

REPORT ON

2003 FIELDWORK COMPLETED

ON THE

INDATA PROPERTY

OMINECA MINING DIVISION, BC.

NTS: 93N10W Latitude 55° 23' N, Longitude 125° 19' W (centre)

for Castillian Resources Corp. and Eastfield Resources Ltd.

by

J.W. (Bill) Morton, P.Geo

January 15, 2004

GEOLOGICAL SURVEY BRANCH

TABLE OF CONTENTS

÷

1.) SUMMARY:		PAGE 1
2.) PROPERTY DESCRIPTION AND LOC	ATION:	1
3.) HISTORY:		4
4.) ENVIRONMENTAL ANDABORIGINA	L ISSUES	6
5.) REGIONAL GEOLOGY AND MINERA	LIZATION	6
6.) PROPERTY GEOLOGY		7
7.) EXPLORATION		12
8.) DRILLING		15
9.) REVIEW OF 2003 SOIL GEOCHEMIC.	AL RESULTS	15
10.) REVIEW OF 2003 GEOPHYSICAL RI	ESULTS	17
11.) RECOMMENDATIONS		18
12.) COST STATEMENT		19
13.) AUTHOR QUALIFICATIONS		20
SUMMARY OF DRILLING RESULTS	APPENDIX 1	
ANALYTICAL CERTIFICATES	APPENDIX 2	
LOGISTICL REPORT	APPENDIX 3	

ſ

LIST OF FIGURES

LOCATION MAP	FIGURE 1
CLAIMS DISPOSITIONAND TOPOGRAPHY	FIGURE 2
REGIONAL GEOLOGY MAP	FIGURE 3
PROPERTY SCALE GEOLOGY	FIGURE 4
SOIL COPPER-GOLD	FIGURE 5
SOIL ARSENIC-ANTIMONY	FIGURE 6
"IP" PSEUDOSECTIONS 1300N TO 1700N	FIGURE 7
"IP" PSEUDOSECTIONS 800N TO 1200N	FIGURE 8
"IP" PSEUDOSECTIONS 400N TO 900N	FIGURE 9
"IP" PSEUDOSECTIONS 1100S TO 1600S	FIGURE 10
CHARGEABILITY CONTOUR PLAN	FIGURE 11
RESISTIVITY CONTOUR PLAN	FIGURE 12

T

1. SUMMARY

The Indata property is located approximately 130 kilometres to the northwest of Fort St. James in central British Columbia and is owned 86% by Eastfield Resources Ltd. and 14% by Imperial Metals Corporation. In May 2003, Eastfield granted and option to Castillian Resources Corp that grants Castillian the right to earn a 65% interest in the property directly from Eastfield's interest by making cash payments issuing common shares (or paying cash in substitution for the shares), and incurring cumulative exploration expenditures of \$1,000,000 over a five-year term. In 2003 Castillian fulfilled a portion of this requirement by making \$10,000 in payments and incurring approximately \$58,500 in exploration expenditures.

The 2003 field program commenced on August 3rd and ran until August 23rd. Sixteen (16) kilometres of grid was established and cut from which 11.2 kilometres of induced polarization survey was run. Soil sampling was completed on the 16-kilometre grid on a 50-metre sample spacing. In all 304 soil samples were collected and analyzed using multi-element techniques plus gold. Data from the 2003 program will later be compiled with data originating from programs undertaken on the property by Imperial Metals Corporation in 1984 and 1985, Eastfield Resources Ltd. in 1987, 88, 89, 90, and 1995 and Clear Creek Resources Ltd. in 1996 and 1998.

Results of the 2003 work have expanded the porphyry copper target expressed on the northwestern and southwestern sides of the preexisting grid (immediately north of Albert lake and along the southeastern side of Albert Lake). Results of the 2003 work have also outlined several new precious metal targets correlated with anomalous concentrations of arsenic and antimony and elevated chargeability responses.

2. **PROPERTY DESCRIPTION AND LOCATION:**

The Indata property is located 130 kilometres to the northwest of Fort St. James, British Columbia (Figure 1), within the Omineca Mining Division (NTS 93N/6W at Latitude 55°23'N, Longitude 125°19'W). Access to the property is from Fort St. James via the Leo Creek Forestry Road to near Tchentlo Lake and thence on a road built by Eastfield Resources Ltd., the previous property holder, to the northern part of the property. This road was built to Ministry of Forests logging road standards and provides good access for trucks and heavy machinery such as drill rigs and bulldozers. Away from this road access within the property boundaries is on foot only except for a few areas where helicopter landing sites have been prepared.

Albert Lake on the western side of the property is suitable for float plane use and provides good access to the copper anomaly..

The Indata property covers an upland area between Indata Lake to the east and Albert Lake to the west (Figure 2). Whereas the central part of the property is of relatively low relief, the topography slopes steeply down towards Albert and Indata Lakes. The area is covered by thick spruce, balsam and pine, in places of commercial grade, although low lying areas are usually swampy with a dense cover of alder and poplar. Elevations on the claims range from 1,000 metres (3,280 feet) to 1,290 metres (4,230 feet)

Claim Name	Record #	Number of Units	Expiry Date
Indata 2	239379	15	Oct 18, 05
Indata 3	240192	20	Oct 18, 05
Schnapps 1	238722	20	Oct 18, 06-05
Schnapps 2	238723	20	Nov 14, 05
Schnapps 3	238859	8	Oct 20, 05
Schnapps 4	238860	10	Oct 18, 05
Schnapps 5	238893	4	Oct 18, 05
Schnapps 6	362575	1	Oct 20, 05
IN-6	362576	1	Oct 20, 05
IN-7	362577	1	Oct 20, 05
IN-8	362578	1	Oct 20, 05
IN-9	362579	1	Oct 20, 05
IN-10	362582	1	Oct 20, 05
IN-11	362583	1	Oct 20, 05

Mineral Claims of the Indata Property

LOCATION MAP

Location of the Indata property.

3. HISTORY:

Exploration of the property began as recently as 1984 by Imperial Metals Corporation after staking part of the area during regional exploration of the Pinchi Fault zone. Following initial soil sampling and the staking of additional claims, a four hole diamond drilling program was completed by Imperial to explore at depth copper mineralization seen in outcrop near the northeast side of Albert Lake. This program resulted in the discovery of low grade chalcopyrite – pyrite mineralization (0.1%-0. 2% copper) to depths of less than 100 metres from the surface. In 1986 Eastfield Resources Ltd. entered into a joint venture with Imperial and undertook a program of grid establishment, soil sampling and hand trenching and geophysical surveying, followed by diamond drilling in 1987, 1988 and 1989 and trenching with a bulldozer-mounted backhoe in 1989. The drilling programs resulted in the discovery of polymetallic quartz and quartz-carbonate veins with elevated precious metal values (commonly in the range of several hundred per billion gold to 6 g/ with the most significant intercept being 47 grams/tonne gold over 4 metres). These polymetallic veins, which generally strike north and dip to the east, are commonly enveloped by a zone of silicification in volcanic rocks and a thickening-downwards zone of talc-magnesite alteration in ultramafic rocks.

In 1995, after construction of a road through the southern part of the Indata property, built to standards for log haulage, a trenching program was completed adjacent to the northeastern part of Albert Lake, over the copper zone previously defined by soil sampling. One of these trenches (Trench 7) returned analyses which averaged 0.36% copper over a length of 75 metres.

In 1996 Clear Creek Resources Limited carried out a small diamond drilling program in the area of anomalous copper in soils adjacent to the northeastern part of Albert Lake. Results of this program confirmed the existence of subsurface copper mineralization indicated by the results of Imperial Metals Corporation's 1985 drilling but, in this area, of low grade (0.1% - 0.2%) over downhole lengths of up to 100 metres. However, this program was preliminary only and tested only a very small part of the area covered by anomalous soil copper geochemistry.

A 1998 drilling program by Clear Creek Resources Ltd. confirmed and exceeded the 1996 drilling results and also established the presence of an unexposed altered granodiorite stock with copper mineralization adjacent to the eastern edge of Albert Lake. During road construction at that time silicified volcanic rocks were exposed in a road cut in the southern part of the existing grid. Grab samples showed the presence of copper sulfides along with enriched gold, demonstrating for the first time an association of copper and gold at Indata. Ten samples, somewhat grab sample in type, from this new showing returned an average value of 1.04% copper and 388 ppb gold.

Indata Property Claims Disposition and Topography contour interval : 50 metres

Figure 2

4. ENVIRONMENTAL AND ABORIGINAL ISSUES

The Fort St. James Land and Resource Management Plan (LRMP), completed in 1999, concluded a strategy for protecting land on the northern and eastern sides of the Indata property – along the Tsayta Lake and Nation River water courses – recognizing the fish, wildlife and recreational values of the area. This is, however, not thought to have had any significant impact on the mining development potential of the Indata property in that known mineralization at Indata occurs within the western regions of the watershed outside the areas that are considered important predominantly for environmental reasons. On June 28, 1999 the Government of British Columbia issued a news release recognizing the importance and significance of the "mineral resource" of the Indata property and stating its commitment to allow any future mining activity to take place. There are no other environmental issues known that are specific to the Indata property, or aboriginal issues other than those applicable to the Province of British Columbia as a whole.

5. **REGIONAL GEOLOGY AND MINERALIZATION**

The Indata property lies near the contact of two major terranes of the Canadian Cordillera, the Quesnel Terrane to the east and the Cache Creek Terrane to the west. The contact between these terranes is marked by the Pinchi Fault Zone, a high angle reverse fault of regional extent (Figure 3), and associated splay faults. Cache Creek strata to the west has been thrust over Takla strata to the east. The Quesnel Terrane consists of mafic to intermediate volcanic rocks of the Upper Triassic – Lower Jurassic Takla Group intruded by a composite batholith, the Hogem Batholith with intrusive phases, which range in age from Lower Jurassic to Cretaceous.

The Cache Creek Terrane in the region comprises mainly argillaceous metasedimentary rocks intruded by diorite to granodiorite plutons which may be part of the, pre-Triassic age or Lower Cretaceous age and by small ultramafic stocks. Some of these latter intrusions may be of ophiolitic origin. A northwest-striking fault bounded block adjacent to the Quesnel Terrane is underlain largely by limestone within which a sliver of mafic and intermediate volcanic rocks is preserved. Both the limestone and volcanic rocks are considered here to be part of the Cache Creek Group but the evidence for this is equivocal as similar strata occur within the Takla Group elsewhere in the region. However, metamorphic grade of the Takla Group volcanic rocks is rarely higher than zeolite facies of regional metamorphism while that of the volcanic rocks underlying the Indata property is of greenschist grade, suggesting that these strata are of Cache Creek affinity, not Takla Group. This having been said the proximity of the Indata claims to a major thrust fault may locally have raised the metamorphic grade.

The dominant structural style of the Takla Group is that of extensional faulting, mainly to the northwest. In general Takla Group rocks are tilted but not. In contrast, strata of the Cache Creek Group have been folded and metamorphosed to lower to middle greenschist facies and, in argillaceous rocks, preserve a penetrative deformational fabric. However, extensional faults are also common within the Cache Creek Group and probably represent the effects of post-collision uplift. In addition to high angle extensional faults, thrust faults are inferred within the Cache Creek Group.

Known mineral occurrences within the region also reflect the environment in which these occurrences are found. Within the Takla Group mineral deposits tend to be associated with intermediate and felsic intrusions and are commonly gold-enriched copper porphyries. Porphyry-style mineralization also occurs within the Cache Creek Group but no such deposits are known within the Indata region. Known mineral occurrences within the Cache Creek of the region includes epithermal mercury mineralization in carbonate rocks such as occurs at the former producing Bralorne-Takla Mercury and Pinchi Lake mines and precious metal enriched skarn mineralization such as occurs at the Lustdust property. Resent published results at the Lustdust property, currently being explored by Alpha Gold Corp., include 0.80% copper and 0.67g/tonne gold over 59 metres and 2.19% copper and 24.04 g/tonne gold over 15 metres. "Homestake"-style gold mineralization in the Cache Creek Terrane occurs at the Snowbird deposit located near Fort St. James to the south of the Indata region, at Mt. Sir Sidney Williams to the north of Indata and at Indata itself. Arsenopyrite-stibnite-chalcopyrite-pyrite veins with enriched precious metals occur at these occurrences at or near the contact of mafic and ultramafic rocks. Podiform chromite lenses within peridotite bodies have been located to the west of the Indata property.

6. **PROPERTY GEOLOGY**

Lithologies

The Indata property is underlain by two main supracrustal assemblages, i) limestone with minor intercalated shale and ii) and sitic volcanic rocks that were deposited under marine conditions. Limestone crops out as prominent hills and bluffs in the northern, western and southern parts of the area. Although generally massive, in places bedding is defined by thin shaley partings and by intraformational limestone conglomerate. Breccias formed by carbonate dissolution are displayed within a karst topography in the southwestern part of the Indata property area. A middle Permian foraminiferra assemblage has been collected from limestone of the Cache Creek Group to the west of the Indata property (Armstrong, 1946).

Volcanic rocks underlying the Indata property are of andesitic composition and can be subdivided into two broad units. In the western part of the property volcanic rocks consist of pillow lava, pillow breccia, coarse tuff breccia and fine-grained crystal lithic tuff.

Generalized Geological Setting of the Indata Property.

 ∞

The dominant mafic mineral in these rocks is amphibole, now represented by tremolite/actinolite but was probably hornblende prior to alteration. In a few cases minor orthopyroxene phenocrysts have been noted suggesting that the volcanic rocks may have tholeiitic affinity and, thus, probably should not be included in the Lower Mesozoic Takla Group volcanics. These latter rocks are of alkalic to subalkalic composition and the only pyroxene recognized is clinopyroxene, usually augite or diopsidic augite.

The second volcanic unit consists of massive to poorly bedded volcanic tuff with variable amounts of amphibole phenocrysts. Although commonly poorly bedded, bedding planes and fining upwards sequences can be recognized in places.

Intrusive rocks recognized on the Indata property range in composition from ultramafic to granite and underlie the central part of the property area. Hornblende diorite occurs as a pluton which extends along part of the eastern side of the central part of the property and as dykes. The bulk of this pluton has a fine to medium-grained hypidiomorphic granular texture although both marginal phases of the pluton and the dykes are porphyritic. A small part of the pluton is of quartz diorite composition although primary quartz is generally absent. While diorite dykes are common within the volcanic rocks of the property, no diorite intrusions have been observed within the limestone unit, suggesting that the diorite and volcanic rocks are of similar age and are either older than the massive limestone or that the limestone is allochthonous with respect to the volcanics and was emplaced adjacent to the volcanic strata after volcanism and plutonism had ceased.

Intruding both volcanic rocks and diorite are ultramafic bodies, serpentinized to varying degrees but which preserve textures suggesting that the original rock was peridotite and pyroxenite. Cross fibre chrysotile veins and veinlets occur throughout these bodies. To the south of Radio Lake (Figure 4) a differentiated ultramafic-mafic intrusion occurs, consisting of a coarse-grained clinopyroxenite core, surrounded by peridotite and, in turn, enclosed by medium to coarse-grained hornblende \pm clinopyroxene gabbro.

The youngest intrusive rocks of the Indata property consist of medium to coarse-grained grey and reddish grey biotite quartz monzonite and granite (Figure 4). Whereas all other intrusive rocks in the area have been emplaced only into volcanic strata, this unit also intrudes limestone of the Cache Creek Group.

A large part of the Indata property is covered by glacial and fluvioglacial deposits although drilling indicates that this cover is generally no more than a few metres thick, even in low lying areas such as adjacent to Albert Lake.

Structure and Metamorphism

The area covered by the Indata property can be divided into two structural domains, i) that area underlain by carbonate rocks which is characterized by concentric folds and the development of a penetrative fabric in finer grained clastic interbeds and ii) that area underlain by volcanic strata which has undergone brittle deformation only. Contacts between carbonate and volcanic strata are obscured by young cover but are inferred to be northwesterly-striking faults. Drilling and geological mapping in the central part of the Indata property has indicated the presence of a number of westerly-striking faults which show normal displacements of a few metres to a few tens of metres.

Carbonate rocks have generally been recrystallized with the common development of sparry calcite while fine grained clastic interbeds display a greenschist facies mineral assemblage. The assemblage actinolite/tremolite – chlorite – epidote within the matrix of volcanic rocks also suggests the attainment of greenschist grade of regional metamorphism in these strata.

Mineralization and Hydrothermal Alteration

The Indata property covers a number of metallic mineral occurrences which may be divided into two main types, I) pyrite-arsenopyrite-stibnite-chalcopyrite mineralization in quartz and quartz-carbonate veins, commonly with elevated precious metal contents and ii) disseminated and fracture controlled chalcopyrite-pyrite-pyrrhotite mineralization of porphyry-type within a granodiorite stock and enclosing volcanic rocks.

Polymetallic veins have been recognized in the central part of the property (Figure 5) within andesitic volcanic rocks and serpentinized ultramafics. Where drilled, the veins generally occupy a northerly-striking fault zone dipping shallowly to the east and which, in ultramafic rocks, shows intense carbonate and talc alteration ranging in width from a few metre to over 50 metres in deeper and more easterly parts of the fault. Proximal to the veins in volcanic rocks, especially adjacent to ultramafic contacts, alteration is dominated by silicification and the formation of quartz-carbonate veinlets but silicification is not common within ultramafic rocks.

Disseminated and fracture controlled pyrite-chalcopyrite-pyrrhotite mineralization occurs in a zone extending along the northeastern side of Albert Lake where it coincides with a well defined induced polarization anomaly. The relationship between this style of mineralization and the polymetallic veins has yet to be established although it is possible that the polymetallic vein mineralization represents an outer zone to a central, copper-dominated part of the same hydrothermal system. Hydrothermal alteration related to this zone of copper mineralization appears to be that of a propylitic mineral assemblage although, because the volcanic rocks hosting this mineralization appear to have been metamorphosed to greenschist grade of regional metamorphism, it is difficult to distinguish between pervasive propylitization and the matamorphic greenschist mineral assemblage. Because of poor outcrop and the paucity of drilling within the copper zone and in areas away from the polymetallic veins, a regional hydrothermal zonation has not been adequately established within the Indata property.

PROPERTY SCALE GEOLOGY

Generalized Geological Interpretation of the Indata Property FIGURE 4

EXPLORATION

General Statement

Unlike many mineralized areas of British Columbia which have a long history of prospecting and exploration, mineralization of the Indata property was not discovered until 1984 following regional exploration along the Pinchi Fault system. At that time initial work was undertaken to define the zone of copper mineralization adjacent to Albert Lake in the western part of the property. The polymetallic veins remained undetected until a zone of limonitic soil to the east of the copper zone was sampled and found to be extremely anomalous in arsenic. Subsequent trenching and diamond drilling in 1987 resulted in the recognition of the polymetallic vein system.

Exploration of the Indata property has been concentrated in the central part of the property, in the area of known mineralization. Recent construction of a road through the property will facilitate exploration in those areas which have yet to be intensively explored.

From 1984, when metallic mineralization was first discovered on the Indata property, to the present time 2,651 metres of trenching (43 trenches) and 6,257.8 metres of diamond drilling (66 holes) have been completed. In addition, approximately 42 line kilometres of induced polarization, ground magnetic and EM16 (VLF-EM) electromagnetic surveying, 100 line kilometres of soil sampling, geological mapping of about 10 km² and prospecting have been carried out. Total exploration expenditure amounts to approximately \$1,750,000.

1983 - 1990 Exploration

In 1983 Imperial Metals Corporation ("Imperial") staked the Schnapps 1 and Schnapps 2 claims during regional exploration of the Pinchi Fault zone, to cover an inferred splay of the Pinchi Fault. In 1984 Imperial staked additional claims following the release of geochemical data by the B.C. Ministry of Mines which indicated anomalous copper, silver and mercury in a stream sediment sample collected from a channel draining Radio Lake At this time Imperial also conducted a preliminary soil sampling program of which results indicated the presence of anomalous copper in soils to the north and east of Albert Lake. This program was followed in 1985 by additional soil sampling, six line kilometres of induced polarization surveying and the drilling of four diamond drill holes totaling 231 metres. Holes 1 and 2 intersected copper mineralization in amounts of about 0.1% - 0.2% in the area where anomalous copper in soils had been determined previously.

In 1986 Eastfield Resources Ltd. ("Eastfield") entered into a joint venture with Imperial and assumed operatorship of the project. Eastfield expanded the soil geochemical and geophysical coverage

and carried out limited hand trenching. Soil sampling carried out by Eastfield extended the copper anomaly adjacent to Albert Lake and established several areas of anomalous arsenic in soils to the east of the copper anomaly in the central northern part of the property. The grid was also extended to as far as 30+00 north although limited work as been carried out in this area. Geophysical surveying of the Indata property during this period consisted of VLF-EM, magnetometer and induced polarization surveying. Anomalous VLF-EM results generally reflect topography and interpreted bedrock response from this survey is equivocal. Magnetic surveying (total field) defined ultramafic bodies extremely well, especially those serpentinized intrusions as magnetic formation is a product of serpentinization. Induced polarization surveying (time domain pole – dipole method) carried out by Eastfield also outlined the ultramafic bodies where, in this case, the chargeability response appears to be related to magnetite, not sulfide, content. In addition, a moderate to high chargeability response is evident along the western side of a zone of anomalous copper in soils and which subsequent drilling in 1996 suggested that it reflects disseminated and fracture controlled sulfide mineralization.

In 1987 Eastfield undertook a six-hole diamond-drilling program (306 metres) in an area in which anomalous arsenic, silver and gold were detected in soils. This drilling program intersected quartz – sulfide veins with significant gold values in places (up to 0.32 oz/ton over 1.2 metres) and silver in amounts typically between one and three ounces per ton. Sulfide minerals were mainly pyrite, arsenopyrite, stibnite and chalcopyrite in a gangue of quartz and carbonate.

Additional drilling was conducted on this vein system in 1988 and 1989 returning values as high as 47.260 g/tonne (1.38 ounces per ton) gold over an interval of four metres (a true width of 3.5 metres) in drill hole 88-I-11. Values in other holes ranged from several hundred to several thousand parts per billion. Interestingly, silver values obtained from samples collected from the 1988 and 1989 drilling programs were generally much lower than those obtained from the 1987 program excepting hole 89-6 which returned a 3.2 m intercept of 354.1 g/t silver (10.33 oz/ton).

In 1989, 42 trenches, totaling 2,211 metres, were excavated in areas of anomalous soil geochemistry, using a Caterpillar D3 bulldozer with a backhoe attachment. In most cases the geochemical anomalies were found to be caused by sulfide mineralization with elevated precious metals in quartz veins similar to the ones which had been intersected in drill holes.

Vein-hosted mineralization defined during this program has been traced over a strike length of about 900 metres to date with individual vein segments varying from 50 metres to over 300 metres in length bounded by westerly-striking extensional faults. Average vein width is about two metres but varies from less than 0.5 metres to a maximum determined so far of 5.6 metres.

As well as drilling and trenching, geological mapping at a scale of 1:2000 was carried out over the northern two thirds of the property (excluding the Indata 1 claim and most of the Schnapps 2 and 5 claims and prospecting was undertaken over the northern part of the property. This latter work indicated the presence of anomalous copper and gold in "grab" samples of rocks collected to the north of Albert.

In 1990 the Indata property was covered by an airborne magnetic survey flown at 200 metre line spacings in an east-west direction.

1995 - 1996 Exploration

Following the period 1983 – 1989, no further exploration of the Indata property was undertaken until 1995 when a program of trenching the copper zone (now referred to as the "Lake Zone") to the north and east of Albert Lake was undertaken. This program was facilitated by the construction of 17 kilometres of road from the Tchentlo Lake forestry road in the south, allowing an excavator to be transported to the northern part of the Indata property. Results of this program included 0.36% copper over a length of 75 metres (Trench 7).

In 1996 Clear Creek Resources Ltd. optioned the Indata property from and financed the drilling of nine diamond drill holes, totaling 650.8 metres, which were attempted in, and adjacent to, the Lake Zone; three of these holes were not completed owing to difficult drilling conditions. Three holes were completed in the area of Trench 7 (holes 96-I-1, 2 and 3) while three were collared from a drill pad constructed about 300 metres to the southeast (holes 96-I-4, 5 and 9). Holes 96-I-6, 7 and 8 were not completed. Locations of these drill holes are shown in Figure 5. Table 2 lists the significant results of this program.

From this limited frilling program low grade copper mineralization was confirmed in the Lake Zone but by no means was the program sufficient to fully evaluate this zone. Drill holes 96-I-4, 5 and 9 intersected altered dykes of dioritic composition cutting andesitic volcanic rocks in which chalcopyrite and possibly chalcocite suggesting that a high level magmatic system may be defined in the poorly exposed area adjacent to the eastern side of Albert Lake.

1998 Exploration

Clear Creek Resources Ltd. undertook additional diamond drilling in 1998. This drilling was mainly carried out to the west of the 1996 drilling on the western end of the grid adjacent to the northern part of Albert Lake although one hole (1998-10) was attempted on the southwestern part of the Indata grid in the area of amagnetic anomaly indicated in the 1990 airborne survey. Whereas drill holes completed in 1996 were mainly in volcanic rocks, the westernmost holes of the 1998 drilling program intersected both volcanic and granodiorite intrusive rocks. The best intersection of this program was hole 1998-4 which intersected 150.3m of 0.16% copper, the bottom 29.2m of this hole graded 0.35% copper. In addition to the diamond drilling program, during construction of an access road in the extreme south of the grid area,

copper mineralization was discovered in altered volcanic rocks exposed in a road cut. Fourteen "grab" samples collected from this area confirmed the existence of copper (<0.01% to 6.7%) as well as anomalous gold (<0.1 gram/tonne to 1.7 grams/tonne).

2003 Exploration

The 2003 field program commenced on August 3rd and ran until August 23rd. Sixteen (16) kilometres of grid was established and cut from which 11.2 kilometres of induced polarization survey was run. Soil sampling was completed on the 16-kilometre grid on a 50-metre sample spacing. In all 304 soil samples were collected and analyzed using multi-element techniques plus gold. Data from the 2003 program will later be compiled with data originating from programs undertaken on the property by Imperial Metals Corporation in 1984 and 1985, Eastfield Resources Ltd. in 1987, 88, 89, and 1995 and Clear Creek Resources Ltd. in 1996 and 1998. In order to build a database that incorporates the earlier work data presently available only in hard copy is being retyped into usable format.

8. DRILLING

Helicopter supported drill programs have completed on the Indata property in 1985, 1987, 1988 and 1989 and bulldozer supported programs in 1996 and 1998. A listing of significant results is included in the appendix.

9. REVIEW OF 2003 SOIL GEOCHEMICAL RESULTS

A total of 304 soil samples were collected on 50 metre centres on 100 metre line spacing. The soil samples, which were collected in an area of dense timber growing on clay till, returned a number of results which have expanded the soil copper anomaly. Interestingly, a number of more localized arsenic and antimony responses, which have traditionally been exclusively the signature for the precious metal veins occurring further to the east, were also defined. Copper values in soil range from 7.2 to 7,396.1 ppm with a number of clusters greater than 200 ppm. Arsenic values in soil range from 4.9 to 1146.1 ppm and antimony values between 0.7 and 183.2 ppm. As is the case with copper, a number of clusters of higher range arsenic and antimony values, with occasional bismuth values, suggest that new precious metal vein exposures similar to what has been previously discovered on the property further to the east, exist in the Albert Lake Target area. Gold values in soil samples have traditionally been subtle on the Indata property, even for those soil samples collected over gold bearing veins that have that have returned assays including 47.26 g/t gold over 4 metres. This subtle gold response is interpreted to be caused by the relatively uniform

cover of transported glacial till which allows soluble solutions containing arsenic, antimony and copper originating from bedrock to infiltrate the soil more effectively than is the case for gold. A review of the best defined anomalies is as follows:

1.) Line 1700N a very strong coincident arsenic and antimony response extends from 650W to 750W. This response is centres on a chargeability anomaly at depth adjacent to resistivity break, centred at 650W that dips to the east. A similar resistivity response occurs on line 1600N at 525W implying a trend of 125°. This trend intersects an arsenic anomaly again on line 1500N at 300W giving a potential 500 metre strike length to this target (an alternate [comparable] resistivity break occurs on line 1600N at 675W implying a more southerly strike direction. An elevated response of 23.1ppb gold occurs on line 1700N at 700W while an anomalous molybdenum value of 10.5 ppm, an anomalous uranium value of 8.9 ppm and an anomalous selenium value of 16.6 ppm occur on this line at 650W.

2. A strong soil arsenic response between 350W and 400W on line 1000N appears to reoccur on line 900N between 250W and 350W. A second soil arsenic antimony anomaly occurs on Line 900N between 500N and 750W.

3. A strong soil copper anomaly is evident at stations 450W and 400W on line 600N widening to 300W to 450 W on line 500N and to 200W to 450 W on line 400N.

4. A generally coherent soil copper value extends from 100W to 250E on line 1100S and continues from 50W to 400E on line 1300S after which it breaks up but still continues to the southern edge of the grid at line 1600S. Station 150E on line 1200S returned the highest soil gold value of the survey, 42.7 ppb, with a soil copper value of 1169.9 ppm. This station is located approximately 75 metres south-west of the location where road construction in 1998 exposed mineralized subcrop with the average grade of ten grab samples being 1.04 % copper and 388 ppb gold. Six of these samples exceeded 0.35% copper (average 1.69 % copper and 630 ppb gold). Station 200E is the surface expression of a well defined IP "pant leg" feature that extends from 150W to 350E at the fifth separation.

5. A single station soil arsenic anomaly of 714.4 associated with a soil bismuth value of 13.5 ppm at station 550E on line 11S may continue through to a second single station anomaly at station 550E on line 12S implying a probable north-south trending vein.

6. High soil nickel values occur at a number of locations on the grid north of Albert Lake; L1700N, 200W to 800W; L1600N, 200W to 400W and 600W to 650W; L1500N 200W to 400W; L14N, 200W to 700W; L1300N, 200W to 350W and 650W to 700W; L1100N at 350W; L9N at 350W; L700N, 200W to 250W. Previous exploration on the Indata property has shown that high soil nickel responses may indicate the presence of lenticular serpentinized ultramafic bodies invading fault structures that may also localise

precious metal veins. Soil sample results are plotted on figure 5, Soil Copper-Gold and figure 6 Soil Arsenic -Antimony.

1

I F I i

10. REVIEW OF 2003 GEOPHYSICAL RESULTS

Induced polarization surveying at Indata were completed in 1985 by Imperial Metals Corporation and in 1987, 1988 and 1989 by Eastfield Resources Ltd. A review of results includes the following:

1. Precious metal veins, which typically contain 5 to 10% sulfide, often produce a discrete high chargeability response several times the background response.

2. Porphyry style mineralization containing several per cent combined chalcopyrite, pyrrhotite and pyrite generally produce a moderate to high chargeability response typically 11/2 to 2 times the background response.

3. Abrupt changes in the resistivity response often indicate contacts that are often fault contacts.

A review of the results of the 2003 survey include the following observations:

L1700N; a surface chargeability high, centred between 675W and 750W, increases with depth towards the east. A resistivity high appears at deeper separations eastward between 500W and 600W.

L1600N; a weak surface chargeability response, centred between 650W and 750W, increases towards the east at deeper separations. It occurs coincident with a resistivity break centred at surface at 500W apparently increasing at deeper separations to the east.

L1500N; a weak surface chargeability response increases at deeper separations, centred between 650W and 750W. It occurs coincident with resistivity break centred at surface at 500W apparently increasing at deeper separations to the east.

L1400N; a surface chareability high centred between 525W and 750W decreases with deeper separations while a resistivity high centred between 450W to 550W increases with deeper separations towards the east. L1300N; a weak surface chargeability response increases at deeper separations, centred between 550W and 650W. It occurs coincident with a resistivity break that appears to dip to the east.

L1200N; a weak surface chargeability response, centred at 550W, increases at deeper separations. It occurs coincident with resistivity break.

L1100N; a strong chargeability response projecting to surface at 650W trends east at deeper separations. It occurs coincident with resistivity break with the higher responses trending to the east at deeper separations. L1000N; a strong chargeability response projecting to surface at 650W trends east at deeper separations. It occurs coincident with resistivity break with the higher responses trending to the east at deeper separations. It occurs coincident with resistivity break with the higher responses trending to the east at deeper separations. It occurs coincident with resistivity break with the higher responses trending to the east at deeper separations. L900N; a weak chargeability response at surface becomes distinctly strong at depth with a centre at 600W.

It occurs with a resistivity break with the higher responses trending to the east at deeper separations.

L800N; a weak chargeability response at surface, with a centre at 600W, becomes distinctly stronger at depth. It occurs with a resistivity break with the higher responses trending to the east at deeper separations.

L700N; a weak chargeability response at surface becomes distinctly strong at depth with a centre at 600W. It occurs with a resistivity break with the higher responses trending to the east at deeper separations.

L600N; a resistivity break projecting to surface at 550W with the higher responses trending to the east at deeper separations.

L500N; a chargeability response at surface from the eastern boundary of the grid as far west as 550W increases in strength towards the west at deeper separations.

L400N; a chargeability response decreases slightly west of 550W. It tends to increase slightly at depth towards the west at deeper separations. A very low resistivity response at surface is evident on the extreme west side of the line at 700W. This might be indicative of limestone or granodiorite bedrock.

L1100S; a chargeability "pant leg" type feature extends from 250E to 250W. The feature has an apparent top at 100W.

L1200S; a chargeability "pant leg" type feature extends from 150E to 350W. The feature has an apparent top at 200E. If the "pant leg" type features are the same feature it infers a trend of 295°-115° and crosses through the area on the drill access road where the average of ten grab samples taken in 1998 was 1.04 % copper and 388 ppb gold.

L1300S; generally in descript response.

L1400S; resistivities increase at depth the east of 300E.

L1500S; very low resistivities to the west of 50W. This may be indicative of limestone or granodiorite bedrock.

L1600S; generally in descript excepting some choppiness at the deepest separations possibly indicative of a better conductor at depth.

11. RECOMMENDATIONS

The new geochemical and geophysical data acquired in 2003 should be properly compiled with historic data to produce a complete and current database. This will require a considerable amount of manual inputting owing to the fact that much of the old data is only available in hard copy. A number of new targets have been developed form the current work including the following:

1.) The very high soil arsenic and antimony values occurring 650W and 750W on L1700N have a chargeability and resistivity anomaly centered at approximately700W. This response is almost certainly indicative of a precious metal vein system.

2.) The chargeability response outlined on line 400N, under the projection of hole 1998-04, which interested 150 metres grading 0.16% copper including 29 metres grading 0.37 at the bottom of the hole, is

similar to the undrilled response on line 500N. There is indication that this response tracks slightly to the east in the northerly direction beyond this line and presents a good drill target.

3.) Two "pant leg" type induced polarization features indicated on lines 1100S (100W) and 1200S (200E) imply a trend of 295°-115° that crosses through the area on the drill access road constructed in 1998 where the average of ten grab samples taken was 1.04 % copper and 388 ppb gold.

4.) The portion of the 2003 survey south of line 1200S resulted in a generally higher chargeability response than the northern portion of the survey. This fact supported by wide spread anomalous soil copper content that occurs here and the almost complete lack of outcrop makes this area a target for reconnaissance drilling targeting porphyry copper mineralization.

12. COST STATEMENT

Field Program

Dates: August 3 to August 23, 2003

Personnel Costs	
Jay Page, P.Geo., 21 days @ \$450	\$9,450
J.W. (Bill) Morton P.Geo., 2 day @ \$450	\$900
Francois Larocque Exploration Assistant, 21 days @ \$280	\$5,880
George Charbonneau Exploration Assistant, 21 days @ \$280	\$5,880
J.P. Charbonneau Exploration Assistant, 21 days @ \$280	\$5,880
Truck Rental	\$2,090
Radios and Miscellaneous Equipment Rentals	\$1,425
Accommodation and Food (Tchento Lake Hot Springs)	\$6,440
All Terrain Vehicles (3 to 5 units)	\$3,900
Analytical Costs (304 samples for multi-element plus gold @ \$14)	\$4,256
Contract Geophysical Surveying	\$9,643
Commercial Airfare	\$200
Reporting	\$1,500
Drafting	<u>\$1,100</u>
Total	\$58,544

(Claimed on September 25, 2003, Statement of Work \$54,700)

13. AUTHOR QUALIFICATIONS

I, J.W. Morton am a graduate of Carleton University Ottawa with a B.Sc. (1972) in Geology and a graduate of the University of British Columbia with a M. Sc. (1976) in Graduate Studies.

I, J.W Morton have been a member of the Association of Professional Engineers and Geoscientists of the Province of BC (P.Geo.) since 1991.

I, J.W. Morton have practiced my profession since graduation throughout Western Canada, the Western USA and Mexico.

I, J.W Morton supervised the work outlined in this report.

Signed this 15 day of January, 2004

J.W Morton P.Geo

DATE

January 15, 2004

Year	DDH	Demp	Dip	Azimuth	Coordinates	From	To	Length	Au	Ag	Cu (
		m	Deg.	Deg.		m	m	т	(ppb)	(ppm)	%)
1985	85-1	63.1	-45	060	350N/400W	1.9	7.1	6.2			0.15
						21.1	27.0	6.9			0.11
						37.0	46.3	9.3			0.20
						48.5	50.3	1.8			0.15
1985	85-1	63.1	-45	060	350N/400W	1.9	7.1	6.2			0.15
						21.1	27.0	6.9			0.11
						37.0	46.3	9.3			0.20
						48.5	50.3	1.8			0.15
						57.1	63.1	5.6			0.22
	85-2	76.8	-45	090	345N/350W	12.2	14.7	2.5			0.10
						42.7	45.3	2.5			0.62
	85-3	57.0	-45	090	050S/150E		No	Intercept			
·	85-4	33.5	-45	090	047N/343E		No	Intercept			
1987	87-I-1	50.6	-45	295	075N/425E	18.9	20.7	1.8	1320	0.2	<0.05
						23.8	26.2	2.4	1647	55.2	0.28
						26.2	27.4	1.2	500	41.8	0.31
						27.4	29.9	2.5	1805	114.4	0.44
	87-I-2	46.6	-90		075N/425E		No	Intercept			
	87-I-3	52.7	-45	325	075N/425E	24.1	28.3	4.2	3245	126.6	0.32
	87-1-4	53.6	-45	265	075N/425E	24.2	26.2	2.0	1496	124.4	0.31
			-	·		27.7	28.3	0.6	950	51.3	0.19
<u> </u>				+		29.9	31.1	1.2	9835	51.4	0.51
<u>├</u> ──-	87-I-5	54.3	-45	295	050S/440E	42.5	44.5	2.0	1209	104.5	0.85
\vdash	-				· · · ·	44.5	45.7	1.2	5000	56.2	0.35
						45.7	46.6	0.9	510	48.1	0.30
	87-I-6	47.5	-90		050S/440E	41.9	44.5	2.6	761	52.9	0.51
									1.000		0.00
1988	88-I-1	51.5	-45	270	025N/422E	31.7	33.2	1.5	309	09.9	0.22
	88-I-2	54.6	-90		025N/425E	33.5	35.0	1.5	310	49.2	0.12
	88-I-3	79.6	-45	270	100S/422E		No	Intercept		<u> </u>	<u> </u>
	88-I-4	21.6	-90		100S/423E		No	Intercept		ļ	
ſ	88-I-5	84.4	-65	270	100S/423E	37.0	38.0	1.0	443	21.6	0.13
						40.0	41.0	1.0	524	0.1	<0.05

Appendix 1 Summary of Drilling Results, Indata Property

i

 \bigcirc

1

Ĩ

ł

i 1

Year	DDH	Depth	Dip	Azimuth	Coordinates	From	To	Length	Au	Ag	Cu
		m	Deg.	Deg.		m	m	m	(ppb)	(ppm)	(%)
· · · · · ·	88-I-6	114.0	-45	270	150N/449E		No	Intercept		1	
	88-I-7	110.3	-56	260	350N/417E	48.5	49.0	0.5	1020	1.3	0.14
	88-I-8	150.0	-75	260	350N/419E	41.5	42.0	0.5	3845	1.3	0.11
	88-1-9	122.2	-46	270	400N/449E	44.8	45.3	0.5	320	1.3	0.06
						55.5	56.5	1.0	548	1.9	0.16
			1			58.5	59.5	1.0	3922	1.7	0.13
				1		59.5	60.5	1.0	347	1.6	0.16
<u> </u>	88-I-10	128.6	-65	270	400N/450E	53.0	53.5	0.5	2605	2.8	0.06
						53.5	54.5	1.0	470	6.0	0.43
						55.0	55.5	0.5	2875		0.08
						56.0	58.0	2.0	677	0.7	0.00
,	88-I-11	103.0	-90		400N/451E	66.0	67.0	1.0	6150	4.0	0.07
	00111	10510	,,,		100101011	76.0	80.0	4.0	47260	20	<0.45
	88-I-12	85.3	-45	270	450N/431E	54.0	54.5	0.5	653	5.0	0.05
		00.0			10010101012	61.1	61.6	0.5	462	19	0.00
						64 3	65.0	0.7	372	1.7	0.19
	88-I-13	81.4	-90		450N/436E		No	Intercept			0.15
	88-I-14	91.7	-45	270	510N/495E	59.5	60.3	0.8	358	21.6	1.32
	88-I-15	110.0	-45	270	550N/481E	20.4	21.4	1.0	494	0.9	0.05
			ł			81.0	83.0	2.0	1355	2.9	0.11
	88-I-16	119.2	-45	290	700S/200E		No	Intercept			
	88-I-17	61.3	-45	290	605S/269E		No	Intercept		<u>.</u>	
	88-I-18	60.4	-75	290	605S/270E		No	Intercept			
	88-I-19	76.5	-45	290	470S/395E	26.0	26.7	0.7	420	9.2	0.17
	88-I-20	67.4	-45	240	808N/247E		No	Intercept	<u>"</u>		
	88-I-21	111.6	-45	270	150N/525E	81.8	82.3	0.5	270	34.3	0.10
	88-I-22	137.5	-55	265	062N/485E	57.7	59.1	1.4	1229	42.9	0.25
	88-I-23	76.5	-45	290	620S/307E	32.7	33.1	0.4	585	41	<0.05
1989	89-I-1	122.2	-90		4028/503E	33.0	34.1	03	2157	15.5	0.78
					1020/3031	106.0	107.0	1.0	576	13.5	<0.75
	80_1_2	103.0	-60	270	600N//190E	03.9	050	1.0	550	1.7	<0.05
	80_I 2	110.9	-00	270	600NI/40VE	73.0	- 55.0 No	I.4	772	1.0	~0.05
···•	07-1-3	152.7	•90		404N/552E			Intercept			
	87-1-4	152.7	-90		404N/003E			Intercept			
	89-1-5	154.2	-90		408N/380E		NO	Intercept			

()

1

ļ

2

i

1

1 .

 $\frac{1}{1}$

Year	DDH	Depth	Dip	Azimuth	Coordinates	From	То	Length	Au	Ag	Cu
		m	Deg.	Deg.		m	m	m	(ppb)	(ppm)	(%)
<u> </u>	89-I-6	140.5	-60	270	468N/580E	19.6	22.8	3.2	10	354.1	0.12
	89-I-7	183.2	-90		417N/350E	110.4	112.4	2.0	1335	1.7	0.12
		<u></u>		†		138.8	139.4	0.6	988		0.98
	89-1-8	138.6	-60	270	417N/349E	106.1	107.0	0.9	653	1.1	0.07
				1		125.1	126.1	1.0	872	0.2	
<u> </u>	89-I-9	209.1	-9 0	<u> </u>	290N/550E	133.9	134.2	0.3	429	1.3	0.11
						159.4	160.1	0.7	1903	7.2	0.11
						161.6	162.4	0.8	4837	3.1	0.23
	1			<u> </u>	·	172.2	172.7	0.5	7209	6.7	0.67
	89-I-10	283.2	-60	295	505S/322E	188.0	200.8	12.8	269	0.2	<0.05
	89-I-11	91.7	-90	<u> </u>	505S/322E	48.8	49.8	1.	138	10.5	<0.05
<u> </u>	89-I-12	175.6	-60	270	402N/503E	98 .0	99.0	1.0	331	28.4	<0.05
				<u> </u>		102.7	104.4	1.7	1825	23.3	<0.05
	89-I-13	152.7	-62	230	398N/505E	92.7	93.7	1.0	261	0.5	0.06
				<u> </u>		108.2	109.3	1.1	5162	1.3	<0.05
			-	<u> </u>				·····			<u> </u>
1996	96-I-1	108.8	-60	048	255N/420W	11.3	108.8	97.5	<100	<0.2	0.12
						11.3	57.3	46.0	<100	<0.2	0.17
				<u> </u>	·····	87.3	108.8	21.5	<100	<0.2	0.15
	96-1-2	151.5	-60	045	350N/380W	3.0	151.5	148.5	<100	<0.2	0.09
				<u>├</u>		17.0	38.0	21.0	<100	<0.2	0.13
	96-1-3	73.2	-50	315	350N/450W	5.2	73.2	68	<100	<0.2	0.10
			-	<u> </u>		17.0	38.0	21.0	<100	<0.2	0.23
	96-I-4	78.6	-45	060	100N/025W	8.2	78.6	70.4	<100	<0.2	0.09
				<u> </u>		14.0	43.6	29.6	<100	<0.2	0.15
	96-I-5	84.2	-75	060	100N/025W	6.1	54.0	47.9	<100	<0.2	0.10
	96-I-6	26.5	-47	090	015N/100E		No	Intercept	·····		<u> </u>
	96-I-7	26.5	-50	120	015N/100E		No	Intercept			
	96-I-8	17.7	-50	060	015N/100E		No	Intercept		[<u>-</u>
	96-I-9	83.8	-60	120	100N/025W	11.2	48.0	36.8	<100	<0.2	0.09
				┠────			+				<u> </u>
1998	98-1	96.3	-60	090	150N/450W	18.0	58.2	40.2		<u> </u>	0.09
	98-2	27.2	-60	090	300N/625W		No	Intercept			
	98-2A	42.4	-70	060	300N/613W	30.5	36.5	6.0			0.13
— <u> </u>	98-3	80.5	-60	060	500N/525W	<u></u>	No	Intercept			

ļ

,

.

! . .

 \bigcirc

 \bigcirc

 \bigcirc

3

i

Year	DDH	Depth	Dip	Azimuth	Coordinates	From	To	Length	Au	Ag	Cu
		m	Deg.	Deg.		m	m	m	(ppb)	(ppm)	(%)
	98-4	162.5	-60	090	350N/525W	12.2	162.5	150.3			0.16
	1					12.2	157.4	145.4			0.20
						133.3	157.4.5	24.1			0.37
L	98-5	64.0	-70	235	1000N/510W	15.0	18.0	3.0		1	0.12
	98-6	99.4	-90		180N/120E		Not	Sampled			
	98-7	88.4	-90		050N/160E		No	Intercept		·	†
	98-8	77.4	-60	270	050N/125W	<u>.</u>	No	Intercept			
	98-9	149.4	-60	105	320N/563W	29.2	87.5	58.3			0.23
	98-10	67.1	-90		1980S/100E		No	Intercept			<u> </u>

 \bigcirc

....

 \bigcirc

 \bigcirc

4

T i

1

i T

ACM. ANAL	YTI C	CAL 2 A	LA	BOR edi	AT(ORI 1 C	ES o.)	LTI).		852	В.	HAS	TIN	īgs	ST	. VA	NÇ	ועטכ	SR 1	BC	V6	A 11	26		PHO	DNE	(604	1)25	53-3	15	8 F.	AX (604)	253	-17	16
AA `		Mi	nco	orc	l E	lxp	10	rat	io	n C	G ons	EOC ult	'HE .an	MI(ts	CAL Lt	iA.	NAL PR	J.J. OJI	IS ECT	CE []	RTI NDA	FI TA	CAT F	E ile	- #	A.	203	724	1	Pa	ade	× 1				A	A
						9.50 0 <u>6.6</u>				110	- 32	5 Ном	e St	., v	anco	ouvei	BC V	/6C	127	Sul	omitt	ed l	oy: J	ay W	. Pag	je		Ī			~ _ ~					L	L
SAMPLE#	Mo ppm	C pp	n pp	n pp Drain pp	n Α xπpp	Ng Xm	Ni ppm	Co ppm	Mn ppm	Fe ۲	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Ві ррт	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	A1 %	Na %	К % [W A moto	Hg : ppm p	Sc pm p	T1 S מחד \$	Ga ppm	Se : ppm	Sample gm
G-1 17+00N 9+00W 17+00N 8+50W 17+00N 8+00W 17+00N 7+50W	1.3 3.4 2.6 2.7 2.0	2. 88. 61. 33. 21.	4 2. 4 12. 1 11. 5 6. 4 14.	0 3 8 17 4 13 9 7 6 14	8 <. 7 . 11 . 18 .	1 7 3 3 1 13 2 20	3.3 7.1 3.7 5.5 9.9	3.2 18.0 10.9 11.3 18.0	415 1009 604 975 350	1.46 3.26 2.55 2.22 3.76	.6 37.7 20.7 51.1 219.1	1.7 1.2 1.7 2.1 .3	.5 8.2 2.9 5.1 7.6	4.0 1.5 3.1 1.0 1.4	71 22 20 27 10	<.1 3.4 3.1 .9 .7	<.1 7.9 3.9 18.8 109.1	.1 .5 .3 .2	35 70 68 37 68	.53 L.10 L.02 L.81 .17	081 063 034 079 146	7 20 15 11 6	10.5 48.4 42.2 56.9 193.4	.43 .84 .73 .56 .98	175 317 263 278 146	.113 .088 .096 .021 .017	<1 2 1 3 2	.76 1.94 1.94 1.09 1.48	.039 .018 .017 .006 .004	.41 2 .15 .15 .06 .03	1.3 .4 .4 .6 .5	.02 2 .22 7 .10 7 .15 3 .04 4	.0 .7 .6 .0 .3	.3<.05 .3<.05 .2<.05 .1<.05 .1<.05	5 7 7 4 6	<.5 1.2 1.0 1.6 .5	15.0 15.0 15.0 15.0 15.0
17+00N 7+00W 17+00N 6+50W 17+00N 6+00W 17+00N 5+50W 17+00N 5+00W	1.7 10.5 2.0 2.1 2.8	38 123 34 55 44	019. 72. 36. 79. 88.	4 6 3 1 6 4 8 13 7 5	57 . .3 . 19 . 14 . 59 .	1 33 3 10 2 8 3 22 1 9	5.7 8.5 3.8 1.1 1.7	28.6 2.3 10.1 25.0 15.0	658 136 970 975 376	3.34 .99 1.85 3.33 2.29	261.9 49.3 23.5 54.9 40.2	1.2 13.8 1.6 .9 .7	23.1 8.9 4.5 5.1 6.3	2.7 .4 .8 2.7 4.7	19 46 29 23 12	1.2 2.4 1.3 2.5 .4	154.8 183.2 8.4 14.5 16.4	.2 .1 .3 .4 .3	60 17 36 51	.55 4.20 1.40 .68 .32	.039 .075 .050 .031 .020	11 4 11 14 14	232.2 56.6 55.5 173.4 72.8	1.38 .29 .63 .75 .60	202 213 197 252 151	.019 .011 .037 .033 .033	2 12 2 2 1	1.51 .30 .97 1.82 1.45	.001 .001 .005 .006 .006	.05 .01 .06 .06 .08	.5. 1.0. .4. .8.	.10 9 .28 1 .16 3 .04 6 .08 5	.8 .3 .1 .8	.1<.05 .1 .68 .1<.05 .1<.05 .1<.05	4 1 4 5	1.0 16.6 1.3 .8 .6	15.0 1.0 15.0 15.0 15.0
17+00N 4+50W 17+00N 4+00W 17+00N 3+50W 17+00N 3+00W 17+00N 2+50W	1.9 1.9 1.2 1.3 1.3	30. 51. 36. 36. 28.	07. 88. 16. 77. 97.	8 6 5 10 4 7 3 6 1 5	50 . 17 . 14 . 56 .	3 18 3 22 2 27 3 21 1 33	0.8 1.1 5.2 8.9 4.1	13.2 15.4 9.2 11.2 18.6	449 766 354 451 590	2.08 2.86 2.10 2.81 2.22	47.7 43.0 53.1 52.2 52.5	.6 .9 .6 .7 .8	2.5 6.3 4.0 9.5 4.1	2.3 2.0 .9 2.1 1.8	15 18 21 25 13	1.2 1.1 .7 .4 .6	20.6 21.2 13.7 10.7 8.4	.2 .3 .2 .2	46 55 47 53 49	.60 .61 .63 .47 .40	.022 .066 .047 .073 .020	10 12 9 13 12	78.1 94.6 104.8 104.7 137.6	.50 .90 .79 .94 1.02	158 190 133 162 132	.035 .038 .040 .055 .035	2 2 4 3	1.13 1.58 1.17 1.40 1.23	.006 .009 .010 .010 .007	.05 .09 .05 .07 .04 1	.7. .7. .7. .4. L.0.	.05 4 .08 5 .07 5 .20 6 .04 5	.0 .4 .1 .1 .3	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	4 5 4 5 4	.5 .7 .8 <.5 .6	15.0 15.0 15.0 15.0 15.0
17+00N 2+00W RE 16+00N 9+00W 16+00N 9+00W 16+00N 8+50W 16+00N 8+00W	1.9 2.0 2.1 3.0 2.2	44. 18. 19. 82. 37.	59. 67. 86. 815. 48.	.2 8 .0 4 .9 4 .1 14 .8 6	13 . 18 . 19 . 18 .	2 69 2 1 2 1 4 7 2 14	7.2 1.1 1.8 5.1 2.8	31.8 3.7 3.9 16.8 13.4	1690 122 129 1054 719	3.18 1.08 1.09 3.51 2.21	41.0 12.0 12.2 43.1 90.5	1.0 .4 4 2.4 1.5	5.4 1.6 5.3 11.0 8.1	2.0 1.5 1.5 1.8 .9	16 9 10 25 26	1.1 .8 .8 2.4 .8	14.9 7.9 8.3 8.0 30.2	.3 .3 .6 .3	54 33 40 69 41	.54 .15 .16 .74 .44	.059 .018 .019 .062 .080	17 12 13 20 11	288.9 17.8 20.5 58.0 76.9	2.23 .11 .12 .75 .66	222 216 233 348 247	.035 .037 .041 .071 .027	6 1 1 2 4	1.48 .55< .58 2.01 1.13	.007 .001 .002 .010 .006	.08 2 .05 .05 .17 .08	2.2 . .2 . .2 . .3 . .6 .	13 6 01 2 01 2 15 7 13 3	.9 .0 .0 .7	.1<.05 .1<.05 .1<.05 .3<.05 .1<.05	5 4 4 8 4	.8 <.5 .5 1.1 1.6	7.5 15.0 15.0 15.0 15.0
16+00N 7+50W 16+00N 6+50W 16+00N 6+00W 16+00N 5+50W 16+00N 5+00W	17+00N 2+00W 1.9 44.5 9.2 83 .2 697.2 31.8 1690 3.18 41.0 1.0 5.4 2.0 16 1.1 14.9 .3 54 .54 .059 17 288.9 2.23 222 .035 6 1.48 .007 .08 2.2 .13 6.9 .1<																																				
16+00N 4+50W 16+00N 4+00W 16+00N 3+50W 16+00N 3+00W 16+00N 2+50W	.8 1.6 1.4 1.6 2.1	10. 18. 44. 36. 65.	75. 55. 28. 67. 414.	0 7 7 6 1 7 7 6 8 7	5. 9. 7.	1 4 1 10 2 47 1 27 3 68	0.1 1.2 7.8 9.7 8.8	6.6 13.2 16.0 16.5 25.2	135 237 1004 606 1663	1.39 3.06 2.43 2.35 3.18	12.4 26.2 99.7 56.6 137.1	.2 .3 .6 .4 1.1	2.1 3.2 3.1 4.6 15.0	1.3 1.7 1.0 1.7 1.3	8 7 19 18 24	.2 .2 .9 .6 1.3	2.7 7.1 21.0 19.4 73.6	.1 .2 .3 .3 .3	37 69 54 51 61	.15 .11 .58 .41 .66	.023 .077 .046 .030 .043	8 8 10 11 14	42.1 156.9 105.6 100.3 237.0	.39 .92 .82 .91 1.14	85 82 122 120 174	.038 .031 .035 .054 .028	1 <1 3 3 4	.93 1.84 1.09 1.20 1.44	002 001 007 008 007	.04 .04 .06 .07 .06	.2 . .5 . .6 . .7 . .6 .	01 2. 03 3. 10 5. 06 5. 26 8.	.3 .3 .0 .3	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	4 6 4 5	<.5 <.5 .8 .6 .8	15.0 15.0 15.0 15.0 7.5
16+00N 2+00W 15+00N 9+00W 15+00N 8+50W 15+00N 8+00W 15+00N 7+50W	1.8 2.4 3.3 2.0 3.7	53. 61. 55. 31. 47.	1 11. 0 7. 6 8. 4 7. 7 12.	7 6 9 9 8 11 0 18 7 26	6. 1. 7. 6.	2 35 3 3 3 4 2 3 3 10	7.4 5.8 5.9 1.8 2.2	27.4 8.7 12.0 11.0 20.5	676 479 936 304 506	2.69 2.32 2.59 2.20 3.54	88.5 26.5 28.8 17.9 53.9	.8 2.1 2.0 .4 .6	10.3 5.0 6.6 3.3 2.6	1.4 1.5 1.3 1.8 2.7	14 22 24 13 11	1.2 .7 1.2 .3 1.2	37.5 4.3 4.9 3.4 13.3	.3 .2 .3 .3	54 49 55 62 74	.36 .44 .66 .25 .34	.033 .034 .049 .041 .102	13 14 14 11 11	160.7 37.9 45.0 40.9 72.4	1.45 .53 .79 .64 .65	140 242 301 225 217	.029 .052 .064 .075 .063	2 2 2 1 1	1.22 1.37 1.80 1.74 2.44	006 005 009 005 .005	.05 .12 .13 .07 .06	.7. .2. .3. .2. .9.	05 4 06 4 10 5 03 4 06 5	.9 .4 .8 .4 .0	.1<.05 .1<.05 .2<.05 .1<.05 .2<.05	4 5 7 9	.6 9 9 5 7	15.0 15.0 15.0 15.0 15.0
STANDARD DS5	12.9	138.	5 25.	5 14	4.	3 24	4.3	12.6	818	2.99	17.7	6.1	45.0	2.8	50	5.7	3.9	6.3	64	.78	.096	13	190.4	. 69	140	.110	17 2	2.10	.032	.15 4	.8.	19 3.	7 1	.1<.05	7	5.1	15.0
	(GROUF JPPEF - SAN	P 1DX LIM IPLE	ITS TYPE	15.0 - A E: S	GM G, A OIL	SAMI U, I SS81	PLE L HG, V 0 600	.EACH / = 1 :	ED WI OO PI <u>Sam</u> g	TH 90 PM; MO bles b) ML), CO xegin	2-2- , CD ning	2 HC , SB 'RE	L-HN , BI <u>' ar</u>	103-1 , Th e Re	120 A1 1, U 8 eruns	95 B = and	DEG. = 2,0 /RRE	С F 000 F Е <u>′</u> ег	OR O PM; <u>e Re</u>	NE H CU, ject	IOUR, PB, 2	DILU ZN, M <u>uns.</u>	JTED NI, M	ΤΟ 3 IN, Α	00 M S, V	L, AI , LA	NALYS , CR	ED B = 10	Y I(,000	CP-MS) PPM	i. I.				
DATE RECE	IVE	D:	AUG	25	200	3 1	DAI	re f	EPC	RT	MAIL	ED:	\leq	ept	ţ.	9/	1 93	SI	GNE	DE	вч.(.		·	•••	۰D.	TOYE	, c.	LEON	G, J	. WAN	1G; 1	CERTI	FIE	D.B.C.	ASS	AYER	5
All results	аге с	consi	dere	d th	ie c	onfi	den	tial	ргор	erty	of th	e cl	ient	. Acı	ne a	ssur	es th	e li	abil	itie	s fo	г ас	tual	cost	of	the	analy	sis	only	·				Data	<u>, /</u>	′FA _]

.

ACHE ANALYTICAL	С	2	4in	cor	:d	Exp	lor	ati	.on	Con	ısu	lta	nts	3 L	tđ.	C PI	৲ র্ত্য	ECI	[]	NDA	ATA	F	ILF	3 #	A3	037	24		Pa	age	2	C	ACHE	
SAMPLE#	Мо ррт	Си ррп	Pt ppn) Zni ippmi	Ag ppm	Ni ppr	Co ppm	Mn ppm	Fe %	As ppm	U mqq	Au ppb p	Th xpm p	Sr C pm pp	d St m ppn	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	A] %	Na %	K %pg	₩ xn p	Hg Sc pm ppm	T1 ppm	S Ga % ppm	Se S ppm	Sample gm
G-1 15+00N 7+00W 15+00N 6+50W 15+00N 6+00W 15+00N 5+50W	1.3 2.9 3.1 1.2 1.5	2.7 47.5 23.7 52.3 64.4	2.1 12.6 8.9 6.7 7.2	36 334 81 78 2 26	<.1 .2 .3 .4 .4	4.0 97.2 21.2 42.1 40.8	3.6 17.8 6.4 9.9 4.9	520 420 217 621 270	1.95 3.43 2.74 2.48 2.24	<.5 46.8 31.9 19.6 16.8	1.9 6 3 8 7	<.5 4 3.6 4 2.0 2 2.6 2.2	1.2 1.9 2.1 .4 .2	76 <. 11 2. 6 . 18 1. 23 5.	1 <.1 2 7.0 3 7.2 3 3.7 2 3.8	.1 .6 .3 .2	36 57 57 40 37	.53 .46 .07 1.07 2.29	.088 .247 .087 .063 .058	7 13 10 10 7	12.5 45.1 30.5 38.2 42.7	.48 .48 .30 .50 .21	183 212 129 153 129	.130 .037 .043 .026 .025	<1 23 11 31 31	.86 .0 .09 .0 .20 .0 .36 .0)70)06)05)07)06	.39 1. .08 1. .04 . .05 . .02 .	.2 . .1 . .4 . .2 . .8 .	01 1.9 11 5.0 04 2.8 12 2.7 11 1.5	.3<.0 .2<.0 .1<.0 .1<.0	5 4 5 6 5 6 5 4 7 3	< 5 5 < 5 1.1 1.9	15.0 15.0 15.0 15.0 15.0
15+00N 5+00W 15+00N 4+50W 15+00N 4+00W 15+00N 3+50W 15+00N 3+00W	1.2 1.2 1.5 1.2 1.0	26.9 26.8 27.8 28.5 87.2	8.4 7.3 8.1 6.2 9.6	73 63 59 2 57 5 49	.2 .1 <.1 .1 .3	65.7 110.6 244.5 207.2 1436.4	11.9 18.0 23.9 27.6 35.5	429 401 361 533 1199	2.74 3.43 3.52 4.34 4.75	31.8 28.9 49.2 102.6 350.6	.3 .4 .2 .6	1.1 1 1.5 1 2.4 2 5.5 1 4.0 1	6 3 4 7	16 1. 10 1. 9 . 9 . 20 1.	0 4.0 2 4.1 5 9.0 6 6.9 3 15.7	.2 .3 .2 .4	62 108 72 85 109	.58 .81 .20 .37 1.06	.028 .036 .037 .029 .045	9 8 10 7 21	62.3 202.9 157.0 252.2 451.5	.45 1.40 .95 1.24 1.45	103 72 132 104 159	.034 .035 .022 .009 .021	2 1. 1 2. 1 1. 1 2. 4 1.	.54 .0 .10 .0 .94 .0 .15 .0 .84 .0	01 04 102 104 104	.04 . .03 1. .04 . .04 . .06 1.	.4. .4. .9. .9.	06 3.3 05 6.3 02 4.6 02 7.8 18 9.8	.1<.0 .1<.0 .1<.0 .1<.0	5 4 5 7 5 5 5 6 5 5	.6 < 5 < 5 < 5 1.0	15.0 15.0 15.0 15.0 15.0
15+00N 2+50W 15+00N 2+00W 14+00N 9+00W 14+00N 8+50W 14+00N 8+00W	1.1 1.5 2.6 3.6 2.4	18.9 25.7 22.3 68.3 32.4	5.8 8.0 5.4 8.5 6.9	70 [°] 76 61 5 91 71	<.1 .1 .2 .4 .1	294.0 155.5 21.3 42.8 24.1	39.5 16.7 5.6 12.5 8.0	924 394 210 1128 332	3.47 2.79 3.10 2.78 2.31	31.1 55.0 17.3 28.0 26.5	.3 .4 .3 3.7 .3	1.2 1 2.4 1 .9 1 2.3 3.0 2	0 4 4 6 2.2	13 . 15 . 9 . 38 1. 16 .	4 10.1 6 15.0 3 2.4 9 5.2 3 5.5	.2 .3 .2 .3	53 51 57 44 45	.34 .41 .08 1.32 .25	.036 .051 .053 .064 .075	8 10 8 11 12	199.5 99.9 36.7 36.0 30.8	1.71 .71 .49 .56 .44	156 142 96 323 181	.028 .022 .068 .034 .060	1 1 1 1 1 1 3 1 <1 1	.16 .0 .34 .0 .49 .0 .56 .0 .12 .0	006 004 004 006 006	.03 . .05 2. .05 . .13 . .08 .	.3. 1. 2. 2. 3.	04 3.3 06 3.9 05 2.7 10 3.5 02 3.2	.1<.0 .1<.0 .1<.0 .2<.0	5 4 5 4 5 5 5 5 5 4	< 5 < 5 < 5 1 3 5	15.0 15.0 15.0 15.0 15.0
14+00N 7+50W 14+00N 7+00W 14+00N 6+50W 14+00N 6+00W 14+00N 5+50W	2.2 1.2 2.7 1.7 1.4	81.1 26.9 47.1 58.7 47.4	10.2 9.1 11.1 7.8 8.0	2 78 1 209 1 132 3 80 9 96	.4 .4 .2 .2 .1	56.0 136.1 127.9 497.6 175.3	13.5 11.8 15.5 25.6 14.0	743 487 299 1188 769	3.08 2.81 3.72 2.70 2.58	40.4 124.8 54.2 42.7 44.2	1.4 .7 .9 1.2 .4	7.8 1 2.9 2 2.3 3 2.8 3.1 1	2 2.0 3.3 8 7	22 1. 17 1. 11 2. 20 1. 18 1.	0 9.1 1 25.5 3 8.8 4 6.3 3 4.7	.4 .3 .4 .3	61 52 79 50 46	.91 .74 .29 1.68 .53	.067 .040 .042 .095 .038	15 10 13 12 13	48.2 74.6 63.0 188.8 78.6	.78 .81 .60 1.70 .65	249 194 168 170 129	.074 .072 .072 .021 .021	2 1. 3 1. 2 2. 5 1. 2 1.	.57 .0 .73 .0 .21 .0 .42 .0 .34 .0)17)04)07)07)13	.10 . .06 . .04 . .06 <i>.</i> .07 .	.4. .3. .6. .7. .6.	20 6.6 09 5.1 06 6.0 13 4.0 09 4.6	.3<.0 .1<.0 .1<.0 .1<.0	56 56 57 54 555	1.2 .7 .7 1.3 .6	15.0 15.0 15.0 7.5 15.0
14+00N 5+00W 14+00N 4+50W 14+00N 4+00W RE 14+00N 3+50W 14+00N 3+50W	1.4 1.2 1.3 1.5 1.3	28.8 60.3 43.7 28.8 27.7	9.0 8.5 9.7 10.9) 78 5 59 7 65 9 97 7 103	.1 .2 .1 .1 .1	205.7 674.3 170.2 285.6 266.8	12.8 15.4 19.4 27.4 27.0	670 633 697 486 458	2.47 2.39 3.33 3.93 3.91	70.1 73.8 53.6 37.8 37.4	3 4 5 5	3.8 2 5.8 1 3.0 2 3.7 3 1.3 3	2.1 0 2.3 3.1 3.0	19 1. 35 . 14 <i>.</i> 11 1. 10 1.	0 4.6 5 5.6 8 6.4 0 6.0 1 6.1	.3 .4 .3 .6 .7	50 43 98 82 75	.60 4.36 .56 .38 .40	.021 .108 .033 .117 .113	11 11 13 10 9	131.4 465.5 147.3 204.6 194.0	.63 .99 .87 1.34 1.19	109 123 110 187 178	.054 .034 .041 .047 .039	2 1. 5 1. 3 1. 2 2. 2 2.	.10 .0 .16 .0 .84 .0 .68 .0	005 109 105 104 102	.07 . .11 . .05 1. .06 1.	.8. .8. .0. .3. .5.	07 4.0 21 4.3 08 9.1 06 5.7 06 5.1	.1<.0 .2<.0 .2<.0 .2<.0 .1<.0	54 53 54 57 57	.5 1.1 .5 <.5 <.5	15.0 15.0 15.0 15.0 15.0
14+00N 3+00W 14+00N 2+50W 14+00N 2+00W 13+00N 9+00W 13+00N 8+50W	1.0 1.3 1.1 1.5 1.8	30.7 27.3 51.8 30.5 18.0	11.3 6.0 7.8 5.7	3 57) 79 3 71 7 79 3 67	.1 <.1 .2 .3 .1	160.3 96.8 245.8 35.9 17.1	20,4 17.6 29.6 11.5 5.3	379 316 492 387 226	3.05 3.00 3.94 2.40 1.72	65.8 22.5 44.1 18.4 13.1	4 3 4 9 3	1.8 2 1.6 1 3.7 1 1.9 2 3.0 1	2.1 6 9 2.4 1	13 . 13 . 14 . 16 . 14 .	6 8.6 5 4.4 5 9.0 4 2.8 2 1.9	.3 .1 .2 .2	51 54 77 41 41	.34 .26 .46 .32 .17	.061 .060 .029 .057 .024	11 7 9 10 9	106.2 78.4 220.6 36.1 29.3	.71 .64 1.00 .59 .44	147 156 99 179 167	.029 .035 .018 .055 .046	1 1. 1 1. 1 2. 1 1. <1 1.	.91 .0 .95 .0 .09 .0 .37 .0	104 103 103 105	.04 . .04 . .05 . .06 . .05 .	.6. .2. .5. .2.	08 4.4 04 3.2 04 8.1 04 3.3 02 2.3	.1<.0 .1<.0 .1<.0 .1<.0	5 4 5 4 5 6 5 4 5 4	< 5 < 5 < 5 < 5 < 5	15.0 15.0 15.0 15.0 15.0
13+00N 8+00W 13+00N 7+50W 13+00N 7+00W 13+00N 6+50W 13+00N 6+00W	2.2 1.7 1.2 2.1 1.9	29.1 28.2 55.6 60.8 37.2	5.5 7.6 9.1 10.0 6.7	5 63 5 63 1 89 9 84 7 55	.2 .1 .2 .3 .1	31.8 34.1 126.0 210.4 77.1	8.3 8.8 11.3 17.6 11.9	425 331 259 841 261	2.21 2.42 2.38 2.71 2.35	15.5 27.3 21.9 51.7 39.4	1.4 .4 .7 .6 .4	2.6 1 2.3 2 4.5 1 4.2 1 2.6 1	7 2.1 2 4	18 . 15 . 24 1. 20 1 <i>.</i> 1 1 .	3 2.5 4 7.6 4 7.1 2 13.5 4 5.0	.2 .2 .4 .2	40 54 45 45 46	.25 .21 1.21 .79 .20	.034 .037 .089 .079 .031	13 10 12 13 10	35.9 39.0 69.0 103.8 70.6	.59 .60 .68 .86 .59	234 139 180 176 126	.051 .056 .036 .031 .026	1 1. 1 1. 4 1. 3 1. 1 1.	.41 .0 .50 .0 .38 .0 .34 .0 .28 .0	107 . 101 . 108 . 107 .	.08 . .05 . .13 . .12 . .05 .	2. 3. 6. 8.	05 3.7 02 3.4 12 3.8 14 4.6 03 3.5	.1<.0 .1<.0 .1<.0 .2<.0 .1<.0	54 54 54 54 54	.5 <.5 1.5 <.5	15.0 15.0 15.0 15.0 15.0
STANDARD DS5	13.4	138.1	. 25.0) 139	.3	25.1	12.0	760	2.89	18.4	5.9	43.0 Z	2.7	50 5.	8 3.9	6.2	64	.74	.097	13	184.8	. 68	142	.110	17 2.	.13 .0	34 .	.14 5.	0.	18 3.6	1.1<.0	57	5.3	15.0

..........

- .. .

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA

<u></u>																				<u></u>																				٦
		\sum	M	in	c01	rd	Ex	pl	.ora	ati	on	C	ons	ul	ta	nts	3 I	ito	э.	C PF) 20J	EC.	ΓI	NĎ.	ATA	I	FIL	Е #	EA 3	037	724	:	Pa	.ge	3	(C	Ą	A	
	ACKE ANALYTICAL																																	_				ACHE AN		
	SAMPLE#	Mo ppm	Cu ppm	P pp	b Zi ni ppi	n Aq ni popr)) n	Ni ppm	Co ppm	Mn opm	Fe	e A Kipp	us l un ppr	ј д прр	u T bpp	h S mipp	r C m pp	d d	Sb Spm p	Bi opm p	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B/ ppm	41 %	Na %	K lı %tppr	wi Hg mi ppm	sc Sc	וז ppm	S X	Ga ppm j	Se Sai opm	nple gm	1
	G-1 13+00N 5+50W 13+00N 5+00W 13+00N 4+50W 13+00N 4+00W	1.3 2.2 1.7 1.7 1.5	2.9 57.9 24.0 68.1 37.9	1. 10. 8. 12. 7.	9 3 8 15 6 8 3 12 8 6	6 < 7 .8 0 .4 5 .9	1 : 3 6: 4 5: 5 12: 3 6:	3.5 3.5 2.5 3.2 7.5	3.7 12.7 10.3 15.4 13.3	455 773 697 1574 462	1.65 2.81 1.84 2.95 2.92	5 <. L 26. 4 20. 5 30. 2 22.	52.0 41. 5. 3. 7.) 1. L 2. 7 1. 7 4. 5 .	0 4. 9 1. 6 1. 4 1. 6 2.	77 41 533 61	6 <. 2 3. 9 1. 2 3. 2 1.	1 0 5 0 7 5 3	1 5.1 1.0 7.9 3.1	.1 .4 .4 .5 .3	34 51 36 52 51	.53 .92 .61 1.15 .50	.080 .072 .063 .076 .047	8 15 13 16 12	11.0 49.6 50.8 69.1 47.3	.47 .52 .41 .71 .64	195 223 153 305 170	.116 .041 .020 .034 .041	5 .8 6 1.6 4 1.1 5 1.9 3 1.9	31 .0 58 .0 19 .0 92 .0 57 .0	66 . 07 . 05 . 10 . 07 .	38 1.4 08 .9 05 .7 09 1.3 05 .8	4<.01 5 .08 7 .04 3 .12 8 .07	. 1.9 3 4.7 2.7 2 5.5 7 4.5	.3 .2 .1 .2 .2	<.05 <.05 <.05 <.05 <.05	4 - 5 4 5 5	<.5 .8 .8 1.1 .6	15 15 15 15 15	
	13+00N 3+50W 13+00N 3+00W 13+00N 2+50W 13+00N 2+00W 12+00N 9+00W	1.8 1.1 1.4 1.6 1.8	52.4 26.7 47.2 36.6 29.2	11. 6. 7. 9. 6.	9 13 3 6 9 5 2 7 1 5	9 .1 4 . 7 . 6 . 7 .	5 18: 1 10: 1 20: 1 21: 1 3:	2.2 5.4 4.6 3.9 5.1	17.4 17.7 25.3 26.2 9.0	1326 524 739 396 525	2.89 2.89 3.44 3.99 1.80	9 32 5 14 4 35 5 35 5 17	7. 5. 1. 4.	3 3. 2 2. 4 3. 4 1. 4 2.	51. 01. 22. 22. 51.	6 1 0 4 1 1 4 1	12. 8. 11. 91. 4.	7 4 4 2 0 5 1 5 3 3	4.4 2.2 5.3 5.5 3.6	.5 .3 .4 .4 .2	55 79 74 91 35	.61 .23 .64 .21 .20	.085 .055 .087 .027 .063	17 7 13 10 12	99.5 231.5 265.5 247.4 33.3	.73 1.43 2.31 1.15 .50	167 122 128 118 184	.033 .033 .033 .037 .037 .047	3 1.9 3 1.9 3 2.2 1 2.2 <1 1.0	01 .0 01 .0 25 .0 20 .0 05 .0	08 . 04 . 06 . 05 . 04 .	07 1.4 03 .0 05 1.2 04 .8 09 .3	4 .11 6<.01 2 .08 8 .02 3 .03	4.9 3.4 8.4 5.2 3 2.7	.2 .1 .2 .1	<.05 <.05 <.05 <.05 <.05	5 6 6 4	.5 .5 .5 <.5 <.5	15 15 15 15 15	
	12+00N 8+50W 12+00N 8+00W 12+00N 7+50W 12+00N 7+00W RE 12+00N 7+00W	2.4 2.9 1.8 2.1 2.2	56.1 48.2 39.3 56.9 55.2	7. 6. 8. 9.	5 7 5 8 3 6 7 8 2 8	3 . 5 . 1 . 2 .	5 10 3 3 4 5 3 9 3 8	8.4 4.0 1.6 2.6 7.7	11.4 10.3 8.0 13.7 13.0	834 413 399 624 581	2:69 2.32 1.99 2.72 2.54	5 27 1 31 9 34 1 44 4 45	55. 8. 41. 4. 7.	3 4. 4 3. 5 3. 8 6. 8 6.	1 1. 4 2. 0 . 0 1. 0 1.	0 2 1 4 2 3 2 4 2	5. 8. 2. 1.	6 4 3 4 6 6 9 7 9 7	4.8 4.6 5.4 7.2 7.5	.2 .2 .4 .4	45 43 37 50 48	1.00 .12 1.24 1.12 1.12	.084 .098 .059 .083 .081	14 10 8 13 13	60.9 31.0 38.2 76.6 73.5	.65 .56 .44 .75 .78	276 164 203 187 192	.036 .046 .025 .041 .040	2 1.9 1 1.9 2 1.3 4 1.3 4 1.4	53 .0 53 .0 13 .0 39 .0 46 .0	08 . 05 . 06 . 09 . 09 .	15 .: 09 .: 05 .: 12 .: 12 .:	3 .14 3 .07 3 .08 6 .14 6 .13	4.3 3.7 2.4 4.9 4.8	.2 .1 .2 .2	<.05 <.05 <.05 <.05 <.05	4 4 4 4	1.2 .6 1.2 1.2 1.2	15 15 15 15 15	
	12+00N 6+50W 12+00N 6+00W 12+00N 5+50W 12+00N 5+50W 12+00N 4+50W	1.6 2.2 2.3 2.2 2.4	31.1 71.4 49.5 34.7 20.0	7. 9. 9. 8. 8.	7 13 8 12 5 12 7 7 0 13	9 6 7 4	3 4 5 5 4 10 2 8 1 6	6.7 8.5 1.2 1.5 1.3	11.2 15.1 15.6 15.0 10.9	523 994 1771 634 378	2.6 3.0 2.6 2.2 2.1	7 21 2 32 3 25 3 25 2 21	6 . 7 . 9 1. 4 .: 0 .	3 4 9 1 9 1 5 2 5 1 5 1	01. 91. 62. 42. 61.	0 1 1 2 7 2 4 1 5	8 . 0 2. 0 2. 7 . 9 .	7 4 2 6 3 9 7 7 8 3	4.1 5.6 7.2 3.3	.3 .3 .3 .4 .3	49 51 44 41 42	.84 1.10 .93 .49 .27	.045 .059 .079 .048 .060	10 12 11 15 12	55.4 54.4 53.8 75.4 49.8	. 58 . 63 . 51 . 54 . 46	200 247 253 127 157	.048 .046 .035 .032 .031	2 1.9 3 1.0 1 1.0 1 1.7 1 1.7	52 .0 51 .0 52 .0 15 .0 42 .0	09 . 11 . 08 . 07 .	06 .3 10 .3 06 .4 07 .3 06 .0	3 .06 3 .09 4 .07 7 .04 6 .02	5 4.6 9 4.4 7 3.1 1 3.9 2 2.9	.1 .2 .1 .1	<.05 <.05 <.05 <.05 <.05	5 5 3 4	.7 1.2 .6 <.5 <.5	15 15 15 15 15	
0	12+00N 4+00W 12+00N 3+50W 12+00N 3+00W 12+00N 2+50W 12+00N 2+00W	1.9 1.3 1.8 1.3 1.3	28.4 44.1 121.9 24.4 24.0	8. 9. 11. 11. 8.	7 7 3 12 5 9 3 11 5 8	7 2 6 4 0	2 11 2 5 2 8 1 6 1 6	6.6 6.3 7.8 2.8 3.6	12.6 12.6 16.1 17.0 12.5	571 1013 905 438 236	2.2 2.6 2.7 3.4 3.7	3 22 9 28 2 71 4 18 7 23	8 4 9 5 9	5 3 5 4 5 7 6 1 3 1	52. 01. 62. 72. 01.	2 1 1 1 7 1 2 1 2	31. 61. 91. 11.	2 3 4 4 3 3 4 4	3,9 4.1 7.6 3.3 2.8	.4 .5 .5 .4	43 47 63 72 90	.49 .85 .86 .41 .21	. 045 . 082 . 095 . 058 . 076	12 12 20 11 7	57.6 43.1 67.2 92.9 129.9	.57 .65 .80 .51 .76	127 149 158 98 100	.037 .041 .045 .036 .050	1 1.4 2 1.6 2 1.6 2 2.6 <1 2.5	49 .0 55 .0 57 .0 55 .0 19 .0	106 . 108 . 109 . 105 . 105 .	06 1.9 08 10 1.0 05 1.0 05 1.0	9.04 7.04 6.18 1.04 0.02	3.8 4.0 8.3 4.9 2.3.8	.1 .2 .1 .1	<.05 <.05 <.05 <.05 <.05	4 · 5 · 5 · 8 ·	<.5 .6 <.5 <.5	15 15 15 15 15	
	11+00N 9+00W 11+00N 8+50W 11+00N 8+00W 11+00N 7+50W 11+00N 7+00W	2.1 2.0 1.7 2.1 2.1	20.8 36.0 32.5 69.8 64.0	4. 5. 8. 8. 8.	4 7 1 7 2 6 3 8 2 7	5 7 4 0	22 24 26 38 211	6.8 0.4 1.7 8.3 6.6	6.5 8.7 9.6 14.0 14.9	270 301 372 826 705	2.1 2.4 1.8 2.6 2.6	6 16 5 20 3 19 5 38 2 46	4 8 11. 91. 1	4 2 5 2 6 4 0 4 5 4	4 1. 3 1. 5 1. 7 1. 9 2.	9 1 5 1 3 2 3 2 3 2	3. 4. 11. 3.	3 3 4 1 2 8 1	2.8 2.5 7.6 9.0 0.8	.1 .2 .3 .3 .4	43 41 37 45 45	.19 .21 .59 .89 1.03	.041 .065 .057 .078 .077	11 8 12 13 15	32.5 37.8 58.6 65.6 77.8	.54 .60 .60 .70 .82	155 116 181 210 190	.056 .045 .033 .041 .044	<1 1. 1 1. 2 1. 3 1. 4 1.	33 .0 53 .0 12 .0 43 .0 29 .0	106 . 105 . 108 . 109 .	09 . 08 . 08 . 13 . 14 .	2 .01 2 .03 7 .09 3 .07 5 .11	l 3.4 3 3.7 9 4.1 7 4.5 l 5.4	.1 .1 .2 .2	<.05 <.05 <.05 <.05 <.05	5 4 3 4 4	<.5 <.5 .9 1.0 1.1	15 15 15 15 15	
	11+00N 6+50W 11+00N 6+00W 11+00N 5+50W 11+00N 5+00W 11+00N 4+50W	1.9 1.7 1.7 1.4 1.8	71.9 38.0 46.2 56.9 36.7	8. 7. 9. 14. 10.	4 7 9 6 0 11 2 17 1 10	4 3 8 4	38 27 45 36 24	4.1 0.1 3.3 1.8 7.5	14.1 11.5 13.0 14.5 12.3	855 457 1167 1404 649	2.5 2.5 2.8 3.3 2.2	2 36 1 33 3 24 2 53 4 48	51. 1. 6. 1. 5.	2 6 9 4 5 3 6 1 5 2	3 1. 5 1. 3 1. 8 1. 2 .	8 1 4 1 5 1 4 1 7 1	7 7 91. 42. 2	8 10 5 11 3 31 8 11 7 19	0.0 1.6 1.6 2.2 5.5	.3 .3 .7 .4	47 47 57 57 45	.46 .76 .76 .78 .36	.045 .055 .062 .113 .056	19 13 15 18 12	63.9 56.0 52.1 53.4 46.8	.64 .65 .70 .44 .41	227 181 213 197 138	.039 .039 .060 .035 .021	2 1. 2 1. 3 1. 2 2. 1 1.	58 .0 53 .0 35 .0 56 .0 56 .0	07 . 08 . 011 . 06 . 05 .	09 . 08 . 08 . 07 . 06 .	3 .09 4 .05 3 .11 5 .07 8 .02	9 5.7 5 4.7 1 5.9 7 5.4 2 2.5	.2 .1 .2 .1	<.05 <.05 <.05 <.05 <.05	4 4 6 5	<.5 <.5 <.5 <.5 <.5	15 15 15 15 15	
	STANDARD DS5	13.5	143.8	25.	5 13		32	5.5	12.5	784	2.9	5 18	66.	2 44	02	7 4	75.	3 ;	3.8 (5.4	58	.77	. 092	12	191.0	. 68	135	.103	19 2.	01 .0	34 .	14 5.3	2.17	7 3.6	1.1	<.05	7	5.2	15	

.

_

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

_

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data APA

	C																C	·····													<u></u>	(C		1
		M	lind	cor	:d	Exp	101	rat	ion	Co	nsı	ılt	an	ts	Lt	:d.	PR	OJI	ECT	'IN	IDA	ATA	F	LE	#	A30	372	.4	I	Pag	e 4		AC		
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Со ррт	Mn ppm	Fe X	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti % p	B / opm	\1 N %	a 1 % %	∢ ₩ ≰ppπ	Hg ppm	Sc ppm	TI S ppm %	Ga S ppm pp	e Sam m	ple gm
G-1 11+00N 4+00W 11+00N 3+50W 11+00N 3+00W 11+00N 2+50W	1.5 1.2 2.5 1.7 1.9	2.6 16.6 100.6 34.0 67.7	1.9 7.8 10.9 4.0 3.6	34 100 101 52 37	<.1 .2 .2 .1 .1	4.0 40.8 213.7 84.3 85.1	3.3 8.4 29.5 19.8 21.0	459 351 805 410 270	1.65 1.99 3.63 3.37 5.05	<.5 21.9 35.3 9.6 25.9	1.9 .3 .8 .2 .3	1.2 2.0 3.4 1.2 2.3	4.1 1.2 4.4 1.5 1.3	76 9 13 7 6	< 1 .7 .6 .4 .1	.1 3.7 7.9 2.9 8.1	.1 .5 .6 .2 .2	36 43 70 86 119	.53 .28 .48 .21 .15	.084 .049 .061 .032 .025	8 10 17 7 5	11.0 43.9 114.1 126.3 137.6	.44 .33 .88 1.06 .83	179 . 141 . 229 . 63 . 119 .	110 025 013 011 002	1 .8 1 1.1 2 3.1 1 1.7 2 2.9	33 .06 .6 .00 .5 .00 79 .00 54 .00	4 .37 4 .04 6 .09 3 .04 5 .04	7 1.1 4 .6 9 1.0 4 .8 4 .9	<.01 .01 .03 .03 .01	1.9 2.3 6.2 5.3 10.2	.2 .10 .1<.05 .2<.05 .1<.05 .1<.05	4 <. 5 <. 8 <. 5 <. 6 <.	5 1: 5 1: 5 1: 5 1: 5 1: 5 1:	5.0 5.0 5.0 5.0 5.0
11+00N 2+00W 10+00N 9+00W 10+00N 8+50W 10+00N 8+00W 10+00N 7+50W	1.8 2.1 1.7 2.8 2.4	44.4 26.3 20.5 30.8 43.8	14.9 5.3 4.4 6.5 9.5	93 66 57 121 79	.1 .2 .1 .1 .2	93.5 27.6 22.0 39.4 112.0	17.8 7.0 7.5 9.1 15.0	419 301 459 335 651	3.29 2.25 1.69 2.62 3.00	270.0 19.7 13.3 30.5 85.4	.7 .4 .5 .5 1.5	2.8 2.0 1.9 2.7 9.3	4.5 1.5 1.0 1.1 2.4	11 12 12 9 22	1.4 .1 .2 .3 .6	6.2 3.1 1.5 8.3 44.6	.6 .2 .1 .3 .3	63 51 39 50 51	.40 .11 .15 .13 .68	.156 .043 .023 .069 .095	12 11 10 10 14	63.2 35.5 27.8 47.6 77.1	.52 .56 .42 .54 .74	259 . 151 . 218 . 162 . 218 .	024 054 031 036 035	1 3.2 1 1.2 1 1.1 1 1.6 2 1.3	23 .00 26 .00 .0 .00 51 .00 50 .01	5 .00 5 .00 4 .07 5 .00 0 .07	5 1.5 3 .2 7 .1 5 .3 7 .5	.11 .01 <.01 .01 .12	5.1 3.1 2.4 3.3 4.9	.2<.05 .1<.05 .1<.05 .1<.05 .1<.05	6 <. 4 . 4 <. 5 . 4 .	5 1: 5 1: 5 1: 7 1: 8 1:	5.0 5.0 5.0 5.0 5.0
10+00N 7+00W 10+00N 6+50W 10+00N 6+D0W 10+00N 5+50W 10+00N 5+00W	1.1 1.7 2.1 1.3 1.5	81.7 22.6 73.6 36.0 36.0	8.6 5.5 9.4 7.2 6.9	80 46 130 74 73	.4 <.1 .5 .1 .1	54.0 17.5 57.3 61.9 37.8	10.7 4.3 12.7 15.8 9.8	402 131 1209 714 319	1.80 2.05 3.08 2.44 2.44	28.6 17.1 38.0 63.3 68.8	1.2 .3 .8 .5 .3	7.0 <.5 3.3 2.7 1.4	1.3 1.2 2.2 1.2 1.2	25 8 17 14 13	.7 .4 1.3 .2 .4	57.2 3.1 23.0 9.4 6.7	.5 .1 .3 .3	48] 50 59 58 56	.32 .14 .65 .47 .24	.090 .023 .049 .043 .041	12 7 14 11 10	44.3 28.5 47.9 40.0 40.0	. 49 . 32 . 64 . 55 . 62	224 . 117 . 274 . 179 . 180 .	030 037 042 040 048	3 1.2 <1 1.3 2 2.0 2 2.0 1 1.0	28 .00 30 .00 34 .00 34 .00 51 .00	8 .09 4 .03 7 .13 6 .03 5 .06	9 1.3 3 .2 1 .3 7 .4 5 .2	.11 .01 .04 .02 <.01	4.3 2.6 6.7 4.6 3.7	.1 .06 .1<.05 .2<.05 .1<.05 .1<.05	42. 4< 5. 5.	6 1 5 1 5 1 6 1 5 1	5.0 5.0 5.0 5.0 5.0
10+00N 4+50W 10+00N 4+00W RE 10+00N 4+00W 10+00N 3+50W 10+00N 3+00W	1.9 2.2 2.3 1.6 1.3	34.2 53.0 57.4 22.8 35.9	7.3 13.0 13.8 8.8 7.2	67 118 126 91 85	.1 .3 .1 .1	52.0 71.9 76.5 54.9 85.2	12.3 14.7 15.3 12.2 13.8	445 1379 1369 370 539	2.58 2.96 3.09 2.24 2.18	77.7 549:0 564.1 177.5 29.0	.4 .7 .4 .5	2.8 4.2 4.5 1.7 <.5	2.1 1.5 1.6 1.3 .6	15 14 15 11 11	.4 1.7 1.6 .8 .9	49.2 26.9 26.8 40.6 5.4	.3 .5 .6 .3 .3	55 62 61 45 57	.46 .76 .82 .31 .41	.055 .080 .088 .088 .064 .053	11 15 16 12 15	51.2 57.8 59.8 47.5 78.7	.70 .64 .71 .49 .50	158 . 233 . 249 . 115 . 111 .	054 038 041 034 024	1 1.6 2 2.0 2 2.2 1 1.9 1 1.9	50 .00 15 .00 21 .00 57 .00 51 .00	8 .07 9 .10 9 .10 5 .05 5 .05	7.2 0.7 0.7 5.5 5.5	.01 .10 .10 .02 .02	4.4 5.5 5.9 3.1 3.3	.1<.05 .2<.05 .2<.05 .1<.05 .1<.05	5 < 6 5 < 5 <	5 1: 8 1: 8 1: 5 1: 6 1:	5.0 5.0 5.0 5.0 5.0
10+00N 2+50W 10+00N 2+00W 9+00N 9+00W 9+00N 8+50W 9+00N 8+00W	1.8 1.7 1.9 1.2 3.2	40.3 54.9 21.7 24.6 28.6	9.6 6.6 4.2 4.3 9.2	102 115 113 74 127	.1 .1 .3 <.1 .2	104.6 66.2 28.4 29.1 40.5	16.0 18.3 6.8 6.0 11.9	343 557 248 259 439	2.77 3.90 1.85 1.89 3.87	107.4 57.7 11.4 12.9 41.3	.5 .3 .4 .4 .4	3.8 3.3 3.0 2.1 9.1	2.7 1.6 1.8 2.2 2.2	10 7 12 14 11	.7 .7 .4 .3	13.7 26.0 2.3 1.7 7.8	.4 .4 .2 .1 .3	62 120 44 45 74	.26 .16 .17 .21 .15	.040 .062 .048 .047 .165	12 7 10 12 9	69.6 105.2 34.2 35.5 56.1	.66 1.10 .48 .63 .43	145 . 76 . 146 . 173 . 146 .	053 045 058 070 056	2 1.9 2 2.2 1 1.2 1 1.3 1 2.2	94 .00 24 .00 23 .00 39 .00 22 .00	6.08 4.04 5.06 6.07 5.06	3 .6 4 .8 5 .3 7 .1 5 .4	.02 .01 .01 .02 .05	4.2 5.7 3.4 3.8 4.1	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	5 <. 8 <. 5 <. 5 <. 7	5 1 5 1 5 1 5 1 7 1	5.0 5.0 5.0 5.0 5.0 5.0
9+00N 7+50W 9+00N 7+00W 9+00N 6+50W 9+00N 6+00W 9+00N 5+50W	2.8 3.7 1.6 1.3 1.4	43.9 29.9 182.9 21.3 32.1	9.2 2.7 5.4 6.2 6.9	72 20 56 73 82	.4 .1 .6 .2 .2	99.1 59.7 454.8 105.7 33.0	11.3 2.0 9.8 13.0 11.7	293 105 805 231 459	2.28 .94 2.06 2.51 2.49	41.3 37.5 51.4 429.6 28.6	4.0 8.2 2.3 .4 .5	5.3 1.5 8.7 4.6 2.7	1.5 .4 .5 1.5 1.3	23 34 35 13 11	.9 .7 .7 .5 .3	34.3 59.8 67.0 49.2 15.6	.3 .1 .4 .2 .2	48 20 2 31 3 55 56	.71 2.74 3.27 .59 .27	.084 .067 .084 .028 .033	14 3 8 11 12	66.5 27.2 60.3 75.8 40.3	.55 .28 .49 .51 .55	299 . 219 . 191 . 95 . 168 .	023 009 014 039 042	2 1.4 5 .9 6 1.3 2 1.4 1 1.6	17 .00 53 .00 51 .00 16 .00 53 .00	7 .08 7 .02 7 .10 5 .04 5 .07	3 .6 2 .4 3 .4 4 .2 7 .2	.13 .08 .25 .03 .01	4.9 1.8 5.1 4.3 3.9	.2 .07 .1 .40 .2 .20 .1<.05 .1<.05	4 1. 1 3. 4 3. 5 - 5 <.	9 1 2 1 8 1 6 1 5 1	5.0 7.5 5.0 5.0 5.0
9+00N 5+00W 9+00N 4+50W 9+00N 4+00W 9+00N 3+50W 9+00N 3+00W	1.6 1.5 1.2 1.5 1.7	116.1 31.7 10.9 85.7 47.6	10.9 7.8 6.5 9.0 10.1	101 73 96 160 94	.5 .1 .1 .4 .3	139.1 40.6 17.7 57.1 65.0	16.3 11.2 5.6 14.5 12.6	3064 317 239 1235 1043	3.25 2.64 1.70 2.52 2.63	490.7 40.0 15.6 538.8 356.6	.4 .3 .4 .7	3 8 1 4 1 2 4 4 1 0	1.0 1.6 1.5 .9 1.1	21 13 11 21 16	2.3 .3 .6 2.0 1.4	122.2 19.3 7.4 52.9 13.0	.5 .4 .3 .4 .5	61 1 59 43 52 1 62	.32 .41 .22 .61 .94	.074 .047 .097 .066 .055	14 11 11 11 15	51.8 45.0 31.6 60.0 59.2	.62 .64 .39 .66 .48	266 . 185 . 145 . 127 . 178 .	031 053 050 038 027	3 2.1 1 1.7 2 1.0 5 1.9 4 1.9	.1 .00 74 .00 19 .00 57 .01 10 .00	8 .12 5 .11 5 .06 1 .08 6 .09	2 4 1 4 5 3 3 4 9 8	.07 .02 <.01 .07 .06	5.5 4.0 2.7 4.2 4.7	.3<.05 .1<.05 .1<.05 .2<.05 .1<.05	6 1. 6 <. 5 <. 5 1. 5 <.	2 1! 5 1! 5 1! 4 1! 5 1!	5.0 5.0 5.0 5.0 5.0
STANDARD DS5	13.2	139.6	25.1	132	.3	25.9	12.2	790	2.96	18.2	6.2	43.6	2.7	48	5.6	3.9	6.3	62	.76	. 092	13	186.5	.67	137.	100	21 2.0	01 .03	4.13	3 4.9	.17	3.6	1.1<.05	75.	1 1	5.0

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

_

Data A FA

(<u>.</u>							· · · ·													
	ACHE ANALYTICAL	С]	Min	coi	rd	Exp)]0	rat	ior.	L Co	nsu	ılt	ant	ts	Lt	d.	PR	žoj	EC	r I	ND	АТА	F	FIL	E #	A	303	372	4	P	age	5		C	ACME AV	
	SAMPLE#	Mo ppm	Сі ррг	i Pt n ppn	> Zn ⊧ppm	Ag ippm	Ni ppm	C PP	o Min mippm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm (Cd ppm	Sb ppm (B1 opm p	V mqc	Ca X	P X	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	8 ppm	A1 %	Na %	К %р	₩ pnnp	Hg Sc pripri	T1 ppr	S X	Ga ppm	Se Sa opm	mple gm
	G-1 9+00N 2+50W 9+00N 2+00W 8+00N 9+00W 8+00N 8+50W	1.5 2.9 2.2 2.3 2.3	2.8 45.3 31.9 62.9 25.3	1.9 14.2 9.1 9.1 9.1 2.5.7	9 38 2 92 1 97 1 104 7 76	<.1 .2 .6 .2	3.9 83.4 125.6 92.8 41.8) 3. 15. 19. 9. 6.	3 495 6 570 1 242 2 587 2 190	1.75 3.08 3.19 2.63 1.79	.6 108.8 38.0 25.4 13.4	1.9 .7 .4 4.3 .4	<.5 6.3 2.0 4.0 1.8	4.5 5.8 3.2 1.2 2.5	75 14 8 22 10	<.1 1.2 1 .7 1.2 .2	.1 1.0 5.5 4.9 5.0	.1 .7 .4 .5 .3	38 61 62 44 1 41	.54 .57 .22 .15 .10	.084 .125 .173 .058 .046	7 18 10 10 10	11.8 69.0 92.6 54.7 39.9	.46 .64 .81 .61 .51	184 193 136 341 161	.114 .044 .043 .031 .035	1 2 2 1 1 2 1 1 1	.82 .31 .84 .60 .70	.068 .007 .005 .006 .005	.39 1 .12 1 .06 .08 .07	.3<. .1 . .7 . .6 . .4 .	01 1.9 14 7.0 02 4.6 04 4.0 03 3.6	.3 .2 .1 .1	<.05 <.05 <.05 <.05 <.05	4 6 5 5	<.5 .7 .5 1.1 <.5	15 15 15 15 15
;	8+00N 8+00W 8+00N 7+50W 8+00N 7+00W 8+00N 6+50W 8+00N 6+00W	1.5 2.1 2.6 1.7 1.2	12.8 23.9 39.9 50.0 26.3	3 5.9 9 6.4 9 8.3 5 10.1 7 5.1) 54 66 3 112 65 73	.1 .2 .3 .3 .1	25.6 31.2 53.1 94.6 26.9	5 4. 2 7. 9. 5 11. 9 9.	7 168 0 381 6 628 4 610 1 272	1.44 1.82 2.66 2.19 2.00	9.3 12.2 18.5 54.8 11.7	.3 .6 2.9 9.9 .5	1.2 2.5 2.5 7.1 1.8	1.7 .9 .8 1.3 2.7	9 16 24 26 12	3 3 3 3 3	1.5 2.1 3.1 24.8 2.0	.2 .4 .5 .4 .2	35 47 54 45 1 46	.10 .29 .68 .27 .21	.018 .035 .056 .100 .035	10 10 11 12 12	31.2 36.7 47.8 74.4 36.0	.42 .45 .65 .66 .69	154 236 309 358 244	.032 .031 .031 .023 .059	1 1 1 1 1 1 2 1 1 1	.13 .25 .86 .55 .52	.004 .005 .007 .007 .007	.04 .05 .07 .07 .06	.3<. .3 . .4 . .4 .	01 2.3 02 2.8 04 4.1 18 4.3 01 4.1	.1 .1 .1 .1	<.05 <.05 <.05 <.05 <.05	4 5 5 5 5	<.5 .6 1.2 2.3 .5	15 15 15 15 15
·	8+00N 5+50W 8+00N 5+00W 8+00N 4+50W 8+00N 4+00W 8+00N 3+50W	.7 .5 2.2 1.1 1.6	7 . 85 . 266 . 327 . 42 .	2 5.6 3 2.0) 8.9 7 9.6 9 7.2	5 25 0 81 5 95 5 86 2 97	.1 .2 .5 .5	7.9 77.6 78.9 45.5 36.9) 2. 5 28. 9 14. 5 15. 9 11.	1 110 5 847 7 916 2 541 5 385	1.10 5.03 4.03 3.00 2.52	6.2 35.6 36.3 400.2 24.1	.2 .3 1.3 .6 .4	30.3 2.0 3.8 5.1 .9	1.4 .3 1.7 .5 2.0	5 9 20 22 11	.1 .5 2.2 .3	1.2 2.8 17.9 27.8 4.2	.2 .1 .4 .4 .3	36 175 85 72 1 60	.06 .66 .99 .58 .27	.049 .040 .072 .062 .027	8 3 15 13 10	25.8 262.3 72.1 64.5 48.5	.20 4.88 1.01 .74 .66	50 59 289 154 162	.030 .071 .044 .040 .050	<1 1 4 5 2 4 2 1 1	.86 .62 .92 .02 .83	.003 .004 .009 .007 .007	.03 .03 .15 .06 .07	.2. .1. .3. .4. .4.	01 2.0 02 7.0 11 9.6 10 4.7 02 4.6	.1 <.1 .2 .1	<.05 <.05 <.05 <.05 <.05 <.05	7 11 7 5 5	<.5 .6 1.3 1.2 .6	15 15 15 15 15
	8+00N 3+00W 8+00N 2+50W 8+00N 2+00W RE 8+00N 2+00W 7+00N 9+00W	1.1 1.6 2.0 2.3 2.8	15. 48. 22. 23. 20.	3 6.6 3 8.5 9 6.7 9 7.5 7.6	5 63 5 80 7 67 3 73 5 63	.1 .2 .1 .1	21.9 53.2 47.8 47.9 53.4	5 8. 2 10. 3 9. 3 10. 4 8.	4 480 8 303 3 205 2 214 4 297	2.09 2.67 1.94 2.06 1.78	12.1 142.9 35.0 35.4 24.5	.3 .6 .5 .4 .6	<.5 3.6 1.7 .8 2.0	1.0 1.9 2.0 2.2 2.8	10 12 12 13 18	.4 .5 .4 .4	1.7 8.9 3.8 3.8 8.2	.2 .3 .4 .4	51 57 42 46 36	.26 .50 .35 .36 .33	.035 .032 .050 .054 .118	8 13 10 10 13	35.2 49.4 43.3 46.2 39.5	. 33 . 50 . 45 . 49 . 40	117 151 125 132 154	. 034 . 034 . 029 . 032 . 038	$ \begin{array}{c} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 \\ 1 \end{array} $. 24 . 67 . 26 . 39 . 92	.005 .006 .005 .006 .005	.04 .07 .06 .06 .05 1	.3 . .4 . .5 . .5 . .3 .	01 2.8 06 4.8 02 3.1 02 3.2 01 2.7	.1 .1 .1 .1	<.05 <.05 <.05 <.05 <.05	5 5 4 3	.6 .8 .6 <.5 <.5	15 15 15 15 15
	7+00N 8+50W 7+00N 8+00W 7+00N 7+50W 7+00N 7+00W 7+00N 6+50W	2.7 2.5 2.1 1.6 2.0	36 15. 34. 38. 37.	3 7.6 3 5.9 9 8.0 2 8.3 3 6.3	5 92 9 55 0 65 3 111 7 88	2 .2 .2 .1 .4	84.7 26.3 72.6 76.8 64.3	7 10. 3 5. 5 10. 3 9. 3 9.	8 691 0 183 0 264 8 344 6 306	2.68 2.16 2.22 2.43 2.39	24.3 11.9 21.6 18.9 20.6	.9 .3 .5 .7	2.5 2.9 3.9 1.9 2.1	1.4 2.1 2.7 1.8 2.7	15 11 11 15 14	.3 .2 .6 .3	4.8 2.1 4.4 2.8 3.2	.4 .3 .5 .5	52 51 45 51 50	.27 .12 .09 .33 .20	.052 .030 .040 .044 .067	13 10 12 13 11	56.5 37.5 60.7 52.4 48.5	. 58 . 49 . 63 . 65 . 64	316 155 151 263 174	.023 .046 .049 .046 .050	1 1 1 1 1 1 2 1 2 1	.63 .46 .42 .74 .63	.006 .005 .005 .007 .006	.09 .05 .06 .07 .06	.6. .3. .4. .4. .7.	04 4.0 04 3.2 04 3.7 04 4.4 03 4.2	.1 .1 .1 .1	<.05 <.05 <.05 <.05 <.05	5 6 4 5	<.5 .9 .5 .5 <.5	15 15 15 15 15
	7+00N 6+00W 7+00N 5+50W 7+00N 5+00W 7+00N 4+50W 7+00N 4+00W	2.0 1.9 2.6 1.7 2.4	73 35. 29. 45. 73.	5 8.8 0 6.9 3 7.4 7 5.8 3 8.3	8 78 9 73 4 86 3 70 2 77	.5 .1 .2 .1 .3	56.9 35.7 24.1 35.4 68.8) 11. 7 8. 1 10. 1 11. 3 15.	8 663 4 241 5 306 1 369 9 447	3.04 3.53 2.76 2.51 3.30	25.9 20.7 24.3 17.6 35.2	1.2 .4 .5 .6	3.7 1.0 1.0 .7 7.6	2.0 2.0 2.5 1.9 2.7	20 10 8 13 14	.7 .3 .3 .4 .5	3.9 2.7 3.6 6.8 7.5	.5 .2 .2 .2 .3	57 60 62 49 56	.56 .15 .08 .21 .25	.038 .038 .055 .073 .051	14 8 9 9 10	51.6 48.6 41.1 35.6 51.6	. 68 . 51 . 38 . 50 . 62	336 124 145 147 197	.042 .052 .049 .052 .057	1 1 1 1 1 1 2 1 2 2	.67 .95 .51 .33 .31	.007 .005 .005 .006 .006	.09 .05 .04 .04 .09	.5. .4. .3. .2. .4.	05 5.8 02 3.7 07 3.9 03 4.1 05 5.3	.2 .1 .1 .1	<pre><.05 <.05 <.05 <.05 <.05 <.05 </pre>	6 6 7 4 4	1.0 .5 .5 .5 .7	15 15 15 15 15
	7+00N 3+50W 7+00N 3+00W 7+00N 2+50W 7+00N 2+50W 6+00N 8+80W	1.4 1.8 1.8 2.6	60. 66. 76. 86. 13.	0 6.9 5 7.1 7 10.4 3 9.1 3 3.1	9 114 1 74 4 61 7 67 2 29	.2 .2 .5 .5 .1	39.0 48.5 136.7 172.8 22.8) 13. 5 12. 7 17. 3 16. 3 4.	0 780 8 689 8 804 5 673 7 138	2.61 2.78 3.54 3.14 1.10	20.4 203.7 1146.1 54.5 7.8	.7 .9 1.3 1.1 .9	1.3 5.7 .6 4.6 8.2	1.3 1.6 1.4 3.1 2.4	13 16 23 19 14	1 0 6 2 2 7 2 1 0 .1	4.1 14.4 22.7 6.8 1.6	.2 .2 .5 .4 .1	50 54 69 1 57 1 28	.45 .60 1.42 1.20 .20	.043 .026 .068 .032 .025	12 11 16 23 9	44.8 46.4 281.0 132.2 23.9	.59 .60 .57 .94 .32	159 158 272 278 119	.043 .056 .016 .039 .046	2 1 3 1 5 1 3 1 1	.62 .32 .43 .75 .53	.006 .008 .007 .009 .006	.06 .09 .08 .10 .04	.3. .3. .5. .4. .3.	02 3.9 05 5.2 08 4.0 14 7.7 01 2.1	.1 .1 .2 .3	<.05 <.05 <.05 <.05 <.05	5 4 5 2	.5 1.1 1.4 1.2 .8	15 15 15 15 15
	STANDARD DS5	13.5	136.	6 25.3	2 131	3	24.9	9 11.	8 745	2.81	18.2	6.3	43.6	2.7	47	5.7	3.8	6.3	60	.73	. 089	11	192.1	. 67	134	. 096	20 2	.01	. 034	.13 5	.0.	18 3.5	1.0	<.05	7	5.0	15

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data

						· · · · · · · ·																							
	-	Mino	cord	Ex	plo	orat	ion	Cons	sul	tan	ts]	Ltd.	PI		ECI	II I	1DA	TA	FIL	E #	A30	372	4	Pa	age	6	C		
Sample# 1 pi	Mo opm	Cu ppm p	Pb Zn pm ppm	Ag ppm	Ni ppm	Co M ppm pp	n Fe m %	As ppm p	U pm p	Au Thi pbippmi	Sr ppm p	Cd S opm pp	b Bi m ppm	V n ppm	Ca %a	P %	La ppm	Cr ppm	Mg Ba % ppm	n Ti N X	B A ppm S	1 Na K X	К % р	W pm p	Hg Sc opm ppm	.TIS ppm %	Ga So ppm pp	e Sampî n ç	le gm
G-1 1 6+00N 8+50W 1 6+00N 8+00W 2 6+00N 7+50W 2 6+00N 7+00W 3	3 7 2.3 2.7 3.1	2.5 1 23.1 5 15.6 5 19.0 6 39.3 7	.9 35 .8 63 .4 66 .3 62 .6 109	<.1 .2 .1 .1 .3 10	3.0 38.9 49.3 58.5 04.0 1	3.2 42 8.0 39 6.9 18 7.2 20 2.5 29	5 1.57 9 1.89 4 1.61 0 1.63 7 2.25	<.5 1 15.7 17.1 17.5 19.8 1	8 2 .7 2 .4 2 .4 2 .3 4	.8 4.4 .0 1.2 .3 1.8 .3 1.8 .7 1.3	72 - 17 13 15 16	 .1 .3 .2 .2 .2 .2 .3 	1.1 5.3 2.3 5.5 6.5	34 39 33 34 43	.51 .28 .21 .25 .22	.079 .027 .085 .093 .049	8 12 10 12 12	10.9 38.6 37.9 43.0 60.0	.46 175 .54 249 .46 105 .46 143 .54 305	5 .112 .046 .040 .033 5 .020	2 .78 1 1.13 2 .83 2 1.10 2 2.04	3 .064 3 .005 7 .004) .004 4 .005	.37 1 .07 .05 1 .05 1 .05 1	.4<. .4 .0 .4 .6	.01 1.9 .02 2.9 .01 2.2 .02 2.4 .10 3.5	.3<.05 .1<.05 .1<.05 .1<.05 .2<.05	4 <. 4 <. 3 <. 4 <.	5	15 15 15 15 15 15
6+00N 6+50W 2 6+00N 6+00W 2 6+00N 5+50W 1 6+00N 5+00W 1 6+00N 4+50W 2	2.9 2.7 4 5 2.1	32.0 6 28.1 7 21.2 5 42.4 4 438.3 6	.9 69 .5 137 .2 55 .9 51 .3 82	.2 .2 .2 .2 .2	58.0 1 56.9 20.4 41.3 40.2 1	1.5 57 9.3 26 5.4 35 9.6 35 0.5 25	1 2.05 8 2.11 3 1.14 4 2.42 7 2.29	21.5 1 19.5 11.7 15.0 19.2	1 3 .8 .4 1 .4 3 .5 3	.0 1.0 .8 1.4 .4 .7 .8 2.2 .8 2.5	18 12 13 11 12	.2 3. .4 4. .7 2. .1 8. .2 11.	6.5 2.5 4.3 2.2 0.3	40 47 31 54 53	.28 .23 .35 .12 .28	.060 .031 .022 .019 .030	11 9 9 11 12	54.5 45.2 22.4 46.8 44.0	.61 199 .62 241 .23 214 .56 134 .59 192) .036 .045 .030 .030 .042 .044	2 1.3 1 1.49 1 .8 2 1.3 1 1.7	1 .006 9 .006 3 .004 3 .006 3 .006	.10 .06 .04 .06 .05	.7. .7. .2. .4. .3.	.04 3.2 .03 3.7 .02 1.8 .08 7.5 .03 4.4	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	5 <. 5 <. 4 <. 3 <. 5 <.	5 5 5 5 5 5	15 15 15 15 15 15
6+00N 4+00W 1 6+00N 3+50W 1 6+00N 3+00W 1 6+00N 2+50W 2 6+00N 2+00W 2	2 6 9 2.2 2.5	130.9 6 15.9 5 25.8 6 64.9 7 36.7 8	.0 61 .2 57 .4 69 .5 70 .2 67	.3 .1 .6 .2	49.0 14.7 18.4 69.9 1 67.6 1	9.7 59 5.4 14 7.6 22 11.9 84 14.0 43	1 1.95 2 1.58 6 2.18 4 2.75 1 3.23	290.7 1 16.4 25.8 40.3 2 43.8 1	6 4 2 2 3 1 6 1	.3 .6 .0 1.3 .5 1.7 .2 1.0 .4 1.2	19 9 10 19 22	.7 9. .3 2. .2 2. .9 5. .2 5.	1 .2 1 .1 8 .2 4 .3 0 .3	41 37 50 51 64	.92 .16 .17 .93 .75	.060 .029 .046 .048 .054	10 8 9 15 10	63.1 24.1 29.3 56.9 55.2	.51 158 .24 99 .36 168 .55 249 .71 239	3 .028 .046 3 .053 5 .035 0 .038	2 1.3 1 .8 1 1.0 2 1.7 2 2.0	1 .008 5 .004 9 .004 3 .007 1 .008	.07 .04 .04 .08 .05	.3 .2 .2 .3 .3	.10 3.6 .01 2.1 .02 2.8 .08 5.1 .07 4.3	.2<.05 .1<.05 .1<.05 .2<.05 .1<.05	4 1 4 < 5 < 5 <	0 5 5 8 5	15 15 15 15 15
RE 6+00N 2+00W 2 5+00N 8+00W 1 5+00N 7+50W 1 5+00N 7+00W 2 5+00N 6+50W 1	2.2 9 7 2.0 6	37.2735.0620.8414.3511.05	.6 72 .0 51 .9 79 .4 68 .3 60	.2 .3 .1 .1 .1	69.3 : 69.4 43.2 38 <i>.</i> 9 20.0	13.1 41 9.2 30 7.6 31 5.8 20 3.9 16	9 3.24 9 2.28 6 1.88 9 1.62 1 1.22	45.0 1 17.1 2 13.6 14.0 9.9	6 4 2.0 2 .4 1 .4 .4 1	.6 1.1 .9 1.6 .4 1.5 .7 2.6 .7 2.0	20 25 17 15 11	.2 5. .4 2. .3 2. .2 4. .2 1.	1 .2 7 .3 9 .3 2 .4 9 .3	61 44 39 37 35	.72 .45 .27 .24 .12	.052 .024 .051 .105 .029	10 15 13 12 12	54.5 47.7 39.5 42.1 31.3	.69 234 .59 328 .62 207 .47 113 .44 110	.034 .041 .052 .056 .058	2 1.90 2 1.40 1 1.22 2 1.15 1 1.03	0.007 0.007 0.005 0.005 0.005 0.005	.05 .09 .08 .05 1 .05 1	.3 . .5 . .5 . 1.0 .	.06 4.0 .05 4.1 .01 2.9 .03 2.9 .01 2.6	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	6 4 4 < 5 < 4 <	B 5 5 5 5 5	15 15 15 15 15
5+00N 6+00W 1 5+00N 5+50W 2 5+00N 5+00W 2 5+00N 4+50W 1 5+00N 4+00W 1	1.5 2.0 2.7 1.3 1.8	21.1 6 19.9 6 21.1 7 730.5 5 527.3 6	.3 74 .7 120 .0 90 .6 62 .3 62	.1 .2 .2 .2 .3	44.9 46.2 36.2 43.8 70.3	7.2 25 5.8 18 6.8 21 12.5 51 14.2 82	6 1.92 0 1.93 8 2.86 7 2.14 7 2.61	11.0 17.9 36.4 263.1 198.7 1	.4 .5 < .3 1 .9 15	.9 2.4 .5 1.8 .6 1.8 .4 .6 .6 .7	12 11 11 21 23	.2 2. .4 4. .3 11. .6 10. .7 11.	2 .3 4 .4 6 .2 1 .2 7 .2	56 43 48 40 44	.17 .13 .15 1.11 1.24	.064 .054 .128 .049 .062	13 11 8 8 10	49.6 43.3 50.4 48.0 65.3	.78 141 .44 157 .46 89 .46 161 .66 214	.070 .048 .057 .033 .029	1 1.50 1 1.50 2 1.60 4 1.18 4 1.43	0.006 005 005 005 007 007 007	.06 .06 .04 .06 .08	.4 .6 .4 .3 .3	.02 4.4 .04 3.4 .04 3.3 .06 4.1 .10 4.7	.1<.05 .1<.05 .1<.05 .1 .07 .1<.05	6 <. 6 <. 5 <. 3 1. 4 1.	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	15 15 15 15 15
5+00N 3+50W 2 5+00N 3+00W 1 5+00N 2+50W 2 5+00N 2+50W 2 4+00N 7+25W 2	2.6 17 1.4 7 2.2 .9 2.2	752.7 8 250.5 3 49.5 7 35.6 3 26.3 6	.5 83 .6 60 .1 77 .4 85 .2 41	.4 .4 .1 .2	72.8 : 37.5 : 25.9 42.1 : 51.4	14.6 79 15.2 25 7.3 21 15.1 66 9.2 31	6 3.03 3 3.33 7 2.57 1 2.90 0 2.07	23.7 1 4.9 23.9 6.5 15.7 1	6 2 2 9 4 1 2 1	.5 1.4 9 .4 .3 2.4 .0 .6 .1 2.2	19 17 9 11 24	.6 5. .5 1. .2 3. .3 1. .4 2.	4 .3 4 .2 2 .2 3 .2 0 .3	57 91 57 76 40	.91 .55 .09 .20 .37	.042 .055 .082 .098 .018	19 5 11 5 14	59.2 99.2 42.3 190.9 42.2	.57 210 1.34 184 .50 124 1.16 77 .59 253) .033 .015 .043 .048 .048 .048	2 1.9 2 1.9 1 1.8 1 1.9 1 1.9	0.007 5.004 0.004 5.006 5.008	.09 .06 .07 .04 .06	.4 .2 .3 .2 .3	.11 8.3 .03 3.1 .02 3.6 .03 3.8 .04 3.4	.2<.05 .1<.05 .1<.05 .1<.05 .1<.05	52. 61. 6<. 8<.	2 0 5 5 6	15 15 15 15 15
4+00N 7+00W 2 4+00N 6+50W 3 4+00N 6+00W 4+00N 5+50W 5 4+00N 5+00W 3	2.5 3.0 .9 5.5 3.1	17.9 5 25.7 6 11.1 5 54.7 8 40.2 8	.2 51 .2 84 .3 43 .7 177 .0 104	.1 .1 .5 10 .2	31.7 58.3 21.5 60.7 67.8	6.6 25 7.4 24 4.0 15 16.0 61 12.2 48	4 1.74 3 2.33 5 1.08 8 3.21 7 2.45	13.4 25.7 5.6 24.5 5 17.9 1	.7 1 .4 < .4 1 5.1 4	.5 .9 .5 2.5 .7 2.1 .6 1.2 .5 1.2	17 15 12 35 22	.3 2. .4 4. .1 1. .8 4. .5 2.	6.3 8.3 4.3 1.8 9.8	37 45 31 59 57	.24 .19 .13 .66 .37	.019 .116 .032 .065 .044	12 11 13 15 13	35.4 47.7 29.6 81.1 65.8	.44 260 .58 158 .42 138 .76 501 .86 295	0.035 0.048 0.051 0.022 0.053	1 1.0 2 1.4 <1 1.1 2 2.6 2 1.8	2 .005 5 .005 4 .005 5 .008 5 .007	.06 .06 .05 .13 1 .09	.4. .9. .3. .0.	.01 2.4 .02 3.6 .02 2.5 .08 4.8 .03 4.5	.1<.05 .1<.05 .1<.05 .2<.05 .2<.05	4 <. 5 <. 7 1. 7	5 5 3 5	15 15 15 15 15
STANDARD DS5 13	3.2 :	146.1 25	.5 142	.3	24.4	12.9 77	3 3.06	18.6 6	5.2 46	.8 2.8	48 9	5.6 3.	9 6.4	64	.76	. 092	13	188.8	.69 140	.109	21 2.14	\$.035	.14 5	5.3 .	.19 3.8	1.2<.05	75.	1 :	15

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

-

ATTCA	S		Mir	nco	rd	Ex	plo	rat	ior	n Co	ons	ult	an	ıts	Lt	td.	PI		EC.	F I	NDZ	ATA	F	'IL	E #	- A3	03'	724	<u> </u>	Pa	ıge	2 7		C	ACHE A	A HITICAL
SAMPLE	Мо ррт	Си ррт	Pb ppm	Zn ppm	Ag ppm	Ni ppn	Co n ppm	Mn ppm	Fe گ	As ppr	U Ippm	Au ppb	Th ppm	Sr ppm p	Cđ pm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La opm	Cr ppm	Mg %	8а ррп	Ti %	B ppm	A1 %	Na %	K X	W I ppm pj	lg cm	Sc ppm p	דן ג pm ג	Ga ppm	Se ppm	Sample gm
G-1 4+00N 4+50W 4+00N 4+00W 4+00N 3+50W 4+00N 3+00W	1.3 2.9 4.5 2.7 4.3	2.7 159.4 7189.3 7396.1 282.0	2.0 10.1 13.6 5.0 5.4	35 85 121 51 64	<.1 .4 .9 .2 .2	3.2 140.0 155.1 52.1 34.7	2 3.1) 13.8 , 20.8 , 34.3 ; 13.5	463 1158 1040 517 241	1.62 3.13 5.26 2.68 3.50	<.5 137.0 187.7 14.0 14.8	1.8 2.8 9.0 .7 .3	.7 7.4 10.5 6.0 6.5	4.2 1.8 2.1 1.3 1.6	70 < 19 2 28 1 20 43	.1 .2 3 .2 1 .1 .3	<.1 36.0 17.2 3.2 2.7	.1 .4 .7 .3 .3	36 57 85 52 73	.51 .92 1.14 .45 .15	.081 .071 .109 .057 .173	7 13 26 11 6	11.1 69.1 97.4 60.2 67.8	.47 .71 .84 .85 .95	176 299 315 118 180	.106 .029 .023 .028 .025	1 . 2 1. 3 3. 1 1. 1 2.	78 .0 78 .0 02 .0 61 .0 51 .0)69 .)08 .)11 .)06 .)05 .	36 09 18 06 06	1.4<.(.7.(.7.(.7.(.4.(01 09 14 1 05 04	1.8 5.3 2.6 5.8 4.6	.2 .06 .1 .08 .2<.05 .1<.05 .1<.05	5 4 5 5 5 8 5 4 5 6	<.5 1.0 2.9 1.8 1.6	15.0 15.0 15.0 15.0 15.0
4+00N 2+50W 4+00N 2+00W 11+00S 4+50W 11+00S 4+00W 11+00S 3+50W	1.9 1.7 1.5 1.6 2.4	351.4 914.9 43.0 29.4 28.9	5.6 6.9 3.6 5.8 4.9	78 60 41 39 59	.1 .2 .4 .6	66.3 68.6 46.1 26.9 49.4	3 12.1 5 12.1 1 6.3 5 3.8 4 6.3	359 619 171 189 223	2.24 2.73 1.68 1.14 2.07	14.6 22.5 16.8 11.1 21.3	.4 1.0 .3 .6	5.3 8.2 2.3 1.5 3.3	1.5 2.1 .7 .4 .3	12 15 15 10 10	.2 .2 .2 .1 .2	2.6 5.3 1.1 .7 1.4	.3 .3 .6 .4	53 51 44 35 48	. 38 . 53 . 16 . 09 . 09	. 023 . 038 . 020 . 024 . 039	11 12 8 12 9	55.8 54.7 60.5 41.0 65.5	.70 .76 .75 .38 .60	159 142 200 255 131	.037 .057 .021 .020 .020	2 1. 2 1. 1 1. 1 1. 1 1.	66 .0 58 .0 27 .0 10 .0 57 .0)06 .)10 .)07 .)05 .)06 .	06 08 05 05 05	.3 .1 .4 .1 .4 .1 .4 .1	03 11 04 02 05	4.3 7.3 3.2 2.2 2.3	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	5 5 4 5 5 5 5 5	.7 5 < 5 < 5 < 5	15.0 15.0 15.0 15.0 15.0
11+00S 3+00W 11+00S 2+50W 11+00S 2+00W RE 11+00S 2+00W 11+00S 1+00W	1.5 2.2 3.9 4.0 2.7	20.2 28.5 63.1 61.4 432.7	5.1 5.9 7.5 7.6 23.2	45 55 162 154 129	.1 .8 .8 2.7	34.9 46.7 79.7 74.6 110.5	9 4.6 7 6.0 7 10.6 5 10.4 5 22.6	187 241 558 519 830	1.70 2.30 1.75 1.70 4.41	12.8 20.2 16.8 16.2 47.6	.3 .6 6.1 5.9 .7	1.2 2.7 2.9 4.0 11.5	1.7 1.3 .8 .9 .9	10 < 11 34 1 33 1 15 2	.1 .1 .3 .1 .8 3	.9 1.5 2.2 2.3 30.7	.3 .3 .2 .3 7.2	40 49 41 36 102	.11 .12 .99 1.03 .57	.048 .055 .173 .177 .091	10 11 18 18 7	43.3 57.3 66.8 61.2 141.9	.52 .61 .60 .58 1.18	105 140 443 460 203	.031 .031 .010 .008 .011	1 1. 2 1. 2 2. 2 2. 2 3.	44 .(62 .(38 .(30 .(05 .(005 . 006 . 015 . 015 . 015 .	04 06 08 08 07	.3. .3. .3. .3. 11.8.	03 04 19 18 10	2.9 3.2 3.9 3.8 9.4	.1<.0 .1<.0 .2 .3 .2 .3 .4<.0	5 5 5 5 2 5 3 4 5 7	<.5 <.5 2.7 2.8 .9	15.0 15.0 7.5 7.5 15.0
11+00S 0+50W 11+00S 0+00W 11+00S 0+50E 11+00S 1+00E 11+00S 1+50E	2.1 1.6 1.8 3.5 3.3	192.9 93.8 179.1 550.6 1065.0	8.4 6.4 4.7 8.9 4.4	113 67 98 79 123	.6 .1 .2 .3 .4	65.2 63.6 81.0 136.8 148.0	2 16.2 5 14.8) 19.3 3 70.6) 26.5	714 526 362 879 380	3.01 2.66 3.33 6.54 5.84	32.6 31.8 26.6 121.0 48.7	.7 .4 .3 .4 .3	3.7 3.9 4.6 23.0 8.6	.7 1.5 1.4 1.3 1.2	13 14 9 17 11	.7 .2 .3 .5	5.3 6.0 4.4 7.8 4.0	.6 .9 1.2 1.8 .7	76 59 90 130 149	.67 .29 .21 .52 .28	.056 .031 .057 .057 .064	10 10 7 5 5	71.0 61.1 107.2 108.8 67.2	.75 .73 1.01 1.31 1.11	214 151 76 175 159	.031 .045 .050 .014 .019	12. 11. 12. 13. 24.	09 .0 59 .0 66 .0 56 .0 45 .0	008 . 008 . 008 . 008 . 008 .	07 06 08 08 08	.6. .5. .6. .8.	05 01 04 03 05	4.1 4.3 4.7 8.6 8.0	.1<.09 .1<.09 .1<.09 .2<.09 .1<.09	5 7 5 4 5 9 5 9 5 11	.8 <.5 2.5 1.0	15.0 15.0 15.0 15.0 15.0
11+00S 2+00E 11+00S 2+50E 11+00S 3+00E 11+00S 3+50E 11+00S 4+00E	2.1 2.5 1.9 1.5 2.1	107.1 225.8 74.8 19.8 42.1	6.4 7.9 8.3 5.7 5.5	87 65 86 65 93	.5 .2 .1 .1	74.5 68.7 101.3 27.2 56.2	5 15.1 7 19.1 3 25.2 2 5.6 2 11.0	268 284 532 187 240	3.01 3.83 3.04 2.08 2.82	93.9 37.7 29.5 13.4 21.9	3 3 3 4 1 .3 1 .3 1 .4	4.0 1.5 <.5 <.5 3.2	1.8 2.0 1.7 1.6 2.2	11 10 14 9 12	.3 .5 .2 .3 .3	4.3 4.4 3.1 2.5 3.1	1.2 .6 .5 .4 .4	70 72 72 57 56	.13 .13 .30 .12 .17	.020 .039 .040 .045 .056	8 9 8 10 9	73.7 71.3 63.0 47.5 66.6	.55 .79 .65 .40 .74	150 143 171 108 146	.056 .035 .042 .039 .040	1 1. 1 2. 2 2. 1 1. 1 2.	94 .0 60 .0 .32 .0 .60 .0	004 . 006 . 006 . 005 . 005 .	06 05 08 05 05	.7. .5. .4. .4. .4.	02 04 01 01 01	3.9 4.5 4.5 3.1 3.8	.1<.0 .1<.0 .2<.0 .1<.0 .1<.0	5 6 5 7 5 6 5 6 5 5	.7 .7 <.5 <.5 .7	15.0 15.0 15.0 15.0 15.0
11+00S 4+50E 11+00S 5+00E 11+00S 5+50E 12+00S 3+90W 12+00S 3+50W	1.1 1.9 2.3 1.8 2.2	81.7 38.1 109.7 37.8 31.7	5.6 5.1 11.6 6.0 4.9	44 54 66 55 57	.4 .2 .3 .2 .3	69.8 62.7 66.6 96.8 42.7	8 11.8 7 13.4 5 11.5 8 12.0 7 6.8	254 215 343 210 362	2.74 2.37 3.36 2.34 2.02	48.5 18.9 714.4 21.6 22.6	5 .4 9 .3 1 .4 5 .9 5 .4	1.7 2.3 .7 13.4 2.4	1.0 1.7 1.7 1.6 1.3	11 11 11 22 13	.4 .2 .4 .2 .3	4.0 3.3 6.6 1.3 1.1	.5 .3 13.5 .5 .4	75 55 64 51 45	.48 .15 .18 .32 .15	.030 .029 .033 .022 .032	8 9 10 10	106.5 77.5 78.9 70.9 48.8	.92 .89 .67 .81 .58	81 111 160 301 246	.023 .043 .030 .030 .032	1 1. 1 1. 1 1. 1 1. <1 1.	.96 .1 .66 .1 .58 .1 .74 .1 .27 .1	007 . 005 . 006 . 009 . 009 .	04 05 06 06	.4 . .4 . 3.0 . .3 . .3 .	03 01 02 05 02	5.2 3.5 3.9 4.3 3.0	.1<.0 .1<.0 .1<.0 .1<.0 .1<.0	5 6 5 4 5 5 5 4 5 5	.5 .6 .7 .9	15.0 15.0 15.0 15.0 15.0
12+005 3+00W 12+005 2+50W 12+005 2+00W 12+005 1+50W 12+005 1+00W	1.4 2.2 2.6 3.6 1.9	23.2 25.4 31.3 41.6 689.9	4.2 4.6 5.3 6.5 1.2	59 70 72 124 14	.2 .2 .3 .4	42.8 41.0 43.0 59.1 58.1	3 6.3 3 6.5 0 7.0 1 21.2 1 2.6	222 260 244 520 369	1.80 2.30 2.21 2.88 1.24	17.5 15.6 15.2 23.2 18.4	5.4 5.4 2.6 2.3.9 4.1.6	3.7 1.9 4.5 2.3 7.5	1.3 1.5 2.2 .9 .1	12 11 12 26 43	.2 .2 .3 .6	1.2 1.1 1.5 2.3 7.4	.3 .3 .2 .3 .1	43 47 43 53 31	.15 .11 .15 .44 4.38	.073 .049 .080 .083 .094	11 10 12 15 2	57.0 55.7 48.5 56.1 16.2	.65 .60 .61 .68 .41	154 137 163 361 82	.036 .027 .030 .025 .003	1 1. 1 1. 1 2. 1 1. 4	.35 .0 .77 .0 .23 .0 .99 .1 .35 .0	006 . 005 . 006 . 009 . 010 .	.06 .07 .07 .08 .01	.4 . 3.8 . .2 . .2 . .4 .	03 03 09 12 31	3.1 3.7 3.7 4.7 2.1	.1<.0 .1<.0 .1<.0 .2<.0 .1 .4	5 5 5 5 5 5 5 6 6 1	<.5 .5 .7 1.6 20.1	15.0 15.0 15.0 15.0 1.0
STANDARD DS5	13.2	142.3	25.5	133	.3	24.7	7 12.0	784	3.04	18.0) 5.9	43.9	2.9	47 !	5.7	3.9	6.3	63	.77	.096	13	187.3	. 68	140	. 098	17 2	.11 .	035 .	.14	5.1 .	19	3.6 1	L.1<.0	57	5.2	15.0

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

----- -**-**----

- -

_ _

-

Data AFA

.....

																																<u></u>			
ACHE ANALYTICAL	С	M	in	co	rd	E	xp	lor	ati	on	Coi	ายบ	lt	ant	.8	Ltd.	P:		IEC.	ΓI	ND.	ATA	F	ΊL	Ξ #	A3 0	372	24	F	ag	e 8	8	C		
SAMPLE#	Мо ррт	Cı ppr	i F i pp	°b 2 om pş	Zn / pm pp	Ag pin	Ni ppm	Co ppm	Mn ppm	Fe %	As ppr	U ppm	Au ppb	Th ppm	Sr ppm	Col So pom pom	Bi ppm	۷ ppm	Ca %	P %	La ppm	Cr ppm	Mg X	Ba ppm	Ti % p	B A1 pm %	l Na s a	1 K 5 2	(W Sppmp	Hg opm	Sc ppm p	T1 S pn: %	Ga S ppm pp	e Sama n	ple gm
G-1 12+00S 0+50W 12+00S 0+00W 12+00S 0+50E 12+00S 1+00E	1.0 2.0 1.7 4.5 1.3	3.(252.4 61.4 176.8 59.2	2. 7. 4. 3. 2. 5.	.0 : .2 : .6 : .9 : .0 :	35 < 69 74 82 43	.1 .5 .2 .5 .1	3.0 91.5 50.8 71.1 21.5	3.3 15.0 14.3 15.9 6.1	439 372 391 347 155	1.58 3.27 2.39 3.32 2.26	< .5 51.8 13.1 41.4 17.0	1.8 1.4 .3 .6 .2	,9 10.4 1.4 7.0 6.0	4.6 1.0 .9 1.4 1.5	74 18 13 13 6	.1 .1 .4 6.4 .3 2.1 .5 7.7 .1 2.1	.1 1.2 .4 1.1 .7	32 65 60 85 68	.51 1.05 .62 .53 .08	.082 .060 .046 .033 .025	7 10 7 9 7	10.8 85.9 78.4 67.9 48.8	.45 .82 .70 .53 .29	182 124 136 176 81	.109 .039 .020 .038 .033	1 .77 3 2.91 2 1.99 2 1.88 1 1.09	7 .067 1 .012 5 .009 8 .009	7 .38 2 .07 9 .05 9 .05 5 .03	3 1.1< 7 _9 5 _3 5 _5 8 _8	.01 .12 .03 .02 .01	1.6 6.1 3.7 4.1 2.4	.3 .06 .1 .08 .1<.05 .1<.05 .1<.05	4 < 6 1. 6 < 7 6 <	5 1: 7 1: 5 1: 5 1: 5 1:	5.0 5.0 5.0 5.0 5.0
12+00S 1+50E 12+00S 2+00E 12+00S 2+50E 12+00S 3+00E 12+00S 3+50E	2.9 4.1 2.1 .8 1.6	1169 (135) 89 (29 (70)	2 5 3 4 3 4 5 6	7 2 7 1	44 85 57 77 96	.3 1 .2 .1 .1 .1	27.0 48.8 68.6 84.0 65.4	41.6 23.2 23.4 15.3 15.2	870 619 409 230 231	5.71 3.58 2.37 2.60 3.02	22.1 38.0 29.6 28.0 85.4	.2 .2 .3 .2 .3	42.7 .7 3.4 .9 1.9	.7 1.3 1.8 .6 1.9	12 8 11 8 9	.2 3.9 .1 6.1 .1 2.7 .1 1.4 .2 3.5	.9 1.4 .5 .6 1.3	107 87 53 69 67	. 28 . 14 . 21 . 25 . 10	.031 .033 .020 .040 .047	3 6 9 5 8	171.4 62.9 58.9 190.6 74.2	1.23 .45 .77 1.25 .74	46 65 106 61 115	.017 .043 .047 .052 .042	2 2.58 1 1.73 1 1.99 1 1.84 1 2.08	3 .013 3 .005 5 .007 4 .022 3 .005	3 .03 5 .04 7 .04 2 .03 5 .05	3 .4 4 .7 4 .4 3 .3 5 .8	.05 1 .02 .01 .03 .02	3.9 2.8 3.7 2.9 3.8	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	7 1. 8 . 5 <. 9 <. 6 <.	8 1 5 1 5 1 5 1 5 1	5.0 5.0 5.0 5.0 5.0 5.0
12+00S 4+00E 12+00S 4+50E 12+00S 5+00E 12+00S 5+50E 13+00S 2+50W	1.5 1.9 1.7 1.8 2.2	46.1 171. 77.1 81.1 32.1) 5 5 5 9 7 5 4	.4 .8 .4 .2 1 .4	71 46 56 52 57	.1 .1 .1 .1 .2	46.6 91.4 67.7 50.1 42.6	12.3 23.2 12.4 12.8 7.0	177 316 231 284 301	3.68 3.08 2.28 4.89 1.87	32.9 24.0 58.7 210.2 15.6	.3 .3 .4 .3 .6	1.1 7.9 5.6 1.1 2.8	1.0 1.5 2.2 1.6	10 11 11 11 14	.1 4.4 .2 4.8 .3 5.3 .3 3.0 .2 1.2	.4 .6 .5 1.6 .3	94 68 44 126 37	.14 .13 .15 .13 .20	.048 .023 .052 .068 .037	6 9 7 10	66.0 110.3 59.6 84.3 42.6	.72 1.12 .69 .88 .58	101 118 151 120 225	.035 .027 .039 .091 .024	1 1.73 1 2.29 2 1.93 1 2.42 1 1.22	3 .00 9 .009 3 .000 2 .000 2 .000	7 .04 9 .04 5 .04 8 .06 5 .06	4 .6 4 .4 4 .8 5 .9 5 .2	.03 .03 .02 .02 .02 .02	3.6 5.4 3.6 5.6 2.5	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	8 <. 5 . 4 <. 12 <. 4 <.	5 1 8 1 5 1 5 1 5 1	5.0 5.0 5.0 5.0 5.0
13+00S 2+00W 13+00S 1+50W 13+00S 1+00W 13+00S 0+50W 13+00S 0+00W	1.4 2.2 1.6 3.6 1.8	27.1 21. 10. 297.1 179.	3 4 0 5 5 5 3 5 7 6	.6 .2 .3 .3	62 62 37 56 64	.1 .1 .4 .2	48.2 37.5 27.6 83.0 90.4	6.7 6.0 4.0 13.3 15.1	217 252 150 820 860	1.91 2.41 1.33 3.28 2.54	18.0 24.6 10.1 38.0 22.7	.5 .3 .3 1.0 .8	4.0 1.7 3.1 6.9 4.1	1.7 1.8 7 8 . 1.0	12 14 9 21 19	.2 1.3 .1 1.7 .1 1.0 .5 4.8 .2 3.5	.4 .2 .5 .7	44 46 38 47 49	.12 .27 .10 1.08 .88	.026 .185 .041 .071 .050	10 10 10 9 9	57.3 45.7 43.7 66.0 78.8	.65 .51 .50 .61 .76	170 119 122 145 136	.032 .042 .032 .014 .013	2 1.54 1 1.08 1 1.18 2 1.43 2 1.60	4 .000 3 .000 3 .000 2 .010 5 .01	5 .05 5 .08 4 .04 0 .05 1 .05	5.3 3.3 4.2 5.6 5.8	.04 .02 .01 .17 .08	3.2 2.8 2.2 7.7 8.5	.1<.05 .1<.05 .1<.05 .2 .13 .1<.05	4 <. 5 <. 5 <. 4 4. 4 1.	5 1 5 1 5 1 9	5.0 5.0 5.0 7.5 7.5
RE 13+00S 0+00W 13+00S 0+50E 13+00S 1+00E 13+00S 1+50E 13+00S 2+00E	2.0 1.8 2.3 1.1 1.5	186. 59. 255. 121. 97.	76 34 525 15	.9 .9 .7 .2 .4	68 83 72 59 60	.3 .2 .5 1 .2 1 .3	89.5 50.7 .37.4 .03.2 67.9	15.8 8.7 14.9 20.5 12.6	862 214 680 306 536	2.63 2.39 3.33 2.69 2.41	23.(19.4 36.2 21.2 36.4) .8 .4 1.7 .3	3.8 1.9 4.1 5.2 4.0	1.0 .6 1.2 1.3 1.2	20 11 21 14 14	.4 3.6 .2 2.3 .4 4.2 .2 2.5 .3 3.6	.7 .9 .8 .6 .7	52 52 63 59 57	.92 .17 .84 .25 .37	.051 .035 .077 .030 .043	9 7 13 6 8	85.0 71.0 105.8 104.6 74.7	.78 .74 .99 1.04 .75	144 209 207 143 174	.014 .020 .014 .021 .034	2 1.6 1 1.7 2 2.6 2 2.1 2 1.4	B .01 B .00 1 .01 5 .01 2 .00	2 .00 7 .04 3 .04 0 .04 7 .10	5 .8 4 .7 8 1.1 4 .7 0 .5	.09 .02 .13 1 .02 .04	8.8 2.7 12.3 4.1 4.7	.1<.05 .1<.05 .2<.05 .1<.05 .1<.05	42. 51. 5<. 5<.	2 6 1 5 1 5 1	7.5 5.0 1.0 5.0 5.0
13+00S 2+50E 13+00S 3+00E 13+00S 3+50E 13+00S 4+00E 13+00S 4+50E	1.1 1.6 1.5 1.6 1.8	39. 160. 166. 166. 55.	3 3 1 5 9 3 4 4 3 4	.8 .5 .8 .6 .1	85 64 46 46 69	.1 .1 .1 .1 1 .1	41.3 65.2 90.5 01.8 35.9	9.8 16.2 18.3 23.1 9.1	197 271 362 480 223	2.13 2.79 3.13 3.12 2.01	20.1 36.1 21.9 19.1 16.1	.2 5.3 9.2 3.3 1.3	2.9 5.1 7.0 7.2) 1.5 1.6 1.3 1.5 2 1.3	9 10 16 20 12	.2 1.8 .2 9.3 .1 4.7 .1 5.4 .1 2.5	.4 .7 .6 .3	51 64 73 76 53	.16 .14 .17 .22 .20	.060 .036 .035 .024 .019	8 7 5 9	72.0 80.2 127.7 136.1 50.2	.57 .90 1.50 1.69 .63	118 113 97 94 110	.035 .035 .035 .046 .045	$ \begin{array}{c} 1 & 1.6 \\ 1 & 1.6 \\ 1 & 2.0 \\ 1 & 1.8 \\ 1 & 1.3 \\ \end{array} $	4 .00 0 .00 1 .01 0 .01 0 .00	6 .0 6 .0 0 .0 0 .0 6 .0	5.4 51.0 6.7 4.5< 5.3<	.03 .01 .01 .01 .01	3.2 4.2 5.0 5.4 3.2	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	5 < 4 < 5 1. 5 <	5 1 5 1 6 1 0 1 5 1	5.0 5.0 5.0 5.0 5.0
13+00S 5+00E 13+00S 5+50E 14+00S 2+00W 14+00S 1+50W 14+00S 1+00W	1.5 1.7 3.6 4.6 3.0	88. 72. 150. 218. 22.	95 35 99 37 66	.5 .3 .0 .6	50 47 75 89 65	.2 .1 .5 1 .4 1 .1	52.3 51.1 17.4 138.2 24.0	15.1 12.3 22.6 21.1 7.3	292 270 775 1106 282	2.30 2.46 3.64 3.52 3.14	14.0 19.1 55.1 51.0 20.1	3 .2 1 .3 7 1.3 5 1.7 5 .4	3.9 3.9 3.0 7.1 1.1	5 1.3 5 1.8 0 1.9 1 1.3 7 1.1	9 10 17 16 12	.2 2.4 .2 3.5 .4 5.2 1.1 5.1 .2 2.0	.6 .6 1.1 .9 .2	63 57 79 78 48	.13 .10 .61 .54 .15	.023 .018 .030 .057 .033	6 8 10 10	81.8 74.5 124.0 117.6 37.8	.74 .69 1.13 1.11 .40	105 123 180 207 163	.027 .036 .029 .028 .052	1 1.9 1 1.5 2 2.2 2 2.2 2 1.1	1 .00 0 .00 1 .01 4 .00 3 .00	8 .04 7 .01 2 .01 9 .01 4 .01	4 .4 5 .5 7 1.0 8 .7 5 .1	.02 .04 .03 .03 .05	3.8 3.4 8.7 6.9 2.2	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	5 < 4 6 5	5 1 6 1 9 1 8 1 9 1	5.0 5.0 5.0 5.0 5.0
STANDARD DS5	13.6	141.	3 24	.5 1	43	.3	23.9	12.1	. 801	2.95	18.3	2 6.1	43.0	2.7	47	5.8 3.8	6.3	59	.75	. 094	12	186.3	.67	135	. 098	16 2.1	0.03	5.1	4 5.0	.17	3.5	1.1<.05	75.	01	.5.0

-

.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_____FA

•

		С	Mi	nco	orc	ΙE	xpl	
	SAMPLE#	Мо	Cu	Pb DOM	Zn	Ag	Ni DDM	
	,		PP		F F	P P	FF	-
	G-1	1.3	2.5	1.8	36	<.1	3.3	
	14+00S 0+50W	1.9	15.5	4.3	42	.1	27.5	
	14+00S 0+00W	2.4	84.7	18.5	101	.5	62.5	ļ
	14+00S 0+50E	2.0	72.1	5.7	57	.5	64.1	1
1	14+00S 1+00E	1.3	54.5	4.7	78	.1	49.3	
	14+00S 1+50E	2.3	614.6	9.0	79	. 5	147.9	į
	14+00\$ 2+00E	1.2	173.3	5.6	94	.2	101.7	
	14+005 2+505	1 4	104 5	54	43	1	80.7	

oration Consultants Ltd. PROJECT INDATA FILE # A303724 Page 9

Data F

SAMPLE#	Мо ррл	Cu ppm	РЬ ррп	Zn ppm	Ag ppm	Ni ppm	Со ррт	Mn ppm	Fe %	As ppm	U ppm	Au ppb j	Th opm p	Sr opm p	Cd S pm pp	b Bi mippm	۷ مرم	Ca %	P ۲	La ppm	Cr ppm	Mg E % pp	la Ti m X	BA ppm :	l Na K S	1 K 5 %	W ppm	Hg ppm	Sc ppm p	TI S pm % j	Ga Se S opmippmi	iample gm
G-1 14+00S 0+50W 14+00S 0+00W 14+00S 0+50E 14+00S 1+00E	1.3 1.9 2.4 2.0 1.3	2.5 15.5 84.7 72.1 54.5	1.8 4.3 18.5 5.7 4.7	36 42 101 57 78	<.1 .5 .5 .1	3.3 27.5 62.5 64.1 49.3	3.1 4.5 14.3 12.7 11.5	434 1 188 1 576 4 292 3 336 1	53 64 .05 3.50 97	<.5 14.4 48.2 47.5 23.2	1.9 .3 .3 .3 .2	.6 <.5 3.4 2.0 2.8	4.7 1.4 1.0 .6 .6	73 < 9 6 15 14	.1 .2 1. .3 5. .3 5. .1 2.	1 .1 3 .3 2 .9 9 .5 5 .5	33 36 101 80 48	.52 .09 .09 .67 .36	.082 .030 .056 .047 .020	7 9 5 4 6	11.0 40.9 110.5 105.6 1 70.9	.45 17 .50 9 .81 10 1.05 14 .84 8	76 .108 96 .036 96 .030 93 .019 93 .030	1 .8 1 .9 1 2.4 2 1.9 1 1.2	2 .064 7 .005 1 .007 3 .007 3 .008	1 .37 5 .04 7 .04 7 .05 3 .03	1.3< .3 1.2 .6 .7	- 01 .02 .07 .05 .02	2.0 2.2 4.4 4.6 3.2	.3 .08 .1<.05 .1<.05 .1<.05 .1<.05	4 <.5 4 .5 7 <.5 5 .5 5 <.5	15.0 15.0 15.0 15.0 15.0
14+00S 1+50E 14+00S 2+00E 14+00S 2+50E 14+00S 3+00E 14+00S 3+50E	2.3 1.2 1.4 1.2 1.2	614.6 173.3 104.5 65.5 145.5	9.0 5.6 5.4 4.0 3.6	79 94 43 53 41	5 2 1 1 2	147.9 101.7 80.7 48.8 102.6	21.4 14.4 14.8 9.9 17.3	383 3 415 3 521 2 362 1 479 2	3.97 3.06 2.39 1.80 2.48	91.8 51.9 27.2 13.8 19.2	2.9 .4 .6 .3 .4	9.4 11.7 6.6 .7 4.2	2.0 1.3 1.8 .8 .9	18 11 16 13 16	.4 7. .3 5. .1 4. .2 2. .2 3.	9 1.0 9 .8 1 .7 0 .5 1 .5	87 64 53 41 61	.74 .18 .24 .22 .28	.041 .051 .028 .035 .024	12 6 8 7 6	144.8 1 101.4 90.9 55.0 128.6 1	1.32 10 .97 19 .94 11 .66 11 1.40 10	54 .021 59 .021 13 .045 15 .033 10 .022	2 2.3 1 2.1 1 1.3 1 1.0 1 1.6	9 .012 1 .000 3 .010 9 .009 4 .009	2.08 5.05 0.05 5.04 9.04	1.1 .7 .6 .8	.17 .04 .03 .01 .02	13.7 4.6 4.3 2.6 4.8	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	7 1.4 5 .8 4 <.5 4 .7 4 .9	15.0 15.0 15.0 15.0 15.0
14+00S 4+00E 14+00S 4+50E 14+00S 5+00E RE 14+00S 5+00E 15+00S 2+00W	1.5 1.9 1.5 1.3 4.3	141.9 274.2 127.9 126.1 148.3	3.6 4.9 5.1 5.1 5.1	52 54 51 52 44	.1 .2 .1 .1 .3	102.8 96.7 82.4 84.0 104.0	16.8 12.5 17.9 18.6 16.0	332 271 473 490 433	2.55 2.76 2.68 2.68 3.06	25.3 16.1 22.8 23.5 27.7	.4 1.5 .3 .3 2.2	5.1 4.4 6.3 5.4 5.4	.9 .9 1.6 1.7 .8	11 19 14 13 19	.1 3. .3 3. .2 5. .2 5. .2 3.	8 .6 8 .6 6 .8 8 .7 4 .6	66 67 64 65 79	.22 .46 .20 .22 .82	.032 .040 .027 .027 .054	6 10 7 7 6	114.0 105.1 105.1 109.1 133.0	1.16 1 .98 2 1.10 1 1.08 1 1.37 1	11 .024 00 .015 35 .039 43 .040 43 .015	1 1.8 1 2.3 1 1.7 1 1.7 2 2.2	1 .00 0 .00 5 .00 7 .00 1 .02	9.04 8.05 9.06 9.07 4.05	.4 .7 .6 .6	.02 .05 .02 .03 .07	4.0 5.4 4.4 4.6 7.5	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	5 <.5 6 1.2 4 .8 5 .6 5 1.2	15.0 15.0 15.0 15.0 7.5
15+00S 1+50W 15+00S 1+00W 15+00S 0+50W 15+00S 0+00W 15+00S 0+50E	3.9 1.9 1.8 2.0 3.2	113.8 119.7 46.1 25.0 118.7	5.1 6.9 5.9 5.7 6.2	69 84 58 64 2 105	.2 .4 .1 .2 1.0	103.3 93.6 67.0 22.9 89.6	16.6 15.4 11.6 6.0 12.5	239 1085 439 267 449	4.12 2.83 2.34 2.52 3.23	35.6 38.7 28.2 16.9 29.8	.3 2.4 .5 .3	4.3 5.0 2.8 6.5 4.4	1.4 1.1 1.6 1.6 .9	8 17 15 9 10	.33. .52. .22. .11.	9.7.5 7.4 5.2	114 53 45 46 567	.15 .42 .26 .11 .15	.040 .061 .035 .115 .103	4 13 10 10 9	116.7 75.7 60.4 31.7 60.4	1.12 1 .74 2 .61 1 .47 1 .75 2	46 .034 13 .023 68 .035 27 .038 45 .032	1 2.5 1 1.8 1 1.2 1 1.1 2 2.6	7 .01 3 .00 1 .00 8 .00 0 .00	1 .06 7 .08 7 .06 5 .06 7 .07	1.0 .4 .4 .1 1.1	.05 .05 .04 .02 .08	6.1 7.6 3.6 2.8 4.1	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .2<.05	9 .5 4 .6 4 <.5 5 <.5 7 .6	15.0 15.0 15.0 15.0 15.0
15+00S 1+00E 15+00S 1+50E 15+00S 2+00E 15+00S 2+50E 15+00S 3+00E	1.1 3.3 2.5 1.0 2.3	41.2 119.1 158.8 109.3 136.9	5.0 8.0 6.5 3.4 7.1) 58) 122 5 67 4 44 1 111	.2 .4 .2 .3	35.7 71.2 91.7 52.1 115.4	8.2 17.9 15.7 9.3 20.6	327 868 746 508 477	1.67 3.51 2.81 1.35 4.30	13.7 38.4 29.4 17.4 34.7	.5 .9 .3	6.3 2.2 4.9 2.4 3.4	1.2 1.1 2.0 .5 1.3	13 11 21 9 22	.3 1 .3 5 .3 4 .3 4 .6 4	.5 .3 .8 .9 .8 .7 .2 .1 .8 1.3	36 9 81 7 55 5 31 2 111	.22 .21 .48 .39 .42	.029 .045 .042 .032 .062	11 8 11 5 12	46.6 74.8 77.5 45.6 156.7	.52 1 .76 1 .93 1 .46 1 1.39 2	20 .046 92 .046 90 .038 22 .013 54 .027	1 .9 1 1.9 2 1.6 1 .9 2 2.7	4 .00 0 .00 4 .01 9 .00 5 .01	6.05 8.07 2.09 5.05 3.08	.3 .5 .7 .4	.03 .03 .05 .04 .03	2.8 4.3 6.2 2.9 5.8	.1<.05 .1<.05 .1<,05 .1<.05 .1<.05	4 .6 9 <.5 5 .7 3 .5 9 <.5	15.0 15.0 15.0 15.0 7.5
15+00S 3+50E 15+00S 4+00E 15+00S 4+50E 15+00S 5+00E 16+00S 1+00W	1.3 1.8 1.3 1.0 1.6	67.0 68.9 140.8 122.3 60.3	3.7 4.8 3.9 3.7 3.7	7 50 3 51 9 41 7 36 0 33	.1 .1 .2 .1 .2	63.8 54.7 102.0 70.7 56.8	10.9 9.5 18.9 13.4 9.8	220 280 264 340 179	2.10 2.33 2.91 2.34 2.37	17.3 23.5 27.0 18.6 18.9	.2 .3 .2 1.1	3.5 2.7 6.8 4.0 4.8	1.3 1.5 1.1 1.2 .7	10 10 16 11 21	.22 .23 .25 .13 .12	.7 .0 .5 .0 .7 .1 .5 .1 .2 .1	5 49 5 55 5 69 5 56 3 50	.15 .11 .22 .31 .59	.022 .025 .023 .015 .028	7 7 5 5 5	80.2 79.7 114.3 97.6 90.0	.75 1 .70 1 1.25 1 .86 1 .99	24 .029 65 .026 28 .029 09 .023 93 .024	1 1.4 1 1.5 1 2.1 1 1.7 2 1.1	2 .00 7 .00 4 .01 9 .01 2 .02	7.04 7.04 1.05 0.00 3.04	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	.03 .02 .03 .02 .07	3.3 3.9 5.0 4.2 4.6	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	4 <.5 4 .6 5 .5 4 <.5 3 .8	15.0 15.0 15.0 15.0 15.0
16+00S 0+50W 16+00S 0+00W 16+00S 0+50E 16+00S 1+00E 16+00S 1+50E	4.3 1.8 1.1 1.5 1.5	150.5 16.6 31.9 19.1 18.0	5 10.0 5 6.7 9 4.4 1 5.7 9 4.0	0 113 7 44 4 53 7 40 6 47	.5 .1 .2 .2	143.9 32.8 62.2 27.8 34.4	22.6 4.5 7.0 4.9 5.4	753 145 205 137 223	3.71 1.86 1.79 2.11 1.82	48.2 22.4 18.2 15.2 11.5	1.9 .3 .5 .3 .4	14.6 .8 2.7 1.5 1.1	.5 .6 1.0 .6	20 10 12 7 8	.4 5 .3 1 .3 1 .2 1 .1 1	.91. .8. .7. .3. .41.	2 76 4 43 3 37 3 47 0 34	.44 .11 .16 .08 .11	.081 .047 .043 .035 .043	13 8 10 7 8	89.2 56.6 61.6 58.5 46.3	.97 3 .36 1 .71 1 .42 .53 1	16 .027 51 .029 77 .029 99 .027 14 .027	1 2.6 5 1 .8 5 1 1.3 1 1 1.6 1 <1	i9 .01 18 .00 19 .00 15 .00 19 .00	0.08 5.09 6.09 5.00	3 .8 5 .5 5 .6 3 .4 5 .3	.06 .02 .03 .06 .04	4.3 1.8 2.8 2.7 2.4	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	8 .5 4 .5 5 <.5 5 <.5 4 <.5	15.0 15.0 15.0 15.0 15.0
STANDARD DS5	13.2	147.5	5 25.3	2 144	.3	25.3	12.5	772	3.06	17.4	6.3	44.3	2.8	46	5.73	.96.	5 61	76	.093	12	189.5	.68 1	35 .10	L 17 2.1	.0 .03	4.1	3 5.1	. 19	3.6	1.1<.05	75.2	15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACHE AVAL YTICAL	С	Mi	Lnc	ord	d E	[xp]	lor	atio	on	Сог	ารบ	ılta	nti	s I	Ltd.	. P	RO	JE	СТ	IN	DAT.	A	FI	LE	# 2	A3(37	24		Pa	ge	10	(u
SAMPLE#	Мо ррт	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb p	Th S om pp	r C m pp	d Sb m ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg አ	Ba ppm	Ti %	B ppm	A1 %	Na %	К Ж. Г	W opm p	Hg pm p	Sc T1 pm ppn	1	S Ga ¥⊺ppr	a SeS n.ppm	ample gmt	
G-1 16+00S 2+00E 16+00S 2+50E 16+00S 3+00E 16+00S 3+50E	1.2 2.5 7.6 2.3 1.2	2.9 160.8 129.1 157.1 93.1	1.8 4.3 5.7 7.8 4.1	32 97 81 55 33	<.1 .7 .3 .2 .1	4.0 97.3 59.5 112.0 50.7	3.0 10.1 15.4 30.2 11.1	430 332 596 1548 401	L.49 2.44 2.44 3.12 1.78	<.5 18.6 23.5 46.0 17.4	1.6 .7 1.3 .5 .5	<.5 4 3.2 3.5 5.3 1 8.0 1	.1 7 .5 1 .4 1 .2 1 .5 1	1 <. 5 . 4 . 6 . 2 .	1 .1 3 3.4 4 2.6 4 5.6 1 2.4	.1 .5 .6 1.0 .3	32 63 63 72 36	. 48 . 28 . 42 . 57 . 17	.076 .063 .061 .038 .013	7 7 10 7 9	10.6 75.5 71.7 108.3 67.4	.43 .80 .70 1.01 .73	178 210 203 149 116	.103 .023 .017 .029 .041	4 1 2 1 2 2 1 1 1	.73 2.38 2.15 57 07	.065 .009 .008 .014 .010	.36] .06 .05 .08] .05	.1<. .4 . .7 . .2 . .6 .	01 1 06 3 07 2 05 6 03 3	.8 .2 .9 .1 .7 .1 .0 .1	2 < (< (< (< (< (05 (05 (05 (05 (05 (3 <.5 5 .7 5 .7 4 1.1 3 <.5	15 15 15 15 15	
16+005 4+00E 16+005 4+50E 16+005 5+00E STANDARD DS5	1.5 1.3 1.5 12.7	99.3 55.3 86.5 141.9	4.6 2.9 4.7 24.5	55 52 61 134	.2 .1 .1 .3	60.2 50.0 90.4 24.0	10.6 9.2 13.7 12.3	213 200 359 776	2.40 2.03 2.67 2.93	16.5 13.9 25.4 18.2	.2 .2 .2 5.9	1.0 4.0 1 5.0 1 44.1 2	.9 .1 .5 1 .6 4	8. 9. 1.	2 3.0 1 2.5 3 3.7 4 3.6	.6 .4 .6 6.3	61 52 60 59	.11 .12 .18 .76	.042 .020 .056 .102	6 7 6 12	79.0 71.2 97.9 184.9	.85 .79 1.06 .67	117 100 118 138	.016 .021 .027 .094	1 1 1 1 1 1 16 2	L.59 L.25 L.66 2.08	.006 .006 .006 .034	.04 .04 .06 .14	.5 .5 .8 1.8	01 3 01 3 03 4 18 3	1,2 <.1 1.0 <.1 7.0 .1 3.6 1.(. <.(. <.(. <.(. <.(05 9 05 4 05 4 05 7	5 <.5 4 <.5 4 .7 7 4.9	15 15 15 15	

Sample type: SOIL SS80 60C.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

-

LOGISTICAL REPORT

INDUCED POLARIZATION SURVEY

INDATA PROJECT

FORT ST. JAMES AREA, BRITISH COLUMBIA

on behalf of

CASTILLIAN RESOURCES LTD. & EASTFIELD RESOURCES LTD. Suite 110 – 325 Howe Street Vancouver, B.C. V6C 1Z7

Survey performed: August 15-20, 2003

bу

Alan Scott, Geophysicist SCOTT GEOPHYSICS LTD. 4013 West 14th Avenue Vancouver, B.C. V6R 2X3

August 23, 2003

TABLE OF CONTENTS

ļ

1	Introduction	page 1
2	Survey coverage and procedures	1
3.	Personnel	1
4.	Instrumentation	1

Appendix

Statement of Qualifications	rear of report
Accompanying Maps (1:5000 scale)	
	map pocket
Chargeability/Resistivity Pseudosections	
Lines 1300N to 1700N	1
Lines 800N to 1200N	1
Lines 400N to 700N	1
Lines 1600S to 1100S	1
Chargeability Contour Plan – Triangular Filtered Values	2
Resistivity Contour Plan - Triangular Filtered Values	2
Accompanying Data Files	
One (1) floppy disk with all survey data	3

1. INTRODUCTION

Induced polarization (IP) surveys were performed at the Indata Project, Fort St James Area, British Columbia, within the period August 15-20, 2003. The surveys were performed by Scott Geophysics Ltd. on behalf of Castillian Resources Ltd. and Eastfield Resources Ltd. This report describes the instrumentation and procedures, and presents the results, of those surveys.

2. SURVEY COVERAGE AND PROCEDURES

A total of 11.6 line km of IP survey was performed at the Indata Project. The pole dipole array was used for the survey, with an "a" spacing of 50m and "n" separations of 1 to 5 (25/1-5). The online current electrode was located to the east of the potential electrodes on all survey lines.

All survey data is archived to the accompanying floppy disk.

3. PERSONNEL

Gordon Stewart was the crew chief on the survey on behalf of Scott Geophysics Ltd. Jay Page was the representative on site on behalf of Castillian Resources Ltd. and Eastfield Resources Ltd.

4. INSTRUMENTATION

A Scintrex IPR12 receiver and IRIS VIP3 transmitter were used for the IP survey. Readings were taken in the time domain using a 2 second on/2 second off alternating square wave. The chargeability values plotted on the accompanying pseudosections and plan maps are for the interval 690 to 1050 msec after shutoff.

Respectfully Submitted,

Alan Scott, Geophysicist

Statement of Qualifications

for

Alan Scott, Geophysicist

of

4013 West 14th Avenue Vancouver, B.C. V6R 2X3

I, Alan Scott, hereby certify the following statements regarding my qualifications and involvement in the program of work on behalf of Castillian Resources Ltd. and Eastfield Resources Ltd. at the Indata Project, Fort St. James Area, British Columbia, as presented in this report of August 23, 2003.

I am a director and a shareholder in Eastfield Resources Ltd. and have a material interest in the property under consideration in this report.

The work was performed by individuals sufficiently trained and qualified for its performance.

I graduated from the University of British Columbia with a Bachelor of Science degree (Geophysics) in 1970, and with a Master of Business Administration in 1982.

I am a member of the Association of Professional Engineers and Geoscientists of the Province of British Columbia.

I have been practicing my profession as a Geophysicist in the field of Mineral Exploration since 1970.

Respectfully submitted,

Alan Scott, P.Geo.

Figu

.

2

.

/ជ

2

*

GEOLOGICAL	SURVEY	BRANCH
------------	--------	--------

ASSESS TTELE SUPPORT

figure مہ

GEOLOGICAL SURVEY BRANCH ACCEPTION PEPORT

CAS	STILLIAN REOUSRCE	S LTD. & EAST	FIELD RESOL	JRCES LTD.] [CASTILL
	INDATA PROPER INDUCED POLARIZATI SCOTT GEOPHYSICS Aug/03 current electrode ea Mx chargeabi	TY, FORT ST. J LINE: 1500S ON SURVEY LTD. st of potential electrod lity = 690-1050 msec	AMES AREA, Pole-Dipole Ar Scintrex IPR- Pulse Rate: 2 s es (array heading after shutoff	B.C. ray -12 sec W)		IN
	0 50	100 200 HETERS	300			
	APPARENT RESISTIVITY (ohm – m) ທາ ທະທະທະທະທ		CHARGEABILITY (mV/V)	(J)		
- - -	ά ά ά ά ά ά ← α ω 4 τυ Ι Ι Ι Ι Ι	2	о́о́о́о́о́ и ю 4 о і і і і	ŏ ₀ ⊐ !		
LINE:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	150W 100W 50W DE 50E 100E 150E 200E 250E 300E 350E 400E 450E	4.3 3.8 5.7 7.8 7.8 6.0 4.2 4.2 4.4 5.2 5.3 5.9 4.8 4.6 6.7 6.5 6.8 6.2 5.3 5.6 6.7 5.6 5.7 3.8 5.8 5.7 6.2 7.2 6.9 6.0 6.3 5.8 4.0 5.7 5.3 5.5 6.8 7.2 7.3	150W 100W 50W DE 50E 100E 150E 200E 250E 300E 350E 400E 450E 4.4 3.6 3.9 3.8 4.8/ 5.4 6.7/ 9.1 6.3 4.1 3.3 3.3 4.0		
1500S	Contours 100 150 2000 3000 500		<u>,</u> טא ט	Contours		1400S

1 ig

4

+ ιų.

~

i

	_
	-
	•
	~

. .

.

. .|

. .|