ASSESSMENT REPORT

MINERAL TITLES BRANCKOCK GEOCHEMISTRY PROGRAM

SEP 3 0 2003

L. L. H. Lana

NAR JUGARR, B.C.

CLY PROPERTY

NTS Map sheets

082F004-082F003

Latitude 49° 03' N Longitude 117° 12' E

Work performed early summer 2003

Owners: W. R. Howard 215 Silver Mead Cres. NW Calgary Alta. T3B-3W4

Kootenay Gold Corp. 156 Bay View Drive SW Calgary Alta. T2V-3N8

Report by: Craig Kennedy Prospector 2290 DeWolfe Avenue Kimberley BC V1A 1P5

> GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

		Page
1.00	INTRODUCTION	1
	1.10 Location and Access	1
	1.20 History	1
	1.30 Property	1
2.00	ROCK GEOCHEMISTRY	1
	2.10 Program	1
	2.20 Results	2
3.00	CONCLUSION	2
		_
4.00	STATEMENT OF COSTS	3
5.00	AUTHORS QUALIFICATIONS	3
	LIST OF ILLUSTRATIONS	

Figure 1. Figure 2.	Location Map of CLY Property Claim Map CLY Property	4 5
Figure 3.	Rock Sample Locations CLY Property and Area	In Pocket
Appendix 1.	Description of Rock Samples	6
Appendix 2.	Rock Geochemistry Analysis	10

CLY Property

Rock Geochemistry Report

Craig Kennedy

September 2003

1.00 INTRODUCTION

1.10 Location and Access

The CLY Property is located in the Nelson Mining District of south eastern British Columbia (NTS 82F/3, 1:20,000 scale maps 082F003 and 082F004). Truck access is provided by the Pend d'Oreille and Limpid Creek logging roads. Rough 4 wheel drive access is provided by the McCormick Creek road. Though the property is steep and very thickly vegetated it is totally accessible by foot.

1.20 History

The CLY Property includes the Mormon Girls and Bunker Hill Crown Grants, former small producers. The general area has been held under tenure by Majors, Juniors, and individuals through the past +100 years.

1.30 Property

The property is 40 contiguous units, which over-lap the Mormon Girl and Bunker Hill Crown Grants. The mineral claims and Crown Grants are owned by Mr. William R. Howard. At present all claims are under option agreement with Kootenay Gold Corp.

2.00 ROCK GEOCHEMISTRY

2.10 Program

In early June 2003 Kootenay Gold Corp representatives visited the CLY Property with owner Mr. William R. Howard. Following an extensive property examination, follow up data search, and discussion a decision to option the property was made. At the time of property visitation it was also decided to begin a assessment work program, this would be done in "good faith". Subsequently Mr. Howard and Kootenay Gold Corp. entered into an option agreement.

The work program was initiated to evaluate a number of points of interest generated by discussion and data research.

- 1) Confirmation of gold mineralization in historic workings to the west, north, and south of the Bunker Hill adit.
- 2) Follow up of soul gold anomalies on and off the CLY property, north, and northeast of Bunker Hill (Corona Corp., Assessment Report # 20193).
- 3) Determine the strike potential of the Bunker Hill structure.
- 4) Confirm the presence of coarse gold in drainages in the Bunker Hill area.

2.20 Results

The initial rock geochemistry program has successfully defined a potential North-South mineralized trend. A minimum of 1.5 km's in length, delineated by samples LS-1 to 17 (Lefevre Skarn), Blue Vein samples BH 21, 22 and BH 10, 18, 24, 13, 46, 47, and 45. Mineralization is found in quartz veins hosted by skarn, quartzite/argillite units and acidic intrusives. Of interest is float samples BH 30, and 62, both of which have greater than 1 gram Au and are located roughly 300 meters up slope from the North-South trend. This would indicate a high probability of more mineralization undiscovered under the till. Up to 80% of the area is covered by overburden. The small tributary stream south of the crown grants provided colours in two pans, as did one pan from McCormick creek, east of the crown grants. Limpid creek west and southwest of the crown grants also had colours in two pans. Pans from the tributary north of the crown grants had no visible gold, the same results occurred in Upper Tillicum creek (see figure #3 for sample site locations). A weak to moderate gold soil anomaly defined by work done by Corona Corp. northeast, near the northeast corner of CLY 2 returned only weak gold values in rock samples (BH 1, 2, 3, 64, 65, 66, 67, 68, 69, 70, 71, and 72).

2

3.00 CONCLUSION

A great deal of time was spent traversing areas with limited bedrock and very little locally derived float. As mentioned previously 80% of the area, including the North-South mineralized zone, is covered by overburden. Soil orientation lines could be run slightly downslope of the mineralized trend. The two anomalous float samples (BH 30 and 62) could have short, close spaced lines run above their respective locations. Regardless of soil sampling results an extensive trenching program should be contemplated. The known vein widths, Au grades, and variety of host lithologies necessitates the need for a maximum exploration effort.

Rock Geochemistry Program CLY Property Work Performed June 2003

Prospecting Contractors:	Craig Kennedy, Tom Kennedy, C	
Craig Kennedy	9 days @ \$450.0 (includes camp a	00/day – \$4050.00 and 4x4 vehicle)
Tom Kennedy		00/day - \$3150.00
Report	2 days @ \$400.0	0/day - \$800.00
•		, drafting, and supplies)
Rock Samples	<u>96 @ \$18.00/sar</u>	<u>nple - \$1728.00</u>
	Total Cost	\$9628.00

5.00 Authors Qualifications

As author of this report I, Craig Kennedy, certify that:

- 1) I am an independent consulting prospector residing at 2290 DeWolfe Avenue, Kimberley BC.
- 2) I have been actively involved in mining and mineral exploration for the past 25 years.
- 3) I have been employed by individuals, Juniors, and Major mining companies.
- 4) I have created and optioned numerous grass roots mineral exploration properties.

Craig Kennedy

Craig Kennedy Prospector

T.

 \bigcirc

Figure 2: Map showing location of claim area.

Appendix 1. Description of Rock Samples

ļ

Sample Num	ber Description
LS-1	Quartz vein within garnet skarn, gray quartz, rotted sulfide, vein 2"-4" wide.
LS-2	Same vein as above in upper pit, 340° strike, dip 54° SE, .5 m wide, some pyrite, more competent quartz.
LS-3	Same vein as above, more rotted sulfide
LS-4	Composite of skarn material in old pit, Po, Py.
LS-5	Quartz, tourmaline?, breccia zone in sediments, with Po, Py, rare gray sulfide, AsPy?
LS-6	Garnet skarn, rare Po, Py, some CuPy, ZnS- composite of material exposed in trench
LS-7	Sulfide rich skarn, actinolite, massive Po, Py- composite of western face of pit
LS-8	Same as above, composite of eastern pit face
LS-9	Skarn float with massive AsPy, quartz, Py, Po
LS-10	Pit in skarn zone, quartz blowout, Po, Py and CuPy
LS-11	Same vein as above, along contact with skarn (hangingwall), abundant
	AsPy, with a black seam striking 340°, dipping 50° NE.
LS-12	Composite of above vein, Po, Py, CuPy, some AsPy
LS-13	Pit within zone of skarning, fractures in pit trending 340°, dipping 50° NE and 60-65° dip to the NW, sample taken from intersecting fractures, with rotted sulfide
LS-14	Composite of skarn material across face of pit, sulfide rich pods, Po, Py, some CuPy
LS-15	Western end of pit, zone of narrow quartz veins cutting the skarn, some CuPy, Po, Py
LS-16	Pit within skarn, sulfide rich, sample is a composite of Po, Py rich skarn, western face of pit.
LS-17	Composite of eastern face of above pit
BH-1	4" wide zone with tourmaline bands, some quartz and limonite, pyrite, rare gray sulfide
BH-2	.5 m wide zone of quartz veinlets in granite, strike 62°, dip vertical, some limonite, pyrite, along margins, veinlets are parallel
BH-3	1' wide white and gray quartz vein, some Py, limonite, in sediments, 30° strike
BH-4	Altered granite with narrow quartz slips with limonite and pyrite
BH-5	Block of granite float with tourmaline slips with lots of pyrite and limonite
BH-6	Granite float, rusty weathering, cut by narrow quartz-tourmaline veinlets, with gray sulfide, Py

BH-7	20° striking zone of similar to above material, 1.5 m wide, rare gray
	sulfide in veinlets
BH-8	Tourmaline breccia zone in granite with some iron
BH-9	Same type of material as above, more limonite and pyrite
BH-10	10" wide quartz vein with limonite rich margin cutting granite, 128°
	strike, dipping 70° NE
BH-11	Parallel vein to above, 10" wide, limonite, pyrite rich margin and skarned
	granite
BH-12	Zone in above vein with fine Py, and blue mineral, Mo?
BH-13	Milky quartz vein in granite, 4" wide Py, limonite in veins along margins,
	310° strike, dip 42° NE
BH-14	Parallel vein to above, 10 m uphill, 1 m wide vein with pods of pyrite,
	limonite and AsPy
BH-15	1 foot wide greissen zone/vein with limonite and pyrite and Mo, some
	tourmaline veinlets
BH-16	Breccia zone in sediments, limonite staining along fractures, quartz crystal
	vugs, some iron carbonate
BH-17	Vuggy quartz breccia zone in granite, some limonite staining, iron
	carbonate
BH-18	Dump material from open cut, quartz with Py, limonite
BH-19	20° striking vein/slip 8" wide with some quartz, rotted sulfide, in face of
	above working
BH-20	Pit on quartz breccia within quartzite unit, vuggy vein with rotted Py, Mo?
BH-21	125° striking quartz vein with Py, Mo, vuggy dipping 65° SW, 6" wide
BH-22	.5-1 m wide quartz vein, 30° strike, dip 58° E, in sediments next to granite
	contact, footwall material with Py, limonite, silver mineral
BH-23	Blue Vein working, 120° striking shear in wall of trench limonite staining
BH-24	Blue Vein working, 130° striking quartz vein, Py, limonite
BH-25	Blue Vein working rotten Py, limonite, rich granite with some quartz
	veining
BH-26	Blue Vein working, 270° striking vein dipping 50° to E, .5 M wide, grab
	of material with some PbS
BH-27	Quartz vein 20 m on strike from BH-23, flat vein emanating off of steeper
	vein, pods with more Py, limonite, in granite
BH-28	Old working, iron rich rubble
BH-29	Quartzite breccia zone with PbS, Py, same working as above
BH-30	Quartz float with gray sulfide, milky quartz, some limonite, Py
BH-31	Tourmaline breccia zone, in granite, Py in microveins
BH-32	Same as above zone green staining, iron carbonate
BH-33	Series of quartz veins in phyllitic sediments, up to 8" wide, black ribbons,
	limonite, pyrite, rotted vugs, 30° strike
BH-34	Quartzite/quartz breccia supbcrop, milky quartz veinlets some limonite,
	Py, vuggy
BH-35	Quartz veining in granite, erratic narrow veinlets, weak limonite staining
BH-36	Composite of zone of black tourmaline, quartz veinlets in granite some Py,
	limonite, 340° trending fractures

•

•

 \bigcirc

 \bigcirc

 \bigcirc

_

-

7

.

BH-37	Quartz float with limonite, Py, black quartz, milky, with some argillite clasts
BH-38	Granite outcrop in road cut, brecciated granite some quartz veinlets with limonite, Py
BH-39	8" wide quartz vein with some Py, Po, CuPy, 350° strike
BH-40	6" wide quartz vein in hangingwall of greenstone dyke, some Py, Po, 340°
	strike
BH-41	Py rich quartz material from 30° striking structure in sediments with carbonate altered intrusive dyke
BH-42	Gouge material from above structure, iron carbonate, limonite, some quartz
BH-43	1' wide shear zone in phyllitic argillite, iron carbonate, some quartz, 110°
DIT	strike, dip 60° SW
BH-44	Quartz vein with Po, Py, CuPy, 4" wide
BH-45	Narrow quartz vein, in phyllitic sediments along contact with granite,
D 11-7,7	some limonite, Py
BH-46,47	4" wide quartz vein cutting granite with limonite, Py, Bi?
BH-48	Shear in granite with quartz, limonite, Py, yellow oxide, 40° strike, dip 30° E
BH-49	Limonite, Py, rich material from hangingwall of above shear
BH-50	Quartz float with limonite, Py, seam lets, coming out of granite
BH-51	Sheeted quartz veins in limonite stained granite, some limonite, Py in
	veins
BH-52	8" wide quartz vein with limonite, Py, quartz crystal vugs, tourmaline?, in granite
BH-53	Blocks of granite with limonite, pyrite, in veinlets and clots of vuggy
D11 33	quartz
BH-54	Vuggy quartz crystal veinlets in sediments (quartzites), with limonite and
	Py
BH-55	Quartz veining in phyllitic sediments with Po, Py
BH-56	4" wide quartz vein in granite with Py, limonite, black ribbons, Py, in
	granite
BH-57	40° striking, dip 10° E, quartz veins in granite with limonite, Py
BH-58	Quartz float with black ribbons, limonite, Py, coming out of granite
BH-59	4" wide quartz vein in granite, black ribbons some iron staining, 120° strike, 30° dip SW
BH-60	Quartz crystal, sugary quartz veinlets in iron stained limonitic granite, 60° strike, 60° dip NW, 3 m wide zone
BH-61	Stockwork of quartz crystal veinlets in limonitic, iron carbonate, altered granite, some Py, limonite in quartz veinlets
BH-62	Py rich quartz/quartzite, float
BH-63	Foot wide quartz/pegmatite vein with limonite, Py, vugs, in phyllitic
	sediments
BH-64	Brecciated granite with limonite, Py, some quartz
BH-65	Narrow quartz veins in granite, rare Py
BH-66	Same as above

ł

 \bigcirc

 \bigcirc

 \bigcirc

8

•

1 1 1

1 5

•

t

BH-67	Same as above
BH-68	Quartz breccia zone in granite limonite, Py, sugary textured, vuggy, quartz veinlets
BH-69	Same as above
BH-70	Same as above
BH-71	Narrow quartz veinlets in granite, some limonite, Py, tourmaline veinlets
BH-72	Iron altered granite, brecciated, some quartz, black tourmaline, veinlets
~	
CBH-1	Argillite, some PbS in veinlets of quartz carbonate
CBH-2	Sanded?, black limestone subcrop on old road to Bunker Hill workings
CBH-3	Dump material from skarn area, breccia with black fragments

9

t

(tourmaline?), with quartz, AsPy, limonite, and Py

Ê					<u>Kc</u> 1	00t 56 B	ena ay V	iy iew i	<u>Gol</u> Drive	d C Sout	lor hw,	<u>p.</u> Calg	F Iary	ile AB T2	# 'v 3n	A3 18	02(Subm)12 itte	d by	Pa : Tom	ge Ken	1 nedy										
SAMPLE#	Mo ppm			Zn ppm	Ag ppm	Ni ppm								Sr ppm p			Bi ppm		Ca %		La ppm			Ba ppm			Al %			W ppm	Au* ppb	
SI BH-1 BH-2 BH-3 BH-4	<1 <1 1 5 1	1 3 5 7	<3 13 22 23 5	7 26 6		4 3 5 5 3	2 <1	910	.05 1.18 .96 .83 .75	171 22 9	<8 <8 <8 <8 <8	<2 <2 <2	13 2	8 •	<.5 <.5 <.5	ও ও	ও ও ও ও ও ও	2 7 1	.03 .09 .01	.001 .024 .030 .008 .023	18 26 9	6	.04		.01	8 5 5	.32 .49 .10	.05 .06 .03	<.01 .16 .16 .02 .21	<2 <2 3	.9 5.4 5.6 1.0 <.2	- add
BK-5 BH-6 BH-7 BH-8 BK-9	1 1 1 1	6 5 4 5 5	47 3 5 28 98	2 3 30	<.3	2 3 2 3 2 3 2	1 <1 1	73 51 32 229 271	2.38 .62 .59 .64 .68	<2 2	<8 <8	<2 <2 <2	9 6 10	5 · 5 · 4 ·	<.5 <.5 <.5 <.5	ব্য ব্য ব্য	3 3 3 3 3 3 3 3	2 2 <1	.01 .01 .02	.020 .015 .011 .009 .020	34 24 13	5 5 5 5 5	.01 .01	52< 49< 29<	.01 .01	4 3	.26 .21 .22	.07 .05 .04	.22 .16 .14 .09 .13	<2 <2 <2	89.8 2.1 1.2 3.6 1.6	
BH-10 BH-11 BH-12 BH-13 BH-14	158 671 724 21 5	35 18 7 14 5	2182 498 148 26 7	235 36 12	3.6	8 7 5 3 4				508 55	<8 <8 <8	<2 <2 5	2	3 2 1 •	7.4 2.8 .5 <.5 <.5	ব্য ব্য ব্য	5 4 263	37 3 2	.02 .04 .01	.018 .018 .006 .007 .002	3 3 2		.01 .01	17< 18< 11<	.01	থ থ থ	.12 .09 .12	.01 .01 .01	.04	6 18 7 3 3	594.5 96.4 30.2 3652.0 42.7	
BH-15 BH-16 BH-17 BH-18 BH-18 BH-19	133 3 2 11 4	22 8 3 7 11	7 8 126 13 41	29 2		7	1 15	281 260 41	1.19 1.32 .70 2.47 1.92	22 13		<2 <2 <2	8 3	2 · 4 · 2 ·	<.5 <.5 <.5 <.5	⊲ ⊲ 5	3 3 3 3 3 3	4 3 2<	.04 .03 .01	.070 .022 .015 .008 .020	15 16 7	9 10	.03	24< 31< 30<	.01 .01	ও ও ও	.37 .26 .21	.03 .02	- 18 - 10	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	13.7 129.7 1.2 984.6 3.5	
BH-20 RE BH-20 BH-21 BH-22 BH-22 BH-23	3 5 27 279	11 9 6	4963 4897 92 44 158	4 16 4	7.8 7.8 6.1 4.9 2.1	9 4	1 <1	37 149 90	1.17 1.12 1.43 .67 7.38	4 5	<8	<2 37 32	<2 8 3	3 - 5 -	<.5	<3 3>2 <3>2	2000	2< 10 4	.01 .05 .11	.004 .005 .026 .051 .145	9	9 9 17 9 46	.01 .01 .20 .07 .16	2< 47 8	.01	ণ্ড 3 ব্য	.05	.03 .02	.01 .33 .06		10.9 10.6 36274.1 29896.6 187.7	et ekimete
8H-24 BH-25 BH-26 BH-27 BH-27 BH-28	141 1617 19	24	1118 33 1961 20 20	71 3 2	18.1 1.4 4.8 .8 <.3	9 5 3 2 37	1 <1	73 29 33	2.51 3.29 1.88 .49 3.23	250 187 13		<2 <2 <2	3	24 · 3 · 2 ·		<3 3 <3	5 5 11	3 3 2	.04 .01 .04	.020 .099 .025 .022 .022	9 1 16	18 7 7 7 22	01 01	59< 28<	.01	<3 17 5	.44 .30 .11	.06 .01 .01	.16 .13 .21 .06> .13	10 200	128.7 40.5 85.9 147.3 10.2	
BH-29 BX-30 BH-31 BH-32	3 140 5 2	34 4 9 2	148	8 109	26.3 24.1 .6 <.3	6	<1 1	34 35	2.52 .40 .71 .27	<2 24				2 · 5 ·	3.4 <.5 <.5 <.5	ও	53 365 6 6	<1 1	.03 .01	.012 .017 .013 .012	2 13	16 7 7 5	04 01 01 04	4< 24<	.01	<3 6	.05 .27	.01 .06		5 5 2 2	26.0 2158.2 22.0 6.2	
STANDARD DS4/AU-R	L	127		_					3.12				-														·		.15	3	453.7	
GROUP 1 UPPER L ASSAY R - SAMPL <u>Samples</u>	.IMITS RECOMM .E TYP	- A Ende E: R	G, AU D FOR OCK R	, HG, ROCX 150 6	W = AND SOC	100 CORE AU	PPM; Sam I* IG	MO, IPLES NITE	CO, 1F C D, AC	CD, S U PB ID LI	SB, 8 ZN / EACHI	BI, 1 AS > ED, /	TH, L 1%, NAL1	1 & B AG >	= 2, 30 i	,000 PPM 1	PPM; ≩ AU	CU, > 10	PB,	ΖN,	ΓED Τ ΝΙ,	0 10 MN,	ML, AS, 1	ANAL V, LA	YSED , CR) BY = 1	ICP-1 0,00	ES. D PPI	4.			

. . .

. ____

.

-

· · _ •

ACME ANALY	002 Accred			997 - T-9	1. State 1	X		ter	G nay	EO G	CH	em: A (IC <i>I</i> Co1	VL TP.	AN	Fi.	rs le	IS #	CE A3	RT: 02:	1 F] 31,	CCA 3	1R6 .TE .P /: Te	age	• 1	+	ND (004	, 4	- e c	.75.	30	FA	4 19	\mathbb{C}^{2}	 		
	Sample#		Cu ppm			•	Ni ppa				As ppn pi											-	Ba ppm				K S		He S pen pe			i Ga i ppe	i Se Ippan	Au DOI	* D	<u></u>		<u></u>
	\$I		.7																				3<.(.2 .							5	- -		_
	BH-33																						20<.(B			
	8H-34 8H-35																						4<.(
	BH-36		2.2																				7.1 21.1															
	BH-37	.4	3.2	6.4	22	<.1	1.0	.4	19	.51	3.9 <	1	1.7	.6	1 <	1.2	< 1	<1	.01 .0	13 3		< 03	4<.(101	3 68	< 001	64	< 1	a2	1 <	1 ~ 04	1	~ 5		9			
	BH-38																						36<.0												2			
•	BH-39		42.7																				30<.0												8			
	BH-40	•	46.8	2.3	9	.1	9.2	3.3	93	.87	1.6	.2	2.3	.7	б.	1.1	<.1	5	.12 .0	10 2	2 26.3	. 19	69.()05 <	1 . 21	.006	.04	8.7 <.	01 .	.5 <,	1.09) 1	۰.5					
-	BH-41	4.8	6.7	24.7	108	.5	290.1	43.6	1599 5	.64 4	9.8	.6	<.5 8	.3 116	51	1.5	.2	100 9	.05 .6	57 46	5 428.6	5.35	168 .()]4 <	1 2.31	.002	.21	.1 .	02 12	.3.	1.75	j 9	.7	1.4	4		•	
•	* BH-42	13.0	428.3	×9999	1954	32.8	25.1	6.2	577 3	1.65 16	5.4 L	.9 91	3.4 3	.z 35	is 17.1	5 G.L		27 4	.85 .1	20 9	23.1	15	108<.(101	1.25	.005	.11	6.7	10 1	.4.	1 <.05	i 1	1.7	2742.0	6	•		
	BH-43	1.0	68.8	106.9	90	.7	27.0	11.0	952 2	2.85 5	7.0	.3 1	13.6 3	1.4]	l 6 .,	6.6	.4	6	.16 .0	34 13	3 7.4	. 09	88 .0	05	1.38	.022	. 10	.2 .	01 3.	.0.	1 <.05	5 1	<.5	18.	B		,	5
	BH-44	5.8	292.2	298.1	35	.9	165.9	187.9	232 12	2.35 1	0.3	.6 3	9.3 2	.1 4	17 .4	4.3	1.2	14 1	.19 .0	20 7	28.6	.36	10.0	36 <	1.61	.037	. 23	8.0 <.	01 1.	.2.	1 8.73	2	4.7	40.4	4			
	BH-45																						116 .1					.5 .1								,		
	BH-46	8.9	15.1	76.0	8 1	8.7	2,5	1.8	77]	.88 1	7.7 2	.8 46	51.5 4	.1	8 <.:	1.2	276.2	1	.02 .03	20 4	21.9	. 01	20.0	01 <	1.19	.030	. 13	8.3 .4	01 .	.5 <.	1.16	1	.5	665.0	5		-	
	BH-47	3.2	16.6	14.5	i 3	1.7	.9	.6	28	.46 2	0.3	.6 487	0.6	.2	1 <.	1.4	560.6	<1	.01 .0)6 <1	1.2	<.01	5.6)05	1.03	.002	.02	75.0 <.1	01 .	.1 <.	1.09	• ⊲		4407.1	B			
	BH-48	3.7	2.6	130.0) 77	.3	1.7	.4	148	.65 2	5.7 3	.8 2	25.2 9	.6	5.	3.1	6.2	1	.02 .0	13 14	15.8	.01	32.0	02	3.27	.031	. 18	6.1 .	01 .	.4 <.	1 <.02	5 1	<.5	68.	4			·
	BH-49																						19.0															124
	BH-50																						37<.0															
	RE BH-50	6,1	8.0	28.6	52	.1	3.8	1.2	591 1	.11 2	3.0 1	.4 1	1 6.3	.1	2.4	4,1	1.0	1	.01 ,0	05 1	1 29.4	.02	39.0)01 <	1.13	.006	.04	9.7 <,1	01 .	.6 «.	1 <.05	5 1	<.5	41.	1			
	BH-51	,6	1.1	10.7	32	.1	.5	.6	204	.55	2.0 2	.2	.98	.2	з.:	7.1	.9	1	.01 .0I	6 12	2 <1	. D1	17.0	104	1.23	.034	.12	.2 .1	01.	.5 <.	1 <.05	1	<.5	1.1	B		ł	ł
	BK-52	5,6	4.4	29.9	52	.1	2.7	.4	94	.58	1.4	.6	1.6 1	.2	1.3	1 <.1	.3	<1 <	.01 .00	3 1	23.2	. 02	6<.0	01	1.10	.002	.05	8.3 .0	01 .	.3 <.	1 <.05	1	<.5	2.6	6			
	BH-53																						18 .1															
	. 8H-54																						39<.(5.0 .1								•		
	BH-56	./	130.0	11.3	, 3	.5	1.0	10.2	155 0	.44 /	7.0 Z	./ 2	(1.0 5	./	2 <	1.5	.6	<1	.09 .00	1/ 4		.03	8<.0	X01 I	0.73	.017	.10	.2 .1	02 .	.7 <.	1 3.38	2	2 1.5	26.	1			
	BH-57	5.4	3.7	2.0	3	<.1	2.8	.3	41	.58	1.1	1	.6	.7	1 <.:	1.1	<.1	<] <	.01 .00	3 3	24.5	.01	4<.0	01	1.09	.009	.02	7.7 .0	01.	.2 <.	1 <.05	1	<.5	.9	9			
	8H-58		25.7								2.9												18 .(
	BH-59	19,8	2.2	10.3								.2	.5	.4	1 <.:	1 <.1	.2	<1	.01 .00	14 <1	23.9	<.01	5<.(101	7 .02	.001	.01											
	BH-60		1.7																				20 .0					.1 .6										
	BH-61	3.1	1.9	10.2	28	<.1	3.8	1.3	613	.92	.82	.1	4.3 10	.2	6.	z.1	<.1	2	.02 .03	2 21	15.1	.06	63.0)06 <	1.39	.037	.11	4.4 .(02 .	.5 <.	1 <.05	2	<.5	1.	1			
-	BH-62	43.2	288.6	8.6	; 44	1.3	35.4	37.1	1837 7	.57	<.5 2	.9 144	17.4 8	.1 5	7.	1.3	137.7	27	.61 .0	59 26	5 43.9	.85	26.1	33 <	1 2.11	. 163	.47 1	92.0 < 1	01 3	.3	5 6.97	17	4.3	1486.4	4			
	BH-63			17.9								-			-				.02 .0	-			9,0															
<u>.</u>	-	- 00 0	10-0-1		– 22		1.2	. l. 1	116 1	-01.	0 7	^	2 4 22	<u>```</u>		· · · ·	<u>,</u> ,	^	<u> </u>	-		10	- Kar	<u>.</u>														
						_	<u></u> }	<u> </u>	- 05 - (- 00 - (<u> </u>		<u>^</u>		<u> </u>		<u> </u>	<u></u>	Ĩ	16 A	100			100_0							í.				<u>`</u>				
·	STANDARD DS4/AU-R	6.6	129.2	31.8	159	.3	34.5	12.1	825 3	. 25 2	2.5 6	.0 2	8.7 3	.6 2	9 5.	3 4.7	5.4	77	.54 .0	2 17	167.1	.60	142 .(88-	3 1.79	.029	. 15	3.5 .:	29 3.	.8 1.	1 <.05	6	i 1.5	473.	9			
	GROUP 1DX - UPPER LIMIT	0.5 S	50 GM	I SAM	IPLE	LE/		D WI	TH 3 M-⊾	ML IO 1	2-2-	-2 H	ICL-H		-H20	D AT	95 2. ¤	DEG.	C F	OR O	NE 1		, DI		D TO	10	МЦ,	ANAL	YSE	D B	Y IC	:P-M	IS.					
	- SAMPLE TY	PE:	ROCK	C R15	50 6	0C	4	AU*	IGNI	TED,	, ACI	ID L	EACI	ΗED,	AN/	LYS	ED B	Y IC	P-MS	. (1	15 gr	مر (۱		,	, na	·,		,,	,		,		4 4° PU	•				
	<u>Samples beg</u>		ng '	KE'	are	ĸe	<u>uns</u>	ang	<u> </u>	<u>, c · </u>	are i /	Cele Cele		<u>ceru</u>	$\frac{\text{ns.}}{7}$	-					Λ	1																
DATE RECEI	VED: JUN 3	0 20	03	DA'	TE	RE	POR	T		LED	. y	٩V	ær j	11	(0	کر	S	IGN	ED	BY.	.	: !~	•••	•••}	D. 1	OYE	, c.	LEON	G, .	3. W	ANG	; CE	ERTI	FIEC) B.C.	ASSAY	YERS	
											[]	/	('									- 1												1	_	
All results ar											\checkmark													- 1												17	~	

_ __ __

								K	56 84	may	Go1	d c	or.	, ANAI). Fi atgary A	le	¥ 7	JERTI 13028 Submi	37	F	Pag													
Sample¥	No opm	Сы ррт	Pb gopm	ζυ Συ	Ag pµn	Ni ppm	Co ppm	Mo ppm	Fe 8	As ppm pp	U AL III pipt		Sr ppm	Cel So ppm ppm	Bi ppm p	V Pm	Ca P ¥ ¥	La ppm	Cr ppm	Mg T	8a ppn	Ti ¥ ¢	B	Al L	Na X	K K	W 1 ppm pp			S ¥ p	Ga pm (Se çpm	<u>ر دی</u> م م
S। 18भ-64	.1 1.1	1.6 6.9	1.7 [1.1	2 12	<.1	.7	.1 1.3	3 527	.04 1 D1	<.5 <. 4.6 4.		<.1 15.9	J q	<.1 <.1	<.1 2	1	. 14<.001		1.4 1.0	<. DI		.002	<]		556<. 045		<.1<.(<.1<			<.5	
BH-65	.5	1.5	33.9	19	.1	.6	1.3	826		4,4 2	0 17.9			.1 .1	.4	3	68 030		3.3	.04		.004	2		033		1.3.(:05	-	<.5 <.5	-
8H-66 8H-67	.5 .3	7.3 1.5	83.3 21.0	30 20	.5	8. A	3.9	399 307		15.65. 30.04.		10.3		.2 .2	.8	2	03 013		3.Z	. 03		.001	Ł		048 .		.2<.(. 05	1	<.5	4
GIF*Q7	.0	1.9	21.0	40	. 6	. U	7.7	307	L.JC	30.0 4.	4 J/.4	13.0	13	, , , , 1	-1	2	. 02 . 023	24	1.8	.04	63	. CO 3	L	.42 .	038 .	12	.1<.(11.1	1<	: 05	1 4	<.5	10
BH-69	. <u>3</u>	1.7	49.7	10	.1	.5	.1	20	-82	5.8 1.	0 2.5	6.0	3	.1 <.1	.2	1	.01 .014	7	2.8	.0L	25	. 003	<]	. 21 .	023	10	.1<.(01.4	<.1<	. 05	<1 •	<.5	
8H-69	.3	3.3	9.8	12	<.1	7.1	?	45	.50	1.3 3.		3.7	2	<.1 .1	.1	1	.01 .010	8	7.1	.04			<]	-	013 .	•	.1.0	11 .3	l <. [<	.05	1 -	<.5	
8H-70 BH-71	۱. ۲	20.5	77.4 8.6	20 18	1.	¥.	1.0	147		<.5 2.1	1 <.5	14.7	5	<.1 <.1	.5	3	.05 .031	26	2.8			003	4		038 .		.]< (i <u>1</u> <		1 .	<.5	
6H-72	.5 2.1	2.1	24.1	04 10	<.1	2.2	1.0	85 63	.69 .63	1.2 1	4 L.) 6 7	10.1	ç		.1	Z	.02 .013		3.1	.01		.002	< <u>]</u>		019 .		.]<.(i < le			<.5	
				•	• •		•	~	.00	1.6.9.	v ./	13.1	,	- 1 - 1	. 2	3	.03 .026	2J	3.8	.03	29	. 902	1	.30	052.	13	. 1< (M6	< !<	05	1	<.5	

- . -

ł.

1

	• • •			- · -						• -					_																
ACHE ANALYTICAL	2							Ko	ote	enay	Gol	.đ (Cor			FIL	E #	AЗ	020:	12]	Pag	e 2	C	ADHE	ANALYTICAL
SAMPLE#		Mo ppm p	Cn Cn				Ni ppm		Mn ppm	Fe %					Sr opm p		b B n ppr	V 1. ppm			La ppm (Ba T ppm			Na X		W ppm	Au* ppb	
			7	-		1			224	-7-21		- C			40	.	3										100				
CBH-1		1	46	23	35 119	.8	38	6	122	1.94	14	<8	<2	5	15	.6 <	3 <	57	27	.038	10	101 1	.33	182.0		1.73	.02	.92	<2	4.8	
CBH-2 CBH-3		1 15		12 74		.8 1.9	18 18	2 133	76 389	.86 2.49	7663	<8 <8	<2 3		83 1 7 <		3 <3 3 250	i 15	2.61	.646 .053	15 23			83 .0 43<.0		1_00 .32		.08 .13	<2 13	2.2 4400.3	
معالمينت. محتربين ي			7	44	42		/1 0 77		47(-2.0(202	0 0		17	11 (6; 6; 7;			017	42	-40 	76	() 0 7(1 7 1 7	- 24	05	_42)
			<u>.</u>	-07	20-				454		45/3									-124						ر در بروی ا					
						0,0			4400 700		1040 1744																	70			
LS-1 LS-2 LS-3 LS-4 LS-5		17	45 222	6 10 <3 5 281		1.3 1.0 .3 .4 6.8	13 4 20 35	217		2.61 2.82 .86 3.91 5.60	139 13	<8 <8	3422 222		8 < 2 < 1 < 99 5 <	.5 < .5 < .7 <	3 13 3 19	3 1 26	.01	.083 .012 .002 .070 .037	4 1 31	6 11 < 40	.01 .01 .66	10 .0 8<.0 2<.0 50 .1 14 .0	1 4 1 <3 1 <3	.11 .02 2.27	.01 .09	.05 .01 .35	94 79	3387.1 10225.8 427.2 195.8 330.3	
LS-6 LS-7 LS-8 LS-9 LS-10		9	93 109 100 3	5 <3		.4	20 30 19	7 11 357	8055 4534 384	2.52 5.56 7.01 9.18 5.39	16	<8 <8 <8	<2 <2 12	11 15 5	53 3 36 67 < 26 < 3 <	.7 < .5 < .5 1	370 37'	5 28 38 5 10	7.34 2.18 1.15 .08 .11	.056 .071 .037	26 40	42 71 1 10	.48	21 .1 71 .1 19 .0	1 <3 8 <3	2.93 .44	.07 .11 .03	1.32 .11>	193 192 200	24.5 785.2 976.4 11901.9 5904.4	
RE LS-10 LS-11 LS-12 LS-13 LS-14)	42		6 <3	21 2	2.0 2.9 1.0	35 43 12	422 40 8	2766 237 3856	5.28 8.26 10.71 15.83 11.61	450 25	<8 <8 <8	<2	8 <2 9	3 < 25 < 2 < 22 < 17	.5 < .5 <	3 144) 3 108	i 18 7 1 3 38	.11 1.77 .05 .49 .92	.042 .002 .071	1 19	36 4 51	.55 .01 .80	56.1	28 1<3 5<3	1.18 .04 1.52	.02 .01 .05	.27> .01 1.14>	200 76 200	5829.9 5882.6 14079.2 1582.0 980.0	
LS-15 LS-16 LS-17		108 2 10 36 2	96	3	24	<.3	9	2	627	13.75 4.24 8.56	12	<8 <8 14	<2	5	22 22 < 15	.5 <	34	19	.73 .08 1.00	.030	6	29	.42	23.0	4 <3	1.15	.04	.24	6	1542.3 101.2 1110.2	
STANDARD	DS4/AU-R	7	129	31	159	.4	34	11	794	3.14	24	9	<2	4	27 5	.3	5 !	76	.53	.090	17 1	171	.60	145 .0	9 <3	1.78	.03	.15	2	457.5	

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

GEOLOGICAL SURVEY BRANCH FIGURE 3 LEGEND CLY Z and Portion CLY 1 Mineral Claim Bunker HillCG. L.2939 Mormon Girl CG. L1949 > Bunker Hill Adits 1:10,000 082F004 Blue Vein Arca LEFEVRE SKARN Les Area Samples LS 1 to 17 on adjoined sketch BH - Sample Designation · Sample site (Au value PPB) - 4x4 Rood ----- Creek drainage