

ι,

a.

έ,

لہ

 \sim

ш

لہ

LL ا

ت

L)

Ц

Ц

ъ

L)

L)

ц

Wigwam 1 Mineral Claim

2003 Geological Assessment Report

Ц

L	Table of Contents
	Page
ப	Introduction
	Property Description
	• Location
<u>ن</u> ا	• Access
	• History
. T	Scope of Work in 2003 Scope of Work between 1000 2002
Ļ	• Scope of Work between 1999-2002
	Geology
	Regional Geology
	Mapping Results
	Rock Sample Correlation
ц Ц	Rock Geochemistry8
	Soil Geochemistry
IJ	·
—	Conclusions
	Statement of Costs
L	Statement of Costs
	References
പ	
L)	Statement of Qualifications

List of Figures

,

<u>Scale</u>

Figure 1	Location Map	1:250 000
Figure 2	Access Map	
Figure 3	Regional Geology	1:100 000
Figure 4	Landsat Interpretation	
Figure 5	Topography Map	
Figure 6	Index Map	~1:11 100

J

ப

Ц

Ц

Ц

Ц

L

Ц

Ц

=

List	of	Tables
------	----	--------

L.

 \Box

ц

Ц

L)

Ц

Ц

Ц

Ц

Ч

L

ш

لا

Ц

ш

ш

Ц

Ц

Page

Table 1	Claim Status	
Table 2	Porphyry Suite	
Table 3	Intrusive Suite	6
Table 4	Sedimentary Suite	7
Table 5	Rock Geochemistry, Summary	
Table 6	Soil Geochemistry, Summary	
Table 7	Follow-Up Samples	

Appendix

- 1. Time Sheet, Elko Project
- 2. Wigwam Waypoints and Soil Sample coordinates
- 3. Wigwam Waypoints and Rock Sample coordinates
- 4. Geochemical analysis certificates
- 5. Selected Frequency Histograms, Rock Samples
- 6. Selected Frequency Histograms, Soil Samples
- 7. Rock Sample Plots
- 8. Soil Sample Plots

Introduction

С

Ц

11

U

Ц

L)

L

1.1

Ш

11

ப

ш

1.1

11

Ľ

This report presents the findings of geological and geochemical sampling work done on the Wigwam 1 claim during the period 21 May 2003 to 30 September 2003. The author carried out all of the work, including, mapping, photo interpretation, sampling, and report preparation.

Property Description

The Wigwam 1 claim was staked between the 18th and 21st of Oct. 1999 by the author. The claim represents a twenty-unit block immediately to the northwest of the mouth of the Wigwam River, south of the town of Elko, B.C.

Claim Name	Tenure Number	Number of Units	Expiry Date*
Wigwam 1	372755	20	21 October 2004

Wigwam 1 372755 20
*Note: Statement of Work, filed 21 October 2003, Event No. 3201440

Location

The claim is four kilometres south of the town of Elko, or one kilometre south of the Tembec saw mill, along the west bank of the Elk River. Figure 1.

Access

The claims can be accessed from Highway 93 by driving south 3.7km from the turnoff near Elko, and turning east onto the "Backroad" to the Tembec mill. One-half of a kilometre along the "Backroad" is the turnoff to a regional transfer station (disposal site). Approximately 100m east of this road, and 30m south of "Backroad" will take you close to the legal corner post of Wigwam 1, Figure 2.

History

There are several Minfile occurrences noted in the immediate area, although there is no sign, in the field, of any recent work having been done.

Höy and Carter (1988; Figure 3) show five occurrences, numbers 129 to 133, to be within or very close to the claim.

- 1. #129 Silver King, which is #28 in Minfile.
- 2, #130 Ramshorn, which is #10 in Minfile.
- 3. #131 Leah. which is #29 in Minfile.
- 4. #132 Jennie, which is #11 in Minfile.
- 5. #133 Sweet May, which is #12 in Minfile.

The revised mineral inventory map, 82G/SW (MI) shows five mineral occurrences within or near the claim, including:

- 1. #10 Ramshorn, is a copper occurrence. The location of this occurrence is know to be within 1,000 feet and 2 miles (BC 19?, the map shows no date).
- Chalcopyrite, azurite, pyrite occur within a 0.5m quartz vein. Along one margin of the vein a talcose (chlorite?) gouge seam about two centimeters thick contains

copper oxide minerals. Sills of Purcell diorite are reported in the vicinity and may have some relationship to the mineralization (Minfile, 1988).

- 2. #11 Jennie, is a copper occurrence. The location of this occurrence is known to be within 1,000 feet and 2 miles (BC 19?). The Sweet May and Jennie occurrences are within a few hundred metres of each other on Sheep Mountain, six kilometres south of Elko. Development took place at the turn of the century, but was not long lived. The showings occur in shear zones adjacent to both contacts of a ten metre thick K-feldspar porphyry sill. Bedding in Purcell-age Gateway Formation carbonates is vertical and trends north south. Both showings consist of scattered blebs of chalcopyrite in thin quartz veins. In general Sheep Mountain is host to many small quartz veins, some of which contain sulphide minerals (Grieve, 1979).
- 3. **#12 Sweet May**, is a copper occurrence. The location of this occurrence is know to be within 1,000 feet and 2 miles (BC 19?). The Sweet May and Jennie occurrences are within a few hundred metres of each other on Sheep Mountain, six kilometres south of Elko. Development took place at the turn of the century, but was not long lived. The showings occur in shear zones adjacent to both contacts of a ten metre thick K-feldspar porphyry sill. Bedding in Purcell-age Gateway Formation carbonates is vertical and trends north south. Both showings consist of scattered blebs of chalcopyrite in thin quartz veins. In general Sheep Mountain is host to many small quartz veins, some of which contain sulphide minerals (Grieve, 1979).
- 4. **#28 Silver King**, is a copper occurrence. The location of this occurrence is know to be within a radius of 1,000 feet (BC 19?). This property comprises two claims on the east bank of the Elk River, three miles south of Elko. The mineral occurrence consists of a few narrow scattered quartz stringers containing minor amounts of pyrrhotite and chalcopyrite in quartzite bands exposed below highwater level. The quartzite bands, which in places are well mineralized with fine disseminated pyrite, alternate with bands of highly sheared argillite. The formation is Precambrian in age. Insufficient ore mineralization is evident to warrant further work (Merrett, 1957).
- 5. #29 Leah, is a lead, silver occurrence. The location of this occurrence is known to be within a radius of 1,000 feet (BC 19?). Six mineral claims on the summit and south slope of Sheep Mountain on the west side of the Elk River, approximately three miles south of Elko. Surface stripping over a wide area has revealed the presence of a number of parallel quartz veins and has disclosed one narrow vein, up to 7cm wide, reportedly carrying good silver-lead values over an exposed length of 30m (Merrett, 1954). Several widely scattered open-cuts have disclosed narrow vertical quartz veins of east-west strike and undetermined length in quartzite, closely paralleling Purcell diorite sills. Rare patches of galena occur within the quartz veins (Merrett, 1957).

The most recent work is an assessment report by the author, dated 10 January, 2003.

2

Ц

ت

L

U

L

Ы

L

11

11

L)

ц,

Ц

11

L

Ы

L

ш

Scope of Work in 2003

U

L

сJ.

L.

Ы

Ľ

ப

 \Box

Ы

L)

ш

E I

 \Box

L

L

 \Box

Fieldwork on the claim during this period included three days of mapping, prospecting and sampling. In total, eighteen soil samples were collected; all of the soil samples were tested using ICP geochemistry.

As well as the fieldwork, three and a half days were spent reviewing the data and writing the assessment report.

Scope of Work between 1999 and 2002

It was concluded, after the sampling work completed in 1999 and 2000 that follow-up work should include more rock and soil sampling and examination of the old showings. Special attention was to be given to the area around rock sample 99-20, and soil samples 00-15, 00-17, and 00-18.

Fieldwork on the claim during this period included seven days of mapping, prospecting and sampling. In total, nine rock samples and sixteen soil samples were collected and tested using ICP geochemistry.

As well as the fieldwork, two and three quarter days were spent reviewing and compiling data for the assessment report.

Geology

Regional Geology

Many authors have summarized the geology of the area but it appears that very little actual field study has taken place. The first geological maps of the area are by Leech (1958) and (1960).

The stratigraphic section of the Proterozoic, for the east side of the Rocky Mountain Trench, as proposed by Höy and Carter (1988) is as follows:

Roosville Formation, green siltstone and argillite, black laminate argillite; stromatolitic dolomite and dark brown oolitic dolomite, quartz arenite toward the top (Pr on Figure 3).

Phillips Formation, maroon micaceous siltstone, quartz wacke and argillite (P_P on Figure 3).

Gateway Formation, dolomite, quartz wacke, siltstone, argillite (29 on Figure 3). Upper Gateway is green siltstone, argillite, dolomite.

Lower Gateway is quartz wacke, dolomitic sandstone, stromatolitic dolomite, oolitic dolomite, green siltstone.

Sheppard Formation, sandstone and conglomerate locally at base; dolomitic quartzite, sandstone, oolitic dolomite, stromatolitic dolomite at top (\mathfrak{P}_5 on Figure 3).

Nicol Creek Formation, massive to amygdaloidal basalt to andesitic lava flows, volcanic and feldspathic sandstone, siltite (encon Figure 3).

Van Creek Formation, green, mauve laminated siltstone and quartz wacke; minor tuffaceous siltstone at top (p_{wo} on Figure 3).

Kitchener Formation, grey, black dolomite, limestone; green argillite, dolomitic siltstone (24 on Figure 3).

Upper Kitchener, grey, black dolomite, limestone, molar tooth texture; siltstone, thin quartz.

Lower Kitchener, green, beige siltstone, argillite; dolomitic siltstone. Creston Formation, green, grey and mauve siltstone, argillite; white, green quartz arenite (not shown on Figure 3).

Upper Creston, siltstone, quartz arenite, argillite (not shown on Figure 3). **Middle Creston**, white, green and mauve quartz arenite and siltstone (not shown on Figure 3).

Lower Creston, grey, black argillite-siltstone couplets, siltstone and siliceous argillite, green siltstone (not shown on Figure 3).

Aldridge Formation, quartzite, quartz wacke, siltstone, argillite, silty dolomite (not shown on Figure 3).

Upper Aldridge, rusty weathering argillite and siltstone, thinly laminated (not shown on Figure 3).

Middle Aldridge, grey quartzite, quartz wacke, siltstone; argillite, rusty weathering (not shown on Figure 3).

Lower Aldridge, rusty weathering siltstone and quartzite with interbeds of silty argillite; quartz wacke (not shown on Figure 3).

Fort Steele Formation, white quartzite, grey argillaceous quartzite, argillite, grey, black dolomitic and calcareous argillite (not shown on Figure 3). Note: Within the map area, strata below the Kitchener Formation are not exposed.

The following discussion applies to the regional maps produced by Leech.

- The north end of the Galton Range, south of the mouth of the Wigwam River, appears to be a normal succession of formations, from the Siyeh Formation (equivalent to the Kitchener/Van Creek/Nicol Creek Formations of Höy and Carter?) near the bottom of the mountains to the Rooseville Formation at the top. The formations are shown to be folded into a major north trending syncline that is truncated by the Wigwam River.
- North of the Wigwam River, onto the Wigwam flats east of the claim, the syncline is continued with the east side of the Elk River underlain by strata of the Rooseville Formation dipping gently to the east.
- Strata of the Gateway Formation underlie the west side of the Elk River. The beds are steeply dipping to vertical along the canyon area.
- There are no major faults mapped in the area to explain the changes in attitudes and general structure.

Work by Höy and Carter (1988) is more detailed in that they mapped the maroon colored Phillips Formation trending north/south through the canyon area, Figure 3. They also show a normal fault across the north face of the Galton Range, just to the south of the Wigwam River. This fault is shown to be a splay off of the "Rocky Mountain"

۰.

ц,

Ц

ш

1.1

Ц

1

с,

ъ

Ы

11

 \Box

1 1

11

Trench Fault" and is shown to dip to the southwest. It is my opinion that, considering the changes in elevation across the Wigwarn, the fault should have a northeast dip.

Neither of the authors discuss the intense white "clay"(?) alteration along the Elk River canyon nor the changes in attitudes, from east to west, across the Elk River. As well, neither of the authors addresses the intrusive rocks on Sheep Mountain.

Mapping Results

Mapping was conducted with the aid of the following:

- An enlarged air photo, BC 81103 No. 170, approximate scale of 1:11 000.
- A 1952 air photo, BC 1479:7.
- A 1962 air photo, BC 4082:168.
- A 1969 air photo, BC5353-057.
- A hand held GPS.

Roads, trenches, and linear features were highlighted and digitized for the three older air photos, 1952, 1962, and 1969. The series of photos show the progress of the earlier exploration and have been used to locate old workings and roads. The photos were oriented and scaled by using at least three common points.

Rock Sample Correlation

An attempt has been made to correlate the rock samples collected during the past several field programs, including:

Table 2

	Porphyry Suite				
Sample No.	Sample Description				
98-6	Pink feldspar porphyry, from the east side of the Elk River, directly above the dam. Float material, no outcrop.				
99-26	Pink and white feldspar porphyry, from the south line of the Wigwam claim line, near post 5S2E. 25% feldspar crystals to 1cm, very low quartz content.				
00-8	Coarse, pink feldspar porphyry				
00-10	Feldspar porphyry				

Ц

ப

Ы

L

<u>ы</u>

L)

11

ы

L)

Ц

Ц

L

ப

L

ч

L

i j

······································	Intrusive Suite
Sample No.	Sample Description
98-19	From the south side of Sheep Mtn., from trench #2. Dyke or sill
	material, pinkish, crystals up to 2mm, abundant quartz veins (to
	15cm) cutting trench.
99 -19	Dyke or sill, dark grey, pink feldspar crystals to 2mm, quartz veins up
	to 15cm, high mafic content (see geochem sample).
99 -20	Quartz vein material (see geochem sample).
99-21	Dyke or sill, dark grey, rusty, quartz vein with chlorite.
99-26	Dyke or sill, light colored, 25% feldspar crystals to 1cm, very low
00-1	From the south side of Sheep Mtn from trench #2 Rusty dark grey
,- <u>-</u>	up to 1% pyrite (stained to black) rare quartz eve (3mm) some
	chlorite (light green), abundant feldspar, altered to white
00-2	From the south side of Sheep Mtn., from trench #2 Similar rock to
	00-1, but coarser, 1% pyrite (as blebs) very low quartz white altered
	feldspar.
00-3	Quartz vein material, up to 6cm wide, vuggy texture (from pyrite?).
00-7	Granodiorite (?), fine crystalline (~1mm), rusty, red and yellowish.
00-9	Quartz vein.
00-11	From the central west portion of the claim. Fine, dark grey, dyke material (very similar to 99-19), quartz content to 10%(?), fine quartz
00.12	From the control wast portion of the claim. Cimites to 00.14, control
00-13	quartz veins, at least two stages.
01-22	From the south central part of the claim. Mudstone, green, with quartz vein. Similar to 00-13 but finer.
01-26	From the central portion of the claim. Intrusive material with quartz veins.
01-28	From the central portion of the claim. Rusty, white feldspar, quartz. Possible sandstone?
01-30	From the central portion of the claim. Very similar to 01-28, quartz
	diorite, abundant pyrite.
01-35	From the central part of the claim. Siltstone/mudstone, intrusive,
	brown, quartz and white feldspar, minor copper stain, some pyrite.
01-37	From the central portion of the claim. Feldspar porphyry, very
	angular, low quartz, low colour index, very coarse crystals, minor mafic content.
01-39	From the central part of the claim. Dark green, biotite porphyroblasts.
	similar to 00-13.

Table 3 Intrusive Suite

•

٠.

a

۹.

Ц

 \Box

ц

ц

Ц

U

ப

Ц

Ц

 \Box

ப

ப

J

ك

L

ш

Ц

Sediment Suite				
Sample No.	Sample Description			
98-8	From the east side of the Elk River, float. Oolitic, non-calcareous, with pyrite, bedded at ~15cm.			
98-17	From north of the claim, represents unaltered argillite. Clay rich, with green sheen, possibly hematite blebs.			
98-21	From the south side of the mountain. Siltstone? with a chlorite vein.			
99-30	From the west side of the Elk River, near the pipeline crossing. Siltstone, yellow-brown, high silica content, with pyrite up to 0.5cm.			
00-4	From the south side of the mountain. Grey siltstone/mudstone, non- calcareous, massive. A silicified limestone?			
00-5	Massive quartzite, light grey, high quartz content, grains <1mm, well rounded, high pyrite content, minor quartz veins. Possibly an intrusive?			
00-6	Green to yellow colored claystone (?), layered white to clear quartz as streaks and blebs.			
00-16	From the central portion of the claim. Quartzite/quartz sandstone, fine grained, white colored, very pure, quartz veins with pyrite/chalcopyrite(?), weak green stain.			
00-20	From near the top of the east peak. Light gray to gray, fine sandstone to siltstone/mudstone, with 1mm porphyroblasts, brown (iron carbonate?).			
01-19	From the south central part of the claim. Quartzite, quartz vein, or quartz alteration, rusty, hematite? vein.			
01-28	From the central part of the claim. Quartz vein, with sericite and calcite.			
01-32	From the central part of the claim. Quartzite, silicified siltstone (limestone?), white to gray.			

Table 4 Sediment Suite

Ц

Ц

U

ц

ப

J

ป

Ц

Ц

Ш

L

Ц

Ч

Ц

L

Ц

U

ப

Ч

9

•

۰.

.

۰.

Geochemistry Rock Geochemistry

L

Ц

Ц

ป

Ы.

L)

Ц

Ы

ப

Ы

Г

U.

 \Box

 \Box

In total twenty-eight rock samples have been collected on the property. An attempt has been made to determine which samples may be anomalous by the use of frequency histograms. All of the rock samples are listed in Appendix 5. The listing includes the sample name, UTM coordinates, as well as the ICP results.

Table 5 shows some basic statistics for a selection of elements for the twenty-eight rock samples. The last column in the table is an estimate of the threshold value, above which may be considered anomalous, for the element.

A description of the samples includes the following:

98-1; The sample was collected from the top of the west bank, between corners B and C of the Elk River. Siltite, argillite; platy, generally pink, some rust, soft, non-calcareous. The sample is slightly anomalous in La (41ppm) and K (0.22%).

98-2; The sample was collected from near the river level, at the bottom of the road down to the ANG pipeline on the west side. Argillite; highly altered, white alteration, breccia, possible silicification. The sample is relatively high in Mg (10.90%) and Ba (1101ppm).

98-3; The sample was collected from just east and up hill from sample 98-2. Argillite; black, rusty, breccia, possible silicification, within a tight fold. The sample is relatively high in Sr (186ppm).

98-4; The sample was collected from the top of the bank where the ANG road starts down the west bank. Argillite; rusty, silicified, grab sample over 2m. The sample is relatively high in Zn (58ppm).

98-7; The sample was collected along the road accessing the east side of the river, and represents a piece of float. Green argillite; intense quartz veins, breccia, some large pyrite clasts, no alteration of argillite. The sample is relatively high in W (10ppm).

98-8; The sample was collected along the road accessing the east side of the river, and represents a piece of float. Sandstone(?); well-rounded grains or ooliths(?), abundant pyrite, bed about 15cm thick. The sample is relatively high in Mo (22ppm), Cu (21ppm), and Pb (101ppm).

98-9; The sample was collected just to the northeast of the ANG crossing on the east side of the river, near river level. Argillite; intense white alteration, well bedded(?). The sample is relatively high in K (0.27%).

98-10; The sample was collected just to the northeast of the ANG crossing on the east side of the river, near the river level, from the east side and inside of a cave(?), adit(?). Argillite; chips and debris of white powder and rusty material, white alteration, rusty,

white powdery coating (non-calcareous). The sample is relatively high in Zn (49ppm), Ni (33ppm), V (27ppm), and Cr (33ppm).

98-13; The sample was collected along the south-facing slope above the Elk River at the south end of the claim block, just west of an exposure of Phillips Formation. Argillite, siltite; rusty, with white powdery coating (sulphur?), pyrite casts up to 2cm, horizon about 3m thick, folded. The sample is relatively high in B (8ppm), and possibly depleted in Mg (0.42%) and Ca (0.39%).

98-16; The sample was collected west of sample 98-13, in a confined gully, along a rusty horizon. Argillite; gray, rusty, soft, about 25cm thick, abundant quartz veins. The sample is relatively high in Cu (15ppm), Pb (72ppm), Zn (33ppm), As (43ppm), B (8ppm), and K (0.37%). As well, it appears to be depleted in Mg (0.48%).

98-17; The sample was collected to the north of the claim area to represent unaltered argillite. Argillite; clay rich with a green sheen, possibly hematite blebs.

99-19; The sample was collected from near the top of Sheep Mountain, at the south end, in an old trench. Sill or dyke material. The sample is slightly anomalous in iron (8.37%).

99-20; The sample was collected from near the top of Sheep Mountain, at the south end, in an old trench. Quartz vein material from within a sill or dyke. The sample represents grabs over some 15m of trench. The sample is relatively high in Zn (2258ppm), Mn (1667ppm), Cd (12ppm) and Hg (3398ppb).

99-27; The sample was collected from the west side of the Elk River, at the top of the road down to the gas pipeline crossing, rusty knob above river. Argillite; rusty, silicified, as well as quartz veinlets. The sample is relatively high in Ba (905ppm).

99-28; The sample was collected slightly up (?) section from sample 99-28. Argillite; highly altered, soft. The sample is anomalous in B (8ppm).

99-29; The sample was collected from the east side of the knob over the river, just east of samples 99-27 and 99-28. Quartz veins up to 3mm, over an area 1m long and 10cm across, some pyrite(?). The sample is not high in any element tested.

99-30; The sample was collected along the road down to the gas pipeline crossing on the west side of the Elk River. White rock, highly altered argillite(?), pyrite up to 0.5cm in a horizon 0.5m wide. The sample is relatively high in S (0.43%).

99-31; The sample was collected from the east side of the Elk River, about one third of the way down the bank, on corner A. Argillite; rusty horizon up to 0.3m thick, highly silicified material. The sample is relatively high in Mn (4871ppm), V (16ppm), Te (0.5ppm), and S (0.23%).

٤,

Ļ

Ч

Ц

ப

Ы

Ч

L)

L

L)

Ц

L

Ļ

Ы

Ļ

Ы

Ы

L

ш

Ш

۰.

- **99-32;** The sample was collected about 10m west of sample 99-31, on the east side of the Elk River, corner A. Argillite; rusty horizon up to 0.3m wide, in green argillite. The sample is relatively high in Mn (6032ppm), and S (0.4%).
- 01-13; The sample was collected along the road to the east portion of the claim (Fig. 12); very close to outcrop as there is abundant debris in the area. Rusty, mafic, sericite, quartz chards, quartz crystals approximately 1mm. The sample is anomalous in Th (5.8ppm), Ba (150ppm) and K (0.32%).

J

L

 \Box

L

ப

Ш

11

Ц,

L

Ц

Ц

- 01-19; The sample was collected from near the top of Sheep Mountain, at the south end of the claim, just above sample 01-17 (Fig. 13). Quartz vein material, rusty, vuggy, with abundant secondary iron veins. Possibly a quartzite with quartz grains approximately 1mm. The sample represents a piece of float material. The sample is slightly high in Ni (7.4ppm), V (7ppm) and W (3.1ppm).
- 01-22; The sample was collected from near the top of Sheep Mountain (Fig. 13), at the end of an old trench. Possible siltstone, very rusty, massive, green tint, clay rich, white porphyroblasts, abundant pyrite, quartz veins in at least two directions. The sample is anomalous in Mo (4ppm), Pb (119ppm), Zn (280ppm), Ag (273ppb), Co (10ppm), As (15ppm), Cd (0.8ppm), Bi (0.2ppm), Al (2.3%), S (0.22%), Hg (145ppb), and Ga (9ppm).
- 01-26; The sample was collected near the central portion of the claim, along the north access road (Fig. 10). Quartz debris, white (almost total kaolinite?), altered quartz diorite, 1cm iron blebs (siderite?). The sample is slightly high in Au (2ppb) and Sc
 (8ppm).

01-28; The sample was collected near the central portion of the claim, south of the north access road (Fig. 10). Altered diorite, some quartz veins with siderite and sericite (massive). The sample is slightly high in Ca (2.4%) and Sc (5ppm).

01-30; The sample was collected near the central portion of the claim, south of the north access road (Fig. 10). The sample represents debris from an old road cut. Quartz diorite, abundant pyrite. The sample is slightly high in P (0.1%) and Sc (5ppm).

01-35; The sample was collected near the central portion of the claim, south of the north access road, approximately 15m east of waypoint 51 (Fig. 11). Dominant host material, minor copper stain, brown/pink fine crystals, with quartz and pyrite. The sample is high in Cu (839ppm), Ba (147ppm), B (5ppm), and Sc (5ppm).

- **01-37;** The sample was collected near the central portion of the claim, south of the north access road (Fig. 11). Feldspar porphyry, very angular, low quartz content, light in colour. The sample is slightly high in Bi (0.2ppm) and Ba (247ppm).
 - **01-39;** The sample was collected near the central portion of the claim, south of the north access road, in an old trench (Fig. 11). Altered intrusive, dark green with green

porphyroblasts to 0.5cm (radiating, high Fe, chlorite/biotite). The sample is relatively high in Ni (11ppm), Co (6ppm), Al (2.8%) and Ga (16ppm).

Soil Geochemistry

J

Ы

Ľ

Ľ

L

Ы

Ц

11

 \Box

Ц

ப

Ч

1.1

ш

11

- In total forty-four soil samples have been collected on the property. An attempt has been made to determine which samples are anomalous by the use of frequency histograms.
 - All of the soil samples are listed in Appendix 6. The listing includes the sample name, UTM coordinates, as well as the ICP results.
 - Table 6 shows some basic statistics for a selection of elements for the forty-four soil samples. The final column in the table is an estimate of the threshold value, above which may be considered anomalous, for the element.

A description of the samples follows, including;

- **00-12;** The sample was collected from the northwest side of Sheep Mountain, along an old road cut. Poor soil development on bedrock, brown, high organic. The sample is not anomalous in any of the elements tested.
 - **00-14;** The sample was collected from the northwest side of Sheep Mountain, along an old road cut. More alluvial material in the sample. The sample is not anomalous in any of the elements tested.
 - **00-15;** The sample was collected from the northeast side of Sheep Mountain, beside an old pit in bedrock. The pit measures 2m x 3m and is 2m deep, in solid bedrock. The sample is from above bedrock, no till material. The sample is anomalous in Cu (145ppm), Pb (199ppm), Zn (101ppm), Ag (817ppb), As (7ppm), Sb (15ppm), Ba (308ppm), and Hg (151ppb)
 - **00-17;** The sample was collected from the northeast side of Sheep Mountain, beside an old trench. The sample is from the east side of the trench, near the south end, and includes soil and bedrock fragments. The sample is high in Cu (66ppm), Ag (785ppb), As (7ppm), Au (19ppb), Sr (155ppm), Ca (6.6%), Mg (2.5%), and Hg (288ppb).
 - **00-18;** The sample was collected from the northeast side of Sheep Mountain, beside an old trench. The sample is from the east side of the trench, at the north end, and includes material that was pushed from the trench. The sample is high in Cu (92ppm), Pb (314ppb), Zn (195ppm), Ag (856ppb), As (7ppm), Sb (19ppm)), Ba (402ppm), and Hg (115ppb).
 - **00-19;** The sample was collected from the northeast side of Sheep Mountain, beside an old trench. The sample is from the north end of the trench, and includes abundant feldspar porphyry material. The sample may be high in Ba (417ppm).
 - Wigwam 1, 2003 Assessment Report

۶.

 \Box

00-21; The sample was collected from the northeast side of Sheep Mountain, on a small knoll that had been cleared off by a dozer. The sample includes soil and some bedrock. The sample is anomalous in Zn (162ppm), Mn (2548ppm), and Ba (329ppm).

- **00-22;** The sample was collected from just north of the old lookout tower on Sheep Mountain, along the floor of an old trench. The sample is not anomalous in any of the elements tested.
 - **00-23;** The sample was collected from just east of the old lookout tower on Sheep **Mountain, along the floor of an old trench.** The sample is possibly weakly anomalous in As (6ppm).
- **00-24;** The sample was collected from just south of the old lookout tower on Sheep Mountain, along the floor of an old trench. The sample material is rusty, with a white stain. The sample is weakly anomalous in Mo (2ppm), Mn (2371ppm), Ca (11.4%), and Hg (179ppb).
- 01-16; The sample was collected from the southeast side of Sheep Mountain, along an old road cut (Fig. 12). Near brown siltstone outcrop, minor copper stain, 10m up hill are abundant feldspar porphyry debris. The sample is anomalous in Cu (355ppm), Pb
 (302ppm), Ag (1604ppb), Au (5.9ppb), Sb (45ppm), Ba (702ppm) and Hg (465ppb).
- 01-17; The sample was collected from the south side of Sheep Mountain, along an old
 trench (Fig. 13). Rusty material, no alluvium, sample taken across +1m. The sample is slightly high in B (5ppm) and Sc (4ppm).
- O1-18; The sample was collected from the south side of Sheep Mountain, at the north end of an old trench (Fig. 13). The sample is not anomalous in any element tested.
- U 01-20; The sample was collected from the south side of Sheep Mountain, at the east end of an old trench (Fig. 13). The sample is of debris at the end of the "push". The sample is anomalous in Mo (4ppm), Pb (744ppm), Zn (659ppm), Ag (607ppb), Mn
 U (2420ppm), Fe (5.1%), Cd (4ppm), Ca (4.2%) and Hg (1517ppb).
 - **01-21;** The sample was collected from the south side of Sheep Mountain, at the east end of an old trench (Fig. 13). The sample is of pushed material at the end of the trench. The sample is anomalous in Mo (4.5ppm), Cu (141ppm), Pb (477ppb), Zn (411ppm), Ag (1327ppb), Co (11ppm), Fe (6%), As (22ppm), Au (5.9ppb)), Cd (2ppm), Sc (5ppm) and Hg (268ppb).
 - **01-23;** The sample was collected from the south side of Sheep Mountain, at the west end of an old trench (Fig. 13). The sample is soil with abundant mafic sill material and some quartz debris. The sample may be high in Sc (5ppm).

Ц

 \Box

 \Box

Ы

 \Box

ل

ப

ш

11

Г

U

- **01-24;** The sample was collected from the south side of Sheep Mountain, at the north end, of an old trench, below the old lookout (Fig. 13. The sample may be high in Sc (5ppm).
- **01-25;** The sample was collected from the central portion of the claim, south of the north access road (Fig. 10). Along the floor of an old trench. The sample is slightly high in Pb (137ppm) and Sc (5ppm).
- **01-27;** The sample was collected from the central portion of the claim (Fig. 10), from the floor of an old pit, 3mx3mx2m deep. The sample is not anomalous in any of the elements tested.
- U 01-29; The sample was collected from the central portion of the claim (Fig. 10), along the floor of an old cut, some 5m deep. The trench shows some quartz veining. The sample is weakly anomalous in Zn (179ppm) and Sc (6ppm).
 - **01-31**; The sample was collected from the central portion of the claim (Fig. 10), along the bed of an old road. The sample is not anomalous in any of the elements tested.
 - **01-32;** The sample was collected from the central portion of the claim, from the middle of an old trench (Fig. 11). There is abundant alluvial material, some quartz float, and old hole up to 2m deep. The sample may be high in Ca (3.6%).
- 01-33; The sample was collected from the central portion of the claim, from the deepest
 part of an old trench, about 1.5m deep (Fig. 11). The sample is not anomalous in any of the elements tested.
- 01-34; The sample was collected from the central portion of the claim, on the north side of an old trench (Fig. 11). The sample material has abundant quartz with some copper staining. The sample is slightly high in Mo (4ppm), Zn (106ppm), Ag (275ppb), As
 (6ppm), Sc (5ppm) and Hg (100ppb).
 - **01-36**; The sample was collected from the central portion of the claim, from the south cut bank of an old road (Fig. 11). There is no alluvial material in the area. The sample is possibly weakly anomalous in Ba (277ppm).
 - **01-38;** The sample was collected from the central portion of the claim on an old trench (Fig. 11). The sample material is dominantly feldspar porphyry. The sample is not anomalous in any of the elements tested.
 - The 2003 soil samples are centered on sample 00-18. Samples 03-01 to 03-04 are spaced approximately 100m apart along a line toward 155°, following the orientation of the old trench. Samples 03-06 to 03-10 are along a line toward 245°, samples 03-11 to 0314 are along a line toward 335°, samples 03-16 to 03-18 are along a line toward 65°.

J

L

Ц

Ы

Ы

 \Box

ப

ப

L

L

L

ш

Ц

ш

Ы

03-01; The sample site is ~100m from sample 00-18 along a line toward 155°. Tan brown soil, some angular rock fragments. The sample does not appear to be anomalous in any of the elements tested.

03-02; The sample site is ~100m from sample 00-01. Tan brown soil, some rock debris. The sample does not appear to be anomalous in any of the elements tested.

03-03; The sample site is ~100m from sample 00-02. Near outcrop, SS/slst. The sample is not anomalous in any element tested, though the Mn content is relatively high.

03-04; The sample site is ~100m from 00-03, red brown soil. The sample is not anomalous in any of the elements tested.

03-05; The sample site is along an old road, from an old hole, which is still 4m x 4m x 2m deep. The sample is from the north wall, tan brown soil. The sample is not anomalous in any of the elements tested.

03-06; The sample site is ~50m from 00-18, along a line toward 245°, tan brown soil. The sample is not anomalous in any of the elements tested.

03-07; The sample site is ~50m from 03-06, tan brown soil. The sample is not anomalous in any of the elements tested.

03-08; The sample site is ~100m from 03-07, tan brown soil, angular debris. The sample is not anomalous in any of the elements tested.

03-09; The sample site is ~100m from 03-08, tan brown soil, angular debris. The sample is not anomalous in any of the elements tested, though the As content is relatively high.

03-10; The sample site is ~100m from 03-09, tan brown, fine, silty soil. The sample is not anomalous in any of the elements tested, though the Zn and As content is relatively high.

03-11; The sample site is ~100m from 00-18, along a line toward 335°. Tan soil, on porphyry debris. The sample is not anomalous in any of the elements tested.

03-12; The sample site is ~100m from 03-11, tan brown soil, on porphyry debris. The sample is not anomalous in any of the elements tested, though the Zn content is relatively high.

03-13; The sample site is ~100m from 03-12, tan, silty soil. The sample is not anomalous in any of the elements tested.

Ц

Ц

Ы

11

Ы

Ц,

ц

L.

Ы

Ы

Ы

ப

ட

ш

11

03-14; The sample site is ~100m from 03-13, tan soil. The sample is not anomalous in any of the elements tested.

03-15; The sample site is an old trench, tan soil. The sample is not anomalous in any of the elements tested.

03-16; The sample site is ~100m from 00-18 along a line toward 65°. The soil is tan coloured. The sample is not anomalous in any of the elements tested, though the Mn content is relatively high.

03-17; The sample site is ~100m from 03-16, tan soil, rock debris. The sample is not anomalous in any of the elements tested.

03-18; The sample site is ~100m from 03-17, tan soil, rock debris. The sample is not anomalous in any of the elements tested.

Ч

L)

Ц

ц

L)

Ы

ц

Ц

Ы

ъ

Ч

L

Ы

Ц

ப

Ц

ш

L

Ц

÷

3

۰.

۰.

۱.

Element	Population	Minimum	Maximum	Mean	Standard Dev.	CV ²	Threshold
Cu (ppm)	28	<1	839	39	157	4.0	200
Zn (ppm)	28	4.5	2259	145	422	2.9	600
As (ppm)	28	0.05	43	5.3	8.3	1.6	15
Hg (ppb)	171	0.1	145	18	35	1.9	50
Sb (ppm)	28	0.12	5.5	1	1	1.04	3
Ag (ppb)	28	0.1	273	52	82	1.6	150
Au (ppb)	28	0.4	2.5	1.1	0.4	0.36	2
Ba (ppm)	28	13	1101	194	258	1.32	500
Pb (opm)	28	1	119	20	31	1.54	60

Table 5 Rock Geochemistry; Summary

Ľ

C

Ľ

Γ

Ľ

.

•

One set of data does not include Hg results.
 CV is the coefficient of variation, the standard deviation/mean.

Ľ

Ľ

С

Γ

.

•

Ľ

Ľ

Ľ

C

Ľ

C

-

Ľ

С

C

Ľ

Element	Population	Minimum	Maximum	Mean	Standard Dev.	CV ¹	Threshold
Cu (ppm)	44	5	355	34	59	1.73	100
Zn (ppm)	44	23	659	100	107	1.06	225
As (ppm)	44	1.2	22	4	3	0.75	10
Hg (ppb)	44	8	1517	97	237	2.43	350
Sb (ppm)	44	0.09	45	2.5	7.5	2.97	10
Ag (ppb)	44	14	1604	186	356	1.92	600
Au (ppb)	44	0.1	19	1.9	3.3	1.74	6
Pb (ppm)	44	5	744	68	141	2.08	225

Table 6Soil Geochemistry; Summary

C C

Ľ

С

Ľ

~

C

Ľ

Ľ

Ľ

Notes: 1 CV is the coefficient of variation, the standard deviation/mean).

Ľ

Ľ

Ľ

С

L

.

Ľ

Ľ

C

e

Wigwam 1, 2003 Assessment Report

L

E

Conclusions

۰.

11

i |

Ы

1.1

L)

11

Ц

ц

Ц

ப

11

Г

ш

11

E I

11

To date no potentially economic mineralization has been located, but the project area is of interest because of the intersection of numerous major structural breaks, the major alteration zone along the Elk River, and the number and types of intrusives on Sheep Mountain. The limited fieldwork to date has shown:

- That the strata changes attitude across the Elk River from gentle east dips on the east side to near vertical dips along the west side, indicating a major fault system.
- That there is a major alteration zone, white clay(argillic/sericitic alteration), along some of the structural breaks. The altered zone is at least one kilometer long and 500m wide, following a portion of the Elk River canyon. This may indicate a hydrothermal source at depth.
- The outcrop is limited to the riverbanks along the Elk River and to scattered areas on Sheep Mountain.
- There are at least three varieties of intrusives on Sheep Mountain.

Follow-up work will include more rock and soil sampling on Sheep Mountain and examination of the old trenches. Special attention should be given to the area around samples:

Rock Sample	Soil Sample		
99-20	00-15		
01-22	00-17		
01-35	00-18		
	01-16		
	01-20		
٠.	01-21		
	01-25		

Table 7

١.

L

L	Statement of Costs	
	۰.	Total
	<u>Fieldwork</u> R.J. Morris, 3.0 days @\$500/day	\$1,500.00
J	Geochemical testing 18 soil tests,	\$ 385.20
J	Shipping samples	\$ 50.00
J	<u>Office work</u> R.J. Morris, 3.5 days @\$500/day	\$1,750.00
J	<u>Supplies</u> Report production Access permit	\$ 100.00 \$ 40.00
J	<u>Travel</u> Truck rental, 3 days x \$50/day ATV rental, 3 days x \$50/day	\$ 150.00 <u>\$ 150.00</u>
ц		

¥

.

۰.

Ц

ц

Ц

L

Ц

L

L

Ц

Ч

Ц

Ŀ

Ш

References

Ц

Ы

Ц

Ц

L

ъ

 \Box

υ,

L)

آل

Ц

LJ.

- BC Government, 19? (no date on map). Revised Mineral Inventory Map, 82G/SW.
- Grieve, D.A., 1979. Base Metal deposits in the Libby Pondage Reserve Area. BCGS, Geological Fieldwork 1979.
- Höy, T., 1993. Geology of the Purcell Supergroup in the Fernie West-Half Map Area, Southeastern British Columbia. B.C. Geological Survey, Bulletin 84.
- Höy, T. and Carter, G., 1988. Geology of the Fernie W1/2 Map Sheet (and part of Nelson E1/2). B.C. Geological Survey, Open File Map No. 1988-14.
- Leech, G.B., 1960. Fernie Map Area, West Half, British Columbia, 82G W1/2. Geological Survey of Canada, Map 11-1960.
- Leech, G.B., 1958. Fernie Map Area, West Half, British Columbia, 82G W1/2. Geological Survey of Canada, Paper 58-10.
- Kung, R., Brown, D.A., Lowe, C., and Rencz, A., 1998(?). Geology and Landsat Imagery of the St. Mary River Area-West, Southeastern B.C. Geological Survey of Canada, Open File 3431.
 - Kung, R., Brown, D.A., Lowe, C., and Rencz, A., 1998(?). Geology and Landsat Imagery of the St. Mary River Area-East, Southeastern B.C. Geological Survey of Canada, Open File 3432.
 - Kung, R., Brown, D.A., Lowe, C., and Rencz, A., 1998(?). Geology and Landsat Imagery of the Findlay Creek Area, Southeastern B.C. Geological Survey of Canada, Open File 3433.
- Merrett, J.E., 1957. In Lode Metals, B.C. Minister of Mines Annual Report.
 - Merrett, J.E., 1954. In Lode Metals, B.C. Minister of Mines Annual Report.
 - Morris, R.J., 1999. Elko Group Mineral Claim, 1999 Geological Assessment Report. Assessment Report #26151.
 - Price, R.A., 1961. Fernie, East Half. Geological Survey of Canada, Map 35-1961.
 - Price, R.A., 1962. Fernie Map Area, East Half, Alberta and British Columbia, 82G E1/2. Geological Survey of Canada, Paper 61-24.

ш

ш

Statement of Qualifications

I Robert J. Morris, President, Morris Geological Co. Ltd. do declare:

- 1. That I graduated as a geologist from the University of British Columbia, Vancouver, with a degree of Bachelor of Science in 1973.
- 2. That I graduated as a geologist from Queen's University, Kingston, Ontario, with a degree of Master of Science in 1978.
- 3. That I am a member in good standing of the Association of Professional Engineers and Geoscientists of the Province of British Columbia (registration #18,301).
- 4. That I have been involved in the mining and mineral industry with work on grassroots exploration projects through to mining projects since my graduation in 1978.
- 5. That I am familiar with the subject area from fieldwork since 1998 and that I personally wrote and supervised the preparation of this report.

Dated this 10th day of January 2004, in Fernie, British Columbia.

PROVINCE

JSCIEN'

R.J. Morris, M.Sc., P.Geo.

L

U

ц,

Ы

Ы

ப

с I

Ы

L

ш

L

J

Ц

L

J

J

L)

U U

... ...

י נו

ل

L.

Ц

Wigwam 1, 2003 Assessment Report

Ч

ك

.____

5

Wigwam 1, 2003 Assessment Report

Ŀ

Appendix 1

Time Sheet, R.J. Morris 2003

Date	Time	Job
	(days)	(Elko Project)
7 May	0.5	Review data, organize GPS data
20 May	1.0	Visit site, clear roads, GPS old sample sites
21 May	1.0	Visit site, GPS old sample sites
30 Sept	1.0	Visit site, soil sample
2 Oct	1.0	Rock geochem stats, ship samples, download GPS
26 Nov	0.5	Soil geochem stats
5 Dec	1.0	Geochem data
6 Dec	0.5	Geochem data, report
	6.5	Total Days

Wigwam 1, 2003 Assessment Report

Ц

 \Box

ц,

ш

Ш

Ч

Ч

L

ц

L

Ч

ш

ப

ل

ل

لت

ப

لت

ا____

	L	С.	Ē		. C	. [. C	C	-	C	Ľ	L	, C	. C	(-	С.	Ľ	C	Ľ
	ample No.	Easting	Northing	Mo (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppb)	Ni (ppm)	Co (ppm)	Min (ppm)	Fe (%)	As (ppm)	U (ppm)	Au (ppb)	Th (ppm)	Sr (ppm)	Cd (ppm)	Sb (ppm)	Bi (ppm)
9 9 9	01-13	637580	5457284	2.71	4.6	9.03	68.3	17	1.6	1.1	1251	5.51	2.3	0.2	1.1	5.8	11.6	0.17	0.47	0.02
1	01-19	637055	5455877	2.27	13.71	35.42	37.1	86	7.4	2	345	1.69	6	0.3	0.9	1.4	67.2	0.06	0.49	0.09
ł	01-22	637117	5455866	4.24	7.61	118.59	280.3	273	1.2	10	130	5.02	15.2	0.1	0.8	4.3	56.6	0.81	0.35	0.23
	01-26	636885	5457209	3.58	29.12	9.09	137.8	35	2.1	1.5	1918	5.86	0.9	0.1	1.9	1.8	34.7	0.18	0.29	0.03
	01-28	636885	5457132	3.36	6.01	17.72	68	22	2.5	1.3	1849	5.36	0.6	0.1	1.1	2.1	45.8	0.21	0.17	0.02
	01-30	636926	5457107	3.03	9.49	4.9	113.6	21	0.5	1.8	1591	6.91	1.3	0.1	1.4	4.4	18.1	0.13	0.36	< .02
	01-35	637311	5456973	3.58	839.21	6.05	47.4	29	2.3	1.2	1866	4.96	1.1	0.3	1.2	2.9	13.2	0.13	0.38	< .02
	01-37	637272	5457001	0.51	7.78	40.58	19.5	52	2.5	1.8	641	1.06	0.8	0.4	0.9	1.7	22.4	0.15	0.6	0.24
	01-39	637345	5456692	2.81	3.41	2.01	79.2	36	11	6.2	615	5.54	4.4	0.2	0.4	1.7	4.7	0.05	0.12	0.06
Ô	96-1	638538	5457800	1	1	8	13	< .3	8	3	834	1.27	2	< 0	< 2	7	28	< .2	1	< 1
Ĩ	98-2	638585	5458320	2	2	< 3	6	< .3	4	1	1044	1.16	8	< 0	< 2	< 2	97	< .2	2	< 1
1	98-3	638665	5458400	1	5	5	20	< .3	12	11	1040	1.65	12	< 0	< 2	< 2	186	< .2	3	2
	98-4	638715	5458470	2	1	< 3	58	< .3	8	2	589	1.23	2	< 0	< 2	< 2	81	< .2	1	< 1
i.	98-7	638680	5459305	i 2	3	< 3	37	< .3	7	3	114	1.14	< 2	< 0	< 2	3	11	< .2	< 1	< 1
	96-8	638725	5459215	5 22	21	101	9	< .3	11	13	3287	2.6	10	< 0	< 2	< 2	59	0.3	3	2
	98-9	638650	5458220) 1	1	< 3	7	< .3	5	3	305	0.62	4	< 0	< 2	2	40	< .2	1	< 1
7	98-10	638720	5458260) 2	6	< 3	49	< .3	33	12	496	3.38	10	< 0	< 2	< 2	112	0.2	1	1
6	98-13	638735	5456790) 3	6	< 3	8	< .3	13	10	61	2.43	3	< 0	< 2	3	19	< .2	< 1	< 1
	98-16	638575	5456660) 1	15	72	33	0.3	13	7	58	2.31	43	< 0	< 2	7	53	< .2	4	< 1
h	98-17	635110	5463540) 1	< 1	6	19	< .3	11	9	417	1.87	< 2	< 0	< 2	10	16	0.2	1	<1
4	99-19	637070	5455855	5 3.66	3.49	10.95	332.6	55	0.9	1.8	474	8.37	< .1	0.1	1	4.3	17.6	0. 68	0.22	< .02
2	99-20	637045	5455880	5.35	21.5	49.29	2258.7	178	6.4	1.8	1667	4.57	2.3	0.1	2.5	0.5	37.7	11.99	1.65	< .02
	9 9-27	638750	5458440	1.95	3.55	2.02	67.8	21	9.5	2.4	149	0.96	0.9	0.1	0.7	3.3	27.5	0.05	0.24	0.03
ų	99-28	3 638740	5458450	0.78	9.59	11.34	16.2	270	3.6	6	163	0.31	4.2	0.2	0.7	4.4	29	0.03	2.09	0.83
	99-29	638760	5458430	1.42	11.21	28.04	204.2	231	15	15.6	111	2.52	3.9	0.4	1.5	5.8	37.9	0.04	5.5	0.95
	99-30	638660	545840	5 2.77	12.65	1.6	4.5	5 15	10.5	10.3	29	1.52	1.7	0.2	< .2	2.8	4.7	< .01	0.12	0.16
	99-31	638890	5458410	0.95	31.41	5.34	41.6	78	8	9.5	4871	3.32	4.8	0.4	1.9	5.5	112.7	0.02	2.71	0.65
20	99-32	2 638865	545836	5 0.59	8.05	6.04	25.4	42	4	7.4	6032	2.92	2.8	0.5	1.3	1.7	114.6	0.05	1.98	0.91

Ľ

٦	Г		Γ.	Γ.	Ľ.			Ľ	Ľ			Ľ		. C.		Ľ	Ľ	Ľ	Ľ
V (com)	Ge (%)	P (%)	La (ppm)	Cr (ppm)	Mg (%)	Ba (ppm)	TI (%)	B (ppm)	AI (%)	Na (%)	K (%)	W (ppm)	Sc (ppm)	TI (ppm)	6 (%)	Hg (ppb)	8e (ppm)	Te (ppm)	Ga (ppm)
< 2	0.35	0.074	79	21	0.03	149.7	0.041	2	0.77	0.034	0.32	1	2.4	0.05	0.01	18	0.2	< 02	2.2
7	1.65	0.015	4.1	59.6	0.8	48	0.006	< 1	0.24	0.003	0.03	3.1	1	0.17	0.01	23	0.1	0.04	0.5
< 2	0.95	0.065	59.4	6.5	2.34	56.3	0.019	1	2.27	0.005	0.23	0.2	2.6	0.13	0.22	145	< .1	0.07	9.3
2	1.4	0.045	26.4	34	0.12	33.9	0.014	< 1	0.61	0.027	0.07	1.4	7.6	0.02	0.01	44	0.2	< .02	2
< 2	2.39	0.056	31.9	30.6	0.23	81.6	0.021	1	0.56	0.023	0.2	1.2	5	0.03	0.01	25	0.5	0.02	1.5
< 2	1.4	0.113	61.7	8.2	0.15	114.1	0.03	د ۱	1.14	0.011	0.24	0.3	5.2	0.03	•0.01	_ 8	0.3	< .02	2.7
<	1.45	0.046	42.1	30.8	0.08	146.8	0.023	5	0.91	0.005	0.29	1.4	4.5	0.04	0.01	15	0.3	< .02	1.9
	0.09	0.025	12.4	11.3	0.02	247.4	0.01	3	0.79	0.062	0.28	0.5	1.5	0.09	< .01	13	0.4	< .02	1.4
<	0.05	0.03	7.4	6.4	1.71	104.1	0.026	< 1	2.84	0.003	0.09	0.3	2.5	0.02	0.01	9	0.3	< .02	15.6
0 0	5.12	0.067	41	15	2.7	19	< .01	< 3	0.47	0.01	0.22	< 2							
1	18.26	0.023	15	4	10.9	1101	< .01	< 3	0.12	0.02	0.07	< 2		L				L	L
2 2	5 18.03	0.024	15	10	9.92	116	< .01	< 3	0.26	0.01	0.01	< 2					ļ	L	
	2.85	0.034	19	13	1.42	210	< .01	< 3	0.32	0.01	0.06	2			Ĺ		ļ		
	5 0.06	0.016	s 9	25	5 1.12	561	< .01	4	0.95	0.01	0.09	10	ļ				ļ		
	3 11.93	0.021	15	6	5.8	81	< .01	< 3	0.11	0.01	0.08	< 2				ļ			
	4 6.29	0.047	22	2 7	3.79	13	< .01	< 3	0.36	0.01	0.27	2					ļ		
2	7 6.59	0.065	5 14	33	3 3.41	54	< .01	< 3	0.69	0.01	0.05	< 2		ļ		ļ	ļ		
8	3 0.39	0.009	9 19) 12	2 0.42	116	< 01	8	0.34	0.02	0.17	3					ļ	 	
9	7 1.2	0.05	5 16	6 8	3 0.48	3 100	< .01	8	0.6	< .01	0.37	2		·			ļ		
20	5 1.25	6 0.058	3 49) 9	0.35	5 290	< .01	6	0.43	0.01	0.27	2		ļ		ļ <u>-</u>	ļ	<u> </u>	
21 <	2 0.41	0.113	3 80) <.5	5 0.49	98	0.004	<u>ا < 1</u>	0.88	0.008	0.29	< .2	0.04	269	0.1	< .02	5.3	0.01	
22 <	2 2.85	5 0.019	9.3	3 10	0.25	5 119.6	0.001	< 1	0.1	0.005	0.07	1.6	0.03	3398	< .1	0.02	0.6	0.01	.
22	6 0.69	0.051	13.1	12.4	4 1.52	2 905.4	< .001	3	8 0.34	0.002	0.01	0.7	< .02	< 5	< .1	< .02	1.2	0.04	
24	2 0.6	5 0.043	3 25.4	4 6.6	6 0.32	2 361.9	0.001	8	0.41	0.002	0.23	0.2	0.15	64	0.1	0.06	1.5	0.02	
2	5 0.88	3 0.04	5 24	4 12.8	8 3.56	5 53.4	0.001	4	0.51	0.006	0.24	0.2	0.22	35	0.2	0.04	1.9	0.06	
24	2 0.0	4 0.014	4 10.2	2 12.6	8 0.07	7 95.9	0.001	1	0.33	0.002	0.16	0.9	0.03	63	0.1	0.03	8.0	0.43	
27 1	6 10.73	3 0.034	4 18.7	7 14.8	8 4.91	1 37.2	0.001	< 1	0.71	0.006	0.04	0.2	0.05	109	0.3	0.5	2.3	0.23	ļ
28	2 11.8	5 0.029	9 10.1	1 7,0	6 4.57	7 125.9	0.001	<1	0.28	0.009	0.08	< .2	0.08	32	0.3	0.23	0.9	0.4	

L	
L	· · ·
J	
പ	
Ч	
L	
L	•
	Appendix 3
Ч	Wigwam Waypoints and Soil Sample Coordinates
L	
Ц	
L	
L	i g
Ц	
L	
L	
i.J	Wigwam 1, 2003 Assessment Report

L

	. 4		e n Tan tangan ang tang							ris (proce)		umo (fabrer)	THE AT			uri (bibit)
	1	01-16	637811	5456550	0.5	355.15	302.24	40.2	1604	9.4	7.1	503	1.12	7.9	0.3	5.9
	2	01-17	636994	5455915	1.62	20.38	38.38	163.5	84	12.8	7.6	1506	4.11	7,4	0.3	0.7
	3	01-18	636935	5456003	0.82	23.93	13.96	50.1	117	14.5	7.3	588	2.13	8.1	0.3	2
	4	01-20	637108	5455869	3.84	44.58	743.9	658.8	607	4.2	4.6	2420	5.05	6.4	0.3	3.2
	5	01-21	637117	5455866	4.51	141.39	476.88	410.9	1327	5	11.4	1290	5. 98	22.2	0.3	5.91
	6	01-23	637050	5455826	1.48	30.28	36.56	131.1	85	10.2	6.6	1950	3.2	5.8	0.4	0.81
	7	01-24	637119	5456187	1.42	14.77	20.94	94.5	26	10	5.6	2201	3. 03	4.6	0.4	0.7
	8	01-25	636885	5457209	1.77	61.1	137.18	106.3	171	9.1	4.5	1304	3.54	4.5	0.5	< .2
	9	01-27	636885	5457132	0.97	13. 89	43.41	66 .9	27	9.3	4.1	397	1.96	2.9	0.4	< .2
	10	01-29	636865	545 7218	1.5	47.71	39.26	179.4	59	8.7	4.5	1049	3.91	3.1	0.5	0.8
. 1	11	01-31	636926	5457107	0.86	1 3.95	20.24	55.3	40	10.3	4.8	708	1.9	2.7	0.5	11
-	12	01-32	6371 8 5	5457162	1.17	22.11	16.4	80 .7	123	12.8	9	588	2.01	7.6	0.4	3.1
	13	01-33	637309	5457023	1.55	28. 69	47.05	70.9	44	6.9	3.5	1068	3.98	3.2	0.5	< .2
L	14	01-34	637311	5456973	3.91	64.83	67.77	106	275	17.6	5.7	1575	5. 86	6.2	0.6	3.5
_	15	01-36	637272	5457001	0.98	13. 0 8	22.41	84	44	8.5	3.5	1268	2. 49	2.5	0.4	3
	16	01-38	637403	5456886	0.79	20.4	45.52	95	35	12	7.9	702	3.51	5.4	0.7	0.5
ப	17	00-12	636612	5457407	0.89	18.53	11.67	45.4	62	11.3	5.6	452	2.51	3.3	0.6	0.7
	18	00-14	6366 52	5457313	0.51	18.61	12.2	51.1	64	14.6	6.3	435	1.96	3.9	0.4	0.4
	19	00-15	637820	5457245	0.59	144.72	199.24	100.9	817	9.8	7.7	852	2.01	6.8	0.4	9.4
L	20	00-17	637829	5457212	0.89	65.74	33.92	54.1	785	23.3	54.3	1440	2.83	6.7	0.8	19
	21	00-18	637823	5457237	0.82	92.44	314.26	194.9	856	18.2	15.5	1105	3.48	6.5	0.6	4.8
	22	00-19	637855	5456908	0.46	16.57	31.23	80.3	25	10.9	6.1	700	2. 46	2.2	0.6	< .2
L	23	00-21	637159	5456796	1.05	29.35	63.67	161.7	40	9.8	5	2548	3.24	3	0.5	< .2
	24	00-22	637199	5456460	1.68	10.43	10.19	45.7	58	9.1	4.5	329	2.54	3.6	0.3	< .2
	25	00-23	637281	5456200	0.96	15.78	13.84	47.6	86	11.4	6.5	691	2.54	5.8	0.3	2.4
Ц	26	00-24	637057	5455876	2.17	6.21	8.88	/5.2	/3	0.2	2.5	2371	4.19	1.2	0.3	1.3
	27	03-01	637846	5457128	0.53	6.15	7.14	34.1	16	6.6	2.7	285	1.39	1.8	0.3	0.4
	20	03-02	637 89 4	5457083	0.55	5.09	5.43	63.9	18	5.5	2.2	467	1.27	2.1	0.2	0.3
Ц	29	03-03	637919	5457019	0.54	9.59	11.14	94.2	32	9.6	4.5	1905	1.81	2.6	0.5	0.3
	30	03-04	637954	5456935	0.62	10.8	10.41	43.8	29	11.3	5.4	843	2.14	2.7	0.7	0.2
	31	03-05	637837	5457094	0.71	11./1	7,31	23	22	4.6	2.3	299	1.1	1.8	0.3	1.6
U	32	03-06	03///4	545/216	0.69	1.87	14.78	/5.3	29	7.5	3.1 2 E	020	1.02	2.3	0.3	0.7
	33	03-07	637732	545/1//	0.66	8.27	11.06	04.1	32	1.4	3.5	005	1.00	2.5	0.3	0.2
	34	03-08	03/003	545/1//	0.51	10 /.10	7.9	40.7 50.4	192	11.1	2.9	704	1.02	53	0.3	0.41
Ц	35	03-09	63/500	545/118	0,50	12.40	9.2	110.6	102	12.7	3.3	/94	2.12	5.5	0.4	< .2
	36	03-10	03/481	545/050	0.19	9.30	9.10	119.0	02	12.7	3.7	400	7.04	0.2	0.5	× .21
	37	03-11	03//0/	545/31/	0.00	11.02	19.79	102.0	20	0.5	3.0 E	140	2.10	3.0	0.3	
Ц	38	03-12	03//24	5457399	0.07	0.72	29.0	102.2		10.1	48	032	1.77	3.1	0.9	0.6
	39	03-13	03/0/0	343/40/	0.03	9.12	11 42	40.5	25	10.1	5.4	831	203	2.1	0.4	0.0
	40 نړ	03-14	03/030	5457505	0.02	12.10	11.42	02.5 AE +	23	11.0	 	500	1 0.9	л т Л 7	4.0 A N	0.0
Ч	41	03-15	637999	5457300	0.64	7.12	9.20	40.1 72	19	11.3	0.3 A 3	1659	1.50	21	0.0	د ی د ع
		03-16	637070	5457320	0.00	5.01	9.02 9.47	72 54	16	7.2	36	868	1.40	1.8	0.2	03
	4 3	03-17	03/9/6	5457329	0.56	0.01 6.34	17.12	70.4	24	18.6	5.0 A	620	1.85	27	0.2	1 7
С	44	03-18	030000	343/380	0.55	0.31	12.10	(3.4	L <u>~</u> 4	10.0	U	020	L_ <u>1.00</u>	<i>د. ا</i>		

Ц

Ц

Ц

L
	÷	Mild and P				onutani)	·		- 		» (الشال ة)»	niej (vid) ×	car films)	~14 .30 }*	O (Jame)	Ma (TO) -	HALL VIEW	Pret(30)
	1	3.7	57.1	0.45	45.11	0.64	9	2. 98	0.063	11.7	6.7	0.84	701.5	0.006	3	0.41	0.003	0.11
	2	3.8	26	0.45	0.92	0.26	18	0.68	0.084	20	11.9	0.34	219.2	0.022	5	1.19	0.004	0.28
L	3	5	14.6	0.16	1.24	0.27	14	1.05	0.047	20	10.8	0.4	176.8	0.023	2	1.24	0.004	0.16
	4	3.1	79.2	4.35	1.37	0.14	5	4.18	0.066	33	4.6	0.25	173.6	0.003	1	0.72	0.002	0.13
	5	4	48.2	2.16	1.32	0.53	7	1.05	0.071	52.4	4	0.32	143.2	0.015	2	1.08	0.003	0.19
U	6	3.8	21.1	0.58	0.66	0.22	13	0.4	0.051	21.9	8.9	0.27	2 3 1.8	0.024	2	1.35	0.004	0.24
	7	4	28.5	0.28	0.55	0.26	16	0. 46	0.052	22.2	9.1	0.25	257.2	0.033	3	1.37	0.004	0.2
. 1	8	4.2	26.5	0.33	0.47	0.32	15	0.42	0.039	21.3	9.1	0.26	186.7	0.052	1	1.44	0.006	0.14
	9	4.4	14.8	0.12	0.4	0.21	13	0.18	0.029	20.7	9.4	0.24	139.7	0.035	< 1	1.13	0.005	0.12
	10	4	22.6	0.26	0.4	0.24	14	0.31	0.043	21.6	8.4	0.24	129.8	0.048	1	1.7	0.006	0.17
. 1	11	4.1	23 .7	0.14	0.41	0.22	14	0.34	0.034	20.9	8.9	0.26	180.5	0.032	2	1.35	0.006	0.14
	12	4.1	46.7	0.39	1.82	0.25	13	3.61	0:079	17.4	7.7	0.69	153	0.005	4	0.88	0.004	0.09
	13	4.2	17.4	0.2	0.67	0.19	14	0.3	0.049	27.7	7.2	0.2	176.3	0.04	< 1	1.13	0.005	0.13
. 1	14	5.2	23.9	0.26	0.85	0.31	11	0.23	0.049	41.1	6.7	0.18	185.9	0.032	1	1.3	0.005	0.11
	15	3.3	19.5	0.15	0.32	0.23	15	0.23	0.04	21.1	8.4	0.21	277.4	0.052	< 1	1.43	0.007	0.12
	16	6	12	0.11	0.92	0.46	46	0.15	0.064	39.9	12.2	0.16	140.8	0.037	2	0.99	0.004	0.08
ப	17	4.1	13	0.09	0.59	0.2	16	0.28	0.029	17.9	13.3	0.3	126.7	0.051	3	1.79	0.006	0.19
_	18	4.9	8.5	0.13	0.42	0.21	17	0.23	0.034	18.5	13	0.39	199	0.027	2	1.4	0.005	0.2
	19	4.1	39.3	0.53	14.62	0.44	16	0.68	0.035	19.7	7.5	0.32	308.3	0.036	2	1.17	0.007	0.15
J	20	3.6	154.7	0.3	6.89	0.85	15	6.6	0.043	11.8	12	2.47	184.5	0.013	3	0.84	0.005	0.11
	21	4.2	28.9	0.71	19.16	0.54	21	0.54	0.044	17.1	13.1	0.45	401.7	0.06	2	2.27	0.013	0.17
	22	4.4	22.3	0.14	0.4	0.25	28	0.33	0.061	26	10.9	0.24	416.5	0.029	1	1.3	0.006	0.15
L	23	3.1	22.6	0.29	0.36	0.21	19	0.31	0.089	24	9.6	0.25	329.1	0.047	2	1.81	0.006	0.14
	24	4.1	20.4	0.07	0.6	0.18	12	0.25	0.046	36.9	7.7	0.2	107.6	0.022	2	0.86	0.003	0.13
	25	4.6	11.1	0.23	1.23	0.25	10	0.36	0.043	23.3	11.3	0.39	125.4	0.01	2	0.99	0.003	0.12
J	26	0.6	68.9	0.67	0.49	0.04	< 2	11.4	0.088	8.9	1	0.13	246.7	0.001	1	0.32	0.003	0.07
	27	2.8	13.1	0.03	0.27	0.17	13	0.13	0.023	11.8	6.5	0.15	209.3	0.031	2	0.81	0.008	0.08
	28	1.4	9.7	0.06	0,26	0.15	11	0.11	0.035	10.5	6.1	0.15	207.7	0.016	1	0.65	0.004	0.08
Ч	29	2.5	21.3	0.25	0.3	0.24	16	0.46	0.063	12.4	8.5	0.19	5/6.5	0.045	3	1.49	0.008	0.14
	30	3.9	15.6	0.12	0.4/	0.23	18	0.3	0.027	10.7	9.1	0.2	000	0.044	2	0.56	0.007	0.13
	31	3	93.4	0.09	0.66	0.16	11	0.2	0.034	10.9	5.4	0.11	302.2	0.013	1	1.07	0.005	0.00
L	32	2.2	18.1	0.14	0.31	0.22	15	0.32	0.041	10.0	0.9	0.2	210.2	0.045	3	1.07	0.000	0.13
	33	2.9	14.9	0.13	0.29	0.2	14	0.25	0.034	14.0	75	0.19	1726	0.045		1.14	0.000	0.13
	34	2.9	13.3	0.07	0.20	0.18	14	0.10	0.052	14.2	7.5	0.10	1/2.0	0.04	2	1.2	0.000	0.16
Ч	35	3.2	17	0.13	2.37	0.24	13	0.49	0.04	13.3	0.0	0.20	308.1	0.030	2	2 41	0.007	0.10
	36	2.4	19.1	0.09	0.09	0.2	10	0.20	0.235	3	1.1	0.10	106.0	0.0017	1	0.76	0.010	0.12
	37	3.5	12.9	0.15	0.63	0.22	19	0.24	0.049	20.0	0.5	0.20	302.8	0.017	2	1.65	0.000	0.1
L	38	4.2	21.8	0.31	0.51	0.20	22	0.29	0.040	14.9	04	0.29	272.0	0.042	2	1 38	0.000	0.16
	39	3.4	14.2	0.1	0.4	0.2	14	0.24	0.022	19.0	10.1	0.23	2507	0.042	2	1.50	0,006	0.13
. 1	40	3.7	11.9	0.15	0.4	0.21	17	0.2	0.039	77 3	10.1 0.4	0.20	136.6	0.007	1	1.01	0.003	01
L	41	4.4	10.4	0.12	0.00	0.21	14	0.13	0.031	10.6	9.4 R A	0.01	586.2	0.021	2	1 23	0.007	0.09
	42	1.6	16	0.11	0.26	0.2	19	0.33	0.040	10.0	4-0 6 9	0.21	254 3	0.033	1	1.06	0.007	0.11
	43	2.6	11.6	0.12	0.27	0.2	17	0.2	0.00	10.4	0.0 A P	0.23	695 6	0.049	2	2.1	0.009	0.13
U	- 44	3.1	19.6	0.08	0.24	0.24		0.21	10.000	10.4	5.0	1		1_0.0-40	1	L		

ப

1

۰.

Ц

J

Ч

	- 35		Sector sector 1			Section 2			Section 1.	Contraction of the set
	Ť	0.3	1.7	0.06	0.04	465	1. >	0.03	1	15
	2	0.2	4.1	0.11	0.03	42	0.1	0.03	3.6	15
	3	0.1	2.5	0.09	0.01	38	0.2	0.03	3.5	15
	4	< .1	7	0.07	0.03	1517	0.5	0.03	1.9	15
	5	< .1	5.5	0.31	0.02	268	0.6	0.04	3.8	15
U	6	< .1	4.8	0.11	0.03	34	0.2	0.02	3.9	15
	7	0.1	4.7	°0.09	0.02	39	< .1	0.02	4	15
<u>с</u> т	8	< .1	5,1	0.08	0.01	72	0.3	0.03	4.5	15
	9 ž-	< .1	2.3	0.07	< .01	24	0.3	0.03	3.3	15
	10	< .1	5.7	0.08	0.01	39	0.2	0.02	5.4	15
• 1	11	< 1	2.3	0. 08	< .01	24	0.3	0.02	4	15
L	12	< .1	2.5	0.16	< .01	72	0.1	0.05	2.2	15
	13	<.1	3.6	0.07	< .01	32	0.3	0.02	3.7	15
• 1	14	< .1	4.8	0.06	0.01	100	0.5	0.02	3.7	15
	15	0.1	2.6	0.08	< .01	30	0.1	0.02	4.3	15
	16	<.1	3.4	0.07	< .01	25	0.4	0.02	3.6	15
	17	< .2	3.4	0.1	< .01	40	0.3	< .02	4.2	15
	18	< .2	2.6	0.08	0.01	36	0.2	< .02	3.3	15
	19	< .2	2.8	0.06	0.01	151	0.2	0.16	2.7	15
1 6	20	< .2	3.6	0.11	0.03	288	0.4	0.05	1.9	15
0	21	< .2	3.7	0.08	0.02	115	0.1	0.17	5.2	15
	22	< .2	2 3	0.08	0.01	17	0.2	< .02	4.3	15
1.1	28	< .2	3.8	• 0.1	0.03	59	0.1	0.02	5	15
	24	< .2	2,5	0.05	< .01	25	0.2	2 0.02	2.4	15
	25	< .2	2 3	0.06	0.03	42	0.2	2 0.03	2.3	15
11	26	< .2	2.9	0.04	0.05	179	0.3	.02 <	1	15
-	27	< .1	1.7	0.06	< .01	8	0.2	2 < .02	2.3	15
	28	.1 >	1.1	0.05	0.01	11	0.2	2 < .02	2	2 15
ш	29	⊬1	3	0.08	0.01	23	0.4	4 < .02	3.8	15
-	34	< .1	4.4	0.07	0.01	25	0.4	4 < .02	3.7	/ 15
	31	< .1	3.6	0.06	0.02	184	0.3	3 0.03	1.5	5 15
ل	32	. < .1	1.5	0.07	0.01	22	0.3	3 < .02	2.9) 15
	33	< .1	2.1	0.07	< .01	21	0.3	3 < .02	3,1	15
	3	<u>ج_</u>	1.8	0.07	< .01	12	. 0.2	2 < .02	3.2	2 15
U	35	ii	1 3.2	0.14	< .01	28	0.4	4 < .02	3.7	7 15
	36	0.1	1 2.4	0.09	< .01	19	0.4	4 < .02	6.3	3 15
	37	< .	2.8	0.07	< .01	20	0.4	4 0.02	2.0	3 15
ل	38	<u>ح :</u>	1 3.3	0.1	< .01	22	2 0.4	4 < .02	4.	7 15
	39) < :	1 2.7	0.09	< .01	18	3 0.4	4 < .02	3.0	3 15
	40) < .:	1 27	0.08	0.01	20	0.;	3 < .02	3.9) 15
J	4	F < .:	1 2.8	0.07	< .01	19	0.	3 0.02	2.9	3 15
	4	2 < .*	1 1.9	0.07	< .01	18	3 O.	4 < .02	3.9	5 15
	4	• < .	1 1.6	5 0. 06	< .01	14	4 0.	3 < .02	2	3 15
ப	4	• < .	1 2.3	3 0.09	< .01	18	3 0.	3 < .02	2 6.	1 15

ن

L

ப

u ،.

,

J	۰.
L	
L	
L	
ц	
L	۰.
ц	
ц	Appendix 4
ال ا	Geochemical Analysis Certificates
പ	
ц	· ·
L	
L	
L	
L	
L	
Ч	۹,
ц	

Wigwam 1, 2003 Assessment Report

Ц

TT		_				Mo	rr:	Ls	Geo 624	log: 3 Kubi	.ca] nec R	Coad,	Q. Fern	<u>Ltd</u> ie BC	1.] VOB	PRO 1M1	JE(Su	<u>'T</u> bmit	ELK(ted by) F :Rob	il.	e # J, Mo	A: rris	304	771									
WPLE#	Мо ррлп	Cu ppm	Pb ppm	Zn ppm	Ag ppb	Ni ppm	Со ррт	Mn ppm	Fe %	As ppm pp	J Au n ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm j	V Mqc	Ca %	PL %Ipp	a Ci n ppi	n Mg	B pp	a 1 n	⊺i f ≵ppr	8 A1 1 %	Na %	K % p	W Sc pm ppm	: Tl ppm	S % p	Hg S ppb pp	е Те жпррп	Ga S ppm	lamp1 g
3-01 3-02 3-03 3-04 3-05	.53 55 .54 .62 .71	6.15 5.09 9.59 10.80 11.71	7.14 5.43 11.14 10.41 7.31	34.1 63.9 94.2 43.8 23.0	16 18 32 29 22	6.6 5.5 9.6 11.3 4.6	2.7 2.2 4.5 5.4 2.3	285 467 1905 843 299	1.39 1.27 1.81 2.14 1.10	1:8 2.1 2.6 2.7 1.8	3 .4 2 .3 5 .3 7 .2 3 1.6	2.8 1.4 2.5 3.9 3.0	13.1 9.7 21.3 15.6 93.4	.03 .06 .25 .12 .09	.27 .26 .30 .47 .66	.17 .15 .24 .23 .16	13 11 16 18 11	13 . 11 . 46 . 30 . 20 .	023 11. 035 10. 063 12. 027 16. 034 7.	3 6.1 5 6. 4 8.1 7 9.1 6 5.1	5 .15 1 15 5 .19 1 .20 4 .11	209 . 207 . 576 . 365 . 982 .	3 .03 7 .01 5 .04 0 .04 2 .01	81 16 15 14 13	81 65 1.49 1.48 .56	.008 .004 .008 .008 .007 .003	08 < 08 < 14 < 13 < 08 <	1 1.7 .1 1 1 1 3.0 .1 4.4 .1 3.6	7 .06 .05 .08 .08 .07 5 .06	01 01 01 01 01 .02 1	8. 11 23 25 184	2< 02 2< 02 4< 02 4< 02 3 .03	2.3 2.0 3.8 3.7 1.5	1 1 1 1 1
3-06 3-07 3-08 3-09 3-10	. 69 . 66 . 51 . 56 . 19	7.87 8.27 7.18 12.48 9.36	14.78 11.06 7.90 9.20 9.18	75.3 64.1 46.7 59.4 119.6	29 32 29 182 62	7.5 7.4 7.7 11.1 12.7	3.1 3.5 2.9 5.3 3 7	828 805 275 794 408	1.62 1.68 1.62 2.12 1.04	2.5 2.5 . 1.9 . 5.3 . 6.2 .	3 7 3 .2 3 .4 4 <.2 5 <.2	2.2 2.9 2.9 3.2 2.4	18.1 14.9 13.3 17.0 19.1	14 13 07 13 09	. 31 . 29 . 26 2. 37 . 09	.22 .20 .18 .24 20	15 . 14 . 14 . 16 . 13 .	32 .0 25 .0 16 .0 49 .0 26 .0	041 10. 034 14. 032 14. 040 13. 255 9.	8 6.1 5 7.1 2 7. 3 8.1 0 7	9.20 0.19 5.18 8.26 7.18	278 244 172 199 328	2 .04 4 .04 6 .04 1 .03 1 .03	41 45 40 38 31	1.07 1.14 2.1.20 2.1.41 3.2.41	006 008 008 007 018	. 11 < . 13 < . 11 < . 16 < . 12	.1 1.2 .1 2.1 .1 1.8 .1 3.2 .1 2 4	5 07 L .07 3 .07 2 14 4 09	.01 = 01 =.01 =.01 = 01	22 . 21 12 . 28 . 19	3<.02 3<.02 2< 02 4<.02 4<.02	2.9 3.1 3.2 3.7 6 3	1 1 1 1 1
3-1) 3-12 E 03-12 3-13 3-14	. 68 . 67 . 66 . 63 . 62	10.40 11.92 11.61 9.72 8.68	19.79 29.80 32.71 9.51 11.42	73,0 102,2 99,7 48,3 62,5	26 33 34 14 25	8.5 11.1 10.6 10.1 10.8	3.8 6.0 6.1 4.8 5.4	740 1471 1434 932 831	2.18 2.34 2.27 1.77 2.03	3.8 3.7 3.6 2.7 3.0	3 2.0 9 1 1 9 1.5 4 .6 4 .8	3.5 4.2 4.1 3.4 3.7	12.9 21.8 20.4 14.2 11.9	.15 .31 .32 .10 .15	. 63 51 . 52 . 40 . 40	. 22 . 28 . 28 . 20 . 21	19 22 21 14 17	24 29 29 24 20	044 25. 048 19. 046 19. 022 14. 039 18.	3 8. 5 11. 5 9. 8 9 8 10.	3 23 0 29 7 27 4 25 1 28	196. 392. 403. 272. 250.	9 .01 8 .04 6 .04 1 .04 7 .01	17 14 13 12 37	1 76 2 1.65 1 1.54 2 1.38 2 1.40	005	10 < 20 < 20 < 16 < 13 <	1 2.1 1 3.1 1 3.1 1 2 1 2	3 .07 3 10 4 10 7 09 7 .08	<.01 <.01 <.01 <.01 <.01	20 22 24 18 20	4 .02 4< .02 4< .02 .4< .02 .4< .02 .3< .02	2.6 4.7 4.5 3.6 3.9	1 1 1 1 1
3-15 3-16 3-17 3-18 TANDARD DS5	.64 66 .58 .55 5 12.01	12 12 7.03 5.01 6.31 137.56	14.28 8.82 8.47 12.18 23.93	46.1 72.0 54.0 79.4 137.1	21 18 16 24 282	11.3 8.2 7.2 18.6 24.3	6.3 4.3 3.6 6.0 11.9	509 1658 868 620 759	1 98 1 46 1 37 1 85 3 00	4.7 2.1 1.8 2.7 18.7 5.	6 .9 3 «.2 2 .3 4 1.7 8 42.0	4.4 1.6 2.6 3.1 2.5	10.4 16.0 11.6 19.6 46.7	.12 .11 .12 .08 5.30	. 58 . 28 . 27 . 24 3. 73	21 20 20 24 5.00	17 14 12 17 58	13 33 20 21 72	031 22. 046 10. 030 12. 088 10. 100 11.	39. 68 06 49. 2188.	4 .31 4 .21 8 .21 6 .23 8 .69	136 586 254 695 5135	6 02 2 02 3 03 6 04 6 09	21 28 33 49 92 1	1 1.01 2 1.23 1 1.06 2 2.10 7 1.99	.003 .007 .007 .009 .034	10 < 09 < .11 < .13 < 13 <	1 2. 1 1. 1 1. 1 2. 9 3	3 07 9 07 5 .06 3 .09 4 1.01	<.01 < 01 < 01 < 01 < 01	19 18 14 18 18 171 4	3 02 4< 02 3< 02 3< 02 9 82	2 9 3.5 3 0 6 1 6.4	1 1 1 1 1
DAJ	GROUF UPPER - SAN	P 1F15 LIMI IPLE T	- 15. TS - 7 YPE: 5	.00 GM AG, AU SOIL S OCT 3	SAM , Hg S80 200	PLE 1 , W, 60C	LEACH SE, SE SE SE,	ED W TE, ampli RE	ITH 9 TL, G es be	0 ML 2 A, SN ginnin T MAJ	2-2 100 1 'RE LED	1CL-H PPM; ' are : 00	INO3-1 MO, <u>Reru</u>	H20 A CO, UIDS a 22/	t 95 c0, 9 nd 11	DEG. 58, B 18E'	C F I, T are SIC	OR O K, U Reje	NE HOU , B = <u>ct Rer</u> D BY	R, DII 2,000 <u>uns.</u>			300 PB,	ML, ZN, ZN, TOYE	NALYS NI, H	SED B IN, A EONG,	Y ICP S, V,	/ES & LA, JANG;	MS. CR = CERTI	10,00 F [ED	0 PPN B.C.	1. ASS/	YERS	

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACMB	ANAL	TIC	AL L	ABC	RA	ron	İB	S L	TD	. ≈		85:	2 8		has	TI	- Gas	s 1	<u> </u>	VAN	cot		R B	ic (- V62	A 11	<u>ر</u> ۱۵		PHC)NE	(60	- 4)2	53.	515	8 1	ZAX	(60	4);	253	-17	16	Ĺ.
ÀÀ	(ISO	9002	Acc	red	11t(ed	Co	.)					ge	oC	HE	MIC	CAI	. P	1NA	ΤŢ	8I:	s c	:BF	RTI.	FI	CAT	H													Á	à	
							Mo	<u>rr</u>	1 <i>8</i>	Ğ	10] 243	OC Kub	<u>ic</u> inec	al Ro	Co ad,	0 . Feri	Lt	đ. Sć i	VOB	<u>PRO</u> 1111	JE(CT ubbinit	E]	ko i by:	Ro	Fil bert	e J. M	‡ A: orris	201	111	.3									T	τ	ہ ا
PLE#	Mo ppm	Си ррл	і Р і рр	b M	Zn ppm	Ag ppb	Ni ppm	C pp	o n p	Mri opm	Fe ۲	As ppm	U ppm	Α ρρ	u T bpp	'n nn p	Sr pm	Cơ ppm	St ppm	e Br	t t n ppr	V C	a \$	P X I	La ppm	Cr ppm	Mg X	B pp	a 1 n	Ti Xipp	8 xm	A] %	Na %	К Х рі	W S parpp	ic xm p	T) pm	S I X p	Hg S pb p(Se pm_p	Te pm	Са ррт
13 19 22 26	23 2 71 2 27 4 24 3 58	21 4 60 13 71 7 61 29 12	2 90 354 1185 90	1 3 6 2 3 9 28 9 13	1 63 17.1 10.3 17.8	• 17 86 273 35	* 2 1 6 7.4 1 2 2.1	1 2 10 1	1 1 12 0 3 0 1 5 19	<1 251 5 345 1 130 5 918 5	.01 .51 .69 .02 .86	2 23 60 152 9	< 1 2 3 1 1	1	5 <. 1 5 9 1 8 4 9 1	1 1 8 11 4 67 3 56 8 34	3 < 6 2 6 7	01 17 06 81 18	< 02 47 49 35 29	2 < 02 02 0 02 0 02 0 02	2 *<2 2 <2 9 7 3 <2 3 7	2 1 2 .3 7 1.8 2 9 2 1.4	1< (5 (5 (5 (0 ()01)74 7)15)65 5)45 2	<.5 9 0 4 1 9 4 6 4	29 210 596 65 340	< 01 03 .80 2 34 12	1 149. 48. 56. 33	7 0(7 0/ 0 0(3 .0) 9 0)	05 · 41 06 · 19 14 ·	<1 < 2 <1 1 2 <1	01 77 24 27 61	287< 034 003 005 027	01 32 1 03 3 23 07 1	1 0 2 1 1 2 2 4 7	1 < 4 0 6	02< 05 17 13 02	01 01 01 22 1 01	<5 < 18 23 45 < 4 4	1 < 2 < 1 1 2 <	02 02 04 07 02	< 1 2 2 5 9 3 2 0
8 10 15 17 19	3 36 3 03 3 58 51 2 81	6 01 9.49 839.21 7 76 3 41	17.7 49 60 405 20	26 011 54 81 17	68.0 13.6 17.4 19.5 19.2	22 21 29 52 36	25 2.3 25 110	1 1 1 6	3 16 8 15 2 16 8 6 2 6	349 5 591 6 366 4 541 1 515 5	36 91 .96 06 54	.6 13 11 8 44	1 1 3 4 2	1 1 1	12. 44. 22 91 41	1 45 4 18 9 13 7 22 7 4	8 1 2 4 7	21 13 13 15 05	17 36 38 60 12	0 5 < 0 5 < 0 5 < 0 7 7 0 1 2 0	2 <2 2 <1 2 <1 4 <1 6 <1	223 214 214 40 20	9 (0 1 15 (19 (15 ()56 3 113 6 046 4 025 1 030	19 17 21 24 74	30 6 8 2 30 8 11 3 6 4	23 19 .00 07 1 71	81 114 146. 247 104	6 0; 1 0; 8 0; 4 0; 1 0;	21 30 23 10 26	1 1 5 3 <1 2	56 14 91 79 84	023 011 005 062 003	20 1 24 29 1 28 09	25 35 44 51 32	0 2 5 5 5	03 03 04 09< 02	01 01 01 01 01	25 B 15 13 9	5 3 < 3 < 4 < 3 <	02 02 02 02 02 02	15 27 19 14 56
idard ds	53 9.39	120.19	33.3	0 15	56.7	294	35.8	12.	4 7	794 3	.04	2 9 .8	58	19.	84	2 25	.7 5	47	5 23	8 5.3	6 7.	3.5	<u>, 1</u>	084 1	6.5	175 6	5	146.	8 0	87	2 1	67	029]4 4	.12	.71	03	. 02 2	223 1	11	14	60
D ATE	RECE	IV B D	: AF	PR 2	9 20	002	נס	ATB	R	EPO	RT	MA:	ILB	D:	\mathcal{N}_{i}	lar	7	1	 0	2	SI	g ne i	DE	в ч . (<u>C</u> .	ſ.Ĺ		/	τογ	E, (C.LE(DNG,	J.	WANG	; CEI	RTIF	IED	B.C	. AS	SATE	RS	
All re	eultr	ate co	nsider	ed	the	con	fide	enti	alr	3F A PA	erti	, of	the	cLi	ent	. Ac	:me :	ass:	.mes	the	- 1 i :	abili	itie	es fo	or a	ctual	CO	t of	the	ana	alvs	is c	nly					Da	ata	/ F	A	

: ;

							Moj	<u>r1</u>)	8 G	6243	.og Kub		OCI al	CO	IC J	LA itd.	NAL <u>PF</u> 08 11	101 101 11	IS EC Subi	CIEI FE	RTI Lkc	FIC. F Robe	AT: il:	EE E# J. Mor	A2	01114	ł					4	
AMPLE#	Мо .ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppb	N1 ppm	Co ppm	Min ppm	Fe 1	As ppm	U Mqq	Au ppb	Ťh ррях	Sr ppm	Cd ppm	Sb ppm	B1 ppm	V ppm	Ca ¥	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti ¥	B A1 ppm \$	Na ¥	K W Sc ≵rppm ppm	T) Ppm	S ¥	Hg Se ppb ppπ	Te ppm	Ga Sampi ppm
·1 1-16 1-17 1-18 1-20	1 30 50 1 1 62 82 3 84	2 40 355 15 20 38 23 93 44 58	2.26 302.24 38.38 13.96 743.90	35 7 40.2 163.5 50 1 658 8	11 1604 84 117 607	39 94 128 14.5 42	3.5 7.1 7.6 7.3 4.6	498 503 1506 588 2420	1 68 1 12 4 11 2 13 5 05	4 7.9 7.4 8.1 6.4	16 3 3 3 3	3 59 7 20 32	4 9 3 7 3.8 5.0 3 1	63.7 571 260 14.6 792	* 01 45 45 16 4 35	03 45.11 92 1.24 1.37	11 64 26 27 14	37 9 18 14 5	52 2 98 68 1 05 4 18	084 063 084 047 066	6 1 11 7 20.0 20 0 33.0	18 5 6 7 11 9 10 8 4 6	47 84 34 40 25	205 8 701 5 219 2 176 8 173 6	107 006 022 023 003	*1 1 08 3 41 5 1 19 2 1 24 1 72	055 003 004 004 002	41 1 3 1 5 11 3 1 7 28 2 4 1 16 1 2 5 13 < 1 7 0	23< 06 11 09 07	01 04 03 01 03	<pre><5 < 1 465 < 1 42 1 38 2 1517 5</pre>	<.02 03 03 03 03	4.0 1.0 3.6 3.5 1.9
1 - 21 1 - 23 1 - 24 1 - 25 1 - 27	4 51 1 48 1 42 1 77 97	141.39 30.28 14.77 61.10 13.89	476 88 36 56 20 94 137 18 43 41	410.9 131.1 94.5 106.3 66.9	1327 85 26 171 27	5.0 102 100 91 93	11 4 6 6 5.6 4 5 4.1	1290 1950 2201 1304 397	5 98 3 20 3 03 3 54 1 96	22.2 58 4.6 45 29	3 4 5 4	59 .8 7 <2 <2	4 0 3.8 4 0 4 2 4 4	48 2 21 1 28 5 26 5 14 8	2 16 58 28 33 12	1 32 66 .55 47 40	53 22 26 32 21	7 13 16 15 13	1 05 40 46 42 18	071 051 052 039 029	52 4 21 9 22 2 21 3 20 7	40 89 91 91 94	32 27 25 26 24	143 2 231 8 257 2 186 7 139 7	.015 024 033 052 035	2 1 08 2 1 35 3 1 37 1 1 44 <1 1 13	003 004 004 006 005	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	31 11 09 08 07<	02 03 02 01 01	268 .6 34 2 39 < 1 72 3 24 3	04 02 02 03 03	3 8 3.9 4 0 4 5 3 3
1-29 - 01-29 1-31 1-32 1-33	1 50 1 50 86 1 17 1 55	47 71 47 83 13.95 22 11 28 69	39 26 38 16 20 24 16 40 47 05	179.4 184.6 55.3 80.7 70.9	59 59 40 123 44	8.7 8.8 10.3 12.8 6.9	4 5 4 6 4 8 9 0 3 5	1049 1051 708 588 1068	3 91 3 95 1 90 2 01 3 98	3 1 3.4 2.7 7 6 3 2	5 5 .4 5	8 8 1 1 3 1 < 2	4 0 4 2 4 1 4 1 4 2	22 6 22 2 23 7 46 7 17 4	26 25 14 39 20	40 40 .41 1.82 67	24 22 22 25	14 15 14 13 14	31 32 34 3 61 30	.043 043 034 .079 .049	21 6 21 8 20 9 17 4 27 7	84 83 89 77 72	24 24 26 69 20	129 8 129 6 180 5 153 0 176 3	048 059 032 005 .040	1 1 70 3 1 80 2 1 39 4 88 <1 1 13	006 007 006 004 005	17 < 1 5 7 18 < 1 5 7 14 < 1 2 5 09 < 1 2 5 13 < 1 3 6	08 08< 08< 08< 08< 08< 07<	01 01 01 01 01	39 2 33 3 24 3 72 1 32 3	2 02 8 03 8 02 05 8 02	5 4 5 5 4 0 2 2 3 7
1 - 34 1 - 36 1 - 38 TANDARD	3 91 98 79 9 25 i	64 83 13 08 20 40 125 17	67 77 22 41 45 52 33 48	106.0 84.0 95.0 153.0	275 44 35 294	17 6 8.5 12 0 34 5	57 35 79 12.3	1575 1268 702 807	5.86 2.49 3.51 3.05	62 25 54 303	6 4 7 5.5	35 30 5 208	52 33 60 41	23.9 19.5 12.0 25.7	26 15 11 5 36	85 32 92 5.20	31 23 46 5.25	11 15 46 73	23 23 15 51	049 040 064 067	41 1 21 1 39 9 16.3	67 84 122 1800	18 21 16 56	185 9 277 4 140 8 146 3	. 032 052 037 . 084	1 1 30 <1 1 43 2 99 2 1 66	005 007 004 027	11 < 1 4 8 12 1 2 6 08 < 1 3 4 14 3.7 2.6	3 .06 5 08< 4 07< 5 1.04	01 01 01 .03	100 30 25 231 1	02 02 02 02 1 02 2 1 13	37 43 36 6.0

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

	credited Co.)	GEOCHEM	ICAL ANALYS	SIS CERTIFICAT	E		ÅÅ
	Morris	Geological Co 9053 Hwy #3 W., Fer	. Ltd. PROJ nie BC VOB 1M1	JECT ELKO Fil Submitted by: Robert J	e # A003740 . Morris		
SAMPLEI	Ho Cu Pb Zn Ag H	1 Co Min Fe As U Au Th e poer poer \$ poer poer poer	Sr Cd Sb Bi	V Ca P La Er Mg Ba T Na 1 1 Dom Dom 1 Dom	Ti B AT Na K W Sc I' 1: ppm 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1:	S Hoj Se Te GaSample % ppb ppm ppm ppm gm	<u> </u>
	<u> </u>				k) 3170 006 19 < 2 3 4 10 <	01 40 3 < 02 4 7 15	
DO 12 DO 14	51 18 61 12 20 51.1 64 14	5 5 5 432 2 5 1 3 5 6 7 4 1 6 6 3 435 1 96 3 9 3 4 4 9	85 13 47 21 1	7 23 034 18 5 13 0 39 199 0 0	127 Z I 40 005 20 < 2 Z 6 08	01 36 2 < 02 3 3 15	
00 15	59 144 72 199 24 100 9 817 9	8 7 7 852 2 01 6 8 4 9 4 4 1	39 3 53 14 62 44 1	6 68 035 19 7 7 5 32 308 3 0	136 2 1 17 007 15 < 2 2 8 06	01 151 2 16 2 7 15	
00 17	89 65 74 33 92 54 1 785 23	3 54 3 1440 2 83 6 7 8 19 0 3 6	154 7 30 6 89 85 L	15 6 60 043 11 8 12 0 2 47 184 5 0	113 3 84 005 11 42 36 11 146 3 2 7 013 17 42 3 7 04	03 268 4 05 19 15	
00 18	82 92 44 314 20 194 9 800 18	2 4 9 4 9 5 6 9 4 6 4 2	20 9 11 19 10 34 2	1 .54 044 1/1 10 1 45 401 / V			
00-19	46 16 57 31 23 80 3 25 10	9 6 1 700 2 46 2 2 6 < 2 4 4	22 3 34 40 25 2	28 33 061 26 0 10 9 24 416 5 0.	029 0 0 006 0 5 < 2 3 0 08	01 17 2 < 02 4 3 15	
00 21	1 05 29 35 63 67 161 7 40 9	8 5 0 2548 3 24 3 0 4 < 2 3 1	22 6 29 36 21 1	19 31 089 24 0 9 6 25 329 1 0 12 35 046 36 9 7 7 70 107 6 0)47 2181 006 14 < 238 10 122 2 86 003 13 < 235 05 4	03 59 1 02 5 0 15 01 25 2 02 2 4 15	
00-22 10 23	96 15 78 13 84 47 6 86 11	4 6 5 691 2 54 5 8 3 2 4 4 6	11 1 23 1 23 25 1	10 36 043 23 3 11 3 39 125 4 0	10 2 99 003 17 < 7 3 0 06	03 42 2 03 2 3 15	
00 24	2 17 6 21 8 88 75 2 73	2 2 5 2371 4 19 1 2 3 1 3 6	689 67 49 04 <	<2 1 40 088 8 9 1 0 13 246 7 0	001 1 32 003 07 < 2 2 9 04	05 129 3 < 02 1 0 15	
	6 66 <i>f</i> 67 - 57 - 74 6 - 57		46 n 40 40 40 -	ל דכב הג א א א ארא די היי. א ל דכב הג א א א א א א א א א א א א א א א א א א	nni 1: 32 003 06 ≪ 2 2 8 04	05 168 3 07 1 0 15	
RE 00-24 STANDARD OS	2 09 5 96 8 37 /4 9 /5 2 14 07 132 07 33 66 154 8 274 35	9 12 9 855 3 15 61 5 19 7 191 7 3 6	- 65 U 63 46 U3 4 - 27 7 10 53 9 70 11 26 7	73 .53 097 14 8 159 7 61 162 7 0	087 2172.032 15 7 8 3 1 1 86	83 236 2 3 1 96 5 9 1 5	_
- SAMPLE TYPE:	SOIL SS80 60C Semp	EPORT MAILED:	t = 6/00	are Reject Reruns. SIGNED BY	D. TOYE, C.LEONG,	J. WANG; CERTIFIED B.C. A	SSAYERS
- SAMPLE TYPE:	SOIL SS80 60C <u>Semp</u>	EPORT MAILED:	t 6/00	are Reject Reruns. SIGNED BY	D. TOYE, C.LEONG,	J. WANG; CERTIFIED B.C. A	SSAYERS
- SAMPLE TYPE:	SOIL SS80 60C <u>Semp</u>	EPORT MAILED:	$t \frac{6}{00}$	are Reject Reruns. SIGNED BY	D. TOYE, C.LEONG,	J. WANG; CERTIFIED B.C. A	SSAYERS
- SAMPLE TYPE:	SOIL SS80 60C <u>Semp</u>	EPORT MAILED:	t - 6/00	are Reject Reruns. SIGNED BY	D. TOYE, C.LEONG,	J. WANG; CERTIFIED B.C. A	SSAYERS
- SAMPLE TYPE:	SOIL SS80 60C <u>Semp</u>	EPORT MAILED:	t 6/or	are Reject Reruns. SIGNED BY		J. WANG; CERTIFIED B.C. A	SSAYERS
- SAMPLE TYPE:	SOIL SS80 60C <u>Semp</u>	EPORT MAILED:	$t \frac{6}{00}$	are Reject Reruns. SIGNED BY	D. TOYE, C.LEONG,	J. WANG; CERTIFIED B.C. A	SSAYERS
- SAMPLE TYPE:	SOIL SS80 60C <u>Semp</u>	EPORT MAILED:	t 6/ou	are Reject Reruns. SIGNED BY	D. TOYE, C.LEONG,	J. WANG; CERTIFIED B.C. A	SSAYERS
- SAMPLE TYPE:	SOIL SS80 60C <u>Semp</u>	EPORT MAILED:	$t - 6/\sigma v$	are Reject Reruns. SIGNED BY	D. TOYE, C.LEGNG,	J. WANG; CERTIFIED B.C. A	SSAYERS
- SAMPLE TYPE:	SOIL SS80 60C Semp	EPORT MAILED:	t 6/ou	are Reject Reruns. SIGNED BY	D. TOYE, C.LEGNG,	J. WANG; CERTIFIED B.C. A	SSAYERS
- SAMPLE TYPE:	SOIL SS80 60C <u>Semp</u>	EPORT MAILED:	t 6/ou	are Reject Reruns. SIGNED BY	D. TOYE, C.LEGNG,	J. WANG; CERTIFIED B.C. A	SSAYERS
- SAMPLE TYPE:	SOIL SS80 60C <u>Semp</u>	EPORT MAILED:	t 6/ou	are Reject Reruns. SIGNED BY	D. TOYE, C.LEONG,	J. WANG; CERTIFIED B.C. A	SSAYERS
- SAMPLE TYPE:	SOIL SS80 60C <u>Semp</u>	EPORT MAILED:	teruns and "RE"	are Reject Reruns. SIGNED BY	D. TOYE, C.LEONG,	J. WANG; CERTIFIED B.C. A	SSAYERS
- SAMPLE TYPE:	SOIL SS80 60C <u>Semp</u>	EPORT MAILED:	t 6/or	are Reject Reruns. SIGNED BY	D. TOYE, C.LEGNG,	J. WANG; CERTIFIED B.C. A	SSAYERS
- SAMPLE TYPE:	SOIL SS80 60C <u>Semp</u>	EPORT MAILED:	t 6/ou	are Reject Reruns. SIGNED BY	D. TOYE, C.LEGNG,	J. WANG; CERTIFIED B.C. A	SSAYERS
- SAMPLE TYPE:	SOIL SS80 60C <u>Semp</u>	EPORT MAILED:	t 6/ou	are Reject Reruns. SIGNED BY		J. WANG; CERTIFIED B.C. A	SSAYERS
- SAMPLE TYPE:	SOIL SS80 60C <u>Semp</u>	ES beginning 'RE' are I	t 6/ou	are Reject Reruns. SIGNED BY	D. TOYE, C.LEONG,	J. WANG; CERTIFIED B.C. A	SSAYERS
- SAMPLE TYPE:	SOIL SS80 60C <u>Semp</u>	ES beginning 'RE' are I	t 6/ou	are Reject Reruns. SIGNED BY	D. TOYE, C.LEONG,	J. WANG; CERTIFIED B.C. A	SSAYERS
- SAMPLE TYPE:	SOIL SS80 60C <u>Semp</u>	ES beginning 'RE' are I	t 6/or	are Reject Reruns. SIGNED BY	D. TOYE, C.LEGNG,	J. WANG; CERTIFIED B.C. A	SSAYERS
- SAMPLE TYPE:	SOIL SS80 60C <u>Semp</u>	EPORT MAILED:	t 6/ou	are Reject Reruns. SIGNED BY		J. WANG; CERTIFIED B.C. A	SSAYERS

ΔΔ	(180	9002	Acc	redit	ted	Co	.)			•	GEC	CHI	emi -	CAL	AN	ALY	(SIS	Ċ	SRT]	CÎFI	CAI	'E			07E									
						Mo	rri	<u> </u>	leo	10g 905	1 <u>Ca</u> 3 Hwy	#3	<u>.</u> , 1	Lt Ferni	d. e BC \	PRC VOB 1	NUEC NI	i i Sulom i	<u>SLiK(</u> itted	j by:	F1] R. M(CE #F		1001	5/5	<u> </u>	~~ <u>~</u> _							
AMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppb	Ni ppm	Cơ ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	۷ ppm	Ca %	۹ ۲	La ppm	Cr ppm	Mg X	Ва ррп	Ti X	B ppm	A1 %	Na %	К I \$крр	n ppn	Hg ppb	Se ppm	Te (ppm pp	Ga XII
9-19 9-20 E 99-20 9-27 9-28	3,66 5,35 4,95 1,95 ,78	3.49 21.50 20.80 3.55 9.59	10.95 49.29 45.28 2.02 11.34	332.6 2258.7 2266.7 67.8 16.2	55 178 166 21 270	.9 6.4 6.3 9.5 3.6	1.8 1.8 1.6 2.4 6.0	474 1667 1711 149 163	8.37 4.57 4.72 .96 .31	<.1 2.3 2.5 .9 4.2	.1 .1 .1 .2	1.0 2.5 .4 .7 .7	4.3 .5 .4 3.3 4.4	17.6 37.7 36.8 27.5 29.0	.68 11.99 11.18 .05 .03	.*22 1.65 1.48 .24 2.09	< 02 < 02 < 02 03 .83	<2 <2 <2 6 2	.41 2.85 2.90 .69 .65	113 019 018 051 .043	80.0 9.3 9.2 13.1 25.4	<.5 10.0 11.1 12.4 6.6	.49 .25 .26 1.52 .32	98.0 119.6 128.9 905.4 361.9	.004 .001 .001 <.001 .001	<pre><1 <1 <1 <1 3 8</pre>	*88 .10 .11 .34 .41	008 005 005 002 002	.29 < . 07 1 . 07 1 . 01 . .23 .	2 04 5 03 4 .03 7 < 02 2 15	269 3398 3125 <5 64	1 < .1 .1 < .1 < .1 <	< 02 5 02 02 02 02 02 1 06 1	.3 .0 .6 .0 .6 .0 .2 .0
)-29)-30 9-31 9-32 TANDARD DS2	1.42 2.77 .95 .59 14.12	11.21 12.65 31.41 8.05 129.80	28.04 1.60 5.34 6.04 34.79	204.2 4.5 41.6 25.4 152.4	231 15 78 42 232	15.0 10.5 8.0 4.0 34.4	15.6 10.3 9.5 7.4 12.0	111 29 4871 6032 808	2.52 1.52 3.32 2.92 3.01	3.9 1.7 4.8 2.8 58.7	.4 .2 .4 .5 20.3	1.5 <.2 1.9 1.3 208.0	5.8 2.8 5.5 1.7 3.6	37.9 4.7 112.7 114.6 27.9	.04 <.01 .02 .05 10.22	5.50 .12 2.71 1.98 9.75	. 95 . 16 . 65 . 91 . 11 . 19	5 2 16 2 72	.88 .04 10.73 11.86 .53	045 014 034 029 089	24.0 10.2 18.7 10.1 15.8	12.8 12.8 14.8 7.6 159.4	3.56 .07 4.91 4.57 .57	53.4 95.9 37.2 125.9 152.2	.001 .001 .001 .001 .001	4 1 <1 <1 <1 <1	.51 .33 .71 .28 1.63	006 002 006 009 031	.24 .16 .04 .08 < .15 7	2 .22 9 .03 2 .05 2 .05 2 .05 0 1.85	2 35 3 63 5 109 3 32 3 253	.2 .1 .3 2.3 2.2	04 1. 03 50 2 .23 1.81 6	.9 .0 .8 .4 .3 .2 .9 .4 .0 .1
DATE	RECI	IVED): M	iar 20	2000	ם נ	ATE	REI	PORI	ма	ILEI	o: J	Mar	uh3	30/20	70	SIG	ned	ву.	(† 	لب		.D.	ΤΟΥΕ ,	, C.L	EDNG,	, J.	WANG;	CERT] F 1 E C	B.C	. ASS	AYERS	
																						·												

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

Ľ		C	L		Ľ		Ľ		C	[Ľ		C		<u> </u>		<u> </u>		C_	. (_ 	C		Ľ		Ľ	<u></u>	<u>C</u>		<u> </u>	<u> </u>
<u> </u>	ACME	ANAL (ISO	9002	AL L Acc	ABOR	ted	RIES Co.	LTI)	5.		852 G	ен EOCH	ASTI IEMI	INGS	ST.	VAL VAL Y	NCOU (SIS	VER	BC ERTI	V61 [FIC	A 1RE	i !	PH	ONE	(604)	253-	315	8 FA	X (6(14)2	53-1	716
l	tt						Moi	rie	a Ge	<u>eol</u>	ogi 9053 (c al 1wy #3	<u>Co</u> . W.,	<u>Lt</u> Ferni	<u>e BC</u>	PR(VOB 1)JE(H1	<u>CT</u> Submi	ELK(tted	<u>)</u>] by:R	File	# prris	990	333	9						4	
	SAMPLEA	¥	Mo ppm	Cu ppm	РЬ ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V PPM	Ca %	P ~ %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	A (%	Na %	K %	W .ppm
	98-1 98-2 98-3		1 2 1	1 2 5	8 <3 5	13 6 20	<.3 <.3 <.3	8 4 12	3 1 11 2	834 1044 1040	1.27	2 8 12 2	<.1 <.1 <.1	2 2 2 2 2	7 <2 <2	28 97 186 81	<.2 <.2 <.2	1 2 3	<.5 <.5 2	8 4 26 8	5.12 18.26 18.03 2.85	.067 .023 .024 .034	41 15 15 19	15 4 10 13	2.70 10.90 9.92	19 1101 116 210	<.01 <.01 <.01 < 01	ব ব ব ব	.47 .12 .26 32	.01 .02 .01	.22 .07 .01	<2 * <2 <2 >
	98-7 98-8		2	3	<3 <3	37	<.3 <.3	0 7 11	2 3 13	114 3287	1.14	<2 10	<.1 <.1	<2 <2	3 <2	11 59	<.2	<.5 3	<.5 2	5	.06	.016	'9 15	25 6	1.12	561	<.01	4 <3	.95	.01	.09	10 <2
	98-9 98-10 RE 98-1 98-13	10	1 2 1 3	1 6 6	<3 <3 3 <3	7 49 48 8	<.3 <.3 <.3 <.3	5 33 33 13	3 12 12 10	305 496 494 61	.62 3.38 3.29 2.43	4 10 11 3	<.1 <.1 <.1	<2 <2 <2 <2 <2	2 <2 <2 3	40 112 111 19	<.2 .2 .2 <.2	1 1 1 4.5	<.5 1 <.5 <.5	4 27 26 3	6.29 6.59 6.57 .39	.047 .065 .065 .009	22 14 14 14	7 33 33 12	3.79 3.41 3.39 .42	13 54 55 116	<.01 <.01 <.01 <.01	<3 <3 <3 8	. 36 . 69 . 69 . 34	.01 .01 .01 .02	.27 .05 .05 .17	2 <2 2 3
	98-16 98-17 STANDAI STANDAI	RD C3 RD G-2	1 1 29 2	15 <1 63 2	72 6 37 <3	33 19 172 43	.3 <.3 5.4 <.3	13 11 34 8	7 9 12 4	58 417 765 549	2.31 1.87 3.32 2.03	43 <2 52 <2	<.1 <.1 18 <.1	<2 <2 3 <2	7 10 19 3	53 16 30 75	<.2 .2 21.6 <.2	4 1 13 <.5	<.5 <.5 25 <.5	7 5 78 41	1.20 1.25 .60 .68	.050 .058 .101 .107	16 49 21 12	8 9 182 83	.48 .35 .60 .61	100 290 150 234	<.01 <.01 .09 .13	8 6 20 <3	.60 .43 1.84 .97	<.01 .01 .04 .08	.37 .27 .16 .49	2 2 17 6

GROUP 1D - 0.50 GM SAMPLE, 3 ML 2-2-2 AQUA REGIA, 1 HOUR AT 95 DEG. C, DILUTED TO 10 ML, ICP-ES ANALYSIS. LEACH IS PARTIAL FOR SOME MINERALS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CO, SB, BI, TH, U & B = 2000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>

DATE RECEIVED: SEP 9 1999 DATE REPORT MAILED: Sept 16/99

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

U

ш

ц,

Ц

Ш

<u>ت</u>

U.

ш

ч

Ц

U

Ц

Ц

Ц

Ц

ل

ш

Ц

•

۰.

3

3

۲.

١.

۰.

Appendix 5

Selected Frequency Histograms, Rock Samples

Wigwam 1, 2003 Assessment Report

 \Box

ш

Ц

Ч

ш

Ц

Ц

ш

L

Ц

Ц

Ч

ប

ப

J

Г

2

Zinc in Rocks

Wigwam 1, 2003 Assessment Report

۱.

Ц

J

 \square

J

ш

ъ

J

Ц

Ы

Ц

ப

L

Ц

Ц

Ы

Ч

ш

Ш

۰.

Arsenic in Rocks

-

L

Ц

ц

L

Ц

ц,

ш

L

J

Ц

Ľ

L

Ц

 \Box

ப

Ц

ں

U

ц

Mercury in Rocks

Wigwam 1, 2003 Assessment Report

٠.

С

Ц

Ц

U

Ц

Ц

С

U

L

L

Ч

Ц

J

Ч

ل

L)

ப

ப

5

Ц

Ц

6

ப

 \Box

Ц

Wigwam 1, 2003 Assessment Report

٤.

J

L)

ப

Wigwam 1, 2003 Assessment Report

J

Ч

ш

<u>ں</u>

Ц

ц

L)

Ц

ц

L

Ц

J

ц

J

Ц

Ц

ل

Ц

Ц

J

ц		
Ч		
ц		
ц	· · · · · · · · · · · · · · · · · · ·	
L		
L		
ч	Appendix 6	
ы	Selected Frequency Histograms, Soil Samples	
J	·	
L	* ,	
Ц		
U		
L		
L		
L	۰ ۴	
L		
	Wigwam 1, 2003 Assessment Report 1	

J

Ц

Wigwam 1, 2003 Assessment Report

Ц

ப

U

- പ

L

Ц

Wigwam 1, 2003 Assessment Report

۷.

۶.

 \Box

Ч

L

С

Ц

ц,

Ц

Ц

L

ш

L

Ц

Ц

ш

Ч

L

 \Box

U

Ч

د.

Ц

Ц

 \square

5

L

Wigwam 1, 2003 Assessment Report

Ц

ป

Wigwarn 1, 2003 Assessment Report

۰.

1

L

Ц

ш

7

Wigwah 1, 2003 Assessment Report

۰.

Ц

Ц

L

L

U

ц

9

J

J

ш

J

J

J

J

L

Ц

ш

Ц

ц

L

L

L

ш

Ч

ت

L

•

٤.

Appendix 7 Rock Sample Plots • ١., 1 Index Plot 2 NE Area South Central Area 3 4 SE Area 5 E Area Central Area 6

Wigwam 1, 2003 Assessment Report

a

٤.

J

υ.

L

U

ц,

L

J

L

Ч

Ц

Ц

ц

Ц

L

L

 \Box

 \Box

Ц

Ц

÷

۲.

Wigwam 1, 2003 Assessment Report

۱.

С

ш

LL ا

ц

ப

L

L)

Ц

ப

Ц

ц

Г

 \Box

ل

ш

Ч

L

Ч

Ч

Wigwam 1, 2003 Assessment Report

ป

ப

Map 3 Rock Samples, South Central Area

C L Ľ Ľ Ľ Ľ Ľ L Ľ С С C C Ľ E С E

Ľ

Ľ

Map 5

Rock Samples, E Area

REAR

٤.

L

 ${\color{black} \Box}$

Ľ

ப

L

J

Ц

 \Box

Ц

ل

Ц

С

ப

Ц

J

 \Box

ш

 \Box

ц,

Ľ

Ľ

C

C

C

C

C

Ľ

Ľ

C

C

C

С

C

С

C

C

Ľ

C
Appendix 8

Soil Sample Plots

- 1. Index Plot
- 2. NE area

- ----

÷

ų.

÷

۰.

ε,

γ.,

Ц

Ц

L

Ц

Ш

Ц

ц

 \Box

С

ц,

ц

ш

J

Ч

Ц

L

Ц

J

- ...

- 3. NW area
- 4. SW area

Wigwarn 1, 2003 Assessment Report

÷

۰,

J

۲.,

U

Ц

Ц

U

لب

Ľ

L

L

 \Box

ц

Ц

L

Ē

L

L

Ц

ப

L

L

C

С

C

C

C

Γ

Ľ

Ľ

C

L

Ľ

C

C.

C

C

Ľ

C

Ľ

E

Wigwam 1, 2003 Assessment Report

Ш