# Geochemical Assessment Report on the 025 Claim Group, Atlin Mining Division, Northwest British Columbia, Canada

NTS 104M9E & W

Latitude 59°34'30''N Longitude 134°14'30''W

# UTM 8V 542160E 6602257N

Owner/Author G.R. Thompson, B.Sc. Geologist FMC 126766

> August 2003 field work November 2003 report

# **TABLE OF CONTENTS**

| Introduction                         | Page 3       |
|--------------------------------------|--------------|
| Location and Access                  | Page 3       |
| Claim Information                    | Page 4       |
| Topography and Vegetation            | Page 5       |
| Physiography, Climate and Glaciation | Page 5       |
| History and Previous Work            | Page 6 - 12  |
| Regional Geology                     | Page 13 - 15 |
| Claim Geology                        | Page 15 - 19 |
| Exploration                          | Page 19 - 20 |
| Geochemistry                         | Page 20      |
| Discussion                           | Page 21 - 39 |
| Summary                              | Page 40      |
| Recommendations                      | Page 40 - 42 |
| Statement of Author's Qualifications | Page 43      |
| Statement of Cost                    | Page 44      |
| References                           | Page 45 - 46 |

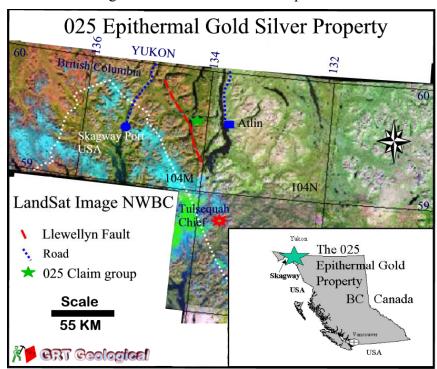
# LIST OF FIGURES

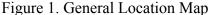
| Figure 1  | General Location Map                                |
|-----------|-----------------------------------------------------|
| Figure 2  | Mineral titles map of claims                        |
| Figure 3  | Hand Sample, Typical Main Zone texture              |
| Figure 4  | Aerial Photograph of the 025 Structure              |
| Figure 5  | Regional Geology Map                                |
| Figure 6  | Geological Cross Section                            |
| Figure 7  | Local Geology Map                                   |
| Figure 8  | Gold Scale Plot                                     |
| Figure 9  | Arsenic Scale Plot                                  |
| Figure 10 | Bearox Zone Sample Compilation Gold Scale           |
| Figure 11 | Gold Contour Compilation Plot                       |
| Figure 12 | Arsenic Contour Compilation Plot                    |
| Figure 14 | Bearox Zone Compilation Auto-CAD (1 of 6) to 6 of 6 |

# LIST OF TABLES

| Table 1 | The 025 Claim Group                                                    |
|---------|------------------------------------------------------------------------|
| Table 2 | Summary of Expenditures 1988-2003                                      |
| Table 3 | <b>Correlation Coefficient R<sup>2</sup> values for n = 83 samples</b> |
| Table 4 | Geochemical Results Summary and Locations                              |
| Table 5 | Sample Descriptions                                                    |
| Table 6 | Drill Plan Main Zone                                                   |
| Table 7 | Drill Plan Bearox Zone                                                 |
|         |                                                                        |
|         |                                                                        |

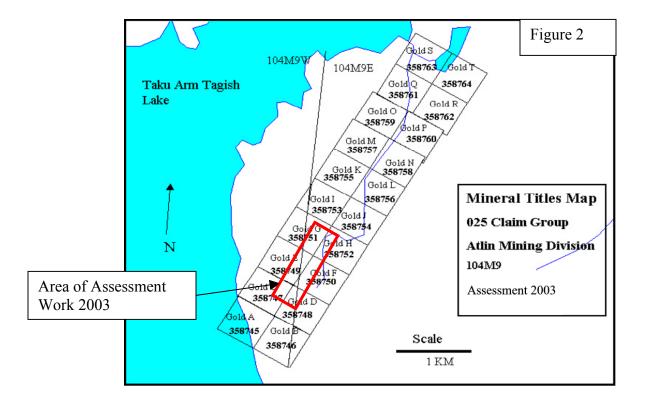
# APPENDIX 1Assay CertificatesAPPENDIX 2Analytical Procedures


•


## **INTRODUCTION**

A soil geochemical survey was conducted over the Bearox zone in attempts to extend and infill the mineralized area. The "025" claim group consists of 20 contiguous two post claims named Gold A – Gold T having tenure numbers 358745 – 358764 respectively. The claims were staked along a prominent 6 km normal shear structure, which trends 25°. G.R.Thompson discovered gold bearing epithermal breccia on the east shore of Tagish Lake in 1988 during a regional prospecting/adventure program. Since then, several kilometers of anomalous gold-silver-arsenic have been mapped to date.

## **LOCATION & ACCESS**


The **025**-claim group is located in Northwest British Columbia, Canada (Figure 1). NTS 104M9, UTM 8 V 542162E 6602257N, Latitude 59 degrees 34'30"N Longitude 134 degrees 14' 30"W. The property is located in the Atlin Mining Division, approximately 35 km west from the town of Atlin (Figure 1). The property is accessible by boat west from Atlin, down the Atlin River, west through Graham Inlet to the east shore of the Taku Arm of Tagish Lake. Helicopters and floatplanes are also available in Atlin and Whitehorse. Access may also be gained south on Tagish Lake from Carcross or Tagish Crossing.





| Table 1. The 025 C | laim Group. |
|--------------------|-------------|
|--------------------|-------------|

| Claim Name | Tag     | Tenure | Number of | Expire Date  |
|------------|---------|--------|-----------|--------------|
|            | Number  | Number | units     |              |
| Gold A     | 680251M | 358745 | 1         | Aug.30, 2006 |
| Gold B     | 680252M | 358746 | 1         | Aug.30, 2006 |
| Gold C     | 680253M | 358747 | 1         | Aug.30, 2006 |
| Gold D     | 680254M | 358748 | 1         | Aug.30, 2006 |
| Gold E     | 680255M | 358749 | 1         | Aug.30, 2006 |
| Gold F     | 680256M | 358750 | 1         | Aug.30, 2006 |
| Gold G     | 680257M | 358751 | 1         | Aug.30, 2006 |
| Gold H     | 680258M | 358752 | 1         | Aug.30, 2006 |
| Gold I     | 680259M | 358753 | 1         | Aug.30, 2006 |
| Gold J     | 680260M | 358754 | 1         | Aug.30, 2006 |
| Gold K     | 680261M | 358755 | 1         | Aug.30, 2006 |
| Gold L     | 680262M | 358756 | 1         | Aug.30, 2006 |
| Gold M     | 680263M | 358757 | 1         | Aug.30, 2006 |
| Gold N     | 680264M | 358758 | 1         | Aug.30, 2006 |
| Gold O     | 680265M | 358759 | 1         | Aug.30, 2006 |
| Gold P     | 680266M | 358760 | 1         | Aug.30, 2006 |
| Gold Q     | 680267M | 358761 | 1         | Aug.30, 2006 |
| Gold R     | 680269M | 358762 | 1         | Aug.30, 2006 |
| Gold S     | 680270M | 358763 | 1         | Aug.30, 2006 |
| Gold T     | 680268M | 358764 | 1         | Aug.30, 2006 |



# TOPOGRAPHY & VEGETATION

The claims lie on the flank of the Tagish Highlands. Tagish Lake is at an elevation of 650m or 2151 ft. Undulating low to moderated relief rises to 840m or 2700 ft. Swampy lakes, intermittent creeks, stands of Spruce, Pine, Poplar, balsam and shrubs of willow and alder are throughout the property.

# **PHYSIOGRAPHY, CLIMATE & GLACIATION**

Taku Arm of Tagish Lake acts as one of the main drainage channels for the district. Two contrasting types of topography occur in the region; that of the Teslin Plateau (part of a larger physiographic region the Yukon Plateau) and that of the Tagish Highlands (part of the boundary ranges Physiographic region, and given character from the Coast Plutonic Complex). The Teslin Plateau is an extensively dissected and eroded plateau. Topography consists of irregularly distributed, rounded hills with variable elevations (local area with flat topped, uniform elevation). The valleys are wide, deep and steep walled, and typically U-shaped. The Tagish Highlands are rugged, consisting mainly of knife-like ridges, needle summits, and abruptly incising valleys where some snow and ice are seen throughout the entire year. The rivers and creeks generally open in May but may be as late as June. Warm summer weather is experienced for about four months, with June and July receiving almost continuous daylight. The mean daily temperature in July is no less than 14 degrees C. The month of July receives 10 to 13 days with measurable precipitation; mean annual precipitation is 60 cm. In January the mean daily temperature is -15 °C, with 14 to 17 days with measurable precipitation.

During the Pleistocene epoch the Tagish Highlands became extensively glaciated, while the upperland part of the Teslin Plateau was affected to a lesser extent.

# HISTORY AND PREVIOUS WORK

Activity in the area dates back to 1898 when White Pass Engineers made their way to the placer camps of Atlin and Dawson City. Many old shallow hand trenches are evident along the structure, but the operators are unknown, and no government records are available. Visible gold was discovered near the shore of Tagish Lake, which became the Engineer Mine in 1910. Operation of the Engineer Mine was from 1913 to 1952, which produced 18,058 oz of gold and 8,450 oz of silver from 17,157 tons milled. T.R. Bultman conducted a Ph.D., thesis on the geology and tectonic history of the Whitehorse Trough region (unpublished, 1979).

The BCDM Geological Survey Branch conducted a 4-year (1987-90) regional geological and geochemical program. The BCDM Sample #88mm5-3 taken from the Main zone outcrop returned 5.2 g/t Au and a hand sample contained visible gold in quartz flooded argillite breccia.

The Mass and Quantity claims were staked in 1988 by G.R.Thompson upon discovery of gold bearing quartz flooded argillite breccia on the east shore of Tagish Lake, 6 km north from the historic Engineer Mine. The Mass and Quantity claims were rolled into Golden Bee Minerals Inc., whom conducted geological mapping, trenchingrock chip sampling, soil geochemical surveys, and petrographic studies. The claims reverted back to G.R.Thompson in 1992 and since then he has completed control grid establishment, geological mapping, soil geochemical surveys, S.P. geophysical survey, hand trenching and rock chip sampling. Lab analysis including 30 element ICP, gold fire assay, infrared spectral analysis, SEM studies, petrography, XRD studies and a cyanide bottle roll test were conducted. The original Mass and Quantity claims were abandoned in 1997 and were relocated as the 025-claim group of 20 units.

This discovery outcrop became the main zone. The original claims were staked as the Mass and Quantity claims of 40 units. The prospecting and staking program costs were \$10,000.

# **PREVIOUS WORK**

#### Assessment Report: 19384 Work 1989 \$29,850

Title of Geological, Geochemical and Prospecting Surveys on the GB1 Claim Group Report Author: Strain, D.M, P.Eng.

During the summer of 1989 a 6-person crew was mobilized to the Main Zone.

Geological mapping, several hand trenches and rock chip-grab samples and soil samples were collected from the Main Zone and areas near the shore of Tagish Lake. Samples were submitted to Northern Analytical Laboratories in Whitehorse, Yukon.

| Work Done | Geochemical | Rock                  | 49 sample(s)                                 |
|-----------|-------------|-----------------------|----------------------------------------------|
|           |             | Elements Analyzed For | Gold, Silver, Copper, Lead, Zinc, Arsenic    |
|           |             | Silt                  | 8 sample(s)                                  |
|           |             | Soil                  | 82 sample(s)                                 |
|           |             | Elements Analyzed For | Gold, Silver, Arsenic, Copper, Lead, Zinc    |
|           | Geological  | Geological            | 12.0 ha; No. of maps: 1; Scale(s) : 1:500    |
|           | Physical    | Line/grid             | 2.3 km                                       |
|           |             | Trench                | 2 trench(es);15.0 m                          |
|           | Prospecting | Prospecting           | 2500.0 ha; No. of maps: 1; Scale(s) : 1:1000 |

# Assessment Report: 21508 Work 1990 \$ 15,548

Title of Report: Geological and Geochemical Assessment Report on the GB 1 Claim Group.

Thirty-two man-days were involved in rock chip-grab sampling and geological mapping

at a scale of 1: 10,000. Fifty-two rock samples were submitted to Eco Tech Laboratories

Ltd. in Kamloops, B.C. and 13 rock samples were submitted to Northern Analytical

Laboratories in Whitehorse, Yukon.

**General Work Categories** 

Geochemical, Geological

Work Done

| Geochemical | Rock                  | 65 sample(s)                                  |
|-------------|-----------------------|-----------------------------------------------|
|             | Elements Analyzed For | Multielement                                  |
| Geological  | Geological            | 1250.0 ha; No. of maps: 1; Scale(s) : 1:10000 |

# Assessment Report: 23599 work 1994 \$19,900

**Title of Report**: "Geological, Geochemical and Geophysical Assessment Report on the "025" Claim Group". All samples were submitted to Chemex Labs in Vancouver for analysis by 30 elements ICP and gold geochem.

#### Work Done

| Geochemical | Rock                  | 10 sample(s)                                       |
|-------------|-----------------------|----------------------------------------------------|
|             | Elements Analyzed For | Multielement                                       |
|             | Soil                  | 111 sample(s); No. of maps: 1; Scale(s) : 1:10 000 |
|             | Elements Analyzed For | Multielement                                       |
| Geological  | Geological            | 150.0 ha; No. of maps: 1; Scale(s) : 1:10 000      |
| Geophysical | Self potential        | 6.0 km                                             |
| Physical    | Line/grid             | 10.0 km                                            |
|             | Trench                | 1 trench(es);5.0 m                                 |

#### Assessment Report: 24645 work 1996 \$10, 020

Title of<br/>ReportGeological, Geochemical and Physical Assessment Report on the 025 Claim<br/>Group

Control grid was given the coordinates 500N 500E. A total grid of 200m was established. 27 soil samples were collected from the Bearox zone and 23 rock samples were collected from the Main zone and submitted to Eco-Tech laboratories Ltd. in Kamloops, and analyzed for gold geochem and 30 elements ICP. Trench # 96TR1 was established at 518N (501E to 504E), Trench # 96TR2 was established at 552N (500E to 505E), trench # 96TR3 was established at 603N (500E to 493E).

General Work Categories Work Done

#### Geochemical, Physical

| Geochemical | Rock                  | 23 sample(s); No. of maps: 1; Scale(s) : 1:250 |  |  |
|-------------|-----------------------|------------------------------------------------|--|--|
|             | Elements Analyzed For | Multielement                                   |  |  |
|             | Soil                  | 27 sample(s); No. of maps: 1; Scale(s) : 1:500 |  |  |
|             | Elements Analyzed For | Multielement                                   |  |  |
| Physical    | Trail                 | 0.1 km                                         |  |  |
|             | Trench                | 3 trench(es);7.0 m                             |  |  |

# Assessment Report: 25735 work 1997 \$6,698

**Title of Report** Geochemical Report on "O25" Claim Group

The 1997 program's objective was to follow up the 18600 ppb Au soil geochemical high from previous surveys by hand trenching and infill soil sampling of the Bearox Zone. XRD analysis was conducted on one of the samples.

All samples were submitted to Min-En Laboratories in Vancouver and analyzed for 30 element ICP plus gold geochemical with assays for samples returning >1000 ppb Au.

**General Work Categories** Work Done

Physical Geochemical

| nysicai, | Geoenenneur |  |
|----------|-------------|--|
|          |             |  |

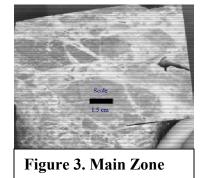
| Geochemical | Rock                  | 16 sample(s)                                    |
|-------------|-----------------------|-------------------------------------------------|
|             | Elements Analyzed For | Multielement                                    |
|             | Soil                  | 80 sample(s); No. of maps: 1; Scale(s) : 1:1000 |
|             | Elements Analyzed For | Multielement                                    |
| Physical    | Line/grid             | 0.5 km                                          |
|             | Trench                | 1 trench(es);14.0 m                             |

Relocation of the Mass & Quantity claims was conducted Aug.29-30, 1997. Twenty new claims were recorded as (Gold A – Gold T) along the 025 structure for a cost of \$3,000

#### **Assessment Work 2000 \$ 7,450**

Title of Report: Geochemical and Geological Assessment Report on the "025" Claim Group, Atlin Mining Division, NWBC

Twenty-two soil and seven rock samples were taken over a 5km strike. The rocks and soils were sent to ALS Chemex Labs in North Vancouver for preparation geochemical analysis. Ten rock hand samples numbered 801 - 810, were selected from samples collected on the 025 Main Zone from 1988-1997. The 10 hand samples were cut, polished and mounted as thin sections for petrographic, fluid inclusion and scanning electron microscope studies. The rock samples were analyzed by PIMA infrared spectroscopy and subjected to a HF-Sodium Nitrate test (K-feldspar staining). Soil geochemical data from pre-1998 (Bearox Zone) were used to determine correlation coefficients R<sup>2</sup> values for Au and pathfinder elements.


#### Assessment Work 2003 \$12,400

**Title of Report:** "Geochemical Assessment Report on the 025 Claim Group, Atlin Mining Division, Northwest British Columbia, Canada". 83 soil samples were collected within the Bearox Zone and submitted to Eco Tech Laboratory Ltd in Kamloops, BC.

| TABLE 2                                |           |         |      |           |      |
|----------------------------------------|-----------|---------|------|-----------|------|
| 025 Claim Group Expenditures 1988-2003 |           |         |      |           |      |
|                                        |           |         |      | Credits   | Fees |
| Original Staking / Pro                 | ospecting |         | 1988 | \$10,000  | 200  |
| Assessment work                        |           |         | 1989 | \$29,850  | 800  |
| Assessment work                        |           |         | 1990 | \$15, 548 | 400  |
| Assessment work                        |           |         | 1994 | \$19,900  | 800  |
| Assessment work                        |           |         | 1996 | \$10,020  | 800  |
| Assessment work                        |           |         | 1997 | \$6,698   | 400  |
| Claim relocation 025                   | group     |         | 1997 | \$3,000   | 100  |
| Assessment work                        |           |         | 2000 | \$7,450   | 200  |
| Assessment work                        |           |         | 2003 | \$12,400  | 600  |
|                                        |           |         |      | \$99,318  | 4300 |
|                                        |           |         |      |           |      |
|                                        | Total E   | xpendit | ures | \$103,618 |      |

The **Main Zone** strikes for 360m and has varied widths to 15m. Seventy-five rock samples returned an average value of 3 g/t Au and 57 g/t Ag. Grades to date range up to 8.7 g/t Au and 1374 g/t Ag from rock samples. A sample returned a gold equivalent of 0.88 oz/t. An arsenic soil anomaly is centered within the southern portion of the main Zone. A cyanide bottle roll test was conducted on samples from the Main Zone. The bottle roll test recovered 75% gold in 24 hrs. The following are results from hand trenching and chip sampling. Several drill targets have been identified.

- 89TR01- 5m @ 2.3g/t Au, 57 g/t Ag,
- 89TR02- 4m @ 3 g/t Au, 9g/t Ag,
- 96TR01- 4m @ 2.47g/t Au, 102g/t Ag,
- 96TR02- 3m @ 2.5 g/t Au, 11 g/t Ag,
- 96TR03- 6m @ 1.9g/tAu, 3.8g/t Ag.



The **Bearox Zone** displays a 700 m long by up to 100 m wide arsenic, gold soil anomaly. Gold from soils have returned up to 17 600 ppb Au, with a 15m > 1000 ppb Au from 5 m stations and 3 m of  $> 10\ 000$  ppb Au from 1m soil stations. Rock grab and chip samples have ranged up to 5 g/t Au.

Trenching results are as follows:

- 91TR02- 6m @ 2.5 g/t Au, 5.0 g/t Ag.
- 97TR01- 11m @ 1.3 g/t Au, 2.0 g/t Ag.
- Includes 2m @ 4.5 g/t and 3m @ 10g/t

Weak S.P. geophysical anomalies correspond with some of these geochemical results and several moderated S.P anomalies were identified outside the fault zone. XRD analysis has identified Samarium Telluride from pyritic-clay associated with anomalous gold. Several drill targets have been identified.

The **Barny Zone** displays anomalous Au, Ag, As, and Sb values for a strike of 1 km. Quartz breccia and carbonate stockwork zones are associated with high-level granodiorite porphyry intrusive, cross faults and overturned folds. The highest rock assay returned 1 g/t Au. Only limited work was conducted over this area.

The **Central zone** was found to anomalous gold and arsenic during the 2000 auger-sampling program. The extent of mineralization here is unknown, possibly striking greater than 500m.

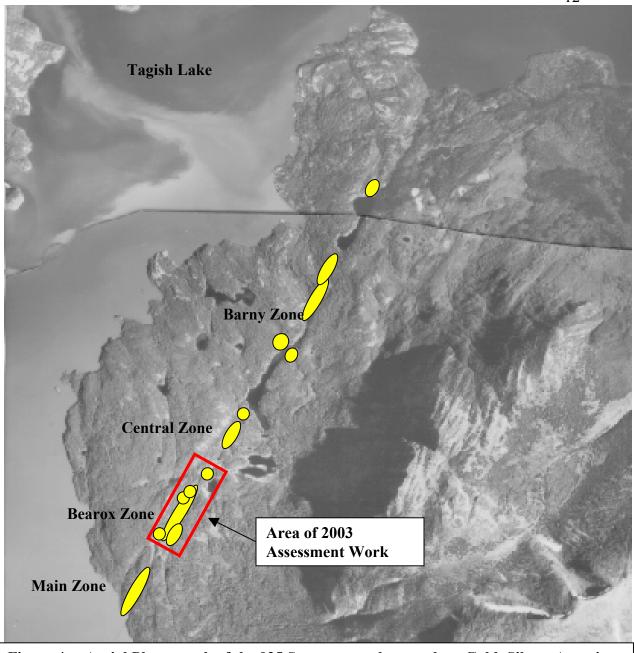
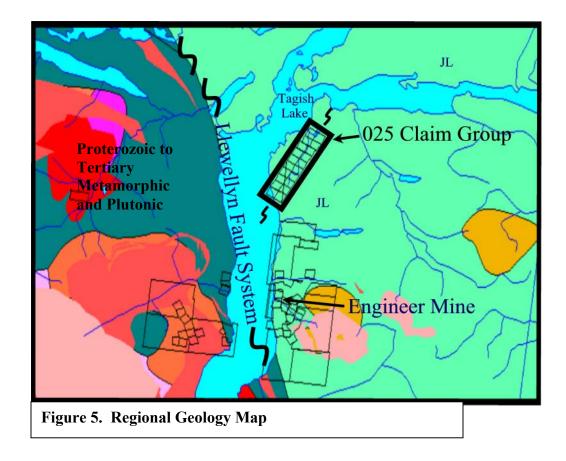
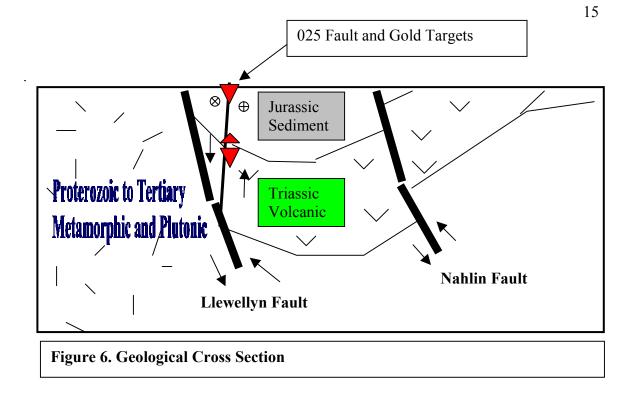



Figure 4. Aerial Photograph of the 025 Structure and anomalous Gold, Silver, Arsenic and Antimony zones.

#### **REGIONAL GEOLOGY**


The 025-claim group lies within the Whitehorse Trough of the Northwest trending Intermontane tectonic province. This area is bounded by two major long-lived, deepseated faults (Figure 5 & 6). The 025-claim group covers a splay fault off the subvertical Llewellyn Fault system. The Llewellyn Fault separates the Whitehorse Trough from the Coast Crystalline Complex (Nisling Assemblage) (Figure 5 & 6). The Nisling Assemblage is a displaced continental margin package, polydeformed to four phases of deformation (Mihalynuk and Mountjoy, 1989) of probable upper Proterozoic to Paleozoic in age. Protoliths are varied, mainly pelitic but also volcanic protoliths and carbonates (Mihalynuk and Mountjoy, 1989). The Cache Creek group is an oceanic assemblage comprised of basalts, massive carbonates and imbricated altered ultramafic slices, and mantel tectonites. In parts, the Whitehorse trough blankets the Nisling and Cache Creek terranes as an overlap. The oldest rocks in the Whitehorse Trough are K-spar megacrystic hornblende granodiorite, age constraints to 212-220 Ma, accompanied by hornblende and pyroxene leucogabbro. These rocks are overlain by a thick blanket of polymictic boulder conglomerate, with clasts of the 215 Ma K-spar megacrystic granodiorite in the conglomerate and ferric-pyroxene breccia and basalt with typical lithology of the Stuhini Group volcanic rocks (Mihalynuk and Mountjoy, 1989). The Whitehorse trough has under gone lateral shortening by some 45 percent (Mihalynuk et al., 1990). This has resulted in closed to open, symmetric to asymmetric folds with wave lengths ranging up to 10 km. Folding in the Laberge group is particularly well developed (Mihalynuk et al., 1990) (Figure 7).


The Stuhini Group forms a 3 km thick pile of pillow basalts, breccias, intercalated argillites and volcanic clastics. The upper Triassic Carbonates correlated with the Sinwa Formation, which sits on top of the Stuhini Group succession (Mihalynuk and Mountjoy, 1989). Unconformably overlying those in some places and structurally overlying them in most places are the rocks of the Laberge Group (Mihalynuk and Mountjoy, 1989).

The Laberge group rocks are dominated by feldspathic-graywacke, argillite and conglomerate of lower to middle Jurassic. The Laberge Group sediments began the early

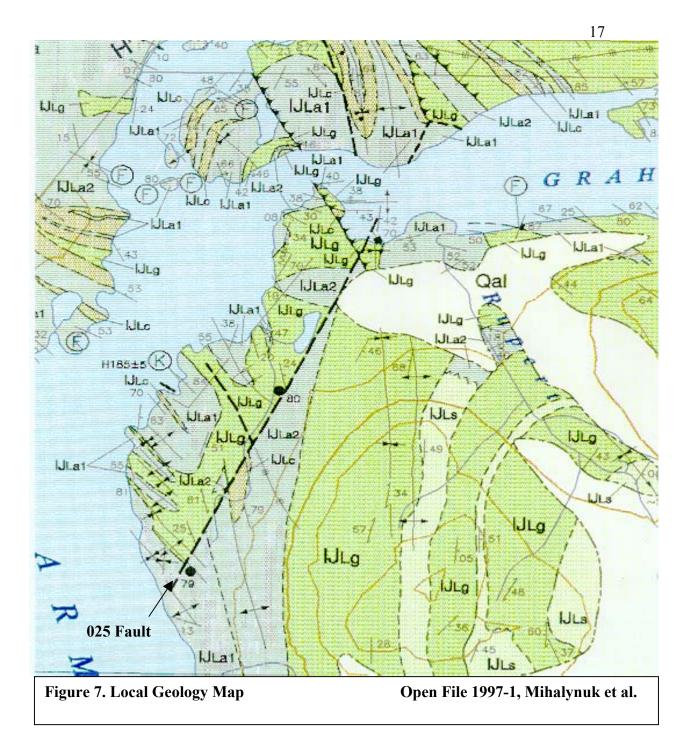
# **REGIONAL GEOLOGY**

depositional stages as evidence by intraformational angular unconformities associated with conglomerate in strata of probable Pliensbachian age (Mihalynuk et al, 1990). Slump folds are common on the hand sample scale to hillside. Later axial-surface cleavages bare no relations to these early-form slump-folds. Folds produced during this deformation have axial planer (or near Planer) surfaces that consistently trend northwest and most commonly dip steeply both east and west (Mihalynuk et al., 1990). Axial cleavages are well developed in argillites, but are rare in massive wackes. Major folds are up right, gentle to close, and gently plunging (Mihalynuk et al., 1990). Many of the units within the Laberge Group Sediments have limited facies-dependent distribution which results from their depositional environment, interpreted as one of coalescing subaqueous turbiditic fans (Bultman, 1979).





# LOCAL GEOLOGY


The 025-claim group geology is dominated by lower to middle Jurassic Laberge Group sediments, consisting of interbedded argillaceous siltstones, greywacke, siliciclastics and conglomerates. A chloritic hornblende granodiorite porphyry intrusive outcrop is located on the east side and footwall of the 025 structure. The main structure within the claim group is a 6 km long N025E trending sub-vertical west dipping normal fault. The 025 fault is splay off the Llewelyn fault system and has many cross faults trending north to northwest. The Laberge group rocks are underlain by Triassic Stuhini group volcanics. The contact between the Laberge and Stuhini group rocks is estimated at 500 - 800 m depth.

# LOCAL GEOLOGY

#### Legend to Figure 6, Geology

#### Lower Jurassic Laberge Group

- -IJL- Undivided wacke, argillite and siltstone.
- -IJLs- Siliclastic: > 100 m thick; indurated siltstones to quartz-rich lithic wackes; cmscale trough cross-stratification; well-layered; well-indurated; rusty weathering.
- -IJLa- Argillites undivided or mixed
- -IJLa1-Rhythmically bedded argillites; form successions 10-100 m thick; 2-5 cm beds, good normal grading; bioturbated tops and feeding trails especially prominent in < 10 cm calcareous beds; very sparse cobbles of various protoliths.</p>
- -IJLa2-Irregularly and thinly bedded argillites; as recessive sets between wacke beds; dark brown to black 1-30 mm; may be silty; rusty weathering.
- -IJLg- Greywacke; feldspar < lithic grains; very fine sand to granules; < 5 % mafic minerals, especially hornblende; calcareous with bulbous concretions m's long; beds massive or graded, cm's to 10 m+ thick; grey to green and orange weathering; resistant.
- -IJIc- Conglomerates; generally < 200 m thick. Clasts can include volcanic, sedimentary and intrusive rock types. Typically clast-supported with a coarse wacke matrix, or 1-30 % clasts floating in an argillite matrix. Martix-supported and intraformational conglomerates are also common.
- -IJLq- Quartz subarenites; sandstones and granule conglomerates comprised largely of quartz with lesser feldspar. Altered biotite flakes are common accessories.



# **STUHINI GROUP**

Within the southern portion of 104M8 map sheet a continuous section of the Stuhini group sediments and volcanic rocks display units that can be correlated for tens of kilometers. The entire package represents a transition from coarse terrigenous sediments to submarine mafic volcanics. As the volcanic piles built, they became more felsic and less voluminous. At the end of volcanism, epiclastic and reefal carbonate deposition covered and preserved the volcanic piles. The culmination of carbonate deposition marks the top of the Stuhini strata (Mihalynuk and Mountjoy, 1990).

#### **ALTERATION**

The dominant alteration within the main zone is phyllic (quartz-sericite-aspy-py), with K-feldspar, silicification, chalcedony and illite. Weak to moderately pervasive potassium alteration was determined from HF-Sodium cobalt nitrite staining. The infrared spectral analysis indicates the presence of illite and muscovite. The presence of illite indicates a temperature range of an estimated 150-250°C. Alteration is localized to the 025 fault and related structures. Framboidal pyrite suggests remobilization of sulphides.

# **STRUCTURE**

The 025° trending structure is a prominent 6 km long and up to 100 m wide, normal strike slip dip-slip fault, see Figures 4 - 7. Faulting within the 025-structure is complex with many cross-structures trending north to northwest and to a lesser extent northeast. Slicken-slides are common and highly polished rock surfaces are seen within the 025 structure. An overturned fold lies between two northwest trending vertical dipping faults, juxtaposed to the main 025-structure, which are evident on the geology and aerial maps seen in Figures 4 & 7 respectively. Folds are open to isoclinal with the axial plane of folds east of the 025-structure trending northwest with a steep southwest dip, while the axial plane of folds west of the 025-structure trend north to west-northwest. A shallow northeast dipping thrust fault is located near the north end of the 025-structure.

#### **EXPLORATION**

The objective of this year's assessment work was to conduct a soil geochemical survey over the Central zone and infill sampling of the Bearox zone. Geologist's Gary R. Thompson and Julian Karas drove from Calgary Alberta on the  $18^{th}$  of August. The last leg of the trip was an hour jet boat trip to the 025-property on August  $21^{st}$  2003. The fieldwork consisted of 2 geologists of 4 days, August  $21 - 24^{th}$ , 2003. The remaining return trip took until the  $28^{th}$  as a result of breakdowns.

A two-man motorized hand auger was used to sample through the overburden within the fault zones. The auger sampling was a slow and difficult process returning few samples. Soils were collected for 2 days using the auger and 2 days with matok and shovel. Most of the soil samples were collected using the matok and shovel. Due to difficulties encountered with the auger, the central portion of the property was not sampled during this program. Infill grid lies were established within the Bearox Zone. Grid lines trend 115° / 295° from the 025° trending-5000E base line. Seven short grid lines were established for a total of 440m. Soil sample stations were set at 5m apart and marked using tyvex tags tied with blue and orange flagging.

A total of 83 soil samples were collected from the Bearox Zone, within 025-claim group. The samples were submitted to Eco Tech Laboratory Ltd in Kamloops on August 28<sup>th</sup> 2003. The samples were dried and sieved to –80 mesh. Eco Tech conducted 28 element ICP analysis and 30-gram fire assay for gold, with Atomic Adsorption Finish on all 83 samples submitted. See Appendix 2 for analytical procedures.

Background values for gold and arsenic were determined from the British Columbia Department of Mines Geological Survey regional program in the Tagish Lake area (Mihalynuk et al. 1988). Anomalous values were set to be > 19 ppb, > 117 ppm, >30 ppm and > 0.4 ppm for Au, As, Sb and Ag respectively. Duplicate analysis were conducted on samples 2551, 2560, 2569, 2578, 2586, 2595, 2654, 2663 and 2671 returning an average gold value of 12.5, 30, 9000, 42.5, 4552.5, 20, 27.5, 17.5, 72.5 ppb respectively. Three quality control samples (Geo 03) were used, which assayed 135 ppb Au.

Samples are catalogued and dried. Soils are prepared by sieving through an 80mesh screen to obtain a minus 80-mesh fraction. Samples unable to produce adequate minus 80-mesh material are screened at a coarser fraction. The Gold assay method used a sample weighed to 30 grams and fused along with proper fluxing materials. The bead is digested in aqua regia and analyzed on an atomic absorption instrument. Over-range values for rocks are re-analyzed using gold assay methods. The ICP method used a 0.5 gram sample is digested with 3ml of a 3:1:2 (HCl: HN0<sub>3</sub>:H<sub>2</sub>0), which contains beryllium which acts as an internal standard for 90 minutes in a water bath at 95°C. The sample is then diluted to 10ml with water. The sample is analyzed on a Jarrell Ash ICP unit.

The correlation coefficients were obtained using excel  $R^2$  plots with n = 83. Positive correlations exist between Au/As (0.79), Au/Ag (0.71), Au/Sb (0.78) and Ag/As (0.69). The strongest correlation exists between As/Sb (0.81).

Table 3. Correlation coefficient  $R^2$  values n = 83 samples.

|          | Au (ppb) | Ag (ppm) | As (ppm) | Sb (ppm) |
|----------|----------|----------|----------|----------|
| Au (ppb) | 1        | 0.71     | 0.79     | 0.78     |
| Ag (ppm) | 0.71     | 1        | 0.69     | 0.59     |
| As (ppm) | 0.79     | 0.69     | 1        | 0.81     |
| Sb (ppm) | 0.78     | 0.59     | 0.81     | 1        |
|          |          |          |          |          |

Soil development on the property is relatively poor. Four types of soils on the property are 1) rocky talus fines, rich in organics, poor soil; 2) clay-grit-gravel, poor soil; 3) tan coloured silt, moderate soil, low residual with possible glacial origin; 4) rusty-orange-red, moderate-good soil with abundant altered sediments and quartz breccia, high residual.

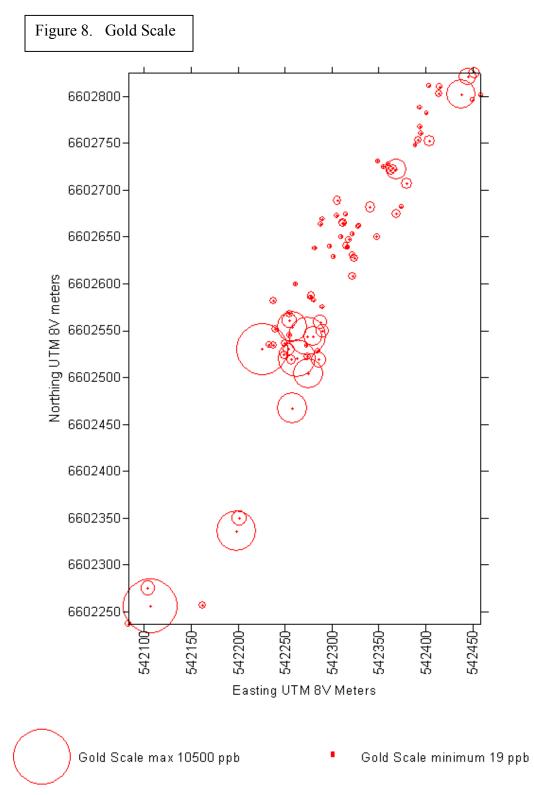
Sixty-nine of the 83 soil samples collected from the Bearox Zone this year were anomalous in gold >19 ppb (Figure 8), ten were >1000 ppb (1g/t) and three were > 5000 ppb (5g/t). Seventy-four of the 83 soil samples analysed were anomalous in arsenic >117 ppm (Figure 9). Six samples returned > 1% or 10000 ppm arsenic. The highest gold, silver and antimony values are 10,450 ppb, 11.6 ppm and 450 ppm respectively. The average gold value from the 83 soil samples taken this year within the Bearox zone is 650 ppb (Table 4).

Soil samples, which returned highly anomalous values, contained rusty-redorange altered sediments and quartz fragments (Table 4 & 5). The tan colored soils were suspect of glacial contamination or may be sourced from the conglomerate within the Laberge Group.

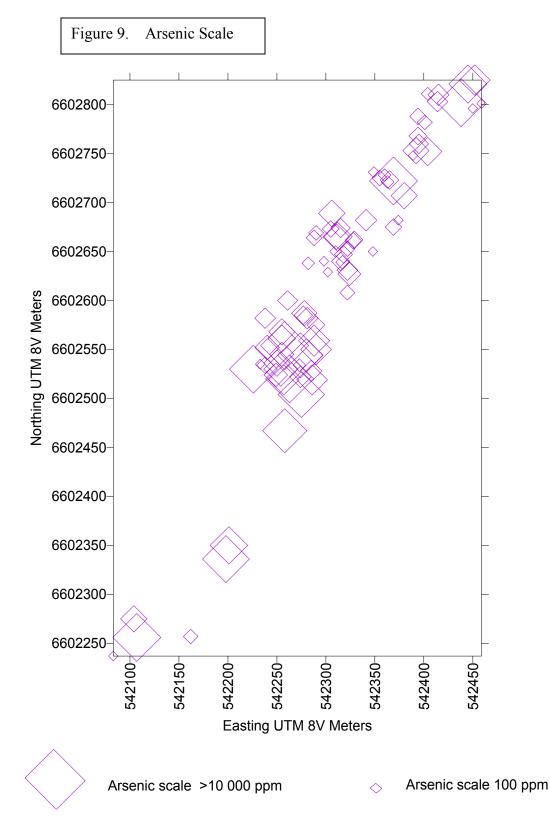
Correlation coefficient  $R^2$  values provide us with useful gold pathfinder elements. The strong positive correlation between gold/arsenic and gold/antimony indicates that arsenic and antimony may be used as pathfinder elements to gold. In the gold and arsenic plots seen in Figures 8 & 9 below arsenic is dominant. Arsenic is highly elevated while gold values are weak-moderate north of 6602600N, this may suggest gold grades increase with depth.

| Table               | 4        |         |              |           |          |          |          |          |
|---------------------|----------|---------|--------------|-----------|----------|----------|----------|----------|
| 025 Assessment 2003 |          |         |              |           |          |          |          |          |
| Soil Survey Summary |          |         |              |           |          |          |          |          |
| UTM 8V              |          |         |              |           |          |          |          |          |
| Lab#                | Northing | Easting | Grid North   | Grid East | Au (ppb) | Ag (ppm) | As (ppm) | Sb (ppm) |
| E02551              | 6602801  | 542459  | 5675         | 5025      | 10       | 0.3      | 20       | <5       |
| E02552              | 6602682  | 542374  | 5450         | 5030      | 5        | 3.9      | 10       | <5       |
| E02553              | 6602675  | 542369  | 5550         | 5020      | 115      | 0.5      | 420      | 10       |
| E02554              | 6602752  | 542404  | 5625         | 5020      | 190      | 2.1      | 2475     | 80       |
| E02555              | 6602707  | 542380  | 5525         | 5015      | 235      | 0.9      | 1965     | 55       |
| E02556              | 6602796  | 542450  | 5575         | 5020      | 15       | 0.2      | 80       | 5        |
| E02557              | 6602802  | 542438  | 5675         | 5000      | 2410     | 2.2      | >10000   | 280      |
| E02558              | 6602825  | 542452  | 5675         | 5010      | 220      | 1.3      | 3120     | 140      |
| E02559              | 6602821  | 542445  | 5675         | 5015      | 710      | 2.4      | 5480     | 165      |
| E02560              | 6602237  | 542083  | 4950         | 4940      | 30       | 0.7      | 80       | 10       |
| E02561              | 6602257  | 542162  | 5000         | 5000      | 60       | 0.3      | 270      | 60       |
| E02562              | 6602256  | 542107  | 4970         | 4960      | 10450    | 7.3      | >10000   | 425      |
| E02563              | 6602275  | 542104  | 4990         | 4940      | 445      | 1.0      | 2020     | 40       |
| E02564              | 6602336  | 542198  | 5123         | 4990      | 5100     | 11.6     | 9425     | 105      |
| E02565              | 6602350  | 542201  | 5235         | 5010      | 450      | 2.3      | 5350     | 110      |
| E02566              | 6602467  | 542258  | 5235         | 5000      | 2790     | 2.2      | 8230     | 75       |
| E02567              | 6602554  | 542258  | 5235         | 4995      | 2780     | 4.5      | >10000   | 130      |
| E02568              | 6602535  | 542233  | 5300         | 4945      | 30       | 0.5      | 55       | <5       |
| E02569              | 6602530  | 542226  | 5300         | 4950      | 8900     | 3.3      | >10000   | 205      |
| E02570              | 6602534  | 542238  | 5300         | 4955      | 50       | 0.5      | 465      | 15       |
| E02571              | 6602530  | 542254  | 5300         | 4960      | 250      | 1.9      | 4105     | 65       |
| E02572              | 6602524  | 542249  | 5300         | 4965      | 70       | 1.8      | 1385     | 35       |
| E02573              | 6602519  | 542257  | 5300         | 4970      | 135      | 1.8      | 3015     | 45       |
| E02574              | 6602520  | 542263  | 5300         | 4975      | 4375     | 1.9      | >10000   | 160      |
| E02575              | 6602522  | 542274  | 5300         | 4980      | 55       | 0.6      | 1100     | 15       |
| E02576              | 6602504  | 542275  | 5300         | 4985      | 2580     | 2.3      | 9255     | 95       |
| E02577              | 6602519  | 542286  | 5300         | 4990      | 535      | 1.5      | 3085     | 45       |
| E02578              | 6602552  | 542240  | 5320         | 4950      | 55       | 1.0      | 1560     | 30       |
| E02579              | 6602561  | 542255  | 5320         | 4955      | 490      | 0.8      | 2255     | 30       |
| E02580              | 6602536  | 542250  | 5320         | 4960      | 45       | 0.9      | 1945     | 25       |
| E02581              | 6602545  | 542255  | 5320         | 4965      | 30       | 0.3      | 1540     | 30       |
| E02582              | 6602568  | 542255  | 5320         | 4970      | 45       | 0.4      | 1935     | 25       |
| E02583              | 6602582  | 542238  | 5320         | 4975      | 55       | 0.4      | 945      | 15       |
| E02583              | 6602534  | 542273  | 5320         | 4980      | 10       | 0.2      | 160      | 5        |
| E02584<br>E02585    | 6602528  | 542275  | 5320         | 4985      | 25       | 0.4      | 1085     | 25       |
| E02586              | 6602544  | 542274  | 5320         | 4990      | 4605     | 5.9      | 8665     | 70       |
| E02580<br>E02587    | 6602544  | 542280  | 5320         | 4990      | 945      | 1.4      | 3800     | 50       |
| E02588              | 6602550  | 542280  | 5320         | 5000      | 310      | 1.4      | 3110     | 40       |
| E02588<br>E02589    | 6602559  | 542290  | 5350         | 4990      | 390      | 0.8      | 3210     | 40<br>55 |
| E02590              | 6602600  | 542261  | 5360         | 4955      | 15       | 2.2      | 835      | 10       |
| E02590              | 6602587  | 542278  | 5360         | 4970      | 80       | 0.5      | 1800     | 25       |
| E02591              | 6602582  | 542278  | 5360         | 4975      | 20       | 1.7      | 1130     | 45       |
| E02592<br>E02593    | 6602585  | 542277  | 5360         | 4975      | 20       | 0.6      | 610      | 45<br>10 |
| E02593              | 6602575  | 542290  | 5360         | 4985      | 20       | 0.0      | 525      | 10       |
| E02594<br>E02595    | 6602669  | 542290  | 5300         | 4985      | 20       | 0.4      | 290      | 10       |
| E02595              | 6602664  | 542290  | 5425         | 4955      | 20<br>25 | 0.3      | 375      | 10       |
| E02590<br>E02597    | 6602629  | 542200  | 5425         | 4955      | 25<br>15 | 0.4      | 375      | -15<br>  |
| E02597<br>E02598    | 6602629  |         | 5425<br>5425 | 4960      | 15       | 0.3      | 40       | <5<br>5  |
|                     |          | 542298  |              |           |          |          |          |          |
| E02599              | 6602638  | 542282  | 5425         | 4970      | 20       | 0.3      | 160      | 15       |

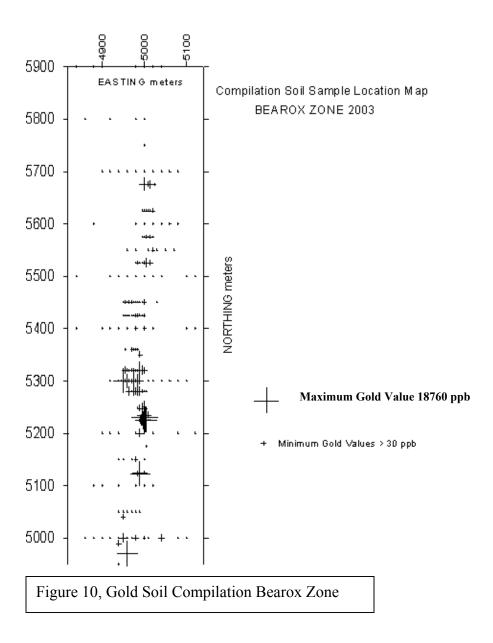
|        |          |         |            |           |          |          |          | 23       |
|--------|----------|---------|------------|-----------|----------|----------|----------|----------|
|        | UTM 8V   |         |            |           |          |          |          |          |
| Lab#   | Northing | Easting | Grid North | Grid East | Au (ppb) | Ag (ppm) | As (ppm) | Sb (ppm) |
| E02600 | 6602639  | 542317  | 5425       | 4975      | 20       | 0.4      | 205      | 20       |
| E02651 | 6602640  | 542315  | 5425       | 4980      | 45       | 0.3      | 605      | 35       |
| E02652 | 6602627  | 542324  | 5425       | 4985      | 65       | 0.6      | 1340     | 25       |
| E02653 | 6602631  | 542322  | 5425       | 4990      | 35       | 0.6      | 965      | 20       |
| E02654 | 6602647  | 542318  | 5425       | 4995      | 30       | 0.6      | 555      | 5        |
| E02655 | 6602608  | 542322  | 5425       | 5000      | 60       | 0.4      | 305      | <5       |
| E02656 | 6602674  | 542315  | 5450       | 4950      | 20       | 0.5      | 745      | 30       |
| E02657 | 6602689  | 542306  | 5450       | 4955      | 100      | 1.2      | 2025     | 50       |
| E02658 | 6602673  | 542305  | 5450       | 4960      | 25       | 0.4      | 455      | 15       |
| E02659 | 6602665  | 542311  | 5450       | 4965      | 60       | 0.7      | 1805     | 40       |
| E02660 | 6602665  | 542312  | 5450       | 4970      | 90       | 1.3      | 2750     | 85       |
| E02661 | 6602650  | 542310  | 5450       | 4975      | 20       | 0.7      | 135      | 10       |
| E02662 | 6602662  | 542329  | 5450       | 4980      | 15       | 0.8      | 510      | 15       |
| E02663 | 6602661  | 542328  | 5450       | 4985      | 20       | 0.5      | 400      | 5        |
| E02664 | 6602653  | 542322  | 5450       | 4990      | 20       | 0.7      | 320      | 10       |
| E02665 | 6602650  | 542348  | 5450       | 4995      | 30       | 0.4      | 90       | <5       |
| E02666 | 6602682  | 542341  | 5450       | 5000      | 190      | 4.7      | 1035     | 45       |
| E02667 | 6602731  | 542349  | 5525       | 4980      | 15       | 0.3      | 115      | 20       |
| E02668 | 6602721  | 542363  | 5525       | 4985      | 80       | 0.5      | 170      | 10       |
| E02669 | 6602725  | 542355  | 5525       | 4990      | 15       | 0.5      | 325      | <5       |
| E02670 | 6602728  | 542360  | 5525       | 4995      | 15       | 0.3      | 160      | <5       |
| E02671 | 6602723  | 542365  | 5525       | 5000      | 70       | 0.7      | 640      | 45       |
| E02672 | 6602722  | 542369  | 5525       | 5005      | 1065     | 2.6      | >10000   | 205      |
| E02673 | 6602748  | 542389  | 5575       | 4995      | 10       | 0.5      | 80       | 25       |
| E02674 | 6602768  | 542394  | 5575       | 5000      | 25       | 0.5      | 585      | 30       |
| E02675 | 6602760  | 542395  | 5575       | 5010      | 25       | 1.0      | 740      | 25       |
| E02676 | 6602753  | 542392  | 5575       | 5015      | 55       | 1.2      | 1940     | 90       |
| E02677 | 6602788  | 542394  | 5625       | 4995      | 20       | 0.3      | 400      | 15       |
| E02678 | 6602782  | 542401  | 5625       | 5000      | 15       | 0.4      | 300      | 15       |
| E02679 | 6602811  | 542404  | 5625       | 5005      | 5        | 0.6      | 180      | 10       |
| E02680 | 6602803  | 542414  | 5625       | 5010      | 55       | 2.1      | 920      | 30       |
| E02681 | 6602810  | 542415  | 5625       | 5015      | 40       | 0.6      | 1020     | 35       |
| E02682 |          |         | 5400       | 5000      | 75       | 0.9      | 690      | 15       |
| E02683 |          |         | 5575       | 5005      | 75       | 0.6      | 1780     | 35       |


# 025 Assessment 2003

Soil Survey Summary

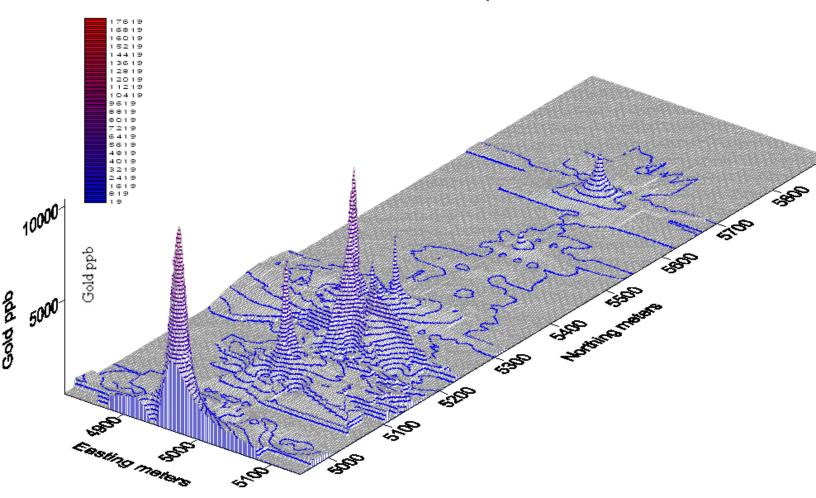

|                  | UTM 8V   | ,       |                                                                                                   |
|------------------|----------|---------|---------------------------------------------------------------------------------------------------|
| Lab#             | Northing | Easting | Description                                                                                       |
| E02551           | 6602801  | 542459  | dark brown, 0.30m depth, high% residual, angular fragments of altered sediment                    |
| E02552           | 6602682  | 542374  | tan brown, 0.3m depth, angular seds, possible glacial till                                        |
| E02553           | 6602675  | 542369  | light borwn, 1.5m depth, clay rich hardpan, pbbles size sediment and quartz                       |
| E02554           | 6602752  | 542404  | redish-dark brown, 0.4m depth, rocky soil, 20% angular sediment fragments                         |
| E02555           | 6602707  | 542380  | gray-brown, 0.5m depth, angular fragments of sediment and quartz, old trench                      |
| E02556           | 6602796  | 542450  | light rusty-brown, 0.5m depth, pebble sized altered sediment fragments                            |
| E02557           | 6602802  | 542438  | dark red-brown, 0.2m depth, talus fines, quartz breccia and altered sediments                     |
| E02558           | 6602825  | 542452  | redish-brown, 0.4m depth, abundant altered sediment, minor quartz fragments                       |
| E02559           | 6602821  | 542445  | dark brown, 0.30m depth, high% residual, talus fines, angular fragments                           |
| E02560           | 6602237  | 542083  | tan-brown, 0.4m depth, sandy, abundant sediment fragments pebble size                             |
| E02561           | 6602257  | 542162  | gray-blue clay, 2.4m depth auger sample, minor coarse sand-grit, rare shell fragments             |
| E02562           | 6602256  | 542107  | rusty-red-brown, 0.4m depth, abundant sediment and quartz fragments, weak soil                    |
| E02563           | 6602275  | 542104  | med-dark brown, 0.5m depth, abundant sed fragments, minor qtz fragments                           |
| E02564           | 6602336  | 542198  | rusty-brown, 1.5m depth, coarse sand sized fragments, old trench site                             |
| E02565           | 6602350  | 542201  | med-dark brown, 0.5m depth, abundant sed fragments, minor qtz fragments                           |
| E02566           | 6602467  | 542258  | rusty-red-brown, 0.3m depth, 10% angular rock fragments, minor quartz                             |
| E02567           | 6602554  | 542258  | brown, 0.5m depth, rock talus fines, altered sediments                                            |
| E02568           | 6602535  | 542233  | light tan, 0.4m depth, weak soil development, angular sediment fragments                          |
| E02569           | 6602530  | 542226  | red-brown, 0.2m depth, moderate soil development, altered seds + quartz fragments                 |
| E02570           | 6602534  | 542238  | tan-brown, 0.5m depth, glacial or conglomerate fragments suspect                                  |
| E02571           | 6602530  | 542254  | light-brown, 0.2m depth, rocky-poor soil, rubble                                                  |
| E02572           | 6602524  | 542249  | red-brown, 0.3m depth, poor soil-rocky, talus fines, high organics, high residual                 |
| E02573           | 6602519  | 542257  | red-brown, 0.3m depth, moderate soil, abundant altered seds and quartz breccia                    |
| E02574           | 6602520  | 542263  | rusty-red-brown, 0.3m depth, highly altered seds and quartz fragments                             |
| E02575           | 6602522  | 542274  | rusty-red-brown, rocky soil, abundant quartz breccia & altered seds                               |
| E02576           | 6602504  | 542275  | redish-brown, 0.2m depth, rubble altered seds, minor quartz, high residual                        |
| E02577           | 6602519  | 542286  | redish-brown, 0.2m depth, rubble altered seds, minor quartz, high residual                        |
| E02578           | 6602552  | 542240  | red-brown, 0.4m depth, moderate soil, rocky-altered sediments                                     |
| E02579           | 6602561  | 542255  | red-brown, 0.3m depth, high residual, abundant quartz fragments & altered seds                    |
| E02580           | 6602536  | 542250  | reddish-brown, 0.3m depth, moderate soil, high organics, angular altered seds, minor qtz          |
| E02581           | 6602545  | 542255  | light brown, 0.3m depth, fine sandy suspect glacial material                                      |
| E02582           | 6602568  | 542255  | reddish-brown, 0.3m depth, high organics, altered seds & rounded cobbly fragments                 |
| E02583           | 6602582  | 542238  | gray-brown, 0.4m depth, gravel, suspect glacial till or altered conglomerate                      |
| E02584           | 6602534  | 542273  | tan brown, 0.3m depth, angular seds, possible glacial till                                        |
| E02585           | 6602528  | 542285  | dark rusty red-brown, 0.2m depth, rocky, poor soil, altered seds, limonite,                       |
| E02586           | 6602544  | 542274  | rusty red-brown, 0.2m depth, highly altered seds, sheared, quartz breccia frags, old trench       |
| E02587           | 6602544  | 542280  | medium brown, 0.3m depth, poor soil, rocky, high organics, conglomerate fragments                 |
| E02588           | 6602550  | 542290  | dark red-brown, 0.3m depth, rocky soil, high organic & altered seds with quartz stringers         |
| E02589           | 6602559  | 542288  | tan-gray, 1.5m depth, clay rich sandy-grit with small rock fragments                              |
| E02590           | 6602600  | 542261  | medium brown, 0.3m depth, poor soil, rocky, high organics, above outcrop of conglomerate          |
| E02591           | 6602587  | 542278  | reddish-brown, 0.5m depth, extremely rocky, high residual, altered frags w/ vuggy qtz vein        |
| E02592           | 6602582  | 542281  | reddish-brown, 0.3m depth, rocky, high organics, talus fines                                      |
| E02593           | 6602585  | 542277  | pale brown to tan, 0.4m depth, fine material, glacial?, below outcrop, argillite w/ qtz stringers |
| E02594           | 6602575  | 542290  | light brown, 0.4m depth, moderate soil, some rounded cobbles, suspect glacial                     |
| E02595           | 6602669  | 542290  | reddish-brown, 0.4m depth, rocky, high organics, 15m North of conglomerate outcrop                |
| E02595           | 6602664  | 542288  | reddish-brown, 0.3m depth, poor soils, high organics, talus fines, suspect glacial                |
| E02590           | 6602629  | 542302  | reddish-brown, 0.2m depth, rocky, poor soil, angular seds with quartz veinlets                    |
| E02598           | 6602640  | 542298  | reddish-brown, 0.2m depth, talus fines, very rocky, poor soil                                     |
| E02598<br>E02599 | 6602638  | 542282  | tan brown, 0.2m depth, poor soil, rocky, high organics, small sediment fragments                  |
| L02033           | 0002000  | J72202  | tan brown, o.zm doptn, poor boil, rooky, nigh organica, small sediment nagmenta                   |

|        |          |         | 25                                                                                             |
|--------|----------|---------|------------------------------------------------------------------------------------------------|
| Lab#   | Northing | Easting | Description                                                                                    |
| E02600 | 6602639  | 542317  | medium brown, 0.3m depth, extremely rocky, <1% disseminated arsenopyrite, high residual        |
| E02651 | 6602640  | 542315  | orange brown, 1.0m depth, rocky, talus fines, breccia fragments & altered seds with slicks     |
| E02652 | 6602627  | 542324  | medium brown, 0.5m depth, moderate soil, solisifed sediments, rocky                            |
| E02653 | 6602631  | 542322  | light orange brown, 0.4m depth, v rocky, sediment frags w/ tension gashes filled w/ qtz        |
| E02654 | 6602647  | 542318  | tan brown, 0.3m depth, rocky, talus fines, angular clasps of fine grain porphyry               |
| E02655 | 6602608  | 542322  | tan brown, 0.2m depth, gravel to sandy, possible glacial                                       |
| E02656 | 6602674  | 542315  | medium brown, 0.5m depth, poor soil, high organics, talus fines                                |
| E02657 | 6602689  | 542306  | red-brown, 0.4m depth, rusty altered frags, high residual & shearing on sed frags              |
| E02658 | 6602673  | 542305  | tan brown, 0.5m depth, silty sandy, possible glacial contamination                             |
| E02659 | 6602665  | 542311  | reddish-brown, 0.5m depth, rocky, minor altered seds, possible glacial contamination           |
| E02660 | 6602665  | 542312  | gray-brown, 0.3m depth, extremely rocky, talus fines                                           |
| E02661 | 6602650  | 542310  | medium brown, 0.3m depth, rocky, poor soils, high organics, talus fines, highly altered seds   |
| E02662 | 6602662  | 542329  | medium brown, 0.2m depth, talus fines, high organics, rocky & minor altered seds               |
| E02663 | 6602661  | 542328  | tan brown, 0.3m depth, moderate soil, rocky, minor altered seds                                |
| E02664 | 6602653  | 542322  | reddish-brown to tan, 0.2m depth, moderate soil & rocky seds                                   |
| E02665 | 6602650  | 542348  | light gray, 0.6m depth, rocky, angular altered seds                                            |
| E02666 | 6602682  | 542341  | red-brown, 0.5m depth, high residual, altered seds with slicks & breccia frags & qtz stringers |
| E02667 | 6602731  | 542349  | light brown, 0.2m depth, rocky, high organics, talus fines, poor soil                          |
| E02668 | 6602721  | 542363  | tan brown, 0.2m depth, high organics, rocky                                                    |
| E02669 | 6602725  | 542355  | tan brown, 0.4m depth, weak soil development                                                   |
| E02670 | 6602728  | 542360  | tan brown, 0.3m depth, very rocky, high organics, poor soil                                    |
| E02671 | 6602723  | 542365  | med-brown, 0.3m depth, talus fines, rock poor soil, high organics                              |
| E02672 | 6602722  | 542369  | dark red brown, 0.3m depth, slight altered sediment fragments, rocky poor soil                 |
| E02673 | 6602748  | 542389  | light brown, 0.3m depth, very rocky, talus fines, sediment, poor soil development              |
| E02674 | 6602768  | 542394  | brown, 0.3m depth, very rocky talus fines, sediments, poor soil development                    |
| E02675 | 6602760  | 542395  | redish brown, 0.2m depth, very rocky of sediments, high organics, poor soil dev                |
| E02676 | 6602753  | 542392  | redish brown, 0.2m depth, talus fines of sediments, poor soil development                      |
| E02677 | 6602788  | 542394  | tan-brown, 0.3m depth, rocky, moderate soil development                                        |
| E02678 | 6602782  | 542401  | med-light brown, 0.40m depth, rocky-high organics, weakly altered sediments                    |
| E02679 | 6602811  | 542404  | redish-brown, 0.3m depth, rocky-moderate soil development                                      |
| E02680 | 6602803  | 542414  | medium brown, 0.3m depth, rocky talus fines, poor soil development                             |
| E02681 | 6602810  | 542415  | medium brown, 0.3m depth, rocky talus fines, poor soil development                             |
| E02682 |          |         | med-brown, 0.3m depth, talus fines, rock poor soil, high organics                              |
| E02683 |          |         | med-brown, 0.3m depth, talus fines, rock poor soil, high organics                              |


Gold and Arsenic scale plots were constructed using Surfer software for the 83 soil samples, Figures 8 and 9 respectively. The UTM coordinates were obtained using a handheld Garmin 12 GPS unit. The geochemical results are plotted as the large symbol representing high values and small symbols representing low values. The most significant gold results are the cluster of geochemical highs located at 6602550N and 0542275E seen in Figure 8 and 9. This area corresponds to grid 5300N (4950-5000E). Both the gold and arsenic plots show that the mineralization is trending parallel to the 025 structure.

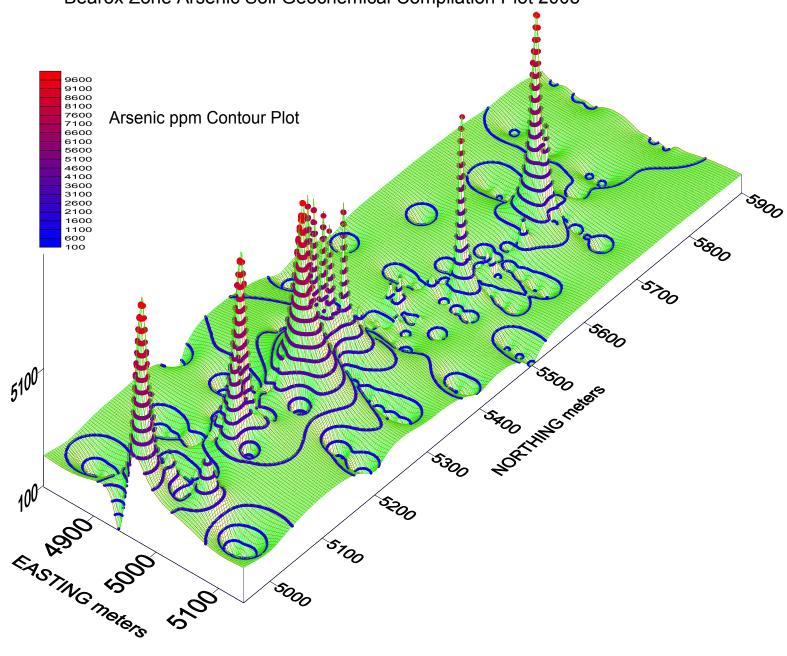


2003 Assessment 025 Claim Group BEAROX ZONE Soil Gold Results

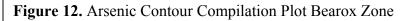



# 2003 Assessment Bearox Zone Arsenic Soil Results




Compilation gold soil scale-plot using Surfer software is plotted from 282 samples (Figure 10). The size of the cross represents the scale of the gold value. The maximum value is 18760 ppb while the low was set at >30ppb Au. A detailed version of this plot is seen in the Auto-CAD drawing in Figure 14 (6 pages). An anomaly is visible in Figure 10 from 4970N to 5680N near 5000E.

Gold and Arsenic soil contour plots were constructed using Surfer software for the Bearox Zone, Figures 11 and 12 respectively. These plots were compiled from 283 samples, taken from 1994-2003. The contour data was treated as inverse distance to a power. Minimum values for gold and arsenic were set at 19 ppb and 100 ppm respectively. Several geochemical peaks are evident along the 5000E base line. The Gold plot (Figure 11) displays a cluster of peaks from 4950N to 5350N (400m) and two weakmoderate peaks at 5520 and 5700N. The Arsenic plot (Figure 12) shows peaks from 4950N to 5400N (450m) and moderate peaks at 5550N and 5700N.



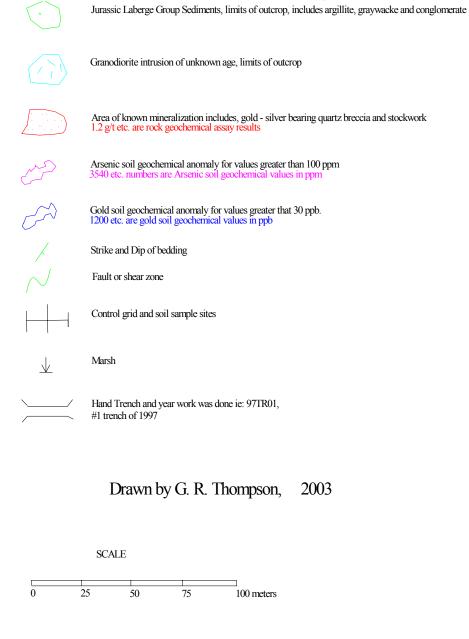

**BEAROX Zone GOLD Soil Geochemical Compilation Contour Plot 2003** 

Figure 11. Gold Contour Bearox Zone Compilation Plot

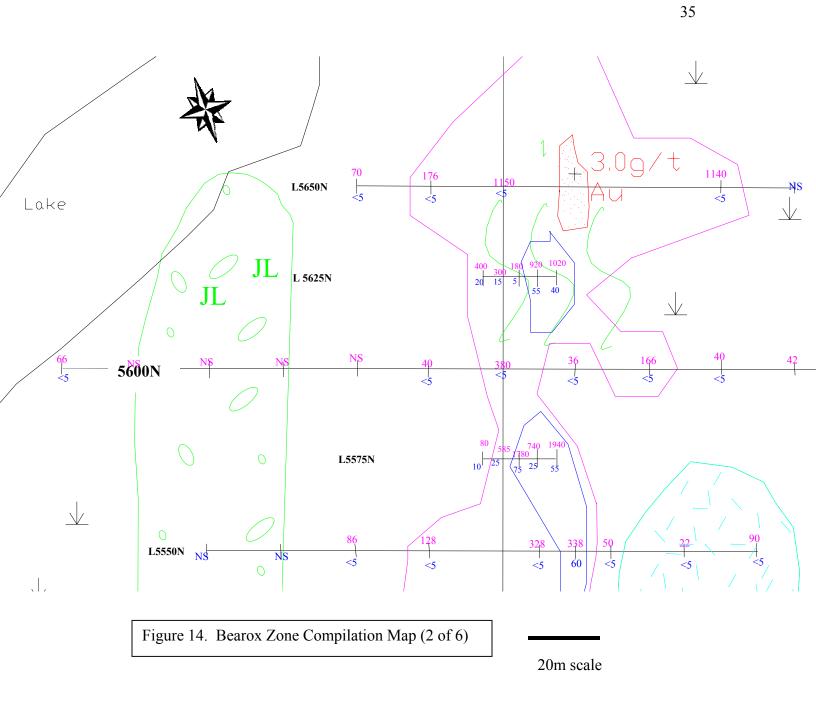


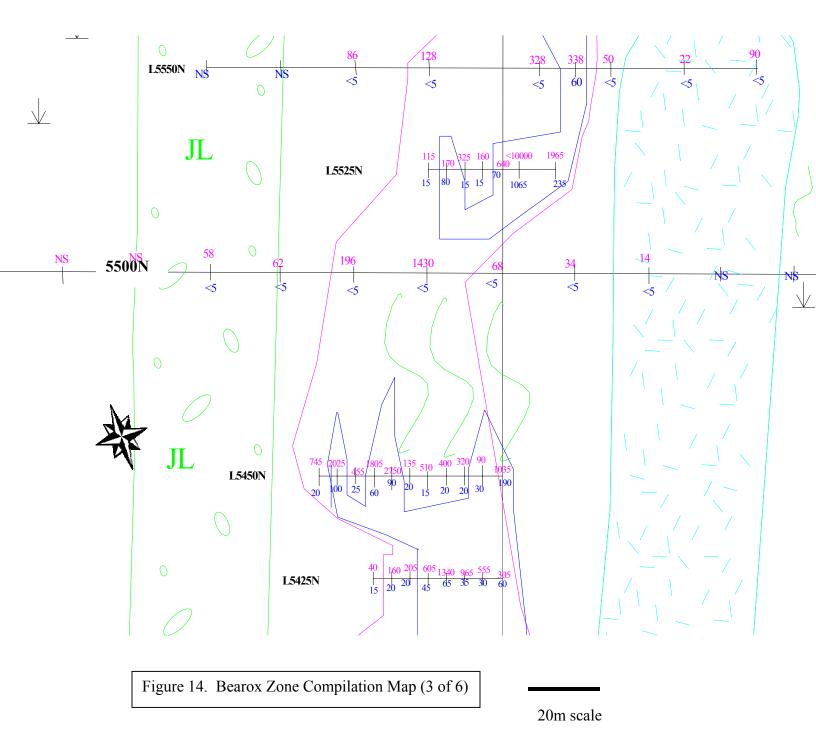
Bearox Zone Arsenic Soil Geochemical Compilation Plot 2003

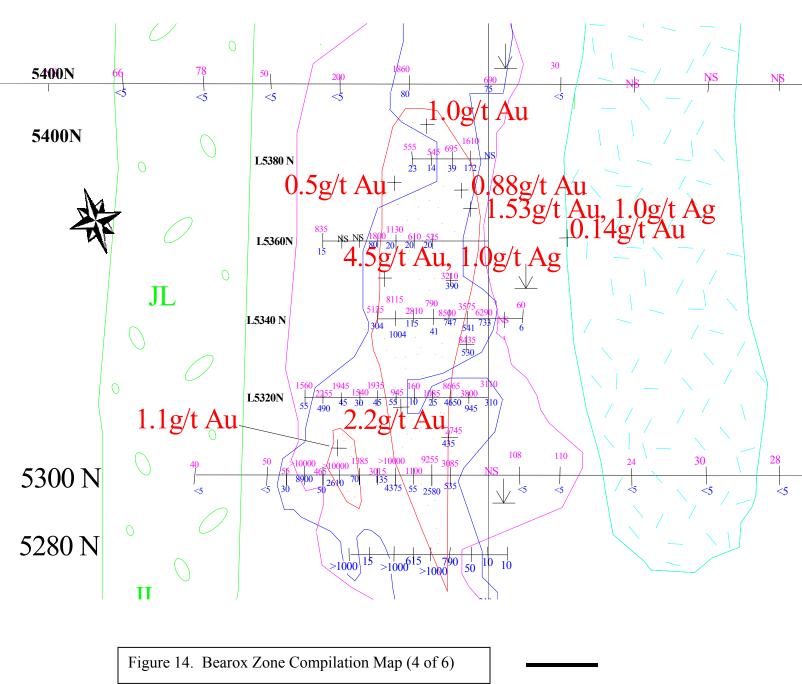



#### DISCUSSION

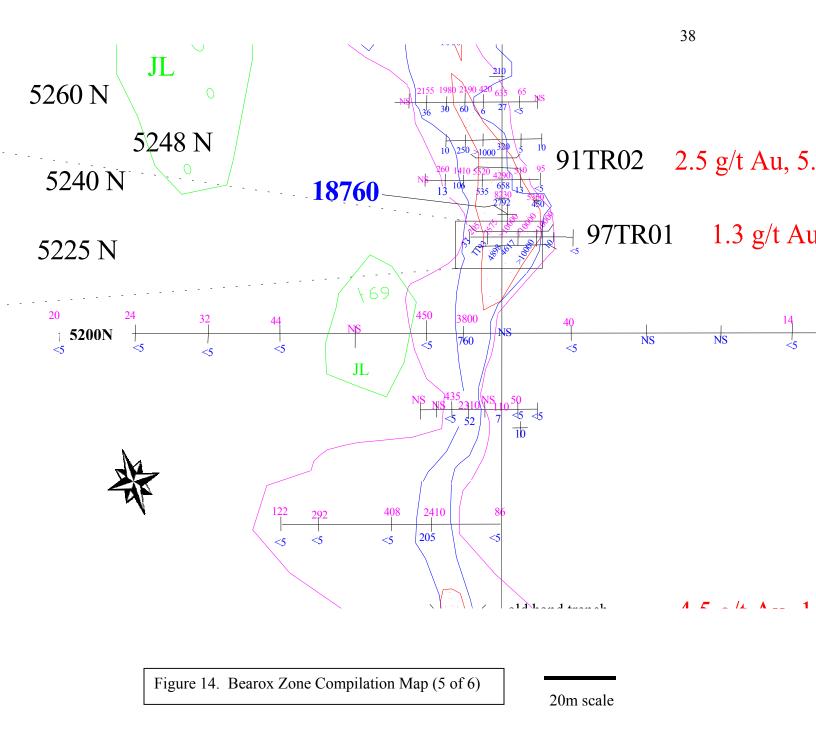
A compilation plot was also conducted using Auto-cad for the Bearox Zone (Figure 14-six pages). The locations of the samples are plotted on the 5000E grid. Gold and arsenic values are plotted and contoured as blue and magenta colors respectively. Mineralized areas and rock assays are shown in red type.

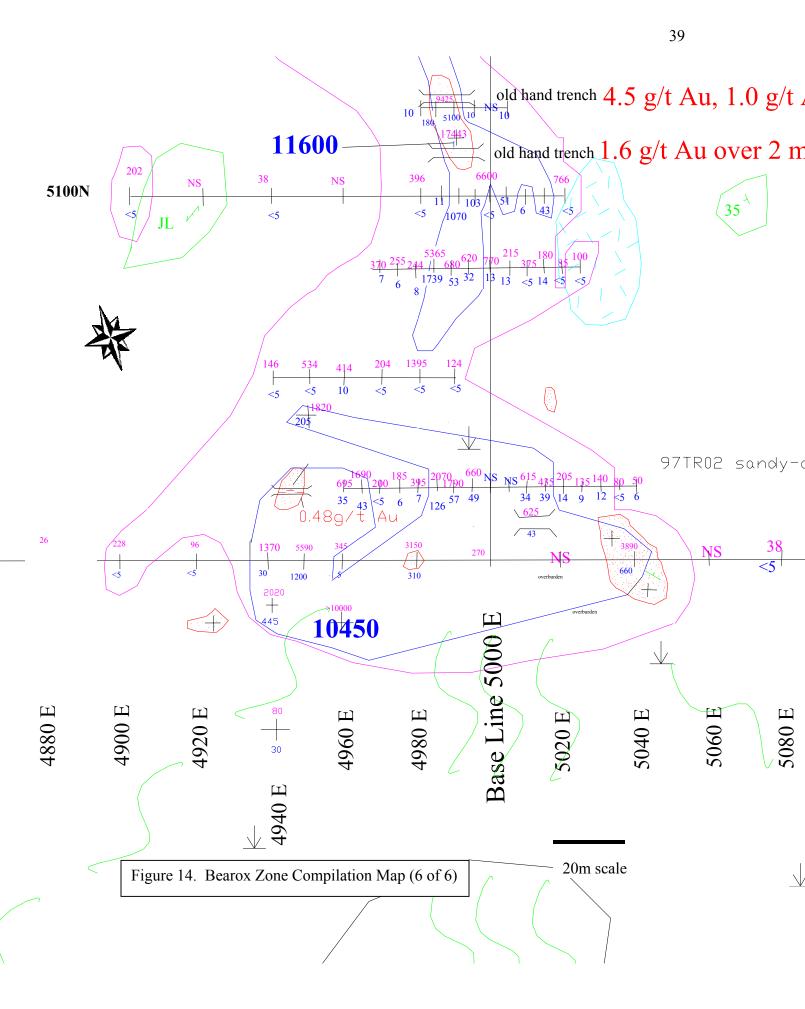

Many areas within the 025-fault zone have not been sampled due to the overburden cover. Drilling with percussion drills may be required to sample these areas, which conventional soil sample tools can't reach. The soil anomaly from 5300 to 5400N is 50m wide, however sampling through overburden to the east may provide a 20m extension in width. The soil program was effective in filling in and extending the Bearox Zone mineralization.


# Compilation Map of the Bearox Zone, 025 Claim Group Assessment 2003


# Legend
















The 2003 soil geochemical program has further defined the Bearox Zone mineralization and has added significant gold values to this zone. The highest gold value from this year's work returned 10450 ppb at 4970N 4960E, extending the zone 30m along strike. From the 83 samples, 69 were anomalous in gold and 74 were anomalous in arsenic. The most significant gold values from soils were 10450, 8900, 5100, 4605, 4375, 2790, 2780, 2580 2410 and 1065 ppb. The soil results from this year's assessment work compiled with all previous work on the Bearox zone has identified several drill ready targets. The Bearox zone gold-arsenic-soil anomaly extends for a strike of 700m having widths >100m. The Bearox Zone remains open to the south and north along the 025-fault. Several areas within the fault have significant overburden cover, which, if sampled may provide extensions in width of the Bearox Zone. Positive correlations exist between Au/As (0.79), Au/Ag (0.71) and Au/Sb (0.78).

### **RECOMMENDATIONS**

The recommendations for the 025-claim group are as follows:

- Extend base line 5000E from 5700N to 10000N along the 025-fault to cover the Central and Barney zones. Approximately 50km of control grid to be brushed out with chain saw. Grid stations should be marked with tyvex tags and two color flagging. Cross lines should be established at 25m spacing with 5m stations within the 025-fault and 20m stations outside the 025-fault. The base line should be cut wide enough for ATV access and marked with wood pickets.
- Approximately 500 soil samples should be collected along the 025-fault to include the Central and Barny Zones.
- A 50 km magnetics-VLF geophysical survey covering all four zones and knownsuspect cross faults.

- Structural mapping along the 025-fault with a focus on cross faults and fold hinges.
- 5) Drilling of approximately 4000m targeting the Main Zone and Bearox Zone.

A total of 2060m drilling in 22 holes would test the Main Zone mineralization. The initial holes should be collared 25m and 50m west of the southern end of the Main Zone. Holes should be spaced 25m apart with drill azimuths of 115° and dips of -45° and -75°. Table 6 below is a summary of the proposed drilling of the Main Zone.

| Main Zone Diamond Drilling Plan |       |       |       |       |       |       |       |  |  |
|---------------------------------|-------|-------|-------|-------|-------|-------|-------|--|--|
|                                 |       | -     |       |       |       |       |       |  |  |
| Collar                          | 0+00N | 0+25N | 0+50N | 0+75N | 1+00N | 1+50N | 2+00N |  |  |
| Location                        | 475E  |  |  |
| Dip                             | -45°  | -45°  | -45°  | -45°  | -45°  | -45°  | -45°  |  |  |
| Drill Length (m)                | 40    | 40    | 40    | 40    | 40    | 40    | 40    |  |  |
| Azimuth                         | 115°  | 115°  | 115°  | 115°  | 115°  | 115°  | 115°  |  |  |
| Dip                             | -75°  | -75°  | -75°  | -75°  | -75°  | -75°  | -75°  |  |  |
| Drill Length (m)                | 100   | 100   | 100   | 100   | 100   | 100   | 100   |  |  |
| Azimuth                         | 115°  | 115°  | 115°  | 115°  | 115°  | 115°  | 115°  |  |  |
| Total Drilling (m)              | 140   | 140   | 140   | 140   | 140   | 140   | 140   |  |  |
| Collar                          | 0+00N |       | 0+50N |       | 1+00N |       | 2+00N |  |  |
| Location                        | 450E  |       | 450E  |       | 450E  |       | 450E  |  |  |
| Dip                             | -45°  |       | -45°  |       | -45°  |       | -45°  |  |  |
| Drill Length (m)                | 80    |       | 80    |       | 80    |       | 80    |  |  |
| Azimuth                         | 115°  |       | 115°  |       | 115°  |       | 115°  |  |  |
| Dip                             | -75°  |       | -75°  |       | -75°  |       | -75°  |  |  |
| Drill Length (m)                | 190   |       | 190   |       | 190   |       | 190   |  |  |
| Azimuth                         | 115°  |       | 115°  |       | 115°  |       | 115°  |  |  |
| Total Drilling (m)              | 270   |       | 270   |       | 270   |       | 270   |  |  |
|                                 |       |       |       |       |       |       |       |  |  |
| Total Drilling 200              | :0m   |       |       |       |       |       |       |  |  |
| Total Drilling 206              | DOM   |       |       |       |       |       |       |  |  |

#### Table 6

6) A total of 12 holes from 6 locations are proposed to test the Bearox Zone for a drilling length of 2050m. The initial holes should be located at the southern end of the Bearox Zone to test the widest part of the geochemical anomaly. The first 2 holes should be collared at 4970N 4950E with an azimuth of 115° and dipping - 45 and -75° for a drill length of 160m and 210m respectively. The proposed drilling plan is summarized in table 7.

| Bearox Zone Diamond Drilling Plan |       |       |       |       |       |       |  |  |  |  |  |  |
|-----------------------------------|-------|-------|-------|-------|-------|-------|--|--|--|--|--|--|
| Collar                            | 4970N | 5000N | 5100N | 5225N | 5300N | 5350N |  |  |  |  |  |  |
| Location                          | 4950E | 5050E | 5025E | 5025E | 5025E | 5025E |  |  |  |  |  |  |
| Dip                               | -45°  | -45°  | -45°  | -45°  | -45°  | -45°  |  |  |  |  |  |  |
| Drill Length (m)                  | 160   | 160   | 100   | 80    | 160   | 160   |  |  |  |  |  |  |
| Azimuth                           | 115°  | 115°  | 295°  | 295°  | 295°  | 295°  |  |  |  |  |  |  |
| Dip                               | -75°  | -75°  | -75°  | -75°  | -75°  | -75°  |  |  |  |  |  |  |
| Drill Length (m)                  | 210   | 210   | 200   | 190   | 210   | 210   |  |  |  |  |  |  |
| Azimuth                           | 115°  | 295°  | 295°  | 295°  | 295°  | 295°  |  |  |  |  |  |  |
| Total Drilled (m)                 | 370   | 370   | 300   | 270   | 370   | 370   |  |  |  |  |  |  |
|                                   |       |       |       |       |       |       |  |  |  |  |  |  |
| Total Drilling (m)                | 2050  |       |       |       |       |       |  |  |  |  |  |  |

# Table 7

# STATEMENT OF AUTHORS QUALIFICATIONS

I Gary R. Thompson of suite 401, 628-17<sup>th</sup> Ave. SW Calgary, Alberta obtained a Bachelor of Science Degree in geology in 2000 from the University of British Columbia. I have been active in mineral exploration since 1985. I am currently employed by CBM Solutions Ltd (a coalbed methane consulting company) based in Calgary Alberta. I'm currently the president/director of Cayley Geothermal Corp, also based in Calgary, Alberta.

Signed this day\_\_\_\_\_ of November 2003

Gary R. Thompson, B.Sc. geologist\_\_\_\_\_

Table 8.

| Cost Sa<br>025 Cla | tement<br>im Group         |          |                                                                                   |                                        |
|--------------------|----------------------------|----------|-----------------------------------------------------------------------------------|----------------------------------------|
|                    | nent 2003                  |          |                                                                                   |                                        |
| Labour             | Project Geo<br>Geologist   | ologist  | 4 field days @ \$400/day<br>6 travel days @ \$200/day<br>4 field days @ \$250/day | \$1,600<br>\$1,200<br>\$1,000<br>\$750 |
| Travel             | Truck 60<br>Fuel<br>Boat   | )00km    | 6 travel days @ \$125/day<br>\$0.20 /km                                           | \$750<br>\$1,200<br>\$838.89<br>\$565  |
|                    | nodation                   |          |                                                                                   | \$334<br>\$717 70                      |
| Food<br>Assays     |                            |          |                                                                                   | \$717.70<br>\$1,115.42                 |
| Equipm<br>Field Ge |                            |          |                                                                                   | \$1,193<br>1,055.48                    |
| Report<br>2003 As  | ssessment Cr               | edits To | tal                                                                               | <u>\$831</u><br><b>\$12,400</b>        |
|                    | ng fees & FN<br>oject cost | МС       |                                                                                   | \$625<br>\$13,025                      |

- Bultman, T.R. (1979): Geology and Tectonic History of the Whitehorse Trough West of Atlin, British Columbia; unpublished Ph.D. thesis, *Yale University*, 284 pages.
- Mihalynuk, M.G., Currie, L.D. and Arsksey, R.L. (1989): The Geology of The Tagish Lake Area (Fantail Lake and Warm Creek) (104M9W and 9E); *BC Ministry of Energy Mines and Petroleum Resources*, Geological Field work 1988, Paper
- Mihalynuk, M.G., Currie, L.D. and Arsksey, R.L. Mountjoy, K.J., Smith M.T, and Rouse, J.N. (1997): Geology of The Tagish Lake Area, in; Geoscience Map 1997-1 Open File, British Columbia Geological Survey Branch, Minisitry of Employment and Investment, Energy and Minerals Division, Map.
- Mihalynuk, M.G., and Mountjoy, H.J. (1990): Geology of the Tagish Lake Area (Edgar Lake 104M8 and Fantail Lake 104M9E); *BC Minsitry of Energy Mines* and Petroleum Resources, Geological Fieldwork 1989, paper 1990-1, pages 175-179.
- Mihalynuk, M.G. and Rouse, J.N. (1988): Preliminary Geology of the Tutshi Lake Area, Northwestern British Columbia (105M15); *BC Ministry of Energy Mines* and Petroleum Resources, Geological Fieldwork, 1987, Paper 1988-1, pages 217-231.
- Monger, J.W.H. and Berg, H.C. (1987): Lithotectonic Terrane Map of Western Canada and Southeastern Alaska; *US Geological Survey*, Miscellaneous Field Studies Map MF-1874-B, scale 1:2 500 000.
- Morgan, D.R. (1981): Geological Report of the Windarra Minerals Ltd. Property surrounding the Engineer Mine (104M9E and 9W); *BC Energy Mines and Petroleum Resources Assessment Report #9049*.
- Souther, J.G. (1971): Geology and Mineral Deposits of the Tulsequah Map Area, British Columbia (104K); Geological Survey of Canada, Memoir 362, 84 pages.
- **Tempelman-Kluit, D.J. (1979):** Transported Cataclasite, Ophiolite and Granodiorite in Yukon: Evidence of Arc Continent Collsion; *Geological Survey of Canada*, Paper 79-14, 27 pages.
- **Thompson, G.R. (1996):** Geological, Geochemical and Physical Assessment Report on The 025 Claim Group, Atlin Mining Divison (104M9E and 9W); *BC Ministy of Energy Mines and Petroleum Resources Assessment Report* #24645, 23 pages.

- Thompson, G.R. (1994): Geological, Geochemical and Geophysical Assessment Report on The 025 Claim Group, Atlin Mining Division (104M9E and 9W); BC Minisrty of Energy Mines and Petroleum Resources Assessment Report #23599, 55 pages.
- **Thompson, G.R. and Strain, D. (1990):** Geological, Geochemical and Physical Assessment Report on The GB1 Claim Group (104M9E and 9W); *BC Ministry of Energy Mines and Petroleum Resources Assessment Report #21508 and #19384.*

Aerial Photographic Prints: BC 5677-#050, 511, 067, 086, 177, 178, 179,

**Thompson, G.R. (2000):** Geochemical and Geological Assessment Report on the 025 Claim Group, Atlin Mining Division, NWBC *BC Ministry of Energy Mines and Petroleum Resources Assessment Report*  09-Sep-03

ECO TECH LABORATORY LTD.

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

# **ICP CERTIFICATE OF ANALYSIS AK 2003-338** GARY R. THOMPSON Suite 401, 628-17th Ave

Phone: 250-573-5700 Fax : 250-573-4557

S.W. Calgary, Alberta T2S 0B4

#### Values in ppm unless otherwise reported

| Et #. | Tag # | Au(ppb) | Ag   | AI % | As     | Ва       | Bi | Ca % | Cd | Co         | Cr | Cu       | Fe % | La  | Mg % | Mn  |
|-------|-------|---------|------|------|--------|----------|----|------|----|------------|----|----------|------|-----|------|-----|
| 1     | 2551  | 10      | 0.3  | 2.05 | 20     | 65       | <5 | 0.20 | <1 | 26         | 84 | 131      | 7.01 | 20  | 1.43 | 520 |
| 2     | 2552  | 5       | 3.9  | 1.05 | 10     | 140      | <5 | 0.77 | <1 | 22         | 32 | 85       | 5.25 | 20  | 0.30 | 443 |
| 3     | 2553  | 115     | 0.5  | 1.59 | 420    | 140      | <5 | 0.92 | <1 | 24         | 52 | 133      | 5.06 | 20  | 1.06 | 555 |
| 4     | 2554  | 190     | 2.1  | 0.88 | 2475   | 75       | <5 | 0.33 | <1 | 22         | 35 | 93       | 6.38 | 20  | 0.37 | 427 |
| 5     | 2555  | 235     | 0.9  | 1.29 | 1965   | 70       | <5 | 0.30 | <1 | 17         | 37 | 70       | 4.11 | 10  | 0.77 | 438 |
|       |       |         |      |      |        |          |    |      |    |            |    |          |      |     |      |     |
| 6     | 2556  | 15      | 0.2  | 2.15 | 80     | 165      | <5 | 0.33 | <1 | 17         | 49 | 66       | 4.26 | 10  | 0.84 | 433 |
| 7     | 2557  | 2410    | 2.2  |      | >10000 | 60       | <5 | 0.44 | <1 | 31         | 24 | 90       | 6.96 | 20  | 0.15 | 726 |
| 8     | 2558  | 220     | 1.3  | 0.34 | 3120   | 30       | <5 | 0.23 | <1 | 18         | 27 | 113      | 7.01 | 20  | 0.17 | 445 |
| 9     | 2559  | 710     | 2.4  | 0.77 | 5480   | 110      | <5 | 0.41 | <1 | 23         | 33 | 116      | 6.96 | 20  | 0.28 | 424 |
| 10    | 2560  | 30      | 0.7  | 1.46 | 80     | 60       | <5 | 0.18 | <1 | 19         | 44 | 84       | 4.13 | 20  | 0.75 | 326 |
|       |       |         |      |      |        |          | _  |      |    |            |    |          |      |     |      |     |
| 11    | 2561  | 60      | 0.3  | 1.36 | 270    | 85       | <5 | 1.56 | <1 | 15         | 38 | 77       |      | 10  | 1.01 | 325 |
| 12    | 2562  | 10450   | 7.3  |      | >10000 | 125      | <5 | 0.89 | <1 | 18         | 28 | 109      | 8.00 | 20  | 0.16 | 376 |
| 13    | 2563  | 445     | 1.0  | 0.77 | 2020   | 180      | <5 | 0.29 | <1 | 17         | 26 | 41       | 4.02 | 10  | 0.34 | 532 |
| 14    | 2564  | 5100    | 11.6 | 0.91 | 9425   | 205      | <5 | 1.17 | <1 | 15         | 32 | 29       | 5.65 | 20  | 0.46 | 342 |
| 15    | 2565  | 450     | 2.3  | 1.10 | 5350   | 85       | <5 | 0.36 | <1 | 26         | 39 | 97       | 7.14 | 20  | 0.52 | 605 |
|       |       |         |      |      |        |          | _  |      |    | <b>.</b> . |    | <b>.</b> |      |     |      |     |
| 16    | 2566  | 2790    | 2.2  | 0.60 | 8230   | 70       | <5 | 0.47 | <1 | 31         | 48 | 61       | 4.50 | 20  | 0.44 | 584 |
| 17    | 2567  | 2780    | 4.5  | 1.21 |        | 165      | <5 | 0.56 | <1 | 38         | 99 | 80       | 7.85 | 20  | 0.69 | 831 |
| 18    | 2568  | 30      | 0.5  | 2.58 | 55     | 75       | <5 | 0.30 | <1 | 24         | 71 | 104      | 6.01 | 10  | 1.66 | 400 |
| 19    | 2569  | 8900    | 3.3  |      | >10000 | 375      | <5 | 0.73 | <1 | 24         | 44 | 32       | >10  | 20  | 0.25 | 251 |
| 20    | 2570  | 50      | 0.5  | 1.36 | 465    | 80       | <5 | 0.23 | <1 | 14         | 42 | 34       | 3.91 | 10  | 0.85 | 404 |
| 04    | 0574  | 050     | 4.0  | 4 00 | 4405   | 00       |    | 0.50 |    | 00         | 50 | 404      | 7.00 | 40  | 0.75 | 250 |
| 21    | 2571  | 250     | 1.9  | 1.33 | 4105   | 80<br>85 | <5 | 0.58 | <1 | 29         | 50 | 104      | 7.62 | 10  | 0.75 | 359 |
| 22    | 2572  | 70      | 1.8  | 2.17 | 1385   | 85       | <5 | 0.64 | <1 | 32         | 72 | 127      | 7.29 | 20  | 1.30 | 660 |
| 23    | 2573  | 135     | 1.8  | 1.54 | 3015   | 90       | <5 | 0.29 | <1 | 27         | 58 | 90       | 7.25 | 20  | 0.89 | 425 |
| 24    | 2574  | 4375    | 1.9  | 0.51 |        | 95       | <5 | 0.68 | <1 | 25         | 34 | 28       | 6.00 | 10  | 0.17 | 667 |
| 25    | 2575  | 55      | 0.6  | 0.83 | 1100   | 80       | <5 | 0.32 | <1 | 22         | 52 | 36       | 6.66 | <10 | 0.33 | 524 |

### ICP CERTIFICATE OF ANAL

#### 09-Sep-03 ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

#### ICP CERTIFICATE OF ANALYSIS AK 2003-338 GARY R. THOMPSON Suite 401, 628-17th Ave

Phone: 250-573-5700 Fax : 250-573-4557 Suite 401, 628-17th Ave **S.W. Calgary, Alberta** T2S 0B4

## Values in ppm unless otherwise reported

| <br>Et #. | Tag # | Мо | Na %   | Ni  | P    | Pb | Sb  | Sn  | Sr  | Ti %   | U   | V   | W   | Y  | Zn  |
|-----------|-------|----|--------|-----|------|----|-----|-----|-----|--------|-----|-----|-----|----|-----|
| 1         | 2551  | <1 | <0.01  | 61  | 340  | 14 | <5  | <20 | 22  | <0.01  | <10 | 123 | <10 | 7  | 105 |
| 2         | 2552  | <1 | 0.05   | 33  | 780  | 12 | <5  | <20 | 67  | <0.01  | <10 | 56  | <10 | 5  | 68  |
| 3         | 2553  | <1 | 0.02   | 61  | 1040 | 14 | 10  | <20 | 77  | 0.04   | <10 | 59  | <10 | 13 | 116 |
| 4         | 2554  | <1 | <0.01  | 38  | 720  | 10 | 80  | <20 | 48  | <0.01  | <10 | 35  | <10 | 5  | 101 |
| 5         | 2555  | <1 | <0.01  | 38  | 520  | 12 | 55  | <20 | 24  | 0.02   | <10 | 46  | <10 | 7  | 64  |
| 6         | 2556  | <1 | <0.01  | 38  | 340  | 14 | 5   | <20 | 46  | 0.01   | <10 | 84  | <10 | 4  | 73  |
| 7         | 2557  | <1 | <0.01  | 34  | 1020 | 6  | 280 | <20 | 69  | <0.01  | <10 | 9   | <10 | 16 | 92  |
| 8         | 2558  | <1 | <0.01  | 62  | 500  | 6  | 140 | <20 | 46  | <0.01  | <10 | 17  | <10 | 14 | 115 |
| 9         | 2559  | <1 | <0.01  | 42  | 620  | 12 | 165 | <20 | 64  | <0.01  | <10 | 34  | <10 | 9  | 90  |
| 10        | 2560  | <1 | <0.01  | 41  | 320  | 10 | 10  | <20 | 24  | 0.02   | <10 | 64  | <10 | 6  | 97  |
| 11        | 2561  | <1 | 0.02   | 37  | 850  | 10 | 60  | <20 | 103 | 0.03   | <10 | 48  | <10 | 9  | 87  |
| 12        | 2562  | <1 | <0.01  | 35  | 820  |    | 425 | <20 | 179 | <0.01  | <10 | 23  | <10 | 14 | 68  |
| 13        | 2563  | <1 | <0.01  | 24  | 860  | 10 | 40  | <20 | 52  | <0.01  | <10 | 34  | <10 | 4  | 84  |
| 14        | 2564  | <1 | <0.01  | 18  | 940  | 8  | 105 | <20 | 158 | <0.01  | <10 | 41  | <10 | 10 | 64  |
| 15        | 2565  | <1 | <0.01  | 40  | 770  | 16 | 110 | <20 | 36  | <0.01  | <10 | 39  | <10 | 11 | 112 |
| 16        | 2566  | <1 | <0.01  | 98  | 1520 | 4  | 75  | <20 | 23  | <0.01  | <10 | 60  | <10 | 10 | 47  |
| 17        | 2567  | <1 | <0.01  | 122 | 1550 | 10 | 130 | <20 | 61  | <0.01  | <10 | 87  | <10 | 13 | 103 |
| 18        | 2568  | <1 | <0.01  | 54  | 440  | 12 | <5  | <20 | 26  | <0.01  | <10 | 105 | <10 | 6  | 120 |
| 19        | 2569  | <1 | <0.01  | 23  | 1160 | 10 | 205 | <20 | 120 | <0.01  | <10 | 15  | <10 | 12 | 71  |
| 20        | 2570  | <1 | <0.01  | 27  | 220  | 10 | 15  | <20 | 19  | 0.03   | <10 | 60  | <10 | 5  | 76  |
| 21        | 2571  | <1 | <0.01  | 47  | 630  | 20 | 65  | <20 | 50  | <0.01  | <10 | 57  | <10 | 5  | 156 |
| 22        | 2572  | <1 | <0.01  | 63  | 660  | 20 | 35  | <20 | 49  | < 0.01 | <10 | 90  | <10 | 6  | 166 |
| 23        | 2573  | <1 | < 0.01 | 47  | 350  | 16 | 45  | <20 | 28  | < 0.01 | <10 | 64  | <10 | 5  | 150 |
| 24        | 2574  | <1 | <0.01  | 34  | 1480 | 4  |     | <20 |     | < 0.01 | <10 | 29  | <10 | 22 | 46  |
| 25        | 2575  | <1 |        | 42  | 310  | 8  | 15  | <20 |     | <0.01  |     | 50  | <10 | 5  | 65  |
|           |       |    |        |     |      |    |     |     |     |        |     |     |     |    |     |

#### 09-Sep-03 ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C.

V2C 6T4

ICP CERTIFICATE OF ANALYSIS AK 2003-338 GARY R. THOMPSON Suite 401, 628-17th Ave

Phone: 250-573-5700 Fax : 250-573-4557 Suite 401, 628-17th Ave S.W. Calgary, Alberta T2S 0B4

# Values in ppm unless otherwise reported

| _ | Et #. | Tag # | Au(ppb) | Ag  | ,<br>Al % | As   | Ва  | Bi | Ca % | Cd | Со | Cr       | Cu  | Fe % | La  | Mg % |
|---|-------|-------|---------|-----|-----------|------|-----|----|------|----|----|----------|-----|------|-----|------|
|   | 26    | 2576  | 2580    | 2.3 | 1.10      | 9255 | 110 | <5 | 0.68 | <1 | 33 | 71       | 92  | 9.02 | 20  | 0.62 |
|   | 27    | 2577  | 535     | 1.5 | 1.31      | 3085 | 75  | <5 | 0.34 | <1 | 20 | 63       | 43  | 5.96 | 10  | 0.35 |
|   | 28    | 2578  | 55      | 1.0 | 1.35      | 1560 | 120 | <5 | 0.35 | <1 | 25 | 40       | 46  | 5.97 | <10 | 0.50 |
|   | 29    | 2579  | 490     | 0.8 | 0.61      | 2255 | 95  | <5 | 0.25 | <1 | 18 | 26       | 27  | 5.18 | 10  | 0.15 |
|   | 30    | 2580  | 45      | 0.9 | 1.01      | 1945 | 130 | <5 | 0.63 | <1 | 23 | 34       | 51  | 5.67 | 10  | 0.24 |
|   |       |       |         |     |           |      |     |    |      |    |    |          |     |      |     |      |
|   | 31    | 2581  | 30      |     | 2.02      | 1540 | 110 | <5 | 0.37 | <1 | 17 | 46       | 62  | 4.42 | 10  | 0.80 |
|   | 32    | 2582  | 45      |     | 1.68      | 1935 | 110 | <5 | 0.44 | <1 | 20 | 43       | 42  | 4.94 | 10  | 0.59 |
|   | 33    | 2583  | 55      | 0.2 | 1.54      | 945  | 80  | <5 | 0.36 | <1 | 15 | 39       | 44  | 3.68 | 10  | 0.80 |
|   | 34    | 2584  | 10      |     | 1.70      | 160  | 155 | <5 | 0.37 | <1 | 14 | 48       | 29  | 3.44 | 10  | 0.73 |
|   | 35    | 2585  | 25      | 0.4 | 1.83      | 1085 | 85  | <5 | 0.47 | <1 | 20 | 88       | 45  | 5.90 | 10  | 0.81 |
|   | 36    | 2586  | 4605    | 5.9 | 0.60      | 8665 | 75  | <5 | 0.31 | <1 | 18 | 52       | 48  | 5.71 | 10  | 0.27 |
|   | 37    | 2587  | 945     |     | 1.04      | 3800 | 100 | <5 | 0.36 | <1 | 17 | 52       | 45  | 5.46 | 10  | 0.33 |
|   | 38    | 2588  | 310     | 1.1 | 1.53      | 3110 | 65  | <5 | 0.38 | <1 | 15 | 60       | 42  | 5.53 | 10  | 0.44 |
|   | 39    | 2589  | 390     | 0.8 | 1.66      | 3210 | 130 | <5 | 1.05 | <1 | 21 | 53       | 130 | 4.75 | 20  | 1.01 |
|   | 40    | 2590  | 15      | 2.2 | 2.16      | 835  | 100 | <5 | 0.98 | <1 | 18 | 54       | 72  | 5.65 | 20  | 0.93 |
|   |       |       |         |     |           |      |     |    |      |    |    |          |     |      |     |      |
|   | 41    | 2591  | 80      | 0.5 | 2.24      | 1800 | 100 | <5 | 0.45 | <1 | 63 | 74       | 104 | 7.20 | 20  | 1.18 |
|   | 42    | 2592  | 20      | 1.7 | 1.30      | 1130 | 115 | <5 | 0.52 | <1 | 23 | 40       | 38  | 4.71 | <10 | 0.44 |
|   | 43    | 2593  | 20      |     | 1.70      | 610  | 135 | <5 | 0.53 | <1 | 16 | 37       | 36  | 3.21 | 10  | 0.63 |
|   | 44    | 2594  | 20      |     | 2.06      | 525  | 180 | <5 | 0.74 | <1 | 14 | 47       | 50  | 3.57 | 10  | 0.87 |
|   | 45    | 2595  | 20      | 0.3 | 1.81      | 290  | 155 | <5 | 0.39 | <1 | 14 | 40       | 49  | 3.63 | 10  | 0.72 |
|   | 40    | 0500  | 05      | 0.4 | 4 40      | 075  | 400 |    | 0.00 | .4 | 10 | 40       | 00  | 4.00 | .10 | 0.70 |
|   | 46    | 2596  | 25      |     | 1.48      | 375  | 120 | <5 | 0.30 | <1 | 16 | 40       | 33  | 4.09 | <10 | 0.72 |
|   | 47    | 2597  | 15      |     | 2.42      | 30   | 90  | <5 | 0.50 | <1 | 25 | 79<br>62 | 71  | 5.67 | 10  | 1.64 |
|   | 48    | 2598  | 15      |     | 2.13      | 40   | 105 | <5 | 0.50 | <1 | 31 | 63<br>70 | 78  | 5.78 | 10  | 1.05 |
|   | 49    | 2599  | 20      |     | 2.92      | 160  | 100 | <5 | 0.34 | <1 | 29 | 73       | 110 | 7.11 | 10  | 1.54 |
|   | 50    | 2600  | 20      | 0.4 | 1.99      | 205  | 45  | <5 | 0.55 | <1 | 27 | 51       | 120 | 5.78 | 10  | 1.00 |
|   | 51    | 2651  | 45      | 0.3 | 1.22      | 605  | 75  | <5 | 0.32 | <1 | 27 | 45       | 94  | 6.49 | 10  | 0.60 |
|   | 52    | 2652  | 65      | 0.6 | 1.68      | 1340 | 145 | <5 | 0.72 | <1 | 29 | 41       | 80  | 4.86 | 10  | 0.53 |
|   | 53    | 2653  | 35      | 0.6 | 1.80      | 965  | 70  | <5 | 0.31 | <1 | 21 | 48       | 58  | 5.12 | 10  | 0.82 |
|   | 54    | 2654  | 30      | 0.6 | 1.89      | 555  | 70  | <5 | 0.32 | <1 | 20 | 48       | 49  | 4.40 | <10 | 0.88 |
|   | 55    | 2655  | 60      | 0.4 | 2.00      | 305  | 125 | <5 | 0.44 | <1 | 16 | 48       | 63  | 4.19 | 10  | 1.03 |
|   |       |       |         |     |           |      |     |    |      |    |    |          |     |      |     |      |
|   | 56    | 2656  | 20      |     | 2.27      | 745  | 55  | <5 | 0.35 | <1 | 23 | 70       | 94  | 6.72 | <10 | 1.23 |
|   | 57    | 2657  | 100     |     | 1.09      | 2025 | 160 | <5 | 0.44 | <1 | 25 | 41       | 57  | 6.33 | 10  | 0.34 |
|   | 58    | 2658  | 25      |     | 1.63      | 455  | 135 | <5 | 0.29 | <1 | 18 | 43       | 42  | 3.81 | 10  | 0.72 |
|   | 59    | 2659  | 60      | 0.7 |           | 1805 | 135 | <5 | 0.35 | <1 | 23 | 35       | 77  | 7.07 | 10  | 0.30 |
|   | 60    | 2660  | 90      | 1.3 | 0.97      | 2750 | 155 | <5 | 0.49 | <1 | 23 | 43       | 149 | >10  | 10  | 0.33 |
|   |       |       |         |     |           |      |     |    |      |    |    |          |     |      |     |      |

09-Sep-03 ECO TECH LABORATORY LTD.

10041 Dallas Drive

KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2003-338 GARY R. THOMPSON Suite 401, 628-17th Ave S.W. Calgary, Alberta

T2S 0B4

#### Values in ppm unless otherwise reported

| , ppin unic |                                                                                                                                                                                                                                | nse reporteu                                                                                                                                                                                                                              |                               |                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                         |                                               |                                                 |     |    |            |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|-----------------------------------------------|-------------------------------------------------|-----|----|------------|
| Tag #       | Mn                                                                                                                                                                                                                             | Mo Na %                                                                                                                                                                                                                                   | Ni                            | Р                                    | Pb                                    | Sb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sn                                    | Sr Ti %                                 | U                                             | V                                               | W   | Y  | Zn         |
| 2576        | 723                                                                                                                                                                                                                            | <1 <0.01                                                                                                                                                                                                                                  | 64                            | 870                                  | 24                                    | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <20                                   | 92 < 0.01                               | <10                                           | 78                                              | <10 | 17 | 104        |
| 2577        | 330                                                                                                                                                                                                                            | <1 <0.01                                                                                                                                                                                                                                  | 44                            | 510                                  | 12                                    | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <20                                   | 46 < 0.01                               | <10                                           | 87                                              | <10 | 5  | 86         |
| 2578        | 526                                                                                                                                                                                                                            | <1 <0.01                                                                                                                                                                                                                                  | 31                            | 410                                  | 10                                    | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <20                                   | 29 < 0.01                               | <10                                           | 61                                              | <10 | 4  | 157        |
| 2579        | 417                                                                                                                                                                                                                            | <1 <0.01                                                                                                                                                                                                                                  | 22                            | 370                                  | 8                                     | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <20                                   | 26 < 0.01                               | <10                                           | 30                                              | <10 | 8  | 73         |
| 2580        | 996                                                                                                                                                                                                                            | <1 <0.01                                                                                                                                                                                                                                  | 28                            | 660                                  | 8                                     | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <20                                   | 60<0.01                                 | <10                                           | 45                                              | <10 | 19 | 127        |
| 2581        | 376                                                                                                                                                                                                                            | <1 <0.01                                                                                                                                                                                                                                  | 34                            | 250                                  | 12                                    | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <20                                   | 39<0.01                                 | <10                                           | 74                                              | <10 | 5  | 75         |
|             |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |                               |                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                         |                                               |                                                 |     |    | 161        |
|             |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |                               |                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                         |                                               |                                                 |     |    | 62         |
|             |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |                               |                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                         |                                               |                                                 |     |    | 69         |
| 2585        | 242                                                                                                                                                                                                                            | <1 <0.01                                                                                                                                                                                                                                  | 58                            | 440                                  | 12                                    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <20                                   | 49 < 0.01                               | <10                                           | 102                                             | <10 | 5  | 76         |
| 2586        | 389                                                                                                                                                                                                                            | <1 <0 01                                                                                                                                                                                                                                  | 29                            | 680                                  | 10                                    | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <20                                   | 46<0.01                                 | <10                                           | 77                                              | <10 | 12 | 51         |
|             |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |                               |                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                         |                                               |                                                 |     |    | 67         |
|             |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |                               |                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                         |                                               |                                                 |     |    | 71         |
|             |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |                               |                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                         |                                               |                                                 |     |    | 108        |
| 2590        | 350                                                                                                                                                                                                                            | <1 0.05                                                                                                                                                                                                                                   | 24                            | 540                                  | 18                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <20                                   | 46 < 0.01                               | <10                                           | 118                                             | <10 | 9  | 56         |
| 2501        | 1610                                                                                                                                                                                                                           | ~1 ~0 01                                                                                                                                                                                                                                  | 11                            | 1100                                 | 26                                    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <20                                   | 25 0.02                                 | ~10                                           | 05                                              | <10 | 11 | 070        |
|             |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |                               |                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                         |                                               |                                                 |     |    | 273<br>187 |
|             |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |                               |                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                         |                                               |                                                 |     |    | 95         |
|             |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |                               |                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                         |                                               |                                                 |     | -  | 95<br>68   |
|             |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |                               |                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                         |                                               |                                                 |     |    | 82         |
|             |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |                               |                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                         |                                               |                                                 |     |    |            |
|             |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |                               |                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                         |                                               |                                                 |     |    | 94         |
|             |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |                               |                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                         |                                               |                                                 |     |    | 133        |
|             |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |                               |                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                         |                                               |                                                 |     | -  | 157        |
|             |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |                               |                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                         |                                               |                                                 |     |    | 143        |
| 2600        | 690                                                                                                                                                                                                                            | 2 <0.01                                                                                                                                                                                                                                   | 65                            | 460                                  | 14                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <20                                   | 44 <0.01                                | <10                                           | 75                                              | <10 | 9  | 134        |
| 2651        | 572                                                                                                                                                                                                                            | <1 <0.01                                                                                                                                                                                                                                  | 56                            | 470                                  | 14                                    | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <20                                   | 30<0.01                                 | <10                                           | 60                                              | <10 | 8  | 148        |
| 2652        | 1170                                                                                                                                                                                                                           | <1 <0.01                                                                                                                                                                                                                                  | 40                            | 1010                                 | 14                                    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <20                                   | 67 <0.01                                | <10                                           | 67                                              | <10 | 8  | 173        |
| 2653        | 445                                                                                                                                                                                                                            | <1 <0.01                                                                                                                                                                                                                                  | 41                            | 410                                  | 12                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <20                                   | 31 0.02                                 | <10                                           | 66                                              | <10 | 5  | 145        |
| 2654        | 377                                                                                                                                                                                                                            | <1 <0.01                                                                                                                                                                                                                                  | 41                            | 320                                  | 12                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <20                                   | 30 0.02                                 | <10                                           | 67                                              | <10 | 4  | 92         |
| 2655        | 417                                                                                                                                                                                                                            | <1 <0.01                                                                                                                                                                                                                                  | 44                            | 370                                  | 14                                    | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <20                                   | 46 0.02                                 | <10                                           | 67                                              | <10 | 6  | 83         |
| 2656        | 325                                                                                                                                                                                                                            | <1 <0.01                                                                                                                                                                                                                                  | 53                            | 460                                  | 14                                    | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <20                                   | 33 < 0.01                               | <10                                           | 108                                             | <10 | 4  | 124        |
| 2657        | 920                                                                                                                                                                                                                            | <1 <0.01                                                                                                                                                                                                                                  | 39                            | 550                                  | 14                                    | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <20                                   | 42 < 0.01                               | <10                                           | 45                                              | <10 | 8  | 153        |
| 2658        | 827                                                                                                                                                                                                                            | <1 <0.01                                                                                                                                                                                                                                  | 32                            | 350                                  | 12                                    | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <20                                   | 28 0.02                                 | <10                                           | 64                                              | <10 | 5  | 108        |
|             |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |                               |                                      | 12                                    | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | 40 < 0.01                               | <10                                           | 44                                              | <10 | 6  | 147        |
|             |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |                               |                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                         |                                               |                                                 |     | -  |            |
| -03660      | 137                                                                                                                                                                                                                            | <1 0.06                                                                                                                                                                                                                                   | 49                            | 1130                                 | 24                                    | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20                                    | 221 < 0.01                              | <10                                           | 34                                              | <10 | 9  | 195        |
|             | Tag #   2576   2577   2578   2579   2580   2581   2582   2583   2584   2585   2586   2587   2588   2589   2591   2592   2593   2594   2595   2596   2597   2598   2599   2600   2651   2652   2653   2654   2655   2656   2657 | Tag #Mn2576723257733025785262579417258099625813762582439258338225843852585242258638925874042588304258957325903502591161925924672593411259437125953832596382259768925987672593417265157226521170265344526543772655417265632526579202658827 | Tag #MnMo Na %2576723<1 <0.01 | Tag #MnMo Na %Ni $2576$ 723<1 < 0.01 | Tag #MnMo Na %NiP $2576$ 723<1 < 0.01 | Tag #MnMo Na %NiPPb2576723 $<1 < 0.01$ 64870242577330 $<1 < 0.01$ 44510122578526 $<1 < 0.01$ 31410102579417 $<1 < 0.01$ 2237082580996 $<1 < 0.01$ 2866082581376 $<1 < 0.01$ 28420122583382 $<1 < 0.01$ 32370142584385 $<1 < 0.01$ 30310102585242 $<1 < 0.01$ 35440122586389 $<1 < 0.01$ 29680102587404 $<1 < 0.01$ 35510102588304 $<1 < 0.01$ 35510102589573 $<1 0.02$ 67990122590350 $<1 0.05$ 245401825911619 $<1 < 0.01$ 441100262592467 $<1 < 0.01$ 29230102593411 $<1 < 0.01$ 29220102596382 $<1 < 0.01$ 27290102597689 $<1 < 0.01$ 49590102598767 $6 < 0.01$ 49590102599554 $<1 < 0.01$ 56460142651572 $<1 < 0.01$ 40101014265211 | Tag #MnMo Na %NiPPbSb2576723<1 < 0.01 | Tag #MnMo Na %NiPPbSbSn2576723<1 < 0.01 | Tag #MnMo Na %NiPPbSbSnSr Ti %2576723<1 <0.01 | Tag #MnMo Na %NiPPbSbSnSr Ti %U2576723<1 < 0.01 |     |    |            |

ECO TECH LABORATORY LTD.

10041 Dallas Drive **KAMLOOPS, B.C.** 

V2C 6T4

ICP CERTIFICATE OF ANALYSIS AK 2003-338 GARY R. THOMPSON Suite 401, 628-17th Ave S.W. Calgary, Alborta

Phone: 250-573-5700 Fax : 250-573-4557

S.W. Calgary, Alberta T2S 0B4 09-Sep-03 ECO TECH LABORATORY LTD.

10041 Dallas Drive

KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700

Fax : 250-573-4557

### ICP CERTIFICATE OF ANALYSIS AK 2003-338 GARY R. THOMPSON Suite 401, 628-17th Ave

S.W. Calgary, Alberta

T2S 0B4

T2 Values in ppm unless otherwise reported

| Et #.   | Tag # | Mn   | Mo Na %  | Ni | Р    | Pb | Sb  | Sn         | Sr Ti %              | U   | v  | W   | Y   | Zn  |
|---------|-------|------|----------|----|------|----|-----|------------|----------------------|-----|----|-----|-----|-----|
| 61      | 2661  | 3119 | <1 <0.01 | 53 | 1350 | 20 | 10  | <20        | 120 0.01             | <10 | 39 | <10 | 27  | 119 |
| 62      | 2662  | 2385 | <1 <0.01 | 26 | 680  | 14 | 15  | <20        | 75 0.01              | <10 | 61 | <10 | 5   | 137 |
| 63      | 2663  | 427  | <1 <0.01 | 45 | 520  | 12 | 5   | <20        | 48 0.02              | <10 | 72 | <10 | 4   | 127 |
| 64      | 2664  | 622  | <1 <0.01 | 28 | 560  | 12 | 10  | <20        | 39 0.02              | <10 | 63 | <10 | 5   | 155 |
| 65      | 2665  | 571  | <1 0.01  | 28 | 400  | 12 | <5  | <20        | 36 0.04              | <10 | 62 | <10 | 4   | 82  |
|         |       | 400  |          |    | 700  | ~~ |     |            | 70.004               |     | 40 |     | 4 - | 400 |
| 66      | 2666  | 463  | <1 0.05  | 57 | 790  | 20 | 45  | 20         | 73<0.01              | <10 | 42 | <10 | 15  | 129 |
| 67      | 2667  | 408  | <1 <0.01 | 30 | 640  | 12 | 20  | <20        | 47 < 0.01            | <10 | 48 | <10 | 4   | 111 |
| 68      | 2668  | 548  | <1 0.01  | 38 | 490  | 12 | 10  | <20        | 52 0.02              | <10 | 51 | <10 | 12  | 120 |
| 69      | 2669  | 318  | <1 <0.01 | 22 | 300  | 10 | <5  | <20        | 25 0.02              | <10 | 66 | <10 | 3   | 101 |
| 70      | 2670  | 185  | <1 <0.01 | 21 | 370  | 10 | <5  | <20        | 33 0.01              | <10 | 76 | <10 | 3   | 94  |
| 71      | 2671  | 531  | <1 <0.01 | 43 | 680  | 12 | 45  | <20        | 47 < 0.01            | <10 | 69 | <10 | 5   | 110 |
| 72      | 2672  | 452  | <1 <0.01 | 37 | 950  | 14 | 205 | 20         | 53 < 0.01            | <10 | 19 | <10 | 15  | 80  |
| 73      | 2673  | 270  | <1 <0.01 | 31 | 440  | 6  | 25  | <20        | 39<0.01              | <10 | 37 | <10 | 9   | 71  |
| 74      | 2674  | 492  | <1 <0.01 | 29 | 280  | 12 | 30  | <20        | 27 0.01              | <10 | 62 | <10 | 4   | 99  |
| 75      | 2675  | 627  | <1 <0.01 | 42 | 510  | 14 | 25  | <20        | 32<0.01              | <10 | 70 | <10 | 7   | 134 |
|         |       |      |          |    |      |    |     |            |                      |     |    |     |     |     |
| 76      | 2676  | 708  | <1 <0.01 | 41 | 610  | 16 | 90  | 20         | 39<0.01              | <10 | 69 | <10 | 8   | 156 |
| 77      | 2677  | 358  | <1 <0.01 | 29 | 260  | 10 | 15  | <20        | 23 < 0.01            | <10 | 76 | <10 | 4   | 79  |
| 78      | 2678  | 389  | <1 <0.01 | 45 | 510  | 12 | 15  | <20        | 42<0.01              | <10 | 80 | <10 | 5   | 123 |
| 79      | 2679  | 735  | <1 <0.01 | 29 | 470  | 14 | 10  | <20        | 47 < 0.01            | <10 | 73 | <10 | 4   | 122 |
| 80      | 2680  | 571  | <1 0.03  | 44 | 610  | 14 | 30  | <20        | 88 < 0.01            | <10 | 37 | <10 | 14  | 94  |
|         | 0004  |      | 4 9 9 4  |    |      |    | ~-  |            |                      |     |    |     | _   |     |
| 81      | 2681  | 941  | <1 <0.01 | 40 | 580  | 14 | 35  | 20         | 40 < 0.01            | <10 | 54 | <10 | 7   | 105 |
| 82      | 2682  | 376  | <1 0.01  | 36 | 870  | 10 | 15  | <20        | 127 0.02             | <10 | 46 | <10 | 5   | 108 |
| 83      | 2683  | 317  | <1 <0.01 | 43 | 330  | 10 | 35  | <20        | 27 0.01              | <10 | 56 | <10 | 6   | 81  |
| QC DAT  | ۹:    |      |          |    |      |    |     |            |                      |     |    |     |     |     |
| Repeat: |       |      |          |    |      |    |     |            |                      |     |    |     |     |     |
| . 1     | 2551  | -    |          | -  | -    | -  | -   | -          |                      | -   | -  | -   | -   | -   |
| 10      | 2560  | 317  | <1 <0.01 | 40 | 300  | 10 | 5   | <20        | 23 0.01              | <10 | 64 | <10 | 5   | 93  |
| 19      | 2569  | 234  | <1 <0.01 | 23 | 1080 | 10 | 195 | <20        | 115<0.01             | <10 | 14 | <10 | 12  | 68  |
| 28      | 2578  | 516  | <1 <0.01 | 32 | 400  | 10 | 30  | <20        | 28<0.01              | <10 | 59 | <10 | 4   | 155 |
| 36      | 2586  | 393  | <1 <0.01 | 29 | 690  | 10 | 65  | <20        | 46 < 0.01            | <10 | 76 | <10 | 12  | 51  |
| 45      | 2595  | 394  | <1 <0.01 | 30 | 220  | 12 | 15  | <20        | 35 < 0.01            | <10 | 68 | <10 | 6   | 85  |
| 54      | 2654  | 397  | <1 <0.01 | 41 | 330  | 12 | 5   | <20        | 32 0.02              | <10 | 67 | <10 | 4   | 92  |
| 63      | 2663  | 410  | <1 <0.01 | 46 | 500  | 14 | 5   | <20        | 46 0.02              | <10 | 73 | <10 | 5   | 129 |
| 71      | 2671  | 526  | <1 <0.01 | 43 | 680  | 12 | 50  | <20        | 43 < 0.02            | <10 | 73 | <10 | 5   | 115 |
| 80      | 2680  | 568  | <1 0.01  | 43 | 620  | 14 | 30  | <20<br><20 | 43 <0.01<br>87 <0.01 | <10 | 38 | <10 | 14  | 94  |
| 00      | 2000  | 500  | ST 0.00  | 40 | 020  | 14 | 50  | ~20        | 07 \0.01             | -10 | 50 | -10 | 14  | 34  |

#### ECO TECH LABORATORY LTD.

| Et #. Tag #                 | Mn         | Mo Na %            | Ni       | P Pb             | Sb       | Sn         | Sr Ti %            | U          | V        | W          | Y      | Zn       |
|-----------------------------|------------|--------------------|----------|------------------|----------|------------|--------------------|------------|----------|------------|--------|----------|
| <b>Standard:</b><br>GEO '03 | 622        | <1 0.02            | 31       | 630 20           | <5       | <20        | 43 0.10            | <10        | 63       | <10        | 9      | 73       |
| GEO '03<br>GEO '03          | 638<br>644 | <1 0.02<br><1 0.02 | 30<br>31 | 600 20<br>610 20 | <5<br><5 | <20<br><20 | 45 0.10<br>47 0.11 | <10<br><10 | 66<br>68 | <10<br><10 | 8<br>8 | 72<br>72 |

**ECO TECH LABORATORY LTD.** Jutta Jealouse B.C. Certified Assayer

| GARY F                                          | R. THOMF | PSON              | ICP CERTIFICATE OF ANALYSIS AK 2003-338 |                      |    |     |    |      |                |                |                |    |                               |         |  |
|-------------------------------------------------|----------|-------------------|-----------------------------------------|----------------------|----|-----|----|------|----------------|----------------|----------------|----|-------------------------------|---------|--|
| Et #.                                           | Tag #    | Au(ppb)           | Ag                                      | AI %                 | As | Ва  | Bi | Ca % | Cd             | Co             | Cr             | Cu | Fe%L                          | .a Mg % |  |
| <b>Standar</b><br>GEO '03<br>GEO '03<br>GEO '03 | 3        | 135<br>135<br>130 | 1.6<br>1.7<br>1.7                       | 1.64<br>1.65<br>1.69 | 60 | 145 | <5 | 1.61 | <1<br><1<br><1 | 19<br>19<br>19 | 60<br>59<br>60 | 90 | 3.57 <1<br>3.57 <1<br>3.61 <1 | 0.93    |  |

JJ/kk

#### ECO TECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assayer

### APPENDIX 2

# **Analytical Procedure Assessment Report**

## SAMPLE PREPARATION

Samples are catalogued and dried. Soils are prepared by sieving through an 80-mesh screen to obtain a minus 80-mesh fraction. Samples unable to produce adequate minus 80-mesh material are screened at a coarser fraction. These samples are flagged with the relevant mesh. Rock samples are 2 stage crushed to minus 10 mesh and a 250 gram sub sample is pulverized on a ring mill pulverize to -140 mesh. The sub sample is rolled, homogenized and bagged in a prenumbered bag.

# GEOCHEMICAL GOLD ANALYSIS

The sample is weighed to 30 grams and fused along with proper fluxing materials. The bead is digested in aqua regia and analyzed on an atomic absorption instrument. Overrange values for rocks are re-analyzed using gold assay methods.

Appropriate reference materials accompany the samples through the process allowing for quality control assessment. Results are entered and printed along with quality control data (repeats and standards). The data is faxed and/or mailed to the client.

## Analytical Procedure Assessment Report

# MULTI ELEMENT ICP ANALYSIS

Samples are catalogued and dried. Soil samples are screened to obtain a -80 mesh sample. Samples unable to produce adequate -80 mesh material are screened at a coarser fraction. These samples are flagged with the relevant mesh. Rock samples are 2 stage crushed to minus 10 mesh and pulverized on a ring mill pulverizer to minus 140 mesh, rolled and homogenized.

A 0.5 gram sample is digested with 3ml of a 3:1:2 (HCl:HN03:H20) which contains beryllium which acts as an internal standard for 90 minutes in a water bath at 95°C. The sample is then diluted to 10ml with water. The sample is analyzed on a Jarrell Ash ICP unit.

Results are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are printed on a laser printer and are faxed and/or mailed to the client.

K:Methods/methicp