Diamond Drill Log DDH 3-01Dip 45, Azi: 270, North 6160528 +/- 8m East 348033 +/- 8m T.D. 224.9 m

Date: May 23 Logged By: J. Oliver Page 2

From	То	Rock	Mod	Stuct	CA	Alte	ratio	n					Min	era	lizatio	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	Pv	Ро	Cpv	Sp	Gn	Asp	Bn	Mag	
0	3												1		-17					- 3	CASING
																					3
3	17.95	CA																			CHERTY ARGILLITE
																					Strongly transposed, cherty argillite. May contain minor grey
				4.5	S1 28								0,5								limestone interbeds.
					S0 5																Abundant foliation parallel slip planes.
																					Net sulphide content low; < 0.5%, euhedral pyrite.
															0,5						Minor mm scale quartz veins, irregular in form, no alteration envelopes.
				12.5	S1/S0	25															Note limestone interbed at 7.5 to 8.4.
																					No skarn assemblages. Pyrite content elevated in mm - cm scale
																					clastic layers. Non-magnetic.
																					17.95
																					LIMESTONE
17.95	52.7	L		19	S1 40																Light grey to medium grey, medium grained limestone.
																					Sporadic hints of bioclastic debris, pellets, crinoids. Generally heavy
																					re-cyrstallization. Locally well developed stylolitic and presure
																					solution cleavages.
																					Distinctive gradational contact from 17.95 - 18.2, 15% black clastic matrix.
																					No development of skarn or hydrothermal alteration products.
				37.95	S1 35																No significant structural zones
																					Sporadic irregular non-sulphidic, quartz veinlets
																					Net sulphide content, pyrite, very low < 0,2 %.
																					52.7
52.7	54.8	PI											0,5								LIMY-CHLORITIC PHYLLITE
				53.85	60																Pale green-grey, moderately compositionally layered limy phyllite.
																					Calcite content decreases, increased dolomite, weak A-red response.
				54.85	45																Matrix pyrite slightly increased, 0,5%. No base metal phases.
																					No skarn development, no vein development.
																					54.8
54.8	72.7	L																			LIMESTONE
																					Homogeneous light grey limestone, felted re-crystalized matrix.
																					No significant development of internal compositional layers,
													Tr								sporadic stylolitic cleavages.
																					No significant vein development, no skarn assemblages.
																					Intact core, no brittle-ductile failures.
														1							Net sulphide content low, pyrite < 0,2%

				1											72.7
72.7	75.9) PI								0,5	5				LIMY-CHLORITIC PHYLLITE
															Distinctive grey-green well compositionally laminated matrix
											1				30-40% calcite matrix, 10% dolomite, locally well defined dark grey
				74.25	S1/S0	35									compositional layers.
							I						-		Net sulphide content slightly elevated, pyrite 0,5 - 0,75 %, no base
							Note: T	his unit r	nay b	e rece	eiving	tufface	ous ir	nput.	metal phases.
									Ť					İ	No significant structural zones.
				75.9	S1/S1	85									No skarn or hydrothermal related minerals.
															75.9
75.9	84.8	3 L													LIMESTONE
															Felted texture, re-crystalized limestone with sporadic black clastic input.
1				84.8	SoS0										Minor, non-sulphidic, white calcite veins.
															No skarn assemblages, no hydrothermal mineral phases.
															Net sulphide content, pyrite, <.2 %
															84.8
84.8	106.3	CA	Х												CHERTY ARGILLITE
															Dark grey, sporadically compositionally laminated cherty argillite.
															Abundant cuspate to oval pale grey Fragments, probably
										,75	5%				depositional in origin.
				97	S1/S0	30									Non-calcareous, non-magnetic.
															Generally intact cone, no significant structural zones.
															No skarn assemblages, or base metal phases.
				103.8	S1/S1	26									Pyrite commonly as minor oval to framboidal aggregates, averaging 0.75%.
															Sporadic mm scale extensional quartz veinlests forming orthogonal
															to compositional layers.
				106.3	S0	35									106.3
06.3	109.7	7 L	*q							tr	tr				LIMESTONE
															Minor dark grey limestone interbed.
															Unit is cut by abundant crackle breccia calcite veinlets.
															No skarn or sulphide veins.
															Net pyrite content very lov, Py: tr, pyrrohtite tr.
															109.7
09.7	115.2	2 CA	Х												CHERTY ARGILLITE BRECCIAS
															Dark grey moderately compositionally laminated unit,
				111	S1/S0	24									with abundant cuspate to oval chart fragments.
															Sporadic mm to sub-mm aggregates of pyrite, ^ 1.01, no other
															sulphide phases.
															No discordant veins or sulphide related rock alterations.
															115.2
115.2	160.1	I AP													ARGILLACEOUS PHYLLITE
				115.3		15									Well compositionally laminated medium to dark grey argillaceous phyllite.
				116.5	S1/S0	35									Rock matrix much softer, chert component significantly decreased.
															Compositional lamella's average 3-5 cm in thickness.

				135.5	S1/S0	35										Minor brittle failure zone at upper contact between 115.2 - 116.1;
				141.9		45										blockly broken cone, no vein injection.
				141.9	30	40	+ +							+ +		Net sulphide, Py content low, 0,5%, usually as compositionally
																parallel lamella.
																Į I
							+ +									Minor green-grey limy phyllite interbed between 141.9 and 142.9.
				100.1	00.00											No skarn assemblages, no high sulphide veins.
100.4	105.1			160.1	S0 39							_			1	160.1
60.1	165.4	L														LIMESTONE
																Blue-grey felted matrix, medium grained Sporadic pressure solution cleavages.
																Increasing black clastic input toward the basal contact, 163.9-165.4.
																Py < 0,5%, no sulphide vein or skarn assemblages.
$\neg \uparrow$				167	S1=S0	53										165.4
65.4	171.8	AP														ARGILLACEOUS PHYLLITE
-								DH: 1	167.0, S	S1/S0						Medium grey to grey green and well compositionally layered argillaceous phyllite.
									,							No sulphide veins or skarn assemblages. Pyrite averages 0,5%
								Near	orthogo	onal cle	vage	set.				largely as narrow lamella.
							1 1				I			1 1		Rock compositional layers average 1,0 -3,0 cm.
							1 1									171.8
71.8	179.1	CA														CHERT-RIBBON BANDED CHERT
																Abundant cm scale, highly contorted chert lamella (80%) separated
																by narrow, mm scale black clastic lamella (20%).
				178.8	0S0											Contorted lamella but no major faults indentified.
																Net sulphide content low, minor < 0,5% disseminted pyrite.
																Note minor 20 cm gouge zone towards the lower contact.
							1 1							1 1		Elevated sulphide content, 2-3% pyrite in clay rich gouge.
																179.1
79.1		Fpd					+ +				0),25		1 1	1	0,25 FELDSPAR PORPHYRITIC DYKE
7 0.1		i pu					+ +				\dashv	,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>			+++	Apple green non-foliated feldspar porphyritic dyke.
																Feldspar are clouded and moderately sericitized, by volume 60%
																plagioclase.
																Homogeneous, no internal stockworks, no compositional differences.
		-														Finely disseminated matrix pyrite 0,25%, Finely disseminated matrix
			187.8	Si	35											magnetite 0,25%.
													1 1			188.9
88.9	196.5	C-A											1 1			CHERT MINOR ARGILLITE
													 			Well compositionally laminated ribbon chert (85%) with lesser (15%)
			192.4	S1	O50%			1				-	+ +		† †	black graphitic argillite compositional layers.
1					220,0		1 1					-	+		† †	Non-calcareous, non-magnetic.
							+ +	+					+ +		+	Low net sulphide content, pyrite < ,5%.
							+ +	-+					+ +		++	No sulphide veins or skarn assemblages.
							1	+					+		++	196.5
		1	I	l							1			1 1		190.5

	ı	I	ı	1	I .		1		I	ı			T						Other a C4 febrie with about the parameter deather feet was within
																			Strong S1 fabric with abundant transposed bedding features within
												0,75)						this dark to medium grey argillaceous phyllite.
				196.7	Sh	50													Non-calcareous, and non-magnetite.
																			Pyrite averages 0.75%, largely as mm scale foliation parallel lamella.
					S1 50														No sulphide veins or skarn assemblages, no hornfels development.
				213.6	S1-S0	35													Definitive brittle-failure, fault at upper contact, 196.5-197.5, shear
																			surfaces parallel S1 at 050.
																			215.9
215.9	218.8																		FELDSPAR PORPHYRITIC DYKE
				215.9	Sdi	28					,25					,	25		Light grey-green Feldspar porphyritic dyke.
																			Probable matrix silification, feldspar less distinct than in previous dyke.
																			Disseminated pyrite O,25%. No magnetic.
																			No-calcareous, non-magnetic.
				218.8	Sd	45													No developments of stockwork veins.
																			Tight upper and lower contacts.
													1						218.8
218.8	221.4	CA/L																	CHERTY ARGILLITE - LIMESTONE INTERBEDS
												,75							Thinly, cm scale, ribbon chert lamella are separated by narrow mm
																			scale argillaceous lamella.
																			The interval contains a single grey limestone interbed between
																			217.0 and 221.4 m's
																			No significant structures, veins or sulphides are noted in this interval.
																			Pyrite, disseminated in CA, at 0,75% 221.4.
																			221.4
221.4	224,8	Fpd																	FELDSPAR PORPHYRITIC DYKE
-	,																		Bleached light grey-green Feldspar porphyritic dykes.
-																			Most joint surfaces contain minor slip planes.
				224.8	Sd	45													Disseminated pyrite 0,5% +/- grey sulphide phase.
																			No stockwork veins or high sulphide veins.
																			224.8
224.8	224.9	CA																	CHERTY ARGILLITE
																			Blocky broken dark grey black cherty argillite.
																			Disseminated pyrite, 1,0%.
																			Non-calcareous, non-magnetic.
				†												\dashv			224.9
224 9	EOH			İ												+			221.0
				1				1											
				1				1											
	 	1		+												-+			
	-			 					1	Note: A	אוו אכ	wn h	مام	SURV	erve	in thi	is		
				1			-			drill ho									
				1						inverte		ı. Ja	11101	u 1113		II Wa			
				+			-			HIVEILE	<u>ч.</u>		ᆉ			-+			
	-		1	+				-							\vdash				

Assay Sample Log DDH 3-01

Date: May 24, 2003 Page: 1 of

Sample No.	From	То	Sample Type	S.G	Sample No.	From	То	Sample Type	S.G
O17501	178.1	179.1	В						
O17502	179.1	180.1	В						
O17503	215.9	217.3	В						
O17504	217.3	218.8	В						
O17505	221.4	224.8	В						
O17506	224.8	224.9	В						
						†			
						+			
	I		l		1	1		1	

Diamond Drill Log DDH 3-02Dip: 45, Azi: 270, T.D.: 151.2 m. North 6160598 +/-10 m, East 347945 +/- 10 m

Date:May 26,03 Logged By: J. Oliver Page: 1

From	То	Rock	Mod	Stuct	CA	Alte	ratio	on					Min	era	lizati	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	Ру	Ро	Сру	S	o Gn	Asp	Bn	Mag	<u> </u>
0	0,9	CASE																•		Ŭ	CASING
																					0.9
0.9	20.7	CA-X											3								CHERTY ARGILLITES MINOR DEPOSITIONAL BRECCIAS
																					Intercalated dark grey black argillites with slightly gritty cherts.
				9.5S2	O80																Interbeds of cuspate oval chert breccias common.
																					Blocky broken core at upper contact, but no significant faults.
				20.5	S1S0																Disseminated pyrite high, 3-4%, no base metal phases; non-magnetic.
																					No high sulphide weins or skarn assemblages.
																					Minor feldspar porphyritic dykelet between 16.5 and 17.5
																					20.7
20.7	21.3	L																			LIMESTONE
																					Felted texture, strongly re-crystalized limestone.
																					Sporadic discordant white calcite veins.
																					Very low net sulphide density, Py < .5 %
																					21.3
21.3	43.6	Fdp																			FELDSPAR PORPHYRITIC DYKE
				21.3	Sd:55																Crowded, weakly altered feldspar porphyritc dyke.
																					Abundant blurred, but recognizable white plagioclase phenocrysts.
													0,5							1,0	Amphibole lathes, weakly altered.
																					Low disseminated pyrite, but good, 0.5 - 0,75% disseminated magnatite,
																					Clean intact core, no significant structures and no stockwork developmen
																					Well developed chill margins at both upper and lower contacts.
				43.6	Sd:20																43.6
43.6	46.5	L																			LIMESTONE
						1															Medium grained blue-grey limestone. May contain minor tuffaceou
						1															and sulphide rich inclusions at the upper contact.
																1					Sporadic pressure solution textures, massive, non-bedded.
																1					Disseminated pyrite from 43.6 to 44.6 10-12% elsewhere <.5%.
																1					No stockwork veins no skarn development.
						1										1					46.5

46.5	51.1	CAX									CHERTY ARGILLITES - MINOR BRECCIAS
			47.8	Si35			2	2			Dark grey argillite with 60% compositional layers and boudinaged layers of cher
			51.1	Sd:25							Blocky broken core at upper contact, but no significant offsetts identified.
											Disseminated pyrite content 2-3%, no base metals.
											No skarn or high sulphide vein assemblages.
											Lower dyke contact tight, no alteration.
											51.1
51.1	54.9	Fpd									FELDSPAR PORPHYRITIC DYKE
							0,2	25		1,0	Medium grained, grey-green, feldspar porphyritic dyke.
											Light rock alteration all feldspars sharple defined, albite twin planes recognizable
											Good chill margin, both contacts.
											Non-mineralized, 1% disseminated magnetite, pyrite < 0.25%.
											54.9
54.9	62.8	CA-X									CHERTY ARGILLITE MINOR BRECCIAS
											Dark grey black moderately to strongly foliated cherty argillite, each
			61.3	Si:30							unit represented in equal, 50% by volume, parts within this interval.
											Stron graphite-carbon development along slip surfaces, "poker chip"
											core common.
											No significant structural zones or zones of rock alteration.
											Net sulphide development, low pyrite <1%, no base metals, no sulphide
											veins or skarn assemblages.
											62.8
62.8	65.4	Fdp									FELDSPAR PORPHYRITIC DYKE
			65.4	Sd: 46							Distinctly greener grey dyke rock than noted at the previous interval.
											Limited rock alteration no stockwork or vein development, feldspar,
											blurred, but clearly visible.
											Pyrite 1-1.5%, magnetite, trace. Magnetite -> Pyrite (?).
											No alteration changes at rock contacts.
											64.5
64.5	72.1	Fdp									FELDSPAR PORPHYRITIC DYKE
							<,5	5%		Tr	Pale grey to apple green, Feldspar porphyritic dyke.
			72.1	Sd:25							Slightly higher bleaching levels than the immediately preceding dyke.
											Amphiboles still visible.
											Pyrite, low, < 0.5%, trace magnetite.
											No stockwork veins, no skarn assemblages.
											72.1
72.1	78.6	CA									CHERTY ARGILLITE

											- 1		Well developed cm scale compositional chert lamella (50%) separated
			75.8	Si:60									by dark grey black argillite.
													Locally chert lamella crumpled and rotated.
													Pyrite averages 1.5% as disseminations, minor aggregates and lamella.
													No base metals, skarn or sulphide vein assemblages.
													Blocky core 72.1-74.0, minor fault?
													78.6
78.6	92	L-CA											LIMESTONE, MINOR CHERT ARGILLITE INTERBEDS
			78.6	So:55									Dark grey limestone, locally with well developed stylolites.
													Weak shearing at upper CA contact.
													Unit contains 10-15% by volume, <1.0 m wide, cherty argillite interbeds,
													interbeds are often highly contorted and strained.
													External to secondary vein zones, sulphide contents within the limestone
													average 1.5% typocally as dissemination.
													Abundant black organics are noted with this interval.
													Breccias within CA unit may be tectonic.
													Black elastic gouge-brittle ductile failure between 91.5 and 92.0.
													92
92,0	95.6	MZ											MINERALIZED ZONE
													Carbonate hosted high sulphide veins and breccias are noted within the interv
							Ру	1-10) Ару	2-3 S	ph	1-2%	Two narrow, high sulphide veins are cored, these are noted at 92.0-92.5
			92.1	Sv	SO								and 95.1-95.6 Veins contain stibuite, arsenopyrite, pyrite, red brown
													sphalevite, sooty tetrahedrite and galena.
													Combined vein sulphide content in these intervals ranges: 20-30%
													The interval between the veins is characterized by an anastomosing
			95.3	Sv	SO								stockwork of off white calcite veins.
													Open spaces dos-tooth calcite is common within this interval.
													Dominant sulphide within high sulphide veins/veinlets is arsenopyrite.
													95.6
95.6	137.9	L-Ac											LIMESTONE WITH MINOR CALCAREOUS ARGILLITE INTERBEDS
													Interbedded cream limestone with dark grey micritic limestone. Minor
			97.6	So=S1	25								calcareous argillite interbeds are also noted within this interval.
													Locally, sheaving may be localized to calcereous argillite interbeds.
			104.3	S0=S1	35								Locally blocky broken core but significant faults are unlikely. Strongest
													shearing within a moderately sulphidic and clay rich interbed at 97.1-97.4.
													Second zone of elevated fine grained clastics significantly elevated
													sulphides between 103.9 - 105.0.

			106.9	80	20				1							I		Net sulphide content within 97.1 - 97.4 and 103.9 - 105.0, 5%, chiefly
			100.9	30	20			Note:	104 (2-106	3 0 0	rov I	111	2 1_1	20.6	aro	v/l	pyrite, trace arsenopyrite.
			112.2	So	45			NOIG.	104.8	1	J.9 G	iley L	., 11	J. 1-1	20.0	gie	y∟	Net sulphide content within the main limestone mass, 0.5% largely
			125.2		47				1									on black graphitic fracture surfaces.
			125.2	51	77				1									Limestone are typically dirty limestones.
									1									No development of skarn assemblages, no high sulphide veins
									1									Both light cream and dark grey limestones are cut by many white
					 				1									calcite veinlets.
									1					 				137.8
132.8	151.2	Fnd-y												-				FELDSPAR PORPHYRITIC DYKE-MINOR BRECCIAS
102.0	101.2	i pa x																Medium to light grey-green, bleached Feldspar porphyritic dyke
			137.8	Sd	55													Moderate clay-sericite alteration no stockwork vein development
			141.6		45													Upper content, clean and tight, no sulphide development.
			111.0	Oux					1									Well developed intrusion breccia, black clastic matrix between 140.4 and 1
																		Pyrite within intrusion breccia 1%, elsewhere 2%, likely after magnetite
151.2	FOH																	151.2
101.2									1									101.2
									1									
									1									
									1									
									1									
									1									
									1									
									1									
									1									
									1									
									1					\dashv				
									1					\dashv				
		+							1									
		+							1									
									1									
									1					_				
							1	<u> </u>	1									

Assay Sample Log DDH 3-02

Date: May 26, 2003 Page: 1 of

Sample No.	From	To	Sample Type	S.G	Sample No.	From	То	Sample Type	S.G
O17507	42.1	43.6		0.0	Campic No.	1 10		Campic Type	0.0
O17508	43.6								
O17509	44.6		B						
O17510		91.5	В						
O17511			В			†			
O17512	92.O	92.5		3.57		†			
O17513	92.5	93.5							
O17514	93.5								
O17515	94.5	95.1							
O17516	95.1	95.6	В						
O17517	95.6		В						
O17518	96.6		В						
O17519	97.1	98.6	В						
O17520	STANI		PM 906						
O17521		100.O		2.68					
O17522		103.9							
O17523		105.O							
O17524		106.9							
O17525	140.4	142.1	В						
				ļ		_			
				ļ		1			
	ļ			<u> </u>		1			
	ļ			ļ		1			
	ļ			ļ		1			
	ļ			ļ		1			
						1			
	ļ			<u> </u>		1			
			Ī	i				1	1

 Diamond Drill Log DDH 3-03

 Dip: -62.5 Azi: 270, North 6160598 East: 347945 E
 T. D. 176.2

 Date: May 28
 Logged By: J.Oliver
 Page: 2

From	То	Rock	Mod	Stuct	CA	Alte	ratio	on					Min	era	lizati	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	Ру	Ро	Сру	Sp	Gn	Asp	Bn	Mag	
0	5.2	CASE																·			CASING
																					5.2
5.2	24.7	CA																			CHERTY ARGILLITE
				9.9	S140								<,2	5							Well developed grey black compositional laminations, distinctive
																					cherty versus argillite compositional layers.
				19	S137																Sporadic blocky broken core but no significant fault structures.
																					Bedding compositional layers generally consistent orientation to
				24.7	So43																CA, at 40-45, parallels S1.
																					Net sulphide content very low, Py <0.25%, no other sulphide phases
																					Non-magnetic.
																					Very sporadic white extensional quartz veins.
																					Good early or depositional breccias between 21.6 and 24.7.
																					24.7
24.7	40.2	L																			LIMESTONE
																					Medium to dark grey organic rich dirty limestone.
																					Abundant discordant anastomosing white calcite veinlets.
																					Very low sulphide content, pyrite <0.25%, usually with black
				34.3	S1060)															organic rich layers.
																					No skarn assemblages, lower contact with Feldspar porphyritic
																					dyke has no skarn assemblages.
																					Generally comptent intact core, no significant structural zones.
																					40.2
40.2	42.9	Fpd	USE																		FELDSPAR PORPHYRITIC DYKE
				40.2		15															Pale grey-green, bleached, fine grained Feldspar porphyritic dyke.
				42.9	Sd	15															Locally black argillite/organic veinlets, crackle breccias are best
																					developed toward the lower structural contact.
																					Net sulphide content within crackle breccias is very low.
																					< 0.5% pyrite.
																					Both contacts are highly oblique to CA.
																					42.9

42.9	50.2	Cax											CHERTY ARGILLITE DEPOSITIONAL (?) BRECCIAS
													Abundant cuspate oval fragments, either transposed and boudinaged
													chert lamella or, primary depositional breccias.
			49.8	Si40									Net sulphide content low, Py 0.75-1.0 % trace (?) arsenopyrite.
									0,5				Abundant shear surfaces at upper contact.
													Very minor sulphide development toward the lower contact, pyrite 0.5%
													Minor quartz +/- carbonate, Foliation parallel veins, without sulphides.
													50.2
50.2	54.9	Fpd											FELDSPAR PORPHYRITIC DYKE
									0,25			Т	Fr Relative to the immediate preceding dyke, alteration levels have
													significantly decreased.
			50.2	Sd82									Crowded white feldspars, clearly visible.
													Pyrite < 0.25%, trace magnetite.
			54.9	Sd70									No stuckwork veins and no skarn (endo) assemblages.
													Upper and lower intrusive contacts are tight no sulphide vein developm
													54.9
54.9	56.4	CA-X											CHERTY ARGILLITE MINOR BRECCIAS
													A narrow, cherty argillite unit is embayed between two Feldspar
			55,0	Si30									porphyritic dykes.
													Net sulphide content low, pyrite about 0.5-1.0%
													No sulphide vein development at either contact.
													56.4
56.4	74.3	Fpd											FELDSPAR HORNBLENDE PORPHYRITC DYKE
													A weekly altered crowded feldspar hornblend porphyritic dyke.
													The dyke also contains minor biotite. All mafic phases are clearly
			56.5	Sd	25				0,5			0	0,75 defined, only weak rock alterations.
													Light sericitization of Feldspar. Composition Quartz Diorite.
													Weak to trace calcite-epidule.
			74.3	Sd	35								Magnetite 0.75%-1%, pyrite < 0.5
													No stockwork veins.
													Upper and lower contact defined by a superb chilled margin.
													74.3
74.3	87	CA											CHERTY +/- ARGILLITE
									1,0				Moderately compositionally laminated chert to ribbon banded cherty ar
			84.4	Si=So	15								Compositional layers are frequently contorted and most often are
													noted at low angles to CA about 15
													Pyrite present as minor incomplete sub-cm lamella or as minor

													disseminationsm ^ 1.0%. No other sulphide phases are identified.
													Sporadic blocky broken core but no significant faults.
													NOTE: 83.7-84.1: Minor intrusion breccia. Evhedral pyrite increases to
													87
87	90	L											LIMESTONE
									0,5				Medium to dark grey limestone, cut by many white calcite veinlets.
													No sulphide association with veinlets.
													Black organic inclusions commun, very minor < 5% by volume
													cherty-argillite interbeds.
													Net sulphides, pyrite :<0,5%.
													Red brown garnets developed over a 10 cm interval at the lower
													intrusive contact.
													90
90,0	114.6	Fpd	Se										FELDSPAR PORPHYRITIC DYKE
													Light grey green, crowded Feldspar porphyritic dyke. Uniform matrix
				90,0	Sd:50				0,5			0,5	sericitization. Both feldspars and mafic minerals altered.
													Low pyrite, <0,5%, hematite 2% as disseminated magnetite < 0.5%
													Slight increase in bleaching towards the upper and lower contacts.
				92.2	Si:35								Homogeneous, no stockwork development, no contact effects.
													Sporadic promary igneous foliation, trachyitic feldspar alignment.
													114.6
114.6	117,0	CA-Ix											CHERTY ARGILLITE AND CONTACT INTRUSION BRECCIA
				117,0	Sd:60				Z				Narrow intrusive bounded cherty argillite and intrusion breccias.
													Net sulphide content cherty argillite 1.0%, net sulphide phases
													dominated by pyrite
													No major faults, locally strongly rotated fabrics.
													117
117,0	137,0	Fpd	Kse										SERICITIZED FELDSPAR PORPHYRITIC DYKE
													Apple green, moderately sericitized feldspar porphyritic dyke
				125,0	Si:25								Locally soft clay altered clay rich incompetant zones, without
													significant movement.
					Si:25								No development of stockwork veins.
				137,0	Sd: 50								Net pyrite content low < 0.5%, weak magnetite, hematite 2-3%.
													Marked bleaching from 136.0 to 137.0
													137
137,0	140.4	MZ											MINERALIZED ZONE
ļ		ĺ							0,5		0,25		Major fault, localized in part by intensely sheared bleak clastics at

													the intrusive contact.
													Strong ribbon banded quartz vein development over 1,0 m from
													138.4-139.4.
													Abundant well rounded quartz vein fragments are identified in the
			140,0	Si 20									incompetant gouge in the immediate hanging wall and footwall to
													this mineralized zone.
													Sulphide content within the main vein is low. Fracture controlled
													arsenopyrite is noted at low 0.25% levels, evhedral pyrite is also
													noted, about 0.5%.
													No realiable vein orientations are possible within this badly fractured
													rock mass.
													140.4
40.4	152.3	Α	Fo										SHEARED ARGILLITE
													A jet black weakly compositionally laminated highly sheared argillite
				144.2	Sh 40								forms the interval. Very minor limestone interbeds are noted at the
													base of the interval.
													Boudinaged and rotated quartz vein fragments are also identified.
				150.3	So 50								Relavant sub-intervals include:
													140.4-144.3 Intense gouge +/- broken vein fragments.
				152.3	Sd 30								144.3-150.3 Sheared argillite vein fragments and gouge
													development weakens.
													150.3-150.8 Minor limestone interbed
													150.8-152.1 Sheared argillite
													152.1-152.3 Sheared felsic dyke
													152.3
52.3	157.7	C-Fpd											CHERT MINOR FELSIC DYKES
													Onset of massive to locally ribbon banded chert cut by minor
				154.6	Si 15								sericitized fine grained felsic dykes.
													Localized gouge sones, and minor discordant white quartz veins.
													Low net sulphide content, pyrite 0.5%, no arseno-pyrite identified.
													Bleached and sericitized feldspar porphyritic dyke between 153.2-154.1.
													157.7
57.7	176.2	Α											ARGILLACEOUS PHYLLITE
													Well compositionally layered light to dark grey argillaceous phyllite.
													Locally minor blocky gouge zones increasing down hole.
				161.4	Si=So=	=20							Minor foliation parallel quartz veins without sulphides or alteration selvedges.
													Non-calcareous no high sulphide veins.

1		 1400 -	10: 0						, ,	-	- 1		-	- 1	1		N. () 1.1.1 () () () () () () () () () (
		168.7	' Si=So	-30	igspace												Net sulphide content ow, disseminated pyrite 0.5%.
																	Gouge zones identified at: 157.8 - 157.9, 159.0 - 159.8, 171.8 - 173.1, 175.2
																	Gouge zones identified at: 157.8 - 157.9, 159.0 - 159.8, 171.8 - 173.1, 175.2 Most gouge zones are forming sub-parallel to Si generally at 20-30 degrees
																	176.2
176.2 EO	Н										1						END OF HOLE
							 										
					 												Down Hole Surveys:
														_			Down Hole Surveys.
														-			04.4 m. Din. C4.5 Ani. 074
		_												_			81.4 m: Dip: 61.5 Azi: 271
				1													176.2 m: Dip: 61, Azi: 272
			1		$oxed{oxed}$												
					igspace												
			1														
			+		 	-								_			
														-			
				-	-												
											İ	j					
													一				
				1			-							一			
				1	\vdash	-	-						\dashv	$\neg \dagger$		_	
			1	1	\vdash				\vdash					-t			
			1	1	\vdash	_		<u> </u>					-+	-+	+	_	
				1		_							-				

Assay Sample Log DDH 3-03

Date May 28, 2003

Page 1 of

Sample No.	From	To	Sample Type	S.G	Sample No.	From	To	Sample Type	S.G
O17526	41.4		В	1		1			†
O17527		45,0	В		†		1	<u>†</u>	
O17528	115.5	117,O			†		1	<u> </u>	
O17529	135.8	137,0	B						
O17530	137.0	138.4	B						
O17531	138 4	139.4	B						
O17532		140.4							
O17533	140.4	142,0	B						
O17534		144,0							
O17535		145.4							
O17536		147.4							
O17537		149.4			†		1	<u> </u>	
O17538		151.4			†		1	<u> </u>	
O17539		153.2			†		1	<u> </u>	
O17540		176.2			†		1	<u> </u>	
	1	0.2	_		1			 	
	 	 					 		
	1				1			 	1
	 								
									1
									1
	1								
	1								
	+						1		1
	+				 		1	 	
	1						1		
	+				 		1	 	
	+				 		1	 	
	+	-			1		1	 	1
	+	-		}	 	+	1	 	1
	1	 			 	1	1	 	+
	+	-		}	 	+	1	 	1
	+	-				1	 		
	-					+	 		1
	1								
	1								
	1								1
	1						1		₩
									I

 Diamond Drill Log DDH 3-04

 Dip: 55, Azi: 280, North 6160527 +/- 6m, East 347949 East +/- 6 m. T.D. 178.0 m.

 Date: May 30
 Logged By: J Oliver
 Page: 2

rom	То	Rock	Mod	Stuct	CA	Alte	eratio	on				Mi	ine	raliza	atio	n					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si Py	/ P	o Cr	эу 🤅	Sp	Gn	Asp	Bn	Mag	<u>, </u>
0	3,0	CASE																			CASING
																					3
,0	40.2	Fpd	_Sek																		FELDSPAR PORPHYRITIC DYKE
																					Moderately clay altered and sericitzed Feldspar porphyritic dyke.
				11.2	Si: 30																Numerous 30-75% incompetant gouge and brittle failure zones throughout
																					Minor discordant Cac veins, no skarn assemblages at lower contact.
																					Light matrix calcite, distict Feldspar phenocrysts, sporadic leucoxene,
				40.2	Sd: 20																mafic ghosts probably hornblend present.
																					Pyrite as disseminated, 1.5% no magnetite.
																					Lower contact defined by a 10 cm gouge zone.
																					40.2
40.2	55.9	L																			LIMESTONE
																					Dark grey, to medium grey limestone.
				51.4	Sh:30																Matrix is cut by numerous white calcite veinlets.
																					Blocky broken core, onset of sheaving toward the lower contact at
				55.9	So:30																51-4 - 52.3.
																					Homogeneous, no internal beds.
																					Net sulphide content low pyrite 0,25-0.5 %, usually with black
																					organic inclusions.
																					55.9
55.9	63.5	CA																			CHERTY ARGILLITE
																					Moderately sheaved ribbon banded chert or cherty argillite.
				63.5	Sh:30																Strong graphite development on shear surfaces.
																					Strong sheer development, parallel to bedding at the upper and lower cont
																					No development of high sulphide veins or skarn assemblages.
																					Disseminated evhedral pyrite, 0.75-1.0%.
																					63.5
63.5	66.3	L																			LIMESTONE
																					Medium grey homogeneous limestone interbed.
																T					Relative to the preceeding limestone, density of discordant calcite

				66.3	So:31							veinlets diminishes.
												Clean, conformable lower contact.
												Net sulphide development low, pyrite present at trace levels only.
												66.
66.3	67.7	CA-sh										CHERTY ARGILLITE - MODERATELY SHEARED
												A moderately sheared cherty argillite interbed.
				67.1	Si:51							Abundant composition parallel slip planes.
												Rock may locally be grading into one argillaceous phllite.
												67.
67.7	80.2	Fpd	K									CLAY ALTERED FELDSPAR PORPHYRY DYKE
												Both the upper and the lower contacts of this unit are strongly clay
												altered felsic dykes.
												Blocky, broken core throughout but no stockwork or high sulphide
												vein assemblages.
				80.2	Sd:20							Rock matrix contains significant disseminated calcite.
												Rock is non-magnetic, contains 2-3% finely disseminated hematite
												< 0.5% pyrite.
												80.
80.2 84	4,0	AP	Flt									SHEAVED ARGILLACEOUS PHYLLITES
												Semi-intact core, heavy breakage acrozz foliation surfaces.
					80.5	Si/SI	hi 25					No evidence of cherty laminations.
												No vein or skarn development, no calcareous.
												Note: 80.3-82.4 Significant gouge development.
												Pyrite <1.0%, about 0.5
												8
34,0	86.5	Fpd										FELDSPAR PORPHYRITIC DYKE
												Narrow moderately sericitized feldspar porphyritic dyke.
				86.5	Sd:25							Lower contact becomes significantly bleached, minor bleaching
												at upper contact.
												No carbonate, hematite 2-5%, Py < 0.25%
												86.
86.5	89.6	Fpd-x										FELDSPAR PORPHYRITIC DYKE INTRUSION BRECCIA
												Most of the interval consists of a monolithologic intrusion breccia.
												Breccia consists of 30% angular to sub-angular feldspar dyke
												fragments, 30% cherty fragments all in a black clastic matrix.
												Single dyke contact from 88.7 - 89.3.
												Matrix pyrite 0.75%.

89.6														
SHEARED CHERTY ARGILLITES												CA-sn	95.8	89.6
Grey black, clay rich gouge zone within a cherty argillite.														
Light disseminated pyrite, no high sulphide veins.									0	Si=So=3	90.1 S			
Arsenopyrite trace, possible chalky alunite Pyrite 0.5 - 0.75%														
95.8														
SERICITIZED FELDSPAR PORPHYRITIC DYKE											d Se	MZ/Fp	99,0	95.8
Light grey green strongly sericitized feldspar porphyritic dyke.														
Shattered fractured feldspar prophyritic dyke contains numerous		Tr	·		3									
hairline to mm fractures.									Sd:35	99,0				
Grey sulphides are commonly identified on fracture sets, translucent														
yellow brown sphalocite in trace tetrahedrite.														
Pyrite 3%														
99														
NUMBER 1 VEIN ZONE												MZ	103.5	9,0
Two very high sulphide veins are identified including:	3,0	0,5			3									
99.0-99.5 Realgar vein, black argillite host.														
101.55-102.3 Very high sulphide vein. Arsenopyrite 10%,									j/50	99.2				
pyrite 10-15%, tetrahedrite 0.75%.														
Veins appear to be hosted by an argillaceous phyllite. Phyllite bands								=5	Si=So=	102.4				
are locally sub-parallel to CA, veins at 50 to Ca.														
All core has abundant slip planes, and may have either a calcite +/-														
alunite gargue.														
No discrete vein textures per se, rather high sulphide replacements														
appear to be the norm.														
External to the principal veins the rock is either:														
99.5 - 99.8: Bleached sericitic dykes or:														
99.8 - 101.55: Sheared argillaceous phyllite, minor stockwork														
veins common, arsenopyrite persistant at low 0.5% levels.														
Boudinaged chert +/- vein (?) fragments are frequently noted in this in														
102.3 - 103.5 2-3% disseminated arseno within the footwall contact.														
103.5														
SHEARED ARGILLACEOUS PHYLLITES											Sh	AP	114.9	03.5
Dark grey, extremely incomportent argillaceous phyllites.	Tr			5	0,7									
The interval is a foliation parallel brittle ductile zone, 70% of the														
interval is a completely incompetant gouge zone.									Si=10	107.2				
Very poorly defined compositional layers, no chert component.							T							

													Sporadic small scale, sub-mm, calcite veinlets.
												++	Pyrite averages 0.75%, trace arsenopyrite.
											-	+ +	114.9
11/10	138.4	ΔΡ					+						ARGILLACEOUS PHYLLITE
114.5	130.4	ΛΙ),5	+ +	Light grey on black compositional layers, with very
				123.5	Si=So:	-25	+				,,0		Definitive changes in compositional layer orientation to CA, hole
				123.3	01-00-	_ <u></u>						+ +	cuts a synform or antiformal closure.
				131 0	Si=So:	-50						+ +	Sulphide levels are generally low, pyrite about 0.5%.
				131,0	31–30	_ <u></u>						+ +	Numerous small scale slip planes, frequently graphitic.
												+++	138.4
120 /	150.5	ΛР	Sh					_				+	ARGILLACEOUS PHYLLITE - SHEARED
130.4	150.5	A-P	SII				╁),5	+ +	
				1120	Si=S0:	00					1,5		Heavy gouge development across much of this interval.
				143,0	SI=SU	=88 T	1					+ +	Relative to the preceeding interval, pale grey compositional layers
				-			-					+	 have significantly decreased, probably increase in argillite member.
													Sporadic broken and rotated quartz vein fragments, significant
													sulphides are not associated with these zones.
												\perp	Net sulphide content low, pyrite 0.5%
	1											\perp	150.5
150.5	156,0	C-A											CHERT, MINOR ARGILLITE
													Relatively thick, 2-4 cm cherty lamella define the interval.
				151.2	S0:55								Narrow, 0.25-0.5 cm argillite lamella highlight chert compositional layer
													Pyrite as minor <mm 0.25-0.5%<="" aggregates="" scale="" td=""></mm>
													No stockwork veins, no high sulphide assemblages.
													156
56,0	171.5	AP											ARGILLACEOUS PHYLLITE
										(),5		Moderately thick greenish grey beds, 5-10 cm's, locally with diffuse
				164.5	Si=So:	=45							margins are interbedded with dark grey clastic rich interbeds.
													Sporadic blocky broken core but no significant fault zones.
													Compositional layers consistent at 45 to CA
													Non-calcareous, sporadic pyrite aggregates, < 0.5 %.
													No skarn or high sulphide vein assemblages.
													171.5
171.5	178,0	CA											CHERTY ARGILLITE
	1			1									Cuspate chert lamella common, minor intervals may grade into
											,75		argillaceous phyllites.
													Occaissional blocky, broken core but no major faults.
			1								1	1 1	No development of high sulphide, or stockwork or skarn assemblages.

													Net sulphide content Pyrite as disseminations and aggregates, 0,75 - 1.0 %
													0,75 - 1.0 %
													178
178,0	EOH												
	1												
	†	t		t									
	1	<u> </u>		<u> </u>									
	 	 	 	 									
	 												
	1												
	1												
	 												
	 												
	1												
					-								
	<u> </u>												
	<u> </u>												

Assay Sample Log DDH 3-04

Date: May 31, 2003 Page 1 of

Sample No.	From	То	Sample Type	S.G	Sample No.	From	То	Sample Type	S.G
O17541	84.4		B	84.4 ->				7,	
O17542	86.5								
O17543	89.6		В						
O17544	90.5								
O17545		95.8		96.2 ->	2.43				
O17546	95.8								
O17547	97.8		В						
O17548	99,0	99.5	В	99.2->	1.74				
O17549	99.5	100.7	В						
O17550		101.5							
O17551	101.5	102.3	В	102.0-	> 2.49				
O17552	102.3	103.5	В						
O17553		105.8							
O17554		107.6							
O17555		109.4							
				109.5-	> 2.50				
				<u> </u>		1			
				<u> </u>		1			
				1				1	
				1				1	
	1			+		+	 		
	1			+		+	 		
				1		+			
				+					
				+			-		
	ļ			1		1			<u> </u>

Diamond Drill Log DDH 3-05Dip: 45, Azi 270 T.D. 148.7 m, North 6160465 East 347935

Date: June 1, 2003 Logged By: J. Oliver Page: 2

From	То	Rock	Mod	Stuct	CA	Alte	erati	on					Mir	nera	izati	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	Ру	Ро	Сру	Sp	Gn	Asp	Bn I	Mag	1
0	6.1	CASE													.,			·			Casing
																					6.1
6.1	44.7	Fpd	_Se																		FELDSPAR PORPHYRITIC DYKE
																					Medium to bleached cream, Feldspar porphyritic dyke.
				11,0	Si: 60																Rock lightens - bleaches to pale cream green from 24.2 - 44.7
																					Abundant 2-2.5% disseminated hematite, virtually no pyrite.
																					No significant matrix carbonated, principle alteration sericite clay.
																					Sporadic clay filled fractures, no significant stockwork veins, no high
																					sulphide veins.
																					Surface oxidation to 8.9 m.
																					44.7
44.7	46.5	CA/Fp	d Se																		CHERTY ARGILLITES - SERICITIZED FELDSPAR PORPHYRITION
																					Strongly kualinized and bleached feldspar porphyritic dykes (50%
				46,0	Sd:45																by volume) cut thinly compositionally laminated cherty argillites.
																					Cherts are cut by small, cm scale white quartz veinlets.
																					Low net sulphide density, pyrite < 0,5%.
																					46.5
46.5	62.7	Fpd	*as																		FELDSPAR PORPHYRITIC DYKE
																					Feldspar porphyritic dyke cut by increasing density of pyrite grey
																					sulphide veinlets down-hole.
													2,5					Tr			Sub- intervals within this interval include:
																					46.5-52.7 Bleached feldspar porphyritic dyke with limited
																					stockwork vein development.
																					52.7-61.9 Shattered,pale green sericitized and clay altered
																					feldspar porphyritic dyke.
																					61.9-62.7 Slightly more feldspar crowded andesitic appearing
																					intermediate (?) dyklet. Stockwork vein density decreases
																					within this interval.
				62.7	Sd:28																Sulphide distribution is as follows:
	1																				pyrite 2-3%, arsenopyrite 0.25%, sphalerite - trace.

	I						ı		1	1	1			1 1	All sulphide valves generally increase towards the lower contact and
														+	
															decrease towards the upper contact. 62.7
60 F	GE O	Λn													ARGILLACEOUS PHYLLITE
62.5	65.9	Ар								0.5			Τ.	+ -	
										0,5			Tr		Soft, dark grey, well compositionally laminated argillaceous phyllite.
			00.4	00.0:	15									1	Stockwork densitiy markedly decreases, minor early stage non-
			63.4	S0=Si=	=45										sulphidic veins.
															Pyrite as irregular disseminations and aggregated, trace arsenopyrite.
															65.9
65.9	77,0	MZ/Fp	d												MINERALIZED ZONE - FELDSPAR PORPHYRITIC DYKE HOST
										3		0,25	1		Light cream-green, bleached and sericitized feldspar porphyritic dyke.
			Se												Heavy quartz-sulphide stockworks are encountered between 65.9-70.6
															Vein/veinlets are characterized by stibnite (2-5%); arsenopyrite
															1-2%, sphalevite < 0.25%; tetrahydrite/tennatite trace. Realgar-
															cinnabar is not identified.
															Stockwork vein density diminishes from 70.6-77.0.
				70.6	J/	0,80									Note: 68.5-69.0 Heavy stibrite filled fractures envelope a high sulphide
															quartz vein from 68.5-69.1.
															No calcite ar a gangue, veins are dominantly quartz-sulphide
				72.9	J/	55									Note at 72.9 superb cm scale stibnite-sphalevite veinlet.
															77
77,0	83,0	AP	sh												SHEAVED ARGILLACEOUS PHYLLITE
				77	Sd:	35							Tr		Moderately sheaved and locally vein injected argillaceous phyllite.
															Net sulphide content diminishes, trace arsenopyrite, 0.75-1.0% pyrite.
															No intact guartz veins, all veins are sheaved, moderate increase in
				82,0	Si=So-	-60									sulphides associated with these fractured veins.
				,											Note minor cherty lamella
															83
83,0	90.4	L													LIMESTONE
,										0,5					Medium grained, re-crystalized, grey, carbonaceous limestone.
				So=Si=	- 42					- , -					Abundant carbonaceous opaques, and well developed pressure
									-				1		solution cleavages.
														1 1	Net sulphide content low, pyrite < 0.5%.
														1 1	No significant skarn or sulphide development at the lower contact.
										1		-		+	90.4
90.4	94.5	Fpd	Se										1	+	SERITIZED FELDSPAR PORPHYRITIC DYKE
		F **								1			1	1 1	Apple green, felsic dyke cut by significant fine grained pyritic veinlets.

		I I	I		П		1	I			 1		Vain matrix in dominantly polaite not allied
										_			Vein matrix is dominantly calcite not silica.
	-												Pyrite content 1.5%, no other sulphide phases identified.
	1000												94.5
94.5	108,0	CA-AP											CHERTY ARGILLTE WITH MINOR ARGILLACEOUS PHYLLITE INTERBED
													Moderate bleaching near upper contact, shattered quartz vein
													between 95,0 and 95.7.
													Quartz vein contains < 0.5% pyrite.
			97.5	Si:35									Most of the interval, 85%, is dominated by a thinly compositionally
													laminated cherty argillite.
													Net sulphide content is low, pyrite 0.25-0.75%, largely as small mm
													scale aggregates.
													No development of skarn assemblages or high sulphide veins.
													Beds/composiitonal layers relatively constant at about 30-35 degrees.
													108
108,0	121.1	Fpd-Ca											FELDSPAR POPHYRY DYKE - MINOR CHERTY ARGILLITE INCLUSIONS
													Alteration levels within the dyke rock decrease.
													Cream coloured feldspar clearly visible.
													Minor calcite lines microfractures, containing slightly elevated pyrite
													levels, 1.0%, uniformly disseminated hematite 2%, rock is non-magnetic.
			111.5	Sd:25									Minor cherty argillite inclusion from 109.7-111.5.
													Slight increase in pyritic microfractures, between 116.8 and 119.3,
													pyrite 1.5% in this interval.
													121.1
121.1	1 127.7	CA											CHERTY ARGILLITE
													Slightly gritty cherty compositional bans, 80% grey to off white silica
													20% fine grained clastic lamella.
													Chert bands average 3-5 cm's
													Compositional layers generally consistant to CA at about 30 degrees.
													No major structural zones.
													Pyrite 1-1.5% largely as compositional layer parallel aggregates.
													121.7
127.7	7 135.4	Fpd											FELDSPAR PORPHYRITIC DYKE
						1							Lightly altered, weakly sericitized feldspar porphyritic dyke.
			135.4	Sd	35								No significant fractures or stockwork development.
	1		1				1	1		1			Light disseminated pyrite, 0.5%
	1						1	1		1			Weak matrix clay's +/- sericite.
										+		-+	Tight upper and lower contacts without significant gouge development.

						T					I			Ī		Т	135.4
135.4	148.7	CA-AP				+									-	+	CHERTY ARGILLITE WITH MINOR ARGILLACEOUS PHYLLITE INTERE
	1 1011	0, , ,							-							\dashv	Onset of well compositionally layered cherty argillites containing
							_										20-25% argillite and or phyllite compositional layers.
																	Major fault, complete gouge zone with elevated sulphide development,
																	pyrite about 2% as disseminations.
			141.5	Si=So:	=35												No fault shear orientation identified.
																	External to this fault, pyrite averages 0.5%
48.7	EOH																148.7
																	Down Hole Surveys:
		1		1							1						7 - 7 - 7
																	96.6 m Azi: 274, Dip: 43.
											1					\dashv	, = , p · · · ·
				<u> </u>		 			\top		1					\top	
																\dashv	
																\dashv	
																\dashv	
																\dashv	
																\dashv	
																\dashv	
																\dashv	
									+							+	
									+							+	
				1						+	T						
						+				+	†				-	+	
		 		 		+					1						+
						+					1			-		+	+
						+				+	†				-	+	
		 		 		+			+		†					+	+
		+ +		 		\vdash	+		+	+	1			-+	-+	+	
											1						
												-	\vdash	-+		-	

Assay Sample Log DDH 3-05

Date: June 1, 2003 Page 1 of

	I —	_		10.0		1-	-	I -	10 0
Sample No.	From			S.G	Sample No.	From	То	Sample Type	S.G
O17556		55,0	В						
O17557	55,0	56.7							
O17558	56.7	58.7							
O17559	58.7	59.7							
O17560	59.7								
O17561	61.9								
O17562	62.7								
O17563	65.9								
O17564	67.3	68.5	В						
O17565	68.5	69.7	В	69.2->	2.60				
O17566	69.7	70.6	В						
O17567	70.6	72,0	В						
O17568	72,0	73.5		72,0->	2.64				
O17569		75,0	В	<u> </u>					
O17570	75,0	77,0	В			1	İ		
O17571	77,0	77.9		1		1	<u> </u>		
017572			PM 169						
O17573	77.9				 	1			
O17574	79.6					1			
O17575		83,0	В						
O17576	90.4								
O17570		94.5				1			
017577 017578	94.5								
O17576 O17579		137,0							
O17580		139,0							
O17581	139,0	140.9	В						
						1			
					İ				
						1			
					1	†			
					1	†	<u> </u>		
						 			
				1	ļ	1			

Diamond Drill Log DDH 3-06Dip: 65, Azi: 270, T.D. 121.9 m, North: 6160465 N 347935 E

Date: June 3, 2003 Logged By: J. Oliver Pa Page: 2

rom	То	Rock	Mod	Stuct	CA	Alte	ratio	on					Min	iera	lizati	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	Ру	Ро	Сру	Sp	Gn	Asp	Bn	Mag	il I
0	3,0												Ĺ							Ŭ	CASE
																					3
,0	14.3	C-x																			CHERT +/- CORED OVERBURDEN?
																					An extremely competant blue-grey chert forms most of the interval.
																					The borhole pierces either an oxidized fault zone or cored overburden
																					between 8.2 and 14.3 m
																					Net sulphide content is low throughout the interval, pyrite averages < 0
																					About 2.5 m of core loss between 11.3 and 14.3 m
																					14.3
14.3	17.4	Fpd	K-Se																		FELDSPAR PORPHYRITIC DYKE
													2,5								Strongly clay altered and sericitized feldspar pophyritic dyke.
																					Well developed chill margin at upper contact.
																					Elevated sulphide and pyrite content within small mm scale fractures,
				17.4	Sd-20																pyrite 2.5%
																					17.4
17.4	20.6	C-A																			CHERT
																					Blue grey very competent chert, phyllite lamella may be weathering
				18.2	Si: 20																rust tan.
																					Compositional layers 15-20 degrees to CA
																					Net sulphide content low, pyrite < 0.25%
				20.6	Sd: 17																Both upper and lower contacts are tight and un-faulted.
																					20.6
20.6	45.7	Fpd	Se-Ca	ıC																	FELDSPAR PORPHYRITIC DYKE
																					Light grey green, very homogeneous Feldspar porphyritic dyke.
																					Feldspar phenocrysts to 1.0 cm, matrix supported.
																					Good disseminated hematite (2%), pyrite rare, <2%
																					Light matrix carbonitization, moderate matrix sericite.
				45.7	Sdi: 10)															No stockwork or high sulphide veins, lower contact tight, no shearing
																					or sulphide development.
																					45.7

45.7	53.4	С												CHERT
														Black chert with limited black clastic input.
														Compositional layers commonly sub-parallel to CA.
			52.	,0	Si=So=	=10								Sporadic broken blocky core but no significant sulphide development.
														Both contacts tight, no gouge or sulphide development.
														Net sulphide content, pyrite, 1.0% as compositional parallel aggregates.
														53.4
53.4	76.5	Fpd								Tr				FELDSPAR PORPHYRITIC DYKE
														Two significant sub-intervals are identified on this section: those are:
3.4	68,2)	Fpd												53.4-68.2 Weakly altered Feldspar porphyritic dyke. No
														significant stockwork development, limited joint and fracture sets.
														very low pyrite contents, <0.25% -Tr hematite dominant oxide
														phase 3%
														weak matrix carbonization
8.2	76.5)	Fpd												68.2-76.5 Bleached and shattered feldspar porphyritic dyke.
														matirc silica, secondary increases, silica veins post-date
														matrix calcite.
														matrix calcite, 10-15%
														sulphide phases, pyrite 1.5%, no other sulphides identified.
														76.5
76.5	83.1	SMZ												MINERALIZED ZONE - CHERTY ARGILLITE HOST
														Strongly sulphidic veins and replacement bodies are noted within
														the interval.
														Mineralization is of two types:
														@ Realgar, cinnabar, stibrite, arsenopyrite sulphide replacement
														zones, note between 77.4 and 78.7 m's Net sulphide content > 30%
														@ Vuggy, corroded to sucrosic black silica veins, hosted by
			7	77.7	J/ 30									a competant chert member which has been extensibely brecciated,
														noted at 81.4 - 83.1
			78,		Sh: 30									 Veggy silica veins contain arsenopyrite microliths which are
			79,	,0	Si: 10									scarsely identifiable under 20x magnification.
														- Textural these veins are analogous to high sulphidation veins.
			7	79.8	Si/Sh=	15								The intervening interval (78.7 to 80.25) consists of a sheared cherty arg
														Note: compostional layers are sub-paralled to CA Cross-sectional
				83 .	J/ 45									information strongly suggests the zome has shallowed, dipping east.
														The mineralized zone is the locus of a significant fault structure,
														extensive shearing occurs throughout the interval, shear primatati.

83.				, ,									
CHERTY ARGILLITE											CA/	109.2	83.1
Slightly gritty cherty argillite with sporadic argillaceous phyllite input													
Significant brittle failure zones throughout this interval. Brittle failure													
zones are located at:													
- 84.4 - 86.4 Blocky broken core, no definitive orientation.									Si: 15	87.9			
- 93.6 - 95.4 Brittle failure									Sh: 25	94,0			
- 97.7 - 98.9 Ground core								0	Si= So=1	97,0			
Unit is non-calcareous and has a moderate net sulphide content,				ii	d onto S	posed	trans	Sc	Si=So=5	104.1			
pyrite averages 2-2.5% largely as minor disseminations and aggreg									So: 30	109.2			
Note: suberb contact at 109.2 with the underlying limestone.													
109.2													
LIMESTONE											L	121.9	109.2
Massive, non bedded, blue grey, re-crystalized limestone.													
Very sporadic stylolotic cleavages, relatively clean limestone.													
Slightly blocky core but no significant structural zones.													
Net sulphide content low, pyrite < 0.5 %													
No skarn, manto, or high sulphide vein assemblage													
Weak mm scale calcite veinlets without significant sulphides.													
121.9												EOH	121.9
Down Hole Surveys:													
122.0 m Azi: 274, Dip: 64.													
		1											

Assay Sample Log DDH 3-06

Date June 2, 2003

Page 1 of

Sample No.	From	То	Sample Type	S.G	Sample No.	From	То	Sample Type	S.G
O17582	11,0	14.3		1		1		campio i jpe	3.3
O17583	14.3			1		+	 		
O17584	68.2			1		+		 	
O17585	69.9								
O17586	72.7		B						
O17587	74.7			76.3 -:	> 2 58				
O17588	76.5			7 0.0	1				
O17589	77.4			78.1 -:	>2.80				
O17590			PM 906	70.1 2	1				
O17591	78.7								
O17592	80.25			81.1 -:	>2 54				
O17593	81.4			1		+	1		
O17594	83.1			1		1		<u>†</u>	
O17595	84.4			1		+	 		
O17596	86.4			87.6 -:	> 2 63	+			
O17597		90,0	В	07.0	2.00	+	1		1
O17598	90,0	92,0	В	1		+	1		1
O17599	92,0	94,0	В	1		+	1		
O17600	94,0	96,0	В	+	+	+	 	 	
O17600	96,0	97.7		+		+	-		
O17602	97.7								
017002	31.1	100,0							
	 			<u> </u>					
	1			 					
	-			 					
	 			<u> </u>					
				1		+	 		-
	-			1		1			
	-			1		1			
	1					1			
	1			1		1			}
	1					1			<u> </u>
	 	-		1		1	1		}
	 	ļ		1		+			
	<u> </u>			 		 	ļ	-	<u> </u>
				 		 	ļ	<u> </u>	ļ
	<u> </u>					1			ļ
	<u> </u>			1		1			
	<u> </u>			1		1			<u> </u>
	 			1		1			<u> </u>
	<u> </u>			1					<u> </u>
									<u> </u>

Diamond Drill Log DDH 3-07Dip: 78.5, Azi: 270, T.D. 159.7 m North: 6160465 East 347935
Date: June 3 Logged By: J. Oliver Page: 2

From	То	Rock	Mod	Stuct	CA	Alte	ratio	on					Mir	nera	lizat	tion					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	Ру	Po	Ср	y Sp	Gn	Asp	Bn	Mag	
)	6.1																			Ĭ	CASE
																					6.1
6.1	16,0																				LIMESTONE
																					Blue grey massive, homogeneous limestone.
					38,0	So:	So:														No internal beds, weak stylolitic cleavages.
																					Net sulphide density, very low disseminated pyrite < 0.25%
																					16
6,1	38,1	CA-x																			CHERTY ARGILLITE, MINOR DEPOSITIONAL BRECCIAS
																					Well compositionally layered cherts with minor argillaceous
					22.9	So	So														compostional layers. Sporadic depostional breccias.
																					Generally competant core with only minor brittle failures.
					33.1	Su:	18, \$	Si 30)												Sulphide levels are low, typically 1-1.5% pyrite as small dissemination
																					and layer parallel aggregates.
					34.8	So	38														Very minor, < 20cm, limestone interbed.
																					No high sulphide veins or skarn assemblages.
																					38,0
8,0	57.1	AP-sh																			SHEARED ARGILLACEOUS PHYLLITE
																					Significant brittle failure zone corresponds to the onset of argillaceou
				50,0	So 35																phyllites.
																					Locally heavy core loss, less than 15% recovery between 41.8 and 4
																					Heavy fault development between 39,0 and 46.5
																					Typically moderate net sulphide development, pyrite and pyritic
																					aggregates 2%, no other sulphide phases identified.
				53.4	Sh: 28	3															Major fault at 50.9-57.1, blocky locally ground core.
																					Net pyrite content within this fault significantly increases, pyrite now
																					averages 8-10%, as lamella and disseminations. Minor quartz vein
																					injection near upper contact at 50.9.
																					57.1
57.1	119.7	CA/AF)																		CHERTY ARGILLITE INTERBEDDED ARGILLACEOUS PHYLLIT
																					Intact cherty argillite. Silky foliation surface, abundant aligned fine

				58.4	S1=So	<u>-40</u>	T			T			T	T	Т	grained micas.
				30.4	01-00	1-40									+ +	Minor < 15% chert input, compositional layers average 2-4 cm in width.
							+				+ +				+	No significant fault structures identified in this interval.
				CO 4	04.00									_	_	ů –
				63.1	S1: 20											Compositional layers and S1 fabric varies between
				20.0	04.0											Persistant sub micacaeous foliation surface, but greater than 70%
				69.2	S1: 0											of the rock is silica.
																Minor washes or interbeds of a more argillaceous phylliute member
					S1=So											are also noted.
				92,0		30										Net sulphide content, pyrite only is moderate, pyrite averages 1-2%
				102.8		35										as disseminations and incomplete foliation parallel aggregates.
				108.8	S1	35										Exceptionally homogeneous, no significant rock changes, abundant
																transpostion features, drill bit sub-parallel to So??
				119.7	S0=S1	=25										Fabric becomes more consistant at about 30 to CA as the lower
																content at 119.7 is approached.
																119.7
119.7	132.4	C-CA														CHERTY-CHERTY ARGILLITE
																Marked increase in matrix silica, cream to white compositional
																layers, 80-90% (volume); separated by
				123.3	O20=S	Su=Si										Generally intact, limited brittle-ductile failures, although slightly blocky co
				132.4	Su=S=	:45										No stockwork vein development, no high sulphide veins.
																Net sulphide development decreased relative to preceeding argillaceous
																phyllites, disseminated pyrite 0.5%
																132.4
132.4	138.4	Fpd	Kje													FELDSPAR PORPHYRITIC DYKE STRONGLY CLAY-SERICITE ALTE
																A bleached cream-green, soft clay altered dyke forms the interval.
																Both upper and lower contacts are tight, lack significant shearing
																or sulphide development.
				138.4	Sd:38											Net sulphide development is high, 3% disseminated euhedral pyrite,
																trace grey sulphide phases.
									1		1 1					A small xenolithic argillite inclusion is noted between 137.4 -138.0
															1 1	138.4
138.4	141.6	AP sI														SHEARED ARGILLACEOUS PHYLLITE
	1	0_									2,5			\dashv	+	Incompetant strongly sheared argillaceous clastic.
											,					Very limited chert input.
				130 8	Si: 50		-	 	-		++		-+	+	+	Gouge and shear development increases towards the upper dyke contact
				100.0	01. 00								_		+	Net sulphide development, pyrite 2-3%
							-			1	+ +	+	-+	_	+	No significant high sulphide zones or veins.
																ino significant riigh sulphilde zones of veiris.

													141.6
141.6	145,0	L											LIMESTONE
													Blue-grey, re-crystalized limestone.
													Massive homogeneous, non-bedded
													Moderate stylolitic cleavage
													No skarn or high sulphide vein assemblages.
													Low net sulphide content.
													145
45,0	159.7	C-CA											CHERT-CHERTY ARGILLITE
													Very competant chert with limited argillaceous compositional layers.
			147,0	Si=So:	=50								Locally cuspate transposed chert inclusions.
			153,0										Rapid rotation of compositional layers common.
			159.1	Si=15									Minor zones of blocky core
													Net sulphide development, pyrite only consistently low, pyrite about 0.5
159.7	EOH												
													Downhole Surveys:
													118.0 m Dip: 81 Azi: 260

Assay Sample Log DDH 3-07

Date: June 3, 2003 Page 1 of

Sample No.	From	То	Sample Typ	20 S G	Sample No.	From	То	Sample Type	S G
		52.0	Sample Typ	Je 3.G	Sample No.	FIOIII	10	Sample Type	3.6
O17603	50.9		В						
O17604	53.9	57,0	В						
O17605	130.1	132.4	В						
O17606	132.4	135,0	В						
O17607	135,0	137.2	В						
O17608	137.2	138.3	В						
O17609	138.3	140.5	В						
O17610	140.2	141.6	В						
						1	1	1	
						1	1		1
	-			-		-	 		}
						1			}
						-			<u> </u>
						<u> </u>			<u> </u>
						1			
						+			
						+			
						1			<u> </u>
]]
	1					1	1		1
						1	1		
						1	 		1
	1					1	1		
	-			-		1	 		}
	1					1	ļ		}
						1			ļ

Diamond Drill Log DDH 3-08Dip 50, Azi: 270, T.D. 96.6 m. North 6160394 East 347952
Date: June 4 Logged By: J. Oliver Page

Page: 2

From	То	Rock	Mod	Stuct	CA	Alte	ratio	on					Min	erali	izatio	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	Py	Ро	Сру	Sp	Gn	Asp	Bn	Mag	
0	1.8	CASE																			CASE
																					1.8
1.8	11.6	L																			LIMESTONE
													<.5								Dark grey, re-crystalized limestone, sporadic discordant white
																					calcite-silica veinlets, no sulphides,
																					Light weathering and oxidation along fracture surfaces to 8.2 m
																					No skarn assemblages, no sulphidid veins.
																					Limestone becomes increasingly organic rich toward the lower contact.
																					Low sulphide, pyrite < 0.5%.
																					11.6
11.6	31.2	CA-x																			CHERTY ARGILLITE-MINOR BRECCIAS
				15.8	Si=So=	=60															A representative cherty argillite forms the interval approximately 30%
																					of the unit is comprised of and argillaceous material. The remaining
				17.5	Sd=55																20 % is a slightly silty chert.
																					Chert lamella are frequently boudinaged, and form cuspate ovals.
				30.1	Si=Sa=	=20															There are no signinficant structural zone in this interval.
																					Net sulphide content averages 1.0% pyrite as minor disseminations and la
																					Note minor felsic dykelet between 17.5 18.1
																					31.2
31.2	41.8	L											Tr								LIMESTONE
																					Homogeneous, medium grained, blue-grey, carbon rich limestone.
				31.2		20															No internal beds.
				35.3	Si	30 -	faint	t													Both upper and lower contacts are tight, no significant fault structures.
																					Pyrite noted only in trace levels.
																					No skarn assemblages.
																					41.8
41.8	72.5	CA																			CHERTY ARGILLITE
				42.1	Si=20																Generally homogeneous, well laminated cherty argillite.
																					Compositional variation only based on the volume of grey silica
				50,0	Si=So=	=35															lamella (80=60%) versus argillite lamella.

1				I								T				I	Compositional layers generally transposed to Si.
					60.7	Ci_1	0				1 1				+	1	No skarn or high sulphide veins, minor quartz veinlets which are
					60.7	Su=1											discordant to foliation.
						Su=	30				1 1						Non-calcareous, no limy interbeds.
					63.7	Co. 1	25										Pyrite 0.25% within mm scale extensional quartz veinlets and lesser
					63.7	50=	35				+ +			_	-	1	,
											+ +			_	-	1	foliation parallel aggregates.
				70.4	0 45										_		Note: 67.6 - 68.6 Increasingly clay altered feldspar porphyritic dyke.
				72.4	So:45										_		Pyrite increases to 3% disseminated.
																	Note: from 68.6 - 72.5 Cherty argillite member becomes increasingly
														_	_	<u> </u>	blocky and broken. Slight increase in disseminate pyrite and pyritic
																	aggregates.
																	72.5
72.5	75.3	MZ-Ca	sh														MINERALIZED ZONE SHEARED CHERTY ARGILLITE HOST
																	Onset of heavy sulphide veins and replacements.
				72.5	S	25											Strong sheaving; frequently exceptionaly incompetent core.
																	Very limite development of a calcite gouge, most of the mineralized
				73.5	J/	40											zone consists of loosely aggregated sulphide grains within a black
																	clay-rock flour gouge.
				75.3	Sd	30											Sulphide content is high. Recognizable sulphide phases include:
																	arsenopyrite 10=12%
																	Stibnite: 3-5%
																	pyrite: 15%
																	red brown sphalerite: 1-25
																	tetrahedrite/tennantite: 1-2%
																	galena < 0.5%
																	Note: No realgar-cinnabar, rapid vertical zonation??
																	75.3
75.3	82.5	MZ/Fp	d														FELDSPAR PORPHYRITIC DYKE-MINERALIZED ZONE
			K-Se														Two major sub- intervals may be identified including:
																	75.3 - 79.3 Extensively clay-sericite altered feldspar porphyritic
				78.1	J/	30											dyke, Mineralized interval. Rock is cut by numerous cm scale
																	stibnite-arsenopyrite-pyrite veins and the matrix contains
																	abundant disseminated pyrite (7-8%) and lesser arsenopyrite
																	(<1%).
1				82.4	Sd	45		Note:	Lower	dyke d	contac	t tio	ht, no	n fau	ılted.		79.3 - 82.4 Pale cream-green sericitized and weakly carbonized
												Ĭ					Feldspar porphyritic dyke. Stockwork vein density markedly
											1 1				i		decreases. Disseminated pyrite 5-6%, no arsenopyrite or other

													sulphide phases recognized.
													3
82.5	96.6	AP-SL											SHEARED ARGILLACEOUS PHYLLITES
													Chert lamella noted up-hole are absent. The rock is a moderatel
													well laminated, slightly talcose argillaceous phyllite.
													Anastomosing brittle ductile zones and gouge zones are well
													developed at 83.8 - 85.0, 86.9-87.6 and 92.8 - 93.1.
													No shear orientations are possible within thses zones of heavy of
													development.
			92.3	Si=So:	=20								A single 20 cm arsenopyrite-pyrite veins is noted at 85.6-
													Background, matrix sulphide is generally low, 1-1.5% pyrite as
													small compositional parallel aggregates.
96.6	EOH												
													Downhole Surveys:
													96.6 m Dip: 47.75, Azi: 275.5

Assay Sample Log DDH 3-08

Date June 4, 2003

Page 1

Sample No.	From	To	Sample Type	S.G	Sample No.	From	То	Sample Type	S.G
O17611	66,0	67.6	B	15.5	Campio ito.	1	 ` 		5.5
O17612	67.6		B	67.9->	2 51				
O17613	68.6	70.2	B	01.5 >	2.51				
O17614	70.2		B						
O17615	71.5		R						
O17616	72.5			72.8 ->	2 76				
O17617		ard PM		72.0	2.70				
O17618	73.8								
O17619			В						
O17620	77,0	78.2		78,0->	2 94				
O17621		79.3		70,0 >	1				
O17622		81,0	В						
O17623	81,0	82.5							
O17624		84,0	В	 			 		
O17625	84,0	85.6		1			1		
O17626		86,0	В	<u> </u>		1	<u> </u>		
O17627	86,0	87.5		1			1		
O17628	87.5								
O17629	90.5								
O17630	93.6								
LEAD	00.0	00.0		9.2					
22,70				0.2					
							1		
				1			1		
				1		1	1		
							1		
				1			1		
				1			1		
				 		1	 		
	1			 		1	 		
Ī	1		1	1	I	1	1	I	i .

 Diamond Drill Log DDH 3-09

 Dip 67.75, Azi: 270, T.D. 154.5 m North 6160394 East 347952 East

 Date: June 6 Logged By: J. Oliver Page: 2

rom	То	Rock	Mod	Stuct	CA	Alte	eratio	on					Min	nera	lizati	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	Ру	Po	Сру	Sp	Gn	Asp	Bn	Mag]
0	1.5																				CASE
																					1.5
1.5	2.7	PI																			LIMY PHYLLITE
													0,5	%							Narrow band of well laminated calcareous phyllite.
																					Rock contains unusual 1-3 cm ovals fo a yellow-cream quartz
				2.7	So 35																porphyritic inclusion.
																					Net sulphide content is low, pyrite 0.5%.
																					2.7
2.7	11,0	L																			LIMESTONE
																					Grey to tan grey, homgeneous, massive, re-crystalized limestone.
				11,0	So 35	-> sı	.perk	con	tact.												Rock is cut by small mm scale, sulphide deficient calcite veinlets.
1																					There are no skarn assemblages and no high sulphide veins.
																					Disseminated pyrite <0.25%, no other sulphide phases recognized.
																					11
1,0	17.2	CA-x																			CHERTY ARGILLITE MINOR BRECCIAS
																					Well compostionally laminated cherty argillite. Abundant oval chert
																					forms, +/- grey cm scale chert compositional layers.
													1,0)							Weak shearing at upper contact, elesewhere core is intact.
				14.3	Si/So=	:50															Non-calcereous, non-magenetic.
																					Pyrite 1.0% as compostional layer parallel aggregates and dissemina
																					17.2
17.2	18.1	Fpd											0,5	5							FELDSPAR PORPHYRY DYKE
																					Fine grained, narrowm weakly altered feldspar porphyry dyke.
																					Non-calcereous, no stockwork vein development, 0.5% pyrite no
																					hematite.
																					18.1
18.1	68.7	CA/AF)													ĺ					CHERTY ARGILLITE - INTERBEDDED ARGILLACEOUS PHYLLIT
																					The rock unit grades between being a well defined ribbon banded
				27.4	Si=So=	=55															chert and a moderately siliceous argillaceous phyllite.
																					Contacts between the Ca and AP emebers are gradational, and

				41.6	Si=S0	=25							not consistently mappable in drill core.
													Minor blocky zones occur throughout this interval, but significant
				59.8	So	35							structural zones are noted within this interval < 0.25%
													Pyrite ranges between 0.5 and 1.0% as foliation parallel lamella
				68.7	Sd	38							and disseminations.
													No skarn assemblages, no high sulphide veins.
													68.7
68.7	80.8	Fpd											FELDSPAR PORPHYRITIC DYKE
													Tan to grey-green feldspar porphyritic dyke.
				78.7	Si	32							Well developed chill margin for about 50 cm into the upper contact.
													No stockwork vein development, no sulphides development at
				80.8	Si	25							upper contact.
													3-4% hematite, trace pyrite.
													Broad chill margin from 78.0 - 80.8 lower contact, lower contact
													tight, not faulted.
													Pyrite (1.0%) sericite and clay material assemblages increse towards
													the lower contact.
													80.8
80.8	88.4	CA-Ix											CHERTY ARGILLITE MINOR INTRUSION BRECCIAS
													Well developed monolithologic intrusion breccias are noted at the
													upper contact, 80.8 - 81.3
				84.4	Si: 0 p	arallel	ls So)					Representative ribbon chert across this interval, no significant fault
													development.
				88.4	Sd: 30								Non-calcareous, pyrite 1.0% associated with small quartz fractures.
													No other sulphides, non-magnetic.
													Slightly elevated sulphides, pyrite 2%, trace arsenopyrite, 86.9-87.5
													88.4
88.4	95.9	Fpd	k-Se										SERICITIZED - CLAY ALTERED FELDPAR PORPHYRITIC DYKE
										(),5		Light tan to grey-green feldspar porphyritic dyke.
													Plagioclase converted to apple-green sericite, +/- clays, no
					95.9	Sd:35	5				2		significant matrix calicite.
													No stockwork veins, no high sulphide veins.
													Both upper and lower contacts are tight.
													Hematite and pyrite are present in approximately equal (0.5 + 0.5%)
													amounts.
													95.9
95.9	106.9	CA-sh											CHERTY ARGILLTE - WEAK SHEARING

								1					Thinly compositionally laminated cherty argillite occurs in this interval.
													No significant failures within the zone, but strongest shear
				101.2	Si=So=	=15							development occurs at the lower contact, 106.3 - 106.9.
													Compositional layers generally consistant to CA at about 15 to CA.
													Sulphide development across most of the interval is consistant at
													1.5-2.0% as disseminations and foliation parallel aggregates.
													Arsenopyrite 0.5% between 106.3 and 106.9.
													106.9
06.9	116.2	Fpd	K-Se										CLAY ALTERED FELDSPAR PORPHYRITIC DYKE
													A soft clay altered feldspar porphyritic dyke forms the interval.
				106.9	Sd: 68								A strong chill margin is noted at the upper contact, which although
													strongly sheared remains tight with the overlying cherty argillites.
													Small, very fine sulphidic veins - veinlets. Veinlets contain calcite
				116.2	Sd: 20								as the principle gangue mineral.
													Net sulphide content; disseminated pyrite 2-5%, grey sulphide or
													hematite 0.25%, hematite increases towards the lower contact.
													116.2
16.2	123.4	CA-L	sh										SHEARED CHERTY ARGILLITE - MINOR LIMESTONE
													Well compositionally laminated cherty argillites form the interval
													two small limestone interbeds at 117.4-118.6 and 119.2-119.5
				118.7	Si	30							are also noted.
													Net sulphide content is slightly elevated, pyrite 2-2.5 % as dissemination
													and foliation parallel aggregates.
													Shearing typically parallel to Si-So
													123.4
23.4	135,0	Fpd	K-Se										SERICITIZED CLAY ALTERED FELDSPAR PORPHYRITIC DYKE
													Light gre-green feldspar porphyritic dyke.
													Good development of matrix sericite +/- clays. No matrix calcite.
													Disseminated pyrite 1.5%, hematite also stable 0.5%, no other
													sulphide or oxide phases identified.
													Weak onset of calcite lined fractures, 133.5-135.0, and elevated
													clay content at 134.9 - 135.0
									\sqcup				No significant structural zones.
									1				135
35,0	136,2	L/MZ							1				LIMESTONE: SPHALEVITE STRINGERS AND DISSEMINATIONS
									1				Massive medium grained limestone bed is cut by numerous
											2,%)	stringers and disseminations.

					1					TI	\neg	Within this unit: sphalerite 2-2.5%, arsenopyrite 0.25%, pyrite 1.0%
												Rock is cut by numerous pre-mineralization calcite veinlets.
												Blocky, broken core, significant faults not recognized.
												No contact or orientations of sulphides to CA possible.
												136.2
136.2	140	MZ-MS	3									MINERALIZED ZONE - MASSIVE SULPHIDE REPLACEMENT ZONE
												Onset of heavy sulphide mineralization, 50-70% sulphides supported
												by 50-30% fine grained crystalline quartz.
												Sulphides include:
												sphalevite: 10-12%
												stibnite: 4-5%
												arsenopyrite 25%
												tetrahedrite - tennite 2%
												jamesonite 1-2%
												pyrite 10-12%
				140,0	So:	35						galena 1%
												Core is intact, well preserved, no oxidation of sulphides.
												Contact and orientation of sulphide body likely follows Si-So, clean
												lower contact at abou 35 degrees /CA
												Sulphide zonation: sphalerite only at up hole contact, sphalerite plus
												other sulphide phases, lower contact.
												Strongest sulphide development at 137.8-140.0, > 70% sulphides.
												140
40,0	145.3	CA										CHERTY ARGILLITE
												Abrupt cessation of sulphide development, corresponds to the
												onset of a deformed, boudinaged, flattened, and rotated ribbon chert.
				143.7	Si=So:	=25			2			Rock contains a few minor gouge zones but typically is intact.
												Rapid rotation in Si-So marked near the lower 1.0 m interval of
				145.3	So:	35						the unit.
												Net sulphide content, disseminated pyrite 2%, minor base metal
												vein between 143.0 and143.2.
												145.3
145.3	153.2	AP										ARGILLACEOUS PHYLLITE - DUCTILE "E" ZONE
												Strong flattening and ductile strain fabrics.
												Grey-tan compositional layers, talcose phyllitic foliation surface.
												Cherty compositional layers significantly reduced, < 10% bu volume.
												Consistent planear fabric, Si at 30 CA=So

														Non- calcareous, non-magnetic Net sulphide content, pyrite: 1.5%
														Net sulphide content, pyrite: 1.5%
														153.2
153.2	154.5	CA	sh											SHEARED CHERTY ARGILLITE
														Strong gouge development at upper contact.
				153.2	sh:	30								Slight increase in pyrite 2% trace arsenopyrite.
														Locally rotated and boudinaged calcite fragments.
														154.
154.5	EOH													
														Downhole Surverys:
														154.5 m Dip: 68.25, Azi: 279
				1										
						l								

Assay Sample Log DDH 3-09

Date June 6 Page 1

Sample No.	From	To	Sample Type	S.G	Sample No.	From	То	Sample Type	S.G
O17632				3.0	Sample No.	1 10111	10	Sample Type	3.0
O17633		106.3							
O17634		106.9							
O17635		109,0							
O17636		111,0							
O17637		112.5				†			
Lead	, 0			10.1		†			
O17638	127.5	129.5	В						
O17639		131.5							
O17640		133.5							
O17641		135,0		134.1-	> 2.65				
O17642	-	136.2							
017643		137.2		136.3-	> 3.14				
017644		ard PM				1			
O17645		137.8				1			
O17646		139,0		138.4-	> 3.72	1			
O17647		140,0				1			
O17648		141.5							
O17649		142.8		142.1-	> 2.66				
O17650		143.3							
O17651		144.3							
017652		145.3							
O17653		147,O		146.6-	> 2.82				
Lead				9.63					
	1			1		1			
	<u> </u>			<u>† </u>		t			
	1			<u>† </u>		<u>† </u>			
	<u> </u>			<u>† </u>		t			
				1	1	1			1
					1	1		†	
				1		1			
				1	1	1			1
				1	<u> </u>	1		1	
	 			 		†	 		

 Diamond Drill Log DDH 3-10

 Dip: 45, Azi: 274 T.D. 86.9 m. North: 6160351 East: 347939

 Date: June 7
 Logged By: J.Oliver
 Page: 2

 Page: 2

From	То	Rock	Mod	Stuct	CA	Alte	ratio	on					Mir	nera	lizati	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	Ру	Ро	Сру	Sp	Gn	Asp	Bn	Mag	j]
0	3,0																				CASE
																					3
																					FELDSPAR PORPHRY DYKE
3,0	4,0	Fpd											2								Rock has weathered buff due to surface oxidation.
																					All joint sets are oxidized.
																					2-3% matrix hematite, no pyrite
																					No stockwork vein, no high sulphide veins.
																					4
4	24.25	CA-x																			CHERTY ARGILLITE - BRECCIA'S
				8.2	Si=So	=35															Strained, boudinaged chert fragments are more common than cm
																					scale lamella.
				20.7		60 -	> 50	cm l	imest	one inte	erbed at	20.	4-20).9							Core generally intact, no significant structural zones.
				20.8	Si	40)														Minor calcite extensional veinlets
				24.25	So:	50)														Pyrite 0.5-0.75%, disseminations and small foliation parallel aggregates
																					No skarn or high sulphide vein assemblages.
																					24.25
24.25	26.2	L																			LIMESTONE
																					Medium to light grey carbonaceous limestone.
																					Very low sulphide content, pyrite < 0.5%
																					Homogeneous, to amorphous, dolomite? Inclusions
																					Low contact 12 to CA and slightly sheared.
																					26.2
26.2	32.5	CA	sh																		WEAKLY SHEARED CHERTY ARGILLITE
																					Partial coarse gouge and rock flour zones repeatedly developed
				28,0	Sh:	12	:														within a silty cherty argillite.
																					Rock fabric rotated sub-parallel to CA:
				29.4	Si	5										1					Matrix is no calcareous and contains 1-2% pyrite as uniform disseminati
				<u> </u>			1									1					No stockwork or high sulphide veins.
																					32.5
32.5	35.9	L	Mn	1			<u>L</u>						L			L					MANGANIFEROUS TO DOLOMITIC LIMESTONE

									Tr					Unusual mottled light brown matrix on cored surface.
														Fracture surfaces are lined with discordant brown oxide and are
														definitively lined by a rhombohedral ankoritic carbonated.
														Very low sulphide content, pyrite - trace, no other base metal phases
														Sporadic argillite-cherty argillite inclusions toward the lower contact.
														35.9
38.7	46.2	Fpd	Se-K	(-MZ)										WEAK MINERALIZED ZONE - SHEARED CHERTY ARGILLITE
														Strong development of rock flour matrix supporting well rounded
										3			Tr	cherty argillite fragments.
														Shear orientation roughly parallels Si as 30
														Abundant quartz vein fragments and matrix sulphide appears elevate
														pyrite approaches 3-4%, trace (?) arsenopyrite.
														38.7
38.7	46.2	Fpd	Se-K	(-MZ)						3	Tr	Tr		BLEACHED CHALKY GREEN- FELDSPAR PORPHYRITIC DYKE
														Persistant clay-calcite sphalerite-arsenopyrite fractures towards the
														upper fault contact.
														The interval 38.7-43.5 likely correlates with the structural zone
														cored in DDH 3-08 and 3-09.
														Matrix pyrite significantly elevated 3-4%, and often coated by a grey
				45.2	Sd	34								sulphide or oxide
														Lower contact is tight at 34 degrees.
														45.2
46.2	73.3	AP												ARGILLACEOUS PHYLLITE
														Strongly sheared, incompetant argillaceous phyllite.
														Chert lamella forms less than 10% by volume of the unit.
			51,0	Si=So:	=25									Shearing occurs dominantly sub-parallel to Si/So
														No skarn assemblages, no high sulphide veins.
			57,0	Si	15									Non-calcareous, low sulphide content, pyrite as disseminations
														and foliation parallel aggregates, 0.75-1.0%.
			68.7	Si=So:	=35									Distinct yellow tan-silky compositional layers and foliations surface.
														Persistant gouge and fault zone from 62.5-65.7.
														73.3
73.3	74.3	Fpd	Se											SERICITIZED FELDSPAR PORPHYRITIC DYKE
														Minor pale grey, sericitized feldspar porphyritic dykelet.
				14.3	Sd	20								Disseminated pyrite 2%, no hematite.
														Contacts tight and not sheared
														74.3

														Jet black argillaceous phyllite, strong, foliation parallel shearing
				80.9	Si	15								common throughout the interval.
														Interval is non-calcareous.
														Net sulphide content is low, pyrite <1.0%.
														An exceptionally friable incompetent argillite.
82.4	83.9	Fpd	Se											FELDSPAR PORPHRITIC DYKE: SERICITIZED
														Bleached light cream-grey, feldspar porphyritic dyke.
				82.4	Sd:	25				1				Both contacts clay altered but not strongly sheaved.
														Sporadic calcite - veinlets +/- disseminted pyrite, 1.0%.
83.9	86.9	L/A	SL											LIMESTONE - ARGILLACEOUS PHYLLITE INTERBEDS
														Blocky, blue grey limestone forms the interval, interbedded wit
														limestone are dark grey strongly sheared argillite interbeds.
				86.4	Si=So:	=25								No evidence of dissalution features or Karsted surfaces.
														No maganiferous coatings.
														Low sulphide content, foliation parallel pyrite aggregates in phy
														0.75%.
	86.9	EOH												
														Downhole Surverys:
														86.8 m Dip: 45.5 Azi: 275
										_				
										_				
						\sqcup		<u> </u>		_				

Assay Sample Log DDH 3-10

Date June 7, 2003

Page 1 of

Sample No.	From	То	Sample Type	S.G	Sample No.	From	То	Sample Type	S.G
O17654	30.5		В		•			. ,.	
O17655		34,0	В						1
O17656	34,0	35.9	B						1
O17657	35.9	36.5	B						
O17658	36.5	40.3	B						
O17659	40.3	42,0	В						1
O17660		44,0	В						
O17661	44,0	46.3							1
O17662	82.4	83.9	B						
O17663	83.9	86.9	B						
017003	00.9	00.3	Ь						
				 		 			1
				1		 			}
				1		1			<u> </u>
				1		 			1
									<u> </u>
									<u> </u>
									_
									1
									1
				1		1			1
				i e		<u> </u>			†
				t		t			†
				1		1			1

Diamond Drill Log DDH 3-11

North: 6160351 East: 347939 Elevation:

Dip: -67.5 Azimuth: 274 Total Distance: 105.5 m

Date: June 8, 2003 Logged By: J. Oliver Page: 2

From	То	Rock	Mod	Stuct	CA	Alte	ratio	on					Mir	nera	lizati	on						Comments
									Ret	Y-Gar	Br-Gar	Si					G	n As	sp E	3n	Mag	
0	4.3						-		1.00		1	<u> </u>	, ,		<u> </u>	1	Ť		<u> </u>			CASE
	111										†											4.3
4.3	12.8	Fpd																				FELDSPAR PORPHYRY DYKE
																						Homogeneous, weakly altered feldspar porphyritic dyke.
			12.8	Sd:	20)																Light to moderate matrix clays +/- sericite.
																						Sporadic iron-oxide joints-fractures.
							Î							1								1-2% hematite, virtually no pyrite, non-magnetic.
							Î							1								12.8
12.8	21,0	CA-x																				CHERTY ARGILLITE - EARLY BRECCIAS
																						Laminated to strongly boudinaged cherty argillite; cuspate oval
																						chert forms common.
			19.8	Si=So	=35																	Approxinately 40% argillite as an irregular matrix infill.
																						Non-calcareous, no development of stringer mineralized zones, no high sulphide veins
																						Low sulphide content, pyrite 1%, as small foliation parallel aggregates.
																						21
21,0	45.8	L																				LIMESTONE
																						Blue grey, homogeneous medium grey limestone cut by abundant
			27.5	So	40)																chocolate brown, manganese (?) fractures.
																						Oxide zones are associated with vuggy open space textures.
			45.8	So	45	5																Cavities are lined by euhedral calcite.
																						Locally very weak fabric development, Si formed by aligned calcite rhombs.
																						Very small tuffaceous or limy tuffaceous interbeds, eg 27.5-27.7,
																						carry slightly higher, 1%, disseminated pyrite contents.
																						45.8
45.8	49.1	Pl/k	oxid.																			OXIDIZED LIMY PHYLLITES - " CALCITE KNOT LIMESTONE
																						AND INTERBEDDED CHERTY ARGILLITE"
																						Muddy brown green limy phyllites have a boxwork texture, all
																						sulphide phases may be leached.
				48.5	Si:	10																Relevant sub-intervals are:
				49.1	So:	70																45.8-46.4: Limy phyllite, irregular oxidized quartz calcite knots.
																						Dolomitic grains common.
																						46.4-46.8: Blocky broken cherty argillite.
																						46.8-47.5: Limestone, dolomitic crystals common.
																						47.5-49.1: Cherty argillite. Si.So fabric parallel to CA; but
																						L-CA contact forms at: 70 degrees to CA.

														Note: the majority of the sulphide phases have been oxidized - leache
														49.1
49.1 52.	.1 PI-L-C	A oxid												OXIDIZED LIMY PHYLLITES, LIMESTONE AND CHERTY ARGILLI
														The sequence is similar to the preceeding interval, but inverted.
														Relevant sub-intervals are:
			52.1	So	35									40.9-50.6: Limestones, increasing development of brown
														vugs and cavities toward the sub contact.
														50.6-51.6: Chocolate brown, extremely buggy limestone.
														No preserved sulphide grains, abundant opaque coatings.
														51.6-52.1: Black - dark grey, oxidized limy phyllite.
														No preserved sulphide phases.
														52.1
2.1 58.	.2 CA													CHERTY ARGILLITE - EARLY BRECCIAS
														Well developed narrow, cm scale, cherty lamella separated by a
			57.3	Si=So:	=30									narrow dark grey argillaceous lamella.
														Locally crumpled lamella but generally consistent orientation to CA.
														Sulphide content, pyrite only about 0.75%, as disseminations and
														foliation parallel aggregates.
														Trace stibrite veinlets.
														58.2
8.2 64.	.3 P	Ser												SERICITIC PHYLLITE
														Fine grained well foliated, sericitized phyllite. No black argillaceous
			61.8	Si	28					3			0,5	layers.
														Rock is cut by numerous foliation discordant pyrite +/- stibnite -
														arsenopyrite cm scale veinlets generally at 20-30 to CA.
														Foliation consistent to CA @: about 20 degrees.
														Net sulphide content:
														pyrite 3-4% within discordant veins.
														arsenopyrite 0,5%
														stibnite trace
														The rock does have a moderately tuffaceous appearance.
														64.3
4.3 74.	.3 CA													CHERTY ARGILLITE
														Blocky broken core, well compositionally laminated cherty argillite.
									(),75				Foliations parallel delaminations and slip planes common.
														Non-calcareous, 60% by volume chert, 40% by volume argillite.
														Net sulphide content light, 0.75-1.0% disseminated pyrite.
														Elevated quartz carbonate without sulphides towards the lower contact
														74.3
4.3 81.	.7 MZ/C/	<u> </u>								-	1	1		MINERALIZED ZONE: CHERTY ARGILLITE HOST
	1 - 31									-	1	1		Mineralization is in the form of an anesotomosing array of cm scale
			74.5	J/	10									stibuite - arsenopyrite - pyrite - red brown sphalerite stringers.
		1		J/	15									Note stibnite veins are flanked by arsenopyrite +/- pyrite and red
		1		J/	25									brown sphalerite.
		t	81.7		55			 					 	Approximate estimates:

		ı		1		1	1	_	1			1			-		
																	sphalevite: 2%
				80.5	Si	15											pyrite 8-10%
																	arsenopyrite 2%
																	stibrite 2-3
																	Note: Veinlets are generally forming sub-parallel to Si-So, but are
																	also discordant.
																	81.7
81.7	91.3	AP	sh														ARGILLACEOUS PHYLLITE - SHEARED
																	Strongly sheared argillaceous phyllite, minor <15% by volume
																	cherty argillite interbeds.
				85.7	Si=So=	=5											Frequent complete loss of competancy, failures parallel Si: 5-15% CA
																	Non-calcareous, no high sulphide veins or veinlets.
																	Beds - compositional layers have rotated sub-parallel to CA.
				91.2	Si=So=	=15											Net sulphide content is low, 0.5-0.75% pyrite.
																	88.0-91.3: Complete loss of competancy, innumerable shear parallel
																	slip planes.
																	91.3
91.3	105.5	Fpd	Se-K		t												FELDSPAR PORPHYRITIC DYKE
00			91.3	Sd:	20												Moderately to strongly clay - sericite altered dyke.
			00	<u> </u>													Development of clay assemblages may be increasing down hole.
																	No stockwork mineralized zones, no high sulphide veins.
																	Good disseminated pyrite 2-3%, euhedral, no vein association.
																	Blocky broken core 87.0-99.4. High level fault likely.
															-		105.5
105.5	EOH																100.0
103.5	LOIT																
																	Downhole Surveys:
			-										-		-		Downhole Surveys.
																	105 5 m Din: 67 25 Ani: 225 (magnatic reals) 274)
																	105. 5 m Dip: 67.25, Azi: 335 (magnetic rock?, use 274)
							.										
										-							

Assay Sample Log DDH 3-11

Date June 8, 2003

Page 1 of

Sample No.	From	То	Sample Type	S.G	Sample No.	From	То	Sample Type	S.G
O17664		30,0	В					, , , , , , , , , , , , , , , , , , ,	
O17665	30,0	32.5							
O17666	45.8		В						
O17667	47.5		В						
O17668	49.1								
O17669	50.6								
O17670	51.6	52.1	В						
O17671	Standa	ard PM	169						
O17672	58.2	60.2	В						
O17673	60.2								
O17674	62.2								
O17675	72.3	74.3	В						
O17676	74.3	75.7							
O17677	75.7	78,0	В						
O17678	78,0	79.2							
O17679		80.5							
O17680		ard PM							
O17681	80.5								
O17682	81.7		В						
O17683	83,0	84.3							
O17684	84.3	85.8	В						
									<u> </u>
				1		<u> </u>			<u> </u>
									<u> </u>
									<u> </u>
						<u> </u>			<u> </u>
									<u> </u>
									<u> </u>
				1					

Diamond Drill Log DDH 3-12

North: 6160275 East: 347970 Elevation:
Dip: -45 Azimuth: 274 Total Distance:111.9 m

Date: June 9, 2003 Logged By: J. Oliver Page: 2

From	То	Rock	Mod	Stuct	CA	Alte	rati	on					Mir	nera	liza	tion					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	Ру	Po	Ср	y Sp	Gn	Asp	Bn	Mag	
0	3,0												Ť								CASE
																					3
3,0	17.6	L																			LIMESTONE
																					Blue grey felted texture limestone.
													Tr								Minor manganiferous choclate brown weathering patches, eg at
																					9.4-10.9 m, no visible sulphides.
																					Rock is homogeneous and non-bedded.
																					Net sulphide content very low, disseminated pyrite <0.25%
																					17.6
17.6	29.2	CA-x																			CHERTY ARGILLITE - MINOR BRECCIAS
																					Well compositionally laminated cherty argillite, abundant cuspate
				22.5	Si:	35	5														oval chert fragments.
																					Both upper and lower contacts are tight no shear or gouge developme
				29.2	So:	35	5														Compositionally, 70% chert, 30% argillite compositional layers.
																					Pyrite 1.0% as small foliation.
																					29.2
29.2	33.5	L																			LIMESTONE
																					Light to dark grey medium grained limestone.
													Tr								The interval contains a few small 10-20 cm limy phyllite or
																					tuffaceous inclusions.
				33.5	So:	25	5														Net sulphide content remains low.
																					Weak stylolite - pressure solution layers.
																					Trace pyrite.
																					33.5
33.5	44.6	CA																			CHERTY ARGILLITE
																					Distinctive black on white cm scale compositional layers.
																					Compositional layers frequently crumpled - broken sporadic

				25.7	Si=So=	-40		I		I I	1			cuspate fragments.
		-		33.7	31–30-	- 4 0								Interval is cut by early, non-sulphidic quartz fragments.
														Net sulphide content, pyrite 1%, usually associated with black
											-			clastic aggregates.
44.0	50 0 F:-													44.6
44.6	50.9 Fp	d Se	Э											SERICITIZED FELDSPAR PORPHYRITIC DYKE
											_			Apple green, clay and sericite altered feldspar porphyritic dyke.
					1.10						_			Narrow, 3.0 cm chill margins at 44.6
					446	Sd								No calcite development within the matrix.
														0.5% disseminated pyrite, 1.5% disseminated hematite.
														50.9
50.9 60	0,0 CA	sl												CHERTY ARGILLITE: WEAKLY SHEARED
										(),5			Average silica compositional layer 1-2 cm's, 70%rock volume.
														Argillaceous partings, 30% rock volume.
			5	3,0	Si=So=	=15								Blocky "gougy" core common from 50.9-52.4, upper dyke contact
														lower dyke contact less well developed gouge zone.
				59.5	Si=So=	=52								Minor phyllitic compositional layers.
														Net sulphide levels remain weak, pyrite as disseminations and mm
														scale aggregates 0.5%.
														Increasing percentage of slip planes with talcose foliation surfaces.
														60
60,0	63.1 Fp	d Se	е											FELDSPAR PORPHYRY DYKE: TRACE OF MINERALIZED ZONE
														A narrow feldspar porphyritic dyke forms the interval.
														The dyke contains several small sulphide veins-veinlets containing
														red brown sphalerite and a minor grey sulphide phase.
														1.7 m of lost core is noted at lower dyke contact.
														The dyke is moderately serixirized but not carbonitized.
														No reliable contact orientations were obtained.
				ĺ										63.1
63.1	66.1 Fa	ult												MAJOR FAULT
														Ground core, significant core loss, major structural zone.
														Fault gouge contains slightly elevated but overall modest sulphide
												1 1		development.
														Pyrite averages 3-4%, no arsenopyrite recognized.
												1 1		No structural orientations are possible within the gouge and ground
		_					\vdash				\dashv			core forming this zone.
							\vdash							66.1

66.1	88.3	A-AP	Sh										SHEARED ARGILLITES AND ARGILLACEOUS PHYLLITES
													Ninety percent of the interval is an argillite.
					68,0	Si=S	3o=1	5					Cherty argillite zones are very sporadically developed.
													Multiple gouge and failure zones occur across this interval.
					76.8	Si=S	So=0)					Failure surfaces appear to be orientated parallel to Si-So.
													Calcite is not significantly present within the matrix or as minor
					84.4	Si=S	3o=1	10					extensional veinlets.
													Gouge zones at:
													69.2-72.2
													75.0-76.6
													80.3-80.9
													Pyrite averages 1%, foliation parallel aggregates
													88.3
88.3	94.2	CA											CHERTY ARGILLITE
													Minor cherty argillite interbed, distinctive cm scale cherty beds
				90.5	Si:	10							form approximately 50-60% rock volume.
													Generally intact core, shear development decreases.
				94.2	Si=So:	=18							No vein development, low net sulphide content, pyrite < 0.5%
													94.2
94.2	111.9	AP-Ps	Э										ARGILLACEOUS PHYLLITE - LESSER INTERBEDDED SERICITI
													PHYLLITE - (TUFFACEOUS MEMBER?)
													Distinctly compositionally layered argillaceous phyllites and non-
													calcareous, tan-yellow sericitic phyllites.
													Relevant sub-intervals for each unit are:
													94.2-95.1: Argillaceous phyllites, highly planear "silky"
				102.5	Si:	20							foliation surface.
													95.1-100.5: Sericitic Phyllite grading downward to a black
													chert member. Intense flattening fabric, 5-6% disseminated
													pyrite. "Tuffaceous like, ashy, matrix."
													100.5 - 109.3: Chert, sericitic phyllite minor limestone.
													The general sequence appears as:
													Chert
													Sericitic phyllite
													Limestone
													Minor quartz-calcite vein at 108.9
													109.3-111.9: Argillaceous phyllite, strong planar foliation, relatively
										_			competant. Non-calcareous, < 15% chert lamella.

											Net pyrite content: 0.75-1.0%
											111.9
111.9	EOH										
											Downhole Surveys:
											111.8 m Dip: 44.25, Azi: 274.
											·

Assay Sample Log DDH 3-12

Date: June 9 Page 1 of

Oamania Nia	F	T-	01- T	0.0	Onmaria Na	F	T-	On manufacture	0.0
Sample No.	From	То	Sample Type	S.G	Sample No.	From	То	Sample Type	S.G
O17685	55.4	57,0	В						
O17686	57,0	60,0	В						
017687	60,0	60,0 61.8	В						
O17688	61.8	63.1	В						
O17689	63.1		В						
O17690	64.6		В						
O17691	66.1		В						
						1			
						1			
	1					1		 	.
	 					-			<u> </u>
	1								<u> </u>
	1					<u> </u>			
						†			
						 			
						1			
						<u> </u>			
	<u> </u>								
	†	<u> </u>				†	<u> </u>		
	1					1	<u> </u>		
	+					 		 	
	+	-		}		+	-	 	-
	+					-	-		
	 					-			<u> </u>
	ļ	ļ				<u> </u>			
	1								

Diamond Drill Log DDH 3-13

North: 6160275 East: 34790 Elevation:

Dip: - 67.75 Azimuth: 274 Total Distance: 114.6 m

Date: June 10, 2003 Logged By: J.Oliver Page: 2

From	То	Rock	Mod	Stuct	CA	Alte	ratio	on				ı	Mine	rali	izatio	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar S	Si F	Ру Г	o	Сру	Sp	Gn	Asp	Bn	Mag	
0	3.7	Case																			CASE
																					3.7
3.7	21.5	L																			LIMESTONE
																					Homogeneous blue-grey re-crystalized limestone.
												1	Tr								Core has only minor fractures, exceptionally clean, no stockwork
																					or veinlets.
				21,0	So 70																Minor washes of dolomite-iron carbonate are noted across this
																					interval, sulphides trace pyrite.
																					A single chocolate weathering manganiferous dolomite band is
				21.5	So: 45	5															located at 7.4-8.1 m.
																					Note: very small, 10 cm phyllite interbed at 21.0 m has a suberb
																					So @ 70 to CA.
																					Clean lower contact, no shearing at: 45 CA.
																					21.5
21.5	28.7	CA																			CHERTY ARGILLITE
																					Dark grey to black irregularly bedded cherty argillite.
												1	1,07								Disseminated pyrite 0.75-1.0%, very fine grained.
																					Minor extensional veins orthogonal to bedding, trace calcite.
																					Both upper and lower contacts are tight, no significant shearing.
																					28.7
28.7	36.9	AP																			ARGILLACEOUS PHYLLITE
												(0,75								Laminated black-cream to pale green-grey argillaceous phyllite.
				29,0	Si=So:	=20															Locally knotted, irregular foliation surfaces.
																					A chloritic phyllite interbed consisting of flattened sericitic-chloritic
				33.2	So:	50															porphyroblasts within a weakly calcareous matrix is noted between
																					33.2-35.7. Pyrite increases to 1.0%
											T			Ī							Base of the interval is a knotted black to cream moderately

										siliceous argillaceous phyllite.
										No stockwork or high sulphide veins.
										36.
36.9	47.8	L								LIMESTONE
										Blue grey homogeneous, massive, no internal beds.
			45.3	"So"	35					Iron carbonate content noted in the first interval is absent.
										Rare hints of bioclastic debris.
										Low net sulphide content; pyrite < 0.25%.
										No significant structural zones, no evidence of distal alteration
										assemblages.
										47.
47.8	57,0	CA-AP								CHERTY ARGILLITE / MINOR ARGILLACEOUS PHYLLITE INTE
										Dark black to laminated cream cherty argillite, crumpled phygmatic
										folds common.
			49,0	Si=So:	=20					One internat argillaceous phyllite interbed is noted at 53.6-55.1.
										Compositional layers typically oblique to CA: @ about 20 degrees.
										No stockwork or high sulphide veins, net sulphide content low:
			57,0	So	40					pyrite about 0.5-0.75% as fine grained foliation parallel aggregates.
										Tight relatively compact core. No significant structural zones.
										5
57,0	58.6	L								LIMESTONE
										Minor limestone interbed.
										No vein development, un-sheared.
										Faint compositional layers towards the lower contact.
										No significant sulphides.
										58.
58.6	88.9	CA-Ap								CHERTY ARGILLITE MINOR ARGILLACEOUS PHYLLITE
										Distinctive cm scale cherty compositional layers dominate this inter
										(85%). Argillaceous phyllite interbeds form <15% of the section,
										and are often in gradational contact with cherty argillite members.
										A single narrow 20 cm limestone bed is located near the upper
										contact with the overlying limestone bed.
										Elsewhere the unit is non calcareous.
			70,0	Si/So:	20					Sporadic zones of slightly broken blocky core are identified at
										62.8-63.8, 83.5-84.6.
			81.1	Si:	0					Major displacements across these zones are unlikely.
			88.6	Si/So:	20					Si/So generally at consistently low angles to CA.

B9.6 35															ĮL	Low sulphide content, disseminated pyrite 0.75-1.0%
A narrow and weak mineralized zone is noted in this interval. Significantly elevated pyrite (4-5%) arsenopyrite (0.75-1.0%) a pale to mid yellow sphalentie is noted within this interval. Mineralization is localized at a brittle ductile gouge zone adjace to a feldspar porphyritic dyke. Shear orientation about 35 degrees. Shear orientation about 35 degrees. Shear orientation about 36 degrees. PELDSPAR PORPHYRITIC DYKE Weakly sericitized and clay altered feldspar porphyritic dyke. No development of stockwork mineralized zones, no dissemination mineralization. Good to moderate matrix calcite, persistent disseminated hem (3%) pyrite (0.75-1.0%) Both upper and lower contacts are tight at 35 degrees. ARGILLACEOUS PHYLLITE - LESSER CHERTY ARGILLITI Well compositionally laminated cherty argillite (60-70%) with 31 in competant core and good gouge development near the dyke contact. (100.6-102.5). Pyrite elevated to 3% in this zone. No carbonate reaction. Average background values of pyrite, about 0.5%. Rock at its terminal point, very papery fissilitz, good transition 1 Downhole Surveys:																88.9
Significantly elevated pyrite (4-5%) arsenopyrite (0.75-1.0%) a pale to mid yellow sphalerite is noted within this interval. Mineralization is localized at a brittle ductile gouge zone adjact to a feldspar porphyritic dyke. Shear orientation about 35 degrees. 93.45 100.6 Fpd Se	88.9	39.45 N	MZ													
B9.6 35																
Mineralization is localized at a brittle ductile gouge zone adjact to a feldspar porphyritic dyke. Shear orientation about 35 degrees. Shear orientation about 35 degrees. Shear orientation about 35 degrees. Shear orientation about 35 degrees. Shear orientation about 35 degrees. Shear orientation about 35 degrees. Shear orientation about 35 degrees. Shear orientation about 35 degrees. Shear orientation about 35 degrees. Weakly sericitized and clay altered feldspar porphyritic dyke. No development of stockwork mineralized zones, no dissemination in mineralization. Good to moderate matrix calcite, persistent disseminated hem. (3%) pyrite (0.75-1.0%) Both upper and lower contacts are tight at 35 degrees. ARGILLACEOUS PHYLLITE - LESSER CHERTY ARGILLITI Well compositionally laminated cherty argillite (60-70%) with 31 in competant core and good gouge development near the dyke contact. (100.6-102.5). Pyrite elevated to 3% in this zone. No carbonate reaction. Average background values of pyrite, about 0.5%. Rock at its terminal point, very papery fissilitz, good transition of the power of the properties of																Significantly elevated pyrite (4-5%) arsenopyrite (0.75-1.0%) and
to a feldspar porphyritic dyke. Shear orientation about 35 degrees. 89.45 100.6 Fpd Se FELDSPAR PORPHYRITIC DYKE Weakly sericitized and clay altered feldspar porphyritic dyke. No development of stockwork mineralized zones, no dissemine mineralization. 100.6 Sd 28 Good to moderate matrix calcite, persistent disseminated hem (3%) pyrite (0.75-1.0%) Both upper and lower contacts are tight at 35 degrees. 100.6 114.6 AP-CA ARGILLACEOUS PHYLLITE - LESSER CHERTY ARGILLITI Well compositionally laminated cherty argillite (60-70%) with 30 in competant core and good gouge development near the dyke contact. (100.6-102.5). Pyrite elevated to 3% in this zone. No carbonate reaction. Average background values of pyrite, about 0.5%. Rock at its terminal point, very papery fissilitz, good transition of Downhole Surveys:					89.6		35									
Shear orientation about 35 degrees. 89.45 100.6 Fpd Se Weakly sericitized and clay altered feldspar porphyritic dyke. No development of stockwork mineralized zones, no dissemina mineralization. Good to moderate matrix calcite, persistent disseminated hem. (3%) pyrite (0.75-1.0%) Both upper and lower contacts are tight at 35 degrees. 100.6 114.6 AP-CA ARGILLACEOUS PHYLLITE - LESSER CHERTY ARGILLITI Well compositionally laminated cherty argillite (60-70%) with 31 In competant core and good gouge development near the dyke contact. (100.6-102.5). Pyrite elevated to 3% in this zone. No carbonate reaction. Average background values of pyrite, about 0.5%. Rock at its terminal point, very papery fissilitz, good transition of Downhole Surveys:																
89.45 100.6 Fpd Se																
Second S															9	
Weakly sericitized and clay altered feldspar porphyritic dyke. No development of stockwork mineralized zones, no dissemina mineralization. Good to moderate matrix calcite, persistent disseminated hem. (3%) pyrite (0.75-1.0%) Both upper and lower contacts are tight at 35 degrees. 100.6 114.6 AP-CA ARGILLACEOUS PHYLLITE - LESSER CHERTY ARGILLITI Well compositionally laminated cherty argillite (60-70%) with 31 In competant core and good gouge development near the dyke contact. (100.6-102.5). Pyrite elevated to 3% in this zone. No carbonate reaction. Average background values of pyrite, about 0.5%. Rock at its terminal point, very papery fissilitz, good transition to Downhole Surveys:																89.45
No development of stockwork mineralized zones, no disseminar mineralization. 100.6 Sd 28 Good to moderate matrix calcite, persistent disseminated hem. (3%) pyrite (0.75-1.0%) Both upper and lower contacts are tight at 35 degrees. ARGILLACEOUS PHYLLITE - LESSER CHERTY ARGILLITI Well compositionally laminated cherty argillite (60-70%) with 3 in competant core and good gouge development near the dyke contact. (100.6-102.5). Pyrite elevated to 3% in this zone. No carbonate reaction. Average background values of pyrite, about 0.5%. Rock at its terminal point, very papery fissilitz, good transition to Downhole Surveys:	9.45 1	100.6 F	Fpd	Se												
mineralization. 100.6 Sd 28																
100.6 Sd 28																No development of stockwork mineralized zones, no disseminated
Contact (100.6-102.5). Contact (100.6-102.																
Both upper and lower contacts are tight at 35 degrees. 100.6 114.6 AP-CA ARGILLACEOUS PHYLLITE - LESSER CHERTY ARGILLITI Well compositionally laminated cherty argillite (60-70%) with 30 In competant core and good gouge development near the dyke contact. (100.6-102.5). Pyrite elevated to 3% in this zone. No carbonate reaction. Average background values of pyrite, about 0.5%. Rock at its terminal point, very papery fissilitz, good transition to Downhole Surveys:					100.6	Sd	28	3								
100.6 114.6 AP-CA																
ARGILLACEOUS PHYLLITE - LESSER CHERTY ARGILLITE Well compositionally laminated cherty argillite (60-70%) with 30 ln competant core and good gouge development near the dyke contact. (100.6-102.5). Pyrite elevated to 3% in this zone. No carbonate reaction. Average background values of pyrite, about 0.5%. Rock at its terminal point, very papery fissilitz, good transition to Downhole Surveys:															E	Both upper and lower contacts are tight at 35 degrees.
Well compositionally laminated cherty argillite (60-70%) with 30																100.6
In competant core and good gouge development near the dyke contact. (100.6-102.5). 110,0 Si=So=5 Contact. (100.6-102.5). Pyrite elevated to 3% in this zone. No carbonate reaction. Average background values of pyrite, about 0.5%. Rock at its terminal point, very papery fissilitz, good transition to the power of the	00.6 1	114.6	AP-CA	ı												
110,0 Si=So=5															١	Well compositionally laminated cherty argillite (60-70%) with 30-40% a
Pyrite elevated to 3% in this zone. No carbonate reaction. Average background values of pyrite, about 0.5%. Rock at its terminal point, very papery fissilitz, good transition to the point of the po															I	In competant core and good gouge development near the dyke
No carbonate reaction. Average background values of pyrite, about 0.5%. Rock at its terminal point, very papery fissilitz, good transition to the surveys: Downhole Surveys:					110,0	Si=So=	=5									
Average background values of pyrite, about 0.5%. Rock at its terminal point, very papery fissilitz, good transition to the surveys: Downhole Surveys:																,
Rock at its terminal point, very papery fissilitz, good transition to the second secon																
114.6 EOH Downhole Surveys:																
Downhole Surveys:															F	Rock at its terminal point, very papery fissilitz, good transition to argillite
	14.6 E	OH														
114.6 m Dip: 67.25, Azi: 278																
															,	114.6 m Dip: 67.25, Azi: 278

Assay Sample Log DDH 3-13

Date June 10

Page 1

Sample No.	From	То	Sample Type	S.G	Sample No.	From	То	Sample Type	S.G
O17692	7.4	8.1	В			1 1 1 1 1 1			
O17693	86,0	87.5	B						
O17694	87.5	88.9	R						
O17695	88.9	89.5	B						
O17696	89.5	91,0	В						
O17697	91,0	93.3	B						1
O17698	99.4	100.6	B						1
O17699	100.6	100.0	B						
017099	100.0	102.4	Ь						
									1
									1
									1
	1			 		 			
				1		1			+
				1		 			1
	1					<u> </u>			
									1
									-
									<u> </u>
									<u> </u>
									1
				1		1			1
				<u> </u>		<u> </u>			1
				t		t			<u> </u>
				1		<u> </u>			†

Diamond Drill Log DDH 3-14

North: 6160345 East: 348000 Elevation: Dip: -44 Azimuth: 271 Total Distance:194.5

Date: June 11, 2003 Logged By: J.Oliver Page: 2

From	То	Rock	Mod	Stuct	CA	Alte	ratio	on					Mine	ral	izatio	on					Comments
									Ret	Y-Gar	Br-Gar	Si	Pv F	0	Сру	Sp	Gn	Asp	Bn	Mag	
0	3,0																	•		J	CASE
3,0	23.3	L																			LIMESTONE
													Tr								Blue-grey, moderately carbonaceous limestone.
				8.9 So	22																Weak oxidation levels at the upper contact, buff to tan limestone
																					from 3.0-9.4, bounded below by a narrow < 15 cm chert horizon.
																					From 9.4-23.3, homogeneous blue grey medium grained limestone.
																					Very low net sulphide content, twice pyrite.
																					No significant structural zones.
																					23.
23.3	36.6	CA																			CHERTY ARGILLITE
													0,75								Exceptionally well compositionally laminated ribbon chert-cherty
				23.2	So	45															argillite.
																					Locally cuspate or boudinaged chert forms, chert component
				26.2	Si	30															80-89%, argillaceous lamella <15%
																					No development of high sulphide veins, stockworks or significant
				33	Si	30															alterations.
																					Net sulphide content: pyrite about 0.75%.
				36.6	So:	45															Note minor feldspar porphyritic dyke contact at 36.0-36.5.
																					Tight, non-sheared contacts.
																					36.
36.6	46.6	L																			LIMESTONE
													Tr								Homogeneous blue-grey limestone with minor dolomitic patches.
				46.6	So	15															No significant rock alteration, no vein or sulphide development.
																					Pyrite present in trace levels only.
																					Rare, internal black clastic inclusions.
																					Tight, competant, no faults.
																					46.0
46.6	49.9	CA																			CHERTY ARGILLITE
													0,75								Well laminated chert (80-85%) and lesser argillite compositional
					Si	30															layers.
																					Both upper and lower contacts tight, non-faulted.
				49.9	So	50															Disseminated foliation parallel euhedral pyrite 0,75%, no other

																	sulphide phases.
																	49.9
49.9	63.1	L															LIMESTONE
																	Consistently homogeneous re-crystalized blue-grey limestone.
																	Very minor buff to brown, dolomitic rhombs.
			61.5	So	40												Minor interval of grey-green clay with limy interbed at 60.3-61.5.
																	External to clay layers, net sulphide content in limestone low,
																	< 0.25%, pyrite content is clay layers 1.0-1.5%
																	63.1
63.1	82.2	Fpd	Se														FELDSPAR PORPHYRITIC DYKE
				63.1 S	d 38							Tr					Green grey feldspar prophyritic dyke, homogeneous.
																	Light matrix sericite, light matrix clays.
				82.2	Sd:	30											Pyrite present only in trace levels, but note abundant disseminated
				_													hematite.
																	From 80.1-82.2, abundant sub-rounded cherty argillite clasts and
			1														embayments.
			1														Well developed chill margins at upper and lower contacts.
			1														No stockwork veins, no high sulphide veins.
																	No significant structural zones.
																	Note: Pyrite is noted within the xenolithic rich chilled contact at 82.2.
			1														82.2
82.2	87.1	CA															CHERTY ARGILLITE
																	Hard, very competant cherty argillite.
																	Compositional layers are poorly developed. No significant developmer
				85.5	Si:	25						1,0					of boudinaged textures.
												-,-					Pyrite levels are slightly elevated disseminated aggregates average
																	1.0%. No other identified sulphide phases.
																	Rock is cut by contorted, non-sulphidic veins at its lower contact.
																	87.1
87.1	95.4	Fpd															FELDSPAR PORPHYRITIC DYKE
																	Light green to apple green moderately sericitized feldspar
			1														porphyritic dyke.
																	Dyke contact becomes increasingly clay altered; shift from
			1														hematite to pyrite at 94.6-95.4.
																	Hematite averages 2%, pyrite 1.0% but only near the lower contact.
																	Minor breccia development at the lower supracrustal contact.
																	95.4
95.4	119.3	CA						1	1					+	+		CHERTY ARGILLITE
30.1		J., .															Dark grey, moderately compositionally laminated cherty argillite.
				98.6	Si=So=	=20							1				Cherty compositional layers, 70%, argillite about 30%.
			1	50.0	3. 00-	<u> </u>										f	Slightly enhanced development of foliation parallel shears.
				110	Si=So=	=30							1				Average compositional lyers, 1-2 cm.
			+	110	J00-	Ī	1	†	†	 		-	\vdash			f	Locally 0.5-1.0 m presence of argillaceous phyllite compositional layer

				114 9	So=Si=	=35									Sporadic quartz vein injection. No high sulphide vein development.
														1	Net sulphide content; 1.0-1.5% largely as foliation parallel aggregates.
															119.3
19.3 13	1.5 A	5													ARGILLACEOUS PHYLLITE
															Chert component in this interval significantly reduced.
			12	0,0	Si=30										Chert lamella < 20% by volume.
															Increased density of foliation parallel slip planes, partial gouge
		131	,0 Si=	=So=	35										development, 121.0-125.0
															So/Si surfaces coplainar and consistently orientated at 30-35%
															Unit is non-calcareous, net sulphide content is generally low 1.0%
															Foliation parallel pyrite aggregates.
															131.5
31.5 13	84.4 M	Z													MINERALIZED ZONE
															Strongly fractured sheaved, quartz injected mineralized zone.
															Host lithology appears to be a sheaved argillaceous phyllite.
															Relevant sub-intervals include:
					J/	55									131.5-132.7: Abundant clay gouge finely disseminated
															arsenopyrite, 1-3%, pyrite 3%
															132.7-134.4: Well developed crack and seal vein.
															Pre-dominantly argillaceous phyllite host.
															Trace to 5% stibnite, sphalerite,
															Note: Chert interbed hosts veins from 133.9-134.4.
															134.4
34.4 14	1.9 Fr	od Se													MODERATELY SERICITIZED CROWDED FELDSPAR
										1,0					PORPHYRITIC DYKE
															Variations in feldspar content, from crowded crystal supported to
															matrix supported are gradational no different intrusive phases
															appear likely.
															Both hematite (1,0-1,5%) and pyrite (1,0-1,5%) appear in this interval.
															No stockwork or high sulphide veins are developed.
															Note increasing matrix clays and bleaching, including black clastic
															inclusions fron 140.1-141.9, trace arsenopyrite within this zone.
															141.9
41.9 14	9.5 C	A sh													SHEARED CHERTY ARGILLITES
											1,5		Tr		Dark grey black, moderately laminated cherty argillites form the interval
			14:	3,0	So:	55									Argillite matrix averages, 30-40%, chert lamellas, 60-70%
															Broken quartz vein fragments, and heavy clay gouge from 141.9-142.4
			14	7,0	42										Trace arsenopyrite.
															Net sulphide levels low and dominated by pyrite, 1-1.5%
															Minor feldspar porphyritic dyke 145.8-146.4
															146.4-147.1 Heavy gouge development, complete failure.
															149.1
49.5 15	8.5 C	A-AP						1							CHERTY ARGILLITE MINOR ARGILLACEOUS PHYLLITE INTERB

															Intensity of shear development significantly decreases.
			15/1 2	S0:30								+			Intact well defined cm scale compositional layers consistently
			134.2	30.30								+			orientated at 30 degrees to CA.
			157 O	Si_So	60							+			Approximately 60-70% chert lamella, 30-40% argillite compositional
			157,0	31=30=	-00										· · · · · · · · · · · · · · · · · · ·
												+			layers.
												+			No development of discordant stockwork or high sulphide veins.
															Low net sulphide content, compositional parallel pyrite 1.0%.
															No other sulphide phases.
															158.5
163.6	AP														ARGILLACEOUS PHYLLITE
															Well developed black to yellow grey narrow, 1-4 cm compositional
															bands.
		160.2	So=Si=	=35											Chert lamella, <30% by volume.
															Very consistent compositional layer orientation at 30-40 to CA.
															Very fine grained, foliation surface, with a well developed fine graine
															micaceous surface.
															No discordant veins, no high sulphide assemblages.
															No significant structural zones.
															163.6
174.5	Pl														YELLOW GREEN LIMY DOLOMITIC PHYLLITES
															Distinctive clay rich, yellow-tan dolomitic (sericite) compositional
			166,0	So=Si=	=50										layers.
			`												Exceptionally planar fabric, no brittle failures.
			173,0	So	55										Good reaction to hot HCl and ferro-dolomite stain.
			,												Sporadic blue-grey "calcite knots".
															Pyrite 2 % within yellow-green lamella, note abundant oval, sub-
															mm quartz (silt?) grains.
															Chert: dark grey-black, poorly compositionally layered chert.
165.5	С														No structural zones or vein development.
															174.5
176.9	C-CA														CHERT - CHERTY ARGILLITE
										0.	75				Moderately compositonally laminated cherty argillite interbed.
			176.7	So=Si=	-45					-,	Ť				Unit becomes increasingly cherty towards the limestone contact.
															The interval also contains minor yellow green dolomitic or limy
															phyllite interbeds.
															Net sulphide content about 0.75-1.0% pyrite.
											+ +	+	-		177.9
170 Q	I											+		-	LIMESTONE
175.5	_									-+		+			Medium grained, re crystalized, blue grey, organic rich limestone.
			178 O	So:	28						+ +	+ +			Unit contains one interval argillite interbed.
			170,0	30.	20					-+	+ +	+	+		No significant alteration or sulphide development.
										-+	+ +	+	+		Tight contacts, no shear or fault development.
											+	+			No significant sulphides, pyrite trace.
	174.5 165.5 176.9	163.6 AP 174.5 PI 176.9 C-CA 179.9 L	174.5 PI 165.5 C 176.9 C-CA	163.6 AP 160.2 So=Si= 174.5 PI 165.5 C 176.9 C-CA 179.9 L	163.6 AP	157,0 Si=So=60 157,0 Si=So=60 163.6 AP 160.2 So=Si=35 174.5 PI 174.5 PI 176.9 C-CA 176.9 C-CA 179.9 L	163.6 AP 160.2 So=Si=35 174.5 PI 165.5 C 176.9 C-CA 179.9 L	163.6 AP 160.2 So=Si=35 174.5 PI 165.5 C 176.9 C-CA 179.9 L	163.6 AP 160.2 So=Si=35 174.5 PI 166,0 So=Si=50 177,0 Si=So=60 176,9 C-CA 176,9 C-CA 176,9 C-CA	157,0 Si=So=60 163.6 AP 160.2 So=Si=35 174.5 PI 166,0 So=Si=50 173,0 So 55 176.9 C-CA 176.9 C-CA 179.9 L	157,0 Si=So=60 163.6 AP 160.2 So=Si=35 174.5 PI 166,0 So=Si=50 173,0 So 55 176.9 C-CA 176.7 So=Si=45	163.6 AP 160.2 So=Si=35 174.5 PI 166.0 So=Si=50 177.0 Si=So=60 177.0 Si=So=60 177.0 Si=So=60 160.2 So=Si=35 177.0 Si=So=35 177.0 Si=So=35 177.0 Si=So=35 177.0 Si=So=35 177.0 Si=So=35 177.0 Si=Si=Si=Si=Si=Si=Si=Si=Si=Si=Si=Si=Si=S	163.6 AP	163.6 AP 160.2 So=Si=35 160.2 So=Si=35 173.0 So 55 176.9 C-CA 176.7 So=Si=45	163.6 AP 160.2 So=Si=35 174.5 PI 165.5 C 176.9 C-CA 1779.9 L

													179.9
179.9	194.5	AP											ARGILLACEOUS PHYLLITE
													Well compositionally banded, argillaceous phyllite. Interval contains
			186.2	So=Si	=35								< 10% chert lamella.
													Compositional layers consistent orientated at 35 to CA
													Repeated compositonal parallel shear failures between 190,0 and
													194.5; papery foliation surface.
													Net sulphide content, pyrite 1.0% as foliation parallel aggregates.
													194.5
194.5	EOH												
													Downhole Surveys:
													193.9 m Dip: 42, Azi: 266.5

Assay Sample Log DDH 3-14

Date June 13 Page 1

	1_		<u> </u>	Ta -	<u> </u>	1_	ı_	<u> – </u>	I <u>a</u> -
Sample No.	From	То	Sample Type	S.G	Sample No.	From	То	Sample Type	S.G
O17700		123.1		ļ		 			<u> </u>
O17701	123.1	125.2	В						
O17702		127.1							
O17703	127.1	129,0	В						
O17704		130.5							
O17705		131.5							
O17706		132.7							
O17707		134.4							
O17708		ard PM							
O17709		136,0							
O17710		138,0							
017711		140.6							
017712		141.9							
017713		142.4							
O17714		143.5							
O17715		145,0							
O17716	145,0	147.1	В						
O17717		148.5							
O17718	148.5	149.5	В			1			
	 					 			
	 					 			
	1			1		1		 	
	+			1	1	+	-	 	
	+			1		+	-	-	
				-					-
	1			 		1			
	1			1		1			<u> </u>
	-			1		-			
	<u> </u>			<u> </u>		<u> </u>		-	<u> </u>
	<u> </u>			<u> </u>		<u> </u>			
	<u> </u>			<u> </u>		<u> </u>			

Diamond Drill Log DDH 3-15

North: 6160390 East: 348004 Elevation:
Dip: - 56 Azimuth: 272 Total Distance:227.7 m

Date: June 15, 2003 Logged By: J.Oliver Page: 1

From	То	Rock	Mod	Stuct	CA	Alte	ratio	on					Min	eral	izati	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	Ру	Po	Сру	Sp	Gn	Asp	Bn	Mag	
0	3,0																			Ĭ	CASE
																					3
3,0	131.9	L																			LIMESTONE: MINOR CLASTIC INTERBEDS
																					The major unit within this interval is a blue-grey re-crystalised
																					homogeneous limestone.
																					The unit contains either black organic rich, fetid (?) interbeds or
																					matrix supported depositional breccias.
																					Relevant sub-intervals are:
																					3.0-14.4: Blue-grey, medium grained re-crystalized limestone.
				14.6	So	52															Sporadic buff dolomite.
																					Pyrite: 0%
																					Rare preserved crinoids.
																					14.4-16.4: Fragment rich, yellow-green dolomitized fragmental
																					Weak evidence for up-hole youngins, based on fragment
																					gradation. ("calcite knot limestone")
																					Pyrite remains low.
																					16.4-21.3: Homogeneous, re-crystalized weakly dolomitic
																					limestone, no internal planar fabric, color darkens towards the
																					graphitic limestone contact.
				23.9	So	33															21.3-24.9: Graphitic, moderately calcareous mudstone with
																					minor limestone interbeds. Jet black, sooty soft graphitic
																					matrix, locally dissolution textures. No sulphides identified in
				28.1	So=Si	=32				Note:	26.1=26	3.5: I	band	ed c	crack	and	sea	qua	rtz v	ein.	this interval.
										J/ 60 to	CA. T	race	arse	enop	oyrite						24.9-54.4: Blue-grey moderately carbonaceous limestone.
																					Well defined compositional layers near the upper contact.
																					Net sulphide levels remain non-existent, no sulphides I.D.
				57.5	Si=30																54.4-57.6: Slightly vuggy textures, increase in buff brown
																					matrix dolomite. No significant development of sulphide
																					phases. Si surface defined by elevated pressure solution fabric
																					57.6-98.5: Massive extremely homogeneous, blue-grey l
				70.7	So=Si	=25															limestone. No significant fracture development. Locally

															very faint internal fabrics. No significant veins or sulphide
İ															development. No significant alteration.
				100.4	J/40										98.5-103.5: Minor calcite vein development with weakly
															oxidized joint-fracture surfaces.
				108,0	Si: 45	(wea	k)								Limestone host, no significant sulphide development.
				112.5		35									103.5-131.9: Homogeneous, medium to fine grained limestone
				120.3		29									No significant vein development.
				131.9	Si:	30->	sup	erb c	contac	t					No significant structural zones.
															No sulphides identified.
															Locally faint penetration fabric.
															131.9
31.9 16	63.2	CA-x													CHERTY ARGILLITE: MINOR BRECCIAS
															Dark grey black, moderately compositionally banded cherty argillites
				139.1	So=Si=	=35									with minor rounded to cuspate boudinaged and flattened chert fragm
															Trace calcite, largely within limestone clasts or fragments, minor
				147.1	So=29										limestone bed at 146.9-147.1.
															Net sulphide content: disseminated pyrite 3 %, also noted as
				150.3	So=Si=	=35									coarse euhedral aggregates.
															Trace euhedral arsenopyrite.
				158.1	Si=So=	=20									All sulphides appear early phase, pre or syn Si.
															No stockwork vein development, no high sulphide veins.
															Towards the lower contact at 153.2 the rock becomes an extremely
															hard competatn black chert.
															163.2
63.2 16	64.2 I	Fpd													FELDSPAR PORPHYRITIC DYKE
															Narrow pale cream to green feldspar porphyritic dyke.
				163.2	Si:22										Narrow dark grey silica veins are noted in this interval.
				164.2	Si:18										Both upper and lower contacts are tight.
															164.2
64.2 17	72.7	CA	(Sh)												CHERTY ARGILLITE - MODERATELY SHEARING
															Dark grey cherty argillite, fractures and gouge density increases
															downhole.
				164.5	Si:	30									External to gouge zones net sulphide content averages 1.5-2,0 %.
															No arsenopyrite identified.
				168.5	Sh:38										Moderate gouge zone from 167.7-168.5, elevated pyrite 2-2.5. No
Ī															other sulphide phases identified.
Ì				172.3	Si	10									Elevated shearing near lower dyke contact.
				172,7		32							1 1		Note tace red-brown sphalerite-arsenopyrite 172.5-172.7.
															172.7
72.7 18	80.9 I	Fpd	Se-K												FELDSPAR PORPHYRITIC DYKE
															Moderately clay sericite altered feldspar porphyritic dyke.
															No significant development of stockwork veins or high sulphide veins

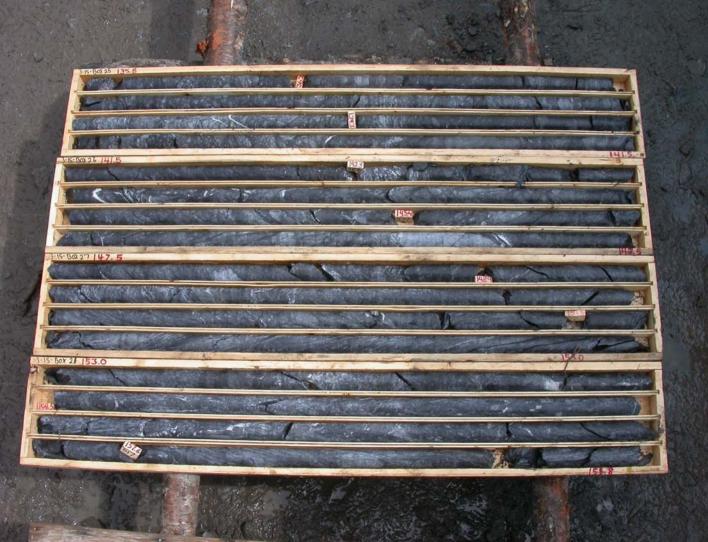
														Disseminated pyrite, 2-3%, no visible hematite, no grey sulphide
$\overline{}$				180.9	Sd	30								phases.
				10010	-									Increasing clay contents and partial failure zones, 178,0-180.9.
													+	180.9
180.9	185.8	A-CA/S	Sh-MZ										+	FAULTED CHERTY ARGILLITE - WEAK MINERALIZED ZONE
			J <u> </u>				1							 Extensive sheaving and gouge development occurs across this inter
							1							From 182.8-185.8 near complete loss of competancy within a
													+	brittle-ductile strain zone, localized within an argillite member.
				185.6	Si	30								Note: Probably weak mineralized, partially healed breccia zone
														from 180.9-181.6. Trace to 0.25% arsenopyrite 3-4% py. Rotated
							1							quartz fragments common.
													+	Shear foliation sub-parallel to Si, 30 to CA.
													+	185.8
85.8	192.3	ΔP	sh											ARGILLACEOUS PHYLLITES - SHEARED
00.0	102.0	7.11	311											Well compositionally laminated argillaceous phyllites. The interval
-													+	contains < 15% chert interbeds.
\dashv							1						1	Numerous failure and gouge development parallel to Si, strongest
\dashv				188 1	Si=So=	_ <u></u>	1						1	at: 190.0-190.8 with minor quartz vein injection.
-				100.1	01=00-	_ <u></u>	1							Compositional layers generally consistent at 042 degrees.
														Net sulphide content: pyrite 1% as foliation parallel aggregates.
														192.3
92.3	195.1	Fnd	Se										+	FELDSPAR PORPHYRITIC DYKE
02.0	100.1	i pu	00											Weakly sericitized, medium green feldspar porphyritic dyke.
														Slightly more polished surface than the preceding dyke, decrease
														in clay alteration.
														Disseminated pyrite < 0.5%, trace sphalevite, no grey sulphides.
													+	Both contacts tight, no significant fault development.
													+	195.1
95 1	227 7	CA-Ap												CHERT ARGILLITES - LESSER ARGILLACEOUS PHYLLITES
00.1		C, t , tp											+	Gradation contacts between both chert and argillite members occur
				199 6	So=Si=	=30							+	throughout the interval.
				10010	00 0.	Ι							+	Ribbon banded well compositionally laminated chert are predominan
				203.9	So=Si=	=25	1							Relevant sub-intervals are:
				200.0	00 0.	Ī	1							195.1-199.8: Cherty argillite, intact core, down-hole rubble
														from bit change noted at 199.9 m
				206.2	Si: 30								+	199.8-203.9: Argillaceous phyllite, soft green-grey composition
				200.2	01. 00									bands. Strong Si-So transpostion.
				209.1	Sd·	30					 		+	203.9-209.1: Well compositionally laminated ribbon chert.
\rightarrow				200.1	<u> </u>	30	+			+	$\vdash \vdash$		+	Abundant moderately planear cm scale beds.
							1			\vdash	\vdash		+	209.1-209.5: Minor feldspar porphyry dyke. Trace arsenopyrite
-				212.8	So	35	1			\vdash	\vdash		+	209.5-212.8: Cherty argillite. No significant alteration or vein
				212.0	50	- 55	1			+			+	development. Very consistent 30=35 compositional layers.

	ı						1	, ,	-	-	-	-	-				
				218.5	Si=So=	=45											212.8=213.6: Limestone interbed.
							<u> </u>										213.6-219.8: Argillaceous phyllite, locally weakly sericitic clay
				220,0	Si=So=	=35											rich foliation surface.
																	219.8-222.8: Cherty argillite, individual lamella thicken to 5.0
				227.7	Si=	27											cm's. No stockwork or discordant veins.
																	222.8-227.1: Argillaceous phyllite, soft light grey, clay sericite
																	rich interbeds.
																	Note: Pyrite content argillaceous phyllites: 2% Pyrite content in cherty argillites < 0.%%
																	Pyrite content in cherty argillites < 0.%%
																	227.7
227.7	EOH																Downhole Surveys:
																	,
																	130.2 m, Dip: 56, Azi: 277
																	224.7 m, Dip: 53, Azi: 270
	1	1	1	1	1												
							1						-				
						-	1										

Assay Sample Log DDH 3-15

Date June 14 Page 1 of

132.9 163.2 164.2 166.2 167.7 169,0 171,0 172.7 174,0 176,0 178,0 180,0 180.9 181.6	132.9 136.1 164.2 166.2 167.7 169,0 171,0 172.7 174,0 176,0 178,0 180,0	B B B B B B B B		Sample No.			Sample Type	
163.2 164.2 166.2 167.7 169,0 171,0 172.7 174,0 176,0 178,0 180,0 180.9 181.6	164.2 166.2 167.7 169,0 171,0 172.7 174,0 176,0 178,0 180,0	B B B B B B B B						
163.2 164.2 166.2 167.7 169,0 171,0 172.7 174,0 176,0 178,0 180,0 180.9 181.6	164.2 166.2 167.7 169,0 171,0 172.7 174,0 176,0 178,0 180,0	B B B B B B B B						
166.2 167.7 169,0 171,0 172.7 174,0 176,0 178,0 180,0 180.9 181.6	167.7 169,0 171,0 172.7 174,0 176,0 178,0 180,0 180.9	B B B B B B						
166.2 167.7 169,0 171,0 172.7 174,0 176,0 178,0 180,0 180.9 181.6	167.7 169,0 171,0 172.7 174,0 176,0 178,0 180,0 180.9	B B B B B B						
167.7 169,0 171,0 172.7 174,0 176,0 178,0 180,0 180.9 181.6	169,0 171,0 172.7 174,0 176,0 178,0 180,0 180.9	B B B B B B						
169,0 171,0 172.7 174,0 176,0 178,0 180,0 180.9 181.6	171,0 172.7 174,0 176,0 178,0 180,0 180.9	B B B B B						
171,0 172.7 174,0 176,0 178,0 180,0 180.9 181.6	172.7 174,0 176,0 178,0 180,0 180.9	B B B B						
172.7 174,0 176,0 178,0 180,0 180.9 181.6	174,0 176,0 178,0 180,0 180.9	B B B						†
174,0 176,0 178,0 180,0 180.9 181.6	176,0 178,0 180,0 180.9	B B B						1
176,0 178,0 180,0 180.9 181.6	178,0 180,0 180.9	B B			1			
178,0 180,0 180.9 181.6	180,0 180.9	В	1	1				
180,0 180.9 181.6	180.9	В						
180.9 181.6	181 6	В						
181.6		В		1				
	182.8			1				
102.0	185.8			1				<u>† </u>
	187.8		1		1			†
								†
								†
			1					
			1					
			1					
			1					
			1					
								1
								1
								1
								1
								
								
			1	1				+-
			 					
			1					
			1		+			+-
			1		+			+-
			 		1			+
			 		1			
			 		1			
			1	1	+			+
			1	1	+			+
			1	+	1			+
			1	1	+			+
			1	1	1			
			<u> </u>	1				├
1	90,0 190.8	90,0 190.8 190.8 192.3	187.8 190,0 B 190,0 190.8 B 190.8 192.3 B Standard PM 169	90,0 190.8 B 190.8 192.3 B	90,0 190.8 B 190.8 192.3 B	90,0 190.8 B 190.8 192.3 B	90,0 190.8 B 190.8 192.3 B	90,0 190.8 B 190.8 192.3 B



Diamond Drill Log DDH 3-16

North: 6161045 East: 347912 Elevation:
Dip: -45 Azimuth: 270 Total Distance:169.5 m

Date: June 16, 2003 Logged By: J. Oliver Page:1

From	То	Rock	Mod	Stuct	CA	Alte	ratio	on					Min	eral	izati	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	Ру	Ро	Сру	Sp	Gn	Asp	Bn	Mag	
0	6.1																	•		Ŭ	CASE
																					6.
6.1	28.2	L																			LIMESTONE
																					Massive, homogeneous, blue-grey limestone.
																					Good reaction to Alizorin-red, dolomitic re-crystalization.
																					Persisitently blocky core, but no significant oxidation on joint surface
																					Abundant mm to hairline non-sulphidic calcite fractures
																					Net sulphide content extremely low.
																					28.2
28.2	28.9	Md																			MAFIC DYKE - MONZODIORITE
				28.2	35	Sd														2%	Exceptionally crowded feldspar lathes.
																					Apharitic grey (potassic matrix), weakly to moderately magnetic.
																					Oxidized contacts but no vein development.
																					28.9
28.9	89.6	L																			LIMESTONE
																					Homogeneous medium grey- limestone.
				43	Si	35															Locally weak pressure solution fabric defines Si.
																					Sporadic irregularly defined darker grey mottled surface.
																					Blocky broken core throughout, very light development of brown
				65,0	Si:	28															oxides along fracture surfaces.
																					Net sulphide development extremely low, pyrite present in trace
				82.5	Si	31															amounts and always associated with discordant calcite veins.
																					89.6
89.6	91.2	Fpd	Se																		FELDSPAR PORPHYRITIC DYKE, MODERATELY SERICITIZED
																					Light yellow-cream fine grained sericitized matrix.
													2								Abundant disseminated pyrite, 2% trace light grey sulphide-oxide,
				89.6	Sd:																locally forming radiating lathes.
																					No stockwork veins, no high sulphide veins both contacts tight.
																					91.2
91.2	97.5	L																			LIMESTONE
																					Blue-grey medium grained carbonaceous limestone.
				97.5	So:	40															Unit is cut by many white calcite veinlets, veinlets have no sulphide
																					association.

		1											Net sulphide content remains extremely low, < trace pyrite.
													No skarn assemblages at dyke contact.
													97.5
97.5	106.6	PI-S											LIMY PHYLLITES - SULPHIDIC PHYLLITES - "BEDDED"
													Rock unit is characterized by exceptionally well defined
													compositional layers, a strong calcareous matrix and by strongly
										5			aligned sericite +/- biotite (?) compositional layers.
			98.0	Si:30									The unit is well stratified and two significant compositional intervals
			,										are defined.
													97.5-102.4: Sulphidic Limy Phyllite Foliation parallel pyrite
			104,0	So:38									averages 5-7% rock volume. Compostional bands or sericite
													calcite are vagged and locally display mm scale isoclinal offsets.
													102.4-106.6: Limy Phyllite, Grey-green to khaki, strongly
													compositionally layered clast rich- clast deficiant compositional
													layers. Sulphide levels dramatically decrease, pyrite:
													Note: No incipietant skarn assemblages, no evidence of hydrothermal
													biotite.
													106.6
06.6	121.1	L											LIMESTONE
													Massive, re-crystalized, blue grey dolomitic limestone.
													Core develops an increasing density of discordant fracture surfaces
													towards the lower structural contact.
													Sporadic arsenopyrite - pyrite noted on black lined fracture surfaces.
													Minor structural zone at: 114.3-115,0: Moderate gouge development.
				114.3		35							About 0.25% pyrite.
													Overall sulphide levels are low, trace pyrite.
													Abundant stockwork calcite veins do not carry sulphides
													121.1
21.1	125	Lc											POORLY STRATIFIED CLASTIC RICH LIMESTONE ("CALCITE KNO
													Abundant bio-clastic, crinoids, and coarser clastic debris.
				123.6	Si=So=	=55							Cm scale blue-grey limestone fragements common.
													Muddy green, non-stratified matrix
				121.1	J/	50							May include < 20% limestone interbeds.
													Coarse grained black-sphalerite arsenopyrite vein at 121.1-121.3.
													125
25,0	126.3	Fault											MAJOR FAULT - SULPHIDIC
													Strong brittle ductile zone localized to a fine grained calcareous mudstor
				125.1	J/	50							Significantly elevated pyrite +/- arsenopyrite.
													Strongest sulphide pyrite (4%) arsenopyrite (2%) in a clay sulphide
													gouge zone.
													126.35
26.3	129.8	L											LIMESTONE
													Massive re-crystalized blue-grey limestone.

				Ī							1	I	1		I	l	Rare fine grained clastic input.
																	No significant sulphide development, pyrite trace throughout the matrix
							+	-						+	1		129.8
120.8	134.9	DI_		-											1		CLAST RICH WEAKLY STRATIFIED PALE GREEN DEBRIS STON
123.0	134.3	1 1-															Calcareous clast rich limestone.
																	Weak stratification, no development of parallel beds.
																	Net sulphide development low.
-			134.9	So:	60												Strong yellow-green sericitic foliation surface.
			104.0	00.	00		+						-		1		Pyrite, trace.
																	134.9
134.9	140.1	L													1		LIMESTONE
		_															Two limestone varieties are noted in this interval:
						1	\dagger								1		@: Blue-grey re-crystalized dolomitic limestone.
						1	\dagger								1		Dark grey-black fine grained micritic limestone. Micritic
																	limestones are cut by numerous phygmatic calcite-quartz-veins.
																	Minor 15-20 cm limy sericitic phyllite beds are also noted.
				140.1	So:37												Net sulphide content is low, pyrite averages < 1.0%
											T I						Tight contacts, no significant structural zones.
							1 1								1		140.1
140.1	143.6	PI					1 1								1		CALCAREOUS PHYLLITE - CLASTIC
				140.3	Si=So:	=45				0,5%	%						Well compositionally laminated yellow-green calcareous phyllite.
																	Abundant isoclined folds parallel to Si fabrics.
																	Cm scale compositional layers common.
																	Clastic fragments common.
											Î						Net sulphide content low, pyrite < 0,5%.
																	143.6
143.6	157,0	L-x															LIMESTONE
																	Blue-grey medium grained limestone with minor darker grey interbeds
																	Rock is massive, with sporadic pressure solution cleavages.
																	No micritic interbeds are noted.
																	Note: Potential Mineralized Zone:
										0,5			Tr				146.3-147.6: Strong development of angular matrix supported
																	open space breccias. Micro-fractures lined with euhedral
																	pyrite and traces of red-brown sphalite. The primary interval
		152.8	Si=So:	=40													of brecciation is flanked by 2-3 m's of anastomosing calcite
																	veins and stockworks.
																	Net sulphide content pyrite 0.5%, trace sphalerite.
																	Narrow well compositionally layered limy phyllite interbed from
																	152.6-153.3.
																	157
157,0	169.5	PI-cl															LIMY PHYLLITES - CLAST RICH LIMESTONE
																	A moderately compositionally layered very clast rich limestone
																L	interbed forms this interval.

	1	ı	400.4	10. 45	1	T	1 1		ı ı	T		1	Ī	Ī	[Obs. (a. 2
			162.1	So:45											Clasts increase in size down-hole, commonly exceeding 3-4 cm's,
															irregular in form and not extensively flattened.
															A narrow, medium green, non-calcareous, foliated, possible mafic dyke is noted from 162.1-164.5.
															dyke is noted from 162.1-164.5.
															Net sulphide content is low, pyrite < 0.5%.
															Note: Mafic content of the matrix increases down hole, clastic
															near EOH have high chlorite content matrices. Tuffaceous input.
															No significant structural zones.
															169.5
169.5	EOH														Downhole Surveys:
															179.0 m Dip: 42, Azi: 270
					1	1									
					1	1									
	1														
<u> </u>															
										-					
<u> </u>															
<u> </u>						1			-						
<u> </u>	 				-	 									
<u> </u>	<u> </u>														
<u> </u>	1					 									
└						ļ									
<u> </u>															
						 									
<u> </u>															
<u> </u>															
L															

Assay Sample Log DDH 3-16

Date June 16 Page 1 of

Sample No.	From	То	Sample Type	S.G	Sample No.	From	То	Sample Type	S.G
O17740		91.2	В	1		†			
O17741		99.5							
O17742		101,0							
O17743		102.4							
O17744		115,0							
O17745		121.1							
O17746	121.1	121.7	В						
O17747	121.7	123.4	В						
O17748		125,0							
O17749	125,0	125.8	В						
O17750	Standa	ard PM	169						
O17751	125.8	126.4	В						
O17752		127.8							
017753		129.7							
O17754		146.3							
O17755		147.1							
O17756		147.6							
O17757		148.6							
O17758	148.6	150.1	В						
•									
•									

Diamond Drill Log DDH 3-17

North: 6161140 East: 347840 Elevation:
Dip: -45 Azimuth: 270 Total Distance: 154.3 m

Date: June 17, 2003 Logged By: J. Oliver Page: 1

rom	То	Rock	Mod	Stuct	CA	Alte	ratio	on					Min	eral	izatio	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	Ру	Ро	Сру	Sp	Gn	Asp	Bn	Mag	
0	3,0	Case													. ,			•		J	CASING
3,0	21.5	L																			LIMESTONE
																					Mottled brown to grey, dolomitic limestone.
																					Sporadic vugs and cavities near the onset of coring.
																					Note: From 3.0-7.9, manganiferous stain, frequent fracture surface
																					Locally "cobbles" of feldspar porphyritic dyke fragements.
																					Net sulphide content is low, from 7.9-21.5 no significant sulphides.
																					No significant structural zones.
																					21
21.5	22.7	Fpd	Se																		SERICITIZED FELDSPAR PORPHYRITIC DYKE
																					A grey-green sericitized Feldspar porphyritic dyke is noted within
																					this interval.
				22.7	Sd:	67							2								The dyke is cut by numerous mm scale quartz-sericite fractures.
																					which have strong pyritic envelopes.
																					Net sulphide content averages 2% pyrite, other sulphide phases
																					are not identified.
																					22
22.7	100.5	L																			LIMESTONE
																					Homogeneous blue-grey re-crystalized dolomitic limestone.
																					Weakly oxidized fractures below the dyke contact from 22.7-26.2m
				38.7	Si:	35															Lithology is cut by abundant discordant white calcitic veins.
																					No sulphides are associated with these veins.
				55,0	So:	20															Sulphides are present in extremely low levels, and trace pyrite.
																					A weak penetration fabric is identified in drill core, usually formed
				75.2		75															by aligned opaques and pressure solution cleavages.
				75.3	Si:	35															Note: 58.7-58.8: Minor angular breccia, no damage envelope.
																					Note: 75.2-75,5: Minor limy phyllite interbed. Pyrite increases to
				94.8	Si:	35															11. No structural zone.
																					Very sporadic chocolate brown dolomite-mangeuse, no sulphide
				100.5	Sd:	30															association.
																					Lower dyke contact is tight, not faulted.
•																					100

100.5	110.9	Fpd	Se												FELDSPAR PORPHYRITIC DYKE
															Fine grained pale green-grey feldspar porphyritic dyke.
				103,0	J/:	31									Moderate matrix carbonitization, +/- sericite.
															Persistant disseminated pyrite at 2-3% levels.
				104.5	J/:	27									Small calcite - clay shears and veins form at:
															102.9-102.3 and 104.2-104.5
															Veins contain minor stibnite, black sphalerite and 8-10% euhedral
				110.9	Sd:	42									pyrite.
															Persistant small scale clay-calcite stibnite arsenopyrite fractures
															throughout this interval.
															110.9
110.9	142.1	L													LIMESTONE
															Return to homogeneous moderately fractured grey limestone.
				120.9	So:	30									No significant compositional layers.
															Rare oval clast or fragments/
				142.1	Sd:	24									No identifiable sulphides.
															No recognizable bioclasts.
															No significant structural zones.
															Lower contact with dyke rock tight un-faulted.
															142.1
142.1	145.4	Fpd	Se												FELDSPAR PORPHYRITIC DYKE
											2				Moderately carbonitized light grey-green feldspar porphyritic dyke.
															Disseminated pyrite 2%, very weakly developed fractures, sporadic
															clay pyritic lined joints towards the lower contact.
															Both contacts tight, unsheaved.
															145.4
145.4	154.3	L													LIMESTONE
															No change in carbonate stratigraphy throughout this borehole,
				147.7	Si:	40									sequence is again a massive, homogeneous, blue-grey
															re-crystalized limestone.
															Faint Si fabrics, no primary compositional layers.
															Mottled light tan matrix locally cut by dark grey-black opaque
															(organic) fractures.
															No significant structures.
															No significant rock alteration, mineralization or sulphide development
															Net sulphide content extremely low, none recognized.
154.3	EOH														154.2
													1		Downhole Surveys:
												+	_		154.3 m Dip: -43.5, Azi: 273.5
			<u> </u>									† †		\dashv	
							\vdash			\vdash	-+	+	\neg	\dashv	
		 	+	+	 			 	1	-				_	

Assay Sample Log DDH 3-17

Date June 17

Page 1 of

Sample No.	From	To	Sample Type	S.G	Sample No.	From	To	Sample Type	S.G
O17759	3,0	6,0	B	3.0	Sample No.	FIOIII	10	Sample Type	3.6
O17760		8,0	В						
O17761	20.4								
O17762	21.5		D D						
017763	22.7		D D						
	24.7								
O17764 O17765									
	100.5	101.4	D D						
O17766		102.9							
017767	102.9	103.4	В						
017768		104.2							
O17769		104.7							
017770	104.7	106.9	В						
017771		108.9							
O17772	108.9	110.9	В						
	 			-					
	 								
-	 			-					
	-								
	1								
	 								
				ļ					
	1								
[

Diamond Drill Log DDH 3-18

North: 6160945 East: 347930 Elevation: 178.6 m Dip: -45 Azimuth: 270 Total Distance: 178.6 m

Date: June 18, 2003 Logged By: J. Oliver Page: 1

rom	То	Rock	Mod	Stuct	CA	Alte	rati	on					N	line	aliz	atio	n					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-C	ar	Si F	y P	οС	ру	Sp	Gn	Asp	Bn	Mag	aq
0	3,0																					CASE
																						3,0
,0	21.7	L																				LIMESTONE
																						Medium grained re-crystalized limestone.
																						Sporadic manganese lined fracture surfaces.
				8.9	So:	35	5															No significant internal fabric.
																						Single phyllitic interbed between 8.9-9.2 m.
																						No sulphides noted.
																						21.7
21.7	57.3	Md																				GABBROIE DYKE
																						An early, weakly foliated mafic dyke has been coved.
																						The intrusive nature of this early dyke is strongly suggested by the
																						development of carbonitized chill margins on both the upper and
																						lower contacts.
				21.8	Sd:	45																The unit is cut by abundant cm scale calcite veins and irregular
				40.1		22	2															calcite aggregates.
				53.5	Si:	25	5															The unit is weakly magnetic.
				57,0	Sd:	25	5															Rock matrix is weakly carbonitized.
																						Mafic minerals appear to be hornblends not pyroxene, the dyke
				32,0	Sd:	32	2															may lie closer to a dioritic field.
																						Sulphides, pyrite, is noted at trace levels in association with small,
																						cm scale calcite-chlorite veinlets.
																						Upper contact, defined by oxide alignement at 45 degrees.
																						Lower contact approximate.
																						Colour change to yellow tan near contact zone at 54.1-57.3,
																						pyrite increases to 1.5% within this zone.
																						A mafic flow or tuffaceous origin is strongly suggested by
																						isoclinally folded foliation-chlorite compositional layers at 32.0,
																						aligned vesicles at 33.5 and occaisional sericite phyllite inclusions
																						57.3
57.3	58.4	L																				LIMESTONE
															_							Blue grey re-crystalized limestone, no contact or thermal effects
				58.4	So	75	5															adjacent to mafic contact.
																						Sporadic white calcite veins, without a sulphide association.
															_							Trace pyrite, no other sulphides
																						58.4
58.4	68.6	PI																				CALCAREOUS PHYLLITE - ABUNDANT CLASTIC FRAGMENTS
															_							Texturally this unit is defined by its dull mustard yellow color, by
																						strong planar compositional layering composed of sericite and clays and by the presence of abundant blue-black limestone clays
				59.75	So:	35	5															A minor yellow-cream felsic dyke is noted at 65.8-66.9.
		1			<u> </u>		<u> </u>		<u> </u>			_		_	_						<u> </u>	Note: Phyllite matrix is clay-sericite not calcite rich; HCl response
		ļ		66.9	Sd:	55	<u> </u>		<u> </u>						_					<u> </u>	<u> </u>	only to fragments and discordent veins etc.
		ļ		1			1_		<u> </u>						_					<u> </u>	<u> </u>	Net sulphide content is low: trace amount only.
		ļ. —			1	-	<u> </u>	-	-		1	_	_	_							<u> </u>	68.6
68.6	80.8	Le	1		1	-	╀	-	-		1	_	_	_							<u> </u>	LIMESTONE - DEBRIS STONE
																						Generally poorly stratified polylithic debris stone.

				20.4	So:	50											Abundant, 20% by volume, 1.0-4.0 cm clasts of mixed origin.
												1					The upper portion of this unit is strongly sulphidic and carries 5-6%
				78.7	So	55 (s	supe	erb)									foliation parallel euhedral pyrite.
						ì											Clasts are often cuspate to irregular in form.
																	Unlike the preceeding interval, the rock matrix is highly clacareous.
																	Exceptionally well stratified beds toward the lower contact.
																	Highest pyrite content 70.4-71,0, about 10%
																	80.8
80.8	125.2	Mt															MAFIC TUFFS: MINOR CALCAREOUS INTERBEDS
				86.5	So	33											A medium to dark green non-calcareous mafic tuff carrying sporadic
				00.0	00												limestone fragments.
				90.6	So	25											Internal carbonate beds are also noted within this unit.
				00.0	00												No thermal effects are noted on the overlying (structural) limestone.
				102.3	Si	25	1										Actinolite may be a stable metamorphic phase.
				102.0	Oi .	20										+	Approximately 0.5% disseminated pyrite is noted within this interval.
				112.8	C:	40(p	.,										The rock is non-magnetic although occaisional magnetite veins and
				112.0	SI	40(p	"										aggregates are noted.
																+	Mafic matrix is weakly carbonitized.
								-									
	1					1		<u> </u>			1	 $\vdash \vdash$				\vdash	Many, 10-15% by volume calcite veinlets cut this sequence.
	-					 	1	1			-	$\vdash \vdash$			_	\vdash	At 112.9, angular partially sericitized clasts.
								-									Note 121.2 vague darker grey mafic "rinds"; possible pillowed rinds.
																	Tight lower contact. No significant structurla zones in this interval.
																	125.2
25.2	151.2	L															LIMESTONE
																	Variably fine to medium grey limestone.
																	Alinor internal sericitic phyllite beds provide good markers.
				130,0	So	53											Abundant white, low sulphide calcite veinlets.
																	Enhanced calcite vein injection at 136.0-136.6 but no increase in
				142.6	Si	45											sulphide development.
																	Minor sericitic phyllite interbed at 129.1-130.0.
																	Finer grained darker grey limestones may be increasingly dolomitic.
																	Net sulphide content extremely low, pyrite not identified above trace
																	levels, typically on black clay-graphite fracture sets.
																	151.2
51.2	163.3	Mt-PI															NON-CALCAREOUS MAFIC TUFFS - LESSER CALCAREOUS
																	PHYLLITES
																	Dull green, massive poorly stratified mafic tuffs form much of this into
				157.9	So=Si	=48											The unit contains two, 30 cm wide calcareous phyllite interbeds.
																	Abundant discordant calcitic veins cut the section.
				160.4	So=Si	=42											Marked bleaching to tan grey occurs between 160.8-163.3.
																	Small discordant mm scale pyritic stringers are also noted in this
																	interval.
																	Net sulphide content, 0.75% pyrite.
																	163.3
63.3	166.7	MZ	F/t	1	1	1		 		 	<u> </u>		-		-	+	MINERALIZED ZONE: MAJOR FAULT
55.5	. 50.7		. / .	1	1	1		 		 	<u> </u>	3	-	1	+ -	1	Onset of complete gouge development, fragment rotation, and loss
				<u> </u>		 		 							+-	\vdash	of competancy also coincides with the onset of mineralization.
	1			166.5	 	45		1			1	\vdash			-	\vdash	At least five sulphide phases are identified: pyrite (3-5%)
	-			100.5		40	-	1	 		-	\vdash				\vdash	
	1			1	 	 	1	1	<u> </u>		1	\vdash			-	\vdash	arsenopyrite (2%) red-brown sphalerite (2%) tetrahedrite-tennatite
	1					-		<u> </u>			1	 $\vdash \vdash$				₩	(1%), pyarganite (1%).
	1					<u> </u>		<u> </u>			1					\sqcup	Sulphide grains and fragments are often sub-rounded. Brittle ductile
						<u> </u>						Ш			_		deformation continues post-mineralization.
						<u> </u>						Ш			_		Heaviest sulphide development occurs in the interval 163.3-165.5,
																	approximately 10% combined sulphides.
						<u> </u>											Between 165.5-166.7, heavy jet black clays, argillite protolith (?)
	1				l	1	1	1		ı —	1	1 1				1 T	and strong shearing.

					1	,											 Ta
						ļ	<u> </u>	ļ				_	_				Structural zone contains limestone fragment and potentially feldspar
																	prophyritic dyke fragments.
																	166.7
166.7	178.6	CA-A															CHERTY ARGILLITE- MINOR ARGILLITE INTERBEDS
																	A well compositionally banded cherty argillite forms approximately
				168,0	Si=45						(0,75					70% of the interval. Argillite beds are particularly common toward
				, -								Ī					the upper fault contact.
				175.7	Si=35												Two rough sub-intervals are defined:
					0. 00												166.7-171.0: Argillite dominant
												-					171.0-178.6: Cherty argillite - ribbon banded chert.
												-					Compositional layers in both units are consistent at about 25-40 to
				<u> </u>			-										CA.
							<u> </u>										Pyrite averaged 0.5-0.75% in both units. No other sulphide phases
																	are identified.
																	178.
178.6	EOH																
						LT	L	L	L		$\Box \Box$	T	T	T			
																	Downhole Surveys:
																	160.4 m, Dip: 43.25, Azi: 277.
				İ			i –						T				
												-	-				
	1	1		1	1		 						\dashv				
												-					
				ļ													
													-				
												-					
				1			-		-			-					
							<u> </u>										
	1	1	1		1								T				
							1				-	-	\neg				
												-					
	1	1			1	1	1	1	-		+		\dashv	-			
												_					
					<u> </u>	ļ	<u> </u>	<u> </u>	<u> </u>		<u> </u>						
	1	1		ļ	1	<u> </u>	<u> </u>					_	_				
				ļ	ļ		<u> </u>										
					<u> </u>	<u>L</u>	<u></u>	<u></u>	L_								
													T				
													1				
							t						\neg				
	1	1	1	1	1		1						\dashv				
	1	1	1	1	1	<u> </u>	1	 	 	-	H		\dashv				
	1	1		1	-	-	-			-	\vdash						
					1		1										1

Assay Sample Log DDH 3-18

Date June 18 Page 1 of

Sample No.	From	То	Sample Type	S.G	Sample No.	From	То	Sample Type	S.G
O17773	70.4	71,0	В						
O17774	71,0	72.5	В						
O17775	157.5	159.4	В						
O17776	159.4	160.8	В						
O17777	160.8	162,0	В						
D17778	162,0	163.3	В						
O17779	163.3	164.3	В						
D17780		165.5							
D17781	165.5	166.7	В						
D17782	166.7	168,0	В						
O17783	168,0	169.5	В						
D17784	169.5	171,0	В						
D17785	171,0	172.5	В						
D17786	Standa	ard PM	169						
									ĺ
				1					
	1			1					
									1
				1					
				1					
				1					
				1					
				1					
				 		+	1		<u> </u>
				+		+	-		
				+			1		1
				+			1		\vdash
				1		1	-		
				1					1

Diamond Drill Log DDH 3-19

North: 6160795 East: 347930 Elevation:
Dip: - 45 Azimuth: 270 Total Distance: 157.3 m

Date: June 19, 2003 Logged By: J. Oliver Page: 1

From	То	Rock	Mod	Stuct	CA	Alte	ratio	on					Min	eral	izatio	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	Ру	Ро	Сру	Sp	Gn	Asp	Bn	Mag	
0	3,0	CASE																			CASE
																					3
3,0	10,0	Fpd-L																			FELDSPAR PORPHYRITIC DYKE - MINOR LIMESTONE HORST
													0,5			Tr					Blurred moderately sericitized matrix, but in general, a hard
				6.4	Sd:	30															competant dyke.
																					Disseminated pyrite averages 0.5%, minor hairline pyritic veinlets,
																					trace sphalerite
																					A limestone bed is trapped within the dyke between 6.4-7.3 m's
																					10
10,0	16.5	L																			LIMESTONE
																					Massive, homogeneous, medium grained limestone.
																					Locally mottled irregular light brown dolomitic or oxide washes.
																					Light development or discordant white non-sulphidic calcite veins.
				16.2	Si=So:	=35															No sulphides are identified.
																					16.5
16.5	21.2	Mt																			MAFIC TUFF
																					Poorly compositionally laminated mafic tuff. Matrix is generally
				20.5	Si:35																non-calcareous.
																					Sporadic wispy calcite inclusions increasing down-hole.
																					Tuffaceous unit is non-magnetic, and carries very low < 0.5%
																					disseminated pyrite.
																					21.2
21.2	30.4	Lc																			LIMESTONE - CLASTIC RICH - DEBRIS STONE
													0,25	ì							Hallmark polylithic cm scale fragments are again noted throughout
				26.2	Si:45																this interval.
																					Abundant cuspate vugged edges of alternating mafic-calcic inclusion
				30.4	So:	34 -:	> ex	celler	nt												No significant development of planar beds.
																					Locally elevated early phase euhedral pyrite; no other sulphide
																					phases recognized, but overall very low < 0.25% pyrite.
																					No significant structural zones, generally intact core.
																					30.4

30.4	59,0	L												LIMESTONE
														Medium grained, blue-grey, weakly carbonaceous limestone.
				41.9	So:	45	5							Massive, homogeneous without significant internal beds.
														Weakly developed mm-cm scale discordant calcite veinlets, without
				43,0	Si:	30)							a sulphide association.
														Slightly blocky broken core, but no significant structural zones.
				59,0	So:	50								Note: 56.4-56.7, minor quartz-calcite vein, < 1% euhedral pyrite.
														Clean lower contact at 50 degrees CA.
														59
9,0	64.7	Р	Se											SERICITIC WEAKLY CALCAREOUS PHYLLITE
										(0,5			Distintive yellow cream compositionaly layers, minor limestone interbe
				63,0	Si=So:	=50								Rare blue-black clasts.
				,										Weak matrix calcite development.
														Net sulphide content low pyrite < 0.5%.
														Distintive broad open warp in Si fabric central axis at 62.5 m.
														No structural zones; intact competant core.
														64.7
64.7	121.5	L												LIMESTONE
														Homogeneous blue-grey re-crystalized dolomitic limestone.
														Sporadic darker grey bands or inclusions, but no complete beds.
				106,0	So:	75	;							Slightly blocky broken core, but no significant structural zones or
				, .										vein development.
				121.5	So:70									Light to moderate response to A-R stain.
														No significant structural zones, lower contact is tight at 70 degrees.
														121.5
21.5	123.7	CA												CHERTY ARGILLITE
														Well compositionally layered cherty argillite.
				122,0	So=Si	=45								Weak shearing at upper contact, generally tight until the lower contact
				, ·										Compositional layers do not rotate.
														Pyrite remains at about 1.0% levels virtually to the fault contact at 123
														123.7
23.7	129.1	MZ												MINERALIZED ZONE: SHEARED, BRECCIATED AND SULPHIDIZE
														CHERTY ARGILLITE AND FELDSPAR PORPHYRITIC DYKES
														Mineralized defined by the onset of strong shearing, brecciation and
														sulphide development.
														Sulphides are in the form of semi-massive stringers and replacements
	1	1	1		1				1				1 1	breccia fault infill and are hosted by both sheared cherty argillite
	1	1	1		1				1				1 1	and sericitized feldspar porphyritic dykes.
			<u> </u>				1			1 1			1 1	Relevant sub-intervals include:
							1				_			123.7-125.3: Sheaved and sulphized cherty argillites,
							1				_			disseminated pyrite 3%, trace sphalerite, stibnite - arsenopyrite
						1	1							veins parallel compositional layers at 35 to CA. Low grade

													mineralized zone.
													125.3-126.2: Heavy sulphide replacement, high grade vein
													Black clay +/- sulphides including: pyrajorite 3-5%,
													sphalerite 5-6%, arsenopyrite 5%, stibnite 3%, tennantite-tetrah
													1%. This is a higher grade mineralized zone. > 30 oz Ag?
				126.5	So=Si=	=35							Intact core but no protolith recognizable.
													126.2-126.8: Cherty argillite host, combined sulphide levels
													significantly reduced Pyrite 4%, trace sphalerite-stibnite.
													126.8-128,0: Intrusion hosted sulphidized tectonic breccia
													infill. 30% cherty argillite clasts. Heavy matrix stibnite (5-6%)
													tetrah-tennet 4%, proustrite (?), sphalerite (2%). This is a
													higher grade MZ, > 100 oz Ag (?).
				128.8	25								128.0-129.1: Cherty argillite. Shear parallel to compositional
													layers persist but sulphide density markedly decreases.
													Pyrite 2-3%, other sulphide phases not identified.
													129.1
129.1	131.2	Fpd	Se										FELDSPAR PORPHYRY DYKE- SERICITIZED
													Light cream-green, clay and sericite altered feldspar porphyry dyke.
				129.1	Sd:	50			3		Т	r	Euhedral disseminated pyrite: 3%, trace arsenopyrite.
													Note: strong shearing and clay development 130.6-131.6, crossing
													the contact at 131.2
													131.2
131.2	140	CA											CHERTY ARGILLITE
													Distinctly compositionally laminated cherty argillite.
				135.3	Si:	40							Strongly sheared at upper contact (131.2-131.5)
													Compositional layers generally consistent at about 40 degrees.
													Net sulphide concentration slighly above background at 1.5-2.0%.
													Minor shearing and increased clay development at the lower contact.
													140
140	142.2	Fpd	K-Se										FELDSPAR PORPHYRY DYKE - CLAY SERICITE ALTERED
													Chalky grey-green feldspar porphyritic dyke.
													Hematite not pyrite is the predominant FE phase, hematite ~ 3%
				142.2	Sd:	45							No significant stockwork development, minor clay lined fractures
													noted.
													142.2
142.2	152.7	AP/CA											ARGILLACEOUS PHYLLITES - CHERTY ARGILLITES
													The percentage of soft, fine grained black clastics increases,
				149.6	Si=So=	=60							60-70% argillite, 30-40% cherty argillite.
													Homogeneous slighly blocky core, no significant fault structures.
													Sulphide levels are low, pyrite ~ 0.25%.
													No significant structural zones, bottom contact tight at 50 degrees,
									[[[parallels compositional layering.

																	152.7
152.7	157.3	Fpd +/	- CA														FELDSPAR PORPHYRITIC DYKE: MINOR CHERTY ARGILLITE
												1,5					INCLUSIONS
					153.4	Sd:	35										A pale apple green feldspar porphyritic dyke contains cherty argillite inclusions at 153.4-154.3 and 156.3-156.5.
																	argillite inclusions at 153.4-154.3 and 156.3-156.5.
					156.3	Sd:	25										Pyrite ~ 1.5%, usually mantled by hematite.
																	No significant structural zones or rock alteration/sulphide developme
157.3	EOH																
																	Downhole Surveys:
																	152.4 m: Dip: 43.5, Azi: 269
						1	1	1	1					1			
						1	1	1	1					1			
	1																
							1										
	 																
							1	1									
	1																
							1										
	 						1				1						
	+	-	1	 	 	1	+				1						
			-	-	-	-	1		-		 						
	1			 	 	1	1										
						1	}—		1		 			-			
						-	1				-						
	<u> </u>			<u> </u>	<u> </u>	-	1		.								

Assay Sample Log DDH 3-19

Date June 20 Page 1 of

Sample No.	From	To	Sample Type	S G	Sample No.	From	Τo	Sample Type	S.G
Lead	1 10111	10	Cample Type	10.21		1 10111	10	Campie Type	0.0
O17787	117 /	119,0	D		-> 2.72				
O17788		120.5		117.3	-> 2.12 				
		120.5							
O17789				400.0	0.07				
O17790		122.5		122,0	-> 2.67				
O17791		123.8							
O17792		124.5							
O17793		125.3							
O17794		126.2							
O17795		rd PM							
O17796		126.8		126.5	-> 2.72				
O17797		128,0		127,0	-> 3.12				
O17798		129.1							
O17799	129.1	131.2	В		-> 2.59				
O17800		132.9		132.8	-> 2.65				
O17801		134.5							
O17802		135.9							
Lead				10.23		1	1		1
				1		1	1		1
						1			
	 						-		
	 								
						+			-
	 								

Diamond Drill Log DDH 3-20

Date: June 20, 2003 Logged By: J. Oliver Page: 1

From	То	Rock	Mod	Stuct	CA	Alte	ratio	on					Min	era	lizati	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	Pv	Ро	Сру	Sp	Gn	Asp	Bn	Mag	
0	1.8	CASE											ĺ		· · ·						CASING
																					1.8
1.8	7.6	Fpd	Se																		FELDSPAR PORPHYRY DYKE
																					Lightly sericitized feldspar prophyry dyke.
				7.6 Sd	l: 25																Crowded slightly blurred plagioclase feldspars.
																					50% oxidized down to 7.6 m.
																					Pyrite as euhedral disseminations, 1.5-2.0%.
																					7.6
7.6	23,0	L																			LIMESTONE
																					Blue grey, recrystalized moderately dolomitic limestone.
				12.1	Si:	25															Patchy irregular manganiferous dolomitic and heavier chocolate
																					brown manganiferous veins without a sulphide association.
																					Locally very faint Si fabric, usually defined by wispy serictic lamella.
																					Increasing oxide content, 22.3-23.0, the mafic tuff contact.
																					Sulphides not identified.
				23,0	So:40																No structural zones.
																					23
23,0	31.8	Mt																			MAFIC TUFF
																					Medium green, moderately foliated mafic tuff.
				28,0	Si:	30															Matrix is non-calcareous, although coarse irregular calcite knots
																					and aggregates occur throughout the interval.
																					23.0-27.1: Light tan bleached, enhanced calcite vein injection
																					near the upper limestone contact.
																					Pyrite ~ 0.25% along fractures.
																					Unit is non-magnetic.
																					Lower contact tight, no shearing.
																					31.8
31.8	62.7	L																			LIMESTONE
																					Blue grey, weakly dolomitic limestone.
				33,4	So:	60															Locally felted dark grey calcite - dolomite rhombs.
																					Extremely low sulphide content, pyrite or other sulphide phases
				44.3	Si:	30															not identified.
																					Locally weak Si fabric.

				59.2	So	50						T				Short transition from clastic rich limestone to homogeneous member
				00.2		- 00						+	+ +			near the upper contact, 31.8-33.4.
								-+			 		+	+		62.7
62.7	70.2	Fnd	Si									1	+	-	1	SILICIFIED FELDSPAR PORPHYRITIC DYKE
02.7	70.2	i pu	0.								0,5	-	Tr	-	1	Light cream green, moderately silicified feldspar porphyry dyke.
											0,0	Ή	+'' +	-	1	Fine, mm scale quartz fractures.
												+	+ +			Sulphides include pyrite 0.5% disseminated and as a vein infill.
													+ +			Traces of chalcopyrite are also identified.
				70.2	Sd: 10							+	+ +			Lower contact tight, no faults.
				10.2	5u. 10								+ +			20.2
70.2	83.9	P/Lc														SERICITIC PHYLLITES AND CLASTIC RICH LIMESTONES -
													1 1			DEBRIS STONE
			70.4	Si=So	55								1 1			Throughout the interval, non-calcareous planar compositionally
-				<u> </u>									1 1			layered sericitic phyllites are interbedded with clast rich limestones.
-													1 1			Sulphide content in both units is low, pyrite ~ 0.5% in sericitic
			81.2	So	60										1	phyllites and trace in limestone.
			0112		- 00										1	Sporadic small < cm clasts within phyllite member.
															1	Si and compositional layers are parallel.
												+	+			Note: Pyrite content significantly increases at the lower contact.
													+ +			From 83.4-83.9 weak shearing and the development of 1.0% coarset
													+ +			grained euhedral pyrite. No other sulphide phases.
													+ +			83.9
83.9	113.5	L											+ +			LIMESTONE
00.0													1 1			Homogeneous blue-grey limestone, massive non-bedded.
													1 1			Weak Si fabric, largely due to aligned opaques.
													1 1			Pyrite is noted at trace to 0.25% levels, always in association with
				104.4	So: 40								1 1			black opaques flanking clacite veins.
													1 1			Rare black clastic inclusions, < 1.0% by volume.
				113.5	So:85											No significant rock alteration, sulphide development or brittle ductile
																strain zones.
																113.5
113.5	135.5	CA	sh													CHERTY ARGILLITE: MODERATE SHEARING
											0,2	25			Tr	Well developed white-black compositional layers.
																Compositional layers are frequently boudinaged cuspate oval chert
																fragments common.
				117.3	So 30=	-Si							1 1			Argillite interbeds represent < 10% rock volume.
													1 1			Minor limestone interbeds 115.1-117.3 near the upper contact.
				127.1	Si:	45							1 1			Sulphide levels low, pyrite 0.25-0.5% as foliation parallel aggregates
													 			trace arsenopyrite.
				131.1		30						1	 			Brittle-ductile zones located at: 129.8-130.1 Black argillite gouge,
													 	\neg		pyrite 0.5%,
					-	-	\vdash		_	-		-	+	_	1	
														l l		132.3-135.5: Sheared and quartz injected black clastics. Pyrite 1.0-

													135.5
135.5 1	52.4	L											LIMESTONE
													Medium grey, medium grained limestone.
				135.7	Si:	65							Slight stylolitic cleavage.
									0,25	5			No internal beds.
				137.7	So:	42							Discordant calcite veins are non-sulphidic.
													Note: Cherty argillite interbed at 136.5-137.7.
													Note: 145.4-152.4: increasingly blocky, broken core, Significantly
													elevated calcitic vein injection but no significant changes in
													sulphide content, pyrite < 0.25%.
													152.4
152.4 1	53.9	CA-Sh	Flt										MAJOR FAULT: SHEARED CHERTY ARGILLITE HOST
													Strong brittle-ductile fabrics, fragment rotation and complete loss
													of competancy defines this zone.
				153,0	35								Host lithology cherty argillite.
													Sulphide content slightly elevated, fine grained disseminated pyrite,
				153.9	Sd:40								0.75-1.0%, no other sulphide phases.
													153.9
153.9 16	60,0	MZ	Flt										MINERALIZED ZONE: FELDSPAR PORPHYRITIC DYKE HOST
													A pale green, sericitized +/- silicified feldspar porphyritic dyke
				159	J/35								host two styles of mineralization:
													Stockwork sulphide rich joints within the dyke
													A high sulphide vein along the lower contact.
													Relevant sub-intervals are:
													153.9-159,0: Shattered, feldspar porphyritic dyke hosting
													numerous sulphide rich joints and veinlets. Percentage of
													sulphide rich veins and joints increases towards the lower
													contact. Net sulphide distribution: pyrite 3%, arsenopyrite tr,
													sphalerite 0.25, tetrahedrite-tennantite: 0.25, stibnite trace.
													159,0-160.0: Massive sulphide vein. Greater than 60% sulphide
													within a minor quartz-calcite gouge.
													Principle phases include: pyrite 8%, arsenopyrite 6%, red
													brown sphalerite: 1.0%, stibnite 10%, tennatite-tetrahedrite: 1.0%
													pyargaryite 0.5%.
													Note: Abundant black clay gouge within the sulphide rich vein.
													160
160 1	66.7	CA-A	En										SHEARED CHERTY ARGILLITES - MINOR ARGILLITE INTERBED
									1,5				Well compositionally laminated ribbon cherts dominate the interval.
					1								Sequence becomes increasingly argillaceous down hole, from
				1	<u> </u>							1	165.8-166.7, sheared clay with argillites predominant.
$\overline{}$					1								Sulphide content rapidly diminishes below the vein contact, pyrite
					1								averages 1-1.5% other sulphide phases are not identified.
-				161.6	So=Si	=5						1	Throughout the interval compositional layers have rotated sub-parallel

					1							I			T	to the core axis.
																Note: 4CE 0.4CC 4. Complete revise development, no elevated evilphi
			ļ		ļ					1						Note: 165.8-166.1 Complete gouge development, no elevated sulphi
						 				<u> </u>	!					content.
																166.7
166.7	EOH															
																Downhole Surveys:
																166.7 m Dip: 56.25, Azi: 271.
											1				-	
										1	1					
											<u> </u>					
											1				-	
															-	
			1		1											
			ļ		ļ											
							Ì									
		1	 	1	 				1							

Assay Sample Log DDH 3-20

Date June 21 Page 1 of

Sample No.	From	То	Sample Type	S.G	Sample No.	From	То	Sample Type	S.G
O17803		133.7		1		1		Sumple Type	1
O17804		135.5							1
O17805		150,0							
O17806		151.5							1
O17807		152.4							1
O17808		153.9							1
O17809		155.6							
O17810	155.6	157,0	В						
O17811		158,0							
O17812	158,0	159,0	В						
O17813	159,0	160,0	В						
O17814		ard PM							
O17815	160,0	161,0	В						
O17816	161,0	162,0	В						
O17817		163.5							
O17818		165,0							
O17819	165,0	166.7	В						

Diamond Drill Log DDH 3-21

North: 6160725 East: 347930 Elevation:
Dip: - 45 Azimuth: 270 Total Distance: 139.0 m

Date: June 22, 2003 Logged By: J. Oliver Page: 1

From	То	Rock	Mod	Stuct	CA	Alte	ratio	on					Mir	nera	lizati	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	Pv	Ро	Сру	Sp	Gn	Asp	Bn	Mac	
0	3,0	CASE											–		- 17						CASING
																					3
,0	26.85	Fpd	Se																		FELDSPAR PORPHYRITIC DYKE - MODERATELY SERICITIZED
																					Light grey green crowded feldspar porphyry dyke.
																					Based on alteration and sulphide development three principle
				23.2	J/	15	5														sub-intervals are defined:
																					3.0-16.1: Feldspar porphyry dyke with light disseminated
				26.85	Sd:	47	'														pyrite ~ 0.75%, and no significant sulphide filled joint sets.
																					16.1-24.4: Fractured clay-calcite-pyrite-arsenopyrite filled
																					joint sets. Pyrite 2%, arsenopyrite 0.25 %.
																					24.4-26.85: Weakly altered pale green moderately sericitized
																					feldspar porphyritic dyke.
																					Lower contact tight, no skarn development between dyke and limesto
																					26.85
26.85	33.9	L																			LIMESTONE
																					Massive blue-grey re-crystalized moderately dolomitic limestone.
				28.4	Si:	40)														No compositional layers but locally weak internal fabric development
																					Low sulphide content, pyrite < 0.25%
																					33.9
33.9	45.9	Fpd																			FELDSPAR PORPHYRITIC DYKE
																					Weakly to moderately altered feldspar porphyritic dyke.
																					Light matrix carbonization - +/- sericite.
				45.9	Sd:	15	5														0.75-1.0% fine grained disseminated pyrite.
																					Hematite present in trace amounts.
																					Sporadic clay-calcite filled joint sets.
																					Both upper and lower contacts tight, non-faulted.
																					45.9
45.9	50.5	L																			LIMESTONE
																					Blue grey, moderately re-crystalized massive limestone.
			48.3	So=Si	=30																Sporadic, incomplete, darker grey beds.
																					Weak calcite vein injection.
																					No pyrite recognized, trace sphalerite lining, mm scale calcite fracture
																		_			Lower dyke contact tight, no significant alteration.

															50.5
50.5	53.6	Fpd													FELDSPAR PORPHYRITIC DYKE
											0,5				Blurred off-white equant feldspars are embayed within a fine grained
															kakhi matrix.
						53,6	Sd:	10							Minor hairline fractures noted, but no significant vein or joint sets.
															Net sulphide content: pyrite 0.5%, trace grey sulphides.
															Lower contact tight and unaltered.
															53.4
53.6 7	8,0	L													LIMESTONE
											0,25				Medium to fine grained blue-grey re-crystalized limestone.
				56,0	Si:35										Texturally variable from massive, to sporadically bedded to
															moderately carbonaceous with a well developed stylolitic cleavage.
															Blocky core, but no major structural zones.
				64,0	Si:25										No development of high sulphide veins, skarn or stockwark assemblag
															Net sulphide content: pyrite: 0.25-0.5%, always with black carbon
															rich pressure solution cleavages.
															78
3,0	89.3	CA-AP													CHERTY ARGILLITE LESSER ARGILLACEOUS PHYLLTE INTERB
															Well compositionally laminated cherty argillite forms 60-70 % of
															the interval.
															This unit is interelated with argillaceous phyllte beds (30-40%)
				81.1	Si=So=	=35									which seldom exceed 1.0-1.5 m's in thickness.
															Compositional layers have a highly consistent orientation to CA.
				89,0	So:50										No significant structural zones are noted
															Net sulphide content averages 0.5% as compositional layers parallel
															aggregates.
															89.3
39.3	98.4	Fpd	(Q) ?												FELDSPAR PORPHYRY DYKE (QUARTZ DIORITE)
		·	` '												Medium green, very weakly altered feldspar porphyry dyke.
											0,5	Tr		0,7	5 Rock contains very sporadic, < 5% free quartz.
															Abundant matrix chlorite.
															Disseminated pyrite 0.5%, magnetite 0.75 %, trace chalcopyrite.
															No fracture development, tight lower contact.
															98.4
98.4 1	06,0	CA/AP													CHERTY ARGILLITE / ARGILLACEOUS PHYLLITES
															Approximnately equal volumes of diffusely compositionally layered
			98.4	Sd:	45										ribbon banded chert and laminated light green-grey argillaceous phyllit
															Compositional layers have a consistent orientation to CA at ~ 30.
				103.0	Si=So=	=30	1				0,75				The unit is non-calcareous.
				-,-			1				ΙŤ				Fine grained pyrite is associated with dark black lamella and
				105,0		46	;		1						averages 0.5-0.75%.
				, -			1		1						Note: Increased shear fabric +/- weak damage envelope at 104.9-
-+						1	1	1							106,0. Slightly elevated pyrite, 2% and trace sphalerite within

													this interval.
													106
106,0	112.1	MZ/Fp	d										MINERALIZED ZONE: FELDSPAR PORPHYRITIC DYKE HOST
			Flt										Complete gouge development carrying significant sulphides flanks
													the upper and lower contacts of a bleached and shattered feldspar
													porphyritic dyke.
													Relevant sub-intervals include: 106.0-106.6: Dark grey sulphide
													rich gouge. All rock fragments 50% dyke, 50% clastic and all
													sulphide fragments are well rounded-melled. Net sulphides 6-8%,
													no estimate of distribution.
			109.2		30								106.6-111.7: Feldspar porphyry dyke. Shattered sulphide lined.
													Joint sets common. Sulphides include: pyargyarite 0.5-1.0%,
													red-brown sphalerite 0.5%, pyrite 3%, tetrahedrite-tennantite 0.25%.
													111.7-112.1: Black gouge, elevated arsenopyrite 3-4%, pyrite 3%,
													stibrite < 0.5%, native silver (?) 0.25%. Calcite gouge 30-40%.
													112.1
112.1	139,0	CA/AP											CHERTY ARGILLITES - INTERBEDDED ARGILLACEOUS PHYLLIT
													Slightly "gritty", silica rich (< chert) interbeds - compositional layers
													occur throughout this sequence.
			120.3	47									Equal split by volume between argillite and chert members.
													Narrow limestone bed near the top of the sequence. 115.8-117.3.
													Compositional layers generally at consistent orientations to CA ~
		133.5 So=Si=60											40-55 to CA.
													Partial boudinage of competant beds scattered minor brittle - ductile
													zones, no major faults.
													Note: Strongest shearing localized to an argillite member at 112.1-11
													Net sulphide content: 1.0% pyrite as foliation parallel aggregates.
													139
139,0	EOH												
													Downhole Surveys:
													139.0 m Dip: 40.75 Azi: 266.5
										一			

Assay Sample Log DDH 3-21

Date June 22 Page 1 of

Sample No.	From	ΤΛ	Sample Type	le G	Sample No.	From	То	Sample Type	S.G
O17820	16.1	18.1		3.6	Sample No.	FIOIII	10	Sample Type	3.6
017821	18.1	20.1							
O17822	20.1	24.4							
O17823	22.1								
O17824	24.4		В						
O17825	100,0	101.4	В						
O17826	101.4	102.8	В						
O17827		104.8							
O17828		106,0							
O17829		106.6							
O17830		108,0							
O17831		ard PM							
O17832		109.5							
O17833		110,0							
O17834		111.7							
O17835	111.7								
O17836		113.1							
O17837	113.1								
O17838	114.6	115.6							
O17839	115.6	117.5	В						
					1	1			
					1		 		
							 		
	1						 		
	1						 		
L	l			I	I .			l	

