
REPORT

on the

CHRISTMAS LAKE PROJECT

Canim Lake Area
Clinton Mining Division, British Columbia

Latitude 51° 54' N., Longitude 120° 46' W. NTS map sheet 92P/15W

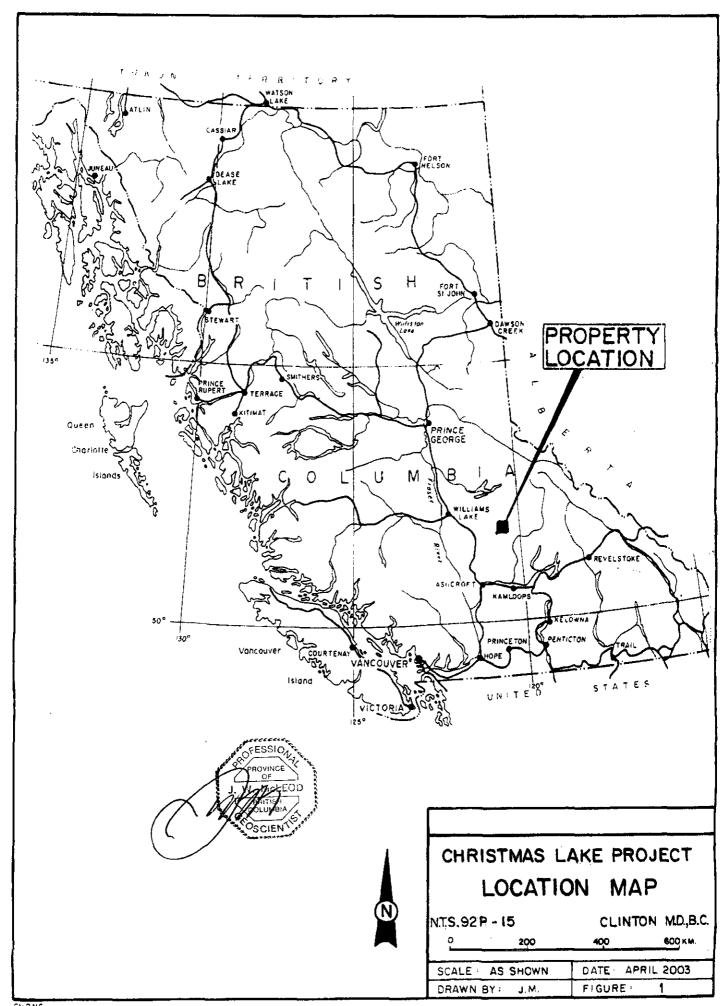
November 19, 2003 Delta, British Columbia

TABLE OF CONTENTS

	<u>Page</u>
SUMMARY	3
INTRODUCTION	4
LOCATION AND ACCESS	4
TOPOGRAPHICAL AND PHYSICAL ENVIRONMENT	4
PROPERTY AND OWNERSHIP	5
HISTORY	6
GEOLOGY	6
PREVIOUS WORK PROGRAMS	7
CURRENT WORK PROGRAM	7
CONCLUSIONS	8
RECOMMENDATIONS	9
COST ESTIMATE	9
STATEMENT OF COSTS	10
CERTIFICATE	11
REFERENCES	12
<u>APPENDICES</u>	
1. ROCK SAMPLE LOGS	13
2. ROCK ANALYSES	15
3. DRILL CORE LOGS	17
4. DRILL CORE ANALYSES	22
PICUDEC	
<u>FIGURES</u>	
	After Page
1. LOCATION MAP	3
2. CLAIM MAP	4

In Back

3. SAMPLE AND DRILL HOLE LOCATION MAP


SUMMARY

The Christmas Lake gold property described in this report is located on the north side of Canim Lake in the Clinton Mining Division, south central British Columbia, Canada.

The property was originally discovered pre-1973 during the porphyry copper search of the 1950-1970's and was first staked as a gold prospect in 1983. It became an active exploration project area in 1983 through 1987 and underwent geological, geophysical and geochemical surveys. The gold values encountered during that period on the Christmas Lake property ranged up to 0.047-0.202 oz/ton. These gold values were obtained from volcaniclastic, tuffaceous and intrusive rock units that have undergone varying degrees of propylitic alteration. These units are seen to exhibit mainly pyrrhotite-pyrite mineralization and rarely galena and chalcopyrite. The more intensively mineralized volcanic and/or igneous rock units often occur as skarnified zones within what may be larger roof pendant. The gold mineralized, anomalous target areas found during the 1984-87 exploration period had not undergone any drilling until the summer of 2003. The two drill holes completed during the current program rendered a lot of good information about the geology, including the mineralization, alteration and some questions about the cause(s) of the induced polarization responses. The two drill holes encountered anomalous gold values. DDH 03-1 was anomalous, > 20ppb over most of its 600' length while hole 03-2 was anomalous over its first 130' while the 130'-384' section has been logged, but not analyzed. Both holes drilled to date will be a guide toward future drill targets.

From August 24, 2002 to August 23, 2003 the property underwent excavator trenching, prospecting, mapping and sampling of surface exposures and diamond drilling.

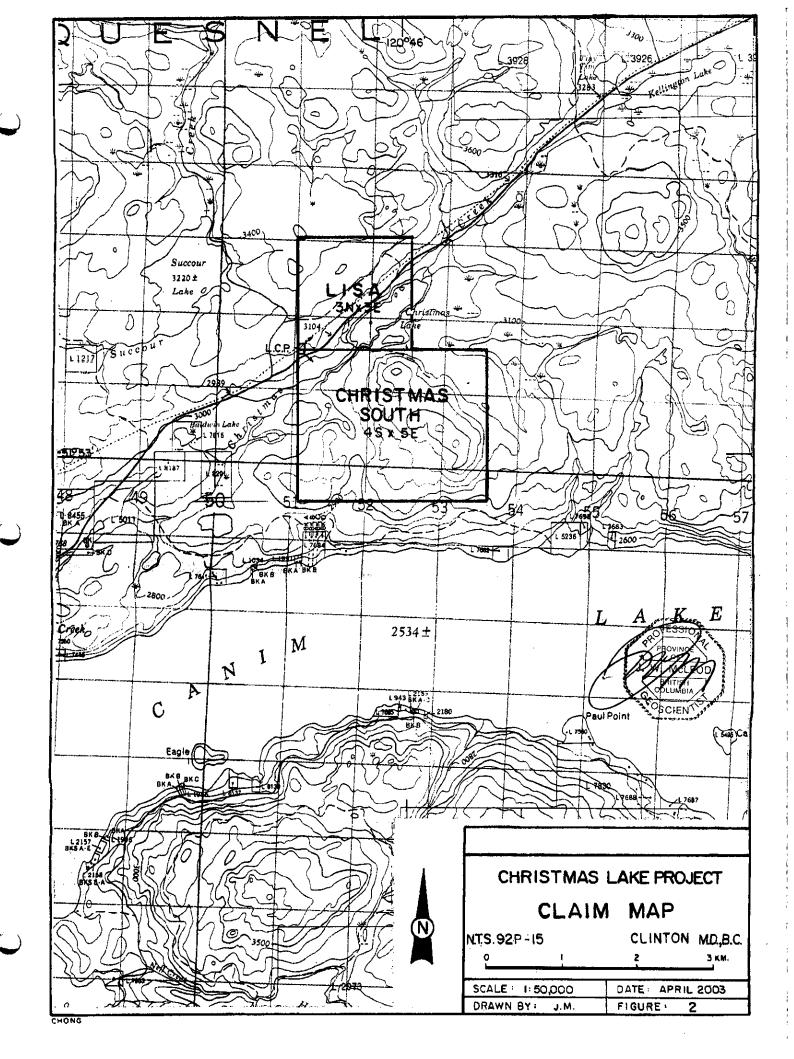
The property is owned 100% by Nustar Resources Inc. of Delta, British Columbia. There is a 2% net smelter royalty (NSR) held by the vendor of the property.

CHONG

INTRODUCTION

The Company acquired an option agreement on the Christmas Lake property in early 2002. The property lies within a region of moderately mountainous, rounded terrain exhibiting excellent regional geology, good access, logistics and a generally mild climate. The current fieldwork program described in this report includes, property road rehabilitation using both a tracked hoe and bulldozer that were also used in rock trenching and drill site preparation, as well as some rock trench reclamation. Two drill holes were completed for a total of 1,000 feet of NQ drilling. The writer, a geologist and President of Nustar Resources Inc. was acting as a Qualified Person while carrying out and supervising fieldwork on the property. The Board of Directors of the Company requested the preparation of this report.

LOCATION AND ACCESS


The claim area may be located on NTS map sheet, 92P/15W at latitude 51° 54' north and longitude 120° 46' west. The property is situated approximately 42 km. (25 airmiles) northeast of the Town of 100 Mile House, B.C. on the north side of Canim Lake. The property is situated in the Clinton Mining Division, British Columbia.

Access to the mineral claims is gained by traveling 55 km. (33 miles) east of 100 Mile House, B.C. on the good all weather Boss Mountain-Hendricks Lake road to Christmas Lake and the property.

Property roads, although they were overgrown, but since rehabilitation now offer good access to most parts of the property, especially the areas of interest.

TOPOGRAPHICAL AND PHYSICAL ENVIRONMENT

The mineral claims lie within the Fraser plateau zone or physiographic belt of the larger Interior plateau region and cover low, rounded mountainous terrain. The resulting topographic features probably originated from deeper crustal movements that produce contraction and expansion zones through the crust offering fault zones of weakness that allowed invasive igneous activity and subsequent hydrothermal alteration and mineralizing action. The Christmas Lake property may well have been affected by such events.

The claim area is mainly coniferous tree (spruce, pine and some cedar) covered plateau or terraced benches with abundant scattered patches of deciduous forest, such as Western white birch, cottonwood and aspen. The elevations of the claim area range from 900 metres (2,950') to 1,250 metres (4,100').

The general area experiences approximately 90 cm. (35") of precipitation annually, of which 15%-20% may occur as a snow equivalent. The winter weather is moderately cold with, not infrequent warming periods. The summer weather could be described as variable, some dry and hot and others cool and wet. The local area can experience a squall-type of weather in any season.

PROPERTY AND OWNERSHIP

The property is situated in the Clinton Mining Division of British Columbia, Canada at latitude 51° 54' north and longitude 120° 46' west.

The located, four-post, lode mineral claims comprise two contiguous blocks that together are known as the Christmas Lake property and are listed as follows:

<u>Name</u>	Tenure No.	<u>Units</u>	Anniversary Date
Christmas South	389460	20	August 22
Lisa	389461	9	August 23
	Total	29	

The mineral claims have not undergone a legal survey, but the writer has examined the legal corner posts (LCP's) and a number of intermediate, perimeter posts and they appeared to be in the recorded position. The mineral claims total an area of approximately 725 hectares or 1,790 acres.

The above listed mineral claims are owned 100% by Nustar Resources Inc. of Delta, British Columbia, Canada. The terms of the Option Agreement with the vendor of the property have been fulfilled and he will retain a 2% net smelter return (NSR) on the property.

HISTORY .

The recorded mining history of the general mineral claim area dates from the 1970's when exploration emphasis was directed toward the porphyry copper discovery. It wasn't until the gold hunt became intense in the late 1970's and early 1980's that exploration activities in the area really heatedup. The following scenario describes the exploration evolution of the Christmas Lake property. Some rock hand pits, bulldozer trenching and several A-sized diamond core drill holes were undertaken peripheral to the large area of interest during the early 1970's porphyry period. The exact date of this work is not known and is not available in the public record. In 1983 after the discovery of the QR gold deposit to the NNW of this property, a geological examination of the claim area revealed some lode gold indications and the property was staked on behalf of the E&B Syndicate (a German, foreign, exploration tax fund) operating out of Calgary, Alberta. E&B joint ventured (jv) the Christmas Lake Gold project with Ming Mines Limited of Vancouver, BC in 1985. The period 1985-87 saw Ming Mines fund the geological, geochemical and geophysical work on the property that constituted the j.v. activities. By 1990 Ming Mines had, at a cost of approximately \$140,000, earned a 50% interest in the Christmas Lake gold property. The fieldwork was carried-out by the operator, E&B (later this entity was taken over by Mascot Gold Mines Ltd. of Vancouver, B.C.). From approximately 1988 to 2001, the property remained in good standing, but did not undergo further fieldwork until 2002 when Nustar Resources Inc. optioned the ground.

GEOLOGY

The property covers an area underlain by interlayered volcaniclastic and tuffaceous rock units thought to belong to the Upper Triassic aged Nicola Group. Included in this assemblage are fine grained, crystalline andesites and/or diorites. These older units are intruded by quartz diorite of possible Cretaceous or younger age that are tentatively assigned to the Takomkane batholith. Volcanic dykes and overlying flows that appear to be the youngest rocks in the area, of possible Tertiary age, are also reported to have been observed cutting and overlying the older units. The property hosts a main zone of gold-bearing mineralization and several ancillary zones. The highest gold values encountered to date range from 1.5-6.0

grams (0.047- 0.193 oz/ton). The mineralized areas are contained within larger zones of propylitic alteration and hornfelsing within the older rocks that indicate varying degrees of proximity to the intrusive rock sources.

The volcaniclastics, tuffs and generally fine grained, micro-porphyritic, crystalline rocks observed on the property have a similar appearance to the Central Belt units of the Nicola Group rocks that the writer has observed at a number of locations to the south in the Aspen Grove - Princeton areas of British Columbia. Locally these alkalic rocks may be interlayered with aphanitic textured tuffs of possible rhyodacite composition. The apparently youngest rock units observed in the claim area is a micro-porphyritic hornblende diorite that is observed to lie (or intrude) concordantly in the older layered sequences and to cut, in places, discordantly across these same units.

PREVIOUS WORK PROGRAMS

During the period 1983-87 the property underwent geological mapping, rock and soil geochemistry, magnetometer, very low frequency electromagnetic (VLF-EM) and induced polarization (IP) surveying. A number of coincidently anomalous areas of interest have been delineated.

CURRENT WORK PROGRAM

The current fieldwork program was conducted under the supervision of the writer during the period August 24, 2002 to August 21, 2003. The program consisted of 5 kilometres of road clearing and rehabilitation using a tracked hoe, 1986 Kubota totalling 1 km. and a John Deere 455 bulldozer for 4 km., the hoe performed 400 metres of trenching, the bulldozer also performed 200 meteres of trench reclamation. Two rock samples, 3A and 4A, of 4.5 kilograms (10 pounds) and 2.3 kg. (5 pounds), respectively were taken from two hoe trenches (see Figure 3) and delivered to the Assayers Canada Laboratory in Vancouver, BC where they underwent screening to two fractions, +150 mesh and -150 mesh. Subsequently the two fractions of each sample underwent aqua regia digestion and fire assaying and the metallic gold analyses are listed (see Appendix 2). Two NQ-wireline sized, diamond core drill holes, DDH 03-1 and DDH 03-2 of 183 m. (600 feet) and 122 m. (400 feet), respectively were diamond sawn, logged and

sampled. The subsequent logs and analyses of these core sections are listed (see Appendix 3 & 4).

The mechanized work performed on the Christmas South mineral claim was completed to allow access and in some respect aiding in establishing the drill sites, in conjunction with the extensive data collected previously.

The first two sites (holes), DDH 03-1 and DDH 03-2 are located at L99+11W-50+00N (baseline) and L100+50W-50+00N, respectively (see Figure 3). The azimuth, dip and total depth of the holes is N180°/-60/183 metres (600') and N180°/-50°/122 metres (400'), respectively. Both holes cut the volcaniclastic, vitric and crystalline tuffaceous units and fine grained (microporphyritic), alkalic intrusives, as well as later fine-medium grained dyke rock units.

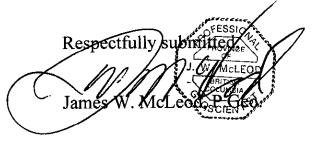
The object of the initial drilling was to try and determine the attitude, rock type and characteristics of any gold-bearing units in relation to the fairly extensive data previously collected.

Much information was gained from the two initial drill holes and auriferous material is seen to occur at a greater depth than anything previously encountered. In such a large area of interest our first attempts are very positive.

CONCLUSIONS

Some characteristics of the gold occurrences are suggested by the initial drilling within the coincidently anomalous zone. This large 2,400' (750 metre) long x 450' – 600' (140–180 metre) wide, NW trending/NE dipping zone exhibiting coincident Fraser filtered, apparent high chargeability and anomalous gold geochemistry, >20ppb. Characteristics of this zone reveal a high iron content, mainly as a pyrite fracture-welded host. Historical gold values encountered by the 1983-88 programs ran as high as 4 to 6 gm. per tonne. This program encountered gold values up to 1,560 parts per billion or 1.56 gm. per tonne (see Assessment Report dated 2002).

Concentrated fracturing with pyrite (quartz and/or calcite) welding seems necessary for the occurrence of significant gold values, where as chalcopyrite and/or galena don't have this effect. The highest gold values encountered to date in the two drill holes occur in the skarn zones that are high in iron pyrite as fracture-welds and the propylitic alteration minerals


gypsum, calcite, chlorite, minor epidote and sericite in decreasing amounts. DDH 03-1 returned a 31' section of weighted average gold, 0.027 oz/tonne (0.821 gm/tonne) between 191'-222' and a 27' section of 0.033 oz/tonne (1.060 gm/tonne) weighted gold between 195'-222'. Very limited drilling has been completed in this large anomalous area and it is highly unlikely that the best of the drill targets were randomly chosen.

RECOMMENDATIONS

A continuing program of drilling the zones of coincident Fraser filtered, apparent chargeability and anomalous gold, soil and rock geochemistry is recommended. In the event that a significant gold model evolves, an expansion of the current grid and the induced polarization (IP) survey should be undertaken. Long, prospecting-type survey lines may be an effective method to try.

COST ESTIMATE

Geologist, supervision and assistance	for 60 days	\$ 33,000
1,000 metres of core drilling, all inclus	sive @ \$100/m.	100,000
Camp and board for 120 mandays		12,000
Transportation rentals and fuel		10,000
Sampling and preparing core supplies		3,000
Analyses and assays		7,000
Permits, fees, filings, insurance, etc.		6,500
Reports and maps		4,500
Contingency		10,000
	Total	\$186,000

STATEMENT OF COSTS

Geology, supervision and core handling, J. McLeod	\$ 14,119
300 metres (984') NQ-wireline core drilling by	
G.D. Drilling of Merritt, BC	24,000
Hoe and bulldozer, road rehabilitation, trenching	
and trench reclamation	4,000
Equipment and supplies, including trailer,	
chainsaws and sampling equipment @\$200/day	1,800
Assaying	1,496
4x4 truck rental and mileage	3,030
Travel, accommodation and meals	<u>1,555</u>
Total	\$ 50,000

CERTIFICATE

I, JAMES W. McLEOD, of the Municipality of Delta, Province of British Columbia, hereby certify as follows:

I am a Consulting Geologist with an office at #203 - 1318 56th Street, Delta, B.C., V4L 2A4.

I am a Professional Geoscientist registered in the Province of British Columbia and a Fellow of the Geological Association of Canada.

I graduated with a degree of Bachelor of Science, Major Geology, from the University of British Columbia in 1969.

I have practiced my profession since 1969.

I am the President and CEO of Nustar Resources Inc. (formerly Big I Developments Ltd.) who is the owner of the Christmas South and Lisa mineral claims and regarding the fieldwork performed during this reported program am acting as a Qualified Person.

The above report is based on personal field experience gained by the myself in the general area during the past 30 years and on the Christmas Lake property during the past 20 months.

DATED at Delta, Province of British Columbia this 19th day of November 2003.

lames W. McLeod, P.Geo.

Qualified Person

REFERENCES

British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Reports - 3,547, 14,239, 14,452, 15,699 and 16,170.

Campbell, R.B.: Quesnel Lake west half, GSC, Map 3-1961.

Campbell, R.B. and Tipper, H.W., 1964-65. GSC, Bonaparte River Map 3-1966.

McLeod, James W., Report on the Christmas Lake Project, Assessment Report dated November 19, 2002.

Melling, David R. and Watkinson, David H., 1987. Alteration of Fragmental Basaltic Rocks: The Quesnel River Gold Deposit, central British Columbia. BCEM&PR-Geological Fieldwork 1987, pg. 335-347.

Porphyry Deposits of the Canadian Cordillera – Special Volume 15, 1976. Canadian Institute of Mining and Metallurgy.

Panteleyev, Andrejs, 1986. Quesnel Gold Belt-Alkalic Volcanic Terrane between Horsefly and Quesnel Lakes. BCMEM&PR-Geological Fieldwork 1986, pg. 125-133.

Preto, V. A., 1972. Geology of Copper Mountain. Bulletin 59, British Columbia Department of Mines and Petroleum Resources.

Preto, V. A. Geology of the Nicola Group between Merritt and Princeton. Bulletin 69, British Columbia Ministry of Energy, Mines and Petroleum Resources.

Tipper, H.W.: Quesnel, BC, GSC, Map 12-1959.

APPENDIX 1

Rock Sample Logs

ROCK LOG

Company: Nustar Resources Inc.
Project: Christmas Lake
Location: 92P/15W , Clinton, M.D.B.C.

Area: Canim Lake Date: Nov/03

Sample Number(s)	Description
3A	L99+30W-48+65N. #6920 Hi-fractured (050°-070°) blocky, oxidized, fine grained, greenish skarn (propylitic altered) with abundant disseminated pyrrhotite (po) and pyrite(py). The sample is approx. 10 lb. in weight – to undergo screening to two sizes = +150 mesh and -150 mesh. To undergo agua regia digestion and to be analyzed for gold by fire assay.
4A	L99+25W-48+80N. #6921 Similar rock to 3A (#6920). 5 lb. in to undergo similar analyses.

APPENDIX 2

Rock Analyses

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Quality Assaying for over 25 Years

Metallic Assay Certificate

3V-0110-RM1

Company:

Nustar Resources

Mar-20-03

Project: Attn:

Jim McLeod

We hereby certify the following analysis of 2 rock samples submitted Mar-12-03 by Jim McLeod.

Sample	WtTotal	Wt+150	+150Au	-150Au	Metallic Au	Net Au
Name	g	g	mg	g/tonne	g/tonne	g/tonne
3A	329.2	22.58	0.002	0.14	<0.01	0.14
4A	287.4	19.31	0.001	0.06	<0.01	0.06

De

APPENDIX 3

Drill Core Logs

DRILL CORE LOG

<u>Company:</u> Nustar Resources Inc. <u>Project:</u> Christmas Lake Gold

Location: L99+11W - 50+00 (Baseline)N

Area: Canim Lake; 92P/15W

Date: November 2003

Hole No.: DDH 03-1 Azimuth: N180°

Dip: -60°

Total Depth: 183 m. (600')
Core Size: NQ-wireline

Interval (feet)	Recovery (%)	Description
0 - 10	20% as rubble	Casing, Rubble as Light greenish aphanitic with "ghosty" qt'z-weld. Fracts. To 2mm. Disseminated pyrrhotite (po) and frac-weld pyrite (py). Tuff (Vt). Sa.1
10 - 30	50% - 95%	Similar crystal, lithic Vt.Diss po and q'tz-py-weld. fracs. 10'-20'-Sa. 2; 20'-25'-Sa. 3; 25'-30'-Sa.4
30 - 45	95%+	Altered fine grained homblende-feldspar micro-porphyry, p.blasts to 1mm. 30'-35' — Sa.5; 35'-40' — Sa.6 40'-45' — Sa.7.
45 91	95%+	Volcaniclastic skam (VcSk) – I. green to whitish, aphanitic, some "ghosty" liths, propylitic alteration and accompanying silicification appear to be conditions within this section that have offered an induration or hardening effect that may encourage a brittle fracture. This may be the reason for the siliceous-pyrite-welding of moderate to strong fracturing within this zone and hence the increased gold values. The areas of abundan layered, massive or strong dissemination of pyrrhotite do not appear to be the gold host, just as the minor and scares occurrences of galena and chalcopyrite don't appear to carry the gold values either. Sa. 8 – 45'-47'; Sa. 9 – 47'-50'; Sa. 10 – 50'-55; Sa.11 – 55'-60'; Sa.12 – 60'-65; Sa. 13 – 65-70; Sa.14 – 70'-75; Sa.15 – 75-80; Sa16 – 80-85; Sa17 – 85-91.
91 - 122	95%+	Microporphyritic homblende syenite, No gold. Sa18 – 91-95.
122 -140	95%+	Vt that in places contains liths and/or may be brecciated and near the end of this section becomes crystalline Sa19 – 122-125; Sa20 – 125-130; Sa21 – 130-135; Sa22 – 135-140.
140 - 145	95%+	VcSk whitish-green coloured, indurated.
145 - 191	95%+	Vt or altered v. fine grained crystal and or lithic intrusive or volcanic rock. Both Po and Py present as disseminations, and in places as fracture-welds. This unit is extremely indurated, but fracture density has not appeared to have increased. Sa23 – 140-145 is of a narrow zone of VcSk, but continuing at Sa24 145-147 to and including samples to 191' the section remains a Vt as described above. Sa25 – 147-152; Sa26 - 152-156 Sa27 – 156-160; Sa28 – 160-165; Sa29 – 175-180; Sa30 – 180-185; Sa31 – 185-191.
191 - 195	95%+	Contact zone, may be Vt, but very tight, indurated. Sa32 – 191-195.
195 - 222	95%+	Vc or Vt with an increase in quartz+sulphide-welded fractures. Sa33 – 195-200; Sa34 – 200-205; Sa35 – 205 210; Sa36 – 210-217 at 217' changes to a lithic Vt which continues to 222'. Sa 37 – 217-222.
222 - 235	95%+	Microporphyritic homblende syenite. Sa38 – 222-235.
235 - 320	95%+	Vt crystal-lithic with varying layers or zones of alteration (some VtSk). Sa39 – 235-240; Sa40 – 240-245; Sa4 – 245-250; Sa42 – 250-255; Sa43 – 248' – 248' 4" (4 inch sample); Sa44 – 255-261; Sa45 – 261-265; Sa46 - 265-270; Sa47 – 270-275; Sa48 – 295-306; Sa49 – 315-320.

325 - 345	95%+	Microporphyritic hornblende syenite with aphanitic or very fine grained matrix. Sa50 – 325-332; Sa51 – 335-340.
345 - 395	95%+	Interlayered light green, aphanitic Vc and fine grained intrusive all propylitic altered – calcite, chlorite, quartz, epidote, some VcSk. Sa52 – 345-350; Sa53 – 370-374; Sa54 – 374-375; Sa55 – 388'6" (1/2" sample because sample seen to contain minor chalcopyrite.
395 - 600	95%+	Weak to moderate propylitic alteration (epidote-calcite-chlorite-sericite) and minor skarn zones of a homblende-feldspar microporphyritic fine grained matrix intrusive with some black (organic looking material) from 531' – 568'. Sa56 – 395-400; Sa57 – 405-410; Sa58 – 425-430; Sa59 – 445-450; Sa60 – 460-465; Sa61 – 489-494; Sa62 - 505-510; Sa63 – 520-525; Sa64 – 535-540; Sa65 – 555-560; Sa66 – 580-585; Sa67 – 595-600; Sa68 – 0-20 (sand and sludge from top-of-hole). End-of-Hole.

DRILL CORE LOG

Company: Nustar Resources Inc.

Project: Christmas Lake Gold

Location: L100+50W - 50+00(Baseline)N

Area: Canim Lake
Date: November 2003

Hole No.: DDH 03-2 Azimuth: N180°

Dip: -50°

Total Depth: 117 m. (384')
Core Size: NQ-wireline

Interval Recovery Description (%)					
0 - 18	5%	Casing approx. 1 foot broken homblende-feldspar micro-porphyry with minor disseminated veinlet pyrrhotite (Po)-welds. The Po is magnetic. Feldspars are as white, weakly altered lathes. Sa. 69 0-18'.			
18 - 20	75%+	Broken, highly fractured, very fine grained, grey-brown coloured, "border or contact" phase grading to a mixture with a vfgr. Volcaniclastic containing flat dendrites and crystal clusters of Py. Frac's approx. 40°-60° down to core axis (ca) and veinlets observed to contain Py and calcite-welds. Sa70 18-20.			
20 - 26	75%+	Border phase continues to 26' as grey-br'n aphanitic, Frac. now 30° down to ca. Sa71 20-26.			
26 - 33	95%+	At 26' r'x is an aphanitic, volcaniclastic skarn with laminae or re-mobilization veinlets of magnetic Po. Some Py on frac.s at 70° - 20° to ca. Contact approx. 50° down to ca. Sa72 26-33.			
33 - 35	95%+	Contact at approx. 33' to hornblende-feldspar micro-porphyry. Some horn's euhedral to 3/16". Sa73 33-35			
35 - 40	95%+	Contact at 35' and 50° down to ca. Back to VcSk or a light brown, aphanitic crystal-lithic tuff. Some veinlet – welds. to ¼", i.e. @ approx. 45° to ca, as Po=1/8" with Py=1/16" on each side of the Po. Sa74 35-40.			
40 - 45	95%+	Contact at 40' approx. 50° down to ca and start of a similar aphanitic, silaceous rock - tuff? Sa75 40-45.			
45 - 50	95%+	Contact at 45' approx. 50° down to ca and start of hom, porphyry basalt (hpb). Sa76 45-50.			
50 - 61	95%+	Same hpb. Sa77 50-55; Sa78 55-61.			
61 - 68	95%+	Same 50° contact, back to VcSk. Sa79 61-68.			
68 - 70	95%+	Same 50° contact, back to hpb. Sa80 68-70.			
70 - 135	95%+	Same 50° contact, back to VcSk at 70°. Start of induration or hardening, silicification and "ghosty" quartz-ble and massive stringer of Po (magnetic) sub-parallel to ca. Calcite fracwelds. Sa81 70-75; Sa82 75-80; Sa83 80-85; Sa84 85-90; Sa85 90-95; Sa86 95-100; Sa87 100-105; Sa88 105-110; Sa89 110-115; Sa90 115-120 Sa91 120-125; Sa92 125-30; Sa93 130-35.			
135 - 171	95%+	Indurated, silicification start at 135' to a Vt zone with a marked decrease in the amount of pyrite welded frac No sampling.			
171 - 217	95%+	@ 171' contact at 40°-50° down to ca to a homblende-feldspar micro-porphyry (diorite?) with very minor disc Py in few places. The homblende and feldspar micro-porphyroblasts may be weakly altered. The unit as a whole is strongly indurated (silicification), some calcite-welded fractures, minor diss. Py, no magnetic or othe Po. At 185' unit becomes less indurated, silicified and less calcite welds. No sample.			
217 - 225	95%+	At 217' contact to VcSk or VtSk, greenish and creany - white coloured alternating layers or alteration zones			

225 - 242	95%+	At 225' contact still approx.50° down to ca. where rock unit becomes a hornblende porphyry with blasts to
j		½"in a very fine grained, brownish matrix, it is a phbasalt or phsyenite. No Sample.
242 - 277	95%+	At 242' similar contact? rock unit is now an aphanitic to very fine grained, greenish (altered) volcanic, V with similar-layering to ca. Is either a VcSk or VtSk. No Sample.
277 - 299	95%+	At 277' similar contact? rock unit changes to a Vc or Vt. No sample.
299 - 315	95%+	At 299' rock unit changes to Vt (crystal) feldspars? Also beginning of a more abundant calcite (dolomitized)
		diss. and abundant fracture-welds to 1'2"+. No sample.
315 - 384	95%+	At 315' beginning of atternating, interlayering of m-f porphyry basalt with decreasingly abundant layers of Vc or Vt. 384' EOH. No sample.
	i	

• C

. --

-

APPENDIX 4

Drill Core Analyses

Global Discovery Labs

NUSTAR RESOURCES-X03 #1-43

Report date: 17 SEPT 2003

Job V03-0474R

LAB NO	FIELD NUMBER	Au	Wt Au	Au(Q)	Pt(Q)	Pd(Q)	
		dqq	gram	ррь	ppb	dqq	
R0312519	1	36	5				
R0312520	2	48	5				
R0312521	3	40	5				
R0312522	4	36	5				
R0312523	5	42	5				
R0312524	6	48	5	,			
R0312525	7	46	5				
R0312526	8	72	5				
R0312527	9	42	5				
R0312528	10	78	5				
R0312529	1 1	<10	5				
R0312530	12	40	5				
R0312531	13	72	5				
R0312532	14	116	5	155	3	5	
R0312533	15	132	5	154	4	9	
R0312534	16	204	5	221	7	4	
R0312535	17	140	5	184	2 '	<2	
R0312536	18	24	5				
R0312537	19	39	5				
R0312538	20	24	5				
R0312539	21	54	5				
R0312540	22	68	5				
R0312541	23	116	5	115	<2	5	
R0312542	24	28	5				
R0312543	25	66	5				
R0312544	26	46	5				
R0312545	27	44	5				
R0312546	28	62	5				
R0312547	29	32	5				
R0312548	30	24	5				
R0312549	31	42	5				
R0312550	32	128	5	141	2	5	
R0312551	33	682	5	947	6	4	
R0312552	34	924	5	1263	5	4	
R0312553	35	402	5	489	5	7	
R0312554	36	1328	5	1404	2	5	
R0312555	37	238	5	315	12	10	
R0312556	38	316	5	258	7	, 5	
R0312557	3 9	148	5	162	<2	4	
R0312558	40	104	5	128	4	5	
R0312559	41	120	5	111	5	7	
R0312560	43	198	5	221	6	7	

l=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised if requested analyses are not shown, results are to follow

ANALYTICAL METHODS

Au Aqua regia decomposition / solvent extraction / AAS

Report date: 17 SEPT 2003

Job V03-0474R

LAB NO	FIELD NUMBER	Au	Wt Au	Au(Q)	Pt(Q)	Pd(Q)	
		ppb	gram	ppb	ppb	þþb	

Wt Au The weight of sample taken to analyse for gold (geochem)

Au(Q) Fire Assay-Lead Collection/Graphite Furnace Pt(Q) Fire Assay-Lead Collection/Graphite Furnace Pd(Q) Fire Assay-Lead Collection/Graphite Furnace

NUSTAR RESOURCES-X03 #1-43

Report date: 11 SEPT 2003

Job V03-0474R

_																-												
													7-1															
FIELD NUMBER	Cu	Pb	Zn	Ag	As	Ва	Cd	Co	Ni	Fe	Mo	Cr	Bi	Sb	V	Sn	W	S r	Y	La	Mn	Mg	Ti	Al	Ca	Na	K	P
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	bb m	ppm	%	%	%	%	%	%	ppm
						-			- , 																			10000000
37	145	5	20	<.4	<2	25	<1	13	25	3.77	<2	54	<5	<5	59	<2	2	52	8	<2	261	0.60	0.13	1.53	2.10	0.09	0.07	2122
38	63	7	34	<.4	<2	29	<1	17	40	4.63	<2	65	<5	<5	118	<2	3	103	6	. <2	405	1.41	0.18	2.67	2.13	0.16	0.10	1819
40		_			_					-	_					_		4.0	~		004	8.00	0.16	1,72	4 07	0.00	0.48	1828
	FIELD NUMBER	FIELD NUMBER Cu ppm 37 145 38 63	FIELD NUMBER Cu Pb ppm ppm 37 145 5 38 63 7	FIELD NUMBER Cu Pb Zn ppm ppm ppm 37 145 5 20 38 63 7 34	FIELD NUMBER Cu Pb Zn Ag ppm ppm ppm ppm 37 145 5 20 <4 38 63 7 34 <4	FIELD NUMBER Cu Pb Zn Ag As ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	FIELD NUMBER Cu Pb Zn Ag As Ba ppm ppm ppm ppm ppm ppm ppm 37 145 5 20 <4 <2 25 38 63 7 34 <.4 <2 29	FIELD NUMBER Cu Pb Zn Ag As Ba Cd ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	FIELD NUMBER Cu Pb Zn Ag As Ba Cd Co ppm ppm ppm ppm ppm ppm ppm	FIELD NUMBER Cu Pb Zn Ag As Ba Cd Co Ni ppm	FIELD NUMBER Cu Pb Zn Ag As Ba Cd Co Ni Fe ppm ppm ppm ppm ppm ppm ppm	FIELD NUMBER Cu Pb Zn Ag As Ba Cd Co Ni Fe Mo ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	FIELD NUMBER Cu Pb Zn Ag As Ba Cd Co Ni Fe Mo Cr ppm	FIELD NUMBER Cu Pb Zn Ag As Ba Cd Co Ni Fe Mo Cr Bi ppm	FIELD NUMBER Cu Pb Zn Ag As Ba Cd Co Ni Fe Mo Cr Bi Sb ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	FIELD NUMBER Cu Pb Zn Ag As Ba Cd Co Ni Fe Mo Cr Bi Sb V ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	FIELD NUMBER Cu Pb Zn Ag As Ba Cd Co Ni Fe Mo Cr Bi Sb V Sn ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	FIELD NUMBER Cu Pb Zn Ag As Ba Cd Co Ni Fe Mo Cr Bi Sb V Sn W ppm ppm ppm ppm ppm ppm ppm ppm ppm p	FIELD NUMBER Cu Pb Zn Ag As Ba Cd Co Ni Fe Mo Cr Bi Sb V Sn W Sr ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	FIELD NUMBER Cu Pb Zn Ag As Ba Cd Co Ni Fe Mo Cr Bi Sb V Sn W Sr Y ppm	FIELD NUMBER Cu Pb Zn Ag As Ba Cd Co Ni Fe Mo Cr Bi Sb V Sn W Sr Y La ppm	FIELD NUMBER Cu Pb Zn Ag As Ba Cd Co Ni Fe Mo Cr Bi Sb V Sn W Sr Y La Mn ppm	FIELD NUMBER Cu Pb Zn Ag As Ba Cd Co Ni Fe Mo Cr Bi Sb V Sn W Sr Y La Mn Mg ppm	FIELD NUMBER Cu Pb Zn Ag As Ba Cd Co Ni Fe Mo Cr Bi Sb V Sn W Sr Y La Mn Mg Ti ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	FIELD NUMBER Cu Pb Zn Ag As Ba Cd Co Ni Fe Mo Cr Bi Sb V Sn W Sr Y La Mn Mg Ti Al ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	FIELD NUMBER Cu Pb Zn Ag As Ba Cd Co Ni Fe Mo Cr Bi Sb V Sn W Sr Y La Mn Mg Ti Al Ca ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	FIELD NUMBER Cu Pb Zn Ag As Ba Cd Co Ni Fe Mo Cr Bi Sb V Sn W Sr Y La Mn Mg Ti Al Ca Na ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	FIELD NUMBER Cu Pb Zn Ag As Ba Cd Co Ni Fe Mo Cr Bi Sb V Sn W Sr Y La Mn Mg Ti Al Ca Na K ppm ppm ppm ppm ppm ppm ppm ppm ppm p

Finsufficient sample X=small sample E=exceeds calibration C=being checked R=revised if requested analyses are not shown, results are to follow

ANALYTICAL METHODS

iCP PACKAGE: 0.5 gram sample digested in hot reverse aqua regia (soil,siit) or hot Aqua Regia(rocks).

Global Discovery Labs

NUSTAR RESOURCES-X03 #42/44-68

Report date: 17 SEPT 2003

Job V03-0480R

LAB NO	FIELD NUMBER	Au ppb	Wt Au gram	Au(Q)	Pt(Q) ppb	Pd(Q) ppb	
R0312567	#42	120	5	90	8	8	
R0312568	#44	106	5	81	3	8	
R0312569	#45	42	5				
R0312570	, #46	444	5	663	8	9	
R0312571	#47	64	5				
R0312572	#48	108	5	157	4	4	
R0312573	#49	24	5				
R0312574	#50	26	5				
R0312575	#51	<10	5				
R0312576	#52	42	5				
R0312577	#53	40	5				
R0312578	#54	<10	5				
R0312579	#55	162	5	119	5	30	
R0312580	#56	34	5				
R0312581	#57	22	5				
R0312582	#58	28	5				
R0312583	#59	52	5				
R0312584	#60	36	5				
R0312585	#61	44	5				
R0312586	#62	40	5				
R0312587	#63	44	5				
R0312588	#64	22	5				
R0312589	#65	36	5				
R0312590	#66	<10	5				
R0312591	#67	38	5				
R0312592	#68	42	5				

l≡insufficient sample X=smail sample E=exceeds calibration C=being checked R≃revised if requested analyses are not shown, results are to follow

ANALYTICAL METHODS

Au Aqua regia decomposition / solvent extraction / AAS

Wt Au The weight of sample taken to analyse for gold (geochem)

Au(Q) Fire Assay-Lead Collection/Graphite Furnace

Pt(Q) Fire Assay-Lead Collection/Graphite Furnace

Pd(Q) Fire Assay-Lead Collection/Graphite Furnace

NUSTAR RESOURCES-X03 #42/44-68

teckcominco

Global Discovery Labs

	Report date: 1	11 SEPT 2	2003															_									/ 03-048	_	
LAB NO	FIELD NUMBER	Cu ppm	Pb ppm	Zn ppm	Ag ppm	As ppm	Ba ppm	Ç.d ppm	Co pan	Ni mc,q		eso pen		Bi Opm	St. ppk:	ppm V	•		Sr ppm	Y ppm	La ppm	Mn ppn	Mg %	π %	Al %	Ca %		K %	P ppm
R0312579 R0312592	#55 #68	1133 428	13 9	80 222	0.4 7.9	<2 470	18 117	<.i	ย7 34	68 86	20.53 5.03	12 7	22 58	<5 <5	<5 9	104 75	<2 <2	7 637	43 47	6 10	Q Q	373 451	0.83 0.95	0.17 0.17	1.87 2.10	2.18 1.75	0.07 0.16	0.0 9 0.12	1279 978

trinsufficient sample X-small sample E-exceeds calibration C-being checked R-revised If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

ICP PACKAGE: 0.5 gram sample digested in hot reverse aqua regia (soil,silt) or hot Aqua Regia(rocks).

Global Discovery Labs

NUSTAR RESOURCES-X03 #69-93

Report date: 30 SEPT 2003

Job V03-0543R

LAB NO	FIELD NUMBER	Au pob	Wt Au gram	Au(Q) ppb	Pt(Q) ppb	Pd(Q) ppb	
R0313715	69	<10	5		/		
R0313716	70	244	5	231	6	5	
R0313717	71	166	5	164	. <5	3	
R0313718	72	152	5	227	<5	4	
R0313719	73	98	5	112	<5	12	
R0313720	74	62	5				
R0313721	75	38	5				
R0313722	76	46	5				
R0313723	77	<10	5				
R0313724	78	<10	5				
R0313725	79	24	5				
R0313726	80	62	5				
R0313727	81	104	5	213	5	5	
R0313728	82	186	5	251	5	7	
R0313729	83	48	5				
R0313730	84	390	5	341	<5	6	
R0313731	85	<10	5				
R0313732	86	48	5				
R0313733	87	64	5				
R0313734	88	172	5	192	<5	6	
R0313735	89	82	5				
R0313736	90	34	5				
R0313737	91	40	5				
R0313738	92	178	5	219	<5	3	
R0313739	93	22	5				

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised if requested analyses are not shown, results are to follow

ANALYTICAL METHODS

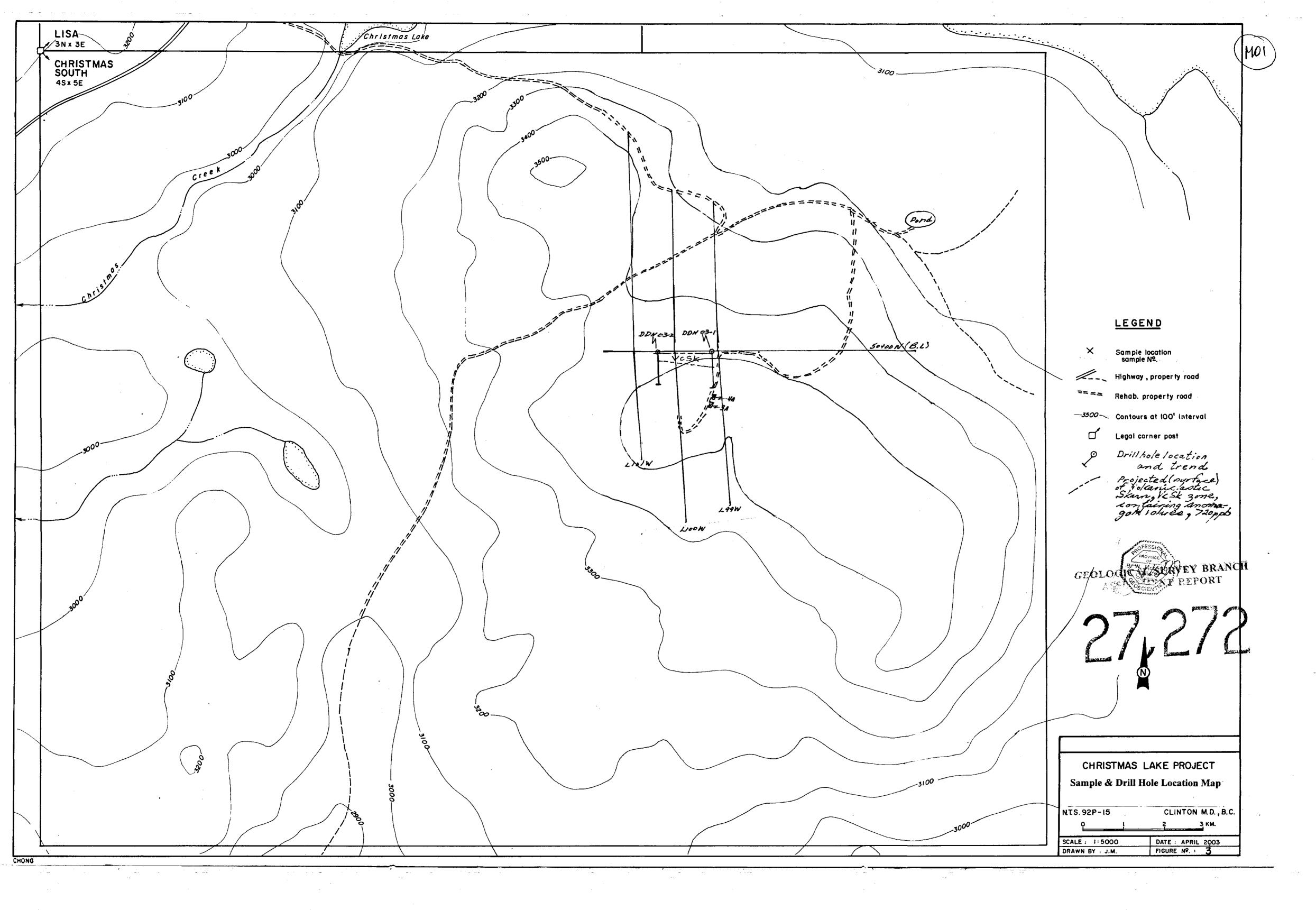
Au Aqua regia decomposition / solvent extraction / AAS

Wt Au The weight of sample taken to analyse for gold (geochem)

Au(Q) Fire Assay-Lead Collection/Graphite Furnace Pt(Q) Fire Assay-Lead Collection/Graphite Furnace

Pd(Q) Fire Assay-Lead Collection/Graphite Furnace

Job V03-0543R


Report date: 23 SEFT 2003

								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		<u> </u>												· · · · · · · · · · · · · · · · · · ·							
LAB NO	FIELD NUMBER	Cu	Pb	Z :	Ag	As	Ba	Cd	C:	Ni	Fe	Mo	Cr	8i	Sb	V	Sn	W	Sr	Y	ها	Ma	Mg	Ti	<i>\$</i>	Ca	Næ	K	+
		ppn.	ppm	bb (3)	la'uu	bbw	ttw	ppm	pps:	ppm	%	• •	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppn	%	%	# /2 	% 	%	%	ppm
																										_			
R0313722	76	83	12	57	4	9	-10	<1	27	55	5.92	<2	60	<5	<5	111	<2	3	209	. 6	13	697	2.07	0.13	3.75	3.03	0.18	0.06	1547
R0313723	77	81	18	60	4.4	4	41	<1	23	30	6.21	<2	54	<5	5	177	<2	4	252	10	13	9a.	2.21	0.18	4.72	4.30	0.25	80.0	104 4
R0313726	80	91	9	5ê	44	45	35	<1	22	40	5.07	<2	32	· <5	<5	116	<2 €	4	119	5	17	1000	1.84	0.14	2.65	5.75	0.03	0.04	843
R0313728	82	126	11	e ?	<.4	44	36	<1	23	26	6.14	<2	56	<5	6	127	2	3	105	4	14	66:1	1.47	0.07	2.60	3.54	0.11	0.05	1132
R0313729	83	89	12	50	~.4	11	20	<1	23	20	5.97	<2	58	<5	5	121	2	4	83	5	13	749	1.58	0.07	2.00	3.74	0.02	0.04	1166
R0313730	84	90	9	51	~.4	<2	÷2	<1	29	25	5.48	<2	66	<5	<5	129	<2	5	72	5	17	6£7	1.57	0.07	2.58	3.63	0.09	0.04	1206
R0313/39	93	290	10	64	<.4	11	:1	<1	49	52	7.61	<2	51	<5	<5	107	<2	2	100	6	20	80C	1.37	0.13	2.74	5.55	0.06	0.02	94%

t=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised if requisted analyses are not shown, results are to follow

ANALYTICAL METHODS

ICP PACKAGE: 0.5 gram cample digested in not reverse aqua regia (soil,sitt) or hot Aqua Registrocks).

