On the

Bralorne Pioneer Mine Property Cosmopolitan, Cosmopolitan Fraction \& Mauser Claims

Lillooet Mining Division
NTS 092J15W
$50^{\circ} 46^{\prime} \mathrm{N} 122^{\circ} 48^{\prime} \mathrm{W}$

For:
Bralorne Pioneer Gold Mines Ltd.
Suite 400-455Granville Street
Vancouver, B.C., V6C 1T1

Author:
H. A. Sanche, P. Geol.

General Delivery, Goldbridge, B.C.

V0N 1V1

26 January, 2004

TABLE OF CONTENTS

page
INTRODUCTION 2
Property Description and Location 2
Property Definition 2
SUMMARY OF DIAMOND DRILL LOG INFORMATION 3
List Of Claims On Which Work Was Actually Done 3
List Of Claims To Which Work Will Be Applied 3
RESULTS, INTERPRETATION AND CONCLUSIONS 4
ITEMIZED COST STATEMENT 5
Statement of Core Loggers Qualifications 6
Authors Certificate of Qualifications 7
LIST OF FIGURES
LIST OF APPENDICES
Appendix A List of Grouped Mineral Claims Appendix B Diamond Drill Hole Logs
Appendix C Assay Certificates

INTRODUCTION

A short hole surface diamond drilling program was completed along the surface trace of the Peter Vein system during May, 2003. The drilling was completed on the Cosmopolitan, Cosmopolitan Fraction and the Mauser crown granted mineral claims. The drilling was done in the northeastern sector of Bralorne Pioneer Gold Mines Ltd. extensive property holdings consisting of 163 crown granted mineral claims, 5 reverted crown granted mineral claims and 5 mineral claims covering approximately 2422 hectares. All of these mineral claims are contiguous.

Property Description and Location

The above noted mineral claims are located on National Topographic system map 92J/15W in the Bridge River mining camp, Lillooet Mining Division, British Columbia (Figs. $1 \& 2$). Approximate latitude and longitude for the centre of the historic workings are $50^{\circ} 46^{\circ} \mathrm{N}, 122^{\circ} 48^{\prime} \mathrm{W}$. A list of the claim names and lot numbers or record numbers is included in Appendix A of this report.

The company owns 100% of the property directly and through agreements with International Avino Mines Ltd. All of the company's crown granted mineral claims are in good standing until May 1, 2004. All of the company's reverted crown granted mineral claims and mineral claims are in good standing with the first expiry date being February 28, 2004.

Property Definition

Mining for gold on the Bralorne Pioneer property dates back to the late 1800 's when small scale wheelbarrow type mining commenced in the Pioneer portion of the property. Arastras and then stamp mills were used to recover the gold metal from the mined rock. Larger scale production using more advanced mining and milling methods commenced in 1932 and the mines operated at between 150 and 550 tons per day until the last mine closure in 1971.

In 1973 additional work was started in the area of the Peter vein where surface work indicated potential mineralized structures. Surface drilling and trenching located the Peter vein and in 1987 an adit was collared to intersect the structure about 100 feet below surface. 215 feet of drifting on the vein averaged 0.38 ounce per ton gold across an average width of 3.4 feet. In 1995 the company carried out 700 feet of underground drifting on the Peter vein from existing mine workings at the 800 haulage level of the Bralorne mine. In addition underground diamond drilling was carried out to help define the vein between surface and 800 level. The 2003 surface diamond drilling program was directed at obtaining extra information on the Peter vein below the upper level mine workings and also to test the structure along strike both to the north and south of the underground workings. The drilling was successful in intersecting the structure in each hole. Elevated gold values in the vein structure were encountered in each hole also. On these structures the drilling usually locates the structure but does not always yield useful gold content information because of the nugget effect in these veins.

SUMMARY OF DIAMOND DRILL LOG INFORMATION

DDH	Collar	Location	Elev	Az	Dip	Length	From-To	Inter	sections
No.	Mine	Grid	Ft.	-	Deg	Of	Ft.	True	Grade
	E	N				Hole		Width	Opt Au
03SB-01	5,922	14,219	4,350	258	-61	207'	196.3-198	1.2 '	0.007
03SB-02	5.581	13.868	4,355	256	-65	287'	254-261.8	4.2'	0.081
03SB-03	5,600	13,360	4,340	282	-61.5	266	237-244	4.7 '	0.030
03SB-04	5,600	13,360	4,340	282	-70	394'	376-377.5	0.8	0.070
03SB-05	5,706	13,549	4,350	270	-48	336'	274-276	$1.7{ }^{\prime}$	Tr.
03SB-06	5,706	13,549	4,350	270	-61	537	256-258.5	$1.7{ }^{\prime}$	0.112
03SB-07	5,712	13,496	4,350	260	-51	421 '	329-331	1.5'	0.020
03SB-08	5,712	13,496	4,350	260	-58	507	294.5-296	1.1 '	Tr.
03SB-09	5,555	13,934	4,355	254	-59	258'	211-243.5	16.4'	0.026
03 SB-10	5,555	13,934	4,355	254	-69	315'	262-264	1.0 '	0.020
$03 \mathrm{SB}-11$	5,627	13,026	4,340	225	-61.5	457'	373.5-380.5	$4.7{ }^{\prime}$	0.138
03SB-12	5.856	12,841	4,350	225	-54	536'	480.5-486.2	$4.4{ }^{\prime}$	0.040
$03 \mathrm{SB}-13$	5,576	14,042	4,353	258	-68	344'	325.5-328	1.2'	0.060
03SB-14	5,581	13,868	4,355	258	-70.5	67	Lost	Hole	
03 SB -14B	5.581	13,868	4,355	258	-73	517	454-461.5	$2.8{ }^{\prime}$	0.060
03SB-15	5,581	13,868	4,355	258	-48	225'	157-158.5	$1.3{ }^{\prime}$	0.020
TOTAL						5745 ft .			
						1751.5m			

List of claims on which work was actually performed:

1. Cosmopolitan. Lot No. 584
2. Cosmopolitan Fraction, Lot No. 5481
3. Mauser. Lot No. 5457

All three of these claims are crown grants.
List of claims to which this work will be applied:

1. Ace Fr, tag 228403, reverted crown grant, 1 unit.
2. Ogden, tag 228753, reverted crown grant, 1 unit.
3. Ogden 1 Fr , tag 228754 , reverted crown grant, 1 unit.
4. McCallum Fr, tag 228759, reverted crown grant, 1 unit.
5. Rosalin Fr, tag 228760, reverted crown grant, 1 unit.
6. Cora Fr. tag 228395, mineral claim, 1 unit.
7. Mead Claim, tag 316338, mineral claim, 4 units.
8. Noel, tag 316574 , mineral claim, 15 units.
9. King, tag 316573, mineral claim, 4 units.
10. Carl. tag 322662, mineral claim, 9units.
11. P F Fr., tag 404758, mineral claim, 1 unit.

Results, Interpretation and Conclusions

This drilling program, which consisted of 2422 meters in 15 holes, was designed to provide additional information on the Peter vein and associated structures in the area beneath the upper level workings and also along strike to the north and south. The drilling was completed in a very professional manner by F. Boisvenu Drilling Ltd. Overall drilling contractor costs were very reasonable at $\$ 18.46$ per foot or $\$ 60.50$ per meter. Overall total job costs were $\$ 128,500$ which converts to $\$ 22.36$ per foot drilled or $\$ 73.36$ per meter drilled. The program was designed by Aaron Petipas, and the core was logged and samples split by the same individual. The core, along with the remaining half of the split vein intersections, is stored in racks next to the Bralorne mine office. Samples were shipped to Acme Analytical Laboratories in Vancouver for analysis of metal content. Most of the samples were tested by multi element ICP methods and any samples containing significant gold results from ICP analysis were then analysed by fire assay with metallics screening for more accurate results. Please refer to Appendix B for complete assay analysis sheets.

Only one hole was drilled beneath the upper level underground workings and that hole yielded the best intersection of the program, that being 0.138 ounces per ton gold for a core length of 4.7 feet. Only one hole was drilled to the south and the remainder of the holes were completed on what is thought to be the faulted northerly extension of the Peter vein structure. Intersection values were generally low but strong veins and anomalous gold values were encountered in most of the holes.

This drilling program has generated results and information that is important data required to guide future underground development and production from the Peter Vein structure. No further drilling in this area from surface will be required or undertaken in the foreseeable future. It is recommended that immediate future follow up work on the Peter Vein be done from the underground working levels. This, in fact, is being done as this report is being written.

To conclude, the 2003 surface drilling program has generated very encouraging and useful data that is currently being utilized to help direct further underground exploration and development activities on the Peter Vein structure.

STATEMENT OF COSTS

1. Drilling Costs, as invoiced by F. Boisvenu Drilling \$106,055.00
2. Geologist costs, 1 man, 30 days at $\$ 200 /$ day 6,000.00
3. Room and food costs, 30 days at $\$ 100 /$ day 3,000.00
4. Field transportation, 30 days at $\$ 50 /$ day 1,500.00
5. Assays, Acme Analytical Laboratories invoice $10,453.00$
6. Final Report, 1 man, 3 days at $\$ 500 /$ day 1,500.00 \$128,508.00
TOTAL
TOTAL

STATEMENT OF QUALIFICATIONS

I, Aaron R. Pettipas, of Bralorne, British Columbia, Canada, do hereby certify that:

1. I am a graduate of St. Mary's University, Halifax, Nova Scotia, Canada, with a B. Sc. in geology, 1989.
2. I have practised my profession as a geologist since 1987.
3. I was responsible for the layout and implementation, core logging and sample splitting for the subject drilling program of this report.
4. To the best of my knowledge, the information presented in the appended core logs and in the report in general, is correct and accurate.

Signed at the Bralorne Minesite, January 26, 2004
A. R. Pettipas

Statement of Qualifications

I, Henry A. Sanche, Professional Geologist, with a home office address of R. R. 1, Ferintosh, Alberta, Canada, T0B 1M0 certify that:

1. I am a graduate of the University of Alberta, Edmonton, Alberta, 1963, and hold a Batchelor of Science degree in Geology.
2. I have practised my profession as a geologist since 1963.
3. I am registered as a Professional Geologist with the Association of Professional Engineers, Geologists and Geophysicists of Alberta since 1967 and more recently with the equivalent association in the Northwest Territories.
4. This report is written from experience gained since September, 2003, as Vice President Exploration for Bralorne on the Bralorne project and from available documentation on the 2003 drilling program.
5. I am the sole author of this report.
6. Other than two unexercised Bralorne stock options, I hold no interest in the properties or securities of Bralorne Pioneer Gold Mines Ltd.
7. To the best of my knowledge, the information presented in this report is correct and accurate.

Signed at the Bralorne Minesite, January 26, 2004,

[^0]APPENDIX A
List of Mineral Claims

CLAIM DESCRIPTION

The Bralorne property is located in the Lillooet mining division and is composed of 154 crown grants, 5 reverted crown grants, 4 metric unit claims
The property holdings are as follows:

CROWN GRANTS

Name	Lot No.	Acres	Name	Lot No.	Acres
Cosmopolitan	584	16.33	Marquis	586	24.50
Virginia	5455	5.77	Golden King	587	45.44
Noelton Fr.	5466	19.70	Lorne	588	50.25
Mauser	5457	12.54	Alhambra	665	24.65
Carl	5458	0.91	Night Hawk	666	28.25
Alex	5459	15.61	Lurgan Fr. No. 1	667	3.62
Matthew	5460	12.60	Lurgan Fr. No. 2	668	8.55
John	5461		Metropolitan	669	32.83
Kathleen	5462	20.89	Telephone	670	28.70
Raymond	5463	16.60	Wood Duck	671	24.58
Savage	5464	19.96	Exchange Fr.	673	21.85
Winchester	5465	14.05	Blackbird	1176	37.70
Lee Metford	5466	11.73	Countless	1177	44.30
Carbine	5467	12.11	Nellie	1179	39.50
Star No. 1 Fr.	5925	8.48	Whip Poor Will	1221	44.00
Edna Mary	5920	18.41	Duke	1222	19.00
Alex Fr.	5921	2.34	Royal	1224	23.70
Alex No. 2 Fr .	5922	2.44	Leroy	1225	39.30
Raymond Fr.	5923	1.86	Maud S Fr.	1226	30.50
Star Fr.	5924	10.04	Silver Dollar	2372	46.62
Blue Jay	6466	14.80	Golden Ribbon	2374	50.00
Pioneer	456	51.14	Alma	2375	34.97
Ida May	457	45.71	Union Fr.	2376	45.86
Nellie Fr.	458	1.14	Gold Queen Fr.	2377	45.11
Mary Fr.	459	35.21	Silver King	2378	37.61
Trio Fr.	460	44.66	Motherlode Fr.	2379	27.52
Little Joe	539	51.65	Andy Fr.	2380	10.69
White Crow	540	42.64	Don F	2381	48.98
Bend'Or Fr.	541	5.50	Don C	2382	19.11
Jim Crow Fr.	542	0.90	Don A	2383	25.63
Delighted	543	26.22	Don E	2384	38.11
Woodchuck	579	38.20	Don B	2385	13.73
Copeland	580	24.61	Robin	2387	5.89
Hiram	581	42.35	Rainier	2388	42.41
			Tacoma	2389	31.63

Name	Lot No.	Acres	Name	Lot No.	Acres
Seattle	2390	16.68	Buck Fr.	5525	2.36
Nugget King	2393	51.65	Millbank	5582	50.34
Don Z	2394	5.47	Great Divide Fr.	5591	3.01
Sunset	3045	47.19	Development No. 2	5594	18.94
Great Fox	3046	51.65	Development No. 1	5595	27.89
East Pacific	3047	51.30	Development No. 2A	5596	46.91
Clifton	3048	51.65	Development No. 3	5597	49.36
Corasand	3049	41.27	Development No. 4	5598	47.63
Emmadale	3050	44.00	Sunbeam	5742	26.53
Union Jack Fr.	3051	9.25	Comstock No. 5	5743	24.86
Titanic Fr.	3053	9.15	Comstock No. 2	5744	28.88
Invincible	3091	40.49	Homestake	5745	25.14
Leon No. 1	5323	27.27	Sunshine	5745	37.20
Leon Fr .	5324	23.59	Comstock No. 3	5747	35.48
Leon No. 2	5325	50.25	Lorenzo	5748	35.05
Leon No. 3	5326	48.00	Orion NO. 4	5750	49.05
Leon No. 4	5328	34.55	Orion NO. 4	5751	13.06
Victor Fr.	5331	8.84	Comstock No. 8	5752	43.52
Hiram Fr.	5332	0.27	Comstock No. 7	5754	26.27
Eagle Fr.	5468	23.18	Comstock No. 6	5755	12.38
Eagle	5469	34.58	Turret Fr.	6037	3.43
Eagle No. 1	5470	49.79	Gold King	6038	21.77
Lucky Boy Fr.	5475	8.41	Eagle	6039	26.35
Bessie Fr.	5476	39.15	White Star	6040	32.83
Savoy	5477	45.70	Anne Fr.	6041	21.68
Empire Fr.	5478	20.06	Don C Fr.	6044	9.84
Eureka	5479	40.70	Robin Fr.	6045	4.54
Cascade Fr.	5480	26.43	Maria Fr.	6048	31.99
Cosmopolitan Fr.	5481	25.93	Diane	6830	49.05
Duke Fr.	5482	3.90	Heather Fr.	6839	14.78
Coronation Fr.	5483	0.76	Carol Fr.	6840	40.80
Poinud	5484	47.54	Lee Fr	6945	0.18
Mack Fr.	5485	40.65	Am	6946	33.84
Night Hawk Fr.	5486	2.17	Beef Fr.	6947	44.73
Polnud Fr.	5487	1.54	Deep Fr.	6948	29.40
Pasadena Fr.	5488	7.70			
Telephone Fr.	5489	11.42	Ace Fr	228403	1 Unit
Monica Marjorie	5508	42.40	Ogden	228753	1 Unit
A Fr.	5517	6.92	Ogden 1 Fr.	228754	1 Unit
Hilda	5518	43.03	McCallum Fr.	228759	1 Unit
BFr .	5519	2.77	Rosalin Fr.	228760	1 Unit
Margaret	5520	37.69	Cora Fr.	228395	1 Unit
Hope	5521	38.88	Mead	316338	4 Units
David	5522	12.50	Noel	316574	15 Units
Jack	5523	38.08	King	316573	4 Units
Annette Fr.	5524	21.39	Carl	322662	9 Units
			PFFr.	404758	1 Unit

APPENDIX B

Diamond Drill Core Logs

DRILL HOLE RECORD COMPAN BRALORNE PIONEER				CLAIM Cosm	politan Fr.		BEARING		DIP SUR		CORE SIZE NQ			HOLE \# 03SB-05						
				LOCATION	Surface	COLLAR	270 deg	-48 deg						SHEET:1 OF 1						
				ELEVATION	4350						COMPLETED 12 May 0 FINAL DEPTH 336'									
PROJEC	Peter V	in Surfa		LATITUDE	13549						LOGGED BY: A. Petipas									
UNITS feet				DEPARTURE	5706															
		LOG	DESCRIPTION						$\begin{gathered} \hline \hline \text { Sample } \\ \text { No. } \\ \hline \end{gathered}$	FROM	TO	COREINT.INMPINT.		Au						
FROM	TO								Ag											
0	10		CASING No core recovered.																	
10	21		ALBITITE DYKE Medium grey, lower contact at 45 deg.																	
21	208.5		BRALORNE INTRUSIVE (diorite) Fine to medium grained, grey green,																	
			homogenous. 2" banded quartz with py, aspy at 37'. $3^{\prime \prime}$ quartz at 50 deg at $55.5{ }^{\text {, }}$,																	
			unmineralized. Mafic dyke from 77 to 84 , sharp contacts at 50 deg. $6^{\prime \prime}$ banded						177797	267.5	270	2.5		Tr.						
			quartz at 50 deg to core axis, minor py, aspy. 2 " banded quartz at 60 deg. At 1						177798	270	272.5	2.5		0.02						
			minor py, aspy.						177799	272.5	275.8	3.3		Tr.						
208.5	218		ALBITITE DYKE Medium grey, lower contact at 60 deg. Some minor inclusion						177800	275.8	277	1.2		0.01						
			of diorite																	
218	267.5		BRALORNE INTRUSIVE (diorite) Fine grained diorite with coarser grained						183551	287.6	289.6	2		0.04						
			patches, very non homogenous. Trace amounts quartz veining and sulphides.						183552	289.6	291.5	1.9		0.07						
267.5	274		FERGUSSON SEDS Cherty, thinly laminated, brownish seds.						183553	291.5	293.4	1.9		0.04						
274	276		MINERALIZED QUARTZ VEIN 5% py, aspy						183554	293.4	295	1.6		0.06						
276	298		BRALORNE INTRUSIVE (diorite) Altered at upper contact grading into fresher						183555	295	298.5	3.5		0.07						
			diorite down hole. Lower contact has one foot quartz vein.						183556	298.5	300.5	2		0.05						
298	299		MINERALIZED QUARTZ VEIN 5\% py, aspy Some mariposite present also.						183557	300.5	303.5	3		0.01						
299	303.5		ALBITITE Highly altered, fine grained, buff to grey, minor py, aspy and maripos						183558	303.5	308	4.5		0.02						
303.5	306.5		QUARTZ vein zone, 25% quarts as veiniets, irregular, py, aspy, mariposite						183559	308	313.6	5.6		0.01						
306.5	314		BRALORNE INTRUSIVE (diorite) Very altered, light grey with 5\% aspy scattered																	
			and fine grained along fractures.						183560	327	329	2		0.02						
314	327		ALBITITE very altered with variable sulphide content averaging 3\%						183561	329	331	2		0.01						
327	336		BRALORNE INTRUSIVE (diorite) Very altered containing 2\% sulphides, Shearing																	
			common.																	
			E. O. H. at 336																	

DRILL HOLE RECORD COMPAN' BRALORNE PIONEER				CLAIM: Cosmopolitan Fr.	COLLAR	BEARING		DIP	SUR	$\begin{array}{ll} \hline \text { CORE SIZE } & \text { NQ } \\ \hline \text { STARTED } 16 \mathrm{Mav} 03 \\ \hline \end{array}$			HOLE \# 03SB-08								
				260 deg		-58 deg			SHEET: 1 OF 2		OF 2										
				ELEVATION 4350					COMPLETED 18 May 0			FINAL DEPTH		507'							
PROJECT		Peter	ein Surface			LATITUDE 13496								LOGGED BY: A. Petipas							
UNITS feet				DEPARTURE 5712																	
DEPTH		LOG	DESCRIPTION					$\begin{gathered} \hline \text { Sample } \\ \text { No. } \\ \hline \end{gathered}$	FROM	. TO	CORE SAMPINT.INT.		Au	Ag							
FROM	TO																				
0	12		CASING No core recovered.																		
12	226		BRALORNE INTRUSIVE (diorite) Fine to medium grained grey to dark grey																		
			34-35' Albitite dyke, Fine grained dark grey dyke with scattered pyrite.Contacts at 45																		
			45.5-58' Albitite dyke mixed with diorite.					183632	393	394.2	1.2		Tr.								
			67' Diorite becomes distinctly coarser grained.					183633	394.2	396.2	2		0.01								
			89-89.1 Pinkish white gtz carb vein at 30 deg to core axis.					183634	396.2	397.3	1.1		Tr.								
			100-101 alteration zone with 3" banded qtz vein at 30 deg, minor py					183635	397.3	398.5	1.2		0.01								
			144-145' Alteration zone with $5^{\prime \prime}$ banded qtz vein, minor sulphides					183636	398.5	399.3	0.8		Tr.								
			172.5-175 Intense alteration zone with 6-8" banded graphitic qtz stringer					183637	399.3	402	2.7		0.03								
			181-181.5 $3^{\prime \prime} \mathrm{gtz}$ stringer at 45 deg, minor sulphides					183638	402	403.6	1.6		Tr.								
			186-224 Mixed diorite and gabbro, brecciated in places					183639	403.6	404.6	1		Tr.								
			225-226 Altered zone with poorly mineralized qtz carb vein at 60 deg to core axis.																		
226	253		GABBRO DYKE Chloritized and altered mafic dyke with irregular contacts.					183640	433.5	434.2	0.7		0.01								
253	347.5		BRALORNE INTRUSIVE (diorite) Fine to medium grained grey to dark grey					183641	434.2	435	0.8		Tr.								
			253-254.5 Very altered diorite with 15\% pyrite and minor aspy, silicified					183642	435	435.5	0.5		Tr.								
			271-278.5 Silicified diorite, gret to green, brecciated and resealed with qtz, minor py																		
			278.5-287 Albitite dyke with irregular contacts.					183643	474.7	476.4	1.7		0.03								
			306.5-309 Similar albitite dyke but with well defined contacts at 70 deg to CA					183644	476.4	480	3.6		Nil								
			337-338 Alteration zone containing 1" quartz vein with scanty sulphides.					183645	480	481	1		0.02								
347.5	385		ALBITITE DYKE Light colored, plagioclase rich. Upper contact sharp at 65 des					183646	481	482.4	1.4		0.01								
			Lower contact is poorly defined into diorite.					183647	482.4	484.4	2		0.02								
385	469.5		BRALORNE INTRUSIVE (diorite) Fine to medium grained grey to dark grey					183648	484.4	486.8	2.4		0.01								
			394.5-396 Quartz Vein, banded, 5% py, irreg contacts					183649	486.8	489	2.2		0.01								
			434.5-435.5 Quartz Vein with minor sulphides in altered zone.					183650	489	492.2	3.2		0.01								

DRILL HOLE RECORD COMPAN BRALORNE PIONEER				CLAIM: MAUS		COLLAR			DIP	SUR	CORE SIZE NQ			HOLE \# 03SB-10					
				LOCATION surface			254deg	-59deg			STARTED 20 May 03			SHEET: 1 OF 2					
				ELEVATION	4335						COMPLETED 21 May O FINAL DEPTH 315'								
COMPAN BRALORNE PIONEER				LATITUDE	13934	N					LOGGED BY: A. Petipas								
UNITS feet				DEPARTURE	5555	E													
		LOG	DESCRIPTION						$\begin{gathered} \hline \text { Sample } \\ \text { No. } \\ \hline \end{gathered}$	FROM	. 10	$\begin{array}{\|c} \hline \begin{array}{c} \text { CORE } \\ \text { INT. } \end{array} \\ \hline \end{array}$	$\begin{array}{r} \hline \overline{\mathrm{SAMP}} \\ \mathrm{II} \\ \hline \end{array}$	Au	Ag				
FROM	TO																		
0	12		CASING No core recovered.																
12	242		BRALORNE INTRUSIVE Medium grained grey to dark grey with varying degrees																
			of alteration.																
			29-33' Alteration zone with $1^{\prime \prime}$ quartz vein in centre at 30 deg to CA.																
			52-55' Alteration zone with well pyritized 3 " irregular quartz vein.																
			60.5-71' Alteration zone, chloritic, fine grained.																
			96-101 Diorite with frequent alteration and zenoliths of mafic rock, both sharply																
			defined and partly assimulated.																
			167.5-168.5 Very chloritized diorite with occasional patchy quartz and minor sulphides																
			186-189.5' Alteration zone, chloritized fractures, weak banding evident, f.g. su						183685	238.4	241.5	3.1		0.02					
			203.5-205 Alteration to fine grained dark green grey, about 5% quartz with sce						183686	241.5	246.4	4.9		Tr.					
			sulphides.						183687	246.4	248	1.6		Tr.					
			212-215.5 Felsic segment where feldspars have changed to yellow, chloritic al						183688	248	249	1		0.03					
			219-220 Altered zone with 1 " quartz stringer at 70 deg to CA , minor py.						183689	249	251	2		0.05					
			239-242' Altered felsic diorite with fine grained py filled fractures.						183690	251	253	2		0.04					
242	247		FERGUSSON SEDS mixed with diorite, hornfeldsed thinly laminated chert and						183691	253	255	2		0.03					
			biotite schist.						183692	255	257.7	2.7		Tr.					
247	289.5		BRALORNE INTRUSIVE Medium grained grey to dark grey with varying deg						183693	257.7	259	1.3		0.01					
			247-247.5 Banded, unmineralized quartz vein at 80 deg to CA.						183694	259	261	2		0.01					
			255.5-257.5 Very altered zone with 20% irregular quarz veining with 5% py an						183695	261	262.4	2.4		0.04					
			mostly in the altered diorite rather than in the quartz.						183696	262.4	264.8	2.4		0.02					
			259.5 Main zone of alteration and quartz veining begins.						183697	264.8	266.8	2		0.01					
			260-26.5 Quartz vein with much py and aspy and mariposite, irregular contact:						183698	266.8	269	2.2		Tr.					
			262.5-264 Irregularly banded quartz vein with minor sulphides.						183699	269	271	2		0.02					

DRILL HOLE RECORD COMPAN BRALORNE PIONEER				CLAIM: COSN	POLITAN		BEARIN		DIP	SURL				HOLE\# 03SB-11				
				LOCATION	Surface	$\begin{aligned} & \text { COLLAR } \\ & 407{ }^{\prime} \end{aligned}$	225			acid test				SHEET	1	OF	2	
				ELEVATION	4340				$-6 \mathrm{C} .5 \mathrm{deg}$		STARTED 21 May 03			FINAL	PTH			
PROJEC		Peter V	ein surface	LATITUDE	13026						LOGGED BY: A. Petipas							
UNITS				DEPARTURE	5627									Au				
DEPTH		LOG	DESCRIPTION						$\begin{array}{\|c\|} \hline \text { Sample } \\ \text { No. } \\ \hline \end{array}$	FROM	. 70	CORE SAMPINT.INT.			Ag			
FROM	TO																	
0	10		CASING No core recovered.															
10	21		BRALORNE INTRUSIVE (diorite) Medium to fine grained, medium grey color.						183710	112	113	1		Tr.				
21	38		FERGUSSON SEDS Gougey upper contact at 45 degrees. Thinly layered che						183711	113	114	1		Tr.				
			and biotite/chlorite schist. Lower contact at 75 degrees.						183712	114	115	1		Tr.				
38	61		BRALORNE INTRUSIVE (diorite) Medium to fine grained, medium grey color.						183713	372	373.5	1.5		Tr.				
			46.5-47.5 Alteration zone containing $1^{\prime \prime}$ unmineralized quartz veiniet at 30 degr						183714	373.5	375	1.5		0.2				
			Lower contact is not well defined.						183715	375	376.5	1.5		0.14				
61	349		FERGUSSON SEDS Mostly fine grained, light colored, silicious layered rock.						183716	376.5	378.5	2		0.12				
			112.5-116 Alteration zone with $2^{\prime \prime}$ gouge and 6 inch brecciated quartz, minor p						183717	378.5	380.5	2		0.11				
			Lower contact is not well defined.						183718	380.5	383	1.5		0.06				
			128.5-132.5 More massive unlayered, altered seds						183719	383	385	2		0.03				
			192.5-193 Quartz vein at 30 deg to $C A$, minor py mineralization.						183720	385	386.5	1.5		0.02				
			200-201 3" banded quartz in alteration zone with 3\% py and aspy						183721	386.5	389	2.5		0.08				
			201-217 Very quartz rich sed section.						183722	389	391	2		0.12				
			247-248.5 Alteration zone to apple green color containing 4"qtz with 1% py, as						183723	391	393	2		0.04				
			258-266.5 Similar greenish alteration zone but with no quartz or mineralization						183724	393	394.5	1.5		0.08				
			280-282 Similar alteration zone without qtz or sulphides.						183725	394.5	396	1.5		0.04				
			285-285.1 Quartz carbonate vein at 25 degrees, 2% py, aspy and mariposite.						183726	396	397	1		0.04				
			310-349 Fergusson seds containing variable amounts of diorite as inclusions.						183727	397	390.5	3.5		0.02				
			347.5-349 Alteration zone with minor banded sulphides at 35 deg at diorite co						183728	398.5	400.5	2		0.05				
349	457		BRALORNE INTRUSIVE (diorite) Medium to fine grained, medium grey color.						183729	400.5	402.5	2		0.05				
			373-375 Main Zone begins, very altered diorite, quartz flooded, 5% py, aspy.						183730	402.5	404.5	2		0.03				
			375-378.5 Quartz vein, well banded at 70 deg, 5% py, aspy						183731	404.5	406.5	2		0.01				
			378.5-390 Quartz flooded diorite with $3 \% \mathrm{py}$, aspy.						183732	406.5	411	4.5		0.01				

DRILL HOLE RECORD COMPAN BRALORNE PIONEER				CLAIM COS	POLITAN		BEARING		DIP	SURV	CORE SIZE NQ			HOLE\# 03SB-12					
				LOCATION Surface ELEVATION 4350		COLLAR	225 deg	-54 deg			STARTED 24 May 03			SHEET: 1 OF 2					
				COMPLETED 26 May 0, FINAL DEPTH 536'															
PROJECT		Peter	ein surface			LATITUDE		12841					LOGGED BY : A. Petipas						
UNITS feet				DEPARTURE	5856														
		LOG	DESCRIPTION						$\begin{gathered} \text { Sample } \\ \text { No. } \end{gathered}$	FROM	. 70	CORESAMPINT.INT.		Au	Ag				
FROM	TO																		
0	20		CASING, no core recovered.																
20	472		BRALORNE INTRUSIVE (diorite) Fine to medium grained, dark grey, occasional																
			coarser grained sections.																
			54-54.5 Grey clayey gouge, narrow fault zone.																
			91-94 Altered zone with narrow quartz veinlets with trace pyrite.																
			144 to 146 Altered diorite with 2" quartz stringer in centre, associated fault gouge.																
			150-151 Minor quartz as veinlets with minor associated sulphides.																
			164.5 bleach zone with chloritic alteration, associated 2" quartz carb stringer.						183756	472	474.5	2.5		0.02					
			169.5 gouge in fracture with $1^{\prime \prime}$ quartz.						183757	474.5	476.5	2		0.01					
			174.5 Same as above.						183758	476.5	478	1.5		0.02					
			175 End alteration zone which began at 164.5.						183759	478	480.5	2.5		0.03					
			354.5-355 3" quartz carb veinlet, sparse py mineralization.						183760	480.5	481.5	1		0.04					
			414.5-415 $4^{\prime \prime}$ well mineralized banded quartz veinlet at 30 deg to core axis. Le						183761	481.5	482.5	1		0.08					
			$1 / 4$ " clots of py. Fine aspy in fine grained altered diorite to 447'						183762	482.5	484	1.5		0.06					
			444' Alteration halo around main zone begins.						183763	484	485	1		0.01					
			451.5-452 Greenish and maroon vfg alteration zone with 5\% scattered pyrite.						183764	485	486	1		0.01					
			471 Etreme alteration begins.						183765	486.5	487.5	1		0.01					
			472-474.5 Banded mixture of quartz in highly altered diorite with 50 deg orient						183766	487.5	489	1.5		0.01					
			with py, aspy, mariposite and graphite.						183767	489	491	2		0.01					
			474.5-477 Very highly pyritized diorite with some graphite.						183768	507.5	508.5	1		0.01					
			479-480.5 PETER ZONE begins. Fault milled mixture of quartz, pulverized																
			sulphides and graphite.																
			480.5-486.25 Fairly competent quartz vein with some coarse py and aspy plus																
			graphite and fine sulphides.																

APPENDIX C

Assay Certificates

6.1	.5	.5	61	-.1
2.4	7.0	2.9	40	.2
3.6	4.6	1.3	12	.2
4.2	7.6	3.0	21	.3
18.6	42.7	5.9	111	1.3
2.6	54.3	3.4	56	.8
2.5	29.8	2.2	40	.5
4.2	23.0	1.7	52	.2
2.2	33.1	4.0	50	1.2
1.4	53.3	9.3	55	1.5
3.1	51.4	2.0	35	.3
1.6	6.3	79.0	25	1.6
1.0	7.3	8.3	30	.4
4.9	7.3	117.6	38	2.6
.6	45.4	2.8	51	.3
1.3	36.8	1.7	61	.1
.9	9.0	2.6	23	.6
2.2	11.6	81.4	209	1.5
1.1	11.3	7.3 .1	130	1.4
17.4	15.0	3.8	34	.5
2.2	76.5	1.4	61	.1
7.0	50.4	6.2	62	.8
6.6	62.6	6.5	69	.8
5.7	65.2	5.8	61	.7
7.5	0.4	3.0	46	.3

 $113.719 .314193 .90 \quad 1658.6<.1163 .1 \quad 1110 \quad 1 \quad 2.4 \quad 1 \quad 74$ $\begin{array}{llllllllllllllllllllllllllllll}74.9 & 7.7 & 741 & 1.78 & 4642.5 & <.1 & 1262.8 & .8 & 354 & <.1 & 8.4 & .1 & 10 & 4.70 & .025 & 3 & 225.1 & 2.36 & 18 & .004 & 6 & .32 & .011 & .08\end{array}$
 0 $231.828 .612024 .564583 .4<.12026 .2 \quad .2222 \quad .113 .0$

 $\begin{array}{lllllllllllllllllllllllll}28.0 & 18.7 & 933 & 3.51 & 5406.8 & .1 & 1232.2 & .2 & 189 & .1 & 9.5 & <.1 & 33 & 5.05 & .065 & 3 & 53.0 & 1.49 & 52<.001 & 26 & 1.04 & .042 & .27\end{array}$
$\begin{array}{llllllllll}2 & 38.1 & 2.61 & 61 & 001 & 17 & 68 & 020 & 33\end{array}$
$\begin{array}{llllllllllll}2 & 38.1 & 2.61 & 61 & .001 & 17 & .68 & .020 & .33\end{array}$
$\begin{array}{llllllll}2 & 68.9 & 1.69 & 50 & .003 & 21 & 1.35 & .041\end{array} 22$ $\begin{array}{lllllllllllll}22.7 & 15.8 & 895 & 3.35 & 2409.8 & 1 & 465.5 & 3 & 146 & 1 & 2.6 & .1 & 59 \\ 4.48 & 050\end{array}$ $\begin{array}{rrrrrrrrrrrrrr}22.7 & 15.8 & 895 & 3.35 & 2409.8 & .1 & 465.5 & .3 & 146 & .1 & 2.6 & .1 & 59 & 4.48 \\ 6.3 & 11.6 & 646 & 3.57 & 29999 & .2 & 2211.5 & .4 & 59 & .1 & 21.5 & <.1 & 44 & 5.28 \\ .037\end{array}$ $\begin{array}{llllllllllllllllllllllllllll}6.3 & 11.6 & 646 & 3.57 & >9999 & .2 & 2211.5 & .4 & 59 & .1 & 21.5 & <.1 & 44 & 5.28 & .037 & 3 & 116.1 & .70 & 67<.001 & 35 & 1.69 & .038 & .22\end{array}$ $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrr}5.7 & 12.4 & 554 & 2.96 & 3550.9 & .3 & 724.0 & .6 & 62 & .1 & 5.7 & <.1 & 49 & 4.32 & .049 & 4 & 83.7 & .69 & 65 & .002 & 21 & 1.50 & .038 & .22 \\ 7.7 & 10.2 & 552 & 3.86 & >9999 & .2 & 3716.7 & .4 & 57 & .3 & 26.3 & .1 & 25 & 4.65 & .036 & 3 & 121.4 & .37 & 94 & .002 & 41 & 1.36 & .034 & .27\end{array}$ $\begin{array}{llllllllllllllllllllllllllllll}55.6 & 34.2 & 1575 & 6.01 & 1820.6 & <.1 & 269.1 & 1 & 151 & .1 & 3.1 & .1 & 198 & 6.29 & .026 & 1 & 156.1 & 3.81 & 57 & .027 & 18 & 2.97 & .042 & 19\end{array}$
$1<.01 \quad .5<.1<.05$
$.01 \quad 9.6<1 \quad 30$ $.012 .7<1 \quad 35$
101 48-1 51 1?
$1.0219 .0-11.04 \quad 16$
$\begin{array}{lllll}.2 & .01 & 11.6 & .1 & .79\end{array}$
$\begin{array}{llll}1.2<.01 & 8.7 & .1 & .51 \\ 2< & 01 & 19.6 & .1\end{array}$
$2<.0119 .6<.1$. 20
$\begin{array}{llll}2.02 & 8.4 & 11.03\end{array}$
$\begin{array}{lll}3.02 & 13.3 \quad 1157\end{array}$
$3.02 \quad 10.6 \quad 1 \quad 84$
$\begin{array}{llll}3 & 16 & 5.7 & 1\end{array}$ $2.05 \quad 5.8<1 \quad .65$ $\begin{array}{rrr}.30 & 4.5 & .11 .16 \\ 0125 & -1 & 12\end{array}$ $1.0125 .2<1 \quad 72$
81.4
$\begin{array}{ll}5 & 8 \\ 9 & 6\end{array}$
$\begin{array}{ll}5 & 8 \\ 9 & 6\end{array}$

46
$\begin{array}{ll}5 & 1.0 \\ 5 & 0\end{array}$
$\begin{array}{ll}11.6 \\ 8 & 5\end{array}$
$12.730 .120195 .11 \quad 255.5 \quad .5 \quad 34.02 .8495<.1 \quad 1.8<.112516 .01 .14916150 .43 .93 \quad 34.011 \quad 8 \quad 2.73 .016 .07$
$.1<.01 \quad 8.8<.1 \quad .19$
 $6.05 \quad 2.5<11.23$

 $\begin{array}{ll}0 & 5 \\ 6 & 4 \\ 6 & 4 \\ 6 & 2\end{array}$
$\begin{array}{lllll}7.0 & 50.4 & 6.4 & 61\end{array}$ $\begin{array}{llll}6.6 & 62.6 & 6.5 & 69\end{array}$
 $126.83 .52 \quad 54 \div .001 \quad 182.78 .014 .21$
 511 8.7 71.1010
 $\begin{array}{rrrrrrrrrrrrrr}51.0 & 28.4 & 1185 & 5.28 & 511.6 & <.1 & 185.0 & 1 & 141 & .1 & 3.2 & 1 & 137 & 4.67 \\ 16.4 & 0.0 & 791 & 2.24 & 47.0 & .2 & 17.0 & 1.1 & 53 & -1 & .9 & 1 & 5 & 3.76 \\ 10.027\end{array}$

$\begin{array}{lllllllll}1 & 229.3 & .52 & 54 & .002 & 19 & .85 & .027 & 20\end{array}$ | 125 | 4 | 55 | 30 | -001 | 13 | .85 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 027 | 20 | | | | | $\Rightarrow 89725250 \quad 001 \quad 18240$. 1020 . 14 $\begin{array}{lllllllll}4 & 141.4 & 1.33 & 12 & 006 & 8 & 1.60 & .028 & .05\end{array}$ $\begin{array}{llllllll}3 & 29 & 6 & 3.05 & 18 & 004 & 12 & 2.59 \\ \text { n) }\end{array}$

$20030-1.23$ 20120 ?
$\begin{array}{lllll}1-01 & 6.5 & -1 & 1 \%\end{array}$
$1 \div 01 \quad 7.8=1 \quad 43$
f. 01 a 1
$\because 0186$
$\begin{array}{llll}2 & 0 & 6 & 6 \\ 2 & 6 & 1 & 16\end{array}$
$200198-1110$

- 01 9.8 0110

$\begin{array}{rr}10 & -5 \\ 2 & -5\end{array}$ 31.

group lox - 0.50 gm sample leached with 3 ml 2-2-2 hCl-hno3-h2o at 95 deg. C for one hour, diluted to 10 ml, analysed by ich-ms.
UPPER LIMITS - AG, AU, HG, $W=100 \mathrm{PPM}$; MO, CO, CD, $S R, B I, T H, U \& B=2,000 \mathrm{P}, \mathrm{CM} ; \mathrm{CU}, \mathrm{PB}, 2 \mathrm{~N}, \mathrm{NI}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$
SAMPLE TYPE: CORE R150 60C AG** BY FIRE ASSAY FROM 1 A.T. SAMPLE.
Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.
DATE RECEIVED: MAY 212003 DATE REPORT MAILED: (un 4)03

SAMPLE\#	$\begin{gathered} \text { S.Wt } \\ \text { gm } \end{gathered}$	NAu mg	$\begin{array}{r} -\mathrm{Au} \\ \mathrm{gm} / \mathrm{mt} \end{array}$	oupAu	TotAu $\mathrm{gm} / \mathrm{mt}$
SI	<1	$<.01$	$<.01$	-	$<.01$
D 177776	455	. 01	. 22	-	. 240.6
D 177785	483	$<.01$	1.54	-	1.540 .05
D 177786	473	$<.01$. 66	-	.660 .02
D 177787	481	. 01	. 30	-	.320 .01
D 177793	471	$<.01$	2.58	-	2.580 .08
D 177794	476	<. 01	. 45	-	. 450.01
D 177800	464	<. 01	. 24	-	. 240.01
D 183551	478	<. 01	1.43	-	1.430 .64
D 183556	475	$<.01$	1.82	-	1.82 cos
D 183558	467	<. 01	. 54	-	. 54002
D 183562	471	<. 01	2.34	-	2.340 .07
D 183563	462	<. 01	. 94	-	. 940.03
D 183564	467	<. 01	3.72		3.720 .1
D 183572	468	<. 01	. 47	-	.470 .01
D 183573	466	$<.01$. 08	-	. 08 Tr
D 183583	488	. 02	. 26	-	.300 .013
D 183590	469	$<.01$	4.45	-	$4.450-13$
D 183591	465	$<.01$	3.54	-	3.540 .10
D 183592	476	<. 01	. 51	-	. 51 c. ${ }^{\text {c }}$
D 183604	460	<. 01	. 07	-	. 07
D 183605	323	$<.01$	2.41	2.48	2.410
RRE D 183605	356	. 03	2.66	-	2.74
D 18361.6	480	$<.01$. 62	-	. 62 '
D 183619	468	$<.01$	2.16	-	2.16
D 183620	469	$<.01$	3.17	-	3.17
D 183621	464	$<.01$. 35	-	. 35
D 183629	473	$<.01$. 03	-	. 03
D 183630	468	$<.01$. 12	-	. 12
D 183631	477	$<.01$. 19	-	. 19
D 183633	477	$<.01$.43	-	. 43
D 183634	478	$<.01$. 09	-	. 09
D 183641	465	$<.01$. 15	-	. 15
D 183645	479	$<.01$. 54	-	. 54

-AU : - 150 AU BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAU: AU DUPLICATED FROM - 150 MESH. NAU - NATIVE GOLD, TOIAL SAMPLE FIRE ASSAY.
SAMPLE TYPE: CORE R 15060 C

	Bralorne Pioneer Mines		FILE \# A301615			Page 2	
	SAMPLE\#	S.Wt gm	NAu mg	$\begin{gathered} -\mathrm{Au} \\ \mathrm{gm} / \mathrm{mt} \end{gathered}$	TotAu $\mathrm{gm} / \mathrm{mt}$		
	$\begin{array}{ll} D & 183652 \\ D & 183653 \\ D & 183655 \\ D & 183656 \end{array}$	$\begin{aligned} & 485 \\ & 501 \\ & 485 \\ & 477 \\ & \hline \end{aligned}$	$\begin{array}{r} .02 \\ <.01 \\ .09 \\ .01 \\ \hline \end{array}$	$\begin{aligned} & 1.27 \\ & .29 \\ & 4.61 \\ & 1.37 \end{aligned}$	$\begin{aligned} & 1.310004 \\ & 4.290 .04 \\ & 4.800 .14 \\ & 1.390 .04 \end{aligned}$		

Sample type: CORE R150 60C.

Bralorne Pioneer Mines File \＃A301616

400－455 Granville St．，Vancouver BC V6C 111 Submitted by：Aaron R．Pettipas

，	1	6	． 3	－1	－1	？		<1.04	26	－ 1	1.1	<1	3	－ 1	＜． 1	＜ 1			． 001	＜1	． 0.01	3＜．001	1	01					1	1－05	${ }_{4}$	－ 5		
1）Mryes of 7	18	13	30	h	2	3.3	5.3	11532.68	－9979	＜ 1	121.8	－ 1	92	1	109	－ 1		3.11	019	1	9.41 .18	21.003	5	13	． 007	． 06	2.9	02	3.0	－1 62	4	1.0	3	19 a．cor
（1）1750 3	2.2	83	14	2	2	17.3	11.	11103.91	6172.8	1	5.0	2	14	3	81	4	25	22	038	3	14.2 .20	12.001	5	65	010	14	30	05	5.2	－1－n				60.3 .018
0175010	5	190	3.3	672	2.0	18 9	12.0	722.415	84246	2	0.123 .6	1	25	1	157	1	10	24	022	2	30.03	77\％ 0001	4	35	． 019	20	3	\cdots	$4 ;$	1 －			P． 1	817 Cl
（1） 1 \％ 02	2.5	17.0	197？	57	2.0	85	2.3	2211.19	3399.2	． 2	189.1	． 5	13	2.7	4.7	1	6	07	018	5	0.5	70.003	3	23	003	09	51	$1 ?$	20	＜ $1<05$		8	． 2	$180.0 \cdot$
101775 003	6	216	． 9	34	5	32.6	5.9	520167	3450.4	＜ 1	926.1	． 4	41	1	7.6	＜1	7	29	． 027	2	14.510	38.001	4	25	005	09	4	04	2.4	＜ 1		5	1.4	1.120 .0
011036023	8	4	1600.9	12318	18.7	10.3	2.8	483208	9.9		18966.4	7	37	121	11.4	5.7	9	15	025	7	13.	128.001	2	27	． 004	09		3.30	3.2	$1<05$		9		？ 1
11：55 ot2	5	7	8.5	14	3	1.6	10	1053283	22	1	1762.8	2	88	1	12.8	1		353	052	3	24	45.003	6	63	． 18	12	5	03	3.9	－ 113		6	12	2170
117359814	11	39.0	$19 . ?$	291	8	11.0	5.6	590168	43060	2	8．9	． 6	14	13.6	5.2	． 1	3.	15	051	4	02	78.001	3	37	026	14	16	36	13	1－． 05		5	3	10.018
101775902	2.2	14.7	2.7	18	2	21.9	8.6	64， 2.05	5672.2	3	6	2.6	38	1	5.	＜． 1		2.47	035	3	7.8 50	15－001	5	52	． 01	14	2	01	3.	－1117	1	＜． 5	1	190．が1
111900004	12	41.0	3.3	44	4	911.0	54.9	58	0.5	¢ 1	2516	1	474	1	826	1			018	1	18365.61	15－001	2	21	． 004	， 4	1.7	14	6.6	<1.85	1	． 0	7	
ก177761008	2.0	43	15.5	628	2.4	2.8	16.9	1325464	\％．1	1	368.	． 2	69	6	15.1	1		2.16	056	？	28.71	001	10	46	023	25	3	04	8.4	1126		5	26	
Cimes 0	1	$2{ }^{2} 2$	30.7		14.3	1569.5	79.2	334	1.4	－ 1	4347.2	＜ 1	653		3.5	1		893	． 02		37.6571	11.091	2	18	002	12	5	06	9.7	－ 11.19	5	2.5	15.6	8？
01：1063004	37	6.5	8	7	2	4.1	15	$175 \quad 56$	624.7	－1	880	3	9	1	35	＜ 1	3	03	014	1	$26.7 \quad 05$	15－001	2	05	001	0.3	56	03	1.2	c．1－05	－1	－ 5	14	$11 \rightarrow 0 \cdot 1$
［177751820	A	24.2	35 ？	104	9	17.1	37	3391.5	778.1	2	775.3	4	51	9	4.9	2	4	28	041	4	121 n9	88.002	4	33	011	11	1	19	13	1－05	1	1.5	13	0.50 .13
0117065004	11	8.6	22.2	361	1.0	17.3	2.8	1711.11	939.6	4	36.0	7	52	10	8.6	＜． 1	15	88	038	2	184.31	18.001	2	12	004	． 05	5 ？	11	1.6	－161	－1	2.5	$1 ?$	$3 \cap r$
ก177\％ 17024	3.9	57.1	1 ？	6	4	22.8	6.0	2321.71	58.7	2	60	9	19	6	16	1	9	84	017	？	13.6	71.002	4	15	． 002	． 0	3.1	08	17	－ 110 nk		10.1	．	01
	2	15	． 7	a	－1	15	．	24） 18	781.0	－ 1	3147	－ 1	18	＜ 1	15	＜ 1	1	28	030	1	$26 \quad 10$	001	1	03	001	． 01	2	01	1	－1•n5	－1	5	－ 3	
［1］130	1.7	55%	220	115	6	11.3	3.4	3991.48	5137.1	1	$4 / 5.0$	4	25	2.9	3.4	1	4	15	030	3	11.305	56.003	3	32	010	12	3.1	． 15	10	＜1－0．5	1		1	16
Fir！exem 019	18	5； 8	27.1	112	7	120	32	387148	51753	1	6738	4	29	31	3.1	1	3	14	． 028	3	11.205	70.005	3	32	010	13	2.9	． 15	10	1－05	1	7	10	\％

group 1dX－ 0.50 gM sample leached with 3 ML 2－2－2 hCl－hno3 hio at 95 deg．C for one hour，diluted to 10 Ml，annlysed by icp－ms． UPPER LIMITS－AG，AU，HG，$W=100$ FPM；MO，CO，CD，SB，BI，$T H, U \& B=2,000 P P M ; C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 F P M$ ．

SAMPLE TYPE：ROCK R150 60C AG＊＊\＆AU＊＊BY FIRE ASSAY FROM 1 A．J．SAMPLE．
Samples beginning＇RE＇are Reruns and＇RRE＇are Reject Reruns．

Standard is SIANDARD DS4/R-2/AU-1.

UPPER LIMITS - AG, AU, HG, $W=100 \mathrm{PPM}$; MO, CO, CD, SB, B1, TH, U \& B = 2,000 「 CH ; CU, $\mathrm{CB}, \mathrm{ZN}, \mathrm{MI}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{CIM}$.
SAMPLE IYPE: CORE R150 60C $A G^{* *} \& A^{* * *}$ BY FIRE ASSAY FROM 1 A.T. SAMPLE.
Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.
 111 results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Stanland is SIANUARO OSA/R-2/AU-1. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.
\qquad

0183611	9	70.2	1.2	10	< 1		912.4	44222.40	7.2	. 2	3.5	6	53		1.1	< 1	51	2.23	076	6	3663	53	. 085	121.90	121	06	7	04	4.2	< 1	13	7			- 01 小
D 183612	1.4	30.	1.0	30	< 1		13015.6	64762.62	17.0	. 2	1.5	. 4	99		- 1	<1	76	2.03	. 062	3	31.61 .25	81	. 102	132.34	203	07	3	02	8.1	< 1	. 37	7			-01,
0183613	62	9.7	13.0	40	. 4		31.288	412294.75	2815.1	¢ 1	1580.1	. 1	19		15.4	< 1	130	6.67	028	2	46.62 .53	51	007	162.15	. 055	13	$\bigcirc 200$	39	13.9		. 91	5			1.750 .05
0383614	6.8	11.2	22.1	58	3		64.541 .5	513436.46	5594.1	. 1	221.9	1	163		. 13.6	< 1	137	5.33	018	1	91.13 .64	39	002	122.68	018	16	3.9			< 1	. 66	,		< 3	.22.er
0183615	5.9	19.8	82.2	55	2		44.342 .3	313456.43	489.2	1	35.0	1	125		. 11.9	<. 1	202	4.68	028	2	80.13 .76	14	005	12320	016	15	1.2		18.5	$\times 1$. 49	8	< 5	3	06
0183617	10.0	203	3	55	1		47.913 .8	813546.69	9.6	. 1	15.0	1	68		11.4	<. 1	310	4.47	016		145.54 .33	41	. 004	12408	017	09	4	01	25.8	< 1	17	12	< 5		02
0183618	1.0	37.2	2	54	-1		18330.6	612405.43	5.9	1	2.0	. 2	71		. 1.6	< 1	234	4.38	. 028	2	24.92 .82	54	129	152.97	111	. 01	. 2	02	23.2	< 1	18	10	< 5	< 3	<. 01 人,
0183622	1.7	32.0	0	60	1		52.030 .6	616035.43	381.4	. 2	59.8	1.0	147		. 12.0	- 1	169	6.39	065		122.52 .91	36	053	182.77	030	. 12	1		20.3	¢. 1	. 22	9	< 5	< 3	.07-r
0 183623	6	22.2	21.0	111	< 1		95.839 .7	715696.41	135.1	. 6	33.3	2.9	36		11.0	< 1	164	3.20	. 241		101.33 .36	36	264	103.38	. 031	08	2		11.2	< 1	23	14	< 5	< 3	03 T
0183624	8	20.5	4.4	83	1		31.636 .2	226245.79	29999		5103.8	1.8	274		. 124.4	<. 1		12.02	. 194	17	51.52 .28	35	019	142.54	013	. 11	1.4	03	5.9	<. 1	79	9		< 3	${ }^{5.41} 0.16$
$\bigcirc 183625$	5	52.7	2.3	81	. 3		83.429 .7	713675.06	3608.0		1068.0	1.5	76		. 18.2	. 1	118	6.08	132	13	98.72 .11	33	050	112.81	. 026	. 10	. 6	03	8.7		. 55	10	1.2	- 3	121.037
0183626	4.8	65.1	17.2	44	1.6		23.8169	91465392	4706.9	<. 1	3530.8	. 1	295		. 218.1	. 1	38	11.75	. 023	2	23.61 .02	28	. 003	10.78	. 011	14	6.1	03	6.1		. 09	2	1.6	1.9	4.240 .12
018.3627	6.3	64.4	3.1	45	4		15.219 .8	813694.35	2042.2	- 1	588.0	. 1	227		15.5	1	103	8.37	. 036	2	33.91 .44	51	003	131.72	018	23	1.0	01	8.7	< 1	. 97	5			66.02
0 183628	1.8	48.8	1.2	72	. 2		50.026 .3	315155.77	1313.0	. 1	295.4	. 5	115		. 14.1	< 1	197	1.90	027		116.22 .16		<. 001	122.57	019	15	. 7				.91	8	6	< 3	32.01
0183632	5.6	7.0	. 3	27	- 1		1.821 .7	71733.15	19.5	. 1	27.0	. 1	92		1 . 2	< 1	118	1.81	012	1	62.92 .30	33.	. 084	82.28	200	. 05	< 1		13.3		. 05	6	<. 5	< 3	. 06 Tr
O183635	11.0	11.6	3.0	46	1		35.429 .1	113944.81	1373.8	1	151.8	. 1	121		12.9	< 1	131	9.70	023	2	80.72 .26	40	010	132.34	038	13	7			- 1	36	6	6	- 3	15.01
0183636	2.3	9.3	1.9	32	1		1.13 .6	65051.89	1697.9	1	94.0	. 6	28		11.2	< 1	12	2.33	. 063	5	2.1 . 46	${ }^{21}$	002	131.01	053	10	2	03	2.1	< 1	. 27	5	<. 5	< 3	${ }^{08} \mathrm{~T}$
0183637	1.2	9.1	3.3	33	3		6.65 .9	94892.04	>9999	1	932.5	. 4	42		16.9	< 1	17	2.77	. 065	3	12.4 .38	33	003	13.81	. 040	. 15	1.8	. 02	2.7	< 1	. 73	2	. 5	< 3	1.05 .03
- 183638	2	26.1	1.0	36	- 1		2.55 .2	? 6562.59	121.9	. 3	15.0	. 5	30		1	- 1	35	1.49	068	4	2.9 .67		<. 001	131.27	. 054	. 14	-1	01	3.1	< 1	. 41	6	$\times 5$	< 3	03 Tr
D 183639	1.0	25.3	1.1	30	< 1		2.24 .8	86492.48	41.6	2	14.0	. 5	30		1	- 1	28	2.03	. 066	3	5.759		001	121.16	044	11	1.7	01	2.2	-1	. 66	5	< 5	-3	017%
D 183640	5	32.3	1.4	69	1		7.933 .9	91424611	515.3	1	137.8	. 2	131		13.9	<. 1	204	5.25	033		111.43 .43		c. 001	103.13	. 018	19	2		20.4	< 1	. 55	8	. 5	< 3	15.
RE 0183640	4	328	13	75	1		2.835 .5	514796.37	552.7	1	165.0	2	130	-	14.0	< 1	213	5.44	. 035		117.83 .54	43	001	113.23	. 01	18	$3<$	< 012	20.4	< 1	58	9	5	- 3	15.0
Rre 0183540	6	32.6	1.2	63	1		67335.9	914726.40	533.5	1	141.9	2	129		3.1	<. 1	213	5.38	034		122.33 .53	44	006	103.24	. 017	. 18	<	< 012	20.2	<1	62	9	5	- 3	15 . i
D 183642		1152	1.3	52	1		20126.3	37134.55	28.8	. 3	39.0	. 9	53	-	113	1	149	1.81	. 051	3	57.12 .05	${ }^{4}$	119	122.11	. 136	. 08	4			1	. 98	,	< 5	- 3	04 ?
D 189643	9	25.9	5.8	32	3		234.7	17422.55	5530.6	2	172.6	4	49		166	- 1	15	3.24	065	3	6.0 .19		. 001	91.01	. 037	11	18	< 01	2.1	- 1	. 93	1	6	-3	89
D 183564	2	436	1.0	21	- 1		185.0	05272.53	13.7	. 2	2.0	5	38		1.3	. 1	29	1.69	. 063	1	2.2 . 68	38	003	10113	. 071	. 10	-1	01	2.5		. 65	5	- 5	< 3	. 01
D 1836915	12	35.3	3.0	59	4		1.8213	313645.29	3719.7	1	169.3	. 1	150		5.5	< 1	132	5.41	.038	2	74.32 .76	25.	. 001	82.12	. 024	. 11	4.5		18.2	< 11	16	7	- 5	3	24
-1993617	2.1	38.9	2.1	55		113	3.825.4	412784.27	2580.9	1	403.0	${ }_{4}^{4}$	227		180	< 1	75	5.97	038	3	84.63 .01	26 c	. 001	11186	022	14	1.2	- 011	10.1	< 1	31	5	- 5	-3	16
-183668	2.5	88.9	2.8	51	1		24155	5.7383 .92	1090.7	- 1	291.1	2	95	-	17.9	1	${ }^{48}$	3.09	. 076	2	2311.80	${ }^{27}$	002	8140	. 033	18	. 7	01	55			5	18	-3	35
0183619	112	88.5	2.4	47	3		0915.	, 833398	477.2	< 1	137.6	1	90	<	14.5	1	60	4.12	. 078	2	334181	26	001	8169.	. 032	16	13	01	53			6	14	c 3	15.
17183550	1.9	96.7	18	50	4		20136	61723.21	648.6	< 1	2261	1	91	-	12.9	1	50	3.49	. 091	2	1981.68		001	A : 12	031	18	11 <	< 01	51	- 1	${ }^{96}$	5	\%	1	\%
0183651	13	62.4	1.4	14	5		20158	B 5873.69	11598	< 11	1148.8	1	92		80	1	45	2 is	083	2	15.11 .76		001	81.31	078	2	. 3	01	4.6		$1 /$	1	1.1	'	121
0187654	10	52	67	${ }^{24}$			20 515	5360251	29999	< 13	35195	1	133		1469	2	22	1.96	011		336.9227		001	71.10	0 n 9	. 01	2	$n 2$	29	- 1	\cdots	4	53	?	5200.15
0183657	1.9	151	24	75		82 A	8 8603	, 1970456	3589.5	< 1	738	3	27		21 fil	< 1	A7	73 ?	046		9111761	A	003	3912	017	\cdots		(1)	13.1	- 1	21	8			91
SIMHIDRE DSA/R 2/All 1	68	124.1	30.9	159	3		5.1122	88033.12	22.6	63	28.0	3.6	27	5	645	5.1	75	57	.088		$1665 \quad 58$	119	n88	31.75	032	15	36	3	40	11	09	6	13	(1) 1	332

\qquad

[^0]: H. A. Sanche, P. Geol.

