub>2</sub> O3 % | MgO % | Al <sub>2</sub> O <sub>3</sub> % | CaO % | TiO <sub>2</sub> % | Na2O % | K <sub>2</sub> O % | Lol % |
|----------------|---------|--------|--------|--------|--------|--------|--------|--------------------|-------|----------------------|-------|----------------------------------|-------|--------------------|--------|--------------------|-------|
| BASALT         | 4       | 12     | 0.2    | <5     | 80     | 72     | 0.15   | 45.56              | 0.18  | 13.31                | 6.2   | 12.12                            | 8.38  | 1.85               | 2.6    | 0.03               | 9.86  |
| CARB. BAS (CB) | 2       | 8      | <0.2   | <5     | 40     | 88     | 0.15   | 38.8               | 0.19  | 14.42                | 5.78  | 11.62                            | 7.54  | 1.8                | 1.62   | 1.51               | 16.63 |
| T4 (SCQP)      | 4       | 958    | 1.15   | 3430   | 50     | 70     | 0.16   | 34.74              | 0.24  | 15.43                | 5.7   | 12.04                            | 9.36  | 2.08               | 0.53   | 2.73               | 17.14 |
| T3 (PAZ)       | 8       | 4878   | 2.14   | 3540   | 48     | 40     | 0.12   | 21.98              | 0.26  | 20,95                | 6.81  | 14.12                            | 10.25 | 2.26               | 0.02   | 3.83               | 18.79 |

С

С

\_\_\_\_\_

 $\mathbf{C}$ 

and As possibly indicating a genetic link. Further study is required to be more definitive on this subject.

#### C) Some Comments on Gold in T3 Style Mineralization

Cyprus Canada Inc. completed limited preliminary metallurgical tests on eleven composites of 1995 drill core from the 88 Hill and Taurus West gold zones. This was to provide basic data for metallurgical characteristics of the two main types of mineralization, T3 and T4. Eight of the eleven composites were from T4 quartz-pyrite samples and three from T3 disseminated pyrite (Taurus West zone).

The Taurus West T3 mineralization was refractory and responded poorly to cyanidation both on crushed samples and the flotation concentrate. Resulting recoveries for T3 were less than 20% compared to 70-80% for T4 mineralization. The T3 metallurgical samples were small, from one zone (small area) and these results should be regarded as preliminary. The focus appears to have been on heap leaching potential, other possible extraction techniques needed to be explored.

The 2003 geological study demonstrated that T3 style mineralization (PAZ) was far more extensive than Cyprus recognized. Five out of six zones on the property including the Taurus Mine featured some T3 mineralization with gold grades commonly in the 2 to 4 g/t range (locally higher).

In order to get a better understanding of the chemistry and variability of T3 pyrite mineralization eight samples were included in the 2003 sample suite. These eight samples are outlined in Table 2. The gold values for these samples are actually averages from three separate splits taken by the laboratory (sample 23464 only two splits possible). All of the gold values are shown in the following Table 4

| SAMPLE<br>NO | ZONE        | SPLIT 1<br>Au g/t | SPLIT 2<br>Au g/t | SPLIT 3<br>Au g/t | AVERAGE<br>Au g/t |
|--------------|-------------|-------------------|-------------------|-------------------|-------------------|
| 23464        | 88 West     | 4.41              | 4.82              | No S.             | 4.62              |
| 23465        | Taurus W.   | 3.99              | 3.25              | 3.42              | 3.55              |
| 23466        | Taurus W.   | 8.21              | 8.16              | 8.09              | 8.15              |
| 23467        | Taurus W.   | 6.60              | 6.51              | 5.90              | 6.34              |
| 23468        | Highway W.  | 4.65              | 5.05              | 4.08              | 4.59              |
| 23469        | Highway W.  | 5.97              | 6.57              | 5.98              | 6.17              |
| 23470        | Taurus W.   | 1.89              | 1.93              | 2.16              | 1.99              |
| 23471        | Taurus Mine | 3.77              | 3.90              | 3.78              | 3.82              |

**TABLE 4: PYRITE SAMPLES-GOLD VALUES AND VARIABILITY** 

The split gold values for each sample displayed limited variation from < 1% up to a maximum of 12% from the mean value. This suggests that the gold is fairly evenly distributed in these samples and probably very fine grained. Fine grinding may significantly improve gold recoveries.

29

i

The T3 mineralization is characterized geochemically by relatively high K<sub>2</sub>O, Fe<sub>2</sub>O<sub>3</sub>, As, variable (elevated) Ag, Al<sub>2</sub>O<sub>3</sub>, CaO, MgO and low SiO<sub>2</sub>, Na<sub>2</sub>O, Cu.

#### 2.5 SABLE CORE SAMPLING

Drilling by International Taurus in 1994 on the Sable Zone involved a large number of closely spaced holes to evaluate higher grade T4 style vein mineralization. This drilling and previous exploration involving limited underground development indicated east to south-east striking quartz veins similar to those at the Taurus Mine. Gold values over a few metres width were commonly in the 2 to 10 g/t range with some samples > 50 g/t.

#### a) Procedures

Most of the 1954 drill core was cross-stacked with some boxes missing or in poor condition (not useable). Geologist E. Frey was given the task of examining this core and picking out any promising sections of alteration and mineralization not previously sampled. This work indicated many intervals with T4 style quartz vein-alteration that for some reason had not been completely sampled.

A total of 86 core intervals were selected for sampling and geochemical analysis. These were mechanically split on site (M. Warner) then delivered to Eco-Tech Laboratory Ltd in Kamloops for 28 element ICP, 30 gram gold-geochemical (same procedures and geology samples). Laboratory certificates of Analysis (AK2003-256) with brief sample descriptions occur in Appendix D. A summary of this data is available in Table 5.

#### b) Results

The large majority of core samples (Table 5) returned gold values less than 1 g/t over sample lengths of less than 1 metre. These were not however barren, gold values were commonly in the 100 to 700 ppb range. Some broader intervals produced higher gold values, the highlights are as follows;

- In hole 94-1 sampling of barren looking white quartz veining returned 22.4 g/t Au with 24.1 g/t Ag (0.61 metres)
- In hole 94-9 a very poorly sampled interval 4.88 metres long in T4 mineralization returned an average of 1.57 g/t Au from three contiguous samples (highest value 2.27 g/t Au, 1.83 metres)
- In hole 94.20 a 1.92 metre interval returned 5.45 g/t Au, 0.5 g/t Ag in in T4 mineralization. This was re-sampling of an interval with a missing assay.
- In hole 94-42 a 1.13 metres interval returned 1.48 g/t Au in T4 mineralization. This was re-sampling, the original 1994 value was significantly lower at 0.012 opt. Another deeper T4 interval in this hole returned 2.18 g/t over 1.62 metres length and was not previously sampled?

• In hole 94-43 an upper interval 1.09 metres long returned 1.70 g/t Au and another 13 metres lower 0.34 metres with 2.72 g/t Au. Neither of these intervals were previously sampled.

The 2003 sampling clearly demonstrates that the previous core sampling was far from complete, several new intervals returned better tha 1 g/t Au. The focus during the original sampling appears to have been on potentially higher grade gold intervals.

#### **3.0 DISCUSSION AND CONCLUSIONS**

A number of conclusions can be drawn from the results generated by the 2003 summer exploration program on the Taurus Property by Navasota Resources Ltd.

- Previous exploration has identified a large number of highly prospective gold zones throughout the property. Many of these feature both low grade bulk-tonnage (vein-disseminated) and higher grade (vein) gold targets. Most of the gold zones are easily accessible for future exploration.
- There are two main styles of gold mineralization on the property. The predominant and most extensive is pyritic quartz vein T4 mineralization occurring mainly in broad easterly trending, structurally controlled carbonate alteration zones with swarms of steeply dipping quartz veins and disseminated (enhedral) wallrock pyrite. The auriferous veins display strong deformation with local folding and may contain some arsenopyrite, tetrahedrite, sphalerite, chalcopyrite and rare visible gold. Within the gold zones average grades are commonly in the 0.5 to 6 g/t range over tens of metres. The second style of gold mineralization T3 is associated with strong concentrations (> 20%) of fine disseminated pyrite. The controls on this style of mineralization are poorly understood compared to T4. The T3 pyritic mineralization is however far more extensive than indicated by the previous work. In 2003 T3 mineralization was identified in the majority of known gold zones proximal to, or within deformation panels-faults.
- The Taurus mineralization has strong similarities with other ophiolite related gold-quartz vein systems. These occur in some of the major gold camps in the Western Cordillera including Bralorne, Wells-Barkerville and Mother Lode (California). The two styles of gold mineralization at Taurus have similarities with those documented in the Wells-Barkerville camp. T4 quartz vein-pyrite is similar to lode-gold with associated ankerite at Cariboo Gold Quartz Mine and T3 pyrite hosted gold with auriferous pyrite lenses at Mosquito Creek Mine.
- The structural zones spatially related to gold mineralization appear long lived. Early structures are strongly overprinted (obscured) by later alteration, veining and deformation. North trending structural panels with steeply dipping to vertical faults occur at the Taurus Mine and Taurus West-88 West areas. One poorly understood shallow dipping structural panel occurs below the Sable workings proximal to the sedimentary-volcanic contact. These shallow dipping contact zones are commonly the focus of strong to intense deformation in several of the gold zones. The relative roles and inter-relationships between early shallow to steep dipping (pre-mineral) and later steeply dipping (syn to post-mineral) faults are poorly understood. Further study is required to be able to interpret the location and geometry of gold zones.
- Previous exploration on the Taurus Property focussed on either; a) quartz vein zones with higher grade gold >6 g/t, (mainly pre-1995) or b) low grade bulk-tonnage potential with average gold grades in the 1 to 3 g/t range (1995 and later). The consequences are as follows, 'high grade' exploration often involved short holes that did not adequately test broader zones. Many probable 1 to 3g/t gold intervals in these holes were not completely
sampled. This was clearly demonstrated by the 2003 core sampling program at Sable. 'Low grade' exploration involved rigid 2 metre sampling intervals in core that largely ignored geological contacts and vein boundaries. Narrow high grade >5g/t were poorly sampled (and diluted) resulting is misleading low gold values. The bulk-tonnage approach with regular azimuth (north or south) and often widely spaced longer holes did not adequately test areas with higher grade potential. Some large gaps occur in the drilling between zones, for example the Taurus Mine and Plaza-Highway Zone area. In some areas holes may have been drilled sub-parallel to T3 mineralization such as Taurus West, in others possibly down-dip to T4 mineralization (some Hill 88).

- The 2003 geological-geochemical study produced some excelled basic data on alteration and the two styles of gold mineralization-T3 pyritic and T4 pyritic-quartz vein zones. T3 and T4 mineralization have similar geochemistry suggesting a probable genetic link, however in several cases T3 was observed overprinting T4. The relative timing of these two events in other areas is unclear. Gold in T3 and T4 mineralization is associated with proximal potassic alteration, strongly elevated arsenic values and sodium depletion.
- T3 style, fine pyrite hosted gold mineralization is far more extensive than previously recognized. Previous metallurgical tests by Cyprus Canada on T3 mineralization involved a limited number of samples from the Taurus West Zone and should be regarded as preliminary. Further testing is required from different areas on the property.
- In conclusion the Taurus Property holds excellent potential for both low and high grade gold targets. A significant amount of previous exploration has not adequately tested either of these.

#### 4.0 RECOMMENDATIONS

The highly promising Taurus Property with its widespread mineralization in several known gold zones requires significant amounts of further exploration. This exploration should not be restricted to high or low grade gold targets to the exclusion of the other.

At this stage a working geological model is required to understand the geometry of individual and multiple gold zones and to guide future exploration and development. The problem is that the controls on gold mineralization in most of the known zones are poorly understood. Previous exploration results often confuse the issue and need to be closely examined. Both steep and shallow dipping faults with a variety of orientations in structural panels appear important. Another complication is that the controls on T3 and T4 styles of gold mineralization may well be different. Exploration in the short-term requires well orientated drilling to solve some of these problems and improve the geological model. This drilling should be complemented by on-going geological and metallurgical studies plus strategic re-logging of old drill holes (when available). Two phases of NQ core drilling are proposed.

#### Phase 1 Drilling (\$ 200,000.00)

8 to 12 holes 150 to 200 metre long totaling 1500 to 2000 metres. This would include a continuous southeast trending (linear) fence of 5 to 6 holes from Taurus West across the Highway Zone to 88 Hill. Two or three holes (each) would fill obvious gaps in drilling between; a) the Taurus mine and Plaza workings, b) Sable workings and 88 Hill and c) the east end of the Highway Zone near Quartzrock Creek.

#### Phase 2 Drilling (\$ 200,000.00)

This drilling would be based on the results and interpretations from the Phase 1 program. A minimum of 10 holes totalling 1500 to 2000 metres would test key areas. Some complementary trenching and surface work (geological-geochemical-geophysical) would probably take place at this time and require additional funding.

#### 5.0 REFERENCES

- Beaton, A. (1994): Report on the Proposed Exploration Programme, International Taurus Resources Inc. Property, Cassiar, B.C., Unpublished Company Report for International Taurus Resources Inc.
- Bridge, D.J. (1997): Report on Diamond Drilling on the Taurus Property, ADD 1-4, Alta 3-4, and FIX, Liard Mining Division, Northern British Columbia (104P/5), B.C. Ministry of Energy and Mines Assessment Report #24823.
- Broughton, D. and Masson, M. (1996): Report on 1995 Exploration Program on the Taurus Project, B.C., NTS 104P/5, Unpublished Report for Cyprus Canada Inc.
- Cornock, S.J.A. and Lloyd J. (1996): A Geophysical Assessment Report on an Induced Polarization and Ground Magnetometer Survey on the Taurus Property, Cassiar, British Columbia, Unpublished Report for Cyprus Canada Inc.
- Crampton, A. and Goodings, C. (1995): Preliminary Baseline Study for the Taurus Project, Unpublished Report for Cyprus Canada Inc. by EVS Consultants.
- Cyprus Canada Inc. (1995): Due Diligence Summary, Taurus Project, B.C., Unpublished Company Report.
- Dughman, T.L. (1996): Results of Initial Metallurgical Testing on Taurus Gold Ores, Hazen Research, Inc., Unpublished Report for Cyprus Canada Inc.
- Glover, M.J. (1999): Trenching Report, Highgrade and Hillside Claims, 93-2 Vein Area, 1999 Field Season, Cusac Gold Mines, Taurus Option, Unpublished Report.
- Gunning, M.H. (1988): Gold Distribution in the Taurus Mine Quartz Veins; Exploration in British Columbia 1987, Part B, B.C. Ministry of Energy Mines and Petroleum Resources, pages B95-B105.
- Howell, W.A. and Bridge, D.J. (1995): Report on the Diamond Drilling Conducted on the Portal
  1, Miss Daisy 1 & 2, Bes 1 & 2, Tor 2 and Mack 4 Mineral Claims. Liard Mining Division, B.C., Unpublished Report for International Taurus Resources Inc.

International Taurus Resources Inc. (1999): Taurus Project, Unpublished Company Report.

- Laing, D.C. (1996): Cyprus Canada Inc Scoping Study, Taurus Gold Project, Mineral Resources Development, Inc., Unpublished Report for Cyprus Canada Inc.
- Nelson, J.L. and Bradford, J.A. (1993): Geology of the Midway Cassiar Area, Northern British Columbia (104O, 104P); B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 83.

Ronald C. Wells P.GEO, FGAC, Kamloops Geological Services Ltd

- Sketchley, D.A., Sinclair, A.J., and Godwin, C.I. (1986): Early Cretaceous Gold Silver Mineralization in the Sylvester Allochthon, near Cassiar, North Central British Columbia, Canadian Journal of Earth Sciences, Volume 23, pages 1455-1458.
- Sketchley, D.A. (1986): The Nature of Carbonate Alteration in Basalt at Erickson Mine, Cassiar, North-central British Columbia, Unpublished M.Sc. Thesis, The University of British Columbia.
- Spencer, B.E. and Bridge, D.J. (1995): Summary Report on the 1994 Exploration Programme, International Taurus Resources Inc. Property, Cassiar, B.C., Unpublished Report for International Taurus Resources Inc.
- Spencer, B.E. (1994): Report on the 1993 Exploration Programme, International Taurus Resources Inc. Property, Cassiar, B.C., Unpublished Report for Hera Resources Inc.
- Trenaman, R.T. (1997): Report on the 1996 Exploration Program Taurus Project, Cassiar, British Columbia, Unpublished Report for International Taurus Resources Inc.
- Trenaman, R.T. (1995): Report on the International Taurus Resources Inc. Property, Cassiar, B.C., Unpublished Report for International Taurus Resources Inc.
- Westervelt, R.D. (1994): A Summary Review Report on the Table Mountain Gold Property, Cassiar, British Columbia for Cusac Industries Ltd.
- Wild, C.J. (2003): Report on Exploration Activities on the Taurus Property. 43-101 Report for Navasota Resources Ltd.

#### **6.0 STATEMENT OF COSTS**

#### **TAURUS PROPERTY 2003**

#### 1. FIELD PROGRAM: June 24 to July 19 Inclusive.

#### Personal

| R.C Wells, P Geo 26 days @ \$ 425.00/ day        | \$11,050.00           |
|--------------------------------------------------|-----------------------|
| L.Warner, P Geo 26 days @ \$ 400.00/ day         |                       |
| E.D Frey, FGAC. 26 days @ \$ 350.00/ day         |                       |
| M. Warner (field assistant) 26days @\$100.00/day |                       |
|                                                  | Sub Total \$33,150.00 |

#### Expenses

| Food and Lodging     | 104 man days x \$50/ day   | \$5,200.00          |
|----------------------|----------------------------|---------------------|
| Navasota Truck (ren  | tal)                       |                     |
| Kamloops Geologica   | al Truck 26days @\$50/ day |                     |
| General Field suppli | es                         |                     |
| ••                   |                            | G-1 T-4-1#10 220 92 |

Sub Total \$10,239.83

#### Analytical: Eco-Tech Laboratory, Kamloops, BC.

| \$296.04            | 7samples WR, Au, ICP      | ficate AK03-267 | Certificate |
|---------------------|---------------------------|-----------------|-------------|
|                     | 14 samples WR, Au, ICP    | AK03-266        | "           |
|                     | 87 Core samples, Au, ICP. | AK03-256        | 66          |
| Sub Total \$2703.94 |                           |                 |             |

Total Field Program \$46,093.77

#### 2. **REPORT COSTS**

| R.C Wells, Research and Report writing |           |
|----------------------------------------|-----------|
| 20 days @ 425.00                       | \$8500.00 |
| Report Costs, duplication              |           |

#### TOTAL PROGRAM COST

\$55,593.77



Ronald C. Wells P.GEO, FGAC, Kamloops Geological Services Ltd

#### 7.0 STATEMENT OF QUALIFICATIONS

- I, Ronald C. Wells, of the City of Kamloops, British Columbia, hereby certify that:
- 1. I am presently employed as Consulting Geologist and President of Kamloops Geological Services Ltd., Kamloops, B.C.
- 2. I am a graduate of the University of Wales, U.K. with a B.Sc. (Hons.) in Geology (1974), did post graduate (M. Sc.) studies at Laurentian University, Sudbury, Ontario (1976-77) in Economic Geology.
- 3. I am a member (Professional Geoscientist) in good standing of the Association of Professional Engineers and Geoscientists of British Columbia. Registration No. 20117.
- 4. I am a Fellow of the Geological Association of Canada
- 5. I am a Qualified Person (QP) as outlined in National Instrument 43-101 of the Canadian Securities Administrators (CSA).
- 6. I have read National Instrument 43-101 and Form 43-101F1.
- 7. I have practised continuously as a geologist for the last 25 years throughout Canada, USA and Latin America and have past experience and employment as a geologist in Europe.
- 8. Ten of these years were in the capacity of Regional Geologist for Lacana Mining Corp., then Corona Corporation in both N. Ontario / Quebec and British Columbia.
- 9. Over the last 12 years I have consulted for major (including Placer Dome, Teck, HBMS, WMC) and junior companies on a large number of projects from 'grass roots' through to mature producing mines. These have been for precious and base metals in a variety of geological environments including porphyries (Copper Mt., Kerr-Sulphurets, Mt. Milligan), skarns (BC, Mexico, Honduras), mesothermal-epithermal veins (Courageous Lake NWT, Dome and Detour Lake Mines Ont., Crucitas Costa Rica), conglomerate gold (S. Africa), iron formations (Musselwhite Ont., Meliadine Nunavut) and base metal VMS (Manitoba and Newfoundland).
- 10. The author oversaw exploration on the Taurus property documented in this report.
- 11. That the author does not have any interest in the Taurus Property or securities of Navasota Resources Ltd. nor does he expect any.

Dated the 26<sup>th</sup> day of August, 2003.



R. C. Wells, P.Geo. (APEGBC), FGAC.

Ronald C. Wells P.GEO, FGAC, Kamloops Geological Services Ltd

#### APPENDIX A

(

#### STATEMENT OF WORK

#### APPENDIX B

()

 $\mathbf{C}$ 

( )

2003 DRILL LOGS

Ronald C. Wells P.GEO, FGAC, Kamloops Geological Services Ltd

.

## CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

|    | DDH NO.                    | T95-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                       |                                                 |               |          |        |
|----|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------|-------------------------------------------------|---------------|----------|--------|
|    |                            | LITHOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | STRUCTURE                  |                                       |                                                 | <u> </u>      |          |        |
|    | MAIN UNITS                 | GL SUB UNITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                                       | MINERALIZATION                                  | EROM I        | SAMPL    | ING    |
|    | 0-4.27 Overbuiden          | 0 0/B 0-4:27 Overburdon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                       |                                                 |               | <u> </u> | NUMBER |
|    |                            | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |                                       |                                                 |               |          |        |
|    | 4.27-103.9                 | 4.27-10.20 Oxidized and calbonalad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | weak to mud traction of    | male discontration of the             |                                                 | <u> </u>      |          |        |
| i  | Carbonate Altered          | (some as below less reined · oxidation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Some subporallel to ca     | into accompande to                    | Sparse of reinlets so                           | FA            |          |        |
|    | with several quarty        | below overburden)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Local micro bre cuation    | dive show he was the                  | 1% line differ Pu                               |               |          |        |
| tø | -Vein- Pyrte 30 res        | \$ 10.20-18.35 Contracts Alleral A .: L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 1 1 1 1 1 1              | Auto unon os van top,                 |                                                 | <u>├───</u> } |          |        |
|    |                            | with quarty veins 2-soom 30-ssica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tocal low craft ca freihig | Strong provincius                     | Z-10% Mc distem E.Py                            | ┠             | ····-    |        |
|    | Metallics 60% worth varian | The area of the second s | Veinlets voratile and      | Carbonale throughout                  | Pu accreate in Sto Fg. Py                       | <b> </b>      |          |        |
|    |                            | A Company of company of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CA.                        |                                       | ve in se livedge i + local                      | <b> </b>      |          |        |
|    | 1                          | Transitional contest over 30-50cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sparre 9 to veinlets       | 1410 dimen and T                      | 1-s % fm hspy                                   | <b>  </b>     |          |        |
| 20 | ₽                          | 18:38-21.70 Darchy Alteration - basalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | KILM 20'CA                 | (onkente)                             | 1-2 10 M/C DUMENER                              |               |          |        |
|    |                            | Theharp lungi contact 30'CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-3-1 912 10:15 20-20      | mis pervasive carb                    | 7-15% forc dissemer                             | ,             |          |        |
|    | ]                          | Carbenete disiem by local quarty Vis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.75 and 24.70            |                                       | mainly mg. 80% Py                               |               | · · · ·  |        |
|    |                            | 26:08 sharp contact 30 CA (a norry)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ford partice and           |                                       | sile matrix.                                    |               |          |        |
|    |                            | 1 Disseminated carbonds, Non menters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | kid costi veratila         | mog. alsiem. carb                     | <2% lucal m/c                                   |               |          |        |
| 30 | l⊨ '                       | · Sal 21 6 no new Hansing and Cuntart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | THRUGHOUT (Called)                    | dimeninated by.                                 |               |          |        |
|    |                            | 344 - 24 - 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Several milling giz        | stran pervalue carb                   | 21.6-34.0 1.2% for 5 Py                         |               |          |        |
|    |                            | The solute carbonale - quarty - Pynte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 631.4-52 0 WK HX           | Vorichle queity moinly                | 34.0-35.5 7-12% M/CER                           | 1             |          | 10 IV  |
|    |                            | 24.4-177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | with gry veinlet stuck     | Struck (near top)                     | 1995-260 V 7-3% - FM R                          |               |          |        |
|    |                            | Salo Bill Corbonate Alteration Zune                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Generally sparre als       | PERMOSIVE MIS CATE                    | Trace - 20% La disión                           |               |          |        |
| 40 | · <del> </del> -           | with local gty yeins, ascerialed Ry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vits one sem milks         | local m/c dissem                      | Py N                                            |               |          | ,      |
|    |                            | some pratic sections without gyr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | cort some vointets.                   | 38.4= 89.3 7-10% fmc massure PL solvedaw to av. | TC ASPL       |          |        |
|    |                            | A later and the second s | C43.6 25cm wide glz        | 1 pervosive m/s                       | 43.1-44.4 As about                              | 12            |          |        |
|    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V ST CA /J                 | ( carbonate (ank?)                    |                                                 |               |          |        |
|    |                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 47-49 (000101 AD100        | V                                     | 47.8 Jily 9'3 + abundlard                       |               |          |        |
| 50 | , – , – ,                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SIZ RECAPTORY 10           | ·                                     | 47.8-052.80 5-7% MIC<br>aussem E P.             |               |          |        |
|    |                            | //d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OSIG ISCON Milly QV        |                                       |                                                 |               |          |        |
|    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | local shallow angle        |                                       | 53.8-57.0 6.10% m.h                             |               |          |        |
|    | 1                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CA gitz vits               |                                       | V.C. dissem Py I                                | ŧ.            |          |        |
|    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 59.60 Zem 94 25'CA       | · · · · · · · · · · · · · · · · · · · | 57-0-62.0 trave -17                             |               |          |        |
| 60 | •                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | · · · · · · · · · · · · · · · · · · · | 19 desem by.                                    |               |          |        |
|    | L                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l                          | l                                     |                                                 |               |          | 1      |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: Rec. Liller

. . . . . . .

DATE: 29 JUNE 2003

#### CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| DDH NO. 795-60         | \$       |                                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |          | PA                                      | GE NO. 2  |
|------------------------|----------|---------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------|-----------------------------------------|-----------|
|                        | LI       | THOLOGY                               | STRUCTURE                | ALTERATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MINERALIZATION                        |          | SAMPL                                   | ING       |
| MAIN UNITS             | GL       | SUB UNITS                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | FROM     | то                                      | NUMBER    |
| ۲.                     | 14       |                                       | 912 VEINS @ 55" YZO'CA   | 62-67.7 five fracturing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 62.67.7 3.7% M/c                      |          |                                         |           |
|                        | 1        | ·                                     | e La sem milles gy 45.14 | with carbon "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | disen E. Ry                           |          |                                         |           |
|                        | 14       |                                       | SS by milky Dy 25'CA     | permise permis | (77-77.8 71-29)                       |          |                                         |           |
|                        |          | · · · · · · · · · · · · · · · · · · · | carbon fractions to      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dunem R                               | 1        |                                         |           |
|                        |          | 67.7-80.0 Light culoured Carbonate    | Cloyey doute gours 6995  | M/s pervesive to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |          |                                         |           |
| ·†                     |          | Alteration Zone, sparse to obsent     |                          | Semi-pervosise carbunate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |          |                                         | <u>}</u>  |
|                        |          | queitz veinlen                        |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | to local mie & Ry                     |          |                                         |           |
|                        |          | · · · · · · · · · · · · · · · · · · · |                          | decreasing and V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 72.8-80.0 Traves                      | ┣━━━━┦   | <u></u>                                 |           |
|                        |          | · · · · · · · · · · · · · · · · · · · |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of dison Ry.                          | <b> </b> |                                         | <u> </u>  |
|                        |          |                                       |                          | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | ļ        |                                         |           |
|                        |          | Transitional & carb.                  | lace calcite vern        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | Į/       | - · · · · · · · · · · · · · · · · · · · |           |
|                        |          | 80.0-87.15 Medium green calborn       | K VorioLIC local high    | Non magnetic, w/m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Trocco of fine discon                 | Į'       |                                         |           |
|                        |          | altered baselt                        | frallied algoth V.       | persenve carb (celeile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Py. Sparse M/c E. Py                  |          |                                         |           |
|                        |          | sharp lower contact 35'CA.            | + Caro QU (H P IT        | dk chialong fractures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | ·        |                                         |           |
|                        |          |                                       | 1097.5 IScm eta V.       | 87.15-97.50 Semi perv.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 92.15.97 TO Varial k                  |          |                                         |           |
|                        |          | 87,15-102.9 Calbombe Alteration       | WS'SA FIRST ASPA         | to string deman corby                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Py. 2-5% parchy                       |          |                                         |           |
| 10 -                   | VA       | In a the sheet local million quart    | usica to Alg             | tancoloured Louch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | fo, ormen Fy.71-7%                    | 1        |                                         |           |
|                        |          | Local real with the mility your       | Call 5 your AR V Soil    | A to trock uses suggestion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | my disserv E. Fy                      | <u> </u> |                                         |           |
|                        | 1        |                                       | 12 94 P BEMANIESCA       | of dive sericite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90m Above 100m                        | 1        |                                         |           |
|                        | 1        |                                       | to 95-3 Formay FUTCA     | Kelow 97,50 or marg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Aplans 100 m Ten in t                 | 4        |                                         |           |
|                        | 10       |                                       | SECTION the scored       | with Chi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Py Sporte Aspy                        | +        |                                         | 1         |
| •••                    |          |                                       | BLOW 97M AUNERUN         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · ·                               | ╂────    |                                         |           |
| 103.9 - 110.3          | 3/       | Transibunal lawar cuntar 102-         | Joint: Chilser Hockyo-   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>                              | <b>}</b> | }                                       | 1         |
| Transitional Zone      | 77       | 102.40 - KN NOLES 15-45 CA            |                          | 105.3-107.6 W-S 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | generally traces of                   |          |                                         | - <u></u> |
| davie acing alteration |          | 103.9-110.3 Transitunal Zone          | CORD VITE OF VONCHA      | 107.0.105.5. 10716 = 1/0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | fin dinem Ry.                         | <u> </u> |                                         |           |
| dourwards              |          | Magnetic Basalt mixed with            | epidore                  | magnetic counter fine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·                                     |          |                                         |           |
| 170-                   |          | WK magnetic carbonate (ank) 30n45     | (pillowed?)              | epicart. sepins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · · |          | <u> </u>                                |           |
| 110-3-153.70           | 17       | 110.3 - 152.70 Mainly dk grey         | Rillawood BSY.           | week carb, stanger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AT obove local                        | ·{·      | <b> </b>                                |           |
|                        | 17       | According pillewood basalt. Local     | interpillon motional     | interpillow with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14. V.J. P. often                     |          | I                                       |           |
| Pellowed Basalts       | - M-     | 1. Terpillow pink carb- josperaid.    | Kanable density fini     | epidate . Local long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | in jupic afers                        |          | ļ                                       |           |
| variably magnetic      | k        | with V. A.ne Ry                       | corb verility, veribe    | patity deip pak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | <u> </u> | L                                       |           |
|                        | レ        | @ 129-128-35 AGTOW COTD- 30AC         | generally stopp only     | jasperpint colute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |          | ļ                                       |           |
|                        | <u> </u> | (cric) Soica TO-BOCA fractures and    | CA.                      | possible fire alk omph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |          |                                         |           |
|                        |          | NEMON at cold VE MELO Upto 15%        |                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |          |                                         |           |

KAMLOOPS GEOLOGICAL SERVICES LTD. Local mg

. . . . . . .

ſ

LOGGED BY: Rec. Willie

......

-----

DATE: 29 JVAR 2003

. .

#### CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| L          | DDH NO. 795-4          |             |                                             |                                                            |                             |                                               |         | PA                                    | GE NO. /                              |
|------------|------------------------|-------------|---------------------------------------------|------------------------------------------------------------|-----------------------------|-----------------------------------------------|---------|---------------------------------------|---------------------------------------|
|            |                        | L           | ITHOLOGY                                    | STRUCTURE                                                  | ALTERATION                  | MINERALIZATION                                | İ       | SAMPI                                 | ING                                   |
|            | MAIN UNITS             | GĹ          | SUB UNITS                                   |                                                            |                             |                                               | FROM    | TO                                    | NUMBER                                |
|            | 0-9.14                 | 0 0         | 0-914 overburden                            |                                                            |                             | *** <del>* , </del>                           |         |                                       | HOLDER                                |
|            | Overburden             | 0           |                                             |                                                            |                             | · · · · · · · · · · · · · · · · · · ·         |         |                                       | · · · · ·                             |
|            |                        |             |                                             |                                                            |                             | ······································        |         |                                       |                                       |
| 1          |                        | •           |                                             |                                                            | oxidized place for the      |                                               |         |                                       |                                       |
| 10         | - 9-14-187.10          | <b>A</b> 11 | 9.14-20.95 Strong Alteration Tan            | Alteration highing al                                      | to 14 cm.                   |                                               |         |                                       |                                       |
|            | Carbonate Alteration   |             | coloured, Silica - Carbonate Alteration     | Variably froutured                                         | Existing around elling      |                                               |         | ,                                     |                                       |
|            | with abundant quarte   |             | and Sairly hard. NUMERUS MIKE guards        | 913 VOINS E MOCA                                           | with line dimen carb        | Generally 2-5%, fimic                         | ·       |                                       | · · · · · · · · · · · · · · · · · · · |
|            | verning and essociated |             | veins and fine veinlet.                     | 15.28 SEM GOICA                                            | (ant-Fe) Silion is veralle  | VIL. controlled E.Fy                          |         |                                       |                                       |
|            | pyrite mineralization  | 1           | · · · · · · · · · · · · · · · · · · ·       | -17.80 40cm \$0'CA                                         | carb is moinly disson.      |                                               |         |                                       | · · · · · · · · · · · · · · · · · · · |
| •          |                        |             | · .                                         |                                                            | Intensity of alteration     | Epy groin size A voto                         |         |                                       | · · · · · · · · · · · · · · · · · · · |
|            | sph ~                  |             | 20.95-22-BG Milky gtz vein fracturad        | Vein ssica top                                             | does not ( A at vein        | lem prexinal to laine                         |         |                                       |                                       |
|            | coase fy banks         |             | Lower contact 1<br>22.86-26.50 As at 9.14   | reveral narrow at wins                                     | pervosive Efire silice      | Milky giz- coarse onhedras                    | sph.    |                                       | ·                                     |
|            | F                      | 1           |                                             | giz vainley                                                | 7                           | Py brinds near base.<br>1-6% fing dissem E.Py | ·-/     |                                       |                                       |
|            |                        |             | 26.5-27.5 Milky 913 VEIN 30 CA              | Veix Jo'CA.                                                | ton allored , R. inclusions | fractured at contacts                         |         |                                       |                                       |
| <b>1</b> 4 | Sparse                 | 1           | brechisted - healed. sparse gt veins        | Local fabrics 35'CA                                        | Dervasive efine silies.     | 27.5-11-66 Sporse to 30%                      |         |                                       |                                       |
|            | 13                     | 100         | 31.66-29.50 Milky at yeins locally          | \$32.0 10cm at + green                                     | potchy dissem carb(Fe)      | fin dissen ry                                 |         |                                       |                                       |
|            | atta-gran serieric     |             | common with associated dissem. Ry           | 523.00-35.00 Jeverol                                       | As above fine of            | 2-7º/o fmc dissom Epy                         |         |                                       |                                       |
|            | Sporst Py-             |             |                                             | 1-4cm milly at 7 V. 60-200.<br>35:00-363 Martine local VII |                             | 45p in Vein Areas.<br>SC-36-9 Similar to 27.5 |         |                                       |                                       |
|            |                        |             |                                             | 36-9-38-3 Normus Milky                                     |                             | 3 porte fin P<br>26.9.38.3 Londung mER        |         |                                       |                                       |
| 40         | - 8×Z.                 |             | 29.50-40.50 By Zone To"CA large froments    | @ 38.4 20cm milky QV Toic                                  | <b>n</b> '                  | 28.3-29,5 Cospe then dire                     | R. 4-7% |                                       | <u> </u>                              |
|            | T carb alt.            | 1//         | Hora grey to rial for many of the promote   | Emy for Driv To'CA                                         | contrate alterationic)      | Host ik has fo dimem by                       | 3       |                                       |                                       |
|            | blebs tat, sp          | 6           | 42.98-44.18 milky of V coare blads tel, soh | Some tow angle to fractures                                | little silica?              | 2-40/0 m/c dision EPy                         |         |                                       |                                       |
|            | a area of v            |             | Here                                        | 12/cm 40.70'CA'                                            | Calb all with freithing     | ER 2.6%                                       |         |                                       | •                                     |
| •          | 8                      | - Sh        | gray verilets Tan altered (carb) host.      | moderala microficching                                     | Toncarbhost fine            | 4-Yolo fine med during                        | · ·     |                                       |                                       |
| 5.         |                        | X           | 50.90-54.0 Fractured - Cart altund          | 951 m 912 V. 47.5 101 m 35 20                              | Silice veinteto >           | Py, coorre py above                           | L       |                                       |                                       |
|            |                        |             | ficche chierine portions eleng              | Maxine with fine g13                                       | call alt. Sure silica.      | fine demen P                                  |         |                                       |                                       |
|            |                        | 6           | 154-55:70 Tan corbalt + Silica + Py         | 05475 16cm 90 65'ca                                        | cort with cilica ville.     | duniem e py                                   | ļ       |                                       |                                       |
|            |                        | 1           | VCATE)                                      | Rare To's A gtz Vltz                                       | Tan - carb alt (onk)        | Space fine diman                              |         |                                       | · · · · · · · · · · · · · · · · · · · |
|            | Spoise Py              |             |                                             | Scm milks gr @ 59.74                                       | some fine silica velta      | By upto 5% forg.                              |         | · · · · · · · · · · · · · · · · · · · |                                       |
| 68         |                        |             | 1                                           | <u> </u>                                                   |                             | Nor gly U.                                    |         |                                       |                                       |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Wells

DATE: 19 June 2003

## CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| DDH NO.     | T95-4        |    |                                               | ·                              |                                       |                             |          | PAC      | GE NO. 2 |
|-------------|--------------|----|-----------------------------------------------|--------------------------------|---------------------------------------|-----------------------------|----------|----------|----------|
|             |              | Ľ  | ITHOLOGY                                      | STRUCTURE                      | ALTERATION                            | MINERALIZATION              |          | SAMPL    | NG       |
| MAIN        | UNITS        | GL | SUB UNITS                                     |                                |                                       |                             | FROM     | ТО       | NUMBER   |
| Carbonate   | + Ser + Pu + | 1  | 61.30 - Tilo Tan corbunate (onk)              | 061.95 973 V. Milky 1000 50°CA | Pervasive corb alt Cat                | 2.7% Line to coorse         |          |          |          |
| gtz verning |              | Ì  | altered local dimen ser (green) +             | 264.70 20 cm 9 35 CA           | with patitic fine dissen              | dumen ER, consta            |          |          |          |
|             |              | 11 | dissem. Pyrite                                | 2663 ISEM 9 V. 60 CA           | green serieite. Silicon               | near gly veins (selvedocs)  |          |          |          |
|             |              | 1  | · · · · · · · · · · · · · · · · · · ·         | C69.6 Zorngu 60°CA .           | content? not as loid                  | Non veined tends to be      |          |          |          |
| _           |              |    | •                                             | @ 70.6 20 cm qv '60'CA ?       | as at the of hole.                    | fins ground ERY.            |          |          |          |
| -           |              | 54 | 71.20-75.50 As above less spricite            | to 73.6 Subuccollel            | Pervasive carbonele                   | 3-5% generally coorse       |          | ;        | •        |
| •           | 4            | D  | well corbonated, becoming mure                | to 30 frectures and some       | angles throughout incl siling         | EPy esp near q13 VS         |          | ·        |          |
|             |              |    | 51.50-78.2 as at 46.9 crack is fractured      | 13.6-75.5 micryroctured av     | With Gtzv.                            | 2-5% patchy fine to         |          |          |          |
|             | crackle      |    | carbonated with dark grey vehilles            | \$75.95 Sen g/2 vein ToicA     | numerous grey verileto.               | mod. dissem C.Py            |          |          |          |
|             | 4            |    | 78.2-81.30 Similar to above voriable strongly | vorable microfractions         | hand to determin                      | 3-5% for ERY                |          |          |          |
|             | Sil-carb F   | 25 | 81.30-87.17 80% milks auch with               | PTO 2 Elaver 44 75-CA          | probaby silica cerb 19.               | Coorser near bottom         |          |          |          |
|             |              | ~  | marship with inclusion of the sol             | senses of storp vains          | for, silica - corbonet?               | 3-5% m/c dissen Epy         |          |          |          |
|             | ·            | 4  | altered microfractured Braki host             | microfractured host as         |                                       | Ext - SPh @ 87.1            |          |          |          |
|             | CO.O.TSE     |    | 87.17-91.70 Altered weilrock by wein          | fabrics                        |                                       | 3-60% m/c disson CP.        |          |          |          |
|             | tet-sph-     | 14 | Stragly altered microtrachirod - alt winds    | CA.                            | foirly hard to silica                 |                             |          |          |          |
|             | 311 - CA10   |    | Entre main child should being                 | 75°CA" 901/ 25cm 70°CA         | Veralets-potchy.                      | at vern frontine Py + Ser   |          |          |          |
| l           |              |    | 91.70 - 101:68 Faitly uniform section         | Milka gta veins                | <b>—</b>                              | 4.19 Voin Coors ry stronger | . shell  | Sections | dVJ.Py   |
| × 1         | carb-sil.    |    | lores milks at veins                          | @ 99.65 25cm 75"CA             | silico cachicochesili?                | Along Voncera               | K        |          | V        |
| ł           |              | 1  |                                               | @ 100.2 30cm 60 CA             | above voins clearly                   | Conc y conter y             | }        |          |          |
| · ·         |              |    | ĵ <u></u>                                     | LUCCE fine g/2 veinlets.       | 4. Sil? mariny more                   | Sem; massive selvedies      |          |          |          |
| <b>F</b>    |              | Z  |                                               | smeller als vendets            | Cost perce veine                      | patchy for densor 6 Py.     |          |          |          |
|             | less altered |    | alteration sure, with strong contract.        | Milky grzveint                 | demen cort, more siling               |                             | <u> </u> |          |          |
|             | spansery.    |    | downwards. Local Larg milks als leins         | Cuarse massive Py at upper     | cround veins, increased               | disom EPL HAD               | <u> </u> |          |          |
|             |              | 12 | complicate this higher 9. R. in wallingers    | Clot 10 soom gy                | hole pilveur carb                     | polites. low conc in        | <u> </u> |          | · · · ·  |
|             |              |    |                                               | P-100-41 to con to your A      |                                       | upper pert of section       | 1        |          |          |
|             | ·            |    | Augentic to have allered Billouted Bo         | lecal compact will             | 140-141 -4 -44                        | Tr - 191 inhei denem        | <b> </b> |          |          |
| Allocant    | Pillound II. |    | 19 with transitional collonated contact       | + textures .                   | how what was the content              | ¢ Py                        |          |          |          |
|             | Fritwee flow | M  | White -1213 Allered Teo cart all in           | 1 Anthropic Augeriz            | Contacos                              | 14.6-119.0 wallwets .       | 1        |          |          |
| 1           | abundant Py  | 3  | Kanath Pathi watered on a "                   | high orall CA.                 |                                       | MIC "PU RODIT V             | 4        |          | ·        |
| · ·         | Terre C      |    | wath up à                                     | TO'CA, JAN ATEN EL MICO        |                                       | to TTALL below              | +        | {        |          |
| F-          | -Trace Py    |    | · / 9 · · · · · · · · · · · · · · · · ·       | fractined low offer ca         | · · · · · · · · · · · · · · · · · · · | <b>+</b>                    | 1        |          |          |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Wells

DATE: 30 JULE 2003

(

# CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| DDH NO. 795-4         | · ·                                                                        |                                                                      | · · · .                               |                                             |                                       | PA          | GE NO. 3                               |
|-----------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------|---------------------------------------------|---------------------------------------|-------------|----------------------------------------|
| LI                    | THOLOGY                                                                    | STRUCTURE                                                            | ALTERATION                            | MINERALIZATION                              |                                       | SAMPL       | ING                                    |
| MAIN UNITS GL         | SUB UNITS                                                                  |                                                                      | · ,                                   |                                             | FROM                                  | ТО          | NUMBER                                 |
|                       | 121.2-122 to to green, variably altered, nafi:                             | Variable textures -vemlet                                            | dimen to potety                       | sparse fine Py.                             |                                       |             |                                        |
|                       | gran - prosedig printing room ingracit                                     | and late low angles co                                               | chints -lets ? corty                  |                                             |                                       |             |                                        |
| burnaline 2 4         | 1277-133 80 Ton silica-cash alt zone                                       | milling of seine                                                     |                                       |                                             |                                       |             |                                        |
| 130                   | with milk, quarty vers & associated Ry                                     | 0 129.18 10 cm 5500A<br>0 129.18 10 cm 5500A<br>0 132.0 37 cm 40° CA | Tan silica with dusam<br>Carb         | @129-38 ADROW SSOCA<br>g/2 vernes possible  | ·                                     |             |                                        |
|                       | 133.8-139.60                                                               |                                                                      |                                       | 2-69. nedium distem ER                      | · · · · · · · · · · · · · · · · · · · | · · · · · · |                                        |
|                       | mothed tan - green, fire ground hanger                                     | Local low and cA                                                     | pervasive carb (ant?)                 | ER, below 128.4 4-70%                       | Zsone                                 | Sim         | 10% PAZ ,                              |
| 190 -                 | Below 1884 antination halo to vein<br>139:60-143:15 Milky quartz vein Toxa | w/m fractured                                                        |                                       | My disen CPy.<br>To cel frectione confionts | 500                                   |             |                                        |
| Py aggreg.            | 143.15-148-37 Silicovs, Foutured                                           | milky to verns                                                       | Hard fire silice                      | 4-7% M/c denom                              |                                       |             | ·····                                  |
|                       | with quartz voins. Abundant dimem                                          | 2143.76 2000 70°CA<br>144.50 10cm 650CA<br>145.0 20cm 30°CA          | (carb). fine g. 1g                    | EPy can be quite                            |                                       |             |                                        |
| Be wallnocks gts      | 148.37 -187.10 Quarty Vein Zone                                            | 46-90 / Sco 40'CA                                                    | Jachrie Co. H.F.2                     | Partition                                   |                                       |             | ······································ |
| 148-37 - 1 37-10      | mainly milky quests varining stuke.                                        | To ISI & numerous                                                    | are siliceous with R                  | fong duppon EP,<br>in continue frogs        |                                       |             | 1                                      |
| Quartz Vein - Breccia | of for ton altere de sili deus                                             | ·····                                                                |                                       | tout by in giz                              |                                       |             |                                        |
|                       | Note there is patche line carb                                             |                                                                      |                                       |                                             |                                       |             |                                        |
| 160                   | (calcite?) with gly                                                        |                                                                      |                                       |                                             |                                       |             | ······································ |
|                       | · · · · · · · · · · · · · · · · · · ·                                      | · · · · · · · · · · · · · · · · · · ·                                | · · · · · · · · · · · · · · · · · · · | ·                                           |                                       |             |                                        |
|                       |                                                                            | · · · · · · · · · · · · · · · · · · ·                                |                                       | 0                                           |                                       |             |                                        |
| 170 MCPy -            |                                                                            |                                                                      |                                       | Ry eggingetes, fine                         |                                       | ļ           |                                        |
|                       |                                                                            |                                                                      |                                       | all mintred in freitwis                     |                                       |             | ,,,,                                   |
|                       |                                                                            |                                                                      | •                                     |                                             |                                       |             | •.                                     |
| 180 - few frogments   |                                                                            |                                                                      |                                       | 180.2 m/c by aproveding                     |                                       |             | ·                                      |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY ..... Wells

DATE: 30 June 2003

### CASSIAR-TAURUS

73

NAVASOTA RESOURCES LTD.

|     | DDH NO.            | T 95-4            |          |                                        |                                       | .,                                    |                                        |              | PAG           | GE NO. 4                              |
|-----|--------------------|-------------------|----------|----------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|--------------|---------------|---------------------------------------|
|     |                    |                   | <u> </u> | ITHOLOGY                               | STRUCTURE                             | ALTERATION                            | MINERALIZATION                         | •            | SAMPL         | ING                                   |
| 180 | <u>MAIN MAIN</u>   | N UNITS           | GL       | SUB UNITS                              |                                       |                                       | · · ·                                  | FROM         | TO            | NUMBER                                |
|     |                    |                   | -        |                                        |                                       |                                       | BIR2.65 HEM CUNAL                      |              |               |                                       |
| 1   |                    | meinin ato        | 25       |                                        |                                       |                                       | of Course Py                           |              |               | -                                     |
|     |                    | COARLE Py         |          | Tracture milti als with Pr assessed    |                                       |                                       | 5-8% P. mainty local                   |              |               |                                       |
|     |                    | assregates.       | 1.       | 187.10-187.52 Black Lo Celbonactori    | so'ca partines faulty                 | Calbonnemus                           | coorse agregalie                       |              |               |                                       |
|     |                    | 207.5             | P.C      | 187.52 - 203.3                         | ·····                                 |                                       | - zen in _ manual y                    |              |               |                                       |
| 190 | - 187.52<br>Rocali | - 203-=<br>+ 5/~~ |          | nestion to derk grein, fine grained    | moderate to strong                    | mideracond chlorik                    | sparse live durem                      |              |               |                                       |
|     | Stores             | delement          | N.       | Faitle uniform the nutbout local       | bottle frecturing                     | on tractures.                         | Preite                                 |              | •             |                                       |
|     | Arony              | actomed           | YA       | carbonate veins 1-scm 60-80CA          | Anoughout subport lel                 | wides need cell                       |                                        |              |               |                                       |
|     |                    |                   | 182      |                                        | to 40°54 prochas                      | verdely local                         |                                        |              |               |                                       |
|     |                    |                   | 12       |                                        | with slittlensides                    | dines scal securities                 | T                                      |              |               |                                       |
| 200 | F .                |                   | 1        | · · · · · · · · · · · · · · · · · · ·  | 202. + 12. A with                     | for the second second second          |                                        |              |               |                                       |
|     |                    | ·                 | C        | 202.2- Almer Rlack la acadrila         | bx with dk metny som                  |                                       | · · · ·                                |              |               |                                       |
|     |                    | q.v 13x           | 16       | arcillite forch wathrow local          | Stane Lattle                          | cash paint                            | e parte fin                            |              |               | · · · · · · · · · · · · · · · · · · · |
|     | 203.3              | - 214-80          | 10       | grad service to the laboration         | free free                             | contracted to                         | diriem P.                              |              |               |                                       |
|     | Grap               | hitic<br>A '11'A. | 15       | - Carles Decision / Margaria           | fully and                             | has late                              | <u> </u>                               | ·            |               |                                       |
| 210 | <b>-</b>           | HIGILICE          | 135      |                                        | Some preabilitie                      |                                       |                                        |              |               |                                       |
|     | SFr                | ongly deported    | 1259     |                                        | with slickensiden                     |                                       | · · · ·                                |              |               |                                       |
|     |                    | T.11) A.B.        | 14       | 214.80-215.19 EON TON COlourod all.    | stay tobic So'CA.                     |                                       |                                        |              |               | - <u></u>                             |
|     | 1                  | <i></i>           | E        | Versenic - Bedded tyff / pilling br.   |                                       | ······                                |                                        |              | · · · ·       |                                       |
|     | }                  |                   |          |                                        | <u>}</u>                              |                                       | · ···································· |              |               |                                       |
| 220 | · <del> -</del>    |                   | • ľ      |                                        | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |                                        |              |               |                                       |
|     |                    |                   |          |                                        |                                       | · · · · · · · · · · · · · · · · · · · |                                        |              |               |                                       |
|     |                    | -                 | - F      |                                        |                                       | · · · · · · · · · · · · · · · · · · · |                                        |              |               | · · ·                                 |
|     | · .                |                   | 1        |                                        |                                       | · · · · · · · · · · · · · · · · · · · |                                        |              |               |                                       |
|     |                    | •                 |          |                                        | · · ·                                 |                                       | · · · · · · · · · · · · · · · · · · ·  |              |               | -                                     |
| 230 | ·                  | · .               |          | ······································ |                                       |                                       | •.                                     |              |               | 1                                     |
|     |                    | •                 |          |                                        | · · · · · · · · · · · · · · · · · · · |                                       | 1                                      | 1            |               |                                       |
|     |                    |                   |          |                                        |                                       |                                       | 1                                      | <u> </u>     |               |                                       |
|     |                    |                   |          |                                        | · · · · · · · · · · · · · · · · · · · |                                       |                                        | <del> </del> |               |                                       |
|     | 1.1                | 12<br>12          | 1        | · · · · · · · · · · · · · · · · · · ·  | ·                                     | <u> </u>                              |                                        | ╂            |               | <u> </u>                              |
| 24  | • <b> </b> -       |                   | Ŧ        |                                        | <u>+</u>                              | · · · · · · · · · · · · · · · · · · · |                                        | <u> </u>     | <u>├</u> ──── | <u> </u>                              |
|     |                    |                   |          |                                        | .I                                    | <u>`</u>                              | 1                                      | <u></u>      | L             |                                       |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Wells

DATE 30 June 2003

### CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| DDH NO. 795-13         |          |                                                                        | · · · · · · · · · · · · · · · · · · ·         |                                                          | -                      |      | PA  | GE NO. 1                              |
|------------------------|----------|------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|------------------------|------|-----|---------------------------------------|
|                        | <u> </u> | ITHOLOGY                                                               | STRUCTURE                                     | ALTERATION                                               | MINERALIZATION         | 1    | ING |                                       |
| MAIN UNITS             | GL       | SUB UNITS                                                              |                                               |                                                          |                        | FROM | TO  | NUMBER                                |
| 0-6.90                 |          | 0-6.90 overburden                                                      |                                               |                                                          |                        |      |     |                                       |
| overburden             |          |                                                                        |                                               |                                                          |                        |      |     |                                       |
|                        | in       | 6.90-18.0 Weak Carbonated basalt                                       | marrie to weak                                | oxidized along practices                                 | Imai al Pi limat       |      |     |                                       |
| - weak cath            |          | fine grained speckled light green                                      | Carb Veinletz 25-40°CA                        | to 11.0m bleached                                        | MIC. CULES             |      |     |                                       |
| Basalt 6.9-18.0        |          |                                                                        |                                               | w/m pervosive and                                        |                        |      |     |                                       |
|                        | 17       |                                                                        |                                               | veinter certs (duper)                                    | •                      |      |     |                                       |
|                        | 11       |                                                                        |                                               |                                                          | -                      |      |     |                                       |
| - Carbonate (ser; sil) | 13       | 18.0-31.1 Bleachord and Carbonated                                     | midely spaced qualty                          | moderate to 5 mg                                         | 18-22.5 traces of Py   |      |     |                                       |
| Local milky quartz     |          | (as above), moderate to strong                                         | chorp contact (rare carl                      | pervesive carb                                           | 22.5-26.6 1-7-1        |      |     |                                       |
| Veins 18.0 - 38.1      |          | disseminated pyrite                                                    | @ 23.75 youngy 75"CA                          |                                                          | for dimen E Py         |      |     |                                       |
|                        | 12       |                                                                        | Q 30.2 25 cm & V minor<br>Arou So CA Mar Selu |                                                          | COAL ARCE SOME VEINS   |      |     | · · · · · · · · · · · · · · · · · · · |
|                        |          | · · · · · · · · · · · · · · · · · · ·                                  | 0 35-75 6m 45 CA                              | · · · · · · · · · · · · · · · · · · ·                    | lucal fix any at       |      |     |                                       |
|                        |          | 0 36:15-36:20 Norman black                                             | starp zoich cualant                           | dt supporables Ma                                        | 26.6-29.0 Tr-11.19     |      |     |                                       |
| Biotite lamprophy      |          | Biotice Lamprophyle dyke.                                              | etro y biotite fabric                         | chlorite partings                                        | 29.0-17.0 2-7% predo   | *    |     |                                       |
| olyke ict.             | 1        |                                                                        | Sand 20-30 chi jainte                         |                                                          | 23.0 32.1 Tr - 7.1.    |      |     |                                       |
| -                      |          | fine proved speckled, was monthly                                      | HE-55°CA lease innot                          | Mod. dimen cost.<br>(calcite) chink seems                | Theor Valor, Star      |      |     |                                       |
| shear fabrics          |          | 42-156 43-60 from lemingtion 60 th<br>Poboble sheer filer than plinary | caro vointets vonable agen                    | and fractures .<br>durin cach chumbs                     | fore dillen «Pu        |      |     |                                       |
| QV Py                  |          | 43.60-48.0 Bleached and corbensted                                     | Share freiture law                            | Vein wallneks carb<br>nuce mus are veineet<br>loury sile | M/c duminant           |      |     |                                       |
| Main Shier             | 1        | 48.0-64.3<br>48.0-64.3                                                 | I can shear at bear                           | fine diagon and finit                                    | ilg) and the induction |      |     |                                       |
| Carbonate Altered      |          | Carbonated Bosalt.                                                     | fine costs voinceto                           | chambs throughout                                        | Rynite                 |      |     |                                       |
| Basalt                 |          | Find grained with coarser disc                                         | n (calcile) variable cryce                    | higher rune noar                                         | ·                      | ·    |     |                                       |
|                        | !?!      | Vidic, IVON M V. WEAK MOGALETE                                         | ST-56 late antile                             | contacts for a late                                      |                        |      |     |                                       |
| <b>-</b>               |          |                                                                        | Freeze Supprelled C                           | T TOLEY ALL VEINIELS                                     |                        |      |     |                                       |
|                        |          |                                                                        | ]                                             |                                                          |                        |      |     |                                       |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R.Wells

DATE: 1. July 2003

# CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

|                   | DH NO. 7 95-13       |                |                                       | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |                                       |        | PA   | GE NO. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------|----------------------|----------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                      | L              | ITHOLOGY                              | STRUCTURE                             | ALTERATION                            | MINERALIZATION                        |        | SAMP | ING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| _                 | MAIN UNITS           | GL             | SUB UNITS                             |                                       |                                       |                                       | FROM   | TO   | NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ᅂ                 |                      |                | see previous page carb alt basalt     |                                       |                                       |                                       |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                      |                |                                       | ·····                                 |                                       |                                       |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | - 1 1 tet in als     |                | 44-3-68-6 Blacked carter tool with    | saugeo milk the                       | Permand anoth Eiling                  | 3-6 MIC NUMBER                        |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 19              | Carb, qrzv, dissem   |                | - to the total of the total of the    | to room width                         | Vernieto                              | well of the the st                    |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | "g                   | $\Sigma_{i}$   | 1913 US INS A B BUDGMINERIA           | 1 . A latat casia                     |                                       | coorse tet assigned in one            | uain . |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 70 <del> </del> - | · ·                  | ?              | 63.6-74.6 speckled green-Grey         | LOCOL HEDRIG GOVIER                   | a win ausen coro                      | Y                                     |        |      | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   | Corb Basalt          | <u>ن</u> ر     | Carobnell accertor pasatr(printinged) | ( (amination) - pillowed!             | Charghout Pateny                      | oraces of fine dimen                  |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                      |                |                                       | MINUT CATE VAINUES                    | background chi                        | <i>Py</i> .                           |        | ,    | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   | -<br>-               | 5              |                                       |                                       |                                       |                                       |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | · ·                  |                | ·                                     | · · · · · · · · · · · · · · · · · · · |                                       |                                       |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 100             |                      | - 7            | 79.6-83.5 Same is 64.3                | 80.7-83 4 milks qu.                   | bleached carb-sil wellowt             | 1% + M dissem " Py                    |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | care, grzv. dissem   |                | Bleached calo+sil+dissem. Py          | lecal small inclusions                | some sor at wein selv.                | Mar wint                              |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                 | Py                   | 2              | with large milky gtz voia             | with fine letrahedrate?               | with seri massive py                  |                                       |        |      | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | Carb Bas             | - •            | 83.5-861 carbonate altered Bas        | es @ 843                              |                                       |                                       |        |      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   |                      | [ <b>~</b> , • | 86.1-91.5 As at 79.6 Carb (sil) Py    | @ 90.36 20cm maby                     | As at 79.6 Cathfail                   | 2-7"/. for dimen Py                   | ļ      |      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>9</b> 2        | - gtz v with sph+spy | /              |                                       | fractured with Py Bick                | giz vernleds                          | arts ve in hes Py contact             | to     |      | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ~                 |                      | $J_{c}$        | 915-954 Strong Carb (Sil) Alteration  | Massiva local 24-25"(A                | Peruasive carb . celi                 | sparse due dirocn                     | [ *    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | Carb Basalt          | 15             | As above no Pynte                     | norrow milky glz vie                  | silice along frechures                | Rinte                                 |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | carb(sit) ato V      | Ŀ,             | 95.4-97.6 Ar at 796 carb(s1) R.       | @ 97.4 2010 mahr.                     | Pervosive corb sil                    | 5-91/2 done diries                    |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | dissem Py            |                | a milki ala V                         | 40°CA. Many 20-Jolch                  | veincets                              | epy.                                  |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | _ Carb Alt. Basalt   | 19             | @ 97.6-113.90 Variable Ceshanated     | mixed primary on                      | Variable dissem                       | Mainin traces of                      |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | Collowed             | X              | moltled aroan-brown bosalt            | die backnarwith                       | cash throughout                       | R. V                                  |        |      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                      | I.             | lucal remaants of pillans             | (chi) labrics                         | locally in bands                      | Ŭ                                     |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                      | 62             | and internition inspectid             | miner cost varialita                  |                                       |                                       |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | Ň                    |                | Neo manuti                            |                                       |                                       |                                       |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                      |                |                                       |                                       | di t                                  |                                       |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 110               | <b>-</b> .           |                |                                       |                                       |                                       |                                       |        |      | , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1                 |                      | 1              | stringer-core                         | 1                                     |                                       |                                       |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ļ                 | Carb (sil fractured  | 1              | 113.90-117.0 As at 79.6 Carb(sil) Py  | COTTA TA PIZZ SS CA                   | Carb-sil. ve neets.                   | 3-10°/. fm (product)                  |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | gtzv dissem gtz mg   | K.             | + milky 9/3 vaine                     | Py bonds + selverigeo                 | low angles CA.                        | dimenta, local coard                  |        |      | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   |                      | t٠             | 117.0-127.5 A. above windel           | wilk in 120.0 4                       |                                       | · · · · · · · · · · · · · · · · · · · |        |      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 120               | F                    | 17             | Spaced milting to Wis with anoc R.    | 35th                                  | <b>\</b>                              |                                       | 1      | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | L                    | 1.             |                                       |                                       |                                       |                                       |        | A    | and the second s |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Wells

DATE: July 1, 2003

#### CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| DDH NO.      | 795-13           |                      |                                    |                                  | ,                         |                       |          | PA      | GE NO.3                               |
|--------------|------------------|----------------------|------------------------------------|----------------------------------|---------------------------|-----------------------|----------|---------|---------------------------------------|
|              |                  | Ľ                    | ITHOLOGY                           | STRUCTURE                        | ALTERATION                | MINERALIZATION        | SAMPLING |         |                                       |
| MAIN         | JNITS            | GL                   | SUB UNITS                          |                                  |                           |                       | FROM     | то      | NUMBER                                |
|              |                  | /                    | 117-127.5 See prev. pass           | Local gtz veinleti               | Pervasive corb(ant ?)     | @120.7 gts v. Py halo |          |         |                                       |
| 1            | ſ                | · /                  | CACE (Sil) P.                      | 30-35 CA.<br>@124.15 1710 AV 180 | CATTE SIT VEILLES         | Te-El. I. dista P.    |          |         |                                       |
| Ota veins    | Asour +          |                      | <u>_</u>                           | BUSA 2 SSM +tet                  |                           | 7                     |          |         |                                       |
| ats selved   | es cocar         | $\mathbb{Z}$         | 107 5-128.0 light and ators        | 30°CA Aspy + Py at               | Variation (100%           | contra 1 in P         |          |         |                                       |
| Sphitet      |                  | $\bar{f}$            | Pillowood Basalta Loved 'assomid   | Large high roots                 | to and call -             | Sherry                |          |         |                                       |
| pillowed     | Bosalt           | 2                    | nine a sidala, subst usult         | cash ye state                    | dimen deles some          |                       |          |         |                                       |
| wm. carbo    | ated             | U                    | miller proster manabi              | chine 10h 16 h                   | The acide and and         |                       |          |         | ·····                                 |
|              | ť                | V                    | Cocca blook ingresic               | the when the wind to             | contact.                  |                       |          |         |                                       |
|              |                  | 2                    |                                    | and to                           |                           | ······                | · ·      |         |                                       |
|              | share seice      | · (_ · .<br>مح       |                                    |                                  | <i>Q</i>                  |                       | ,        |         |                                       |
| Altorat      | on 7000          | Τ                    | 150-7-148:77 Strang Alteration Lan | @139.35/Ocm at v. 30             | A chundrint siling        | to tela m/c greine    | r⁄       | <u></u> |                                       |
| Cath sil.    | Ri + local       | $\boldsymbol{F}_{i}$ | Perver ve carb alt with Milky arzy | CIHIT IZEM BAREA                 | T Lucal cerb vernuts      | local In divin TR.    |          |         | · · · · · · · · · · · · · · · · · · · |
| 9ts va       | Xs'              | <b>«</b>             | with a la-celle cenent             | BETCA (1- VOINTEFE)              | ances CA.                 |                       |          |         | · · · · · · · · · · · · · · · · · · · |
| Cheated B    | (30 me)          | S.                   |                                    |                                  | <i>c</i>                  | ·····                 |          |         |                                       |
|              |                  | <br>                 |                                    |                                  |                           |                       |          | ·       | ·····                                 |
| o - massive, | strong Alt       | 54                   | 448-17-1848 Foirly massive with    | Greeciz Verriets                 | meinly pervise            | Trous of My           |          |         |                                       |
| Alteretto    | 5. M- carb       | <br>                 | Local giz beialate spaces Py       | som and high coople (A           | (Hard) fine silica - sail |                       |          |         |                                       |
|              |                  | <b>.</b>             |                                    |                                  | gre verdets               |                       |          |         |                                       |
|              |                  | ومعرى                | 154-5-163-2                        |                                  | Medicete dimen            |                       |          |         |                                       |
| Carbonal     | ed Basalt        | к,                   | Groon-white speckled dive ground   | armed to mart.                   | (cerbonate territe)       | Trees of Py           |          | ·····   |                                       |
| 50 - Pillae  | J B RECCIA       | 5¥                   | mixed angular to subranded         | homolithic                       | Vorable permissive        |                       |          |         |                                       |
| · .          |                  | K (0                 | SUD CM TO DIVER CICITS - SOME CRE  | sparce ventels                   | and dimon colb (cold)     |                       | <u> </u> |         |                                       |
|              | binote and       | <b>F</b> []          | 163:2-1625 millout bloccia.        |                                  |                           |                       |          |         |                                       |
| Chu          | orite Alteration |                      | with chientic competed section     | lemination in chi                | 2 co 16 cole que wite     | Sporse Py             |          |         |                                       |
|              |                  | <b>_</b>             | Some remnent Bretter terteres      |                                  | Some sil yourdit with con |                       |          |         |                                       |
| To massive   | to Pillour       |                      | 168.5-178.5 speckled greens, og    |                                  |                           |                       | <u> </u> |         | ·                                     |
| Ba           | salt             | 1.1                  | corbunated massive with local      | chloritic voinlets               | moderate porvasiu         | sporse My local       |          |         |                                       |
|              |                  |                      | Suggestion of pillows here top     | Frechwer 40.60°CA                | to dissem. carb (rate)    | cone of for cay       |          |         | <b> </b>                              |
|              | / ->             | 1                    | 1 Alon to weak negretic            | CONTACTS 25"CA.                  | 177.4-177.50 bleather     | WIR Chinte            |          |         | <u> </u>                              |
|              | to cone          |                      | A178:5-187:8 Tan Wark- hard        |                                  | Corb & gra ventets        | deschries;            | }        | <u></u> |                                       |
| 180 Altera   | tion Zone        |                      | -fine silica - carb                | V. 30°CA                         |                           |                       | {        |         |                                       |
|              |                  |                      |                                    |                                  | 1                         | 1                     |          |         |                                       |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY R. Walls

DATE: July 1, 2003

# CASSIAR-TAURUS

.

NAVASOTA RESOURCES LTD.

| MAIN UNITS     STRUCTURE     ALTERATION     MINERALIZATION     SAME       Anterodium Z and<br>Sile ford     178 5-162 h dim mineration hand dim<br>sile ford     178 5-162 h dim mineration hand dim<br>the second dim grade for the second dim<br>the second d                                                                                                                                                                                                                                                                                      | GE NO. 4 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| MAIN UNITS     GL     SUB UNITS     FROM     TO       Ancience in the presence of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _ING     |
| Arcsiedum 2000<br>Sile Costa<br>Sile Costa<br>Si                                                                                                                                                                         | NUMBER   |
| SIL Cold<br>SIL Cold<br>SIL Cold<br>Cold Cold Cold Cold Cold Cold Cold Cold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Eil-Carb-Py<br>With milky QV<br>ITTE-103:0 Alteration Zone of glg V. 1862-1892 provere (Aord) first with the side<br>with milky QV<br>ITTE-103:0 Alteration Zone of glg V. 1862-1892 provere (Aord) first with the side<br>with milky QV<br>ITTE-103:0 Alteration Zone of glg V. 1862-1892 provere (Aord) first with the side<br>provere (Aord) first with the side of the side                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| <ul> <li>Eill Carlo Py unit Ry Qui RTRE-LOYO Alterichan Zone of 913 V. 1862-1892 pervenue (Arra) frie Ry the Construction of the Ry the Ry the Construction of the Ry the Construction of the Ry /li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| <ul> <li>Cit-Carbo-Py</li> <li>With milky QV</li> <li>With milky QX</li> <li>Py inhedulated</li> <li>With Milky QX</li> <li>With Milky QX</li> <li>With Milky QX</li> <li>Py inhedulated</li> <li>With Milky QX</li> <li>With</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| <ul> <li>With milky QV</li> <li>Low cingts to CA. Milky gtz Voint Beindyson the function of the control of the CA. Control of the control of</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| Qi voins, Qu selvedes<br>Qi voins, Qu selvedes<br>With Aspy-green scrift<br>Corbonated Prilled<br>Region 2002 Million and Core a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| April Values       April Values <td< td=""><td> </td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Qig Veins, Py selvedge:       2010       30:00       Py         With Aspy-green scricities       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:000       10:0000       10:0000       10:000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Ols Voins, P., selvodysi,       Distance       Distan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| Q12 Voints, Py selvodys:       Interaction for the Py       Interaction for the Py         With Aspy-green scription       Particle Test Py       Interaction for the py         Corb onalad Pillow       Respondence       Py experiment         Corb onalad Pillow       Respondence       Py experiment         Respondence       Respondence       Py experiment         Particle Pillow       Respondence       Respondence         Particle Alteration Zone       Respondence       Py experiment         Py experiment       Store Pillow       Respondence       Py experiment         Py experiment       Store Pillow       Py experiment       Py experiment         Respondence       Store Pillow       Py experiment       Py experiment         Respondence       Store Pillow       Py experiment       Py experiment         Store Pillow       Py experiment       Py experiment       Py experiment         Store Pillo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| With Aspy-green scripting<br>With Aspy-green scripting<br>Corbonalad Prillew<br>Based P                                                                                                                                                                                                                                                 |          |
| Corbonalad Pillow<br>Rasalt<br>Rasalt<br>Rasalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Resalt<br>Res |          |
| Corbonaled Pillow<br>Basait<br>Partic Alleration Zone<br>Mire than I generalion<br>of Pillows I to call of the low line for vendet and<br>Mire than I generalion<br>of Py Evidence of barbon<br>Py Evidence of barbon<br>Carbonaled Basait<br>220:45 - 2310<br>Pyritic Alleration Zone<br>1: 220:45 - 2310<br>Pyritic Alleration Pyritic                                                                                                                                                                                                                                                                                                                                                             |          |
| Basalt<br>Partic Alleration Zone<br>Mine than I generation<br>Mine than Mine                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| Pyritic Alteration Zone<br>Mire than 1 generation<br>of Pyrendene of bx-hoad<br>For the different with few law fire verifield and from the few law fire verifield and for the fire of the fire o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| Printie Alteration Zone       210.6-2150       210.6-2150       210.6-2150       210.6-2150       210.6-2150       210.6-2150       210.6-2150       210.6-2150       210.6-2150       210.6-2150       210.6-2150       210.6-2150       210.6-2150       210.6-2150       210.6-2150       210.6-2150       210.6-2150       210.6-2150       210.6-2150       210.6-2150       210.6-2150       210.6-2150       210.6-2150       210.6-2100       210.6-2100       210.6-2100       210.6-2100       210.6-2100       210.6-2100       210.6-2100       210.6-2100       210.6-2100       210.6-2100       210.6-2100       210.6-2100       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200       210.6-200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| Mire than / generation<br>of Py. Evidence of bx-hoal<br>Carbonated Basatt<br>220.45 - 2310<br>Py inite Alteration Zone<br>by - head<br>Altered with finc<br>231.0 - 237.0 Carbonal Alteration<br>Py inite Altered with finc<br>Py - by -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| of Py Evidence of bx-hoad in the glants verne. Altited verne in fillings generally silica. carb. for 2 or 4 me. Py. 5-10".<br>Valiable, fractured. Pyritic overprint? 10°-2° CA more generally serne of the form MP (receil patters)<br>serne of the form of the series of the series of the form of the series of the form of the series of the ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| Carbonated Bosalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| 100 manufac carbonated with chloritic norrow gly vointets 20° capanterilly, silica named. Tr-10% fine E gy         11       sections         120.45 - 2310       120.45 - 223.5 Transitional Revenue         10.1022 gly vointets 20° capanterilly, silica named. Tr-10% fine E gy         11.1022 gly vointets 20° capanterilly, silica named. Tr-10% fine E gy         11.1022 gly vointets 20° capanterilly, silica named. Tr-10% fine E gy         11.1022 gly vointets 20° capanterilly, silica named. Tr-10% fine E gy         11.1022 gly vointets 100 gly vointet 100 gly v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 220.45 - 2210<br>Pyritic Alteration Zone<br>1.1223.5 Ziene usite dimensional Remained Manager and Solution of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L        |
| 220:45 - 2310<br>Pyritic Alteration Zone<br>by - have<br>- 231:0 - 242:0 Shear f<br>- 231:0 - 237:0 Cochange Allecthin Remant fabrics -<br>- 230:0 - 237:0 Cochange Allecthin Remant fabrics -<br>- 200:0 - 200:0 - 200:0 -<br>- 200:0 - 200:0 -<br>- 200:0 - 200:0 -<br>- 200:0 - 200:0 -<br>- 20                                                                                                                                                                                                                                                     |          |
| 220:45 - 22:0<br>Pyritic Alteration Zone<br>by heat<br>- 231:0 - 242:0 Shear f 31<br>Altered with fine<br>grained Py<br>Pyritic Alteration Zone<br>22:0-23:0 - 23:0 Ar above - structural<br>structural for the fine<br>22:0-23:0 - 23:0 Ar above - structural<br>structural for the fine<br>22:0-23:0 - 23:0 Ar above - structural<br>structural for the fine<br>grained Py<br>Pyritic Alteration<br>Pyritic Alteration<br>Pyriti                                                                                                                                                                                                                                                                                                                       |          |
| Pyritic Alteration Zone is alt bu-healed mixed dwoom Py 9/3 Veinlows foiring As at 2150 mile of beginning paking bolow burger for the forming paking the mixed first former and sile carbon work for the forming paking the former and sile carbon work for the former and the forme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| - 231.0 - 242.0 Shear f 31 0 Ar above - structural some history of the first and above - As above -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| -231.0.242.0 Shear f 35 overprint + nore gtz verilets (200 shear 10.30 gty verilets As above (200 Abundant)<br>Altered with fine 10-237.0 Carbonets Alleration Remain fabrics - Pervosive to disem veriable comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| Altered with fine 1231:0-237:0 Corbonets Alleration Remnant fabrics- Perrosive to dissem Veriable conventories<br>grained Py 2000 with fine Quit fine Py 1000000 Py 1000000 Py 1000000 Py 10000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| Altered with fine is for 2310 carboned Aucralian Remarking to the area of the distant of the dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| ground My Leve with give Vy sparse Q12 haiding cars veinlets the Corolina strice. A local banks, second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u> |
| Vonable cullo CA. Some tracture Control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +        |
| Miner Ma Py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u> |
| mi 2370-238.0 Same as 223.5 Dy-head giz vernedes more sirica. dg more sirica. dg locally in tow angle blacks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b> </b> |
| 1238.0.2 42.0 Same as 2310 increase lat to lensy Hard sile carts maining the Ri atten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b></b>  |
| in bands low of high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u></u>  |

KAMLOOPS GEOLOGICAL SERVICES LTD.

- - -

----

LOGGED BY: K. Walls

DATE: July 1, 2003

## CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

|     | DDH NO. 795-13          |      |                                                      |                                       |                                        |                                        |          | PA       | GE NO. 5                              |
|-----|-------------------------|------|------------------------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|----------|----------|---------------------------------------|
|     |                         | L    | ITHOLOGY                                             | STRUCTURE                             | ALTERATION                             | MINERALIZATION                         | SAMPLING |          |                                       |
|     | MAIN UNITS              | GĹ   | SUB UNITS                                            |                                       |                                        |                                        | FROM     |          | NUMBER                                |
|     | 242.0 - 250.45          |      | 242.0-250.45 A. of 223.5                             | Hoo's like the chirad                 | Head to atter                          | able days 1                            |          |          | HOLDER                                |
|     | Pyritic Alteration Zone | k    | clear alleration - bx - hear 744                     | highed at wardet                      | Marca Konosa Milea                     | Naring aument 13                       |          |          | i                                     |
|     | Bieccia-Head            |      | or more accoration of P. historica d                 | unoinfile - which I are               | com point ground of                    | Lucol band seoms                       |          |          |                                       |
|     |                         | 1    | g g way                                              | and the friet                         | ······································ | Mixed M/c with for                     |          |          | · ····· · · · · · · · · · · · · · · · |
|     |                         | 101  | gro unano - nee FIX Dies.                            | man or creign                         |                                        | some acea 5-7% m/c                     |          | <b>_</b> |                                       |
| •   | -                       | 1    |                                                      |                                       |                                        | others 7-20 frm                        |          |          |                                       |
|     | 250.45 - 260.9          | S.   | 250-45-260.9<br>250-45-261-2 Corbonaceous with atz 1 | ein fragments                         |                                        |                                        |          |          |                                       |
| 1   | Major Four Zone         | 03   | 251.20-260.50 No Cate in box - ++                    | 15 JOAN - CONTRACTOR                  | 10,000 10,70 CA                        | ·····                                  |          |          |                                       |
| Ì   | Labrics 10 - 20 - CA    | 555  |                                                      | y y y y y y y y y                     |                                        |                                        |          | ·        |                                       |
| 1   | probably 2 or more ,    | 55   | 2583-2609 Strone brasciched - any                    | br freements of purit                 | mint of and the                        | and altilled fit and                   |          | 11       |                                       |
| :0  | - deformation events    | 1.5  | more solid section                                   | of minuchied at                       | + JOAR 258-1-260.00                    | 5.7 % for dissing FP                   | pour par | ·····    |                                       |
|     | 260.4-2710              | ľŻ   | 260:9 -271 @ As above foult                          | Foich messive to                      | Hard cilica-carb.                      | maint no disen                         | ľ        | •        |                                       |
|     | Pyritic Alteration      | 10   | but douch massive with little questa                 | strong dk micm -                      | at the decreasure                      | = Py Local Sine                        | 5->10%   |          |                                       |
|     | Zone                    |      | veralex, Preduminantly mic dumen                     | vendets/ froctures                    | duunwords.                             | patrix, minor wante                    |          |          |                                       |
|     |                         |      | Ry                                                   | ficitives noce top.                   |                                        | Some course Ay clearly                 |          |          |                                       |
|     |                         | •    | Valt.                                                | · · · · · · · · · · · · · · · · · · · |                                        |                                        |          |          |                                       |
| "   | - ·                     |      | 271.0-287 Med groces do marsive                      | Minor cart voinlet                    | weak cash                              | 71-21/2 Och- 444                       |          |          |                                       |
|     | 2710-2810               | 1    | Basalt Flow local Meck                               | 30-60CA . Local                       | mial revoleto                          | Leukis" P. alla an                     |          |          |                                       |
|     | Rosalt Eland            | 14   | memetri                                              | 20-soice chipiti                      |                                        | Lie chi verilet                        |          |          |                                       |
|     | Narrow                  | 1.5  |                                                      | Verales - brailing                    |                                        | I COL PRIME                            |          |          |                                       |
|     | F. 40'CA                | 10   |                                                      | 70000                                 | · · · · · · · · · · · · · · · · · · ·  |                                        |          |          | · · · · · · · · · · · · · · · · · · · |
| 0   |                         |      |                                                      |                                       |                                        |                                        |          |          |                                       |
|     |                         | 1.2  |                                                      | · · · · · · · · · · · · · · · · · · · |                                        |                                        |          |          | ·····                                 |
|     |                         | V. V |                                                      |                                       |                                        | ······································ |          |          |                                       |
|     |                         |      | 1217-300,50 Prolis Albertohum                        | local two lat-                        |                                        |                                        | ·        |          |                                       |
|     | 287-30-00               |      | it with in siles of the                              | Local are volucians                   | Sund Frence                            | 2-5% M/c ep                            |          |          |                                       |
| 10  | - Pyritic Alteration    | 1.7  | it is all at the state line (it                      | to im commonly                        | grz verneto                            | 292-298 Patchy                         |          |          |                                       |
|     | Zoni                    |      | Lana Total giz Versita, Voliciste                    | <u> 10. 30 (A.</u>                    | throughout some                        | 5-15 / m/c P. Maint                    |          |          |                                       |
|     |                         | 17   | and gainen in the inly                               |                                       | larger vernets to                      | >25%                                   |          |          |                                       |
|     |                         | 1.7  |                                                      |                                       | norm wine (lensy)                      | Py & below 298m                        |          |          |                                       |
|     | · ·                     | 1    | \                                                    |                                       |                                        | 6 Pu                                   |          |          |                                       |
| D.P | F ·                     |      |                                                      | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · ·  |                                        |          |          |                                       |
|     | L                       | 1    |                                                      | 1                                     | 1                                      |                                        | 1        |          |                                       |

KAMLOOPS GEOLOGICAL SERVICES LTD.

.)

LOGGED BY: R. Wells

DATE: July 2, 2003

### CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| DDH NO. 795 -13 | 3        |                                       | · · · ·                               |                         |                                       |          | PA                                    | GE NO. 6                              |
|-----------------|----------|---------------------------------------|---------------------------------------|-------------------------|---------------------------------------|----------|---------------------------------------|---------------------------------------|
|                 | <u> </u> | ITHOLOGY                              | STRUCTURE                             | ALTERATION              | MINERALIZATION                        |          | SAMPL                                 | ING                                   |
| MAIN UNITS      | GL       | SUB UNITS                             | · · · · · · · · · · · · · · · · · · · |                         |                                       | FROM     | TO                                    | NUMBER                                |
|                 | 5        | 300:50-302 5 Less allored besalt      | lemont Gorca                          | up dimen corb.          | TI Py                                 |          |                                       |                                       |
| Pr Alt 2000     | Lit.     | 302.5-308.4 as at 887.0 9/3 Veril     | Bx - silico heal                      |                         | Pater 3.7.6 M/c                       |          |                                       |                                       |
|                 | 1.4      | well developed bx-head textures       | at veralety in                        | hard sil-cach           | dissem EPu, Abundas                   | 4        |                                       |                                       |
| ( ox-real)      | 5        | esp. near bare                        | and triet angle CA                    |                         | extremely Juis P.                     |          |                                       |                                       |
| 308.4 - 329.30  | 1        | 308.4 . 329.3                         |                                       |                         | 3+2-305 disem through                 | Jt       |                                       |                                       |
| Carbonaceous    |          | Black fire grained with               | story dependion                       | veriable and to         | 2-50% plissen.                        |          |                                       |                                       |
| Argunice -      | VII.     | ctrong elevage - lamination 50-70 CA  | ,                                     | mid. carb(calc).        | Coarse Epy                            |          |                                       |                                       |
|                 | 1        | checky leavines                       |                                       | controllad by Lomin.    | Note als versing                      |          |                                       |                                       |
|                 | 11/      | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |                         | 13 obsert. Pus                        |          |                                       |                                       |
| -               |          |                                       | · · · · · · · · · · · · · · · · · · · |                         | C-16 ore present!                     |          |                                       |                                       |
|                 |          |                                       |                                       | · · ·                   |                                       |          |                                       |                                       |
|                 |          | 1                                     | Some normer submerel                  | ul                      |                                       |          |                                       |                                       |
|                 |          | 1                                     | colo ye dite                          |                         |                                       |          |                                       |                                       |
|                 | 12       |                                       |                                       | ,                       |                                       |          |                                       |                                       |
|                 | 1        | 329.3 EOH                             |                                       |                         |                                       |          |                                       |                                       |
|                 |          | · · · · ·                             |                                       |                         |                                       |          |                                       |                                       |
|                 |          |                                       |                                       |                         |                                       |          |                                       |                                       |
|                 |          |                                       | ,                                     |                         |                                       |          |                                       |                                       |
|                 | Í        | •                                     |                                       |                         | · · · · · · · · · · · · · · · · · · · |          |                                       |                                       |
|                 |          |                                       |                                       |                         |                                       | ·····    |                                       |                                       |
|                 | 1        |                                       |                                       | · · · · · · · · · · · · |                                       |          |                                       |                                       |
|                 |          |                                       |                                       |                         |                                       |          |                                       |                                       |
|                 |          |                                       |                                       |                         |                                       |          |                                       | ·····                                 |
|                 |          |                                       |                                       |                         |                                       |          | ·····                                 |                                       |
|                 |          | 1                                     |                                       |                         | · · · · · · · · · · · · · · · · · · · |          | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |
|                 |          |                                       |                                       |                         |                                       |          |                                       |                                       |
|                 |          |                                       | ,                                     |                         |                                       | <b> </b> |                                       |                                       |
|                 |          |                                       |                                       |                         | ·                                     |          |                                       |                                       |
|                 |          |                                       |                                       |                         | · · · · · · · · · · · · · · · · · · · | 1        |                                       |                                       |
|                 |          |                                       |                                       |                         |                                       | 1        | *                                     |                                       |
|                 |          |                                       |                                       |                         | ·····                                 |          |                                       |                                       |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY - R Wells

# CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| 2           | DH NO. 795 -3    |              | _                                     |                            |                                       |                                       |              | PA       | GE NO. <b>1</b>                       |
|-------------|------------------|--------------|---------------------------------------|----------------------------|---------------------------------------|---------------------------------------|--------------|----------|---------------------------------------|
| L           |                  | <u> </u>     | THOLOGY                               | STRUCTURE                  | ALTERATION                            | MINERALIZATION                        |              | SAMPLING |                                       |
| <i>o</i>  - | MAIN UNITS       | GL           | SUB UNITS                             |                            | · · ·                                 |                                       | FROM         | TO       | NUMBER                                |
| -<br>-      | 0-6.30           |              | 0-6.2 Overbuiden                      |                            |                                       |                                       |              |          |                                       |
|             | Overburden       | أمرا         | · · · · · · · · · · · · · · · · · · · |                            |                                       |                                       |              |          |                                       |
|             |                  | 0            |                                       |                            |                                       | •                                     |              |          |                                       |
|             | 63-29.25         | $\mathbf{m}$ | 6-3-29.25 Fairly hard, fine grained   | 10001 10-20°CA             | pridized bracture to                  | Sporre querty vernine                 |              |          |                                       |
| ,,          | CSP(Q) ZONE      | 1 % L        | blacked Agneors messive               | exidized froctures         | approx isn' depth.                    | generally diem                        |              |          |                                       |
| 10          | Ser              |              |                                       | local of vointite Disico   | Pervosive carbonate +                 | 1.3% deman for EPy                    |              |          |                                       |
|             |                  | 1311         |                                       | better up with B. H.       | 18-21-0m, 23-25m                      | 8-11m mixed fm                        |              |          |                                       |
|             |                  |              | · · · · · · · · · · · · · · · · · · · | lem submarallal usins      | Selling for 1 and 22                  | fractures some coarse                 |              |          | ,                                     |
|             |                  | 141          |                                       | 15-18m : several at        |                                       | MIC CPy @ 15-16m                      |              |          |                                       |
|             |                  |              |                                       | veineto 25.28A             |                                       | 25.28m 1.5% for                       |              |          |                                       |
| 20+         | • ~              | 七月           | <u> </u>                              | theiring lum engle, suppor | · · · · · · · · · · · · · · · · · · · | dissempy.                             |              |          | ·                                     |
|             |                  | 14           |                                       |                            | · · · · · · · · · · · · · · · · · · · | in struct tog with gtzv               |              |          |                                       |
|             |                  |              | · · · · · · · · · · · · · · · · · · · |                            | ······                                | 15-82-18m                             |              |          | · · · · · · · · · · · · · · · · · · · |
|             |                  | 7.6          |                                       |                            |                                       | · · · · · · · · · · · · · · · · · · · |              |          |                                       |
|             |                  | 10           |                                       | ·                          |                                       | · · · · · · · · · · · · · · · · · · · |              |          |                                       |
| 20          | Transitional CSP | F.           | 29.25-34.5 Light ton transitional     | Sporre qtz ventets         | Similar to above                      | Generally Tr- 20/2                    |              |          |                                       |
| 30          |                  |              | alteration zone, med hand for         | low orgles CA local        | Woaker sil-small nath                 | to EPu some mo                        |              |          |                                       |
|             |                  | · .; · ·     |                                       | Subsoralled Chi loubur     | Stronger carb? (ank?)                 | <u></u>                               |              |          |                                       |
| 1           | 345-431          |              | 34.5-43.1 Med aloga la marine         | near bottom call lonest    | locale sericite                       |                                       |              |          |                                       |
|             |                  | 14           | chlorite - colsite (mod) alteration   | Local collife              | dissem carb (calcita)                 | SAAMO & aliast P.                     |              |          |                                       |
|             | c.o asale        | 1            | Alex manufactor Marting (1)           | VEINIOFS 30-SUCA           |                                       | 1 10 10 10 100 100                    |              |          |                                       |
| 40          | <b>-</b> .       | 1/1-         | and may are from                      | 50-60°CA - Local Chica     |                                       |                                       | <u> </u>     |          |                                       |
|             |                  | 1            |                                       | Calite proctore subpor     |                                       |                                       |              |          |                                       |
|             | 113.1- 49.6      | T.F          | 43.1-44.60 As of 6.3 forrig           | Subperallel Chi fracture   | fairly hard fo Carb                   | 2-5% - mocal coars                    | <b></b> .    |          | +                                     |
|             | CS(Q)zone        | 1/1          | massive strong atterned thinks grz    | 2 set of fine als vite     | Kilico potches                        | conc. Die belause a                   |              |          |                                       |
|             | -                | 11           | Vernig, Veretes                       | THE PAR TON ANY !! CA      |                                       | Contraction (Contraction)             |              |          | +                                     |
| 50          | -                |              |                                       |                            |                                       | <u></u>                               | <u>├</u> ─── |          | <u> </u>                              |
|             | 49-6 - 67.7      |              | 49.60 - 61.1 Med green of mostive     | hased subposedlel          | Chl. coleite                          | TT - absent Py                        | ┣            | <u> </u> | <u> </u>                              |
|             | C P It           | 1.1          | chlorite calcile (and alteration)     | chl-cal: fractures.        | Less calcile (verdet)                 | ł                                     | <u> </u>     |          | <u></u>                               |
| ł           | Basalt           |              | Ason magnetic mapic from ac           | ·····                      | and weak monthi                       |                                       | <b>_</b>     | <b></b>  |                                       |
|             |                  | Ĩ.           | at 34 5m Local vaspor and             | <b>_</b>                   | downwords.                            |                                       | · ·          | ·        | ·                                     |
| 60          | -                |              | weak magnetic 59-67m                  |                            |                                       |                                       |              |          |                                       |
|             |                  | 1            |                                       |                            |                                       |                                       |              |          |                                       |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Wells

DATE: 3 July 2003

# CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| <u> </u> | DDH NO. 795-3    |               |                                                     |                         |                                       |                                        |           | PA                                    | GE NO. 2                              |
|----------|------------------|---------------|-----------------------------------------------------|-------------------------|---------------------------------------|----------------------------------------|-----------|---------------------------------------|---------------------------------------|
| ╞        |                  | Ļ             | ITHOLOGY                                            | STRUCTURE               | ALTERATION                            | MINERALIZATION                         |           | SAMPL                                 | ING                                   |
| 6 F      | MAIN UNITS       | GL            | SUB UNITS                                           | ·                       |                                       |                                        | FROM      | TO                                    | NUMBER                                |
|          | C Room           |               | see Pg 1 This is KNOAK to V                         |                         |                                       |                                        |           | ·                                     |                                       |
|          | to 67.7m.        |               | neak altered (ccib) Unit.                           | @65.82 2cm c. Colcite   | · · · · · · · · · · · · · · · · · · · |                                        |           |                                       |                                       |
|          |                  |               | · · · · · · · · · · · · · · · · · · ·               |                         | · · ·                                 |                                        |           |                                       |                                       |
|          | SCOP ZONE        | 1             | 67.7-69.1 Tan hard and allored                      | several of vains upto   | Hard silice dupen con                 | 3-10% predum f/m                       |           |                                       |                                       |
| `•  -    | (547)            | L.            | 69+1 = 76+9 Anno 1 - 1                              | 10cm 400 80'CA          | Cank/smoll green ser paring           | Lo col contre                          |           |                                       |                                       |
|          | СРВ              | $\mathcal{V}$ | altered pillowed basalt local                       | Remark cillows chi      | dissem to mad pervosive               | In more silicous                       |           |                                       | ·····                                 |
|          |                  | 7             | jasperied"                                          | 9/3 xeinlah 71.5 - 73.2 | Ters attered. Some silica             | fato Mg daminated.                     |           |                                       | ····                                  |
|          |                  |               | 76.0-79.3 Qty voin with associated                  | A. Thy AV 77.53-78.73   | perversive sil dumin care             | 5-8% in duen = P                       |           |                                       |                                       |
|          | SC QP            |               |                                                     | 30°CA                   | in wallnocks                          | local coorte J                         |           |                                       |                                       |
| 80       | CB               |               | 14.5-41.54 Letter and Calcite                       | Early massive           | disten to pervosive                   | Absent to trave                        |           |                                       |                                       |
|          |                  |               | to low the an the close ( the closed ( the closed ) | to anterito infinal     | calcite top askente!                  | fine By                                |           |                                       | ·                                     |
|          |                  |               | for and and manuely                                 | Calito inistra          | 6.00                                  |                                        |           | · · · · · · · · · · · · · · · · · · · |                                       |
|          |                  | . /           | 79                                                  |                         |                                       |                                        |           |                                       |                                       |
| 00       |                  | //            |                                                     |                         | · · · · · · · · · · · · · · · · · · · |                                        |           |                                       |                                       |
| 10       |                  | 17            | 9154-9732 Straply Mared with                        | boken at yeins          | sil- carb - strang                    | 3-7 % In dunga ER                      |           |                                       |                                       |
|          | SCOP             |               | quarty lains and disserve Py.                       | 30-35°CA uph locm       | J                                     | often in clusters                      | wed       |                                       |                                       |
|          | 4", "et, cey, vg | 9             | · · · · · · · · · · · · · · · · · · ·               |                         |                                       | at lical small tet. c                  | u accreat | Ispeck<br>No.                         | Vacan.                                |
|          | weak.            | T T           | 97.32-100.65 Creen speckled to                      | mossive local_          | chi, minic durien                     | Trave deman Py                         | 9 20 0    |                                       |                                       |
| 100      | - 65             | Ľ             | marsive, corb. basalt                               | Chy. Veinlets           | calite                                | · · · · · · · · · · · · · · · · · · ·  |           |                                       |                                       |
|          | SCOP             |               | 100-65-102.31 Blooched, devem Ry                    | find gto VH2 Sybac //   | sil carb m/s                          | Mainty fine distant by y               | /.        |                                       |                                       |
|          | CS @ 0           |               | 102.21-107.18 Jan corboned (ank)                    | Chlorini fillings       | Carb-sil.                             | sporse Py                              |           |                                       | -                                     |
|          | · .              | 1             | strangly allored host was by (primary)              | co'cA's                 |                                       | ······································ | · · ·     |                                       | · · · · · · · · · · · · · · · · · · · |
|          | SCOP             | -4            | As at 102.21                                        | Severel 2/3 vite        | sil-corb mis:                         | fm(c) dinom epy                        |           |                                       | ·                                     |
| 110      |                  | $\mu'$        | 1113-115.6 Med orsen la num                         | forthe massing line     |                                       | /////                                  |           |                                       |                                       |
|          | Weak<br>CB       |               | sarshi basalt                                       | chy - carb veinles      | Pachy pervesing -                     | Sporse R                               |           |                                       |                                       |
|          | Strong           |               | 11560-121,00 Bleached                               |                         | Pennsive cerblank                     | Traces of Line                         |           |                                       | [                                     |
|          | ČB .             |               | strangly conserved, less alkered                    | local carb variation    | above then durin                      | Py                                     |           |                                       |                                       |
| 120      | -                |               | and pakky green downwords                           | end rains (to Tem)      | to cality below                       | · · · · · · · · · · · · · · · · · · ·  |           |                                       | •                                     |
|          |                  | <u> </u>      | ru grien Q -118 -                                   | SI'CA - and             | κ.                                    |                                        | 1         |                                       |                                       |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY:

R. Wells

DATE: 3 July 2003

(

#### CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| DDH NO. 795-3       |             |                                     |                         |                                         |                                        |          | PAG       | GE NO. 3 |
|---------------------|-------------|-------------------------------------|-------------------------|-----------------------------------------|----------------------------------------|----------|-----------|----------|
|                     |             | ITHOLOGY                            | STRUCTURE               | ALTERATION                              | MINERALIZATION                         | ·        | SAMPL     | ING      |
| MAIN UNITS          | GL          | SUB UNITS                           |                         |                                         |                                        | FROM     | TO        | NUMBER   |
|                     | 5           | 1210-127 & Hord tan dim croined     | several nerrow a to     | hard silicon domen                      | Tones with order Mic                   |          |           | · · ·    |
| SCOP                | 1/1         | with several ale vernets and dissem | Vins to lem 20-30 CA    | cart.                                   | and it dis en to ye disser             |          |           |          |
| (nut PAZ)           | TI          | P. Is                               | Local high angle ca     |                                         | EPy 7- 720 ( High                      |          |           |          |
|                     | L"          | and a second and allowed            | homerous vertets        | A. H. at and with                       | The fire 1 1 B                         |          | -         |          |
| TIMSITIONEL         | 12          | transitional - Quere Course & ach   | corb VIIs Jow and Les.  | herena mara coluti                      | ciecos y pre my                        |          |           |          |
| weak                |             | (12410 -134.7 GMEN 29 DICE CUS      | local collet            | durin in in                             | Trace - 14 +9                          |          |           |          |
| C B                 |             | (course) befelt. WR / Magneric      | VEINLES BU- GUEA        | A towards have                          | disen by                               |          |           |          |
|                     |             |                                     |                         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                        |          |           |          |
| Transitional        | <b>F</b> -3 | 134.7-137.5 Tronschovel as          | Minor love angle gitz   | callette to ankint                      | Tr- 10% of dimen                       |          |           |          |
| `                   | F -         |                                     | COTS VIINLIES           |                                         | 13 4                                   |          | <u>.</u>  |          |
| ••••••              | ···         |                                     | 94'3 1443-140.6 TO'CA C | esce Py                                 | NUMER IS OFFICE                        | \        |           |          |
| SCOP                |             |                                     | 141.20 - 146.3 40-90'CA | Hard sil (cert) numany                  | of mic EPA within                      | SR. dil  | coult     |          |
|                     |             | · •                                 | ats with by welloocle   | gtz veinlets besides                    | ale r. and wallock                     | > to eig | nat 11.   |          |
| grzv<br>amilik sc P |             |                                     | milty gtg. Breculated   | veins                                   | Some fine most can                     | 1 probes | 14 3-10%  |          |
| "J' wellock Inc     |             |                                     | 3une - gt3 filling      |                                         | Bok corty and syn-late                 | P. > loc | al mossiv | e        |
|                     | + +         | 100 mart 4 db alar                  | la blanning             |                                         | 5 ports 19 - 10 / - 10 - 147-3         |          |           |          |
| $-\omega/n CB$      |             | MERS-13X'S I MUR TO RR CIERA        | forry macrice           | En koaste                               | it is a curren to                      |          |           |          |
|                     |             | 19 local UK nogodin basance         | pear calute             | dingen celeur                           | chi produce fine                       |          |           |          |
|                     | 1           | ·                                   | or 60-20 CA             |                                         | antedrel Ry                            | ······   |           |          |
|                     | 9           |                                     |                         |                                         |                                        |          |           |          |
|                     | Ľ.          |                                     |                         |                                         |                                        |          |           |          |
| - SCOP              | 11          | 158.3-176.0 Battle fracture         | Venable glarcele        | Az general                              | Fine dessem Ry                         | •••••    |           |          |
|                     | ¥2          | - 3000 with predemicant for         | Veintes generally       | description quite                       | paletus comment                        |          |           |          |
|                     |             | design to patity pyrite             | Levi One large of       | variable                                | > 10 % Assish with                     |          |           |          |
| PAZ                 |             | Law code some high factures         | 171 - broken with mic   | scapto 162.5                            | stronger alteration and                |          |           |          |
| fracture Zone       | 135         | Racke and racks are verichly        | C 12                    | 162.5 - 176.0 PAZ                       | gly beinets. M/c ER                    | ·        |           |          |
|                     | - 15 4      | allored incl sc. c ck hors          | <u> </u>                |                                         | grite patchy.                          |          |           |          |
| • .                 | - Ke        | 1                                   |                         |                                         | · · · · · · · · · · · · · · · · · · ·  |          |           |          |
|                     | 16          |                                     |                         |                                         | · · · · · · · · · · · · · · · · · · ·  |          |           |          |
|                     | 83          | 3                                   | 1                       |                                         |                                        |          |           |          |
|                     | ۰Ť          |                                     | 176.0 - 187 100         | and all all all                         | Merali Trazul, P.                      |          |           | <b>`</b> |
| PB                  |             | 116.00-206.4 med nak green          | once onthe freduce      | incoming chi VIP                        | 179-190 1.1/ 1 0                       |          |           |          |
| <b></b>             |             | The grained becoming week           | chil-celeite slips      | calul                                   | ······································ |          |           |          |
|                     |             | proof meneric. Fritower is as all   | DRION 20-50 (A          | 1                                       | <u></u>                                |          |           |          |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Wells

DATE: July 3, 2003

# CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

|             | DH NO. 795-18              |          |                                       |                                       |                                        | · · · · · · · · · · · · · · · · · · ·  |      | PA        | GE NO. 1 |
|-------------|----------------------------|----------|---------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|------|-----------|----------|
| F           |                            | <u> </u> | ITHOLOGY                              | STRUCTURE                             | ALTERATION                             | MINERALIZATION                         |      | SAMPLING  |          |
| 0           | MAIN UNITS                 | GL       | SUB UNITS                             |                                       |                                        |                                        | FROM | TO        | NUMBER   |
|             | 0-6.70                     | •        | 0-6.7 Overburden                      |                                       | 4 <b>4</b>                             |                                        |      |           |          |
|             | Overbuiden                 | 0        |                                       |                                       |                                        |                                        |      |           |          |
|             |                            | ð,       |                                       |                                       | oxidized to 10-5m                      |                                        |      |           |          |
|             |                            |          | 67-17.10m Light- tan, hard, for       | much rubble 7-10;                     | Hard with nation                       | 3-7 upp 15% in                         |      |           |          |
|             | SC QP                      |          | silica, carb alt with simen P.        | Milky ab vering A                     | perves live cillion dissem             | local coope discon # Pu                |      |           |          |
|             |                            |          | local large miller at 2 veins         | 10.5-11.0 m 20°CA local               | Carb                                   | olter in pather per                    |      | · ·       |          |
|             |                            | N.       | V 0/3                                 | 11.2 . 112 3 28. cd                   | · · · · · ·                            | at init                                |      |           | , .      |
|             |                            |          |                                       | 13.1- 13.9 35°CA Subpert              |                                        | 9500                                   |      |           | · ·      |
|             |                            |          | 17.10-38.1 Predominanty milks at-     | practure crevage.                     | As GOOVE - Walling +                   | 3-20% dimen M.D.                       |      | _ •       | · · ·    |
|             | Milky QV with              |          | V DREAL 20-1 -15% SLOP Wallmack       | local fracture clauser                | inclusions. Locally                    | in it alsoines of the                  |      |           | · ·      |
| ۳F          | SCOP Wallock .             | 41       | inclusions constally Slow with        | 12 gty 10-25 CA contacts              | Some sericite - also                   | 12 Jan asensette                       |      |           |          |
|             | low at fill                | VI       |                                       | of wallock -similar                   |                                        |                                        |      |           |          |
|             | (Sx \$13 7)                |          |                                       |                                       | <u>ي</u> ند.                           | ······································ |      |           |          |
|             | heaved faule zone          | K        |                                       | · · · · · · · · · · · · · · · · · · · |                                        |                                        |      |           |          |
| _ 1         |                            | Í.       |                                       |                                       |                                        |                                        |      |           | <u>.</u> |
| <b>*</b> *† | <b>-</b>                   |          |                                       |                                       | ······                                 |                                        |      |           |          |
|             | · ·                        | 1        |                                       | Bolow 25 Maria                        | · · · · ·                              | histor " P. T. ED.                     |      |           |          |
|             |                            | 1        |                                       | Small anythot will well               |                                        | in al la la had his                    |      |           |          |
|             | some mosaine<br>Bx         |          | 1                                     | drognests - Bx gt fit                 | ······                                 | The server way                         |      |           |          |
|             |                            | 1        | 38.1-64:3<br>A at 6.7 above voin A.21 | NUM PUR ab limitat                    | Backagued share                        | Production and the 1th                 |      |           |          |
| 70          |                            | T.J      | hard to se with during a R.           | at residue low and                    | Scop altreaching                       | at med chipson 5P                      |      |           | · ·      |
|             | SC 9P' + CQP               | 191      | local remnant patetres of             | 0-30°CA thoushout.                    | avarages at pilot                      | 89-51 2000 1040 -11                    | İ    |           |          |
|             | 139-45 could be            | K        | intrainid - there take contaility in  | Main Milky of wint a                  | hand cooper and main                   | frocture 10-50'CA                      |      |           |          |
|             | colled PAZ) Ain            | i.       | PR                                    | 50.4-52.5 25°CA                       |                                        | to by prodomnater                      | 1    |           | <b> </b> |
| 50          |                            | _///     |                                       | Jone JCOP fragments<br>52-5-55-5      | 1                                      | 9/3 V'S <10%                           |      |           |          |
| - T         | Tre                        |          | 2                                     | at is generall                        |                                        | Rest is may during                     |      | · · · · · | 1        |
|             | , <b>W</b> SC <del>V</del> | · 77.    |                                       | Leak frach and with                   |                                        | 5-15%                                  |      |           |          |
|             | mf                         | - 12     |                                       | local fine P. aleman                  | ······································ |                                        |      | 1         | †        |
| 1           | Ř;                         |          |                                       | Lispert sine was                      | · · · · · · · · · · · · · · · · · · ·  |                                        |      | t         | ·        |
| <i>(</i> )  |                            |          |                                       |                                       | · · · · · · · · · · · · · · · · · · ·  |                                        | †    |           |          |
| 60          |                            | 1        |                                       |                                       | <u> </u>                               | f                                      | t    | <u> </u>  | +        |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Wells

DATE: July 4, 2003

(

# CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

|     | DDH NO.          | 795-1   | 8              |                                                 |                          |                                       | · · · · · · · · · · · · · · · · · · ·          |            | PA        | GE NO. 🧝                              |
|-----|------------------|---------|----------------|-------------------------------------------------|--------------------------|---------------------------------------|------------------------------------------------|------------|-----------|---------------------------------------|
|     |                  |         |                | LITHOLOGY                                       | STRUCTURE                | ALTERATION                            | MINERALIZATION                                 |            | SAMPL     | ING                                   |
|     | MAIN             | UNITS   | GL             | SUB UNITS                                       | 1                        |                                       | •                                              | FROM       | то        | NUMBER                                |
| 60  |                  |         | 1              |                                                 | milky gr 63.2-63.5       |                                       | 63.64.5 Strong Conc<br>of m/c. diasm P. to 15% |            |           |                                       |
|     | Scq              | P M/C   | Py 1           | 164.3-74.2 Milk. atav                           | weak bachard             | Vein                                  | fitome R ottors                                |            |           |                                       |
|     |                  |         |                | mainly massive and barren local                 |                          | . • •                                 | locally in frechures                           |            |           |                                       |
|     |                  |         |                | Py seams                                        | ·                        |                                       | In Ry                                          |            |           |                                       |
|     | mi               | k of v  | 75.            |                                                 |                          |                                       |                                                |            |           | t                                     |
| 70  |                  | 343r    | 17             |                                                 |                          |                                       |                                                | 1          |           |                                       |
|     |                  |         |                | lower context ruich                             | 20-40 CA Into trachme    | 74.2-78.5 SCP/CP;                     | Mainle Le R. 3-8%                              |            |           | ļ.                                    |
|     |                  |         |                | 74.2-79.3<br>Mainly do ten - strong nod alt sca | with chi. also low angle | with overprint little gu              | mixed ml ely most                              |            |           |                                       |
|     | ) ھ <sub>ا</sub> | P/CB    | - [ <i>ŀ</i> ] | 1 to COP - Northy alteration y late Arections   | 7.5                      | Verb influence.                       | vern.                                          |            |           |                                       |
| •   |                  |         |                | 170.3-80.3 milt- av 1+CA                        | Nomenous low angle of    | Variable several                      | wandle dimen ER                                |            |           |                                       |
| 38  |                  | CQP     |                | \$1.0-97.1 milk or 25°CA Archies                | grs often Large ¥        | Kithan SC with                        | meinly in wallocks                             |            |           |                                       |
|     |                  |         |                | and loved disson Mic Py. messine m/c            | `                        | local small alles                     | locally in booky 100                           |            |           |                                       |
|     |                  |         |                |                                                 |                          | sericite patches                      | veins. Seni messive                            |            |           |                                       |
|     |                  |         |                | 7.0-87.35 Milk, 94. 30°CA runs rous 6           | stee fractures           |                                       | at some contacts                               |            |           |                                       |
| 9/  |                  |         |                | sonel gu breccin                                | 1,0,0,                   |                                       | in WR 3-10%                                    |            |           |                                       |
| ~   | Γ                |         | 1              |                                                 |                          |                                       | acaeroly ma locally                            |            |           |                                       |
|     |                  |         |                | 93-93.70 Milky 90 30 CA irregular contact       | on the freedomy with f & |                                       | mixed with la                                  | 1          |           |                                       |
|     |                  |         |                | 95.0-97.80 milkg 9 20-30°CA                     |                          |                                       | 0.5                                            |            |           |                                       |
|     |                  | · · •   |                |                                                 |                          |                                       | · · · ·                                        |            |           |                                       |
| 10  |                  |         |                | 19.5-101.20 milk- av 30°CA                      |                          |                                       |                                                | ,          |           | . `                                   |
| -   |                  |         |                | 101.9-102.4 Milky qu                            |                          |                                       |                                                |            |           |                                       |
|     |                  |         |                |                                                 |                          |                                       |                                                |            |           |                                       |
|     | 1                |         |                | - 104.0 -110.0 Bleached fine around             | ato veinleto 10-20 CA    | Pervosive coub (ant)                  | Abundant fine                                  |            |           | · · · · · · · · · · · · · · · · · · · |
|     | 106-1            | CP/PAS  | <u>ء</u> [⁄    | SI Straffy altered with a few shallow           | shellow anyle brittle    | pathy sil chi                         | dimen R 10-725                                 | 4          | <b></b>   |                                       |
| -11 | o                |         | - 12           | cingle grz verneets                             | fracturing at the        | frachire planes                       | minor mg.                                      | - <b> </b> | L         |                                       |
| . • | 110.             | 119.0   | 5              | S 110.0 - 119.0 Altored CP and SCP              | Main foult 117-          | envite everprint                      | fire dissen Py                                 |            | <b> </b>  | <u></u>                               |
|     | , <i>F</i>       | ULT ZON | ve (           | some gtz vaining overprinted by                 | 119m above b             | on CP, SCOP.                          | thoughout stronger                             | e          | <u> </u>  |                                       |
|     | . 1              |         | G              | labr chivatie smeture A                         | chloritic (slage) batte  |                                       | in fault 117-119 & Same                        | ·          | Ļ         | <u> </u>                              |
|     |                  |         |                | > deformation to 119.0 where                    | froutures 0-20°CA.       | · · · · · · · · · · · · · · · · · · · | Ag 3-7% . 110-112                              |            | <b></b> . |                                       |
| 194 |                  |         |                | earbonaceous (block) .                          |                          |                                       | Te:3%                                          |            | <b> </b>  |                                       |
| /14 | ۳                | ······  | P              |                                                 |                          | <u> </u>                              | <u> </u>                                       | _1         | <u> </u>  | 1                                     |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Welle

# CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

|      | DDH NO.    | 7 95-18       |            | •.                                                                                  |                                                 |                                       | -                                           |                                       | PAC   | GE NO. 🛎 🛛                            |
|------|------------|---------------|------------|-------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------|---------------------------------------------|---------------------------------------|-------|---------------------------------------|
|      |            |               | LI         | THOLOGY                                                                             | STRUCTURE                                       | ALTERATION                            | MINERALIZATION                              |                                       | SAMPL | ING                                   |
| ,,   | MAIN       | UNITS         | GL         | SUB UNITS                                                                           |                                                 |                                       |                                             | FROM                                  | TO    | NUMBER                                |
|      | PAZ        | (scqP)        | :Se        | 19.0-123 frechred overprinky earlier<br>accertation locally with frectured          | low angle fracture &<br>downwardy Earlier 2/3   | SCP type becoming                     | Mainly fine dimen R.                        |                                       |       |                                       |
|      | CP .       | Fracture Zone | 757        | Atz veins < 2cm (Carb fracture (calc))<br>128.0-127.5 Zand of them as beither hands | Veideb all high 100 6's                         | better 215°/.                         | ertas 373                                   | ł                                     |       |                                       |
| İ    |            | A.4. C.C.     | 112        | C Basalt (ank) problith breciated section                                           | Schlanitic - Slips + Slicks                     | mod Cocally strong (ank)              | Above the Tr 128:0-5                        |                                       |       |                                       |
| 194  | L smy      | (ser)         |            | allered the control strayly                                                         | Minor Chland Slips<br>Sharp lower context so ca | Cars-sil dimen green                  | 5-150% MIC Pokky Py<br>h 129.6, Below Thach |                                       |       |                                       |
| :50  | 131.0 -143 | -66 A         |            | 131.0 Black carbonauous fg.                                                         | bedding lamination                              |                                       | Troce - 1th cubic                           |                                       |       |                                       |
|      | 131.0 140  | er reginne    | 1/1        | Argilite                                                                            | 50°CA . Local 11.70                             | A                                     | m/c by (durin)                              |                                       |       |                                       |
|      |            |               |            | •                                                                                   | fractures with slips                            |                                       |                                             |                                       |       | · · · · · · · · · · · · · · · · · · · |
|      |            |               |            |                                                                                     | · · · · · · · · · · · · · · · · · · ·           |                                       |                                             | ┝                                     |       | ·                                     |
| 140  | ·}         |               |            |                                                                                     | <u>.</u>                                        |                                       | <u> </u>                                    | <u>├</u> ј                            |       |                                       |
|      |            |               |            | 12                                                                                  |                                                 | · · · · · · · · · · · · · · · · · · · |                                             | · · · · · · · · · · · · · · · · · · · |       |                                       |
|      |            | •             | //         | 143.60-163.50 Block Argillite                                                       | bedding contacts                                | Carbanata (cal uli)                   |                                             |                                       |       |                                       |
|      |            |               |            | interbeddet with carbonate vole                                                     | So CA                                           | in volc.                              |                                             |                                       |       | ļ                                     |
|      |            |               |            |                                                                                     |                                                 |                                       | ·                                           | ļ                                     | · .   |                                       |
| 12.0 | Γ          |               |            |                                                                                     |                                                 |                                       | <b>_</b>                                    |                                       |       |                                       |
|      | 1 ·        |               |            | ······································                                              |                                                 |                                       | · · · · · · · · · · · · · · · · · · ·       |                                       |       | ····                                  |
|      | 1          |               | ľ/         | ·                                                                                   | <u> </u>                                        |                                       |                                             |                                       |       |                                       |
|      |            |               | 1/         |                                                                                     |                                                 |                                       | · · · · · · · · · · · · · · · · · · ·       |                                       |       |                                       |
| 160  |            |               | 1          |                                                                                     |                                                 |                                       | ·····                                       |                                       |       |                                       |
| • •  |            |               |            |                                                                                     | <u> </u>                                        | <u>↓</u>                              | 6                                           | <u>}</u>                              |       |                                       |
|      |            |               | t-,        | 143.50 - 211.50 EDH. Black Argulite                                                 | Bedding 45-50 CA                                |                                       | Traces of Mc cubie P.                       | +                                     |       |                                       |
|      |            |               | 15         | Minor inteledated from                                                              | 166 6 - 167 store                               | +                                     | <u> </u>                                    | <u> </u>                              |       |                                       |
|      | 1          |               | Se         |                                                                                     | fracturing - slip 20 CA                         | 1                                     | <u> </u>                                    | 1                                     |       | 1                                     |
| 17   | 70-        |               | 1.5        |                                                                                     |                                                 |                                       |                                             |                                       |       |                                       |
|      |            |               | <b>[</b> " |                                                                                     |                                                 |                                       | 1                                           |                                       |       |                                       |
|      |            |               |            |                                                                                     |                                                 |                                       |                                             |                                       |       |                                       |
|      |            |               |            |                                                                                     |                                                 |                                       |                                             |                                       |       | <u> </u>                              |
|      | Pol        |               |            |                                                                                     |                                                 | <u></u>                               |                                             |                                       |       |                                       |
|      | ~⊢         |               |            | 4 · · · · · · · · · · · · · · · · · · ·                                             |                                                 | 1                                     |                                             | 1                                     | 1     |                                       |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Welly

DATE: July 4,2003

#### CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

|     | DDH NO. 795-50                        |         |                                       | ,                                                |                                        |                                       |          | PA        | GE NO. 1                               |
|-----|---------------------------------------|---------|---------------------------------------|--------------------------------------------------|----------------------------------------|---------------------------------------|----------|-----------|----------------------------------------|
| F   |                                       | <u></u> | ITHOLOGY                              | STRUCTURE                                        | ALTERATION                             | MINERALIZATION                        |          | SAMPL     | ING                                    |
| ۶L  | MAIN UNITS                            | GL      | SUB UNITS                             |                                                  |                                        |                                       | FROM     | TO        | NUMBER                                 |
|     | A-15.50 Ovachuida-                    |         | 0-15:59 Overburden with builders      |                                                  |                                        |                                       |          |           |                                        |
|     | gensis oversonaen                     | 17      |                                       |                                                  |                                        | · · · · · · · · · · · · · · · · · · · |          |           |                                        |
|     |                                       |         |                                       |                                                  |                                        |                                       |          |           |                                        |
|     |                                       |         |                                       |                                                  | · · · · · · · · · · · · · · · · · · ·  |                                       |          |           | · · · · · · · · · · · · ·              |
|     |                                       |         |                                       |                                                  |                                        | · · · · · · · · · · · · · · · · · · · |          |           |                                        |
| ᄻ   | -                                     |         |                                       | · · · · · · · · · · · · · · · · · · ·            | · · · · · · · · · · · · · · · · · · ·  |                                       |          |           |                                        |
|     | • • • • • •                           | 12      |                                       |                                                  | · · · · · · · · · · · · · · · · · · ·  |                                       |          |           |                                        |
|     |                                       |         |                                       |                                                  | · · · · · · · · · · · · · · · · · · ·  |                                       |          |           | ······································ |
|     | 15 59- 41.20                          | m       | 18.59-41.20 Silica corbenate          | milky gus                                        |                                        | mutule of for EPy                     |          |           |                                        |
|     | SCQP.                                 |         | gtz wein zone which becomes           | 16.80-18.30 50 CA                                | Pervanive carb unichle                 | where loss defined                    | ·        |           |                                        |
| 20  | - Large qtz veins                     | 1       | more deformed downwords with          | 21.65-2252 2 50 CA                               | silica for after potitions             | with frechne controlly                | /        |           |                                        |
|     | increase deformation                  |         | variable low angle gty veins          | 23:27 - 25.98 A 50°CA                            | or voin related.                       | 19 Py in shuched pone                 |          |           |                                        |
| ·   | downwards                             |         | related in plane if fault             |                                                  | at win @ 20.85 has                     | 10.00 18-22 720%                      |          |           | ,                                      |
|     | ·                                     | 200     |                                       | 26.27-27.10945°CA                                | some frecture selv                     | elewhere 5.15 % la                    |          |           |                                        |
|     |                                       |         |                                       | procentation                                     | sericite of reinlet                    | EPu mixed with some 1.                | :        |           |                                        |
| _   | F2                                    | 19      |                                       | 30.85-32.859 20-30°CA                            | inite come to have                     | la classica identi                    |          |           |                                        |
| 30  |                                       | - 33    |                                       | 20°CA freefure clevoor<br>Strongly deformed usin |                                        | 1 alour 200 - in acase                |          | ·         | <u> </u>                               |
|     |                                       |         | A                                     | 33.98-35.42 gv 40 CH 825.5                       |                                        | A to be in a d At                     |          |           |                                        |
|     |                                       |         |                                       | 35.90 - 37.0 9 2 2 0                             |                                        | of proceeding and gran                |          |           |                                        |
|     |                                       |         |                                       | 39.20 etters                                     | ······································ | Conc along froctures                  | ·····    |           |                                        |
| - I | · · · · · · · · · · · · · · · · · · · | _¥/     | <u> </u>                              | bittom sheared 20'CA                             |                                        |                                       |          |           | <u> </u>                               |
| 40  |                                       | ~[A     |                                       | · · · · · · · · · · · · · · · · · · ·            |                                        |                                       |          | - <u></u> |                                        |
|     |                                       |         | 5141-20 - 47.80 FAULT TONE            | Mejos foults Shears                              | Host acks are similar                  | Abundant fire durien                  |          |           | l                                      |
|     | FAULT ZONE She                        | art si  | Strong to interve low cyle forstucion | forally waled by py and                          | strong overprint . britte              | punter 210 to >35%                    |          |           |                                        |
|     | (PHC)                                 | 12      | with brescipted gener                 |                                                  | Possibly sime carbon                   | chie to absent my ER,                 |          |           |                                        |
|     | · · · ·                               | 12      | 47.80-54.30                           | Strong dracture chevare                          |                                        | the absent in voor                    |          |           |                                        |
| 50  |                                       |         | 2014 - pre deformation                | 10-50 CA                                         |                                        | parts of yeig                         | ļ        |           |                                        |
|     |                                       |         | /                                     | ato reinter throughout                           |                                        | and of veria area.                    | <b> </b> |           |                                        |
|     |                                       | 劉       | 54.30-72.50 Similar to Scop           | 10 20-30 and 60-80 (A                            | could be called                        | 720% for Pa lower "                   | <b></b>  |           | [                                      |
|     | ECORIAT                               | V.      | " abuve less gly reining with dishait | 60.95- 611 30 CA .                               | PAZ 1 60 05                            | Vein selvedos orea                    |          |           |                                        |
|     | SC 47 / PAZ                           | - Ke    | M/c EPy lacal cubes to lon- discon    | Coorse By aggregate                              | minor at significant                   |                                       |          |           |                                        |
| 60  |                                       |         |                                       | SC.                                              | fine dimen Pr.                         | ·                                     |          |           | ·                                      |
|     |                                       | 41      |                                       | I, `                                             | v                                      |                                       | 1        |           | T                                      |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY R Wells

••••••

# CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| LITHOLOGY     STRUCTURE     ALTERATION     MINERALIZATION       MAIN UNITS     GL     SUB UNITS     SUB UNITS     SUB UNITS     SUB UNITS       SC QP         SUB UNITS     SUB UNITS       SC QP              SC QP              SC QP <th>FROM</th> <th>SAMPI<br/>TO</th> <th>ING<br/>NUMBER</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FROM     | SAMPI<br>TO | ING<br>NUMBER |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|---------------|
| MAIN UNITS GL SUB UNITS<br>SC QP Studies and the distance for the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state        | FROM     | то          | NUMBER        |
| SCQP<br>SCQP jus coate dimen by<br>(more typical) becomming 64.30-652 milling of a variate cal. Epy to 58 miled force<br>(more typical) becomming 64.30-652 milling of a variate call of Bellin 68 miled force<br>20:30:00 provide citing for a force of a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong for a strong fo |          |             |               |
| SC QP<br>(male typical) becomming 60.30-652 mills of a dament to string pervesue Believ 68 mined fmc<br>and fractional with depts 20:20:00 fractive clister for ad motion 65 some of m By<br>(ocal stringly fractive of practice planes believe of practice of m By<br>9/3 voin some corbon<br>70-<br>72:50-93.54 For mast part borren lacture have 2000<br>milky 9/2 V<br>Hackies milks excite voin - Wellack' contains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |             |               |
| 70-<br>72.50-93.54<br>Milky 9/2 V<br>Mark for the part barre part barren larlagine have soca<br>Mark plane milk arother voin - Wellack' contacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |             |               |
| 70 -<br>72:50-93:54<br>Milky 9/2 V<br>Alackies milk excito voin : Wollock: contacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |             |               |
| 70 -<br>72:50-93:54<br>Milky 9/2 V Alactive milte excite vois - Wellack' contaits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |             |               |
| 72 ro-93.54<br>Milky 9/2 V Alexkie milk, excite voir, Wellack' contacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |               |
| 72:50-93:54 72:50-93:54 For most part borren Inclusions have such                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |             |               |
| milky of 2 V Alanking milky avoits voin, wallack' contacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |             |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |             |               |
| with altered SCOP inclusions have 20°CA contacts forcture clarges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |             |               |
| inclusions P. Many inclusions have abund me Ry locally evident 20-25 0A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |               |
| 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | · .         |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |             |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |             |               |
| Py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |             |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · .      |             | ·             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |             |               |
| 93.54-96.6 mixed good of mining fractured at voining story calling in glo v 3-7% mic demen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |             |               |
| Lower contacts By in brecciated contact area save mosaic in mallater promotes wear contacts by in fragmants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |             |               |
| 96.6-99.85 Shar 197.6-6-99.85 Carbonaldous Fault Zone at lower contait 25"CA Perrosive & veinlet local M/C Fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | l        |             |               |
| FAULT ZONE TO ANTE Strug Jobnics 20-25" CA COLORE (NITE ())                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |             |               |
| Applitions - 124:47 Prillowed Basalt Pillowed to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |             |               |
| CPB 19985-108.0 Pillowed Carche Incal 452 Ticle calcife voine alignet of dimen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |             | ·             |
| (late) (inter find local strang carbonated. law angle chi shoars maining calcile Py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |             | ·             |
| Edgerer calute veint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |             |               |
| 10-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |             | ·             |
| Coarse pillows ( beside) (make providence) maning called along They to children                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |             |               |
| Chiente carecpillism couse px anne dia care vicilivaniate. (atacpillium fina daman Py.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u> |             | <b>}</b>      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ┟╼╾╾┥    | <u> </u>    |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ┟╼╼╾┩    | <u> </u>    | <u> </u>      |
| 120- 124.97 EOH +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ┢────┦   |             |               |

KAMLOOPS-GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Wells

DATE: July 5. 2003

# CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| UITHOLOGY         STRUCTURE         ALTERATION         MINERALIZATION         SAMPLING           0         MAIN UNITS         GL         SUB UNITS         NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I   | DDH NO. 795-66        | A      |                                                                          |                                       |                                              |                                               | •            | PA         | GE NO. /                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------|--------|--------------------------------------------------------------------------|---------------------------------------|----------------------------------------------|-----------------------------------------------|--------------|------------|---------------------------------------|
| O     MAIN UNITS     GL     SUB UNITS       6:10-33:16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - [ |                       | Ľ      | ITHOLOGY                                                                 | STRUCTURE                             | ALTERATION                                   | MINERALIZATION                                |              | SAMPL      | ING                                   |
| 0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 <th>_[</th> <th>MAIN UNITS</th> <th>GL</th> <th>SUB UNITS</th> <th></th> <th></th> <th></th> <th>FROM</th> <th>TO</th> <th>NUMBER</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _[  | MAIN UNITS            | GL     | SUB UNITS                                                                |                                       |                                              |                                               | FROM         | TO         | NUMBER                                |
| bio-13:15     Score - 14:40     Score - 14:                                                                                                                                                                                                                            | °   |                       |        |                                                                          |                                       |                                              |                                               |              |            |                                       |
| <ul> <li>6.10-33-15</li> <li>8.20 P Zone</li> <li>10 - William - Advide frame materials in gly series in the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the serie</li></ul>                                                                                                                                                                                                             |     |                       | 0."    | avechurden                                                               |                                       | · · · · · · · · · · · · · · · · · · ·        |                                               |              |            |                                       |
| <ul> <li>10-33:15<br/>SC OP Zone.</li> <li>10-33:15 Jack tan moderate to gl prime units.</li> <li>10-10-312 Variable kinet a prime of the second units of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the se</li></ul>                                                                                                                                                                                                         |     |                       | 0      |                                                                          |                                       |                                              |                                               |              |            | · · · · · · · · · · · · · · · · · · · |
| 10 SC 9 F Zone gvs<br>widely specied gvs<br>http://www.science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/science.com/                                                                                                                                                                                                                      |     | 6.10-23.15            | $\sim$ | 6.10 - 23.15 bight tan moderate to                                       | et, voins                             | 6-10-218 1/01:06/8                           | 6-10-10 paints la dirien                      |              |            |                                       |
| 10       Understynder       Internite String       Internite String       Internite String         11       Internite String       Internite String       Internite String       Internite String         12       Internite String       Internite String       Internite String       Internite String         12       Internite String       Internite String       Internite String       Internite String         12       Internite String       Internite String       Internite String       Internite String         12       Internite String       Internite String       Internite String       Internite String         12       Internite String       Internite String       Internite String       Internite String         12       Internite String       Internite String       Internite String       Internite String         12       Internite String       Internite String       Internite String       Internite String         12       Internite String       Internite String       Internite String       Internite String         12       Internite String       Internite String       Internite String       Internite String         13       Internite String       Internite String       Internite String       Internite String         13       Internite String <td></td> <td>SCQP Zone</td> <td></td> <td>strane porractive alteration locally</td> <td>10.75-11 0 40'CA</td> <td>se altriation ,</td> <td>2-3% local mg = Py near</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | SCQP Zone             |        | strane porractive alteration locally                                     | 10.75-11 0 40'CA                      | se altriation ,                              | 2-3% local mg = Py near                       |              |            |                                       |
| 20-     Inter pillaw chanik lanan     Inter strike     pillaw chanik lanan     Strike       10-     Tet spillaw     channel billaw     pillaw     pillaw     Strike       10-     Tet spillaw     channel billaw     pillaw     pillaw     Strike       10-     Tet spillaw     channel billaw     pillaw     pillaw     Strike       10-     Tet spillaw     channel billaw     pillaw     Strike     pillaw       20-     Tet spillaw     channel billaw     pillaw     Strike     pillaw     Strike       20-     Tet spillaw     channel billaw     pillaw     Strike     Strike     Strike       20-     Tet spillaw     Strike     strike     Strike     Strike     Strike       20-     Strike     Strike     Strike     Strike     Strike     Strike       20-     Strike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ″   | - what is special got |        | remeant pillow taxtures - sunt                                           | 11 80-180 2000<br>17.10 - 17.85 7.004 | rath is not " concers                        | 10-12.5 dissem mg Py                          |              |            |                                       |
| Tet, son       The first sett       The first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first f                                                                                                                                                                                                                                                                        |     | hspy                  | 7      | internillow chinging remains                                             | 19:90 StriA<br>19:25-19:95 20'14      | Actuality. Pately Silies                     | Mixed with do 5-10%.<br>Potet the disage Acou | 5 5 % m      |            | 10/10 dat                             |
| 20-     Tel 5 pl<br>(29) All     Transition for the print of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the plane of the                                                                                                                                                                                                                                                       |     |                       |        |                                                                          | 20.0-20.5<br>21.4-21.43 45 64         | alter victors 1 lenses                       | 12:5-17:6 treus of file P.                    | Some to 1    | 1/2 incl   | Avar + 5%                             |
| 20<br>CopyAry<br>20<br>23:15-36:60 Ant :: 21:5-29:00 Ant :: 21:5-29:00 Automatic and a stand                                                                                                                                                                                                                 |     | Tet, Sph              |        |                                                                          | lied microfreetuning with             | dk chiseite demonante                        | Wein at 17: 10-17.85 has to                   | prof 6/265   | 1 tet, sph | (yoliowish) minor (                   |
| 20-<br>23-15-36.60 Ankin Itania balaw 21.8m Several account Priod periodist and<br>23-15-36.60 Ankin Itania balaw 21.8m Several account Priod periodist and<br>23-15-36.60 Ankin Itania balaw 21.8m Several account Priod periodist act Itania of Jim Ry<br>CPB Ankin Account for Solutions of Pollon Churching for the Count of the Ry<br>30-<br>50-<br>50-<br>50-<br>50-<br>50-<br>50-<br>50-<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | Cpy, Aspy             |        |                                                                          | Cale vernets balow 21 5               | dimen y verillet cale                        | 18.80-21.5 5-8º1. Miler                       | mdopyis      | in dissem  | Alpy (fine) nest vein                 |
| 23:15-36:60 And<br>CPB<br>CPB<br>Fills 23:15-29:80 And grace pilland date to 20:00 calific vendes briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly briefly br                                                                                                                                                                                                                 | 20  |                       | 1      | Transitional below 21.8m                                                 | Several account                       | mod accuscive and                            | 20                                            |              | i          |                                       |
| CPB<br>CPB<br>Authy clustifier with local saluelies pillows statulized in factories in factories in the sale of the saluelies in the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of t                                                                                                                                                                                                                   |     | 23-15 - 34-40 Ant     |        | 23.15-29.80 And store pilloured baselt                                   | 0-20'ca calite vointeb                | vointet coluite. chi                         | Teacon of Line Pr                             |              |            |                                       |
| CPB<br>30-<br>F West according allocation allocations into a construction of fine by the set of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the                                                                                                                                                                                                                    |     |                       | 1      | Auth chiarity with local selvedas                                        | pillon similar                        | to churis Icolandora                         | <u> </u>                                      |              |            |                                       |
| 30-<br>30-<br>30-<br>30-<br>30-<br>30-<br>30-<br>30-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | CPB                   | 17     | weak normetic rateits alteration                                         | Local subporallel cale                |                                              |                                               |              |            |                                       |
| 30-<br>31:50-36:60 As @ 22:15 (PB.<br>40 acat regatic pervecue viewers 32-36 pervent sugger//<br>calcut calcut pervecue viewers 32-36 pervent sugger//<br>calcut calcut calcut viewers 32-36 pervent sugger//<br>calcut calcut viewers 32-36 pervent sugger//<br>calcut calcut viewers 2000 pervent calcut calcut viewers 2000 pervent calcut viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent viewers 2000 pervent vi                                                                                                                                                                                                           |     | F                     | 125    | RATERO-30.50 Strang bleached peak                                        | 28-2'9.0 ground cure some             | ankenite - colsite                           | Traces of Line Pr.                            |              |            |                                       |
| 40 - Stong Carb All (Ank)<br>Colicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30  |                       | D.     | 30.50-36.60 AS @ 23.15 (PB.                                              |                                       | · · · · · · · · · · · · · · · · · · ·        | 00 5                                          |              |            |                                       |
| 40 - Stong Carb Alt (Ank)<br>cotic to - 46.40<br>36.60 - 46.40<br>40 - Stong Carb Alt (Ank)<br>cot by qv alt zone<br>40 - Stong Carb Alt (Ank)<br>cot by qv alt zone<br>40 - Stong Carb Alt (Ank)<br>cot by qv alt zone<br>40 - Stong Carb Alt (Ank)<br>cot by qv alt zone<br>40 - Stong Carb Alt (Ank)<br>cot by qv alt zone<br>40 - Stong Carb Alt (Ank)<br>cot by qv alt zone<br>40 - Stong Carb Alt (Ank)<br>cot by qv alt zone<br>40 - Stong Carb Alt (Ank)<br>cot by qv alt zone<br>40 - Stong Carb Alt (Ank)<br>cot by qv alt zone<br>40 - Stong Carb Alt (Ank)<br>cot by qv alt zone<br>40 - Stong Carb Alt (Ank)<br>cot by qv alt zone<br>40 - Stong Carb Alt (Ank)<br>cot by qv alt zone<br>40 - Stong Carb Alt (Ank)<br>cot by qv alt zone<br>40 - Stong Carb Alt (Ank)<br>cot by qv alt zone<br>40 - Stong Carb Alt (Ank)<br>cot by qv alt zone<br>40 - Stong Carb Alt (Ank)<br>cot by qv alt zone<br>40 - Stong Carb Alt (Ank)<br>cot by qv alt zone<br>40 - Stong Carb Alt (Ank)<br>cot by qv alt zone<br>40 - Stong Carb Alt (Ank)<br>cot by qv alt zone<br>40 - Stong Carb Alt (Ank)<br>cot by qv alt zone<br>40 - Stong Carb Alt (Ank)<br>cot by qv alt zone<br>40 - Stong Carb Alt (Ank)<br>cot by qv alt zone<br>40 - Stong Carb Alt (Ank)<br>cot cot (Carb) cot (Carb (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot (Carb ) cot                                                                                                                        |     |                       | 12     | weak regret is pervesive > upintet                                       | 32-34 pominent subporti               |                                              | traces of fire Py                             |              |            |                                       |
| 40 - 36.60 - 46.40<br>36.60 - 46.40<br>38.60 - 4000 9/3V 19.00-19.70<br>28.00 - 4000 9/3V 19.00-19.70<br>28.00 - 46.40<br>50.00 Carb Alt (Ank)<br>cvt by gv alt zne<br>46.40 - 58.20 EOH<br>CSOP<br>50 - Mich (Carb) cut coduct and for metallics (11. 51.100 coduct Sold V/VII. vorable S-15.4 M/L<br>46.40 - 58.20 EOH<br>CSOP<br>50 - Mich (Carb) cut coduct carb for unit of for sold of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form                                                                                                                                                                                                |     |                       | ŀ₹     | cality                                                                   | Carborale slips with fibres           |                                              |                                               |              |            |                                       |
| 40 - Stong Carb Alt (Ant)<br>cut by gv alt zone<br>46:40 - SP:20 ECH<br>cut by gv alt zone<br>46:40 - SP:20 ECH<br>cut by cut a cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and cut and                                                                                                                                                                                                              |     | Aa                    |        | 36.60-38.10 Transition Lone                                              | microfracturing.                      | brown - ank. carb. pervosi                   | Spore P.,<br>Even MICER, equal                | <u> </u>     |            |                                       |
| 40 - Strong Carb Alt (Ant)<br>Cut by qualtzane<br>46:40 - 58:20 EOH<br>Csop<br>so much lost core<br>Visible Au in gtz<br>Visible Au in gtz<br>Carb removed for metallics<br>Carb Carb for metallics<br>Carb            |     | 36.60 - 46-40         |        | 38.10 - 40.0 9/3 39.20 - 39.76<br>1 40.0 - 46.41 Light ton, for porucuse | Lacel microfreelucian                 | SC (simypuceronun-selv<br>Pervasure and rack | Patch, trace - 3% fg                          |              | L          |                                       |
| Lot by qu'ait gate<br>46:40 - 58:20 EOH<br>CSOP<br>46:40 - 58:20 EOH<br>CSOP<br>so much lost core<br>Visible Au in gtz<br>Visible Au in gtz<br>recorded in primal log<br>S8:20 EOH<br>Visible Au in gtz<br>recorded in primal log<br>S8:20 EOH<br>Visible Au in gtz<br>recorded in primal log<br>S8:20 EOH<br>S8:20 EOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40  | Strong Carb Alt (Ank) |        | (orb (ank) all eration                                                   | with gt ventets                       |                                              | dimen By                                      |              | ļ          |                                       |
| 46:40 - 58:20 EOH<br>CSOP<br>So much lost core<br>Visible Au in gtz<br>Visible Au in gtz<br>recorded in primat log<br>S8:20 EOH<br>Visible Au in gtz<br>Recorded in primat log<br>S8:20 EOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | Everby go an zone     |        | 46.4-58.2                                                                | gtz veins                             |                                              |                                               | · .          |            |                                       |
| CSOP<br>So much lost core<br>Visible Au in gtz<br>recorded in primal log<br>S8-20 EDH.<br>Later province call for an etallics<br>So much lost core<br>So much lo |     | 46:40 - 58:20 EOH     | Ē      | · · · · · · · · · · · · · · · · · · ·                                    | 47.15 loca chips                      | Porverive Coll V/VIt                         | xanichly 5-154 M/L                            |              |            |                                       |
| so much lost core<br>losst core<br>Visible Au in gtz<br>recorded in primet los<br>So and vin ptz<br>So and vin ptz<br>So and vin at a contract of<br>Core remarked for metallics cure poblem. <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | CSOP                  | V      | Vaciable pervesive carb fg                                               | 48.7 3cm 30'CA                        | sil weaker sections                          | dimen R, generally                            | <u> </u>     | <u> </u>   |                                       |
| Visible Au in gtz Care removed for metallics cure poblem?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50  | much lost core        | ľ      | ( lank) voidet and vero related sil.                                     | 51-2-520 glavelas                     | duminated by Corb                            | proximal to veins                             | <u> </u>     |            |                                       |
| Visible Au in gtz Core removed for metallics cure pablem?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |                       | 1      | local patien planses, bx zones.                                          | widespread mod                        | generally among form                         | 1079. At and of                               | <b>+</b>     |            |                                       |
| Visible Au in atz<br>recorded in original too 58.20 EOH.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                       |        |                                                                          | microfreetuning-could                 | Vein                                         | hole some chart CPy.                          | <del> </del> |            | <u> </u>                              |
| Visible Au in atz Care comoved for metallics care poblems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |                       |        |                                                                          | be couse of rubbing                   |                                              |                                               | <b>+</b>     | +          |                                       |
| A PERIODE IN OPILIAL DO STAVE UM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | Visible Au in gtz     | 7-     | - Cone removed for metallics                                             | Cule - poblem                         |                                              |                                               | <del> </del> | ł          |                                       |
| 60 V. Course Chy also                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60  | V. Course Py also     |        | DEIZO E UM                                                               | -                                     | · · · · · · · · · · · · · · · · · · ·        |                                               | <del> </del> | <u> </u>   |                                       |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: Ken Wells

# CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| DDH NO. 795-668    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · · · · · · · · · · · · · · · · · · |                           |                                        |                      | PA        | GE NO. I                               |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------|----------------------------------------|----------------------|-----------|----------------------------------------|
|                    | LITHOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | STRUCTURE                             | ALTERATION                | MINERALIZATION                         |                      | SAMPL     | ING                                    |
| MAIN UNITS GL      | SUB UNITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · · |                           |                                        | FROM                 | TO        | NUMBER                                 |
| 0-6.71 040 churdon | 0-6.71 Avosburden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                           |                                        |                      |           |                                        |
|                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                           |                                        | · · · · · ·          |           |                                        |
| °.                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                           |                                        |                      |           |                                        |
| 6.71-17-90         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·····                                 |                           | ······································ |                      |           |                                        |
| VG. RecinV.        | 16.11-11.40 SCOP Zon M/S GTC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | miley at ve                           | M/s percussive - discern  | Variably diacon m/c                    |                      |           | · · · · · ·                            |
| - SCOP Aspy        | Generally derow milk, at V shalp cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.56-8.96 35 CA CUTO Gora             | Encland (and) Potety      | " more aburdant                        |                      |           | ······································ |
|                    | Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.14 - 9.19 50" CA                    | veralet + selvedge        | 5 to 210% top and bottom               |                      |           |                                        |
|                    | 1 ···· ··· ··· ··· ··· ···· ··········                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10-10-10-15 P. 01- 77 CA              | silico                    | between 12-14m 63%                     |                      |           | <u> </u>                               |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17.8-13.85 45 CA CA.                  | · · ·                     | fors dimen = R. ( buis                 | λ Ι                  |           |                                        |
| Aspy               | 17.90-24.08 bight green are. do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Same chlarite portions                | Perunnia - dingan         | Trace line since P                     | Y                    |           |                                        |
| CPB                | Rilland Rosalt, Mod Carbo Lad Cale.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | fine care cole                        | calit alteration          |                                        |                      |           |                                        |
|                    | P P 1 1 1 mate man this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | a a contraction           | · · · · · · · · · · · · · · · · · · ·  |                      |           |                                        |
|                    | Larchy event mognetic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b></b>                               | Kocol chlone patches      | ······                                 |                      |           |                                        |
| 24.08-27.09 27.    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | Changing to cathracterill | Incomp Procharge with P.               |                      |           |                                        |
| CS(Q)P Aspu        | 24.08- ×7.09 CS (O)P Zone Light tan for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 25.15-25.75 70'CA                   | hard an contraction       | polishin of my and for dimen           |                      |           |                                        |
| 27.09-303          | 17.09. 30.3 Darker To stan Carb Cark-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chloritic provence and                | stran personive cale      | 7                                      |                      | . <u></u> |                                        |
| DL S.Carb. Bas     | possibly principal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | calcito voinlets                      | -ank local chi (fraction) | riscos or mg autorn ry.                |                      |           |                                        |
| 30-3-48-0          | 130-50-78.00<br>Strang SC alteration apple anen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 173.25-32.40 25 CA                    | stone alescarb In         | variable Inc FP.                       |                      |           |                                        |
| Scop 1             | service in lower part with an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33-9 - 14-50 30-35 CA                 | each (ank) thoughout      | alter very solved as                   |                      |           |                                        |
|                    | Auguana wilk at water an week                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35.75. 35.90 25 CA Py                 | Lead on liste Silies      | - and the and                          | []                   |           |                                        |
|                    | and Southing the state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 39.70 - 40 3 P. 91 30 CA              | Harris Carina Silica      | - purchy preason                       |                      | <u> </u>  |                                        |
| I IZ               | A SULA SULAINE ALZ COLOR OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> <u> </u></u>                      | man of parting glass      | mic dumen 5-18%                        |                      |           | ·                                      |
| 40- 1              | Charleson S = 15 CA . Dissom Py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | preis / versillet miched  | lesser for encoding up to              |                      | ·         |                                        |
| · ota-areen        | Relawyohn less Pro 42-44,46-48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43.7-14 10'SA with gree               | green sericite potetin    | 7./                                    | <b> </b>             | ·         |                                        |
| ser, vein -        | micolia bin with coden well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 44.15-451 30'CA                       | become noticonble         |                                        |                      | <u> </u>  |                                        |
| green ser/         | M developed often control warres Pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46-463 30"CA                          | below you with micro.     |                                        |                      |           | L                                      |
|                    | nore dominant frectico are low capte.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · <u> </u>                            | fracturing                |                                        |                      |           | •                                      |
| 4 B.0 - 52.0       | 48.0 - 52.0 Light-ned green fg. Basalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lical fine coluite                    | dove anterite below       | sparse Py                              |                      |           |                                        |
|                    | downwords<br>No obvious structure (pillows)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | veintets                              | chi pattings              |                                        |                      |           |                                        |
| 52.0 - 63.56       | 11520-63.56 Strong SCOP Zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9V3 52.25-53.4 25-0                   | Ar at 2413 Aira           | Vaciable as dires 50                   |                      |           |                                        |
| SCQP  /            | The coloured with source of roins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Vue 53.9 - 54.5 25'CA                 | Lak de with and -         | Cally and I to                         | ·                    | ······    |                                        |
|                    | hand dima CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Q, 4, 55.75-55.9 30'CA                | Circle Strand             | 1 - (3 % Som do 1)                     |                      |           |                                        |
| [2                 | A general construction of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second | 59.7-603 30'CA                        | FIRE SC ALCOLOTION        | gonercy <5% you                        | <b>{</b> ∼··──────── |           | <del> </del>                           |
|                    | <i>¶</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Varable mich fresturies               | Thoughour Onk!            | 77.                                    | ┼╾───                | · · · ·   |                                        |
| i //               | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | neva                      |                                        | 1                    |           | · · ·                                  |

KAMLOOPS GEOLOGICAL SERVICES LTD.

1

Ŗ

LOGGED BY: RWells

DATE ... July 6, 2003.

## CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| DDH NO. 795-668           |      |                                       |                                       |                                       |                                       | ·····                                 | PAC      | SE NO.2                               |
|---------------------------|------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|----------|---------------------------------------|
|                           | L    | ITHOLOGY                              | STRUCTURE                             | ALTERATION                            | MINERALIZATION                        | SAMPLING                              |          |                                       |
| MAIN UNITS                | GL   | SUB UNITS                             |                                       | ,                                     |                                       | FROM                                  | то       | NUMBER                                |
|                           | 13   | See Pal                               | No ain reios 603-                     |                                       | Pu le bolom blan                      |                                       | 1        |                                       |
|                           | L    | 13-56-70.90 Very conder to 40.8       | 12:51 Sine microilacha                |                                       | to bear time                          |                                       |          |                                       |
|                           | 5.   | light and area to Cath(cole) Roralt   | calaile na state                      | Pervosive dissom collite              | To 101 1 is Cash a                    |                                       |          |                                       |
|                           | 12   | ling & coak mant                      | clici Almania                         | Local vertet chi                      | rdiman R                              |                                       |          | <u> </u>                              |
|                           | 14   | Failer The Road Program               | pupule un equis in                    | pectings                              | united by                             |                                       |          | · · · · · · · · · · · · · · · · · · · |
| • .                       | R    | Contract with the local difference    | E                                     | ch                                    | ALL IS I                              |                                       |          |                                       |
| Biot Lomprophyle          | 1    | HALL BEALDER WITH LAFAL OF MICH       | Severce name and                      | stag porosive                         | Parenz fine for                       |                                       |          |                                       |
| V nervous gene makel volo | 7%   | LINE TOO DO CH - COULD BE COLLEGE     | Veralle to som                        | Carbura anti-Cale                     | armen CP and                          |                                       |          |                                       |
| 72.1-86.8                 | 14   | 72.1- 86.8                            | BONG WITH PL                          | local chlorite patrings               | feaction for the ford                 |                                       |          |                                       |
| few norrow ate Vis        | 11/1 | strong carb (calc-ant) all            | brittle how any                       | Thu zano may                          | ganeration of for Pro-                |                                       |          |                                       |
| - deformed                | 101  | 3000 - wide splead brittle practiling | Marchaut arron for                    | Contain 10. officiem                  | General 2- 89. Jg P.,                 |                                       |          |                                       |
|                           |      | generally low angles CA               | angle Istora with                     | seririte.                             | /                                     |                                       |          |                                       |
|                           | 1位   |                                       | price fire Py.                        |                                       |                                       |                                       |          |                                       |
| •                         | 1.4  |                                       | Microfroducing houghout               | · · · · · · · · · · · · · · · · · · · |                                       | }                                     |          | <u> </u>                              |
| 86.8 ->                   | 120  | - 8 t · 8                             |                                       |                                       |                                       |                                       |          |                                       |
| CB                        | Ĩ    |                                       | · · · · · · · · · · · · · · · · · · · |                                       |                                       |                                       |          |                                       |
|                           |      |                                       |                                       | · · · · · · · · · · · · · · · · · · · |                                       | · · · · · · · · · · · · · · · · · · · |          |                                       |
|                           | 1.   |                                       |                                       |                                       |                                       | · · · · · · · · · · · · · · · · · · · |          |                                       |
|                           |      |                                       |                                       |                                       |                                       |                                       |          |                                       |
|                           |      |                                       |                                       |                                       | ·                                     |                                       |          |                                       |
|                           |      | · · · · · · · · · · · · · · · · · · · |                                       | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |                                       |          |                                       |
|                           | 1    | <u></u>                               |                                       |                                       | · · · · · · · · · · · · · · · · · · · |                                       |          |                                       |
|                           | Į    |                                       |                                       |                                       |                                       |                                       | <u> </u> |                                       |
|                           |      |                                       |                                       |                                       |                                       |                                       |          | · · · · · · · · · · · · · · · · · · · |
| . 1                       |      | · · · · · · · · · · · · · · · · · · · |                                       |                                       |                                       |                                       |          |                                       |
|                           |      | ·                                     |                                       | <u></u>                               | ·                                     | ļ                                     |          | ļ                                     |
| · · ·                     |      |                                       |                                       | L                                     | · · · · · · · · · · · · · · · · · · · | L                                     |          |                                       |
|                           |      |                                       |                                       | l                                     | L                                     |                                       |          | L                                     |
| 1                         |      |                                       |                                       |                                       |                                       | L                                     |          |                                       |
|                           |      |                                       |                                       |                                       |                                       | I                                     |          |                                       |
| 1                         | 1    |                                       |                                       |                                       |                                       |                                       |          | · · · · ·                             |
|                           |      |                                       |                                       |                                       |                                       |                                       |          |                                       |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Wells

DATE: 17.41.4.6., 2003 .....

### CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

|      | DDH NO. 794-81 |             |                                                  |                                                       |                                        |                                        |             | PA       | GE NO, 1                              |  |
|------|----------------|-------------|--------------------------------------------------|-------------------------------------------------------|----------------------------------------|----------------------------------------|-------------|----------|---------------------------------------|--|
|      |                | Ē           | ITHOLOGY                                         | STRUCTURE                                             | ALTERATION                             | MINERALIZATION                         | SAMPLING    |          |                                       |  |
| 0    | MAIN UNITS     | GL          | SUB UNITS                                        |                                                       |                                        |                                        | FROM        | TO       | NUMBER                                |  |
|      | 0-4.57         | 0           | 0-4.57 Casina                                    |                                                       |                                        |                                        |             |          |                                       |  |
|      | Overbuilden    | 0.0         | $\checkmark$                                     |                                                       | ······································ |                                        |             |          |                                       |  |
|      |                | - hr        | 4.57-46.76 Light arean la cade Baselt            | Lical Low orgh ch                                     | weak - molerate downword               | spatte file dimen Ru                   |             |          |                                       |  |
|      | ΨB             | 144         | to the time and a strengthe strengthe            | 70-55° cale versets                                   | carscall, chi portings                 |                                        |             |          |                                       |  |
| - 1  |                | 12          | Ale a start                                      |                                                       | axidized to 6.4m                       | ······································ |             | · · ·    |                                       |  |
| 10 h | -              | 1/1         | 1000 megnetete                                   |                                                       |                                        |                                        |             |          |                                       |  |
|      |                | 17          | · · · · · · · · · · · · · · · · · · ·            | · · · · · · · · · · · · · · · · · · ·                 | ·····                                  |                                        |             |          |                                       |  |
| ľ    |                | Ľ.          | 15-1676                                          | · · · · · · · · · · · · · · · · · · ·                 | · · · · · · · · · · · · · · · · · · ·  |                                        |             |          |                                       |  |
|      | 14:76 - 30-26  | 87          | mothed call ankenite alt strager                 | milky gy's                                            | · · · · · · · · · · · · · · · · · · ·  | Variable Tr-7% for                     |             |          |                                       |  |
|      | 500 G 48       | [//         | 16.76-30.26 Light tan /g and                     | (017.06 20°CA 10-15cm                                 | •                                      | droven EPy concert.                    |             |          |                                       |  |
| 20   | - (Sec)        |             | strongly altered local milky gto us              | @ 23-47 35" CA 10-151m                                |                                        | along selvelogos to veins              |             |          |                                       |  |
|      |                | 1           | and grayth verslets. Variable duren              | 29-7 41°CA 20cm                                       |                                        | sert intervals have                    |             |          |                                       |  |
| : I  |                |             | Py local green concite patiens                   |                                                       |                                        | VEQ. Little duram P.                   | · · · ·     |          |                                       |  |
| Í    |                | ľ           |                                                  |                                                       |                                        |                                        |             | ·····    |                                       |  |
|      | · · · ·        | - <b>b</b>  | Service Restance of the                          |                                                       |                                        | ······································ |             |          | · · · · · · · · · · · · · · · · · · · |  |
| -    |                |             |                                                  |                                                       | ·····                                  |                                        |             |          |                                       |  |
| 30   |                | <b>-</b>    | EARLY MILLS Mild area to chink                   | to at 1 all to 1 i                                    | 11.1.4. 4. 4                           | and with the a                         |             |          | ·                                     |  |
|      | B(C)           |             | source should be the first                       | ma shall preching                                     | chlorific procession                   | Tr. 2% MC dissem D                     |             |          |                                       |  |
| 1    |                | - Mi        | - CATE ALKENED DOSALE LACEL V. WEEK              | often Q 20'CA Loud                                    | Partily W/m dimen                      |                                        |             |          |                                       |  |
|      |                | He .        | SG:45-16-5 A A A A A A A A A A A A A A A A A A A | 30-60° Cold Veinteta                                  | cole-                                  | 26.45-380 5-7% M/5 Py                  | dimen       |          |                                       |  |
| 1    | SCQPCP         | 17          | As at 16.76 tan coloured                         | mier frecturing                                       | Vadable molly                          | 31-42 2.5% fm (c) EPy c                | ypem        |          | · · · · · · · · · · · · · · · · · · · |  |
| 40   | - Local ser    | - /         | fire ground, corb-silica alteration              | throughout, local                                     | shore corb-sil                         | 42-47 4-10% MIC (Py 1+3                | 1.19        |          |                                       |  |
|      |                |             | Lite local gto veries and dimen_                 | well dever below                                      | SONE Green Ser                         | · · · · · · · · · · · · · · · · · · ·  |             |          |                                       |  |
|      | •              |             | fyate                                            | 53.64 with some carbon                                | tocally in low angle                   | 47-55 1-3% Jm 6P3 d                    | ingen       | L        |                                       |  |
|      |                | <b>!</b> // |                                                  | 2 36:45-37:4> Subporceller<br>2 12 Lein, 5-7% MK Py A | R. at veiblet.                         | locally up to 7%f                      |             |          |                                       |  |
| 1    | •              | 1           | · · · · · · · · · · · · · · · · · · ·            | 43.4-44.1 av 15°CA for dure                           | cl. ab we allete accur                 |                                        |             |          |                                       |  |
| 50   | _              |             |                                                  | 44.5 - 44.469 15 CA 30 m C                            | " peripheral to main                   | · · ·                                  |             | · · ·    |                                       |  |
|      | •              |             | ·                                                | \$15 7 m 1                                            | ato veins line                         | 55 - 64.3 2-7% M/c/                    | () Agona in | atou.    |                                       |  |
|      |                |             | 13.64 Je mic a fracturing with carbon            | 56.17-56.44 20°CA                                     | Chlorite and down or                   | 1                                      | ľ           | 73       |                                       |  |
|      |                |             |                                                  | 58.18-59.83 0-10° CA"                                 | carboa in Practica.                    |                                        | 1           |          |                                       |  |
| 1    |                |             | · · · · · · · · · · · · · · · · · · ·            |                                                       | Cook is included                       | · · · · · · · · · · · · · · · · · · ·  | 1           | t        | · · · · · · · · · · · · · · · · · · · |  |
| 10   |                | - Y II      |                                                  |                                                       | there and the first in                 |                                        |             |          |                                       |  |
| 00   |                | T           | · · · · · · · · · · · · · · · · · · ·            |                                                       | Process care, prostorios               |                                        |             | <u> </u> | <u> </u>                              |  |
|      |                |             |                                                  |                                                       | 1                                      | J                                      | <u> </u>    | L        | 1                                     |  |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Wells

DATE: 7.July 2003

# CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

|     | DDH NO.       | T94-81       | 1         |                                      | ·                                      |                                       |                       |            | PAG   | GE NO. Z                               |
|-----|---------------|--------------|-----------|--------------------------------------|----------------------------------------|---------------------------------------|-----------------------|------------|-------|----------------------------------------|
| _ L |               |              | 1         | ITHOLOGY                             | STRUCTURE                              | ALTERATION                            | MINERALIZATION        |            | SAMPL | ING                                    |
| 4.0 | MAIN          | UNITS        | GL        | SUB UNITS                            |                                        |                                       |                       | FROM       | TO    | NUMBER                                 |
| •   |               |              | <b>新設</b> | Transitional care Ant-see            |                                        |                                       |                       |            |       |                                        |
|     |               |              |           |                                      | · · · · · · · · · · · · · · · · · · ·  |                                       | 11.7-155              |            | ·     | · · · · · · · · · · · · · · · · · · ·  |
|     |               |              | 2.2       | LE.E 68.0 ( Havib: Rosalt Alon Has   | MASUNA                                 | stran colinte alteration              | CARTIE Py             |            |       |                                        |
|     |               |              | 読む        | personal commences and many          |                                        | Siring Chan and the                   |                       |            |       |                                        |
| -   | 68-0 - 74 . 7 | SCOP         | <b>1</b>  | 68.0-74.2 SCOR 2.00 centred ad       | Milk (0.90                             |                                       |                       |            |       |                                        |
| 70  |               | 3641         |           | milt of is more P the link           | 70.50-70.38 23                         | CA Corbonali - SIIICA                 | Controllard LAM/C PL  |            |       |                                        |
|     |               |              |           | Ming grov Dusem ry Thoughout         | 72.46-73.20 10                         | ch also fine gto verales              | 3-70/ Semi molling    |            |       |                                        |
|     | 74.2-83       | 27           | 11-       | 74.2 -78.4                           |                                        |                                       | ar ye serveyes.       |            |       |                                        |
|     | strong Carb   | . <b>B</b> . | 1         | pillowed. Breccieted Mass has marshi | focal chi partings                     | show carb(ank)                        | Variable 1-3% fmc.    |            |       | · · · · · · · · · · · · · · · · · · ·  |
| ļ   | with Far      | It Zone      | 50        | 78-11 - 81.04                        | verable mices frechurry                | local fine silico veinteto            | dessem/ frecture Py   | <u>د</u> . |       | · · · · · · · · · · · · · · · · · · ·  |
| 80  | and asso      | ciated       |           | The SERP centred on Iven             | force of ylly 15-30CA                  | fine carb (ank) - silie               | 3-5% m/c diesem Py    |            |       |                                        |
|     | Carb all      | aration .    | F 12      | SILLS-BI.99 FAULT JONE               | C10/00 15.70CA                         | ASTER Cathon Z 80°CA                  | As above 2-5% fac Ry. |            |       |                                        |
|     |               |              |           | 81.27 -96.00                         | milky gu                               |                                       |                       |            |       |                                        |
|     | 83.27 -       | 95.89        |           | Tan coloured fine ground corb-sil    | 87.48 0 35 CA 5-6                      | Silica- cachanate                     | Low cont. of          |            |       | •                                      |
|     | sca(          | シ            |           | alterad with milky gly values and    | 29.0 @ 35°CA (-7 m                     | passely conficent                     | dissen 1(m) P.        |            |       | · · · · · · · · · · · · · · · · · · ·  |
| 90  | (Ser)         |              |           | dimen Py Below Sem fairly sheared    | Below BE Several                       | service (fine dimen)                  | 1.3%                  | •          |       |                                        |
|     | Γ             | · •          | . 6/      | and deformed. Local Green Ser.       | Some selvedae Apu.                     | Minor calite                          |                       |            |       |                                        |
|     | ·             |              | 22 11     |                                      | carbon on partials                     | Low angle shears 0-15rd               |                       |            |       |                                        |
|     |               |              |           | - 95-89-105.46 Calla h. norachilm)   | Local much verned                      | weak carb (colc)                      | Sporse P.             |            |       |                                        |
|     |               |              |           | Pilloued besalt with commind         | come with raid hale                    | los & epidate atiles                  |                       |            |       |                                        |
|     | م (           | a lunch      |           |                                      | hill massive                           |                                       |                       |            | -     |                                        |
| /00 | F /           | D J. Wear 1  |           |                                      | 70 9                                   | • .                                   |                       |            |       | ······································ |
|     |               |              |           |                                      | · · ·                                  | · · ·                                 |                       | · · · · ·  |       |                                        |
|     |               |              | L         | HIDS. 46 EON                         |                                        | · · · · · · · · · · · · · · · · · · · | -                     |            |       | · · · ·                                |
|     |               | •            |           |                                      |                                        |                                       |                       |            |       |                                        |
| 110 | -             | ,            |           |                                      |                                        | · ·                                   |                       |            |       |                                        |
|     | Γ             | , •          | ,         |                                      |                                        | · ·                                   |                       |            |       |                                        |
|     |               |              |           |                                      | · · · ·                                |                                       |                       |            |       |                                        |
|     | 1             |              |           |                                      |                                        |                                       |                       |            |       |                                        |
|     |               |              |           |                                      |                                        | · · · · ·                             | <b></b>               |            |       | · · · · · · · · · · · · · · · · · · ·  |
|     |               |              |           |                                      |                                        |                                       | 1                     |            |       | ··                                     |
| 120 | »┣ <b>−</b>   |              |           |                                      | ······································ |                                       | ,                     |            |       | · · · · · · · · · · · · · · · · · · ·  |
|     | <b>*</b>      | ······       | <u>i</u>  |                                      | L                                      | 1                                     | L                     | 1          |       | l                                      |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Wells

DATE: ... July 7, 2003 ....

. .

# CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| MAIN UNITS     GL     STRUCTURE     ALTERATION     MINERALIZATION     SAMPLING       0-7.60     0"Floordon     0"The Discontraction     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DDH NO. 794-79           | <u> </u>          |                                         |                             | ·                                      |                                       |              | PA           | GE NO. /                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------|-----------------------------------------|-----------------------------|----------------------------------------|---------------------------------------|--------------|--------------|---------------------------------------|
| MAIN UNITS     GL     SUB UNITS     FROM     TO     NUMBER       O'Tido     0     273.60     0     273.60     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | <u> </u>          | THOLOGY                                 | STRUCTURE                   | ALTERATION                             | MINERALIZATION                        |              | SAMPI        | ING                                   |
| D-7165<br>Dielondon<br>71- A.O<br>CPB<br>10- 2000<br>11- A.O<br>CPB<br>11- A.O<br>CPB<br>11- A.O<br>CPB<br>11- A.O<br>CPB<br>11- A.O<br>11- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12- A.O<br>12-                                                                                           | MAIN UNITS               | GL                | SUB UNITS                               |                             |                                        |                                       | FROM         | TO           | NUMBER                                |
| Oksiburdon       Image: Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0-7.40                   | . l               | 0-7.6 Orosburden                        |                             |                                        |                                       |              |              |                                       |
| 716 - 12:0     7.6 - 12:0     High games manable soid     Man for how of the form of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Overburden               | <b>[</b> ]•       |                                         |                             | -                                      | * NOTE SAMPLE                         | 94001        | to only      | 22                                    |
| 7:6- R.0       7.6- R.0       7.6- R.0       Ref. 19.0       Ref. 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | ا م ا             |                                         |                             | · . ·                                  | •                                     | locm wide    | ? 109900     | · ·                                   |
| CPB<br>Pillen Strukture<br>Pillen                                                                                                                                                                                                                                                                                                                                  | 7.6- 12.0                | أسمها             | 7-6-12.0 Giald arean - residue axid.    | Miscolonetrand - Chi        | Mod potustivit of                      | long his entrieter                    |              |              |                                       |
| 1800 - 18-14<br>1800 - 18-14<br>CB.<br>1800 - 18-14<br>CB.<br>18-00 - 20-10<br>19-00 - 20-10                                                                                                                                                                                                                                                                                    | CPB .                    | 1                 | Pillow Structure                        | local gly veing to Zem      | colo .                                 | with account to the                   |              |              |                                       |
| 1200-18:44<br>CB.<br>1200-18:44<br>CB.<br>1200-20:40 (all backet bills)<br>1200-20:40 (all backet bills                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | 1                 | 18.0 18.410 Light green - bleached "    | @ 12.64 - 12.86 compusito   | dillon (a k) a ch - d                  | and gray griz V                       | [            | {            |                                       |
| CB.<br>Several low angle<br>CCB.<br>Several low angle<br>Is no - 20:00 light gells find yound land land land land land land land la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.0 + 18.41             |                   | cerbanated (ant) baselt                 | milky go with carb voin um  | HUNG CAS-LOOP MAD                      | D D D D D D D D D D D D D D D D D D D |              | <u> </u>     | ······                                |
| 28-40-37.70       Image: Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger Stranger S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CB.                      | []                |                                         | several low acele           |                                        |                                       | t            |              |                                       |
| 1840 - 20.60       Light gitter für general       Local calible vielt logak patty to vield Az abore         2640 - 37.70       Rankle förrig mörrig dir för general       Dir an and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and to see and t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                   |                                         | Chloritic fracture voillets | ······································ | ······                                | <b></b>      |              |                                       |
| Burnet for in mark first for frager first for the former first for the former former for the former for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former first for the former fir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                   | 18.40-24.60 light argen (               | Laid and it with            | track asked to with                    | A. (                                  | <u> </u>     | 1.           |                                       |
| 26.40-37.70<br>Variante an PAZ<br>Loss of AZ<br>Loss of AZ                                                                                                                                                                                                                     | , <b>-</b> · · · · ·     |                   | Basalt foir la morive with manager fine | a'an                        | cash (-1)                              | MJ 468VE                              | <u> </u>     | <u> </u>     |                                       |
| 26.40-37.70       24.60-37.70       24.60-37.70       24.60-27.70       24.60-37.70         Variant an PAZ       Phile for carbins and a for grained       20.02-20.02       Phile Strike and the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                   | chloritic portings                      |                             | LUID.(CAIC)                            | · · · · · · · · · · · · · · · · · · · | <u> </u>     |              |                                       |
| Variant en PAZ<br>licat en Variante<br>licat en variante<br>in microfractured with conten canhan canhan can be stranged a stat conten alient of the state of the state of the<br>microfractored cantoon<br>in microfractored a conten canhan canhan can be stranged and the content and the stranged and the<br>microfractored cantoon<br>in microfractored a content canda puict<br>Stranged a stranged a content canda puict<br>Stranged a stranged a content canda puict<br>in microfractored a<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP<br>SCOP | 26.40 -37.70             | F-1               | At the same with the first and it       | 2464-2612 Transitional      | minor carbon, cak.                     | Sporce Ry                             | <b> </b>     | 1            |                                       |
| Liest by Veniles Interdiction with Content formation to any the set of the second formation to any the set of the second formation on the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the second formation of the se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Variant on PAZ           | V                 | FAIDU-SI'TO LIGNE FOR JUNE GROUNDE      | @26.12-26.60 deformed       | Arth corben along                      | 75% Jg Py                             |              |              |                                       |
| - With interiored carbon 111 Marca - Jac addisation and pyper defendence in microgradients in microgradients in microgradients in a service in the dense of the service in the dense of the service in the dense of the service in the dense of the service in the dense of the service in the dense of the service in the dense of the service in the dense of the service in the dense of the service in the dense of the service in the dense of the service in the dense of the service in the dense of the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the service in the servi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Local gtz Vainlets       | VII.              | A CONTRACTOR OF COLDER CONTRACT         | 26.60-33.74 several         | for three low angels CA                | lecal m/c Py anne qui                 |              | <u> </u>     | ·                                     |
| In Milling 100000       International grading grading grading 32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-32:20-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , with associated carbon | 12                | mixed your accompany pyrte              | Story Microfectory          | frections                              | Path up 10% fg. Py                    |              | <del> </del> |                                       |
| SCQP<br>SCQP<br>SCQP<br>SCQP<br>Struckie belaw 25:3m (ScQP): 97 Volute Vertick Silver perversive Call Acte by pilod ScQP<br>Struckie belaw 25:3m (ScQP): 97 Volute Vertick<br>Struckie belaw 25:3m (ScQP): 97 Volute Verticke Struckie belaw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | in merogradies           | 2                 | Fairly restricted some grolly vern-     | 33.74-35.26 WK mlemf -      | sparce Py                              |                                       | <u>├</u>     | ┨─────       |                                       |
| SCQP. H. Structure below 25:50 (SCPP) 11 11 1111 Coron 110 of a dimension p.<br>37.70-40.40 SCQP. H. Structure light and guer fr.<br>B(c) Hit anarows 28° freetras. Mine colore vanue colice vanue colice<br>40.6-43.19 PAZ Structure 128° freetras. Mine colore vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice colice vanue colice colice vanue colice colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice vanue colice colice vanue colice vanue colice vanue colic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | 17)               | VSILLE ZONES (MORE COLDON) LISS         | 9/2 VOINUE 45-7. CA         | Silica - pervecive Call                | More Haited SCOP                      |              | <u> </u>     |                                       |
| 37.70 - 40.60<br>B(c)<br>Ho.6 - 43.19 PAZ<br>43.19 - 56.0<br>PB = 1 BX.<br>FAULT ZONNE<br>FAULT ZONNE<br>FAULT ZONNE<br>FAULT ZONNE<br>B(c)<br>HO.6 - 43.19 PAZ<br>HO.6 - 13.19 Jint file greened<br>Strage file greened<br>HO.6 - 43.19 PAZ<br>HO.6 - 100 Jint file greened<br>HO.6 - 43.19 PAZ<br>HO.6 - 40.10 Jint Jint Jint Jint Jint Jint Jint Jint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Scop.                    | 4                 | structure below 35:30 (SCQP)            |                             | ITTE COLDIA                            | - 10 v f m race C Py                  |              | <u> </u>     | <u> </u>                              |
| B(c).<br>Hold - 43:19 PAZ<br>Hold - 40 Pillor grand - 10 Pillor grand - 10 Pillor grand - 10 Pillor - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37.70 - 40.40            | Ise-              | 27.70 - 40.60 Light - Ned guen fg       | mine coleto valentes        | Kathby fri damen                       | Trace for Py                          | <b> </b>     | <del> </del> |                                       |
| 40.6-43.19 PAZ<br>40.6-43.19 PAZ<br>43.19-56.0<br>PB x PBX<br>FAULT ZONE<br>FAULT ZONE<br>40.19-50 Strong short Shear freedomy<br>FAULT ZONE<br>40.19-50 Strong Shear freedomy<br>FAULT ZONE<br>FAULT ZONE<br>FA                                                                                                                                                                                                                         | , B(c)                   | 10                | with numerous '30" fre times            |                             | colute                                 |                                       |              |              |                                       |
| 43:19-56.0<br>PB-1PBX<br>FAULT ZONE<br>FAULT ZONE<br>H3:19-56.0<br>FAULT ZONE<br>H3:19-56.0<br>FAULT ZONE<br>H3:19-56.0<br>H3:19-50.0<br>H3:19-50.0<br>H3:19-50.0<br>H3:19-50.0<br>H3:19-50.0<br>H3:19-50.0<br>H3:19-50.0<br>H3:19-50.0<br>H3:19-50.0<br>H3:19-50.0<br>H3:19-50.0<br>H3:19-50.0<br>H3:19-50.0<br>H3:19-50.0<br>H3:19-50.0<br>H3:19-50.0<br>H3:19-50.0<br>H3:19-50.0<br>H3:19-50.0<br>H3:19-50.0<br>H3:19-50.0<br>H3:19-50.0<br>H3:19-50.0<br>H3:19-50.0<br>H3:19-50.0<br>H3:10-0<br>H3:19-50.0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:10-0<br>H3:1                                                                                                                            | 40.6 - 43.19 PAZ         | 1                 | Stong carb (calc) with live demon A     | Some fractions younget      | Porvesivie Carb (cale)                 | 710% Vyfini to fini                   | <u>↓</u>     | <b> </b>     |                                       |
| PB & PBx<br>PB & P                                                                                                                                             | 43.19-54.0               | M                 | 43.19-51.90 Light green, fine ground    | ra - 30 cm                  | alteration                             | anneminated Py                        |              |              |                                       |
| FAULT ZONE SECTION MERLE BAULE SELECTION FOR SUBJECTEDED STORY CHILD AS SOLD STORY CHILD BE SECTION STORY STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD STORY CHILD AS SOLD AS AS SOLD AS SOLD AS SOLD AS SOLD AS SOLD AS SOLD A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pa A                     |                   | probably pillound (coace) Busak         | chlerihi pachige &          | Patchy parvasive -                     | sparse find by                        | ┣            | ╉────        |                                       |
| FAULT ZONE SECTOR MENSIVE BANKE SELECTION TO SOLA SUPPORTALLY STRAY CALORE SPORTH fire dume on B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10110                    | 17                | non magneti                             | solvedge like zones         | perale cach (cak) chl.                 | l                                     | <u> </u>     | +            |                                       |
| FAULT ZONE SCORE MERSING BASILE SECTION AND SUPERFORMED STORY CHIONES SUPERFORMED STORY CHIONES SUPERFORMED STORY CHIONES SUPERFORMED STORY CHIONES SUPERFORMED STORY CHIONES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | o 🗕                      | $\downarrow \sim$ | 1                                       | (MPm) 2000                  | particus                               | <u> </u>                              | <b></b>      | +            | · · · · · · · · · · · · · · · · · · · |
| FAULT ZONE SCORE MERLY BANK SELECTION TO SUPPORT SUPPORT CALCED STORY CHLORE SPORT fire durine merly for the sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the super sector of the sup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                        |                   |                                         |                             |                                        | ······                                | +            | +            | <u> </u>                              |
| - FAULT ZONE Mere Merel 2012 Basele sections to go a sola constant stray chients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · ·                      | 17                | 1 - 10-90-56 MILLOW BLOCKA , AJ above   | TOUMOUS fine by             | strong chlorit - pervosion             | f                                     | +            |              |                                       |
| FAULT ZONE Store messive Basele sections the source superstand strong chients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                        | 100               | ante number fregerat zanes              | angle chiecorbon Training   | calcile in 6x                          | <u></u>                               |              | <del> </del> |                                       |
| PRULT LONG ANTE More Messive Basole sections / ha 35 m A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          | F7                | 56.0-60.35 strong sheet frecting        | Applicates Supporately      | stroy chiente                          | Sporce dive denter 0                  | <b></b>      |              | +                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | + FAULT ZONG             | -1                | auth more messive Baselt sections       | 1 A 30YA                    | variable carb (rale)                   | 1                                     | <del> </del> | <u> </u>     | <u> </u>                              |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. LUL

DATE: July 8, 2003

# CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| Image: Structure     ALTERATION     MINERALIZATION     SAMPLING       60     SUB UNITS     GL     GL     SUB UNITS     FROM     TO     NUMBER       810     GL     GL     STRUCTURE     ALTERATION     MINERALIZATION     SAMPLING       810     GL     GL     SUB UNITS     GL     FROM     TO     NUMBER       810     GL     GL     GL     STRUCTURE     ALTERATION     MINERALIZATION     SAMPLING       810     GL     GL     GL     GL     GL     GL     GL     FROM     TO     NUMBER       810     GL     GL     GL     GL     GL     GL     GL     GL     FROM     TO     NUMBER       810     GL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | l   | DDH NO. 794-79                          |                                          |                                       |                                       |                                        |           | PAC       | GE NO. 2 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------------------|------------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|-----------|-----------|----------|--|
| Go     MAIN UNITS     GL     SUBUNTS       B(c)     Grad Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | ·                                       | LITHOLOGY                                | STRUCTURE                             | ALTERATION                            | MINERALIZATION                         | SAMPLING  |           |          |  |
| $B(c) = B(c) = \frac{1}{10^{-1} - 6 \cdot 23} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{-1} - 0} \frac{1}{10^{$                                                                                                                                                                                                                  | 1   | MAIN UNITS GI                           | L SUB UNITS                              |                                       |                                       |                                        | FROM      |           | NUMBER   |  |
| B(c)<br>Bond. Period Service actions: Circle State Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Contr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | "   |                                         | 60:35-65:23 Light green fine groined     | Eaich massive                         | P.16 main                             |                                        |           |           |          |  |
| 6:23-71:87<br>6:23-71:87<br>10 d fair undern direction with fair first with fair links and first fair for a first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the first fair for the fair fair fair fair fair for the fair fair fair fair fair fair fair fair                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | <b>ほん</b> ) ほん                          | Bojald. Patchy carbonate alleration      | Local Borch Carbor che ult            | and winder Corbonate it               | sporse Py                              |           |           | ·        |  |
| 66.23.7 11.87 <b>1</b><br>66.23.7 11.87 <b>1</b><br>1 disaminated by<br>1 disamina                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                                         | KS.23-71.87 Light Tag his ground         | local with analating                  | Parmania and t                        | 0. 1. 1 77%                            |           |           |          |  |
| 10     [overprinting] Sec(0)P]     Intervine for an intervine of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a structure of a struce of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1   | 45.23-71-87                             | hand loirly uniform alteration with this | 9's veins to Isem Horch               | (ank), Local fing /g Uls              | Date if in SEP- 2                      | ./        |           |          |  |
| To     Overprinting SC(0)P     If NT - 85.95     If NT - 85.95       B(c)     Light grann, find granned, Borold     Sparre, vendett, Patting personal, Sparre, Patting, Personal, Sparre, Patting, Personal, Sparre, Patting, Personal, Sparre, Patting, Personal, Sparre, Patting, Personal, Sparre, Patting, Personal, Sparre, Patting, Personal, Sparre, Patting, Personal, Sparre, Patting, Personal, Sparre, Patting, Personal, Sparre, Patting, Personal, Sparre, Patting, Personal, Sparre, Patting, Personal, Sparre, Patting, Personal, Sparre, Patting, Personal, Sparre, Patting, Personal, Sparre, Patting, Personal, Sparre, Patting, Personal, Sparre, Patting, Personal, Sparre, Patting, Personal, Sparre, Patting, Personal, Sparre, Patting, Personal, Sparre, Patting, Personal, Sparre, Patting, Personal, Sparre, Patting, Personal, Sparre, Patting, Personal, Sparre, Patting, Personal, Sparre, Patting, Personal, Sparre, Patting, Personal, Sparre, Personal, Sparre, Patting, Personal, Sparre, Patting, Personal, Sparre, Patting, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal, Personal,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | PAZ                                     | disseminated Py                          | freeduring gots veins                 | variable ages                         | espocially near voins                  | 70        |           |          |  |
| B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) = B(c) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70  | - [overprinting sc(a)]                  | 71.87-85.95                              | some neve thunish sph.                |                                       |                                        |           |           | <u></u>  |  |
| B(x) $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$ $B(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1   |                                         | 1 light and Circle I Could               |                                       | <b>A</b>                              |                                        |           |           |          |  |
| B(c) $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$ $B(c)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 1 |                                         | Elger green, dia greined, Barnie         | Sporre verdet                         | Patchy pervosive                      | spear Py                               |           |           |          |  |
| Bo-<br>15-95-9037<br>PAZ p.<br>Bonds<br>Bonds<br>Bonds<br>10-<br>10-<br>103-02-120.70 EON.<br>PB.<br>100-<br>103-02-120.70 EON.<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100- |     | B(<)                                    | Possibly pillows                         | Seine Gine: calcite                   | W/M COTO ( Calute                     |                                        |           | <i>:</i>  |          |  |
| 80     -     -     -     -     -     -       90     -     85.95-90.37     Light Ten strand, Space back to's A     Periodisus calland Redeminants, patting     -       90     -     Band     -     -     -     -     -       90     -     -     Band     -     -     -     -       90     -     -     Band     -     -     -     -       91     -     -     -     -     -     -     -       90     -     -     -     -     -     -     -       91     -     -     -     -     -     -     -       91     -     -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                                         | //                                       | ·                                     |                                       |                                        |           |           |          |  |
| B5-95- 70-37<br>PAZ Prove Service Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strate Strat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80  |                                         | · · · · · · · · · · · · · · · · · · ·    |                                       |                                       |                                        |           |           |          |  |
| 100-<br>103.02-120.70 EM.<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                                         |                                          |                                       | · · · · · · · · · · · · · · · · · · · | ······                                 |           |           |          |  |
| 100     103:02-120:70 EW.     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .   |                                         | •                                        |                                       |                                       |                                        |           |           | ,        |  |
| 90 - PAZ References with partie, find dimen & bandy to zero isin this a for a star source of a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 85-95- 90-37                            | 85.95-90 37 Light Ton strongly           | Contacts 40'CA                        | Pervosive carblank                    | Redominantly patchy                    |           |           |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i   | PAZA                                    | art altered with petiting fire dimen     | By bandy to Zomi juica                | - abe) Voinlet silica                 | for Ry 5 1 550%_                       |           |           |          |  |
| 100 - 103.02 - 120.70 E or 1. PB.  100 - 103.02 - 120.70 E or 1. PB.  100 - 100.02 - 100.02 - 100.02 - 100.02 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90  | - Bands                                 | Py Visharp contacts                      | local gt ult 10-30'cA.                |                                       | 50 ms bands to 2cm 30                  | CA - REA  | LACEMENT  | STYLE    |  |
| 100     97:36 - 93:22 PAT     97:01 - 101:03 mid green forcelt carle       101     97:36 - 101:03 mid green forcelt carle     At PAZ churs     3:77% V discord Pg       101     101:03 - 101:03 mid green forcelt carle     At PAZ churs     3:77% V discord Pg       103:02 - 120:70 E 641.     100:02 - 120:70 E 641.     Interf confort 20     At PAZ churs     3:77% V discord Pg       103:02 - 120:70 E 641.     100:02 - 120:70 E 641.     Interf confort 20     At PAZ churs     3:77% V discord Pg       103:02 - 120:70 E 641.     105:50 - 120:70 Eight + 1 mid green     Specific Vinis to Term for FA.     Carlo (cale)     105:50 - 120:70 Eight + 1 mid green       100     PB.     Netlivic to pillismed besalt     Specific Vinis to Term for FA.     Carlo (cale)     100       100     Ios So - 120:70 Eight + 1 mid green     Specific Vinis to Term for FA.     Carlo (cale)     100       100     PB.     Netlivic to pillismed besalt     Ios cale     Ios cale     Ios cale       100     Ios Charts inter-pillion material     Ios cale     Ios cale     Ios cale       110     Ios Charts inter-pillion material     Ios cale     Ios cale     Ios cale       110     Ios Charts inter-pillion material     Ios cale     Ios cale     Ios cale       110     Ios Charts inter-pillion     Ios Cale     Ios cale     Ios Cale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -   |                                         | 91:29-93.45 DAZ Belatt                   | Irregular sherp contacts              | A @ 85.95                             | 10->25% fg dusem Py.                   |           |           |          |  |
| 100     47.726-101.03 mid yest. Besch carb     At PA2 chuse     3-71/1. Vy dupter By       100     101.03-103.02 PAZ: upper conject 20     At PA2 chuse     3-71/1. Vy dupter By       101.02-120.70 E011.     103.02-120.70 E011.     100.02 PAZ: upper conject 20     Pathod open bosolt.       103.02-120.70 E011.     105.50-1207.     105.50-1207.     105.50-1207.     105.50-1207.       108     PB.     105.50-1207.     105.50-1207.     105.50-1207.     105.50-1207.       100     -     -     -     -     -       101.02     -     -     -     -       103.02-120.70 E011.     105.50-1207.     Light to med gaen     Spense vindet:       106:50-1207.     Light to med gaen     Spense vindet:     At oboxe       108.     106.50-1207.     Light to med gaen     Spense vindet:       109.     -     -     -     -       100     -     -     -     -       101.02     -     -     -     -       102.02     -     -     -     -       103.02-1207.     Light to med gaen     -     -       108.0     -     -     -     -       109.0     -     -     -     -       100.0     -     - <t< td=""><td></td><td></td><td>95.79-97.22 PAZ</td><td></td><td></td><td>``````````````````````````````````````</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                         | 95.79-97.22 PAZ                          |                                       |                                       | `````````````````````````````````````` |           |           |          |  |
| 100 -<br>100 -<br>103:02-120:70 EON.<br>PB "<br>103:02-120:70 EON.<br>103:02-120:70 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100:02 EON.<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |                                         | 97.26-101.43 med green Berelt carts      |                                       | ·                                     | ·                                      |           |           |          |  |
| 100 -<br>107-132-103:02 PAZ: Upper confact 20<br>103:02-120:70 Earl.<br>PB.<br>103:02-120:70 Earl.<br>103:02-120:70 Earl.<br>103:02-120:70 Earl.<br>103:02-120:70 Earl.<br>105:50-120:77 Light to med grain Sprise winder Provenies<br>106 -<br>107.02 - 107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107.<br>107                                            |     |                                         |                                          | · · · · · · · · · · · · · · · · · · · |                                       |                                        | <u>``</u> |           |          |  |
| 103:02-120:70 Earl.<br>103:02-120:70 Earl.<br>103:02-120:70 Earl.<br>103:02-120:70 Earl.<br>103:02-120:70 Earl.<br>105:50-1207 Light & med green Specisc window Area Proventian<br>PB.<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100 |                                         |                                          |                                       | A. PAZ Churk                          | Jucally V duscan by                    |           |           | <u> </u> |  |
| 103:02-120:70 E er.     Med green bosalt.     Loud 9/2 - carb     Patch Win pervenise       103:02-120:70 E er.     Method Suna brechies.     Voins to Im SortA.     carb (calc)       103:02-120:70 E er.     Ight do med green     specise vanalut     At above       103:02-120:70 E er.     Ight do med green     specise vanalut     At above       103:02-120:70 E er.     Ight do med green     specise vanalut       103:02-120:70 E er.     Ight do med green     specise vanalut       103:02-120:70 E er.     Ight do med green     specise vanalut       103:02-120:70 E er.     Ight do med green     specise vanalut       103:02-120:70 E er.     Ight do med green     specise vanalut       103:02-120:70 E er.     Ight do med green     specise vanalut       103:02-120:70 E er.     Ight do med green     specise vanalut       103:02-120:70 E er.     Ight do med green     specise vanalut       103:02-120:70 E er.     Ight do med green     specise vanalut       100:02 E er.     Ight do med green     specise vanalut       110:02 E er.     Ight do med green     Ight do med green       120:70 E er.     Ight do med green     Ight do med green                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | l V                                     | 107.02 -1015 Comer Confort 20            |                                       |                                       | * 7/07.                                |           |           |          |  |
| 103:02-120:70 Earl.<br>PB.<br>103:02-120:70 Earl.<br>PB.<br>105:50-1207 Light to med green sperse veinteth A above rate Pyrite<br>Nessive to pillowed besalt<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>10                      |     |                                         | Med green bosalt.                        | Local gtz = carb                      | Potchywim perveries                   |                                        |           |           |          |  |
| PB. A room source is the graden spense veralets As above role prite<br>Nettine to pillowed basedt  I becar charty inter-pillow natorial  I here is the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | 103.02-120.70 Ear.                      | mailine to priorized sume breccios.      | voins to Jon soich.                   | corb (cole)                           | , · .                                  |           |           |          |  |
| IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     IP     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •   | DR.                                     | Austrice & allowed bacat                 | speise winteh                         | A above                               | 1010 Pyrite                            |           |           | ·        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 110 |                                         | mentive to printing define               |                                       |                                       | · · · · · · · · · · · · · · · · · · ·  |           | · · · · · |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |                                         | 1 inter-pillow hordien                   |                                       |                                       |                                        |           |           |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | · ·   >                                 | » ۲                                      | · · · · · · · · · · · · · · · · · · · |                                       |                                        | L         |           |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |                                         | ۲ <b>۲</b>                               |                                       | · · · · · · · · · · · · · · · · · · · |                                        | <u> </u>  |           |          |  |
| 120-7 EOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | I · · · · · · · · · · · · · · · · · · · | · .                                      | ļ                                     | <u> </u>                              |                                        | L         | L         |          |  |
| 120-7 EOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | ۱ <u>۰</u> ۱٬                           | (                                        |                                       |                                       |                                        |           |           |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120 | L                                       | 120.7 EOH                                | <u> </u>                              | L                                     |                                        |           |           |          |  |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Wells

DATE: July 8,200 3

# CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| 1        | DDH NO. 794-74   |     |                                        |                                       |                          |                                       |                                              | PA      | GE NO. /                                |
|----------|------------------|-----|----------------------------------------|---------------------------------------|--------------------------|---------------------------------------|----------------------------------------------|---------|-----------------------------------------|
|          |                  | Ľ   | ITHOLOGY                               | STRUCTURE                             | ALTERATION               | MINERALIZATION                        | SAMPLING                                     |         |                                         |
| ol       | MAIN UNITS       | GL  | SUB UNITS                              |                                       |                          |                                       | FROM                                         | TO      | NUMBER                                  |
|          |                  | •   | 0-7.92 overburden                      |                                       |                          |                                       |                                              |         |                                         |
|          | 017.42           | 0   |                                        |                                       |                          |                                       |                                              |         | · · · · · · · · · · · · · · · · · · ·   |
|          | oversulation     | 0.0 | ······································ | •                                     |                          |                                       |                                              |         |                                         |
|          |                  |     | 7.82 04.05                             |                                       |                          | · · · · · · · · · · · · · · · · · · · | ·····-                                       |         |                                         |
|          |                  | 5   | 1.14 . 0                               | mossing p pulloned                    | weak carbont             | spane Py                              | ·                                            |         |                                         |
| 10 -     | - 7.92-22-00     | L   | hight green, fine grained, non         | chientis (serb) portings              | often perclet related    | ······                                |                                              |         |                                         |
|          | PB I             | 7   | nagretic nessive to pellowed           | local corb veralats                   | in upper port ( in       |                                       |                                              |         | <u>.</u>                                |
|          |                  | A   | besalt. Chlorite - corborate altered   | and veine (calinte) to                | pillows) strange alt     |                                       |                                              | ·       |                                         |
|          |                  | V   | interpillan meterial                   | 310 35-45°CA                          | Interpillow              | · · · · · · · · · · · · · · · · · · · |                                              |         |                                         |
| - 1      |                  | r   |                                        | _                                     | ·                        | -                                     |                                              |         |                                         |
|          | _                | Ī   |                                        |                                       |                          |                                       |                                              |         |                                         |
| ~ [      | 22.0-26.85       | 1   | ·                                      |                                       | MIS DELVOSING CARL(COLD  | )                                     |                                              |         |                                         |
|          | CPB              | 1.6 | · · · · · · · · · · · · · · · · · · ·  |                                       | hale 22-                 |                                       |                                              |         |                                         |
|          |                  | 1.  |                                        |                                       |                          |                                       |                                              |         |                                         |
|          | 16.85-28.71      | 500 | 26.85-28.71 Light ton strony carb zone | gtz veinlets clem 50.70 CA            | show pervesive collib    | precom of durown By                   |                                              |         | · · · · · · · · · · · · · · · · · · ·   |
|          | Variation on PAZ | 1   | quite find denorm by local by visiter  | few in number                         |                          | Some Mg. Ford P. F->107               |                                              |         |                                         |
| 30       | 30.29-35.36      |     |                                        | - chloatic frontilos                  | poteby the pervosive and | Trace fine Py                         |                                              |         |                                         |
|          | 047              | 1/  | 130.29-35.36 Light ton strangly        | Local Jabries 60-80 CA                | Pervosive corb (cn/r)    | Predom V. fine dimen                  |                                              |         |                                         |
|          | PAZ              | 1   | allered with fine gtz carb voinleto    | with gry verilets (carb)              | with patily colute       | Py 5 12 25%. Local                    | ~                                            | ······· |                                         |
|          |                  |     | and abundant fine ownem. Fy.           | 25mm,                                 |                          | pyrite fractures.                     |                                              |         |                                         |
|          | 35.36- 50.90     | 1   | Predeminanty light                     | Win local strong                      |                          |                                       |                                              | L       |                                         |
| 200      | L                | 17  | green mossive basalt, Brittle          | battle ficitione                      |                          |                                       |                                              |         | · · · ·                                 |
| ΨŪ       | <b>B</b> (a)     | 53  | prochand with the colite veinlet       | · · · · · · · · · · · · · · · · · · · |                          |                                       |                                              |         |                                         |
|          | F                | 150 | Norrow 20019 of stranger traching      | @41.3-44.6 Fault                      |                          |                                       |                                              |         |                                         |
|          | 1                | 1   | Non marchie                            | Zone strong chi. frechne              |                          |                                       | · ·                                          |         |                                         |
|          | 1 · ·            | 1/  |                                        | @ Fo.59 loca clay gould               |                          |                                       | · · · ·                                      |         |                                         |
| <b>.</b> | -                |     |                                        | Local alarath with                    |                          |                                       |                                              |         | 1                                       |
| 50       | Fey Fey          | Ľ,  | Sour SP. 67 Tan straub allored         | scolb (chic) veini                    | [                        | ·····                                 | l                                            |         | + · · · · · · · · · · · · · · · · · · · |
|          | 30.7- 35.67      | 10  | to kaciatle micro facturing            | chu and all it                        | strony porvasive         | Abu last his dimen                    | 1                                            |         |                                         |
|          | PAZ Carbon       |     | 179 EFERENCE CONCENTRIADING            | cathen Sway - 51.7                    | Carbon in control        | P Sicol 1 11 - and                    |                                              |         |                                         |
|          |                  | 1   | ;                                      | Local And Lomination                  | part Some Wispy          | Can 64 nathly                         | E 10                                         | ·       |                                         |
|          |                  | 12  |                                        | 30"CA below                           | deformed at a vointeta   | minet for bile spetch M               | <u>•                                    </u> |         | ·                                       |
| Ka       | 58.67 - 73.44    | 樹   | 58.67-13.24 Light given conthecale     | A to car fabrics                      | Hatchy pervosive         | space fine Py                         | <u> </u>                                     |         |                                         |
| - 66     | L                | 1.  | BOSOLE, NON MAINERL                    | Vamination SU"CA                      | win colour               | , J                                   | 1                                            | 1       | 1                                       |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. WUIS

DATE: July 1. 2.03
## CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| D    | DH NO. 794-74       |     |                                         |                                                                               |                                       |                                       |           | PAG   | GE NO. 2.                             |
|------|---------------------|-----|-----------------------------------------|-------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|-----------|-------|---------------------------------------|
|      |                     | 1   | LITHOLOGY                               | STRUCTURE                                                                     | ALTERATION                            | MINERALIZATION                        |           | SAMPL | ING                                   |
|      | MAIN UNITS          | GL  | SUB UNITS                               | · · · ·                                                                       |                                       |                                       | FROM      | TO    | NUMBER                                |
|      | • # # 1 · · · · ·   |     | 58.67-73.24 C.Baralt                    | 070-10-710 Als pervosia<br>Cale with 20 TA carbonate<br>calute peoled pressio |                                       | · · · · · · · · · · · · · · · · · · · |           |       | ·····                                 |
|      | C &                 |     |                                         | · · · · · · · · · · · · · · · · · · ·                                         |                                       |                                       |           |       | · · · · · · · · · · · · · · · · · · · |
|      | CU.                 |     |                                         | )                                                                             |                                       |                                       |           |       | · · · · · · · · · · · · · · · · · · · |
| -    | 73.28-77.20         | ¢1  | string parrouve calcite                 |                                                                               |                                       |                                       |           |       |                                       |
|      | Alteration Zone Not |     | fo during with carbon - Patch - cluster | Carbon veiselt                                                                | minur cale                            | Vine R is not van.                    | ·         |       | ^                                     |
|      | carson, righty PAZ  | 4   | g mg. Ry.                               | Minor fine 20-30CA                                                            |                                       | abundant                              |           |       |                                       |
| ┉┝╴  | 77.20 - 99.06 EUH   |     | Light green basalt, an megnetic         | 73                                                                            |                                       |                                       |           |       |                                       |
|      |                     |     | fingraised Paking weak                  | Local fabrics                                                                 | Local weak petiting                   | SPOTE Py                              |           |       |                                       |
|      | B(c)                |     | Carbanera                               | lamination 10 CA                                                              | y veralet coils (cole)                |                                       |           |       |                                       |
|      |                     | Ļ.  | ,                                       |                                                                               |                                       |                                       |           |       |                                       |
| 20 - |                     | l g | · · · · · · · · · · · · · · · · · · ·   | ······                                                                        | ·                                     |                                       |           |       |                                       |
|      |                     |     |                                         |                                                                               |                                       | ,                                     |           |       | ·                                     |
|      |                     | 1   | 8                                       | chloritic froctures                                                           |                                       |                                       |           |       | ·····                                 |
|      | Shears              | 5   |                                         | 20- 30- 64                                                                    |                                       | · ·                                   |           |       |                                       |
| ۶°Г  | •                   | Ϋ́  | 59.06 EOH.                              | ·····                                                                         |                                       |                                       |           |       | . ·                                   |
|      |                     |     |                                         |                                                                               |                                       |                                       |           |       |                                       |
|      |                     |     |                                         |                                                                               |                                       |                                       | ·         |       |                                       |
|      |                     |     |                                         |                                                                               |                                       |                                       |           |       |                                       |
|      |                     |     | · · · · · · · · · · · · · · · · · · ·   |                                                                               |                                       |                                       |           |       |                                       |
|      |                     |     | ······                                  |                                                                               | · · · · · · · · · · · · · · · · · · · |                                       |           |       |                                       |
|      |                     |     | · · · · · · · · · · · · · · · · · · ·   |                                                                               |                                       | · · · · · · · · · · · · · · · · · · · |           | ····· |                                       |
|      |                     |     |                                         |                                                                               | <u> </u>                              |                                       | <u></u> - |       |                                       |
|      |                     |     |                                         | <u></u>                                                                       |                                       |                                       | <u> </u>  |       |                                       |
| 20   | -                   |     |                                         |                                                                               |                                       |                                       |           |       |                                       |

KAMLOOPS GEOLOGICAL SERVICES LTD.

......

DATE: July 8, 2003

## CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| DDI | HNO. 795-62                 |                                              | ·····                          | ۰.                                                |                                                      |                | PA         | GE NO. 1                              |
|-----|-----------------------------|----------------------------------------------|--------------------------------|---------------------------------------------------|------------------------------------------------------|----------------|------------|---------------------------------------|
|     |                             | LITHOLOGY                                    | STRUCTURE                      | ALTERATION                                        | MINERALIZATION                                       |                | SAMPL      | ING                                   |
|     | MAIN UNITS GI               | L SUB UNITS                                  |                                |                                                   |                                                      | FROM           | TO         | NUMBER                                |
|     | 0-1.83 Overburden           | 0-1.83 Overburden                            |                                | ×                                                 |                                                      |                |            | - HOLIDER                             |
|     | MB(t) ep                    | first grained, and myretic light greens      | Fairly Massive lovel veidet    | Patity pervasive epidale                          | Trains of My dissem Py                               |                |            |                                       |
|     |                             | 6.20-8.00 Blacked Strong Collonated Cant-    | Massive to brechated (primery) | strong pervosive enk-coli                         | TI-14, dunom ma                                      | _ <del>_</del> |            |                                       |
|     |                             | 1 8.0 - 15:00 SCOP Zour the mill de chilest  | upper contest 25TA             |                                                   | subhedrah Py                                         |                | <u> </u>   | ·····                                 |
| •   | 8-0-15.0 SCOP               | 2 main prosta voins vato soum anderont width | main gla vains are             | Fairly herd cash as                               | 7% M/c(+) EPy near                                   |                |            |                                       |
| ſ   | om 12-14 No core (metallic) |                                              | 40-47"FA SAVERAL               | obove sume silica                                 | voins decreasing to                                  |                |            |                                       |
|     | Salv. Aspy                  | Dissernie by the ghr have coundant           | shaller 25-50'th               |                                                   | 1-2% in transitional crocs                           |                |            |                                       |
|     | VG reported -               | neer gra verile with give service uspy       |                                | breached strong carb "toi                         |                                                      |                |            |                                       |
|     |                             | 15.0 - 17.0 Blooched String carb (ant-cal)   |                                | adjount in scapzones                              | TI-1% for duren Py.                                  | ····           |            |                                       |
|     |                             | 17.0 - 19.0 - W/M Carboneted basalt          | carb contacts esich            | MOR COLD ( COLL GAT MANT                          | sperce by                                            | ···········    |            |                                       |
| • - | 54                          | 11-0-14-8 2110 Age ( Calbam Fod              |                                |                                                   | Tt- for dimen "Py.                                   | ·              |            |                                       |
|     | 19.85 - 23.70 SCOP          | 17:55-23:10 SCOP contrad on alg Vein         | BX with alg VIIN 2"CA          | strong pervesive corb                             | 7-10% M/c durin EPg                                  |                | l          |                                       |
|     | ^*ry                        | and mic dinem y relyester the                |                                | (eil)                                             | autride Aspy (fine) salvade                          |                |            |                                       |
|     | 24                          | Corbonalod Besalt-non                        | Sparse veriaine lacal          | Permanente to pakon                               | Tr-24 In EPu Aipen                                   |                | r          |                                       |
|     |                             | magnetic                                     | laminting 60°CA                | MIS corb (onk-col).                               | · ····································               |                |            |                                       |
|     | 27.90- 19.50 SCQF.          | 17.9-29.50 SCOP antres on one very           | 30' gr sem wide shorp          |                                                   | 7-15 mg ER near voin                                 |                | <b> </b>   | ······                                |
|     |                             | Thisorow Scup Zones low ander CA             | SCOP 32.77 -33.40 QVI 301A     | · · · · · · · · · · · · · · · · · · ·             | 3-7% In Pu seiv. WR.                                 |                | <u> </u>   |                                       |
|     |                             | stry carb malt between with sporse - 2"      | 4                              |                                                   |                                                      |                |            |                                       |
| ·   |                             | dissem By Minor at verilles                  | SCOP 36 50 - 37.4 Q + 64       |                                                   |                                                      |                |            |                                       |
|     |                             |                                              | <u> </u>                       |                                                   |                                                      |                |            |                                       |
|     | 1                           | HA GOOVE SCOP                                | local shears with the          | <u> </u>                                          |                                                      |                |            | · · · · · · · · · · · · · · · · · · · |
|     | . 8                         |                                              | Stips SiCA                     |                                                   |                                                      | · . /.         | •          | <b></b>                               |
|     | K.                          | <u>//</u>                                    | Top of gone microfracture      |                                                   |                                                      | *              |            | ,                                     |
|     |                             | 45.30-5200 SCQP centred on 10's              | 47.6-48.45 AV 20 CA            | strong porucrive corb lank<br>work related silica | 3-725%, matsive mic by<br>neor a in voins & (rewhere | Sampli         | y around V | LAG V. Pool                           |
|     | 45.30 - 52.0                | fractive zone                                | poundant NIC/19 gouge          |                                                   | dissen CP, LE%.                                      | 12 4210        | in each    | Somple ?                              |
| _   | SCOP ZONE                   | <u>k</u>                                     | massive local to zich about    |                                                   | dimen CR.                                            | Could          | easily be  | >30gt Vein                            |
|     |                             | 52.0 - 58.00 story carb microfractured       | m/s micropraction              | Pervesive chong corb                              | fine during 5p. 3-5%.                                | Orer           | 1-2m. 41   | atte.                                 |
|     | c(s)P(q)                    | With carbon partices, dissen for the         | with corbon Duratohi           | (onk)                                             | Some along In Wies                                   |                |            |                                       |
|     | Strong Carb.                | throughout .                                 | generoly low angles CA.        |                                                   |                                                      |                | 1          | 1.                                    |
|     |                             |                                              | RSS.90 1cm gr 30 CA            |                                                   |                                                      |                | <b> </b>   | <u> </u>                              |
| Ι.  |                             | 58.0 -66.05 Story Card. benut                | huide user of                  | John cash cash                                    | Tr-1% for dissem                                     |                | <b> </b>   |                                       |
| 1   |                             |                                              | ni atracturino                 | Sank Hinnehout                                    | Rg                                                   |                | <u> </u>   |                                       |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Wells

.....

DATE: July 10, 2003

## CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

|                  | DDH NO.    | T95-62         |              |                                   |                                       |                                        | <u> </u>                               |          | PAC         | SE NO. 2                               |
|------------------|------------|----------------|--------------|-----------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|----------|-------------|----------------------------------------|
| ļ                |            | ····           | <u> </u>     | ITHOLOGY                          | STRUCTURE                             | ALTERATION                             | MINERALIZATION                         |          | SAMPL       | ING                                    |
| <b> </b>         | MAIN       | UNITS          | GL           | SUB UNITS                         |                                       |                                        | · · ·                                  | FROM     | то          | NUMBER-                                |
| "                |            | 5              |              | strong cost besalt microtracture  | · · · · · · · · · · · · · · · · · · · | •                                      |                                        |          | 1           |                                        |
|                  |            | - CB           | 8            | ,                                 |                                       | ······································ | ······································ |          |             |                                        |
| 1                |            |                |              | contact Borca                     |                                       |                                        | ſ                                      |          |             |                                        |
|                  | 65.05-69   | .70 cale slipe |              | 66.05-69.70 Biotite Lamoral no    | share high and and the                |                                        |                                        |          |             | ······································ |
|                  | Biot. Lany | mphyre         |              | Dyke Local microbreccia textures  | Carb verdeta stice                    | ······································ |                                        |          |             |                                        |
| 70               |            | CAL SIGA       | 5            | With small frogrants              | court ailles                          | 1100H . d . <b>A</b>                   | ······                                 |          |             |                                        |
|                  |            | 12125          | Z            | allowed losalt with loa-D. t. II. | to the stand of the                   | Week colbanda                          | · · · · · · · · · · · · · · · · · · ·  |          |             | · · · · · · · · · · · · · · · · · · ·  |
|                  | 67/0-      | 131.50         | $\mathbf{N}$ | alasmid Alle discration for all   | la ca lait                            | - <u> </u>                             | · · · · · · · · · · · · · · · · · · ·  |          |             | ······································ |
|                  |            |                | 1            | paperoro rus regretic, geralou    | age CH Calcu                          |                                        |                                        |          |             |                                        |
|                  | l. n.      | <b>.</b>       | 13           | Weat call cell                    | VEIN to Icm                           |                                        | · · · · · · · · · · · · · · · ·        | <b> </b> |             |                                        |
| 80               | - Fillowed | Basalt         |              |                                   | @ 82.80 ccm 9/5-cc/b                  |                                        |                                        |          |             | · · · · · · · · · · · · · · · · · · ·  |
|                  | with jo    | speroid        | 1            | 7/ /                              | E0.C4 .                               |                                        |                                        |          |             |                                        |
|                  | ]          |                |              | Inis it a manitonin generally     |                                       |                                        |                                        | ·        |             |                                        |
|                  | 1          |                | 1            | dresh Mile maysethe Saguence of   | <u>.</u>                              | · · · · · · · · · · · · · · · · · · ·  | · · · · · · · · · · · · · · · · · · ·  |          |             |                                        |
|                  |            |                | N            | pellow lava, with goad isparaid   | · · ·                                 |                                        |                                        |          |             |                                        |
| 90               | $\vdash$   |                |              | - Lucal gly-cert and cort         | · · · · · · · · · · · · · · · · · · · |                                        | · · · · · · · · · · · · · · · · · · ·  |          |             | ·····                                  |
|                  |            |                | 19           | we deto devoid of solvedge        |                                       |                                        | · · · · · · · · · · · · · · · · · · ·  |          |             |                                        |
|                  |            |                | 13           | alleration and the ly             |                                       |                                        | ·                                      |          |             | · · · · · · · · · · · · · · · · · · ·  |
|                  | 1 ·        |                | 5            |                                   |                                       | ·                                      |                                        |          |             |                                        |
|                  | 1          |                |              | 1                                 |                                       |                                        | · · ·                                  |          | <del></del> |                                        |
| 100              | -          |                | -K           |                                   |                                       | ·                                      | · · · · · · · · · · · · · · · · · · ·  |          |             |                                        |
| , <del>-</del> 0 | ļ          |                |              | \                                 |                                       |                                        |                                        |          |             | ······································ |
|                  |            |                | 19           | //,,                              |                                       | \ <u>.</u>                             | · · · · · · · · · · · · · · · · · · ·  | ·        |             | - <u></u>                              |
|                  |            | •              | N            |                                   |                                       | ····                                   |                                        |          |             | ·                                      |
|                  |            |                |              | <u>}</u>                          |                                       |                                        |                                        |          |             |                                        |
| llo              | Ļ.         | •              | 1            | <b></b>                           | ·····                                 |                                        |                                        |          |             |                                        |
|                  |            | · .            | K            |                                   | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · ·  |                                        | ļ        | ·           |                                        |
|                  |            | *              |              | <u> </u>                          | <u> </u>                              |                                        |                                        | ļ        |             |                                        |
|                  | l ő        | 103            | 2            | *                                 |                                       | · · · · · · · · · · · · · · · · · · ·  |                                        | L        | ·           |                                        |
|                  | . m        | Ψ              |              | /                                 |                                       | ·                                      |                                        | <b>_</b> |             | ·                                      |
| 12               | i i        |                |              | <u>}</u>                          | <u> </u>                              | · · · · · · · · · · · · · · · · · · ·  |                                        | L        |             |                                        |
|                  | 1 V        |                | 1            |                                   | 1 ·                                   |                                        | 1                                      | 1        |             | 1                                      |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Wells

DATE: July 10, 2003

## CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

|          | DDH NO. 795-64   |        | •                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                |                                        |                                       | PA           | GE NO. 1                              |
|----------|------------------|--------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------|---------------------------------------|--------------|---------------------------------------|
| Γ        |                  | Ľ      | ITHOLOGY                                                           | STRUCTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALTERATION                                       | MINERALIZATION                         |                                       | SAMPL        | ING                                   |
| <u> </u> | MAIN UNITS       | GL     | SUB UNITS                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                        | FROM                                  | TO           | NUMBER                                |
| ٦ ٢      | 0 - 4.88         |        | 0-4-50 88.4-0                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                        |                                       |              |                                       |
| l        | overburden       | أةم    |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                        |                                       |              | •                                     |
|          |                  | ~      | 4.88- 7.80 Rubbly recovery oxidized                                | Lacal 2cm bx gly-carb V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | axidized . Med carb.<br>(onk- call)              | oxidiged                               |                                       |              | · · · · · · · · · · · · · · · · · · · |
|          | A Data is ma     | •      | 7.80-16-70 light- med. area do                                     | Local 60-80 CA paidate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Patria perversive de                             | 75-10% me denime                       |                                       |              |                                       |
| 10       | - 4.88-16-10     |        | Rosalt and to Vineak mainstri                                      | Vernlets. Cone 1-4mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Julm carbonate Interte                           | )<br>)                                 |                                       |              |                                       |
|          | B(c)             |        | Fairly massive                                                     | at corb vith similar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                        |                                       |              |                                       |
|          |                  |        |                                                                    | anelis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · · · · · · · · · · · · · · · · · ·            |                                        | · · · · · · · · · · · · · · · · · · · |              |                                       |
|          | 16.70-17.5 SCOP  | 1      | 16.70 - 17.50 Scor strong Alt numbers Veins.                       | 304 and vernets +5.50°CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hard SIL Carb . pervaint<br>minor aroun sericite | 8.15%. nating dissom EPg               | cone posi                             | et to vain   | mf groment                            |
|          |                  |        | 17-50 - 2070 Light-red gues 1g Besalt                              | Carb Veinlets 40-60°CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | w/m pervosive of carb                            | local Tr-1% dissem fi                  | n ery.                                |              |                                       |
| 20       | 20.70-21.20 SCQP |        | 20.70-21.20 NOTOW SCOP                                             | cht. Ishlars locally.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | * . ca                                 |                                       |              |                                       |
|          | B()              | 1      | 2120-2350 Light green Bosalt, Swirly<br>turbules (infor or illow?) | Local low and carb VITT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | with pervosive Carb (coli)                       | downwards local con                    | The ARCANES                           | tes e intera | illey ? mar at it.                    |
|          | 23.50 - 35.48    | 12     | 23.50 - 35.48 Light Tan, hard strayly                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | ······································ |                                       |              | 7.5-                                  |
|          | SCOP Zone        |        | actored SCOP 5-104. 9ts vers, veralts                              | Lisen Veniable entre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pervosirie to dusern                             | Variable fine dursen                   |                                       |              |                                       |
| _        | ,                |        | dissem fry throughout.                                             | mony 40-60 some sub- morallel to Zo'rA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | fine silica - carb (cnk)                         | EPy. 23.50 - 27.50                     |                                       |              |                                       |
| 30       |                  | A      | No mojor veins                                                     | No obviour Microfestere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | margins have sign carb                           | 27.50-24.50                            | 10-720%                               | smy selvi    | dge concentration                     |
|          |                  | 11     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | local narrow g/z/carb                            | Mp fg local Cg durin<br>14.50-75.48    | 37-15%                                | as about     |                                       |
|          |                  |        | 35.48 - 41.0 Carb Bosalt - bown                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | More corb. faw gult                              |                                        | 1. 30% 7.                             | erg          |                                       |
|          | CB               |        | weathered, for non negretic                                        | GARTSE Veialets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Carbonated throughout                            | Traces of dividences                   |                                       |              |                                       |
|          |                  |        |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (anticole).                                      | Ry JU                                  |                                       |              |                                       |
| 40       | 410-48.8 SCOP    |        | 41.0-48 84 Light Ten strongly                                      | 40% 10% gla VIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pervesive onthe silice                           | 4-10% for minere d                     | men cpy                               | selveda      | e conc                                |
|          | Zona             | 1      | Altered ScyPi                                                      | non Luider than zon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | fg. (ost-call)                                   | ·                                      | ļ                                     | ļ            | ····                                  |
|          |                  |        | No major voins                                                     | several norme gtz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ······                                           |                                        |                                       |              | ļ                                     |
|          |                  |        | ·                                                                  | Cont VEINLOS Similar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b></b>                                          |                                        | :                                     |              |                                       |
| 6        | - CR(P)          |        | 48.86-50.2 (ank) C Boselt                                          | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  | 1-2% chosen for By                     | <u> </u>                              | <b> </b>     |                                       |
| 50       | (-v(r)           |        | 20-20-62.8 lightimed green of g.                                   | local colute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Potchy porceasure                                | Traces of drawn                        |                                       |              | <b></b>                               |
| . '      | B. LAMP          |        | fairly uniform Basalt . w/m carb                                   | Demand, Sorthe Suba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.1/m carb ( call)                               | Py                                     | <b></b>                               | <b>}</b>     |                                       |
|          | Dyke Dyke        | elet]  | (calc) weak magnetic                                               | Vog mer preceves -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                                        | <b>↓</b>                              | <b> </b>     | <b> </b>                              |
|          |                  | - H. C |                                                                    | The Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contracti |                                                  | 4                                      | 1                                     |              |                                       |
| _        |                  |        | local suggestion of pillows.                                       | Thers (slicks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ······································           |                                        |                                       |              | · · · · · · · · · · · · · · · · · · · |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Wells

DATE: 11 JULY, 2003.

## CASSIAR-TAURUS

6 gt again POORLY SAMPLED

#### NAVASOTA RESOURCES LTD.

| [   | DHNO. T95-6                             | 4                  | <u> </u>                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ······································  |                                       |                  | PA       | GE NO.2      |
|-----|-----------------------------------------|--------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------|------------------|----------|--------------|
|     |                                         | T                  | LITHOLOGY                                  | STRUCTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ALTERATION                              | MINERALIZATION                        |                  | SAMPI    | ING          |
|     | MAIN UNITS                              | ΠG                 | L SUB UNITS                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,                                       |                                       | FROM             | TO       | NUMBER       |
| 0   |                                         | TT                 |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ······································  |                                       |                  |          |              |
| ľ   | (2 50 - 67.20                           | ١È                 | 62-80-67-20 Tap call in 11                 | and the state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1 -1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |                                       |                  |          |              |
|     | C(s)P                                   |                    | Astrong carb all strong Ry - (lay 12 2004) | WINING 66.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Story Carb, ERICONK)                    | 62.80-64.0 3-10%                      | M aine           | <u> </u> |              |
| 1   | minor qty v.                            | - 10               | 65.60-66.50                                | Facture - Pu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | strongent near foult                    | 640-655 Tr.3% du                      | nen G            |          |              |
|     | POORLY                                  | B 🖌                | 167.20-7140 Carb Bas (ank)                 | low angle debris - frechere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Poly diman Ary                          | 65.5-67.0 7->25%                      | <u>fmc disse</u> | n bord   | P. Some SOCA |
| 10  | CB                                      | 17                 |                                            | 20"CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Carblank chi. stams                     |                                       |                  |          |              |
|     | DAT AN AL AND A                         | ≥ [″               | 71.40-73.0 Mixed semi messive / dume m Py  | Story 20.25"SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Patchy permasive carb                   | to 72.4 semi massive of               | szm Py           | (73)     |              |
|     | SCOP Below                              | <sup>r</sup> y   / | 12 - 75.80 (dunem Py) below                | Actives pelow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ank licel calcut                        | becom 2-5% m/c duber                  | - Py (14         | )        |              |
|     | 73.0-79.80                              | - 1                | FAULTZONE Strang Chlarik law and           | chlorki prochuser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | chloat dours                            | · · ·                                 |                  | ······   | ·            |
|     | FAULT ZON                               | E                  | Scop type mating                           | 15 CA. Rubbin records                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | cont-sil below                          | oussen ny Ry Luner.                   |                  |          |              |
| 80  | Chi.                                    | P                  | 79.80-80 30 SCOP an of verning             | below J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | silies - south                          | 5-7% min duriem ER                    |                  |          |              |
|     |                                         | ľ                  | 8 strong alteration with dun an Py         | some michten brow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Min normalitie cale                     | Train J diman Pr                      |                  |          |              |
|     | c                                       | S_                 | \$ 82.97-83-69 chlochi law and lault       | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                       |                  |          |              |
|     | - · · ·                                 |                    | \$2.60-90.30 med green -19 Pillowed        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Palat and and inter                     | · · · · · · · · · · · · · · · · · · · |                  |          |              |
| 1   | Biot Lompropiy                          | ۹.                 | Basalt with local jesperoid mod maynetic   | 0:11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Corb ( cals                             |                                       |                  |          | 1            |
|     | J .                                     | 2                  | duke uppor = 20CA LOWER C = 4K"            | 451A MICROFreching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | ·                                     |                  |          |              |
| 70  | - PB                                    |                    | 90.30 - 9/ (0                              | (\$68(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                                       |                  |          |              |
|     | CB (PAZ)P                               | 6                  | ip ad varable tractured (nearled) with     | 95 30-95.60 40-50'CA<br>Cant V . 6x 30-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Strong Carb (ant-cal)                   | Patchy and recollet                   |                  |          |              |
|     | •                                       |                    | Postchy and winder fine syste              | morghockingwith                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | fg Py generally 5-10%                 |                  |          |              |
|     |                                         | Ë                  | 19650-112.0                                | By veinlets Tow englis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | Locally > 20%                         |                  |          |              |
|     |                                         | - []               | Light med green fg                         | Probably pillowed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | weak chosen cale                        | Sporse dimen Py                       |                  |          |              |
| 100 | - $PB(c)$                               |                    | ( w/m nogratic Basatt Local jaspensid      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lucal strange near                      | · · · · · · · · · · · · · · · · · · · |                  |          | <u> </u>     |
|     |                                         | F.                 | []                                         | 100.55-101. low angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pectrose - interpillon                  |                                       |                  |          |              |
| !   |                                         |                    |                                            | Chimne jour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                       |                  |          |              |
|     |                                         | ľ                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                       |                  |          |              |
|     |                                         |                    | ď                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                       |                  |          |              |
| 10  | -                                       | ľ                  | Υ                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · ·   |                                       |                  |          |              |
|     | . •                                     |                    | > 112 p-114 p. Tan for stora alterad       | mine de ventels 15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A store carb (six                       | 5-10% In dision EP                    |                  | ,        |              |
|     | E S P(a) A                              | ~ k                | with dissom edg                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | 2-50% fine EASPY LEAS                 | e ins            |          |              |
|     |                                         | ן צי               | " 114.0-131.90 med piego la mornelia       | de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la comp | Patchy Wim deman                        | CANTER Lin. P.                        | 1                |          |              |
|     | PBA                                     |                    | Rosalt Tassacid alt                        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | local approximp for                     |                                       | 1                |          |              |
|     | ( · · · · · · · · · · · · · · · · · · · | - 1                |                                            | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | trance beauties of the                  | t                                     | +                | t        |              |
|     |                                         | · .                | pillou d                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (ach (cale)                             |                                       |                  | 1        |              |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Wells

DATE: July 11, 2003.

## CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| D                         | DH NO. 795 - 64 |                                           | · · · · · · · · · · · · · · · · · · · |                                        |                                        |      | PAG       | GE NO. 3                              |
|---------------------------|-----------------|-------------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|------|-----------|---------------------------------------|
|                           |                 | LITHOLOGY                                 | STRUCTURE                             | ALTERATION                             | MINERALIZATION                         |      | SAMPL     | ING                                   |
| 20                        | MAIN UNITS      | GL SUB UNITS                              |                                       |                                        |                                        | FROM | TO        | NUMBER                                |
| ·                         |                 | 1 14.0-131.90 Willowed nognetic basalt    |                                       |                                        |                                        |      |           |                                       |
|                           | PB(c)           | 4                                         |                                       |                                        |                                        |      | ····      |                                       |
| 1                         |                 |                                           | · · · · · · · · · · · · · · · · · · · |                                        |                                        |      |           |                                       |
|                           |                 |                                           |                                       | ······································ | <u> </u>                               |      |           |                                       |
| , L                       | ſ               |                                           | 130.75 - 170.60 04 7:00               | · · · · · · · · · · · · · · · · · · ·  | ······································ |      |           |                                       |
| <sup>5</sup> <sup>6</sup> |                 | 1131-90 - 137.40 Bodded check and         | Finaly & lon Louis                    | Cilia del dere                         | in a line La                           |      |           |                                       |
|                           | 131.90 - 137.40 | Chesty Tull Victure around for and will   | 10. 20% A                             | stud Pala Andre                        | sporse to absent Ry                    |      |           |                                       |
|                           | Bedded chart 1  | sparse carb in sparse part carb/calc)rich |                                       | - Shelt Below Mall                     | · · · · · · · · · · · · · · · · · · ·  |      |           | <u> </u>                              |
|                           | chemical seds   | laminae below Locally ispery-loninee      |                                       | rup crewical sed                       |                                        |      |           |                                       |
|                           | + fire Tuff     | 137.40-146.60 Mad and a                   | in the the t                          | Carry Course in the                    |                                        |      |           | <u>.</u>                              |
| 10 -                      | r í f           | mynetic Basalt possibly some tup          | rragular grg-carb                     | mud doncem perverin                    | Troces of Cpy                          |      |           |                                       |
|                           |                 |                                           | CHAR CONTO VEINE                      | rars/coruly local                      | WITE COID VEINS .                      |      |           |                                       |
|                           |                 |                                           | Firm local blacks                     | stronger (ant -) zonen                 | ·                                      |      |           |                                       |
|                           | 4               |                                           | cpy                                   | VU-ZOIM Guide .                        |                                        |      |           |                                       |
|                           |                 | 146.90 601                                |                                       |                                        |                                        |      |           |                                       |
|                           |                 |                                           |                                       | · · · · · · · · · · · · · · · · · · ·  |                                        |      |           |                                       |
|                           | A               |                                           |                                       |                                        |                                        |      |           |                                       |
|                           |                 |                                           |                                       |                                        | ·······                                |      |           |                                       |
| ļ                         |                 | , · · ·                                   | · · · · · · · · · · · · · · · · · · · |                                        |                                        |      |           |                                       |
|                           |                 |                                           |                                       |                                        | ·                                      |      |           |                                       |
|                           |                 |                                           |                                       |                                        |                                        |      |           | · · · · · · · · · · · · · · · · · · · |
| 1                         |                 |                                           |                                       | <u> </u>                               | · · · · · · · · · · · · · · · · · · ·  |      |           |                                       |
|                           |                 |                                           | · · · · · · · · · · · · · · · · · · · | ·····                                  |                                        |      |           |                                       |
| ·                         |                 |                                           | · · · · · · · · · · · · · · · · · · · | ·····                                  | · · · · · · · · · · · · · · · · · · ·  | ·    |           | · · · · · · · · · · · · · · · · · · · |
|                           |                 |                                           |                                       | ·····                                  | ······································ |      |           |                                       |
|                           |                 |                                           | · · · · · · · · · · · · · · · · · · · | <u> </u>                               | }                                      |      | <b> _</b> |                                       |
|                           | · .             |                                           |                                       | <u> </u>                               |                                        |      | [         |                                       |
|                           |                 | · · · · · · · · · · · · · · · · · · ·     |                                       | · · · · · · · · · · · · · · · · · · ·  |                                        | ·    |           |                                       |
|                           |                 |                                           |                                       | · · · · · · · · · · · · · · · · · · ·  | `````````````````````````````````````` |      |           |                                       |
|                           |                 | ······································    |                                       |                                        | <b>-</b>                               |      |           |                                       |
|                           |                 |                                           |                                       | · · · · · · · · · · · · · · · · · · ·  |                                        |      |           |                                       |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: K. Wells.

## CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| DDH      | INO. T.95-0      | ;7               | (Logged 0 - 87M)                      |                                       | · .                                   |                                        |            | PAC        | GENO. 1                                |
|----------|------------------|------------------|---------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|------------|------------|----------------------------------------|
|          |                  | <u> </u>         | ITHOLOGY                              | STRUCTURE                             | ALTERATION                            | MINERALIZATION                         |            | SAMPL      | ING                                    |
| <b></b>  | MAIN UNITS       | GL               | SUB UNITS                             |                                       |                                       | · · · ·                                | FROM       | то         | NUMBER                                 |
|          | 0-15.0           | o°               | 0 - 4.0 Overbucden                    |                                       |                                       |                                        | ·.         |            |                                        |
|          | Overburden       | 0                |                                       |                                       | - 1                                   |                                        |            |            |                                        |
|          | •                |                  | 40-7.9 Some mixed material (boulders  |                                       |                                       | ······································ |            |            | ······································ |
| <u>]</u> | 1 . 1 <i>m</i> . | 10,              | 7.9= 12.0 Rosalt light to mad propo   | Faith manual hard                     | 7.9-12.0 11.                          | To 141 1 1                             |            |            | ,                                      |
|          | 4.0-13.0         |                  | l'interint and to be marine           | faminati diena                        | veinlet related calificati            | Trest for duren                        |            |            |                                        |
| o        | mec              | 1.7              | the grained and fairly madive         | Camination bo CH                      | 13.0-18.0 Mod - Strong                | Py some in fractives                   |            | ····       |                                        |
|          |                  |                  | Non to Very Weak megnetic             |                                       | pervosive colcite                     |                                        |            | ·          |                                        |
|          | 15-0-16.70       |                  | @ 15-0 - 16:70 Narrow SCOP ZONE       | Two lem ato veins                     | 15.0-16.70 Tan pervosive              | Tr- 5% fine dissem Py                  |            |            | <u></u>                                |
| Į.,      | SCQP             | V//              | <b> </b>                              |                                       | (4),                                  |                                        |            |            |                                        |
|          |                  | V                |                                       | · · · · · · · · · · · · · · · · · · · | 16.70-22.0 weak windet                | TI-1% for dissem B                     |            |            |                                        |
| 0        | mB(c)            |                  |                                       | <u></u>                               | related carb (cal)                    |                                        |            |            |                                        |
|          |                  | 1.1              | j                                     | ·                                     | Corb(cal)                             | <u>`</u>                               |            |            | •                                      |
| ļ        | 23.0-26.13       | 1                | 23.0-26.13 SCOP Ton for strandy       | Norraw Lica veins                     | store perversive ant-                 | dissem and local                       | Vectore    | ventet     | FP. AMO.                               |
|          | C(sq)P           | 4                | altered with a few normal at a voine  | milky 9/3 @ 35.40°CA                  | calita, vory little silice            | voriable conc · 3-7                    | •/.        |            | 57 5                                   |
|          | 26.13-35.3       |                  | 26.13-25.3 maki (Bosalt) Tulle        | Lamination 35-45KA                    | ranishin vin to mod                   |                                        |            |            | -                                      |
|          | •                | 1//              | waath lanisated                       | the subsect account                   | lancing Canton Had                    | Tr. 2º/ mle "dise                      | EP.        |            |                                        |
| "        | Majie Tuffs      | ``\ <i>!!!</i> / |                                       | mm seals                              | Resurging - Nissen 1051               |                                        | ·····      |            |                                        |
|          | •                | <i>\///</i>      |                                       |                                       |                                       |                                        |            |            | · · ·                                  |
|          |                  | Y/               | 24.18 - 52.4 55 - 5 - 2 - 10          |                                       |                                       | Auto Ep                                |            |            |                                        |
|          | 26.13 - 53.60    | 11               | Light to the start                    | Zhan are vern stweet                  | Pervesive Silica -Colle               | myc dimen My                           |            |            |                                        |
| 1.       | SCQP.            | 11               | Light ton, smonely alkared            | 39.80 45 CA : 40.0-40.4               |                                       | proximal to veins                      |            |            |                                        |
| 40-      |                  |                  | with variable amounts of milky        | HOTA Some AN                          |                                       | 3-10% else whore                       | ·          |            |                                        |
|          |                  |                  | questy verning and dissem CPy         |                                       |                                       | 2.5% for diman by                      | polety     | scal Tr-   | 12 49.1-52.0                           |
|          |                  | XA               | /                                     | 44.5-45.5 3cm ala                     |                                       | 1.4.1 87                               |            |            | ` <u> </u>                             |
|          |                  |                  |                                       | -conise rg rins ich                   |                                       |                                        | ļ          |            | ·                                      |
|          |                  |                  | M                                     |                                       |                                       |                                        | ·          |            |                                        |
| c.       |                  |                  |                                       |                                       |                                       |                                        | <u> </u>   |            |                                        |
| ٦*       | 11               |                  | · · · · · · · · · · · · · · · · · · · | 51.5-53.6 uph 1cm                     |                                       |                                        | L          |            |                                        |
|          | 53.6 - 63.9      | - F*             | 53.6-68.90 Bawn weathered             | 19V. 10"CA                            |                                       |                                        | L          |            | ·                                      |
|          | Malie Volcanics  |                  | Carbonaled (cale sank) becalt         |                                       |                                       | dimen to serverive                     | 1-2º/2 di  | ni dumen   | CPS in                                 |
|          | lac full.        | Į.               | ave and porrel to SCOP                |                                       |                                       | mis carb lank- cal                     | transition | rame       |                                        |
| .L       | inc. cyps        |                  | 2 ones Some Tuff senes will           | · ·                                   | · · · · · · · · · · · · · · · · · · · |                                        |            | , <u> </u> |                                        |
| Ξ-Γ      |                  |                  | chert!                                |                                       |                                       | 1                                      | 1          | 1          |                                        |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Walls

DATE: July 12, 2003

## CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| D        | DH NO.                                |                                        | ·                                       |                                                                              |                                       |          | PAC                                   | GE NO.                                 |
|----------|---------------------------------------|----------------------------------------|-----------------------------------------|------------------------------------------------------------------------------|---------------------------------------|----------|---------------------------------------|----------------------------------------|
|          |                                       | LITHOLOGY                              | STRUCTURE                               | ALTERATION                                                                   | MINERALIZATION                        |          | SAMPL                                 | ING                                    |
|          | MAIN UNITS GL                         | SUB UNITS                              |                                         | · · · · · · · · · · · · · · · · · · ·                                        | ·                                     | FROM     | TO                                    | NUMBER                                 |
|          |                                       |                                        |                                         |                                                                              | Troce - 2% M/c dispon                 |          |                                       |                                        |
| · •      | Tull(chart)                           | 065.20 local lom check bonds 2000      |                                         | stand pervesive coils                                                        | EP.                                   | ·        |                                       | ······································ |
| -        | Je Sector                             |                                        |                                         | (tyle)                                                                       |                                       |          |                                       |                                        |
|          | A A A A A A A A A A A A A A A A A A A | a tuble zo'CA                          |                                         | - 0° · ·                                                                     |                                       |          |                                       |                                        |
|          | 61.9 - 78.0                           | 168.90-78.0 Alteration Zone with Acrow |                                         | Pervering Carb (ril)                                                         | outside scop                          |          |                                       | · _ · _ · _ · _ · _ · _ · _ · _ · · ·  |
| <b>۲</b> | CB/SCOP                               | SCQP woils 71.9-74.0 -76-4-773         | 719-74.0 local gy                       | with SCOP -                                                                  | To - 201 france divin                 |          |                                       |                                        |
|          | /- /                                  |                                        | load low onthe chility                  |                                                                              | EPy 10 2014 2.6%                      |          |                                       |                                        |
|          | - Vie                                 |                                        | 76.4-77.3 Milks 94                      | ······                                                                       | Fm dimen FR                           |          |                                       | · · · · · · · · · · · · · · · · · · ·  |
|          |                                       | Canen la Resalt                        | Salvadye Arpy                           | · · · · · · · · · · · · · · · · · · ·                                        |                                       |          |                                       |                                        |
|          | 78.0->88.0                            | i reating unaltered and to wat         | lacal live and alle                     | Q-111 anti- in tale                                                          | from 1 1 ·                            |          |                                       |                                        |
| •        | - B                                   | a marker a the sale and the            | Venter                                  | Parting periodical ant                                                       | Trates of the                         |          |                                       |                                        |
|          | ्रि<br>स                              | major i party major                    |                                         | larb (rate)                                                                  | achen. Py                             | ·        |                                       |                                        |
|          |                                       |                                        | ······                                  |                                                                              |                                       |          |                                       |                                        |
| 1        |                                       |                                        | · · · · · · · · · · · · · · · · · · ·   | <u></u>                                                                      |                                       | · · · ·  |                                       | · · · · · · · · · · · · · · · · · · ·  |
|          | End of                                | End ( \$55.5 Co com                    | ······                                  | ╡ <sup>_</sup> <sub>_</sub> <sub>_</sub> <sub></sub> <sub></sub> <sub></sub> | · · · · · · · · · · · · · · · · · · · |          | · · · · · · · · · · · · · · · · · · · |                                        |
| 10-      | logging                               |                                        | ······                                  | · · · · · · · · · · · · · · · · · · ·                                        | · · · · · · · · · · · · · · · · · · · |          |                                       |                                        |
|          |                                       | · · · · · · · · · · · · · · · · · · ·  | <b> </b>                                |                                                                              |                                       |          | ·····                                 |                                        |
|          |                                       | · · · · · · · · · · · · · · · · · · ·  |                                         |                                                                              | 1                                     |          |                                       |                                        |
|          |                                       | · · ·                                  |                                         | ·····                                                                        | · ·                                   |          |                                       |                                        |
|          |                                       |                                        |                                         | · · · · · · · · · · · · · · · · · · ·                                        |                                       |          | · · · · · ·                           | . ·                                    |
|          |                                       |                                        |                                         |                                                                              | 1                                     |          | ·····                                 |                                        |
|          | · · · · ·                             |                                        | · · · · · · · · · · · · · · · · · · ·   | <u>.</u>                                                                     |                                       | <u> </u> | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · ·  |
|          |                                       | · · · · · · · · · · · · · · · · · · ·  | ······                                  | <u> </u>                                                                     |                                       | <u> </u> |                                       |                                        |
|          |                                       |                                        | · · · · · · · · · · · · · · · · · · ·   | 1                                                                            | · · · · · · · · · · · · · · · · · · · |          |                                       | ·····                                  |
|          |                                       |                                        |                                         | · · · ·                                                                      |                                       |          |                                       |                                        |
|          |                                       | ······································ | <b></b>                                 |                                                                              |                                       |          | · ·                                   |                                        |
|          |                                       |                                        | T                                       |                                                                              | 1                                     | 1        | · ·                                   |                                        |
|          | ·                                     |                                        | T · · · · · · · · · · · · · · · · · · · |                                                                              |                                       | I .      |                                       |                                        |
|          |                                       |                                        | · ·                                     | · ·                                                                          |                                       | 1        | ·                                     |                                        |
|          | · · · . ]                             |                                        | 1                                       | l .                                                                          | 1                                     | 1        |                                       |                                        |
|          |                                       |                                        | · · · · · · · · · · · · · · · · · · ·   |                                                                              |                                       | 1        |                                       |                                        |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. W.L.115

DATE: July 12, 2003.

## Investigation of mineralized Zones for correlation purposes

## CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

|          | DDH NO. T 95-72        | ()                 | 20-180m)                                                                   | ······································              |                                         |                         |            | PAC         | GE NO. I     |
|----------|------------------------|--------------------|----------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------|-------------------------|------------|-------------|--------------|
|          |                        | LI                 | THOLOGY                                                                    | STRUCTURE                                           | ALTERATION                              | MINERALIZATION          |            | SAMPL       | ING          |
| <u> </u> | MAIN UNITS C           | <u>SL</u>          | SUB UNITS                                                                  |                                                     |                                         |                         | FROM       | TO /        | NUMBER       |
|          | 100.0 - 123.0          | 1                  | 123. Larborated Pillowed Basalt<br>Med green locally w regnetic Interpilly | Pillowed with healed church fractures               | M/s dure m-semi pervasive<br>carb (ank) | Trown of by disser by   |            |             |              |
|          | <b>_</b>               | Ч                  | 122.0 - Strong Alt Tang with SCOP                                          |                                                     |                                         |                         |            |             |              |
|          | 123.0-144.40           | $\boldsymbol{\mu}$ | 123.0-123.6 Weck Scopp<br>123.6-129.95 Faith Appestable (A Minor           | grz veins to 200 some ampl                          | strong ankente-cart                     | 1-3% fg diver by        |            |             |              |
| 1        | Strong Alteration Zone |                    | 9/3 wines mm. schle                                                        | agle gtz verniete foirly                            | along vernlets .                        | salvadges to go 5-8% M  | g B, mic   | cubes Asp   | י <u></u> די |
| -        | CB with SCQP Aspy A    |                    | 129.05-131.90 Az ebus with gr every M                                      | Massive @126.8 loen gu<br>gvs 5-losm with incl      | AI GOOD                                 | Tr-2% la disom P.       | ·          |             |              |
| 30       | Sericite               |                    | 131-90 -133.2 Cart Bas (ank)                                               | of m/c CArb (ank - dol)                             | In oursen coubleds-sol                  | mainly province to gvs. |            |             |              |
|          | l ła                   | $\pi$              | 133.20-135.0 SCQP                                                          | gv's to 3 cm useca Py selve.                        | strong sil-carb.                        | 3->10% JANE ER CONC     | et voin se | luedges     |              |
|          | Aspy                   | Z                  | 135.0 - 136.0 Carb Bar (onk)<br>136.0 - 138.0 SCOP                         | 137.16-137.46 QV. 60°CA<br>ofcor voins to 200 40'CA | strong carb, sil                        | 2-8% In dunen ER cu     | ne at utin | So / sedaro |              |
|          |                        |                    |                                                                            |                                                     | string pervicine carb.                  |                         |            |             |              |
| 40       | L .                    | 2                  | and gu rest find verales law density                                       |                                                     | Ventel - silica ? mainly                | 1-3 % de akinen « Pa    |            |             | ·            |
| +-       | Γ                      |                    | · · · · · · · · · · · · · · · · · · ·                                      | @ 143.56 2cm qv 45°CA                               | fine voinleto                           | <i>00</i>               |            |             |              |
|          |                        | Λ                  | 144.0-148.2 Carboraled Basalt                                              | Local fine cars vertets                             | sami norrosive duriom                   | Trous of fine disem P.  |            |             |              |
|          | 144.40-154.80          | ~                  | mus du green fg. Non mognetic                                              | <i>.</i>                                            | M/s coluite                             |                         |            |             |              |
|          | Carbonated Basalt.     | 58                 | 108.20-151.60 Tan altered. Strong carb                                     | tracture lehous.                                    | strong calc-ank -local                  | Traces of faidissem!    | P          | ,           |              |
|          | СВ                     |                    | with irregular carb verifiets local sericite                               | 70-90°CA so do vains                                | ser.v                                   |                         | ۲          |             |              |
| .20      |                        | 8                  | 151.60-154.80 as at 144.0                                                  |                                                     |                                         |                         |            |             |              |
|          | l í                    | 1.5                | · · _ · _ · _ · _ · _ · _ · _ · _ ·                                        | ·                                                   | · · ·                                   | <u> </u>                |            | a           |              |
|          |                        | -1                 | 154-80-158.20 Weak SCOP daw ab vis                                         | local milky ges upto                                |                                         | Patchy vein neloted fr  | 10-19      | 5-21070     |              |
|          | 154.80 -178 3          | 1                  | 158 80-1607 SCOP with lorge joins                                          | Breine voto sucm                                    | strang sil carb                         | 2-10% dimen Sole P      | in wall    | rets        |              |
|          | strong Alteration Zone | I.                 | 160.7-166.3 Weak Scoplan at 11.                                            | larger voin 55°CO.                                  | a moderate come cil-cont                | local prectures in ve   | ins        |             |              |
| 180      | Lecal Set              |                    | ··· /··                                                                    | one main OVAIGUSE -                                 |                                         |                         |            |             |              |
|          |                        |                    | 1643-161.85 SCOP with win a at 188.2                                       | 164.65 Vg reputed At                                | strong sil- corb.                       | 5-710% Lon(c) depart    | ne ve      | in relat    | -<br>d       |
|          | * On a stud            | 1                  |                                                                            | abure some the                                      | local ser.                              | some than inputed       | 12 04. 50  | udue . Ve   | is els       |
|          | AspyVG                 |                    | 166.85-168.73 Brown corborated (onk)                                       | sporse revolats                                     | •                                       | Tr-2% 10 dimen "Ry      | / ·        |             | /3           |
| 170      |                        |                    | 168-73-170.50° SCOP                                                        | gt vero zoca several ville                          | strave code-sil (seal                   | 3-210% dm/c) dime       | Ry vein    | mated       |              |
|          |                        | 97                 | 170.50 - 178.30 strong pervosive carb                                      | 1 SAUCA                                             | green Ser                               |                         |            |             |              |
|          |                        |                    | alteration with fairly abundant at                                         | Massive with vernlets                               | Pervasive strong ank                    | Tr- 4% don Palace       | l safely   | Some V      | ein selvedae |
|          | 178.3 ->180            |                    | -card revolet lacel veins, bocal by                                        | 45-60 CH 47-000                                     | -cal                                    |                         | <u> </u>   |             |              |
|          | B                      |                    | 1783->181 Med given fg. B                                                  | fine carb veinless.                                 | Pervesive mod cality                    | TC-Pu                   |            |             |              |
| 180      | » <b>–</b>             | 1                  | w/m magnetic                                                               | ļ                                                   | <u></u>                                 |                         |            |             |              |
|          |                        | I                  |                                                                            | · -                                                 | · · · · · · · · · · · · · · · · · · ·   |                         |            |             | 1            |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: Ron Wells

DATE: July 12, 2003

ſ

## CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

|    | DDH NO. 795-19                        |              |                                         | · .                                           | -                         | · ·                                    |            | PAC         | GE NO. 1                              |
|----|---------------------------------------|--------------|-----------------------------------------|-----------------------------------------------|---------------------------|----------------------------------------|------------|-------------|---------------------------------------|
| L  | · · ·                                 | • <u>L</u>   | ITHOLOGY                                | STRUCTURE                                     | ALTERATION                | MINERALIZATION                         |            | SAMPL       | ING                                   |
|    | MAIN UNITS                            | GL           | SUB UNITS                               |                                               |                           |                                        | FROM       | то          | NUMBER                                |
| "  | 0-4.3                                 | 2            | 0-4-3 Overburden                        |                                               |                           |                                        |            |             | ····                                  |
|    | overburden                            | ిం           |                                         |                                               |                           |                                        |            |             |                                       |
|    | <u> </u>                              | m            | 413-23.4 Bosalt, fie praired            | week to not backword                          | Lillan - chlaubi Taxid    | rear he dreat 1'                       |            |             |                                       |
|    | byia<br>I                             | h≯           | non manachic local villar columna?      | chlasilar slipe los for                       | Bleached and liter        | 1 the P                                |            |             | · · ·                                 |
|    | 1                                     |              | Jun Jun Jun Jun Jun Jun Jun Jun Jun Jun | 16.5-20.5 Low anglo 10.70                     | A all il ulmante is i     | fin charge ry                          |            |             |                                       |
| 10 | - 4                                   | <b>K</b>     |                                         | 012.6 Sem by off-carb                         | VEINS 14:7- 16.0          |                                        |            |             |                                       |
|    | 4.3.23.4                              | 1            |                                         | Vein seca                                     | 16.5-20.5 ch/ + cu/m cale | ······································ |            | · · · · ·   |                                       |
|    | PR(1) 9CV                             |              |                                         | ·                                             | 20. 8-210 blanched ank    |                                        |            |             | · · · · · · · · · · · · · · · · · · · |
|    | CB                                    | 11           | /                                       |                                               | 21.0 - 114 chl. w/m cole  |                                        |            |             | · · · · · · · · · · · · · · · · · · · |
|    |                                       | 1///         |                                         | ······                                        | ·····                     |                                        | ·····      |             | · · · · · · · · · · · · · · · · · · · |
| Zø | -                                     |              | f                                       |                                               |                           |                                        |            |             |                                       |
|    |                                       | 1            |                                         |                                               | ·                         |                                        |            |             |                                       |
|    | 23.4-34.4 ·                           |              | 23.4-34.4 Bown weathind antente         | Win frestured through                         | mod pervicine-dimen       | spare-Tr fine Py                       |            |             |                                       |
|    | 25.5-28.0                             |              | allered Basatt. Nea magnetic            | put oppress to Adown                          | fo ankante some           |                                        |            |             | -                                     |
| ļ  | Transitional                          | 22           | Sparse P.                               | with low angle 0-20°CA                        | calite                    |                                        |            |             |                                       |
|    | scar                                  |              | · · · · · · · · · · · · · · · · · · ·   | froctione planes                              |                           |                                        |            |             |                                       |
| 10 | Г                                     |              |                                         | 25.5-28.0 Irregular ate                       | Blogshid ant (sil)        | 1-3% fine dusen EPy                    |            |             |                                       |
|    |                                       |              |                                         | 70-80'CA                                      | Actor 21.0 Chi bracking   | Troce to durin P.                      |            |             |                                       |
|    | 34.4-38.0                             |              | 34.4-38 & Quartz Vain Zong thits        | strong tractured local                        | late and wains            | 1-0-0 1 24 4 50                        | 61065      |             |                                       |
|    | date roma g13,                        | 1/           | Much and at strong brilling             | bx gts som lot cors                           | some corbon on frectures  | inter a string off                     |            | <u> </u>    |                                       |
|    | - more - pARIE :                      |              | 129.1 - 19 5 Forther - Allers L'        | La La La La La La                             | SO-LOC M                  |                                        |            | · · · · · · |                                       |
| 40 | - raiture - Alt Zona                  | .\\\\        | (Corbonations to 40 chlonti below       | frectioner ore of low                         | M/s ankente bleached      | Trous-14 mg Py due                     | ۲ <u>م</u> |             | · · · · · · · · · · · · · · · · · · · |
|    | upto 40% lost core                    |              | 42.5-50.76 Ton Alteration Zone          | angles 10-30TA with                           | with forture Carbon Chill |                                        |            |             |                                       |
|    | 42.5-49.0<br>SCOP                     | 1.5          | and numerous milks 952 veins            | 46.70-46.90 04 80'14<br>48.3 - 48.50 ky 70-80 | String cathlank) Sil.     | Variable amounts of for                | nc er a    | Hen cool    | se near                               |
|    |                                       | 1            | Trensitional contail Butter CE          | an voince 150-90'rd                           |                           |                                        |            |             |                                       |
|    | 1                                     |              | · · · · · · · · · · · · · · · · · · ·   | 46.0 -44.25 More 6x                           |                           |                                        |            |             |                                       |
| 50 | 50.76 - 5 8.10 Stan                   | -            |                                         | MILEY QU. 40 CH                               |                           |                                        | <u> </u>   |             |                                       |
|    | CB (Some dyke) ov (Bx)                | 3            | 150.76 - 52.10 Stone Alteration Zone    | Vacial m to local S                           | stry-patchy porvesive     | 2-70/ fo dearen P, au                  | tride ven  | 1 7 00      | when anoth                            |
|    |                                       | -            | The of dikes                            | Barten av V aute A.                           | Corb (calc)               | 237. V Ry esoc with                    | ven pess   | 015 C 9C    | and freehra                           |
|    | 53.10 - 63.60                         | Ыĉ           | all also change blicked and an          | or active a contract preys.                   | No to to a suitative      |                                        | 6.000      |             |                                       |
|    | A A A A A A A A A A A A A A A A A A A | .   <b>r</b> | state porching por area 30.00 10.30     | slips some cette Libres                       | I wondelt corb (cale)     | 1-5% fg ander By Lie                   | - ( COA/3C | L           | ·                                     |
| 60 | L                                     | 2            | 53 10- 59:5 altered porph Sasale (dyla  | ¥ ′                                           |                           |                                        |            | ·           |                                       |
|    | <u> </u>                              | ۷.           |                                         |                                               |                           |                                        | 1          |             |                                       |

KAMLOOPS GEOLOGICAL SERVICES LTD.

 $\bigcap$ 

LOGGED BY: R. Will

......

DATE: 14 July 2003

## CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| ្រ         | DDH NO. 795-19                         |                                                                             |                                        |                                       | ·                                      |                    | PA          | GE NO. 2- |
|------------|----------------------------------------|-----------------------------------------------------------------------------|----------------------------------------|---------------------------------------|----------------------------------------|--------------------|-------------|-----------|
|            | L                                      | ITHOLOGY                                                                    | STRUCTURE                              | ALTERATION                            | MINERALIZATION                         |                    | SAMPI       | ING       |
|            | MAIN UNITS GL                          | SUB UNITS                                                                   |                                        |                                       |                                        | FROM               | TO          | NUMBER    |
| 2          | FAULT ZONE PAZ                         | dunem Pr (PAZ)                                                              | and gry verilets TU-SO'CA              | Porvesive cost (cole)                 | 5-725% fg Py.                          |                    |             |           |
|            | 19                                     | 61.5-63.60 overprints SCOP                                                  | 62.0. 67. 2 Milly 9- 40CA              | ź                                     | 3-15% ME Thy Some                      | free               | , ·         |           |
|            | 63.60 - 82.80                          | 93.60-52.80 Tan, Strong all Used SC<br>9.13, VEIDL DANG : VEIDLE THROUTLANT | 63.60-                                 | SUDE Zunin                            | 3->10%. M/C (d) EP, 0                  | umen               |             |           |
|            | SCOP LONE                              | variable enounts of dimon VR,                                               |                                        | separated by CE                       |                                        |                    |             |           |
| _          | Much COATSE                            | 63.0.780 fairly typical SCOP                                                | Lanc of milks over                     | with at we allet                      | and to due 0                           |                    |             |           |
| <b>~</b> † |                                        | more at a CB homever live at                                                | 64.1-65.1; 67.0-68.9)                  | and dia diasa D                       | mainly of another by                   | • <b>•</b> •• • •  |             | 1 60      |
|            | LUPE .                                 | vernletr present                                                            | also 75.5-76.2 50CA                    | 70.5-75.0(PAZ)                        | S-ZAPIL FAL VALIA                      | N SP(T)            | tractura    | + disson. |
|            |                                        | SCEP                                                                        |                                        | ¥                                     | 1 7 1/ 11. 50                          |                    | len i h     |           |
|            | SCQP.                                  | ch alt may havait                                                           |                                        | diason in the state                   | H-16 Med g Ty                          | VOIN (1)*1         | · FO( E' 1- |           |
|            |                                        |                                                                             | <u> </u>                               | water must eak.                       | 1-3% + disson E Q.                     |                    | ···         | ·····     |
| 80         | -                                      |                                                                             | · ···································· | V                                     |                                        |                    |             |           |
|            |                                        | 82.8-94.8 Med                                                               | dk line P. C.                          | all A. A.                             |                                        | 80                 |             |           |
|            | 81.8-94.8                              | Carl haralt - laid manying inte                                             | 0. 20 CA Je aline                      | CAP Processing                        | 11-14. find dimon                      | <u> </u>           |             | ·····     |
|            | B                                      | with ablatility frankrige                                                   | E CONTRACTOR                           | remor care (colc).                    | ·····                                  |                    |             |           |
|            | ······································ | in and prover                                                               |                                        | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · ·  |                    |             |           |
| 90         | - ľ/,                                  |                                                                             | — ·                                    |                                       |                                        |                    |             |           |
|            |                                        |                                                                             |                                        |                                       | ······································ | <u>├</u> ───────── |             |           |
|            | 94.9.98.4                              | QUIR-98 11 links to stars and                                               |                                        | Deres in all a                        | •••••••••••••••••••••••••••••••••••••• |                    |             |           |
|            | CS(Q)PC,P                              | I a sit is a sin Se                                                         | reining sparce local                   | prerveyive crony                      | win lite man                           | yter of            | m/c · ·     | 10 Cel    |
|            |                                        | 9/3 veins. Lucol coorts of the ins                                          | JONE W UTOCA                           | rers(sil)                             | a ser l'                               |                    |             | ÷ ·       |
| 100        |                                        | WEIL - IUSIC DLEE XEIEM                                                     | chiunte frectures                      | conduits                              | Tracto fine damer                      | <u>p, r</u> y      | <b> </b>    | ·         |
|            | cu //                                  | /                                                                           | COW PAPEDO.                            |                                       | ·                                      | <u> </u>           | <u> </u>    |           |
|            |                                        | 105.72-107.8 1000 comiler + 04.9                                            | PL MIN CEP 2000                        | Tan and tail                          | 109/ - 10 - 1                          |                    |             |           |
|            | C.Pyv's                                | 1078-110.0 as at 82.80                                                      | gir vertets TO'CA                      | with antiche permanue                 | sagae line dias                        | par ve             | pur ch      | <u>+</u>  |
|            |                                        | 110-112.0 to store alteration will                                          | che forth core vit                     | tolb ( cal ) wood chi for             | R                                      | 1                  |             | [         |
|            | H0-112 E                               | I clan cause fault                                                          | 20° ca chi brack des                   | churchi patch                         | saca R.                                | <u> </u>           | 1           | [         |
|            | 12.0-119.8                             | 112.0-116.8 med arean PB                                                    | cloy gouge forms                       | permise cost (cale)                   |                                        |                    |             |           |
|            | Св                                     | ava to we acquatic for                                                      | Low and - 74°CA                        | nun carle                             | Seate Pu.                              | 1                  | 1           |           |
|            |                                        | local inter-pillow jesper                                                   | chi becture                            |                                       |                                        | [                  |             |           |
| مولا       |                                        | 5                                                                           | · · ·                                  |                                       |                                        | [                  | 1           |           |
| -20        |                                        | K                                                                           |                                        |                                       |                                        | [                  |             | ļ         |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: RWells

### CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

|     | DDH NO. 795-19  |     | •                                                                                                                                                                                                                  |                                        |                                          | · · · · ·            |           | PAC     | GE NO.    | 3                |
|-----|-----------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------|----------------------|-----------|---------|-----------|------------------|
|     |                 | L   | ITHOLOGY                                                                                                                                                                                                           | STRUCTURE                              | ALTERATION                               | MINERALIZATION       |           | SAMPL   | ING       |                  |
| 20  | MAIN UNITS      | GL  | SUB UNITS                                                                                                                                                                                                          |                                        |                                          |                      | FROM      | то      | NUMBE     | <u>R</u>         |
| ~`  | Cs(q)P          | 1   | Litt dimen by minal gy.                                                                                                                                                                                            | -40°CA                                 | strong corb onk - cole<br>natsh weak sil | find local my Py loc | l seoms-  | vineets | <u> </u>  |                  |
|     |                 |     |                                                                                                                                                                                                                    |                                        | / )                                      | · · · ·              |           |         |           |                  |
|     |                 |     | 124.60-138.95 Light red area                                                                                                                                                                                       | Pillowed                               |                                          | · ,                  | •         |         |           |                  |
|     | 124-6 -138-95   | K   | La Non week amartin PE                                                                                                                                                                                             | 120.0-130.2 lout ch                    | Arou to creat and inte                   | Come To his          |           |         |           |                  |
|     | PB              | L   | 7 9                                                                                                                                                                                                                | Ix of Chil Coll lands                  |                                          | dence la             |           |         |           |                  |
| 30  |                 | 178 |                                                                                                                                                                                                                    | veinects                               | ** <u>*</u>                              | care y               |           |         |           | ·····            |
| · · |                 | 12  |                                                                                                                                                                                                                    | ······································ |                                          |                      |           |         |           |                  |
|     |                 | 11  | ······································                                                                                                                                                                             | · · · · · · · · · · · · · · · · · · ·  |                                          |                      |           |         |           |                  |
|     |                 | 1   |                                                                                                                                                                                                                    |                                        | · · · · · · · · · · · · · · · · · · ·    |                      | ·         |         | · · · · · |                  |
|     | 138.95-141.50   |     |                                                                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · ·  | · · · · · · · · · · · · · · · · · · ·    |                      | i         |         |           |                  |
| 140 | - Carb VIt Zone |     | 138.95-141-50 Jan 4/foration Zine                                                                                                                                                                                  |                                        | ·····                                    | ·                    |           |         |           |                  |
| ·   |                 | 12  | The control carb veincer (freeting) STUR                                                                                                                                                                           | · · · · · · · · · · · · · · · · · · ·  |                                          | ·                    |           |         |           |                  |
|     |                 |     | 41.60 143.50 Ar at 124.60                                                                                                                                                                                          |                                        | ·····                                    |                      | · · · · · |         |           |                  |
|     |                 |     | 143-50-1465 Tan Allertation Zone                                                                                                                                                                                   | · · · · · · · · · · · · · · · · · · ·  | · · · ·                                  |                      |           |         | <u></u> + |                  |
|     | · ,             | 15  | ind co-160.50 hight- and groening                                                                                                                                                                                  | numerovis dk aleen                     | weak to object carb                      | spore disien Py      |           |         |           |                  |
| 150 |                 | K   |                                                                                                                                                                                                                    | Chloriti Trectionen                    | chien frechier                           |                      |           |         | ·         | ·                |
|     | Γ               |     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                              | Subportuel CA                          | · · · · · · · · · · · · · · · · · · ·    |                      |           |         |           |                  |
|     |                 | 11  |                                                                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · ·  |                                          |                      |           |         |           |                  |
|     |                 |     |                                                                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · ·  |                                          |                      |           |         |           |                  |
|     |                 |     | •                                                                                                                                                                                                                  |                                        |                                          |                      |           |         |           | ·                |
|     | <b>}</b>        |     |                                                                                                                                                                                                                    |                                        |                                          |                      |           |         |           | - 1 <sup>-</sup> |
| 160 | F               |     | EDH 160-3m                                                                                                                                                                                                         | · .                                    |                                          |                      |           |         |           |                  |
|     |                 |     | · · · ·                                                                                                                                                                                                            |                                        |                                          |                      |           |         |           |                  |
|     |                 |     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, _, |                                        |                                          |                      |           |         |           |                  |
|     |                 |     |                                                                                                                                                                                                                    | •                                      | <u> </u>                                 |                      |           |         | · · · · · |                  |
|     |                 |     |                                                                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · ·  | · · · · · · · · · · · · · · · · · · ·    |                      | 1         |         |           | ····             |
|     |                 |     |                                                                                                                                                                                                                    |                                        |                                          |                      |           |         |           |                  |
|     |                 |     | 1                                                                                                                                                                                                                  |                                        |                                          |                      |           |         |           |                  |
|     |                 |     |                                                                                                                                                                                                                    |                                        |                                          | ·                    |           |         |           |                  |
|     |                 |     |                                                                                                                                                                                                                    |                                        |                                          |                      |           |         |           | ·                |
|     |                 |     |                                                                                                                                                                                                                    |                                        |                                          |                      |           |         |           |                  |
|     |                 |     |                                                                                                                                                                                                                    |                                        |                                          |                      |           |         |           |                  |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Wells

DATE: J.J.4.14.14,2003 ....

## CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

|     | DDH NO. 795-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2          |                                       | · · · · · ·                 |                          |                                        |              | PA          | GE NO. 1                              |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------|-----------------------------|--------------------------|----------------------------------------|--------------|-------------|---------------------------------------|
|     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L          | ITHOLOGY                              | STRUCTURE                   | ALTERATION               | MINERALIZATION                         |              | SAMPL       | ING                                   |
|     | MAIN UNITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GL         | SUB UNITS                             |                             |                          |                                        | FROM         | то          | NUMBER                                |
| Ĭ   | 0.9.10 Overburden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | 0-9.10 Overburden                     |                             | ·                        |                                        |              | · . ·       |                                       |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00         |                                       |                             |                          |                                        |              |             |                                       |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pe         |                                       |                             |                          | · · · · · · · · · · · · · · · · · · ·  |              |             |                                       |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0          |                                       |                             |                          | ······································ |              |             | · · · · · · · · · · · · · · · · · · · |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - hiv      | 9-10-21.6 Med to dk alles lo chi.     | numerous chints and         | (entire of changing mit  | and the time of                        |              |             | ·····                                 |
| "   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | altered Boralt, Increasing de prophie | cality chas subcomplete     | -) croc -pervalue mps    | Spond file dister by                   |              |             |                                       |
| - I |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120        | low and the moust in the timet        | 4 20's local black          | He In to Logal same      | · · · · · · · · · · · · · · · · · · ·  |              |             |                                       |
|     | <b>∧</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ĩč         | care lass                             | COLF - COLCAR PROCESS       | Hereind a Dura           | •                                      |              |             | ····                                  |
|     | T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.1        |                                       |                             | ris a cased of provis    |                                        |              |             |                                       |
|     | C,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 5        |                                       | ······                      |                          |                                        |              |             |                                       |
| 20  | - !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 155        |                                       |                             |                          |                                        |              |             |                                       |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55         | 21.6-21.1 Kasically IVEBIC            |                             |                          |                                        |              |             |                                       |
|     | FAULT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5          | Ean coloured (ank) allered peoples    |                             |                          |                                        |              |             |                                       |
|     | ZONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 2        |                                       | ······                      |                          |                                        |              |             |                                       |
|     | SCOP by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1          | 27:1-31:00 SEOP and ris within        |                             |                          |                                        |              |             |                                       |
| 30  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | Versian voioble diver la same case    | at dia in it that dal       | Pervesive Da Konte.      | 2-3/0+ M/C SUGA                        | VIN ase      | for the     |                                       |
|     | ۱ ۱                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X          | 31.00 - 31.8 Strug def scor - Fault   | local good braceia textures | some silica              | upto 5% for duran Ry                   |              |             |                                       |
|     | the second the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec | 2          | 31.B - 360 SC QP ZOOR WITH Strongly   | Mein Milks av 33.2-36.0     | ato voinine is bacuated  | wallott 2-5th for disent.              | k            |             |                                       |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7          | 36.0-46.50 Light-med green fractured  | Support to 210 Slips with   | stroy carti (anky 0.     |                                        | F            | · · · · · · | <u> </u>                              |
|     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15         | basalt with di chloritic portres.     | cale. Varchie Lim density   | Pately W (m) porvasive   | TI-19 fine dimen Py                    | <u> </u>     |             |                                       |
| 90  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - <b>N</b> | <u></u>                               | Local Sticks along 10-20    | Carblece). Chi fractures |                                        | <del> </del> |             |                                       |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11         | )                                     |                             | <u> </u>                 |                                        |              |             | <u> </u>                              |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H          |                                       |                             |                          |                                        |              |             | +                                     |
|     | 46.5 - 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1          | HOS-SOID FRULT ZONE                   | tale caleite alia           | Kacieble Chl., cale,     | space by                               |              | <u> </u>    |                                       |
|     | FAULT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - SS       | §                                     | locally breekiated          |                          |                                        | ·            |             | ł                                     |
| 50  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 150        | 50.0-55.2 Ton, fine grained, hard     | at with to a cont           | 0                        | 2 - 11 - 11 - 1                        | 6            |             |                                       |
|     | 50 - 55:0<br>(Hepk SC (C)) 2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | J.         | with local at veinlets, dissem ely    | 113 TAIMER (fint) OF OR     | and a un tot             | and fin eusen                          | ₽            |             | <u> </u>                              |
|     | mailan man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | Eco- 42 1- Mixed CA with America      | Con procentes ast Comon     | calcity)                 | Fr. 101 11                             | <u> </u>     | <u> </u>    |                                       |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | find and haled to at any lite         | shuk                        | Pervasiuk MIS Grblank    | 1 - 1 for find atmand                  | 1            | <u>+</u>    | · · · ·                               |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ŕ          | K                                     |                             | -cale) to 613 below      | ······································ |              |             |                                       |
| 60  | <b>'</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | −IX        | ×                                     | 1                           | CLIANTLY .               | · · · · · · · · · · · · · · · · · · ·  | 1            | <u> </u>    | †                                     |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Wells

DATE: J. 1/4, 14, 2003

## CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| DDH NO. 95-22  |                 |                                       |                                       |                        |                                              |               | PAG       | GE NO. 2                              |  |
|----------------|-----------------|---------------------------------------|---------------------------------------|------------------------|----------------------------------------------|---------------|-----------|---------------------------------------|--|
|                | L               | ITHOLOGY                              | STRUCTURE                             | ALTERATION             | MINERALIZATION                               | SAMPLING      |           |                                       |  |
| MAIN UNITS     | GL              | SUB UNITS                             |                                       |                        |                                              | FROM          | TO        | NUMBER                                |  |
|                | XX              |                                       |                                       |                        |                                              |               |           |                                       |  |
| · ·            | $\mathbb{N}$    | 62.6 - 12.10 Light given dy non Caib  | Privat las and the                    | chi hant weak and      | Their of during 1 is                         | 0             |           | · · · · · · · · · · · · · · · · · · · |  |
|                | 1               | partings Noron blooched june with     | Kartine Pilling                       | (mla with) Otherst     |                                              | - <del></del> |           |                                       |  |
|                | $ \mathcal{O} $ | - gra- Utility                        |                                       | rear on Fillowid       | ·                                            |               |           |                                       |  |
| 1              | Y.              | Some chirty inter-pullow material.    |                                       |                        |                                              |               |           |                                       |  |
| <b>—</b>       | 1               | · · · · · · · · · · · · · · · · · · · | ······                                |                        | · · · · · · · · · · · · · · · · · · ·        |               |           |                                       |  |
|                |                 |                                       |                                       |                        |                                              |               |           |                                       |  |
|                | X               | 72.10 - 76.5 Ar obeve muse carb (ank) | chl. slips us to RoicA                | Pervosive to durser    | 71.20% fine dissem                           | Py persk      | <u></u>   |                                       |  |
|                | 17              | charly sachions                       |                                       | mut corb alt (onk.cal) |                                              |               |           |                                       |  |
| 76.5-77.5 PAZ. | 2               | 76.5-77.5 Light ton PAZ (ant-cal)     | minor chi slips                       | astocal porvouve       | 3->15% dine duren P.                         | ·             |           |                                       |  |
| 50(99)         | 17              | 77.5-82-3 Tan coloured for demon Ri   | ato veintela 30-20'CA                 | Carb ( anti-cal) with  | Ven pation Im disse                          | ER. 2-        | 15% loce  | 1 semismione                          |  |
|                | 1               | Cocat gly veins                       | 13                                    | silice                 | 57 50                                        |               |           | MIS 0                                 |  |
|                | -12             | 82.3-88.0 Given to ton veriably       | Probably cillowed.                    | Vadable W-A polate     | • ,                                          |               |           |                                       |  |
|                | A               | Carbonated Bosalt (pillowed)          | T                                     | dissen-pervosive Dois  |                                              |               |           |                                       |  |
|                |                 | and the stand                         |                                       | ank-chec               | The line R                                   |               |           |                                       |  |
|                | h               |                                       |                                       | NO CON MACCIN 5 M      | and the prosent y-                           |               |           |                                       |  |
| • -            | K               | ·                                     | · · · · · · · · · · · · · · · · · · · |                        | · · · · · · · · · · · · · · · · · · ·        | <b> </b>      |           | · · · · ·                             |  |
|                |                 | ▶                                     |                                       |                        |                                              |               | <u> -</u> |                                       |  |
|                |                 | ×                                     |                                       |                        |                                              |               |           |                                       |  |
|                |                 | J                                     |                                       |                        |                                              |               |           | <b> </b>                              |  |
|                | ľ               | 2                                     |                                       | ·····                  | ·                                            | ·····         | <b>}</b>  |                                       |  |
|                | 1               |                                       |                                       |                        |                                              | ·             | <b> </b>  | · · · · ·                             |  |
|                | 1               | Kest of hole speed checked            |                                       |                        |                                              | <b> </b>      | <b> </b>  |                                       |  |
|                |                 | looks okan mainly pillowed            |                                       |                        |                                              | <u> </u>      | <u> </u>  |                                       |  |
|                |                 | Bosselt, warme Lama dike.             |                                       |                        |                                              | <u> </u>      | ļ         |                                       |  |
|                |                 | TO 180-10 MEON                        | ·                                     |                        |                                              | · ·           | <u> </u>  |                                       |  |
|                | Į               |                                       |                                       |                        |                                              |               | <u> </u>  |                                       |  |
| ~~ <u>-</u>    | 1               |                                       |                                       |                        | · · · · · · · · · · · · · · · · · · ·        |               |           |                                       |  |
|                |                 | · · · · · · · · · · · · · · · · · · · |                                       |                        |                                              |               |           |                                       |  |
| 1              | l               |                                       |                                       |                        |                                              | 1             |           |                                       |  |
|                |                 |                                       |                                       |                        |                                              | 1             |           | · · ·                                 |  |
|                |                 |                                       |                                       |                        | ······································       | 1             | 1         |                                       |  |
| · -            | ŀ               |                                       |                                       |                        |                                              | <u> </u>      | 1         | 1                                     |  |
|                |                 |                                       |                                       |                        | <u>.                                    </u> |               | 1         | <u></u>                               |  |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Hells

DATE: J. Jly 14, 2003.

### CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| נ   | DH NO.     | T 95-31    |      |                                          |                                       |                         |                                        |                 | PA                                    | GE NO. /                              |
|-----|------------|------------|------|------------------------------------------|---------------------------------------|-------------------------|----------------------------------------|-----------------|---------------------------------------|---------------------------------------|
|     |            |            | L    | ITHOLOGY                                 | STRUCTURE                             | ALTERATION              | MINERALIZATION                         |                 | SAMPL                                 | ING                                   |
| ٥Ľ  | MAIN       | UNITS      | GL   | SUB UNITS                                |                                       |                         |                                        | FROM            | TO                                    | NUMBER                                |
| - [ |            |            |      | 0-11.9 overburden                        |                                       | ÷.,                     |                                        |                 |                                       |                                       |
|     | 0 - //4    | OVERGURDEN | 0.   |                                          |                                       |                         |                                        |                 |                                       |                                       |
|     |            |            | 1.   |                                          | · · · · ·                             | . * *                   |                                        |                 |                                       |                                       |
|     |            |            | 0.0  |                                          |                                       |                         |                                        |                 |                                       |                                       |
| . 1 |            |            | 0    | · · · · · · · · · · · · · · · · · · ·    |                                       |                         | 1.39 /a dance 50                       |                 |                                       |                                       |
| ۴   | 11.9-43.0  |            | in   | 1.90 Stop with sourced mills an's        | coupon milk at u                      | or diged at top of mole | 1 20 que comme ry                      |                 |                                       | <i></i>                               |
| - 1 | PB with    | romu       |      | and dimensionaled by and up along        | sharp cunfacts To'ca upto             | ton wake su             |                                        |                 |                                       |                                       |
|     | SCQP       | zones 6    |      | pillound knoolt pan + 4 1024             | Sch.                                  | as had cash (cale)      | ······································ |                 |                                       |                                       |
|     |            |            |      | processes, non a vizer                   | Fullowing with 10000                  | NUCCION LUIDICALL       | ······································ |                 |                                       | · · · ·                               |
| 1   |            |            |      | 1018.0-19.0<br>018.0-19.0                | Carlo and an angle Carlo              | @118-117 MS Onk-(sil)   | ······································ |                 |                                       |                                       |
| 20  | •          |            | 7    | Troubles bie of the good with gravits    | 913 veinets fracture filling.         |                         | ·                                      |                 |                                       |                                       |
|     |            | Permin     | 1~   | j                                        | severel superately                    | mod pervesive raite     |                                        |                 |                                       |                                       |
|     |            | cale       | 1.50 |                                          | Coll · locos slick salides            | (cals) helow zem        |                                        | 0 4             |                                       | <u> </u>                              |
|     | 25.8-      | 43.0       | Ĩ.   | - 25.8 - HIS SCOP Tan calouded, fg.      | <u></u>                               | Page 1                  | give and dimen                         | B thoug         | Maus                                  |                                       |
| - 1 | 5          | COP        |      | aute mile, grz V's and dimem by          | <u> </u>                              | Forvasiva M/r           | generally 1-3%                         |                 |                                       |                                       |
| 3.  | -          |            |      | 31.9-32.4 dk Lamprophyle dyke            | contacts coppor high                  | ankerite (sil?)         | 36.8-41.2 3-7/0%                       | general         | 5 Mg Py                               |                                       |
| ]   |            | Alt Lamp   |      | chi altered, abundant per calacte        | and can allow at y                    | gr's lower in           | conc at colurdyes on                   | a cuitto in     | 905                                   |                                       |
|     |            |            |      |                                          | The black Tourmanie                   | section clerity         |                                        | ·               |                                       | · · · · · · · · · · · · · · · · · · · |
|     |            | 4,         | 1    |                                          | abundant In Py- subderall             | microfreehold -         |                                        | <u>}</u>        |                                       | <u> </u>                              |
|     | • •        | del gus    |      |                                          | ca lames                              | 2" grey grg focal       |                                        |                 |                                       |                                       |
| 40  | <b>.</b> . | •••        |      | S                                        | 190.7 - 70.5 6x av a 184 600          | Call veinleb.           | MINOT PY, NOTION DY                    | <u> </u>        |                                       |                                       |
|     | 43.0-      | 68.2       |      |                                          | 9/3 (iabe)                            | <u> </u>                | gt ve selow 40m                        | <u> </u>        |                                       |                                       |
|     | Ba         | ۰.<br>۲.   |      | 43.0-68.8 Med green basalt               | <b>+</b>                              | autide of bleachood     | <u></u>                                |                 | · · · · · · · · · · · · · · · · · · · |                                       |
|     | Normu      | bleached - | 1    | non moretic, lacal epid veralet          | Some faul angle                       | 2000 non to week        | T1-24 19 Pg in                         | preen voi       | <b>⊱</b>                              |                                       |
|     | Altered    | ZONAL      | 1    |                                          | de chlocite ficitules                 | polity coch (code)      | bleached zones up                      | <u>βα. ς «/</u> |                                       |                                       |
| 50  | -          |            |      | Norrow bleached gaves gly veralely       | down to sen                           | Reached gails and       | meinly paxmel to                       | 1013 M          | ¶\$                                   |                                       |
|     |            | •          | 14   |                                          | Start La a                            | <u> </u>                | <u></u>                                |                 | <u> </u>                              |                                       |
|     | ļ          |            |      | 541-5414 These all here high well        | DIEDUNT JONES                         | <u> </u>                |                                        |                 |                                       | <u> </u>                              |
|     |            |            |      | with py selved and f(m) during           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | +                       | · · · · · · · · · · · · · · · · · · ·  |                 |                                       |                                       |
| ~   |            |            | 1    | 38.1-61 Py in Jwell acts, Corol is ashor | ¥                                     | <u> </u>                | · · · · · · · · · · · · · · · · · · ·  | 1               | <u> </u>                              | 1                                     |
| 68  | <b>-</b>   | • •        | 1    |                                          |                                       |                         |                                        | <u>+</u>        | t                                     | <u>+</u>                              |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: A. Wells

DATE: July 15,2003 ...

C

## CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| DDH NO. 795-31  | · · · · · · · · · · · · · · · · · · · |                             |                                       | <u>, , , , , , , , , , , , , , , , , , , </u> |           | PA       | GE NO. 2                              |
|-----------------|---------------------------------------|-----------------------------|---------------------------------------|-----------------------------------------------|-----------|----------|---------------------------------------|
|                 | LITHOLOGY                             | STRUCTURE                   | ALTERATION                            | MINERALIZATION                                |           | SAMPL    | ING                                   |
| MAIN UNITS      | GL SUB UNITS                          |                             |                                       | · · · · · · · · · · · · · · · · · · ·         | FROM      | TO       | NUMBER                                |
|                 | 110-67.3                              | zone of subscrubel - zora   |                                       |                                               |           |          |                                       |
|                 | Possible pillowed                     | chi- cher fract viar        |                                       |                                               |           |          |                                       |
| PB to 68.8      | 1                                     |                             |                                       | · · · · · · · · · · · · · · · · · · ·         |           |          |                                       |
|                 | 71                                    |                             |                                       |                                               |           |          |                                       |
| 68-8-71.0 SCOP  | 70° CO - 71.9 - 72.4 SCOP ZONAS       | numerous milt. and          | Tou-hord fy ant-sil.                  | mojaly fg, diman Py wi                        | t local n | 3414     |                                       |
|                 |                                       | Many an astomosing 60- Toil |                                       | In lower gone Ry is                           |           | ·        |                                       |
| 71.4 - 77.65    | 72.4-77.65 Pillowed with allow        |                             | he had a fire                         | parting the springer cost of the              |           |          |                                       |
| 00              | The providence of the providence of   |                             | Varable Chi potting                   | Trode of the Py                               |           |          | ·                                     |
| PD, bx + chart  | De ber full Not vein . 3              |                             | core chir prings                      | Not in chitt                                  |           |          | · · · · · · · · · · · · · · · · · · · |
| . ca            | 77.65-79.2 tan ankente alkerad        |                             | ·                                     | Trace his R .                                 |           |          | ····                                  |
|                 | 79.9-80.3 Reached as along that high  | and a do weight source A    | 1 bleasted zone calc lank             |                                               |           |          | <u> </u>                              |
|                 | 81. 6. 52.3 with                      |                             | <u>v</u>                              |                                               | ·         |          |                                       |
| 82.3-112.0      | Pillowed ?                            | low ande dt chi             |                                       |                                               | ·         |          |                                       |
| PB, Narnow CB   | N/                                    |                             |                                       | · · · · · · · · · · · · · · · · · · ·         |           |          | ·                                     |
| Zones           | 1 AS.S-BR.BI as above bleached go.    | re, g/3 veinlets light ante | · · · · · · · · · · · · · · · · · · · |                                               | · · ·     |          |                                       |
| · · ·           | 88.83-110.0 /                         |                             | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · ·         | <u> </u>  |          |                                       |
|                 | V. fillowed Basalt                    | dk chlorit for tures        | Pakky weak coeb(cal)                  |                                               |           |          |                                       |
|                 | 1                                     | Supporallal - lourgel       | · · · · · · · · · · · · · · · · · · · |                                               |           | ,        |                                       |
| •.              |                                       |                             |                                       |                                               |           | i in     |                                       |
|                 | <u> {</u>                             |                             |                                       |                                               |           |          | ·                                     |
|                 |                                       | ·                           |                                       |                                               |           |          |                                       |
| ·•              |                                       |                             |                                       |                                               |           |          |                                       |
|                 |                                       |                             |                                       |                                               | :         |          |                                       |
| · ·             | A                                     |                             | · · · ·                               |                                               |           |          |                                       |
|                 |                                       |                             |                                       |                                               |           |          |                                       |
|                 | 200 110-0- 110-43 Bloached 2000 6cm   | av (by wollowith) "60" CA   | calc (ank)                            |                                               |           |          |                                       |
|                 | 111-52-112.0 Rigached fine            | high ance at remeter        | cale (onti)                           |                                               |           | [        |                                       |
| 112.0 - 129.0   |                                       | 1 13                        |                                       | weak cale local                               | 1         |          |                                       |
| P               | Besalt                                | Cam and die the             |                                       | Cale waitet                                   | 1.        | 1        |                                       |
| Bas with Narrow |                                       | fractions                   | 1                                     | per venue                                     | 1         | <u> </u> | · · · · · · · · · · · · · · · · · · · |
| CB Zones        | 119.9-120.2 bloached broken           | carb real - at up -         | <u> </u>                              | 1 .                                           | 1         | <u> </u> |                                       |
| 20              |                                       | 7.2 22.                     | 1                                     | ·                                             | 1         |          | · · · · · · · · · · · · · · · · · · · |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: ......

## CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| DH NO. 775-37             |       | THO OCY                             |                                       | · · · · · · · · · · · · · · · · · · ·  | · · · · · · · · · · · · · · · · · · · |                | PA                                    | GE NO.3                               |
|---------------------------|-------|-------------------------------------|---------------------------------------|----------------------------------------|---------------------------------------|----------------|---------------------------------------|---------------------------------------|
| MATHUNITO                 |       | THOLOGY                             | STRUCTURE                             | ALTERATION                             | MINERALIZATION                        |                | SAMPL                                 | ING                                   |
| MAIN UNITS                | GL    | SUB UNITS                           |                                       | -                                      |                                       | FROM           | то                                    | NUMBER                                |
| •                         | 1.5   | chi alt bosalt.                     |                                       |                                        |                                       |                |                                       |                                       |
|                           | 100   | 122.0-123.5 Bleached zone with 70-8 | p corb veinlet-vein stuke             |                                        | sporse fine Py                        |                |                                       | [                                     |
|                           |       | foirly messive green baralt         | high agels cale utty.                 | , · ·                                  | MIS perusive cole.                    |                |                                       |                                       |
| CB<br>(Calc)              |       |                                     |                                       |                                        |                                       |                | · · · · · · · · · · · · · · · · · · · |                                       |
| 129.9 - 1363<br>SCQP Zune |       | Tan alternal supervise fine uccurle | ol- ult chak 1211-132                 | 7                                      | 1705.176.0 5- 6- 1                    |                | . Ea                                  |                                       |
| abundant by               |       | gtz (calc) verilets locce stuks     | with acundant free Py                 | patchysil some                         | Semi massive zones un                 | 6 15 cm        | uid.                                  |                                       |
| (0401 JEMI • MAJ)         |       |                                     |                                       | calc. Veinlets                         | r ·                                   |                |                                       |                                       |
| 126.3 - 161.7             | 1     | 1363 - 1617 Med green Bosalt        |                                       | Noticeable increase                    | · · · · · · · · · · · · · · · · · · · | •              |                                       |                                       |
| Ros.                      | 1.    | becoming dark and chloringed        | <u> </u>                              | in dark chil. down                     | Sporse to 1% fine                     |                |                                       |                                       |
| • •                       | 11    | below Islam                         | Supporallel to zoica                  | hule esp below 156m                    | dinen - prochuse Py.                  |                |                                       |                                       |
|                           | 11    |                                     | dk chloritic prochurs.                | · · · · · · · · · · · · · · · · · · ·  |                                       |                |                                       |                                       |
|                           | Шì    |                                     | ·                                     | ······································ |                                       |                |                                       | · · · · · · · · · · · · · · · · · · · |
| 1 c                       |       | 1                                   | · · · · · · · · · · · · · · · · · · · |                                        |                                       |                |                                       |                                       |
| • •                       | 11.   |                                     |                                       |                                        |                                       |                |                                       |                                       |
|                           |       |                                     |                                       |                                        |                                       |                |                                       |                                       |
|                           | · · · |                                     |                                       |                                        |                                       |                |                                       |                                       |
| Chloriting                |       | chlacitizet                         | AUADOUS planes 45°C                   | A cale with dr. c. 61.                 | Datche, 1-3% fine                     | local reso     | duner                                 | Ry.                                   |
| Basalt                    |       |                                     | some slips                            | some dort chi slips                    |                                       |                |                                       | ļ                                     |
| Male Tala                 |       | Lampoppyie: block forgroine         | Apparent Johnies                      | veriable generally with                |                                       |                |                                       |                                       |
| los on chure?             | 3.    | with some rooker borded phases 45-2 | 45-50 CA.                             | ealite chloritie alt.                  |                                       |                |                                       |                                       |
| (magnetic)                |       | 64.9 604                            |                                       |                                        |                                       |                |                                       | 1                                     |
| dionthe Kenoliths         |       | ·                                   | ·                                     |                                        | •                                     |                |                                       |                                       |
| (3,2,0,,2,0)              | 1     |                                     |                                       |                                        |                                       |                |                                       |                                       |
|                           |       |                                     |                                       |                                        | <u> </u>                              |                |                                       |                                       |
|                           |       |                                     |                                       |                                        |                                       | 0 <sup>1</sup> |                                       |                                       |
|                           | 1     |                                     |                                       | ·                                      |                                       |                |                                       |                                       |
|                           | 1.    |                                     |                                       |                                        |                                       |                |                                       |                                       |
|                           |       | ······                              | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · ·  |                                       |                |                                       | ·                                     |
| ·····                     |       |                                     | L                                     | 1                                      |                                       |                |                                       | 1                                     |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Wells

DATE: July 15,2003

### CASSIAR-TAURUS NAVASOTA RESOURCES LTD.

DDH NO. 795-37 PAGE NO. 1 LITHOLOGY STRUCTURE ALTERATION MINERALIZATION SAMPLING MAIN UNITS SUB UNITS GL FROM то NUMBER 0-4.3 Overburden 4.3 Overburden SCOP 4-3-17-6 5008 milty ale V to IT' deals 11.8-12.5 600 1-4% strong Konia41e 16-0-16-25 550 wins. V/h Pervosivo struct roce med a dimen SOULFOR and dimeninated silica waskin fractures hochore with fine chloritic voinlots \$ hight - med dK chi MILANT 17.6-43.2 ad bosalt fractines 10-20° Non. PB with norman weak slick alained Verially -n me Strongest 29-31 SCOP ZONE Norrow zones (calc) alteration Perv. Cate 1 fine dinen SCOP Tanaltered silica - arkente Sharp contacts 60-70 A \$2.3-36.0 1-3% low density of milk ER local isolated M/s 60-70 line v ventite lo ict. increase in policin Pervole le (m/s) mark ve inteta brieve arters come chi mis per Ton alfiled silica - ca 4320- 65.85 Scor dk chlerito retre (voto yom wide) agginza below 57m 0-70'rA al 45-47m weal clustors semi mossive MICPy 2-71090 also 56-57 more restricted. Generally 1-3% for ery

KAMLOOPS GEOLOGICAL SERVICES LTD.

10

20

34

50

LOGGED BY: R. Wells

DATE: July 16, 2003

**`** 

### CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

|    | DDH NO.795-37                         |                             |                                             | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |                                       |          | PA            | GE NO. 2                              |
|----|---------------------------------------|-----------------------------|---------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|----------|---------------|---------------------------------------|
|    |                                       | L                           | THOLOGY                                     | STRUCTURE                             | ALTERATION                            | MINERALIZATION                        |          | SAMPI         | ING                                   |
| 1. | MAIN UNITS                            | GL                          | SUB UNITS                                   |                                       |                                       |                                       | FROM     | то            | NUMBER                                |
| 50 |                                       | 1                           |                                             |                                       |                                       |                                       | · · ·    |               |                                       |
|    |                                       | 5                           | · · · · · · · · · · · · · · · · · · ·       |                                       | ·                                     |                                       | · · ·    |               |                                       |
|    | Pary,<br>Calcity                      | 5.0                         | 1585-178 lower lin At                       |                                       |                                       |                                       |          |               |                                       |
|    | 65.85-67.8 LAMP DYKE                  | G                           | al in Company Long along and                | upper contract 10 cm                  | old line                              | Sporte fin ty                         |          |               | · ·                                   |
|    | SHEAR                                 | $\mathcal{D}_{\mathcal{A}}$ | 67.8-68.40 String Shear, fragi of juperoid. | 10. 70'SA SHEAR de chi cal            | Chi. cole.                            | · · · · · · · · · · · · · · · · · · · |          |               |                                       |
| To | - SCOP 68.9-72.2                      | م<br>م                      | as above dyke antentic with g/z V.          | MILEY 90 70.70 - 71.12                | ankente (sil).                        | 2-7% M/C dimen Ery                    |          |               |                                       |
|    | 72.2 -74.53                           |                             | 722-74.52                                   | freshule strong Torn debrics          |                                       | bleby prochine by (mic)               | in atov  |               | · · · · · · · · · · · · · · · · · · · |
|    | CB 9t3 VITS                           |                             | alto cale ve intets.                        | How Unit, pillowed                    | dimen for andered                     |                                       | <u> </u> |               |                                       |
|    | 7452-8250                             |                             | tig.52 - 82:30 Mid to dork green            | local 10.20 (4 th)                    | rhumps, (mod)                         | <u> </u>                              | <b> </b> |               | }                                     |
|    | Red                                   | 5                           | fg, strong rogratic Karalt                  | prochures.                            | tocal weak calula                     | sporse to abcout fine                 | <b></b>  |               |                                       |
|    | Das                                   |                             |                                             |                                       | top                                   | disien Ry.                            | L        |               | · · · · · · · · · · · · · · · · · · · |
| 84 | · <b>F</b>                            | N.                          |                                             |                                       |                                       | · · · · · · · · · · · · · · · · · · · |          | ·             |                                       |
|    | 92.30-93.40<br>50 0P                  |                             | 82.80.83.40 ADMUS SCOP ZONE                 | 7."(A                                 | to antente?                           | and no disser cpu                     | 2-75%.   |               |                                       |
|    |                                       | []                          | 83.4-95.30 med-dk arean PB                  |                                       | weak according ->                     |                                       |          |               |                                       |
|    | 83.4- 13.3                            | 14                          | mode marcatric line around, Local           |                                       | moderate downwards                    | Traces of fine desser                 | R        |               |                                       |
|    | r o(c)                                | 5                           | clear pillow terhures.                      |                                       | Patchin strugger (all)                |                                       |          |               |                                       |
| 24 | · · · · · · · · · · · · · · · · · · · | K,                          |                                             | chlocitishoor below                   | (ank),                                |                                       |          |               | 1                                     |
|    |                                       | 1V                          | ·                                           | 93m Local herabite                    |                                       |                                       | 1        |               | 1                                     |
|    |                                       | P~                          | 85.30 IDI SUEGO DUNE                        |                                       | a transition transf                   | a a ma l d u h d                      | ,        |               | · · · · · · · · · · · · · · · · · · · |
|    | 95,3-101 SHEAR<br>ZONE                | 80                          | 43.30 - 101 SHEAR ZANE                      | lacer coin engli                      | Chlonne cocce                         | sporse re absear of                   | <u>∤</u> |               |                                       |
|    |                                       | 55                          | russily core recovery                       | Chears with streks                    | hemanic - corcil                      |                                       | ╉━───┤   |               |                                       |
| 19 | 0-                                    | 155                         |                                             |                                       |                                       |                                       |          |               |                                       |
| -  | 101-109 CB                            | 1.5                         | 101-109 Carbonated Begalt                   | minor of lendets                      | Pervecive M/s                         | spane fin Py                          | <b></b>  |               |                                       |
|    |                                       | k:                          | ankente alleration                          | local miro- precioled                 | dissen askerte                        |                                       | +        |               |                                       |
|    |                                       |                             | •                                           | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |                                       |          |               |                                       |
|    | •                                     |                             |                                             |                                       |                                       |                                       |          |               |                                       |
| U  | 109-125.0                             | 5                           | 109.0-125.0 red green, dg                   | bacel low cycle                       | Patring W/m_                          | Sprar fine Pyr                        |          | · · · · · · · |                                       |
|    | •                                     | 12                          | Basalt non to v. weak magnetic              | chenti prochuses/                     | celite                                |                                       | <b>_</b> | ···           | <u>-</u>                              |
|    | PB                                    | IC.                         | downwards clearly pillowed                  | slips.                                | · · · · · · · · · · · · · · · · · · · | ······                                | <b>_</b> |               |                                       |
|    |                                       | 1V                          | 1                                           |                                       | l                                     |                                       | <u> </u> |               |                                       |
|    |                                       | 14                          | 5                                           | · · · · · · · · · · · · · · · · · · · |                                       | · · · · · · · · · · · · · · · · · · · | 1        |               | ·                                     |
| 12 |                                       | - 4                         | ý                                           | · · · · · · · · · · · · · · · · · · · |                                       |                                       |          |               |                                       |
|    | l                                     |                             |                                             | l                                     | l                                     |                                       |          |               |                                       |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Wells

## CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| D     | DH NO.   | T95-37       | 7         |                |                                        | · .                                   |                                         |                                        | PAGE NO. 3 |       |                                        |  |
|-------|----------|--------------|-----------|----------------|----------------------------------------|---------------------------------------|-----------------------------------------|----------------------------------------|------------|-------|----------------------------------------|--|
|       |          |              |           | ្រប            | THOLOGY                                | STRUCTURE                             | ALTERATION                              | MINERALIZATION                         |            | SAMPL | ING                                    |  |
|       | MAIN     | UNITS        |           | GL             | SUB UNITS                              |                                       |                                         |                                        | FROM       | TO    | NUMBER                                 |  |
| ~     |          |              | 7         | 31             |                                        |                                       |                                         | · · · · · · · · · · · · · · · · · · ·  |            |       |                                        |  |
|       |          |              | t         | K              | · · · · · · · · · · · · · · · · · · ·  |                                       |                                         | ·····                                  |            |       | ·····                                  |  |
|       |          | _            | 1         | 771            | lass into all other the Z              |                                       |                                         |                                        |            |       |                                        |  |
|       | 125.0-13 | 51.0 FZ      | ļ         | $\overline{a}$ | 12310 ETSTO CHIMICAL POUL FOR          | the state chi                         | · _ · · · · · · · · · · · · · · · · · · |                                        |            |       |                                        |  |
|       |          |              |           | રેશ            | CUS bly cele lecovery                  | proceviti                             | ·                                       | ······································ |            |       |                                        |  |
| w -   |          |              |           | >55            | · · · · · · · · · · · · · · · · · · ·  |                                       |                                         |                                        | ~          |       |                                        |  |
|       | 131-0-   | 147.3        | 68        | 52             | 131.0-147.3 FOH Mixed SCOP             | CB has sparse                         | story concert (and                      | sperce - 2 0/0 dini                    |            |       |                                        |  |
|       | SC       | <i>ΨΡ/CB</i> |           | ببرز           | with zone of corbonated (ank)          | 2/3 veins . externiere-               | mixed with silica                       | dimen Py in ce                         |            |       |                                        |  |
|       |          |              | scor      |                | basalt. Main SCOP Tone 134-139         | SCOPLAC MICH LY                       | -cerb + corbon                          | 2.7% Local comi-                       |            |       |                                        |  |
| Į     |          |              |           | 1              | with milky of yoins Ry haloes.         | to zern with of cure                  | fracturas                               | messive colucides m/o                  |            |       |                                        |  |
|       |          |              |           | hist           | -150 145-1458                          | at selvedges. 60-70'cA.               | v                                       | Py in SCOP                             |            |       |                                        |  |
| 40    | •        |              | -         |                | ·                                      |                                       |                                         | •                                      |            |       |                                        |  |
|       |          |              | <b>68</b> |                |                                        |                                       |                                         |                                        |            |       |                                        |  |
|       |          | 50           | 90        |                | ·                                      | · ·                                   | · · · · · · · · · · · · · · · · · · ·   |                                        |            |       |                                        |  |
|       |          | <b>y</b> -   | ČB_       | N.             |                                        |                                       |                                         |                                        |            |       | ······································ |  |
|       |          |              |           |                |                                        |                                       | ······································  | · · · · · · · · · · · · · · · · · · ·  |            |       |                                        |  |
| /50 H |          |              |           |                | PALE WAS TILL IN THINK OF LIZE I       |                                       |                                         |                                        |            |       |                                        |  |
|       |          |              |           |                | ZONE                                   |                                       | ······································  | ······                                 |            |       | ·····                                  |  |
| 0     |          |              |           | 1              |                                        |                                       |                                         |                                        | ·`         |       |                                        |  |
|       |          |              |           |                | ······································ | <u> </u>                              | · · · · · · · · · · · · · · · · · · ·   |                                        |            |       |                                        |  |
|       |          |              |           | 1              |                                        | <u> </u>                              |                                         | ·                                      |            |       |                                        |  |
|       |          |              |           | 1              |                                        | ·                                     | · · · · · · · · · · · · · · · · · · ·   |                                        | ·          |       | · · ·                                  |  |
|       |          |              |           | Į              |                                        | <u> </u>                              |                                         | · · · · · · · · · · · · · · · · · · ·  |            |       |                                        |  |
|       |          |              |           | Į –            |                                        |                                       |                                         |                                        |            |       |                                        |  |
|       |          |              |           |                |                                        |                                       |                                         |                                        |            |       |                                        |  |
|       |          |              |           | L              |                                        | <u> </u>                              |                                         |                                        | · ·        |       |                                        |  |
|       |          |              |           |                | <u></u>                                | · · · · · · · · · · · · · · · · · · · |                                         |                                        | <b></b>    |       |                                        |  |
|       |          | .*           |           | 1              |                                        | · · · · · · · · · · · · · · · · · · · |                                         |                                        |            |       | · · · · · · · · · · · · · · · · · · ·  |  |
|       |          |              |           | 1              |                                        |                                       |                                         |                                        |            | · _   |                                        |  |
|       |          |              |           | 1              |                                        |                                       |                                         |                                        |            |       |                                        |  |
|       |          |              |           |                |                                        |                                       |                                         |                                        | 1          |       |                                        |  |
|       |          |              |           | 1              |                                        |                                       |                                         |                                        | 1          |       | · · · · · · · · · · · · · · · · · · ·  |  |
| l     |          |              |           |                |                                        |                                       | ·····                                   |                                        | 1          | t     |                                        |  |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Wells ••••••

DATE: July 14, 2003

\*NOTE PROBLEM WITH ORIGINAL SAMPLE NOS 101981 5101982 SHOULD PROBABLY BE REVERSED

222

CASSIAR-TAURUS NAVASOTA RESOURCES LTD.

|                            | 101        | RESTINGIARE VALUES TONT                  | MAKE CENSE OTHE                       | RWIZE C.                              |                                       |                                       |           |                                       |
|----------------------------|------------|------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-----------|---------------------------------------|
| DDH NO. 795-36             |            |                                          | · · · · · · · · · · · · · · · · · · · | <u> </u>                              |                                       |                                       | PAC       | GE NO. <u>1</u>                       |
|                            | <u> </u>   | ITHOLOGY                                 | STRUCTURE                             | ALTERATION                            | MINERALIZATION                        | · ·                                   | SAMPL     | ING                                   |
| MAIN UNITS                 | GL         | SUB UNITS                                |                                       |                                       |                                       | FROM                                  | TO        | NUMBER                                |
| Pr.4.3 Austhanden          | 0.         | 0-U.3 Overburden                         |                                       |                                       |                                       |                                       |           |                                       |
|                            | <b>b</b>   |                                          | massive some                          | generally weak                        | 20015c to 1%                          |                                       |           |                                       |
| 4.3-14.50                  |            | 4.3-14.50 med green, for Bosalt          | fractures + oxidation                 | Rokhy cality alt                      | V. Line alumen Ry.                    |                                       |           |                                       |
| 80                         |            | noo to V. week marshi, Appeors           | near top ( some chi                   | <u> </u>                              |                                       |                                       |           |                                       |
|                            | - <u>(</u> | massive                                  | veilet)                               |                                       |                                       |                                       |           |                                       |
|                            |            |                                          |                                       |                                       |                                       |                                       |           |                                       |
|                            |            |                                          |                                       | · · · · · · · · · · · · · · · · · · · |                                       |                                       | ·         |                                       |
| 14.50-12.90<br>ALT.ZONE CB | 1.5        | 14.50-18.90 Bleached Jan Scop            | at we inc to loca                     | strave too carb-sil                   | Patchi done EP                        |                                       |           |                                       |
| (air shaft 17.1-18.) SCOP  | ÷.         | Bone with CB transitions, Main 9/3 '     | ST. GOCA.                             | J-, ,                                 | moinis with give min                  | COL EASO                              |           |                                       |
| 18.90-21.8 B (marach       |            | FIR.90-21.8 The & Dark oreen mourie      | marsive                               | win potto- potrivil                   | Tr-2% dosen R in CA                   | لمنتحقيا                              |           |                                       |
| ,                          | 1_         | magnetic Basalt                          |                                       | colute, disson Ant.                   | Sporte Py                             |                                       |           |                                       |
| F?                         | بنظ        | 248 - 23.5 CB with ank alt bleached      | mid at 23.3 - fault?                  |                                       |                                       |                                       |           |                                       |
|                            | 14         | Basalt celbaneted.                       | chlorike pollulor below               | dwom celute                           | Trace fine dissom by                  | []                                    |           |                                       |
| B(()                       | 11         |                                          | <i></i>                               |                                       |                                       | <u> </u> −−−−                         |           |                                       |
| F                          | - 19       | \$ 28.7-29.3 Chloriki Foult \$ 33.2-33.7 | o low ongle chi slips                 | ching'te love enter                   | trucks of the P                       |                                       | m         |                                       |
| B B                        | 11         | 29.3 - 37.90 Med alles to marchi         | ortside of touts                      | week aplet munin                      | grang-                                | · · · · · · · · · · · · · · · · · · · | · ·       |                                       |
| F                          |            | Moisive besalt                           | KUNE CALL AN ELLA                     | -dipen celuite.                       |                                       | <u> </u>                              |           |                                       |
| 2                          | 11         |                                          |                                       |                                       |                                       | <b> </b>                              |           | · · · · · · · · · · · · · · · · · · · |
| <b>5</b> .                 | "          | - 27.90 - 29.8 CR with chil tractions    | and anony shall also with             |                                       | · · ·                                 | <b> </b>                              |           |                                       |
|                            |            | The particular and and allowed           | Sea la and gig the                    | le cat -> a la anticia                | Tana 1: 2                             | <b>}</b> −−−−−−                       |           |                                       |
| 3 9.90 - 44.3              |            | Receilt Ann manshi                       | cale that all la                      | wear - and parver                     | Track pla ry                          |                                       |           | ····                                  |
| PB                         | L          | · · · · · · · · · · · · · · · · · · ·    | fact super ere pe                     | rid and anonworks                     | <u>}</u>                              |                                       |           | · · · · · · · · · · · · · · · · · · · |
|                            |            | 44.3-552EOH SCOP Mixed with              | la sena z                             | eilin ann ann                         | 51000                                 | - er a                                |           |                                       |
| SCOP Strup P               | 2          | Jones of CB                              | RUMINA LOCA NON                       | Concentral L CR                       | Vaci local MCER and                   | Const Cine                            | P. Clarol | sami marcine                          |
|                            | . 3        | Strong SCQP 44.5-46.7,52.0-55            | 2 @SZ.Sm Zocm wide                    | Carlos bel                            | CR & Train 4 14 1                     |                                       | 2         |                                       |
|                            |            |                                          | Sa. 80 with and a                     |                                       | por marce raise pro                   | awn en                                |           |                                       |
| SCQP strong                | 3          |                                          | -                                     | · · · · · · · · · · · · · · · · · · · |                                       | 1                                     | · · ·     | ······                                |
|                            |            |                                          |                                       | 1                                     |                                       | 1                                     | h         | l                                     |
|                            |            |                                          |                                       | 1                                     |                                       | +                                     |           |                                       |
|                            |            |                                          | 1                                     |                                       |                                       | 1                                     | h         | <u>├</u>                              |
|                            |            |                                          |                                       |                                       | · · · · · · · · · · · · · · · · · · · | +                                     |           |                                       |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Wells

......

DATE 17014 16.2003

## CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| DDH NO. 795-75                         |       | 171101 00V                                 |                             | · · · · · · · · · · · · · · · · · · · | ,                      |           | PA         | GE NO. 1                              |
|----------------------------------------|-------|--------------------------------------------|-----------------------------|---------------------------------------|------------------------|-----------|------------|---------------------------------------|
|                                        |       |                                            | STRUCTURE                   | ALTERATION                            | MINERALIZATION         |           | SAMPL      | ING                                   |
| MAIN UNITS                             | IGL   | SUB UNITS                                  | .<br>                       |                                       |                        | FROM      | TO         | NUMBER                                |
| 0-2-13 Overhurden                      |       | 0-2.13 Overburden                          |                             |                                       |                        |           |            |                                       |
| 213-110 805                            | m     | 2.13-11.a med guess, for groined           | failly massive              | Oxidized to Tiom                      | Tr- 19, In dinom       |           |            |                                       |
|                                        |       | eva-nepretic baselt                        | / /                         | V wook - ligstyre                     | schedial Pr.           |           |            |                                       |
|                                        |       |                                            |                             | related carb.                         |                        |           |            | · · · ·                               |
|                                        |       |                                            |                             | disser ant-call down.                 |                        |           |            | -*                                    |
| 11.0 - 22.20                           | -     | 11.0-18.30 Ankente altired CB              | Soveral narrow arev-        | Tag ankinte some                      | Trace - 2º/ L. P.      |           |            |                                       |
| CB; OF, V.                             |       | come silica several at yeins               | Milky gly veris 50-600      | A cillion a Kidinad                   |                        |           |            | · · · · · · · · · · · · · · · · · · · |
| Could be called                        |       | minor dimen Py, Minor arean Ser.           | 1-3cm ; @ 11.58 >10cm.      | alon brachurg                         | Leave and any rear     |           |            |                                       |
| SCQP Selvedo                           |       |                                            | Below 17 m Sune 45%         | <u> </u>                              | V LME                  |           |            | ,                                     |
|                                        |       | 18.30-22.20 Mare: unitum anteriti          | land of the first           | Querie cost (                         | T. 0. 0                |           |            |                                       |
| < <u></u>                              | 14    | hasalt CB                                  | lacal 2.5 and a land        | PERSONNE CETS (BAN                    | di la vili e           |           |            | ·····                                 |
| 1                                      |       | 22.20-28.75 Light med green, non           | Chi. HERA                   | 2000 - St (100                        | gin ry                 |           |            |                                       |
| PB'(1)                                 | 1)    | nogetic Basalt, dissen carb.               | haidling chi vainles        |                                       |                        |           |            |                                       |
|                                        | Y     | possibly PB                                | long law and the call       | gissen ank thomas                     | Ru with chi local dine |           |            |                                       |
| CP about                               |       | = 28.75 - 32.70 CB (PB) Some woit of       | shears                      | (f, mg)                               | epy                    |           |            |                                       |
| CB, 9303                               | -     | above strong on Kente alt. Local gtz verns | to 4cm 45.50th              | dk dk                                 | 11-2% predom fine      | local may | 4/         |                                       |
|                                        | 1     | WIFE MILLOF ASSOC. Py.                     |                             | Corb., chi. varileto                  | vertet related R.      | <u> </u>  | also fine  | Alpy                                  |
| 32.70-36.80                            | 1     | grained, silica carb.                      | 45: Sorra with A salved     | Pervosive fine sc.                    | Kein Wallneks fra lo   | of coor   | Py 5-      | >20 %                                 |
| Start ry Co                            | י¶X   |                                            | Pasally cross cutting rains |                                       | i du da                | pen-ry.   |            | ·····                                 |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | R.    | 36.80-42.3 Corsonate (onk) Kosalt          | Local 2-Sim gtz             | Pervenue strong                       | Ir to 3% for dune      | p cly     |            |                                       |
| ·•                                     | X     | with loral gly veins minus Py              | Veins HS-SOCA               | carb (ank)                            | ·                      | ļ         |            |                                       |
|                                        |       | 42.3-51.5 Light-med acaro                  |                             |                                       |                        | ļ         |            |                                       |
| · •                                    |       | A optimie that all a small his             | mossive local low           | Nun to patchy                         | sparse fine dimen      |           |            | ·                                     |
| 6                                      |       | Massive comme , new majorate               | angle calcite reinlets      | pervesive week rale.                  | Py                     |           | ·····      | · · · · · · · · · · · · · · · · · · · |
|                                        |       | fine groined.                              | serve chi (dk)              | ·····                                 |                        | ļ         |            | ·                                     |
| 50-                                    |       | · · · · · · · · · · · · · · · · · · ·      |                             | · · · · · · · · · · · · · · · · · · · |                        | <b>}</b>  | <br>       |                                       |
| 51.5- 56.60 SCOP                       | 2     | 51.5-56.60 SCRQ zone centred               | 538-55.60 milk.             | Qx zone strong silica                 | wallocks have Pat      | he for le | col coarce | έρ,                                   |
| Large QV                               | P.    | en lorge gly vein dissem Ry Nellasch       | gr some wellouk frags       | Coib some WR: green                   | 5-710% + outwor        | 1 to 2.5  | 1/2 And    | prem                                  |
| 1                                      | 1000  |                                            | <u> </u>                    | sencite                               |                        | L         | ·          |                                       |
| СРВ                                    |       | 546 - 61.26 Vorably Cachanater             | Pillows with dis            | Patchy wilm                           | Tr- 2% patches,        | trie dis  | er Ry      | ·                                     |
| ·                                      | 4     | Fillewad Basalt,                           | the solvedges.              | ankente-colute.                       |                        |           |            |                                       |
|                                        | - 1:3 |                                            |                             |                                       |                        |           | •          |                                       |

KAMLOOPS GEOLOGICAL SERVICES LTD.

٢.

LOGGED BY: R. Wells

## CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| D   | DH NO. 795-75                     |                                           |                           |                                        |                                        |           | PA        | GE NO. 2           |
|-----|-----------------------------------|-------------------------------------------|---------------------------|----------------------------------------|----------------------------------------|-----------|-----------|--------------------|
|     | <u>Ľ</u>                          | ITHOLOGY                                  | STRUCTURE                 | ALTERATION                             | MINERALIZATION                         |           | ING       |                    |
|     | MAIN UNITS GL                     | SUB UNITS                                 |                           |                                        | ·                                      | FROM      | TO        | NUMBER             |
|     | CPB                               | 6126-67.8 nessive ton enteriti            | local irregular           | Perunuve to onk                        | Tr-30% de dumen                        | rp.       |           |                    |
|     |                                   | altored with dusem do by                  | dK. shi veinlets.         | (silica?)                              |                                        |           |           |                    |
|     |                                   | No gtz veining.                           |                           | ······································ | ······································ |           |           |                    |
|     | \$4 ×                             | 67.8-71:63 Carb PB lucal ars              | Local at to 250           | and pasters up                         | 7000-2º/ line                          |           |           | -                  |
|     | CIPB(qv)                          | minor associated R                        | 45°CA good pillow         | antentic carb.                         | disen-veillet Py.                      |           |           |                    |
| *   | 7163-7630 5000                    | 7162-76.30 Stans alteration               | Eaxtures / 1              |                                        | <b>-</b>                               | ·····     |           |                    |
|     | Large QU                          | centred on ato vain. duppen R in          | 71.9-72.50 Milky 9V,      | strong and carb - sil;                 | niced for dimens - fro                 | h10 \$ P3 | 3-710%    |                    |
|     | Microfr.                          | Wollopeice                                | W=1/DLLS                  | 6 73M                                  | some fine mpy near                     | 9¥        |           |                    |
|     |                                   | 76.3-79.110 Contracted Institut Breat     | A market to a             | med                                    | Tr 101 0' . 1                          | ie ,      |           |                    |
|     | CB B                              | faitly messive non megnetic               | ventets some low angle    | colite                                 | 11 - 17. fine dunca                    |           |           |                    |
| ▫┝╴ | - 79.40 - 88.0<br>SCOR (CR)       | 79.40-880 Strong alleration zone          |                           |                                        | 1 5-                                   |           |           | •••••••••••••••••• |
|     | 3000 (26)                         | vonable silica print taka granz reining   | MED frouturing, So'TA     | Perrosive Miston                       | for by cone near                       | 9/3 41    | u /a      |                    |
|     | Some core Missing - Aigh ()       |                                           | of verne with cone        | alleration carb -                      | upper section local s                  | pm -mecri | 19        |                    |
|     |                                   |                                           | 100 - 87.70 9/2 V'S 30°CA | reachte cilico                         | Below 9-5% for loca                    | l cocar   | ٢ الم     |                    |
|     | 41                                | P. c - 96 . 1                             | porallel Fractures        | · · · · · · · · · · · · · · · · · · ·  | neor veins                             |           |           |                    |
| • - | - 88.0-96.0                       | Corbonated Boralt                         | Breccialed throughout     | Pervesive carb (ank)                   | Local M/a Py (141                      | acate)    |           |                    |
|     | Late Deformation 55               | strong frocturing - breccuation. Numerous | some musaic cracke        | some colute, chlorite                  | Pakky Vyline doned                     | Ry.       |           |                    |
|     | Zone 55                           | chloritie slips                           | Chi Flips 20,66CA Sticke  | slips                                  |                                        |           |           |                    |
|     | 96.1                              | 96.1-90.0 Thus loss to wat coulds and     | remains of gra vains      |                                        |                                        |           | - 10 10 1 | ·                  |
|     | (Late) quarty veins               | BO BSSCM Luide                            | internal trocturing       | cale tractures in ave                  | s to cooke - the away                  |           |           |                    |
| ••  | Stroom Carbonate Alt Con          | 98.0-110.9 strung-intense carb            | As above veins            | · · · · · · · · · · · · · · · · · · ·  |                                        |           |           |                    |
|     | Overaciation By 600               | alteration overprinting braceiated        | less obvious @ 102.16     | Mainly intense                         | veriable fine durie                    | DRG to    | nuchart   |                    |
|     | with scop (1045-110-9) (          | probilith (basalt) in                     | -102 . 30 several high    | corburate Conk local                   | often frechnicon                       | willed    |           |                    |
|     | 2                                 | (Original SCOP 1065-11091)                | ayle irrajular gus.       | cality) some lete                      | 7 V                                    |           |           | ·                  |
| - 1 | Mud-Intense                       |                                           | SCOP BUCK LOLS -10.9      | calite vernlet, llensy                 | 5-15% do Ry in                         | SCOPAR    | c - hoc   | re                 |
|     | - 110.9 - 112.1                   |                                           | local fubrics 60°C        | overprinted scap                       | controlled Roman                       | t coarse  | ER 2.3    | P/                 |
| Ĩ   | laterse deformed                  | = 110.9-117.1 Highly deformed light       | 0-20'CA frechers          | Dissen corbonate                       | 1-30/ dissem                           | Ima EP.   |           | <u> </u>           |
|     | chert,                            | grey chart.                               | clausses - Lensy          | perphanolaste 1-200                    | · · · · · · · · · · · · · · · · · · ·  |           | •         |                    |
|     | - Via                             | 1                                         | textures lfregments       |                                        |                                        |           |           |                    |
| Ì   | 117.1-130.15                      | T 117.1 -130-15 EON.                      |                           |                                        |                                        |           |           |                    |
| 20  | Bedded Chert/Arg                  | Bedded chert - Accillite (corbon          | accous) 20°CA             | Not corporated                         | local Sine dussein                     | R         |           |                    |
| [   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                           | bedding                   |                                        |                                        | ľ         |           |                    |
| -   | KAMLOOPS GEOLOGICAL SEF           | RVICES LTD.                               | graphitic slips of        | 20°CA<br>LOGGED BY:                    | Iells.                                 |           | DATE:     | 7 July 200         |

(

# CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| DDH NO. 795-41 PAGE NO.1                    |                                         |                                                |                                       |                                              |                                       |                  |  |  |  |  |
|---------------------------------------------|-----------------------------------------|------------------------------------------------|---------------------------------------|----------------------------------------------|---------------------------------------|------------------|--|--|--|--|
| LITHOLOGY                                   | STRUCTURE                               | STRUCTURE ALTERATION                           |                                       |                                              | SAMPLING                              |                  |  |  |  |  |
| MAIN UNITS GL SUB UNITS                     |                                         |                                                |                                       | FROM                                         | TOT                                   | NUMBER           |  |  |  |  |
| 0-4 88 Overburden a D-4188 Overburden       |                                         |                                                |                                       |                                              |                                       |                  |  |  |  |  |
|                                             | ······································  |                                                |                                       |                                              | · · · · · · · · · · · · · · · · · · · |                  |  |  |  |  |
| W (102-1630 G ( )                           | P.H. Jack                               |                                                |                                       | <b></b>                                      |                                       |                  |  |  |  |  |
|                                             |                                         | Chlotite veine                                 | sperce R                              | <u>├────</u> ┤                               | i ł                                   |                  |  |  |  |  |
| PB [1] A to m. moundar Pillowed Reseate     | Serve Cly gauge 11.0-11.5               |                                                |                                       | ┣━────┦                                      | j                                     |                  |  |  |  |  |
| BIS-11.0 SCOP CBIS-11.0 blowched gove with  | gty gty weise so co                     | Med/strong carbesil.                           | Te-14 fine durien P.                  | []                                           |                                       |                  |  |  |  |  |
| Vein to 3cm                                 |                                         |                                                |                                       | <u>↓                                    </u> | <b>├</b> ──── <b>}</b>                |                  |  |  |  |  |
|                                             |                                         |                                                | · · · · · · · · · · · · · · · · · · · | ļ                                            | ·                                     |                  |  |  |  |  |
|                                             |                                         |                                                | dealer                                |                                              |                                       | -                |  |  |  |  |
| 5 C(Q)P Q                                   | Lensy 212 Venters right                 | Strong Care (Conk) SILT                        | med grained by local ti               | in like good                                 | Noote bea                             | 7-715%           |  |  |  |  |
| 18.30-24.9" med queen Besalt we             | ak Pillow selvedges.                    | weak becoming strong                           | Traces of prie diman                  |                                              |                                       | L                |  |  |  |  |
| PB(c) Menete possibly pillowed              | minor dis chi lenses                    | pervouse cach reductor                         | P.                                    |                                              |                                       |                  |  |  |  |  |
|                                             |                                         | downwords                                      | <b>-</b>                              | ſ                                            |                                       | -                |  |  |  |  |
| 50 (A) 2419-367 Maint SC(A) P of of         | have SCOP has low voint                 | Perversive Mir cathlant                        | A shap in SCOP , M                    | C noti                                       | discen                                | م ا              |  |  |  |  |
| scient with latter ato upining              | CR for all chi with                     | sil? wakes in CB                               | decolinies like                       | 24 3200                                      | 1 110 35                              | 75.4             |  |  |  |  |
| CB Inc 267-30.4 CPB with dk chi             | 40-70°CA                                | Luc'h                                          | The second second                     | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2      |                                       |                  |  |  |  |  |
|                                             |                                         |                                                | ·                                     | <b> </b>                                     |                                       |                  |  |  |  |  |
| SCIOLE                                      |                                         | <b>1</b> · · · · · · · · · · · · · · · · · · · |                                       |                                              |                                       |                  |  |  |  |  |
|                                             |                                         |                                                |                                       | <b></b>                                      | l                                     |                  |  |  |  |  |
| 725% F                                      |                                         |                                                |                                       | <u>+</u>                                     |                                       |                  |  |  |  |  |
| CB . Y SGIT -STID MED GREEN IS ASAUC        | local greg grz Vits                     | Match, w/m pervesive                           | Tr. 1ºle In danse                     | e Py                                         | <b> </b>                              |                  |  |  |  |  |
| 40 - probably pillowed Becoming             | original sologo four                    | mears (cale) stranger                          | mainly bleached are                   | <u>الم</u>                                   |                                       |                  |  |  |  |  |
| A patro blocked below Sum                   | illinte                                 | With nece ontente                              | · · · · · · · · · · · · · · · · · · · | <b></b>                                      | <b>}</b>                              |                  |  |  |  |  |
| 7 Transitional CB 54M + belo                | ~ · · · · · · · · · · · · · · · · · · · | proximal to scare                              |                                       | <b></b>                                      | <b></b>                               |                  |  |  |  |  |
| PB(c) 4                                     |                                         | alteration                                     |                                       | <u> </u>                                     |                                       |                  |  |  |  |  |
|                                             | Interview carb locop                    |                                                |                                       |                                              | <b>{</b>                              |                  |  |  |  |  |
| 50-                                         | - 9/2-colide voilete -                  |                                                |                                       | <b>_</b>                                     | <b></b>                               |                  |  |  |  |  |
|                                             | longes                                  |                                                |                                       | <u> </u>                                     |                                       |                  |  |  |  |  |
|                                             | Mate ching's unit                       | <b></b>                                        | ·                                     | <b></b>                                      | <b> </b>                              |                  |  |  |  |  |
| CB C CASI TIONCE CE                         | lecal microbe toxtures                  | <u> </u>                                       |                                       | <b></b>                                      | <b>_</b>                              | L                |  |  |  |  |
| 57.0-58.90 SCOP 57.0-58.90 SCOP Zone with 9 | 12 Milky gly reine upto                 | maderate carb-sil                              | 5-10 locally 715% p                   | redon m                                      | dimen                                 | ER, patching for |  |  |  |  |
| 60 Veins and dusion ERy                     | sem us diver some mb                    | some remnant textures                          |                                       | ´                                            |                                       |                  |  |  |  |  |
| 18:10-63 9 ned green Basett                 | coast zen grj V Hill                    | week potely carbled)                           | spoise - 1th to by                    | -                                            | 1                                     | •                |  |  |  |  |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Wells

DATE: July 17,2003

(

## CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| ٦<br>ا | DDH NO. <b>795 - 41</b>                  | -                                     | ······································ |                                       |          | PA             | GE NO. 2 |  |
|--------|------------------------------------------|---------------------------------------|----------------------------------------|---------------------------------------|----------|----------------|----------|--|
|        | LITHOLOGY                                | STRUCTURE                             | STRUCTURE ALTERATION                   |                                       | SAMPLING |                |          |  |
| ; o    | MAIN UNITS GL SUB UNITS                  |                                       |                                        |                                       | FROM     | то             | NUMBER   |  |
|        | B(1)                                     |                                       |                                        |                                       |          |                |          |  |
|        | 62.9-77.8 102.9-77.80 Two SCOP ZOAS      | LS                                    |                                        | Much dimon ED an                      | i at     |                |          |  |
|        | Ecop will at your a stand on milk, gt ye | ins main at veins 65.0-               | Story altoration                       | VRIA AWALT FLUATIONSK                 | mic      | 5-10-1         | ·····    |  |
| - 1    | secondad by CRP A. With dimen CP. contr  | sted 67:4 yets In wide                | throughout with more                   | locall semi mescin                    | + 501.0  | daac           |          |  |
| 70     | bands bands is an an an it the           | Ry with Py bonds (mc)                 | silice in CCOP.                        | Intermediate CB ha                    | r 1.3%   | a crecall_     |          |  |
|        | C 0 0                                    | 67.4-78.0 minor ch ulte               | Besically two scop                     | dine durien E.P.                      |          | <u>ر ، ، ۲</u> |          |  |
|        | CQF                                      | 73.77 Several milk.                   | at vein unit senarate                  |                                       |          |                |          |  |
|        | SCOP 2                                   | gty veins to 7cm Po-wird              | b. CB miner als                        | •                                     |          |                |          |  |
|        | 77.80- 89.00 Appart to be                | <u>, a</u>                            | · / / / / /                            |                                       |          |                |          |  |
| 80     | - PB(c) section of pellowed besalt       | to with                               | W/M DALY COLC                          | Tr-10% mainly fre a                   | issen P. |                | ·        |  |
|        | avariable dependion - focal              | 1 MILD- Chil and shoored for          | CA 82.0 - 85.0                         | J. 0 4                                |          |                |          |  |
| 1      | breccia textures                         |                                       | Hora fracturos<br>Cask- cal            |                                       |          |                |          |  |
|        |                                          | · · · · · · · · · · · · · · · · · · · | w/m poivesive cale                     |                                       |          |                |          |  |
| ļ      | PB(c)                                    |                                       |                                        | · · · · · · · · · · · · · · · · · · · |          |                |          |  |
| 10     | 29.0-94.6 Cork Basalt                    | local chi frochuse                    | Med dursen ng ank                      | Traces of I'm dessen                  | in       |                |          |  |
|        |                                          | veinetherd 25-30 CA                   | thons to perucsive ank.                |                                       | <u> </u> |                |          |  |
|        | 94.6-105.0 Altoration Ze                 | ne nico brocuntur                     | week coluce                            | 4-10% for ER, die                     | n in sca | P              |          |  |
|        | with scap at to 98m.                     | Below gta king to been                | Pervesive cors cank)                   | below 23% fine do                     | men ly.  |                |          |  |
|        | SCOP Space gtz reine work verial         | ble low Ha-So"CA                      | more silica above                      | · · · · · · · · · · · · · · · · · · · |          |                | · ·      |  |
| 140    | (ser) convention of P. Not               | confle                                | dissin green servite                   |                                       |          |                |          |  |
|        | CP(sor) diren petitus of aneen sea       | iate tymatine in otr                  | ·····                                  |                                       |          |                |          |  |
|        | # Schorl                                 | and strong sericine                   |                                        |                                       |          |                |          |  |
|        | "Sericite 105.0-109.4 Corb Bosale.       | several milks at                      | disconisoled ank                       | Tr-1% fire disse                      | p. p.    |                |          |  |
|        | The game change changes of a             | , VAINS & BCM 50-70 CA                | carbarota bocol                        | ·                                     |          |                | <u></u>  |  |
| 110    | 109.4 -111.2 SCOP                        |                                       | ock chlore ve let                      |                                       | 60       |                |          |  |
|        | 1112-118.0 Light- med an                 | in gh voins                           | song certifical)-fil                   | ranny for distern                     |          | pcol cen       | y        |  |
|        | PRID Dweak recreptioning Korn            | 4t 7                                  | alcoration                             | massive mic at                        | Vein Sel | Riber          | ·        |  |
|        |                                          | Vini ohl. Vernlete versit             | and the species with corts             | Tracks of fine disser                 | ļ        | <u> </u>       |          |  |
| 19.4   | 118.0 - 121.70 CB with fin gi            | by variates " yes ca                  | mla and cat                            | in the second                         |          | <u> </u>       |          |  |
|        |                                          | grz Ventela                           | ank                                    | 1 and for the                         |          |                |          |  |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: .... R. Wells

......

DATE: 17 July 2003

C

## CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| UN NU. 175-41      |              |                                           |                                        | ·                 |                         |         | PAG        | JE NO.3 |
|--------------------|--------------|-------------------------------------------|----------------------------------------|-------------------|-------------------------|---------|------------|---------|
| MAIN LINITS        |              |                                           |                                        | ALTERATION        | MINERALIZATION          | 52014   | SAMPL      | ING     |
|                    |              | SUB UNITS                                 |                                        |                   |                         | FROM    | 10         | NUMBE   |
| 121.70-129 0       | بترجيه وتوار | 121.70-124.0 Milky quests                 | massive deferment                      | chhritic stears   | Troce - I'l prodom      |         |            |         |
| Quartz Vein        | 5            | with py wallrock inclusions exp           | hist onle elequence                    | Minut cality      | fine dinen Pr in walle  | · (·    |            |         |
| with alterad       |              | in lower section                          | (446) h 70-50°0 A                      |                   |                         |         |            |         |
| Wellinder inclusi  | •••          | ·                                         |                                        |                   |                         |         |            |         |
| 129-4-131-4        | - 9,20       | 129.0 -131.40 stangly brechinted - rubbly | 70-80° c + 51:pi                       | weak cocharate    | Te- 30/ generally offer | disen P | -potiting. |         |
| Breccia Zone       | 11           | 121.40 - icc. +                           | Carbon or chi                          | reaction          |                         |         |            |         |
| 121.11 - 100 - 500 | 11/          | Croy night sincesus short tom             |                                        |                   |                         |         |            |         |
| 131940-13318500    | V.           | scale inda: strangly defined locally      | Same calich bodding                    | week cality       | mine fire divien        | P.      |            |         |
| Deformed Groy      | VA.          | brecaided                                 | - 40°CA                                | on some prochvier | <u> </u>                |         | ·          |         |
| Bedded Chart       | 274          |                                           | cleanages and                          |                   |                         |         |            | · .     |
|                    | 1.5          | l                                         | prochuses ore                          |                   | <u></u>                 |         |            |         |
|                    | 24           |                                           | closer to ze ch.                       |                   |                         | ,<br>   |            |         |
| · · · ·            | Z.           |                                           |                                        |                   |                         |         |            |         |
|                    | - EX         |                                           | -                                      |                   | · ·                     |         |            |         |
|                    | - 11.        | · · · · · · · · · · · · · · · · · · ·     |                                        |                   |                         |         |            | · ·     |
|                    | - 14         |                                           |                                        |                   |                         |         |            |         |
| •                  | - [4]        |                                           |                                        |                   |                         |         |            |         |
|                    |              | ISSI ETH                                  |                                        | •                 | ·                       |         | ŀ          |         |
|                    |              | · · ·                                     |                                        |                   |                         |         |            | [       |
|                    |              |                                           |                                        |                   |                         |         |            | ,       |
|                    |              |                                           |                                        |                   |                         | 1       |            |         |
|                    | 1            | · ·                                       |                                        |                   |                         | 1       |            |         |
|                    |              |                                           |                                        |                   | 1                       |         |            |         |
|                    |              |                                           |                                        |                   | 1                       |         |            |         |
|                    |              |                                           |                                        |                   |                         |         | 1          |         |
|                    |              | ·                                         |                                        |                   |                         | 1       |            |         |
|                    |              |                                           |                                        |                   |                         |         |            |         |
|                    |              |                                           |                                        |                   |                         | 1       |            |         |
|                    |              |                                           |                                        |                   |                         | 1       | 1          |         |
|                    |              |                                           |                                        |                   |                         | 1       | 1          | [       |
|                    |              |                                           | ······································ |                   | T                       | 1       | 1          | 1       |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Wells

 $\left( \right)$ 

DATE: July 17, 2003

(

## CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| DDH        | INO. 795-43           |               | •                                          |                           |                                        |                                       |            | PA        | GE NO. <b>1</b> .                      |
|------------|-----------------------|---------------|--------------------------------------------|---------------------------|----------------------------------------|---------------------------------------|------------|-----------|----------------------------------------|
|            |                       | 1             | ITHOLOGY                                   | STRUCTURE                 | ALTERATION                             | MINERALIZATION                        |            | SAMPL     | ING                                    |
|            | MAIN UNITS            | GL            | SUB UNITS                                  |                           |                                        |                                       | FROM       | TO        | NUMBER                                 |
|            |                       |               | 0-4 2 OVE thurden                          |                           |                                        |                                       |            |           |                                        |
| l          | 0-4.28                | 3             |                                            |                           | axidinal to 7.50                       |                                       |            |           |                                        |
|            | overourden            | hi            | has and this and and the                   |                           | and the ism                            |                                       |            |           |                                        |
|            |                       |               | 4.28-210 Eight - med green, fine           | Milky,                    | A 1 4                                  |                                       |            |           |                                        |
|            | 4.28-21.0             | 5             | around baralt Non to Was                   | several to 3cm 4.5- 7.0   | Porthy pervasire week                  | Te-17 for dimen                       | P.s.       | · · · · · | · · ·                                  |
| <b></b>    | B(P)                  | 11            | reignetic Pabably pillowed                 | 25°CA                     | carle (cale)                           | - local cupes                         |            |           | ······                                 |
| 1 .        |                       | 1             | ·                                          | C lash Zem 30°CA          |                                        |                                       |            |           |                                        |
|            |                       | 11            |                                            | miner subponalest         |                                        |                                       |            |           | ·····                                  |
| 1          |                       | 1             |                                            | fractures local chi       |                                        | •                                     |            |           | <u> </u>                               |
| 1          |                       | 1             |                                            | coludito                  |                                        |                                       |            |           | <u>.</u>                               |
| 1          |                       |               | • •                                        | <i>.</i>                  |                                        |                                       |            |           |                                        |
| • <b> </b> |                       | 17            | 10 - 27:50 Call the albertic last          | In A laten at             | Rock 1: marine                         | To 14 to desire                       | 0          |           |                                        |
|            | 21.0-27.5             | 1.7           | ALLO - 2/130 LOTGORALD CALLUD (ALL)        | local lisem grz           | Partoy & pervedue                      | IF- 1 to on purson                    | 5          |           |                                        |
|            | ra 13                 |               | fairly massive basale                      | VA 1AS 410 50 CA          | Moderate carbonate                     |                                       |            |           |                                        |
|            |                       |               |                                            | Cozziz 3cm grachy y soci  | lookeale )                             |                                       | <b> </b>   |           | ······································ |
| · ·        | 27.5-29.60 Chiloritie | 595           | 27.50-30.50 Chloribic Shear Zone           | foliation 10-30 CA        |                                        |                                       |            |           |                                        |
|            | Sheat                 | 125           | Breesisted with of Vein coment below       | Coche Cares Sheks         |                                        | <u> </u>                              | ļ          |           |                                        |
| °          | 30-50-34-00 SCOP      |               | 30m - 34:00 SCOP ZURE WITH A               | at variation Ben 20-30 CA | Pervesive Oak (Si)                     | 2-5% In dimenter.                     |            |           |                                        |
| 1 ·        |                       | 44            | Aw milky ghy veins minor disom Py          | local dk chi voislet      |                                        | conclueor veins                       |            | ·         |                                        |
|            | 34 44                 | Ĩ             | 34.00 - 44.50 Cachants Allered Porelt      | lace 20.30 CA ala year    | and crote and warman and               | Rotal dimentarial                     | Ini was    | Vet J. R. |                                        |
| }          | 34.00-44,50           | 14            | (ank) fairly massive Local milty gly veins | 1. 2cm. Minor highoryle   | produce province and                   | Course Course                         | 1 100 0000 | <u> </u>  |                                        |
| - 1        | CR.                   | 19            |                                            | A C WINEL                 | ······································ |                                       |            |           |                                        |
| °          |                       | 1             |                                            |                           |                                        |                                       |            |           | $\rightarrow$                          |
|            | · . ·                 |               |                                            |                           |                                        |                                       | <u>↓</u>   |           |                                        |
|            | •                     |               |                                            |                           |                                        |                                       |            |           |                                        |
| 1          | 44.50 - 48.00 SCOP    |               | 44.50 - 48.80 Scop Zone control            | 45.2-47.6 Loise milks     | Story WR. Ack (sil)                    | WR and inclusion for                  | CP3 51/    | h semi-   | massive                                |
| 1.1        | Lange QV              | 10            | on milty of WR and Inclusion P.            | Bogulas inclusions        |                                        | notrable conc around                  | rein no    | sins      |                                        |
| ~  * '     | Sargeles - POOR       | i de          | 48.8.502 Carbonated (ank) Batalt           | foirly massive            | Mod-smury Peru BAR                     | Tr. 1% for dissen by                  |            |           |                                        |
|            | 48.00-502 CB          | 12            | 50.20-55.50 Med green fg. Dillowed         | Pillound                  | W/M pervosive corbical)                | trea fine Py.                         |            | L.        |                                        |
|            | 50-2- 55.0 PB(4)      |               | Basalt , Non magneric                      |                           |                                        |                                       |            |           |                                        |
|            |                       | K             | CEGARGE CARA AND A CALLAR P. 14            | w/m broken with chil. ,   | pervosive mod ank.                     | Traces of fini driven R               |            | 1         |                                        |
|            | 55-56-3 68            | $\mathcal{D}$ | 76.50-65.30 SCOP ZOAR                      | CEALINEE GENERAL LS       | 1                                      | <u> </u>                              | 1          | <b> </b>  | ··                                     |
|            |                       |               |                                            |                           | <b>6</b> 70                            | F217U .                               | 1          | <u> </u>  | ······································ |
|            |                       | ¥.¥           |                                            | 94 30'CA                  |                                        | · · · · · · · · · · · · · · · · · · · | <u> </u>   |           |                                        |
|            |                       |               | <u> </u>                                   | 1/59.5 20cm/ 20cA         | L                                      | L.,.                                  | L          | <u> </u>  |                                        |

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY R. LIGHE

DATE 18 7.1 3400

r

## CASSIAR-TAURUS

NAVASOTA RESOURCES LTD.

| <u> </u>    | DDH NO. 795-43       |          |                                       |                          |                        | · · · · · · · · · · · · · · · · · · · |            | PA                                    | SE NO.2                                |
|-------------|----------------------|----------|---------------------------------------|--------------------------|------------------------|---------------------------------------|------------|---------------------------------------|----------------------------------------|
| Ļ           |                      | <u> </u> | ITHOLOGY                              | STRUCTURE                | ALTERATION             | MINERALIZATION                        |            | SAMPL                                 | ING                                    |
| 50-         | MAIN UNITS           | GL       | SUB UNITS                             |                          | ,                      |                                       | FROM       | TO                                    | NUMBER                                 |
|             | SCQP                 | 61       | Important core Re 1145st soction      | milty que so-work        | Pervosiva corb-sil.    | 5-15% fore dursen "                   | P3         |                                       |                                        |
| -           | E Box below 61.65m.  | 1        | misniky                               |                          |                        |                                       |            | ··· · · · · · · ·                     | · · · · · · · · · · · · · · · · · · ·  |
| (1994)<br>1 | 60 90- 71.70         | 1        | 65.30-71.70 Light-med along allowed   | Pellowed dk              | M pervesión continenti | Terre his P                           | []         |                                       | ······································ |
| 1           |                      | RC       | Basall, To-wack mograti               | chi. internillow         | 4 downwords            |                                       |            |                                       |                                        |
| 701         | - FB(t)              | 10       |                                       |                          |                        |                                       |            |                                       | ······································ |
| •-          |                      | 1        | 71-1-76.7 Baken rubbly SCOP           | Russel bx, at unin       | carb. clower chi       | In dimon & 2.8%                       |            |                                       |                                        |
| -           | Scales F2            | KA)      | CB unit with pochrad veins - by       | 76.45-76.65 cleuse 70°CA |                        |                                       | []         | · ·                                   | 1                                      |
|             | SCON/CR              | 1        |                                       |                          |                        | •                                     |            | ,                                     |                                        |
|             | 76.7 - 780 FAULT     | 1        | 16.7-78.0 Atrabove highly deformed    |                          |                        |                                       |            | ·                                     | ······································ |
| -           | 78:0 = 85:0          | 14       | BOKON- (USbl. (bx) CB                 | rubh biecciated.         |                        |                                       |            |                                       | · · ·                                  |
| 20          | CB , deformation Zon | - 11     |                                       | more mousive downwoords  | weak surveive each     | TC- 11 line P-                        |            |                                       |                                        |
| ł           |                      | 190      | 85.0-93.0 Bosalt Mad green            | contact                  | Coche                  | · · · · · · · · · · · · · · · · · · · |            |                                       |                                        |
| ļ           | 95.0-02.0            | 1%       | anget appartie, gelland               |                          |                        |                                       |            |                                       |                                        |
|             |                      | p        |                                       | ļ                        |                        |                                       |            |                                       |                                        |
| - a,        | [ [***               | 4        | ł                                     |                          |                        |                                       |            |                                       |                                        |
| "           |                      |          | 1                                     | Į                        |                        |                                       |            |                                       | · · · · · · · · · · · · · · · · · · ·  |
| l           | 93.0 - 96.25 SCOP    | 5/       | 193.0-9685 SCOP Ant seen              |                          |                        |                                       |            |                                       |                                        |
| Ì           |                      |          | mussing calle Minist 9x               |                          |                        |                                       |            |                                       |                                        |
| 1           | Not the              | Z.       | 19625-111-9 Mad gicen, fg. Pillunce   | Minie fine Righ          | Palet, mech            | Tress fine design P.                  |            |                                       |                                        |
| 100         | 10.25 -111.9         | X        | Basalt generally nea to west manche   | angle cale remete        | servación costo (calc) | r 7                                   |            |                                       |                                        |
|             | r 0/ 0(t)            | 17       | · · · · · · · · · · · · · · · · · · · | /                        | ·                      | ·                                     |            |                                       |                                        |
| Ì           |                      | 111      | ·                                     |                          | <u></u>                | ·                                     |            | · · · · · · · · · · · · · · · · · · · |                                        |
| :           |                      | ÷¢       | ·                                     |                          |                        |                                       |            |                                       |                                        |
|             |                      | 1        | Colette Herei                         |                          |                        | ,,,,,,,,,,,                           | · · ·      | ļ                                     | · · · ·                                |
| 110         | ► .                  | -[카      | Carcite Verning                       | <b>+</b>                 | <b> </b>               | <u> </u>                              |            | ļ                                     |                                        |
|             | 111.9 - 120.7 ALLY   | 1        | 9 111.9 -120.7 Gus chell bedy         | weak britte              | Minor Freiture         | lacal fine dimen.                     | R          | ļ                                     |                                        |
|             | Chert 6ods           |          | I to me bods with fine lanings        | froduing                 | coluite                | · · · · · · · · · · · · · · · · · · · |            |                                       | · · ·                                  |
|             |                      | X        | highly silicens x e.fin grained       | Bedding 75°CO            | <u> </u>               | <u> </u>                              |            | ļ                                     |                                        |
|             | 120-7-126.11         | V)       | ( in corocret, months)                | well developed           | <u> </u>               | <u> </u>                              | <b> </b> i | ļ                                     | · · ·                                  |
| 120         | Bedded Chert         | V        | Chert & block prodicts for a sec      | peacing 30-35°CA         | <u> </u>               | flow My cutors .                      | <b></b> i  | l                                     |                                        |
|             | Carbonaceous Argilli | 4        |                                       | Slick US CA.             | <u> </u>               | <u> </u>                              | L          | L                                     | t                                      |

KAMLOOPS GEOLOGICAL SERVICES LTD.

Good grephite

LOGGED BY: K. Wells

. . . . . . . . .

DATE: 18 July 2003

#### APPENDIX C GEOCHEMICAL DATA AND PLOTS

()

Ronald C. Wells P.GEO, FGAC, Kamloops Geological Services Ltd

# C

#### TABLE 2. 2003 CASSIAR - TAURUS PROJECT: GEOCHEMICAL SAMPLES

| ETK. Sample No.                                                                                                                                                                                                                | Hole No. Depth                                                                                                                                                                                                                                                                                                                                                             | Assay Interval (g/t)                                                                                                                                                                                                                                                                                                                                                                                                                      | Brief Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Au ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ag ppm                                                                                                                                                                                                                                | As ppm                                                                                                                                                                                                   | Cu ppm                                                                                                                                                              | Zn ppm                                                                                                                                                                                          | Crppm                                                                                                                                                               | Ni ppm                                                                                                                                                                                                               |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23451                                                                                                                                                                                                                          | T95-04, 124.00                                                                                                                                                                                                                                                                                                                                                             | 123.4-125.4 (0.35)                                                                                                                                                                                                                                                                                                                                                                                                                        | Massive basalt, non mag.m/s carb (ca)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.2                                                                                                                                                                                                                                  | <5                                                                                                                                                                                                       | 53                                                                                                                                                                  | 76                                                                                                                                                                                              | 134                                                                                                                                                                 | 62                                                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |
| 23452                                                                                                                                                                                                                          | T95-13, 132.00                                                                                                                                                                                                                                                                                                                                                             | NS                                                                                                                                                                                                                                                                                                                                                                                                                                        | P.basalt.non mag.w/m carb (ca)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.2                                                                                                                                                                                                                                  | <5                                                                                                                                                                                                       | 108                                                                                                                                                                 | 83                                                                                                                                                                                              | 99                                                                                                                                                                  | 55                                                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |
| 23453                                                                                                                                                                                                                          | T95-13, 157.20                                                                                                                                                                                                                                                                                                                                                             | NS                                                                                                                                                                                                                                                                                                                                                                                                                                        | P.basalt,non mag. s carb (ca)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.2                                                                                                                                                                                                                                  | <5                                                                                                                                                                                                       | 89                                                                                                                                                                  | 74                                                                                                                                                                                              | 79                                                                                                                                                                  | 60                                                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |
| 23454                                                                                                                                                                                                                          | T95-13, 279.20                                                                                                                                                                                                                                                                                                                                                             | NS                                                                                                                                                                                                                                                                                                                                                                                                                                        | P. basalt, non mag.w carb (ca),1-2%Py.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.2                                                                                                                                                                                                                                  | <5                                                                                                                                                                                                       | 68                                                                                                                                                                  | 53                                                                                                                                                                                              | 80                                                                                                                                                                  | 38                                                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |
| 23455                                                                                                                                                                                                                          | T95-04, 30.20                                                                                                                                                                                                                                                                                                                                                              | 28.4-30.3 (0.69)                                                                                                                                                                                                                                                                                                                                                                                                                          | P.basalt/CB. s carb (ank)-sil,<2% Py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.2                                                                                                                                                                                                                                  | 65                                                                                                                                                                                                       | 78                                                                                                                                                                  | 91                                                                                                                                                                                              | 64                                                                                                                                                                  | 48                                                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |
| 23456                                                                                                                                                                                                                          | T95-13, 93.10                                                                                                                                                                                                                                                                                                                                                              | 93.0-94.0 (.003)                                                                                                                                                                                                                                                                                                                                                                                                                          | CB(sil). s carb (ank), sil impreg. Tr. Py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.2                                                                                                                                                                                                                                  | <5                                                                                                                                                                                                       | 2                                                                                                                                                                   | 84                                                                                                                                                                                              | 65                                                                                                                                                                  | 43                                                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |
| 23457                                                                                                                                                                                                                          | T95-62, 68.68                                                                                                                                                                                                                                                                                                                                                              | 68.0-70.0 (.003)                                                                                                                                                                                                                                                                                                                                                                                                                          | Lamprophyre Dyke, w/m mag.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.2                                                                                                                                                                                                                                  | <5                                                                                                                                                                                                       | 46                                                                                                                                                                  | 55                                                                                                                                                                                              | 284                                                                                                                                                                 | 117                                                                                                                                                                                                                  |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |
| 23458                                                                                                                                                                                                                          | T95-13, 150.40                                                                                                                                                                                                                                                                                                                                                             | 150.0-151.0 (.003)                                                                                                                                                                                                                                                                                                                                                                                                                        | Trans. CB/SC, s carb (ank)Tr-1% Py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.2                                                                                                                                                                                                                                  | 25                                                                                                                                                                                                       | 32                                                                                                                                                                  | 79                                                                                                                                                                                              | 63                                                                                                                                                                  | 42                                                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |
| 23459                                                                                                                                                                                                                          | T95-04, 147.69                                                                                                                                                                                                                                                                                                                                                             | 145.9-147.9 (1.38)                                                                                                                                                                                                                                                                                                                                                                                                                        | SCP(Q). s carb (ank), sil, 7-10% Py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.0                                                                                                                                                                                                                                   | 1795                                                                                                                                                                                                     | 63                                                                                                                                                                  | 76                                                                                                                                                                                              | 86                                                                                                                                                                  | 79                                                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |
| 23460                                                                                                                                                                                                                          | T95-13, 201.60                                                                                                                                                                                                                                                                                                                                                             | 201.0-202.3 (0.54)                                                                                                                                                                                                                                                                                                                                                                                                                        | SC(Q)P, s carb (ank/ca) 7-8% Py, Aspy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.2                                                                                                                                                                                                                                  | 9760                                                                                                                                                                                                     | 12                                                                                                                                                                  | 65                                                                                                                                                                                              | 72                                                                                                                                                                  | 66                                                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |
| 23461                                                                                                                                                                                                                          | T95-04, 36.92                                                                                                                                                                                                                                                                                                                                                              | 35.8-37.8 (1.16)                                                                                                                                                                                                                                                                                                                                                                                                                          | SCQP, s carb (ank), 6% fine Py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.2                                                                                                                                                                                                                                  | 275                                                                                                                                                                                                      | 60                                                                                                                                                                  | 79                                                                                                                                                                                              | 75                                                                                                                                                                  | 52                                                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |
| 23462                                                                                                                                                                                                                          | T95-04, 138.70                                                                                                                                                                                                                                                                                                                                                             | 137.9-139.9 (0.59)                                                                                                                                                                                                                                                                                                                                                                                                                        | CB/PAZ, s carb (ank) sil,>15% f.Py.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.4                                                                                                                                                                                                                                   | 1935                                                                                                                                                                                                     | 29                                                                                                                                                                  | 67                                                                                                                                                                                              | 73                                                                                                                                                                  | 60                                                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |
| 23463                                                                                                                                                                                                                          | T95-13, 233.80                                                                                                                                                                                                                                                                                                                                                             | 233.0-234.0 (2.89)                                                                                                                                                                                                                                                                                                                                                                                                                        | SCP, s carb (ank) >10% f.Py(e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.4                                                                                                                                                                                                                                   | 1890                                                                                                                                                                                                     | 63                                                                                                                                                                  | 60                                                                                                                                                                                              | 65                                                                                                                                                                  | 61                                                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |
| 23464                                                                                                                                                                                                                          | T95-13, 241.20                                                                                                                                                                                                                                                                                                                                                             | 241.0-242.0 (4.43)                                                                                                                                                                                                                                                                                                                                                                                                                        | CB/PAZ (sil), s carb (ank) >20% f.Py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.8                                                                                                                                                                                                                                   | 2145                                                                                                                                                                                                     | 48                                                                                                                                                                  | 22                                                                                                                                                                                              | 69                                                                                                                                                                  | 49                                                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |
| 23465                                                                                                                                                                                                                          | T95-29. 99.50                                                                                                                                                                                                                                                                                                                                                              | 98.0-100.0 (4.40)                                                                                                                                                                                                                                                                                                                                                                                                                         | PAZ. wispy ca vits.>20% f.Py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.5                                                                                                                                                                                                                                   | 2735                                                                                                                                                                                                     | 77                                                                                                                                                                  | 35                                                                                                                                                                                              | 68                                                                                                                                                                  | 71                                                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |
| 23466                                                                                                                                                                                                                          | T95-29, 138.00                                                                                                                                                                                                                                                                                                                                                             | 138.0-140.0 (3.01)                                                                                                                                                                                                                                                                                                                                                                                                                        | PAZ., sparse carb, >40% f.Py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.0                                                                                                                                                                                                                                   | 3660                                                                                                                                                                                                     | 82                                                                                                                                                                  | 36                                                                                                                                                                                              | 59                                                                                                                                                                  | 49                                                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |
| 23467                                                                                                                                                                                                                          | T95-70, 110.80                                                                                                                                                                                                                                                                                                                                                             | 110.0-112.0 (3.62)                                                                                                                                                                                                                                                                                                                                                                                                                        | PAZ/CB Strong Alt. carb (ca) >20% f.Py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0                                                                                                                                                                                                                                   | 6605                                                                                                                                                                                                     | 30                                                                                                                                                                  | 51                                                                                                                                                                                              | 84                                                                                                                                                                  | 78                                                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |
| 23468                                                                                                                                                                                                                          | T95-18, 122.20                                                                                                                                                                                                                                                                                                                                                             | 121.0-123.0 (3.45)                                                                                                                                                                                                                                                                                                                                                                                                                        | PAZ.minor carb, >30% f.Py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4593                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.1                                                                                                                                                                                                                                   | 4925                                                                                                                                                                                                     | 81                                                                                                                                                                  | 69                                                                                                                                                                                              | 88                                                                                                                                                                  | 66                                                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |
| 23469                                                                                                                                                                                                                          | T95-03, 168.20                                                                                                                                                                                                                                                                                                                                                             | 167.94-169.47 (3.79)                                                                                                                                                                                                                                                                                                                                                                                                                      | CB, ank mombs, >20% f.Py. PAZ.var.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.5                                                                                                                                                                                                                                   | 3065                                                                                                                                                                                                     | 44                                                                                                                                                                  | 29                                                                                                                                                                                              | 71                                                                                                                                                                  | 67                                                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |
| 23470                                                                                                                                                                                                                          | T94-74, 57.90                                                                                                                                                                                                                                                                                                                                                              | 56.97-58.58 (2.20)                                                                                                                                                                                                                                                                                                                                                                                                                        | CB, strong alt,mic.fr.>20% f.Py (dis/fr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.2                                                                                                                                                                                                                                  | 2095                                                                                                                                                                                                     | 7                                                                                                                                                                   | 37                                                                                                                                                                                              | 56                                                                                                                                                                  | 69                                                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |
| 23471                                                                                                                                                                                                                          | T95-19, 72.40                                                                                                                                                                                                                                                                                                                                                              | 72.0-74.0 (4.10)                                                                                                                                                                                                                                                                                                                                                                                                                          | PAZ/SCP. S carb (ank),sil?, >15% f.Py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3817                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.2                                                                                                                                                                                                                                   | 3100                                                                                                                                                                                                     | 16                                                                                                                                                                  | 40                                                                                                                                                                                              | 66                                                                                                                                                                  | 74                                                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |
|                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                       |                                                                                                                                                                                                          |                                                                                                                                                                     |                                                                                                                                                                                                 |                                                                                                                                                                     |                                                                                                                                                                                                                      |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |
|                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                       |                                                                                                                                                                                                          |                                                                                                                                                                     |                                                                                                                                                                                                 |                                                                                                                                                                     |                                                                                                                                                                                                                      |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |
|                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                       |                                                                                                                                                                                                          |                                                                                                                                                                     |                                                                                                                                                                                                 |                                                                                                                                                                     | 41000                                                                                                                                                                                                                |                                                                                                                                                                                    | TI02                                                                                                                                                                                                                                                                               | Na2O                                                                                                                                                                                     |
| ETK. Sample No.                                                                                                                                                                                                                | Hole No. Depth                                                                                                                                                                                                                                                                                                                                                             | Assay Interval (g/t)                                                                                                                                                                                                                                                                                                                                                                                                                      | Brief Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BaO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P205                                                                                                                                                                                                                                  | SiO2                                                                                                                                                                                                     | MnO                                                                                                                                                                 | Fe203                                                                                                                                                                                           | MgÖ                                                                                                                                                                 | A1203                                                                                                                                                                                                                | CaO                                                                                                                                                                                | TiO2                                                                                                                                                                                                                                                                               | Na2O                                                                                                                                                                                     |
| ETK. Sample No.<br>23451                                                                                                                                                                                                       | Hole No. Depth<br>T95-04, 124.00                                                                                                                                                                                                                                                                                                                                           | Assay Interval (g/t)<br>123.4-125.4 (0.35)                                                                                                                                                                                                                                                                                                                                                                                                | Brief Comments<br>Massive basalt,non mag.m/s carb (ca)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>BaO</b><br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>P 205</b><br>0.14                                                                                                                                                                                                                  | <b>SIO2</b><br>43.73                                                                                                                                                                                     | MnO<br>0.21                                                                                                                                                         | Fe203                                                                                                                                                                                           | MgO<br>6.70                                                                                                                                                         | Al203                                                                                                                                                                                                                | <b>CaO</b><br>8.61                                                                                                                                                                 | TiO2                                                                                                                                                                                                                                                                               | Na20<br>2.27                                                                                                                                                                             |
| ETK. Sample No.<br>23451<br>23452                                                                                                                                                                                              | Hole No. Depth<br>T95-04, 124.00<br>T95-13, 132.00                                                                                                                                                                                                                                                                                                                         | Assay Interval (g/t)<br>123.4-125.4 (0.35)<br>NS                                                                                                                                                                                                                                                                                                                                                                                          | Brief Comments<br>Massive basalt,non mag.m/s carb (ca)<br>P.basalt,non mag.w/m carb (ca)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>BaO</b><br>0.01<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>P205</b><br>0.14<br>0.13                                                                                                                                                                                                           | <b>SiO2</b><br>43.73<br>46.85                                                                                                                                                                            | MnO<br>0.21<br>0.15                                                                                                                                                 | Fe203<br>13.24<br>14.54                                                                                                                                                                         | MgO<br>6.70<br>5.89                                                                                                                                                 | Al203<br>12.09<br>12.03                                                                                                                                                                                              | <b>CaO</b><br>8.61<br>7.85                                                                                                                                                         | TiO2<br>1.94<br>2.04                                                                                                                                                                                                                                                               | Na2O<br>2.27<br>1.92                                                                                                                                                                     |
| ETK. Sample No.<br>23451<br>23452<br>23453                                                                                                                                                                                     | Hole No. Depth<br>T95-04, 124.00<br>T95-13, 132.00<br>T95-13, 157.20                                                                                                                                                                                                                                                                                                       | Assay Interval (g/t)<br>123.4-125.4 (0.35)<br>NS<br>NS                                                                                                                                                                                                                                                                                                                                                                                    | Brief Comments<br>Massive basalt, non mag.m/s carb (ca)<br>P.basalt, non mag.w/m carb (ca)<br>P.basalt, non mag. s carb (ca)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8aO<br>0.01<br>0.02<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>P205</b><br>0.14<br>0.13<br>0.15                                                                                                                                                                                                   | <b>SiO2</b><br>43.73<br>46.85<br>45.55                                                                                                                                                                   | MnO<br>0.21<br>0.15<br>0.19                                                                                                                                         | Fe203<br>13.24<br>14.54<br>13.08                                                                                                                                                                | MgO<br>6.70<br>5.89<br>5.56                                                                                                                                         | Al203<br>12.09<br>12.03<br>11.83                                                                                                                                                                                     | <b>CaO</b><br>8.61<br>7.85<br>9.04                                                                                                                                                 | TiO2<br>1.94<br>2.04<br>1.68                                                                                                                                                                                                                                                       | Na20<br>2.27<br>1.92<br>2.94                                                                                                                                                             |
| ETK. Sample No.<br>23451<br>23452<br>23453<br>23453<br>23454                                                                                                                                                                   | Hole No. Depth<br>T95-04, 124.00<br>T95-13, 132.00<br>T95-13, 157.20<br>T95-13, 279.20                                                                                                                                                                                                                                                                                     | Assay Interval (g/t)<br>123.4-125.4 (0.35)<br>NS<br>NS<br>NS<br>NS                                                                                                                                                                                                                                                                                                                                                                        | Brief Comments<br>Massive basalt, non mag.m/s carb (ca)<br>P.basalt, non mag.w/m carb (ca)<br>P.basalt, non mag. s carb (ca)<br>P. basalt, non mag.w carb (ca),1-2%Py.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BaO<br>0.01<br>0.02<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>P205</b><br>0.14<br>0.13<br>0.15<br>0.18                                                                                                                                                                                           | <b>SiO2</b><br>43.73<br>46.85<br>45.55<br>46.10                                                                                                                                                          | MnO<br>0.21<br>0.15<br>0.19<br>0.18                                                                                                                                 | Fe203<br>13.24<br>14.54<br>13.08<br>12.38                                                                                                                                                       | MgO<br>6.70<br>5.89<br>5.56<br>6.64                                                                                                                                 | Al203<br>12.09<br>12.03<br>11.83<br>12.70                                                                                                                                                                            | CaO<br>8.61<br>7.85<br>9.04<br>8.01                                                                                                                                                | TiO2<br>1.94<br>2.04<br>1.68<br>1.74                                                                                                                                                                                                                                               | Na2O<br>2.27<br>1.92<br>2.94<br>3.25                                                                                                                                                     |
| ETK. Sample No.<br>23451<br>23452<br>23453<br>23454<br>23454<br>23455                                                                                                                                                          | Hole No. Depth<br>T95-04, 124.00<br>T95-13, 132.00<br>T95-13, 157.20<br>T95-13, 279.20<br>T95-04, 30.20                                                                                                                                                                                                                                                                    | Assay Interval (g/t)<br>123.4-125.4 (0.35)<br>NS<br>NS<br>NS<br>28.4-30.3 (0.69)                                                                                                                                                                                                                                                                                                                                                          | Brief Comments<br>Massive basalt,non mag.m/s carb (ca)<br>P.basalt,non mag.w/m carb (ca)<br>P.basalt,non mag.s carb (ca)<br>P. basalt, non mag.w carb (ca),1-2%Py.<br>P.basalt/CB. s carb (ank)-sil,<2% Py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8aO<br>0.01<br>0.02<br>0.01<br>0.01<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>P205</b><br>0.14<br>0.13<br>0.15<br>0.18<br>0.13                                                                                                                                                                                   | <b>SiO2</b><br>43.73<br>46.85<br>45.55<br>46.10<br>40.75                                                                                                                                                 | MnO<br>0.21<br>0.15<br>0.19<br>0.18<br>0.19                                                                                                                         | Fe203<br>13.24<br>14.54<br>13.08<br>12.38<br>14.35                                                                                                                                              | MgO<br>6.70<br>5.89<br>5.56<br>6.64<br>6.24                                                                                                                         | Al203<br>12.09<br>12.03<br>11.83<br>12.70<br>11.23                                                                                                                                                                   | <b>CaO</b><br>8.61<br>7.85<br>9.04<br>8.01<br>7.14                                                                                                                                 | TiO2<br>1.94<br>2.04<br>1.68<br>1.74<br>1.75                                                                                                                                                                                                                                       | Na2O<br>2.27<br>1.92<br>2.94<br>3.25<br>1.03                                                                                                                                             |
| ETK. Sample No.<br>23451<br>23452<br>23453<br>23454<br>23455<br>23455<br>23456                                                                                                                                                 | Hole No. Depth<br>T95-04, 124.00<br>T95-13, 132.00<br>T95-13, 157.20<br>T95-13, 279.20<br>T95-04, 30.20<br>T95-04, 30.20                                                                                                                                                                                                                                                   | Assay Interval (g/t)<br>123.4-125.4 (0.35)<br>NS<br>NS<br>NS<br>28.4-30.3 (0.69)<br>93.0-94.0 (.003)                                                                                                                                                                                                                                                                                                                                      | Brief Comments<br>Massive basalt,non mag.m/s carb (ca)<br>P.basalt,non mag.w/m carb (ca)<br>P.basalt,non mag. s carb (ca)<br>P. basalt, non mag.w carb (ca),1-2%Py.<br>P.basalt/CB, s carb (ank)-sil, -2% Py<br>CB(sil). s carb (ank), sil impreg. Tr. Py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BaO<br>0.01<br>0.02<br>0.01<br>0.01<br>0.03<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>P 205</b><br>0.14<br>0.13<br>0.15<br>0.18<br>0.13<br>0.17                                                                                                                                                                          | <b>SiO2</b><br>43.73<br>46.85<br>45.55<br>46.10<br>40.75<br>36.80                                                                                                                                        | MnO<br>0.21<br>0.15<br>0.19<br>0.18<br>0.19<br>0.19                                                                                                                 | Fe203<br>13.24<br>14.54<br>13.08<br>12.38<br>14.35<br>14.48                                                                                                                                     | MgO<br>6.70<br>5.89<br>5.56<br>6.64<br>6.24<br>5.32                                                                                                                 | Al203<br>12.09<br>12.03<br>11.83<br>12.70<br>11.23<br>12.01                                                                                                                                                          | <b>CaO</b><br>8.61<br>7.85<br>9.04<br>8.01<br>7.14<br>7.91                                                                                                                         | TiO2<br>1.94<br>2.04<br>1.68<br>1.74<br>1.75<br>1.84                                                                                                                                                                                                                               | Na20<br>2.27<br>1.92<br>2.94<br>3.25<br>1.03<br>2.22                                                                                                                                     |
| ETK. Sample No.<br>23451<br>23452<br>23453<br>23454<br>23454<br>23455<br>23456<br>23457                                                                                                                                        | Hole No. Depth<br>T95-04, 124.00<br>T95-13, 132.00<br>T95-13, 157.20<br>T95-13, 279.20<br>T95-04, 30.20<br>T95-613, 93.10<br>T95-62, 68.68                                                                                                                                                                                                                                 | Assay Interval (g/t)<br>123.4.125.4 (0.35)<br>NS<br>NS<br>28.4-30.3 (0.69)<br>93.0-94.0 (.003)<br>68.0-70.0 (.003)                                                                                                                                                                                                                                                                                                                        | Brief Comments<br>Massive basalt, non mag.m/s carb (ca)<br>P.basalt, non mag.w/m carb (ca)<br>P.basalt, non mag.s carb (ca), 1-2%Py.<br>P.basalt/CB.s carb (ank)-sil, <2% Py<br>CB(sil), s carb (ank), sil impreg. Tr. Py<br>Lamprophyre Dyke, w/m mag.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 880<br>0.01<br>0.02<br>0.01<br>0.01<br>0.03<br>0.11<br>0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>P205</b><br>0.14<br>0.13<br>0.15<br>0.18<br>0.13<br>0.17<br>1.12                                                                                                                                                                   | <b>SiO2</b><br>43.73<br>46.85<br>45.55<br>46.10<br>40.75<br>36.80<br>51.84                                                                                                                               | NnO<br>0.21<br>0.15<br>0.19<br>0.18<br>0.19<br>0.19<br>0.09                                                                                                         | Fe203<br>13.24<br>14.54<br>13.08<br>12.38<br>14.35<br>14.48<br>7.59                                                                                                                             | MgO<br>6.70<br>5.89<br>5.56<br>6.64<br>6.24<br>5.32<br>7.27                                                                                                         | Al203<br>12.09<br>12.03<br>11.83<br>12.70<br>11.23<br>12.01<br>12.13                                                                                                                                                 | CaO<br>8.61<br>7.85<br>9.04<br>8.01<br>7.14<br>7.91<br>4.80                                                                                                                        | TiO2<br>1.94<br>2.04<br>1.68<br>1.74<br>1.75<br>1.84<br>1.31                                                                                                                                                                                                                       | Na2O<br>2.27<br>1.92<br>2.94<br>3.25<br>1.03<br>2.22<br>0.65                                                                                                                             |
| ETK. Sample No.<br>23451<br>23452<br>23453<br>23454<br>23455<br>23456<br>23456<br>23457<br>23458                                                                                                                               | Hole No. Depth<br>T95-04, 124.00<br>T95-13, 132.00<br>T95-13, 157.20<br>T95-13, 279.20<br>T95-04, 30.20<br>T95-13, 93.10<br>T95-62, 68.68<br>T95-13, 150.40                                                                                                                                                                                                                | Assay Interval (g/t)<br>123.4-125.4 (0.36)<br>NS<br>NS<br>28.4-30.3 (0.69)<br>93.0-94.0 (.003)<br>68.0-70.0 (.003)<br>150.0-151.0 (.003)                                                                                                                                                                                                                                                                                                  | Brief Comments<br>Massive basalt, non mag.m/s carb (ca)<br>P. basalt, non mag.w/m carb (ca)<br>P. basalt, non mag.s carb (ca)<br>P. basalt, non mag.w carb (ca), 1-2% Py<br>P. basalt/CB.s carb (ank), sil, sc2% Py<br>CB(sil).s carb (ank), sil impreg. Tr. Py<br>Lamprophyre Dyke, w/m mag.<br>Trans. CB/SC, s carb (ank)Tr-1% Py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 880<br>0.01<br>0.02<br>0.01<br>0.03<br>0.11<br>0.49<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>P208</b><br>0.14<br>0.13<br>0.15<br>0.18<br>0.13<br>0.17<br>1.12<br>0.16                                                                                                                                                           | <b>SiO2</b><br>43.73<br>46.85<br>45.55<br>46.10<br>40.75<br>36.80<br>51.84<br>40.43                                                                                                                      | MnO<br>0.21<br>0.15<br>0.19<br>0.18<br>0.19<br>0.19<br>0.19<br>0.09<br>0.18                                                                                         | Fe203<br>13.24<br>14.54<br>13.08<br>12.38<br>14.35<br>14.48<br>7.59<br>12.30                                                                                                                    | MgO<br>6.70<br>5.89<br>5.56<br>6.64<br>6.24<br>5.32<br>7.27<br>4.83                                                                                                 | Al203<br>12.09<br>12.03<br>11.83<br>12.70<br>11.23<br>12.01<br>12.13<br>11.34                                                                                                                                        | CaO<br>8.61<br>7.85<br>9.04<br>8.01<br>7.14<br>7.91<br>4.80<br>8.49                                                                                                                | TiO2<br>1.94<br>2.04<br>1.68<br>1.74<br>1.75<br>1.84<br>1.31<br>2.23                                                                                                                                                                                                               | Na2O<br>2.27<br>1.92<br>2.94<br>3.25<br>1.03<br>2.22<br>0.65<br>3.33                                                                                                                     |
| ETK. Sample No.<br>23451<br>23452<br>23453<br>23454<br>23455<br>23456<br>23456<br>23456<br>23459                                                                                                                               | Hole No. Depth<br>795-04, 124.00<br>795-13, 132.00<br>795-13, 157.20<br>795-13, 279.20<br>795-04, 30.20<br>795-13, 93.10<br>795-62, 68.68<br>795-13, 150.40<br>795-04, 147.69                                                                                                                                                                                              | Assay Interval (g/t)<br>123.4-125.4 (0.36)<br>NS<br>NS<br>28.4-30.3 (0.69)<br>93.0-94.0 (.003)<br>68.0-70.0 (.003)<br>150.0-151.0 (.003)<br>145.9-147.9 (1.38)                                                                                                                                                                                                                                                                            | Brief Comments<br>Massive basalt, non mag.m/s carb (ca)<br>P.basalt, non mag.w/m carb (ca)<br>P.basalt, non mag.s carb (ca)<br>P. basalt, non mag.w carb (ca), 1-2%Py.<br>P.basalt/CB.s carb (ank)-sil, <2% Py<br>CB(sil).s carb (ank), sil impreg. Tr. Py<br>Lamprophyre Dyke, w/m mag.<br>Trans. CB/SC, s carb (ank)Tr.1% Py<br>SCP(Q). s carb (ank), sil, 7-10% Py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BaO<br>0.01<br>0.02<br>0.01<br>0.03<br>0.11<br>0.03<br>0.14<br>0.03<br>0.03<br>0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>P208</b><br>0.14<br>0.13<br>0.15<br>0.18<br>0.13<br>0.17<br>1.12<br>0.16<br>0.31                                                                                                                                                   | <b>SiO2</b><br>43.73<br>46.85<br>45.55<br>46.10<br>40.75<br>36.80<br>51.84<br>40.43<br>35.68                                                                                                             | MnO<br>0.21<br>0.15<br>0.19<br>0.18<br>0.19<br>0.19<br>0.09<br>0.18<br>0.21                                                                                         | Fe203<br>13.24<br>14.54<br>13.08<br>12.38<br>14.35<br>14.48<br>7.59<br>12.30<br>14.87                                                                                                           | MgO<br>6.70<br>5.89<br>5.56<br>6.64<br>6.24<br>5.32<br>7.27<br>4.83<br>5.13                                                                                         | Al203<br>12.09<br>12.03<br>11.83<br>12.70<br>11.23<br>12.01<br>12.13<br>11.34<br>12.40                                                                                                                               | CaO<br>8.61<br>7.85<br>9.04<br>8.01<br>7.14<br>7.91<br>4.80<br>8.49<br>8.35                                                                                                        | TiO2<br>1.94<br>2.04<br>1.68<br>1.74<br>1.75<br>1.84<br>1.31<br>2.23<br>2.55                                                                                                                                                                                                       | Na2O<br>2.27<br>1.92<br>2.94<br>3.25<br>1.03<br>2.22<br>0.65<br>3.33<br>0.23                                                                                                             |
| ETK. Sample No.<br>23451<br>23452<br>23453<br>23454<br>23455<br>23456<br>23456<br>23457<br>23456<br>23459<br>23459<br>23460                                                                                                    | Hole No. Depth<br>T95-04, 124.00<br>T95-13, 132.00<br>T95-13, 157.20<br>T95-04, 30.20<br>T95-04, 30.20<br>T95-13, 93.10<br>T95-62, 68.68<br>T95-13, 150.40<br>T95-04, 147.69<br>T95-13, 201.60                                                                                                                                                                             | Assay Interval (g/t)<br>123.4-126.4 (0.35)<br>NS<br>NS<br>28.4-30.3 (0.69)<br>93.0-94.0 (.003)<br>68.0-70.0 (.003)<br>150.0-151.0 (.003)<br>145.9-147.9 (1.38)<br>201.0-202.3 (0.54)                                                                                                                                                                                                                                                      | Brief Comments<br>Massive basalt,non mag.m/s carb (ca)<br>P.basalt,non mag.w/m carb (ca)<br>P.basalt,non mag.s carb (ca)<br>P. basalt,non mag.w carb (ca),1-2%Py.<br>P.basalt/CB.s carb (ank)-sil,<2% Py<br>CB(sil), s carb (ank), sil impreg. Tr. Py<br>Lamprophyre Dyke, w/m mag.<br>Trans. CB/SC, s carb (ank), sil, 7-10% Py<br>SCP(Q).s carb (ank), sil, 7-10% Py<br>SC(Q)P, s carb (ank/ca) 7-8% Py, Aspy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BaO<br>0.01<br>0.02<br>0.01<br>0.03<br>0.11<br>0.49<br>0.03<br>0.12<br>0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P208<br>0.14<br>0.13<br>0.15<br>0.18<br>0.13<br>0.17<br>1.12<br>0.16<br>0.31<br>0.08                                                                                                                                                  | <b>SiO2</b><br>43.73<br>46.85<br>45.55<br>46.10<br>40.75<br>36.80<br>51.84<br>40.43<br>35.88<br>29.68                                                                                                    | MnO<br>0.21<br>0.15<br>0.19<br>0.19<br>0.19<br>0.09<br>0.18<br>0.21<br>0.30                                                                                         | Fe203<br>13.24<br>14.54<br>13.08<br>12.38<br>14.35<br>14.48<br>7.59<br>12.30<br>14.67<br>18.19                                                                                                  | MgÖ<br>6.70<br>5.89<br>5.56<br>6.64<br>6.24<br>5.32<br>7.27<br>4.83<br>5.13<br>6.72                                                                                 | Al203<br>12.09<br>12.03<br>11.83<br>12.70<br>11.23<br>12.01<br>12.13<br>11.34<br>12.40<br>11.66                                                                                                                      | CaO<br>8.61<br>7.85<br>9.04<br>8.01<br>7.14<br>7.91<br>4.80<br>8.49<br>8.35<br>10.00                                                                                               | TiO2<br>1.94<br>2.04<br>1.68<br>1.75<br>1.84<br>1.31<br>2.23<br>2.55<br>2.49                                                                                                                                                                                                       | Na20<br>2.27<br>1.92<br>2.94<br>3.25<br>1.03<br>2.22<br>0.65<br>3.33<br>0.23<br>0.47                                                                                                     |
| ETK. Sample No.<br>23451<br>23452<br>23453<br>23454<br>23455<br>23456<br>23456<br>23457<br>23458<br>23459<br>23460<br>23460<br>23461                                                                                           | Hole No. Depth<br>T95-04, 124.00<br>T95-13, 132.00<br>T95-13, 157.20<br>T95-13, 279.20<br>T95-04, 30.20<br>T95-13, 93.10<br>T95-62, 68.68<br>T95-13, 150.40<br>T95-04, 147.69<br>T95-04, 36.92                                                                                                                                                                             | Assay Interval (g/t)<br>123.4.125.4 (0.35)<br>NS<br>NS<br>28.4-30.3 (0.69)<br>93.0-94.0 (.003)<br>68.0-70.0 (.003)<br>150.0-151.0 (.003)<br>145.9-147.9 (1.38)<br>201.0-202.3 (0.54)<br>35.8-37.8 (1.16)                                                                                                                                                                                                                                  | Brief Comments<br>Massive basalt, non mag.m/s carb (ca)<br>P.basalt, non mag.w/m carb (ca)<br>P.basalt, non mag.w/m carb (ca)<br>P.basalt/CB.s carb (ca), 1-2%Py.<br>P.basalt/CB.s carb (ank)-sil, <2% Py<br>CB(sil), s carb (ank), sil impreg. Tr. Py<br>Lamprophyre Dyke, w/m mag.<br>Trans. CB/SC, s carb (ank)Tr-1% Py<br>SC(Q)P, s carb (ank/s), sil, 7-10% Py<br>SC(Q)P, s carb (ank/s), sil, 7-10% Py<br>SC(Q)P, s carb (ank/s), 6% fine Py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BaO<br>0.01<br>0.02<br>0.01<br>0.03<br>0.11<br>0.03<br>0.11<br>0.03<br>0.12<br>0.12<br>0.12<br>0.13<br>0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>P208</b><br>0.14<br>0.13<br>0.15<br>0.18<br>0.13<br>0.17<br>1.12<br>0.16<br>0.31<br>0.08<br>0.13                                                                                                                                   | <b>SiO2</b><br>43.73<br>46.85<br>45.55<br>46.10<br>40.75<br>36.80<br>51.84<br>40.43<br>35.88<br>29.68<br>40.81                                                                                           | MnO<br>0.21<br>0.15<br>0.19<br>0.19<br>0.19<br>0.09<br>0.18<br>0.21<br>0.30<br>0.18                                                                                 | Fe203<br>13.24<br>14.54<br>13.08<br>12.38<br>14.35<br>14.48<br>7.59<br>12.30<br>14.87<br>18.19<br>13.09                                                                                         | MgO<br>6.70<br>5.89<br>5.56<br>6.64<br>6.24<br>5.32<br>7.27<br>4.83<br>5.13<br>6.72<br>5.70                                                                         | Al203<br>12.09<br>12.03<br>11.83<br>12.70<br>11.23<br>12.01<br>12.13<br>11.34<br>12.40<br>11.66<br>11.46                                                                                                             | CaO<br>8.61<br>7.85<br>9.04<br>8.01<br>7.14<br>7.91<br>4.80<br>8.49<br>8.35<br>10.00<br>8.01                                                                                       | TiO2<br>1.94<br>2.04<br>1.68<br>1.74<br>1.75<br>1.84<br>1.31<br>2.23<br>2.55<br>2.49<br>1.49                                                                                                                                                                                       | Na2O<br>2.27<br>1.92<br>2.94<br>3.25<br>1.03<br>2.22<br>0.65<br>3.33<br>0.23<br>0.47<br>0.45                                                                                             |
| ETK. Sample No.<br>23451<br>23452<br>23453<br>23454<br>23455<br>23455<br>23455<br>23457<br>23458<br>23457<br>23458<br>23459<br>23460<br>23461<br>23462                                                                         | Hole No. Depth<br>T95-04, 124.00<br>T95-13, 132.00<br>T95-13, 157.20<br>T95-13, 279.20<br>T95-43, 30.20<br>T95-43, 93.10<br>T95-62, 68.68<br>T95-13, 150.40<br>T95-04, 147.69<br>T95-13, 201.60<br>T95-04, 36.92<br>T95-04, 36.92                                                                                                                                          | Assay Interval (g/t)<br>123.4-125.4 (0.36)<br>NS<br>NS<br>NS<br>28.4-30.3 (0.69)<br>93.0-94.0 (.003)<br>68.0-70.0 (.003)<br>150.0-151.0 (.003)<br>145.9-147.9 (1.38)<br>201.0-202.3 (0.54)<br>35.8-37.8 (1.16)<br>137.9-139.9 (0.59)                                                                                                                                                                                                      | Brief Comments<br>Massive basalt, non mag.m/s carb (ca)<br>P.basalt, non mag.w/m carb (ca)<br>P.basalt, non mag.w/m carb (ca)<br>P. basalt, non mag.w carb (ca), 1-2%Py.<br>P.basalt/CB.s carb (ank), sil, <2% Py<br>CB(sil).s carb (ank), sil, <2% Py<br>Lamprophyre Dyke, w/m mag.<br>Trans. CB/SC, s carb (ank)Tr-1% Py<br>SC(Q)P.s carb (ank), sil, 7-10% Py<br>SC(Q)P, s carb (ank), 5% fine Py<br>CB/PAZ, s carb (ank), sil, >15% f.Py.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BaO<br>0.01<br>0.02<br>0.01<br>0.03<br>0.11<br>0.49<br>0.03<br>0.12<br>0.13<br>0.06<br>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>P208</b><br>0.14<br>0.13<br>0.15<br>0.18<br>0.13<br>0.17<br>1.12<br>0.16<br>0.31<br>0.08<br>0.13<br>0.32                                                                                                                           | <b>SiO2</b><br>43.73<br>46.85<br>45.55<br>46.10<br>40.75<br>36.80<br>51.84<br>40.43<br>35.88<br>29.68<br>40.81<br>38.57                                                                                  | MnO<br>0.21<br>0.15<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.09<br>0.18<br>0.21<br>0.30<br>0.18<br>0.24                                                         | Fe203<br>13.24<br>14.54<br>13.08<br>12.38<br>14.35<br>14.48<br>7.59<br>12.30<br>14.87<br>18.19<br>13.09<br>14.67                                                                                | MgO<br>6.70<br>5.89<br>5.56<br>6.64<br>6.24<br>5.32<br>7.27<br>4.83<br>5.13<br>6.72<br>5.70<br>4.89                                                                 | Al203<br>12.09<br>12.03<br>11.83<br>12.70<br>11.23<br>12.01<br>12.13<br>11.34<br>12.40<br>11.66<br>11.46<br>11.17                                                                                                    | CaO<br>8.61<br>7.85<br>9.04<br>8.01<br>7.14<br>7.91<br>4.80<br>8.49<br>8.35<br>10.00<br>8.01<br>8.06                                                                               | TiO2<br>1.94<br>2.04<br>1.68<br>1.74<br>1.75<br>1.84<br>1.31<br>2.23<br>2.55<br>2.49<br>1.49<br>2.00                                                                                                                                                                               | Na20<br>2.27<br>1.92<br>2.94<br>3.25<br>1.03<br>2.22<br>0.65<br>3.33<br>0.23<br>0.47<br>0.45<br>0.15                                                                                     |
| ETK. Sample No.<br>23451<br>23452<br>23453<br>23454<br>23455<br>23456<br>23457<br>23458<br>23457<br>23458<br>23459<br>23460<br>23461<br>23461<br>23463                                                                         | Hole No. Depth<br>T95-04, 124.00<br>T95-13, 157.20<br>T95-13, 157.20<br>T95-13, 279.20<br>T95-04, 30.20<br>T95-62, 68.66<br>T95-13, 150.40<br>T95-04, 147.69<br>T95-13, 201.60<br>T95-04, 138.70<br>T95-04, 138.70<br>T95-13, 233.80                                                                                                                                       | Assay Interval (g/t)<br>123.4-125.4 (0.36)<br>NS<br>NS<br>28.4-30.3 (0.69)<br>93.0-94.0 (.003)<br>68.0-70.0 (.003)<br>150.0-151.0 (.003)<br>145.9-147.9 (1.38)<br>201.0-202.3 (0.54)<br>35.8-37.8 (1.16)<br>137.9-139.9 (0.59)<br>233.0-234.0 (2.89)                                                                                                                                                                                      | Brief Comments<br>Massive basalt, non mag.m/s carb (ca)<br>P. basalt, non mag.w/m carb (ca)<br>P. basalt, non mag.s carb (ca)<br>P. basalt, non mag.s carb (ca), 1-2%Py.<br>P. basalt/CB.s carb (ank), sil, ~2% Py<br>CB(sil).s carb (ank), sil, mpreg. Tr. Py<br>Lamprophyre Dyke, w/m mag.<br>Trans. CB/SC, s carb (ank), Tr-1% Py<br>SCP(Q).s carb (ank), sil, 7-10% Py<br>SCQP, s carb (ank), 6% fine Py<br>CB/PAZ, s carb (ank), sil, >10% f.Py.<br>SCP, s carb (ank) >10% f.Py(e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BaO<br>0.01<br>0.02<br>0.01<br>0.03<br>0.11<br>0.49<br>0.03<br>0.12<br>0.13<br>0.06<br>0.10<br>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>P208</b><br>0.14<br>0.13<br>0.15<br>0.18<br>0.17<br>1.12<br>0.16<br>0.31<br>0.08<br>0.13<br>0.32<br>0.12                                                                                                                           | <b>SiO2</b><br>43.73<br>46.85<br>45.55<br>46.10<br>40.75<br>36.80<br>51.84<br>40.43<br>35.88<br>29.68<br>40.81<br>38.57<br>32.59                                                                         | MnO<br>0.21<br>0.15<br>0.19<br>0.18<br>0.19<br>0.19<br>0.09<br>0.18<br>0.21<br>0.30<br>0.18<br>0.21<br>0.30<br>0.18<br>0.24<br>0.25                                 | Fe203<br>13.24<br>14.54<br>13.08<br>12.38<br>14.35<br>14.48<br>7.59<br>12.30<br>14.67<br>18.19<br>13.09<br>14.67<br>15.59                                                                       | MgO<br>6.70<br>5.89<br>5.56<br>6.64<br>6.24<br>5.32<br>7.27<br>4.83<br>5.13<br>6.72<br>5.70<br>4.89<br>5.25                                                         | Al203<br>12.09<br>12.03<br>11.83<br>12.70<br>11.23<br>12.01<br>12.13<br>11.34<br>12.40<br>11.66<br>11.46<br>11.17<br>12.66                                                                                           | CaO<br>8.61<br>7.85<br>9.04<br>8.01<br>7.14<br>7.91<br>4.80<br>8.49<br>8.35<br>10.00<br>8.01<br>8.06<br>11.09                                                                      | TiO2<br>1.94<br>2.04<br>1.68<br>1.74<br>1.75<br>1.84<br>1.31<br>2.23<br>2.55<br>2.49<br>1.49<br>2.00<br>1.79                                                                                                                                                                       | № 20           2.27           1.92           2.94           3.25           1.03           2.22           0.65           3.33           0.47           0.45           0.15           1.00 |
| ETK. Sample No.<br>23451<br>23452<br>23453<br>23454<br>23455<br>23456<br>23456<br>23457<br>23458<br>23459<br>23460<br>23461<br>23462<br>23463<br>23464                                                                         | Hole No. Depth<br>T95-04, 124.00<br>T95-13, 132.00<br>T95-13, 157.20<br>T95-04, 279.20<br>T95-04, 30.20<br>T95-13, 93.10<br>T95-62, 68.68<br>T95-13, 150.40<br>T95-04, 147.69<br>T95-04, 138.70<br>T95-04, 36.92<br>T95-04, 338.70<br>T95-13, 233.80<br>T95-13, 2341.20                                                                                                    | Assay Interval (g/t)<br>123.4-126.4 (0.36)<br>NS<br>NS<br>28.4-30.3 (0.69)<br>93.0-94.0 (.003)<br>68.0-70.0 (.003)<br>150.0-151.0 (.003)<br>145.9-147.9 (1.38)<br>201.0-202.3 (0.54)<br>35.8-37.8 (1.16)<br>137.9-139.9 (0.59)<br>233.0-234.0 (2.89)<br>241.0-242.0 (4.43)                                                                                                                                                                | Brief Comments<br>Massive basalt, non mag.m/s carb (ca)<br>P.basalt, non mag.w/m carb (ca)<br>P.basalt, non mag.w carb (ca), 1-2%Py.<br>P.basalt/CB.s carb (ank)-sil, <2% Py<br>CB(sil).s carb (ank), sil impreg. Tr. Py<br>Lamprophyre Dyke, w/m mag.<br>Trans. CB/SC, s carb (ank)Tr-1% Py<br>SCP(Q).s carb (ank), sil, 7-10% Py<br>SC(Q)P, s carb (ank), sil, 7-10% Py<br>SCQP, s carb (ank), sil, 7-10% Py<br>SCQP, s carb (ank), 6% fine Py<br>CB/PAZ, s carb (ank) sil, 7-10% f.Py.<br>SCP, s carb (ank) sil, 7-10% f.Py.<br>SCP, a carb (ank) sil, 7-10% f.Py.<br>SCP, s carb (ank) sil, 7-10% f.Py.<br>SCP, a carb (ank) sil, 7-20% f.Py.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BaO<br>0.01<br>0.02<br>0.01<br>0.03<br>0.11<br>0.49<br>0.03<br>0.12<br>0.13<br>0.06<br>0.10<br>0.10<br>0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>P206</b><br>0.14<br>0.13<br>0.15<br>0.18<br>0.17<br>1.12<br>0.16<br>0.31<br>0.08<br>0.13<br>0.08<br>0.13<br>0.32<br>0.12                                                                                                           | <b>SiO2</b><br>43,73<br>46,85<br>45,55<br>46,10<br>40,75<br>36,80<br>51,84<br>40,43<br>35,88<br>29,68<br>40,81<br>38,57<br>32,59<br>18,54                                                                | MnO<br>021<br>015<br>019<br>018<br>019<br>009<br>018<br>021<br>030<br>018<br>024<br>025<br>019                                                                      | Fe203<br>13.24<br>14.54<br>13.08<br>12.38<br>14.35<br>14.48<br>7.59<br>12.30<br>14.67<br>18.19<br>13.09<br>14.67<br>15.59<br>27.86                                                              | MgO<br>6.70<br>5.89<br>5.56<br>6.64<br>6.24<br>5.32<br>7.27<br>4.83<br>5.13<br>6.72<br>5.70<br>4.83<br>5.13<br>6.72<br>5.70<br>4.83<br>5.25<br>5.33                 | Al203<br>12.09<br>12.03<br>11.83<br>12.70<br>11.23<br>12.01<br>12.13<br>11.34<br>12.40<br>11.66<br>11.46<br>11.17<br>12.66<br>12.94                                                                                  | CaO<br>8.61<br>7.85<br>9.04<br>8.01<br>7.14<br>7.91<br>4.80<br>8.49<br>8.35<br>10.00<br>8.01<br>8.06<br>11.09<br>7.74                                                              | TiO2           1.94           2.04           1.68           1.74           1.75           1.84           1.31           2.23           2.55           2.49           1.49           2.00           1.79           2.68                                                             | Na20<br>2.27<br>1.92<br>2.94<br>3.25<br>1.03<br>2.22<br>0.65<br>3.33<br>0.23<br>0.23<br>0.45<br>0.15<br>1.00<br>0.03                                                                     |
| ETK. Sample No.<br>23451<br>23452<br>23453<br>23454<br>23455<br>23456<br>23456<br>23457<br>23458<br>23459<br>23460<br>23461<br>23462<br>23463<br>23464<br>23464                                                                | Hole No. Depth<br>T95-04, 124.00<br>T95-13, 132.00<br>T95-13, 157.20<br>T95-13, 279.20<br>T95-04, 30.20<br>T95-13, 93.10<br>T95-62, 68.68<br>T95-13, 93.10<br>T95-64, 147.69<br>T95-04, 147.69<br>T95-04, 36.92<br>T95-04, 36.92<br>T95-04, 38.70<br>T95-13, 241.20<br>T95-13, 241.20                                                                                      | Assay Interval (g/t)<br>123.4.126.4 (0.35)<br>NS<br>NS<br>28.4-30.3 (0.69)<br>93.0-94.0 (.003)<br>68.0-70.0 (.003)<br>150.0-151.0 (.003)<br>145.9-147.9 (1.38)<br>201.0-202.3 (0.54)<br>35.8-37.8 (1.16)<br>137.9-139.9 (0.59)<br>233.0-234.0 (2.89)<br>241.0-242.0 (4.43)<br>98.0-100.0 (4.40)                                                                                                                                           | Brief Comments<br>Massive basalt, non mag.m/s carb (ca)<br>P.basalt, non mag.w/m carb (ca)<br>P.basalt, non mag. s carb (ca)<br>P. basalt, non mag. s carb (ca), 1-2%Py.<br>P. basalt/CB. s carb (ank)-sil, <2% Py<br>CB(sil), s carb (ank), sil, sil, sil, sil, sil, sil, sil, sil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BaO<br>0.01<br>0.02<br>0.03<br>0.11<br>0.03<br>0.11<br>0.49<br>0.03<br>0.12<br>0.13<br>0.06<br>0.10<br>0.13<br>0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P206<br>0.14<br>0.13<br>0.15<br>0.18<br>0.13<br>0.17<br>1.12<br>0.16<br>0.31<br>0.08<br>0.13<br>0.32<br>0.12<br>0.12<br>0.12                                                                                                          | <b>SiO2</b><br>43,73<br>46,85<br>45,55<br>46,10<br>40,76<br>36,80<br>51,84<br>40,43<br>35,88<br>40,81<br>38,57<br>32,59<br>18,54<br>17,45                                                                | MnO<br>0.21<br>0.15<br>0.19<br>0.19<br>0.19<br>0.09<br>0.19<br>0.09<br>0.18<br>0.21<br>0.30<br>0.18<br>0.24<br>0.25<br>0.19<br>0.26                                 | Fe203<br>13,24<br>14,54<br>13,08<br>12,38<br>14,35<br>14,48<br>7,59<br>12,30<br>14,67<br>18,19<br>13,09<br>14,67<br>15,59<br>27,86<br>24,02                                                     | MgO<br>6 70<br>5.89<br>5.56<br>6.64<br>6.24<br>5.32<br>7.27<br>4.83<br>5.13<br>6.72<br>5.70<br>4.89<br>5.25<br>5.33<br>7.05                                         | Al203<br>12.09<br>12.03<br>11.83<br>12.70<br>11.23<br>12.01<br>12.13<br>11.34<br>12.40<br>11.66<br>11.46<br>11.47<br>12.64<br>11.46<br>11.94<br>11.96                                                                | CaO<br>8.61<br>7.85<br>9.04<br>8.01<br>7.14<br>7.91<br>4.80<br>8.49<br>8.35<br>10.00<br>8.01<br>8.06<br>11.09<br>7.74<br>10.84                                                     | TiO2           1.94           2.04           1.68           1.74           1.75           1.84           1.31           2.23           2.49           1.49           2.00           1.79           2.68           2.38                                                             | Na20<br>2.27<br>1.92<br>2.94<br>3.25<br>1.03<br>2.22<br>0.65<br>3.33<br>0.23<br>0.47<br>0.45<br>0.15<br>1.00<br>0.03<br>0.01                                                             |
| ETK. Sample No.<br>23451<br>23452<br>23453<br>23454<br>23455<br>23456<br>23457<br>23458<br>23457<br>23458<br>23459<br>23460<br>23461<br>23462<br>23463<br>23464<br>23465<br>23466                                              | Hole No. Depth<br>T95-04, 124.00<br>T95-13, 132.00<br>T95-13, 157.20<br>T95-13, 279.20<br>T95-04, 30.20<br>T95-04, 30.20<br>T95-04, 30.20<br>T95-04, 147.69<br>T95-04, 147.69<br>T95-04, 36.92<br>T95-04, 36.92<br>T95-04, 36.92<br>T95-04, 36.92<br>T95-04, 36.92<br>T95-04, 36.92<br>T95-04, 36.92<br>T95-04, 36.92<br>T95-13, 221.80<br>T95-13, 241.20<br>T95-29, 99.50 | Assay Interval (g/t)<br>123.4-126.4 (0.36)<br>NS<br>NS<br>NS<br>28.4-30.3 (0.69)<br>93.0-94.0 (.003)<br>68.0-70.0 (.003)<br>150.0-151.0 (.003)<br>145.9-147.9 (1.38)<br>201.0-202.3 (0.54)<br>35.8-37.8 (1.16)<br>137.9-139.9 (0.59)<br>233.0-234.0 (2.89)<br>241.0-242.0 (4.43)<br>98.0-100.0 (4.40)<br>138.0-140.0 (3.01)                                                                                                               | Brief Comments<br>Massive basalt, non mag.m/s carb (ca)<br>P.basalt, non mag.w/m carb (ca)<br>P.basalt, non mag.w/m carb (ca)<br>P.basalt, non mag.w carb (ca), 1-2%Py.<br>P.basalt/CB.s carb (ank)-sil, <2% Py<br>CB(sil).s carb (ank), sil impreg. Tr. Py<br>Lamprophyre Dyke, w/m mag.<br>Trans. CB/SC, s carb (ank)Tr-1% Py<br>SC(Q)P.s carb (ank), sil, 7-10% Py<br>SC(Q)P, s carb (ank), sil, 7-10% Py<br>SC(Q)P, s carb (ank), 5% fine Py<br>CB/PAZ, s carb (ank) >10% f.Py(e)<br>CB/PAZ (sil), s carb (ank) >20% f.Py<br>PAZ, sparse carb, >40% f.Py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BaO<br>0.01<br>0.02<br>0.01<br>0.03<br>0.11<br>0.03<br>0.12<br>0.13<br>0.06<br>0.10<br>0.10<br>0.10<br>0.12<br>0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P205<br>0.14<br>0.13<br>0.15<br>0.18<br>0.17<br>1.12<br>0.16<br>0.13<br>0.08<br>0.13<br>0.32<br>0.12<br>0.12<br>0.10<br>0.12                                                                                                          | <b>SiO2</b><br>43, 73<br>46, 85<br>45, 55<br>46, 10<br>40, 75<br>36, 80<br>51, 84<br>40, 43<br>35, 88<br>29, 68<br>40, 81<br>38, 57<br>32, 59<br>18, 54<br>17, 45<br>21, 29                              | MnO<br>0.21<br>0.15<br>0.19<br>0.18<br>0.19<br>0.09<br>0.18<br>0.21<br>0.30<br>0.18<br>0.24<br>0.25<br>0.19<br>0.26<br>0.25                                         | <b>Fe203</b> 13.24 14.54 13.08 12.38 14.35 14.48 7.59 12.30 14.67 18.19 13.09 14.67 15.59 27.86 24.02 22.29                                                                                     | MgO<br>670<br>5.89<br>5.56<br>6.64<br>6.24<br>5.32<br>7.27<br>4.83<br>5.13<br>6.72<br>5.70<br>4.89<br>5.25<br>5.33<br>7.05<br>5.51                                  | Al203<br>12.09<br>12.03<br>11.83<br>12.70<br>11.23<br>12.01<br>12.13<br>11.34<br>12.40<br>11.66<br>11.46<br>11.17<br>12.66<br>12.94<br>11.96<br>15.01                                                                | CaO<br>8.61<br>7.85<br>9.04<br>8.01<br>7.14<br>7.91<br>4.80<br>8.49<br>8.35<br>10.00<br>8.01<br>8.06<br>11.09<br>7.74<br>10.84<br>7.92                                             | TiO2           1.94           2.04           1.68           1.74           1.75           1.84           1.31           2.23           2.49           1.49           2.00           1.79           2.68           2.38           2.72                                              | Na20<br>2 27<br>1.92<br>2.94<br>3.25<br>1.03<br>2.22<br>0.65<br>3.33<br>0.23<br>0.47<br>0.45<br>0.15<br>1.00<br>0.03<br>0.01                                                             |
| ETK. Sample No.<br>23451<br>23452<br>23453<br>23454<br>23455<br>23456<br>23457<br>23458<br>23457<br>23458<br>23459<br>23460<br>23461<br>23462<br>23463<br>23464<br>23465<br>23466<br>23466                                     | Hole No. Depth<br>T95-04, 124.00<br>T95-13, 132.00<br>T95-13, 157.20<br>T95-13, 279.20<br>T95-04, 30.20<br>T95-04, 30.20<br>T95-04, 30.20<br>T95-04, 160<br>T95-04, 147.69<br>T95-04, 138.70<br>T95-04, 138.70<br>T95-13, 241.20<br>T95-29, 138.00<br>T95-29, 138.00<br>T95-29, 138.00                                                                                     | Assay Interval (g/t)<br>123.4-125.4 (0.36)<br>NS<br>NS<br>NS<br>28.4-30.3 (0.69)<br>93.0-94.0 (.003)<br>68.0-70.0 (.003)<br>150.0-151.0 (.003)<br>145.9-147.9 (1.38)<br>201.0-202.3 (0.54)<br>35.8-37.8 (1.16)<br>137.9-139.9 (0.59)<br>233.0-234.0 (2.89)<br>241.0-242.0 (4.43)<br>98.0-100.0 (4.40)<br>138.0-140.0 (3.01)<br>110.0-112.0 (3.62)                                                                                         | Brief Comments<br>Massive basalt, non mag.m/s carb (ca)<br>P.basalt, non mag.w/m carb (ca)<br>P.basalt, non mag.s carb (ca)<br>P. basalt, non mag.s carb (ca), 1-2%Py.<br>P.basalt/CB.s carb (ank), sil, -2%Py<br>CB(sil).s carb (ank), sil, -10%Py<br>CB(sil).s carb (ank), sil, -10%Py<br>SC(Q)P.s carb (ank), sil, -10%Py<br>SC(Q)P, s carb (ank), 6% fine Py<br>CB/PAZ, s carb (ank) >10% f.Py(e)<br>CB/PAZ, scarb (ank) >10% f.Py(e)<br>CB/PAZ (sil), s carb (ank) >20% f.Py<br>PAZ. wispy ca vits.>20% f.Py<br>PAZ. Sparse carb. >40% f.Py<br>PAZ. Storog Alt. carb (ca).>20% f.Py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BaO<br>0.01<br>0.02<br>0.01<br>0.03<br>0.11<br>0.49<br>0.03<br>0.12<br>0.13<br>0.06<br>0.10<br>0.10<br>0.13<br>0.12<br>0.13<br>0.12<br>0.13<br>0.12<br>0.13<br>0.12<br>0.14<br>0.12<br>0.14<br>0.12<br>0.14<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0 | <b>P205</b><br>0.14<br>0.13<br>0.15<br>0.18<br>0.13<br>0.17<br>1.12<br>0.16<br>0.31<br>0.08<br>0.13<br>0.32<br>0.12<br>0.12<br>0.12<br>0.10<br>0.06<br>0.12                                                                           | <b>SiO2</b><br>43,73<br>46,85<br>45,55<br>46,10<br>40,76<br>36,80<br>51,84<br>40,43<br>35,88<br>29,68<br>40,81<br>38,57<br>32,59<br>18,54<br>17,45<br>21,29<br>23,65                                     | MnO<br>0.21<br>0.15<br>0.19<br>0.18<br>0.19<br>0.19<br>0.09<br>0.18<br>0.21<br>0.30<br>0.18<br>0.24<br>0.25<br>0.19<br>0.26<br>0.25<br>0.29                         | <b>Fe203</b><br>13.24<br>14.54<br>13.08<br>12.38<br>14.35<br>14.48<br>7.59<br>12.30<br>14.87<br>18.19<br>13.09<br>14.67<br>15.59<br>27.86<br>24.02<br>22.29<br>19.01                            | MgO<br>6.70<br>5.89<br>5.56<br>6.64<br>6.24<br>5.32<br>7.27<br>4.83<br>6.13<br>6.72<br>5.70<br>4.89<br>5.25<br>5.33<br>7.05<br>5.51<br>7.02                         | Al203 12.09 12.03 11.83 12.70 11.23 12.01 12.13 11.34 12.40 11.66 11.46 11.47 12.66 12.94 11.94 15.01 15.25                                                                                                          | CaO<br>8.61<br>7.85<br>9.04<br>8.01<br>7.14<br>7.91<br>4.80<br>8.49<br>8.35<br>10.00<br>8.01<br>8.06<br>11.09<br>7.74<br>10.84<br>7.72<br>9.75                                     | TiO2           1.94           2.04           1.68           1.74           1.75           1.84           1.31           2.23           2.55           2.49           2.00           1.79           2.68           2.72           1.74                                              | Na20<br>2.27<br>1.92<br>2.94<br>3.25<br>1.03<br>2.22<br>0.65<br>3.33<br>0.47<br>0.45<br>0.15<br>1.00<br>0.03<br>0.01<br>0.01                                                             |
| ETK. Sample No.<br>23451<br>23452<br>23453<br>23454<br>23455<br>23456<br>23456<br>23457<br>23458<br>23459<br>23460<br>23461<br>23462<br>23462<br>23463<br>23464<br>23465<br>23466<br>23466                                     | Hole No. Depth<br>T95-04, 124.00<br>T95-13, 132.00<br>T95-13, 157.20<br>T95-04, 220<br>T95-04, 30.20<br>T95-13, 93.10<br>T95-62, 68.68<br>T95-13, 93.10<br>T95-64, 147.69<br>T95-04, 138.70<br>T95-04, 36.92<br>T95-04, 38.70<br>T95-13, 221.60<br>T95-13, 233.80<br>T95-13, 241.20<br>T95-29, 138.00<br>T95-70, 110.80<br>T95-78, 122.20                                  | Assay Interval (g/t)<br>123.4-126.4 (0.36)<br>NS<br>NS<br>28.4-30.3 (0.69)<br>93.0-94.0 (.003)<br>68.0-70.0 (.003)<br>165.0-151.0 (.003)<br>145.9-147.9 (1.38)<br>201.0-202.3 (0.54)<br>35.8-37.8 (1.16)<br>137.9-139.9 (0.59)<br>233.0-234.0 (2.89)<br>241.0-242.0 (4.43)<br>98.0-100.0 (4.40)<br>138.0-140.0 (3.01)<br>110.0-112.0 (3.62)                                                                                               | Brief Comments<br>Massive basalt, non mag.m/s carb (ca)<br>P.basalt, non mag.w/m carb (ca)<br>P.basalt, non mag.s carb (ca),<br>P.basalt, non mag.w carb (ca), 1-2%Py.<br>P.basalt/CB.s carb (ank)-sil, <2% Py<br>CB(sil).s carb (ank), sil impreg. Tr. Py<br>Lamprophyre Dyke, w/m mag.<br>Trans. CB/SC, s carb (ank)Tr-1% Py<br>SCP(Q).s carb (ank), sil, 7-10% Py<br>SC(Q)P, s carb (ank), sil, 7-10% Py<br>SCQP, s carb (ank), sil, 7-10% Py<br>PAZ, sparse carb, >40% f.Py<br>PAZ, minor carb, >30% f.Py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BaO<br>0.01<br>0.02<br>0.01<br>0.03<br>0.11<br>0.49<br>0.03<br>0.12<br>0.13<br>0.06<br>0.10<br>0.13<br>0.12<br>0.13<br>0.12<br>0.13<br>0.12<br>0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>P206</b><br>0.14<br>0.13<br>0.15<br>0.18<br>0.13<br>0.17<br>1.12<br>0.16<br>0.31<br>0.08<br>0.13<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12                                                                   | <b>SiO2</b><br>43,73<br>46,85<br>45,55<br>46,10<br>40,76<br>36,80<br>51,84<br>40,43<br>35,88<br>40,81<br>38,57<br>32,59<br>18,54<br>17,45<br>21,29<br>23,65<br>18,27                                     | MnO<br>0.21<br>0.15<br>0.19<br>0.19<br>0.19<br>0.09<br>0.18<br>0.21<br>0.30<br>0.18<br>0.24<br>0.25<br>0.19<br>0.26<br>0.25<br>0.29<br>0.29                         | Fe203<br>13,24<br>14,54<br>13,08<br>12,38<br>14,35<br>14,48<br>7,59<br>12,30<br>14,67<br>18,19<br>13,09<br>14,67<br>15,59<br>27,86<br>24,02<br>22,29<br>19,01<br>24,18                          | MgO<br>6 70<br>5.89<br>5.56<br>6.64<br>6.24<br>5.32<br>7.27<br>4.83<br>5.13<br>5.13<br>5.70<br>4.89<br>5.25<br>5.33<br>7.05<br>5.51<br>7.05<br>5.51<br>7.05<br>6.90 | Al203<br>12.09<br>12.03<br>11.83<br>12.70<br>11.23<br>12.01<br>12.13<br>11.34<br>12.40<br>11.66<br>11.46<br>11.46<br>11.46<br>11.46<br>12.94<br>11.96<br>15.01<br>15.25<br>12.07                                     | CaO<br>8.61<br>7.85<br>9.04<br>8.01<br>7.14<br>7.91<br>4.80<br>8.49<br>8.35<br>10.00<br>8.01<br>8.06<br>11.09<br>7.74<br>10.84<br>7.92<br>9.75<br>10.38                            | TiO2           1.94           2.04           1.68           1.74           1.75           1.84           1.31           2.55           2.49           1.49           2.08           2.38           2.79           1.79           2.68           2.38           2.74           3.26 | Na20<br>2 27<br>1.92<br>2.94<br>3.25<br>1.03<br>2.22<br>0.65<br>3.33<br>0.47<br>0.45<br>0.15<br>1.00<br>0.03<br>0.01<br>0.01<br>0.01<br>0.01                                             |
| ETK. Sample No.<br>23451<br>23452<br>23452<br>23453<br>23454<br>23455<br>23456<br>23457<br>23456<br>23459<br>23460<br>23461<br>23462<br>23461<br>23462<br>23463<br>23464<br>23465<br>23465<br>23465<br>23465<br>23468<br>23468 | Hole No. Depth<br>T95-04, 124.00<br>T95-13, 132.00<br>T95-13, 157.20<br>T95-13, 279.20<br>T95-04, 30.20<br>T95-62, 68.68<br>T95-13, 93.10<br>T95-62, 68.68<br>T95-13, 150.40<br>T95-04, 147.69<br>T95-04, 138.70<br>T95-13, 233.80<br>T95-13, 241.20<br>T95-29, 99.50<br>T95-29, 138.00<br>T95-70, 110.80<br>T95-18, 122.20<br>T95-03, 168.20                              | Assay Interval (g/t)<br>123.4.126.4 (0.35)<br>NS<br>NS<br>28.4-30.3 (0.69)<br>93.0-94.0 (.003)<br>160.0-151.0 (.003)<br>150.0-151.0 (.003)<br>145.9-147.9 (1.38)<br>201.0-202.3 (0.54)<br>35.8-37.8 (1.16)<br>137.9-139.9 (0.59)<br>233.0-234.0 (2.89)<br>241.0-242.0 (4.43)<br>98.0-100.0 (4.40)<br>138.0-140.0 (3.01)<br>110.0-112.0 (3.62)<br>121.0-123.0 (3.45)<br>167.94-169.47 (3.78)                                               | Brief Comments<br>Massive basalt, non mag.m/s carb (ca)<br>P. basalt, non mag.w/m carb (ca)<br>P. basalt, non mag.s carb (ca)<br>P. basalt, non mag.w carb (ca), 1-2%Py.<br>P. basalt/CB.s carb (ank)-sil, <2% Py<br>CB(sil), s carb (ank), sil impreg. Tr. Py<br>Lamprophyre Dyke, w/m mag.<br>Trans. CB/SC, s carb (ank)Tr-1% Py<br>SC(Q)P, s carb (ank), sil, 7-10% Py<br>SC(Q)P, s carb (ank), sil, 7-10% Py<br>SCQP, s carb (ank), 20% f.Py<br>PAZ, minor carb, >30% f.Py<br>CB, ank rhombs, >20% f.Py. PAZ var. | BaO<br>0.01<br>0.02<br>0.01<br>0.03<br>0.11<br>0.03<br>0.11<br>0.49<br>0.03<br>0.12<br>0.13<br>0.06<br>0.10<br>0.13<br>0.12<br>0.13<br>0.12<br>0.13<br>0.12<br>0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P206<br>0.14<br>0.13<br>0.15<br>0.18<br>0.13<br>0.17<br>1.12<br>0.16<br>0.31<br>0.08<br>0.13<br>0.32<br>0.12<br>0.12<br>0.10<br>0.06<br>0.12<br>0.16                                                                                  | <b>SiO2</b><br>43,73<br>46,85<br>45,55<br>46,10<br>40,75<br>36,80<br>51,84<br>40,43<br>35,88<br>40,81<br>38,57<br>32,59<br>18,54<br>17,45<br>21,29<br>23,65<br>18,27<br>22,46                            | MnO<br>0.21<br>0.15<br>0.19<br>0.19<br>0.19<br>0.09<br>0.19<br>0.21<br>0.30<br>0.18<br>0.24<br>0.25<br>0.19<br>0.26<br>0.25<br>0.29<br>0.27                         | Fe203<br>13,24<br>14,54<br>13,08<br>12,38<br>14,35<br>14,48<br>7,59<br>12,30<br>14,67<br>18,19<br>13,09<br>14,67<br>15,59<br>27,86<br>24,02<br>22,29<br>19,01<br>24,18<br>20,41                 | MgO<br>6 70<br>5.89<br>5.56<br>6.64<br>6.24<br>5.32<br>7.27<br>4.83<br>6.13<br>6.72<br>5.70<br>4.89<br>5.55<br>5.33<br>7.05<br>5.51<br>7.02<br>6.90<br>6.60         | Al203<br>12.09<br>12.03<br>11.83<br>12.70<br>11.23<br>12.01<br>12.13<br>11.34<br>12.40<br>11.66<br>11.46<br>11.46<br>11.47<br>12.64<br>11.96<br>15.01<br>15.57<br>12.07<br>15.91                                     | CaO<br>8.61<br>7.85<br>9.04<br>8.01<br>7.14<br>7.91<br>4.80<br>8.49<br>8.35<br>10.00<br>8.01<br>8.06<br>11.09<br>7.74<br>10.84<br>7.92<br>9.75<br>10.38<br>10.08                   | TiO2           1.94           2.04           1.68           1.74           1.75           1.84           1.31           2.23           2.49           1.49           2.00           1.79           2.68           2.38           2.72           1.74           3.26           2.09 | Na20<br>2.27<br>1.92<br>2.94<br>3.25<br>1.03<br>2.22<br>0.65<br>3.33<br>0.47<br>0.45<br>0.05<br>1.00<br>0.03<br>0.01<br>0.01<br>0.01<br>0.01                                             |
| ETK. Sample No.<br>23451<br>23452<br>23453<br>23454<br>23455<br>23456<br>23457<br>23458<br>23459<br>23460<br>23461<br>23462<br>23463<br>23464<br>23465<br>23464<br>23465<br>23466<br>23466<br>23467<br>23468<br>23469<br>23470 | Hole No. Depth<br>T95-04, 124.00<br>T95-13, 132.00<br>T95-13, 157.20<br>T95-13, 279.20<br>T95-04, 30.20<br>T95-62, 68.68<br>T95-13, 150.40<br>T95-64, 147.69<br>T95-13, 201.60<br>T95-04, 36.92<br>T95-04, 36.92<br>T95-04, 38.70<br>T95-13, 241.20<br>T95-29, 138.00<br>T95-70, 110.80<br>T95-70, 110.80<br>T95-70, 110.80<br>T95-70, 188.20<br>T94-74, 57.80             | Assay Interval (g/t)<br>123.4-126.4 (0.36)<br>NS<br>NS<br>NS<br>28.4-30.3 (0.69)<br>93.0-94.0 (.003)<br>150.0-151.0 (.003)<br>145.9-147.9 (1.38)<br>201.0-202.3 (0.54)<br>35.8-37.8 (1.16)<br>137.9-139.9 (0.59)<br>233.0-234.0 (2.89)<br>241.0-242.0 (4.43)<br>98.0-100.0 (4.40)<br>138.0-140.0 (3.01)<br>110.0-112.0 (3.62)<br>121.0-123.0 (3.45)<br>167.94-169.47 (3.79)<br>56.97-58.58 (2.20)                                         | Brief Comments<br>Massive basalt, non mag.m/s carb (ca)<br>P.basalt, non mag.w/m carb (ca)<br>P.basalt, non mag.w/m carb (ca)<br>P.basalt, non mag.w/m carb (ca),<br>P.basalt/CB. s carb (ank)-sil, <2% Py.<br>P.basalt/CB. s carb (ank)-sil, <2% Py.<br>CB(sil).s carb (ank), sil impreg. Tr. Py<br>Lamprophyre Dyke, w/m mag.<br>Trans. CB/SC, s carb (ank) Tr-1% Py<br>SC(Q)P, s carb (ank), sil, 7-10% Py<br>SC(Q)P, s carb (ank), sil, 7-10% Py<br>SC(Q)P, s carb (ank), sil, 7-10% Py<br>SC(Q)P, s carb (ank), sil, 7-10% Py<br>CB/PAZ, s carb (ank), sil, 7-10% Py<br>CB/PAZ, s carb (ank), sil, 51% f.Py.<br>SCP, s carb (ank), s10% f.Py(e)<br>CB/PAZ (sil), s carb (ank) >20% f.Py<br>PAZ, sparse carb, >40% f.Py<br>PAZ/CB Strong Alt. carb (ca) >20% f.Py<br>CB, ank rhombs, >20% f.Py (Dis/fr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BaO<br>0.01<br>0.02<br>0.01<br>0.03<br>0.11<br>0.49<br>0.03<br>0.12<br>0.13<br>0.16<br>0.10<br>0.10<br>0.10<br>0.12<br>0.18<br>0.12<br>0.13<br>0.12<br>0.13<br>0.12<br>0.13<br>0.12<br>0.13<br>0.12<br>0.13<br>0.12<br>0.13<br>0.12<br>0.13<br>0.14<br>0.11<br>0.10<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.12<br>0.13<br>0.11<br>0.12<br>0.13<br>0.14<br>0.13<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0 | P205<br>0.14<br>0.13<br>0.15<br>0.18<br>0.17<br>1.12<br>0.16<br>0.31<br>0.08<br>0.13<br>0.32<br>0.12<br>0.12<br>0.10<br>0.06<br>0.12<br>0.10<br>0.06                                                                                  | <b>SiO2</b><br>43,73<br>46,85<br>45,55<br>46,10<br>40,76<br>36,80<br>51,84<br>40,43<br>35,88<br>29,68<br>40,81<br>38,57<br>32,59<br>18,54<br>17,45<br>21,29<br>23,65<br>18,27<br>22,46<br>23,90          | MnO<br>0.21<br>0.15<br>0.19<br>0.18<br>0.19<br>0.09<br>0.18<br>0.21<br>0.30<br>0.18<br>0.24<br>0.25<br>0.19<br>0.26<br>0.25<br>0.29<br>0.29<br>0.27<br>0.28         | Fe203<br>13.24<br>14.54<br>13.08<br>12.38<br>14.35<br>14.48<br>7.59<br>12.30<br>14.67<br>18.19<br>27.96<br>24.02<br>22.29<br>19.01<br>24.18<br>20.41<br>15.24                                   | Mg0<br>670<br>5.89<br>5.56<br>6.64<br>6.24<br>5.32<br>7.27<br>4.83<br>5.13<br>6.72<br>5.70<br>4.89<br>5.25<br>5.51<br>7.05<br>5.51<br>7.02<br>6.90<br>6.60<br>8.81  | Al203<br>12.09<br>12.03<br>11.83<br>12.70<br>11.23<br>12.01<br>12.13<br>11.34<br>12.46<br>11.46<br>11.46<br>11.46<br>11.46<br>11.46<br>11.46<br>11.96<br>12.94<br>11.96<br>15.01<br>15.25<br>12.07<br>15.91<br>16.88 | CaO<br>8.61<br>7.85<br>9.04<br>8.01<br>7.14<br>7.91<br>4.80<br>8.49<br>8.35<br>10.00<br>8.01<br>8.06<br>11.09<br>7.74<br>10.84<br>7.92<br>9.75<br>10.38<br>10.08<br>13.37          | TiO2           1.94           2.04           1.68           1.74           1.75           1.84           1.31           2.23           2.49           1.49           2.00           1.79           2.68           2.72           1.74           3.26           2.09           1.57 | Na20<br>2.27<br>1.92<br>2.94<br>3.25<br>1.03<br>2.22<br>0.65<br>3.33<br>0.47<br>0.45<br>0.15<br>1.00<br>0.03<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                                     |
| ETK. Sample No.<br>23451<br>23452<br>23453<br>23454<br>23455<br>23456<br>23456<br>23457<br>23458<br>23459<br>23460<br>23461<br>23462<br>23463<br>23464<br>23465<br>23465<br>23465<br>23468<br>23469<br>23470<br>23471          | Hole No. Depth<br>T95-04, 124.00<br>T95-13, 132.00<br>T95-13, 157.20<br>T95-13, 279.20<br>T95-04, 30.20<br>T95-04, 30.20<br>T95-04, 30.20<br>T95-04, 102, 00<br>T95-04, 147, 69<br>T95-13, 201, 60<br>T95-04, 138, 70<br>T95-13, 233.80<br>T95-13, 241, 20<br>T95-29, 198.00<br>T95-29, 198.00<br>T95-70, 110.80<br>T95-18, 122.20<br>T95-03, 168, 20<br>T95-19, 72, 40    | Assay Interval (g/t)<br>123.4-125.4 (0.36)<br>NS<br>NS<br>NS<br>28.4-30.3 (0.69)<br>93.0-94.0 (.003)<br>68.0-70.0 (.003)<br>150.0-151.0 (.003)<br>145.9-147.9 (1.38)<br>201.0-202.3 (0.54)<br>35.8-37.8 (1.16)<br>137.9-139.9 (0.59)<br>233.0-234.0 (2.89)<br>241.0-242.0 (4.43)<br>98.0-100.0 (4.40)<br>138.0-140.0 (3.01)<br>110.0-112.0 (3.62)<br>121.0-123.0 (3.45)<br>167.94-169.47 (3.79)<br>56.97-58.58 (2.20)<br>72.0-74.0 (4.10) | Brief Comments<br>Massive basalt, non mag.m/s carb (ca)<br>P.basalt, non mag.w/m carb (ca)<br>P.basalt, non mag.w/m carb (ca)<br>P.basalt, non mag.w.carb (ca), 1-2% Py<br>P.basalt/CB.s carb (ank), sil, -2% Py<br>CB(sil).s carb (ank), sil, -10% Py<br>CB(sil).s carb (ank), sil, -10% Py<br>SC(Q)P.s carb (ank), sil, -10% Py<br>SC(Q)P, s carb (ank), 5% f.re Py<br>CB/PAZ, s carb (ank), 5% f.re Py<br>CB/PAZ, s carb (ank) >10% f.Py(e)<br>CB/PAZ (sil), s carb (ank) >10% f.Py(e)<br>CB/PAZ (sil), s carb (ank) >20% f.Py<br>PAZ.wispy ca vts.>20% f.Py<br>PAZ.cB Strong Alt. carb (ca) >20% f.Py<br>CB, ank frombs, >20% f.Py. PAZ.var.<br>CB, strong alt.mic.fr.>20% f.Py (dis/fr)<br>PAZ/SCP. S carb (ank), sil7, -15% f.Py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BaO<br>0.01<br>0.02<br>0.01<br>0.03<br>0.11<br>0.49<br>0.03<br>0.12<br>0.13<br>0.06<br>0.10<br>0.10<br>0.10<br>0.12<br>0.13<br>0.12<br>0.13<br>0.14<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.12<br>0.13<br>0.12<br>0.13<br>0.12<br>0.13<br>0.12<br>0.13<br>0.12<br>0.13<br>0.10<br>0.12<br>0.13<br>0.12<br>0.13<br>0.10<br>0.10<br>0.11<br>0.12<br>0.13<br>0.10<br>0.11<br>0.11<br>0.11<br>0.12<br>0.13<br>0.10<br>0.11<br>0.11<br>0.11<br>0.11<br>0.12<br>0.13<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.12<br>0.13<br>0.12<br>0.13<br>0.14<br>0.13<br>0.14<br>0.13<br>0.14<br>0.13<br>0.14<br>0.13<br>0.14<br>0.13<br>0.14<br>0.13<br>0.14<br>0.13<br>0.14<br>0.13<br>0.14<br>0.13<br>0.14<br>0.13<br>0.14<br>0.11<br>0.13<br>0.14<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.111<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P205           0.14           0.13           0.15           0.18           0.17           0.12           0.12           0.16           0.12           0.16           0.12           0.16           0.12           0.16           0.17 | <b>SIO2</b><br>43,73<br>46,85<br>45,55<br>46,10<br>40,75<br>36,80<br>51,84<br>40,43<br>35,88<br>29,68<br>40,81<br>38,57<br>32,59<br>18,54<br>17,45<br>21,29<br>23,65<br>18,27<br>22,46<br>23,90<br>30,28 | MnO<br>0.21<br>0.15<br>0.19<br>0.18<br>0.19<br>0.19<br>0.09<br>0.18<br>0.21<br>0.30<br>0.18<br>0.24<br>0.25<br>0.29<br>0.26<br>0.29<br>0.29<br>0.27<br>0.28<br>0.27 | <b>Fe203</b><br>13.24<br>14.54<br>13.08<br>12.38<br>14.35<br>14.48<br>7.59<br>12.30<br>14.87<br>18.19<br>13.09<br>14.67<br>15.59<br>27.86<br>24.02<br>22.29<br>19.01<br>24.18<br>20.41<br>15.54 | Mg0<br>6.70<br>5.89<br>5.56<br>6.64<br>6.24<br>5.32<br>7.27<br>4.83<br>6.72<br>5.70<br>4.89<br>5.25<br>5.33<br>7.05<br>5.51<br>7.02<br>6.90<br>6.60<br>8.81<br>7.23 | AI203 12.09 12.03 11.83 12.70 11.23 12.01 12.13 11.34 12.40 11.66 11.46 11.17 12.66 12.94 11.96 15.01 15.25 12.07 15.91 15.25 12.07 15.91 16.81 16.89                                                                | CaO<br>8.61<br>7.85<br>9.04<br>8.01<br>7.14<br>7.91<br>4.80<br>8.49<br>8.35<br>10.00<br>8.01<br>8.06<br>11.09<br>7.74<br>10.84<br>7.92<br>9.75<br>10.38<br>10.08<br>13.37<br>11.96 | TiO2           1.94           2.04           1.68           1.74           1.75           1.84           1.31           2.23           2.55           2.49           1.79           2.68           2.72           1.74           3.26           2.09           1.57           1.70 | Na20<br>2.27<br>1.92<br>2.94<br>3.25<br>1.03<br>2.22<br>0.65<br>3.33<br>0.47<br>0.45<br>0.15<br>1.00<br>0.03<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                             |

K20

0.01 0.06

0.02

0.01 1.35

1.66

6.79

1.13

3.03 2.73 2.32

2.85

2.83

3.47

3.22

4.32

4.52

3.08

4.25

4.44 3.34 L.O.I. 11.36

8.49 10.04

9.56

16.02

17.24

6.07

16.06

17.74 17.83

16.20

17.00

16.80

21.31

20.71

20.05

18.40

20.43

17.78

15.27 16.38

NAVASOTA RESOURCES LTD. Cassiar Project Samples Ron Wells, July 25th, 2003

#### CERTIFICATE OF ANALYSIS AK 2003-266

NAVASOTA RESOURCES #207 141 VICTORIA STREET KAMLOOPS, BC V2C 1Z5

#### ATTENTION: LORNE WARNER

No. of samples received: 14 Sample type: Rock **Project #: Cassiar Shipment #: Geoch1** Samples submitted by: Ron Wells

#### Note: Values expressed in percent

| ET #.                      | Tag # | BaO  | P205 | SiO2  | MnO  | Fe203 | MgO   | AI203 | CaO   | TiO2 | Na2O | K20  | L.O.I. |
|----------------------------|-------|------|------|-------|------|-------|-------|-------|-------|------|------|------|--------|
| 1                          | 23451 | 0.01 | 0.14 | 43.73 | 0.21 | 13.24 | 6.70  | 12.09 | 8.61  | 1.94 | 2.27 | 0.01 | 11.36  |
| 2                          | 23452 | 0.02 | 0.13 | 46.85 | 0.15 | 14.54 | 5.89  | 12.03 | 7.85  | 2.04 | 1.92 | 0.06 | 8.49   |
| 3                          | 23453 | 0.01 | 0.15 | 45.55 | 0.19 | 13.08 | 5.56  | 11.83 | 9.04  | 1.68 | 2.94 | 0.02 | 10.04  |
| 4                          | 23454 | 0.01 | 0.18 | 46.10 | 0.18 | 12.38 | 6.64  | 12.70 | 8.01  | 1.74 | 3.25 | 0.01 | 9.56   |
| 5                          | 23455 | 0.03 | 0.13 | 40.75 | 0.19 | 14.35 | 6.24  | 11.23 | 7.14  | 1.75 | 1.03 | 1.35 | 16.02  |
| 6                          | 23456 | 0.11 | 0.17 | 36.80 | 0,19 | 14.48 | 5.32  | 12.01 | 7.91  | 1.84 | 2.22 | 1.66 | 17.24  |
| 7                          | 23457 | 0.49 | 1.12 | 51.84 | 0.09 | 7.59  | 7.27  | 12.13 | 4.80  | 1.31 | 0.65 | 6.79 | 6.07   |
| 8                          | 23458 | 0.03 | 0.16 | 40.43 | 0.18 | 12.30 | 4.83  | 11.34 | 8.49  | 2.23 | 3.33 | 1.13 | 16.06  |
| 9                          | 23459 | 0.12 | 0.31 | 35.88 | 0.21 | 14.87 | 5.13  | 12.40 | 8.35  | 2.55 | 0.23 | 3.03 | 17.74  |
| 10                         | 23460 | 0.13 | 0.08 | 29.68 | 0.30 | 18.19 | 6.72  | 11.66 | 10.00 | 2.49 | 0.47 | 2.73 | 17.83  |
| 11                         | 23461 | 0.06 | 0.13 | 40.81 | 0.18 | 13.09 | 5.70  | 11.46 | 8.01  | 1.49 | 0.45 | 2.32 | 16.20  |
| 12                         | 23462 | 0.10 | 0.32 | 38.57 | 0.24 | 14.67 | 4.89  | 11.17 | 8.06  | 2.00 | 0.15 | 2.85 | 17.00  |
| 13                         | 23463 | 0.10 | 0.12 | 32.59 | 0.25 | 15.59 | 5.25  | 12.66 | 11.09 | 1.79 | 1.00 | 2.83 | 16.80  |
| 14                         | 23464 | 0.13 | 0.12 | 18.54 | 0.19 | 27.86 | 5.33  | 12.94 | 7.74  | 2.68 | 0.03 | 3.47 | 21.31  |
| <u>QC DATA:</u><br>Repeat: | i     |      |      |       |      |       |       |       |       |      |      |      |        |
| 1                          | 23451 | 0.01 | 0.07 | 44.53 | 0.22 | 13.69 | 6.74  | 12.32 | 8.89  | 1.82 | 2.31 | 0.01 | 9.47   |
| 10                         | 23460 | 0.13 | 0.01 | 27.22 | 0.28 | 17.02 | 6.35  | 13.72 | 12.51 | 2.46 | 0.33 | 2.41 | 17.27  |
| Standard:                  |       |      |      |       |      |       |       |       |       |      |      |      |        |
| Mrg-1                      |       | 0.02 | 0.01 | 38.65 | 0.17 | 18.14 | 14.02 | 8.46  | 14.87 | 3,69 | 0.64 | 0.18 | 2.22   |
| Sy-4                       |       | 0.06 | 0.13 | 49.64 | 0.11 | 6.59  | 0.65  | 20.97 | 8.15  | 0.29 | 7.06 | 1.57 | 4.56   |

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

df/wr

31-Aug-03

Page 1

C

\_ \_ \_ \_

- - -

. .....

01-Aug-03

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2003-266

NAVASOTA RESOURCES

#207 141 VICTORIA STREET KAMLOOPS, BC V2C 1Z5

ATTENTION: LORNE WARNER

No. of samples received: 14 Sample type: Rock **Project #: Cassiar** Shipment #: Geoch1 Samples submitted by: Ron Wells

Values in ppm unless otherwise reported

| Et #.                  | Tag #      | Au(ppb) | Ag   | Al % | As   | Ba   | Bi | Ca % | Cd | Co | Cr  | Cu  | Fe % | La  | Mg % | Mn   | Мо | Na % | Ni  | Р    | Pb | Sb | Sn  | Sr  | Ti %  | U   | V   | W   | Y  | Zn |
|------------------------|------------|---------|------|------|------|------|----|------|----|----|-----|-----|------|-----|------|------|----|------|-----|------|----|----|-----|-----|-------|-----|-----|-----|----|----|
| 1                      | 23451      | 15      | <0.2 | 3.85 | <5   | 5    | <5 | 6.01 | <1 | 41 | 134 | 53  | 8.40 | 20  | 3.93 | 1409 | <1 | 0.04 | 62  | 670  | 8  | <5 | <20 | 94  | 0.12  | <10 | 355 | <10 | 5  | 76 |
| 2                      | 23452      | 10      | <0.2 | 4.57 | <5   | 5    | <5 | 5.46 | <1 | 46 | 99  | 108 | 8.89 | 20  | 3.37 | 952  | <1 | 0.02 | 55  | 550  | 6  | <5 | <20 | 44  | 0.24  | <10 | 397 | <10 | 7  | 83 |
| 3                      | 23453      | 10      | <0.2 | 3.48 | <5   | <5   | <5 | 6.11 | <1 | 47 | 79  | 89  | 7.74 | 20  | 3.10 | 1373 | <1 | 0.03 | 60  | 570  | 4  | <5 | <20 | 91  | 0.35  | <10 | 353 | <10 | 5  | 74 |
| 4                      | 23454      | 15      | <0.2 | 2.60 | <5   | 75   | <5 | 4.26 | <1 | 36 | 80  | 68  | 5.63 | 10  | 2.48 | 861  | <1 | 0.04 | 38  | 630  | 4  | <5 | <20 | 13  | 0.24  | <10 | 201 | <10 | 17 | 53 |
| 5                      | 23455      | 10      | <0.2 | 0.54 | 65   | 10   | <5 | 5.03 | <1 | 44 | 64  | 78  | 9.46 | 20  | 3.85 | 1298 | <1 | 0.06 | 48  | 540  | 2  | <5 | <20 | <1  | 0.36  | <10 | 52  | <10 | 5  | 91 |
| 6                      | 23456      | 5       | <0.2 | 0.43 | <5   | 775  | <5 | 5.16 | <1 | 40 | 65  | 2   | 9.29 | 20  | 3.33 | 1323 | <1 | 0.08 | 43  | 860  | 4  | <5 | <20 | 55  | 0.24  | <10 | 47  | <10 | 6  | 84 |
| 7                      | 23457      | 10      | <0.2 | 2.08 | <5   | 1985 | <5 | 3.08 | <1 | 34 | 284 | 46  | 4.45 | 140 | 3.82 | 557  | <1 | 0.04 | 117 | 3950 | 54 | <5 | <20 | 375 | 0.25  | <10 | 149 | <10 | 22 | 55 |
| 8                      | 23458      | 5       | <0.2 | 0.28 | 25   | 15   | <5 | 5.99 | <1 | 37 | 63  | 32  | 8.25 | 20  | 2.98 | 1252 | <1 | 0.08 | 42  | 630  | 4  | <5 | <20 | 44  | 0.26  | <10 | 40  | <10 | 4  | 79 |
| 9                      | 23459      | >1000   | 3.0  | 0.33 | 1795 | 35   | <5 | 6.72 | <1 | 55 | 86  | 63  | >10  | 20  | 3.12 | 1587 | <1 | 0.02 | 79  | 1220 | 6  | <5 | <20 | 151 | 0.29  | <10 | 28  | <10 | 9  | 76 |
| 10                     | 23460      | 580     | <0.2 | 0.55 | 9760 | 45   | <5 | 8.99 | <1 | 55 | 72  | 12  | >10  | 20  | 3.68 | 2016 | <1 | 0.02 | 66  | 350  | 6  | <5 | <20 | 294 | 0.24  | <10 | 31  | <10 | 7  | 65 |
| 11                     | 23461      | 100     | <0.2 | 0.38 | 275  | 35   | <5 | 6.78 | <1 | 46 | 75  | 60  | 9.13 | 20  | 3.25 | 1318 | <1 | 0.04 | 52  | 560  | 8  | <5 | <20 | 36  | 0.28  | <10 | 41  | <10 | 9  | 79 |
| 12                     | 23462      | 760     | 1.4  | 0.30 | 1935 | 40   | <5 | 6.53 | <1 | 52 | 73  | 29  | >10  | 20  | 2.78 | 1925 | <1 | 0.01 | 60  | 1260 | 6  | <5 | <20 | 117 | 0.29  | <10 | 27  | <10 | 7  | 67 |
| 13                     | 23463      | >1000   | 1.4  | 0.34 | 1890 | 45   | <5 | 7.06 | <1 | 54 | 65  | 63  | >10  | 20  | 3.03 | 1706 | <1 | 0.03 | 61  | 600  | 6  | <5 | <20 | 148 | 0.29  | <10 | 30  | <10 | 8  | 60 |
| 14                     | 23464      | >1000   | 1.8  | 0.21 | 2145 | 15   | <5 | 4.00 | <1 | 47 | 69  | 48  | >10  | 40  | 2.91 | 982  | <1 | 0.02 | 49  | 490  | 4  | <5 | <20 | 190 | 0.26  | <10 | 22  | <10 | 3  | 22 |
| <u>QC DA</u><br>Repeat | <u>TA:</u> |         |      |      |      |      |    |      |    |    |     |     |      |     |      |      |    |      |     |      |    |    |     |     |       |     |     |     |    |    |
| 1                      | 23451      | 10      | <0.2 | 3.87 | <5   | <5   | <5 | 6.05 | <1 | 45 | 144 | 50  | 8.24 | 20  | 3.94 | 1423 | <1 | 0.03 | 61  | 680  | 8  | <5 | <20 | 83  | 0.11  | <10 | 369 | <10 | 7  | 74 |
| 10                     | 23460      | 590     | -    | -    | -    | -    | -  | -    | -  | -  | -   | -   | -    | -   | -    | -    | -  | -    | -   | -    | -  | -  | -   | -   | -     | -   | -   | -   | -  | -  |
| 12                     | 23462      | 830     | -    | -    | -    | -    | -  | -    | -  | -  | -   | -   | -    | -   | -    | -    | -  | -    | -   | -    | -  | -  | -   | -   | -     | -   | -   | -   | -  | -  |
| Standa                 | rd:        |         |      |      |      |      |    |      |    |    |     |     |      |     |      |      |    |      |     |      |    |    |     |     |       |     |     |     |    |    |
| GEO'03                 | }          | 130     | 1.6  | 1.73 | 45   | 145  | <5 | 1.43 | <1 | 17 | 53  | 89  | 3.76 | 10  | 1.01 | 564  | <1 | 0.03 | 27  | 590  | 18 | <5 | <20 | 42  | <0.01 | <10 | 72  | <10 | 9  | 69 |

ECO TECH LABORATORY LTD. Jutta Jealouse BC Certified Assayer

#### CERTIFICATE OF ASSAY AK 2003-266

#### NAVASOTA RESOURCES #207 141 VICTORIA STREET KAMLOOPS, BC V2C 1Z5

7-Aug-03

#### ATTENTION: LORNE WARNER

No. of samples received: 14 Sample type: Rock **Project #: Cassiar Shipment #: Geoch1** Samples submitted by: Ron Wells

|          |       | Au    | Au     |  |
|----------|-------|-------|--------|--|
| <u> </u> | Tag # | (g/t) | (oz/t) |  |
| 9        | 23459 | 1.30  | 0.038  |  |
| 13       | 23463 | 1.85  | 0.054  |  |
| 14       | 23464 | 4.41  | 0.129  |  |

0.048

0.141

1.64 4.82

| QC DATA: |       |   |
|----------|-------|---|
| Repeat:  |       | , |
| 13       | 23463 |   |
| 14       | 23464 |   |

| Standard: |      |       |
|-----------|------|-------|
| PM168     | 2.10 | 0.061 |

JJ/kk XLS/03 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

Page 1

#### CERTIFICATE OF ANALYSIS AK 2003-267

NAVASOTA RESOURCES #207 141 VICTORIA STREET KAMLOOPS, BC V2C 125

#### ATTENTION: LORNE WARNER

No. of samples received: 7 Sample type: Rock **Project #: Cassiar Shipment #: Geoch 1** Samples submitted by: Ron Wells

#### Note: Values expressed in percent

| <u> </u>                  | Tag #    | BaO  | P205 | SiO2  | MnO  | Fe203 | MgO   | AI203 | CaO   | TiO2 | Na2O | K20  | L.O.I. |
|---------------------------|----------|------|------|-------|------|-------|-------|-------|-------|------|------|------|--------|
| 1                         | 23465    | 0.12 | 0.10 | 17.45 | 0.26 | 24.02 | 7.05  | 11.96 | 10.84 | 2.38 | 0.01 | 3.22 | 20.71  |
| 2                         | 23466    | 0.18 | 0.06 | 21.29 | 0.25 | 22.29 | 5.51  | 15.01 | 7.92  | 2.72 | 0.01 | 4.32 | 20.05  |
| 3                         | 23467    | 0.12 | 0.12 | 23.65 | 0.29 | 19.01 | 7.02  | 15.25 | 9.75  | 1.74 | 0.01 | 4.52 | 18.40  |
| 4                         | 23468    | 0.13 | 0.16 | 18.27 | 0.29 | 24.18 | 6.90  | 12.07 | 10.38 | 3.26 | 0.07 | 3.08 | 20.43  |
| 5                         | 23469    | 0.14 | 0.14 | 22.46 | 0.27 | 20.41 | 6.60  | 15.91 | 10.08 | 2.09 | 0.01 | 4.25 | 17.78  |
| 6                         | 23470    | 0.11 | 0.10 | 23.90 | 0.28 | 15.24 | 8.81  | 16.88 | 13.37 | 1.57 | 0.01 | 4.44 | 15.27  |
| 7                         | 23471    | 0.11 | 0.17 | 30.28 | 0.27 | 14.59 | 7.23  | 12.98 | 11.96 | 1.70 | 0.03 | 3.34 | 16.38  |
| <u>QC DATA</u><br>Repeat: | <u>.</u> |      |      |       |      |       |       |       |       |      |      |      |        |
| 1                         | 23465    | 0.13 | 0.09 | 18.04 | 0.27 | 24.55 | 7.40  | 12.38 | 11.12 | 2.43 | 0.01 | 3.33 | 19.43  |
| Standard                  |          |      |      |       |      |       |       |       |       |      |      |      |        |
| Mrg-1                     |          | 0.02 | 0.05 | 38.65 | 0.17 | 18.14 | 14.02 | 8.46  | 14.87 | 3.18 | 0.64 | 0.19 | 2.22   |
| Sy-4                      |          | 0.06 | 0.13 | 49.64 | 0.11 | 6.59  | 0.65  | 20.97 | 8.15  | 0.29 | 7.06 | 1.57 | 4.56   |

df/wr XLS/03

ł

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer 01-Aug-03

01-Aug-03

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

| Et #. | Tag # | Ag    | AI % | As   | Ba | Bi | Ca % | Cd | Со | Cr | Cu | Fe % | La Mg % | 6 Mn   | Mo Na %  | Ni | <u> </u> | Pb | SD | <u>Sn</u> | <u> </u> | 11%  | U   | <u>v</u> |     | <u> </u> | <u></u> |
|-------|-------|-------|------|------|----|----|------|----|----|----|----|------|---------|--------|----------|----|----------|----|----|-----------|----------|------|-----|----------|-----|----------|---------|
| 1     | 23465 | 4.5   | 0.20 | 2735 | 20 | <5 | 5.56 | <1 | 76 | 68 | 77 | >10  | 30 3.7  | 3 1540 | <1 0.01  | 71 | 350      | 32 | <5 | <20       | 185      | 0.05 | <10 | 24       | <10 | 8        | 35      |
| 2     | 23466 | 5.0   | 0.15 | 3660 | 25 | <5 | 4.43 | <1 | 67 | 59 | 82 | >10  | 30 2.6  | 1504   | <1 <0.01 | 49 | 100      | 30 | 5  | <20       | 126      | 0.07 | <10 | 14       | <10 | 6        | 36      |
| 3     | 23467 | 1.0   | 0.71 | 6605 | 80 | <5 | 7.71 | <1 | 72 | 84 | 30 | >10  | 30 4.0  | 2 2177 | <1 0.02  | 78 | 580      | 14 | <5 | <20       | 244      | 0.08 | <10 | 72       | <10 | 15       | 51      |
| 4     | 23468 | 3.1   | 0.21 | 4925 | <5 | <5 | 7.40 | <1 | 92 | 88 | 81 | >10  | 30 3.6  | 3 2141 | <1 0.01  | 66 | 650      | 16 | 5  | <20       | 169      | 0.09 | <10 | 36       | <10 | 11       | 69      |
| 5     | 23469 | 1.5   | 0.20 | 3065 | 15 | <5 | 6.48 | <1 | 58 | 71 | 44 | >10  | 20 3.3  | ) 1659 | <1 <0.01 | 67 | 400      | 14 | <5 | <20       | 154      | 0.10 | <10 | 22       | <10 | 8        | 29      |
| 6     | 23470 | < 0.2 | 0.18 | 2095 | 35 | <5 | 9.83 | <1 | 50 | 56 | 7  | >10  | 20 4.7  | 7 1969 | <1 0.01  | 69 | 310      | 2  | <5 | <20       | 216      | 0,11 | <10 | 22       | <10 | 7        | 37      |
| 7     | 23471 | 0.2   | 0.25 | 3100 | 50 | <5 | 9.38 | <1 | 57 | 66 | 16 | >10  | 20 4.0  | 3 2014 | <1 0.01  | 74 | 660      | 12 | <5 | <20       | 279      | 0.12 | <10 | 30       | 10  | 16       | 40      |

ICP CERTIFICATE OF ANALYSIS AK 2003-267

| QC DATA:            |                      |               |                             |                                          |    |
|---------------------|----------------------|---------------|-----------------------------|------------------------------------------|----|
| Standard:<br>GEO'03 | 1.5 1.61 45 140 <5 1 | 1.61 <1 19 57 | 84 3.54 10 0.95 614 <1 0.03 | 28 710 22 <5 <20 44 0.10 <10 72 <10 10 6 | 67 |

JJ/kk df/267 XLS/03 CC: Ron Wells

Page 1

NAVASOTA RESOURCES #207 141 VICTORIA STREET KAMLOOPS, BC V2C 1Z5

ATTENTION: LORNE WARNER

No. of samples received: 7 Sample type: Rock **Project #: Cassiar** Shipment #: Geoch 1 Samples submitted by: Ron Wells

ECO TECH LABORATORY LTD.

Jutta Jealouse

BC Certified Assayer



ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamioops, BC V2C 6T4 Phone (250) 573-5700 Pax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechiab.com

### CERTIFICATE OF ASSAY AK 2003-267

#### NAVASOTA RESOURCES

#207 141 VICTORIA STREET KAMLOOPS, BC V2C 1Z5

1-Aug-03

#### ATTENTION: LORNE WARNER

No. of samples received: 7 Sample type: Rock Project#: Cassiar Shipment #: Gooch 1 Samples submitted by: Ron Wells

|           |       | Au           | Au     |                           |
|-----------|-------|--------------|--------|---------------------------|
| <u> </u>  | Tag#  | <u>(g/t)</u> | (oz/t) |                           |
| 1         | 23465 | 3.99         | 0.116  |                           |
| 1         | 23465 | 3.25         | 0.095  |                           |
| 1         | 23465 | 3.42         | 0.100  |                           |
| 2         | 23466 | 8.21         | 0.239  |                           |
| 2         | 23466 | 8,16         | 0.238  |                           |
| 2         | 23466 | 8.09         | 0.236  |                           |
| 3         | 23467 | 6.60         | 0.192  |                           |
| 3         | 23467 | 6.51         | 0.190  |                           |
| 3         | 23467 | 5.90         | 0.172  |                           |
| 4         | 23468 | 4.65         | 0.136  |                           |
| 4         | 23468 | 5.05         | 0.147  |                           |
| 4         | 23468 | 4.08         | 0.119  |                           |
| 5         | 23469 | 5.97         | 0.174  |                           |
| 5         | 23469 | 6.57         | 0.192  |                           |
| 5         | 23469 | 5.98         | 0.17   |                           |
| 6         | 23470 | 1.89         | 0.06   |                           |
| 6         | 23470 | 1.93         | 0.06   |                           |
| 6         | 23470 | 2,16         | 0.06   |                           |
| 7         | 23471 | 3.77         | 0.11   |                           |
| 7         | 23471 | 3.90         | 0.11   |                           |
| 7         | 23471 | 3.78         | 0.11   |                           |
| QC DATA:  |       |              |        |                           |
| Standard: | 3     |              |        |                           |
| PM168     |       | 2.14         | 0.06   |                           |
| PM164     |       | 3.20         | 0.09   |                           |
| PM906     |       | 5.60         | 0.16   | $\sim$                    |
|           |       |              |        |                           |
| 1.1846    |       |              |        |                           |
| JJ/KK     |       |              |        | LEDO TECH LABORATORY LTD. |

XL\$/03 CC: Ron Wells

Page 1

Jutta Jealouse Certified Assayer B.C
### LEGEND FOR GEOCHEMICAL DIAGRAMS

#### LITHOLOGY-ALTERATION UNIT

SYMBOL

| Massive to Pillowed Basalt (MB/PB). Relatively Unaltered                        |   |
|---------------------------------------------------------------------------------|---|
| As above with low gold values                                                   | ▼ |
| Carbonated Basalt (CB), minor pyrite                                            |   |
| T4 Pyritic Quartz Vein Style Miineralization (SCQP) with gold values up to 2g/t | 0 |
| As above, well mineralized, gold >2 g/t                                         | • |
| T3 Fine Pyrite Mineralization, gold >2 g/t                                      |   |
| T3 as above transitional with CB. Gold 2-4.4 g/t                                |   |
| Biotite Lamprophyre Dyke (post-mineral)                                         | • |

Ronald C. Wells P.GEO, FGAC, Kamloops Geological Services Ltd



Figure: 7.1. TAS Diagram - Basalts.



Figure: 7.2. Al<sub>2</sub>O<sub>3</sub> - MgO -FeO<sub>2</sub>+TiO<sub>2</sub>. Basalts.



i

Ţ

Figure 7.3. MnO - P<sub>2</sub>O<sub>5</sub> - TiO<sub>2</sub>. Basalts.

ļ

|                   |          | CASSIAR | TAURUS | SAMPLES | : REGRES | SSION ST | ATISTICS            |        |         |        |
|-------------------|----------|---------|--------|---------|----------|----------|---------------------|--------|---------|--------|
|                   | Au/Ag    | Au/As   | Au/Cu  | Au/Zn   | Au/Cr    | Au/Ni    | Au/SiO <sub>2</sub> | Au/MgO | Au/Na₂O | Au/K₂O |
| Regression Sta    | atistics |         |        |         |          |          |                     |        |         |        |
| Multiple R        | 0.667    | 0.864   | 0.017  | 0.742   | 0.238    | 0.353    | 0.828               | 0.227  | 0.655   | 0.782  |
| R Square          | 0.445    | 0.746   | 0.000  | 0.550   | 0.057    | 0.125    | 0.686               | 0.052  | 0.430   | 0.612  |
| Adjusted R Square | 0.414    | 0.731   | -0.055 | 0.525   | 0.004    | 0.076    | 0.668               | -0.001 | 0.398   | 0.590  |
| Standard Error    | 1.189    | 987.605 | 30.749 | 14.411  | 17.333   | 11.616   | 5.865               | 1.001  | 0.937   | 0.992  |
| Observations      | 20       | 19      | 20     | 20      | 20       | 20       | 20                  | 20     | 20      | 20     |

. . . . . . . .

-----

C

C

-- ---

С



Figure 8.1. Au ppb - As ppm Plot, Cassiar - Taurus Samples.

C



Figure 8.1

- · ·

U



Figure 8.2. K<sub>2</sub>O - Au ppb Plot, Cassiar - Taurus Samples.

С



C



Figure 8.2

C



Figure: 8.3. Au ppb -MgO Plot, Cassiar-Taurus Samples.

Cassiar-Taurus Samples: Au-MgO Plot



. . . . .

Figure 8.3

C

· - •



Figure 8.4. Au ppb - SiO<sub>2</sub> Plot, Cassiar - Taurus Samples.

ł

ļ

C



Figure 8.4



Figure 8.5

----

- - -

(

C

## Cassiar-Taurus Samples: Au-Ag Plot

C

C



Figure 8.6

## Cassiar-Taurus Samples: Au-Cu Plot

Ì



Figure 8.7

 $\sum$ 

С

 $\mathbf{C}$ 



Figure 8.8

С

# CassiarTaurus Samples: Ag-As Plot

C



Figure 8.9

ſ





Figure 8.10. K<sub>2</sub>O - As ppm Plot, Cassiar - Taurus Samples.



Figure: 8.11. K<sub>2</sub>O - Na<sub>2</sub>O Plot, Cassiar-Taurus Samples.



Figure 8.12. MgO - K<sub>2</sub>O Plot, Cassiar-Taurus Samples.

. . t



Figure: 8.13. K<sub>2</sub>O - SiO<sub>2</sub> / TiO<sub>2</sub> Ratio Plot, Cassiar-Taurus Samples.

### APPENDIX D

### SABLE AREA CORE SAMPLING DATA

.

Ronald C. Wells P.GEO, FGAC, Kamloops Geological Services Ltd

| 7          | ABLE 5: CA | SSIAR-TAU      | KUS PRO.       | JECT : SAE | ILE ZONE-      | CORE SAN   | APLING RE | SULTS           |          |
|------------|------------|----------------|----------------|------------|----------------|------------|-----------|-----------------|----------|
| SAMPLE No. | HOLE No.   | FROM           | TO             | LENGTH     | Au (ppb)       | Ag (ppm)   | As (ppm)  | Cu (ppm)        | Zn (ppm) |
| 22501      | 94.1       | 7.56           | 8.66           | 1.1        | 20             | 0.1        | 285       | 87              | 70       |
| 22502      | 94-1       | 62.48          | 64.31          | 1.83       | 140            | 0,1        | 165       | 71              | 115      |
| 22504      | 94-1       | 70.1           | 70.93          | 0.83       | 585            | 0.1        | 200       | 6               | 8        |
| 22505      | 94-2       | 39.2           | 40.23          | 1.03       | 15             | 0.1        | 2.5       | 127             | 96       |
| 22506      | 94-2       | 40.23<br>22 A  | 23.18          | 0.76       | <u>10</u><br>5 | 0.1        | 2.5       | 81              | 93       |
| 22508      | 94-5       | 23.16          | 23.77          | 0.61       | 10             | 0.1        | 30        | 63              | 69       |
| 22509      | 94-5       | 28.19          | 28.47          | 0.28       | 20             | 0.1        | 20        | 161             | 109      |
| 22510      | 94-8       | 13.22          | 13.96          | 0.74       | 120            | 0.1        | 115       | 84              | 104      |
| 22511      | 94-8       | 13.90          | 19.2           | 0.98       | 445            |            | 775       | 83<br>67        | 113      |
| 22513      | 94-9       | 13.72          | 14.17          | 0.45       | 195            | 0.1        | 725       | 72              | 75       |
| 22514      | 94-9       | 15.54          | 17.07          | 1.53       | 1580           | 3.9        | 1235      | 128             | 53       |
| 22515      | 94-9       | 17.07          | 18.59          | 1.52       | 705            | 0.1        | 450       | 71              | 67       |
| 22510      | 94-9       | 26.37          | 27.28          | 0.91       | 475            | 0.2        | 305       | 88              | 104      |
| 22518      | 94-12      | 49.07          | 49.53          | 0.46       | 5              | 0.1        | 105       | 43              | 120      |
| 22519      | 94-12      | 54.56          | 55.08          | 0.52       | 5              | 0.1        | 110       | 33              | 59       |
| 22520      | 94-14      | 22.1           | 22.56          | 0.46       | 180            | 0.1        | 145       | 80              | 152      |
| 22522      | 94-14      | 40.02          | 50.6           | 0.61       | 415            | 0.1        | 330       | 82              | 113      |
| 22523      | 94-14      | 50.6           | 51.36          | 0.76       | _5             | 0.1        | 120       | 48              | 122      |
| 22524      | 94-14      | 51.36          | 52.12          | 0.76       | 5              | 0.1        | 75        | 51              | 173      |
| 22525      | 94-14      | 59.74          | 59.13<br>60.33 | 0.61       | 285            | 0.1        | 60        | 74              | 129      |
| 22527      | 94-14      | 60.35          | 61.57          | 1.22       | 20             | 0.1        | 50        | 108             | 96       |
| 22528      | 94-15      | 16.76          | 17.37          | 0.61       | 5              | 0.1        | 40        | 90              | 138      |
| 22529      | 94-15      | 17.37          | 18.29          | 0.92       | 25             | 0.1        | 20        | 103             | 00       |
| 22531      | 94-15      | 20.42          | 21 49          | 1.07       | 2.5            | 0.1        | 55        | 87              | 94       |
| 22532      | 94-15      | 35.11          | 36.27          | 1.16       | 45             | 0.3        | 510       | 78              | 86       |
| 22533      | 94-14      | 62.79          | 63.4           | 0.61       | 1340           | 0.1        | 340       | 68              | 122      |
| 22534      | 94-15      | 36.27          | 37.19          | 0.92       | 155            | 0.1        | 775       | 28              | 88       |
| 22535      | 94-15      | 47.85          | 48 46          | 0.61       | 105            | 0.1        | 10        | 60              | 126      |
| 22537      | 94-16      | 18.29          | 18.9           | 0.61       | 35             | 0.1        | 20        | 80              | 116      |
| 22538      | 94-16      | 27.28          | 28.04          | 0.76       | 10             | 0.1        | 10        | 71              | 142      |
| 22539      | 94-16      | 29,57          | 30.48          | 0.91       | 210            | 0.1        | 265       | <u>54</u><br>72 | 117      |
| 22540      | 94-16      | 52.4           | 53.31          | 0.91       | 5              | 0.1        | 60        | 59              | 172      |
| 22542      | 94-16      | 53.31          | 53.95          | 0.64       | 2.5            | 0.1        | 80        | 97              | 83       |
| 22543      | 94-16      | 63.25          | 54.01          | 0.76       | 240            | 0.1        | 1160      | 69              | 92       |
| 22544      | 94-16      | 64,62          | 64.92<br>11.43 | 1.37       | 2.5            | 0.1        | 25        | 87              | 80       |
| 22546      | 94-17      | 11.43          | 12.65          | 1.22       | 5              | 0.1        | 2.5       | 85              | 93       |
| 22547      | 94-17      | 17.37          | 18.29          | 0.92       | 35             | 0.1        | 100       | 62              | 106      |
| 22548      | 94-17      | 29.72          | 30.48          | 0.76       | 410            | 0.1        | 80        | 84              | 173      |
| 22550      | 94-18      | 27.13          | 28.35          | 1.22       | 2.5            | 0.1        | 2.5       | 49              | 143      |
| 22551      | 94-18      | 28.96          | 30.63          | 1.67       | 55             | 0.1        | 20        | 82              | 145      |
| 22552      | 94-18      | 39.32          | 40.36          | 1.04       | 55             | 0.1        | 10        | 58              | 163      |
| 22553      | 94-18      | 44,35          | 45,42          | 1.0/       | 210            | 0.1        | 55        | 69              | 100      |
| 22555      | 94-18      | 61,26          | 63.7           | 2.44       | 70             | 0.1        | 515       | 63              | 92       |
| 22556      | 94-20      | 25.54          | 26.52          | 1          | 10             | 0.1        | 50        | 67              | 151      |
| 22557      | 94-20      | 34.35          | 36.27          | 1.92       | 5450           | 0.5        | 2465      | 17              | 29       |
| 22558      | 94-20      | 74.07          | 75.29          | 1.22       | 400            | 0.1        | 600       | 60              | 97       |
| 22560      | 94-20      | 82.45          | 83.82          | 1.37       | 275            | 0.1        | 295       | 94              | 115      |
| 22561      | 94-20      | 120.85         | 121.92         | 1.07       | 50             | 0.1        | 60        | 66              | 52       |
| 22562      | 94-20      | 121.92         | 122.9          | 0.98       | 120            | 0.1        | 15        | 48              | 43       |
| 22564      | 94-21      | 9.85           | 10.52          | 0.62       | 225            | 0.1        | 245       | 58              | 146      |
| 22565      | 94-21      | 44.81          | 46.02          | 1.21       | 260            | 0.1        | 90        | 92              | 125      |
| 22566      | 94-42      | 17.22          | 18.35          | 1,13       | 1480           | 0.2        | 575       | 49              | 126      |
| 22568      | 94-42      | 42.51          | 42.98          | 2 29       | 270            | 0.3        | 645       | 87              | 108      |
| 22569      | 94-42      | 49.99          | 50.6           | 0.61       | 2.5            | 0.1        | 5         | 87              | 122      |
| 22570      | 94-42      | 51.66          | 52.27          | 0,61       | 100            | 0.1        | 195       | 83              | 119      |
| 22571      | 94-42      | 62.03<br>63.86 | 64.62          | 0.76       | 2180           | 0.6        | 1580      | <u>40</u><br>62 | 110      |
| 22573      | 94-42      | 74.9           | 78.33          | 2.43       | 20             | 0.1        | 65        | 83              | 123      |
| 22574      | 94-42      | 92.35          | 93.57          | 1.22       | 480            | 0.1        | 760       | 82              | 94       |
| 22575      | 94-42      | 93.57          | 96.01          | 2.44       | 86             | 0.1        | 825       | 71              | 101      |
| 225/6      | 94-42      | 97.41          | 98.51          | 1.1        | 25             | 0.1<br>2 F | 65        | 73              | 88       |
| 22578      | 94-42      | 100,13         | 11.74          | 0.61       | 60             | 0.1        | 40        | 97              | 119      |
| 22579      | 94-43      | 4.88           | 5.97           | 1.09       | 1700           | 0.1        | 425       | 106             | 162      |
| 22580      | 94-43      | 7.01           | 7.92           | 0.91       | 20             | 0.1        | 15        | 56              | 167      |
| 22581      | 94-43      | 17.07          | 18.04          | 0.97       | 2720           | 0.1        | 110       | 42              | 186      |
| 22583      | 94-43      | 18.38          | 19.05          | 0.67       | 10             | 0.1        | 120       | _ 60            | 187      |
| 22584      | 94-43      | 19.05          | 19.81          | 0.76       | 605            | 0.3        | 795       | 138             | 192      |
| 22585      | 94-43      | 32.31          | 34.14          | 1.83       | 385            | 0.4        | 405       | <u> </u>        | 111      |
| L 44000    | 09-43      | 1 33.4         | 30.19          | 1.08       | 200            | U.4        | 2000      | 1               | 143      |

 $\bigcirc$ 

 $\bigcirc$ 

 $\bigcirc$ 

`

. 1

: ; ;

ł

:

## CERTIFICATE OF ASSAY AK 2003-256

NAVASOTA RESOURCES #207 141 VICTORIA STREET KAMLOOPS, BC V2C 125

30-Jul-03

#### ATTENTION: LORNE WARNER

No. of samples received: 86 Sample type: Core Samples submitted by: Lorne Warner

|          |       | Au           | Au     |                                       |
|----------|-------|--------------|--------|---------------------------------------|
| <u> </u> | Tag # | (g/t)        | (oz/t) |                                       |
| 2        | 22502 | 22.40        | 0.653  |                                       |
| 14       | 22514 | 1.58         | 0.046  |                                       |
| 16       | 22516 | 2.27         | 0.066  |                                       |
| 33       | 22533 | 1.34         | 0.039  | · · · · · · · · · · · · · · · · · · · |
| 57       | 22557 | 5.45         | 0.159  |                                       |
| 66       | 22566 | 1 <b>.48</b> | 0.043  |                                       |
| 71       | 22571 | 1.34         | 0.039  |                                       |
| 77       | 22577 | 2.18         | 0.064  |                                       |
| 79       | 22579 | 1.70         | 0.050  |                                       |
| 82       | 22582 | 2.72         | 0.079  | :                                     |
|          |       |              |        |                                       |
|          |       |              |        |                                       |
|          |       |              |        |                                       |
| QC DATA: |       |              |        |                                       |
| Chandand | e     |              |        |                                       |

Standard: PM168

2.12 0.062

JJ/kk XLS/03 30-Jul-03

.

~

\_\_\_\_\_

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

-

Phone: 250-573-5700 Fax : 250-573-4557

#### Values in ppm unless otherwise reported

| Et#. | Tag # | Au(ppb) | Ag   | Al %         | As   | Ba  | Bi  | Ca % | Cd   | Co | Cr  | Cu   | Fe % | La   | Mg % | Mn   | Mo | Na %  | Ni   | P        | Pb | Sb  | Sn  | Sr  | Π%     | U   | V   | W   | Y  | Zn  |
|------|-------|---------|------|--------------|------|-----|-----|------|------|----|-----|------|------|------|------|------|----|-------|------|----------|----|-----|-----|-----|--------|-----|-----|-----|----|-----|
| 1    | 22501 | 20      | <0.2 | 0.70         | 285  | 45  | <5  | 7.41 | <1   | 41 | 56  | 87   | 7.27 | 20   | 3.87 | 1475 | <1 | 0.03  | - 84 | 380      | <2 | -5  | <20 | 60  | <0.01  | <10 | 26  | <10 | 6  | 70  |
| 2    | 22502 | >1000   | 24.1 | 0.16         | 400  | 10  | <\$ | 0.84 | <1   | 5  | 132 | 982  | 1.35 | <10  | 0.24 | 162  | <1 | <0.01 | 10   | 140      | <2 | 10  | <20 | 10  | <0.01  | <10 | 8   | <10 | 1  | 168 |
| 3    | 22503 | 140     | <0.2 | 0.55         | 165  | 55  | <5  | 5.61 | <1   | 45 | 62  | - 71 | >10  | 30   | 2.74 | 1520 | <1 | 0.04  | 43   | 990      | <2 | <5  | <20 | 62  | <0.01  | <10 | 52  | <10 | 5  | 115 |
| 4    | 22504 | 585     | <0.2 | 0.02         | 200  | 5   | <5  | 0.72 | <1   | 2  | 172 | 6    | 0.62 | <10  | 0.21 | 151  | 2  | <0.01 | 8    | 40       | 2  | <5  | <20 | 8   | <0.01  | <10 | 3   | <10 | <1 | 8   |
| 5    | 22505 | 15      | <0.2 | 4.47         | <5   | 20  | <5  | 6.22 | <1   | 50 | 146 | 127  | 9.01 | 30   | 4.28 | 1611 | <1 | 0.03  | 69   | 560      | 6  | <5  | <20 | 41  | 0.24   | <10 | 232 | <10 | 27 | 96  |
|      |       |         |      |              |      |     |     |      |      |    |     |      |      |      |      |      |    |       |      |          | _  | _   |     | _   |        |     |     |     |    |     |
| 6    | 22506 | 10      | <0.2 | 3.49         | <5   | 35  | <5  | 8.56 | <1   | 51 | 155 | 109  | 6.22 | 20   | 3.08 | 1149 | <1 | 0.03  | 90   | 410      | 6  | 4   | <20 | 56  | <0.01  | <10 | 241 | <10 | 28 | 70  |
| 7    | 22507 | 5       | <0.2 | 4.32         | <5   | 185 | <5  | 5.55 | <1   | 55 | 86  | 81   | 8.49 | 30   | 3.74 | 1398 | <1 | 0.03  | 67   | 470      | 4  | <5  | <20 | 32  | 0.02   | <10 | 270 | <10 | 25 | 93  |
| 8    | 22508 | 10      | <0.2 | 2.79         | 30   | 20  | <5  | >10  | <1   | 39 | 72  | 63   | 6.87 | 20   | 3.37 | 2027 | <1 | 0.03  | 69   | 420      | 4  | <5  | <20 | 26  | <0.01  | <10 | 233 | <10 | 24 | 69  |
| 9    | 22509 | 20      | <0.2 | 3.67         | 20   | 40  | <   | 9.35 | <1   | 42 | 94  | 161  | >10  | 30   | 3.55 | 1852 | <1 | 0.02  | 74   | 590      | 2  | <5  | <20 | 68  | 0.01   | <10 | 271 | <10 | 11 | 109 |
| 10   | 22510 | 120     | <0.2 | 4.26         | 115  | 20  | <5  | 7.39 | <1   | 44 | 160 | 84   | 9.79 | 30   | 5.06 | 1636 | <1 | 0.05  | 82   | 420      | 2  | <   | <20 | 27  | <0.01  | <10 | 272 | <10 | 4  | 104 |
|      |       |         |      |              |      |     |     |      |      |    |     |      |      |      |      |      |    |       |      | <b>.</b> |    |     |     |     |        |     |     |     | _  |     |
| 11   | 22511 | 70      | <0.2 | 3.46         | 115  | 375 | <5  | 8.21 | <1   | 43 | 80  | 83   | >10  | 30   | 3.96 | 1781 | <1 | 0.03  | 59   | 610      | <2 | <   | <20 | 51  | < 0.01 | <10 | 239 | <10 | 6  | 113 |
| 12   | 22512 | 445     | <0.2 | 1.06         | 775  | 50  | <5  | B.74 | <1   | 45 | 51  | 67   | 6.87 | 20   | 2.73 | 1902 | <1 | 0.02  | 48   | 890      | <2 | <   | <20 | 91  | <0.01  | <10 | 106 | <10 | 6  | 104 |
| 13   | 22513 | 195     | <0.2 | 1.37         | 725  | 55  | <\$ | 9.33 | <1   | 41 | 58  | 72   | 8.45 | 30   | 3.52 | 1592 | <1 | 0.02  | 62   | 690      | <2 | <5  | <20 | 73  | <0.01  | <10 | 118 | <10 | 9  | 75  |
| 14   | 22514 | >1000   | 3.9  | 0.65         | 1235 | 50  | 4   | 8.60 | <1   | 47 | 55  | 128  | 8.01 | 20   | 3.65 | 1704 | <1 | 0.02  | 68   | 200      | <2 | 15  | <20 | 259 | < 0.01 | <10 | 60  | <10 | 6  | 53  |
| 15   | 22515 | 705     | <0.2 | 1.73         | 450  | 40  | <5  | 7.95 | <1   | 45 | 73  | - 71 | 9.13 | 30   | 4.08 | 1510 | <1 | 0.02  | 67   | 420      | <2 | <5  | <20 | 98  | ⊲0.01  | <10 | 90  | <10 | в  | 67  |
|      |       |         |      |              |      |     |     | •    |      |    |     |      |      |      |      |      |    |       | ·    |          |    |     | .00 |     |        |     |     |     |    |     |
| 16   | 22516 | >1000   | 0,4  | 0.38         | 195  | 35  | <5  | 6.77 | <1   | 43 | 48  | 80   | 9.59 | 20   | 3.34 | 14/5 | <1 | 0.03  | 52   | 0/0      | <2 | 9   | <20 | 30  | <0.01  | <10 | 36  | <10 | 5  | 85  |
| 17   | 22517 | 475     | <0.2 | 3.03         | 305  | 85  | <5  | 8.39 | <1   | 48 | 58  | 88   | 9,94 | 30   | 2.61 | 1532 | <1 | 0.02  | 53   | 11/0     | 4  | 9   | <20 | 12  | <0.01  | <10 | 236 | <10 | 32 | 104 |
| 18   | 22518 | 5       | <0.2 | 2.00         | 105  | 25  | <5  | 7.66 | <1   | 53 | 68  | 43   | >10  | 30   | 2.63 | 1//1 | <1 | 0.03  | 57   | 1070     | <2 | <   | <20 | 66  | <0.01  | <10 | 78  | <10 | 7  | 120 |
| 19   | 22519 | 5       | <0.2 | 1.98         | 110  | 60  | <5  | 5.12 | <1   | 45 | 107 | 33   | 8.88 | 20   | 1.85 | 1078 | <1 | 0.02  | 4/   | 950      | <2 | <5  | <20 | 61  | <0.01  | <10 | 35  | <10 | 7  | 59  |
| 20   | 22520 | 160     | <0.2 | 0.48         | 145  | 40  | <5  | 7.17 | · <1 | 42 | 55  | 60   | 8.12 | 20   | 3.95 | 1380 | <1 | 0.03  | 69   | 430      | ~2 | <2  | <20 | 48  | <0.01  | <10 | 31  | <10 | 6  | 70  |
|      |       |         |      |              |      |     |     |      |      |    |     |      |      | -    |      |      |    |       |      |          | _  | _   |     |     |        |     |     |     |    |     |
| 21   | 22521 | 20      | <0.2 | 2. <b>92</b> | 70   | 65  | <   | 5.51 | <1   | 59 | 67  | 78   | 8.07 | 30   | 2.04 | 1309 | ব  | 0.02  | 60   | 1240     | <2 | <5  | <20 | 57  | 0.03   | <10 | 369 | <10 | 20 | 152 |
| 22   | 22522 | 415     | ⊲0.2 | 2.72         | 330  | 75  | <5  | 7.36 | <1   | 47 | 72  | 82   | >10  | 30   | 3.09 | 2357 | <1 | 0.02  | 54   | 1250     | <2 | <5  | <20 | 156 | <0.01  | <10 | 246 | <10 | 8  | 113 |
| 23   | 22523 | 5       | <0.2 | 2.58         | 120  | 30  | <5  | 6.49 | <1   | 62 | 61  | 48   | >10  | 30   | 2.70 | 1364 | <1 | 0.02  | 60   | 1230     | <2 | <5  | <20 | 75  | <0.01  | <10 | 111 | <10 | 8  | 122 |
| 24   | 22524 | 5       | <0.2 | 3.52         | 75   | 35  | <5  | 7.05 | <1   | 57 | 75  | 51   | >10  | 50   | 3.28 | 1719 | <1 | 0.02  | 63   | 1240     | <2 | <\$ | <20 | 65  | <0.01  | <10 | 160 | <10 | 6  | 173 |
| 25   | 22525 | 285     | <0.2 | 1.24         | 170  | 25  | <5  | 5.92 | <1   | 49 | 57  | 82   | >10  | 30   | 2.88 | 1646 | <1 | 0.02  | 44   | 1050     | 2  | <5  | <20 | 49  | <0.01  | <10 | 55  | <10 | 5  | 129 |
| 20   |       |         |      |              |      |     |     |      |      |    |     |      |      | Page | 1    |      |    |       |      |          |    |     |     |     |        |     |     |     |    |     |

ICP CERTIFICATE OF ANALYSIS AK 2003-256

NAVASOTA RESOURCES #207 141 VICTORIA STREET KAMLOOPS, BC V2C 125

#### ATTENTION: LORNE WARNER

.

#### No. of samples received. 66 Sample type: Core Samples submitted by: Lorne Warner

NAVASOTA RESOURCES AK3-256

| Et#. | Taq # | Au(aob) | Aa   | AI % | As   | Ва  | 8)     | Ca % | Cđ | Co | Cr  | Сu  | Fe % | La  | Mg % | Mo           | Мо  | Na %  | Ni   | Р    | Pb | Sb | Sn  | Sr T               | ï %        | υ   | v   | w   | γ  | Za   |
|------|-------|---------|------|------|------|-----|--------|------|----|----|-----|-----|------|-----|------|--------------|-----|-------|------|------|----|----|-----|--------------------|------------|-----|-----|-----|----|------|
| 26   | 22526 | 5       | <0.2 | 1.84 | 60   | 30  | ~<br>5 | 5.65 | <1 | 46 | 84  | 74  | >10  | 30  | 3.45 | 1472         | <1  | 0.02  | 51   | 920  | <2 | <5 | <20 | 34 <0              | .01        | <10 | 105 | <10 | 5  | 135  |
| 27   | 22527 | 20      | <0.2 | 3.42 | 50   | 30  | <      | 6.97 | <1 | 48 | 140 | 108 | 9.76 | 30  | 4.58 | 1415         | <1  | 0.02  | 61   | 400  | 2  | <5 | <20 | 66 <0              | .01        | <10 | 173 | <10 | 7  | 98   |
| 28   | 22528 | 5       | <0.2 | 3.41 | 40   | 30  | <5     | 7.46 | <1 | 49 | 72  | 90  | >10  | 30  | 2.99 | 1434         | <1  | 0.02  | 52   | 1150 | 4  | <5 | <20 | 45 0.              | .01        | <10 | 323 | <10 | 10 | 138  |
| 29   | 22529 | 5       | <0.2 | 4.63 | 5    | 15  | <5     | 8.25 | <1 | 49 | 101 | 103 | 9.97 | 30  | 4.40 | 1518         | <1  | 0.02  | 69   | 370  | 8  | <5 | <20 | 77 0               | .01        | <10 | 337 | <10 | 6  | 100  |
| 30   | 22530 | <5      | <0.2 | 3.69 | Z0   | 20  | <5     | 7.77 | <1 | 49 | 92  | 91  | >10  | 30  | 4.65 | 1639         | <1  | 0.04  | 67   | 380  | 2  | <5 | <20 | 75 <0              | .01        | <10 | 309 | <10 | 5  | 99   |
|      |       |         |      |      |      |     |        |      |    |    |     |     |      |     |      |              |     |       |      |      |    |    |     |                    |            |     |     |     |    |      |
| 31   | 22531 | <5      | <0.2 | 3.16 | 55   | 35  | <5     | 9.49 | <1 | 44 | 152 | 87  | 8.55 | 20  | 4.14 | 1666         | <1  | 0.03  | - 77 | 360  | 8  | <5 | <20 | 39 <0.             | .01        | <10 | 257 | <10 | 11 | 94   |
| 32   | 22532 | 45      | 0.3  | 1.96 | 510  | 50  | <5     | >10  | <1 | 42 | 72  | 78  | >10  | 30  | 3.02 | 1555         | <1  | 0.02  | 63   | 690  | 4  | <5 | <20 | 34 <0.             | .01        | <10 | 129 | 10  | 11 | 86   |
| 33   | 22533 | >1000   | <0.2 | 2.30 | 340  | 20  | <5     | 8.59 | <1 | 52 | 67  | 68  | >10  | 30  | 2.61 | 1899         | <1  | 0.01  | 51   | 1050 | <2 | <5 | <20 | <b>64 &lt;0</b> .  | .01        | <10 | 274 | <10 | 9  | 122  |
| 34   | 22534 | 155     | <0.2 | 1.17 | 775  | 35  | <5     | 6.53 | <1 | 53 | 60  | 28  | >10  | 30  | 2.62 | 1630         | <1  | 0.01  | 47   | 1130 | <2 | <5 | <20 | 102 <0.            | .01        | <10 | 72  | <10 | 7  | - 68 |
| 35   | 22535 | 105     | <0.2 | 1.77 | 70   | 25  | <5     | 7.35 | <1 | 39 | 61  | 50  | >10  | 30  | 2.69 | 1717         | <1  | 0.02  | 48   | 1020 | <2 | <5 | <20 | 39 <0.             | .01 ·      | <10 | 135 | <10 | 7  | 133  |
|      |       |         |      |      |      |     |        |      |    |    |     |     |      |     |      |              |     |       |      |      |    |    |     |                    |            |     |     |     |    |      |
| 36   | 22536 | 10      | <0.2 | 2.05 | 10   | 30  | <5     | 6.61 | <1 | 37 | 65  | 50  | >10  | 30  | 2.46 | 1785         | <1  | 0.02  | 39   | 1110 | <2 | <5 | <20 | 22 <0.             | .01 ·      | <10 | 167 | <10 | 8  | 126  |
| 37   | 22537 | 35      | <0.2 | 1.47 | 20   | 45  | ক      | 5.57 | <1 | 51 | 105 | 80  | >10  | 30  | 2.48 | 1883         | <1  | 0.01  | 62   | 530  | <2 | <5 | <20 | <1 <0.             | .01 ·      | <10 | 316 | <10 | 12 | 116  |
| 38   | 22538 | 10      | <0.2 | 3.67 | 10   | 20  | ব      | 7.05 | <1 | 53 | 80  | 71  | >10  | 40  | 3.35 | 176 <b>8</b> | <1  | 0.02  | 51   | 1040 | <2 | <5 | <20 | 32 <0.             | .01 ·      | <10 | 336 | <10 | 7  | 142  |
| 39   | 22539 | 210     | <0.2 | 1.35 | 265  | 40  | <5     | 7.44 | <1 | 51 | 63  | 54  | >10  | 30  | 3.06 | 1682         | <1  | 0.04  | 52   | 1140 | <2 | <5 | <20 | 54 <0.             | .01 •      | <10 | 75  | <10 | 11 | 117  |
| 40   | 22540 | 25      | <0.2 | 3.97 | 90   | 20  | <5     | 7.94 | <1 | 53 | 84  | 72  | >10  | 40  | 2.98 | 1616         | <1  | 0.01  | 55   | 1070 | 6  | <5 | <20 | 22 0.              | .04        | <10 | 411 | <10 | 18 | 145  |
|      |       |         |      |      |      |     |        |      |    |    |     |     |      |     |      |              |     |       |      |      |    |    |     |                    |            |     |     |     |    |      |
| 41   | 22541 | 5       | <0.2 | 2.86 | 60   | 25  | <5     | 5.84 | <1 | 48 | 93  | 59  | >10  | 30  | 2.51 | 1278         | <1  | 0.01  | 57   | 800  | 4  | <5 | <20 | <1 0.              | .01 •      | <10 | 332 | <10 | 9  | 172  |
| 42   | 22542 | <5      | <0.2 | 2.89 | 80   | 20  | <5     | 6.90 | <1 | 45 | 94  | 97  | 8.58 | 30  | 4.28 | 1437         | <1  | 0.02  | 67   | 430  | <2 | <5 | <20 | 42 <0.             | .01 •      | <10 | 147 | <10 | 8  | 83   |
| 43   | 22543 | 240     | <0.2 | 1.27 | 1160 | 25  | <5     | 7.41 | <1 | 43 | 49  | 69  | >10  | 30  | 2.54 | 1350         | <1  | 0.02  | 46   | 1020 | <2 | <5 | <20 | 61 <0.             | .01 •      | <10 | 35  | <10 | 6  | 92   |
| 44   | 22544 | 190     | <0.2 | 1.50 | 860  | 45  | <5     | 6.38 | <1 | 48 | 45  | 54  | >10  | 30  | 2.51 | 1290         | <1  | 0.01  | 48   | 1260 | <2 | <5 | <20 | 107 <0.            | .01 •      | <10 | 32  | <10 | 8  | 139  |
| 45   | 22545 | ৎ       | <0.2 | 2.26 | <5   | 260 | <5     | 2.63 | <1 | 55 | 76  | 67  | 6.87 | 20  | 1.84 | 1112         | 9   | 0.04  | 45   | 840  | 12 | <5 | <20 | <1 0.              | .61 <      | <10 | <1  | <10 | 28 | 80   |
|      |       |         |      |      |      |     |        | •    |    |    |     |     |      |     |      |              | _   |       |      |      |    | _  |     |                    |            |     |     |     |    |      |
| 46   | 22546 | 5       | <0.2 | 2.59 | <5   | 185 | <5     | 3.38 | <1 | 55 | 81  | 85  | 7.76 | 20  | 2.13 | 1199         | 7   | 0.04  | 48   | 780  | 10 | <5 | <20 | <1 0.              | .77 •      | <10 | 4   | <10 | 31 | 93   |
| 47   | 22547 | 35      | <0.2 | 1.69 | 100  | 65  | <5     | 7.92 | <1 | 48 | 70  | 62  | 9.41 | 30  | 2.77 | 1759         | <1  | 0.01  | 60   | 740  | <2 | <5 | <20 | <1 0.              | .02 <      | <10 | 207 | <10 | 7  | 106  |
| 48   | 22548 | 410     | <0.2 | 3.39 | 80   | 40  | ব      | 5.71 | <1 | 59 | 70  | 84  | >10  | 40  | 2.74 | 1269         | <1  | 0.02  | 56   | 1020 | <2 | <5 | <20 | <b>66 &lt;0</b> .  | .01 <      | <10 | 308 | <10 | 8  | 173  |
| 49   | 22549 | 10      | <0.2 | 4.06 | 5    | 30  | 4      | 5.36 | <1 | 52 | 91  | /9  | >10  | 30  | 3.20 | 1512         | <1  | 0.01  | 63   | 740  | 4  | <5 | <20 | 15 0.0             | 03 <       | <10 | 357 | <10 | 9  | 126  |
| 50   | 22550 | <5      | <0.2 | 2.40 | ব    | 20  | <5     | 1.58 | <1 | 42 | 86  | 49  | >10  | 30  | 1.66 | 1729         | <1  | <0.01 | 34   | 920  | <2 | <5 | <20 | 1 0,0              | 01 <       | <10 | 448 | <10 | 11 | 143  |
|      |       |         |      |      |      |     | _      |      |    |    |     |     | . 40 |     |      | 4044         | - 4 | -0.04 |      | 4450 | -  |    |     |                    | <b>-</b> . |     |     |     |    |      |
| 51   | 22551 | 55      | <0.2 | 2.54 | 20   | 60  | <5     | 1.31 | <1 | 51 | 75  | 82  | >10  | <10 | 1.78 | 1611         | <1  | <0.01 | 39   | 1150 | 2  | <5 | <20 | 4 0.               | 01 <       | <10 | 421 | <10 | 11 | 145  |
| 52   | 22552 | 55      | <0.2 | 3.62 | 10   | 75  | ্      | 6.66 | <1 | 45 | 85  | 58  | >10  | <10 | 3.41 | 1637         | <1  | 0.02  | 53   | 11/0 | 14 | ৎস | <20 | 107 0.             | 02 <       | <10 | 398 | <10 | 7  | 163  |
| 53   | 22553 | 210     | <0.2 | 3.49 | 55   | 70  | <      | 6.96 | <1 | 29 | 75  | 69  | >10  | <10 | 3.43 | 1653         | 1   | <0.01 | 29   | 1230 | 12 | <5 | <20 | 81 <0.0            | 01 <       | <10 | 288 | <10 | 5  | 160  |
| 54   | 22554 | 635     | <0.2 | 3.71 | 885  | 35  | <5     | 5.78 | <1 | 50 | /9  | 65  | >10  | 50  | 3.04 | 1452         | <1  | 0.02  | 55   | 1130 | <2 | <5 | <20 | B4 <0.0            | 01 <       | <10 | 247 | <10 | 9  | 124  |
| 55   | 22555 | 70      | <0.2 | 2.04 | 515  | 35  | <5     | 8.28 | <1 | 47 | 56  | 63  | >10  | 30  | 3.48 | 1417         | <1  | 0.02  | 69   | 710  | <2 | <5 | <20 | 67 <0.0            | 01 <       | <10 | 35  | <10 | 7  | 92   |
|      |       |         |      |      |      |     |        |      |    |    |     |     |      |     |      |              |     |       |      |      |    |    |     |                    |            |     |     |     |    |      |
| 56   | 22556 | 10      | <0.2 | 3.34 | 50   | 20  | <5     | 6.61 | <1 | 51 | 79  | 67  | >10  | 40  | 3.18 | 1693         | <1  | 0.02  | 54   | 1130 | 4  | <5 | <20 | 8 0.0              | 02 <       | <10 | 318 | <10 | 8  | 151  |
| 57   | 22557 | >1000   | 0.5  | 0,12 | 2465 | 55  | <5     | 8.35 | <1 | 27 | 80  | 17  | 7.80 | <10 | 2.23 | 1240         | <1  | <0.01 | 42   | 780  | 2  | <5 | <20 | 173 <0.0           | 01 <       | <10 | 18  | <10 | 3  | 29   |
| 58   | 22558 | 400     | <0.2 | 0.24 | 400  | 45  | ব      | 8.97 | <1 | 43 | 54  | 66  | 7.75 | 20  | 3.65 | 1385         | <1  | 0.01  | 77   | 310  | <2 | <5 | <20 | <b>65 &lt;0</b> .0 | 01 <       | <10 | 21  | <10 | 6  | 61   |
| 59   | 22559 | 435     | <0.2 | 0.24 | 600  | 40  | <5     | 6.66 | <1 | 45 | 49  | 60  | 9.01 | 20  | 3.45 | 1390         | <1  | 0.02  | 67   | 540  | <2 | <5 | <20 | 31 <0.0            | 01 <       | :10 | 26  | <10 | 6  | 97   |
| 60   | 22560 | 275     | <0.2 | 0.38 | 295  | 45  | <5     | 7.87 | <1 | 41 | 72  | 94  | 8.29 | 20  | 3.21 | 1507         | <1  | 0.02  | 62   | 560  | <2 | <5 | <20 | 42 <0.0            | 01 <       | <10 | 36  | <10 | 6  | 115  |
|      |       |         |      |      |      |     |        |      |    |    |     |     |      |     |      |              |     |       |      |      |    |    |     |                    |            |     |     |     |    |      |

Page 2

NAVASOTA RESOURCES AK3-256

----

\_ \_ \_ \_ \_ \_

C

| Et #. | Tag #  | Au(ppb) | Ag                                                                                                                                                                                                                                                                                                                                                              | A! % | <u>As</u> | 8a  | Bi                                      | Ca % | Cd  | Co      | Cr  | Cu  | Fe % | La  | Mg %  | Mn   | Mo | Na %_  | Ni   | P    | Pb         | Sb | Sn  | Sr Ti%     | U   | v   | w   | Y   | Zn  |
|-------|--------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|-----|-----------------------------------------|------|-----|---------|-----|-----|------|-----|-------|------|----|--------|------|------|------------|----|-----|------------|-----|-----|-----|-----|-----|
| 61    | 22561  | 50      | <0.2                                                                                                                                                                                                                                                                                                                                                            | 0.59 | 60        | 85  | <5                                      | 2.06 | <1  | 9       | 71  | 66  | 3.13 | <10 | 0.82  | 908  | <1 | < 0.01 | 29   | 120  | 4          | 5  | <20 | 36 < 0.01  | <10 | 40  | <10 | 5   | 52  |
| 62    | 22562  | 120     | <0.2                                                                                                                                                                                                                                                                                                                                                            | 0.38 | 15        | 170 | <5                                      | 0.45 | <1  | 7       | 76  | 46  | 1.46 | <10 | 0.36  | 287  | <1 | <0.01  | 21   | 110  | 8          | <5 | <20 | 64 < 0.01  | <10 | 19  | <10 | 2   | 43  |
| 63    | 22563  | 5       | <0.2                                                                                                                                                                                                                                                                                                                                                            | 4.34 | 55        | 85  | <5                                      | 8.38 | <1  | 47      | 100 | 86  | >10  | <10 | 3.93  | 1521 | <1 | 0.01   | 68   | 800  | 20         | <5 | <20 | <1 0.02    | <10 | 315 | <10 | 6   | 119 |
| 64    | 22564  | 225     | <0.2                                                                                                                                                                                                                                                                                                                                                            | 3.45 | 245       | 70  | <5                                      | 6.09 | <1  | 51      | 88  | 58  | >10  | <10 | 3,93  | 1435 | <1 | <0.01  | 65   | 850  | 16         | <5 | <20 | 26 0.02    | <10 | 262 | <10 | 3   | 146 |
| 65    | 22565  | 260     | <0.2                                                                                                                                                                                                                                                                                                                                                            | 1.69 | 90        | 90  | <5                                      | 5.38 | <1  | 47      | 74  | 92  | >10  | <10 | 2.81  | 2226 | <1 | <0.01  | 52   | 830  | <2         | <5 | <20 | 25 0.01    | <10 | 299 | <10 | 7   | 125 |
|       |        |         |                                                                                                                                                                                                                                                                                                                                                                 |      |           |     | _                                       | _    |     |         |     |     |      |     |       |      |    | _      |      |      | _          | _  |     |            |     |     |     |     |     |
| 66    | 22566  | >1000   | 0.2                                                                                                                                                                                                                                                                                                                                                             | 1.36 | 575       | 75  | <5                                      | 6.49 | <1  | 49      | 68  | 49  | >10  | <10 | 2.75  | 2137 | <1 | 0.02   | 47   | 1050 | <2         | <5 | <20 | 85 0.01    | <10 | 166 | <10 | 4   | 126 |
| 67    | 22567  | 210     | 0.3                                                                                                                                                                                                                                                                                                                                                             | 3.73 | 275       | 60  | <5                                      | 7.79 | <1  | 51      | 82  | 80  | >10  | <10 | 3.63  | 1566 | <1 | 0.02   | 55   | 910  | 16         | <5 | <20 | 23 0,09    | <10 | 288 | <10 | 12  | 118 |
| 68    | 22568  | 270     | 0.2                                                                                                                                                                                                                                                                                                                                                             | 0.51 | 645       | 65  | <5                                      | 5.86 | <1  | 49      | 56  | 87  | >10  | <10 | 3.85  | 1274 | <1 | 0.03   | 51   | 770  | <2         | 5  | <20 | 30 <0.01   | <10 | 48  | <10 | 4   | 108 |
| 69    | 22569  | <5      | <0.2                                                                                                                                                                                                                                                                                                                                                            | 4.39 | 5         | 65  | <5                                      | 8.03 | <1  | 50      | 81  | 87  | >10  | <10 | 3.78  | 1631 | <1 | 0.02   | 61   | 920  | 22         | <5 | <20 | 47 0.09    | <10 | 373 | <10 | 12  | 122 |
| 70    | 22570  | 100     | <0,2                                                                                                                                                                                                                                                                                                                                                            | 3.73 | 195       | 55  | <5                                      | 8.28 | <1  | 50      | 73  | 63  | >10  | <10 | 3.64  | 1658 | <1 | 0.01   | 57   | 930  | 20         | <5 | <20 | 78 0.05    | <10 | 309 | <10 | 9   | 119 |
|       |        | - 4000  |                                                                                                                                                                                                                                                                                                                                                                 | 4 77 | 4500      |     | -6                                      | 0.00 | - 4 | 50      |     | 40  | . 10 | .10 | 0.00  | 4050 |    | -0.01  | 60   | 600  |            | -5 | ~~~ |            |     |     |     |     |     |
| 1     | 225/1  | >1000   | 0.6                                                                                                                                                                                                                                                                                                                                                             | 1.77 | 1560      | 20  | <2                                      | 9.89 | < [ | 53      | 50  | 40  | >10  | <10 | 2.90  | 1052 | <1 | <0.01  | 02   | 020  | 40         | <5 | <20 | 876 0.04   | <10 | 101 | <10 | 19  | 63  |
| 12    | 22572  | 780     | 0.2                                                                                                                                                                                                                                                                                                                                                             | 1.62 | 820       | /5  | <5                                      | 1.93 | <1  | 47      | 20  | 62  | >10  | <10 | 3.20  | 16// | <1 | 0.01   | 52   | 850  | 6          | <  | <20 | 138 <0.01  | <10 | 116 | <10 | 9   | 110 |
| 73    | 22573  | 20      | <0.2                                                                                                                                                                                                                                                                                                                                                            | 2.24 | 65        | 50  | <5                                      | 7.94 | <1  | 54      | 64  | 83  | >10  | <10 | 3.64  | 1641 | <1 | 0.02   | 63   | 950  | 8          | <5 | <20 | <1 <0.01   | <10 | 140 | <10 | 6   | 123 |
| 74    | 22574  | 460     | <0.2                                                                                                                                                                                                                                                                                                                                                            | 1.86 | 760       | 70  | <5                                      | 9.20 | <1  | 51      | 81  | 82  | 8.67 | <10 | 2.94  | 1779 | <1 | 0.01   | 80   | 590  | 10         | <5 | <20 | 23 <0.01   | <10 | 149 | <10 | 4   | 94  |
| 75    | 22575  | 85      | <0.2                                                                                                                                                                                                                                                                                                                                                            | 1.34 | 825       | 65  | <5                                      | 8.12 | <1  | 52      | 63  | 71  | 9.03 | <10 | 2.90  | 1475 | <1 | 0.01   | 64   | 640  | 6          | <5 | <20 | 3 <0.01    | <10 | 75  | <10 | 4   | 101 |
| 76    | 03576  | 25      | -0.2                                                                                                                                                                                                                                                                                                                                                            | 2 47 | 70        | 10  | -6                                      | 7 10 | ~1  | 62      | 00  | 74  | 0.31 | ~10 | 2.24  | 1721 | -1 | 0.02   | 60   | 500  |            | ~5 | ~20 | 77 -0 04   | ~10 |     | -40 | •   | •   |
| 77    | 22577  | >1000   | -0.£                                                                                                                                                                                                                                                                                                                                                            | 2.17 | 65        | 10  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 7.10 | -1  | 63      | 00  | 73  | 0.36 | ~10 | 3 73  | 4744 | 1  | 0.02   | 71   | 400  | Å          | ~5 | -20 | 27 -0.01   | <10 | 104 | ~10 | 0   | 80  |
| 79    | 22311  | -1000   | 2.0                                                                                                                                                                                                                                                                                                                                                             | 4.20 | 40        | -5  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 9.50 |     | 62      | 136 | 07  | ~10  | ~10 | 3.63  | 1600 | -1 | 0.02   | 92   | 400  | 14         | ~6 | ~20 | 21 \0.01   | ~10 | 100 | 510 | 0   | 88  |
| 70    | 223/0  | - 1000  | NU.2                                                                                                                                                                                                                                                                                                                                                            | 4.30 | 40        | 45  | ~0                                      | 0.00 |     | 54      | 130 | 400 | - 10 | -10 | 3.05  | 4004 |    | 0.02   | 63   | 430  | 14         | -0 | ~20 | <1 U.30    | <10 | 306 | <10 | 16  | 119 |
| 79    | 225/9  | >1000   | <u.z< td=""><td>1.77</td><td>425</td><td>15</td><td>9</td><td>0.90</td><td>&lt;1</td><td>51</td><td>02</td><td>100</td><td>&gt;10</td><td>&lt;10</td><td>2.20</td><td>1804</td><td></td><td>0.02</td><td>- 34</td><td>820</td><td>4</td><td>5</td><td>&lt;20</td><td>55 &lt;0.01</td><td>&lt;10</td><td>102</td><td>&lt;10</td><td>8</td><td>162</td></u.z<>    | 1.77 | 425       | 15  | 9                                       | 0.90 | <1  | 51      | 02  | 100 | >10  | <10 | 2.20  | 1804 |    | 0.02   | - 34 | 820  | 4          | 5  | <20 | 55 <0.01   | <10 | 102 | <10 | 8   | 162 |
| 80    | 22580  | 20      | <u.z< td=""><td>2.13</td><td>15</td><td>&lt;0</td><td>9</td><td>1.25</td><td>&lt;1</td><td>33</td><td>90</td><td>50</td><td>&gt;10</td><td>&lt;10</td><td>2.70</td><td>2311</td><td>&lt;1</td><td>0.02</td><td>33</td><td>1010</td><td>10</td><td>\$</td><td>&lt;20</td><td>30 0.02</td><td>&lt;10</td><td>391</td><td>&lt;10</td><td>9</td><td>167</td></u.z<> | 2.13 | 15        | <0  | 9                                       | 1.25 | <1  | 33      | 90  | 50  | >10  | <10 | 2.70  | 2311 | <1 | 0.02   | 33   | 1010 | 10         | \$ | <20 | 30 0.02    | <10 | 391 | <10 | 9   | 167 |
| 81    | 22581  | 100     | <0.2                                                                                                                                                                                                                                                                                                                                                            | 2.24 | 110       | 10  | <5                                      | 7.29 | <1  | 59      | 88  | 50  | >10  | <10 | 2.46  | 2088 | <1 | 0.01   | 70   | 880  | 10         | <5 | <20 | 53 0.01    | <10 | 310 | <10 | 12  | 186 |
| 82    | 22582  | >1000   | <0.2                                                                                                                                                                                                                                                                                                                                                            | 0.29 | >10000    | 20  | <5                                      | 9.61 | <1  | 56      | 78  | 42  | >10  | <10 | 2.28  | 1754 | <1 | 0.02   | 68   | 2680 | ~2         | <5 | <20 | 146 < 0.01 | <10 | 40  | <10 | 14  | 07  |
| 83    | 22583  | 10      | <02                                                                                                                                                                                                                                                                                                                                                             | 2 19 | 120       | <5  | <5                                      | 8.71 | <1  | 66      | 96  | 60  | >10  | <10 | 2.66  | 2079 | <1 | 0.02   | 70   | 770  | 10         | <5 | <20 | 36 0.02    | <10 | 286 | <10 | 10  | 187 |
| 84    | 22584  | 605     | 03                                                                                                                                                                                                                                                                                                                                                              | 2.56 | 795       | <5  | <5                                      | 7 29 | <1  | 60      | 99  | 136 | >10  | <10 | 2 47  | 1963 | <1 | 0.01   | 71   | 970  | 12         | <5 | <20 | 41 0.02    | <10 | 337 | <10 | 10  | 407 |
| 85    | 22585  | 365     | 0.0                                                                                                                                                                                                                                                                                                                                                             | 1.45 | 405       | 6   | <5                                      | 8 76 | <1  | 49      | 69  | .56 | >10  | <10 | 3 4 1 | 2704 | <1 | <0.01  | 69   | 530  | A          | 5  | <20 | 86 <0.01   | ~10 | 06  | ~10 | , U | 176 |
| 86    | 22586  | 255     | 0.4                                                                                                                                                                                                                                                                                                                                                             | 1.82 | 2060      | 15  | ~5                                      | 9.03 | <1  | 53      | 76  | 60  | >10  | <10 | 3.04  | 2006 | d  | 0.01   | 63   | 800  | 12         | <5 | <20 | 29 0.01    | <10 | 182 | <10 | 11  | 442 |
| 50    | 22.300 |         | 0.4                                                                                                                                                                                                                                                                                                                                                             | 1.02 |           |     |                                         | 0.00 | - 4 | <i></i> |     |     | . 10 | -10 | 0.04  | ~500 | •• | 4.51   |      |      | <i>، د</i> | .0 | -20 | 23 0.01    | -10 | 102 | ~10 |     | 143 |
|       |        |         |                                                                                                                                                                                                                                                                                                                                                                 |      | ~         |     |                                         |      |     |         |     |     |      |     |       |      |    |        |      |      |            |    |     |            |     |     |     |     |     |

Page 3

- -----

.

------

-----

.....

٠

#### NAVASOTA RESOURCES AK3-256

.

and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s

and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s

-----

----

-----

| Et #.   | Tag # | Au(ppb) | Ag   | AI % | As   | Ba  | Bi | Ca % | Cd | Co   | Cr  | Cu | Fe % | La  | Mg % | Mn   | Mo | Na %  | Ni | <u>P</u> | Pb | Sb | Sл  | Sr  | Ti %  | <u> </u> | V   | W   | Y  | Zn  |
|---------|-------|---------|------|------|------|-----|----|------|----|------|-----|----|------|-----|------|------|----|-------|----|----------|----|----|-----|-----|-------|----------|-----|-----|----|-----|
| QC DA   | A:    |         |      |      |      |     |    |      |    |      |     |    |      |     |      |      |    |       |    |          |    |    |     |     |       |          |     |     |    |     |
| Repeat  | :     |         |      |      |      |     |    |      |    |      |     |    |      |     |      |      |    |       |    |          |    |    |     |     |       |          |     |     |    |     |
| 1       | 22501 | 20      | <0.2 | 0.65 | 285  | 45  | <5 | 7.70 | <1 | 43   | 57  | 81 | 7.46 | 20  | 3.79 | 1521 | <1 | 0.03  | 84 | 390      | <2 | <5 | <20 | 48  | <0.01 | <10      | 27  | <10 | 6  | 73  |
| 10      | 22510 | 110     | <0.2 | 4.21 | 105  | 20  | <5 | 7.35 | <1 | 41   | 179 | 78 | 9.76 | 30  | 5.01 | 1637 | <1 | 0.05  | 83 | 430      | 2  | <5 | <20 | 27  | <0.01 | <10      | 270 | <10 | 5  | 103 |
| 19      | 22519 | 5       | <0.2 | 1.94 | 105  | 60  | <5 | 5.16 | <1 | 47   | 107 | 32 | 8.93 | 20  | 1.83 | 1086 | <1 | 0.02  | 50 | 920      | <2 | <5 | <20 | 57  | <0.01 | <10      | 34  | <10 | 7  | 60  |
| 36      | 22536 | 10      | <0.2 | 2.09 | 10   | 25  | <5 | 6.61 | <1 | 37   | 66  | 53 | >10  | 30  | 2.49 | 1790 | <1 | 0.02  | 40 | 1150     | <2 | <5 | <20 | 24  | <0.01 | <10      | 169 | <10 | 7  | 126 |
| 54      | 22554 | 600     | <0.2 | 3.64 | 890  | 35  | <5 | 5.87 | <1 | 52   | 76  | 64 | >10  | 50  | 3.19 | 1457 | <1 | 0.01  | 58 | 1220     | 2  | <5 | <20 | 80  | <0.01 | <10      | 246 | <10 | 5  | 126 |
| 71      | 22571 | >1000   | 0.6  | 1.81 | 1590 | 20  | <5 | >10  | <1 | 56   | 62  | 39 | >10  | <10 | 2.85 | 1692 | <1 | <0.01 | 65 | 530      | 50 | <5 | <20 | 943 | 0.05  | <10      | 114 | <10 | 24 | 64  |
| Resplit | :     |         |      |      |      |     |    |      |    |      |     |    |      |     |      |      |    |       |    |          |    |    |     |     |       |          |     |     |    |     |
| 1       | 22501 | 15      | <0.2 | 0.65 | 305  | 50  | <5 | 8.02 | <1 | - 44 | 62  | 77 | 7.65 | 20  | 3.67 | 1579 | <1 | 0.03  | 68 | 400      | 2  | <5 | <20 | 36  | <0.01 | <10      | 28  | <10 | 7  | 83  |
| 36      | 22536 | 10      | <0.2 | 2.07 | 15   | 30  | <5 | 6.74 | <1 | 38   | 65  | 54 | >10  | <10 | 2.54 | 1781 | <1 | 0.01  | 38 | 1220     | 6  | <5 | <20 | 22  | <0.01 | <10      | 159 | <10 | 5  | 135 |
| 71      | 22571 | >1000   | 0.6  | 1.72 | 1675 | 20  | <5 | >10  | <1 | 55   | 61  | 35 | >10  | <10 | 2.69 | 1936 | <1 | <0.01 | 70 | 550      | 52 | <5 | <20 | 855 | 0.05  | <10      | 112 | <10 | 24 | 67  |
| Standa  | nd:   |         |      |      |      |     |    |      |    |      |     |    |      |     |      |      |    |       |    |          |    |    |     |     |       |          |     |     |    |     |
| GEO'03  |       | 130     | 1.5  | 1.58 | 55   | 140 | 5  | 1.86 | <1 | 20   | 61  | 89 | 3.84 | <10 | 0.98 | 700  | <1 | 0.03  | 30 | 730      | 96 | <5 | <20 | 45  | 0.11  | <10      | 72  | <10 | 11 | 74  |
| GEO'03  |       | 130     | 1.6  | 1.64 | 60   | 140 | <5 | 1.79 | <1 | 21   | 64  | 93 | 3.85 | <10 | 0.99 | 710  | <1 | 0.02  | 32 | 730      | 26 | <5 | <20 | 46  | 0.10  | <10      | 74  | <10 | 10 | 76  |
| GEO'03  |       | 130     | 1.5  | 1.57 | 55   | 145 | <5 | 1.83 | <1 | 21   | 61  | 86 | 3.87 | <10 | 0.94 | 700  | <1 | 0.02  | 31 | 750      | 38 | <5 | <20 | 45  | 0.10  | <10      | 74  | <10 | 11 | 75  |

JJ/kk df/256 XLS/D3

ECO TECH LABORATORY LTD. Juita Jeakopse BC Certified Assayer

.

2003 DRILL CORE SAMPLES – NAVASOTA RESOURCES LTD. – TAURUS PROJECT DH 94-1 ļ

| 22501  | SCQP         | fg SIL 1-2% fg-mg Py, few Ank seams <20° c/a                                                                       |
|--------|--------------|--------------------------------------------------------------------------------------------------------------------|
| 22502  | QV (in SCQP) | white, barren; 45° c/a 4 cm wide bx zone, cg, angular QV frags                                                     |
| 22503  | СВ           | 1-2% vfg diss Py, rare cg Py, few Q veinlets; NOT sampled previously                                               |
| 22504  | QV           | fg Py on 45° c/a u/c re-sampling of poor splitting                                                                 |
| DH 94- | 2            |                                                                                                                    |
| 22505  | В            | Q-Ca veinlet segments subparallel to c/a; cg Py, fg Asp smeared on c/a fractures                                   |
| 22506  | F            | CHL gouge ~1% vfg diss Py, few Q-Ca seams                                                                          |
| DH 94- | 5            |                                                                                                                    |
| 22507  | FZ           | CHL gouge + coarsely broken; low c/a Ca veinlet chips                                                              |
| 22508  | FZ           | CHL gouge + coarsely broken; subparallel c/a Ca seams, trace vfg Py;<br>10 cm core length white QV @ 23.47 m       |
| 22509  | F – CB       | CHL gouge, sharp 45° I/c; upper CB ~1% diss Py; re-sampling of contact                                             |
| DH 94- | 8            |                                                                                                                    |
| 22510  | B, B(c)      | grey gouge, 60° I/c; to 2% fg Py                                                                                   |
| 22511  | B, B(c)      | broken + CHL gouge; 1-5% vfg diss Py at lower end, contact SCQP                                                    |
| 22512  | CPB          | fg Py veinlets; I/c sharp 20°-30° c/a with PB                                                                      |
| DH94-9 | )            |                                                                                                                    |
| 22513  | СВ           | sparse diss fg Py; Q-Ca vein, 45° c/a; wavy veinlets of CB frags                                                   |
| 22514  | SCQP         | 1-5% diss & 2 mm strings fg Py; clots vfg-cg Py; continuous sampling of<br>original grab sampling                  |
| 22515  | SCQP         | as previous                                                                                                        |
| 22516  | SCQP         | as previous except <1% Py; 4 mm QV, 60° c/a; wispy, wavy dark Q<br>seams                                           |
| DH94-1 | 12           |                                                                                                                    |
| 22517  | FZ           | broken + CHL gouge; 1% diss fg Py 26.61-27.28 m                                                                    |
| 22518  | СВ           | QV (49.13-49.19 m; grey gouge l/c)                                                                                 |
| 22519  | CB-F-QV      | 6 cm CB; 5 cm grey gouge; 30 cm QV, 45° l/c; soft, pale green sericite seams and fractures; poor previous sampling |

| DH94-14                |                                                                                                                                            |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 22520 SCQP             | sparse to 1% diss fg Py                                                                                                                    |
| 22521 CB               | 10 cm Q-Ca bx, wavy 45° c/a; 80% CB frags; coarsely broken CHL-Ca-<br>white sericite 46.48-46.79 m                                         |
| 22522 SCQP             | diss 2 cm clots vfg Py; 1-3% fg Py in 80% low c/a broken core 50.29-50.6<br>m                                                              |
| 22523 CB               | vfg-fg ANK; 10-15 mm QV 30° c/a with angular 5 mm CB frags, vfg Tet & possible VG                                                          |
| 22524 CB               | vfg-fg ANK, 1-2 mm pitting; Q-Ca seams 5 mm wide, 30° c/a; rare specks<br>fg Py, Born                                                      |
| 22525 CB               | <1% diss vfg-fg Py; 4 cm Q bx (dull green Q in white Q matrix), 50°-70°<br>c/a, u&l/c                                                      |
| 22526 CPB              | fg ANK; <1% diss fg Py, Tet; 2 cm SIL selvage, fg Py, Tet, 60° c/a                                                                         |
| 22527 CPB              | coarsely broken, low c/a @ 61.11 m; 45° l/c @ QV below                                                                                     |
| 22533 CB-SCQP          | sample # is correct; 1-2% diss fg-cg Py; Q-Ca bx vein, 45° u/c;<br>re-sampling of 73293                                                    |
| DH94-15                |                                                                                                                                            |
| 22528 CB               | <1% cg Py                                                                                                                                  |
| 22529 CB               | fg ANK; <1% cg Py to 5 mm; few 5 mm Ca seams 45° c/a; weakly broken                                                                        |
| 22530 (CB) FZ          | vfg-fg grey CHL gouge: 12 cm, 80° u&l/c & 15 cm, 45° u&l/c, tr cg Py, vfg<br>Tet, Born; <1% cg Py , finely broken CHL-Ca seams, 0°-5° c/a; |
| 22531 B(c)-SC          | sparse vfg Py, few Ca seams 3-5 mm, 80° c/a                                                                                                |
| 22532 CB-SCQP          | 2 mm seams vfg-fg Py; 3% vfg-fg Py adjacent, 1% within patchy dark<br>grey Q, fg ANK; 2 cm Q-Ca bx vein @ 35.8 m, 80° c/a                  |
| 22533 in drillhole 94- | 14                                                                                                                                         |
| 22534 SCQP-CPB         | <1% vfg Tet to 3mm clots (after Py?) within 5-10 cm of 4 cm QV, 45°<br>u&l/c; few low c/a seams vfg Py, Tet, <1% diss fg Py                |
| 22535 SCQP-CB          | to 1% fg-mg Py                                                                                                                             |
| 22536 CB               | <1% diss fg Py                                                                                                                             |
| DH94-16                |                                                                                                                                            |
| 22537 SCQP             | vfg-cg Py, diss, strings, clots; 1 cm QV, Q-Ca seams 45° c/a                                                                               |

 $\bigcirc$ 

()

. . . . . . . .

. 1

 $\bigcirc$ 

.

•

·

,

:

| 22538 CB         | white sericite-Ca slips & 5 mm grey gouge 20° c/a; slickensides plunge 45° uphole                                                                                                                                                        |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22539 SCQP       | 1% diss fg-mg Py, trace Tet specks                                                                                                                                                                                                       |
| 22540 SCP        | 28 cm Q-Ca bx vein, 47.76-48.04, frags 5 mm – 5 cm, 60° u/c, 45° l/c,<br>vfg-mg Py, fg Tet; 2-3% cg subhedral Py, fg Tet in 3 cm l/c zone                                                                                                |
| 22541 SCQP       | 2 cm grey QV & to 50% fg Py @ 52.52 m; Q-ANK seams ~45° c/a                                                                                                                                                                              |
| 22542 SCQP       | unmineralized(?), adjacent to 22541                                                                                                                                                                                                      |
| 22543 SCQP       | 2 cm Q-Ca vein 30° c/a & 3-5 mm parallel veinlets; vfg-fg Py, Tet seams within and at contacts                                                                                                                                           |
| 22544 SCQP       | ~1% diss fg Py; also continues into next box (stuck-in-stack)                                                                                                                                                                            |
| DH94-17          |                                                                                                                                                                                                                                          |
| 22545 PB         | vfg Py, diss patchy aggregates, short seams                                                                                                                                                                                              |
| 22546 PB         | as 22545 and: 4 cm Q-Ca bx vein (11.73 m)                                                                                                                                                                                                |
| 22547 CPB-SCQP   | 1-3% diss, clots, strings fg Py                                                                                                                                                                                                          |
| 22548 CS         | siliceous zone in FZ (20.42-34.29 m), 90% broken, CHL-sericite slips                                                                                                                                                                     |
| DH94-18          |                                                                                                                                                                                                                                          |
| 22549 CB-SCQP    | 3-5% diss, strings fg Py in SCQP                                                                                                                                                                                                         |
| 22550 SCP        | <1% vfg-fg diss Py; few green sericite seams, slips                                                                                                                                                                                      |
| 22551 SCP        | as 22550; samples 22550 & 22551 bracket PAZ "T3" sample 73331:<br>34.59 g/t                                                                                                                                                              |
| 22552 CB         | trace fg diss Py; uphole extension of sample 73332: 5.90 g/t                                                                                                                                                                             |
| 22553 SCQP       | to 1% vfg-fg diss Py                                                                                                                                                                                                                     |
| 22554 CB-SCQP    | <1% vfg-fg diss Py in finely broken core; 5 cm QV; 15 cm 3-10% vfg-mg<br>diss Py; samples 22553 & 22554 are downhole extensions of sample<br>73335: 10.80 g/t                                                                            |
| DH94-19          |                                                                                                                                                                                                                                          |
| 22555 CB-FZ-SCQP | -FZ-B Q veinlets 45° & 60° c/a, <1% mg Py & fg Tet; few clots fg Py                                                                                                                                                                      |
| DH94-20          |                                                                                                                                                                                                                                          |
| 22556 CB         | <1% fg-cg diss, seams Py; uphole extension of sample 73360: 3.77 g/t                                                                                                                                                                     |
| 22557 SCQP-CB    | 1-5% ANK-Py seams, 1-2 mm wide, fg Py; within vfg-massive strings Py<br>to 1 cm wide; to 3% diss vfg Py in CB frags; fg Py-ANK, fg Asp, cg Py<br>veinlets 10°-45° c/a; fg Py strings to 3 mm; partial re-sampling of 73367:<br>assay N/A |

-

.

1 3 .

. . . .

 $\bigcirc$ 

. . .

 $\bigcirc$ 

•

| 22558 CB      | 2-3% vfg-cg diss, strings Py; vfg Tet contacts, 2 cm QV, 45° c/a, 74.21 m                                                                                 |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22559 CB      | II II M II II                                                                                                                                             |
| 22560 QV zone | 20 % QVs, 0.5-8 cm; to 1% fg-cg diss Py                                                                                                                   |
| 22561 B       | porphyritic? flow; subhedral feldspar replaced by white-grey Q, 2-3 mm;<br><1% vfg-mg Py; >10% vvfg-fg Py, black, cherty matrix, 2-3 cm zone,<br>121.31 m |
| 22562 B       | porphyritic as 22561; to 1% vfg Py, newt and >60° c/a CHL slips                                                                                           |
| DH94-21       |                                                                                                                                                           |
| 22563 CB-SCQP | 1-2% fg-mg diss & clots to 2 cm Py, trace Asp                                                                                                             |
| 22564 SCQP    | trace fg diss Py                                                                                                                                          |
| 22565 CB      | <1% fg diss Py                                                                                                                                            |
| DH94-42       |                                                                                                                                                           |
| 22566 SCQP    | 2 to >20% diss, net, strings, few clots vfg-cg Py                                                                                                         |
| 22567 CB      | trace fg diss Py; uphole extension of SCQP sample149878: 3.84 g/t                                                                                         |
| 22568 CB      | patchy clots fg-mg euhedral Py                                                                                                                            |
| 22569 PB      | <1% diss fg Py; 1-2% at I/c with CB                                                                                                                       |
| 22570 PB      | massive fg basalt; <1% diss fg Py                                                                                                                         |
| 22571 B-SCQP  | 1-2% mg-cg Py (in B); 3-5% fg-cg diss & strings 45° c/a                                                                                                   |
| 22572 SCQP-CB | fg-mg Py veinlets to 3 mm wide                                                                                                                            |
| 22573 CB      | to 1% fg-cg diss Py                                                                                                                                       |
| 22574 CB-SCQP | <1% diss fg Py                                                                                                                                            |
| 22575 SCQP    | as 22574                                                                                                                                                  |
| 22576 SCQP-CB | trace to 1% diss fg Py                                                                                                                                    |
| 22577 SCQP    | <2% vfg-cg diss & patchy Py; few low c/a vfg strings Py                                                                                                   |
| 22578 B       | trace diss fg Py;                                                                                                                                         |
| DH94-43       |                                                                                                                                                           |
| 22579 CB      | 5% fg-cg clots & strings, diss vfg Py                                                                                                                     |
| 22580 CB      | trace vfg-fg diss Py; uphole extension of 149852: 6.31 g/t                                                                                                |
| 22581 CB      | massive vfg-mg Py u/c 1 cm QV 45° c/a                                                                                                                     |

---

\_\_\_\_

.

•

•

.

 $\mathbf{O}$ 

. . .

j

| 22582 | SCQP-CPB | open clots fg Py, Asp, total Py <1%; massive mg-cg Py 5 mm-patchy<br>SCQP/CPB contact                                                                           |
|-------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22583 | PB       | vfg flow; trace fg Py                                                                                                                                           |
| 22584 | СВ       | >15% vvfg-vfg diss Py "T3" mineralization, 16 cm zone, 45° ~u/c;<br>samples 22583 & 22584 are uphole extensions of 149853: 4.29 & 5.42<br>g/t, replicate assays |
| 22585 | CPB      | trace mg-cg Py; <1% diss & open clots fg-mg Py                                                                                                                  |
| 22586 | CPB-SCQP | fg-rng py contact seam, 60° c/a; trace fg clot Tet; to 3% vfg-cg diss, clots, 20° c/a strings Py                                                                |

 $\bigcirc$ 

ł

APPENDIX E

LARGE FIGURES AND PLANS

Ronald C. Wells P.GEO, FGAC, Kamloops Geological Services Ltd


