

TRENCHING and DIAMOND DRILLING REPORT

on the

INGENIKA and SWANNELL PROPERTIES

DEL 3, DEL 5 and KLUZ 3 Mineral Claims

Omineca Mining Division

NTS: 94C/11E

B.C. Geographic System Map Sheet: 094C.065

Latitude: 56° 40' N; Longitude 125° 10' W

UTM: 6 282 000 N; 367 000 E; Zone 10

Owner and Operator: Cross Lake Minerals Ltd. Owner: Teck Cominco Limited (Cominco Mining Worldwide Holdings Ltd.)

Author: Jim Miller-Tait, P.Geo.

August 20, 2003

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

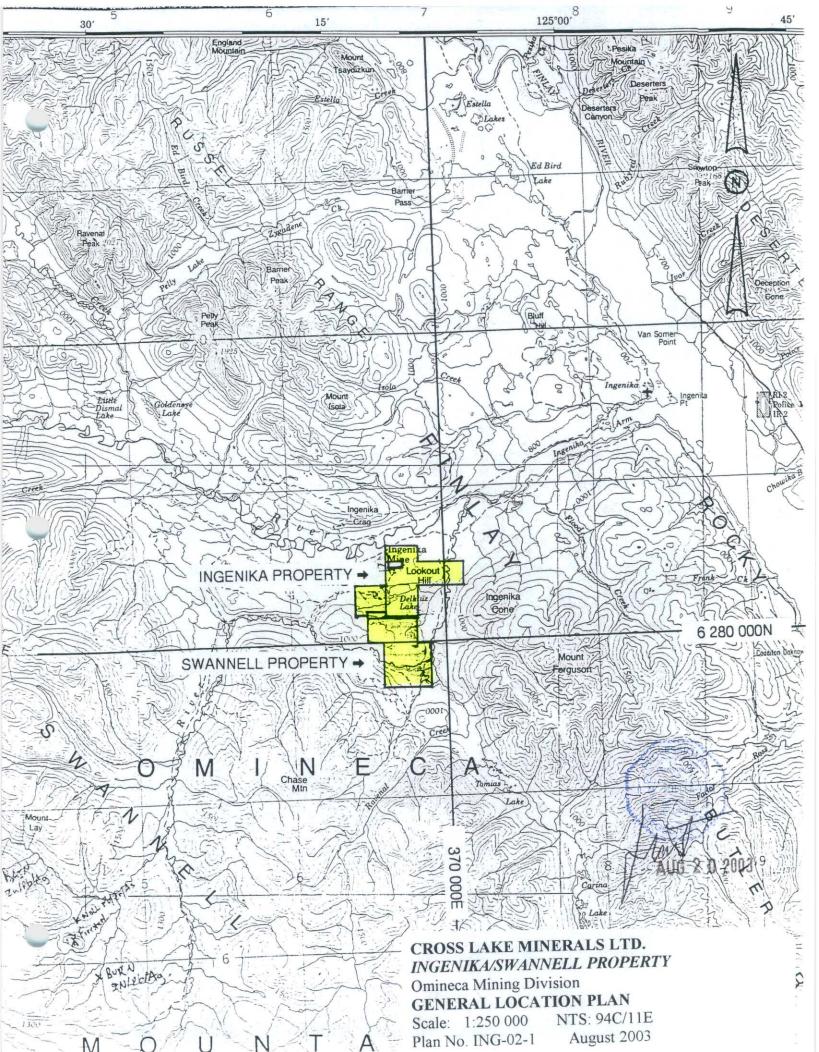
Section	Title	Page
	Introduction	3
	Property	3
	Location and Access	4
	Climate, Topography and Vegetation	5
		5
		6
		7
		9
		10
		11
		13
		14
		16
Pronerty	Schedule of Mineral Claims	17
		18
	Acme Analytical Laboratories Ltd.:	
Anarytical Reports		
Drill Hole Logs	Diamond Drill Hole Numbers: CS-02-11	
	CS-02-12	_
	CS-02-13	
· · · · · · · · · · · · · · · · · · ·		
	Title	Scale
		1:250 000
		1:50 000
		1:50 000
	Trench and Drill Hole Location Plan	1:2 500
1110-02-4		
ING 02-5		1:1 000
100-02-5		
ING-02-6	Cross Section A-A', DEL 3 Claim	1:1 000
	Through Hole CS-02-11	
		1:1 000
ING-02-7	Cross Section B-B', DEL 5 Claim	1:1 000
		1:1 000
	Report Report Report Report Property Expenditures Analytical Reports Drill Hole Logs Illustrations Plan Number ING-02-1 (after p. 4) ING-02-3 (after p. 4) ING-02-4 ING-02-5	Report Introduction Property Location and Access Climate, Topography and Vegetation History Regional Geology Property Geology Trenching Program Diamond Drilling Conclusions Recommendations List of References Statement of Qualifications Property Schedule of Mineral Claims Expenditures Statement of Expenditures Analytical Reports Acme Analytical Laboratories Ltd.: - Certificates of Analysis (3) - Statement of Analytical Procedures Drill Hole Logs Diamond Drill Hole Numbers: CS-02-11 CS-02-12 CS-02-12 CS-02-13 CS-02-14 Illustrations Title ING-02-1 (after p. 4) General Location Plan ING-02-3 (after p. 4) Mineral Claim Map ING-02-4 Trench and Drill Hole Location Plan ING-02-5 Drill Hole Plan KLUZ 3 Mineral Claim Title

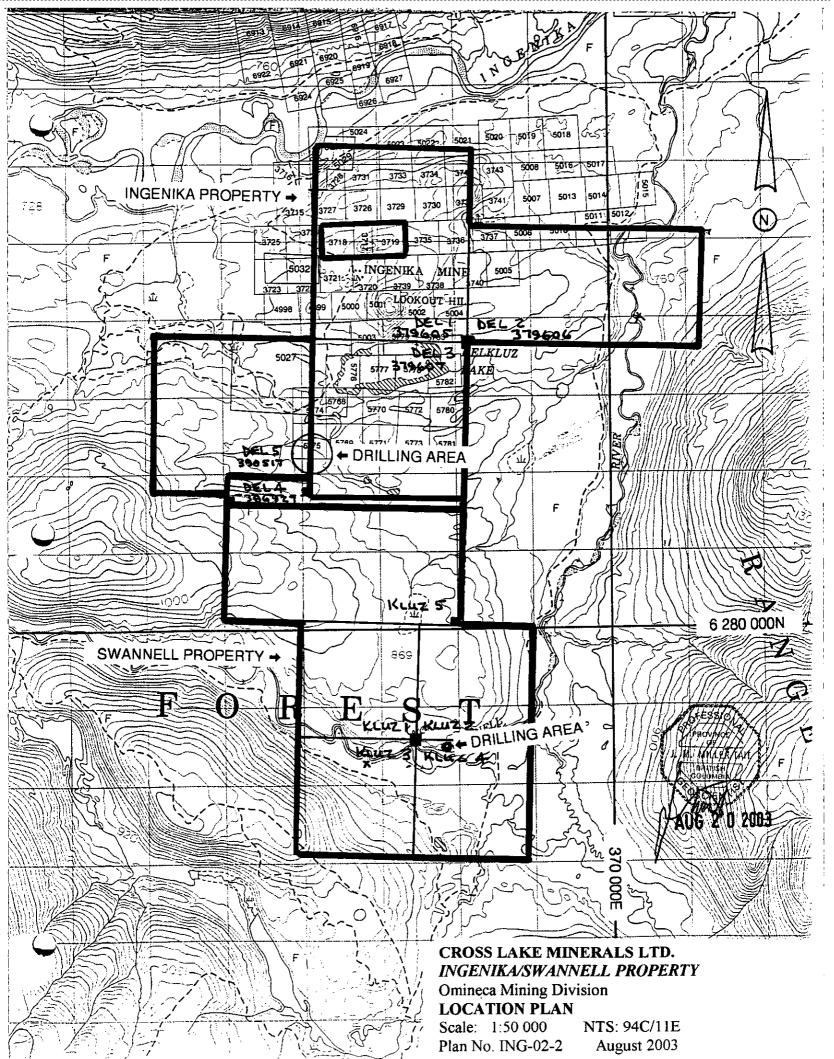
SECTION A: REPORT

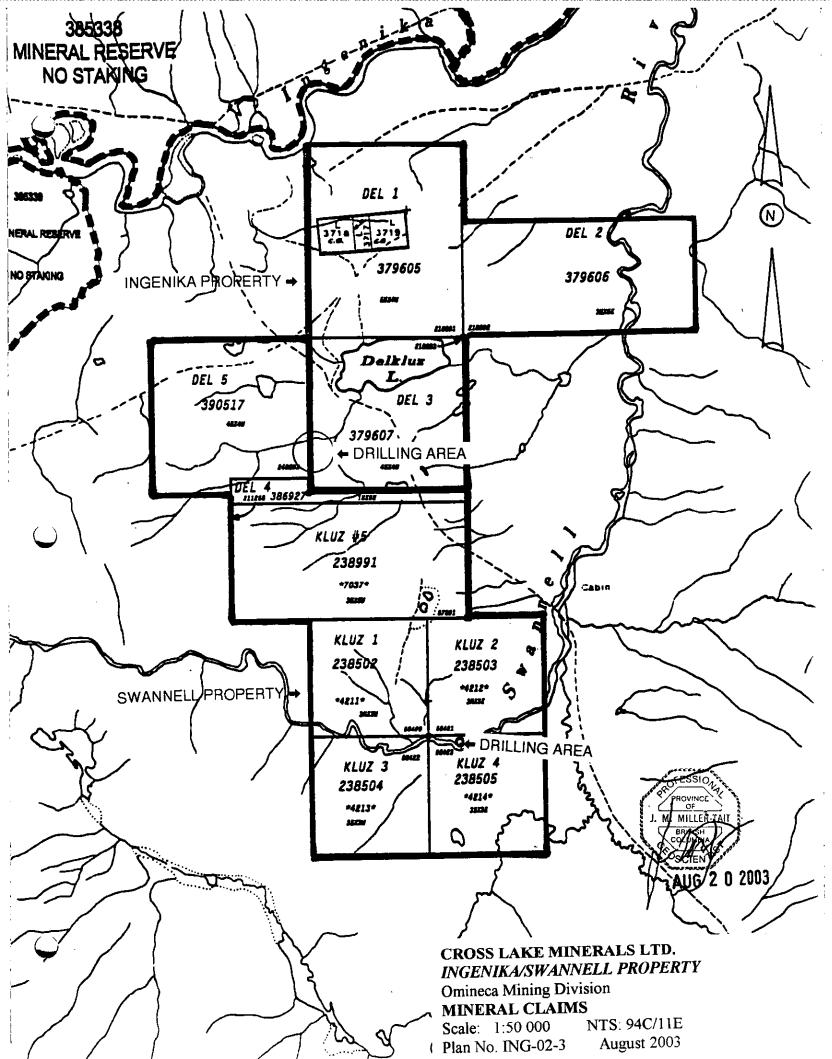
INTRODUCTION:

Cross Lake Minerals Ltd. owns 100% interest in the Ingenika Zn-Pb-Ag Property (DEL 1-3 mineral claims) and also holds an option to acquire a 100% interest in the adjacent Swannell Property (KLUZ 1-5, DEL 4 and DEL 5 mineral claims) from Teck Cominco Limited under the terms of an option agreement dated April 24, 2001 and amended April 29, 2003.

This report documents the work carried out in 2002, a program of trenching in July 2002 and the drilling of four NQTK diamond drill holes (491.24 metres) in September 2002. This work was a follow up to previous programs completed on the two properties in 2001 by Cross Lake and summarized Assessment Report #26608, 26702 and 26794.


PROPERTY:


The Ingenika Property is comprised of three contiguous 4 post mineral claims totaling 54 claim units and covering 1,300 hectares. The claims were staked in July, 2000 and are held by Cross Lake Minerals Ltd. The adjacent Swannell Property is comprised of seven contiguous 4 post mineral claims totaling 76 claim units and covering 1,900 hectares. Four of these claims were staked in September, 1981, one dates from May, 1985 and the two most recent claims were staked in May and October, 2001. Five of the claims (KLUZ 1-5) are presently registered in the name of Cominco Mining Worldwide Holdings Ltd., a subsidiary of Teck Cominco Limited, while the two most recent claims are held by Cross Lake Minerals Ltd. All mineral claims are in the Omineca Mining Division. A complete list of the mineral claims that comprise the two properties is set out in Section B of this report. The expiry dates shown are based on the Statement of Work filed on July 29, 2003 (Event #3197792) and assume that the work contained in this report will be accepted for assessment purposes.


LOCATION AND ACCESS:

The Ingenika and Swannell Properties are located in the Swannell Ranges of the Omineca Mountains in the Omineca Mining Division, some 195 kilometres northwest of Mackenzie, B.C. The property covers the area to the south of the old Ingenika Mine and is situated primarily on the west side of the Swannell River just upstream from its confluence with the Ingenika River. The claims sit on NTS map sheet 94C/11E and B.C. Geographic System map sheet 094C.065. Geographic coordinates at the centre of the property are latitude 56° 40' N; longitude 125° 10' W and the UTM coordinates are 6 282 000 N and 367 000 E in Zone 10.

There is excellent access to the property as a result of intense logging activity in the area. Access to the property is gained by driving 216 kilometres north from Mackenzie along the west side of Williston Lake on a main logging haulage road, then west for 18 kilometres, south for 10 kilometres and west for 3 kilometres to Delkluz Lake. Secondary logging roads are used to access the claims. Care must be taken on some of the secondary logging access roads because they cannot be driven by four-wheel drive vehicles as a result of the roads being deactivated by the logging contractor.

CLIMATE, TOPOGRAPHY AND VEGETATION:

The Ingenika area has cold, medium snowfall winters and warm, dry summers. The topography of the claims is relatively flat with low rolling hills that are heavily timbered by pine and spruce. In the clear cuts deciduous willows and poplars predominate.

HISTORY:

The original claims in the Ingenika area were staked in 1917 by S. Ferguson to cover the oxidized limestone hill, named Ferguson Hill. The oxidized limestone hill, located on the south bank of the Ingenika River, contains stratabound zinc, lead and silver sulphide mineralization consisting of sphalerite, galena and pyrite. The mineralization ranges from 1 to 3 metre thickness and strikes 100 degrees and dips north from 20 to 40 degrees.

In 1926 these claims were acquired by the Selkirk Mining Syndicate of Victoria. In 1927 Ingenika Mines Ltd. was formed and completed the existing historic underground development of drifting, crosscutting and raising from 1927 to 1932. There was also extensive trenching completed and some diamond drilling. The assessment report database has very limited information because the Ingenika Mine was covered by crown granted mineral claims and therefore assessment reports were not required.

The work completed from 1927 to 1932 was summarized in the Geological Survey of Canada, Memoir 274, by E.F. Roots. The underground development explored four base metal zones from four levels, the 1, 2, 4 and 5 levels. Ore was encountered in all levels except for the lowest level, 5-level, which is postulated as being driven too low in stratigraphy.

During the summers of 1956 and 1957 Consolidated Mining and Smelting Ltd. conducted geophysical and geological work in and around the Ingenika Mine, Onward, Onward South and Swannell showings. This work was followed by 3,602 metres of AQ core size diamond drilling. Dorita Silver Mines acquired the Ingenika Property in 1969 and completed surface and underground mapping and diamond drilled 550 metres in 21 drill holes. Dorita Silver Mines estimated the Ingenika Mine reserve at 22,677 tonnes grading 119.9g/t silver, 9.8% lead and 6.1% zinc. International Impala Resources acquired the Ingenika property in 1991 and completed 24 kilometres of VLF and magnetometer surveying, 7 kilometres of I.P. surveying, collected 490 soil geochemical samples and 14 rock samples. The company concluded that drilling east of the No.5 level workings would intersect the ore if it rakes northeast.

REGIONAL GEOLOGY:

The Ingenika area was mapped by Roots, whose work is documented in Geological Survey of Canada, Memoir 274, and published in 1954. There is no detailed stratigraphic correlation or fossil dates available from the rocks in the area of the Ingenika Property. The present interpretation of the rocks underlying the Ingenika area, in the vicinity of the claims, are correlated with the Upper Cambrian – Lower Ordovician Kechika Group which lies unconformably on Upper Proterozoic rocks of the Ingenika Group, correlated with the Windermere Supergroup.

The rock units underlying the Ingenika claims can be subdivided into the Ingenika and Kechika Groups. The lowest stratigraphic unit is sandstone and grit belonging to the Upper Proterozoic

Ingenika Group. The carbonate bearing strata of the Kechika Group overlies it and forms the core of a broad northerly plunging syncline, mapped by the G.S.C. The Kechika Group rocks disappear 3 kilometres south of the Swannell River because the syncline intersects the surface here.

PROPERTY GEOLOGY:

The Ingenika area was mapped by E.F. Roots, whose work is documented in Geological Survey of Canada, Memoir 274, and published in 1954. The lowermost unit consists of the Upper Proterozoic Ingenika Group, exposed by the Swannell River, consists of brown siltstone with several thin coarse sandstone and quartzite beds and schist. A 5-20 metre thick impure limestone bed caps the brown siltstone and underlies a group of distinctly carbonaceous siltstone, which is approximately 50 metres thick. The carbonaceous siltstone unit becomes less carbonaceous and distinctly carbonate-rich up-section where it is interbedded with limestone-dolomite beds of the Upper-Cambrian-Lower Ordovician Kechika Group. This carbonate-rich section hosts the mineralization, strikes at 100 degrees and dips 20 to 40 degrees north. This section is a mixture of coarse to fine clastic rocks with layers and beds of pure crystalline to impure silty limestone a few metres to 60 metres thick with an overall unit thickness of 80 metres. The mineralized sequence is overlain by a fine to coarse clastic sequence, which shows a gradational contact from limy siltstone to sandstone, grit and sericite phyllite.

The important showings, that were also mapped by Roots, consist of the Ingenika, Onward, Onward South and Burden. The Ingenika showing is not held by Cross Lake but is on three crown granted mineral claims surrounded by Cross Lake's claims and it is important to describe

in order to provide a comparison with the other showings and the interpretation of the soil sampling anomalies.

The Ingenika showing has been extensively explored by soil and geophysical surveying (VLF, magnetometer, and I.P.), geological mapping on surface and underground, trenching, diamond drilling and underground drifting, crosscutting and raises from four levels. Most of the work is confined on Ferguson Hill where the base metal mineralization is exposed. The mineralization is confined to the cream colored crystalline limestone of the Ingenika Group of Lower Cambrian age. The mineralization, 1 to 3 metres in thickness, consists of four parallel zones that are controlled by bedding. The bedding and mineralization strikes at 100 degrees and dips from 20 to 40 degrees north. The mineralization replaces limestone-quartz-siderite host and consists of pyrite, galena and sphalerite with lessor amounts of copper and silver sulphides. The upper three levels of underground development, the 1, 2 and 4-levels, intersected strong mineralization in the limestone host. However, the lowest level, 5-level, was driven through the limestone host and intersected schist where the mineralization was projected to from the upper levels.

The Onward and Onward South mineralization are in the same Lower Cambrian limestone host as the Ingenika mineralization and consist of galena, sphalerite and pyrite but differ in that they appear to cross-cut the limestone. At the Onward showing, on the south side of Delkutz Lake, the mineralization exposed by trenching is a siderite, quartz flooded brecciated vein system with galena, pyrite and sphalerite mineralization. The vein system strikes at 010° and dips vertical. At the Onward South trenches and old shaft, located 500 metres south of the Onward showing, Roots described the mineralization as consisting of sphalerite, galena and pyrite cross-cutting the stratigraphy and confined to a brecciated vein system. The mineralization is not exposed in place because the trenches and shaft are now filled with slumping overburden but rock samples collected from the dumps confirm the mineralization.

The Burden showing was not examine by the author but the following description is compiled from Roots G.S.C. Memoir 274. The Burden showing is located on the east side of the Swannell River, eight kilometres above its confluence with the Ingenika River. The Swannell River has exposed several irregular masses of white vein quartz in highly calcareous talc-sericite schist of the Ingenika Group. The quartz is cut by stringers of cream-colored crystalline calcite, and contains blebs and stringers of pyrite and chalcopyrite. About 30 metres downstream from the main quartz occurrence is a rounded massive sulphide boulder $0.6 \times 0.6 \times 1.2$ metres in size comprised of massive, fine-grained pyrite, chalcopyrite, covellite and bornite.

TRENCHING:

A program of excavator trenching was completed in July of 2002 to test the area of the MMI base metal soil anomaly. The contractor, 550226 B.C. Ltd. of Prince George, utilized a CAT Model 225 excavator to carry out the work. There were a total of four trenches completed but all failed to expose the bedrock due to the glacial till being deeper than 5.0 metres and safety considerations preclude going deeper (see Plan No. ING-02-4 for trench locations). The important factor determined by the trenching program was the discovery of fragments, up to 3 cm in size, of base metal mineralization consisting of sphalerite and galena. The details of the trenching program are set out in the following table.

Trench No.	Claim	Length (metres)	Width (metres)	Depth (metres)
IT-02-1	DEL 3	100	2	5
IT-02-2	DEL 5	25	2	5
IT-02-3	DEL 5	25	2	5
IT-02-4	DEL 5	25	2	5

DIAMOND DRILLING:

The diamond drilling program consisted of four, thin-wall NQ (NQTK) core size, holes totaling 491.24 metres. The drilling contractor was F. Boisvenu Drilling Ltd. of Delta, B.C. and a Super 38 drill unit was employed. The drill core was logged and split on site with one half of the core being delivered to and analyzed by Acme Analytical Laboratories Ltd. of Vancouver, B.C. Analytical reports and descriptive logs are appended in Sections D and E. The drill core remains stacked on the property beside drill hole CS-02-11. The drill hole details are summarized in the following table and shown on Plan Numbers ING-02-4 to ING-02-8.

Hole No.	Claim	Length (metres)	Overburden (metres)	Azimuth	Dip
CS-02-11	DEL 3	138.68	6.10	210°	-45°
CS-02-12	DEL 5	150.88	7.92	210°	-45°
CS-02-13	DEL 5	74.68	18.90	030°	-45°
CS-02-14	KLUZ 3	127.00	18.90	235°	-47°
Total		491.24			

Three holes (CS-02-11, 12 and 13) were drilled in the vicinity of the trenching and the corresponding 2001 MMI soil anomaly; one hole, CS-02-11, being on the Ingenika Property and two holes, CS-02-12 and 13, being on the Swannell Property. Hole CS-02-14 was drilled on the south side of the Swannell River on the Swannell Property.

The first three holes (CS-02-11, 12 and 13) were designed to test the MMI soil anomaly and verify the orientation of the stratigraphy. The holes intersected favorable dolomotic limestone, the preferred host for base metal mineralization but failed to encounter any mineralization of significance.

Hole CS-02-14 intersected the base metal mineralization of the Swannell Showing and an intersection from 64.4m to 65.4m in a graphitic fault zone consisted of sphalerite, galena and pyrite with crushed limestone fragments that graded 2.97% zinc and 0.68% lead.

CONCLUSIONS:

The original claims in the Ingenika area were staked in 1917 by S. Ferguson to cover the oxidized limestone hill subsequently named Ferguson Hill. The oxidized limestone hill, located on the south bank of the Ingenika River, contains stratabound zinc, lead and silver sulphide mineralization consisting of sphalerite, galena and pyrite. The mineralization ranges from 1 to 3 metres in thickness and strikes 100 degrees and dips north from 20 to 40 degrees. The Ingenika Property, 100% owned by Cross Lake Minerals Ltd., surrounds the three crown granted claims of the Ingenika Mine and covers two base metal showings named the Onward and Onward South. The two showings contain significant values in zinc, lead and silver.

The experimental test work of comparing conventional versus Mobile Metal Ions (MMI) soil sampling and analyses proved that the MMI method outlined the known mineralization more effectively than conventional soil sampling. Based on this favourable comparison a survey area was selected to cover the known showings and a 500 x 800 metre area south of the known areas of mineralization where there is no bedrock exposure.

The MMI soil sampling survey was successful in outlining the known mineralization and extending the anomalous area along strike. Most importantly the survey discovered two new high priority soil anomalies located southwest of the known mineralization. The most important soil geochemical anomaly is located in the southwestern area of the grid and is still open along strike. This 500 metre anomalous area has higher values in the soil than where the survey covered the known high grade mineralization.

Also observed in this area where the logging contractors have constructed roads is angular manganese stained limestone float with semi-massive pyrite. This material is very similar to the Ingenika Mine host rock, located 2.5 kilometres north of the survey area. All of the soil anomalies have a similar strike direction as the mineralization at the Ingenika Mine.

Based on the favorable soil results a trenching program was initiated to try and expose the bedrock with a CAT 225 size excavator. The glacial till was too deep to expose the bedrock, the thickness being greater than 5.0 metres. The important factor determined by the trenching program was the discovery of fragments, up to 3 cm in size, of base metal mineralization consisting of sphalerite and galena.

The diamond drilling completed in 2002 in the area of the trenching and MMI sampling failed to intersect the source of the base metal till fragments. One hole (CS-02-14) drilled on the south side of the Swannell River was successful in intersecting low grade, narrow base metal mineralization in the Swannell Showing.

RECOMMENDATIONS:

The next phase of exploration on the Ingenika and Swannell Properties should consist of a test survey of the newly developed 3-D Inversion IP geophysical method over an area of known mineralization to determine if the system can outline the known mineralization, such as the Ingenika Mine mineralization. If this is successful then a larger survey crossing the stratigraphy should be completed.

Respectfully submitted ហមាទតិ Jim Miller-Tait, P.Geo.

AUG 2 0 2003

LIST OF REFERENCES:

J. Chapman, T. Lewis, Jan. 10, 1991. Geological, Geophysical and Geochemical Report on the Ferguson Project for International Impala Resources Ltd.

Gabrielse, H., Unpublished GSC Map of the Mesilinka Map Area, 94C.

Mawer, A.B., 1982. Cominco Year End Report on the Swannell Group.

Mawer, A.B., 1986. Cominco Year End Report on the Swannell Group.

Mansy, J.L. and Gabrielse, 1978. Stratigraphic Terminology and Correlation of Upper Proterozoic Rocks in Omineca and Cassiar Mountains, North-Central B.C., GSC Paper 77-19.

Miller-Tait, J. (August 2001): Geochemical Sampling Report on the Swannell Property, KLUZ 1-5 Mineral Claims, for Cross Lake Minerals Ltd.; NTS 94C/11E; B.C. Assessment Report #26,608

Miller-Tait, J. (November 2001): Diamond Drilling Report on the Swannell Property, KLUZ 1-5, DEL 4 and 5 Mineral Claims, for Cross Lake Minerals Ltd.; NTS 94C/11E; B.C. Assessment Report #26,702 Miller-Tait, J. (December 2001): Geochemical Sampling Report on the Ingenika Property, DEL 3 Mineral Claim, for Cross Lake Minerals Ltd.; NTS 94C/11E; B.C. Assessment Report #26,794

Roots, E.F., 1954. Geology and Mineral Deposits of the Aiken Lake Map Area, B.C., GSC Memoir 274.

STATEMENT OF QUALIFICATIONS:

For: Jim Miller-Tait of 828 Whitchurch Street, North Vancouver, B.C. V7L 2A4

I graduated from the University of British Columbia with a Bachelor of Sciences Degree in Geology (1987);

I have been practicing my profession as a geologist in mineral exploration and mining continuously since 1987;

I am a fellow in good standing with the Geological Association of Canada;

I am a registered member in good standing as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia;

The observations, conclusions and recommendations contained in the report are based on field examinations, personal sampling, and the evaluation of results of the exploration programs completed by the operator and agreement holder of the property.

MILLER TAIL DRITISH ig. 20/2003 Miller-Tait, P.Geo

SECTION B: PROPERTY

i

INGENIKA /SWANNELL	SCHEDULE (OF MINI	ERAL	. CLAIMS
PROVINCE: British Columbia	CLAIMS: 10	UNITS: 1	130	AREA: 3250 ha
MINING DIVISION: Omineca	NTS: 94C/11E		BCG	S: 094C.065
LOCATION: near the Ingenika Mine and	LATITUDE: 56°	39'	LON	GITUDE: 125° 10'
Delkiuz Lake some 250 km northwest of	UTM: ZONE 10	6 282	000N	367 000E
Mackenzie and 108 km north-northwest of	PROPERTY INT	ERESTS:		<u></u>
Germansen Landing	Ingenika: Cross I	ake Miner	als Ltd	l. - 100%
MAP SHEET (1:250 000): 94C - Mesilinka River (1:50 000): 94C/11 - Ingenika Mine	Swannell: Teck C Agreement with			100%. Option nited dated April 24,
	1 2			tober 31, 2001 and
	April 29, 2003 wh	ereby Cros	ss Lake	e may earn a 100%
	interest subject to	a 2% Net	Smelte	er Return Royalty.

CLAIM	RECORD	UNITS	RECORD	DUE DATE	ANNUAL	RECORDED
NAME	NUMBER		DATE (yyyy-mm-dd)	(yyyy-mm-dd)	WORK REQUIRED	HOLDER
INGENIKA F	DDODEDTV.	<u> </u>	())))	<u> </u>	REQUIRED	
· · · · · · · · · · · · · · · · · · ·		20	2000 07 20	2005 07 20	1000.00	Concert also Minorale I tol
DEL 1	379605	20	2000-07-29	2005-07-29	4000.00	Cross Lake Minerals Ltd.
DEL 2	379606	18	2000-07-29	2005-07-29	3600.00	Cross Lake Minerals Ltd.
DEL 3	379607	<u>16</u>	2000-07-28	2005-07-28	<u>3200.00</u>	Cross Lake Minerals Ltd.
		54			10800.00	
SWANNELL	PROPERTY:			<u> </u>		
KLUZ 1	238502	09	1981-09-09	2005-09-09	1800.00	Cominco Mining
						Worldwide Holdings Ltd.
KLUZ 2	238503	09	1981-09-09	2005-09-09	1800.00	11
KLUZ 3	238504	09	1981-09-09	2005-09-09	1800.00	н
KLUZ 4	238505	09	1981-09-09	2005-09-09	1800.00	"
KLUZ 5	238991	18	1985-05-29	2005-05-29	3600.00	11
DEL 4	386927	06	2001-05-23	2005-05-23	1200.00	Cross Lake Minerals Ltd.
DEL 5	390517	<u>16</u>	2001-10-16	2005-10-16	<u>3200.00</u>	Cross Lake Minerals Ltd.
		76		_	15200.00	
		130			\$26000.00	

ASSESSMENT WORK SUMMARY

Date of Filing (yyyy-mm-dd)	Work Filed \$	New Work Applied \$	Banked Credits Applied	Banked Credits Saved	Total Banked Credits	Date of Approval (yyyy-mm-dd)	Event Number
2001-01-24	5400.00	5400.00	0	0	0	2001-01-24	3159810
2001-05-28	3600.00	3600.00	0	0	0	2001-10-24	3165802
2001-08-24	Notice	to Group	0	0	0	-	3172061
2001-08-24	20236.35	18600.00	0	1636.35	0	2001-10-24	3170262
2001-09-07	43389.96	22800.00	0	0	0	2001-10-24	3170821
2002-02-18	Notice	to Group	0	0	0	-	3176212
2002-02-18	6776.59	15600.00	0	7070.23	0	2002-04-22	3176213
2003-07-29	49592.84	10800.00	0	38792.84			3197792

SECTION C: EXPENDITURES (2002)

)

Item	Work Performed	Quantities / Rates	Amount
Project Geologist:	Project supervision, geological		
J. Miller-Tait, P.Geo.,	mapping, channel sampling, soil		
Sikanni Mine	sampling and core logging		
Development Ltd.	Period: Jul 08-14, 2002	6 days @ \$374.50	\$2,247.00
	Sep 13, 14, 16-28, 2002	15 days @ \$374.50	<u>5,617.50</u>
			7,864.50
Field Assistant:	Core Splitting		
F. Miller-Tait	Period: Sep 16-29, 2002	14 days @ \$267.50	3,745.00
Transportation:	4x4 pickup truck:	i l	
Vancouver to	Period: Jul 08-14, 2002	6 days @ \$75.00	450.00
property, onsite and	Sep 16-28, 2002	13 days @ \$75.00	975.00
return		Fuel	518.46
	Air fare: Prince George to	1 person	<u>230.29</u>
	Vancouver		2,173.75
Accommodation and	Period:		
Meals	Jul 08-14, 2002		400.21
	Sep 16-28, 2002		1,226.62
	•		1,626.83
Trenching Contractor:	Link Belt Model 2800	24.32 hrs @ \$133.75	3,252.80
550226 BC Ltd.	excavator during the period	Lowbed Transport	2,439.60
	from Jul 11-16, 2002		5,692.40
Diamond Drilling:	Mobilization / demobilization	Transport charges	4,922.00
F. Boisvenu Drilling	NQTK drilling:	491.24 metres	25,439.22
Ltd.	Moving, cat work, acid tests		2,983.16
	and extra labour costs		
	Drilling materials including 66		<u>1,893.17</u>
	core boxes		35,237.55
Field Supplies	Field materials, sampling		
r r r	supplies and core splitter		
	Period: Jul 08-14, 2002		173.64
	Sep 2002		<u>364.99</u>
			538.63
Analytical Services:	ICP-MS 35 element analysis:	<u></u>	
Acme Analytical	Trenching samples	7 samples	102.94
	Drill core samples	79 samples	1,185.96
	F		1,288.90
Report Preparation:	J. Miller-Tait, P.Geo.	4 days @ \$374.50	1,498.00
Drafting:	Base Map Preparation, Data	10.0 hrs.@ \$53.50	535.00
Geodrafting Services	Plotting and Geological Map		555.00
Ltd.	Preparation		
Printing	Kinko's Copy Centre		30.61
Total			\$60,231.17

Expenditure Apportionment:

 \bigcirc

()

ł

Work Program	Mineral Claims	Work Quantities	Expenditure
Phase 2002-1:	DEL 3 (Ingenika Property)	Trenching: 100 metres	\$5,755.84
Trenching	DEL 5 (Swannell Property)	Trenching: 75 metres	4,316.88
Sub-total		Trenching: 175 metres	\$10,072.72
	······································	Cost per metre:	\$57.56
Phase 2002-2:	DEL 3 (Ingenika Property)	Drilling: 138.68 metres	\$14,160.03
Drilling	DEL 5 (Swannell Property)	Drilling: 225.56 metres	23,030.98
3	KLUZ 3 (Swannell)	Drilling: 127.00 metres	12,967.44
Sub-total		Drilling: 491.24 metres	\$50,158.45
• • • • • • • • • • • • • • • • • • • •		Cost per metre:	\$102.11
Total Expenditures	DEL 3 (Ingenika Property)	······································	\$19,915.87
	DEL 5 (Swannell Property)		27,347.86
	KLUZ 3 (Swannell)		12,967.44
			\$60,231.17

SECTION D: ANALYTICAL RESULTS

1. Analyses carried out by Acme Analytical Laboratories Ltd., Vancouver, B.C.

- Certificate of Analysis A202454 dated July 31, 2002
- Certificate of Analysis A202659 dated August 8, 2002
- Certificate of Analysis A204375 dated October 23, 2002
- Statement of Analytical Procedures

PHONE (604) 253-3158 FAX (604) 253-1716 852 B. HASTINGS ST. VANCOUVER BC V6A 1R6 ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) AUG 0 7 2002 / GEOCHEMICAL ANALYSIS CERTIFICATE Cross Lake Minerals File # A202454 800 W. Pender St., Vancouver BC V6C 2V6 Submitted by: Jim Willer-Tait 240 . Ва Ti A1 Na ĸ W Ga SAMPI F# Мо Cu Pb Zn Ag Ni Co Mn Fe As 11 Au Th Sn Cd. Sb Bi ſa 1 a fr Ma R Ha Sc ς. 2 1 DDM ¥ DOM X 000 ĩ X X DDM DDM DDM X DDM DDM DDM pom DOM 1 nom daa maa nnm DDM DDB DOM DOM DOM DDM DDM ppm naa DDM DDM .09 <.5 <.1 <.5 <.1 4 <.1 .14 .001 <1 3.5 <.01 5<.001 .02 .401 .01 .5 01 1 < 1 < 05<1 7 .1 <.1 1 1 7 13 8 1 < 1 .8 1 .2 35.0 .8 37 16.6 6.3 <.1 1 .73 .044 1 4.4 .31 56 .007 <1 .05 .002 .02 1.9 .37 .7 .1 4.63 1 206501 🔨 .8 9.8 2968.2 10200 2.2 3.6 2.9 17239 19.17 38.9 42< 001 <1 03 004 01 6 36 .7 6.9 2627.9 7451 2.2 2.1 1.6 9985 24.92 21.4 .2 33.1 .5 31 10.2 4.9 <.1 2 89 030 1 3.7 .17 .7 < 1 2.90 1 206502 .1 2.2 15393.5 13851 8.1 <.1 3.4 498 .53 1.0 .1 1.2 .2 286 67.0 14.1 .3 1 37.65 .002 1 1.5 .25 7 .002 <1 .05 .001 .01 .1 .06 .1 <.1 .98 <1 206503 .1 1.9 817.4 6873 .5 .1 1.7 814 .67 1.3 .1 .6 .1 323 33.5 .7 <.1 2 1.2 .67 6<.001 <1 .04 .001 .01 <1 1 36.88 .001 .1 .04 1 < 1 .39206504 .9 .2 .7 .1 229 322.0 13.7 .6 <1 28.67 .001 2 <1 1.76 6 .001 <1 .02 .002 .01 .2 .23 .2 <.1 1.98 <1 206505 .2 10.9 16600.3 51194 9.0 .8 13.0 2234 2.75 2 4 1 27095.6 7571 15.7 4.0 5.5 4697 8.06 3.4 .2 .6 .2 195 37.0 27.0 1.2 1 22.17 .003 2 1.1 4.64 6<.001 <1 .05 .004 .01 .1 .05 .2 <.1 1.16 <1 206506 9.1 121.3 33.8 161 .3 34.7 11.4 823 3.37 31.6 6.5 22.0 3.6 28 6.3 5.4 5.3 81 .56 .088 6 STANDARD DS3 17 179.7 .59 141 .086 2 1.79 +034 .15 3.6 .22 4.1 1.1 < .05 GROUP 1DA - 10.0 GN SAMPLE LEACHED WITH 60 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 200 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; HO, CO, CD. SB. BI, TH. U & B = 2,000 PPM; CU. PB. ZN. NI, NN. AS. V. LA. CR = 10.000 PPM. - SAMPLE TYPE: ROCK R150 60C DATE RECEIVED: Assay recommend for Pb, sonopom Bn = 1%

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

ACME AN (IS					ORIES d Co.		D.	(352 B	188 B									i di seleta		PHON	E (6	04):	253-	315	8 FA	X (504)	253	-17:	L6
AA							240	<u>C1</u> - 800	GE <u>CO88</u> W. Pei	La	ke l	Min	era:	Lø	Fil	CERT 9 # Submi	A20	265	9	ler	Tait									Ą	
MPLE#	Мо ррт	Cu ppm			g Ni m ppm		Mn Ippm	Fe %	As ppn p	U / om pi	Au Th pb ppr	h Sr nippm	Cd ppm p	Sb B spm ppr	i V m.ppm	Ca %	Р % р		Cr ppm	Mg % j	Ba opm	Ti %p		Al %	Na %	K % pp				S X	Ga ppm
206507 TANDARD DS3	.9 8.8 1	1.7 1 3.8	98.3 8 34.7 1	18 . 58 .	3 28.8 3 33.7	11.5	819 782	2.94 3.15	17.6 31.9 6	.5 2 .2 19	.4 7.1	1 165 1 28	1.2	.9 .: .0 6.	2 13 1 75	4.20 . .54 .	037 084	10 1 18 17	7.91. 3.2	.02 .56	66 .0 139 .0)11)83	1 . 2 1.	86.0 67.0	11 . 32 .	11 1. 15 3.	0.0 8.8)4 2. 24 4.	8.' 01.'	.49 <.05	3 6
waynell		UPPER	LIMIT	5 - A		HG,			TH 60 I M; MO,																						
DATE RE	CEIV		JUL 30				REPO	RT 1	AILE	D: /	Ana	z 8	102	- 5	IGNE	D BY	\mathcal{C}	ĥ.		1 D.	TOYE,	C.LE	EONG,	J. WA	NG;	CERTI	FIE	D 8.0	. AS	SAYER	S
										•	' 	· /	/							1	·		·								

-

C																		(2															(\sum			
ACME A								RIE Co		TD.		8										r BC Leri					Phoi	TE (6	04):	253-	315	8 P 1	(X ()	504)25	3-1	716	
A A							<u>C1</u>	<u>coa</u>	a l				er	ale	i Pi	to;	EC	T S	JUAI	NNE	LL	Fi Submi	.1e	# 2	1204				ge	1	00	'T 2	? 9	200	12			k •
SAMPLE#	M PP	40 2011		P P			-	Ni ppm		n pp									d Sib n ppm					La ppm		M	y Ba Kippm	Ti X	B ppm	Al X	Na X							
SI E 178001 E 178002 E 178003 E 178004	1.	.9 .3 .8	18.9 29.0 27.6	10.	97 38 18	8. 8. 6.	1 : 1 : 1 :	34.6 31.5 36.2	16.3	84 73 84 84	53. 53. 03.	60 48 53	4.6 18.5 5.9	1.1 1.1 1.0	1.6 1.9 2.0	9. 9. 9.	1 294 5 306 8 216	4 . 6 <. ⁻ 6 <	1.3 1.4 1.3	.3	14 9 14	.10 8.38 9.82 6.53 7.48	.033 .030 .031	10 4 7	44.8 16.4 34.8	1.50 1.70 1.60) 70 5 45) 33	.012 .009 .012	3 4 3	2.08 1.04 1.82	.033 .029	.12 .13 .13	.4 .8 .4	.01 .01 .01	3.2 3.8 3.2	<.1 <.1 <.1	.11 .23 .08	<1 7 3 6 3
178005 178006 178007 178007 178008 09 09	1.	.5 .8 .1	19.0 17.8 22.6	17. 10. 13.	56 37. 67.	1. 3. 2.	1 1 1 1 2 1	29.3 34.7 32.3	12.8 15.7 15.3	69 83 74	42. 23. 93.	99 79 35	3.4 8.3 5.0	1.0 1.1 1.1	3.1 1.9 2.0	7.1 9.0 10.0	3 389 8 323 0 367	9 3 <. 2 .	1.1 1.2 1.2	.2 .2 .2	12 13 11	12.13 10.56 10.49 10.74 9.20	.024 .030 .038	10 11 11	26.6 29.1 24.1	1.2 1.8 1.6	38 2 48 38	.013 .012 .012	2 2 2	1.55 1.74 1.58	.033	.11 .14 .13	1.6 .2 1.0	.01 .01 .02	2.9 3.9 3.5	<.1 .1 .1	.27 .16 .19	6 5 5 5 5 5
178010 178011 178012 178013 178014	1.	.3 .9 .9	12.0 17.2 18.2	5. 11. 10.	551 051 981	3 <. 7 <. 8 .	1 2 1 2 1 3	24.6 29.9 <u>37.9</u>	12.2 15.3 18.5	45 90 61	82. 13. 2 <u>3.</u>	85 61 1 96 2	8.3 16.9 23.9	.9 1.0 1.3	2.2 2.1 1.3	7.2 9.1 10.1	2 218 8 260 5 208	8 <.' 0 <.' 8 <.'	1.1 1.3 1.3	.1 .3 .2	11 7 11	8.41 7.15 11.09 <u>8.83</u> 11.80	.025 .025 .029	7 21 5	43.0 17.5 31.7	1.10 1.78 1.84	5 37 3 31 5 40	.011 .007 .011	2 2 6	1.31 .92 1.51	.057 .047	.12 .10 .13	.7 1.0 .3	.01 .01 .01	3.1 3.3 3.9	<.1 <.1 <.1	.18 .30 .24	6 4 3 5 5
178015 178016 178017 178018 178019	1	9 4 9	29.9 58.1 30.2	14. 11. 21.	4 9) 7 11; 7 11(0. 2.	2 / 2 13 1 /	40.7 30.2 47.1	19.5 32.2 23.2	56 103 54	64. 55.	06 54 3 47 1	5.9 50.6	1.0 .7 1.3	1.7 1.6 1.9	11.0 4.0 11.9	6 165 5 392 9 158	5.° 2.°	1.2 1.7 1.1	.3 .2 .5	14 60 15	10.51 5.52 11.57 4.65 5.49	.026 .119 .030	9 8 4	30.5 170.2 32.1	1.8 2.6 1.6	38 27 33	.011 .009 .014	2 1 4	1.94 2.24 2.02	.049 .057 .029 .059 .058	.14 .07 .11	.8 .2< .9<	.01 .01 .01	3.4 8.2 3.4	<.1 <.1 <.1	.23 .29 .45	6 6 8 7 6
178020 E E 178020 RE E 178020 178021 178022	1.	2 8 9	21.9 17.9 22.2	11.1 9.3 24.9	B 61 3 7! 9 9'	0. 5. 1.	1 3 1 3 1 3	32.4 34.5 37.9	16.0 16.8 17.4	65 65 74	13. 53. 03.	68 3 78 3 62 2	2.2 3.0 2.7	1.1 1.0 1.1	1.3 2.7 .7	10.0 10.0 11.3	0 121 0 110 3 232	1 -' 5 -' 2 -'	1.1 1.1 1.2	.3 .2 .3	8 8 5	5.47 5.26 5.31 9.14 9.16	.024 .024 .029	6 6 10	18.6 28.8 11.6	1.55	i 32 i 33 i 32	.009 .010 .003	2 1 3	1.06 1.06 .60	.061 .060 .063 .062 .054	.13 .13 .12	1.5 .4< .9	.01 .01 .01	3.5 3.5 3.5	<.1 <.1 <.1	.25 .27 .29	3 3 3 2 6
178023 178024 0 925 J26 0 178027	1.	8 4 1	25.3 23.8 25.3	14.3 14.9 10.0	38! 959 08:	5. 9<. 3<.	1 3 1 3 1 3	38.9 32.5 33.7	17.6 14.8 16.2	64 92 69	53. 33. 33.	94 1 45 69	7.0 7.0 4.6	1.5 1.4 1.5	3.3 1.6 1.1	11.3 10.6 10.9	5 204 5 324 9 217	· <.' · · ·	.3 .2 .1	.2 .3 .2	12 6 14	9.87 6.22 13.70 6.49 5.51	.027 .026 .024	9 19 8	32.3 12.2 34.3	1.63 2.04 1.94	52 31 51	.011 .003 .009	2 1 1	1.58 .75 1.56	.082 .035 .069	.14 .10 .15	.4< .7< .4<	.01 .01 .01	3.9 3.3 3.7	.1 <.1 <.1	.31 .27 .15	6 5 2 5 4
178028 178029 178030 178031 178032 0	1. 1. 1.	.1 .3	24.6 25.3 26.3	11.(9.(8.(060 679 68	6. 9. 1.	8 2 1 2 1 4	26.1 34.3 43.1	14.6 14.6 18.9	58 49 51	33. 23. 13.	40 1 55 1 91 1	5.3 0.0 3.9	1.2 1.8 1.2	.6 2.7 1.8	8.5 8.7 10.3	5 411 7 195 3 111	i < '	.3 .2	.2	6 9 12	5.60	.020 .022 .025	6	10.6 18.7 28.6	1.85	90 98 57	.001 .002 .011	1	.69 1.19 1.42	.069 .057 .059	.10 .11 .12	6.7< 1.4< .4	.01 .01 .01	4.3 3.5 3.9	<.1 <.1 <.1	.23 .17 .25	2 2 4 5 4
STANDARD DS	6.	.7 1	GR UPI	oup Per i	1DA - Limii	- 10 TS -	.0 (AG,	GM SA	MPLE HG,	LEAC	CHED 100		'H 60 I; MC) ML), CO	2-2-2 , CD,	2 HCL SB,	HNC , 81,)3-H2 , тн,	20 AT	95 E B =	DEG. 2,00	.55 C FOR O PPM are	ONE; CU,	HOUR, PB,	DILU ZN, N	TED 1	0 200	D ML.	ANAL	YSED	BY IC	P-MS		.28	3.5	1.2<	.05	6
DATE	RE	CEI	VBI	D :	OCT	7 Z	002	D	ATE	REI					_) BY	0	T		- 7 9.	TOYE,	C.LE	ONG,	J. W	ANG;	CERT	IFIEI	D 8.(C. A:	SSAYI	ERS	
All resu	ults	are	e cor	nside	ered	the	con	nfide	ntia	l pro	per	ty o	fth	e cl	ient.	Acm	ne as	/ sume	s the	e lia	abili	ties	for a	ctual	cost	Åf t	he ar	nalysi	is on	ly.				Da	ta_	(FA		_

Cross Lake Minerals PROJECT SUANNELL FILE # A204375 Page 2 ACHE ANALYTICAL ACHE ANNI YTICAL SAMPLE# Мо Cu Pb Zn Ag Ni Co Mn Fe U Au Th Sr Cd Sb Bi As ۷ Ca ΡLa Cr Ba Ti В - 11 S Ga Mg A] Na ĸ W Hq Sc ppm. ppm ppm DDM ppm ppm ppm ppm Stepping ppm ppb ppm ppm ppm ppm DDUL ppm 8 X ppm ppm X ppm ¥ ppm 2 8 * ppm ppm ppm ppm **%** ppm m 1.0 14.4 E 178033 5 24.3 1.78 7.5 71 <.1 37.1 15.8 484 3.41 13.6 1.4 1.7 12.4 118 <.1 9 5.48 .025 63 .006 2 1.13 .043 .1 .1 .11 .2 .01 3.6 <.1 .14 E 178034 1.6 38.6 7.9 78 <.1 38.0 16.8 451 3.39 13.3 .9 .8 10.8 130 <.1 T .2 .1 10 6.03 .024 6 22.2 1.67 55 .006 2 1.26 .050 .11 1.5 <.01 3.2 <.1 .16 J 1.2 32.4 E 178035 9.0 56 <.1 30.1 15.4 413 3.10 18.3 1.5 1.0 9.3 101 <.1 .2 .3 8 4.54 .021 4 27.7 1.50 51 .005 1 .96 .073 .11 .3 <.01 3.1 <.1 .55 3 ö E 178036 .4 19.0 13.7 62 <.1 26.6 13.3 614 2.79 3.7 .9 <.5 9.9 475 <.1 36 .009 .1 .2 10 14.54 .024 19 18.1 1.52 1 1.40 .042 .14 .1 .01 4.2 <.1 .17 5 η υ E 178037 60 <.1 27.0 13.7 711 2.96 12.0 1.0 1.2 10.0 362 <.1 .8 15.8 12.6 .2 7 12.02 .031 .2 20 17.9 1.73 32 .007 1 .84 .044 .12 .1 <.01 3.9 <.1 .20 3 O E 178038 8.4 7.5 42 < 1 21 2 10 1 665 2.15 21.5 .6 1.5 5.8 399 6 11.63 .017 <.1 9 13.6 1.07 35 .005 1 .69 .032 .10 1.7 .01 2.9 <.1 2 12 E 178039 22.9 23.7 89 1 37.0 17.5 633 4.08 19.4 1.8 1.3 12.3 140 .7 .1 .3 .2 15 2.58 .032 18 33.4 1.02 72 .004 3 1.80 .027 .18 .4 <.01 3.7 .1 .25 6 E 178040 .8 18.1 14.8 62 <.1 29.8 11.7 423 2.90 20.0 1.9 <.5 9.3 610 .3 .2 .1 6 12.83 .035 8 9.7 .73 67 .001 2 .60 .018 .13 .9 <.01 3.1 .1 .73 2 E 178041 .7 19.4 15.3 81 <.1 32.7 14.9 401 3.29 30.3 2.0 .7 10.2 350 .1 .5 .2 7 7.92 .031 5 17.8 .81 60.002 1 .86 .020 .14 .3 <.01 2.9 .1 .65 3 E 178042 1.3 19.3 16.8 79 <.1 30.1 16.3 453 3.23 33.8 1.8 3.5 12.3 91 <.1 .5 .1 9 1.68 .046 12 17.4 .82 58 .002 1 1.05 .023 .15 1.4 .01 2.6 .1 .15 .043 F .8 20.2 14.1 91 <.1 36.7 19.6 473 3.94 44.4 1.6 4.7 11.2 67 <.1 .4 16 1.00 .021 13 34.2 1.06 62 .003 .1 2 1.58 .023 . 16 .3 .01 2.9 6 .1 E 178044 4 2.0 31.3 13.6 84 .1 64.8 21.3 818 4.26 35.0 1.4 2.1 12.4 128 .7 .2 19 1.66 .051 .1 9 45.7 1.68 3 1.76 .015 61 .003 .15 1.3 <.01 3.5 .1 .35 5 E 178045 .7 23.3 12.5 93 .1 39.3 19.7 549 4.54 30.5 1.7 .8 10.8 86 .6 .2 12 1.37 .027 9 24.6 1.07 .1 71.002 2 1.09 .022 .14 .5 <.01 3.6 .1 .45 4 E 178046 .1 34.7 17.8 523 3.76 65.6 1.5 9.7 11.0 8 1.2 24.9 11.8 65 97 .1 .5 .2 7 1.83 .020 9 15.0 .83 55 .002 9 .85 .037 .17 1.5 .01 3.1 3 .1 .58 E 178047 .6 27.0 75.4 171 .1 32.0 13.9 542 3.43 45.3 1.7 .6 9.2 279 .9 .8 .3 6 7.02 .033 5 16.3 2 .38 .030 .97 62.001 .12 .3 .01 3.4 .1 .53 1 E 178048 0 1.0 24.1 20.1 82 .1 36.8 17.5 672 4.23 27.2 1.5 <.5 10.9 139 12 17.9 1.07 78.002 <.1 .6 .3 12 2.72 .041 4 .90 .019 .15 1.4 .01 4.1 3 .1 .36 E 178049 3.4 26.7 92 16.6 .1 33.0 14.1 384 3.25 35.0 2.1 .8 5.6 302 .4 2.3 .2 8 8.05 .035 4 12.9 1.20 92<.001 1 .27 .019 .11 .5 .01 3.6 .1 1.29 1 £ 178050 4.0 28.5 20.8 95 .2 .2 39.5 15.9 349 3.34 32.5 3.2 <.5 6.6 125 .3 3.2 7 4.57 .046 4 7.5 1.23 85<.001 1 .30 .019 .12 1.2 .01 3.8 .1 1.38 1 RE E 178050 4.0 28.7 22.4 94 .2 40.4 16.2 355 3.42 31.8 3.2 <.5 6.7 125 .4 3.2 .2 8 4.66 .048 4 8.2 1.24 85.001 1 .32 .020 .13 1.2 .01 3.9 .1 1.36 1 RRE E 178050 4.2 30.2 20.1 84 .2 42.1 16.7 324 3.26 33.5 3.2 <.5 6.8 113 .3 3.3 .3 7 4.14 048 4 8.1 1.12 73<.001 2 .28 .019 .12 1.2 .02 3.8 .1 1.35 1 E 178051 5.0 60.6 .4 47.4 18.2 473 3.99 71.6 1.9 <.5 5.7 134 33.5 96 .6 3.1 7 3.81 .079 3 26.5 1.13 .3 84 .001 2 .27 .015 .12 .7 .01 3.0 .1 2.86 E 178052 25.8 15.8 40.7 106 .4 30.7 7.2 652 1.98 31.3 4.8 <.5 3.7 203 .6 3.7 .1 27 6.23 .042 3 10.3 1.82 180 .001 .07 2.3 .01 2.1 1 .16 .006 .1 1.37 <1 E 178053 55.1 28.0 31.1 136 .4 35.4 10.2 547 2.28 29.4 5.3 <.5 4.1 205 .6 4.2 .2 22 6.60 ,046 3 31.6 1.48 200<.001 2 .20 .009 .09 1.4 .01 2.1 .1 1.58 1 E 178054 3.8 21.2 14.1 68 .1 34.1 12.4 305 2.86 28.6 2.6 .8 6.6 105 .1 3.4 .2 6 4.52 .044 4 19.5 1.14 66<.001 1 .24 .015 .13 .5 .02 3.3 .1.99 1 E 178055 2.6 18.6 100.0 .2 338 .2 24.8 8.7 636 2.69 24.7 2.6 <.5 5.6 164 .6 3.5 4 9.67 .068 4 6.2 1.23 54 .001 1 .21 .010 .12 1.0 .05 2.9 .1 1.04 1 E 178056 2.1 28.1 6782.6 29701 7.6 19.4 14.4 603 2.22 57.3 1.5 .7 3.6 201 46.0 10.4 .1 3 11.88 .039 3 17.7 .48 44<.001 1 .17 .008 .10 .7 5.96 1.6 .3 3.12 2 E 178057 4.0 23.0 912.3 9277 1.9 26.4 15.8 872 3.37 46.4 2.0 <.5 4.2 159 14.8 6.5 .2 4 10.66 .043 2 6.1 1.01 32<.001 1 .17 .010 .10 1.2 .52 2.2 .1 2.81 1 E 178058 .9 5.5 44.0 272 .2 12.1 7.1 3935 3.71 18.8 .7 2.7 2.5 123 .4 1.5 <.1 5 12.33 .026 1 21.1 4.04 32<.001 1 .11 .005 .06 .5 .05 1.1 .1 1.02 <1 F 179059 .9 10.2 5.4 25 <.1 36.0 16.5 884 3.46 36.9 .4 1.4 6.8 29 <.1 2.1 2 1.22 .030 .3 8 4.9 .62 51<.001 1 .18 .009 .12 .8 . 02 1 1.9 .1 .79 L _060 .6 36.5 4.2 29 .1 38.5 20.6 1316 4.69 26.8 .7 .9 6.5 42 <.1 1.1 .4 3 2.08 .041 9 14.0 .91 40<.001 1 .21 .007 .13 .5 01 2.3 <.1 .58 1 E 178061 .8 18.9 117 4 13.79 .080 13.5 .1 17.6 10.3 848 2.42 13.4 .9 <.5 6.5 203 .1 1.3 .2 4 4.0 69.001 . 84 1 .18 .009 .10 .6 .01 2.4 .1 .78 1 E 178062 1.0 28.4 7.8 86 <.1 27.1 15.3 686 3.11 6.1 .6 .7 8.0 77 <.1 .7 .2 3 7.32 .071 2 4.4 .78 57 .001 <1 .20 .010 .10 .7 .01 1.9 .1 1.00 1 E 178063 .9 28.1 12.9 70 <.1 23.8 13.8 813 2.79 8.4 .7 1.3 8.4 101 <.1 .9 .2 4 9.68 .097 2 9.9 .81 90.002 1 .27 .014 .13 .2 .01 2.0 .1 1.05 1 E 178064 5.6 19.0 25.1 217 .1 45.0 12.8 586 2.53 19.4 1.6 1.2 6.2 92 9 1.6 .2 11 7.72 .084 2 13.5 .79 94 .002 1 .24 .017 .11 .3 .01 1.8 .2 1.11 1 STANDARD DS4 6.7 121.3 28.9 160 .3 35.4 12.3 812 3.14 22.5 6.5 27.6 3.9 27 5.3 4.9 5.0 74 .54 .082 16 169.5 .59 140 .094 2 1.72 .030 .15 4.0 .27 3.7 1.2 .08 6

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA

C

ACHE AWALYTICAL						Cr	088	Lak	e 1															АСМ		ICAL									
SAMPLE#			• -								-	· · ·						•	Ca						Ti	-									Ga
	ppm	ppm	ppn	i ppm	ppii	ppm	ppm	ppm		ppm	ppii	ppb	hhu	ppin	ppin	ppm	strui I	ppm	~		ppm	ppm		bbu	4	ppm	*	*	*	ppm	ppm	ppm	ppm	<u> </u>	bbu
E 178065	25.4	28.1	20.1	284	.1	92.8	13.4	233 2	2.40	17.9	6.2	<.5	4.7	57	z.z	1.5	.2	22 2.	50	.042	3	7.1	.75	98<	.001	2	.20	.014	.10	1.4	.02	1.9	.1	1.19	<1
E 178066	7.4	48.7	18.9	152				232 3													3	28.9	.67			2		.020							1
E 178067 🕁	2.7	20.8	8.0	60				352 3													3	6.3	1.11	48<	.001	<1		.021							1
E 178068 🎹	2.9	20.2	10.3	92	.1	38.6	13.6	375 3	5.41	8.5	1.5	.9	6.7	63	.1	.5	.2	33.	87	.048	4	8.1	1.13	52<	.001	1	.27	.022	.10	1.7	.01	2.0	<.1	1.15	1
± 178069 ⇔	4.8	17.6	10.9	86	.1	43.9	13.0	340 3	5.12	19.3	2.1	<.5	6.9	75	.3	.4	.2	64.	09	.069	3	20.4	1.16	62<	.001	1	.26	.025	.12	.6	.01	2.0	.1	1.00	1
E 178070	2.2	35.5	10.7	' 111	.1	51.6	19.0	333 3	5.82	5.1	1.6	<.5	7.0	60	.5	.7	.2	53.	20	.039	4	27.2	.97	85<	.001	1	.40	.026	.12	.74	:.01	1.8	.1	1.77	1
E 178071 Ŭ								517 3														14.0						.022						.78	Ż
E 178072								578 4					6.5				.2	7 1.			9	31.5	.91	66	.001			.027						.69	3
E 178073								1077 5				.7	4.5	63	<.1	.3	.5	53.				15.5						.030							2
E 178074								1112 5					7.1	42	<.1	.3	.2	91.	83	.031	15	27.3	1.11	75	.001			.027							4
RE 178074	1.0	11.0	5,3	86	<.1	46.2	21.2	1196 5	i.29	10.1	.6	<.5	7.9	47	<.1	.4	.2	10 1.	76	.032	17	29.2	1.19	82	.002	1 1	1.49	.029	.11	1.1	.01	2.9	۲.1	.20	4
RRE E 178074								1151 5														37.1						.030						.18	5
E 178075	.3	16.4	8.1	89	<.1	44.9	17.5	761 4	1.37	7.5								12 1.				33.3				-		.030						.06	5
E 178076	.6	29.5	23.9	81	.1	41.2	16.5	891 4	.44	16.0	.5	1.5	9.2	44	<.1	.4	.3	8 1.	74	.046	21	25.2	1.10	84	.001			.028						.08	3
E 178077	1.0	22.0	18.2	202	.1	51.2	19.7	728 4	.81	26.8	.7	1.2	6.6	65	.5	.5	.2	73.	14	.044	6	19.1	1.29	79	.001			.026						.73	3
E 178078	.9	22.3	11.7	90	<.1	50.7	21.6	651 4	.00	7.4	.8	<.5	9.4	46	.1	,3	.1	10 1.	17	.036	15	30.1	1.01	99 .	.001	2 1	1.39	.028	.18	.3	.01	2.0	.1	.34	3
E 178079	1.3	18.1	17.7	104	<.1	51.4	19.7	646 4	.20	8.0	.8	.7	7.6	57	.1	.3	.1	12 1.	69	.035	13	28.1				1 1	1.53	.022	. 13	.9	.01	2.0	.1	.21	- 4
STANDARD DS4	6.8 1	128.9	31.0	161	.3	37.6	12.6	832 3	.23	22.8	6.1	27.5	3.8	29 !	5.4	5.2 5	5.3	74 .	55	.088	18 1	165.9	.61	145	.088	3 1	1.68	.032	.16	4.0	.29	3.6	1.1	.08	6

.

:

:

:

:

A TANK PARTY AND A

Data / FA

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

MAY-24-2002 FRI 10:57 AM ACME ANALYTICAL LAB

3

852 East Hastings Street • Var.couver, British Culumbia • CANADA • V6A 1R6 Telephone: (604) 253-3158 • Fax: (604) 253-1716 • Tol! (ree: 1-800-990-ACME (2263) • e-mail: info@acmelab.com

May 23, 2002

Mr. Jim Miller-Tait, P.Geo. Vice President, Exploration Cross Lake Minerals Ltd. 240 – 800 West Pender St. Vancouver, B.C., V6C 2V6

Dear Jim,

Thank you for considering Acme Laboratory for your analytical requirements. Acme Labs respectfully submits this proposal for sample preparation and analysis for your evaluation.

Code R150 - Drill Core, Drill Chip and Rock Preparation

Rock and core preparation, including drying; crushing (up to 4 kg) in a "Rhino Jaw Crusher" to 70% passing -10 mesh (2 mm), splitting 250g and pulverizing using a "Ring and Puck" pulverizer to 95% passing -150 mesh (106 microns).

Price per sample: \$ 4.25 Canadian

Coded SS80 - Soil and Sediment Preparation

Samples will be dried at 60°C, sieved (up to) 100 grams to -80 mesh (180 microns) Price per sample: \$ 1.28 Canadian

Group 1DA	- 35-element	ICP-MS ana	lysis with an	Aqua Regia	a digestion on a	<u>10 gram split</u>

Element	Detection Levels	Element	Detection Levels
Ag	0.1 ppm to 100 ppm	Al*	0.01% to 10%
As	0.5 ppm to 10,000 ppm	Au	0.5 ppb to 100 ppm
B*	1 ppm to 2,000 ppm	Ba*	1 ppm to 1,000 ppm
Bi	0.1 ppm to 2,000 ppm	Ca*	0.01% to 40%
Cd	0.1 ppm to 2,000 ppm	Co	0.1 ppm to 2,000 ppm
Cr*	1 ppm to 10,000 ppm	Cu	0.1 ppm to 10,000 ppm
Fc*	0.01% to 40%	Ga	1 ppm to 1000 ppm
Hg	0.01 ppm to 100 ppm	K*	0.01% to 10%
La*	1 ppm to 10,000 ppm	Mg*	0.01% to 30%
Mn*	1 ppm to 10,000 ppm	Mo	0.1 ppm to 2,000 ppm
Na*	0.001% to 10%	Ni	0.1 ppm to 10,000 ppm
P*	0.001% to 5 %	РЪ	0.1 ppm to 10,000 ppm
S	0.05% to 10%	Sb	0.1 ppm to 2,000 ppm
Sc	0.1 ppm to 100 ppm	Sr*	1 ppm to 10,000 ppm
Th*	0.1 ppm to 2,000 ppm	Ti*	0.001% to 10%
TI	0.1 ppm to 1000 ppm	U*	0.1 ppm to 2,000 ppm
V*	1 ppm to 10,000 ppm	W*	0.1 ppm to 100 ppm
Zn	1 ppm to 10,000 ppm		

Price per sample: \$9.78

\$ 9.78 Canadian

852 East Hastings Street + Vancouver, British Columbia + CANADA + V6A 1R6 Telephone: (604) 253-3158 + Fax: (604) 253-1716 + Toll free: 1-800-990-AC ME (2263) + +mail: info@ecmelab.com

Service and Turnsround

The average turnaround for the above analysis will be t days from when the samples arrive in Vancouver; we will do everything in our power to process your samples in the least amount of time possible.

Implementation of ISO 9002 / ISO Guide 25

Acme Laboratories, Vancouver, is an ISO 9002 registered company as of 1996 and currently is working towards ISO Guide 25 accreditation for specific: methods. ISO 9002 is a set of general standards for quality system management while ISO Guide 25 is specific to the technical competency of calibration and testing laboratories. Implementation of these ISO quality systems will ensure a formal documented quality system that focuses on achieving, maintaining and continually improving the quality of analysis. Acme laboratories uses internationally recognized methodologies.

Pulp Storage Policy

All pulps are stored for 1 year (no charge) prior to disposal. Clients may purchase additional storage time of rejects and pulps. The storage rate for an additional 3 years is \$7.90 per 1.2 ft³.

I hope you find the above of interest. This quotation is valid for one year from issue; all prices are in Canadian funds. Please refer to quotation number 02-070. If you have any questions or would like more information on any aspect of this quotation, please don't hesitate to contact me at (604) 253 3158 or by email at mccaffrey@acmelab.ccm

Thank you for inviting us to bid on this project.

Sincerely,

Rick McCaffrey Business Development Manager

SECTION E: DRILL HOLE LOGS

;

1

 \bigcirc

- 1. Diamond Drill Hole Number CS-02-11
- 2. Diamond Drill Hole Number CS-02-12
- 3. Diamond Drill Hole Number CS-02-13
- 4. Diamond Drill Hole Number CS-02-14

Page 1 of 3

· · ·

CROSS LAKE MINERALS LTD.

Diamond Drill Hole Log

Property: INGENIKA

Hole No. CS-02-11

lole Co-ordi	nates:			Collar Elevation:	Total Depth:	Azim	nuth and Dip of H	lole:	Comments: Aci	d test only; a:	zimuth estimat	led	Map Refere NTS: 94C/			me /Number	r:
			200202	828 m ASL	138.68 m	Depth	Azimuth	Dip	-				BCGS: 094		DEL 3 #3	0/300/	
	6282155 N		366383 E			Collar	Azimuth 210°	-45°	Core Size: NQ1	V V						at And !	-)
late Hole St	larted		Date	Date Logged:	Logged by:		210*	-40		n				cation (Twp. L			• •
						m	•						Latitude: 56			ude: 125° 10'	
8-Sep-02			20-Sep-02	20-Sep-02	J. Miller-Tait	m			Core Storage L	ocation: on si	te		UIM: Zone	10: 6 282 00	0 N, 367 C	00 E	
		or Optionee:		Date submitted: AUG 2 0 2003	Submitted by-	m	,	, , , , , , , , , , , , , , , , , , ,					1				
wner: Tec	k Cominco	Limited		2007	(Signature)	m	P	°	Drilling Contrac		-						
ptionee: C	ross Lake I	dinerals Ltd.		11620-1		m	0	٩		Delta, B.C							
				POS A	MALLER-JAN PRATER	m	4	° .	Assay Laborato	ry: Acme Ana	lytical Laborat	ories]				
				I M	COLUMBIA	'n	°	e		Vancouver,	B.C.		ľ				
Metr	es i	% Recovery		Description (C	Colotic, grain size, text	ture, minerals, a	Iteration, etc.)		Sample Tag	Sampl	e Depth	Sample			Assays		
				. V :	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				No.	(me	tres)	(metres)					
From	To		1							From	To		Au	Ag	Си	РЬ	Zn
													ррЬ	ppm	ppm	ppm	ppm
0	6.10	0	Casing														
														<u> </u>	1		
6.10	19.81	90%			2mm bands phyllite 72, to 40% at 19.8		nety laminated	dirty grey	178001	7.62	9.12	1.5	1.6	0.1	18.9	23.9	78
			Abundant q	uartz (80%) calcite	(20%) trace py stri	ngers mainly o	concordant with	laminated								·····	
			phyllite.														
					30° and 70° to C.A												
				2: several 5cm stri 5° to C.A. and @ 13	ngers @ 60° to C./ 3.5m 50° to C.A.	A. and from 13	1.0 - 13.5 2 veir	ns, contact	178002	15.25	16,75	1.5	1.9	0.1	29.0	17.3	88
			Light green	talc (scratch w/fing	er rail) ~5% w/vein	lets.						<u> </u>	1	· · · · · · · · · · · · · · · · · · ·			
			Bedding @	7.5m - 60° to C.A.													
			@ 10.6m -								1	1	1				1
			@ 13.8m - 6								1						
			@ 19.8m - 4											1	1		
			Trace py, er	uhedral, f.g. throug	hout veins mainly b	arren											
			Gouge @ 1	5.7m to 16.7m.													
											1	1					1
19.81	71.00	95%	Light-dark g argillaceous	rey thinly bedded I s siltstone (40%). C	imestone bands (6) Juartz (80%), calcite	0%) interbedd e (20%) veins	ed with black-d throughout fror	ark grey n 1cm to	178003	19.81	21.31	1.5	2.0	0.1	27.6	10.1	86
				ordant with bedding	mainly. Trace pyri												
ł·			Bedding @	22m @ 70° to C.A					178004	31.50	33.00	1.5	1.1	0.1	28.6	14.4	92
				2 30° to CA					178005	41.00	42.50	1.5	2.4	0.1	23.2	18.4	74
		·····	@ 35.0m @			- <u></u>			178006	53.30	54.80	1.5	3.1	0.1	19.0	17.5	61
			@ 41.0m @			·.			178007	60.00	61.50	1.5	1.9	0.1	17.8	10.3	73
		index 1	@ 47.0m @				· · · · · · · · · · · · · · · · · · ·		178008	69.30	70.80	1.5	2.0	0.2	22.6	13.6	72

CROSS LAKE MINERALS LTD. **Diamond Drill Hole Log Property: INGENIKA** Hole No. Page 2 of 3 CS-02-11 Total Depth: Azimuth and Dip of Hole: Collar Elevation: Comments: Acid test only; azimuth estimated Hole Co-ordinates: Map Reference: Claim Name /Number: NTS: 94C/11E DEL 3 #379607 828 m ASL 138.68 m Depth Azimuth 6282155 N 366383 E Dip BCGS: 094C.065 -45° Core Size: NOTK Date Hole Started: Date Date Logged: Logged by: Collar 210° Property Location (Twp. Lot, Con. or Lat. And Long.) m Latitude: 56° 39' Longitude: 125° 10' 20-Sep-02 20-Sep-02 . Miller-Tait Core Storage Location: on site 18-Sep-02 m UTM: Zone 10; 6 282 000 N, 367 000 E Exploration Co., Owner or Optionee: Date submitted: Submitted by m (Signature) Drilling Contractor: F. Boisvenu Drilling Ltd. Owner: Teck Cominco Limited m Delta, B.C. Optionee: Cross Lake Minerals Ltd. m Assay Laboratory: Acme Analytical Laboratories m Vancouver, B.C. m Description (Colour, grain size, texture, minerals, alteration, etc.) Metres % Recovery Sample Tag Sample Depth Sample Assays No. (metres) (metres) From То From To Au Ag Cu Pb Ζn ppb ppm ppm ppm ppm @ 36.5m to 39m @ 20° to C.A Fractures along bedding planes easily. Gouge zone - muddy from 33.0 to 35.0m. Mixed grey mud with rounded quartz fragments up to 5cm in size. From 47 to 52m starts to steepen core angles from 60° to 70° @ 56.4m @ 90° to C.A. @ 62m to 68m @ 80° to C.A. From 47 to 68m thinly banded interbedded 1m st (up to 2cm bands) 50% to greyish, argillaceous siltstone (50%) in 1-2mm beds up to 3-4cm beds. Fine grained euhedral pvrite throughout - trace. Carbonate re-heeled breccia zone from 60.4 to 60.5cm Numerous quartz/carb barren veins concordant with bedding throughout up to 10cm in thickness. Odd large mass of pyrite up to 1cm in diameter, approx every 1m. 178009 75.00 76.50 71.00 138.68 95% Gradational contact into mainly argillaceous siltstone - no trace carbon (ie. Graphite -1.5 2.2 0.3 20.0 24.0 90 none) 178010 After 76m only ~10-15% is carbonate limestone bands and ~85-90% is the argillaceous 81.00 82.50 1.5 2.1 0.2 22.0 13.4 77 siltstone Trace by throughout fig. 178011 105.70 107.20 1.5 2.2 < 0.1 12.0 5.5 53 Core angles flattening down the hole from 80-90° from 71.0m to 80m and then down to 178012 122.00 123.50 1.5 2.1 < 0.1 17.2 11.0 57 45° at 90m.

Page 3 of 3

CROSS LAKE MINERALS LTD.

Diamond Drill Hole Log

Property: INGENIKA

Hole No. CS-02-11

Hole Co-or	dinates:			Collar Elevation:	Total Depth:	Azin	nuth and Dip of H	lole:	Comments: Aci	d test only; a	zimuth estima	ted	Map Refere NTS: 94C/1		Claim Na DEL 3 #	ame /Numbe 379607	r:
1	6282155	N	366383 E	828 m ASL	138.68 m	Depth	Azimuth	Dip	-1				BCGS: 094	C.065			
Date Hole			Date	Date Logged:	Logged by:	Collar	210°	-45°	Core Size: NQT	ſĸ			Property Lo	cation (Twp. L	ot, Con. or I	at. And Lon	g.)
	Dianou.				,	m	• • •	•	1				Latitude: 56	5° 39'	Longit	ude: 125° 10	r
18-Sep-02			20-Sep-02	20-Sep-02	J. Miller-Tait	m	•	°	Core Storage L	ocation: on s	ite		UTM: Zone	10; 6 282 00	0 N, 367 (000 E	
		r or Optionee:	·	Date submitted:	Submitted by :	m	•	· · · ·	1								
Owner: T	eck Cominc	o Limited		1	(Signature)	m	•		Drilling Contrac	tor: F. Boisve	enu Drilling Lto	l.	1				
Optionee:	Cross Lake	Minerals Ltd.				m	· ·	•		Delta, B.	C.						
						m	•	°	Assay Laborato	ory: Acme Ana	alytical Labora	tories .					
1						m	•	°		Vancouver	B.C.						
Me	etres	% Recovery	·	Description (Colour, grain size, te	xture, minerals, a	Iteration, etc.)		Sample Tag	Samp	e Depth	Sample			Assays		
									No.	(me	etres)	(metres)	<u> </u>				. <u>.</u>
From	То		7							From	То		Au	Ag	Cu	РЬ	Zn
													ppb	ррт	ppm	ppm	ppm
			Erratic ang to the CA	les after 80m - inter	nse folding, drilling	through minor	fold ?????@	20° plunge	178013	132.60	134.10	1.5	1.3	0.1	18.2	10.9	88
			Erratic qua	rtz/carb barren veir	s throughout at va	arious core ang	les but mainly c	concordant.									
			@ 99m - 80	0° CA													
		-	@ 111m - `							-						-	
			@ 120m - 1	70° CA													
			@ 132m -	50° CA													
			@ 136m - I	80° CA		·			_		<u> </u>	<u> </u>	<u> </u>			ļ	<u> </u>
												ļ	<u> </u>	ļ		<u> </u>	ļ
I	<u> </u>	ļ	At 106.6 - !	50cm quartz (70%)	Calcite (30%) ban	ren vein @ 50°	to C.A.			,							
12 		ļ															<u> </u>
	ļ				END OF I	HOLE						+					+
	.	<u> </u>	-}								┨	<u> </u>					
 					<u>_</u>							+ · · · · · · · · · · · · · · · · · · ·		<u> </u>	··		+
L	1	1	1								L.,	I	· · · · · · · · · · · · · · · · · · ·	1	L	1	!

_

- - -

CROSS LAKE MINERALS LTD.

Diamond Drill Hole Log

Property: SWANNELL

C

Hole Co-ord	e Co-ordinates:			Collar Elevation:	Total Depth:	Azin	nuth and Dip of H	ole:	Comments: Aci	d test only; a	zimuth estimat	ed	Map Referent NTS: 94C/1		Claim Na DEL 5 #	ame /Number 390517	
	6282333 N	N	366037 E	833 m ASL	150.88 m	Depth	Azimuth	Dip	1				BCGS: 094	C.065			
Date Hole S			Date	Date Logged:	Logged by:	Collar	210°	-45°	Core Size: NQ1	ĸ		· · ·	Property Loc	cation (Twp. L	ot, Con. or L	at. And Long	J.)
						m		•	1				Latitude: 56	° 39'	Longiti	ude: 125° 10'	
20-Sep-02			22-Sep-02	22-Sep-02	J. Miller-Tait	m	¢	•	Core Storage L	ocation: on si	te		UTM: Zone	10; 6 282 000) N, 367 0	00 E	
	Co., Owner	or Optionee:		Date submitted:	Submitted by	m	• '	0									
Owner: Te				Date submitted:	(Signature)	, m	•	•	Drilling Contrac	tor: F. Boisve	nu Drilling Ltd.						
		Minerals Ltd.		1 20 6	A TERLINIA	m		•	1	Delta, B.0	D.						
				NUG .	ANT IN THE) m	•	•	Assay Laborate	ry: Acme Ana	lytical Laborat	ories	1				
				 ∽		m	•	•	1	Vancouver,	B.C.						
Met	res	% Recovery	/	Description (C	Colour, grain size, te	xture, minerals, a	alteration, etc.)	<u> </u>	Sample Tag	Sampl	e Depth	Sample			Assays		
ĺ				• • •					No.	(me	tres)	(metres)					
From	То									From	To		Au	Ag	Cu	Pb	Zn
													ppb	ppm	ppm	ррт	ррт
0	7.92	0%	Casing														
7.92	23.00	95%		d argillaceous siltst thickness. Easily po).					178014	13.70	15.20	1.50	2.0	<0.1	22.2	14.4	76
				· · · · · · · · · · · · · · · · · · ·					178015	24.80	26.30	1.50	1.6	0.1	23.6	12.2	80
				bonate (80:20) vein approx. every 2 metr		ickness (only 1) concordant wi	th bedding.	178016	31.10	32.60	1.50	1.7	0.2	29.9	14.4	90
┠───┤									178017	32.00	33.60	1.00	1.6	0.2	58.1	11.7	112
			Core angle	es are steep. 80° to	C.A. @ 8m to 60°	at 23.0 metres			178018	33.60	35.10	1.50	1.9	0.1	30.2	21.7	116
			Core ungit			<u></u>			178019	38.20	39.70	1.50	2.8	<0.1	28.1	18.3	91
┖───┤		u=	Tr. Fine di	sseminated pyrite th	roughout occasio	nal bleb up to 1	cm in size.		178020	42.80	44.30	1.50	1.1	0.1	23.3	12.9	62
									178021	49.50	51.00	1.50	0.7	0.1	22.2	24.9	91
23.00	32.60	95%	quartz/car	us sillstone (85%) in b veins as above-ba e angles vary from 4	rren. Trace f.g.py	throughout rar	Some narrowe e bleb up to 1c	r (<10cm) m in size an		55.20	56.70	1.50	2.6	0.1	22.1	10.8	79
			1						178023	62.70	64.20	1.50	2.5	0.1	24.8	28.9	81
32.60	33.60	95%	Quartz/car Dissemina	b (80:20) veining ar ited pyrite-trace. Qu	nd tan/g coloured f artz veining 50cm	ine siltstone. C then the tan co	ontacts at 70° ploured siltstone	to C.A.		<u> </u>						<u> </u>	
33.60	69.20	95%	Dark gree	n/grey siltstone. Tra	ce f.g. disseminate	ed py througho	ut occasional b	leb up to 1			-		<u> </u>			<u> </u>	
30.00	00.20	00.0	cm in size	Narrow <10cm qua	rtz/carb (80:20) v	eins parallel to	bedding in gen	erai.			ļ						
			40%	ed Imst(??) bands fro	om 1mm to 1cm in	thickness vary	ing in amount f	irom 10-									
				es: at 38=70° to CA				<u></u>					ļ		ļ	<u> </u>	L
				es: at 47=60° to CA				<u> </u>			 		ļ		ļ	 	
			Core angle	es: at 53=60° to CA							1	I	I		L	<u> </u>	I

Hole No.

CS-02-12

Page 2 of 2

CROSS LAKE MINERALS LTD.

Diamond Drill Hole Log

SWANNELL

Pro	operty:
Dip of Hole:	Comme

Hole Co-ordinates:	
6282333 N	
Date Hole Started:	
20-Sep-02	

															03-02-12		
Hole Co-ordi	inates:			Collar Elevation:	Total Depth:	Azin	nuth and Dip of H	ole:	Comments: Aci	d test only; a	zimuth estima	ted	Map Referen			ame /Numbe	r:
				ļ	}.				1				NTS: 94C/1		DEL 5 #	390517	
	6282333 I	٧	366037 E	833 m ASL	150.88 m	Depth	Azimuth	Dip					BCGS: 094				
Date Hole St	tarted:		Date	Date Logged:	Logged by:	Collar	210'	-45°	Core Size: NQT	ſK			Property Los	cation (Twp. I	ot, Con. or l	at. And Lon	g.) ·
						m	,	•					Latitude: 56	5° 39'	Longit	ude: 125° 10	•
20-Sep-02			22-Sep-02	22-Sep-02	J. Miller-Tait	m	•	°	Core Storage L	ocation: on si	te		UTM: Zone	10; 6 282 00	0 N, 367 (000 E	
Exploration	Co., Owner	or Optionee:		Date submitted:	Submitted by :	m	•	•									
Owner: Tec	ck Cominco	Limited			(Signature)	m	· · ·	°	Drilling Contrac	tor: F. Boisve	nu Drilling Ltd		1				
Optionee: C	ross Lake	Minerals Ltd.			1	m		•	7	Delta, B.0	D .		1				
						m	•	•	Assay Laborato	ry: Acme Ana	lytical Laborat	ories	1				
						m	•	•	1	Vancouver,	B.C.						
Metr	es	% Recovery	·]	Description (C	Colour, grain size, te	xture, minerals, a	Iteration, etc.)	•	Sample Tag	Sampi	e Depth	Sample			Assays		
									No.	(me	tres)	(metres)			_		
From	То		1							From	То		Au	Ag	Cu	РЬ	Zn
			_								j		ppb	ppm	ppm	ppm	ppm
			Core angle	s: at 60=80° to CA													
			Core angle	s: at 67=70° to CA					178024	84.50	86.00	1.50	3.3	0.1	25.3	14.3	85
69.20	84.80	95%		d Imst(??) (70%) wi													
				Disseminated tr. F.g													
				<10cm quartz/carb	barren veins. On	e 40cm at 75-7	5.4m @ 45° to	C.A.					<u> </u>				· · ·
			At 69m C.A								[<u> </u>			<u> </u>	[
┟─────┼			At 77m C.A										<u> </u>				
			At 83m C.A	= 70°													
04.00	07.00	00%	0	y clay + quartz fragi	mante (angular 8		a at 70° to C (-								
84.80	85.80	90%	Gouge-grey	y ciay + quariz irayi	nems (angulai o	Darren) comaci							<u> </u>				
85.80	150.88	95%	Interhedder	d Imst+dolomite (60	70%) with amilla	ceous siltstone	(arey to dark a	reen lo	178025	99.00	100.50	1.50	1.6	<0.1	23.8	14.9	59
05.00	130.00	00 /0	black) Tr	g pyrite throughou	it. Blebs up to 2cr	n in size. Conce	ordant barren g	uartz/carb	1	00.00	100.00	1.00			20.0	14.0	
				x 10-15% by volum			······································								ļ		
									178026	114.00	115.50	1.50	1.1	<0.1	25.3	10.0	83
├───┼			AL 129.74 1	cm bleb of f.g gale	na in guartz/carb	10cm vein at 70)° to C.A.		178027	129.30	130.80	1.50	2.0	0.1	22.6	64.5	76
	· · · · · · · · · · · · · · · · · · ·	<u></u>		s @ 90m = 70°	. · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		178028	146.50	148.00	1.50	0.5	0.1	20.8	8.1	144
				s @ 94m = 45°											1		
├── 				s @ 102m = 70°	<u> </u>							1			1		1
			Core angle	s @ 114m = 80°		· · · · · · · · · · · · · · · · · · ·											
			Core angle	s @ 130m = 50°									1				
				s @ 138m = 70°													
			Core angle	s @ 148m = 70°													
					END OF H	IOLE											1

CROSS LAKE MINERALS LTD.

Diamond Drill Hole Log

Property: SWANNELL

lole Co-oro	e Co-ordinates: Collar Elevation: Total Depth: Azimuth and Dip of Hole:							ole:	Comments: Acid	testoniy; az	zimuth estima	ted	Map Referen NTS: 94C/1		Claim Na DEL 5 3	me /Number 90517	:
	6282175 N	4	365965 E	851 m ASL	74.68 m	Depth	Azimuth	Dip	1				BCGS: 094				
ate Hole S	tarted:		Date	Date Logged:	Logged by:	Collar	030°	-45°	Core Size: NQT	к			Property Loc	ation (Twp. L	ot, Con. or L	at. And Long	l.)
						m	•	•	1				Latitude: 56	° 39'	Longiti	ude: 125° 10'	
2-Sep-02			23-Sep-02	23-Sep-02	J. Miller-Tait	តា		0	Core Storage Lo	cation: on si	te		UTM: Zone	10; 6 282 00	0 N, 367 0	00 E	
xploration	Co., Owner	or Optionee:		Date submitted:	Submitted by	m	•	0									
)wner: Te	ck Cominco	Limited		Date submitted:	(Signature).cc	- m	•	°.	Drilling Contract		-]				
Optionee: (Cross Lake N	vinerals Ltd.		207	MILLER-TAU	5 m	•	°		Delta, B.C							
				AUDI	COLUMBIA	<u>* m</u>	°	•	Assay Laborato	•		tories					
				$ \sim $	- T	" m	<u> </u>			Vancouver,							
Met	res	% Recovery	/	Description (C	olour, grain size; te	(ture, minerals, a	iteration, etc.)		Sample Tag No.		npie	Sample (metres)			Assays		
	1		1	·					1 1	No. Depth (metres) (metres)		(metres)	1				
From	Το		-							(metres) From To		Au	Ag	Cu	Pb	Zn	
. 10111									1				ppb	ppm	ppm	ppm	ppm
	18.9	0%	Casing						178029	19.80	21.30	1.50	0.6	0.8	24.6	11.0	66
									178030	21.30	22.80	1.50	2.7	0.1	25.3	9.6	79
18.90	28.80	85%		je. Grey-green mu id up to 2cm in siz rregular.					178031	22.80	24.30	1.50	1.8	0.1	26.3	8.6	81
									178032	24.30	25.80	1.50	1.3	0.1	39.9	12.5	73
28.80	47.24	95%	barren qua	-black argillaceous artz/carb veins cor e vfg py disseminat	ncordant to bedo				178033	25.80	27.30	1.50	1.7	<0.1	14.4	7.5	71
	<u> </u>								178034	22.30	28.80	1.50	0.8	<0.1	38.6	7.9	78
47.24	59.00	98%	quartz/car	Imst (60%) interbe b (barren) veins, c 30° to c axis. Tra	only 3 main ones	up to 20cm in			178035	38.10	39.60	1.50	1.0	<0.1	32.4	9.0	56
									178036	51.90	53.40	1.50	<0.5	<0.1	19.0	13.7	62
									178037	65.70	67.20	1.50	1.2	<0.1	15.8	12.6	60
59.00	59.00 74.68 95% Some ???? as 28.8-47.24 of mainly (60.6) dark grey-black argillaceous sittstone interbedded with dirty grey lmst (10%) but more barren quartz/carb veining (30%), core angles at 5-30° to C Axis Tr. Vfg pyrite throughout.					178038	71.20	72.70	1.50	1.5	<0.1	8.4	7.5	42			
			<u> </u>	······	END OF H	IOLE											
		·····		······													
			1						1 1		1				1		_

CROSS LAKE MINERALS LTD.

Diamond Drill Hole Log

Property: SWANNELL

ole Co-ordin	nates:			Collar Elevation:	Total Depth:	Azim	nuth and Dip of H	ole:	Comments: Acid	i test only; az	imuth estimate	ed	Map Reference NTS: 94C/11	E	Claim Nan KLU 2-3 ≭	ne /Number: #238504	
F	6278328 N	1	367115 E	820 m ASL	127.0 m	Depth	Azimuth	Dip	1				BCGS: 094C				
ate Hole Sta			Date	Date Logged:	Logged by:	Collar	235°	-47°	Core Size: NQT	ĸ			Property Loca	ation (Twp. L)
ale noie Sta			Duio			m	· •	•	1				Latitude: 56°		-	de: 125° 10'	
			26-Sep-02		J. Miller-Tait	m	•	•	Core Storage Lo	ocation: on sit	e		UTM: Zone 1	10; 6 282 00	DN, 367.00	00 E	
4-Sep-02			20-3ep-02	Data submitted:	Submitted by	m	•	•	-								
-		or Optionee:		Date submitted:		. m	•		Drilling Contract	or: F. Boisver	nu Drilling Ltd						
wner: Tecl				0 200	OF	m	•	•	-	Delta, B.C							
ptionee: Cr	ross Lake N	Minerals Ltd.		1 .620/	MILLER-TAIT	m	•		Assay Laborato			ories					
I.				AND 1.	COLUMBIA	à				Vancouver,			1				
						m			Sample Tag	San		Sample			Assays		
Metre	es	% Recovery		Description (Colour, grain oize, te	xture, minerals, a	ateration, etc.)		No.	De	•	(metres)	1		-		
				v							tres)	(<i></i>					
			4							From	To		Au	Ag	Cu	РЬ	Z
From	To												ррь	ppm	ppm	ppm	рр
0	18.9	0%	Casing	<u></u>					<u> · - · · · · · · · · · · · · · · · · · </u>								
18.90	41.15	95%		volcanic ash tuff. 1 n shear zones.	Frace fg pyrite in r	arrow (4cm) qu	iartz veinlets. C	Chlorite	178039	25.90	27.40	1.50	1.3	0.1	8.4	7.5	4
			1						178040	41.10	42.60	1.50	<.5	<.1	18.1	14.8	6
			- Bedding a	at 60° to core axis		P			178041	42.60	44.10	1.50	0.7	<.1	19.4	15.3	8
			- Rubbly co	ontact at 41.15 but a	appears to beou				178042	44.10	45.60	1.50	3.5	<.1	19.3	16.8	7
				d light green ashluf	# (400/) with (400/	V dirty grav lime	stope (20%) c	ark green	178043	45 60	47.10	1.50	4.7	<.1	20.2	14.1	9
41.15	51.30	95%	chloritic sh	d light green asniul ear/breccia zones. ngers. Soft talcose	Trace fo pyrite ma	inly in the shea	ar zones and na	arrow quartz		10.00							
·									178044	47.10	48.60	1.50	2.1	0.1	31.3	13.6	8
51.30	67.50	90%	Graphitic /	30%) fault zone of I	imestone (dirty an	ey) fragments.	• • • • • • • • • • • • •		178045	48.60	50.10	1.50	0.8	0.1	23.3	12.5	6
51.30	67.30	50 /0	- angular s	and rounded and up	to 10cm in size.	Silicified where	competant (30	1%).	178046	50.10	51.60	1.50	9.7	0.1	24.9	11.8	e
				minated pyrite ~1-3			``		178047	51.60	53.10	1.50	0.6	0.1	27.0	75.4	1
	··· · · · · · · · · · · · · · · · · ·		- sphalerite	e (8-10%), galena (1-3%), pyrite (5-89	%) from 64.4-66	6.5m		178048	53.10	54.60	1.50	< .5	0.1	24.1	20.1	8
	ł		- hard to te	amount of Sx bec	ause of graphitic	gouge. Base m	etals are in sitio	cified	178049	54.60	56.10	1.50	0.8	0.1	26.7	16.6	6
			limestone	mainly. Partly fragm	nented and reseal	ed with silica. S	ome fragments	s up to 3cm									
	1		with base i	metal mineralization	1.												<u> </u>
				g limestone conten					178050	56.10	57.60	1.50	< .5	0.2	28.5	20.8	5
				contacts @ 60-70°					178051	57.60	59.10	1.50	< .5	0.4	60.6	33.5	5
		·		-		<u> </u>			178052	59.10	60.60	1.50	< .5	0.4	15.8	40.7	
67.50	85.30	95%	Light green blebs up to bedding.	n/grey phyllite. Bed o 1cm in size. Narro	ding contacts at 8 w (<1 cm) quartz	0 to c axis. Trad carb stringers t	ce fg pyrite and mainly concord	l occasional ant with	178053	60.60	62.10	1.50	< .5	0.4	31.1	55.1	1
			bedding.						178054	62.10	63.60	1.50	0.8	0.1	21.2	14.1	e

CROSS LAKE MINERALS LTD.

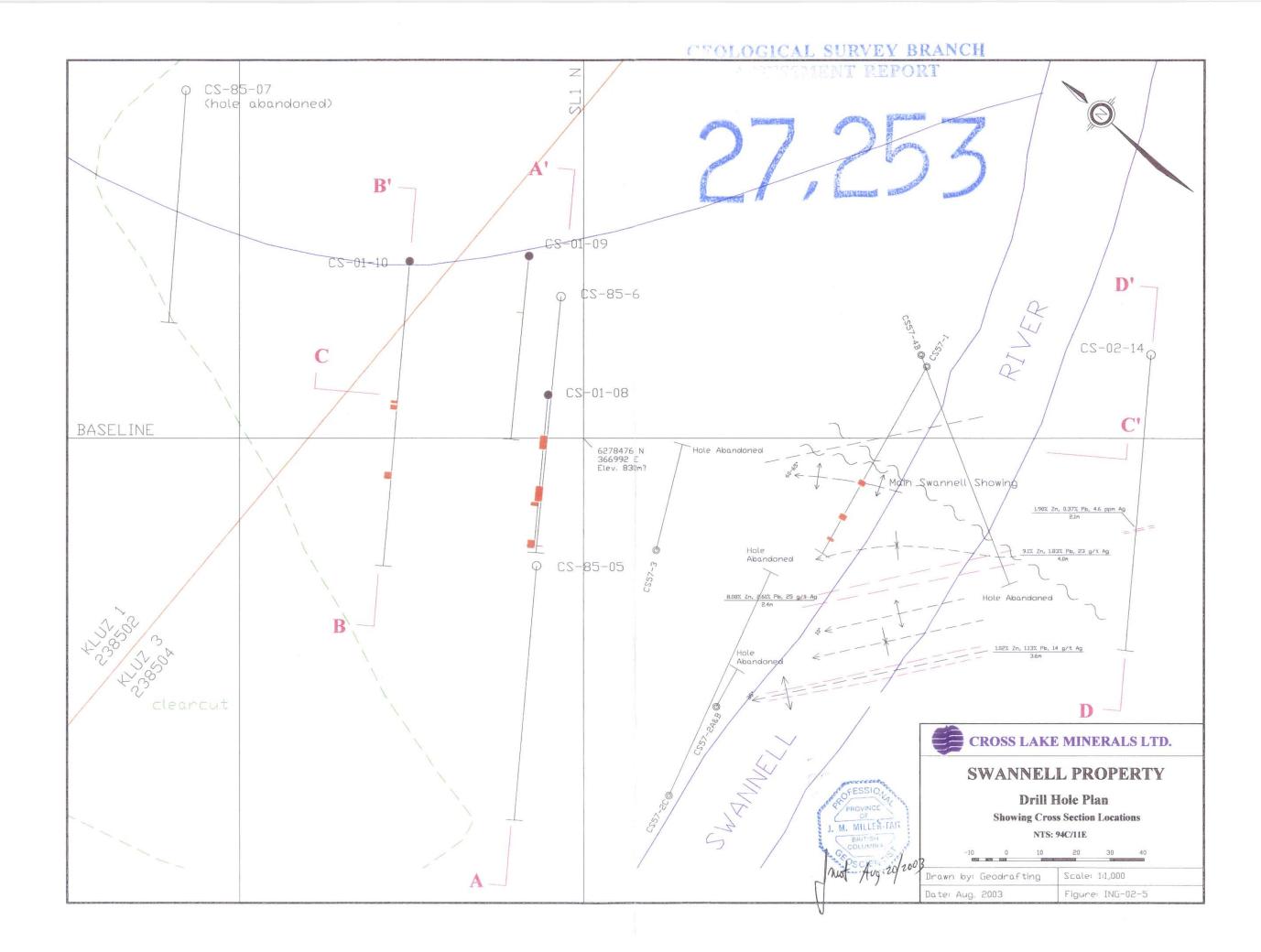
Diamond Drill Hole Log

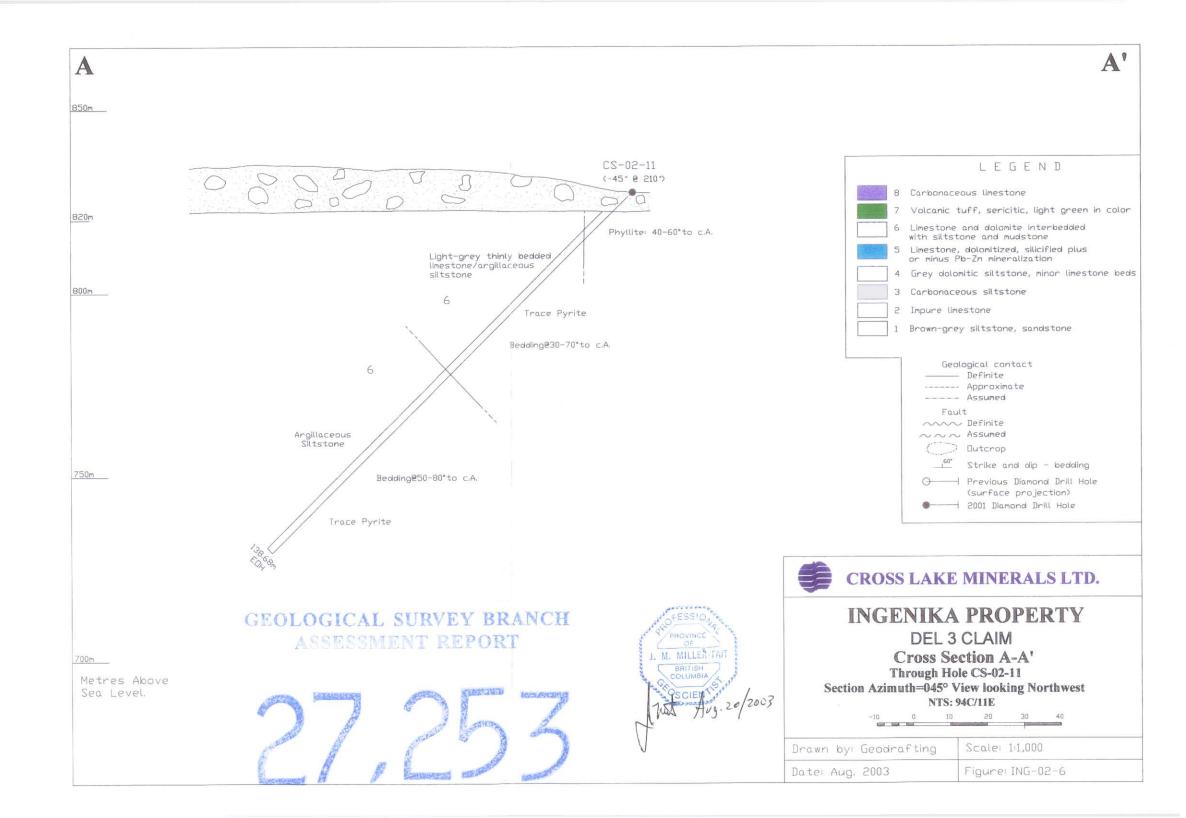
Property: SWANNELL

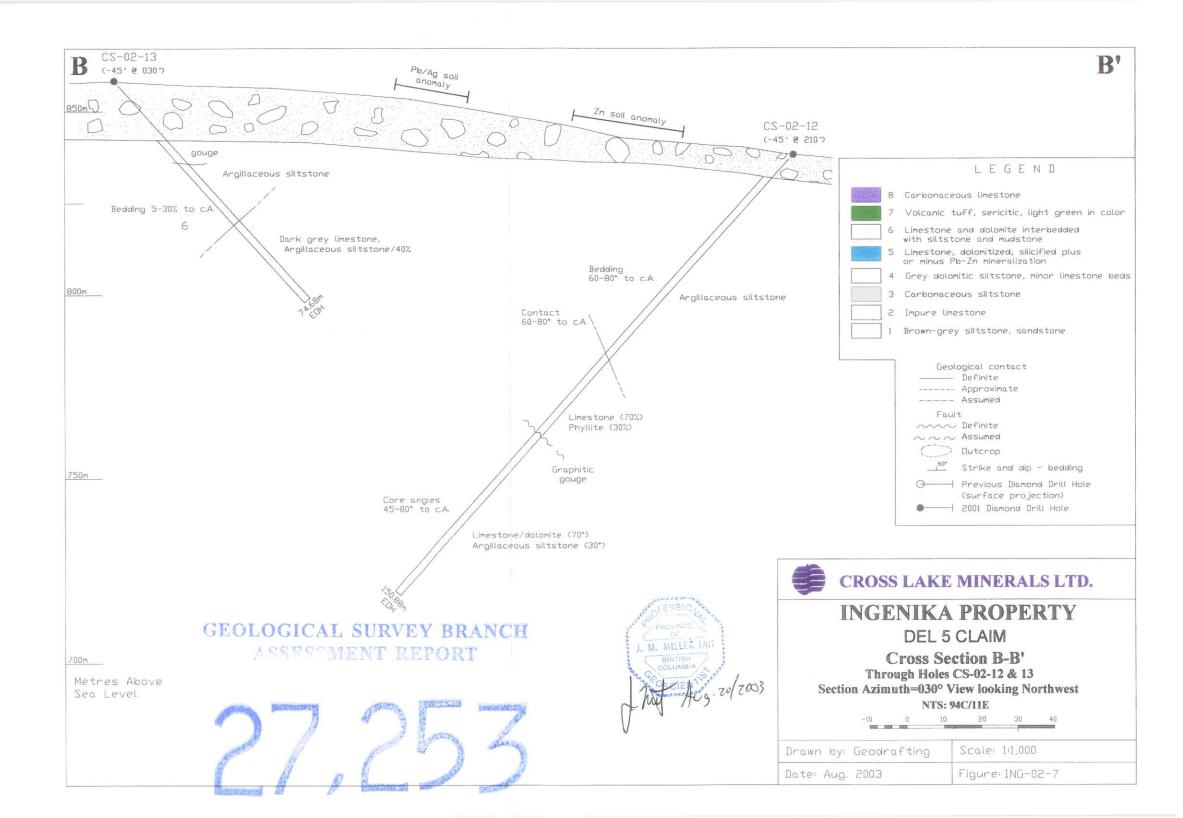
. 1

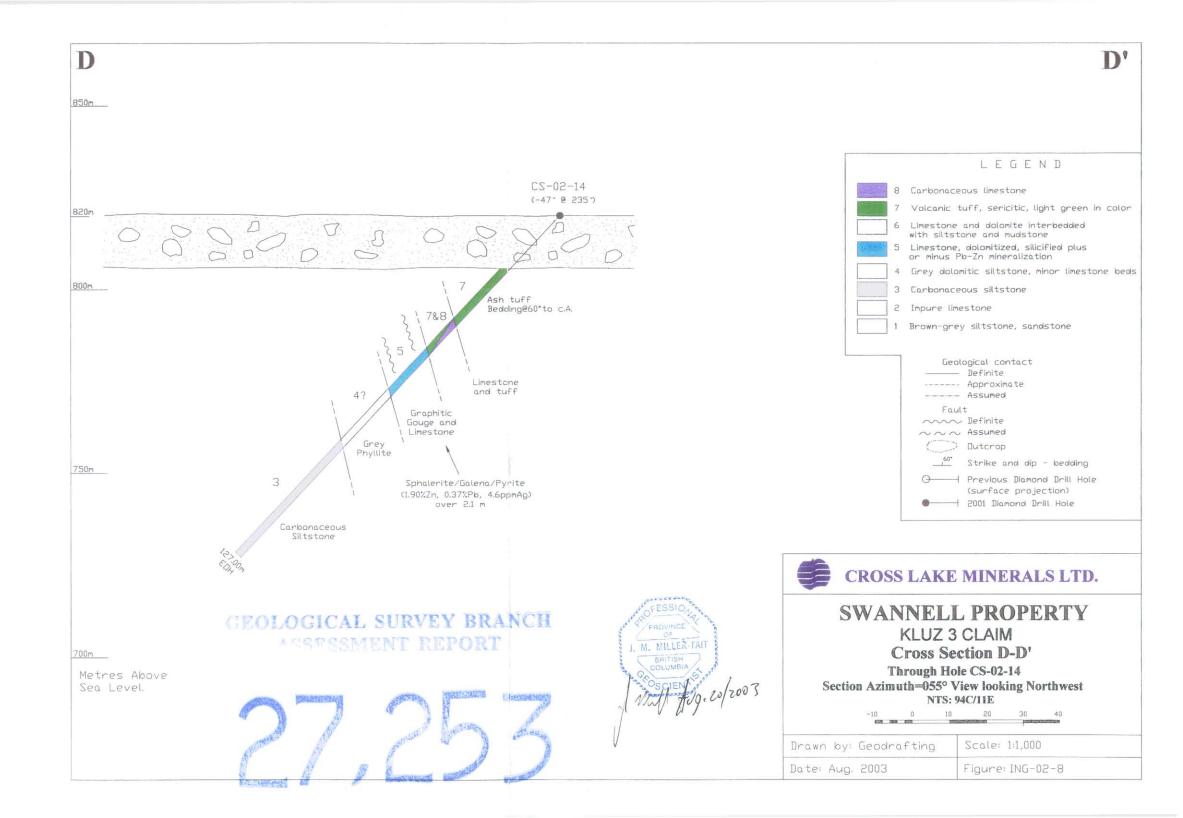
Hole Co-ordinates:	1 <u></u>	Collar Elevation:	Total Depth:	Azim	uth and Dip of H	ole:	Comments: Acid	testonly; az	imuth estimate	ed	Map Referen NTS: 94C/1		Claim Na KLU 2-3	me /Number: #238504	:
6278328 N	367115 E	820 m ASL	127.0 m	Depth	Azimuth	Dip					BCGS: 0940				
Date Hole Started:	Date	Date Logged:	Logged by:	Collar	235°	-47°	Core Size: NQT	ĸ			Property Loc	ation (Twp. L			
				m	•	•					Latitude: 56	' 39'	Longitu	ude: 125° 10'	
4-Sep-02	26-Sep-02		J. Miller-Tait	m	•	· · ·	Core Storage Lo	ocation; on sit	e		UTM: Zone	10; 6 282 00	0 N, 367 0	00 E	
xploration Co., Owner or Optionee:		Date submitted:	Submitted by :	m	0	•	7								
wner: Teck Cominco Limited			(Signature)	m	•		Drilling Contract	tor: F. Boisve	nu Drilling Ltd.		1				
ptionee: Cross Lake Minerals Ltd.				m	0	•		Delta, B.C							
				m	°	. °	Assay Laborato	ry: Acme Ana	ytical Laborati	ories	1				
				m	•	•	-1	Vancouver,	B.C.		_				
Metres % Recover	y I	Description (C	Colour, grain size, tex	(ture, minerals, a	Iteration, etc.)		Sample Tag	San	nple	Sample			Assays		
							No.		pth (res)	(metres)					
	4							(me From	res) To		Aŭ	Ag	Cu	Pb	Zr
From To								1 ION	10		ppb	ppm	ppm	ppm	1qq
				05 100	Hatana in 1917-	euro suith	178055	63.60	64,40	1.50	< .5	0.2	18.6	100.0	33
85.30 127.00 95%		to black argillaceou minated and blebs			IISIONE IS SINCE	ous with	1/0000	03.00	04.40	1.50	`. 0	0.2	10.0		
	more disse		bi pyste up to 3-5.	<i>.</i>		· · · · · · · · · · · · · · · · · · ·	178056	64.40	65.40	1.50	0.7	7,6	28.1	6782.6	297
	- Core and	les @ 60° to beddin	ia				178057	65.40	66.50	1.50	< .5	1.9	23.0	912.3	92
	- Core ang		9		· · · · · · · · · · · · · · · · · · ·		178058	66.50	68,00	1.50	2.7	0.2	5.5	44.0	27
		rb veining - mainly	barren or trace py	rite less than 50	om in thickness		178059	68.00	69.50	1.50	1.4	< .1	10.2	5.4	2
	concordant	t with bedding.		<u> </u>			178060	69.50	71.00	1.50	0.9	0.1	36.5	4.2	2
		m minor silicified lin	anatana (distri) har	do <1 om in thi	knore intorho	tded with	178061	80.00	81.50	1.50	<.5	0.1	18.9	13.5	11
		eous siltstone.	nesione (unity) bar		Skiless interber		1,0001	00.00	01.00			0.1	10.0		
					· · · · · · · · · · · · · · · · · · ·		178062	81,50	83.00	1.50	0.7	<.1	28.4	7.8	8
		······································	·····				178063	83.00	84.50	1.50	1.3	<.1	28.1	12.9	7
			· · · · · · · · · · · · · · · · · · ·				178064	84.50	86.00	1.50	1.2	0.1	19.0	25.1	21
							178065	86.00	87.50	1.50	< .5	0.1	28.1	20.1	28
			· · · · · · · · · · · · · · · · · · ·		• • • • • • • • • • • • • • • • • • • •		178066	87.50	89.00	1.50	< .5	0.1	48.7	18.9	15
			· · · · · · · · · · ·				178067	89.00	90.50	1.50	< .5	0.1	20.8	8.0	6
							178068	90.50	92.00	1.50	0.9	0.1	20.2	10.3	9
		······					178069	92.00	93.50	1.50	< .5	0.1	17.6	10.9	8
	1						178070	93.50	95.00	1.50	< .5	0.1	35.5	10.7	<u>1'</u>
							178071	95.00	96.50	1.50	< .5	0.1	28.4	11.2	7
							178072	96.50	98.00	1.50	0.5	0.1	27.2	10.2	8
		·····	·····				178073	98.00	99.50	1.50	0.7	0.1	28.5	12.8	6
		·····					178074	99.50	101.00	1.50	< .5	< .1	10.6	4.9	8
							178075	101.00	102.50	1.50	1.6	<.1	16.4	8.1	8
							178076	102.50	104.00	1.50	1.5	0.1	29.5	23.9	20
							178077	104.00	105.50	1.50	1.2	0.1	22.0	10.2	

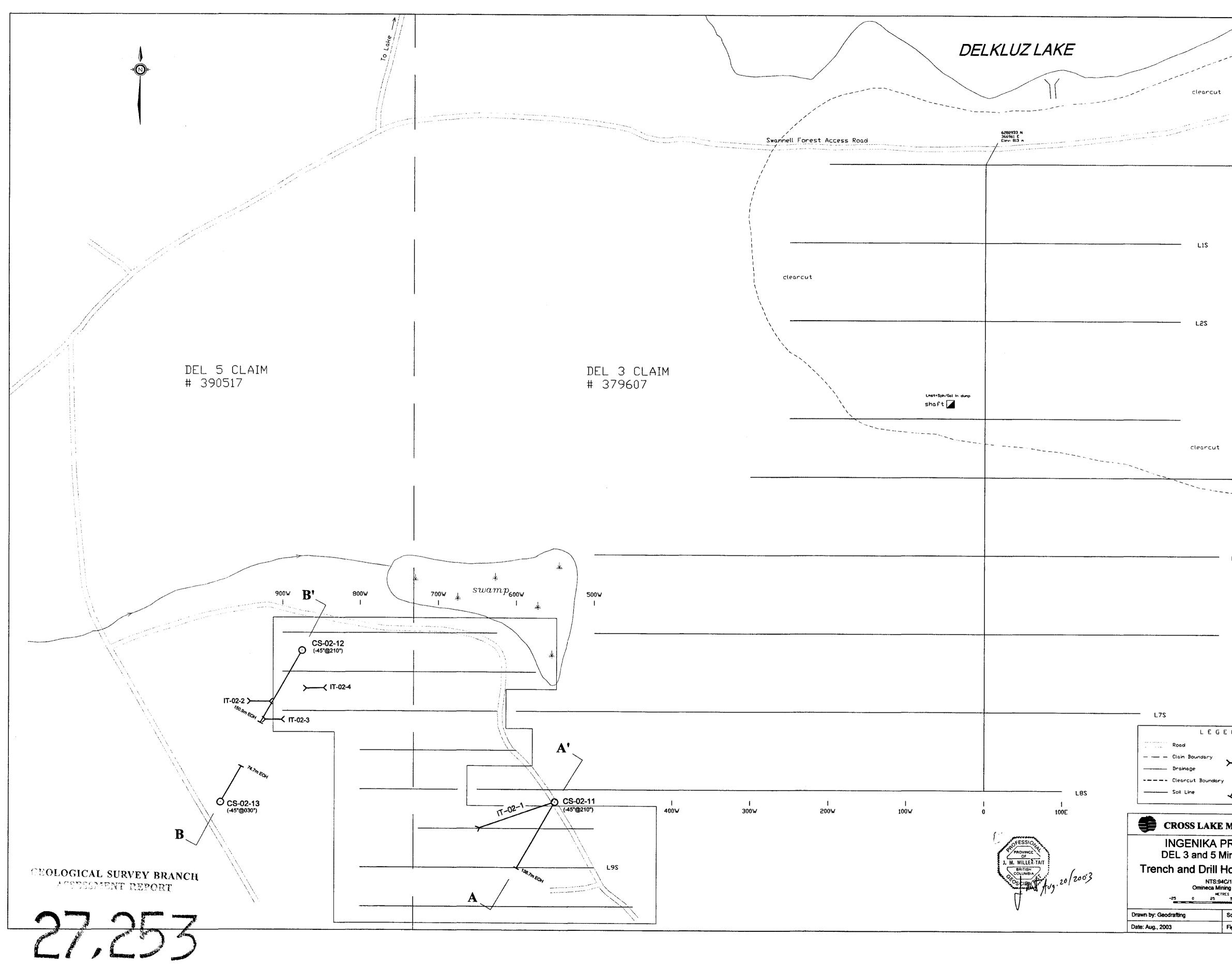
λ.




CROS	SS LA	KE MI	NERAL	S LTD.	Diamond D	rill Hole L	.og	Prope	erty: SWA	NNELI	-				lole No. CS-02-14		Page 3 of 3
Hole Co-ord	linates:			Collar Elevation:	Total Depth:	Azim	nuth and Dip of H	lole:	Comments: Aci	d test only; az	timuth estimat	ed	Map Referen NTS: 94C/1		Claim Na KLU 2-3	me /Number #238504	r:
	6278328	N	367115 E	820 m ASL	127.0 m	Depth	Azimuth	Dip					BCGS: 094	C.065			
Date Hole S	started:		Date	Date Logged:	Logged by:	Collar	235°	-47°	Core Size: NQT	К			Property Loc	cation (Twp. L	ot, Con. or L	at. And Long	g.)
						m	•	°					Latitude: 56	* 39'	Longitu	ide: 125° 10	r.
24-Sep-02			26-Sep-02		J. Miller-Tait	m	0	°	Core Storage L	ocation: on si	le		UTM: Zone	10; 6 282 000) N, 367 0	00 E	
Exploration	Co., Owne	r or Optionee:	••••••	Date submitted:	Submitted by :	m		•									
Owner: Te	ck Comince	o Limited			(Signature)	m	D	•	Drilling Contrac	tor: F. Boisve	nu Drilling Ltd		1				
Optionee:	Cross Lake	Minerals Ltd.				m	•	0		Delta, B.C			J				
						m	•		Assay Laborato	ry: Acme Ana	lytical Laborat	ories					
						m	•	•		Vancouver,	B.C.						
Me	tres	% Recover	/	Description (C	Colour, grain size, te:	xture, minerals, a	Iteration, etc.)		Sample Tag		nple	Sample			Assays		
									No.		pth	(metres)					
											tres)						
From	To									From	То		Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm
		l	-1					<u> </u>	178078	117.00	118.50	1.50	< .5	< .1	22.3	11.7	90
		<u> </u>				<u> </u>			178079	118.50	120.00	1.50	0.7	<.1	18.1	17.7	104
					· · · ·												
		1											ļ				
								·		<u>.</u>	<u> </u>	ļ	ļ				
												L		ļ	ļ		
		I					<u>-</u>					l	1	<u>I</u>	1		


•


SECTION F: ILLUSTRATIONS


Plan Number	Title	Scale
ING-02-1 (after p.4)	General Location Plan	1:250 000
ING-02-2 (after p.4)	Location Plan with Topography	1:50 000
ING-02-3 (after p.4)	Mineral Claims	1:50 000
ING-02-4	Trench and Drill Hole Location Plan	1:2 500
	DEL 3 and 5 Mineral Claims	
ING-02-5	Drill Hole Plan	1:1 000
	KLUZ 3 Mineral Claim	
ING-02-6	Cross Section A-A', DEL 3 Claim	1:1 000
	Through Hole CS-02-11	
ING-02-7	Cross Section B-B', DEL 5 Claim	1:1 000
	Through Holes CS-02-12, 13	
ING-02-8	Cross Section D-D', KLUZ 3 Claim	1:1 000
	Through Hole CS-02-14	

	MI
	セン
LOS	
L3S	
	L4S
•••••••••••••••••••••••••••••••••••••••	
L5S	
L6S	
ND	
≻−−− ≺ Trench	
Diamond Brit	ll hole
۷	
MINERALS L	TD.
ROPERTY	
lineral Claims lole Locatior	
C/11E ng Division	u
ES 50 75 100	
Scale: 1:2,500 Fig: ING 02-4	