REGEMED

Gold Commissioners Unf VANCOUVER, EC. vanccuran.

Report On The Swan 1-13 Mineral Claims

Toodoggone River Area NTS 094 E 6E

British Columbia

For

Stealth Minerals Limited
2382 Bayview Avenue
Toronto, Ontarió
Canada, M2L 1A1

By
David L. Kuran, P. G
Kuran Exploration Limta
Maple Ridge BC
May 10, 2004

Table of Contents

Page
Summary i
1.0 Introduction 1
2.0 Location, Access and Physiography 1
2.1 Claim Status 2
3.0 History and Previous Work 2
4.0 Regional Geology and Mineralization 3
5.0 Property Geology 5
$6.0 \quad 2003$ Program 11
6.1 Geochemistry 12
6.2 Geophysics 12
7.0 Summary and Conclusions 13
8.0 Recommendations 13
List of Figures and Tables after Page
Figure 1 Project Location Map 1
Figure 2 Swan Claim Area 2
Figure 3 Regional Geology, Mineral Deposits 4
Figure 4 Property Geology 10
Figure 5 Rock Geochemistry; Gold 12
Figure 6 Rock Geochemistry; Silver 12
Figure 8 Rock Geochemistry; Copper 12
Figure 9 Rock Geochemistry; Lead 12
Figure 10 Rock Geochemistry; Sample Location 12
Figure 11 Airborne Geophysics; Total Field Magnetics 12
Figure 12 Airborne Geophysics; Total Potassium 12
Figure 13 Airborne Geophysics; Vertical Gradient Magnetics 12
Figure 14 Airborne Geophysics; Thorium/Potassium Ratio 12
Table I List of Claims Page 2
Table II Historical Work 3
Table III 2003 Rock Assay Results 12
Table IV 2003 Rock Sample Descriptions 12
Table V 2003 Silt Sample Assay Results 12
Appendix I 2003 Assay Certificates
Appendix II Statement of 2003 Expenditures
Appendix III Recommendations: Cost Estimate
Appendix IV Statement of Qualifications
Appendix V References

Summary

In June 2003, Stealth Minerals Ltd. staked the eleven-claim 167 unit Swan Mineral Claim and completed the exploration program described in this report. The Property is located approximately 280 km by air north of Smithers BC or 450 km northwest of Prince George BC via the Omenica Resource Access Road. Kemess South Mine is located 40 km south of the Property. The claims are accessed by helicopter from the Sturdee airstrip, 13 km south of the Swan claims. Road access is as close as 2 km from the now seasonally active Baker mill site or 6 km from the closed Lawyers mine site. New exploration activity in the area by adjacent claim holders may push a road within 1 km of the east edge of the Swan 3 in 2004.

The property is located centrally within the northwesterly elongate 20 km by 100 km Toodoggone Belt of mid-lower Jurassic subareal dacitic volcanic rocks which host a majority of the known gold and silver mineralization within the camp. These rocks overly, as a successor Arc to the Takla group of mafic sub aqueous volcanic flows which grade upward to marine epiclastics and sediments of Triassic age. These younger strata overly the Permian Asitka Formation that includes felsic to mafic volcanics as well as upper sediments and carbonates. The whole area was overlain and protected from deep glaciation by the Cretaceous Sustut Group sedimentary rocks. The Jurassic and older rocks have been intruded by the lower Jurassic Toddoggone volcanic coeval Black Lake granodiorite to monzonite intrusive suite which host several gold-copper porphyry style deposits such as the Pine and Kemess North deposits and producing Kemess South Mine.

Mineral exploration in the area dates back to the early 1930's when high-grade gold veins were discovered. The remoteness and fixed gold prices made these prospects uneconomic at that time. In the late 1960's copper and gold were sought after commodities and exploration in the district led to the eventual discovery past producing Lawyers, Baker and Shasta low sulphidation epithermal style vein deposits in the 1980s. The Kemess South porphyry gold copper deposit is in production at a nominal 50,000 tonnes per day rate producing over $7,000 \mathrm{~kg}$ of gold and 30 million kg of copper per year.

Exploration on the area covered by the Swan claims has been the subject of several exploration efforts between 1972 and 1998 prior the 2003

Stealth program. Government records indicate that in the order of $\$ 260,000$ has been spent on the Swan claim area. These exploration activities have identified numerous mineralized areas, as nine Minfile occurrences are located on the claims. Historical discoveries include $1.0 \mathrm{~m}-4.0 \mathrm{~m}$ quartzveins in the Saunders grading 1.4 gpt Au and 164 gpt Ag and zones returning up to $0.28 \% \mathrm{Cu} / 9.14 \mathrm{~m}$ at the Som showing. One small drilling program has been conducted on the Golden Neighbor 1 showing in a $1 \times 6 \mathrm{~km}$ alteration/gossan zone, which returned $0.23 \mathrm{gpt} \mathrm{Au}, 49.0 \mathrm{gpt} \mathrm{Ag} / 1.8 \mathrm{~m}$.

During the 2003 field season, Stealth minerals undertook a 24 manday helicopter and fly-camp supported reconnaissance and point specific prospecting and geological evaluation program. A total of 85 rock samples and 57 silt samples were taken. As part of the regional Government-Private Partnership Toodoggone Initiative, the claims were covered by part of the Fugro operated, GSC supervised, helicopter airborne magnetic and radiometric survey. The survey recorded 2 magnetic parameters and eight gamma -ray spectrometer parameters flown at a line spacing of 400 m and a sensor height of 60 m during August and September 2003. The survey indicated that the claims are underlain by rocks and alteration permissive to host precious metal deposits. These geophysical interpretations indicate prospective geology and alteration exists along structural strike to the northeast of the known Saunders gold and silver enriched occurrences and north from the new copper breccias discovered in 2003. These targets require further work to identify the source and mineral potential of these silt, rock and geophysical targets. Additional focused mapping and rock sampling with the aid of Pima spectrography within large altered areas is required to identify the most permissive areas for follow up by manual or mechanical trenching prior to drilling.

1.0 Introduction

During July and August 2003, Stealth Minerals Ltd. completed a property examination, stream sediment survey, prospecting and rock geochemistry program on the 167 unit Swan 1-13 mineral claim group in the Toodoggone River Area of the Omineca Mining Division in northern BC. The Swan claims were also covered as part of the Private-Public Partnership regional helicopter borne magnetic and radiometric survey. The prospecting and rock geochemistry were undertaken in attempt to locate the source of the highly anomalous stream sediment survey results returned from the detailed, early July Stealth survey. The prospecting resulted in locating two new mineral occurrences on the eastern portion of the claims. The airborne survey indicates several areas of high total potassium and moderately low thorium/potassium ratios with mineralization located adjacent to magnetic highs.

2.0 Location, Access and Physiography

The Swan 1-13 mineral claims are located within the central portion of the Toodoggone Belt of Jurassic volcanics and coeval intrusives which host economic deposits of epithermal vein precious metal deposits and porphyry style gold-copper deposits. The area is located some 280 km by air north of Smithers BC or by the Omenica Resource Road, some 400 km north from Prince George BC (Fig. 1). The claims are within 6 km east of the road accessible past producing Lawyers gold deposit and 13 km by helicopter north from the road accessible Sturdee airstrip, just west of Black Lake. The southern edge of the property is 2 km northeast of the past producing Baker mine and seasonally active mill facility.

The claims cover an area of mainly northerly draining mountainous terrain of moderate relief ranging from 1400 m ASL at the northern edge to 2050 m ASL on local peaks. Vegetation ranges from wide spaced Jack pine and spruce at Toodoggone River elevation through stunted balsam and willows at tree line at 1600 m to barren rock with patchy balsam and sedges at higher elevation. The central north flowing streams follow alpine glacial valleys and are covered by variable till thickness overlain by talus slides at higher elevations.

Seasonal temperatures vary from $-35^{\circ} \mathrm{C}$ in winter to over $30^{\circ} \mathrm{C}$ during the 4 months of summer. The mean daily temperatures for July and January are approximately $14^{\circ} \mathrm{C}$ and -15 to $-20^{\circ} \mathrm{C}$, respectively. Precipitation

between 50 and 75 centimeters occurs annually, with most during the winter months as snow cover of approximately 2 meters.

The optimal time for surface exploration on the Swan property is between mid-late June and mid-October.

2.1 Claims_Status

Stealth Minerals Limited owns a 100% interest in the 167 unit, Sam 113 claim group. The claims are centered at UTM $618,000 \mathrm{~m} \mathrm{E}$ and $6,356,000 \mathrm{~m} \mathrm{~N}, \mathrm{Nad} 83$, Zone 9 in the Omineca Mining Division (Fig. 1,2). Pertinent claim information is given in Table I below:

Table I: Swan Claims

Claim	Units	Record\#	Expiry Date*
Swan 1	20	403560	June 25/2006
Swan 2	15	403561	June 25/2006
Swan 3	15	403562	June 24/2006
Swan 4	16	403556	June 26/2006
Swan 5	12	403557	June 25/2006
Swan 6	15	403552	June 26/2006
Swan 7	15	403553	June 26/2006
Swan 8	20	403558	June 26/2006
Swan 9	10	403559	June 26/2006
Swan 10	12	403554	June 26/2006
Swan 11	15	403555	June 26/2006
Swan 12	1	403546	June 25/2006
Swan 13	1	403547	June 25/2006

*After applying the 2003 assessment work.
A statement of Expenditures for the 2003 work is found in Appendix II.

3.0 History and Previous Work

Mineral exploration in the area of the Swan claims dates back to the early 1930's when high-grade gold veins were discovered. The remoteness and fixed gold prices made these prospects uneconomic at that time. In the late 1960's copper and gold were sought after commodities and exploration

in the district led to the eventual discovery past producing Lawyers, Baker and Shasta low sulphidation epithermal style vein deposits in the 1980s.

Exploration on the area now covered by the Swan claims was completed between 1972 and 1998 with no exploration completed between 1998 and the 2003 Stealth Minerals work. Several programs of prospecting, trenching and minor drilling were completed on the nine Minfile Occurrences within the claims. These data are summarized in Table II with map locations plotted in Figure 4 and referenced in Section 5.0.

As seen in Table II the aggregate of expenditures of is roughly $\$ 260,000$ in "year dollars" has been spent on the Swan claim area.

4.0 Regional Geology and Mineralization

The Swan claims are situated within a Mesozoic volcanic arc assemblage which lies along the eastern margin of the Intermontane Belt, a northwest-trending belt of Paleozoic to Tertiary sediments, volcanics and intrusions bounded to the east by the Omineca Belt and to the west and southwest by the Sustut and Bowser basins. Permian Asitka Group crystalline limestones are the oldest rocks exposed in the region. They are commonly in thrust contact with Upper Triassic Takla Group andesite flows and pyroclastic rocks. Takla volcanics have been intruded by the granodiorite to quartz monzonite Black Lake Suite of Early Jurassic age and are in turn unconformably overlain by or faulted against Lower Jurassic calcalkaline volcanics of the Toodoggone Formation, Hazelton Group. To the east older metamorphosed Precambrian and younger strata (clastic and chemical sedimentary rocks) of the Cassier Terrane (Omineca Belt) is separated from the Intermontane Belt by a regional system of transcurrent faults (Diakow, Panteleyev and Schroeter, 1993).

The dominant structures in the area are steeply dipping faults that define a prominent regional northwest structural fabric trending 140 to 170 degrees. In turn, high angle, northeast-striking faults (approximately 060 degrees) appear to truncate and displace northwest-striking faults. Collectively these faults form a boundary for variably rotated and tilted blocks underlain by monoclinal strata.

The oldest rock unit on the area is the Asitka Group, comprised of coralline limestone inter-bedded with chert and argillite. Mafic and felsic volcanic rocks are also present in this package. Calcareous meta-sediment, siliciclastic and massively bedded marble occur in the southwest portion of the area and include the VIP skarn. It remains unclear whether sedimentary

			Swan Mrave eath																	
remere.	nemes	enems	cemmodion	-	Lonstura	m8	Doposit Traed	nene Dival	Castra.	Nertyma	zopo	Commanten	atans							
20ne. 158	SUMNDERS MORTTMEST:A	showne	NuAG	67.34	-127.078989	OP4E06E	H05	Ontroce	615613	6387392		0_{0} atamen 1	A200nu, 19.78	20002m						
20n 185	SAUNDERS NORTTH:SUNDE	Shome	AON	67.36	-127.051657	O94EOSE	1005	Ominoca	61664	6357830		9 Sulchactori:	0.33 ex 10.18 .8	sodne						
Oexe 040	Som:Son 1-40.SUnoers:	Showne	Cu	57.34	-127.083009	O9460ge		Omineca	617127	6357098		9 Frect. Anderto	turitapr: 0.2	208 cus 9.14 m						
\%ese. 017	SAUNDERSSALNOERS I-A:S	Proppod	AGAUCUPE	57.33	-127.078099	OTAESEE	408	Orineca	616645	6356248			mom, CoyPy	: 141 opu,	Cu. 5 sexna					
2aterib7	Shunters soutimestisa	showna	$1{ }^{\circ}$	87.33.	-127,001111	OPMESSE	100	Ominoca	616622	6366873		Sulc. ©uter	pax 2 mmos mos	1 men, 10.4	2 ANa					
ORE 184	SUNDERS SOUTH:SNUNDE	showne	nonl	57.33	-127.058333	OSTEOSE		Ominea	616892	6365974		, oteram vin	0.1 m mote 0.11	12 odru, 00.2	solne					
Oene 153	CAMP 1sNunders Sunde	showng	agnucu	67.33	-127.039056	OPTEOSE	H06	Ominesa	619124	6365607		9 Froct. FPerph	Mele 0.2 eoves	1.18 .8 sedal						
O24E 037	OOLPEN NECHPOR 1:00LO	Domutosed Pr	AOAUzNCuI	67.32.	-127.034722	O94Ebse	H05	Onimesa	618333	63s6624		$9.1 \times 6 \mathrm{k}$ m poseen	2, 600 m dath, 0.2	23 gevur 11.7	gouc, 00% Cu	M, \%m				
pance 162	COLDEN NECHBOR 2:00.0.	showna	AsCun	57.32	-127.018333	OPAEOSE		Ormaca	61937	633460		Oforean won	4 mmode 0.09	cox Aus col	noriom					
			Swen Ants ont																	
Reanat no	rear	Lumucos	Lensuluso	UTM zono	martine	cavina	Tue	ather	Pames	Property Ma	antr me	cess mes	canmorivy	moary Sn	mano porta	(0p1:	Wark Doe	Ownor		ceax morkir
16667	1966	67.3747	-127.0817		635077	617166		Tompeon, ma			OSMEDEE:	9,40E +36		Beatockis	Oninca		Coochemkel, Pluxtel	Crpora mete	(camamolud	22970
10349	199	87,3631	-127.078	- 9	6368326	616821		Fax, Matene			OAEEOEE:	9406E +36		THE DOMN	mincea		Grochemene Seotostal,	sopomatel		2612
10628	1909	87,397	-127.006	9	6367936	615230	Cooloptell	vem, B.t.t.	26	seundera	OMECOEE:	9.40E 236	stwer, Sota		Ominca	OSE 017		cotion Ruin	Resaycos 4 d.	7236
15922	1987	87.397	-127.062.	\square	638799	617235	.	Evene, 日.T.		.	OP4E0GE:	9 $40 \mathrm{OE}+36$		The eran	Ominaca	OPE 017,08	travelal	Oactan Rum	Resarcea 4.	400
4091	1972	57.3464	-127.037		6387850	618148	coolockerar	moen, K. 9	36	Toodoggone	OPEOSE.094	9A0E+26			Ominace					1200
10038	1981	57,347	-127.110		6367326	613240		Eclos, L.			O94E06E.094	9A0E+36		The 10000	Ompace		coectiomical, Seotosical			19783
14487	1996	67,3881	-127.078		6366651	618668		Damis, 1.			O9neoce:	2.40E +36		THECLNMS	Ommace	O94E 017, 09	Seoctiomice, Geolesticel			17632
846	1900	67,3364	-127,052		${ }^{63} 56511$	617278		chmomen, Sa	travel Tre	Oaksonnemis	toor, Camp									18017
25698	1999	57,3331	-127.068	\bigcirc	6368112	816288	Codooten a	Corier, Metcol		senders	Opeoce:	9.40E+36			Onnoce		Prospeatina	Heerd, Richer	T	1200.7
228	1980	57.3231	-127.098	- 9	6380033	617521		somer, Stoon	\bigcirc		OPtE06E:	9A0E+36			Ommeca		Ooochomicel Ptozal			2637
4398	1973	37.3131	-127.000	- 9	6333066	81596	Report on the	den, A_{i} sen	17	Ood	O94E00E:	9.40E+36			Cminoce		orophaterel			8100
11598	1983	57,3097	-127.008	\square	6353498	618365		Drom, Thom	\bigcirc		Osteoce:	9.40E +36		orey onat	mineca	OPEE 028	primpo Couchamem			33136
18512	1997	57.3181	-127.047		636479	617637		donnaten R .	0	-	O94E06E:	940¢ +36		Nomplec:	Ominca		Drame cooctroment	Lecena Ex.		4800
																				289700

rocks in these areas are in part the Asitka Group or lower Takla/Stuhini Group.

The Takla/Stuhini Group is comprised of massive, dark green, coarsegrained porphyritic augite basalt, and fine-grained aphyric basaltic andesite lava with lapilli tuff and volcanic breccia, and minor amygdaloidal flows. Tuffaceous siltstone, mudstone, and limestone lenses occur.

The Hazelton Group is comprised of undivided and Toodoggone Formation sub-aerial and marine volcanic members divided into lower and upper volcanic cycles. The lower cycle consists of the Adoogachoo, Moyez, Metsantan and McClair Members and the upper cycle consists of the Attycelley and Saunders Members.

The Attycelley Member is 500 metres in thickness, and comprised of a heterogeneous mixture of green, grey and mauve lapilli-ash tuff, subordinate lapilli tuff, with minor ash and lava flows, and epiclastic rocks. These rocks resemble the Adoogachoo Member.

The Saunders Member is composed almost exclusively of welded crystal dacite ash flow and tuff. The lower contact of this member appears to be in part, erosional with underlying Takla/Stuhini Group conglomerate and tuffite.

Mesozoic intrusions of the Lower to Middle Jurassic Black Lake Intrusive Suite cut Asitka, Stuhini and are in part coeval with the Toodoggone Formation; the Kemess and Pine deposits are associated with Early Jurassic calc-alkaline intrusions. The Geigerich, Duncan Lake, and Sovereign plutons are of predominantly granodiorite derivation and are compositionally and texturally similar, with the Sovereign pluton having somewhat more prominent quartz phenocrysts.

The Geigerich pluton is elongated, with contacts ranging from 020 to 140 in azimuth (Diakow, 1997), and subparallel to the Saunders-Wrich fault. The northwest edge of the Geigerich pluton is the location of the Pine, Tree, Fin and Mex porphyry gold-copper prospects.

The Duncan Lake pluton appears to plunge southeast beneath the Kemess North deposit, and affects adjacent Toodoggone Formation volcanic rocks (Diakow, 1997).

Dikes and sills of quartz latite porphyry, and trachy-andesite to basalt composition cut intrusive and volcanic rocks.

Lower to Upper Cretaceous Sustut Group sedimentary rocks in part comprised of conglomerate, and volcanic units are in unconformable contact and overly the Takla/Stuhini and Hazelton Group rocks to the west of the Toodoggone volcanic arc. It is inferred that the Sustut Group rapidly covered underlying Toodoggone Formation and older rocks, in part

preserving them from erosion by future glacial activity in the Toodoggone camp.

Gold mineralization such as at the Al , Lawyer, Baker and Shasta deposits is of low sulphidation style epithermal vein type. The mineralization is of middle Jurassic age and may be hosted within either the Takla or Toodogonne volcanics, preferentially near faulted contacts between the two formations. Mineralization occurs commonly with chalcedonic or amethystine silica, banded silica/carbonate and sulphides. These known deposits are all aligned along structures adjacent and parallel to the western margin of the volcanogenic belt. A regional geology map and mineral deposits is seen in Figure. 3.

The Lawyers mine milled 570,889 tonnes recovering $113,184 \mathrm{~kg}$ of silver and $5,402 \mathrm{~kg}$ of gold. The Baker mine milled 81,878 tonnes recovering $23,812, \mathrm{~kg}$ of silver and $1,284 \mathrm{~kg}$ of Au and $1,3076 \mathrm{~kg}$ of Cu . The currently seasonally operating Shasta mine milled 131,000 tonnes recovering $33,019 \mathrm{~kg}$ of silver, 603 kg of gold. The Kemess South porphyry gold-copper deposit is in production at a nominal 50,000 tonnes per day rate processed 171 million tonnes recovering $4,871 \mathrm{~kg}$ of silver, $42,189 \mathrm{~kg}$ of gold and 153 million kg of Cu between 1998 and 2003. Reserves at Kemess South stand at 109.3 million tones grading 0.71 grams gold and $0.234 \% \mathrm{Cu}$ per tonne. Kemmess North is in feasibility stage containing another 4.6 million ounces of gold.

5.0 Property Geology

The 2003 Stealth program dealt mainly with prospecting and followup rock sampling to source the 2003 anomalous silt results. Property geology is taken from the summary of property work recorded from the MapPlace website. The previous work describes the mineralization as structurally controlled northwest trending corridors, which allowed fluid to mineralize the Toodoggone formation volcanic rocks. The style of mineralization located to date is primarily low sulphidation epithermal precious metal veins associated with these structures. These structures control large-scale argillic to advanced argillic alteration with local silica flooding providing ground preparation to later re-brecciation and mineralization. No porphyry style mineralization is reported although the Som showing in the south central portion of the Swan 2 claim contains fracture controlled copper mineralization. This may be related to a buried Jurassic porphyry system that is driving the wide spread mineralization on the claims. In 2003 Stealth discovered a zone of high grade disseminated
and breccia filling copper mineralization in a chloritically altered andesite formation 300 m east of the Golden Neighbor 2 showing, in what has been regionally mapped as a basalt sill (Fig.4). This does not correlated with the description of the Golden Neighbor 2 showing and is probably a new mineral occurrence as no evidence of previous work was observed at the site.

Geological observations and mineral descriptions of areas not mapped during the 2003 program are taken from the MapPlace website and are recorded below.

[^0]The Saunders Northwest showing consists of several weakly pyritic, brecciated quartz veins up to 5 centimeters wide forming a zone 10 to 20 centimeters wide, and quartz breccias. These are located peripheral to a 475 meter long by 50 meter wide argillicaltered zone along a major northwest-striking fault.

The best assay values have come from one of several weakly pyritic, brecciated quartz veins in a system 10 to 20 centimeters wide. Sample DD-S-5 from this vein assayed 1.42 grams per tonne gold and 11.7 grams per tonne silver (Assessment Report 14487). Sample DD-S-10, of argillic-altered quartz-eye andesite porphyry, assayed 0.022 gram per tonne gold and 3.4 grams per tonne silver (Assessment Report 14487)."
"The Saunders prospect is underlain by a succession of lower to middle Jurassic subaerial volcanic rocks and associated volcaniclastic sediments of the upper volcanic cycle of the Toodoggone Formation. Lithologies underlying the Saunders prospect consist predominantly of partly welded, crystal-rich dacitic ash flows of the Saunders Member. The dominant lithologies east of the prospect are delineated into two informal units. The first unit consists of pyroxene-biotite- hornblende porphyry flows with interbedded breccias and lapilli tuffs. The other unit consists of well-bedded lapilli, crystal and ash tuffs with interbedded sandstone and siltstone. To the north, a northeast and northwest-striking conjugate fault pair separates lithologies of the Saunders Member from latite lava flows with interflow lahar and mixed epiclastic and pyroclastic rocks of the Metsantan Member.

At the Saunders prospect, anomalous gold and silver are hosted in a quartz-barite breccia zone 80 meters long and 3 to 4 meters wide, trending 170 degrees. Mineralization consists of chalcopyrite, galena and pyrite with associated malachite and azurite. Breccia material has been totally quartz flooded.

Sample GWM-88-276 yielded assay values of 1.41 grams per tonne gold and 164.6 grams per tonne silver (Assessment Report 18628). Three other samples ranged from 0.02 to 0.40 gram per tonne gold and 16.5 to 34.0 grams per tonne silver (Assessment Report 18628).

A quartz vein, 130 meters due east of the quartz breccia, is also part of the Saunders prospect. The vein has a similar trend to the quartz breccia and is mapped as being approximately 50 meters long. Sampling conducted on this vein yielded values of 0.02 gram per tonne gold and 25.6 grams per tonne silver (Assessment Report 18628)."
"The Saunders South showing is underlain by a succession of lower to middle Jurassic subaerial volcanics and associated volcaniclastic sediments of the upper volcanic cycle of the Toodoggone Formation. Lithologies underlying the Saunders South showing consist predominantly of partly welded, crystal-rich dacitic ash flows of the Saunders Member. The dominant lithologies east of the showing are divided into two informal units. The first unit consists of pyroxene-biotite- hornblende porphyry flows with interbedded breccias and lapilli tuffs. The other unit consists of well-bedded lapilli,
crystal and ash tuffs with interbedded sandstone and siltstone. The area is also disrupted by a conjugate set of northwest and northeast-striking faults that appear to have substantial displacement.

Mineralization is hosted in an outcrop composed of highly siliceous and brecciated, hornblende feldspar porphyritic trachyte. Quartz-hematite veins and veinlets up to 6 centimetres wide carry minor disseminated pyrite. Sample S-8-31-4, taken from this outcrop, analyzed 10.2 grams per tonne silver and 0.12 gram per tonne gold (Assessment Report 12716). Assays of additional samples, taken during 1985, did not yield similar gold and silver values. "
"The Saunders Southwest showing is underlain by a succession of lower to middle Jurassic subaerial volcanics and associated volcaniclastic sediments of the upper volcanic cycle of the Toodoggone Formation. Lithologies underlying the Saunders Southwest showing consist predominantly of partly welded, crystal-rich dacitic ash flows of the Saunders Member. To the north and east, Toodoggone Formation volcanics are composed of latite lava flows with interflow lahar and mixed epiclastic and pyroclastic rocks of the Metsantan Member. The dominant lithologies southeast of the showing are delineated into two informal units. The first unit consists of pyroxene-biotite- hornblende porphyry flows with interbedded breccias and lapilli tuffs. The other unit consists of wellbedded lapilli, crystal and ash tuffs with interbedded sandstone and siltstone. The area is also disrupted by a conjugate set of northwest and northeast-striking faults that appear to have substantial displacement.

The Saunders Southwest showing consists of a weakly pyritic (up to 5 per cent) and silicified quartz-calcite breccia zone, 1 to 2 meters wide. Weak argillic alteration, consisting of limonite, is associated with the zone. Sample BT-S-8 from this breccia zone assayed 0.108 gram per tonne gold and 10.4 grams per tonne silver (Assessment Report 14487). Sample DD-S-14 from this zone contained an unidentified black sulphide."
"The Som showing is underlain by a succession of lower to middle Jurassic subaerial volcanics and associated volcaniclastic sediments of the upper volcanic cycle of the Toodoggone Formation. Lithologies underlying the Som showing consist predominantly of latite lava flows with interflow lahar and mixed epiclastic and pyroclastic rocks of the Metsantan Member. To the south and west, Toodoggone Formation volcanics are composed of partly welded, crystal-rich dacitic ash flows of the Saunders Member. The dominant lithologies southeast of the showing are delineated into two informal units. The first unit consists of pyroxene-biotite-hornblende porphyry flows with interbedded breccias and lapilli tuffs. The other unit consists of well-bedded lapilli, crystal and ash tuffs with interbedded sandstone and siltstone. The area south is disrupted by a conjugate set of northwest and northeast-striking faults that appear to have substantial displacement.

Alteration consists of epidote, sericite and pyrite locally developed in association with moderate fracturing.

Mineralization at the Som showing consists of chalcopyrite and associated malachite along fractures in an outcrop of andesitic tuff and near the contact between two andesitic tuff units. The outcrop is elliptical in shape and 60 to 120 meters diameter.

Two chip samples taken across this zone 30 meters apart, assayed 0.21 per cent copper over 9.14 metres and 0.28 per cent copper over 9.14 meters (Assessment Report 2083)."
"The Camp 1 showing is underlain by succession of lower to middle Jurassic subaerial volcanics and associated volcaniclastic sediments of the upper volcanic cycle of the Toodoggone Formation. The dominant lithologies underlying the showing and east of a limonitic gossan fault zone, are divided into two informal units. The first unit consists of pyroxene-biotite-hornblende porphyry flows with interbedded breccias and lapilli tuffs. The other unit consists of well-bedded lapilli, crystal and ash tuffs with interbedded sandstone and siltstone. Units west of the limonitic gossan fault zone consist of a heterogeneous mixture of green, grey and mauve lapilli ash and lesser block tuff, with lesser interspersed ash flows and lava flows and interbedded epiclastics of the Attycelley Member and partly welded, crystal-rich dacitic ash flows of the conformably overlying Saunders Member. The area is also disrupted by a conjugate set of northwest and northeast-striking faults that appear to have substantial displacement.

Weak to intense propylitic alteration consists of fracture infilling with epidote and chlorite adjacent to epithermal vein systems. Intense argillic alteration consisting of limonite occurs in the cores of epithermal vein systems.

Mineralization is hosted in two separate outcrops approximately 200 metres apart. The first outcrop is composed of highly sheared and brecciated hematitic feldspar porphyry with strong malachite staining occurring along fracture surfaces. Sample F-9-2-1, taken from this outcrop, analyzed 18.9 grams per tonne silver and 0.196 gram per tonne gold (Assessment Report 12716).

The second outcrop is 200 meters north of the first. It consists of propylitized quartz feldspar porphyry lightly mineralized with disseminated pyrite. Sample F-9-2-2, taken from this outcrop, analyzed 1.69 grams per tonne silver and 0.078 gram per tonne gold (Assessment Report 12716)."
"The Golden Neighbor 1 occurrence is underlain by a succession of lower to middle Jurassic subaerial volcanics and associated volcaniclastic sediments of the upper volcanic cycle of the Toodoggone Formation. The dominant lithologies underlying the prospect and east of a limonitic gossan fault zone are delineated into two informal units. The first unit consists of pyroxene-biotite-hornblende porphyry flows with interbedded breccias and lapilli tuffs. The other unit consists of well-bedded lapilli, crystal and ash tuffs with interbedded sandstone and siltstone. Units west of the limonitic gossan fault zone consist of a heterogeneous mixture of green, grey and mauve lapilli ash and lesser block tuff, with lesser interspersed ash flows and lava flows and interbedded epiclastics of the Attycelley Member and partly welded, crystal-rich dacitic ash flows of the
conformably overlying Saunders Member. The area is also disrupted by a conjugate set of northwest and northeast-striking faults that appear to have substantial displacement.

Weak to intense propylitic alteration consists of fracture infilling with epidote and chlorite adjacent to epithermal vein systems. Intense argillic alteration consisting of limonite forms a gossan zone 6 kilometers long by 0.2 to 1.0 kilometers wide along a major northwest-striking fault.

Mineralization at the Golden Neighbor 1 prospect consists of quartz veins and stringers and silicified volcanics occurring within the argillic-altered fault zone and frequently containing chalcopyrite, sphalerite, galena, molybdenite, pyrite and scheelite.

A drill program consisting of NQ holes, totaling 605.02 meters, was conducted on this zone in 1986, as followup to a weak VLF electromagnetic conductor and gold and silver in soils. Drillholes LS-86-1 and 2 were drilled on a 1-metre wide quartz vein exposed in trenching. Assay results from drill core were overall only weakly anomalous. Several zones of gold and silver mineralization were intersected in drillholes LK-86-1, 4 and 5. The best intersection from drillhole LK-86-1 analyzed 11.7 grams per tonne silver, 0.25 gram per tonne gold, 0.08 per cent copper, 0.003 per cent lead and 0.003 per cent molybdenum over 1.81 meters (Assessment Report 15512)."
"The Golden Neighbor 2 showing is underlain by succession of lower to middle Jurassic subaerial volcanics and associated volcaniclastic sediments of the upper volcanic cycle of the Toodoggone Formation. The dominant lithologies underlying the showing and east of a limonitic gossan fault zone, are delineated into two informal units. The first unit consists of pyroxene-biotite-hornblende porphyry flows with interbedded breccias and lapilli tuffs. The other unit consists of well-bedded lapilli, crystal and ash tuffs with interbedded sandstone and siltstone. Units west of the limonitic gossan fault zone consist of a heterogeneous mixture of green, grey and mauve lapilli ash and lesser block tuff, with lesser interspersed ash flows and lava flows and interbedded epiclastics of the Attycelley Member and partly welded, crystal-rich dacitic ash flows of the conformably overlying Saunders Member. The area is also disrupted by a conjugate set of northwest and northeast-striking faults that appear to have substantial displacement.

Weak to intense propylitic alteration consists of fracture infilling with epidote and chlorite adjacent to epithermal vein systems. Intense argillic alteration consisting of limonite occurs in the cores of epithermal vein systems.

Mineralization is hosted in two propylitic and argillic-altered zones. The first zone is 4 meters wide and contains quartz and quartz-carbonate stringers and pods up to 20 centimeters wide but with no apparent linear surface extension. Quartz stringers and pods contain disseminated pyrite and lesser chalcopyrite and malachite staining.

A total of four 1-meter chip samples taken from this zone have a weighted average of 15.5 grams per tonne silver and 0.088 gram per tonne gold (Assessment Report 20401).

The highest values were 49.0 grams per tonne silver and 0.248 gram per tonne gold (Assessment Report 20401).

Abstract

The second zone is 50 meters northeast and downslope along a northeast-trending ridge from the first. A total of three chip samples over widths of 30 to 60 centimeters were taken; the weighted average of these samples was 9.34 grams per tonne silver and 0.0475 gram per tonne gold (Assessment Report 20401). The highest values were 61.0 grams per tonne silver and 0.296 gram per tonne gold (Assessment Report 20401)."

$6.0 \quad 2003$ Program

During July and August 2003, Stealth minerals Ltd. undertook to complete a detailed stream sediment survey followed up by a rock geochemical survey completed by prospectors supervised by the author, based from a series of 2 day 2-man fly camps placed at various locations on the property. As part of the regional Government-Private (Stealth Minerals Ltd.) Partnership Toodoggone Initiative, the claims were covered by part of the Fugro operated, GSC supervised, helicopter airborne magnetic and radiometric district scale survey. The survey recorded 2 magnetic parameters and eight gamma-ray spectrometer parameters flown at a line spacing of 400 m and a sensor height above ground of 60 m during August and September 2003. Results were received in April 2004 and is now available on the MapPlace website as an Open File. Color plots of total field magnetics, calculated vertical gradient magnetics, total counts potassium and thorium/potassium ratio for a portion of the survey, relative to the claims are plotted with geology and shown in Figures 11-14.

A total of 57 silt samples were taken. Sediment samples were taken from the flowing streams and dried in cloth silt bags, and shipped to Acme Analytical Laboratories for analysis by 34 Element ICP and gold by fireAA. Sample numbers unique to the sampler identified the sample and its location was recorded by hand-held Garmin 12x GPS devise. The corresponding sample number flagged the sample site in the field.

A total of 85 rock samples were taken as grab or chip samples as to represent the mineralization encountered during traverse and placed in a plastic sample bag with a unique assay tag number. The sample site was flagged in the field with the corresponding sample tag number and the location recorded by hand-held Garmin 12x GPS units. The samples were ground or air shipped to Acme Labs in Vancouver for analysis by 34 element ICP and gold and silver by fire-AA. Character samples were also retained and analyzed by Pima spectrometry to identify clay mineral species present to characterize the alteration suite associated with the mineralization.

Sample locations and anomalous threshold thematic maps were prepared in MapInfo software and displayed by element in Figures 5-10. Partial geochemical results for the rock geochemical survey are shown in Table III with corresponding sample descriptions given in Table IV. Partial results for the silt survey is given in Table V. Assay Certificates are found in Appendix I.

6.1 Geochemistry

As seen in Figures $5-9$ showing thematic results for $\mathrm{Au}, \mathrm{Ag}, \mathrm{Cu}, \mathrm{Pb}$, and Zn , rock and silt samples with anomalous values (over $90^{\text {th }}$ percentile) usually occur along or adjacent to the structures and faults seen on the geology map, Fig. 4. The gold anomalies in rocks, with a high value of 2961.8 ppb Au were mainly from the Saunders showing area. The sample was also anomalous in $\mathrm{Cu}, \mathrm{Ba}, \mathrm{Pb}$ and Ag . The stream draining this showing is moderately anomalous in gold with silt high of 24 ppb Au . The drainage is highly anomalous in silver and lead in stream sediments. Rock samples at the head of the creek returned silver values to 275 ppm and lead to $2,977 \mathrm{ppm}$. The lead and silver silt values do not drop off in concentration downstream to the north from the in place rock mineralization and appear in adjacent drainages, indicating another as yet to be defines source for the high Pb and Ag values in the Swan 1 and 4 claim has yet to be located.

On the east portion of the claims the stream sediment samples down stream of the Golden Neighbor 1 showing detected the gold; 86.9 ppb in stream versus 1093.7 ppb Au in rock 500 m upstream. The eastern branch of the main drainage, central to the Swan 7 claim is anomalous in gold, silver lead and zinc silt samples. The newly discovered copper bearing breccias identified at the head of this stream returned in rock up to $5.5 \% \mathrm{Cu}$, $0.4 \% \mathrm{~Pb}$ ands $1.2 \% \mathrm{Zn}$ but little gold. This may indicate a gold source further downstream.

6.2 Geophysics

As seen in Figures 11-14 the airborne geophysical parameters selected show features that are reflected in the geology and alteration. The magnetic map and vertical gradient magnetic maps outline the main structures as magnetic lows. The total field magnetic high at the junction of the Swan $4,5,8,9$ claims may reflect the intrusive porphyry mapped at that location. As well, the mag high central to the Swan 6 claim may be responding to

	ments	ramge	(amb	mas	mide	mention	pento	Ppmph	mpmst.	mmen	atca	patfe	9ak.	enter	datce.	paptice	Eeranicp	cobey	semtuwfind	geanta	mintace	Cmonderan
132841	14.3	2004	29.6	381.1	0.07	17.	104.7	68.3	0.2	181	0.08	1.25	0.23	0.01				441	0.25	11.6		13.8
132842	87.8	177	1	280.8	0.04	18	8.5	74.8	1.4	87	0.04	8.37	0.41	0.03				78.	0.09	1.1		1.3
132843	17.8	955	5.5	225.3	0.05	22	343.3	38.2	1	37.	0.02	6.01	0.22	0.01				218.8	0.28	2.8		4.1
132844	1.4	1573	27.8	65.8	0	32	30.1	55.3	0.1	93	0.01	1.7	0.14	0.01				21.3	0.02	8		7.2
132845	0	102	5.7	170.5	0.03	59	26.3	28.4	0.1	21	0.02	5.88	0.34	0.05				39.2	0.04	0.7		1.4
132848	0.8	89	15.5	12	0.03	29	68.7	82.1	0.1	18	0.01	3.36	0.18	0.03				22.4	0.04	1.3		2.1
133835	2.4	55	1	2237.3	4	1157	7.8	23.3	0.2	103	0.83	2.88	0.5	0.85				12.8	0.01	1.3		1.5
133838	25.3	100	2.3	372.3	2.2	149	18.7	52.3	0.3	21	0.07	2.57	1	0.12				88.3	0.1	2.1		2
933837	2	222	1.2	288.5	1	32	31.6	8.8	0.1	32	0.08	0.96	0.4	0.04				7.4	0	0.8		0
133838	0	43	0.1	1028.5	3	1294	0.7	3.7	0.3	381	0.78	2.72	0.8	0.81				2.8	0	0.1		0
133639	4	1380	2.1	24.8	2.6	855	11.5	76.7	0.2	148	0.2	2.83	0.2	0.5				9.3	0.01	0.8		1.3
133640	1	48	0.3	76.8	0	588	1.2	42.5	0.2	62	0.48	9.1	0.1	0.35				10.3	0	0.6		0.6
133841	0.6	285	7	3913.8	0.04	1491	5.4	4788.8	0.2	2810	0.77	2.01	0.13	0.85				10	0	5.8		6.2
133842	0.8	79	10.4	845.2	0.07	821	9.8	280.3	0.3	530	0.46	5.45	0.2	0.42				22.4	0.01	8.4		9.4
133843	0.8	413	8.8	320.5	0.08	1178	25.2	177.8	0.2	282	0.41	1.82	0.11	0.54				13.3	0	1.7		1.5
133844	1.8	13	0.5	25.9	0	828	2.8	42	0.2	118	0.42	1.81	0.05	0.47				8.5	0	0.3		0
133845	3.	3864	1.8	8881	0	1280	2	24.4	0.1	580	1.14	2.95	0.15	0.81				27.4	0.01	1.8		1.7
133551	7.8	64	0.8	274.5	0	238	313.8	1035.3	8.8	274	0.09	1.02	0.25	0.15				43	0.04	9.1		10.4
133552	33.4	154	0.6	67	0.05	29	23.4	1508.1	0.4	147	0	1.38	0.42	0.02				40	0.08	5.9		7.2
133553	124.2	28	0	15.8	0	112	172.6	137.4	2.5	38	0.04	1.77	0.28	0.11				401.4	0.28	18.9		22.8
133554	15.1	73	0.4	59.8	0.04	28	24.9	2977.3	0.4	474	0.01	1.58	0.3	0.01				22.8	0.02	7.9		10
133555	34.1	240	0.2	128	0.11	88	93.8	3828.2	8.5	911	0.44	1.52	0.18	0.01				1844.1	1.13	87.4		83.6
133556	0	53	0	16.3	0	198	1.2	43.8	0.2	17	0.53	0.22	0.27	0.01				10.3	0	0.6		0.7
133557	8.1	117	0.1	9	0	1588	2.4	54	0.3	71	0.82	3.86	0.13	1.17				25	0.02	0.9		0
133558	80	271	0.3	457	0	51	21.9	1802.8	3.4	120	0.07	1.32	0.28	0.02				44	0.03	10.2		11.8
133558	4.3	97	0	48.1	0	2048	4.4	293.8	0.2	4838	5.27	2.38	0.28	0.48				43.2	0.02	2.5		2.5
133560	5	1422	8	2800	0.02	27.	715	6388.7	15.9	639	0.03	2.32	0.13	0.01				2981.8	2.84	275		330.5
133561	0.5	10737	0.1	61.4	0	47.	38.8	222.2	0.2	27	0.05	0.31	0.04	0.01				41.8	0.02	2.2		2.2
133582	3.1	271	1.8	234.8	0.01	30	107.5	878.6	1.2	21	0.01	0.82	0.18	0.01				163.3	0.14	19.3		24.1
133683	17.7	1208	1.7	54	0.08	417	37	277.2	0.3	2375	2.82	0.85	0.1	0.01				49.4	0.05	5.5		e
133564	58.5	200	0.2	149	0.01	856	2.8	1425.4	0.3	1009	0.52	2.54	0.28	0.82				229.3	0.85	8		9.3
133565	3.1	428	4.5	180.5	1.8	14	7.8	ө384.8	9.5	2305	0.02	2.16	0.16	0.01				78.4	0.07	28.8		32.3
133586	1.8	338	4.8	18.5	0.04	13	10.4	315.8	0.3	18.	0.02	1.08	0.24	0.01				38.2	0.02	5.4		8.4
132897.	2.8	53	0.2	4872.8	0.05	1231	0.3	11.2	0.4	178	1.14	2.53	0.04	0.98				11	0.01	0.8		0.4
132888	0	872	0	5584.8	5.5	1778	0.4	39.5	0.2	118	0.83	3.88	0.3	1.87				8.1	0	17.4		28.9
132898	1.7	212	1.2	47	2.8	1784	2.4	25.5	0.1	478	0.69	2.49	0.1	0.9				6.7	0.01	0.6		0.3
132901	10.4	132	2.1	343.4	0.08	1113	0.3	300.2	0.2	12288	3.11	1.11	0.14	0.24	0.037	0.03	1.21	2.2	0.01	1.2	1.7	1.8
132902	1.3	33	0.2	8228.5	0.01	1834	0.8	7.1	0.3	2839	1.5	3.71	0.07	1.15	0.891	0	0.25	0	0.01	1.8	3.5	2
132803	1.8	2303	0.7	4552.2	0	1782	0.5	30.1	0.4	518	0.84	2.07	0.27	0.55				9.8	0.01	1.2		2.2
132804	0	486	3.8	55188.5	0	1875	0.3	303.4	0.1	243	5.8	7.15	0.14	0.83	5.287	0.03	0.03	7.8	0.02	11.2	10.7	12.8
132084	8	178	0.1	8.8	2.42	375	0.8	8.8	0.4	59	0.4	3.57	0.18	0.85				11.3	0	0.1		0
132085	2.6	922	0.1	4.3	3.01	2	2.5	2.1	0.2	2	0	0.68	0	0				1.8	0	0.1		0

16	remin.	mpmene	spmes	remicy	monite	Eenth	Nomo	pempe	penst.	pman	paca	Pofa	Aatk	Retwe	acance	Raplicp	paznice	mone	amedurthert	р Pma	minalce	menatinat
132994	8.2	1005	0.3	3	1.7	14	0.3	8.3	0.2	2	0.02	1.83	0.1	0				8.4	0	0		0
132985	0	888	0.8	2.9	1.1	3	0.2	4.1	0.1	1	0.01	2.1	0.1	0				8.8	0.01	0		0
132888	22	81	0.2	3.8	5.7	1838	0.4	12.2	0.5	98	0.88	3.03	0.1	1.58				2.4	0	0.1		0
133631	10.6	5518.	0.2	0.2	0.8	8	1.5	27.7	0.2	3	0.01	0.38	0.1	0				B. 4	0.01	0		0
133831A	28.2	94	0	85.4	0.01	1110	0.4	32.5	0.5	107.	0.58	3.35	0.15	0.78				4.1	0	1.1		2.3
133832	7	8018	0.8	1.2	1.5	8	4.4	10.8	0.6	3	0.01	1.18	0.1	0				8.3	0	0		0
133833	1.2	1258	0.4	1.5	0.8	8	5.5	3	0.2	1	0	0.38	0	0				3.8	0	0.1		0
133834	0.4	88	1	8.7	1.1	7	2.7	3.1	0.2	2	0	1.42	0.1	0				138	0.14	0.1		0
132081	6.8	87	0	8.4	8.2	947	2.4	10	0.3	53	1.87	3.37	0.1	1				0	0	0.1		0
132082	23.	507	0.9	30.4	0.4	1737	1.1	28.1	0.5	119	2.17	7.28	0.8	2.05				25.8	0.02	0.2		0
132083	15.7	458	0.3	12.2	8.2	1882	0.6	11.3	0.6	111	2.12	6.82	0.4	1.83				11.4	0	0.6		0.7
133646	0	740	0.4	279.5	0	27	7.1	18.7	0.1	19	0.02	5.45	0.22	0.08				882.8	0.62	1.1		0.4
133647	2.8	175	1.2	294.5	0	22	14.8	14.7	0.1	20	0.02	5.58	0.15	0.04				518.5	0.49	0.8		0.8
133648	1.7	398	0.5	288	0	13	35.8	21.9	0.1	37	0.01	2.45	0.34	0.04				481.1	0.73	0.5		0.5
132905	10.5	118	1	892.8	0.02	23	9.8	200.4	0.8	38	0.05	5.8	0.22	0.02				244.2	0.32	2		1.8
132808	0	93	2.1	151.7	0.06	15	10.5	18.4	0.1	7	0.01	0.98	0.05	0.01				88.4	0.12	0.3		0
132807	0	414	7.1	84.7	0.04	5	17.1	18.8	0.2	7	0	0.8	0.04	0				780.1	0.81	7.5		8.5
132816	1.5	183	0.3	24.8	0.02	21	2.2	5.8	0.2	8	0.03	2.33	0.18	0.01				8.1	0.01	0.2		0
132817	1.8	26	1	27.7	0.03	13	5.8	81.2	0.1	7	0	0.42	0.03	0				3.7	0.01	1.8		1.5
132818	1	55	1.8	20.8	0.03	13	2.8	18.1	0.1	7	0	0.36	0.04	0				10.8	0	0.7		0.8
$\underline{132818}$	1.2	280	5.5	18.8	0	8	12.3	18.4	0.2	5	0	0.64	0.07	0				124.4	0.15	31.8		38.2
132820	0.8	1778	11.3	5.4	0.07	4	138.1	1194.8	0.7	3	0	1.08	0.12	0				70	0.05	14.8		17.8
132821	94	358	0.8	8.8	0.02	77	8	23.7	0.8.	18	0.01	8.8	0.19	0.12				22	0.03	0.4		0
132822	1.4	135	102.2	3224.2	0.52	763	14.3	2784.5	1	98988	9.52	5.72	0.08	0	0.355	0.28	12.31	28	0.04	34.8	38	40.8
132623	2.5	4274	3.8	32.5	0	8	11.1	53.8	4	824	0.08	0.64	0.06	0				36.2	0.02	2.8		3
132824	22.8	814	28.2	22.3	0.04	28	11.2	287.4	1.6	1432	0.02	3.1	0.04	0				22.6	0.02	12.3		13.8
132625	0	98	1.5	10.8	0.08	14	1	12	0.1	28	0.1	5.8	0.36	0.04				3.3	0.01	0.3		0.4
132828	5.7	842	1	7.3	0.02	35	2.3	19.8	0.1	15	0	2.23	0.37	0.17				1.8	0	0.1		0.4
132827	4.7	1818	1.5	22.2	0.16	14	2.4	12.5	0.5	18	0	3.4	0.01	0.01				24.3	0.05	0.2		0.5
132828	7.8	273	0.7	201.3	0.04	110	35.5	34	0.3	128	0.01	18.18	0.38	0.14				85.1	0.1	0.3		0
132829	0	80	45	517.5	0.05	25	59.8	472.8	0.2	13	0.08	1.34	0.11	0.01				80.4	0.07	29.6		34
132830	1.1	3548	0.9	141.6	0.04	155	18.2	10.4	0.1	108	0.35	0.54	0.28	0.02				5.3	0.01	0.8		0.8
132831	2.1	472	2.1	32.8	0.04	24	14.6	8	0.2	8	0.02	1.84	0.18	0.01				40.3	0.08	1.8		2.8
132832	2.2	591	5.2	11.8	0.07	27	18	18.5	0.2	5	0.02	0.45	0.00	0.01				477.3	0.34	2.5		3.7
132633	3.5	828	0.8	105.4	0.02	282	14.8	8.8	0.1	68	0.18	2.97	0.45	0.4				81.1	0.11	0.8		1.3
132834	2.2	3467	3.4	14.7	0.08	24	14	22.4	0.2	7	0.02	1.71	0.05	0.01				1093.7	1.47	14		16.3
132835	0	2204	8	485.8	0.04	45	5	13.2	0.1	18	0.05	1.15	0.08	0.01				21.3	0.02	2.5		3.8
132636	4.3	217	3.4	82.7	0.03	28	28.1	21.2	0.4	8	0.04	0.75	0.11	0.01				84.7	0.17	1.7		2.4
132837	1.4	293	8.7	1304.5	0.01	288	2.1	0.8	0.1	43	3.83	0.88	0.07	0.01				10.5	0.04	2.3		3.6
132838	0	237	2	54.1	0.04	18	23	18.4	0	5	0.08	1.22	0.11	0.01				5	0.01	0.8		1.3
132838	2.4	288	85.8	300.2	0.03	27.	58.3	335.2	0.1	24	0.05	0.97	0.08	0				13	0.02	15.7		18.2
132840	0	88	3.5	143	0.05	15	22.9	34.8	0.1	13	0.04	6.84	0.29	0.01				02.5	0.08	0.4		1

id	minemet	maraiorth	matam	tanutse	*triock	mavinita
132061	816542	6352434	1731	Dave Price Trench, 8in chip, E-W	Tood, dacke, tuff	
132082	818534	6352434	1729	Dave Price Trench, 7 mm chip, E-W	Tood, dacke, tufl.	7
132083	818581	8352253	1772	Vein-bx 200+5m of Dave Price trench, adjecent to porphy fow on dyke	Tood daciko	
132004	614688	6353098.	1749	Foox 20 m zone, 10 mm chip veindels queclay+dss Py	Tood dacite.	10
132065	614887.	6352585	1804	Alnnite vn+bx in Alsclay=Py latered Tood, 10 mm in 100m wide zone.	Alurite	10
132618	817021	6356374	1713	Small prox float of Py, Ser, chy, and Qizs stringers w/m prop. Alerred Daicie		
132817	818897	8355824	1895			
132818	816887	6355824	1895	Block prox faut; ¢rey motted fine grained sifica after groy Dakite		
132018	810987	6355924	8.	Grey sime Ofz cut by whine Py, Otz, both cut by Quz stringers (nvogy) +1-Py		
132820	816895	6355786	1700	5-8 cobble ste Qtx+ Sericite in Otz Daicke; on latus c.g. Py-5\%; trace Galena and dark black supphides		
132021	818350	6353753	1787	Linvolay brecta zone; s/e prox taus -10 m wide; (samplo previous- RB 02; Al 0.1) diss Py: limonide coating and fims; no boxwork		
132822	618382	6353750	1787	Small prox talus/drt; float Qux, Ce w/ Galena, saphrime, Py Cpy +1 -?		
132823	818412	6353782	1778	When sicatciz on talus in pass, atundant boxwork cavities after PY(8%)		
132824	818412	8353752	1778	Otz+Py... fist to head ste, , Qta, Py 4 .g. groy mineral prox fioza		
132025	1618328	6354054	1738			
132826	818328	6354054	1738	As above; clay alterad Oiz eye Dacie porph; thin 1m fractures ; +1-fine wugoy Qiz		
132827	618322	6354085	1742	Acid leach silica; very frothy ; bubblo staped to angular cavites(Mrgay $\mathrm{O}\left(\mathbf{z}^{\prime \prime}\right)$		
132428	818307	8354314	1743	Ofe rusty monie; seame in anvilc atered rock		
132828.	818323	6354318	1738	Ciz velin in quly: milly, wryy, banded, masslve, common cobble to block size		
132830	1818240	6354507	173			
132031						
132632	818234	8354731	1711	Odd trenct; largo block white atz locally wagy: locally boxwork silics openings		
132033	618234	8354731	1711	Odd trench; proph atered Ozz eye Dacite w/ thin Py + Cizs stringers		
132034	818234	8354731	1711	Odd trenet; nsty Qiz vein widss. And weathered Py		
132035	818257	6354723	1715	Odd trench; nuty, wigqy, silica, Py casts, Custain		
132636	818257	835472	1715	Odd tench; banded sifica Clz		
132837	818257	8354723	1715	Odd trench; whive Qtz w/ Cc knots; diss CPy		
132038	818257	8354723	1715	Odd trenct; rusty, wegoy, silica wi ctay atered Py wallock		
132638	818257	6354723	1715	Odd teench; banded Py, Qtz		
132840	818277	8354753	1885	Rusty? goethel/ arosite;ctay allered Quz dacke; m.g. seams of dark goetheecoatiog on f.g. Ctz Bx; ffoat in guly		
132641	818277	8354753	1695	Float in guly, rusty ctay + silica atered dactie ; diss Py of dark mineral		
132642	818383	8354720	1713	Clay atiered Otz eye dacite w/ qoethite + silica stringer, float in talus		
132843	818368	6354720	1713	Goethie + jarosie coated fo, s. sica; float on taus		
132844	818043	6355028	1581			
132845	818044	8355025	1578	Clay akered Otz eye dacie cut by limente(goeth) stringers		
132848	617953	8355072	1562	Otz veln in creek w/ cty athered rocks ; vogg, abundart Py		
132801	618750	6354500	1811	Alered brecchitated quarta, chlorite, matactite, eptdote, pyrie	Float	
132902	618000	8354484	1807	Atered w/ Ctz vehing, ctionte, epidoto, malactite, azurit, chalcopyike, pyite, barite	Float	
132903	618978.	6354474	1820	Talus foat; allered K -spar, cthorine, pyite, malactike, eppidote	Float	
132804	618973.	6354438	1783		Float	
132005	618932	6353220	1687	Ctz stockwork, aliered clay	Float	
132906	6188809	6353312	1708	Sticious limonito rock	Float	
132907	618834	8353278	1689	Sificious float w/ pyitesimonte; boxwork	Float	
132884	818074	8352484	1670		Float	
132885	618988	8352405	1711	Alered chy fodspar, porphonite; Pyyxe crystals, imonite, pyrophytite	Float	
132896	618711	8352585	1678	Aldered foldspar porphoritic rock coomaining Epldike, chlorito, and pyite	Talus Float	
132097	819387	8356282	1628	Talus strde; Malactito stainhq, K-spar, epidoto altered rock	Float	
132098	818430	8350223	1638			
132009	818868	8354525	1715	Talus float; Qte breecta wi Py, Crlorike \& epidote	Float	
133551	815697	8356354	1813	Chip across exposed o/c	vein system	1.8
133552	815588	8356184	1848	Angular fioat on talus; probatbe of $\sim 150 \mathrm{~m}$ upslope to south		
133553	815536	8356209	1817	Grab from taus meyy ofo-200m upslope to south; creek under taius here; wallock may be same as peo rock swan 1DWR (Unsure of elevation)	Fekt porply?	
133554	615589	${ }^{6356309}$	1800	Low on talus may be part of 551 vein system; Otz barite? Jaroside vein foat; rouptiy on strike wih 551 vein (unsure of elovation)	vein	
133555	815621	8356330	1794	May be part of $551+554$? Bubbling ouk of talus; deffrate subcrop	vein bx	0.6
133556	615528	6356521	1782	Angular fioat low on talus; much more neagrby+ upstopo; old grid ploket nearby, cant read	Qtz- Ba vein	
133557	615842	6358832	1798	Rx gons to clay + limonie; minor Qte stringers; numerous boxworks atter pyite; grab across exposed begtrock	rusty zone	5
133558	615589	8358889	1775	Angular fioat on taius.	Otz ven	
133559	815897	6357009	1754	On taus; pyite as euhedral cubes and blobs	Hepr prey tufl	
133560	815978	0356242	1776		ctavem	
133561	615878	6356238		Grab from silphde-poor section of vein; may also be separate vein to 560 ? Needs treneting if ampting in theso samples; have tong walk and cant tit	vein material	
133562	816124	6356110	1798	Angular float esotom of taius; has foed of stberop though other plees around for - 10 m lenath than covered by blocky taks; very local material; upt		
133563	616101	6356088	1782		Ozein	
133564	616624	6356073	1700	Float on tains; not much here	feldeporphy	
133565	816894	6356154	1880	Float ion taus; large Qux-filed vegs w/ red coationg; Hem is probably a Pb-oxide? H's red and earthy		
133568	616694	8356154		Float on takus beside 585; small vogst pyrite boxworks		
133639	610079	¢352392	1685	Angutar SIC: SEIca with Acid leached textures	SVC, Grab	
133031 A						
133632	818894	6352407	1885	Epithermal Cux with Occastonal refet Py Boxwork	S/C, Grab	
133633	818984	\| 8352407	1705	Anguar dussy gtz foat with relict Py bowwork, proximal	Anp Float, prab	
133634	6188891	-6352385	1748	Smceous rock with loached textures (on ctaim line)	SIC, 6	
133635	618842	6356007	1868	Maltendite (nootosito) In 向e tuft. (at source) with Epidote thspar	Sic	
133636	618687	6355954.	1897	Rusty anguar boudder with Dog's tooth gte stockwork, cllorticic Volc host		
133637	618710	${ }^{6355765}$	1713	Yellow weathered Quz breecta with supary Qtz stockwork, it Py	Talus, Grab	
133638	618719	6355785	1713	$\mathrm{Cu}(\mathrm{Mal})$) foat, same toc orey, med pink feldspar porphyry	Talus, Grab	
133639	618879	6354550	1788	Largo Cotz bouders in talus, drusy silicifod brecth with oceasional Py, supgry Qtz	Taus.grab	
133640	819456	8354887	1831	Namow Epitiermal Cuz veinstwk about . 5 m wide host chioritic pink feldspar intusive	O/C, G	0.5
133841	818972	6354560	1825	Taus float Cutatz stuk in feldspar porphry with Cpy, Mal, Azrr, Galema(?), Py?	Taus grab-	80
133642	619692	6354538	1837	Proximal laus toat rusty frothy sicra with Malitiydrozincte	Tatus, G	
133643	810692	0354538	1837	Same loc 10m south, supary Ctz sthwk, with tr Coy, Py, system about 10m wide (foosa) tirend 140	Src, Grab	10
133644	819753	8354512	1820	Crtoritic Porphyry qaz welded breccia with oceasional Py	Taus, \mathbf{G}	
133845	818851	6354435	1815		Take, G	
133846	618853	6353201	1685	Oiz stwx in bloached rock; Py in Caz + leached Py boxwork in host	Ang Foat, grab	
133647	818853	8353201	1685	Same, 20m dounslope	Ang Foat, grab	
133848	618983	6353201	1605	Same rock with no Clz vent-wraly Q a with leached Pi boxwork	Ans Float, \%ab	

Sample Number	E(m)	N(m)	Mo(ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Mn (ppm)	Fe(\%)	As (ppm)	Au (ppb)	Sb (ppm)	Bi (ppm)\|	Mg(\%)	Ba(ppm)	K(\%)	H9 (ppm)
AS-01	616256	6357945	6.4	109.4	294.6	1210	0.8	2868	3.18	11.4	16.9	0.5	0.3	0.83	181	0.09	0.03
AS-2	615898	6356936	11.6	54.9	109.4	436	1.	2138	3.8	14.4	17.3	0.7	0.4	0.78	200	0.1	0.02
AS-3	617929	6356798	11.7	138.9	37.5	361	0.3	1957	8.88	11.1	37.9	0.3	0.7	0.6	118	0.07	0.02
AS-4	617740	6355955	11.5	115.8	34.7	318	0.2	1920	7.86	10.2	26.7	0.4	0.8	0.61	102	0.07	0.02
AS-5	617607	6355987	1	69.8	2	19	0.1	26	39.74	0.5	3.3	0.1	0.1	0.01	4	0.01	0.03
AS-6	614359	6354661	0.5	6.7	7.9	63.	0.1	963	1.73	18.1	2.4	0.9	0.2	0.72	89	0.17	0.01
AS-7	613638	6355520	0.6	17.8	10.2	58	0.2	476	2.43	6.3	4.9	0.6	0.1	0.59	96	0.06	0.03
AS-8	620210	6355351	0.6	37	28.8	185	0.2	1003	2.47	4.4	5.4	0.4	0.2	0.98	135	0.07	0.01
AS-9	620248	6355851	0.3	35.1	29.3	187	0.2	996	2.86	4	5.1	0.3	0.2	0.94	101	0.04	0.01
AS-10	618859	6357246	9	48.9	36.6	122	0.7	1576	4.22	14.6	52.5	0.7	0.2	0.93	183	0.18	0.03
AS-11	618140	6357611	0.8	19.8	18.2	144	0.1	1002	2.57	3.9	26	0.3	0.1	1.01	104	0.06	0.01
AS-12	617576	6358191	8.4	112.3	40.2	512	0.3	2181	5.52	8.1	77.3	0.4	0.5	0.62	124	0.07	0.03
CR-01	616531	6358718	3	141.5	209.7	816	0.6	1150	2.8	7	12.9	0.5	0.2	0.81	293	0.09	0.04
CR-02	616508	6358881	1.7	207.2	148.5	635	1	669	1.53	2.6	6.2	0.7	0.1	0.46	322	0.08	0.06
CR-03	616508	6359228	3.4	165.7	327.7	519	2.6	1424	3.01	7.4	16	0.5	0.2	0.93	741	0.12	0.15
CR-04	615861	6359377	0.9	51	34.7	191	1.5	722	2.35	7.6	3.3	0.4	0.1	0.7	374	0.07	0.1
CR-05	616325	6359397	0.8	22.8	23.3	127	1.5	886	2.13	8.8	5.5	0.3	0.1	0.52	267	0.1	0.14
CR-06	614543	6358382	0.6	76.6	107.6	431	1.8	555	2.12	6.8	10.8	0.4	0.1	0.78	335	0.08	0.11
CR-07	614575	6358871	1.1	32.5	40.1	141	2	850	1.89	11.9	6.5	0.4	0.1	0.61	281	0.09	0.09
CR-08	616500	6352346	0.7	10.7	8.9	46	0.1	577	2.34	10.2	5.1	0.5	0.1	0.54	98	0.06	0.01
CR-09	615864	6352384	0.5	9.6	8.5	65	0.1	969	3.1	12.6	1.5	0.5	0.1	0.64	138	0.11	0.09
CR-10	615941	6357033	3	45.9	135.5	181	0.4	1065	3.21	10.4	16.6	0.6	0.3	0.82	124	0.11	0.02
CR-11	615979	6357252	7.7	130.9	263.7	831	0.5	3381	3.93	12.2	10.5	0.5	0.3	0.9	123	0.1	0.02
CR-12	616101	6357394	4	77.8	188.2	614	0.6	2148	2.73	9.9	21.4	0.5	0.2	0.72	117	0.08	0.02
CR-13	616192	6357580	5.2	128.3	291	1254	1	2631	2.8	10.7	24.3	0.5	0.3	0.74	164	0.09	0.05
CR-14	616232	6357784	6.4	118.1	292.1	1233	0.7	3311	3.06	11.2	10.4	0.5	0.3	0.84	145	0.09	0.04
CR-15	616446	6358079	9.1	39.2	49.4	77	0.8	733	5.95	8.6	9.6	0.4	0.4	0.64	96	0.12	0.03
CR-16	616947	6358019	3.3	109.7	52.6	710	0.5	1411	2.53	4.1	18.5	0.3	0.2	0.9	256	0.11	0.04
CR-17	617602	6358342	5.4	57.1	27.6	266	0.2	1655	3.86	7	10.7	0.3	0.3	0.8	114	0.07	0.01
CR-18	617580	6354771	0.7	17.6	12.8	57	0.2	995	3.17	14.4	3.6	0.2	0.1	0.75	46	0.1	0.04
OS-01	617370	6359172	6.5	59.1	37	260	0.2	1420	3.66	7.2	15.6	0.3	0.4	0.82	132	0.07	0.02
OS-02	620000	6351944	7.5	158.3	71.9	373	0.4	2167	5.48	13.3	18.8	0.4	0.9	0.59	167	0.08	0.01
OS-03	619544	6352057	1.5	26.2	36.7	279	0.6	1731	2.84	7.7	10.6	0.3	0.5	0.54	312	0.09	0.04
OS-04	619535	6352642	10	1424.8	18.6	421	0.3	4189	3.01	25.8	47.9	0.3	0.4	0.47	188	0.09	0.03
05-05	614461	6355025	0.5	11	9.8	67	0.2	1018	2.89	14.5	3.1	0.7	0.1	0.74	90	0.15	0.01
OS-06	614473	6355541	0.9	12.8	14.8	56	0.1	747	5.85	7.1	3.5	0.7	0.2	0.53	71	0.08	0.01
OS-07	614470	6355594	0.7	10.9	12.9	68	0.1	837	5.92	6.1	0.5	0.6	0.1	0.75	88	0.07	0.01
Os-08	614788	6353311	0.5	11.5	7.9	59	0.1	912	2.59	19.3	1.5	0.7	0.1	0.58	118	0.12	0.16
OS-09	615085	6353375	0.7	8.9	7.7	61	0.1	1015	2.4	19.9	0.9	0.8	0.1	0.74	135	0.13	0.12
OS-10	615402	6353350	0.8	7.5	6.8	56.	0.1	971	2.18	20.3	1	0.7	0.1	0.63	124	0.13	0.13
OS-11	615522	6353372	0.9	7	7.7	52	0.1	1291	2.34	13.2	5.7	0.3	0.1	0.42	128	0.11	0.02
OS-12	615655	6353177	0.7	12.1	8.8	66	0.2	698	2.87	5.2	1	0.3	0.1	0.76	116	0.07	0.01
OS-13	615675	6353200	0.6	5.3	7.8	52	0.1	682	2.15	6.7	10	0.3	0.1	0.48	156	0.07	0.07
Os-14	615698	6353136	0.4	10.1	8.4	66	0.1	1180	2.83	7.5	0.5	0.2	0.1	0.63	155	0.09	0.02
OS-15	615804	6352941	0.5	7.7	6.5	54	0.1	1003	2.13	13.9	0.5	0.5	0.1	0.56	122	0.09	0.04
OS-16	615833	6352954	0.5	9.3	7	47	0.2	943	2.72	26	16.4	0.4	0.1	0.61	111	0.07	0.02
OS-17	617292	6354787	0.6	- 9	7.8	40	0.1	967	2.76	7.3	2.7	0.2	0.1	0.5	28	0.08	0.02
RR-501	616920	6354845	0.6	14.8	11.5	53	0.3	915	2.7	8.9	4.7	0.3	0.1	0.73	52	0.08	0.02
RR-S02	617354	6357859	0.5	9.8	8.8	43	0.1	931	2.57	7.1	1.6	0.2	0.1	0.59	31	0.1	0.02
RR-S03	618781	6356715	1.3	94.7	9.7	101	0.3	862	2.68	4.1	3.6	0.3	0.3	0.81	214	0.06	0.02
RR-504	619498	6357104	0.6	26.6	21.4	146	0.2	983	3.54	4.3	28.2	0.2	0.1	0.86	94	0.05	0.01
RR-S05	620132	6356615	0.4	33.8	24.4	156	0.2	868	2.22	3.6	44	0.2	0.1	0.84	108	0.05	0.02
RR-S06	619581	6351934	2.6	41.1	72.6	1061	0.6	9139	4.18	13	7.8	0.5	0.5	0.78	227	0.12	0.01
RR-S10	617915	6354373	14.4	294.2	84	331	0.7	1205	4.82	11	185.4	0.2	1.1	0.56	186	0.09	0.03
RR-S13	614720	6354996	0.3	8.2	7.3	39	0.1	631	2.16	7.5	7.1	0.3	0.1	0.55	73	0.1	0.01
RR-S14	614022	6356220	0.5	12.3	11.1	58	0.1	807	3.63	9.3	1.2	0.4	0.1	0.7	79	0.08	0.01
RR-S15	620225	6355040	0.5	48.5	41.6	235	0.2	1095	2.73	5	30.1	0.3	0.2	1.03	113	0.05	0.01
RR-S16	617792	6355074	14.4	82.9	81.9	238	0.4	774	5.88	8.6	77.9	0.2	2.8	0.63	190	0.13	0.02
RR-S17	617812	6355117	25.3	198.5	42.5	125	0.4	739	8.54	4.9	86.9	0.2	1.5	0.51	174	0.11	0.01

1326362003 Rock Assay Tag Number

$\nabla \quad$ RR-S10 2003 sit Sample Number

Stealth Minerals Limited

Toodoggone Project
Swan Claims

Sample Locations 2003 Geochemistry Rocks, Stream Silt

Lower Jurassic Toodoggone Formation
6

Homblende Feldspr Porphyry
\square
5
4
Grey Dacite Tuft
Basath sill
\square
3
\square
2

Lithic Crystal Tuff

Lat̂ita Fiow
Upper Triassic Takla Assemblage
1
Andesita Flow

- Minfile Location

E 2003 Rock Assay
$\nabla \quad$ rocs sm sample

- - - - Geotogical Contarct
morn Faut

Stealth Minerals Limited
Toodoggone Project Swan Claims
Geology
2003 airborne Geophysics Total Field Magnetics

DAK	Scale 1:50,000	Apr.10, 04	F;g 11

Lower Jurassic Toodoggone Formalion

Homblende Feldspr Porphyry
5
\square
Grey Dacite Tuff

Bassit sif

3
Lithic Crystal Tuff

2
2 Latite Flow
Upper Triassic Takla Assamblaga
Andosite Flow

- Minfile Location
$\square \quad 2003$ Reck Alsay
$\nabla \quad 2003$ sm Sampre
- - - - Geotogical Contact
merr Faut

Scale
Stealth Minerals Limited
Toodoggone Project Swan Claims

Geology
Aibome Geophysics:
Total Potassium

intrusive rocks. The total field magnetic high in the east-central part of the Swan 3 claim shows no obvious surface source and may indicate the presence of an unmapped or buried intrusion. The total counts potassium clearly outlines altered structures. The Th / K ratio maps outline linear features of low values indicating strong hydrothermal potassium anomalies. These are seen at the intersections of structures between the Camp and Golden Neighbor 1 showings and central to the Swan 3 claim, associated with geological contact. The eastern portion of Swan 7 claim, along the main drainage is a strong Th / K low indicating highly altered rocks. The south central area of the Swan claims surrounds and party overstake previously existing claims that cover an intense Th / K low anomaly just west of the major through going fault which continues north onto the Swan 5 claim.

7.0 Summary and Conclusions

The area covered by the Stealth Minerals Swan claims has had a significant amount of exploration completed resulting in the location of several mineral occurrences. Detailed stream sediment sampling and prospecting by Stealth has located previously undocumented anomalies and insitu mineralization. The claims are underlain by elements of the Jurassic Toodoggone Formation which hosts past producing gold and silver deposits in close proximity to the Swan claims. Structures and airborne geophysical signatures on the Swan claims are similar to other proximal known deposits. The claims are situated close to existing infrastructure so further advancement of the claims may be completed in a cost effective manner. It is warranted and recommended that a future exploration program be completed on the Swan Claims.

8.0 Recommendations

A program consisting of continued rock geochemistry along with Pima analysis of alteration styles be completed in areas such as the new copper mineralization and north along the ridge between the two north flowing drainages on the east side of the property. Contour or compass line soil geochemical lines at a $100 \mathrm{~m} \times 50 \mathrm{~m}$ spacing will help in covered areas. Continued prospecting and sampling north of the Saunders showing to locate another source of the lead and silver stream geochemistry should be undertaken. Detailed sampling in attempt to quantify grade x width parameters is priority; hand or blast trenching should be completed over any
significantly mineralized zones to determine structural attributes and grade potential prior to an initial drilling program. Mechanical trenching with an excavator is possible. The route from the south via Baker mine is possibly the easiest. The northeast portion of the claims may be accessible via cat trail in late 2004 from access activity by neighboring claim holders. A detailed cost breakdown and estimated budget for a two Phase exploration program is given in Appendix III.

Appendix I

2003 Assay Certificates

GROUP 1DX - 1.000 GM SAMPLE LEACHED HITH $30 \mathrm{ML} 2-2-2$ HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 100 ML , ANALYSED BY ICP-MS. AG** \& AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE.
SAMPLE TYPE: ROCK R150 60 C Samples beginning 'RE' are Reruns and 'RRE' are Reject Beruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual costlof the analysis only.

SAMPLE\#	$\begin{array}{r} \text { Mo } \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \text { Pb } \\ \text { ppm } \end{array}$	$\begin{array}{lr} \mathrm{ln} \\ \mathrm{~mm} & \mathrm{ppm} \end{array}$		$\begin{array}{r} \mathrm{Ni} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Co } \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Mn} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Fe} \\ \% \end{gathered}$	$\begin{gathered} \text { As } \\ \text { ppm } \end{gathered}$	s U	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$	$\begin{aligned} & \text { Th } \\ & \mathrm{ppm} \end{aligned}$	Sr Cd ppm ppm	Sb Bi ppm ppm	$\begin{array}{r} V \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \% \end{gathered}$		$\begin{gathered} \mathrm{La} \\ \mathrm{ppm} \end{gathered}$	ppm	$\begin{gathered} \mathrm{Mg} \\ \% \end{gathered}$	$\begin{gathered} \mathrm{Ba} \\ \mathrm{ppm} \end{gathered}$	$\%$	$\begin{gathered} A 1 \\ \% \end{gathered}$	$\%$	$\begin{aligned} & K \\ & \% \end{aligned}$	W Hg ppm ppm		$\begin{array}{ll} \mathrm{cc} & \mathrm{Tl} \\ \mathrm{om} \\ \mathrm{ppm} \end{array}$	$\begin{aligned} & 5 \\ & \% \end{aligned}$	Ga ppm	Se om	$\begin{gathered} \mathrm{Ag}_{\mathrm{At}}^{\mathrm{gm} / \mathrm{mt}} \end{gathered}$	$\begin{gathered} \mathrm{A} u^{\star *} \\ \mathrm{gm} / \mathrm{mt} \end{gathered}$
A 133630	. 3	34.0	4.6	6114	8	1.3	12.7	482	3.29	15.1	11.1	9.4	2.5	12	$3.6<.1$	78	. 37	098	11	<1	61	298	085	1.01	. 006	30	. $2<.01$	4.0	0.1	< 05			<3	01
A 133631	1.5		27.7	73	<. 1	. 3	. 1	8	. 36	10.6	6.2	6.4	4.4	$131<1$. 2.2	<1	01	. 004	1	<1	<. 01	5518	. 002	. 22	. 004	02	. $1<.01$		$8<.1$. 09		< 5	< 3	. 01
A 133632	4.4	1.2	10.8		<. 1	. 5	<. 1	8	1.16	7.0	0<.1	8.3	. 6	$325<.1$. 6.9	<1	. 01	. 015	1	1.5	<. 01	8019	. 001	. 22	. 004	03	. 1.01		$5<1$. 21		4.7	<. 3	<. 01
A 133633	5.5	1.5	3.0	01	1	4	. 1	6	. 38	1.2	2 . 2	3.8	. 4	$40<.1$. 2.4	<1	$<.01$. 004	<1	3.3	<. 01	1258	. 002	. 08	. 002	03	<.1 . 01		$9<.1$. 13	<1	9	< 3	<. 01
A 133634	2.7	6.7	3.1	12	. 1	1.0	. 3	7	1.42	6.4	4 . 3	138.0	. 4	$8<.1$. 21.0	8	<. 01	023	<1	4.5	<. 01	88	. 002	. 11	. 001	. 01	. 1.04		$1<1$. 10	<1	2	<. 3	. 14
A 133635	7.8	2237.3	23.3	3103	1.3	1.0	11.4	1157	2.68	2.4	41.5	12.8	3.3	63.1	. 21.0	47	93	086	9	2.3	85	55	190	1.91	. 008	23	. $5<.01$		$0<.1$	<. 05	5		1.5	01
A 133636	16.7	372.3	52.3	321	2.1	. 8	82.2	149	2.57	25.3	3.4	68.3	31.4	$42<1$. 32.3	15	. 07	049		2.4	. 12	100	. 088	. 46	. 019	31	1.0 .01	2.2	2.1	. 33		1.0	2.0	10
A 133637	31.6	289.5	9.9	932	. 8	. 5	. 6	62	. 96	2.0	01.2	7.4	43.1	12.4	. 11.2	9	. 06	003		2.1	04	222	018	31	. 003	. 19	. 4.02		$0<.1$. 06		1.9	<. 3	<. 01
A 133638	7	1028.5	3.7	7381	. 1	1.6	9.6	1294	2.72	<. 5	51.4	2.8	83.4	433.5	. 3.1	56	. 78	077	,	2.1	91	43	165	1.86	. 028	. 21	. $9<.01$		0.1	<. 05		<. 5	<. 3	<. 01
A 133639	11.5	24.8	76.7	7146	. 9	. 5	4.2	855	2.83	4.0	0.2	9.3	3.5	27.2	. 22.1	41	20	055	3	1.4	50	1380	068		<. 001	15	. 2.01		$6<.1$	<. 05	4	<. 5	1.3	01
A 133879	. 3	4.5	4.7	78	<. 1	<. 1	< 1	1957	. 08	12.2	2.3	< 5	< 1	106.1	<.1<.1	<1	30.75	029	2	1.9	. 51	33	001	. $04<$. $001<$	< 01	1.1 .03		$1<.1$. 32		1.1	<. 3	<. 01
A 133880	1.3	5.8	19.1	159	. 3	3.6	49.8	1133	8.84	7.4	41.7	37.1	13.8	$260<1$	1.13 .3	170	3.14	196	13	42.1	1.51	69	. 371	6.10	. 010	20	. 4.02	14.8	8.1	. 92	16	2.6	. 6	05
RE A 133880	1.5	8.6	19.2	258	. 4	3.5	50.8	1138	8.91	7.8	81.8	46.3	34.0	$261<.1$	1.13 .4	185	3.13	198	12	46.21	1.53	71	. 365	$6.21<$	<. 001	. 19	. 3.04	15.1	1.1	. 81	16	2.8	5	04
P 175651	2.7	4.7	30.0	041	. 8	. 3	1.4	613	1.62	18.8	8.4	182.6	1.1	20.1	. 6.2	19	. 35	072	3	<1	. 37	32	. 025	. 75	. 010	. 15	< 1 < 1 . 01		$8<1$. 15		<. 5	. 6	16
P 175652	. 6	7.2	83.5	513	6.6	. 6	6.1	76	1.63	. 6	$6<.1$	759.6	6.1	5.1	. 52.2	3	. 06	023		1.3	. 01	17	. 005	. 10	. 004	. 02	< $<1<.01$		$8<.1$	<. 05	<1	2.7	7.4	85
- 175653	4	25.6	9.2	234	2	1.7	6.0	318	2.39	4.8	81.4	6.3	32.6	93.1	4.2	24	. 76	071	8	1.3	31	90	080	1.49	193	12	. $1<.01$		$0<.1$	1.55	5	<. 5	<. 3	01
STANDARD DS5/R-2/AU-1	12.2	140.9	23.2	2130	. 2	22.0	10.5	759	3.16	17.4	45.8	40.0	2.6	445.2	3.76 .0	64	73	091	12	177.4	. 67	130	. 100	2.17	. 032	15	5.0 .18		71.0	<. 05		5.2	155.8	3.38

[^1]
SAMPLE\#

. 1	. 5	9	3	<. 1	. 7	. 3	1	. 08	<. 5	< 1	<. 5	<. 1	3	1	2	<. 1	<1		< 001	<1	<1	. 01		. 001	01	407	03	< 1	08	1	< 1	08	<1	<. 5	<. 3	< 01
. 9	8.8	8.6	59	. 1	$1<.1$	5.3	375	3.57	8.0	1.9	11.3	2.0	64	1	4	1	45	40	089	1	1.6	. 65	178		1.60	021	. 18		2.42	5.0	. 2	. 51	6	1.6	< 3	< 01
2.5	4.3	2.1	2	. 1	< 1	. 7	2	. 68	2.6	3	1.9	. 4	46	< 1	. 2	1	8	< 01	. 004	<1		< 01	922	002	40	004	< 01		3.01	1.1	<. 1	<. 05	1	1.5	< 3	< 01
. 5	134.9	1090.6		14.3	< 1	3.3	3682	1.16	39.7	< 1	13.5	. 5	53	4.5	2.5	5	22	5.00	026	4	4.0	. 10	145	. 003	27	. 004	. 09	3	. 09	2.1	. 1	<. 05	2	1.5	16.3	01
3.4	1157.0	18.9	71	5.7	1.0	21.0	561	3.10	4.7	2.4	13.0	6.4	37	. 4	2	5.3	74	. 81	085	10	4.1	. 79	50	094	1.11	. 002	. 13	. 7	. 07	4.0	<. 1	. 20	6	1.0	5.9	< 01
1.3	88.7	10.1	57	. 2	2.1	8.7	652	2.45	2.3	2.3	1.9	7.5	63	. 2	. 3	. 3	75	1.10	082	10	3.6	. 77	38	109	1.36	. 017	10	6	04	3.8	< 1	<. 05	7	5	< 3	< 01
. 3	4040.2	3.6	88	2.2	21.35	56.7	4571	. 76	4.1	3.6	12.6	. 4	159	4.1	. 9	1	10	30.19	019	2	21.3	46	10	040	. 55	. 001	. 06	2	. 02	3.0	< 1	. 56	2	< 5	2.5	. 01
	22883.1	47.5	497	54.0	26.56	67.4	2256	7.35	127.2	. 3	115.2	. 4	125	6.8	1.9	2.1	23	15.89	. 045	4	43.8	. 71	22		1.11	007	. 06	1.5	. 02	2.3	1	3.67	5	3.4	69.0	12
1.5	63.4	255.1	25	. 7	7.6	3.2	173	1.92	22.5	. 2	10.5	. 2	11	. 1	. 7	. 1	22	. 34	013	1	16.8	47	227	056	. 63	. 004	. 09	. 4	. 01	1.7	<. 1	32	3	5	. 7	. 01
1.4	233.5	14.8	157	. 9	94.4	10.0	866	3.81	10.5	. 4	6.4	1.0	61	. 8	6	4	53	. 98	113	6	9.4	. 94	40	287	1.48	. 013	. 20	. 8	. 08	4.4	1	. 13	7	1.1	4	02
2.3	24.2	22.9	136	. 3	8	10.5	984	3.77	3.1	8	6.7	2.7	104	. 8	. 5	. 1	103	1.21	104	9			18	209	1.66	024	. 07	. 7	. 06	4.4	< 1	< 05	9	<. 5	<. 3	< 01
1.4	10.3	5.9	69	. 4	1.3	4.0	578	1.91	3.6	. 6	14.2	1.5	72	1	. 4	. 3	29	56	. 079	7	4.5	56	20	. 166	. 98	. 031	. 10	. 8	. 03	2.2	< 1	<. 05	6	<. 5	< 3	. 01
1.3	25.1	3.6	79	. 3	35.21	10.6	818	3.65	2.6	. 4	2.0	1.2	160	1	. 6	3	67	. 97	. 068	4	12.9	. 95	51	282	2.01	. 063	. 16	. 9	. 04	6.9	< 1	<. 05	8	<. 5	< 3	. 01
11.2	45.6	10.8	113		912.6	12.0	806	5.17	6.3	. 6	5.8	1.0	93	6	7	2.1	69	. 75	. 093	4	31.8	. 99	28	276	1.75	. 017	. 12	1.3	. 05	6.9	< 1	< 05	9	< 5	4	< 01
12.7	667.8	36.0	116	. 7	7.4	4.0	782	1.78	<. 5	2.7	10.7	10.4	26	1.7	. 1	. 3	41	. 66	053	8	3.7	. 38	66	043	. 70	. 016	25	3	. 04	1.8	. 1	<. 05	3	< 5	4	< 01
10.1	1120.0	12.1	133	. 4	2.0		1240	2.88	1.7	2.8	5.8	8.5	40	. 8	. 2	1	69	. 74	083	12	5.4	. 73	73	077	1.28	. 017	. 26	6	. 05	3.2	. 1	<. 05	5	<. 5	<. 3	. 01
40.5	3992.6	53.3	320	6.3	4.71	13.6	2795	7.08	. 5	1.9	16.0	5.4	73	. 9	. 5	3.8	105	1.05	108	8		1.00	56	081	2.01	003	. 25	1.0	. 04	2.8	1	<. 05	8	4.0	7.3	02
1.4	919.4	5.8	75	. 2	1.3	6.1	713	2.80	1.4	2.4	4.6	7.5	28	. 5	2	. 1	79	. 87	087	12	4.5	59	44	104		. 023	. 14	. 6	01	3.2	< 1	< 05	5	<. 5	<. 3	< 01
72.7	9413.4	81.0		10.6		20.6	3511	11.54	. 5	2.0	23.6	5.7	27	1.4	. 5	4.7	155	1.14	. 107	10		1.66	71		2.12	< 001	38	7	04	2.6	2	<. 05	10	6.7	11.9	05
88.3	9551.0	81.5	406	10.5	9.7	21.0	3553	1.81	<. 5	1.9	32.4	5.4	28	1.3	. 5	4.8	163	1.16	. 109	10	2.1	1.07	78	035	2.15	. 001	39	6	01	2.8	. 2	08	10	7.1	11.9	05

$\begin{array}{lll}4.1 & 5075.7 & 58.6 & 621 & 3.4 & 9.3 & 19.8 & 3849 & 10.23 & 1.6 & 2.6 & 10.7 & 14.3 & 32 & 2.5 & .5 & 5.0 & 185 & 1.26 & .097 & 28 & 3.4 & 1.41 & 85 & .054 & 2.44 & .001 & .45 & 1.1 & .03 & 3.9 & 2 & <.05 & 11 & 3.7 & 3.6 & .02\end{array}$
A $\begin{array}{lll}47.0 & 4553.8 & 40.6 & 322 & 2.2 & 1.5 & 10.7 & 1579 & 3.42 & 1.5 & 4.3 & 53.2 & 6.2 & 25 & 2.2 & .2 & .4 & 77 & 1.05 & .124 & 12 & 2.6 & 1.01 & 54 & .066 & 1.46 & .024 & .27 & .4 & .05 & 3.4 & .1 & <.05 & 7 & <.5 & 1.4 & .02\end{array}$

 $\begin{array}{rr}\text { A } 132617 & 5.6 & 27.7 & 61.2 & 7 & 1.6 & .4 & <.1 & 13 & .42 & 1.9 & <.1 & 3.7 & .3 & 6 & .1 & .1 & 1.0 & 2 & <.01 & .004 & 4 & 19.0 & <.01 & 26 & .001 & .05 & .002 & .03 & .4 & .03 & .1 & <.1 & <.05 & <1 & <.5 & 1.5 & .01 \\ \text { A } 132618 & 2.6 & 20.8 & 18.1 & 7 & .7 & .8 & <.1 & 13 & .36 & 1.0 & .1 & 10.8 & .7 & 6 & .1 & .1 & 1.6 & <1 & <.01 & .003 & 4 & 28.2 & <.01 & 55<.001 & .04<.001 & .04 & .4 & .03 & .3 & <.1 & <.05 & <1 & <.5 & .8 & <.01\end{array}$

A 132621
A 13262

GROUP 1DX - 1.000 GM SAMPLE LEACHED WITH 30 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 100 ML, ANALYSED BY ICP-MS.
 AG** \& AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE.
 ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM \& AU > 1000pPB
 SAMPLE TYPE: ROCK R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Rejectereruns.

A 132624
 A 132625 A 132626 A 132627 A 132628

A 132630

A 132631
A 132632 A 132633

$\begin{array}{lll}1.0 & 10.8 & 12.0 & 28 & .3 & 4.1 & 16.7 & 14 & 5.60 & <.5 & .3 & 3.3 & .7 & 6 & <.1 & .1 & 1.5 & 13 & .10 & .027 & 6 & 3.3 & .04 & 96 & .001 & .53 & .001 & .36 & .1 & .06 & 1.1 & .1 & 6.35 & 1 & 7.7 & .4 & .01\end{array}$

$\begin{array}{ll}59.6 & 517.5 & 472.8 & 13 & 29.6 & 1.3 & .2 & 25 & 1.34 & <5 & .2 & 90.4 & .5 & 20 & 1 & .245 .0 & <1 & .06 & .056 & 3 & 11.9 & .01 & 80 & .001 & .13 & .003 & .11 & .3 & .05 & .3 & .1 & .39 & <1 & 14.4 & 34.0 & .07\end{array}$
$\begin{array}{ll}18.2 & 141.6 & 10.4 & 106 & .6 & 1.9 & 1.9 & 155 & .54 & 1.1 & .5 & 5.3 & 1.4 & 182 & 1.4 & .1 & .9 & 4 & .35 & .049 & 8 & 12.5 & .02 & 3548 & .001 & .43 & .009 & .28 & 1.8 & .04 & .4 & .1 & .10 & 1 & .6 & .8 & .01\end{array}$

$\begin{array}{ll}18.0 & 11.8 & 19.5 & 5 & 2.5 & 3.0 & .4 & 27 & .45 & 2.2 & <.1 & 477.3 & .2 & 30 & <.1 & .2 & 5.2 & 5 & .02 & 003 & 1 & 17.1 & .01 & 591 & .001 & .08 & .001 & .06 & 1.6 & .07 & .1 & .1 & .12 & <1 & <.5 & 3.7 & .34\end{array}$

| 22.9 | 143.0 | 34.6 | 13 | .4 | .9 | .4 | 15 | 6.84 | 6.0 | .3 | 62.5 | 3.8 | 18 | $<.1$ | .1 | 3.5 | 14 | .04 | .038 | 16 | 3.0 | .01 | 68 | .001 | .66 | .001 | .29 | .1 | .05 | 1.1 | .1 | .20 | 1 | 3.0 | 1.0 | .08 |
| :--- |

$\begin{array}{ll}30.1 & 65.6 & 55.3 & 93 & 6.0 & 1.6 & 1.1 & 32 & 1.70 & 1.4 & .2 & 21.3 & .2 & 70 & .7 & .1 & 27.9 & <1 & .01 & .009 & 2 & 15.8 & .01 & 1573 & .002 & .16 & .004 & .14 & 1.2 & <.01 & .6 & <.1 & .82 & 1 & 11.0 & 7.2 & .02\end{array}$

$\begin{array}{ll}1.2 & 630.3 & 6.3 & 105 & .5 & 6.1 & 8.2 & 677 & 2.59 & 3.8 & .7 & 7.9 & 1.9 & 14 & .2 & .2 & .2 & 60 & .34 & .058 & 7 & 16.3 & .65 & 75 & .099 & .99 & .046 & .13 & 1.0 & <.01 & 5.1 & <.1 & <.05 & 5 & <.5 & .5 & <.01\end{array}$

- A 132728
$\begin{array}{lllllllllllllllllllllllllllllllllllll}1.1 & 6724.5 & 28.1 & 279 & 1.3 & 1.2 & 1.2 & 372 & 2.19 & 1.5 & 1.4 & .8 & 3.2 & 10 & 5.6 & .1 & .5 & 49 & .63 & .041 & 3 & 11.9 & .09 & 234 & 072 & .40 & .090 & .11 & 4.0 & .02 & 3.7 & <.1 & .17 & 1 & <.5 & 2.0 & <.01\end{array}$
A 132728

- A 132903
$\begin{array}{rrr}.5 & 4552.2 & 30.1 & 518 & 1.2 & 1.2 & 4.1 & 1792 & 2.07 & 1.8 & 3.2 & 9.9 & 4.1 & 79 & 4.1 & 4 & .7 & 15 & .84 & .013 & 10 & 4.1 & .55 & 2303 & .045 & 1.25 & .007 & .27 & .2 & <.01 & 2.4 & .1 & .15 & 5 & 3.2 & 2.2 & .01 \\ 12.5 & 141.0 & 23.9 & 135 & .3 & 24.9 & 12.5 & 775 & 3.22 & 17.7 & 6.5 & 42.0 & 2.6 & 48 & 5.4 & 4.2 & 5.9 & 65 & .82 & .092 & 14 & 199.2 & .65 & 134 & .113 & 2.22 & .034 & .15 & 5.3 & .20 & 3.7 & 1.1 & <.05 & 7 & 5.1 & 156.2 & 3.35\end{array}$

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^2]

Sample type: ROCK R150 60C. Samples begtnning 'RE' are Reruns and 'RRE' are Reject Reruns.

Appendix II

Statement of 2003 Expenditures

Stealth Minerals
 Swan Claims
 2003 Statement of Costs

Appendix III

Recommendations: Cost Estimate

EXPLORATION Swan Claims Phase I\&II					
MONTHLY ACCRUALS WORKSHEET					
				Balance	
Category	Account Description	Rate	days		
-					
Salaries					
	Project geo	450	20	9000	
	tech	250	15	3750	
	tech	250	15	3750	
	prosp1	300	15	4500	
	cook	200	15	3000	
Consultant				0.	
	Geological			0	
				0.	
Analysis, Assay				0.	
	Geochem Analysis \& Assay	20	200	4000	
	Metallurgical Testwork	3.	25	75	
	Other Lab/Sample Prep			0.	
				0	
Fied/Camp				0	
	Field Supplies			500	
	Camp Costs	75	100	7500	
	Camp Construction			5000	
	Expediting	300	10	3000	
				0	
Surface Work				0	
	Linecuiting, Site Prep			0	
	Trenching/Pitting	1000	10	10000	
	geophysics			0	
Environment/Reclamation				0	
	Permiting			0	
	Reciamation			1000	
				0	
Property Maintenance				0	
	Staking			0	
	Land Surveying			0	
	Option, Acquisition PmAs			0	
	Claim Holding Costs			1700	
				0	
Travel				0	
	Lodging	5	100	500	
	Meals, Groceries	20	50	1000	
	Airfare	500	2	1000	
				0	
Transportation/Air Support				0	
	Vehicle Lease/Rental	3500	1	3500	
	Vehicle Mntce, Operating Exp			500	
	Helicopter	35	1,000	35000	
	Helicopler - Fuel			0	
				0	
Support Activities				0	
	Communication	1	5,000	5000	
	Maps/Pubs/Photos/Reports			100	
	Freigh/Shipping			1000	
				0	
Other A8G/Management Fee				0	
	report			2500	
	contingency			6,725	
	TOTAL COSTS:			113600	
Phase II	Drilling	750	175	131250	
					$i^{\prime}{ }^{2}$
		Total IS\%		244850	\% 0
					\%

Appendix IV

Statement of Qualifications

STATEMENT OF QUALIFICATIONS

I, David L. Kuran of 25630 Bosonworth Avenue in the Municipality of Maple Ridge in the Province of British Columbia, certify that:

1) I am a graduate of the University of Manitoba (1978) and hold a B. Sc. Degree in Geology.
2) I am a self-employed Consulting Geologist.
3) I am a registered as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia, Canada, Registration \# 19142.
4) I am a Fellow in the Geological Association of Canada.
5) I have been employed in my profession as Geologist continuously since graduation by various mining companies and consulting firms in Canada, USA, Mexico and Europe.
6) This report are based upon data collected during field work completed on the Stealth Minerals Swan claims in the Omineca Mining Division during 2003 by D.L Kuran and others, and a thorough research of available information, and personal experience in the district.
7) I hold no interest in the Swan Claims.

Dated this 10 th day of May, 2004 at Maple Ridge BC, Canada.

Appendix V

References

List of References

Blann, D.E., Malahoff, B., 2003. Assessment Report on the Pine Property, Finlay River, Toodoggone, British Columbia, NTS 94E.017, 94E.027, $57^{\circ} 131^{\prime} \mathrm{N}, 127^{\circ} 42^{\prime} \mathrm{W}$, Omineca Mining Division. Prepared for Stealth Minerals Ltd., Toronto Ont. Prepared by Standard Metals Exploration Ltd., Burnaby, B.C.
Blann, D.E. 2001. Geological Assessment Report on the Pine Property, Finlay River, Toodoggone, British Columbia, NTS 94E.017, 94E.027, $57^{\circ} 131^{\prime} \mathrm{N}, 127^{\circ} 42^{\prime} \mathrm{W}$, Omineca Mining Division. Prepared for Stealth Mining Corp., Edmonton, AB. Prepared by Standard Metals Exploration Ltd., Burnaby, B.C. Assessment Report \# 26545
Government of British Columbia, Ministry of Energy and Mines, MapPlace website

[^0]: "The Saunders North showing is underlain by a succession of lower to middle Jurassic subaerial volcanics and associated volcaniclastic sediments of the upper volcanic cycle of the Toodoggone Formation. Lithologies underlying the Saunders North showing consist predominantly of latite lava flows with interflow lahar and mixed epiclastic and pyroclastic rocks of the Metsantan Member. To the south and west, Toodoggone Formation volcanics are composed of partly welded, crystal-rich dacitic ash flows of the Saunders Member. The dominant lithologies southeast of the showing are divided into two informal units. The first unit consists of pyroxene-biotite-hornblende porphyry flows with interbedded breccias and lapilli tuffs. The other unit consists of well-bedded lapilli, crystal and ash tuffs with interbedded sandstone and siltstone. The area is also disrupted by a conjugate set of northwest and northeast-striking faults that appear to have substantial displacement.

 Quartz veins and stringers with pyrite are hosted in an outcrop composed of intensely silicified, oxidized and argillic-altered feldspar porphyritic trachyte. Limonite coating on fracture surfaces is common. Sample S-9-1-9, taken from this outcrop, analyzed 18.8 grams per tonne silver and 0.228 gram per tonne gold (Assessment Report 12716). Assays of additional samples taken in 1985 did not reproduce as high gold and silver values. Sample BT-S-31, however, did analyze 0.24 gram per tonne gold and 7.0 grams per tonne silver (Assessment Report 14487)."
 "The Saunders Northwest showing is underlain by a succession of lower to middle Jurassic subaerial volcanics and associated volcaniclastic sediments of the upper volcanic cycle of the Toodoggone Formation. Lithologies underlying the Saunders Northwest showing consist predominantly of latite lava flows with interflow lahar and mixed epiclastic and pyroclastic rocks of the Metsantan Member. To the south and west, Toodoggone Formation volcanics are composed of partly welded, crystal-rich dacitic ash flows of the Saunders Member. The dominant lithologies southeast of the showing are delineated into two informal units. The first unit consists of pyroxene-biotite- hornblende porphyry flows with interbedded breccias and lapilli tuffs. The other unit consists of wellbedded lapilli, crystal and ash tuffs with interbedded sandstone and siltstone. The area is also disrupted by a conjugate set of northwest and northeast-striking faults that appear to have substantial displacement.

[^1]: Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^2]: Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

