

NTS 93 E/6 E BCGS (TRIM) 093E025 MINFILE 093E 026 LAT. 53 15' 57" N LONG. 127 00' 37" W

GEOLOGICAL, GEOCHEMICAL AND PETROGRAPHIC REPORT on the RED BIRD CLAIM RED BIRD PORPHYRY MOLYBDENUM DEPOSIT FORMELY KNOWN AS CAFB, OLD GLORY HAVEN LAKE, B.C. NORTHWEST END OF TWEEDSMUIR PROVINCIAL PARK

SKEENA MINING DIVISION

FOR

FUNDAMENTAL RES. CORP., 4083 MONARCH PLACE, VICTORIA, B.C. V8N 4B9

BY

ANDRIS KIKAUKA, P. GEO. 4-6 4901 EAST SOOKE RD., Sub Recorder
RECEIVED

JAN 13 2004

M.R. #______S___ VICTORIA, B C

SOOKE, B.C. GEOLOGICAL SURVEY BRANCH VOS 1NO

JANUARY 10, 2004

TABLE OF CONTENTS

		AGE IO.
1.0	SUMMARY	1
2.0	INTRODUCTION AND TERMS OF REFERENCE	3
3.0	DISCLAIMER	3
4.0	PROPERTY DESCRIPTION AND LOCATION	3
	ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTU D PHYSIOGRAPHY	
6.0	RED BIRD (CAFB) PROPERTY HISTORY	4
7.0	RED BIRD FIELDWORK 2003	4
7.1	METHODS AND PROCEDURES	4
7.2	GEOLOGY, MINERALIZATION & DIAMOND DRILL CORE SAMPLI	
7.3	DIAMOND DRILL CORE SAMPLING	
7.4	PETROGRAPHIC REPORTS	
8.0	DISCUSSION OF RESULTS	
9.0	DEPOSIT TYPES	
10.	RECOMMENDATIONS & CONCLUSIONS	7
11.	REFERENCES	9
ST	ATEMENT OF QUALIFICATIONS	
ITI	MIZED COST STATEMENT	

LIST OF FIGURES

- FIG. 1 GENERAL LOCATION MAP
- FIG. 2 DISTRIBUTION OF MOLYBDENUM DEPOSITS IN WESTERN CANADA
- FIG. 3 SIGNIFICANT MOLYBDENUM DEPOSITS OF WESTERN CANADA
- FIG. 4 CLAIM LOCATION MAP
- FIG. 5 CLAIM OUTLINE WITH TOPOGRAPHY
- FIG. 6 RED BIRD CLAIM GEOLOGY WITH TOPOGRAPHY
- FIG. 7 STAGES OF MINERALIZATION FOR VARIOUS PORPHYRY MOLYBDENUM DEPOSITS IN BRITISH COLUMBIA
- FIG. 8 CHARACTERISTICS OF CANADIAN PORPHYRY MOLYBDENUM DEPOSITS
- FIG. 9 RED BIRD GEOLOGY COMPILATION (IN POCKET)
- FIG. 10 RED BIRD CORE SAMPLE SUMMARY
- FIG. 11 RED BIRD PROPOSED DIAMOND DRILL HOLES
- APPENDIX A- GEOCHEMICAL ANALYSIS (47 ELEMENT ICP)
- APPENDIX B- PETROGRAPHIC REPORT OF THIN SECTIONS
- **APPENDIX C- PHOTOS**

1.0 SUMMARY

The Red Bird property consists of a 1.5 X 2.0 km area, 4-post mineral claim with the Skeena Mining Division, located north of Haven (Bone) Lake and southwest of Red Bird Mountain. Haven Lake is 12 km west of Pondosy Bay on Eutsuk Lake. Access to the property is by air (float plane in June-October) and by helicopter in winter from the south via Nimpo Lake and Bella Coola, from the north via Burns Lake or Houston.

The Red Bird claim features a quartz monzonite porphyry forming the shape of an irregular elliptical cylinder with a semi-circle concentric ring-dyke around the northern circumference (Sutherland-Brown, 1966). Zones of molybdenite-bearing mineralization are also concentric and are contained within a peripheral ring of the main mass of the pluton, but extending a variable amount into the walls. Beyond the ore zones most veins are barren quartz with some scattered pyrite and a few quartz veins contain minor molybdenite, as well as galena, sphalerite, pyrite, fluorite and calcite. In the ore zone, barren quartz veins predate mineralized veins and 3 stages of barren quartz veins are recognizable. Three stages of quartz-molybdenite-pyrite are likely, with banded and drusy being the most likely to occur. In general drusy may be younger and both drusy and banded quartz veins may be cut by late barren quartz with minor pyrite.

The Red Bird property has a history of molybdenum and copper exploration by numerous mining companies. In 1937 several claims were located near Red Bird Mountain. Phelps Dodge prospected the area in 1958, and located claims in 1959. From 1960 to 1962 work consisted of geological mapping, trenching and geophysical surveys. Drilling started in 1963 and by 1966 a total of 58 diamond drill holes produced 45,299 ft (13,807 m) of core. In 1966, a 2 mile (6.7 km) long drill/trench access road was constructed from 3.400 feet elevation to the main mineral zone at 4,800 feet elevation, as well as an 11 mile (17.7 km) long road that was constructed east of the property to connect to the mouth of Bone Creek at Eutsuk Lake. A ferry service across Eutsuk Lake gave access to the existing forestry road network. In addition to the roads, a 2,500 ft (762 m) long airstrip was cleared. In 1967, Ashfork Mines Ltd (a subsidiary of Phelps Dodge) completed a total of 15 diamond drill holes for a total depth of 11,626 feet (3,544 m). Ashfork completed 2 diamond drill holes (total depth 940 ft., 286.5 m) and 3,300 ft (1,005 m) of crawler dozer trenching and blasting in 1968. In 1979-80, Craigmont Mines Ltd carried out additional work that included 45,887 ft (13,990 m) of diamond drilling. This work outlined three possible open pit zones with preliminary estimates of 33.6 million tonnes at 0.18% MoS₂, at a cutoff grade of 0.1% MoS₂ (Craigmont Mines Annual Report, 1980). An additional 29.9 million tonnes at 0.16% MoS₂ with a similar cutoff grade would require underground mining.

In order to complete follow-up exploration work on gold bearing mineral zones present on the subject property, a 2 phase fieldwork program is recommended. Phase 1 recommendations include core drilling, geological and geochemical core and rock chip sampling with a proposed budget of \$75,000.00. Contingent on the results of phase 1, a second phase of core drilling, rock sampling and geological/geochemical surveys is recommended. The estimated total budget for phase 2 is \$200,000.00.

The total recommended core drilling for phase 1 & 2 is 6,800 feet (2,072.6 m). The total recommended expenditures to complete this 2 phase program are about \$275,000.00.

2.0 INTRODUCTION AND TERMS OF REFERENCE

This report summarizes geological fieldwork carried out on the Red Bird claim and evaluates economic mineral potential of molybdenum and copper bearing mineral zones situated within the subject property. The purpose of the report is to qualify targets for future mineral exploration and development on the subject property.

This report is partly based on fieldwork carried out by the author, who was present on the subject property on July 2-5, 200. This report is partly based on published and unpublished fieldwork reports carried out by various private sector mining company personnel and public sector government personnel as well as fieldwork carried out by the author on the Howell claim group. During July, 2003, Fundamental Resources Corp carried out a program of re-sampling 101 m of core in 21 samples (all 5 m length except one 1.0 m length), and in addition to diamond drilling, 2 core samples from DDH 79-95 were submitted to Vancouver Petrographics Ltd for petrographic descriptions and several bedrock exposures near the intrusive contacts were mapped for geological structure at a scale of 1:5,000 (Fig. 9).

Geological and geochemical data compilation has identified two areas of interest. Potential exists for discovering additional economic concentrations of molybdenite is close to the marginal phase of the Nanika quartz monzonite along its contact with the Telkwa Formation intermediate-felsic volcanic rocks. This is where the main zone of known molybdenite mineralization occurs.

The other potential area of porphyry style molybdenum mineralization is the upper section of Nanika quartz monzonite located in the north edge of the claim. This north zone of mineralization is severely limited in access due to the boundary of Tweedsmuir Provincial Park enveloping most of this tabular boss of the main intrusive.

3.0 DISCLAIMER

This report is comprised of a compilation of data based in part on documents and technical reports prepared by various authors. The portions of this report that give information gathered from various authors are referenced. The documents and technical reports from various authors were used to compile the Red Bird property history. Grade and tonnage figures quoted for the Red Bird are referenced from previous work (Craigmont Mines Ltd Annual Report, 1980). These dated grade and tonnage estimates are not in accordance with current National Instruments 43-101 regulations. The Red Bird grade and tonnage figures released by Craigmont Mines (1980) were in accordance with relevant CIM definitions for their date. The author disclaims certainty of previously published grade and tonnage estimates pending further infill drilling as recommended in section 10 of this report.

4.0 PROPERTY DESCRIPTION AND LOCATION

The Red Bird claim is located north of Haven (Bone) Lake and southwest of Red Bird Mountain. Haven Lake is 12 km west of Pondosy Bay on Eutsuk Lake. Access to the property is by air (float plane in June-October) and by helicopter in winter from the south via Nimpo Lake and Bella Coola, from the north via Burns Lake or Houston. Sharpwings flying out of Nimpo Lake are recommended for heavy loads as their twin engine floatplanes can carry well over 1,000 lbs.

Details of Red Bird claim are listed in the table as follows:

Claim Name	Units	Record No.	Mining Division	Record Date	Expiry Date*
Red Bird	12	402146	Skeena	May 7, 2003	May 7, 2008 2009

^{*} extended expiry date based on filing a statement of work

The claims are registered to W.E. Pfaffenberger (director of Fundamental Resources Corp.) FMC No. 143363. The claim was staked by A.A. Kikauka as agent for W.E. Pfaffenberger on May 7, 2003 when Haven Lake was still frozen (see photos in Appendix). At the time of staking there was 1-3 m of snow on the ground near Haven Lk.

5.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

Access to the property is by air (float plane in June-October) and by helicopter in winter from the south via Nimpo Lake and Bella Coola, and from the north via Burns Lake or Houston. Sharpwings flying out of Nimpo Lake are recommended for heavy loads as their twin engine floatplanes can carry well over 1,000 lbs.

The Red Bird property has cool/cold moderately wet winters and warm relatively dry summers. Total yearly rainfall on the property is estimated at between 35-45 inches (88.9-114.3 cm). At higher elevations of 1,300-1,700 meters above sea level, work could be carried out between June and October, whereas snowfall and cold weather would hamper activity in the winter months.

The Red Bird property is uniquely located on the east edge of the Coast Range plutonic complex where the mountain shape is massive and abrupt, with numerous cliff and steep sections on the typical Coast Range mountain peak area. Radial drainage patterns are common and the primary vegetation is mixed fir-hemlock-cedar-spruce. Continuing eastwards the physiography changes a foothills semi-arid vegetation (increased pine and birch) and the drainage patterns are more complex often following trellis patterns that are typical of Intermontane (Interior) landforms.

6.0 RED BIRD (CAFB) PROPERTY HISTORY

The Red Bird property has a history of molybdenum and copper exploration by numerous mining companies. In 1937 several claims were located near Red Bird Mountain. Phelps Dodge prospected the area in 1958, and located claims in 1959. From 1960 to 1962 work consisted of geological mapping, trenching and geophysical surveys. Drilling started in 1963 and by 1966 a total of 58 diamond drill holes produced 45,299 ft (13,807 m) of core. In 1966, a 2 mile (6.7 km) long drill/trench access road was constructed from 3,400 feet elevation to the main mineral zone at 4,800 feet elevation, as well as an 11 mile (17.7 km) long road that was constructed east of the property to connect to the mouth of Bone Creek at Eutsuk Lake. A ferry service across Eutsuk Lake gave access to the existing forestry road network. In addition to the roads, a 2,500 ft (762 m) long airstrip was cleared. In 1967, Ashfork Mines Ltd (a subsidiary of Phelps Dodge) completed a total of 15 diamond drill holes for a total depth of 11,626 feet (3,544 m). Ashfork completed 2 diamond drill holes (total depth 940 ft., 286.5 m) and 3,300 ft (1,005 m) of crawler dozer trenching and blasting in 1968. Prior to 1979, Phelps Dodge had drilled a total of 30,000 feet (9,144 meters). In 1979-80, Craigmont Mines Ltd carried out additional work that included 45,887 ft (13,990 m) of diamond drilling. This work outlined three possible open pit zones with preliminary estimates of 33.6 million tonnes at 0.18% MoS₂, at a cutoff grade of 0.1% MoS₂ (Craigmont Mines, Annual Report, 1980). An additional 29.9 million tonnes at 0.16% MoS₂ with a similar cutoff grade would require underground mining.

7.0 RED BIRD PROPERTY FIELDWORK 2003 7.1 METHODS AND PROCEDURES

Based on sampling a representative section of molybdenum mineralization, a variety of core samples were examined in the racks and two drill holes cutting the main zone (DDH 79-95 & 79-106) as well as one drill hole cutting the Big Creek section (DDH 80-124) were selected for quarter splitting (all the core has already been half-split). The core was laid out in a manner where it could be re-logged and checked for variance in mineral, alteration and structure. The core was quarter split using a core splitter and twenty 5 meter sections as well as one 1 meter section were placed in marked poly bags and sent to ASL Chemex Labs, North Vancouver (Appendix A). The remaining 1/4 split core was returned to the box as an oriented specimen and placed back in the core racks. Additional strengthening of the core rack was done using local timber to brace the tilted structure. All core samples were analyzed for 47 element (four acid digestion) ICP-Mass Spectroscopy (ALS Code ME-MS61). Sample weight varied from 2.5-3.8 Kg for the 5 m samples and 0.4 Kg for the 1 m sample. After the core was examined, photographed, and split, two representative samples of the ore were sent to Vancouver Petrographics for reports (Appendix B). The core was returned to the core racks, and geological mapping of fault and fracture patterns was carried out at a scale of 1:5,000 over a 600 X 750 m area (Figure 9).

7.2 GEOLOGY, MINERALIZATION & DIAMOND DRILL CORE SAMPLING

The following lithologies are present on the Red Bird claim:

EOCENE

- Nanika Plutonic Suite, quartz monzonite (lies in the quartz + plagioclase rich portion of the quartz monzonite ternary chart) accessory minerals include apatite (coarse grain), rutile, & sphene
- 2a Aplite
- 2b Diorite
- 2c Quartz-Feldspar Porphyry

LOWER JURASSIC

- Hazelton Group, Telkwa Formation, intermediate-felsic tuffs/flows, characterized by induration, homfels with abundant secondary biotite
- la Chert
- 1b Rhyolite (usually occur as tabular, sub-vertical dyke)s
- 1c Agglomerate
- 1d Breccia
- le Hornfels
- 1f Argillite

The Red Bird claim features quartz monzonite porphyry forming the shape of an irregular elliptical cylinder with a semi-circle concentric ring-dyke around the northern circumference (Sutherland-Brown, 1966). Zones of molybdenite-bearing mineralization are also concentric and are contained within a peripheral ring of the main mass of the pluton, but extending a variable amount into the walls. Beyond the ore zones most veins are barren quartz with some scattered pyrite and a few quartz veins contain minor molybdenite, as well as galena, sphalerite, pyrite, fluorite and calcite. In the ore zone, barren quartz veins predate mineralized veins and 3 stages of barren quartz veins are recognizable. Three stages of quartz-molybdenite-pyrite are likely, with banded and drusy being the most likely to occur. In general drusy may be younger and both drusy and banded quartz veins may be cut by late barren quartz with minor pyrite.

7.3 DIAMOND DRILL CORE SAMPLING (Fig. 9, 10)

A total of 21 samples of ¼ split NQ drill core were shipped to ASL Chemex for 47 element ICP (Fig. 10, Appendix A). The graphic log column in Figure 10 shows that most of these 5.0 meter wide contiguous samples consist quartz monzonite (with secondary quartz-kaolinite-sericite-calcite-K-spar-biotite-rutile-apatite), and as the sampling approaches the bottom of the hole a well defined sharp, sub-vertically oriented contact with the Hazelton Group volcanics is encountered (DDH 79-95 and DDH 79-106). The Red Bird main area of molybdenite, as defined by Craigmont in 1980 (33.6 million tonnes @ 0.18% MoS₂), is cut by DDH 79-95 and DDH 79-106. These two diamond drill holes both bottom in hornfels Hazelton Group intermediate volcanic rocks. The values of Mo increase in the Eocene quartz monzonite intrusive rock whereas Cu values increase in the Lower Jurassic Hazelton Group hornfels volcanic country rock. The well defined zonation of elevated Mo values within the quartz monzonite and elevated Cu values in the hornfels Hazelton Group (with hydrothermal biotite) suggests that there is well defined concentric zonation of the Red Bird Pluton (especially in the

northeast portion of this 800 X 1,200 meter area intrusive complex). The diamond drill holes DDH 79-95 and DDH 79-106 are located about 125 meters apart in the east portion of the 725 long by 70 m wide "Main Molybdenite Zone with >0.2% MoS₂. The drill hole furthest east, DDH 79-95, was subjected to thin section preparation and petrographic reports (Appendix B).

The elevated strontium-rubidium-cerium values are also noted in Figure 10. Although they do not represent economically significant rare earth values, it is likely that elevated REE (in this case elevated Sr-Rb-Ce) can be expected with increased apatite (and minor sphene and/or rutile). There are certain portions of the Red Bird pluton and adjoining country rock that contains appreciable coarse grained apatite and should be routinely examined for REE.

7.4 PETROGRAPHIC REPORTS ON DDH 79-95 (FIG. 9, APPENDIX B)

The presence of 0.2% apatite is noted in the Vancouver Petrographics report sample #20552 in DDH 79-95 @ 58.7 m. Over a 5.0 m width (at interval 55.0-60.0 m) #20552 returned a geochemical analysis of 1,440 ppm Mo and 203 ppm Cu (Appendix A). The other petrographic sample #20560 was taken near the intrusive-volcanic contact in DDH 79-95 @ 96.1 m. and is noticeably depleted in Mo-Sr-Rb-Ce, but elevated in Cu-Ag-Fe geochemical values. Geochemical values in DDH 79-95 @ 95.0-100.0 m depth returned 3,010 ppm Cu, 4.06 ppm Ag and 7.13% Fe (Appendix A).

Petrographic studies of the Red Bird Plutonic Complex indicate there are early veins of quartz (with lesser calcite and kaolinite), with later molybdenite bearing quartz-potassium feldspar, and even later phase of quartz-pyrite-calcite. This confirms the presence of multi-phase overprinting and repeated pulses of hydrothermal activity. The Hazelton Group volcanic rocks are andesitic with lesser quartz-molybdenite, and the older volcanic country rock contains abundant chalcopyrite-pyrite (with minor bornite). The country rock hosts significant values in copper. It is likely that further exploration along the margins of the Red Bird Plutonic Complex will yield zones of concentrically zoned Mo-Cu bearing mineralization.

8.0 DISCUSSION OF RESULTS

The Red Bird quartz monzonite plutonic complex (which hosts a well defined molybdenite resource) has been thoroughly examined along it northeast contact. Even though drilling is relatively "pin cushioned" in this area, there has not been a series of fence pattern drill holes perpendicular to the tabular west-northwest trend of the main molybdenite zone (which is roughly 50-100 m wide and 725 m long and occurs along the Red Bird Pluton's northeast contact). A certain amount of fence pattern infill drilling would elevate the status of the known molybdenite resource and additional drilling along the northwest edge of the pluton (along Big Creek) would test for the extensions of contact related porphyry mineralization.

The Red Bird is noted for containing coarse grain apatite, minor rutile and sphene. Calcite is present in the quartz veins (natural acid buffer) and the Red Bird porphyry molybdenite deposit contains low total sulphide (approximately 0.5-1.5%). Lower total sulphides result in less acid rock drainage from mine waste compared to high sulphide tailings. In addition to naturally buffered mine waste, the Red Bird molybdenite deposit contains relatively low As, Bi, Cd, Pb, and/or Sb values, which if present in appreciable quantity, could devalue the concentrate. Although some fluorite is present on the property, the Red Bird is classified as a low F-type porphyry Mo (as opposed to a high F-type porphyry Mo such as the Adanac deposit in the Atlin Mining Division of B.C.).

Based on the targets outlined in this sampling program and previous work, a 2 phase program consisting of preliminary geological mapping, trenching and lithogeochemical sampling followed by a series of diamond drill holes and further detailed geological mapping are proposed to test the depth extension of surface mineralization. Concurrent with diamond drilling, a program of hand trenching, geological mapping and rock chip sampling is required to outline further extensions of known mineral trends adjacent

9.0 DEPOSIT TYPES

The Red Bird porphyry molybdenite is hosted by Eocene Nanika Plutonic Suite lies in the quartz-rich and plagioclase-rich field of quartz monzonite suggesting the magma has calc-alkaline affinities. Typically the calc-alkaline porphyry molybdenum intrusions are characterized by multi-stage quartz-sulphide and sulphide fracturing, veining, and alteration envelopes that contain variable quartz-sericite (kaolinite)-pyrite-chlorite.

It is envisioned that molybdenum-bearing magmas of the Naninka Plutonic Suite formed deep in the crust or upper mantle and rose to high levels in the crust where volatile elements, including molybdenum, were concentrated in late-stage felsic differentiates, leading to hydrothermal activity and the formation of porphyry molybdenum deposits.

10.0 RECOMMENDATIONS & CONCLUSIONS (Fig. 11)

Based on the tonnage and grade estimates for Mo outlined by previous core drilling, there is potential to outline further economic concentrations of molybdenite (and chalcopyrite) mineralization present on the subject property. A two phase program consisting of preliminary geological mapping, trenching limited core drilling and litho-geochemical sampling followed by another series of diamond drill holes and further detailed geological mapping are proposed to test the depth extension of surface mineralization trends (Fig. 11). These proposed drill holes are targeting the intrusive-volcanic contact near the northeast and northwest edge of the Red Bird Pluton. The objective of these drill holes is to confirm the known grade and tonnage and attempt to define additional molybdenite and/or chalcopyrite-bornite bearing mineralization. Concurrent with drilling, a program of hand trenching, geological mapping and rock chip sampling is required to outline further extensions of known mineral trends.

A detailed budget of this 2 phase exploration program is described as follows:

PHASE 1: PROPOSED BUDGET FOR UPGRADING RED	BIRD Mo-(Cu):
FIELD CREW- Geologist, 1 geotechnicians, 14 days	\$ 5,950.00
FIELD COSTS-Assays 200	4,400.00
Rock chip geological/geochemical survey	10,000.00
Core drilling 1,800 ft. (548.6 m.)	33,000.00
Soil Grid	2,500.00
Equipment and Supplies	1,000.00
Communication	600.00
Food	1,400.00
Transportation	16,100.00
REPORT	750.00

Total =\$ 75,000.00

PHASE 2: PROPOSED BUDGET FOR RED BIRD Mo-(Cu) TARGETS:

FIELD CREW- Geologist, 2 geotechnicians, 1 cook 90 days	\$ 46,000.00
FIELD COSTS- Core drilling 5,000 feet (1,524 metres)	102,300.00
Assays 700	14,000.00
Equipment and Supplies	4,000.00
Communication	3,000.00
Food	6,500.00
Transportation	23,000.00
REPORT	1,200.00

Total = \$200,000.00

TOTAL PHASE 1 + 2 = \$275,000.00

The main portion of the exploration budget should be spent on fill in drilling on the main molybdenite resource located along the north and northeast contact of the main Nanika quartz monzonite pluton. Work should be directed to elevate the status of the last estimate of grade and tonnage figures (outlined in 1980 by Craigmont Mines Ltd).

A smaller portion of the exploration should be directed at the Big Creek intrusive-volcanic contact (West Zone), and the southeast fault-bound intrusive-volcanic contact (Southeast Zone) located between 1,150-1,325 m elevation, adjacent to a 060 trending fault gulley. Limited exploration should also be focused on the proximal tabular boss/stock of the main Red Bird Pluton located at 1,600-1,800 m elevation (the main molybdenum resource is roughly exposed at 1,500-1,700 m elevation). This proximal boss/stock to the main pluton lies mostly within Tweedsmuir Provincial Park, but the portion of it located on the Red Bird claim has not been explored in any detail and warrants detailed geological mapping and extensive sampling.

Contingent on confirmation and identification of additional Mo-Cu resources on the Red Bird claim, the property could be considered for a feasibility study. If Craigmont Mines

preliminary estimates of 33.6 million tonnes at 0.18% MoS₂, at a cutoff grade of 0.1% MoS₂ (Craigmont Mines, Annual Report, 1980), with an additional 29.9 million tonnes at 0.16% MoS₂ as an underground is used, then the Red Bird deposit contains approximately 108,320,000 Kg (238,800,070 lbs) of molybdenite.

As it currently stands the deposit is of reasonably high grade for open pit methods of extraction. Considering the properties remote location, the total tonnage figures for ore (molybdenite >0.1% MoS₂ cutoff) are relatively low. If this resource could be boosted 25-50% it would make the high capitalization cost of establishing mining and milling facilities in this remote location more likely.

The east end of the main resource (along the northeast contact) widens to a width of over 100 meters and contains the best known concentration of molybdenite. This high grade easterly zone would be an ideal starter pit and initial production would be enhanced in order to offset the higher costs related to remote access and close proximity to a park.

11.0 REFERENCES

Clark, K.J., 1972, Stockwork Molybdenum Deposits in the Western Cordillera of North America, Econ. Geol. Volume 67, pp. 731-758

Craigmont Mines Ltd., 1980, Annual Report, Grade and Tonnage Estimates for Red Bird Porphyry Molybdenum Deposit.

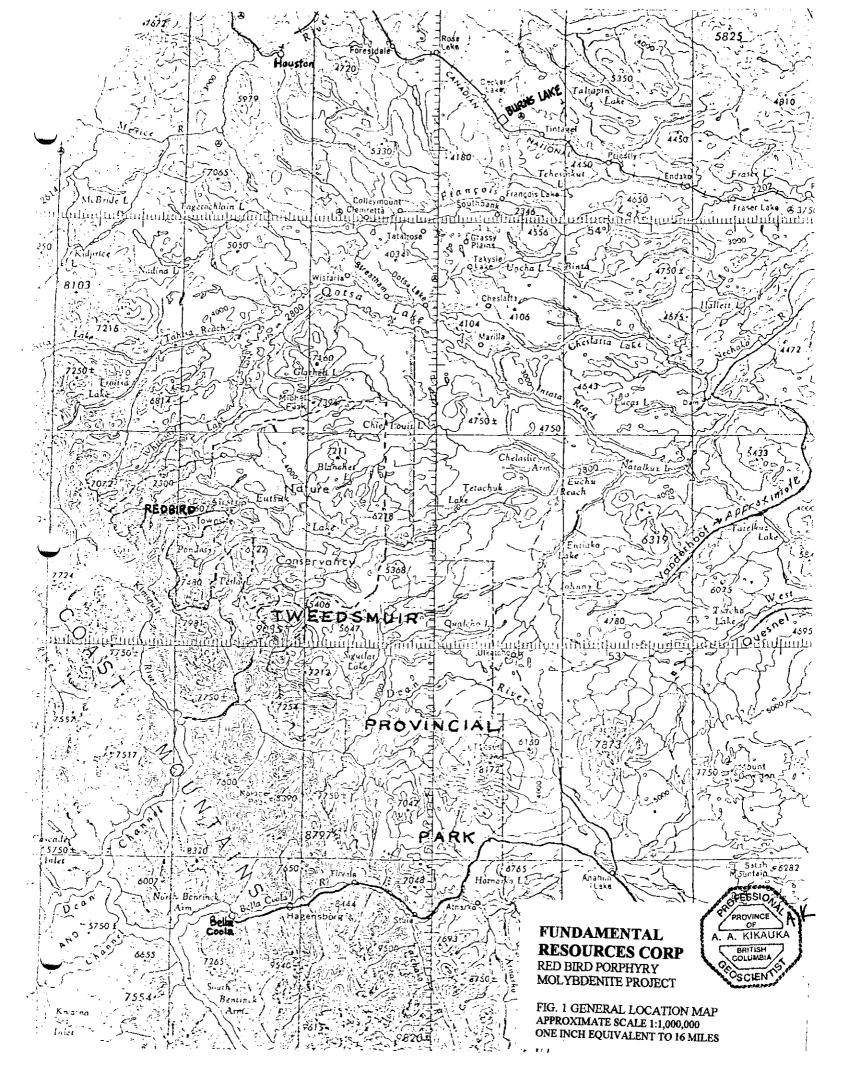
Kirkham, R.V., 1972, Intermineral Intrusions and their Bearing on Porphyry Copper and Molybdenum Deposits, Econ Geol., Volume 66, 1244-1249

Soregaroli, A.E., 1976, Characteristics of Canadian Cordillera Molybdenum Deposits, CIM Special Volume 15

Sutherland-Brown, A., 1972, Red Bird Prospect, 24th Intl. Geol. Congress Guidebook, Field excursions, pp. 24-26

CERTIFICATE AND DATE

- I, Andris Kikauka, of 4901 East Sooke Rd., Sooke B.C. VOS 1NO am a self employed professional geoscientist. I hereby certify that;
- 1. I am a graduate of Brock University, St. Catharines, Ont., with an Honours Bachelor of Science Degree in Geological Sciences, 1980.
- 2. I am a Fellow in good standing with the Geological Association of Canada.
- 3. I am registered in the Province of British Columbia as a Professional Geoscientist.
- 4. I have practiced my profession for twenty years in precious and base metal exploration in the Cordillera of Western Canada, U.S.A., South America, and for three years in uranium exploration in the Canadian Shield.
- 5. The information, opinions, and recommendations in this report are based on fieldwork carried out in my presence from June 28 to July 6, 2003.
- 6. I am employed as an independent consultant for Fundamental Resources Corp.
- 7. This report is filed to meet criteria for assessment work and I do not consent to the use of this report by Fundamental Resources Corp or any of its subsidiaries, to fulfill the requirements of regulatory agencies in a Prospectus or Statement of Material Facts for the purpose of public or private financing.
- 8. The contents of this report are the result of my own work and research and the conclusions and recommendations therein are my own.


Andris Kikauka, P. Geo.,

A. Kikaulen

January, 10, 2004

ITEMIZED COST STATEMENT- RED BIRD CLAIM, TENURE NO. 402146, NTS 93 E/6 E, BCGS (TRIM) 093E025 AND 093E035, SKEENA MINING DIVISION. FIELDWORK PERFORMED JUNE 28-JULY 6, 2003

FIELD CREW: A.Kikauka (Geologist) 8 days	\$ 2,200.00
FIELD COSTS:	
Mob/Demob (Sooke-Nimpo Lake return)	650.00
Charter Float Plane 6 hrs (Nimpo Lake)	2,250.00
Assays 47 element ICP 21 samples (N. Vancouver)	625.00
Petrographic Reports 2 samples (Langley)	365.00
Report	550.00
Total =	\$ 6,640.00

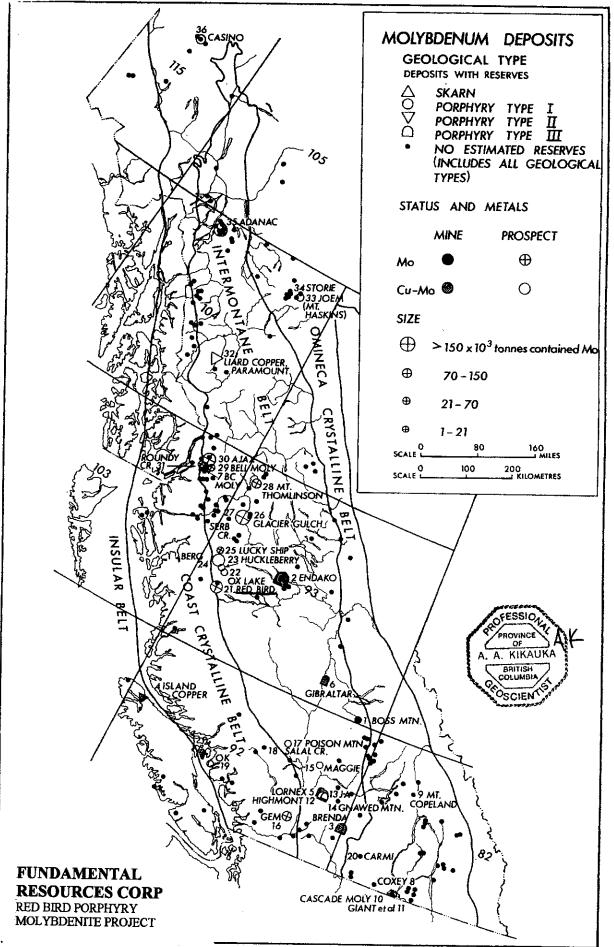
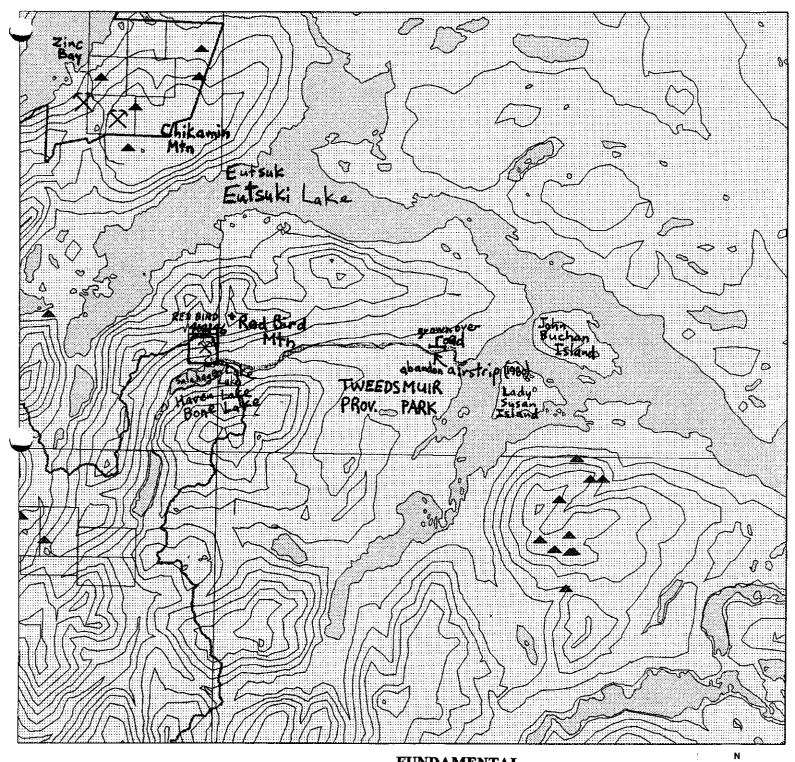


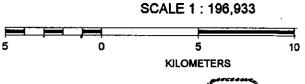
FIG. 2 DISTRIBUTION OF MOLYBDENUM DEPOSITS IN WESTERN CANADA (AFTER SOREGAROLI, 1976 CIM SPECIAL VOL 15) APPROXIMATE SCALE: ONE CM EQUIVALENT TO 75 KM

FUNDAMENTAL RESOURCES CORP

RED BIRD PORPHYRY MOLYBDENITE PROJECT

FIG. 3 SIGNIFICANT MOLYBDENUM DEPOSITS IN WESTERN CANADA (AFTER SOREGAROLI, 1976 CIM SPECIAL VOL 15)

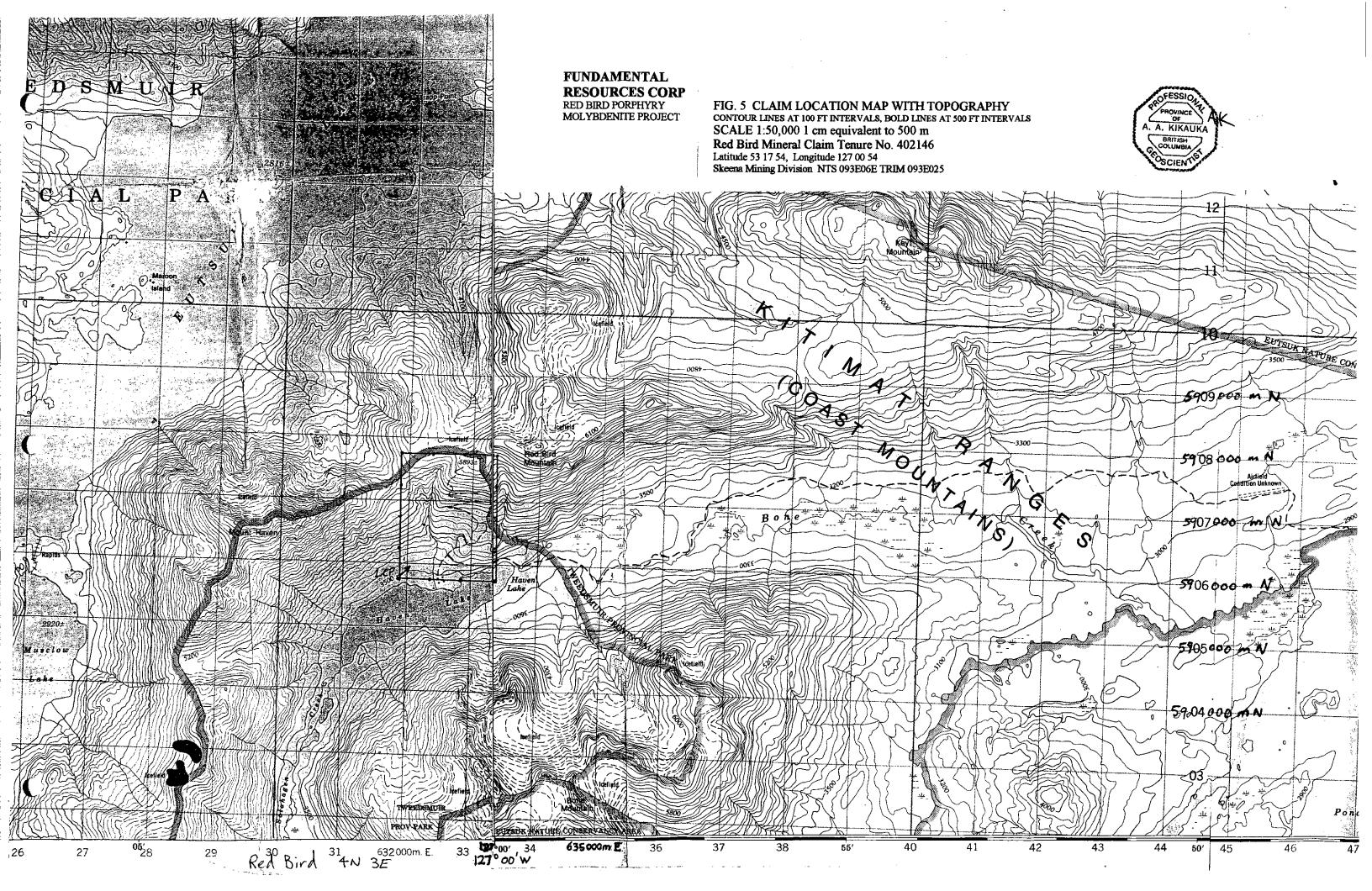

Property	Company	NTS	Class*	Mir	nerals	Metals	Size** (tonnes × 10°)	Grade (% MoS ₂)	Metal Cor (tonnes × 10	ntent 3 Mo)	Туре	***	Remarks
					BRITISH	COLUMBIA							
2, Highmont 3. J-A 4. Gnawed Ntn.	Scurry-Reinbow Teck Bethlehem Minex Bethlehem Gemex	921/7W 921/7W 921/7W 921/14W	SK SK PIII PIII PI	mo, mo, cp, cp,	Au cp, bn bn, mo bn, mo mo	Ma Ma Cu, Ma Cu, Ma Cu, Ma Gu, Ma Ma	1,36 0,73 136.0 259,4 32.66 181.4	0.27 0.39 0.051 0.030 0.016 0.017	2.20 1,70 41.64 46.70 3.13 18.51 42.18		MI ML	(SM) (SM)	Adjacent to Red Mtn. in small separate bodies (0.034 oz. Au/Adjacent to Red Mtn. in small separate bodies. Low strip ratio (0.27 $\%$ Cu). High strip ratio (0.43 $\%$ Cu). (<0.5 $\%$ Cu) Ecological problems in exploitation (0.28 $\%$ Cu).
7. Poison Mtn. 8. Salal Cr.	Copper Giant B P Minerals Granite Mtn.	920/2E 92J/14W 92K/2E	P I P I	εp, mo	<i>mo</i> mo	Cu, Mo Mo Cu, Mo	77,1 90,7	0.022 0.03	10.18 16.33	3	MII	(SM)	(0.33 % Cu) No reserve established; large low-grade potential. (0.30 % Cu)
19. OK 20. Carmi 21. Red Bird	Vestor, Kennco Phelps Dodge	82E/11E 93E/6E	P ?	mo, mo	ur	Mo (U) Mo	? 27.2 + ca 54.4	0.25 0.1	40.82 32.66	2	MI		7-1- /V /
22. Ox Lake	Asarco, Silver	93E/11E	PI	cp,	mo	Çu, Mo	27.2	0.07	11.43	3	M		(0.26 % Cu)
23. Huckleberry 24. Berg	Standard Granby, Kennco Placer, Kennco	93E/11E 93E/14W	P I		bn, mo cp, bn, n	Cu, Mo 10 Cu, Mo	78.92 357.4	0.0 25 0.054	11.84 115,81		M		(0.41 % Cu) (0.25% cutoff, but only 226.8 × 10° tonnes with 2.75:1
25. Lucky Ship 26. Glacier Gulch	Amax Climax	93L/3W 93L/14W	P I		sc	Mo (W) Mo	18.0 90.72	0.17 0.29	18.36 157.85	i i	M M SM	(SM)	stripping ratio (0.40 % Cu). Potential for more.
27. Serb Cr. 28. Mt. Thomlinson 29. Bell Moly 30. Ajax	Amax Amax Newmont	93L/12W 93M/12W 103P/6W 103P/11E	PI PI PI	mo mo mo		Mo Mo Mo Mo	40.82 31.75 178.54	0.12 0.11 0.121	29.39 20.98 129.62	6	MII MI MI	(SM) (SM) (SM)	Very high stripping ratio, with total reserves of
31. Roundy Cr.	Climax	103P/6W	PI	mo		Мо	1.36	0.347	7.49	5	M		417.3 × 10° tonnes 0.09 MoS ₂
32. Schaft Creek	Hecla, Silver Standard	104G/6E, 7V		cp,	bn, mo	Cu, Mo	+7.0 266.7 90.72	0.11 0.036 0.047	57.6	1	MI		(0.40 % Cu)
33. Joem (Mt. Haskins)	Paramount Della Mines	104P/6W	P 17	mo,	si, cp	Mo, Cu	12.25	0.15	11.0	2	MII	(SM)	Molybdenum-bearing stockwork with adjacent skarn.
34. Storie 35. Adanac	New Jersey Zinc Noranda	104P/5W 104N/11W	P (? P I	mo mo,	sc	Mo (W)	94.53	0.16	90.7	5	Mi M		Recent drilling added minor new tonnage and slight increase in grade. Low stripping ratio, 0.63:1
						YUKON							
36. Casino	Teck	115J/10W	Pi	cp,	cc, mo	Cu, Mo	161.1	0.023	22.2	23	Mi	(SM)	(0.37 % Cu)
		, -		• 7				Sub-Total Mines	968.7 - 372.2	8			
								TOTAL	1,340.9	8			



^{*—} Geological class, P.I., P.II. and P.III. - porphyry deposits; SK — skarn; PEG — pegmatite

**— Maximum size indicated on initial or subsequent exploration

***— Reserve at 31/12/74, Type M — measured; MI — measured and indicated; MII — measured, indicated and inferred; SM — submarginal Data from B.C. Department of Mines and Petroleum Resources

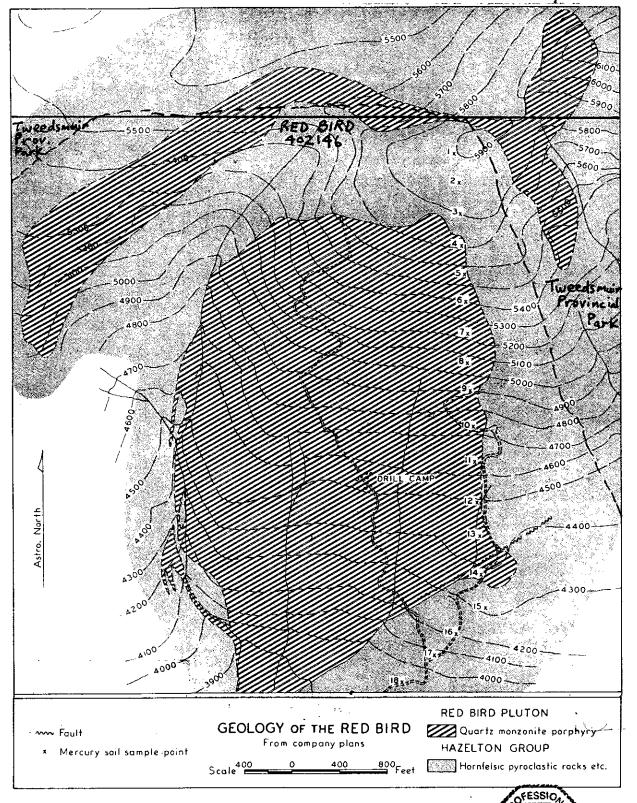


FUNDAMENTAL RESOURCES CORP

RED BIRD PORPHYRY MOLYBDENTIE PROJECT

FIG. 4 CLAIM LOCATION MAP
TRIANGLES INDICATE MINFILE OCCURRENCE
TRIANGLES WITHIN TWEEDMUIR PROVINCIAL
PARK ARE DESIGNATED NO STAKING. EAST & NORTH
PORTION OF RED BIRD CLAIM TENURE NO 402146
LIE WITHIN TWEEDSMUIR PROVINCIAL PARK.

FUNDAMENTAL RESOURCES CORP


RED BIRD PORPHYRY MOLYBDENITE PROJECT FIG. 6 RED BIRD CLAIM GEOLOGY WITH TOPOGRAPHY
CONTOUR LINES AT 100 FT INTERVALS
SCALE 1:50 000 1 cm conjugators to 500 m.

PROVINCE OF A. KIKAUKA

SCALE 1:50,000 1 cm equivalent to 500 m Red Bird Mineral Claim Tenure No. 402146

Latitude 53 17 54, Longitude 127 00 54

Skeena Mining Division NTS 093E06E TRIM 093E025

	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5	Stage 6
Endako	qz, py, mo, (mt)	qz, py (cp, mt)	qz, mo, py (cp, mt)	qz, py	qz, cal, sp	
Adanac	qz, mo, py	qz, mo	mo	sp, gn, asp		
Boss Mtn	qz, py	qz, py (mo)	qz, mo, py	(a) qz, mo, py/ (b) qz, py, cp, bi, (sc, mt, gn, sp)	qz, mō, py	
Glacier Gulch	qz	qz, mo, py. mt (cp, sc)	qz, mo, mt (cp, sc)	qz, mo, py, mt (cp, sc)	qz, car, py, sp, gn, (cp)	
BC Moly	mo .	qz, mo, py	qz, mo, py	qz, mo	qz, py, gn, sp (mo)	
Roundy,	(mo) (dissem. in dyke)	qz, mo, py stockwork		preliminary observatio	ns)	
Bell Moly	qz	qz, mo (py)	qz, mo (py)	qz, car, py gn, sp		
Ajax	qz, po	qz, mo	qz, mo	qz, py, gn sp, cp		
Red Bird.	qz	qz, mo (py)	qz, mo (py)	qz, mo (py)	qz	py (mo)
Lucky Ship	mo	qz, mo, py				

Parentheses designate minor constituents

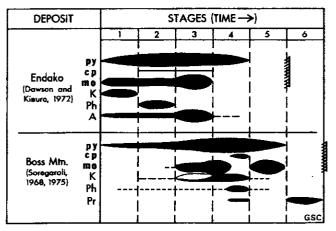


FIGURE 6 — Stages of hypogene mineralization and alteration in two British Columbia molybdenum deposits (Soregaroli, 1975c).

FUNDAMENTAL RESOURCES CORP

RED BIRD PORPHYRY MOLYBDENITE PROJECT

(AFTER SOREGAROLI, 1975)
ALTERATION NOTED AS FOLLOWS:
K-POTASSIC Ph-PHYLLIC
A-ARGILLIC Pr-PROPYLITIC

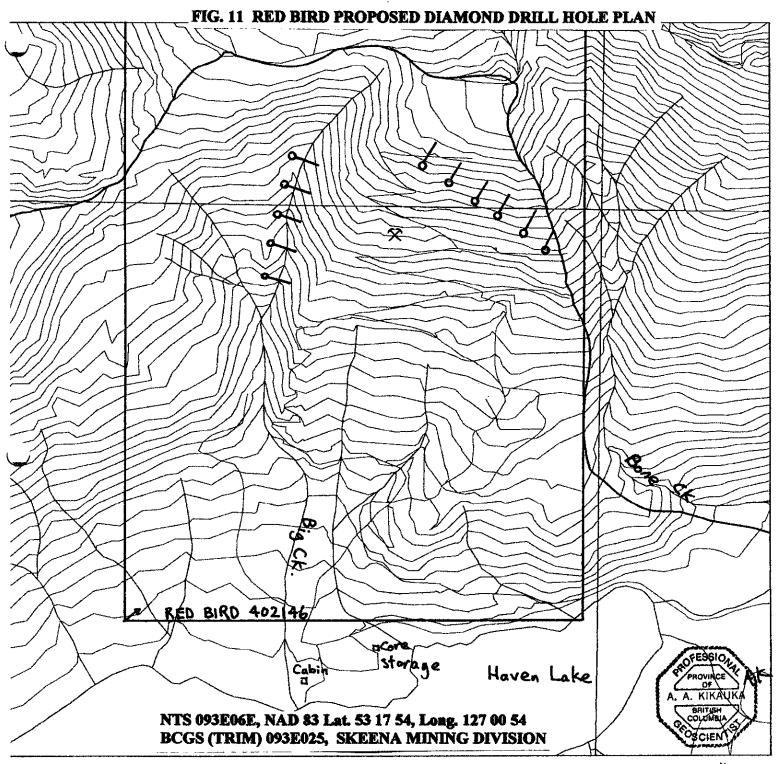
FUNDAMENTAL RESOURCES CORP RED BIRD PORPHYRY MOLYBDENITE PROJECT FIG. 8 CHARACTERISTICS OF CANADIAN PORPHYRY MOLYBDENUM DEPOSITS (AFTER SOREGAROLI, 1975)

			Cogenetic Intrusi	on -	·	Host R	ocks	Mineral	Deposit	- <u> </u>	
eposit I.T.S.* Reference)	Name	Composition	Shape	Size (meters)	Age (m y) K/Ar	Composition	Age (m y)	Form	Character	Alteration**	Mineralogy***
ndako 3K/3E Dawson and Gimura, 1972)	Endako Quartz Monzonite	quartz monzonite	elongate	24.4 × 4.8 km	141 ± 5	Topley batholith	137 - 141 (K/Ar)	elliptical plan	stockwork quartz veins fracture- filling	1. K-fs, clay, (bi) 2. ser, clay 3. clay 4. bleaching 5. nil	1. qz, mo, mt 2. qz, mo, py (mt, cp 3. qz, mo, py (mt, cp 4. qz, py 5. qz, sp, cal.
oss Mountain 3A/2W Soregaroli, 968, 1975)	Boss Mountain stock	quartz monzonite porphyry	elliptical (cylindrical)	800 × 650	102 ± 4	Takomkane batholith granodiorite	178 (K/Ar)	elongate breccia pipe; with umbrella of quartz mo veins	breccia fillings, quartz veins, fracture filling	A. garnet, hb hornfels B. 1. bi 2. qz, ser, py, K-fs, chi 3. chi, talc 4. ep, chi	1. qz, py 2. qz, py 3. qz, mo, py 4. a) qz, K-fs, ser, mo, py b) qz, K-fs ser, y, cp, bis (sc, mt, gn, sp, fi) 5. qz, mo, py 6. chl
Glacier Gulch 13L/14W Kirkham, 969)	Hudson Bay Mountain stock	quartz monzonite porphyry and quartz latite; quartz mon- zonite plug	cylindrical .	stock + 4 km plug-340 m	73.3 ± 3.4 69.5 ± 3	granodiorite sheet; Hazelton Gp. pyro- clastic and sedimentary rocks	LM. Jur.	tabular sheet and extensive low-grade stockwork	stockwork, quartz vein swarms	A. bi, am hornfels B. 1. silic 2. ser, car, K-fs, py 3. amphibole, bi, chl, mt 4. py	1. barren qz 2. qz, mo, py, mt (cp, sc) 3. qz, mo, py, mt (cp, sc) 4. qz, mo, py, mt (cp, sc) 5. qz, car, sp, gn, py (cp)
Adanac 104N/11W (Sutherland Brown, 1970)	Mount Leonard Boss (Surprise Lake bath.)	quartz monzonite (alaskite) and quartz monzonite porphyry (alaskite)	elliptical (?)	ore-related phases 1000 × 500	62	older phases Mt. Leonard boss of Surprise Lake batholith	>62 (K/Ar)	elliptical, flat-lying lens	stockwork, quartz veins, fracture filling, dissem.	weak ser, chl, in orebody weak qz, ser, py peripheral	1. qz, mo, (py, pow.) (horizontal veins) 2. qz, mo (steep veins) 3. minor "dry" fractures 4. peripheral sp, gn, asp.
B.C. Molybdenum 103P/6W (Carter, 1974)	Lime Creek stock	quartz monzonite; granodiorite porphyry (alaskite) (two plugs)	cylindrical with eastern appendage	stock- 850 × 700 appendage- 450 × 300	48.3 - 53.7	Bowser assemblage (U. Hazelton) argil. siltst. qwke	U. Jur- L. Cret.	annular, cylindrical, centered on north half of stock	stockwork	A. bi hornfels B. 1. inner qz, K-fs (bi) 2. peripheral qz, ser, py	1, dissem, in alaskite on fract. 2, qz, mo, py 3, qz, mo, py 4, qz, mo 5, qz, py, gn, sp, mo, td, cp, fl, gyp, dol, Pb-Bi sulphosalts.
Roundy Creek 103P/6W (Carter, 1974)	Roundy Creek stock and sill	quartz monzonite porphyry; biotite	elliptical	600 × 300	52.5 ± 2	Bowser assemblage (U. Hazelton) argil, siltst.	U. Jur- L. Cret.	irregular	stockwork, veins, minor dissem.	A. bi hornfels B. 1. inner ser, bi, (K-fs) 2. peripheral	banded mo in alaskite; pods, lenses dissem.
		quartz monzonite; alaskite								ser, py, car	2. stockwork, qz, mo, py veins
Ajax 103P/11W (Carter, 1974)	Mt. McGuire stocks and dykes	quartz monzonite; granodiorite porphyry	elongate- rectilinear contacts (4 stocks plus dykes)	450 × 300 to 300 × 150	53.5 ± 3	Hazelton Gp. siltst., gwke, augite andesite	M. Jur.	circular plan	stockwork, quartz veins	A. bi hornfels + skarn B. 1. K-fs, bi silic 2. qz, ab, ep 3. py halo	1. qz, po 2. qz, mo 3. qz, mo 4. qz. sp, py, gn, cp
Belf Molybdenum 103P/6W (Carter, 1974)	Clary Creek stock	1. quartz monzonite porphyry; grano- diorite porphyry 2. quartz- feldspar porphyry (quartz monz.)	elliptica!	670 × 300	52.9 ± 2 51.7 ± 2.2 48.7 ± 1.5	Bowser assemblage (U. Hazelton) argil. siltst.	U. Jur- L. Cret.	crescentic around eastern part of stock	stockwork, quartz veins	A. bi bornfels B. 1. inner K-fs, bi 2. peripheral ser, py	1. barren qz 2. qz, mo (py) 3. qz, car, py, po, gn, sp 4. qz, car, py, po, gn, sp
Red Bird 33E/5E (Sutherland Brown, 1972)	Red Bird stock	quartz monzonite porphyry	cylindrical	1000 × 1000	49.0 ± 2 50.0 ± 2	Hazelton Gp. andesitic pyrocl.	M. Jur.	annular cylindrical	stockwork, fract. filling, quartz veins	A. bi (act) horn- fels B. 1. inner K-fs, ser 2. peripheral qx, ser, py + irregular silicification 3. outer chl, ep	1. barren qz 2. qz, mo, (py) 3. qz, mo, (py) 4. qz, mo, (py) 5. barren qz 6. mo, py ("dry" fract.)
ucky Ship 3L/3W Carter, 1974)	Lucky Ship stock	quartz porphyry (alaskite)	elliptical plan, formed of non-coaxial cylinders	1200 × 600	49.9 ± 3	Hazelton Gp. andesitic pyroct. & argillite	Jur.	1. early shell largely destroyed by later intrusion 2. annular shell on youngest intrusion	stockwork	A. bi (act) horn- fels B. 1. inner K-fs 2. peripheral q2, ser, (py) 3. outer chi, cp	1. mo ("dry" fract.) 2. qz, K-fs, ser, py, cp, gn, sp
Aount homlinson 3M/13W Kirkham, 1965)	-	quartz monzonite porphyry; quartz monzonite porphyry dyke; aplite-peg.	elliptical	1200 × 1500	53.8	Hazelton Gp. argillite	U. Jur- L. Gret.	ellipical (along NW contact)	stockwork; qz vein	A. bi hornfels B. (not recorded)	mo, cp, py, mt, sc, qz
em 2H/12E Young and ird, 1969)	Gern stock	composite; quartz monz. breccia; granite; aplite-peg.	roughly elliptical	1200 × 520 breccia 300 × 450	20-30(?)	granodiorite schist gneiss	?	arcuate- peripheral to breccia	gz veins (stock- work?)	silcification argillization or sericitization propylitic	qz, K-fs, car, mo, (cp, py, sc, po, sp, gn, mt, bis)

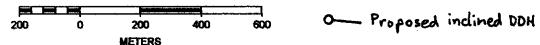
*National Topographic System

**A = metamorphism of host rocks; B = alteration sequence from interior to exterior.

***Vein sequence from oldest to youngest.


Sample	DDH	FROM	TO	WIDTH	Description	Ppm	Ppm	Ppm	₩ Haz	Ppm
No.			<u> </u>	<u> </u>		Mo	Cu	Sr	Rb	Ce
20551	79-95	50.0	55.0	5.0 m	Quartz Monzonite, MoS2	1330	363	264	87.6	31.4
				İ	veins multi-directional, 3-					
20552	79-95	55.0	(0.0	+	5% qtz.,1-2% py., tr. Cp.	1			ļ	<u> </u>
		55.0	60.0	5.0 m	Same as above	1440	203	353	82.2	33.5
20553	79-95	60.0	65.0	5.0 m	Same as above	1375	201	540	83.2	31.3
20554	79-95	65.0	70.0	5.0 m	Same as above	1915	197.5	388	70.3	33.0
20555	79-95	70.0	75.0	5.0 m	Same as above	1645	200	343	80.2	31.8
20556 20557	79-95	75.0	80.0	5.0 m	Same as above	2520	214	335	85.6	29.8
	79-95	80.0	85.0	5.0 m	Same as above	1380	178	475	83.2	29.7
20558	79-95	85.0	90.0	5.0 m	Same as above	1185	418	332	80.3	32.6
20559	79-95	90.0	95.0	5.0 m	Same as above	849	455	339	72.2	31.1
20560	79-95	95.0	100.0	5.0 m	Quartz Monzonite-	190	3010	176.5	101.5	17.75
					Hornfels Hazelton	1				1
	Į.		1		volcanic contact @ 96.1					
				}	m @ 70 degrees to core					
20561	79-106	205.0	210.0	5.0 m	axis, 3% cp., tr. MoS2	(70	1	+	 	<u> </u>
20201	/5-100	203.0	210.0	3.U III	Quartz Monzonite, MoS2	672	454	306	95.4	27.1
					veins multi-directional, 3-	i				
20562	79-106	210.0	215.0	5.0 m	5% qtz.,1-2% py., tr. Cp. Same as above	1250	162.5	1204	1000	1
20563	79-106	215.0	220.0	5.0 m	Same as above	1250	163.5	304	95.3	28.1
20564	79-106	220.0	225.0	5.0 m	Same as above, with fault	1765 2020	204	394	105.5	26.0
20001	// 100	220.0	223.0	3.0 III	gouge @ 220.3-220.5 m	2020	132.5	468	92.9	30.3
20565	79-106	225.0	230.0	5.0 m	Quartz Monzonite-	2240	783	431	112.5	26.6
	'		250.0	3.0 1.1	Hornfels Hazelton	2240	/63	431	113.5	26.6
			İ		volcanic contact @ 227.7		ļ	Į.		
	}			İ	m @ 75 degrees to core		-	ļ		ļ
	<u> </u>				axis, 1% cp., 0.5% MoS2			1	ì	
20566	79-106	230.0	235.0	5.0 m	Hornfels Hazelton	3030	1260	282	97.3	25.3
		ļ	<u> </u>		volcanics,-Quartz				1	
					Monzonite contact @	Ì	ļ	1		
				ĺ	230.8 m @ 70 degrees to				1	
i				ļ	core axis, and QM-			1		
					Hazelton contact @ 234.3					
					m @ 70 degrees to core					
					axis, 6% qtz as veins, 1%			1	İ	
20567	79-106	235.0	240.0	50-	MoS2 fract fill			<u> </u>	L	
2030/	/7-100	233.0	240.0	5.0 m	Hornfels Hazelton	324	3280	212	83.7	14.25
	-				volcanics, 3-5% qtz as			1		
20568	80-124	225.0	230.0	5.0 m	veins, variable py., MoS2	2012	205			
20200	00-124	22J.U	230.0	J.U ff1	Quartz Monzonite,	3310	307	462	73.1	21.3
					bleached sausseritized, 1-					
-					5% qtz, 3% py., 0.5% MoS2 veins @30-50					
i					degrees to core axis			1		
20569	80-124	230.0	235.0	5.0 m	Same as above	1606	250	410	70.5	22.2
20570	80-124	235.0	240.0	5.0 m	Same as above	1605 5220	358	418	72.7	23.3
20571	80-124	277.8	278.8	1.0 m	Quartz vein in bleached		385	525	69.3	25.5
	30 12-7	-,,,0	210.0	1.VIII	quaretz monzonite,	>10000	231	83.9	24.2	11.5
ļ	ŀ	ł			coarse grained MoS2 as	j]	
- 1				i	bands parallel to contact			j l	J	

FUNDAMENTAL RESOURCES CORPORATION RED BIRD PORPHYRY MOLYBDENUM PROJECT


FIG. 10 RED BIRD CORE SAMPLE SUMMARY

NOTE- ALL SAMPLES ARE CONTIGUOUS 5 METER INTERVALS EXCEPT FOR THE 20571 (1.0 METER WIDE QUARTZ VEIN OCCURING 37.8 METERS IN HOLE DEPTH FROM THE PREVIOUS SAMPLE)

SCALE 1: 12.466 BY A. KIKAUKA, JANUARY, 2004

EACH PROPOSED DRILL HOLE WOULD STOP AT A DEPTH OF 150-250 m & ARE INCLINED AT -45 DEGREES. EACH OF THE SELECTED 11 DRILL SITES ARE FENCE SPACED AT 100 m INTERVALS WITH THE POSSIBILITY OF 50 m INFILL DRILLING ALONG THE SAME FENCE PATTERN. THE OBJECTIVE OF DRILL HOLES IN THE EAST PORTION OF THE CLAIM WOULD BE CONFIRMATION DRILLING OF THE EXISTING Mo RESOURCE, AND THE PROPOSED DRILL HOLES IN THE WEST PORTION OF THE CLAIM (LOCATED IN THE UPPER PART OF BIG CREEK) WOULD BE TO OUTLINE ADDITIONAL Mo RESOURCES.

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: FUNDAMENTAL RESOURCE CORP. 4083 MONARCH PL. **VICTORIA BC V8N 4B7**

Page #: 1 Date: 25-Jul-2003 **Account: FUNDAM**

CERTIFICATE VA03025758

Project: Red Bird

P.O. No:

This report is for 21 DRILL CORE samples submitted to our lab in North Vancouver, BC, Canada on 15-Jul-2003.

The following have access to data associated with this certificate:

ANDRIS KIKAUKA VANCOUVER PETROGRAPHIC DR. WILLIAM PFAFFENBERGE

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
CRU-31	Fine crushing - 70% <2mm	
LOG-22	Sample login - Rcd w/o BarCode	
PUL-31	Pulverize split to 85% <75 um	
SPL-21	Split sample - riffle splitter	

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	
ME-MS61	47 element four acid ICP-MS	

To: FUNDAMENTAL RESOURCE CORP. ATTN: ANDRIS KIKAUKA 4083 MONARCH PL. **VICTORIA BC V8N 4B7**

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

The Com

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue

North Vancouver BC V7J 2C1 Canada
Phone: 604 984 0221 Fax: 604 984 0218

TO: FUNDAMENTAL RESOURCE CORP 4083 MONARCH PL. VICTORIA BC V8N 4B7

Page #: 2 - A
Total # of pages: 2 (A - D)

Date : 25-Jul-2003 Account: FUNDAM

Project : Red Bird

CERTIFICATE OF ANALYSIS VA03025758

								<u>-</u>								
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt kg 0.02	ME-MS61 Ag ppm 0.01	ME-MS61 AI % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01
20551		2.66	1.37	6.37	23.2	350	0.82	2.36	1,23	5.37	31.4	6.4	86	2.06	363	1.88
20552		2.78	0.43	6.77	10.4	780	0.84	0.24	1.38	1.34	33.5	3.2	55	1.95	203	0.77
20553		2.64	0.33	6.35	6.0	800	0.91	0.35	0.98	1.06	31.3	2.9	60	1.71	203	0.77
20554		2.52	0.33	6.51	3.2	1000	1.00	0.34	1.19	1.58	33.0	3.1	64	1.94	197.5	0.70
20555		3.28	0.31	6.31	2.9	1230	1.00	0.22	1.19	1.20	31.8	2.5	71	1.85	200	0.70
20556		3.04	0.53	6.11	6.0	540	1.04	0.83	0.86	2.32	29.8	5.9	58	1.87	214	1.03
20557		3.32	0.34	6.52	6.9	510	1.09	0.50	1.12	1.24	29.7	8.2	60	2.34	178.0	1.42
20558		3.04	0.79	6.50	17.2	1220	1.00	1.08	1.53	3.47	32.6	4.2	63	2.36	418	1.14
20559		2.80	2.11	6.53	3.8	450	1.00	5.52	1.04	1.94	31.1	5.3	63	2.33	455	1,65
20560		2.62	4.06	6.55	5.3	160	1.26	3.35	1.32	0.40	17.75	40.5	78	4.40	3010	7.13
20561		3.24	1.54	6.29	28.9	90	1.30	5.91	0.88	1.31	27.1	18.6	80	2.24	454	3.58
20562		3.18	0.31	6.12	2.1	430	1.40	2.33	0.61	0.99	28.1	4.8	73	2.09	163.5	1.60
20563		3.84	0.61	6.19	16.4	90	1.20	4.09	0.88	1.44	26.0	10.8	73	1.96	204	3.04
20564		3.46	0.34	6.16	8.3	580	0.98	1.31	1.66	1.69	30.3	6.6	78	3.33	132.5	1.24
20565		3.28	1.17	6.54	33.7	370	1.06	3.54	1.31	2.02	26.6	13.4	82	3.79	783	3.67
20566		3.12	1.52	6.85	45.3	510	1.00	0.90	1.09	2.38	25.3	9.8	70	3.58	1260	2.37
20567		3.16	3.36	7.12	43.1	160	1.36	3.09	1.54	0.46	14.25	37.4	55	5.51	3280	7.60
20568		3.20	3.35	5.25	4.2	1050	0.87	5.07	1.03	8.54	21.3	1.4	74	1.79	307	0.47
20569		3.00	3.33	5.90	6.4	1180	0.90	4.98	1.43	4.12	23.3	1.4	59	1.93	358	0.45
20570		3.28	2.43	5.84	3.1	730	0.97	3.63	1.36	3.69	25.6	1.6	64	1.79	385	0.50
20571		0.40	0.83	1.47	3.6	190	0.38	1.17	0.79	11.50	11.50	1.3	104	1.38	231	0.36

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: FUNDAMENTAL RESOURCE CORF 4083 MONARCH PL. VICTORIA BC V8N 4B7 Fage#: 2-E 1#ofpages: 2 (۸-D

Total # of pages : 2 (A - D)
Date : 25-Jul-2003

Account: FUNDAM

Project: Red Bird

																CERTIFICATE OF ANALYSIS VA03025758							
Sample Description	Method	ME-MS61	ME-MS61	ME-M\$61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-M\$61	ME-M\$61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61							
	Analyte	Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Mo	Na	Nb	Ni	P	Pb							
	Units	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm							
	LOR	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	5	0.05	0.01	0.1	0.2	10	0.5							
20551		15.25	0.26	0.3	0.112	4.80	17.0	14.1	0.27	110	1330	0.84	1.0	6.3	370	22.8							
20552		15.00	0.34	0.4	0.020	5.29	18.2	10.4	0.26	37	1440	1.18	0.8	2.7	420	9.6							
20553		14.05	0.33	0.4	0.020	4.98	17.0	10.1	0.23	33	1375	1.17	0.7	3.9	410	9.0							
20554		14.95	0.33	0.4	0.022	4.63	17.9	10.1	0.24	37	1915	1.35	0.9	2.7	410	9.6							
20555		14.35	0.39	0.4	0.022	4.93	17.7	9.2	0.24	40	1645	1.30	0.9	3.6	370	9.8							
20556		14.35	0.32	0.5	0.048	4.69	16.6	8.2	0.22	40	2520	1.26	0.9	2.3	350	12.9							
20557		14.90	0.30	0.5	0.038	5.00	16.0	9.8	0.24	44	1380	1.40	1.0	3.8	380	11.8							
20558		15.35	0.36	0.5	0.480	4.53	17.6	13.2	0.30	52	1185	1.23	1.0	2.6	390	15.2							
20559		15.05	0.29	0.4	0.208	4.36	16.4	8.5	0.26	45	849	1.58	0.9	3.4	410	28.7							
20560		18.50	0.28	0.2	0.169	3.32	9.4	20.0	1.94	397	190.0	2.30	1.1	14.9	680	6.3							
20561	. AP	15.95	0.25	0.4	0.087	4.41	12.5	6.8	0.30	122	672	1.37	0.9	4.2	450	11.3							
20562		14.95	0.22	0.3	0.026	4.60	14.4	5.7	0.28	38	1250	1.22	1.1	2.5	410	7.9							
20563		15.60	0.28	0.3	0.035	4.88	12.0	8.1	0.27	56	1765	0.95	1.0	3.7	460	8.8							
20564		13.05	0.23	0.4	0.024	5.27	16.6	8.5	0.32	257	2020	0.83	1.0	3.0	420	8.6							
20565		14.80	0.31	0.2	0.055	5.35	14.2	12.8	0.66	169	2240	1.13	0.9	6.4	570	10.2							
20566 20567 20568 20569 20570	-744	14.70 18.85 11.90 13.95 13.85	0.25 0.35 0.20 0.23 0.27	0.3 0.1 0.4 0.4 0.4	0.070 0.152 0.056 0.041 0.027	5.06 2.78 4.61 5.03 4.70	13.2 6.7 11.6 12.8 14.3	13.0 18.4 10.1 12.3 11.2	0.61 1.12 0.21 0.19 0.24	159 490 155 102 57	3030 324 3310 1605 5220	1.29 2.93 0.65 0.81 1.08	0.9 1.0 1.0 1.0	5.7 17.0 2.6 3.7 2.9	490 850 330 400 370	8.8 6.5 207 202 172.0							
20571		3.49	0.16	0.1	0.068	1.37	6.9	10.7	0.09	43	>10000	0.11	0.6	5.3	70	27.0							

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue
North Vancouver BC V7J 2C1 Canada
Phone: 604 984 0221 Fax: 604 984 0218

To: FUNDAMENTAL RESOURCE CORP. 4083 MONARCH PL. VICTORIA BC V8N 4B7

Page #: 2 - C

Total # of pages: 2 (A - D)

Date : 25-Jul-2003 Account: FUNDAM

Project : Red Bird

CERTIFICATE OF ANALYSIS VA03025758

Meth Anat Unit Sample Description LO	yte ts	E-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-M\$61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.2	ME-M\$61 Ti % 0.01	ME-MS61 TI ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1	ME-MS6 W ppm 0.1
20551		87.6	0.223	2.26	5.21	1	1.7	264	0.05	0.31	2.1	0.07	0.72	1.1	20	8.4
20552	1 ,	82.2	0.188	0.78	1.26	1	0.4	353	<0.05	0.09	2.8	0.07	0.48	0.9	16	4.5
20553		83.2	0.164	0.80	0.57	1	0.5	540	<0.05	0.13	2.8	0.06	0.42	8.0	17	5.2
20554	1	70.3	0.256	0.70	0.55	1	0.4	388	<0.05	0.24	3.2	0.07	0.40 0.40	1.0 1.1	16 16	7.2 6.5
20555		80.2	0.228	0.56	0.31	1	0.5	343	<0.05	0.31	3.5	0.08				
20556		85.6	0.417	1.22	0.50	2	0.7	335	0.05	0.45	2.8	0.07	0.43	1.1	17	7.4
20557		83.2	0.240	1.58	0.58	2	0.7	475	0.05	0.38	2.4	0.07	0.42	1.3	19	7.4
20558		80.3	0.146	1.18	2.14	1	8.0	332	<0.05	0.30	3.4	80.0	0.40	1.3	20	8.4
20559	•	72.2	0.130	1.87	0.39	1	0.9	339	0.05	0.88	2.3	0.08	0.46	1.2	22	8.0
20560	'	101.5	0.032	4.56	0.18	4	1.4	176.5	0.05	1.70	1.1	0.49	0.65	0.8	244	25.9
20561		95.4	0.090	4.17	27.2	3	1.4	306	<0.05	0.61	0.5	0.09	0.53	1.1	26	13.6
20562		95.3	0.176	1.75	2.07	1	1.1	304	0.05	0.35	2.0	0.09	0.45	1.2	27	46.2
20563	- 1 -	105.5	0.234	3.71	13.20	3	1.3	394	<0.05	0.88	0.5	0.08	0.49	1.0	28	18.3
20564		92.9	0.306	1.35	15.00	1	0.5	468	<0.05	0.37	2.6	80.0	0.53	1.0	15	13.6
20565	'	113.5	0.309	3.11	5.26	3	0.9	431	<0.05	0.80	1.7	0.22	0.60	8.0	97	21.0
0566		97.3	0.339	1.84	5.28	3	0.7	282	<0.05	0.64	1.8	0.20	0.69	0.7	79	18.7
20567	1	83.7	0.045	4.16	0.85	4	1.6	212	<0.05	0.71	8.0	0.48	0.49	0.7	252	32.4
20568		73.1	0.493	0.53	1.06	1	0.4	462	< 0.05	0.56	2.9	0.07	0.38	1.2	12	12.7
20569		72.7	0.213	0.34	1.72	<1	0.5	418	< 0.05	0.52	3.2	80.0	0.34	1.6	18	9.1
20570	l	69.3	0.742	0.83	0.71	2	0.6	525	0.05	1.61	3.4	80.0	0.28	1.6	17	7.7
20571		24.2	3.71	1.59	2.54	7	0.4	83.9	<0.05	4.80	0.8	0.03	0.34	1.2	<1	3.6

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue

North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 TO: FUNDAMENTAL RESOURCE CORP. 4083 MONARCH PL. VICTORIA BC V8N 4B7

Total # of pages : 2 (A - D)
Date : 25-Jul-2003

Date: 25-Jul-2003 Account: FUNDAM

Project: Red Bird

						CERTIFICATE OF ANALYSIS	VA03025758
Sample Description	Method Analyte Units LOR	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5			
20551		3.2	433	7.1			-
20552		3.5	15	8.0			
20553	į	3.2	18	8.2			
20554		3.4	16	9.0			
20555		3.1	20	9.1			•
20556		2.8	51	10.7			
20557		3.0	36	11.1			
20558		3.1	423	10.1			
20559		3.0	192	8.5			
20560		12.0	79	4.5			
20561		3.3	102	8.1	*		
20562		3.2	13	8.1			
20563		3.3	16	8.3			
20564		3.6	14	8.4			
20565		6.4	26	4.9			
20566		6.9	23	5.8			
20567		13.4	54	2.2			
20568		2.6	611	9.2			
20569		3.0	316	10.2			
20570		2.8	24	10.8			
20571		2.6	36	2.3			
		,					
]					
		1					
		1					
		,					
		1					
1		1					
1							
					•		
		1					
		i					
		1					

Vancouver Petrographics Ltd.

8080 GLOVER ROAD, LANGLEY, B.C. V1M 3S3
PHONE (604) 888-1323 • FAX (604) 888-3642
email: vanpetro@vancouver.net

Report 030377 for

Grant Anderson, Bill Pfuffenberger, Fundamental Resources Corp., 4083 Monarch Place, Victoria, B.C., V8N 4B7

July 2003

Samples:

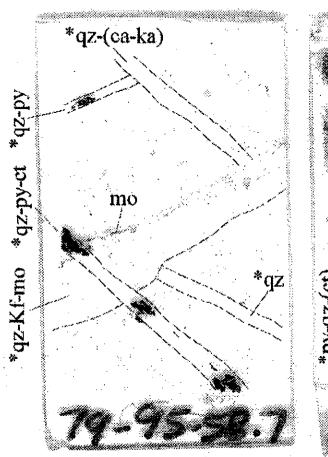
DDH 79-95: 58.7 m (Sample #20552)

DDH 79-95: 96.1 m (Sample #20560) (samples submitted by Andris Kikauka)

Summary:

Sample #20552 (DDH 79-95 58.7 m) is a porphyritic quartz monzonite containing phenocrysts of plagioclase, quartz, K-feldspar, and biotite in a groundmass of finer grained quartz and K-feldspar with minor apatite and rutile. Plagioclase phenocrysts are altered moderately to sericite and calcite and locally moderately to strongly to kaolinite-calcite.

Several veins cut the rock; their ages are not completely defined. Early veins are of quartz with lesser calcite and minor kaolinite. The main vein is of quartz-K-feldspar, with a seam of molybdenite and a few patches of calcite along one side. A late vein is of quartz-pyrite-(calcite).


Sample #20560 (DDH 79-95 96.1 m) is of the contact between a hornfelsed andesite (A) and a slightly porphyritic quartz monzonite intrusion (QM). The andesite consists of plagioclase and biotite with much less abundant quartz and minor disseminated pyrite and chalcopyrite. Near the contact are a few porphyroblasts of quartz. Replacement patches are dominated by quartz and K-feldspar with much less calcite and biotite and minor kaolinite.

The quartz monzonite contains plagioclase phenocrysts in a groundmass of quartz, K-feldspar, and biotite. In the quartz monzonite, a vein of pyrite-quartz-calcite has an alteration envelope a few mm wide of K-feldspar. In the andesite a discontinuous veinlet is of chalcopyrite-pyrite.

John G. Payne, Ph/D.,

Tel: (604)-597-1080

Fax: (604)-597-1080 (call first) email: jgpayne@telus.net

Sample #20552 DDH 79-95 58.7 m Porphyritic Quartz Monzonite Veins: Quartz-Calcite-Kaolinite; Quartz-K-feldspar-Molybdenite-Calcite; Quartz-Pyrite-Calcite)

Phenocrysts of plagioclase, quartz, K-feldspar, and biotite are set in a groundmass of finer grained quartz and K-feldspar with minor apatite and rutile. Plagioclase phenocrysts are altered moderately to sericite and calcite and locally moderately to strongly to kaolinite-calcite. Several veins cut the rock; their ages are not completely defined. Early veins are of quartz with lesser calcite and minor kaolinite. The main vein is of quartz-K-feldspar, with a seam of molybdenite and a few patches of calcite along one side. A late vein is of quartz-pyrite-(calcite).

mineral percentage		main grain si	ize range (mm)				
phenocrysts							
plagioclase	12-15%	0.7-1.5	(a few up to 2 mm long)				
quartz	5- 7	1-3					
K-feldspar	2-3	1- 2	•				
biotite	0.5	0.5-0.7	(a few up to 1.5 mm long)				
groundmass							
quartz	25-30	0.07-0.15					
K-feldspar	20-25	0.05-0.12					
apatite	0.2	0.02-0.07					
rutile	0.2	0.05-0.15					
chalcopyrite	0.1	0.03-0.2					
pyrite	trace	0.03-0.05					
molybdenite	trace	0.02-0.05					
veins							
early: quartz-c	alcite-kaolinite	2- 3%					
	calcite-molybden						
	-feldspar-calcite	17-20					
late: quartz-py	•	2- 3	-				

Plagioclase forms subhedral to euhedral phenocrysts that were replaced slightly to moderately by disseminated flakes of sericite and locally by patches of calcite. Several plagioclase phenocrysts were replaced strongly by pseudomorphic K-feldspar. A few plagioclase phenocrysts were altered completely to kaolinite with irregular patches of calcite.

Quartz forms anhedral, equant phenocrysts with irregular margins against the groundmass.

K-feldspar forms scattered subhedral phenocrysts, some of which contain a few equant inclusions of quartz and scattered patches of rutile. Dusty hematite is common.

Biotite forms scattered flakes with pleochroism from pale to light brown. They were replaced moderately by muscovite and calcite in widely varying proportions.

In the groundmass, quartz and K-feldspar are intergrown coarsely in a submosaic texture.

Apatite forms disseminated, anhedral to euhedral grains, commonly associated with biotite phenocrysts.

Rutile forms disseminated, anhedral grains and clusters of a few grains.

Chalcopyrite forms minor disseminated grains, in part enclosing anhedral grains of ilmenite. Pyrite forms minor disseminated grains. Molybdenite forms minor disseminated flakes and clusters of a few flakes, mainly near veins.

(continued)

Sample #20552 DDH 79-95: 58.7 m (page 2)

Several veins cut the rock; their ages are not completely defined. An early vein is of quartz with lesser calcite and minor patches up to 0.3 mm in size of equant flakes of kaolinite. Another early vein is of quartz with only minor calcite. Cutting the early veins is the main vein of quartz-K-feldspar, with a seam of molybdenite along one side and a few patches of calcite. Quartz has a moderately sutured texture. K-feldspar forms a few elongate lenses within the main vein; these may represent replaced plagioclase from the host rock. Calcite forms a few lenses and patches in the main vein; the largest of these and some smaller ones contain abundant unoriented flakes of molybdenite. Molybdenite is concentrated strongly along one margin of the main vein as equant to elongate flakes and clusters of flakes.

A later vein up to 2 mm wide is dominated by quartz with coarse grains of pyrite and much less calcite. It cuts through the molybdenum-rich band on the edge of the main vein; otherwise, the relative ages of the veins would be uncertain because elsewhere where the veins intersect the only mineral is quartz.

A smaller quartz-pyrite-(calcite) vein appears to be cut off by the quartz-calcite-kaolinite vein.

Sample #20560 DDH 79-95 96.1 m Contact Hornfelsed Andesite and Quartz Monzonite Replacement: Quartz-K-feldspar-Calcite Veins: Pyrite-Quartz-Calcite with K-feldspar Envelope; Chalcopyrite-Pyrite

The sample is of the contact between a hornfelsed andesite (A) and a slightly porphyritic quartz monzonite intrusion (QM). The andesite consists of plagioclase and biotite with much less abundant quartz and minor disseminated pyrite and chalcopyrite. Near the contact are a few porphyroblasts of quartz. Replacement patches are dominated by quartz and K-feldspar with much less calcite and biotite and minor kaolinite. The quartz monzonite contains plagioclase phenocrysts in a groundmass of quartz, K-feldspar, and biotite.

In the quartz monzonite, a vein of pyrite-quartz-calcite has an alteration envelope a few mm wide of K-feldspar. In the andesite a discontinuous veinlet is of chalcopyrite-pyrite.

mineral metamorphose	percentage d andesite	main grain size range (mm) (30-35% of section)							
phenocrysts									
plagioclase	1- 2%	0.5-0.8							
porphyroblasts									
quartz	2-3	0.7-1.7							
groundmass									
plagioclase	17-20	0.02-0.03							
biotite	8-10	0.05-0.1							
quartz	4- 5	0.02-0.05							
chalcopyrite	0.5	0.05-1							
ругite	0,5	0.03-0.2							
apatite	0.1	0.05-0.3							
rutile	0.1	0.02-0.05							
bornite	trace	0.01-0.03							
replacement patches, veinlets									
quartz-K-feldsp	ar-calcite 4-	5% 0.1-0.7							
chalcopyrite-pyr	rite 0.3	0.05-0.3							

Plagioclase forms subhedral to euhedral phenocrysts that were replaced moderately to completely by kaolinite with much less abundant calcite.

Near the contact with quartz monzonite are a few anhedral porphyroblasts of quartz that contain abundant inclusions of biotite as in the main rock; quartz probably formed mainly at the expense of groundmass plagioclase.

In the groundmass, plagioclase and quartz form equant, slightly interlocking grains. Biotite forms disseminated, equant flakes with pleochroism from pale to light or medium brown.

Pyrite and chalcopyrite form disseminated grains and lenses. One patch of chalcopyrite (associated with pyrite) contains minor bornite.

Apatite forms disseminated, subhedral to euhedral grains.

Rutile forms disseminated grains and clusters of a few grains.

Irregular to veinlike replacement patches are dominated by quartz with lesser K-feldspar, minor calcite and biotite, and trace kaolinite.

A discontinuous veinlet up to 0.15 mm wide is of chalcopyrite and pyrite.

(continued)

quartz monzonit	e (40	-45% of section)	
plagioclase	17-20%	0.5-1.5	
quartz ,	10-12	0.2-0.5	
K-feldspar	7-8	0.2-0.5	
biotite	3-4	0.2-0.7	
pyrite	1	0.05-0.5	
chalcopyrite	0.3	0.02-0.1	
apatite	0.2	0.07-0.3	
rutile	0.1	0.05-0.1	
veins			
pyrite-quartz-calc	ite (K-felds	par envelope) 2-3% (7-8%	6)
chalcopyrite-(pyri	te-calcite)	0.1%	

Plagioclase forms subhedral to euhedral early-formed crystals that were altered moderately to sericite, kaolinite and calcite.

K-feldspar forms anhedral grains, some of which may be pseudomorphic replacements of plagioclase grains. Quartz and K-feldspar form coarsely intergrown, anhedral grains. A few quartz grains up to 2 mm in size may be anhedral phenocrysts.

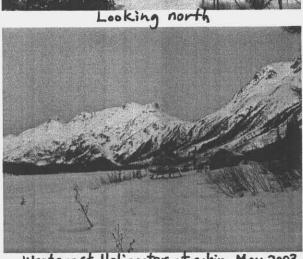
Biotite forms flakes with pleochroism, from pale to medium brown to greenish brown. Some grains were replaced moderately to strongly by calcite and others were replaced by pseudomorphic muscovite with patches of calcite.

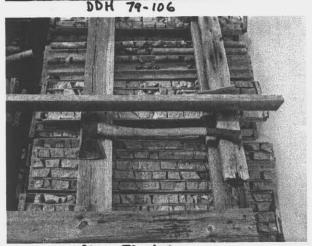
Apatite forms disseminated, subhedral to euhedral prismatic grains.

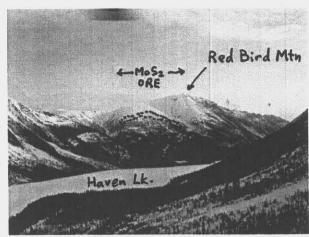
Rutile forms disseminated, anhedral grains and clusters of a few grains.

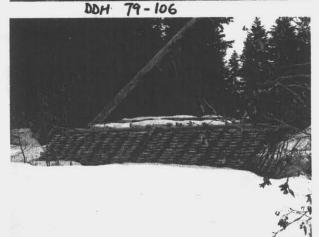
Pyrite and lesser chalcopyrite form disseminated grains.

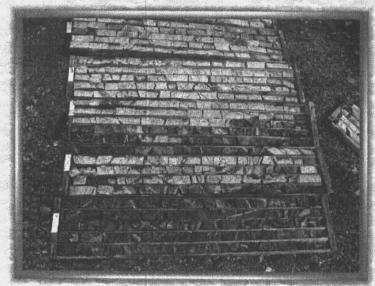
A vein 0.5-0.7 mm wide is of pyrite, quartz, and calcite. Where the vein is dominated by pyrite, pyrite grains have a thin selvage of calcite. The vein has an envelope up to a few mm wide in which plagioclase was replaced completely by pseudomorphic K-feldspar.


A discontinuous veinlet up to 0.05 mm wide is of chalcopyrite with much less pyrite and calcite.





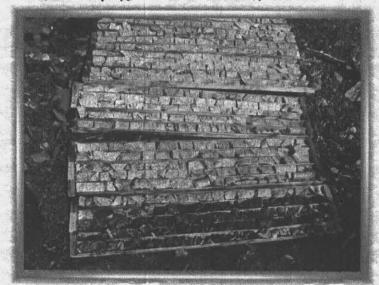



Looking northeast

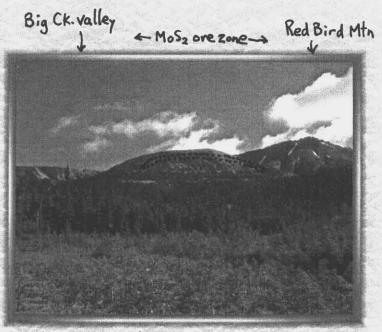
Red Bird Mo-Cu porphyry

1979-80 core rack

Cabin on Haven Lk. looking west



NOH 79-106 216.0 - 240.0 m


DDH 79-106 205.0-222.0 m

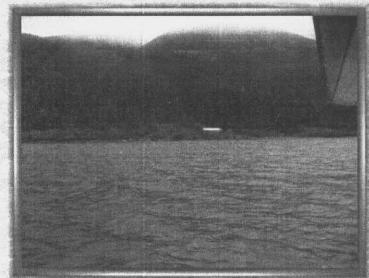
DDH 79-95 76.0-100.0 m

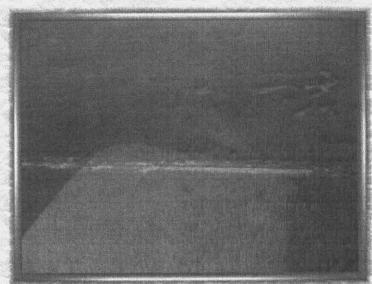


DDH 80-124 1.0 m section 277.8-278.8 m > 1% Mo

Looking north

DDH 80-124 225.0 - 240.0 m


DDH 79-95 68.0 - 90.0 m


DDH 79-95 50.0-73.0 m

Pilot checking flight route

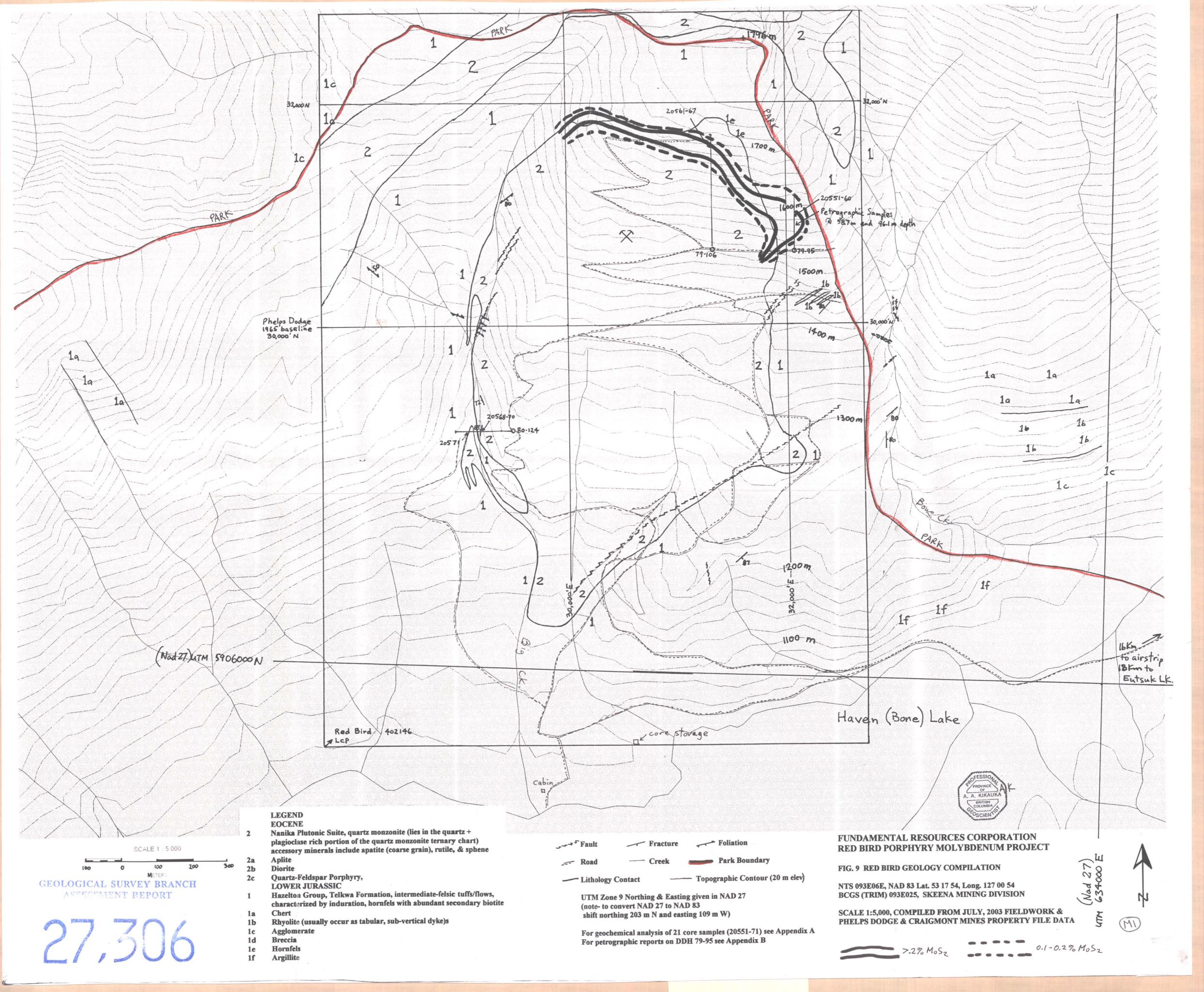
Cabin on Haven LK. boking north

Abandon airstrip located 11 Km east of Red Bird claim on Eutsuk Lake

Looking south at Haven Lk.

Photo taken from MoSz ore zone 1500m elevation Looking southwest

Looking southeast down Bone Ck.


Looking south at Haven Lk.

Looking east on Red Bird Mtn

Looking southwest at Big Ck valley in Foreground

