2003 ASSESSMENT REPORT ON THE RDN 1-18 AND MOR 1-16, 18 CLAIMS VOLUME 1 (Text and Appendices)

RECEIVED

.....

.....

ليد أ

است

.....

1.....

لسا

Ĺ

اس

اسا

لسنا

ليبا

أسرا

ليد

MAR 1 9 2004 Lo Gold Commissioner's Office VANCOUVER, B.C.

Lodated in the Eskay Creek Area ice Liard Mining Division British Columbia, Canada

> NTS 104B-15E, 104G-2E 57°00' North Latitude 130° 39' West Longitude

Owned By: Rimfire Minerals Corporation & Barrick Gold Inc.

Work Performed By: Barrick Gold Inc Suite 700, 1055 West Georgia Street P.O. Box 11120 Vancouver, BC V6E 3P3

Submitted by

Richard K. Mann, B.Sc David F.G. Gale, M.Sc., P. Geo.

March 18, 2004 VEY BRANCH

52

EXECUTIVE SUMMARY

The RDN 1-18 property consists of 273 claim units covering approximately 6800 hectares, and the MOR 1-16 and 18 property consists of 267 units covering mountainous terrain in northwestern British Columbia, 120 kilometres northwest of Stewart. Access to the property is by helicopter from Km. 11 or 45 on the Eskay Creek Mine Road. Prior to the end of the 2003 work year, Barrick Gold Inc was earning a 75% interest in the claims from Rimfire Minerals Corporation.

From 1989 to 1992, Noranda and others carried out extensive geochemical and geophysical surveys over the current RDN claims and focused on narrow, gold-rich veins. Noranda drilled 30 holes totaling 3633 metres; their intersections included 1.95 meters @ 101 g/tonne Au, 0.85 metres @ 138 g/tonne Au and 0.45 metres @ 360 g/tonne Au. Rimfire acquired the property in 1997 and carried out further groundwork from 1997 to 1999, including 574 metres of drilling in nine holes. Newmont optioned the property in early 2000 and carried out a 26.8 line kilometer UTEM ground geophysical survey, limited mapping and geochemical sampling. In 2001, Newmont completed a 0.55 kilometre UTEM ground geophysical survey and drilled 2256 metres in 13 drill holes.

The RDN property is largely underlain by Jurassic Hazelton Group stratigraphy similar in age, lithology and alteration to that hosting the Eskay Creek gold- and silver-rich volcanogenic massive sulphide deposit, situated 40 kilometres to the south. Like Eskay Creek, subvolcanic feldspar porphyries intrude an intermediate to felsic package, which is overlain by, and interbedded with, rhyolite, fine grained marine clastics and mafic volcanics. The feldspar porphyries and their extrusive equivalents are extensively altered, pyritized and host numerous precious metal-rich quartz sulphide veins.

During the 2003 exploration program, geological mapping was carried out on the Arctic Grid and Boundary Zone of the RDN Property, and on selected areas on the MOR property. These areas had either received limited attention in the past and/or were underlain by Hazelton Group rocks, similar to the Eskay Creek stratigraphic package. 164 rock samples, 108 soil samples and 21 silt samples were collected on these properties.

لعوا

أحجبا

اسما

-

.....

اربيا

ليسا

-16

ليرا

.....

أسرا

.....

أحدأ

اس

أسبعنا

<u>ليا</u>

la.

TABLE OF CONTENTS

<u>Page</u>

	EXECUTIVE SUMMARY	
1.0		1
2.0	LOCATION, ACCESS & PHYSIOGRAPHY	1
3.0	CLAIM STATUS	2
4.0	EXPLORATION HISTORY	4
5.0	2003 EXPLORATION PROGRAM 17	1
6.0	REGIONAL GEOLOGY 12	2
	6.1 Stratigraphy	6
7.0	GEOLOGICAL MAPPING 18	8
	7.1MOR Claims.187.2Arctic Grid.187.3Boundary Zone.207.3.1Paleozoic Stikine Assemblage.207.3.2Mesozoic Hazelton and Stuhini Groups.227.3.3Mineralization and Alteration.25	8 0 1 2
8.0	DISCUSSION	9
9.0	RECOMMENDATIONS	1

2003 Assessment Report on the RDN 1-18 and MOR 1-16,18 Claims

لسا

ليسا

است

1

لسما

-

لسا

1

ليتعا

أعتدا

-944

.....

ليها

LIST OF TABLES

<u>Page</u>

Table 1	List of RDN Claims	3
Table 2	List of MOR Claims	3
Table 3	RDN Exploration History	6
Table 4	Significant 1990 -1991 Drill Intersections	7
Table 5	Regional Stratigraphic Summary	14

LIST OF FIGURES

Follows page

Figure 1	Regional Location Map	1
Figure 2	Detailed Location Map	1
Figure 3	Claim Map	2
Figure 4	Simplified Regional Geology	12

العيورا

اس

-

لير

مت

أنعنا

4

.....

اسا

المعا

اسا

لمسا

Long

1.....

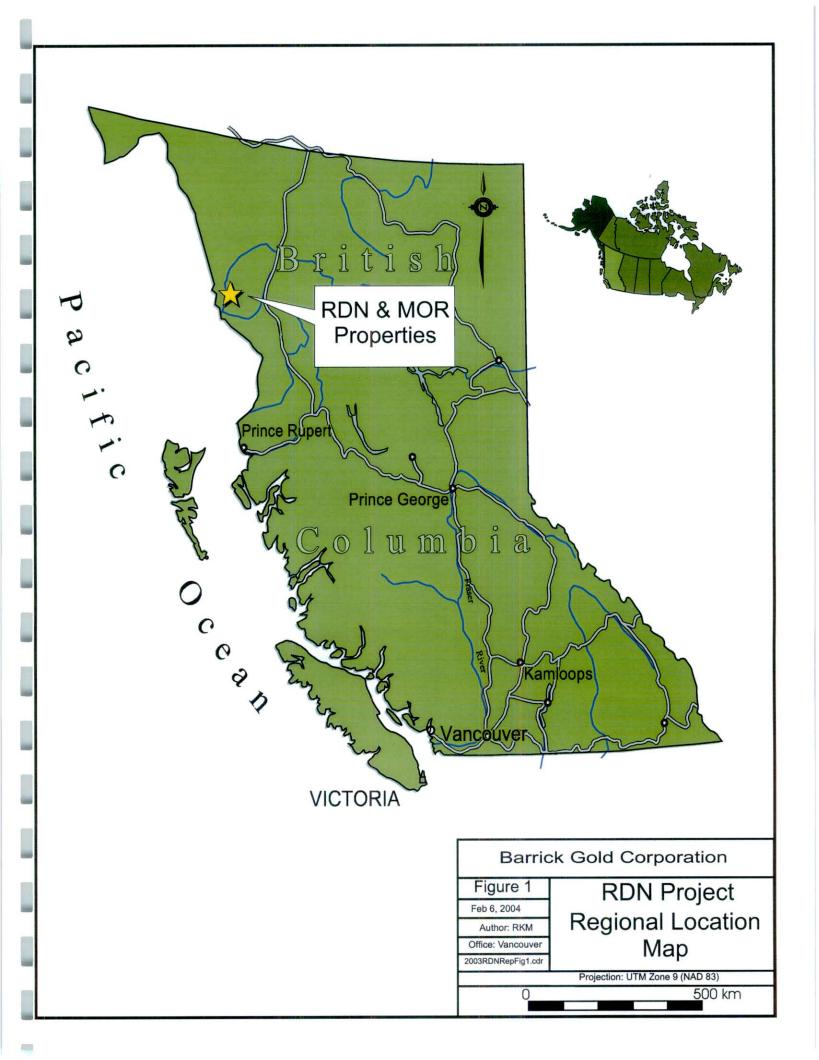
.....

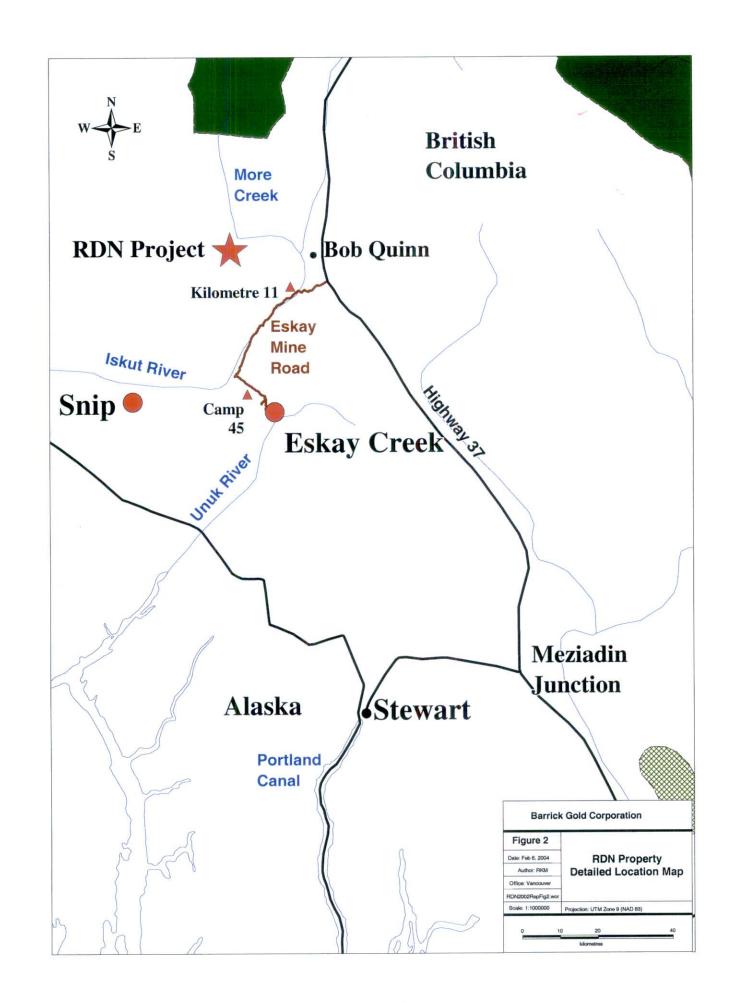
LIST OF MAPS (In Map Pockets)

		<u>Scale</u>
Map 1 Map 2 Map 2b	RDN Property – Claim Map RDN Property – Geology Arctic Grid – Geology	1:25000 1:25000 1:5000
Map 2c	Boundary Zone – Geology	1:2500
Map 3 Map 3a	Silt Sample Locations Silt Samples – Au (ppb), Ag (ppm)	1:25000
Map 3a Map 4a	Rock Sample Locations, MOR area	1:25000
Map 4b	Rock Samples; MOR area (Au in ppb)	1:25000
Map 4c Map 4d	Rock Samples; MOR area (Ag in ppm) Rock and Soil Sample Locations: Arctic area	1:25000 1:10000
Map 4e	Rock and Soil Samples; Arctic area (Au in ppb)	1:10000
Map 4f Map 4g	Rock and Soil Samples; Arctic area (Ag in ppm) Rock and Soil Sample Locations: Boundary Area	1:5000
Map 4h Map 4i	Rock and Soil Samples; Boundary Area (Au in ppb) Rock and Soil Samples; Boundary Area (Ag in ppm)	1:5000 1:5000

APPENDICES

APPENDIX I	Bibliography
APPENDIX II	Statement of Expenditures
APPENDIX III	Statements of Qualifications
APPENDIX IV	Assay Certificates and Analytical Procedures
APPENDIX V	Silt, Soil and Rock Sample Descriptions And Assays


1.0 INTRODUCTION


This report describes exploration work carried out on the RDN 1-18 and MOR 1-16, 18 claim group, located approximately 120 kilometres northwest of the town of Stewart, British Columbia (Figure 1). Barrick Gold Inc. completed geological mapping and sampling mainly focused on the Arctic Grid and Boundary Zone, with minor work carried out on the MOR claims. Mapping focused in areas with multi-element soil anomalies, and in a geological setting analogous to the Eskay Creek gold-rich volcanogenic massive sulphide deposit that is located some 40 kilometres to the southeast (Figure 2). The same lithologic package of stratigraphy is present at RDN and contains a number of mineralized zones similar to Eskay Creek.

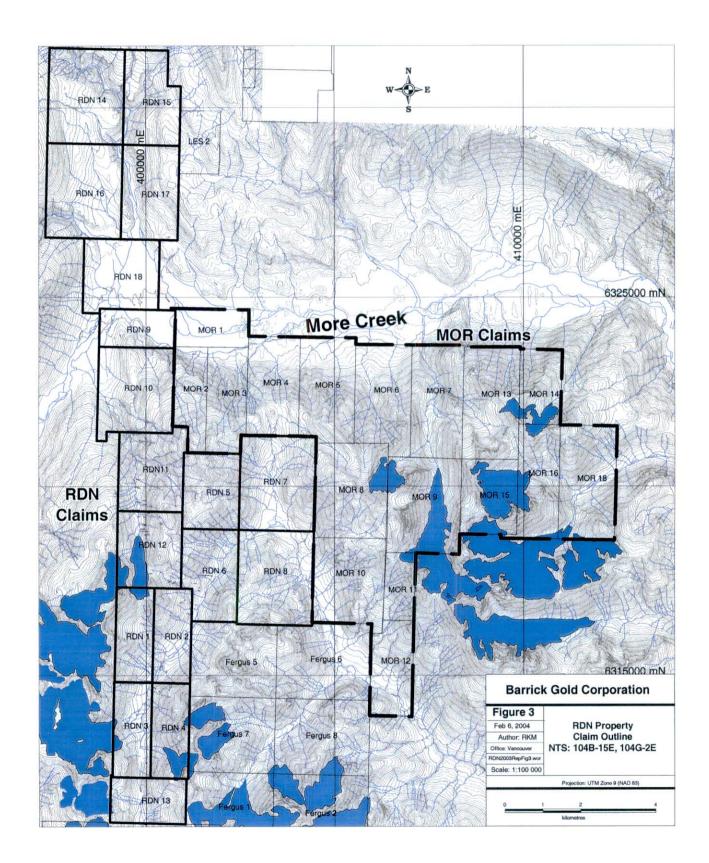
Previous work on the property has included geological mapping, prospecting, backhoe trenching, diamond drilling, grid establishment, soil sampling and ground based geophysical surveys. Operators have included Noranda Exploration Company (1989-1991), Pathfinder Resources Ltd. (1994-1996), Rimfire Minerals Corporation (1997-1999), Newmont Exploration of Canada Ltd. (2000-2001) and Barrick Gold Inc.(2002). Appendix I, Bibliography, lists relevant publications and reports.

2.0 LOCATION, ACCESS AND PHYSIOGRAPHY

The property is located 120 kilometres northwest of Stewart, British Columbia and 24 kilometres west of Bob Quinn Lake and the Stewart-Cassiar Highway (Figure 2). The claims lie in the Iskut River drainage between More and Forrest Kerr Creeks at approximate coordinates 57°00' north latitude and 130°39' west longitude.

The property is accessible by a 10-15 minute helicopter flight from Bob Quinn Lake or a 15-minute flight from Camp 45, located on the Eskay Creek Mine Road. Field crews were based at Camp 45 during the 2003 program, which commenced on June 5th and extended to August 11th.

The project area is situated in the rugged Coast Range Mountains with elevations ranging from 500 to 2000 metres above sea level. Vegetation at these levels is variable and ranges from absent to sub-alpine brush and scrub spruce and hemlock, to dense slide-alder and devils club.


Lengthy, moderate to cold winters and short cool to warm summers characterizes the climate of the region. Precipitation is moderate to heavy year round and falls as both rain and snow. Higher elevations may commonly record in excess of 10 metres of snowfall during winter months. The ideal field exploration season is mid-July to mid-September.

3.0 CLAIM STATUS

The RDN property, consisting of 18 contiguous modified grid mineral claims totalling 273 units (listed in Table 1), was grouped with the MOR property which consists of 17 claims totalling 267 units (listed in Table 2). Both of the properties are located in the Liard Mining Division, Province of British Columbia, cover an area approximately 20 kilometres in length by 2 to 14 kilometres wide, and measure approximately 14,850 hectares (Figure 3; Map 1).

Prior to the end of the 2003 work year, the recorded holder of the RDN and MOR claims was Barrick Gold Inc. In 2002, Barrick entered into an agreement with Rimfire Minerals Corporation relating to the RDN claims listed in Table 1.

The government records indicate that all the listed claims are in good standing with the respective expiry dates listed in Tables 1 and 2.

1

ليها

TABLE 1					
RDN PROPERTY - LIST OF CLAIMS					

CLAIM NAME	MINERAL TENURE No.	UNITS	RECORD DATE	EXPIRY DATE
RDN 1	222843	10	9/11/1987	31/12/2012*
RDN 2	222844	10	9/11/1987	31/12/2012*
RDN 3	222845	10	9/11/1987	31/12/2012*
RDN 4	222846	10	9/11/1987	31/12/2012*
RDN 5	325559	12	24/05/1994	31/12/2012*
RDN 6	325560	15	24/05/1994	31/12/2012*
RDN 7	334660	20	21/03/1995	31/12/2012*
RDN 8	334661	20	21/03/1995	31/12/2012*
RDN 9	334662	8	22/03/1995	31/12/2012*
RDN 10	334663	20	22/03/1995	31/12/2012*
RDN 11	366269	20	8/10/1998	31/12/2012*
RDN 12	366270	16	8/10/1998	31/12/2012*
RDN 13	359823	12	6/10/1997	31/12/2012*
RDN 14	359824	20	9/10/1997	31/12/2012*
RDN 15	359825	15	9/10/1997	31/12/2012*
RDN 16	359826	20	9/10/1997	31/12/2012*
RDN 17	359827	15	9/10/1997	31/12/2012*
RDN 18	359828	20	8/10/1997	31/12/2012*

• Expiry date of claims is subject to government approval of assessment work covered by this report.

MOR PROPERTY - LIST OF CLAIMS						
CLAIM NAME	MINERAL TENURE No.	UNITS	RECORD DATE	EXPIRY DATE		
MOR 1	394043	8	05/06/2002	05/06/2005*		
MOR 2	394044	12	05/06/2002	05/06/2005*		
MOR 3	394045	12	05/06/2002	05/06/2005*		
MOR 4	394046	18	05/06/2002	05/06/2005*		
MOR 5	394047	18	05/06/2002	05/06/2005*		
MOR 6	394048	18	06/06/2002	06/06/2005*		
MOR 7	394049	18	06/06/2002	06/06/2005*		
MOR 8	394050	20	05/06/2002	05/06/2005*		
MOR 9	394052	20	06/06/2002	06/06/2005*		
MOR 10	394051	20	05/06/2002	05/06/2005*		
MOR 11	394039	10	06/06/2002	06/06/2005*		
MOR 12	394040	15	06/06/2002	06/06/2005*		
MOR 13	394053	18	06/06/2002	06/06/2005*		
MOR 14	394035	12	06/06/2002	06/06/2005*		
MOR 15	394054	12	06/06/2002	06/06/2005*		
MOR 16	394036	18	06/06/2002	06/06/2005*		

TABLE 2 MOR PROPERTY - LIST OF CLAIMS

1

MOR 18 394038 18 06/06/2002 06/06		
MOR 18 394038 18 06/06/2002 06/06	MOR 18	06/06/2005*

* Expiry date of claims is subject to government approval of assessment work covered by this report

4.0 EXPLORATION HISTORY

The following history of exploration history is taken from Awmack, December 2001 and is summarized in Table 3.

The RDN 1-4 claims were staked in November 1987 to cover a small but intense gossan (the "Marcasite Gossan") on which no work had previously been reported. At the time, the Iskut River district was undergoing exploration for gold-bearing quartz-sulphide veins similar to those that were later developed into the Skyline and Snip mines. The following September, Neil DeBock carried out three days of prospecting on the RDN claims. Two rock samples from the Marcasite Gossan exceeded 50 g/tonne Ag, with the best assaying 207.6 g/tonne Ag (DeBock, 1989).

Noranda Exploration Company staked their GOZ claims immediately north of the RDN property in October 1989, optioned the RDN 1-4 claims and did limited sampling on them. Gold and silver values were generally low in rock and talus fine samples, but rock samples from the Marcasite and South Gossans contained anomalous arsenic and antimony, with up to 1196 ppm Sb and 831 ppm As. A heavy mineral concentrate from Downpour Creek returned 2410 ppb Au and a silt sample taken upstream from one of its tributaries contained 164 ppb Au (Savell, 1990a).

In 1990, Noranda and High Frontier Resources Ltd. carried out a joint exploration program over the RDN and GOZ claims (Savell, 1990b). They laid out sixty kilometres of grid over the gossanous felsic volcanics, with a baseline oriented at 010° and crosslines every 100 metres, and carried out ground geophysics to detail airborne anomalies (Savell, 1991). Prospecting resulted in the discovery of several gold-bearing quartzsulphide veins within dacitic tuffs on the GOZ claims, accompanied by a large Au+Ag+As+Pb+Zn+Cu soil geochemical anomaly. Fifteen BGM core holes were drilled on the GOZ claims, with the best intersection grading 11.7 g/t Au across 4.4 metres of brecciated quartz-sulphide vein (Savell, 1990b).

In 1991, Noranda and High Frontier continued exploration on the RDN and GOZ properties (Savell and Grill, 1991). A new grid was established in the Gossan Creek/Carcass Creek area, almost entirely within the felsic tuffs

and their subvolcanic porphyries. Its baseline was oriented at 155°, with five crosslines at 065° spaced 200 metres apart. All lines were surveyed with HLEM and two were surveyed with induced polarization (IP) techniques. At the southern end of the GOZ/RDN claims, they laid out east-west lines at 200 metre intervals from a north-south baseline on the Boundary Zone and collected soil samples at 25-metre intervals (Savell, 1992). Fifteen more BTW holes were drilled in 1991; significant results from the 1990 and 1991 drill campaigns are summarized in Table 4. Of the 30 holes drilled by Noranda in 1990 and 1991, all but four were targeted at quartz-sulphide veins or silicified zones in the intermediate to felsic volcanics and their subvolcanic porphyries. Results from the other holes, designed to test the property's potential for Eskay Creek-style mineralization, were all inconclusive. Two of these holes, RG91-26 and -27, were drilled within sediments and diorite on the RDN 2 claim, but failed to reach the felsic/sediment contact. The other two, RG90-12 and -13, were targeted at anomalous Au-As soil geochemistry (the "Jungle Anomaly"), but were abandoned in overburden.

Following the 1991 program, Noranda terminated their option on the RDN claims and allowed their GOZ claims to lapse. As the GOZ claims came open, they were gradually re-staked as the RDN 5-8 and 11-13 claims in May 1994, March 1995, October 1997 and October 1998. All of Noranda's drilling and grid work lie on the current RDN property.

In September 1989, Skeena Resources Ltd. staked a large claim package (the Arctic claims) on the north fork of More Creek to cover an area thought to be underlain by Hazelton Group stratigraphy similar to that In 1990, Skeena carried out hosting the Eskay Creek deposit. reconnaissance silt sampling and mapping/prospecting traverses, identifying felsite and orbicular rhyolite with local flow banding over several kilometres along both sides of More Creek (Bobyn, 1990). Their Downstream Showing, consisting of "narrow chalcedonic quartz veins...[which]...host massive pyrite stringers up to 5 cm in width" within pyritic felsite/rhyolite, returned grab samples with up to 75,000 ppb Hg, 580 ppm Sb and 4860 ppm As (Bobyn, 1991). Skeena's claims were allowed to lapse and the RDN 14-18 claims were staked in October 1997 to cover the Downstream Showing and the rhyolitic package along More Creek.

TABLE 3 RDN EXPLORATION HISTORY

Current Claims	Geochemistry	Geophysics	Drilling, Trenching	Expenditures
Neil DeBoc				
RDN 1-4	10 silts, 27 rocks			~\$10,000
Noranda (19	989-1990)			
RDN 1-8,	32 heavy minerals,	Airborne: magnetics/EM	15 DDH: 1546 m	~\$1,000,000
11-13	91 silts, 1384 soils, 464	Ground: 20 line-km magnetics, 14.9	(5072')	
	rocks	line-km VLF-EM, 14.9 line-km HLEM		
Noranda (19				
RDN 1-8,	15 silts, 275 soils, 200	Ground: magnetics, IP, HLEM	15 DDH: 2087 m	~\$1,000,000
11-13	rocks		(6847')	
Skeena (199				-
RDN 14-	56 silts, 169 soils, 34			~\$30,000
17	rocks			++++
Adrian (199		······································		
RDN 9-10				~\$10,000
	14 silts, 3 soils, 37 rocks			
Noranda/Sk		Crownell 12.1 line km magnetice 4.5		~\$100,000
RDN 9-10	2 heavy minerals, 20 silts,	Ground: 13.1 line-km magnetics, 4.5		~\$100,000
	404 soils, 35 rocks	line-km EM		
	<u>eena (1991)</u>			¢00.000
RDN 9-10	12 silts, 59 soils, 27 rocks	Ground: IP		~\$30,000
	nda/Skeena (1991-92)	1		* • • • • • • •
RDN 9-10	279 soils, 22 basal tills,	Ground: 11 line-km VLF-EM	Blast-trenching	~\$120,000
	109 rocks			
Pathfinder ((1994)			
RDN 1-6	6 silts, 3 soils, 67 rocks,			\$26,000
	24 whole rocks			
Pathfinder ((1995)			
RDN 1-8	574 soils, 8 rocks			\$74,000
Pathfinder (
RDN 1-10	2 silts, 448 soils, 110	Ground: 28 line-km magnetics, 28		\$79,000
	rocks, 44 whole rocks	line-km VLF-EM		
Rimfire (199				
RDN 1-10	648 soils, 156 rocks, 4			\$128,000
	whole rocks			* • _ • , • • • •
Rimfire (199			· · ·	
RDN 1-10,	1727 soils, 179 rocks, 33		Backhoe	\$212,000
13-18	whole rocks		trenching: 129 m	φ 2 12,000
		· · · · · · · · · · · · · · · · · · ·	denoming. 120 m	
Rimfire (199		Crowned, 7.4 line two magnetics, 7.4		- \$290.000
RDN 1-13	16 silts, 425 soils, 159	Ground: 7.4 line-km magnetics, 7.4	9 DDH:	~\$380,000
	rocks, 35 whole rocks	line-km VLF-EM	574 m (1,884')	\$400.000
Newmont		Ground: 26.8 line-km UTEM in		~\$190,000
<u>(2000)</u>		8 transmitter loops with 25-m spacing		
<u>Newmont</u>		Ground: 0.55 line-km UTM with 50	13 DDH:	~\$665,000
(2001)		and 100 m spacing.	2256m (7,401')	
Barrick			9 DDH:	~330,400
(2002)		· · · · · · · · · · · · · · · · · · ·	1125.93 (3,694')	
LUCE	34 heavy minerals, 242	Airborne: magnetics/EM	561DDH: 7,589 m	~\$4,384,400
	34 Heavy Hillerais, 242			
Total		Ground: magnetics. VLF-EM. UTEM.	(24,898'), plus	
Total Work to	silts, 6398 soils, 1612	Ground: magnetics, VLF-EM, UTEM, horizontal loop EM, IP	(24,898'), plus limited blast and	
Total		Ground: magnetics, VLF-EM, UTEM, horizontal loop EM, IP	(24,898'), plus limited blast and backhoe	

2003 Assessment Report on the RDN 1-18 and MOR 1-16,18 Claims

1-اسا أيبينا لسا _

المحورا

استا

أستط

لسا

لي

Drill	Zone	From	То	Length	Au	Ag	Cu	Pb	Zn
Hole		(m)	(m)	(m)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)
RG90-3	Wedge	103.60	104.20	0.60	1370	4.8	3945	76	742
RG90-6	Wedge	18.60	19.30	0.70	11300	9.3	2444	1350	17219
RG90-7	Wedge	56.70	61.10	4.40	11656	16.4	5706	6518	16971
	Ĵ	64.30	64.55	0.25	38500	42.3	19877	3880	14439
RG90-11	Gossan Ck.	26.05	26.45	0.40	18190	8.4	6086	52	51
		51.00	51.40	0.40	11570	9.7	14280	12	54
RG90-15	Wedge	26.10	26.40	0.30	17890	10.6	4772	521	2907
	Ŭ	39.70	78.40	38.70	642	2.1	1 597	373	2074
RG91-16	Boundary	55.50	55.95	0.45	359.7g/t	N/A	0.22%	N/A	N/A
		56.20	56.70	0.50	3.77g/t	13.4g/t	2.31%	0.04%	0.67%
RG91-20	Wedge	142.20	143.00	0.80	4.42g/t	3.1g/t	0.20%	0.02%	3.26%
RG91-21	Wedge	82.30	84.25	1.95	2.47g/t	1.0g/t	0.02%	0.03%	0.18%
	Ļ,	105.20	106.25	1.05	2.09g/t	4.8g/t	0.15%	0.06%	1.55%
		140.75	141.60	0.85	137.8g/t	22.3g/t	0.87%	0.10%	0.31%
		158.80	160.75	1.95	101.0g/t	62.4g/t	2.70%	0.48%	1.88%
		169.05	170.05	1.00	1.99g/t	7.5g/t	0.36%	0.03%	0.09%
RG91-22	Wedge	86.50	88.50	2.00	8.22g/t	20.7g/t	0.45%	0.75%	2.29%
RG91-24	Wedge	28.50	30.10	1.60	1.13g/t	3.4g/t	0.06%	0.36%	2.24%
RG91-29	Boundary	8.70	9.20	0.50	1320	15.7	8031	339	1793

TABLE 4 SIGNIFICANT 1990-1991 DRILL INTERSECTIONS

In March 1990, Adrian Resources Ltd. and Skeena each staked claims between Noranda's GOZ and Skeena's Arctic claim groups, and contested ownership. Exploration work was done by each group that summer. Adrian carried out reconnaissance mapping and limited sampling (Dunn, 1990). Noranda optioned Skeena's More claims, cut a north-south baseline with east-west cross-lines every 200 metres and carried out soil sampling and ground geophysics over their grid (Savell and Wong, 1991). The following year, Noranda carried out two test lines of IP and did minor sampling, but no results are available.

In 1991, Adrian optioned the More claims from Skeena and Noranda and carried out grid-based geological mapping and added infill soil lines at 100 metre spacings to Noranda's grid. The soil geochemistry showed a 200 x 700 metre, northerly-trending, Pb+Zn+Au+As+Ag+Cu anomaly with peak values of 460 ppb Au, 620 ppm Pb, 1200 ppm Zn and 352 ppm Cu, in an area underlain by dacitic volcanics. Two mineralized zones were reported from within silicified and carbonate-altered dacitic volcanics. The Main Zone had grab samples grading up to 4.6 g/tonne Au and 10.6% Zn. The Gem Zone, located 1,000 metres to the south in a separate soil geochemical anomaly, returned values up to 2.2 g/tonne Au (Campbell et al, 1991). Blast trenching was apparently carried out by Adrian the following year, but was never recorded and no results are available. The More claims lapsed on March 21, 1995 and were restaked the following day as the RDN 9 and 10 claims.

²⁰⁰³ Assessment Report on the RDN 1-18 and MOR 1-16,18 Claims

Pathfinder Resources Ltd. optioned the RDN property in 1994 and carried out reconnaissance exploration on the RDN 1-6 claims for Eskay Creekstyle stratiform gold-silver-lead-zinc mineralization, focusing on six kilometres of felsic/sediment contact. Six thin sections from subvolcanic porphyry intrusives and variably altered dacitic/trachytic lapilli tuff revealed intense potassic alteration. No massive sulphide mineralization was discovered, but altered dacite beneath the Marcasite Gossan felsic/sediment contact assayed up to 141 g/tonne Ag. Similar float four kilometres to the north assayed 11.6 g/tonne Au with anomalous Ag, Pb, Zn, Cu, As, Sb, Hg and Bi (Awmack, 1995a).

In 1995, Pathfinder performed a grid-based soil geochemical survey over the RDN 1-8 claims, designed to cover known or suspected portions of the felsic/sediment contact. Soil samples were taken at 25 metre intervals from short crosslines run 100 metres apart from a cut north-south baseline (the "**Downpour Grid**"). Results were spotty, with several isolated anomalous soil samples (Awmack, 1995b).

The following year, Pathfinder carried out 48 man-days of geological mapping, prospecting, soil sampling and geophysical surveying over the RDN 1-10 claims. Soil sampling on the Downpour Grid confirmed a Au+As geochemical anomaly (the "Jungle Anomaly") north of the mouth of Gossan Creek. A magnetic/VLF-EM survey was run over the southern half of the Downpour Grid, showing a VLF conductor along the felsic/mafic contact above the Marcasite Gossan. On the RDN 9-10 claims, two infill soil lines run west from the 1990 Noranda baseline corroborated the reported soil geochemical anomaly. Previously blasted exposures of the Main Zone breccia vein were chip sampled, assaying 3.1 g/tonne Au, 0.49% Pb and 1.13% Zn across a true width estimated at 8.3 metres (Awmack, 1996).

The RDN property was acquired by Rimfire Minerals Corporation in July In August, Rimfire carried out mapping, prospecting and soil 1997. sampling in the More Grid, Cole Creek, Jungle Anomaly and Marcasite Gossan areas. Infill soil lines on 50-metre centres were run in the Jungle Anomaly area west of Downpour Creek and reconnaissance lines at 100 metre intervals to the east. On the RDN 9-10 claims, the More Grid was laid out over the Adrian/Noranda Au+Pb+Zn soil geochemical anomaly, with a baseline trending 070° and perpendicular crosslines spaced 50 metres apart. Mapping of the Marcasite Gossan showed it to be a seafloor magmatic/hydrothermal vent. The Jungle Au+As soil geochemical anomaly was defined over an area of 100 x 450 metres; a cobble of silicified, pyritic argillite from within it assayed 25.44 g/tonne Au. The Steen Vein was discovered in Cole Creek; it assayed 279 g/tonne Ag across a true width of 2.0 metres, flanked by 20 metres of hanging wall

stockwork grading 20 g/tonne Ag. On the More Grid, another quartzsulphide vein breccia (the "Baseline Showing") was discovered 240 metres southwest of the Main Zone, assaying 6.21 g/tonne Au across 1.1 metres (Awmack, 1997).

In August and September 1998, Rimfire carried out 160 man-days of linecutting, geological mapping, prospecting, soil sampling and backhoe trenching on the RDN property. The reconnaissance-scale **Arctic Grid** was laid out on the west side of the north fork of More Creek over reported exposures of Hazelton Group rhyolite. Grid north was oriented at 030° and grid east at 120°. Crosslines, spaced 200 metres apart, were run grid east over the southern half of the grid and grid north over its northern half. The **NE Downpour Grid** was laid out east of Downpour Creek over the northeastern strike projection of the Jungle Anomaly. Crosslines were run at 100 metre intervals from a baseline oriented at 040° (grid north). The Downpour Grid was extended 1700 metres south to the southern property boundary. Three trenches totalling 129 metres were excavated on the Jungle soil geochemical anomaly without reaching bedrock (Awmack and Baknes, 1998).

In July 1999, Rimfire Minerals Corporation carried out an initial evaluation of the newly-staked RDN 11 and 12 claims from a fly camp in the Carcass Creek valley. This was followed in August by a nine-hole diamond drilling program based from a drill camp immediately north of the Marcasite Gossan. A magnetic declination of 25° 06'E was used for all compass measurements. All maps and UTM's are referenced to the North American Datum of 1983 (NAD-83).

Geological mapping, prospecting, soil sampling and VLF-EM surveying were concentrated on the newly-staked RDN 11 and 12 claims, which cover the bulk of Noranda's 1990-91 drilling and a large, open-ended, multi-element soil geochemical anomaly reported by them. The **Carcass Grid** was laid out to cover the Noranda soil geochemical anomaly east of Carcass Creek and extend it to the north and west. A 1,900 metre northsouth baseline was cut, tight-chained, slope-corrected and picketed. Eastwest cross-lines, spaced 100 metres apart, were flagged, hip-chained and slope-corrected. A total of 293 soil samples were taken at 25-metre intervals along the baseline and cross-lines east of Carcass Creek. An additional 132 reconnaissance, bank and contour soil samples were collected outside the Carcass Grid, and 16 silt samples were taken from previously unsampled creeks.

Amerok Geosciences performed a magnetics/VLF-EM survey over the Carcass Grid, for a total of 7.4 line-kilometres (Power, 1999).

Geological mapping and prospecting were carried out at a scale of 1:2,500 over several areas on the property, resulting in the collection of 159 rock geochemical samples.

Nine holes totalling 574.2 metres (1,884') of ATW and BTW core were drilled in August and September, using Falcon Drilling's F-1 and F-1000 drills. Core was logged and sawn, with half sent for analysis and half stored at the Marcasite Camp for reference. With the exception of the upper portion of hole RDN99-06, all holes were sampled from top to bottom, producing 321 core samples.

All core, rock, soil and silt samples were analyzed by Chemex Labs Ltd. of North Vancouver for Au, Hg and 32-element ICP, using an aqua regia digestion. Pulp assays were carried out when Ag, Cu, Pb or Zn exceeded the geochemical detection limit; the assays were used for plotting and calculations. For core samples and selected rock samples, check assays were carried out on rejects of samples which exceeded 1000 ppb Au initially: the two analyses were averaged for calculations and plotting. On the remaining rock samples, Au assays were carried out on pulps whose initial analysis exceeded 10,000 ppb Au and the assay value was used for plotting. XRF whole rock analysis was done by Chemex on 35 rock Analytical certificates form samples, including 17 core samples. Appendices E.1-E.4. Microprobe analysis was done on one core specimen from hole RDN99-05 to verify the presence of rhodochrosite. One thin section from a 1998 rock sample was described petrographically by Dr. Geoff Harris.

In July 2000, Newmont Exploration of Canada Ltd. conducted UTEM ground geophysical surveys over five areas of the RDN claims. A total of 38 lines were surveyed from 8 transmitter loops for a total of 26.8 line-kilometres at a 25-metre station spacing. This work is reported in Awmack, 2000.

In 2001, a two-phase diamond drilling program was completed by Newmont Exploration of Canada Ltd. Thirteen drill holes were completed, totalling 2255.82 metres, in four separate areas: the Wedge, Boundary, Sand Lake and Downpour Creek Camp zones. They also carried out an UTEM ground geophysical program that totalled 550-metres at 50- and 100-metre station spacing.

أسمأ

اسا

أسمأ

المعد ا

In 2002, Barrick Gold Inc./Homestake Canada Inc. completed a drill program totalling 1125.93 metres. Seven angled NQII holes, plus one auto-wedge hole, ranging in length from 20 to 320 metres, were cored in the Jungle Zone area. The ninth hole of the season was 700 metres to the northwest of the Jungle Zone and targeted the stratigraphy around the Carcass Creek Fault. Other work contributing to the project included detailed geological mapping, sampling, and prospecting, combined with soil and stream sediment silt sampling. These work areas included, from north to south, the Arctic Grid, the DK area (situated approximately 2 km northeast of the Wedge Zone) the Carcass Fault and the valley west of the South Gossan.

5.0 2003 EXPLORATION PROGRAM

Geological field mapping and sampling was completed between June 5th and August 11th at an estimated cost of \$CAN 81,969.50. Expenditures are detailed in Appendix II. The majority of the work focused on two areas; the Arctic Grid and the Boundary Zone.

During the entire 2003 program, crews were housed at Barrick Gold's Exploration Camp 45, situated on the Eskay Creek Mine Access Road (Figure 2). Transportation to the property was carried out by a Hughes 500 helicopter, which was operated by Northern Air Support.

All samples collected were shipped to Acme Analytical Laboratories in Vancouver, BC and sampled for a 36-element ICP-MS package. In the event that values greater than 0.25 g/t Au or 25 g/t Ag were returned, the sample was re-analyzed using a fire assay technique. 17 samples were collected for whole rock analysis. All sample data is presented in Appendix IV and V.

Feb 9, 2003

L

است

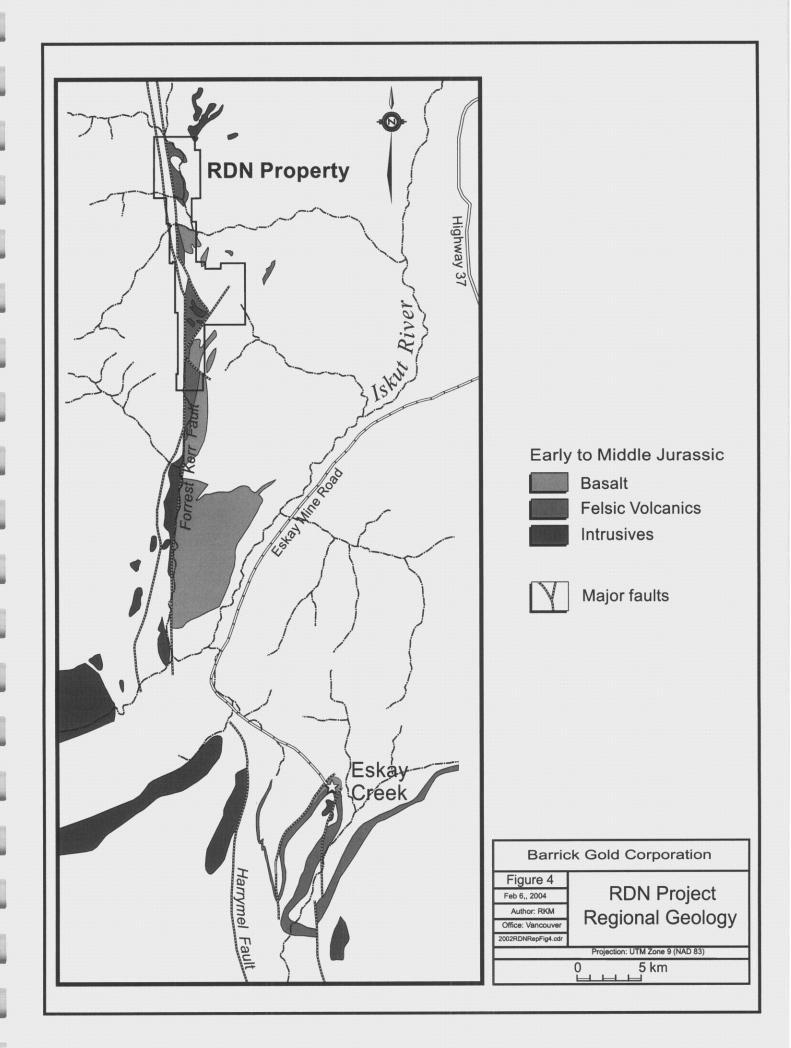
اسما

1

اسا

اسا

6.0 REGIONAL GEOLOGY


The regional geology of the project area has most recently been summarized by Logan et al. (1997). The tectonic setting is described as follows: The region straddles the boundary between the Intermontane Belt and the Coast Belt and is underlain mainly by rocks of the Stikine Terrane (Stikinia), the western most terrain of the Intermontane Superterrane. The major tectonic elements of the northern Intermontane Belt include the Bowser Basin and the northeast-trending Stikine Arch, (Logan et al. 1997). Both the RDN Property and the Eskay Creek Mine lie within the Stikine Arch. Figure 4 is a simplified regional geology map.

The Bowser Basin consists of marine and non-marine clastic rocks. It is a Middle Jurassic to Middle Cretaceous successor basin. Bowser sedimentary rocks outcrop east of the RDN Property. The Coast Plutonic Complex intrudes the western boundary of the Stikine Terrain. It is a plutonic belt comprised mostly of calcalkaline granitoid rocks of Jurassic to Paleogene age.

The elongate block of RDN claims are underlain by the regionally extensive, subvertical, northerly-trending Forrest Kerr Fault. This major fault separates lithologies of the Mesozoic Hazelton and Stuhini Groups that outcrop east of the fault and Paleozoic rocks of the Stikine Assemblage that are exposed solely west of the fault (Logan et al., 1997). North of More Creek, in the Arctic Grid area, Early Mississippian granite outcrops on the western side of the Fault. The Forrest Kerr Fault is paralleled to the east by up to three regional faults. As well, in the southern part of the claim block, lithologies are affected by several northeast- and northwest-trending faults.

6.1 Stratigraphy

Stikinia consists of well-stratified middle Paleozoic to Mesozoic sedimentary rocks and volcanic and co-magmatic plutonic rocks of probable island arc affinity,

1

اسما

which include: the Paleozoic *Stikine assemblage*, the Late Triassic *Stuhini Group* and the Early to Middle Jurassic *Hazelton Group*.

The rocks of the **Stikine assemblage** are the structurally and stratigraphically lowest supracrustal rocks observed in the study area. The Stikine assemblage consists of Permian, Upper Carboniferous, Lower Carboniferous and Devonian age rocks. The dominant lithologies are tholeiitic to calcalkaline, mafic and bimodal flows and volcanoclastics, interbedded carbonate, minor shale and chert.

Unconformabley overlying the Stikine assemblage is Lower to Middle Triassic sedimentary and Upper Triassic volcanic rocks of the **Stuhini Group**. Triassic strata near the RDN property are most abundant in an area south of Downpour Creek. Here Logan describes the generalized stratigraphy as consisting of a lower predominantly sedimentary succession, a medial mafic volcanic succession and an overlying tuffaceous sedimentary succession.

Unconformities separate the Upper Triassic Stuhini Group, which are mainly submarine volcanic rocks, from the *Hazelton Group* rocks, which are mainly subaerial volcanic and sedimentary rocks, in the map area (Logan, 1997). Here the Hazelton Group comprises a lower clastic package of dominantly siltstone, sandstone and conglomerate, a middle package of massive rhyolitic and intermediate volcanic rocks and an upper package of sedimentary and submarine bimodal volcanic rocks consisting of siltstone, pillow basalt and related tuff and breccia.

The formational designations in the following descriptions are used by Logan (1997) in the RDN Property region, and are compared here to generalized stratigraphic descriptions as listed in Table 5 - Regional Geology – Summary of Lower to Middle Jurassic Stratigraphy Units in the Iskut River Area, taken from MacDonald et al. (1997) to allow a comparison of the stratigraphic setting at RDN with that of other areas, including Eskay Creek.

<u> TABLE 5</u>

REGIONAL STRATIGRAPHIC SUMMARY

(after MacDonald et al. (1996))

Unit	Lithology	Age
Bowser Lake Group	Siltstone, Sandstone and Conglomerate	Middle to Upper Jurassic
Hazelton Group Upper Sequence	Bimodal Volcanic Rocks: Dacite tuffs and flows, rhyolite flows, basalt, and hyaloclastite, interstratified mudstone and tuffaceous mudstone * Eskay Creek Mine	181 to 173 Ma.
Hazelton Group Lower Sequence	Sedimentary Unit: Turbiditic siltstone to Sandstone, heterolithic cobble conglomerate, bioclastic calcareous siltstone, lesser tuffaceous sandstone	Upper Pliensbachian to upper Aalenian
Hazelton Group Lower Sequence	Dacite to Rhyolite Flows and Tuffs: Dacite domes and flows, volcaniclastic sandstone to conglomerate, dacite breccias, rhyolitic welded tuffs	186.5 to 194 Ma
Hazelton Group Lower Sequence	Andesite to Dacite Volcanic Rocks: Hornblende- plagioclase flows and volcanic breccias, volcaniclastic sandstone and conglomerate, lapilli to block tuff	193 Ma
Hazelton Group Lower Sequence	Basal Coarse Clastic Unit: Locally Fossiliferous, calcareous sandstone, trough cross-stratified granitoid clast conglomerate, rare welded dacite lapilli tuff	Hettangian – Sinemurian boundary

Lower Jurassic age basal conglomeratic and coarse clastic units occur predominantly northwest of the project area around Mess Creek. Intrusive clastbearing units are characteristic of this sequence. These strata are equivalent to the Basal Coarse Clastic Unit listed in Table 5 below. Overlying this basal sequence is Lower to Middle Jurassic volcanogenic rocks of the Unuk River, Betty Creek and Mount Dilworth formations and the Lower to Middle Jurassic sedimentary and volcanic rocks of the Salmon River Formation. Salmon River Formation rocks underlie parts of the RDN Property and are correlative in part to the host rocks at the Eskay Creek Mine.

The undifferentiated Unuk River, Betty Creek and Mount Dilworth formations which are located in the project area are described by Logan as massive black siltstone, minor sandstone and minor pebble conglomerate, outcropping mainly to the north of Downpour Creek. Overlying these units are massive rhyolite and andesitic flows and tuffs with minor sandstone, conglomerate and thin-bedded tuffs. Volcanic rocks occur as fault bounded slivers south of Downpour Creek

extending to the Iskut River. These units are equivalent to the Lower sequence rocks listed in Table 5.

Salmon River Formation is comprised of an unnamed fossiliferous, calcareous sandstone of upper Lower Jurassic age, and upper member facies from west to east: the Snippaker Mountain facies, Eskay Creek facies and Troy Ridge facies, of lower Middle Jurassic age.

East of the Forrest Kerr Fault between More and Downpour Creeks on the RDN Project is a thick succession of siltstone, mapped as the lower member of the Salmon River Formation. Fossils collected here indicate ages between Early Jurassic (Late Toarcian age) to Middle Jurassic (Middle Bajocian age).

The Eskay Creek facies hosts the Eskay Creek Mine and is equivalent to the Upper Sequence Bimodal Volcanic rocks listed in Table 5 above. Eskay Creek facies rocks outcrop north of the Iskut River east of the Forrest Kerr Fault as a large area of pillow basalts. Smaller fault bounded slices of this unit extend across the RDN Property north to More Creek. Logan notes that pillow basalt and hyaloclastite-flow breccias comprise 90 percent of this unit while fine ash tuff and siltstone make up 10 percent. MacDonald et al (1996) and Roth et al. (1997) describe the upper most Hazelton Group bimodal volcanic assemblage as comprising interstratified dacite to rhyolite flows and tuffs, basaltic flows and breccia, and lesser tuffaceous, calcareous, and argillaceous sedimentary rocks. Generally mafic flows occur above the felsic volcanic rocks in this sequence.

The Eskay Creek Mine itself occurs within a mudstone horizon at the contact between underlying massive, flow banded to brecciated rhyolite and overlying massive and pillowed basalt flows, sills and volcanic breccia. Roth et al. (1997) describe the stratigraphic sequence at Eskay as comprising, from base to top, andesite, marine sedimentary rocks, intermediate to felsic volcaniclastic rocks ("footwall dacite"), rhyolite flow domes, carbonaceous shale ("contact

mudstone"), and basalt. The rhyolite and basalt at Eskay have a tholeiitic magmatic affinity, while the underlying volcanic rocks are mainly intermediate in composition with a calcalkaline magmatic affinity.

6.2 Intrusives

At least seven discrete plutonic episodes have been recognized in the Iskut region spanning from Late Devonian to Eocene age. The most voluminous plutonic events in the project region are the More Creek and Forrest Kerr Plutons, of Early Mississippian and Late Devonian age, of tholeiitic hornblende diorite and calcalkaline granodiorite and tonalite to trondjhemite compositions. Early Jurassic Texas Creek Plutonic Suite intrusive rocks (189 – 195 Ma) are mapped on the RDN property and define a regional northwest trending belt of calcalkaline, hornblende granodiorite and quartz monzonite to alkaline, potassium feldspar megacrystic monzogranite. Texas Creek plutons are associated with precious and base metal mesothermal and epithermal veins at Premier, Johnny Mountain and Snip mines and at Sulphurets in the Iskut-Stewart area.

At Eskay Creek Mine, the largest of several intrusives exposed is a monzodiorite sill or stock with an age date of 184 +5/ -1 Ma, thus 5 – 10 Ma younger than the mineralization at Eskay. Other intrusive rocks at Eskay Creek include a series of altered felsic intrusives, which are aphanitic and strongly altered to an assemblage of quartz, pyrite, potassium feldspar, and minor sericite. These intrusives may represent feeder dykes to the main rhyolite flow dome complex.

6.3 Structure

است. (

Deformation in the region is documented by two phases of Paleozoic age penetrative foliation with associated minor to mesoscopic isoclinal folds, followed by two phases of Mesozoic (?) age mesoscopic to macroscopic folding,

اسرا

characterized by open to tight chevron type, kink band, open cylindrical or open box folds.

The most significant fault structure in the project area is the steeply dipping northerly trending Forrest Kerr Fault, which approximately parallels the western RDN property boundary. A conjugate set of steep northwest and northeast trending faults is also prominent. Some of the conjugate faults are cut by younger north-trending faults, whereas others change direction and merge with the north-trending structures. West of the property area two zones of extensional northwest-trending structures are mapped west of the Forrest Kerr and More Creek Plutons. Low angle faults occur south of the RDN property east of Forrest Kerr Pluton. These structures are described as easterly-directed, folded regional-scale structures.

The north-trending Forrest Kerr regional fault system extends from the lskut River to the north at least 50 kilometres. This is a vertical to steeply easterly dipping structure, on which the most recent movements indicate strike-slip displacement. The stratigraphic distribution supports east side down movement for the fault in the Forrest Kerr Creek and More Creek areas. At RDN the fault separates Mesozoic volcanic and sedimentary rocks to the east from Paleozoic metavolcanic and metasedimentary rocks and Devonian Plutons to the west. The fault may step en echelon, westward, to the northerly trending Mess Creek Fault Zone in the north. The Harrymel/Melville South Unuk Fault, which extends south from the lskut River and which passes 10 kilometres west of Eskay Creek Mine, may be the offset extension of the Forrest Kerr Fault Zone southward. The majority of movement along north trending regional faulting is believed to have occurred during the Early Tertiary, however the South Unuk-Harrymel shear zone was active in the Middle Jurassic.

_

.....

اسم ا

7.0 GEOLOGICAL MAPPING

A 1:5000-scale mapping and sampling program was carried out during the months June, July, and August. The main focus was to examine two areas on the RDN property, the Arctic Grid and the Boundary Zone. The Mor claims, situated to the east of the RDN property, were also examined. Map 2 (inside pocket) shows the geology of the RDN property. From the mapping, 154 rock samples were collected for ICP-MS analysis and 17 for whole rock analysis. All the assay/ICP results are depicted on the respective maps and the details of each sample at described in Appendix V. The results collected from each of these areas are described below.

7.1 MOR Claims

The area covered by and locally surrounding the Mor claims received a reconnaissance style prospecting and silting program in 2003 consisting of 17 silt samples and 14 rock samples. The purpose of the program was to examine the property with reconnaissance scale silting and to follow up a 6000 ppb Au silt anomaly identified during the governments RGS silt sampling program. No anomalous results were returned from the silt program suggesting the RGS anomaly source needs to be re-examined. No significant results were returned from prospecting (Maps 4a, 4b and 4c).

7.2 Arctic Grid

The Arctic Grid area located in the northern area of the RDN property was the focus of a short mapping program in 2003. Previous work outlined stratigraphic and geochemical similarities in the rhyolite, mudstone and andesite in the Arctic Grid and those units at the Eskay Creek mine. Geologic mapping, rock, soil

1

1......

(including MMI), and silt sampling was completed to test the results of the 2002 field program.

The focus of the 2003 mapping work was to (1) Determine the extents of the rhyolite, mudstone and andesite units believed to be the stratigraphic equivalents of the Eskay Creek rocks; and (2) Identify cross-cutting structures and document any mineralization in any of these stratigraphic units. Mapping on the Arctic Grid indicates that the mudstone contact can be extended north and south over a distance of 1.9 km (Map 4d). A steeply north-dipping 10m wide fault (Yippe fault, striking 260 deg Az) was mapped through the mudstone at the southern end of the property. This fault zone contains up to 20% fine to very fine-grained pyrite mineralization. Pyrite occurs as disseminations and in patches up to 4cm diameter and seems to be a product of alteration. Much of the faulted outcrop was strongly sericitic, clay-altered and graphitic crumbly rubble.

Mapping also constrained the contacts of the rhyolite unit as well as the andesite to the west. Large outcroppings of rust-coloured massive to flow banded rhyolite and rhyolite breccia were identified with trace to 2% disseminated pyrite. A traverse through what is believed to be the Datum Mudstone equivalent (i.e. sedimentary horizon at the base of the Eskay Creek Rhyolite) in the SE portion of the Arctic grid revealed cross bedding and grading bedding indicating that this sequence is upright and faces to the west.

Four 5 kg silt samples were collected from the major drainages cutting the property (Map 3). The samples were analysed using both aqua regia and BLEG (Bulk Leach Extractable Gold) digestions. One of these samples was attempting to duplicate a 38ppb Au anomaly taken last year but analysed by a different method. No anomalous values were returned, (Appendix V).

Five Mobile Metal Ion (MMI) and traditional ICP-MS east-west soil lines were run across the north-trending stratigraphy (Map 4d). Three lines were situated in the

north-central part of the Arctic Grid and crossed the andesite-mudstone-rhyolite identified in 2002. The lines were 1km long, 400m apart and sample stations were spaced at 50m. The other two lines were to the south, targeting the weakly anomalous silver, mercury and antimony B-horizon soil samples taken in 1991 by Equity Engineering. The MMI sampling was performed because it proved effective for delineating mineralization at Eskay where traditional B-horizon soil sampling could not detect mineralization through the thick cover of the Bowser Lake Group. The Arctic Grid has little outcrop exposure and is covered by thick overburden in much of the property. In total 103 samples were taken over 5.3 line kilometres. Unfortunately, the samples contained a high level of organic content. This affected the digestion process and resulted in unusable data (Appendix V).

The samples were also analysed for traditional ICP-MS. One sample, underlain by the andesites to the west of the Contact Mudstone equivalent, (sample MMI-13602) returned weakly anomalous Au values approximately twice the background level as well as slightly elevated copper, arsenic and antimony. A second sample (MMI-2238) returned weakly anomalous silver, and mercury values over the north extension of the mudstone mapped in 2003. Other samples including MMI-12652 contain weakly anomalous metal concentrations but no distinct anomaly patterns exist correlating to any lithology, structure or area (Maps 4e and 4f).

63 rock samples were taken from the Arctic grid area in 2003. Unfortunately no significant results were returned. (Appendix V).

7.3 Boundary Zone

A total of 13 field days were spent in this area, mainly confined to RDN claim 13 located at the southern end of the claim block. One day was also spent on RDN claim 3 (Map 1).

The objectives of the 2003 program were to confirm and follow up some of the anomalous soil and rock sample data from previous surveys and to determine the potential for an Eskay-type deposit in the area. Of particular interest was an outcropping of rhyolite mapped on the property in recent surveys by Rimfire Minerals Corporation (Awmack and Baknes, 1998).

Geological mapping and prospecting were carried out at a scale of 1:2500 over select areas; 74 rock samples and 4 soil samples were collected for geochemical analysis from these areas. Locations of outcrop and samples relied on UTM coordinates obtained with hand-held GPS units in conjunction with location of topographic features. Rock descriptions and results are attached in Appendix V.

Mapping conducted during the 2003 program was limited to several areas of interest, mainly in the south within claim RDN 13, and not all of the lithologies exposed on the property were mapped extensively. Some of the more general geology in the following discussion relies on previous workers' descriptions of the area's geology (Awmack and Baknes, 1998, Awmack, 1999). Outcrop exposure on the property varies from almost 100% in some stream valleys and areas scoured by glaciers to virtually 0% along grassy slopes. A glacier, several large moraines and a late snow pack also limit outcrop exposure.

The Boundary Zone area of the RDN claims is roughly bisected by the wide, steep-walled, north-trending valley of Nelson Creek draining to the south and Downpour Creek draining to the north, with Sandy Lake occupying the saddle. The break in slope to the west of the stream valley demarcates the Forrest Kerr Fault (Awmack, 1999).

7.3.1. Paleozoic Stikine Assemblage

The west side of the Forrest Kerr Fault is underlain by Devono-Mississipian sedimentary and volcanic lithologies of the Stikine Assemblage. In the Boundary

Zone area these are comprised of massive fine-grained basalt, mafic tuff, pyroxene-phyric basaltic ash tuff, argillite and siltstone/wacke, with lesser dacitic ash tuff and chert. The area appears structurally complex, as individual units are difficult to trace along strike for any great distance. Lithologies are variably deformed with the fine-grained sedimentary rocks exhibiting stronger foliation than the basalt units (Awmack, 1999).

During the 2003 field season the Paleozoic rocks were not extensively examined. Weakly pyritic, Fe-carbonate-altered equigranular to weakly porphyritic mafic volcanic rocks were sampled from the cliffs near the southern boundary of claim RDN 13. In the northwestern corner of RDN 13, samples of strongly siliceous, weakly pyritic black mudstone and green to maroon mafic tuffs, fine flows and heterolithic debris flows were obtained. Further north, on claim RDN 3 in an area of fairly complex geology, numerous rock types were examined and sampled. These included well-bedded (045°/80°) interbedded volcanic sediments ranging from fine-grained cherty layers and volcanic-derived sandstone, to tuffaceous beds with elongate lapilli and rarely fragments up to 10 centimetres. Also sampled were large outcrops of green to maroon fine-grained mafic flows and lapilli tuffs, strongly silica-altered strongly pyritic float, as well as pyritic black mudstone float. The scope of mapping in 2003 did not allow for any structural interpretation of the Paleozoic rocks.

7.3.2. Mesozoic Hazelton and Stuhini Groups

The steep hillside to the east of the Forrest Kerr Fault is underlain by faultbounded blocks of Jurassic rocks of the Hazelton Group and, further east, Upper Triassic rocks of the Stuhini Group. The Hazelton Group rocks have been previously divided into four stratigraphic packages on the RDN claims (Awmack and Baknes, 1998): 1) a lower package of andesitic volcanics and epiclastics; 2) dacitic and trachytic volcanics, porphyries, and their maroon, possibly subaerial

1----

ا ا

المع ا

1

ا ال

equivalents; 3) rhyolitic flows and fragmental rocks; and 4) an upper package of interstratified mafic volcanics and clastic sediments. The porphyries noted in the dacitic package are believed to be feeder dykes to the dacitic and trachytic volcanics. Table 6.1.1 in Awmack and Baknes, 1998, lists and describes the numerous units these packages have been subdivided into on the entire RDN claim block.

In the area of interest on claim RDN 13 east of the Forrest Kerr Fault, lithologies of the dacitic/trachytic package are the most abundant and the best exposed. In the northern part of this area the dacitic rocks are a homogeneous succession of lithic-crystal lapilli tuffs with minor interbedded felsic pebble conglomerate. Toward the south the units become more complexly interbedded and grade to the south and west into the maroon porphyries. Continuing to the northwest across the Blind Fault the most abundant unit is massive dacitic two-feldspar porphyry that is locally tuffaceous, with lesser weakly porphyritic dacite. The Blind Fault is interpreted as a synvolcanic fault that became less active towards the end of the Lower Jurassic. This would make the maroon sequence older than the two-feldspar porphyries (Awmack and Baknes, 1998). The dacitic/trachytic package hosts a variety of mineralization types on the property and was extensively prospected and sampled in 2003 as well as in previous years.

The lower package of andesitic volcanics and epiclastics is represented as a single interbed of strongly siliceous black argillite in dacitic tuffs that outcrop in the large glacier-scoured exposure approximately 1km southwest of 2038 Peak (sample 02268).

Rhyolite outcrops as several beds up to 8m wide within dacitic tuffs to the east of the Blind Fault. The rhyolite is aphanitic in the northern exposure, however, in the newly mapped exposures to the south, there are distinct flow-banding and crystal and lapilli tuff textures visible in the rock. Along the structurally lower contact of the aphanitic rhyolite to the north there is a bed of graphitic, weakly

-

أست

ا ا

ليبيرا

ليسا

1-4

لسا

ليبيا

ا ا

.....

.

1 1

pyritic mud matrix breccia that trends 320°/80°. The rhyolite beds to the south have contacts with dacite at roughly 055/60° as well as exhibiting flow-banding at roughly the same orientation. There is a lack of outcrop at the top of the ridge between the northern exposure and the first rhyolite to the south, but they do appear to be the same bed. If they are the same rhyolite bed, then the geometry of the bedding suggests that the outcrop is fairly tightly folded with the fold hinge plunging to the east and the limbs dipping to northeast and southeast. The rhyolite bed furthest south parallels the middle bed up the slope and disappears into an area of no outcrop (Map 4g).

A fold trending north-northeast, termed the Downpour Anticline, has been inferred by previous workers on the basis of measured dips and possible repetition of units in the area west of the rhyolite outcrops (Awmack and Baknes, 1998). The possible fold noted above would cut the Downpour Anticline at almost a right angle, thus more evidence needs to be found to explain the orientation of the rhyolite beds. The rhyolite and surrounding altered lithologies were sampled extensively in the 2003 program.

The uppermost package of the Hazelton lithologies outcrops in the southeast edge of RDN 13 to the west of the rhyolite exposures. The sedimentary rocks are exposed mainly as fields of blocks of talus with large cliffs of massive and pillowed basalts above them to the east. These lithologies were not extensively sampled.

Upper Triassic rocks of the Stuhini Group are exposed in the northeastern corner of RDN 13 below 2038 Peak and are comprised of mafic tuff, amygdaloidal andesite/basalt, wacke and argillite. In places the volcanics are intensely Fecarbonate-altered and have a distinct orange weathered surface. Several samples were collected in 2003 from altered and pyritic outcrops from this unit.

-

1

اسما

ليبيا

لسرا

<u>ا</u>

.....

لسن

A roughly north-south-trending fault has been inferred by Awmack and Baknes, 1998, and previously mapped by Read et al (1989), that separates the Hazelton Group rocks to the west from the Stuhini rocks to the east. A bivalve fossil collected in 1998 just east of the inferred fault was dated as coming from the Upper Triassic confirming the existence of the fault contact (Awmack and Baknes, 1998).

Structural data is not abundant on RDN 13. The tuffs of the dacitic/trachytic package that underlies most of RDN 13 are strongly fractured, particularly at the higher elevations in the northeast part of the claim. Bedding measurements are more readily obtained toward the south boundary of the claim, particularly where different units are interbedded. Overall the bedding in the Hazelton Group is roughly north-northeast with moderate to steep dips varying to the west and east. Outcrop patterns confirm this as some units can be traced roughly north-south. Variations in bedding exist, mainly in the area of the inferred Blind Fault.

Rocks of the Hazelton Group on RDN 13 exhibit only rare measurable foliation, mainly in the southern part of the claim. The few measurements are consistent and average 090° with steep dips to the south. Near the southern border of RDN 13 just south of the Blind Fault there is an area of strong shearing with shears oriented roughly parallel to the inferred trace of the fault, averaging 060° with dips to the southeast varying from 60-75°. This area of shearing is discussed further in section 7.3.4.

7.3.3 Mineralization and Alteration

The Boundary Zone, located at the southern edge of RDN 13, was discovered and drilled by Noranda in 1990. The zone is comprised of several narrow goldrich veins hosted in maroon volcanics of the Hazelton Group dacite/trachyte package. The quartz-calcite veins average just a few centimetres and contain massive to semi-massive chalcopyrite and pyrite with surrounding chlorite-

ا ا

1

لي ا

1.

تسا

ليوا

hematite alteration. The wall-rocks of the veins are not Au-mineralized. The best intersection from five holes that Noranda drilled in the Boundary Zone yielded 359.7 g/tonne across 22 cm (true width). These veins were resampled in 1998 (Awmack and Baknes, 1998) with similar results. The best results from 1998 were grab samples that graded up to 56.67 g/tonne Au and chip samples that yielded up to 36.86 g/tonne over .5m. These veins were not sampled in 2003.

Samples collected in 2003 are shown in Maps 4h and as well as in Appendix V.

The small outcrop of rhyolite previously mapped on the RDN 13 claim (Awmack and Baknes, 1998) was a 2003 exploration target to determine the possibility of an Eskay-type setting in this area. The extent of the rhyolite was expanded to the south with 2003 mapping and a narrow graphitic mudstone bed was mapped in the footwall to the rhyolite that, together with the dacites to the west (footwall) and basalts and sedimentary rocks to the east (hanging-wall), seemed to make this area a viable target. Sample results, however, show that the graphitic gouge and the rhyolite samples contain only Pb and Zn mineralization as very fine disseminations of galena and sphalerite with pyrite (samples 02283, 02286).

The large highly visible gossan at the northern boundary of RDN 13 and southwest of 2038 peak was sampled extensively during the 2003 exploration program. The gossanous unit's intense pervasive quartz-sericite-pyrite alteration, its extent of 50-60m across strike, and its stratigraphic position at the top of the dacite/trachyte package, as well as its position along strike of the rhyolite mapped to the south, made it an attractive Eskay-type target. Also, an extensive Pb+Zn+Ag+Ba+As soil anomaly covers the altered gossanous area and the slope below. The samples, however, contained no precious metal mineralization and returned only very weakly elevated Pb and As values.

The Hazelton dacite/trachyte package hosts several different types of mineralization on the property, including the precious metal-rich veins of the

ليسا

المعدل

ليبيا

ليني

لسوا

Boundary Zone. Most of the mineralization is base metal veining or fracture-fill. Areas of mineralization follow a north-south trend from the south border of RDN 4 just north of the gossanous alteration zone to the rhyolite outcrop near the south boundary of RDN 13, then swing southwest and follow the Blind Fault. This mineralization trend follows the two major faults on this part of the property and is likely related to faulting.

The dacite-hosted mineralization to the north and just west of the gossan is very finely disseminated pyrite, galena and sphalerite in locally silicified dacite (samples 05115, 02271). Further south a Pb-Zn-mineralized quartz-carbonate vein and the altered wall-rock were sampled (02289 and 02288 respectively). This vein had been previously sampled (Awmack and Baknes, 1998). Along the base of the large outcrop to the south of the gossanous area, a strongly pyritic area of silicified and carbonate-altered dacite was sampled. This area is distinct from other dacite-hosted mineralization in that weak Pb-Zn mineralization is accompanied by Ag mineralization up to 44.6 g/tonne and As up to 0.3078% (samples 02275, 02276, 02277, 02278).

Approximately 150m to the south is an area of chalcedonic quartz veining hosted in dacites. The veins are deformed and faulted but can be traced in outcrop to the northeast toward the glacier. The mineralized dacitic wall-rock is mainly Cumineralized but also has strongly elevated values of Pb, Zn, As, Hg, and Sb as well as Ag up to 200 g/tonne (samples 02279, 02290, 02292). The actual vein (sample 02291) contains similar mineralization but lower values of all elements. This area had been previously sampled (Awmack and Baknes, 1998).

The most significant Au mineralization in the dacitic package was discovered in outcrop following up a float sample collected in 1998 (sample 130286, Awmack and Baknes, 1998). The mineralization occurs as a very vuggy black brecciated 20-50cm wide alteration zone in a dacitic debris flow and trends roughly 205°/80°. The zone has a visible strike length of 15-20m and has a mineralized

t .

ليبيئ

}___

اسا

ني ا

To the south of the Blind Fault and north of the Boundary Zone, there is an area of faulting and shear-related Pb-Zn-Cu mineralization with weakly elevated Au and Ag values (samples 02314, 02315). The host rock is a bleached, sericitic maroon matrix feldspar porphyry with disseminated, blebby and fracture-fill mineralization. This area had been sampled in the past (Awmack and Baknes, 1998).

The strong 1998 Au soil geochemistry anomaly that extends along the northsouth valley of the headwaters of Nelson and Downpour Creeks was followed up in 1999 (Awmack, 1999) and was determined to be generated by alluvium washing down from the glaciated west side of the Forrest Kerr Fault. This was confirmed during the 2003 field season and a prospecting traverse was carried out in 2003 in the Stuhini rocks above the valley. Numerous gossanous samples were collected with only one returning a high Cu value of 1.059% and very weakly elevated Au (0.0126 g/tonne).

During the 2002 field season Barrick personnel had collected a strongly Au mineralized sample from the RDN 3 claim to the west of the Forrest Kerr Fault. The mineralized sample was located during a follow-up traverse in 2003 and another piece of float nearby was sampled that returned a value of 6.18 g/tonne Au (sample 02329). The rock, possibly a volcanic, contained 30-40% pyrite and was strongly silicified. Upslope from this sample an open plateau contained numerous strongly pyritic and altered boulders that returned significant Au values up to 3.17 g/tonne (sample 02331). No other samples like these were found anywhere in the vicinity of the plateau. The mineralized boulders may have been dumped onto the plateau by runoff from under the glacier just above. Other samples collected from outcrop and talus boulders yielded no significant mineralization.

28

8.0 DISCUSSION

Work on the MOR claims was generally of reconnaissance style designed to locate anomalous drainages as well as locate surface mineralization from local prospecting and mapping of the more obvious targets. The Mor property silt geochemical and prospecting program produced no significant results.

Work on the RDN property during the 2003 field season focussed on the Arctic Grid and Boundary areas of the RDN property with the intent to locate Eskay-type mineralization.

In the Arctic Grid area, extents of the Eskay "Contact Mudstone", andesite and rhyolite equivalents were defined. The mudstone was extended to 1.9 km strike length. A significant cross structure was located cutting these units but no significant mineralization could be located in this area. 2003 silt geochemistry did not return any anomalous results while surface soil geochemistry provided only weak discontinuous elevated to anomalous results. The MMI sampling did not fulfill its purpose due to high organic content in the samples. In the future, this issue should be addressed before MMI sampling is undertaken in a similar type environment.

In the Boundary Zone area of the claims the main focus of 2003 exploration was the previously mapped rhyolite outcrop within the Hazelton rocks near the eastern edge of claim RDN 13 and the possibility of its similarity to Eskay Creek rhyolite. As well, the gossanous outcrop at the northeastern corner of RDN 13 was examined with the possibility of rhyolite as the precursor lithology of this intensely altered unit.

The following points summarize the major conclusions from the 2003 Boundary Zone area field work:

- The rhyolite outcrop and surrounding lithologies were extensively sampled; the units are only very weakly auriferous and contain weak Pb and Zn mineralization.
- The gossanous area at the north end of RDN 13 was extensively sampled; it contains no mineralization other than pyrite. The unit is most likely altered dacite of the Hazelton Group.
- The source of an Au-rich 1998 float sample was discovered in outcrop and returned the highest Au assay on the property from 2003 sampling: 5.24 g/tonne Au (sample 02313). The sample was from the sulphide-rich core of a discontinuous vein-like structure in maroon feldspar-porphyritic dacite.
- The Devono-Mississipian Stuhini rocks sampled to the west of the Au soil anomaly in the wide north-south-trending valley that bisects RDN 13 returned very little Au.
- The Au-rich float sample on RDN 3 (Barrick, 2002) was followed up and more auriferous float was sampled (sample 02329; 6.18 g/tonne Au). The float was traced to a plateau above containing weakly mineralized pyritic float but could be traced no further.

All of the Boundary Zone area Au and base metal mineralization sampled during the 2003 field season was collected from discontinuous and patchy veins and shear zones, or from untraceable float. Neither the style of mineralization sampled in 2003 nor the lithologies examined support an Eskay-Creek style deposit on this property.

9.0 RECOMMENDATIONS

A review and compilation of data from the MOR property should be conducted in order to determine the best approach for the 2004 field season. If there are remaining untested RGS or historical anomalies present, then these should be followed up with a systematic and comprehensive program consisting of regional to detailed silt samples and prospecting, with subsequent mapping and soils surveys if positive results are located. If previous work was sufficiently comprehensive, and indicates the property is not prospective, then the property should be considered for option to other parties. The MOR property should also be reviewed with respect to economic feasibility due to its rugged and remote geography.

Due to the lack of significantly anomalous reconnaissance silts from the 2003 program on the MOR property and Arctic grid area, there appears to be little prospectivity in these areas. The Arctic grid has received a moderate amount of mapping, prospecting, and soil sampling in 2003 resulting in definition of the target stratigraphy but only sporadic elevated to weakly anomalous soils and rocks were identified. The Boundary Zone area locally contains significant mineralization but unfortunately not of the Eskay type.

One region that is still of interest is the DK and MOR 2 claim area, situated approximately 2 km northeast of the Wedge Zone. This was not discussed in this report because there was no work conducted during 2003. This was a recommendation from the 2002 report based on coincident Au, Ag, Zn and Hg anomalies in soils and silts, and elevated Hg values in rocks. These two areas are also underlain by favourable felsic volcanic rocks, which have similarities to the Eskay Creek stratigraphy.

.

,

_

(____

ليبا

ي ا

د. ا

ليبا

اسما

لسا

لينا

1-1

است)

لي ا

ليها

4

BIBLIOGRAPHY

2003 Assessment Report on the RDN 1-18 and MOR 1-16,18 Claims

Feb 9, 2003

BIBLIOGRAPHY

- Anderson, R.G. and D.J. Thorkelson (1990): Mesozoic Stratigraphy and Setting for some Mineral Deposits in Iskut River Map Area, Northwestern British Columbia, in Current Research, Part E, Geological Survey of Canada Paper 90-1F, p. 131-139.
- Anderson, R.G. (1993): A Mesozoic Stratigraphic and Plutonic Framework for Northwestern Stikinia (Iskut River Area), Northwestern British Columbia, in Mesozoic Paleogeography of the Western United States, Society of Economic Paleontologists and Mineralogists, Pacific Section, v. 91, pp. 477-494.
- Awmack, H.J. (1995a): 1994 Geological and Geochemical Report on the RDN 1-6 Mineral Claims; British Columbia Ministry of Energy and Mines Assessment Report #23,734.
- Awmack, H.J. (1995b): 1995 Geochemical Report on the RDN 1-10 Mineral Claims; Report submitted for assessment credit to the British Columbia Ministry of Energy and Mines.
- Awmack, H.J. (1996): 1996 Geological, Geochemical and Geophysical Report on the RDN 1-10 Mineral Claims; Report submitted for assessment credit to the British Columbia Ministry of Energy and Mines.
- Awmack, H.J. (1997): 1997 Geological and Geochemical Report on the RDN 1-10 Mineral Claims; Report submitted for assessment credit to the British Columbia Ministry of Energy and Mines.
- Awmack, H.J. and M.E. Baknes (1998): 1998 Geological, Geochemical and Trenching Report on the RDN 1-18 Mineral Claims; Report submitted for assessment credit to the British Columbia Ministry of Energy and Mines.
- Awmack, H.J. (1999): 1999 Geological, Geochemical, Geophysical and Diamond Drilling Report on the RDN 1-18 Claims; Report submitted for assessment credit to the British Columbia Ministry of Energy and Mines.
- Awmack, H.J. (2000): 2000 Geological, Geochemical and Geophysical Report on the RDN 1-18 Claims; Report submitted for assessment credit to the British Columbia Ministry of Energy and Mines.
- Barrett, T.J. and R.L. Sherlock (1996): Geology, Lithogeochemistry and Volcanic Setting of the Eskay Creek Au-Ag-Cu-Zn Deposit, Northwestern British Columbia; Exploration and Mining Geology, pp. 339-368.
- Bartsch, R.D. (1992): Eskay Creek Area, Stratigraphy Update, in Geological Fieldwork 1991; British Columbia Ministry of Energy and Mines Paper 1992-1, p. 517-520.

2003 Assessment Report on the RDN 1-18 and MOR 1-16,18 Claims Feb 9, 2003

_

اسما

- Bartsch, R.D. (1993a): A Rhyolite Flow Dome in the Upper Hazelton Group, Eskay Creek Area, <u>in</u> Geological Fieldwork 1992; British Columbia Ministry of Energy and Mines Paper 1993-1, p. 331-334.
- Bartsch, R.D. (1993b): Volcanic Stratigraphy and Lithochemistry of the Lower Jurassic Hazelton Group, Host to the Eskay Creek Precious and Base Metal Volcanogenic Deposit; Unpublished M.Sc. thesis at the University of British Columbia, 178 pp.
- Bobyn, M.G. (1990): Assessment Report on Geological Mapping, Prospecting and Geochemistry of the Arctic/Upper More Claim Group; British Columbia Ministry of Energy and Mines Assessment Report #20,667.
- Bobyn, M.G. (1991): Summary Report on Geological Mapping, Prospecting and Geochemistry of the Arctic/Upper More Claim Group; British Columbia Ministry of Energy and Mines Assessment Report #21,529.
- Britton, J.M., B.A. Fletcher and D.J. Alldrick (1989): Unuk Map Area (104B/7E, 8W, 9W, 10E), <u>in</u> Geological Fieldwork 1988; British Columbia Ministry of Energy and Mines Paper 1989-1, p. 241-250.
- Britton, J.M., J.D. Blackwell and T.G. Schroeter (1990): #21 Zone Deposits, Eskay Creek, Northwestern British Columbia, <u>in</u> Exploration in British Columbia 1989; British Columbia Ministry of Energy and Mines, p. 197-223.
- Campbell, I., G. McArthur and J.L. LeBel (1991): Geological, Geochemical and Geophysical Report on the More 5 and 6 Mineral Claims; British Columbia Ministry of Energy and Mines Assessment Report #22,238.
- Childe, F. (1996): U-Pb Geochronology and Nd and Pb Isotope Characteristics of the au-Ag-Rich Eskay Creek Volcanogenic Massive Sulfide Deposit, British Columbia; Economic Geology, pp. 1209-1224.
- DeBock, N. (1989): Prospecting Report on the RDN 1-4 Mineral Claims; British Columbia Ministry of Energy and Mines Assessment Report #18,411.
- Dunn, D.St.C. (1990): Geological and Geochemical Report on the Bear 1-4 Claims; Report submitted for assessment credit to the British Columbia Ministry of Energy and Mines.
- Edmunds, F.C., D.L. Kuran and K.A. Rye (1992): The Geology of the Eskay Creek Property and the #21 Zone Deposits; Abstracts of Technical Presentations; CIMM Field Conference, Kamloops, September 28-29, 1992; in Roth (1992).
- Ettlinger, A.D. (1992): Hydrothermal Alteration and Brecciation underlying the Eskay Creek Polymetallic Massive Sulphide Deposit, <u>in</u> Geological Fieldwork 1991; British Columbia Ministry of Energy and Mines Paper 1992-1, p. 535-541.
- Gale, F.G. (2002): 2002 Diamond Drilling Assessment Report on the RDN 1-18 and MOR 1-22 Claims submitted for assessment credit to the British Columbia Ministry of Energy and Mines.

2003 Assessment Report on the RDN 1-18 and MOR 1-16,18 Claims

لسيا

أسرا

ليبيئ

أسوا

- Hannington, M.D. (1999): Submarine Epithermal Deposits and the VMS-Epithermal Transition: A New Exploration Target; Eskay Creek-Type and Subaqueous Hot-Spring Deposits Workshop Proceedings, Vancouver, November 25, 1999.
- Hannington, M.D., K.H. Poulsen, J.F.H. Thompson and R.H. Sillitoe (1999): Volcanogenic Gold in the Massive Sulphide Environment, <u>in</u> Volcanic-Associated Massive Sulfide Deposits: Processes and Examples in Modern and Ancient Settings; Reviews in Economic Geology, Volume 8, p. 325-356.
- Lewis, P.D (1992): Structural Geology of the Prout Plateau Region, Iskut River Map Area, British Columbia, in Geological Fieldwork 1991; British Columbia Ministry of Energy and Mines Paper 1992-1, p. 521-527.
- Logan, J.M., J.R. Drobe and D.C. Elsby (1992a): Geology of the More Creek Area, Northwestern British Columbia (104G/2), <u>in</u> Geological Fieldwork 1991; British Columbia Ministry of Energy and Mines Paper 1991-1, p. 161-178.
- Logan, J.M., J.R. Drobe and D.C. Elsby (1992b): Geology, Geochemistry and Mineral Occurrences of the More Creek Area, Northwestern British Columbia; British Columbia Ministry of Energy and Mines Open File 1992-5, map at 1:50,000 scale.
- Logan, J.M., V.M. Koyanagi and J.R. Drobe (1990a): Geology and Mineral Occurrences of the Forrest Kerr - Iskut River Area, Northwestern British Columbia; British Columbia Ministry of Energy and Mines Open File 1990-2, map at 1:50,000 scale.
- Logan, J.M., V.M. Koyanagi and J.R. Drobe (1990b): Geology of the Forrest Kerr Creek Area, Northwestern British Columbia, <u>in</u> Geological Fieldwork 1989; British Columbia Ministry of Energy and Mines Paper 1990-1, p. 127-139.
- Logan, J.M., J.R. Drobe, V.M. Koyanagi and D.C. Elsby (1997): Geology of the Forrest Kerr - Mess Creek Area, Northwestern British Columbia; British Columbia Ministry of Energy and Mines Geoscience Map 1997-3, map at 1:100,000 scale.
- MacDonald, A.J., P.D. Lewis, J.F.H. Thompson, G. Nadaraju, R.D. Bartsch, D.J. Bridge, D.A. Rhys, T. Roth, A. Kaip, C.I. Godwin and A.J. Sinclair (1996): Metallogeny of an Early to Middle Jurassic Arc, Iskut River Area, Northwestern British Columbia; Economic Geology, p. 1098-1114.
- Malensek, G.A., N. Baker and G. Cavey (1990): Assessment Report on the Forgold Project; British Columbia Ministry of Energy and Mines Assessment Report #20,722.
- Pezzot, E.T. (1996): Geophysical Report on a Magnetometer and VLF-EM Survey on the RDN 1-10 Claims in Awmack (1996).
- Power, M.A. (1999): Total Magnetic Field and VLF-EM Surveys at the RDN Property, Liard Mining Division; Report submitted for assessment credit to the British Columbia Ministry of Energy and Mines.
- Read, P.B., R.L. Brown, J.F. Psutcka, J.M. Moore, M. Journeay, L.S. Lane and M.J. Orchard (1989): Geology of parts of Snippaker Creek (104B/10), Forrest Kerr

2003 Assessment Report on the RDN 1-18 and MOR 1-16,18 Claims

Creek (104B/15), Bob Quinn Lake (104B/16), Iskut River (104G/1) and More Creek (104G/2); Geological Survey of Canada Open File 2094, 2 maps at 1:50,000 scale.

- Roth, T. (1993a): Surface Geology of the 21A Zone, Eskay Creek, British Columbia, in Geological Fieldwork 1992; British Columbia Ministry of Energy and Mines Paper 1993-1, pp. 325-330.
- Roth, T. (1993b): Geology, Alteration and Mineralization in the 21A Zone, Eskay Creek, Northwestern British Columbia; Unpublished M.Sc. thesis at the University of British Columbia, 230 pp.
- Roth, T. and C.I. Godwin (1992): Preliminary Geology of the 21A Zone, Eskay Creek, British Columbia, <u>in</u> Geological Fieldwork 1991; British Columbia Ministry of Energy and Mines Paper 1992-1, p. 529-533.
- Roth, T., J.F.H. Thompson and T.J. Barrett (1999): The Precious Metal-Rich Eskay Creek Deposit, Northwestern British Columbia, <u>in</u> Volcanic-Associated Massive Sulfide Deposits: Processes and Examples in Modern and Ancient Settings; Reviews in Economic Geology, Volume 8, p. 357-373.
- Rye, K.A., F.C. Edmunds and D.L. Kuran (1993): Geology of the Eskay Creek 21 Zone Deposits; Abstract from 1992 Spotlight Session, Cordilleran Roundup, Vancouver, British Columbia.
- Savell, M. (1990a): Geochemical Report on the RDN 1 to 4 Mineral Claims; British Columbia Ministry of Energy and Mines Assessment Report #19,646.
- Savell, M. (1990b): Geological, Geochemical, Geophysical & Diamond Drilling Report on the RDN and GOZ Mineral Claims; British Columbia Ministry of Energy and Mines Assessment Report #20,769.
- Savell, M. (1991): Airborne Geophysical Report on the RDN, GOZ and DPR Mineral Claims; Report submitted for assessment credit to the British Columbia Ministry of Energy and Mines.
- Savell, M. (1992): Geochemical Report on the DPR-5, DPR-11, DPR-12, DPR-14 and DPR-15 Mineral Claims; British Columbia Ministry of Energy and Mines Assessment Report #22,607.
- Savell, M. and E. Grill (1991): Geological, Geochemical, Geophysical and Diamond Drilling Report on the RDN, GOZ and DPR Mineral Claims; Report submitted for assessment credit to the British Columbia Ministry of Energy and Mines.
- Savell, M. and T. Wong (1991): Geological, Geochemical and Geophysical Report on the More 1-8 Mineral Claims; Private report prepared for Noranda Exploration Co. Ltd., <u>in</u> Campbell et al (1991).
- Souther, J.G. (1972): Telegraph Creek Map Area, British Columbia; Geological Survey of Canada Paper 71-44.

2003 Assessment Report on the RDN 1-18 and MOR 1-16,18 Claims

1

ي.

-

اس

ليبي)

لسبا

4

4

لسما

6

لسي)

السا

ليا

يها

1-1

لي ا

ا___

ليسا

ل___ا

Thompson, M. and R.J. Howarth (1976): Duplicate Analysis in Geochemical Practice; Analyst, p. 690-709.

- Thompson, M. and R.J. Howarth (1978): A New Approach to the Estimation of Analytical Precision; Journal of Geochemical Exploration, p. 23-30.
- Wright, J.L. (2000): RDN Property UTEM Electromagnetic Survey; Attached as Appendix F in Awmack 2000.

ايبيا

. است

ليبينا

اسا

ار میل ا

ليوا

ا

ليبا

ايرا

ليبا

ايسا

APPE	

STATEMENT OF EXPENDITURES

2003 Assessment Report on the RDN 1-18 and MOR 1-16,18 Claims $\overline{}$

.

البين ا

ليعدا

أميرا

L.....

-

أسسا

-

لي ا

لسا

است

1.00

.....

1.....

اسما

STATEMENT OF EXPENDITURES RDN 1 - 18 and MOR 1-16, 17 Claims

PROFESSIONAL FEES AND WAGES

The following days were worked irregularly during June 5th and August 11th.

RDN: Ian Cunningham Dunlop Marcella Lind: Aletha Buschman: David Gale Richard Mann Adrian Newton Mike Middleton Chad Enns	10 days @ 360 per day 25 days @ 360 per day 18 days @ 300 per day 6.5 days @ 326 per day 4 days @ 263 per day 9 days @ 180 per day 6 days @ 176 per day 4 days @ 176 per day	\$3,600.00 \$9,000.00 \$5,400.00 \$2,119.00 \$1,052.00 \$1,052.00 \$1,056.00 \$ 704.00 RDN: \$ 24,551.00
MOR: Aletha Buschman: David Gale Adrian Newton Mike Middleton Chad Enns	3 days @ 300 per day 2.5 days @ 326 per day 2 days @ 180 per day 2 days @ 176 per day 2.5 days @ 176 per day	\$ 900.00 \$ 815.00 \$ 360.00 \$ 352.00 \$ 440.00 MOR: \$ 2,867.00
		\$ 27,418.00
ROOM AND BOARD		
Camp 45 Costs (@ 39.86/	•	RDN: \$ 3,289.23

(RDN: 82.5 person days, MOR: 12 person days) MOR: \$ 478.43

2003 Assessment Report on the RDN 1-18 and MOR 1-16,18 Claims \$ 3,767.66

7

Barrick Gold Inc	
HELICOPTER CHARGES	
Helicopter-Northern Air Support (Hughes 500)	
RDN 40 hrs @ 735 per hour + 5120 litres of oil @ 0	.85 per litre = \$ 33,752.00
MOR 4.6 hrs @ 735 per hour + 588 litres of oil @ 0.	85 per litre = \$ 3,882.00
	\$ 37,63
ANALYTICAL WORK	
Acme Analytical Lab RDN: 465 samples @ average cost of 18.41 per sam MOR:	iple \$ 8,562.63
36 samples @ average cost of 28.25 per samp (Note: Increase costs due to BLEG and CY Let	ole \$ 1,016.89 ach methods)
Sample Shipping Costs (@ \$1.32/sample)	RDN: \$ 613.80 MOR: \$ 47.52
	\$ 10,24
MISCELLANEOUS SUPPLIES	
Orthophoto and Trim Data	RDN: \$ 2,759.00 MOR: \$ 150.00
	\$ 2,909

TOTAL WORK FILED FOR ASSESSMENT CREDIT: \$ 81,969.50

_

لسا

. السا

استا

2......

1

السا

استا

السوا

است

السا

لعدا

. العد ا

لسا

.

ل**س**ا

1-4

6

	Barrick Gold Inc	
ليسا		
است		
العوا	APPENDIX III	
اس		
الهينا		
	STATEMENTS OF QUALIFICATION	
ليا		
لعا		
لحا		
است		
ليها		
,		
ليها		
i		
ليوا		
ليبيا		
ليبيأ		
,		
	2003 Assessment Report on the RDN 1-18 and MOR 1-16,18 Claims	Feb 9, 200

لي)

STATEMENT OF QUALIFICATIONS
l, Richard K. Mann, of 6809 Butler St, Vancouver, British Columbia, do hereby certify that:
 I am presently employed by Barrick Gold Corporation of 700-1055 West Georgia Street, Vancouver, British Columbia. V6E 3P3.
 I am a graduate of the University of British Columbia, Vancouver, BC (1999, BSc in Geology)
 I have been employed in my profession as an Exploration Geologist since graduation.
 I am duly registered as a Professional Geoscientist in training in the Province of British Columbia (#131934).
 I have no interest in the property described herein, nor in the securities of any company associated with the property, nor do I have any plans to acquire any such interest.
Signed at Vancouver, British Columbia this 18 th day of March, 2004.
Richard K. Mann, B.Sc., P. GIT

La La

-25

لسا

أحسا

ليا

ود.

لتنا

•

ليا

أتسا

LJ

لما

اها

اسا

أهنا

-70

أسسأ

لعبا

ليبيرا

أستر

لسا

L

العنا

لسا

لعتنا

Land

STATEMENT OF QUALIFICATIONS

I, David F.G. Gale, of 953 West 38th Ave, Vancouver, in the Province of British Columbia, Canada, DO HEREBY CERTIFY:

- 1 THAT I am a Geologist employed with Barrick Gold Corporation, working at offices located at 700-1055 West Georgia Street, Vancouver, British Columbia V6E 3P3.
- 2 THAT I have practiced in my profession with various mining companies in Yukon, British Columbia, Ontario and in the Northwest Territories during the last 9 years.
- 3 THAT I am a graduate of Memorial University (1994, BSc in Geology) and Queen's University (1997, MSc in Geology).
- 4 THAT I am duly registered as a Professional Geoscientist in the Province of British Columbia (#128433).
- 5 THAT this report is based on RDN property work that I was involved with from June 11th to August 11th, 2003.
- 6 THAT I have no interest in the property described herein, or in any securities of any company associated with the property, nor do I expect to receive any such interest.

DATEC at Mancouver, British Qolumbia, Canada, this 18th day of March 2004.

PROVINCI OF D. F. G. GALE #27366 Маи Gale, M Sc., P. Geo. David

اسا

.

لسبا

لسا

ليسا

ليها

L

ليسا

ليها

لسيا

....

لي ا

المعا

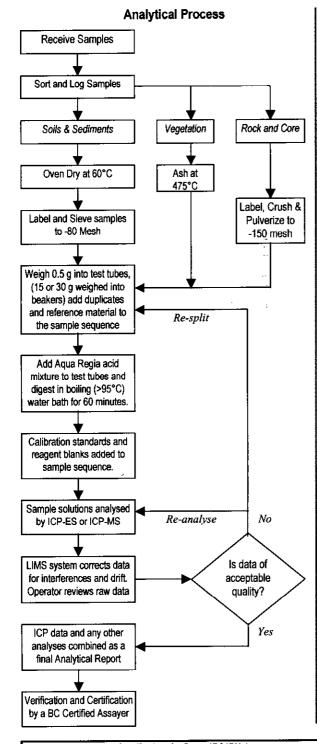
لسا

لسبا

لسا

البيرا

ا ا


لسسا

APPENDIX IV	
ANALYTICAL PROCEDURES AND ASSAY CERTIFICATES	

ACME ANALYTICAL LABORATORIES LTD.

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 1D & 1DX – ICP & ICP-MS ANALYSIS – AQUA REGIA

Comments

Sample Preparation

All samples are dried at 60°C. Soil and sediment are sieved to -80 mesh (-177 μ m). Moss-mats are disaggregated then sieved to yield -80 mesh sediment. Vegetation is pulverized or ashed (475°C). Rock and drill core is jaw crushed to 70% passing 10 mesh (2 mm), a 250 g riffle split is then pulverized to 95% passing 150 mesh (100 μ m) in a mild-steel ring-and-puck mill. Pulp splits of 0.5 g are weighed into test tubes, 15 and 30 g splits are weighed into beakers.

Sample Digestion

A modified Aqua Regia solution of equal parts concentrated ACS grade HCl and HNO₃ and de-mineralised H₂O is added to each sample to leach for one hour in a hot water bath (>95°C). After cooling the solution is made up to final volume with 5% HCl. Sample weight to solution volume is 1 g per 20 mL.

 $(1,1) \in \mathcal{U}_{\mathcal{U}}$

1. 1. 1. 1.

Sample Analysis

Group 1D: solutions aspirated into a Jarrel Ash AtomComp 800 or 975 ICP emission spectrometer are analysed for 30 elements: Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, Ti, U, V, W, Zn.

Group 1DX: solutions aspirated into a Perkin Elmer Elan6000 ICP mass spectrometer are analysed for 36 elements: Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, *Ga, Hg*, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, *S*, Sb, *Sc*, *S e*, *Tl*, Sr, Th, Ti, U, V, W, Zn.

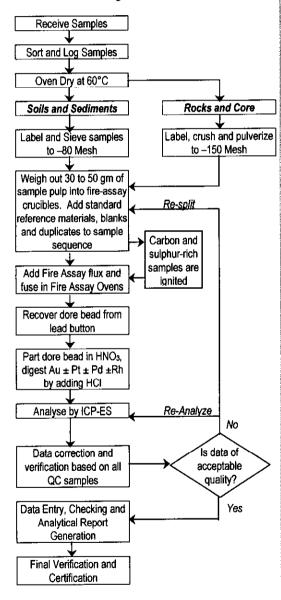
Quality Control and Data Verification

An Analytical Batch (1 page) comprises 34 samples. QA/QC protocol incorporates a sample-prep blank (SI or G-1) carried through all stages of preparation and analysis as the first sample, a pulp duplicate to monitor analytical precision, a -10 mesh rejects duplicate to monitor sub-sampling variation (drill core only), two reagent blanks to measure background and aliquots of in-house Standard Reference Materials like STD DS5 to monitor accuracy.

Raw and final data undergo a final verification by a British Columbia Certified Assayer who signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other certified assayers are Dean Toye, Jacky Wang and Ken Kwock.

Desuments Mathed and Cassifications for Crown 4D84DV dee	Date: Oct 2, 2003	Prepared By: J. Gravel
Document: Method and Specifications for Group 1D&1DX.doc		T lepaled by. J. Olavel

852 East Hastings Street • Vancouver • British Columbia • CANADA • V6A 1R6 Telephone: (604) 253-3158 • Facsimile: (604) 253-1716 • Toll Free: 1-800-990-ACME (2263) • e-mail: info@acmelab.com



852 East Hastings Street • Vancouver, British Columbia • CANADA • V6A 1R6 Telephone: (604) 253-3158 • Fax: (604) 253-1716 • Toll free: 1-800-990-ACME (2263) • e-mail: info@acmelab.com

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 3B - PRECIOUS METALS BY FIRE GEOCHEM

Analytical Process

Comments

Sample Preparation

Soils and sediments are dried (60°C) and sieved to -80 mesh ASTM (-177 Im). Rocks and drill core are crushed and pulverized to 95% -150 mesh ASTM (-100 μ m). Splits of 30 gm (client may select 50 gm option) are weighed into fire assay crucibles. Quality control samples comprising blanks, duplicates and reference materials Au-S, Au-R, Au-1 or FA-100S (in-house standard reference materials) added to each batch of 34 samples monitor background, precision and accuracy, respectively.

Sample Digestion

A fire assay charge comprising fluxes, litharge and a Ag inquart is custom mixed for each sample. Fusing at 1050°C for 1 hour liberates Au, Ag, Pt and Pd. For Rh > 10 ppb, a Au inquart is used. After cooling, lead buttons are recovered and cupeled at 950°C to render Ag \pm Au \pm Pt \pm Pd or Au \pm Pt \pm Pd \pm Rh dore beads. Beads are weighed then leached in hot, conc. HNO₃ to dissolve Ag leaving Au (\pm PGE) sponges. Concentrated HCI is added to dissolve the sponges. Au inquart beads (Rh analysis) are dissolved in Aqua Regia.

Sample Analysis

Au, Pt, Pd and Rh are analysed in sample solutions by ICP-AES (Jarrel Ash AtomComp model 800 or 975). Rh can be determined quantifiably up to 10 ppb from a Ag inquart fusion digestion, however a Au inquart must be used to accurately determine higher concentrations.

Data Evaluation

Data is inspected by the Fire Assay Supervisor then undergoes final verification by a British Columbia Certified Assayer who signs the Analytical Report before release to the client. Chief Assayer is Clarence Leong, other certified assayers are Dean Toye and Jacky Wang.

Document: Methods and Specifications for Group 3B.doc

لي ا

أجوا

ا ا

أسرا

اس

ا_

بي ا

<u>ا</u>

ليعا

ليها

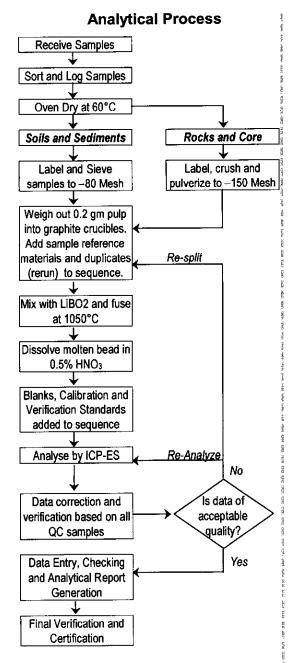
.....

اي ا

ليبيا

ليهيا

852 East Hastings Street • Vancouver, British Columbia • CANADA • V6A 1R6 Telephone: (604) 253-3158 • Fax: (604) 253-1716 • Toll free: 1-800-990-ACME (2263) • e-mail: info@acmelab.com


2000	
2000	

852 East Hastings Street • Vancouver, British Columbia • CANADA • V6A 1R6 Telephone: (604) 253-3158 • Fax: (604) 253-1716 • Toll free: 1-800-990-ACME (2263) • e-mail: info@acmelab.com

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 4A: WHOLE ROCK ANALYSIS BY ICP

Comments

Sample Preparation

Soil or sediment is dried (60°C) and sieved to -80 mesh (-177 μ m). Vegetation is dried (60°C) and pulverized or ashed (475°C). Moss-mat is dried (60°C), pounded and sieved to yield -80 mesh sediment. Rock and drill core is jaw crushed to 70% passing 10 mesh (2 mm), a 250 g aliquot is riffle split and pulverized to 95% passing 150 mesh (100 μ m) in a mild-steel ring-and-puck mill. A 0.2 g aliquot is weighed into a graphite crucible and mixed with 1.5 g of LiBO2 flux. QA/QC protocol includes inserting a duplicate of pulp to measure analytical precision, a coarse (10 mesh) rejects duplicate to measure method precision (drill core samples only), two analytical blanks to measure background and aliquots of in-house reference material SO-17 and CSB to measure accuracy in each analytical batch of 34 samples. STD SO-17 was certified in-house against 38 Certified Reference Materials including CANMET SY-4 and USGS AGV-1, G-2, GSP-2 and W-2.

Sample Digestion

Crucibles are placed in an oven and heated to 1050° C for 15 minutes. The molten sample is dissolved in 5% HNO₃ (ACS grade nitric acid diluted in demineralised water). Calibration standards and reagent blanks are added to the sample sequence.

Sample Analysis

Sample solutions are aspirated into an ICP emission spectrograph (Jarrel Ash AtomComp Model 975) for the determination of the basic package consisting of the following 18 major oxides and elements: SiO₂, Al₂O₃, Fe₂O₃, CaO, MgO, Na₂O, K₂O, MnO, TiO₂, P₂O₅, Cr₂O₃, Ba, Nb, Ni, Sr, Sc, Y and Zr. The extended package also includes: Ce, Co, Cu, Ta and Zn. Loss on ignition (LOI) is determined for both packages by igniting a 1 g sample split at 950°C for 90 minutes then measuring the weight loss. Total Carbon and Sulphur are determined by the Leco method (Group 2A).

Data Evaluation

Raw and final data from the ICP-ES undergoes a final verification by a British Columbia Certified Assayer who must sign the analytical report before release to the client. Chief assayer is Clarence Leong, other certified assayers are Dean Toye and Jacky Wang.

Document: Methods and Specifications for Group 4A.DOC	Date: Aug 31, 2002	Prepared by: J. Gravel

	YTI SO 9002 Ac	LAB		DRT 1 Co		DL		8 L		H. CHE				V A . Alys		L CER					PI	# d	. ,'60	4) _		31 L .	 A	XL		5 L A	16 A
44			₿	arr	ick	<u>: G</u> c	<u>51d</u>	<u> Co</u>						<u>KAY</u> 109 g,						e #	A	302.	354							4	
MPLE#	Au Ag Pb ppb ppm ppm	Zn ppm	Си ррт	As ppm	нд ppm p			В Ва Этррт			Cd ppm		Cr ppm		Ga K om %			Min ppm		Na X	Ni ppm				Se ppm				ט מוסק מ	v w ppm ppm	Samp1 g
23536 23537 23538 23539	<.5 <.1 .2 <.5 .1 3.4 <.5 .2 32.8 1.2 .1 14.3 <.5 .1 14.5	174	27.9 36.4 28.6	3.6 66.0 4.1	.07	.4 1. .6 1. .2	53 82 26	1 110 2 68	<.1 .1 .3	9.46 1.26	.6 2	7.5 6.6 1.4	5.9 10.2	5.81 .96	6.08 5.18	21 4 3	.53 1 .60 .05	1935 470 477	1.0 3.7 .9	.022 2 .013 .020	21.9 8.6 1.2	.083 2	.15 .07 .05	7.6 5.6 .8	<.5 .5 <.5	535 1 99 7 3		02 . 01 . 01 .	1.2 1.2 1.8	<1 .2 92 <.1 77 .1 2 .1 1 1.4	130 150
23540 23541 665 666 667	<.5 .1 17.6 <.5 .1 15.9 <.5 .2 4.4 <.5 .1 5.8 <.5 1.0 4.9 1	60 121 74	11.4	.7 37.3 7.1	.01 .30 2	.2 . 2.2 . .6 .	26 36 54	2 98	.2 <.1 : .1	72. 10.58. 05.	.2 .1 1.4 .8 23.6	.6 4.0 2.0	1.4 4.3 7.9 4.7 13.3	1.45		8 74 13	.08 2 .11	380 2123 154	1.1 5.9 3.8	.016 .026 : .017	1.1 12.8 4.4	.038	:.05 .94 .10	1.0 5.1 1.8	<.5 2.4 1.3	72 358 7	4.4<.0 3.2<.0 1.1 .0 1.9 .0 1.5<.0	01 . 02 . 01 .	2.6 3.6	<1 1.6 46 <.1 10 .2	16
668 669 670 671 672	<.5 .8 6.7 <.5 .2 3.1 <.5 .2 15.9 .7 .1 3.9 <.5 .2 20.7	202 28 40	8.9 2.4 30.8	6.6	.03 .02	.8 1. .3 . .3 . .4 1. .0 1.	25 16 11		<.1 1.1 <.1	14.35 .21 .28	.2	1.9 .3 6.9		3.62 .55 13.07	6 .30 1 .09 1 .12 8 .09 3 .14	4 9 6 3	5.86 .02 .67	1516 243 303	2.6 2.6 .7	.061 .041 .028	12.7 1.7 7.7		.28 <.05 .37	3.0 .8 5.3	<.5 <.5	1006 18 30	5.5<.0 2.4 .1)01 .)01 <. .49 .	1 .5 1 2.0 1 .2	100 .1 55 <.1 <1 5.0 100 .1 25 .4	15 14
L673 L674 L675 L676 L678	<.5 .2 16.5 <.5 <.1 .4 <.5 .1 6.0 .6 .1 6.7 .7 .2 19.0	16 64	19.9 41.1 17.6	<.5 10.9	<.01 .04 .06 1		. 63 . 39 . 40	3 477 <1 189	<.1 _1 <.1	.94 7.79 12.57	<.1 .2	3.3 9.4 6.8	8.4 40.9 22.6	3.11 1.87	3 .16 3 .10 5 .20 2 .07 1 .14	10 8 6	.28 .65 .31	329 957 1109	2.0 .5	.030 .014 .018	1.1 24.8 26.3	.140 2 .020 4 .111 .049 .025	<.05 .11 .67	2.1 7.5 3.2	<.5 .7	19 266 406	2.6 .(1.8 .()01 <.)02 <.)01 .	1 .4 1 .4 1 .3	61 <.1 25 .3	16 20 15
1679 5 11679 1687 1688 1689	<pre><.5 <.1 12.2 <.5 <.1 12.4 .9 <.1 1.6 .8 .3 8.8 13.9 <.1 2.1</pre>	64 345	2.7 2.4 13.2 51.2 47.2	.5 4.3 16.2	.11 .19 .17 1	.31. 1.4	.26 .45 .71	1 95 1 92 8 38 3 342 1 141	.2 <.1 .1	. 38	.3 .1 3.8 1	1.1 9.7 1.6	8.1	.66 3.58 4.02	1 .22 1 .20 9 .07 2 .24 4 .14	45 6 3	.01 1.40	462 1694 552	3.5 .8 13.3	.029 .073 .012	2.1 2.3 42.8	.009 .009 .126 .067 .128	<.05 1.95 <.05	1.3 8.4 11.0	<.5 .5	7 36 47	6.4<.(.4 .2 1.2 .()01 . 248 .)02 .	1 .4 1 .2 4 .5		-
1726 1924 1925 TANDARD DS4	<pre><.5 .9 33.8 <.5 .1 3.1 <.5 .2 3.9 28.0 .3 32.1</pre>	76 144	11.9 16.3	32.4 35.4	.18 2 .25 2	2.6 2.6 .	. 25 . 27	5 129 3 131	<.1 <.1	13.65 11.77	1.0 1.8	3.3 4.0	7.7 8.8	3.61 3.72	1 .1(1)) 5 · . 5 ·	4.45 4.41	2473 2136	3.9 5.7	.035 .046	9.5 13.9	.106 .085	.58 .71	4.2 4.6	1.7 2.3	584 586	.7 .()02 .)01 .	2.5 2.6	40 <.1	20 21

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

huly 14/03 SIGNED BYD. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS DATE RECEIVED: JUL 3 2003 DATE REPORT MAILED:

All result e considered the confidential property of the client. Acme assumes liabilities for actual cost of the analysis only.

. (/ ... D. FA

TIG LABE ORI TD 8 . H NGS . V. UVE : V LR6 604 FAX) 25 16 PH 3-31 (ISU 9002 Accredited Co.) WHOLE ROCK ICP ANALYSIS Barrick Gold Corp. PROJECT ESKAY CREEK #13 File # A302355 P.O. Box 164, 951 - 409 G, Vancouver BC V6C 1T2 SAMPLE# SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Cr2O3 Ba Ni Sc LOI TOT/C TOT/S SUM % % % % % % % % % % % ppm ppm ppm % % % % 11677 76.70 13.15 1.32 .15 .09 2.81 4.40 .16 .04 .03 <.001 1281 <20 5 1.4 .11 <.01 100.39 STANDARD SO-17/CSB 61.52 13.85 5.82 2.34 4.67 3.92 1.41 .60 .99 .53 .434 402 40 23 3.4 2.40 5.31 99.53 GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION. TOTAL C & S BY LECO. (NOT INCLUDED IN THE SUM) - SAMPLE TYPE: ROCK R150 60C DATE REPORT MAILED: (16/03 SIGNED BY DATE RECEIVED: JUL 3 2003 D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

8 . H CTIC LABL ORI TD INGS VIL UVE ING PHL 604 FAX) 25 E A 3-31 116 (ISO 9002 Accredited Co.) GEOCHEMICAL ANALYSIS CERTIFICATE Barrick Gold Corp. PROJECT ESKAY CREEK #13 File # A302355 (a) P.O. Box 164, 951 - 409 G, Vancouver BC V6C 1T2 Th SAMPLE# Со Cs Ga Hf Nb RЬ Sn Sr Ta U V W Zr Y La Ce P٢ Nd Sm Eu Gď Tb Dy Нο Er Tm Yb Lu ppm 11677 .5 .6 16.5 6.5 17.7 91.7 2 32.1 1.1 10.9 4.1 5 1.6 200.1 50.0 46.2 94.4 9.81 39.3 7.1 .49 6.57 1.13 7.70 1.53 5.19 .76 5.06 .71 STANDARD SO-17 18.6 3.9 19.4 12.7 25.2 23.2 11 307.7 4.1 12.6 11.7 125 10.2 355.0 26.5 10.4 23.7 3.02 14.0 3.3 1.01 3.83 .68 4.38 .87 2.80 .41 2.96 .42 GROUP 4B - REE - LiBO2 FUSION, ICP/MS FINISHED. - SAMPLE TYPE: ROCK R150 60C DATE RECEIVED:

THE ANALYTICAL LABOR TORIES TOTO 8 THE NGS . VICTURE . VICTURE . PH 604 3-3 FAX)25 716 1-ou -9002 Accredited Co. GEOCHEMICAL ANALYSIS CERTIFICATE Barrick Gold Corp. PROJECT ESKAY CREEK #13 File # A302355 (b)P.O. Box 164, 951 - 409 G. Vancouver BC V6C 172 SAMPLE# Pb Mo Cu Ni. As Bi Τl Zn Cd Sb Aq Au Η̈́α Se ppm ppm ppm mqq ppm dqq ppm ppm ppm ppm mqq maq ppm ppm 11677 8.3 <.1 .3 .24 .29 <.5 1.5 1.4 1.0 26 .3159 35.5 26 $2.5 \\ 23.0$ <.1 5.3 .5 <.1 5.3 <.5 25.7 <.1 6.8 122.9 32.3 STANDARD DS4 1.1 GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 60C DATE RECEIVED: JUL 3 2003 e considered the confidential property of the client. Acme assumes All result liabilities for actual cost of the analysis only.

L CME	(ISO			Acc								T.		E.	[FINC	<u>.</u>	T.	1	ot	JVL.	<u>،</u>			R		Phon	6) تہ	Ε,	3 تر م	.	ម្រ	FA	100) 2	د د	710	.
_ A A										<u>11</u>	Ca	orp	980	PRC	<u>JE(</u>		SK	AY	CR	EEI	K ‡	<u>19</u>	F	ile	#	A30	2384	1	Pa	ge	1					1		N
SAMPLE#	Au Popb p	-		Zn ppm			As ppm	-						i C	a Co	164, Co ppr))	Cr	Fe	Ga ppm	ĸ	La	Mg		Mo	Na %	N i ppm			Sc ppm				Ti %	Tl ppm			
G-1 02226 02228 02230 02232	.5 3.4 3.5 2.4 2.4	.1 .1 .2	9.7 9.5 7.2	73 69	40 51 40	.7 .2 .8	14.0 12.3	.04 .11 .15	.7 .8 .7	2.2 3.1 2.8	26 18 31	3 32 3 12 2 13	7. 2. 8.	1 .3 1 .2 1 .1	0.2 0.3 9.0	2 13.6	5 25 28 23	.0 4 .0 5	4.70 5.02 4.78	12 11 9	.10 .07 .04	13 11 9	.88 .88 .54	646 610 472	5.8 2.3 2.5		11.2 10.2 8.5	.040	<.05 <.05 .07	5.7 6.0 3.6	.9 1.1 1.1	25 17 15	1.2 1.3 .7	.097 .089 .057	.1 .1 .1	2.1 .8 .8 .9 .9	130 122 106	.1 .1 .1
02234 02236 02238 02240 02242	1.8 <.5 6.8 5.2 3.4	<.1 1.5 .6	3.2 9.8 10.7	33 37 111	19 25 55	.8 .6 .0	4.2 13.0 13.8	.02 .33 .13	.3 6. 1.1	6.0 2.4	3 19 1	2 28 1 6 2 9	9. 5.	2.2 2.1 1.1	2 .* 3 1.0 3 .:	5 14.6 8.7 5 3.9 7 8.1 7 15.5	7 22 7 37 1 23	2.8 1 7.1 7 5.1 3	1.73 7.02 3.82	2 11 9	.04 .02 .07	7 7 14	.54 .16 .50	399 215 455	.7 2.8 3.4	.007 .005 .013	14.2 8.4 3.6 14.5 19.8	.030 .262 .126	<.05 <.05 <.05	2.3 5.0 3.9	<.5 2.0 1.8	20 11 14	2.1 1.9 .7	.030 .090 .031	<.1 .1 .2	.4 1.1 .9	37 126 95	.2 .2 .1
02244 02246 02248 11562 11564	5.3 2.9 4.3 4.0 1.7	.2 .3 .1	8.9 14.3 10.4	83 71 82	47 38 29	.0 .6 .8	10.9 14.6 10.7	.19 .19 .08	8. 8. 1.0	3 2.0 3 3.4 3 2.3	51 52 59	2 10 2 10 1 3	7. 9.	1.1 1.0	3 .! 7 ./ 6 .'	9.8 4.9 23.6	3 22 7 24 5 65	.3 4 .8 7	4.29 7.37 3.31	8 7 7	.04 .02 .04	8 11 11	.52 .24 1.07	558 219 1041	2.4 3.7 1.7	.010 .006 .006	12.8 11.1 14.9 90.2 58.4	.115	<.05 <.05 <.05	2.8 2.6 2.1	1.1 1.7 1.3	14 11 11	.5 .7 .9	.034 .016 .036	.1 .2 .1	.7 1.1 .5	81 79 38	.1 .1 .1
11566 11568 11570 11572 11574		.5 .3 .5	15.7 10.7 13. 6	68 51 64	10 23 25).2 5.7 5.4	11.3 9.1 11.9	.11 .12 .13		4.0 71.1 73.7	58 31 - 17 -	1 1 <1 4 <1 4	4. 7. 5.	3.0 2.0 2.0	9 . 8 . 4 .	3 2.4 5 7.5	5 57 5 72	2.4 5 2.4 4	5.23 5.86 4.98	28 12 9	.06 .04 .03	31 9 10	.11 .59 .82	567 405 336	7.9 2.9 3.0	.092 .019 .007	85.8 3.0 45.2 65.3 127.2	.059 .135 .108	<.05 <.05	2.1 1.8 2.5	1.6 1.2 1.6	7 14 7	9.2 .6 .6	.195 .086 .039	.1 .1 .1	1.1 3.5 .5 .6	23 77 60	.9 .1 .1
11800 11802 11804 11806 RE 11806	2.2	.6 .1 .1	12.0 5.3 10.8	59 67 41	72 28 16	2.2 3.7 5.7	9.0 6.8 6.4	.17 .04 .09		5 1.0 5 5 2	52 78 30 -	1 6 1 29 <1 6	6. 6. 7.	1.2 2.3	2. 9.	2 8.7 4 10.1	7 24 1 34 9 27	.3 4 .4 2 7.3 4	4.88 2.40 4.86	13 4 14	.05 .07 .03	12 9 7	.31 .69 .42	522 716 454	4.0 2.1 1.7	.008 .010	19.6 1.3	.183 .057	<.05 <.05	3.1 4.5 3.4	1.0 .8 .8	20 26 15	.8 1.4 .8	.157 .023 .102	.1 .1 .1	.8	121 46 137	.1 .2 .1
12640 12642 12644 12646 12648	2.8 2.3 1.7 .6 2.1	.1 .4 .1	7.2 9.3 9.4	64 59 55	36 32 23	5.0 2.7 5.7	16.8 8.4 9.1	. 12 . 12 . 11	1.4	2. 1.	77 37 48	1 10 1 7 1 6	17 11 16	.1 .2 .1 .2	0. 0.	2 10.0 3 9.9 2 7.0 2 7.0 2 3.4	7 2 5 2 0 2	3.5 3 5.2 4).9 4	3.98 4.53 4.45	6 11 9	.05	8 8 6	.60 .48 .45	418 355 283	1.4 2.3 2.0	.011 .008 .009 .007 .008	8.0 5.1 5.6	.067 .064 .066 .063 .072	<.05 <.05	3,6 3,2 3,1	.8 1.0 .6	16 17 15	1.0 .5 .6	.046 .098 .061	1 .1 .1	.5 .7	73 101 95	.1 .1 .1
12650 12652 13540 13542 13544	1.3	.5 .1 .1	14.1 3.7 5.4	137 51 60	56 19 26	5.0 2.8 5.1	26.0 4.1 9.2	.07 .04	· .(5 2.	59 37 31	1 25 1 30	5 13 10	.2 .3 .2 .3 .2 .7	4. 1.	5 23.2 2 8.4 4 10.4	2 24 4 19 4 19	4.6 4 9.9 ° 9.5 7	4.48 1.98 2.32	11 3 3	.13 .05 .05	13 8 9	.67 .54 .51	2740 561 874	3.5 .9 1.7		9.3	.121 .038 .070	.07 <.05 <.05	3.5 3.2 3.6	.9 .7 1.1	36 23 20	.4 1.8 1.7	.035 .026 .018	.2 .1 .1	1.3 .5 .5	92 32 34	.1 .2 .4
STANDARD	43.6	.3	23.8	130	138	3.2	16.8	.16	5 3.8	32.	08	16 13	76	.0.	2 5.	6 11.1	8 170	5.9	2.81	6	.13	12	.67	740	12.5	.035	22.0	.091	<.05	3.5	4.8	48	2.7	.094	1.0	6.1	63	4.5
Standard	is STA	NDAR	gro Upp	IUP 1	IMIT	rs -	AG,	AU,	HG	, W :	= 10	0 PPM	I; M), CI), CD		BI,	TH,	U &	B =	2,0	30 PP	M; CL	J, PB	, ZN,	NI, I	TO 10 MN, AS											
DAT All r	'E RE(JUL							RT M			//	ly . Actur			3							1	. TOYE the a	•			WANC	i; CE	RTIF	IED I	B.C.	ASSA	YERS	;
		_								P				-																					. 4			<u> </u>

i

				,	1	В	ar	ri:	ck	G	U old	C	I orj	<u>.</u>	PR	.0J	EC	T F	ESK	AY	CF	REE	L K	#19	F	ILE	t	A30	238	34	Ľ		Pa	ige	2	-		ACME		
AMPLE#	Au ppb	Ag ppm		b Z n pp		Cu ppm			Hg ppm		Al %	B ppm	Ba		-		Cd ppm	Co ppm		Cr pm		Ga ppm		La ppm	Mg %	Mn ppm		Na %					: Se ippm				T L ppm		V mqq	
- 1 3546 3548 3550 3552	2.7	.2 .3 <.1	8. 11. 5.	1 5 5 4 6 6	57 57 52	18.6	5	.6 .1 .3	.12 .10 .05	.4 .4 .3	2.95 2.03 2.79	<1 <1 2	44 43 32		1. 1. 1.	12 10 20	.2 .1 .1	8.4 5.8 13.1	22 18 24	.7 4 .6 5 .0 3	.61 .43 .65	10 15 7	.03 .02 .03	8 10 7	.29 .19 .71	670 461 547	2.2 2.5 1.2	.092 .007 .005 .011 .008	<.1 <.1 7.1	.073	8<.05 9<.05 5<.05	2.9 2.1 4.0	7.7 .6	10 9 13	.6 1.0 1.5	.091 -119 -103	.1 <.1 <.1	.6 .9 .4	42 99 145 79 145	•
3554 3556 3558 3560 3562	4.3 2.8 1.8	.1 .3 .1	13. 8. 9.	54 54 14	40 45 42	23.0 32.5 32.9	8 6 9	3.5 5.3 7.9	.07 .13 .07	.4 .4 .5	2.01	<1 <1 <1	55 61 51	; . ; . ; .	2. 2. 1.	11 17 24	.1 .4 .1	3.6 6.1 7.0	17 18 22	.4 4 .5 5 .5 5	.07 5.35 5.71	15 16 15	.02 .04 .04	7 12 8	.15 .18 .39	252 269 387	1.8 3.7 3.1	.007 .005 .005 .007 .008	<.1 <.1 2.6	.200	D<.05 5<.05 2<.05	1.9	2 .5 .9	11 14 18	.7 .6 .7	.073 .188 .070	.1 .1 .1	.5 1.0 .7	79 111 143 135 87	•
3564 3566 3568 3570 3572	1.9 6.0 4.7	<.1 .2 .4	7. 5. 9.	04 14 39	48 47 98	30.6 24.7 40.1	5 9 7 1 1 1 2	2.7 1.5 2.4	.02 .09 .22	.8 .2 .6	.66 2.07	1 2 <1	61 114 120	. 4 <.) .	1 . 1 . 1 .	19 15 19	.2 .2 .6	7.9 1.7 7.8	18 10 28	.9 3 .1 1 .1 4	5.11	9 6 8	.05 .10 .04	11 24 15	.10 .17 .60	320 159 316	3.6 1.7 4.9	.004 .004 .145 .010 .010	8.0 2.7 16.0	.052 .107	2<.05 7 .06 4<.05	2.5	5.7 51.6 71.6	21 10 15	.7 .5	.110 .071 .036	.1 .1 .2	.8 .4 1.3 1.0 1.8	112 16 83	
3574 3576 3578 3580 E 13580	4.3 5.0 2.5	.2 .1 .3	10. 28. 12.	2 10 4 4 0 10	01 46 01	36.0 14.6 41.8) 18 5 19 5 5	3.8 7.0 7.2	.12 .11 .14	7. 2.4 5.	2.79 2.45 3.16 3.11 3.15	1 <1 1	54) 4 16	3. 7. 7.	1.	54 09 14	.6 .2	17.1 4.1 10.3	77 19 25	.8 4	4.02 5.61 5.44	9 16 11	.06 .02 .08	13 19 12	.76 .21 .71	1719 148 531	16.0 5.6 4.4	.006 .006 .006 .022 .022	45.6 .4 15.6	.124	4 .07 6<.05 7<.05	4.5 3.5 4.1	52.1 5.5	34 11 14	.5 4.0 .7	.011	.2 .1	1.0	94 112	
3582 3584 3586 3588 3590	4.6 2.1 2.5	.2 .1 .2	9. 4. 6.	3 / 8 / 6 1/	41 53 47	42.3 40.5 21.5	5 10 5 7 5 7).3 7.0 7.3	.11 .19 .08	.5 1.5 .6	2.52 2.09 1.22 1.55 2.47	1 2 1	6! 351 26!	5. 5.	1 . 11.	13 88 61	.2 1.6 1.0	8.3 5.8 7.0	24 14 17	.8 .6 .2	5.29 2.82 2.21	12 7 7	.05 .03 .06	10 21 18	.41 .08 .30	260 1285 600	3.3 40.4 15.5	.011 .009 .022 .078 .012	3.2 6.7 3.2	.038 .097 .088	8<.05 7 .19 8 .16	5 3.5 2.1 5 2.6	5.9 15.7 51.8	13 60 23	1.1	.118	.1 .1	4.4	132 47 41	
3592 3594 3596 3598 3600	4.8 1.8 3.3	.4 .2 .3	9. 11. 6.	7 10 3 17 5 8	04 72 86	47.0 32.6 34.2) 12 5 8 2 8	2.2 3.6 3.3	.16 .08 .13	.8 .5 .4	2.52 4.31 3.06 2.76 3.77	22	8 10 8	1. 5. 3.	1 . 1 . 1 .	18 16 17	.7 .5 .7	12.7	41 28 27	.4 .3 4 .2 3	7.36	11 13 7	.04 .07 .04	12 12 13	.58 .71 .59	765 588 234	5.1 5.4 2.6	.006 .007 .010 .010 .007	10.5 17.8 9.7	.10	1<.05 9<.05 9<.05	6.4 4.7	6.4 2.9 3.3.2	12 13 12	1.0	.060	.2 .3	.9 .9 .8	72 111 86 68 103	
3602 3604 3606 3608 3610	2.7	.3 .2 .7	7. 9. 10.	8 10 8 9 5 16	04 94 56	62.4 42.1 49.0	i 15 17 15	5.1 7.2 5.5	.15 .13 .14	.6 .8 .9	3.14 3.65 2.69 3.20 2.78	46	5 15 2 7 2 12	9. 2. 3.	1 . 1 . 1 .	31 14 28	.8 .6 1.4	9.0 27.4	28 28 21	.8 4 .5 6 .7 4	4.02 5.02	9 9 8	.18 .06 .05	9 10 14	.84 .70 .56	549 496 2221	2.1 3.4 4.7	.011 .024 .008 .010 .009	3.7 4.3 7.9	.066 .077	6<.05 2<.05 4<.05	6.3 3.8 4.8	5 1.1 3 1.4 3 2.6	34 13 23	.3 .5 .6	.083 .041 .023	.2 .2	.5 8 1.0	97	
TANDARD	40.2	.2	24.	5 13	30 1	36.8	3 17	7.8	.17	3.5	2.00	16	5 13	16.	0.	73	5.6	12.6	178	.8 3	3.00	7	. 12	11	.64	789	12.4	.033	22.7	.08	6<.05	3.4	4 4.6	47	2.7	.093	1.0	5.8	60	4

Standard is STANDARD DS5. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

٠

_ FA

	CAL				в	ar:	ric	:k	Go	lđ	Co	rp	•	PRO	ΟJΈ	CI	Ë	SKF	ΔŸ (CRE	EK	#19)	FIL	E #	A3	023	84			Pa	age	: 3					
AMPLE#	Au ppb p		Pb ppm		Cu ppm		.s ⊧ xπpp			Al %		Ba ppm			Cc ppn		Co pm	rC ppm		Ga ppm		La ppm	Mg %	Mn ppm	Мо ррт	Na %	Ni ppm	P %				Sr ppm		Ti %		U ppm		
- 1 3612 3614 3616 3618	.7 • 5.1 3.1 1.7 1.9	.2 1 .5 1 .1 1	0.9 4.2	70 10 85	54.3	9. 7. 11.	9 .4 3 .4 0 .(18 20 07	.55 .43	.03 .40 .45	1 3 1	205 80 184 64 93	.1 .1 .2	.11 .37 .23	.2	6 13 12	.0 .8 .7	24.5 29.6 30.3	3.84 2.35 5.27	9 7 17	.04 .06 .08	10 33 13 1	.42 .58 .02	398 1067 559	1.8 3.2 2.3	.010 .018 .013	7.6 2.1 10.7 9.6 11.3	.080 .168 .071	<.05 .18 <.05	4.1 4.7 5.0	1.0 1.8 .6	10 26 21	1.8 .3 1.2	.069 .042 .115	.1 .2 .1	.8	73 60 124	
3620 3622 3624 3626 3628	5.8 3.2	.2 .1 1 .4	0.6 8.8	41 41 72	46.1	10. 15. 9.	2.5	19 13 10		.98 .03 .28	1 1 1	31 89 49 37 92	.1 .1 .2	.16 .19	.3	8 6 5	.2 .6 .2	34.8 41.0 19.2		10 14 16	.02 .03	11 10 12	.42 .32 .19	350 414 246	1.6 2.3 3.8	.007 .006 .005	1.1 6.2 4.4 10.2 11.0	.090 .203 .063	<.05 <.05 <.05	5.9 4.5 3.9	1.1. 1.4 1.7	13 14 8	2.4 1.0 .4	.066 .048	<.1 .1 .3	1.0 .8	104 177 110	•
3630 3632 3634 3636 3638	4.9 2.7 5.5 3.9 3.7	.2 .1 .1	7.6 6.1 4.5	85 82 83	40.8 57.0 45.5 33.8 31.7	7. 9. 6.	4. 7. 1.	13 13 16	.42 .43 .53 .43	.15 .68 .71	1 2 <1	97	_1 _1 _1	.16	1.1	i 7 i 12 5 8	.8 .9 .3	23.7 24.2 25.0	3.69 4.36 4.58 3.89 5.32	11 8 8		8 8 7	.52 .70 .60	497 1176 470	2.2 1.5 1.3	.009 .010 .008	10.2 9.1 8.5 7.4 3.2	.054 .289 .083	<.05 <.05 <.05	3.7 4.6 5.2	.8 .8 .9	13 12 15	.9 2.5 1.1	.093 .057 .066	.1 <.1 .1	.7 .6 .5	71 76	
3640 3642 3644 3646 3648	2.0 1.3 1.1 1.3 1.4	.1 .1 .2	7.9 8.2 6.3	115 73 100	49.6 32.0 40.6	12. 8. 6.	0. 6. 7.	06 06 10	.5 2 .4 2 .3 2	.58 .29 .34	1 1 1	60 181 138 163 80	.1 .1 .1	.36 .59 .46		5 10 5 7 5 7	.9 .0 .3	27.1 28.8 27.1	5.10 3.89 2.23 3.03 4.27	11 9 7	.04	15 12 17	.72 .71 .55	854 233 554	7.0 4.5 6.1	.011 .015 .012	5.1 11.3 13.7 10.3 2.5	.088 .054 .115	<.05 <.05 <.05	4.8 3.8 2.9	.9 1.3 1.6	24 29 26	.7 .3 .2	.063 .061 .037 .026 .071	.1 .1 .2	2.6 4.3 3.2	90 89 74	•
3650 3652 3654 3656 E 13656	1.1	.4 1 .2 .1	0.3 9.7 0.9	69 64 46		10. 15 8	4. 0.	20 09 09	.6 4 .5 2 .4 1	.27 .30 .81	1 1 <1		.1 .1 .2	.13 .13 .11	i _/	4 7 4 5 2 4	.1 .5 .7	28.7 26.1 17.1		11 10 16	.02 .04 .03	7 7 6	.39 .37 .25	495 203 431	3.1 7.8 2.0	.007 .006 .004	1.2 1.5 7.3 (1.5	.277. 046. 240.(<.05 <.05	5.6 3.3 2.5	1.3 1.5 .6	10 13 11	1.0 .5 1.2	.081 .021 .093	.1 .1 .1	.9 .9 1.1 .4 .4	132 100	•
3658 3660 3662 3664 3666	1.9 4.0 3.0	.1 ' .1 ' .2	0.9 0.1 9.4	79 57 66	34.5 21.6 26.9 30.5 31.0	10 12 11	2.7.5.	10 13 12	.5 4	.01 .30 .03	1 1 1	48 70	.2 .1 .1	. 11 . 14 . 13		16 27 37	2 .9 .8	23.6 31.5 33.7	5.06 7.07 7.24 6.22 4.42	20 14 12	.03 .03	8 7 7	.35 .48 .38	473 563 381	2.8 1.8 2.1	.007 .007 .009	7.0 3.3 4.4 3.2 6.9	.313 .312 .186	<.05 <.05 <.05	3.8 4.6 5.5	.6 .9 1.0	10 10 10	1.9 2.0 1.6	.086 .076 .086	.1 .1 .1	.6	176 131 148	
3668 3670 3672 3674 3676	.7 .9 1.1	.1 .3 .2	4.6 6.3 6.0	101 73 42	49.5 25.1 26.8 18.8 32.3	10 6 5	.9. .0.	04 09 09	.8 1	.05 .66 .75	1 2 2	66	.1 .1 .1	.07 .27 .17	2	34 77 23	5.3 7.6 5.3	13.6 17.3 14.5	5.15 2.78 2.78 3.56 1.63	5 7 5 8 5 10	.03 .04	4 9 6	.16 .23 .14	140 462 156	4.0 4.3 2.0	.007 .015 .006	5.6 2.0 <.1 <.1	.043 .067 .047	<.05 <.05 <.05	2.5	.9 1.0 .8	10 15 11	.1 .2 .4	.049 .017 .033 .076 .089	.2 .1 .1	.3	60 87	•

Standard is STANDARD_DS5. Samples beginning (RE/ are Reruns and (RRE/ are Reject Reruns.

1

LEFA _

		L		E	Barr	ick	G	l old	Co	L rp.	P	RO	JEC	ן די: 	ESK	L AY (CREE	L 5K #	19	L FILE	L # 2	4302	L 2384			Pa	ge 4	L				
AMPLE#	Au ppb p	•	Pb ppm	2n ppm	Cu ppm	As ppm	Hg ppm	Sb ppm	Al % p	-	Ba opm p		Ca % p	Cd pm	Со ррт	Cr ppm		Ga opm	K La %ippm		Мо ррт	Na %	Ni ppm	P %	S Sc % ppm		Sr ppm p	Th xpm	Ťi % p	זן אמ שלכ	U V mippn	W ppm
5-1 3678 3680 3682 3684	.8 < 3.8 2.1 1.1 3.0	.3 .8 .3	2.3 6.5 7.8 8.1 8.7			8.6 9.0 9.6	.19 .16	<.1 1 .5 2 .5 3 .6 2 .5 3	.55 .20 .21	2 1	223 70 47 42 43	.1 1 .1	.60 .09 .08 .10 .12	.3		14.1 24.5 22.4 24.6 31.0	5.47 4.84 6.12	11 .(12 .(03 8 02 9	.15 167	3.9 3.8	.006 .006 .006	3.0 4.0 8.9	.093<.0 094 .0 .251<.0 .059<.0 .082<.0	06 2.4 05 2.0 05 3. 2	1.4 1.2	9 7 13	.5 . .6 . .4 . .6 . .9 .	049 028 036		0 104 9 102 7 104	
3686 3688 3690 3692 3694	4.0 3.5 6.6 2.5 1.4	.6 .3 .2	5.9 6.8 6.3 6.6 7.1	78 37 37	63.7 30.6 39.9 35.9 24.8	8.6 5.7 4.8	.15 .13	4	2.70	1	83 51 46 50 53	.1 .1 .1	.11 .12 .12 .09 .19	.3 .3 .3	5.8 3.5 4.4	25.5 21.7 25.6 19.0 22.5	4.19 4.39 3.46	6 .0 7 .0 10 .0 10 .0	04 8 02 8 02 7	.51 400 .35 489 .15 173 .12 156 .32 252	3.7 6.6 4.8	.007 .007 .007	5.4 3.9 1.0	.069<. 100<. .081<. .067<. .059<.	05 3.1 05 3.7 05 2.6	1.1 7 1.3 5 1.0	11 9 10	.7. .4.	026 075	.1 1	8 77	, <u>.</u> , .
E 13694 3696 3698 TANDARD DS5	2.7	.4	7.5 11.9 7.6 24.7	41 112	25.4 27.4 40.2 138.5	13.4 70.7	.21 .12	.5	3.39 5.80	_	54 59 143 136	_1 _1	.21 .12 .39 .77	.2 .2 .5 5.7	4.7 9.2	22.7 29.7 23.9 190.4	8.07 1.99	14 . 7 .	02 8 04 25	.31 244 .25 307 .54 439 .69 793	3.8 3.6	.005 .014	5.7 10.2	.061<. .086<. .163 . .102<.	05 3.7 10 5.1	7 1.4 1 1.2	10 38	.3.	082 046		.6 12 .0 19 .9 6 .8 6	7.

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

,

∠trà .

C ME (Iso	YT1 9002	LAI Accre	ait	FOR ed	[[0.)	`LTI	L	, _		`₹.)		ING	١,	M	92 - Sê	JVH		T			P	A	(604,		3L .	J FA	x	-)25	
<u>AA</u>				Bai	<u>cri</u>	<u>ck</u>	<u>Go</u>	<u>14</u>	2009 A.	р.	PROJ	IECI	. AN. <u>ES</u> 251 - 4	КАУ	C	REF	к #	23	Fi]		‡ A.	3024	70						
SAMPLE#	Au ppb p	Ag Pb pm ppm	Zn ppm	Cu ppm		Hg ppm p				Bi ppm	Ca Co %ippn			Fe %	Ga ppm	к і Хр		Mn ppm	Mo ppm	Na %	Ni ppm	P S % %	Sc ppm p	Se Sr pm ppm		Ti %pj	T) U prnppm	v ۷ ngg mgg	/Sample 1 gm
G-1 02217 02218 02219 02220	7.9 <.5 2.6	.1 2.4 .4 12.2 .3 9.4 .2 13.8 .2 7.0	135 181 145	54.6 37.7 67.8	11.3 13.0 12.9	.17 1 .07 .07	.41. .91. .81.	.38 .57 .42 1	6 325 4 246 0 143	.11	.90 .9 .49 1.4 .76 .7	16.2 18.2 15.7	23.6 28.0 15.4	4.24 3.73 4.39	4. 4. 7	. 12 . 11 - 1 . 08	8.70 1.84 7.89	637 798	3.2 . 5.0 .	012 2:	3.3 .1 2.3 .1	105 .26 134 .19	2.2 < 9.6 1 9.4 2 6.9 11.9	.5 139	1.8 .	.015	.3 .3		. 3900 2 3500 6700
02221 02222 02223 02224 12657	.7 1.1 1.8	.2 6.3 .1 5.6 .2 14.6 .1 14.2 .2 19.5	66 85 87	43.9 48.4 34.8	7.3 22.1 27.0	.02 .03 1 .16 1	.51. .01. .7.	. 33 . 45 . 76	2 184 2 132	.1 .2 1 .1 1	.75 .2 .43 .2 .59 .1	18.1	19.0	4.06 3.99 3.59	5. 4. 2.	.06 1 .10 1 .10 1	0 1.05 1 .95 1 .44	822 809 694	.8. 2.0. 2.0.	.014 1: .027 2: .007 (7.3 .0 2.0 .1 6.9 .0	093<.05 L15 .40 098 .69	4.1	.6 31 .2 64 .6 98	1.4 . 1.9 . 2.3<	.099 < .013 .001	.1 .3 .1 .7 .2 .4	134 .1 96 .1 51 .1 26 <.1 38 .1	. 5900
STANDARD DS5	41.2	.3 23.7	137	142.6	18.0	.16 3	.8 1.	98 1	7 132	6.0	71 5.8	12.6	184.5	2.85	7.	13 1	165	747	12.5 .	030 2	5.2.0	93<.05	3.3 4	.8 45	2.6 .	.081 1	.0 5.9	58 4.9	-
	VI I I	JP 1DX ER LIMI Ample 1		<u>~</u> u,	πυ , ι	пч, ж		ED WI 00 PP	TH 3 M; M	ML 2- D, CO,	2-2 HC CD, S	:L-HNC B, BI)3-H2O , ТН,	AT 93 U&1	5 DE B =	G. C 2,000	FOR O PPM;	NE HO CU,	PB, ZN	LUTED I, NI,	D TO , MN,	10 ML, AS, V	ANALY , LA,	SED BY CR = 1	1CP- 0,000	-MS. O PPM.			

DATE RECEIVED: JUL 9 2003 DATE REPORT MAILED: JUL 9 2003 DATE

 \cdot considered the confidential property of the client. Acme assumes ι .iabilities for actual cost of the analysis only.

All results

DE KFA

E A	Å	0 Iáwn	111 9 C	ĊĄ	ц ц Асд	ABOI	RAT Lte	ſ.	जि) [_]	>	I							ALY:								.	<u>(E</u>	(8 .,	, 2 <u>5</u>	<u>3</u> -5	12 <u>8</u>	FÅ	x (6	04)	253	-171	6 6
T						Ba	arı	<u>cic</u>	<u>:k</u>	Go]	<u>, d</u>	<u>Co</u> 1	<u>p.</u>						<u>CR</u>] 109 g,							A3	026	32	I	Page	ə 1						T	
SAMPLE#		A L Ag		Pb pm	Zn Dpm	Cu ppm			Hg ppm	Sb ppm			Ba ppm			Cd ppm	Co ppm			Ga ppm			-		Mo ppm		Ni ppm			Sc ppm							V W mppm	
01466 01467 01468 01469 01470). 225.9 6.4	1.3	l 2 1519 338	.7 .9 1 .3 1	52 1516 1524	51.3 4.9 135.7 21.4 7.4	12	8.9 17.5 42.0	.03 .08 .88	.8 10.8 4.6	.18 .26	1 5	9 17 30	<.1 8.9 .2	2.84	.9 31.2 13.9	.8 43.0 11.9	8.6 15.1 5,6	2,05 .84 17.23 2.24 2.42	1	.01 .10 .23	9 2 6	.44 .11 .07	4771 430 862	4.5 6.9 23.9	.008 .002 .013	6.5 189.8 7.7	.013 .025 .053	.30. 18.96 2.24	.8	1.1 36.3 .6	495 44 73	.3 .8 2.1	. 004 . 002 . 004	.1 .1 .7	.5 .4 1 .4	74 5.0 50 .2 12 7.3 7 <.1 2 1.3	
01471 01472 01473 01474 01475) .) .	l 18 3 29 5 58	.1 .7 .3	72 103 101	55.7 38.0 45.8 47.4 45.7			.13 .04 .07	.3 1.1 1.9	1.95 1.84 1.97 1.88 1.49	2 1 <1	203	2 .2 .2	. 66	1 1.6 9	12.3 9.3	7.3 11.9 10.5	4.01 4.21 3.88 4.25 3.20	4 5 5	. 20	3 4 2	.69 .92 .78	203 658 309	1.6 4.0 7.3	.021 .016	17.5 7.9 19.1 14.0 8.8	.079 .088 .088	.70 .29 .42	4.5 4.4 4.2 4.0 5.3	.6 .8 1.9	16 108 42	1.5 1.2 1.2	.002	.1 .1 .1	.2 2 .2 3 .2 3	28 < 1 26 1 34 < 1 32 5 59 < 1	150
01476 01477 01478 01479 02250	<.! 2.: 1.{	3 1.(t 6 3 106 3 35	.0 .2 .0	68 186 89	32.5 6.1 16.7 16.8 5.2		4,3 36.9 34.1		.1 8.9 6.0	2.51 1.84 .41 .34 .33	2 5 6	383 70 30	.1 .2 .2	1,66	.1 1,6 .1	11.1 2.9 7.7	3,8 4,5 11,0	4.53 3.19 3.03 4.38 1.72	6 1 1	.21 .40 .36	11 15 10	. 05	447 167 86	.8 2.5	.033 .009 .007	3.0 8.9	,105 ,055 ,031		2.1	<.5 1.0 .5	105 13 10	1.8 4.7	.003 .001 .004	.2 .3	,3 4 .5 1 .4 1	37 2 10 5 10 < 1 1 3 9 2 < 1	120 170 40 140 90
02251 02255 02256 02257 RE 02257	< .	5 1.8	16 180 2 4	.3 .8 .7	75 109 106	4,8 1.8 52.2 72.8 75.2		8.7 46.6 36.2	. 04	.3 39.1 2.8	.25 ,29 .21 .51 .51	1 1 4	36 114	.2 <.1 <.1	16.42	.1 1.4 .7	1.1 3.6 8.4	5.5 10.5 7.9	1.55 1.14 2.30 5.18 5.17	1 1 2	.13 .27 .10	15 5 7 1	.02 .01 [.03	438 162 2218	1.8 5.3 2.3		1.2	.076 .055	<.05 2.11 .06	2.4 4.0	<.5 <.5 1.2	4 13 91	5.5 3.3 .3	.003 .003 .003	<.1 .4 .1	.3 .3 2 .2 6	1 2.8 1 .1 20 3.0 51 < 1 51 .1	100 70 200 130
02261 05027 05028 05029 05030	<.! <.! 2.! <.!			.5 .2 .7		27.7 19.9 4.6 5.5 9.7]]	5.4	.11 .37 .03	.2 2.5 1.1	1.22 .58 .27 .15 .55	8 2 2	426 138 80	.1 <.1 <.1	7.63	1.2 .1 1.3	6.8 .8 1.1	6.3 10.2 4.6	2.55 4.17 1.03 3.94 4.93	1 1 <1	.22 .17 .05	71 43 32	1,55 ,02 2,49	849 37 1111	3.6 4.3 3.9	.009 .065 .007	17.9 17.0 1.5 6.4 251.8	.082 .007 .066	.33 .73 .61	1.1	2.1 <.5 1.9	549 9 214	2.5 . 7.0 . .3 .	.001 .002 .002	.1 <.1 .1	.4 2 .3 .3 2	01 .4 26 <.1 1 3.7 29 .1 26 3.9	
05031 11727 11728 11729 11730	.9 1.1 .7		5 10 1 9 2 7	,4 .3 .6	246 72 59	107.3 47.9 11.1 9.7 3.2		45.4 35.7 8.3	.20 .14 .07	.8 .4 .2	.35 .75 .94 1.13 .32	4 2 3	65 127	.1 _1 .1		6.3 .8 .6	$\frac{11.1}{2.1}$	8.7 2.7 2.9	9.10 2.74 2.42 1.89 1.21	2 1 2	.30 .23 .29	6 5 6	.47 .03 .04	390 463 260	8.6 5.8	.021 .009 .010	40.3 5.9 4.0	.104 .087	1.44 <.05 <.05	8.7 6.6 6.8	6.2 2.5	80 11 14	2.6 . 1.3<.	.002 .001 .001	.1 .3	.73 .4 .4	5.1 9<.1 9<.1	120 130 70 60 120
11731 11732 11733 11734 STANDARD	 . 8 . 5 . 41. 5		2 2	.3 .1 .2	63 174 206	4.5 30,1 46.3 14.5 146.6	6	50.0< 3.4< 5.1	<.01 <.01 .01	1.1 .1 .1	2.09 3.19 .53	2 4 3	32 1123 100	< 1 < 1 1	9.94 1.02 1.72	2.0 4.7	39.4 32.7 6.3	284.7 120.4 7.1	1.79 4.74 5.46 2.54 2.91	11 11 1	.01 .10 .23	53 93 15	3.07 3.11 .30	1200 983 538	.7 1.2 7.9	.030 .048 .033	346.9 65.0 32.2	.112 .083 .045	.42. <.05 .11	18.1 4.6	1.7 <.5 .5	78 20 27	.5. .7.	.042 .254 .004	<,1 .1 .2	.2 21 .1 16 .2 2	1.7 4<.1	40(120(120(130(
Standard	d is S	TAND.	t L	grol Jppe	JP 10 ER LI	DX - IMITS E TYP	- A	(G, /	AU,	HG, 1	/ = 1	00 P	PM:	MO.	co, (D, SI	3, BI,	, TH,	АТ 95 U & в Ins аг	:= 2	,000) PPM	l; CU	, ΡΒ	, ZN,	, NI,	το 1 MN,	O ML AS, V	, ANAI V, LA	_YSED , CR	8Y 1	CP-N ,000	IS. PPM.				_	
DP	ATE F	ECE	IVE	D:	J	ນ. 16	5 200	03	DA	TE I	REPO	-			-7	Ì,	-	7/03		SIG			C	:h	·.·.		D. TO	YE, (C.LEOM	IG, J	. WAN	IG; C	ERTI	FIED	B.C	, AS	SAYERS	i
• •	ll res	սն	re	cor	nside	ered i	the	conf	ider	ntial	pro	pert	y of	the	<i>V</i> clie	ent. A	.cme a	ISSUME	S	lia	bili	ties	for	acti	ual c	ost)	of the	e ana	lysis	only	/	<u></u>				£	<u> </u>	

AA	•	-		Bar		<u> </u>	Go	51d	Co						E '=											2632				age	E 2		I	E	A £
ME ANALYTICAL	Au Ag ppb ppm	,	Pb Zn ppm ppm		Cu Dm	As ppm	Hg ppm	Sb ppm	A1 %	B ppm p		Bi ppm		Cd ppm	Co ppm	Cr ppm		Ga ppm		La ppm	Mg X	Mn ppm	Мо ррп	Na X	Ni ppm	Р %		Sc Se opm ppm					U Iq inqo	V	W Sample
11735 11736 11737 11738 11739	<.5 .2 1.3 .4 .6 .3 1.4 .3 <.5 .1	3 1 3	9.0 170 15.5 86 10.7 84 8.6 196 5.1 118	23 21 61	.6 1 .6 .8 1	9.2 l0.7 6.5 l9.8 8.2	.01 .03 .02 .09 .06	1.0 .9 1.7	1.51	4 5 2	21	.1 .1 .1 .1 .1	.29 .16 .16	.6 1.4 1.9	8.0 11.6 10.1 12.0 7.6	18.0 18.1 13.7	6.54 4.21 4.10	9 8 3	.11 .11 .25	17	1.00 .88 .24	262 406 607	4.4 3.9 12.0	.063 .069 .016	11.2 9.3	.096 4 .096 1 .076 <	.40 2 .61 3 .05 9	1.3 3.4 2.9 5.1 3.2 1.9 9.8 3.1 5.8 1.3	15 14 12	1.7< 1.9< 1.7<	.001 .001	. I . I . 4	.3 .9	61 < 67	2 1300 1 1300
11740 11741 11742 11743 11744	<.5 .2 <.5 .3 <.5 .4 <.5 .2 <.5 .3	4 2	5.6 122 10.0 104 8.3 67 9.6 96 9.5 101	29 17 23	.4 1 .6 1 .9 1	10.2 10.6 12.4 10.4 11.2	.02	1.4 1.5 1.1	1.42 1.08 .69 .93 1.02	3 3	77	.1		1.0 .5	10.3 7.9 8.8 5.8 5.8 7.7	28.2	2.91 3.76 3.05	4 3 4	.20 .16 .09 .13 .14	15 12	. 60	182 1510 210	4.2 2.9 3.3	.058 .029 .057	19.7 16.0 19.1	.074 1 .109 2 .063 2	.77 .79 .05	5.9 1.7 4.8 3.6 4.2 4.1 4.5 4.1 5.1 3.3	i 25 232 26	1.3< 1.5<	.003 · .001 .001	.1 .1	.3 .2 .3	67 < 70 48 < 61 61 <	4 1500 1 1200 8 400
11745 RE 11745 11747 11748 11749	1.1 . .9 . <.5 . 1.4 <.	1 4 1	14.8 19 16.0 20 9.2 59 3.1 70 2.5 97) 5 5 20) 11	.7 .1 .7	19.2 20.1 16.4 7.4 16.5	.71 .76 .16 .05 .30	4.3 6 4	.33 .33 .90 .31 1.36	3 8 4	102 276 115		.04 75 .75 8.49).	4 5 2.7		1.76 2.57 1.97	5 2 2 1	.21 .33 .10	12	.01 .18 .49	34	5.9 6.0 4.2	.050 .016 .023	1.5 6.1 7.3	.005 1 .127	.06 .53 .97	1.2 <.! 1.3 <.! 5.0 5.: 4.1 2.: 7.9	5 9 1 33 1 162	.7<	.001	.1 .2 .1 .2	.3	31 < 23 2	.4 .1 1300
11807 12665 STANDARD DS5		02	2.8 61 274.4 446 23.7 139	5 68	.7	30.8 1		29.1	.97 .13 1.98	1	44	.1	9.21	1.8	2 8.1 3 1.7 3 12.1	9.1	2.99 2.96 2.85	51	.08		.61	2008 7301 746	4.6	.002	.2	.023	L.34	1.9 3. .8 <. 3.4 4.	5 394	.3<	:.001	.1	.2		.3 4200

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

an considered the confidential property of the client. Acme assumes ; liabilities for actual cost of the analysis only.

THE ANTALYTICAL LABOR OR F. LTD T. H TING T. V TUVE C 1R6 (60 4)2 PH `3-3**F** FAX 716 (Isu 9002 Accreated Co.) ASSAY CERTIFICATE Barrick Gold Corp. PROJECT ESKAY CREEK #27 File # A302632R P.O. Box 164, 951 - 409 G, Vancouver BC V6C 1T2 SAMPLE# Au** As qm/mt Ŷ 05031 .95 1.443.29 .24 STANDARD AU-1/R-2 GROUP 7AR - 1.000 GM SAMPLE, AQUA - REGIA (HCL-HN03-H2O) DIGESTION TO 100 ML, ANALYSED BY ICP-ES. AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE - SAMPLE TYPE: ROCK PULP DATE RECEIVED: 3 are considered the confidential property of the client. Acme assu All re: the liabilities for actual cost of the analysis only. Data 🖊 FA

•	ME YTI LA TOR I (ISO 9002 Accredited Co.)	k Gold (Corp.	WH PRO	OLE I JECT	ROCK ESKI	ICP 3	anai Eek	YSI #27	s Fi	.le			633		-C	FA	<u>)4)</u> (171 [
	SAMPLE#	sio2 Al203 % %		MgO Ca %	aO Na2O % %	к2о т %	i02 P205 % %	MnO %	Cr203 %	Ba ppm	Ni ppm	Sc ppm	LOI TO %	ОТ/С ТО %		SUM %	· · · · · · · · · · · · · · · · · · ·		
	02252 02253 02254 02264 02265 02266	76.90 11.70 76.19 12.02 78.26 11.53 76.43 13.12 74.30 12.68 76.03 12.46	1.86 1.43 1.22 1.61 1.27	.06 .0 .29 . ⁴ .24 .0 .70 .1	07 3.50 11 2.99 07 4.38 75 3.69	4.57 3.99 2.52 3.30 5.49	.29 .03 .06 .02 .14 .01 .07 <.01	.08 .02 .03 .06	<.001 <.001 <.001 .002	1919 335 1472 460 1322	<20 <20 <20	4 3 4 4	1.3 1.5 2.7 1.8	.05 .05 .27 .08	.01 .01 .01 .02 .02	99.92 100.30			
-	02267 STANDARD SO-17/CSB	75.96 12.44 61.30 13.87 JP 4A - 0.200	5.86 2	.34 4.0	56 4.16	1_41	.60 .99	.55	.440	403	38	23	2.4 3.4	2.41	.01 .38	100.13 99.63			
	tot/ - S/	AL C & S BY L' AMPLE TYPE: R S REPORT M	ECO. (NO DCK R150	T INCLU 60C	JDED IN	THE SU	M)		~	P					â, J.	WANG; C	CERTIFIE	D B.C. AS	SAYERS

1 / FA ____

All result e considered the confidential property of the client. Acme assumes liabilities for actual cost of the analysis only.

5C 1T2 Ce Pr	# A302	2633 Eu G	(a) 	<u></u>	• • •	<u> </u>	Ĩ
5C 1T2 Ce Pr	Nd Sm			<u></u>	· · ·		
		Eu G	d Th	<u></u>		<u> </u>	<u></u>
		ີ່ເບີ່		Dy Ho	Er	Tm Y	(b Lu
	opm ppm	ppm pp		more more			xm ppm
.3 6.68 29	21 6 1	07 5 9	7 1 01 4	71 1 7/	/ 51		
						.68 4.9	
4 9 14 37	7066	51 6 6	A 00 N	8/ 1 37	<u>ر ۲</u> ۵	66 L ·	X 41
3 3 63 64	1.2 6 1						
.3 .4 .0	1.39 (8.61 35 3.76 18 9.14 31		1.39 6.6 2.5 .10 3.4 8.61 35.1 6.5 .51 5.9 3.76 18.8 5.8 .28 7.3 9.14 37.0 6.6 .51 6.4	1.39 6.6 2.5 .10 3.47 .94 7. 8.61 35.1 6.5 .51 5.90 .98 6. 3.76 18.8 5.8 .28 7.36 1.40 9. 9.14 37.0 6.6 .51 6.40 .99 6.	1.39 6.6 2.5 .10 3.47 .94 7.04 1.62 8.61 35.1 6.5 .51 5.90 .98 6.48 1.27 3.76 18.8 5.8 .28 7.36 1.40 9.21 2.01 9.14 37.0 6.6 .51 6.40 .99 6.84 1.37	1.39 6.6 2.5 .10 3.47 .94 7.04 1.62 5.26 8.61 35.1 6.5 .51 5.90 .98 6.48 1.27 3.77 3.76 18.8 5.8 .28 7.36 1.40 9.21 2.01 5.98 9.14 37.0 6.6 .51 6.40 .99 6.84 1.37 4.30	1.39 6.6 2.5 .10 3.47 .94 7.04 1.62 5.26 .86 5.7 8.61 35.1 6.5 .51 5.90 .98 6.48 1.27 3.77 .61 4.1 3.76 18.8 5.8 .28 7.36 1.40 9.21 2.01 5.98 .98 6.5 9.14 37.0 6.6 .51 6.40 .99 6.84 1.37 4.30 .66 4.2

GROUP 4B - REE - LIBO2 FUSION, ICP/MS FINISHED. - SAMPLE TYPE: ROCK R150 60C

All results e considered the confidential property of the client. Acme assumes liabilities for actual cost of the analysis only.

FA

(ISO 9002 Accredit	ted Co.) CITI C Gold		PROJ	MICAI	ANAL	YSIS CREEK	(#27	FICAT File	E # A3		ni (E. 99 19 – 1949) 19 – Are	53- [(b)	FA	(4) a 171 a
SAMPLE#	Mo ppm	Cu ppm	dq mqq	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	Ag ppm	Au ppb	Hg ppm	Tl ppm	Se ppm	L ·
02252 02253 02254 02264 02265	$2.3 \\ 1.9 \\ 4.7 \\ 4.6 \\ 4.5$	4.5 3.8 1.9 2.3 2.2	9.8 9.5 14.8 11.7 20.1	48 30 22 41 77	1.0 1.7 .6 1.1 1.1	3.8 2.2 15.2 2.3 10.8	<.1 <.1 <.1 <.3	1.0 .3 .7 .1 .5	<.1 <.1 .1 .1	<.1 <.1 <.1 <.1 <.1	<5 <5 <5 <5 <5	.06 .01 <.01 .01 .01	.1 <.1 .1 .1	<5 <5 <5 <5	1100 700 1300 1000 1600
02266 02267 STANDARD DS5	$2.8 \\ 1.5 \\ 12.3$	2.1 2.6 136.3	7.3 18.4 25.5	9 58 128	.9 .7 24.3	5.6 8.4 17.5	<.1 .1 5.8	.6 .2 3.8	<.1 .1 5.9	<.1 <.1 .3	<.5 <.5 41.0	.01 .01 .16	.1 <.1 1.0	<.5 <.5 4.9	1300 1600

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 60C

1 (-FA

ACME	ANA	LYT.		LA	вок	TOR	<u>т</u> ва Пр		L							1899 S. (949 ay		33100913)			8 8688	pl.	[6 @	. 52]	FAL	4) 2	17	16
AA	(ISO	900] Z A	CCI	ear	\$QQ		A. 3			913268	8339933						SIS							69									A	
						Ba	<u>rri</u>	<u>.ck</u>	Go	<u>1a</u>	Cor	<u>р.</u> Р.С	<u>PR</u>). Bo	<u>OJI</u> x 16	<u>ECT</u> 54, 9	<u>ES</u> 51 -	KAY 409 (<u>CR</u> G, Var	EEI couv	<u>(</u> # er 8(<u>27</u> 5 v60	F: 112	ile	: #	A3	726	34								
1PLE#	Au	Ag	Pb							B		Bi	Ca		Co ppm			Fe Ga % ppn		κ Li Κ ppi		g Mr % ppr			a N % pp			SC DDT	Se DDM			Ti %		U ppm	V pom
	ppb	ppm < 1	ppm 3.0			n ppm 		ррл <.1	1.19	ррт <1	306						8 2.4	27 5		¢ 1	1.7	0 669	9 2.	6.13	4 5.	4.08	2 <.05	5 2.6	<.5	97	5.0				44
58 159	7.2	.5 .6	27.4 31.6	273 271	179.8 168.4	3 49.9 4 70.4	.07 .08	3.4 3.3	2.74	2 3	117 91	.1 .2	. 69 . 67	1.7 1.4	42.2	27. 28.	8 8.9 3 10.0	53 13 03 13	. 0!	53	3 1.8	1 297(5 363) 9 204:	95.	.9 .01	147.	6.15	2.10	9.5 (3.5 6.5 2.0	17	.7	.075 .032 .122	.2 .2 1	.3 .3 .3	178
60 62	4.8 6.3	.3 .6	21.2 25.2	233 229	3 122.7 9 164.2	7 42.1 2 36.3	.04 .03	2.0 3.1	2.46	2 1	70 80	.1 .2	.69 .46	1.4 1.6	26.7 30.5	29. 37	/ / 2 7.(13 11 01 10	0!	52	3 1.9	7 173	86.	1 .01	2 49.	4.14	9.0	8.8	3.1	11	.8	.059	.2		187
63 NDARD DS5	3.3 41.1	3.3	278.7	1097	69.3 3 138.3	7 45.8 3 17.9	.06	9.9 4.0) 1.47) 2.11	2 17	296 137	.1 6.4	.29 .72	2.2 5.4	19.8 12.0	26. 188	9 4.3 D 3.1	77 9 01 1	i .0	92 31	1.9 3.7	5 327 0 74	31. 313.	.8 .01 .3 .03	2 31. 37 24.	3 .12 9 .09	3 <.09 5 <.09	5 7.4 5 3.6	1.0 4.8	11 52	2.6 3.0	.087 .098		.7 6.7	
																									70.1	6 MI	ANAI	VEED	DV 1	CD-14					
			UPPE	RLI	MITS	- AG,	AU,	HG,	W = 1	100 P	PM; 1	10, C	0, CI), SI	B, BI	, ТН	, U &	95 DEC B = 2	2,000	PPM	; CU	, PB,	ZN,	N1,	ΜŇ,	AS,	, LA	, СК	= 10,	000 1	'PM.				
			- \$A	MPLE	TYPE	: SOI	L SS	80 0	JC				\wedge	0		_	1	SIG			\mathcal{O}	1													
DATE	REC	EIV	ED:	JU	L 16	2003	DA	TE	REP	ORT	MAI	LED	: (A	nl	40	29/	03	SIG	NËD	BY	\cdots	· h~		۰.⊳	. то	Έ, C	LEON	G, J.	WANG	; CE	RTIFI	ED B.	.C. A	SSAYE	RS
												1	\bigcup		f	'								1											
																								,											

L. TE A.	YTTE.	į, į	LAEL.	OR	L .	ĹŢ	DL		8 L	<u>_</u> I	I	_LNG	1	•••	7 L	U	VE		VL	LR	6		PH	6(94	-1-3	1	ية ع الأعراق	E		ſ	Ì	E ,
(ISO	9002	ACO	credi	ted	Co.) 			G	EOC.	HEN	(ICF	L J	ANA	LY	SIS	CE	RTI	FIG	CAT;	e .											AA	
44				Ba	rri	ck	Go:	Lđ	Cor	р.	PRC)JEC	'T]	ESK	AY	CF	EEP	: #3	<u>32</u>	Fi	le	⋕ <i>I</i>	302	696	5								
												(164,								112													
SAMPLE#	Au	Ag	Pb Zn	Cu	As	Hg	Sb	A)	B Ba	Bi	Ca	Cd (Co	Cr	Fe	Ga	K La	Mg	Mn	Мо	Na	Ni	Р	S S			Th	Ti T	1	U V		Sample	
	ppb p	pm	ppm ppm	ppm	ppm	ppm	ррл	% p	pm ppm	ррт	% p	opm p	ym t	opm	% r	opm	% ppn	1 %	ppm	ppm	x	ррт	¥	% pp	m ppm	i ppm pj	om	% ppr	n pp	т ррт	ı ppm	gm	
G-1	<.5 <	.1	2.5 41	3.4	3.1-	<.01	<.1 1.	05	2 217	.1	.58 <	<.1 3	6 19	9.91	.96	5.	47 9	.48	489	2.2	.111	4.2	.084<.	05 2.	1 <.5	82 4	.8.1	.33 .3	31.	9 40	4.7	-	
12658	.5		5.1 124	60.6	7.9	. 09	.42.	37	12 162	.12	. 08	.7 15	.7 17	7.44	. 87	9.	04 7	1.33	1037	2.1	.684	16.0	.128 .	297.	1 1.0	49	.8.2	. 74	2.	8 174	1	5500	
12659	1.7	.3	6.6 165	82.8	12.2	.33	1.4 1.	38	4 284	.1	.85 1	L.1 17	.1 20).34	. 44	5.	10 11	82	967	4.9	.032	28.2	.195 .	179.	7 3.2	42 1	.2.0	14 .	2.	7 86	i .1	4600	
12660	1.8	.2 1	2.3 140	38.3	15.7	.10	.91.	62	4 301	.11	.10 1	1.0 15	.8 23	7.33	. 81	4.	14 8	8.84	639	2.0	.012	34.0	.124 .	207.	5 1.2	70 1	.9.0	01 .	2.) <.1	6700	
12661	<.5	.3 1	12.8 196	38.7	15.2	.18	1.2 1.	17	4 267	.1	.58 1	1.8 9	.9 1	1.7 3	.12	4.	16 8	3 .46	552	3.7	.001	20.2	.116 .	34 6.	1 3.3	51 1	.8.0	. 60	3.	4 41	<.1	4500	
12662	<.5	.31	11.2 172	40.8	12.1	.10	.8 1.	19	6 258	.1	.98 1	L.6 13	.5 19	9.63	. 26	3.	16 7	.61	558	3.5	.010	32.5	.112 .	26 8.	5 2.1	73 1	.6.0	01 .	з.	4 43	3 <.1	3800	
12663	1.7	.1	9.9 143	75.0	13.3	.56	1.2 1.	19	6 308	.1	.66	.8 12	.9 13	2.23	.78	5.	11 8	372	732	5.3	.029	21.3	.105 .	10 7.	5 1.1	. 33 1	.2.0)72 .	3.	5 100) <.1	3700	
12664	2.3	.3 2	29.2 181	69.5	17.7	.43	2.5 1.	51	7 272	.1	.66 2	2.0 15	.7 1	2.63	.70	5.	14 9	.76	805	6.7	.061	27.3	.160 .	23 6.	7 3.5	5 32 1	.3.0	. 25	3.	8 87	' <.1	3500	
· 12668	<.5	.1	4.4 99	71.3	7.5	.16	.61	.52	27 164	<.1 2	.29	.4 15	.6 1	5.4 3	.97	8.	04 🕻	7 1.44	921	2.4	.051	22.3	.104 .	16 8.	3.8	3 42	.7.2	202 .	1.	4 122	2.1	5000	
STANDARD DS5	40.6	.3 2	24.7 140	136.5	17.8	.18	3.4 1	.97	17 135	5.9	.70 5	5.4 11	.8 17	5.32	. 84	7.	14 10) .64	739	12.3	.032	23.7	.096<.	05 3.	34.6	5 47 2	.8.0	193 1.	15.	.9 57	4.7	•	

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: SILT S150 60C

DATE RECEIVED: JUL 18 2003

GEOCHEMICAL ANALYSIS CERTIFICATE

OUV

``C∷⊜[``

1R 🕻

P

1(60

1000

53-1

FA

4) **2**

1716

Barrick Gold Corp. PROJECT ESKAY CREEK #39 File # A302771 P.0. Box 164, 951 - 409 G, Vancouver BC V6C 112

- **1**600

(ISO 9002 Accredited Co.)

LTD

Έ.

'INC

SAMPLE	Au	A	9	Pb	Zn	Ċu	As	Hg	Sb	A1	8	Ba	8i	Ca	Cd (.o	Cr Fi	Ga	ĸ	La	Mg	Mn	Mo I	Na N	11	P	5 5	Sc S	e S	Sг	Th	Τi	71	U	۷	¥	i Sanc	ple
	ppb	pp	(î)	ppm	ppm	ррл	ppm	(DDM	ppn	2	ppn	ppm p	ipm -	ž	ppm pp) הא	ipm !	рря	X	ppm	\$;	ppm p	ppm	۶ pp	m	X	× p	оп рр	n pp	pm p) pari	ł	ррп	ppm	ppm	ppr	0	gm
\$1	<.5	<.	1	.5	1	1.8	<.5	<.01	.1	.02	1	3 4	.1.	08	<.1 .	i	.3 .0	<1	.01	<] <	. 01	4	.3 .4	30 .	2<.00	01 < 0	15 <	1 <	5	2.	: 1< 1	001	۲ ا	< 1	7		1	
01480	<.5		1 1	4.5	26	8.5	4,1	.02	.7	. 26					.2																						317	700
01461	<.5		1	2.1	30	15.0	12.8	.03							.1 6																							
01482	<.5		5 1	0.9	49	53.1	57.6	.08							.2 23																							
01483	<.5	1.	3 164	16.9	1088	38.4	19.8	.40	1.3																													
01484	238.1	2.	7 46	2.7	968	5.2	77.7	4.75	10.5	.31	3	62	.1	63	3.9	3	in 6	. 1	19	26	63	25 r	an o	12 1	A 01	<u>01 c</u>	3	3 2	5		5.2e i	603	6	2 4	.1	<u>,</u> .	7 1'	107
01485						6.2			10.5																													
01486									18.8																													
01487	9.5					3.1			2.0																													
01486	10.6								2.0																													
01489	30.9		B 2	26.5	11	3.1	371.4	.91	14.9	.32	2	126	.1 <	01	<.1	.3	915	1 1	25	77	04	45 -	12 M	N2 1	6 04	1 77	75	٦ ،	5	, ,	1 6< 1	001	1 3	1.2	,	1.4	4 16	900
01490	>999999	>20							>2000																													
01491	9788.2	>20							>2000																													
01492	1881.9	>20							>2000																													
RE 01492	1522.2	>20							>2000																													
05113	3.7	2.	8 24	40.5	883	31.7	37.4	. 28	14.7	. 34	3	411	.1 1.	66	.5 12	.7	1.6 2.9	8 1	. 26	9	.30 3	589	1.7.0	04 1.	3.1	13 <.0)56	.4 <.	5 4	49 ;	2.6 .	003	.2	.4	44	(6 1	100
05114	3.3	3.	7 11	15.2	818	34.3	23.5	. 24	13.9	. 27	2	769	.2 1.																									
05115	30.8	19.	5 190	12.2	1332	226.3	16.9	93	104 6	30	2	917	.2 2.	65	2.3 9	.6	9.9 2.5	5 1	. 22	12	.33 5	557 :	2.4 .0	03 1.	1.0	82 <.0	15 8	.8 <.	5 <i>i</i>	43 ;	2.0	001	.2	1.0	66	11	0 1/	200
05116	< 5		7 2	21.7	105	43.7	7.7		2.2																													
05117	. 8		7 1	13.7	142	85.9	13.0		1.4																												1 13	
05118	< 5		5 1	11.1	125	65.3	10.3	.08	1.4	1.61	4	419	.1 7.	. 60	.9 10	.9 2	2.2 2.9	7	.11	14 3	1.16 (631 2	2.1.0	35 20.	8.0	97.1	12 4	.7 2.	6 (67	.5 .	015	.1	.3	131		2 1	100
05119	<.5		6 1	11.9	178	52.5	31.0	. 09	1.6	.50	5	449 -	•.1 H.	64	1.6 7	.2 1	2.8 3.5	L Z	. 12	12 1	. 52 1:	319 :	3.0.D	22 18.	0.0	68.1	13 4	.1 1.	6 12	20	.3<.	001	.1	.1	65	;	2 2	300
05120	1.3	Ι.	3	8.3	55	80.7	7.4	.07	.9	1.65	<1	165	.18.	.36	.1 13	.1 3	5.5 3.2	8 (.07	18 1	1.27 1	152	1.8.0	50 21.	.4 .1	09.1	10 5	.3 1.	4	99	.7 .	003	.1	. 3	142		1 :	700
05121	, î		3 a	21.6	23	6.9	34.7	1.28	34.0	. 19	<1	95 ·	-1.	.05	.2	.5 1	3.8 1.7	5 1	. 25	1	.01	57 13	1.9.0	05 2.	1.0	03.5	59	.4 <	5 13	27	.4 .	001	.2	. 1	7	1.0	a :	700
05122	1.0	· .	3 10	00.3	80	26.6	62.9	.46	23.1	.23	<l< td=""><td>30 -</td><td>۹.1</td><td>. 16</td><td>.4 4</td><td>.4</td><td>5.4 2.5</td><td>5 1</td><td>.23</td><td>11</td><td>.01</td><td>57 4</td><td>4.6.0</td><td>06 2.</td><td>.3 .1</td><td>13-1.6</td><td>57 2</td><td>.3 <.</td><td>5</td><td>22</td><td>3.4 .</td><td>002</td><td>. 3</td><td>. 6</td><td>19</td><td>F</td><td>3 9</td><td>900</td></l<>	30 -	۹.1	. 16	.4 4	.4	5.4 2.5	5 1	.23	11	.01	57 4	4.6.0	06 2.	.3 .1	13-1.6	57 2	.3 <.	5	22	3.4 .	002	. 3	. 6	19	F	3 9	900
05123	. <u>9</u>	Η.	4 20	07.9	17	10.0	65.4	.57	32.2	.21	<1	49 ·	<.1 .	.04	.1 1	.1 1	0.8 1.7	3 1	.27	5	.01	181 1	2.5 .0	04 1.	.6.0	61 1.0	07 1	.1 <.	5	27 :	2.6 .	003	.2	.3	ę	.{	9 l'	100
05124	.8	1	1 18	81.5	57	73.5	62.0		40.3																													
05125			LS			12.3		. 63	30.4																													
05126	۲.5	1	3 34	42.3	109	52.9	52.1		38.7																													
05127	<.5	•	7 12	27.8	54	47.1	50.2	. 24	31.5	. 25	<]	42	<.1	45	.45	.5 1	3.0 2.1	1	. 24	7	.07	540 1	2.0.0	04 2.	.1 .0	97 1.3	39 2	.9 <.	5 5	56	2.0	002	. 4	. 8	15	1.5	5 F	800
Standard (155 <u>4</u> 3 1		۹ :	25.2	173	138.9	17.9	19	3.6	2.09	17	126	: .	76	E 2 12	1 10		. ,		12	~					02 - 6												

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUL 22 2003 DATE REPORT MAILED: (SIGNED BY Anly 31/03 . TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

(ISO 9002 Accredited Co.)	JJECT :	CERTIF:	REEK #	39 I	1R 6 jile †			A.J. J. FAR (4) 25 1716 C
SAMPLE#	Au** gm/mt	Ag** gm/mt	Pb %	Zn %	Cu %	Hg	Sb	
01486 01490 01491 01492 STANDARD AU-1/R-2	.70 99.63 14.80 2.15 3.31	2340.0 1076.1 965.9 154.6	1.27	8.58 3.99 2.62 4.19	.637 .301 .243 .561		.827 .332 .278 .128	

GROUP 7AR - 1.000 GM SAMPLE, AQUA - REGIA (HCL-HNO3-H2O) DIGESTION TO 100 ML, ANALYSED BY ICP-ES. AU** & AG** BY FIRE ASSAY FROM 1 A.T. SAMPLE.

AUG 4 2003 DATE REPORT MAILED: AW 18/03 SIGNED BY D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS DATE RECEIVED:

Jata 🔥

NGSL VA JVEL VL R6 8. H AX (...) 25 LE A CTIC LABL ORT TD. (ISO 9002 Accredited Co.) WHOLE ROCK ICP ANALYSIS Barrick Gold Corp. PROJECT ESKAY CREEK #57 File # A303167 P.O. Box 164, 951 - 409 G, Vancouver BC V6C 112 SAMPLE# SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Cr2O3 Ba Ni Sc LOI TOT/C TOT/S SUM % % % 7 % % % % % % % % ppm % % % ppm ppm 02269 68.50 12.03 3.87 .42 1.20 .17 9.58 .35 .18 .17 <.001 1978 <20 7 3.0 .81 .02 99.69 02270 58.14 15.55 5.55 .58 2.15 .19 12.91 .47 .27 .31 .002 1880 <20 11 3.4 .79 .01 99.74 STANDARD SO-17/CSB 61.51 13.76 5.83 2.32 4.60 4.10 1.41 .59 .99 .52 .435 398 31 23 3.4 2.35 5.32 99.52 GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION. TOTAL C & S BY LECO. (NOT INCLUDED IN THE SUM) - SAMPLE TYPE: ROCK R150 60C DATE RECEIVED: AUG 6 2003 DATE REPORT MAILED:

Da

(ISO 90	02 A	ccre	dit	ed C	ō.)	utd [8 [G	EOC	HEM	INGS		NAL	YSI		וידיאז	ע. דידר	LRI NATTE		PH		604						20 .	يد. ان 🛋
44			Ba	<u>rri</u>	<u>ck</u>	<u>Golć</u>	<u>l Cc</u>	orp.	PR	JJE	<u>CT .</u>	ESK	AY	<u>CREI</u> G, Va	sk ‡	<u>±57</u>	Fi	ile		303	167		(a))				1	
SAMPLE#	Co ppm		Ga ppm	Hf ppm	ND ppm	Rb ppm	Sn ppm	Sr ppm	Ta ppm	Th ppm	U ppm	V ppm	W ppm	Zr ppm	Y PPM	La ppm		•••	Nd ppm	Sm ppm	Eu ppm	Gd ppm	Tb ppm	Dy ppm	Ho PPm	Er ppm	Tm ppm	Yb ppm	Lu ppm
02269	1					271.1	_	186.6	.3	7.1	1.8 3.3	126	.9	80.5 95.9	20.3	26.8 25.1 11.4	47.0	5.04	19.8	4.0	1.00	3.31	.62	3.51	.67	1.60		1.83	.29

GROUP 4B - REE - 0.200 GM BY LIBO2 FUSION, ICP/MS FINISHED. - SAMPLE TYPE: ROCK R150 60C

DATE RECEIVED: AUG 6 2003 DATE REPORT MAILED: 1 22/03

Đ٤

L FA _

SAMPLE# Mo Cu Pb Zn Ni As Cd Sb Bi Ag Au Hg Tl Se 02269 .7 20.2 39.7 962 2.5 19.1 .2 5.1 .1 .5 1.7 .07 .1 <.5 02270 .1 24.0 19.4 280 1.4 3.3 .1 5.3 <.1 .6 .5 .07 .2 <.5 STANDARD DS5 12.4 137.4 24.3 135 24.1 18.2 5.4 3.5 6.0 .3 39.3 .19 1.0 4.8 GROUP 10X - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150.60C	SAMPLE# Mo Cu Pb Zn Ni As Cd Sb Bi Ag Au Hg Tl Se 02269 .7 20.2 39.7 962 2.5 19.1 .2 5.1 .1 .5 1.7 .07 .1 <.5 02270 .1 24.0 19.4 280 1.4 3.3 .1 5.3 <.1 .6 .5 .07 .2 <.5 STANDARD DS5 12.4 137.4 24.3 135 24.1 18.2 5.4 3.5 6.0 .3 39.3 .19 1.0 4.8 GROUP 10X - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 GC AGC C, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.	SAMPLE# Mo Cu Pb Zn Ni As Cd Sb Bi Ag Au Hg Tl Se 02269 .7 20.2 39.7 962 2.5 19.1 .2 5.1 .1 .5 1.7 .07 .1 <.5 02270 .1 24.0 19.4 280 1.4 3.3 .1 5.3 <.1 .6 .5 .07 .2 <.5 STANDARD DS5 12.4 137.4 24.3 135 24.1 18.2 5.4 3.5 6.0 .3 39.3 .19 1.0 4.8 GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 60C A <th>SAMPLE# Mo Cu Pb Zn Ni As Cd Sb Bi Ag Au Hg Tl Se ppm ppm</th> <th>Barr</th> <th><u>ick Go</u></th> <th>old Cor</th> <th>р. <u>PR</u> Р.О.</th> <th><u>OJEC</u> . Box 16</th> <th><u>r esk</u> 4, 951 -</th> <th><u>4Y CRE</u> 409 g, v</th> <th>EK #5</th> <th>7 Fj BC V6C</th> <th>lle #</th> <th>A303</th> <th>167</th> <th>(b)</th> <th></th> <th></th> <th></th>	SAMPLE# Mo Cu Pb Zn Ni As Cd Sb Bi Ag Au Hg Tl Se ppm ppm	Barr	<u>ick Go</u>	old Cor	р. <u>PR</u> Р.О.	<u>OJEC</u> . Box 16	<u>r esk</u> 4, 951 -	<u>4Y CRE</u> 409 g, v	EK #5	7 Fj BC V6C	lle #	A303	167	(b)			
02269 .7 20.2 39.7 962 2.5 19.1 .2 5.1 .1 .5 1.7 .07 .1 <.5 02270 .1 24.0 19.4 280 1.4 3.3 .1 5.3 <.1 .6 .5 .07 .2 <.5 STANDARD DS5 12.4 137.4 24.3 135 24.1 18.2 5.4 3.5 6.0 .3 39.3 .19 1.0 4.8 GROUP 10x - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 60C	02269 .7 20.2 39.7 962 2.5 19.1 .2 5.1 .1 .5 1.7 .07 .1 <.5 02270 .1 24.0 19.4 280 1.4 3.3 .1 5.3 <.1 .6 .5 .07 .2 <.5 STANDARD DS5 12.4 137.4 24.3 135 24.1 18.2 5.4 3.5 6.0 .3 39.3 .19 1.0 4.8 GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 GOC	02269 .7 20.2 39.7 962 2.5 19.1 .2 5.1 .1 .5 1.7 .07 .1 <.5 02270 .1 24.0 19.4 280 1.4 3.3 .1 5.3 <.1 .6 .5 .07 .2 <.5 STANDARD DS5 12.4 137.4 24.3 135 24.1 18.2 5.4 3.5 6.0 .3 39.3 .19 1.0 4.8 GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 GOC	02269 02270 STANDARD DS5 GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150.60C	SAMPLE#			Pb	Zn	Ni	As	Cd	Sb	Bi	Ag ppm		Hg ppm	Tl ppm		<u></u>
UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 60C	UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 60C	UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM_ - SAMPLE TYPE: ROCK R150 60C	UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM_ - SAMPLE TYPE: ROCK R150 60C	02270	1.1	24.0	19.4	962 280 135	$2.5 \\ 1.4 \\ 24.1$	19.1 3.3 18.2	.1	5.1 5.3 3.5	.1 <.1 6.0			.07		·	
* SAMPLE ITPE: RUCK RISU SUC	T SAMPLE LIPPE: ROUK XIDU GUC	T SAMPLE LITE: ROUK RIDU GUC	* SAMPLE TYPE: RUCK RIDU GUC	GROUP 1DX - 0.50 G	M SAMPLE L	EACHED WITH	H 3 ML 2-	-2-2 HCL	- HNO3 - H2	0 AT 95 D	EG. C FO	R ONE HOU	UR, DILUI	TED TO 10	D ML, ANA	LYSED BY	ICP-MS.		
E RECEIVED: AUG 6 2003 DATE REPORT MAILED: Ang 22/03 SIGNED BY. C. T. T. D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSA	TE RECEIVED: AUG 6 2003 DATE REPORT MAILED: Ang 22/03 SIGNED BY	TE RECEIVED: AUG 6 2003 DATE REPORT MAILED: Aug 22/03 SIGNED BY	E RECEIVED: AUG 6 2003 DATE REPORT MAILED: Aug 22/03 SIGNED BY. C. T.	- SAMPLE ITPE: ROU	K 8150 60C														
SIGNED BY. S	AGENERAL AGE 2003 DATE REPORT MARILED 779 22/05 SIGNED BY. S	A ROCHIVED. ROUDE DATH REPORT MATLED PUT 22/05 SIGNED BY. S	A SOCIULE AND FROM ALLED PUT 22/03 SIGNED BY. S	R RECEIVED. AUG 6 2003	ከአጥወ ከ	א הפרטמו	atten.	1.0)		. ().	ĥ_		_				
				ARCHIVED: MOG 8 2000	DAILR	CEPURI M	ATTUD:	77	22/0.	2 81	GNED E	sy		p. TOY	'E, C.LEON	IG, J. WA	NG; CERT	IFIED B.C	C. ASSAY
								0)					

.

0 <u>_</u>FA_

C CMB	ISO	YT 9002			ATON Lted		LTI			A. 31.		CIN		T.	0.000	יטסי		36						1(6	ol	;3.	L	FJ	L.	4)2	L	716	ļ.
· 4 4					arri			<u>l Co</u>		PF	CHE CJE	CT	ES]	KAY	CR	EEK	#5	<u>7</u>	Fi	le		303	161	8	Pa	ge	1		-				
SAMPLE#	Au ppb	Ag ppm	Pb ppm	Zn ppm	Cu ppm	As ppm	Hg ppm	Sb ppm			Ba Bi pm ppm		Cd ppm	Со ррт	Cr ppm			К La % ppm					Ni ppm	P %	S X			Sr Th om ppm		T1 ppm pp	UV nrppmi		ample gm
51 02271 02272 02273 02274	<.5 1.2 <.5 2.1 .9	.1 1.1	607.3 34.6	29 256	2.0 26.2 23.3 14.9 71.4	271.9	.18 .47 .31	8.4 16.3 9.5	.14 .27	519 <1 14	4 <.1 61 <.1 19 <.1 96 .1 32 <.1	.34 .01 2.03	.8 .1 .9	9.1 4.8 9.6	1.0 1.4 3.9	3.54 2.41 1.85	1 1 1	21 15	08 .08 5 .01 5 .12	1486 323 1002	.1 5.6 .6	.005 .004	2.1 1.6 3.3	.039 2 .128	<.05 2.46 .16	5.8 2.2 4.5	<.5 <.5 <.5 (70 3.9 13 3.4 59 3.4	.001 .002 .001	<.1 <. .1 . .1 . .4 . .2 1.	7 35 2 13 8 49	.1 <.1 <.1	2000 1100 2000 700
02275 02276 02277 02278 02279	1.8 1.2 1.0	10.9 13.4 44.6	1027.4	517 516 439		1626.7	.90 .82 .65	43.0 62.7 293.4	.22 .28 .07	1 2 <1	69 < 1 31 <.1 27 < 1 19 3 48 3	1.27 1.15 2.60	1.5 2.0 10.8	15.1 27.6 64.6	1.0 1.1 1.9	4.43	1. <1.	18 9 19 13 05 3	9.08 3.25 3.34	764 2496 4657	55.0 33.9 7.5	.002 .003 .002	$1.6 \\ 3.1 \\ 6.7$.109 2 .120 3 .023 2	2.21 3.15 2.32	2.6 3.4 3.8	<.5 / <.5 / <.5 §	43 2.6 26 3.1 98 .3	.001 .001 .001	.9 1. 1.2 1. 1.3 1. 3.8 4. .3 1.	5 26 5 37 2 101	.1 .1 1.0	1000 1200 1900 1800 1800
02280 02281 RE 02281 02282 02283	1.5 2.9 3.2 7.6 21.8		17.1	11 11	42.4 8.4 8.5 24.3 58.5	16.9 8.7 8.3 11.7 9.9	.06 .08 .07	.5 .5 .7	.44 .45 .38	1 2 3	44 <.1 24 1.3 22 1.3 45 1.0 05 .1	.07 .07 .08	.1 .1 .1	5.8 5.4 3.7	1.4 <1 <1	1.35 3.48 3.57 2.94 1.18	1 . 1 . 1 .	22 15 28 18 28 18 28 18 28 18 24 16 21 18	3.04 3.04 5.04	63 62 65	.8 8. 2.1	.018 .014	1.0 1.0 .8	.087 .083 .111	2.20 2.17 1.28	1.6 1.5 1.7	1.8 1.6 1.3	12 4.1 12 4.3 8 3.3	.001 .001 .001 >	.1 1. .1 1. .1 1. .1 3.	3 8 4 8 9 9	<.1 <.1	1300 1200 1100 1400
STANDARD DS5	39.3	. 3	24.3	141	137.4	18.2	. 19	3.5	2.09	17_1	42 6.0	.74	5.4	12.5	188.0	2.99	6.	13 13	3.68	793	12.4	. 034	24.1	.093	< <u>.0</u> 5	3.9	5.0	47 2.7	.098	1.0 5.	7 59	4.4	
DATI	e rec	U -	PPER L SAMPL	.IMITS .E TYP	0.50 0 - AG, PE: P1 5 2003	AU, I ROCK I	łG, ₩ P2 R00	= 100 K	PPM; <u>Samp</u>	MO, les t), SB ing /	, BI <u>RE'</u>	, TH, are R	U & eruns	B = 2 and	,000 'RRE'	PPM; are	cu, <u>Reje</u> 7	PB, 2 ect R	ZN, N eruns	11, MI <u>8.</u>	N, AS	,Ϋ́,	LA,	CR =	10,0	00 PPN		D B.C.	ASSA	YERS	
																															6		

. <u>l</u> _{FA}___

.

TMR **LYT** LA TOR LTI B. INC C. V OUVE C 186 P (60 FAX 3-3 4)21 716 ISO 9002 Accredited Co.) WHOLE ROCK ICP ANALYSIS Barrick Gold Corp. PROJECT ESKAY CREEK #57 File # A303168 Page 2 P.O. Box 164, 951 - 409 G. Vancouver BC V6C 112 SAMPLE# SiO2 Al2O3 Fe2O3 MgO CaD Na20 K20 TiO2 P205 Mn0 Cr203 Ba Ni Sc LOI TOT/C TOT/S SUM % % % -% % % % % % % % ppm DDM DDM % % % % 02272 71.30 11.47 3.43 .09 .06 .15 9.30 .34 .08 .03 <.001 3683 3.2 .40 2.44 99.86 <20 7 02273 62.72 14.01 2.89 .32 3.05 .17 11.20 .43 .27 .13 .002 7575 <20 8 3.7 .89 .26 99.74 02280 69.47 12.94 2.13 .13 1.69 .17 10.18 .23 .12 .11 .002 3893 <20 5 2.2 .43 .04 99.81 STANDARD SO-17/CSB 61.51 13.76 5.83 2.32 4.60 4.10 1.41 .59 .99 .52 .435 398 31 23 3.4 2.35 5.32 99.52 GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES, LOI BY LOSS ON IGNITION. TOTAL C & S BY LECO. (NOT INCLUDED IN THE SUM) - SAMPLE TYPE: P1 ROCK P2 ROCK DATE RECEIVED: AUG 6 2003

SAMPLE#	Co ppm		Ga ppm	Hf ppm	Nb ppm	Rb ppm	Sn ppm	Sr ppm	Ta ppm	Th ppm	U ppm	V ppm	W ppm	Zr ppm	Y ppm	La	Ce ppm			Sm ppm	Eu ppm	Gd ppm	Tb ppm	Dy ppm	Ho ppm	Er ppm	Tm ppm	Yb ppm	Lu ppm
02272	5.1	1.7	13.0	2.5	6.5	221.8	4	101.5	.3	5.8	1.8	67	6.0					1.89				1.40		1.26	.26			1.22	
02273						290.6		253.4			3.7		3.3	90.0	17.3	23.0	41.9	4.94	18.3	3.7	.79	3.31		3.08		1.79		1.84	
02280 STANDARD SO-17						214.6 23.1		138.0		13.3		46	1.7	67.4	6.9	19.2	25.5	2.36	7.5	1.5	.26	1.49	.20	1.31		.70		.73	
	10.2		17.3	12.5	27.1	23.1		293.6	4.1	11.0	11.1	120	9.9	357.5	21.2	11.4	23.9	3.02	14.1	3.2	.98	3.93	.67	4.14	.91	2.73	.39	2.90	.41

All result ore considered the confidential property of the client. Acme assumes liabilities for actual cost of the analysis only.

.

KA

ALME ANALYTICAL LABORASORIDS LID (ISO 9002 Accredited Co.)

1+31

PAX

) 25

16

GEOCHEMICAL ANALYSIS CERTIFICATE

Barrick Gold Corp. PROJECT ESKAY CREEK #57 File # A303168 Page 2 (b)

													1944, 1957, 1979, 1987, 1987, 1987, 1987, 1987, 1987, 1987, 1987, 1987, 1987, 1987, 1987, 1987, 1987, 1987, 19		
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	Ag ppm	Au ppb	Hg ppm	Tl ppm	Se ppm	
02272 02273 02280 STANDARD DS5	5.6 .7 .3 11.9	24.9 15.5 35.8 137.3	34.6 78.6 21.4 22.9	29 241 145 129	$\begin{array}{c}1.4\\3.6\\.4\\22.7\end{array}$	$22.5 \\ 242.5 \\ 13.7 \\ 17.2 \end{cases}$.1 .9 1.9 5.5	14.8 9.8 4.6 3.3	<.1 <.1 <.1 5.7	.1 .8 .6 .2	.7 4.3 2.9 39.9	.40 .27 .05 .16	.1 .4 .1 1.0	<.5 <.5 .5 4.9	

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: P1 ROCK P2 ROCK

DATE RECEIVED: AUG 6 2003 DATE REPORT MAILED: Aug 22/03 SIGNED BY.D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

A /TIC LAB ORI (ISO 9002 Accredited Co.) IE A TD 8 1R6 PH `**. H** INGS . V UVE FAX N 604) 25 716 3-31 ASSAY CERTIFICATE Barrick Gold Corp. PROJECT ESKAY CREEK #57 File # A303168R2 P.O. Box 164, 951 - 409 G, Vancouver BC V6C 1T2 SAMPLE# Ag** gm/mt Cu 02279 145.9 155.3 .899 STANDARD R-2 .561 GROUP 7AR - 1.000 GM SAMPLE, AQUA - REGIA (HCL-HNO3-H2O) DIGESTION TO 100 ML, ANALYSED BY ICP-ES. AG** BY FIRE ASSAY FROM 1 A.T. SAMPLE. - SAMPLE TYPE: ROCK PULP AUG 26 2003 DATE REPORT MAILED: Sept 1/03 SIGNED BY. DATE RECEIVED: ▶ TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

÷

Cando C.*			-			<u>.</u>					00000		1999.000			9 G, 1		0.000	9889-0 <u>0</u>	<u> 1997 (1997</u>														
SAMPLE#		Ag ppr		n pp			As IOM	Hg ppm								Cr Fe ppm ୫				-										-				
SI		<.1														<1 .04																		
02284 02285																4.1 1.78 1.3 2.79																		
02286																8.8 2.07																		
02287																3.9 5.31																		
02288	<.5	1.9	>999	9 277	5 2	1.5 53	.0	.27	17.9	. 21	3 14	9.1	5.04	.4	2.9	4.8 1.97	1	. 15	3.2	20 5606	.5<	.001	.2.0	45 . 35	3.1	<.5 2	19 1.	8 .003	.1	.3	187	.1	1200	
02289	<.5	.8	1894.	7 811	5 1	.7 8	8.9 2	2.13	9.7	.05	2 13	6 <.1	2.60	.4	3.6	<1 .77	<1	. 02	1.3	35 3171	2	.003	<.1.0	10 . 28	.5	<.5 7	68	1<.001	. 1	.2	38	<.1	1200	
02290																3.1 2.49																		
02291 02292																5.5 1.11																		
02292																1.0 3.60																		
02293	194.0	1.5	28.	3 1	10 1	.4 5).1	.03	1.4	. 39	1 2	0.1	. 20	.2	7.3	<1 4.02	1	. 31	8.(03 54	19.1	. 009	.8.1	50 2.84	1.3	.5	91	1<.001	.1	.2	11	.1	1400	
02294 02295																1.4 2.06 1.1 4.59																		
02296																1.1 4.59																		
02297	14.0	.5	20.	0 4	16 1	9.3 1	5. B	.03	1.8	.40	<1 6	6 <.1	.04	.1	4.9	4.5 1.64	1	.06	2 .:	19 381	1.6	.005	2.0 .0	26 <.05	5 .8	<.5	4	1 .002	.1	.1	6	<.1	400	
02298	335.Z	2 1.0	28.	9 2	29 2).0 8	7.6	.37	1.5	.50	25	4 <.1	. 22	.1	9.1	1.1 2.17	1	.33	11 .0	03 32	2 1.3	.004	1.1.1	17 1.30	1.3	<.5	8	.8 .001	.4	.2	6	.1	2300	
02299																2.2 2.75																		
02300 RE 02300																1.3 1.97																		
02301																1.7 2.01 1.1 2.48																		
02302	234.7	, .,	16.	.9	12 5	L.9 1	3.3	.18	.7	.50	<1 27	6.6	. 16	.1	2.1	<1 2.00	1	.31	12	05 44	1 1 6	004	5 1	30 29	8 1 3	< 5	11 }	3< 001	,	2	16	د ا	1600	
02303																3.5 3.34																		
02304																1.9 3.04																		
02305 02306			60. 1347.													2.0 1.33																		
02307	107.2	2.7	33.	6	2 1	1.9 27	5.5	1.40	9.6	.12	<1.3	7 1.5	i < 01	<u>s 1</u>	2.2	3.5 2.91	51	.08	1 < 1	01 30	1 20 4	002	171	87 2 3	> 1 n	20-1	a	3< 001	1.0	1	1	2	220/1	
02308																1.3 2.60																		
02309																3.1 7.93																		
02310																1.7 3.02																		
02311	5.8	8.3	2 9.	.1 !	56 3	0.4	6.0	.02	1.5	.51	5 84	2.2	2 1.39	.2	4.4	1.9 2.01	1	.31	22 .	07 1278	8.5	.008	<.1 .1	20.0	5 3.6	.5	35 3	.9 .004	.2	1.2	27	<.1	1200	
02312																<1 3.00																		
02313																1.1 2.19																		
02314 02315																2.8 1.8																		
02316																1.8 3.53																		
STANDARD DS	5 40.0	o .:	3 26	.2 1	38 13	7.4 1	8.3	. 17	3.3	2.04	16 13	3 6.3	2.73	5.7	12.1 1	78.2 2.8	5 7	. 14	12 .	65 748	8 12.1	.037 2	24.6.0	90 <.0	5 3.6	5.2	50 2	.6 .092	2 1.0	5.6	58	4.3	-	
STANDARD DS GROUP 1 UPPER 1	IDX - _IMITS	0.50) GM	SAM	PLE	LEAG	CHED	WIT	н 3	ML :	2-2-2	2 нс	:L-HN	103-H	20 A	т 95	DEG. = 2,	C F 000	FOR 1 PPM	ONE ; CU	HOUR	, D) , ZN	LUTE	ED TO	o 10	ML,	ANA	LYSE	D BY	101	P-M9	5.		

	È	•	C	-	E	``	Ľ		C		E	••	C	1	C	- 1	E **	1	Ľ,	Ľ	-	C		E	-	E	- *	Γ		<u>ר</u>	۸Ľ
ACME ANALYTICAL		. <u></u>	!	Barı	cic:	k C	Jolć	і с	Corp.	P	ROJE	СТ	ESKJ	ĄΥ	CRF	SEK	#64	1 · ′	FILE	3 #	A3(J332	20			Page	e 2				
SAMPLE#	Au Ag ppb ppm		vb Zn хтррт	Cu ppm	As ppm p				B Ba ppm ppm p	Bi ppm	Ca Cd %ippm				e Ga €ppm		•	lg Mr % ppr	in Mo m ppm		Ni ppm		S X	50	Se S ppm pp	Sr Th pm ppm	Ti ۴ ۲	ד ק הקכ	U V pm ppm	W Samp ppm	ole gm
02318 10675	<.5 .2 .5 .1 7.7 .1	2 18.7 1 11.2 1 7.1	7 101 2 138 1 62	31.6 36.3 4.1	13.1 2.0 16.8	.08 .07 .05	.5 1.4 .3 1.9 .7 3.4	.45 .90 .40	1 224 3 27	.13 .52 .34	3.80 .4 2.94 .3 4.82 .1	15.1 20.8 103.1	1 22.0 B 6.2 1 73.3	3.91 5.02 7.74	4. 28. 115.	.15 .12 1 .04	3 1.48 11 2.37 6 3.27	8 1077 7 1353 1 2249	$\begin{array}{ccc} 7 & 1.8 \\ 3 & 1.0 \\ 5 & .2 \end{array}$.014 .022 .016	31.7 9.3 388.5	.092 .128 .190_2	.41 .51 2.31	7.5 9.3 16.6 1	.5 15 .8 5 1.4 6	58 1.3 . 55 1.3 . 65 1 7	.002 .003 < .003 <	.1 . <.1 . < 1	.1 105	<.1 35 <.1 13 < 1 17	100 500 300 700

Sample type: ROCK R150 60C.

All results are considered the confidential property of the client. Acme assumes liabilities for actual cost of the analysis only.

T AFA_

1

ļ

YTI LAB 'OR I TD 8 INGS . V. UVE . LR6 PH I. H 604 3-31 FAX) 25 /16 (ISO 9002 Accredited Co.) WHOLE ROCK ICP ANALYSIS Barrick Gold Corp. PROJECT ESKAY CREEK #64 File # A303320 Page 3 P.O. Box 164, 951 - 409 G, Vancouver BC V6C 1T2 SAMPLE# SiO2 Al2O3 Fe2O3 Mg0 Ca0 Na20 K20 TiO2 P2O5 Mn0 Cr2O3 Ba Ni Sc LOI TOT/C TOT/S SUM % % % % % % % % % % % ppm ppm ppm % % % % 02291 85.01 .18 1.72 .74 5.12 .03 <.02 <.01 .02 .70 .002 2393 <20 1 5.6 1.51 .12 99.41 STANDARD SO-17/CSB 61.80 13.91 5.84 2.33 4.65 4.18 1.40 .60 .99 .59 .434 417 35 24 3.4 2.40 5.33 100.17 GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION. TOTAL C & S BY LECO. (NOT INCLUDED IN THE SUM) - SAMPLE TYPE: P1 TO P2 ROCK P DATE REPORT MAILED: Hy 27/03 DATE RECEIVED: AUG 12 2003 All results are considered the confidential property of the client. Acme assumes ' liabilities for actual cost of the analysis only.

ACME ANALYTICAL LABORATORIES LTD. 852 R. HASTINGS ST. VANCOUVEP_PC V5* -1R6-PHENTE 900 crel. d d. FAX GEOCHEMICAL ANALYSIS CERTIFICATE Barrick Gold Corp. PROJECT ESKAY CREEK #64 File # A303320 Page 3 (a) P.O. Box 164, 951 - 409 G, Vancouver BC V6C 1T2 SAMPLE# Со Cs Ga Нf Nb RЬ Sn SΓ Ta Th U v W Zr Y La Ce Pr Nd Sm Eu Gd ть Dy Ho Er Τm Yb Lu ppm ррп ppm 02291 3.0 .3 1.8 <.5 <.5 1.9 <1 124.0 <.1 .2 1.4 62 .2 2.6 2.3 2.4 3.7 .41 1.7 .3 <.05 .47 .07 .39 .07 .17 <.05 .10 .03 STANDARD SO-17 18.2 3.6 19.9 12.6 24.8 22.8 10 308.8 4.2 11.2 11.6 126 10.9 370.7 28.6 11.8 24.0 3.02 13.1 3.2 1.02 3.60 .67 4.37 .96 2.75 .45 2.96 .46 GROUP 4B - REE - 0.200 GM BY LIBO2 FUSION, ICP/MS FINISHED. - SAMPLE TYPE: P1 TO P2 ROCK P AUG 12 2003 DATE REPORT MAILED: Hng 27/03 DATE RECEIVED: SIGNED BY D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

D FA

ACME ANALYTICAL LABORATO (IL J002 Jred d Barric)		GEO orp. PROJ	CHEMIC ECT ES	AL AN KAY C	ALYSI REEK	#64	TIFICA	TE A303			- 1 3 (b		[, *-	Α Α
SAMPLE#	Mo ppm	Cu Pb ppm ppm	Zn	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	Ag ppm	Au ppb	Hg ppm	Tl ppm	Se ppm	
02291 STANDARD DS5		7.6 153.9					104.7 3.5		25.9 .2		.74 .17	.1 .9	<.5 4.8	
GROUP 1DX - 0.50 UPPER LIMITS - AG - SAMPLE TYPE: P1 DATE RECEIVED: AUG 12 2003	, AU, HG, W = TO P2 ROCK P	100 PPM; MO, 1	ю, CD, SB, Л	, ві, тн,	U&B =	2,000 PI	РМ; CU, PB,	ZN, NI,	MN, AS,	V, LA, C	R = 10,0	00 PPM.	ED B.C. A	SSAYERS

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

~

D-+- 1 FA ____

i

ł

	SAMPLE#	Au** gm/mt	Ag** gm/mt	Pb	Zn %	Hg	Sb %		<u>la de astrona</u>	<u></u>
	02288 02290 02291 02292 02292 02296	2.76	362.7 24.2 38.1	4.19	- - - -	- - - -	.236	<u> </u>		
	02298 02300 02301 02302 02303	.24 .39 2.00 .23 3.71		-	- - - -	- - -	- - -			
	02304 02305 02306 RE 02306 02313	.88 1.67 11.64 2.73 5.24	- - - -	- - - 1.85	- - - 17.04	- - - .019	- - -			
	02314									
	02315 STANDARD AU-1/GC-2 GROUP 7AR - 1.000 GM SAMPLE, AQUA -	REGIA (HCL-	1050.5	GESTION	O 100 ML.	ANALYSED	BY ICP-ES.			
RECEIVED: AUG 29 200	02315 STANDARD AU-1/GC-2 GROUP 7AR - 1.000 GM SAMPLE, AQUA - - SAMPLE TYPE: ROCK PULP Sample:	REGIA (HCL-	 1050.5 HNO3-H2O) DI 'RE' are Rer	.85 8.92	10 100 ML, <u>RRE' are R</u>	ANALYSED eject Re	BY ICP-ES. runs.	J. WANG; C	CERTIFIED	B.C. ASSA
RECEIVED: AUG 29 200	02315 STANDARD AU-1/GC-2 GROUP 7AR - 1.000 GM SAMPLE, AQUA - - SAMPLE TYPE: ROCK PULP Sample:	REGIA (HCL- beginning	 1050.5 HNO3-H2O) DI 'RE' are Rer	GESTION UNS and	10 100 ML, <u>RRE' are R</u>	ANALYSED eject Re	BY ICP-ES. runs.		SERTIFIED	B.C. ASSA
RECEIVED: AUG 29 200	02315 STANDARD AU-1/GC-2 GROUP 7AR - 1.000 GM SAMPLE, AQUA - - SAMPLE TYPE: ROCK PULP Sample:	REGIA (HCL- beginning	 1050.5 HNO3-H2O) DI 'RE' are Rer	GESTION UNS and	10 100 ML, <u>RRE' are R</u>	ANALYSED eject Re	BY ICP-ES. runs.		CERTIFIED	B.C. ASSA

Data KFA Y

ANA ICAL LABORATORIES LTD (ISO y002 Accredited Co.)

GEOCHEMICAL ANALYSIS CERTIFICATE

OUVER BC

PHONE (604) 253-3158 FAX (604

Data

Barrick Gold Corp. PROJECT ESKAY CREEK #80 File # A303534

HASTINGS

	<u></u>						<u>e e</u>				P.O.	Вох	164,	951	- 409	?G,	Vanco	buver	BC	V6C 1	T2		C Y S S S S S S											
SAMPLE#	Au	-	Pb		Cu		-	Sb	A1	В	8a		Ca (Cr	Fe ((La		Mn	Мо	Na	Ni	P	S	Sc	Se	Sr Th	Ti	-1 U	٧	W	
	ppb p	pm	ppm	ppm	ppm	ppm	ррт	ррт	X	ррт	pom p	opm	% pp	om pp	m p	m	% pp	STI X	5 ppm	z	ррт	ppm	*	ppm	*	*	ppm	ppm	opm pom	% pj	ont ppm	ppm	ppm	
SI 02323 02324 02325 02325 02326	<.5 3.4	.6 .1 3.9	3.8 1.6	92 4 46	2.2 18.7 4.0 9969.2 75.7	55.6 3.4 1.2	.17 .02 .60	1.6 1 .7 1 .7 1	.24 .70	1 3	23 68 391	.2 .1 1 .2 1	.44 . .60 <. .77 .	2 11. 1 45. 1 21.	5 4 6 1 8 11	.04 .92 .23	. 63 . 47 . 95	5 .11 4 .09 5 .23	l 7) 18 3 9	.01 1.43 .07 1.06	326 143 781	2.5 .1 .2	.020 .016 .022	32.3 4.1 15.9	.036 .061 .086	2.22 1.36 .13	3.2 1.4 6.4	8.8 1.2 <.5	3 < 1 12 .7 137 5.7 226 1.5	.001 1 .102 < .016 <	0.1 1.8	21 12 37	<.1 .2 <.1	
02327 02328 02329 02330 02331	290.9 3.3 4152.1 287.7 < 876.3	.9 .1 4 <.1	4.6 1.9 4.6 1.1	61 52 6 9	1358.3 301.0 58.3 383.5	3.9 3.2 218.7	.04 .07 .04 .02	.6 2 .5 1 .8 .1	. 08 . 67 . 23	<1 (1 <1 <1 1	1771 270 18 61	.1 6 .1 3 .1 1 <.1 3	.68 <. .44 <. .75 <. .65 <. .78 <. .19 <.	.1 25. .1 13. .1 27. .1 7.	4 22 9 4 8 • 7 •	.3 3 <1 6 <1 3	.71 .28 .32	8 .02 1 .03 1 .09	1 20 2 10 3 2 9 4	1.57 1.20 .54 1.07 1.12	1674 1020 795 1598	.1 9.8 .5 .2	.016 .055 .090 .072	25.8 4.6 .6 <.1	.127 .093 .067 .096	<.05 .22 5.32 .42	6.2 8.0 4.5 5.9	.7 .7 1.5 <.5	23 .5 767 2.3 91 2.6 71 .8 200 .9 58 .6	.024 < .007 < .003 < .001 <	.1 .6 1 .3 1 .2 1 .3	94 95 13 20	.9 .1 .2 .1	
02332 02333 RE 02333 05032 05033	5.0 < <.5 <.5 1.2 < 103.3	.3 .3 <.1	17.1 15.7 6.9	60 55 5	46.6 44.3 10.5	11.8 36.5 34.3 8.4 51.0	.06 .05 .04	5.4 1 6.0 1 .2	.74 .71 .43		132 125 25 1	.2	.17 .16 < .16	.1 7. .1 6.	5 1	.2 4 .5 4	.28 .19 .32 •	5.14	4 13 4 12 0 1	.91 1.24 1.16 .09 3.08	302 292 10	6.9 6.8 1.9	.027 .027 .016	19.4 17.6 1.2	.068 .062 .004	1.18 1.06 1.51	3.0 2.8 .6	2.9 3.1 2.2	41 2.3 8 2.2 8 2.3 28 .6 481 .4	.002 .002 .002 <	2.3	39 37 7	<.1 <.1 <.1	
05034 05035 STANDARD DS5	3.8 5.7 43.7	.1	3.8	4	2.0		. 05	.51	. 09	<1	93	.11	.20 < .20 < .74 5	1 25.		.2 2 .3 1 .3 2	.99	3 .12 4 .16 7 .14	5 11	.07	110	. 1	.019	.5	.037	1.39	1.2	.9	L03 3.3 L19 3.8 48 2.7	.064 <	1 6		.1 .1 4.4	

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 60C Samples beginning (RE' are Reruns and 'RRE' are Reject Reruns.

Hug 29/03 DATE RECEIVED: AUG 19 2003 DATE REPORT MAILED: SIGNED BY D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

ANALYTICAL LABORATORIES LTD ·ME (ISO 9002 Accredited Co.)

854 S. HASTINGS ST. VANCOUVER BC VOA 1R6 PHONE (604) 253-3158 FAX (604) 253-1716

Data & FA Y

ASSAY CERTIFICATE

Barrick Gold Corp. PROJECT ESKAY CREEK #80 File # A303534R P.O. Box 164, 951 - 409 G, Vancouver BC V6C 112

SAMPLE#	Au** Cu gm/mt %
02325 02327 02329 02330 02331	- 1.059 .43 - 6.18 - .36 - 3.17 -
STANDARD AU-1/GC-2	3.45 .951

GROUP 7AR - 1.000 GM SAMPLE, AQUA - REGIA (HCL-HNO3-H2O) DIGESTION TO 100 ML, ANALYSED BY ICP-ES.

- SAMPLE TYPE: ROCK PULP

	ут I. 9002 .		a d . red	TOR 11 I I I I I I I I I I I I I I I I I I		rd		1		g. 1 Eoc								c l TIF		r6L 'E		PHL.	. (6	0 4 , .	3+1	I.	PA	X	1) 2	1 	716L
				Bar	ric	<u>k (</u>	<u> 701</u>	<u>.a (</u>	<u>Co1</u>									#12 BC V6		'il	e #	: A3)	041	95							
SAMPLE#	Au Aq ppb ppr		Pb Zi pm ppi		=	Hg ppm j	Sb ppm	A1 %	_	Ba Bi opm ppm	Ca %	Cd ppm	Со ррт	Cr ppm	Fe %	Ga ppm	к % р	La Mo opm	g Min % ppm	Mo ppm	Na %	Ni ppm	P %	S %		Se Si pri ppi		Ti %	T1 ppm p	U V prin ppri	W Ippm
SI 05043 05044 05045	<.5 <.1 <.5 2.1 <.5 7.1 <.5 .		.6 : .3 29 .3 40 .4 19	43713.6	<.5< 10.8 8.1 236.2	.01 .27 .66 .14	.1 .3 1.0 : 9.8	.01 .89 1.10 .12		5 < 1 389 < 1 95 < 1 18 < 1	16.93			<1 143.9 102.9 1.5		4 6<	01	<1 <.0 1 .9 1 1.2 6 .0	8 2159 8 2952		.788 .029 .019 .061	154.3 122.6 .9	.031 .026 .002 4		2.6 < 0.1	.5 4 .5 7(.5 11(.5 1	\$ <.1 3 .1 3 .1 5 1.2	.001 .182 .134 .033	.3	.1 <1 .3 177 .6 139 .2 1	
DG 23574 DG 23575 DG 23576	<.5 .: <.5 .: <.5 <.:	53	.0 16 .0 14 .7 4	5 65.9	7.8	.47 .25 .03	.6 3.4 : .2	.30 1.18 .59	5	81 <.1 77 <.1 95 .2	2.90 8.98 .15	.4 2.9 .2	6.7 15.1 1.1	12.2 62.9 1.5		7	.01 .07 .34	2.9 81.3 54.0	6 537	7, 11.0 .2	.034 .039 .023	35.2 40.4 1.4	.166	.42 1.55 <.05	8.6 14	.9 4(.7 7) .5 (5.1 7.4 56.5	.001 .004 .002		.1 26 .5 225 .3 2	. –
DG 23577 DG 23578 DG 23579	<.5 . <.5 . <.5 .	1 15		0 3.7 7 4.6 2 2.3	1.9 6.6 65.6	.01 .03 .05	.3 .5 2.8	.37 .17 .15	<1	106 .1 106 < 1 60 .1	.51 .01 .01	2. <.1 <.1	.5 .4 .2	1.5 2.6 1.3	.34 .94 2.16	1		30 .0 37 .0 3 <.0	1 16	.5 7.0 39.0	.048	1.4	.008 .005 .003	<.05 .59 1.72	.3 <	.5 1 .5 .5	2 2.8 7 3.8 4 1.4	.019 .003 .060	.1 .5 2.1	.2 2 .3 1 .3 1	.3 .1 .4
STANDARD DS5	42.8	3 23	.5 13	1 136.0	18.1	.17	3.6	2.08	16	L35 6.1	.72	5.6	11.9	178.0	2.82	6	. 14	13 .6	5 752	12.3	.031	23.8	. 088	<.05	3.6 5	.2 4	5 2.7	. 090	1.0 5	.7 58	4.5

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 60C

DATE RECEIVED: SEP 10 2003

/ata

All re s are considered the confidential property of the client. Acme assu the liabilities for actual cost of the analysis only.

CME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC (ISO 9002 Accredited Co.)

GEOCHEMICAL ANALYSIS CERTIFICATE

V6A 1R6

Barrick Gold Corp. PROJECT ESKAY CREEK #149 File # A304448 P.O. Box 164, 951 - 409 G, Vancouver BC V6C 112

SAMPLE#	Au# ppb
G-1 05039 05040 05041 STANDARD AU-S	$1 \begin{array}{c} 1 \\ 1 \\ 0 \\ .1 \\ .7 \\ 45 \\ .7 \end{array}$

GROUP 3C - 2000 GM SAMPLE LEACHED IN .5% CYAIDE SOLUTION FOR 24 HOURS, ANALYSIS BY ICP. - SAMPLE TYPE: SILT

DATE RECEIVED: SEP 22 2003 DATE REPORT MAILED:

PHONE (604) 253-3158 FAX (604) 253-1716

All result re considered the confidential property of the client. Acme assumes liabilities for actual cost of the analysis only.

(ISO S	9002 A	credi	ted (Co.)			GE	OCH.	EMIC	CAL	ANA	LYSI	cs c	ERT	IFI	CATE										
Ê			Baı	<u>cri</u>	<u>ck Gc</u>	<u>old</u>						<u>AY (</u>)9 g, v					le i	ŧ a3	044	149						4
SAMPLE#	Au Ag ppb ppm			As ppm	Hg Sb ppm ppm	A1 %	В Ва ррягрряг		Ca Cd % ppm		Cr ppm	Fe G %pp	ia K m % p	La Mo pm		Mo ppm	Na N % pp		S %			Sr Th com pom		-	V W ppm ppm	Sample) gn
05039 05040		8.7 162 4.9 120			.06 .3		3 199 14 123 3 164	<.1 1.	77 .7		13.8 16.5 16.1	4.97	8 .05	7.9		5.0 . 2.2 .	671 15.	5.089	.25	6.0	1.6	37 .7	.251	3.3 2.6	181 .1	2500 10000

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: SILT S150 60C

DATE RECEIVED: SEP 22 2003 DATE REPORT MAILED: /

D.

	(ISO	_iYT 90	1 <u>1</u> 02	L Acc:	redi	. FOR ted	L Co.	LTI)				1933-1946 and	8363638	00.000/000	460.000		2.1.2	JUVE.	Q.48.6			8102860		PHL.	, б	04,	3 د ه	-3	30	FAX	Four) 25	Ç⊥	/16	
						<u>Ba</u>	<u>rri</u>	<u>ck</u>	<u>Go</u>	<u>1d</u>	<u>Cor</u>	р. Р.С	<u>PR</u> 0. 80	<u>ОЈЕ</u> x 164	<u>CT</u> , 951	<u>ESKA</u> 1 - 409	<u>Ү</u> с,	CREE Vancou	<u>K</u> # verB(<u>136</u> c v6c	5 I 172	?il€	• #	А3	044	50					- 4	нан 12 на	4		
	T																< 2000000		20000000000		<u>perdecen</u>	<u>Ser corrector</u>	an da an		0.000	and de la seconda de la se Seconda de la seconda de la	10-069C	sta Ma	60 - U	<u>Under</u>	$\sim 100 $		eta en	Alectric .	Fullin.
SAMPLE#		Ag ppm		Zn ppm	Cu ppm	As ppm	Hg ppm	Sb ppm	Al %	-	Ba ppm p		Ca %p	Cd ppm p	Co pm	Cr ppm			La ppm	-		Mo ppm		Nî ppm		S %			Sr ppm	Th ppm	Ti %	۲۱ ۲۱	opm p U	V Pinde	W Pm

Standard is STANDARD DS5.

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: SILT S150 60C

DATE RECEIVED:

FA

D

Barrick Gold Inc

_

أستعا

لسا

_

APPENDIX V

SILT, SOIL AND ROCK

2003 RDN and MOR Property Silts

.

| |-| |

Sample #	Anarysis	Sampler 🔤	Description	Easting	Northing	Au (ppb)	Au (ppb) BLEG	Ag (ppm)	Pb (ppm)	Zn (ppm)	Cu (pom)	As (pom)	Hg (pom)	Sb (ppm)
02217	BLEG & ICP	AB, AN, MM	Channel width-2m, now rate-fast, Bank type-debris flow	405848	6323543	7.9	0.4	0.4	12.2			11.3	0.17	1.4
			material, no o/c's, Mixed volcanics (80%) (green-maroon), rare										••••	
			mudstone (20%), moderate veining, Precipitates: muddy	1				ł		ļ			 	
		<u></u>	brown, vfg; clay?, 10-15 deg slope											
02218	BLEG & ICP	AB, AN,MM	7-15 deg slope, Loc'n 115m bearing 319 deg form landing pad	404630	6323530	0.25	0.1	0.3	9.4	181	37.7	13	0.07	0.9
			for chopper (where the utm is taken), channel width: 1m,											0.0
			moderate flow, bank type: soil, alder forest, w/ferns, ~50%		}	1	}	ł						
			mudstone, 50% green volcanics (andesite)?, Muddy brown	1					Ì				1	
			water, a little slimy											
02219	BLEG & ICP	AB, AN, MM	Trib Cr to More Cr, 5 deg slope, Channel width-2m, (2	407374	6324566	2.6	0.2	0.2	13.8	145	67.8	12.9	0.07	0.8
	}		channels that came from one 4m wide channel a short way	ł	ł	ļ				1				0.0
			upsstream), Moderate flow this channel, fast in other one,											
			Unconsolidated debris flow deposits, Mostly volcanic											
·			(andesite), rest is mudstone	_										
02220	BLEG & ICP	AB, AN, MM	Trib cr to More Cr, 7 deg slope, channel width-2m, flowrate is	412082	6324842	1.9	0.2	0.2	7	113	89.6	8.2	0.3	1
			fast, bank type: debris flow type, unconsolidated, float type:									. .	0.0	
			mostly volcanics (greens) rare mudstones, veining quite							1			f	
			common, Precipitates: light brown, not slimy	1		İ								
02221	BLEG & ICP	AN, CE	Trib cr to More Cr, 4 deg slope, chan width-1m, flow rate:	413830	6323440	3.4	0.5	0.2	6.3	116	132	5.7	0.21	0.5
			moderate, Bank Type-soil, Green-brown volcanic rocks, no	1								.	0.21	9.9
			apparent seds, precipitate: light brwon, a little shiny											
02222	BLEG & ICP	AN, CE	Trib Cr to More Creek north, 12 deg slope, channel width-2m,	398910	6330450	0.7	0.6	0.1	5.6	66	43.9	7.3	0.02	0.5
		ļ.	fast flow rate, rock boulders, unconsolidated steep colluvium,	4							10.0		0.02	0.0
			o/c in creek is it grey w hematite staining, highly siliceous, no											
			visible mineralization on rhyolite?, 60% green/brwon volc						i i					
									i i					
02223	BLEG & ICP	AN, CE	Trib to upper More Cr, 25 deg slope, Channel width- 5m, flow	399260	6330375	1.1	0.2	0.2	14.6	85	48.4	22.1	0.03	
			rate: very fast, Bank type:colluvium, motly boulders>50 cm,								-	~~	0.00	1
			O/C: red volcanics, weathered orange and black, float: 90%											
			red volcanics (minor green), 10% plutonic, Precipitates: dark	Ì	-									
I		4	grey/brown	1	{	ļ	ł	ł	1					
02224	BLEG & ICP	AN, CE	Trib to More Cr, 5 deg slope, channel width: 1.5m, flow rate:	399370	6330180	1.8	0.4	0.1	14.2	87	34.8	27	0.16	1.7
		1	moderate, Bank Type: debris flow silts-boulders, outcrop:				•				04.0	21	0.10	1.7
			red/brown voic rock, weath brn/blk (1 side of Cr is all O/C,											
1		{	Float: 85% volc (red/brn, minor green w lapilli), 15%			ł	l .	}	ł	{	i			
			mudstones			1			•					
05039	ICP	AB	Silt - BLEG. At inside corner of bend in creek. Slope 15 deg.	412404	6320353	3		0.2	8.7	162	120.1	11.2	1.1	1.4
			Creek cuts area covered by till. Cobbles up to 30cm &]	-					120.1	11.2	1.1	1.4
			rounded. Few gossanous cobbles nearby. Cobbles primarily	}		ł	ļ		ł					
			volcanic and sitistone. Sample follow-up to 6000ppb silt						İ					
			sample.		1		1							
05040	ICP	AB	Creek - 5 deg slope, 5m wide. Sample from west side of creek	412409	6320299	2.1		0.1	4,9	120	54.4	5.9	0.06	0.3
			in small bend. Rocks mostly fn-med grid matic volc but also	4					{		1		0.00	0.0
			bx'd mudstone w/ qtz & cbt matrix, tr-2% py. Rk sample											
			DG23574.										[
05041	ICP	AB	Up 6000ppb silt creek at next tributary, slope 20-40 deg.	412151	6320686	5.1		0.3	8.4	191	148,1	12.2	1.05	1.4
		ł	Probably exotic as poorly sorted till. Sample site has 2m	1		1	1	1	•.•		}	<u>م</u> .ح		1.4
			banks. Boulders rounded and rarely angular, up to 1.5m.			1	1							
			Commonly 15-25cm. Primarly voics and sed, few gossan		l									
			boulders.	1	1		1		1		1			
05042	ICP	AB	Tributary into 6000ppb silt creek. Probably exotic, till. Creek	412133	6320695	0.25	<u> </u>	0.2	8.6	142	56,5	13.3	0.35	1.1
			30-50cm wide, slope 20 deg. Not enough sample for BLEG.					0.2			00.0	10.0	0.35	1,1
			Rk rounded ot subangular bidrs, veined sitstn, mudstone and							1			[]	
			rare voics.		ł	1	1	1	1	1				

2003 RDN and MOR Property Silts

eyele EG & ICP P P	AN,MM AN,MM AN,MM	Channel Width 2m, fast flowing, mainly volcanic float, brown, silty precipitates, Gradient-7 deg, Bank Type-Till, Ala Cr Channel width 6m, flow rate fast, Bank type creek deposits (cut by high water), no outcrops, float types 90% green volcanic and 10% mudstones, precipitates are med brown slimy Channel width 4m, flowrate moderate, banktype is creek flood leaves-gravels-tree roots, float types are 80% green/reddish volcanics and 20% sed. Mudstones, precipitates light brown Channel width 1m, flow rate is slow-moderate, bank type: debr flow deposits (cobbles), no outcrops, float is 70% green volcanics and 30% mudstones w/ qtz veins, precipitates are medium brown and a little shiny	399311 416857 417235	6328908 6321008 6319949 6317164	5.5 0.5 1.7	Au (ppb) BLEG 0.6		19.5 5.1 6.6	138 124 165	48 60.6 82.8	16.8 7.9 12.2	0.09 0.09 0.33	1.6 0.4
P	AN,MM AN,MM	(cut by high water), no outcrops, float types 90% green volcanic and 10% mudstones, precipitates are med brown slimy Channel width 4m, flowrate moderate, banktype is creek flood leaves-gravels-tree roots, float types are 80% green/reddish volcanics and 20% sed. Mudstones, precipitates light brown Channel width 1m, flow rate is slow-moderate, bank type: debr flow deposits (cobbles), no outcrops, float is 70% green volcanics and 30% mudstones w/ qtz veins, precipitates are medium brown and a little shiny	417235	6319949	1.7		0.3	6.6	165	82.8			_
P	AN,MM	leaves-gravels-tree roots, float types are 80% green/reddish volcanics and 20% sed. Mudstones, precipitates light brown Channel width 1m, flow rate is slow-moderate, bank type: debr flow deposits (cobbles), no outcrops, float is 70% green volcanics and 30% mudstones w/ qtz veins, precipitates are medium brown and a little shiny									12.2	0.33	1.4
		flow deposits (cobbles), no outcrops, float is 70% green volcanics and 30% mudstones w/ qtz veins, precipitates are medium brown and a little shiny	404586	6317164	1.8		0.2	12.3	140				
P	AN,MM										15.7	0.1	0.9
		Channel width 1m, flow rate is moderate, bank type: debris flow deposits cobble sized, no outcrops, float types are 60% green volcanics and 40% mudstones, precipitates are med- dark brown and slimy	405072	6315711	0.25		0.3	12.8	196		15.2	0.18	1.2
P	AN,MM	Channel width 2m, flow rate moderate, bank type: deposits silt to cobble, no outcrop, float types are 95% green volcanics (rare red) and 5% mudstone, precipitates are medium brown	405100	6316023	0.25		0.3	11.2	172	40.8	12.1	0,1	0.8
P	AN,MM	are 90% green volcanics and 5% reddish volcanics,		6314494	1.7		0.1	9.9	143	75	13.3	0.56	1.2
P	AN,MM	Channel width 3m, flowrate is fast, bank type: boulder debris flow?, outcrop in creek green cobbly volcanic, float types are green to reddish volcanics, precipitates are dark brown and slimy	40688	6314110	2.3		0.3	29.2	. 181	69.5	17.7	0.43	2.5
æ	AN,MM	Channel width is 4m, flowrate is fast, bank type: debris flow deposit w/ fallen trees, no outcrop, float type 85% green volcanics, 15% mudstone bedded, precipitates light brown and a little slimy		7 6319388	0.25		0.1	4.4	99	71.3	7.5	0.16	0.0
iP iP		AN,MM AN,MM	AN,MM Channel width 2.5m, flowrate is moderate, bank type: widespread debris flow sand to bubbles, no outcrop, float type: are 90% green volcanics and 5% reddish volcanics, precipitates are light brown AN,MM Channel width 3m, flowrate is fast, bank type: boulder debris flow?, outcrop in creek green cobbly volcanic, float types are green to reddish volcanics, precipitates are dark brown and slimy AN,MM Channel width Is 4m, flowrate is fast, bank type: debris flow deposit w/ fallen trees, no outcrop, float type 85% green volcanics, 15% mudstone bedded, precipitates light brown and a little slimy	AN,MM Channel width 2.5m, flowrate is moderate, bank type: 406663 widespread debris flow sand to bubbles, no outcrop, float types are 90% green volcanics and 5% reddish volcanics, precipitates are light brown 406887 AN,MM Channel width 3m, flowrate is fast, bank type: boulder debris flow?, outcrop in creek green cobbly volcanic, float types are green to reddish volcanics, precipitates are dark brown and slimy 406887 AN,MM Channel width 1s 4m, flowrate is fast, bank type: debris flow deposit w/ fallen trees, no outcrop, float type 85% green volcanics, 15% mudstone bedded, precipitates light brown and a little slimy 417533	AN,MM Channel width 2.5m, flowrate is moderate, bank type: 406663 6314494 widespread debris flow sand to bubbles, no outcrop, float types are 90% green volcanics and 5% reddish volcanics, precipitates are light brown 406663 6314494 AN,MM Channel width 3m, flowrate is fast, bank type: boulder debris flow?, outcrop in creek green cobbly volcanic, float types are green to reddish volcanics, precipitates are dark brown and slimy 406881 6314110 AN,MM Channel width Is 4m, flowrate is fast, bank type: debris flow deposit w/ fallen trees, no outcrop, float type 85% green volcanics, 15% mudstone bedded, precipitates light brown and a little slimy 417537 6319388	AN,MM Channel width 2.5m, flowrate is moderate, bank type: 406663 6314494 1.7 widespread debris flow sand to bubbles, no outcrop, float types are 90% green volcanics and 5% reddish volcanics, precipitates are light brown 406663 6314494 1.7 AN,MM Channel width 3m, flowrate is fast, bank type: boulder debris flow?, outcrop in creek green cobbly volcanic, float types are green to reddish volcanics, precipitates are dark brown and slimy 406881 6314110 2.3 AN,MM Channel width Is 4m, flowrate is fast, bank type: debris flow deposit w/ fallen trees, no outcrop, float type 85% green volcanics, 15% mudstone bedded, precipitates light brown and a little slimy 417537 6319388 0.25	AN,MM Channel width 2.5m, flowrate is moderate, bank type: 406663 6314494 1.7 widespread debris flow sand to bubbles, no outcrop, float types are 90% green volcanics and 5% reddish volcanics, precipitates are light brown 406663 6314494 1.7 AN,MM Channel width 3m, flowrate is fast, bank type: boulder debris flow?, outcrop in creek green cobbly volcanic, float types are green to reddish volcanics, precipitates are dark brown and slimy 406881 6314110 2.3 AN,MM Channel width Is 4m, flowrate is fast, bank type: debris flow deposit w/ fallen trees, no outcrop, float type 85% green volcanics, 15% mudstone bedded, precipitates light brown and a little slimy 417537 6319388 0.25	AN,MM Channel width 2.5m, flowrate is moderate, bank type: 406663 6314494 1.7 0.1 widespread debris flow sand to bubbles, no outcrop, float types are 90% green volcanics and 5% reddish volcanics, precipitates are light brown 406663 6314494 1.7 0.1 AN,MM Channel width 3m, flowrate is fast, bank type: boulder debris flow?, outcrop in creek green cobbly volcanic, float types are green to reddish volcanics, precipitates are dark brown and slimy 406881 6314110 2.3 0.3 AN,MM Channel width Is 4m, flowrate is fast, bank type: debris flow deposit w/ fallen trees, no outcrop, float type 85% green volcanics, 15% mudstone bedded, precipitates light brown and a little slimy 417537 6319388 0.25 0.1	AN,MM Channel width 2.5m, flowrate is moderate, bank type: 406663 6314494 1.7 0.1 9.9 widespread debris flow sand to bubbles, no outcrop, float types are 90% green volcanics and 5% reddish volcanics, precipitates are light brown 406663 6314494 1.7 0.1 9.9 AN,MM Channel width 3m, flowrate is fast, bank type: boulder debris flow?, outcrop in creek green cobbly volcanic, float types are green to reddish volcanics, precipitates are dark brown and slimy 406881 6314110 2.3 0.3 29.2 AN,MM Channel width Is 4m, flowrate is fast, bank type: debris flow deposit w/ fallen trees, no outcrop, float type 85% green volcanics, 15% mudstone bedded, precipitates light brown and a little slimy 417537 6319388 0.25 0.1 4.4	AN,MM Channel width 2.5m, flowrate is moderate, bank type: 406663 6314494 1.7 0.1 9.9 143 are 90% green volcanics and 5% reddish volcanics, precipitates are light brown AN,MM Channel width 3m, flowrate is fast, bank type: boulder debris flow?, outcrop in creek green cobbly volcanic, float types are green to reddish volcanics, precipitates are dark brown and slimy 406881 6314110 2.3 0.3 29.2 181 AN,MM Channel width Is 4m, flowrate is fast, bank type: debris flow deposit w/ fallen trees, no outcrop, float type 85% green volcanics, 15% mudstone bedded, precipitates light brown and a little slimy 417537 6319388 0.25 0.1 4.4 99	AN,MM Channel width 2.5m, flowrate Is moderate, bank type: widespread debris flow sand to bubbles, no outcrop, float types are 90% green volcanics and 5% reddish volcanics, precipitates are light brown 406663 6314494 1.7 0.1 9.9 143 75 AN,MM Channel width 3m, flowrate is fast, bank type: boulder debris flow?, outcrop in creek green cobbly volcanic, float types are green to reddish volcanics, precipitates are dark brown and slimy 406881 6314110 2.3 0.3 29.2 181 69.5 AN,MM Channel width Is 4m, flowrate is fast, bank type: debris flow deposit w/ fallen trees, no outcrop, float type 85% green volcanics, 15% mudstone bedded, precipitates light brown and a little slimy 417537 6319388 0.25 0.1 4.4 99 71.3	AN,MM Channel width 2.5m, flowrate is moderate, bank type: widespread debris flow sand to bubbles, no outcrop, float types are 90% green volcanics and 5% reddish volcanics, precipitates are light brown 406663 6314494 1.7 0.1 9.9 143 75 13.3 AN,MM Channel width 3m, flowrate is fast, bank type: boulder debris flow?, outcrop in creek green cobbly volcanic, float types are green to reddish volcanics, precipitates are dark brown and slimy 406881 6314110 2.3 0.3 29.2 181 69.5 17.7 AN,MM Channel width Is 4m, flowrate is fast, bank type: debris flow deposit w/ fallen trees, no outcrop, float type 85% green volcanics, 15% mudstone bedded, precipitates light brown and 417537 6319388 0.25 0.1 4.4 99 71.3 7.5	AN,MM Channel width 2.5m, flowrate Is moderate, bank type: 406663 6314494 1.7 0.1 9.9 143 75 13.3 0.56 widespread debris flow sand to bubbles, no outcrop, float types are 90% green volcanics and 5% reddish volcanics, precipitates are light brown 406663 6314494 1.7 0.1 9.9 143 75 13.3 0.56 AN,MM Channel width 3m, flowrate is fast, bank type: boulder debris flow, outcrop in creek green cobbly volcanic, float types are green to reddish volcanics, precipitates are dark brown and slimy 406881 6314110 2.3 0.3 29.2 181 69.5 17.7 0.43 AN,MM Channel width Is 4m, flowrate is fast, bank type: debris flow deposit w/ fallen trees, no outcrop, float type 35% green volcanics, 15% mudstone bedded, precipitates light brown and a little slimy 417537 6319388 0.25 0.1 4.4 99 71.3 7.5 0.16

2003 RDN and MOR Property Soils ICP

:

1

E

Sample #	Sampler	Easting	Northing	Au (ppb)	Ag (ppm)	Pb (ppm)	Zn (ppm)	Cu (ppm)	As (ppm)	Ha (ppm)	Sb (pom)
02258	MSL & MM	400883	6312050	7.2	0.5	27.4	273	179,8	49.9	0.07	3.4
02259	MSL & MM	400900	<u>631203</u> 8	9.5	0.6	31.6	271	168.4	70.4	0.08	3.3
02260	MSL & MM	400855	6312058	4.8	0.3	21.2	233	122.7	42.1	0.04	2
02262	MSL & MM	400830	6312064	6.3	0.6	25.2	229	164.2	36.3	0.03	3.1
02263	MSL & MM	400800	6312058	3.3	3.3	278.7	1097	69.7	45.8	0.06	9.9
<u>MMI-11800</u>	MM,CE	398677	6329484	2.7	0.2	8.5	54	29.3	7.9	0.08	0.6
MMI-11802	MM,CE	398731	6329509	2.2	0.6	12	59	72.2	9	0.17	0.6
MMI-11804	MM,CE	398779	6329463	0.25	0.1	5.3	67	28.7	6,8	0.04	0.5
MMI-11806	MM,CE	398852	6329471	1.8	0.1	10.8	41	16.7	6.4	0.09	0.3
MMI-12640	MM,CE	399035	6327496	2.8	0.2	7	74	37.9	6.7	0.11	0.4
MMI-12642	MM,CE	399092	6327491	2.3	0.1	7.2	64	36	16.8	0.12	1.4
MMI-12644	MM,CE	399141	6327481	1.7	0.4	9.3	59	32.7	8.4	0.12	0.4
MMI-12646	MM,CE	399186	6327475	0.6	0.1	9.4	55	23.7	9.1	0.11	0.5
MMI-12648	MM,CE	399239	6327488	2.1	0.4	12.7	33	32	8.3	0.12	0.2
	MM,CE	399271	6327490	1.9	0.2	12.9	58	28.8	10.8	0.08	0.6
MMI-12652	MM,CE	399319	6327478	1.3	0.5	14.1	137	56	26	0.07	0.6
MMI-13540	AN,MM	398592	6329911	0.25	0.1	3.7	51	19.8	4.1	0.04	0.4
MMI-13542	AN,MM	398637	6329908	0.9	0.1	5.4	60	26.1	9.2	0.06	0.5
MMI-13544	AN,MM	398680	6329907	2	0.2	11.4	68	29.6	13.7	0.06	0.7
MMI-13546	AN,MM	398728	6329910	4.9	0.2	8.1	57	23.6	5.6	0.12	0.4
MMI-13548	AN,MM	398774	6329911	2.7	0.3	11.5	47	18.6	7.1	0.1	0.4
MMI-13550	AN,MM	398823	<u>6329919</u>	4.1	0.05	5.6	62	30	5.3	0.05	0.3
MMI-13552	AN,MM	398867	6329910	1.8	0.2	11.5	43	17.7	6.9	0.06	0.4
	AN,MM	398867	6329910	<u> </u>	0.1	5.9	55	33.2	6.5	0.13	0.3
	AN,MM	398973	6329908	4.3	<u>0</u> .1	13.5	40	23	8.5	0.07	0.4
	MM,CE	398020	6329487	2.8	0.3	8.5		32.5	6.3	0.13	0.4
MMI-13560	MM,CE	398069	6329500	1.8	0.1	9.1	42	32.9	9.9	0.07	0.5
	MM,CE	398132	6329475	3.5	0.2	8	129	48.8	10.4	0.11	0.9
	MM,CE	398177	6329485	3	0.3	10.1	49	41.2	16.5	0.16	0.8
	MM,CE	<u>398220</u>	6329489	1.9	0.05	7	48	30.6	9.7	0.02	0.8
	MM,CE	398269	<u>6329487</u>	6	0.2	5.1	47	24.7	1.5	0.09	0.2
	MM,CE	398309	6329482	4.7	0.4	9.3	98	40.1	12.4	0.22	0.6
	MM,CE	398367	6329487	1.9	0.2	9.6	76	33.5	12	0.08	0.8
	MM,CE	398402	6329488	2.2	0.2	15.8	125	36.3	13.1	0.12	1.2
	MM,CE	398454	6329478	4.3	0.2	10.2	101	36	18.8	0.12	0.7
	MM,CE	398502	6329464	5	0.1	28.4	46	14.6	19	0.11	2.4
MMI-13580	MM,CE	398552	6329452	2.5	0.3	12	101	41.8	9.2	0.14	0.5

Page 1 of 3

ενενενενενενενείε ε ειε ε

ĩ

E ·

Sample #	Sampler	Easting	Northing	Au (ppb)	Ag (ppm)	Pb (ppm)	Zn (ppm)	Cu (ppm)	As (ppm)	Ha (opm)	Sb (pom)
MMI-13582	MM,CE	398604	6329481	2.3	0.2	10.8	92	39.2	8.8	0.11	0.5
MMI-13584	MM,CE	398643	6329481	4.6	0.2	9.3	41	42.3	10.3		0.5
MMI-13586	AN,CE	398000	6329102	2.1	0.1	4.8	63	40.5	7	0.19	
MMI-13588	AN,CE	398048	6329110	2.5	0.2	6.6	147	21.5	7.3	0.08	
MMI-13590	AN,CE	398099	6329107	2.4	0.7	5	97	29.9	2.9	0.21	0.3
MMI-13592	AN,CE	398143	6329094	5.8	0.3	7.3	34	31.2	4.3	0.13	
MMI-13594	AN,CE	398190	6329105	4.8	0.4	9.7	104	47	12.2	0.16	
MMI-13596	AN,CE	398244	6329103	1.8	0.2	11.3	172	32.6	8.6	0.08	0.5
MMI-13598	AN,CE	398283	6329080	3.3	0.3	6.5	86	34.2	8.3	0.13	
MMI-13600	AN,CE	398329	6329108	4.7	0.3	6.8	71	37.6	10.8	0.18	
MMI-13602	AN,CE	398377	6329082	12.9	0.4	13.5	146	86.4	34.8	0.14	
MMI-13604	AN,CE	398414	6329090	4.4	0.3	7.8	104	62.4	15.1	0.15	
MMI-13606	AN,CE	398477	6329082	2.7	0.2	9.8	94	42.1	17.2	0.13	
MMI-13608	AN,CE	398507	6329089	3.5	0.7	10.5	166	49	15.5	0.14	
MMI-13610	AN,CE	398580	6329076	3.4	0.2	7.2	98	53.9	12	0.09	0.6
MMI-13612	AN,CE	398639	6329093	5.1	0.2	13.4	70	26.3	9.9	0.18	0.5
MMI-13614	AN,CE	398699	6329145	3.1	0.5	10.9	110	54.3	7.3		
MMI-13616	AN,CE	398742	6329086	1.7	0.1	14.2	85	42.9	11	0.07	0.7
MMI-13618	AN,CE	398782	6329073	1.9	0.2	10.5	88	42.9	9.1	0.11	0.6
MMI-13620	AN,CE	398827	6329104	0.9	0.1	3.6	28	4.6	3.6	0.09	0.8
MMI-13622	AN,CE	398888	6329075	5.8	0.2	8.7	41	35.5	10.2	0.19	0.3
MMI-13624	AN,CE	398927	6329090	3.2	0.1	. 10,6	.41	34	15.5	0.13	0.6
MMI-13626	AN,MM	398255	6327806	0.9	0.4	8.8	72	46.1	9.4	0.1	0.8
MMI-13628	AN,MM	398303	6327816	1.3	0.1	11.5	105	31.1	12.8	0.12	0.5
MMI-13630	AN,MM	398353	6327820	4.9	0.2	5	53	40.8	6.5	0.14	0.4
MMI-13632	AN,MM	398400	6327812	2.7	0.2	7.6	85	57	7.4	0.13	
MMI-13634	AN,MM	398450	6327822	5.5	0.1	6.1	82	45.5	9.7	0.13	
MMI-13636	AN,MM	398495	6327819	3.9	0.1	4.5	83	33.8	6.1	0.16	
MMI-13638	AN,MM	398553	<u>632</u> 7814	3.7	0.2	5.6	65	31.7	9.5		
<u>MMI-13640</u>	AN,MM	398590	6327820	2	0.3	6.1	62	57.3	8.4	0.27	0.4
MMI-13642	AN,MM	398646	6327819	1.3	0.1	7.9	115	49.6	12	0.06	0.5
MMI-13644	AN,MM	398694	6327808	1.1	0.1	8.2	73	32	8.6	0.06	0.4
MMI-13646	AN,MM	398737	6327810	1.3	0.2	6.3	100	40.6	6.7	0.1	0.3
MMI-13648	AN,MM	398800	6327808	1.4	0.1	8.4	62	25.4	10	0.06	0.4
MMI-13650	AN,MM	398831	6327813	2.4	0.4	10.6	58	24.5	11.8	0.18	0.4
MMI-13652	AN,MM	398898	6327819	1	0.4	10.3	69	43.1	10.4	0.2	0.6
MMI-13654	AN,MM	398948	6327819	2.9	0.2	9.7	64	28.8	15		0.5

2003 RDN and MOR Property Soils ICP

:

ł

Sample #	Sampler	Easting	Northing	Au (nnh)	An (opm)	Ph (nom)	70 (0000)	Con Common			
MMI-13656	AN,MM	398998	6327819	<u>1.1</u>	Ag (ppm) 0.1	10.9		Cu (ppm)	As (ppm)		
MMI-13658	AN,MM	399048	6327819	3.6	0.1	7.3	46	15	8.4	0.09	0.4
MMI-13660	AN,MM	399098	6327819	1.9	0.4	10.9			10.4	0.15	<u> </u>
MMI-13662	AN,MM	399148	6327819	4	0.1	10.9	79 57	21.6	10.2	0.1	0.5
MMI-13664	AN,MM	399175	6327800	3	0.1	9.4	66	26.9	12.7	0.13	0.5
MMI-13666	AN,MM	399214	6327808	0.5	0.1	12.4	109	30.5	11.5	0.12	0.6
MMI-13668	(MM,CE	398265	6327515	1.4	0.1	8.4	60	31	11.7	0.06	0.4
MMI-13670	MM,CE	398313	6327510	0.7	0.1	4.6	101	<u>49.5</u> 25.1	9.7	0.13	0.8
MMI-13672	MM,CE	398363	6327510	0.9	0.3	6.3	73	25.1	10.9	0.04	0.8
MMI-13674	MM,CE	398407	6327510	1.1	0.2	6	42		6	0.09	0.4
MMI-13676	MM,CE	398472	6327520	0.6	0.4	8.2	25	32.3	5.8	0.09	0.4
MMI-13678	MM,CE	398505	6327511	3.8	0.3	6.5	38	23.2	4.6	0.04	0.2
MMI-13680	MM,CE	398559	6327523	2.1	0.8	7.8	70	28.4	8.6	0.19	0.5
MMI-13682	MM,CE	398590	6327508	1.1	0.3	8.1	67	26.5	9	0.16	0.5
MMI-13684	MM,CE	398638	6327510	3	0.3	8.7	52	20.5	<u>9.6</u> 8.3	0.07	0.6
MMI-13686	MM CE	398695	6327514	4	0.2	5.9	96	63.7	<u> </u>	0.17	0.5
MMI-13688	MM,CE	398737	6327499	3.5	0.6	6.8		30.6	<u> </u>	0.14	0.6
MMI-13690	MM,CE	398794	6327504	6.6	0.3	6.3	37	39.9	<u>0.0</u> 5.7	0.17	0.5
MMI-13692	MM,CE	398841	6327502	2.5	0.2	6.6	37	35.9	4.8	<u> </u>	0.4
MMI-13694	MM,CE	398884	6327505	1.4	0.3	7.1	50	24.8	<u>4.0</u> 7.4	0.13	0.4
MMI-13696	MM,CE	398937	6327500	5.3	0.3	11.9	41	27.4	13.4	0.13	0.4
MMI-13698	MM,CE	398977	6327500	2.7	0.4	7.6	112	40.2	70.7	0.21	0.5
MMI-2226	AN,MM	398017	6329919	3.4	0.1	9.7	84	40.7		0.12	0.4
MMI-2228	AN,MM	398067	6329906	3.5	0.1	9.5	73	51.2	<u>14</u>	0.04	0.7
MMI-2230	AN,MM	398115	6329922	2.4	0.2	7.2	69	40.8	12.3	0.15	0.8
MMI-2232	AN,MM	398159	6329900	2.4	0.4	9	64	34.9	11.9	0.13	<u>0.7</u> 0.7
MMI-2234	AN,MM	398210	6329918	1.8	0.2	71	99	51.4	11.7	0.2	
MMI-2236	AN,MM	398256	6329911	0.25	0.05	3.2	33	19.8	4.2	0.07	0.6
MMI-2238	AN,MM	398303	6329917	6.8	1.5	9.8	37	25.6	<u> </u>	0.02	
MMI-2240	AN,MM	398342	6329910	5.2	0.6	10.7	111	55	13.8	0.33	0.6
MMI-2242	AN,MM	398396	6329907	3.4	0.3	15.9	144	48.2	22.7	0.13	1.1
MMI-2244	AN,MM	398460	6329917	5.3	0.2	9	117	48.1	11.1	0.13	<u> </u>
MMI-2246	AN,MM	398493	6329911	2.9	0.2	8.9	83	47	10.9	0.17	
MMI-2248	AN,MM	398542	6329912	4.3	0.3	14.3	71	38.6	14.6	0.19	0.8
									<u></u>	0.19	
Notes:	All coordinate	s are listed a	as UTM Zor	ie 9, Nad	83 projectio	n –					

2003 RDN and MOR Property Soil Samples MMI

.

Sample #	Sampler	Easting	Northing	Au (ppb)	Ag (ppb)	Pd (ppb)	Ni (ppb)	Co (opb)	As (ppb)	Sb (ppb)	Ha (ppb)	Mo (ppb)	Se (ppb)	Fe (ppm)
MMI-11575	MM,CE	398677	6329484	-1	-1	-1	-1	-1	~1	-1	-1	-1	-1	-1
MMI-11801	MM,CE	398731	6329509	0.04	4.2	0.2	7	3.3	8	2	1.5	2.5	6	384
MMI-11803	MM,CE	398779	6329463	0.07	7.5	0.4	131	23.1	257	29	1.5	99	21	389
MMI-11805	MM,CE	398852	6329471	0.05	0.3	0.1	26	22	26	2	1.5	2.5	14	725
MMI-12639	MM,CE	399035	6327496	0.06	0.1	0.1	59	20.7	3	0.5	1.5	2.5	15	21.5
MMI-12641	MM,CE	399092	6327491	0.06	1.3	0.05	24	28.6	70	10	1.5	2.5	13	868
MMI-12643	MM,CE	399141	6327481	0.03	0.4	0.1	19	12.5	2	0.5	1.5	2.5	8	21.1
MMI-12645	MM,CE	399186	6327475	0.005	0.05	0.1	53	17.5	40	3	1.5	5	15	877
MMI-12647	MM,CE	399239	6327488	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
MMI-12649	MM,CE	399271	6327490	0.005	0.1	0.1	78	27	33	3	1.5	2.5	12	835
MMI-12651	MM,CE	399319	6327478	0.005	0.3	0.5	12	37.7	-1	-1	-1	-1	-1	-1
MMI-13541	AN,MM	398637	6329908	0.06	5.1	0.1	117	25	179	21	1.5	44	17	304
MMI-13543	AN,MM	398680	6329907	0.06	1.9	0.3	25	9	59	4	1.5	14	11	686
MMI-13545	AN,MM	398728	6329910	0.07	1.2	0.05	9	11	13	2	1.5	2.5	15	493
MMI-13547	AN,MM	398774	6329911	0.03	0.05	0.05	55	14.9	-1	-1	-1	-1	-1	-1
MMI-13549	AN,MM	398823	6329919	0.09	0.6	0.05	3	4.2	6	0.5	1.5	2.5	10	320
MMI-13551	AN,MM	398867	6329910	0.08	5.4	0.05	4	9.5	9	1	1.5	2.5	11	222
MMI-13553	AN,MM	398867	6329910	0.11	2.2	0.05	5	13.2	8	1	1.5	2.5	14	313
MMI-13555	AN,MM	398973	6329908	0.02	0.2	0.05	44	14	-1	-1	-1	-1	-1	-1
MMI-13557	MM,CE	398020	6329487	0.01	0.5	0.1	26	14.9	23	2	1.5	2.5	12	838
MMI-13559	MM,CE	398069	6329500	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
MMI-13561	MM,CE	398132	6329475	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
MMI-13563	MM,CE	398177	6329485	0.01	0.05	0.05	76	19.5	42	4	1.5	2.5	22	792
MMI-13565	MM,CE	398220	6329489	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
MMI-13567	MM,CE	398269	6329487	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
MMI-13569	MM,CE	398309	6329482	0.16	1.5	0.1	25	12.8	20	3	1.5	2.5	17	600
MMI-13571	MM.CE	398367	6329487	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
MMI-13573	MM.CE	398402	6329488	0.14	9.6	0.05	21	31.9	13	5	1.5	2.5	18	197
MMI-13575	MM,CE	398454	6329478	0.05	1.9	0.4	120	11.7	7	8	1.5	7	10	525
MMI-13577	MM,CE	398502	6329464	0.11	0.1	0.05	3	10	-1	-1	-1	-1	-1	-1
MMI-13579	MM,CE	398552	6329452	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
MMI-13581	MM,CE	398604	6329481	0.02	2.2	0.3	8	- 33:4	5	2	1.5	2.5	8	310
MMI-13583	MM,CE	398643	6329481	0.04	0.3	0.05	59	23.7	-1	-1	-1	-1	-1	-1
MMI-13585	AN,CE	398000	6329102	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1
MMI-13587	AN,CE	398048	6329110	0.01	0.05	0.3	10	3.2	2	5	1.5	7	6	403
MMI-13589	AN,CE	398099	6329107	-1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1
MMI-13591	AN,CE	398143	6329094	0.005	0.2	0.05	52	11.2	29	2	1.5	2.5	14	695
MMI-13593	AN,CE	398190	6329105	0.005	0.2	0.05	51	32.9	1	-1	-1	-1	-1	-1
MMI-13595	AN,CE	398244	6329103	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
MMI-13597	AN,CE	398283	6329080	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
MMI-13599	AN,CE	398329	6329108	0.02	0.1	0.05	41	12.4	-1	-1	-1	-1	-1	-1

2003 RDN and MOR Property Soil Samples MMI

E

E

E

.

Ε΄ Ε΄ Ε΄ Ε΄ Ε΄ Ε

Sample #	Sampler	Easting	Northing	Ац (орб) -	Ag (ppb)	Pd (ppb)	NI (ppb)	Co (ppb)	As (ppb)	Sb (ppb)	Hg (ppb)	Mo (ppb)	Se (ppb)	Fe (ppm)
MMI-13601	AN,CE	398377	6329082	0.05	8.6	0.05	11	16.2	34	14	1.5	8	17	487
MMI-13603	AN,CE	398414	6329090	0.08	7.6	0.05	13	28.1	40	8	1.5	2.5	17	686
MMI-13605	AN,CE	398477	6329082	0.005	0.2	0.05	50	11.1	-1	-1	-1	-1	-1	-1
MMI-13607	AN,CE	398507	6329089	0.01	14.5	0.2	11	28	21	9	1.5	19	20	410
MMI-13609	AN,CE	398580	6329076	0.15	8.8	0.1	16	19.5	14	5	1.5	2.5	20	189
MMI-13611	AN,CE	398639	6329093	0.04	0.2	0.05	26	14.4	16	1	1.5	2.5	10	573
MMI-13613	AN,CE	398699	6329145	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
MMI-13615	AN,CE	398742	6329086	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
MMI-13617	AN,CE	398782	6329073	0.005	0.1	0.05	11	32.3	-1	-1	-1	-1	-1	-1
MMI-13619	AN,CE	398827	6329104	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
MMI-13621	AN,CE	398888	6329075	0.03	0.9	0.05	19	20	47	2	1.5	2.5	20	930
MMI-13623	AN,CE	398927	6329090	0.02	3.9	0.05	13	16.7	6	1	1.5	2.5	13	340
MMI-13625	AN,MM	398255	6327806	0.03	1.7	0.05	17	18.3	6	1	1.5	2.5	9	372
MMI-13627	AN,MM	398303	6327816	0.005	0.3	0.05	20	13.9	20	2	1.5	2.5	15	755
MMI-13629	AN,MM	398353	6327820	0.005	2.9	0.05	14	20	48	4	1.5	6	18	887
MMI-13631	AN,MM	398400	6327812	0.005	3.7	0.05	7	18.4	17	3	1.5	2.5	14	557
MMI-13633	AN,MM	398450	6327822	0.04	6.9	0.05	8	14.7	25	4	1.5	12	18	452
MMI-13635	AN,MM	398495	6327819	0.01	0.9	0.05	7	13.5	17	3	1.5	2.5	17	745
MMI-13637	AN,MM	398553	6327814	0.02	5.4	0.05	1.5	7	21	3	1.5	2.5	15	790
MMI-13639	AN,MM	398590	6327820	0.09	8.6	0.05	1.5	4.2	14	3	1.5	2.5	20	297
MMI-13641	<u>AN,M</u> M	398646	6327819	0.02	6.2	0.1	10	4.6	20	8	1.5	52	16	491
MMI-13643	AN,MM	398694	6327808	0.01	3.2	0.2	26	24.3	13	14	1.5	11	17	415
MMI-13645	AN,MM	398737	6327810	0.005	0.05	0.05	1.5	0.3	-1	-1	-1	-1	-1	-1
MMI-13647	AN,MM	398800	6327808	0.005	0.05	0.1	17_	19.2	51	3	1.5	14	14	880
MMI-13649	AN,MM	398831	6327813	0.005	0.3	0.05	11	21.4	17	2	1.5	2.5	13	699
MMI-13651	AN,MM	398898	6327819	0.005	3.8	0.05	6	14.3	14	1	1.5	2.5	15	566
MMI-13653	AN,MM	398948	6327819	0.005	0.05	0.05	22	10.7	1	1	-1	-1	-1	-1
<u>MMI-13655</u>	AN,MM	398998	6327819	0.03	0.05	0.05	11	12.3	35	3	1.5	14	47	887
MMI-13657	AN,MM	399048	6327819	0.14	17.1	0.05	5	9	20	2	4	2.5	27	692
MMI-13659	AN MM	399098	6327819	0.06	0.6	0.05	12	12.3	19	1	1.5	2.5	18	910
MMI-13661	AN,MM	399148	6327819	0.04	0.3	0.05	10	9.7	21	2	1.5	2.5	21	905
MMI-13663	AN,MM	399175	6327800	0.02	2.6	0.05	7	11.2	18	1	1.5	2.5	19	760
MMI-13665	AN,MM	399214	6327808	0.06	19.1	0.05	28	4.3	17	2	1.5	2.5	10	646
<u>MMI-13667</u>	MM,CE	398265	6327515	0.04	0.1	0.05	106	28.1	-1	-1	-1	-1	-1	-1
MMI-13669	MM,CE	398313	6327510	0.005	0.4	0.05	20_	12.5	29	4	1.5	8	7	542
MMI-13671	MM,CE	398363	6327510	0.005	0.2	0.05	13	46.3	-1	-1	-1	-1	-1	-1
MMI-13673	MM,CE	398407	6327510	0.005	0.1	0.05	38	12.4	41	1	1.5	2.5	16	931
MMI-13675	MM,CE	398472	6327520	0.005	8.5	0.05	27_	8.4	_ 41	2	1.5	9	20	1030
MMI-13677	MM,CE	398505	6327511	0.005	0.5	0.05	42_	16.7		-1	-1	-1	~1	-1
MMI-13679	MM,CE	398559	6327523	0.02	1.7	0.05	11	6.9	10	0.5	1.5	2.5	12	501
MMI-13681	MM,CE	398590	6327508	0.005	0.6	0.05	56	18.8	_16	0.5	1.5	2.5	16	757

2003 RDN and MOR Property Soil Samples MMI

E

Sample #	Sampler	Easting	Northing	Au (ppb)	Ag (ppb)	Pd (ppb)	Ni (ppb)	Co (ppb)	As (ppb)	Sb (ppb)	Ha (ppb)	Mo (ppb)	Se (ppb)-	Fe (ppm)
MMI-13683	MM,CE	398638	6327510	0.005	0.6	0.05	37	10.9	43	3	1.5	9	27	960
MMI-13685	MM,CE	398695	6327514	0.15	14.1	0.05	5	3.6	19	3	1.5	2.5	31	427
MMI-13687	MM,CE	398737	6327499	0.05	7.4	0.05	10	10.6	29	2	1.5	6	25	736
MMI-13689	MM,CE	398794	6327504	0.005	0.5	0.05	24	9.9	43	1	1.5	12	25	1040
MMI-13691	MM,CE	398841	6327502	0.005	1.4	0.05	18	12.1	9	0.5	1.5	2.5	12	418
MMI-13693	MM,CE	398884	6327505	0.005	0.3	0.05	27	14.5	-1	-1	-1	-1	-1	-1
MMI-13695	MM,CE	398937	6327500	0.005	0.4	0.05	.25	9.8	34	1	1.5	7	9	633
MMI-13697	MM,CE	398977	6327500	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
MMI-2225	AN,MM	398017	6329919	0.19	2	0.1	16	47.3	17	5	1.5	2.5	14	553
MMI-2227	AN,MM	398067	6329906	0.11	1.7	0.05	40	14.2	44	3	1.5	2.5	18	861
MMI-2229	AN,MM	398115	6329922	0.12	2	0.05	11	11.2	35	4	1.5	6	22	645
MMI-2231	AN,MM	398159	6329900	0.13	1.4	0.2	16	14.9	32	4	1.5	2.5	15	735
MMI-2233	AN,MM	398210	6329918	0.12	2.1	0.3	31	33.2	18	24	1.5	6	19	639
MMI-2235	AN,MM	_398256	6329911	0.16	3.8	0.4	74	15.3	185	20	1.5	36	35	294
MMI-2237	AN,MM	398303	6329917	0.13	1.6	0.05	24	14.6	17	2	1.5	2.5	18	777
MMI-2239	AN,MM	<u>3</u> 98342	6329910	0.15	11	0.1	23	43.2	3 9	13	1.5	2.5	43	649
MMI-2241	AN,MM	398396	6329907	0.15	5.1	0.1	15	29.9	33	3	1.5	2.5	23	458
MMI-2243	AN,MM	398460	6329917	0.14	3.4	0.2	13	8.7	16	2	1.5	2.5	15	597
MMI-2245	AN MM	398493	6329911	0.28	1.6	0.05	20	78.6	34	5	1.5	5	13	652
MMI-2247	AN,MM	398542	6329912	0.11	0.4	0.05	73	18.8	7	0.5	1.5	2.5	9	462
MMI-2249	AN,MM	398592	6329911	0.08	4	0.3	238	32.2	232	53	1.5	61	_20	546
Notes:	-1 designat	es sample	s that conta	in a high a	mount of a	organic mat	erial and o	annot be a	analysed b	y MMI or ca	an designa	te "insuffici	ent sample"	,
	All coordina	ates are lis	ted as UTM	Zone 9, N	lad 83 proj	ection								-

Т

			Description	Easting	Northing	Rock Type	Aŭ (opb)	Ag (ppm)	Pb (ppm)	Zn (ppm)	Cu (ppm)	As (ppm)	Hg (ppm) I	Sb (ppm)
01471	Rock Chip	ICD	Highly sheared mudstone; very friable; weak fe staining; trace py	398384	6330923	Mudstone	2.1	0.1	20.1	150		10.6	0,15	0.4
01472	Rock Chip	ICD	Highly sheared mudstone; very friable; weak fe staining; trace py	398384	6330923	Mudstone	2	0.1	18.1	72	38	11.6	0.13	0.3
01473	Rock Chip	ICD	Highly sheared mudstone; very friable; weak-mod fe staining; local veining; 1% py	398357	6330949	Mudstone	0.9	0.3	29.7	103	45.8	15.2	0.04	1.1
01474	Rock Grab	ICD	Highly sheared mudstone; fairly competent; strong Fe staining and graphite on shear planes; 1% py	398357	6330949	Mudstone	0.8	0.6	58.3	101	47.4	23.8	0.07	1.9
01475	Rock Grab	ICD	Highly altered margin adjacent to mudstone; strong ser/chl; 1-2% pyrite	398357	6330949	Rhyolite	0.25	0.1	8.9	66	45.7	7.8	0.02	0.4
01476	Rock Grab		Highly altered margin adjacent to mudstone; strong ser/chl; 1-2% pyrite	398357	6330949	Rhyolite	0.9	0.1	6.9	96	32.5	5.2	0.01	0.2
01477	Rock Grab	ICD	Mg, gy, siliceous rhyolite; massive with patchy fuchsite and 1-2% pyrite	398357	6330949	Rhyolite Tuff	0.25	0.05	6	68	6.1	4.3	0.02	0.1
01480	Rock Grab	ICD	M gy to buff; rusty weathered surface; no visible textures; cut by 265/85 shearing; possible layering at 215/70; Sample ICD03-15	400740	6311487	Rhyolite	0.25	0.1	14.5	26	8.5	4.1	0.02	0.7
01481	Rock Grab	ICD	Well veined rhyolite with 10cm band of white mutii-phase qz veining at 300-310 Az & 70-80 dip; individual veins to 2 3 cm with black graphitic margins; vein located along margin of rhyolite; Sample ICD03-6		6311487	Rhyolite	0.25	0.1	2.1	30	15	12.8	0.03	0.6
01482	Rock Grab	ICD	Highly graphitic mud matrix breccla with ang frags to 5 cm in size; moderate to strong veining; Sample ICD03-17	400770	6311488	Mud Matrix Rhyolite Breccia	0.25	0.5	10.9	49	53.1	57.6	0.08	3.3
01483	Rock Grab	ICD	Narrow band of graphitic fault gouge along the western edge of the rhyolite o/c; trending 320/80; very friable and soft with remnants of quartz veins; Sample ICD03-18	400770	6311488	Sheared mudstone/gouge	0.25	1.3	1646.9	1088	38.4	19.8	0.4	1.3
02250	Rock Grab	MSL	Flow-banded rhyolite; FeOx along fractures, <1% fresh finely diss Py along fractures	398600	6329035	Rhyolite	0.25	0.05	13.9	36	5.2	6.6	0.11	0.7
02251	Rock Grab	MSL	Massive rhyolite, fine grained, fresh sfc light to medium gray, weathers white; FeOx along fractures, 1-2% fresh pyrite along fractures	398652	6329000	Rhyolite	0.6	0.05	14.9	49	4.8	9.2	0.35	0.5
02252	Rock Grab	MSL	Massive rhyolite, fine grained, moderately fractured; very little FeOx along fractures, no visible sulphides	398677	6328903	Rhyolite	0		0	0	0	0		0
02254	Rock Grab	MSL	small (1-5mm) subangular and wispy sericite alt'd lithic frags; FeOx along fractures	399347	6328320	Rhyolite lithic tuff	0		0	0	0	0		0
02256	Rock Grab	MSL	strongly silicified dacite(?), 10-15% finely diss py t/o	400758	6312197	dacite/rhyolite?	0.25	1.8	180.8	109	52.2	46.6	0.58	39.1
02257	Rock Grab	MSL	orange-weathering carb veins in basalt, slightly carb-alt'd wallrock	400883	6312050	basalt	0.7	0.2		106			0.04	2.8
02261	Rock Grab	MSL	weakly silicified basalt, strongly carb and Q-carb veined t/o	400857	6312076	basalt	0.25	0.1	3.9	31	27.7	11.5	0.01	0.9
02271	Rock Grab	MSL	moderately pervasively silica alt'd dacite tuff, weathers mottled orange/rust/white/buff coloured; parallel quartz-cc veinlets (035/80SE; most are 0-10/90), 1-2% Py, tr specks galena and possibly tr fg sphalerite in veinlets		6312192	DACITE LAPILLI CRYSTAL TUFF	1.2	0.8	607.3	1542	26.2	8.1	0.18	8.4
02272	Rock Grab	MSL	Massive, dk gray, strongly siliceous (very hard on fresh surface); weathers white and gossanous; no textures visible on fresh surface, possibly tuffaceous texture on wthd sfc; good fresh sample for Whole Rock analysis	400740	6312218	RHYOLITE?DACITE ?	0.25	0.1	34.6	29	23.3	23	0.47	16.3

.

Sample #	Samp Type	Sample	Description	Easting	Northing	Rock Type	AU (ppb) /	ig (pain).	Pb (ppm)	Zn (ppm)	Cu (opm)	As (ppm)	Hg (ppm)	Sb (ppm)
02273	Rock Grab	MSL	buff/brown on weathered surface, light gray on very fresh surface, siliceous; 1-3mm frags (It gray in light gray matrix), fs xtals, rare biot			DACITE/RHYOLITE ? CRYSTAL LAPILLI TUFF	2.1	1.1	81		14.9	271.9	0.31	9.5
02274	Rock Float	MSL	Odd white coating on rocks in stream near gossanous ridge	400700	6311989	mainly dacite	0.9	0.8	197.9	561	71.4	43.9	0.22	18.8
02275	Rock Grab	MSL	Rhyolite (or intensely altered dacite) with patches and fracture-fill pyrite, Py is vfg and dark coloured, in fractures looks almost black	400727	6311969	DACITE?RHYOLITE ? CRYSTAL LAPILLI TUFF	2.1	15.3	382.5	414	18.1	1598.2	1.33	55.1
02276	Rock Float	MSL	Large gossanous boulder from o/c above; It gray on fresh sfc, feldspar crystal tuff, very hard, sil, like o/c above (sample 02275); Py occurs as vfg dk fracture fill and as small lenses, no diss Py	400722	6311974	Rhyodacite/Rhyolite? xtal tuff	1.8	10.9	297.7	517	18.5	2314,9	0.9	43
02277	Rock Float	MSL	Float boulder beside 02276, siliceous, md gray xtal tuff, more Py than 02276	400722	6311974	Rhyolite crystal tuff	1.2	13.4	340.4	516	80.8	3077,7	0.82	62.7
02278	Rock Float	MSL	Float boulder is from one of several gossanous zones in o/c (flat siliceous rock impossible to sample); med gray rhyolite lapilli tuff, sil frags, more abd't than usual (30%, normally only few % frags)	400785	6311970	Rhyolite lapilli xtal tuff	1	44.6	1027.4	439	155.3	1626.7	0.65	293.4
02279	Rock Float	MSL	Very siliceous, fg, mg gray featureless rock; CPY and PY along fractures, samples have more than whole rock does(<1%); also Fecarb along fractures (minor); sample is from angular pieces of float similar to o/c		6311860	Rhyolite?	23.3	145.9	381.2	520	8990	818.6	6.14	511.2
02280	Rock Grab	MSL	Sample mainly for whole rock; It to md gray fg rhyolite, no textures visible on fresh or weathered surface (vague tuffaceoue txtrs elsewhere in o/c, possibly crystal tuff); sample from roughly 30m N of L1100N	400705	6311330	Rhyolite	1.5	0.9	24.2	153	42.4	16,9	0.09	4.7
02281	Rock Float	MSL	Pale gray/white gossanous piece of float below rhyolite o/c near L1100N; 30cmx30cm piece of float in area of gossanous float in small runoff stream bed	400667	6311304	Rhyolite xtal tuff	2.9	0.3	17.1	12	8.4	8.7	0.06	0.5
02282	Rock Float	MSL	White alt'd and weathered crystal (minor lapilli) tuff, piece of gossanous float in area of much gossanous float	400667	6311306	Rhyolite xtal lapilli tuff	7.6	0.4	13.3	11	24.3	11.7	0.07	0.7
02283	Rock Grab	MSL	Md gray sil rhy, sample from below small gossanous area in o/c; vfg diss and blebs of vfg silver metallic xtals, galena (or specularite?)		6311330	Rhyolite lapilli tuff (bx?)	21.8	1.1	2782.1	1214	58.5	9.9	0.95	19.5
02284	Rock Grab	MSL	Parallel quartz veining in rhyolite, most about 1cm in width, tr specks Py in qv, wallrock not altered; veins trend mainly 065/55-60 and 040-050/45-50	400701	6311342	Quartz veins in rhyolite	6.8	1.3	103.1	94	16	13,2	0.32	2.6
02285	Rock Grab	MSL	Weakly sheared sericite alt'd rhyolite (blocky, not too broken up); shear/alt'n zone 230/80; several similar zones t/o o/c, not as pyritic as float below (02281, 02282)		6311342	Rhyolite	1.4	2.3	193.1	147	21.6	16.4	0.41	3.1
02286	Rock Grab	MSL	Small gossanous zone in rhyolite o/c just above picket L1200N 5700E; rnd gray on very fresh sfc, wthd rind white		6311390	Rhyolite fs & qtz xtal tuff	24.4	3	915.7	1981	31.5	33.2	3.43	5.5
02287	Rock Float	MSL	Pale to md greenish/gray fs xtal and 2-3mm lapilli tuff, gossanous float in area of high % gossanous float above myolite o/cs	400802	6311495	Dacite fs crystal lapilli tuff	0.25	0.1	3.8	88	105.4	17.4	0.04	0.1
02288	Rock Grab	MSL	Silica and carb alt'd xtal (& minor lapilli) tuf; altered wallrock 40-50cms west of vein (02289); mineralization is mainly very finely diss silver metallic (Gal? Tetrahedrite? definitely galena where slightly coarser), dk vfg specks possibly Sp	400690	6312124	Dacite xtal tuff	0.25	1.9	41900	2775	23.5	57	0.27	17.9

			Description	Easting	Northing	Rock Type	Au (ppb)	Ag (ppm)	Pb (ppm)	Zn (ppm)	Cu (ppm)]	As (ppm)	l (ppm) l	Sb (pom)
02289	Rock Grab		Sample is mainly qtz-cc-Fecarb vein (with minor included alt'd wallrock); qtz vein is brecciated and infilled with carb; galena occurs as very fine disseminations, ff, and as blebs of very fine xtals	400691	6312132	Quartz-carbonate vein	0.25	0.8	1894.7	8115	15.7	8.9	2.13	9.7
02290	Rock Grab		Fg md gray mod siliceous rock with incredibly finely diss Py and lesser Cpy t/o, possibly up to 10-15% in places, 1- 3% coarser diss Py; blebby flattened cpy along frcts with Py, also darker mineral (SP?).			Dacite (possibly fine tuff or fg flow)	0.25	362.7	783.1	1222	7147.6	444.6	9.4	2360
02291	Rock Grab	MSL	Vfg silica, md to bluish gray, conchoidal fracture, cherty/chalcedonic-looking vein (?); 3mx35m irregular body, narrows and pinches out to N &S, contains blocks of wallrock; chalcedonic quartz is frctd and bx'd, infilled with cc,Fecarb, fg qtz & tr sulphs		6311854	Chalcedony(?) and qtz-carb vein(?)	0.25	24.2	143.1	228	305	47.2	0.75	99
02292	Rock Grab		Md greenish gray alt'd xtal lapilli tuff (dacite?); finely to very finely diss sulphs t/o, mainly galena (also as slightly coarser xtals in rare cc veinlets; near CN with sil vein (?), sulphs decrease away from CN; at edge of small E-W guily (fault?)	400720	6311862	Dacite	0.25	38.1	5335.6	2953	443.2	25.6	3.79	116.5
02311	Rock Grab	ММ	Pervasively carb and ser altered lithic tuff (originally purple), rusty shears, tr diss Py; fol'n 212/76	400724	6311328	Altered andesite/dacite heterolithic tuff	5.8	0.2	9.1	56	30,4	6	0.02	1.5
02312	Rock Grab	MSL	bleached white and gossanous, can still see clay alt'd plag and kspar phenos in white bleached ser-clay FeOx matrix	400571	6311363	Altered purple andesitic/dacitic porphyry (plag, larger kspar, hb phenos)	2	0.5	20.6	59	14	8,3	0.06	0.7
02313	Rock Grab	MSL&AN	O/C above Baknes 1998 float sample #130286; 20-50cm alteration zone; central mineralized zone in core of alteration, sulphs variable t/o, black Sp,Gai, Cpy (sample was somewhat highgraded); alt'n zone trends roughly 205/80, pinches out at one end	400452	6311453	dacitic tuff/aggl/cngl; at least partially reworked	5240	10.2	18500	170400	3715.5	13.7	190	2
02314	Rock Grab	MSL	Altered and min zone in maroon volcanics (seems about parallel to bedding) but min and alt'n structure controlled; patchy min in whole alt'n zone, one narrow 1-2cm zone within larger zone with high-grade Gal, Sp	400242	6311310	Altered dacite/andesite purple porphyry (see 02312)	83.7	5.5	14800	2521	2135	8.9	2.89	3.8
02315	Rock Grab	AN&MSL	Altered purple porphyritic dacite/andesite. Fracture controlled mineralization, narrow frct fill	400240	6311315	Altered and fractured purple porphyry (see 02312)		10.3	8500	20000	4355.5	39.6	21.49	4.3
02316	Rock Grab	MSL	Bleached white FeOx weathered rind, fresh sfc is md gray with white ser and clay alt'd feldspars, diss Py t/o	400130	6311308	Altered purple porphyry (see sample 02312)	0.25	0.1	78.7	99	42.4	11	0.37	0.8
02317	Rock Chip	MSL	1.5m chip; interbedded dacite (porphyry or xtal tuff) and mudstone; strongly foliated, sheared, faulted; cleavage variable t/o O/C, bedding very variable (in fault zone); cleavage 110/90, in places dips steeply to N	399797	6311249	Interbedded graphitic mudstone and alt'd dacite	0.25	0.2	58,1	149	31.6	16.4	0.21	0.6
02318	Rock Chip	MSL.	As for 02317; cleavage here 070/80, strongly gougy in places	399796	6311217	Finer interbeds than 02319 of black mdst and voic tuff/epiclastic, 1- 3cms beds,	0.25	0.2	18.7	101	31.6	13.1	0.08	0.5

E

Sample #	Samp Type	Sampler	Description	Easting	Northing	Rock Type	Au (opb) (A	Ag (com) II	⁹ b (opm) (Z	n (opm) i	Guilopmil	S (MODIN)	lg (pom) IS	b (pom)
02323	Rock Float	MSL	Float from gossan train below large gossan cliffs; black fairly siliceous mdst, pods and lenses of Py, only along one edge of float bld (rest unmineralized); from west side of RDN13: Permian/Devonian rocks.	399210	6312105	Mudstone	0.25	0.6	13.1	92	18.7	55.6	0.17	1.6
02324	Rock Float	MSL	Float from gossanous train of blds below gossanous cliffs; pale gray/green with pale purplish patches, strongly sil; gossanous and pale on weathered sfc; .5m x .5m bld; west side of RDN13: Permian/Devonian rocks	399181	6312078	Strongly alt'd volcanic?	3.4	0.1	3.8	4	4	3,4	0.02	0.7
02325	Rock Float	MSL	Dk purple and greenish andesite, fg, can't see any textures; frctd, q-carb-veined, slightly bleached in places - carb ait'n, min along fractures	399069	6312125	Andesite	12.6	3.9	1.6	46	10590	1,2	0.6	0.7
02326	Rock Grab	MSL	Silicified mudstone with rare Py lenses (sample is high grade); strongly deformed o/c, strongly qtz veined (30% qv) and silicified; streaky gossanous patches; Py is very patchy lenses, not in veins	398957	6312212	Silicified mudstone	0.25	0.6	10.6	19	75.7	73.3	0.13	2.7
02327	Rock Float	MSL	Mottled purple and green fg andesite with qtz and cc vnlts, malachite on wthd sfc, in vnlts, along frcts; Tt specks (or specular hematite? Too small to tell streak) in qtz vnlts	399506	6313544	Andesite	430	0.9	4.6	61	1358.3	3.9	0.04	0.6
02328	Rock Float	MSL	Qtz veins in andesite with Py, tr Cpy; a few parallel qvs: 025/85-90	399505	6313541	Andesite	3.3	0.1	1.9	52	301	3.2	0.07	0.5
02329	Rock Float	MSL	Possibly intensely altered andesite; Py occurs as lenses of fg to mg crystals, also large euhedral Py crystals; float is below TB station, near 4.66g/t sample #11707; fairly abundant pyritic float along hillside	399530	6313504	Intensely alt'd, possibly volc	6180	0.4	4.6	6	58.3	218.7	0.04	0.8
02330	Rock Float	MSL	Slightly chloritic in places, pervasively alt'd volcanic? Py and Cpy associated with Qtz veining	399530	6313504	Altered andesite?	360	0.05	1.1	9	383.5	38.5	0.02	0.1
02331	Rock Float	MSL	Completely silicified and pyritized, white and gossanous, Py mainly euhedral cubes, 10% fg Py; large (30x40cm) angular piece of float uphill from TB sample, flat area above this sample has abundant pyritic siliceous blds like this	399497	6313500	Alt'd volcanic?	3170	0.1	3.3	3	6.3	241.1	0.03	0.4
02332	Rock Grab	MSL	Pale gray/white xtalline rock, weathers orange, patchy alteration in otherwise green andesite	399478	6313453	Altered andesite, 1m wide alteration zone	5	0.05	1.8	36	9.1	11.8	0.21	0.2
02333	Rock Float	ММ	Pyritic black mudstone, strongly sheared, slickensided	399446	6313143	Black mudstone	0.25	0.3	17.1	60	46.6	36.5	0.06	5.4
05027	Rock Chip	AB	Dk grey with rusty patches, fault rubble (1-3cm fragments) & gouge, 30cm chip sample, 1% bright red alt'n (?) spots, 2mm cbt veinlet or pod in rubble.	398614	6328401	Mudstone Fault Zone	0.25	0.1	7.5	108	19.9	13	0.11	0.2
05028	Rock Float	AB	Grey to white, rusty wthr, round, 10cm cobble. Flow banded, it yellow powder on fractures (limonite?).	398666	6328313	8 Rhyolite	2.5	0.2	16.2	36	4.6	15.3	0.37	2.5
05029	Rock Float	АВ	Black, rusty withr, 5cm round rock. Massive with 2% brecciated mudstone (qtz-Fe-cbt matrix, angular mudstone fragments).	398675	6328303	3 Mudstone	0.25	0.1	1.7	62	5.5	5.4	0.03	1.1
05032	Rock Float	AB	Gossanous purpl blk withr. Groundmass v fn strongly sil'd, medium grey. Phenocrysts alt'd plag?, 0.5-1mm, rectangular, white, soft. Float 20cm and round.	399330	6312210	Porphyritic intermediate volc?	1.2	0.05	6.9	5	10.5	8.4	0.04	0.2
05033	Rock Float	AB	Rusty Fe-cbt dull orange brown, fragments angular and irreg shaped, 0.1-5cm, It grey to green. Matrix v fn gr'd, grey. Pyrite in frags and matrix. Fe-cbt in veins or as bx matrix up to 15%. Float 40cm round.	399300	6312145	5 Intermediate volc bx?	103.3	0.1	6.2	28	10.6	51	0.02	0.7

1

÷

!

н

ł

			Description	Easting	Northing	Rock Type	Au (ppb)	Ag (ppm)	Pb (ppm)	Zn (ppm) I	Cu (ppm)I	Aş (pom) I	Ha (pom) I	Sb (com)
05034	Rock Float	AB	Pale green fresh, rusty wthr. Massive in gr'd, 5% qtz random stringers <1mm wide.	399189	6312075	Alt'd voic?	3.8	0.1	3.2		5	4.2	0.01	0.5
05035	Rock Grab	AB	Lt green-grey, rusty wthr, fn gr'd massive. Pyrite, commonly euhedral, dusting on fracts and in irregular stringers.			Sil'd int volc?	5.7	0.1	3.8	4	2	2.5	0.05	0.5
05043	Rock Float	AB	Purple, w/green and grey to white carbonate specks. Up to 30% carbonate filled 1-3mm amygdules. 10% carbonate viening, locally colloform textures with green Cu- rims. Float bldr - angular and 40cm, in talus slope at base of cliffs.		6319453	Amygdaloidal basalt (?)	0.25	2.7	2.3	29	14120	10.8	0.27	0.3
<u>050</u> 44	Rock Float	AB	Carbonate veining, 5%. High grade sample of 05043	405984	6319453	Basalt	0.25	7.7	5.3	40	44960	8.1	0.66	1
05045	Rock	AB	Grey massive rhy/felsite, rusty yellow wthr, locally vuggy. Resembles sk 22zone ore bluffs. Close to RBA 12175.	405937	6319538	rhyalite	0.25	0.1	8.4	19	223.7	236.2	0.14	9.8
05080	Rock Float	AB	Few qtz veins, light grey <2mm⊡ Bx locally w/ open space between few frags. Frags may be poorly cemented, near some vuggy quartz?			Rhyolite? Alt'd int volcanic?	2.2	0.1	5.7	9	9.8	82.8	2.66	5.8
05081	Rock Float	AB	Frag supported- 10% matrix, very rusty matrix, moderate clay altn of matrix. Matrix locally vuggy weathered out stuff? Frags <1.5cm, avg. 0.5cm.	409801	6322303	Bx'd volcanidastic? Or sed (mudstone)?	0.7	0.2	13.6	9	46	154.6	2.1	6.5
05082	Rock Grab	AB	Grey, massive, granular	409807	6322276	Siltstone?	0.25	0.05	3.4	48	83.3	5.5	0.53	0.5
05083	Rock Grab	AB	Very fine, grey, massive frags, fresh surfaces-strongly oxidized. Carbonate along few fractures, obscured by strong oxidization	409945	6322103	Felsic volcanic? Bx'd?	0.5	0.1	6.5		87.6	3.3	0.29	0.1
05084	Rock Grab	AB	Obscured by strong oxidization	409943	6322101	Bx'd? volcanic, felsic?	0.6	0.2	7.7	101	107.1	5.6	1.61	1.4
05113	Rock Grab	ICD	Sample ICD03-28; buff-reddish brown dacite tuff with abundant xtals/lapilli to 1-2 cm; rare ang frags to 5 cm; frac'g at 260/80N; wk hem; lo'y strong sil'n and patchy fecarb.	400682	6312374	Dacite lapilli tuff	3.7	2.8	240.5	883	31.7	37.4	0.28	14.7
05114	Rock Grab	ICD	Sample ICD03-29; buff-reddish brown dacite tuff with abundant xtals/lapilli to 1-2 cm; rare ang frags to 5 cm; frac'g at 260/80N; wk hem; lo'y strong sil'n and patchy fecarb.	400680	6312341	Dacite Lapilli Tuff	3.3	3.7	115.2	818	34.3	23.5	0.24	13.9
05115	Rock Grab	ICD	Sample ICD03-30; buff-reddish brown dacite tuff with abundant xtals/lapilli to 1-2 cm; rare ang frags to 5 cm; frac'g at 260/80N; wk hem; io'y strong sil'n and patchy fecarb.	400697	6312315	Dacite Lapilli Tuff	30.8	19.5	1902.2	1332	226.3	16.9	0.93	104.6
05116	Rock Float	ICD	Sample ICD03-30; veined andesiet in scree slope; strong sil'n and fecarb.	400848	6312166	Andesite	0.25	0.7	21.7	105	43.7	7.7	0.07	2.2
05117	Rock Grab	ICD	Sample ICD03-31; well bedded mudstone in scree slope above Au soil anomaly; bedding at 355/60E; black; fairly competent; locally cherty; local qz veining parallel to the bedding at 1-2 cm scale	400863	6312164	Mudstone	0.8	0.7	13.7	142	85.9	13	0.08	1.4
05118	Rock Grab	ICD	Sample ICD03-32; well bedded mudstone in scree slope above Au soil anomaly; bedding at 355/60E; black; fairly competent; locally cherty; local qz veining parallel to the bedding at 1-2 cm scale	400863	6312164	Mudstone	0.25	0.5	11.1	125	65.3	10.3	0.08	1.4
05119	Rock Float	ICD	Sample ICD03-33; andesite breccia with intense fecarb cement; angular frags to 5 cm	400863	6312164	Andesite Breccia	0.25	0.6	11.9	178	52.5	31	0.09	1.6
05120	Rock Grab	ICD	Sample ICD03-34; poorly bedded mudstone; brecciated with gz infilling and flooding.	400800	6312150	Mudstone	1.3	0.3	8.3	55	80.7	7.4	0.07	0.9

1

Sample #			Description	Easting	Northing	Rock Type	Au (ppb)	Ag (ppm)	Pb (ppm)	Zn (ppm)	Cu (ppm)	As (ppm)	Hig (ppm)	Sb (ppm)
05121	Rock Grab	ICD	Sample ICD03-35; highly altered siliceous myolite with fe stained weathered surface; fine disseminated pyrite throughout; top of ridge above soil anomaly	400740	6312243	Rhyolite	0.7	0.3	21.6	23	6.9	34.7	1.28	34
05122	Rock Grab	ICD	Sample ICD03-37; highly altered siliceous rhyolite with fe stained weathered surface; fine disseminated pyrite throughout; top of ridge above soil anomaly	400736	6312225	Rhyolite	1	0.3	100.3	80	26.6	62.9	0.46	23.1
05123	Rock Grab	ICD	Sample ICD03-36; highly altered siliceous rhyolite with fe stained weathered surface; fine disseminated pyrite throughout; top of ridge above soil anomaly	400746	6312230	Rhyolite	0.9	0.4	207.9	17	10	65.4	0.57	32.2
05124	Rock Grab	ICD	Sample ICD03-39; highly altered siliceous rhyolite with fe stained weathered surface; fine disseminated pyrite throughout; top of ridge above soil anomaly	400747	6312202	Rhyolite	0.6	1.1	181.5	57	73.5	62	0.35	40.3
05125	Rock Grab	ICD	Sample ICD03-38; highly altered siliceous rhyolite with fe stained weathered surface; fine disseminated pyrite throughout; top of ridge above soil anomaly	400739	6312207	Rhyolite	0.25	0.1	53.2	8	12.3	24.7	0.63	30.4
05126	Rock Grab	ICD	Sample ICD03-50; highly altered siliceous rhyolite with fe stained weathered surface; fine disseminated pyrite throughout; top of ridge above soil anomaly	400751	6312192	Rhyolite	0.25	1.3	342.3	109	52.9	52.1	0.58	38.7
05127	Rock Grab	ICD	Sample ICD03-51 ; highly altered siliceous rhyolite with fe stained weathered surface; fine disseminated pyrite throughout; top of ridge above soil anomaly	400757	6312182	Rhyolite	0.25	0.7	127.8	54	47.1	50.2	0.24	31.5
05159	Rock	ICD	ICD 29-1		1		0.25	0.1	3.4	7	44.4	23.2	2.1	1.5
05160	Rock	ICD	ICD 29-1				0.7	0.1	61.5	55	47.5	21.1	4.39	2.8
05161	Rock	ICD	ICD 29-3				0.25	0.1	2.9		81.3	2.6	1.85	0.7
05162	Rock	ICD	ICD 29-4				0.25	0.1	7.6	62	211.5	75.5		1.2
05163	Rock	ICD	ICD 29-5				2.2	0.2	6.6			31.7	5.45	2.1
05164	Rock	ICD	ICD 29-6				0.25	0.1	11.1	12	79.6	22.8	2.98	1.9
05165	Rock	ICD	ICD 29-7				1.9	0.2	9.1	38	67.9	59	2.93	1.2
10675	Rock Float	MM	Float below similar o/c; md gray-green fine xtal tuff or porph, 25-30% 1-2mm feldspar laths, tr biotite xtals			Dacite porphyry or fine xtal tuff	0.5	0.1			36.3	2	0.07	0.3
10676	Rock Float	MSL	Large angular boulder; dk green chloritic fg volc with mainly blebby and diss Py; broken up qtz and cc veining	399747	6311886	Andesite	7.7	0.1	7.1	62	4.1	16.8	0.05	0.7
11665	Rock Grab	AB	Sheared mudstone, 5-7% fn gr'd diss py, 1-3% irregularly oriented cbt viens.	398291	6329906	Mudstone	0.25	0.2	4.4	121	17.6	37.3	0.3	2.2
11666	Rock Grab	АВ	Black, graphitic, massive to weakly foliated. Trace v fn diss py.			Contact Mudstone	0.25	0.1	5.8	74	11.4	7.1	0.03	0.6
11667	Rock Grab	ICD/AB	Mudstone in contact with rhyolite (dyke), 1% fn gr'd py. Strong Fe-stain and qtz-cbt veining parallel to contact. Str'ly sheared and vn'd mdstn. Dyke at 003 deg, 0.3- 0.5m wide. Sample taken from west contact of dyke.	398287	6330007	Contact Mustone	0.25	1	4.9	1482	51.3	41.3	0.12	3
11668	Rock Grab	ICD/AB	Mudstone in contact with rhyolite (dyke), 1% fn grd py. Strong Fe-stain and qtz-cbt veining parallel to contact. Str'ly sheared and vn'd mdstn. Dyke at 003 deg, 0.3- 0.5m wide. Sample taken from east contact of dyke.	398287	6330007	Mudstone/Rhyolite	0.25	0.8	6.7	232	42.9	6.4	0.03	0.8
11669	Rock Grab	ICD/AB	2m east of rhyolite (dyke), 1% fn gr'd py. Strong Fe-stain and qtz-cbt veining parallel to contact. Str'ly sheared and vn'd mdstn.	398287	6330007	Contact Mudstone	0.25	0.2	3.1	202	8.9	8.9	0.03	0.3
11670	Rock Grab	ICD/AB	Massive, it grey on fresh surface, med grey weathered. Hard, blocky o/c w/ rare brown patches on whit'd surface, sampled brown patch. Possible trace, v fn diss py. On N- trending ridge 100m east of CT mudstone.	398332	6330109	P Rhyolite	0.25	0.2	15.9	28	2.4	2.6	0.02	0.3

			Description	Easting	Northing	Rock Type	Au (ppb)	Ag (ppm)	Pb (ppm)	Zn (ppm)	Cu (ppm)	As (ppm) H	la (ppm) (S	Sb (opm)
11671	Rock Float	AB/ICD	Poorly cemented heterolithic pebble cong. Crumbly o/c. Poorly sorted, 1-10mm rounded to sub-angular clasts (primarily rhyolite clasts). Very rusty weathered surface. Intense limonitic alt'n. Float boulder - 0.75m, rounded.	398838	6330293	Conglomerate	0.7	0.1	3.9		30.8	6.6	0.01	0.4
11672	Rock Grab	ICD/AB	Mudstone to fn pebble conglomerate, irreg. beds up to 5cm thick. Bedding 185/56W. Graphitic. 2 set of cbt veins parallel to bedding and 285/85NE. Perpendicular vein sampled. Trace py.		6330354	Mudstone	0.25	0.2	20,7	134	38.7	20.4	0.06	1
11673	Rock Grab	ICD/AB	Mudstone to fine pebble conglomerate, irreg. beds up to 5cm thick. Bedding 185/56W. Graphitic. 2 set of cbt veins parallel to bedding and 285/85NE. Bedding parallel vein set sampled. Trace py.	-		Mudstone	0.25	0.2	16.5	134	41.4	19.6	0.06	0.8
11674	Rock Grab	AB/ICD	Dark grey - green, med-coarse gr'd, massive, 15% chi in 1 3mm irreg. blebs (from biotite?). Trace grey mstallic sheen on pink blebs - hematite, spots up to 1cm. On West side of Forrest Kerr Fault in Paleozoic rks.	397722	6329941	Qtz diorite	0.25	0.05	0.4	16	19.9	0.25	0.005	0.1
11675	Rock Grab	AB	Dk brown-bik, c. gr/d, massive. Competent nodule in friable wkly strained mudstone. No obvious clv or bedding. Heavy	398177	6329557	Mudstone - HW	0.25	0.1	6	64	41.1	10.9	0.04	0.9
11676	Rock Grab	AB	Dk brown-bik, c. gr/d, massive. No obvious clv or bedding. 2% cbt & qtz veining, randomly oriented, up to 1mm wide. Heavy.	398177	6329557	Mudstone - HW	0.6	0.1	6.7	25	17.6	15.3	0.06	1.6
11678	Rock Grab	AB	Massive rhyolite. Rusty wthring, dark grey fresh. Sample in 75 cm wide fault zone oriented at 015/70SE.	398494	6329485	Rhyolite	0.7	0.2	19	8	3.8	45.3	2.36	6.9
11679	Rock Float	AB	Massive, wthrs dk brown to blk, fresh grey-green. Rusty patches and blebs. Few subparallel qtz veinlets.	398456	6329350	Rhyolite	0.25	0.05	12.2	31	2.7	0.6	0.13	0.1
11687	Rock Float	AB	Massive, med x-talline. Possible rare mudstone frags. Purplish (hematite?) stain on fracts with rusty patches. Heavy. V rare cbt microvnlts & blebs up to 4mm. Rock - angular, approx 35cm dia.	398472	6329256	Andesite	0.25	0.05	1.6	64	13.2	4,3	0.19	0.3
11688	Rock Float	AB	Rubbly soil or subcrop 50% mudstone frag in bank of creek. Dark grey to black with rare rusty pebbles. No obvious o/c.	398477	6329260	Mudstone	0.8	0.3	8.8	345	51.2	16.2	0.17	1.4
11689	Rock Float	AB	Rounded 10cm cobble in mudstone. Could be float or could be a dropstone. V hard, cherty (or rhy) pods and fragments in cobble. Mudstone host is well bedded mudstone-sittstone, dk grey, S0=035/35.	398432	6329237	Siltstn/mdstn & chert or rhy	13.9	0.05	2.1	43	47.2	2.1	0.01	0.2
11726-1	Rock Grab	AB	Dark grey to brown, c. gr'd. O/C blocky, locally bedded at 273/35N. Fract sets variably oriented.	398450	6329218	Mudstone	0.25	0.9	33.8	604	64.2	126	0.13	6
11727-1	Rock Grab	AB	Massive, dark grey to blk, v graphitic, nodule (15cmx10cmx4cm and round) (or an alteration product?) in rubbly mudstone. Nodules ~ 25% of unit.	398501	6329202	Mudstone	0.5	0.6	10.4	246	47.9	45.4	0.2	0.8
11728-3	Rock Grab	AB	Dark-med grey fresh, rusty orange weathered, v fractured and crumbly.	398501	6329202	Mudstone	1.1	0.4	9.3	72	11.1	35.7	0.14	0.4
11729	Rock Grab	AB	Lt grey fresh, rusty weathering, either mudstone or felsic tuffaceous mudstone, very soft, crumbly.	398501	6329202	Mudstone	0.7	0.2	7.6	59	9.7	8.3	0.07	0.2
11730-1	Rock Float	AB	Massive, It-med grey, rusty wthr.	398536	6329106	Rhyolite	3.5	0.1	13.7	21	3.2	23	0.16	1.3
11731-1	Rock Float	AB	Massive, med grey fresh, brown-orange wthr, 5-8mm	398551	6329065	Rhyolite	0.9	0.1	19.5			19.5	0.18	
			wthred rind. Small angular rock in creek.	1			1			1				

-

ł

Sample #	Samp Type	Sample	a Description	Easting	Northing	Rock Type	Au (ppb)	Ng (ppm)	Pb (ppm)	Zn (opin)	Cu (ppm)	As (ppm)	Hg (ppm)	Sb (ppm)
11732-1	Rock Grab	AB	Grey-green to pink fresh, brown to rust wthr, fn-med x- tallne, patchy purply-pink sil'd zones, 1mm chi spots, irreg cbt veins.	398633	6328667	Intermediate volcanic?	0.6	0.7	2.3	63	30.1	60	0.005	1.1
11733-1	Rock Grab	AB	White & green fresh, brown-red wthr, massive to wkly fol'd, med gr'd, chlorite may replace biotite. Locally 4cm thick rubbly weathering rind.		6328658		0.8	0.1	2.1	174	46.3	3.4	0.005	0,1
11734-1	Rock Float	AB	Dk grey fresh, rusty wthr, rusty fract surfaces, 1% cbt - along fractures. Sample consists of angular fragments up to 2cm - subcrop.	398630	6328646	Mudstone/siltstone	0.25	0.1	2.2	206	14.5	5.1	0.01.	0.1
11735-1	Rock Float	AB	Dk grey to blk, locally rusty with: Angular 40cm boulder. Massive to slightly deformed, 0.2-5cm rhyolite fragments in mudstone matrix grading into massive mudstone. Py most abundant in mudstone.	398606	6328407	Transitional Mud Matrix Rhyolite Breccia & Mudstone	0.25	0.2	9	170	23.5	9.2	0.01	0.5
11736-1	Rock Grab	AB	Dk-med grey, rusty wthr, 5% angular rhyolite fragments and white crystals up to 1.5mm. Mudstone matrix. Pyrite replaced matrix - in pyrite patches crystals are evident.	398604	6328400	Transitional mud matrix rhyolite breccia	1.3	0.4	15.5	86	23.6	10.7	0.03	1
11737-1	Rock Grab	AB	Dk grey, rusty wthr, fn gr'd, massive, slightly mottled (due to patchy alt'n), also minor disseminated pyrite.	398604	6328400	Mudstone	0.6	0.3	10.7	84	21.6	6.5	0.02	0,9
11738-1	Rock Chip	AB	Black to it grey, with v rusty zones, mushy crumbly rubble, patchy graphitic zone. Alteration in irreg stringers & pods ~ 30% of sample.	398604	6328400	Mudstone Fault	1.4	0.3	8.6	196	61.8	19.8	0.09	1.7
11739-1	Rock						0.25	0.1	5.1	118	25	8.2	0.06	0.2
11740-1	Rock Grab	AB	Dk grey to back, 10% rusty, rubbly. Adjacent to stong clay/sericite alt'n in sample 11739-1.	398604	6328396	Mudstone Fault Gouge	0.25	0.2	5.6			10.2		0.4
11741-1	Rock Grab	AB	Med grey to rusty, massive, pyrite nodules weatherd to dk rust spots.	398605	6328402	Mudstone	0.25	0.3	10	104	29.4	10.6	0.02	1,4
11742-1	Rock Grab	AB	Dk grey to rusty, strained mudstone, irreg 0.5-2mm cbt veinlets	398605	6328402	Mudstone	0.25	0.4	8.3	67	17.6	12.4	0.02	1.5
11743-1	Rock Grab	AB	Dk grey, brown-rusty wthr, massive, graphitic.	398605	6328402	2 Mudstone	0.25	0.2	9.6	96	23.9	10.4	0.02	1.1
11744-1	Rock Grab	AB	Dark grey, massive.	398605	6328402	Mudstone	0.25	0.3	9.5	101	27.1	11.2	0.02	1,2
11745-1	Rock Float	AB	Dk grey, rusty wthr, 1m angular, irregularly shaped boulder. Massive or brecciated with pyrite matrix or pseudobreccia. V hard. Sample v small.	398512	6329160	Rhyolite	1.1	0.1	14.8	19	5.5	19.2	0.71	4.1
11747-1	Rock Grab	AB	Dk grey with rusty zones, crumbly rubble, stongly sheared at 213/70E	398604	6328394	Mudstone Fault Zone	0.25	0.4	9.2	55	20.1	16.4	0.16	0,6
11748-1	Rock Grab	AB	Dk grey, comptent mudstone pod in strongly sheared mudstone.	398604	6328394	Mudstone	0.25	0.1	3.1	70	11.7	7.4	0.05	0,4
11749-1	Rock Float	AB	Green-grey, brown w/mnr rust wthr, 30x10x15cm rock. Med grained, massive, heavy, rust on fracture surfaces.	398595	6328394	Andesite?	1.4	0.05	2.5	97	33.3	16.5	0.3	0.2
11924	Rock Grab	AB	Dark grey to blk, competent block (angular ~1m) within mod'ly sheared mdstn, heavy, py - 1%, locally 5%, fn gr'd, diss, rare blebs up to 2mm. Cbt veins, irreg orientation. Outcrop is strongly foliated mdstn w/ competent pods/blocks/beds.	398291	6329906	Contact Mudstone	0.25	0.1	3.1	76	11.9	32.4	0.18	2.6
11925	Rock Grab	AB	Dk grey-blk, competent block (angular ~1m) within mod'ly sheared mdstn, heavy, py - 1%, fn gr'd, diss. Cbt veins, irreg orientation. Outcrop is strongly foliated mdstn w/ competent pods/blocks/beds.	398291	6329906	Contact Mudstone	0.25	0.2	3.9	144	16.3	35.4	0.25	2,6
12665	Rock Grab	AN	Gray/green siliceous rock w/minor prite and galena present as veinlets. Exterior of surface is rusty oxidizd red and orange. Looks partly gossanous.	400457	6311710	Dacite?	0.25	7	274.4	446	68.7	30.8	1.09	29,1

ε επετεπείε επετεπείετει επείετει

Sample #	Samp Type	Sampler	Description	Easting	Northing	Rock Type	Au (ppb)	Ag (ppm)	Pb (ppm)	Zn (pom)	Cu (ppm)	As (pom)	Hig (opm) (Sb (pom)
DG-23536		DG	Dacite Tuff within Siltstones	399273	6328795	Dacite Tuff within Siltstones	0.25	0.1	3.4	69	27.9	3.6		0.4
DG-23537		DG	Heterolithic Dacite Tuff/Volcanic sandstone	399341	6328660	Heterolithic Dacite Tuff/Volcanic sandstone	0.25	0.2	32.8	155	36,4	66	0.14	2.6
	Rock Float	DG	Heterolithic Dacite Lapilli Tuff	399400	6328510	Heterolithic Dacite Lapilli Tuff	1.2	0.1	14.3	174	28.6	4.1	0.01	0.2
	Rock Float	DG	Monolithic Rhyolite Lapilli Tuff	399504	6327909	Monolithic Rhyolite Lapilli Tuff	0.25	0.1	14.5	66	2.9	7.5	0.01	1.2
	Rock Float	DG	Rhyolite Ash Tuff	399539	6327921	Rhyolite Ash Tuff	0.25	0.1	17.6	69	8.9	11.8	0.01	
	Rock Float	DG	Heterolithic Dacite Lapilli Tuff		6327921		0.25	0.1	15.9	60	2.7	0.7	0.01	0.2
DG-23574	Rock Float	DFG	Network of qtz veins cross cutting through massive, unbedded laminated mudstone. Veins are sub-mm thick and form a network	412392	6320319	Siltstone	0.25	0.2	2	161	38	1.8	0.47	0.6
DG-23575	Rock Float	DFG	Massive, wkly graphite mudstone with no layering or banding. Single qtz vein cuts across rock but has no mineralization	412392	6320319	Mudstone/Siltstone	0.25	0.5	3	146	65.9	7.8	0.25	3.4
DG-23576	Rock Grab	DFG	Massive rhyolite flow. Aletha observed spherulites in o/c. Minor limonite staining on fractured surfaces	406189	6320575	Rhyolite Flow	0.25	0.05	9.7	43	5	0.25	0.03	0.2
	Rock Float	DFG	Difficult to discem original textures due to silification. Appears to be rhyolite flow- massive siliceous rock.		6319417	Rhyolite flow	0.25	0.1	7.6	20	3.7	1.9	0.01	0.3
	Rock Float	DFG	Lrge knob~ 30m around, along the slope. Sampling along the brec'd o/c. Rock looks very similar to felsite material around Eskay.	405958	6319584	Rhyolite Flow	0.25	0.1	15.5	7	4.6	6.6	0.03	0.5
DG-23579	Rock Float	DFG	Py. Seems to be forming veins and replacement style mineralization	405943	6319557	Rhyolite	0.25	0.1	6.7	2	2.3	65.6	0.05	2.8
MM11807	Rock Chip	ММ	Quartz vein strikes N-S. Basalt host rock with very little Py.	400898	6312056	Quartz vein	0.25	0.1	2.8	61	24.2	11.7	0.02	0.3
Notes:	All coordinat	os ara liste	ad as UTM Zone 9, Nad 83 projection											

· · ·

2003 RDN and MOR Property Whole Rock

Sample #	Sampler	Description	Easting	Northing	Rock Type	SI02%	AI2O3%	Fe203%	MgO%	CaO%	Na20%	K20%	TO2%	P205%	MnO%	0/203%		TOT/C	TOT/S	Sum %
02252	MSL	Massive rhyolite, fine grained, moderately fractured; very little FeOx along fractures, no visible	398677	6328903	Rhyolite	76.9	11.7	1.57	0.06	0.09		4.56	0.28	0.03	0.07	0.0005	1,4	0.05	0.01	100.02
02253	MSL	sulphides white-weathering, fg, porphyritic?(clay-altered specks), rare angular frags visible on weathered sfc (rhy), mainly massive, weak FeOx along	398830	6328737	rhyolite	76.19	12.02	1.86	0.06	0.07	3.5	4.57	0.29	0.03	0.08	0.0005	1.2	0.12	0.01	100.08
02254	MSL	small (1-5mm) subangular and wispy sericite all'd lithic frags; FeOx along fractures		6328320	Rhyolite lithic tuff	78.26	11.53	1.43	0.29	0.11	2.99	3.99	0.06	0.02	0.02	0.0005	1.3	0.05	0.01	100.04
02255	MSL	lithic frags: subangular rhyolite (sil), sericite-alt'd frags, some wispy sericitic frags	399320	6328000	Rhyolite lithic lapilli tuff	0	0	0	0	0	0	0	0	0	0		0	0	0	0
02264	MSL	frags mainly rhyolite, not abd't, some weakly sericitic, some flow- banded; fg matrix (ash?)	399250	6328050	rhyolite lithic lapilli tuff	76.43	13.12	1.22	0.24	0.07	4.38	2.52	0.14	0.01	0.03	0.0005	1.5	0.05	0.005	99.83
02265	MSL	quartz crystal and lithic tuff (mainly rhyolite frags), rare sericitic frags; matrix strongly siliceous			rhyolite crystal lithic tuff	74.3	12.68	1.61	0.7	0.75	3.69	3.3	0.07	0.005	0.06	0.002	2.7	0.27	0.02	99.92
02266	MSL	well banded; mainly quartz crystal tuff; platy o/c; banding at 024/38E	399190	6327850	rhyolite banded crystal tuff	76.03	12.46	1.27	0.08	0.02	2.82	5.49	0.15	0.02	0.01	0.0005	1.8	0.08	0.02	100.3
02267	MSL	fragments are mainly rhyolite, 1- 5mm, rare 1-2cms, mainly subangular, some wispy, rare qtz crystals, some odd rhyolite frags are subrounded to rounded up to	399400	6327480	rhyolite/rhyodacite lithic lapilli and crystal tuff	75.96	12.44	1.22	0.36	0.49	3.22	3.86	0.07	0.005	0.03	0.0005	2.4	0.17	0.005	100.13
02268	MSL	pod/lens of strongly siliceous fine grained sedimentary rock in green and maroon dacitic tuffs and tuff brecclas; tr py and galena in tiny qtz		6311700	cherty argillite?	0	0	0	0	0	0	0	0	0	0		0	0	0	0
02269	MSL	dk gray/brown lapilli crystal tuff, fine ash marix, fairly siliceous (weak to mod silicified), 2-3mm subrounded dk fg lapill, fs xtals; more siliceous than sample to north (02270)	400675	6312346	DACITE LAPILLI CRYSTAL TUFF	68.5	12.03	3.87	0.42	1.2	0.17	9.58	0.35	0.18	0.17	0.0005	3	0.81	0.02	99.69
02270	MSL	Md gray/bm (weathers orange) crystal tuff with 5-10% lapiili size frags; abd't fs xtals, minor biot and qtz crystals; 2-5mm subrounded frags, mainly fg, dark; also subangular 1-2cm brown frags, look		6312398	DACITE CRYSTAL LAPILLI TUFF	58.14	15.55	5.55	0.58	2.15	0.19	12.91	0.47	0.27	0.31	0.002	3.4	0.79	0.01	99.74
02272	MSL	Massive, dk gray, strongly siliceous (very hard on fresh surface); weathers white and gossanous; no textures visible on fresh surface, possibly tuffaceous texture on wthd sfc; good fresh sample for Whole	400740	6312218	RHYOLITE?DACITE?	71.3	11.47	3.43	0.09	0.06	0,15	9.3	0.34	0.08	0.03	0.0005	3.2	0.4	2.44	99.86
02273	MSL	buff/brown on weathered surface, light gray on very fresh surface, siliceous; 1-3mm frags (it gray in light gray matrix), fs xtals, rare biot	400734	6312020	DACITE/RHYOLITE? CRYSTAL LAPILLI TUFF	62.72	14.01	2.89	0.32	3.05	0.17	11.2	0.43	0.27	0.13	0.002	3.7	0.89	0.26	99.74

2003 RDN and MOR Property Whole Rock

Samole # S	Sampler	Cescription -	Easting	Northing	Rock Type	SiO2%	AI203%	Fe2O3%	MgO%	CaO%	Na20%	K20%	TiC2%	P2O5%	MnO%	01203%	LOI_%	IONC	TOT/S	Sum_%
a second second second second	MSL	Sample mainly for whole rock; it to md gray fg rhyolite, no textures visible on fresh or weathered surface (vague tuffaceaus txtrs elsewhere in o/c, possibly crystal tuff); sample from roughly 30m N of	400705		Rhyolite	69.47	12.94	2.13	0.13	1.69				0,12	0.11	0.002	2.2	0.43	0.04	99.81
02291	MSL	Vfg silica, md to bluish gray, conchoidal fracture, cherty/chalcedonic-looking vein (?); 3mx35m irregular body, narrows and pinches out to N &S, contains blocks of wallrock; chalcedonic iguartz is frctd and bx'd, infilled with		6311854	Chalcedony(?) and qtz- carb vein(?)	85.01	0.18	1.72	0.74	5.12	0.03	0.01	0.005	0.02	0.7	0.002	5.6	1.51	0.12	99.41
02292	MSL	Md greenish gray at'd xtal lapilii tuff (dacite?); finely to very finely diss sulphs t/o, mainly galena (also as slightly coarser xtals in rare cc veinlets; near CN with sil vein (?), sulphs decrease away from CN; at edge of small E-W guily (fault?)	400720	6311862	Dacite	0	0	0	0	0	0	0	0	0	0		0	0	0	0
11677	AB	Flow banded, sparcely feldspar- porphyritic with weakly alt'd porph. FB up to 1mm wide, textbook example. O/c is ridge. S0=014/81	398494	6329485	Rhyolite	76.7	13.15	1.32	0.15	0.09	2.81	4.4	0.16	0.04	0.03	0.0005	1.4	0.11	0.005	100.39
		gnates no values returned dinates are listed as UTM Zone 9, Nad	83 00010	etion																